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THE ONE-DIMENSIONAL HUBBARD MODEL

The description of a solid at a microscopic level is complex, involving the interaction of
a huge number of its constituents, such as ions or electrons. It is impossible to solve the
corresponding many-body problems analytically or numerically, although much insight can
be gained from the analysis of simplified models. An important example is the Hubbard
model, which describes interacting electrons in narrow energy bands, and which has been
applied to problems as diverse as high-Tc superconductivity, band magnetism and the metal-
insulator transition.

Remarkably, the one-dimensional Hubbard model can be solved exactly using the Bethe
ansatz method. The resulting solution has become a laboratory for theoretical studies of
non-perturbative effects in strongly correlated electron systems. Many methods devised to
analyse such effects have been applied to this model, both to provide complementary insight
into what is known from the exact solution and as an ultimate test of their quality.

This book presents a coherent, self-contained account of the exact solution of the Hubbard
model in one dimension. The early chapters develop a self-contained introduction to Bethe’s
ansatz and its application to the one-dimensional Hubbard model, and will be accessible to
beginning graduate students with a basic knowledge of quantum mechanics and statistical
mechanics. The later chapters address more advanced topics, and are intended as a guide
for researchers to some of the more recent scientific results in the field of integrable models.

The authors are distinguished researchers in the field of condensed matter physics and
integrable systems, and have contributed significantly to the present understanding of the
one-dimensional Hubbard model. Fabian Essler is a University Lecturer in Condensed
Matter Theory at Oxford University. Holger Frahm is Professor of Theoretical Physics
at the University of Hannover. Frank Göhmann is a Lecturer at Wuppertal University,
Germany. Andreas Klümper is Professor of Theoretical Physics at Wuppertal Univer-
sity. Vladimir Korepin is Professor at the Yang Institute for Theoretical Physics, State
University of New York at Stony Brook, and author of Quantum Inverse Scattering Method
and Correlation Functions (Cambridge, 1993).
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Preface

On account of Lieb and Wu’s 1968 Bethe ansatz solution, the one-dimensional Hubbard
model has become a laboratory for theoretical studies of non-perturbative effects in strongly
correlated electron systems. Many of the tools available for the analysis of such systems have
been applied to this model, both to provide complementary insights to what is known from
the exact solution or as an ultimate test of their quality. In parallel, due to the synthesis of new
quasi one-dimensional materials and the refinement of experimental techniques, the one-
dimensional Hubbard model has evolved from a toy model to a paradigm of experimental
relevance for strongly correlated electron systems.

Due to the ongoing efforts to improve our understanding of one-dimensional correlated
electron systems, there exists a large number of review articles and books covering various
aspects of the general theory, as well as the Bethe ansatz and field theoretical methods. A
collection of these works is listed in the General Bibliography below.

Still we felt – and many of our colleagues shared this view – that there would be a need for
a coherent account of all of these aspects in a unified framework and from the perspective of
the one-dimensional Hubbard model, which, moreover, would be accessible to beginners in
the field. This motivated us to write this volume. It is intended to serve both as a textbook and
as a monograph. The first chapters are supposed to provide a self-contained introduction
to Bethe’s ansatz and its application to the one-dimensional Hubbard model, accessible
to beginning graduate students with only a basic knowledge of Quantum Mechanics and
Statistical Mechanics. The later chapters address more advanced issues and are intended to
guide the interested researcher to some of the more recent scientific developments in the
field of integrable models.

Although this book concentrates on the one-dimensional Hubbard model, we would like
to stress that the methods used in its solution are general in the sense that they apply equally
well to other integrable models, some of which we actually deal with in passing. In fact, the
application of Bethe’s ansatz to the Hubbard model is more involved than in other cases.
We expect the reader who has mastered the solution of the Hubbard model to be able to
apply his/her knowledge readily to other integrable theories.

This volume does not pretend to cover its subject completely. Rather, we attempted to
find a balance between being didactic and being comprehensive. Our selection of material

xi



xii Preface

was necessarily governed by our predispositions. We apologize if we have failed to cover
important issues adequately.

Ultimately this book originates in the many collaborations between the authors over
the last ten years, which are documented in the reference section at the end of the book.
Although the material presented has matured in the discussions between us, it is not difficult
to infer from our different styles which author bears primary responsibility for which chapter,
namely FG for chapters 2, 3, 11, 12, 14, 15, FHLE for chapters 4–7, 10 and 17, HF for
chapters 8 and 9, AK for chapter 13, VEK for chapter 16, and FG and FHLE jointly for
chapter 1.

Throughout this project and in many fruitful collaborations before we have benefitted
immeasurably from numerous discussions with our colleagues and friends A. M. Tsvelik,
N. d’Ambrumenil, T. Deguchi, H. Fehske, F. Gebhard, F. D. M. Haldane, V. I. Inozemtsev,
A. R. Its, E. Jeckelmann, G. Jüttner, N. Kawakami, R. M. Konik, E. H. Lieb, S. Lukyanov,
M. J. Martins, S. Murakami, A. A. Nersesyan, K. Schoutens, H. Schulz, M. Shiroishi,
F. Smirnov, J. Suzuki, M. Takahashi, M. Wadati, A. Weisse and J. Zittartz. Special thanks
are due to Andreas Schadschneider for discussions and his constructive criticism after
reading the entire manuscript. We are grateful to M. Bortz, A. Fledderjohann, M. Karbach,
P. Boykens, A. Grage, M. Hartung, R. M. Konik and A. Seel for proofreading parts of the
manuscript and helpful comments.

Despite the joint efforts of many dear friends we do not expect the first edition of such a
thick volume to be free of misprints. We plan to keep a record of all misprints brought to
our knowledge on our personal websites.

We thank the Physics Departments at Brookhaven National Laboratory and the Universi-
ties of Bayreuth, Dortmund, Hannover, Stony Brook, Warwick and Wuppertal for providing
stimulating environments during the course of writing this book.

FHLE acknowledges support by the Department of Energy under contract DE-AC02-98
CH10886.

General bibliography

Books

R. J. Baxter, Exactly Solved Models in Statistical Mechanics (London: Academic Press,
1982).

J. L. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge: Cambridge
University Press, 1996).

P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal Field Theory (New York:
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The figure shows the logical interdependence of the chapters and may serve the reader to
find individual paths through this book. Chapters 16 and 17 have the character of appendices
and are logically independent from the remaining part of the book.





1

Introduction

The purpose of this opening chapter is threefold: to introduce the Hubbard model, to discuss
its origin and significance and to give a brief summary of its history. Rather than beginning
with more general and historical considerations we will start with a concrete albeit some-
what technical discussion of how the Hubbard model arises as an effective description of
electronic degrees of freedom in solids.

1.1 On the origin of the Hubbard model

The Hubbard model is named after John Hubbard, who in a series of influential arti-
cles [201–206] introduced1 the Hamiltonian in order to model electronic correlations in
narrow energy bands and proposed a number of approximate treatments of the associated
many-body problem. Our following discussion of how the Hubbard Hamiltonian arises in
an approximate description of interacting electrons in a solid loosely parallels Hubbard’s
original work. We will assume that the reader is familiar with the basic concepts of solid
state theory (see e.g. [25,509]) and with the formalism of second quantization (e.g. [283]).
For further reading we refer to the original literature [188, 201, 233] and to the mono-
graphs [27, 158, 498].

A solid consists of ions and electrons condensed in a three-dimensional crystalline struc-
ture. Since the ions are much heavier than the electrons, it is often a good phenomenological
starting point for the exploration of the electronic properties of solids to think of the ions
as forming a static lattice.2 In this approximation the dynamics of the electrons is governed
by the Hamiltonian

H =
N∑

i=1

(
p2

i

2m
+ VI (xi )

)
+

∑
1≤i< j≤N

VC (xi − x j ) , (1.1)

where N is the number of electrons, VI (x) is the periodic potential of the ions and

VC (x) = e2

|| x || (1.2)

is the Coulomb repulsion among the electrons.

1 The Hubbard model was independently introduced by Gutzwiller [188] and Kanamori [233] around the same time.
2 This can be further justified within the Born-Oppenheimer approximation [68].
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2 Introduction

In spite of the drastic approximation we made by assuming a static lattice the Hamiltonian
(1.1) is far too complicated to be solved exactly. It still bears all the difficulties of a generic
many-body system. Much of the success of solid state theory derives from efficient ‘mean-
field’ one-particle approximations to (1.1). On a technical level these approximations are
based on adding an auxiliary potential VA(x) to the one-particle piece of the Hamiltonian
(1.1) and then subtracting it again in the two-body part, i.e. we may write

H =
N∑

i=1

(
p2

i

2m
+ V (xi )

)
+

∑
1≤i< j≤N

U (xi , x j ) , (1.3)

where we introduced effective one- and two-body potentials V (x) and U (x, y) as

V (x) = VI (x)+ VA(x) , (1.4a)

U (x, y) = VC (x− y)− 1
N−1

(
VA(x)+ VA(y)

)
. (1.4b)

Mean-field approximations to H amount to simply setting U (x, y) equal to zero. In order
for this to be sensible, the auxiliary potential needs to be chosen in such a way, that the
matrix elements of the effective two-body potential U (x, y) between the eigenstates of the
one-particle Hamiltonian

h1(x,p) = p2

2m
+ V (x) (1.5)

become small. Even in circumstances when this cannot be achieved, the two-body interaction
U (x, y) may still be considerably reduced in range and magnitude compared to the full
Coulomb interaction VC (x− y).

The physical idea behind the introduction of the auxiliary potential VA(x) may be for-
mulated as follows. Let us assume we have a large number N of electrons in the ground
state �0 of the Hamiltonian H . If we insert an additional electron locally into the system,
what potential does it feel? Superimposed on the periodic potential of the ions it feels the
electro-static potential which stems from the ground state density |�0(x1, . . . , xN )|2 of the
other electrons. This potential is periodic with the same periods as the ionic potential. It is,
however, of the opposite sign and therefore screens the attractive interaction of the ions.
Of course, this picture is only approximately correct because the additional electron itself
causes a change in the ground state density. Still, we may imagine that (again because of
the screening) the effect of the additional electron is only local and therefore small.

We now wish to ‘second-quantize’ the Hamiltonian (1.3) in a suitable basis of states. In
order to construct this basis we consider eigenstates of the one-particle Hamiltonian h1.
Since the one-body potential V (x) in (1.4a) is periodic, the eigenfunctions of h1 are Bloch
functions (see e.g. [25, 509]), i.e., they are of the form

ϕαk(x) = eik·xuαk(x) . (1.6)

Here uαk(x) has the periodicity of the lattice, k is the quasi momentum and α the band index.
The quasi momentum vector k runs over the first Brillouin zone. Being eigenfunctions of
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the one-particle Hamiltonian h1,

h1ϕαk(x) = εαkϕαk(x) , (1.7)

the functions ϕαk(x) constitute a basis of one-particle states.
A complementary one-particle basis is provided by the Wannier functions [25, 509]

φα(x− Ri ), where Ri is a lattice vector and φα(x) is defined as

φα(x) = 1√
L

∑
k

ϕαk(x) . (1.8)

Here L denotes the number of ions. The Wannier functions φα(x− Ri ) are centred around
Ri . They are lattice analogues of atomic wave functions and have the advantage of being
mutually orthogonal for different band and site indices α and i . The Bloch functions are
expressed in terms of the Wannier functions by means of Fourier inversion,

ϕαk(x) = 1√
L

∑
i

eik·Ri φα(x− Ri ) . (1.9)

Let us introduce creation operators c†αk,a of electrons of spin a in Bloch states ϕαk(x). We
further introduce their Fourier transforms

c†αi,a =
1√
L

∑
k

e−ik·Ri c†αk,a . (1.10)

Then, using (1.9), we may express the field operator, which creates an electron of spin a at
position x, in two different ways,

�†
a(x) =

∑
αk

ϕ∗αk(x) c†αk,a =
∑
αi

φ∗α(x− Ri ) c†αi,a . (1.11)

Here the asterisk denotes complex conjugation.
Finally, the general formula (see [283]) relating first and second quantized formalisms

H =
∑

a=↑,↓

∫
dx3 �†

a(x) h1�a(x)

+ 1
2

∑
a,b=↑,↓

∫
dx3dy3 �†

a(x)�†
b(y)U (x, y)�b(y)�a(x) , (1.12)

enables us to express the Hamiltonian (1.1) in second quantized form in the basis of Wannier
states,

H =
∑

α,i, j,a

tαi j c†αi,a cα j,a + 1
2

∑
α,β,γ,δ

i, j,k,l

∑
a,b

Uαβγ δ

i jkl c†αi,a c†β j,b cγ k,b cδl,a . (1.13)

Here the hopping matrix elements tαi j are given by

tαi j =
∫

dx3 φ∗α(x− Ri ) h1φα(x− R j ) = 1

L

∑
k

eik·(Ri−R j )εαk . (1.14)



4 Introduction

Similarly, the interaction parameters Uαβγ δ

i jkl are expressed as ‘overlap integrals’

Uαβγ δ

i jkl =
∫

dx3dy3 φ∗α(x− Ri )φ
∗
β(y− R j )U (x, y)φγ (y− Rk)φδ(x− Rl) . (1.15)

We note that H in equation (1.13) is still completely equivalent to the first quan-
tized Hamiltonian (1.1). An optimal choice of the Wannier functions φα(x) through
an optimal choice of the auxiliary potential VA(x) minimizes the influence of the mu-
tual Coulomb interaction. When the interaction parameters are small compared to the
hopping matrix elements, they can be set equal to zero in a first approximation, and
can later be taken into account by perturbation theory. This is the realm of band
theory.

The Hubbard model is obtained from (1.13) when the interaction parameters are no longer
negligible, but their range is still very small, i.e., when the intra-atomic Coulomb interaction
Uαβγ δ

i i i i is large compared to the inter atomic interaction parameters and, at the same time,
cannot be neglected compared to the hopping matrix elements. This situation is believed to
be characteristic for transition and rare earth metals.

When the Fermi surface lies inside a single conduction band, say α = 1, it is sometimes
justified to ‘project’ the multi-band Hamiltonian onto an effective one-band model. Let us
imagine a situation where the interband interactions are weak and at the same time all bands
except the α = 1 conduction band are far away from the Fermi level. As long as we are
interested only in energies in the vicinity of the Fermi level, the main effect of the high
energy bands is to change the hopping and interaction parameters of the electrons in the
conduction band. Then we may replace the multi-band Hamiltonian (1.13) by a one-band
model with effective parameters ti j and U

H =
∑

i j

ti j c
†
i,ac j,a + U

2

∑
i

c†i,ac†i,bci,bci,a . (1.16)

Whereas the hopping matrix elements can usually be determined accurately in the frame-
work of density-functional theory (see e.g. [106]), the effective interaction parameter U is
much more difficult to estimate and is perhaps best fixed by comparing theoretical predic-
tions to experimental results.

It has to be said that the Hamiltonian (1.16) is not expected to describe the transition or
rare earth metals quantitatively, since the interaction between overlapping bands is impor-
tant in both cases. The Hamiltonian (1.16) is most appropriately regarded as an effective
Hamiltonian that is believed to capture, at least qualitatively, some of the electronic features
of the transition metals.

A further simplification of the Hamiltonian, which is compatible with the assumption
that the Wannier functions φα(x− Ri ) are strongly localized around Ri is the tight-binding
approximation, where one retains only hopping matrix elements between nearest neigh-
bours. Then, upon introducing the particle number operators ni↑ = c†i↑ci↑ and ni↓ = c†i↓ci↓,
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the Hamiltonian (1.16) reduces to

H = −t
∑
〈i, j〉

c†i,ac j,a +U
∑

i

ni↑ni↓ . (1.17)

Here the symbol 〈i, j〉 denotes summation over ordered pairs of nearest neighbours. We have
assumed isotropic hopping of strength−t between nearest neighbours and have suppressed
the on-site terms tii , since they may be absorbed into the chemical potential in a grand
canonical description of the model.

The one-dimensional version of the Hamiltonian (1.17) is easily identified with the
Hubbard Hamiltonian (2.1) of Chapter 2 which is the actual starting point of this book. Its
peculiar charm is certainly due to the fact that, in spite of its simplicity, it cannot be reduced
to a one-particle theory and for this reason shows a rich spectrum of physical phenomena.

1.2 The Hubbard model – a paradigm in condensed matter physics

One of the most successful descriptions of electrons in solids is band theory. It is based on
reducing many-body interactions to an effective one-body description, i.e., on neglecting
the two-body potential U (x, y) in equation (1.4b) or equivalently the interaction parameters
Uαβγ δ

i jkl in equation (1.13). However, there are various situations of physical interest where
band theory fails by construction. Arguably the most prominent example are Mott insulators:
these have an odd number of valence electrons per elementary cell and yet are insulating,
in contradiction with predictions of band theory.

One of the main motivations for studying the Hubbard model is that it is the simplest
generalization beyond the band theory description of solids, yet still appears to capture
the gross physical features of many systems characterized by more general interaction
parameters in (1.13). The Hubbard model has been used in attempts to describe

(i) the electronic properties of solids with narrow bands,
(ii) band magnetism in iron, cobalt, nickel,

(iii) the Mott metal-insulator transition,
(iv) electronic properties of high-Tc cuprates in the normal state.

Despite its apparent simplicity, no fully consistent treatment of the Hubbard model is
available in general. However, there are two cases in which one is more fortunate and many
properties are calculable, namely the extremes of lattice coordination numbers two and
infinity.3 One might naively expect that the latter case can be easily understood by means of
a mean-field approximation. Surprisingly, there is a particular way [325] of performing the
limit of infinite lattice ‘dimension’ D→∞, in which the behaviour of the Hubbard model
does not become mean-field like, but the model remains tractable. A striking result obtained
in this approach is an understanding of the Mott transition between a paramagnetic metal
and a correlated insulator. For details we refer the interested reader to the review article [163]
and to the monograph [158].

3 Notice that a few rigorous results [294, 452] also hold in the general case of arbitrary lattice dimension.
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Here we are concerned with the first case, which corresponds to a one-dimensional
lattice. The one-dimensional Hubbard model has a distinctive feature: it is ‘integrable’.
This essentially means that many physical properties can be determined exactly.4 Integrable
models are rather special and occur mostly in D = 1. Integrability is a fragile property:
adding extra terms to an integrable Hamiltonian will in general break it. This fact is a frequent
source of criticism. However, often the physics of a given problem is more robust than the
mathematics: adding small perturbations to a given Hamiltonian does not necessarily lead
to any dramatic changes in the physical properties. This point can be made more precise in
the context of universality classes of critical behaviour (see e.g. [76]). By the same token the
1D Hubbard model may yet prove to be directly relevant for the description of experiments.

In our view, the central importance of integrable models rests with the fact that they
constitute paradigms of diverse physical phenomena, which can be understood and charac-
terized in their entirety. They allow us to study many-body physics beyond the restrictions
of perturbation theory or intuitive non-systematic approximations. Their analysis permits
us to develop an intuitive understanding of ‘non-perturbative’ effects. Last but not least,
integrable models provide benchmarks for the development of approximate and numerical
methods.

1.2.1 Integrable models

The history of exactly solvable many-body quantum systems traces back to H. Bethe’s
1931 article [60] on the spin- 1

2 Heisenberg chain in the early days of Quantum Theory.
Bethe constructed the many-body wave functions and reduced the problem of calculating
the spectrum of the Hamiltonian to solving a set of N coupled algebraic equations (‘Bethe
ansatz equations’), where N is the number of overturned spins. In this way a problem of
exponential complexity is reduced to one of polynomial complexity. Bethe’s work provides
an explicit answer for the ground state properties and excitations of the ferromagnetic
Heisenberg model. The energy per lattice site in the antiferromagnetic ground state was
calculated by L. Hulthén in [207]. Hulthén recognized that in the thermodynamic limit the
ground state can be characterized by the solution of a linear integral equation.

At the time Bethe’s work was considered to be a fascinating but mostly academic exercise
and it was hoped that it might serve as a stepping stone on the path to a solution of Heisenberg
models on two- and three-dimensional lattices. Since then, Bethe’s work has remained a
constant source of inspiration for generations of researchers in theoretical and mathematical
physics. It marked the beginning of a new branch of mathematical physics, the theory of
exactly solvable quantum systems.

The next milestone was reached in 1944 [350] with L. Onsager’s solution of the two-
dimensional Ising model, which is based on an infinite-dimensional symmetry algebra
(‘Onsager Algebra’) and a transfer matrix approach. Furthermore, the ‘star-triangle relation’,
which played a crucial role in many subsequent developments, was mentioned for the first

4 A precise definition of integrability is given in Chapter 12.
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time. Onsager’s work had a lasting impact on the microscopic foundations of the general
theory of phase transitions. It established that singularities in the free energy can be obtained
by a direct calculation of the partition function of a microscopic model. Furthermore, the
solution demonstrated that critical exponents need not be mean-field like.

New applications of Bethe’s ansatz were discovered during the 1960s, starting with the
work [296] of E. H. Lieb and W. Liniger on the Bose gas with delta-function interactions. The
extension of Bethe’s ansatz to problems in statistical mechanics was achieved by E. H. Lieb
in his solution of three archetypical cases of the six-vertex model (ice, KDP, F) [290–292].
The general case was solved shortly after by B. Sutherland [422] (for a review see [299]).

The generalization of Bethe’s ansatz to models with internal degrees of freedom like
spin proved to be very hard, because scattering involves changes of the internal states of
the scatterers. This problem was eventually solved by C. N. Yang [493] and M. Gaudin
[154] by means of what is nowadays called ‘nested Bethe ansatz’. The condition for the
applicability of the nested Bethe ansatz is the consistent factorization of multi-particle
scattering processes into two-particle ones. Consistency requires the two-particle scattering
matrices to fulfill certain algebraic equations, the ‘Yang-Baxter Equations’.

In 1969 C. N. Yang and C. P. Yang [496] showed that Bethe’s ansatz allows for the calcu-
lation of finite temperature properties of the delta-function Bose gas. This astonishing result
is the first exact treatment of the thermodynamics of an interacting many-body quantum
system.

Starting from the observation that the eigenstates of the transfer matrix of the six-vertex
model are independent of one of the parameters, R. J. Baxter realized that there must be an
entire family of commuting transfer matrices. He discovered a simple explanation of this
remarkable fact by showing that it follows from ternary relations for the local Boltzmann
weights [45]. These relations are a sufficient condition for the solvability of the model and
are identical to the Yang-Baxter Equations obtained previously by Yang in his construction
of the nested Bethe ansatz. Using his insights, Baxter realized the equivalence of the Yang-
Baxter Equations to Onsager’s star-triangle relations. He also discovered that the Boltzmann
weights of an eight-vertex model satisfy the Yang-Baxter Equations, establishing solvability
in the sense of the existence of a family of commuting transfer matrices [43,44]. Interestingly
the model cannot be solved by Bethe’s ansatz. However, Baxter managed to develop novel
methods for the calculation of partition functions as well as one-point functions [45].

The role of the Yang-Baxter Equations as the defining structure of integrable models was
emphasized by L. D. Faddeev, E. K. Sklyanin and L. Takhtajan and other members of the
St Petersburg branch of the Stekhlov Mathematical Institute. They established a relation
between quantum many-body models solved by Bethe’s ansatz and classical integrable
evolution equations [404,410,411]. Building on this connection, they initiated a systematic
search for solutions of the Yang-Baxter Equations [274,276] and developed a programme for
the solution of integrable models they called the ‘Quantum Inverse Scattering Method’. An
important element of this method is the algebraization of the construction of eigenstates of
the transfer matrix [132,445]. The developments initiated by the Stekhlov group culminated
in the advent of ‘Quantum Groups’ [107, 225].
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1.2.2 Bethe ansatz solution of the Hubbard model

The history of the one-dimensional Hubbard model as an exactly solvable model began in
1968 with E. H. Lieb and F. Y. Wu’s article [298]. Lieb and Wu discovered that Bethe’s ansatz
can be applied to the Hubbard model and reduced the spectral problem of the Hamiltonian
to solving a set of algebraic equations, nowadays known as the Lieb-Wu equations (see
Chapter 3). They succeeded in calculating the ground state energy and demonstrated that
the Hubbard model undergoes a Mott metal-insulator transition at half filling (one electron
per site) with critical interaction strength U = 0 (Chapter 6).5

In the 35 years since Lieb and Wu’s fundamental work appeared in print there have been
hundreds of publications on the subject. It is clearly an impossible feat to do all of them
justice within the confines of this short introduction. Hence we will constrain the following
discussion to a small selection of works, which in our very personal and subjective view
are of particular importance.

In 1972 M. Takahashi [435] proposed a classification of the solutions of the Lieb-Wu
equations in terms of a ‘string hypothesis’ (see Chapter 4). He employed this hypothesis
to replace the Lieb-Wu equations by simpler ones and then proceeded to derive a set of
non-linear integral equations, which determine the Gibbs free energy of the Hubbard model
(Chapter 5). These integral equations are known as thermodynamic Bethe ansatz (TBA)
equations. Solving them in the limit of small temperatures Takahashi calculated the specific
heat [436]. Later on a more complete picture of the thermodynamics of the Hubbard model
was obtained from numerical solutions of the TBA equations [240, 469].

In fact, Takahashi’s equations, in conjunction with the TBA equations, can be used
to calculate any physical quantity that pertains to the energy spectrum of the Hubbard
model. In particular, the dispersion curves of all elementary excitations can be obtained
from the TBA equations in the limit T → 0 [95]. Constraints on the quantum numbers in
Takahashi’s equations imply certain selection rules that determine the allowed combinations
of elementary excitations and therefore the physical excitation spectrum [95]. Historically,
the pioneering works in which ground state properties [298, 396, 429, 492] and the excitation
spectrum [88,258,352,481,482,485,486]) were determined followed a different approach.
In our view the thermodynamic Bethe ansatz is perhaps the most systematic approach
for studying the ground state and the physical excitation spectrum of the one-dimensional
Hubbard model and will serve as the basis of the corresponding Chapters 6 and 7 of this
book.

Takahashi’s equations may also serve as starting point for the calculation of the scatter-
ing matrix of the elementary excitations. For the half-filled Hubbard model in vanishing
magnetic field the S-matrix was calculated in [120, 121]. It was shown that the excitation
spectrum at half filling is given by scattering states of four elementary excitations: holon
and antiholon with spin 0 and charge ±e and charge neutral spinons with spin up or down
respectively. This is remarkable, since away from half filling, or at finite magnetic field, the
number of elementary excitations is infinite [95]. It was further shown in [120, 121] that

5 The ground state of the half-filled Hubbard model is metallic for U = 0 but Mott-insulating for all U > 0.
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the four particles can only be excited in SO(4) multiplets (for the SO(4) symmetry of the
model see Chapters 2 and 3).

A new chapter in the analysis of integrable models was opened with the advent of Con-
formal Field Theory [51]. In conformally invariant one-dimensional quantum systems the
critical exponents governing the power-law decay of correlation functions are directly re-
lated to the energy levels in a large finite volume [6, 62, 74, 75]. Fortuitously in integrable
theories the finite-size corrections to the energies of the ground state and low lying excited
states can be determined from the Bethe ansatz [470]. The relations derived in [6,62,75] have
been applied to numerous integrable models, including the attractive Hubbard model [65],
which are conformally invariant in the low energy limit. Systematic studies of the finite size
corrections in the spectrum of the Hubbard model were performed in the late eighties starting
with work on the half-filled case [489]. The generic finite size spectrum away from half fill-
ing in finite magnetic fields was eventually obtained by F. Woynarovich [487]. In [140,141]
the aforementioned relation between the finite-size spectrum and the asymptotic behaviour
of correlation functions was extended to models with several critical degrees of freedom
and then utilized to calculate the critical exponents of general two-point correlation func-
tions for the repulsive Hubbard model using Woynarovich’s results (see Chapter 9). This
was a breakthrough in the understanding of correlations in interacting one-dimensional
quantum systems. The method has subsequently been applied to many other integrable
models.

When considering a finite volume, an issue arises which we have hitherto ignored, namely
the boundary conditions imposed on the system. In Lieb and Wu’s work periodic boundary
conditions were chosen. In 1985, the Hubbard model with reflecting ends was solved by
H. Schulz [380] by means of a method introduced by M. Gaudin [155] for the δ-function
Bose gas enclosed in a box and the open spin- 1

2 Heisenberg chain.
The ‘conformal approach’ provides information on the large-distance/low-energy be-

haviour of correlation functions in the Hubbard model for band fillings strictly larger
than zero and strictly less than one, for all positive values of U and low temperatures.
In the Mott insulating phase at half filling the conformal approach is not applicable. How-
ever, in the small-U and scaling limits [324, 490, 491] methods of integrable quantum
field theory can be employed to determine dynamical correlation functions at low ener-
gies [89, 105, 128, 129, 224] (Chapter 10). Another phase where the conformal approach is
not applicable is the so-called gas phase characterized by sufficiently negative chemical po-
tential and hence describing a correlated band insulator. The large-distance asymptotics of
finite temperature correlation functions in the gas phase can be obtained exactly by a Bethe
ansatz based approach [173,176] (see Chapter 11). In the strong coupling limit U →∞ at
zero temperature it is possible to obtain information about correlation functions at all energy
scales by a combination of analytical and numerical techniques [153,160,344,345,353–358]
for all band fillings.

The Bethe ansatz solution also supplies the coordinate wave functions of eigenstates of the
Hamiltonian. An explicit representation for the wave functions was given by F. Woynarovich
[481]. Only much later [122, 125] it was proven that the corresponding eigenstates are
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highest weight states with respect to the SO(4) symmetry [197, 497] of the Hamiltonian
(Chapter 3). Combining this result with the implications of the string hypothesis it became
possible to give a completeness argument in [123] (Chapter 4). Unfortunately the Bethe
ansatz wave functions appear to be too complicated to allow for a direct calculation of
correlation functions. Even an expression for the norms (Chapter 3) of the eigenstates has
only been conjectured [175] and is still awaiting a proof.

In 1986 B. S. Shastry opened up a new way for studying the Hubbard model by placing
it into the framework of the quantum inverse scattering method. Using a Jordan-Wigner
transformation he mapped the Hubbard model to a spin model and then demonstrated that
the resulting spin Hamiltonian commutes with the transfer matrix of a related covering
vertex model [392]. In [391] Shastry first obtained the R-matrix of the spin model, thus
embedding it into the general classification of ‘integrable models’ (see Chapter 12). Al-
ternative derivations were obtained in [393] and in [348, 349, 475]. The latter references
also include a formulation in terms of fermions that applies more directly to the Hubbard
model.

It then took about ten years before Shastry’s construction was really utilized. In [401]
it was shown that Shastry’s R-matrix satisfies the Yang-Baxter equation. An algebraic
Bethe ansatz for the Hubbard model was constructed in [320, 371] and expressions for the
eigenvalues of the transfer matrix of the two-dimensional statistical covering model were
obtained (see also [499]). This result was of crucial importance for the quantum transfer
matrix approach to the thermodynamics [232] of the Hubbard model (Chapter 13). This
approach allows for a drastically simplified description of the thermodynamics in terms of
the solution of a finite set of nonlinear integral equations, rather than the infinite set orig-
inally obtained by Takahashi in 1972 [435]. Within the quantum transfer matrix approach
thermodynamic quantities can be calculated numerically with a very high precision. The
approach can be extended to the calculation of correlation lengths at finite temperature
[459, 465].

Another important algebraic result, which was unrelated to Shastry’s work at first sight,
was the discovery of a quantum group symmetry of the Hubbard model on the infinite
line (see Chapter 14): the Hamiltonian is invariant under the direct sum of two Y(sl(2))
Yangians [462] (see also [172]). The relation of these Yangians to Shastry’s R-matrix and the
implications of one of these Yangians for the structure of the bare excitations (Chapter 15)
were clarified in [335, 336].

1.2.3 The one-dimensional Hubbard model and experiments

The one-dimensional Hubbard model has been of immense conceptual value in facilitating
the interpretation of experiments on quasi one-dimensional materials. Although it is not
strictly a perfect model for any existing material, many of its qualitative features seem to
be realized in nature. At present there is a sizeable list of materials, for which the electronic
degrees of freedom are believed to be described by ‘Hubbard-like’ Hamiltonians. Examples
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are the chain cuprates Sr2CuO3 [150,340] and SrCuO2 [245,246], organic conductors such
as the Bechgaard salts [69, 386] or TTF-TCNQ [85] and π -conjugated polymers [35, 135]
like polydiacetylene. However, in all these cases the appropriate electronic Hamiltonians
differ significantly from a simple one-band Hubbard model. In the chain cuprates several
bands of electrons need to be taken into account whereas organic conductors and polymers
often have a tendency towards dimerization. Furthermore, it is usually not a good approxima-
tion to replace the Coulomb repulsion by a simple on-site Hubbard interaction. Nevertheless
it is perhaps only a question of time until a material is discovered, which at least in some
regime of temperatures and energies can be described in terms of a one-band Hubbard
model.

1.3 External fields

In the presence of an external electro-magnetic field the Hubbard Hamiltonian has to be
modified. Below we derive the modifications required in case of the one-band Hubbard
model in the tight-binding approximation. By considering the reaction to a small external
field we can also obtain a formula for the zero-temperature conductivity of the periodic
Hubbard chain. This is presented in appendix 1.A.1.

1.3.1 External fields in three dimensions

Our starting point is electrons on a three-dimensional lattice. An external, time-dependent
electro-magnetic field modifies the individual particle momenta and therefore affects only
the one-particle part h1 (1.5) of the Hamiltonian,

h1(t) −→ 1

2m

(
pα + eAα(x, t)

c

)2

− e �(x, t)+ V (x)− 2µBB · S . (1.18)

Here Aα , α = x, y, z denote the components of the vector potential of the external field,
� is its scalar potential, B = rot A is the magnetic field, µB the Bohr magneton and S
the spin operator. The magnetic field term in (1.18) acts only on the spin part of the wave
function and therefore can be treated separately. In order to keep the following discussion
simple we disregard it for the time being and restore it in the end. We are free to choose the
gauge

�(x, t) = 0 . (1.19)

Let c†j,a , c j,a be creation and annihilation operators of electrons in Wannier statesφ(x− R j ).
We suppress the band index from the very beginning, since we are interested only in the
one-band model. The modified one-particle Hamiltonian (1.18) leads to modified hopping
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matrix elements

ti j (t) =
∫

dx3 φ∗(x− Ri ) h1(t)φ(x− R j )

=
∫

dx3 φ∗(x− Ri )

[
1

2m

(
pα + eAα

c

)2

+ V (x)

]
φ(x− R j )

=
∫

dx3 φ∗(x− Ri )e
−ieλ/c ·

[
1

2m

(
pα + e(Aα − ∂αλ)

c

)2

+ V (x)

]
eieλ/cφ(x− R j ) .

(1.20)

Here we used (1.14) and (1.19) in the first and second equality. The third equality holds
trivially for any differentiable complex valued function λ(x, t). The particular choice

λ(x, t) =
∫ x

x0

dyα Aα(y, t) , (1.21)

where x0 is an arbitrary fixed point, along with the definition

φ̃(x− R j ) = eieλ(x,t)/cφ(x− R j ) (1.22)

transforms the hopping matrix elements into

ti j (t) =
∫

dx3 φ̃∗(x− Ri )

[
p2

2m
+ V (x)

]
φ̃(x− R j ) . (1.23)

Thus, the modified hopping matrix elements ti j (t) are of the same form as the hopping matrix
elements ti j in the absence of an external field. The field dependence has been absorbed
into the redefinition (1.22) of the Wannier functions.

Let us now assume that the Wannier functionsφ(x− R j ) are strongly localized around R j

and that the vector potential Aα is slowly varying on an atomic scale. Then the approximation

φ̃(x− R j ) = eieλ(R j ,t)/cφ(x− R j ) (1.24)

is justified. Furthermore, the tight-binding approximation will be valid, and we may retain
only hopping matrix elements between neighbouring lattice sites. As a result we arrive at
the following modification of the Hamiltonian (1.17),

H (t) = −t0
∑
〈i, j〉

e−ie(λ(Ri ,t)−λ(R j ,t))/cc†i,ac j,a +U
∑

i

ni↑ni↓ . (1.25)

The phases in the first term on the right are called Peierls phases. Here we wrote t0 in-
stead of t for the hopping matrix element between neighbouring lattice sites in order to
distinguish it from the time variable. We note that in equation (1.25) we have discarded the
coupling of the electron spins to the magnetic field B = rot A. It may be added at any later
stage.
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Rj Rj+1

2πR
L

Fig. 1.1. The one-dimensional Hubbard model on a ring.

1.3.2 External fields in one dimension

Let us now specialize to the case where the system is a ring of radius R with L equidistantly
spaced lattice sites (see figure 1.1). We may choose the centre of the ring as the origin of
our coordinate system. In this one-dimensional geometry the Hamiltonian (1.25) turns into

H (t) = −t0
L∑

j=1

(
eiλ j, j+1 c†j,ac j+1,a + e−iλ j, j+1 c†j+1,ac j,a

)+U
∑

i

ni↑ni↓ , (1.26)

where λ j, j+1 is the integral

λ j, j+1 = e

c

∫ R j+1

R j

dxα Aα(x, t) (1.27)

and periodic boundary conditions on the λ j, j+1 are assumed.
In the appendix we shall consider the response to a spatially homogeneous electric field.

For our one-dimensional periodic system this means that the electric field is of the form
E(x, t) = −E(ρ, t)eϕ , where eϕ is the unit vector along the ring and ρ is the distance of the
point x from the axis perpendicular to the ring plane through the centre of the ring, say, the
z-axis. Since in the gauge (1.19)

E(x, t) = −1

c
∂t A(x, t) , (1.28)

we may take the vector potential to be of the form

A(x, t) = −A(ρ, t)eϕ . (1.29)

It follows that all phases λ j, j+1 in (1.27) are equal to

λ(t) = ea0

c
A(t) , (1.30)

where we introduced the shorthand notation A(t) = A(R, t) and the lattice spacing
a0 = 2π R

L .
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We note that the electric field is accompanied by a homogeneous magnetic field
B = rot A = Bez perpendicular to the ring plane. This field couples to the electron spins
through a term −2µB BSz , which should be added to the Hamiltonian (1.26).

1.4 Conclusions

In this introduction we have tried to motivate the main object of this book which is the
one-dimensional version of the Hubbard Hamiltonian (1.17). We further showed how the
Hamiltonian is modified in the presence of an external electro-magnetic field (see (1.26)),
and we gave a short review of its history as far as we understand it.



Appendices to Chapter 1

1.A Response to external fields

As an important example of the response of the Hubbard model to an external perturbation
we show in this appendix how an electro-magnetic field induces a current into the one-
dimensional Hubbard model in the ring geometry of section (1.3). By consistently linearizing
in the amplitude of the applied field and using the Born approximation for the time evolution
operator in the interaction picture we obtain a linear relation between applied field and
induced current. The Fourier transform of the kernel of the linear operator connecting field
and current is the AC conductivity σ (ω).

In Chapter 10 we shall also consider the linear response to other types of perturbations.
The general scheme of expressing measurable quantities like transport coefficients through
correlation functions will always be similar to the example below. For further reading we
recommend standard text books on many-body solid-state theory like e.g. [315].

1.A.1 The current operator

The operator

jm,↑ = −it0
(
eiλ(t)c†m,↑cm+1,↑ − e−iλ(t)c†m+1,↑cm,↑

)
(1.A.1)

can be interpreted as the operator of the mass current of up-spin electrons per lattice site. It
satisfies the continuity equation

ṅm,↑ + jm,↑ − jm−1,↑ = 0 , (1.A.2)

where ṅm,↑ is the operator for the change of particle density,

ṅm,↑ = i[H, nm,↑] . (1.A.3)

Similar equations hold for down-spin electrons.

15
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The mass current per lattice site is jm = jm,↑ + jm,↓. Summation over all site indices
yields the current operator

J (t) = −it0
L∑

m=1

(
eiλ(t)c†m,acm+1,a − e−iλ(t)c†m+1,acm,a

)
. (1.A.4)

The corresponding electric current is

Jel(t) = −ea0 J (t) . (1.A.5)

Hence the electric current per unit volume1 is given by

jel(t) = − e

a2
0

J (t) . (1.A.6)

We are interested in the response of the Hubbard model to a small electric field. Thus,
we shall assume that λ is a small quantity, and the effect of a small electric field is properly
taken into account by retaining only the linear terms in the expansion of the Hamiltonian
(1.26) and the current operator (1.A.4) in λ. We obtain

J (t) = J − λ(t)H0 , (1.A.7)

H (t) = H + λ(t)J , (1.A.8)

where J and H are the current operator (1.A.4) and the Hamiltonian (1.26) in zero external
field λ(t) = 0, respectively, and H0 is the Hubbard Hamiltonian for vanishing interaction
U = 0 which later will be called the ‘tight-binding Hamiltonian’ (see equation (2.12)).

1.A.2 Linear response

In order to obtain an expression for the conductivity, we shall calculate the expectation
value of the current J (t) in a state, which develops from the ground state |ψ0〉 of the
unperturbed Hamiltonian H under the influence of the small perturbation λ(t). We calculate
this expectation value in first order time dependent perturbation theory and to linear order
in λ(t). To make sure that the system evolves from the ground state of the unperturbed
Hamiltonian we have to require the perturbation to be switched off for t →−∞,

lim
t→−∞ λ(t) = 0 . (1.A.9)

The time evolution operator U of the unperturbed Hamiltonian H is the solution of the
initial value problem

i∂tU = HU , lim
t→−∞U (t) = id , (1.A.10)

1 The electric current is conventionally normalized to a 3d unit volume, even in 1d systems.
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where id is the identity operator. For arbitrary states |ψ〉 and operators X let

|ψt 〉 = U−1(t)|ψ〉 , (1.A.11)

Xt = U−1(t)XU (t) . (1.A.12)

Then for |ψ〉 a solution of the Schrödinger equation i∂t |ψ〉 = H (t)|ψ〉 we find

i∂t |ψt 〉 = λ(t)Jt |ψt 〉 . (1.A.13)

Here we have used (1.A.8) and (1.A.10). The time evolution operator Û corresponding to
the reduced Schrödinger equation (1.A.13) is determined by the initial value problem

i∂t Û = λ(t)JtÛ , lim
t→−∞ Û (t) = id , (1.A.14)

which may equivalently be written as an integral equation,

Û (t) = id− i
∫ t

−∞
dt ′ λ(t ′)Jt ′Û (t ′) . (1.A.15)

This equation can be solved by iteration. The solution to linear order, which is sometimes
called the ‘Born approximation’, is

Û (t) = id− i
∫ t

−∞
dt ′ λ(t ′)Jt ′ . (1.A.16)

The latter result will be sufficient for our purpose of calculating the linear response of the
Hubbard model to a small perturbation.

First note that by (1.A.10), (1.A.12) and (1.A.14) the product UÛ is the time evolution
operator of the time dependent Hamiltonian (1.A.8),

i∂tUÛ = (H + λ(t)J )UÛ , lim
t→−∞U (t)Û (t) = id . (1.A.17)

It follows for a state |ψ(t)〉, evolving from the ground state |ψ0〉 of the unperturbed Hamil-
tonian, that

〈ψ(t)|J (t)|ψ(t)〉 = 〈ψ0|Û−1 Jt (t)Û |ψ0〉
= 〈ψ0|J |ψ0〉 − 〈ψ0|H0|ψ0〉λ(t)

+ i
∫ t

−∞
dt ′ 〈ψ0|[Jt ′ , Jt ]|ψ0〉λ(t ′)+O(λ2) . (1.A.18)

Here we have used (1.A.7) and (1.A.16). Next, it is necessary to expand the ground state mean
value 〈ψ0|[Jt ′ , Jt ]|ψ0〉 in terms of form factors by inserting a complete set of eigenstates
|ψn〉 of the unperturbed Hamiltonian H . Let us denote its eigenvalues by En with En+1 ≥ En

and E0 being the ground state energy. We further introduce the abbreviation ωn = En − E0.
Then

〈ψ0|[Jt ′ , Jt ]|ψ0〉 = 2i
∑
n>0

sin(ωn(t − t ′))|〈ψn|J |ψ0〉|2 . (1.A.19)
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Inserting (1.A.19) into (1.A.18) we obtain

〈ψ(t)|J (t)|ψ(t)〉 − 〈ψ0|J |ψ0〉

= −〈ψ0|H0|ψ0〉λ(t)− 2
∫ t

−∞
dt ′

∑
n>0

|〈ψn|J |ψ0〉|2 sin(ωn(t − t ′))λ(t ′)

= −〈ψ0|H0|ψ0〉λ(t)− 2
∑
n>0

|〈ψn|J |ψ0〉|2
ωn

λ(t)

+ 2
∫ t

−∞
dt ′

∑
n>0

|〈ψn|J |ψ0〉|2
ωn

cos(ωn(t − t ′)) ∂t ′λ(t ′)

= 2
∫ t

−∞
dt ′

[
−1

2
〈ψ0|H0|ψ0〉 −

∑
n>0

|〈ψn|J |ψ0〉|2
ωn

+
∑
n>0

|〈ψn|J |ψ0〉|2
ωn

cos(ωn(t − t ′))
]
∂t ′λ(t ′) . (1.A.20)

We finally observe that

∂tλ(t) = −ea0 E(R, t) , (1.A.21)

where E(R, t) is the electric field (see equation (1.28) and above). Thus, to linear order, the
electric field and the electric current per unit volume (1.A.6) are related by the equation

〈ψ(t)| jel(t)|ψ(t)〉 − 〈ψ0| jel |ψ0〉 =
∫ ∞
−∞

dt ′ σ (t − t ′)E(R, t ′) , (1.A.22)

where

σ (t) = 2e2

a0
θH (t)

[
−1

2
〈ψ0|H0|ψ0〉 −

∑
n>0

|〈ψn|J |ψ0〉|2
ωn

+
∑
n>0

|〈ψn|J |ψ0〉|2
ωn

cos(ωnt)

]
. (1.A.23)

The function θH (t) is the step function, being equal to one for t > 0 and equal to zero for
t < 0. It is clear from the form of equation (1.A.22) that σ (t) is the conductivity. Note that
the causality postulate σ (t) = θH (t)σ (t) of classical electrodynamics comes out as a result
of our quantum calculation (and the particular way of switching on the perturbation).

1.A.3 Optical conductivity, Drude weight and f-sum rule

Transport experiments measure the Fourier transform

σ (ω) =
∫ ∞
−∞

dt σ (t)eiωt =
∫ ∞

0
dt σ (t)eiωt (1.A.24)

of the conductivity σ (t). The function σ (ω) is called the optical conductivity. From the
second equation (1.A.24) it is clear that σ (ω) exists in the upper complex half plane as an
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analytic function of ω. This fact is crucial for proving the Kramers-Kronig relation (see
e.g. [220]). The optical conductivity can be continued to the real axis as a generalized
function,

σ (ω) = 2e2

a0

[(
− 1

2
〈ψ0|H0|ψ0〉 −

∑
n>0

|〈ψn|J |ψ0〉|2
ωn

)
i

ω + i0

+
∑
n>0

|〈ψn|J |ψ0〉|2
2ωn

(
i

ω + ωn + i0
+ i

ω − ωn + i0

)]
(1.A.25)

for real ω.
By application of the Plemelj formula,

1

ω + i0
= −π iδ(ω)+ p.v.

1

ω
, (1.A.26)

we may separate the optical conductivity into its real and imaginary parts,

Re(σ (ω)) = 2π
e2

a0

[(
−1

2
〈ψ0|H0|ψ0〉 −

∑
n>0

|〈ψn|J |ψ0〉|2
ωn

)
δ(ω)

+
∑
n>0

|〈ψn|J |ψ0〉|2
2ωn

(
δ(ω + ωn)+ δ(ω − ωn)

)]
, (1.A.27a)

Im(σ (ω)) = 2e2

a0

[(
−1

2
〈ψ0|H0|ψ0〉 −

∑
n>0

|〈ψn|J |ψ0〉|2
ωn

)
p.v.

1

ω

+
∑
n>0

|〈ψn|J |ψ0〉|2
ωn

p.v.
ω

ω2 − ω2
n

]
. (1.A.27b)

The prefactor of δ(ω) on the right hand side of (1.A.27a) is the so-called Drude weight,

D = −1

2
〈ψ0|H0|ψ0〉 −

∑
n>0

|〈ψn|J |ψ0〉|2
ωn

. (1.A.28)

Integrating (1.A.27a) over ω we obtain the well-known [36] f-sum rule∫ ∞
−∞

dω Re(σ (ω)) = −π e2

a0
〈ψ0|H0|ψ0〉 . (1.A.29)

In the context of the one-dimensional Hubbard model (1.A.27a) and (1.A.28) were consid-
ered by Shastry and Sutherland and by Zvyagin [395, 510].
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The Hubbard Hamiltonian and its symmetries

The Hubbard model is a model of itinerant, interacting electrons on a lattice. The structure
and the dimension of the lattice influence its features. This book deals with the special case
when the lattice is one-dimensional, since only then an exact solution is known. Only in
one dimension we have the rare opportunity to get a deep and rigorous insight into the rich
structure of an interacting many-body system.

In this chapter we work out the basic properties of the Hubbard Hamiltonian. We try
to do this rather explicitly and in an elementary way that requires no preknowledge of
solid state physics. Although we restrict ourselves from the very beginning to the one-
dimensional model, the results presented here readily generalize to (bipartite) lattices of
arbitrary dimension. The peculiarities of the one-dimensional model will be explored in the
remaining part of the book.

2.1 The Hamiltonian

As with many other models in physics the term ‘Hubbard model’ is used somewhat freely in
the literature. Many variants and generalizations of Hubbard’s original Hamiltonian (1.17)
have been considered over the years. In what follows, however, we shall be rather specific:
by ‘Hubbard model’ we shall mean the one-dimensional one-band electronic model with
nearest-neighbour hopping defined by the Hamiltonian [298]

H = −t
L∑

j=1

∑
a=↑,↓

(c†j,ac j+1,a + c†j+1,ac j,a)+U
L∑

j=1

n j↑n j↓ . (2.1)

Here c†j,a and c j,a are creation and annihilation operators of electrons of spin a (a =↑ or

a =↓) localized in an orbital at site j of a one-dimensional lattice, and n j,a = c†j,ac j,a .
U and t are real numbers, which set the energy scale and fix the relative strength of
the two sums that contribute to the Hamiltonian. We impose periodic boundary condi-
tions on the operators, cL+1,a = c1,a . Due to this definition the Hamiltonian is invari-
ant under cyclic permutations of the lattice sites, or, equivalently, under lattice transla-
tions on a ring of L sites. Different kinds of boundary conditions are discussed below in
Chapter 8.3.

20
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The operators c†j,a and c j,a are canonical Fermi operators. They satisfy the anticommu-
tation relations

{c j,a, ck,b} = {c†j,a, c†k,b} = 0 , (2.2a)

{c j,a, c†k,b} = δ jkδab (2.2b)

for j, k = 1, . . . , L and a, b =↑,↓. The creation operators c†j,a generate the space of states
H(L) of the Hubbard model by acting on the empty lattice (or ‘vacuum state’) |0〉 defined
by the condition

c j,a|0〉 = 0 , j = 1, . . . , L , a =↑,↓ . (2.3)

Let us introduce row vectors of electron and spin coordinates, x = (x1, . . . , xN ) and a =
(a1, . . . , aN ) with x j ∈ {1, . . . , L} and a j =↑,↓. The space of states of the Hubbard model
is spanned by all linear combinations of the so-called Wannier states

|x, a〉 = c†xN ,aN
. . . c†x1,a1

|0〉 . (2.4)

We fancy these states as states where electrons of spin a j are located in atomic orbitals at
lattice sites x j , j = 1, . . . , N . We say the sites x j are occupied by electrons.

The number of linearly independent Wannier states is necessarily finite, since according
to (2.2a), creation operators at different sites or with different spin indices anticommute,
and (c†j,a)2 = 0. A basis B of the space of states is obtained by ordering the Fermi operators
in (2.4). We may choose for instance

B =
{
|x, a〉 ∈ H(L)

∣∣∣∣ N = 0, . . . , 2L
x j+1 ≥ x j , a j+1 > a j if x j+1 = x j

}
, (2.5)

where by convention ↑<↓, and N = 0 corresponds to the vacuum state |0〉. The basis B is
called the Wannier basis.

The number of all linearly independent vectors of the form (2.4) for a fixed number of
particles N is equal to

(2L
N

)
. Thus, the dimension of the space of states H(L) is

dimH(L) =
2L∑

N=0

(
2L

N

)
= 4L . (2.6)

The same number follows more easily from the fact that the four states

|0〉 , c†j,↑|0〉 , c†j,↓|0〉 , c†j,↑c
†
j,↓|0〉 (2.7)

are associated with every lattice site. These states correspond to an empty site, a site occupied
by one electron with spin up or down, or a doubly occupied site, respectively. Since (c†j,a)2 =
0, electrons of the same spin cannot occupy the same lattice site. This is the Pauli principle
which is built-in into the definition of the Fermi operators.

The operator n j,a = c†j,ac j,a is the local particle number operator for electrons of spin
a at site j . Let us recall why this name is justified. Due to (2.2) and (2.3) it follows
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that

[n j,a, c†k,b] = δ jkδabc†k,b , n j,a|0〉 = 0 , (2.8)

and therefore

n j,a|x, a〉 =
N∑

k=1

δ j,xk δa,ak |x, a〉 . (2.9)

Thus, n j,a|x, a〉 = |x, a〉, if site j is occupied by an electron of spin a, and zero otherwise.
A first interpretation of the Hubbard model can be obtained by considering separately

the two contributions that make up the Hamiltonian (2.1). For t = 0 or U = 0 it can be
diagonalized and understood by elementary means. For t = 0 the Hamiltonian reduces to
H = UD, where

D =
L∑

j=1

n j↑n j↓ . (2.10)

Using (2.9) we can calculate the action of D on a state |x, a〉,

D|x, a〉 =
N∑

k,l=1

δxk ,xl δ↑,ak δ↓,al |x, a〉

=
∑

1≤k<l≤N

δxk ,xl (δ↑,ak δ↓,al + δ↓,ak δ↑,al )|x, a〉

=
∑

1≤k<l≤N

δxk ,xl (δ↑,ak + δ↓,ak )(δ↑,al + δ↓,al )|x, a〉

=
∑

1≤k<l≤N

δxk ,xl |x, a〉 .

(2.11)

Here we used δ↑,ak δ↓,ak = 0 in the second equation and the Pauli principle in the third
equation. As we learn from (2.11) every state |x, a〉 is an eigenstate of the operator D. Thus,
D is diagonal in the Wannier basis. The limit t → 0 of the Hubbard Hamiltonian (2.1) is
called the atomic limit, because the eigenstate |x, a〉 describes electrons localized at the
sites x1, . . . , xN , which are identified with the loci of the atomic orbitals the electrons may
occupy.

The meaning of the operator D is evident from equation (2.11). D counts the number of
doubly occupied sites in the state |x, a〉. The contribution of the term UD to the energy is
non-negative for positive U and increases with the number of doubly occupied sites. This
can be viewed as on-site repulsion among the electrons. Negative U on the other hand,
means on-site attraction. Hence, it is natural to refer to D as to the operator of the on-site
interaction.

In the other extreme, when U = 0, the Hamiltonian (2.1) turns into

H0 = −t
L∑

j=1

∑
a=↑,↓

(c†j,ac j+1,a + c†j+1,ac j,a) . (2.12)
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This is called the tight-binding Hamiltonian. Like every translationally invariant one-body
Hamiltonian it can be diagonalized by discrete Fourier transformation. Let us define

c̃†k,a =
1√
L

L∑
j=1

eiφk j c†j,a , k = 0, . . . , L − 1, (2.13)

where φ = 2π/L . Then, by Fourier inversion

c†j,a =
1√
L

L−1∑
k=0

e−iφ jk c̃†k,a , j = 1, . . . , L . (2.14)

Equation (2.14) is readily verified by inserting (2.13) into the right hand side and using the
geometric sum formula. Clearly, c̃†k+L ,a = c̃†k,a . Insertion of (2.14) into (2.12) leads to

H0 = −2t
L−1∑
k=0

∑
a=↑,↓

cos(φk)ñk,a , (2.15)

where ñk,a = c̃†k,ac̃k,a .
The Fourier transformation leaves the canonical anticommutation relations (2.2) invari-

ant,

{c̃ j,a, c̃k,b} = {c̃†j,a, c̃†k,b} = 0 , (2.16a)

{c̃ j,a, c̃†k,b} = δ jkδab . (2.16b)

A transformation with this property is called canonical. Applying (2.13) to the empty lattice
state |0〉, we obtain the analogue of (2.3),

c̃k,a|0〉 = 0 , k = 0, . . . , L − 1 , a =↑,↓ . (2.17)

Thus, acting with the creation operators c̃†k on the empty lattice |0〉 we obtain an alternative
basis B̃. Let us introduce the row vectors q = (q1, . . . , qN ) = φ(k1, . . . , kN ) and the states

|q, a〉 = c̃†kN ,aN
. . . c̃†k1,a1

|0〉 . (2.18)

These states are eigenstates of the lattice momentum operator with eigenvalue(∑N
j=1 q j

)
mod 2π , as we shall see in the following section on symmetries. The set

B̃ =
{
|q, a〉 ∈ H(L)

∣∣∣∣ N = 0, . . . , 2L
q j+1 ≥ q j , a j+1 > a j if q j+1 = q j

}
(2.19)

is a basis of H(L). This basis is sometimes called the Bloch basis. Electrons in Bloch states
|q, a〉 are delocalized, but have definite momenta q1, . . . , qN .

By virtue of (2.16), the analogues of (2.8) and (2.9) are satisfied by ñ j,a and c̃†k,b. It
follows that

H0|q, a〉 = −2t
N∑

j=1

cos(q j )|q, a〉 . (2.20)
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Thus, the tight-binding Hamiltonian H0 is diagonal in the Bloch basis. It describes non-
interacting band electrons in a cosine-shaped band of width 4t .

The tight-binding Hamiltonian H0 and the operator D which counts the number of doubly
occupied sites do not commute. Therefore the Hubbard Hamiltonian can neither be diagonal
in the Bloch basis nor in the Wannier basis. The construction of its eigenstates for general
t and U will be the subject of the next chapter. The physics of the Hubbard model may be
understood as arising from the competition between the two contributions, H0 and D, to
the Hamiltonian (2.1). The tight-binding contribution H0 prefers to delocalize the electrons,
while the on-site interaction D favours localization. The ratio

u = U

4t
(2.21)

is a measure for the relative contribution of both terms and is the intrinsic, dimensionless
coupling constant of the Hubbard model.

For the purpose of this book it is natural to measure energies in units of t . This is equivalent
to setting t = 1. Then the Hamiltonian (2.1) turns into

H = −
L∑

j=1

∑
a=↑,↓

(c†j,ac j+1,a + c†j+1,ac j,a)+ 4u
L∑

j=1

n j↑n j↓ . (2.22)

Later on we shall also discuss the influence of an external magnetic field B coupled to
the spins of the electrons and of a chemical potential µ. Then the Hamiltonian has to be
modified as

Hµ,B = H − µN̂ − 2 BSz , (2.23)

where we have introduced the particle number operator

N̂ =
L∑

j=1

(n j,↑ + n j,↓) (2.24)

and the operator

Sz = 1
2

L∑
j=1

(n j,↑ − n j,↓) (2.25)

of the z-component of the total spin. H and Hµ,B have the same set of eigenstates since the
particle number and the z-component of the total spin are conserved,

[H, N̂ ] = [H, Sz] = 0 (2.26)

and since [N̂ , Sz] = 0.
This can be seen as follows: let us introduce the particle number operators for up- and

down-spin electrons, respectively,

N̂a =
L∑

j=1

n j,a , a =↑,↓ . (2.27)
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Summation of equation (2.8) over j yields

[N̂a, c†k,b] = δabc†k,b , [N̂a, ck,b] = −δabck,b . (2.28)

Here the second equation is the Hermitian conjugate of the first one. It follows that

[N̂a, c†j,bck,b] = [N̂a, c†j,b]ck,b + c†j,b[N̂a, ck,b] = 0 . (2.29)

From the latter equation we conclude that

[H, N̂a] = 0 , a =↑,↓ . (2.30)

The numbers of up- and down-spin electrons are separately conserved. Now N̂ = N̂↑ + N̂↓,
Sz = 1

2 (N̂↑ − N̂↓), and we obtain (2.26).
We shall denote the conserved number of down-spin electrons by M and the conserved

total number of electrons by N . The value of the z-component of the total spin for a state
with M down-spin electrons is N/2− M . In Chapter 3 we shall diagonalize H for fixed
values of M and N .

Because of the particle number conservation, we may add a term −2uN̂ + uL to the
Hamiltonian (2.22) without affecting its eigenfunctions. The resulting expression

H = −
L∑

j=1

∑
a=↑,↓

(c†j,ac j+1,a + c†j+1,ac j,a)+ u
L∑

j=1

(1− 2n j↑)(1− 2n j↓) (2.31)

will turn out to be particularly convenient for our further discussion. As we shall see below
(2.31) is of higher symmetry than (2.22), if L is even.

2.2 Symmetries

The one-dimensional Hubbard model has many symmetries. Some of them, like the trans-
lational symmetry or the symmetry under spin flips, are obvious and common. Apart from
the obvious symmetries, however, there are others which are rather unusual.

We distinguish symmetries which are independent of the coupling constant u, from sym-
metries which, on the contrary, depend on u. The existence of the latter type of symmetries
relates to the fact that the one-dimensional Hubbard model is exactly solvable. This sym-
metry type includes an Abelian symmetry generated by a series of mutually commuting
higher conserved operators and the non-Abelian so-called Yangian symmetry (see Chapters
12 and 14).

Here we concentrate on the u-independent symmetries. In the context of the one-
dimensional Hubbard model they were systematically studied by Heilmann and Lieb [197]
as early as 1971. Later, in a period of renewed interest in the Hubbard model it was ob-
served [361, 494, 497] that much of the analysis of Heilmann and Lieb carries over to an
arbitrary dimension of the lattice. The symmetries considered by Heilmann and Lieb are of
three kinds: spatial symmetries related to the lattice, symmetries connected to the spin and
symmetries associated with special features of the Hubbard model.
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2.2.1 Permutations

Since the Hubbard model is defined on a lattice, the set of all possible spatial transformations
is equal to the set of all permutations of site indices. These permutations form the symmetric
group SL . Our first goal is therefore to construct a faithful representation of the symmetric
group in terms of Fermi operators. For this purpose it is sufficient to construct representations
of the elementary transpositions, which generate the symmetric group.

Let us start with spinless fermions, {c j , ck} = {c†j , c†k} = 0, {c j , c†k} = δ jk , on a one-
dimensional lattice of L sites. Let

Pi j = 1− (c†i − c†j )(ci − c j ) . (2.32)

It is not difficult to see that Pi j permutes fermions. We have the obvious identities

Pi j = P†
i j , Pi j = Pji . (2.33)

Use of the fundamental anticommutators for the fermions leads to

Pi j ci = ci + (c†i − c†j )c j (ci − c j ) = ci + (−1+ c j c
†
j − c j c

†
i )(ci − c j ) = c j Pi j . (2.34)

It then follows from (2.33) that

Pi j c j = ci Pi j , Pi j c
†
i = c†j Pi j , Pi j c

†
j = c†i Pi j . (2.35)

Thus, the operators Pi j induce the action of transpositions on the site indices of the Fermi
operators.

Let us show that the Pi j generate a representation of the symmetric group. First of all,
we obtain from (2.34) and (2.35) that

Pi j Pjk = Pik Pi j = Pjk Pik , i �= j �= k �= i . (2.36)

A short calculation similar to the one in equation (2.34) shows that

Pi j Pi j = 1 . (2.37)

Finally, we have the obvious identity

[Pi j , Pkl] = 0 (2.38)

for i, j �= k, l. The relations (2.36)–(2.38) are a possible choice of defining relations for the
symmetric group.

Formally, the site indices i, j, k in the preceding calculations are just labels. We may
replace them by more complicated labels without spoiling the validity of our results. The
replacement j → ja, where j is a site index and a =↑,↓ is a spin index leads to

Pia, jb = 1− (c†i,a − c†j,b)(ci,a − c j,b) . (2.39)

These transposition operators were introduced by Heilmann and Lieb [197] in their analysis
of the symmetries of the Hubbard model.1 They describe simultaneous transpositions of site
and spin indices, or, in more physical terms, they interchange electrons in Wannier orbitals.

1 Unfortunately, there is a typo in their definition, equation (8) of their paper.
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2.2.2 Spatial symmetries

We may imagine the L Wannier orbitals of the one-dimensional Hubbard model as forming
a regular polygon with L edges and corners. The spatial symmetries of the Hubbard model
are then the symmetries of this polygon. They are generated by a rotation through 2π/L and
by an arbitrary reflection which maps the polygon onto itself. The corresponding symmetry
operators are the shift operator and the parity operator.

The shift operator is a representation of the generator of the cyclic subgroup of order L
of the symmetric group [197]. For spinless fermions we define

Ûn = Pn−1n . . . P23 P12 , n = 2, . . . , L . (2.40)

Using equation (2.34) we can readily verify that

ÛLc j =
{

c j−1ÛL

cLÛL

, if
j = 2, . . . , L

j = 1 .
(2.41)

This means that ÛL is acting as a left shift operator on the elementary Fermi operators.
Now, (2.40) implies that

Û †
L = P12 . . . PL−1L . (2.42)

It follows from equation (2.37) that ÛL is unitary, ÛLÛ †
L = Û †

LÛL = 1. The operator Û †
L

generates a shift to the right by one lattice site.
To realize the shift operator for electrons, we have to attach a spin label to the above

operators. We define shift operators UL↑ and UL↓ for up- and down-spin electrons by
replacing Pj, j+1 in equation (2.40) with Pj↑, j+1↑ and Pj↓, j+1↓, respectively. We observe
that [ÛL↑, c j↓] = [ÛL↓, c j↑] = 0. Thus,

Û = ÛL↑ÛL↓ (2.43)

is the left shift operator for electrons.
Using the definition (2.13) of c̃k,a we obtain

Û c̃†k,a = eiφk c̃†k,aÛ . (2.44)

It follows that Û acts diagonally on the basis B̃ of Bloch states, equation (2.19),

Û |q, a〉 = eiφ(k1+···+kN )|q, a〉 . (2.45)

Obviously, the Hubbard Hamiltonian (2.31) is invariant under a change of site indices
of the Fermi operators from j to L − j + 1. The corresponding parity operator RL can be
conveniently expressed in terms of the operators Ûn , equation (2.40), as the ordered product

RL = Û2 . . . ÛL . (2.46)

Equivalently, RL may be written as

RL =
[L/2]∏
j=1

Pj,L− j+1 , (2.47)
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where [L/2] denotes the integer part of L/2, which is L/2 for even L and (L − 1)/2 for
odd L . From the form (2.47) of the parity operator and from (2.37) it is clear that R2

L = id
and RL = R†

L . Thus, RL is unitary and Hermitian. We may again define a parity operator
for electrons R = RL↑RL↓ after attaching spin labels ↑ and ↓ to the operators in (2.47).

2.2.3 The momentum operator

Observables in quantum mechanics are described by Hermitian operators. For this reason we
would like to define a Hermitian momentum operator that generates the shifts on the lattice.
Generically, the momentum operator is defined as the generator of infinitesimal spatial
shifts. This definition, however, does not work on a lattice. Alternatively, following [178],
we may try to define a lattice momentum operator �̂ by the following three requirements.

ei�̂ = Û , (2.48a)

�̂ = �̂† , (2.48b)

[H, �̂] = 0 . (2.48c)

Note that the choice

� = φ

L−1∑
k=1

k c̃†k c̃k , (2.49)

which is often found in the literature and acts diagonally on the basis B̃ of Bloch states,
does not satisfy (2.48c). It is not a conserved quantity for the Hubbard model. A way out
of this dilemma comes from the fact that the condition (2.48a) fixes the momentum only
modulo 2π .

For α ∈ C let us define

g(α) :=
L−1∑
k=0

ie−iφkα = i
1− e−iφLα

1− e−iφα
. (2.50)

Here we applied the geometric sum formula to get the second equation. It follows from
(2.50) that

g′(m) =
L−1∑
k=1

φke−iφkm , m = 1, . . . , L . (2.51)

Thus, by Fourier inversion,

φk = 1

L

L∑
m=1

g′(m)eiφkm , k = 0, . . . , L − 1 . (2.52)

For m = 1, . . . , L − 1 the coefficients g′(m) are obtained by differentiating the right hand
side of (2.50). We find g′(m) = φL/(e−iφm − 1). We further read off from (2.51) that
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g′(L) = φL(L − 1)/2. Thus,

φk = φ

L−1∑
m=1

(
1

2
+ eiφkm

e−iφm − 1

)
, k = 0, . . . , L − 1 . (2.53)

The right hand side of this equation is a Fourier sum which periodically extends to all integers
k ∈ Z. Setting x = φk we see that it defines the ‘saw tooth function’ f (x) = x mod 2π on
the set φZ.

By hypothesis the spectrum of the momentum operator �̂ we are looking for is contained
in φZ (see condition (2.48a)). Let us assume we are given a momentum operator which
satisfies (2.48). Then, substituting �̂ for φk in (2.53) leads to a restriction of �̂ modulo 2π .
Because of our condition (2.48a), we obtain

�̂ = φ

L−1∑
m=1

(
1

2
+ Û m

e−iφm − 1

)
. (2.54)

Thus, no matter what the actual form of the operator �̂ is, its restriction modulo 2π
leads to something known: the right hand side of (2.54) is a polynomial in the shift
operator Û .

We may therefore take (2.54) as the definition of the momentum operator. Then we must
verify that �̂ defined in this way indeed satisfies (2.48). First of all, using (2.45) and (2.53),
we obtain

�̂|q, a〉 = φ

L−1∑
m=1

(
1

2
+ eiφ(k1+···+kN )m

e−iφm − 1

)
|q, a〉 = (φ(k1 + · · · + kN ) mod 2π )|q, a〉. (2.55)

Using (2.45) and (2.55) we conclude that

ei�̂|q, a〉 = eiφ(k1+···+kN )|q, a〉 = Û |q, a〉 (2.56)

for all |q, a〉 ∈ B̃. Thus, (2.48a) is satisfied. To verify condition (2.48b) we use the unitarity
of Û and the fact that Û L = 1. (2.48c) is satisfied, because the Hubbard Hamiltonian
commutes with Û .

2.2.4 More discrete symmetries

We would like to consider two more discrete transformations: the spin flip and the so-called
Shiba transformation. Both are useful to restrict the ranges of N and M , the numbers of
electrons and down spins, and will be utilized in the next chapter, where we diagonal-
ize the one-dimensional Hubbard Hamiltonian. Moreover, the invariance of the Hubbard
Hamiltonian, modulo sign of the coupling, under the Shiba transformations is the reason
for the appearance of a second su(2) symmetry besides the more or less obvious rotational
symmetry.
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The Hubbard Hamiltonian is invariant under the reversal of all spins, caused by a similarity
transformation with the operator

J (s) =
L∏

j=1

Pj↑, j↓ . (2.57)

This transformation maps the eigenstates with M down-spin electrons and N − M up-spin
electrons one-to-one onto the eigenstates with M up-spin electrons and N − M down-spin
electrons. Thus, the z-component of the total spin changes its sign. As a consequence we may
restrict ourselves to non-negative values N/2− M of Sz , when we diagonalize the Hubbard
Hamiltonian in Chapter 3. It is clear from the definition of the transposition operators (2.39)
that the transformation (2.57) leaves the empty lattice state |0〉 invariant.

Let us now consider a lattice with an even number of sites. We define the operators

J (sh)
a = (c†L ,a − cL ,a)(c†L−1,a + cL−1,a) . . . (c†2,a − c2,a)(c†1,a + c1,a) , (2.58)

a =↑,↓. Note that the signs in the bracket on the right hand side alternate and are plus for
odd lattice sites and minus for even lattice sites. The operators (2.58) generate a particle-
hole transformation on spin species a, accompanied by a change of sign on every second
lattice site. We obtain, for instance, [J (sh)

↓ , c j,↑] = 0 and

J (sh)
↓ c j,↓

(
J (sh)
↓

)† = (−1) j c†j,↓ . (2.59)

Clearly, for an even number of lattice sites, the tight-binding part of the Hubbard Hamil-
tonian (2.31) is invariant under the transformations generated by J (sh)

a , a =↑,↓, while the
interaction part changes its sign. Thus, H (u) is mapped to H (−u). The empty lattice is
mapped to

J (sh)
a |0〉 = c†L ,a . . . c†1,a|0〉 , (2.60)

which is the fully spin polarized half-filled band state.
The transformation (2.59) is often called the Shiba transformation but was probably first

obtained in [197, 298]. Of course, it is possible to define the Shiba transformation for an
odd number of lattice sites. In that case, however, the tight-binding part of the Hubbard
Hamiltonian (2.31) is not invariant under the Shiba transformation anymore. Due to the
periodic boundary conditions the two odd lattice sites 1 and L are nearest neighbours, and
the terms c†1cL and c†Lc1 pick up a minus sign. This may be avoided by switching to open
boundaries. A Hubbard Hamiltonian invariant under a Shiba transformation can always be
defined on a bipartite lattice with appropriate boundary conditions. A bipartite lattice is a
union of two complementary sublattices �1 and �2, where each lattice site in �1 has nearest
neighbours only in �2 and vice versa.

For a lattice with an even number of sites let us perform Shiba transformations for the up-
and for the down spins. Then the Hamiltonian is not altered, since the sign of the coupling
is switched twice, but the empty lattice state is mapped onto a state with all sites doubly
occupied. Thus, all eigenstates of the Hubbard Hamiltonian (2.31) with N electrons are
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mapped onto eigenstates with 2L − N electrons, and we may restrict ourselves to N ≤ L ,
when we diagonalize the Hubbard Hamiltonian in Chapter 3.

The spin flip and the Shiba transformations affect the particle number operator and the
operator of the z-component of the total spin in a non-trivial way,

J (s) N̂ J (s) = N̂ , J (s)Sz J (s) = −Sz , (2.61a)

J (sh)
↓ N̂

(
J (sh)
↓

)† = L + 2Sz , J (sh)
↓ 2Sz

(
J (sh)
↓

)† = N̂ − L , (2.61b)

J (sh)
↑ N̂

(
J (sh)
↑

)† = L − 2Sz , J (sh)
↑ 2Sz

(
J (sh)
↑

)† = L − N̂ . (2.61c)

This has immediate implications for the Gibbs free energy per lattice site

f (µ, B, T, u) = −T

L
ln

(
tr
{

exp
(
−H (u)− µN̂ − 2BSz

T

)})
(2.62)

which determines the equilibrium thermodynamic properties of the Hubbard model as a
function of the chemical potential µ, the magnetic field B and the temperature T and
parametrically depends on the coupling u. Using the mutual commutativity of the operators
H , N̂ and Sz and the invariance of the trace of a product of matrices under cyclic permutations
of the matrices we conclude with (2.61) that

f (µ, B, T, u) = f (µ,−B, T, u) (2.63a)

= f (B, µ, T,−u)− µ+ B (2.63b)

= f (−B,−µ, T,−u)− µ− B . (2.63c)

Combining the latter equations we further obtain

f (µ, B, T, u)+ µ = f (−µ, B, T, u)− µ . (2.64)

Finally we note for later reference the transformation formulae

J (sh)
↑ J (sh)

↓ N̂
(
J (sh)
↓

)†(
J (sh)
↑

)† = 2L − N̂ , (2.65a)

J (sh)
↑ J (sh)

↓ Sz
(
J (sh)
↓

)†(
J (sh)
↑

)† = −Sz (2.65b)

for a simultaneous application of the two Shiba transformations to the particle number
operator and to the operator of the z-component of the total spin which follow from (2.61b)
and (2.61c).

2.2.5 SO(4) symmetry

We saw in Section 2.1 that the Hubbard Hamiltonian (2.31) conserves the z-component Sz

of the total spin and the particle number N̂ . Both operators generate U(1) transformations.
The operator Sz is the generator of rotations about the z-axis, the particle number operator
N̂ generates the global gauge transformations. We shall now define the operators Sx and Sy

of the x- and y-components of the total spin. Sx , Sy and Sz combine into a representation
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of the Lie algebra su(2) which generates the group SU(2) of rotations in spin space. We
shall show that the Hubbard Hamiltonian commutes with Sx , Sy and Sz and thus is fully
rotationally invariant. For an even number of lattice sites, we shall see that the particle
number is part of another, hidden su(2) symmetry which has its origin in the invariance
modulo sign of the coupling of the Hubbard Hamiltonian under the Shiba transformation
(2.59). This non-Abelian extension of the gauge symmetry is called the η-pairing symmetry.

We define the operators of the components of the total spin as

Sα = 1
2

L∑
j=1

2∑
a,b=1

c†j,a(σα)a
bc j,b , α = x, y, z . (2.66)

In the second summation we identified 1 with ↑ and 2 with ↓. The matrices σα are the Pauli
matrices

σ x =
(

0 1
1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
. (2.67)

They form a basis of the fundamental representation of the Lie algebra su(2) and satisfy the
commutation relations

[σα, σ β] = 2iεαβγ σ γ , α, β = x, y, z , (2.68)

where εαβγ is the totally antisymmetric tensor. As was claimed above the spin operators
generate a representation of su(2),

[Sα, Sβ] = iεαβγ Sγ , α, β = x, y, z , (2.69)

and commute with the Hubbard Hamiltonian,

[H, Sα] = 0 , α = x, y, z . (2.70)

It is not difficult to verify (2.69) and (2.70). One has to use the fundamental anticom-
mutation relations (2.2) in the calculation of various commutators. As a convenient means
to deal with all of these commutators simultaneously we introduce so-called current oper-
ators [172]. We first of all define a 2× 2 operator valued matrix Sjk with matrix elements

Sjk
b
a = c†j,ack,b (2.71)

for a, b = 1, 2. Using the fundamental anticommutation relations (2.2) we obtain the com-
mutators

[Sjk
b
a, Slm

d
c ] = δklδ

b
c S jm

d
a − δmjδ

d
a Slk

b
c . (2.72)

We further introduce the projections of Sjk onto a gl(2) basis consisting of the Pauli matrices
and the 2× 2 unit matrix I2,

Sα
jk = tr(σαSjk) , S0

jk = tr(Sjk) . (2.73)
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These are the above mentioned current operators. As a consequence of (2.72), we obtain
the commutators

[S0
jk, S0

lm] = δkl S
0
jm − δmj S0

lk , (2.74a)

[S0
jk, Sα

lm] = δkl S
α
jm − δmj Sα

lk , (2.74b)

[Sα
jk, Sβ

lm] = δαβ
(
δkl S

0
jm − δmj S0

lk

)+ i εαβγ
(
δkl S

γ

jm + δmj Sγ

lk

)
. (2.74c)

Equation (2.74a) is obtained by setting a = b and c = d in (2.72) and summing over a and
c. For (2.74b) we first multiply (2.72) by a Pauli matrix and then take the traces. Similarly,
to obtain (2.74c) we have to multiply by two Pauli matrices and have to use the identity
σασβ = δαβ + iεαβγ σ γ .

We note that Sα
j = 1

2 Sα
j j is a local spin operator (‘spin density operator’) and that S0

j =
S0

j j = n j,↑ + n j,↓ is the local particle number operator. Putting j = k and l = m in (2.74c)

and multiplying by 1
4 leads to the commutators

[Sα
j , Sβ

l ] = δ jl iε
αβγ Sγ

j (2.75)

for local spin operators. From this equation we obtain (2.69) by summation over j and l.
The Hamiltonian (2.31) expressed in terms of the operators S0

jk reads

H = −
L∑

j=1

(
S0

j j+1 + S0
j+1 j − 2u(S0

j j − 1)2 + u
)
. (2.76)

To obtain the squared bracket one has to use n2
j,↑ = c†j,↑c j,↑c

†
j,↑c j,↑ = c†j,↑c j,↑(1−

c j,↑c
†
j,↑) = n j,↑ and n2

j,↓ = n j,↓. Using (2.74b) we obtain

[S0
jk, Sα

l ] = 1
2 (δkl S

α
jl − δl j Sα

lk) . (2.77)

Summation over l yields [S0
jk, Sα] = 0 which, together with (2.76), implies the conservation

of the total spin, equation (2.70).
We shall usually use the ladder operators S± = Sx ± iSy instead of Sx and Sy . They have

the explicit form

S+ =
L∑

j=1

c†j,↑c j,↓ , S− =
L∑

j=1

c†j,↓c j,↑ (2.78)

and obey the commutation relations

[Sz, S±] = ±S± , [S+, S−] = 2Sz , (2.79)

which follow from (2.69).
Let us now turn to the η-pairing symmetry. It has its origin in the invariance modulo

the sign of the coupling of the Hubbard Hamiltonian (2.31) under the Shiba transformation
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(2.59). Let us apply the Shiba transformation (2.59) to the spin operators S±, Sz . Then

J (sh)
↓ S+

(
J (sh)
↓

)† = L∑
j=1

(−1) j c†j,↑c
†
j,↓ = −η+ , (2.80a)

J (sh)
↓ S−

(
J (sh)
↓

)† = L∑
j=1

(−1) j c j,↓c j,↑ = −η− , (2.80b)

J (sh)
↓ Sz

(
J (sh)
↓

)† = 1
2

L∑
j=1

(n j,↑ + n j,↓ − 1) = 1
2 (N̂ − L) = ηz . (2.80c)

We introduced the minus signs in (2.80a) and (2.80b) in order to match the conventions in the
literature. Application of the Shiba transformation to (2.79) yields the su(2) commutation
relations

[ηz, η±] = ±η± , [η+, η−] = 2ηz (2.81)

for the η-pairing operators. Let us define the analogues of Sx and Sy ,

ηx = 1
2 (η+ + η−) , ηy = − i

2 (η+ − η−) , (2.82)

which due to (2.81) satisfy

[ηα, ηβ] = iεαβγ ηγ , α, β = x, y, z . (2.83)

The invariance of the Hubbard Hamiltonian (2.31) under the η-pairing symmetry follows
from [H (−u), Sα] = 0 by application of the Shiba transformation,

[H, ηα] = 0 , α = x, y, z . (2.84)

A trivial yet important implication of (2.70) and (2.84) that will be useful later on is that the
Hubbard Hamiltonian (2.31) also commutes with the Casimir operators (Sα)2 and (ηα)2.

To get a full understanding of the symmetries of the Hubbard Hamiltonian we still have
to consider the mutual commutators of the two sets of generators Sα and ηβ . We claim that

[Sα, ηβ] = 0 , α, β = x, y, z . (2.85)

Because of the antisymmetry, this is a set of six independent equations to be verified. We may,
for instance, start with c†j,↑c j,↓c

†
k,↓c

†
k,↑ = c†k,↓c

†
k,↑c

†
j,↑c j,↓, which implies that [S+, η+] = 0.

Reversing all spins we obtain [S−, η+] = 0. Then, because of (2.79), also [Sz, η+] = 0.
Hence, η+ is invariant under rotations. But η− is the Hermitian conjugate of η+, so it is
invariant under rotations as well. Finally, because of (2.81), the same is true for ηz , and we
have proved (2.85).

So far we have shown that the Hubbard Hamiltonian (2.31) commutes with the direct
sum of two representations of su(2). We have to keep in mind that the invariance under the
η-pairing symmetry, equation (2.84), holds only for an even number of lattice sites L . This
fact imposes restrictions on joint irreducible representations of spin and η-spin realized on
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eigenstates of the Hubbard Hamiltonian. From the definitions (2.25), (2.27) and (2.80c) we
obtain

Sz + ηz = N̂↑ − L/2 . (2.86)

Thus, Sz + ηz when acting on a joint highest weight state takes only integer eigenvalues
(see Section 3.4). Spin and η-spin are either both integer or both half odd integer.

It follows from (2.80c) and (2.81) that η+ and η− do not preserve the number of particles,

[N̂ , η±] = ±2η± . (2.87)

The operator η+ creates a so-called η-pair in an eigenstate of the Hamiltonian. η− is the cor-
responding annihilation operator. As an immediate consequence of the definitions (2.80a),
(2.80b) we obtain

{Û , η±} = 0 . (2.88)

Thus, η-pairs have lattice momentum π .
The full SO(4) ∼= SU(2)× SU(2)/Z2 symmetry is only realized for the Hubbard Hamil-

tonian of the form (2.31). Adding a magnetic field term −2 BSz breaks the rotational in-
variance, while the η-pairing invariance is preserved. Adding a chemical potential term
−µN̂ , on the other hand, breaks the η-pairing symmetry, but preserves the invariance under
rotations. The chemical potential µ plays the same role of a symmetry breaking field for
the η-spin as the magnetic field B for the spin.

2.3 Conclusions

In this introductory chapter we gave a thorough description of the one-dimensional Hubbard
model and considered its basic properties and symmetries. The features of the Hubbard
model as far as considered here are not peculiar to the one-dimensional model. They readily
generalize to higher dimensional bipartite lattices.

Appendix 2.A is devoted to the strong coupling limit of the Hubbard model, which gives
rise to a number of other prominent models in solid state theory, like the isotropic Heisenberg
model or the t-J model. In appendix 2.B we consider several possible continuum limits
of the Hubbard Hamiltonian. The reader who is less interested in or already familiar with
the limiting cases of the Hubbard model may skip the appendices and proceed directly to
Chapter 3.
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2.A The strong coupling limit

In this section we study the large U perturbation theory of the Hamiltonian

H = T + UD , (2.A.1)

where

T =
L∑

j,k=1

t jkc†j,ack,a , D =
L∑

j=1

n j,↑n j,↓ . (2.A.2)

On the right hand side of the first equation (2.A.2) implicit summation over a =↑,↓
is understood. We shall assume that t j j = 0, tk j = t∗jk and U > 0. The discussion of the
attractive case, U < 0, is very similar and is left as an exercise to the reader. The Hamiltonian
(2.A.1) is a slight generalization of the Hubbard Hamiltonian (2.1). It turns into (2.1) for
an appropriate choice of the hopping matrix elements t jk .

Let us assume that |t jk | � U for j, k = 1, . . . , L . Then T can be considered as a small
perturbation to U D. As we have seen in Section 2.1 the operator D acts diagonally on the
basisB of Wannier states. It counts the number of doubly occupied states. Its eigenvalues are
thus n = 0, 1, . . . , L . Let us denote the projectors onto the corresponding eigenspacesHn by
Pn . The Hilbert space H(L) of our model (2.A.1) decomposes into H(L) = H0 ⊕ · · · ⊕HL ,
and D has the spectral decomposition

D =
L∑

n=1

n Pn . (2.A.3)

The Hamiltonian (2.A.1) conserves the number of electrons N . In the following we will
be interested in the case when N ≤ L . In this case the space of N -particle eigenstates has
non-zero overlap with the eigenspace H0 of P0, which is spanned by the degenerate ground
states of D. The number of these ground states for a fixed number of electrons N is 2N

(L
N

)
.

Hence, the total number of Wannier states with no site doubly occupied is

dimH0 = 3L . (2.A.4)

The perturbation T will partially lift this large degeneracy. The lowest energy level of UD

36
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will split into many levels, which are expected, however, to be well separated from the first
excited level of UD as long as the condition |t jk | � U holds. The splitting of the ground state
of UD (in second order perturbation theory) will be described by an effective Hamiltonian,
the so-called t-J -Hamiltonian, whose derivation is the subject of the following subsections.

The t-J -Hamiltonian is the most general effective strong coupling approximation to the
Hamiltonian (2.A.1). Upon further restriction of the parameters it generates a number of
prominent models in solid state theory. At half-filling (N = L) it turns into the Hamiltonian
of the isotropic spin- 1

2 Heisenberg chain. The restriction to first order perturbation theory
leads to the so-called t-0 model. Keeping only the two-site terms another important variant
of the t-J model is obtained.

Our approach here is quite standard and has earlier been described in other textbooks
(see e.g. [27,152]). For further reading we recommend Takahashi’s article [437], where the
strong coupling perturbation theory for the half-filled Hubbard model has been carried out
to higher orders and where references to the older literature can be found.

2.A.1 Projectors

As an input for the perturbative treatment of H we will need expressions for the projectors
Pn in terms of fermions. A fermionic representation of the projector Pn can be obtained
from the generating function

G(α) =
L∏

j=1

(1− α n j,↑n j,↓) . (2.A.5)

Let us consider the action of G(α) on Wannier states |x, a〉. A calculation similar to the one
presented in equation (2.11) of Chapter 2.1 gives

n j,↑n j,↓|x, a〉 =
∑

1≤k<l≤N

δ j,xk δ j,xl |x, a〉 =
{
|x, a〉 if site j is doubly occupied,

0 else.
(2.A.6)

We conclude that

G(α)|x, a〉 = (1− α)n|x, a〉 , (2.A.7)

where n is the number of doubly occupied sites in the state |x, a〉, i.e., D|x, a〉 = n|x, a〉. It
follows from (2.A.7) that

(−1)k

k!
∂k
αG(α)

∣∣∣
α=1
|x, a〉 = δkn|x, a〉 (2.A.8)

and thus,

Pn = (−1)n

n!
∂n
αG(α)

∣∣∣
α=1

. (2.A.9)

Let us note that the latter equation is naturally extended to n = 0, since (2.A.7) implies
P0 = G(1).
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2.A.2 Second order perturbation theory around an energy level

Consider any Hamiltonian H acting on a Hilbert space H. Let P be a projection
on a subspace PH of H and Q = 1− P . |ψ〉 is a solution of the Schrödinger
equation

H |ψ〉 = E |ψ〉 (2.A.10)

with eigenvalue E , if and only if

PHP|ψ〉 + PHQ|ψ〉 = EP|ψ〉 , (2.A.11a)

QHP|ψ〉 + QHQ|ψ〉 = EQ|ψ〉 . (2.A.11b)

Let us solve equation (2.A.11b) for Q|ψ〉 and insert the result into (2.A.11a). We obtain

Ĥ (E)|ϕ〉 = E |ϕ〉 , (2.A.12)

where

Ĥ (E) = PH (1+ (E − QH )−1QH )P (2.A.13)

and |ϕ〉 = P|ψ〉. Thus, |ϕ〉 ∈ PH is a solution of the spectral problem (2.A.12) with eigen-
value E . Conversely, if |ϕ〉 ∈ PH solves (2.A.12), the vector

|ψ〉 = (1+ (E − QH )−1QH )|ϕ〉 (2.A.14)

is a solution of the full stationary Schrödinger equation (2.A.10) with eigenvalue E .

Remark. We have assumed the spectra of H and Q H be disjoint. This should be true
for generic choice of P . Then, by construction, equation (2.A.12) contains the complete
information about the spectrum of H and all eigenstates of H follow from (2.A.14). Since
Ĥ (E) is nonlinear in E , there may be several eigenvalues belonging to the same eigenvector
|ϕ〉. In the extreme case a single eigenvector of Ĥ (E) determines the complete spectrum of
H . The reader may verify this statement with the toy example

H =
1 0 0

0 2 0
0 0 3

 , P = 1

3

1 1 1
1 1 1
1 1 1

 . (2.A.15)

Equations (2.A.12) and (2.A.13) are a convenient starting point for the perturbation theory
around a given degenerate energy level. Let us consider a Hamiltonian

H = H0 + λH1 (2.A.16)

composed of a contribution H0 with known spectral decomposition

H0 =
∑

n

En Pn (2.A.17)

and a perturbation H1 coupled to H0 by a coupling constant λ.
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Replacing P by Pn in (2.A.13) we obtain

Ĥn(E) = Pn H (1+ (E − Qn H )−1 Qn H )Pn . (2.A.18)

This operator acts non-trivially only on the degeneracy subspace corresponding to the
nth energy level En of H0. Nevertheless, it determines the complete spectrum and all
eigenfunctions of H through (2.A.12) and (2.A.14). We may use the explicit form (2.A.17)
of the unperturbed Hamiltonian H0 to express Ĥn(E) entirely in terms of the projectors Pn ,
the unperturbed energy levels En and the perturbation H1. A short calculation based on the
elementary relations

Pm Pn = δmn Pn , (2.A.19a)

Pn H0 = H0 Pn = En Pn , Qn H0 = H0 Qn =
∑

m (m �=n)

Em Pm , (2.A.19b)

PnHQn = λPn H1 Qn , QnHPn = λQn H1 Pn (2.A.19c)

yields

Ĥn(E) =
En + Pn H1

∞∑
k=0

λk+1

( ∑
m (m �=n)

Pm H1

E − Em

)k
 Pn . (2.A.20)

Thus, the spectral problem (2.A.12) turns into

Pn H1

∞∑
k=0

λk+1

( ∑
m (m �=n)

Pm H1

E − Em

)k

|ϕ〉 = (E − En)|ϕ〉 (2.A.21)

for |ϕ〉 ∈ PnH.
So far we have achieved nothing but a reformulation of our original spectral problem

(2.A.10). Now perturbation theory around the energy level En is the iterative solution of
equation (2.A.21) in ascending orders of λ. For λ = 0 the left hand side of (2.A.21) vanishes
and we have E = En . For small λ we expect corrections to En of the form

E = En + λE (1)
n + λ2 E (2)

n +O(λ3) . (2.A.22)

On the left hand side of equation (2.A.21) these corrections do not contribute to the first
and second order terms in an expansion in λ. Thus, for the part of the spectrum of H , which
evolves from the energy level En as the coupling λ is turned on, we obtain to quadratic
order in λ the linear spectral problem[

Pn H1 Pn + λ
∑

m (m �=n)

Pn H1 Pm H1 Pn

En − Em

]
|ϕ〉 = E − En

λ
|ϕ〉 . (2.A.23)

The term in square brackets is an effective Hamiltonian on the restricted Hilbert space PnH.
It describes the splitting of the energy level En of the Hamiltonian H0 under the influence
of the small perturbation λH1. The corresponding eigenstates of the full Hamiltonian H are
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obtainable by application of the operator 1+ (E − Qn H )−1 QnHPn (see (2.A.14)) to the
eigenstates of (2.A.23). Another short calculation gives

(E − Qn H )−1 Qn H Pn = λ ·
∑

m (m �=n)

Pm H1 Pn

E − Em
+ λ2

∑
l,m

(l,m �=n)

Pl H1 Pm H1 Pn

(E − El)(E − Em)
+O(λ3) .

(2.A.24)

2.A.3 The Hubbard model in the strong coupling limit

Let us now apply the formalism of the previous section to the Hamiltonian (2.A.1). We
rescale the Hamiltonian as

H/U = D + T/U . (2.A.25)

Then, the energy has to be rescaled as well. H/U is of the form (2.A.16) with H0 = D,
H1 = T and λ = 1/U . Hence, (2.A.23) applies for large U .

The operator D has eigenvalues En = n, for n = 0, 1, . . . , L . Setting n = 0 in (2.A.23)
and inserting the above data we obtain[

P0T P0 − 1

U

L∑
m=1

P0T Pm T P0

m

]
|ϕ〉 = E |ϕ〉 . (2.A.26)

The operator on the left hand side is often called the t-J -Hamiltonian. We will denote
it by Ht−J . It describes the splitting of the lowest energy level E0 = 0 of the Hubbard
Hamiltonian in the atomic limit, in the situation, when the hopping amplitudes are small
compared to the Hubbard interaction U . The projection operators Pm , m = 0, . . . , L , are
given by equation (2.A.9). In particular,

P0 =
L∏

j=1

(1− n j,↑n j,↓) (2.A.27)

is the projection operator onto the space with no doubly occupied site.
The work that remains to be done is to express the t-J -Hamiltonian in a more convenient

and intuitively understandable form. First note the relation

n j,↑n j,↓P0 = P0n j,↑n j,↓ = 0 (2.A.28)

for j = 1, . . . , L , which implies that

G(α)TP0 =
L∑

j,k=1

t jk(1− α n j,↑n j,↓)c
†
j,ack,a P0 . (2.A.29)

Here the right hand side is linear in α. Thus, by application of (2.A.9), it follows that

L∑
m=1

PmTP0

m
=

L∑
j,k=1

t jkn j,↑n j,↓c
†
j,ack,a P0 , (2.A.30)
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and thus

Ht−J = P0

[ L∑
j,k=1

t jkc†j,ack,a −
1

U

L∑
j,k,k ′,l=1

t jk tk ′l c
†
j,ack,ank ′,↑nk ′,↓c

†
k ′,bcl,b

]
P0 . (2.A.31)

The second sum in this expression can be further simplified. Let us concentrate for a moment
on the sum over k ′. For k ′ �= j, k the term nk ′,↑nk ′,↓ can be commuted through c†j,ack,a , and,
by (2.A.28), the corresponding terms in the second sum in (2.A.31) vanish. The term with
k ′ = j also vanishes. For j �= k this follows from c†j,an j,↑n j,↓ = 0 and for j = k from

c†j,ac j,an j,↑n j,↓ = 2n j,↑n j,↓ and again (2.A.28). Thus, the only non-vanishing contribution
in the sum over k ′ comes from the term k ′ = k, and the second sum in (2.A.31) reduces
to a triple sum over j , k, and l. Finally, in the remaining triple sum, we may commute the
term nk,↑nk,↓ to the left and use once more equation (2.A.28). The resulting expression for
the t-J -Hamiltonian is most conveniently expressed in terms of the operators Sα

jk and S0
jk

introduced in equation (2.73),

Ht−J = P0

[ L∑
j,k=1

t jk S0
jk +

1

2U

L∑
j,k,l=1

t jk tkl(Sα
jl S

α
kk − S0

jl S
0
kk)

]
P0 (2.A.32a)

= P0

[ L∑
j,k=1
j �=k

t jk S0
jk +

1

2U

L∑
j,k=1
j �=k

|t jk |2(Sα
j j Sα

kk − S0
j j S0

kk)

+ 1

2U

L∑
j,k,l=1

j �=k �=l �= j

t jk tkl(Sα
jl S

α
kk − S0

jl S
0
kk)

]
P0 . (2.A.32b)

More conventionally the t-J -Hamiltonian is written as

Ht−J = P0

[ L∑
j,k=1
j �=k

t jkc†j,ack,a +
L∑

j,k=1
j �=k

2|t jk |2
U

(
Sα

j Sα
k −

n j nk

4

)

+ 1

U

L∑
j,k,l=1

j �=k �=l �= j

t jk tkl

(
c†j,aσ

α
abcl,b Sα

k − 1
2 c†j,acl,ank

)]
P0 , (2.A.33)

where the Sα
j = 1

2 Sα
j j , α = x, y, z, are local spin operators and n j = n j,↑ + n j,↓ is the local

particle number operator. Yet another useful form of the t-J -Hamiltonian is obtained, when
we move in (2.A.33) the operator P0 on the left through the sums,

Ht−J =
L∑

j,k=1
j �=k

t jkc†j,ack,a(1− n j )+
L∑

j,k=1
j �=k

2|t jk |2
U

(
Sα

j Sα
k −

n j nk

4

)

+ 1

U

L∑
j,k,l=1

j �=k �=l �= j

t jk tkl

(
c†j,aσ

α
abcl,b Sα

k − 1
2 c†j,acl,ank

)
(1− n j ) . (2.A.34)
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Here we left out the operator P0 on the very right, which is justified, since Ht−J acts on the
projected space P0H(L).

It is easy to verify that the t-J -Hamiltonian conserves the number of particles and the
total spin,

[Ht−J , N̂ ] = [Ht−J , Sα] = 0 (2.A.35)

for α = x, y, z.
Let us summarize our results. Using a kind of second order perturbation theory, which

includes projection onto the restricted Hilbert space H0 = P0H(L), we obtained an effective
strong coupling approximation to the Hamiltonian (2.A.1). We presented this so-called
t-J -Hamiltonian in three different forms (2.A.32)-(2.A.34). Note that our derivation did
not rely on the one-dimensionality of the Hamiltonian (2.A.1). Results similar to (2.A.32)–
(2.A.34) hold in arbitrary dimensions. In order to obtain the low lying eigenstates of the full
Hamiltonian in second order perturbation theory one has to apply the operator (2.A.24) to the
eigenstates of the t-J -Hamiltonian. In contrast to the eigenstates of the t-J -Hamiltonian
the eigenstates of the full Hamiltonian in second order perturbation theory have a small
probability of having doubly occupied sites.

Usually the t-J -Hamiltonian as presented in, say, (2.A.34) is not directly studied in the
literature. It rather is considered in certain more specialized situations that will be discussed
below.

2.A.4 Heisenberg spin chain and Mott transition

Ht−J conserves the number of electrons (see (2.A.35)). At half-filling, when the number
of electrons N equals the number of lattice sites L , all eigenstates of Ht−J must be ‘pure
spin states’ of the form |a1, . . . , aL〉 = c†L ,aL

. . . c†1,a1
|0〉. In these states every lattice site is

occupied precisely by one electron. Then (1− n j )|a1, . . . , aL〉 = 0, and the Hamiltonian
(2.A.34) reduces to

HSpin =
L∑

j,k=1
j �=k

2|t jk |2
U

(
Sα

j Sα
k − 1

4

)
. (2.A.36)

This is the isotropic spin- 1
2 Heisenberg chain with exchange couplings Jjk =

2|t jk |2/U between spins at sites j and k. For the special case of nearest-neighbour
hopping t jk = −t(δ j,k−1 + δ j,k+1) the Hamiltonian (2.A.1) turns into the Hubbard Hamil-
tonian (2.1). The corresponding spin chain Hamiltonian (2.A.36) becomes

HSpin = 4t2

U

L∑
j=1

(
Sα

j Sα
j+1 − 1

4

)
, (2.A.37)

where periodic boundary conditions Sα
L+1 = Sα

1 are implied. The sign of the exchange
coupling is the same as the sign of the Hubbard interaction U . Thus, we have shown
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the following remarkable fact: At half-filling and for strong repulsion U � |t | the low-
lying excitations of the Hubbard model are effectively described by the excitations of an
antiferromagnetic Heisenberg chain.

The spin Hamiltonian (2.A.37) is exactly solvable by Bethe ansatz and is in fact the model
the Bethe ansatz was first applied to in Bethe’s original article [60].

If we apply an external electro-magnetic field to the Hubbard model it appears as a
complex phase in the hopping matrix elements, t jk → t jkeiλ jk (see Chapter 1.3), and the first
and the third sum in (2.A.34) have to be modified. The second sum, however, containing
merely the modulus |t jk |, remains unchanged. At half-filling the effective Hamiltonian
is again (2.A.36). This means that to second order strong coupling perturbation theory
the Hubbard Hamiltonian does not couple to an external electro-magnetic field. Hence,
its conductivity is zero. On the other hand, the tight-binding model, which is the weak
coupling limit U → 0 of the Hubbard model has a non-vanishing conductivity [159]. This
hints that at a critical interaction Uc there is an interaction induced phase transition from
a conducting phase to an insulating phase. Such kind of phase transition is called a Mott
metal-insulator transition. Later we shall see that the critical coupling strength in case of
the one-dimensional Hubbard model is Uc = 0.

2.A.5 Neglecting the three-site terms

Close to half-filling the mean values of the first and the third sum on the right hand side
of (2.A.34) are still expected to be small. In particular, the third sum may be consid-
ered to be unimportant compared to the second sum. On the other hand, the third sum in
(2.A.34) is of higher order in 1/U than the first sum. Thus, close to half-filling the main
features of the Hamiltonian (2.A.34) are expected to be properly described by its simplified
ver ion

H (2)
t−J =

L∑
j,k=1
j �=k

t jkc†j,ack,a(1− n j )+
L∑

j,k=1
j �=k

2|t jk |2
U

(
Sα

j Sα
k −

n j nk

4

)
. (2.A.38)

We denoted this Hamiltonian by H (2)
t−J , since the three-site terms are neglected here. Spe-

cializing again to nearest-neighbour hopping and going back to the notation of equation
(2.A.33) we obtain.

H (2)
t−J = P0

[
−t

L∑
j=1

(c†j,ac j+1,a + c†j+1,ac j,a)+ 4t2

U

L∑
j=1

(
Sα

j Sα
j+1 −

n j n j+1

4

)]
P0 .

(2.A.39)

In this form H (2)
t−J is most frequently encountered in the literature. Unfortunately, for the

lack of better names, the Hamiltonian (2.A.39) is also called t-J -Hamiltonian.1

In general, the t-J -Hamiltonian (2.A.39) is not solvable by Bethe ansatz [377]. For the
special values 4t/U = 2 and 4t/U = 0 of the coupling constant, however, Bethe ansatz

1 A common short-hand notation in the literature is J = 4t2/U , whence the name.



44 Appendices to Chapter 2

solutions exist [377]. At 4t/U = 2 the model has higher global symmetry. The model
becomes invariant under the action of the Lie super algebra gl(1|2). Therefore the t-J -
Hamiltonian H (2)

t−J with 4t/U = 2 is called the supersymmetric t-J -Hamiltonian.
The history of the supersymmetric t-J model as a solvable model is rather involved.

Many authors contributed to its solution. For the reader who is interested in more details we
recommend the article [119], where the algebraic Bethe ansatz solution was obtained and
the role of the gl(1|2) symmetry has been stressed. The article [119] also contains a brief
account of the history of the supersymmetric t-J model with many references to further
original articles.

2.A.6 The t-0 model

For 4t/U = 0 the Hamiltonian (2.A.39) turns into

Ht−0 = −t P0

[ L∑
j=1

(c†j,ac j+1,a + c†j+1,ac j,a)

]
P0 . (2.A.40)

This model is called the t-0 model or the restricted hopping model. It is also obtained from
(2.A.33) in the case of nearest-neighbour hopping and for U → ∞, i.e., when the strong
coupling perturbation theory, which led to the t-J -Hamiltonian (2.A.33), is restricted to
first order.

The t-0 model is interesting because of its extreme simplicity. From the point of view of
its algebraic structure it is closely related to the XX spin chain [179,313]. It has been solved
by the algebraic Bethe ansatz [179] and by coordinate Bethe ansatz [219]. The t-0 model
is an interesting toy model for the study of quantum correlation functions. A determinant
representation (see [270]) for the two-particle Green’s functions was obtained in [219].

2.A.7 An overview over the strong coupling effective models related
to the Hubbard model

We have become acquainted with the various descendants of the Hubbard model in the
strong coupling limit |t | � U . A schematic picture of their interdependencies is given in
figure 2.A.1.

First of all, the t-J -Hamiltonian Ht−J , which includes three-site terms, is obtained from
the Hubbard Hamiltonian in second order perturbation theory in |t |/U . The Heisenberg spin
chain is the effective Hamiltonian at half-filling, N/L = 1. Ignoring the three-site terms in
Ht−J , we obtained the t-J -Hamiltonian H (2)

t−J . We argued that the three-site terms might be
non-essential at strong coupling and close to half filling. In figure 2.A.1 we tried to indicate
the somewhat heuristic nature of our arguments by drawing a dashed arrow between Ht−J

and H (2)
t−J . The t-0-Hamiltonian follows from Ht−J (or H (2)

t−J ) in the limit U →∞ and
corresponds to first order perturbation theory. Finally, we included the supersymmetric t-
J -Hamiltonian H (s)

t−J into our scheme. It is equal to the t-J -Hamiltonian H (2)
t−J at a certain
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N = L4t/U = 2

HHubbard

HSpinHt–JHt–J
(2)Ht–J

(s)

Ht–0

neglecting
3-site terms

first order
perturbation theory

second order
perturbation theory
t U

Fig. 2.A.1. The various models related to the strong coupling limit of the Hubbard model.

value, 4t/U = 2, of the coupling and, like the Hubbard or Heisenberg chain, is solvable by
Bethe ansatz.

Let us note that second order perturbation theory is not the only possible starting point for
the derivation of the effective strong coupling Hamiltonian Ht−J . We choose this starting
point here, since it is close to common textbook knowledge and rather universally applicable.
For an alternative derivation of the strong coupling descendants of the Hubbard model, which
uses more of the specific features of the Hubbard model, the reader is referred to [314].

2.B Continuum limits

The Hubbard model is a lattice model. Some of its peculiar features, like the existence of two
su(2) symmetries, or the existence of certain kinds of bound states, which will be discussed
in later chapters, can be directly attributed to the discreteness of the lattice. Quite generally,
lattice models have a richer phenomenology than the continuum models they contain as
limiting cases. Still, these continuum models describe certain aspects of the physics of the
lattice model and may also be interesting on their own right.

How can we perform a continuum limit on Fermi operators? We shall start with certain
formal manipulations and, in the sequel, try to give them a more rigorous meaning. Let us
start with equations (2.13) and (2.14), which are the Fourier transformation formulae for
switching from creation operators of electrons in Wannier states to creation operators of
electrons in Bloch states. Shifting the limits of summation in (2.14) we obtain

c̃†k,a =
1√
L

L∑
n=1

eiφkn c†n,a , k = k−, . . . , k+, (2.B.1a)

c†n,a =
1√
L

k+∑
k=k−

e−iφkn c̃†k,a , n = 1, . . . , L , (2.B.1b)

where k+ = −k− = (L − 1)/2 for L odd and k+ = −k− + 1 = L/2 for L even (recall that
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φ = 2π/L). Next, we introduce a lattice constant a0 and the total length of the lattice �,
such that

� = La0 . (2.B.2)

Then the continuum is reached in the limit a0 → 0 for fixed �. Thus, L →∞, k− → −∞
and k+ → ∞. Moreover, the position and momentum variables

x = na0 , qk = 2πk/� (2.B.3)

become new, independent continuous variables as a0 → 0. Introducing these new variables
into (2.B.1b) we obtain

c†n,a√
a0
= 1√

�

k+∑
k=k−

e−iqk x c̃†k,a . (2.B.4)

Let us fix x . Then the right hand side of (2.B.4) depends on a0 only through the limits k+
and k− of summation, and we may formally define

�†
a(x) = lim

a0→0

c†n,a√
a0

∣∣∣∣∣
x

= 1√
�

∞∑
k=−∞

e−iqk x c̃†k,a . (2.B.5)

At first glance the sum on the right hand side of (2.B.5) is only a formal expression.
If we restrict ourselves, however, to the space generated by the action of finitely many
creation operators c̃†k,a on a Fock vacuum |0〉, this sum becomes perfectly sensible and

gives meaning to the rather terrific expression lima0→0(c†n,a/
√

a0)|x . Creation of finitely
many particles on infinitely many sites means to consider a situation, where the density of
particles N/L is zero. This is in agreement with our intuitive understanding. The continuum
limit should work for low densities when all particles can be in states with small momenta.
Small momenta correspond to wave lengths large compared to the lattice constant.

Fourier inversion of equation (2.B.5) gives

c̃†k,a =
1√
�

∫ �

0
dx eiqk x �†

a(x) . (2.B.6)

This equation can also be obtained from (2.B.1a) observing that

L∑
n=1

a0 f (na0)
a0→0−−−→

∫ �

0
dx f (x) . (2.B.7)

For the fundamental anticommutators (2.2) we find{
cm,a/

√
a0 , c†n,b/

√
a0

}
= δa,bδm,n/a0 . (2.B.8)

Now,

L∑
m=1

a0
δm,n

a0
f (ma0) = f (na0) , (2.B.9)
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and thus, by comparison with (2.B.7),

{�a(x), �†
b(y)} = δa,bδ(x − y) . (2.B.10)

Note that through (2.B.5) we can also define derivatives of the field operators �a(x).
Let us now apply the above ideas to the Hubbard model. We start with the tight-binding

Hamiltonian (2.12). Since

− 1

a0
(c†n,acn+1,a + c†n+1,acn,a)→−(�†

a(x)�a(x + a0)+�†
a(x + a0)�a(x)

)
= −2�†

a(x)�a(x)− a0∂x
(
�†

a(x)�a(x)
)− a2

0

2
∂2

x

(
�†

a(x)�a(x)
)

+ a2
0

(
∂x�

†
a(x)

)
∂x�a(x)+O(a3

0) , (2.B.11)

we find

H0 →−2
∫ �

0
dx �†

a(x)�a(x)+ a2
0

∫ �

0
dx

(
∂x�

†
a(x)

)
∂x�a(x)+O(a3

0) . (2.B.12)

The operator appearing in the second order term in a0 is the free Hamiltonian of the con-
tinuum model on a ring of length �.

Because of the invariance of the tight-binding Hamiltonian under the Shiba transformation
(2.59) for even L , four different continuum limits are possible,

�
†
↑(x) = lim

a0→0

c†n,↑√
a0

∣∣∣∣
x

, �
†
↓(x) = lim

a0→0

c†n,↓√
a0

∣∣∣∣
x

, (2.B.13a)

�
†
↑(x) = lim

a0→0

c†n,↑√
a0

∣∣∣∣
x

, �
†
↓(x) = lim

a0→0

(−1)ncn,↓√
a0

∣∣∣∣
x

, (2.B.13b)

�
†
↑(x) = lim

a0→0

(−1)ncn,↑√
a0

∣∣∣∣
x

, �
†
↓(x) = lim

a0→0

c†n,↓√
a0

∣∣∣∣
x

, (2.B.13c)

�
†
↑(x) = lim

a0→0

(−1)ncn,↑√
a0

∣∣∣∣
x

, �
†
↓(x) = lim

a0→0

(−1)ncn,↓√
a0

∣∣∣∣
x

, (2.B.13d)

which all lead to the same continuum Hamiltonian (2.B.12).
Let us consider the second equation (2.B.13b). For even L we have

(−1)ncn,↓√
a0

= 1√
�

k+∑
k=k−

e−iqk x c̃k−k+,↓ . (2.B.14)

Thus, defining ˜̃ck,↓ = c̃k−k+,↓, we formally obtain

�
†
↓(x) = 1√

�

∞∑
k=−∞

e−iqk x ˜̃ck,↓ . (2.B.15)

In this case the long wave-length excitations of the continuum model correspond to short
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wave lengths in the lattice model. Recall that the Shiba transformation affects the vac-
uum (2.60). The (lattice) Fock vacuum associated with the limit (2.B.13b) is the fully
spin-polarized half-filled band, | ↓ 〉 = c†L ,↓ . . . c†1,↓|0〉. Similar considerations are valid

for the remaining cases (2.B.13c), (2.B.13d) with Fock vacua | ↑ 〉 = c†L ,↑ . . . c†1,↑|0〉,
| ↑↓ 〉 = c†L ,↑c

†
L ,↓ . . . c†1,↑c

†
1,↓|0〉.

For the interaction part of the Hubbard Hamiltonian (2.31) we obtain

u(1− 2n j,↑)(1− 2n j,↓)→ ±u
(
1− 2a0�

†
a(x)�a(x)+ 2a2

0�
†
a(x)�†

b(x)�b(x)�a(x)
)
,

(2.B.16)

where the plus sign has to be taken for (2.B.13a) and (2.B.13d), and the minus sign for
(2.B.13b) and (2.B.13c), respectively. The resulting continuum limits of the Hubbard Hamil-
tonian are

H → ±u�

a0
− 2(1± u)

∫ �

0
dx �†

a(x)�a(x)

+ a2
0

∫ �

0
dx

[(
∂x�

†
a(x)

)
∂x�a(x)± 2u

a0
�†

a(x)�†
b(x)�b(x)�a(x)

]
+O(a3

0) .

(2.B.17)

Here the operator that appears in second order in a0 is the well known Hamiltonian of the
(electronic) non-linear Schrödinger equation. Setting c = u/a0 we may define

HN L S =
∫ �

0
dx

[(
∂x�

†
a(x)

)
∂x�a(x)± 2c �†

a(x)�†
b(x)�b(x)�a(x)

]
. (2.B.18)

Our result has two different interpretations. First, the Hubbard Hamiltonian is a lattice
regularization of the Hamiltonian (2.B.18) of the non-linear Schrödinger equation (NLS
Hamiltonian). If we rescale the coupling of the Hubbard model as u → a0c, we obtain

HN L S = lim
a0→0

1

a2
0

{
H − u�

a0
+ 2(1+ u)N̂

}
, (2.B.19)

where we choose the plus sign in (2.B.18) for definiteness. From equation (2.B.19) we can
obtain the spectrum of the NLS Hamiltonian, once the spectrum of the Hubbard Hamiltonian
is known. The NLS Hamiltonian for electrons is exactly solvable and historically was the
first Hamiltonian diagonalized by the nested Bethe ansatz [493].

A second interpretation of (2.B.17) and (2.B.18) is the following. There are four different
‘low density cases’, (2.B.13), where the NLS Hamiltonian is a good approximation to
the Hubbard Hamiltonian. The case (2.B.13a) will be discussed in Chapter 11, where we
consider the so-called gas phase. Note that the Hubbard Hamiltonian at finite coupling u
corresponds to the NLS Hamiltonian at infinite coupling 2u/a0.

Finally, let us investigate what happens to the two su(2) symmetries of the Hubbard
Hamiltonian in the continuum limit. Using the limit (2.B.13a) the spin operators Sα (see



2.B Continuum limits 49

(2.66)) turn into

Sα = 1

2

∫ �

0
dx �†

a(x)σα
ab�b(x) . (2.B.20)

Similarly the operator 2ηz + L turns into

N̂ =
∫ �

0
dx �†

a(x)�a(x) . (2.B.21)

For η+ =∑L
n=1(−1)nc†n,↓c

†
n,↑ and η− =∑L

n=1(−1)ncn,↑cn,↓, however, the limit (2.B.13a)
does not make sense, since the factor of (−1)n appearing under the sums does not turn
into a smooth function of x . In other words, the continuum limit (2.B.13a) destroys the
η-pairing symmetry of the Hubbard Hamiltonian. Similarly, the limit (2.B.13b) exists for
ηα , α = x, y, z and for Sz , but not for Sx and Sy .
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The Bethe ansatz solution

The bare existence of this book is due to the amazing fact that the solution of the stationary
Schrödinger equation for the one-dimensional Hubbard model can be reduced to a set of
algebraic equations, which is tractable in the thermodynamic limit. These equations will be
derived in this chapter. We will call them the Lieb-Wu equations to honour E. H. Lieb and
F. Y. Wu, who first obtained them [298]. The derivation is based on a method, called the
nested (coordinate) Bethe ansatz, which goes back to the seminal articles of C. N. Yang [493]
and M. Gaudin [154], who generalized earlier work [60, 296] on exactly solvable models
to models with internal degrees of freedom.

The roots of the Lieb-Wu equations parameterize the eigenvalues and the eigenstates
of the Hamiltonian of the one-dimensional Hubbard model. They encode the complete
information about the model. These roots are not explicitly known in the general N -particle
case. In the thermodynamic limit (N →∞), however, only the distributions of the roots in
the complex plane matter, and many physical quantities can be calculated as solutions of
linear or non-linear Fredholm type integral equations. Moreover, it is sometimes possible
to use the Lieb-Wu equations in an implicit way even for finite N , e.g., in the proof of the
SO(4) highest weight properties of the eigenstates in Sections 3.D and 3.F of the appendix
or in the calculation of their norm in Section 3.5.

The thermodynamic limit and the derivation of suitable integral equations will be the
subject of the following chapters. Here we shall concentrate on the basic ideas of the nested
Bethe ansatz and shall derive the Bethe ansatz wave functions and the Lieb-Wu equations.
In Section 3.1 we take advantage of the particle number conservation. We define N -particle
wave functions and the N -particle Schrödinger equation they ought to satisfy. We explain
how periodic boundary conditions are dealt with within the Bethe ansatz, which is a rather
subtle point of the method. Section 3.2 is devoted to a careful study of the two-particle
problem. The presentation is aimed at the beginner. We show all details of the calculations.
An essential part of what is necessary to understand the N -particle problem can be learned
here. The results for the N -particle case are presented without derivation in Sections 3.3
and 3.4. The derivations have been placed in a number of appendices, where they are shown
in great detail. In Section 3.5 we describe our conjecture about the norm of the N -particle
eigenstates.
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The Lieb-Wu equations (3.95), (3.96) and the expressions (3.97) for the energy and
momentum eigenvalues are essential for the following chapters. They will be our starting
point for the exploration of the physical properties of the Hubbard model.

3.1 The Hamiltonian in first quantization

Our goal in this chapter is to construct translationally invariant eigenstates of the Hubbard
Hamiltonian, i.e., we are looking for solutions of the stationary Schrödinger equation,

H |ψ〉 = E |ψ〉 , (3.1)

which at the same time solve the eigenvalue problem

Û |ψ〉 = ω|ψ〉 (3.2)

for the shift operator. We may work with one of the three forms (2.22), (2.23) or (2.31) of
the Hubbard Hamiltonian. They mutually commute and thus have the same eigenfunctions.
For the time being let us choose (2.22).

In this section we take advantage of the fact that H and Û preserve the number of particles,
[H, N̂ ] = [Û , N̂ ] = 0. Hence, we may consider the eigenvalue problems (3.1), (3.2) in the
sectors of fixed numbers of particles N = 0, 1, . . . , 2L . This corresponds to switching from
second to first quantization, or from lattice quantum field theory to quantum mechanics on
the lattice.

Let us consider an arbitrary N -particle state |ψ〉 ∈ H(L) and an N -particle Wannier state
|x, a〉 ∈ H(L). By analogy with continuum models the amplitude

ψ(x; a) = 〈x, a|ψ〉 (3.3)

is called the (N -particle) wave function. ψ(x; a) is a complex function of the positions
x = (x1, . . . , xN ) and spins a = (a1, . . . , aN ) of the electrons, and, by construction, is totally
antisymmetric under exchange of electrons.

The action of the Hamiltonian on Wannier states |x, a〉 induces an action on the N -particle
wave function ψ(x; a). To conveniently express this action we introduce row vectors eα ,
α = 1, . . . , N , that have a one in column α and zeros elsewhere.

Let us first calculate the action of the tight-binding part (2.12) of the Hubbard Hamiltonian
on a state |x, a〉. The elementary anticommutation relations (2.2) imply that

[c†j,ac j±1,a, c†k,b] = c†j,a{c j±1,a, c†k,b} = δ j±1,kδabc†j,a , (3.4)

for j = 1, . . . , L . Here periodic boundary conditions on the Fermi operators are understood,

c†0,b = c†L ,b , c†L+1,b = c†1,b . (3.5)

Using (3.4) we obtain

[H0, c†x j ,b
] = −c†x j−1,b − c†x j+1,b (3.6)
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and thus,

H0|x, a〉 = −
N∑

j=1

(|(x− e j ) mod L , a〉 + |(x+ e j ) mod L , a〉) , (3.7)

where by definition x mod L = (xα mod L)eα .
The action of the interaction part D of the Hubbard Hamiltonian on Wannier states was

obtained in (2.11). Combining (3.7) and (2.11) and using the hermiticity of the Hamiltonian
we find

〈x, a|H |ψ〉 = −
N∑

j=1

(
�−j,Lψ(x; a)+�+j,Lψ(x; a)

)+ 4u
∑

1≤ j<k≤N

δx j ,xkψ(x; a) , (3.8)

with the operators �±j,L being cyclic one-particle shift operators,

�±j,Lψ(x; a) = ψ
(
(x± e j ) mod L; a

)
, (3.9)

j = 1, . . . , N . The periodic boundary conditions on the Fermi operators (3.5) translate into
the property

(
�±j,L

)L = id, for j = 1, . . . , N , of the one-particle shift operators.
Equation (3.8) suggests to introduce the cyclic N -particle Hubbard Hamiltonian

H (L)
N = −

N∑
j=1

(�+j,L +�−j,L )+ 4u
∑

1≤ j<k≤N

δx j ,xk (3.10)

in ‘coordinate representation’. It is a hermitian operator on the Hilbert space of complex
functions on {1, . . . , L}N endowed with the scalar product

〈ψ, ϕ〉 = 1

N !

L∑
x1,...,xN=1

∑
a1,...,aN=↑,↓

ψ(x; a)ϕ(x; a) . (3.11)

Given an N -particle solution |ψ〉 of the eigenvalue problem (3.1) we have 〈x, a|H |ψ〉 =
Eψ(x; a), and it follows from (3.8) that ψ(x; a) solves the eigenvalue problem

(H (L)
N − E)ψ(x; a) = 0 . (3.12)

Thus, every N -particle solution of the eigenvalue problem (3.1) provides a solution of the
eigenvalue problem (3.12) for the cyclic N -particle Hamiltonian (3.10).

The converse is also true: be ψ(x; a) a totally antisymmetric solution of the Schrödinger
equation (3.12). Define the state

|ψ〉 = 1

N !

L∑
x1,...,xN=1

∑
a1,...,aN=↑,↓

ψ(x; a)|x, a〉 . (3.13)

Then 〈x, a|ψ〉 = ψ(x; a), and |ψ〉 satisfies (3.1). Equations (3.3) and (3.13) are mutually
inverse. These formulae describe how to switch from second to first quantization and vice
versa. A derivation of (3.13) is presented in appendix 3.A.
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We have just seen that, instead of dealing with (3.1), we may equivalently solve the
Schrödinger equation (3.12) for N = 0, 1, . . . , 2L . Due to the cyclic nature of the one-
particle shift operators �±j,L , however, equation (3.12) is still hard to deal with. Instead of
working directly with equation (3.12) the Bethe ansatz method proceeds in two separate
steps: let us introduce (non-cyclic) shift operators �±j ,

�±j ψ(x; a) = ψ(x± e j ; a) , (3.14)

j = 1, . . . , N , which necessarily act on functions ψ(x, a) defined on the infinite lattice. In
terms of these operators we define the Hamiltonian

HN = −
N∑

j=1

(�+j +�−j )+ 4u
∑

1≤ j<k≤N

δx j ,xk . (3.15)

Then the first step in the Bethe ansatz calculation is to solve the difference equation

(HN − E)ψ(x; a) = 0 (3.16)

on the infinite lattice, x ∈ Z
N . In a second step we require the solutions of (3.16) to satisfy

the equations

(�±j −�±j,L )ψ(x; a) = 0 , (3.17)

for x ∈ {1, . . . , L}N and j = 1, . . . , N . Obviously, every solution of (3.16) and (3.17)
provides a solution of (3.12). However, as we shall see below, the converse is not true. We
shall call equation (3.16) ‘the N -particle Schrödinger equation’ and equation (3.17) ‘the
periodic boundary conditions’.

Let us also translate the equation (3.2) for the shift operator into its first quantized form.
From equation (2.43) we deduce

〈x, a|Û |ψ〉 =
N∏

j=1

�+j,Lψ(x; a) . (3.18)

Note that there is no ordering required in the product on the right-hand side, since
[�+j,L ,�

+
k,L ] = 0. We now proceed similarly as in case of the Schrödinger equation. Every

eigenstate of Û with eigenvalue ω leads to

(Û (L)
N − ω)ψ(x; a) = 0 , (3.19)

where Û (L)
N is the cyclic shift operator in ‘coordinate representation’,

Û (L)
N =

N∏
j=1

�+j,L . (3.20)

Instead of looking for solutions of (3.19) we introduce the infinite interval counterpart

ÛN =
N∏

j=1

�+j (3.21)
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of the cyclic shift operator Û (L)
N and solve the difference equation

(ÛN − ω)ψ(x; a) = 0 (3.22)

subject to the periodic boundary conditions (3.17). Every solution of (3.22) that satisfies
(3.17) is a solution of (3.19).

In the following section we discuss (3.16), (3.22) and (3.17) in the simplest non-trivial
case of two particles. This will prepare us for the solution of the general N -particle case,
which is presented in Section 3.3 and derived in detail in appendix 3.B. The two-particle
case will help us to develop an intuitive understanding of the lattice model. We will learn,
for instance, that on the lattice there may be bound states of electrons, even though the
interaction is repulsive. Yang’s Y -operators, which are an essential technical tool in the
derivation of the solution of the N -particle problem, are easily introduced and understood
within the context of the two-particle problem. Finally, we shall see in the next section that
equations (3.16) and (3.17) are not equivalent to the N -particle eigenvalue problem (3.12).
They are sufficient but not necessary. A solution of (3.12) exists, the so-called η-pair, which
does not follow directly from (3.16), (3.17) but indirectly by acting with the operator η+ on
the empty lattice |0〉, which may be considered as a solution of (3.16), (3.17) in the sector
N = 0. This situation, exemplified with the two-particle case, will turn out to be typical.
The empty lattice is a so-called Bethe ansatz state, i.e., by definition a solution of (3.16),
(3.17) of a certain form (see below). We shall see in Section 3.4 that all Bethe ansatz states
are annihilated by η− and that more eigenstates can be obtained by acting on Bethe ansatz
states with η+.

3.2 Solution of the two-particle problem

We start our discussion of the Schrödinger equation (3.16) with a thorough discussion of
the two-particle case. In this case the Schrödinger equation reads

H2ψ(x1, x2; a1, a2) = Eψ(x1, x2; a1, a2) , (3.23)

H2 = −(�+1 +�−1 +�+2 +�−2 )+ 4uδx1,x2 . (3.24)

The equation (3.22) for the two-particle shift operator Û2 = �+1 �+2 is

Û2ψ(x1, x2; a1, a2) = ωψ(x1, x2; a1, a2) . (3.25)

In a first step we shall construct common solutions of (3.23) and (3.25), which are totally
antisymmetric,

ψ(x1, x2; a1, a2) = −ψ(x2, x1; a2, a1) . (3.26)

After imposing the periodic boundary conditions (3.17) in a second step these solutions
become two-particle, translationally invariant electronic wave functions corresponding to
the Hamiltonian (2.22).
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3.2.1 Separation of variables

Since the ‘two-body potential’ 4uδx1,x2 depends only on the difference x1 − x2, we expect
the Schrödinger equation (3.23) to separate after introducing centre of mass coordinates
m = x1 + x2 and relative coordinates n = x1 − x2. Let

ψ(x1, x2; a1, a2) = f (m)g(n) , (3.27)

where we suppressed the spin variables on the right-hand side for brevity. Insertion of (3.27)
into (3.23) leads to

f (m + 1)+ f (m − 1)

f (m)
= (4uδn,0 − E)g(n)

g(n + 1)+ g(n − 1)
. (3.28)

The left hand side of this equation depends only on m, the right hand side depends only on
n. Hence it may be separated into

f (m + 1)+ f (m − 1) = C f (m) , (3.29)

C(g(n + 1)+ g(n − 1)) = (4uδn,0 − E)g(n) , (3.30)

where C is independent of m and n. Equations (3.29) and (3.30) are the discrete analogues
of the Schrödinger equation of a free particle and of a particle scattered by a delta-function
potential, respectively.

3.2.2 The centre of mass motion

Equation (3.29) is a second order linear difference equation with constant coefficients. It has
two fundamental solutions, w±m , where w + 1/w = C . The general solution of equation
(3.29) is a linear combination

f (m) = A+wm + A−w−m (3.31)

of its fundamental solutions with two complex amplitudes A+, A−. Assuming g(n) not to
be identically vanishing, the equation (3.25) for the shift operator is equivalent to

f (m + 2) = ω f (m) . (3.32)

So (for w �= 1), either A+ or A− in (3.31) must be zero, and we obtain, say, f (m) = A+wm .
It follows that

ω = w2 . (3.33)

The amplitude A+may, in principle, be spin dependent. Since it merely appears as an overall
factor in equation (3.27), however, we may assume without any loss of generality that only
g(n) depends on the spin variables and that

f (m) = wm . (3.34)
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3.2.3 The relative motion

Let us assume for a while that C �= 0. The degenerate case C = 0 will be discussed later.
Then, outside the origin, n = 0, equation (3.30) is a second order linear difference equation
with constant coefficients. It has the general solution

g(n) =
{

A−+zn
− − A−−z−n

− n < 0

A++zn
+ − A+−z−n

+ n > 0 ,
(3.35)

where the minus signs have been introduced for later convenience. Let us insert (3.35) into
(3.30). Assuming that g(n) does not vanish identically we obtain

E = −
(
w + 1

w

)(
z+ + 1

z+

)
= −

(
w + 1

w

)(
z− + 1

z−

)
. (3.36)

Since w2 �= −1 by hypothesis, it follows that

z+ + 1

z+
= z− + 1

z−
⇔ (z+ − z−)

(
1− 1

z+z−

)
= 0

⇔ z+ = z− or z+ = 1

z−
. (3.37)

Thus, the general form of g(n) must be

g(n) =
{

A−+zn − A−−z−n n < 0

A++zn − A+−z−n n > 0 .
(3.38)

For g(n) to be uniquely defined at n = 0 it is necessary and sufficient that

A+− + A−+ = A++ + A−− . (3.39)

Furthermore, g(n) has to satisfy (3.30) at n = 0. This requirement leads to(
w + 1

w

) (
g(1)+ g(−1)

) = (4u − E)g(0) . (3.40)

Here we insert (3.38) and then use (3.39). After a short calculation we obtain

1

2

(
wz − 1

wz
− w

z
+ z

w

)
(A++ + A+− − A−+ − A−−) = 4u(A−+ − A−−) . (3.41)

We now introduce k1, k2 ∈ C such that

wz = eik1 ,
w

z
= eik2 , (3.42)

and define

s j = sin k j , j = 1, 2 . (3.43)

Then, (3.41) turns into

(s1 − s2)(A++ + A+− − A−+ − A−−) = 4iu(A−− − A−+) . (3.44)
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Equations (3.39) and (3.44) are two equations that restrict the choice of the amplitudes
Aαβ . Further restrictions arise from the antisymmetry of the wavefunction (3.26), i.e., from
the fact that we are dealing with fermions. In order to implement these restrictions we have
to remember that the amplitudes Aαβ , α, β = ±, depend on the spin variables a1, a2 =↑,↓.
The amplitudes Aαβ are spinors with components Aαβ

a1a2 .
Let us introduce the permutation matrix � that interchanges the spin variables,

�b1b2
a1a2
= δb1

a2
δb2

a1
. (3.45)

Then

(�Aαβ)a1a2 = �b1b2
a1a2

Aαβ

b1b2
= Aαβ

a2a1
. (3.46)

Here we used implicit summation over doubly occurring indices. The wave function
ψ(x1, x2; a1, a2) must be totally antisymmetric. Since f (m) = f (x1 + x2) is symmetric
in the electron coordinates and does not depend on the spin variables, we must have
g(−n) = −�g(n). This leads to

A++z−n − A+−zn = −�A−+zn +�A−−z−n (3.47)

for all n < 0. It follows that

A+− = �A−+ , A++ = �A−− . (3.48)

Thus, we have obtained four conditions (equations (3.39), (3.44) and two equations (3.48))
on four amplitudes Aαβ . As we shall see below only three of these four conditions are
independent, and we will remain with a single free amplitude.

From this point there are two ways to proceed in our calculation. The more elementary
way is by assuming that the amplitudes Aαβ , α, β = ±, are either all symmetric or all
antisymmetric in the spin variables. This means to assume that the two electrons are in a
spin triplet or in a spin singlet state, which would be justified because the Hamiltonian H2,
equation (3.24), does not depend on the spin variables. This way of proceeding is, however,
not much in the spirit of the Bethe ansatz calculation for the N -electron system, and is
therefore not presented here, but left as an exercise to the reader. Instead, we will proceed
in a different way, that will naturally lead us to the introduction of the so-called Y -operators
of C. N. Yang. These operators play a crucial role in the generalization of the two-particle
results to an arbitrary number of particles N .

Let us insert (3.48) into (3.39) and (3.44). We obtain

(1+�)A−− = (1+�)A−+ (3.49)

and (
4iu + (s1 − s2)(1−�)

)
A−− = (

4iu − (s1 − s2)(1−�)
)

A−+ . (3.50)
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The latter equation is easily solved for A−−. Using �2 = 1, we obtain(
4iu + (s1 − s2)(1+�)

)(
4iu + (s1 − s2)(1−�)

) = 4iu
(
4iu + 2(s1 − s2)

)
, (3.51)(

4iu + (s1 − s2)(1+�)
)(

4iu − (s1 − s2)(1−�)
) = 4iu

(
4iu + 2(s1 − s2)�

)
, (3.52)

and thus,

A−− = 2iu + (s1 − s2)�

2iu + (s1 − s2)
A−+ . (3.53)

Equations (3.49) and (3.53) are two equations that connect A−− and A−+. Are they compat-
ible? The answer is yes. Since �2 = 1, we have (1+�)� = (1+�), and (3.53) implies
(3.49).

Now we define the Y -operator

Y (λ) = 2iu + λ�

2iu + λ
. (3.54)

With the aid of this operator (3.53) can be written as

A−− = Y (s1 − s2)A−+ . (3.55)

Using (3.48) and (3.55) we can express all amplitudes Aαβ in (3.38) in terms of A−+, and
g(n) takes the following form,

g(n) =
{

A−+zn − Y (s1 − s2)A−+z−n n ≤ 0

Y (s1 − s2)�A−+zn −�A−+z−n n ≥ 0 .
(3.56)

Finally, we may insert (3.34) and (3.56) into (3.27). Because of (3.42) we have

wm zn = ei(k1x1+k2x2) , wm z−n = ei(k1x2+k2x1) , (3.57)

and thus,

ψ(x1, x2) =
{

A−+ei(k1x1+k2x2) − Y (s1 − s2)A−+ei(k1x2+k2x1) x1 ≤ x2

Y (s1 − s2)�A−+ei(k1x1+k2x2) −�A−+ei(k1x2+k2x1) x2 ≤ x1 .
(3.58)

By construction, ψ(x1, x2) is a totally antisymmetric solution of the Schrödinger equation
(3.23) for arbitrary k1, k2 ∈ C, k1 + k2 �= π mod 2π . The corresponding values of E and ω

in (3.23) and (3.25) are (see (3.36), (3.33))

E = −2 cos(k1)− 2 cos(k2) , (3.59)

ω = ei(k1+k2) . (3.60)

The wavefunction ψ(x1, x2) is determined by equation (3.58) up to an arbitrary function
A−+ of the spin variables a1, a2, which accounts for the fact that the Hamiltonian (3.24) is
spin independent. In general, A−+ is a linear combination of the spin singlet state

ϕa(a1, a2) = δa1,↑δa2,↓ − δa1,↓δa2,↑ (3.61)
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and the spin triplet states

ϕs(a1, a2) =


δa1,↑δa2,↑
δa1,↑δa2,↓ + δa1,↓δa2,↑
δa1,↓δa2,↓

. (3.62)

These states span the space of states of two spins 1
2 and correspond to the irreducible

subspaces with total spin S = 0 and S = 1, respectively. Substituting ϕa or ϕs for A−+ in
(3.58) and using that

�ϕa = −ϕa , �ϕs = ϕs , (3.63)

we obtain the joint spin singlet solution,

ψ(x1, x2) = ϕa ·
ei(k1x1+k2x2) + s1−s2−2iu

s1−s2+2iu ei(k1x2+k2x1) x1 ≤ x2

s1−s2−2iu
s1−s2+2iu ei(k1x1+k2x2) + ei(k1x2+k2x1) x2 ≤ x1 ,

(3.64)

and spin triplet solutions,

ψ(x1, x2) = ϕs · (ei(k1x1+k2x2) − ei(k1x2+k2x1)) , (3.65)

of the two-particle Schrödinger equation (3.23) and of the eigenvalue equation (3.25) for
the shift operator. The spin-singlet state (3.64) is antisymmetric in the spin variables and
symmetric in the electron coordinates while the situation is reversed for the spin-triplet
states (3.65). They are symmetric in the spin variables and antisymmetric in the electron
coordinates. For the latter reason two electrons never sit at the same site and therefore never
feel the local interaction. This makes the triplet wave functions look like the wave functions
of free electrons.

So far we have restricted our attention to the case C �= 0, when equation (3.30) is non-
degenerate. For C = 0 equation (3.30) turns into

(4uδn,0 − E)g(n) = 0 . (3.66)

This equation has non-trivial solutions in two cases, (a) for E = 0 and (b) for E = 4u. In
case (a) we necessarily have g(0) = 0. In case (b), on the contrary, we must have g(n) = 0
for n �= 0. In both cases f (m) is given by (3.34) with w2 = −1.

Let us consider case (a). In this case (3.38) is still a non-trivial solution of (3.66) for n �= 0,
albeit not the most general one. Furthermore, if (3.39) and (3.40) are satisfied for E = 0,
then g(n) according to (3.38) is a solution of (3.66), and all the calculations following
(3.38) go through. We conclude that we may relax our restriction k1 + k2 �= π mod 2π .
The function ψ(x1, x2), equation (3.58), is a totally antisymmetric, translationally invariant
solution of the two-particle Schrödinger equation for arbitrary k1, k2 ∈ C.

In case (b) the function g(n) is of the form g(n) = Aδn,0. Antisymmetry requires
g(−n) = −�g(n). It follows that �A = −A, and thus, without any loss of generality,
g(n) = ϕaδn,0 = ϕaδx1,x2 . Inserting this result and f (m) = (±i)m into (3.27) we end up
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with

ψ(x1, x2) = ϕa (−1)x1δx1,x2 . (3.67)

As we shall see in the next subsection, this solution is also contained as a limit in our general
solution (3.58). It describes a bound state that is localized in the centre of mass frame.

Remark. It is clear from equation (3.56) that

X (s1 − s2) = Y (s1 − s2)� (3.68)

is the two-particle S-matrix, since (3.56) for k1, k2 ∈ R describes a scattering solution of
the Schrödinger equation (3.23). The operators X (λ) and Y (λ) play a crucial role in the
construction of the N -electron Bethe ansatz wavefunction (see appendix 3.B).

3.2.4 Eigenstates on the infinite interval

So far we have constructed the joint solutions (3.64), (3.65) of the two-particle Schrödinger
equation (3.23) and the equation (3.25) for the shift operator. We have not yet specified the
boundary conditions. By imposing periodic boundary conditions the Schrödinger equation
(3.23) turns into an eigenvalue equation for the Hamiltonian H2. The derivation of the
spectrum and the eigenfunctions of H2 under periodic boundary conditions is the main
purpose of this section and will be completed in the next subsection. Here we deviate from
our main line of reasoning and consider the Hamiltonian on the infinite interval.

Any solution of the two-particle Schrödinger equation (3.23) which is bounded for
x1, x2 →±∞ is an eigenfunction of the Hamiltonian on the infinite interval. Hence, in
order to find all eigenfunctions, we have to find all values of k1, k2 ∈ C for which our
general solutions (3.64) and (3.65) are bounded. Clearly, this is the case for all real k1, k2.
When k1 and k2 are real, the spin singlet and spin triplet states (3.64) and (3.65) describe the
scattering of two electrons. The energy of the scattering states is given by (3.59). Note that
for fixed k1, k2 the spin singlet state and the spin triplet states belong to degenerate energy
eigenvalues. This degeneracy is peculiar of the system on the infinite interval and is lifted
by periodic boundary conditions (see next subsection). Later, in Chapter 15, we shall see
that the degeneracy is due to an additional so-called Yangian symmetry (see Chapter 14),
which occurs in the thermodynamic limit.

Is it possible to have eigenstates with non-real k1 and k2? The answer is different for
the spin-singlet and spin-triplet solutions, respectively. If k1 or k2 in (3.65) has non-zero
imaginary part, the wave function is always unbounded. Thus, k1 and k2 must be real in the
spin triplet state. Similarly, the spin singlet solution (3.64) is easily seen to be unbounded, if
s1 − s2 �= 2iu. For s1 − s2 = 2iu, however, the two scattering amplitudes in (3.64) vanish,
and the spin singlet solution simplifies to

ψ(x1, x2) = ϕaei(k1+k2)(x1+x2)/2e−i(k1−k2)|x1−x2|/2 . (3.69)
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This solution is bounded, if and only if Im(k1 + k2) = 0 and Im(k1 − k2) ≤ 0, and there is
indeed a possibility to have non-real k1 and k2 of the form k1 = q1 − iκ , k2 = q2 + iκ with
q1, q2 ∈ [0, 2π ], κ > 0. Assuming u �= 0, the condition s1 − s2 = 2iu implies q1 = q2 and,
using the shorthand notation q = q1 = q2,

κ(q) = −arsinh

(
u

cos q

)
. (3.70)

The latter equation is compatible with κ > 0 for π
2 < q < 3π

2 and u > 0, or for π
2 < |q − π |

< π and u < 0.
We thus have obtained the one-parameter family of eigenstates

ψ(x1, x2) = ϕaeiq(x1+x2)e−κ(q)|x1−x2| (3.71)

of the Hubbard Hamiltonian on the infinite interval.ψ(x1, x2) describes a bound state, which
is moving with centre of mass momentum q . The interesting point about this state is that
it exists even if the interaction between the electrons is repulsive (u > 0). The existence of
a bound state for repulsive coupling is a lattice effect. In fact, in the continuum limit (see
appendix 2.B), when we replace q by a0q , κ by a0κ , u by a0c and take the limit a0 → 0 for
fixed κ , q and c, equation (3.70) turns into κ = −c, and κ can only be positive for negative c.
Hence, there are no bound states in the continuum model if the interaction is repulsive.

Let us note that the bound state solution (3.71) turns into (3.67) in the limit q → π
2 .

3.2.5 Periodic boundary conditions

Next, we want to single out those of the wave functions ψ(x1, x2; a1, a2) that satisfy the
periodic boundary conditions (3.17). In the two-particle case equations (3.17) reduce to
four non-trivial conditions,

ψ(0, x2; a) = ψ(L , x2; a) , ψ(L + 1, x2; a) = ψ(1, x2; a) , (3.72a)

ψ(x1, 0; a) = ψ(x1, L; a) , ψ(x1, L + 1; a) = ψ(x1, 1; a) . (3.72b)

Because of the antisymmetry it is sufficient to consider one pair of equations. They are
equivalent to one another. Suppose, for instance, that (3.72a) is satisfied; then

ψ(x1, 0; a1, a2) = −ψ(0, x1; a2, a1) = −ψ(L , x1; a2, a1) = ψ(x1, L; a1, a2) , (3.73)

which is the first equation (3.72b).
Let us insert the wave function (3.58) into the first equation (3.72a), and let x2 ∈
{1, . . . , L}. Using Y (λ)Y (−λ) = 1 we obtain

eik1 L
(
Y (s1 − s2)�− e−ik1 L

)
A−+eik2x2

−eik2 LY (s1 − s2)
(
Y (s2 − s1)�− e−ik2 L

)
A−+eik1x2 = 0 . (3.74)



62 The Bethe ansatz solution

A sufficient condition for (3.74) to be satisfied is

X (s1 − s2)A−+ = e−ik1 L A−+ , (3.75a)

X (s2 − s1)A−+ = e−ik2 L A−+ . (3.75b)

Equations (3.75) are also necessary, if k1 �= k2, since, in this case, the functions eik1x2 and
eik2x2 are linearly independent. Inserting the wave function (3.58) into the second equation
(3.72a) we obtain an equation which is similar to (3.74) and leads again to (3.75). Thus,
the equations (3.75) are sufficient for ψ(x1, x2; a1, a2) to satisfy the periodic boundary
conditions (3.72).

From the explicit form

X (s1 − s2) = s1 − s2 + 2iu�

s1 − s2 + 2iu
(3.76)

of the two-particle S-matrix X (s1 − s2) we see that every eigenvector of the permutation
matrix � is an eigenvector of X (s1 − s2). The eigenvectors of � are the spin singlet and
spin triplet states (see (3.63)). Applying X (s1 − s2) to (3.61) and (3.62) we obtain

X (s1 − s2)ϕa = s1 − s2 − 2iu

s1 − s2 + 2iu
ϕa , (3.77a)

X (s1 − s2)ϕs = ϕs . (3.77b)

Hence, equations (3.75) are satisfied, if A−+ = ϕa and if the ‘charge momenta’ k1 and k2

satisfy the quantization conditions

eik1 L = s1 − s2 + 2iu

s1 − s2 − 2iu
, eik2 L = s2 − s1 + 2iu

s2 − s1 − 2iu
. (3.78)

Similarly, in the spin-triplet case A−+ = ϕs , we obtain the quantization conditions

eik1 L = eik2 L = 1 . (3.79)

The corresponding wave functions are given by (3.64) and (3.65), the energies and eigen-
values of the shift operator by (3.59) and (3.60).

The wave functions (3.64) and the wave functions (3.65) with ϕs(a1, a2) = δa1,↑δa2,↑
are the so-called Bethe-ansatz eigenfunctions of the two-particle Hubbard Hamiltonian
in ‘coordinate representation’ (3.24). In the next section we shall generalize these wave
functions to the many particle case. The solutions of equations (3.78) and (3.79) and the
issue of completeness will be discussed in Chapter 4.

Remark. The alert reader may wonder how our general result in the next sections compares
for N = 2, M = 1 with (3.78). In general, except for the charge momenta, we have a second
set of quantum numbers that characterize the spin degrees of freedom. For N = 2, M = 1
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there is one such quantum number λ, and equations (3.95) and (3.96) turn into

eik1 L = λ− s1 − iu

λ− s1 + iu
, eik2 L = λ− s2 − iu

λ− s2 + iu
, (3.80)

λ− s1 − iu

λ− s1 + iu
· λ− s2 − iu

λ− s2 + iu
= 1 . (3.81)

To reproduce (3.78) from these equations one has to solve (3.81) for λ and has to insert the
result, λ = (s1 + s2)/2, into (3.80).

3.2.6 The η-pair

An important issue in the context of the Bethe ansatz method is the question of com-
pleteness. We shall elaborate on this question in Chapter 4, where we are counting eigen-
states. Here we want to point out a subtlety which is closely related to the completeness
problem.

Consider the solutionψ(x1, x2) = ϕa (−1)x1δx1,x2 (see equation (3.67)) of the two-particle
Schrödinger equation. Clearly this solution is incompatible with the periodic boundary
conditions (3.72). For we have, for instance, ψ(0, L) = 0 �= ψ(L , L) = ϕa(−1)L . Hence,
this solution is outside the Bethe ansatz. On the other hand, the reader may easily verify
that this solution is an eigenfunction of the cyclic N -particle Hubbard Hamiltonian H (L)

2 ,
equation (3.10):

(H (L)
2 ψ)(x1, x2) = 4u ψ(x1, x2) , (3.82)

if L is even. We learn from this example that the N -particle Schrödinger equation (3.16) and
the periodic boundary conditions (3.17) do not determine all eigenfunctions of the cyclic
N -particle Hubbard Hamiltonian H (L)

N . We claim, however, that the states missed by the
Bethe ansatz can be obtained by acting with symmetry operators on Bethe ansatz states (see
Section 3.4). In the present case this statement means the following. Let us use equation
(3.13) to switch back to the language of second quantization. We obtain

|ψ〉 = 1

2

L∑
x1,x2=1

∑
a1,a2=↑,↓

(−1)x1δx1,x2 (δa1,↑δa2,↓ − δa1,↓δa2,↑)c
†
x2,a2

c†x1,a1
|0〉

=
L∑

x1=1

(−1)x1 c†x1,↓c
†
x1,↑|0〉 . (3.83)

Comparing the latter result with our definition (2.80a) of the operator η+, we see that

|ψ〉 = η+|0〉 . (3.84)

The state |ψ〉 is obtained by acting with the operator η+ on the Fock vacuum. |ψ〉 is not
a Bethe ansatz state but |0〉 is. We shall see below that our example is typical. For even L
all N -particle Bethe ansatz states (see Section 3.3) are lowest weight states with respect
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to the η-spin representation of su(2). Multiplets of eigenstates of the Hubbard Hamiltonian
are thus generated by acting with η+ on the Bethe ansatz states.

We should mention here that a similar statement holds for the spin su(2) symmetry. Our
method of solving the N -particle generalization of the eigenvalue problem (3.75) will give
us at first instance only those eigenstates which are highest weight with respect to spin. The
missing states then can be obtained by acting with the ladder operator S− on the highest
weight states. Applying our general result to the two-particle problem, we would obtain
only one of the spin triplet states, namely ϕs(a1, a2) = δa1,↑δa2,↑.

3.3 Many-particle wave functions and Lieb-Wu equations

Now we shall show how the results of the previous section generalize to an arbi-
trary number of electrons. We shall see that the general N -particle Bethe ansatz eigen-
states of the Hubbard Hamiltonian (2.31) parametrically depend on two sets of quan-
tum numbers: the charge momenta k j , j = 1, . . . , N , which also determine the total
momentum and the energy of the Bethe ansatz states, and the spin rapidities λ�, � =
1, . . . , M . The charge momenta and spin rapidities obey a set of coupled algebraic equa-
tions that basically arise as a consequence of the periodic boundary conditions. These
algebraic equations are the Lieb-Wu equations mentioned in the introduction to this
chapter.

The derivation of the Bethe ansatz eigenstates and the Lieb-Wu equations is rather lengthy
and technical and is therefore presented separately in appendix 3.B. Here we concentrate on
the mere description of the result which we recommend the readers to familiarize themselves
with before studying its derivation.

3.3.1 The symmetric group

In this section and also in appendix 3.B where the results of this section are derived, we shall
resort to some basic knowledge of the symmetric group. We therefore begin by recalling
a few facts and introduce notations appropriate for our purposes. The symmetric group of
order N , SN , is the group of permutations of N distinct objects. In more mathematical
terms we may define SN as the set of all one-to-one mappings of the set of numbers
ZN = {1, . . . , N } onto itself.

A transposition � j,k is a permutation that interchanges j and k and leaves all other
elements of ZN fixed. The symmetric group SN is generated by the transpositions �n,n+1,
n = 1, . . . , N − 1, of nearest neighbours. A realization of a permutation as a product of
transpositions of nearest neighbours is, of course, not unique. But for a given permutation
the number of factors is always either odd or even. Accordingly, a permutation is called
odd or even. This defines the sign function or parity on SN : sign(Q) = 1, if Q is even, and
sign(Q) = −1, if Q is odd. Clearly sign(P Q) = sign(P)sign(Q), sign(Q−1) = sign(Q),
and sign(� j,k) = −1. It follows that the even permutations form a subgroup AN of SN .
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This subgroup is called the alternating group. Any transposition � j,k generates a coset
decomposition, SN = AN ∪� j,kA

N = AN ∪ AN� j,k .
The symmetric group SN has a natural action on N -component row vectors,

xQ = (xQ(1), . . . , xQ(N )) = xQ(α)eα = xαeQ−1(α) , (3.85)

which defines a representation of SN :

(eα Q)P = eQ−1(α) P = eP−1 Q−1(α) = e(Q P)−1(α) = eα(Q P) . (3.86)

For the Euclidean scalar product

〈k, x〉 = kαxα (3.87)

we find that

〈k, xQ〉 = kαxQ(α) = kQ−1(α)xα = 〈kQ−1, x〉 . (3.88)

The matrix Q−1 is therefore equal to the transposed Qt of Q, and the representation (3.85)
is orthogonal with respect to the scalar product (3.87).

3.3.2 Many-particle wave functions and Lieb-Wu equations

The Bethe ansatz eigenstates of the Hubbard Hamiltonian (2.31) for N electrons and M down
spins are characterized by two sets of quantum numbers {k j }Nj=1 and {λ�}M�=1, 2M ≤ N ≤ L .
It is convenient to group these quantum numbers into row vectors k = (k1, . . . , kN ) and
λλλ = (λ1, . . . , λM ). The Bethe ansatz eigenstates may then be represented as (see (3.13))

|ψk,λλλ〉 = 1

N !

L∑
x1,...,xN=1

∑
a1,...,aN=↑,↓

ψ(x; a|k;λλλ)|x, a〉 , (3.89)

where ψ(x; a|k;λλλ) is the N -particle Bethe ansatz wave function derived in appendix 3.B
and described below.

The Bethe ansatz wave function depends on the relative ordering of the coordinates x j .
Any ordering is assigned to a permutation Q ∈ SN through the inequality

1 ≤ xQ(1) ≤ xQ(2) ≤ · · · ≤ xQ(N ) ≤ L . (3.90)

The inequality (3.90) divides the configuration space of N electrons into N ! sectors, which
can be labeled by the permutations Q. In sector Q the Bethe ansatz wave functions take the
form

ψ(x; a|k;λλλ) =
∑

P∈SN

sign(P Q)〈aQ|kP,λλλ〉 ei〈kP,xQ〉 (3.91)

with spin dependent amplitudes 〈aQ|kP,λλλ〉 derived in appendices 3.B and 3.E. The am-
plitudes are again of ‘Bethe ansatz form’. They are the Bethe ansatz wave functions of an
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inhomogeneous XXX spin chain, i.e.,

〈aQ|kP,λλλ〉 =
∑

R∈SM

A(λλλR)
M∏

�=1

FkP (λR(�); y�) , (3.92)

where

Fk(λ; y) = 2iu

λ− sin ky + iu

y−1∏
j=1

λ− sin k j − iu

λ− sin k j + iu
, (3.93)

and

A(λλλ) =
∏

1≤m<n≤M

λm − λn − 2iu

λm − λn
. (3.94)

In the above equations y j denotes the position of the j th down spin in the sequence
aQ(1), . . . , aQ(N ). The y’s are thus ‘coordinates of down spins on electrons’. If the num-
ber of down spins in the sequence aQ(1), . . . , aQ(N ) is different from M , the amplitude
〈aQ|kP,λλλ〉 vanishes. An alternative expression for 〈aQ|kP,λλλ〉 based on the terminology
of the algebraic Bethe ansatz can be found in appendix 3.B.

The quantum numbers k j , j = 1, . . . , N , and λ�, � = 1, . . . , M , may in general be com-
plex. We call them charge momenta and spin rapidities, respectively. They have to be
calculated from the Lieb-Wu equations (or ‘periodic boundary conditions’)

eik j L =
M∏

�=1

λ� − sin k j − iu

λ� − sin k j + iu
, j = 1, . . . , N , (3.95)

N∏
j=1

λ� − sin k j − iu

λ� − sin k j + iu
=

M∏
m=1
m �=�

λ� − λm − 2iu

λ� − λm + 2iu
, � = 1, . . . , M . (3.96)

Throughout this volume we will restrict our discussion to solutions of the Lieb-Wu equations
which are finite and have a maximum number of charge momenta and spin rapidities fixed
by the condition 2M ≤ N ≤ L . These solutions will sometimes be called regular [125].
The restriction to regular solutions will become particularly important in Chapter 4 where
the completeness problem is discussed.

The states (3.89) are joint eigenstates of the Hubbard Hamiltonian (2.31) and the mo-
mentum operator (2.54) with eigenvalues

E = −2
N∑

j=1

cos k j + u(L − 2N ) , P =
[ N∑

j=1

k j

]
mod 2π . (3.97)

Equations (3.95)–(3.97) are the most important result of this chapter. They determine the
spectrum of the Hubbard Hamiltonian (2.31). They are the starting point of our exploration
of the physical properties of the Hubbard model. In the following chapters these equations
will be used to study the ground state and the elementary excitations of the Hubbard model
in the thermodynamic limit. They will be used to study the thermodynamics of the Hubbard
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model. Moreover, finite size corrections to the thermodynamic limit will allow us to calculate
the asymptotics of correlation functions within the so-called conformal approach.

3.4 Symmetry properties of wave functions and states

3.4.1 Symmetries under permutations

The eigenfunctions (3.91) have the following symmetry properties under permutations of
electrons and quantum numbers:

ψ(xR; aR|k;λλλ) = sign(R)ψ(x; a|k;λλλ) , R ∈ SN , (3.98a)

ψ(x; a|kR;λλλ) = sign(R)ψ(x; a|k;λλλ) , R ∈ SN , (3.98b)

ψ(x; a|k;λλλR) = ψ(x; a|k;λλλ) , R ∈ SM , (3.98c)

i.e., they are antisymmetric with respect to interchange of any two charge momenta k j and
symmetric with respect to interchange of any two spin rapidities λ�. They are antisymmetric
with respect to simultaneous exchange of spin and space coordinates of two electrons, and
hence respect the Pauli principle. Equation (3.98) are derived in appendix 3.B.

3.4.2 SO(4) multiplets

In appendix 3.D and appendix 3.F we work out the action of the spin operators and the
η-spin operators on the Bethe ansatz states. It turns out that

S+|ψk,λλλ〉 = 0 , (3.99)

Sz|ψk,λλλ〉 = 1
2 (N − 2M)|ψk,λλλ〉 . (3.100)

The Bethe ansatz states are highest weight states of the total spin with highest weight
1
2 (N − 2M). Similarly, for even length L of the lattice, they are lowest weight states of the
η-spin,

η−|ψk,λλλ〉 = 0 , (3.101)

ηz|ψk,λλλ〉 = 1
2 (N − L)|ψk,λλλ〉 . (3.102)

We have seen in Section 2.2.5 that for even L both, spin and η-spin, are conserved and
that spin and η-spin operators mutually commute. We conclude that the action of the ladder
operators S− and η+ on a Bethe ansatz state generates a degenerate multiplet of eigenstates
of dimension (N − 2M + 1)(L − N + 1).

Instead of working with the spin operators S±, Sz , let us introduce an alternative set of
generators

ζ = S+ , ζ † = S− , ζ z = −Sz . (3.103)
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These operators were used in [125], where equations (3.99)-(3.102) were first derived. They
satisfy the commutation relations

[ζ, ζ †] = −2ζ z , [ζ z, ζ ] = −ζ , [ζ z, ζ †] = ζ † . (3.104)

For these alternative spin operators the spin multiplets are turned upside down, and the
Bethe ansatz states are lowest weight states,

ζ |ψk,λλλ〉 = 0 , (3.105)

ζ z|ψk,λλλ〉 = 1
2 (2M − N )|ψk,λλλ〉 . (3.106)

Every Bethe ansatz state |ψk,λλλ〉 generates the su(2)⊕su(2) multiplet of degenerate eigen-
states

|ψk,λλλ,α,β〉 = (ζ †)α(η+)β |ψk,λλλ〉 , (3.107)

α = 0, . . . , N − 2M ; β = 0, . . . , L − N . Recall that for the Bethe ansatz states N ≥ 2M
and L ≥ N . Thus, α and β are non-negative. Furthermore, we assume L to be even. This is
necessary for the η-spin to be conserved (see section 2.2.5).

It was first noted in [497] that spin and η-spin in the multiplets (3.107) are not arbitrary.
Since

(ζ z + ηz)|ψk,λλλ〉 = (M − L/2)|ψk,λλλ〉 (3.108)

and L is even, the highest values of ζ z and ηz must be either both odd or both even. Hence,
not all possible su(2)⊕su(2) multiplets can occur for fixed even L . The multiplets (0, 0),
( 1

2 ,
1
2 ), (0, 1), (1, 0), . . . are allowed, while, for instance, the multiplet (0, 1

2 ) can not occur.
This fact is called Z2-factorization. As a consequence the symmetry, when lifted to the
group level, is (SU(2)× SU(2))/Z2

∼= SO(4) rather than SU(2)× SU(2).
We shall argue in Chapter 4 that the set (3.107) of all states |ψk,λλλ,α,β〉 is complete. In

other words, we argue that the Bethe ansatz together with the SO(4) symmetry provides all
eigenstates of the Hubbard Hamiltonian.

3.5 The norm of the eigenfunctions

In this section we present a conjecture for the norm of the eigenstates (3.89) which was
formulated in [175]. The proof of this conjecture is still an open problem. Judging from
our experience with other Bethe ansatz solvable models, it seems likely that a proof will
not be achieved within the coordinate Bethe ansatz method, and will rather rely on a better
understanding of the algebraic Bethe ansatz for the Hubbard model (see Chapter 12).

To prepare for our formulation of the norm conjecture, we must first rewrite the Lieb-Wu
equations in several different ways. In particular, we introduce a generating function for the
logarithmic form of the Lieb-Wu equations, which plays a similar role as the Yang-Yang
action [496] does in case of the Bose gas with delta-function interaction.
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3.5.1 An action for the Lieb-Wu equations

Let us take the logarithm of the Lieb-Wu equations (3.95), (3.96),

k j L − i
M∑

�=1

ln

(
iu + λ� − sin k j

iu − λ� + sin k j

)
= 2πnc

j , (3.109)

i
N∑

j=1

ln

(
iu + λ� − sin k j

iu − λ� + sin k j

)
− i

M∑
m=1

ln

(
2iu + λ� − λm

2iu − λ� + λm

)
= 2πns

� . (3.110)

Here the logarithm is defined in the cut complex plane, where the cut is along the real axis
from −∞ to zero. nc

j in equation (3.109) is integer, if M is even and half odd integer, if M
is odd. Similarly, ns

� in (3.110) is integer, if N − M is odd, half odd integer, if N − M is
even.

In order to formulate the norm conjecture we shall introduce certain functions connected
to the logarithmic form (3.109), (3.110) of the Lieb-Wu equations. We shall start with the
definition

�u(x) = i
∫ x

0
dy ln

(
iu + y

iu − y

)
. (3.111)

In terms of this function the Lieb-Wu equations (3.109), (3.110) read

k j L −
M∑

�=1

�′u(λ� − sin k j )− 2πnc
j = 0 , (3.112)

N∑
j=1

�′u(λ� − sin k j )−
M∑

m=1

�′2u(λ� − λm)− 2πns
� = 0 . (3.113)

The primes denote derivatives with respect to the argument. The left hand side of these
equations can be easily integrated with respect to the variables sin k j and λ�, yielding the
‘action’

S(k;λλλ) =
N∑

j=1

(k j sin k j + cos k j )L

+
N∑

j=1

M∑
�=1

�u(λ� − sin k j )− 1

2

M∑
�,m=1

�2u(λ� − λm)

−2π
N∑

j=1

nc
j sin k j − 2π

M∑
�=1

ns
�λ� . (3.114)

Thus, introducing the abbreviation s j = sin k j , we can write the Lieb-Wu equations as
extremum condition for S,

∂S
∂s j
= 0 , j = 1, . . . , N ,

∂S
∂λ�

= 0 , � = 1, . . . , M . (3.115)
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We shall use the action S below in order to formulate the norm conjecture. A similar action
was first introduced by Yang and Yang in the context of the Bose gas with delta-function
interaction [496].

There is an interesting alternative way to write the Lieb-Wu equations. Let us define

χ j = k j − 1

L

M∑
�=1

�′u(λ� − sin k j )− Mπ

L
, (3.116)

ϕl = 1

N

N∑
j=1

�′u(λ� − sin k j )− 1

N

M∑
m=1

�′2u(λ� − λm)− (N − M + 1)π

N
, (3.117)

where j = 1, . . . , N and � = 1, . . . , M . In terms of these new variables the Lieb-Wu equa-
tions (3.95), (3.96) become

eiχ j L = 1 , j = 1, . . . , N , eiϕ�N = 1 , � = 1, . . . , M . (3.118)

This suggests to interpret the χ j and ϕ� as the momenta of charge and spin degrees of
freedom.

3.5.2 The norm formula

The square of the norm of the wave function (3.91) is by definition (see appendix 3.A)

‖ψ‖2 = 〈ψk,λλλ|ψk,λλλ〉 = 1

N !

L∑
x1,...,xN=1

∑
a1,...,aN=↑,↓

|ψ(x; a|k;λλλ)|2 . (3.119)

Here we have to insert the explicit expressions (3.91)-(3.94) on the right-hand side. After
carrying out the trivial summation over the spin orientations we are left with a sum over
all electron coordinates and a double sum over the symmetric group. These sums are hard
to evaluate, in particular, because the charge momenta and spin rapidities are not arbitrary,
but must satisfy the Lieb-Wu equations. This is the reason why at the present time we can
only offer a conjecture for the square of the norm of the Hubbard wave function (3.91). The
following formula was proposed in [175],

‖ψ‖2 = (−1)M ′ (2u)M
N∏

j=1

cos k j ·
∏

1≤ j<k≤M

(
1+ 4u2

(λ j − λk)2

)
· det


∂2S
∂s2

∂2S
∂s∂λ

∂2S
∂λ∂s

∂2S
∂λ2

 .

(3.120)

Here M ′ is the number of pairs of complex conjugated k j ’s in a given solution of the Lieb-
Wu equations. The determinant on the right-hand side of (3.120) is the determinant of an
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(N + M)× (N + M)-matrix. This matrix consists of four blocks with matrix elements(
∂2S
∂s2

)
mn

= ∂2S
∂sm∂sn

= δm,n

{
L

cos kn
+

M∑
l=1

2u

u2 + (λl − sn)2

}
,

m, n = 1, . . . , N , (3.121)(
∂2S
∂λ∂s

)
mn

=
(

∂2S
∂s∂λ

)
nm

= ∂2S
∂λm∂sn

= − 2u

u2 + (λm − sn)2
,

m = 1, . . . , M , n = 1, . . . , N , (3.122)(
∂2S
∂λ2

)
mn

= ∂2S
∂λm∂λn

= δm,n

{
N∑

j=1

2u

u2 + (λn − s j )2
−

M∑
l=1

4u

(2u)2 + (λn − λl)2

}

+ 4u

(2u)2 + (λm − λn)2
, m, n = 1, . . . , M . (3.123)

The norm is thus proportional to the Hessian determinant of the action S regarded as a
function of the charge momenta k j and spin rapidities λ�. Recalling the formulation (3.115)
of the Lieb-Wu equations we see that a solution is non-degenerate (locally unique for fixed
values of nc

j and ns
�), if the norm of the corresponding wave function does not vanish. In

other words, all eigenstates of the Hubbard Hamiltonian (2.31) correspond to non-degenerate
solutions of the Lieb-Wu equations.

Another interesting form of the norm formula is obtained by expressing the Hessian
determinant in equation (3.120) in terms of the momenta of elementary charge and spin
excitations χ j and ϕl ,

‖ψ‖2 = L N N M (−1)M ′ (2u)M ·
∏

1≤ j<k≤M

(
1+ 4u2

(λ j − λk)2

)
· ∂(χ1, . . . , χN ;ϕ1, . . . , ϕM )

∂(k1, . . . , kN ; λ1, . . . , λM )
.

(3.124)

The norm is proportional to the Jacobian of the transformation from the set of charge
momenta and spin rapidities k j , λ� to the set of momenta of charge and spin degrees of
freedom χ j , ϕ�.

Let us list the arguments in support of (3.120):

(i) The experience with other Bethe ansatz solvable models [268,373,409,448] shows that
norm formulae for Bethe ansatz wave functions are generically of the form (3.120).

(ii) It is easy to see that (3.120) is valid for M = 0 and arbitrary N .
(iii) (3.120) was verified for M = 1 and N = 2, 3. The calculation is lengthy and involves

highly non-trivial cancellations based on the Lieb-Wu equations.
(iv) (3.120) was verified for arbitrary N and M in the limit u →∞. This limit requires

rescaling of the spin rapidities, λ j = 2uλ̃ j . The remaining non-trivial factor in the
expression for the norm reduces to the case of the XXX spin- 1

2 chain, and the result
of [268] can be applied.

(v) For arbitrary N and M the leading order term of the norm in the large L limit can be
calculated. This term is proportional to L N and fixes the prefactor in (3.120).
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3.6 Conclusions

We have mapped the problem of solving the Schrödinger equation for the Hubbard model
to the problem of solving the Lieb-Wu equations (3.95), (3.96). The Lieb-Wu equations
are of primary importance for our further investigation of the one-dimensional Hubbard
model in the following chapters. They were obtained by Lieb and Wu in [298]. The wave
function (3.91)-(3.94) is not in Lieb and Wu’s original paper, but in the form presented
here first appears in the literature in Woynarovich’s article [481]. The SO(4) highest weight
properties of the Bethe ansatz states were proven in [125]. The norm formula (3.120) was
proposed in [175]. Its proof is one of the interesting open problems for the one-dimensional
Hubbard model.

The reader who is interested in the derivations of the results presented in this chapter
may continue with the appendices. In appendix 3.A we recall some basic facts about the
formalism of the second quantization. The remaining appendices contain rigorous deriva-
tions of the Lieb-Wu equations, the Bethe ansatz wave functions, and the SO(4) highest
weight properties in the general N -particle case. We also discuss the limiting cases of large
and small coupling and the continuum limit in appendix 3.G. Alternative accounts of the
derivation of the Lieb-Wu equations can be found in [95, 423].



Appendices to Chapter 3

3.A Scalar products and projection operators

Here we recall a number of textbook formulae for switching from second to first quantization
and back that are needed in Chapter 3.

We shall use the shorthand notation

ZL = {1, . . . , L} . (3.A.1)

For the values ↑, ↓ of the spin variables we identify ↑with 1 and ↓with 2. It is then natural
to define ↑<↓. The coordinates x j and spin variables a j of electrons on a ring of L sites take
values in ZL and Z2, respectively. The positions and spins of N electrons are determined
by row vectors x ∈ Z

N
L and a ∈ Z

N
2 .

Let us recall the construction of the Fock space. The Fock space is built by the action of
fermionic creation operators c†x,a on a Fock vacuum |0〉. The Fock vacuum is annihilated
by any annihilation operator,

cx,a|0〉 = 0 , (3.A.2)

x ∈ ZL , a ∈ Z2. In order to be able to consider expectation values of operators, we need a
dual Fock vacuum 〈0| that satisfies 〈0|c†x,a = 0 and

〈0|0〉 = 1 . (3.A.3)

Using (3.A.2), (3.A.3) and the canonical anticommutation relations between the Fermi
operators, we can calculate expectation values 〈0|A|0〉 of arbitrary operators A that are
linear combinations of products of Fermi operators. For instance,

〈0|cx,ac†y,b|0〉 = 〈0|(δx,yδa,b − c†y,bcx,a)|0〉 = δx,yδa,b . (3.A.4)

We see that 〈x, a| = 〈0|cx,a is dual to |x, a〉 = c†x,a|0〉. More generally,

〈x, a| = 〈0|cx1,a1 . . . cxN ,aN (3.A.5)

is dual to |x, a〉.
Clearly, the scalar product 〈x, a|y,b〉 of two Wannier states vanishes, if the number

of electrons in both states is different. In other words, two Wannier states with different

73
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numbers of particles are orthogonal to each other. If the number of particles in two Wannier
states |x, a〉, |y,b〉 is the same, say N , their scalar product is

〈x, a|y,b〉 = det A , (3.A.6)

where A is an N × N -matrix with elements

A jk = δx j ,yk δa j ,bk . (3.A.7)

Equation (3.A.6) can be proven by induction over N : For N = 1 equation (3.A.4)
applies and the formula is true. Assume it is true for some positive integer N − 1.
Then

〈x, a|y,b〉 = 〈0|cx1,a1
. . . cxN ,aN

c†yN ,bN
. . . c†y1,b1

|0〉

= 〈0|cx1,a1
. . . cxN−1,aN−1

c†yN−1,bN−1
. . . c†y1,b1

|0〉δxN ,yN δaN ,bN

−〈0|cx1,a1
. . . cxN−1,aN−1

c†yN ,bN
c†yN−2,bN−2

. . . c†y1,b1
|0〉δxN ,yN−1δaN ,bN−1

+ . . .

+ (−1)N−1〈0|cx1,a1
. . . cxN−1,aN−1

c†yN ,bN
. . . c†y2,b2

|0〉δxN ,y1δaN ,b1 . (3.A.8)

Here we used the elementary anticommutators to move cxN ,aN to the very right. The right
hand side of equation (3.A.8) is precisely the Laplace expansion of det A with respect to
the last row. Hence, by hypothesis, (3.A.6) is true for every positive N .

It is sometimes useful to consider pairs (x j , a j ) ∈ ZL × Z2 as the ‘coordinates of an
electron’ (see [283]). Such pairs have a natural ordering ‘<’ defined by (x j , a j ) < (xk, ak),
if x j ≤ xk and a j < ak for x j = xk .

If (x j , a j ) = (xk, ak) for some j �= k, then there are two identical creation operators
in the expression c†xN ,aN . . . c†x1,a1 |0〉 defining the Wannier state |x, a〉, and |x, a〉 = 0.
On the other hand, if (x j , a j ) �= (xk, ak) for all j �= k, then the Wannier state |x, a〉 is
non-zero, and there is a permutation P ∈ SN such that |x, a〉 = sign(P)|xP, aP〉 and
(xP( j), aP( j)) < (xP( j+1), aP( j+1)) for j = 1, . . . L − 1. Therefore we can describe the Wan-
nier basis of the N -particle subspace of the space of statesH(L) of electrons on an L-site ring
as

BN =
{|x, a〉 ∈ H(L)

∣∣(1,↑) ≤ (x1, a1) < · · · < (xN , aN ) ≤ (L ,↓)
}
. (3.A.9)

If we further define B0 = {|0〉}, we can decompose the basis B of Wannier states (2.5)
into

B =
2L⋃

N=0

BN . (3.A.10)
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For the projection operators PN onto the N -particle subspace spanned by BN we obtain the
expression

PN =
∑

(1,↑)≤(x1,a1)<···<(xN ,aN )≤(L ,↓)

|x, a〉〈x, a|

= 1

N !

∑
P∈SN

∑
(1,↑)≤(xP(1),aP(1))<···<(xP(N ),aP(N ))≤(L ,↓)

|xP, aP〉〈xP, aP|

= 1

N !

∑
P∈SN

∑
(1,↑)≤(xP(1),aP(1))<···<(xP(N ),aP(N ))≤(L ,↓)

|x, a〉〈x, a|

= 1

N !

∑
x∈ZN

L

∑
a∈ZN

2

|x, a〉〈x, a| . (3.A.11)

Here we used |xP, aP〉〈xP, aP| = |x, a〉〈x, a| for all P ∈ SN in the third equation and
|x, a〉 = 0 for (x j , a j ) = (xk, ak), j �= k, in the fourth equation. It follows from (3.A.11)
that

id = |0〉〈0| +
2L∑

N=1

1

N !

∑
x∈ZN

L

∑
a∈ZN

2

|x, a〉〈x, a| (3.A.12)

is a partition of the identity operator into the projectors onto the N -particle sub-
spaces. Furthermore, applying (3.A.12) to an N -particle state |ψ〉 we obtain the
identity

|ψ〉 = 1

N !

∑
x∈ZN

L

∑
a∈ZN

2

ψ(x; a)|x, a〉 , (3.A.13)

where ψ(x; a) = 〈x, a|ψ〉 is the N -particle wave function. Conversely, if the N -particle
wave function ψ(x; a) is totally antisymmetric and if we take (3.A.13) as a definition of an
N -particle state |ψ〉, then

〈x, a|ψ〉 = 1

N !

∑
y∈ZN

L

∑
b∈ZN

2

ψ(y; b)〈x, a|y,b〉

= 1

N !

∑
P∈SN

∑
y∈ZN

L

∑
b∈ZN

2

sign(P)ψ(y; b)δx1,yP(1)δa1,bP(1) . . . δxN ,yP(N )δaN ,bP(N )

= 1

N !

∑
P∈SN

ψ(x; a) = ψ(x; a) . (3.A.14)

Here we used the antisymmetry, sign(P)ψ(y,b) = ψ(yP,bP), in the third equation.
If ψ(x; a) is a totally antisymmetric eigenfunction of the cyclic N -particle

Hamiltonian H (L)
N , equation (3.10), with eigenvalue E , then the corresponding N -particle

state |ψ〉, equation (3.A.13), is an eigenstate of the Hubbard Hamiltonian (2.22), for we
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have

H |ψ〉 = 1

N !

∑
y∈ZN

L

∑
b∈ZN

2

〈y,b|ψ〉H |y,b〉

= 1

(N !)2

∑
x,y∈ZN

L

∑
a,b∈ZN

2

〈x, a|H |y,b〉〈y,b|ψ〉|x, a〉

= 1

N !

∑
x∈ZN

L

∑
a∈ZN

2

〈x, a|H |ψ〉|x, a〉

= 1

N !

∑
x∈ZN

L

∑
a∈ZN

2

(H (L)
N ψ)(x; a)|x, a〉 = E |ψ〉 . (3.A.15)

Here we used (3.A.14) in the first equation, (3.A.12) in the second and third equation and
(3.8) in the fourth equation.

For the scalar product of two N -particle states |ψ〉 and |ϕ〉 we obtain

〈ψ |ϕ〉 = 1

(N !)2

∑
x,y∈ZN

L

∑
a,b∈ZN

2

ψ(x; a)ϕ(y; b)〈x, a|y,b〉

= 1

(N !)2

∑
P∈SN

∑
x,y∈ZN

L

∑
a,b∈ZN

2

sign(P)δx1,yP(1)δa1,bP(1) . . . δxN ,yP(N )δaN ,bP(N )ψ(x; a)ϕ(y; b)

= 1

(N !)2

∑
P∈SN

∑
y∈ZN

L

∑
b∈ZN

2

sign(P)ψ(yP; bP)ϕ(y; b)

= 1

N !

∑
x∈ZN

L

∑
a∈ZN

2

ψ(x; a)ϕ(x; a) . (3.A.16)

We used (3.A.13) in the first equation, (3.A.6) in the second equation and the fact that
N -particle wave functions are totally antisymmetric in the fourth equation. Note that
the right hand side of (3.A.16) is also equal to the scalar product (3.11), whence its
definition.

As a corollary to equation (3.A.16) we obtain the following formula for the square of the
norm of an N -particle state,

‖ψ‖2 = 〈ψ |ψ〉 = 1

N !

∑
x∈ZN

L

∑
a∈ZN

2

|ψ(x; a)|2 . (3.A.17)

3.B Derivation of Bethe ansatz wave functions and Lieb-Wu equations

This appendix contains a detailed derivation of the Bethe ansatz wave functions and of the
Lieb-Wu equations in the general N -particle case. Since the derivation is slightly lengthy,
let us outline what we are going to do.
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(i) In the next section we try to motivate the choice (3.B.19) of the Bethe ansatz wave
function and explain some of its elementary properties.

(ii) In Section 3.B.2 the wave function (3.B.19) is inserted into the Schrödinger equation
(3.16) which results in a single equation (3.B.22) for the amplitudes A(kP|aQ). This
equation is then interpreted in the language of an auxiliary spin system and is shown
to be equivalent to the recursion relation (3.B.31) over the symmetric group SN .

(iii) In Section 3.B.3 (with some details postponed to appendix 3.C) we show that the
recursion has a unique solution independent of the realization of a permutation as a
product of transpositions of nearest neighbours. This brings us into first contact with
the important Yang-Baxter equation (3.B.35).

(iv) In Section 3.B.4 we impose the periodic boundary conditions (3.17) onto the Bethe
ansatz wave function (3.B.19) with amplitudes defined by (3.B.31). This reduces the
solution of the N -particle problem to that of an auxiliary eigenvalue problem for an
inhomogeneous spin system related to the XXX Heisenberg chain.

(v) In Section 3.B.5 we solve the spin problem by an algebraic technique called the alge-
braic Bethe ansatz (we shall have to say more about it in Chapter 12). The eigenvalue
(3.B.85) of the spin problem depends on the quasi momenta {k j } in the Bethe ansatz
wave function. They appear as inhomogeneities in the spin problem and have to be cho-
sen in accordance with the periodic boundary conditions. This determines the Lieb-Wu
equations.

3.B.1 The Bethe ansatz wave function

In the following we construct joint antisymmetric solutions of the Schrödinger equation
(3.16) and the equation (3.22) for the shift operator, i.e., we require the solutions to satisfy

ψ(xR; aR) = sign(R)ψ(x; a) (3.B.1)

for all R ∈ SN . Here we resort to the notation for the symmetric group introduced in
Section 3.3.1. Its full power and usefulness will become apparent below. Equation (3.B.1)
encodes the fact that electrons are fermions which ought to satisfy the Pauli principle. The
antisymmetry of the wave function is essential for the Bethe ansatz to work. The so-called
bosonic Hubbard model which has the same ‘first quantized’ Hamiltonian (3.15) but totally
symmetric wave functions can not be solved by Bethe ansatz (see [83]).

The Bethe ansatz starts with a clever guess (an ansatz) for the form of the so-called Bethe
ansatz wave function. It is a multiparametric function which has the essential properties of
the solution. The actual calculation then determines the parameters (the quantum numbers)
in the Bethe ansatz wave function.

The form of the Bethe ansatz wave function can not be rigorously derived, but will be
fully justified only a posteriori, at the end of the calculation. It can only be motivated, and the
physical intuition behind it can be explained. This is the aim of the following considerations
which are based on three ideas: locality of the Schrödinger equation, existence of ‘higher
conserved quantities’ and antisymmetry of the wave function.
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Let us first see what can be learned from locality and antisymmetry. The Schrödinger
equation (3.16) has to be satisfied for all x ∈ Z

N . Because of the antisymmetry (3.B.1),
however, it suffices to consider it in one of the the elementary domains

DQ =
{
x ∈ Z

N | xQ(1) ≤ · · · ≤ xQ(N )
}
, (3.B.2)

Q ∈ SN , say in Did. In particular, the Schrödinger equation must be satisfied off the bound-
aries of DQ , i.e., in the sets

DQ =
{
x ∈ Z

N | xQ(1) < · · · < xQ(N )
}
. (3.B.3)

But for x ∈ DQ no two electrons occupy the same lattice site, and the local interaction does
not matter. We have

(HN − E)ψ(x; a) = −
{ N∑

j=1

(�+j +�−j )+ E

}
ψ(x; a) . (3.B.4)

This is an equation for non-interacting electrons, since [�±j ,�
±
k ] = 0. The correspond-

ing one-particle problem �+ f (n) = f (n + 1) = α f (n), n ∈ Z, has the solution f (n) =
αn f (0) = Aeikn ( f (0), α, A, k complex numbers), which is unique up to normalization.
Out of the one-particle solutions we can construct solutions f (x|k) = Aei〈k,x〉 of (3.B.4).
We find that

(HN − E) f (x|k) = 0 , (3.B.5)

if and only if

E = −2
N∑

j=1

cos(k j ) . (3.B.6)

The N -particle shift operator ÛN commutes with the N -particle Hamiltonian,
[HN , ÛN ] = 0. Therefore it is possible to construct a system of common eigenfunctions of
HN and ÛN . The functions f (x|k) satisfy

(ÛN − ω) f (x|k) = 0 (3.B.7)

for all x ∈ Z
N , if and only if

ω = ei(k1+···+kN ) . (3.B.8)

We conclude from the above considerations that the translationally invariant eigenfunc-
tions of the Hubbard Hamiltonian must be linear combinations of the functions f (x|k) with
degenerate eigenvalues E and ω, (3.B.6) and (3.B.8).

There is a trivial degeneracy due to the invariance under permutations of the individual
k j : the common solution f (x|k) of (3.B.4) and (3.B.7) is degenerate with f (x|kP) for all
P ∈ SN . In general, for a fixed vector k, we have no further degeneracy (E is also invariant
under a change of signs of the individual k j , but ω is not). Still, more degenerate solutions
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may exist with independent vectors k′ satisfying

ei(k1+···+kN ) = ei(k ′1+···+k ′N ) ,

N∑
j=1

cos(k j ) =
N∑

j=1

cos(k ′j ) . (3.B.9)

It is now an interesting observation that the equations (3.B.9) restrict the possible choices
of k. They can be interpreted as constraints on k. Let us consider the case N = 2. In this
case (3.B.9) implies (a) {k1, k2} = {k ′1, k ′2}mod 2π , or (b) k1 + k2 = k ′1 + k ′2 = π mod 2π .
Case (b) corresponds to E = 0 and has been discussed in Section 3.2. In the generic
situation E �= 0 case (a) applies, and f (x|k) and f (x|k′) are non-degenerate, unless
{k1, k2} = {k ′1, k ′2}mod 2π .

Imagine there were more mutually commuting quantities In , having f (x|k) as a common
eigenfunction and commuting with Û and H . There would be more constraints than just
the two equations (3.B.9). If the number of constraints would equal the number of particles,
this could render f (x|k) and f (x|k′) to be non-degenerate as common eigenfunctions of
all of the In , Û and H for generic choice of k and k′ �= kP .

For the Hubbard model, higher conserved quantities actually exist that have the above
properties (see Chapter 12). This motivates the ansatz

ψQ(x|k) =
∑

P∈SN

a(P, Q)ei〈kP,x〉 =
∑

P∈SN

ã(P, Q)ei〈kP,xQ〉 (3.B.10)

for a joint solution of the Schrödinger equation (3.16) and the equation for the shift op-
erator (3.B.7) in the sector DQ . Note that ã(P, Q) = a(P Q−1, Q). The ansatz (3.B.10)
is called Bethe ansatz or Bethe-Yang hypothesis and was introduced by C. N. Yang
in his seminal paper [493] on the electron gas with delta-function interaction. Let us
emphasize that the peculiar feature of (3.B.10) is the occurrence of only one wave
vector k.

There is the following physical picture behind (3.B.10), which was stressed by Zamolod-
chikov and Zamolodchikov [502]. Assume for a while the components of k be real. Then
(3.B.10) describes a scattering state of N particles. For a classical system of N interacting
particles passing from a sector Q to a sector Q′ means to change the order of the parti-
cles. Thus, the particles have scattered each other. Assuming the same wave vector k in
every sector Q means to assume that the individual k j are conserved under scattering of
the particles. The particles merely exchange their momenta. Mere exchange of momenta
is characteristic of two-particle scattering. This means we assume the N -particle scattering
process to be a sequence of two-particle scattering processes.

Generally, there is no conservation of the set of individual momenta {k j } in N -particle
scattering. Conservation of the set of individual k j is typical for integrable systems. For a
beautiful classical example see [330].

So far the ansatz (3.B.10) says nothing about the internal degrees of freedom of the
particles and nothing about symmetry. Let us try to include these features: the Hubbard
model is a model of electrons. We are thus seeking for solutionsψ(x; a|k) of the Schrödinger
equation (3.16) which satisfy Pauli’s principle (3.B.1). The dependence of our ansatz wave
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function (3.B.10) on spin a and wave vector k has to be incorporated into the coefficients,
ã(P, Q) = ã(P, Q,k, a).

Let x ∈ DQ , y = xR, b = aR, R ∈ SN . Then xQ( j) = yR−1 Q( j) and y ∈ DR−1 Q . The wave
function (3.B.10) in the sector R−1 Q is

ψR−1 Q(y; b|k) =
∑

P∈SN

ã(P, R−1 Q,k,b)ei〈kP,yR−1 Q〉

=
∑

P∈SN

ã(P, R−1 Q,k, aR)ei〈kP,xQ〉 . (3.B.11)

The Pauli principle (3.B.1) requires this to be equal to

sign(R)ψQ(x; a|k) =
∑

P∈SN

sign(R)ã(P, Q,k, a)ei〈kP,xQ〉 , (3.B.12)

for arbitrary x ∈ DQ and arbitrary k. Hence, the Pauli principle is satisfied if and only if

ã(P, R−1 Q,k, aR) = sign(R)ã(P, Q,k, a) . (3.B.13)

This equation fixes ã in all sectors DQ , once it is known in a specific sector. In order to
simplify further calculations we make the ansatz

ã(P, Q,k, a) = sign(P Q)A(kP|aQ) , (3.B.14)

which clearly satisfies (3.B.13) and acquires further motivation by the results of Section 3.2
about the two-particle problem.

So far we have constructed an ansatz wave function with the following properties. It
is defined inside the sectors DQ , where it satisfies the Schrödinger equation (3.16) and
the equation of the shift operator (3.B.7) (with the same values of E and ω in every
sector). It is totally antisymmetric under simultaneous permutations of x and a, equa-
tion (3.B.1). Our specification of ã in equation (3.B.14) also forces antisymmetry under
exchange of the components k j of the wave vector k. For, let x ∈ DQ , R ∈ SN . Then,
using (3.B.10)

ψ(x; a|kR) =
∑

P∈SN

sign(P Q)A(kR P|aQ)ei〈kR P,xQ〉 = sign(R)ψ(x; a|k) , (3.B.15)

where the second equality follows from RSN = SN and sign(R−1) = sign(R). We infer
from (3.B.15) that ψ(x; a|k) vanishes identically (or is singular), if two of the k j are the
same. We may therefore assume below, that the k j be mutually distinct.

Let us now try to extend our ansatz to the boundaries of the sectors DQ . First we have
to make sure that (3.B.10) and (3.B.14) define ψ(x; a|k) uniquely on the boundaries. x is
on the boundary of DQ , if there is an n, such that xQ(n) = xQ(n+1). x is then invariant under
permutation of xQ(n) and xQ(n+1),

xQ = xQ�n,n+1 , (3.B.16)
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and also belongs to the boundary of DQ�n,n+1 . Let us write � = �n,n+1 for short. Then
uniqueness of the wave function at the joint boundary of DQ and DQ� requires

0 =
∑

P∈SN

sign(P Q)ei〈kP,xQ〉(A(kP|aQ)+ A(kP|aQ�)
)

=
∑

P∈AN

{
sign(P Q)ei〈kP,xQ〉(A(kP|aQ)+ A(kP|aQ�)

)
+ sign(P�Q)ei〈kP�,xQ〉(A(kP�|aQ)+ A(kP�|aQ�)

)}
=

∑
P∈AN

sign(P Q)ei〈kP,xQ〉(A(kP|aQ)+ A(kP|aQ�)

− A(kP�|aQ)− A(kP�|aQ�)
)
. (3.B.17)

Thus, a condition sufficient for uniqueness is

A(kP|aQ)+ A(kP|aQ�) = A(kP�|aQ)+ A(kP�|aQ�) . (3.B.18)

In the first line of (3.B.17) we used (3.B.16) and sign(�) = −1. In the second line we used
SN = AN ∪ AN�, and in the third line 〈kR, xR〉 = 〈k, x〉 and �2 = id. Recall that � is
any transposition of nearest neighbours.

Provided that (3.B.18) is satisfied, our wave function is now uniquely defined as a function
on Z

N by the equation

ψ(x; a|k) =
∑

P∈SN

sign(P Q)A(kP|aQ)ei〈kP,xQ〉 . (3.B.19)

For every given x the permutation Q on the right hand side has to be chosen such that
x ∈ DQ . ψ(x; a|k) solves the Schrödinger equation (3.16) for every x ∈ DQ , Q ∈ SN .
In the next section we shall stipulate ψ(x; a|k) to satisfy the Schrödinger equation at the
boundaries of the sectors DQ . This will provide conditions on the amplitudes A(kP|aQ).

3.B.2 Equations for the amplitudes

Let us start with the case of three or more electrons sitting at the same site. Then xQ(n−1) =
xQ(n) = xQ(n+1) at the boundary of some sector DQ , and, say, aQ(n) = aQ(n+1) (recall that
a j takes only two values, ↑, ↓). It follows that ψ(x; a|k) = 0, and thus

(HN − E)ψ(x; a|k) = −
N∑

j=1

(�+j +�−j )ψ(x; a|k)

= −
N∑

j=1

(
�+Q( j) +�−Q( j)

)
ψ(x; a|k)

= − (
�+Q(n) +�−Q(n) +�+Q(n+1) +�−Q(n+1)

)
ψ(x; a|k)

= −
(
ψ(x+ eQ(n); a|k)+ ψ(x− eQ(n); a|k)

+ ψ(x+ eQ(n+1); a|k)+ ψ(x− eQ(n+1); a|k)
)
= 0 . (3.B.20)
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Here we used the fact that ψ(x; a|k) is antisymmetric in xQ(n) and xQ(n+1), which
follows from aQ(n) = aQ(n+1). In the fifth row of (3.B.20) this antisymmetry implies
ψ(x± eQ(n+1); a|k) = −ψ(x± eQ(n); a|k).

We have seen that the Schrödinger equation (3.16) is satisfied, if three or more electrons
are sitting at the same site of the lattice. We are thus left with the problem of pairs of
electrons occupying the same lattice site. Let us assume we have precisely one such pair,
xQ(n) = xQ(n+1), and all other x j are mutually distinct. It follows that

(HN − E)ψ(x; a|k)

=− (
�+Q(n) +�−Q(n) +�+Q(n+1) +�−Q(n+1)

)
ψ(x; a|k)

−
N∑

j=1
j �=n,n+1

(
�+Q( j) +�−Q( j)

)
ψ(x; a|k)+ (4u − E)ψ(x; a|k)

=− (
ψ(x+ eQ(n); a|k)+ ψ(x− eQ(n); a|k)+ ψ(x+ eQ(n+1); a|k)

+ ψ(x− eQ(n+1); a|k)
)

+
∑

P∈SN

sign(P Q)A(kP|aQ)
(
4u + 2 cos(kP(n))+ 2 cos(kP(n+1))

)
ei〈kP,xQ〉

=
∑

P∈SN

{
sign(P Q�)A(kP|aQ�)

(−ei〈kP,(x+eQ(n))Q�〉 − ei〈kP,(x−eQ(n+1))Q�〉)
+ sign(P Q)A(kP|aQ)

(−ei〈kP,(x−eQ(n))Q〉 − ei〈kP,(x+eQ(n+1))Q〉

+ [
4u + 2 cos(kP(n))+ 2 cos(kP(n+1))

]
ei〈kP,xQ〉)}

=
∑

P∈SN

sign(P Q)ei〈kP,xQ〉 {A(kP|aQ�)
(
eikP(n+1) + e−ikP(n)

)
+ A(kP|aQ)

(
eikP(n) + e−ikP(n+1) + 4u

)}
=

∑
P∈AN

sign(P Q)ei〈kP,xQ〉 {A(kP|aQ�)
(
eikP(n+1) + e−ikP(n)

)
− A(kP�|aQ�)

(
eikP(n) + e−ikP(n+1)

)
+ A(kP|aQ)

(
eikP(n) + e−ikP(n+1) + 4u

)
− A(kP�|aQ)

(
eikP(n+1) + e−ikP(n) + 4u

)}
=

∑
P∈AN

sign(P Q)ei〈kP,xQ〉

{(
cos(kP(n))+ cos(kP(n+1))

)(
A(kP|aQ�)− A(kP�|aQ�)

+ A(kP|aQ)− A(kP�|aQ)
)

+ i
(
sin(kP(n+1))− sin(kP(n))

)(
A(kP|aQ�)+ A(kP�|aQ�)

− A(kP|aQ)− A(kP�|aQ)
)

+ 4u
(

A(kP|aQ)− A(kP�|aQ)
)}
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=
∑

P∈AN

sign(P Q)ei〈kP,xQ〉{4u
(

A(kP|aQ)− A(kP�|aQ)
)

+ i
(
sin(kP(n))− sin(kP(n+1))

)(
A(kP|aQ)+ A(kP�|aQ)

− A(kP|aQ�)− A(kP�|aQ�)
)}

. (3.B.21)

Here we used x+ eQ(n), x− eQ(n+1) ∈ DQ� and x− eQ(n), x+ eQ(n+1) ∈ DQ in the
third equation and (x+ eQ(n))Q� = xQ + en+1, (x− eQ(n+1))Q� = xQ − en in the
fourth equation. In the seventh equation we used the uniqueness condition
(3.B.18).

From the right hand side of (3.B.21) we can read off a sufficient condition for the
Schrödinger equation to be satisfied,(

sin(kP(n))− sin(kP(n+1))
)(

A(kP|aQ)− A(kP|aQ�)
)− 4iu A(kP|aQ)

= −(sin(kP(n))− sin(kP(n+1))
)(

A(kP�|aQ)− A(kP�|aQ�)
)− 4iu A(kP�|aQ) .

(3.B.22)

If a second pair of electrons occupies another lattice site, we get the same equation (3.B.22).
Thus, (3.B.18) and (3.B.22) are sufficient for ψ(x; a|k) to be uniquely defined and to satisfy
the Schrödinger equation for all x ∈ Z

N .
Can we construct a set of amplitudes A(kP|aQ) that satisfies both equations, (3.B.18) and

(3.B.22)? In order to study this question we reformulate equations (3.B.18) and (3.B.22)
in a more convenient language. For fixed kP the amplitude A(kP|aQ) is a function of
the N spin variables a j , which take on values a j = ↑,↓ each. We may therefore interpret
A(kP|aQ) as representing the coordinates of a 2N -dimensional vector. The corresponding
auxiliary vector space may be understood as the 2N -dimensional space of states of an N -site
spin- 1

2 chain. Let us introduce the canonical basis of this vector space. It is constructed from
tensor products of basis vectors e↑ =

(1
0

)
and e↓ =

(0
1

)
. A basis vector may be written as

|a〉 = ea1 ⊗ · · · ⊗ eaN . These basis vectors are mutually orthonormal under the canonical
hermitian scalar product,

〈a|b〉 = 〈ea1 , eb1〉 . . . 〈eaN , ebN 〉 = δ
a1
b1

. . . δ
aN
bN

. (3.B.23)

There is a natural action of the symmetric group on basis vectors in our spin chain Hilbert
space,

Q|a〉 = |aQ−1〉 , (3.B.24)

which defines a representation of the symmetric group,

P(Q|a〉) = P|aQ−1〉 = |(aQ−1)P−1〉 = |a(P Q)−1〉 = (P Q)|a〉 . (3.B.25)

This representation is unitary: we have

〈a|Q+|b〉 = 〈aQ−1|b〉 = δ
aQ−1(1)

b1
. . . δ

aQ−1(N )

bN

= δ
a1
bQ(1)

. . . δ
aN
bQ(N )
= 〈a|bQ〉 = 〈a|Q−1|b〉 , (3.B.26)

and thus Q+ = Q−1.
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Let us define

|kP〉 =
∑

b1,...,bN=↑,↓
A(kP|b)|b〉 . (3.B.27)

Then it follows from (3.B.23) that

A(kP|aQ) = 〈aQ|kP〉 . (3.B.28)

Using (3.B.28), (3.B.24), and (3.B.26), we can rewrite the uniqueness condition (3.B.18)
and the condition (3.B.22) arising from the Schrödinger equation in the language of the
spin problem. The uniqueness condition turns into

(1+�)|kP�〉 = (1+�)|kP〉 . (3.B.29)

Similarly, equation (3.B.22) is equivalent to[
(sP(n) − sP(n+1))(1−�)− 4iu

] |kP〉 = [−(sP(n) − sP(n+1))(1−�)− 4iu
] |kP�〉 .

(3.B.30)

Here we have introduced the short hand notation sn = sin(kn) which in the following will
prove to be convenient. Equation (3.B.30) can be easily solved for |kP�〉. Since �2 = 1,
multiplication by

[−(sP(n) − sP(n+1))(1+�)− 4iu
]

from the left gives

|kP�〉 = Yn,n+1(sP(n) − sP(n+1))|kP〉 , (3.B.31)

where we introduced the operators

Y jk(λ) = 2iu + λ� jk

2iu + λ
. (3.B.32)

Instead of (3.B.18) and (3.B.22) we can now deal with equations (3.B.29) and (3.B.31).
This innocent looking reformulation of the original equations has strong immediate conse-
quences. It turns the remaining calculations into a beautiful piece of algebra based on the
properties of the so-called Y -operators (3.B.32) first introduced by C. N. Yang in [493].

The first implication that can be drawn from (3.B.29) and (3.B.31) is that (3.B.18) is
automatically satisfied for any set of amplitudes solving (3.B.22). This can be seen as
follows. We multiply equation (3.B.31), which is equivalent to (3.B.22), by 1+� from
the left. Then, since (1+�)� = (1+�), (3.B.31) turns into (3.B.29), which is equivalent
to (3.B.18). Hence, equation (3.B.22) is a sufficient condition for the Bethe wave function
ψ(x; a|k), equation (3.B.19), to be uniquely defined and to satisfy the Schrödinger equation.

3.B.3 Consistency

Our original problem of finding joint solutions of (3.B.18) and (3.B.22) has now reduced
to the problem of finding solutions of (3.B.22). At the same time the recursive structure of
(3.B.31) allows us to construct these solutions. We see from (3.B.22) that the Y -operators
(3.B.32) induce the action of the nearest neighbour transpositions � on the vectors k
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that label the states |k〉 of the auxiliary spin problem. Since the symmetric group SN is
generated by the transpositions of nearest neighbours, all spin states |kP〉, P ∈ SN , can
be constructed from |k〉 by repeated use of (3.B.31). Equivalently, (3.B.31) connects every
state |kP〉, P ∈ SN , with any other state |kP̃〉, P̃ ∈ SN . It follows that all amplitudes
A(kP|a) = 〈a|kP〉 in the sector Did can be generated out of A(k|a). The amplitudes in the
other sectors are simply A(kP|aQ) = 〈aQ|kP〉 = 〈a|Q|kP〉.

The remaining problem we have to face is that of the uniqueness of the amplitudes
constructed by iterative use of (3.B.31). This problem is known as the consistency problem.
It is due to the fact that a representation of a permutation P ∈ SN as a product of nearest
neighbour transpositions is not unique.

Let us consider the example N = 3. Then we have, for instance, the identity

�12�23�12 = �23�12�23 = �13 . (3.B.33)

There are thus two different ways to create A(k�13|a) out of A(k|a) by application of
Y -operators, equation (3.B.31),

A(k�13|a) = A(k�12�23�12|a) = A(k�23�12�23|a)

= 〈a|Y12(s2 − s3)Y23(s1 − s3)Y12(s1 − s2)|k〉
= 〈a|Y23(s1 − s2)Y12(s1 − s3)Y23(s2 − s3)|k〉 . (3.B.34)

For this equation to be true for arbitrary states |a〉 and |k〉 the triple products of Y -operators
on both sides of the third equation (3.B.34) must agree. It is crucial that this is indeed the
case. The Y -operators Y jk(λ) satisfy the so-called Yang-Baxter equation,

Y jk(λ)Ykl(λ+ µ)Y jk(µ) = Ykl(µ)Y jk(λ+ µ)Ykl(λ) , (3.B.35)

which can be proven rather easily by direct calculation (see appendix 3.C). It further follows
from the definition (3.B.32) of Y jk(λ) that

Y−1
jk (λ) = Y jk(−λ) . (3.B.36)

Using equations (3.B.35) and (3.B.36) we show in appendix 3.C that all amplitudes
A(kP|aQ) are uniquely defined by (3.B.31) once the amplitude A(k|a) is given. This
is a situation typical for a scattering problem, where the amplitude of the incoming wave is
arbitrary and fixes the amplitudes of the scattered and the reflected waves.

3.B.4 Periodic boundary conditions

So far we have solved the Schrödinger equation (3.16) regarded as a mere difference equa-
tion, not as an eigenvalue problem. In this subsection we shall impose the periodic boundary
conditions (3.17) on the Bethe ansatz wave functions. This will result in an eigenvalue prob-
lem for the amplitudes A(kP|aQ), which can be interpreted as an auxiliary spin problem.
The auxiliary spin problem is solved below in Section 3.B.5 by means of the algebraic
Bethe ansatz.
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Let x ∈ {1, . . . , L}N . The condition (�−j −�−j,L )ψ(x, a|k) = 0 is trivially satisfied for

x j = 2, . . . , L . If x j = 1, then there is an element Q ∈ SN , such that x ∈ DQ and x j =
xQ(1). In this case the periodic boundary conditions are non-trivial,

ψ(x− (1− L)eQ(1); a|k) = ψ(x− eQ(1); a|k) . (3.B.37)

Similarly, the condition (�+j −�+j,L )ψ(x, a|k) = 0 is trivial for x j = 1, . . . , L − 1. If x j =
L , then there is an element Q ∈ SN , such that x ∈ DQ and x j = xQ(N ). We obtain the non-
trivial condition

ψ(x+ (1− L)eQ(N ); a|k) = ψ(x+ eQ(N ); a|k) . (3.B.38)

Let us discuss equation (3.B.37). Let y = x− eQ(1) and z = y+ LeQ(1). Then y ∈ DQ ,
zQ(1) = yQ(1) + L and zQ( j) = yQ( j), j = 2, . . . , N . It follows that zQ(2) ≤ · · · ≤ zQ(N ) ≤
zQ(1), which may be equivalently stated as zQUN (1) ≤ · · · ≤ zQUN (N ). Here

UN = �12 . . . �N−1,N (3.B.39)

is the generator of the cyclic subgroup of order N of the symmetric group. We conclude
that

ψ(y+ LeQ(1); a|k) = ψ(z; a|k)

=
∑

P∈SN

sign(P QUN )A(kP|aQUN )ei〈kP,(y+LeQ(1))QUN 〉

=
∑

P∈SN

sign(P Q)A(kPUN |aQUN )eikP(1) Lei〈kP,yQ〉 . (3.B.40)

Comparing (3.B.40) with the expression for ψ(y; a|k), we see that the condition

A(kPUN |aQUN ) = e−ikP(1) L A(kP|aQ) (3.B.41)

is sufficient for (3.B.37) to be satisfied.
A very similar reasoning can be applied to equation (3.B.38). Let y = x+ eQ(N ) and z =

y− LeQ(N ). Then y ∈ DQ , zQ(N ) = yQ(N ) − L and zQ( j) = yQ( j) for j = 1, . . . , N − 1.
It follows that zQ(N ) ≤ zQ(1) ≤ · · · ≤ zQ(N−1), which is equivalent to zQU−1

N (1) ≤ · · · ≤
zQU−1

N (N ). We thus obtain

ψ(y− LeQ(N ); a|k) = ψ(z; a|k)

=
∑

P∈SN

sign(P QU−1
N )A(kP|aQU−1

N )ei〈kP,(y−LeQ(N ))QU−1
N 〉

=
∑

P∈SN

sign(P Q)A(kPU−1
N |aQU−1

N )e−ikP(N ) Lei〈kP,yQ〉 . (3.B.42)

Hence, a sufficient condition for (3.B.38) to hold is

A(kP|aQ) = e−ikP(N ) L A(kPU−1
N |aQU−1

N ) . (3.B.43)
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Let us set P̃ = PU−1
N , Q̃ = QU−1

N . Then (3.B.43) turns into

A(kP̃UN |aQ̃UN ) = e−ikP̃(1) L A(kP̃|aQ̃) , (3.B.44)

which is equivalent to (3.B.41). We are thus left with a single condition, namely (3.B.41),
that suffices to guarantee periodicity of the wave functions (3.B.19).

Now (3.B.31) allows us to transform (3.B.41) into an eigenvalue problem. First of all we
obtain

A(kPUN |aQUN ) = 〈aQUN |kPUN 〉 = 〈aQ|UN |kPUN−1�N−1,N 〉
= 〈aQ|UN YN−1,N (sPUN−1(N−1) − sPUN−1(N ))|kPUN−1〉
= 〈aQ|UN YN−1,N (sP(1) − sP(N ))|kPUN−1〉
= 〈aQ|UN YN−1,N (sP(1) − sP(N )) . . . Y1,2(sP(1) − sP(2))|kP〉
= 〈aQ|UN−1�N−1,N YN−1,N (sP(1) − sP(N )) . . . Y1,2(sP(1) − sP(2))|kP〉
= 〈aQ|�1,N Y1,N (sP(1) − sP(N ))�1,N−1Y1,N−1(sP(1) − sP(N−1)) ·

. . . ·�1,2Y1,2(sP(1) − sP(2))|kP〉
= e−ikP(1) L〈aQ|kP〉 . (3.B.45)

This suggests to define the operator

X jk(λ) = � jkY jk(λ) . (3.B.46)

It then follows from the last two lines of equation (3.B.45) that (3.B.41) is equivalent to the
eigenvalue problem

X1,N (sP(1) − sP(N )) . . . X1,2(sP(1) − sP(2))|kP〉 = e−ikP(1) L |kP〉 , (3.B.47)

which has to be solved for all P ∈ SN .

Remark. Applying (3.B.31) to the eigenvalue problem (3.B.47) it is not difficult to see
that (3.B.47) is equivalent to

X j, j−1(sP( j) − sP( j−1)) . . . X j,1(sP( j) − sP(1))X j,N (sP( j) − sP(N ))

. . . · X j, j+1(sP( j) − sP( j+1))|kP〉 = e−ikP( j) L |kP〉 (3.B.48)

for j = 1, . . . , N , where we introduced the conventions X1,0(λ) = X1,N (λ) and
X N ,N+1(λ) = X N ,1(λ).

Although the mutual compatibility of equations (3.B.48) for fixed P and j = 1, . . . , N
is clear by construction, the reader may wonder what is the reason behind it. As before it
is again the Yang-Baxter equation. The Yang-Baxter equation for the operators X jk(λ) is
obtained from (3.B.35) by multiplication with � jk� jl�kl = �kl� jl� jk from the right,

X jk(λ)X jl(λ+ µ)Xkl(µ) = Xkl(µ)X jl(λ+ µ)X jk(λ) . (3.B.49)

Instead of applying (3.B.49) and the inversion relation X jk(λ)X jk(−λ) = id directly to
(3.B.48), which is one possible way of proving the compatibility of the equations (3.B.48)
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for j = 1, . . . , N , we shall postpone a direct proof until the next section where we derive
a more appropriate formulation of (3.B.48).

3.B.5 Algebraic solution of the spin problem

We shall now identify the eigenvalue problem (3.B.48) as an eigenvalue problem for the
transfer matrix of an inhomogeneous XXX spin chain and then solve it by means of the
algebraic Bethe ansatz. For more information about the general method the reader is referred
to Chapter 12. Here we only give a brief but self-contained account of the aspects needed
to solve our concrete problem.

Let us first express the transpositions � jk in terms of spin operators,

� jk = 1
2 (id+ σα

j σ
α
k ) . (3.B.50)

Here we introduced the usual embedding of Pauli matrices into the space of endomorphisms
on the space of states,

σα
j = I⊗( j−1)

2 ⊗ σα ⊗ I⊗(N− j)
2 , (3.B.51)

j = 1, . . . , N . In our notation I2 is the 2× 2 unit matrix.
Next, we shall need extensions of our spin chain Hilbert space by one or two sites,

respectively. We will indicate this by supplying superscripts (a) or (ab) to the operators and
call these additional sites auxiliary spaces. Then we can define

T (λ|kP) = X (a)
aN (λ− iu − sP(N )) . . . X (a)

a1 (λ− iu − sP(1)) , (3.B.52)

with the subscript a referring to the auxiliary space. It follows that

T (sP(1) + iu|kP) = X (a)
aN (sP(1) − sP(N )) . . . X (a)

a2 (sP(1) − sP(2))X (a)
a1 (0)

= �a1 X (a)
1N (sP(1) − sP(N )) . . . X (a)

12 (sP(1) − sP(2))

= 1
2 (I2 ⊗ id+ σα ⊗ σα

1 )(I2 ⊗ (X1N (sP(1) − sP(N )) . . . X12(sP(1) − sP(2))).
(3.B.53)

Here we used the fact that X (a)
a1 (0) = �a1 in the second equation. Taking the trace in auxiliary

space we obtain

tr
(
T (sP(1) + iu|kP)

) = X1N (sP(1) − sP(N )) . . . X12(sP(1) − sP(2)) . (3.B.54)

With the abbreviation

t(λ|kP) = tr(T (λ|kP)) (3.B.55)

equation (3.B.47) is an eigenvalue problem for the operator t(sP(1) + iu|kP). The operator
t(λ|kP) may be interpreted as the transfer matrix of an inhomogeneous XXX spin chain,
T (λ|kP) as the corresponding monodromy matrix (see Chapter 12).

Let us now identify the standard objects of the algebraic Bethe ansatz, namely the R-
matrix and the L-matrix. For this purpose we shall write our operators as matrices with
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respect to the auxiliary spaces. By appropriately shifting the spectral parameters and mul-
tiplying by �ab from the left the Yang-Baxter equation (3.B.49) takes the form

Y (ab)
ab (λ− µ)X (ab)

an (λ− iu)X (ab)
bn (µ− iu) = X (ab)

an (µ− iu)X (ab)
bn (λ− iu)Y (ab)

ab (λ− µ) .
(3.B.56)

Equation (3.B.56) can be understood as matrix equation in auxiliary space when we use the
usual conventions for tensor products of matrices,

Y (ab)
ab (λ) = Ř(λ)⊗ I⊗N

2 = Ř(λ) , (3.B.57a)

X (ab)
an (λ− iu) = λ+ iu(σα ⊗ I2)⊗ σα

n

λ+ iu
= λ+ iu(σασα

n ⊗ I2)

λ+ iu
= Ln(λ)⊗ I2 , (3.B.57b)

X (ab)
bn (µ− iu) = µ+ iu(I2 ⊗ σα)⊗ σα

n

µ+ iu
= µ+ iu(I2 ⊗ σασα

n )

µ+ iu
= I2 ⊗ Ln(µ) .

(3.B.57c)

The matrices Ř(λ) and Ln(λ) can be read off from these equations,

Ř(λ) = 4iu + λ(I2 ⊗ I2 + σα ⊗ σα)

4iu + 2λ
=


1 0 0 0
0 b(λ) c(λ) 0
0 c(λ) b(λ) 0
0 0 0 1

 , (3.B.58)

where

b(λ) = 2iu

λ+ 2iu
, c(λ) = λ

λ+ 2iu
, (3.B.59)

and

Ln(λ) = λ+ iu σασα
n

λ+ iu
= c(2λ)+ b(2λ)σασα

n

=
(

c(2λ)+ b(2λ)σ z
n 2b(2λ)σ−n

2b(2λ)σ+n c(2λ)− b(2λ)σ z
n

)
. (3.B.60)

Ř(λ) is called the R-matrix, Ln(λ) the L-matrix at site n.
Inserting (3.B.57) into (3.B.56) we obtain

Ř(λ− µ)
(
Ln(λ)⊗ Ln(µ)

) = (
Ln(µ)⊗ Ln(λ)

)
Ř(λ− µ) . (3.B.61)

Furthermore, the monodromy matrix (3.B.52) can be written as

T (λ|kP) = L N (λ− sP(N )) · · · · · L1(λ− sP(1)) , (3.B.62)

and, using the fact that the entries of L-matrices with different site indices mutually com-
mute, we can iterate (3.B.61) to obtain

Ř(λ− µ)
(
T (λ|kP)⊗ T (µ|kP)

) = (
T (µ|kP)⊗ T (λ|kP)

)
Ř(λ− µ) . (3.B.63)
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This is a set of quadratic commutation relation between the matrix elements of the mono-
dromy matrix T (λ|kP). We will later say (see Chapter 12) that T (λ|kP) is a representation
of the Yang-Baxter algebra with R-matrix Ř(λ). (3.B.63) will be the central tool in the
following calculations.

Remark. Multiplying (3.B.63) by Ř−1(λ− µ) from the right and taking the trace in the
tensor product of auxiliary spaces, we obtain

[t(λ|kP), t(µ|kP)] = 0 . (3.B.64)

t(λ|kP) is a commutating family of transfer matrices. This observation is the starting point
for a simple proof of the compatibility of the equations (3.B.48): Let us slightly generalize
the definition (3.B.52),

T ( j)(λ|kP) = X (a)
aj−1(λ− iu − sP( j−1)) . . . X (a)

a1 (λ− iu − sP(1))

×X (a)
aN (λ− iu − sP(n)) . . . X (a)

aj (λ− iu − sP( j)) , (3.B.65)

for j = 1, . . . , N . Repeating the steps in (3.B.53) and (3.B.54) we conclude that

tr
(
T ( j)(sP( j) + iu|kP)

) = X j, j−1(sP( j) − sP( j−1)) . . . X j1(sP( j) − sP(1))

×X j N (sP( j) − sP(N )) . . . X j, j+1(sP( j) − sP( j+1)) . (3.B.66)

On the other hand,

T ( j)(λ|kP) = L j−1(λ− sP( j−1)) . . . L1(λ− sP(1))L N (λ− sP(N )) . . . L j (λ− sP( j)) .

(3.B.67)

Taking the trace of (3.B.67) and using the cyclic invariance of the trace for a product of
matrices with mutually commuting entries we arrive at the conclusion that

tr
(
T ( j)(sP( j) + iu|kP)

) = tr
(
T (sP( j) + iu|kP)

) = t(sP( j) + iu|kP) . (3.B.68)

By (3.B.68) and (3.B.66) we identify the products of operators on the left hand side of
(3.B.48) with t(sP( j) + iu|kP). Then the compatibility of the equations (3.B.48) follows
from (3.B.64).

We are now prepared to solve (3.B.47) by means of the algebraic Bethe ansatz. We shall
write

T (λ|kP) =
(

A(λ) B(λ)
C(λ) D(λ)

)
. (3.B.69)

Spelling out (3.B.63) yields a set of 16 quadratic equations for A, B, C , D. In particular,

B(λ)B(µ) = B(µ)B(λ) , (3.B.70)

A(λ)B(µ) = B(µ)A(λ)

c(µ− λ)
− b(µ− λ)B(λ)A(µ)

c(µ− λ)
, (3.B.71)

D(λ)B(µ) = B(µ)D(λ)

c(λ− µ)
− b(λ− µ)B(λ)D(µ)

c(λ− µ)
. (3.B.72)
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Eigenstates of t(λ|kP) can be constructed by acting with products of operators B(λ) on

a reference state |0〉 = | ↑ . . . ↑〉 = (1
0

)⊗N
. The L-matrices act on this state as

Ln(λ)|0〉 =
(

c(2λ)+ b(2λ) ∗
0 c(2λ)− b(2λ)

)
|0〉 =

(
1 ∗
0 λ−iu

λ+iu

)
|0〉 . (3.B.73)

Let us denote the eigenvalues of A(λ) and D(λ) on |0〉 by a(λ) and d(λ), respectively. Then
it follows from the definition (3.B.62) and from (3.B.73) that

a(λ) = 1 , d(λ) =
N∏

j=1

λ− sP( j) − iu

λ− sP( j) + iu
. (3.B.74)

Let us consider the ansatz

|kP〉 = |kP,λλλ〉 = B(λ1) . . . B(λM )|0〉 , (3.B.75)

where λλλ = (λ1, . . . , λM ), M ≤ N/2. Because of (3.B.70), this state is symmetric in the
λ j , |kP,λλλQ〉 = |kP,λλλ〉 for all Q ∈ SM . Applying A(λ) and D(λ) to the state |kP,λλλ〉 we
obtain expressions of the following form,

A(λ)|kP,λλλ〉 =
M∏

j=1

1

c(λ j − λ)
|kP,λλλ〉 + B(λ)

M∑
j=1

Fj (λ)
M∏

k=1
k �= j

B(λk)|0〉 , (3.B.76)

D(λ)|kP,λλλ〉 = d(λ)
M∏

j=1

1

c(λ− λ j )
|kP,λλλ〉 + B(λ)

M∑
j=1

F̃j (λ)
M∏

k=1
k �= j

B(λk)|0〉 . (3.B.77)

The functions Fj (λ) and F̃j (λ) will be determined below. Equations (3.B.76) and (3.B.77)
follow from (3.B.70)-(3.B.72) and (3.B.74). Consider, for instance, (3.B.71). When moving
A past B two terms are generated, the first term on the right-hand side of (3.B.71), where
A and B keep their arguments, and the second term, where the arguments are interchanged.
When moving A through a product of B’s, there is precisely one term where all B’s keep
their arguments. It is resulting from repeated use of the first term on the right-hand side of
(3.B.71) and gives the first term on the right-hand side of (3.B.76). All other possibilities
are exhausted by replacing one of the arguments in the product of B’s, say λ j , by λ, and
we therefore have the second term on the right-hand side of (3.B.76).

Let us calculate F1(λ). When moving A through the product of B’s, we first apply the
second term on the right hand side of (3.B.71) and then repeatedly apply the first term. This
gives all terms proportional to B(λ)

∏M
k=2 B(λk)|0〉. Thus,

F1(λ) = − b(λ1 − λ)

c(λ1 − λ)

M∏
k=2

1

c(λk − λ1)
. (3.B.78)
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The general term Fj (λ) is obtained by first moving B(λ j ) to the left in the product of
B’s, using (3.B.70), and then using the same reasoning as for F1(λ),

Fj (λ) = − b(λ j − λ)

c(λ j − λ)

M∏
k=1
k �= j

1

c(λk − λ j )
. (3.B.79)

Similarly,

F̃j (λ) = − b(λ− λ j )d(λ j )

c(λ− λ j )

M∏
k=1
k �= j

1

c(λ j − λk)
. (3.B.80)

Now Fj (λ)+ F̃j (λ) = 0 for j = 1, . . . , M is a sufficient (and necessary) condition for
|kP,λλλ〉 being an eigenvector of A(λ)+ D(λ). Let us write this condition more explicitly,

Fj (λ)+ F̃j (λ) = 2iu

λ− λ j

[ M∏
k=1
k �= j

1

c(λk − λ j )
− d(λ j )

M∏
k=1
k �= j

1

c(λ j − λk)

]
= 0 . (3.B.81)

Here we have used the definitions of b(λ) and c(λ), equation (3.B.59). Equation (3.B.81)
has to hold for all λ ∈ C. This is only possible, if the term in square brackets vanishes.
Hence, (3.B.81) is equivalent to

d(λ j ) =
M∏

k=1
k �= j

c(λ j − λk)

c(λk − λ j )
=

M∏
k=1
k �= j

λ j − λk − 2iu

λ j − λk + 2iu
. (3.B.82)

Inserting here the expression (3.B.74) for d(λ) we arrive at

N∏
l=1

λ j − sin kl − iu

λ j − sin kl + iu
=

M∏
k=1
k �= j

λ j − λk − 2iu

λ j − λk + 2iu
, j = 1, . . . , M . (3.B.83)

This is a set of Bethe equations for the so-called spin rapidities λ j . If (3.B.83) is satisfied,
then |kP,λλλ〉 is an eigenvector of A(λ)+ D(λ) = t(λ|kP) with eigenvalue (see (3.B.76),
(3.B.77))

�(λ) =
M∏

j=1

1

c(λ j − λ)
+ d(λ)

M∏
j=1

1

c(λ− λ j )
. (3.B.84)

The reader will have recognized that (3.B.83) is the ‘spin part’ (3.96) of the Lieb-Wu
equations.

We have now solved the eigenvalue problem (3.B.47) for the transfer matrix t(sP(1) +
iu|kP). |kP,λλλ〉 is an eigenvector of t(sP(1) + iu|kP), if (3.B.83) holds. The corresponding
eigenvalue that follows from (3.B.84) by insertion of (3.B.59) and (3.B.74) is

�(sP(1) + iu) =
M∏

j=1

λ j − sP(1) + iu

λ j − sP(1) − iu
. (3.B.85)
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Solving equation (3.B.47) means to find eigenvectors and eigenvalues, such that �(sP(1) +
iu) = e−ikP(1) L , which leads to

eikP(1) L =
M∏

j=1

λ j − sin(kP(1))− iu

λ j − sin(kP(1))+ iu
. (3.B.86)

Since this equation must be fulfilled for all P ∈ SN , we find the set of equations

eikl L =
M∏

j=1

λ j − sin kl − iu

λ j − sin kl + iu
, l = 1, . . . , N , (3.B.87)

which together with (3.B.83) determines the parameters of the Bethe wave functions
(3.B.19) and is easily identified as the ‘charge part’ (3.95) of the Lieb-Wu equations.

It follows from rather general considerations that the spin rapiditiesλ j have to be mutually
distinct (‘Pauli principle for bosons’, see [270]).

3.B.6 Summary

Let us present a brief summary: for every solution {{kl}Nl=1, {λ j }Mj=1} of the Lieb-Wu equa-
tions

eikl L =
M∏

j=1

λ j − sin kl − iu

λ j − sin kl + iu
, l = 1, . . . , N , (3.B.88)

N∏
l=1

λ j − sin kl − iu

λ j − sin kl + iu
=

M∏
k=1
k �= j

λ j − λk − 2iu

λ j − λk + 2iu
, j = 1, . . . , M , (3.B.89)

where the sets {kl}Nl=1 and {λ j }Mj=1 consist of mutually distinct complex numbers, the wave
function

ψ(x; a|k;λλλ) =
∑

P∈SN

sign(P Q)〈aQ|kP,λλλ〉 ei〈kP,xQ〉 (3.B.90)

solves the Schrödinger equation (3.16) and satisfies the periodic boundary conditions (3.17).
It is therefore an eigenfunction of the cyclic N -particle Hamiltonian (3.10) with eigenvalue

E = −2
N∑

j=1

cos(k j ) . (3.B.91)

It is also an eigenfunction of the shift operator with eigenvalue

ω = ei(k1+···+kN ) . (3.B.92)

Recalling our definition (2.54) of the momentum operator we conclude that the eigenfunc-
tions (3.B.90) carry lattice momentum

P = (k1 + · · · + kN ) mod 2π . (3.B.93)
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The eigenfunctions (3.B.90) have the following symmetry properties,

ψ(xR; aR|k;λλλ) = sign(R)ψ(x; a|k;λλλ) , R ∈ SN , (3.B.94)

ψ(x; a|kR;λλλ) = sign(R)ψ(x; a|k;λλλ) , R ∈ SN , (3.B.95)

ψ(x; a|k;λλλR) = ψ(x; a|k;λλλ) , R ∈ SM . (3.B.96)

They are antisymmetric under simultaneous exchange of position and spin variables, they
are antisymmetric under exchange of momenta kl , and they are symmetric under exchange
of spin rapidities λ j .

3.C Some technical details

This appendix contains some technical details which were left out in the derivation of the
Bethe ansatz wave function in appendix 3.B.

3.C.1 Yang-Baxter equation

We show that Y jk(λ) satisfies the Yang-Baxter equation (3.B.35). Because of the homo-
geneity of the Yang-Baxter equation we may replace Y jk(λ) by Ỹ jk(λ) = 1+ λ� jk . For
simplicity we may further set j = 1, k = 2, l = 3 in (3.B.35). Then

(1+ λ�12)(1+ (λ+ µ)�23)(1+ µ�12)− (1+ µ�23)(1+ (λ+ µ)�12)(1+ λ�23)

= µ(λ+ µ)(�23�12 −�23�12)+ λ(λ+ µ)(�12�23 −�12�23)

+ λµ(�12�12 −�23�23)+ λµ(λ+ µ)(�12�23�12 −�23�12�23)

= 0 , (3.C.1)

where we have used (3.B.33) and the identity � jk� jk = 1. Equation (3.C.1) is equivalent
to (3.B.35).

3.C.2 The consistency problem

In order to show the consistency of the equations (3.B.31) we have to recall an abstract
definition of the symmetric group. The symmetric group SN is generated by the identity
id and the transpositions of nearest neighbours �n,n+1, n = 1, . . . , N − 1, modulo the
relations

�n,n+1�n+1,n+2�n,n+1 = �n+1,n+2�n,n+1�n+1,n+2 , (3.C.2a)

�n,n+1�m,m+1 = �m,m+1�n,n+1 for |n − m| > 1 , (3.C.2b)

�n,n+1�n,n+1 = id . (3.C.2c)

Equation (3.C.2a) is called the braid relation. Note that (3.C.2b) is applicable only for
N > 3.
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Due to (3.C.2a)–(3.C.2c) a representation of a permutation as a product of transpositions
of nearest neighbours is not unique. Therefore the use of equations (3.C.2a)–(3.C.2c) in
(3.B.31) imposes certain consistency conditions on the Y -operators.

Let us consider the braid relation. Suppose P ∈ SN contains a string of the form
�n,n+1�n+1,n+2�n,n+1, i.e., P = Q�n,n+1�n+1,n+2�n,n+1 R with Q, R ∈ SN . Then, on
the one hand,

|kP〉 = . . . |kQ�n,n+1�n+1,n+2�n,n+1〉
= . . . Yn,n+1(sQ�n,n+1�n+1,n+2(n) − sQ�n,n+1�n+1,n+2(n+1))

× Yn+1,n+2(sQ�n,n+1(n+1) − sQ�n,n+1(n+2)) · Yn,n+1(sQ(n) − sQ(n+1))|kQ〉
= . . . Yn,n+1(sQ(n+1) − sQ(n+2))Yn+1,n+2(sQ(n) − sQ(n+2))

× Yn,n+1(sQ(n) − sQ(n+1))|kQ〉 , (3.C.3)

where the dots denote the string of Y -operators which induces the action of the permutation
R. On the other hand,

|kP〉 = . . . |kQ�n+1,n+2�n,n+1�n+1,n+2〉
= . . . Yn+1,n+2(sQ�n+1,n+2�n,n+1(n+1) − sQ�n+1,n+2�n,n+1(n+2))

× Yn,n+1(sQ�n+1,n+2(n) − sQ�n+1,n+2(n+1)) · Yn+1,n+2(sQ(n+1) − sQ(n+2))|kQ〉
= . . . Yn+1,n+2(sQ(n) − sQ(n+1))Yn,n+1(sQ(n) − sQ(n+2))

× Yn+1,n+2(sQ(n+1) − sQ(n+2))|kQ〉 . (3.C.4)

Now for the Bethe ansatz to be consistent the expressions for |kP〉 in equation (3.C.3) and
(3.C.4) have to agree for arbitrary k. This is the case, if and only if

Yn,n+1(sQ(n+1) − sQ(n+2))Yn+1,n+2(sQ(n) − sQ(n+2))Yn,n+1(sQ(n) − sQ(n+1))

= Yn+1,n+2(sQ(n) − sQ(n+1))Yn,n+1(sQ(n) − sQ(n+2))Yn+1,n+2(sQ(n+1) − sQ(n+2)) ,

(3.C.5)

which is nothing but the Yang-Baxter equation (3.B.35) proven in appendix A.
Similarly, equation (3.C.2b) leads to the consistency condition

Yn,n+1(sQ(n) − sQ(n+1))Ym,m+1(sQ(m) − sQ(m+1))

= Ym,m+1(sQ(m) − sQ(m+1))Yn,n+1(sQ(n) − sQ(n+1)) for |n − m| > 1 . (3.C.6)

This condition is trivial.
From the last equation, (3.C.2c), we obtain

Yn,n+1(sQ(n) − sQ(n+1))Yn,n+1(sQ(n+1) − sQ(n)) = 1 , (3.C.7)

which is always true as a consequence of equation (3.B.36).
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3.D Highest weight property of the Bethe ansatz states with respect to total spin

We give a proof of the highest weight theorem presented in Section 3.4. The proof is based
on the fact that the action of the spin operators S± and Sz on the Bethe ansatz states reduces
to an action of associated spin operators on the eigenstates |kP,λλλ〉 of the inhomogeneous
transfer matrix t(λ|kP). The highest weight theorem then follows from the su(2) invariance
of t(λ|kP).

3.D.1 Spin operators in fermionic and in spin chain representation

Let us introduce some more notation for spin chains. When dealing with spin chains it
is often useful to switch from the local basis {σ x , σ y, σ z, I2} to the canonical gl(2) basis
{e1

1, e2
1, e1

2, e2
2}, where

e1
1 =

(
1 0
0 0

)
, e2

1 =
(

0 1
0 0

)
, e1

2 =
(

0 0
1 0

)
, e2

2 =
(

0 0
0 1

)
. (3.D.1)

These matrices act as

eb
aec = δb

c ea (3.D.2)

on the unit vectors e↑ =
(1

0

)
, e↓ =

(0
1

)
and obey the multiplication rule

eb
aed

c = δb
c ed

a . (3.D.3)

Every operator A ∈ End(C2) can be represented as A = Aa
beb

a , where

Aa
b = Ac

d eaed
c eb = ea Aeb = 〈ea, Aeb〉 . (3.D.4)

With every operator A ∈ End(C2) we can associate an operator

As
n = I⊗(n−1)

2 ⊗ A ⊗ I⊗(N−n)
2 , (3.D.5)

acting on the space of states of an N -site spin- 1
2 chain, and the completely symmetrized

one-site operator

As =
N∑

n=1

As
n . (3.D.6)

The operator As
n has matrix elements

〈a|As
n|b〉 = δ

a1
b1

. . . δ
an−1
bn−1

Aan
bn
δ

an+1
bn+1

. . . δ
aN
bN

. (3.D.7)

Similarly, we can associate a fermionic operator with A. Define 2× 2-matrices Sn by
their matrix elements

Sn
b
a = c†n,acn,b . (3.D.8)
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Then

A f
n = tr(ASn) (3.D.9)

induces an action of A on the nth site of an electronic lattice model, and we may define the
completely symmetric one-site operator

A f =
N∑

n=1

A f
n . (3.D.10)

The spin operators Sα , α = x, y, z, and the particle number operator N̂ are of this form.

3.D.2 Action of spin operators on Bethe ansatz states

Let us calculate the action of A f on an N -particle state |ψ〉. Using (3.A.13) and (3.A.11)
we obtain

A f |ψ〉 = 1

N !

∑
y∈ZN

L

∑
b∈ZN

2

ψ(y; b) A f |y,b〉

= 1

(N !)2

∑
x,y∈ZN

L

∑
a,b∈ZN

2

|x, a〉〈x, a|A f |y,b〉〈y,b|ψ〉

= 1

N !

∑
x∈ZN

L

∑
a∈ZN

2

〈x, a|A f |ψ〉|x, a〉 . (3.D.11)

The matrix element 〈x, a|A f |ψ〉 is easily calculated, observing that the commutator of A f

and the Fermi operator cxn ,an is

[cxn ,an , A f ] = [cxn ,an
, c†xn ,acxn ,b]Aa

b = {cxn ,an
, c†xn ,a}cxn ,b Aa

b = Aan
bn

cxn ,bn . (3.D.12)

It follows that

〈x, a|A f |ψ〉 =
N∑

n=1

Aan
bn
〈0|cx1,a1 . . . cxn−1,an−1 cxn ,bn cxn+1,an+1 . . . cxN ,aN |ψ〉

=
N∑

n=1

δ
a1
b1

. . . δ
an−1
bn−1

Aan
bn
δ

an+1
bn+1

δ
aN
bN
〈0|cx1,b1 . . . cxN ,bN |ψ〉

=
∑

b∈ZN
2

〈a|As |b〉ψ(x; b) . (3.D.13)

Let us apply this formula to the Bethe ansatz eigenstate |ψk,λλλ〉. We obtain

〈x, a|A f |ψk,λλλ〉 =
∑

b∈ZN
2

∑
P∈SN

sign(P Q)〈a|As |b〉〈bQ|kP,λλλ〉ei〈kP,xQ〉

=
∑

P∈SN

sign(P Q)〈a|As Q|kP,λλλ〉ei〈kP,xQ〉

=
∑

P∈SN

sign(P Q)〈aQ|As |kP,λλλ〉ei〈kP,xQ〉 . (3.D.14)
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Here we have used 〈bQ| = 〈b|Q (see Section 3.B.2) and
∑

b∈ZN
2
|b〉〈b| = id in the second

equation and [As, Q] = 0 in the third equation. Equations (3.D.13) and (3.D.14) show how
A f induces the action of As on the spin part of the Bethe ansatz wave functions.

Let us consider the simplest example. For A = I2 we have A f =∑N
n=1 c†n,acn,a = N̂ and

As = N · id. Thus, (3.D.13) and (3.D.14) imply that

N̂ |ψk,λλλ〉 = N |ψk,λλλ〉 , (3.D.15)

which shows nothing but the fact that the Bethe ansatz states are N -particle states.
In the next section we shall consider the action of spin operators on Bethe ansatz
states.

3.D.3 su(2) invariance of the spin problem

In the previous section we have shown that the action of Fermi operators A f of the form
(3.D.10) induces an action of associated spin operators As , equation (3.D.6), on the spin
states |kP,λλλ〉 that determine the amplitudes 〈aQ|kP,λλλ〉 in the Bethe ansatz wave functions.
Here we consider the cases A = σα , α = x, y, z, i.e., A f = 2Sα . The corresponding spin
operators on the spin chain space of states are

�α =
N∑

n=1

σα
n . (3.D.16)

These operators generate a representation of the Lie algebra su(2),

[�α,�β] = 2iεαβγ�γ . (3.D.17)

The ladder operators in this representation are

�± = �x ± i� y . (3.D.18)

They correspond to A = σ±, A f = 2S±.
We are now going to prove that the eigenstates |kP,λλλ〉 of the transfer matrix t(λ|kP)

(see equation (3.B.55)) are su(2) highest weight states with highest weight N − 2M . This
means that

�+|kP,λλλ〉 = 0 (3.D.19)

and

�z|kP,λλλ〉 = (N − 2M)|kP,λλλ〉 , (3.D.20)

if the Bethe ansatz equations (3.B.83) are satisfied. We shall further show that the transfer
matrix t(λ|kP) commutes with the su(2) generators,

[�±, t(λ|kP)] = [�z, t(λ|kP)] = 0 . (3.D.21)
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Equations (3.D.19), (3.D.20) and (3.D.21) follow from the ‘su(2) invariance’ of the
monodromy matrix T (λ|kP), which can be stated as follows:

[T (λ|kP), σ α +�α] = 0 , (3.D.22)

for α = x, y, z. Here the σα are 2× 2-matrices in auxiliary space, and the �α are spin
operators in the spin chain space of states, i.e., they act in the same space as the matrix
elements of T (λ|kP).

We first prove the basic formula (3.D.22) and show afterwards how (3.D.19)–(3.D.21)
follow. Equation (3.D.22) is a consequence of a similar statement for the L-operators (see
(3.B.60)), Ln(λ) = c(2λ)+ b(2λ)σασα

n . On the one hand we have

[Ln(λ), σ α
n ] = −b(2λ)σβ[σα

n , σ β
n ] = −b(2λ)2iεαβγ σ βσ γ

n , (3.D.23)

on the other hand

[Ln(λ), σ α] = −b(2λ)σβ
n [σα, σ β] = −b(2λ)2iεαβγ σ β

n σγ = b(2λ)2iεαβγ σ βσ γ
n . (3.D.24)

Thus, adding the latter two equations,

[Ln(λ), σ α + σα
n ] = 0 . (3.D.25)

This result is easily lifted to the level of the monodromy matrix,

[T (λ|kP), �α] =
N∑

n=1

[L N (λ) . . . L1(λ), σ α
n ]

=
N∑

n=1

L N (λ) . . . Ln+1(λ)[Ln(λ), σ α
n ]Ln−1(λ) . . . L1(λ)

=−
N∑

n=1

L N (λ) . . . Ln+1(λ)[Ln(λ), σ α]Ln−1(λ) . . . L1(λ)

=− [T (λ|kP), σ α] , (3.D.26)

and equation (3.D.22) is proven. In the above calculation we used [Ln(λ), σ α
m ] = 0 for

m �= n in the second equation, (3.D.25) in the third equation, and the Leibniz rule in the
last equation.

Let us now reformulate the invariance equation (3.D.22) for the monodromy matrix. We
multiply (3.D.22) by a numerical 2× 2 matrix A and take the trace in auxiliary space. Then[

�α, tr{A T (λ|k)}] = tr
{
[σα, A]T (λ|k)

}
. (3.D.27)

Setting A = I2 we obtain (3.D.21). Setting A = σ− and α = + or α = z, respectively, we
obtain

[�+, B(λ)] = A(λ)− D(λ) , (3.D.28a)

[�z, B(λ)] = −2B(λ) (3.D.28b)

which will be needed in the proof of (3.D.19) and (3.D.20). More generally we may de-
fine J α(λ) = tr{σαT (λ|k)}. These linear combinations of monodromy matrix elements
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obviously satisfy

[�α, J β(λ)] = 2iεαβγ J γ (λ) , (3.D.29)

which means they transform like a vector representation of su(2).
Let us proceed with the proof of (3.D.19) and (3.D.20). Equation (3.D.20) is easier to

prove than (3.D.19). It follows from (3.D.28b) and from �z|0〉 = N |0〉,
�z|kP,λλλ〉 = �z B(λ1) . . . B(λM )|0〉

= B(λ1) . . . B(λM )(�z − 2M)|0〉
= (N − 2M)|kP,λλλ〉 . (3.D.30)

Note that this equation is valid, even if the Bethe ansatz equations (3.B.83) are not satisfied.
By way of contrast, the Bethe ansatz equations are needed to prove (3.D.19). First of all,

�+|0〉 = 0. Hence, (3.D.28a) implies that

�+|kP,λλλ〉 = �+B(λ1) . . . B(λM )|0〉

=
M∑

n=1

B(λ1) . . . B(λn−1)
(

A(λn)− D(λn)
)
B(λn+1) . . . B(λM )|0〉 . (3.D.31)

For the evaluation of the expression on the right hand side of this equation we use the
commutation relations (3.B.71), (3.B.72) between B(λ) and A(µ), D(µ). Our arguments
are similar to the arguments used in the derivation of the second level Bethe ansatz equations
(3.B.83) in appendix 3.B.5: When commuting A(λn) and D(λn) successively to the right
in equation (3.D.31), two terms are generated in every step, one term, in which A and D
keep their arguments, and another term in which A and D interchange their arguments with
B. Therefore, taking into account that A(λ)|0〉 = |0〉 and D(λ)|0〉 = d(λ)|0〉 (see appendix
3.B.5), the right-hand side of (3.D.31) must be equal to a sum over products of M − 1
operators B(λ) acting on the ferromagnetic state,

�+|kP,λλλ〉 =
M∑

n=1

(
Gn − G̃n d(λn)

) M∏
m=1
m �=n

B(λm)|0〉 . (3.D.32)

Let us consider the coefficient of the first term in this sum. Contributions to this term can
only stem from the first term,(

A(λ1)− D(λ1)
)
B(λ2) . . . B(λM )|0〉 , (3.D.33)

in the sum on the right-hand side of (3.D.31), since all other terms contain B(λ1). When
moving the operators A(λ1) and D(λ1) to the right, they have to keep their arguments in
every step in order to produce a contribution to the first term on the right-hand side of
(3.D.32). Thus, it follows from (3.B.71), (3.B.72) that

G1 − G̃1 d(λ1) =
M∏

m=2

1

c(λm − λ1)
− d(λ1)

M∏
m=2

1

c(λ1 − λm)
. (3.D.34)
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Like in the derivation of the Bethe ansatz equations we can use the symmetry of the Bethe
ansatz states |kP,λλλ〉 with respect to permutations of the λ j to conclude that all the coeffi-
cients are of the same form. Thus,

Gn − G̃n d(λn) =
M∏

m=1
m �=n

1

c(λn − λm)

[ M∏
m=1
m �=n

c(λn − λm)

c(λm − λn)
− d(λn)

]
, (3.D.35)

for n = 1, . . . , M . Obviously, these coefficients vanish if the Bethe ansatz equations
(3.B.83) are satisfied, and our proof of (3.D.19) is complete. Alternatively, (3.D.19) can be
proven by induction over M , which we suggest as an exercise to the reader.

Let us discuss the implications of (3.D.19)–(3.D.21). The spin states |kP,λλλ〉 are highest
weight states with respect to the total spin, which is conserved by the transfer matrix
t(λ|kP). Since the value N − 2M of the total spin must be positive, we must have M ≤
N/2. Furthermore, because of (3.D.21), all states (�−)n|kP,λλλ〉, n = 1, . . . , N − 2M , are
eigenstates of t(λ|kP) with the common eigenvalue �(λ) (see (3.B.84)).

Because of (3.D.11) and (3.D.14) similar statements are true for the Bethe ansatz eigen-
states of the Hubbard Hamiltonian. First of all, we must have M ≤ N/2. Equations (3.D.19),
(3.D.20) in conjunction with (3.D.11) and (3.D.14) imply that the Bethe ansatz eigenstates
of the Hubbard Hamiltonian are highest weight with respect to the spin representation Sα ,
α = x, y, z, of su(2), i.e., we have

S+|ψk,λλλ〉 = 0 , (3.D.36)

Sz|ψk,λλλ〉 = 1
2 (N − 2M)|ψk,λλλ〉 . (3.D.37)

Therefore, the states

(S−)n|ψk,λλλ〉 = 1

N !

∑
x∈ZN

L

∑
a∈ZN

2

∑
P∈SN

sign(P Q)〈aQ|(�−)n|kP,λλλ〉ei〈kP,xQ〉|x, a〉 (3.D.38)

for n = 0, . . . , N − 2M form a degenerate multiplet of eigenstates of the Hubbard Hamil-
tonian. The multiplet has dimension N − 2M + 1. This result together with a similar result
for the η-representation of su(2) will play an important role, when we count the number of
Bethe ansatz states in Chapter 4.

3.E Explicit expressions for the amplitudes in the Bethe ansatz wave functions

The amplitudes

A(kP|aQ) = 〈aQ|kP,λλλ〉 (3.E.1)

in the Bethe ansatz wave functions carry the information about the spin configuration of
the state. In appendix 3.B we expressed these amplitudes through the action of spin wave
creation operators B(λ) on the ferromagnetic state |0〉 = e⊗N

↑ ,

〈aQ|kP,λλλ〉 = 〈aQ|B(λ1) . . . B(λM )|0〉 . (3.E.2)
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This representation is very convenient for many purposes. It is used, for instance, in
appendix 3.D to prove the highest weight property of the Bethe ansatz states with re-
spect to total spin. Sometimes however, we wish to have a more explicit expression. This
will be derived below.

Let us define the states

|{y j }Mj=1〉 =
M∏

j=1

σ−y j
|0〉 . (3.E.3)

Obviously, the set {
|{y j }Mj=1〉 ∈ (C2)⊗N

∣∣∣1 ≤ y1 < · · · < yM ≤ N
}

(3.E.4)

is a basis of the subspace with fixed value 1
2 (N − 2M) of the z-component of the total spin

of the spin chain space of states. As we saw in appendix 3.D the eigenstates |kP,λλλ〉 of the
transfer matrix t(λ|kP) are in this subspace. Hence, we get the expansion

|kP,λλλ〉 =
∑

1≤y1<···<yM≤N

�(y|kP,λλλ)|{y j }Mj=1〉 , (3.E.5)

where y = (y1, . . . , yM ). The coefficients �(y|kP,λλλ) are called the coordinate Bethe ansatz
wave functions of the inhomogeneous XXX spin chain. Their homogeneous limit, k j = 0,
was obtained by H. Bethe in his famous article [60]. Here we explain, how the wave functions
�(y|kP,λλλ) are obtained within the scheme of the algebraic Bethe ansatz. We shall show
that

�(y|kP,λλλ) =
∑

R∈SM

A(λλλR)
M∏

�=1

(
2iu

λR(�) − sP(y�) + iu

y�−1∏
j=1

λR(�) − sP( j) − iu

λR(�) − sP( j) + iu

)
, (3.E.6)

where

A(λλλ) =
∏

1≤m<n≤M

λm − λn − 2iu

λm − λn
. (3.E.7)

In our proof we shall resort to a formidable formula for the ‘iteration of the co-
multiplication’ which was obtained in [214, 215]. In order to explain this formula it is
helpful to consider a simple special case first. Let us construct an abstract ‘two-site model’
by dividing the product of L-operators in the definition (3.B.62) of the monodromy matrix
into two parts,

T1(λ|kP) = Ln(λ− sP(n)) . . . L1(λ− sP(1)) , (3.E.8)

T2(λ|kP) = L N (λ− sP(N )) . . . Ln+1(λ− sP(n+1)) . (3.E.9)

Then,

T (λ|kP) = T2(λ|kP)T1(λ|kP) . (3.E.10)
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Both, T1 and T2 are 2× 2-matrices in auxiliary space,

Tα(λ|k) =
(

Aα(λ) Bα(λ)
Cα(λ) Dα(λ)

)
, (3.E.11)

α = 1, 2. By construction, the matrix elements of T1 commute with the matrix elements of
T2, and both matrices satisfy the same commutation relations as T .

Ř(λ− µ)
(
Tα(λ|kP)⊗ Tα(µ|kP)

) = (
Tα(µ|kP)⊗ Tα(λ|kP)

)
Ř(λ− µ) , (3.E.12)

α = 1, 2. The matrix elements of T can be represented in terms of the matrix elements of
T1 and T2. In particular,

B(λ) = A2(λ)B1(λ)+ B2(λ)D1(λ) . (3.E.13)

We conclude that

|kP,λλλ〉 =
M∏

j=1

(
A2(λ j )B1(λ j )+ B2(λ j )D1(λ j )

)|0〉 . (3.E.14)

Now we know from the form of the L-operators (see (3.B.60)) that

Aα(λ)|0〉 = |0〉 , Dα(λ)|0〉 = dα(λ)|0〉 (3.E.15)

with

d1(λ) =
n∏

j=1

λ− sP( j) − iu

λ− sP( j) + iu
, d2(λ) =

N∏
j=n+1

λ− sP( j) − iu

λ− sP( j) + iu
. (3.E.16)

We further know the commutation relations between Aα(λ), Dα(λ) and Bα(λ), α = 1, 2.
They follow from (3.E.12) and are of the same form as (3.B.71), (3.B.72). Using these
commutation relations and the equations (3.E.15), (3.E.16), we can expand the product on
the right hand side of (3.E.14). We obtain

|kP,λλλ〉 =
∑

(S1,S2)∈p2

(
{λ j }Mj=1

)
[ ∏
λ

(1)
m1∈S1

∏
λ

(2)
m2∈S2

d1(λ(2)
m2

)

c(λ(2)
m2 − λ

(1)
m1 )

B1(λ(1)
m1

)B2(λ(2)
m2

)

]
|0〉 . (3.E.17)

Here p2
({λ j }Mj=1

)
is the set of all ordered pairs (S1, S2) of subsets S1, S2 ⊂ {λ j }Mj=1, such

that S1 ∪ S2 = {λ j }Mj=1 and S1 ∩ S2 = ∅. For instance, if M = 2,

p2
({λ1, λ2}

) = {({λ1, λ2},∅
)
,
({λ1}, {λ2}

)
,
({λ2}, {λ1}

)
,
(∅, {λ1, λ2}

)}
. (3.E.18)

If one of the subsets is empty, we replace the corresponding factors in the products by 1.
Equation (3.E.17) can be proven by induction over M . We recommend the reader to verify
it for M = 1 and M = 2.



104 Appendices to Chapter 3

We may now iterate the above procedure, for example, by dividing T2 into two factors.
After k steps we arrive at

T (λ|kP) = Tk(λ|kP) . . . T1(λ|kP) , (3.E.19)

where each Tα(λ|kP) consists of a string of L-operators as in (3.E.8) and (3.E.9). The
matrix elements of Tα commute with the matrix elements of Tβ , if α �= β, and like for the
two-site model we have

Tα(λ|k) =
(

Aα(λ) Bα(λ)
Cα(λ) Dα(λ)

)
, (3.E.20)

Aα(λ)|0〉 = |0〉 , Dα(λ)|0〉 = dα(λ)|0〉 , (3.E.21)

α = 1, . . . , k, where the dα(λ) are given by similar expressions as in (3.E.16). Within this
notation the k-site generalization of (3.E.17) is

|kP,λλλ〉 =
∑

(S1,...,Sk )∈pk

(
{λ j }Mj=1

)
[ ∏

1≤α<β≤k

∏
λ

(α)
mα∈Sα

∏
λ

(β)
mβ
∈Sβ

dα(λ(β)
mβ

)

c(λ(β)
mβ
− λ

(α)
mα

)

]

×
[ k∏
α=1

∏
λ

(α)
mα∈Sα

Bα(λ(α)
mα

)

]
|0〉 . (3.E.22)

The set pk
({λ j }Mj=1

)
is the set of all ordered k-tuples (S1, . . . , Sk) of subsets Sα ⊂ {λ j }Mj=1,

α = 1, . . . , k, such that
⋃k

α=1 Sα = {λ j }Mj=1 and Sα ∩ Sβ = ∅ for α �= β. If one of the sets
Sα is empty, then, by definition, the corresponding product is equal to 1. Equation (3.E.22)
was obtained in [215]. Note that it is valid in the more general context of the so-called
generalized model (see e.g. [270]). It can be proven by induction over k.

We now consider the particular case k = N , where N is the length of the spin chain.
Then each factor Tα(λ|kP), α = 1, . . . , N , must be identified with an individual L-operator
Lα(λ− sP(α)). From the definition (3.B.60) of the L-operators we obtain

dα(λ) = c(2(λ− sP(α)))− b(2(λ− sP(α))) = λ− sP(α) − iu

λ− sP(α) + iu
(3.E.23)

and

Bα(λ) = 2b(2(λ− sP(α)))σ
−
α =

2iuσ−α
λ− sP(α) + iu

. (3.E.24)

Thus, Bα(λ) ∼ σ−α , and therefore

Bα(λ1)Bα(λ2) = 0 . (3.E.25)

The latter equation leads to several simplifications in (3.E.22). If any of the sets Sα ,
α = 1, . . . , N , contains more than one element, then, because of (3.E.25), the correspond-
ing product

∏
λ

(α)
mα∈Sα

Bα(λ(α)
mα

) on the right-hand side of (3.E.22) is zero. Let us consider
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the general non-vanishing term in the sum on the right-hand side of (3.E.22). For this
term M of the sets Sα , say Sα j , j = 1, . . . , M , are non-empty. They contain precisely one
element each, which must be one of the λ j . Hence, there is a permutation R ∈ SM , such
that Sα j = {λR( j)}. The remaining sets Sα are empty. All N -tuples (S1, . . . , SN ) that lead to
non vanishing term in the sum in (3.E.22) are thus uniquely characterized by M integers
α j with 1 ≤ α1 < · · · < αM ≤ N and a permutation R ∈ SM . We may therefore transform
the sum in (3.E.22) into a sum over the α j and the permutations R,

|kP,λλλ〉 =
∑

(S1,...,SN )∈pN

(
{λ j }Mj=1

)
[ ∏

1≤α<β≤N

∏
λ

(α)
mα∈Sα

∏
λ

(β)
mβ
∈Sβ

1

c(λ(β)
mβ
− λ

(α)
mα

)

]

×
[ ∏

1≤α<β≤N

∏
λ

(β)
mβ
∈Sβ

dα(λ(β)
mβ

)

]
·
[ N∏
α=1

∏
λ

(α)
mα∈Sα

Bα(λ(α)
mα

)

]
|0〉

=
∑

1≤α1<···<αM≤N

∑
R∈SM

[ ∏
1≤m<n≤M

1

c(λR(n) − λR(m))

]

×
[ M∏

n=1

αn−1∏
α=1

dα(λR(n))

]
·
[ M∏

n=1

Bαn (λR(n))

]
|0〉 . (3.E.26)

Here we have taken into account that the products over empty sets contribute by definition
a factor of 1. Let us finally insert (3.E.23), (3.E.24) and the explicit form of c(λ), equation
(3.B.59). We end up with

|kP,λλλ〉 =
∑

1≤α1<···<αM≤N

∑
R∈SM

[ ∏
1≤m<n≤M

λR(m) − λR(n) − iu

λR(m) − λR(n)

]

×
[ M∏

n=1

2iu

λR(n) − sP(αn ) + iu

αn−1∏
α=1

λR(n) − sP(α) − iu

λR(n) − sP(α) + iu

]
·
[ M∏

n=1

σ−αn

]
|0〉 , (3.E.27)

which after a suitable redefinition of variables turns into the desired result, i.e., into (3.E.6),
(3.E.7).

3.F Lowest weight theorem for the η-pairing symmetry

This appendix contains a proof of equation (3.101): we show that for any even
lattice length L all Bethe ansatz states |ψk,λλλ〉, equation (3.89), are annihilated by
the operator η−. We present a simplified version of the argument originally given
in [125].

The operator η− reduces the particle number by two (see equation (2.87)). The result
of acting with η− on any N -particle state |ψN 〉 is therefore an (N − 2)-particle state. The
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corresponding (N − 2)-particle wave function is (compare appendix 3.A)

(η−ψN )(x1, . . . , xN−2; a1, . . . , aN−2)

= 〈(x1, . . . , xN−2), (a1, . . . , aN−2)|η−|ψN 〉

=
L∑

x=1

(−1)x 〈0|cx1,a1 . . . cxN−2,aN−2 cx,↑cx,↓|ψN 〉

=
L∑

x=1

(−1)x ψN (x1, . . . , xN−2, x, x ; a1, . . . , aN−2,↑,↓)

=
∑

aN−1,aN=↑,↓
δaN−1,↑δaN ,↓

L∑
xN−1,xN=1

(−1)xN δxN−1,xN ψN (x; a) , (3.F.1)

where we have inserted the definition (2.80b) of η− in the third line. Replacing ψN (x; a)
with any Bethe ansatz wave function ψ(x; a|k;λλλ) we see that our assertion η−|ψk,λλλ〉 = 0 is
equivalent to the following

Lemma 1. For even length of the lattice L every Bethe ansatz wave function ψ(x; a|k;λλλ),
determined by equations (3.91)–(3.96) with 2M ≤ N ≤ L, satisfies the identity

L∑
xN−1,xN=1

(−1)xN δxN−1,xN ψ(x; a|k;λλλ) = 0 . (3.F.2)

Remark. Let us emphasize that we consider only finite charge momenta and finite spin
rapidities, i.e., k j , λ� are supposed to take values in C and not on the Riemann sphere.
The corresponding solutions of the Lieb-Wu equations with 2M ≤ N ≤ L will be termed
regular as in [125].

The proof of lemma 1 will be divided into two essential steps. In step one the summation
over xN−1 and xN is carried out. Using the evenness of L and the fact that k andλλλ satisfy the
Lieb-Wu equations we shall see that the validity of the lemma depends on a simple identity
for the spin part 〈aQ|kP,λλλ〉 of the Bethe ansatz wave function (3.91)–(3.94). The second
essential step in the proof is then to establish this identity.

Step 1. We denote the sum on the left-hand side of (3.F.2) by S. The first problem when
we calculate S, and for this purpose sum expressions involving the Bethe ansatz wave
functions

ψ(x; a|k;λλλ) =
∑

P∈SN

sign(P Q)〈aQ|kP,λλλ〉 ei〈kP,xQ〉 (3.F.3)

over x = xN−1 = xN , is the dependence of the permutation Q on x. We have to make this
dependence explicit. For this purpose we fix x1, . . . , xN−2. Then a permutation Q1 ∈ SN

exists, such that Q1(1) = N − 1, Q1(2) = N and xQ1(3) ≤ · · · ≤ xQ1(N ). When x runs from
1 to L , then Q runs through N − 1 different permutations characterized by x lying between
two successive values xQ1( j) and xQ1( j+1), j = 3, . . . , N − 1, or lying below xQ1(3) or above
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xQ1(N ), respectively. We will call these permutations Q�. They can be simply expressed in
terms of the generators U� = �12�23 . . . ��−1,� of the cyclic subgroups of order � of SN .
We have

Q� = Q1U 2
�+1 , � = 2, . . . , N − 1 . (3.F.4)

Using these specific permutations we can now rewrite the left-hand side of (3.F.2) as

S =
N−1∑
�=1

∑
x∈I�

∑
P∈SN

sign(P Q�)〈aQ�|kP〉(−1)x ei〈kP|xQ�〉∣∣
xN−1=xN=x (3.F.5)

=
N−1∑
�=1

∑
P∈SN

sign(P Q1)〈aQ1U 2
�+1|kPU 2

�+1〉
∑
x∈I�

(−1)x ei〈kP|xQ1〉∣∣
xN−1=xN=x

.

In the second equation we took into account that sign(U 2
� ) = 1 and we shifted the summation

over P by U 2
�+1. We suppressed the argument λλλ in the spin part of the wave function. As a

further convenient shorthand notation we introduced the sets

I� =

{

xQ1(�+1), . . . , xQ1(�+2) − 1
}

for xQ1(�+1) < xQ1(�+2)

∅ else
. (3.F.6)

This definition works for � = 2, . . . , N − 2, but not at the boundaries � = 1, N − 1, where
we define I1 = {1, . . . , xQ1(3) − 1} and IN−1 = {xQ1(N ), . . . , L} instead and employ again
the convention that sets I1 of ‘zero length’ (xQ1(3) = 1) are empty. The number of elements
in I� will be denoted by |I�|.

Having rewritten S in the form (3.F.5) we can perform the summations over x by means
of the geometric sum formula. The only exception we have to treat separately is when
kP(1) + kP(2) = π and thus − exp

(
i(kP(1) + kP(2))

) = 1. In this case we obtain

S =
N−1∑
�=1

∑
P∈SN

sign(P Q1)|I�|ei
∑N

j=3 kP( j)xQ1( j)〈aQ1U 2
�+1|kPU 2

�+1〉

=
N−1∑
�=1

∑
P∈AN

sign(P Q1)|I�|ei
∑N

j=3 kP( j)xQ1( j)(〈aQ1U 2
�+1|kPU 2

�+1〉 − 〈aQ1U 2
�+1|kP�12U 2

�+1〉
)

(3.F.7)

which vanishes, because the terms in the brackets on the right-hand side cancel each
other: |kP�12U 2

� 〉 = |kPU 2
� ��−1,�〉 = Y�−1,�(sP(1) − sP(2))|kPU 2

� 〉 = |kPU 2
� 〉. Here we

used equation (3.B.31), again the abbreviation s j = sin(k j ) introduced in appendix 3.B,
and the fact that Y�−1,�(0) = 1.

Now we have proven lemma 1 for the special case kP(1) + kP(2) = π . For kP(1) + kP(2)

�= π we use the geometric sum formula to carry out the summation over x in equation
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(3.F.5). We obtain∑
x∈I�

(−1)x ei〈kP|xQ1〉∣∣
xN−1=xN=x

= ei
∑N

j=3 kP( j)xQ1( j)

1+ ei(kP(1)+kP(2))

[(−ei(kP(1)+kP(2))
)xQ1(�+1) − (−ei(kP(1)+kP(2))

)xQ1(�+2)
]

(3.F.8)

for � = 2, . . . , N − 2. For � = 1 and � = N − 1 the terms in the square brackets have to be
modified. For � = 1 the first term must be replaced by −ei(kP(1)+kP(2)), while for � = N − 1
we have to replace the second term by (−ei(kP(1)+kP(2)))L+1. It is exactly these two boundary
contributions that cancel each other for even L by means of equation (3.B.45), since

〈aQ1U 2
N |kPU 2

N 〉(−ei(kP(1)+kP(2)))L+1 = −(−1)L〈aQ1|kP〉ei(kP(1)+kP(2)) . (3.F.9)

Note that equation (3.B.45) which we used twice to obtain the right-hand side is only valid
if the Lieb-Wu equations are satisfied.

Inserting now equation (3.F.8) and the two single remaining boundary terms into equation
(3.F.5) we obtain after appropriately shifting the summation indices

S =
N∑

�=3

(−1)xQ1(�)
∑

P∈SN

sign(P Q1) e
i
[

(kP(1)+kP(2)+kP(�))xQ1(�)+
∑N

j=3
j �=�

kP( j)xQ1( j)

]

×〈aQ1U 2
� |kPU 2

� 〉 − 〈aQ1U 2
�−1|kPU 2

�−1〉
1+ ei(kP(1)+kP(2))

. (3.F.10)

This is almost the final expression we wished to derive in step one of our proof. To finish
step one we introduce one more little piece of notation. By S3

�, � = 3, . . . , N , we denote
the subgroup of SN of all bijective maps of the set {1, 2, �} onto itself. Then, using once
more the translational invariance of the sum over P, we can rewrite S as

S =
N∑

�=3

(−1)xQ1(�)
1

6

∑
P∈SN

sign(P Q1) e
i
[

(kP(1)+kP(2)+kP(�))xQ1(�)+
∑N

j=3
j �=�

kP( j)xQ1( j)

]

×
∑
�∈S3

�

sign(�)
〈aQ1U 2

� |kP�U 2
� 〉 − 〈aQ1U 2

�−1|kP�U 2
�−1〉

1+ ei(kP�(1)+kP�(2))
. (3.F.11)

Step 2. We shall show that the spin part of the Bethe ansatz wave function satisfies the
relation ∑

�∈S3
�

sign(�)
〈aQ1U 2

� |kP�U 2
� 〉 − 〈aQ1U 2

�−1|kP�U 2
�−1〉

1+ ei(kP�(1)+kP�(2))
= 0 (3.F.12)

for all P ∈ SN and for � = 3, . . . , N . Then lemma 1 will follow from (3.F.11).
Let us denote the left-hand side of (3.F.12) by C . Observing that

|kP��12U 2
� 〉 = |kP�U 2

� ��−1,�〉 = Y�−1,�(sP�(1) − sP�(2))|kP�U 2
� 〉 (3.F.13)
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and using the explicit expression (3.B.32) for the Y -operator and the coset decomposition
S3

� = A3
� ∪ A3

��12 we obtain

C =
∑
�∈A3

�

sign(�)
sP�(1) − sP�(2)

1+ ei(kP�(1)+kP�(2))

[ 〈aQ1U 2
� |(1−��−1,�)|kP�U 2

� 〉
2iu + sP�(1) − sP�(2)

−〈aQ1U 2
�−1|(1−��−2,�−1)|kP�U 2

�−1〉
2iu + sP�(1) − sP�(2)

]
. (3.F.14)

Next we introduce the shorthand notation

B�(P�) = 〈aQ1U 2
� |(1−��−1,�)|kP�U 2

� 〉
2iu + sP�(1) − sP�(2)

. (3.F.15)

We shall show below that

B�(P�)− B�−1(P�) = B�(P)− B�−1(P) (3.F.16)

for all � ∈ S3
�. Assuming this for the moment to be true we can complete the proof of

(3.F.12):

C = (B�(P)− B�−1(P))
∑
�∈A3

�

sign(�)
sP�(1) − sP�(2)

1+ ei(kP�(1)+kP�(2))

= i

2
(B�(P)− B�−1(P))

∑
�∈A3

�

sign(�)
(
e−i(kP�(1)) − e−i(kP�(2))

) = 0 . (3.F.17)

We have thus reduced the proof of lemma 1 to the verification of the invariance equation
(3.F.16), which is a straightforward but slightly cumbersome matter and can be done by
resorting to the explicit form (3.91)–(3.94) of the spin part of the Bethe ansatz wave function.
More precisely, we shall only need the explicit form of the functions Fk(λ, y), equation
(3.93). The amplitudes A(λλλ), equation (3.94), do not depend on the vector k. In the following
we only need that they satisfy the recurrence relation

A(λλλR�m,m+1) = λP(m) − λP(m+1) + 2iu

λP(m) − λP(m+1) − 2iu
A(λλλR) (3.F.18)

for all R ∈ SM .
The matrix 1

2 (1−��−1,�) is the antisymmetrization operator in the indices �− 1 and
�. Hence, B�(P) is zero for aQ1U 2

� (�−1) = aQ1(1) = aN−1 = aQ1U 2
� (�) = aQ1(2) = aN and

changes sign if we interchange aN−1 and aN . We may therefore choose aN−1 =↓ and
aN =↑ for the remaining part of the proof. The sequence of ‘down spin coordinates’ y(�)

m ,
m = 1, . . . , M , is the same for 〈aQ1U 2

� | and 〈aQ1U 2
� ��−1,�| = 〈aQ1U 2

� |��−1,� with pre-
cisely one exception, say y(�)

m�
, which is �− 1 for 〈aQ1U 2

� | and � for 〈aQ1U 2
� |��−1,�. Using

this in the explicit form (3.91)–(3.94) of the spin part of the Bethe ansatz wave function
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results in

B�(P) = 2iu
∑

R∈SM

A(λλλR)
[ ∏

m=1,2,�

1

λR(m�) − sP(m) + iu

][�−1∏
n=3

λR(m�) − sP(n) − iu

λR(m�) − sP(n) + iu

]
×
[ M∏

m=1
m �=m�

FkPU 2
�
(λR(m), y(�)

m )
]
(λR(m�) − sP(�) − iu) . (3.F.19)

We have now rewritten B�(P) in such a way that the first three factors under the sum on the
right hand side are manifestly invariant under permutations of kP(1), kP(2) and kP(�). The last
factor,λR(m�) − sP(�) − iu, is clearly not invariant. How about the factors FkPU 2

�
(λR(m), y(�)

m )?
The answer depends on the value of y(�)

m : it is easy to see that

FkPU 2
�
(λ, y) = FkP�U 2

�
(λ, y) = FkPU 2

�−1
(λ, y) (3.F.20)

for all � ∈ S3
� unless y = �− 2, �− 1, �. This fact will become important below.

Next we replace � by �− 1 in (3.F.19) and subtract the result from (3.F.19). We distinguish
two cases by looking at the relevant pieces of the sequences of spins aQ�−1 (n) and aQ�−2 (n)
(see table 3.F.1). Case (i): aQ1(�) =↑ (called the up-spin case in [125]). We see from the
table that m�−1 = m� and y(�−1)

m = y(�)
m �= �− 2, �− 1, � for m �= m�. Using (3.F.19) and

(3.F.20) it follows that

B�(P)− B�−1(P) = 2iu
∑

R∈SM

A(λλλR)
[ ∏

m=1,2,�

1

λR(m�) − sP(m) + iu

]
×
[�−1∏

n=3

λR(m�) − sP(n) − iu

λR(m�) − sP(n) + iu

][ M∏
m=1

m �=m�

FkPU 2
�
(λR(m), y(�)

m )
]
(−2iu) (3.F.21)

with y(�)
m �= �− 2, �− 1, �. Taking into account (3.F.20) we see that this expression is indeed

invariant under all permutations of kP(1), kP(2) and kP(�).
Case (ii): aQ1(�) =↓ (down-spin case of [125]). We infer from table 3.F.1 that m�−1 =

m� − 1, y(�−1)
m�
= �, y(�)

m�−1
= �− 2, and y(�−1)

m = y(�)
m �= �− 2, �− 1, � for m �= m�,m� − 1.

Table 3.F.1. The two different cases in the
evaluation of B�(P)− B�−1(P)

↑-spin case n = �− 2 n = �− 1 n = �

aQ�−2(n) ↓ ↑ ↑
aQ�−1(n) ↑ ↓ ↑

↓-spin case n = �− 2 n = �− 1 n = �

aQ�−2(n) ↓ ↑ ↓
aQ�−1(n) ↓ ↓ ↑
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Using again (3.F.19) and (3.F.20) we obtain this time

B�(P)− B�−1(P) = 2iu
∑

R∈SM

A(λλλR)
[ M∏

m=1
m �=m�−1,m�

FkPU 2
�
(λR(m), y(�)

m )
]

×
{

FkPU 2
�
(λR(m�−1), �− 2)

[ ∏
m=1,2,�

1

λR(m�) − sP(m) + iu

][�−1∏
n=3

λR(m�) − sP(n) − iu

λR(m�) − sP(n) + iu

]
× (λR(m�) − sP(�) − iu)−

[ ∏
m=1,2,�

1

λR(m�−1) − sP(m) + iu

][�−1∏
n=3

λR(m�−1) − sP(n) − iu

λR(m�−1) − sP(n) + iu

]
× (λR(m�−1) − sP(�) + iu)FkPU 2

�−1
(λR(m�), �)

}
. (3.F.22)

Here we insert the explicit expressions for FkPU 2
�
(λ, �− 2) and FkPU 2

�−1
(λ, �) and pull out

the common factors. We arrive at

B�(P)− B�−1(P) = (2iu)2
∑

R∈SM

A(λλλR)
[ M∏

m=1
m �=m�−1,m�

FkPU 2
�
(λR(m), y(�)

m )
]

×
[�−1∏

n=3

λR(m�−1) − sP(n) − iu

λR(m�−1) − sP(n) + iu
· λR(m�) − sP(n) − iu

λR(m�) − sP(n) + iu

]
×

[ ∏
m=1,2,�

1

λR(m�−1) − sP(m) + iu
· 1

λR(m�) − sP(m) + iu

]
×

{
(λR(m�−1) − sP(1) + iu)(λR(m�−1) − sP(2) + iu)(λR(m�) − sP(�) − iu)

− (λR(m�−1) − sP(�) + iu)(λR(m�) − sP(1) − iu)(λR(m�) − sP(2) − iu)
}
. (3.F.23)

The only factor which does not have the required symmetry under permutations of kP(1)

kP(2) and kP(�) is the factor in curly brackets. We rewrite it using the trivial identities

λR(m�) − sP(�) − iu = λR(m�) − λR(m�−1) − 2iu + λR(m�−1) − sP(�) + iu ,

λR(m�−1) − sP(�) + iu = −(λR(m�) − λR(m�−1) − 2iu)+ λR(m�) − sP(�) − iu

as {
. . .

} = (λR(m�) − λR(m�−1) − 2iu)
[
(λR(m�−1) − sP(1) + iu)(λR(m�−1) − sP(2) + iu)

+ (λR(m�) − sP(1) − iu)(λR(m�) − sP(2) − iu)
]

+ (λR(m�−1) − sP(1) + iu)(λR(m�−1) − sP(2) + iu)(λR(m�−1) − sP(�) + iu)

− (λR(m�) − sP(1) − iu)(λR(m�) − sP(2) − iu)(λR(m�) − sP(�) − iu) . (3.F.24)

The second and the third term on the right-hand side have now the required symmetry, but
the first term has not. We observe, however, that the three factors in square brackets on the
right-hand side of equation (3.F.23) are not only symmetric in kP(1), kP(2) and kP(�) but also
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in λR(m�−1) and λR(m�), while A(λλλR�m�−1,m�
) is given by equation (3.F.18). We can thus

use our usual trick of decomposing the symmetric group as SM = AM ∪ AM�m�−1,m�
and

reducing the sum in (3.F.23) to a sum over AM . This way the first term on the right-hand
side of equation (3.F.24) gets reduced to

−4iu(λR(m�) − λR(m�−1))(λR(m�) − λR(m�−1) − 2iu) .

Since this expression is independent of k at all, we have finally succeeded in showing
that B�(P)− B�−1(P) is symmetric in kP(1), kP(2) and kP(�), and the proof of lemma 1 is
complete. �

3.G Limiting cases of the Bethe ansatz solution

The Bethe ansatz solution of the Hubbard model has several interesting limiting cases. In
appendices 2.A and 2.B we considered the strong coupling limits and the continuum limit
of the Hamiltonian. Here we discuss the same limits within the context of the Bethe ansatz
solution. The strong coupling limits will lead us to the Bethe ansatz solutions of the t-0
model and of the isotropic Heisenberg chain. We will also see how the Bethe ansatz can be
used to obtain the spectrum of the t-J Hamiltonian (2.A.33). In addition we shall briefly
touch upon the limit of weak coupling in which we shall ‘discover’ the so-called Gaudin
model [156].

3.G.1 Strong coupling limits

Formally the limit u →∞ is easily performed in the Bethe ansatz wave function and in
the Lieb-Wu equations. We just have to observe that the scale of the spin rapidities is at our
disposal. Hence we may define u�� = λ� and then take the limit in (3.95) and (3.96). We
immediately obtain the following equations,

eik j L =
M∏

�=1

�� − i

�� + i
, j = 1, . . . , N , (3.G.1)

(
�� − i

�� + i

)N

=
M∏

m=1
m �=�

�� −�m − 2i

�� −�m + 2i
, � = 1, . . . , M . (3.G.2)

We see that the equations for the charge momenta and spin rapidities decouple. The functions
sin(k j ) which appeared as inhomogeneities in the auxiliary spin problem have all vanished
from the equations. Equations (3.G.2) are the Bethe ansatz equations of the XXX Heisenberg
chain [60] (see Chapter 12.1.7). The expression on the right-hand side of (3.G.1) is the
eigenvalue of the shift operator for the spin chain. We therefore write

eiPs =
M∏

�=1

�� − i

�� + i
, (3.G.3)
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where Ps denotes the corresponding momentum eigenvalue. It may take values Ps =
m2π/N , m = 0, 1, . . . , N − 1 as can, for instance, be seen by multiplying (3.G.2) over
all � = 1, . . . , M . It follows that equations (3.G.1) have the solutions

k j = n j 2π

L
+ Ps

L
, j = 1, . . . , N , (3.G.4)

n j ∈ {0, . . . , L − 1}. These are the quantum numbers of a system of free spinless fermions
under twisted boundary conditions with twist angle Ps ∈ [0, 2π ]. They determine the eigen-
values of the Hubbard Hamiltonian (2.22) (which is more suitable for taking the limit
u →∞ than (2.31)) as

E = −2
N∑

j=1

cos(k j ) . (3.G.5)

For the Bethe ansatz wave function (3.91) we achieve a similar decoupling. After rescaling
u�� = λ� in (3.92) and taking the limit u →∞ it turns into

ψ∞(x; a|k;λλλ) = 〈aQ|λλλ〉
∑

P∈SN

sign(P Q)ei〈kP,xQ〉 = 〈aQ|λλλ〉 det
(
eikm xn

)
, (3.G.6)

where the amplitudes 〈aQ|λλλ〉 are now independent of k and are of the form of the Bethe
ansatz wave functions of the XXX Heisenberg chain,

〈aQ|λλλ〉 = C
∑

P∈SM

[ ∏
1≤m<n≤M

�P(m) −�P(n) − 2i

�P(m) −�P(n)

] M∏
�=1

(
�P(�) − i

�P(�) + i

)y�

(3.G.7)

with C = (2i)M
∏M

�=1(�� − i)−1. The y� are coordinates of down spins on electrons as
described in Section 3.3.2.

What is the interpretation of these results? In order to answer this question let us first
count the number of independent wave functions (3.G.6). For each fixed number N of
electrons there are 2N linearly independent wave functions (3.G.7) of the spin system1 and(L

N

)
inequivalent ways of choosing k j in accordance with (3.G.4), giving a total number of∑L

N=0

(L
N

)
2N = 3L wave functions of the form (3.G.6). 3L is the dimension of the space

of states of the various t-J Hamiltonians of appendix 2.A which is the space of electronic
states with double occupancy of sites excluded. This observation fits together well with
the fact that, because of the Slater determinant factor, the wave functions ψ∞ in equation
(3.G.6) vanish if any two coordinates, x j , xk , j �= k, coincide.

In fact, the wave functionsψ∞ give a set of eigenfunctions of the t-0 Hamiltonian (2.A.40)
which becomes complete when supplemented with the su(2) symmetry of the spin system.
This can be verified by using the right-hand side of (3.G.6) as an ansatz wave function
in the eigenvalue problem of the t-0 Hamiltonian. One can proceed in much the same
way as in the nested Bethe ansatz calculation for the Hubbard model in appendix 3.B.

1 To obtain this number we also have to take into account the su(2) symmetry of the spin system (see Section 3.D).
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It turns out that the ‘spin problem’ of diagonalizing the operator t(sP(1) − iu|kP) =
X1,n(sP(1) − sP(N )) . . . X1,2(sP(1) − sP(2)) on the left hand side of (3.B.47) gets replaced
with the eigenvalue problem for the shift operator Û = �1,2 . . . �N−1,N which is obtained
from t(sP(1) − iu|kP) for u →∞.2 The shift operator Û is diagonal in the basis of Bethe
ansatz states of the XXX Hamiltonian. Hence, we obtain the Bethe ansatz solution (3.G.1),
(3.G.2), (3.G.6) of the t-0 model.

Of course, the shift operator is highly degenerate and is diagonal in other bases. A partic-
ularly convenient choice is the basis of eigenstates of the XX chain (see e.g. Section 12.2.1)
which is equivalent to a system of free spinless fermions. In this basis the spin part 〈aQ|λλλ〉
of the wave function ψ∞ also assumes a determinantal form and the set (3.G.2) of Bethe
ansatz equations for the spin problem gets replaced by

eiq�N = (−1)M+1 , � = 1, . . . , M (3.G.8)

(see [179,219]). In these variables the momentum of the spin system entering the right-hand
side of (3.G.1) through (3.G.3) is Ps =

∑M
�=1 q�. The use of the XX chain eigenfunctions

instead of the more complicated XXX chain eigenfunctions made is possible to study
dynamical correlations of the t-0 model in [219].

However, if one is interested in the large u limit of the Hubbard model rather than in
the highly degenerate t-0 model it is preferable to stick with the XXX chain wavefunctions
for the spin part of ψ∞, because ψ∞ then includes the u → ∞ limit of the ground state
of the Hubbard model (which becomes unique for infinitesimal positive 1/u). Ogata and
Shiba identified this limit state and used it to study the ground state one-point Green
functions and spin-spin correlation function of the Hubbard model in the strong coupling
limit numerically [344] (see also [345]). They showed [344] that the limit state gives the
ground-state energy correctly to the order 1/u (rather than 1).

It is, of course, possible to expand the whole Bethe ansatz solution of the Hubbard model
systematically in 1/u. To give an example of how this works let us calculate the leading
1/u corrections to the energy eigenvalues. They turn out to be fairly simple.

We assume we are given a solution of the Lieb-Wu equations (3.95), (3.96) having an
asymptotic expansion of the form

k(LW )
j = k j + �k j

u
+O(1/u2) , j = 1, . . . , N , (3.G.9)

λ
(LW )
� = u�� +��� +O(1/u) , � = 1, . . . , M . (3.G.10)

Inserting this solution into the Lieb-Wu equations and comparing order by order in 1/u we
find that the k j and �� satisfy equations (3.G.1) and (3.G.2). The first order corrections �k j

2 This observation may lead us to the interpretation of t(sP(1) − iu|kP) as a shift operator for the inhomogeneous system. The
precise sense in which this is true can be seen in appendix 12.B.
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and ��� satisfy a set of linear equations with coefficients depending on k j and ��,

�k j L = 2
M∑

�=1

��� − sin(k j )

�2
� + 1

, j = 1, . . . , N , (3.G.11)

N∑
j=1

��� − sin(k j )

�2
� + 1

= 2
M∑

m=1

��� −��m

(�� −�m)2 + 4
, � = 1, . . . , M . (3.G.12)

Using (3.G.12) we can eliminate the variables ��� from (3.G.11). We obtain

�k j = es

L

N∑
n=1

(
sin(k j )− sin(kn)

)
, (3.G.13)

where

es = − 2

N

M∑
�=1

1

�2
� + 1

, (3.G.14)

which the reader may know as the energy per lattice site of the XXX Heisenberg chain
for antiferromagnetic exchange coupling J = 1. Using (3.G.13) and (3.G.9) we obtain the
energy eigenvalues of the Hubbard Hamiltonian (2.22) up to the order 1/u,

E = −2
N∑

j=1

cos(k j )+ 2es

u

[
N

L

N∑
j=1

sin2(k j )− 1

L

( N∑
j=1

sin(k j )
)2

]
. (3.G.15)

These are also the energy eigenvalues of the t-J Hamiltonian (2.A.33) up to the order 1/u.
At half-filling N = L the k j are uniquely fixed (for given Ps) by equation (3.G.4) and the
above expression for the energy simplifies to

E

L
= es

u
= − 2

uL

M∑
�=1

1

�2
� + 1

. (3.G.16)

Comparing with the results of appendix 2.A, in particular with the expression (2.A.37), we
see that we have indeed solved the isotropic Heisenberg chain. Its energy eigenvalues are
given by (3.G.16), where the spin rapidities satisfy the Bethe ansatz equations (3.G.2).

3.G.2 Continuum limit and Bethe ansatz solution of the model of electrons
with delta-function interaction

In appendix 2.B we showed that the Hubbard model can be viewed as a lattice regularization
of the continuum model of electrons with mutual delta-function interaction. The Heisenberg
equation of motion for the field operators of this model is called the non-linear Schrödinger
equation. The corresponding Hamiltonian is

HN L S =
∫ �

0
dx

[(
∂x�

†
a(x)

)
∂x�a(x)± 2c �†

a(x)�†
b(x)�b(x)�a(x)

]
. (3.G.17)
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In appendix 2.B we obtained this Hamiltonian from the Hubbard Hamiltonian by an ap-
propriate rescaling of the fields and variables. We introduced a lattice constant a0 and
considered it to be small. Discrete space variables n were rescaled as x = a0n and momenta
on the lattice k as q = k/a0. The total length � of the continuum model is therefore related
to the number of lattice sites L as � = a0L . We further found out that we have to rescale the
Hubbard coupling u as c = u/a0. Let us also introduce rescaled spin rapidities µ = λ/a0,
insert the new variables into the Lieb-Wu equations (3.95), (3.96) and perform the limit
a0 → 0. We obtain

eiq j � =
M∏

�=1

µ� − q j − ic

µ� − q j + ic
, j = 1, . . . , N , (3.G.18)

N∏
j=1

µ� − q j − ic

µ� − q j + ic
=

M∏
m=1
m �=�

µ� − µm − 2ic

µ� − µm + 2ic
, � = 1, . . . , M . (3.G.19)

The solutions q j of these equations determine the energy eigenvalues of the Hamiltonian
(3.G.17) which are obtained by using the expression (3.97) for the energy of the Hubbard
model in (2.B.19) and taking the limit a0 → 0:

E =
N∑

j=1

q2
j . (3.G.20)

With no further effort one also obtains the eigenfunctions of the NLS Hamiltonian from
those of the Hubbard Hamiltonian (see (3.91)–(3.94)) by first rescaling and then taking
the limit of vanishing lattice constant. The only structural change in the formulae is that
the functions sin k j get replaced by q j . In particular, the form of the wavefunctions in the
continuum ψc remains the same as on the lattice,

ψc(x; a|q;µµµ) =
∑

P∈SN

sign(P Q)〈aQ|qP,µµµ〉 ei〈qP,xQ〉 , (3.G.21)

with q = (q1, . . . , qN ) andµµµ = (µ1, . . . , µM ). The spin dependent amplitudes 〈aQ|qP,µµµ〉
are now

〈aQ|qP,µµµ〉 =
∑

R∈SM

A(µµµR)
M∏

�=1

FqP (µR(�); y�) , (3.G.22)

where Fq(µ; y) is

Fq(µ; y) = 2ic

µ− qy + ic

y−1∏
j=1

µ− q j − ic

µ− q j + ic
, (3.G.23)

and where the amplitudes A(µµµ) of the auxiliary spin model wavefunctions are given by

A(µµµ) =
∏

1≤m<n≤M

µm − µn − 2ic

µm − µn
. (3.G.24)
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The variables y� are again coordinates of down spins on electrons. Their values depend on
a and Q.

The above results were first obtained by M. Gaudin [154] and C. N. Yang [493] by
directly applying the ideas of the nested Bethe ansatz as described in appendix 3.B to the
Hamiltonian (3.G.17). Here we obtained them as an extra bonus out of the Bethe ansatz
solution of the Hubbard model. Starting from the Bethe ansatz equations (3.G.18), (3.G.19)
and the expression (3.G.20) we could develop the theory of the one-dimensional electron
gas with delta-function interaction in much the same way as we develop the theory of the
one-dimensional Hubbard model in the following chapters of this book.

Let us conclude our digression on the NLS Hamiltonian with the ‘derivation’ of a
conjecture for the norm of the eigenfunctions which cannot be found in the literature.
We first observe (see (2.B.5)) that the continuum analogue of the Wannier states is

|x, a〉c = �
†
aN (xN ) . . . �†

a1 (x1)|0〉 = lima0→0 a
− N

2
0 |x/a0, a〉. On the other hand, the lattice

constant a0 plays the role of the volume element dx j when turning from summation to
integration in the continuum limit (see (2.B.7)). This means that the eigenstates in the
continuum, |ψc

q,µµµ〉, are obtained as

|ψc
q,µµµ〉 = lim

a0→0
a

N
2

0 |ψa0q,a0µµµ〉 =
1

N !

∫ �

0
dx1· · ·

∫ �

0
dxN

∑
a∈ZN

2

ψc(x; a|q;µµµ)|x, a〉c . (3.G.25)

Hence, we can calculate the squared norm ‖ψc
q,µµµ‖2 = 〈ψc

q,µµµ|ψc
q,µµµ〉 of the eigenstates in the

continuum limit as

‖ψc
q,µµµ‖2 = lim

a0→0
aN

0 〈ψa0q,a0µµµ|ψa0q,a0µµµ〉 . (3.G.26)

This limit can be easily performed in (3.120),

‖ψc
q,µµµ‖2 = |2c|M

∣∣∣det

(
Sc

qq Sc
qµ

Sc
µq Sc

µµ

)∣∣∣ ∏
1≤ j<k≤M

[
1+ 4c2

(µ j − µk)2

]
. (3.G.27)

The determinant on the right hand side of this equation is the determinant of an (N + M)×
(N + M)-matrix consisting of four blocks with matrix elements

(
Sc

qq

)
mn = δm,n

[
�+

M∑
l=1

2c

c2 + (µl − qn)2

]
, m, n = 1, . . . , N , (3.G.28)

(
Sc

qµ

)
mn =

(
Sc
µq

)
nm = −

2c

c2 + (µm − qn)2
,m = 1, . . . , M , n = 1, . . . , N , (3.G.29)

(
Sc
µµ

)
mn = δm,n

[ N∑
j=1

2c

c2 + (µn − q j )2
−

M∑
l=1

4c

(2c)2 + (µn − µl)2

]
+ 4c

(2c)2 + (µm − µn)2
, m, n = 1, . . . , M . (3.G.30)



118 Appendices to Chapter 3

The determinant in (3.G.27) may again be interpreted as the Hessian determinant of a
properly defined action Sc(q;µµµ) which generates the Bethe ansatz equations (3.G.18) and
(3.G.19) and is obtained from S(k;λλλ), equation (3.114), in the limit

Sc(q;µµµ) = lim
a0→0

S(a0q; a0µµµ)− N L

a0
. (3.G.31)

We leave it as an exercise to the reader to write this action explicitly.

3.G.3 Weak coupling limit

For u → 0 the Hubbard Hamiltonian (2.31) turns into the tight-binding Hamiltonian H0

(equation (2.12) with t = 1) which describes free electrons on the lattice (see (2.20)). What
happens to the Lieb-Wu equations (3.95), (3.96) and to the Bethe ansatz wave function
(3.91) in this limit?

The charge momenta k j stay finite in the free electron limit. It follows that the function
Fk(λ; y), equation (3.93), vanishes and therefore also the spin part 〈aQ|kP,λλλ〉 of the Bethe
ansatz wave function. In order to obtain a non-vanishing weak-coupling limit we change
the normalization and first multiply the Bethe ansatz wave function by (2iu)−M . Then it
follows that

lim
u→0

〈aQ|kP,λλλ〉
(2iu)M

=
∑

R∈SM

M∏
�=1

1

λR(�) − sin(kP(y�))
. (3.G.32)

The functions on the right-hand side are the coordinate Bethe ansatz wave functions of the
(rational) inhomogeneous Gaudin model [156]. Performing the same limit in the Lieb-Wu
equations we obtain

eik j L = 1 , j = 1, . . . , N , (3.G.33a)
N∑

j=1

1

λ� − sin(k j )
=

M∑
m=1
m �=�

2

λ� − λm
, � = 1, . . . , M . (3.G.33b)

Equation (3.G.33a) determines the spectrum to be free fermionic. Equations (3.G.33b), on
the other hand, are the Bethe ansatz equations of the inhomogeneous Gaudin model. Here
they determine the spin part (3.G.32) of the Bethe ansatz wave functions of the Hubbard
model for vanishing coupling u → 0.

Our above results indicate that the u → 0 limit of the Bethe ansatz solution of the
Hubbard model is rather non-trivial. The Bethe ansatz equations (3.G.33) decouple, but the
wave functions do not turn into Slater determinants, as one might have expected for free
electrons. They rather involve the eigenfunctions of an anisotropic Gaudin model as the
spin parts of wave functions which are still of Bethe ansatz form. This appears less puzzling
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if one considers the large degeneracy of a system of free fermions which makes it possible
to construct more than one basis of eigenfunctions.

Further aspects of the limit u → 0 that were discussed in the literature and that will be
taken up in later chapters are the behaviour of the ground-state energy [113, 326, 431] (see
Chapter 6) and of the elementary excitations [142].



4

String hypothesis

Eigenstates of the Hubbard Hamiltonian are described in terms of the solutions of the
Lieb-Wu equations (3.95), (3.96)

eik j L =
M∏

�=1

λ� − sin k j − iu

λ� − sin k j + iu
, j = 1, . . . , N ,

N∏
j=1

λ� − sin k j − iu

λ� − sin k j + iu
=

M∏
m=1
m �=�

λ� − λm − 2iu

λ� − λm + 2iu
, � = 1, . . . , M.

(4.1)

In the following we will concentrate on regular solutions of these equations as defined
in Section 3.3.2. Physical quantities like energy and momentum are expressed directly
in terms of the roots of the Lieb-Wu equations, which we also call spectral parameters.
These roots are in general complex numbers. The problem we are faced with now is that
there is no simple analytical or numerical method for solving a large number of coupled,
nonlinear, algebraic equations. As long as the number of roots is small, say four or five,
one may determine all solutions by numerical means (see for example Ref. [95]). However,
we are ultimately interested in the thermodynamic limit and therefore need another way of
analyzing the Lieb-Wu equations. It turns out that for very large lengths L of the lattice
most of the roots of (4.1) arrange themselves in regular patterns in the complex plane. These
patterns are called ‘strings’. We will describe shortly how to find these patterns. If one makes
the assumption that all roots of (4.1) form strings one can turn (4.1) into a set of equations
involving only the real parts of the roots. This procedure is known as the ‘string hypothesis’
and was first introduced for the case of the spin- 1

2 Heisenberg model by H. Bethe in [60],
see also [433]. Finally, the resulting equations are turned into a set of coupled integral
equations, which can be solved analytically in various limits. This approach is the standard
way of analyzing Bethe ansatz equations in integrable models and is believed to give exact
results in the thermodynamic limit.

For finite systems one may easily establish that the string hypothesis is not strictly
correct. While most of the roots indeed arrange themselves into strings, there sometimes
are significant deviations from the ideal patterns and there also are solutions that cannot
be described in the framework of the string hypothesis. An instructive illustration of these

120
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issues for the case of the spin- 1
2 Heisenberg chain can be found in Refs. [28, 29, 46, 79, 94,

124,151,208,228,328,343]. A crucial point is that as far as the isotropic Heisenberg chain
and the Hubbard model are concerned, the string hypothesis appears to give exact results
for thermodynamic quantities like the (free) energy per site, dispersions of excited states in
the infinite volume, or dressed scattering matrices as long as we consider only situations in
which we have finite densities of Bethe roots in the infinite volume limit. However, even
in these cases the string hypothesis is not free of problems as was shown for the Heisenberg
chain in Refs. [30,483,484]. In the thermodynamic limit at finite temperatures the validity
of the string hypothesis was demonstrated by A. M. Tsvelik and P. B. Wiegmann in [460].

Violations of the string hypothesis can be quite important if we are interested in the
corrections to the energies in a large but finite volume. These finite-size corrections are very
important as it is possible to determine the large-distance asymptotics of correlation func-
tions from them (see Chapter 8). In integrable models like the integrable spin-S Takhtajan-
Babujian model [31,444], where the zero-temperature ground state involves string solutions,
it is necessary to take into account (small) deviations from the string hypothesis in the finite
volume in order to obtain the correct finite-size corrections to energy levels [16, 145, 146].
For the Hubbard model this particular type of complication is absent.

4.1 String configurations

Let us now discuss how to find the particular patterns into which the roots of the Lieb-Wu
equations arrange themselves. The basic idea is very simple: take L large and then make one
of the spectral parameters complex. The left-hand side of the equation for that particular
spectral parameter will then be exponentially large and this implies that we must be very
close to a pole in one of the factors on the right-hand side of the equations.

4.1.1 k-Λ strings

Let us look at a specific example, namely N = 2, M = 1, corresponding to a state with one
spin-up and one spin-down electron. We denote the corresponding spectral parameters by
k1, k2 and �′. Let us now take

k1 = q − iξ , (4.2)

where q, ξ are real and ξ > 0. The Lieb-Wu equations are

eik1 L = �′ − sin(k1)− iu

�′ − sin(k1)+ iu
, (4.3)

eik2 L = �′ − sin(k2)− iu

�′ − sin(k2)+ iu
, (4.4)

1 =
2∏

j=1

�′ − sin(k j )− iu

�′ − sin(k j )+ iu
. (4.5)

As ξ > 0 the left hand side of equation (4.3) is exponentially large (∝ exp(ξL)) for large
L . The only way to fulfil (4.3) is for the r.h.s. to be exponentially close to a pole, i.e. k1
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Fig. 4.1. A simple k-� string.

must be related to �′ by

�′ = sin(k1)− iu +O(e−ξL ). (4.6)

However, this implies that the first factor on the right hand side of (4.5) is exponentially
large, which in turn forces the second factor to be very close to zero. This fixes k2 to be

sin(k2) = �′ − iu +O(e−ξL ). (4.7)

We may replace the Lieb-Wu equations (4.3) and (4.4) with exponential accuracy by (4.6)
and (4.7). The remaining Lieb-Wu equation (4.5) then determines �′. Putting everything
together (and taking care of the fact that ξ > 0) we have found a ‘k-� string’ solution of
the form

k1 = π − arcsin(�′ + iu)+O(e−δL ) ,

k2 = π − arcsin(�′ − iu)+O(e−δL ) ,

�′ real, (4.8)

where δ is some constant and the branch of arcsin(x) is fixed as −π/2 ≤ Re(arcsin(x)) ≤
π/2. Why do we call this pattern a string? In order to see this, let us consider the quantities
sin(k1,2) rather than k1,2. As is shown in figure 4.1, sin(k1,2) and �′ are arranged like pearls
on a string in the complex plane. The above analysis is straightforwardly generalized: one
finds that 2m k’s can combine with m �’s to form a ‘k-� string of length 2m’, which has
the form (u > 0)

k1 = π − arcsin(�′m + miu),

k2 = arcsin(�′m + (m − 2)iu),

k3 = π − k2,

... (4.9)

k2m−2 = arcsin(�′m − (m − 2)iu),

k2m−1 = π − k2m−2,

k2m = π − arcsin(�′m − miu),
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and

�′m, j = �′m + (m − 2 j + 1)iu , j = 1, . . .m. (4.10)

Here m denotes the ‘length’ of the string and j counts the λ’s involved in a given string.
�′m is the real center of the k-� string.

4.1.2 A composition principle

The simple calculation above has shown us that there exist particular solutions of the
Lieb-Wu equations that are very well approximated by strings. It is not difficult to see
that such string solutions may be combined to form other solutions of the Lieb-Wu
equations. In other words, strings are the basic building blocks that make up general
solutions.

Let us illustrate this ‘composition principle’ for the case L = 6, N = 5, M = 2 and
u = 1.25, i.e. two spin-down and three spin-up electrons on a six-site lattice. The roots of
the Lieb-Wu equations can be easily obtained by a numerical root-finding algorithm such
as Newton’s method. One solution is

�′1 = 1.4230 , k1,2 = 2.3616± 1.3310 i ,

sin(k1,2) = 1.42385± 1.25142 i ,

�′2 = −0.0484 , k3,4 = 3.1665± 1.0499 i ,

sin(k3,4) = −0.0400± 1.2534 i,

k5 = −0.5842. (4.11)

We may consider this solution to be composed of two k-� strings of length two (as is easily
verified by comparison with (4.13)) and one real k, namely k5.

A second solution is

�1 = 0.5402 , k1,2 = 2.8085± 1.0870 i ,

sin(k1,2) = 0.5399± 1.2419 i ,

k3 = −1.7305 , k4 = 0.7330 , k5 = 1.6637 ,

�2 = −0.7253. (4.12)

It is composed of one k-� string of length two, one real � (a ‘one-string’ of �’s) and three
real k’s, namely k3, k4, k5.

As a given solution of the Lieb-Wu equations may ‘contain’ several k-�-strings (our first
example above contains two) we introduce an index α to distinguish between them and
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denote a k-� string of length m by

k1
α = π − arcsin(�′mα + miu),

k2
α = arcsin(�′mα + (m − 2)iu),

k3
α = π − k2

α,

... (4.13)

k2m−2
α = arcsin(�′mα − (m − 2)iu),

k2m−1
α = π − k2m−2

α ,

k2m
α = π − arcsin(�′mα − miu),

and

�′m, j
α = �′mα + (m − 2 j + 1)iu , j = 1, . . .m. (4.14)

4.1.3 Λ strings

It is clear from our construction that (4.13) are the only types of strings involving k’s.
However, there are also strings involving only �’s. In order to see this, let us consider a
situation where there are N real k j ’s, where N is very large. The Lieb-Wu equations for the
M �’s, where we assume that M � N , are

N∏
j=1

�l − sin(k j )− iu

�l − sin(k j )+ iu
=

M∏
m=1
m �=l

�l −�m − 2ui

�l −�m + 2ui
. (4.15)

If we take Im(�1) > 0, then the left-hand side of the equation for �1 tends to zero expo-
nentially fast in N . As M � N this forces one of the factors on the right-hand side of the
equation to be very small. Without loss of generality we may take

�2 = �1 − 2ui +O(e−γ N ) , (4.16)

where γ is some constant. Repeating these arguments for �2 and so on we find that it is
possible for m �’s to form a ‘� string’, that is a configuration of roots that is symmetric
around the real axis and has a spacing of 2iu between consecutive roots. We will denote
such strings by

�m, j
α = �m

α + (m − 2 j + 1)iu +O(e−γ N ). (4.17)

Here α distinguishes the strings of the same length m, and j = 1, . . . ,m counts the λ’s
involved in the αth � string of length m. �m

α is the real center of the string. The solutions
(4.17) and (4.13), (4.14) were first found by M. Takahashi in [435]. The fact that most solu-
tions of the Lieb-Wu equations are well-described in terms of strings has been established
for small lattices by solving the Lieb-Wu equations numerically, see e.g. [95].
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4.2 String solutions as bound states

It is clear from the form of the Bethe ansatz wave function (3.91)–(3.94) that solutions
of the Lieb-Wu equations with only real k j ’s and λ�’s correspond to eigenstates of the
Hubbard Hamiltonian that are superpositions of plane waves. By their very construction
string solutions involve complex solutions of the Lieb-Wu equations. What then is the
physical nature of the eigenstates of the Hubbard Hamiltonian described by string solutions?
The answer is that they describe bound states of electrons in the sense that the many-body
wave function exhibits an exponential decay with respect to the difference of the coordinates
of electrons involved in a string. In the remainder of this section we illustrate this point by
considering simple examples.

4.2.1 k-Λ strings

Let us consider a two electron wave function where one of the electrons has spin up and
one spin down respectively (N = 2, M = 1). The Lieb-Wu equations are given by

eik j L = �− sin(k j )− iu

�− sin(k j )+ iu
j = 1, 2 ,

1 =
2∏

j=1

�− sin(k j )− iu

�− sin(k j )+ iu
. (4.18)

We concentrate on solutions to (4.18) which in the limit L →∞ take the form of a k-�
string1

k1 = π − arcsin(�+ iu) ,

k2 = π − arcsin(�− iu) . (4.19)

For finite but large L there are deviations from (4.19), which are evaluated in detail in
Appendix 4.A. There it is shown that the solution of (4.18) for finite L can be expressed as

k1 = q − iξ = k∗2 , ξ > 0 ,

� = sin(q) cosh(ξ ) , (4.20)

where q = mπ
L , m = −L + 1, . . . , L and ξ is subject to the equation

sinh(ξ ) = − u

cos(q)

sinh(ξL)

cosh(ξL)− (−1)m
. (4.21)

For L � max( 2
u , 1) equations (4.20)–(4.21) imply that

sin(k1) = �+ iu + iε = (sin(k2))∗ , (4.22)

where ε is exponentially small in L

ε = O(e−ξL ) . (4.23)

1 For brevity we denote the center of the k-� string by � rather than �′.
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The corresponding unnormalized wave function is obtained from the general formulae
(3.91)–(3.94).

ψ(x1, x2;↓,↑ |k1, k2;�) = θH (x2 − x1)

[
2iu eik1x1+ik2x2

�− sin(k1)+ iu
− 2iu eik2x1+ik1x2

�− sin(k2)+ iu

]
+ θH (x1 − x2)

[
2iu eik1x1+ik2x2

�− sin(k1)+ iu

�− sin(k2)− iu

�− sin(k2)+ iu

− 2iu eik2x1+ik1x2

�− sin(k2)+ iu

�− sin(k1)− iu

�− sin(k1)+ iu

]
, (4.24)

where θH (x) is the Heaviside function. Using (4.22) and (4.23) we can evaluate the wave
function explicitly

ψ(x1, x2;↓,↑ |k1, k2;�) = −2u

ε

[
θH (x2 − x1) eik1x1+ik2x2

+ θH (x1 − x2) eik2x1+ik1x2

]
+ · · · (4.25)

Taking the limit L →∞ while keeping |x1 − x2| fixed, we may drop the subleading terms
indicated by the dots in (4.25) and arrive at the simple result

ψ(x1, x2;↓,↑ |k1, k2;�) = A eiq(x1+x2) e−ξ |x1−x2| , (4.26)

where A is a normalization constant. Equation (4.26) shows that the k-� string indeed
describes a bound state of two electrons. It is shown in Section 7.9 that the energy of the
bound state (4.26) is higher than the energy of a scattering state of two electrons. This
sounds very strange! However, in our previous discussion of the wave-function (4.26) in
Section 3.2.4 we showed that the bound-state property is a lattice effect and does not survive
a continuum limit.

Longer k-� strings also describe bound states as may be shown by an analogous calcu-
lation, see e.g. the Appendix of [123].

4.2.2 Λ strings

Let us consider two down-spin electrons forming a � string and N − 2 up-spin electrons,
i.e. a solution to the Lieb-Wu equations (4.1) with

�1 = �∗2 = λ− iu + iε , λ ∈ R,

k j ∈ R , j = 1, . . . , N , (4.27)

where |ε| � 1. Let us denote the positions of the down spins among the electrons by y1 and
y2 > y1 as illustrated in figure 4.2. What we want to show is that if we take N to infinity
while keeping the ‘distance’ d = y2 − y1 fixed, then the wave function corresponding to
(4.27) decays exponentially in d . In other words, the two down spins form a bound state (in
the sense defined above) on the lattice formed by the electrons.
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Fig. 4.2. The two down spins on the lattice formed by the N electrons.

The wave function associated with the roots (4.27) in the sector Q defined by 1 ≤ xQ(1) ≤
xQ(2) ≤ · · · ≤ xQ(N ) is of the form

ψ(x; a|k;�) =
∑

P∈SN

sign(P Q) 〈aQ|kP,�〉 ei
∑N

j=1 kPj xQ j , (4.28)

where we have defined vectors

x = (x1, . . . , xN ) , k = (k1, . . . , kN ) ,

a = (↓,↓,↑, . . . ,↑) , � = (�1,�2) , (4.29)

and the amplitudes 〈aQ|kP,�〉 are given by

〈aQ|kP,�〉 = A(�1,�2)
{

FkP (�1; y1)FkP (�2; y2)

+ A(�2,�1)

A(�1,�2)
FkP (�2; y1)FkP (�1; y2)

}
. (4.30)

The terms on the r.h.s. of (4.30) are evaluated as follows. Combining the definition (3.94)
of A(�) with the Lieb-Wu equations (3.96) we obtain

A(�2,�1)

A(�1,�2)
= �2 −�1 − 2iu

�2 −�1 + 2iu
=

N∏
j=1

�2 − sin(k j )− iu

�2 − sin(k j )+ iu
. (4.31)

The FkP -functions are defined by (3.93) and with the help of the Lieb-Wu equations (3.95)
their products in (4.30) can be cast in the form

FkP (�1; y1)FkP (�2; y2) = exp

(
i

y1−1∑
j=1

kP( j)L

)
y2−1∏
l=y1

�2 − sin(kP(l))− iu

�2 − sin(kP(l))+ iu

× (2iu)2

[�1 − sin(kP(y1))+ iu][�2 − sin(kP(y2))+ iu]
, (4.32)

FkP (�2; y1)FkP (�1; y2) = exp

(
i

y2−1∑
j=1

kP( j)L

)
y2−1∏
l=y1

�2 − sin(kP(l))+ iu

�2 − sin(kP(l))− iu

× (2iu)2

[�2 − sin(kP(y1))+ iu][�1 − sin(kP(y2))+ iu]
, (4.33)

We want to show that the wave function (4.28) decays exponentially with respect to the
difference of the coordinates y1 and y2. The only nontrivial y dependence is in the amplitudes
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〈aQ|kP,�〉 and it suffices to prove that they decay exponentially. Given that the momenta
k j are real by assumption we may easily establish the following inequality∣∣∣∣�2 − sin(k j )− iu

�2 − sin(k j )+ iu

∣∣∣∣ = ∣∣∣∣ λ− sin(k j )− iε

λ− sin(k j )+ 2iu − iε

∣∣∣∣ < 1. (4.34)

The inequality (4.34) ensures that (4.32) decays exponentially for y2 � y1. This implies that
the first term on the r.h.s. of (4.30) exhibits the desired exponential decay. On the other hand,
the second term on the r.h.s. of (4.30) vanishes in the limit N →∞ if we keep y2 − y1

fixed. This is established by multiplying (4.33) by (4.31) and then using the inequality
(4.34).

4.3 Takahashi’s equations

The string hypothesis for the Hubbard model was formulated by M. Takahashi in 1972 [435].
It postulates that all regular2 solutions {k j }, {λl}of the Lieb-Wu equations (4.1) are composed
of the three different classes of strings discussed above.

(i) A single real momentum k j .
(ii) m �’s combining into a � string (4.17). This includes the case m = 1, which is just a

single �α .
(iii) 2m k’s and m �’s combining into a k-� string (4.13), (4.14).

For large lattices (L � 1) and a large number of electrons (N � 1), almost all strings
are close to ideal, i.e. the imaginary parts of the k’s and λ’s are almost equally spaced.
The string hypothesis assumes that almost all solutions of the Lieb-Wu equations (4.1)
are approximately given by (4.13), (4.14), (4.17) with exponentially small corrections of
order O(exp(−δL)), where δ is real and positive and depends on the specific string under
consideration.

Using the string hypothesis, the task of solving the Lieb-Wu equations can be significantly
simplified. Let us consider solutions of the Lieb-Wu equations for some particular, fixed
values of N and M . Within the framework of the string hypothesis, every solution can be
represented in terms of a particular configuration of strings: it contains Mn �-strings and
M ′n k-� strings of length n (n = 1, 2, . . . ) and Me single k j ’s (i.e. k’s not associated with
k-� strings). We call Me, Mn , M ′n occupation numbers of the string configuration under
consideration. The occupation numbers satisfy the ‘sum rules’

M =
∞∑

n=1

n(Mn + M ′n)

N =Me +
∞∑

n=1

2nM ′n .

(4.35)

2 We recall that regular solutions are defined by the property that all spectral parameters are finite, i.e. |k j | <∞, λl <∞.
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Applying this prescription to the Lieb-Wu equations (4.1) and then taking the logarithm of
the resulting equations, we arrive at the following form of Bethe ansatz equations for the
real ‘centers’ of the strings, which we call Takahashi’s equations

k j L = 2π I j −
∞∑

n=1

Mn∑
α=1

θ

(
sin k j −�n

α

nu

)
−
∞∑

n=1

M ′n∑
α=1

θ

(
sin k j −�′nα

nu

)
, (4.36)

N−2M ′∑
j=1

θ

(
�n

α − sin k j

nu

)
= 2π J n

α +
∞∑

m=1

Mm∑
β=1

�nm

(
�n

α −�m
β

u

)
, (4.37)

2L Re
[
arcsin(�′nα + niu)

] = 2π J ′nα +
N−2M ′∑

j=1

θ

(
�′nα − sin k j

nu

)

+
∞∑

m=1

M ′m∑
β=1

�nm

(
�′nα −�′mβ

u

)
. (4.38)

Here we assumed the length of the lattice L to be even. The functions θ and �nm in (4.36)–
(4.38) are defined as θ (x) = 2 arctan(x), and

�nm(x) =


θ
(

x
|n−m|

)
+ 2θ

(
x

|n−m|+2

)
+ · · · + 2θ

(
x

n+m−2

)+ θ
(

x
n+m

)
, if n �= m

2θ
(

x
2

)+ 2θ
(

x
4

)+ · · · + 2θ
(

x
2n−2

)+ θ
(

x
2n

)
, if n = m.

(4.39)

I j , J n
α , and J ′nα are integer or half-odd integer numbers that arise due to the multivaluedness

of the logarithm. We have

I j is

{
integer if

∑
m(Mm + M ′m) is even

half-odd integer if
∑

m(Mm + M ′m) is odd,
(4.40)

J n
α is

{
integer if N − Mn is odd
half-odd integer if N − Mn is even,

(4.41)

J ′nα is

{
integer if L − N + M ′n is odd
half-odd integer if L − N + M ′n is even.

(4.42)

The integers Mn and M ′m are the numbers of � strings of length n, and k-� strings of length
m in a specific solution of the system (4.36)–(4.38). Finally, M ′ is the total number of �’s
involved in k-� strings

M ′ =
∞∑

n=1

nM ′n . (4.43)
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The integer (half-odd integer) numbers in (4.36)–(4.38) have ranges

− L

2
< I j ≤ L

2
, (4.44)

|J n
α | ≤

1

2

(
N − 2M ′ −

∞∑
m=1

tnm Mm − 1

)
, (4.45)

|J ′nα| ≤
1

2

(
L − N + 2M ′ −

∞∑
m=1

tnm M ′m − 1

)
, (4.46)

where

tmn = 2 min(m, n)− δmn. (4.47)

The ranges (4.45)–(4.46) may be obtained by following Yang and Yang’s procedure [496].
One defines so-called ‘counting-functions’, e.g. for �-strings of length n we define

Lzn(�) =
N−2M ′∑

j=1

θ

(
�− sin k j

nu

)
−
∞∑

m=1

Mm∑
β=1

�nm

(
�−�m

β

u

)
. (4.48)

By its definition the counting function evaluated on a root of Takahashi’s equations
fulfils

zn(�n
a) = 2π J n

α

L
. (4.49)

The counting functions will play an important role later on, see Chapter 5. A crucial prop-
erty of the counting functions is that they are monotonically increasing functions of their
arguments. For our present purposes we note that by virtue of the monotonicity property
we have

J n
α <

L

2π
lim

�→∞
zn(�) . (4.50)

The limit �→∞ is easily evaluated, which leads to the result (4.45) once we make use
of our knowledge of whether the J n

α are integers or half-odd integers. The range for J ′nα is
obtained in an analogous way. Finally, the range of the I j ’s follows from the observation
that Takahashi’s equations for k j are invariant under shifting k j by 2π .

In terms of the parameters of the ideal strings the total energy and momentum (3.97) are
expressed as

P =
[

N−2M ′∑
j=1

k j −
∞∑

n=1

M ′n∑
α=1

(
2 Re arcsin

(
�′nα + niu

)− (n + 1)π
)]

mod 2π , (4.51)

E = −2
N−2M ′∑

j=1

cos(k j )+ 4
∞∑

n=1

M ′n∑
α=1

Re
√

1− (
�′nα + niu

)2 + u(L − 2N ) . (4.52)
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Equations (4.36)–(4.46) can be used to study all excitations of the Hubbard model in
the thermodynamic limit (see Chapter 7). They are the basis for the derivation of Taka-
hashi’s integral equations [435], which determine the thermodynamics of the Hubbard model
(see Chapter 5). These and other applications of (4.36)–(4.46) are based on the following
assumptions.

(i) Any set of non-repeating (half odd) integers I j , J n
α , J ′nα subject to the constraints (4.44)–

(4.46) specifies precisely one regular solution {k j }, {�n
α}, {�′nα} of equations (4.36)–

(4.38).
(ii) The solutions {k j }, {�n

α}, {�′nα} of (4.36)–(4.38) specified by a set of non-repeating
(half odd) integers I j , J n

α , J ′nα subject to (4.44)–(4.46) are in one-to-one correspondence
to solutions of the Lieb-Wu equations (4.1).

(iii) For large L and N almost all solutions {k j }, {λl} of the Lieb-Wu equations (4.1) are
exponentially close to the corresponding solution {k j }, {�n

α}, {�′nα} of Takahashi’s
equations, which means that the strings contained in {k j }, {λl} are well approximated
by the ideal strings determined by {k j }, {�n

α}, {�′nα}.

How well the correspondence between the roots of the Lieb-Wu equations and Takahashi’s
equations works for finite L is an interesting question. Some aspects of this issue are
addressed in Appendix 4.A. For small lattices L ≤ 6 and fixed u this question has been
investigated numerically in Ref. [95] and good agreement has been found.

4.4 Completeness of the Bethe ansatz

As a first application of the string hypothesis, let us now address the issue whether the Bethe
ansatz actually gives a complete set of eigenstates of the Hubbard Hamiltonian. On a lattice
of L sites there are 4L eigenstates. Using the string hypothesis together with the SO(4)
symmetry and the highest-weight theorem it was shown in [123] that one can construct 4L

linearly independent eigenstates from the solutions of the Lieb-Wu equations: the Bethe
ansatz gives a complete set of eigenstates. The proof of completeness of the Bethe ansatz
given in [123] is based on assumptions (i) and (ii) above. Note that assumption (ii) does
not mean that the classification of the solutions of the Lieb-Wu equations (4.1) into strings
is actually given by (4.36)–(4.46). There may be a redistribution between different kinds
of solutions. This phenomenon was observed in a number of Bethe ansatz solvable models
and was carefully studied for several simple examples in Refs. [60,123,124]. It was found
that the redistribution did in no case affect the total number of solutions of the Bethe ansatz
equations. In Appendix 4.A we discuss deviations from the string hypothesis for some
particular examples.

Using (i) and (ii) above, the proof of completeness reduces to a combinatorial problem
based on equations (4.44)–(4.46) [123]. From (4.44)–(4.46) we may read off the numbers
of allowed values of the (half odd) integers I j , J n

α , J ′nα in a given configuration {Mn}, {M ′n}
of strings. These are
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(i) L for a free k j (not involved in a k-� string),
(ii) N − 2M ′ −∑∞

m=1 tnm Mm for a � string of length n,
(iii) L − N + 2M ′ −∑∞

m=1 tnm M ′m for a k-� string of length n.

The total number of ways to select the I j , J n
α , J ′nα (recall that they are assumed to be non-

repeating) for a given configuration {Mn}, {M ′n} is simply given as a product over binomial
coefficients3

n({Mn}, {M ′n}) = C L
N−2M ′

∞∏
n=1

C
N−2M ′−∑∞m=1 tnm Mm

Mn

×
∞∏

n=1

C
L−N+2M ′−∑∞m=1 tnm M ′m
M ′n

. (4.53)

Hence, the number of regular Bethe ansatz states for given numbers N of electrons and M
of down spins is

nreg(M, N ) =
∑

{Mn},{M ′n}
n({Mn}, {M ′n}) , (4.54)

where the summation is over all configurations of strings which satisfy the obvious con-
straints N − 2M ′ ≥ 0 and M =∑∞

m=1 m(Mm + M ′m).
As has been shown in Appendices 3.D and 3.F all regular Bethe ansatz states are lowest

weight states with respect to the SO(4) symmetry. This implies that each regular Bethe ansatz
state with N electrons and M down spins gives rise to a SO(4) multiplet of eigenstates of
the Hamiltonian of dimension

dimM,N = (N − 2M + 1)(L − N + 1). (4.55)

Hence the total number of states in the SO(4) extended Bethe ansatz is

ntot(L) =
∑
M,N

nreg(M, N ) dimM,N =
∑
M,N

nreg(M, N )(N − 2M + 1)(L − N + 1) ,

(4.56)

where the sum is over all M , N with 0 ≤ 2M ≤ N ≤ L . The sums (4.54) and (4.56) are
evaluated in Appendix 4.B following the original calculation [123]. It turns out that

ntot(L) = 4L , (4.57)

which is the dimension of the Hilbert space of the Hubbard model on an L-site chain.
The essential ingredients of the proof of completeness can be summarized as follows:

(i) Impose periodic boundary conditions.
(ii) Construct an explicit expression for the wave functions. We use the form (3.91)–(3.94).

(iii) Introduce the concept of regular Bethe ansatz states (see Section 3.3.2). This eliminates
infinite k’s and λ’s, whose multiplicities are not under control.

(iv) Prove the lowest weight theorem (3.101), (3.105) for regular Bethe ansatz states. This
establishes that each regular Bethe ansatz state gives rise to a SO(4) multiplet of
eigenstates of the Hamiltonian of dimension (4.55).

3 For a definiton see Eqn. (4.B.2).



4.5 Higher-level Bethe ansatz 133

(v) Enumerate all regular Bethe ansatz states for fixed numbers of electrons N and down
spins M by means of Takahashi’s integers (4.44)–(4.46).

(vi) Calculate the total number of states by taking into account the SO(4) multiplet associ-
ated with each regular Bethe ansatz state.

4.5 Higher-level Bethe ansatz

The string hypothesis is a statement on the allowed patterns of Bethe ansatz roots, i.e. the
distributions of roots in the complex plane compatible with the Bethe ansatz equations. As
we have seen above, the patterns are derived by considering small numbers of roots on large
lattices. In the Hubbard model this corresponds to very low densities of electrons. On the
other hand, we are mainly interested in the physical properties of the Hubbard model at
a finite electron density in the thermodynamic limit. It is not a priori clear that the string
hypothesis will provide a good description of this limit. The direct application of the string
hypothesis in the analogous case of the spin- 1

2 Heisenberg XXZ chain was first criticized
by C. Destri and J.H. Lowenstein in [98].

A priori there are two reasons for the potential failure of the string hypothesis. Let us
revisit the reasoning leading to the form (4.17) for ideal �-strings. We used the fact that
the l.h.s. of the Lieb-Wu equations (4.15) goes to zero exponentially in the electron number
N if �l has a positive imaginary part. This implies that the r.h.s. of the Lieb-Wu equations
(4.15) must vanish in the thermodynamic limit

N , L →∞ ,
N

L
fixed. (4.58)

at finite density. As long as the number of down spins M remains finite we conclude that
one of the numerators on the r.h.s. converges to 0. This chain of reasoning may break
down if: (i) for some reason the imaginary part of the complex root tends to zero in the
thermodynamic limit such that the l.h.s. does not necessarily converge to 0, or (ii) we are
considering a state with a system size dependent number of roots such that the r.h.s. of the
Lieb-Wu equation involves an increasing number of factors, i.e.

M, L →∞ ,
M

L
fixed. (4.59)

In case (ii) the r.h.s. of the Lieb-Wu equations (4.15) can be a product of finite factors but
nevertheless vanish in the limit (4.59). This case is of particular importance for studying
low-lying excitations above the ground state at a fixed density. Detailed studies in the spin- 1

2
XXZ chain [30, 471, 483, 484], the XYZ model [259] and the Hubbard model [258] have
shown that although the string hypothesis does not hold per se, its application still yields
exact results for e.g. the spectrum of low-lying excitations.
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4.A On deviations from the string hypothesis

In this appendix we discuss in more detail the relation between the roots of the Lieb-Wu
equations and the solutions to Takahashi’s equations. We will show that in general the
correspondence between them unsurprisingly is not perfect. For simplicity we concentrate
on the particular example of a k-� string solution N = 2, M = 1 on a lattice of L sites,
which we already encountered in Section 4.1. It is convenient to rewrite equations (4.3),
(4.4) by

(i) multiplying (4.3) and (4.4), using (4.5) to replace the right-hand side of the resulting
equation by 1 and then taking the logarithm, and

(ii) solving (4.3) and (4.4) for sin k j −�.

The result is

(k1 + k2) mod 2π = 2π

L
m, m = −

[
L − 1

2

]
, . . . ,

[
L

2

]
, (4.A.1)

sin k j −� = u ctg

(
k j L

2

)
, j = 1, 2. (4.A.2)

It is easy to see from (4.3)–(4.5) that k2 actually must be the complex conjugate of k1 for
the particular solution we are interested in. We therefore may set

k1 = q − iξ, k2 = q + iξ , (4.A.3)

with real q and real, positive ξ . It then follows from (4.A.2) that

sin(q + iξ ) = �+ u
sin(q L)− i sh(ξL)

ch(ξL)− cos(q L)
, (4.A.4)

or, if we separate real and imaginary parts of this equation,

sin(q)ch(ξ ) = �+ u
sin(q L)

ch(ξL)− cos(q L)
, (4.A.5)

cos(q)sh(ξ ) = −u
sh(ξL)

ch(ξL)− cos(q L)
. (4.A.6)

134
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The real part q of k1,2 is readily determined by using equation (4.A.1),

q = m
π

L
, m = −L + 1, . . . , L . (4.A.7)

Given q we may then use (4.A.6) to determine the imaginary part ξ as a function of
q = m π

L , and finally we can use (4.A.5) to obtain �. As q L = mπ we have sin(q L) = 0,
cos(q L) = (−1)m , and as a result (4.A.5) and (4.A.6) decouple

� = sin(q)ch(ξ ), (4.A.8)

sh(ξ ) = − u

cos(q)

sh(ξL)

ch(ξL)− (−1)m
≡ f (ξ,m) . (4.A.9)

For later convenience we define a function g(ξ ) by

g(ξ ) = sh(ξL)

ch(ξL)− (−1)m
=


tanh

(
ξL
2

)
, for m odd

coth
(

ξL
2

)
, for m even .

(4.A.10)

At this point we are left with a nonlinear equation (4.A.9) for ξ , which cannot be solved in
a closed analytical form. As usual in such cases it is very instructive to depict the equation
graphically, which is done in figure 4.A.1. Depending on the value of m there is either
exactly one solution of (4.A.9) or no solution at all. The latter is easily understood by
noting that due to the fact that g(ξ ) > 0 for all ξ > 0, equation (4.A.9) can have solutions
for positive ξ only if

π
2 < |q| ≤ π for u > 0 ,

|q| < π
2 for u < 0 .

(4.A.11)

In order to keep things simple, let us concentrate on the repulsive case u > 0. It follows from
(4.A.10) that (4.A.9) always has exactly one solution ξm for every even m which satisfies
(4.A.11). A fact that can be gleaned from figure 4.A.1 is that in order for a solution with

0 0.5 1 1.5 2
ξ

0

2

4

sinh(ξ)
f(ξ,12)
f(ξ,11)

Fig. 4.A.1. Sketch of equation (4.A.9) for u = 0.25, L = 20 and m = 11, 12.
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Fig. 4.A.2. Length 2 k-� string solutions for a L = 20 site lattice and (a) u = 0.25 (b) u = 0.125.
We see that there is precisely one solution for each value of m.

odd m to exist, the slope of f (ξ,m) at ξ = 0 must be greater than the slope of sinh(ξ ), i.e.

− uL

2 cos(q)
> 1 . (4.A.12)

This is satisfied for all q with π
2 < |q| < π if and only if

L >
2

u
. (4.A.13)

What we have found is that whenever the length of the lattice L is sufficiently large and
(4.A.13) is satisfied, there is precisely one k-� two string solution for every m that satisfies
(4.A.7) and (4.A.11). We can easily count these solutions: for odd L there are L solutions
and for even L there are L − 1 of them. In order to illustrate what these solutions actually
look like, we plot all solutions with � > 0 for L = 20 and two different values of u in
figure 4.A.2. In order to obtain simple patterns we plot sin(k1,2) rather than k1,2. As long as
uL is sufficiently much larger than the critical value 2 determined above, the ‘spacing’ of
the strings, that is the distance between � and sin(k1,2), is essentially constant and equal to
u. This is examplified in figure 4.A.2 (a). On the other hand, as soon as uL approaches 2
there are considerable deviations in the spacings as can be seen in figure 4.A.2(b). There
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are two branches, corresponding to even and odd m respectively. The spacing of the even
(odd) m branch increases (decreases) as � becomes small.

Let us compare these results to what we would predict on the basis of Takahashi’s
equations (4.36)–(4.38) and the allowed values of (half-odd) integers (4.44)–(4.46). The
only nonzero occupation number for the solution we are considering is M ′1 = 1. Hence the
allowed range of integers is |J ′1| ≤ 1

2 (L − t11 − 1) = 1
2 (L − 2), which means that there are

L − 1 possible values of J ′1. This agrees with what we just found since L was assumed
to be even in (4.44)–(4.46). Let us furthermore investigate how well the actual solutions of
the Lieb-Wu equations are reproduced by the roots of Takahashi’s equations. The latter are

2L Re
[
arcsin(�′1α + iu)

]
= 2π

[
− L

2
+ α

]
, α = 1, . . . L − 1, (4.A.14)

and by construction we have sin(k1,2
α ) = �′1α ± iu. Solving (4.A.14) for L = 20 we find that

the solutions of Takahashi’s equations for u = 0.25 are very close to the actual solutions of
the Lieb-Wu equations: the relative errors are at most 1.4% in the imaginary parts and much
less than a percent in the real parts. For smaller u the situation gets worse as is apparent
from figure (4.A.2)(b): the imaginary parts of sin(k1,2) obtained by solving the Lieb-Wu
equations deviate very significantly from ±iu. On the other hand the differences between
the real centers of the strings � and the �′1α obtained from (4.A.14) are still very small: the
relative errors are less than a percent.

One obvious question is what happens when we decrease u below the ‘critical’ value
2/L . Now the inequality (4.A.12) is violated for one or more odd m and as a result there are
fewer than L − 1 k-� string solutions (for even L) with N = 2 and M = 1 to the Lieb-Wu
equations. The disappearance of these solutions as u is decreased from an initially large
u > 2/L can be visualized as follows. At first the spacing sin(k2)− sin(k1) of the odd-m
solutions decreases below the ideal value 2u. This effect is particularly pronounced for the
solutions with small real parts of sin(k1,2) (and thus �) and can be seen in figure 4.A.2(b).
As u approaches 2/L from above, the spacings of the two solutions with ±� closest to
zero turn to zero: the strings ‘collapse’. For values of u smaller than 2/L , there are two
solutions with real k1,2 in place of the collapsed k-� strings. More details of this process
can be found in Refs. [123] and [95].

On the other hand the number of solutions of Takahashi’s equations (4.36)–(4.38) is by
construction independent of u. Hence, if u becomes too small, the solutions of the Lieb-Wu
equations are in general quite different from the solutions of Takahashi’s equations. At first
sight this looks like a very serious problem. However, we are really interested in taking L
very large while keeping u fixed. In this limit the condition (4.A.12) is always satisfied.
Of course this does not guarantee that the string hypothesis is valid for all solutions of the
Lieb-Wu equations.

4.B Details about the enumeration of eigenstates

In this appendix we evaluate the total number of states obtained by combining the SO(4)
symmetry with the Bethe ansatz. Our presentation closely parallels the original paper [123].
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We recall that the numbers of allowed values for the (half-odd) integers I j , J n
α , J ′nα

corresponding to each of the fundamental strings are

(i) L for a ‘single’ ki

(ii) N − 2M ′ −∑∞
m=1 tnm Mm for a �-string of length n

(iii) L − N + 2M ′ −∑∞
m=1 tnm M ′m for a k-�-string of length n.

As before we denote the number of single ki ’s by Me. The number of ways to choose the
(half-odd) integers I j , J n

α , J ′nα in a solution with occupation numbers Me, Mm and M ′m is
therefore given by1

n(Me, {Mm}, {M ′m}) = C L
Me

∞∏
n=1

C
N−2M ′−∑∞m=1 tnm Mm

Mn

×
∞∏

n=1

C
L−N+2M ′−∑∞m=1 tnm M ′m
M ′n

. (4.B.1)

Here Cn
m are binomial coefficients

Cn
m =

n!

m!(n − m)!
. (4.B.2)

The total number of regular solutions of the Lieb-Wu equations for given numbers of elec-
trons N and electrons with spin down M is now obtained by summing n(Me, {Mm}, {M ′m})
over all the occupation numbers Me, Mm and M ′m , subject to the constraints (4.44)–(4.46)
that specify the allowed ranges of (half-odd) integers. In what follows it will be convenient
to introduce the number of up spins2

N↑ = N − M. (4.B.3)

Every solution to the Lieb-Wu equations (4.1) gives rise to a regular Bethe ansatz state, which
comes with an entire SO(4) multiplet of eigenstates of the Hamiltonian. The dimension
dimM,N of this multiplet is given by

dimM,N↑ = (N↑ − M + 1)(L − N↑ − M + 1). (4.B.4)

The number of eigenstates that are obtained by combining the Bethe ansatz and the SO(4)
symmetry is therefore given by3

# (eigenstates) =∑
M≥0

∑
N↑≥0

[ ∞∑
Me=0

∞∑
Mm=0

∞∑
M ′m=0

n(Me, {Mm}, {M ′m})
]

dimM,N↑ .

N↑−M≥0 N↑+M=Me+2
∑∞

m=1 mM ′m

N↑+M≤L N↑−M=Me−2
∑∞

m=1 mMm

(4.B.5)

1 We recall that the (half-odd) integers are assumed to be non-repeating.
2 We recall that the number of down spins is denoted by M throughout.
3 The constraints in the summations in brackets arise from the ‘sum rules’ (4.35) M =∑∞

m=1 m[Mm + M ′m ] and N =Me +
2
∑∞

m=1 mM ′m .
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Table 4.B.1. L = 2. n denotes the number of regular Bethe ansatz states
of a given type. There are a total number of 16 = 42 eigenstates of the

hamiltonian

Me M1 M ′1 M N↑ n dimM,N↑ #(states)

0 0 0 0 0 1 3 3
1 0 0 0 1 2 4 8
2 0 0 0 2 1 3 3
2 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1

16

In order to have a complete set this total number must be equal to 4L . The counting of the
eigenstates obtained from the SO(4) extended nested Bethe ansatz has thus been reduced
to a purely algebraic problem.

4.B.1 Simple examples: 2 and 4 site lattices

Before turning to the general case let us see how things work for the 2-site and 4-
site models. The 2-site model (L = 2) was discussed in detail in Ref. [125], where a
complete set of 42 = 16 eigenstates of the Hamiltonian was constructed explicitly. In
table 4.B.1 we show how these eigenstates are classified in terms of the SO(4) extended
Bethe ansatz.

The wave functions and energies of all 16 eigenstates of the L = 2 site system are given
in Ref. [125]. The total number of 16 states splits into 2 singlets, 2 triplets and 2 quadruplets
of SO(4). The ground state is the singlet with M1 = 1 for the case u > 0 and the singlet with
M ′1 = 1 for the case u < 0. In both cases it has energy E0 = −

√
4u2 + 16. The counting for

the 4-site model (L = 4) is presented in table 4.B.2, where we show how the total number
of 44 = 256 is obtained. We note that the total number of regular Bethe ansatz states is
only 60.

An explicit enumeration of a complete set of eigenstates for the L = 6 site system has
been carried out in Ref. [95].

4.B.2 Counting eigenstates

In this subsection we will evaluate the right hand side of (4.B.5) explicitly for general even
L and show that it equals 4L . This will establish completeness. We will split this proof into
two steps as follows. In the first step we will prove Lemmas 2 and 3. In the second step
we will then use these lemmas to perform the summation in (4.B.5). To keep the notation
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Table 4.B.2. L = 4. There are 60 regular Bethe ansatz states, which, when
weighted with the correct SO(4) multiplicities, give a total of 256 = 44

eigenstates of the Hamiltonian. n denotes the number of regular Bethe states.

Me M1 M2 M ′1 M ′2 M N↑ n dimM,N↑ #(states)

0 0 0 0 0 0 0 1 5 5
1 0 0 0 0 0 1 4 8 32
2 0 0 0 0 0 2 6 9 54
3 0 0 0 0 0 3 4 8 32
4 0 0 0 0 0 4 1 5 5
2 1 0 0 0 1 1 6 3 18
0 0 0 1 0 1 1 3 3 9
3 1 0 0 0 1 2 8 4 32
1 0 0 1 0 1 2 8 4 32
4 2 0 0 0 2 2 1 1 1
4 0 1 0 0 2 2 1 1 1
2 1 0 1 0 2 2 6 1 6
0 0 0 2 0 2 2 1 1 1
0 0 0 0 1 2 2 1 1 1
4 1 0 0 0 1 3 3 3 9
2 0 0 1 0 1 3 6 3 18

60 256

simple we define

Pn = N −
∞∑

m=1

tnm Mm , (4.B.6)

n({Mm}) =
∞∏

n=1

C Pn
Mn

, (4.B.7)

where tnm is given by (4.47).

Lemma 2. The following identity holds:

∞∑
M1,M2,...=0∑∞
m=1 mMm=M

n({Mm}) = CN
M − CN

M−1 . (4.B.8)

Proof. We first solve for M1 =M−∑∞
m=2 mMm and substitute this back into the left-

hand side of (4.B.8). The quantities Pn reduce to

Pn = N − 2M+ Mn + 2
∞∑

m=n+1

(m − n)Mm . (4.B.9)
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Next we consider the summation over M2. Although the summand on the left-hand side of
(4.B.8) has the form of an infinite product, only two of the factors contain M2. Singling
these out, we find that the summation over M2 is as follows

�2 =
∞∑

M2=0

C
N−2M+M2+2

∑∞
m=3(m−2)Mm

M2
C

N−M+∑∞m=3(m−2)Mm

M−∑∞m=2 mMm
. (4.B.10)

In order to carry out the sum over M2 we will make use of the identity

∞∑
α=0

C B+α
α xα = (1− x)−1−B , (4.B.11)

which is easily proved by mathematical induction. As a simple consequence we have

(1− x2)−1−ω(1+ x)η |x A=
∞∑

α=0

Cω+α
α Cη

A−2α , (4.B.12)

where the notation |x A denotes the coefficient of the power x A. The right-hand side of
(4.B.10) is of the same form as (4.B.12), so that

�2 = (1− x2)−1−[N−2M+2(M3+2M4+··· )](1+ x)N−M+(M3+2M4+··· ) |xM−3M3−···

= (1+ x)N−M(1− x2)−N+2M−1
∞∏

n=3

(Z (0)
n )Mn |xM

= 1

2π i

∮
dx

xM+1
(1+ x)N−M(1− x2)−N+2M−1

∞∏
n=3

(Z (0)
n )Mn , (4.B.13)

where we have introduced the notation

Z (0)
n =

xn

(1− x)2(n−2)(1+ x)n−2
. (4.B.14)

In the last line of (4.B.13) we extracted the coefficient of xM by performing a contour
integral around the origin x = 0. After carrying out the M2 summation, equation (4.B.8)
reads

∞∑
M1,M2,...=0∑∞
m=1 mMm=M

n({Mm}) = 1

2π i

∮
dx

xM+1
A(x) , (4.B.15)

where

A(x) = (1+ x)N−M(1− x2)−1−N+2M

×
∞∑

M3,M4,...=0

∞∏
n=3

C
N−2M+Mn+2

∑∞
m=n+1(m−n)Mm

Mn

∞∏
l=3

(Z (0)
l )Ml .

(4.B.16)
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In the next step we use (4.B.12) to carry out the summation over M3

�3 =
∞∑

M3=0

C
N−2M+M3+2

∑∞
n=4(n−3)Mn

M3
(Z (0)

3 )M3

=
(

1− Z (0)
3

)−1−N+2M−2
∑∞

n=4(n−3)Mn

. (4.B.17)

The full expression for A(x) is then reduced to

A(x) = (1+ x)N−M(1− x2)−1−N+2M
(

1− Z (0)
3

)−1−N+2M

×
∞∑

M4,M5,...=0

∞∏
n=4

C
N−2M+Mn+2

∑∞
m=n+1(m−n)Mm

Mn

∞∏
l=4

(Z (1)
l )Ml ,

(4.B.18)

where Z (1)
n are defined through

Z (1)
n = Z (0)

n

(
1− Z (0)

3

)−2(n−3)
. (4.B.19)

The summations over all remaining Mn , n ≥ 4 are precisely of the same structure as the
M3 summation and are carried out analogously. It is easy to see that this results in

A(x) = (1+ x)N−MF(x)−1−N+2M , (4.B.20)

F(x) = (1− x2)
∞∏

m=3

(
1− Z (m−3)

m

)
. (4.B.21)

The quantities Z (m)
n are defined recursively by

Z (m)
n = Z (m−1)

n

(
1− Z (m−1)

m+2

)−2(n−m−2)
. (4.B.22)

Our task is now to find a closed expression for F(x) by exploiting this relation. Defining
functions Um(x) such that

U2 = x−2 , Um = 1

Z (m−3)
m

, m ≥ 3 , (4.B.23)

we can express F(x) as

F(x) =
∞∏

m=2

(
1− 1

Um

)
. (4.B.24)

We will now show that the functions Um(x) satisfy the following recursion relation, which
we denote by RR Ip

RR Ip : (Up+3 − 1)2 = Up+4Up+2 , p ≥ 0 . (4.B.25)
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Together with the initial conditions

U2 = x−2, U3 = (1− x)2(1+ x)

x3
(4.B.26)

these relations determine all Um(x) and thereby F(x). In order to prove (4.B.25), it is useful
to establish a second recursion relation RR IIp, which involves certain other Z’s

RR IIp :
Z (p)

n+1

Z (p)
n

= Up+2

Up+3
, p ≥ 0, n ≥ p + 3 . (4.B.27)

Let us now prove both RR Ip and RR IIp by mathematical induction. We start with Z (0)
n as

defined in (4.B.14), and U2 and U3 as given in (4.B.26). One easily checks that RR IIp=0

is valid. Using (4.B.22) to construct U4 = 1/Z (1)
4 and then making use of RR IIp=0, one

obtains RR Ip=0. This establishes the validity of both RR Ip=0 and RR IIp=0, which is the
starting point for the proof by induction.

Let us now assume that RR Ip and RR IIp hold for a given p. Using this induction
assumption and the definition of Z (m)

n (4.B.22) we establish the validity of RR IIp+1.
Finally, RR Ip+1 follows from RR IIp+1 and (4.B.22). This completes the induction
step.

One may easily verify that the expressions

U j =
(

a(x) j+1 − a(x)− j−1

a(x)− a(x)−1

)2

(4.B.28)

with

a(x) = 1

2

(√
1− 3x

x
+

√
1+ x

x

)
(4.B.29)

satisfy the recursion relations (4.B.25) and the initial conditions (4.B.26). The function
F2(x) is then expressed as a convergent product

F2(x) =
∞∏

m=2

(Um − 1)2

U 2
m

=
∞∏

m=2

Um+1Um−1

U 2
m

= lim
l→∞

U1

U2

Ul+1

Ul
= a(x)2x(x + 1) , (4.B.30)

where we have defined U1(x) = x+1
x , in accord with (4.B.25), and where we used (4.B.25)

in the second equality. Combining (4.B.8), (4.B.15), (4.B.16), (4.B.21), (4.B.24), (4.B.29)
and (4.B.30) we arrive at the following representation for the number of regular Bethe ansatz
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states with M overturned spins

∞∑
Mm=0

n({Mm})

M=∑∞m=1 mMm

= 1

2π i

∮
dx

xM+1
(1+ x)N−M

(
(1+ x)+√(1+ x)(1− 3x)

2

)2M−N−1

= 1

2π i

∮
2 dy

yM+1
(2 (1+ y))N−M

(
1+ y +

√
1− y2

)2M−N−1
, (4.B.31)

where the contour is a small circle around the origin and we used the substitution y = 2x
1−x .

Substituting y−1 = coshφ, the integral reduces to I+ − I−, where

I± = 1

2π

∫ 2π

0
dϕ e−φ(N−M∓1)(1+ eφ)N−1 = CN−1

N−M∓1 . (4.B.32)

Here we have used φ = �− iϕ, with �→∞. This finally establishes the result (4.B.8)
since

∞∑
Mm=0

n({Mm})

M=∑∞m=1 mMm

= CN−1
N−M−1 − CN−1

N−M+1 ≡ CN
M − CN

M−1. (4.B.33)

Here the last equality is easily verified by a direct calculation. This concludes the proof of
Lemma 2. �

Lemma 3.
[N /2]∑
M=0

[
CN
M − CN

M−1

]
[N − 2M+ 1] = 2N . (4.B.34)

Proof. We rewrite the left hand side of (4.B.34) as

[N /2]∑
M=0

CN
M(N − 2M+ 1)−

[N /2]−1∑
M=0

CN
M(N − 2M− 1)

= 2
[N /2]−1∑
M=0

CN
M + CN

[N
2 ]

(
1+N − 2

[N
2

])

=
[N /2]−1∑
M=0

CN
M + CN

[N
2 ]

(
1+N − 2

[N
2

])
+

N∑
N−[N /2−1]

CN
M

=
N∑

M=0

CN
M = 2N . (4.B.35)

��



4.B Details about the enumeration of eigenstates 145

Lemmas 2 and 3 have a natural interpretation in the context of the spin- 1
2 Heisenberg

XXX model [433]. Equation (4.B.8) gives the total number of regular Bethe ansatz states
(defined by M ≤ [N /2]) with M overturned spins in the XXX model on a lattice of
length N . The second formula shows that the total number of states obtained by combining
the regular Bethe ansatz with the SU (2) symmetry equals 2N , which is the dimension
of the Hilbert space of the XXX model. These relations thus establish the completeness
of the SU (2) extended Bethe ansatz for the XXX model. The fact that identities that have
their origin in the XXX model play a role here should not come as a surprise. Indeed, our
method of solution of the Hubbard model is the nested Bethe ansatz. The solutions to the
Bethe ansatz are specified by two sets {k j } and {�α} of spectral parameters. The k j ’s are
momenta associated with charge degrees of freedom, whereas the �α’s, which describe
the ‘nesting’ of the Bethe ansatz, are rapidities of spin excitations of the type encountered
in the Heisenberg XXX model. This should make clear that the second stage of the nested
Bethe ansatz for the Hubbard model is really a spin-problem, which is very similar to the
Bethe ansatz analysis of the Heisenberg XXX model. This fact can be seen directly in our
construction of the wave functions in Appendix 3.B. Our two-step procedure for performing
the summation is natural from the point of view of the nesting: in the first step we sum over
the spin degrees of freedom, and in the second step we then sum over the charge degrees of
freedom as well.

The total number of states obtained from the SO(4) extended Bethe ansatz for the Hubbard
model is given by (4.B.1) and (4.B.5). The summations over the multiplicities Mm and over
the difference N↑ − M in the summation (4.B.5) can be carried out by using Lemmas 2
and 3 respectively, if we substitute M→ 1

2 (Me − N↑ + M) and N →Me. (Under these
summations the total number of electrons N is kept fixed.) The summation that remains
after this ‘spin summation’ is

# (eigenstates) =
L∑

N=0

(L − N + 1)

×
N∑

Me=0

∞∑
M ′m=0

2Me C L
Me

∞∏
n=1

C
L−Ne+

∑∞
m=1(2m−tnm )M ′m

M ′n
.

N=Me+2
∑∞

m=1 mM ′m

(4.B.36)

Next we carry out the sums over all M ′n’s, using a similar kind of ‘summation device’ to
that employed in the proof of Lemma 2. As a consequence of (4.B.11) we have

(1− x2)−1−B(1+ 2x)L =
∞∑

M ′1=0

L∑
p=0

C
B+M ′1
M ′1

C L
p 2p x2M ′1+p , (4.B.37)

and therefore

1

2π i

∮
dx

xγ+1
(1− x2)−1−B(1+ 2x)L =

∞∑
M ′1=0

C
B+M ′1
M ′1

C L
γ−2M ′1

2γ−2M ′1 . (4.B.38)
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The integration is along a small contour around zero. Defining E = L − N , γ = N −
2
∑∞

m=2 mM ′m and B = E + 2
∑∞

m=2(m − 1)M ′m , the r.h.s. of (4.B.38) becomes the sum-
mation over M ′1 in (4.B.36), if we solve the constraint in the sum in (4.B.36) for Me =
N − 2

∑∞
m=1 mM ′m . Using (4.B.11) in (4.B.36) we then obtain the following expression for

the number of eigenstates:

# (eigenstates) = 1

2π i

∮
dx

x L+1(1− x2)
(1+ 2x)L

L∑
E=0

(E + 1)
x E

(1− x2)E
F(x) , (4.B.39)

where

F(x) =
∞∑

M ′m=0
m≥2

∞∏
n=2

C
E+M ′n+2

∑∞
m=n+1(m−n)M ′m

M ′n

∞∏
m=2

(
Z (0)

m

)M ′m , (4.B.40)

and

Z (0)
m = x2m(1− x2)2(1−m) . (4.B.41)

The summations over M ′2, M ′3, . . . have precisely the form of the l.h.s. of (4.B.11) and can
thus be performed easily. The result is

F(x) =
∞∏

m=2

(1− Z (m−2)
m )−1−E , (4.B.42)

where

Z (p)
m =

Z (p−1)
m

(1− Z (p−1)
p+1 )2(m−p−1)

. (4.B.43)

It can be shown along the lines of the proof of Lemma 2, that the quantities Um = 1
Z (m−2)

m

obey the recursion relation

(Up+2 − 1)2 = Up+3Up+1 , p ≥ 0 (4.B.44)

with initial conditions

U1 = x−2, U2 = (1− x2)2

x4
. (4.B.45)

Equation (4.B.27) is replaced by

Z (p)
n+1

Z (p)
n

= Up+1

Up+2
, p ≥ 0, n ≥ p + 2 . (4.B.46)

Equation (4.B.39) now can be written as

# (eigenstates) = 1

2π i

∮
dx

x L+1
(1+ 2x)L

L∑
E=0

(E + 1)x E [ f (x)]−E−1 , (4.B.47)
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where

f (x) =
∞∏

l=1

(1−U−1
l ) . (4.B.48)

The solution of the recursion relation (4.B.44) is again of the form (4.B.28), i.e., U j =(
a(x) j+1−a(x)− j−1

a(x)−a(x)−1

)2
, where now

a(x) = 1

2x
+

√
1

4x2
− 1 (4.B.49)

as a consequence of the new initial conditions (4.B.45). Insertion of the resulting expression
for Ul into (4.B.48) leads to the following result for the function f (x):

2 f (x) = 1+
√

1− 4x2 = 2x a(x) . (4.B.50)

Equation (4.B.47) can now be rewritten as

# (eigenstates) =
L∑

E=0

(E + 1) I (E) , (4.B.51)

where

I (E) = 1

2π i

∮
d

(
− 1

x

) (
1

x
+ 2

)L

[a(x)]−E−1 . (4.B.52)

The contour integration can be worked out just as we did in the proof of Lemma 2. Defining
α = �− iϕ with �� 1 and substituting x = 1

eα+e−α we obtain

I (E) = I+(E)− I−(E) , (4.B.53)

where

I±(E) = 1

2π

∫ 2π

0
dϕ e±α e−(1+E)α

(
e

α
2 + e−

α
2
)2L

. (4.B.54)

Expanding

(
e

α
2 + e−

α
2
)2L =

2L∑
p=0

C2L
p eα(L−p), (4.B.55)

and then using

1

2π

∫ 2π

0
dϕ e±i(nϕ) = δn,0, (4.B.56)

in the resulting expression, we find that

I+(E) = C2L
L−E , I−(E) = C2L

L−E−2 . (4.B.57)



148 Appendices to Chapter 4

Using these results in (4.B.53) and then in (4.B.51) we are left with only a single summation

# (eigenstates) =
L∑

E=0

(E + 1)
[
C2L

L−E − C2L
L−E−2

]
. (4.B.58)

This summation can be performed the same way as (4.B.35) and we finally obtain the
desired result

# (eigenstates) = 4L . (4.B.59)

This concludes our two-step evaluation of the sum (4.B.5).
Using the results derived above, we can obtain a closed expression for the number of

regular Bethe ansatz states for given numbers M and N↑ of spin-down and spin-up electrons:

∞∑
Me=0

∞∑
Mm=0

∞∑
M ′m=0

n(Me, {Mm}, {M ′m})

N=Me+2
∑

mM ′m

M=∑m(Mm+M ′m )

= C L
N↑

[
C L

M + C L
M−2

]− [
C L

N↑+1 + C L
N↑−1

]
C L

M−1 . (4.B.60)

This formula is the close analogue of the result (4.B.8) for the XXX Heisenberg
model. �



5

Thermodynamics in the Yang-Yang approach

Let us now turn to the determination of thermodynamic quantities and the zero-temperature
excitation spectrum in the thermodynamic limit. A convenient way to construct the spectrum
was pioneered by C. N. Yang and C. P. Yang for the case of the delta-function Bose gas [496].
The starting point are the Bethe Ansatz equations in the finite volume. They are used to
derive a set of coupled, nonlinear integral equations called thermodynamic Bethe Ansatz
(TBA) equations, which describe the thermodynamics of the model at finite temperatures.
The quantities entering these equations have a natural interpretation in terms of dressed
energies of elementary excitations. Yang and Yang’s formalism is a natural generalization
of the thermodynamics of the free Fermi gas to interacting systems. In order to elucidate this
point we briefly review the calculations for the thermodynamics of noninteracting electrons.

5.1 A point of reference: noninteracting electrons

Let us consider a tight-binding model of noninteracting electrons, described by the Hamil-
tonian

H = −
L∑

j=1

∑
σ

c†j,σ c j+1,σ + h.c.− µN̂ − 2BSz , (5.1)

The spectrum is easily determined by means of Fourier transformation. We define the
electron annihilation operator in momentum space by

c̃kl ,σ =
L∑

j=1

exp(−i jkl) c j,σ , (5.2)

where the momenta are quantized according to

k j = 2πn j

L
, n j = − L

2
, . . . ,

L

2
− 1. (5.3)

In momentum space the Hamiltonian reads

H = 1

L

∑
l,σ

[−2 cos(kl)− µσ ] ñσ (kl) , (5.4)
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where ñσ (kl) = c̃†kl ,σ
c̃kl ,σ and where we have defined chemical potentials for spin-up and

spin-down electrons by

µ↑ = µ+ B , µ↓ = µ− B . (5.5)

The quantity

ε
(σ )
0 (k) = −2 cos(k)− µσ ,

is the bare energy of spin-σ electrons. In the thermodynamic limit the Hamiltonian
becomes

H =
∫ π

−π

dk

2π

∑
σ

ε
(σ )
0 (k) ñσ (k) , (5.6)

where the Fermi creation and annihilation operators now fulfil the anticommutation
relations

{c̃k,σ , c̃†k ′,σ ′ } = 2π δ(k − k ′) δσ,σ ′ . (5.7)

The momentum density of states for electrons with spin σ is constant

ρ
(σ )
L (kl) = 1

L(kl+1 − kl)
= 1

2π
. (5.8)

Let us now turn to the description of thermodynamic properties. We will construct the
thermodynamic limit starting from a finite but large volume L . We then keep the densities
of up and down spins constant, while taking L →∞

Nσ

L
= nσ . (5.9)

Let us consider a state characterized by the Nσ momenta kσ
1 < kσ

2 < . . . < kσ
Nσ

. As the
momentum density of states is constant, there is a flat distribution of L ‘vacancies’ for the
Nσ momenta. A single particle state with given momentum ka and spin σ can be either
occupied, in which case we speak of a ‘particle’ with spin σ and momentum ka being
present, or unoccupied, in which case we speak of a ‘hole’ with quantum numbers ka and
σ . Let us introduce densities for particles ρ

(σ )
L ,p(k) and holes ρ

(σ )
L ,h(k)

# of particles with spin σ and momentum in [k, k +�k] = ρ
(σ )
L ,p(k) �k ,

# of holes with spin σ and momentum in [k, k +�k] = ρ
(σ )
L ,h(k) �k . (5.10)

By construction we have

ρ
(σ )
L (k) = ρ

(σ )
L ,p(k)+ ρ

(σ )
L ,h(k) = 1

2π
. (5.11)
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In the finite volume the energy per site of an eigenstate of H with Nσ electrons with spin σ

and corresponding momenta {kσ
a } is given by

eL = 1

L

∑
σ=↑,↓

Nσ∑
a=1

[−2 cos(kσ
a )− µσ ]

=
∑

a

∑
σ

[−2 cos(kσ
a )− µσ ]

kσ
a+1 − kσ

a

L[kσ
a+1 − kσ

a ]

=
∑

a

∑
σ

[−2 cos(kσ
a )− µσ ](kσ

a+1 − kσ
a ) ρ(σ )

L ,p(ka) . (5.12)

We note that the last line of (5.12) is of the form of a discretized integral. Now we take the
infinite volume limit for fixed densities nσ . In a finite volume the momentum densities of
states are defined on a discrete set of momenta. In the thermodynamic limit they turn into
functions of the continuous momentum

ρ(σ )
α (k) = lim

L→∞
ρ

(σ )
L ,α(ka) , α = p, h. (5.13)

Employing this prescription and turning sums into integrals, we obtain the following ex-
pression for the energy per site of an eigenstate of H described by a particle density ρ(σ )

p (k)
in the thermodynamic limit

e =
∫ π

−π
dk

∑
σ

[−2 cos(k)− µσ ] ρ(σ )
p (k) . (5.14)

Let us now describe the entropy, which is defined as the logarithm of the available states.
The number of states with spin σ and momentum in the interval [k, k +�k] is equal to the
number of possibilities for distributing L�k ρ

(σ )
L ,p(k) particles among L�k ρ

(σ )
L (k) vacancies,

which is equal to

exp(�S) =
∏
σ

[L�k ρ
(σ )
L (k)]!

[L�k ρ
(σ )
L ,p(k)]! [L�k ρ

(σ )
L ,h(k)]!

. (5.15)

For large L we are dealing with factorials of large numbers, which can be approximated by
using Stirling’s formula. The O(L) contribution to the entropy is then given by

�S = L�k
∑
σ

ρ
(σ )
L (k) ln[ρ(σ )

L (k)]− ρ
(σ )
L ,p(k) ln[ρ(σ )

L ,p(k)]− ρ
(σ )
L ,h(k) ln[ρ(σ )

L ,h(k)]. (5.16)

In the thermodynamic limit the entropy per site becomes

s =
∫ π

−π
dk

∑
σ

(
ρ(σ )(k) ln[ρ(σ )(k)]− ρ(σ )

p (k) ln[ρ(σ )
p (k)]− ρ

(σ )
h (k) ln[ρ(σ )

h (k)]
)
. (5.17)
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Combining equations (5.17) and (5.14) we may express the Gibbs free energy per site as

f =
∫ π

−π
dk

∑
σ

[−2 cos(k)− µσ ] ρ(σ )
p (k)

−T
∫ π

−π
dk

∑
σ

{
L
[
ρ(σ )(k)

]− L
[
ρ(σ )

p (k)
]− L

[
ρ

(σ )
h (k)

]}
, (5.18)

where we have introduced the shorthand notation

L[ f (x)] = f (x) ln[ f (x)] . (5.19)

We now regard the Gibbs free energy to be a functional of the particle and hole densities
ρ

(σ )
p,h(k), which are still subject to the constraint (5.11). In the state of thermodynamic

equilibrium the free energy must be stationary with respect to variations of the particle/hole
densities

0 = δ f =
∫ π

−π
dk

[∑
σ

δ f

δρ
(σ )
p (k)

δρ(σ )
p (k)+ δ f

δρ
(σ )
h (k)

δρ
(σ )
h (k)

]
. (5.20)

The constraint (5.11) tells us that the variations of ρ(σ )
h (k) and ρ(σ )

p (k) are not independent,
but rather

δρ
(σ )
h (k) = −δρ(σ )

p (k). (5.21)

Evaluating the functional derivatives in (5.20) and then using (5.11) and (5.21) we obtain
an equation for the ratio of hole and particle densities

ξ (σ )(k) = ρ
(σ )
h (k)

ρ
(σ )
p (k)

,

T ln
[
ξ (σ )(k)

] = −2 cos(k)− µσ = ε
(σ )
0 (k). (5.22)

The particle and hole densities in thermal equilibrium are expressed in terms of ξ (σ )(k) as

ρ(σ )
p (k) = 1

2π [1+ ξ (σ )(k)]
= 1

2π [1+ exp
(
ε

(σ )
0 (k)/T

)
]
,

ρ
(σ )
h (k) = ξ (σ )(k)

2π [1+ ξ (σ )(k)]
=

exp
(
ε

(σ )
0 (k)/T

)
2π [1+ exp

(
ε

(σ )
0 (k)/T

)
]
. (5.23)

In (5.23) we recognize the well-known expressions for the Fermi-Dirac momentum occu-
pation numbers n̄(σ )(k) = 2πρ(σ )

p (k) for noninteracting particles and holes with a dispersion
ε(σ )(k), see e.g. Chapter 8 of Ref. [200]. Inserting (5.23) back into the equation for the Gibbs
free energy we arrive at

f = −T
∫ π

−π

dk

2π

∑
σ

ln
[
1+ exp(−ε(σ )

0 (k)/T )
]
. (5.24)
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Equation (5.24) is the well known result for the free energy of a Fermi gas, where the
particles have an energy ε

(σ )
0 (k).

5.2 Thermodynamic Bethe Ansatz (TBA) equations

Let us now try to generalize the steps we went through for noninteracting electrons to the
case of the Hubbard model. We shall follow Takahashi’s derivation of the TBA equations
for the repulsive Hubbard model [435]. The analogous calculations for the attractive case
can be found in [287]. Let us recall that we are working with the following form of the
Hubbard Hamiltonian

H = −
L∑

j=1

∑
σ

c†j,σ c j+1,σ + c†j+1,σ c j,σ + 4u
L∑

j=1

(n j,↑ − 1

2
)(n j,↓ − 1

2
)

−µ
L∑

j=1

(
n j,↑ + n j,↓

)− B
L∑

j=1

(
n j,↑ − n j,↓

)
. (5.25)

There are three essential steps to our derivation.

� In Step 1 we show how to describe a general eigenstate of the Hamiltonian in the ther-
modynamic limit

L →∞ , Nσ →∞ ,
Nσ

L
= fixed , σ =↑,↓ . (5.26)

This is done by turning Takahashi’s equations (4.36)–(4.38) into a system of coupled
integral equations for root densities of particles and holes. The integral equations will
allow us to express the root densities of holes in terms of those of particles. The analogous
relation for noninteracting fermions is given by equation (5.11).

� In Step 2 we express the entropy and the Gibbs free energy in terms of the root distribution
functions.

� Finally, in Step 3 we minimize the Gibbs free energy with respect to the root densi-
ties and obtain a set of coupled, nonlinear integral equations that describe the state of
thermodynamic equilibrium.

Steps 2 and 3 are analogous, albeit significantly more complicated, to our derivation for
noninteracting electrons in Section 5.1.

Step 1: Our starting point are Takahashi’s equations (4.36)–(4.38) and expressions for
energy (4.52) and momentum (4.51) for large but finite L . The key fact we will use is that in
the framework of the string hypothesis there is a one-to-one correspondence between sets
of (half-odd) integers and sets of spectral parameters, i.e.

{I j , J n
α , J ′mβ } ←→ {k j ,�

n
α,�

′m
β } . (5.27)

Every permitted set {I j , J n
α , J ′mβ } uniquely specifies a solution {k j ,�

n
α,�

′m
β } of Takahashi’s

equations and thus an eigenfunction of the Hamiltonian. In what follows it will be useful
to adopt the following picture. The integers I j have a certain allowed range, in which we
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I I I2 31

k 2 k 3k 1

Fig. 5.1. Distributions of (half-odd) integers I j and corresponding distribution of spectral parameters
k j for a particular solution of Takahashi’s equations.

choose a particular distribution when we specify the set (5.27). Due to (5.27) there is a cor-
responding pattern of spectral parameters k j . This can be visualized as shown in figure 5.1.
Analogous pictures hold for the (half-odd) integers J n

α (J ′nα) and the corresponding spectral
parameters �n

α (�′nα). In what follows it will be very useful to view the distributions of
spectral parameters in terms of particles and holes.

A very important property of Takahashi’s equations (4.36)–(4.38) is that as we approach
the thermodynamic limit L →∞, N/L and M/L fixed (finite densities of electrons and
spin down electrons), the roots of (4.36)–(4.38) become dense

k j+1 − k j = O(L−1), �n
α+1 −�n

α = O(L−1), �′nα+1 −�′nα = O(L−1). (5.28)

We now define so-called counting functions y, zn, z′n as follows

Ly(k) = kL +
∞∑

n=1

Mn∑
α=1

θ

(
sin k −�n

α

nu

)
+
∞∑

n=1

M ′n∑
α=1

θ

(
sin k −�′nα

nu

)
, (5.29)

Lzn(�) =
N−2M ′∑

j=1

θ

(
�− sin k j

nu

)
−
∞∑

m=1

Mm∑
β=1

�nm

(
�−�m

β

u

)
, (5.30)

Lz′n(�′) = L[arcsin(�′ + niu)+ arcsin(�′ − niu)]

−
N−2M ′∑

j=1

θ

(
�′ − sin k j

nu

)
−
∞∑

m=1

M ′m∑
β=1

�nm

(
�′ −�′mβ

u

)
. (5.31)

By definition the counting functions satisfy the following equations when evaluated for a
given solution of the Takahashi equations

y(k j ) = 2π I j

L
, z′n(�′nα) = 2π J ′nα

L
, zn(�n

α) = 2π J n
α

L
. (5.32)

The counting functions have the important property that they are monotonically increasing
functions of their arguments. Let us see what the counting functions look like for a partic-
ular example. We choose L = 6, u = 1.25 and N = 3. The solution of the Bethe Ansatz
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Fig. 5.2. Counting functions y(k)/2π , z1(�)/2π and spectral parameters k1, k2, k3, � of the solution
(5.33) of the Lieb-Wu equations.

equations we consider has M = 1 and is given by

k1 = 0.54266222, k2 = −0.31583772 , k3 = −1.2740220 ,

�1 = 0.587983 . (5.33)

In figure 5.2 we plot the counting functions y(k)/2π and z1(�)/2π for our example and
also indicate the spectral parameters k j and �. We see that the counting functions are indeed
monotonically increasing and that y(k1) = π , y(k2) = −π , y(k3) = −3π and z1(�) = π .

In the next step we define root densities, which are related to the counting functions as
follows. By definition the counting functions ‘enumerate’ the Bethe Ansatz roots e.g.

L[y(k j )− y(kn)] = 2π (I j − In). (5.34)

For a given solution of Takahashi’s equations (4.36)–(4.38) some of the (half-odd) integers
between I j and In will be ‘occupied’ i.e. there will be a corresponding root k, whereas
others will be omitted. We describe the corresponding k-values in terms of a root density
ρ p(k) for ‘particles’ and a density ρh(k) for ‘holes’. These root densities for particles and
holes are the analogs of the particle and hole densities of state for noninteracting electrons.
In a very large system we then have by definition (here the property (5.28) is essential)

Lρ p(k) dk = number of particles in dk ,

Lρh(k) dk = number of holes in dk . (5.35)

Combining equations (5.34) and (5.35) it is then clear that in the thermodynamic limit we
have

2π [ρ p(k)+ ρh(k)] = dy(k)

dk
. (5.36)
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The analogous equations for the other types of roots in (4.36)–(4.38) are

2π [σ p
n (�)+ σ h

n (�)] = dzn(�)

d�
, 2π [σ ′n

p(�)+ σ ′n
h(�)] = dz′n(�)

d�
. (5.37)

In the thermodynamic limit Takahashi’s equations can now be turned into coupled integral
equations involving both counting functions and root densities

y(k) = k +
∞∑

n=1

∫ ∞
−∞

d� θ

(
sin k −�

nu

) [
σ ′n

p(�)+ σ p
n (�)

]
, (5.38)

zn(�) =
∫ π

−π
dk θ

(
�− sin k

nu

)
ρ p(k)

−
∞∑

m=1

∫ ∞
−∞

d�′ �nm

(
�−�′

u

)
σ p

m (�′), (5.39)

z′n(�) = arcsin(�+ niu)+ arcsin(�− niu)

−
∫ π

−π
dk θ

(
�− sin k

nu

)
ρ p(k)−

∞∑
m=1

∫ ∞
−∞

d�′ �nm

(
�−�′

u

)
σ ′m

p(�′).

(5.40)

By differentiating (5.38)–(5.39) we obtain a set of equations that contains only the root
densities for particles and holes

ρ p(k)+ ρh(k) = 1

2π
+ cos k

∞∑
n=1

∫ ∞
−∞

d� an(�− sin k)
[
σ ′n

p(�)+ σ p
n (�)

]
,

σ h
n (�) = −

∞∑
m=1

Anm ∗ σ p
m

∣∣∣∣
�

+
∫ π

−π
dk an(sin k −�) ρ p(k) ,

σ ′n
h(�) = 1

π
Re

1√
1− (�− inu)2

−
∞∑

m=1

Anm ∗ σ ′m p
∣∣∣∣
�

−
∫ π

−π
dk an(sin k −�) ρ p(k) . (5.41)

Here we have introduced the shorthand notation

an(x) = 1

2π

2nu

(nu)2 + x2
, (5.42)

and Anm is an integral operator acting on a function f as

Anm ∗ f

∣∣∣∣
x

= δnm f (x)+
∫ ∞
−∞

dy

2π

d

dx
�nm

(
x − y

u

)
f (y). (5.43)

Equations (5.41) can be used to express the densities of holes in terms of densities of
particles. They are the analog of equation (5.11) for noninteracting electrons.

Step 2: In order to obtain an expression for the Gibbs free energy we need to determine
the entropy. A general state is characterized by its distribution of Bethe Ansatz roots. In the
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thermodynamic limit, states can be described in terms of the root densities of particles and
holes. We therefore can view the entropy as a functional of the root densities. For a given
set of particle and hole densities, the contribution to the entropy of, e.g., states with k lying
in the interval [k, k +�k] can be determined as follows:

The number of vacancies for k in the interval [k, k +�k] is L(ρ p(k)+ ρh(k))�k. Of
these vacancies Lρ p(k)�k are occupied. The total number of states with k lying in the
interval [k, k +�k] is

(L[ρ p(k)+ ρh(k)]�k)!

(Lρ p(k)�k)!(Lρh(k)�k)!
, (5.44)

where ‘!’ denotes the factorial. The corresponding contribution d S to the entropy is the
logarithm of this number of states, which becomes large as we approach the thermody-
namic limit. Hence we can use Stirling’s formula to approximate the factorials in (5.44). In
this way we obtain the following expression for the total entropy per site of the Hubbard
model

s =
∫ π

−π
dk

{
L
[
ρ p(k)+ ρh(k)

]− L[ρ p(k)]− L[ρh(k)]
}

+
∞∑

n=1

∫ ∞
−∞

d�
{
L
[
σ ′n

p(�)+ σ ′n
h(�)

]
− L

[
σ ′n

p(�)
]− L

[
σ ′n

h(�)
]}

+
∞∑

n=1

∫ ∞
−∞

d�
{
L
[
σ p

n (�)+ σ h
n (�)

]− L
[
σ p

n (�)
]− L

[
σ h

n (�)
]}

, (5.45)

where L[ f (x)] was defined in (5.19). The Gibbs free energy per site is

f (µ, B, T ) = e − µnc − 2Bm − T s

=
∫ π

−π
dk [−2 cos k − µ− 2u − B] ρ p(k)

+
∞∑

n=1

∫ ∞
−∞

d�
[
4Re

√
1− (�− inu)2 − n(2µ+ 4u)

]
σ ′n

p(�)

+
∞∑

n=1

∫ ∞
−∞

d� 2nB σ p
n (�)− T s + u. (5.46)

Here µ is a chemical potential, B is a magnetic field, T is the temperature, nc is the particle
density and m the magnetization per site. We consider only positive values of magnetic
field B ≥ 0 and negative values of chemical potential µ ≤ 0. All other parameter regions
can be obtained from the one we consider by employing the discrete symmetries of the
Hamiltonian (see Section 2.2.4). Due to the symmetry of the Hamiltonian (in zero field)
(2.31) under interchange of up and down spins we have (2.63)

f (µ,−B, T ) = f (µ, B, T ) . (5.47)
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Similarly, if we employ the particle-hole transformation

c†j,↑ ↔ c j,↓(−1) j , c†j,↓ ↔ c j,↑(−1) j (5.48)

we may derive the equality (2.64)

f (−µ, B, T ) = f (µ, B, T )+ 2µ . (5.49)

Step 3: The state of thermodynamic equilibrium minimizes the Gibbs free energy
f (5.46). As f is a functional of the root densities, the state of thermodynamic equili-
brium must be stationary with respect to variations in a maximal set of independent root
densities. As the hole densities are expressed in terms of the particle densities by (5.41),
this yields the requirement

0 = δ f =
∫ π

−π
dk

[
δ f

δρ p(k)
δρ p(k)+ δ f

δρh(k)
δρh(k)

]
+
∞∑

n=1

∫ ∞
−∞

d�

[
δ f

δσ ′n
p(�)

δσ ′n
p(�)+ δ f

δσ ′n
h(�)

δσ ′n
h(�)

]
+
∞∑

n=1

∫ ∞
−∞

d�

[
δ f

δσ
p

n (�)
δσ p

n (�)+ δ f

δσ h
n (�)

δσ h
n (�)

]
, (5.50)

where we have to take (5.41) into account as constraint equations. We first evaluate the
functional derivatives in (5.50) by using the explicit representation (5.46), (5.45) for the
free energy f . For example, we have

δ f

δρ p(k)
= −2 cos k − µ− 2u − B − T ln

[
1+ ρh(k)

ρ p(k)

]
. (5.51)

The constraint equations (5.41) are then used to express all hole densities as well as their
variations in terms of particle densities and their variations. For example,

δρh(k) = −δρ p(k)+ cos(k)
∫ ∞
−∞

d�
∞∑

n=1

an(�− sin k)
[
δσ ′n

p(�)+ δσ p
n (�)

]
. (5.52)

Finally we require the coefficients of the independent variations δρ p(k), δσ p
n (�) and δσ ′ pn (�)

to vanish. In this way one obtains a set of equations for the ratios

ζ (k) = ρh(k)/ρ p(k) ,

ηn(�) = σ h
n (�)/σ p

n (�) ,

η′n(�) = σ ′n
h(�)/σ ′n

p(�) , (5.53)
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ln ζ (k) = −2 cos k − µ− 2u − B

T

+
∞∑

n=1

∫ ∞
−∞

d� an(sin k −�) ln

(
1+ 1

η′n(�)

)

−
∞∑

n=1

∫ ∞
−∞

d� an(sin k −�) ln

(
1+ 1

ηn(�)

)
. (5.54)

ln (1+ ηn(�)) = −
∫ π

−π
dk cos(k) an(sin k −�) ln

(
1+ 1

ζ (k)

)

+2nB

T
+
∞∑

m=1

Anm ∗ ln

(
1+ 1

ηm

) ∣∣∣∣
�

. (5.55)

ln
(
1+ η′n(�)

)+ ∫ π

−π
dk cos(k) an(sin k −�) ln

(
1+ 1

ζ (k)

)

= 4Re
√

1− (�− inu)2 − 2nµ− 4nu

T
+
∞∑

m=1

Anm ∗ ln

(
1+ 1

η′m

) ∣∣∣∣
�

. (5.56)

The equations (5.54)–(5.56) are called ‘Thermodynamic Bethe Ansatz equations’ or TBA
equations. We note that (5.41) together with (5.54)–(5.56) completely determine the den-
sities of holes and particles in the state of thermal equilibrium. The analog of the TBA
equations for noninteracting electrons is (5.22).

The Gibbs free energy per site is expressed in terms of solutions of (5.54)–(5.56)
as

f = −T
∫ π

−π

dk

2π
ln

(
1+ 1

ζ (k)

)
+ u

−T
∞∑

n=1

∫ ∞
−∞

d�

π
ln

(
1+ 1

η′n(�)

)
Re

1√
1− (�− inu)2

. (5.57)

As we will see it is very useful (in particular for taking the zero temperature limit) to
recast (5.54)–(5.56) in a different form. We first note that the inverse of the integral operator
Amn is given by

A−1
kn ∗ f

∣∣∣∣
x

= δk,n f (x)− (δk−1,n + δk+1,n)
∫ ∞
−∞

dy s(x − y) f (y) , (5.58)

where

s(x) = 1

4u cosh(πx/2u)
= 1

2π

∫ ∞
−∞

dω
exp(−iωx)

2 cosh(ωu)
. (5.59)
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By acting with A−1 on (5.55) and (5.56) we obtain the following ‘tridiagonal form’ of the
TBA equations

ln η1(�) = s ∗ ln(1+ η2)

∣∣∣∣
�

−
∫ π

−π
dk cos(k) s(�− sin k) ln

(
1+ 1

ζ (k)

)
,

ln ηn(�) = s ∗ ln ([1+ ηn−1][1+ ηn+1])

∣∣∣∣
�

, n = 2, 3, ... (5.60)

ln η′1(�) = s ∗ ln(1+ η′2)

∣∣∣∣
�

−
∫ π

−π
dk cos(k) s(�− sin k) ln (1+ ζ (k)) ,

(5.61)

ln η′n(�) = s ∗ ln
(
[1+ η′n−1][1+ η′n+1]

) ∣∣∣∣
�

, n = 2, 3, ... (5.62)

Here s is an integral operator with kernel (5.59), so that e.g.

s ∗ ln(1+ η2)

∣∣∣∣
�

=
∫ ∞
−∞

dλ s(�− λ) ln[1+ η2(λ)]. (5.63)

Equations (5.60),(5.62) need to supplemented by the following ‘boundary conditions’,
which are obtained directly by taking n to infinity in (5.54)–(5.56)

lim
n→∞

ln ηn

n
= 2B

T
, lim

n→∞
ln η′n

n
= −2µ

T
. (5.64)

Equation (5.54) can be recast in the form

ln ζ (k) = −2 cos k

T
− 1

T

∫ ∞
−∞

dy s(sin k − y)
[
4Re

√
1− (y − iu)2

]
+

∫ ∞
−∞

dy s(sin k − y) ln

(
1+ η′1(y)

1+ η1(y)

)
. (5.65)

Equations (5.60), (5.62) and (5.65) are derived by using the identities given in Chapter
17.1.

Now we are in a position to define dressed energies by

κ(k) = T ln(ζ (k)) , (5.66)

εn(�) = T ln(ηn(�)) , (5.67)

ε′n(�) = T ln(η′n(�)) . (5.68)

As was first shown by C. N. Yang and C. P. Yang for the delta-function Bose gas [496],
the quantities defined in this way describe the dressed energies of elementary excitations
in the zero temperature limit. We will discuss this point in detail in Chapter 7. We note
that for noninteracting electrons we had ξ (σ )(k) = ε

(σ )
0 (k), i.e. the ratio of hole and particle

densities of states is equal to the exponential of the ‘bare’ (or single-particle) energy divided
by temperature. In the Hubbard model the dressed energies are very different from the bare
ones as a result of the electron-electron interactions.
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5.3 Thermodynamics

The expression for the Gibbs free energy density (5.57) can be simplified to [436]

f = e0 − µ− u − T
∫ π

−π
dk ρ0(k) ln (1+ ζ (k))

−T
∫ ∞
−∞

d� σ0(�) ln (1+ η1(�)) , (5.69)

where

ρ0(k) = 1

2π
+ cos(k)

∫ ∞
−∞

dω

2π

J0(ω) cos(ω sin(k))

1+ exp(2u|ω|) ,

σ0(�) =
∫ ∞
−∞

dω

2π

J0(ω) exp(−iω�)

2 cosh(uω)
,

e0 = −u − 4
∫ ∞

0

dω

ω

J0(ω)J1(ω)

1+ exp(ω2u)
(5.70)

and J0 and J1 are Bessel functions.
We note that ρ0, σ0 and e0 are the root density for real k’s, the root density for real �’s

and the ground state energy per site for the half filled repulsive Hubbard model, respectively
[298] (see Eqn. (6.B.14)). Since the occurrence of quantities related to the half filled Hubbard
model in (5.69) may be surprising, we would like to emphasize that (5.69), (5.70) hold for
all negative values of the chemical potential µ, i.e. for all particle densities between zero
and one.

The representation (5.69) is convenient as it shows that the Gibbs free energy is determined
by the dressed energies for real k’s and real �’s only. In order to derive (5.69) the following
identities are useful∫ π

−π
dk an(sin k −�) ρ0(k) = 1

π
Re

1√
1− (�− inu)2

,

An1 ∗ σ0

∣∣∣∣
�

=
∫ ∞
−∞

dω

2π
J0(ω) e−nu|ω| e−iω� =

∫ π

−π

dk

2π
an(�− sin k)

=
∫ π

−π
dk an(sin k −�) ρ0(k) . (5.71)

At very low temperatures T � B it is possible to determine the Gibbs free energy by using
an expansion of the TBA equations (5.54)–(5.56) for small T [436]. The TBA equations
essentially reduce to only two coupled equations for ζ and η1 in this limit. For generic values
of B and arbitrary temperatures one needs to resort to a numerical solution of (5.54)–(5.56).
In order to do so, one needs to truncate the infinite towers of equations for � and k-�
strings at some finite value of their respective lengths. In [240, 469] such a truncated set of
equations was solved by iteration. The integrals were discretized by using approximately
50 (100) points for the k (�) integrations. The results of these computations are compared
to the results of the Quantum Transfer Matrix approach in chapter 13.
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5.4 Infinite temperature limit

Let us consider the TBA equations in the limit

T →∞ ,
B

T
,
µ

T
fixed. (5.72)

In this limit we may neglect the driving terms in the TBA equations (5.54)–(5.56), which
implies that ζ (k), ηn(�), η′n(�) are constants,

ζ (k) −→ ζ ,

ηn(�) −→ ηn ,

η′n(�) −→ η′n . (5.73)

The TBA equations in their tridiagonal form (5.60)–(5.65) then turn into simple recursion
relations

2 ln ηn = ln(1+ ηn−1)+ ln(1+ ηn+1) , lim
n→∞

ln ηn

n
= 2B

T
,

2 ln η′n = ln(1+ η′n−1)+ ln(1+ η′n+1) , lim
n→∞

ln η′n
n
= −2µ

T
,

2 ln ζ = ln

[
1+ η′1
1+ η1

]
. (5.74)

Here we have defined η0 = 0 and η′0 = 0. The solution of (5.74) is

ηn =
[

sinh
( (n+1)B

T

)
sinh

(
B
T

) ]2

− 1 ,

η′n =
 sinh

(
(n+1)µ

T

)
sinh

(
µ

T

)
2

− 1 ,

ζ = cosh
(
µ

T

)
cosh

(
B
T

) . (5.75)

The free energy per site can be calculated from (5.69)

f ! −T ln

[
1+ 2 exp

(µ

T

)
cosh

(
B

T

)
+ exp

(
2µ

T

)]
.

(5.76)

It follows that the entropy per site s in the limit T →∞ is

s = ln(4) . (5.77)

This is what one expects for a system with four degrees of freedom per site.1

1 The partition function on a system with L sites is Z (T ) = tr[exp(−H/T )] and Z (T →∞) = tr 1 = 4L .
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5.5 Zero temperature limit

In the limit T → 0 the TBA equations simplify in an essential way. The key to these
simplifications is that many of the dressed energies εn(�), ε′m(�) are positive for all values
of � and as a consequence their contributions to the right hand sides of the TBA equations
(5.54)–(5.56) vanish. For example, by equation (5.60) we have

εn(�) = T ln ηn(�) > 0 n = 2, 3, . . . (5.78)

Together with the ‘boundary conditions’ (5.64) this implies that for any B > 0

lim
T→0

ln

(
1+ 1

ηn(�)

)
= 0 , n ≥ 2. (5.79)

Similarly (5.62) implies that

ε′n(�) > 0 n = 2, 3, . . . (5.80)

and in conjunction with (5.64) we arrive at

lim
T→0

ln

(
1+ 1

η′n(�)

)
= 0 , n ≥ 2. (5.81)

Finally, as is shown in Appendix 5.A, we have

ε′1(�) > 0 ; lim
T→0

ln

(
1+ 1

η′1(�)

)
= 0 . (5.82)

5.5.1 Dressed energies

Using (5.79)–(5.82) in the TBA equations (5.54)–(5.56) we arrive at the following set of
equations that describe the zero temperature limit

κ(k) = −2 cos k − µ− 2u − B +
∫ ∞
−∞

d� a1(sin k −�)ε−1 (�), (5.83)

ε1(�) = 2B +
∫ π

−π
dk cos(k) a1(sin k −�) κ−(k)

−
∫ ∞
−∞

d�′ a2(�−�′) ε−1 (�′) , (5.84)

εn(�) = 2nB +
∫ π

−π
dk cos(k) an(sin k −�)κ−(k)− An1 ∗ ε−1

∣∣∣∣
�

, (5.85)

ε′n(�) = 4Re
√

1− (�− inu)2 − 2nµ− 4nu

+
∫ π

−π
dk cos(k) an(sin k −�) κ−(k) . (5.86)
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Here the quantities κ− and ε−1 are defined by

f (x) = f +(x)+ f −(x) , (5.87)

f −(x) =
{

f (x) if f (x) < 0

0 if f (x) ≥ 0
; f +(x) =

{
0 if f (x) < 0

f (x) if f (x) ≥ 0
. (5.88)

It is shown in Appendix 5.B that κ(k) and ε1(�) are symmetric functions of their argu-
ments and that they increase monotonously with k > 0 and � > 0 respectively. This means
that κ(k) is negative in an interval [−Q, Q] and positive outside this interval

κ(±Q) = 0, κ(k)

{
< 0 for |k| < Q

> 0 for |k| > Q.
(5.89)

Similarly we have for ε1(�)

ε1(±A) = 0, ε1(�)

{
< 0 for |�| < A

> 0 for |�| > A.
(5.90)

5.5.2 Root densities

The equations (5.41) for the root densities simplify as well in the T → 0 limit. By exploiting
the positivity of the dressed energies we obtain

lim
T→0

σ
p

n (�)

σ h
n (�)

= lim
T→0

exp

(
−εn(�)

T

)
= 0 , n ≥ 2 ,

lim
T→0

σ ′ pn (�)

σ ′hn(�)
= lim

T→0
exp

(
−ε′n(�)

T

)
= 0 , n ≥ 1 ,

lim
T→0

σ
p

1 (�)

σ h
1 (�)

= lim
T→0

exp

(
−ε1(�)

T

)
= 0 if |�| > A,

lim
T→0

ρ p(k)

ρh(k)
= lim

T→0
exp

(
−κ(k)

T

)
= 0 if |k| > Q . (5.91)

Assuming that the root densities are smooth, bounded functions,2 this implies that

σ p
n (�) = 0 , n ≥ 2 ,

σ ′ pn (�) = 0 , n ≥ 1 ,

σ
p

1 (�) = 0 , if |�| > A ,

ρ p(k) = 0 , if |k| > Q . (5.92)

2 It can be shown that this is indeed the case for small temperatures.
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Making use of these simplifications we can cast the integral equations for the root densities
in the form

ρ p(k) = θH (Q − |k|)
[

1

2π
+ cos k

∫ A

−A
d� a1(sin k −�) σ p

1 (�)

]
,

σ
p

1 (�) = θH (A − |�|)
[
−

∫ A

−A
d�′ a2(�−�′)σ p

1 (�′)

+
∫ Q

−Q
dk a1(sin k −�) ρ p(k)

]
, (5.93)

ρh(k) = θH (|k| − Q)

[
1

2π
+ cos k

∫ A

−A
d� a1(sin k −�) σ p

1 (�)

]
,

σ h
1 (�) = θH (|�| − A)

[
−

∫ A

−A
d�′ a2(�−�′)σ p

1 (�′)

+
∫ Q

−Q
dk a1(sin k −�) ρ p(k)

]
,

σ h
n (�) = −An1 ∗ σ p

1

∣∣∣∣
�

+
∫ Q

−Q
dk an(sin k −�) ρ p(k) , n ≥ 2 ,

σ ′n
h(�) = 1

π
Re

1√
1− (�− inu)2

−
∫ Q

−Q
dk an(sin k −�) ρ p(k), (5.94)

where θH (x) is the Heaviside step function. We note that at zero temperature the functional
forms of ρ p(k) and ρh(k) and similarly of σ

p
1 (�) and σ h

1 (�) are identical. Hence it is
convenient to define quantities

ρ(k) = ρ p(k)+ ρh(k) ,

σ1(�) = σ
p

1 (�)+ σ h
1 (�) . (5.95)

Then ρ(k) describes the root density of particles if |k| ≤ Q and the root density of holes if
|k| ≥ Q respectively. In terms of ρ(k) and σ1(�) the integral equations (5.93) and (5.94)
take a more compact form

σ1(�) =
∫ Q

−Q
dk a1(sin k −�) ρ(k)−

∫ A

−A
d�′ a2(�−�′)σ1(�′),

ρ(k) = 1

2π
+ cos k

∫ A

−A
d� a1(sin k −�) σ1(�). (5.96)

As we will see later on, equations (5.96) describe the distribution of roots in the zero
temperature ground state of the Hubbard model. They were first obtained by E. H. Lieb and
F. Y. Wu in [298].
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5.5.3 Dressed momenta

The total momentum (4.51) can be rewritten by using (4.36)-(4.38) in the following useful
manner

P = 2π

L

(
N−2M ′∑

j=1

I j +
∞∑

m=1

Mm∑
β=1

J m
β −

∞∑
n=1

M ′n∑
α=1

J ′nα

)
+ π

∞∑
n=1

M ′n∑
α=1

(n + 1)

=
N−2M ′∑

j=1

y(k j )+
∞∑

m=1

Mm∑
β=1

zm(�m
β )−

∞∑
n=1

M ′n∑
α=1

z′n(�′nα)+ π

∞∑
n=1

M ′n∑
α=1

(n + 1).

(5.97)

Using this expression for the total momentum we now can identify the dressed momenta
of various types of ‘excitations’. We find that an additional real k with |k| > Q (‘particle’)
or hole in the sea of k’s (|k| < Q) carry momentum ±p(k) respectively, where

p(k) = y(k) = 2π
∫ k

0
dk ′ ρ(k) . (5.98)

Similarly, the dressed momentum of an additional root � or a hole in the sea of �1
α’s with

spectral parameter � is ±p1(�), where

p1(�) = z1(�) = −2π
∫ ∞
�

d�′ σ1(�′)+ z1(∞). (5.99)

The momentum associated with adding a �-string of length 2 or larger is

pn(�) = zn(�) = −2π
∫ ∞
�

d�′σ h
n (�′)+ zn(∞) , n ≥ 2. (5.100)

Finally, a k-� string of length n has dressed momentum

p′n(�) = −z′n(�)+ π (n + 1)

= 2π
∫ ∞
�

d�′ σ ′hn(�′)− z′n(∞)+ π (n + 1). (5.101)

5.5.4 Zero temperature limit in zero magnetic field

If we take the limit of vanishing magnetic field, equations (5.83)–(5.86) simplify further.
Taking B → 0 corresponds to A→∞. In the absence of a magnetic field, the magnetization
must be zero [293] as otherwise the spin rotational SU(2) symmetry would be broken, which
is forbidden in one dimension by the Mermin-Wagner theorem. For A = ∞ we have

N↓ + N↑
L

=
∫ Q

−Q
dk ρ p(k) ,

N↓
L
=

∫ A

−A
dλ σ1(λ) = 1

2

∫ Q

−Q
dk ρ p(k) , (5.102)
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where the last equality is obtained by inserting the integral equation (5.93). We thus find that
for A = ∞, the numbers of up and down spins are the same N↓ = N↑ and the magnetization
is indeed zero.

Using Fourier transformation, equations (5.83) and (5.85) can be simplified

κ(k) = −2 cos k − µ− 2u +
∫ Q

−Q
dk ′ cos k ′ R(sin k ′ − sin k) κ(k ′) ,

ε1(�) =
∫ Q

−Q
dk

cos k

4u

1

cosh π
2u (�− sin k)

κ(k) ,

εn(�) = 0 n = 2, 3, . . . (5.103)

where

R(x) =
∫ ∞
−∞

dω

2π

exp(iωx)

1+ exp(2u|ω|) . (5.104)

The vanishing of the dressed energies of �-strings of lengths greater than one i.e. εn(�) = 0
for n ≥ 2 is due to the absence of a magnetic field. For finite magnetic fields all εn(�) will
be nontrivial functions. The equations for the root densities simplify to

ρ(k) = 1

2π
+

∫ Q

−Q
dk ′ cos k R(sin k ′ − sin k) ρ(k ′) ,

σ1(�) =
∫ Q

−Q
dk

1

4u

1

cosh π
2u (�− sin k)

ρ(k) ,

σ p
n (�) = 0 n = 2, 3, . . . σ h

m(�) = 0 = σ ′pm (�) m = 1, 2, . . .

σ ′n
h(�) = 1

π
Re

1√
1− (�− inu)2

−
∫ Q

−Q
dk an(sin k −�) ρ(k) . (5.105)

Equations (5.105) describe the ground state of the repulsive Hubbard model at zero tem-
perature and zero magnetic field. There is one Fermi sea of k’s (charge degrees of freedom)
with Fermi rapidity ±Q and a second Fermi sea of �1’s, which are filled on the entire real
axis.

The expressions (5.99)–(5.101) for the dressed momenta can be simplified as well

p1(�) = π
N

2L
− 2

∫ Q

−Q
dk arctan

[
exp

(
− π

2u
(�− sin k)

)]
ρ(k),

(5.106)

p′n(�) = −2Re arcsin(�− inu)

+
∫ Q

−Q
dk 2 arctan

(
�− sin k

nu

)
ρ(k)+ π (n + 1). (5.107)

The result (5.106) was first obtained by Coll [88].
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5.A Zero temperature limit for ε′1(�)

In order to establish that ε′1(�) ≥ 0 we rewrite Eqn. (5.61) as

ln η′1(�) = s ∗ ln(1+ η′2)

∣∣∣∣
�

−
∫ π/2

0
dk cos(k) s(�− sin k) ln

[
1+ ζ (k)

1+ ζ (π − k)

]
−

∫ 0

−π/2
dk cos(k) s(�− sin k) ln

[
1+ ζ (k)

1+ ζ (−π − k)

]
. (5.A.1)

The first term on the right hand side of (5.A.1) is positive. Using (5.54) we can straightfor-
wardly establish the following identities

ln ζ (π − k)− ln ζ (k) = 4 cos k

T
≥ 0 for 0 ≤ k ≤ π/2 ,

ln ζ (−π − k)− ln ζ (k) = 4 cos k

T
≥ 0 for − π/2 ≤ k ≤ 0. (5.A.2)

These equations imply that the second and third terms on the right-hand side of (5.A.1) are
positive and therefore

ε′1(�) = T ln η′1(�) ≥ 0 . (5.A.3)

5.B Properties of the integral equations at T = 0

In this appendix we show that the solutions κ(k) and ε1(�) of the integral equations (5.83)
and (5.84) are symmetric functions of their arguments and that they increase monotonously
with k > 0 and � > 0 respectively. Our discussion follows the appendix of [435]. The
uniqueness and monotonicity properties of the solutions to the integral equations for the
root densities was proved by E. H. Lieb and F. Y. Wu in [300].
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We first rewrite the integral equation for ε1(�) by way of Fourier transformation as

ε1(�) = B +
∫ ∞
−∞

d�′ R(�−�′) ε+1 (�′)

+
∫ π

−π
dk cos(k) s(�− sin k) κ−(k) , (5.B.1)

where R(�) and s(�) are defined in (5.104) and (5.59) respectively. The resulting set
(5.B.1), (5.83) of coupled integral equations is then solved by a double iteration

κ(k) = lim
n→∞ κ (n)(k) , ε1(�) = lim

n→∞ ε
(n)
1 ,

ε
(n)
1 (�) = lim

m→∞ ε
(n,m)
1 (�) ,

κ (1)(k) = −2 cos(k)− µ− 2u − B ,

ε
(n,1)
1 (�) = 2B ,

ε
(n,m+1)
1 (�) = B +

∫ ∞
−∞

d�′ R(�−�′) ε(n,m)+
1 (�′)

+
∫ π

−π
dk cos(k) s(�− sin k) κ (n)−(k) , (5.B.2)

κ (n+1)(k) = κ (1)(k)+
∫ ∞
−∞

d� a1(sin k −�) ε(n)−
1 (�) . (5.B.3)

It is straightforward to show by mathematical induction that the functions constructed in
this iterative manner are symmetric

κ (n)(−k) = κ (n)(k) ,

ε
(n)
1 (−�) = ε

(n)
1 (�) . (5.B.4)

The existence of the limits

κ(k) = lim
n→∞ κ (n)(k) , ε1(�) = lim

n→∞ ε
(n)
1 , (5.B.5)

is established by the following three Lemmas.

Lemma 4.

0 ≥
∫ π

−π
dk cos(k) s(�− sin k) κ (n)−(k)

≥
∫ π

−π
dk cos(k) s(�− sin k) κ (n)(k) (5.B.6)

≥ −2
∫ π

−π
dk cos2(k) s(�− sin k) . (5.B.7)
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Proof. Let us begin with the first inequality in Lemma 4. It is easy to see that∫ π

−π
dk cos(k) s(�− sin k) κ (n)−(k)

=
∫ π/2

0
dk cos(k) s(�− sin k)

[
κ (n)−(k)− κ (n)−(π − k)

]
+

∫ 0

−π/2
dk cos(k) s(�− sin k)

[
κ (n)−(k)− κ (n)−(−π − k)

]
. (5.B.8)

On the other hand, one can derive directly from the definition of κ (n) (5.B.3) that

κ (n)(π − k)− κ (n)(k) = 4 cos(k) ≥ 0 for k ∈ [0, π/2],

κ (n)(−π − k)− κ (n)(k) = 4 cos(k) ≥ 0 for k ∈ [−π/2, 0]. (5.B.9)

Equations (5.B.9) in turn imply the following inequalities for κ (n)α , α = ±
κ (n)α(π − k) ≥ κ (n)α(k) , k ∈ [0, π/2]

κ (n)α(−π − k) ≥ κ (n)α(k) , k ∈ [−π/2, 0]. (5.B.10)

As a consequence of (5.B.10) both terms on the right hand side of (5.B.8) are negative,
which proves the first inequality in Lemma 4. A completely analogous calculation yields∫ π

−π
dk cos(k) s(�− sin k) κ (n)+(k) ≤ 0 , (5.B.11)

which establishes the second inequality in Lemma 4. The final inequality in Lemma 4 is
obtained by substituting the expression (5.B.3) for κ (n) into equation (5.B.6) and then using
Eqn. 17.1. �

Lemma 5. The limit ε(n)
1 (�) = lim

m→∞ ε
(n,m)
1 (�) exists.

Proof. By mathematical induction we can prove that

ε
(n,m+1)
1 (�) ≤ ε

(n,m)
1 (�) . (5.B.12)

Induction start: Using that ε(n,1)
1 (�) = ε

(n,1)+
1 (�) = 2B we have

ε
(n,2)
1 (�)− ε

(n,1)
1 (�) =

∫ π

−π
dk cos(k) s(�− sin k) κ (n)−(k) , (5.B.13)

which is negative by Lemma 4.
Induction step: Assuming (5.B.12) to hold for m ≤ k, we obtain

ε
(n,k+1)
1 (�)− ε

(n,k)
1 (�) =

∫ ∞
−∞

d�′ R(�−�′)
[
ε

(n,k)+
1 (�′)− ε

(n,k−1)+
1 (�′)

]
≤ 0,

because the integrand is always positive. This completes the induction step and establishes
that ε(n,m)

1 (�) decreases under iteration in m.
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On the other hand we can obtain a lower bound by using Lemma 4

ε
(n,m)
1 (�) ≥ −2

∫ π

−π
dk cos2 k s(�− sin k) . (5.B.14)

This completes the proof. �

Lemma 6. The following inequalities hold

ε
(n,m)
1 (�) ≥ ε

(n+1,m)
1 (�) , (5.B.15)

κ (n)(k) ≥ κ (n+1)(k) , (5.B.16)

ε
(n)
1 (�) ≥ ε

(n+1)
1 (�) . (5.B.17)

Proof. All three inequalities are proved by mathematical induction in n.
Induction start: It is obvious from the definition (5.B.3) that κ (1)(k) ≥ κ (2)(k). Using this
fact, we can show by mathematical induction in m that ε(1,m)

1 (�) ≥ ε
(2,m)
1 (�): the case m = 1

is obvious, m = 2 is equivalent to proving that∫ π

−π
dk cos(k) s(�− sin(k))[κ (1)−(k)− κ (2)−(k)] ≥ 0. (5.B.18)

The integral (5.B.18) is rewritten as∫ π/2

0
dk cos(k) [s(�− sin(k))+ s(�+ sin(k))] { f1(k)− f2(k)} , (5.B.19)

where

fn(k) = κ (n)−(k)− κ (n)−(π − k) . (5.B.20)

By equation (5.B.9) we have

fn(k) = κ (n)−(k)− [κ (n)(k)+ 4 cos(k)]−

=
{
κ (n)−(k) if (κ (n)(k)+ 4 cos(k)) ≥ 0 ,

−4 cos(k) if (κ (n)(k)+ 4 cos(k)) ≤ 0 .
(5.B.21)

Using the fact that κ (1)(k) ≥ κ (2)(k) we obtain

f1(k)− f2(k) =


0 if κ (1)(k) ≤ −4 cos(k) ,
κ (1)−(k)− κ (2)−(k) if κ (2)(k) ≥ −4 cos(k) ,
κ (1)−(k)+ 4 cos(k) if κ (1)(k) ≥ −4 cos(k) ≥ κ (2)(k),

(5.B.22)

which establishes that f1(k)− f2(k) ≥ 0 for k ∈ [0, π/2]. This completes the proof that
ε

(1,m)
1 (�) ≥ ε

(2,m)
1 (�). The induction over m is carried out by assuming that ε(1,m−1)

1 (�) ≥
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ε
(2,m−1)
1 (�) and calculating

ε
(1,m)
1 (�)− ε

(2,m)
1 (�) =

∫ π

−π
dk cos(k) s(�− sin(k))[κ (1)−(k)− κ (2)−(k)]

+
∫ ∞
−∞

d�′ R(�′ −�)[ε(1,m−1)+
1 (�′)− ε

(2,m−1)+
1 (�′)].

(5.B.23)

The first term on the r.h.s. of (5.B.23) is greater than zero by (5.B.18) and the second term is
positive as the integrand is always positive by virtue of the induction assumption. Taking the
limit m →∞, which exists by Lemma 5, we obtain that ε(1)

1 (�) ≥ ε
(2)
1 (�). This establishes

the validity of the induction start n = 1.
Induction step: The inequality ε

(n−1)
1 (�) ≥ ε

(n)
1 (�) implies κ (n)(k) ≥ κ (n+1)(k) courtesy of

the definition (5.B.3). The proof that ε(n,m)
1 (�) ≥ ε

(n+1,m)
1 (�) is accomplished by mathemat-

ical induction in m in complete analogy to the n = 1 case. Finally taking the limit m →∞
gives ε

(n)
1 (�) ≥ ε

(n+1)
1 (�). This completes the proof of Lemma 6. �

Lemma 6 shows that both κ (n)(k) and ε
(n)
1 (�) decrease under iteration. On the other hand,

they can be bounded from below by using the inequality (5.B.14). This shows that the limit
n→∞ exists.

Finally, the monotonicity properties of the dressed energies are established by the fol-
lowing two Lemmas.

Lemma 7. (a) ε(n,m)
1 (�) is a monotonously increasing function (MIF) of � for � ∈ [0,∞].

(b) κ (n)(k) is a MIF of k for k ∈ [0, π/2].

Proof. We rewrite the recursion relation for ε(n,m+1)
1 (�) as

ε
(n,m+1)
1 (�) = B +

∫ ∞
−∞

d�′ R(�−�′) ε(n,m)+
1 (�′)

+
∫ ∞
−∞

d�′ s(�−�′) ϕ(n)(�′) , (5.B.24)

where

ϕ(n)(�) =
∫ π

−π
dk cos(k) δ(�− sin k) κ (n)−(k)

=


0 if |�| > 1

−4
√

1−�2 if |�| < 1 and κ (n)(z) < −4
√

1−�2

κ (n)−(z) if |�| < 1 and κ (n)(z) > −4
√

1−�2, (5.B.25)
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where z = arcsin(�). The function ϕ(n)(�) is a symmetric, continuous function of � and
increases monotonously with � > 0 if κ (n)(k) is a MIF of k in the interval [0, π/2]. We are
now in a position to prove Lemma 7 by mathematical induction.

Induction start: ε(1,1)
1 (�) is a MIF of �. κ (1)(k) is a MIF in the interval [0, π/2], implying

that ϕ(1)(�) is a MIF of �. Mathematical induction in m establishes that ε(1,m)
1 (�) defined

by the recursion relation (5.B.24) is a MIF of � and taking the limit m →∞ we obtain
that ε(1)

1 (�) has the same property. Application of the recursion relation (5.B.3) shows that
κ (2)(k) is a MIF of k in [0, π/2].

Induction step: Assuming that κ (n)(k) is a MIF of k in the interval [0, π/2] it follows that
ϕ(n)(�) defined by (5.B.25) is a MIF of �. This fact allows us to show by mathematical
induction in m that ε(n,m)

1 (�) as defined in (5.B.24) and hence also ε
(n)
1 (�) are MIF of �.

Application of the recursion relation (5.B.3) then establishes that κ (n+1)(k) is a MIF of k in
[0, π/2]. �

Lemma 8. κ (n)(k) is a MIF of k for k ∈ [π/2, π ].

Proof. We rewrite the equation (5.B.2) for ε(n)(�) by replacing κ (n)−(k) by κ (n)(k)−
κ (n)+(k) in the integrand of the second integral and then utilizing the recursion (5.B.3) for
κ (n)(k) together with the ‘symmetric integration Lemma’ (17.1). This yields

ε
(n)
1 (�) = B +

∫ ∞
−∞

d�′ R(�−�′) ε(n)+
1 (�′)

+
∫ π

−π
dk cos(k) s(�− sin k) [−2 cos(k)− κ (n)+(k)]. (5.B.26)

Substituting this into (5.B.3) and using (17.11) and (17.12) to simplify the integrals we
have

κ (n+1)(k) =
{
κ (1)(k)+ B − 2

∫ π

−π
dk ′ cos2(k ′) R(sin(k)− sin(k ′))

}
−

∫ ∞
−∞

d� s(�− sin(k)) ε(n)+
1 (�)

−
∫ π

−π
dk ′ cos(k ′) R(sin(k)− sin(k ′)) κ (n)+(k ′) . (5.B.27)

We are now in a position to prove the Lemma by mathematical induction.
Induction start: it follows from the definition (5.B.2) that κ (1)(k) is a MIF of k in the

interval [π/2, π ].
Induction step: Assuming that κ (n)(k) is a MIF of k in the interval [π/2, π ] we will prove

that κ (n+1)(k) has the same property.
We have already shown that ε(n)

1 is a symmetric function of� and increases monotonously
for � > 0. This implies that the second term on the r.h.s. of (5.B.27) is a MIF of k in the
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interval [π/2, π ]. The third term on the r.h.s. of (5.B.27) is rewritten as∫ π/2

0
dk ′ cos(k ′)

[
R(sin(k)− sin(k ′))+ R(sin(k)+ sin(k ′))

]
× {

κ (n)+(π − k ′)− κ (n)+(k ′)
}
. (5.B.28)

The term in braces is a monotonously decreasing function of k ′ by virtue of the induction
assumption and Lemma 7. This in turn implies that the integral is a MIF of k in the interval
[π/2, π ]. Finally, the first term on the r.h.s. is equal to

−2 cos(k)− µ− 2u − 2
∫ ∞
−∞

dω

ω

J1(ω) exp (−iω sin(k))

1+ exp(2u|ω|) ≡ κ0(k)− µ.

(5.B.29)

Here κ0(k) is the dressed energy for a half filled band in zero magnetic field, see (6.B.8).
Using the series representation (6.B.9) we can easily see that κ0(k) is a MIF of k in the
interval [π/2, π ]. This completes the proof of Lemma 8. �



6

Ground state properties in the thermodynamic limit

In this chapter we study the ground state properties in the thermodynamic limit. In particular
we determine the ground state phase diagram and calculate density, magnetization, magnetic
susceptibility and compressibility as functions of the chemical potential and the magnetic
field. This is done by analyzing the integral equations that determine the distributions
of Bethe Ansatz roots in the ground state. This method was introduced for the case of
the spin- 1

2 Heisenberg model by Hulthén [207]. Our discussion is based on Takahashi’s
work [435, 436].

6.1 A point of reference: noninteracting electrons

Before tackling the general case let us consider noninteracting electrons (u = 0). Here zero
temperature properties can be determined in a simple way by going to momentum space.1

The energy for an electron with spin σ and momentum k is

εσ (k) = −2 cos(k)− µσ , (6.1)

where µ↑ = µ+ B and µ↓ = µ− B. In the ground state the band for spin σ is filled in the
interval [−kF,σ , kF,σ ]

kF,σ =


0 if µσ < −2

arccos(−µσ/2) if −2 ≤ µσ ≤ 2

π if µσ > 2.

(6.2)

The density and magnetization per site are given by

nc =
∑

σ=↑,↓

∫ kF,σ

−kF,σ

dk ρσ (k) = 1

π

∑
σ

kF,σ ,

m = 1

2

[∫ kF,↑

−kF,↑
dk ρ↑(k)−

∫ kF,↓

−kF,↓
dk ρ↓(k)

]
= 1

2π
[kF,↑ − kF,↓], (6.3)

1 Of course the limit u → 0 can also be studied by starting with the Bethe Ansatz solution, but the analysis is more complicated
[142].
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Fig. 6.1. Ground state phase diagram as a function of chemical potential µ and magnetic field B for
noninteracting electrons (u = 0).

where we have used that the densities of up and down spins are constant, cf (5.8)

ρσ (k) = 1

2π
, σ =↑,↓ . (6.4)

The ground state free energy per site is

f = e − µ nc − 2B m =
∑
σ

∫ kF,σ

−kF,σ

dk ρσ (k) εσ (k)

= − 1

π

∑
σ

2 sin(kF,σ )+ µσ kF,σ . (6.5)

If we consider a less than half filled band (µ < 0) we arrive at the phase diagram for
noninteracting electrons shown in figure 6.1. Using the picture of the ground state in terms of
two bands for spin up and spin down electrons respectively we obtain four different phases:

� Phase I: kF,σ = 0: Empty Lattice.
Both bands are empty, the ground state is the empty lattice. The density and magnetization
are zero. The chemical potential must be sufficiently negative µ ≤ −2− B in order for
the empty lattice to be the ground state.

� Phase II: kF,↓ = 0, 0 < kF,↑ < π : Partially filled, spin polarized band.
The spin down band is empty, the spin up band is partially filled. The magnetization is
equal to half the density, which varies between 0 and 1. We have

nc = 2m = kF,↑
π
= 1

π
arccos

(
−µ+ B

2

)
. (6.6)
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The charge susceptibility is

χc(µ, B) = ∂nc

∂µ
= 1

π
√

4− (µ+ B)2
. (6.7)

It diverges for B →±2− µ, i.e. as we approach the boundaries with phases I and III.
� Phase III: kF,↓ = 0, kF,↑ = π : Half filled, spin polarized band.

The spin down band is empty, the spin up band is entirely filled. In this phase the density
is 1 and the magnetisation is 1

2 .
� Phase IV: 0 < kF,σ < π : Partially filled and magnetized band.

Both bands are partially filled. The density varies between 0 and 1 and the magnetisation
between 0 and 1

2

nc = 1

π

[
arccos

(
−µ+ B

2

)
+ arccos

(
−µ− B

2

)]
,

m = 1

2π

[
arccos

(
−µ+ B

2

)
− arccos

(
−µ− B

2

)]
. (6.8)

The spin and charge susceptibilities are given by

χc(µ, B) = 1

π

[
1√

4− (µ+ B)2
+ 1√

4− (µ− B)2

]
,

χs(µ, B) = ∂m

∂B
= 1

2
χc(µ, B). (6.9)

The susceptibilities diverge at the boundary with Phase II, signalling a quantum phase
transition. The critical exponent associated with this transition is 1

2 .

6.2 Defining equations

The T → 0 limit of the thermodynamic equations can be used to characterize the ground
state of the system. The only dressed energies that can be negative are κ(k) and ε1(�).
From the definitions (5.68) and (5.53) it follows that if a dressed energy is positive for all
values of spectral parameter, then the corresponding root density of particles is identically
zero. This means that the ground state can only contain real k’s and real �’s. The integral
equations for the dressed energies are

κ(k) = −2 cos k − µ− 2u − B +
∫ A

−A
d� a1(sin k −�) ε1(�),

ε1(�) = 2B +
∫ Q

−Q
dk cos(k) a1(sin k −�)κ(k)

−
∫ A

−A
d�′ a2(�−�′) ε1(�′). (6.10)

Here the integration boundaries ±Q and ±A are the points at which the dressed energies
switch sign, so that they are determined as functions of the chemical potential and the
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magnetic fields via the conditions

κ(±Q) = 0, ε1(±A) = 0. (6.11)

If κ(k) (ε1(�)) does not switch sign, then obviously Q = 0 or Q = π (A = ∞ or A = 0).
In general, equations (6.10) cannot be solved analytically, but it is quite straightforward to
solve them numerically with high accuracy. How to do this is outlined in Appendix 6.A.

The integral equations describing the root densities of the ground state are (5.95) and
were first obtained in [298]

ρ(k) = 1

2π
+ cos k

∫ A

−A
d� a1(sin k −�) σ1(�), (6.12)

σ1(�) =
∫ Q

−Q
dk a1(�− sin k) ρ(k)−

∫ A

−A
d�′ a2(�−�′)σ1(�′). (6.13)

The integrated densities yield the total number of electrons per site and the number of down
spin electrons per site respectively∫ Q

−Q
dk ρ(k) = N

L
,

∫ A

−A
d� σ1(�) = M1

L
= N↓

L
. (6.14)

Hence the particle density nc and the magnetization per site m are

nc = N

L
=

∫ Q

−Q
dk ρ(k),

m = 〈S
z〉

L
= N − 2M

2L
= 1

2

[∫ Q

−Q
dk ρ(k)− 2

∫ A

−A
d�σ1(�)

]
. (6.15)

The spin and charge susceptibilities are defined as

χs(µ, B) = ∂m

∂B
, χc(µ, B) = ∂nc

∂µ
. (6.16)

We note that in the parameter region we are working in we always have 0 ≤ m ≤ nc/2.
Last but not least the ground state free energy per site is given by (5.46), (5.57)

f = e − µnc − 2Bm =
∫ Q

−Q
dk (−2 cos k − µ− 2u − B) ρ(k)

+ 2B
∫ A

−A
d� σ1(�)+ u

=
∫ Q

−Q

dk

2π
κ(k)+ u. (6.17)

6.3 Ground state phase diagram

Let us now discuss the ground state phase diagram for the interacting case u > 0. This can
be done either as a function of the chemical potential µ and the magnetic field B, or as a
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function of the particle density nc and the magnetization per site m, which are related to
the root densities by (6.14) and (6.15). It is important to note that in the grand canonical
ensemble the density is a function of both the chemical potential and the magnetic field. The
same is true for the magnetization. This means that keeping the chemical potential fixed
and varying the magnetic field will change the density.

The different phases are most easily identified by considering the integration boundaries
Q and A as control parameters. We first note that Q = 0 implies A = 0 and corresponds
to a completely empty band, i.e. N = 0. On the other hand, one can easily see by using the
identity (6.12) and (17.1) that Q = π implies that the band is half filled, i.e. there is one
electron per site

N

L
=

∫ π

−π
dk ρ(k) = 1. (6.18)

It is also useful to consider the two limiting cases A = 0 and A = ∞. In the latter case we
find from (6.14) and (6.12)–(6.13)

N↓
L
=

∫ ∞
−∞

d�σ1(�) = 1

2

∫ Q

−Q
dk ρ(k) = N

2L
, (6.19)

i.e. the magnetization of the ground state is zero. The first equality in (6.19) follows directly
from (6.14) and the second equality is obtained by integrating (6.13) between −∞ and
∞. On the other hand, for A = 0 the ground state is completely magnetized as N↓ = 0
by (6.14). These considerations allow us to distinguish between the following five phases
at zero temperature, which are shown in figures 6.4 and 6.5 in the canonical and grand
canonical ensemble respectively.

� Phase I: Q = 0, A = 0: Empty band.
This region corresponds to an empty band, i.e. zero density of electrons nc = m = 0. As
the ground state is the empty lattice, the dressed energies (6.10) must be always positive.
This yields the condition

µ ≤ µ0(B) = −2− 2u − B. (6.20)

In other words, the chemical potential must be sufficiently negative in order for the ground
state to be given by the empty lattice. This is intuitively obvious.

� Phase II: 0 < Q < π, A = 0: Partially filled, spin polarized band.
This phase corresponds to electron densities between zero (empty band) and one (half
filled band) 0 < nc < 1 and completely polarized spins m = nc/2. The integral equations
for the dressed energies simplify to

κ(k) = −2 cos k − µ− 2u − B, κ(±Q) = 0,

ε1(�) = 2B +
∫ Q

−Q
dk cos(k) a1(�− sin k) κ(k) ≥ 0. (6.21)

Let us now determine the ranges of B and µ that correspond to Phase II. The condition
κ(±Q) = 0 fixes Q as a function of B and µ

cos Q = −1

2
(µ+ B + 2u). (6.22)
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As we have by definition Q < π , the magnetic field must be smaller than an upper critical
field Bu

B ≤ Bu = 2− µ− 2u. (6.23)

For B > Bu we have Q = π and the band is half filled. The requirement ε1(�) ≥ 0 implies
that for fixed µ the magnetic field B must be larger than a critical value Bc, which is given
implicitly as the solution of the equation

B ≥ Bc = 2u

π

∫ Q

0
dk cos k

cos k − cos Q

u2 + (sin k)2
. (6.24)

For u →∞ this equation can be used to express Bc in a simple way as a function of the
electron density

Bc = 1

u

[
nc − sin 2πnc

2π

]
+O(1/u3). (6.25)

The root density for real k’s is constant as the integral on the r.h.s. of (6.12) vanishes

ρ(k) = 1

2π
. (6.26)

This implies that the density is given by

nc = 1

π
arccos

(
1− µ− µ0(B)

2

)
. (6.27)

� Phase III: Q = π, A = 0: Half filled, spin polarized band.
This region corresponds to a half filled band nc = 1 and completely polarized spins
m = 1/2. The integral equations for the dressed energies can be solved explicitly

κ(k) = −2 cos k − µ− 2u − B,

ε1(�) = 2B − 4Re
√

1− (�− iu)2 + 4u. (6.28)

The requirements κ(k) ≤ 0 and ε1(�) ≥ 0 imply the conditions

B ≥ B0 = 2
√

1+ u2 − 2u,

µ ≥ 2− 2u − B. (6.29)

� Phase IV: 0 < Q < π, 0 < A ≤ ∞: Partially filled and magnetized band.
This phase corresponds to 0 < nc < 1, 0 ≤ m < nc/2. In general the integral equations
can only be solved numerically in this region. However, simplifications occur for B = 0
that for example allow to make analytic progress in the limits of small densities nc ≈ 0
and densities close to half-filling nc ≈ 1. These results are summarized in Sections 6.B.3
and 6.B.2 of Appendix 6.B.

� Phase V: Q = π, 0 < A ≤ ∞: Half filled, partially magnetized band.
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This phase corresponds to nc = 1, 0 ≤ m < nc/2. Equations (6.10) simplify to

κ(k) = −2 cos k − µ− 2u − B +
∫ A

−A
d� a1(sin k −�) ε1(�),

ε1(�) = 2B − 4Re
√

1− (�− iu)2 + 4u

−
∫ A

−A
d�′ a2(�−�′) ε1(�′). (6.30)

By construction we have κ(k) ≤ 0 for all k ∈ [−π, π ]. In the interior of Phase V κ(k) is
strictly negative for all values of k and in particular we have κ(±π ) < 0. The boundary
between regions IV and V is determined by the condition κ(±π ) = 0.
For zero magnetic field B = 0, which corresponds to A = ∞, the integral equations (6.30)
can be solved explicitly by Fourier transformation as is shown in Appendix 6.B.1. The
chemical potential µ− separating phases IV and V at B = 0 can then be obtained by
setting κ(π ) = 0 in the explicit expression (6.B.8) for κ(k). We find

µ−(u) = 2− 2u − 2
∫ ∞

0

dω

ω

J1(ω)e−ωu

cosh(ωu)
, (6.31)

where J1 is a Bessel function.2

We emphasize that throughout Region V the density is equal to 1, but the chemical
potential varies. This implies that µ is not an invertible function of nc. Physically this is
very interesting: as soon as the band is half filled (for fixed B), it is no longer possible to
force additional electrons into the ground state by increasing the chemical potential by a
small amount. The only way this can happen is if all eigenstates of the Hamiltonian with
one additional electron are separated in energy from the ground state by a finite gap. This
in turn implies that in phase V the Hubbard model describes an insulator for all u > 0. The
insulating state is of a rather unconventional nature: it is a Mott insulator [158,331,332].
Lieb and Wu’s demonstration that the half filled Hubbard model is an insulator was based
on proving that the chemical potential has a discontinuity. Denoting the ground state
energy for the Hubbard model with N electrons by E(N , u), we have

µ−(u) = E(L , u)− E(L − 1, u), (6.32)

where L is the length of the lattice. On the other hand, the chemical potential necessary
to force one extra electron into the half filled ground state is by definition

µ+(u) = E(L + 1, u)− E(L , u). (6.33)

In order to calculate µ+(u) we employ the Shiba transformation (2.61), which tells us that
E(L + 1, u) = E(L − 1, u) and hence

µ+(u) = −µ−(u). (6.34)

2 The term −2u is not present in Lieb and Wu’s expression in their 1968 paper [298] because they consider a Hamiltonian
H = −∑

j,σ c†j,σ c j+1,σ + c†j+1,σ c j,σ + 4u
∑

j n j,↑n j,↓, whereas our discussion is for a Hamiltonian H = −∑
j,σ c†j,σ c j+1,σ +

c†j+1,σ c j,σ + u
∑

j (2n j,↑ − 1)(2n j,↓ − 1), which amounts to a shift in the chemical poential by −2u.
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Fig. 6.2. Band insulator.
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Fig. 6.3. Tight-binding band of the half filled Hubbard model at u = 0.

The jump in the chemical potential at half filling is

µ+ − µ− = −4+ 4u + 4
∫ ∞

0

dω

ω

J1(ω)e−ωu

cosh(ωu)
. (6.35)

The result (6.35) was first obtained by Lieb and Wu [298, 300].
In order to see better why we are dealing with an unusual insulating state, let us compare
it to the generic case of a band insulator. In the latter the valence band is full and separated
from the conduction band by a band gap. An example of a band insulator is the tight-
binding Hamiltonian

H = −t
L∑

j=1

[
c†j,σ c j+1,σ + c†j+1,σ c j,σ

]
+ V

L∑
j=1

(−1) j n j , (6.36)

which describes electrons moving in a potential that alternates from site to site. The
spectrum of (6.36) is easily determined by Fourier transformation and is shown in figure 6.2
for V = 1

E(p) = ±
√

V 2 + 4t2 cos2(p). (6.37)
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Fig. 6.4. Ground state phase diagram as a function of electron density nc and magnetization m.
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Fig. 6.5. Ground state phase diagram as a function of chemical potential µ and magnetic field B. The
special values shown are B0 = 2

√
1+ u2 − 2u, µ1 = 2− 2

√
1+ u2 and µ−(u) is defined in (6.31).

We see that adding an extra electron to the conduction band or making a hole in the
valence band costs an energy larger than the band gap 2V . The situation in the half filled
Hubbard model is quite different. If we neglect the interactions (i.e. set u = 0) we obtain
the simple cosine band shown in figure 6.3, which implies that the ground state is metallic.
This shows that the insulating nature of the half filled ground state in the repulsive Hubbard
model is driven entirely by electron-electron interactions! The phase transition from the
metallic phase at u = 0 to the Mott insulating state at u > 0 is an example of a Mott
transition [158, 332].

We are now in the position to exhibit the full ground state phase diagram of the repulsive
Hubbard model. In figures 6.4 and 6.5 we display the phase diagram as a function of
particle density nc and magnetization m and as a function of the chemical potential µ and
the magnetic field B respectively. It is clear from these plots that nc and m are not invertible
functions of the chemical potential and the magnetic field. For example, throughout region
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Fig. 6.6. Complete ground state phase diagram as a function of chemical potential µ and magnetic
field B.

III nc and m are fixed, whereas both µ and B vary. For the sake of completeness we show
the complete phase diagram for both negative and positive values of the chemical potential
and magnetic field in figure 6.6. The phases at positive values of the chemical potential are
obtained by exchanging particles and holes and the phases for negative magnetic fields by
exchanging up and down spins.

6.4 Density and magnetization

In the grand canonical ensemble the density nc and magnetization m are functions of
the chemical potential µ and the magnetic field B. They can be calculated from the root
densities ρ(k) and σ1(�) via (6.15). In general we need to solve the integral equations for the
root densities numerically. This may be done by following the steps outlined in Appendix
6.A. There are several limiting cases in which analytical solutions are possible. These are
discussed in Appendices 6.B.1, 6.B.2, 6.B.3 and 6.C.

6.4.1 Fixed B

Let us first consider the density as function of the chemical potential for fixed magnetic
field B.

Zero magnetic field For B = 0 we obtain the behaviour shown in figure 6.7. For µ <

µ0(0) = −2− 2u the density is zero. In the vicinity of the boundary between Phases I and
IV the density in Phase IV increases in a universal square root fashion (6.B.32) as is shown
in Appendix 6.B.3

nc ! 1

π

√
µ− µ0(0). (6.38)

The density then increases monotonically with µ until it reaches 1 at µ−(u) < 0 (6.31)
(boundary between phases IV and V). Increasing µ further does not change nc, it stays
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Fig. 6.7. Density as function of the chemical potential for B = 0 and u = 0.25, 1.25, 2.5. Once nc

reaches 1 (half-filling), it stays constant in the range of µ shown (µ < 0).

fixed at 1 throughout the Mott insulating phase V. In the vicinity of half-filling, the density
behaves like

nc(µ, B = 0) ! 1− c1

√
µ−(u)− µ, (6.39)

where the coefficient c1 is calculated in Appendix 6.B.2 (see equation (6.B.26)). This is
an example of the commensurate-incommensurate phase transition [111, 193, 363, 381].
The ground state at µ > µ− is half filled and commensurate with the symmetries of the
underlying lattice. For µ < µ− the ground state is partially filled and the long-distance
asymptotics of correlation functions exhibit oscillating behaviour with a characteristic wave
number related to the band filling.

Finite magnetic field The behaviour of nc(µ) in a strong magnetic field, which leads to a
complete polarization of the ground state, has been discussed in Section (6.3). In phase II
we have (6.27)

nc = 1

π
arccos

(
1− µ− µ0(B)

2

)
, (6.40)

where we recall that µ0(B) = −2− 2u − B. At low densities, i.e. close to the boundary
between phases II and I, this again yields a square root behaviour

nc ! 1

π

√
µ− µ0(B)+O

(
[µ− µ0(B)]

3
2

)
. (6.41)

In figure 6.8 we plot the density as function of the chemical potential for u = 1.25 and
three different values of the magnetic field B. We see that the density has a cusp at the
values of µ, where the transition between phases II and IV occurs for the given values of B.
For fields above the critical field B0 phase IV no longer exists and there is a transition from
phase II to phase III instead. We have B0 ≈ 0.702 for u = 1.25.
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Fig. 6.8. Density (a) and Magnetization (b) as function of the chemical potential for u = 1.25 and
several values of B.
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Fig. 6.9. (a) Magnetization and (b) Density as function of the applied field for three different values
of chemical potential µ and u = 1.25.

6.4.2 Fixed µ

Let us now determine the magnetization m and the density nc as functions of the applied
field B for fixed values of the chemical potential µ. Solving the relevant integral equations
numerically yields the magnetization curves shown in figure 6.9(a). At small fields m
increases linearly with B

m(B)
∣∣
µ=const ∝ B. (6.42)

The constant of proportionality is the magnetic susceptibility in zero field and can be
obtained by taking the limit B → 0 in equation (6.76) below.

At the critical field Bc corresponding to the transition between phases II and IV there is a
cusp in the magnetization. For large fields B we eventually cross the phase boundary between
phase II and III, which occurs at Bu = 2− µ− 2u. In phase III we have nc = 2m = 1.
Approaching the phase boundary from within phase II, both nc and m exhibit a characteristic
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Fig. 6.10. Magnetization as function of the applied field at fixed particle density nc for u = 1.

square root behaviour as can be seen from (6.40)

nc = 2m = 1

π
arccos

(
Bu − B

2
− 1

)
! 1− 1

π

√
Bu − B +O

(
[Bu − B]

3
2

)
. (6.43)

6.4.3 Fixed nc

We also may consider the magnetization as a function of the magnetic field while keeping
the particle density nc fixed. In figure 6.10 we show the magnetization curves for five
different values of nc and u = 1. As a function of B the magnetization increases from zero
and reaches its saturation value nc

2 at the critical field Bc defined in (6.24). For larger fields
B > Bc the magnetization remains constant.

The magnetization at half-filling was first calculated by Takahashi in [435,436]. Magnetic
properties in the less than half filled band were first calculated by Shiba [396].

6.5 Spin and charge velocities

In the Fermi gas the Fermi velocity vF is defined as the group velocity of elementary
excitations. It is obtained by taking the derivative of the quasiparticle energy with respect to
the momentum at the Fermi surface. In the Hubbard model the ground state in phase IV can
be thought of as being described by two partially filled ‘Fermi seas’ of spectral parameters
k j and �1

α respectively and it is possible to define two characteristic velocities

vc = ∂κ(p)

∂p

∣∣∣∣
p=p(Q)

= κ ′(k)

p′(k)

∣∣∣∣
k=Q

, (6.44)

vs = ∂ε1(p1)

∂p1

∣∣∣∣
p1=p1(A)

= ε′1(�)

p′1(�)

∣∣∣∣
�=A

. (6.45)

Here ′ denotes the derivative with respect to the argument and p(k) and p1(�) are the con-
tributions to the total momentum associated with adding a particle with spectral parameters
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Fig. 6.11. (a) Spin velocity and (b) charge velocity as functions of the density nc for several values
of u in zero magnetic field.

k and � to the respective Fermi seas. Their explicit expressions have been given before in
(5.98), (5.99). The labelling of the velocities is chosen to reflect the fact that vc,s are the
group velocities of charge and spin excitations respectively. This fact is proved in Chapter 7.
In order to determine the charge and spin velocities we first need to solve the following set
of coupled integral equations for the derivatives of the dressed energies, which are obtained
from (6.10) by taking derivatives and exploiting the fact that κ(±Q) = ε1(±A) = 0:

κ ′(k) = 2 sin(k)+ cos(k)
∫ A

−A
d� a1(�− sin k) ε′1(�),

ε′1(�) =
∫ Q

−Q
dk a1(�− sin k) κ ′(k)−

∫ A

−A
d�′ a2(�−�′) ε′1(�′). (6.46)

The denominators of (6.44),(6.45) are proportional to the root densities at ±Q, ±A as can
be seen from (5.98), (5.99)

p′(Q) = 2πρ(Q), p′1(A) = 2πσ1(A). (6.47)

In figure 6.11 we plot vc,s as functions of the density of electrons nc for several values of u
and zero magnetic field B = 0. This parameter regime corresponds to phase IV. For nc → 1
the charge velocity goes to zero, signalling the occurrence of a quantum phase transition to
the Mott insulating phase V at nc = 1, see figure 6.4. For nc → 0 both velocities approach
zero, corresponding to a situation where the respective ‘Fermi seas’ become very shallow.
At zero density nc = 0 we have a transition to phase I. The spin and charge velocities were
analyzed by H. J. Schulz in his review article [383].

6.6 Susceptibilities

The susceptibilities are obtained by taking derivatives of the magnetization m with respect
to the magnetic field and of the density nc with respect to the chemical potential. In phases
I, II and III this is quite simple to do. However, in phases IV and V m and nc are themselves
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given in terms of solutions of integral equations and taking derivatives is not an entirely
trivial procedure. Of course one could simply implement the derivatives by taking finite
differences, e.g.

χc

∣∣
B=const ≈

nc(µ+�µ)− nc(µ)

�µ
, (6.48)

but depending on the properties of nc(µ) this can give rather inaccurate results. In order
to obtain good numerical accuracy it is better to express the susceptibilities in terms of
functions that fulfil linear integral equations as suggested by F. Woynarovich and K. Penc
in [492]. Here we follow a slightly different path.

6.6.1 Phases I and III

In phases I (empty band) and Phase III (half filled, spin polarized band) the charge and the
magnetic susceptibility are both zero.

6.6.2 Phase II

In phase II (spin-polarized partially filled band) the density is given by (6.40) and the
magnetization takes its maximal value m = nc/2. The susceptibilities are

χc(µ, B) = 2χs(µ, B) = 1

π
√

4− (µ+ 2u + B)2
. (6.49)

6.6.3 Phase IV: matrix notations

In order to simplify the necessary manipulations of coupled integral equations we introduce
a unifying matrix notation. We introduce vectors of integration variables xc,s and integration
boundaries Xc,s by

(xc, xs) = (k,�), (Xc, Xs) = (Q, A). (6.50)

Next we introduce a vector notation for the root densities and dressed energies as well as
the corresponding driving terms in the integral equations

rc(xc) = ρ(k), r (0)
c (xc) = 1

2π ,

rs(xs) = σ (�), r (0)
s (xs) = 0,

ec(xc) = κ(k), e(0)
c (xc) = −2 cos(k)− µ− 2u − B,

es(xs) = ε1(�), e(0)
s (xs) = 2B.

(6.51)

Finally, we define a matrix integral operator with kernels

Kcc(xc, yc) = 0,

Ksc(xc, xs) = a1(sin(xc)− xs),

Kcs(xc, xs) = cos(xc)a1(sin(xc)− xs),

Kss(xs, ys) = −a2(xs − ys). (6.52)
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In terms of the notations introduced above, the integral equations for the root densities and
dressed energies can be written in simple forms

ra(xa) = r (0)
a (xa)+

∑
b

Kab ∗ rb

∣∣
xa
, (6.53)

ea(xa) = e(0)
a (xa)+

∑
b

K T
ab ∗ eb

∣∣
xa
. (6.54)

Here K̂ T is the transpose of the matrix integral operator K̂ and ∗ as usual denotes convo-
lution. The susceptibilities are given by

χs(µ, B) = ∂m

∂B

∣∣∣∣
µ=const

=
∑

a=c,s

∂m

∂Xa

∂Xa

∂B
,

χc(µ, B) = ∂nc

∂µ

∣∣∣∣
B=const

=
∑

a=c,s

∂nc

∂Xa

∂Xa

∂µ
. (6.55)

In what follows it is convenient to express the magnetization per site in terms of the particle
densities for electrons nc and spin down electrons ns (2m = nc − 2ns), where

na =
∫ Xa

−Xa

dxa ra(xa). (6.56)

The calculation of χc,s is naturally split into two parts: we first determine the derivatives of
the nc,s with respect to the integration boundaries Xc,s and then the derivatives of Xc,s with
respect to the magnetic field and chemical potential.

(i) The derivatives of the electron density nc and the down-spin density ns with respect
to the integration boundaries Xc,s are

∂na

∂Xb
= 2rb(Xb) Zab, (6.57)

Z =
(
ξcc(Q) ξcs(A)
ξsc(Q) ξss(A)

)
, (6.58)

where ξ is the so-called dressed charge matrix, defined in terms of the coupled integral
equations

ξab(xb) = δab +
∑

d

∫ Xd

−Xd

dxd ξad (xd ) Kdb(xd , xb). (6.59)

The formal solution of (6.59) is

ξab(xb) =
∫ Xa

−Xa

dxa (1− K̂ )−1
ab (xa, xb). (6.60)

Equation (6.57) is proved as follows: taking the derivative of (6.56) we have

∂na

∂Xb
= 2δabra(Xa)+

∫ Xa

−Xa

dxa
∂ra(xa)

∂Xb
. (6.61)



6.6 Susceptibilities 191

The derivatives of the root densities fulfil the following integral equation, which is obtained
from (6.53)

∂ra(xa)

∂Xb
= r (0)

ab (xa)+
∑

d

∫ Xd

−Xd

dxd Kad (xa, xd )
∂rd (xd )

∂Xb
, (6.62)

r (0)
ab (xa) = [Kab(xa, Xb)+ Kab(xa,−Xb)] rb(Xb). (6.63)

Equation (6.62) is formally solved by

∂ra(xa)

∂Xb
=

∑
d

∫ Xd

−Xd

dxd (1− K̂ )−1
ad (xa, xd ) r (0)

db (xd ). (6.64)

Inserting (6.64) into (6.61) we obtain

∂na

∂Xb
= rb(Xb)

∫ Xa

−Xa

dxa
[
(1− K̂ )−1

ab (xa, Xb)+ (1− K̂ )−1
ab (xa,−Xb)

]
. (6.65)

Finally we use (6.60) to obtain (6.57).
(ii) Next we determine the derivatives of the integration boundaries Xa with respect to µ

and B. To simplify notation we introduce

(µc, µs) = (µ, B). (6.66)

The integration boundaries {Xa} are fixed in terms of the chemical potentials {µa} by the
condition (6.11), which in matrix notations reads

ea(Xa) = 0. (6.67)

Taking the derivative of (6.67) with respect to µb and using the integral equation (6.54) for
ea(xa) we have

0 = ∂ea(Xa)

∂µb

= ∂e(0)
a (Xa)

∂µb
+

∑
d

∫ Xd

−Xd

dxd

[
K T

ad (Xa, xd )
∂ed (xd )

∂µb
+ ed (xd )

∂K T
ad (Xa, xd )

∂µb

]
.

(6.68)

The r.h.s. is simplified by first using the identity

∂e(0)
a (Xa)

∂µb
= ∂e(0)

a (xa)

∂xa

∣∣∣
xa=Xa

∂Xa

∂µb
+ ∂e(0)

a (xa)

∂µb

∣∣∣
xa=Xa

, (6.69)

and then the following integral equation for the derivatives of the dressed energies for
generic arguments with respect to the chemical potentials

∂ea(xa)

∂µb
= ∂e(0)

a (xa)

∂µb
+

∑
d

∫ Xd

−Xd

dxd K T
ad (xa, xd )

∂ed (xd )

∂µb
. (6.70)
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We obtain

0 = ∂Xa

∂µb

[
∂e(0)

a (xa)

∂xa
+

∑
d

∫ Xd

−Xd

dxd ed (xd )
∂K T

ad (xa, xd )

∂xa

] ∣∣∣
xa=Xa

+∂ea(x)

∂µb

∣∣∣
x=Xa

. (6.71)

The term in brackets on the r.h.s. of (6.71) is nothing but

∂ea(xa)

∂xa

∣∣∣
xa=Xa

, (6.72)

and the solution of (6.70) is expressed in terms of the dressed charge matrix as

∂ea(xa)

∂µb

∣∣∣
xa=Xa

=
∑

d

(1− K̂ T )−1
ad ∗

∂e(0)
d

∂µb

∣∣∣
Xa

=
∑

d

Zda
∂e(0)

d (xd )

∂µb
. (6.73)

Putting everything together we arrive the desired set of equations determining ∂Xa
∂µb

∑
d

Zda
∂e(0)

d (xd )

∂µb
+ ∂ea(xa)

∂xa

∣∣∣
xa=Xa

∂Xa

∂µb
= 0. (6.74)

The explicit form of (6.74) is

∂Q

∂µ
= Zcc

κ ′(Q)
,

∂Q

∂B
= Zcc − 2Zsc

κ ′(Q)
,

∂ A

∂µ
= Zcs

ε′(A)
,

∂ A

∂B
= Zcs − 2Zss

ε′(A)
.

(6.75)

Using (6.74) and (6.57) in (6.55) and then recalling the definitions (6.44) , (6.45) of the spin
and charge velocities, the susceptibilities can be expressed as

χs(µ, B) = (Zcs − 2Zss)2

2πvs
+ (Zcc − 2Zsc)2

2πvc
, (6.76)

χc(µ, B) = Z2
cc

πvc
+ Z2

cs

πvs
. (6.77)

It is sometimes convenient to consider the magnetic susceptibility at fixed density nc rather
than at fixed chemical potential. Similarly one may want to know χc at a fixed magnetization
rather than for fixed magnetic field. These quantities can be expressed in terms of the
dressed charge matrix and the spin and charge velocities as well. It is shown in Section 8.4
that

χc(µ,m) = 4

π

(detZ)2

vc(Zcs − 2Zss)2 + vs(Zcc − 2Zsc)2
, (6.78)

χs(nc, B) = (detZ)2

π

1

vc Z2
cs + vs Z2

cc

. (6.79)
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6.6.4 Phase V

It is shown in Section 8.4 that the magnetic susceptibility in Phase V (half filled, partially
magnetized band) can be expressed as

χs(B, nc = 1) = ξ 2
s (A)

πvs
, (6.80)

where ξs(A) is the dressed charge for the half filled band, defined via the integral equation
(8.55)

ξs(�) = 1−
∫ A

−A
d�′ a2(�−�′) ξs(�′). (6.81)

The magnetic susceptibility at half-filling was first calculated by M. Takahashi in [429,430].
The magnetic susceptibility below half-filling in zero field was studied by H. Shiba in [396],
G. V. Uimin and S. V. Fomichev [463] and by T. Usuki, N. Kawakami and A. Okiji in [468].
The spin and charge susceptibilities for finite magnetic field were determined by J. M. P.
Carmelo, P. Horsch and A. A. Ovchinnikov in [78].

6.7 Ground state energy

In general the ground state free energy (6.17) is a complicated function of µ and B (or nc

and m) and has to be calculated from the solutions of the integral equations (6.10). However,
there are several limiting cases in which analytic results are available. At half-filling (we
set µ = 0) and zero field B = 0 the integral equations for the dressed energies (6.10) can
be solved by Fourier transformation as is shown in Appendix 6.B.1. Using these results one
derives the following integral representation for the ground state energy, which was first
obtained by E. Lieb and F. Y. Wu [298]

f (u, µ = 0, B = 0) = −u − 4
∫ ∞

0

dω

ω

J0(ω)J1(ω)

1+ exp(2uω)
≡ e(1). (6.82)

As a function of u the free energy per site has branch points at u = ±i/n, n = 1, 2, . . . [431].
Hence u = 0 is an accumulation point of branch points and perturbative expansions around
the noninteracting theory u = 0 have zero radius of convergence.

The large-u expansion of (6.82) was obtained by M. Takahashi in [431]

f (u, µ = 0, B = 0) = −u − ln(2)
1

u

+
∞∑

n=2

(−1)n−1

[
(2n − 1)!!

2n!!

]2
ζ (2n − 1)

2n − 1

[
1− 1

22n−2

](
1

u

)2n−1

,

(6.83)

and converges as long as u > 1. Here ζ (z) is the Riemann zeta function and (2n − 1)!! =
(2n − 1)(2n − 3) · · · 3 1. The O(u−3) term was used in [437] to determine the next-nearest
neighbour spin-spin correlation function in the spin- 1

2 Heisenberg model.
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The small-u expansion of (6.82) was derived in [113] and is an asymptotic expansion
with zero radius of convergence

f (u, µ = 0, B = 0) = − 4

π
− 7ζ (3)

π3
u2

−
∞∑

n=2

ζ (2n + 1)

π2n+1

(22n+1 − 1)(2n − 1) [(2n − 3)!!]3

(2n − 2)!! 22n−2
u2n.

(6.84)

In an almost half filled band nc ≈ 1 and B = 0 it is possible to derive an expansion of the
ground state energy in powers of δ = 1− nc [376]. Some details are given in Appendix
6.B.2. The results are

f = e(nc)− µnc,

e(nc) = e(1)− µ−(u)δ + a2
1α1

3
δ3 +O(δ4),

nc(µ) ≈ 1− (a2
1α1)−

1
2

√
µ−(u)− µ, (6.85)

where a1 and α1 are constants given in (6.B.21) and (6.B.24) respectively and where µ−(u)
is given by (6.31).

Similarly, in the low density limit nc � 1 the ground state energy can be calculated in
an expansion in powers of nc. We discuss this limit in Appendix 6.B.3. The results are

e(nc) = u − (2+ 2u)nc + π2

3
n3

c +O(n4
c),

nc(µ) ≈ 1

π

√
µ− µ0(0), (6.86)

where µ0(0) is given by (6.20). In figure 6.12 we plot the ground state energy as a function
of the chemical potential for B = 0 and different values of u.
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Fig. 6.12. Ground-state free energy (shifted by u) as a function of electron density for several values
of u; (a) in zero magnetic field (b) for B = 0.2.



Appendices to Chapter 6

6.A Numerical solution of integral equations

Here we discuss how to solve the coupled integral equations (6.10) numerically. Let us
rewrite them in a shorthand notation as

κ(k) = −2 cos k − µ− 2u − B + K T
cs ∗ ε1

∣∣
k
,

ε1(�) = 2B + K T
sc ∗ κ

∣∣
�
+ K T

ss ∗ ε1

∣∣
�
. (6.A.1)

Here K T
ab are integral operators defined by (6.10), for example

K T
cs ∗ ε1

∣∣
k =

∫ A

−A

d�

π

U/4

(U/4)2 + (sin k −�)2
ε1(�). (6.A.2)

The main problem we are facing in solving (6.10) is that the integration boundaries ±Q
and ±A are functions of the magnetic field B and the chemical potential µ, and are fixed
by the conditions

κ(±Q) = 0, ε1(±A) = 0. (6.A.3)

We are therefore dealing with a ‘chicken vs egg’ problem: in order to solve the integral
equations (6.A.1), we first need to know Q and A for given µ and B. On the other hand, Q
and A are determined as functions of µ and B by the conditions (6.A.3), which involve the
solution of the integral equation (6.A.1). A crude way of solving this problem would be to
proceed as follows.

1. Fix B and µ.
2. Choose values for Q and A.
3. Solve (6.A.1) numerically.
4. Check equations (6.A.3). If they are fulfilled within some error we are done. If not go

back to step 2.

We will follow a different path, see e.g. [492]. The key observation is that µ and B
enter the linear integral equations (6.A.1) linearly. We start by choosing the integration
boundaries Q and A. We then determine µ(Q, A) and B(Q, A) from the solutions of a set

195
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of three pairs of coupled linear integral equations. These are constructed as follows

κ̄(k) = −2 cos k − 2u + K T
cs ∗ ε̄1

∣∣
k,

ε̄1(�) = K T
sc ∗ κ̄

∣∣
�
+ K T

ss ∗ ε̄1

∣∣
�
,

ξac(k) = δac +
∑

d=c,s

ξad ∗ Kdc

∣∣
k
,

ξas(�) = δas +
∑

d=c,s

ξad ∗ Kds

∣∣
�
. (6.A.4)

Here ξab are the elements of the dressed charge matrix (6.59) and κ̄ and ε̄ fulfil the integral
equations for the dressed energies for zero magnetic field and zero chemical potential. By
construction we have

κ(k) = κ̄(k)− (µ+ B)ξcc(k)+ 2Bξsc(k),

ε1(�) = ε̄1(�)− (µ+ B)ξcs(�)+ 2Bξss(�). (6.A.5)

We now solve the three sets of coupled integral equations numerically for fixed values of Q
and A. We then determine the corresponding values of µ and B from the conditions (6.A.3),
which in terms of the quantities Zca = ξac(Q), Zsa = ξas(A), κ̄(Q), ε̄1(A) read

B = Zccε̄1(A)− Zcs κ̄(Q)

2(Zcs Zsc − Zss Zcc)
,

µ = ε̄1(A)(2Zsc − Zcc)− κ̄(Q)(2Zss − Zcs)

2(Zcs Zsc − Zss Zcc)
. (6.A.6)

What remains to be done is to solve (6.A.4) numerically for fixed values of Q and A.
This is easily done by using for example the Numerical Recipes routine fred2 [364]. We
note that in order to use this routine, the coupled integral equations have to be written in
a ‘block-diagonal’ form as we will now explain for the example of coupled equations for
two quantities X (k) and Y (�)

X (k) = X0(k)+ Gcc ∗ X
∣∣
k + Gcs ∗ Y

∣∣
k,

Y (�) = Y0(�)+ Gsc ∗ X
∣∣
�
+ Gss ∗ Y

∣∣
�
, (6.A.7)

where Gab are some integral operators. The integrals are computed by means of a Gaussian
quadrature ∫ Q

−Q
dk f (k) −→

N∑
j=1

u j f (k j ),

∫ A

−A
d� g(�) −→

M∑
k=1

vk g(�k). (6.A.8)

Here {u j } and {vk} are the weights of the quadrature rule, while the N points k j and M
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points �k are the abscissas. We now define vectors

f j =
{

X (k j ) if j ≤ N ,

Y (� j−N ) if j > N ,
(6.A.9)

g j =
{

X0(k j ) if j ≤ N ,

Y0(� j−N ) if j > N ,
(6.A.10)

w j =
{

u j if j ≤ N ,

v j−N if j > N ,
(6.A.11)

as well as a block-diagonal matrix

M jl =


Gcc(k j , kl) if j ≤ N , l ≤ N ,

Gcs(k j ,�l) if j ≤ N , l > N

Gsc(� j , kl) if j > N , l ≤ N ,

Gss(� j ,�l) if j > N , l > N .

(6.A.12)

The coupled integral equations can now be written in the following discretized form

f j = g j +
N+M∑
l=1

wl M jl fl . (6.A.13)

Equation (6.A.13) is now of the same form as (18.1.4) of [364] and can be solved by the
routine fred2.

6.B Ground state properties in zero magnetic field

In absence of a magnetic field the integral equations for the dressed energies and root
densities are simpler, because the �-integration extends over the entire real axis.1 This
allows us to simplify all integral equations by Fourier transformation. For example, from
the second equation of (6.10) for B = 0, A = ∞ we obtain

ε̃1(ω) =
∫ ∞
−∞

d� exp(iω�) ε1(�)

=
∫ Q

−Q
dk κ(k) cos(k) exp [−u|ω| + iω sin(k)]− ε̃1(ω) exp [−2u|ω|] .

(6.B.1)

Collecting terms and Fourier transforming back we arrive at

ε1(�) =
∫ Q

−Q
dk

cos k

4u cosh π
2u (�− sin k)

κ(k). (6.B.2)

1 We recall that we have shown in the beginning of Section 6.3 that the integration boundary A approaches infinity as we take the
magnetic field to zero.
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Finally, inserting (6.B.2) into the right hand side of the equation (6.10) for κ(k) we obtain

κ(k) = −2 cos k − µ− 2u +
∫ Q

−Q
dk ′ cos k ′ R(sin k ′ − sin k) κ(k ′), (6.B.3)

where

R(x) =
∫ ∞
−∞

dω

2π

exp(iωx)

1+ exp(2u|ω|) . (6.B.4)

The integral equations for root densities can be simplified similarly with the result

ρ(k) = 1

2π
+

∫ Q

−Q
dk ′ cos k R(sin k ′ − sin k) ρ(k ′), |k| ≤ Q,

σ1(�) =
∫ Q

−Q
dk

1

4u

1

cosh π
2u (�− sin k)

ρ(k). (6.B.5)

6.B.1 Half filled band

For Q = π , i.e. a half filled band, the integral equations (6.B.3), (6.B.5), can be solved by
Fourier series techniques. However, a simpler way to obtain κ(k) and ε1(�) in this case is to
take (6.30) as a starting point. Setting A = ∞ in (6.30) we can calculate ε1(�) by Fourier
transformation. Using that∫ π

−π

dk

π
2 cos2(k)

u

u2 + (sin k −�)2
= 4Re

√
1− (�− iu)2 − 4u, (6.B.6)

we obtain for the Fourier transform

ε̃1(ω) = −
∫ π

−π
dk

cos2(k) exp(iω sin k)

cosh(uω)

= − 2π J1(ω)

ω cosh(uω)
. (6.B.7)

Here the second equality is obtained via integration by parts and J1(x) is a Bessel function.
Using the result (6.B.7) in (6.30) one arrives at the following integral representations

κ(k) = −2 cosk − µ− 2u − 2
∫ ∞

0

dω

ω

J1(ω)cos(ω sink)e−ωu

cosh(ωu)
≡ κ0(k)− µ,

ε1(�) = −2
∫ ∞

0

dω

ω

J1(ω) cos(ω�)

cosh(ωu)
≡ ε0(�). (6.B.8)

In the limits of large and small values of u it is possible to derive expansions for κ0(k). For
small values of u the following series representation is useful [324]

κ0(k) = −4

u

∞∑
n=0

K1(un)

un
cosh(un sin(k)), k ∈ (

π

2
, π ]. (6.B.9)

where un = (n + 1
2 )π

u and K1 is a modified Bessel function. For small u � 1 we have
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un � 1 and thus can use the asymptotics of the modified Bessel function to obtain

κ0(k) ≈ − 8

π

√
u exp

(
− π

2u

)
cosh

( π

2u
sin(k)

) [
1+ 3u

4π
− 15u2

32π2
+ . . .

]
− 8

π

√
u

27
exp

(
−3π

2u

)
cosh

(
3π

2u
sin(k)

)[
1+ u

4π
− 5u2

96π2
+ . . .

]
+ . . . (6.B.10)

This expansion converges very rapidly as long as k is sufficiently far away from π/2

1− sin(k)� u. (6.B.11)

The behaviour for k in the interval [0, π/2) is obtained from (6.B.9) by using the relation
κ0(π − k) = κ0(k)+ 4 cos(k). For large u one easily derives the following 1/u-expansion

κ0(k) = −2u − 2 cos(k)− ln(2)

u
+ 3ζ (3)

64u3
[1+ 4 sin2(k)]

− 15ζ (5)

2048u5
[1+ 12 sin2(k)+ 8 sin4(k)]+O(u−7), (6.B.12)

where ζ (x) is the Riemann zeta function. The maximum of κ0(k) is taken at k = π , where
we have [431]

κ0(π ) = 2−2u − ln(2)

u
+
∞∑

n=2

(−1)n (2n − 3)!!

(2n)!!

ζ (2n − 1)

22n−3

[
1− 1

22n−2

]
u−2n+1. (6.B.13)

The integral equations for the root densities can be solved in a way completely analogous
to the dressed energies with the result

ρ(k) = 1

2π
+ cos(k)

∫ ∞
−∞

dω

2π

J0(ω) cos(ω sin(k))

1+ exp(2u|ω|) ≡ ρ0(k),

σ1(�) =
∫ ∞
−∞

dω

2π

J0(ω)

2 cosh(uω)
exp(−iω�) ≡ σ0(�). (6.B.14)

Equations (6.B.14) were first obtained by E.H. Lieb and F.Y. Wu in [298].

6.B.2 The almost half filled band

For nc slightly less than 1 it is possible to solve the integral equations for the dressed energies
and the root densities by an iterative procedure [376]. The following symmetry properties for
ρ(k) and κ(k) are easily derived from the integral equations (6.B.5) and (6.B.3) respectively

ρ(−k) = ρ(k), ρ(π − k) = −ρ(k)+ 1

π
, (6.B.15)

κ(−k) = κ(k), κ(π − k) = κ(k)+ 4 cos(k). (6.B.16)

Using these properties the integral equations for ρ(k) and κ(k) can be rewritten in a form



200 Appendices to Chapter 6

suitable for a solution by iteration. We will concentrate on ρ(k) but note that κ(k) can be
dealt with in an analogous fashion. Using the symmetry properties (6.B.15) we rewrite
(6.B.5) as

ρ(k) = ρ0(k)− cos(k)
∫ π−Q

0
dk ′ Ř(k, k ′) ρ(π − k ′),

Ř(k, k ′) = R(sin(k)− sin(k ′))+ R(sin(k)+ sin(k ′)), (6.B.17)

where ρ0(k) is the root density at half filling and B = 0 (6.B.14) and R(x) is the kernel
defined in (6.B.4). The advantage of (6.B.17) is thatπ − Q is small, which permits a solution
by iteration. Rather than using π − Q as expansion parameter we will use the deviation of
the density from one

δ ≡ 1− nc = 1−
∫ Q

−Q
dk ρ(k) = 2

∫ π−Q

0
dk ρ(π − k). (6.B.18)

Inserting the expansions

π − Q =
∞∑

n=1

an δn, ρ(k) =
∞∑

n=0

ρn(k) δn, (6.B.19)

into (6.B.17) one can determine the coefficients an and the functions ρn(k) iteratively. The
integrals on the right hand sides of both (6.B.17) and (6.B.19) are taken by Taylor expanding
around k ′ = 0. For example, we have

Ř(k, k ′) ρn(π − k ′) =
∞∑

m=0

dm

dxm

∣∣∣∣
x=0

[
Ř(k, x) ρn(π − x)

] k ′m

m
!

≡
∞∑

m=0

αnm(k) k ′m . (6.B.20)

The first few terms of this expansion are [376]

a1 = 1

2ρ0(π )
, ρ1(k) = − cos(k) R(sin k),

a2 = −2R(0)a2
1, ρ2(k) = 0,

a3 = 4a3
1[R(0)]2 − a4

1

3
ρ ′′0 (π ), ρ3(k) = −a2

1

6
R′′(sin k) cos(k).

(6.B.21)

We can use these results to obtain an expansion of the ground state free energy per site
(6.17)

f = u − (µ+ 2u)nc − 2
∫ π

−π
dk ρ(k) cos(k)− 4

∫ π−Q

0
dk ρ(π − k) cos(k)

= e(nc)− µnc, (6.B.22)

where e(nc) is the ground state energy per site in the canonical ensemble. Using (6.B.21)
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we can determine the first few terms in the expansion of e(nc) around nc = 1

e(nc) = e(1)− µ−(u) δ + a2
1α1

3
δ3 +O(δ4), (6.B.23)

where µ−(u) is the chemical potential at the transition to half-filling defined in (6.31) and

α1 = 1− 2
∫ ∞

0
dω

ωJ1(ω)

1+ exp(2uω)
. (6.B.24)

The chemical potential can now be obtained as

µ = ∂e(nc)

∂nc
= µ−(u)− a2

1α1 δ2 +O(δ3). (6.B.25)

Inverting this relation we arrive at

nc(µ) ≈ 1− (a2
1α1)−

1
2

√
µ−(u)− µ. (6.B.26)

6.B.3 Low density

At low densities nc � 1 we can again solve (6.B.5) by iteration, using nc as the small
parameter. The integral equation for ρ(k) can be written as

ρ(k) = 1

2π
+ cos(k)

∫ Q

0
dk ′ Ř(k, k ′) ρ(k ′), (6.B.27)

which makes it clear that the calculation is completely analogous to the one we just did for
nc close to 1. Expanding

Q =
∞∑
j=1

ǎ j (nc) j , ρ(k) = 1

2π
+
∞∑
j=1

ρ̌ j (k) (nc) j , (6.B.28)

we obtain

ǎ1 = π, ρ̌1(k) = cos(k) R(sin k),

ǎ2 = −2π2 R(0), ρ̌2(k) = 0,

ǎ3 = 4π3[R(0)]2, ρ̌3(k) = π2

6
R′′(sin k) cos(k). (6.B.29)

These results can be obtained from (6.B.21) by setting ρ0(k) = 1
2π and ρ̌n(k) = ρn(π − k).

The ground state energy in the canonical ensemble can now be calculated

e(nc) = u +
∫ Q

−Q
dk(−2 cos(k)− 2u) ρ(k)

= u − (2+ 2u)nc + π2

3
n3

c +O(n4
c). (6.B.30)

The chemical potential as a function of the density is given by

µ = ∂e(nc)

∂nc
= −(2+ 2u)+ π2n2

c +O(n3
c). (6.B.31)



202 Appendices to Chapter 6

Inverting this relation we have

nc(µ) ≈ 1

π

√
µ− µ0(0), (6.B.32)

where µ0(B) = −2− 2u − B has been defined in (6.20).

6.C Small magnetic fields at half filling: application of the Wiener-Hopf method

Let us consider the half filled case in a weak magnetic field B → 0 for fixed u.2 The integral
equations for κ(k) and ε1(�) are given by (6.30) and the integration boundary A is very
large. As κ(k) is obtained by integrating ε1(�) let us concentrate on the integral equation
for the latter and rewrite it in the following form

ε1(�) = ε
(0)
1 (�)−

∫ A

−A

d�′

2π

4u

(2u)2 + (�−�′)2
ε1(�′),

ε
(0)
1 (�) = 2B − 4Re

√
1− (�− iu)2 + 4u. (6.C.1)

Fourier transforming (6.C.1) we arrive at

ε̃1(ω) = 2π Bδ(ω)− 2π J1(ω)

ω cosh(uω)

+ 1

1+ exp(2u|ω|)
∫ ∞

A
+

∫ −A

−∞
d�′ exp(iω�′) ε1(�′). (6.C.2)

Fourier transforming back and using that ε1(−�) = ε1(�) we obtain the following integral
equation for the function y(�) ≡ ε1(�+ A)

y(�) = g0(�)+
∫ ∞

0
d�′

[
R(�−�′)+ R(�+�′ + 2A)

]
y(�′),

g0(�) = B −
∫ ∞
−∞

dω

ω

J1(ω)

cosh(uω)
exp(iω[�+ A]), (6.C.3)

where R(x) is given by (5.104). Equation (6.C.3) can be solved in terms of an expansion
[495]

y(�) =
∞∑

n=0

yn(�), (6.C.4)

where yn(�) are defined as solutions of the Wiener-Hopf equations

yn(�) = gn(�)+
∫ ∞

0
d�′ R(�−�′) yn(�′),

gn(�) =
∫ ∞

0
d�′ R(�+�′ + 2A) yn−1(�′), n ≥ 1. (6.C.5)

2 The case u � B � 1 is quite different, see for example [492].
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Equations (6.C.5) can now be solved iteratively: if we know yn−1(�) we can determine
yn(�). The usefulness of this procedure is based on the fact that the driving terms gn(�)
and therefore the solutions yn(�) become ‘smaller’ (in precisely which sense will become
clear later) as n increases because A is large. Our discussion follows the general procedure
set out in [495] and its implementation for the Hubbard model in [492].

6.C.1 General structure

Let us assume that we know the function yn−1(�) and hence the ‘driving term’ gn(�).
We define functions ỹn

±(ω) which are analytic and the upper and lower half-planes
respectively

ỹn
+(ω) =

∫ ∞
0

d� exp(iω�) yn(�),

ỹn
−(ω) =

∫ 0

−∞
d� exp(iω�) yn(�). (6.C.6)

In terms of these functions we can express the Fourier transform of the equation (6.C.5)

1

1+ exp(−2u|ω|) ỹn
+(ω)+ ỹn

−(ω) = g̃n(ω), (6.C.7)

where g̃n(ω) is the Fourier transform of gn(�). The key idea is now to split (6.C.7) into the
sum of two pieces that are analytic in the upper and lower half-planes respectively. In order
to achieve this goal we will employ the factorisation

1+ exp (−2u|ω|) = G+ (ω) G− (ω) ,

G+(ω) = G−(−ω) =
√

2π

�( 1
2 − i uω

π
)

(
−i

uω

π

)−i uω
π

exp
(

i
uω

π

)
. (6.C.8)

The functions G±(ω) are analytic in the upper and lower half-planes respectively and are
normalised such that

lim
|ω|→∞

G±(ω) = 1. (6.C.9)

Some special values of the functions G± are

G−(0) =
√

2, G−
(
− iπ

2u

)
=

√
π

e
. (6.C.10)

Using (6.C.8) in (6.C.7) we arrive at

ỹn
+(ω)

G+(ω)
+ G−(ω) ỹn

−(ω) = G−(ω) g̃n(ω). (6.C.11)

In the next step we decompose the right-hand side of (6.C.11) into a sum of two functions
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Q±(ω) that are analytic in the upper and lower half-planes respectively

G−(ω) g̃n(ω) ≡ Q+n (ω)+ Q−n (ω). (6.C.12)

This implies that

ỹn
+(ω) = G+(ω)Q+n (ω),

ỹn
−(ω) = Q−n (ω)

G−(ω)
. (6.C.13)

6.C.2 Solution of the equation for y0(Λ)

We have

g̃0(ω) = 2π Bδ(ω)− 2π J1(ω) exp(−iωA)

ω cosh(uω)
. (6.C.14)

Next we have to determine the decomposition into Q±0 (ω). The δ-function piece is easily
done

2πδ(ω) = i

(
1

ω + iε
− 1

ω − iε

)
. (6.C.15)

The second term in (6.C.14) is a meromorphic function of ω with simple poles at the points

ωn = i
π

2u
(2n + 1), n ∈ Z . (6.C.16)

We note that there is no pole at ω = 0. The decomposition of the factor 1/ cosh(uω) giving
rise to these poles into functions χ± analytic in the upper and lower half-plane respectively
is

1

cosh(uω)
= χ+(ω)+ χ−(ω),

χ−(ω) = 1

cosh(uω)
− i

u

∞∑
n=0

(−1)n 1

ω + ωn
,

χ+(ω) = i

u

∞∑
n=0

(−1)n 1

ω + ωn
. (6.C.17)

Using (6.C.17) we can write f −(ω)/ cosh(uω) for any function f −(z) that is analytic
and bounded in the lower half-plane as the sum of two functions F±(ω) analytic in the
upper/lower half-plane

f −(ω)

cosh(uω)
= F+(ω)+ F−(ω),

F+(ω) = i

u

∞∑
n=0

(−1)n f −(−ωn)

ω + ωn
. (6.C.18)
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Applying (6.C.18) to (6.C.12) and (6.C.14)

Q+0 (ω) = i BG−(0)

ω + iε

− 4i
∞∑

n=0

(−1)n G−(−i π
2u (2n + 1))I1( π

2u (2n + 1))

(2n + 1)(ω + i π
2u (2n + 1))

exp

(
−π (2n + 1)A

2u

)
,

(6.C.19)

where I1(z) is a Bessel function. We note that it is essential that A > 1 as otherwise the
expansion in (6.C.19) does not converge. The function Q−0 (ω) can be determined in an
analogous way

Q−0 (ω) = − i BG−(0)

ω − iε
− 2π J1(ω) exp(−iωA)G−(ω)

ω cosh(uω)

+ 4i
∞∑

n=0

(−1)n G−(−i π
2u (2n + 1))I1( π

2u (2n + 1))

(2n + 1)(ω + i π
2u (2n + 1))

exp

(
−π (2n + 1)A

2u

)
.

(6.C.20)

The functions ỹ0
±(ω) are now easily obtained by using (6.C.13), e.g.

ỹ0
+(ω) = G+(ω)

[
i BG−(0)

ω + iε
− 4i

G−(−i π
2u )I1( π

2u )

ω + i π
2u

exp

(
−π A

2u

)
+ . . .

]
. (6.C.21)

Equation (6.C.19) can be used to determine the integration boundary A as a function of
B as follows. By definition we have y(0) = ε1(A) = 0, so that

0 = y(0) = lim
ω→∞−iω ỹ+(ω). (6.C.22)

In the leading approximation we replace ỹ+(ω) by ỹ0
+(ω) in (6.C.22). This results in the

following equation

B = 4
∞∑

n=0

(−1)n G−(−i π
2u (2n + 1))I1( π

2u (2n + 1))

(2n + 1)G−(0)
exp

(
−π (2n + 1)A

2u

)
.

(6.C.23)

Here we have used that limω→∞ G±(ω) = 1. We may now solve (6.C.23) for the dependence
of the integration boundary A on the magnetic field

A ! 2u

π
ln(Bc/B)+O(B), (6.C.24)

Bc =
4G−(−i π

2u )I1( π
2u )

G−(0)
=

√
2π

e
2 I1

( π

2u

)
. (6.C.25)

The subleading contributions in (6.C.24) are not important as they turn out to be much
smaller than the leading contributions due to yn(�) with n = 1, 2, . . . .
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6.C.3 Equation for y1(�)

The Fourier transform of the driving term of the equation (6.C.5) for n = 1 is

g̃1(ω) = exp(−i2Aω) ỹ0
+(−ω)

1+ exp (2u|ω|) ,

=
[

1− 1

G+(ω)G−(ω)

]
exp(−i2Aω) ỹ0

+(−ω). (6.C.26)

The function Q+1 (ω) defined in (6.C.12) is then given by

Q+1 (ω) = 1

2π i

∫ ∞
−∞

dx
1

x − ω − iε
G−(x) g̃1(x). (6.C.27)

The integrand has a branch cut along the negative imaginary axis and by deforming the
contour of integration we can rewrite (6.C.27) as an integral around the branch cut

Q+1 (ω) = 1

2π i

∫ ∞
0

dx
ỹ0
+(i x)

x − iω
exp(−2Ax)

[
1

G+(−i x − ε)
− 1

G+(−i x + ε)

]
= 2

(2π )3/2

∫ ∞
0

dx
ỹ0
+(i x)

x − iω
exp(−2Ax) exp

(ux

π

[
ln

(ux

π

)
− 1

])
× Im

[
�

(
1

2
− u(x − iε)

π

)
exp (iux)

]
. (6.C.28)

We note that the integrand in (6.C.28) is regular at the positions of the poles of the Gamma-
function in the limit ε→ 0. As A � 1 the integral in (6.C.28) can be approximated by
expanding the terms other than exp(−2Ax) in the integrand in a power series around x = 0.
As long as ω is not too small this gives

ỹ+1 (ω) = G+(ω)
Bu

π
√

2A

1

−iω
+O(A−2), (6.C.29)

y1(0) = lim
ω→∞−iω ỹ+1 (ω) ≈ Bu

π
√

2A
. (6.C.30)

Equation (6.C.30) permits us to determine the leading correction to the expression (6.C.24)
for the integration boundary. Equation (6.C.22) is approximated by

0 = y0(0)+ y1(0), (6.C.31)

which gives

A ! 2u

π
ln(Bc/B)− u

2π

1

ln(Bc/B)
. (6.C.32)

6.C.4 Dressed energies

Using the above results it is possible to obtain approximate expressions for the dressed
energies κ(k) and ε1(�). Let us start with the integral equation for ε1(�) (6.C.1). The
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following identity is easily proved using (17.14)∫ A

−A
d� a1(�− sin k) ε1(�) = −

∫ ∞
A

d� [a1(�− sin k)+ a1(�+ sin k)] ε1(�)

+
∫ ∞
−∞

d� a1(�− sin k) ε(0)
1 (�)

−
∫ A

−A
d� a3(�− sin k) ε1(�). (6.C.33)

Iterating (6.C.33) and using

∞∑
n=0

(−1)na2n+1(x) = 1

4u cosh(πx/2u)
≡ s(x), (6.C.34)

we obtain∫ A

−A
d� a1(�− sin k) ε1(�) = −

∫ ∞
A

d� [s(�− sin k)+ s(�+ sin k)] ε1(�)

+
∫ ∞
−∞

d� s(�− sin k) ε(0)
1 (�). (6.C.35)

Inserting (6.C.35) into the integral equation (6.30) for κ(k) we find

κ(k) = −2 cos k − µ− 2u − 2
∫ ∞

0

dω

ω

J1(ω) exp(−u|ω|)
cosh(uω)

cos(ω sin k)

−
∫ ∞

0
d� y(�) [s(�+ A − sin k)+ s(�+ A + sin k)] . (6.C.36)

Expanding s(�+ A ± sin k) in a geometric series in exp(− π
2u [�+ A ± sin(k)]) this can

be rewritten as

κ(k) = −2 cos k − µ− 2u − 2
∫ ∞

0

dω

ω

J1(ω) exp(−u|ω|)
cosh(uω)

cos(ω sin k)

−1

u

∞∑
n=0

(−1)n ỹ+ (iαn) exp(−αn A) cosh[αn sin(k)], (6.C.37)

where

αn = π

2u
(2n + 1). (6.C.38)

The general expression for the ground state energy per site is given by (6.17).

f (u, µ, B) ! −µ− u − 4
∫ ∞

0

dω

ω

J0(ω)J1(ω)

1+ exp(2uω)

−1

u

∞∑
n=0

(−1)n ỹ+(iαn) exp(−αn A) I0(αn). (6.C.39)
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We can use our results for ỹ1,2(ω) and A (6.C.32) to evaluate the leading contributions
to the ground state free energy. We find

f (u, µ, B) ! −µ− u − 4
∫ ∞

0

dω

ω

J0(ω)J1(ω)

1+ exp(2uω)

− 1

2π

I0(π/2u)

I1(π/2u)
B2

[
1+ 1

2 ln(Bc/B)

]
. (6.C.40)

We recall that we are in a regime where B is very small and where the chemical potential
varies only in the interval [µ−, 0], where µ− is defined in (6.31). The magnetization is given
by

m = −1

2

∂ f (u, µ, B)

∂B
≈ 1

2π

I0(π/2u)

I1(π/2u)
B

[
1+ 1

2 ln(Bc/B)

]
. (6.C.41)

Thus we arrive at the following expression for the ground state energy per site

f (u, µ, B) ! f (u, µ, 0)− 2π
I1(π/2u)

I0(π/2u)
m2

[
1− 1

2 ln(mc/m)

]
, (6.C.42)

where mc = Bc
I0(π/2u)

2π I1(π/2u) . There is a simple interpretation for the expressions (6.C.41) and
(6.C.42): the spin velocity at half-filling (µ > µ−) and zero field (B = 0) is given by

vs = lim
λ→∞

dε1(λ)
dλ

dp1(λ)
dλ

= 2
I1(π/2u)

I0(π/2u)
, (6.C.43)

where the dressed energy ε1(λ) is given by (6.B.8) and the dressed momentum p1(λ) is cal-
culated from (5.99) and (6.B.14). Using the expression for vs we can write the magnetization
as

m ≈ B

vsπ

[
1+ 1

2 ln(Bc/B)

]
. (6.C.44)

The logarithmic correction signals the presence of a marginally irrelevant operator
(interaction of spin currents) in the spin sector; the situation is completely analogous to
the Heisenberg spin-1/2 chain [10, 61, 189, 341] in a weak field [14, 305] or the supersym-
metric t-J model [377]. The easiest way to see this is to construct the continuum limit in
the regime U/t � 1, see e.g. Refs. [7, 168]. This is done in Section 10.3.
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Excited states at zero temperature

In this chapter we determine the spectrum of excited states. We establish that in contrast
to the case of noninteracting electrons u = 0, excitations for u �= 0 cannot be described
in terms of electronic degrees of freedom, that is (dressed) electrons and holes. Instead,
low-lying excited states involve collective modes of the spin and charge degrees of freedom
respectively. This phenomenon is known as spin-charge separation.

In Sections 7.2–7.4 we consider the half-filled band (Phase V), where excitations involv-
ing the charge degrees of freedom have a gap, while the spin excitations remain gapless.
In Section 7.6 we study the effects of a magnetic field on the excitation spectrum over
the half-filled ground state (Phase V). In Section 7.7 we discuss the less than half-filled
band, where both spin and charge degrees of freedom are gapless (Phase IV). Finally, in
Section 7.9 we briefly touch upon the excitation spectrum over the empty ground state
(Phase I).

As we have seen, in Phases IV and V the ground state is described by a filled Fermi sea
of Bethe ansatz roots k j and a second filled Fermi sea of roots �1

α . On general grounds we
expect low-lying excitations to be described by distributions of roots that are close to the
root distribution of the ground state. An essential point to note is that the ground state energy
scales like the system size L for large L , whereas the excited state we are considering differ
in energy from the ground state only by O(1).

Low-lying excited states are Bethe ansatz states with given, small numbers of holes in
the distributions of k’s and �’s and given, small numbers of ‘extra’ roots k j , �n

β and �′nγ .
Here small means that we consider a ground state with N electrons and M down spins and
excited states with N + n electrons and M + m down spins such that

lim
L→∞

n

L
= 0 , lim

L→∞
m

L
= 0 . (7.1)

The main idea behind our construction of excited states is to make full use of the results
of the zero-temperature limit of the TBA equations. In particular, as we have seen, the TBA
analysis tells us which dressed energies and dressed momenta are non-vanishing at T = 0.
This then tells us how small changes of the root distribution of the ground state will affect
the energy and momentum.

209
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Fig. 7.1. Examples of (a) spin-up hole and (b) spin-down particle excitations for the tight binding
model of noninteracting electrons in a magnetic field.

7.1 A point of reference: noninteracting electrons

Before turning to the excitation spectrum for the Hubbard model let us recall briefly the
situation in the absence of interactions, i.e. u = 0. In momentum space the Hamiltonian
can be written as (5.6)

H =
∫ π

−π

dk

2π

∑
σ=↑,↓

ε
(σ )
0 (k) ñσ (k), (7.2)

where ε(↑)
0 (k) = −2 cos(k)− µ− B and ε

(↓)
0 (k) = −2 cos(k)− µ+ B are the bare energies

for electrons with spin up and down respectively and ñσ (k) is the number operator of
electrons with spin σ and momentum k. The ground state is obtained by filling all negative
energy states, see Section 6.1. In the general case this corresponds to filling two Fermi
seas with Fermi momenta kF,σ given by (6.2). For definiteness we consider the case where
0 < kF,σ < π in what follows. It is easy to see that

[ñσ (k),H] = 0 , (7.3)

which implies that the number of electrons with given spin and momentum is a conserved
quantity. This in turn allows us to construct excited eigenstates of the Hamiltonian by adding
electrons with given momentum and spin to the ground state or alternatively removing them
from the Fermi sea.

7.1.1 ‘Single-particle’ excitations

The simplest excitations over the ground state are obtained by adding (‘particle’ excitation)
or removing (‘hole’ excitation) one electron. Particle excitations have charge −e, spin σ

and a dispersion

E (σ )
p (P) = ε

(σ )
0 (P) , |P| > kF,σ . (7.4)

Hole excitations have charge e, spin −σ and a dispersion

E (σ )
h (P) = −ε(σ )

0 (P) , |P| < kF,σ . (7.5)

We show examples of such particle and hole excitations in figure 7.1.
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7.1.2 ‘Particle-hole’ excitations

Multiparticle excited states are scattering states of particle and hole excitations. The energy
and momentum of a state with Np particles with momenta {p j } and spins {σ j } and Nh holes
with momenta { p̄k} and spins {σ̄k} are

E =
Np∑
j=1

ε
(σ j )
0 (p j )−

Nh∑
k=1

ε
(σ̄k )
0 ( p̄k) ,

P =
Np∑
j=1

p j −
Nh∑

k=1

p̄k , | p̄k | < kF,σ̄k , |p j | > kF,σk . (7.6)

7.2 Zero magnetic field and half-filled band

In this section we determine the spectrum of low-lying excitation in the half-filled repulsive
Hubbard model in the absence of a magnetic field. We will see that any low-lying state can
be thought of as a scattering state of an even number of elementary excitations [120,121].

7.2.1 Elementary excitations

There are two different types of elementary excitations:

� Gapped, spinless excitations carrying charge ∓e. They are sometimes called antiholons
and holons respectively. The dressed energy Eh̄,h(k) and dressed momentum Ph̄,h(k) of
these excitations are given in (7.8). They transform under the spin- 1

2 respresentation of
the η-pairing SU(2) symmetry and hence the ( 1

2 , 0) representation of SU (2)× SU (2).
� Gapless, charge-neutral excitations carrying spin± 1

2 . Such excitations are called spinons.
Their dressed energy Es̄,s(�) and dressed momentum Ps̄,s(�) are given in (7.8). They
transform under the spin-1/2 respresentation of the spin SU(2) symmetry and hence the
(0, 1

2 ) respresentation of SU (2)× SU (2).

It is important to distinguish these elementary excitations from ‘physical’ excitations,
which are the permitted combinations of elementary excitations. In other words, not any
combination of elementary excitations is allowed, but only those consistent with the selec-
tion rules (4.44).

We introduce the following terminology: we call the set {Me, Mn, M ′n|n = 1 . . .∞}
of the numbers of real k’s, �-strings of length n and k-�-strings of length n occupation
numbers of the corresponding excitation. This is in contrast to our usage of the term quantum
numbers, which is reserved for the eigenvalues of energy, momentum, Sz,S2 = #S · #S, ηz

and η2 = #η · #η. In what follows we will establish the following.

Classification of Excitations

All low-lying excited states of the half-filled repulsive Hubbard model are scattering states
of an even number of elementary excitations. The excitation energies and momenta are
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sums over the energies and momenta of the constituent elementary excitations

E =
∑
{α j }

Eα j , P =
∑
{α j }

Pα j , (7.7)

where α j is an index labelling the type of elementary excitation (holon h, antiholon h̄,
Sz = 1

2 spinon s, Sz = − 1
2 spinon s̄). It is shown below that

Es(�) = Es̄(�) = 2
∫ ∞

0

dω

ω

J1(ω) cos(ω�)

cosh(ωu)
,

Ps(�) = Ps̄(�) = π

2
−

∫ ∞
0

dω

ω

J0(ω) sin(ω�)

cosh(uω)
,

Eh(k) = Eh̄(k) = 2 cosk + 2u + 2
∫ ∞

0

dω

ω

J1(ω)cos(ω sink)e−ωu

cosh(ωu)
,

Ph(k) = Ph̄(k)+ π = π

2
− k − 2

∫ ∞
0

dω

ω

J0(ω) sin(ω sin(k))

1+ exp(2u|ω|) .

(7.8)

The energies of the elementary excitations are plotted as functions of their momenta in
figures 7.2 and 7.3. The antiholon energy has a minimum at Ph̄ = π

2 and the holon energy
at Ph = −π

2 . Both holon and antiholon momenta cover the entire Brillouin zone. The
momentum of the spinon varies in the interval [0, π ] and covers only half the Brillouin
zone. The low-energy modes occur at Ps = 0 and Ps = π .

The classification of excitations was first proposed in [120, 121]. An important conse-
quence of this classification is that at half filling spin-charge separation on the level of the
quantum numbers of elementary excitations holds not only at low energies, but extends
to any finite energy in the thermodynamic limit. On the other hand we will see that at
finite energies the scattering matrix between holons and spinons becomes nontrivial, which
establishes the presence of interactions between them.
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Fig. 7.2. Energies of the elementary holon and antiholon excitations as functions of their momenta
for u = 0.25, u = 0.75 and u = 2.5. The gap increases with u and is very small for u = 0.25.
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Fig. 7.3. Energy of the elementary spinon excitation as function of its momentum for u = 0.25,
u = 0.75 and u = 2.5. For any u > 0 there are gapless modes at Ps = 0, π .

Given that all elementary excitations carry definite SU (2)× SU (2) quantum numbers,
all excited states can be characterized by SU (2)× SU (2) quantum numbers as well. More
precisely, as all excited states contain an even number of elementary excitations, they are
classified by SO(4) = SU (2)× SU (2)/Z2 quantum numbers. For example, in the two-
particle sector we can consider scattering states of two spinons, two (anti)holons or one
spinon and one (anti)holon. Our classification of excitations stated above then tells us that
there are the following excitations:

two spinons (0, 1
2 )⊗ (0, 1

2 ) = (0, 1)⊕ (0, 0) ,

two (anti)holons ( 1
2 , 0)⊗ ( 1

2 , 0) = (1, 0)⊕ (0, 0) ,

spinon− (anti)holon (0, 1
2 )⊗ ( 1

2 , 0) = ( 1
2 ,

1
2 ) . (7.9)

In Section 7.2.4 we explicitly construct the highest-weight states of all these multiplets from
the Bethe ansatz.

Before turning to the explicit construction of low-lying excited states over the ground
state and the proof of our classification of excitations, we first derive explicit expressions
for the dressed energies and momenta for the half-filled band in the absence of a magnetic
field. As we have seen above, at half filling the chemical potential is not fixed but can vary
between 0 and µ−. For definiteness we choose µ = 0 in what follows.

The integration boundaries in the integral equations for the dressed energies in this case are
Q = π and A = ∞. The integral equations for the dressed energies (5.103), root densities
(5.105) and momenta (5.98)–(5.101) at T = 0 can be simplified further. For the dressed
energies the easiest way of seeing this is the following. Our starting point are the coupled
integral equations (5.83)–(5.86). Inserting (5.83) into (5.85) for n = 1 we obtain a linear
integral equation involving only ε1(�), which can be solved by Fourier transformation.
Inserting the result of this calculation into (5.83) we obtain κ(k). All other dressed energies
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can be calculated once ε1(�) and κ(k) are known. We find

ε1(�) = −2
∫ ∞

0

dω

ω

J1(ω) cos(ω�)

cosh(ωu)
,

κ(k) = −2 cosk − 2u − 2
∫ ∞

0

dω

ω

J1(ω)cos(ω sink)e−ωu

cosh(ωu)
εn(�) = 0 , n ≥ 2 ,

ε′n(�) = 0 , n ≥ 1. (7.10)

The integral equations for the root densities simplify in a similar manner. The following
integral representations are easily derived

ρ(k) = 1

2π
+ cos(k)

∫ ∞
−∞

dω

2π

J0(ω)

1+ exp(2u|ω|) exp(−iω sin(k)) ≡ ρ0(k),

σ1(�) =
∫ ∞
−∞

dω

2π

J0(ω)

2 cosh(uω)
exp(−iω�) ≡ σ0(�). (7.11)

Finally we can determine the dressed momenta (5.98)–(5.101) from (7.11) using Fourier
transformation

p(k) = k + 2
∫ ∞

0

dω

ω

J0(ω)

1+ exp(2u|ω|) sin(ω sin(k)) ,

p1(�) =
∫ ∞

0

dω

ω

J0(ω)

cosh(uω)
sin(ω�) ,

p′n(�) = π (n + 1) , (7.12)

where we have used (17.15) to obtain the last identity. In figure 7.4 we plot the results
(7.10) and (7.12) for κ(k) and p(k) for three different values of u. We see that p(k) is
a monotonically increasing function of k and varies in the interval [−π, π ]. The dressed
energy κ(k) is always strictly negative, but κ(±π ) is very close to zero for small values
of u.
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Fig. 7.4. Dressed energy κ(k) and momentum p(k) as functions of the spectral parameter k for three
different values of u.
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Fig. 7.5. Dressed energy ε(�) and momentum p1(�) as functions of the spectral parameter � for
three different values of u.
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Fig. 7.6. Dressed energies κ(k) and ε1(�) as functions of the dressed momenta p(k) and p1(�)
respectively, for three different values of u.

In figure 7.5 we plot the results (7.10) and (7.12) for ε1(�) and p1(�) on the interval
� ∈ [−5, 5] for three different values of u. We see that the dressed momentum p1(�) is
a monotonically increasing function of � and varies in the interval [−π

2 ,
π
2 ]. The dressed

energy ε1(�) tends to zero for �→±∞. By inverting the functions p(k) and p1(�) we
can eliminate the auxiliary parameters k and � and plot the dressed energies as functions
of the respective dressed momenta. This is done in figure 7.6. We note that the curves for
u = 0.25 and u = 0.025 are very close to one another.

From our knowledge of the dressed energies and dressed momenta we can infer several
important properties. Firstly, we see that most of the dressed energies and momenta are
identically zero. This tells us that adding the corresponding type of Bethe ansatz root to the
ground state distribution does not change the total energy and momentum. In other words,
these roots merely control degeneracies of the spectrum. The only nontrivial nonvanishing
dressed energies and momenta are the ones corresponding to the roots that make up the two
Fermi seas of the ground state. This tells us that making a hole at position kh in the distribution
of k’s costs energy −κ(kh) and adds −p(kh) to the total momentum. Similarly, making a
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State
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Fig. 7.7. Example of the extra contribution to the momentum: in the ground state the I j ’s are half-odd
integers and are distributed symmetrically around zero. In the excited state we have two holes, which
contribute to the momentum according to their positions. In addition there is an extra contribution of
π to the momentum because in the excited state the integers I j are distributed asymmetrically around
zero.

hole at position �h in the distribution of �1’s costs energy −ε1(�h) and adds −p1(�h) to
the total momentum. A special case are k-� strings. They have zero dressed energy and
therefore do not represent ‘dynamical’ excitations but contribute a constant π (n + 1) to the
momentum. There is one subtlety concerning the momentum. If the occupation numbers of
a given state are such that the I j ’s are integers, there is an additional, constant contribution
of π to the momentum. This is because the vacancies for integer I j ’s are by definition
asymmetric

L

2
< I j ≤ L

2
. (7.13)

If all vacancies were occupied, the momentum would be equal to π . This can be most easily
seen by using the expression (5.97) for the momentum. When we calculate the difference of
momenta between a given excited state and the ground state, we have to take into account
this constant contribution in addition to the contribution of the holes in the distribution of
I j ’s. This subtlety is illustrated in figure 7.7.

An important point to keep in mind here is that of course not any combination of holes
in the ground state distribution and any set of additional roots corresponding to k-� strings
and longer � strings is permitted, but only those that fulfil the selection rules (4.44). As
an example we shall consider low-lying excited states containing only two elementary
excitations in Section 7.2.4.

7.2.2 Holon and spinon band widths

From our knowledge of the dressed energies and momenta we may infer the ‘band widths’
of the elementary holon and spinon excitations. It is clear from Fig.7.4 that the holon ‘band
width’ is simply

Wh = κ(π )− κ(0) = 4 , (7.14)

Reinstituting the hopping amplitude we find that the holon ‘band width’ is independent of
U and equal to 4t .
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The spinon ‘band width’ is given by

Ws = −ε1(0) = 2
∫ ∞

0

dω

ω

J1(ω)

cosh(uω)
. (7.15)

By analogy with the Heisenberg spin- 1
2 chain we may associate the spinon ‘band width’

with an effective Heisenberg exchange constant Jeff by

Jeff = 2

π
Ws. (7.16)

In the large-u limit the integral (7.15) is easily evaluated and reinsitituting the hopping t
we obtain

Jeff ! 4t2

U
. (7.17)

This agrees with the result of the strong coupling expansion of Appendix 2.A (see Eqn.
(2.A.37)).

Charge gap at half filling Excitations involving the charge degrees of freedom are gapped
at half filling. The ‘charge gap’ � is determined from the minimum of the holon energy
Eh(k) (7.8)

� = min
k

Eh(k) = Eh(±π ) = −κ(±π )

= −2+ 2u + 2
∫ ∞

0

dω

ω

J1(ω) e−ωu

cosh(ωu)
. (7.18)

Small and large u expansion of (7.18) are given by (6.B.10) and (6.B.12). The charge gap
(7.18) is plotted as a function of u in figure 7.8. We recall that the charge gap is measured
in units of the hopping matrix element t and u = U/4t .

7.2.3 Spin and charge velocities at half filling

The spin and charge velocities at half filling can be inferred from the expressions for the
dressed energies (7.10) and momenta (7.12). The spinon dispersion becomes soft around
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∆∆

2 3

Fig. 7.8. Charge gap at half filling, � as a function of u.
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Ps = 0, π , which corresponds to �→±∞. At small momentum the spinon energy is
simply proportional to the spinon momentum

Es(�) ! vs Ps(�) , �→∞. (7.19)

Hence the spin velocity may be defined as

vs = lim
�→∞

∂Es(�)

∂�

[
∂Ps(�)

d�

]−1

. (7.20)

Using (7.10) and (7.12) we obtain integral representations for the derivatives. The leading
contribution to the integrals for large � comes from the pole of the integrands closest to the
real axis. This gives the following result for the spin velocity1

vs = 2
I1
(

π
2u

)
I0
(

π
2u

) , (7.21)

where In(z) are Bessel functions. We note that

vs −−→
u→0

2 ,

vs −−→
u�1

π

2u
. (7.22)

In the strong coupling limit the effective Heisenberg exchange integral is Jeff = 4t2

U and
hence

vs(u � 1) = πa0

2
Jeff , (7.23)

where we have reinstalled proper units. The result (7.23) is equal to the spin velocity in the
spin- 1

2 Heisenberg chain (see e.g. [132,132]) as expected on the basis of the strong-coupling
expansion in Appendix 2.A.

Let us now turn to the charge velocity. The minima of the holon dispersion are at k = ±π ,
which corresponds to Ph = −π

2 mod 2π . In the vicinity of the minimum we have a massive
relativistic dispersion

E2
h (Ph) ≈ �2 + v2

c

(
Ph + π

2

)2
, (7.24)

where vc, by definition, is the charge velocity and � is the charge gap (7.18). Hence we
may calculate vc from

v2
c = lim

Ph→− π
2

E2
h (Ph)−�2

(Ph + π
2 )2

= �
∂2Eh(Ph)

∂P2
h

∣∣∣∣
Ph=− π

2

= �
∂2Eh(k)

∂k2

[
∂Ph(k)

∂k

]−2 ∣∣∣∣
k=±π

, (7.25)

where in the last equality we have used that ∂Eh (k)
∂k

∣∣
k=±π = 0. Using the integral

1 In order to restore proper units the dimensionless velocities have to be multiplied by ta0.
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representations for Eh and Ph we obtain the following result for the charge velocity at
half filling

vc = 2

[
−1+ u + 2

∫∞
0

dω
ω

J1(ω)
1+exp(2uω)

] 1
2
[
1− 2

∫∞
0 dω ω J1(ω)

1+exp(2uω)

] 1
2[

1− 2
∫∞

0 dω J0(ω)
1+exp(2uω)

] . (7.26)

We note the following limits of weak and strong coupling

vc −−→
u→0

2 ,

vc −−→
u�1

2
√

u . (7.27)

7.2.4 Two-particle sector

In this subsection we construct all excited states that contain only two elementary excitations.
These can be either (anti)holons or spinons.

Charge Triplet Excitation This is a gapped excitation with occupation numbers M1 =
L
2 − 1 and Me = L − 2. This results in quantum numbers Sz = 0, ηz = −1. As we are
constructing a Bethe ansatz state we can use the highest-weight theorem to infer the quantum
numbers S2 = 0 and η2 = 2. The resulting SO(4) representation is thus (1, 0). The allowed
ranges of the integers I j and half-odd integers J 1

α are

|J 1
α | ≤

L

4
− 1 , − L

2
< I j ≤ L

2
. (7.28)

Hence there are L
2 − 1 vacancies for the L

2 − 1 �1
α’s and L vacancies for the L − 2 k’s. As

a result we are left with two holes in the distribution of k’s. Let us denote their positions by
k1 and k2 respectively. The two holes are the only dynamical objects and carry an energy
and momentum equal to

ECT(k1, k2) = −κ(k1)− κ(k2) = Eh(k1)+ Eh(k2) ,

PCT(k1, k2) = −p(k1)− p(k2)+ π = Ph(k1)+ Ph(k2) , (7.29)

where κ(k) and p(k) are given by (7.10) and (7.12) respectively andEh ,Ph by (7.8). The extra
contribution of π to the momentum arises because the I j ’s are integers (see the discussion
above figure 7.7).2 The charge triplet excitation has a minimal gap of 2�, where � is given
by (7.18).

The full SO(4) multiplet is obtained by acting repeatedly with η† on the lowest-weight
state we just constructed. One subtlety to keep in mind is that this action shifts the total
momentum by π , see (2.88). As a result the momentum of the ηz = 0 state of the charge-
triplet is −p(k1)− p(k2).

Charge Singlet Excitation This excitation has occupation numbers M1 = L
2 − 1, M ′1 = 1

and Me = L − 2. The corresponding quantum numbers are Sz = 0, ηz = 0 and by the

2 We assume throughout this chapter that L = 2× odd integer.
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Fig. 7.9. Upper and lower boundaries of the scattering continuum for the charge singlet excitation
for u = 0.25 (solid line) and u = 0.75 (dashed line).

highest-weight theorem S2 = 0 and η2 = 0. We are therefore dealing with a singlet repre-
sentation (0, 0) of SO(4). The ranges of the half-odd integers I j , half-odd integers J 1

α and
integer J ′11 are

− L

2
< I j ≤ L

2
, |J 1

α | ≤
L

4
− 1 , J ′11 = 0, (7.30)

which implies that we again have two holes at positions k1,2 in the distribution of k’s. In
addition we now have a single k-� string at a position �′, which however carries zero
dressed energy as ε′1(�′) ≡ 0 by (7.10), and only contributes a constant p′1(�′) = 2π to the
momentum as follows from (7.12). Therefore energy and momentum of the charge singlet
excitation are given by

ECS(k1, k2) = −κ(k1)− κ(k2) = Eh(k1)+ Eh̄(k2) ,

PCS(k1, k2) = (−p(k1)− p(k2)) mod (2π ) = Ph(k1)+ Ph̄(k2). (7.31)

The charge singlet excitation is degenerate with the ηz = 0 state of the charge triplet.
One can easily check that there are no other excitations involving only two holes in the

Fermi sea of k’s and no holes in the Fermi sea of �1’s. The charge triplet excitation as well
as other excited states involving k-� strings were first studied by F. Woynarovich [481,482].

Spin Triplet Excitation This gapless excitation has occupation numbers M1 = L
2 − 1, and

Me = L and quantum numbers Sz = 1, ηz = 0, S2 = 2, η2 = 0. The corresponding SO(4)
representation is (0, 1). The ranges of the integers I j and half-odd integers J 1

α are

− L

2
< I j ≤ L

2
, |J 1

α | ≤
L

4
, (7.32)

which implies that we have two holes in the distribution of �’s and no holes in the sea of
k’s. The resulting energy and momentum are

EST(�1,�2) = −ε1(�1)− ε1(�2) = Es(�1)+ Es(�2) ,

PST(�1,�2) = −p1(�1)− p1(�2)+ π = Ps(�1)+ Ps(�2). (7.33)
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The extra contribution of π to the momentum arises because the I j ’s are integers (see the
discussion above).

The spin triplet excitation in the half-filled Hubbard model is very similar to the spin triplet
Heisenberg spin- 1

2 antiferromagnet [132, 333]. This is precisely what one expects on the
basis of the mapping of the half-filled Hubbard model on the Heisenberg model discussed in
Appendix 2.A. The single-spinon dispersion was first constructed by A. A. Ovchinnikov
[352] and reexamined by T.C. Choy and W. Young in [84]. A detailed analysis of spin
excitations was carried out by F. Woynarovich in [486] and by means of functional relations
by A. Klümper, A. Schadschneider and J. Zittartz [258]. The spin triplet excitation can be
probed by inelastic Neutron Scattering Experiments.

Spin Singlet Excitation There is exactly one other excitation involving two holes in the �

sea and no holes in the k sea. Its occupation numbers areMe = L , M1 = L
2 − 2 and M2 = 1

and the corresponding ranges of the integers I j , J 1
α and J 2

1 are

− L

2
< I j ≤ L

2
, |J 1

α | ≤
L − 2

4
, J 2 = 0 . (7.34)

The quantum numbers are Sz = 0, ηz = 0, S2 = 0, η2 = 0 so that we are dealing with
another SO(4) singlet (0, 0). Energy and momentum of the spin singlet excitation are
degenerate with those of the spin triplet

ESS(�1,�2) = −ε1(�1)− ε1(�2) = Es(�1)+ Es̄(�2) ,

PSS(�1,�2) = −p1(�1)− p1(�2)+ π = Ps(�1)+ Ps̄(�2). (7.35)

The extra contribution of π to the momentum arises because the I j ’s are integers (see
the discussion above). The spin singlet excitation was first constructed by F. Woynarovich
in [485].
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Fig. 7.10. Upper and lower boundaries of the scattering continuum for the spin triplet excitation for
u = 0.25 and u = 2.5.
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Fig. 7.11. Upper and lower boundaries of the scattering continuum for the spin-charge scattering
state for u = 0.25 and u = 2.5.

Spin-Charge scattering states The last type of two-particle excitation is gapped and has
the quantum numbers of a physical electron or hole. It involves one hole in each of the k
and � seas. Its occupation numbers are Me = L − 1, M1 = L

2 − 1 and it has the quantum
numbers of a hole (a missing electron) Sz = 1

2 , ηz = − 1
2 , S2 = 3

4 , η2 = 3
4 . This corresponds

to the ( 1
2 ,

1
2 ) respresentation of SO(4). The ranges of the integers I j and J 1

α are

− L

2
< I j ≤ L

2
, |J 1

α | ≤
L − 2

4
. (7.36)

The energy and momentum of the spin-charge scattering states are given by

ESC(�, k) = −ε1(�)− κ(k) = Es(�)+ Eh(k) ,

PSC(�, k) = −p1(�)− p(k)+ π = Ps(�)+ Ph(k). (7.37)

The extra contribution of π to the momentum arises because the I j ’s are integers (see the
discussion above). The spin-charge scattering state has a minimal gap of � (7.18). This
type of excitation is of particular importance for photoemission experiments like Angle
Resolved Photoemission Spectroscopy (ARPES) [71, 91], where an electron is removed
and the system gets excited into a state characterized by the quantum numbers Sz = ± 1

2 ,
ηz = − 1

2 . The fact that there are no single-particle excitations with the quantum numbers
of an electron is dramatically different from the case of noninteracting electrons. The spin-
charge scattering state was first constructed by F. Woynarovich in [485].

7.2.5 2N particle sector

In this section we consider general excited states, following the discussion given in [121]
(see also [258,481,482,485,486]). It is convenient to fix the occupation numbers as follows:

� Nh holes in the distribution of k j ’s;
� Mh holes in the distribution of �1

α’s;
� Mn spectral parameters �n

β where n ≥ 2;
� M ′n spectral parameters �′nβ .
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The total numbers of electrons N and of real spectral parameters �1
α of such an excitation

are

N = L − Nh + 2M ′ ,

M1 = 1

2
(L − Nh − Mh)−

∞∑
m=2

Mm , (7.38)

where M ′ =∑∞
m=1 mM ′m . The SO(4) quantum numbers are given by

ηz = N − L

2
, Sz = N − 2M

2
= Mh

2
−

∑
m≥2

(m − 1)Mm . (7.39)

The numbers of holons (nh), antiholons (nh̄), Sz = 1
2 spinons (ns) and Sz = − 1

2 spinons
(ns̄) are calculated from the relations Nh = nh + nh̄ , Mh = ns + ns̄ , 2ηz = nh̄ − nh and
2Sz = (ns − ns̄). The result is

nh = Nh − M ′ , nh̄ = M ′ ,

ns = Mh −
∑
m≥2

(m − 1)Mm , ns̄ =
∑
m≥2

(m − 1)Mm . (7.40)

The total energy is simply given by the sums of the dressed energies of the holes in the
distributions of k’s and �1’s

E = −
Nh∑
j=1

κ(kh
j )−

Mh∑
α=1

ε1(�h
α). (7.41)

By the definition (7.8) of the energies of the elementary excitations this is equal to the sum
of the energies of holons, antiholons and spinons

E =
nh∑
j=1

Eh(kh
j )+

Nh∑
j=nh+1

Eh̄(kh
j )+

ns∑
α=1

Es(�h
α)+

Mh∑
α=ns+1

Es̄(�h
α), (7.42)

where we have chosen the spectral parameters kh
1 , . . . , kh

nh
and kh

nh+1, . . . , kh
Nh

to correspond
to holons and antiholons respectively and similarly �h

1, . . . , kh
ns

and �h
ns+1, . . . , �

h
Mh

to
correspond spinons and antispinons.

From the definition (5.97) and the discussion at the beginning of Section (7.2) it follows
that the momentum of the excited state is given by

P = −
Nh∑
j=1

p(kh
j )−

Mh∑
α=1

p1(�h
α)+ π

∞∑
n=1

(n + 1)M ′n + π [1+
∞∑

m=1

Mm + M ′m], (7.43)

where the last term is designed to give an extra contribution of π if the I j ’s are integers. The
raison d’ être for this contribution has been discussed above figure 7.7. We want to show
that (7.43) is equal to the sum of the momenta of the constituent elementary excitations

P =
nh∑
j=1

Ph(kh
j )+

Nh∑
j=nh+1

Ph̄(kh
j )+

ns∑
α=1

Ps(�h
α)+

Mh∑
α=ns+1

Ps̄(�h
α), (7.44)
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where Pα are defined in (7.8). By definition of the Pα we have

P = −
Nh∑
j=1

p(kh
j )−

Mh∑
α=1

p1(�h
α)+ π

2

[
nh − nh̄ + ns + ns̄

]
. (7.45)

Hence we want to show that

π

2

[
nh − nh̄ + ns + ns̄

] = π

[
1+

∞∑
n=1

(n + 2)M ′n + Mn

]
mod (2π ). (7.46)

Using (7.40) a straightforward calculation shows that the left hand side of (7.46) is
equal to

πL

2
− π

∞∑
n=1

[nM ′n + Mn]. (7.47)

For L = 2× odd integer, the case we have been discussing, this is the same as the right hand
side of (7.46). This proves that (7.8) is indeed the correct expression for the momenta of
the elementary excitations in the sense that in order for the total momentum to be additive,
the constant (spectral parameter independent) contributions must be chosen exactly as
in (7.8).

In order to prove our classification of elementary excitations we still have to show that
the total number N (Nh, Mh, Sz, ηz) of excited SO(4) lowest-weight3 states with Nh holes in
the distribution of k’s and Mh holes in the distribution of �1’s with fixed quantum numbers
Sz and ηz is predicted correctly.

According to our classification, this number is simply equal to the number of lowest-
weight scattering states of Nh holons and Mh spinons with the given values for Sz ≥ 0 and
ηz ≤ 0. Therefore N (Nh, Mh, Sz, ηz) can be expressed as a product

N (Nh, η
z) N (Mh, Sz) , (7.48)

where N (Nh, η
z) is the number of lowest-weight states with a given ηz in the Nh-fold tensor

product of spin- 1
2 representations of the η-pairing SU (2) and similarly N (Mh, Sz) is the

number of highest-weight states with a given Sz in the Mh-fold tensor product of spin- 1
2

representations of the spin-SU (2). From representation theory of SU (2) we can infer that

N (Nh, η
z) = C Nh

Nh
2 +ηz
− C Nh

Nh
2 +ηz−1

,

N (Mh, Sz) = C Mh
Mh
2 −Sz

− C Mh
Mh
2 −Sz−1

, (7.49)

where Ca
b are binomial coefficients. Let us now reproduce this result directly from the

Bethe ansatz. The different SO(4) lowest-weight states correspond to different distributions
of the (half-odd) integers J n

α (n ≥ 2), J ′nα of the ‘non-dynamical’ spectral parameters. Using

3 Recall that ‘SO(4) lowest weight state’ means that the state is a lowest weight state with respect to the η-pairing SU(2) and a
highest-weight state with respect to the spin-SU(2) symmetry algebra.
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(4.44)–(4.46) one easily establishes the following ranges for the (half-odd) integers

|J n
α | ≤

1

2

[
Mh −

∞∑
m=2

(tnm − 2)Mm − 1
]
, n ≥ 2 ,

|J ′nα| ≤
1

2

[
Nh −

∞∑
m=1

tnm M ′m − 1
]
. (7.50)

This means for example that there are Nh −
∑∞

m=1 tnm M ′m vacancies for the (half-odd)
integers J ′nα and accordingly

C
Nh−

∑∞
m=1 tnm M ′m

M ′n
(7.51)

different ways of distributing them. In this way we obtain the following result for the total
number of states with given occupation numbers and values of ηz and Sz

N (Nh, Mh, Sz, ηz) =

 ∑
M ′1 ,M ′2 ,...∑∞

m=1 mM ′m=
Nh
2 +ηz

∞∏
n=1

C
Nh−

∑∞
m=1 tmn M ′m

M ′n



×

 ∑
M2 ,M3 ,...∑∞

m=2(m−1)Mm= Mh
2 −Sz

∞∏
n=2

C
Mh−

∑∞
m=2(tmn−2)Mm

Mn

 . (7.52)

These sums are precisely of the same structure as the ones we encountered in establishing
the completeness of the Bethe ansatz in Chapter 4.B. Indeed, the first factor in (7.52)
is of the same form as (4.B.8). The second factor can be brought to the same form by
a simple relabelling of the summation variables Mm = M̃m−1 for m ≥ 2 and using that
tn+1 m+1 = tnm + 2. Using (4.B.8) in both factors we obtain

N (Nh, Mh, Sz, ηz) = N (Nh, η
z) N (Mh, Sz) , (7.53)

where N (Nh, η
z) and N (Mh, Sz) are given by (7.49). The number of excited states ob-

tained directly from the Bethe ansatz is thus indeed identical to the one obtained from our
classification of general excited states.

7.3 Root-density formalism

There are several ways of constructing the ground state and low-lying excited states in
a Bethe ansatz solvable model. In this section we dicuss a method widely used in the
literature. We choose to call it the ‘root-density formalism’ as the fundamental objects
are distribution functions for Bethe ansatz roots in the thermodynamic limit. Historically
the first to use this method was Hulthén [207] in his study of the spin-1/2 Heisenberg
antiferromagnetic chain. For the Hubbard model the method was used in many works on the
zero temperature excitation spectrum [88, 352, 481, 482, 486]. The root density formalism
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is useful for determining scattering phase shifts of elementary excitations, see Section 7.4.
Our discussion is based on F. Woynarovich’s work [481, 482, 486].

Let us recall the notation Me = N − 2M ′ for the number of k’s that are not associated
with k-� strings. For definiteness we consider the case where the lattice length is L =
2× odd integer.

7.3.1 The half-filled ground state

The ground state has occupation numbers Me = L , M1 = L/2 and the Bethe roots fulfil
the equations

k j L = 2π I j −
L/2∑
α=1

θ

(
sin k j −�1

α

u

)
,

L∑
j=1

θ

(
�1

α − sin k j

u

)
= 2π Jα +

L/2∑
β=1

θ

(
�1

α −�1
β

2u

)
. (7.54)

We now assume that for large system sizes L the distributions of k j ’s and �α’s become
dense, just like we did when we derived the thermodynamic equations (5.28)

k j+1 − k j = O(L−1), �1
α+1 −�1

α = O(L−1) . (7.55)

Subtracting (7.54) for consecutive roots we obtain for the first equation in (7.54)

L(k j+1 − k j ) = 2π −
L/2∑
α=1

cos(k j )2u

u2 + (sin(k j )−�1
α)2

(k j+1 − k j )+ O(L−1) , (7.56)

where we have used that I j+1 − I j = 1 and (7.55) to Taylor-expand. In the next step we
define root densities for finite, large L by

ρ(L)(k j ) = 1

L(k j+1 − k j )
, σ

(L)
1 (�1

α) = 1

L(�1
α+1 −�1

α)
. (7.57)

The limit L →∞ of (7.57) exists due to (7.55) and we denote the limiting densities by

ρ(k) = lim
L→∞

ρ(L)(k) , σ1(�) = lim
L→∞

σ
(L)
1 (�) . (7.58)

In terms of the root densities (7.57) we can rewrite (7.56) and the analogous equation for
the roots �α as

ρ(L)(k j ) = 1

2π
+ cos k j

2π

1

L

L/2∑
α=1

2u

u2 + (sin k j −�1
α)2

, (7.59)

σ (L)(�1
α) = 1

2πL

L∑
j=1

2u

u2 + (sin k j −�1
α)2

− 1

2πL

L/2∑
β=1

4u

4u2 + (�1
β −�1

α)2
. (7.60)



7.3 Root-density formalism 227

In the next step we take the limit L →∞. Let us multiply and divide the last term in (7.59)
by �α+1 −�α

ρ(L)(k j ) = 1

2π
+ cos k j

2π

L/2∑
α=1

(�1
α+1 −�1

α)
2u

u2 + (sin k j −�1
α)2

σ
(L)
1 (�1

α). (7.61)

If we now take L →∞ the last term simply turns into an integral. Carrying out the analogous
calculation for (7.60) we arrive at the following set of coupled integral equations

ρ(k) = 1

2π
+ cos k

2π

∫ A

−A
d�

2u

u2 + (sin k −�)2
σ1(�) , (7.62)

σ1(�) =
∫ Q

−Q

dk

2π

2u

u2 + (�− sin k)2
ρ(k)

−
∫ A

−A

d�′

2π

4u

(2u)2 + (�−�′)2
σ1(�′) . (7.63)

The integration boundaries Q and A are fixed by the requirements that we are at half filling
and the magnetization is zero ∫ Q

−Q
dk ρ(k) = Me

L
= 1 ,∫ A

−A
d� σ1(�) = M1

L
= 1

2
, (7.64)

which yield Q = π and A = ∞. Equations (7.63) are now easily solved by Fourier trans-
formation with the results (7.11):

ρ0(k) = 1

2π
+ cos(k)

∫ ∞
−∞

dω

2π

J0(ω)

1+ exp(2u|ω|) exp(−iω sin(k)),

σ0(�) =
∫ ∞
−∞

dω

2π

J0(ω)

2 cosh(uω)
exp(−iω�). (7.65)

We recall that the subscript ‘0’ indicates that we are dealing with the root densities of the
half-filled ground state. The derivation of equations (7.65) a priori is exact up to order
O(L−1). In the thermodynamic limit the ground state energy per site is given by

eGS = lim
L→∞

1

L

L∑
j=1

[−2 cos k j − 2u]+ u

= − lim
L→∞

2
L∑

j=1

(k j+1 − k j ) cos k j ρ
(L)(k j )− u

= −2
∫ π

−π
dk cos(k) ρ(k)− u . (7.66)

Inserting the integral representation (7.11) for ρ(k) into (7.66) we reproduce the Lieb-Wu
result (6.82).
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Equations (7.63) can also be obtained directly from the equations for the counting func-
tions (5.29)–(5.31). For the ground state we have

y(k) = k + 1

L

M1∑
α=1

θ

(
sin k −�1

α

u

)
, (7.67)

z1(�) = 1

L

Me∑
j=1

θ

(
�− sin k j

u

)
− 1

L

M1∑
α=1

θ

(
�−�1

α

2u

)
. (7.68)

Taking derivatives with respect to k and � respectively and using the relations (5.36), (5.37),
we obtain

ρ p(k)+ ρh(k) = 1

2π
+ cos k

L

M1∑
α=1

a1(sin k −�1
α) , (7.69)

σ
p

1 (�)+ σ h
1 (�) = 1

L

Me∑
j=1

a1(�− sin k j )− 1

L

M1∑
α=1

a2(�−�1
α) . (7.70)

In the ground state all vacancies are filled, so that ρh(k) = 0 and σ h
1 (k) = 0. Finally, turning

the sums into integrals we arrive at (7.63).

7.3.2 General excited states

Let us now consider a general excited state allowed by the selection rules (4.44) with Nh

holes in the distribution of k’s, Mh holes in the distribution of �1
α’s, Ml roots �l

α (l ≥ 2)
and M ′n roots �′nα . The equations for the counting functions y(k) and z1(�) now read

y(k) = k + 1

L

M1∑
α=1

θ

(
sin k −�1

α

u

)
+ 1

L

∞∑
l=2

Ml∑
β=1

θ

(
sin k −�l

β

lu

)
(7.71)

+ 1

L

∞∑
l=1

M ′l∑
β=1

θ

(
sin k −�′lβ

lu

)
,

z1(�) = 1

L

Me∑
j=1

θ

(
�− sin k j

u

)
− 1

L

M1∑
α=1

θ

(
�−�1

α

2u

)

− 1

L

∞∑
l=2

Ml∑
β=1

�1l

(
�−�l

β

u

)
. (7.72)

Taking again derivatives with respect to k and � and turning the sums over k j and �1
α into

integrals we arrive at

ρ p(k)+ ρh(k) = 1

2π
+ cos(k)

∫ ∞
−∞

d� a1(sin k −�) σ p
1 (�) (7.73)

+ cos k

L

∞∑
l=2

Ml∑
β=1

al(sin k −�l
β)+ cos k

L

∞∑
l=1

M ′l∑
β=1

al(sin k −�′lβ),
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σ
p

1 (�)+ σ h
1 (�) =

∫ π

−π
dk a1(�− sin k) ρ p(k)−

∫ ∞
−∞

d�′ a2(�−�′) σ p
1 (�′)

− 1

L

∞∑
l=2

Ml∑
β=1

A1l(�−�l
β) . (7.74)

The point is that we know what the root densities for holes are. By construction there are
Nh holes in the k-sea with corresponding rapidities kh

n and similarly there are Mh holes in
the �-sea at positions �h

n . Hence, to leading order in L−1, we have

ρh(k) = 1

L

Nh∑
n=1

δ(k − kh
n ) ,

σ h
1 (�) = 1

L

Mh∑
m=1

δ(�−�h
m) . (7.75)

Apart from the integral equations describing the two Fermi seas we have considered so far,
we still have Takahashi’s equations determining the spectral parameters �m

β for m ≥ 2 and
�′mβ . For example, we have

2π J ′mβ = 2L Re
(
arcsin

[
�′mβ + imu

])− Me∑
j=1

θ

(
�′mβ − sin k j

mu

)

−
∞∑

l=1

M ′l∑
γ=1

�ml

(
�′mβ −�′lγ

u

)
. (7.76)

Here we can again turn the sum over the k j ’s into an integral. Putting everything together
and dropping in the index ‘p’ for the particle root densities we arrive at the following
set of equations characterizing a general low-lying excitation over the half-filled ground
state

ρ(k) = 1

2π
+ cos(k)

∫ ∞
−∞

d� a1(sin k −�) σ1(�)− 1

L

Nh∑
n=1

δ(k − kh
n )

+cos k

L

∞∑
l=2

Ml∑
β=1

al(sin k −�l
β)+ cos k

L

∞∑
l=1

M ′l∑
β=1

al(sin k −�′lβ) , (7.77)

σ1(�) =
∫ π

−π
dk a1(�− sin k) ρ(k)−

∫ ∞
−∞

d�′ a2(�−�′) σ1(�′)

− 1

L

∞∑
l=2

Ml∑
β=1

A1l(�−�l
β)− 1

L

Mh∑
m=1

δ(�−�h
m) , (7.78)
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2π J ′mβ
L
= 2Re

(
arcsin

[
�′mβ + imu

])− ∫ π

−π
dk θ

(
�′mβ − sin k

mu

)
ρ(k)

− 1

L

∞∑
l=1

M ′l∑
γ=1

�ml

(
�′mβ −�′lγ

u

)
, (7.79)

2π J n
α

L
=

∫ π

−π
dk θ

(
�n

α − sin k

nu

)
ρ(k)−

∫ ∞
−∞

d� �n1

(
�n

α −�

u

)
σ1(�)

− 1

L

∞∑
m=2

Mm∑
β=1

�nm

(
�n

α −�m
β

u

)
. (7.80)

What about the equations for the holes? All they do is fix the relation between the
integer or half-odd integer numbers characterizing the positions of the holes and the cor-
responding spectral parameters kh

n and �h
m . As long as we are content with parametriz-

ing the positions of the holes by the spectral parameters we do not have to solve these
equations.

So far our discussion has been very general. In order to see how to utilize equations (7.78)
and (7.80) let us reconsider all excitations involving two elementary excitations. Apart
from rederiving our previous results for the energies and momenta of these excited states
we will obtain results that will be used to determine the two-particle scattering matrix in
Section 7.4.

7.3.3 Charge singlet excitation

We start with the charge singlet excitation, which we recall is characterized by occupation
numbers Me = L − 2, M ′1 = 1 and M1 = L

2 − 1. Both the I j ’s and the J 1
α ’s are half-odd

integers whereas the single J ′11 is an integer with

− L

2
< I j ≤ L

2
, |J 1

α | ≤
L

4
− 1 , J ′11 = 0 . (7.81)

There are 2 holes in the k-sea whereas the �1 sea is completely filled as there are exactly
L
2 − 1 vacancies. We denote the half-odd integers parametrizing the holes in the k-sea by
I h
1,2 and the corresponding spectral parameters by kh

1,2. The equations for the root densities
(7.77), (7.78), (7.80) become

ρ(k) = 1

2π
+ cos(k)

∫ ∞
−∞

d� a1(sin k −�) σ1(�)− 1

L

2∑
n=1

δ(k − kh
n )

+cos k

L
a1(sin k −�′11), (7.82)

σ1(�) =
∫ π

−π
dk a1(�− sin k) ρ(k)−

∫ ∞
−∞

d�′ a2(�−�′) σ1(�′)

0 = 2Re
(

arcsin
[
�′11 + iu

])
−

∫ π

−π
dk θ

(
�′11 − sin k

u

)
ρ(k) . (7.83)
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As the integral equations are linear, we may employ the decomposition4

ρ(k) = ρ0(k)+ 1

L
ρCS(k) ,

σ1(�) = σ0(�)+ 1

L
σCS(�) . (7.84)

It is easy to see that ρ0(k) and σ0(�) fulfil precisely the same integral equations as the root
densities of the half-filled ground state (7.63) and are thus given by (7.11). The densities
ρCS(k) and σCS(�) satisfy the following coupled integral equations

ρCS(k) = cos(k)
∫ ∞
−∞

d� a1(sin k −�) σCS(�)−
2∑

n=1

δ(k − kh
n )

+ cos(k) a1(sin k −�′11), (7.85)

σCS(�) =
∫ π

−π
dk a1(�− sin k) ρCS(k)−

∫ ∞
−∞

d�′ a2(�−�′) σCS(�′) , (7.86)

These equations are solved by Fourier transformation as follows. We insert (7.85) into (7.86)
and observe that due to the ‘symmetric integration Lemma’ (17.1) several terms vanish. We
then Fourier transform and obtain

σCS(�) = −
2∑

j=1

∫ ∞
−∞

dω

2π

exp(iω[sin kh
j −�])

2 cosh(uω)
= −

2∑
j=1

s(�− sin kh
j ) , (7.87)

where s(x) = 1
4u cosh(πx/2u) has been defined in (5.59). Using (7.87) in (7.85) we then can

determine ρCS

ρCS(k) = cos(k) a1(�′11 − sin k)−
2∑

j=1

[
δ(k − kh

j )+ cos(k) R(sin(k)− sin(kh
j ))

]
,

(7.88)

where R(x) is given by (5.104). Finally, we can solve the equation for �′11. Using the integral
representation (7.65) for ρ0(k), the ‘symmetric integration Lemma’ (17.1) and then (17.16),
we find ∫ π

−π
dk θ

(
�′11 − sin k

u

)
ρ0(k) = 2Re

(
arcsin

[
�′11 + iu

])
, (7.89)

which in conjunction with (7.83) implies that

0 =
∫ π

−π
dk θ

(
�′11 − sin k

u

)
ρCS(k) . (7.90)

4 We note that equations (7.84) define all four quantities on the r.h.s.
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Inserting the explicit expression (7.88) for ρCS(k) into this equation and using (17.1) we
obtain

θ

(
�′11 − sin kh

1

u

)
+ θ

(
�′11 − sin kh

2

u

)
= 0 . (7.91)

This fixes �′11 in terms of the positions kh
j of the two holes

�′11 =
sin(kh

1 )+ sin(kh
2 )

2
. (7.92)

We are now in a position to calculate the energy and momentum of the charge singlet
excitation. From the general expression (4.52) for the energy we obtain

ECS = lim
L→∞

[E − LeGS]

=
∫ π

−π
dk ρCS(k) (−2 cos(k)− 2u)+ 4Re

√
1− (�′11 − iu)2 − 4u. (7.93)

Using the explicit form (7.88) for ρCS(k) together with the identities (17.1) and (17.13) we
find

ECS =
2∑

j=1

[
2 cos(kh

j )+ 2u + 2
∫ ∞
−∞

dω

ω

J1(ω) exp(iω sin(kh
j ))

1+ exp(2u|ω|)

]
, (7.94)

which agrees with our previous result (7.31). The momentum is calculated exactly as in
Section 7.2. We start with equation (5.97), which for the charge singlet excitation reads

PCS = 2π

L

(
L−2∑
j=1

I j +
M1∑
β=1

J 1
β − J ′11

)
. (7.95)

As both the I j ’s and the J 1
α ’s are half-odd integers and J ′11 = 0 this becomes

PCS = −2π

L

2∑
j=1

I h
j = −

2∑
j=1

y(kh
j ) , (7.96)

where the counting function y(k) is given by

y(k) = k + 1

L

M1∑
α=1

θ

(
sin k −�1

α

u

)
+ 1

L
θ

(
sin k −�′11

u

)

= k +
∫ ∞
−∞

d� θ

(
sin k −�

u

)
σ0(�)+O(L−1). (7.97)

Here σ0(�) is given by (7.65). Carrying out the remaining integral we obtain

PCS = −
2∑

j=1

[
kh

j +
∫ ∞
−∞

dω

iω

J0(ω) exp(iω sin kh
j )

1+ exp(2u|ω|)

]
. (7.98)

This agrees with (7.31).
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7.3.4 Charge triplet excitation

The charge triplet excitation has occupation numbers M1 = L
2 − 1 and Me = L − 2 and

can be treated in the same way as the charge singlet. There are again two holes in the
distribution of k’s and no holes in the distribution of �1

α’s. Specifying our general expres-
sion for the root densities (7.78) to the case at hand and using a decomposition of the
form

ρ(k) = ρ0(k)+ 1

L
ρCT(k) ,

σ1(�) = σ0(�)+ 1

L
σCT(�) . (7.99)

we obtain a set of coupled equations for ρCT(k) and σCT, that can be solved in complete
analogy with the charge singlet case. We find

σCT(�) = −
2∑

j=1

∫ ∞
−∞

dω

2π

exp(iω[sin kh
j −�])

2 cosh(uω)
= −

2∑
j=1

s(�− sin kh
j ) , (7.100)

ρCT(k) = −
2∑

j=1

[
δ(k − kh

j )+ cos(k) R(sin(k)− sin(kh
j ))

]
. (7.101)

It is easily verified that the energy and momentum of the charge triplet excitation are equal
to our previous result (7.29).

7.3.5 Spin singlet excitation

The spin singlet excitation has occupation numbers Me = L , M1 = L
2 − 2 and M2 = 1.

The integer corresponding to the �-string of length 2 is equal to zero, J 2
1 = 0, by virtue of

(4.44). There are two holes with corresponding spectral parameters �h
1,2 in the distribution

of �1
α’s and no holes in the distribution of k’s. The equations determining the root densities

are given by (7.77), (7.78) and (7.80)

ρ(k) = 1

2π
+ cos(k)

∫ ∞
−∞

d�a1(sin k −�) σ1(�)+ cos k

L
a2(sin k −�2

1) (7.102)

σ1(�) =
∫ π

−π
dk a1(�− sin k) ρ(k)−

∫ ∞
−∞

d�′ a2(�−�′) σ1(�′)

− 1

L
A12(�−�2

1)− 1

L

2∑
m=1

δ(�−�h
m) , (7.103)

0 = L
∫ π

−π
dk θ

(
�2

1 − sin k

2u

)
ρ(k)− L

∫ ∞
−∞

d� �21

(
�2

1 −�

u

)
σ1(�).

(7.104)
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We introduce a decomposition

ρ(k) = ρ0(k)+ 1

L
ρSS(k) ,

σ1(�) = σ0(�)+ 1

L
σSS(�) , (7.105)

and then solve the equations for ρSS(k) and σSS(�) by Fourier techniques. Using (17.12)
we find

σSS(�) = −
2∑

j=1

[δ(�−�h
j )− R(�−�h

j )]− a1(�−�2
1) , (7.106)

ρSS(k) = − cos(k)
2∑

j=1

s(�h
j − sin k) , (7.107)

where R(x) and s(x) are defined in (5.104) and (5.59) respectively. Finally we need to solve
the equation for �2

1. Noting that by virtue of (17.15)∫ ∞
−∞

d� �21

(
x −�

u

)
σ0(�) = 2Re (arcsin [x + 2iu]) , (7.108)

and then using (7.89) we see that the O(L) part of equation (7.104) is satisfied for any �2
1.

The O(1) part gives the condition

2∑
j=1

θ

(
�h

j −�2
1

u

)
= 0 , (7.109)

which has the solution

�2
1 =

�h
1 +�h

2

2
. (7.110)

The energy of the spin singlet excitation is

ESS =
∫ π

−π
dk ρSS(k) (−2 cos(k)− 2u)

=
2∑

j=1

∫ ∞
−∞

dω

ω

J1(ω) exp(−iω�h
j )

cosh(uω)
. (7.111)

Finally, the momentum is found to be

PSS = π −
2∑

j=1

∫ ∞
−∞

dω

iω

J0(ω) exp(iω�h
j )

2 cosh(uω)
. (7.112)
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7.3.6 Spin triplet excitation

The calculations for the spin triplet excitation are very similar to those we just did for the
spin singlet. We find

σST(�) = −
2∑

j=1

[δ(�−�h
j )− R(�−�h

j )] ,

ρST(k) = − cos(k)
2∑

j=1

s(�h
j − sin k) . (7.113)

Energy and momentum are the same as for the spin singlet.

7.3.7 Spin-charge scattering state

The spin-charge scattering state has occupation numbers Me = L − 1, M1 = L
2 − 1 and

thus one hole in the k-sea and one hole on the �1-sea. We denote the corresponding
spectral parameters by kh and �h . From (7.77), (7.78) we have the following equations for
the root densities

ρ(k) = 1

2π
+ cos(k)

∫ ∞
−∞

d�a1(sin k −�) σ1(�)− 1

L
δ(k − kh) ,

σ1(�) =
∫ π

−π
dk a1(�− sin k) ρ(k)−

∫ ∞
−∞

d�′ a2(�−�′) σ1(�′)

− 1

L
δ(�−�h) . (7.114)

Using the decomposition

ρ(k) = ρ0(k)+ 1

L
ρSC(k) ,

σ1(�) = σ0(�)+ 1

L
σSC(�) , (7.115)

we obtain (using (17.11))

ρSC(k) = − cos(k) s(�h − sin k)− [δ(k − kh)+ cos(k) R(sin(k)− sin(kh))],

σSC(�) = −[δ(�−�h)− R(�−�h)]− s(�− sin kh) . (7.116)

The energy of the spin-charge scattering state is then given by

ESC =
∫ π

−π
dk ρCS(k) (−2 cos(k)− 2u)

=
∫ ∞
−∞

dω

ω

J1(ω) exp(−iω�h)

cosh(uω)

+2 cos(kh)+ 2u + 2
∫ ∞
−∞

dω

ω

J1(ω) exp(iω sin(kh))

1+ exp(2u|ω|) , (7.117)
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which agrees with (7.37). The momentum is given by

PSC = π −
∫ ∞
−∞

dω

iω

J0(ω) exp(iω�h
j )

2 cosh(uω)
− kh −

∫ ∞
−∞

dω

iω

J0(ω) exp(iω sin kh)

1+ exp(2u|ω|) ,

(7.118)

which agrees with (7.37).

7.4 Scattering matrix

So far we have determined the dispersions and the SU (2)× SU (2) quantum numbers of the
elementary excitations in the half-filled Hubbard chain. In this section we go one step further
and determine the two-particle scattering matrix (S-matrix), which gives us information on
how elementary excitations interact in a given excited state. The S-matrix also determines
the low-temperature thermodynamics in relativistic integrable theories [505]. The scattering
of elementary excitations in the half-filled Hubbard chain is of a very special kind: it is
factorizable [52, 322, 339, 493, 503]. The scattering process of 2N particles is described
as follows: at t = −∞ 2N particles with momenta p1 > p2 > . . . > p2N are arranged in
our one-dimensional space such that x1 � x2 � . . .� x2N , i.e. the fastest particle is the
leftmost one and the slowest the rightmost one. In the interaction region the particles collide
two at a time. The set of momenta and SU (2)⊗ SU (2) quantum numbers are conserved in
each collision: the scattering is completely elastic. Two-particle scattering processes can be
represented graphically as in figure 7.12(a). The corresponding S-matrix element is denoted
by

Sβ1β2
α1α2

(p1, p2). (7.119)

After N (2N − 1) pair collisions the particles are arranged along the spatial direction in order
of increasing momenta, i.e. the fastest particle is now the rightmost one. In the final state
of scattering at t = ∞ we have x1 � x2 � . . .� x2N . A four-particle scattering process
is depicted in figure 7.12(b). The factorization of the scattering implies that the N -particle
S-matrix is expressed as a product over two-particle S-matrices

S(N )(p1, . . . , pN ) =
N∏

j=2

j−1∏
k=1

S(pk, p j ) . (7.120)

The same scattering process can be represented by different diagrams as is shown in figure
7.13 for the example of three-particle scattering. As they describe the same process, the
corresponding products of two-particle S-matrices must be the same. This condition is
equivalent to a Yang-Baxter equation for the two-particle S-matrices

Sγ1γ2
α1α2

(p1, p2) Sβ1γ3
γ1α3

(p1, p3) Sβ2β3
γ2γ3

(p2, p3) = Sγ2γ3
α2α3

(p2, p3) Sγ1β3
α1γ3

(p1, p3) Sβ1β2
γ1γ2

(p1, p2) .

(7.121)
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Fig. 7.12. Two- and four-particle scattering processes in a theory with factorizable scattering.
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Fig. 7.13. Yang-Baxter equation for factorizable three-particle scattering.

In quantum mechanical scattering theory the S-matrix can be extracted from the asymp-
totics of the wave-function of the scattering state [283]. The boundary conditions of the
quantum mechanical problem are free. This is in contrast to the periodic boundary condi-
tions imposed in the Bethe ansatz solution, which complicates the problem of determining
phase shifts. In Ref. [266] V. E. Korepin developed a general method for calculating the
exact two-particle S-matrix directly from the Bethe ansatz equations. It is based on the fact
that the Bethe ansatz equations have an interpretation in terms of scattering of particles.
The same holds true for the Bethe ansatz equations describing low-lying excitations over
the true ground state, and using this interpretation it is possible to calculate the phase shifts
for excited states. Korepin’s method was subsequently applied to many integrable models.
In recent years these methods have been generalized to accommodate open boundary con-
ditions [104, 116, 185]. It also has been shown by direct calculation that the multi-particle
scattering factorizes [103].

An approach equivalent to Korepin’s was suggested by N. Andrei and C. Destri in [19].
It is based on the relation of the scattering phase shift to the quantization condition for the
momentum in a finite volume. Consider the scattering of two particles with momenta p1 and
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p2 respectively. In a finite volume L the scattering phase shift δ12 for scattering of particle
1 on particle 2 is given by

p1 + δ12

L
= 2πn

L
, (7.122)

where n is an integer. We have already seen an example of this when we derived the
Bethe ansatz equations in Chapter 3.2. In what follows we will determine the two-
particle scattering phase shifts of excitations over the half-filled ground state by exploit-
ing the relation (7.122). We will make extensive use of the results for the respective ex-
cited states obtained in subsections 7.3.3–7.3.7 within the framework of the root density
formalism.

7.4.1 Charge sector

Let us begin with the phase shift of the charge singlet excitation (see subsection 7.3.3 above).
Our starting point is Takahashi’s equation for the first hole, which we take to describe a
holon elementary excitation

2π I h
1

L
= kh

1 +
∫ ∞
−∞

d� θ

(
sin(kh

1 )−�

u

)
σ1(�)+ 1

L
θ

(
sin(kh

1 )−�′11
u

)

= π

2
− Ph(kh

1 )+ 1

L

∫ ∞
−∞

d� θ

(
sin(kh

1 )−�

u

)
σCS(�)

+ 1

L
θ

(
sin(kh

1 )−�′11
u

)
, (7.123)

where Ph(kh
1 ) = π

2 − p(kh
1 ) is the dressed momentum of the holon (7.8), (7.12) and where

we have used (7.84) and (7.11). We see that (7.123) is precisely of the form (7.122)! This
observation allows us to determine the charge-singlet phase shift δ12

CS. We have to be a bit
careful, because I h

1 is actually a half-odd integer number, which gives an extra contribution
of π to the phase shift. Using the expressions (7.87) for σCS and (7.92) for �′11 and the
integral (17.18) we obtain the following result

δ12
CS = −θ (k12)+ i ln

[
�
(

1
2 + i k12

2

)
�
(
1− i k12

2

)
�
(

1
2 − i k12

2

)
�
(
1+ i k12

2

)] , (7.124)

where

k12 = sin(kh
1 )− sin(kh

2 )

2u
≥ 0 . (7.125)

The condition k12 > 0 is necessary for scattering to occur. The analogous calculation for
the charge triplet is easily done using the explicit results for the root densities (7.100) and
(7.101). I h

1 is now an integer, so that there is no extra contribution to the phase shift. We
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find the following result for the charge triplet phase shift

δ12
CT = π + i ln

[
�
(

1
2 + i k12

2

)
�
(
1− i k12

2

)
�
(

1
2 − i k12

2

)
�
(
1+ i k12

2

)] . (7.126)

Having determined the phase shifts we are now in a position to write down the two-particle
scattering matrices. The scattering phases exp(iδ12

CS) and exp(iδ12
CT) are the eigenvalues of

the two-particle scattering matrix in the η-pairing singlet and triplet sectors respectively. In
total there are four two-particle states in the charge sector: holon-holon, antiholon-antiholon
and two holon-antiholon states. We introduce bases for the initial (in) and final (out) states
of the scattering process in the usual way

|k1, k2〉inα1α2
, |k1, k2〉out

α1α2
, k1 > k2, α j ∈ {h, h̄}. (7.127)

Here α = h, h̄ is an η-pairing SU(2) index corresponding to holon and antiholon respec-
tively. The ‘in-states’ (‘out-states’) correspond to an ordering of the particles by decreasing
(increasing) momentum. This means that for ‘in-states’ the left-most particle has the largest
momentum, the second particle from the left has the second largest momentum and so on.
The S-matrix elements are defined by

|k1, k2〉inα1α2
= Šβ1β2

α1α2
(k1, k2)|k1, k2〉out

β1β2
. (7.128)

Scattering in holon-holon and antiholon-antiholon states is diagonal by construction and
the corresponding S-matrix elements are

Šαα
αα(k1, k2) = exp(iδ12

CT ) = −�
(

1
2 − i k12

2

)
�
(
1+ i k12

2

)
�
(

1
2 + i k12

2

)
�
(
1− i k12

2

) . (7.129)

Let us now consider scattering of a holon and an antiholon. The two eigenstates of the
S-matrix are the charge-triplet and charge-singlet states

|k1, k2〉int = exp(iδ12
CT )|k1, k2〉out

t ,

|k1, k2〉ins = exp(iδ12
C S)|k1, k2〉out

s (7.130)

where

|k1, k2〉in/out
t,s = 1√

2

[
|k1, k2〉in/out

hh̄ ± |k1, k2〉in/out
h̄h

]
. (7.131)

Using the definition (7.128) and the fact that the physics is unchanged if we interchange
holons and antiholons (charge conjugation symmetry)

Šβ1β2
α1α2

(k1, k2) = Šβ̄1β̄2
ᾱ1ᾱ2

(k1, k2) , (7.132)

we can extract the S-matrix elements from (7.130)–(7.131)

Šhh̄
hh̄(k1, k2) = 1

2

[
exp(i δ12

CT )+ exp(i δ12
C S)

]
,

Šh̄h
hh̄(k1, k2) = 1

2

[
exp(i δ12

CT )− exp(i δ12
C S)

]
. (7.133)
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Using the explicit expressions (7.124) and (7.127) for the phase shifts we can write the
above results in the following compact form

Šβ1β2
α1α2

(k1, k2) = −�
(

1
2 − i k12

2

)
�
(
1+ i k12

2

)
�
(

1
2 + i k12

2

)
�
(
1− i k12

2

)
×

[
δα1β1δα2β2

k12

k12 − i
− δα1β2δα2β1

i

k12 − i

]
, (7.134)

where α j , β j = h, h̄. It is easily checked that the expression (7.134) is invariant under
general SU(2) rotations U

Š(k1, k2) = U † Š(k1, k2) U. (7.135)

The S-matrix (7.134) was first derived from the factorization conditions [237, 503] by B.
Berg et al. in [54, 55].

7.4.2 Spin sector

Let us now turn to scattering in the spin sector. Let us first determine the phase shift for the
spin singlet excitation (see subsection 7.3.5 above). Takahashi’s equation for the first hole
in the distribution of the �1

α’s reads

2π J h
1

L
=

∫ π

−π
dk θ

(
�h

1 − sin(k)

u

)
ρ(k)−

∫ ∞
−∞

d� θ

(
�h

1 −�

2u

)
σ (�)

− 1

L
�12

(
�h

1 −�2
1

u

)
, (7.136)

where �2
1 is the spectral parameter corresponding to the �-string of length two. Using the

results of subsection 7.3.5 we can rewrite (7.136) as

2π J h
1

L
= π

2
− Ps(�h

1)+ 1

L

∫ π

−π
dk θ

(
�h

1 − sin(k)

u

)
ρSS(k)

− 1

L

∫ ∞
−∞

d� θ

(
�h

1 −�

2u

)
σSS(�)− 1

L
�12

(
�h

1 −�2
1

u

)
, (7.137)

where ρSS(k) and σSS(�) are given by (7.107) and Ps(�) is the dressed momentum of a
spinon (7.8). Comparing (7.137) to (7.122) we can identify the phase-shift for the spin
singlet excitation as

δ12
SS = −LPs(�h

1)− 2π J h
1 . (7.138)

Using (7.107) and (7.110) and carrying out the remaining integrals we obtain

δ12
SS = π + θ (�12)+ i ln

[
�
(

1
2 − i �12

2

)
�
(
1+ i �12

2

)
�
(

1
2 + i �12

2

)
�
(
1− i �12

2

)] , (7.139)
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where

�12 = �h
1 −�h

2

2u
> 0 . (7.140)

The analogous calculation for the phase shift of the spin triplet excitation gives

δ12
ST = i ln

[
�
(

1
2 − i �12

2

)
�
(
1+ i �12

2

)
�
(

1
2 + i �12

2

)
�
(
1− i �12

2

)] , (7.141)

where the extra π arises because J h
1,2 are half-odd integers for the spin triplet excitation. We

now can write down the two particle S-matrix in the spin sector by repeating the steps we
went through for holon-antiholon scattering. Introducing a spin index α = s, s̄ for spinons
with Sz = ± 1

2 we can cast the result in the following form

Ŝβ1β2
α1α2

(�1,�2) = �
(

1
2 + i �12

2

)
�
(
1− i �12

2

)
�
(

1
2 − i �12

2

)
�
(
1+ i �12

2

)
×

[
δα1β1δα2β2

�12

�12 + i
+ δα1β2δα2β1

i

�12 + i

]
, (7.142)

where α j , β j = s, s̄. The S-matrix (7.142) is again SU(2) invariant as is required by the
spin-rotational symmetry. As a function of the ‘uniformising’ spectral parameter, the S-
matrix (7.142) is the same as in the spin- 1

2 Heisenberg model [132] and in the Kondo
model [18, 20, 460].

7.4.3 Scattering of spin and charge

Finally let us consider scattering of spinons and (anti)holons. The phase-shifts can be
extracted from the spin-charge scattering state dicsussed in subsection 7.3.7. The equation
for the hole in the distribution of the k j ’s is

2π I h

L
= kh +

∫ ∞
−∞

d� θ

(
sin(kh)−�

u

)
σ1(�) , (7.143)

where σ1(�) is given by (7.115), (7.116). Comparing (7.143) to the quantization condition
(7.122) we see that the phase shift is given by

δ12
SC = −LPh(kh)− 2π I h , (7.144)

where the dressed momentum Ph(kh) of the holon is given by (7.8). Inserting (7.143) into
(7.144) and then using (7.115) and (7.116) we obtain the following result for the phase shift

δ12
SC = π −

∫ ∞
−∞

dω

iω

exp
(−iω[sin(kh)−�h]

)
2 cosh(uω)

= 2 arctan
[
exp

( π

2u
[sin(kh)−�h]

)]
+ π

2
. (7.145)
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For scattering to occur we need

sin(kh) ≥ �h . (7.146)

By construction the S-matrix describing scattering of a spinon on a holon is diagonal (the
SO(4) quantum numbers cannot change during the scattering process). We can express it
in the form

S̃β1β2
α1α2

(k,�) = i
1+ i exp

(
π
2u [sin(k)−�]

)
1− i exp

(
π
2u [sin(k)−�]

) δα1β1δα2β2

= −1+ i tanh
(

π
4u [sin(k)−�]

)
1− i tanh

(
π
4u [sin(k)−�]

) δα1β1δα2β2 . (7.147)

where α1, β1 ∈ {h, h̄} and α2, β2 ∈ {s, s̄}.
The S-matrix for the half-filled Hubbard model in zero magnetic field was determined

in [120, 121] and for a less than half-filled band in [18].

7.5 ‘Physical’ Bethe ansatz equations

Let us return to the general excited state discussed in 7.3.2: there are Nh and Mh holes in
the distributions of k’s and �1

α’s respectively, Ml roots �l
α (l ≥ 2) and M ′n roots �′nα . Using

the formalism developed above, it is possible to derive a set of equations for the spectral
parameters of the holes and extra roots. These equations are the analog of Takahashi’s
equations, which we recall describe excited states over the reference state of the Bethe
ansatz, the empty lattice. The equations we will derive now describe excited states over
the true ground state of the half-filled Hubbard model. For this reason they are known as
‘physical Bethe ansatz equations’. Our discussion follows Ref. [490].

The root densities describing a general excitation over the half-filled ground state are
given in terms of the integral equations (7.78). The solution of these equations is

ρ(k) = ρ0(k)+ 1

L
ρ ′(k) ,

σ1(�) = σ0(�)+ 1

L
σ ′1(�) , (7.148)

where ρ0(k) and σ0(�) are the root densities describing the half-filled ground state (7.11)
and

ρ ′(k) = −
Nh∑
j=1

[
δ(k − kh

j )+ cos(k)R(sin(k)− sin(kh
j ))

]

− cos(k)
Mh∑

m=1

s(sin(k)−�h
m)+ cos(k)

∞∑
l=1

M ′l∑
β=1

al(sin(k)−�′lβ) ,

(7.149)
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σ ′1(�) = −
Nh∑
j=1

s(�− sin(kh
j ))−

Mh∑
m=1

[δ(�−�h
m)− R(�−�h

m)]

−
∞∑

l=2

Ml∑
β=1

al−1(�−�l
β). (7.150)

Given the root densities (7.149) and (7.150) describing the excited state, we may write down
the equations fixing the positions of the holes kh

j ( j = 1, . . . , Nh), �h
m (m = 1, . . . , Mh)

and the ‘extra’ roots �n
α (l ≥ 2, n = 1, . . . , Mn), �′mβ (m = 1, . . . , M ′m). The equations for

the spectral parameters kh
j describing holons and antiholons are

2π I h
j = L

[π
2
− Ph(kh

j )
]
−

Nh∑
l=1

�(sin(kh
j )− sin(kh

l ))

+
Mh∑

m=1

�(sin(kh
j )−�h

m)+
∞∑

m=1

M ′m∑
γ=1

θ

(
sin(kh

j )−�′mγ
mu

)
, (7.151)

wherePh(k) is the momentum of a holon with spectral parameter k (7.8) and �(x) and �(x)
are closely related to the holon-holon (7.126) and holon-spinon (7.145) scattering phase
shifts respectively

�(x) = i ln

[
�
(

1
2 + i x

4u

)
�
(
1− i x

4u

)
�
(

1
2 − i x

4u

)
�
(
1+ i x

4u

)] ,

�(x) = π

2
− 2 arctan

[
exp

(πx

2u

)]
. (7.152)

The equations for spectral parameters �h
m describing the spinon excitations are found to be

2π J h
m = L

[π
2
− Ps(�h

m)
]
+

Mh∑
n=1

�(�h
m −�h

n)

+
Nh∑
j=1

�(�h
m − sin(kh

j ))−
∞∑

l=2

Ml∑
β=1

θ

(
�h

m −�l
β

(l − 1)u

)
. (7.153)

Here Ps(�) is the spinon momentum (7.8). We note that −�(�h
m −�h

n) coincides up to a
constant with the spinon-spinon triplet phase shift (7.139). Last but not least the equations
fixing the ‘extra’ roots are obtained from equations (7.99) and (7.80). We find

2π J n
α =

Mh∑
n=1

θ

(
�n

α −�h
m

(n − 1)u

)
−
∞∑

l=2

Ml∑
β=1

�n−1l−1

(
�n

α −�l
β

u

)
, (7.154)

2π J ′mβ =
Nh∑
j=1

θ

(
�′mβ − sin(kh

j )

mu

)
−
∞∑

l=1

M ′l∑
γ=1

�ml

(
�′mβ −�′lγ

u

)
. (7.155)

It is straightforward to check that the physical Bethe ansatz equations (7.151)–(7.155)
reproduce all results we obtained before in the two-particle sector.
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7.6 Finite magnetic field and half-filled band

Let us now consider the excitation spectrum at half filling in the presence of a magnetic
field. We set the chemical potential equal to zero, µ = 0 and constrain our discussion to
Phase V, i.e. values of B such that

B < B0 = 2
√

1+ u2 − 2u . (7.156)

The integral equations (5.83)–(5.85) for the dressed energies can be simplified to

ε1(�) = 2B + 4u − 4Re
√

1− (�− iu)2 −
∫ A

−A
d�′ a2(�−�′) ε1(�′) ,

κ(k) = −2 cos(k)− 2u − B +
∫ A

−A
d� a1(sin(k)−�) ε1(�) ,

εn(�) = 2nB + 4nu − 4Re
√

1− (�− inu)2

−
∫ A

−A
d�′

[
an−1(�−�′)+ an+1(�−�′)

]
ε1(�′) , n ≥ 2 ,

ε′n(�) = 0 , n ≥ 1. (7.157)

The dressed energies εn(�) are all positive for n ≥ 2 and simple lower bounds are derived
in Appendix 7.B. Similarly we obtain the following set of integral equations for the root
densities from (5.93) and (5.94) by using (17.17)5

σ1(�) = 1

π
Re

1√
1− (�− iu)2

−
∫ A

−A
d�′ a2(�−�′) σ1(�′) ,

ρ(k) = 1

2π
+ cos(k)

∫ A

−A
d� a1(sin(k)−�) σ1(�) ,

σ h
n (�) = 1

π
Re

1√
1− (�− inu)2

−
∫ A

−A
d�′ [an−1(�−�′)+ an+1(�−�′)] σ1(�′) , n ≥ 2 ,

σ ′n
h(�) = 0 , n ≥ 1. (7.158)

The dressed momenta can again be calculated from the root densities by (5.98)–(5.101).
The dispersions κ(p) and ε1(p1) are shown in figure 7.14 for u = 0.25 and several values
of the applied magnetic field.

In a weak field, the dispersions are very close to the zero field results shown in figure 7.6.
Increasing the value B leads to relatively small changes in κ(p), whereas ε1(p1) is pushed
to higher energies and covers a larger momentum range. For B = 1.5, which is close to the
saturation field for u = 0.25, B0 ≈ 1.56155, the momentum range in which ε1(p1) ≤ 0 has
almost shrunk to zero. In figure 7.15 we plot ε2(p2) for u = 0.25 and several values of the
applied magnetic field. We see that increasing the field pushes the dispersion up to higher

5 We still use the convention (5.95).
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Fig. 7.14. Dressed energies κ(k) and ε1(�) as functions of the dressed momenta p(k) and p1(�)
respectively, for u = 0.25 and three different values of B. The curves for B = 0.01 and B = 0.5 are
indistinguishable in the plot.
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Fig. 7.15. Dressed energy ε2(�) as function of the dressed momentum p2(�) for three different values
of B and u = 0.25. The inset is an enlargement of the dispersion for B = 0.01. As the magnetic field
B decreases, the dispersion collapses to zero energy and momentum.

energies while increasing the momentum range covered. In the limit B → 0, the dispersion
collapses to zero. The dispersions εn(pn) of longer �-strings look similar.

In the following discussion of the ground state and excitations we concentrate on regular
Bethe states. As usual further states are obtained by acting with the SO(4) raising and
lowering operators. The magnetic field breaks the spin rotational symmetry and as a result
acting with the spin lowering operator S− on a regular Bethe state with energy E (and Sz

eigenvalue different from zero) gives an eigenstate of the Hamiltonian with energy E + 2B.

7.6.1 Ground state

The ground state is characterized by the occupation numbers Me = L , M1 = MGS < L/2.
We furthermore take MGS to be an odd integer. As a result the I j ’s are half-odd integers and
the J 1

α ’s are integers. The quantum numbers of the ground state are

Sz = L − 2MGS

2
, ηz = 0. (7.159)
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J1
α

GS GS(M 1)/2−(M 1)/2−−

Fig. 7.16. Distribution of J 1
α in the ground state.

In presence of a magnetic field the ‘Fermi sea’ of roots �1
α is only partially filled. More

precisely

|J 1
α | ≤

1

2
(L − MGS − 1) , (7.160)

so that we have L − MGS vacancies for MGS roots and thus L − 2MGS holes. The ground
state is obtained by filling a ‘Fermi sea of integers J 1

α ’, see figure 7.16

J 1
α = −

MGS + 1

2
+ α , α = 1, . . . , MGS. (7.161)

7.6.2 Excitations of the spin degrees of freedom

Let us first consider excitations involving only the spin sector. As we will see these are
quite similar to the excitation of the isotropic spin-1/2 Heisenberg chain in a magnetic
field [235, 333, 447].

δSz = 1 ‘Two-Spinon’ Excitation
This excitation has occupation numbers M1 = MGS − 1 andMe = L . Hence it has quan-

tum numbers Sz = (L − 2MGS)/2+ 1 and ηz = 0. Relative to the ground state we have
δSz = 1. The ranges of the integers I j and half-odd integers J 1

α are

− L

2
< I j ≤ L

2
, |J 1

α | ≤
1

2
[L − MGS] . (7.162)

Now there are L − MGS + 1 vacancies for the MGS − 1 �1
α’s, so that compared to the

ground state there are two additional holes. We first consider the case, where the half-odd
integers J h

1,2 associated with these holes fulfil

−MGS

2
≤ J h

1,2 ≤
MGS

2
. (7.163)

This distribution is shown schematically in figure 7.17. This means that we have two holes
in the distribution of spectral parameters �1

α and concomittantly are dealing with a two-
parametric excitation. Given that δSz = 1 we may associate quantum numbers Sz = 1/2
and ηz = 0 with each hole. The energy and momentum are

E+hh(�1,�2) = −ε1(�1)− ε1(�2) ,

P+hh(�1,�2) = −p1(�1)− p1(�2)+ π. (7.164)
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Fig. 7.17. Distribution of J 1
α in the δSz = 1 two-spinon excitation.
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Fig. 7.18. Upper and lower boundaries of the Sz = 1 two-spinon continuum for u = 0.25 and
B = 0.5.

Here the superscript indicates that we are considering a δSz = 1 excitation and the extra
contribution of π to the momentum arises because the I j ’s are integers (see the discussion
above figure 7.7). In particular for weak fields this excitation is very similar to the spin-
triplet excitation6 and in the limit B → 0 goes over in the latter. On the basis of this
similarity we will call the two elementary excitations making up the δSz = 1 state ‘spinons’.
In figure 7.18(a) we show the lower and upper boundaries of the ‘two-hole’ scattering
continuum for u = 0.25 and B = 0.5. We see that the excitation only exists in part of
the Brillouin zone: there are no states at small momentum. As B increases the continuum
occupies a smaller and smaller part of the Brillouin zone until it altogether disappears
at the saturation field B0 = 2

√
1+ u2 − 2u, where the ground state becomes fully spin

polarized.
It is by no means necessary to choose the distribution of J 1

α in the way we have done, i.e.
such that we obtain two holes. This is contrast to the zero field case, where we necessarily
end up with two holes. An equally valid distribution of half-odd integers J 1

α is shown in
figure 7.19. Now we have one hole at J h and one particle at J p, with corresponding spectral
parameters �h and �p. By construction J p,h have ranges

|J p| > MGS − 2

2
> |J h |. (7.165)

6 More precisely to its highest weight state.
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Fig. 7.19. Distribution of J 1
α for a ‘particle-hole’ δSz = 1 state.
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Fig. 7.20. Upper and lower boundaries of the Sz = 1 ‘hole-particle’ continuum for u = 0.25 and
B = 0.5.
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Fig. 7.21. Distribution of J 1
α for the ‘particle-hole’ δSz = 1 state interpreted as a special case of a

three-hole one-particle excitation.

The energy and momentum are

E+hp(�h,�p) = −ε1(�h)+ ε1(�p) ,

P+hp(�h,�p) = −p1(�h)+ p1(�p)+ π. (7.166)

The upper and lower boundaries of this ‘hole-particle’ continuum are shown in figure 7.20.
It is clear from its construction that this excitation disappears in both limits B → 0 and
B → B0.

By construction the particle-hole excitation is two-parametric. However, it is perhaps
more natural to consider it as a special case of a four-parametric excitation. In figure 7.21
we have replotted the distribution of the J 1

α ’s by choosing the ‘Fermi integer’ to be MGS
2

rather than MGS−2
2 . In this way of looking at things the particle-hole state corresponds to

the special limit of a three-hole one-particle excitation, where two of the holes are located
at the two ‘Fermi points’, i.e. their associated spectral parameters are ±A. Now we may
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Fig. 7.22. Distribution of J 1
α in the δSz = 1 ‘particle-particle’ excitation.
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Fig. 7.23. Distribution of J 1
α in the δSz = −1 ‘particle-particle’ excitation.

associate quantum numbers Sz = ±1/2 with holes and particles respectively and consider
them as two species of spinons.

A third configuration of the J 1
α ’s that leads to a two-parametric excitation is to have

two particles, charaterized by the half-odd integers J p
1,2 with |J p

1,2| > (MGS − 4)/2 and
corresponding spectral parameters �1,2. The distribution of J 1

α is shown schematically in
figure 7.22. Energy and momentum of this particle-particle excitation are

E+pp(�1,�2) = ε1(�1)+ ε1(�2) ,

P+pp(�2,�2) = p1(�1)+ p1(�2)+ π. (7.167)

The particle-particle state may alternatively be considered as a special case of a (four-hole
two-particle) six-spinon excitation, where four holes are located at the ‘Fermi points’ ±A.

δSz = −1 ‘Two-Spinon’ Excitation
Let us now consider states with occupation numbers M1 = MGS + 1 and Me = L . The

quantum numbers are Sz = (L − 2MGS)/2− 1 and ηz = 0. Relative to the ground state we
have δSz = −1. The ranges of the integers I j and half-odd integers J 1

α are

− L

2
< I j ≤ L

2
, |J 1

α | ≤
1

2
[L − MGS − 2] . (7.168)

Now there are L − MGS − 1 vacancies for the MGS + 1 �1
α’s, so that compared to the

ground state there are two additional particles. Energy and momentum of this particle-
particle excitation are

E−pp(�1,�2) = ε1(�1)+ ε1(�2) ,

P−pp(�2,�2) = p1(�1)+ p1(�2)+ π. (7.169)

We note that these are the same as for the δSz = 1 particle-particle excitation. However,
whereas we may interpret the latter as a special case of a six-spinon excitation, the δSz = −1



250 Excited states at zero temperature

0−π −π/2 π/2
Ppp

-

0

1

2

3

E
p

p-
(P

p
p-  )

π

Fig. 7.24. Upper and lower boundaries of the Sz = −1 ‘particle-particle’ continuum for u = 0.25
and B = 0.5.
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Fig. 7.25. A ‘particle-hole’ excitation of the spin degrees of freedom.

state involves only two spinons. The boundaries of the δSz = −1 two-spinon continuum
are shown in figure 7.24.

δSz = 0 ‘Particle-Hole’ Excitation
Given that the Fermi sea of �1

α is only partially filled, we may construct a ‘particle-hole’
excitation by the process described in figure 7.25. By construction this state has the same
quantum numbers as the ground state, but describes a two-parametric excitation of the spin
degrees of freedom. Denoting the spectral parameters corresponding to the ‘particle’ and
‘hole’ as �p and �h respectively, we have

E0
hp(�h,�p) = −ε1(�h)+ ε1(�p) ,

P0
hp(�h,�p) = −p1(�h)+ p1(�p). (7.170)

We note that this excitation exists only in a nonzero magnetic field and disappears in the
limit B → 0. In figure 7.26 we plot the boundaries of the continuum of states belonging to
the particle-hole excitation. We note that the only difference to the δSz = 1 particle-hole
excitation is a shift of momentum by π . We expect the particle-hole excitation to dominate
the ‘longitudinal’ spin response (i.e. the zz-component of the dynamical structure factor) at
low energies of the half-filled Hubbard model in a sufficiently strong magnetic field.
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Fig. 7.26. Upper and lower boundaries of the Sz = 0 ‘hole-particle’ continuum for u = 0.25 and
B = 0.5.

δSz = −1 ‘Magnon’ Excitation
Another state with δSz = −1 is obtained by the choice of occupation numbers Me = L ,
M1 = MGS − 1 and M2 = 1. Now both the I j ’s and J 1

α ’s are half-odd integers and J 2
1 is an

integer. We find

|J 1
α | ≤

1

2
[L − MGS − 2] , |J 2

1 | ≤
1

2
[L − 2MGS − 2] . (7.171)

As compared to the ground state there is one less vacancy for the J 1
α , but as there is one less

root the number of holes is the same as in the ground state. Hence we choose

J 1
α = −

MGS

2
+ α , α = 1, . . . , MGS − 1, (7.172)

and do not associate any excitation with the Fermi sea of the �1
α’s. This implies that the

excitation described by the above occupation numbers is one-parametric with energy and
momentum given by

EMag(�) = ε2(�) ,

PMag(�) = p2(�). (7.173)

We note that this excitation is gapped (see Appendix 7.B)

EMag(�) ≥ ε2(0) ≥ 2B . (7.174)

The dispersion for the magnon excitation for u = 0.25 and three values of B is shown in
figure 7.15. An interesting question is why the magnon excitation is stable and does not
decay into two Sz = −1/2 spinons. It turns out that the magnon dispersion is just very
slightly higher in energy than the δSz = −1 two-spinon continuum, which is shown in
figure 7.24.
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δSz = 0 ‘Two-Spinon-Magnon’ Excitation Let us now consider the analog of the spin-
singlet excitation (7.35) in the presence of a magnetic field. The occupation numbers
are Me = L , M1 = MGS − 2, M2 = 1, resulting in the I j ’s being integers and |J 1

α | ≤
1
2 (L − MGS − 1), |J 2

α | ≤ 1
2 (L − 2MGS). This means that we have two extra holes in the

distribution of J 1
α ’s and the excitation is three-parametric, as there is a finite range for the

integer J 2
1 and concomittantly also for the corresponding rapidity � of the 2-string. Let us

denote the integers corresponding to the extra holes by J h
1,2 and consider only the case

|J h
1,2| ≤

MGS − 1

2
. (7.175)

Then the dynamical degrees of freedom are parametrized by the spectral parameters �h
1,2 of

the holes in the distribution of the J 1
α ’s and � of the extra 2-string. Energy and momentum

are

E2sM(�h
1,�

h
2,�) = −ε1(�h

1)− ε1(�h
2)+ ε2(�) ,

P2sM(�h
1,�

h
2,�) = −p1(�h

1)− p1(�h
2)+ p2(�)+ π. (7.176)

When the magnetic field becomes small, the range of p2(�) as well as the energy ε2(�)
collapses to zero and we recover the spin-singlet excitation discussed before, see equation
(7.35). The cases where instead of having two holes in the distribution of J 1

α we have a
particle and a hole or two particles can be treated in the same way as for the δSz = 1
two-spinon excitation.

7.6.3 Excitations involving the charge sector

Charge Singlet Excitation This excitation has occupation numbers M1 = MGS − 1, M ′1 = 1
and Me = L − 2. The corresponding quantum numbers are Sz = (L − 2MGS)/2, ηz = 0,
i.e. the same as for the ground state. The ranges of the half-odd integers I j , half-odd integers
J 1
α and integer J ′11 are

− L

2
< I j ≤ L

2
, |J 1

α | ≤
1

2
[L − MGS − 2] , J ′11 = 0, (7.177)

which implies that we have two holes at positions kh
1,2 in the distribution of k’s. In the

distribution of �1’s there is one less vacancy than in the ground state, but also one less root.
Hence no degrees of freedom are excited here and the distribution of J 1

α remains symmetric
around zero. We also have a single k-� string at a position �′, which however carries zero
dressed energy as ε′1(�′) ≡ 0 by (7.10), and only contributes a constant p′1(�′) = 2π to the
momentum as follows from (7.12). Therefore energy and momentum of the charge singlet
excitation are given by

ECS(kh
1 , kh

2 ) = −κ(kh
1 )− κ(kh

2 ) ,

PCS(kh
1 , kh

2 ) = −p(kh
1 )− p(kh

2 ) mod (2π ). (7.178)

This excitation is very similar to the charge-singlet in zero magnetic field, see figure (7.9).
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Spin-Charge Scattering State Finally, let us consider the spin-charge scattering state with
occupation numbers Me = L − 1, M1 = MGS − 1. The differences in quantum numbers
compared to the ground state are δSz = 1

2 and ηz = − 1
2 so that the excited state corresponds

to the removal of one electron from the ground state. There are L vacancies for the integers
I j so there we have one hole at position kh in the distribution of the k j ’s. We have the
same number of vacancies for the integers J 1

α as in the ground state but one less root,
which implies we have one additional hole in the distribution of the J 1

α . Let us denote the
corresponding integer by J h and restrict our attention to the case J h ≤ MGS−1

2 . Then energy
and momentum are given by

Esc(kh,�h) = −ε1(�h)− κ(kh) ,

Psc(kh,�h) = −p1(�h)− p(kh)+ π. (7.179)

By construction this excitation reduces to the spin-charge scattering state considered pre-
viously when the magnetic field goes to zero. The case where we have a particle-like
excitation in the distribution of J 1

α instead of a hole can be treated in complete analogy with
the two-spinon excitation considered above.

7.7 Zero magnetic field and less than half-filled band

Let us now consider a less than half-filled band 0 < nc < 1 and zero magnetic field. Here the
ground state is metallic and in contrast to the half-filled case there is no single-particle gap,
i.e. there exist gapless excitations with the quantum numbers of an electron. For definiteness
let us take the total number of electrons NGS = 2× odd. The occupation numbers of the
ground state are M1 = Me

2 = NGS
2 , which implies that I j are half-odd integers and J 1

α are
integers. In the ground state all vacancies are filled symmetrically around zero

I j = j − NGS + 1

2
, j = 1, . . . , NGS ,

J 1
α = α − NGS + 2

4
, α = 1, . . . ,

NGS

2
. (7.180)

The distributions of the corresponding spectral parameters in the thermodynamic limit are
described by (6.B.5). In order to determine the excitation spectrum we will again make use
of the dressed energies and momenta obtained from the solution of the TBA equations.

There are three different kinds of elementary excitations.

� The first type of elementary excitation is gapless, carries no spin and has charge ∓e.
It corresponds to adding a particle to or making a hole in the distribution of k’s. Such
excitations are sometimes called antiholons and holons respectively7 and have dressed
energy ±κ(k) and dressed momentum ±p(k).

7 We will follow this nomenclature, although it is somewhat imprecise, as we have already used the same terminology for the
elementary excitations in the charge sector at half filling, which are different in nature.
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Fig. 7.27. Dressed energies κ(p) and ε1(p1) as functions of the dressed momenta for u = 0.5 and
several densities.
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Fig. 7.28. Dressed energies κ(p) and ε1(p1) as functions of the dressed momenta for nc = 0.5 and
several values of u.

� The second type of elementary excitation is gapless and carries spin- 1
2 but no charge.

It corresponds to a hole in the distribution of �1’s. Such excitations are called spinons.
They have dressed energy −ε1(�) and dressed momentum −p1(�).

� There is an infinite number of different types of gapped excitations that carry charge but
no spin. They correspond to adding a k-� string of length n to the ground state. Their
dressed energies are ε′n(�), their dressed momenta are p′n(�).

In figures 7.27 and 7.28 we plot the dressed energies κ(p(k)) and ε1(p1(�)) as functions of
the dressed momenta for several values of nc and u.

The resulting dispersions can be interpreted in terms of a band picture for spinons and
antiholons. The antiholon band covers the entire Brillouin zone whereas the spinon band
only covers the interval [−πnc

2 , πnc
2 ], where nc is the density. In the ground state the spinon

band is filled completely whereas the antiholon band is filled in the interval [−πnc, πnc].
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This can be seen by recalling that the total momentum can be expressed as

P = 2π

L

(
N−2M ′∑

j=1

I j +
∞∑

m=1

Mm∑
β=1

J m
β −

∞∑
n=1

M ′n∑
α=1

J ′nα

)
+ π

∞∑
n=1

M ′n∑
α=1

(n + 1). (7.181)

The ground state has zero momentum and corresponds to symmetric distributions of I j and
J 1
α (7.180). Making use of the monotonicity properties of p(k) and p1(�) we conclude that

the ground state indeed corresponds to filling all spinon states with p1(�) ∈ [−πnc
2 , πnc

2 ] and
antiholon states with p(k) ∈ [−πnc, πnc]. It is apparent from figure 7.28 that the bandwidth
of the antiholon band does not depend on u. It is easy to see using the integral equation
for κ(k) that the bandwidth is actually equal to κ(π )− κ(0) = 4 (or 4t if we restore the
hopping matrix element t). On the other hand the bandwidth of the spinon band depends
sensitively on u. This should be the case as in the large-U limit the effective Heisenberg
exchange is 4t2/U .

Let us emphasize that so far we have talked about elementary excitations in the repulsive
Hubbard model below half filling. Like in the half-filled case it is important to distinguish
these from ‘physical’ excitations, which are the permitted combinations of elementary
excitations. As in the half-filled case there are no excitations involving only one spinon or
one (anti)holon. The simplest gapless excitations involve a pair of elementary excitations
and we will consider them next. Unlike in the half-filled case there exist single-particle
excitations below half filling. These involve k-� strings and all have gaps. We will consider
examples of such excitations below.

7.7.1 Charge-neutral excitations

Example 1 Particle-hole excitation.
This is a two-parametric gapless physical excitation with spin and charge zero, i.e. its

quantum numbers as well as its occupation numbers are the same as the ones of the ground
state. It is obtained by removing a spectral parameter kh with |kh | < Q from the ground-
state distribution of k’s and adding a spectral parameter kp with |kp| > Q. Its energy and
momentum are

E ph = κ(kp)− κ(kh) ,

Pph = p(kp)− p(kh) . (7.182)

This excitation is allowed by the selection rules (4.44) as in the ground state only the
half-odd integers |I j | ≤ (NGS − 1)/2 are occupied and thus the possibility of removing
a root corresponding to |Ih | ≤ (NGS − 1)/2 and adding a root corresponding to |Ip| >
(NGS − 1)/2 exists. The particle-hole excitation was first studied by means of the root
density approach by C.F. Coll in [88]. In figure 7.29 we show the particle-hole spectrum for
densities nc = 0.6 and nc = 0.8. As we approach half filling the phase-space for particles
shrinks to zero and it is clear from figure 7.29 that as the density increases the total area of
the particle-hole continuum diminishes.
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Fig. 7.29. Particle-hole excitation for u = 0.5 and densities nc = 0.6 and nc = 0.8. Shown are the
lower and upper boundaries of the continuum.

The low-energy modes occur at momenta 0 and ±2πnc mod 2π . This can be easily
understood in terms of the ‘band’ picture discussed above.

Example 2a Spin triplet excitation.
Let us consider an excitation involving the spin degrees of freedom next. If we change

the number of down spins by one while keeping the number of electrons fixed we obtain an
excitation with spin 1. Recalling that in the ground state we have NGS electrons out of which
M1 = NGS/2 have spin down, the excited state will have occupation numbers Me = NGS

and M1 = NGS/2− 1. The selection rules (4.44) then read

− L

2
< I j ≤ L

2
, |J 1

α | ≤
NGS

4
. (7.183)

The first condition is irrelevant as we are below half filling, but the second one tells us that
there are two more vacancies than there are roots. In other words, flipping one spin leads
to two holes in the distribution of �1’s. There is one more subtlety we have to take care of:
changing the number of down spins by one, while keeping the number of electrons fixed
leads to a shift of all I j in (4.36) by either 1

2 or− 1
2 . In other words the I j ’s are now integers

whereas they were half-odd integers for the ground state. The consequence of this shift is a
constant contribution of ±π NGS

L to the momentum of the excited state as can be seen from
(5.97). This leads to two ‘branches’ of the same excitation. The possible distributions for
the I j ’s in the spin triplet excitation are shown in figure 7.30.

Taking this into account we obtain a gapless two-spinon scattering state with energy and
momentum

Etrip = −ε1(�h
1)− ε1(�h

2) ,

Ptrip = −p1(�h
1)− p1(�h

2)± πnc . (7.184)

In figures 7.31 and 7.32 we show the spin-triplet spectrum for densities nc = 0.6 and
nc = 0.8. In figure 7.31 we employ an extended zone scheme, which shows that the general
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Fig. 7.30. Distribution of I j in the ground state and for the two branches of the spin triplet excitation.
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Fig. 7.31. Spin-triplet excitation for u = 0.5 and densities nc = 0.6 and nc = 0.8. Shown are the
lower and upper boundaries of the continuum for the positive branch. The negative branch is obtained
by reversing the sign of the momentum. Note that we have not folded back to the first Brillouin zone.

form of the continuum stays the same as the density changes. In figure 7.32 we fold back to
the first Brillouin zone. The zero energy modes in the spin-triplet spectrum occur at wave
numbers 0, ±πnc and ±2πnc mod (2π ).

In the Hubbard model the spin-triplet excitations were first studied by A. A. Ovchin-
nikov [352] and by C. F. Coll [88]. The situation encountered here is similar to the spin- 1

2
Heisenberg chain [132] in the sense that the spin-triplet excitation is a scattering continuum
of two spin- 1

2 objects. Furthermore there is a spin-singlet excitation, which is precisely
degenerate with the triplet (see Example 2b below). This fits nicely into a picture based on
spin- 1

2 objects: scattering states of two spinons give precisely one spin 1 and one spin 0
multiplet 1

2 ⊗ 1
2 = 1⊕ 0. Finally, when we approach half filling, the spin-triplet continuum

goes over into the S = 1 two-spinon scattering continuum of the half-filled Hubbard model
discussed previously in subsection 7.2.4.

On the other hand there are differences as well: in the less than half-filled Hubbard model
the Fermi momentum is generally incommensurate, which leads to incommensurabilities
in the spin excitations (see figure 7.31) as is apparent from figures 7.31–7.32.
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Fig. 7.32. Spin-triplet excitation for u = 0.5 and densities nc = 0.6 and nc = 0.8.

Example 2b Spin singlet excitation.
Let us now choose the occupation numbers as Me = NGS, M1 = NGS

2 − 2, M2 = 1. The
corresponding state has the same quantum numbers as the ground state. From (4.44) we find
that there are NGS/2 vacancies for real �’s and thus two holes corresponding to rapidities
�h

1 and �h
2. In other words the excitation considered involves two spinons. As far as the

2-string is concerned we find that the associated integer must be zero J 2
1 = 0. The same

shift as in Example 2a occurs for the I j ’s. Using (5.103) and (5.97) we obtain the energy
and momentum of the associated excitation

Esing = −ε1(�h
1)− ε1(�h

2) ,

Psing = −p1(�h
1)− p1(�h

2)± πnc . (7.185)

We see that the spin singlet is precisely degenerate with the spin triplet considered above.
This indicates a symmetry beyond simple spin rotational invariance: it is a consequence of
the sl(2) Yangian symmetry of the Hamiltonian in zero magnetic field in the infinite volume
(see Chapter 14).

7.7.2 Charged excitations

Example 3 ‘Antiholon-Spinon’ excitation.
Let us now consider an excitation with the quantum numbers of an electron, i.e. spin
± 1

2 and charge−e with respect to the ground state. We choose Me = NGS + 1, M1 = NGS
2 .

It follows from (4.40), (4.41) and (4.45) that I j are half-odd integers and J 1
α are half-odd

integers with range

|J 1
α | ≤

NGS

4
. (7.186)

Compared to the ground state there is one extra spectral parameter k and therefore the
excitation involves one antiholon. Equation (7.186) implies that there are NGS

2 + 1 vacancies
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Fig. 7.33. Antiholon-spinon excitation for u = 0.5 and densities nc = 0.5 and nc = 0.8. Shown are
the lower and upper boundaries of the continuum.

and thus one hole in the distribution of the spectral parameters �1
α . Let us denote the spectral

parameter of this hole, which corresponds to a spinon, by �h . Energy and momentum of
the antiholon-spinon excitation are thus

Eh̄s = κ(k)− ε1(�h) ,

Ph̄s = p(k)− p1(�h) . (7.187)

Soft modes occur at momenta ±πnc
2 , and ± 3πnc

2 mod (2π ). The excitation we have con-
structed has spin Sz = 1

2 and is a highest-weight state of the spin-SU(2) symmetry. The
Sz = − 1

2 excitation is obtained by acting with the spin lowering operator S− and is de-
generate with the Sz = 1

2 state. By construction the support of this excitation disappears as
we approach half filling as the range in momentum space for the k-particle vanishes. The
antiholon-spinon excitation was analyzed by H. J. Schulz in [384] by means of a numerical
solution of the Bethe ansatz equations on a lattice with 40 sites.

Example 4 ‘Holon-Spinon’ excitation.
Similarly we can construct an excitation where one electron is removed from the ground

state. We choose Me = NGS − 1, M1 = NGS
2 − 1. It follows from (4.40), (4.41) and (4.45)

that I j are integers and J 1
α are integers with range

|J 1
α | ≤

NGS − 2

4
. (7.188)

Compared to the ground state there is one less spectral parameter k and therefore the
excitation involves one holon with corresponding spectral parameter kh . Like for the spin-
triplet the I j ’s are integers so that there is a contribution ± NGS

L to the total momentum.
Equation (7.188) implies that there are NGS

2 vacancies and thus one hole in the distribution
of the spectral parameters �1

α . Let us denote the spectral parameter of this hole, which
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Fig. 7.34. Holon-spinon excitation for u = 0.5 and densities nc = 0.5 and nc = 0.8. Shown are the
lower and upper boundaries of the continuum.

corresponds to a spinon, by �h . Energy and momentum of the holon-spinon excitations
are

Ehs = −κ(kh)− ε1(�h) ,

Phs = −p(kh)− p1(�h)± πnc . (7.189)

There are soft modes at momenta ±πnc
2 , ± 3πnc

2 mod (2π ) and ± 5πnc
2 mod (2π ). We note

that the ‘hole’ in the continuum around zero momentum is a result of folding back to the
first Brillouin zone. At half filling this excitation reduces to the spin-charge scattering state
of section 7.2. The holon-spinon excitation was analyzed by H. J. Schulz in [384] by means
of a numerical solution of the Bethe ansatz equations on a lattice with 40 sites.

Example 5 k-� string of length 2.
Last but not least let us consider the simplest excitation involving a k-�-string. One possi-

bility is to choose the occupation numbers as Me = NGS − 2, M1 = NGS/2− 1, M ′1 = 1.
This excitation has the same quantum numbers as the ground state. There are NGS

2 − 1
vacancies for an identical number of half-odd integers J 1

α and hence no holes in the distri-
bution of �1

α . We also keep the distribution of I j fixed in such a way that I j+1 − I j = 1. It
is easily checked that this excitation is allowed by (4.44) and that its energy and momentum
are

Ek−� = ε′1(�) , Pk−� = p′1(�) , (7.190)

where � ∈ (−∞,∞). In figure 7.35 the dispersion of a k-� string of length 2 is shown for
u = 0.125 and u = 0.5 and several values of density nc. We see that the range of momenta
collapses to zero as we approach half filling. At the same time the dressed energy approaches
zero. This is in agreement with the results for a half-filled band [121], where both the dressed
energy and the range of momentum are identically zero.
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Fig. 7.35. Dispersion of a k-� string excitation of length 2 for several values of u and density nc.
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Fig. 7.36. Dispersion of a k-� string excitation of length 2 for several values of u and density nc,
where the contribution −2µ− 4u has been subtracted.

In order to further exhibit this collapse we subtract the offset −2µ− 4u. The resulting
curves are displayed in figure 7.36.

The 2-string excitation has the same spin andηz quantum numbers as for example particle-
hole excitations (Example 1). However, the 2-string dispersion does not overlap with the
particle-hole continuum shown in figure 7.29 as it occurs at higher energies. Hence a decay
of the 2-string into a particle-hole pair is not possible for kinematic reasons.

7.8 Finite magnetic field and less than half-filled band

The excitation spectrum below half filling in the presence of a magnetic field can be deter-
mined in an analogous way. Now both k-� strings and �-strings of arbitrary length become
dynamical objects. Excitations involving such strings are however gapped for the reasons
stated in Sections 7.6 and 7.7.

Some excited states have been considered by J. M. P. Carmelo et al. in [77].
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7.9 Empty band in the infinite volume

The ground state of the empty band is given by the reference state of the Bethe ansatz.
Therefore, excitations in a large, finite volume are obtained by solving the Bethe ansatz
equations for one, two, three, etc. particles. The result is a very complicated set of many-
electron states. Let us look at some examples. We stress that a part of the following discussion
is based on the string hypothesis and therefore should be taken cum grano salis as explained
in Chapter 4. In the following discussion we will drop the constant contribution of uL to
the energy, i.e. discuss a Hamiltonian of the form

H = −
L∑

j=1

∑
a=↑,↓

(c†j,ac j+1,a + c†j+1,ac j,a)+ 4u
L∑

j=1

n j↑n j↓ − (2u + µ)N̂ . (7.191)

Example 1 One-electron state.
This state is obtained by setting N =Me = 1 in Takahashi’s equations (4.36)–(4.38) or

equivalently N = 1, M = 0 in the Lieb-Wu equations (3.95), (3.96). By construction the
electron has spin up and for finite L we have

E = −2 cos(k)− 2u − µ , P = k ,

k = 2π I1

L
, − L

2
< I1 ≤ L

2
. (7.192)

In the infinite-volume limit

L →∞ ,
I1

L
= fixed, (7.193)

one recovers a simple cosine-band. As discussed in Appendices 3.D and 3.F the one-
electron state (let us denote it by |k〉) is a highest-weight state of the spin SU(2) and a
lowest weight state of the η-pairing SU(2) symmetry of the Hubbard model. As a result
descendant states are obtained by acting with symmetry operators. For example a down-
spin electron excitation is obtained by acting with the spin-lowering operator, i.e. S−|k〉.
It has the same energy and momentum as |k〉. We must remember that µ �= 0 so that the
Hamiltonian does not commute with η, but instead

[η+, H ] = 2µ η+ . (7.194)

This implies that states of the form
(
η+

)n |k〉 with n ≤ L − 1 have an energy E − 2nµ.

Example 2 Two-electron spin triplet state.
Taking Me = 2 in Takahashi’s equations and all other occupation numbers zero (or

equivalently N = 2, M = 0 in the Lieb-Wu equations), we obtain a two-electron state with
Sz = 1 and

E = −2 cos(k1)− 2 cos(k2)− 4u − 2µ , P = k1 + k2 , (7.195)

k j = 2π I j

L
, j = 1, 2, − L

2
< I1 �= I2 ≤ L

2
. (7.196)
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In the infinite volume limit this turns into a two-particle scattering continuum of states with

E = −4 cos

(
P

2

)
cos

( x

2

)
− 4u − 2µ , (7.197)

where both the total (P) and relative (x) momentum vary in the interval [−π, π ]. It is again
possible to construct further states by acting with the SO(4) ladder operators.

Example 3 Two-electron spin singlet state.
The occupation numbers Me = 2, M1 = 1 in Takahashi’s equations give a state with

Sz = 0. From the highest-weight theorem it follows that S2 = 0 so that we are dealing with
a spin singlet. The expression for energy and momentum are the same as for the spin triplet
(7.195), whereas the Bethe ansatz equations now read

exp(ik j L) = �− sin(k j )− iu

�− sin(k j )+ iu
, j = 1, 2 (7.198)

1 =
[
�− sin(k1)− iu

�− sin(k1)+ iu

] [
�− sin(k2)− iu

�− sin(k2)+ iu

]
. (7.199)

Equation (7.199) is easily solved

� = 1

2
[sin(k1)+ sin(k2)] , (7.200)

and inserting this back into (7.198) we obtain two coupled polynomial equations in exp(ik j )
of order L + 1

exp(ik1L) = exp(−ik2L) = sin(k1)− sin(k2)+ 2iu

sin(k1)− sin(k2)− 2iu
. (7.201)

For fixed L these equations can only be solved numerically. However, simplifications occur
in the infinite-volume limit. This is most easily seen by taking the logarithm of (7.201)

k1 = − i

L
ln

[
sin(k1)− sin(k2)+ 2iu

sin(k1)− sin(k2)− 2iu

]
+ 2πn1

L
. (7.202)

A similar equation holds for k2. In the infinite-volume limit L →∞, n j

L = fixed the first
term in (7.202) drops out and we obtain the same result (7.197) for the energy as for the
two-electron spin triplet state. Thus in the infinite-volume limit the singlet and triplet states
are degenerate. This degeneracy, which is related to the Yangian symmetry (see Chapter
15), is broken in the finite volume.

Example 4 k-�-string of length 2.
Finally let us consider the case M ′1 = 1 and all other occupation numbers zero. The

resulting excitation is a spin singlet two-electron state. Energy and momentum are

E = 4 Re
√

1− (�′ − iu)2 − 4u − 2µ ,

P = −2 Re arcsin(�′ − iu) , (7.203)
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Fig. 7.37. Dispersion of a k-� string of length 2 for different values of u in the infinite-volume limit
compared to the two-electron scattering continuum (shaded area). The chemical potential has been
fixed as µ = −2− 2u.

where �′ is a solution of

exp
(−2i L Re arcsin(�′ − iu)

) = exp(i P L) = 1 . (7.204)

In the infinite-volume limit we obtain the dispersion shown in figure 7.37 where we have
fixed the chemical potential to lie at the boundary of the empty-band phase µ = −2− 2u.
We see that the k-� string dispersion is always above the two-electron scattering continuum.
For small u it sits just on top of the continuum whereas for large u it occurs at a very high
energy. This is somewhat counter-intuitive as the k-� string describes a bound state of two
electrons in the sense that its wave function decays exponentially with respect to the relative
distance between the two electrons. As explained in Section 3.2.4 the fact that bound states
lie above the scattering continua in energy is a lattice effect.



Appendices to Chapter 7

7.A Relating root-density and dressed-energy formalisms

In this appendix we discuss a method that relates the Yang-Yang approach of Sections 7.2
and 7.7 directly to the root-density approach we used in Section 7.3. This is particularly
useful for the less than half-filled band, where the excitation energies are given implicitly
in terms of the solutions of coupled integral equations that have to be solved numerically.
As the integral equations for the root densities and the dressed energies are quite different,
it is not immediately obvious that the expressions for the excitation energies obtained
in the two approaches are equivalent. The method discussed below permits one to prove
this equivalence. For definiteness we will concentrate on the particular example of the
charge-singlet exitation at half filling in zero magnetic field, the method we use is however
completely general. The integral equations for the root densities are (7.85), (7.86)

ρCS(k) = cos(k)
∫ ∞
−∞

d� a1(sin k −�) σCS(�)−
2∑

n=1

δ(k − kh
n )

+ cos(k) a1(sin k −�′11),

σCS(�) =
∫ π

−π
dk a1(�− sin k) ρCS(k)−

∫ ∞
−∞

d�′ a2(�−�′) σCS(�′) .

(7.A.1)

We rewrite these equations using the matrix notation introduced in Section 6.6.3:

rCS,a(xa) = r (0)
CS,a(xa)+

∑
b

∫ Xb

−Xb

dx ′b Kab(xa, x ′b) rCS,b(x ′b) . (7.A.2)

The solution of (7.A.2) is given by

rCS,a(xa) =
∑

b

∫ Xb

−Xb

dx ′b (1− K )−1
ab (xa, x ′b) r (0)

CS,b(x ′b)

=
∑

b

∞∑
n=0

∫ Xb

−Xb

dx ′b K n
ab(xa, x ′b) r (0)

CS,b(x ′b) , (7.A.3)

265
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where K n(x, y) is the n-fold convolution of the matrix kernel Kab

K n+1
ab (xa, x ′b) =

∑
c1,...,cn

∫ Xc1

−Xc1

dx (1)
c1

. . .

∫ Xcn

−Xcn

dx (n)
cn

Kac1 (xa, x (1)
c1

)

× Kc1c2

(
x (1)

c1
, x (2)

c2

)
. . . Kcnb

(
x (n)

cn
, x ′b

)
. (7.A.4)

In the matrix notation the integral equations for the dressed energies take the form

ea(xa) = e(0)
a (xa)+

∑
b

∫ Xb

−Xb

dx ′b K T
ab

(
xa, x ′b

)
eb
(
x ′b
)
, (7.A.5)

and are formally solved by

ea(xa) =
∫ Xb

−Xb

dx ′b (1− K T )−1
ab (xa, x ′b) e(0)

b (x ′b)

=
∞∑

n=0

∑
b

∫ Xb

−Xb

dx ′b (K T )n
ab(xa, x ′b) e(0)

b (x ′b)

=
∞∑

n=0

∑
b

∫ Xb

−Xb

dx ′b e(0)
b (x ′b) K n

ba(x ′b, xa) , (7.A.6)

where the last line is readily proved by induction over n. The energy of the charge-singlet
excitation in the framework of the root density formalism is given by equation (7.93), which
can be written as

ECS = 4Re
√

1− (�′11 − iu)2 − 4u +
∑

a

∫ Xa

−Xa

dxa e(0)
a (xa) rCS,a(xa)

= 4Re
√

1− (�′11 − iu)2 − 4u +
∑

a

∫ Xa

−Xa

dxa ea(xa) r (0)
CS,a(xa) , (7.A.7)

where the second line follows from (7.A.3) and (7.A.6). Using the explicit form for the
driving terms r (0)

CS,a(xa) we obtain

ECS =
[

4Re
√

1− (�′11 − iu)2 − 4u

]
−

2∑
j=1

κ(kh
j )

+
∫ π

−π
dk κ(k) cos(k) a1(sin k −�1

1). (7.A.8)

Finally, using the integral equation (5.103) for κ(k) and the ‘symmetric integration Lemma’
(17.1) one can rewrite the last term in (7.A.8) as

−
∫ π

−π
dk 2 cos2(k) a1(sin k −�1

1), (7.A.9)

which precisely cancels the first term in (7.A.8) by virtue of (17.13). This proves that
the energy calculated in the root density formalism is the same as the one calculated using
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dressed energies. The crucial point is that we did not need an explicit solution of the integral
equations in our derivation.

7.B Lower bounds for εn(0), n ≥ 2 at half filling in a finite magnetic field

In this appendix we derive lower bounds for the dressed energies εn(�) for n ≥ 2 at half
filling and in presence of a nonzero magnetic field B. Our starting point are equations
(7.157)

εn(�) = 2nB + 4nu − 4Re
√

1− (�− inu)2

−
∫ A

−A
d�′

[
an−1(�−�′)+ an+1(�−�′)

]
ε1(�′) . (7.B.1)

The functions εn(�) are monotonically increasing for positive � and symmetric around
� = 0 and hence

εn(�) ≥ εn(0) . (7.B.2)

On the other hand, ε1(�) ≥ 0 for all |�| > A, which implies that

εn(0) ≥ 2nB + 4nu − 4Re
√

1+ n2u2 −
∫ ∞
−∞

d� an−1(�) ε1(�)

−
∫ A

−A
d�an+1(�) ε1(�) . (7.B.3)

Using the integral equation (7.157) for ε1(�) we may express the first integral on the r.h.s.
as ∫ ∞

−∞
d� an−1(�) ε1(�) = 2B + 4nu − 4Re

√
1+ n2u2

−
∫ A

−A
d� an+1(�) ε1(�) . (7.B.4)

Combining equations (7.B.3) and (7.B.4) we obtain a simple lower bound for the dressed
energies of �-strings of length n ≥ 2

εn(0) ≥ 2(n − 1)B , n ≥ 2 . (7.B.5)
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Finite size corrections at zero temperature

In this chapter we want to refine the analysis of the ground state and low-lying excitations
of the Hubbard model in the phases with gapless modes, i.e. phases II, IV and V discussed
in Chapters 6, 7, by taking account of corrections which are important when considering
Hubbard chains of finite length L . For the generic case, i.e. away from half-filling in
a magnetic field, the finite-size corrections to the spectrum of the Hubbard model have
been calculated by F. Woynarovich [487]. These results are the basis for our discussion
in the following Chapter 9 of the asymptotic behaviour of correlation functions within the
conformal approach [6,51,62,75] and thereby will allow us to make contact with Haldane’s
Luttinger liquid approach for the description of one-dimensional strongly correlated electron
systems [189–192]

8.1 Generic case – the repulsive Hubbard model in a magnetic field

To investigate how the thermodynamic limit is approached we have to take into account
finite-size corrections in our previous derivation of integral equations from Takahashi’s
equations. This analysis has to be performed separately for each of the phases with gapless
excitations identified before. From a technical point of view the most complex situation is
found in phase IV – the partially filled, partially magnetized band with two massless modes.
The finite-size scaling behaviour in the phases with a single gapless mode can be studied
using the same techniques and we will point out the differences to the ‘generic’ case studied
in this section later in this chapter.

Since we are interested in the ground state and low-lying excitations we restrict ourselves
to solutions of the Bethe Ansatz equations which have been identified as the most important
ones for the low-energy sector of the repulsive Hubbard model at less than half-filling in a
magnetic field (phase IV) before, namely those described in terms of finite densities of real
roots k and λ only.1

8.1.1 Finite-size corrections to Takahashi’s equations

From Takahashi’s equations (4.36)–(4.38) we have obtained the defining equations (5.29),
(5.30) for the counting functions y(k) and z1(λ). These functions are well-defined objects
1 This implies that we are considering states with N =Me electrons and M = M1 overturned spins in the following.

268
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for any system size. Extending the definition (5.36), (5.37) of root densities to finite systems
we can define finite size densities of the Bethe Ansatz roots (the notation u(L) for finite size
quantities is used to avoid confusion with the corresponding quantities in the thermodynamic
limit)

2π
[
ρ(L)(k)+ ρh,(L)(k)

] = ∂y(L)(k)

∂k
, 2π

[
σ

(L)
1 (λ)+ σ

h,(L)
1 (k)

]
= ∂z(L)

1 (λ)

∂λ
. (8.1)

On the level of the Bethe Ansatz integral equations finite-size corrections for the densities
(i.e. corrections to equations (5.93) of sub-leading order in 1/L) are taken into account using
the method introduced by de Vega and Woynarovich [470] (see also Refs. [63,64,145,216,
488]). It has been applied to the repulsive Hubbard model at half-filling by Woynarovich and
Eckle [489] and away from half-filling by Woynarovich [487]. The finite-size corrections
to the spectrum of the attractive Hubbard model have been studied in Ref. [65].

This method is based on application of the Euler-McLaurin summation formula to the
discrete equations above ( f ′ denotes the derivative of f )

1

L

n2∑
n=n1

f
( n

L

)
=

∫ n+/L

n−/L
dx f (x)+ 1

24L2

{
f ′
(n−

L

)
− f ′

(n+
L

)}
+ · · · (8.2)

where we have introduced n− = n1 − 1
2 , n+ = n2 + 1

2 .
To use this formula we restrict ourselves to a subset of Bethe Ansatz states which contains

the zero temperature ground state and an important class of low-lying excitations: consider
solutions to Takahashi’s equations (4.36)–(4.38) for a set of consecutive quantum numbers

I j = I− + j − 1

2
, j = 1, . . . , N ,

J 1
α = J 1

− + α − 1

2
, α = 1, . . . , M. (8.3)

For such states the finite size densities (8.1) are given by the following equations

ρ(L)(k) = 1

2π
+ cos k

L

M∑
α=1

a1(sin k − λα) , (8.4)

σ
(L)
1 (λ) = 1

L

N∑
j=1

a1(λ− sin k j )− 1

L

M∑
β=1

a2(λ− λβ) . (8.5)

With I+ = I− + N and J 1
+ = J 1

− + M we define the numbers Q± and A± for this state by

y(L)(Q±) = 2π I±/L, z(L)
1 (A±) = 2π J 1

±/L . (8.6)

Now the Euler-McLaurin formula (8.2) is directly applicable to equations (8.4), (8.5)
resulting in a system of two coupled linear integral equations for r (L) = (r (L)

c , r (L)
s ) ≡

(ρ(L), σ
(L)
1 ) of the form (we denote by

∫
x integration over the intervals [X−, X+] where
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Xc,± = Q± and Xs,± = A±, respectively)

xc(k) = x (0)
c (k)+ cos k

∫
s

dλ′ a1(sin k − λ′) xs(λ′) ,

xs(λ) = x (0)
s (λ)+

∫
c

dk ′ a1(λ− sin k ′) xc(k ′) (8.7)

−
∫

s
dλ′ a2(λ− λ′) xs(λ′)

or, symbolically (X = {Q±, A±})
x(k, λ) = x (0)(k, λ)+K(k, λ; k ′, λ′|X )⊗ x(k ′, λ′) (8.8)

where K is the integral operator with kernel

K (k, λ; k ′, λ′) =
(

0 cos k a1(sin k − λ′)
a1(λ− sin k ′) −a2(λ− λ′)

)
. (8.9)

Compared to the integral equations (6.12), (6.13) for r = (ρ, σ1) obtained within the root
density formalism in the limit L →∞ the only difference are the driving terms containing
additional terms of order (1/L2). Using (8.1) to eliminate the counting functions the driving
terms read

r (0)
c = ρ(0)(k) = 1

2π
+ cos k

24L2

{
a′1(sin k − A+)

r (L)
s (A+)

− a′1(sin k − A−)

r (L)
s (A−)

}
+ o

(
1

L2

)
, (8.10)

r (0)
s = σ

(0)
1 (λ) = 1

24L2

{
cos Q+

a′1(λ− sin Q+)

r (L)
c (Q+)

− cos Q−
a′1(λ− sin Q−)

r (L)
c (Q−)

−a′2(λ− A+)

r (L)
s (A+)

+ a′2(λ− A−)

r (L)
s (A−)

}
+ o

(
1

L2

)
. (8.11)

These expressions are implicit functions of X . Note further, that the solution r (L) of (8.7) at
these integration boundaries enter the expressions for r (0)

c and r (0)
s . From the linearity of the

integral equations (8.7) it is clear that to order 1/L2 their solution for the finite-size density
can be written as (i ∈ {c, s})

r (L)
i (x) = r (∞)

i (x)+ 1

24L2

∑
k∈{c,s}

{
f (+)
ik (x)

r (L)
k (Xk,+)

+ f (−)
ik (x)

r (L)
k (Xk,−)

}
(8.12)

with r (∞) and f (±)
.k being solutions of the integral equation (8.7) with driving terms replaced

by

r (∞) : x (0)
c (k) = 1

2π
, x (0)

s (λ) = 0

f (±)
.c : x (0)

c (k) = 0, x (0)
s (λ) = ± cos Q±a′1(λ− sin Q±) (8.13)

f (±)
.s : x (0)

c (k) = ± cos k
a′1(sin k − A±)

2π
, x (0)

s (λ) = ∓a′2(λ− A±).
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By construction the driving terms for the functions f (±) can be written as

∓ ∂

∂x ′k
Kik(x ; x ′)

∣∣∣∣
x ′=X±

. (8.14)

8.1.2 Finite-size corrections to the energy

To compute the finite-size corrections to the energies we have to perform similar manipula-
tions with an appropriate expression for the energy of the Bethe Ansatz state corresponding
to our choice (8.3) of quantum numbers. The expression used in Chapter 6 to study the
ground state properties in the L →∞ limit relied on the thermodynamic approach and
was based on the dressed energies e(x) = (κ(k), ε1(λ)). These were given in terms of the
integral equations (6.10) similar to (8.8), namely

e(k, λ) = e(0)(k, λ)+K
$(k, λ; k ′, λ′|X )⊗ e(k ′, λ′) . (8.15)

The driving terms are the bare energies e(0)

e(0) = (e(0)
c (k), e(0)

s (λ)) = (−2 cos k − µ− 2u − B, 2B) . (8.16)

The kernel of the integral operator K
$ is the transpose of (8.9)

K$(k, λ; k ′, λ′) =
(

0 a1(sin k − λ′)
cos k ′ a1(λ− sin k ′) −a2(λ− λ′)

)
. (8.17)

The method outlined above for the densities, i.e. taking into account finite size corrections
to the integral equations (8.15), is not applicable within this approach. Instead we apply the
Euler-McLaurin formula (8.2) to the expression equation (3.97) for the energy of the Bethe
Ansatz state within the Lieb-Wu approach and obtain

E = L u +
N∑

j=1

e(0)
c (k j )+

M∑
α=1

e(0)
s (λα)

= L u + L
∑

i∈{c,s}

∫
i
dx e(0)

i (x)r (L)
i (x)

− 1

24L

∑
i∈{c,s}

{
e(0)

i

′
(Xi,+)

r (L)
i (Xi,+)

− e(0)
i

′
(Xi,−)

r (L)
i (Xi,−)

}
+ o

(
1

L

)
. (8.18)
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Using (8.12) this becomes

E = L u + L
∑

i∈{c,s}

∫
i
dx e(0)

i (x)r (∞)
i (x)

− 1

24L

∑
i∈{c,s}

(
e(0)

i

′
(Xi,+)

r (L)
i (Xi,+)

+
∑

k∈{c,s}

∫
i
dx e(0)

i (x)
f (+)
ik (x)

rk(Xk,+)

− e(0)
i

′
(Xi,−)

r (L)
i (Xi,−)

+
∑

k∈{c,s}

∫
i
dx e(0)

i (x)
f (−)
ik (x)

rk(Xk,−)

)
. (8.19)

The first two terms in this expression L u + L e∞(X ) with

e∞(X ) =
∑

i∈{c,s}

∫
i
dx e(0)

i (x)r (∞)
i (x) (8.20)

are simply L times the energy density for a state with given values of Q± and A± in the
infinite system. Since we are mostly interested in the finite size scaling properties of the
ground state and low-lying excitations we should expand (8.19) around the Bethe Ansatz
state which minimizes these terms for given values of the chemical potential µ and magnetic
field B. This is just the zero temperature ground state of the Hubbard model as determined
in Chapter 6. This state is characterized by the vanishing of the dressed energies at the
Fermi points k = ±Q, λ = ±A (6.11). Using the formal solutions of the integral equations
for the dressed energy and the functions f (±)

ik we find

± e(0)
i

′
(Xi,±)+

∑
k∈{c,s}

∫
i
dx e(0)

k (x) f (±)
ki (x)

= ±e(0)
i

′
(Xi,±)∓

∑
ki �∈{c,s}

∫
i
dx e(0)

k (x)

[(
1

1−K

)
k�

× K ′e�

]
(x ; X±)

= ±e(0)
i

′
(Xi,±)∓

∑
k∈{c,s}

∫
i
dx ek(x)K ′ki (x ;

[(
1

1− K

)
k�

× Kei

]
X±) = ±ei

′(Xi,±) .

(8.21)

(K′ denotes the derivative with respect to the second argument of K.) With X± = ±X0 and
the resulting symmetry of the functions ei and ri in this case (8.19) can be rewritten as:

E = L u + Le∞(X )− 1

12L

∑
i∈{c,s}

e′i (X0,i )

r (L)
i (X0,i )

. (8.22)

To the order in the system size L considered here we can replace the densities r (L)
i in the

last term by their values in the thermodynamic limit. Hence, we identify the expressions for
the Fermi velocities vi of the low-lying charge and magnetic excitations over the ground
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state (6.44), (6.45)

e′i (x)

r (∞)
i (x)

∣∣∣∣∣
x=X0,i

= 2π vi (8.23)

and obtain

E = L u + Le∞(X )− π

6L
(vc + vs) . (8.24)

The last term is the leading finite-size correction to the ground state energy of the one-
dimensional repulsive Hubbard model in the generic case. As will be discussed later this
result can be used to justify the field theoretical description of this model in terms of two
free bosons for any non negative value of the coupling constant u.

To proceed we have to expand e∞(X ) up to second order in the variation of the Fermi
points X . The linear terms in �X = (X ∓ X0) vanish as a consequence of ei (±X0,i ) = 0.
Variation to second order in �X gives (note that eGS = e∞(X0) is the ground state energy
per site of the system)

e∞(X ) = eGS + π
∑

i∈{c,s}
vi

×
({

r (∞)
i (X0,i )

(
Xi,+ − X0,i

)}2
+

{
r (∞)

i (X0,i )
(
Xi,− + X0,i

)}2
)
. (8.25)

8.1.3 The dressed charge matrix

To complete our analysis of the finite-size spectrum of the repulsive Hubbard chain in a
magnetic field we have to express the variations �X in terms of the deviation of the particle
number N and magnetization M and the asymmetry of the distribution of quantum numbers
2Di = ni

+ + ni
− from their ground state values. This is possible with the counting functions

and their relation to the densities r (L)
i (8.1):

Ni

L
=

∫
i
dx r (L)

i (x) ,

2
Dc

L
=

{∫ Q−

−π
−

∫ π

Q+

}
dk r (L)

c (k)− 1

π

∫
s

dλ θ (λ/u) r (L)
s (λ),

2
Ds

L
=

{∫ A−

−∞
−

∫ ∞
A+

}
dk r (L)

s (k). (8.26)

Since the variations �X enter equation (8.25) quadratically and we have to compute the
finite size correction to the energy density to order 1/L it is sufficient to replace the densities
in these expressions by their leading terms r (∞)

i . We now consider the total densities defined
in (8.26) to be the independent variables determining the boundaries of integration X j,±.



274 Finite size corrections at zero temperature

Taking derivatives of the first of these equations w.r.t. nk = Nk/L we obtain

δik =
∑

j

({
r (∞)

i (Xi,+)δi j +
∫

i
dx

∂r (∞)
i

∂X j,+

}
∂X j,+
∂nk

+
{
−r (∞)

i (Xi,−)δi j +
∫

i
dx

∂r (∞)
i

∂X j,−

}
∂X j,−
∂nk

)

= ±2
∑

j

{
δi j +

∫
i
dx gi j (x)

}
r (∞)

j (X0, j )
∂X j,±
∂nk

(8.27)

where gi. are the solutions of (8.8) with driving term Ki.(k, λ; Q, A) and we have again used
the symmetries arising from the fact that X± = ±X0 for the ground state. Equation (8.27)
can be simplified further: using the formal solution of the integral equation for gi j in terms
of a von Neumann series, i.e.

gi j (x) = Ki j (x ; X0)+
∑

k

∫
k

dx ′Kik(x ; x ′)Kkj (x
′; X0)+ · · · (8.28)

one finds that δi j +
∫

i dx gi j (x) = Zi j with

Z =
(
ξcc(Q) ξcs(A)
ξsc(Q) ξss(A)

)
, (8.29)

where ξ is the so-called dressed charge matrix, defined in terms of the integral equation (1
is the 2× 2 unit matrix)

ξ = 1+ ξ ⊗K . (8.30)

In components these equations read

ξcc(k)= 1+
∫

s
dλ′ ξcs(λ′)a1(λ′ − sin k),

ξcs(λ)=
∫

c
dk ′ cos k ′ξcc(k ′)a1(sin k ′ − λ)−

∫
s

dλ′ ξcs(λ′)a2(λ′ − λ),

ξsc(k) =
∫

s
dλ′ ξss(λ′)a1(λ′ − sin k),

ξss(λ)= 1+ ∫
c dk ′ cos k ′ξsc(k ′)a1(sin k ′ − λ)− ∫

s dλ′ ξss(λ′)a2(λ′ − λ) .

(8.31)

Hence, equation (8.27) gives the identity

δik = ±2Zi j r (∞)
j (X0, j )

∂X j,±
∂nk

. (8.32)
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Similarly, we proceed with the second pair of equations (8.26) for dk = Dk/L to obtain
(Y = (π,∞)):

δik =
∑

j

{
δi j +

(∫ −X0,i

−Yi

−
∫ Yi

X0,i

)
dx gi j (x)

− δic

π

(
δ jsθ (A/u)+

∫
s

dx θ (λ/u)gsj (x)

)}
r (∞)

j (X0, j )
∂X j,±
∂dk

.

To express the remaining integrals in this equation through the dressed charge matrix we
consider the derivatives of ξi j with respect to its argument x j . Comparison of the resulting
integral equations for zi j = ∂ξi j/∂xi with the ones for the functions gi j leads to the following
identities:

zi j (x) = −
∑

k

Zik
(
g jk(x)− g jk(−x)

)
. (8.33)

Integrating these equations from X0,i to Yi gives

ξi j (Yi )− Zi j =
∑

k

Zik

(∫ −X0,i

−Yi

−
∫ Yi

X0,i

)
dx g jk(x). (8.34)

Now, using

ξi j (Yi ) = δi j + δ jc

∫
s

dλ ξis(λ)a1(λ)

= δi j + δ jc

π

(
Zisθ (A/u)+

∑
k

Zik

∫
s

dλ θ (λ/u)gsk(λ)

)
we obtain

δik =
(
Z$

)−1

i j
r (∞)

j (X0, j )
∂X j,±
∂dk

. (8.35)

With equations (8.32) and (8.35) we have obtained the Jacobian for the transforma-
tion from the variations �X to the deviation �Ni of the numbers of particles and over-
turned spins from their ground state values and the total currents Di in the state. This
leads to the main result of this section, namely the expression for the finite size correction
to the energy of low lying excited states with given changes of particle numbers and/or
currents:

�E(�N,D) = L (e∞(X )− eGS)

= 2π

L

[
1

4
�N$

(
Z$

)−1
V Z−1�N+ D$Z V Z$D+

∑
k∈{c,s}

vk
(
N+k + N−k

)]

+ o

(
1

L

)
. (8.36)

Here V = diag(vc, vs) is a 2× 2 matrix with the Fermi velocities (8.23) on the diagonal.
N±i are non negative integers enumerating the number of particle-hole pairs in the vicinity
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of the Fermi points – these contributions follow from a simple extension of the arguments
used above when holes are considered in the distribution (8.3) of quantum numbers near
the points k = ±Q and λ = ±A.

Simple counting gives an analogous expression for the momentum of the excited state:
denoting the Fermi momenta (of electrons rather than the objects considered in the Bethe
Ansatz) by kF,σ

kF,↑(↓) = 1

2
(πnc ± 2πm) (8.37)

the momentum can be written as

�P(�N,D) = 2π

L

(
�N$ · D+

∑
k∈{c,s}

(
N+k − N−k

))+ 2DckF,↑ + 2 (Dc + Ds) kF,↓

(8.38)

As a consequence of the the constraints on the parity of the Bethe Ansatz quantum
numbers nc and ns which appeared in the derivation of (3.109) there are similar conditions
on the parities of the numbers�N and D characterizing the excited states in (8.36) and (8.38):
In the thermodynamic limit the ground state is the unique state with �Nc = �Ns = Dc =
Ds = 0. For excited states, the vector�N has integer components denoting the change in the
number of electrons and down spins with respect to this ground state. Due to the constraints
mentioned above the numbers Dc and Ds are integer or half-odd integer depending on the
parities of �Nc and �Ns :

Dc = �Nc +�Ns

2
mod 1 , Ds = �Nc

2
mod 1 . (8.39)

8.2 Special cases

The expressions derived in the previous section show that the complete spectrum of low-
lying states in the Hubbard model can be parametrized in terms of just four numbers, namely
the elements of the dressed charge matrix (8.29) (apart from the Fermi velocities vc and
vs which are known from the discussion of the thermodynamic limit already). Given the
parameters of the system, i.e. the interaction strength u and the chemical potential and
magnetic field the entries of Z are easily computed numerically.

In the present section we want to discuss a few cases where the expressions derived above
simplify significantly and even allow for an analytical calculation of some of the elements
of Z .

8.2.1 Zero magnetic field

For vanishing magnetic field the ground state of the one-dimensional Hubbard model has
zero magnetization and is a spin-SU (2) singlet. As noted in the discussion of ground state
properties (see Section 6.B) this leads to the fact that the distribution of spin rapidities λ
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covers the real axis (A = ∞) which in turn allows to simplify the Bethe Ansatz integral
equations for the root densities and dressed energies by Fourier transformation. Similarly,
the coupled equations (8.31) for the dressed charge matrix reduce to a simple scalar one in
this case [487].

Integrating out ξcs from the first two of the integral equations (8.31) we are left with a
scalar equation for ξcc ≡ ξ (the kernel R(x) is defined in (5.104)):

ξ (k) = 1+
∫ Q

−Q
dk ′ cos k ′ R(sin k − sin k ′) ξ (k ′). (8.40)

The resulting driving term in the integral equation for ξcs vanishes as 1/A2, this leads to
Zcs = 0 for the corresponding entry in the dressed charge matrix. Proceeding analogously
for the second pair of integral equations for the dressed charge matrix, one obtains ξsc(k) =
ξ (k)/2. The remaining element of ξ is determined by the integral equation

ξss(x) ∼ 1+ o(A−2)+
∫ A

−A
dx ′ a2(x − x ′) ξss(x ′) , A→∞. (8.41)

Zss = limA→∞ ξss(A) can be obtained using the Wiener-Hopf method giving the following
expression for the dressed charge matrix in a vanishing magnetic field:

Z =
(

ξ (Q) 0
1
2ξ (Q) 1

2

√
2

)
. (8.42)

Further results can be obtained in the limit of strong and weak coupling, respectively.
Rewriting the integral equation for ξ as

ξ (z) = 1+
∫ z0

−z0

dz′ R̃(z − z′) ξ (z′), (8.43)

R̃(z) = 1

2π

∫ ∞
0

dω
e−ω

coshω
cosωz,

where z = sin k/u, it becomes clear that the entries of the matrix Z in (8.42) depend on
z0 = sin Q/u only. Now equation (8.43) can be solved in the limiting cases u � sin Q and
0 < u � sin Q:

For large u/ sin Q the equation for ξ can be solved by iteration with the result

ξ (z0) = 1+ sin Q

πu
ln 2. (8.44)

For any fixed coupling strength sin Q becomes small for small particle density (Q → 0)
and near half-filling (Q → π ).

Using the expansions from Section 6.B.3 we can write down the dressed charge at fixed
u for small densities

ξ (z0) = 1+ ln 2

u
nc, nc � min(1, u) . (8.45)
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Similarly, close to half filling nc = 1− δ (δ is the doping) we can use the expansion (6.B.19)
and obtain:

ξ (z0) = 1+ ln 2

2πuρ0(π )
δ, δ � uρ0(π ). (8.46)

We recall that from equation (6.B.14)

2πρ0(π ) = 1−
∫ ∞

0
dω

e−uω

cosh(uω)
J0(ω)

= 1− 2
∞∑

k=1

(−1)k+1√
1+ (2uk)2

. (8.47)

Note that, due to the essential singularity associated with the Mott transition at half filling
the expansion (8.46) is useful for sufficiently large values of u only: for u = 0.1 we find
uρ0(π ) ≈ 1.5 · 10−8.

For u � 1 the integral equations simplify and we obtain ξ for arbitrary values of the
density explicitly

ξ (z0) = 1+ ln 2

πu
sinπnc, u � 1. (8.48)

In Appendix 8.A we use a perturbative scheme based on the Wiener-Hopf method to
solve equation (8.43) for small u/ sin Q and obtain

ξ (z0) =
√

2

(
1− u

2π sin Q

)
. (8.49)

This value of ξ (z0) also governs the low-energy spectrum for small u close to half-filling
(see the discussion above).

In summary we have shown that the dressed charge matrix for the one-dimensional
Hubbard model below half-filling in zero magnetic field is of the form (8.42) for any value
of the repulsive interaction u ≥ 0. The remaining parameter ξ (Q) varies in the interval

1 ≤ ξ (z0) ≤
√

2. (8.50)

A numerical solution of the Bethe Ansatz integral equations for different values of sin Q/u
gives the lines of constant ξ (Q) in the nc-u-plane (see figure 8.1). We note that the finite
size spectrum depends on the Fermi velocities vc and vs in addition to ξ (Q).

8.2.2 Partially filled spin-polarized band

In phase II all electrons have spin up and excitations with magnetization less than nc/2
have a gap. This implies that the low-lying states are some of the plane-wave eigenstates
of the tight-binding Hamiltonian (2.12). The dispersion of the gapless charge excitations as
found in Section 6.3 is just the bare energy e(0)

c (k) from (8.16) and the complete excitation
spectrum is that of free lattice electrons with Fermi momentum kF↑ = πnc and Fermi
velocity v↑ = 2 sin kF↑.
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Fig. 8.1. Contours of constant dressed charge ξ (Q) (equation (8.42)) in the nc-u plane: ξ (Q)→ 1(
√

2)
for u →∞(0). The dotted line denotes the value of nc(Q = π/2) where the dressed charge takes
its maximum value for given u. Note that the line nc = 1 is excluded here. There the Hubbard
model falls into a different universality class – that of the isotropic Heisenberg antiferromagnet (see
Section 8.2.3).

Just as in our discussion of the excitations of the fully interacting model above a classi-
fication in terms of three different processes is possible:

� states with a charge that differs from the one in the ground state by �N↑,
� states carrying a current 2D↑kF↑ due to the transfer of D↑ electrons from one Fermi point

to the other (backscattering),
� N± particle-hole pairs near one of the Fermi points at ±k F↑,

and arbitrary combinations of the above.
Due to the fact that the electrons are effectively free in this phase there is no renormaliza-

tion of the dispersion due to a reordering of the Fermi sea in presence of these excitations
and the finite size spectrum is easily obtained after linearizing the dispersion in the vicinity
of the Fermi points:

ε(k) ≈ ±v↑
(
k ∓ kF↑

)
for k ≈ ±kF↑. (8.51)

Now it is straightforward to see that the complete spectrum of low-lying states is of the
form

�E(�N↑, D↑) = 2πv↑
L

(
�N 2

↑
4
+ D2

↑ + N+ + N−
)
,

�P(�N↑, D↑) = 2π

L

(
�N↑ D↑ + N+ − N−

)+ 2D↑kF↑. (8.52)

The different boundary conditions for states with even and odd number of electrons lead to
the constraint D↑ = �N↑/2 mod 1, similar to (8.39).
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8.2.3 The half-filled band

In Chapter 7, we have shown that in phase V, i.e. at half filling nc = 1, only charge neutral
excitations are gapless and consequently accessible by the techniques used in the derivation
of the finite size spectra. The contributions of the spin degrees of freedom to the finite-size
scaling behaviour have been found to be equivalent to those of the one-dimensional isotropic
Heisenberg model [488].

The finite size scaling behaviour of the ground state energy is obtained similarly as in
Section 8.1.2 (note that only the partially filled Fermi sea of spin rapidities has to be taken
into account) with the result

E = E0 − π

6L
vs . (8.53)

vs is the Fermi velocity of the magnetic excitations. The finite size scaling corrections to
the energies of the low lying excitations are given by the expression

�E(�M, Ds) = 2πvs

L

[
�M2

4Z2
+ Z2 D2 + N+s + N−s

]
+ o

(
1

L

)
. (8.54)

Again the finite size corrections are determined by a dressed charge through Z = ξs(A).
The function ξs is the solution to the following integral equation:

ξs(λ) = 1−
∫ A

−A
dµ a2(λ− µ)ξs(µ). (8.55)

(This is in fact just the equation for ξss in (8.31) for Q = π ). Note that the finite spectrum
(8.52) in the spin polarized phase is of the form (8.54) with Z ≡ 1. This corresponds to
the use of the ‘bare’ charge ξ ≡ 1 rather than dressed charge and reflects the absence of
interaction induced renormalization of the dispersion in phase II.

For given value of u the boundaries of the integrals in (8.55) depend on the magnetic field.
The Fermi-sea of spin-waves disappears for B ≥ B0 = 2(

√
u2 + 1− u). This corresponds

to the transition into phase III with half filled band and completely polarized spins as
discussed in Section (6.3). As the magnetic field approaches B0 from below we have

A = (u2 + 1)3/4
√

B0 − B. (8.56)

The magnetic excitations are gapless for B ≤ B0, with a finite-size spectrum given as a
function of the dressed charge (8.55) at λ = A

ξs(A) = 1− (u2 + 1)3/4

πu

√
B0 − B (8.57)

for magnetic fields close to B0. ξs(A) decreases as the magnetic field becomes smaller.
The case of vanishing magnetic field, B = 0, has first been studied by Woynarovich and

Eckle [489]. It corresponds to A→∞, and the limiting value of ξs(A) can be computed
using the Wiener Hopf method (see Appendix 8.A) giving limA→∞ ξs(A) = 1/

√
2.
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8.2.4 Strong coupling limit

To illustrate the magnetic field dependence of the finite size spectra for a partially filled band
in more detail we now consider the limit u →∞where the Bethe Ansatz integral equations
simplify significantly. The strong influence of a finite magnetic field on the spectrum was
first observed by Frahm and Korepin [141].

After elimination of ρ from the integral equation (6.13) for the density of spin rapidities
we obtain

σ1(λ)= 1
2π

∫
c

dk ′a1(λ− sin k ′)

−
∫

s
dλ′

{
a2(λ− λ′)−

∫
c

dk cos k a1(λ− sin k)a1(sin k − λ′)
}
σ1(λ′) .

(8.58)

Rescaling the variables as z = sin k/u and η = λ/u the kernel of this integral operator
becomes

1

u

(
k2(η − η′)−

∫ z0

−z0

dz k1(η − z)k1(z − η′)
)

,

kn(x) = 1

2π

2n

x2 + n2
.

(8.59)

In the strong coupling limit, i.e. large u, we can neglect the second term and σ1(λ)→ uσ1(η)
is obtained from a simple scalar Fredholm integral equation (�0 = A/u)

σ1(η) = Q

2π2
k1(η)−

∫ �0

−�0

dη′ k2(η − η′)σ1(η′) . (8.60)

Using nc =
∫

c dk ρ(k) = Q/π +O(1/u) we can eliminate Q from this equation.
Along the same line of arguments we can eliminate the charge parts from the integral

equations for the dressed energy (6.10) and the dressed charge (8.31). To leading order in
1/u the resulting equations read

ε1(η) = 2B − Bck1(η)−
∫ �0

−�0

dη′ k2(η − η′)ε1(η′) , (8.61)

ξss(η) = 1−
∫ �0

−�0

dη′ k2(η − η′)ξss(η′) . (8.62)

Bc is the magnetic field necessary for complete spin polarization of the ground state of the
less than half-filled Hubbard model (see Section 6.3). At large coupling Bc scales like 1/u
(6.25)

Bc ! 1

u

(
nc − 1

2π
sin 2πnc

)
+O(u−3) , for u � 1 . (8.63)

As a consequence of the vanishing of the effective exchange coupling as t2/u in the strong
coupling limit of the t-J model (2.A.39) an infinitesimal field is sufficient to polarize the
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system completely. To leading order in 1/u, however, we already obtain nontrivial results
on magnetic field effects on the finite size spectra.

The remaining entries of the dressed charge matrix (8.29) are

Zcc = 1, Zcs = 0,

Zsc =
∫ �0

−�0

dη k1(η)ξss(η) = 1

nc

∫ �0

−�0

dη σ1(η) = 1

2
− m

nc

(8.64)

(the identity for Zsc can be verified in a similar way as above by comparing the formal
solutions of (8.58), (8.62) in terms of the formal von Neumann series). Hence the general
form of the dressed charge matrix in the strong coupling limit is

Z =
(

1 0
Zsc Zss

)
. (8.65)

The B-dependence of the finite-size spectrum is in the lower two elements of Z alone.
For vanishing magnetic field �0 = ∞ and the integral equations can be solved as in

Section 8.2.1. The result is

Z = 1

2

(
2 0
1
√

2

)
. (8.66)

For small magnetic field with �0 large but finite we can apply the Wiener-Hopf method
and obtain the leading magnetic field dependence of the elements of Z . From the identities
derived in Appendix 8.A.2 we obtain with B1 = Bc

√
π3/2e

Zss = 1√
2

(
1+ 1

4 ln(B1/B)

)
+O

(
1

(ln(B1/B))2

)
.

Zsc = 1

2
− 2

π2

B

Bc
+O

(
B

Bc ln(B1/B)

)
.

(8.67)

Note the different functional dependence on B of Zss and Zsc near B = 0 !
In the other limit, as B approaches the saturation field (8.63) from below, i.e. near the

ferromagnetic state, the boundary of integration vanishes like

�0 =
√

Bc − B

Bc
. (8.68)

In this regime the integral equations can be solved by iteration and the charge matrix in this
regime is given by

Z =
(

1 0
0 1

)
+ 1

π

√
Bc − B

Bc

(
0 0
2 −1

)
. (8.69)

In figure 8.2 we present numerical results obtained from equations (8.62) and (8.64) for the
magnetic field dependence for the entire range of fields 0 ≤ B < Bc where the electrons
become spin-polarized.
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Fig. 8.2. Magnetic field dependence of the elements of the dressed charge matrix in the strong coupling
limit: shown are Zss (solid curve) and Zsc (dashed curve) as a function of the magnetic field in units
of the field necessary for complete polarization of the system Bc. Note the different behaviour of the
two functions in the limit of small B: while Zsc is linear in B, Zss has a logarithmic singularity.

8.3 Finite-size spectrum of the open Hubbard chain

An important extension of the cases considered so far is that of the Hubbard chain with
open rather than periodic boundary conditions. We shall focus in this section on the case of
the repulsive Hubbard model below half-filling with additional local potentials coupling to
the number of electrons on the boundary sites, i.e.

H =−
L−1∑
j=1

∑
σ

(
c†jσ c j+1,σ + h.c.

)
+ 4u

L∑
j=1

n j↑n j↓ − (µ+ 2u)N̂ − 2BSz

−p(n1↑ + n1↓)− p′(nL↑ + nL↓)

(8.70)

It was shown first by H. Schulz [380] that the Hubbard model continues to be solvable
by means of the Bethe Ansatz in the case of reflecting boundary conditions (p = 0 = p′).
Subsequently the solution was extended to non-vanishing boundary potentials [24,49,507].
By means of the Shiba transformation (2.59) it is clear that the open-boundary Hubbard
model with a magnetic field instead of the potential on the boundary site

−2bSz
1 − 2b′Sz

L (8.71)

is also solvable [402, 403, 507]. Note that the boundary fields at the two ends of the chain
can be chosen independently, hence it is possible to combine a potential p on site 1 with
a boundary magnetic field b′ on site L or vice versa. In general, the scattering due to the
reflection at an end of the chain and that between the particles in the bulk has to satisfy so-
called reflection equations to be compatible with integrability of the system [406]. For the
open Hubbard chain and the boundary conditions discussed above this has been established
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in Ref. [507] (see also [457]). Within this approach one can rule out a solvable combination
of potential and boundary magnetic field at the same end of the chain or – as far as is known
to date – more complicated boundary conditions: while an integrable Hamiltonian for a
Kondo spin coupled to the boundary site of the supersymmetric t–J model is known [144]
a similar construction for the Hubbard model still requires a deeper understanding of its
algebraic structure.

8.3.1 Bethe Ansatz equations for the open Hubbard chain

For the derivation of the resulting Bethe Ansatz equations we refer the reader to the original
literature, here we just state the equivalent of the Lieb-Wu equations (3.95), (3.96) for the
Hamiltonian (8.70)

ei2k j L eik j − p

1− peik j

eik j − p′

1− p′eik j
=

M∏
�=1

sin k j − λ� + iu

sin k j − λ� − iu

sin k j + λ� + iu

sin k j + λ� − iu
,

j = 1, . . . , N , (8.72)
N∏

j=1

λ� − sin k j + iu

λ� − sin k j − iu

λ� + sin k j + iu

λ� + sin k j − iu
=

M∏
m=1
m �=�

λ� − λm + 2iu

λ� − λm − 2iu

λ� + λm + 2iu

λ� + λm − 2iu
,

� = 1, . . . , M .

Compared to the Lieb-Wu equations for the periodic chain one observes two differences:
first, the geometric phase factor for the electrons is exp(i2kL) rather than exp(ikL) and the
number of two-particle scattering phases on the r.h.s. of the equations is doubled: for a full
path “around” the chain a particle has to be moved from its original position to site L , then
to site 1 and back. Second, there are additional phases in the first set of these equations.
This is the only effect of the boundary potentials p and p′.

The energy of the eigenstate of (8.70) corresponding to a solution of (8.72) is

E = −
N∑

j=1

(
2 cos k j + µ+ 2u + B

)+ 2B M . (8.73)

There is no explicit dependence on the boundary conditions. It is present however through
the dependence of the quasi momenta k j on p, p′ determined from equations (8.72).

In the thermodynamic limit L →∞ with both the particle density and magnetization
kept fixed we expect that the energy density of the ground state is eGS independent of the
boundary conditions. The effect of the boundary potential will manifest itself in an order L0

contribution to the energy. In addition, we expect a different finite-size scaling behaviour
of the ground state energy (8.24) and the low-lying excited states (8.36).

From a physical point of view it is clear that the ground state of the model (8.70) should
have up to two electrons bound to the first site for sufficiently large p (and similar to
site L for sufficiently large p′). Numerical solution of the Bethe Ansatz equations (8.72)
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shows that this is indeed the fact: the presence of the bound states is indicated by complex
quasimomenta k and rapidities λ in the configuration corresponding to the ground state for
p > 1 [49,458].2 These complex roots are not present in the ground state configuration for
p < 1 [24] and are very different from the k −�-strings (4.13) discussed in Chapter 4.1.
While p-dependent complex combinations of two k and one λ exist for any p, they are found
to coincide with an η-pair in the (SO(4)-invariant) limit p→ 0. Hence, they correspond to
highly excited states of the system and need not to be considered in the present context.

By careful analysis of the Bethe Ansatz equations one identifies four regions for p which
have to be studied separately for the ground state [24, 49]:

p < 1: The classification of solutions to the BAE is identical to that for the Hubbard
chain with periodic boundary conditions. No additional types of complex rapidities
exist.

1 < p < p1 = u +√1+ u2: In the ground state configuration one of the quasimomenta,
say kN , takes the value kN = i ln(p) or, equivalently, sin kN = i t where

t = 1

2

(
p − 1

p

)
. (8.74)

This value is realized with exponential accuracy even for systems of finite length L .
Since the quasimomenta k j parametrize the charge part of the states this solution may
be interpreted as a single charge bound by the potential on site 1.

p1 < p < p2 = 2u +√1+ 4u2: Upon further increasing the boundary potential one
finds that the solution corresponding to the ground state contains a complex spin
rapidity λM = sin kN − iu = i(t − u) in addition to kN . Just as the solution in region
1 < p < p1 this state may be interpreted as a charge bound to the edge of the chain.
The physical excitations in the spin-sector (i.e. holes in the distribution of λ�) are still
real.

p2 < p: For boundary potentials larger than the Hubbard interaction p � 4u a pair of
electrons forming a singlet is bound to the surface, parametrized by λM = sin kN −
iu = sin kN−1 + iu = i(t − u).

Similarly, complex roots to the Bethe Ansatz equations appear as p′ is varied. It can be
shown however, that no additional complex solutions are possible as p or p′ are increased
beyond p2 – in perfect agreement with the physical intuition.

Having characterized the configuration of Bethe Ansatz roots corresponding to the ground
state of the open Hubbard chain we can proceed as in Section 8.1 to compute the finite size
corrections to the energies of the ground state and the continua of low lying excitations.

Note that one may also consider eigenstates of the model where the boundary bound
states discussed above are unoccupied, i.e. the corresponding complex quasi momenta or
rapidities are allowed but not present in the solution considered. Above these highly excited
states there arise different continua of states that can be treated in an analogous way. These

2 This is similar to the situation observed in the XXZ Heisenberg chain with a boundary magnetic field [234,412] and a continuum
model related to the Kondo problem [180, 477].
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continua have to be considered for the description of Fermi edge singularities in the presence
of boundary bound states [117].

8.3.2 Surface energy of the open Hubbard chain

In the following we restrict ourselves to the discussion of a boundary potential at site 1 of
the chain only, i.e. p′ = 0. It is straightforward to extend the discussion to the general case,
however. For the analysis of the equations (8.72) it is convenient to double the number of
variables by identifying of k− j = −k j and λ−� = −λ� and setting k0 = 0 = λ0. After this
“symmetrization”, the Bethe Ansatz equations read

eik j (2L+1) eik j − p

1− peik j

sin k j + iu

sin k j − iu
=

M∏
�=−M

sin k j − λ� + iu

sin k j − λ� − iu
, j = −N , . . . , N ,

λ� + 2iu

λ� − 2iu

N∏
j=−N

λ� − sin k j + iu

λ� − sin k j − iu
=

M∏
m=−M

m �=�

λ� − λm + 2iu

λ� − λm − 2iu
, � = −M, . . . , M .

(8.75)

In this form they depend on differences of the variables only, which permits the application
of the same methods used in the periodic boundary case for their analysis. Formally, this
doubling of variables leads to non-physical solutions to the equations which have to be
removed by hand (i.e. by considering only even solutions for quantities such as the root
densities).

To derive linear integral equations as in Section 8.1.1 above we introduce counting func-
tions and root densities for the real roots of (8.75) after taking into account the complex
roots corresponding to the boundary bound states explicitly. This procedure implies a modi-
fication in the definition of the boundaries of integration in (8.26) to account for the complex
roots, namely:

L
∫ Q+

Q−
dk r (L)

c (k)= 2N + 1− 2θH (p − 1)− 2θH (p − p2) ,

L
∫ A+

A−
dλ r (L)

s (λ)= 2M + 1− 2θH (p − p1) .

(8.76)

(θH (x) denotes the Heaviside step function in this section). Proceeding as in Section 8.1.1
we obtain integral equations of the form (8.7) where the driving terms up to order L−1 are
given by

r (0)
c (k) = 1

π
+ 1

L
ρ(0)

c (k)+O
(

1

L

)
, r (0)

s (λ) = 1

L
ρ(0)

s (λ)+ o

(
1

L

)
. (8.77)

For later use we denote the corresponding solution of the integral equations for the density
to this order as r (∞)

i (x)+ (1/L)ρ(∞)
i (x).
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Due to the presence of complex roots the explicit form of the driving terms depends on
the value of the boundary potential p in order L−1:

ρ(0)
c (k)= 1

π
− cos k a1(sin k)+ p cos k − p2

π (p2 − 2p cos k + 1)

+θH (p − p1) cos k (̃a2t (sin k)+ ã4u−2t (sin k))

(8.78)

ρ(0)
s (λ) = a2(λ)+


0 p < 1,

ã2u−2t (λ)+ ã2u+2t (λ) 1 < p < p1,

−ã2t−2u(λ)− ã6u−2t (λ) p1 < p < p2,

0 p > p2.

(8.79)

Here we have introduced the notation

ãy(x) = 2y/π (4x2 + y2). (8.80)

Note that the index of ã4u−2t in (8.78) changes sign at p = p2.
The energy (3.97) of the Bethe states can be expressed in terms of the dressed energies

(8.15). Being bulk-related quantities derived from the thermodynamic Bethe Ansatz, these
are given by the same equations as in the case of periodic boundary conditions. To order
L0 the ground state energy is given by:

E0 = Lu + LeGS + fGS . (8.81)

Here eGS is the bulk-energy density which does not depend on the boundary conditions.
The surface contribution of order L0 to the ground state energy is

fGS = 1

2

∑
i∈{c,s}

∫
i
dx ei (x)ρ(0)

i (x)+ 1

2
(µ+ 2u − B + 2)

+ θH (p − 1)E1 + 2BθH (p − p1)+ θH (p − p2)E2 . (8.82)

Here E1,2 are the energies of the bound states appearing at p = 1 and p = p2, i.e. of the
modes with complex wave numbers kN and kN−1, respectively:

E1 =−p − 1

p
− µ− 2u − B ,

E2 =−2
√

1+ (t − 2u)2 − µ− 2u − B .

(8.83)

8.3.3 Ground-state expectation value of n1

Due to the fact that there is a local potential coupled to the number operator of the electrons
on the boundary site in (8.70) the corresponding expectation value can be computed from
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the identity 〈n1〉 = −∂E0/∂p (see Ref. [23]). With (8.82) we obtain

〈n1〉 = −1

2

∑
i∈{c,s}

∫
i
dx ei (x)

∂ρ
(0)
i (x)

∂p
− θH (p − 1)

∂E1

∂p
− θH (p − p2)

∂E2

∂p
. (8.84)

Without bulk magnetic field (B = 0) we can use the resulting simplifications in the structure
of the integral equations (see Section (6.B)) to obtain

〈n1〉 = − θH (p − 1)
∂E1

∂p
− θH (p − p2)

∂E2

∂p
− 1

2

∫ Q

−Q
dk κ(k) γp(k)

− 1

2

∫ Q

−Q
dk cos k κ(k)


∂
∂p

(
G2u−2t

2u (sin k)+ G2u+2t
2u (sin k)

)
1 < p < p2

∂
∂p (̃a2t (sin k)− ã2t−4u(sin k)) p > p2

(8.85)

where (y + z > 0)

γp(k) = (p2 + 1) cos k − 2p

π (p2 − 2p cos k + 1)2
,

Gz
y(x)=

∫ ∞
−∞

dω

2π

exp(iωx − |ω|z/2)

2 cosh(ωy/2)
.

(8.86)

In the limit of p→∞ only the first two terms survive and we obtain the expected result
〈n1〉 → 2 for an infinitely strong attractive boundary potential. Some numerical results on
the p-dependence of the occupation of the boundary site are presented in figure 8.3.

8.3.4 Finite-size corrections to the energy of the open Hubbard chain

The calculation of the L−1 corrections to the energies of the ground state and low-lying ex-
citations can be performed following the method of Woynarovich [487] as presented above.
Asakawa and Suzuki [24] computed the spectrum of low-lying states of the open Hubbard
chain for p < 1, this result is easily generalized to arbitrary strength of the boundary po-
tential [49]. The result is a refinement of equation (8.81) for the ground state energy

E0 = Lu + LeGS + fGS − π

24L
(vc + vs) (8.87)

and the following expression for the finite-size energies of the low-lying excitations

�E(�N) = E − E0

= πvc

L

{
1

2 det2(Z )
[(�Nc − θc(p))Zss − (�Ns − θs(p))Zcs]2 + N+c

}
+πvs

L

{
1

2 det2(Z )
[(�Ns − θs(p))Zcc − (�Nc − θc(p))Zsc]2 + N+s

}
.

(8.88)

These expressions should be compared to the corresponding ones in equations (8.24) and
(8.36) for periodic boundary conditions: The vi are again the Fermi velocities of the low
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Fig. 8.3. Ground state expectation value of n1 for the open Hubbard model in zero magnetic field as
a function of the boundary potential p for (a) u = 1 and several electron densities; fixed density (b)
nc = 0.1, (c) nc = 0.5 and (d) nc = 0.95 and several values of u [49].

lying-charge and spin excitations. Due to the slightly different definition of the densities in
the open boundary case they are given by πvi = e′i (X0,i )/r (∞)

i (X0,i ) here. The L−1-term in
(8.87) is the leading finite-size correction to the ground state energy of the Hubbard model
with open boundary conditions. It does not depend on the strength of the boundary potential
p but has a different universal numerical prefactor than in the periodic case (8.24).

The numbers N+i in (8.88) are non-negative integers counting the number of particle
hole excitations at the Fermi points (due to the symmetrization of the Bethe Ansatz roots
there exists a single Fermi point for each degree of freedom). Zi j are the elements of the
dressed charge matrix given in terms of the integral equations (8.29), identical to the case
of periodic boundary conditions, and �Nc = N − Lnc, �Ns = M − Lm are the changes
in the numbers of electrons and down-spins as compared to the values obtained from the
corresponding densities of the ‘reference state’, defined through

nc = 1

2

∫ Q

−Q
dk r (∞)

c (k), m = 1

2

∫ A

−A
dλ r (∞)

s (λ) . (8.89)
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Following Ref. [49] we compute nc and m from the leading order terms in L only. This
implies that one has to chose

�Ni ≡ θi (p), i ∈ c, s (8.90)

in the ground state corresponding to a given choice of the boundary potential p. These
phase shifts are a consequence of the L−1 terms (8.78) and (8.79) in the driving terms of
the integral equations for the root densities. They read

θc(p)= 1

2

∫ Q

−Q
dk ρ(∞)

c (k)− 1

2
+ θH (p − 1)+ θH (p − p2)

θs(p)= 1

2

∫ A

−A
dλ ρ(∞)

s (λ)− 1

2
+ θH (p − p1) .

(8.91)

Putting things together the finite-size spectrum of the open-boundary Hubbard chain can
be written in the following manifestly particle-hole symmetric form

�E(�N) = E − E0 = πvc

L

{
1

2 det2(Z )

[
�Ñc Zss −�Ñs Zcs

]2 + N+c

}
+πvs

L

{
1

2 det2(Z )

[
�Ñs Zcc −�Ñc Zsc

]2 + N+s

}
(8.92)

where �Ñi = �Ni − θi (p) now denotes the change in charge and spin as compared to
the ground state, respectively (see also [149, 478]). There is no equivalent of the quantum
numbers Di in the finite-size spectrum of the periodic chain (8.36), the open boundaries do
not allow for a non-zero current.

8.4 Relation of the dressed charge matrix to observables

As shown above, the finite size corrections in the spectrum of the one-dimensional Hubbard
model are characterized in terms of the velocity of the gapless excitations and in addition
the elements of the dressed charge matrix or its scalar equivalent when there is a single
branch of gapless excitations only. An obvious question – in particular in view of the
possible application to non integrable models – is, whether this quantity is merely a construct
appearing within the Bethe Ansatz solution or can be related to other observable quantities.
To address this question we first return to the discussion of the Hubbard model in a vanishing
magnetic field.

8.4.1 Zero magnetic field

Following Refs. [63, 145, 190, 487] one can prove the identity

1

2ρ(Q)

∂nc

∂Q
= ξ (Q). (8.93)
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This relation clearly shows that the dressed charge reveals itself in a characteristic way in
the number 2ρ(Q)∂Q of electrons added near the Fermi surface due to a change in the total
density nc.

A more physical interpretation of the dressed charge (which is directly applicable to
models in the universality class of the Hubbard model not integrable by Bethe Ansatz)
is found in its relation to certain thermodynamic coefficients [63, 191] – in this case the
compressibility of the electron gas

χc = 1

L

∂Nc

∂µ
. (8.94)

To see this, consider the finite-size corrections (8.36) to the energies again. Using the special
form of the dressed charge matrix for zero magnetic field this expression becomes

�E(�N,D) = 2π

L

[
vc

(
�N 2

c

4ξ (Q)2
+ ξ (Q)2

(
Dc + Ds

2

)2

+ N+c + N−c

)

+ vs

(
(�Ns − 1

2�Nc)2

2
+ D2

s

2
+ N+c + N−c

)]
+ o

(
1

L

)
. (8.95)

Now let us change the ground state configuration under consideration by adding electrons
while keeping zero magnetization, i.e. �Nc = 2�Ns and Dc = Ds = 0. This state is ac-
tually the ground state of the system with Nc +�Nc electrons. From (8.95) we find the
change in the ground state energy due to this change of the electron number to be

�E = πvc

2L

1

ξ (Q)2
(�Nc)2. (8.96)

To express this change in terms of the compressibility (8.94) we first have to separate the en-
ergy in the contribution of a micro-canonical ensemble and the contribution of the chemical
potential E = Ẽ − µNc. Expansion of this quantity in powers of �Nc and comparison to
(8.96) yields the thermodynamical relation µ = ∂ Ẽ/∂Nc and the desired relation between
the dressed charge and the compressibility:

ξ (Q)2 = πvcχc. (8.97)

An equivalent expression has been established for the 1D Bose gas with δ-repulsion [191].

8.4.2 Half-filling

In a completely analogous way we can express the dressed charge ξs(A) from equation (8.55)
in terms of a thermodynamical exponent, in this case the magnetic susceptibility

χ (B) = ∂m

∂B
. (8.98)

To do so consider the change in the ground state energy of the system due to a change in
the magnetization �m = −�Ns/L . Comparison of the result from the finite size scaling
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analysis (8.54)

�E = πvs

2L

1

(ξs(A))2
(�Ns)2 (8.99)

with the one obtained from an expansion of �E = �(Ẽ − L Bm) with respect to �m we
find

ξs(A)2 = πvsχ (B). (8.100)

(Here we have used that ∂ Ẽ/∂m = L B). Again this relation is equivalent to the one found
in the isotropic Heisenberg antiferromagnet [63].

8.4.3 Generic case

In the previous sections we have shown the importance of the dressed charge matrix Z
(8.29) for the description of the low-energy behaviour of the Hubbard model. In addition
we have obtained relations for the dressed charge that allow for a physical interpretation
in several limiting cases (8.93), (8.97), (8.100). In this section we want to generalize these
relations to the case with two degrees of freedom (i.e. spin and charge). First of all it is
straightforward to generalize (8.93) to a matrix situation [145, 216, 487]:

1

2ρ j (X j )

∂ni

∂X j
= Zi j . (8.101)

As before, the dressed charge matrix Z governs the characteristic changes of the distribution
functions for charges and spin waves at the Fermi surface due to changes of the density and
magnetization.

Now let us try to find a generalization of equations (8.97) and (8.100) where the dressed
charge was related to the compressibility and the magnetic susceptibility, respectively, to the
general case. Again we want to express the finite-size corrections (8.36) with Dc = Ds = 0

�E = π

2L
�NT (Z−1)T V Z−1�N (8.102)

in terms of thermodynamic coefficients. To do so we proceed as in Section 8.4.1 and expand

E = Ẽ − µNc − L Bm (8.103)

in small changes of the number of charges Nc and the magnetization m. To second order
this gives

�E =
(

∂ Ẽ

∂Nc
− µ

)
�Nc +

(
∂ Ẽ

∂m
− L B

)
�m

+ 1

2

∂2 Ẽ

∂N 2
c

(�Nc)2 + 1

2

∂2 Ẽ

∂m2
(�m)2 + ∂2 Ẽ

∂Nc∂m
�Nc�m . (8.104)
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Using �m = (�Nc/2L −�Ns/L) this can be compared to equation (8.102) to obtain

∂ Ẽ

∂Nc
= µ,

∂ Ẽ

∂m
= L B, (8.105)

and the desired relation for the dressed charge matrix (8.29):

π (Z−1)T V Z−1 =
(
χc
−1 + 1

4χ
−1 + η−1 −(2χ )−1 − η−1

−(2χ )−1 − η−1 χ−1

)
. (8.106)

Here the compressibility χc and the susceptibility χ have been given before, while

η = 1

L

∂Nc

∂B
= ∂m

∂µ
. (8.107)

Note that (8.106) almost solves the problem, however, since the matrix Z enters in a sym-
metric combination of Z−1 and (Z−1)T only we have found just three equations to fix the
four elements of Z .

A fourth equation can be obtained by considering a change in the boundary conditions.
Enclosing a magnetic flux in the ring on which the electrons can move leads to an additional
constant constant phase ϕ in the equations for the momenta k j of the charges

Lk j = 2π I j + ϕ +
Ns∑

β=1

2 arctan

(
sin k j − λβ

u

)
(8.108)

while leaving the equations for the rapidities of spin-waves unchanged. For small ϕ this
leads to a change in the ground state energy �E ∝ ϕ2. The momentum of this state will be

P = ncϕ. (8.109)

This is the Aharonov-Bohm effect for this system. The current is given as j(ϕ) = ∂E(ϕ)/∂ϕ.
On the other hand this change in boundary conditions corresponds to the finite-size

corrections (8.36) for an excited state with �Nc = �Ns = Ds = 0 and Dc = ϕ/2π . Hence
the change in energy can be given in terms of elements of the dressed charge matrix as

�E(ϕ) = 1

2πL

(
vc Z2

cc + vs Z2
cs

)
ϕ2. (8.110)

This is also related to an observable quantity [39, 395, 510].
To conclude, we have derived a set of equations (8.106), (8.110) that relates the elements

of the dressed charge matrix to observable quantities such as thermodynamic coefficients
and velocities of spin waves and charge density waves. Hence, the complete spectrum of
gapless low-lying energies of the 1D Hubbard chain can be determined by taking cer-
tain combinations of these quantities. We believe that these relations continue to hold for
one-dimensional electron systems with more general interactions.



Appendices to Chapter 8

8.A Wiener Hopf calculation of the dressed charge

In the analysis of the zero temperature properties of the one-dimensional Hubbard model
we are frequently faced with the problem that certain quantities of physical interest are
given in terms of a function f (x) which is a solution of a linear Fredholm type integral
equation on some interval [−X, X ] on the real axis (see e.g. Appendix 5.B). The kernel
of these integral operators is usually well behaved. For finite X these equations have to be
solved numerically as outlined in Appendix 6.A. Only for X →∞ an analytic solution for
f (x) is possible by Fourier transformation which is very useful to compute quantities which
depend on f (x) for |x | � X . The dressed charge, however, is an example for a quantity
for which we need to know the value of the function f on the boundary X of the interval.
Again for finite X , this can be efficiently computed numerically. For very large X (including
X →∞) an analytical calculation of f (X ) is possible using a perturbative scheme based
on the Wiener Hopf method, introduced by Yang and Yang [495] to study the ground state
properties of the XXZ model (see Chapter 17.2).

8.A.1 Weak coupling limit of the dressed charge in zero magnetic field

We now want to compute the value of ξ (z0) from (8.43) in the limit of large z0 which
determines the finite size spectrum of the Hubbard model below half-filling without external
magnetic field in the weak coupling limit u → 0. This equation is of the type (17.21)
discussed in Chapter 17.2 with

K (z) = −R(z) , K̄ (ω) = − exp(−2|ω|) (8.A.1)

and f∞(x) ≡ 2. The Wiener-Hopf factorization (17.33) of 1− K̄ (ω) is

G−(ω) = G+(−ω) = 1√
2π

�

(
1

2
+ iω

π

)(
iω

πe

)−iω/π

. (8.A.2)

294
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For z0 sufficiently large we can solve the integral equation by means of a series expansion
of f = g0 + g1 + . . . with gi satisfying the Wiener-Hopf integral equations

g0(z)−
∫ ∞

0
dz′ K̄ (z − z′)g0(z′)= 2,

g1(z)−
∫ ∞

0
dz′ K̄ (z − z′)g1(z′)= ∫∞

0 dz′ K̄ (2z0 + z + z′)g0(z′)
(8.A.3)

and so forth. The solution of the equation for g0 is

g+0 (ω) = 2i
G−(0)

ω + i0
G+(ω). (8.A.4)

Hence the result for the dressed charge ξ (z0) in the limit z0 →∞ is

lim
z0→∞

ξ (z0) = g0(z = 0) = −i lim
ω→∞ωg+0 (ω) =

√
2 . (8.A.5)

Similarly, we find for the next order in the expansion above:

g+1 (ω) =
√

2i

[
[G−(ω)]2

ω − i0
exp (−2iz0ω − 2|ω|)

]+
G+(ω) (8.A.6)

where

[ f (ω)]+ = i

2π

∫ ∞
−∞

dω′
f (ω′)

ω − ω′ + i0
. (8.A.7)

Combining these results we find

g1(z = 0) = −i lim
ω→∞ωg+1 (ω)

= −
√

2

2π2

∫ ∞
0

dt

t
sin 2π t �2

(
1

2
+ t

e

)(
t

e

)−2t

exp(−2π z0t)

≈ −
√

2

2π z0
+O

(
1

z2
0

)
(8.A.8)

which together with (8.A.4) leads to the expression (8.49) for the dressed charge in the
weak coupling limit. Application of the same method to the integral equation for the charge
density (6.B.5) would allow to express the corrections to the zero coupling result in terms
of the charge density rather than z0 = sin Q/u.

8.A.2 Solution of the strong coupling equations for small B

The integral equations (8.58),(8.61) and (8.62) derived in the strong coupling limit are of
the form discussed in Chapter 17.2 with

K̄ (ω) = 1

1+ exp(2|ω|) . (8.A.9)
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Hence the decomposition of 1− K̄ (ω) is just given by the inverse of the functions G± in
equation (8.A.2).

The calculation of the dressed charge ξss(�0) is completely analogous to the weak cou-
pling limit above, resulting in

ξss(�0) = 1√
2

(
1+ 1

2π�0
+O

(
1

�2
0

))
. (8.A.10)

The B-dependence of �0 can be computed from the condition ε1(�0) = 0: from (8.61) we
have

fε,∞(ω) = 2π Bδ(ω)− e−iω�0
π Bc

coshω
,

giving

Q+(ω) = − B

i

G−(0)

ω + i0
+ e−π�0/2 π BcG−(−iπ2 )

i(ω + iπ/2)
+O(e−3π�0/2). (8.A.11)

The second equation in (17.37) gives

ε1(�0)=−i lim
ω→∞ω f +ε (ω) = B G−(0)− e−π�0/2π BcG−

(
−i

π

2

)
⇒ �0 = 2

π
ln

(
B1

B

)
, B1 = Bc

√
π3

2e
.

(8.A.12)

Similarly, the magnetization can be computed from (8.58) where fσ,∞(ω) =
nc exp(−iω�0)/ coshω. Proceeding as above we obtain

m = f +σ (ω = 0) = 2nc

√
2π

e
e−π�0/2

= 2nc

√
2

πe

B

B1
+O

(
B

B1 ln(B1/B)

)
≈ 2nc

π2

B

Bc
.

(8.A.13)



9

Asymptotics of correlation functions

Any experimentally measurable quantity can be expressed in terms of a suitable correlation
function. As we have seen in the previous chapters, the spectrum of the one-dimensional
Hubbard model can be studied in great detail, including the complete dependence on a
homogeneous chemical potential and the magnetic field in a system of arbitrary size L –
either by the analysis of certain integral equations for the behaviour in the thermodynamic
limit and for the leading finite-size corrections or by solving the discrete Lieb-Wu equations
for given L numerically. From the spectrum certain one point functions such as the overall
electron density or magnetization can be computed within the framework of the Bethe
Ansatz.

Expectation values of more general operators, in particular two point correlation functions

〈O†(τ, x)O(0, 0)〉 (9.1)

are not accessible by means of the methods developed above, not even if we restrict ourselves
to the most interesting case of the asymptotic behaviour at large distances.

9.1 Low energy effective field theory at weak coupling

9.1.1 Continuum limit

For a well established approach to the computation of correlation functions such as (9.1) we
may use the continuum limit of the Hubbard model introduced in Appendix 2.B in the limit
of weak coupling. The idea is to restrict oneself to the low-energy modes of the system,
which dominate the long distance asymptotics of the correlators.

For the free part of the Hubbard Hamiltonian, equation (2.12), the ground state is obtained
by filling all negative energy modes, i.e. all single particle states with momenta in the interval
[−kF , kF ] (we consider the case of a vanishing magnetic field, so kF↑ = kF↓ = πnc/2).
Hence, all low-lying excitations can be constructed by taking into account the modes with
wave number close to the Fermi momenta ±kF .

As we have seen from our discussion of the exact solution above, the nature of the exci-
tations of the one-dimensional Hubbard model is completely different from what we know
from the free electron system, even for arbitrarily weak interaction. Still, following a stan-
dard perturbative approach we may assume – as long as the interaction is sufficiently weak
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such that only states close to the Fermi points are mixed with the ground state – that only these
modes will be important. Then we can decompose the Fermi fields (2.B.5) into components

�σ (x) = lim
a0→0

cnσ√
a0
= exp (ikF x) Rσ (x)+ exp (−ikF x) Lσ (x) . (9.2)

Here a0 is the lattice spacing and x = na0. The right- and left-moving Fermion fields Rσ

and Lσ have dimension (length)−1/2 and are slowly varying on the scale of the lattice
spacing. Linearizing the single particle spectrum in the vicinity of the Fermi points and
neglecting oscillating terms we obtain the following effective low-energy model (see
e.g. [8]) from the continuum Hamiltonian (2.B.18)

H = H0 + Hint

H0 = vF

∫
dx :

(
L†

σ (x)i∂x Lσ (x)− R†
σ (x)i∂x Rσ (x)

)
:

Hint = g

2

∫
dx

{
:
(

R†
↑(x)R↑(x)+ L†

↑(x)L↑(x)
) (

R†
↓(x)R↓(x)+ L†

↓(x)L↓(x)
)

:

− : R†
↑(x)R↓(x)L†

↓(x)L↑(x) : − : R†
↓(x)R↑(x)L†

↑(x)L↓(x) :
}

. (9.3)

Here H0 describes noninteracting massless relativistic fermions with Fermi velocity

vF = ∂ε(k)

∂k

∣∣∣∣
k=kF

= 2ta0 sin(kF a0) , (9.4)

and : O : denotes normal ordering of the operator O. The coupling constant in Hint is given
by

g = 2Ua0 = 8tua0 . (9.5)

At half filling, i.e. kF a0 = π/2, an additional non-oscillating interaction term describing
Umklapp processes is present:

H h.f.
int =

g

4

∫
dx e−4ikF xεαβ R†

α(x)R†
β(x) εγ δLγ (x)Lδ(x)+ h.c. (9.6)

This term describes scattering processes involving a finite momentum transfer equal to
the reciprocal lattice vector 2π/a0, e.g. scattering of two holes located in the vicinity of
−kF (at half-filling) off two particles located close to kF . An example of an Umklapp
scattering process is depicted in figure 9.1. Below half filling Umklapp processes involve
high-energy degrees of freedom as is apparent from Fig.9.1 and as a result play no role
in the low-energy effective theory. On the other hand, at half filling Umklapp processes
invole only modes in the vicinity of the Fermi points because 4kF a0 = 2π .

9.1.2 Bosonization and separation of spin and charge degrees of freedom

We now restrict ourselves to the discussion of the less than half-filled Hubbard model
and discuss the implications of the additional interaction (9.6) later (see Chapter 10).
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Fig. 9.1. Umklapp scattering processes below (a) and at (b) half-filling.

Examining the interaction terms in (9.3) one finds that the Fermi fields appear in cer-
tain quadratic combinations only. These bosonic operators are the chiral components of the
U (1) charge currents j̄ and j1

j̄(x) = 1

2
:
(

L†
↑(x)L↑(x)+ L†

↓(x)L↓(x)
)

: ,
(9.7)

j(x) = 1

2
:
(

R†
↑(x)R↑(x)+ R†

↓(x)R↓(x)
)

: ,

and the SU (2)-spin currents J̄

J̄ z(x) = 1

2
:
(

L†
↑(x)L↑(x)− L†

↓(x)L↓(x)
)

: ,
(9.8)

J̄+(x) = (
J̄−(x)

)† = L†
↑(x)L↓(x) .

The components of the spin-currents for right movers, J, are obtained by substituting L →
R.

The commutators between charge and spin currents vanish as do the commutators of
currents with different chiralities. Commutators of e.g. charge currents of the same chirality,
however, contain anomalous terms due to the presence of the Fermi sea2

[ j(x), j(y)] = − i

2π
δ′(x − y) . (9.9)

The method of ‘Bosonization’ makes use of the fact that the same commutator relations
can be realized in terms of bosonic operators alone [87, 309, 318, 321, 379]. We refer the
1 ‘:’ denotes normal ordering of point-split expressions [5].
2 For a derivation see Appendix 10.A.
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reader to the textbooks [139, 168] and reviews [7, 385, 473] for introductions and detailed
treatments of this important subject. Our following discussion is quite brief; some further
details can be found in Chapter 10. Introducing two canonical bosonic fields �c,s(z, z̄) =
ϕc,s(z)+ ϕ̄c,s(z̄) (we use complex space time coordinates z = τ − i x , z̄ = τ + i x) together
with their holomorphic and antiholomorphic components ϕc,s and ϕ̄c,s we find that relations
such as (9.9) can be obtained from the following expressions for the currents

j = i

4π
∂z�c ,

J z = i

4π
∂z�s ,

J± = 1

2π
exp {±iϕs(z)} , (9.10)

and similar ones for j̄ , J̄. Furthermore, the fermionic fields can be written as bosonic
exponents with ϕσ = (ϕc + fσ ϕs)/

√
2

R†
σ =

ησ ei fσ π/4

√
2π

exp

(
i√
2
ϕσ

)
, L†

σ =
ησ ei fσ π/4

√
2π

exp

(
− i√

2
ϕ̄σ

)
, (9.11)

where f↑ = 1 = − f↓ and ησ are Klein factors which fulfil {ηa, ηb} = 2δab and ensure
anticommutation relations between the Fermi fields. An immediate consequence of this
observation is that correlation functions computed for the free fermionic theory defined by
H0 in (9.3) are identical to the ones computed for the corresponding bosonic operators in
the free bosonic theory

H0 = vF

16π

∑
i=c,s

∫
dx

[
(∂x�i )

2 + (∂x�i )
2
]
. (9.12)

Here �i = ϕi − ϕ̄i are known as ‘dual’ fields.
Furthermore, in this representation the interaction part of the Hamiltonian (9.3) separates

into commuting parts depending only on charge and spin currents, respectively. Hence, in
its bosonized form the continuum Hamiltonian is a sum of two contributions H = Hc + Hs

describing charge and spin degrees of freedom, respectively.
The charge part

Hc = vF

16π

∫
dx

[
(∂x�c)2 + (∂x�c)2

]+ g

2

∫
dx :

(
j + j̄

)2
: (9.13)

is known as the Luttinger Hamiltonian and is also obtained in the continuum limit of the
XXZ model [189]. Bosonizing the products of U(1) currents (see Chapter 10) we obtain

Hc = vF

16π

∫
dx

[
(∂x�c)2 +

(
1+ g

2πvF

)
(∂x�c)2

]
. (9.14)
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The Hamiltonian may be simplified further by following e.g. Ref. [7]. Defining rescaled
fields3

�c =
√

Kc �′c , �c = 1√
Kc

�′c , Kc = 1√
1+ g/2πvF

, (9.15)

we may rewrite (9.14) as

Hc = vc

16π

∫
dx

[(
∂x�

′
c

)2 + (
∂x�

′
c

)2
]
. (9.16)

Here Kc is known as the Luttinger liquid parameter and the charge velocity vc is given by

vc = vF

Kc
! vF + g/4π . (9.17)

We note that (9.17) agrees with the exact result for the charge velocity in the Hubbard model
to linear order in u. The spin-part of the Hamiltonian is of the form

Hs = vF

16π

∫
dx

[
(∂x�s)2 + (∂x�s)2

]
− g

2

∫
dx

[
: J z J z : + : J̄ z J̄ z :

]
− g

2

∫
dx

[
: J · J̄ : + : J̄ · J :

]
.

(9.18)

It is shown in Appendix 10.A that (9.18) can be rewritten in a manifestly SU (2) symmetric
form

Hs =
∫

dx

(
2πvs

3

{
: J · J : + : J̄ · J̄ :

}− g

2

{
: J · J̄ : + : J̄ · J :

})
, (9.19)

where the velocity vs of the spin excitations is renormalized by the interaction as

vs ! vF − g/4π . (9.20)

The terms proportional to vs form the SU (2)1 Wess-Zumino-Novikow-Witten (WZNW)
model. The remaining interaction term coupling right and left currents is a marginal pertur-
bation (i.e. has scaling dimension d = 2). From the renormalization group (RG) equations
for the theory one finds that the relevance of the perturbation depends on the sign of the cou-
pling constant g [12,506] (see also in Chapter 10). For repulsive interactions, i.e. g > 0, it
is marginally irrelevant and can be neglected for the discussion of the low-lying excitations.
Hence, the Hamiltonian describing the spin sector is simply

Hs = vs

16π

∫
dx

[
(∂x�s)2 + (∂x�s)2

]
. (9.21)

On the other hand, the continuum limit of the attractive Hubbard model, i.e. g < 0 has to
be described by a completely different field theory: in this case the marginal perturbation
due to the current-current interaction in the spin sector is marginally relevant – in complete
correspondence with the appearance of a spectral gap for spin excitations known from the
Bethe Ansatz analysis of the model.

3 The dual field must be rescaled in the opposite way to �c in order to maintain canonical commutation relations. This is because
the dual field can be expressed in terms of the momentum �c conjugate to �c as �c(t, x) = −8π

∫ x
−∞ dx ′ �c(t, x ′).
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Similarly, the effective field theory for the repulsive Hubbard model at half filling is
different from the one discussed above: as we have found before the Hubbard model in this
case has an enlarged symmetry (see Section 2.2.5) and is a Mott insulator with a spectral
gap for charge excitations (denoted as phase V in Section 6.3). In the continuum limit the
additional interaction term (9.6) has to be taken into account. Together with the remaining
charge terms (9.13) this allows to bring the Hamiltonian for the charge degrees of freedom
into an (η-) SU (2)-invariant form similar to (9.19) but with opposite sign of the remaining
current-current interaction [8]. This results in a marginally relevant perturbation of the
charge Hamiltonian which is responsible for the opening of the Mott gap. These matters
are discussed in some detail in Chapter 10.

9.1.3 Bosonization results for correlation functions

For the repulsive Hubbard model below half-filling we have reformulated the model as
a product of two massless bosonic theories for the charge and spin degrees of freedom
with dispersions ω(q) = vc,s |q|, respectively. This ‘spin-charge separation’ holds for states
near the Fermi level at weak coupling and allows to compute correlation functions of the
Hubbard model. For the case of zero magnetic field this extension of the Luttinger liquid
approach has been used by H. J. Schulz [382, 383] and others [70, 372] to compute the
critical exponents of correlation functions for the Hubbard model.

As an example, the electronic Green’s function computed in this approach reads

G��† (τ, x) ∼
(

exp(−ikF x)√
(vcτ + i x)(vsτ + i x)

+ c.c.

)[
1

v2
cτ

2 + x2

]α/2

. (9.22)

The exponent for the spin-contributions to this correlation function are independent of the
interaction by virtue of the SU (2) symmetry while for the charge contributions we find
an interaction-dependent contribution, which is equal to α ! (g/8πvF )2 at weak coupling
(and thus really out of the range of the simple weak-coupling analysis performed above).
Equation (9.22) is derived as follows. We start by rewriting the bosonization formulas (9.11)
in terms of the rescaled fields �′c = ϕ′c + ϕ̄′c, �′c = ϕ′c − ϕ̄′c, see equation (9.15). We have

ϕc = 1

2

[
ϕ′c
(√

Kc + 1√
Kc

)
+ ϕ̄′c

(√
Kc − 1√

Kc

)]
,

ϕ̄c = 1

2

[
ϕ′c
(√

Kc − 1√
Kc

)
+ ϕ̄′c

(√
Kc + 1√

Kc

)]
. (9.23)

The left-moving Fermi field is then bosonized as

Lσ (τ, x) = ησ e−i fσ π/4

√
2π

e
i
4

[
ϕ′c

(√
Kc− 1√

Kc

)
+ϕ̄′c

(√
Kc+ 1√

Kc

)]
e

i fσ
2 ϕ̄s (τ,x). (9.24)

Now 〈Lσ (τ, x) L†
σ (0, 0)〉 and 〈Rσ (τ, x) R†

σ (0, 0)〉 are calculated by evaluating the two-point
functions of chiral vertex operators along the lines of Appendix 10.C. This leads to the result
(9.22).
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While the result (9.22) has been derived here for small values of the coupling constant
g only, it will be shown below, that – as a consequence of the absence of spectral gaps –
the result (9.22) is valid universally for the repulsive Hubbard model below half-filling.
The interaction strength merely determines the numerical values of the velocities vc,s and
the exponent α. These quantities can be calculated directly from the Bethe ansatz as we will
see in what follows.

9.2 Conformal field theory and finite size scaling

In the previous section we have obtained some results for the asymptotic behaviour of
correlation functions by means of an analysis of the low energy effective field theory in
the limit of weak coupling. On the other hand we know from the Bethe Ansatz solution
that there is no phase transition induced by the interaction in the repulsive Hubbard model
below half-filling, in particular the spectrum remains gapless although the nature of the
excitations in presence of the interaction is quite different from what is known for free
electrons.

More general, depending on filling and external magnetic field the repulsive Hubbard
model is found in several phases with one or two massless excitations at zero temperature,
i.e. it has various quantum critical points at T = 0. In such a situation we generally expect
correlation functions to decay as power laws at large distances due to scale invariance.
Furthermore, the critical behaviour should not depend on the details of the underlying
microscopic Hamiltonian but rather be a universal property shared by a large family of
models driven to the same fixed point under renormalization.

Much progress in the description of critical phenomena in 1+ 1 dimensional quantum
systems has been made by the extension of simple scaling arguments through application
of the concepts of conformal quantum field theory [51]. Most important in the context of an
exactly solvable model such as the one-dimensional Hubbard model is the existence of one
to one relations between the spectrum of low-lying excitations – which we can compute
with arbitrary precision from the Bethe Ansatz – and quantities related to the universality
class of the system which contain all the information needed to describe the asymptotic
behaviour of correlation functions.

9.2.1 Universality classes

Due to conformal invariance, the universality class of a Lorentz-invariant theory (i.e. a
model with a single ‘velocity of light’ v) is uniquely described by a single dimensionless
number c – the central charge of the underlying Virasoro-algebra. The value of c can be
extracted from the universal finite size scaling behaviour of the ground state energy of the
model [6, 62, 75]

E0 − Lε0 = − π

6L
vc + o

(
1

L

)
(9.25)
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for periodic boundary conditions and

E0 − Lε0 − f0 = − π

24L
vc + o

(
1

L

)
(9.26)

for a conformal field theory subject to open boundary conditions. Here L is the size of the
system, E0 is the ground state energy of the finite system, ε0 is the energy density of the
ground state of the infinite system and f0 is the surface energy of the system with open
boundaries. v is the Fermi-velocity. The same mechanism is the origin of a universal term
in the low temperature expansion of the free energy density of the model (β = 1/kB T )

f = ε0 − π

6β2

c

v
. (9.27)

Note that the expression (9.25) is exactly of the form (8.53) found for the leading finite-size
corrections to the ground state energy of the repulsive Hubbard model at half filling where
only the charge-neutral spinon excitations are gapless. Hence conformal invariance implies
that the central charge is c = 1 in this phase [489]. This corresponds to a Gaussian model of a
single free boson as is well established and at the heart of the Bosonization method. A similar
situation arises in the attractive Hubbard model. Bogoliubov and Korepin have used this
fact to compute the critical exponents from the finite-size corrections to the spectrum [65].

Our generic results (8.24) and (8.87) for the finite size scaling of the ground state energy of
the repulsive Hubbard model below half-filling, however, do not fit into this simple picture.
This was to be expected since we were dealing with a model having two branches of low-
lying excitations with different Fermi velocities. Assuming, however, that charge and spin
excitations are independent of each other we can interprete the scaling of the ground state
energy in the framework of conformal quantum field theory as the result of a critical theory
based on a product of two Virasoro algebras each having central charge c = 1 [140, 141].
The same interpretation can be drawn from the comparison of the conformal prediction
(9.27) with the low-temperature expansion of the free energy of the Hubbard model (see
equation (13.207) below). While this separation into two independent CFTs appears trivial
for the discussion above (where we simply count critical degrees of freedom) it has dramatic
consequences for correlation functions (9.1):

As we have seen in Chapter 7 the nature of the low-lying excitations in the Hubbard model
changes when we modify the parameters of the model: the holons and spinons which make
up the excitation spectrum at vanishing magnetic field change into fermionic quasi-particles
and magnons near the saturation field. Hence the decomposition of a physical operator into
its constituents from the two conformal field theories will depend continuously on these
parameters. This has immediate consequences on the analytic properties of the correlation
functions: instead of simple quasi particle poles we shall find branch cuts with properties
depending on the electron density, magnetic field and interaction strength – as is already
indicated in the perturbative result (9.22) for the Green’s function at weak coupling.

Unfortunately, for a CFT with central charge c ≥ 1 the critical exponents related to these
singularities are not fixed by universality. If no additional constraints – e.g. due to symmetry –
are present one has to analyze the finite size scaling of the low-lying excitations (those
becoming gapless in the thermodynamic limit) of the one-dimensional quantum system in
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addition to that of the ground state energy to obtain information on the precise nature of
these singularities.

9.2.2 Low-lying excitations and correlation functions

As a consequence of global scale invariance in a Lorentz invariant system without an
internal scale e.g. due to a spectral gap, a correlation function such as (9.1) has to decay
algebraically. In the simplest case the two-point correlation functions – when considered in
the entire complex plane – decay as simple power laws (zi = vτi − i xi )

〈O†(z1, z̄1)O(z2, z̄2)〉 ∝ 1

(z1 − z2)2�− (z̄1 − z̄2)2�+ ≡ D(z1, z2)D̄(z̄1, z̄2) . (9.28)

Conformal invariance extends the invariance under global scale transformations (i.e.
translations and rotations) to local ones. This has two consequences: first it allows to classify
all possible universality classes as discussed above, second it allows to relate geometries
different from the extended complex plane to each other. Under a conformal transformation
z → w = w(z) the (holomorphic part of the) correlation function (9.28) becomes

D(z1, z2) = 1

(w(z1)− w(z2))2�−

(
∂w

∂z1
· ∂w
∂z2

)�−

(9.29)

and similarly for the antiholomorphic part D̄(z̄1, z̄2). The additional local factors appearing
in the correlation functions may be interpreted as the transformation properties of the
corresponding operators O. A particularly useful transformation is

w(z) = exp(2π z/L) , (9.30)

which maps the strip −L < Im(z) ≤ 0 to the complex plane [6, 62, 74]. Equation (9.29)
enables us to compute the correlation function of finite quantum chains of length L or
finite temperature correlation functions at T = i/L from the simple infinite system, zero
temperature expression (9.28):

D(z1, z2) =
[

π/L

sinh
(
π
L (z1 − z2)

)]2�−

. (9.31)

For a chain of length L , i.e.

z = vτ − i x, −∞ < τ <∞, −L < x ≤ 0 , (9.32)

we may expand equation (9.31) for large values of τ12 = τ1 − τ2

D(z1, z2)D̄(z̄1, z̄2) =
(

2π

L

)2(�++�−)

×
∑
n,m

Cnm exp

{
−2πv

L
(d + n)τ12

}
exp

{
−2π i

L
(s + m)x12

}
(9.33)
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where we have introduced the scaling dimension d = �+ +�− and conformal spin s =
�− −�+ of the operator O.

A similar expression for this quantity can be obtained formally for a system with pe-
riodic boundary conditions with the Hamiltonian as the generator of translations in the
time direction in a transfer matrix approach. This gives (|�〉 is the ground state of the
Hamiltonian)

〈�|O†(z1, z̄1)O(z2, z̄2)|�〉 =
∑

q

〈�|O†(τ1, x1)|q〉〈q|O(τ2, x2)|�〉

=
∑

q

exp
{−Eqτ12 − i Pq x12

} |〈q|O(0)|�〉|2 (9.34)

where |q〉 are eigenstates of the Hamiltonian with energy Eq and momentum Pq . Comparing
(9.33) and (9.34) we can, in principle, determine the form factors of the operator O and,
more importantly for our subsequent analysis, obtain the following relations between the
scaling dimensions and spins of the operators in the conformal field theory and the finite
size corrections to the low-lying states in the spectrum of the Hamiltonian [75]

E N+,N−
�± − E0 = 2πv

L
(d + N+ + N−)+ o

(
1

L

)
,

(9.35)

P N+,N−
�± − P0 = 2π

L
(s + N+ − N−)+ 2DkF ,

where N+, N− are non-negative integers and 2D is the macroscopic contribution to the
momentum of the state O|�〉 in units of the Fermi momentum kF .4 Hence, each operator
O in the conformal field theory corresponds to a tower (enumerated by N±) of excited
states in the lattice model. From the lowest energy in such a tower (corresponding to
N+ = 0 = N− in (9.35)) one can read off the scaling dimension d and conformal spin s
of the corresponding so-called primary field φ�± which has particularly simple two-point
correlation functions [51, 64]

〈φ�± (τ, x)φ�± (0, 0)〉 = exp(2i DkF x)

(vτ + i x)2�+ (vτ − i x)2�−

= exp(2i DkF x)

(v2τ 2 + x2)d

(
vτ − i x

vτ + i x

)s

. (9.36)

Thus, provided that we have reliable results (either from an exact solution or by numerical
methods) on the finite size scaling of low-lying excitations in a 1+ 1 dimensional quan-
tum model with a single branch of gapless excitations we can determine the asymptotic
behaviour of correlation functions without the need of using perturbative methods. All the
effects of interactions will lead to a renormalization of the finite-size scaling properties –
or equivalently of certain thermodynamic quantities, see Chapter 8.4 – of the system. The
additional step relating these quantities to the critical exponents in correlation functions
relies on the principles of conformal invariance alone. What remains is the identification of

4 This term is not usually discussed in the field theory literature where particles on the light cone are considered.
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the operators appearing in the CFT relevant for the correlation function of a given operator
in the lattice model.

9.2.3 Extension to models with several critical degrees of freedom

While the correspondence (9.35) can be directly applied to the discussion of the phases of
the Hubbard model with a single critical degree of freedom, such as the Hubbard model
at half-filling, the generic result (8.36), (8.38) for the spectrum of low-lying excitations
of the repulsive Hubbard model below half-filling does not fit into this picture. As in the
discussion of the universality classes based on the finite size scaling behaviour of the ground
state energy in Section 9.2.1 a suitable generalization has to be found [140, 141].

Following our interpretation of the scaling (8.24) of the ground state energy as signature
of a critical theory based on a product of two Virasoro algebras we generalize (9.35) to

E(�N,D)− E0 = 2π

L

(
vc(�+c +�−c )+ vs(�+s +�−s )

)
+ o

(
1

L

)
,

(9.37)

P(�N,D)− P0 = 2π

L

(
�+c −�−c +�+s −�−s

)
+ 2DckF,↑ + 2(Dc + Ds)kF,↓ .

Comparing equations (8.36) with (9.37) we obtain unique expressions for the conformal
scaling dimensions (i.e. the sums dc,s = �+c,s −�−c,s) characteristic of the charge and spin
part of the fields in this theory as functions of the elements of the dressed charge ma-
trix (8.29). On the other hand, the comparison of the finite-size momenta (8.38) with
the corresponding expression in (9.37) only provides the sum of the conformal spins
sc,s = �+c,s −�−c,s . The additional requirement that all the dimensions �±c,s be non neg-
ative resolves this final problem (otherwise there would be unphysical divergences in the
correlation functions). This requirement is met by writing the dimensions as complete
squares [140]:

2�±c (�N,D) =
(

Zcc Dc + Zsc Ds ± Zss�Nc − Zcs�Ns

2 det Z

)2

+ 2N±c ,

(9.38)

2�±s (�N,D) =
(

Zcs Dc + Zss Ds ± Zcc�Ns − Zsc�Nc

2 det Z

)2

+ 2N±s .

In general, the individual conformal spins sc,s defined by these expressions will depend
on the system parameters and take arbitrary real values. This gives rise to the unusual
analytic properties of correlation functions in correlated one-dimensional systems. Physical
operators, however, cannot have arbitrary spin. Therefore, the combined conformal spin
sc + ss of the charge and spin part of a physical operator has to be integer or half-odd
integer. As can be seen from (8.38) this is always the case.

Finally, we modify the conformal field theory expression for the correlation function of
a primary field (9.36) to the case where these operators contain factors from two different
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sectors (such as charge and spin part of the model or ‘holon’ and ‘spinon’ operators):

〈φ�± (τ, x)φ�± (0, 0)〉

= exp
(
2i DckF,↑x

)
exp

(
2i(Dc + Ds)kF,↓x

)
(vcτ + i x)2�+c (vcτ − i x)2�−c (vsτ + i x)2�+s (vsτ − i x)2�−s

.
(9.39)

At small finite temperature T > 0 the correlation functions decay exponentially, however
with a small exponent due to the vicinity to the phase transition at T = 0. Hence, the
large distance asymptotics of correlation functions in the space like regime can still be
obtained from conformal invariance. In this case expressions of type (9.39) have to be
replaced by

exp
(
2i DckF,↑x

)
exp

(
(2i(Dc + Ds)kF,↓x

)
×

(
πT

vc sinh(πT (x − ivcτ )/vc)

)2�+c (
πT

vc sinh(πT (x + ivcτ )/vc)

)2�−c

×
(

πT

vs sinh(πT (x − ivsτ )/vs)

)2�+s (
πT

vs sinh(πT (x + ivsτ )/vs)

)2�−s
. (9.40)

This expression can be obtained from (9.39) by a conformal mapping of the complex plane
without the origin (zero temperature) onto a strip of width 1/T in time direction.

With the expressions given above we have extended the methods developed in conformal
field theory for the computation of correlation functions from finite-size spectra to models
with two or more critical degrees of freedom – the case of two branches of gapless excitations
considered here is easily generalized to more general situations (see e.g. [143, 145, 216]).

As a final remark we note that marginally irrelevant perturbations to a conformal field
theory – such as the current current interactions which we have neglected in the perturbative
analysis in Section 9.1.2 – can produce logarithmic corrections to the conformal predictions
for correlation functions [10, 137]. In the spectrum they are manifest through finite size
effects of order 1/(L ln L) in (9.25), (9.35) [75]. In principle, these can also be calculated
explicitly from the Bethe Ansatz equations, but this is beyond the scope of the present
discussion.

9.3 Correlation functions of the one-dimensional Hubbard model

In the previous section we have established relations between the correlation functions of
certain operators in the effective field theory describing the low-energy sector of a given
microscopic model and the finite-size scaling of the low-lying states in this model. This
determines the set of all possible correlation functions within the microscopic model. This
is a notable achievement, but still doesn’t address the problem one is usually faced with,
namely to compute the asymptotic behaviour of, say, the density-density correlation function
of the one-dimensional Hubbard model. The missing step would be to express a given local
operator in the microscopic model in terms of the operators appearing in the conformal
field theory (whose correlation functions we know to be (9.36) or (9.39)). This expansion
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is not known usually. Hence without additional input all one can say is that the correlation
function in the microscopic model is a superposition of contributions from all operators
appearing in the CFT with unknown – possible vanishing – coefficients.

Fortunately, the number of terms in such an expansion can be reduced drastically by
using the selection rules for the form factors 〈q|O(x)|�〉 of the microscopic operator O
appearing in (9.34).

As an illustration of this scheme let us describe how to obtain the asymptotical behaviour
of the density-density correlations

Gnn(τ, x) = 〈n(τ, x)n(0, 0)〉 (9.41)

for the repulsive Hubbard model below half filling5 in the Euclidean region: The leading
term is a constant since 〈n(τ, x)〉 = nc. Since the local density operator does not change the
number of particles we have to use (9.38), (9.39) at �Nc = �Ns = 0 for the higher terms
contributing to Gnn . The restrictions of equations (8.39) are satisfied for any integer Dc, Ds .
Hence the next terms in the asymptotic expansion of Gnn are found to be

Gnn(τ, x)− n2
c

∼ A1 cos(2kF,↑x + ϕ1)/
(

(x2 + v2
cτ

2)(Zcc−Zsc)2
(x2 + v2

s τ
2)(Zcs−Zss )2

)
+ A2 cos(2kF,↓x + ϕ2)/

(
(x2 + v2

cτ
2)Z2

sc (x2 + v2
s τ

2)Z2
ss

)
+ A3 cos(2(kF,↑ + kF,↓)x + ϕ3)/

(
(x2 + v2

cτ
2)Z2

cc (x2 + v2
s τ

2)Z2
cs

)
+ A4

x2 − v2
cτ

2

(x2 + v2
cτ

2)2
+ A5

x2 − v2
s τ

2

(x2 + v2
s τ

2)2
.

(9.42)

Here Ak are constant coefficients, ϕk unknown phases. The general expression for the
density-density correlation function reads

Gnn(τ, x) =
∑

A(Dc, Ds, N±c , N±s )

× exp(2i DckF,↑x) exp(2i(Dc + Ds)kF,↓x)

(vcτ + i x)2�+c (vcτ − i x)2�−c (vsτ + i x)2�+s (vsτ − i x)2�−s
,

(9.43)

where the sum runs over all integers Dc, Ds and nonnegative integers N±c and N±s . The
scaling dimensions are

�±c (D,N±) = 1

2
(Zcc Dc + Zsc Ds)2 + N±c ,

(9.44)

�±s (D,N±) = 1

2
(Zcs Dc + Zss Ds)2 + N±s ,

according to (9.38).

5 At half-filling there exist stronger selection rules due to theη-SU(2) symmetry which modify the resulting expression significantly,
see Section 9.3.2.
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Table 9.1. Selection rules for the conformal dimensions contributing to various
correlation functions of the repulsive Hubbard model below half-filling.

�Nc �Ns Dc Ds

Gnn = 〈n(τ, x)n(0, 0)〉 0 0 integer integer

Gz
σσ = 〈Sz(τ, x)Sz(0, 0)〉 0 0 integer integer

G⊥σσ = 〈S−(τ, x)S+(0, 0)〉 0 1 half-odd int. integer

G↑
��† = 〈�↑(τ, x)�†

↑(0, 0)〉 1 0 half-odd int. half-odd int.

G↓
��† = 〈�↓(τ, x)�†

↓(0, 0)〉 1 1 integer half-odd int.

Using the fact that the Hamiltonian of the Hubbard model is invariant under the action
of the parity operator RL (2.46) the ground state is an eigenstate of RL and, consequently,

Gnn(τ, x) ≡ Gnn(τ,−x) . (9.45)

From this property it follows that the phases ϕk in the general expression (9.42) for the
density-density correlation function actually vanish.

The general procedure outlined above is applicable for each of the phases of the Hubbard
model with gapless excitations. In each case the relevant selection rules have to be deter-
mined. A listing of the selection rules of the repulsive Hubbard model below half-filling
relevant to the two-point correlation functions of various operators is given in table 9.1. In
general this approach gives the critical exponents as functions of the entries of the matrix Z
(8.29). The numerical values of these coefficients are easily obtained by numerical solution
of the integral equations (8.31). As we have seen in Chapter 8 this matrix simplifies in
various special cases which we shall consider in more detail below.

9.3.1 Zero magnetic field

In Section 8.2.1 we have studied the finite size spectrum of the repulsive Hubbard model for
B = 0 below half-filling. As a consequence of SU (2) symmetry in the magnetic sector the
only non-universal quantity apart from the Fermi velocities was the element Zcc = ξ (z0) of
the dressed charge matrix (8.42) which has been computed analytically in various limiting
cases. This fact allows to simplify the expression for the conformal dimensions (9.38)
significantly [140, 241]

�±c =
1

2
ξ 2(Dc + 1

2
Ds)2 + 1

8ξ 2
(�Nc)2 ± 1

4
�Nc(2Dc + Ds)+ N±c ,

(9.46)

�±s =
1

4
(Ds)2 + 1

4
(�Ns − 1

2
�Nc)2 ± 1

4
(2�Ns −�Nc)Ds + N±s .

Note that ξ enters the expressions for the dimensions of the charge part of the operators
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Fig. 9.2. The critical exponents of the one-dimensional Hubbard model below half-filling for van-
ishing magnetic field (e.g. in the density-density correlation function (9.47)) are given in terms of the
number θ . Here we present θ as a function of the electron density nc for various values of u.

only – the spin sector is independent of the system parameters due to the SU (2) symmetry.6

This also implies that the conformal spins of the holon and spinon operators, sc,s = �+c,s −
�−c,s , are independent of ξ . Note though, that the individual values of sc and ss can be
different from integers or half-odd integers reflecting the fact that only the product of
the corresponding holon and spinon operators are physical fields (recall our discussion
following equation (9.38).

As an additional simplification for vanishing magnetic field, the Fermi momenta for spin
up and spin down electrons are identical kF,↑ = kF,↓ = πnc/2 ≡ kF . This leads to various
simplifications in the expressions for the correlation functions compared to the general form
given for Gnn above. Below we express the critical exponents as functions of θ = 2ξ (z0)2.
From equation (8.50) we know that for any density 0 < nc < 1 the value of θ increases
from 2 to 4 as the Coulomb repulsion u decreases from∞ to 0 (see figure 9.2).

Density correlations. From (9.42) we obtain for the asymptotic behaviour of the density-
density correlation function (we use the observation (9.45) on the parity of the correlator):

Gnn(τ, x)− n2
c ∼ A1

cos(2kF x)

|vsτ + i x ||vcτ + i x |(θ/4)
+ A2

cos(4kF x)

|vcτ + i x |θ
(9.47)

+ A3
x2 − v2

cτ
2

(x2 + v2
cτ

2)2
+ A4

x2 − v2
s τ

2

(x2 + v2
s τ

2)2
.

Because of the range of variation of θ the leading correction beyond the constant term
is the term ∝ A1 for all finite u. Unlike these oscillations with wave number 2kF which
also appear in a free electron gas, 4kF -oscillations are a consequence of the interactions,

6 More precisely, only the spin velocity depends on the system parameters.
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i.e. A2 → 0 for u → 0. In the strong coupling limit, at u = ∞, the effect of the Hubbard
interaction on electrons with different spin is identical to the Pauli exclusion principle for
electrons with the same spin. This allows an alternative description of the charge dynamics
of the Hubbard model in this limit in terms of noninteracting spinless fermions where kF

has to be replaced by 2kF [344]. Hence the amplitude A1 has to vanish in this limit and the
leading oscillating contribution to the correlation function is the term ∝ A2, namely

cos(4kF x)

v2
cτ

2 + x2
.

Spin correlations. The selection rules for the transverse spin-spin correlation function (see
table 9.1) imply

G⊥σσ (τ, x) ∼ A2kF

cos(2kF x + ϕ)

|vsτ + i x ||vcτ + i x |(θ/4)

+ A0

(
1

(vsτ + i x)2
+ 1

(vsτ − i x)2

)
(9.48)

+ A4kF

(
exp(4ikF x + ϕ′)

(vsτ + i x)2|vcτ + i x |θ + c.c

)
+ . . .

As in our argument leading to (9.45) for the density-density correlation function the trans-
formation properties of the spin operators under parity imply that

Ga
σσ (τ, x) = Ga

σσ (τ,−x) , a =⊥, z , (9.49)

and hence ϕ = ϕ′ = 0 in (9.48).
As for the density correlations above, the leading contribution asymptotically is that

at wavenumber 2kF for any non-zero u. The k = 0-behaviour of G⊥σσ is determined by
the contribution due to the choice Dc = ± 1

2 and Ds = ∓1. This leads to the conformal
dimensions �±c = 0 and (�+s ,�−s ) = (0, 1) and (1, 0) of the SU (2) spin current which is a
primary field.

In absence of a magnetic field the longitudinal and the transverse spin-spin correlations
should be identical due to the spin-SU (2) symmetry of the Hubbard model (see Chapter 2).
Simple application of the selection rules from table 9.1 for the Gz

σσ results a form identical
to that of the density density correlator (9.47) – up to the numerical values of the amplitudes.
That the expected symmetry is not transparent should come as no surprise since the presence
of the spin-SU (2) has not been used at all up to this point: in our general scheme the selection
rules for the terms contributing to the correlation function of a given local operator are
based only on the conservation of electron numbers with spins up and down. The spin-
SU (2) symmetry does lead to additional selection rules for the form factors 〈q|Sz(0)|�〉 as
compared to those of the local density. At zero magnetic field, B = 0, the ground state |�〉
of the Hubbard model is an SU (2)-singlet. The matrix elements

〈q|Sz
1|�〉 (9.50)

determine which intermediate states |q〉 can contribute to the asymptotic behaviour of
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Gz
σσ . Using the commutation relations (2.69) between the spin operators and the fact that
#S2

tot |�〉 = 0 one easily obtains (#S =∑
i
#Si = (Sx , Sy, Sz) is the operator of the total spin,

see (2.66))

#S2
(
Sz

1|�〉
) = [

#S2, Sz
1

]
|�〉 = 2 Sz

1|�〉 . (9.51)

This shows that Sz
1|�〉 is a triplet of the spin-SU (2). As a consequence, only intermediate

states which are spin-triplets and have 〈Sz〉 = 0 can contribute to Gz
σσ for B = 0. It fol-

lows from the highest-weight property (3.99) that these states are not Bethe Ansatz states!
However, due to the completeness of the Bethe Ansatz (see Chapter 4), the correspond-
ing energies are found in the 〈Sz〉 = 1-sector. Hence, the energies of the states |q〉 with
non-vanishing form factors (9.50) are obtained from the finite-size spectrum (8.36) with
(�Nc,�Ns) = (0,−1) and the allowed values for Dcs, as given by equation (8.39). To
summarize, we find that for zero magnetic field, B = 0, the selection rules for the confor-
mal dimensions contributing to the longitudinal spin correlation function Gz

σσ are – as a
consequence of the spin-SU (2) symmetry of the system and the fact that the ground state
of the repulsive Hubbard model is a spin singlet – identical to those for the transversal spin
correlation function and consequently

Gz
σσ (τ, x) = 1

2
G⊥σσ (τ, x) . (9.52)

For u →∞ the equal time correlation functions Gσσ (x) decays as x−3/2 at any filling
nc < 1. At half filling, where only magnetic excitations are gapless, a different exponent is
found as shown in Section 9.3.2 below.

Field correlator. Finally, let us compute the Green’s function G��† within the conformal
approach. Using the selection rules from table 9.1 we obtain

G��† (τ, x) ∼ A

(
exp(−ikF x)√

(vcτ + i x)(vsτ + i x)
+ c.c.

)[
1

v2
cτ

2 + x2

]α1/2

+ B

(
exp(−3ikF x)√

(vcτ + i x)3(vsτ − i x)
+ c.c.

)[
1

v2
cτ

2 + x2

]α3/2

(9.53)

+ . . . .

This is an example for the effect of the conformal spins of the charge and spin part of an
operator not being integer or half integer separately: both sc and ss are 1

4 for the first term
which produces the branch cut singularities in the correlation function. In the limit u → 0
the velocities vc and vs coincide and the singularities cancel each other producing the usual
quasi particle pole in the Green’s function.

The anomalous exponent α1 = 1/θ + θ/16− 1/2 which determines the singularity of
the term oscillating with kF is a monotonically growing function of u with α1(u = 0) = 0
and α1(u →∞) = 1

8 (see figure 9.3). Using our result (8.49) for the small-u behaviour of
ξ (z0) we find that α1 = (u/2π sin(Q))2 in agreement with the weak coupling result (9.22)
from bosonization. This result shows one of the striking consequences of the interaction
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Fig. 9.3. Anomalous exponent α1 of the kF singularity in the Green’s function (9.53) versus the
electron density nc for various values of the Hubbard interaction u.

in the one-dimensional Hubbard model – and in fact any one-dimensional system within
the universality class of the so-called Tomonaga-Luttinger liquid: according to (9.A.11) the
momentum distribution function of the electrons which is just the Fourier transformation
of the equal time field-field correlation function (9.53) has an algebraic singularity at the
Fermi points ±kF :

n(k) = 1

2
+ |k − kF |α1 sign(kF − k) for k ≈ kF . (9.54)

This is in contrast to the usual zero temperature Fermi distribution function with a step at kF

(corresponding toα1 = 0): this is a consequence of the enhancement of quantum fluctuations
in a one-dimensional quantum system due to correlations. Increasing the interaction strength
further7 does lead to even larger fluctuation effects (corresponding to larger values of α1).

Similarly as with the 4kF singularity in Gnn , the interaction gives rise to new singularities
of the Green’s function oscillating with odd multiples of the Fermi momentum kF . This is an
indication for the fact that the electrons are not the elementary excitations in the interacting
system but rather scattering states of multiple holons and anti-holons. The exponent of the
first such singularity, α3 = 1/θ + 9θ/16− 3/2, decreases from 1 to 1

8 as u goes from 0 to
∞. This result holds at any density nc below half-filling (see figure 9.4).

9.3.2 Half-filled band

From our previous analysis we know that at half filling, nc = 1, only charge-neutral exci-
tations are gapless. Therefore only these states show up in the finite-size spectra computed

7 Within the Hubbard model this is not possible beyond u = ∞. With an additional nearest-neighbour interaction, however, α1
can increase beyond 1/8 [382].
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Fig. 9.4. Anomalous exponent α3 of the 3kF singularity in the Green’s function (9.53) as a function
of the electron density nc for various values of the Hubbard interaction u.

in Section 8.2.3. The finite-size scaling of the ground state energy (8.53) and low-lying
excitations (8.54) implies that the conformal field theory describing this critical model is a
c = 1 Gaussian model of a free boson [489]. The operator dimensions are

�± = 1

2

(
Dsξs(A)± �Ns

2ξs(A)

)2

(9.55)

where ξs(A) varies between 1/
√

2 and 1 as a function of the external magnetic field. One
should note, that the momentum of the intermediate state is now given by 2DskF,↓ for states
with �Ns even but π/a0 + 2DskF,↓ for states with �Ns odd.

We start our discussion of the correlation functions at half-filling with the spin-spin
correlators which we expect to decay algebraically based on our previous findings. Again
we will express the critical exponents in terms of θs = 2ξs(A)2 which grows from 1 for
vanishing magnetic field to 2 for h = hc. Using the methods introduced above the leading
contributions to the longitudinal and transverse spin-spin correlations are found to decay as

Gz
σσ (τ, x) ∼ m2 + A1

cos(2kF,↓x)

|vsτ + i x |θs
+ A2

x2 − v2
s τ

2

(x2 + v2
s τ

2)2
, (9.56a)

G⊥σσ (τ, x) ∼ B1

cos( π
a0

x)

|vsτ + i x |(1/θs )
, (9.56b)

+ B2

(
exp(i( π

a0
− 2kF,↓)x)

(vsτ − i x)2 + c.c.

)[
1

x2 + (vsτ )2

]ν/2

,

where ν = 2− θs − 1/θs and we have used (9.49). In absence of a magnetic field the
magnetization m vanishes and we have 2kF,↓ = π/a0, θs = 1 and ν = 0. Hence the spin
correlations are isotropic and the staggered part decays like A1 cos(πx/a0)/x at equal times.
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As mentioned above, marginally irrelevant perturbations to a conformal field theory lead to
logarithmic corrections to these expressions. For example, the coefficient A1 in the equal
time spin-spin correlation functions at h = 0 has been found to be [137]

A1 ∝
√

ln |x |. (9.57)

(The same result has been obtained for the isotropic Heisenberg antiferromagnet in
Ref. [10].)

For the analysis of density correlation functions we have to extend our approach for the
computation of critical exponents from the finite-size spectrum to make full use of the full
set of symmetries present at half filling. Just using the selection rules of conservation of
numbers of electrons with spin up and down, Gnn would show the same algebraic decay as
the longitudinal spin correlator in (9.56a) with different amplitudes Ai . Using the modified
selection rules in the presence of the η-SU (2) in the charge sector at half-filling we will
now show that all the amplitudes of such algebraically decaying contributions to Gnn do
actually vanish [118]. Quantitative results on the dynamical correlation functions involving
charge degrees of freedom can be obtained in a particular continuum limit of the Hubbard
model (see Chapter 10).

At half filling the ground state |�〉 of the one-dimensional Hubbard model is an SO(4)-
singlet for magnetic field B = 0 [120, 293]. In the presence of a magnetic field the ground
state (in the half-filled band) remains a singlet of the η-pairing SU (2). From (2.80c)
the electronic density operator can be expressed in terms of the local generators of the
η-pairing SU (2) as ηz(τ, x) = 1

2 (n(τ, x)− 1). Hence the connected density correlation
function is

Gnn(τ, x) = 4〈ηz(τ, x)ηz(0, 0)〉 (9.58)

and the matrix elements

〈q|ηz
1|�〉 (9.59)

(ηz
1 is the generator of the local η-pairing SU (2) at site 1 of the lattice) determine which

intermediate states |q〉 will contribute to the asymptotic behaviour of Gnn .
The calculation of the total η-spin quantum number of the state ηz

1|�〉 is identical to
that in (9.51): the commutation relations (2.81) between the η-pairing operators and the
fact that |�〉 is a singlet under the η-pairing SU(2) imply that this state is a triplet of the
η-pairing SU (2). As a consequence, only intermediate states which are η-pairing triplets
can contribute to the correlation function Gnn at half-filling.

In Chapter 7 we have shown that only pure spin excitations are gapless in the repulsive
half-filled Hubbard model. These are all singlets of the η-pairing SU (2). Therefore the
corresponding matrix elements (9.59) vanish identically and cannot contribute in Gnn .
We conclude that the lowest-energy intermediate states with non-zero matrix elements
(9.59) are holon-antiholon scattering states with energy above the Mott-Hubbard gap. As a
result the density-density correlation function exhibits exponential decay at large distances
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for any positive u

Gnn(τ, x) ∼ exp(−αx) , x →∞. (9.60)

The determination of α(u) is an interesting open problem. On general grounds it can be
expected to be proportional to the holon gap (see Section 7.2). In the scaling limit (see
Chapter 10) this is indeed the case.

We emphasize that to establish the exponential decay of the density-density correlation
function Gnn in the above way it has been essential that:8

(i) There is an exact symmetry in the charge sector of the microscopic Hamiltonian (2.22).
For the Hubbard model this is the η-pairing SU (2). For extended versions of the
Hubbard model the existence of such a symmetry has to be established.

(ii) The ground state is a singlet of the corresponding algebra. Note that the above con-
siderations still hold in the presence of a magnetic field as the ground state (in the
half-filled band) remains a singlet of the η-pairing SU (2).

(iii) All charged (non-singlet) excitations are gapped.

If one would consider correlation functions of ‘point-split’ densities such as N (ps)
j =∑

σ c†jσ c j+1,σ the above symmetry argument does not imply the vanishing of e.g. the matrix

element 〈ST|N (ps)
1 |�〉, where |ST〉 denotes a spin-triplet excitation. Given that symmetry

does not force such matrix elements to vanish we expect them to be nonzero, which then
immediately implies an algebraic decay of the corresponding correlation function G(ps)

nn as
in (9.56a).

Analogous conclusions can be reached for spin-spin correlations in the attractive Hubbard
model. Application of the Shiba-transformation (2.59) changes the sign of the interaction
in the Hamiltonian (2.22), whereas η-pairing and spin SU (2) symmetries are interchanged.
Furthermore the ground state of the attractive Hubbard model is a spin singlet. This implies
that spin-spin correlation functions in the attractive Hubbard model decay exponentially at
large distances

Gz
σσ (τ, x) −→ exp(−βx) , x →∞ (9.61)

where β > 0 for any u < 0.

9.3.3 Magnetic field effects in the strong coupling limit

As we have seen in Section 8.2.4, the strong coupling limit of the repulsive Hubbard
model allows for a detailed study of the dependence of the excitation spectrum and hence
the critical exponents on the magnetic field. Apart from this, there exists an independent
method for the calculation of correlation functions in this limit [344,345,353]: For u →∞,
the Bethe Ansatz wave functions take a particularly simple form which allows to evaluate

8 We note that these conditions are fulfilled for the half-filled Hubbard model on a bipartite lattice in any dimension, provided
that u is larger than the critical Mott-Hubbard value [293].
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correlation functions directly. The numerical and analytical (at quarter filling and B = 0)
results obtained within this approach are in perfect agreement with the conformal field
theory approach used here.

As a most remarkable result of our investigation of the finite size spectrum in the strong
coupling limit we found that the dressed charge matrix exhibited two very different de-
pendencies on the external field. This has an interesting consequence on the conformal
dimensions (9.38) entering the expressions for the correlation functions [141]: For a small
magnetic field we obtain from (8.67)

2�±c (�N,D) =
(

Dc + 1

2
Ds ± 1

2
�Nc

)2

− 4B

π2 Bc

(
Dc + 1

2
Ds ± 1

2
�Nc

)
Ds,

2�±s (�N,D) =1

2

(
Ds ± (�Ns − 1

2
�Nc)

)2

+ 1

4 ln(B1/B)

(
D2

s − (�Ns − 1

2
�Nc)2

)
. (9.62)

Hence the magnetic field dependence of the critical dimensions for the charge-excitations
is much weaker than that of the spin-excitations. This is not surprising since the magnetic
field couples directly to the spin degree of freedom. In general, the exponents of equal
time correlators (where only the sum of �c and �s enters) will be dominated by the latter,
in time-dependent quantities, however, this effect should become observable. The (weak)
B-dependence of the charge exponents shows, however, that their spin and charge are not
completely independent. In fact, the conformal spins are dependent on the external magnetic
field. According to our discussion above this is another signature of the mutation of holons
and spinons as B varies.

The presence of a magnetic field does not change the general form of the correlators as
determined within the CFT approach, i.e. they are again a sum of terms (9.39) which have
to be selected according to the selection rules of the operator considered. We do have to
consider the Green’s functions for spin-up and spin-down electrons separately in principle.
It turns out however, that for small magnetic fields there is a simple mapping between the
various terms: The leading terms in G↓

��† are obtained from the corresponding ones in

G↑
��† by interchanging the Fermi momenta kF,↑ and kF,↓ and replacing B by −B in the

expressions for �±c .
As in the zero-field regime the leading contribution to G↑ψψ oscillates with wave number

kF,↑. Near B = 0 the exponents are according to (9.62)

2�+c =
1

16
− B

2π2 Bc
, 2�−c =

9

16
+ 3B

2π2 Bc
,

2�+s =
1

2

(
1

4 ln(B1/B)

)2

, 2�−s =
1

2
+ 1

2

(
1

4 ln(B1/B)

)2

. (9.63)
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The logarithmic field dependence of �±s cancels to first order. Fortunately, the next order
is completely fixed by the leading correction to Zss (8.67).

There is another contribution with wavenumber kF,↑ + 2kF,↓ (corresponding to Dc =
Ds = −1/2) with (again the corrections of order (ln(B1/B))−1 cancel)

2�+c =
1

16
− B

2π2 Bc
, 2�−c =

25

16
− 5B

2π2 Bc
,

2�+s =
1

2
+ 1

2

(
1

4 ln(B1/B)

)2

, 2�−s =
1

2

(
1

4 ln(B1/B)

)2

. (9.64)

This term becomes the 3kF singularity at zero magnetic field (9.53).
The leading contributions to the asymptotics of the density correlation function Gnn

beyond the constant term are found to have wavenumber 2kF,↑ (corresponding to Dc =
−Ds = −1). For small magnetic field the corresponding critical dimensions are

2�±c =
1

4
+ 2B

π2 Bc
, 2�±s =

1

2
+ 1

4 ln(B1/B)
. (9.65)

The contribution with wavenumber 2kF,↓ (Dc = 0 and Ds = −1) has the same dimensions
with B in the expression for�±c replaced by−B. As we have discussed above the amplitudes
of these contributions are known to vanish in the strong coupling limit without a magnetic
field [344].

The same terms can be expected to contribute to the longitudinal spin-spin correlation
functions Gz

σσ which – in the absence of further symmetries – has the same selection
rules as Gnn . The logarithmic field dependence in the spinon exponents �±s is the same
as the one found in the isotropic Heisenberg chain [63]. Finally, the transverse spin-spin
correlation function G⊥σσ has its leading singularity at wavenumber kF,↑ + kF,↓. We find
for the dimensions in the strong coupling limit

2�±c =
1

4
, 2�±s =

1

2
− 1

4 ln(B1/B)
for B → 0. (9.66)

In a magnetic field close to the saturation field Bc where the system becomes com-
pletely polarized the field dependence of the conformal dimensions to leading order is
given by

2�±c (�N,D) =
(

Dc ± 1

2
�Nc

)2

+ 4

π

√
1− B

Bc

(
Dc ± 1

2
�Nc

)
Ds,

2�±s (�N,D) =
(

Ds ± 1

2
�Ns

)2

(9.67)

− 2

π

√
1− B

Bc

(
Ds ± 1

2
�Ns

)(
Ds ± (�Nc − 1

2
�Ns)

)
.
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From this expression we find for the exponents of the kF↑-singularities of the Green’s
function G↑

��†

2�+c = 0, 2�−c = 1− 2

π

√
1− B

Bc
,

(9.68)

2�+s =
1

4
− 3

2π

√
1− B

Bc
, 2�−s =

1

4
+ 1

2π

√
1− B

Bc
,

and for the corresponding kF↓-singularities of the Green’s function G↓
��†

2�±c =
1

4
∓ 1

π

√
1− B

Bc
, 2�+s = 0, 2�−s = 1− 2

π

√
1− B

Bc
. (9.69)

(Here we have neglected contributions of order O(1− B/Bc)).
At B ≥ Bc a phase transition similar to the one found at half filling occurs: excitations

with spin develop a gap and the corresponding contributions to the correlation functions
decay like exponentials asymptotically. The other excitations involve only spin-up elec-
trons and remain massless. They can lead to algebraically decaying correlation func-
tions. For the Hubbard model these are identical to those of non-interacting spinless
fermions.

9.4 Correlation functions in momentum space

For experimental and other applications one is often interested in the Fourier transforms of
two-point correlation functions. Their low-energy asymptotics can be determined by Fourier
transforming the large-distance behaviour obtained above. Here we discuss the results of
such a procedure for some particular examples.

9.4.1 Spectral function

The spectral function A(ω, k) is obtained from the imaginary part of the retarded single
particle Green’s function

G(R)(ω, k) = −iθH (t)〈{c j+1,σ (t), c†1,σ }〉 , (9.70)

A(ω, k) = − 1

π
Im G(R)(ω, k)

= 1

2π

∫ ∞
−∞

dx
∫ ∞
−∞

dt eiωt−iqx
[
〈c j+1,σ (t) c†1,σ 〉 + 〈c†1,σ c j+1,σ (t)〉

]
.

(9.71)

In what follows we will evaluate the spectral function in zero magnetic field by Fourier
transforming the asymptotic form of the single-particle Green’s function. This can be done
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following Refs. [309, 323, 472] and is summarized in the Appendix to Chapter 18 of the
textbook [168]. We reproduce this discussion here for the sake of completeness. For mo-
menta k in the vicinity of kF and 3kF the dominant contribution to the Fourier transform in
(9.71) comes from the kF and 3kF harmonics of the asymptotic form of the Green’s function
(9.53). In particular, we have

A(ω, kF + q) ≈ A

2π

∫ ∞
−∞

dx
∫ ∞
−∞

dt eiωt−iqx

{
[δ + i(vct − x)]−

1
2 [δ + i(vs t − x)]−

1
2

× [
(δ + ivct)2 + x2

]− α1
2 + (t, x)→ (−t,−x)

}
, (9.72)

where δ is an infinitesimal regularization and |q| � kF . It is apparent from (9.72) that the
spectral function has the symmetry

A(ω, kF + q) = A(−ω, kF − q) . (9.73)

By virtue of (9.73) it is sufficient to determine the positive frequency behaviour of A(ω, kF +
q).

Singular behaviour. On general grounds one may expect that the singularities of A(ω, kF +
q) occur on the ‘light-cones’ ω = ±vc,sq . The behaviour in these regions can be determined
along the lines discussed in Appendix 9.A. Setting 2�−c = 1+α1

2 , 2�+c = α1
2 , 2�−s = 1

2 and
2�+s = 0 in (9.A.8) we obtain

A(ω, kF + q) ∼


(ω − vcq)

α1−1
2 for ω→ vcq ,

(ω + vcq)
α1
2 for ω→−vcq ,

(ω − vsq)α1− 1
2 for ω→ vsq ,

(ω + vsq)α1 for ω→−vsq .

(9.74)

As 0 < α1 ≤ 1
8 there are singularities for ω→ vc,sq , but A(ω, kF + q) vanishes in a root

like fashion for ω→−vc,sq.

Explicit calculation of the integrals. After the substitution x ′ = x − vs t the integral over t
in (9.72) may be carried out by means of the identity GR 3.384.8 of [184]∫ ∞

−∞
dt e−i pt [β + i t]−µ[γ + i t]−ν = 2π

�(µ+ ν)
eγ p(−p)µ+ν−1 θH (−p)

× �(µ,µ+ ν, [β − γ ]p) , (9.75)

where Re(β) > 0, Re(γ ) > 0, Re(µ+ ν) > 1, �(a, b, z) denotes a confluent hypergeomet-
ric function and where θH denotes the Heaviside function. In the next step one reexpresses
the confluent hypergeometric function by means of the integral representation (see 13.2.1
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of [3])

�(a, b, z) = �(b)

�(a)�(b − a)

∫ 1

0
ds sa−1 (1− s)b−a−1 esz . (9.76)

Now one may perform the integral over x ′ in (9.72) by means of the identity∫ ∞
−∞

dx e−i px [β − i x]−ν = 2π

�(ν)
e−βp pν−1 θH (p) (9.77)

where Re(β) > 0, Re(ν) > 0. Sending the regularization δ to zero we arrive at

A(ω, kF + q) ≈ f (ω, q)+ f (−ω,−q) ,

f (ω, q) = 2π A v
− 1

2
c v

1−α1
2+ v
− α1

2−
�( 1

2 )�( α1
2 )�( 1+α1

2 )
θH (ω − vsq) (ω − vsq)α1− 1

2

×
∫ 1

0
ds s

α1
2 − 1

2 (1− s)
α1
2 −1
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vc

(ω + vcq)− 2s(ω − vsq)

]− 1
2

× θH

(
v−
vc

(ω + vcq)− 2s(ω − vsq)

)
, (9.78)

where we have defined v± = vc ± vs . Last but not least the s-integration can be carried out
by means of the identity GR 3.197.3 of [184] to give a hypergeometric function∫ 1

0
ds sλ−1 (1− s)µ−1 (1− βx)−ν = �(λ)�(µ)

�(λ+ µ)
F(ν, λ, λ+ µ;β). (9.79)

Here Re(λ) > 0 and Re(µ) > 0. Because the Heaviside function under the s-integration
must be satisfied we need to distinguish between two cases.

� Case A: vsq < ω < vcq

A(ω, kF + q) ≈ 2πv
− 1
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1
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2+

�( 1
2 )�(α1 + 1
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1
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1
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2 , 1
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ω−vs q
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)
. (9.80)

� Case B: ω > |vcq|

A(ω, kF + q) ≈ 2π (2vc)−
1
2−

α1
2 v

1
2−

α1
2+

�( α1
2 )�(1+ α1

2 )
(ω − vsq)

α1
2 −1 (ω + vcq)

α1
2

× F
(

1− α1
2 , 1

2 + α1
2 , 1+ α1

2 ; v−
2vc

ω+vcq
ω−vs q

)
. (9.81)

The behaviour of A(ω, kF + q) for negative frequencies ω < 0 is easily obtained from
(9.80) and (9.81) by means of the symmetry (9.73).

The spectral function in the vicinity of kF for u = 1 at quarter-filling nc = 0.5 is shown in
figure 9.5. The two singularities at ω = vc,sq are clearly visible. The features for q < 0,ω >

0 and q > 0, ω < 0 are too small to be seen. The most relevant excited states contributing to
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Fig. 9.5. Spectral function A(ω, kF + q) as a function of ω for several values of qa0. The positive
(negative) frequency features for qa0 < 0 (qa0 > 0) are too small to be visible.
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Fig. 9.6. Dressed energies κ(p(k)) and ε1(p1(�)) as functions of the dressed momenta and linear
approximations to the dispersions.

A(ω, kF + q) are the holon-spinon excitation at ω < 0 and the antiholon-spinon excitation
at ω > 0. They are shown in figures 7.34 and 7.33 respectively.

The two peaks in A(ω, kF + q) dispersing with velocities vs and vc respectively are a
direct manifestation of spin-charge separation. The peaks are power-law singularities with
interaction-dependent exponents (9.74) rather than δ-functions or Lorentzians. The spectral
function of the Hubbard model is dramatically different from the one of noninteracting
electrons. The latter is simply

Afree(ω, kF + q) = δ(ω − vF q). (9.82)

An important question is in which interval of momentum transfers q the results
(9.80), (9.81) can be trusted. A useful criterion is obtained by considering how good the
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linear approximations to the dispersions of the spin and charge excitations are. In figure 9.6
we show the linear approximations to the dressed energies ε1 and κ , see Section 7.7. We
see that the approximations are good as long as the momentum does not deviate more than
about |π/8| from the value for which the energies vanish. Hence the results (9.80),(9.81)
may be trusted as long as |qa0| < π/8.

9.4.2 Dynamical structure factor

The components of the dynamical structure factor Sαβ(ω, k) are measured by inelastic
neutron scattering. They are defined in terms of the dynamical spin susceptibility by

Sαβ(ω, k) = − 1

π
Im χαβ(ω, k) , (9.83)

χαβ(ω, k) =
∫ ∞
−∞

dx
∫ ∞

0
dt eiωt−ikx

[
〈Sα

j+1(t) Sβ

1 〉 − 〈Sβ

1,σ Sα
j+1(t)〉

]
. (9.84)

Here Sα
j = 1

2 c†j,τ σ
α
τ,τ ′c j,τ ′ are the spin operators of site j . We calculate the retarded spin-spin

correlation function χαβ(ω, k) as usual by analytically continuing the Fourier transform of
the correlator in imaginary time τ = i t , i.e. the Euclidean correlator, see e.g. [4].

From now on we set the magnetic field equal to zero in order to keep the discussion
simple. Due to spin rotational symmetry we have

χαβ(ω, k) = δαβχ⊥(ω, k). (9.85)

As can be seen from the results for the spectrum of spin-excitations below half filling in
figure 7.32 there are gapless excitations at k ≈ 0, k ≈ 2kF and k ≈ 4kF . In the vicinity of
these momenta we may estimate the dynamical structure factor as follows. The asymp-
totics of the spin-spin correlation function in Euclidean space are given in (9.48). Fourier
transforming and analytically continuing to real frequencies along the lines discussed in
Appendix 9.A we obtain

Sαα(ω, 2kF + q) ∼
{[

ω2 − (vsq)2
] θ

4− 1
2 for ω − vs |q| → 0+ ,[

ω2 − (vcq)2
] θ

8 for ω − vc|q| → 0+ .
(9.86)

For a less than half filled band we have always θ > 2 (see figure 9.2). Hence, the contribution
(9.86) to the dynamical structure factor in the vicinity of 2kF is always non-singular and will
be modified by additional non-singular terms which are not accessible within the conformal
approach. The same is found near k = 0 and 4kF . At half filling however, the structure
factor is singular in the vicinity of 2kF . This case is discussed in more detail in Chapter 10.

9.5 Correlation functions in the open boundary Hubbard chain

In Section 8.3 we have seen how various interesting quantities such as local expectation
values of certain operators could be computed from the exact solution of the Hubbard
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model with open boundary conditions. Furthermore, we were able to calculate the finite
size corrections to the energies of low-lying excitations in this situation which – when com-
bined with the techniques of conformal field theory – can be used to study new correlation
functions. Since practically every experiment deals with systems of finite extension, either
due to the geometry of the probe or due to the presence of imperfections, this opens new
possibilities for the identification of the special properties of one-dimensional correlated
electron systems in the real world.

Here we shall discuss two phenomena in more detail, namely Friedel oscillations [147]
and Anderson’s orthogonality catastrophy [17] in the open Hubbard model. Further appli-
cations of these methods to the Hubbard model, e.g. Fermi edge singularities appearing in
X-ray scattering experiments or in the I –V characteristics of tunneling experiments have
been discussed elsewhere [50, 117]. Similar results have been obtained for the Luttinger
model using the Bosonization method [13, 114, 346, 351, 369, 501].

9.5.1 Friedel oscillations

In the presence of an impurity or boundary in a one-dimensional fermion system the trans-
lational invariance is broken leading to an inhomogeneous density distribution – so-called
Friedel oscillations in the densities with wavenumber 2kF [147], i.e.

〈n(x)〉 − nc ∼ cos(2kF x + ϕ)

xγ
(9.87)

with an exponent γ depending on the interaction. There have been various attempts using
both numerical and analytical methods to clarify the role of the interaction [114, 130, 378,
398].

It was shown by Cardy that the n-point correlation functions of a conformal field theory
with a boundary are related to the 2n-point bulk correlation functions of this system [73]. As a
consequence the local density 〈n(x)〉open of the open boundary system can be extracted from
the two-point density-density correlation function Gnn of the periodic system considered
above (see also [478]).

Following Ref. [73] we have to consider the antiholomorphic part D̄(z̄1, z̄2) of the two-
point bulk correlation function (9.28) of the primary operator O(z, z̄) in the conformal field
theory. Then the one-point correlation function of this operator in the semi-infinite geometry
is just

〈O(z, z̄)〉 ∝ D̄(z̄, z) = (z̄ − z)−2�+ . (9.88)

The oscillating factor has to be taken from the corresponding bulk current-current correlation
function ((9.36) or (9.39)).
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Using this we obtain the leading asymptotic oscillating contributions to the local density
from the density-density correlation function (9.42)

〈n(x)〉 − nc ∼ A1
cos(2kF,↑x + ϕ1)

x (Zcc−Zsc)2+(Zcs−Zss )2 + A2
cos(2kF,↓x + ϕ2)

x Z2
sc+Z2

ss

+ A3
cos(2(kF,↑ + kF,↓)x + ϕ3)

x Z2
cc+Z2

cs
.

(9.89)

The correlation function Gz
σσ (τ, x) has the same functional form as the density-density

correlator. Therefore, the CFT prediction for the oscillations in the local magnetization
〈m(x)〉 contains the same terms as 〈n(x)〉 but different amplitudes Ai .

The critical exponents in (9.89) depend on the elements Zi j of the dressed charge. Since
Z is a bulk quantity only the density of electrons, the strength of the interaction and of the
magnetic field have an influence on the exponents. Similarly, the amplitudes Ai should not
depend on the strength of the boundary potential. However, just as in the case of periodic
boundary conditions, a prediction on the dependence of the different amplitudes Ai in the
correlation function is beyond the capabilities of the CFT approach. Only in the limit of
noninteracting electrons are their values known from the exact expression for this correlation
function (n̄ is the average bulk density of electrons corrected by the finite size shifts due to
the boundaries: n̄ = nc − θ/L)

〈n(x)〉 ∼ n̄ − 1

2πx
sin (2π n̄ x) (9.90)

from which we expect A1 = A2 = 1
2π and A3 = 0 for u → 0.

In Ref. [48] an extensive numerical study of this correlation function has been performed
using the density matrix renormalization group (DMRG) method to compute 〈n(x)〉 and
〈m(x)〉 for chains of length up to L = 500 sites (see figure 9.7). This study has confirmed
the predictions of conformal field theory for the critical exponents and provided infor-
mation on the interaction dependence of the amplitudes Ai . The numerical results have
shown that – in perfect agreement with the predictions from the Bethe Ansatz and con-
formal field theory – the critical exponents are determined by the dressed charge matrix,
independent of the boundary conditions; in particular they do not depend on the boundary
potential p. At the same time no significant p-dependence of the amplitudes Ai could be
observed.

Finally, the analysis of the DMRG results has provided strong evidence for the conjecture
that the finite size shift of the average bulk density of electrons due to boundary fields and,
similarly, the wave numbers of the Friedel oscillations is given by the phase shifts (8.91)
appearing in the analysis of the Bethe Ansatz equations of the open boundary system, i.e.

n̄c = nc − 1

L
θc(p) , m̄ = m − 1

L
θc(p)+ 2

L
θs(p). (9.91)

This gives a physical interpretation to this quantity which first appeared as a purely technical
object during the finite size analysis of the Bethe Ansatz equations for the Hubbard model
with open boundary conditions.
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Fig. 9.7. Fourier amplitudes of (a) the density 〈n(x)〉 and (b) the magnetization 〈m(x)〉 for the Hubbard
chain with reflecting ends (p = 0 = p′) for an electron density nc = 0.70 and n↑ = 0.55 as a function
of u (from Ref. [48]). Singularities are present at 2kF↑, 2kF↓ and – for non vanishing interaction
u – at 2kn ≡ 2kF↑ + 2kF↓. The amplitude corresponding to k = 0 is not shown.

9.5.2 Orthogonality catastrophe

This problem deals with the system size dependence of the overlap of the many-particle
ground states of two systems differing only in the choice of the boundary potential [17]. To
study this one has to consider operators changing the boundary conditions of a system [9,13].
Let Op(ζ ) be such an operator with ζ a point on the boundary of a given complex region.
The action of Op is to switch from one boundary condition A (parametrized by pA = 0)
left of ζ to a boundary condition B corresponding to a parameter pB ≡ p right of ζ .

Following Affleck [9] we consider the conformal transformation z̄ → w̄(z̄) = exp(π z̄/L)
to obtain a relation between the correlation functions in the infinite strip 0 ≤ Im(z̄) ≤ L
of width L to those in the upper half-plane w̄ = u + iv, v ≥ 0. In the latter geometry, the
correlation function of the primary boundary operator Op decays as a simple power law
(let 0 < u1 < u2)

〈Op(u1)O†
p(u2)〉 = 1

(u1 − u2)2x p
. (9.92)

To make contact with the integrable boundary conditions realized in the one-dimensional
Hubbard model we now identify the boundary condition A with that of a reflecting end
or boundary fields p = 0 in the Hamiltonian (8.70) and B with that of a finite boundary
potential p. Applying the transformation given above to (9.92) and identifying the imaginary
part of z with the spatial variable as before we obtain a correlation function in the strip
geometry where due to the action of the operators Op and O†

p the boundary conditions
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Fig. 9.8. Conformal mapping of the semi-infinite plane with boundary conditions A, B to the strip.

change as a function of time τ (τi = (L/π ) ln ui )

AA p = 0 = p′ for τ < τ1 and τ > τ2

B A p �= 0, p′ = 0 for τ1 < τ < τ2
(9.93)

(see also figure 9.8). Due to conformal invariance the corresponding correlation function
reads for large �τ = τ2 − τ1

〈AA|Op(τ1)O†
p(τ2)|AA〉 ∼

(π

L

)2x p

e−πx p�τ/L . (9.94)

Here we have stated explicitely, that this correlation function is to be computed in the ground
state |AA〉 of the model with reflecting ends.

To evaluate the correlation function (9.94) in a transfer matrix approach we have to insert
a complete set of eigenstates |B A; n〉 of the system with boundary potentials p �= 0, p′ = 0∑

n

|〈AA|Op|B A; n〉|2e−(E B A
n −E AA

n )�τ ∼
(π

L

)2x p

e−πx p�τ/L . (9.95)

For the operator considered here the form factor 〈AA|Op|B A; 0〉 is expected to be non-zero.
Hence we can read off the orthogonality exponent x p

〈AA|Op|B A; 0〉 = |〈p|0〉| ∼ L−x p (9.96)

to be

x p = L

π
(E B A

0 − E AA
0 ) . (9.97)

The key to the correct identification of the orthogonality exponent is the proper choice
of the parameters �Ni in (8.88) (see also Ref. [49]): as has been argued in Section 8.3.4
the ground state energy E AA

0 is obtained by taking �Ni = θi (p = 0) (see equation (8.90)).
In the expression (9.97) for the orthogonality exponent we have to compare this energy
with that of a different state, namely E B A

0 . It is crucial for the correct computation of the
critical exponent in this approach to compute all finite-size corrections with respect to
the same reference state. Since selection rules dictate that |0〉 and |p〉 are states with the
same particle numbers N and M this implies that one has to choose �Ni = θi (p = 0) in
E B A

0 , too.9

9 This argument can be verified by considering the case of the completely spin-polarized band of the Hubbard model in a sufficiently
strong magnetic field corresponding to non-interacting spinless fermions [49].
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Fig. 9.9. Orthogonality exponent x p of the open-boundary Hubbard model with u = 1 as a function
of the boundary potential p for several electron densities (from Ref. [49]).

For vanishing bulk magnetic field B = 0 we have θc(p = 0) = 2θs(p = 0) and conse-
quently�Nc = 2�Ns . Together with the simplified expression (8.42) for the dressed charge
matrix Z in this case we find

x p = 1

2ξ 2

(
θc(p = 0)− θc(p)

)
. (9.98)

Since the parameter ξ has been identified as the contribution of the holon sector to the
anomalous critical exponents of the Hubbard model this implies that there are no contribu-
tions from the spinon sector to the orthogonality exponent due to a change in the boundary
chemical potential. In the limit p→∞, i.e. switching between vanishing and very strong
boundary potential the orthogonality exponent becomes a function of the difference be-
tween the bulk density of electrons nc and the occupation (n1 = 2) of the boundary site in
this case

x p = 1

2ξ 2
(2− nc)2 . (9.99)

In figure 9.9 numerical results for the orthogonality exponent as a function of the boundary
potential are shown.

Finally, we remark on the effect on a second boundary potential p′ at site L of the chain:
in the finite-size spectrum (8.88) this gives rise to additional shifts θi (p′). The orthogonality
exponent x pp′

〈pp′|00〉 ∼ L−x pp′ , (9.100)
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however, cannot be obtained by simply adding the new shifts. One rather expects that the
exponent is given by the sum

x pp′ = x p + x ′p (9.101)

of the independent contributions from the two boundaries. In the framework of boundary
conformal field theory a change of the potential at both boundaries cannot be achieved by
the action of a single local boundary changing operator Opp′ . Instead, a product of two such
operators has to be considered. This becomes obvious when one switches back from the
strip geometry to that of the upper half plane where one obtains for the leading asymptotics
(provided that |u1 − u2| � |u1|, |u2|) of the correlation function

〈Op′ (−u2)O†
p′ (−u1)Op(u1)O†

p(u2)〉

∼ 〈Op(u1)O†
p(u2)〉〈Op′ (−u2)O†

p′ (−u1)〉 ∼ 1

(u1 − u2)2x p

1

(u1 − u2)2x p′
. (9.102)

Conformal mapping of this expression to the strip results in (9.101).



Appendices to Chapter 9

9.A Singular behaviour of momentum-space correlators

The long distance asymptotics of zero temperature correlation functions are expressed as
sums of terms of the form (9.39), i.e.

g(τ, x) = exp(ik0x)

(vcτ + i x)2�+c (vcτ − i x)2�−c (vsτ + i x)2�+s (vsτ − i x)2�−s
. (9.A.1)

To compute the Fourier transforms

g̃(ω, k) = 1

2π

∫
dx

∫
dt ei(ωt−kx)g(t, x) (9.A.2)

we first have to rotate the time coordinate from Euclidean time τ to real time t . Analyticity
requires

τ = i t + 0 sign(t). (9.A.3)

Equivalently, the correct regularization of the cuts in the complex time coordinate can be
obtained by replacing τ = i t in (9.A.1) and giving an infinitesimal imaginary part to the
velocity:

vi → vi e
−i0. (9.A.4)

All the following equations are to be understood that way. This gives

g(t, x) = exp(ik0x)

(vct + x)2�+c (vct − x)2�−c (vs t + x)2�+s (vs t − x)2�−s
. (9.A.5)

As mentioned above this expression holds asymptotically only. Nevertheless, it allows us
to calculate the behaviour of the Fourier transforms g̃(ω, k) near the singularities

ω = ±vc,sk0 . (9.A.6)
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Substituting y = x + vct and y′ = qx − ωt in (9.A.2) we obtain

g̃(ω, k0 + q) = 1

2π
(ω + vcq)2(�−c +�+s +�−s )−1

∫
dy

y2�+c

×
∫

dy′ eiy′
{(

2vc y′ + (ω − vcq)y
)2�−c

(9.A.7)
× (

(vc − vs)y′ + (ω + vsq)y
)2�+s

× (
(vc + vs)y′ + (ω − vsq)y

)2�−s
}−1

.

From this expression we can read off the singular behaviour of g̃(ω, k0 + q) near ω = −vcq
and, similarly, ω = +vcq and ω = ±vsq . For q �= 0 we obtain

g̃(ω, k0 + q) ∼
{

const. (ω ∓ vcq)2(�+s +�−s +�±c )−1 for ω ≈ ±vcq
const. (ω ∓ vsq)2(�+c +�−c +�±s )−1 for ω ≈ ±vsq

. (9.A.8)

For the Fourier transform of equal time correlators, i.e. terms like

g̃(k0 + q) =
∫

dx e−i(k0+q)x g(x, t = 0+) =
∫

dx
e−iqx

(x − i0)2�+ (x + i0)2�− (9.A.9)

(here�± = �±c +�±s ), one has to consider q > 0 and q < 0 separately. Contour integration
yields

g̃(k0 + q)

g̃(k0 − q)
= sin 2π�−

sin 2π�+
= (−1)2s, q > 0 (9.A.10)

where s = �+ −�− is the (total) conformal spin of the operator under consideration. From
(9.38) we know that 2s is always an integer. Using this we find that

g̃(k0 + q) ∼ (sign(q))2s |q|ν, |q| � k0

ν = 2(�+c +�−c +�+s +�−s )− 1. (9.A.11)

The extra sign will appear in correlation functions of Fermi-fields, e.g. the field-field cor-
relator (9.53).
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Scaling and continuum limits at half-filling

At half-filling the repulsive Hubbard model is in a Mott insulating phase. The charge
degrees of freedom are gapped, whereas the spin degrees of freedom remain gapless. At
low energies the spin sector is actually scale invariant (apart from logarithmic corrections)
and Conformal Field Theory (CFT) methods may be applied to determine the low-energy
behaviour of correlation functions involving only the spin sector. On the other hand, the
charge sector is not scale invariant and CFT does not provide any information for correlators
involving the charge degrees of freedom. In this chapter we will show that there exists a
particular continuum limit of the half filled Hubbard model, in which it is possible to
calculate dynamical correlation functions by means of methods of integrable quantum field
theory. We first construct a Lorentz invariant scaling limit starting from the results for the
excitation spectrum and the S-matrix discussed in Chapter 7. This scaling limit is identified
as the SU(2) Thirring model, which is an integrable relativistic quantum field theory. Next
we discuss a continuum limit, which is obtained directly from the Hubbard Hamiltonian
and describes the vicinity of the scaling limit.

10.1 Construction of the scaling limit

The simplest way of constructing the scaling limit is to start with the results for the dis-
persions of the elementary excitations and the S-matrix derived in Chapter 7 and then
look for a particular limit in which Lorentz invariance is recovered. This was done for the
attractive Hubbard model by E. Melzer in Ref. [324] using the results of [120, 121] for
the excitation spectrum and the S-matrix of the half filled Hubbard model. A somewhat
different path, based on the physical Bethe Ansatz equations (see Section 7.5), was taken
by F. Woynarovich and P. Forgacs in [490, 491]. We will construct the scaling limit in the
repulsive regime of the half filled Hubbard model following Melzer’s work.

The basic idea behind both the scaling and continuum limits is most easily explained
by considering the dispersion relations (7.8) for the elementary (anti)holon and spinon
excitations. It is clear from figures 7.2 that the (anti)holon gap becomes very small for
small u. Hence in the charge sector we have low-energy holon modes in the vicinity of
Ph = −π

2 and low-energy antiholon modes around Ph̄ = π
2 . In the spin sector there are

gapless modes at Ps = 0, π . In the scaling and continuum limits we concentrate on these

333
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low-energy modes only. It turns out that Lorentz invariance emerges as a symmetry of these
low-energy degrees of freedom.

On a more formal level, the continuum limit is usually based on taking the hopping t to
infinity and simultaneously the lattice spacing a0 to zero, while keeping the Fermi velocity
vF = 2ta0 fixed.1 The scaling limit is obtained by taking in addition u = U/4t to zero,
while keeping the charge gap fixed

t →∞ , u → 0 ,

M = 8

π

√
ut exp

(
− π

2u

)
= fixed. (10.1)

In this limit, the (anti)holon energy and momentum become

Eh(k) = Eh̄(k) −→ M cosh
( π

2u
sin k

)
,

π

2
< |k| ≤ π ,

Ph(k) = Ph̄(k)− π −→ −π

2
+ M

2t
sinh

( π

2u
sin k

)
,

π

2
< |k| ≤ π . (10.2)

Similarly, the spinon energy and momentum become

Es(�) −→ 4t I1

( π

2u

)
exp

(
− π

2u
|�|

)
,

Ps(�) −→ π

2
− sign(�)

[π
2
− 2I0

( π

2u

)
exp

(
− π

2u
|�|

)]
. (10.3)

The limits (10.2), (10.3) can be derived in the same way as (6.B.10), see [324]. Inspection
of (10.2) suggests that in order to obtain excitations with a finite energy, it is necessary to
scale k to ±π in a particular way

k →±π , u → 0, θ = π

2u
sin(k) = fixed. (10.4)

The holon energy and momentum (7.8) then take the following forms in the scaling limit

εh(θ ) = lim
u→0,k→±π

Eh(k) = M cosh(θ ) ,

ph(θ ) = lim
u→0,k→±π

Ph(k)+ π
2

a0
= M

vF
sinh(θ ) . (10.5)

Similarly we obtain for the antiholon

εh̄(θ ) = lim
u→0,k→±π

Eh̄(k) = M cosh(θ ) ,

ph̄(θ ) = lim
u→0,k→±π

Ph̄(k)− π
2

a0
= M

vF
sinh(θ ) . (10.6)

In (10.5) we recognize the standard parametrization of a Lorentz invariant, massive
dispersion in terms of a rapidity variable θ . By eliminating θ we obtain

εh =
√

M2 + v2
F p2

h . (10.7)

1 See however Section (11.1).
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In order to obtain finite values for the energy and momentum in the spin sector we need
to scale � as follows

�→±2 , u → 0, β = ± π

2u
(2− |�|) = fixed. (10.8)

In the scaling limit the spinon energy and momentum then become

εs(β) = lim
u→0,�→±2

Es(�) = M

2
exp(±β) ,

ps(β) = lim
u→0,�→±2

Ps(�)− π
2 [1∓ sign(�])

a0
= ± M

2vF
exp(±β) . (10.9)

Equations (10.9) are the standard parametrization of a Lorentz invariant massless dispersion
in terms of a rapidity variable β

εs = vF | ps |. (10.10)

We note that scaling � to ±2 is not a unique choice, but it is the most natural in the sense
that the scale appearing in the parametrization (10.9) is a physical quantity, namely the
single particle gap M .

The analysis above establishes that the scaling limit of the half filled Hubbard model is
a Lorentz invariant scattering theory of massive (anti)holons and massless spinons.

10.2 The S-matrix in the scaling limit

Having obtained Lorentz invariant dispersions for (anti)holons and spinons in the scaling
limit, the next step is to determine their respective S-matrices.

10.2.1 Massive charge sector

Our starting point is the SU(2) invariant S-matrix (7.134) describing scattering of holons
and antiholons. Scaling the momenta of the holes to ±π according to (10.4), we find

k12 = sin(kh
1 )− sin(kh

2 )

2u
−→ θ1 − θ2

π
≡ θ12

π
. (10.11)

This in turn yields the following SU(2) invariant form for the S-matrix in the massive charge
sector in the scaling limit

Šγ1γ2
α1α2

(θ1, θ2) = −�
(

1
2 − i θ12

2π

)
�
(
1+ i θ12

2π

)
�
(

1
2 + i θ12

2π

)
�
(
1− i θ12

2π

)
×

[
δα1γ1δα2γ2

θ12

θ12 − iπ
− δα1γ2δα2γ1

iπ

θ12 − iπ

]
. (10.12)

Equation (10.12) is identical to the S-matrix of the massive sector of the SU(2) Thirring
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model [55]. We note that the SU(2) Thirring model is also known as Chiral Gross Neveu
model in the literature.2

The fact that the S-matrix tends to ∓i when the rapidity difference approaches ±∞
seems to be at odds with physical intuition, which suggests that the amplitude of purely
elastic scattering ought to tend to 1 in these limits (which correponds to the Mandelstam
variable s going to infinity). The unusual asymptotic behaviour of the S-matrix signifies
that holons have fractional (exchange) statistics. For many calculations it is convenient to
introduce Hilbert spaces of auxiliary ‘in’ and ‘out’ particles with ordinary statistics [236,
416,428] and work with auxiliary particles instead of the physical particles with fractional
statistics.

10.2.2 Massless spin sector

In the spin sector we have to scale the spectral parameters according to equation (10.8). We
have to distinguish between three cases.

Scattering of right movers on right movers. Both �h
1 and �h

2 are in the vicinity of 2 and
describe right-moving spinons. This is apparent from the fact that their momentum is always
positive. The scaling limit for the difference of spectral parameters of the holes is

�12 = �h
1 −�h

2

2u
−→ −β1 − β2

π
≡ −β12

π
. (10.13)

The corresponding S-matrix is

(
ŜR R

)γ1γ2

α1α2
(β1, β2) =

�
(

1
2 − i β12

2π

)
�
(

1+ i β12

2π

)
�
(

1
2 + i β12

2π

)
�
(

1− i β12

2π

)
×

[
δα1γ1δα2γ2

β12

β12 − iπ
− δα1γ2δα2γ1

iπ

β12 − iπ

]
. (10.14)

Scattering of left movers on left movers. Here both �h
1 and �h

2 are in the vicinity of−2 and
describe left-moving spinons; their momenta (10.9) are negative. The S-matrix as a function
of the rapidity difference is identical to the one in the R R sector(

ŜL L
)γ1γ2

α1α2
(β1, β2) = (

ŜR R
)γ1γ2

α1α2
(β1, β2) . (10.15)

Scattering of right movers on left movers. The scattering between the left and right sectors
is diagonal and rapidity independent(

ŜRL
)γ1γ2

α1α2
(β1, β2) = −i δα1γ1δα2γ2 . (10.16)

2 In the literature the massive sector in the SU(2) Thirring model is often referred to as the ‘spin’ sector. This should not be
confused with the spin sector in the underlying Hubbard model.
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The S-matrices (10.14)–(10.16) agree with the ones derived for the SU1(2) Wess-Zumino-
Novikov-Witten model in Ref. [504].3

10.2.3 Scattering between spin and charge

The scattering between spin and charge is diagonal and rapidity independent

S̃γ1γ2
α1α2

(θ, β) = −i δα1γ1δα2γ2 . (10.17)

Hence spin and charge degrees of freedom are essentially decoupled in the scaling limit.

10.3 Continuum limit

In the previous section we have seen that there exists a particular scaling limit, in which the
half filled Hubbard model becomes equivalent to an integrable quantum field theory, the
SU(2) Thirring model. An obvious question is whether this relationship can be established
directly on the level of the Hamiltonian, by taking an appropriate continuum limit. As we
will see this indeed turns out to be the case. As the interaction strength U/t goes to zero in
the scaling limit, we may use the noninteracting case U = 0 in order to establish the region
in momentum space where low-energy degrees of freedom reside. We start by decomposing
the Hamiltonian into free and interacting parts

H = H0 +U
L∑

j=1

n j,↑n j,↓ . (10.18)

The free part is given by (5.4)

H0 = −t
∑
j,σ

[
c†j,σ c j+1,σ + c†j+1,σ c j,σ

]
= 1

L

∑
l,σ

−2t cos(kl) ñσ (kl) , (10.19)

where ñσ (kl) = c̃†kl ,σ
c̃kl ,σ is the number operator for spin σ electrons in momentum space.

We note that we have dropped the constant −U
2

∑
j,σ n j,σ = −U L

2 in the definition of the
Hamiltonian (10.18). The ground state of H0 is obtained by filling all negative energy
modes, i.e. all single-electron states with momenta in the interval [−kF , kF ], where the
Fermi momentum is kF = π

2a0
. All low-energy modes are found in the vicinity of the two

Fermi points±kF and these are the degrees of freedom of interest from the point of view of
taking a continuum limit. The above considerations suggest the following decomposition
of the lattice Fermion annihilation operators

cl,σ −→ √a0
[
exp(ikF x) Rσ (x)+ exp(−ikF x) Lσ (x)

]
. (10.20)

3 The phase-shift for left-right scattering was chosen as −1 ‘in the infrared’ in [504].
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Here a0 is the lattice spacing and x = la0. The right and left moving fermionic quantum
fields Rσ and Lσ have dimension (length)−1/2 and are slowly varying on the scale of the
lattice spacing. Inserting the prescription (10.20) into the Hamiltonian (10.18) one obtains
after some straightforward calculations

H =
∑
σ

vF

∫
dx :

[
L†

σ i∂x Lσ − R†
σ i∂x Rσ

]
: +g

∫
dx :

[
I · Ī− J · J̄] :

+ g

6

∫
dx :

[
I · I+ Ī · Ī− J · J− J̄ · J̄] : , (10.21)

where vF = 2ta0 is the Fermi velocity, g = 2Ua0 and : O : denotes normal ordering of the
operator O. Here J and I are the chiral components of SU(2) spin and pseudospin currents

Ī z = 1

2
:
(

L†
↑L↑ + L†

↓L↓
)

: , Ī+ = ( Ī−)† = L†
↑L†
↓ ,

I z = 1

2
:
(

R†
↑R↑ + R†

↓R↓
)

: , I+ = (I−)† = R†
↑R†
↓ ,

J̄ z = 1

2
:
(

L†
↑L↑ − L†

↓L↓
)

: , J̄+ = ( J̄−)† = L†
↑L↓ ,

J z = 1

2
:
(

R†
↑R↑ − R†

↓R↓
)

: , J+ = (J−)† = R†
↑R↓ . (10.22)

Here ‘:’ denotes normal ordering of point-split expressions [5]. The ‘kinetic’ terms in
the Hamiltonian (10.21) can be expressed as normal ordered bilinears of currents as well
[5, 7, 11, 93, 168]

2π

3

∫
dx : [I · I+ J · J] : = −

∫
dx

[∑
σ

: R†
σ i∂x Rσ :

]
,

2π

3

∫
dx :

[
Ī · Ī+ J̄ · J̄] : =

∫
dx

[∑
σ

: L†
σ i∂x Lσ :

]
. (10.23)

A derivation of (10.23) is outlined in Appendix 10.A, another can be found in the Appendix
of [26]. Using (10.23) the Hamiltonian (10.21) can now be split into two parts, corresponding
to the spin and charge sectors respectively

H = Hc +Hs ,

Hc = 2πvc

3

∫
dx :

[
I · I+ Ī · Ī] : +g

∫
dx : I · Ī : ,

Hs = 2πvs

3

∫
dx :

[
J · J+ J̄ · J̄] : −g

∫
dx : J · J̄ : . (10.24)

Here vs = vF −Ua0/2π and vc = vF +Ua0/2π . These values agree with the small-U
approximations of (7.21) and (7.26). We note that the Hamiltonian (10.24) displays
the required SO(4) symmetry of the half filled Hubbard model. The continuum theory
corresponding to the Hamiltonian (10.24) is not Lorentz invariant as the spin and charge
velocities are different. Lorentz invariance is only recovered in the scaling limit, where
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Ua0 → 0 and hence

vs,c −→ vF . (10.25)

Renormalization group equations. The spin and charge Hamiltonians (10.24) are both of
the form

H = 2πv

3

∫
dx :

[
L · L+ L̄ · L̄]

: −λ v

∫
dx : L · L̄ : , (10.26)

where Lα , L̄α fulfil the SU1(2) Kac-Moody algebra

[Lα(x), Lβ(x ′)] = iεαβγ Lγ (x) δ(x − x ′)− iδαβ

4π
δ′(x − x ′) , (10.27)

[L̄α(x), L̄β(x ′)] = iεαβγ L̄γ (x) δ(x − x ′)− iδαβ

4π
δ′(x − x ′) , (10.28)

[Lα(x), L̄β(x ′)] = 0 . (10.29)

The relations (10.27)–(10.29) can be established along the lines of Appendix 10.A, see [5].
The Renormalization Group (RG) equations for the theory (10.26) can be derived directly
from the current algebra (10.27)–(10.29) as is shown in [12]. Under an appropriate choice
of renormalization scheme the RG equations (to all orders in the coupling constant) can be
cast in the form [506] (see also [115, 164, 302])

r
∂λ

∂r
= − 2λ2

4π − λ
, (10.30)

where r is the RG length scale. The RG equations (10.30) imply that λ diminishes under
renormalization. This means that if we start with λ > 0 as is the case for the spin sector of
(10.24), then the current-current interaction flows to zero. In other words, the interaction
of spin currents in Hs is marginally irrelevant and hence we will ignore it in what follows.
Taking it into account would generate extra logarithms in certain formulas below. On the
other hand, if initially λ < 0 as in the charge sector of (10.24), then the interaction grows
under renormalization: it is marginally relevant.

Let us now show that in the scaling limit the model (10.24) is equivalent to the SU(2)
Thirring model. We define a metric

gµν =
(−1 0

0 1

)
, (10.31)

two-dimensional Gamma matrices {γ µ, γ ν} = 2gµν ,

γ 0 = iσ y =
(

0 1
−1 0

)
, γ 1 = σ x =

(
0 1
1 0

)
, (10.32)

and two spinor fields

�1(t, x) =
(

R↑(t, x)
L↑(t, x)

)
, �2(t, x) =

(
R†
↓(t, x)

L†
↓(t, x)

)
. (10.33)
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In terms of these spinor fields the Hamiltonian (10.24) without the marginally irrelevant
interaction of spin currents can be expressed in the scaling limit Ua0 → 0+as

H =
∫

dx ivF

2∑
a=1

�̄a(t, x) γ1∂x�a(t, x)− g

4

∫
dx

3∑
α=1

J α
µ (t, x) J αµ(t, x), (10.34)

where

J α
µ (t, x) = 1

2
�̄a(t, x) γµ σα

ab �b(t, x) . (10.35)

In (10.34) we recognize the standard expression for the Hamiltonian of the SU(2) Thirring
model [93,186,327]. We note that the SU(2) Thirring model as well as its U(1) generalization
are Bethe Ansatz solvable [110, 221, 455].

Continuum limit of operators In order to study correlation functions of physical operators,
we need to know what their respective continuum limits are. This is easily done using the
prescription (10.20). Let O j be an operator defined on site j in the lattice model. We denote
its continuum limit by O(x), where x = ja0.

1. Current Operator: The current operator in the lattice model is given by (1.A.4)

Jj, j+1 = −i t
∑
σ

[
c†j,σ c j+1,σ − c†j+1,σ c j,σ

]
. (10.36)

In the continuum limit it becomes

J (x) = vF

∑
σ

:
[
R†

σ (x)Rσ (x)− L†
σ (x)Lσ (x)

]
:, (10.37)

where we have dropped terms that contain higher powers of the lattice spacing a0. This is
justified as these terms vanish when we take a0 → 0. We recall that the electric current is
related to J (x) by (1.A.5)

Jel(x) = −ea0 J (x) , (10.38)

where −e is the electron charge.

2. Electron density: The electron number operator on site j is

n j =
∑
σ

c†j,σ c j,σ . (10.39)

In the continuum limit it turns into (we again set x = ja0)

n(x) = a0

∑
σ

:
[
R†

σ (x)Rσ (x)+ L†
σ (x)Lσ (x)

]
:

+ a0(−1) j
∑
σ

[
R†

σ (x)Lσ (x)+ L†
σ (x)Rσ (x)

]
≡ n0(x)+ (−1) j n2kF (x). (10.40)

We see that in the continuum limit only the Fourier components with k ≈ 0 and
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k ≈ 2kF = π
a0

remain. For general band fillings, Fourier components with k ≈ 4kF , k ≈ 6kF

etc. would be present as well [168]. We note that such terms cannot be derived by means
of the simple procedure we have employed here as their coefficients are proportional to the
interaction U . What one needs to do to capture such contributions is to integrate out the high-
energy terms in the path-integral representation of the density-density correlation function
〈n(x) n(0)〉 perturbatively. In this way terms proportional to e.g. cos(4kF x) get generated.

3. Spin operators: The lattice spin operators are defined by (α = x, y, z)

Sα
j =

1

2
c†j,τ σ α

ττ ′ c j,τ ′ , (10.41)

and in the continuum limit have the following decomposition

Sα(x) = Jα(x)+ (−1) j nα(x) ,

Jα(x) = a0

2

[
R†

τ (x) σα
ττ ′ Rτ ′ (x)+ L†

τ (x) σα
ττ ′ Lτ ′ (x)

]
,

nα(x) = a0

2

[
R†

τ (x) σα
ττ ′ Lτ ′ (x)+ L†

τ (x) σα
ττ ′ Rτ ′ (x)

]
. (10.42)

Like in the expansion of the density operator only Fourier components with k ≈ 0 (‘smooth
magnetization’) and k ≈ 2kF (‘staggered magnetization’) remain.

10.3.1 Bosonization

The SU(2) Thirring model (as well as the theory (10.24)) is equivalent to a theory of
canonical Bose fields with nonlinear interactions. The bosonic theory may be constructed
by standard ‘Bosonization’ methods [87, 309, 318, 321, 379]. We refer the reader to the
textbooks [139,168] and reviews [7,385,473] for introductions and detailed discussions of
this important subject. In what follows it is often convenient to work in Euclidean space with
imaginary time τ = i t . The SU(2) Thirring model is bosonized in terms of two canonical
Bose fields �s(τ, x) and �c(τ, x), corresponding to collective spin and charge degrees of
freedom respectively. These Bose fields have chiral decompositions

�a(τ, x) = ϕa(z)+ ϕ̄a(z̄) , a = s, c , (10.43)

where the chiral boson fields ϕa and ϕ̄a fulfil the following commutation relations4

[ϕa(τ, x), ϕ̄b(τ, y)] = 2π iδab, a, b = c, s. (10.44)

The chiral bosons ϕ(z) and ϕ̄(z̄) depend on τ and x only through the combinations

z = vFτ − i x , z̄ = vFτ + i x . (10.45)

It is convenient to define so-called dual fields �c,s(τ, x) by

�a(τ, x) = ϕa(z)− ϕ̄a(z̄) , a = s, c. (10.46)

4 We consider quantization on an infinite line with vanishing boundary conditions at x = ±∞. In a periodic quantization scheme
the chiral Bose fields commute.
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The canonical Bose fields and their dual fields are related by

vF∂x�(τ, x) = −i∂τ�(τ, x) , ∂τ�(τ, x) = ivF∂x�(τ, x) . (10.47)

The creation operators of left and right moving fermions with spin σ are expressed in terms
of the chiral Bose fields as

L†
σ (τ, x) = ησ√

2π
ei fσ π/4 exp

(
− i

2
ϕ̄c(τ, x)

)
exp

(
− i fσ

2
ϕ̄s(τ, x)

)
,

R†
σ (τ, x) = ησ√

2π
ei fσ π/4 exp

(
i

2
ϕc(τ, x)

)
exp

(
i fσ
2

ϕs(τ, x)

)
. (10.48)

Here f↑ = 1 = − f↓ and ηa are Klein factors5 fulfilling the anticommutation relations

{ηa, ηb} = 2δab . (10.49)

The role of the Klein factors is to ensure the appropriate anticommutation relations of the
Fermi fields. They may be represented by Pauli matrices

η↑ = σ x , η↓ = σ y . (10.50)

In general, the Hilbert space of states should be thought of as containing a ‘Klein’ piece,
in which the Klein factors act. The factors of ei fσ π/4 in (10.48) are introduced in order to
obtain the usual bosonized expressions for the staggered components of the spin operators.

We choose a normalisation of operators such that for |x− y| −→ 0

exp (iα�c(x)) exp (iβ�c(y)) −→ |x− y|4αβ exp (iα�c(x)+ iβ�c(y)) . (10.51)

Here we have used a vector notation for the coordinates in Euclidean space x = (vFτ, x).
We note that the normalisation (10.51) is standard in Conformal Field Theory [102] and is
often used in the literature [304, 307, 506]. It implies that the operators exp (iα�c(x)) are
dimensionful objects

dim
[
exp (iα�c(x))

] = length−2α2
. (10.52)

Applying the bosonization identities we obtain the following bosonic form of the low energy
effective Hamiltonian in the continuum limit

H = Hc +Hs ,

Hc = vc

16π

∫
dx

[
(∂x�c)2 + (∂x�c)2

]
− g

(2π )2

∫
dx

[
cos(�c)+ 1

16

{
(∂x�c)2 − (∂x�c)2

}]
,

Hs = vs

16π

∫
dx

[
(∂x�s)2 + (∂x�s)2

]
+ g

(2π )2

∫
dx

[
cos(�s)+ 1

16

{
(∂x�s)2 − (∂x�s)2

}]
. (10.53)

5 By virtue of (10.44) we only need to intoduce two Klein factors. In a periodic quantization scheme four Klein factors are
required.
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It is important to recall that the theory corresponding to the Hamiltonian (10.53) is not
Lorentz invariant and describes the vicinity of the scaling limit. The scaling limit itself
corresponds to setting vc = vs = vF and dropping the marginally irrelevant interaction in
the spin sector.

Bosonization of operators. Products of the Fermi fields may be bosonized by using the ex-
pressions (10.48) and the normalisation condition (10.51), which governs the short-distance
operator product expansions.
1. Current operator

J (τ, x) = i

2π
∂τ �c(τ, x) . (10.54)

2. Electron density

n(τ, x) = − a0

2π
∂x �c(τ, x)

+ (−1)
x

a0
2a0

π
sin

[
�c(τ, x)

2

]
cos

[
�s(τ, x)

2

]
(10.55)

By virtue of the normalization (10.52) the units in (10.55) work out correctly: �c is dimen-
sionless, whereas sin(�c/2) and cos(�s/2) have dimensions of length−1/2.
3. Spin operators

Sz(τ, x) = − a0

4π
∂x �s(τ, x)

+ (−1)
x

a0
a0

π
cos

[
�c(τ, x)

2

]
sin

[
�s(τ, x)

2

]
, (10.56)

S+(τ, x) = Sx (τ, x)+ i Sy(τ, x)

= ia0η↑η↓
2π

[
exp (iϕs(τ, x))+ exp (−i ϕ̄s(τ, x))

]
+ ia0η↑η↓

π
(−1)

x
a0 cos

[
�c(τ, x)

2

]
exp

(
i
�s(τ, x)

2

)
. (10.57)

The general structure of the bosonization identities for a local operator involving lattice
Fermi creation and annihilation operators on several adjacent sites n, . . . ,n + l is

On,n+1,...,n+l(τ ) −→
∑

j

a jC j (τ, x)+ (−1)x/a0 b jD j (τ, x), (10.58)

where C j andD j are (quasi)local operators in the bosonic theory (10.53). In (10.54), (10.55)
and (10.56) we have written the ‘naive’ U -independent results for the amplitudes a j and
b j obtained by bosonizing in the free theory. In the continuum limit, the amplitudes a j

and b j generally depend on the interaction strength U as we have mentioned before. The
reason is that the continuum theory should be thought of as the result of tracing out high-
energy degrees of freedom in the Hubbard model. In a path-integral formulation one would
decompose the Fermi operators into high- and low-energy pieces and then integrate out
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the high-energy pieces. Such a procedure produces (10.53) as the leading term for the
Hamiltonian at small U/t . However, there are additional contributions of higher order in
U/t . The same holds true on the level of correlation functions.

10.4 Correlation functions in the scaling limit

Let us now turn to the calculation of the large-distance asymptotics of correlation functions
in the scaling limit. An important simplification arises due to spin charge separation.

10.4.1 Spin-charge factorization of correlation functions

The bosonized expression for the two pieces (10.53) of the Hamiltonian commute with one
another.Hs andHc correspond to collective spin and charge degrees of freedom respectively.
This means that we can choose an eigenbasis of the Hamitonian in which this spin-charge
separation is manifest and eigenstates are represented as products

|eigenstate〉 = |spin〉 ⊗ |charge〉. (10.59)

In particular, the ground state can be represented as

|0〉 = |0〉s ⊗ |0〉c, (10.60)

where |0〉s,c are the ground states of the spin and charge Hamiltonians (10.24), (10.53). Sim-
ilarly, physical observables like spin (10.56), current (10.54) and electron density (10.55)
are expressed as (sums over) products of commuting operators acting in the spin and charge
sectors respectively. Let us consider a physical operatorO and represent this factorization by

O(τ, x) = Os(τ, x)⊗Oc(τ, x) . (10.61)

It now follows, that correlation functions can be represented as products over correlation
functions in the spin and charge sectors respectively

〈0|O(τ, x) Ō(0, 0)|0〉 = s〈0|Os(τ, x) Ōs(0, 0)|0〉s
× c〈0|Oc(τ, x) Ōc(0, 0)|0〉c . (10.62)

The representation (10.62) is very useful, because the Hamiltonians (10.53) describing the
spin and charge sectors respectively are both exactly solvable. Furthermore, the spin sector is
a simple Gaussian model and correlation functions are easily evaluated (see Appendix 10.C).
This leaves us with the task of determining correlation functions of local operators in the
gapped charge sector. The latter is integrable and as a result the elementary excitations have
the property of factorizable scattering. In massive quantum field theories with factorizable
scattering it is possible to determine two-point correlation functions of local operators by a
method known as ‘Form Factor Bootstrap Approach’ (FFBA). The method was conceived
in the late seventies by M. Karowski and P. Weisz [53, 238]. It was developed further in
a series of seminal papers by F. Smirnov and coworkers [248–250, 374, 414, 415, 417–
419]. Detailed accounts of the method are given in F. Smirnov’s book [420] and in papers
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[32–34,37,72,148,262,289,303,500]. Here we summarize the essential steps and refer the
reader to the aforementioned references for further explanations. The basic idea underlying
the FFBA is to express two-point functions in a spectral (Lehmann) representation in terms
of the elementary excitations with factorizable scattering. The matrix elements (or form
factors) of a given local operator between the ground state and an excited state can then be
inferred from the knowledge of the exact S-matrix.

10.4.2 Spectral representation of two-point functions in the charge sector

A basis of scattering states of the elementary holon and antiholon excitations may be
constructed by means of the Faddeev-Zamolodchikov (FZ) algebra. We define rapidity
dependent creation and annihilation operators subject to the following algebra, which may
be thought of as ‘generalized commutation relations’

Z ε1 (θ1)Z ε2 (θ2) = S̃ε1,ε2

ε′1,ε
′
2
(θ1 − θ2)Z ε′2 (θ2)Z ε′1 (θ1) , (10.63)

Z †
ε1

(θ1)Z †
ε2

(θ2) = Z †
ε′2

(θ2)Z †
ε′1

(θ1)S̃ε′1,ε
′
2

ε1,ε2 (θ1 − θ2) , (10.64)

Z ε1 (θ1)Z †
ε2

(θ2) = Z †
ε′2

(θ2)S̃ε′2,ε1

ε2,ε
′
1
(θ2 − θ1)Z ε′1 (θ1)

+ 2π δε1
ε2
δ(θ1 − θ2) . (10.65)

Here S̃ε1,ε2

ε′1,ε
′
2
(θ ) is the factorizable two-particle S-matrix (10.12) of (anti)holons and ε j = h, h̄.

Our notations are such that e.g. the operator Z †
h(θ ) creates a holon with rapidity θ .6 Using the

ZF operators a Fock space of states can be constructed as follows. The vacuum is defined by

Zεi (θ )|0〉c = 0 . (10.66)

Multiparticle states are then obtained by acting with strings of creation operators Z †
ε(θ ) on

the vacuum

|θn . . . θ1〉εn ...ε1 = Z †
εn

(θn) . . . Z †
ε1

(θ1)|0〉c. (10.67)

In terms of this basis the resolution of the identity is given by

11 = |0〉c c〈0| +
∞∑

n=1

∑
εi=h,h̄

∫ ∞
−∞

dθ1 . . . dθn

(2π )nn!
|θn . . . θ1〉εn ...ε1

ε1...εn 〈θ1 . . . θn| . (10.68)

Inserting (10.68) between the operators in a two-point correlation function, we obtain the
following spectral representation

〈Oc(t, x)O†
c(0, 0)〉c =

∞∑
n=0

∑
εi=h,h̄

∫
dθ1 . . . dθn

(2π )nn!
exp

(
i

n∑
j=1

P(θ j )x − E(θ j )t
)

× |c〈0|Oc(0, 0)|θn . . . θ1〉εn ...ε1 |2. (10.69)

6 The existence of the FZ operators is a postulate in the FFBA approach. They are not strictly necessary but greatly simplify the
notations in what follows. For zero electron density an explicit representation of the FZ operators is derived in Chapter 15.
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Here the n = 0 term just gives the absolute value squared of the vacuum expectation value
of Oc and

P(θ ) = M

vF
sinh θ, E(θ ) = M cosh θ . (10.70)

Finally, the form factors of the operator Oc between the vacuum and excited states are
defined by

f Oc (θ1 . . . θn)ε1...εn ≡ c〈0|Oc(0, 0)|θn . . . θ1〉εn ...ε1 . (10.71)

It is often useful to work with imaginary time τ = i t . The τ -evolution of operators is
given by

O(τ, x) = eHτ O(0) e−Hτ ,

Ō(τ, x) = eHτ O†(0) e−Hτ , (10.72)

where H is the Hamiltonian. As usual Ō is not the hermitian conjugate of O. The spectral
representation for τ > 0 reads

〈Oc(τ, x)Ōc(0, 0)〉c =
∞∑

n=0

∑
εi

∫
dθ1 . . . dθn

(2π )nn!
exp

( n∑
j=1

i P(θ j )x − E(θ j )τ
)

× |c〈0|Oc(0, 0)|θn . . . θ1〉εn ...ε1 |2. (10.73)

10.4.3 Form factors

In the FFBA the form factors are determined from a set of axiomatized assumptions. For the
case of the SU(2) Thirring model they have been formulated by A.N. Kirillov and F. Smirnov
in Refs. [248,249] and by S. Lukyanov in [303]. The basic assumption is that the form factor
f O(θ1, . . . , θn)ε1,... ,εn is a meromorphic function of θn in the strip 0 ≤ Im(θn) ≤ 2π , whose
only singularities are simple poles. In addition the form factors are subject to the following
conditions [420]:

1. The form factors have the ‘Symmetry Property’

f O(. . . , θ j , θ j+1, . . . )... ,ε j ,ε j+1,... = f O(. . . , θ j+1, θ j , . . . )... ,ε′j+1,ε
′
j ,...

× S
ε′j+1ε

′
j

ε j+1ε j (θ j+1 − θ j ). (10.74)

The symmetry property is a direct consequence of the definition of the form factor and
is easily established by use of the FZ algebra.

2. The form factors fulfil ‘Smirnov’s Axiom’, which for charge neutral operators reads

f O(θ1, . . . , θn + 2π i)ε1,... ,εn = i n exp(2π iω[O, �]) f O(θn, θ1, . . . , θn−1)εn ,ε1,... ,εn−1 .

(10.75)

Here ω[O, �] is the ‘Locality Index’ [303, 420, 500] of the operator O with respect to
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the ‘elementary’ field �, which is any field with nonzero matrix elements between the
vacuum and one-particle states. The locality index between two operators A and B is
calculated by considering the operator product A(x)B(y), where x = (vτ, x). Denoting
by AC the analytical continuation in x along a counterclockwise contour C around the
point y, the quantity ω[A,B] is defined as

AC [A(x)B(y)] = exp(2π iω[A,B])A(x)B(y) . (10.76)

3. The form factors have simple poles at the points θn = θ j + iπ . The residues at these poles
are subject to the ‘Annihilation Pole Condition’. For charge-neutral operators O it reads

iRes
∣∣
θn=θn−1+iπ

f O(θ1, . . . , θn)ε1,... ,εn = f O(θ1, . . . , θn−2)ε′1,... ,ε′n−2

×Cεn ,ε
′
n−1

[
δ
ε′1
ε1 · · · δε

′
n−1

εn−1 + i ne2π iω[O,�]S
ε′n−1ε

′
1

γ1ε1 (θn−1 − θ1)

× S
γ1ε
′
2

γ2ε2 (θn−1 − θ2) · · · Sγn−3ε
′
n−2

εn−1εn−2 (θn−1 − θn−2)
]
. (10.77)

Here C = iσ y is the charge conjugation matrix. The annihilation pole condition relates
form factors with different numbers of particles.

4. The form factors behave under Lorentz transformations as

f O(θ1 + u, . . . , θn + u)ε1,...εn = exp(su) f O(θ1, . . . , θn)ε1,...εn , (10.78)

where s is the Lorentz spin of the operator O.

We note that the form factor axioms for the SU(2) Thirring model are of a slightly different
form compared to e.g. the sine-Gordon model. As explained in [420], the reason for this is
that the elementary excitations in the SU(2) Thirring model have Lorentz spin- 1

4 and hence
possess unusual (fractional) statistics.

10.4.4 Optical conductivity

The real part of the optical conductivity is related to the retarded current-current correlation
function by [315]

Re σ (ω) = − Imχ J (ω)

ω
, ω > 0 ,

χ J (ω) = − ie2

a2
0

∫ ∞
0

dt exp(iωt)
∫ ∞
−∞

dx 〈0|[J (t, x), J (0, 0)]|0〉. (10.79)

It is obvious from the bosonized expression (10.54) that the current operator couples only
to the charge degrees of freedom. This implies that spinons do not contribute to the optical
conductivity in the scaling limit. When expressing (10.79) in a spectral representation, we
only have to consider scattering states of holons and antiholons. Furthermore, the current
operator is neutral, which implies that only intermediate states with equal numbers of
holons and antiholons will contribute to the current-current correlation function. Taking
these considerations into account, we arrive at the following spectral representation for the
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optical conductivity

Re σ (ω) = 2π2e2

a2
0ω

∞∑
n=1

∑
εi=h,h̄

∫
dθ1 . . . dθn

(2π )nn!

∣∣ f J (θ1 . . . θn)ε1...εn

∣∣2
× δ(

∑
k

M

vF
sinh θk) δ(ω −

∑
k

M cosh θk)

= σhh̄(ω)+ σhhh̄h̄(ω)+ σhhhh̄h̄h̄(ω)+ · · · (10.80)

Here σhh̄(ω) is the contribution of intermediate states with one holon and one antiholon,
σhhh̄h̄(ω) is the contribution of two-holon–two-antiholon states and so on. The most im-
portant piece is σhh̄(ω), where the appropriate intermediate state is the ηz = 0 state of the
charge-triplet excitation constructed in Section 7.2, see figure 7.9.

As a direct consequence of the delta-functions in (10.80) an intermediate state with
n holons and n antiholons will contribute to the real part of σ (ω) only above a fre-
quency of 2nM . Hence σhh̄(ω) gives the full optical conductivity in the frequency interval
[0, 4M]. The four-particle contribution σhhh̄h̄(ω) has been analyzed in Ref. [90], where it
was shown that it is negligible at low frequencies and becomes comparable to the two-
particle contribution σhh̄(ω) only around ω ≈ 100M . This suggests that the form factor
expansion converges rather quickly at low energies and this has indeed been observed in
many cases, see e.g. Refs. [37, 72, 97, 289], and can be understood in terms of phase-space
arguments [72, 338].

In order to determine σhh̄(ω) we need the form factor of the current operator between
the vacuum and a holon-antiholon intermediate state. The latter can be found for example
in [32, 238, 304, 420], but it is instructive to work it out directly from the Axioms above.
This is done in Appendix 10.B. The result is

| f J (θ1, θ2)hh̄ |2 = | f J (θ1, θ2)h̄h |2 =
[

M cosh

(
θ1 + θ2

2

)]2

|g(θ1 − θ2)|2 , (10.81)

g(θ ) = sinh

(
θ

2

)
exp

[
−

∫ ∞
0

dx

x

sin2[(θ + iπ )x/π ] exp(−x)

cosh(x) sinh(2x)

]
. (10.82)

Inserting (10.81) and (10.82) into (10.80) we arrive at the following result for the holon-
antiholon contribution to the real part of the optical conductivity

σhh̄(ω) = e2t

a0

√
ω2 − 4M2

ω2
θH (ω − 2M)

× exp

[
−

∫ ∞
0

dx

x

exp(−x) [1− cos(4xθ0/π ) cosh 2x]

cosh(x) sinh(2x)

]
, (10.83)

where t is the hopping matrix element, θH (x) is the Heaviside function and

θ0 = arcosh
( ω

2M

)
. (10.84)
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Fig. 10.1. Holon-antiholon contribution to the optical conductivity.

The result (10.83) was first obtained in [224]. In figure 10.1 we plot σhh̄(ω) as a function
of frequency. We see that σhh̄(ω) vanishes below the optical gap 2M , then increases as√
ω − 2M , peaks around ω ≈ 2.5M and then decays at large frequencies. As the full real

part of the optical conductivity Re σ (ω) is equal to σhh̄(ω) in the frequency interval [0, 4M]
(10.83) gives the exact threshold behaviour of σ (ω).

The square-root increase of Re σ (ω) above the optical gap should be contrasted to the
results for a Peierls insulator7 (noninteracting tight-binding electrons with alternating hop-
ping), where there is a square root singularity [159]

Re σPI(ω) ∝ 1√
ω − 2M

. (10.85)

The behaviour of Re σ (ω) in the ‘perturbative’ regime ω � M can be analyzed by RG
improved perturbation theory [90, 165].

10.4.5 Single particle Green’s function

In order to determine the single particle Green’s function it is convenient to work with
Euclidean (imaginary) time τ = i t . In the field theory limit the imaginary time Green’s
function is expanded as

〈0|cn+1,σ (τ ) c†1,σ (0)|0〉 ≈ a0 〈0|Rσ (τ, x) R†
σ (0, 0)|0〉 exp(ikF x)

+ a0 〈0|Lσ (τ, x) L†
σ (0, 0)|0〉 exp(−ikF x) . (10.86)

Cross-terms such as 〈Lσ (τ, x) R†
σ (0, 0)〉 vanish because of the chiral symmetry of the

Gaussian model describing the spin sector.8 Let us now turn to the single particle Green’s
7 Rigorous results for the Peierls instability were obtained in [295, 297].
8 In other words, the spin pieces of such correlation functions vanish because 〈eiαϕ(z) eiβϕ̄(z̄)〉 = 0 in the Gaussian model.
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function of the right moving fermions. Using the bosonization identity (10.48) we obtain

〈0|Rσ (τ, x)R†
σ (0, 0)|0〉 = 1

2π
〈e− i

2 ϕc(τ,x) e
i
2 ϕc(0)〉c 〈e− i

2 fσ ϕs (τ,x) e
i
2 fσ ϕs (0)〉s . (10.87)

The expectation value in the spin sector is easily evaluated (see Appendix 10.C) as the spin
sector Hamiltonian is a free bosonic theory

〈e− i
2 fσ ϕs (τ,x) e

i
2 fσ ϕs (0)〉s = 1√

vFτ − i x
. (10.88)

The charge piece has been calculated by means of the form factor bootstrap approach by S.
Lukyanov and A. Zamolodchikov in [307], see also [128]

〈e− i
2 ϕc(τ,x) e

i
2 ϕc(0)〉c = Z0

√
2πM

vF

∫ ∞
−∞

dθ

2π
eθ/2 e−Mτ cosh θ+i Mx

vF
sinh θ + · · · , (10.89)

where

Z0 = �(1/4)

2
5
4
√
π

exp

[∫ ∞
0

dt

t

sinh2(t/2) exp(−t)

sinh(2t) cosh(t)

]
≈ 0.921862. (10.90)

We note that the knowledge of the normalization Z0 is very useful for comparisons with
numerical computations of e.g. the momentum distributions function or the tunneling den-
sity of states. The leading term on the r.h.s. of equation (10.89) is the contribution of a
one antiholon intermediate state. The θ -dependence of the form factor of Oc = exp(iϕc/2)
between the vacuum and 1-antiholon states is fixed by the Lorentz spin s = 1/4 of Oc.
There are subleading contributions due to intermediate states with two antiholons and one
holon, three antiholons and two holons and so on. It has been shown in [105] that their
contribution is negligible at large distances. Carrying out the θ -integration we obtain

〈0|Rσ (τ, x)R†
σ (0, 0)|0〉 ! Z0

2π

exp[−M
√
τ 2 + x2v−2

F ]

vFτ − i x
. (10.91)

The leading corrections to (10.91) due to intermediate states with two antiholons and one
holon are of order O(exp(−3mr )), where r2 = τ 2 + x2/v2

F . Similarly we have

〈0|Lσ (τ, x)L†
σ (0, 0)|0〉 ! Z0

2π

exp[−M
√
τ 2 + x2v−2

F ]

vFτ + i x
. (10.92)

The result (10.91) was first written down by P. B. Wiegmann in [480] and independently
conjectured by J. Voit in [474]. We note that the expression (10.91) looks quite natural,
as it reconciles the known behaviour at short distances vFr → 0, (vFτ − i x)−1, with the
presence of a spectral gap M leading to the exponential decay at large distances vFr →∞.
However, the fact that such a simple ansatz gives the correct answer is really a coincidence.
In the case of the U(1) Thirring model [307] it would lead to an incorrect result.

It is now straightforward to Fourier transform (10.91) and (10.92) and then analytically
continue to real frequencies. The single particle Green’s function of right-moving fermions



10.4 Correlation functions in the scaling limit 351

in Euclidean space is (to ease notations we suppress the spin index σ in the formulas below)

G R
E (τ, x) = −〈0| Tτ R(τ, x) R†(0, 0)|0〉

= −θH (τ )〈0|R(τ, x) R†(0, 0)|0〉 + θH (−τ )〈0|R†(0, 0) R(τ, x)|0〉

! − Z0

2π

exp[−M
√
τ 2 + x2v−2

F ]

vFτ − i x
. (10.93)

The Fourier transform of (10.93) may be calculated by going to polar coordinates

τ = r cos(ϕ + ϕ0) , x = vFr sin(ϕ + ϕ0) , tan(ϕ0) = ω̄/vF q. (10.94)

Carrying out the the integrals (we use 6.611 (1.) of [184]) we obtain

G R
E (ω̄, kF + q) ! Z0

vF q − iω̄

 M√
M2 + v2

F q2 + ω̄2
− 1

 . (10.95)

Analytically continuing (10.95) as well as the analogous formula for the Green’s function
of left-moving fermions to real frequencies ω̄→ ε − iω, we obtain the following result for
the retarded Green’s function in the vicinity of the Fermi points ±kF

G(R)(ω,±kF + q) ! − Z0

ω ∓ vF q

 M√
M2 + v2

F q2 − ω2
− 1

 . (10.96)

The result (10.96) is valid at low energies where |q| � kF We note that the Green’s function
(10.96) has a branch cut but no poles. This is a direct reflection of the fact that there are no
coherent single particle excitations with the quantum numbers of an electron. We also note
that in the approximation (10.96)

G(R)(0,±kF ) = 0 , (10.97)

i.e. the Green’s function vanishes at the Fermi ‘surface’ ±kF . We expect that (10.97)
continues to hold when the contributions of multiparticle intermediate states are taken into
account and is an exact property of the Green’s function. This has an important consequence
[129]. Luttinger’s Theorem relates the density of electrons Ne/V to the single particle
Green’s function G(ω, k) in the following way [4, 112]

Ne

V
= 2

∫
G(0,k)>0

d Dk

(2π )D
, (10.98)

where the integration is over the interior of the region defined by either singularities or zeroes
of the single particle Green’s function. The former is the case for a Fermi liquid whereas the
Green’s function (10.96) fulfils (10.98) by virtue of having zeroes at the position of non-
interacting Fermi surface, i.e. ±kF . Luttinger’s Theorem (10.98) is interesting, because it
implies that the integral on the right hand side of (10.98) is independent of electron-electron
interactions. In particular this means that the volume of the Fermi surface of a Fermi liquid
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Fig. 10.2. Spectral function in the vicinity of kF = π
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. The curves are constant-q scans with
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M = −4,−3, . . . , 4 and have been offset along the y-axis by a constant with respect to one another.

We have smoothed the square root singularity above the threshold as described in the text.

is unaffected by electron-electron interactions. In the half filled Hubbard model Luttinger’s
theorem appears to hold despite the absence of a Fermi surface.

10.4.6 Spectral function

The spectral function is defined as

A(ω, kF ± q) = − 1

π
ImG(R)(ω, kF ± q) . (10.99)

We note that as a consequence of the particle-hole symmetry at half filling we have

A(−ω, kF − q) = A(ω, kF + q) . (10.100)

The spectral function is of direct experimental interest as it can be measured by angle-
resolved photoemission spectroscopy (ARPES), see Refs. [71, 91] and references therein.
Taking the imaginary part of (10.96) we arrive at the following simple result for the spectral
function in the vicinity of ±kF (|q| � kF )

A(ω,±kF + q) ! Z0 M

π |ω ∓ vF q|
θH (|ω| −

√
M2 + v2

F q2)√
ω2 − M2 − v2

F q2
. (10.101)

In figure 10.2 we plot the spectral function in the vicinity of kF = π
2a0

in a series of constant-
q scans. For presentational purposes we have smoothed the square root singularities of

A(ω,±kF + q) above the thresholds at ω = ±
√

M2 + v2
F q2 by giving ω a small imaginary

part and then taking the real part of the resulting function. The spectral function is completely
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incoherent, there are no poles corresponding to the coherent propagation of electrons or
holes. Instead there is a scattering continuum that is singular at the spectral gap.

Let us relate these results to our discussion of the excitation spectrum at half filling in
Section 7.2. For positive frequencies the relevant excitation is an antiholon-spinon exci-
tation. The latter is obtained by acting with η† on the spin-charge scattering state. The
resulting boundaries of the scattering continuum are obtained by shifting the momentum
figure 7.11 by π . In the scaling limit there is an exponentially small gap at momenta ±π

2
and in the vicinity of these points the spectral function is given by (10.101). For negative
frequencies we need to consider a holon-spinon excited state i.e. the spin-charge scattering
state of Section 7.2.

10.4.7 Density response function

The two-point function of electron densities is given by

Gnn(τ, x) = 〈0|n(τ, x) n(0)|0〉
= G0

nn(τ, x)+ (−1)x/a0 G2kF
nn (τ, x) , (10.102)

where

G0
nn(τ, x) = 〈0|n0(τ, x) n0(0, 0)|0〉 ,

G2kF
nn (τ, x) = 〈0|n2kF (τ, x) n2kF (0, 0)|0〉 . (10.103)

Here the smooth n0 and staggered n2kF components of the electron density have been defined
in (10.40). We note that there are no ‘mixed terms’ as is most easily seen in the bosonic
representation (10.55). As the spin sector is gapless we have

〈0| cos

[
�s(τ, x)

2

]
|0〉s = 0 , (10.104)

and as a result

〈0|n0(τ, x) n2kF (0, 0)|0〉 = 0 . (10.105)

We first consider density-density correlation functions in momentum space and deter-
mine the large (Euclidean) distance asymptotics of G0(τ, x) and G2kF (τ, x) afterwards,
see equations (10.137) and (10.139). Of particular physical interest is minus the imagi-
nary part of the Fourier transform of the retarded dynamical density-density correlation
function

L(ω, k) = −Im

{
χn(ω, k)

}
,

χn(ω, k) = −i
∫ ∞
−∞

dx
∫ ∞

0
dt eiωt−ikx

[
Gnn(t, x)− Gnn(−t,−x)

]
. (10.106)

The function L(ω, k) is experimentally measurable by Electron Energy Loss Spectroscopy
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(EELS) [282]. We evaluate L(ω, k) in the vicinity of the low-energy modes at k = 0, 2kF =
π/a0 by Fourier transforming the large-distance asymptotics of the density-density correla-
tion function (10.102). The problem clearly splits into two parts: the dominant contributions
in the vicinity of k ≈ 0 and k ≈ 2kF come from the Fourier transforms of G0

nn and G2kF
nn re-

spectively. We will calculate χn(ω, q) by analytically continuing the Euclidean correlation
function in frequency

χn(ω, k) = χn
E (ω̄, k)

∣∣∣
ω̄→ε−iω

,

χn
E (ω̄, k) = −

∫ ∞
−∞

dx
∫ ∞
−∞

dτ eiω̄τ−ikx 〈Tτ {n(τ, x) n(0, 0)}〉 . (10.107)

Here Tτ denotes the usual τ -ordering

Tτ {n(τ, x) n(0, 0)} = θH (τ )n(τ, x) n(0, 0)+ θH (−τ )n(0, 0) n(τ, x), (10.108)

where θH is the Heaviside function.

Small k behaviour. In the vicinity of k = 0 the dynamical density response is dominated by
the contribution from G0

nn . It is obvious from the bosonized expression of n(τ, x) (10.55)
that this contribution does not involve the spin sector. We may therefore proceed in complete
analogy to our calculation of the optical conductivity. Employing a spectral representation
in terms of scattering states of holons and antiholons we obtain

χn(ω, q ≈ 0) =
∞∑

n=1

∑
εi

∫
dθ1 . . . dθn

(2π )n−1n!
| f n0 (θ1 . . . θn)ε1...εn |2

×
[
δ(q −∑

j Mε j sinh θ j/vF )

ω −∑
j Mε j cosh θ j + iη

− δ(q +∑
j Mε j sinh θ j/vF )

ω +∑
j Mε j cosh θ j + iη

]
,

(10.109)

where η is a positive infinitesimal. As n0 is charge neutral, the leading contribution at small
energies is due to intermediate states with one holon and one antiholon. More precisely, the
relevant intermediate state is the ηz = 0 state of the charge-triplet excitation constructed in
Section 7.2, see figure 7.9. The corresponding form factors can be determined along the
same lines as the two-particle form factor of the current operator (see Appendix 10.B), the
only difference coming from the transformation properties under Lorentz transformations.
The result is [32, 238, 304, 420]

| f n0 (θ1, θ2)hh̄ |2 = | f n0 (θ1, θ2)h̄h |2

=
[

a0 M

vF
sinh

(
θ1 + θ2

2

)]2

|g(θ1 − θ2)|2 , (10.110)
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where the function g(θ ) is given by (10.82). Using (10.110) to evaluate the two-particle
contribution to (10.109) and then taking the imaginary part, we obtain for ω > 0

L(ω, q ≈ 0) = vF

8t2

v2
F q2

√
ω2 − v2

F q2 − 4M2(
ω2 − v2

F q2
)3/2 θH (ω2 − v2

F q2 − 4M2)

× exp

[
−

∫ ∞
0

dx

x

exp(−x) [1− cos(4xθ0/π ) cosh 2x]

cosh(x) sinh(2x)

]
+ contributions from 4,6,8 . . . particles, (10.111)

where

θ0 = arcosh


√
ω2 − v2

F q2

2M

 . (10.112)

The contributions of intermediate states with four or more particles vanish due to energy-
momentum conservation as long as

ω2 − v2
F q2 ≤ 16M2 . (10.113)

In this range of frequencies and momenta the holon-antiholon contribution gives the exact

result. Above the two-particle threshold at ω =
√
v2

F q2 + 4M2, L(ω, q) (as a function of
ω for fixed q) increases from zero in a universal square root fashion. This is due to the
momentum dependence of the form factors. We note that because of the proportionality to
q2, L(ω, q) is always small for small momenta.

From the Heisenberg equations of motions for the lattice density operator

∂n j

∂t
= − [

Jj, j+1 − Jj−1, j
]
, (10.114)

one can derive a relation between L(ω, q) and the real part of the optical conductivity

Re σ (ω) = lim
q→0

e2ω

a4
0q2

L(ω, q) . (10.115)

A direct comparison of (10.111) with (10.83) confirms this relation.

Behaviour around k = 2kF . In the vicinity of k = 2kF the dynamical density response is
dominated by the contribution from G2kF

nn (τ, x) and involves both the spin and the charge
sector. This is most easily seen by considering the bosonized form of n2kF

n2kF =
2a0

π
sin

[
�c

2

]
cos

[
�s

2

]
. (10.116)

Due to spin-charge separation the correlation functions in (10.103) factorize into spin and
charge pieces. In the spin sector (10.53) we are dealing with a simple Gaussian model and
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considerations along the lines of Appendix 10.C give

s〈0| cos

(
�s(τ, x)

2

)
cos

(
�s(0, 0)

2

)
|0〉s = 1

2

[
x2 + v2

Fτ
2
]− 1

2 , (10.117)

where |0〉s denotes the vacuum in the spin sector. The correlator in the charge sector can
again be determined by using the spectral representation (10.73). In order to carry out the
x and τ integrations in the Fourier transforms, it is convenient to set q = 0. As sin(�c/2)
is a Lorentz scalar, the q-dependence can be easily restored in the end by taking

ω̄→
√
ω̄2 + v2

F q2 . (10.118)

The Euclidean correlator is then expressed as

χn
E (ω̄, 2kF ) = −1

2

[
2a0

π

]2 ∫ ∞
−∞

dx
∫ ∞
−∞

dτ eiω̄τ [x2 + v2
Fτ

2]−
1
2

×
∞∑

n=2

∫
dθ1 . . . dθn

(2π )nn!
| f sin(�c/2)(θ1, . . . , θn)ε1,... ,εn |2e−

∑n
j=1 E j |τ |−i Pj x , (10.119)

where E j = M cosh(θ j ) and Pj = M sinh(θ j )/vF . The leading contribution in the spectral
sum comes from the terms with n = 2, i.e. intermediate states with one holon and one
antiholon. The relevant excitation is the ηz = 0 state of the charge triplet constructed in
Section 7.2. The corresponding form factors can be determined in analogy with Appendix
10.B. An important difference compared to the current operator is that the locality index of
sin(�c/2) is 1/2. The form factors are [32, 304, 420]

| f sin(�c/2)(θ1, θ2)+−|2 = | f sin(�c/2)(θ1, θ2)−+|2

= Z M

vF
|g(θ1 − θ2)|2 , (10.120)

where g(θ ) is given by (10.82) and Z is an unknown constant. Concentrating on the holon-
antiholon contribution, we may change variables to

θ± = θ1 ± θ2

2
, (10.121)

and then carry out the integral over θ+. This results in

χn
E (ω̄, 2kF ) ≈ − 1

2π

[
2a0

π

]2 ∫ ∞
−∞

dx
∫ ∞
−∞

dτ eiω̄τ [x2 + v2
Fτ

2]−
1
2

×
∑
ε1,ε2

∫
dθ−
2π
| f sin(�c/2)(2θ−)ε1ε2 |2 K0(2M

√
τ 2 + (x/vF )2 cosh θ−) . (10.122)

Introducing polar coordinates

τ = r sinϕ ,
x

vF
= r cosϕ , r2 = τ 2 + x2/v2

F , (10.123)
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we may integrate over ϕ first, giving a Bessel function J0(ω̄r ), and then carry out the r
integral by means of the identity 6.576 (3.) of [184]

∫ ∞
0

dx x−λ Kµ(ax) Jν(bx) =
bν�

(
ν−λ+µ+1

2

)
�
(

ν−λ−µ+1
2

)
2λ+1aν−λ+1�(1+ ν)

× F
(

ν−λ+µ+1
2 ,

ν−λ−µ+1
2 ; ν + 1,− b2

a2

)
. (10.124)

Here F(a, b; c, z) is a hypergeometric function. This gives

χn
E (ω̄, 2kF ) ≈ −

[a0

π

]2 ∑
ε1,ε2

∫
dθ
| f sin(�c/2)(2θ )ε1ε2 |2

c(θ )
F
(

1
2 ,

1
2 ; 1,− ω̄2

c(θ )2

)
, (10.125)

where we have introduced the shorthand notation

c(θ ) = 2M cosh(θ ) . (10.126)

We may now restore the q-dependence by using (10.118), analytically continue to real
frequencies and then take the imaginary part. This leads to the following result for the
function L(ω, 2kF + q) for small |q| � kF and ω > 0

L(ω, 2kF + q) ≈
[a0

π

]2 ∑
ε1,ε2

∫
dθ
| f sin(�c/2)(2θ )ε1ε2 |2

c(θ )

× Im
{

F
(

1
2 ,

1
2 ; 1, ω2−v2

F q2

c(θ )2

)}
. (10.127)

The imaginary part of the hypergeometric function is zero unless

c(θ ) <

√
ω2 − v2

F q2 , (10.128)

which implies that ω2 > v2
F q2 + 4M2. In order to extract the behaviour just above the

threshold (ω2 − v2
F q2 − 4M2 � 4M2) we may use the transformation formulas for hyper-

geometric functions (see Ref. [3] equation 15.3.10) to obtain

Im
{

F
(

1
2 ,

1
2 ; 1, ω2−v2

F q2

c(θ )2

)}
= F

(
1
2 ,

1
2 ; 1, 1− ω2−v2

F q2

c2(θ )

)
× θH (ω2 − v2

F q2 − c2(θ )) . (10.129)

The remaining θ -integral in (10.127) is therefore over a very small interval and can be taken
by Taylor-expanding the integrand. The leading contribution to the behaviour just above
the threshold is

L(ω, 2kF + q) ∝

√
ω2 − v2

F q2 − 2M

M


3
2

,

√
ω2 − v2

F q2

2M
→ 1+. (10.130)

The important result is that L(ω, 2kF + q) vanishes as the threshold is approached from
above. There are no threshold singularities! Instead L(ω, 2kF + q) vanishes in a power-law
fashion. The same holds true in presence of a magnetic field as has been shown in [89].
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Fig. 10.3. Density response function L(ω, q) as a function of s =
√
ω2 − v2

F q2 in the vicinity of 2kF .

The behaviour of (10.127) for large frequencies ω �
√
v2

F q2 + 4M2 (but necessarily
ω � t for field theory to apply) is

L(ω, 2kF + q) −→ const.× ln(ω/m). (10.131)

As n2kF is a Lorentz scalar, the function L(ω, 2kF + q) only depends on the Mandelstam
variable

s =
√
ω2 − v2

F q2. (10.132)

It is convenient to plot L(ω, 2kF + q) as a function of s, which is done in figure 10.3. At first
sight it looks quite strange that L(ω, q) does not go to zero at large ω and fixed q. However,
we recall that the field theory calculations cease to be applicable at energies comparable to
the bandwidth 4t . In order to understand why L(ω, q) increases with frequency it is useful
to determine the density-density correlations in the tight-binding model of noninteracting
electrons (U = 0). A simple calculation gives

Lu=0(ω, k) = 4a0

π
Im

{ artanh
[

4t sin2(ka0/2)
(4t sin2(ka0/2))2+(ε−iω)2

]
√

(4t sin2(ka0/2))2 + (ε − iω)2

}
. (10.133)

A density plot of Lu=0(ω, k) is shown in figure 10.4. Most of the spectral weight is located
at high energies and Lu=0(ω, k) increases with frequency. At finite interaction strength u the
low-energy behaviour is changed by the dynamical generation of the Mott gap. However, a
small value of u will not alter the overall distribution of spectral weight. Hence one would
expect that L(ω, q) (eventually) will increase with frequency, in accordance with the field
theory result.
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Fig. 10.4. Density plot of the density response function Lu=0(ω, k) for noninteracting electrons as a
function of ka0 (x-axis) and ω/t (y-axis).

The density response function for the half filled Hubbard model at weak coupling was
analyzed by the FFBA in [89].

Large distance asymptotics. Let us now derive explicit expressions for the large (Euclidean)
distance asymptotics of Gnn(τ, x). Employing a spectral representation (10.73) and retaining
only the leading term, which is due to intermediate states with one holon and one antiholon,
we obtain

G0
nn(τ, x) ≈

∫
dθ1dθ2

(2π )2
e−Mτ (cosh θ1+cosh θ2)+i(Mx/vF )(sinh θ1+sinh θ2)

× | f n0 (θ1, θ2)hh̄ |2 , (10.134)

where | f n0 (θ1, θ2)hh̄ |2 = | f n0 (θ1, θ2)h̄h |2 is given by (10.110). We now change integration
variables to θ± = (θ1 ± θ2)/2. The θ+ dependence enters via the factor

sinh2(θ+) e2i(Mx/vF ) sinh(θ+) cosh(θ−) = − ∂2

∂x2

e2i(Mx/vF ) sinh(θ+) cosh(θ−)

4M2v−2
F cosh2(θ−)

. (10.135)

The integration over θ+ can now be carried out

G0
nn(τ, x) ≈ −a2

0
∂2

∂x2

∫
dθ−
4π2

∣∣∣∣ g(2θ−)

cosh θ−

∣∣∣∣2 K0(2Mr cosh θ−) , (10.136)

where r =
√
τ 2 + (x/vF )2. The remaining integral is dominated by the saddle points at

θ ≈ ±(Mr )−1/2 � 1. In the saddle-point approximation we obtain the following result in



360 Scaling and continuum limits at half-filling

the limit Mr →∞

G0
nn(τ, x) ≈ −a2

0 D0 ∂2
x

e−2Mr

(2Mr )2

≈ −D0
a2

0[x2 − v2
Fr/2M]

(x2 + v2
Fτ

2)2
e−2M
√

τ 2+(x/vF )2
, (10.137)

where

D0 = 1√
2π

exp

(
−1+

∫ ∞
0

dx

x

e−x sinh x

cosh2 x

)
. (10.138)

The asymptotic behaviour of G2kF
nn (τ, x) for Mr →∞ is obtained by analogous consider-

ations. We obtain

G2kF
nn (τ, x) ≈

[
2a0

π

]2 1

2
√

x2 + v2
Fτ

2

∫
dθ1dθ2

(2π )2
| f sin(�c/2)(θ1, θ2)hh̄ |2

× e−Mτ (cosh θ1+cosh θ2)+i(Mx/vF )(sinh θ1+sinh θ2)

≈ D e−2M
√

τ 2+(x/vF )2

(x2 + v2
Fτ

2)
3
2

, (10.139)

where

D = a2
0vF

M

√
2Z

π3
exp

(
−1+

∫ ∞
0

dx

x

e−x sinh x

cosh2 x

)
. (10.140)

10.4.8 Spin correlation functions

Due to spin-rotational invariance we have

〈Sx (τ, x)Sx (0, 0)〉 = 〈Sy(τ, x)Sy(0, 0)〉 = 〈Sz(τ, x)Sz(0, 0)〉 , (10.141)

so that it is sufficient to consider 〈Sz(τ, x)Sz(0, 0)〉. Using the bosonized expression (10.56)
for the spin-operator, we obtain

〈Sz(τ, x)Sz(0, 0)〉 =
[ a0

4π

]2
〈∂x�s(τ, x) ∂x�s(0, 0)〉s

+ (−1)x/a0

[a0

π

]2
〈
sin

(
�s(τ, x)

2

)
sin

(
�s(0, 0)

2

)〉
s

×
〈
cos

(
�c(τ, x)

2

)
cos

(
�c(0, 0)

2

)〉
c

. (10.142)

The expectation values in the spin sector are easily evaluated

〈Sz(τ, x)Sz(0, 0)〉 = a2
0

8π2

[
1

(vFτ + i x)2
+ 1

(vFτ − i x)2

]
+ (−1)x/a0

a2
0

2π2

1

(v2
Fτ

2 + x2)
1
2

χ cos(�s/2)(τ, x) , (10.143)



10.5 Correlation functions in the continuum limit 361

where we have defined

χ cos(�s/2)(τ, x) =
〈
cos

(
�c(τ, x)

2

)
cos

(
�c(0, 0)

2

)〉
c

. (10.144)

The two-point function in the charge sector (10.144) can be evaluated in the spectral repre-
sentation (10.73). The first two terms in the spectral sum are

χ cos(�s/2)(τ, x) ≈ C2 + 1

2

∑
ε1,ε2

∫
dθ1dθ2

(2π )2
| f cos(�c/2)(θ1 − θ2)ε1ε2 |2

× e−M |τ |(cosh θ1+cosh θ2))−i(Mx/vF )(sinh θ1+sinh θ2) + · · · (10.145)

where

C =
〈
cos

(
�c(0, 0)

2

)〉
. (10.146)

The contribution to (10.145) due to holon-antiholon intermediate states is exponentially
suppressed at large τ . Hence, the large-τ asymptotics of the spin-spin correlation functions
at half-filling are given by the ‘conformal’ result

〈Sz(τ, x)Sz(0, 0)〉 ≈ a2
0

8π2

[
1

(vFτ + i x)2
+ 1

(vFτ − i x)2

]
+ (−1)x/a0

C2a2
0

2π2

1

(v2
Fτ

2 + x2)
1
2

. (10.147)

The leading corrections to (10.147) are proportional to e−2Mr and can be evaluated by
the same method we used to obtain the large-distance asymptotics of the density-density
correlation functions. In the dynamical structure factor these corrections contribute only for
energies higher than 2M , i.e. twice the single particle gap.

10.5 Correlation functions in the continuum limit

As we have mentioned before, the continuum limit describes the vicinity of the scaling limit
of the half filled Hubbard model. This is a very important regime. If one is interested in
physical properties for weak repulsion, say U ≈ t , one cannot rely on the results obtained in
the scaling limit but one may hope that this regime is captured by the continuum limit. The
reason is that the window of applicability of the results in the continuum limit is ultimately
determined by the requirement that the ratio of the charge gap � (7.18) to the electronic
bandwidth 4t is small, i.e.

�� 4t. (10.148)

For U = t we have � ≈ 0.002 512 35t and this criterion is satisfied. As we have mentioned
before, the Hamiltonian in the continuum limit (10.24) is the sum of two integrable quantum
field theories and correlation functions can be obtained in a way analogous to the scaling
limit. The main differences between scaling and continuum limits are
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� spin and charge velocities are different in the continuum limit but are the same in the
scaling limit;

� the charge gap is given by (7.18) in the continuum limit and by (10.1) in the scaling limit;
� the spin Hamiltonian (10.24) in the continuum limit contains a marginally irrelevant

current-current interaction;
� the amplitudes of the bosonized expressions of local operators depend on the interaction

U in the continuum limit and are not generally known.

The most important difference is that vc �= vs in the continuum limit. In what follows we
will ignore the marginally irrelevant current-current interaction in the spin sector. Taking
it into account leads to logarithmic corrections, which are generally small. We also will
neglect the U -dependence of the amplitudes of the bosonized expressions for local operators.
Furthermore, we will use the exact result (7.18) for the charge gap rather than (10.1), which
holds only in the scaling limit.

10.5.1 Optical conductivity

In the scaling limit the current operator does not involve the spin degrees of freedom and this
continues to hold true in the continuum limit. Hence we may proceed as in the scaling limit
and employ a spectral representation in terms of scattering states of holons and antiholons.
The main difference between the scaling limit and the continuum limit are the replacements
of the Fermi velocity by the charge velocity and of the charge gap M by � as mentioned
above. Retaining the bosonized expression obtained in the scaling limit

J (τ, x) = i

2π
∂τ�c , (10.149)

and then going through the same steps as in the calculation for the scaling limit, we obtain
the following result for the holon-antiholon contribution to the real part of the optical
conductivity

σhh̄(ω) = e2t

a0

vc

vF

√
ω2 − 4�2

ω2
θH (ω − 2�)

× exp

[
−

∫ ∞
0

dx

x

exp(−x) [1− cos(4xθ0/π ) cosh 2x]

cosh(x) sinh(2x)

]
, (10.150)

where θ0 = arcosh
(

ω
2�

)
. The result (10.150) may be compared with the results of numerical

computations of the real part of the optical conductivity for the half filled Hubbard model.
The numerical method used in Ref. [224] is the Dynamical Density Matrix Renormalization
Group (DDMRG), see [223,271] and references therein. The method allows for the calcu-
lation of Re σ (ω) on large lattices of 128 sites, provided a broadening of the energy levels of
intermediate states is introduced. The numerical results for U = 3t presented in [224] are in
excellent agreement with (10.150) despite the fact that at U = 3t the charge gap is already
sizeable �(U = 3t) = 0.315 687t . The velocity ratio entering (10.150) is obtained
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Fig. 10.5. Comparison of the holon-antiholon contribution in units of e2/a0 to the optical conductivity
to DDMRG computations.

from (7.26) as

vc

vF

∣∣∣∣
U=3t

≈ 1.22371 . (10.151)

In figure 10.5 we show a comparison between equation (10.150) and DDMRG results
for the Hubbard model with U = 3t , for which the aforementioned broadening has been
removed by means of a numerical deconvolution [222]. The agreement is quite satisfactory.
We note that the corrections to (10.150) due to intermediate states with more than one
holon and one antiholon are extremely small in the relevant range of frequencies.

10.5.2 Single particle Green’s function

The single particle Green’s functions of left- and right-moving fermions in Euclidean space
in the continuum limit are obtained by introducing spin and charge velocities in the expres-
sions (10.88) and (10.89) for the spin and charge pieces and replacing the expression M for
the charge gap by �. This gives

〈Rσ (τ, x)R†
σ (0, 0)〉 ! Z0

2π

exp[−�
√
τ 2 + x2v−2

c ]√
vsτ − i x

√
vcτ − i x

, (10.152)

〈Lσ (τ, x)L†
σ (0, 0)〉 ! Z0

2π

exp[−�
√
τ 2 + x2v−2

c ]√
vsτ + i x

√
vcτ + i x

, (10.153)

where the constant Z0 is given by (10.90). Like in the scaling limit, the leading corrections to
(10.152) and (10.153) involve intermediate states containing two antiholons and one holon
and are thus of orderO(exp(−3�r )). After Fourier transformation and analytic continuation
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to real frequencies we obtain the following result for the retarded Green’s function (for spin
σ ) [128]

G(R)(ω, kF + q) ! −Z0

√
2vc

vc + vs

ω + vcq√
�2 + v2

c q2 − ω2

×
[(

�+
√
�2 + v2

c q2 − ω2

)2

− vc − vs

vc + vs
(ω + vcq)2

]− 1
2

. (10.154)

Here the charge gap � and the spin and charge velocities are given by (7.18), (7.21) and
(7.26) respectively. The spectral function is obtained from the imaginary part of G(R) by
(10.99) and we refrain from writing down its rather lengthy explicit expression. In order to
interpret the spectral function, it is useful to determine its threshold. The intermediate state
with lowest possible energy that couples to the fermion annihilation operator in the vicinity
of kF is a scattering state of one antiholon and one spinon. The energy and dispersion of
such states in general are

P = a−1
0

[
Ps(�)+ Ph̄(k)

]
,

E = t
[
Es(�)+ Eh̄(k)

]
, (10.155)

where Ps,h̄ and Es,h̄ are given by (7.8) and where we have reinstituted the lattice spacing a0

and the hopping integral t . In the continuum limit we must recover Lorentz invariance in
the spin and charge sectors separately,9 so that

P = kF + pc + ps ,

E = vs ps +
√
�2 + v2

c p2
c , (10.156)

where the spinon momentum is positive, becausePs(�) ∈ [0, π ] and the low-energy modes
occur for Ph̄ ≈ π

2 . In other words we are dealing with a right-moving spinon. The thresh-
old (for positive frequencies ω > 0) is obtained by minimizing the energy at fixed total
momentum with respect to ps,c

Ethres(kF + q) =
{√

�2 + v2
c q2 if q ≤ Q

vsq +�
√

1− α2 if q ≥ Q
, (10.157)

where

α = vs

vc
, Q = vs�

vc

√
v2

c − v2
s

. (10.158)

Inspection of (10.157) shows that the threshold is not symmetric around kF . For momenta
smaller than kF + Q the threshold is equal to the antiholon dispersion. Furthermore, at the
threshold the entire momentum is carried by the antiholon whereas the spinon momentum
is zero. On the other hand, for momenta larger than kF + Q, the ‘excess’ momentum
P − kF − Q is carried by the spin degrees of freedom.

9 We recall that as vs �= vc the full theory is not Lorentz invariant.
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another. We have smoothed the singularities by making ω in the expression (10.154) for the Green’s
function slightly complex and then taking the imaginary part.

The spectral function corresponding to U = t is shown in a series of constant-q scans in
figure 10.6. The most important difference between the spectral functions in the continuum
and scaling limits is readily seen by comparing figures 10.6 and 10.2. In the continuum limit
and at ω > 0, the single peak above the threshold splits into two peaks if q is larger than a
critical value Q. This splitting is a direct manifestation of spin-charge separation. The first
peak occurs at the threshold and follows the spinon dispersion, whereas the higher energy
peak disperses like an antiholon, i.e. occurs at ω = √

�2 + v2
c q2. A peak splitting of this

type is known to exist from numerical computations of the spectral function for the half
filled Hubbard model [38,136,365,390]. Several experiments have reported observations of
related features in the ARPES spectra of the quasi one-dimensional charge transfer insulators
SrCuO2 and Sr2CuO3 [150, 245].

10.5.3 Tunneling density of states

The tunneling density of states is defined as

ρ(ω) = − 1

π
Im

∫ π

−π

dk

2π
G(R)(ω, k)

= − 1

π
Im

∫ ∞
−∞

dt eiωt G(R)(t, 0) , (10.159)

where G(R)(t, x) is the retarded single particle Green’s function. In the continuum limit
we can determine ρ(ω) for small frequencies from the expressions (10.152), (10.153) for
the Green’s function at x = 0. Calculating the Fourier transformation with respect to the
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imaginary time τ of (10.152), (10.153) and then analytically continuing to real frequencies
ω −→ ε − iω and taking the imaginary part we obtain

ρ(ω) ! Z0

π
√
vsvc

θH (|ω| −�) . (10.160)

The factor of two comes from the fact that both left- and right-movers contribute. The
tunneling density of states (10.160) vanishes inside the charge gap � and is constant for
frequencies above �.

10.5.4 Momentum distribution function

From the time-independent single particle Green’s function we can calculate the momentum
distribution function in the vicinity of kF . Particle-hole symmetry implies that nσ (kF +
q) = 1− nσ (kF − q), which fixes n(kF ) = 1

2 . Assuming that momentum dependence in
the vicinity of kF is mainly due to the leading term (10.152) in the expansion of the Green’s
function we arrive at the following approximate result [128]

nσ (kF + q) = 1

2
− Z0

π
arctan

(vcq

�

)
. (10.161)

The momentum distribution function in the half-filled Hubbard model has been determined
numerically using the Density Matrix Renormalisation Group in [342]. For small values of
u the numerical results are in agreement with (10.161).

10.5.5 Density-density response function

Last but not least, let us consider the density-density response function L(ω, k) defined
in (10.106). The generalization of the result (10.111) for small q ≈ 0 to the case vc �= vs

works in the same way as for the optical conductivity and we will not dwell on it. The
determination of the response function in the continuum limit for q ≈ 2kF is somewhat
more complicated. The threshold of L(ω > 0, k ≈ 2kF ) can be determined by considering
the lowest intermediate state that couples to the density operator at k = 2kF , which is a
scattering state of one holon, one antiholon and two spinons. The energy and dispersion of
such states in general are

P = a−1
0

[
Ps(�1)+ Ps(�2)+ Ph̄(k1)+ Ph(k2)

]
,

E = t
[
Es(�1)+ Es(�2)+ Eh̄(k1)+ Eh(k2)

]
, (10.162)

where Ps,h̄ and Es,h̄ are given by (7.8). In the continuum limit we only consider low-energy
states, which occur at momenta close to 2kF = π

a0
. We choose a parametrization such

that

Ps(�1) = p1a0 ≥ 0 , Ps(�2) = π − p2a0 ≤ π ,

Ph(k1) = −π

2
+ q1a0, Ph̄(k2) = π

2
+ q2a0. (10.163)
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This leads to the following expression for the total momentum and energy in the continuum
limit

P = [2kF + p1 − p2 + q1 + q2] , p1,2 ≥ 0 ,

E = vs[p1 + p2]+
2∑

j=1

√
�2 + v2

c q2
j . (10.164)

Here we have used that the low-energy modes occur for Ph ≈ −π
2 , Ph̄ ≈ π

2 and Ps = 0, π .
The threshold in the vicinity of 2kF is obtained by minimizing the energy at fixed total
momentum with respect to p1, p2, q1, q2

Ethres(2kF + q) =
{√

4�2 + v2
c q2 if |q| ≤ 2Q

vs |q| + 2�
√

1− α2 if |q| ≥ 2Q
, (10.165)

where Q and α are given by (10.158). The threshold is symmetric around 2kF . Working
with a spectral representation in real time (10.69) and carrying out the integrals over x and
t in the Fourier transforms by means of the identity 3.382 of [184]∫ ∞

−∞
dx

exp(−i px)

(β + i x)ν
= θH (−p)

2π

�(ν)
(−p)ν−1 exp(βp) , (10.166)

one may derive the following expression for the function L(ω, q) [89]

L(ω, 2kF + q) ≈ 2
[a0

π

]2
∫ ∞
−∞

dθ+dθ−
π
| f sin(�c/2)(2θ−)h,h̄ |2

× (
��′

)− 1
2 �(�) �(�′), (10.167)

where

� = ω − vsq − 2� cosh(θ−) [cosh(θ+)− α sinh(θ+)] ,

�′ = ω + vsq − 2� cosh(θ−) [cosh(θ+)+ α sinh(θ+)] . (10.168)

One may check that (10.167) leads to a threshold described by (10.165) and reduces to
(10.127) in the limitα→ 1, in which the θ+-integral can be carried out easily. The remaining
integrals in (10.167) need to be evaluated numerically. The function L(ω, 2kF + q) vanishes
at the threshold and is free of singularities. As a matter of fact there are no significant
differences between the continuum limit and the scaling limit. The fact that no pronounced
features associated with vs and vc appear in L(ω, 2kF + q) may be understood intuitively
by recalling that the relevant excitations involve at least four particles (two spinons and one
holon/antiholon each). Fixing the total energy and momentum of the state still leaves us
with two free momenta over which we need to average.

10.6 Finite temperatures

A natural question is whether the calculations of dynamical correlation functions in the
scaling and continuum limits can be extended to finite temperatures. Proposals on how
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to calculate one and two point functions for integrable Quantum Field Theories at finite
temperatures exist [284,285,306,375], but the problem is quite difficult in general. In [261]
a method was proposed that allows for the calculation of two point functions in massive
integrable quantum field theories at temperatures (much) smaller than the spectral gap. This
approach was used in [129] to determine the single particle spectral function of the half
filled Hubbard model in the continuum limit at low temperatures. The main finding of [129]
is that even a small temperature leads to a significant smearing out of the (anti)holon peak
in the spectral function. This is easily understood: as the spin sector remains gapless in
the half filled Hubbard model a temperature that is small compared to the charge gap may
still significantly alter the dynamical response of the spin degrees of freedom. On the other
hand, the tunneling density of states for frequencies below the charge gap is exponentially
small at low temperatures.



Appendices to Chapter 10

10.A Current algebra

In this appendix we summarize some properties of the SU(2) spin and pseudospin cur-
rents (10.22). Our discussion closely follows Affleck’s work [5]. Let us consider spinless
fermions with Hamiltonian density (to ease notations we set the velocity equal to 1 in what
follows)

H = i :
[
L† ∂x L − R† ∂x R

]
: . (10.A.1)

The corresponding Lagrangian density is

L = i : L† [∂t − ∂x ] L : +i : R† [∂t + ∂x ] R : . (10.A.2)

Introducing light-cone coordinates

x± = t ± x , ∂± = 1

2
(∂t ± ∂x ) (10.A.3)

we may rewrite L as

L = 2i :
[
L†

σ ∂− Lσ + R†
σ ∂+ Rσ

]
: . (10.A.4)

The Euler-Lagrange equations are

∂−L = 0 = ∂+R . (10.A.5)

From now on we concentrate on the right-moving fermions. The corresponding formu-
las for left-movers are obtained in the same way. The fermion anticommutation relations
read

{R†(x−), R(y−)} = δ(x− − y−) . (10.A.6)

We note that (10.A.6) holds not only for equal times, but for general x−, y− because R
depends on t and x only through x− by virtue of the Euler-Lagrange equations. The fermion
propagator is given by

〈R(x−) R†(y−)〉 = 1

2π i(x− − y−)
. (10.A.7)
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Let us now introduce a current

J (x−) = lim
ε→0

: R†(x− − ε) R(x− + ε) : , (10.A.8)

where ‘:’ denotes normal ordering. The commutator of two currents can now be evaluated
by using (10.A.6). It is sufficient to point-split one of the currents, so that

[J (x−), J (y−)] = lim
ε→0

[J (x−), : R†(y− − ε)R(y− + ε) :]

= lim
ε→0

[δ(x− − y− + ε)− δ(x− − y− − ε)] R†(y− − ε)R(y− + ε)

= lim
ε→0

[δ(x− − y− + ε)− δ(x− − y− − ε)]
i

4πε

= i

2π
δ′(x− − y−) . (10.A.9)

Here we have used that

R†(y− − ε)R(y− + ε) = : R†(y− − ε)R(y− + ε) : +〈R†(y− − ε)R(y− + ε)〉
= : R†(y− − ε)R(y− + ε) : + i

4πε
, (10.A.10)

and that the normal ordered piece does not have a singularity for ε→ 0. The derivative
of a delta-function generated by the commutator of currents is known as a ‘Schwinger
term’ [387].

Let us now consider the operator product of two currents

J (x− − ε) J (x− + ε) = lim
δ→0

: R†(x− − ε − δ)R(x− − ε + δ) :

× : R†(x− + ε − δ)R(x− + ε + δ) : . (10.A.11)

Removing the normal orderings by (10.A.10) and then normal ordering the resulting term
quartic in Fermi operators leads to

J (x− − ε) J (x− + ε) = : R†(x− − ε)R(x− − ε)R†(x− + ε)R(x− + ε) :

+ i

4πε
: R†(x− − ε)R(x− + ε) :

− i

4πε
: R†(x− + ε)R(x− − ε) : − 1

(4πε)2
. (10.A.12)

Hence the normal-ordered operator product of two currents is

: J (x−) J (x−) : = i

2π

[
: R†(x−) ∂−R(x−) : − : ∂−R†(x−) R(x−) :

]
. (10.A.13)

Equation (10.A.13) implies that∫
dx : R†(x) i∂x R(x) : = −π

∫
dx : J (x)J (x) : . (10.A.14)
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Let us now turn to spinful fermions. We want to determine the normal-ordered operator
products of the spin and pseudospin currents (10.22). A calculation completely analogous
to the one we just did in the spinless case gives

: J z J z : + : I z I z : = i

4π

∑
σ

[
: R†

σ ∂−Rσ : − : ∂−R†
σ Rσ :

]
. (10.A.15)

Similarly we find

1

2
:
[
J+ J− + I+ I− + h.c.

]
: = i

2π

∑
σ

[
: R†

σ ∂−Rσ : − : ∂−R†
σ Rσ :

]
. (10.A.16)

Putting everything together, we obtain after integration by parts∫
dx

∑
σ

: R†
σ i∂x Rσ : = −2π

3

∫
dx [: J · J : + : I · I :] . (10.A.17)

10.B Two-particle form factors

In this appendix we discuss how to determine two-particle form factors using the Axioms
stated in Section 10.4.3.

10.B.1 Current operator

Combining the symmetry property with Smirnov’s axiom, one obtains a Riemann-Hilbert
Problem in the variable θ2

f J (θ1, θ2 + 2π i)ε1,ε2 = − f J (θ1, θ2)ε′1,ε′2 S
ε′1ε
′
2

ε1ε2 (θ1 − θ2) . (10.B.1)

Here we have used that the current operator has mutual locality index zero, which is most
easily established in the bosonic representation. The current operator is odd under charge
conjugation, which implies that it couples only to the triplet state. This is because the charge
conjugation matrix C = iσ y is antisymmetric.1 The Riemann-Hilbert Problem (10.B.1) can
be ‘scalarized’ by working in a basis in which the S-matrix is diagonal. Symmetrizing in
the indices ε1 and ε2 we obtain

f J (θ1, θ2 + 2π i)(ε1,ε2) = − f J (θ1, θ2)ε′1,ε′2 S
ε′1ε
′
2

(ε1ε2)(θ1 − θ2)

= f J (θ1, θ2)(ε1,ε2)
�
(

1
2 − i θ12

2π

)
�
(
1+ i θ12

2π

)
�
(

1
2 + i θ12

2π

)
�
(
1− i θ12

2π

) , (10.B.2)

where f(a,b) = fa,b + fb,a . The symmetry property by itself reads

f J (θ1, θ2)(ε1,ε2) = − f J (θ2, θ1)(ε1,ε2)
�
(

1
2 − i θ21

2π

)
�
(
1+ i θ21

2π

)
�
(

1
2 + i θ21

2π

)
�
(
1− i θ21

2π

) . (10.B.3)

1 As explained in [420], the situation is reversed in the Sine-Gordon model, where the charge conjugation matrix is symmetric
C = σ x .
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The properties of the current operator under Lorentz transformations imply that the two-
particle form factor of the current operator must be of the form

f J (θ1, θ2)(ε1,ε2) = cosh

(
θ1 + θ2

2

)
f (θ1 − θ2) . (10.B.4)

Combining (10.B.4) with (10.B.2) we see that the function f (θ ) fulfils the scalar Riemann-
Hilbert Problem

f (θ − 2π i) = − f (θ )
�
(

1
2 − i θ

2π

)
�
(
1+ i θ

2π

)
�
(

1
2 + i θ

2π

)
�
(
1− i θ

2π

) ≡ f (θ ) K̃ (θ ). (10.B.5)

A special solution of (10.B.5) is easily constructed

f0(θ ) = exp

(
−

∫ ∞
−∞

dx
1− exp(iθx)

exp(2πx)− 1
K (x)

)
,

K (x) =
∫ ∞
−∞

dθ

2π
exp(−iθx) ln(K̃ (θ )). (10.B.6)

Carrying out the Fourier transformation we obtain two special solutions

f ±0 (θ ) = C exp

(
±θ

2
−

∫ ∞
0

dx

x

sin2([θ + iπ ]x/π ) exp(−x)

sinh(2x) cosh(x)

)
, (10.B.7)

where C is a normalization constant. The symmetry property together with the definition
(10.B.4) yields the condition

f (0) = 0 , (10.B.8)

which means that we need to take 2 f (θ ) = f +0 (θ )− f −0 (θ ), or

f (θ ) = C sinh(θ/2) exp

(
−

∫ ∞
0

dx

x

sin2([θ + iπ ]x/π ) exp(−x)

sinh(2x) cosh(x)

)
. (10.B.9)

The constant C is determined in [32, 238, 304, 420]

|C | = 2M. (10.B.10)

Putting everything together we arrive at the following expression for the soliton – anti-
soliton form factor of the current operator in the SU(2) Thirring model

f J (θ1, θ2)+− = f J (θ1, θ2)−+ = 1

2
cosh

(
θ1 + θ2

2

)
f (θ1 − θ2) . (10.B.11)

10.C Correlation functions in the Gaussian model

In this appendix we summarize some facts about the Gaussian model in two dimensions. For
a more detailed treatment we refer the reader to the books [102,168,461] or the review [389].



10.C Correlation functions in the Gaussian model 373

Consider a Gaussian model with Hamiltonian

H = v

16π

∫
dx

[
(∂x�)2 + (∂x�)2

]
, (10.C.1)

where the dual field �(t, x) is related to the canonical Bose field � by

∂x�(t, x) = −1

v
∂t�(t, x) , ∂t�(t, x) = −v∂x�(t, x) . (10.C.2)

The canonical momentum is

�(t, x) = ∂H

∂∂t�(t, x)
= 1

8πv
∂t�(t, x) ,

[�(t, x),�(t, y)] = −iδ(x − y) . (10.C.3)

The Lagrangian is

L = 1

16π

∫
dx

[
1

v
(∂t�)2 − v(∂x�)2

]
. (10.C.4)

Finally, the action of the Gaussian model in a two-dimensional Euclidean space is

S = 1

16π

∫
dx dτ

[
1

v
(∂τ�)2 + v(∂x�)2

]
, (10.C.5)

The generating functional of multi-point correlation functions is defined in the usual way
as a path integral

Z [J ] =
∫

D� e−S−∫ dτ dx �(τ,x) J (τ,x) , (10.C.6)

where J (τ, x) is a source. Fourier-transforming gives

Z [J ] =
∫

D� e
− ∫ dω dq

(2π )2

[
�(ω,q) ω2+v2q2

16πv
�(−ω,−q)+�(ω,q) J (−ω,−q)

]
. (10.C.7)

Making the change of variables

�′(ω, q) = �(ω, q)+ 8πv

ω2 + v2q2
J (ω, q) , (10.C.8)

in the path integral, we arrive at

Z [J ] = Z [0] exp

[∫
dω dq

(2π )2
J (ω, q)

4πv

ω2 + v2q2
J (−ω,−q)

]
. (10.C.9)

Fourier-transforming back we obtain

Z [J ]

Z [0]
= exp

[
1

2

∫
dτ dx dτ ′ dx ′ J (τ, x) G(τ − τ ′, x − x ′) J (τ ′, x ′)

]
, (10.C.10)

where the propagator G(τ, x) is given by

G(τ, x) =
∫

dω dq

(2π )2
e−iωτ+iqx 8πv

ω2 + v2q2
. (10.C.11)
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The propagator fulfils the differential equation(
1

v
∂2
τ + v∂2

x

)
G(τ, x) = −8π δ(τ ) δ(x) . (10.C.12)

Regularizing the ultraviolet and infrared divergences in the integrals (10.C.11) by long and
short distance cutoffs, we obtain

G(τ, x) = 2 ln

[
R2

x2 + v2τ 2 + a2
0

]
. (10.C.13)

We are particularly interested in correlation functions of vertex operators

〈Tτ eiα�(τ1,x1) eiα′�(0,0)〉 = 1

Z [0]

∫
D� eiα�(τ1,x1) eiα′�(0,0) e−S . (10.C.14)

These can be obtained from the generating functional Z [J ] by making the following choice
for the source

J (τ, x) = −iα δ(τ − τ1) δ(x − x1)− iα′ δ(τ ) δ(x) . (10.C.15)

Inserting (10.C.15) into (10.C.10) we obtain

〈Tτ eiα�(τ1,x1) eiα′�(0,0)〉 =
[

a2
0

R2

](α+α′)2 [
x2

1 + v2τ 2
1

a2
0

]2αα′

(10.C.16)

As a0 � R, the r.h.s. of (10.C.16) actually vanishes unless

α′ = −α . (10.C.17)

The condition (10.C.17) is known as ‘electroneutrality’ condition. In Conformal Field
Theory it is customary to use a normalization that is different from (10.C.13),
namely

G(τ, x) = −2 ln
[
x2 + v2τ 2

]
. (10.C.18)

Correlation functions of vertex operators in the CFT normalization are

〈Tτ eiα�(τ,x) e−iα�(0,0)〉 = [
x2 + v2τ 2

]−2α2

. (10.C.19)

In the CFT normalization (10.C.19), vertex operators have a physical dimension of

length−2α2
. (10.C.20)

Correlation functions of vertex operators of the dual field � can be calculated analogously.
The Minkowski space Lagrangian for the dual field is

L = 1

16π

∫
dx

[
1

v
(∂t�)2 − v(∂x�)2

]
. (10.C.21)
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Following through exactly the same steps as before, we obtain the following result for vertex
operators of the dual field

〈Tτ eiα�(τ,x) e−iα�(0,0)〉 = [
x2 + v2τ 2

]−2α2

. (10.C.22)

Last but not least we need to know correlation functions of so-called chiral vertex operators.
Let us define complex coordinates z and z̄ by

z = vτ − i x , z̄ = vτ + i x ,

∂τ = v(∂z + ∂z̄) , ∂x = −i(∂z − ∂z̄) . (10.C.23)

Next we define chiral Bose fields by

�(τ, x) = ϕ(z)+ ϕ̄(z̄) , �(τ, x) = ϕ(z)− ϕ̄(z̄) . (10.C.24)

The chiral fields have propagators

〈Tτ ϕ(z) ϕ(0)〉 = −2 ln [z] ,

〈Tτ ϕ̄(z̄) ϕ̄(0))〉 = −2 ln [z̄] . (10.C.25)

Correlation functions of chiral vertex operators are then given by

〈Tτ eiαϕ(z) e−iαϕ(0)〉 = z−2α2
,

〈Tτ eiαϕ̄(z̄) e−iαϕ̄(0)〉 = z̄−2α2
. (10.C.26)

The results (10.C.26) follow from the identity

〈Tτ eiαϕ(z) e−iαϕ(0)〉 = eα2〈Tτ ϕ(z) ϕ(0)〉 , (10.C.27)

which is a general property of free bosonic field theories.
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Universal correlations at low density

In Chapter 9 we developed the picture of the asymptotics of the correlation functions of
the Hubbard model for the phases with gapless excitations, i.e., for the phases with ground
states belonging to regions II and IV of the ground state phase diagram discussed in Chapter
6.3 (see figures 6.4, 6.5). Our results relied on the predictions of conformal field theory
which are expected to hold for a whole universality class of models related to the Hubbard
model and which only need the finite size data calculated in Chapter 8 as input parameters.
Correlation functions at half-filling (phase V) were considered in the previous chapter on
the basis of a special continuum limit and the predictions of certain integrable quantum field
theories.

Here we shall consider correlation functions in the phase whose ground state is the empty
band (phase I in the ground state phase diagram, figures 6.4, 6.5). At zero temperature the
boundary of this phase in the µ-B plane (see figure 6.5) is determined by equation (6.20):
µ < µ0(B). For small finite temperature a small number of particles is populating the
system. They form a dilute, thermodynamically ideal gas with pressure proportional to the
temperature (see below). We shall say the system is in the gas phase [176] and shall give a
more precise meaning to this statement later.

At zero temperature it costs the energy µ0(B)− µ > 0 (see equation (6.20)) to add
a single electron to the phase. Thus, the lowest lying possible excitation has a gap, and
conformal field theory cannot be applied. We shall see below that instead the non-relativistic
Fermi gas with infinite point-like repulsion becomes the universal model for the long-
wavelength, low-temperature physics of one-dimensional electrons. This model, which we
call the impenetrable electron gas, allows for a rigorous mathematical treatment by means
of the Bethe ansatz. In particular, a so-called determinant representation [270] for the two-
point Green function could be derived [217,218]. This determinant representation is related
to an integrable classical evolution equation and to a Riemann-Hilbert problem, that enable
the exact calculation of the asymptotics of the two-point Green functions [173, 174].

In Section 11.1 we shall explain our ideas about the universality of the long-wavelength,
low-temperature asymptotics of electronic correlations in the gas phase [171,176]. We shall
start with the paradigmatic Hubbard model, and then argue that certain modifications of the
interaction do not change the long-wavelength, low-temperature physics of the model. In
the appropriate scaling limit all modified Hamiltonians lead to the same effective model: the

376
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impenetrable electron gas model. A summary of the calculation [173,174] of the asymptotics
of the two-point Green functions of this model is presented in Section 11.2.

11.1 The Hubbard model in the gas phase

11.1.1 The gas phase

For simplicity let us neglect the magnetic field in this section. The density D of non-
interacting, one-dimensional spin- 1

2 Fermions on a lattice is given by the integral over the
Fermi weight,

D = 2

π

∫ π

0
dp

1

e(ε(p)−µ)/T + 1
. (11.1)

Here ε(p) is the dispersion of the Fermions, T denotes the temperature and µ the chemical
potential. Let us assume ε(p) to be monotonically increasing and bounded from below.
If the chemical potential is smaller than a critical value, µ < µc = minp>0 ε(p), then D
vanishes in the zero temperature limit T → 0+. For µ > µc, on the other hand, the density
D approaches a finite positive value as T → 0+. This means that the system undergoes a
phase transition at T = 0 as a function of the chemical potential. The critical point is at
µ = µc. Assuming that ε(p) = µc + p2 +O(p4), we obtain

D = 2

π

√
µ− µc (11.2)

for µc < µ < µc + δ, δ � 1. Clearly, the phase transition is a transition from a band insu-
lator for µ < µc to a conductor for µ > µc.

Let us come back to the Hubbard model as an example for an interacting electron system.
In Chapter 6 we found for the transition from phase I to phase IV (see equation (6.41) and
figure 6.7)

D = nc = 1

π

√
µ− µ0(0) (11.3)

for µ close to but larger than µ0(0). Thus, the qualitative picture is the same for free and for
interacting electrons. There is a phase transition from a zero density phase to a phase with
a finite density of particles which in the interacting case may be interpreted as a transition
from a correlated insulator to a correlated metal.1

Let us complete our picture by considering small positive temperatures. For fixed chem-
ical potential we expect a small number of thermally excited particles in phase I forming
a dilute gas whose properties can be studied by means of the thermodynamic Bethe ansatz
equations (see Chapter 5). For this purpose it is convenient to express the Gibbs free energy
f = −P (P pressure), equation (5.57), in terms of the dressed energies κ(k), εn(�), ε′n(�),
equations (5.68), of elementary excitations at finite temperature. κ(k) is the dressed energy

1 Comparing (11.2) and (11.3), however, we see that the results for the electron density close to the critical point µ = µ0(0) differ
by a factor of two. This difference may be interpreted as a ground state signature of the spin-charge separation discussed in
Chapter 7: The elementary charge excitations of the Hubbard model at finite positive u are spinless due to the interaction, hence
the density is smaller by a factor of two.
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of particle (or hole) excitations, εn(�) describes spin excitations and ε′n(�) so-called k-�
strings [95]. All k-� strings are gapped (see (5.80), (5.82)). They do not contribute to the
low-temperature thermodynamic properties of the Hubbard model [436] and drop out of
the equation for the pressure for sufficiently small T , which then simplifies to

P = T

2π

∫ π

−π
dk ln

(
1+ e−

κ(k)
T

)
. (11.4)

Similarly, the integral equations (5.54), (5.55) for the dressed energies at low temperature
become

κ(k) = −µ− 2u − 2 cos k − T
∞∑

n=1

(
[n] ln

(
1+ e−

εn
T

))
(sin k) , (11.5)

ln
(

1+ e
εn (�)

T

)
=−

∫ π

−π
dk cos k an(�− sin k) ln

(
1+ e−

κ(k)
T

)
+
∞∑

m=1

(
Anm ln

(
1+ e−

εn
T

))
(�) , (11.6)

where n = 1, 2, 3, . . . in equation (11.6), and

an(�) = nu/π

(nu)2 +�2
. (11.7)

[n] and Anm are integral operators defined by

([0] f )(�) = f (�) , (11.8)

([n] f )(�) =
∫ ∞
−∞

d�′ an(�−�′) f (�′) , n = 1, 2, . . . (11.9)

Anm =
min{n,m}∑

j=1

([|n − m| + 2( j − 1)
]+ [|n − m| + 2 j

])
. (11.10)

The gas phase is characterized by the absence of a Fermi surface for κ(k). Thus, κ(k) is
positive in the zero temperature limit, and the first term on the right-hand side of (11.6)
becomes exponentially small in T . Dropping this term, the equations (11.6) decouple from
(11.5). Since the equations become independent of �, it is not hard to solve them. The
solution, exp{εn(�)/T } = n(n + 2), is the same as in the infinite coupling limit u →∞
(see e.g. [432]). Inserting this solution into (11.5) we obtain

κ(k) = −µ− 2u − 2 cos k − T ln 2 . (11.11)

Our initial assumption, that limT→0 κ(k) > 0 self-consistently holds for all k if µ+ 2u +
2 < 0, which is precisely the same as the condition µ < µ0(0) for being in the gas phase
stated above. With (11.11) the low temperature expression for the pressure becomes

P = T

2π

∫ π

−π
dk ln

(
1+ 2e

µ+2u+2 cos k
T

)
≈

√
T

π
e

µ+2u+2
T , (11.12)
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and we see that the density D = ∂P/∂µ and the pressure P are related by the ideal gas law,

P = T D . (11.13)

There are two more important lessons to learn from our simple calculation. First, the
low temperature limit in the gas phase works the same way as the strong coupling limit
at finite temperatures. Second, the low temperature Gibbs free energy f = −P in the gas
phase shows no signature of the discreteness of the lattice. It is the same as for the impen-
etrable electron gas (see below), which is a continuum model. This agrees well with our
intuitive understanding of the gas phase at low temperature: (i) the mean free path (= 1/D)
of the electrons is large compared to the lattice spacing (which we set equal to unity so far);
(ii) their kinetic energy is of the order T . Hence, the effective repulsion is large for T � u;
(iii) the ideal gas law holds at low temperature.

11.1.2 Scaling

The above arguments show that only electrons with small momenta, corresponding to long
wavelengths, contribute to the low-temperature properties of the Hubbard model in the gas
phase. Thus, the Hubbard model in the gas phase at low temperature is effectively described
by its continuum limit (see appendix 2.B). Recall that in order to perform the continuum
limit we have to introduce the lattice spacing a0 and coordinates x = a0n connected with
the nth lattice site. The total length of the system is � = a0L . The continuum limit is the
limit a0 → 0 for fixed �. In this limit we obtain canonical field operators �σ (x) for electrons
of spin σ as

�σ (x) = lim
a0→0

cn,σ /
√

a0 . (11.14)

Let us perform the rescaling

TH = a2
0 T , µH + 2u + 2 = a2

0µ , kH = a0k , tH = t/a2
0 , BH = a2

0 B , (11.15)

where k denotes the momentum, t the time and B the magnetic field, which we shall
incorporate below. The index ‘H ’ refers to the Hubbard model. Then, in the limit a0 → 0,
we find

HH/TH = H/T . (11.16)

Here H is the Hamiltonian for continuum electrons with delta interaction,

H =
∫ �/2

−�/2
dx

{
(∂x�

+
α (x))∂x�α(x)+ 4u

a0
�+↑ (x)�+↓ (x)�↓(x)�↑(x)

−µ�+α (x)�α(x)
}
. (11.17)

Note that the coupling c1 = u/a0 of the continuum model goes to infinity! This is a pe-
culiarity of the one-dimensional system. The effective interaction in the low-density phase
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becomes large. Similar scaling arguments lead to an effective coupling c2 = u in two di-
mensions and to c3 = a0u in three dimensions, i.e., unlike one-dimensional electrons three-
dimensional electrons in the gas phase are free.

11.1.3 Universality

What happens to more general Hamiltonians in the continuum limit? Let us consider Hamil-
tonians of the form HG = HH + V , where HH is the Hubbard Hamiltonian and V contains
additional short-range interactions. We shall assume that V is a sum of local terms Vj which
preserve the particle number. Then Vj contains as many creation as annihilation operators,
and the number of field operators in Vj is even. We shall further assume that Vj is Hermitian
and space parity invariant.

According to equation (11.14) every field c j,σ on the lattice contributes a factor of a1/2
0

in the continuum limit. One factor of a0 is absorbed by the volume element dx = a0, when
turning from summation to integration. Thus, if Vj contains 8 or more field operators, then
V ∼ a3

0 and V/TH vanishes. If Vj contains 6 field operators, then at least two of the creation
operators and two of the annihilation operators must belong to different lattice sites, since
otherwise Vj = 0. A typical term is, for instance, Vj = c+j,↑c

+
j,↓c
+
j+1,↑c j+1,↑c j,↓c j,↑. In the

continuum limit we have c j+1,↑ = a1/2
0 �↑(x)+ a3/2

0 ∂x�↑(x)+ O(a5/2
0 ). Hence, the leading

term vanishes due to the Pauli principle. The next to leading term acquires an additional
power of a0. We conclude that V ∼ a3

0 and thus V/TH → 0.
If Vj contains 4 fields, then

V ∼ a2
0�
+
↑ (x)�+↓ (x)�↓(x)�↑(x)+ O(a4

0) . (11.18)

Here the first term on the right-hand side is the density-density interaction of the electron
gas. In order to arrive at the impenetrable electron gas model the coefficient in front of this
term has to be positive. Note that there are no terms of the order of a3

0 on the right hand side
of (11.18) and thus no other terms than the first one in the continuum limit. Terms of the
order of a3

0 would contain precisely one spatial derivative. They are ruled out, since they
would break space parity.

Considering the case, when Vj contains 2 fields, we find, except for the kinetic energy and
the chemical potential term, terms which correspond to a coupling to an external magnetic
field BH . For these terms to be finite in the continuum limit we have to rescale the magnetic
field as BH = a2

0 B (see equation (11.15)).
Our considerations show that the impenetrable electron gas model with magnetic field,

HB = H + B
∫ �/2

−�/2
dx �+α (x)σ z

αβ�β(x) , (11.19)

is indeed the universal model (for small T ) for the gas phase of one-dimensional lattice
electrons with repulsive short-range interaction.
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11.1.4 Asymptotics of correlation functions in the gas phase

The impenetrable electron gas is the infinite coupling limit of the electron gas with repulsive
delta interaction (a0 → 0 in (11.19)), which was the first model solved by nested Bethe
ansatz [154,493]. The pressure of the system as a function of T , µ and B is known explicitly
[432],

P = T

2π

∫ ∞
−∞

dk ln
(

1+ e
µ+B−k2

T + e
µ−B−k2

T

)
, (11.20)

and may serve as thermodynamic potential. The expression (11.20) is formally the same as
for a gas of free spinless Fermions with effective (temperature dependent) chemical poten-
tial µe f f = µ+ T ln(2 cosh B/T ). Hence the Fermi surface vanishes for limT→0 µe f f =
µ+ |B| < 0. The finite temperature correlation functions of the impenetrable electron gas
depend crucially on the sign of µe f f . This allows us to give precise meaning to the gas phase
at finite temperature by the condition µe f f < 0, which is also sufficient for deriving the ideal
gas law (11.13) from the low temperature limit of (11.20). Note that for zero magnetic field
and small temperature equation (11.20) coincides with the right hand side of (11.12).

The time- and temperature-dependent (two-point) Green functions are defined as

G+↑↑(x, t) = tr
{
e−HB/T �↑(x, t)�+↑ (0, 0)

}
tr{e−HB/T } , (11.21a)

G−↑↑(x, t) = tr
{
e−HB/T �+↑ (x, t)�↑(0, 0)

}
tr{e−HB/T } . (11.21b)

For the impenetrable electron gas these correlation functions were represented as determi-
nants of Fredholm integral operators in [217,218]. The determinant representation provides
a powerful tool to study their properties analytically.

In [173,174] the determinant representation was used to derive a nonlinear partial differ-
ential equation for two classical auxiliary fields, which determine the correlation functions.
This partial differential equation is closely related to the Heisenberg equation of the quantum
Hamiltonian (11.17). It is called the separated nonlinear Schrödinger equation. Together
with a corresponding Riemann-Hilbert problem it determines the large-time, long-distance
asymptotics of the correlators (11.21a), (11.21b) (for details see the following sections).
In [173,174] the asymptotics x, t →∞ was calculated for fixed ratio k0 = x/2t . The cru-
cial parameter for the asymptotics is the average number of particles x D in the interval
[0, x]. If x is large but x D � 1 (i.e., T small), an electron propagates freely from 0 to x ,
and the correlation functions (11.21a), (11.21b) are those of free Fermions,

G+f (x, t) = e−
iπ
4

2
√
π

t−
1
2 eit(µ−B)e

ix2

4t , (11.22a)

G−f (x, t) = e
iπ
4

2
√
π

e
(µ−B−k2

0 )

T t−
1
2 e−it(µ−B)e−

ix2

4t . (11.22b)
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The true asymptotic region is characterized by a large number x D of particles in the interval
[0, x], specifically, x D � z−1

c , where zc = (T 3/4e−k2
0/2T )/(2π1/4k3/2

0 ). If the latter condition
is satisfied, the correlation functions decay due to multiple scattering. The cases B > 0 and
B ≤ 0 have to be treated separately. For B > 0 a critical line, x = 4t

√
B, separates the x-t

plane into a time and a space like regime. The asymptotics (for small T ) in these respective
regimes are:

Time like regime (x < 4t
√

B):

G±↑↑(x, t) = G±f (x, t)
t∓iν(zc)e−x D↓√

4π zcx D↓
, (11.23)

where

ν(zc) = − 2D↓k
3/2
0 e−k2

0/2T

π1/4T 5/4
, D↓ = 1

2

√
T

π
e(µ+B)/T . (11.24)

D↓ = ∂P/∂(µ+ B) is the low temperature expression for the density of down-spin elec-
trons.

Space like regime (x > 4t
√

B):

G±↑↑(x, t) = G±f (x, t) t∓iν(γ−1)e−x D↓ , (11.25)

where

ν(γ−1) = − e(3B+µ−k2
0 )/T

2π
. (11.26)

For B ≤ 0 there is no distinction between time- and space-like regimes. The asymptotics is
given by (11.25).

It seems fair to mention here that the calculation of the asymptotics (11.23), (11.25) is
rather hard and lengthy. The required technics are presented in detail in parts III and IV
of the book [270]. We can only sketch the calculations in the remaining sections of this
chapter. We wish to emphasize that the terms on the right-hand side of equations (11.23)
and (11.25) are the three leading terms of an asymptotic expansions in t and that the method
employed in [173] allows for a systematic calculation of the next, subleading orders.

The leading exponential factor in (11.23) and (11.25), has a clear physical interpretation:
because of the specific form of the infinite repulsion in (11.17), up-spin electrons are only
scattered by down-spin electrons. This is reflected in the fact that the correlation length
is 1/D↓. The expression 1/D↓ may be interpreted as the mean free path of the up-spin
electrons. Thus, the correlation length for up-spin electrons is equal to their mean free
path. The exponential decay of the two-point Green functions means that, due to the strong
interaction, an up-spin electron is confined by the cloud of surrounding down-spin electrons.
Thus, we are facing an interesting situation: although at small distances the electrons look
like free Fermions, they are confined on a ‘macroscopic scale’ set by the mean free path
1/D↓.
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11.1.5 Outline of the derivation

The derivation of the above results on the asymptotics of the two-point Green functions at low
temperature is based on the fact that the impenetrable electron gas model is exactly solvable
by Bethe ansatz. The Bethe ansatz eigenfunctions [154, 493] and the thermodynamics of
the model [432] are long since known. But only more recently a determinant representation
for the two-point Green functions was derived by Izergin and Pronko [217, 218]. Their
derivation includes the following steps:

(i) A change of basis for the spin part of the Bethe ansatz wave function from inhomoge-
neous XXX to XX spin chain eigenfunctions, which is possible at infinite repulsion.

(ii) The calculation of form factors in the finite volume.
(iii) A summation of the form factors.
(iv) The thermodynamic limit.

The details of the calculation can be found in the article [218].
The asymptotic analysis of the correlation functions was performed in [173, 174]. Then

starting point was the determinant representation of Izergin and Pronko (Section 11.2.1),
which is valid for all x and t . The non-trivial ingredients of the determinant representation
are certain auxiliary functions b++ and B−− and the Fredholm determinant det( Î + V̂ ) of
an integral operator V̂ . A direct yet lengthy calculation shows that b++ and B−− satisfy
the separated non-linear Schrödinger equation (Section 11.2.2), which is a well-known
integrable partial differential equation. The logarithm of the Fredholm determinant plays
the role of its tau-function (Section 11.2.3). Moreover, a Riemann-Hilbert problem that
fixes b++ and B−− as solutions of the separated non-linear Schrödinger equation can be
derived from the determinant representation (Section 11.2.4). The Riemann-Hilbert problem
is the appropriate starting point for the asymptotic analysis of the correlation functions G±↑↑
(Section 11.2.5).

Luckily, the differential equation and the Riemann-Hilbert problem turn out to be of the
same form as in case of the impenetrable (spinless) Bose gas [211,270]. Therefore a theorem
obtained in the asymptotic analysis of the impenetrable Bose gas [212] could be applied
to the impenetrable electrons as well. In contrast to the bosonic case, there is, however,
an additional external integration in the determinant representation of the impenetrable
electron gas. This integration can be carried out in the low-temperature limit, by the method
of steepest descent (Section 11.2.6).

11.2 Correlation functions of the impenetrable electron gas

11.2.1 Determinant representation

Let us now recall the determinant representation for the correlation functions G±↑↑(x, t),
which was derived in [217, 218]. We shall basically follow the account of [174].
Yet, it turns out to be useful to rescale the variables and the correlation functions.



384 Universal correlations at low density

The rescaling

xr = −
√

T x/2 , tr = T t/2 , (11.27)

g± = G±↑↑/
√

T , (11.28)

β = µe f f /T , h = B/T (11.29)

removes the explicit temperature dependence from all expressions. Furthermore, it will
allow us to make close contact with results which were obtained for the impenetrable Bose
gas [211,212,270]. The index ‘r ’ in (11.27) stands for ‘rescaled’. For the sake of simplicity
we shall suppress this index in the following sections. We shall come back to physical space
and time variables only in the last section, where we consider the low temperature limit.

The rescaled correlation functions g+ and g− in the rescaled variables can be expressed
as [173, 174],

g+(x, t) = −e2it(β−h−ln(2ch(h)))

2π

∫ π

−π
dη

F(γ, η)

1− cos(η)
b++ det

(
Î + V̂

)
, (11.30)

g−(x, t) = e−2it(β−h−ln(2ch(h)))

4πγ

∫ π

−π
dη F(γ, η)B−− det

(
Î + V̂

)
. (11.31)

Here γ and F(γ, η) are elementary functions,

γ = 1+ e2h , (11.32)

F(γ, η) = 1+ eiη

γ − eiη
+ e−iη

γ − e−iη
. (11.33)

det( Î + V̂ ) is the Fredholm determinant of the integral operator Î + V̂ , where Î is the
identity operator, and V̂ is defined by its kernel V (λ,µ). λ and µ are complex variables,
and the path of integration is the real axis. In order to define V (λ,µ) we have to introduce
certain auxiliary functions. Let us define

τ (λ) = i(λ2t + λx) , (11.34)

ϑ(λ) = 1

1+ eλ2−β , (11.35)

E(λ) = p.v.
∫ ∞
−∞

dµ
e−2τ (µ)

π (µ− λ)
, (11.36)

e−(λ) =
√

ϑ(λ)

π
eτ (λ) , (11.37)

e+(λ) = 1

2

√
ϑ(λ)

π
e−τ (λ)

{
(1− cos(η))e2τ (λ) E(λ)+ sin(η)

}
. (11.38)

Note that ϑ(λ) is the Fermi weight. V (λ,µ) can be expressed in terms of e+ and e−,

V (λ,µ) = e+(λ)e−(µ)− e+(µ)e−(λ)

λ− µ
. (11.39)
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Denote the resolvent of V̂ by R̂,(
Î + V̂

) (
Î − R̂

) = (
Î − R̂

) (
Î + V̂

) = Î . (11.40)

Then R̂ is an integral operator with symmetric kernel [211],

R(λ,µ) = f+(λ) f−(µ)− f+(µ) f−(λ)

λ− µ
, (11.41)

which is of the same form as V (λ,µ). The functions f± are obtained as the solutions of the
integral equations

f±(λ)+
∫ ∞
−∞

dµ V (λ,µ) f±(µ) = e±(λ) . (11.42)

We may now define the ‘potentials’

Bab =
∫ ∞
−∞

dλ ea(λ) fb(λ) , Cab =
∫ ∞
−∞

dλ λea(λ) fb(λ) (11.43)

for a, b = ±. B−− enters the definition of g−(x, t), equation (11.31). b++ in (11.30) is
defined as

b++ = B++ − G(x, t) , (11.44)

where

G(x, t) = (1− cos(η))e−iπ/4

2
√

2π t
eix2/2t . (11.45)

The remaining potentials Bab and Cab will be needed later.
It is instructive to compare the determinant representation (11.30) for the correlation

function g+(x, t) with the corresponding expression for impenetrable bosons (see e.g. page
345 of [270]). The main formal differences are the occurrence of the η-integral in (11.30)
and the occurrence of η in the definition of e+. As can be seen from the derivation of
(11.30) in [218], the η-integration is related to the spin degrees of freedom. For η = ±π the
expression − 1

2 e2iβt b++ det( Î + V̂ ) agrees with the field-field correlator for impenetrable
Bosons (recall, however, the different physical meaning of β).

11.2.2 Differential equations

As in case of impenetrable Bosons [211, 270] it is possible to derive a set of integrable
nonlinear partial differential equations for the potentials b++ and B−− and to express the
logarithmic derivatives of the Fredholm determinant det( Î + V̂ ) in terms of the potentials
Bab and Cab.

The functions f± satisfy linear differential equations with respect to the variables x , t ,
and β,

L̂

(
f+
f−

)
= M̂

(
f+
f−

)
= N̂

(
f+
f−

)
= 0 , (11.46)



386 Universal correlations at low density

The Lax operators L̂ , M̂ and N̂ are given as

L̂ = ∂x + iλσ z − 2iQ , (11.47)

M̂ = ∂t + iλ2σ z − 2iλQ + ∂xU , (11.48)

N̂ = 2λ∂β + ∂λ + 2itλσ z + ixσ z − 4it Q − 2∂βU , (11.49)

where the matrices Q and U are defined according to

Q =
(

0 b++
B−− 0

)
, U =

(−B+− b++
−B−− B+−

)
. (11.50)

Mutual compatibility of the linear differential equations (11.46) leads to a set of nonlinear
partial differential equations for the potentials b++ and B−− [173]. In particular, the space
and time evolution is driven by the separated non-linear Schrödinger equation,

i∂t b++ = − 1
2∂

2
x b++ − 4b2

++B−− , (11.51)

i∂t B−− = 1
2∂

2
x B−− + 4B2

−−b++ . (11.52)

11.2.3 Connection between Fredholm determinant and potentials

To describe the correlation functions (11.30) and (11.31) one has to relate the Fredholm
determinant det( Î + V̂ ) and the potentials Bab and Cab. Let us use the abbreviation
σ (x, t, β) = ln det( Î + V̂ ). The logarithmic derivatives of the Fredholm determinant with
respect to x , t and β are

∂xσ =− 2iB+− , (11.53)

∂tσ =− 2i(C+− + C−+ + G(x, t)B−−) , (11.54)

∂βσ =− 2it∂β(C+− + C−+ + G(x, t)B−−)− 2ix∂β B+− − 2(∂β B+−)2

− 2it(B−−∂βb++ − b++∂β B−−)+ 2(∂βb++)(∂β B−−) . (11.55)

For the calculation of the asymptotics of the Fredholm determinant we further need the
second derivatives of σ with respect to space and time,

∂2
xσ = 4B−−b++ , (11.56)

∂x∂tσ = 2i(B−−∂x b++ − b++∂x B−−) , (11.57)

∂2
t σ = 2i(B−−∂t b++ − b++∂t B−−)+ 8B2

−−b2
++ + 2(∂x B−−)(∂x b++) . (11.58)

Note that

lim
β→−∞

σ = 0 . (11.59)

This follows from limβ→−∞ ϑ(λ) = 0 and is important for fixing the integration constant
in the calculation of the asymptotics of the determinant.



11.2 Correlation functions of the impenetrable electron gas 387

11.2.4 The Riemann-Hilbert problem

From now on we will restrict ourselves to the case of negative effective chemical potential,
β < 0. Recall that this is the condition for the system to be in the gas phase. For negative
β the logarithmic derivatives ∂xσ and ∂tσ of the Fredholm determinant and the potentials
b++ and B−− are determined by the following matrix Riemann-Hilbert problem, which was
derived from the determinant representation (see Section 11.2.1) in [174].

(i) φ : C→ End(C2) is analytic in C \ R.
(ii) limλ→∞ φ(λ) = I2.

(iii) φ has a discontinuity across the real axis described by the condition

φ−(λ) = φ+(λ)

(
1 p(λ)e−2τ (λ)

q(λ)e2τ (λ) 1+ p(λ)q(λ)

)
(11.60)

for all λ ∈ R.

Here I2 denotes the 2× 2 unit matrix. The functions p(λ) and q(λ) are defined as

p(λ) = i(cos(η)− 1)(1− ϑ(λ))α+(λ)α−(λ) , (11.61)

q(λ) = − 2iϑ(λ)

α+(λ)α−(λ)
, (11.62)

where

α(λ) = exp

{
− 1

2π i

∫ ∞
−∞

dµ

µ− λ
ln

(
1+ ϑ(µ)(e−iη − 1)

)}
. (11.63)

The functions ∂xσ , ∂tσ , b++ and B−− can be expressed through the coefficients in the
asymptotic expansions of φ(λ) and ln(α(λ)) for large spectral parameter λ. Let

φ(λ) = I2 + φ(1)

λ
+ φ(2)

λ2
+O

(
1

λ3

)
(11.64)

and

ln(α(λ)) = α1

λ
+ α2

λ2
+O

(
1

λ3

)
. (11.65)

Then

∂xσ = 2iα1 + i tr{φ(1)σ z} , ∂tσ = 4iα2 + 2i tr{φ(2)σ z} , (11.66)

b++ = φ
(1)
12 , B−− = −φ(1)

21 . (11.67)

The Riemann-Hilbert problem is the appropriate starting point for the asymptotic analy-
sis of the potentials b++ and B−− which determine the asymptotics of the two-point Green
functions G±↑↑. For impenetrable Bosons a similar analysis was carried out in [212]. For-
tunately, the result of [212] depends only on some general properties of the functions p(λ)
and q(λ) entering the conjugation matrix in (11.60), and also applies in the present case. Al-
ternatively, the non-linear steepest descent method of Deift and Zhou [96] could be applied.
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11.2.5 Derivation of the asymptotics

The direct asymptotic analysis of the Riemann-Hilbert problem yields the leading order
asymptotics (x, t →∞ for fixed ratio λ0 = −2x/t) of the functions ∂xσ , ∂tσ , b++ and
B−− [173, 212]. It turns out, in particular, that b++ and B−− are a decaying solution of the
separated nonlinear Schrödinger equation (11.51), (11.52). Now the form of the complete
asymptotic decomposition of the decaying solutions of the separated nonlinear Schrödinger
equation is known [2, 388].

b++ = t−
1
2

[
u0 +

∞∑
n=1

2n∑
k=0

lnk 4t

tn
unk

]
exp

{ ix2

2t
− iν ln 4t

}
, (11.68a)

B−− = t−
1
2

[
v0 +

∞∑
n=1

2n∑
k=0

lnk 4t

tn
vnk

]
exp

{
− ix2

2t
+ iν ln 4t

}
, (11.68b)

where u0, v0, unk , vnk and ν are functions of λ0 = −x/2t and of β and η. Inserting the
asymptotic expansions for B−− and b++ into the differential equations (11.51), (11.52)
we obtain expressions for unk , vnk and ν in terms of u0 and v0, i.e., the two unknown
functions u0 and v0 determine the whole asymptotic expansion (11.68a), (11.68b). But
u0 and v0 are obtained from the asymptotic analysis of the Riemann-Hilbert problem (for
the explicit expressions see [173]). Hence we know, in principle, the complete asymptotic
decomposition of the potentials b++ and B−−.

In order to obtain the asymptotics of the two-point Green functions we still need the
asymptotics of the Fredholm determinant. The Fredholm determinant is related to b++ and
B−− through equations (11.56)–(11.58) and (11.53)–(11.55). We may integrate (11.56)–
(11.58) to obtain the asymptotic expansions of ∂xσ and ∂tσ . The integration constant is a
function of β. It is fixed by the leading asymptotics, which, using (11.66), can be obtained
from the direct asymptotic analysis of the Riemann-Hilbert problem. Then, integrating
(11.53)–(11.55) yields σ up to a numerical constant, which follows from the asymptotic
condition (11.59). The calculation is the same as for the impenetrable Bose gas and can be
found on pages 455–457 of [270].

Finally, we obtain the following expressions for the leading asymptotics of the correlation
function,

g+(x, t) = eix2/2t+2itβe−2it(h+ln(2ch(h)))
∫ π

−π
dη

F(γ, η)

1− cos(η)
·

× C+(λ0, β, η) (4t)
1
2 (ν−i)2

exp

{
1

π

∫ ∞
−∞

dλ |x + 2λt | ln(ϕ(λ, β))

}
, (11.69)

g−(x, t) = e−ix2/2t−2itβe2it(h+ln(2ch(h)))
∫ π

−π
dη

F(γ, η)

2γ
·

× C−(λ0, β, η) (4t)
1
2 (ν+i)2

exp

{
1

π

∫ ∞
−∞

dλ |x + 2λt | ln(ϕ(λ, β))

}
, (11.70)
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where

ϕ(λ, β) = 1+ ϑ(λ)
(
e−iηsign(λ−λ0) − 1

)
, (11.71)

ν =− 1

2π
ln (1− 2(1− cos(η))ϑ(λ0)(1− ϑ(λ0))) , (11.72)

C+(λ0, β, η) =− | sin(η/2)|
√
ν

2π
exp

{
1

2
(λ2

0 − β)+ i�0 + ν2

2

−
∫ β

−∞
dβ (iν/2+ ν∂β�0) (11.73)

+ 1

2π2

∫ β

−∞
dβ

(
∂β

∫ ∞
−∞

dλ sign(λ− λ0) ln(ϕ(λ, β))

)2}
,

C−(λ0, β, η) = C+(λ0, β, η) exp(−(λ2
0 − β)− 2i�0)/ sin2(η/2) . (11.74)

λ0 = −x/2t is the stationary point of the phase τ (λ) (i.e., τ ′(λ0) = 0), and the functions
�0 and �1 are defined as

�0 =− 3π

4
+ arg�(iν)+�1 , (11.75)

�1 =− 1

π

∫ ∞
−∞

dλ sign(λ− λ0) ln |λ− λ0|∂λ ln(ϕ(λ, β)) . (11.76)

Equations (11.69) and (11.70) are valid for large t and fixed finite ratio λ0 = −x/2t .
Correlations in the pure space direction t = 0 were discussed in [56]. We would like to
emphasize that (11.69) and (11.70) still hold for arbitrary temperatures. The low temperature
limit will be discussed in the next section. Note that there is no pole of the integrand at
η = 0, since

√
ν ∼ |η| for small η and thus C+(λ0, β, η) ∼ η2.

11.2.6 Asymptotics in the low-temperature limit

For the following steepest descent calculation we transform the η-integrals in (11.69),
(11.70) into complex contour integrals over the the unit circle, setting z = eiη. Since we
would like to consider low temperatures, we have to restore the explicit temperature de-
pendence by scaling back to the physical space and time variables x and t and to the
physical correlation functions G±↑↑. Recall that in the previous sections we have sup-
pressed an index ‘r ’ referring to ‘rescaled’. Let us restore this index in order to define k0 =
λ0

√
T = x/2t , ϑ(k) = ϑr (k/

√
T ), ϕ(k, β) = ϕr (k/

√
T , β), C±(k0, β, z) = C±r (λ0, β, η),

F(γ, z) = Fr (γ, η). Then

G+↑↑(x, t) = 2i
√

T eix2/4t+it(µ−B)
∮

dz
F(γ, z)

(z − 1)2
C+(k0, β, z)(2T t)

1
2 (ν(z)−i)2

et S(z) , (11.77)

G−↑↑(x, t) = −i
√

T e−ix2/4t−it(µ−B)
∮

dz
F(γ, z)

2γ z
C−(k0, β, z)(2T t)

1
2 (ν(z)+i)2

et S(z) ,

(11.78)
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where

S(z) = 1

π

∫ ∞
−∞

dk |k − k0| ln(ϕ(k, β)) . (11.79)

We would like to calculate the contour integrals (11.77), (11.78) by the method of steepest
descent. For this purpose we have to consider the analytic properties of the integrands. Let
us assume that k0 ≥ 0, and let us cut the complex plane along the real axis from −∞ to
−e−β and from −eβ−k2

0/T to 0. The integrands in (11.77) and (11.78) can be analytically
continued as functions of z into the cut plane with the only exception of the two simple
poles of F(γ, z) at z = γ±1. We may therefore deform the contour of integration as long as
we never cross the cuts and take into account the pole contributions, if we cross z = γ or
z = γ−1.

The saddle point equation ∂S/∂z = 0 can be represented in the form∫ ∞
0

dk k

1+ z−1e−βe(k−k0)2/T
=

∫ ∞
0

dk k

1+ ze−βe(k+k0)2/T
. (11.80)

This equation was discussed in the appendix of [174]. In [174] it was shown that (11.80)
has exactly one real positive solution which is located in the interval [0, 1]. It was argued
that this solution gives the leading saddle point contribution to (11.77) and (11.78). At small
temperatures (11.80) can be solved explicitly. There are two solutions z± = ±zc, where

zc = T 3/4

2π1/4k3/2
0

e−k2
0/2T . (11.81)

In the derivation of (11.81) we assumed that k0 �= 0. The case k0 = 0 has to be treated
separately (see below).

The phase t S(z) has the low-temperature approximation

t S(z) = −2k0 Dt

{(
1− 1

z

)
z2

c + 1− z

}
. (11.82)

Here D = ∂P/∂µ is the density of the electron gas. The low-temperature expansion (11.82)
is valid in an annulus eβ−k2

0/T � |z| � e−β , which lies in our cut plane. The unit circle
and the circle |z| = zc are inside this annulus. We may thus first apply (11.82) and then
deform the contour of integration from the unit circle to the small circle |z| = zc. Let
us parameterize the small circle as z = zceiα , α ∈ [−π, π ]. Then S(z(α)) = −2k0 D((zc −
1)2 + 2zc(1− cos(α))), which implies that the small circle is a steepest descent contour and
that on this contour S(z−) ≤ S(z) ≤ S(z+). The maximum of S(z) on the steepest descent
contour at z = z+ is unique and therefore provides the leading saddle point contribution to
(11.77), (11.78) as t →∞. The saddle point approximation becomes good when t S(z(α)) =
−2k0 Dt((zc − 1)2 + zcα

2 +O(α4)) becomes sharply peaked around α = 0. Hence, the
relevant parameter for the calculation of the asymptotics of G±↑↑ is 2k0 Dt = x D rather than
t . x D has to be large compared to z−1

c . The parameter x D has a simple interpretation. It is
the average number of particles in the interval [0, x]. Let us consider two different limiting
cases.



11.2 Correlation functions of the impenetrable electron gas 391

(i) x D→ 0, the number of electrons in the interval [0, x] vanishes. In this regime the
interaction of the electrons is negligible. An electron propagates freely from 0 to x .
G±↑↑ cannot be calculated by the method of steepest descent. We have to use the integral
representation (11.69), (11.70) instead. Since t S(z) and ν(z) tend to zero on the contour
of integration, the integrals in (11.69) and (11.70) are easily calculated. We find G±↑↑ =
G±f (see (11.22a), (11.22b)), which is the well known result for free Fermions.

(ii) x D � z−1
c , the average number of electrons in the interval [0, x] is large. This is the

true asymptotic region, x →∞. In this region the interaction becomes important. At
the same time the method of steepest descent can be used to calculate G±↑↑. This case
will be studied below.

In the process of deformation of the contour from the unit circle to the small circle of
radius zc we may cross the pole of the function F(γ, z) at z = γ−1. Then we obtain a
contribution of the pole to the asymptotics of G±↑↑. It turns out that the pole contributes to
G±↑↑, when the magnetic field is below a critical positive value, Bc = k2

0/4. Below this value
the pole contribution always dominates the contribution of the saddle point. Hence, we have
to distinguish two different asymptotic regions, B > Bc and B < Bc. On the other hand, if
we consider the asymptotics for fixed magnetic field, we have to treat the cases B > 0 and
B ≤ 0 separately. For B > 0 we have to distinguish between a time like regime (k2

0 < 4B)
and a space-like regime (k2

0 > 4B). In these respective regimes we obtain the asymptotics
(11.23), (11.25).

In the limit B →−∞, µ→−∞, µ− B fixed there are no ↓-spin electrons left in the
system, D↓ → 0. This is the free Fermion limit. In the free Fermion limit B < Bc, and the
asymptotics of G+↑↑(x, t) and G−↑↑(x, t) are given by the equations (11.25), which turn into
the expressions (11.22a), (11.22b) for free Fermions.

The pure time direction k0 = 0 requires a separate calculation. For k0 = 0 the saddle
point equation (11.80) has the solutions z = ±1 for all temperatures. The unit circle is a
steepest-descent contour with unique maximum of S(z) at z = 1, which gives the lead-
ing asymptotic contribution to the integrals in (11.77) and (11.78). We find algebraically
decaying correlations,

G+↑↑(0, t) = C+0 t−1eit(µ−B) , G−↑↑(0, t) = C−0 t−1e−it(µ−B) , (11.83)

where

C+0 =
e−i π

4

2
√

2πT
(1+ 2e−2B/T )

×
[
(e(µ+B)/T + e(µ−B)/T )(1+ e(µ+B)/T + e(µ−B)/T )

]− 1
2
, (11.84a)

C−0 =
ei π

4

2
√

2πT

1+ 2e−2B/T

1+ e2B/T

[
e(µ+B)/T + e(µ−B)/T

1+ e(µ+B)/T + e(µ−B)/T

] 1
2

. (11.84b)

These formulae are valid at any temperature.
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11.3 Conclusions

In this chapter we have considered dynamical correlations of the Hubbard model in the gas
phase and have obtained explicit expressions for the asymtotics in space and time of the
Green function at small temperature. The results do not rely on field theoretical methods,
but rather came out of a direct Bethe ansatz calculation.
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The algebraic approach to the Hubbard model

12.1 Introduction to the quantum inverse scattering method

The quantum inverse scattering method is the modern algebraic theory of exactly solvable
quantum systems. It arose [404, 410, 411] as an attempt to carry over the concepts of the
inverse scattering method for classical non-linear evolution equations [2,134] into quantum
mechanics. As a result, our understanding of both the theory of integrable partial differential
equations and the theory of exactly solvable quantum systems changed, and the algebraic
roots of the exact solvability became apparent. These roots originate from the Yang-Baxter
equation and its classical counterpart.

Before turning to our actual subject, which is the application of the quantum inverse
scattering method to the Hubbard model, we give a brief general introduction. We shall
limit our exposition basically to the material which is needed later for the understanding of
the algebraic structure of the Hubbard model. The reader who is interested in the general
scope of the method and in the history of its development is referred to the excellent books
and review articles [131, 270, 276, 277, 407].

12.1.1 Integrability

As a motivation for the definition of the Yang-Baxter algebra in the following subsection
we shall first recall the concept of integrability in classical mechanics. Then, by considering
the elementary example of the harmonic oscillator, we shall see that this concept does not
directly apply to quantum mechanical systems and needs to be extended.

Consider N classical point particles described by their canonical momenta p =
(p1, . . . , pN ) and position variables q = (q1, . . . , qN ). Suppose their dynamics is gener-
ated by a Hamiltonian H (p,q) through the canonical equations of motion

ṗ = − ∂H

∂q
, q̇ = ∂H

∂p
. (12.1)

Suppose further that there are N independent, single-valued and analytic functions I j (p,q),
j = 1, . . . , N , in involution,

{I j , Ik} = 0 (12.2)

393
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(here {·,·} denotes the Poisson bracket), and let H be among the I j . Then Liouville’s
theorem [22] states that the equations of motion (12.1) are ‘solvable by quadratures’. More
precisely, starting from (12.2) a canonical transformation can be constructed, such that the
equations of motion are trivial in the new (action-angle) variables. No further input apart
from the involutive integrals of motion is needed.

The simplest case where the Liouville theorem applies, is the case of conservative
systems with only one degree of freedom. For these systems the Hamiltonian is a
constant of motion. The equation H (p, q) = E can be solved for p = p(q, E). Thus,
dt = (∂H (p(q, E), q)/∂p)−1dq, which gives t = t(q) upon integration.

It is probably fair to say that no concept of integrability in quantum mechanics exists which
is as general as Liouville’s theorem. By analogy with the classical case discussed above let
us assume we are given a Hamiltonian H contained in a set of mutually commuting quantum
integrals of motion I j , j = 1, . . . , N . Then there is no general theorem which would explain
how to obtain the spectrum and the eigenfunctions of H from the commutation relations

[I j , Ik] = 0 (12.3)

alone. The construction of action-angle variables does not easily translate into quantum
mechanics. Additional information is required.

Thinking of those textbook examples which can be algebraically solved by
elementary means, like the harmonic oscillator, the Coulomb problem, the
Morse oscillator or the two-particle Sutherland system, we can get an idea of what kind of
additional information is necessary. We should look for an embedding of the commutative
algebra (12.3) of quantum integrals of motion into some larger algebra, with the space of
states of our system playing the role of the representation space of this algebra. For the ex-
amples mentioned above the embedding algebra is a quadratic algebra, either a Lie algebra
or a Lie super algebra.

Let us recall, for instance, the solution of the harmonic oscillator [198]. It relies on the
Heisenberg Lie algebra

[a, a†] = 1 . (12.4)

Suppose we are given a highest weight representation of the algebra (12.4), i.e., a repre-
sentation containing a highest weight state |0〉, such that a|0〉 = 0. Suppose further that a
and a† are mutually adjoint. Let H = a†a + 1

2 . Equation (12.4) implies that [a, · ] acts as a
derivative on functions of a†, i.e., [a, (a†)n] = n(a†)n−1. It follows that

H (a†)n|0〉 = (
(a†)n H + [H, (a†)n]

)|0〉
= (

1
2 (a†)n + a†[a, (a†)n]

)|0〉
= (

n + 1
2

)
(a†)n|0〉 . (12.5)

Hence, the states |n〉 = (a†)n|0〉 are eigenstates of the Hamiltonian H = a†a + 1
2 .

The connection to physics comes through the infinite dimensional highest weight repre-
sentation

a = 1√
2
(x + ∂x ) , a† = 1√

2
(x − ∂x ) (12.6)
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acting on the space of square integrable functions on the real line. The highest weight state
is the unique normalized solution

ψ(x) = e−
x2

2√
π

(12.7)

of the differential equation

aψ(x) = 0 (12.8)

and is the well-known ground state of the harmonic oscillator.
Note that the above scheme depends only on (i) the algebra (12.4) and (ii) the existence

of the highest-weight state |0〉 (see (12.7), (12.8)).

12.1.2 The Yang-Baxter algebra

The quantum inverse scattering method deals with systems which are based on an associative
quadratic algebra TR defined in terms of its generators T α

β (λ), α, β = 1, . . . , d; λ ∈ C, by
the relation

R(λ,µ)T1(λ)T2(µ) = T2(µ)T1(λ)R(λ,µ) . (12.9)

Here the following notation has been employed

T (λ) =

T 1
1 (λ) . . . T 1

d (λ)
...

...
T d

1 (λ) . . . T d
d (λ)

 , (12.10)

T1(λ) = T (λ)⊗ Id , (12.11)

T2(λ) = Id ⊗ T (λ) , (12.12)

where Id is the d × d unit matrix. R(λ,µ) ∈ End(Cd ⊗ C
d ) is a numerical d2 × d2 matrix,

called the R-matrix. The R-matrix fixes the structure of the quadratic algebra TR in a similar
manner as the tensor of structure constants does in case of a Lie algebra. We assume that R
is invertible for almost all λ,µ ∈ C.

The algebra TR thus defined has a rich commutative subalgebra. Multiplying equation
(12.9) by R−1(λ,µ) from the right and taking the trace we obtain

tr
(
R(λ,µ)T1(λ)T2(µ)R−1(λ,µ)

)
= Rαβ

γ δ (λ,µ)T1
γ δ

α′β ′ (λ)T2
α′β ′
γ ′δ′ (µ)R−1γ

′δ′

αβ (λ,µ)

= R−1γ
′δ′

αβ (λ,µ)Rαβ

γ δ (λ,µ)T γ

α′ (λ)δδβ ′δ
α′
γ ′T

β ′
δ′ (µ)

= δγ
′

γ δδ
′

δ T γ

γ ′ (λ)T δ
δ′ (µ) = T γ

γ (λ)T δ
δ (µ)

= T2
αβ

γ δ (µ)T1
γ δ

αβ(λ) = δαγ T β

δ (µ)T γ
α (λ)δδβ

= T δ
δ (µ)T γ

γ (λ) . (12.13)
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Here and in the following implicit summation with respect to doubly occurring indices is,
understood. With the definition

t(λ) = T γ
γ (λ) = tr(T (λ)) (12.14)

we have the important result

[t(λ), t(µ)] = 0 . (12.15)

It means that t(λ) is a generating function of a commutative subalgebra of TR , e.g., if
t(λ) = I0 + λI1 + λ2 I2 + . . . , then (12.15) implies that [I j , Ik] = 0.

Let us assume we are given a representation of TR on the space of states of some physical
system. Then t(λ) generates a set of mutually commuting operators which by construction
are embedded into the quadratic algebra TR . Thus, on the one hand we have a chance to
meet the requirements of Liouville’s theorem in the classical limit (if it exists), while on the
other hand, the quadratic relations of the algebra TR may provide means to simultaneously
diagonalize the quantum integrals of motion, generated by t(λ), in a similar manner as in
our example above of the harmonic oscillator.

Here is the standard terminology for the notions introduced so far: The associative
quadratic algebra TR is the Yang-Baxter algebra. T (λ) is the monodromy matrix and t(λ)
its associated transfer matrix. Their complex argument λ is the spectral parameter. The
space C

d is called the auxiliary space, while the name for the representation space of the
Yang-Baxter algebra usually is quantum space.

Remark. We would like to emphasize that(
Id ⊗ T (µ)

)(
T (λ)⊗ Id

) �= T (λ)⊗ T (µ) , (12.16)

since the matrix elements T α
β (λ) and T γ

δ (µ) of the monodromy matrix, in general, do not
commute.

An alternative way to write the defining relations (12.9) of the Yang-Baxter algebra is by
introduction of a matrix Ř(λ,µ) with matrix elements

Řαβ

γ δ (λ,µ) = Rβα

γ δ (λ,µ) . (12.17)

It is easy to see that (12.9) is equivalent to

Ř(λ,µ)
(
T (λ)⊗ T (µ)

) = (
T (µ)⊗ T (λ)

)
Ř(λ,µ) . (12.18)

This formulation is sometimes more convenient for practical calculations.

12.1.3 The Yang-Baxter equation

The Yang-Baxter equation is a sufficient condition for the consistency of the Yang-Baxter
algebra TR . At the same time it guarantees the existence of non-trivial representations of
TR .
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We embed the algebra TR into the tensor product C
d ⊗ C

d ⊗ C
d of auxiliary spaces,

T1(λ) = T (λ)⊗ Id ⊗ Id , T2(λ) = Id ⊗ T (λ)⊗ Id , T3(λ) = Id ⊗ Id ⊗ T (λ), and denote the
three possible canonical embeddings of the R-matrix R(λ,µ) into the space of endo-
morphisms on C

d ⊗ C
d ⊗ C

d by R12(λ,µ), R13(λ,µ) and R23(λ,µ). Then R12(λ,µ) =
R(λ,µ)⊗ Id and R23(λ,µ) = Id ⊗ R(λ,µ). The third possibility cannot be written in such
a simple form. From the requirement that (R13(λ,µ)x⊗ y⊗ z)αβγ = Rαγ

δϕ (λ,µ)xδ yβ zϕ we

conclude that R13
αβγ

δεϕ = Rαγ

δϕ (λ,µ)δβε .
Now comes an argument that is very similar to the argument in appendix 3.B.3, where

we encountered the Yang-Baxter equation for the first time. From the definition (12.9) of
the Yang-Baxter algebra it can be seen that there are two different ways to reverse the
order of monodromy matrices in the triple product T1(λ)T2(µ)T3(ν) by application of R-
matrices,

R12(λ,µ)R13(λ, ν)R23(µ, ν)T1(λ)T2(µ)T3(ν)

= T3(ν)T2(µ)T1(λ)R12(λ,µ)R13(λ, ν)R23(µ, ν) , (12.19)

R23(µ, ν)R13(λ, ν)R12(λ,µ)T1(λ)T2(µ)T3(ν)

= T3(ν)T2(µ)T1(λ)R23(µ, ν)R13(λ, ν)R12(λ,µ) . (12.20)

Obviously, these two equations are always compatible, if the R-matrix satisfies the
equation

R12(λ,µ)R13(λ, ν)R23(µ, ν) = R23(µ, ν)R13(λ, ν)R12(λ,µ) . (12.21)

This is the famous Yang-Baxter equation. It is not only a sufficient condition for the con-
sistency of TR as an associative algebra, but also provides its so-called fundamental repre-
sentation whose construction is the subject of the following subsections.

Most of the known solutions of the Yang-Baxter equation that are connected to applica-
tions in physics depend on the spectral parameters only through their difference. In these
cases there exists a matrix R(λ) of a single argument, such that R(λ,µ) = R(λ− µ) solves
the Yang-Baxter equation (12.21). One says R(λ) is a solution of difference form of the
Yang-Baxter equation. Shastry’s R-matrix which connects the Hubbard model to a solu-
tion of the Yang-Baxter equation is not of difference form. Therefore we introduced the
Yang-Baxter equation in its more general form (12.21).

12.1.4 The standard basis

In order to obtain convenient expressions for our final formulae we first have to introduce
some more notation. We shall need the standard basis on the space of endomorphisms,
End(Cd ), on C

d . In the following we denote by eγ ∈ C
d , γ = 1, . . . , d , a column vector

with only non-vanishing entry 1 in row γ . The set {eγ ∈ C
d |γ = 1, . . . , d} is a basis of C

d .
Let eβ

α ∈ End(Cd ), such that eβ
αeγ = δβγ eα . Then {eβ

α ∈ End(Cd )|α, β = 1, . . . , d} is a basis
of End(Cd ). eβ

α is a d × d matrix with only non-vanishing entry 1 in row α and column β.
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Hence, the eβ
α multiply according to the rule

eβ
αeδ

γ = δβγ eδ
α (12.22)

(compare appendix 3.D.1).
Expressing the same facts in different words, we may also say that the basis {eβ

α } is a basis
of the space of operators on the auxiliary space C

d . We shall now consider representations of
the Yang-Baxter algebra, where the quantum space is an L-fold tensor product of auxiliary
spaces C

d . Thus, for d = 2 and L = 1, the quantum space is equal to C
2 and can be

interpreted as the space of states of a spin 1
2 . For d = 2 and arbitrary L it is the space of

states of a spin- 1
2 quantum spin chain of length L . For d > 2 the spin is replaced by a

generalized so-called su(d) spin. In order to construct operators on the spin chain space of
states we consider the canonical embedding of the basis {eβ

α } into End(Cd )⊗L ,

e j
β
α
= I⊗( j−1)

d ⊗ eβ
α ⊗ I⊗(L− j)

d . (12.23)

The index j = 1, . . . , L will be called the site index. From (12.22) and (12.23) we infer the
local multiplication rule

e j
β
α
e j

δ
γ
= δβγ e j

δ
α

(12.24)

and the commutation relations

[e j
β
α
, ek

δ
γ ] = 0 (12.25)

for j �= k.
With the aid of the basic operators e j

β
α

we can conveniently express arbitrary more
complicated operators of interest. We can, for instance, expand the canonical embeddings
R jk(λ,µ) of the R-matrix in the Yang-Baxter equation (12.21) in terms of the e j

β
α
. Let

L = 3. Then

R jk(λ,µ) = Rαγ

βδ e j
β
α
ek

δ
γ (12.26)

for jk = 12, 13, 23.
We also obtain a very useful expression for the transposition operators Pjk which play an

important role below in the construction of integrable lattice models with local interactions,

Pjk = e j
β
α
ek

α
β . (12.27)

The following properties of the transposition operators are easily verified. They follow from
(12.24) and (12.25),

Pkj = Pjk , (12.28a)

Pj j = d · id , (12.28b)

P2
jk = id , j �= k , (12.28c)

Pjkek
β
α = e j

β
α

Pjk , (12.28d)

Pjkel
β
α = el

β
α Pjk , l �= j, k . (12.28e)
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We see from these formulae that the Pjk induce the action of the symmetric group on the site
indices of the matrices e j

β
α
. Because of (12.28d) and (12.28e), the Pjk generate a faithful

representation of the symmetric group SL ,

Pjk Pkl = Pjl Pjk = Pkl Pjl . (12.29)

Combining the definitions (12.17) and (12.27) with (12.26) and using (12.24) and (12.25)
we obtain Ř jk(λ,µ) = Pjk R jk(λ,µ). This allows us to rewrite the Yang-Baxter equation
in an alternative form, for multiplication of (12.21) by P23 P12 P23 = P12 P23 P12 yields

Ř23(λ,µ)Ř12(λ, ν)Ř23(µ, ν) = Ř12(µ, ν)Ř23(λ, ν)Ř12(λ,µ) . (12.30)

Written in this form the Yang-Baxter equation is of striking similarity with the braid relation
(3.C.2a). In fact, every representation of the braid relation (3.C.2a) in End(Cd ⊗ C

d ) gives
a spectral parameter independent solution of the Yang-Baxter equation (12.30). Again, if
Ř(λ,µ) = Ř(λ− µ), then Ř(λ) is said to be a solution of difference form of (12.30).

12.1.5 Fundamental models

We shall now explain how solutions the Yang-Baxter equation (12.21) give rise to repre-
sentations of the Yang-Baxter algebra (12.18). First, using (12.24) and (12.25), we rewrite
the Yang-Baxter equation in components,

Rαβ

α′β ′ (λ,µ)Rα′γ
α′′γ ′ (λ, ν)Rβ ′γ ′

β ′′γ ′′ (µ, ν) = Rβγ

β ′γ ′ (µ, ν)Rαγ ′
α′γ ′′ (λ, ν)Rα′β ′

α′′β ′′ (λ,µ) . (12.31)

Next, we introduce the L-matrix at site j by defining its matrix elements

L j
α
β
(λ,µ) = Rαγ

βδ (λ,µ)e j
δ
γ
. (12.32)

These matrix elements are operators in
(
End(Cd )

)⊗L
. Multiplication of the Yang-Baxter

equation (12.31) by e j
γ ′′
γ

implies that

Ř(λ,µ)
(
L j (λ, ν)⊗ L j (µ, ν)

) = (
L j (µ, ν)⊗ L j (λ, ν)

)
Ř(λ,µ) . (12.33)

Thus, L j (λ, ν) is a representation of the Yang-Baxter algebra (12.18). This representation
is called the fundamental representation.

From (12.25) and (12.32) we know that [L j+1
α
β
(λ, ν j+1), L j

γ

δ (λ, ν j )] = 0. It follows that(
L j+1(λ, ν j+1)⊗ L j+1(µ, ν j+1)

)(
L j (λ, ν j )⊗ L j (µ, ν j )

)
= L j+1(λ, ν j+1)L j (λ, ν j )⊗ L j+1(µ, ν j+1)L j (µ, ν j ) . (12.34)

Thus, (12.33) and (12.34) imply that the product L j+1(λ, ν j+1)L j (λ, ν j ) of two L-matrices
as well is a representation of the Yang-Baxter algebra (12.18). This representation may
be interpreted as a tensor product representation of two fundamental representations. The
property of the Yang-Baxter algebra, that a tensor product of two representations is a
representation, is called the co-multiplication property. By iterated co-multiplication we
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can easily verify that the L-fold ordered product of L-matrices

T (λ) = L L (λ, νL ) . . . L1(λ, ν1) (12.35)

is a representation of the Yang-Baxter algebra (12.18). The trace of this monodromy ma-
trix, t(λ) = tr(T (λ)), belongs by construction to a commuting family of transfer matrices,
[t(λ), t(µ)] = 0.

A solution R(λ,µ) of the Yang-Baxter equation (12.31) is called regular, if there are
values λ0, ν0 of the spectral parameters, such that Rαβ

γ δ (λ0, ν0) = δαδ δ
β
γ . For a regular R-

matrix it follows from the definition (12.32) that

L j
α
β
(λ0, ν0) = e j

α
β
. (12.36)

Setting ν j = ν0 for j = 1, . . . , L in (12.35) and using the definition of the transposition
operator (12.27) we obtain

t(λ0) = L L
βL
βL−1

(λ0, ν0) . . . L2
β2
β1

(λ0, ν0)L1
β1
βL

(λ0, ν0)

= e1
β1
βL

e2
β2
β1

e3
β3
β2

. . . eL
βL
βL−1

= P12 P23 . . . PL−1L = Û , (12.37)

where the operator Û defined by the last equation (12.37) is the right-shift operator, which
is the generator of cyclic shifts of the site index.

Along with the transfer matrix t(λ) itself every appropriately chosen differentiable func-
tion of t(λ) may be used as a generating function of a set of mutually commuting operators.
A particularly useful choice of a generating function is τ (λ) = ln(Û−1t(λ)). Its expansion
around λ = λ0 is

τ (λ) = (λ− λ0)Û−1t ′(λ0)+O
(
(λ− λ0)2

)
. (12.38)

It can be shown [308] that the coefficients in the series expansion are local in the sense, that
the nth coefficient is a sum over local densities acting non-trivially at n + 1 neighbouring
sites at most. The two-site term

H = Û−1t ′(λ0) =
L∑

j=1

Hj−1, j , (12.39)

where H0,1 = HL ,1 by definition and the prime denotes differentiation with respect to the
argument, may be interpreted as local Hamiltonian. For the ‘densities’ Hj−1, j we obtain
the explicit expression

Hj−1, j = ∂λ Ř j−1, j (λ, ν0)
∣∣∣
λ=λ0

. (12.40)

It is not difficult to verify this equation. First note that

t ′(λ0) = ∂λL1
β1
βL

(λ, ν0)
∣∣∣
λ=λ0

e2
β2
β1

. . . eL
βL
βL−1
+ . . .

· · · + e1
β1
βL

. . . eL−1
βL−1
βL−2

∂λL L
βL
βL−1

(λ, ν0)
∣∣∣
λ=λ0

. (12.41)
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Then, because of

e j−1
β j−1

β j−2
e j

β j

β j−1
Hj−1, j

= e j−1
β j−1

β j−2
e j

β j

β j−1
∂λ Řαβ

γ δ (λ, ν0)
∣∣∣
λ=λ0

e j−1
γ
α

e j
δ
β

= e j−1
γ

β j−2
δ
β j−1
α δ

β j

β ∂λRβα

γ δ (λ, ν0)
∣∣∣
λ=λ0

e j
δ
β j−1

= e j−1
β j−1

β j−2
∂λR

β jγ

β j−1δ
(λ, ν0)

∣∣∣
λ=λ0

e j
δ
γ

= e j−1
β j−1

β j−2
∂λL j

β j

β j−1
(λ, ν0)

∣∣∣
λ=λ0

, (12.42)

equation (12.40) follows from (12.37), (12.39) and (12.41).
The next coefficients in the series expansion of τ (λ) can be calculated in a similar manner.

The reader may verify that the second order term is

1
2τ
′′(λ0) = 1

2

L∑
j=1

{
∂2
λ Ř j−1, j (λ, ν0)

∣∣∣
λ=λ0

− H 2
j−1, j − [Hj−1, j , Hj, j+1]

}
, (12.43)

where periodic boundary conditions on the indices are again implied. Note that no closed,
explicit formula for the nth order term is known. The calculation of the higher order deriva-
tives of τ (λ) is cumbersome. A more efficient way of calculating higher local commuting
operators is by means of a recursion relation generated by the so-called boost operator1 [453].
The higher order commuting operators usually do not have a simple intuitive interpretation
in physical terms, and their explicit form does not matter much for applications.2 They are
mostly interesting for their bare existence which says something about the mathematical
structure of the model.

One says that equation (12.35) defines the fundamental model associated with the R-
matrix R(λ, ν). If all the ν j , j = 1, . . . , L , are equal, the model is called homogeneous,
otherwise inhomogeneous. Only the homogeneous model leads to the local Hamiltonian
H , equation (12.39).

We have encountered a particular example of a fundamental inhomogeneous model in
appendix 3.B, where the Bethe ansatz wave function of the Hubbard model was con-
structed. The ‘spin problem’ obtained after inserting the ansatz for the wavefunction into
the Schrödinger equation led us to consider the transfer matrix of the inhomogeneous XXX
model (see appendix 3.B.5). In the following subsection we will recall and partly generalize
our former results.

Before closing this subsection let us add a comment. Fundamental models are only
a small subclass of all models solvable by the quantum inverse scattering method. This
subclass, however, contains many models which are interesting from the point of view

1 For a boost operator related to the Hubbard model see [301].
2 There is, however, an interesting conclusion that can be drawn from (12.43): if the R-matrix is unitary (see (12.46) below) and

of difference form, then the first two terms under the sum cancel each other and
∑L

j=1[Hj−1, j , Hj, j+1] commutes with the
Hamiltonian. This gives us a simple criterion to test whether a local Hamiltonian Hj−1, j can be connected to a fundamental
model with unitary R-matrix of difference form.
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of applications in physics. If we allow for a slight generalization to so-called fundamental
graded models [179] which will be discussed in Section 12.3 below, then the models which
interest us the most (i.e., the isotropic Heisenberg chain, the t-0 model, the supersymmetric
t-J model and the Hubbard model) are all contained in this class. This is the reason why we
restrict our discussion to fundamental models here. For additional introductory information
about non-fundamental models the reader is referred to the literature (e.g. [270, 277]).

12.1.6 An example – the XXX models

We now reconsider and generalize the inhomogeneous XXX model we have encountered in
appendix 3.B.5. Having in mind the construction of another class of fundamental models in
the next section we offer a slightly more abstract point of view. Classes of solutions of the
Yang-Baxter equation can often be constructed by first considering an appropriate algebra,
which provides a solution of the Yang-Baxter equation without spectral parameter, and, in a
second step, attempting to introduce a spectral parameter into the equations. This procedure
has the advantage that every representation of the algebra at hand gives a new solution of
the Yang-Baxter equation.

Let us, for instance, consider the associative algebra with unity ‘id’ defined in terms of
its generators Ai , i = 1, . . . , L , by the relations

Ai Ai+1 Ai = Ai+1 Ai Ai+1 , (12.44a)

Ai A j = A j Ai for |i − j | > 1 , (12.44b)

A2
i = id , (12.44c)

where AL+1 = A1 by definition. Comparing with (3.C.2) we see that this algebra is isomor-
phic to the group algebra of the symmetric group SL . Note that the braid relation (12.44a) is
very similar to a spectral parameter independent form of the Yang-Baxter equation (12.30).

A short calculation, similar to the one in appendix (3.C.1) shows that

(id+ λA2)(id+ (λ+ µ)A1)(id+ µA2) = (id+ µA1)(id+ (λ+ µ)A2)(id+ λA1).

(12.45)

Clearly, the transposition operators Pii+1, equation (12.27), provide a representation Ai =
Pii+1 of (12.44). Let P = eβ

α ⊗ eα
β . Then, by (12.45), the matrix Ř(λ) = α(λ)(id+ λP),

with an arbitrary function α(λ), is a solution of difference form of the Yang-Baxter equation
(12.30). Note that since d = 2, 3, 4, . . . is arbitrary, we have obtained solutions of the
Yang-Baxter equation of arbitrarily high dimension. The arbitrary function α(λ) could be
introduced because of the homogeneity of the Yang-Baxter equation. It is still at our disposal.
We may choose it in such a way that the matrix Ř(λ) has a convenient normalization.
Choosing, for instance, α(λ) = 1/(λ+ 1) we find

Ř(λ)Ř(−λ) = id (12.46)

which follows from P2 = id. An R-matrix having this property is called unitary.
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In order to make contact with our notation in appendix 3.B.5 we rescale the spec-
tral parameter, λ→ λ/ic, where c is some coupling constant. It follows that the
matrix

Ř(λ) = ic · id+ λP

ic + λ
(12.47)

is a solution of difference form of the Yang-Baxter equation (12.30). Upon introducing
functions

b(λ) = ic

λ+ ic
, c(λ) = λ

λ+ ic
, (12.48)

the matrix Ř(λ) takes the form

Ř(λ) = b(λ)id+ c(λ)P . (12.49)

For the particular case d = 2, for instance, this is the 4× 4 matrix

Ř(λ) =


1

b(λ) c(λ)
c(λ) b(λ)

1

 (12.50)

and agrees with equation (3.B.58), if we put c = 2u.
Having obtained a set of solutions of the Yang-Baxter equation we may now apply the

formalism of the previous section and construct the corresponding fundamental models.
We should remark that the construction of the fundamental models in the previous section
is not unique and may be altered by a number of rather trivial transformations, like shifts or
rescaling of the spectral parameter, or multiplication of, for instance, the Hamiltonian by a
number. We shall freely use this possibility.

Let us write down the R-matrix R(λ,µ) = P Ř(λ,µ) with Ř(λ,µ) obtained from (12.49)
in components. We have

R(λ,µ) = c(λ− µ)id+ b(λ− µ)P

= c(λ− µ)eα
α ⊗ eβ

β + b(λ− µ)eβ
α ⊗ eα

β

= (
c(λ− µ)δαβδ

γ

δ + b(λ− µ)δαδ δ
γ

β

)
eβ
α ⊗ eδ

γ , (12.51)

and the components of the R-matrix can be read off from the right hand side of this equation.
It follows (see (12.32)) that

L j
α
β
(λ,µ) = c(λ− µ)δαβ + b(λ− µ)e j

α
β
. (12.52)

Since b(0) = 1 and c(0) = 0, the R-matrix (12.51) is regular. The monodromy matrix of
the corresponding fundamental model is given by equation (12.35) with L j

α
β
(λ, ν j ) taken

from (12.52). As the Hamiltonian density in the homogeneous case we choose (compare
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(12.40))

Hj−1, j = i∂λ Ř j−1, j (λ, 0)
∣∣
λ=0

= i
(
b′(0)+ c′(0)Pj−1 j

)
= (Pj−1 j − 1)/c , (12.53)

where a factor of ‘i’ has been supplied in order to make the expression hermitian.
The operator Hj−1, j is acting on a tensor product of d-dimensional local quantum spaces

C
d . For d = 2 we may use the well-known formula Pj−1 j = 1

2 (1+ σα
j−1σ

α
j ) and obtain the

Hamiltonian

Ĥ = 1
2c

L∑
j=1

(
σα

j−1σ
α
j − 1

)
(12.54)

of the isotropic (or XXX) Heisenberg chain. If the ‘exchange coupling’ c is positive we
have the antiferromagnetic chain, if c is negative the ferromagnetic chain. For general d the
Hamiltonian

Ĥ = 1
c

L∑
j=1

(Pj−1 j − 1) (12.55)

defines the so-called su(d)-XXX chain.
The transfer matrix of the su(d)-XXX chain can be diagonalized by using the Yang-

Baxter algebra (12.18). The procedure is called the nested algebraic Bethe ansatz and is
a generalization of the method presented in appendix 3.B.5. The nested algebraic Bethe
ansatz for the su(d)-XXX chain was constructed by Kulish and Reshetikhin [273]. We shall
not discuss it at this point, since it would lead us too far away from our actual subject. Let us
only reconsider the arguments for the case d = 2 in a different, more general form. This is
sufficient for our purpose to give an example of how the algebraic Bethe ansatz works and
will moreover be useful for the algebraic Bethe ansatz for the Hubbard model in Section
12.6 and for the quantum transfer matrix approach to the thermodynamics of the XXX chain
in Chapter 13.

12.1.7 Algebraic Bethe ansatz for the gl(2) generalized model

The models connected to the Yang-Baxter algebra are interesting for physicists mainly,
because powerful methods are available for the solution of their spectral problem. One of
these methods is the algebraic Bethe ansatz. It relies on the direct use of the quadratic
commutation relations (12.18) defining the Yang-Baxter algebra. In order for the algebraic
Bethe ansatz to work it must be possible to identify the elements of the monodromy matrix
as ‘particle’ creation and annihilation operators. In particular, a pseudo vacuum state must
exist which is annihilated by all the annihilation operators. In all known cases, where an
algebraic Bethe ansatz has been successful so far, the elements of the monodromy matrix
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could be arranged in such a way, that the monodromy matrix acts as an upper triangular
matrix on the pseudo vacuum, and the pseudo vacuum is an eigenstate of its diagonal
elements.

The paradigmatic example of an algebraic Bethe ansatz is the algebraic Bethe ansatz for
models with the R-matrix (12.50) of the spin- 1

2 XXX chain [132]. The monodromy matrices
of these models are 2× 2. Thus, they have only a single element below the diagonal which
must annihilate the pseudo vacuum for the algebraic Bethe ansatz to work. It turns out that
the particular form of the vacuum eigenvalues of the diagonal elements is irrelevant for
the construction of the algebraic Bethe ansatz. These vacuum eigenvalues, usually denoted
a(λ) and d(λ), enter the algebraic Bethe ansatz solution as functional parameters. Thus, the
algebraic Bethe ansatz can be simultaneously constructed for a whole class of models with
the same R-matrix. One may even think of a model defined by the functional parameters
and the triangular action of the monodromy matrix on the pseudo vacuum. The question
whether or not such kind of ‘generalized model’ exists for arbitrary parameters a(λ) and
d(λ) was first addressed in [267] and after some refinement was answered in the affirmative
in [449,450]. The model has been termed the gl(2) generalized model, because of the gl(2)
invariance of the R-matrix (12.50).

The algebraic Bethe ansatz solution of the spin- 1
2 XXX chain presented in appendix 3.B.5

is a special case of the algebraic Bethe ansatz solution of the gl(2) generalized model. In
principle, the arguments given in appendix 3.B.5 also apply to the gl(2) generalized model.
Here, however, we shall take the opportunity to present an alternative derivation of the
algebraic Bethe ansatz solution. We shall start by making the notion of the gl(2) generalized
model more precise.

Let us consider the Yang-Baxter algebra (12.18) with R-matrix (12.50). The correspond-
ing monodromy matrix is a 2× 2 matrix, say,

T (λ) =
(

A(λ) B(λ)
C(λ) D(λ)

)
. (12.56)

The gl(2) generalized model is the set of all (linear) representations of the Yang-Baxter
algebra (12.18) with R-matrix (12.50), for which a pseudo vacuum |0〉 exists, such that
T (λ) acts triangularly on |0〉,

A(λ)|0〉 = a(λ)|0〉 , D(λ)|0〉 = d(λ)|0〉 , (12.57)

C(λ)|0〉 = 0 . (12.58)

The complex valued functions a(λ) and d(λ) are called the parameters of the gener-
alized model. These parameters characterize the representation in much the same way
as the highest-weight vector characterizes a highest-weight representation of a Lie
algebra.

Let us denote the representation space of a given representation of the generalized model
by H. It is clear from the quadratic commutation relations contained in (12.18) and from
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(12.57), (12.58) that we may assume H to be spanned by all vectors of the form

|µ1, . . . , µM 〉 = B(µ1) . . . B(µM )|0〉 . (12.59)

This assumption is at least sensible if H is finite dimensional.
The family of transfer matrices we want to diagonalize is given by

t(λ) = tr(T (λ)) = A(λ)+ D(λ) . (12.60)

This is a commuting family of transfer matrices, [t(λ), t(µ)] = 0, by construction (see
Section 12.1.2). Therefore t(λ) and t(µ) have a common system of eigenfunctions, which
means that the eigenvectors of t(λ) are independent of the spectral parameter λ. The task
of the algebraic Bethe ansatz for the generalized model is to diagonalize t(λ), i.e., to solve
the eigenvalue problem

t(λ)|�〉 = �(λ)|�〉 . (12.61)

This task can be accomplished by solely resorting to the Yang-Baxter algebra (12.18) and
the properties (12.57), (12.58) of the pseudo vacuum state.

Out of the 16 quadratic relations contained in (12.18) we select the following three,

A(λ)B(µ) = B(µ)A(λ)

c(µ− λ)
− b(µ− λ)

c(µ− λ)
B(λ)A(µ) , (12.62a)

D(λ)B(µ) = B(µ)D(λ)

c(λ− µ)
− b(λ− µ)

c(λ− µ)
B(λ)D(µ) , (12.62b)

B(λ)B(µ) = B(µ)B(λ) . (12.62c)

We are interested in the commutation relation of a product B(µ1) . . . B(µM ) with A(λ) and
D(λ). These commutation relations can be obtained by iterated use of (12.62). We claim
that

A(λ)
M∏

k=1

B(µk) =
[ M∏

k=1

B(µk)
]

A(λ)
M∏

k=1

1

c(µk − λ)

−
M∑

k=1

[
B(λ)

M∏
l=1
l �=k

B(µl)
]

A(µk)
b(µk − λ)

c(µk − λ)

M∏
l=1
l �=k

1

c(µl − µk)
. (12.63a)

D(λ)
M∏

k=1

B(µk) =
[ M∏

k=1

B(µk)
]

D(λ)
M∏

k=1

1

c(λ− µk)

−
M∑

k=1

[
B(λ)

M∏
l=1
l �=k

B(µl)
]

D(µk)
b(λ− µk)

c(λ− µk)

M∏
l=1
l �=k

1

c(µk − µl)
. (12.63b)

Proof. Equations (12.63) can be proven by induction over M . Let us concentrate on
(12.63a). This equation is satisfied for M = 1, since it reduces to (12.62a). Let us as-
sume that (12.63a) is true for some M ∈ N. Multiplication of (12.63a) by B(µM+1) from
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the right and use of (12.62) leads to

A(λ)
M+1∏
k=1

B(µk) =
[M+1∏

k=1

B(µk)
]

A(λ)
M+1∏
k=1

1

c(µk − λ)

−
M∑

k=1

[
B(λ)

M+1∏
l=1
l �=k

B(µl)
]

A(µk)
b(µk − λ)

c(µk − λ)

M+1∏
l=1
l �=k

1

c(µl − µk)

−
[

B(λ)
M∏

l=1

B(µl)
]

A(µM+1)
{b(µM+1 − λ)

c(µM+1 − λ)

M∏
k=1

1

c(µk − λ)

−
M∑

k=1

b(µM+1 − µk)

c(µM+1 − µk)

b(µk − λ)

c(µk − λ)

M∏
l=1
l �=k

1

c(µl − µk)

}
. (12.64)

The right hand side of this equation reduces to the right-hand side of (12.63a) with M
replaced by M + 1 thanks to the identity

b(µM+1 − λ)

c(µM+1 − λ)

M∏
l=1

1

c(µl − µM+1)
= b(µM+1 − λ)

c(µM+1 − λ)

M∏
k=1

1

c(µk − λ)

−
M∑

k=1

b(µM+1 − µk)

c(µM+1 − µk)

b(µk − λ)

c(µk − λ)

M∏
l=1
l �=k

1

c(µl − µk)
,

(12.65)

which, for mutually distinct µk , can be easily proven by means of Liouville’s theorem.3

It follows that (12.63a) is true for all M ∈ N. The proof of (12.63b) is almost literally the
same and is left as an exercise to the reader. �

We may now add equations (12.63a) and (12.63b). This gives us a commutation relation
between t(λ) and the multiple product B(µ1) . . . B(µM ). Using the fact that b(λ)/c(λ) is an
odd function of λ we obtain

t(λ)
M∏

k=1

B(µk) =
[ M∏

k=1

B(µk)
]{

A(λ)
M∏

k=1

1

c(µk − λ)
+ D(λ)

M∏
k=1

1

c(λ− µk)

}

+
M∑

k=1

[
B(λ)

M∏
l=1
l �=k

B(µl)
]b(λ− µk)

c(λ− µk)

M∏
l=1
l �=k

1

c(µk − µl)

×
{

A(µk)
M∏
l=1
l �=k

c(µk − µl)

c(µl − µk)
− D(µk)

}
. (12.66)

By hypothesis, |0〉 is a joint eigenvector of A(λ) and D(λ) with eigenvalues a(λ) and d(λ)
(see (12.57)). When we act with equation (12.66) on the pseudo vacuum we can therefore
replace the operators A(λ) and D(λ) by their pseudo vacuum eigenvalues. Then the first

3 A function which is bounded and analytic everywhere in the complex plane must be a constant.
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curly bracket on the right-hand side of (12.66) turns into

�(λ) = a(λ)
M∏

k=1

1

c(µk − λ)
+ d(λ)

M∏
k=1

1

c(λ− µk)
. (12.67)

The second curly bracket vanishes, provided that

d(µk)

a(µk)
=

M∏
l=1
l �=k

c(µk − µl)

c(µl − µk)
(12.68)

for k = 1, . . . , M . Thus, |�〉 = B(µ1) . . . B(µM )|0〉 is an eigenvector of the transfer matrix
t(λ) with eigenvalue �(λ) if the equations (12.68) are satisfied. These equations are, of
course, nothing but the Bethe ansatz equations.

As an application of our abstract Bethe ansatz solution let us again consider the
spin- 1

2 XXX chain. The monodromy matrix (12.35) is then an L-fold product of elementary
L-matrices (12.52). It defines a representation of the Yang-Baxter algebra with R-matrix

(12.50). An appropriate pseudo vacuum is the ferromagnetic state |0〉 = (1
0

)⊗L
. The only

thing we need to do if we want to apply our general result (12.67), (12.68) is to calculate
the parameters a(λ) and d(λ). We note that

L j (λ, ν j )|0〉 =
(

1 b(λ− ν j )e j
1
2

0 c(λ− ν j )

)
|0〉 . (12.69)

It follows that

a(λ) = 1 , d(λ) =
L∏

j=1

c(λ− ν j ) . (12.70)

In order to compare with our previous result obtained in appendix 3.B.5 we have to
adjust the notation. Replacing �(λ) with τ (λ), λ with λ− ic/2, µk with λk − ic/2, ν j with
sin(k j ), c with 2u, and L with N , we reproduce equations (3.B.83) and (3.B.84) from
(12.67), (12.68), and (12.70).

In the homogeneous case, ν j = 0, j = 1, . . . , L , equations (12.67), (12.68) and (12.70)
provide the eigenvalues E of the spin- 1

2 XXX Hamiltonian (12.54). Comparing (12.39),
(12.40), and (12.53) we find (for L ≥ 2)

E = i
�′(0)

�(0)
= i

M∑
k=1

c′(µk)

c(µk)
= −

M∑
k=1

c

µk(µk + ic)
(12.71)

where the µk , k = 1, . . . , M , are subject to the Bethe ansatz equations (12.68) with a(λ)
and d(λ) according to (12.70).

Let us set µk = λk − ic/2 in equations (12.68) and (12.71) and c = 2 in (12.54), (12.68)
and (12.71). Then we arrive at the following classical result due to Bethe [60].

Lemma 9. The antiferromagnetic, isotropic spin- 1
2 Heisenberg Hamiltonian

Ĥ =
L∑

j=1

(
Sα

j−1Sα
j − 1

4

)
(12.72)
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has eigenvalues

E = −
M∑

k=1

2

λ2
k + 1

, (12.73)

where the Bethe ansatz roots λk have to be calculated from the Bethe ansatz equations(
λk − i

λk + i

)L

=
M∏
l=1
l �=k

λk − λl − 2i

λk − λl + 2i
, k = 1, . . . , M . (12.74)

A number of comments are in order here. The isotropic spin- 1
2 Heisenberg chain is one

of the best understood models that can be solved by algebraic Bethe ansatz. Lemma 9
is only the starting point for the study of its physical properties. Its thermodynamics, its
excitation spectrum in the thermodynamic limit, its S-matrix and its finite size corrections
which determine the long-distance behaviour of correlations, can be obtained in much the
same way as discussed with the example of the Hubbard model in the first part of this book.
In Chapter 13 where we treat the quantum transfer matrix approach to the thermodynamics
of the Hubbard model we shall come back to the isotropic Heisenberg chain in order to
introduce the method with a sufficiently simple example. For further reading we refer to
the article [132] and to the books [157,270,439]. In [132] it is shown that, due to the su(2)
symmetry, we should have imposed the restriction 2M ≤ L in lemma 9.

The algebraic Bethe ansatz also provides a relatively simple expression for the eigen-
vectors and is therefore a powerful tool for the calculation of local properties of the spin- 1

2
XXX chain. The norm of the eigenvectors was obtained in [268]. Expressions for expecta-
tion values of local operators in terms of the Bethe ansatz roots have been derived in [413]
(see also [251]).

It is interesting to compare the two derivations of the algebraic Bethe ansatz in ap-
pendix 3.B.5 and in this section. The approach of appendix 3.B.5 is constructive but non-
rigorous, since we have implicitly assumed the linear independence of vectors of the form
B(µ1) . . . B(µM )|0〉. The approach of this section is rigorous but non-constructive. Induc-
tion over M is mathematically elegant, but only helpful once the result is known. Thus, it
is useful to be aware of both approaches.

The algebraic Bethe ansatz is not the only approach to solve the spectral problem of
models connected with the Yang-Baxter algebra. It is only applicable if a pseudo vacuum
exists. For models like the Toda chain [405], which has the same R-matrix as the spin- 1

2
XXX chain, but has no pseudo vacuum, the algebraic Bethe ansatz fails. For these types of
models another powerful technique, the ‘method of separation of variables’ was devised by
E. K. Sklyanin [408].

12.1.8 Graphical representation of the Yang-Baxter equation

So far we have developed the formalism of the quantum inverse scattering method in a
purely algebraic language. In this subsection we will slightly detour from this route and give
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a complementary view on the method. R-matrices can be represented by graphs. Relations
between products of R-matrices then become relations between graphs or graphical rules for
calculations. The use of these graphical rules sometimes simplifies complicated algebraic
proofs. The origin of the graphical representation is the statistical mechanics of vertex
models [45]. For many purposes it is mainly a matter of personal taste or habits whether
one prefers to work with the algebraic or with the graphical representation. We shall use
the graphical representation in our next chapter on the quantum transfer matrix approach
to thermodynamics. But here is the appropriate place to introduce it.

Let us represent R(λ,µ) by two crossing arrows, one of which is thought of to ‘carry’
the spectral parameter λ, the other one the spectral parameter µ. Such kind of symbol may
alternatively be understood as a (directed) vertex. Let us attach indices α, β, γ, δ to the four
ends of the vertex. The indices at the tips of the arrows will be called outgoing indices
and the indices at the tails incoming indices. The attachment of the indices to the vertex is
unique if we agree to put them in clockwise order, starting with α as ‘leftmost’ outgoing
index. This way we also establish a unique correspondence between the outgoing indices
α and β and the spectral parameters λ and µ. Thus, we may uniquely identify an R-matrix
element Rαβ

γ δ (λ,µ) with a labeled vertex,

β

β = αα

δ

δ

m
λ(λ,m) γ

γR .

(12.75)

The key point now that makes the graphical representation suitable for calculations is to
symbolize contraction of indices by connection of lines. Then we have, for instance,

β

β″

γ

γ″

λ(λ,ν)(λ,m)

ν
α″

m

α=αβ α′γ
β″γ″α′α″R R .

(12.76)

In this equation it is implied that the arrow from β ′′ to α carries the same spectral parameter
λ throughout. It is consistent with our sum convention to define

α αβ
βλ = δ .

(12.77)

With the aid of our rules we may express various identities involving the R-matrix in
graphical form. The Yang-Baxter equation is shown in figure 12.1. In its graphical form it
is probably most easily memorized. Attaching labels to the graphs and using (12.75) we
can easily reconstruct equation (12.31) from figure 12.1. The unitarity condition is shown
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λ =

ν νm

λ

m

Fig. 12.1. Graphical representation of the Yang-Baxter equation (12.31).

m

λ

m

λ

=

Fig. 12.2. Graphical representation of the unitarity condition (12.46).

in figure 12.2. Finally, a regular R-matrix with ‘shift point’ (λ0, µ0) satisfies

m0

λ0

m0

λ0
= .

(12.78)

Examples of the usage and the usefulness of the graphical representation will be given in
Chapter 13.

12.2 Shastry’s R-matrix

Soon after the quantum inverse scattering method was created it became apparent that most
of the models solvable by coordinate Bethe ansatz can be connected to the Yang-Baxter
algebra. Yet it turned out to be difficult to find an R-matrix associated with the Hubbard
model. The reason is that due to an argument of Reshetikhin [277] the Hubbard model
cannot be constructed as a fundamental model with an R-matrix of difference form. Another
source of obstruction is provided by the fact that the Hubbard model is formulated in terms
of fermionic rather than spin degrees of freedom. This problem can be circumvented by
considering the spin model related to the Hubbard model by a Jordan-Wigner transformation
[227]. An R-matrix for this spin model was obtained by B. S. Shastry in 1986 [391, 392].

As we shall see, Shastry’s R-matrix is rather peculiar as compared to the R-matrices of
most of the other prominent exactly solvable models. In particular, it is not of difference
form. Let us emphasize that the algebraic structure of the Hubbard model is less simple and
less well understood than, for instance, the algebraic structure of the isotropic Heisenberg
chain. From the point of view of its algebraic structure the Hubbard model is the subject of
recent and still ongoing work. Therefore, the results presented in this part of the book are
less complete than the results of the first parts. We expect further interesting developments
in the future in which the reader is invited to participate.
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Shastry’s original work [391, 392] relies on rather brute force calculations involving ex-
tensive computer algebra. Later on, in an elegant paper [393], he introduced a novel algebraic
means, the so-called ‘decorated star triangle relation’ that enabled to derive the R-matrix si-
multaneously with a peculiar representation of the Yang-Baxter algebra. This construction,
however, did not include a proof showing that the R-matrix thus constructed would satisfy
the Yang-Baxter equation. An algebraic proof based on Korepanov’s representation [264]
of the tetrahedral Zamolodchikov algebra was given by Shiroishi and Wadati [401].

Another derivation of Shastry’s R-matrix was obtained in [349,475], where a (quantum)
Lax pair [270] was constructed, and the R-matrix was obtained from the requirement that the
L-matrix elements should generate a representation of the Yang-Baxter algebra. In [349] a
fermionic form of the Yang-Baxter algebra for the Hubbard model was introduced for the first
time. The corresponding R-matrix turned out to be slightly modified as compared to Shas-
try’s R-matrix. As we shall see below (see lemma 12) the two R-matrices are related through
a ‘generalized twist transformation’ which leaves the Yang-Baxter equation invariant.

Our account of the algebraic structure of the Hubbard model does not rely on [349]. It is
based on Shastry’s R-matrix and on a general formalism [179] that associates a fermionic, so-
called fundamental graded model with every solution of the Yang-Baxter equation satisfying
a certain compatibility condition. We shall use an R-matrix that again connects to Shastry’s
R-matrix by a generalized twist. This whole section is devoted to the derivation of Shastry’s
R-matrix and to the discussion of similarity transformations which leave the Yang-Baxter
equation invariant. Fundamental graded model are introduced in the following Section
12.3.

In the derivation of Shastry’s R-matrix we partly follow the article [312], where a purely
algebraic version of Shastry’s arguments [393] has been presented. The derivation of [312]
gives rise to a whole family of fundamental models with su(n)-spin degrees of freedom,
the simplest of which (n = 2) is related to the Hubbard model through a Jordan-Wigner
transformation. The proof that these R-matrices actually solve the Yang-Baxter equation is
shown in appendix 12.A. It relies on the work of Korepanov [263] and is due to Shiroishi
and Wadati [401]. A generalized twist transformation transforms Shastry’s R-matrix into
an R-matrix that generates the Hubbard model as a fundamental graded model. It is this
R-matrix that we shall use as the starting point for the exploration of the algebraic properties
of the Hubbard model in Section 12.4.

12.2.1 The XX models

We start our considerations by introducing the su(d)-XX models which will serve as building
blocks for the construction of Shastry’s R-matrix.

The most general anisotropic spin- 1
2 model with nearest-neighbour interactions is defined

by the Hamiltonian

HXY Z =
L∑

j=1

(
Jxσ

x
j−1σ

x
j + Jyσ

y
j−1σ

y
j + Jzσ

z
j−1σ

z
j

)
, (12.79)
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where periodic boundary conditions, σα
0 = σα

L , α = x, y, z, are implied and Jx , Jy and Jz

are three generally distinct ‘exchange couplings’. HXY Z is called the XYZ Hamiltonian.
The XYZ Hamiltonian is connected to Baxter’s famous eight-vertex model solution of
the Yang-Baxter equation [43–45]. For Jx = Jy the Hamiltonian describes the partially
anisotropic so-called XXZ model. The completely isotropic case Jx = Jy = Jz is called the
XXX model and was considered along with its su(d) generalizations in the previous section.
Here we shall discuss another interesting family of solutions of the Yang-Baxter equation
connected to a special choice of exchange couplings in (12.79). For Jx = Jy = J/2 and
Jz = 0 the XYZ Hamiltonian becomes

HX X = J

2

L∑
j=1

(
σ x

j−1σ
x
j + σ

y
j−1σ

y
j

)
= J

L∑
j=1

(
σ+j−1σ

−
j + σ−j−1σ

+
j

)
. (12.80)

We call this the XX Hamiltonian. Other common names are XY Hamiltonian or XX0
Hamiltonian, respectively. As in case of the XXX model there is a whole family of su(d)
generalizations (d = 3, 4, . . . ) of the XX model. This family of models will be constructed
below. The XX model relates to the tight binding model of free spinless fermions through
a Jordan-Wigner transformation (see Section 12.3). As mentioned above it will serve as a
building block for the construction of Shastry’s R-matrix in the next subsection.

Let us consider the associative algebra with unity defined in terms of its generators Ai ,
i = 1, . . . , L , by the relations

Ai Ai+1 Ai = 0 = Ai+1 Ai Ai+1 , (12.81a)

Ai A j = A j Ai for |i − j | > 1 , (12.81b)

A3
i = Ai , (12.81c)

{A2
i , Ai±1} = Ai±1 , (12.81d)

where we impose periodic boundary conditions on the generators. The curly brackets in
the last line denote the anticommutator. The algebra defined by (12.81) was introduced by
Maassarani [312] and was termed ‘free fermion algebra’. Note that (12.81a) means that the
Ai satisfy the braid relation. Using (12.81c) and (12.81d) we see that the same is also true
for A2

i , A2
i A2

i+1 A2
i = A2

i+1 A2
i A2

i+1.
Using the free fermion algebra (12.81) and the addition theorems for trigonometric func-

tions it is easily verified (see equations (12.A.11) and (12.A.12) in appendix 12.A) that(
cos(λ)+ A2

2(1− cos(λ))+ A2 sin(λ)
)

× (
cos(λ+ µ)+ A2

1(1− cos(λ+ µ))+ A1 sin(λ+ µ)
)

× (
cos(µ)+ A2

2(1− cos(µ))+ A2 sin(µ)
)

= (
cos(µ)+ A2

1(1− cos(µ))+ A1 sin(µ)
)

× (
cos(λ+ µ)+ A2

2(1− cos(λ+ µ))+ A2 sin(λ+ µ)
)

× (
cos(λ)+ A2

1(1− cos(λ))+ A1 sin(λ)
)
. (12.82)
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The latter equation constitutes an abstract solution of the Yang-Baxter equation. Let
Q ∈ End(Cd ⊗ C

d ), such that Ai = Qii+1 = Qαγ

βδ ei
β
αei+1

δ
γ is a representation of the free

fermion algebra. Let P (1) = Q2 and P (2) = id− P (1). Then (12.82) implies that

Ř(λ) = P (1) + P (2) cos(λ)+ Q sin(λ) (12.83)

is a solution of difference form of the Yang-Baxter equation (12.30). This solution is regular,
since

Ř(0) = P (1) + P (2) = id . (12.84)

From the defining relations of the free fermion algebra we conclude that P (1) and P (2) form
a complete set of projection operators,

P (i) P ( j) = δi j P ( j) , i, j = 1, 2 . (12.85)

The operator Q, being the square root of P (1), satisfies

P (1) Q = Q P (1) = Q , (12.86a)

P (2) Q = Q P (2) = 0 . (12.86b)

Using (12.85) and (12.86) it follows that

Ř(λ)Ř(−λ) = cos2(λ) · id . (12.87)

Thus Ř(λ)/ cos(λ) is unitary. According to equation (12.40) the Hamiltonian density of the
fundamental homogeneous model generated by Ř(λ) is

Hj−1, j = ∂λ Ř j−1 j (λ)
∣∣∣
λ=0
= Q j−1 j . (12.88)

The work that remains to be done is to construct representations of the free fermion
algebra (12.81). We have claimed that we would construct the R-matrix of the XX model
and its su(d) generalizations. Then, by comparing (12.80) and (12.88) the Hamiltonian den-
sity 1

2 (σ x
j−1σ

x
j + σ

y
j−1σ

y
j ) = e j−1

2
1e j

1
2 + e j−1

1
2e j

2
1 should generate the free fermion algebra

(12.81). This is indeed the case. We have, for instance,

(e1
2
1e2

1
2 + e1

1
2e2

2
1)(e2

2
1e3

1
2 + e2

1
2e3

2
1)(e1

2
1e2

1
2 + e1

1
2e2

2
1)

= (e1
2
1e2

2
2e3

1
2 + e1

1
2e2

1
1e3

2
1)(e1

2
1e2

1
2 + e1

1
2e2

2
1) = 0 , (12.89)

and the first relation (12.81a) is verified. The remaining relations (12.81) are verified by
similar calculations. Hence,

Q = e2
1 ⊗ e1

2 + e1
2 ⊗ e2

1 (12.90)

generates a representation of the free fermion algebra (12.81).
This result straightforwardly generalizes. One verifies by direct calculation that Ai =

Qii+1 with

Q =
d∑

α=2

(
xeα

1 ⊗ e1
α + x−1e1

α ⊗ eα
1

)
(12.91)
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and d = 2, 3, 4, . . . generates a representation of the algebra (12.81). Here x ∈ C is a free
parameter. Thus, because of (12.83), we have obtained the following solution of difference
form of the Yang-Baxter equation (12.30),

Ř(λ) =
d∑

α=2

(
e1

1 ⊗ eα
α + eα

α ⊗ e1
1

)+ [
e1

1 ⊗ e1
1 +

d∑
α,β=2

eα
α ⊗ eβ

β

]
cos(λ)

+
d∑

α=2

(
xeα

1 ⊗ e1
α + x−1e1

α ⊗ eα
1

)
sin(λ) . (12.92)

This solution was originally obtained in [313]. Our derivation follows [312]. The funda-
mental models generated by R(λ) = P Ř(λ) are called the su(d)-XX models. Note that these
models (for d > 2) are not just degenerate special cases of the higher rank X X Z models
(see e.g. [47]).

Later, when we derive an explicit 16× 16-matrix expression of Shastry’s R-matrix for
the Hubbard model, we shall need the explicit form of Ř(λ) in the case of a two-dimensional
auxiliary space, d = 2,

Ř(λ) =


cos(λ)

1 x sin(λ)
x−1 sin(λ) 1

cos(λ)

 . (12.93)

In this case, the same R-matrix (with x = 1) can also be obtained as an appropriate limit
of Baxter’s R-matrix of the eight-vertex model [45].

In the following subsection we shall use the R-matrices (12.92) as building blocks for
the construction of a family of R-matrices related to the Hubbard model. Note, however,
that the XX models are also interesting on their own right. The su(3)-XX R-matrix, for
instance, generates the t-0 model [179] (see appendix 2.A.6).

12.2.2 Conjugation matrix and decorated Yang-Baxter equation

Shastry’s R-matrix is built by gluing together two copies of the XX models by means of a
‘conjugation matrix’ C ∈ End(Cd ). Following [312] we characterize it by its properties:

C2 = Id , {Ci , Q12} = 0, i = 1, 2, (12.94a)

C1 Q12 = Q12C2, Q2
12 = 1

2 (Id2 − C1C2) , (12.94b)

where Q ∈ End(Cd ⊗ C
d ) is a representation of the free fermion algebra (12.81). Coming

back to our peculiar representation (12.91) we easily verify that

C = e1
1 −

d∑
α=2

eα
α , (12.95)

is a corresponding conjugation matrix.
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What is the use of this conjugation matrix? (12.94a) implies [Ci , P ( j)
12 ] = 0 for i, j = 1, 2.

Hence (see (12.83)),

Ci Ř12(λ) = Ř12(−λ)Ci , i = 1, 2 . (12.96)

The conjugation matrix thus changes the sign of the argument of Ř(λ). It can be used to
show that the XX-model R-matrices satisfy another functional equation besides the Yang-
Baxter equation. For this purpose let us first rewrite the Yang-Baxter equation (12.21) in
difference form,

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ) . (12.97)

Here we shifted λ and µ by ν. Then we multiply (12.97) by C1C2 from the left and by C3

from the right and reverse the sign of µ. We obtain the so-called decorated Yang-Baxter
equation,

R12(λ+ µ)C1 R13(λ)R23(µ) = R23(µ)R13(λ)C1 R12(λ+ µ) . (12.98)

An equivalent form of this equation was introduced by Shastry in [393] and termed ‘deco-
rated star triangle relation’.

12.2.3 Constructing the R-matrix

Now we are prepared to introduce Shastry’s R-matrix in the generalized form constructed
by Maassarani [311,312]. It is composed of two copies of the XX-model R-matrix (12.92).
Its construction is based on equations (12.97), (12.98) and on the properties (12.94) of the
conjugation matrix.

Let us first consider a system consisting of two non-interacting XX-models. We define

ř↑(λ) = Řαγ

βδ (λ) eβ
α ⊗ Id ⊗ eδ

γ ⊗ Id , (12.99a)

ř↓(λ) = Řαγ

βδ (λ) Id ⊗ eβ
α ⊗ Id ⊗ eδ

γ , (12.99b)

where Ř(λ) is the XX-model R-matrix (12.92), and the associated transposition matrices

P↑ = eβ
α ⊗ Id ⊗ eα

β ⊗ Id , P↓ = Id ⊗ eβ
α ⊗ Id ⊗ eα

β . (12.100)

Then, by construction, both matrices, r↑(λ) = P↑ř↑(λ) and r↓(λ) = P↓ř↓(λ), satisfy the
Yang-Baxter equation in its difference form (12.97). Since they commute the same is trivially
true for their product

r (λ) = r↑(λ)r↓(λ) , (12.101)

it satisfies (12.97). r (λ) is acting on the tensor product (Cd ⊗ C
d )⊗ (Cd ⊗ C

d ) of two
auxiliary spaces C

d ⊗ C
d . The vector space C

d ⊗ C
d is isomorphic to C

d2
. Hence, we can

interpret r (λ) as a matrix in End(Cd2 ⊗ C
d2

) if we employ the usual conventions e1
1 ⊗ e1

1 →
e1

1, e1
1 ⊗ e1

2 → e1
2 etc. for the tensor product of two matrices. Then r (λ) is a d4 × d4-matrix.
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The transposition operator P which interchanges the two tensor factors in C
d2 ⊗ C

d2
is

given by the product P = P↑P↓.
Let us briefly consider the fundamental model associated with the R-matrix r (λ). We

have to follow the steps in Section (12.1.5). The L-matrix with components

� j
α
β
(λ) = rαγ

βδ (λ)e j
δ
γ
, (12.102)

where all Greek indices run from 1 to d2 and summation over γ and δ is implied, generates
a fundamental representation of the Yang-Baxter algebra,

ř (λ− µ)
(
� j (λ)⊗ � j (µ)

) = (
� j (µ)⊗ � j (λ)

)
ř (λ− µ) . (12.103)

Due to the regularity of the XX-model R-matrix we have ř ′(0) = ř ′↑(0)+ ř ′↓(0). Therefore
(see equation (12.40)) the Hamiltonian of the corresponding homogeneous model is equal
to

H =
L∑

j=1

(
Q↑j−1, j + Q↓j−1, j

)
, (12.104)

with Qσ = ř ′σ (0), σ =↑,↓. It is clear by construction that Q↑ and Q↓ commute. These
operators correspond to two independent embeddings of Q into C

d ⊗ C
d ⊗ C

d ⊗ C
d . The

Hamiltonian (12.104) may thus be understood as a direct sum of two XX Hamiltonians.
In order to couple the two XX models we shall need two commuting copies, C↑ = C ⊗ Id

and C↓ = Id ⊗ C , of the conjugation matrix (12.95). The matrix r (λ) then satisfies (12.98)
with C replaced by C↑C↓. It follows that

ř (λ+ µ)
(
C↑C↓ ⊗ Id2

)(
� j (λ)⊗ � j (µ)

)
= (

� j (µ)⊗ � j (λ)
)(

Id2 ⊗ C↑C↓
)
ř (λ+ µ) . (12.105)

It was Shastry’s original observation [393] that (12.103) and (12.105) can be used to
construct a representation of the Yang-Baxter algebra which is related to the Hubbard model
together with its R-matrix. Later, Maassarani [312] noticed that Shastry’s construction can
be generalized to the family of XX models. Shastry proceeded as follows.

(i) He constructed a higher conserved operator I2 of the Hubbard model, i.e., he con-
structed an operator which commutes with the Hubbard Hamiltonian.

(ii) By means of a Jordan-Wigner transformation he obtained ‘spin chain operators’, H (s),
I (s)
2 , related to the Hubbard Hamiltonian and the conserved operator I2.

(iii) He guessed an L-matrix, such that the series of conserved operators generated by the
associated transfer matrix t(λ) started as

ln(U−1t(λ)) = λH (s) + λ2 I (s)
2 + . . .

(iv) He constructed an R-matrix, such that his L-matrix appeared as the fundamental rep-
resentation of the Yang-Baxter algebra defined by that R-matrix.
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We shall not repeat all steps of Shastry’s derivation here. What we are really interested
in is the R-matrix. We shall need it in the construction of a fermionic version of the Yang-
Baxter algebra that is directly connected to the Hubbard model in the next sections and in
the construction of the thermodynamics of the Hubbard model within the so-called quantum
transfer matrix approach in Chapter 13. Shastry did not present an analytic proof that his
R-matrix satisfies the Yang-Baxter equation. Such proof was given later by Shiroishi and
Wadati [401]. Still, point (iv) above of Shastry’s argument is rather simple and beautiful. We
therefore reproduce it below. The technically more involved proof of Shiroishi and Wadati
is presented in appendix 12.A.

Let us define a matrix G(h) ∈ End(Cd ⊗ C
d ) by

G(h) = exp
{
h C↑C↓/2

} = ch(h/2)+ C↑C↓ sh(h/2) . (12.106)

G(h) is acting on the auxiliary space of r (λ). Next we define matrices L j (λ) and L j (µ)
as

L j (λ) = G(h)� j (λ)G(h) , L j (µ) = G(l)� j (µ)G(l) . (12.107)

It follows from (12.103) and (12.105) that(
G(l)⊗ G(h)

)
ř (λ− µ)

(
G(−h)⊗ G(−l)

)(
L j (λ)⊗ L j (µ)

)
= (

L j (µ)⊗ L j (λ)
)(

G(−l)⊗ G(−h)
)
ř (λ− µ)

(
G(h)⊗ G(l)

)
,(

G(l)⊗ G(h)
)
ř (λ+ µ)

(
C↑C↓ ⊗ Id2

)(
G(−h)⊗ G(−l)

)(
L j (λ)⊗ L j (µ)

)
= (

L j (µ)⊗ L j (λ)
)(

G(−l)⊗ G(−h)
)(

Id2 ⊗ C↑C↓
)
ř (λ+ µ)

(
G(h)⊗ G(l)

)
.

Let us consider an arbitrary linear combination of these equations with coefficients α, β.
Then{(

G(l)⊗ G(h)
)[
βř (λ− µ)+ αř (λ+ µ)

(
C↑C↓ ⊗ Id2

)](
G(−h)⊗ G(−l)

)}
× (

L j (λ)⊗ L j (µ)
) = (

L j (µ)⊗ L j (λ)
)

× {(
G(−l)⊗ G(−h)

)[
βř (λ− µ)+ α

(
Id2 ⊗ C↑C↓

)
ř (λ+ µ)

](
G(h)⊗ G(l)

)}
.

This equation takes the form of the defining relations of a Yang-Baxter algebra if we can
find coefficients α, β, such that the terms in curly bracket on the left- and right-hand side
of this equation agree, i.e., we have to determine α and β such that(

G(2l)⊗ G(2h)
)[
βř (λ− µ)+ αř (λ+ µ)

(
C↑C↓ ⊗ Id2

)]
= [

βř (λ− µ)+ α
(
Id2 ⊗ C↑C↓

)
ř (λ+ µ)

](
G(2h)⊗ G(2l)

)
.

Using (12.106) and (12.96) this can be seen to be equivalent to

β
[
sh(h)ch(l)

(
C↑C↓ ⊗ Id2

)+ ch(h)sh(l)
(
Id2 ⊗ C↑C↓

)
, r (λ− µ)

]
−α[ch(h)ch(l)

(
C↑C↓ ⊗ Id2

)+ sh(h)sh(l)
(
Id2 ⊗ C↑C↓

)
, r (λ+ µ)

] = 0 .
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By a straightforward calculation based on (12.94) this equation further reduces to{
β cos(λ− µ)sh(h − l)− α cos(λ+ µ)ch(h − l)

}(
Id2 ⊗ C↑C↓ − C↑C↓ ⊗ Id2

)
+ {

β sin(λ− µ)sh(h + l)− α sin(λ+ µ)ch(h + l)
}

× [
Q↑(C↑ ⊗ C↓ − C↑C↓ ⊗ Id2 )+ Q↓(C↓ ⊗ C↑ − C↑C↓ ⊗ Id2 )

] = 0 .

The latter equation is satisfied if and only if the terms in curly brackets both vanish. Thus

α

β
= cos(λ− µ)sh(h − l)

cos(λ+ µ)ch(h − l)
= sin(λ− µ)sh(h + l)

sin(λ+ µ)ch(h + l)
. (12.108)

These are two algebraic equations. Using the addition theorems for trigonometric and
hyperbolic functions the second equation (12.108) is shown to be equivalent to

sh(2h)

sin(2λ)
= sh(2l)

sin(2µ)
= u . (12.109)

Here the parameter u is a free parameter which will turn out to be the coupling constant
of the Hubbard model. Equation (12.109) defines a function that expresses h in terms of
λ and u and l in terms of µ and u. In order to define this function uniquely we choose
the principal branch of the inverse sh-function. Then h(λ = 0) = l(µ = 0) = 0. The first
equation (12.108) fixes the ratio α/β as a function of λ, µ and u. Since only the ratio is fixed,
β remains a free function. This, of course, is due to the homogeneity of the Yang-Baxter
algebra.

Let us summarize. We have found that the L-matrix (12.107) is a representation of the
Yang-Baxter algebra with R-matrix

Ř(λ,µ) = β
(
G(l)⊗ G(h)

)
×[ř (λ− µ)+ (α/β) ř (λ+ µ)

(
C↑C↓ ⊗ Id2

)](
G(−h)⊗ G(−l)

)
(12.110)

provided that h and l are fixed as functions of λ, µ and u by (12.109), and α/β is given
by (12.108). The matrix (12.110) is Shastry’s R-matrix in its generalized form obtained by
Maassarani. Our derivation was based on the properties (12.94) of the conjugation matrix
and on the decorated Yang-Baxter equation (12.98).

The R-matrix (12.110) is rather special in that it is not of difference form. The second
spectral parameter µ is a true independent parameter. For µ = 0 the R-matrix R(λ,µ) =
P Ř(λ,µ) takes its simplest form

R(λ, 0) = β

ch(h)
(G(h)⊗ Id2 )r (λ)(G(h)⊗ Id2 ) . (12.111)

According to our general formula (12.32) the associated L-matrix is

L j (λ, 0) = β

ch(h)
G(h)� j (λ)G(h) = β

ch(h)
L j (λ) (12.112)

with L j (λ) from (12.107). This is an interesting result. Fixing either β to ch(h) in (12.112)
or changing the definition (12.107) we can interpret L j (λ) as a fundamental representation
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of the Yang-Baxter algebra. On the other hand, (12.112) also implies that R(λ,µ) satisfies
the Yang-Baxter equation (12.21) for ν = 0.

In fact, the R-matrix (12.110) satisfies the Yang-Baxter equation (12.21) for all λ, µ and
ν. For the case d = 2, which corresponds to the Hubbard model, this can, for instance, be
shown with the aid of some computer algebra [391]. For general d a deeper understanding
of the algebraic properties of the XX models is necessary. The decorated Yang-Baxter
equation (12.98) is part of a whole algebra of similar relations. It is this so-called tetrahedral
Zamolodchikov algebra that will be used in appendix 12.A to prove that R(λ,µ) satisfies
the Yang-Baxter equation (12.21) also for ν �= 0.

The ratio α/β, equation (12.108) vanishes for µ = λ. It follows that

Ř(λ, λ) = β(λ, λ) · id . (12.113)

Thus R(λ,µ) is regular for an appropriate choice of the function β(λ,µ) which is not fixed
by (12.108). We further infer from the unitarity of the XX model R-matrix and from the
fact that [ř (λ− µ), ř (λ+ µ)] = 0 that

Ř(λ,µ)Ř(µ, λ) = β(λ,µ)β(µ, λ)

× cos2(λ− µ)
(

cos2(λ− µ)− cos2(λ+ µ)th2(h − l)
)
. (12.114)

Thus Ř(λ,µ) becomes unitary for either of the two choices

β(λ,µ) = ch(h − l)

cos(λ− µ)

[
cos(λ− µ)ch(h − l)± cos(λ+ µ)sh(h − l)

]−1
. (12.115)

Unless otherwise stated we assume in the following that β(λ,µ) is given by (12.115) with
the plus sign. With this choice of β(λ,µ) we have β(λ, λ) = 1, and R(λ,µ) is also regular.

For the interpretation of the fundamental model generated by Ř(λ,µ) we still have to
derive the Hamiltonian in the homogeneous case. We shall restrict ourselves to µ = 0.
Then

∂λ Ř(λ, 0)
∣∣∣
λ=0
= Q↑ + Q↓ + u

2
(C↑C↓ ⊗ Id2 + Id2 ⊗ C↑C↓)− u . (12.116)

Here we used (12.111), (12.115) and (12.109). For its interpretation it is most ap-
propriate to conceive the local quantum space as C

d ⊗ C
d rather than C

d2
. With the

definition

e j,↑βα = I⊗( j−1)
d2 ⊗ (eβ

α ⊗ Id )⊗ I⊗(L− j)
d2 , (12.117a)

e j,↓βα = I⊗( j−1)
d2 ⊗ (Id ⊗ eβ

α )⊗ I⊗(L− j)
d2 , (12.117b)

α, β = 1, . . . , d, the Hamiltonian reads

H =
L∑

j=1

∑
a=↑,↓

d∑
α=2

(
e j−1,a

α
1 e j,a

1
α
+ e j−1,a

1
α
e j,a

α
1

)+ u
L∑

j=1

(C↑j C↓j − 1) . (12.118)

For d = 2 we may express the various matrices under the sums in terms of Pauli matrices.
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We have e2
1 = σ+, e1

2 = σ− and C = σ z . Thus, H turns into

H =
L∑

j=1

∑
a=↑,↓

(
σ+j−1,aσ

−
j,a + σ−j−1,aσ

+
j,a

)+ u
L∑

j=1

(σ z
j,↑σ

z
j,↓ − 1) (12.119)

which is Shastry’s original spin Hamiltonian. The Hamiltonian is, up to a twist of the
boundary conditions, equivalent to the Hubbard Hamiltonian by a Jordan-Wigner transfor-
mation [393]. The case of general µ for d = 2 and the inhomogeneous vertex model were
discussed in [401].

12.2.4 Explicit form of the R-matrix (d = 2)

The R-matrix (12.110) with d = 2 is called Shastry’s R-matrix. It is related to the Hubbard
model. Later, when we construct the algebraic Bethe ansatz, and also in Chapter 15 where
we algebraically construct the eigenstates on the infinite interval, we shall need its explicit
form. Recall that the R-matrix (12.110) is a d4 × d4-matrix. Thus, for d = 2 its dimension is
16× 16. In order to obtain its explicit form we insert the R-matrix (12.93) of the su(2)-XX
model, the conjugation matrix (12.95), and the expressions (12.108) for α/β and (12.115)
for β into equation (12.110),

Ř(λ,µ) = 1

ρ4
·

ρ1

1 ρ9

1 ρ9

ρ3 ρ6 ρ6 −ρ8

ρ10 1

ρ4

ρ6 ρ5 −ρ7 ρ6

1 ρ10

ρ10 1

ρ6 −ρ7 ρ5 ρ6

ρ4

1 ρ10

−ρ8 ρ6 ρ6 ρ3

ρ9 1

ρ9 1

ρ1



(12.120)

We omitted the matrix elements that are equal to zero. The lines inside the matrix are guides
to the eye.

The R-matrix (12.120) is constructed from two independent copies of the XX-model R-
matrix. In principle, each of these copies carries one more free parameter (the parameter x
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in (12.92)). Yet, the two ‘twist parameters’, say x and y, that come with the representations
Q of the free fermion algebra may be set equal to unity, since the dependence of Ř(λ,µ)
on x and y can be restored by a so-called twist transformation, to be discussed in the next
subsection.

Following the terminology of statistical mechanics we shall call the functions ρ j =
ρ j (λ,µ) the Boltzmann weights. Our notation is taken from [349]. The explicit expressions
for the Boltzmann weights are

ρ1(λ,µ) = cos(λ) cos(µ)eh−l + sin(λ) sin(µ)el−h , (12.121a)

ρ4(λ,µ) = cos(λ) cos(µ)el−h + sin(λ) sin(µ)eh−l , (12.121b)

ρ3(λ,µ) = cos(λ) cos(µ)eh−l − sin(λ) sin(µ)el−h

cos2(λ)− sin2(µ)
, (12.121c)

ρ5(λ,µ) = cos(λ) cos(µ)el−h − sin(λ) sin(µ)eh−l

cos2(λ)− sin2(µ)
, (12.121d)

ρ6(λ,µ) = sh(2(h − l))

2u(cos2(λ)− sin2(µ))
, (12.121e)

ρ7(λ,µ) = ρ4(λ,µ)− ρ5(λ,µ) , (12.121f)

ρ8(λ,µ) = ρ1(λ,µ)− ρ3(λ,µ) , (12.121g)

ρ9(λ,µ) = sin(λ) cos(µ)el−h − cos(λ) sin(µ)eh−l , (12.121h)

ρ10(λ,µ) = sin(λ) cos(µ)eh−l − cos(λ) sin(µ)el−h . (12.121i)

The parameters λ, µ, h and l are subject to the constraints (12.109). We note the following
relations [349] that are often useful in calculations,

ρ1ρ4 + ρ9ρ10 = 1 , (12.122a)

ρ1ρ5 + ρ3ρ4 = 2 , (12.122b)

ρ3ρ5 − ρ2
6 = 1 . (12.122c)

Yet another set of useful identities describes the behaviour of the Boltzmann weights under
exchange of the arguments λ and µ. Let ρ̄ j (λ,µ) = ρ j (µ, λ). Then

ρ̄1 = ρ4 , ρ̄3 = ρ5 , ρ̄7 = ρ8 , (12.123a)

ρ̄6 = −ρ6 , ρ̄9 = −ρ9 , ρ̄10 = −ρ10 . (12.123b)

12.2.5 Invariances of the Yang-Baxter equation

The Yang-Baxter equation is invariant under various kinds of transformations. We exhibit
three simple lemmata that will be needed for our further considerations. In what follows
we shall always assume that Ř(λ,µ) ∈ End(Cn ⊗ C

n) is a solution of the Yang-Baxter
equation (12.30).
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Lemma 10. Gauge transformations. Let V (λ) ∈ End(Cn) be an invertible n × n-matrix.
Then

(
V (µ)⊗ V (λ)

)
Ř(λ,µ)

(
V−1(λ)⊗ V−1(µ)

)
is a solution of the Yang-Baxter equation

(12.30).

Two solutions of the Yang-Baxter equation which are connected by a gauge transforma-
tion are sometimes called gauge equivalent. For example, Shastry’s R-matrix (12.110) is
gauge equivalent to

Ř(λ,µ) = β ř (λ− µ)+ α ř (λ+ µ)(C↑C↓ ⊗ Id2 ) . (12.124)

This fact is used in appendix 12.A, where we prove that Shastry’s R-matrix satisfies the
Yang-Baxter equation.

Lemma 11. Twist transformations.4 Suppose that V ∈ End(Cn) is invertible and satisfies
the condition

[Ř(λ,µ), V ⊗ V ] = 0 . (12.125)

Then the matrices
(
V ⊗ In

)
Ř(λ,µ)

(
V−1 ⊗ In

)
and

(
In ⊗ V

)
Ř(λ,µ)

(
In ⊗ V−1

)
satisfy

the Yang-Baxter equation (12.30).

Twist transformations can be used to couple the electrons in the Hubbard model to an
external electro-magnetic field (see Section (1.3)).

Lemma 11 is a special case of the following more general

Lemma 12. Generalized twists [169,280]. Let V ∈ End(Cn ⊗ C
n) be an invertible solution

of the Yang-Baxter equation

V12V13V23 = V23V13V12 , (12.126)

such that

[Ř23(λ,µ), V13V12] = [Ř12(λ,µ), V13V23] = 0 . (12.127)

Then V Ř(λ,µ)V−1 is a solution of the Yang-Baxter equation (12.30).

Let us consider the important special case of V being a diagonal matrix. Then (12.126)
is trivially satisfied, and the only remaining restrictions on V come from (12.127). It turns
out to be useful to write V as

V =


A

B
C

D

 , (12.128)

where

A = diag(a1, a2, a3, a4), . . . , D = diag(d1, d2, d3, d4) . (12.129)

4 This lemma was kindly communicated to us by S. Murakami.



424 The algebraic approach to the Hubbard model

We further introduce the matrices

Ã = diag(a1, b1, c1, d1), . . . , D̃ = diag(a4, b4, c4, d4) . (12.130)

A simple calculation shows that (12.127) is equivalent to

[Ř(λ,µ), X ⊗ X ] = [Ř(λ,µ), X̃ ⊗ X̃ ] = 0 (12.131)

for X = A, B,C, D. On the other hand, Shastry’s R-matrix (12.120) has the following
property [178]: let α, β, γ, δ ∈ C. Then

[Ř(λ,µ), diag(α, β, γ, δ)⊗ diag(α, β, γ, δ)] = 0 ⇔ αδ = βγ . (12.132)

This means that (12.127) is satisfied if and only if

x1x4 = x2x3 for x = a, b, c, d ,

a j d j = b j c j for j = 1, 2, 3, 4 .
(12.133)

In general, our considerations allow us to introduce additional parameters into the R-
matrix which may appear as additional coupling constants in the Hamiltonian [280]. Here
we do not work out the consequences of general diagonal twists, but rather give two simple
but important examples. First of all, the matrix

V = diag(1,−1,−1, 1|1,−1,−1, 1|1, 1, 1, 1|1, 1, 1, 1) (12.134)

obviously satisfies (12.133). Thus, we have shown that

V Ř(λ,µ)V−1 = 1

ρ4
·

ρ1

1 −ρ9

1 −ρ9

ρ3 −ρ6 ρ6 −ρ8

−ρ10 1

ρ4

−ρ6 ρ5 ρ7 −ρ6

1 ρ10

−ρ10 1

ρ6 ρ7 ρ5 ρ6

ρ4

1 ρ10

−ρ8 −ρ6 ρ6 ρ3

ρ9 1

ρ9 1

ρ1



(12.135)

is a solution of the Yang-Baxter equation. We shall see below that the R-matrix (12.135)
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generates the Hubbard model within the formalism of the graded quantum inverse scattering
method, which is our next subject.

Another example of a diagonal twist is generated by the matrix

VOWA = diag(1, 1,−i,−i| − i,−i, 1, 1| − 1,−1, i, i|i, i,−1,−1) . (12.136)

The corresponding R-matrix VOWA ŘV−1
OWA was constructed by different means by Olmedilla,

Wadati and Akutsu [349].

12.3 Graded quantum inverse scattering method

In Section 12.1 we encountered so-called fundamental models. They were constructed by
attaching the operators e j

β
α
, equation (12.23), to a solution R(λ,µ) of the Yang-Baxter

equation. For a lack of any better name, we henceforth call them ‘local projection opera-
tors’. The local projection operators were used as local quantum space operators. They are
characterized by two properties: the ‘projection property’ (12.24) and their commutativity
(12.25).

We shall now introduce Fermi operators into the formalism. We shall proceed slightly
indirectly. Clearly, models containing fermions cannot be fundamental models of the kind
presented in Section 12.1, since all local quantum space operators constructed from local
projection operators e j

β
α
, equation 12.23, commute for different site indices. In order to

introduce fermions we therefore seek for a generalization of the local projection operators,
such that they still satisfy (12.24), but commute or anticommute depending on the values
of their ‘matrix indices’ α, β. Such kind of construction requires the introduction of graded
vector spaces and graded algebras. Accordingly, the modified operators e j

β
α

will be called
‘graded local projection operators’.

With the aid of graded local projection operators we can construct fundamental graded
models in much the same way as in Section 12.1, namely, by appropriately attaching graded
local projection operators to a solution of the Yang-Baxter equation. This works for all R-
matrices that satisfy a rather weak compatibility condition due to Kulish and Sklyanin [276].

Fermi operators come into the play by the observation that the graded local projection
operators are matrix representations of fermionic projection operators. The transformation
from fermionic projection operators to graded local projection operators can be interpreted
as a generalization of the Jordan-Wigner transformation [227] to fermions with an arbitrary
number of internal degrees of freedom (su(n) fermions). In fact, for spinless fermions the
Jordan-Wigner transformation is recovered. The material developed below is taken from
the articles [177, 179].

12.3.1 Graded vector spaces

In this subsection we shall recall the basic concepts of graded vector spaces and graded
associative algebras. In the context of the quantum inverse scattering method these concepts
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were first used by Kulish and Sklyanin [272, 276]. We shall further recall the notions
of ‘graded local projection operators’ and graded transposition operators. Graded local
projection operators were introduced in the article [179]. They enable the definition of
fundamental graded representations of the Yang-Baxter algebra, which will be given in the
following subsection.

Graded vector spaces are vector spaces equipped with a notion of odd and even, that
allows us to treat fermions within the formalism of the quantum inverse scattering method.
Let us start with a finite dimensional local space of states V , on which we impose an addi-
tional structure, the parity, from the outset. Let V = V0 ⊕ V1, dim V0 = m, dim V1 = n. We
shall call v0 ∈ V0 even and v1 ∈ V1 odd. The subspaces V0 and V1 are called the homoge-
neous components of V . The parity p is a function Vi → Z2 defined on the homogeneous
components of V ,

p(vi ) = i , i = 0, 1 , vi ∈ Vi . (12.137)

The vector space V endowed with this structure is called a graded vector space or
super space. Let us fix a basis {e1, . . . , em+n} of definite parity and let us define
p(α) := p(eα).

In order to introduce Fermi operators into the formalism of the quantum inverse scattering
method we have to construct an algebra of commuting and anticommuting operators. For
this purpose the concept of parity must be extended to operators in End(V ) and to tensor
products of these operators. Let eβ

α ∈ End(V ), eβ
αeγ = δβγ eα . The set {eβ

α ∈ End(V )|α, β =
1, . . .m + n} is a basis of End(V ). Hence, the definition

p(eβ
α ) = p(α)+ p(β) (12.138)

induces a grading on End(V ) regarded as a vector space.
It is easy to see that an element A = Aα

βeβ
α ∈ End(V ) is homogeneous with parity p(A),

if and only if

(−1)p(α)+p(β) Aα
β = (−1)p(A) Aα

β . (12.139)

The latter equation implies for two homogeneous elements A, B ∈ End(V ) that their product
AB is homogeneous with parity

p(AB) = p(A)+ p(B) . (12.140)

In other words, multiplication of matrices in End(V ) preserves homogeneity, and therefore,
End(V ) endowed with the grading (12.138) is a graded associative algebra [276].

Let us consider the L-fold tensorial power H = (End(V ))⊗L of End(V ). The definition
(12.138) has a natural extension to H, namely,

p(eβ1
α1
⊗ · · · ⊗ eβL

αL
) = p(α1)+ p(β1)+ · · · + p(αL )+ p(βL ) . (12.141)

From this formula it can be seen in a similar way as before, that homogeneous elements
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A = Aα1...αL
β1...βL

eβ1
α1
⊗ · · · ⊗ eβL

αL
of H with parity p(A) are characterized by the equation

(−1)
∑L

j=1(p(α j )+p(β j )) Aα1...αL
β1...βL

= (−1)p(A) Aα1...αL
β1...βL

, (12.142)

which generalizes (12.139). Again the product AB is homogeneous with parity p(AB) =
p(A)+ p(B), if A and B are homogeneous. Thus the definition (12.141) induces the struc-
ture of a graded associative algebra on H.

Let us define the super-bracket

[X, Y ]± = XY − (−1)p(X )p(Y )Y X (12.143)

for X , Y taken from the homogeneous components of End(V ), and let us extend it linearly
to End(V ) in both of its arguments. Then, End(V ) endowed with the super-bracket becomes
the Lie-super algebra gl(m|n). Note that the above definition of a super-bracket makes sense
in any graded algebra and is particularly valid in H.

The following definition of ‘graded local projection operators’ [179] will be crucial for
our definition of fundamental graded representations of the Yang-Baxter algebra in the next
subsection. Define the matrices

e j
β
α
= (−1)(p(α)+p(β))

∑L
k= j+1 p(γk ) I⊗( j−1)

m+n ⊗ eβ
α ⊗ e

γ j+1
γ j+1 ⊗ · · · ⊗ eγL

γL
, (12.144)

where Im+n is the (m + n)× (m + n) unit matrix, and summation over double tensor indices
(i.e., over γ j+1, . . . , γL ) is understood. We shall keep this sum convention throughout the
remainder of this chapter. The index j on the left hand side of (12.144) will later refer to
the j th site of a physical lattice model and is called the site index. A simple consequence
of the definition (12.144) for j �= k are the commutation relations

e j
β
α
ek

δ
γ = (−1)(p(α)+p(β))(p(γ )+p(δ))ek

δ
γ e j

β
α
. (12.145)

It further follows from equation (12.144) that e j
β
α

is homogeneous with parity

p(e j
β
α
) = p(α)+ p(β) . (12.146)

Hence, in agreement with intuition, equation (12.145) says that odd matrices with different
site indices mutually anticommute, whereas even matrices commute with each other as well
as with the odd matrices. For products of matrices e j

β
α

which act on the same site (12.144)
implies the projection property

e j
β
α
e j

δ
γ
= δβγ e j

δ
α
. (12.147)

Equations (12.145) and (12.147) justify our terminology. The e j
β
α

are graded analogues
of local projection operators. We call them graded local projection operators or projection
operators, for short. Using the super-bracket (12.143), equations (12.145) and (12.147) can
be combined into

[e j
β
α
, ek

δ
γ ]± = δ jk

(
δβγ e j

δ
α
− (−1)(p(α)+p(β))(p(γ )+p(δ))δδαe j

β
γ

)
. (12.148)

The right-hand side of the latter equation with j = k gives the structure constants of the
Lie super algebra gl(m|n) with respect to the basis {e j

β
α
}.
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Since any m + n-dimensional vector space over the complex numbers is isomorphic
to C

m+n , we may simply set V = C
m+n . We may further assume that our homogeneous

basis {eα ∈ C
m+n|α = 1, . . . ,m + n} is canonical, i.e., we may represent the vector eα by a

column vector having the only non-zero entry +1 in row α. Our basic matrices eβ
α are then

(m + n)× (m + n)-matrices with a single non-zero entry +1 in row α and column β, and
we recover (12.23) from (12.144) for m = d and n = 0.

Remark. The meaning of (12.144) becomes more evident by considering a simple example.
Let m = n = 1 and p(1) = 0, p(2) = 1. Then, using (12.148), we obtain

[e j
2
1, ek

2
1]± = {e j

2
1, ek

2
1} = 0 , (12.149)

[e j
1
2, ek

1
2]± = {e j

1
2, ek

1
2} = 0 , (12.150)

[e j
2
1, ek

1
2]± = {e j

1
2, ek

2
1} = δ jk(e j

1
1 + e j

2
2) = δ jk (12.151)

for j, k = 1, . . . , L . The curly brackets in (12.149), (12.150) denote the anticommutator.
The matrices e j

2
1 and ek

1
2 satisfy the canonical anticommutation relations for spinless Fermi

operators. We can therefore identify e j
2
1 → c j and ek

1
2 → c†k . Introducing Pauli matrices

σ+ = e2
1, σ− = e1

2 and σ z = e1
1 − e2

2 we obtain, by carrying out the summation, the follow-
ing explicit matrix representation from our basic definition (12.144):

c j = I⊗( j−1)
2 ⊗ σ+ ⊗ (σ z)⊗(L− j) , (12.152)

c†k = I⊗(k−1)
2 ⊗ σ− ⊗ (σ z)⊗(L−k) . (12.153)

This is the well-known Jordan-Wigner transformation [227] expressing Fermi operators for
spinless fermions in terms of Pauli matrices. We may thus interpret equation (12.144) as a
generalization of the Jordan-Wigner transformation. In general, equation (12.144) provides
matrix representations not of Fermi operators but, more generally, of fermionic projection
operators. Representations of Fermi operators can be obtained be taking appropriate linear
combinations of matrices e j

β
α
. This issue will be explained below.

The transposition operator plays an important role in the construction of local integrable
lattice models. It enters the expression for the shift operator on homogeneous lattices. In the
graded case the definition of the transposition operator requires the following modification
of signs,

Pjk = (−1)p(β)e j
β
α
ek

α
β . (12.154)

As indicated by its name, this operator induces the action of the symmetric group SL on
the site indices of the matrices e j

β
α
. The properties of Pjk (for j �= k) are the same as in the

non-graded case (see (12.28)). They are easily derived from (12.145) and (12.147).
In the next subsection the graded associative algebra H will be considered as the space

of states of a lattice model associated with a solution of the Yang-Baxter equation. We will
define a monodromy matrix whose entries are elements of H. The following definitions
will prove to be useful.
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Consider (m + n)× (m + n)-matrices A, B, C, . . . with entries in H, such that p(Aα
β) =

p(Bα
β ) = p(Cα

β ) = · · · = p(α)+ p(β) for α, β = 1, . . . ,m + n. These matrices form an
associative algebra, say A, since p(Aα

β Bβ
γ ) = p(α)+ p(γ ). For A, B ∈ A define a super

tensor product (or graded tensor product)

(A ⊗s B)αγβδ = (−1)(p(α)+p(β))p(γ ) Aα
β Bγ

δ . (12.155)

This definition has an interesting consequence. Let A, B,C, D ∈ A, such that

[Bα
β ,Cγ

δ ]± = 0 . (12.156)

Then

(A ⊗s B)(C ⊗s D) = AC ⊗s B D . (12.157)

For later use we further define the super trace of a matrix A ∈ A by

str(A) = (−1)p(α) Aα
α . (12.158)

12.3.2 Fundamental graded models

In this subsection we shall introduce the notion of fundamental graded representations of
the Yang-Baxter algebra [179]. For a given grading we shall associate a fundamental model
with every solution of the Yang-Baxter equation (12.31) that satisfies the compatibility
condition of Kulish and Sklyanin [276],

Rαβ

γ δ (λ,µ) = (−1)p(α)+p(β)+p(γ )+p(δ) Rαβ

γ δ (λ,µ) . (12.159)

This compatibility condition simply means that certain matrix elements vanish. For R-
matrices satisfying (12.159) we define a graded L-matrix at site j ,

L j
α
β
(λ,µ) = (−1)p(α)p(γ ) Rαγ

βδ (λ,µ)e j
δ
γ
. (12.160)

Its properties are summarized in the following.

Lemma 13. Properties of the graded L-matrix.
(i) Homogeneity. The matrix elements of the graded L-matrix are homogeneous with parity

p
(
L j

α
β
(λ,µ)

) = p(α)+ p(β) . (12.161)

(ii) Commutativity. The entries of the graded L-matrix super commute for different site
indices,

[L j
α
β
(λ,µ),Lk

γ

δ (ν, ρ)]± = 0 , (12.162)

for j �= k.
(iii) Bilinear relation. The entries of the graded L-matrix at the same lattice site satisfy the

bilinear relation

Ř(λ,µ)
(
L j (λ, ν)⊗s L j (µ, ν)

) = (
L j (µ, ν)⊗s L j (λ, ν)

)
Ř(λ,µ), (12.163)
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where, as in the non-graded case (12.17), the matrix Ř(λ,µ) is defined by Řαβ

γ δ (λ,µ) =
Rβα

γ δ (λ,µ).

The lemma follows from the Yang-Baxter equation (12.31) and from equation (12.159).
Equation (12.163) may be interpreted as defining a graded Yang-Baxter algebra with R-
matrix Ř(λ,µ). We call L j (λ,µ) its fundamental graded representation.

Starting from (12.163) we can construct integrable lattice models as in the non-graded case
(see Section 12.1.5). Let us briefly recall the construction with emphasis on the modifications
that appear due to the grading. Define a monodromy matrix T (λ) as an L-fold ordered
product of fundamental L-matrices,

T (λ) = LL (λ, νL ) . . .L1(λ, ν1) . (12.164)

Due to equation (12.140) the matrix elements of T (λ) are homogeneous with parity
p(T α

β (λ)) = p(α)+ p(β). Repeated application of (12.163) and (12.157) shows that this
monodromy matrix is a representation of the graded Yang-Baxter algebra,

Ř(λ,µ)
(
T (λ)⊗s T (µ)

) = (
T (µ)⊗s T (λ)

)
Ř(λ,µ) . (12.165)

It follows from (12.159) and (12.165) that[
str(T (λ)), str(T (µ))

] = 0 , (12.166)

which is in complete analogy with the non-graded case. We see that the transfer matrix is
now given by t(λ) = str(T (λ)).

The construction of a local lattice Hamiltonian as well is very similar to the non-graded
case. Suppose that R(λ,µ) is a regular solution of the Yang-Baxter equation, Rαβ

γ δ (λ0, ν0) =
δαδ δ

β
γ for some λ0, ν0 ∈ C. Then (12.160) implies that

L j
α
β
(λ0, ν0) = (−1)p(α)p(β)e j

α
β
, (12.167)

and we can see (compare (12.154)) as in the non-graded case that we obtain the right-shift
operator for ν1 = · · · = νL = ν0 and λ = λ0,

t(λ0) = P12 P23 . . . PL−1L = Û . (12.168)

It follows that τ (λ) = ln(Û−1t(λ)) generates a sequence of local operators [308],

τ (λ) = (λ− λ0)Û−1t ′(λ0)+O
(
(λ− λ0)2

)
, (12.169)

which, as a consequence of (12.166), mutually commute. As expected, the local terms
Hj−1, j in the Hamiltonian

Ĥ = Û−1t ′(λ0) =
L∑

j=1

Hj−1, j (12.170)

(where H0,1 = HL ,1) now come with a certain number of minus signs,

Hj−1, j = (−1)p(γ )(p(α)+p(γ )) ∂λ Řαβ

γ δ (λ, ν0)
∣∣∣
λ=λ0

e j−1
γ
α

e j
δ
β
. (12.171)
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We would like to emphasize the following points. (i) The R-matrix Ř(λ,µ) in equation
(12.163) does not undergo a modification due to the grading. (ii) The only necessary com-
patibility condition which has to be satisfied in order to introduce a fundamental graded
representation of the Yang-Baxter algebra associated with a solution of the Yang-Baxter
equation is equation (12.159), which was introduced in [276].

The role of the matrix Ř(λ,µ) in the graded Yang-Baxter algebra (12.163) is to switch
the order of the two auxiliary spaces. The definition of an operator that similarly switches
the order of quantum spaces in a product of two L-matrices requires appropriate use of the
grading. Such an operator was introduced for several important models in [99,466,467] and
was called fermionic R-operator. A general definition of the fermionic R-operator associated
with a solution R(λ,µ) of the Yang-Baxter equation (12.31) was obtained in [177]. For a
given grading and a solution R(λ,µ) of the Yang-Baxter equation (12.31) that is compatible
with this grading (see (12.159)) we define (following [177]) the fermionic R-operator

R f
jk(λ,µ) = (−1)p(γ )+p(α)(p(β)+p(γ )) Rαβ

γ δ (λ,µ)e j
γ
α

ek
δ
β . (12.172)

Let us summarize its properties in the following

Lemma 14. Properties of the fermionic R-operator.
(i) Evenness. The fermionic R-operator is even,

p(R f
jk(λ,µ)) = 0 . (12.173)

(ii) Bilinear relation. The fermionic R-operator satisfies

R f
jk(ν j , νk)Lk(λ, νk)L j (λ, ν j ) = L j (λ, ν j )Lk(λ, νk)R f

jk(ν j , νk) . (12.174)

(iii) Yang-Baxter equation. The fermionic R-operator satisfies the following form of the
Yang-Baxter equation,

R f
12(λ,µ)R f

13(λ, ν)R f
23(µ, ν) = R f

23(µ, ν)R f
13(λ, ν)R f

12(λ,µ) . (12.175)

(iv) Regularity. If R(λ,µ) is regular, say Rαβ

γ δ (λ0, ν0) = δαδ δ
β
γ , then

R f
jk(λ0, ν0) = Pjk , (12.176)

where Pjk is the graded permutation operator (12.154).
(v) Unitarity. If R(λ,µ) is unitary, i.e., if

Rαβ

γ δ (λ,µ)Rδγ

α′β ′ (µ, λ) = δαβ ′δ
β

α′ , (12.177)

then R f
jk(λ,µ) is unitary in the sense that

R f
jk(λ,µ)R f

k j (µ, λ) = id . (12.178)

The fermionic R-operator has at least three interesting applications. First of all, we shall
need it below to prove an inversion theorem [177] that allows us to express the graded
local projection operators e j

β
α

in terms of the elements of the monodromy matrix (12.164).
Second, the form (12.175) of the Yang-Baxter equation is sometimes more convenient for



432 The algebraic approach to the Hubbard model

the construction of generic fermionic models. We shall illustrate this point below with an
example. Finally, it is possible to define a ‘monodromy operator’ [466, 467] and to use
(12.175) as a starting point for an algebraic Bethe ansatz. For this purpose one has to
introduce two fermionic auxiliary sites, say a and b, and has to define

T f
a (λ) = R f

a,L (λ, νL ) . . .R f
a,1(λ, ν1) . (12.179)

Then

R f
ab(λ,µ)T f

a (λ)T f
b (µ) = T f

b (µ)T f
a (λ)R f

ab(λ,µ) . (12.180)

The monodromy operator is connected to the monodromy matrix (12.164) by the formula

T f
a (λ) = (−1)p(β)+p(α)p(β)ea

β
αT α

β (λ) . (12.181)

12.3.3 Global symmetries from local symmetries

Symmetries of fundamental models solvable by the quantum inverse scattering method
are most naturally understood in terms of the symmetries of the corresponding R-matrix.
Some of the readers may be familiar with the ‘non-graded’ case: Suppose an R-matrix
R(λ,µ) ∈ End(Cd ⊗ C

d ) satisfies

[R(λ,µ), x ⊗ Id + Id ⊗ x] = 0 (12.182)

for some x = xα
β eβ

α ∈ gl(d) and for all λ,µ ∈ C. Then the transfer matrix of the correspond-
ing inhomogeneous model commutes with

X =
L∑

j=1

xα
β e j

β
α
=

L∑
j=1

x j . (12.183)

We are familiar with such kind of symmetry from our proof of the spin-su(2) symmetry of
the Hubbard model in Section (3.D).

A natural starting point for a generalization to the graded case is the invariance equation

[R f
12(λ,µ), x1 + x2] = 0 (12.184)

for the fermionic R-operator, which turns into (12.182) in the non-graded case. Here we
assume that R f

12(λ,µ) is constructed from a given solution of the Yang-Baxter equation
(12.31) compatible with some grading p : {1, . . . ,m + n} → Z2. We shall further assume
that x = xα

β eβ
α is homogeneous with parity p(x) in gl(m|n). Inserting the definition (12.172)

of the fermionic R-operator into (12.184) and comparing the coefficients in front of e1
β
αe2

δ
γ

we obtain

R̃αγ

β ′δ(λ,µ)xβ ′
β − xα

α′ R̃
α′γ
βδ (λ,µ)

= (−1)p(x)p(α)xγ

γ ′ R̃
αγ ′
βδ (λ,µ)− (−1)p(x)p(β) R̃αγ

βδ′ (λ,µ)xδ′
δ , (12.185)
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where R̃αγ

βδ (λ,µ) = (−1)p(α)p(γ ) Rαγ

βδ (λ,µ). Note that we used equations (12.139) and
(12.159) to rearrange the minus signs in (12.185). Equation (12.185) is the basic invariance
equation for the R-matrix that replaces (12.182) in the graded case and obviously turns into
(12.182) when the grading is trivial. The corresponding equation for the L-matrix is

L j
α
β ′ (λ,µ)xβ ′

β − xα
α′L j

α′
β

(λ,µ)

= (−1)p(x)p(α)x jL j
α
β
(λ,µ)− (−1)p(x)p(β)L j

α
β
(λ,µ)x j (12.186)

and is obtained from (12.185) by multiplication by e j
δ
γ

. A simple induction argument leads
from (12.186) to the invariance equation

T α
β ′ (λ)xβ ′

β − xα
α′T α′

β (λ) = (−1)p(x)p(α) XT α
β (λ)− (−1)p(x)p(β)T α

β (λ)X (12.187)

for the monodromy matrix. Again X = x1 + · · · + xL . Using the definition (12.143) of the
super-bracket equation (12.187) can be equivalently written as[

T α
β (λ), X

]
± = (−1)p(x)p(β)

(
xα
α′T α′

β (λ)− T α
β ′ (λ)xβ ′

β

)
. (12.188)

The latter equation is useful for studying the highest weight properties of states within the
algebraic Bethe ansatz. Multiplying (12.188) by (−1)p(α), setting β = α, and summing over
α we conclude that [

str(T (λ)), X
] = 0 . (12.189)

In many cases the symmetry of the R-matrix is evident by construction, e.g., when the
R-matrix is an intertwiner of representations of quantum groups. Yet there are examples, as
Shastry’s R-matrix of the Hubbard model, where the symmetries are less obvious. More-
over, as can be seen from the above derivation, the symmetries of the transfer matrix are
determined by the symmetries of R̃ rather than R and therefore depend on the choice of the
grading.

It may be argued that, in the presence of a grading, the matrix R̃ is more fundamental
than R, since R̃ determines the L-matrix (12.160), the symmetries of the model and (if it
exists) the semi-classical limit [276]. Substituting R̃ into the Yang-Baxter equation (12.31),
we obtain the so-called graded Yang-Baxter equation, which equivalently might have been
taken as the starting point of our section on the graded Yang-Baxter algebra. Since it is
the non-graded matrix Ř, however, which fixes the structure of the Yang-Baxter algebra,
equation (12.163), we did not adopt this point of view.

12.3.4 Fermi operators

Let us now explain how the various graded objects introduced in the previous subsec-
tions can be expressed in terms of Fermi operators. The key observation is that, as far as
the matrices e j

β
α

are concerned, all calculations of the previous subsections solely rely on
the commutation relations (12.145) and on the projection property (12.147). Fermionic
projection operators satisfy the same equations. We may thus say that the matrices e j

β
α
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are matrix representations of fermionic projection operators. As we have seen, the matri-
ces e j

β
α

are suitable for formulating a graded version of the quantum inverse scattering
method. For the physical interpretation of a Hamiltonian constructed from a given solution
of the Yang-Baxter equation, however, it is useful to introduce Fermi operators into the
formalism.

To begin with, let us consider spinless fermions on a ring of L lattice sites,

{c j , ck} = {c†j , c†k} = 0 , {c j , c†k} = δ jk , j, k = 1, . . . , L . (12.190)

It is easy to verify that the entries (X j )αβ of the matrix

X j =
(

1− n j c j

c†j n j

)
(12.191)

are fermionic projection operators: define X j
β
α
= (X j )αβ ; then

X j
β
α

X j
δ
γ
= δβγ X j

δ
α
. (12.192)

The operators X j
β
α

carry parity, induced by the anti-commutation rule (12.190) for the
Fermi operators. For j �= k X j

β
α

and Xk
δ
γ anticommute, if both are built up of an odd

number of Fermi operators, and otherwise commute. This fact can be expressed as follows.
Let p(1) = 0, p(2) = 1 and p(X j

β
α
) = p(α)+ p(β). Then X j

β
α

is odd (contains an odd
number of Fermi operators), if p(X j

β
α
) = 1, and even, if p(X j

β
α
) = 0. The commutation

rules for the projectors X j
β
α

are thus

X j
β
α

Xk
δ
γ = (−1)(p(α)+p(β))(p(γ )+p(δ)) Xk

δ
γ X j

β
α
. (12.193)

Now (12.192) and (12.193) are of the same form as (12.147) and (12.145), respectively.
Since the calculations in the previous section relied solely on (12.145) and (12.147), we
may simply replace e j

β
α
→ X j

β
α

in equations (12.160) and (12.171).
Fermionic representations compatible with an arbitrary grading can be constructed by

considering several species of fermions and graded products of projection operators. We
shall explain this for the case of two species first. This is the most interesting case in
applications, since we may interpret the two species as up- and down-spin electrons. We
have to attach a spin index to the Fermi operators, c j → c jσ , σ =↑,↓, {c jσ , c†kτ } = δ jkδστ .
Accordingly, there are two species of projection operators, X j

β
α
→ Xσ

j
β

α
.

Let us define projection operators for electrons by the tensor products

X j
βδ
αγ
= (−1)(p(α)+p(β))p(γ ) X↓j

β

α
X↑j

δ

γ
=

(
X↓j ⊗s X↑j

)αγ

βδ
. (12.194)

Then

X j
βδ
αγ

X j
β ′δ′
α′γ ′ = δ

β

α′δ
δ
γ ′X j

β ′δ′
αγ

. (12.195)
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X j
βδ
αγ

inherits the parity from X↓j
β

α
and X↑j

δ

γ
. The number of Fermi operators contained in

X j
βδ
αγ

is the sum of the number of Fermi operators in X↓j
β

α
and X↑j

δ

γ
. Hence p(X j

βδ
αγ

) =
p(X↓j

β

α
)+ p(X↑j

δ

γ
) = p(α)+ · · · + p(δ), and the analogue of (12.193) holds for X j

βδ
αγ

as
well. Again we present all projection operators in form of a matrix (X j )

αγ

βδ = X j
βδ
αγ

,

X j = X↓j ⊗s X↑j

=


(1− n j↓)(1− n j↑) (1− n j↓)c j↑ c j↓(1− n j↑) c j↓c j↑

(1− n j↓)c
†
j↑ (1− n j↓)n j↑ −c j↓c

†
j↑ −c j↓n j↑

c†j↓(1− n j↑) c†j↓c j↑ n j↓(1− n j↑) n j↓c j↑
−c†j↓c

†
j↑ −c†j↓n j↑ n j↓c

†
j↑ n j↓n j↑

 . (12.196)

Here we used the standard ordering of matrix elements of tensor products, corresponding to
a renumbering (11)→ 1, (12)→ 2, (21)→ 3, (22)→ 4. Within this convention X j

βδ
αγ

is

replaced by X j
β
α
, α, β = 1, . . . , 4, which then satisfies (12.192) and (12.193) with grading

p(1) = p(4) = 0, p(2) = p(3) = 1.
Note that Fermi operators can be recovered as linear combinations of projection operators.

By inspection of equation (12.196) we obtain

c†j↑ = X j
1
2 + X j

3
4 , c j↑ = X j

2
1 + X j

4
3 , (12.197a)

c†j↓ = X j
1
3 − X j

2
4 , c j↓ = X j

3
1 − X j

4
2 . (12.197b)

The identification of the fermionic projection operators X j
β
α

with the matrices e j
β
α

in turns
then gives us matrix representations of the Fermi operators:

c†j,↑ = e j
1
2 + e j

3
4 = I⊗( j−1)

4 ⊗ (e1
2 + e3

4)⊗ e
γ j+1
γ j+1 (−1)p(γ j+1) ⊗ · · · ⊗ eγL

γL
(−1)p(γL )

= I⊗( j−1)
4 ⊗ (I2 ⊗ σ−)⊗ (σ z ⊗ σ z)⊗(L− j)

= I⊗(2 j−1)
2 ⊗ σ− ⊗ (σ z)⊗2(L− j) , (12.198)

and similarly

c†j,↓ = e j
1
3 − e j

2
4 = I⊗2( j−1)

2 ⊗ σ− ⊗ (σ z)⊗(2L−2 j+1) , (12.199)

c j,↑ = e j
2
1 + e j

4
3 = I⊗(2 j−1)

2 ⊗ σ+ ⊗ (σ z)⊗2(L− j) , (12.200)

c j,↓ = e j
3
1 − e j

4
2 = I⊗2( j−1)

2 ⊗ σ+ ⊗ (σ z)⊗(2L−2 j+1) . (12.201)

This is , of course, a familiar generalization of the Jordan-Wigner transformation to Fermions
with spin degrees of freedom.

So far we have considered the case of spinless fermions with two-dimensional local
space of states and grading m = n = 1, and the case of electrons with four-dimensional
space of states and grading m = n = 2. There are four different possibilities to realize
(12.145) and (12.147) in the case of a three-dimensional local space of states, m + n = 3.
They can be obtained by deleting the α’s row and column of the matrix X j in equation
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(12.196), α = 1, 2, 3, 4. (12.192) and (12.193) remain valid, since the operators X j
β
α

are
projectors.

It should be clear by now how to generalize the above considerations to an arbitrary
number of species of fermions. In the case of N species we may define

X j
β1...βN
α1...αN

= (
X N

j ⊗s · · · ⊗s X1
j

)α1...αN

β1...βN
. (12.202)

Then

X j
β1...βN
α1...αN

X j
δ1...δN
γ1...γN

= δβ1
γ1

. . . δβN
γN

X j
δ1...δN
α1...αN

, (12.203)

X j
β1...βN
α1...αN

Xk
δ1...δN
γ1...γN

= (−1)
∑N

j,k=1(p(α j )+p(β j ))(p(γk )+p(δk )) Xk
δ1...δN
γ1...γN

X j
β1...βN
α1...αN

(12.204)

which can be shown by induction over the number of species. Here the grading is m =
n = 2N−1. The most general case is obtained deleting rows and columns from X j , equation
(12.202), in analogy with the example considered above.

Let us note that the operators X j
β
α

for two species of fermions appear under the name
Hubbard projection operators in the literature.

Remark. An alternative way [92,349,367] of introducing Fermi operators into the quantum
inverse scattering method is by applying a (generalized) Jordan-Wigner transformation as
formulated for creation and annihilation operators [92] to the non-graded L-matrix and then
pulling out the non-local factors. This approach was of primary importance, for instance,
for a fermionic formulation of the Yang-Baxter algebra of the Hubbard model [349] and
led to the discovery of a SO(4)-invariant form of the monodromy matrix of the Hub-
bard model [178, 349, 399]. Still, we prefer the method presented above for concep-
tual clarity. The approach of [92, 349, 367] so far has not led to general formulae such
as (12.160) or (12.171) and does not enable us to control the boundary conditions, which
lead in turns to unwanted twists and to the appearance of numerous factors of ‘i’ in the
equations.

12.3.5 Examples

A few simple examples will make us more familiar with the formalism developed so
far. The simplest non-trivial example we can offer is the su(2)-XX model with R-
matrix (12.93) and grading p(1) = 0, p(2) = 1. This choice of the grading is compatible
with the R-matrix (see (12.159)). The corresponding local Hamiltonian is obtained from
equation (12.171),

Hj−1, j = x−1e j−1
1
2e j

2
1 − x e j−1

2
1e j

1
2 . (12.205)

We may use the projection operators X j
β
α

defined in the line below (12.191) to express
Hj−1, j in terms of Fermi operators. Specializing the free parameter x in (12.93) to x = −1,
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we obtain

H = −
L∑

j=1

(
c†j c j+1 + c†j+1c j

)
, (12.206)

which is the Hamiltonian of the spinless tight-binding model. The corresponding L-matrix
follows from the definition (12.160). It is of the form L j (λ,µ) = L j (λ− µ) with

L j (λ) =
(

cos(λ)X j
1
1 − sin(λ)X j

2
2 X j

1
2

X j
2
1 − sin(λ)X j

1
1 − cos(λ)X j

2
2

)
(12.207)

and satisfies the bilinear relation (12.163) with R-matrix (12.93) and x = −1. The algebraic
Bethe ansatz for this model is left as an exercise to the reader.

The next example in this line is generated by the R-matrix of the su(3)-XX model, i.e., by
the R-matrix (12.92) with d = 3. This R-matrix is compatible with the grading p(1) = 0,
p(2) = p(3) = 1. Our general formula (12.171) yields the expression

Hj−1, j = −x
(
e j−1

2
1e j

1
2 + e j−1

3
1e j

1
3

)+ x−1
(
e j−1

1
2e j

2
1 + e j−1

1
3e j

3
1

)
(12.208)

for the Hamiltonian density in terms of the graded local projection operators e j
β
α
. We are free

to fermionize it in different ways. We may, for instance, use the set of fermionic projection
operators obtained from the matrix X j in (12.196) by deleting the fourth row and column.
The elements (X j )αβ , α, β = 1, 2, 3, of the reduced matrix

X j =

(1− n j↓)(1− n j↑) (1− n j↓)c j↑ c j↓(1− n j↑)

(1− n j↓)c
†
j↑ (1− n j↓)n j↑ −c j↓c

†
j↑

c†j↓(1− n j↑) c†j↓c j↑ n j↓(1− n j↑)

 (12.209)

thus obtained from a complete set of projection operators on the space of states locally
spanned by the basis vectors |0〉, c†j↑|0〉, c†j↓|0〉. Double occupancy of lattice sites is forbidden
on this space. Let X j

β
α
= (X j )αβ , α, β = 1, 2, 3. The operator

X j
α
α
= 1− n j↑n j↓ (12.210)

projects the local space of lattice electrons onto the space from which double occupancy is
excluded. The corresponding global projection operator is (recall appendix 2.A)

P0 =
L∏

j=1

(1− n j↑n j↓) . (12.211)

Replacing the graded local projection operators e j
β
α

by X j
β
α

and setting x = −1 in (12.208)
we obtain the local Hamiltonian

Hj−1, j = −
{
(c†j,↑c j−1,↑ + c†j−1,↑c j,↑)(1− n j−1,↓)(1− n j,↓)

+ (c†j,↓c j−1,↓ + c†j−1,↓c j,↓)(1− n j−1,↑)(1− n j,↑)
}
. (12.212)
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Because it acts on the space with no double occupancy, we may replace it by Hj−1, j P0.
This trick leads us to the compact form

H = −P0

L∑
j=1

(
c†j,ac j+1,a + c†j+1,ac j,a

)
P0 (12.213)

of the Hamiltonian. We identify it as the t-0 Hamiltonian encountered earlier in appendix
2.A as an effective strong coupling approximation to the Hubbard Hamiltonian below half-
filling. The L-matrix (12.160) that generates the t-0 model as a fundamental graded model
is of the form L j (λ,µ) = L j (λ− µ) with

L j (λ) =

cos(λ)X j
1
1 − sin(λ)(X j

2
2 + X j

3
3) X j

1
2 X j

1
3

X j
2
1 − sin(λ)X j

1
1 − cos(λ)X j

2
2 − cos(λ)X j

2
3

X j
3
1 − cos(λ)X j

3
2 − sin(λ)X j

1
1 − cos(λ)X j

3
3


(12.214)

This L-matrix can be used as a starting point for an algebraic Bethe ansatz solution of the
t-0 model (see [179]).

Our last example in this section is a family of R-matrices closely related to the XXX
models considered in Section 12.1.6. We observed that the graded transposition operator
(12.154) shares the properties (12.28) (except for (12.28b)) with its non-graded coun-
terpart. In particular, setting Ai = Pi,i+1, we see that the graded transposition opera-
tors form a representation of the group algebra of the symmetric group (12.44). Let us
define

R f
jk(λ,µ) = c(λ− µ)+ b(λ− µ)Pjk (12.215)

with b(λ) and c(λ) taken from (12.48). Then, by (12.45),R f
jk(λ,µ) satisfies the Yang-Baxter

equation in the form (12.175). Since c(0) = 0 and b(0) = 1, we conclude that R f
jk(λ, λ) =

Pjk and thus is regular in the sense of (12.176). It is moreover unitary in the sense of
(12.178). Hence R f

jk(λ,µ) may be interpreted as the fermionic R-operator of a model to
be identified. Rewriting it as

R f
jk(λ,µ) = c(λ− µ)+ b(λ− µ)(−1)p(β)e j

β
α
ek

α
β

= [
c(λ− µ)δαγ δ

β

δ + b(λ− µ)(−1)p(γ )δαδ δ
β
γ

]
e j

γ
α

ek
δ
β

= (−1)p(γ )+p(α)(p(β)+p(γ ))

× [
c(λ− µ)(−1)p(α)p(β)δαγ δ

β

δ + b(λ− µ)δαδ δ
β
γ

]
e j

γ
α

ek
δ
β

(12.216)

we can compare it with the definition (12.172) of the fermionic R-operator. It follows that
the term in square brackets,

Rαβ

γ δ (λ,µ) = c(λ− µ)(−1)p(α)p(β)δαγ δ
β

δ + b(λ− µ)δαδ δ
β
γ , (12.217)

satisfies the Yang-Baxter equation (12.31).
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Our example shows that the fermionic R-operator is a useful tool for the construction
of solutions of the Yang-Baxter equation. The peculiar feature of the family (12.217) of
solutions of the Yang-Baxter equation is its dependence on a grading. In fact, by construction,
(12.217) satisfies the Yang-Baxter equation for arbitrary grading p : {1, . . .m + n} → Z2.
It is therefore natural to call such kind of solutions graded R-matrices. The family (12.217)
of rational graded R-matrices is in Kulish and Sklyanin’s early list [276] of known solutions
of the Yang-Baxter equation.

We may now associate a fundamental graded model with the solution (12.217) of the
Yang-Baxter equation. As we have learned the first step then is to choose a grading which
is compatible with the R-matrix. Note that this grading need not be identical with the
grading which enters the definition of the R-matrix. Let us choose an arbitrary grading
q : {1, . . . ,m + n} → Z2. Then, because of the Kronecker deltas in (12.217),

Rαβ

γ δ (λ,µ) = (−1)q(α)+q(β)+q(γ )+q(δ) Rαβ

γ δ (λ,µ) , (12.218)

i.e., the compatibility condition (12.159) is satisfied for arbitrary p and q .
Let us elaborate on the case p = q. Since c(0) = 0 and b(0) = 1, the R-matrix (12.217)

is regular. Furthermore,

−ic∂λ Řαβ

γ δ (λ, 0)
∣∣∣
λ=0
= δαγ δ

β

δ − (−1)p(α)p(β)δαδ δ
β
γ . (12.219)

Thus, using p = q in (12.171) we obtain the Hamiltonian

H = −
L∑

j=1

(Pj, j+1 − 1) (12.220)

of the homogeneous, fundamental graded model associated with the R-matrix (12.217).
Here Pj, j+1 is the graded transposition operator (12.154).

The family (12.220) of Hamiltonians based on graded permutations includes a number
of models that are interesting for applications in physics. In the ‘non-graded’ case n = 0
we recover the XXX models considered in Section 12.1.6. The case m = n = 1 provides
another realization of the tight-binding model of spinless Fermions. For m = n = 2 we
obtain the so-called EKS model [126, 127]. Here we shall have a closer look only at the
case m = 1, n = 2 which leads to the supersymmetric t-J model.

In order to see this we employ the same fermionization scheme as above where we
considered the su(3)-XX model, i.e., we replace the graded local projection operators e j

β
α

with the fermionic projection operators X j
β
α

taken from (12.209). The summation in (12.154)
is again over three values, α, β = 1, 2, 3, and the grading is p(1) = 0, p(2) = p(3) = 1.
An elegant way of taking into account the simplifications arising from the restriction to the
Hilbert space of electrons with no double occupancy is by considering Pjk P0 with P0 from
(12.211) instead of Pjk . Since n j,↑n j,↓P0 = 0, we obtain

(Pjk − 1)P0 = P0(c†jacka + c†kac ja)P0 − 2(Sα
j Sα

k − 1
4 n j nk)P0 − (n j + nk)P0 . (12.221)
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Here we have denoted the density of electrons by n j = n j,↑ + n j,↓ and the spin densities by
Sα

j = 1
2σ

α
abc†jac jb. Comparing (12.221) with (2.A.39) we see that we have indeed generated

the local Hamiltonian of the supersymmetric t-J model. Let us finally write down the
corresponding L-matrix, which follows from equation (12.160):

L j (λ,µ) = c(λ− µ)+ b(λ− µ)

X j
1
1 X j

1
2 X j

1
3

X j
2
1 −X j

2
2 −X j

2
3

X j
3
1 −X j

3
2 −X j

3
3

 . (12.222)

This L-matrix can be used to perform an algebraic Bethe ansatz for the supersymmetric t-J
model which was originally obtained in [119, 138, 272] (for the algebraic Bethe ansatz of
the corresponding generalized model see [170, 181]).

At this point it becomes also evident, why the model is called supersymmetric t-J
model. Being a sum over transposition operators (see (12.220)) the Hamiltonian obviously
commutes with the generators

Eα
β =

L∑
j=1

X j
α
β
, (12.223)

α, β = 1, 2, 3, of the Lie superalgebra gl(1|2). This symmetry is a consequence of the
gl(1|2) invariance of the transfer matrix, which follows from the fact that the fermionic
R-operator (12.215) commutes with X j

α
β
+ Xk

α
β (see Section 12.3.3).

12.4 The Hubbard model as a fundamental graded model

We are now going to show that the Hubbard model can be interpreted as a fundamental
graded model. This is an important fact. It means that the general theory developed in
the previous section can be applied. Furthermore, in the next section it will allow us to
re-express the local Fermi operators in terms of the elements of the monodromy matrix.
We would like to emphasize that the choice of the appropriate R-matrix turns out to be
crucial for our considerations. This appropriate R-matrix is not Shastry’s original R-matrix
(12.120) but our modified version (12.135).

Due to various subtleties the history of the fermionic formulation of the Yang-Baxter
algebra connected with the Hubbard model is slightly involved. The pioneering work was
done by Wadati, Olmedilla and Akutsu [347, 349, 475]. Their work basically contains ev-
erything what is necessary to discuss the symmetries and to perform an algebraic Bethe
ansatz [320,371]. The main difference to our account here is of conceptional nature. Similar
to Shastry in his work on the spin model, Wadati, Olmedilla and Akutsu did not derive the
L-matrix from the R-matrix but obtained L-matrix and R-matrix simultaneously. This way
it was impossible to control the possible twists compatible with the Yang-Baxter equation
(see lemma 12 and below). Consequentially, the supertrace of the monodromy matrix eval-
uated at spectral parameter equal to zero did not give the shift operator but the shift operator
multiplied by a global gauge transformation [178]. Another disadvantage of the original
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approach of Wadati et al. is that it does allows one to treat neither the inhomogeneous
model nor the homogeneous model with the second spectral parameter µ different from
zero [401]. The latter case is of interest for models with R-matrix not of difference form,
since it may happen that the second spectral parameter generates an additional non-trivial
interaction in the Hamiltonian. The disadvantages of the approach of Wadati, Olmedilla
and Akutsu were overcome in the article [466], where the Hubbard model was treated
within the fermionic R-operator approach. The monodromy operator in [466] is a product
of fermionic R-operators which satisfy the Yang-Baxter equation (12.175) and are regular
in the sense of (12.176). Thus, the monodromy operator of [466] is free of twists and covers
the homogeneous as well as the inhomogeneous case. Its ‘supertrace’ reduces to the shift
operator in the homogeneous case when all spectral parameters (λ and the µ’s) assume
the same value. It was therefore possible in [466] to derive a local fermionic Hamilto-
nian which contains µ as an additional coupling constant. This Hamiltonian is related to
the corresponding generalization of Shastry’s spin Hamiltonian [401] by a Jordan-Wigner
transformation.

Our account below is in many respects equivalent to the account of [466]. We stay more
on the conservative side, however, in that we express operations on the auxiliary space by
usual matrices rather than Fermi operators. Both approaches are connected by the general
arguments of Section 12.3, since our L-matrix as well as the fermionic R-operator of [466]
relate to the R-matrix (12.135) by the general formulae (12.160) and (12.172) (see appendix
12.E).

In Section 12.4.1 we apply the general formula (12.171) to the R-matrix, equation
(12.135), and obtain the Hubbard Hamiltonian if we set the second spectral parameter
µ of the R-matrix equal to zero. Keeping this second spectral parameter, on the other
hand, we obtain a generalized Hamiltonian [466] containing the Hubbard Hamiltonian as
a limiting case. Section 12.4.2 is devoted to a discussion of the symmetries of the Hub-
bard model on the level of the transfer matrix [178, 399, 464, 466]. It turns out that the
η-pairing symmetry is peculiar, since for our form (12.135) of the R-matrix it is not a
symmetry in the sense of Section 12.3.3. The η-pairing symmetry can be obtained from
the rotational symmetry by means of a Shiba transformation [178]. In our discussion of the
η-pairing symmetry in Section 12.4.2, however, we start from a local argument given in
[466].

12.4.1 Hamiltonian and L-matrix

In the following we denote the R-matrix on the right hand side of (12.135) by Ř(λ,µ).
Let us choose the grading p(1) = p(4) = 0, p(2) = p(3) = 1. Our R-matrix is compatible
with this choice.

We want to show that equation (12.171) generates the Hamiltonian density of the Hubbard
model after appropriate fermionization. First of all, differentiating all the Boltzmann weights
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(12.121) with respect to λ, we obtain

∂λ Ř(λ, 0)
∣∣∣
λ=0
= u I16 +

u

0 −1

0 −1

u −1 1

−1 0

−u

−1 −u −1

0 1

−1 0

1 −u 1

−u

0 1

−1 1 u

1 0

1 0

u



(12.224)

Here u is the parameter entering the relation (12.109) between λ and h, and the omitted
matrix elements are all zero. Using (12.171) we conclude that

Hj−1, j =
(
e j−1

2
1 + e j−1

4
3

)(
e j

1
2 + e j

3
4

)+ (
e j

2
1 + e j

4
3

)(
e j−1

1
2 + e j−1

3
4

)
+ (

e j−1
3
1 − e j−1

4
2

)(
e j

1
3 − e j

2
4

)+ (
e j

3
1 − e j

4
2

)(
e j−1

1
3 − e j−1

2
4

)
+ u

[(
e j−1

1
1 + e j−1

4
4

)(
e j

1
1 + e j

4
4

)− (
e j

2
2 + e j

3
3

)(
e j−1

2
2 + e j−1

3
3

)+ 1
]
.

(12.225)

This expression can be fermionized by replacing the graded local projection operators
e j

β
α

with the Hubbard projection operators listed in (12.196). Recall that according to our
convention we have to use the transpose of (12.196). Then

Hj−1, j = −c†j−1,ac j,a − c†j,ac j−1,a

+ u

2

[
(1− 2n j−1,↑)(1− 2n j−1,↓)+ (1− 2n j,↑)(1− 2n j,↓)

]+ u , (12.226)

which is the Hamiltonian density of the Hubbard model with coupling constant u.
Note that we put the second spectral parameter µ equal to zero in our above derivation

of the Hamiltonian density from (12.135). The corresponding homogeneous monodromy
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matrix is given by (12.164) with ν j = 0, and L-matrix (see equation (12.160))

L j (λ, 0) = eh

cos2(λ)

×


eh f j,↓ f j,↑ − f j,↓c

†
j,↑ − f j,↑c

†
j,↓ −eh c†j,↓c

†
j,↑

− f j,↓c j,↑ e−h f j,↓g j,↑ −e−h c†j,↓c j,↑ −g j,↑c
†
j,↓

− f j,↑c j,↓ −e−h c†j,↑c j,↓ e−h g j,↓ f j,↑ g j,↓c
†
j,↑

−eh c j,↑c j,↓ −g j,↑c j,↓ g j,↓c j,↑ eh g j,↓g j,↑

 . (12.227)

where we introduced the shorthand notation

f j,a = n j,a sin(λ)− (1− n j,a) cos(λ) , (12.228a)

g j,a = n j,a cos(λ)+ (1− n j,a) sin(λ) (12.228b)

for a =↓,↑.
The graded Yang-Baxter algebra (12.165) with R-matrix (12.135) and monodromy matrix

(12.164) built up from an L-fold ordered product of L-matrices (12.227) is the starting point
for the algebraic Bethe ansatz solution of the Hubbard model which we shall discuss below
in Section 12.6.

In general, we may keep distinct all the ν j entering the definition of the monodromy
matrix (12.164). The resulting inhomogeneous model will be useful in the next chapter,
where we consider the quantum transfer matrix approach to the thermodynamics of the
Hubbard model.

The fact that the R-matrix (12.135) is not of difference form has an interesting conse-
quence [401]: the second spectral parameter µ is an additional independent parameter of
the model. Setting all the ν j , j = 1, . . . , L , in (12.164) equal to µ we obtain a homogeneous
model which depends on µ and reduces to the Hubbard model in the special case µ = 0.
The generalized model generates a family of local Hamiltonians, because the regularity of
the R-matrix (12.135) extends to all λ = µ. Using once more equation (12.171), this time
withλ0 = ν0 = µ, and the same fermionization scheme as above, we obtain the Hamiltonian

H =− 1

ch(2l)

L∑
j=1

∑
a=↑,↓

(
t (−)

j,−a c†j,ac j−1,a + t (+)
j,−a c†j−1,ac j,a

)
+ u

ch(2l)

L∑
j=1

[
(1− 2n j,↑)(1− 2n j,↓)+ cos2(2µ)

]

+ u sin2(2µ)

ch(2l)

L∑
j=1

[
(c†j,↓c j−1,↓ − c†j−1,↓c j,↓)(c

†
j,↑c j−1,↑ − c†j−1,↑c j,↑)

− (1− n j−1,↓ − n j,↓)(1− n j−1,↑ − n j,↑)
]
.

(12.229)
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Here we used the convention − ↑=↓ and − ↓=↑. The transition amplitudes t (±)
j,a depend

on whether or not sites j − 1 and j are occupied:

t (±)
j,a = a± + (n j−1,a + n j,a)(1− a±)+ n j−1,an j,a(a+ + a− − 2) (12.230)

for a =↑,↓ with

a± = ch(2l)± sh(2l) cos(2µ) . (12.231)

Such kinds of amplitudes, depending on the particle densities, are sometimes called corre-
lated hopping amplitudes.

The Hamiltonian (12.229) is hermitian for purely imaginary µ, Re µ = 0. The additional
interactions in the third sum on the right hand side of (12.229) couple the local currents of
up- and down-spin electrons and the average densities of up- and down-spin electrons at
neighbouring lattice sites. Note that the Hamiltonian (12.229) is spin reversal invariant and,
up to a trivial, overall shift, transforms into H (−u) under a Shiba transformation (2.59).

The model defined by (12.229) was first obtained in [401, 466]. It is exactly solvable by
construction. So far it has not attracted much attention, but may be worth studying since
unlike many other so-called ‘generalized Hubbard Hamiltonians’, it is a true generalization
of the Hubbard Hamiltonian containing it as a limiting case. The model with non-zero µ

played a role in the construction of a long-range interacting model related to Shastry’s
R-matrix [334] and in the construction of the boost operator for the Hubbard model [301].

We omit the lengthy expression for the L-matrix associated with the Hamiltonian
(12.229). The reader may readily generate it by him- or herself using (12.135) and (12.160).
An explicit expression for the fermionic R-operator can be obtained from the general defi-
nition (12.172). For the sake of completeness we present it in appendix 12.E. The fermionic
R-operator is an alternative tool to perform many of the calculations of the following Sec-
tions (see [464, 466]). In our account, however, we shall never make use of its explicit
form.

12.4.2 Symmetries

We now consider the symmetries of the Hubbard model from the point of view of the
underlying Yang-Baxter algebra. In Section 12.3.3 we have learned that it is not the R-
matrix Ř(λ,µ) that determines the symmetries of a fundamental graded model, but the
‘graded R-matrix’ R̃(λ,µ) with matrix elements

R̃αγ

βδ (λ,µ) = (−1)p(α)p(γ ) Rαγ

βδ (λ,µ) . (12.232)

For the discussion of the two su(2) symmetries we need its explicit form. Thus, we first
have to multiply the right hand side of (12.135) by the permutation matrix P = eβ

α ⊗ eδ
γ ⊗

eα
β ⊗ eγ

δ , α, . . . , δ = 1, 2, and then have to reverse the signs in the 6th, 7th, 10th and 11th
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row. The resulting matrix is

R̃(λ,µ) = 1

ρ4
·

ρ1

−ρ10 1

−ρ10 1

−ρ8 −ρ6 ρ6 ρ3

1 −ρ9

−ρ4

−ρ6 −ρ7 −ρ5 −ρ6

ρ9 1

1 −ρ9

ρ6 −ρ5 −ρ7 ρ6

−ρ4

ρ9 1

ρ3 −ρ6 ρ6 −ρ8

1 ρ10

1 ρ10

ρ1



(12.233)

Note that R̃(λ,µ) is symmetric and, by construction, satisfies the graded Yang-Baxter
equation [276],

(−1)p(β ′)(p(γ )+p(γ ′)) R̃αβ

α′β ′ (λ,µ)R̃α′γ
α′′γ ′ (λ, ν)R̃β ′γ ′

β ′′γ ′′ (µ, ν)

= (−1)p(β ′)(p(γ ′)+p(γ ′′)) R̃βγ

β ′γ ′ (µ, ν)R̃αγ ′
α′γ ′′ (λ, ν)R̃α′β ′

α′′β ′′ (λ,µ) . (12.234)

The two su(2) symmetries of the Hubbard model are related to the two su(2) subalgebras
of gl(2|2). We introduce the notation

�+s = e3
2 = σ+ ⊗ σ− , �−s = e2

3 = σ− ⊗ σ+ , (12.235)

�z
s = e2

2 − e3
3 = 1

2 (σ z ⊗ I2 − I2 ⊗ σ z) (12.236)

and

�+η = e4
1 = σ+ ⊗ σ+ , �−η = e1

4 = σ− ⊗ σ− , (12.237)

�z
η = e1

1 − e4
4 = 1

2 (σ z ⊗ I2 + I2 ⊗ σ z) (12.238)

for their generators. The labels ‘s’ and ‘η’ refer to spin andη-spin, respectively. Setting�x
j =

�+j +�−j and �
y
j = −i(�+j −�−j ) for j = s, η we find the su(2) commutation relations

[�α
j , �

β

j ] = 2iεαβγ�γ

j (12.239)

for j = s, η.
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It turns out that spin and η-spin symmetry cannot be treated on the same footing. The
invariance of the Hubbard model under rotations in spin space is a symmetry in the sense
of Section 12.3.3, i.e., it is a consequence of the Lie-algebra invariance of the matrix
R̃(λ,µ). The invariance (for an even number of lattice sites) of the Hamiltonian and the
higher conserved quantities under rotations of the η-spin, on the other hand, follows by a
somewhat different reasoning.

Let us first consider the spin. We claim that

[R̃(λ,µ), �α
s ⊗ I4 + I4 ⊗�α

s ] = 0 , (12.240)

for α = x, y, z. This claim is easily verified. One may, for instance, first check it for �+s
by explicit multiplication of 16× 16-matrices. The corresponding equation for �−s then
follows by taking the transposed of the invariance equation for �+s and taking into account
that R̃(λ,µ) is symmetric. Finally, the equation for �z

s follows using [�+s , �−s ] = �z
s and

the Jacobi identity.
We thus have established the invariance of R̃(λ,µ) in the sense of equation (12.185), with

respect to the su(2) representation generated by the �α
s and may now pursue the general

reasoning of Section 12.3.3. The global quantum space operators corresponding to the
matrices �α

s are two times the spin operators (2.66). This follows from the graded analogue
of (12.183) upon fermionization. Then (12.188) tells us that

[T (λ), 1
2�

α
s + Sα] = 0 , (12.241)

α = x, y, z. Note that�α
s acts in the auxiliary space, but Sα acts in the quantum space. Equa-

tion (12.241) encodes the commutation relations of the elements of the monodromy matrix
with the spin operators Sα . It is valid in the homogeneous as well as in the inhomogeneous
case. According to our general formula (12.189) it follows that

[str(T (λ)), Sα] = 0 , (12.242)

for α = x, y, z. Consequentially, in the homogeneous case the Hamiltonian and all the
mutually commuting operators generated by τ (λ) = ln(Û−1str(T (λ))) preserve the spin.

The matrices �±η do not enter invariance equations like (12.240), but the somewhat
different relations

{R̃(λ,µ), �±η ⊗ I4 − I4 ⊗�±η } = 0 . (12.243)

These relations, too, are easily verified. One of them has to be proven by explicit calculation,
the other one then follows by taking the transpose and using the symmetry of R̃(λ,µ).

A first implication of (12.243) is the invariance equation

[R̃(λ,µ), �z
η ⊗ I4 + I4 ⊗�z

η] = 0 . (12.244)

The simple proof relies on the identity [A, [B,C]] = {{A, B},C} − {{A,C}, B}, which
holds for arbitrary matrices, and on the fact that [�+η , �−η ] = �z

η. The quantum space oper-

ator corresponding to �z
η is

∑L
j=1(X j

1
1 − X j

4
4) = L − N̂ = −2ηz . Using equation (12.188)
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we obtain the commutation relations between the elements of the monodromy matrix and
the particle number operator,

[T (λ), �z
η − N̂ ] = 0 . (12.245)

Taking the super trace of the latter equation we arrive at

[str(T (λ)), N̂ ] = 0 (12.246)

and thus have shown the invariance of all the higher conserved quantities of the Hubbard
model under global gauge transformations.

Next, we work out the consequences of equation (12.243). Let us write x for either �+η
or �−η . Then, spelled out in components, (12.243) reads

R̃αγ

β ′δ(λ,µ) xβ ′
β + xα

α′ R̃α′γ
βδ (λ,µ) = R̃αγ

βδ′ (λ,µ) xδ′
δ + xγ

γ ′ R̃αγ ′
βδ (λ,µ) . (12.247)

It follows that

L j
α
β ′ (λ,µ) xβ ′

β + xα
α′L j

α′
β

(λ,µ) = L j
α
β
(λ,µ) x j + x jL j

α
β
(λ,µ) (12.248)

and, for an even number of lattice sites,

T α
β ′ (λ)xβ ′

β − xα
α′T α′

β (λ) = −T α
β (λ)

∑L
j=1(−1) j x j −

∑L
j=1(−1) j x j T α

β (λ) . (12.249)

The proof is rather elementary. One first uses (12.248) to show (12.249) for two sites and
then proceeds by induction.

For �+η and �−η we obtain the local quantum space operators x j = c j,↓c j,↑ and x j =
c†j,↑c

†
j,↓, respectively, and (12.249) turns into

[T (λ), �±η ] = {T (λ), η∓} . (12.250)

This equation comprises all commutation relations between the elements of the monodromy
matrix and η±. Taking the super trace we arrive at

{str(T (λ)), η±} = 0 . (12.251)

Thus, unlike the other su(2) generators, Sα , ηz , the operators η± anticommute with the
transfer matrix. Specializing to λ = 0 in the homogeneous case we recover our former
result (see equation (2.88)) {Û , η±} = 0. It follows that the generating function of local
conserved quantities, τ (λ), commutes with η±,

[τ (λ), η±] = 0 . (12.252)

Thus, the whole set of mutually commuting operators generated by τ (λ) is invariant under
rotations of the η-spin.

Let us now turn to the discussion of the discrete symmetries of the monodromy matrix
(compare Section 2.2). Application of the spin flip operator (2.57) to the L-matrix (12.227)
yields

J (s)L j (λ, 0)J (s) = ML j (λ, 0)M , (12.253)
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where

M =


1

1
1

−1

 . (12.254)

Since (J (s))2 = id and M2 = I4, we conclude that the monodromy matrix of the homoge-
neous model satisfies

J (s)T (λ)J (s) = MT (λ)M . (12.255)

The latter equation describes the behaviour of the monodromy matrix elements under spin
flips. We obtain, in particular,

[t(λ), J (s)] = 0 . (12.256)

Thus, not only the Hamiltonian but all the higher conserved operators generated by τ (λ)
are spin reversal invariant.

It is slightly more tricky to figure out the behaviour of the L-matrix (12.227) under the
Shiba transformation generated by J (sh)

a , equation (2.58). We shall consider an even number
of lattice sites L from the outset. Let us start with a =↓. Then the functions f j,↓, g j,↓ defined
in (12.228) transform as

J (sh)
↓ f j,↓

(
J (sh)
↓

)† = (1− 2n j,↓)g j,↓ , (12.257)

J (sh)
↓ g j,↓

(
J (sh)
↓

)† = −(1− 2n j,↓) f j,↓ . (12.258)

The L-matrix (12.227) turns into

J (sh)
↓ L j (λ, 0|u)

(
J (sh)
↓

)†
= e2h(1− 2n j,↓)

(
(σ z) j ⊗ I2

)
(σ y ⊗ σ z)L j (λ, 0| − u)(σ y ⊗ σ z)

(
(σ z) j−1 ⊗ I2

)
.

(12.259)

Here we indicated explicitly the dependence of the L-matrix on the coupling u. Taking into
account that 1− 2n j,↓ = eiπn j,↓ and that L is even, we obtain the transformation rule for
the monodromy matrix in the form

J (sh)
↓ T (λ|u)

(
J (sh)
↓

)† = e2hL+iπ N̂↓ (σ y ⊗ σ z)T (λ| − u)(σ y ⊗ σ z) . (12.260)

From here it is easy to determine how the generating function τ (λ) behaves under the Shiba
transformation. Observing that str{(σ y ⊗ σ z)T (λ|u)(σ y ⊗ σ z)} = −str{T (λ|u)} we find

J (sh)
↓ t(λ|u)

(
J (sh)
↓

)† = −e2hL+iπ N̂↓ t(λ| − u) , (12.261)

J (sh)
↓ Û−1

(
J (sh)
↓

)† = −Û−1e−iπ N̂↓ . (12.262)

It follows that

J (sh)
↓ τ (λ|u)

(
J (sh)
↓

)† = τ (λ| − u)+ 2h(λ|u)L . (12.263)
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Thus τ (λ|u) is invariant under the Shiba transformation up to a change of the sign of the
coupling and a trivial overall shift.

Remark. The unpleasant term 2h(λ|u)L can be easily avoided by changing the normaliza-
tion of the L-matrix (12.227). If we replace the prefactor eh/ cos2(λ) in equation (12.227)
by 1, then the term 2h(λ|u)L disappears from equations (12.260) and (12.263). Another
possibility to make (12.263) more symmetric is by redefinition of the generating function
τ (λ|u). Setting τ̃ (λ|u) = τ (λ|u)− h(λ|u)L we obtain

J (sh)
↓ τ̃ (λ|u)

(
J (sh)
↓

)† = τ̃ (λ| − u) . (12.264)

It should be clear from our discussion that the Shiba transformation relates the Hubbard
model with positive u with the Hubbard model with negative u. Instead of working with the
Shiba transformations for down-spin electrons we could have equivalently worked with the
Shiba transformation for up-spin electrons. The corresponding operators J (sh)

↓ and J (sh)
↑ are

related by a spin reversal transformation. Hence, we can apply the transformation (12.255)
to equation (12.260) to obtain the transformation rule for the monodromy matrix under a
Shiba transformation which affects the up-spins. We multiply equation (12.260) by J (s) M
from the left and from the right and use (12.255) and M(σ y ⊗ σ z)M = I2 ⊗ σ y . Then

J (sh)
↑ T (λ|u)

(
J (sh)
↑

)† = e2hL+iπ N̂↑ (I2 ⊗ σ y)T (λ| − u)(I2 ⊗ σ y) . (12.265)

Because of (12.256), equation (12.263) is invariant under spin reversal.
The simultaneous action of Shiba transformations for up- and down-spins on the mono-

dromy matrix is obtained by combining (12.260) and (12.265),

J (sh)
↓ J (sh)

↑ T (λ|u)
(
J (sh)
↓ J (sh)

↑
)† = eiπ N̂ (σ y ⊗ σ x )T (λ|u)(σ y ⊗ σ x ) . (12.266)

As a consequence we obtain the following invariance equation for the generating function
τ (λ),

J (sh)
↓ J (sh)

↑ τ (λ|u)
(
J (sh)
↓ J (sh)

↑
)† = τ (λ|u) . (12.267)

As an exercise for the reader we propose to use the Shiba transformation in order to
re-derive the commutation relations (12.245), (12.250) between the elements of the mono-
dromy matrix and η±, ηz out of the commutation relations (12.241) between T (λ) and
S±, Sz . This way the η-pairing symmetry of the transfer matrix was originally established
in [178]. Our derivation here of the η-pairing symmetry (see (12.243) and below) closely
follows in spirit the article [466]. For related work with emphasis on different aspects of
the problem the reader is referred to [399, 464].

The alert reader may have noticed that we have discussed the discrete symmetries only
for the special case of the homogeneous model with the second spectral parameter of the
L-matrix equal to zero. Still, we wish to note that our account can easily be extended to the
completely inhomogeneous case.
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12.5 Solution of the quantum inverse problem

The quantum inverse scattering method relies on a transformation from a set of local
‘field operators’ {e j

β
α
} to a set of non-local operators, the elements of the monodromy

matrix (see figure 12.3). It is natural to ask: What is the inverse transformation? This
question has a remarkably simple answer [177, 251, 317]. Here we shall present the re-
sult of [177], where the inverse transformation was constructed for fundamental graded
models.

We shall assume we are given a solution of the Yang-Baxter equation (12.31) which is
regular and unitary. Let p be a grading that is compatible with the R-matrix in the sense of
equation (12.159), and let T (λ) be the corresponding inhomogeneous monodromy matrix
(12.164). Then the following inversion formula holds,

en
β
α = (−1)p(α)p(β)

n−1∏
j=1

str(T (ν j )) · T β
α (νn) ·

L∏
j=n+1

str(T (ν j )) . (12.268)

Note that because of (12.166), no ordering is required for the products on the right-hand
side of (12.268).

The proof of the inversion formula (12.268) for graded inhomogeneous models is given
in appendix 12.B. In the homogeneous case the inversion formula takes a particularly simple
form. Without any loss of generality we may assume that the ‘shift point’ where the L-matrix
elements are proportional to e j

β
α

(see (12.167)) is at λ0 = ν0 = 0. Then str(T (0)) = Û ,
where Û is the shift operator (12.168), and equation (12.268) turns into

en
β
α = (−1)p(α)p(β) Û n−1T β

α (0) Û L−n . (12.269)

L α
βj (λ,ν)ej β

α

β
α (λ)

local operators =
physical fields

L-matrix elements:
local, but depend on
spectral parameter

elements of monodromy
matrix: non-local, satisfy
Yang-Baxter algebra

inverse
transformation T

Fig. 12.3. The inverse transformation.
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Note that Û L = id. Hence, the latter equation is equivalent to

e1
β
α = (−1)p(α)p(β) T β

α (0) Û−1 , (12.270)

by a similarity transformation with Û 1−n .
The proof of (12.270) is considerably more simple than the proof of the inversion formula

(12.268) for the inhomogeneous model. We just evaluate the elements of the monodromy
matrix at the shift point, say λ0 = ν0 = 0, where (12.167) is valid. Then

T α
β (0) = (−1)p(α)p(βL−1)+p(βL−1)p(βL−2)+···+p(β1)p(β)eL

α
βL−1

. . . e2
β2
β1

e1
β1
β

= (−1)p(α)p(β)+p(β1)+···+p(βL−1)e1
β1
β e2

β2
β1

. . . eL
α
βL−1

= (−1)p(α)p(β)e1
α
β P12 . . . PL−1L

= (−1)p(α)p(β)e1
α
βÛ ,

(12.271)

and the proof of (12.270) is complete.
The analogous calculation for the inhomogeneous case is presented in appendix 12.B in

the proof of lemma 19. The complications that occur in the inhomogeneous case are due to
the more complicated structure of the shift operator for inhomogeneous models (see lemma
17 below).

We illustrate equation (12.269) with the example of the Hubbard model. It is rather
natural to divide the 4× 4-monodromy matrix of the Hubbard model into four 2× 2 blocks
[335, 336],

T (λ) =


D1

1(λ) C1
1 (λ) C1

2 (λ) D1
2(λ)

B1
1 (λ) A1

1(λ) A1
2(λ) B1

2 (λ)
B2

1 (λ) A2
1(λ) A2

2(λ) B2
2 (λ)

D2
1(λ) C2

1 (λ) C2
2 (λ) D2

2(λ)

 . (12.272)

This block structure reflects the discrete symmetries and the SO(4) symmetry, which is
connected to the blocks A(λ) and D(λ) of the monodromy matrix.

Using the same fermionization scheme as in Section 12.4 we obtain

c†n,↑ = Û n−1
(
C1

1 (0)+ B2
2 (0)

)
Û L−n , (12.273a)

cn,↑ = Û n−1
(
B1

1 (0)+ C2
2 (0)

)
Û L−n , (12.273b)

c†n,↓ = Û n−1
(
C1

2 (0)− B1
2 (0)

)
Û L−n , (12.273c)

cn,↓ = Û n−1
(
B2

1 (0)− C2
1 (0)

)
Û L−n . (12.273d)

Here the operators on the right hand side are elements of the monodromy matrix (12.272)
evaluated at λ = 0. Similar formulae are easily written down for the local spin operators.
In the inhomogeneous case the terms Û n−1 and Û L−n are replaced by products of the super
trace of T (λ) evaluated at the inhomogeneities.
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The equations (12.273) are expected to be useful for the calculation of matrix elements of
local operators, which is one of the most interesting open problems for the one-dimensional
Hubbard model.

12.6 On the algebraic Bethe ansatz for the Hubbard model

Performing an algebraic Bethe ansatz entails the use of the commutation relations between
the elements of the monodromy matrix, collected in the Yang-Baxter algebra, for the di-
agonalization of the transfer matrix. A necessary requirement for this type of procedure
is that the monodromy matrix acts triangularly on an appropriate pseudo vacuum state,
such that the pseudo vacuum is an eigenstate of the operators on its diagonal. As we shall
see below, this necessary requirement is fulfilled for the Hubbard model. Let us stress,
however, that no general recipe for an algebraic Bethe ansatz is known. Depending on the
structure of the R-matrix an algebraic Bethe ansatz, if possible at all, may be a demanding
task.

In the case of the Hubbard model the construction of an algebraic Bethe ansatz remained
a notorious problem for quite a while. Let us comment on the reasons: (i) The Yang-
Baxter algebra for a 16× 16 R-matrix comprises the large number of 256 commutation
relations and is not really a convenient tool for calculations as long as no sub-structure of the
commutation relations is identified. (ii) Moreover, the parameterization of the Boltzmann
weights of our R-matrix (12.135) in terms of λ and µ is inconvenient as well, because of
the constraint (12.109), and does not fall into the usual classification scheme of rational,
trigonometric or elliptic R-matrices. The R-matrix is not of difference form. We know,
however, from the coordinate Bethe ansatz solution in Chapter 3 that the ‘spin problem’
of the Hubbard model is intimately related to the rational R-matrix of the XXX spin chain
(or the 6-vertex model with rational Boltzmann weights). Thus, there should be a ‘hidden
6-vertex structure’ inside the Yang-Baxter algebra generated by the R-matrix (12.135).
(iii) The fact that the Lieb-wu equations may be formally generated by the Yang-Baxter
algebra connected with gl(1|2) invariant 3× 3 R-matrix (12.217) (see [169, 170]) seems to
leave the possibility that there is an algebraic Bethe ansatz not based on Shastry’s R-matrix
and yet to be discovered. (iv) As we shall see below, the monodromy matrix contains too
many creation operators which makes the identification of the operators relevant for an
algebraic Bethe ansatz a delicate matter.

The difficulties connected with the involved structure of the Yang-Baxter algebra for
the Hubbard model were eventually overcome by Martins and Ramos who constructed an
algebraic Bethe ansatz in [320, 371] (see also [319]). The key points in their analysis were
the discovery of a hidden 6-vertex structure inside the Yang-Baxter algebra and a clever
recursive construction of the eigenvectors, which was inspired by Tarasov’s work [451] on
the algebraic Bethe ansatz for the Izergin-Korepin model. Martins and Ramos were led to the
hidden 6-vertex structure through the analysis of a certain rational vertex model generated
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by the intertwiner of two typical four-dimensional representations of Y(gl(1|2)) [370]. This
intertwiner is a 16× 16 matrix with 36 non-vanishing Boltzmann weights at the same
positions as in our R-matrix (12.135).

In this section we first classify the entries of the monodromy matrix as creation or
annihilation operators, or operators which do not change the particle number. Then we work
out the block structure of the Yang-Baxter algebra generated by the R-matrix (12.135).
After calculating the action of the monodromy matrix on the Fock vacuum |0〉, starting
from Subsection 12.6.4, we review Martins’ and Ramos’ construction of the one- and two-
particle eigenstates of the transfer matrix. We obtain the one- and two-particle eigenvalues
of the transfer matrix which will be enough to guess the generalization to the N -particle
case.

12.6.1 Classification of the monodromy matrix elements with respect to change of
particle number

The two invariance equations (12.241) for α = z and (12.245) contain the information about
how the action of the elements of the monodromy matrix affects the numbers of up- and
down-spin electrons. For the classification of the elements of the monodromy matrix we
need more explicit expressions. Recall that N̂ = N̂↑ + N̂↓ and 2Sz = N̂↑ − N̂↓, where N̂↑
and N̂↓ are the particle number operators for electrons with spin up and spin down. Then
(12.241), (12.245) imply

[T (λ), 1
2 (�z

η −�z
s )− N̂↑] = [T (λ), 1

2 (I2 ⊗ σ z)− N̂↑] = 0 , (12.274a)

[T (λ), 1
2 (�z

η +�z
s )− N̂↓] = [T (λ), 1

2 (σ z ⊗ I2)− N̂↓] = 0 . (12.274b)

Performing the matrix multiplications in the auxiliary space explicitly we obtain

[N̂↑, T (λ)] =


0 C1

1 (λ) 0 D1
2(λ)

−B1
1 (λ) 0 −A1

2(λ) 0
0 A2

1(λ) 0 B2
2 (λ)

−D2
1(λ) 0 −C2

2 (λ) 0

 , (12.275a)

[N̂↓, T (λ)] =


0 0 C1

2 (λ) D1
2(λ)

0 0 A1
2(λ) B1

2 (λ)
−B2

1 (λ) −A2
1(λ) 0 0

−D2
1(λ) −C2

1 (λ) 0 0

 . (12.275b)

Here the notation for the elements of the monodromy matrix is taken from equation (12.272).
In (12.275) the 32 commutation relations between the elements of the monodromy matrix
and the particle number operators N̂↑, N̂↓ are written in compact form. Let us pick out the
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commutators involving C1
1 (λ), B2

2 (λ), C1
2 (λ), and B1

2 (λ),

N̂↑C1
1 (λ) = C1

1 (λ)(N̂↑ + 1) , [N̂↓,C1
1 (λ)] = 0 , (12.276a)

N̂↑B2
2 (λ) = B2

2 (λ)(N̂↑ + 1) , [N̂↓, B2
2 (λ)] = 0 , (12.276b)

N̂↓C1
2 (λ) = C1

2 (λ)(N̂↓ + 1) , [N̂↑,C1
2 (λ)] = 0 , (12.276c)

N̂↓B1
2 (λ) = B1

2 (λ)(N̂↓ + 1) , [N̂↑, B1
2 (λ)] = 0 . (12.276d)

Equations (12.276a), (12.276b) mean that C1
1 (λ) and B2

2 (λ), for instance, add an up-spin
electron to a state and do not change the number of down-spin electrons. Thus, C1

1 (λ) and
B2

2 (λ) are one-particle creation operators of up-spin electrons. Similarly, C1
2 (λ) and B1

2 (λ)
can be interpreted as one-particle creation operators of down-spin electrons.

We leave to the reader the simple task of writing explicitly all the relations contained in
(12.276). It turns out that B1

1 (λ) and C2
2 (λ) are one-particle annihilation operators of up-spin

electrons, while C2
1 (λ) and B2

1 (λ) annihilate a down-spin electron. The operators A1
2(λ) and

A2
1(λ) preserve the total number of particles, but flip the spin. D1

2(λ) and D2
1(λ) create or

annihilate a pair of electrons of opposite spin. The diagonal elements of the monodromy
matrix leave spin and particle number unchanged.

It is a striking fact that we have identified five creation operators C1
1 (λ), C1

2 (λ), B1
2 (λ),

B2
2 (λ) and D1

2(λ) inside the monodromy matrix. By way of contrast there are only two local
creation operators, c†j,↑, c†j,↓, of electrons. This means that the choice of creation operators
for the algebraic Bethe ansatz is not obvious. Presumably there is more than one way of
constructing an algebraic Bethe ansatz (compare the construction of eigenstates over the
empty lattice in Chapter 15).

The operator entries of the submatrices A(λ), . . . , D(λ) of the monodromy matrix each
are related by adjungation in quantum space,

A(λ)† = ctg 2L
(
π
2 − λ̄

)
eiπ N̂ σ y A

(
π
2 − λ̄

)
σ y, (12.277a)

B(λ)† = (−i) ctg 2L
(
π
2 − λ̄

)
eiπ N̂ σ y B

(
π
2 − λ̄

)
σ x , (12.277b)

C(λ)† = (−i) ctg 2L
(
π
2 − λ̄

)
eiπ N̂ σ x C

(
π
2 − λ̄

)
σ y, (12.277c)

D(λ)† = ctg 2L
(
π
2 − λ̄

)
eiπ N̂ σ x D

(
π
2 − λ̄

)
σ x . (12.277d)

Here no adjungation of matrices is implied with the daggers on the left of hand side of these
equations. The bar means complex conjugation. Note that the prefactors of ctg 2L

(
π
2 − λ̄

)
could have been avoided if we had chosen a different normalization of the L-matrix (12.227).
Equations (12.277) can easily be proven by induction over L .

12.6.2 Yang-Baxter algebra in block form

The structure of the Yang-Baxter algebra (12.165) generated by the R-matrix (12.135) be-
comes clearer after performing a similarity transformation which reveals the block structure
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(12.272) of the monodromy matrix. A similarity transformation X transforms (12.165) into

X Ř(λ,µ)X−1 X
(
T (λ)⊗s T (µ)

)
X−1 = X

(
T (µ)⊗s T (λ)

)
X−1 X Ř(λ,µ)X−1 . (12.278)

Choosing a matrix X with only non-zero entries

X1
6 = X2

7 = X3
10 = X4

11 = X5
5 = X6

8 = X7
9 = X8

12 = 1 ,

X9
2 = X10

3 = X11
14 = X12

15 = X13
1 = X14

4 = X15
13 = X16

16 = −1
(12.279)

we can write (12.278) more explicitly as
ρ4ř1 0 0 ρ6 K

0 I4 ρ10 J 0
0 ρ9 J t I4 0

ρ6 K t 0 0 ρ1ř2




A ⊗ Ā A ⊗ B̄ B ⊗ Ā B ⊗ B̄
A ⊗ C̄ A ⊗ D̄ −B ⊗ C̄ −B ⊗ D̄
C ⊗ Ā C ⊗ B̄ D ⊗ Ā D ⊗ B̄
−C ⊗ C̄ −C ⊗ D̄ D ⊗ C̄ D ⊗ D̄



=


Ā ⊗ A Ā ⊗ B B̄ ⊗ A B̄ ⊗ B
Ā ⊗ C Ā ⊗ D −B̄ ⊗ C −B̄ ⊗ D
C̄ ⊗ A C̄ ⊗ B D̄ ⊗ A D̄ ⊗ B
−C̄ ⊗ C −C̄ ⊗ D D̄ ⊗ C D̄ ⊗ D




ρ4ř1 0 0 ρ6 K
0 I4 ρ10 J 0
0 ρ9 J t I4 0

ρ6 K t 0 0 ρ1ř2

 .

(12.280)

The entries of the various matrices in equation (12.280) are 4× 4 matrices themselves. For
the formula to fit on the line we suppressed the arguments. The 2× 2 matrices A, . . . , D
depend on λ, and a bar means here that λ is replaced with µ. The 4× 4 matrices ř1(λ,µ)
and ř2(λ,µ) depend non-trivially on the Boltzmann weights,

ř1 =


1

ρ5

ρ4
1− ρ5

ρ4

1− ρ5

ρ4

ρ5

ρ4

1

 , ř2 =


1

ρ3

ρ1

ρ3

ρ1
− 1

ρ3

ρ1
− 1 ρ3

ρ1

1

 . (12.281)

The matrices J and K are constant matrices, most conveniently expressed in terms of the
permutation matrix P ,

J = P(σ z ⊗ I2) , (12.282)

K = (I4 − P)(σ z ⊗ I2) . (12.283)

We would like to note that the structure of the Yang-Baxter algebra, when written in block
form (12.280), resembles the Yang-Baxter algebra of an (asymmetric) 8-vertex model with
grading p(1) = 0, p(2) = 1. A complete list of the relations contained in equation (12.280)
is given in appendix 12.C.

12.6.3 Action of the monodromy matrix on the vacuum

As for any algebraic Bethe ansatz calculation we have to determine the ac-
tion of the monodromy matrix on the vacuum. Using the definitions (12.228) we
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obtain

f j,a|0〉 = − cos(λ)|0〉 , g j,a|0〉 = sin(λ)|0〉 , (12.284)

for a =↑,↓. Thus,

L j (λ, 0)|0〉 =


e2h ∗ ∗ ∗
0 − tg (λ) 0 ∗
0 0 − tg (λ) ∗
0 0 0 tg 2(λ)e2h

 |0〉 , (12.285)

where the asterisks denote some operators whose specific form does not matter here. De-
noting the eigenvalues on the diagonal by

ω1(λ) = e2h , (12.286a)

ω2(λ) = − tg (λ) , (12.286b)

ω3(λ) = tg 2(λ)e2h , (12.286c)

we obtain the following result for the monodromy matrix,

T (λ)|0〉 =


ωL

1 (λ) ∗ ∗ ∗
0 ωL

2 (λ) 0 ∗
0 0 ωL

2 (λ) ∗
0 0 0 ωL

3 (λ)

 |0〉 . (12.287)

It follows that the Fock vacuum is an eigenstate of the transfer matrix, t(λ)|0〉 = �(λ)|0〉,
with eigenvalue

�(λ) = ωL
1 (λ)− 2ωL

2 (λ)+ ωL
3 (λ) . (12.288)

12.6.4 Hidden six-vertex structure and one-particle states

In this subsection we shall construct one-particle eigenstates of the transfer matrix t(λ) =
str(T (λ)) = tr(D(λ))− tr(A(λ)). We shall use a notation that may appear artificial at first
reading, but will turn out to be useful in the two- and more-particle cases. First of all we
introduce the vector notation

Cn(λ) = (
Cn

1 (λ),Cn
2 (λ)

)
, Bn(λ) =

(
B1

n (λ)

B2
n (λ)

)
(12.289)

for n = 1, 2. We have seen above in Section (12.6.1) that C1(λ) and B2(λ) are vectors of
creation operators, and C2(λ) and B1(λ) are vectors of annihilation operators, respectively.
Let φ(1)(λ) = C1(λ). We shall seek for eigenvectors of the transfer matrix of the form

|φ(1)〉 = φ(1)(λ1)|F̂〉 , (12.290)

where |F̂〉 = ( f1

f2

)⊗ |0〉 = ( f1|0〉
f2|0〉

)
; f1, f2 ∈ C. In order to calculate the action of the transfer

matrix on |φ(1)〉 we have to commute A1
1(λ), A2

2(λ), D1
1(λ), and D2

2(λ) through C1(λ1). The
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appropriate commutation relations can be extracted from the list (12.C.1) in appendix 12.C,
which is a more explicit form of (12.280). Let us pick out equation (12.C.1n),

ρ6 K t (A ⊗ B̄)− ρ1ř2(C ⊗ D̄) = −C̄ ⊗ D + ρ9(D̄ ⊗ C)J t . (12.291)

We multiply this equation by (1, 0)⊗ (1, 0) from the left and by I2 ⊗
(1

0

)
from the right

and use [(1, 0)⊗ (1, 0)]K t = 0, [(1, 0)⊗ (1, 0)]ř2 = (1, 0)⊗ (1, 0), and J t (I2 ⊗
(1

0

)
) =

P(I2 ⊗ σ z)(I2 ⊗
(1

0

)
) = (1

0

)⊗ I2. We further use the relations (12.123) to interchange the
arguments λ and µ. It follows that

D1
1(λ)C1(µ) = ρ4

ρ9
C1(µ)D1

1(λ)− 1

ρ9
C1(λ)D1

1(µ) . (12.292)

For the commutation relation of D2
2(λ) with C1(µ) we start from (12.C.1o),

ρ6 K t (B ⊗ Ā)+ ρ1ř2(D ⊗ C̄) = −ρ10(C̄ ⊗ D)J + (D̄ ⊗ C) . (12.293)

We observe that ρ1ř2 = ρ3 I4 + ρ8(σ z ⊗ σ z)P , and thus [(1, 0)⊗ (0, 1)]ρ1ř2 = ρ3(1, 0)⊗
(0, 1)− ρ8(0, 1)⊗ (1, 0). Similarly, J (

(0
1

)⊗ I2) = P(σ z ⊗ I2)(
(0

1

)⊗ I2) = −I2 ⊗
(0

1

)
. We

further define the vector

ξ = [(1, 0)⊗ (0, 1)]K t = (0, 1,−1, 0) , (12.294)

which will frequently appear in what follows. Multiplication of equation (12.293) by (1, 0)⊗
(0, 1) from the left and by

(0
1

)⊗ I2 from the right then gives us the desired formula,

D2
2(λ)C1(µ) = −ρ10

ρ8
C1(µ)D2

2(λ)+ ρ6

ρ8
ξ
(
B2(λ)⊗ A(µ)

)
+ρ3

ρ8
D1

2(λ)C2(µ)− 1

ρ8
D1

2(µ)C2(λ) . (12.295)

We now turn to the problem of finding the appropriate commutation relations of A(λ)
with C1(µ). This is the point where the hidden 6-vertex structure comes into play. Let us
consider equations (12.C.1i) and (12.C.1l),

ρ9 J t (A ⊗ C̄)+ C ⊗ Ā = ρ4(C̄ ⊗ A)ř1 + ρ6(D̄ ⊗ B)K t , (12.296)

−ρ9 J t (B ⊗ D̄)+ D ⊗ B̄ = ρ6(C̄ ⊗ A)K + ρ1(D̄ ⊗ B)ř2 . (12.297)

Equation (12.296) contains the commutation relations between A(λ) and C1(µ), but still
is not of the appropriate form. Instead, Ramos and Martins considered a certain linear
combination of (12.296) and (12.297). They were led to this idea by analogy with their
calculations for the gl(1|2) vertex model mentioned above (see [370]), where all Boltzmann
weights are parameterized by rational functions and thus are easier to handle.

Let us introduce the shorthand notation L = I4 − P . Then ř1 can be written as

ř1 = I4 − ρ7

ρ4
L . (12.298)

Can this matrix be equivalent to the rational R-matrix (12.50)? If yes, then a reparameter-
ization v(λ) should exist, such that v(λ)− v(µ) = ρ7/ρ5. This cannot be the case, since
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ρ7/ρ5 is not odd. Let us consider, however, the combination of Boltzmann weights

a(λ,µ) = ρ7

ρ4
− ρ2

6

ρ4ρ8
= − ρ9ρ10

ρ4ρ8
. (12.299)

Inserting the function

v(λ) = −i ctg (2λ)ch(2h) (12.300)

it can be rewritten as

a(λ,µ) = v(λ)− v(µ)

v(λ)− v(µ)+ 2iu
. (12.301)

The matrix

ř = ř1 + ρ2
6

ρ4ρ8
L = I4 − a(λ,µ)L (12.302)

is therefore equivalent to the R-matrix (12.50) of the spin- 1
2 XXX chain and, in fact, encodes

the hidden 6-vertex structure discovered by Ramos and Martins. The matrix ř may appear
as an ad hoc notion at this point. We wish to stress, however, that it naturally arises in the
work [335, 336] on the Hubbard model on the infinite interval (see Chapter 15).

We shall now use equation (12.302) in order to introduce the matrix ř into the commutation
relation between A(λ) and C1(µ). We note the relations

K K t = 2L , ρ1ř2 K t = (2ρ3 − ρ1)K t . (12.303)

We multiply (12.297) by ρ6 K t/2ρ8 from the right and, using (12.303), add it to (12.296).
The resulting equation is equivalent to

A ⊗ C̄ = ρ4

ρ9
J (C̄ ⊗ A)ř − 1

ρ9
J (C ⊗ Ā)

+ ρ6

2ρ8
(B ⊗ D̄)K t − ρ6

2ρ8ρ9
J (D ⊗ B̄)K t + ρ1ρ6

2ρ8ρ9
J (D̄ ⊗ B)K t . (12.304)

This equation can be further simplified. Let us multiply (12.297) by J from the left and by
L = K K t/2 from the right. Taking into account that K 2 = 0 and ř2 K = K , we obtain

−ρ9(B ⊗ D̄)L + J (D ⊗ B̄)L − ρ1 J (D̄ ⊗ B)L = 0 . (12.305)

We multiply this equation by ρ6/2ρ8ρ9 and add it to (12.304). Then

A ⊗ C̄ = ρ4

ρ9
J (C̄ ⊗ A)ř − 1

ρ9
J (C ⊗ Ā)+ ρ6

ρ8
(B ⊗ D̄)

K t − L

2

− ρ6

ρ8ρ9
J (D ⊗ B̄)

K t − L

2
+ ρ1ρ6

ρ8ρ9
J (D̄ ⊗ B)

K t − L

2
. (12.306)

Finally, to project out the commutation relations with the vector C1(µ) of creation operators
we multiply (12.306) by I2 ⊗ (1, 0) from the left. We further take advantage of the relation
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(K t − L)/2 = [(0
1

)⊗ (1
0

)]⊗ ξ and end up with

A(λ)⊗ C1(µ) = ρ4

ρ9

(
C1(µ)⊗ A(λ)

)
ř − 1

ρ9

(
C1(λ)⊗ A(µ)

)+ ρ6

ρ8

(
ξ ⊗ B2(λ)

)
D1

1(µ)

− ρ6

ρ8ρ9
D1

2(λ)
(
ξ ⊗ B1(µ)

)+ ρ1ρ6

ρ8ρ9
D1

2(µ)
(
ξ ⊗ B1(λ)

)
. (12.307)

Equations (12.292), (12.295) and (12.307) will turn out to be sufficient to diagonalize the
transfer matrix in the one-particle sector.

It is equation (12.307) where the auxiliary spin problem we are familiar with from the
coordinate Bethe ansatz appears in the form of the inconspicuous matrix ř on the right-hand
side. Having in mind the generalization to two and more particles we introduce a convenient
notation. The definition

A j (λ) = I⊗( j−1)
2 ⊗ A(λ)⊗ I⊗(N− j)

2 (12.308)

embeds the submatrix A(λ) of the monodromy matrix into
(
End(C)

)⊗N ⊗H, where H is
the electronic space of states of an L-site chain. N will be the number of particles. We shall
write A(0)

0 (λ) = A(λ)⊗ I⊗N
2 and A(0)

j (λ) = I2 ⊗ A j (λ). The index ‘zero’ here refers to an
auxiliary space, which may be imagined as an additional site. We set r = Př , where P is
the 4× 4 permutation matrix with matrix elements Pαγ

βδ = δαδ δ
γ

β and introduce the L-matrix
of the auxiliary spin problem

L j (λ) = rαγ

βδ (λ, λ j ) eβ
α ⊗ e j

δ
γ

(12.309)

and the corresponding inhomogeneous monodromy matrix

T (1)(λ) = L N (λ) . . . L1(λ) =
(

A(1)(λ) B(1)(λ)
C (1)(λ) D(1)(λ)

)
. (12.310)

The L-matrix acts triangularly on the auxiliary pseudo vacuum
(1

0

)⊗N
. As can be seen

from (12.302) and (12.309) we have

L j (λ)
(1

0

)⊗N =
(

1 ∗
0 a(λ, λ j )

) (1
0

)⊗N
, (12.311)

where the asterisk stands for (1− a(λ, λ j ))e j
1
2. Hence,

(1
0

)⊗N
is an appropriate pseudo

vacuum for the monodromy matrix T (1)(λ),

T (1)(λ)
(1

0

)⊗N =
(

1 B(1)(λ)
0

∏N
j=1 a(λ, λ j )

) (1
0

)⊗N
, (12.312)

and we can apply the general formulae for the solution of the gl(2) generalized model
obtained in Section 12.1.7. From (12.312), (12.67), (12.68) it follows that the auxiliary
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transfer matrix tr0
(
T (1)(λ)

) = A(1)(λ)+ D(1)(λ) has eigenvalues

�(1)(λ) =
M∏

k=1

1

a(µk, λ)
+

N∏
j=1

a(λ, λ j )
M∏

k=1

1

a(λ,µk)
, (12.313)

where the Bethe ansatz roots µk are solutions of the Bethe ansatz equations

N∏
j=1

1

a(µk, λ j )
=

M∏
l=1
l �=k

a(µl , µk)

a(µk, µl)
, k = 1, . . . , M . (12.314)

The corresponding eigenvectors are |µ1, . . . , µM 〉 = B(1)(µ1) . . . B(1)(µM )
(1

0

)⊗N
.

How can this be utilized for the diagonalization of the transfer matrix of the Hubbard
model in the one-particle sector? We first rewrite equation (12.307) in the form

A(λ)⊗ C1(λ1) = ρ4(λ, λ1)

ρ9(λ, λ1)

(
I2 ⊗ C1(λ1)

)
A(0)

0 (λ)T (1)(λ)

− 1

ρ9(λ, λ1)

(
I2 ⊗ C1(λ)

)
A(0)

0 (λ1)T (1)(λ1)

+ρ6(λ, λ1)

ρ8(λ, λ1)

(
ξ ⊗ B2(λ)

)
D1

1(λ1)+ . . . (12.315)

Here µ was replaced by λ1. The dots denote terms which annihilate the pseudo vacuum |0〉.
T (1)(λ) = L1(λ, λ1) is the monodromy matrix for the auxiliary spin problem for a chain of
length N = 1. Taking the trace in space zero of (12.315) we obtain

tr0
(

A(0)
0 (λ)

)
C1(λ1) = ρ4(λ, λ1)

ρ9(λ, λ1)
C1(λ1) tr0

(
A(0)

0 (λ)T (1)(λ)
)

− 1

ρ9(λ, λ1)
C1(λ) tr0

(
A(0)

0 (λ1)T (1)(λ1)
)

+ ρ6(λ, λ1)

ρ8(λ, λ1)
ξ
(
B2(λ)⊗ I2

)
D1

1(λ1)+ . . . (12.316)

A similar commutation relation for tr
(
D(λ)

)
and C1(λ1) is obtained by adding (12.292) and

(12.295),

tr0
(
D(0)

0 (λ)
)
C1(λ1) = C1(λ1)

[
D1

1(λ)
ρ4(λ, λ1)

ρ9(λ, λ1)
− D2

2(λ)
ρ10(λ, λ1)

ρ8(λ, λ1)

]
− 1

ρ9(λ, λ1)
C1(λ)D1

1(λ1)

+ ρ6(λ, λ1)

ρ8(λ, λ1)
ξ
(
B2(λ)⊗ I2

)
tr0

(
A(0)

0 (λ1)T (1)(λ1)
)+ . . . (12.317)

Again the dots denote terms which annihilate the pseudo vacuum. We now subtract (12.316)
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from (12.317), insert the definition φ(1)(λ) = C1(λ), and use (12.299). Then

t(λ)φ(1)(λ1) = −φ(1)(λ1)
[{

D1
1(λ)− tr0

(
A(0)

0 (λ)T (1)(λ)
)} 1

a(λ, λ1)
+ D2

2(λ)
]ρ10(λ, λ1)

ρ8(λ, λ1)

+
[ 1

ρ9(λ, λ1)
φ(1)(λ)+ ρ6(λ, λ1)

ρ8(λ, λ1)
ξ
(
B2(λ)⊗ I2

)]{
tr0

(
A(0)

0 (λ)T (1)(λ)
)− D1

1(λ)
}
+ . . .

(12.318)

Recall our ansatz (12.290) for the one-particle eigenvector. At this point we shall see that
it actually works. For any eigenvector

( f1

f2

)
of the auxiliary transfer matrix we find, using

(12.287),

tr0
(

A(0)
0 (λ)T (1)(λ)

)|F̂〉 = ωL
2 (λ)tr0

(
T (1)(λ)

)( f1

f2

)⊗ |0〉
= ωL

2 (λ)�(1)(λ)|F̂〉 , (12.319)

D1
1(λ)|F̂〉 = ωL

1 (λ)|F̂〉 , D2
2(λ)|F̂〉 = ωL

3 (λ)|F̂〉 . (12.320)

Thus, if
( f1

f2

)
is an eigenvector of the auxiliary transfer matrix A(1)(λ)+ D(1)(λ), then |φ(1)〉 =

φ(1)(λ1)|F̂〉 is a one-particle eigenvector of the transfer matrix t(λ) of the Hubbard model
with eigenvalue

�(λ) = −
[{

ωL
1 (λ)− ωL

2 (λ)�(1)(λ)
)} 1

a(λ, λ1)
+ ωL

3 (λ)
]ρ10(λ, λ1)

ρ8(λ, λ1)
, (12.321)

provided that the Bethe ansatz equation(
ω1(λ1)

ω2(λ1)

)L

= �(1)(λ1) (12.322)

is satisfied.
The last step is to insert the explicit form of the eigenvalue �(1)(λ) of the auxiliary

transfer matrix into (12.321) and (12.322) and to write explicitly the eigenvector |φ(1)〉.
Since N = 1, the problem is rather trivial, and we could have avoided the machinery of
the algebraic Bethe ansatz for the solution of the auxiliary problem. We included it already
here in order to facilitate the comparison with the two-particle case. From the definitions
(12.309), (12.310) we have A(1)(λ)+ D(1)(λ) = (1+ a(λ, λ1))I2. Thus, A(1)(λ)+ D(1)(λ)
is proportional to the unit matrix (acting in the ‘quantum space of the auxiliary problem’).
It follows that

�(1) = 1+ a(λ, λ1) , (12.323)

and that every vector in C
2 is a corresponding eigenvector. These findings are in agreement

with our algebraic Bethe ansatz result. Because of the su(2) symmetry of the auxiliary
monodromy matrix we have to impose the restriction N ≥ 2M (see appendix 3.D.3). Thus,
M = 0 and, using the convention that a product has to be replaced with 1, once its upper limit
is smaller than its lower limit, (12.313) implies the correct result �(1)(λ) = 1+ a(λ, λ1).



462 The algebraic approach to the Hubbard model

The only Bethe ansatz vector in the sector M = 0 is the pseudo vacuum
(1

0

)
. A second

eigenvector
(0

1

)
follows by application of σ−.

Let us insert (12.323) into (12.321), (12.322), and let us summarize. A set of one-particle
algebraic Bethe ansatz eigenvectors of the transfer matrix t(λ) of the Hubbard model is
given by

|φ(1)〉 = C1(λ1)
(1

0

)⊗ |0〉 = C1
1 (λ1)|0〉 . (12.324)

The corresponding eigenvalue is

�(λ) = −
[
ωL

1 (λ)
1

a(λ, λ1)
− ωL

2 (λ)
1

a(λ, λ1)
− ωL

2 (λ)+ ωL
3 (λ)

]ρ10(λ, λ1)

ρ8(λ, λ1)
, (12.325)

where the Bethe ansatz root λ1 has to be calculated from the Bethe ansatz equation(
ω1(λ1)

ω2(λ1)

)L

= 1 . (12.326)

For a full understanding of the one-particle states (12.324) we have to study their be-
haviour under the action of the spin and η-spin operators. Let us start with the spin. The
commutation relations of the monodromy matrix elements with the spin operators are com-
pactly combined in equation (12.241). Those equations contain, in particular, the relations

[S±,C1(λ)] = C1(λ)σ± , (12.327a)

[Sz,C1(λ)] = C1(λ) 1
2σ

z . (12.327b)

The spin operators annihilate the pseudo vacuum |0〉. Hence, we infer from (12.327) that

S+|φ(1)〉 = 0 , (12.328a)

Sz|φ(1)〉 = 1
2 |φ(1)〉 , (12.328b)

S−|φ(1)〉 = C1
2 (λ1)|0〉 . (12.328c)

Thus, the vector |φ(1)〉 = C1
1 (λ1)|0〉 is a spin- 1

2 highest weight state, the vectors C1
1 (λ1)|0〉

and C1
2 (λ1)|0〉 form a spin- 1

2 doublet.
Similarly, we conclude from (12.245) and (12.250) that

{η−,C1(λ)} = −C2(λ) , (12.329a)

[ηz,C1(λ)] = 1
2 C1(λ) , (12.329b)

{η+,C1(λ)} = 0 . (12.329c)

It follows that

η−|φ(1)〉 = 0 , (12.330a)

ηz|φ(1)〉 = 1
2 (1− L)|φ(1)〉 . (12.330b)
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Thus, |φ(1)〉 is the lowest weight state in a multiplet of η-spin L , the remaining states being
generated by consecutive action of η+ on |φ(1)〉.

By comparison of the one-particle Bethe ansatz equation (12.326) with the corresponding
one-particle Lieb-Wu equation eik1 L = 1 (see (3.95)) we are led to the reparameterization
[499]

eik(λ) = ω1(λ)

ω2(λ)
= − ctg (λ)e2h (12.331)

of equation (12.326), which relates the spectral parameter λ to the pseudo momentum k of
the coordinate Bethe ansatz. Let us further define

eip(λ) = ω2(λ)

ω3(λ)
= − ctg (λ)e−2h . (12.332)

The functions k(λ), p(λ) and v(λ), equation (12.300), are then simply related through

v(λ) = − sin(k(λ))+ iu = − sin(p(λ))− iu . (12.333)

Hence, the constraint (12.109) connecting λ and h for given u turns into the relation

sin(k)− sin(p) = 2iu (12.334)

between k and p.

12.6.5 The two-particle states

The generalization of the one-particle calculation of the previous section to two particles is
not straightforward. We expect that the rather general ansatz

|φ(2)〉 = φ(2)(λ1, λ2)|F̂〉 ,
|F̂〉 = f⊗ |0〉 , f ∈ C

2 ⊗ C
2

(12.335)

should work. But what is the appropriate choice of the vector φ(2)(λ1, λ2) of creation opera-
tors? It turns out that a choice of the form C1(λ1)⊗ C1(λ2), which works in the construction
of the nested algebraic Bethe ansatz for, say, the supersymmetric t-J model [119], fails in
the case at hand.

In the construction of the one-particle eigenstates we saw that we did not need to consider
the one-particle creation operators B1

2 (λ), B2
2 (λ). It was sufficient to work only with C1

1 (λ),
C1

2 (λ). For the two-particle states, however, there is yet another candidate for a creation
operator, namely D1

2(λ). As we shall see, two-particle eigenstates of the Hubbard model
transfer matrix can be constructed by choosing φ(2)(λ1, λ2) as an appropriate combina-
tion of C1(λ1)⊗ C1(λ2) and D1

2(λ1). An idea for the construction of such an appropriate
combination comes from the observation that a relation of the form

φ(2)(λ1, λ2) ∼ φ(2)(λ2, λ1)ř (λ1, λ2) (12.336)

is crucial for all known nested algebraic Bethe ansatz calculations. Let us therefore seek
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to introduce the matrix ř into the commutation relation between two matrices C(λ) in a
similar manner as in the derivation of equation (12.306) from (12.296) and (12.297).

We take equations (12.C.1m) and (12.C.1p) from appendix 12.C,

ρ6 K t (A ⊗ Ā)− ρ1ř2(C ⊗ C̄) = −ρ4(C̄ ⊗ C)ř1 + ρ6(D̄ ⊗ D)K t , (12.337)

ρ6 K t (B ⊗ B̄)+ ρ1ř2(D ⊗ D̄) = −ρ6(C̄ ⊗ C)K + ρ1(D̄ ⊗ D)ř2 . (12.338)

Proceeding similarly as in the derivation of (12.306) we multiply (12.338) by ρ6 K t/2ρ8

from the right and add the result to (12.337). We obtain an equation which is equivalent to

ř2(C ⊗ C̄)− ρ6

2ρ8
ř2(D ⊗ D̄)K t − ρ6

ρ1
K t (A ⊗ Ā)− ρ2

6

2ρ1ρ8
K t (B ⊗ B̄)K t

= ρ4

ρ1
(C̄ ⊗ C)ř − ρ6

2ρ8
(D̄ ⊗ D)K t . (12.339)

Next, we multiply (12.338) by ρ6L/2ρ1ρ8 from the right and add the result to (12.339).
Since K 2 = 0 and ř2 K = K , we obtain

ř2(C ⊗ C̄)− ρ6

ρ8
ř2(D ⊗ D̄)

K t − L

2
− ρ6

ρ1
K t (A ⊗ Ā)− ρ2

6

ρ1ρ8
K t (B ⊗ B̄)

K t − L

2

= ρ4

ρ1
(C̄ ⊗ C)ř − ρ6

ρ8
(D̄ ⊗ D)

K t − L

2
. (12.340)

Finally, to project out the commutation relation between C1(λ) and C1(µ) we multiply by
(1, 0)⊗ (1, 0) from the left. We also use once more that (K t − L)/2 = [(0

1

)⊗ (1
0

)]⊗ ξ.
Then

C1(λ)⊗ C1(µ)− ρ6(λ,µ)

ρ8(λ,µ)
D1

2(λ)D1
1(µ) ξ = ρ4(λ,µ)

ρ1(λ,µ)

(
C1(µ)⊗ C1(λ)

)
ř (λ,µ)

− ρ6(λ,µ)

ρ8(λ,µ)
D1

2(µ)D1
1(λ) ξ . (12.341)

Now ξ is an eigenvector of ř (λ,µ),

ξ = − ρ4ρ8

ρ1ρ7
ξ ř . (12.342)

Inserting (12.342) into the right hand side of (12.341) and using (12.123) we end up with

C1(λ)⊗ C1(µ)− ρ6(λ,µ)

ρ8(λ,µ)
D1

2(λ)D1
1(µ) ξ

=
[
C1(µ)⊗ C1(λ)− ρ6(µ, λ)

ρ8(µ, λ)
D1

2(µ)D1
1(λ) ξ

]ρ4(λ,µ)

ρ1(λ,µ)
ř (λ,µ) . (12.343)

This equation is of the form (12.336). Thus, the combination of creation operators

φ(2)(λ1, λ2) = C1(λ1)⊗ C1(λ2)− ρ6(λ1, λ2)

ρ8(λ1, λ2)
D1

2(λ1)D1
1(λ2) ξ , (12.344)

originally introduced by Ramos and Martins [371], provides a promising ansatz for the
two-particle eigenvectors (12.335).
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To show that this ansatz actually works one has to commute the submatrix A(λ) of
the monodromy matrix and the monodromy matrix elements D1

1(λ) and D2
2(λ) through

φ(2)(λ1, λ2). Unfortunately, this is a cumbersome task. We shall omit the details of the
calculation here. One has to use (12.292), (12.295), and (12.307) and a number of additional
commutation relations listed in (12.C.1). The coefficients in the resulting formulae are
rational functions of the Boltzmann weights ρ j and also contain the R-matrix ř of the
auxiliary spin problem. These coefficients have to be appropriately rearranged using certain
identities, involving three different arguments λ, µ, ν, between the Boltzmann weights
and certain elementary properties of the R-matrix ř . There is one guiding principle in the
calculations: as a consequence of (12.343) the coefficients of the different terms are related
by interchange of λ1 and λ2 and multiplication by ρ4

ρ1
ř . This fact allows one to figure out

the required identities between the Boltzmann weights. In appendix 12.D we provide a
complete list of the additional commutation relations and the identities we have used. With
the aid of appendix 12.D the reader should be able to verify the following formulae,

D1
1(λ)φ(2)(λ1, λ2) = φ(2)(λ1, λ2) D1

1(λ)
2∏

j=1

ρ4(λ, λ j )

ρ9(λ, λ j )

−
2∑

j=1

φ(2)(λ, λ̂λλ j ) Sj−1 D1
1(λ j )

1

ρ9(λ, λ j )

2∏
k=1
k �= j

ρ4(λ j , λk)

ρ9(λ j , λk)

− D1
2(λ)D1

1(λ1)D1
1(λ2) ξ

ρ6(λ1, λ2)

ρ8(λ1, λ2)

[ 2∏
j=1

ρ10(λ, λ j )

ρ8(λ, λ j )
+ 1

]
, (12.345)

D2
2(λ)φ(2)(λ1, λ2) = φ(2)(λ1, λ2) D2

2(λ)
2∏

j=1

ρ10(λ, λ j )

ρ8(λ, λ j )

+
2∑

j=1

[[
ξ (B2(λ)⊗ I2)

]⊗ φ(1)(λ̂λλ j )
]

Sj−1 tr0
(

A(0)
0 (λ j )T

(1)(λ j )
)

× ρ6(λ, λ j )

ρ8(λ, λ j )

2∏
k=1
k �= j

ρ4(λ j , λk)

ρ9(λ j , λk)

+ D1
2(λ) ξ

[
A(λ1)⊗ A(λ2)

]ρ6(λ1, λ2)

ρ8(λ1, λ2)

[ 2∏
j=1

ρ10(λ, λ j )

ρ8(λ, λ j )
+ 1

]
+ . . . , (12.346)

A(λ)⊗ φ(2)(λ1, λ2) = [
I2 ⊗ φ(2)(λ1, λ2)

]
A(0)

0 (λ)T (1)(λ)
2∏

j=1

ρ4(λ, λ j )

ρ9(λ, λ j )

−
2∑

j=1

[[
I2 ⊗ φ(2)(λ, λ̂λλ j )

]
Sj−1 A(0)

0 (λ j )T
(1)(λ j )

1

ρ9(λ, λ j )

− [
ξ ⊗ B2(λ)⊗ φ(1)(λ̂λλ j )

]
Sj−1 D1

1(λ j )
ρ6(λ1, λ2)

ρ8(λ1, λ2)

] 2∏
k=1
k �= j

ρ4(λ j , λk)

ρ9(λ j , λk)
+ . . . (12.347)
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As before the dots in (12.346) and (12.347) denote terms which annihilate the pseudo
vacuum. We introduced two new notations. First,

λ̂λλ j =
λ2 if j = 1

λ1 if j = 2 ,
(12.348)

and second

Sj−1 =
id if j = 1

ρ4(λ1,λ2)
ρ1(λ1,λ2) ř (0)

1,2(λ1, λ2) if j = 2 ,
(12.349)

where ř (0)
1,2(λ1, λ2) = I2 ⊗ ř (λ1, λ2) acts on a triple tensor product of auxiliary spaces C

2,
the first one being interpreted as the auxiliary space of the auxiliary spin problem, the tensor
product of the other two as the corresponding quantum space.

The commutation relations of t(λ) = str(T (λ)) with φ(2)(λ1, λ2) are now easily obtained
from (12.345)–(12.347). We take the trace of (12.347) in space zero and subtract the result
from the sum of equations (12.345) and (12.346). Then

t(λ)φ(2)(λ1, λ2) = φ(2)(λ1, λ2)

×
[{

D1
1(λ)− tr0

(
A(0)

0 (λ)T (1)(λ)
)} 2∏

j=1

1

a(λ, λ j )
+ D2

2(λ)

] 2∏
j=1

ρ10(λ, λ j )

ρ8(λ, λ j )

+
2∑

j=1

[
1

ρ9(λ, λ j )
φ(2)(λ, λ̂λλ j )+ ρ6(λ, λ j )

ρ8(λ, λ j )

[
ξ (B2(λ)⊗ I2)

]⊗ φ(1)(λ̂λλ j )

]
Sj−1

×
{

tr0
(

A(0)
0 (λ j )T

(1)(λ j )
)− D1

1(λ j )
} 2∏

k=1
k �= j

ρ4(λ j , λk)

ρ9(λ j , λk)

+ ρ6(λ1, λ2)

ρ8(λ1, λ2)

[ 2∏
j=1

ρ10(λ, λ j )

ρ8(λ, λ j )
+ 1

]
D1

2(λ)

× ξ
{[

A(λ1)⊗ A(λ2)
]− D1

1(λ1)D1
1(λ2)

}
+ . . . (12.350)

Let us compare (12.350) with the corresponding one-particle result (12.318). We see that
the first terms on the right-hand sides of both equations are similar to each other. The third
term on the right-hand side of (12.350), however, has a novel structure, not observed in
the one-particle calculation. It is clear from the comparison of (12.318) and (12.350) that
the second term on the right-hand side of (12.350) can be canceled by the same trick as
before. We assume that the ‘spin part’ f ∈ C

2 ⊗ C
2 of our two-particle ansatz (12.335) is

an eigenvector with eigenvalue �(1)(λ) of the auxiliary transfer matrix tr0
(
T (1)(λ)

)
. Then,
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as in equations (12.319), (12.320),

tr0
(

A(0)
0 (λ)T (1)(λ)

)|F̂〉 = ωL
2 (λ)�(1)(λ)|F̂〉 , (12.351)

D1
1(λ)|F̂〉 = ωL

1 (λ)|F̂〉 , D2
2(λ)|F̂〉 = ωL

3 (λ)|F̂〉 , (12.352)

and the second term on the right-hand side of (12.350) vanishes, if the Bethe ansatz equations(
ω1(λ j )

ω2(λ j )

)L

= �(1)(λ j ) , j = 1, 2 , (12.353)

are satisfied. Amazingly, the Bethe ansatz equations are also sufficient for the third term on
the right-hand side of (12.350) to vanish. This becomes evident after transforming the term
ξ
[
A(λ1)⊗ A(λ2)

]
as follows,

ξ
[
A(λ1)⊗ A(λ2)

] = ξ A1(λ1)A2(λ2)

= ξ A1(λ1)ř1,2(λ1, λ2)P12 P12ř1,2(λ2, λ1)A2(λ2)

= ξ A1(λ1)r1,2(λ1, λ2)r1,2(λ2, λ1)A2(λ2) (12.354)

= ξ tr0
(

A(0)
0 (λ1)T (1)(λ1)

)
tr0

(
A(0)

0 (λ2)T (2)(λ2)
)
.

Thus, the vector |φ(2)〉, equation (12.335), is an eigenvector of the transfer matrix t(λ) with
eigenvalue

�(λ) =
[{

ωL
1 (λ)− ωL

2 (λ)�(1)(λ)
)} 2∏

j=1

1

a(λ, λ j )
+ ωL

3 (λ)

] 2∏
j=1

ρ10(λ, λ j )

ρ8(λ, λ j )
, (12.355)

if f is an eigenvector with eigenvalue �(1)(λ) of the auxiliary transfer matrix tr0
(
T (1)(λ)

)
,

and if the Bethe ansatz equations (12.353) are satisfied.
For the eigenvector f and the corresponding eigenvalue �(1)(λ) we can resort to our

general algebraic Bethe ansatz solution (12.313), (12.314) of the spin problem. Inserting
(12.313) for N = 2 into (12.353) and (12.355) we can summarize our result: the vector
|φ(2)〉 is a two-particle eigenvector of the transfer matrix t(λ) with eigenvalue

�(λ) =
[
ωL

1 (λ)
2∏

j=1

1

a(λ, λ j )
− ωL

2 (λ)
2∏

j=1

1

a(λ, λ j )

M∏
k=1

1

a(µk, λ)

− ωL
2 (λ)

M∏
k=1

1

a(λ,µk)
+ ωL

3 (λ)

] 2∏
j=1

ρ10(λ, λ j )

ρ8(λ, λ j )
, (12.356)

if the Bethe ansatz equations(
ω1(λ j )

ω2(λ j )

)L

=
M∏

k=1

1

a(µk, λ j )
, j = 1, 2 , (12.357)

2∏
j=1

1

a(µk, λ j )
=

M∏
l=1
l �=k

a(µl , µk)

a(µk, µl)
, k = 1, . . . , M , (12.358)
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are satisfied and if f = B(1)(µ1) . . . B(1)(µM )
(1

0

)⊗2
. Because of the su(2) symmetry of the

auxiliary spin problem, the allowed values of M are restricted to 2M ≤ N , i.e., M = 0, 1.
To complete our picture of the two-particle states just constructed we have to inspect

their behaviour under the action of spin- and η-spin operators. For this purpose we must
commute the spin- and η-spin operators through φ(2)(λ1, λ2). The commutation relations
with the vector of creation operators C1(λ) are collected in equations (12.327), (12.329). In
addition, we need the commutation relations with D1

1(λ) and D1
2(λ), which can be extracted

from equations (12.241), (12.245), and (12.250),

[Sα, (D1
1(λ), D1

2(λ))] = 0 , α = x, y, z , (12.359a)

{η−, (D1
1(λ), D1

2(λ))} = (−D2
1(λ), D1

1(λ)− D2
2(λ)) , (12.359b)

[ηz, (D1
1(λ), D1

2(λ))] = (0, D1
2(λ)) , (12.359c)

{η+, (D1
1(λ), D1

2(λ))} = (D1
2(λ), 0) . (12.359d)

Let us consider the spin first. We observe that

ξ (σα
1 + σα

2 ) = 0 , α = x, y, z . (12.360)

Hence, using (12.327), (12.359a), we conclude that

[Sα, φ(2)(λ1, λ2)] = φ(2)(λ1, λ2) 1
2 (σα

1 + σα
2 ) (12.361)

for α = x, y, z. The operators 1
2 (σα

1 + σα
2 ) are the operators of the components of the total

spin for the two-site auxiliary spin problem. Let us define f = B(1)(µ1) . . . B(1)(µM )
(1

0

)⊗2
,

M = 0, 1. Then we know from equations (3.D.19) and (3.D.20) of appendix 3.D that

(σ+1 + σ+2 ) f = 0 , (12.362)

if the Bethe ansatz equations (12.358) are satisfied, and that

Sz f = 1
2 (N − 2M) f , (12.363)

irrespective of the Bethe ansatz equations. It follows from (12.361) and from (12.362),
(12.363) that

S+|φ(2)〉 = 0 , (12.364a)

Sz|φ(2)〉 = 1
2 (N − 2M)|φ(2)〉 . (12.364b)

The algebraic Bethe ansatz states |φ(2)〉 are spin 1
2 (N − 2M) highest weight states.

The equations that encode the lowest weight properties of the two-particle Bethe ansatz
states with respect to η-spin are similar to (12.364),

η−|φ(2)〉 = 0 , (12.365a)

ηz|φ(2)〉 = 1
2 (2− L)|φ(2)〉 . (12.365b)
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The two-particle algebraic Bethe ansatz state |φ(2)〉 is the lowest weight state of a multiplet
of η-spin 1

2 (L − 2). Equation (12.365b) is valid for arbitrary spectral parameters λ1, λ2. For
(12.365a) to be true the Bethe ansatz equations (12.357) must be satisfied.

In order to show (12.365b) one uses (12.329b) and (12.359c). These equations imply

[ηz, φ(2)(λ1, λ2)] = φ(2)(λ1, λ2) . (12.366)

Recalling that ηz|0〉 = − L
2 |0〉, we see that (12.365b) follows from (12.366). For the proof of

(12.365a), except for (12.329a), (12.359b), one has to use equation (12.D.2c) from appendix
12.D. When combined, these equations imply that

η−|φ(2)〉 = ρ6(λ1, λ2)

ρ8(λ1, λ2)
ξ
{[

A(λ1)⊗ A(λ2)
]− D1

1(λ1)D1
1(λ2)

}|F̂〉 . (12.367)

Thus (12.365a) follows, if λ1 and λ2 satisfy the Bethe ansatz equations (12.357).
At this point it is interesting to note that we could have obtained the Bethe ansatz equations

(12.357), (12.358) by taking the ansatz (12.335), (12.344) and merely stipulating that it obey
the two su(2) highest weight equations (12.364a) and (12.365a).

12.6.6 The N-particle transfer matrix eigenvalue

Comparing the expressions (12.288), (12.325), and (12.356) for the transfer matrix eigenval-
ues in the zero-, one-, and two-particle sectors it is natural to guess the following N -particle
generalization:

�(λ) =
[
ωL

1 (λ)
N∏

j=1

1

a(λ, λ j )
− ωL

2 (λ)
N∏

j=1

1

a(λ, λ j )

M∏
k=1

1

a(µk, λ)

−ωL
2 (λ)

M∏
k=1

1

a(λ,µk)
+ ωL

3 (λ)

]
(−1)N

N∏
j=1

ρ10(λ, λ j )

ρ8(λ, λ j )
, (12.368)

where the λ j and µk have to satisfy the Bethe ansatz equations(
ω1(λ j )

ω2(λ j )

)L

=
M∏

k=1

1

a(µk, λ j )
, j = 1, . . . , N , (12.369)

N∏
j=1

1

a(µk, λ j )
=

M∏
l=1
l �=k

a(µl , µk)

a(µk, µl)
, k = 1, . . . , M . (12.370)

These formulae pass all significant tests. First of all, it is easy to see that equations
(12.369) and (12.370) turn into the Lieb-Wu equations (3.95), (3.96) after an appropriate
definition of charge momenta k j and spin rapidities �k . The transformation that connects
the spectral parameter λ with a charge momentum k(λ) was identified in (12.331). We set
k j = k(λ j ), j = 1, . . . , N . Then (12.331) implies that (ω1(λ j )/ω2(λ j ))L = eik j L . In order
to identify the products in equations (12.369), (12.370) with the corresponding products in
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the Lieb-Wu equations we define the spin rapidities �k = −v(µk), k = 1, . . . , M , and use
(12.333) and (12.301).

It is also easy to reproduce our former results (3.97) for the eigenvalues of the shift
operator and for the energy eigenvalues from (12.368). We obtain

ω = �(0) = ei(k1+···+kN ) , (12.371)

E = �′(0)

�(0)
= −2

N∑
j=1

cos(k j )+ 2u(L − N ) . (12.372)

Here the expression for the energy eigenvalues is in accordance with the local Hamiltonian
(12.226), constructed from the transfer matrix, which differs from (2.31) by a constant shift
uL in the energy.

Finally, as a last argument in favour of (12.368)–(12.370), we wish to note that the Bethe
ansatz equations (12.369), (12.370) are the conditions for the residua at the simple poles of
the rational functions 1/a(λ,µ) in (12.368) to vanish.

12.6.7 On the construction of N-particle states

Ramos and Martins [371] proposed a generalization of the two-particle eigenstates (12.335),
(12.344) of the form

|φ(N )〉 = φ(N )(λ1, . . . , λN )|F̂〉 ,
|F̂〉 = f⊗ |0〉 , f ∈ (

C
2
)⊗N

,
(12.373)

whereφ(N )(λ1, . . . , λN ) obeys a second order recursion relation, i.e.,φ(N ) depends onφ(N−1)

and on φ(N−2). Since this is a complicated matter, however, we do not go into the details
and refer the reader to the original work [320, 371] at this point.

12.7 Conclusions

In this chapter we have discussed the algebraic approach to the Hubbard model. Our account
was based on Shastry’s R-matrix [312,391,393,401] and on the quantum inverse scattering
method for fundamental graded models [177,179,276]. In the section on the algebraic Bethe
ansatz we closely followed the work of Martins and Ramos [320,371]. We worked, however,
within a fermionic formulation of the problem and used the slightly modified ‘fermionic
version’ (12.135) of Shastry’s R-matrix. This brings out more clearly the structure of the
transfer matrix eigenvalue which was presented here for the first time in the form (12.368)
reflecting the grading (+,−,−,+) and decaying into a product of a ‘rational part’ (term in
square brackets in (12.368)) with a ‘non-rational’ part. Written in this form the eigenvalue
of the transfer matrix looks similar to the one obtained in [362] for a gl(2|1) based vertex-
model.
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In a sense the results of this chapter explain why the Hubbard model is solvable by Bethe
ansatz. Of course, this is not the only achievement of the algebraic approach. In the next
chapter we shall see that it not only reproduces the results of the coordinate Bethe ansatz,
but enables us to go further. The results of this chapter will turn out to be crucial for the
calculation of the largest eigenvalue of the quantum transfer matrix, the analysis of which
leads to an alternative approach of the thermodynamics of the Hubbard model.

We are convinced that the algebraic approach to the Hubbard model bears some potential
for future applications. Further developments are expected from a better understanding of
the algebraic Bethe ansatz eigenstates, which may finally lead to a proof of the norm formula
(3.120) and to explicit formulae for form factors in the finite volume. We also expect that
Shastry’s R-matrix will eventually be understood as a special case of a more general solution
of the Yang-Baxter equation that generates the two-parametric model proposed by Alcaraz
and Bariev in [15].

The appendices to this chapter contain technical details left out in the main text and a
collection of formulae needed in the algebraic Bethe ansatz calculation in Section 12.6.



Appendices to Chapter 12

12.A A proof that Shastry’s R-matrix satisfies the Yang-Baxter equation

We show below that Shastry’s R-matrix satisfies the Yang-Baxter equation. Our account
closely follows Shiroishi and Wadati [401] who carried out explicitly an idea of Korepanov
[263] to use the so-called tetrahedral Zamolodchikov algebra [263–265] for coupling two
su(2)-XX models into a ‘two-layer’ interacting model. Shiroishi and Wadati discovered
[401] that this model is nothing but Shastry’s spin model (related to the Hubbard model
through a Jordan-Wigner transformation) and [400] that the tetrahedral Zamolodchikov
algebra may be interpreted as a generalization of Shastry’s decorated star triangle relation.

Here we will be slightly more general than the original literature. We will couple two
su(d)-XX models for arbitrary d ≥ 2, i.e., we will show that the general R-matrix (12.110)
satisfies the Yang-Baxter equation. In fact, the proof of Shiroishi and Wadati goes through
without any modification, because the ‘S-matrix’ (see below) occurring in the tetrahedral
Zamolodchikov algebra constructed from the su(d)-XX model R-matrices (12.92) is inde-
pendent of d. This was first noticed (though not emphasized) in [360].

12.A.1 The tetrahedral Zamolodchikov algebra

Let us first of all introduce the tetrahedral Zamolodchikov algebra. We define

R0
jk = R jk(θ j − θk) , R1

jk = R jk(θ j + θk)C j (12.A.1)

for jk = 12, 13, 23. Here R is the R-matrix of the su(d)-XX model defined below (12.92)
and C is the conjugation matrix (12.95).

Lemma 15. The matrices R0
jk and R1

jk introduced in equation (12.A.1) satisfy the defining
relations

Ra
12 Rb

13 Rc
23 = Sabc

de f R f
23 Re

13 Rd
12 , a, b, c = 0, 1 , (12.A.2)

of the tetrahedral Zamolodchikov algebra if S has the only non-vanishing elements

S000
000 = S110

110 = S101
101 = S011

011 = 1 , (12.A.3)

472
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and

S111
100 = U (θ1, θ2, θ3) , S111

010 = V (θ1, θ2, θ3) , S111
001 = W (θ1, θ2, θ3) ,

S100
111 = U (θ1, θ2,−θ3) , S100

010 = W (θ1, θ2,−θ3) , S100
001 = V (θ1, θ2,−θ3) ,

S010
111 = V (θ1,−θ2, θ3) , S010

100 = W (θ1,−θ2, θ3) , S010
001 = U (θ1,−θ2, θ3) ,

S001
111 = W (−θ1, θ2, θ3) , S001

100 = V (−θ1, θ2, θ3) , S001
010 = U (−θ1, θ2, θ3) , (12.A.4)

where the functions U, V , W are defined as

U (θ1, θ2, θ3) = − cos(θ1 + θ3) sin(θ2 + θ3)

sin(θ1 − θ3) cos(θ2 − θ3)
,

V (θ1, θ2, θ3) = − sin(θ1 + θ2) sin(θ2 + θ3)

cos(θ1 − θ2) cos(θ2 − θ3)
,

W (θ1, θ2, θ3) = sin(θ1 + θ2) cos(θ1 + θ3)

cos(θ1 − θ2) sin(θ1 − θ3)
.

(12.A.5)

Proof. Equation (12.A.2) is a set of eight identities, since the indices a, b, c take val-
ues 0, 1 each. The eight identities come in two groups of four, the first group corre-
sponding to (a, b, c) = (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1) the second one to (a, b, c) =
(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1). We first show that due to the properties (12.94), (12.96)
of the conjugation matrix C the identities in the respective groups are mutually equivalent.
Then it is sufficient to explicitly verify one identity in every group. For the first group
the identity R0

12 R0
13 R0

23 = R0
23 R0

13 R0
23 is just the Yang-Baxter equation which we know is

satisfied by the R-matrix of the su(d)-XX model.
Replacing λ by θ1, µ by θ2 and ν by −θ3 in the Yang-Baxter equation (12.21) and

multiplying by C1C2 from the right we obtain

R12(θ1 − θ2)R13(θ1 + θ3)C1 R23(θ2 + θ3)C2

= R23(θ2 + θ3)R13(θ1 + θ3)R12(θ1 − θ2)C1C2

= R23(θ2 + θ3)C2 R13(θ1 + θ3)C1 R12(θ1 − θ2) ,

(12.A.6)

which means that

R0
12 R1

13 R1
23 = R1

23 R1
13 R0

12 . (12.A.7)

Thus, (12.A.2) is satisfied for (a, b, c) = (0, 1, 1). The second equation (12.A.6) follows
from (12.96). The proof for (a, b, c) = (1, 0, 1) and (1, 1, 0) is similar.

Next, let us assume that (12.A.2) is satisfied for (a, b, c) = (1, 1, 1),

R12(θ1 + θ2)C1 R13(θ1 + θ3)C1 R23(θ2 + θ3)C2

= U (θ1, θ2, θ3) R23(θ2 − θ3)R13(θ1 − θ3)R12(θ1 + θ2)C1

+ V (θ1, θ2, θ3) R23(θ2 − θ3)R13(θ1 + θ3)C1 R12(θ1 − θ2)

+W (θ1, θ2, θ3) R23(θ2 + θ3)C2 R13(θ1 − θ3)R12(θ1 − θ2) .

(12.A.8)
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Replacing θ3 by−θ3, multiplying by C1C2 from the right and using (12.94) and (12.96) the
latter equation turns into

R12(θ1 + θ2)C1 R13(θ1 − θ3)R23(θ2 − θ3)

= U (θ1, θ2,−θ3) R23(θ2 + θ3)C2 R13(θ1 + θ3)C1 R12(θ1 + θ2)C1

+ V (θ1, θ2,−θ3) R23(θ2 + θ3)C2 R13(θ1 − θ3)R12(θ1 − θ2)

+W (θ1, θ2,−θ3) R23(θ2 − θ3)R13(θ1 + θ3)C1 R12(θ1 − θ2) .

(12.A.9)

Thus, (12.A.2) is satisfied for (a, b, c) = (1, 0, 0) if and only if it is satisfied for (a, b, c) =
(1, 1, 1). One shows in a similar way that the cases (a, b, c) = (0, 1, 0), (0, 0, 1) as well are
equivalent to (a, b, c) = (1, 1, 1).

The remaining step in the proof of our lemma is the verification of equation (12.A.8).
First of all, using (12.94), (12.96) we deduce that (12.A.8) is equivalent to

Ř23(θ1 + θ2)Ř12(−θ1 − θ3)Ř23(−θ2 − θ3) = U Ř12(θ2 − θ3)Ř23(θ1 − θ3)Ř12(θ1 + θ2)

+ V Ř12(θ2 − θ3)Ř23(θ1 + θ3)Ř12(−θ1 + θ2)(Id2 − 2Q2
12)

+W Ř12(θ2 + θ3)Ř23(θ1 − θ3)Ř12(−θ1 + θ2) .

(12.A.10)

Here we dropped the arguments of the functions U, V, W and used the second equation
(12.94b) in order to replace C1C2 by Id2 − 2Q2

12. Inserting the definition (12.83) of the
matrix Ř into (12.A.10), the equation turns into a polynomial identity in Q12 and Q23 with
trigonometric coefficients depending on θ1, θ2, θ3. Now Q is a representation of the free
fermion algebra (12.81). This suggest that upon substituting A1 = Q12, A2 = Q23 equation
(12.A.10) may be valid as an identity in the free fermion algebra.

To proceed with the proof we exploit (12.81) to obtain the useful formula(
c1+s1 A2 + (1− c1)A2

2

)(
c2 + s2 A1 + (1− c2)A2

1

)(
c3 + s3 A2 + (1− c3)A2

2

)
= c1c2c3 + A1 s2c3 + A2(s1c2 + s3)+ A1 A2 c1s2s3 + A2 A1 s1s2c3

+ A2
1 c1(1− c2)c3 + A2

2

(
c2(1− c1c3)+ s1s3

)
+ A1 A2

2 s2(c1 − c3)+ A2 A2
1(1− c2)(s1 − s3)

+ A2
1 A2

2(1− c2)(1− c1c3 − s1s3) .

(12.A.11)

Here the coefficients s1, c1, s2, . . . are still arbitrary. Interchanging the indices of A1 and
A2 we obtain(

c1+s1 A1 + (1− c1)A2
1

)(
c2 + s2 A2 + (1− c2)A2

2

)(
c3 + s3 A1 + (1− c3)A2

1

)
= c1c2c3 + A1(s1c2 + s3)+ A2 s2c3 + A1 A2 s1s2c3 + A2 A1 c1s2s3

+ A2
1

(
c2(1− c1c3)+ s1s3

)+ A2
2 c1(1− c2)c3

+ A1 A2
2(1− c2)(s1 − s3)+ A2 A2

1 s2(c1 − c3)

+ A2
2 A2

1(1− c2)(1− c1c3 − s1s3) .

(12.A.12)

Multiplying by (1− 2A2
1) from the right and using once more the free fermion algebra
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(12.81) gives us(
c1+s1 A1 + (1− c1)A2

1

)(
c2 + s2 A2 + (1− c2)A2

2

)(
c3 + s3 A1 + (1− c3)A2

1

) · (1− 2A2
1)

= c1c2c3 − A1(s1c2 + s3)+ A2 s2c3 + A1 A2 s1s2c3 − A2 A1 c1s2s3

− A2
1

(
c2(1+ c1c3)+ s1s3

)+ A2
2 c1(1− c2)c3

− A1 A2
2(1− c2)(s1 − s3)− A2 A2

1 s2(c1 + c3)

+ A2
1 A2

2(1− c2)(s1s3 − c1c3 − 1) .

(12.A.13)

Let us replace Q12 by A1 and Q23 by A2 in equation (12.A.10). Then the term on the left-
hand side of (12.A.10) is of the form (12.A.11), the first and the third terms on the right-hand
side are of the form (12.A.12), and the second term on the right-hand side is of the form
(12.A.13). Upon appropriately specifying the coefficients s1, c1, s2, . . . and comparing the
terms in front of the ten independent monomials 1, A1, A2, . . . , A2

1 A2
2 we end up with ten

linear equations for U, V, W . The terms multiplying 1, A2, A1 A2, for instance, yield

cos(θ1 + θ2) cos(θ1 + θ3) cos(θ2 + θ3) = U cos(θ2 − θ3) cos(θ1 − θ3) cos(θ1 + θ2)

+ V cos(θ2 − θ3) cos(θ1 + θ3) cos(θ1 − θ2)

+W cos(θ2 + θ3) cos(θ1 − θ3) cos(θ1 − θ2) ,

sin(θ1 + θ2) cos(θ1 + θ3)− sin(θ2 + θ3) = U sin(θ1 − θ3) cos(θ1 + θ2)

+ V sin(θ1 + θ3) cos(θ1 − θ2)

+W sin(θ1 − θ3) cos(θ1 − θ2) ,

cos(θ1 + θ2) sin(θ1 + θ3) sin(θ2 + θ3) = U sin(θ2 − θ3) sin(θ1 − θ3) cos(θ1 + θ2)

+ V sin(θ2 − θ3) sin(θ1 + θ3) cos(θ1 − θ2)

+W sin(θ2 + θ3) sin(θ1 − θ3) cos(θ1 − θ2) .

(12.A.14)

These equations have the unique solution (12.A.5). The reader may easily generate the
remaining 7 linear equations and may verify that they are solved by U, V, W , equation
(12.A.5), which completes the proof of the lemma. �

Korepanov [264, 265] studied the case d = 2 in a more general context. Instead of the
trigonometric R-matrix (12.93) he considered a more general free-fermion R-matrix param-
eterized by Jacobi-elliptic functions. For this more general R-matrix (in the case d = 2) he
could show that the linear space spanned by the products Ra

23 Rb
13 Rc

12 for a, b, c,= 0, 1 and
fixed values of the spectral parameters is eight-dimensional. However, in the trigonometric
limit considered here these products are no longer linearly independent [263].

Lemma 16. The products Ra
23 Rb

13 Rc
12 (see equation (12.A.1)) satisfy the linear relations

R1
23 R1

13 R1
12 = X R0

23 R0
13 R1

12 + Y R0
23 R1

13 R0
12 + Z R1

23 R0
13 R0

12 , (12.A.15a)

R0
23 R0

13 R0
12 = X−1 R1

23 R1
13 R0

12 + Y−1 R1
23 R0

13 R1
12 + Z−1 R0

23 R1
13 R1

12 (12.A.15b)
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with X, Y, Z defined by

X (θ1, θ2, θ3) = − sin(θ1 + θ3) cos(θ2 + θ3)

sin(θ1 − θ3) cos(θ2 − θ3)
,

Y (θ1, θ2, θ3) = cos(θ1 + θ2) cos(θ2 + θ3)

cos(θ1 − θ2) cos(θ2 − θ3)
,

Z (θ1, θ2, θ3) = cos(θ1 + θ2) sin(θ1 + θ3)

cos(θ1 − θ2) sin(θ1 − θ3)
.

(12.A.16)

Proof. The proof relies on the fact that the equations (12.A.15) are equivalent to

Ř12(θ2 + θ3)Ř23(θ1 + θ3)Ř12(θ1 + θ2)

= X Ř12(θ2 − θ3)Ř23(θ1 − θ3)Ř12(θ1 + θ2)(Id2 − 2Q2
12)

+ Y Ř12(θ2 − θ3)Ř23(θ1 + θ3)Ř12(−θ1 + θ2)

+ Z Ř12(θ2 + θ3)Ř23(θ1 − θ3)Ř12(−θ1 + θ2)(Id2 − 2Q2
12)

(12.A.17)

and

Ř12(θ2 − θ3)Ř23(θ1 − θ3)Ř12(θ1 − θ2)

= X−1 Ř12(θ2 + θ3)Ř23(θ1 + θ3)Ř12(θ1 − θ2)(Id2 − 2Q2
12)

+ Y−1 Ř12(θ2 + θ3)Ř23(θ1 − θ3)Ř12(−θ1 − θ2)

+ Z−1 Ř12(θ2 − θ3)Ř23(θ1 + θ3)Ř12(−θ1 − θ2)(Id2 − 2Q2
12) ,

(12.A.18)

respectively. Replacing Q12 by A1 and Q23 by A2 and comparing the resulting equations
with (12.A.12) and (12.A.13) we obtain two sets of ten linear equations which have the
unique solution (12.A.16) each. �

12.A.2 The proof

The proof of Shiroishi and Wadati is based on the lemmata 15 and 16. Quite generally, these
lemmata can be used to study the question whether a function α(λ,µ) exists such that

Ř(λ,µ) = ř (λ− µ)+ α(λ,µ) ř (λ+ µ)(C↑C↓ ⊗ Id2 ) (12.A.19)

solves the Yang-Baxter equation (12.30). Here the notation refers to Section (12.2.3). The
matrix ř (λ) is a product of two R-matrices of the su(d)-XX model embedded into End(Cd ⊗
C

d ⊗ C
d ⊗ C

d ) ∼= End(Cd2 ⊗ C
d2

) (see (12.99)). Furthermore, C↑ = C ⊗ Id and C↓ =
Id ⊗ C , where C is the conjugation matrix (12.95).

We shall show below that Ř, equation (12.A.19), is a solution of the Yang-Baxter equation
(12.30) if

α(λ,µ) = cos(λ− µ)sh(h(λ)− h(µ))

cos(λ+ µ)ch(h(λ)− h(µ))
(12.A.20)
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where h(λ) is implicitly defined by the constraint equation

sh(2h) = u sin(2λ) . (12.A.21)

The R-matrix (12.A.19) with (12.A.20) and (12.A.21) is related to the su(d) version (12.110)
of Shastry’s R-matrix through a gauge transformation (see below lemma 10) and through
multiplication by β(λ,µ), equation (12.115). Thus, the su(d) version (12.110) of Shastry’s
R-matrix satisfies the Yang-Baxter equation.

We begin with adjusting our notation to the previous subsection where the tetrahedral
Zamolodchikov algebra was introduced. Instead of λ,µ, ν we shall write θ1, θ2, θ3. The
matrices

r0
σ jk = rσ jk(θ j − θk) , r1

σ jk = rσ jk(θ j + θk)Cσ
j (12.A.22)

for σ =↑,↓ and jk = 12, 13, 23 generate two commuting representations of the tetrahedral
Zamolodchikov algebra (12.A.2) with S-matrix (12.A.3), (12.A.4) and, in addition, satisfy
(12.A.15). Let us consider the ansatz

R jk = r0
↑ jkr0

↓ jk + α jkr1
↑ jkr1

↓ jk (12.A.23)

and let us insert it into the Yang-Baxter equation R12 R13 R23 = R23 R13 R12. Using (12.A.3)
we obtain

α12
(
r1
↑12r0

↑13r0
↑23 r1

↓12r0
↓13r0

↓23 − r0
↑23r0

↑13r1
↑12 r0

↓23r0
↓13r1

↓12

)
+ α13

(
r0
↑12r1

↑13r0
↑23 r0

↓12r1
↓13r0

↓23 − r0
↑23r1

↑13r0
↑12 r0

↓23r1
↓13r0

↓12

)
+ α23

(
r0
↑12r0

↑13r1
↑23 r0

↓12r0
↓13r1

↓23 − r1
↑23r0

↑13r0
↑12 r1

↓23r0
↓13r0

↓12

)
+ α12α13α23

(
r1
↑12r1

↑13r1
↑23 r1

↓12r1
↓13r1

↓23 − r1
↑23r1

↑13r1
↑12 r1

↓23r1
↓13r1

↓12

) = 0 .

(12.A.24)

We prefer to continue with the more handy notation

aσ = r1
σ12r0

σ13r0
σ23 , āσ = r0

σ23r0
σ13r1

σ12 ,

bσ = r0
σ12r1

σ13r0
σ23 , b̄σ = r0

σ23r1
σ13r0

σ12 ,

cσ = r0
σ12r0

σ13r1
σ23 , c̄σ = r1

σ23r0
σ13r0

σ12 ,

dσ = r1
σ12r1

σ13r1
σ23 , d̄σ = r1

σ23r1
σ13r1

σ12 ,

(12.A.25)

σ =↑,↓. Then (12.A.24) turns into

α12(a↑a↓ − ā↑ā↓)+ α13(b↑b↓ − b̄↑b̄↓)+ α23(c↑c↓ − c̄↑c̄↓)

+α12α13α23(d↑d↓ − d̄↑d̄↓) = 0 . (12.A.26)

From the tetrahedral Zamolodchikov algebra (12.A.2) we extract the relations

aσ = S100
010 b̄σ + S100

001 c̄σ + S100
111 d̄σ ,

bσ = S010
001 c̄σ + S010

111 d̄σ + S010
100 āσ ,

cσ = S001
111 d̄σ + S001

100 āσ + S001
010 b̄σ ,

dσ = S111
100 āσ + S111

010 b̄σ + S111
001 c̄σ ,

(12.A.27)
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σ =↑,↓. Furthermore, equation (12.A.15a) gives us

d̄σ = Xāσ + Y b̄σ + Zc̄σ , (12.A.28)

σ =↑,↓. Inserting (12.A.28) into (12.A.27) we obtain

aσ = X S100
111 āσ +

(
S100

010 + Y S100
111

)
b̄σ +

(
S100

001 + Z S100
111

)
c̄σ ,

bσ =
(
S010

100 + X S010
111

)
āσ + Y S010

111 b̄σ +
(
S010

001 + Z S010
111

)
c̄σ ,

cσ =
(
S001

100 + X S001
111

)
āσ +

(
S001

010 + Y S001
111

)
b̄σ + Z S001

111 c̄σ ,

dσ = S111
100 āσ + S111

010 b̄σ + S111
001 c̄σ ,

(12.A.29)

σ =↑,↓. Finally, we insert (12.A.28) and (12.A.29) into (12.A.26). We obtain a sum over
six independent terms, ā↑ā↓, b̄↑b̄↓, c̄↑c̄↓, ā↑b̄↓ + ā↓b̄↑, b̄↑c̄↓ + b̄↓c̄↑, c̄↑ā↓ + c̄↓ā↑. The
R-matrix (12.A.23) satisfies the Yang-Baxter equation if the coefficients in front of these
terms vanish, i.e., if

α12
((

X S100
111

)2 − 1
)+ α13

(
S010

100 + X S010
111

)2 + α23
(
S001

100 + X S001
111

)2

+ α12α13α23
((

S111
100

)2 − X2
) = 0 , (12.A.30)

α12
(
S100

010 + Y S100
111

)2 + α13
((

Y S010
111

)2 − 1
)+α23

(
S001

010 + Y S001
111

)2

+ α12α13α23
((

S111
010

)2 − Y 2
) = 0 , (12.A.31)

α12
(
S100

001 + Z S100
111

)2 + α13
(
S010

001 + Z S010
111

)2 + α23
((

Z S001
111

)2 − 1
)

+ α12α13α23
((

S111
001

)2 − Z2
) = 0 , (12.A.32)

α12 X S100
111

(
S100

010 + Y S100
111

)+ α13Y S010
111

(
S010

100 + X S010
111

)
+ α23

(
S001

100 + X S001
111

)(
S001

010 + Y S001
111

)+ α12α13α23
(
S111

100 S111
010 − XY

) = 0 , (12.A.33)

α12
(
S100

010 + Y S100
111

)(
S100

001 + Z S100
111

)+ α13Y S010
111

(
S010

001 + Z S010
111

)
+ α23 Z S001

111

(
S001

010 + Y S001
111

)+ α12α13α23
(
S111

010 S111
001 − Y Z

) = 0 , (12.A.34)

α12 X S100
111

(
S100

001 + Z S100
111

)+ α13
(
S010

100 + X S010
111

)(
S010

001 + Z S010
111

)
+ α23 Z S001

111

(
S001

100 + X S001
111

)+ α12α13α23
(
S111

100 S111
001 − X Z

) = 0 . (12.A.35)

Here we have to insert the explicit expressions (12.A.4), (12.A.5) of the ‘S-matrix’ elements
and (12.A.16) of the coefficients X , Y and Z . The resulting equations simplify by application
of the addition theorems for trigonometric functions. All in all there remain six equations
of the form

α12 A + α13 B + α23C + α12α13α23 D = 0 . (12.A.36)

By taking appropriate linear combinations of these equations they can be reduced to just
two linearly independent equations, e.g.,

α12 sin(2(θ1 − θ3))− α13 sin(2(θ1 − θ2))+ α12α13α23 sin(2(θ2 + θ3)) = 0 , (12.A.37)

α12 sin(2(θ1 + θ2))− α13 sin(2(θ1 + θ3))+ α23 sin(2(θ2 + θ3)) = 0 , (12.A.38)
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or, equivalently,

α23 sin(2(θ2 + θ3)) = −α12 sin(2(θ1 + θ2))+ α13 sin(2(θ1 + θ3))

= 1

α12
sin(2(θ1 − θ2))− 1

α13
sin(2(θ1 − θ3)) . (12.A.39)

It is easy to see that the latter equation is solved by α jk = α(θ j , θk), jk = 12, 13, 23 with
α(λ,µ) according to (12.A.20) and(12.A.21), which completes the proof.

Remark. It should be clear that also two su(d)-XX models with different values of d , say
d1 and d2, can be coupled to a generalization of Shastry’s R-matrix.

12.B A proof of the inversion formula

In this appendix we supply a proof originally given in [177] of the general inversion for-
mula (12.268) for fundamental graded and inhomogeneous models. The proof relies on the
properties of an appropriate generalization of the shift operator whose construction is our
first concern here.

The inhomogeneous monodromy matrix as defined in (12.164) is an ordered product
of L-matrices. In the following we shall indicate the order of the factors by supplying
subscripts to the monodromy matrix

T1...L (λ; ν1, . . . , νL ) = T (λ; ν1, . . . , νL ) = LL (λ, νL ) . . .L1(λ, ν1) . (12.B.1)

As can be seen from equations (12.173) and (12.174) the fermionic R-operator
R f

j j+1(ν j , ν j+1) interchanges the two neighbouring factors L j+1(λ, ν j+1) and L j (λ, ν j )
in the monodromy matrix. Since the symmetric group SL is generated by the transpositions
of nearest neighbours, the L-matrices on the right hand side of (12.B.1) can be arbitrarily
reordered by application of an appropriate product of fermionic R-operators. This means
that for every τ ∈ SL there exists an operator Rτ

1...L (ν1, . . . , νL ), which is a product of
fermionic R-operators and induces the action of the permutation τ ∈ SL on the inhomoge-
neous monodromy matrix,

Rτ
1...L (ν1, . . . , νL )T1...L (λ; ν1, . . . , νL )

= Tτ (1)...τ (L)(λ; ντ (1), . . . , ντ (L))Rτ
1...L (ν1, . . . , νL ) . (12.B.2)

The non-graded analogue of this operator was introduced in [316]. The generalized shift
operator we are looking for is a special case of Rτ

1...L (ν1, . . . , νL ) for τ being a cyclic
permutation.

Let us first of all construct the operator Rτ
1...L (ν1, . . . , νL ) explicitly for arbitrary

τ ∈ SL . We shall use the shorthand notations Rτ
1...L = Rτ

1...L (ν1, . . . , νL ), T1...L (λ) =
T1...L (λ; ν1, . . . , νL ), and R f

jk = R f
jk(ν j , νk) whenever the order of the inhomogeneities

ν1, . . . , νL is the same as the order of the corresponding lattice sites. For j = 1, . . . , L − 1
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define π j ∈ SL by

π j (k) =


j + 1 if k = j ,

j if k = j + 1,

k else.

(12.B.3)

The π j ∈ SL are transpositions of nearest neighbours. It follows from (12.173), (12.174)
that

R f
j j+1 T1...L (λ) = Tπ j (1)...π j (L)(λ)R f

j j+1 . (12.B.4)

This means that Rπ j

1...L = R f
j j+1. Choose τ ∈ SL arbitrarily. Then

R f
τ ( j),τ ( j+1) Tτ (1) ... τ (L)(λ) = Tτπ j (1) ... τπ j (L)(λ)R f

τ ( j),τ ( j+1) . (12.B.5)

Since the transpositions of nearest neighboursπ j , j = 1, . . . , L − 1, generate the symmetric
group SL , there is a finite sequence ( jp)n

p=1, such that τ = π j1 . . . π jn . Let τp = π j1 . . . π jp ,
p = 1, . . . , n and τ0 = id. Then τ = τn , and, using (12.B.5), we conclude that

R f
τp−1( jp),τp−1( jp+1) Tτp−1(1) ... τp−1(L)(λ) = Tτp(1) ... τp(L)(λ)R f

τp−1( jp),τp−1( jp+1) , (12.B.6)

for p = 1, . . . , n. By iteration of the latter equation we obtain

R f
τn−1( jn ),τn−1( jn+1) . . .R

f
τ1( j2),τ1( j2+1)R

f
j1, j1+1 T1...L (λ)

= Tτ (1) ... τ (L)(λ)R f
τn−1( jn ),τn−1( jn+1) . . .R

f
τ1( j2),τ1( j2+1)R

f
j1, j1+1 . (12.B.7)

Thus, we have constructed an explicit expression for the operator Rτ
1...L ,

Rτ
1...L = R f

τn−1( jn ),τn−1( jn+1) . . .R
f
τ1( j2),τ1( j2+1)R

f
j1, j1+1 . (12.B.8)

Let us now specify to the case, when τ is equal to the cyclic permutation γ = π1 . . . πL−1.
Then jp = p, p = 1, . . . , L − 1, in our above construction, and γp = π1 . . . πp. Thus,
γp−1( jp) = γp−1(p) = 1, and γp−1( jp + 1) = γp−1(p + 1) = p + 1. Using (12.B.8) we
obtain

Rγ

1...L = R f
1LR

f
1L−1 . . .R

f
12 . (12.B.9)

The operator Rγ

1...L induces a shift by one site on the inhomogeneous monodromy matrix.
Now (12.B.5) implies that

Rγ

γ (1)...γ (L)Tγ (1)...γ (L)(λ) = Tγ 2(1)...γ 2(L)(λ)Rγ

γ (1)...γ (L) . (12.B.10)

It follows by multiplication by Rγ

1...L from the right, that

Rγ 2

1...L = Rγ

γ (1)...γ (L)R
γ

1...L . (12.B.11)

Iterating the above steps we arrive at the following lemma.

Lemma 17. The operator

Rγ n

1...L = Rγ

γ n−1(1)...γ n−1(L)R
γ

γ n−2(1)...γ n−2(L) . . .R
γ

1...L , (12.B.12)
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where

Rγ

γ p−1(1)...γ p−1(L) = R f
pp−1 . . .R

f
p1R

f
pL . . .R f

pp+1 , (12.B.13)

generates a shift by n sites on the inhomogeneous lattice, i.e.,

Rγ n

1...L T1...L (λ) = Tn+1...L1...n(λ)Rγ n

1...L . (12.B.14)

Since γ L = id, we conclude from (12.B.14) that

Rγ L

1...L T1...L (λ) = T1...L (λ)Rγ L

1...L . (12.B.15)

If R f
jk is unitary, we have the following stronger result.

Lemma 18. Let R f
jk be unitary (cf equation (12.178)). Then

Rγ L

1...L = id . (12.B.16)

Proof. Let us first prove the case L = 2. Then Rγ

12 = R f
12 and Rγ 2

12 = Rγ

γ 1γ 2R
γ

12 =
Rγ

21R
γ

12 = R f
21R

f
12 = id. The last equation holds, since by hypothesis, R f

12 is unitary.
For the case L > 2 we start from the Yang-Baxter equation (12.175),

R f
L ,L−nR

f
L , jR

f
L−n, j = R f

L−n, jR
f
L , jR

f
L ,L−n . (12.B.17)

By iterated use of (12.B.17) we obtain

R f
L ,L−n(R f

L ,L−n−1 . . .R
f
L ,1)(R f

L−n,L−n−1 . . .R
f
L−n,1)

= (R f
L−n,L−n−1 . . .R

f
L−n,1)(R f

L ,L−n−1 . . .R
f
L ,1)R f

L ,L−n , (12.B.18)

for n = 1, . . . , L − 2.
Let us introduce the truncated cyclic permutations γp = π1 . . . πp−1, for p = 2, . . . , L ,

as above. γp induces a cyclic shift on the p-tuple (1, . . . , p) and leaves the (L − p)-tuple
(p + 1, . . . , L) invariant. Using (12.B.18), it follows that

R f
L ,L−n . . .R f

L ,1 R
γ

γ L−n−1(1) ... γ L−n−1(L)

= R f
L ,L−n (R f

L ,L−n−1 . . .R
f
L ,1)(R f

L−n,L−n−1 . . .R
f
L−n,1)

× (R f
L−n,L . . .R f

L−n,L−n+1)

= (R f
L−n,L−n−1 . . .R

f
L−n,1)(R f

L ,L−n−1 . . .R
f
L ,1)

×R f
L ,L−nR

f
L−n,L︸ ︷︷ ︸

= id

(R f
L−n,L−1 . . .R

f
L−n,L−n+1)

= (R f
L−n,L−n−1 . . .R

f
L−n,1)(R f

L−n,L−1 . . .R
f
L−n,L−n+1)

× (R f
L ,L−n−1 . . .R

f
L ,1)

= RγL−1

γ L−n−1
L−1 (1), ... ,γ L−n−1

L−1 (L−1), L
R f

L ,L−n−1 . . .R
f
L ,1 .

(12.B.19)
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Hence,

Rγ L

1...L = Rγ

γ L−1(1)...γ L−1(L) R
γ

γ L−2(1)...γ L−2(L) . . .R
γ

1...L

= R f
L ,L−1 . . .R

f
L ,1 R

γ

γ L−2(1)...γ L−2(L) R
γ

γ L−3(1)...γ L−3(L) . . .R
γ

1...L

= RγL−1

γ L−2
L−1 (1), ... ,γ L−2

L−1 (L−1), L
R f

L ,L−2 . . .R
f
L ,1 R

γ

γ L−3(1)...γ L−3(L) . . .R
γ

1...L

= Rγ L−1
L−1

1...L = Rγ L−2
L−2

1...L = · · · = Rγ 2
2
1...L . (12.B.20)

Since γ2 = π1 and Rπ1
1...L = R f

12, the latter equation reduces the proof of lemma 18 for
L > 2 to the case L = 2, which was proven above. �

Our next lemma establishes a connection between the inhomogeneous monodromy matrix
(12.B.1) and the shift operator (12.B.12).

Lemma 19. Let X = Xα
βeβ

α ∈ End(Cm+n) and let the R-matrix R(λ,µ) be regular, say,

Rαβ

γ δ (µ,µ) = δαδ δ
β
γ . Then

str(XTn...L1...n−1(νn)) = (−1)p(α)+p(α)p(β) Xα
βen

β
α R

γ

γ n−11...γ n−1 L . (12.B.21)

Proof.

str(XTn...L1...n−1(νn))

= (−1)p(α) Xα
β Ln−1

β

βn−1
(νn, νn−1) . . .L1

β2
β1

(νn, ν1)LL
β1
βL

(νn, νL )

× . . .Ln+1
βn+2
βn+1

(νn, νn+1) (−1)p(α)p(βn+1) en
βn+1
α

= (−1)

{
p(α)+p(α)p(β)+∑L

j=1
j �=n

(p(β j )+p(α j )p(β j ))
}

× Xα
β δβαn−1

δβn−1
αn−2

. . . δβ2
α1
δβ1
αL
δβL
αL−1

. . . δβn+2
αn+1

en
βn+1
α

× Ln+1
αn+1
βn+1

(νn, νn+1) . . .LL
αL
βL

(νn, νL )L1
α1
β1

(νn, ν1)

× . . .Ln−1
αn−1
βn−1

(νn, νn−1)

= (−1)

{
p(α)+p(α)p(β)+∑L

j=1
j �=n,n+1

(p(β j )+p(α j )p(β j ))
}

× Xα
β en

β
αen

βn−1
αn−1

en
βn−2
αn−2

. . . en
β1
α1

en
βL
αL

. . . en
βn+2
αn+2

× (−1)p(βn+1)+p(αn+1)p(βn+1)en
βn+1
αn+1

Ln+1
αn+1
βn+1

(νn, νn+1)

× Ln+2
αn+2
βn+2

(νn, νn+2) . . .LL
αL
βL

(νn, νL )L1
α1
β1

(νn, ν1)

× . . .Ln−1
αn−1
βn−1

(νn, νn−1)

= (−1)

{
p(α)+p(α)p(β)+∑L

j=1
j �=n,n+1

(p(β j )+p(α j )p(β j ))
}

× Xα
β en

β
αen

βn−1
αn−1

en
βn−2
αn−2

. . . en
β1
α1

en
βL
αL

. . . en
βn+2
αn+2

× Ln+2
αn+2
βn+2

(νn, νn+2) . . .LL
αL
βL

(νn, νL )L1
α1
β1

(νn, ν1)

× . . .Ln−1
αn−1
βn−1

(νn, νn−1)R f
n,n+1
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= (−1)p(α)+p(α)p(β) Xα
βen

β
α R

f
n,n−1 . . .R

f
n,1R

f
n,L . . .R f

n,n+1

= (−1)p(α)+p(α)p(β) Xα
β en

β
αR

γ

γ n−11...γ n−1 L . (12.B.22)

Here we used the regularity in the first equation. In the second equation we reversed the
order of factors and introduced a product of Kronecker deltas. In the third equation we used
the identity

δβαn−1
δβn−1
αn−2

. . . δβ2
α1
δβ1
αL
δβL
αL−1

. . . δβn+2
αn+1

en
βn+1
α = en

β
αen

βn−1
αn−1

en
βn−2
αn−2

. . . en
β1
α1

en
βL
αL

. . . en
βn+1
αn+1

,

(12.B.23)

which follows from (12.147). In the fourth equation we used that

R f
jk = (−1)p(β)+p(α)p(β)e j

β
α
Lk

α
β(ν j , νk) (12.B.24)

and the fact that R f
jk is even. In the fifth equation we iterated the two previous steps of our

calculation. Finally in the sixth equation the formula (12.B.13) entered. �

Setting Xα
β = δαβ in (12.B.21) and using the cyclic invariance of the super trace we obtain

the following corollary to lemma 19.

Corollary.

Rγ

γ n−11...γ n−1 L = str(T1...L (νn)) . (12.B.25)

Equation (12.B.25) is the inhomogeneous analogue of equation (2.41).

Lemma 20. We have the following expression for the shift operator in terms of the elements
of the monodromy matrix,

Rγ n

1...L =
n∏

j=1

str(T1...L (ν j )) . (12.B.26)

If R(λ,µ) is unitary (cf equation (3.B.26)), then Rγ n

1...L is invertible with inverse(
Rγ n

1...L

)−1
=

L∏
j=n+1

str(T1...L (ν j )) . (12.B.27)

Proof. The lemma follows from lemma 17, lemma 18 and the corollary to lemma 19. �

We are now prepared to prove our main result, equation (12.268).

Proof of equation (12.268). Using lemma 17, lemma 19, the corollary to lemma 19 and
lemma 20 we obtain

str(XTn...L1...n−1(νn)) = Rγ n−1

1...Lstr(XT1...L (νn))
(
Rγ n−1

1...L

)−1

=
n−1∏
j=1

str(T1...L (ν j )) · str(XT1...L (νn)) ·
L∏

j=n

str(T1...L (ν j ))

= (−1)p(α)+p(α)p(β) Xα
βen

β
α str(T1...L (νn)) .

(12.B.28)
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It follows that

(−1)p(α′)+p(α′)p(β ′) Xα′
β ′en

β ′
α′

=
n−1∏
j=1

str(T1...L (ν j )) · str(XT1...L (νn)) ·
L∏

j=n+1

str(T1...L (ν j )) . (12.B.29)

Finally, upon specifying Xα′
β ′ = (−1)p(α′)+p(α′)p(β ′) δα

′
α δ

β

β ′ , we arrive at equation (12.268). �

12.C A list of commutation relations

Here is a list of the commutation relations contained in equation (12.280):

ρ4ř1(A ⊗ Ā)− ρ6 K (C ⊗ C̄) = ρ4( Ā ⊗ A)ř1 + ρ6(B̄ ⊗ B)K t (12.C.1a)

ρ4ř1(A ⊗ B̄)− ρ6 K (C ⊗ D̄) = Ā ⊗ B + ρ9(B̄ ⊗ A)J t (12.C.1b)

ρ4ř1(B ⊗ Ā)+ ρ6 K (D ⊗ C̄) = ρ10( Ā ⊗ B)J + B̄ ⊗ A (12.C.1c)

ρ4ř1(B ⊗ B̄)+ ρ6 K (D ⊗ D̄) = ρ6( Ā ⊗ A)K + ρ1(B̄ ⊗ B)ř2 (12.C.1d)

A ⊗ C̄ + ρ10 J (C ⊗ Ā) = ρ4( Ā ⊗ C)ř1 − ρ6(B̄ ⊗ D)K t (12.C.1e)

A ⊗ D̄ + ρ10 J (C ⊗ B̄) = Ā ⊗ D − ρ9(B̄ ⊗ C)J t (12.C.1f)

−B ⊗ C̄ + ρ10 J (D ⊗ Ā) = ρ10( Ā ⊗ D)J − B̄ ⊗ C (12.C.1g)

−B ⊗ D̄ + ρ10 J (D ⊗ B̄) = ρ6( Ā ⊗ C)K − ρ1(B̄ ⊗ D)ř2 (12.C.1h)

ρ9 J t (A ⊗ C̄)+ C ⊗ Ā = ρ4(C̄ ⊗ A)ř1 + ρ6(D̄ ⊗ B)K t (12.C.1i)

ρ9 J t (A ⊗ D̄)+ C ⊗ B̄ = C̄ ⊗ B + ρ9(D̄ ⊗ A)J t (12.C.1j)

−ρ9 J t (B ⊗ C̄)+ D ⊗ Ā = ρ10(C̄ ⊗ B)J + D̄ ⊗ A (12.C.1k)

−ρ9 J t (B ⊗ D̄)+ D ⊗ B̄ = ρ6(C̄ ⊗ A)K + ρ1(D̄ ⊗ B)ř2 (12.C.1l)

ρ6 K t (A ⊗ Ā)− ρ1ř2(C ⊗ C̄) = −ρ4(C̄ ⊗ C)ř1 + ρ6(D̄ ⊗ D)K t (12.C.1m)

ρ6 K t (A ⊗ B̄)− ρ1ř2(C ⊗ D̄) = −C̄ ⊗ D + ρ9(D̄ ⊗ C)J t (12.C.1n)

ρ6 K t (B ⊗ Ā)+ ρ1ř2(D ⊗ C̄) = −ρ10(C̄ ⊗ D)J + (D̄ ⊗ C) (12.C.1o)

ρ6 K t (B ⊗ B̄)+ ρ1ř2(D ⊗ D̄) = −ρ6(C̄ ⊗ C)K + ρ1(D̄ ⊗ D)ř2 . (12.C.1p)

The notation is explained below equation (12.280).

12.D Some identities needed in the construction of the two-particle algebraic
Bethe ansatz states

This appendix contains a number of formulae which are needed in the construction of the
two-particle algebraic Bethe ansatz states and which can be extracted from (12.C.1) using
the same projection technique as in Section 12.6.4. Since the ansatz for the two-particle
eigenvector contains a term D1

2(λ1)D1
1(λ2), we need first of all the following commutation
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relations in addition to (12.292), (12.295), and (12.307),

D1
1(λ)D1

1(µ) = D1
1(µ)D1

1(λ)

D1
1(λ)D1

2(µ) = −ρ4

ρ7
D1

2(µ)D1
1(λ)+ ρ5

ρ7
D1

2(λ)D1
1(µ)+ ρ6

ρ7

(
C1(λ)⊗ C1(µ)

)
ξt

D2
2(λ)D1

1(µ) = D1
1(µ)D2

2(λ)+ ρ3

ρ8

[
D1

2(λ)D2
1(µ)− D1

2(µ)D2
1(λ)

]
+ ρ6

ρ8

[
ξ
(
B2(λ)⊗ B1(µ)

)+ (
C1(µ)⊗ C2(λ)

)
ξt]

D2
2(λ)D1

2(µ) = −ρ1

ρ8
D1

2(µ)D2
2(λ)+ ρ3

ρ8
D1

2(λ)D2
2(µ)+ ρ6

ρ8
ξ
(
B2(λ)⊗ B2(µ)

)
A(λ)D1

1(µ) = D1
1(µ)A(λ)+ 1

ρ9

[
C1(µ)⊗ B1(λ)− C1(λ)⊗ B1(µ)

]
A(λ)D1

2(µ) = −D1
2(µ)A(λ)+ 1

ρ10

[
B2(λ)⊗ C1(µ)− B2(µ)⊗ C1(λ)

]
. (12.D.1)

We further need

C1(λ)⊗ B2(µ) = ρ9

ρ10
B2(µ)⊗ C1(λ)− 1

ρ10

[
D1

2(λ)A(µ)− D1
2(µ)A(λ)

]
(12.D.2a)

B1(λ)⊗ C1(µ) = −ρ10

ρ9
C1(µ)⊗ B1(λ)+ 1

ρ9

[
D1

1(λ)A(µ)− D1
1(µ)A(λ)

]
(12.D.2b)

C2(λ)⊗ C1(µ) = −ρ4

ρ8

(
C1(µ)⊗ C2(λ)

)
ř2 + ρ3

ρ8

(
C1(λ)⊗ C2(µ)

)
− ρ6

ρ8
ξ
(

A(λ)⊗ A(µ)
)+ ρ6

ρ8

[
D1

1(µ)D2
2(λ)+ D1

2(µ)D2
1(λ)

]
ξ .

(12.D.2c)

Equations (12.292), (12.295), (12.307), (12.341), (12.D.1), and (12.D.2) are sufficient to
arrange the operators on the right hand sides of (12.345)–(12.347) in the appropriate order,
which is the first step to be done in the algebraic Bethe ansatz for two particles. In a second
step the coefficients multiplying the operators have to be simplified. For this task we use
the identity

(ξ ⊗ M)P12 = ξ ⊗ M + M ⊗ ξ , (12.D.3)

which holds for any 2× 2 matrix M , and certain relations between the Boltzmann weights
involving three different arguments. Most of the simplifications can be achieved by means
of the following four relations in conjunction with equation (12.123),

ρ4(λ,µ)ρ9(λ, ν)− ρ4(λ, ν)ρ9(λ,µ) = ρ9(µ, ν) , (12.D.4a)

ρ8(λ,µ)ρ10(λ, ν)− ρ8(λ, ν)ρ10(λ,µ) = ρ6(λ,µ)ρ6(λ, ν)ρ9(µ, ν) , (12.D.4b)

ρ6(λ,µ)
(
ρ9(λ, ν)ρ9(µ, ν)+ ρ8(λ, ν)ρ1(µ, ν)

) = ρ8(λ,µ)ρ6(λ, ν) , (12.D.4c)

ρ6(λ,µ)
(
ρ10(λ, ν)ρ10(µ, ν)+ ρ7(λ, ν)ρ4(µ, ν)

) = ρ7(λ,µ)ρ6(λ, ν) . (12.D.4d)
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Another more complicated relation, which was used in the final step of the derivation of
equation (12.345), is

1

ρ9(λ, λ1)

ρ6(λ, λ2)

ρ8(λ, λ2)

ρ4(λ1, λ2)

ρ9(λ1, λ2)
+ 1

ρ9(λ, λ2)

ρ6(λ, λ1)

ρ8(λ, λ1)

ρ1(λ1, λ2)

ρ9(λ1, λ2)

ρ7(λ1, λ2)

ρ8(λ1, λ2)

= ρ6(λ1, λ2)

ρ8(λ1, λ2)

[ 2∏
j=1

ρ4(λ, λ j )

ρ9(λ, λ j )
+

2∏
j=1

ρ10(λ, λ j )

ρ8(λ, λ j )
+ 2

]
. (12.D.5)

This equation was verified by means of Mathematica. We expect it to break up into simpler
relations like (12.D.4).

We would like to note a transformation of the Boltzmann weights, obtained in [335],
which is sometimes useful in calculations. Keeping λ fixed and shifting µ by π/2 the
Boltzmann weights transform as

ρ1 →−ρ7

ρ6
, ρ4 →−ρ8

ρ6
, ρ9 →−ρ10

ρ6
, ρ10 →−ρ9

ρ6
,

ρ3 → ρ5

ρ6
, ρ5 → ρ3

ρ6
, ρ6 →− 1

ρ6
. (12.D.6)

This transformation, combined with (12.123), connects equation (12.D.4a) with (12.D.4b)
and equation (12.D.4c) with (12.D.4d).

12.E An explicit expression for the fermionic R-operator of the Hubbard model

In [464, 466] an explicit expression for the fermionic R-operator was derived without
recourse to Shastry’s R-matrix (see, however, the appendix of [466]). Here we shall show that
this fermionic R-operator is equivalent to our R-matrix (12.135). As before we shall denote
the right-hand side of (12.135) by Ř(λ,µ) and the permutation matrix eα

γ ⊗ eβ

δ ⊗ eγ
α ⊗ eδ

β

by P . We introduce the matrix

W (h, l) = exp
{− 1

2

[
h(σ z ⊗ σ z)⊗ I4 + l I4 ⊗ (σ z ⊗ σ z)

]}
. (12.E.1)

According to lemma 10 the transformed R-matrix

R(λ,µ) = cos(λ− µ)

ch(h − l)
ρ4(λ,µ)W (h, l)P Ř(λ,µ)W−1(h, l) (12.E.2)

is a solution of the Yang-Baxter equation (12.31). A corresponding fermionic R-operator can
be obtained by using the general formula (12.172) with grading p(1) = p(4) = 0, p(2) =
p(3) = 1 and the fermionization scheme (12.196). After a straightforward but slightly
cumbersome calculation we arrive at

R f
12(λ,µ) = R↑12(λ− µ)R↓12(λ− µ)

+cos(λ− µ)

cos(λ+ µ)
th(h − l)R↑12(λ+ µ)R↓12(λ+ µ)(1− 2n1,↑)(1− 2n1,↓) , (12.E.3)
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where

Ra
12(λ) = cos(λ)

(
(1− n1,a)(1− n2,a)− n1,an2,a

)
− sin(λ)

(
(1− n1,a)n2,a + n1,a(1− n2,a)

)+ c†1,ac2,a + c†2,ac1,a (12.E.4)

for a =↑,↓. By construction R f
12(λ,µ) satisfies the Yang-Baxter equation in the form

(12.175). Equations (12.E.3) and (12.E.4) agree with the corresponding result of [464].1

Let us note that the fermionic R-operator (12.E.3) was obtained before our R-matrix
(12.135). In fact, we first derived (12.135) by applying equation (12.172) to (12.E.3) which
we took from [464]. The result encouraged us to search for the twist lemma, lemma 12,
which directly connects (12.135) with Shastry’s R-matrix.

1 Note that the expressions for the fermionic R-operator in [464] and [466] slightly differ.
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The path integral approach to thermodynamics

A very curious situation arises in the context of the calculation of the partition function from
the spectrum of an integrable Hamiltonian. Despite the validity of the Bethe ansatz equations
for all energy eigenvalues of the model the direct evaluation of the partition function is rather
difficult. In contrast to ideal quantum gases the eigenstates are not explicitly known: the
Bethe ansatz equations provide just implicit descriptions that pose problems of their own
kind. Yet, knowing the behaviour of quantum chains at finite temperatures is important for
many reasons. As a matter of fact, the groundstate is strictly inaccessible due to the very
fundamentals of thermodynamics. Therefore the study of finite temperatures is relevant for
theoretical as well as experimental reasons. At high temperatures, quantum systems show
only trivial static properties without correlations. Lowering the temperature, the systems
enter a large regime with non-universal correlations and finally approach the quantum critical
point at exactly zero temperature showing universal, non-trivial properties with divergent
correlation lengths governed by conformal field theory [51].

In Chapter 5 of this book we have discussed the traditional Thermodynamical Bethe
Ansatz (TBA) as developed for the Heisenberg model and the Hubbard model [155, 433–
435] on the basis of a method [496] invented for the Bose gas. Here, the partition function
was evaluated in the thermodynamic limit by identifying the dominant energy states. The
macro-state for a given temperature T is described by a set of root densities (Section 5.2)
satisfying integral equations obtained from the Bethe ansatz equations. In terms of the
density functions expressions for the energy and the entropy are derived. The minimization
of the free energy functional yields what are nowadays known as the TBA equations.

There are ‘loose ends’ in the above sketched procedure. Most importantly, the descrip-
tion of the spectrum of the Heisenberg model was built on the so-called ‘string hypothesis’
according to which admissible Bethe ansatz patterns of roots are built from regular building
blocks. This hypothesis was criticized a number of times and led to activities providing alter-
native access to the finite temperature properties [42,253,254,261,425–427,438,456,459].
The central idea of these works was a lattice path-integral formulation of the partition func-
tion of the Hamiltonian and the definition of a suitable ‘quantum transfer matrix’ (QTM),
cf. also Section 13.1. At this point we would just like to mention that the two different
approaches yield completely different equations; however, both are correct! This is under-
stood in detail for the Heisenberg model [253,281] as the TBA results (originally obtained

488
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in a combinatorial manner) can be obtained from the QTM procedure in an algebraic way
by use of the fusion hierarchy described in appendix 13.A. For the Hubbard model the
analogous statement is still in the state of conjecture.

The purpose of this chapter is to introduce the concepts and techniques of the analysis
of eigenvalues of the QTM. In order to familiarize the reader with this alternative approach
we use the Heisenberg chain as a warm-up exercise in Section 13.2. The Hubbard model
poses some additional problems as it is based on a non-difference type solution to the
Yang-Baxter equation. We therefore collect some essential properties of the Hamiltonian
in Section 13.3, present the Bethe ansatz results for the Hubbard QTM in Section 13.4
and map these to an auxiliary problem that enjoys the property of being of difference
type, see Section 13.5. The Bethe ansatz equations of the latter system are transformed
into a finite set of coupled non-linear integral equations (NLIE) in Section 13.6 and the
largest eigenvalue of the QTM is expressed in terms of integrals of the solution functions in
Section 13.7.

The main strength of the finite set of NLIEs is its usefulness in the entire temperature
range from high to extremely low temperatures. As a demonstration of this we present
in Section 13.8 a numerical analysis of the specific heat, as well as magnetic and charge
susceptibilities of the Hubbard chain. In Section 13.9 we analytically solve or simplify the
NLIEs in various limiting cases. Notably in the low-temperature limit we find the structure
of the dressed energy formalism known from finite-size analysis of the Hamiltonian at
exactly T = 0.

13.1 The quantum transfer matrix and integrability

In this section we approach the problem of quantum systems at finite temperatures in terms
of classical systems on lattices in one dimension higher. In many applications, the quantum
systems are considered as the original objects and the classical systems as derived objects. In
standard treatments of quantum systems on chains this leads to classical models on chequer-
board lattices. Our viewpoint is slightly different. We consider the classical systems as
primary and the quantum system as secondary as it is derived in the Hamiltonian limit from
a suitable transfer matrix. This will lead us to classical systems on lattices that are partially
staggered with alternating rows, but identical columns.

We first review some notations and basic properties of R-matrices (as collections of local
Boltzmann weights) and the associated L-matrices, see Chapter 12. The elements of the
L-matrix at site j are operators acting in the local Hilbert space h j ! C

d with dimension
d. The L-matrix’ element in row α and column β is given in terms of the R-matrix

L j
α
β
(λ,µ) = Rαγ

βδ (λ,µ)e j
δ
γ

[⇔ Lα
β(λ,µ) · eδ = Rαγ

βδ (λ,µ)eγ ], (13.1)

where eδ
γ is a d × d matrix with only non-vanishing entry 1 in row γ and column δ.

Furthermore, eγ ∈ C
d , γ = 1, . . . , d, are the basis vectors and summation over repeated

indices is performed. A direct consequence of the Yang-Baxter equation satisfied by the
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Fig. 13.1. Graphical depiction of the fundamental R-matrix R and the associated R and R̃.

R- and L-matrices is the commutativity of the row-to-row transfer matrix,1

T (λ) := Traux [R(λ,µL )⊗ ...⊗ R(λ,µ1)] = Traux [L L (λ,µL ) . . . L1(λ,µ1)] .

(13.2)

For all systems we are going to consider, we find for small spectral parameters λ and µ

the Hamiltonian limit

R1,2(λ,µ) = P[1− (λ− µ)H1,2]+ O(λ2, λµ,µ2), (13.3)

for difference type as well as non-difference type R-matrices (P denotes the permutation
operator, P(x ⊗ y) = y ⊗ x). This defines the local interaction H1,2 in the space h1 ⊗ h2

(here a trivial coefficient may have to be introduced as in (12.53) in order to achieve
hermiticity of the operator.)

A direct consequence of (13.3) is the expansion of T (λ) for small λ (and zero µi param-
eters)

T (λ) = ei�−λHL+O(λ2), (13.4)

where � denotes the momentum operator and HL is the Hamiltonian on the lattice of length
L .

We consider Rαγ

βδ (λ,µ) as the local Boltzmann weight associated with a vertex configu-
ration α, β, γ , δ on the left, right, upper, and lower bond (see figure 13.1) where the spectral
parameters λ and µ ‘live’ on the horizontal and vertical bonds, respectively. For later use we

1 Throughout this chapter we try to follow the notation of the original publication [233] when not in conflict with the general use
in this book. Any deviation should be obvious and in any case rather irrelevant.
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introduce R(λ,µ) and R̃(λ,µ) (λ and µ associated with the horizontal and vertical bond)
by clockwise and anticlockwise 90◦ rotations of R, or in matrix notation

R
αγ

βδ (λ,µ) = Rγβ

δα (µ, λ), R̃αγ

βδ (λ,µ) = Rδα
γβ(µ, λ). (13.5)

We further introduce an auxiliary transfer matrix T (λ) made of Boltzmann weights
R(−λ, 0). From the Hamiltonian limit (13.3) we see that

T (λ) = e−i�−λHL+O(λ2), (13.6)

so that the partition function is given by

ZL = Tr e−βHL = lim
N→∞

Tr [T (τ )T (τ )]N/2|τ=β/N . (13.7)

We regard the resulting system as a fictitious two-dimensional model on a L × N square
lattice, cf. figure 13.2, where N is the extension in the fictitious (imaginary time) direction,
sometimes referred to as the Trotter number. The lattice consists of alternating rows, each
of which is a product of only R weights or of only R weights, respectively. All columns
are identical and are made up of alternating R and R weights. This formulation realizes a
lattice path integral of the quantum system in the sense that the trace of an exponential of
the Hamiltonian is replaced by a summation over all configurations (‘paths’) of a classical
model.

It is therefore very natural to introduce a different transfer matrix concept based on the
transfer direction along the horizontal axis (chain) and to investigate the column-to-column

N

L

ττ

τ

−τ−τ

−τ

Fig. 13.2. Depiction of the two-dimensional classical model onto which the quantum chain at finite
temperature is mapped. The square lattice has width L equal to the chain length, and height identical
to the Trotter number N . The alternating rows of the lattice correspond to the transfer matrices T (τ )
and T (τ ), τ = β/N . The column-to-column transfer matrix (quantum transfer matrix) is of particular
importance to the treatment of the thermodynamic limit.
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transfer matrix being the contribution of all Boltzmann weights of a particular column to
the total partition function. In the remainder of this chapter we will refer to the column-
to-column transfer matrix (in particular in the limit of Trotter number N →∞) as the
‘quantum transfer matrix’ of the quantum chain, and denote it by T QTM, because it is the
closest analogue to the transfer matrix of a classical spin chain.

Now, by looking at the system in a 90◦ rotated frame which turns R and R weights into
R and R̃ weights, it is natural to define a general QTM with arbitrary spectral parameter λ
on the (vertical) line

T QTM(λ, τ ) := Traux

[
N/2⊗

R(λ,−τ )⊗ R̃(λ, τ )

]
(13.8)

= Traux

[
LQTM

N (λ,−τ )LQTM
N−1 (λ, τ ) . . . LQTM

2 (λ,−τ )LQTM
1 (λ, τ )

]
which in the case λ = 0 is identical to the physically relevant T QTM = T QTM(0, τ ).

The L-matrices are defined differently for even and odd indices

L j
QTMα

β
(λ,µ) =

{
Rαγ

βδ (λ,µ)e j
δ
γ
, for j even,

R̃αγ

βδ (λ,µ)e j
δ
γ
= Rδα

γβ(µ, λ)e j
δ
γ
, for j odd.

(13.9)

Using the QTM we may express the partition function as

ZL ,N := Tr [T (τ )T (τ )]N/2 = Tr (T QTM)L . (13.10)

Here a note on our general terminology is in order. Throughout this book we use the concept
of the monodromy matrix and its associated transfer matrix. The elements of the monodromy
matrix are operators in a Hilbert space that we call ‘quantum space’. The transfer matrix
is obtained by taking the trace with respect to the ‘auxiliary space’ of the monodromy
matrix, yielding an operator acting on the ‘quantum space’. The procedure of taking a trace
in quantum/auxiliary space is denoted by Tr/Traux. Note that the auxiliary/quantum space
of the row-to-row transfer matrix corresponds to the quantum/auxiliary space of the QTM
when embedding these objects into the 2d lattice!

The free energy f per lattice site is defined by f = −kB T limL→∞ limN→∞ log ZL ,N/L .
The interchangeability of the two limits (L , N →∞) [425, 427] leads to the following
expression

f = −kB T lim
N→∞

lim
L→∞

1

L
log Tr

[
T QTM (0, τ )

]L
, τ = β

N
. (13.11)

Of particular interest is the spectrum of eigenvalues �(λ, τ ) of T QTM(λ, τ ). There is a gap
between the largest and the second largest eigenvalue of the QTM for finite β [425, 427].
Therefore, the free energy per site is given just in terms of the largest eigenvalue �max

f = −kB T lim
N→∞

log�max

(
0, τ = β

N

)
. (13.12)
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=

=

Fig. 13.3. Graphical depiction of the fundamental Yang-Baxter equation for R and the associated
one for R and R̃ obtained through rotation. Hence the intertwiner for R vertices is identical to the
intertwiner for R̃ vertices.

Now the evaluation of the free energy is reduced to that of the single eigenvalue �max.
Of course, a sophisticated treatment is necessary in taking the Trotter limit N →∞ as
τ = β/N now explicitly depends on it. The following sections are devoted to this analysis.

A general comment is in order. It seems redundant to define T QTM(λ, τ ) for arbitrary
λ as we only need the value λ = 0. The general case, however, manifests the integrability
structure and the existence of infinitely many conserved quantities. This is best seen in the
commutativity of the matrices with different λ’s

[T QTM(λ, τ ), T QTM(λ′, τ )] = 0, (13.13)

with fixed τ . One can prove this by showing that two QTMs are intertwined by the same R
operator as for the row-to-row case, graphically demonstrated in figure 13.3. The final step
in the proof of commutativity is the standard railroad argument demonstrated for the QTM
in figure 13.4. The existence of the parameter labeling the family of commuting matrices
makes the subsequent analysis much more transparent. We will investigate the eigenvalues
�(λ, τ ) in dependence on λ where distributions of zeroes occur along lines parallel to the
imaginary axis. For the sake of convenience we perform a rotation in the complex plane by
substituting λ by iv, i.e. we will investigate �(iv, τ ).

Next we want to comment on the study of the thermodynamics of the quantum chain in
the presence of an external field that couples to a conserved quantity, e.g. a magnetic field
h acting on the spin S =∑L

j=1 Sj , where Sj denotes a certain component of the j th spin
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τ τ−τ −τ

τ τ−τ −τ

τ τ−τ −τ

τ τ−τ −τ

λ

λ

λ

λ

=

Fig. 13.4. ‘Railroad proof’ for the commutation of two QTM’s with arbitrary spectral parameters
λ and λ′. Due to the reasoning graphically depicted in figure 13.3 the intertwiner for R vertices is
identical to the intertwiner for R̃ vertices.

for instance Sz
j . This of course changes (13.7) only trivially

ZL = Tr e−β(HL−hS)

ZL ,N = Tr
(
[T (τ )T (τ )]N/2eβhS

)
. (13.14)

The equivalent two-dimensional L × N lattice is modified in a simple way by a horizontal
seam. Each vertical bond of this seam carries an individual Boltzmann weight e±βh/2 if
Sj = ±1/2, describing the action of the operator

eβhS =
∏

j

eβhSj . (13.15)

Consequently, the QTM is modified by a field dependent boundary operator D

T QTM(λ, τ ) = Traux

[
D · LQTM

N (λ,−τ )LQTM
N−1 (λ, τ ) . . . LQTM

2 (λ,−τ )LQTM
1 (λ, τ )

]
,

(13.16)

where D = exp(βh/2 · Saux) acts only in the auxiliary space. In the case of a spin- 1
2 model

with Saux = Sz
aux we have D = diag(exp(βh/2), exp(−βh/2)).

It will turn out that these modifications can still be treated exactly as the additional
operators acting on the bonds belong to symmetries of the model. Therefore, the properties
of many-particle systems can be studied within a grand canonical ensemble for general
magnetic fields and chemical potentials.
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0

  0 0 0   0

=

= d .

Fig. 13.5. Upper row: graphical illustration of the QTM for infinite temperature (τ = 0). Note that
the only non-zero matrix elements are equal to 1 and are realized for pairwise identical local indices.
Lower row: the product of two QTM’s for infinite temperature reproduces the QTM with a scale factor
equal to the dimension d of the local Hilbert space.

Infinite Temperature
Let us now discuss the infinite temperature case with τ = β/N = 0. Here the QTM

simplifies enormously as the R-matrix (13.3) with spectral parameters λ = µ = 0 reduces
to P . With T := T QTM (0, τ = 0) we find

T · T = d · T,

Tr T = d, (13.17)

with d being the dimension of the local Hilbert space. The derivation of the first property is
illustrated in figure 13.5, the second property is derived in a completely analogous manner.
From the first line we see that the eigenvalues are 0 or d , the second line implies that exactly
one eigenvalue takes the value d and all remaining eigenvalues are equal to 0. From

�max = d, (13.18)

and a view to (13.12) we find the expected high-temperature asymptotics f = −kB T log d .
This limit is actually realized by the free energy of the Hubbard model obtained in the
TBA approach where (5.69) corresponds to (13.18) with d = 4. (The slightly more general
case of infinite temperature with finite ratios µ/T and B/T is also found by the above
argument: (13.17) still holds with d replaced by 1+ exp((µ+ B)/T )+ exp((µ− B)/T )+
exp(2µ/T ).)

However, the main application of (13.18) is the identification of the largest eigenvalue
of the QTM: very often we will restrict our analysis to a special solution to the eigenvalue
equation that ‘happens’ to yield the largest eigenvalue. A detailed study of all other eigen-
values and the formal proof that those are smaller is technically rather difficult. Fortunately,
the largest eigenvalue of the QTM is known to be unique and separated by a gap from the
rest of the spectrum [425, 427]. Furthermore this eigenvalue is an analytic function of the
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temperature T (�= 0) with the high-temperature limit (13.18). Conversely, any eigenvalue of
the QTM that happens to be analytic in T with high-temperature limit (13.18) is the largest
eigenvalue for all T !

13.2 The Heisenberg chain

Before presenting the thermodynamics of the Hubbard model by use of the above introduced
method we apply it to the simpler model of the isotropic spin- 1

2 Heisenberg chain with
Hamiltonian

H =
L∑

j=1

∑
α=x,y,z

Sα
j Sα

j+1, (13.19)

where Sα
j is the α-component of the spin operator acting in the j th local Hilbert space.

The operator (13.19) is obtained in the Hamiltonian limit of the six-vertex model which
is a difference type solution R(λ,µ) = R(λ− µ) to the YBE. The Hamiltonian limit (13.3)
yields the desired (hermitian) local interaction if we choose c in (12.48) imaginary, actually
c = 2i, instead of real as done in Chapter 12.1.

The diagonalization of the QTM is achieved by the algebraic Bethe ansatz very much like
to the homogeneous case of the row-to-row transfer matrix. In the latter case the L-matrix
is given in (12.52). In our ‘staggered’ case (13.9) we find

L j
QTMα

β
(λ,µ) =

{
c(µ− λ)δαβ + b(µ− λ)e j

β
α
, for j odd,

c(λ− µ)δαβ + b(λ− µ)e j
α
β
, for j even.

(13.20)

We note that the two expressions for LQTM
j even(λ,µ) [=: L(λ− µ)], and LQTM

j odd(λ,µ) differ
only slightly. A direct calculation shows that up to some scalar factor the second expression
L j odd(λ,µ) is equal to r−1 · L(λ− µ− ic) · r where the operator r acts in the local Hilbert
space with r · e1 = −e2, r · e2 = +e1. (This is based on a relation of the R- and R̃-matrices
known in S-matrix theory as ‘crossing symmetry’.) Therefore, the QTM is equivalent to
a staggered row-to-row transfer matrix with alternating spectral parameters λ− µ and
λ− µ− ic. Due to this property the diagonalization of the QTM may be reduced to that of
a seemingly simpler system of L-operators of the same type with only shifts of the spectral
parameters. However, a direct diagonalization of the QTM is not more involved. Hence we
will not use the special ‘crossing symmetry’ satisfied by the Heisenberg model.

An appropriate pseudo-vacuum is the staggered state |0〉 = |12...12〉 = (1
0

)⊗ (0
1

)⊗ . . .⊗(1
0

)⊗ (0
1

)
. We note that

L j (λ,µ)|0〉 =



(
c(µ− λ) b(µ− λ)e j

2
1

0 1

)
|0〉, for j odd,

(
1 b(λ− µ)e j

1
2

0 c(λ− µ)

)
|0〉, for j even.

(13.21)
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From this we see that the monodromy matrix corresponding to T QTM(λ, τ ) is upper-
triangular when being applied to |0〉. Hence the entire reasoning of Section 12.1.7 holds
with result (12.67) for the eigenvalue provided the vacuum functions (12.70) are replaced
by

a(λ) −→ [c(τ − λ)]N/2 , d(λ) −→ [c(τ + λ)]N/2 . (13.22)

The eigenvalue �(λ, τ ) of T QTM(λ, τ ) is now given by (12.67). After some substitutions
λ→ iv, µ j → iv j , c = 2i and factorization of common terms of the vacuum functions we
find the following expression

�(iv, τ ) = �(v)

[(v − i(2− τ ))(v + i(2− τ ))]N/2
, (13.23)

with numerator �(v) given by

�(v) := λ1(v)+ λ2(v) (13.24)

where λ1,2(v) are shorthand notations for

λ1(v) := e+βh/2φ(v − i)
q(v + 2i)

q(v)
,

λ2(v) := e−βh/2φ(v + i)
q(v − 2i)

q(v)
. (13.25)

The function φ(v) is known explicitly

φ(v) := [(v − i (1− τ )) (v + i (1− τ ))]N/2 , τ := β/N , (13.26)

and q(v) is defined by

q(v) :=
m∏
j

(v − v j ). (13.27)

Here m (= 0, . . . , N/2) is an integer and is identical to m = N/2 in the case of the largest
eigenvalue. Above we have collected the results for the general case of the Heisenberg
chain in the presence of a magnetic field h. The field term results into a twisted boundary
condition of the QTM with (imaginary) twist angle βh.

The ‘unknown’ zeroes of q(v) are the Bethe ansatz rapidities and are determined by the
Bethe ansatz equations

a(v j ) = −1, (13.28)

where the function a(v) is defined by

a(v) = λ1(v)

λ2(v)
= eβh φ(v − i)q(v + 2i)

φ(v + i)q(v − 2i)
. (13.29)

From an algebraic point of view, we are dealing with a set of coupled non-linear equations
similar to those which already occurred in the study of the eigenvalues of the Hamiltonian.
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−
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Fig. 13.6. Depiction of Bethe ansatz rapidities v j for β = 3.2 and finite N = 16, 32, 64, 128 (τ =
β/N ). Note that the distribution remains discrete in the limit of N →∞. The positions of the
outermost rapidities hardly change for increasing N , the additional rapidities are distributed towards
the origin which turns into an accumulation point for N →∞.

As far as analytical properties are concerned, there is a profound difference as in (13.29)
the ratio of φ-functions possesses zeroes and poles that converge to the real axis in the
limit N →∞. As a consequence, the distribution of Bethe ansatz rapidities is discrete
and shows an accumulation point at the origin, cf. figure 13.6. This prevents the definition
of meaningful root densities. Hence, in contrast to the Hamiltonian case, the treatment of
the problem by means of linear integral equations is not possible. For N = ∞ the number
of rapidities inside/outside of any (arbitrarily small) open neighbourhood of the origin is
infinite/finite. In the limit of temperature T →∞ (β → 0) all rapidities v j converge to 0.
For T → 0 (β →∞) the rapidities move to infinity. This is illustrated in figure 13.7.

13.2.1 Derivation of non-linear integral equations I

The next step in the treatment of the thermodynamics of the Heisenberg chain is the deriva-
tion of a set of integral equations for the function a(v). These equations will turn out to be
non-linear. A major ingredient in our reasoning will be certain analytical properties of the
functions.
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−
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−

Fig. 13.7. Depiction of Bethe ansatz rapidities v j for N = 64 and different temperatures τ = β/N =
0.005, 0.05, 0.1. Note that for lower temperature, i.e. higher value of τ , the rapidities increase.

In figure 13.8 the distribution of zeroes and poles of a(v) is shown resulting from the
explicit factorization in the definition (13.29). Next we define the associated auxiliary
function A(v) by

A(v) = 1+ a(v). (13.30)

Of course, the set of poles of A(v) is identical to the set of poles of a(v). However, the
set of zeroes is different. From (13.28) we find that the Bethe ansatz rapidities are zeroes
of A(v) and are depicted by open circles in figure 13.9. There are additional zeroes off
the real axis with imaginary parts close to ±2. These zeroes are depicted in figure 13.9
by open squares. They are, however, not of further interest to our immediate reasoning. In
the remainder of this section we are going to formulate a linear integral expression for the
function log a(v) in terms of log A(v). The idea underlying our calculation is the observation
that

� all functions we are dealing with are rational functions and hence are determined by the positions
of their zeroes and poles and the asymptotic value for the argument approaching∞,

� all zeroes and poles of a(v) are explicitly known or directly related to the zeroes of A(v) at the real
axis (i.e. v j ).
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zero
−2i+iτ 

vj −2i

−iτ 

iτ

2i−iτ

pole

vj +2i

Fig. 13.8. Distribution of zeroes and poles of the auxiliary function a(v). All zeroes and poles v j ∓ 2i
are of first order, the zeroes and poles at ±(2i− iτ ), ±iτ are of order N/2.

pole

v  +2ij

vj

L

−iτ

−2i+iτ 
zeroes

Fig. 13.9. Distribution of zeroes and poles of the auxiliary function A(v) = 1+ a(v). Note that the
positions of zeroes (◦) and poles (×) are directly related to those occurring in the function a(v), or
they are ‘far’ away from the real axis (�). The closed contour L by definition surrounds the real axis
as well as the pole at −iτ .

We can exploit these ideas by considering the integral

1

2π i

∫
L

1

v − w
log A(w)dw (13.31)

defined for a closed contour L surrounding the real axis and the point−iτ in anticlockwise
manner. Note that the number of zeroes of A(v) surrounded by this contour, i.e. the number
of rapidities v j , is equal to N/2 and hence equal to the order of the pole at −iτ . Therefore
the integrand log A(w) does not show any non-zero winding number on the contour and as
a result the integral is well defined. We may evaluate the integral (13.31) rather easily by
performing an integration by parts, observing that the ‘surface term’ vanishes and obtain

(13.31) = 1

2π i

∫
L

log(v − w)[log A(w)]′dw. (13.32)
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Inside the contour L lie the simple zeroes v j of A and the pole −iτ of order N/2. Hence
by use of Cauchy’s theorem, we obtain

1

2π i

∫
L

1

v − w
log A(w)dw =

N/2∑
j=1

log(v − v j )− N

2
log(v + iτ ) = log

q(v)

(v + iτ )N/2
.

(13.33)

Alternative derivation
Identity (13.33) was derived by direct computations, because the function [log A]′ is

meromorphic, or more precisely analytic apart from simple poles. Hence by use of Cauchy’s
theorem the explicit expression for the integral could be derived. In the case of the Hubbard
model we would like to apply a similar strategy. However, the functions involved in the
latter analysis possess isolated as well as non-isolated singularities. We therefore present a
proof for the identity (13.33) without resorting to the use of a particular type of singularity.

Let g(v) be an analytic function with certain singularities in the complex plane and L
be a contour surrounding the (sub)set of singularities S. We define the function f (v) for
complex v outside the contour L by

f (v) := 1

2π i

∫
L

1

v − w
g(w)dw. (13.34)

Obviously, the function f (v) is analytic everywhere outside L, it has asymptotics 0 at
infinity and it can be analytically continued across the border of the contour L. This gives

f (v) = 1

2π i

∫
L

1

v − w
g(w)dw + g(v), (13.35)

for v insideL. Apparently the integral expression on the r.h.s. is analytic inside the contourL.
Hence the total r.h.s., i.e. the analytically continued function f (v), has the same singularities
as g(v) at all points in the set S. To summarize, f (v) is defined on the entire complex plane,
it has asymptotics 0 and shares the same singularities with g(v) at the set S.

If we use g(v) = log A(v), S is the set of singularities {v j | j = 1, ...,m} ∪ {−iτ }, and L
is the path surrounding S (see Fig.13.9) then f (v) as defined above is a function with the
same analyticity properties as

log
q(v)

(v + iτ )N/2
. (13.36)

From this follows immediately that

f (v) = log
q(v)

(v + iτ )N/2
, (13.37)

which is proved by noting the three properties for the difference function of l.h.s. and r.h.s.:

� analyticity on the complex plane with a possible exception on the set S,
� continuity on the set S, because of cancellation of all singularities (⇒ analyticity everywhere),
� zero asymptotics (⇒ boundedness⇒ constant due to Liouville’s theorem⇒ constant = 0).
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Because of (13.33) we have a linear integral representation of log q(v) in terms of log A(v).
Due to the definition (13.29) the function log a(v) is a linear combination of log q and
explicitly known functions. Hence we find

log a(v) = βh + log

(
(v − iτ )(v + 2i+ iτ )

(v + iτ )(v + 2i− iτ )

)N/2

+ 1

2π i

∫
L

[
1

v − w + 2i
− 1

v − w − 2i

]
︸ ︷︷ ︸

− 2

π

∫
L

1

(v − w)2 + 4

log A(w)dw. (13.38)

This expression is remarkable as it is a non-linear integral equation (NLIE) of convolution
type for a(v). It is valid for any value of the Trotter number N which only enters in the
driving term, i.e. the first term on the r.h.s. of (13.38). This term shows a well defined
limiting behaviour for N →∞

N

2
log

(
(v − iτ )(v + 2i+ iτ )

(v + iτ )(v + 2i− iτ )

)
→− iβ

v
+ iβ

v + 2i
= 2β

v(v + 2i)
, (13.39)

leading to the NLIE for a(v) in the limit N →∞

log a(v) = βh + 2β

v(v + 2i)
− 2

π

∫
L

1

(v − w)2 + 4
log A(w)dw. (13.40)

From this NLIE we can calculate the function a(v) on the axes Im(v) = ±1 by means of
numerical iterations.

13.2.2 Integral expressions for the eigenvalue I

In (13.38) and (13.40) we have found integral equations determining the function a for
finite and infinite Trotter number N , respectively. These equations are useful if and only if
we manage to extract the eigenvalue function (13.24) in terms of a or A. In the following
paragraphs we want to show how to do this.

From (13.24) we see that �(v) is a rational function, and courtesy of the BA equations
without poles. Hence,�(v) is a polynomial of degree N . Any polynomial is determined by its
zeroes and the asymptotic behaviour, i.e. the coefficient of the leading monomial. The zeroes
of �(v) = λ1(v)+ λ2(v) are ‘additional’ solutions to the equation a(v) = λ1(v)/λ2(v) =
−1, i.e. solutions to the BA equations or zeroes of A(v) = 1+ a(v) that do not coincide
with BA roots! These zeroes are so-called hole-type solutions to the BA equations which
we label by wl , l = 1, . . . , N . These zeroes are located in the complex plane close to the
axes with imaginary parts ±2, see zeroes in Fig. 13.9 depicted by �. In terms of wl the
function �(v) reads

�(v) = (
e+βh/2 + e−βh/2

) N∏
l=1

(v − wl). (13.41)
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By application of Cauchy’s theorem we find for v sufficiently close to the real axis (such
that v − 2i is outside the contour L)

1

2π i

∫
L

1

v − w − 2i
[log A(w)]′dw =

∑
j

1

v − v j − 2i
− N/2

v + iτ − 2i
(13.42)

as the only singularities of the integrand surrounded by the contour L are the simple zeroes
v j and the pole −iτ of order N/2 of the function A. Also, we obtain

1

2π i

∫
L

1

v − w
[log A(w)]′dw =

∑
j

1

v − v j − 2i
−

∑
l

1

v − wl
+ N/2

v + 2i− iτ
, (13.43)

where here the integral is evaluated by use of the singularities outside the contour. To this
end we deform the contour such that the upper (lower) part of L is closed into the upper
(lower) half-plane and the relevant singularities are the simple poles v j + 2i, the zeroes wl ,
and the pole iτ − 2i of order N/2 of the function A.

Next, we take the difference of (13.42) and (13.43), perform an integration by parts with
respect to w, and finally integrate with respect to v

1

2π i

∫
L

[
1

v − w
− 1

v − w − 2i

]
log A(w)dw

= log
[(v − i(2− τ ))(v + i(2− τ ))]N/2∏

l(v − wl)
+ constant. (13.44)

The constant is determined from the asymptotic behaviour at v→∞ with the result:
constant = − log A(∞) = − log(1+ exp(βh)). Combining (13.41) and (13.44) we find

log�(v) = −βh/2+ N

2
log[(v − i(2− τ ))(v + i(2− τ ))]

− 1

2π i

∫
L

[
1

v − w
− 1

v − w − 2i

]
log A(w)dw (13.45)

and from (13.23)

log�(iv, τ ) = −βh/2+ 1

π

∫
L

log A(w)

(v − w)(v − w − 2i)
dw. (13.46)

Formulas (13.46) and (13.40) are the basis of an efficient analytical and numerical treatment
of the thermodynamics of the Heisenberg chain. There are, however, variants of these integral
equations that are somewhat more convenient for this purpose, especially for magnetic fields
close to 0.

An equivalent formulation is obtained by means of the ‘particle-hole’ transformation a

of the function a

a(v) := 1

a(v)
, A(v) := 1+ a(v). (13.47)
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In terms of these functions (13.40) and (13.46) read

log a(v) = −βh + 2β

v(v − 2i)
+ 2

π

∫
L

log A(w)

(v − w)2 + 4
dw, (13.48)

and

log�(iv, τ ) = βh/2− 1

π

∫
L

log A(w)

(v − w)(v − w + 2i)
dw. (13.49)

For many purposes it turns out to be advantageous to perform a partial ‘particle-hole’
transformation of the functiona(v) on the axis Im(v) = +1 only. Replacing log A = log A+
log a on the upper part of L in (13.40) leads to an equation involving convolution type
integrals with log A, log A and log a. This equation can be resolved explicitly for log a

by straightforward calculations. We will however skip these as in subsection 13.2.3 an
alternative method of derivation of this set of NLIEs will be given.

13.2.3 Derivation of non-linear integral equations II

Here we want to describe another method for deriving the integral equations based on
solutions to functional equations. If we define functions q±(v) by

q+(v) =
∏
v+k

(v − v+k ), q−(v) =
∏
v−k

(v − v−k ), (13.50)

where v±k are the zeroes of A(v) with imaginary parts close to ±2, respectively, then we
can write down the explicit factorization of A and A

A(v) = (
1+ eβh

) q+(v)q−(v)q(v)

φ(v + i)q(v − 2i)
,

A(v) = (
1+ e−βh

) q+(v)q−(v)q(v)

φ(v − i)q(v + 2i)
. (13.51)

From this set of equations we will derive explicit expressions for q(v) in terms of the
functions A(v) and A(v). At first glance such a task looks impossible since the functions
q±(v) are unknown and the above set of equations seems underdetermined. However, this
gap is filled by use of suitable additional analyticity properties of the involved functions,
namely q+(v), q(v), and q−(v) having zeroes with imaginary parts close to +2, 0, and −2,
respectively.

We transform the multiplicative functional equations (13.51) into additive form by taking
the logarithm. Subsequently we take the derivative, so the additive form of the functional
equations is kept, but each of the individual terms is a function with zero asymptotics and
hence admits the Fourier transform for integration contours with real part ranging from
−∞ to +∞. As the Fourier transform of a function with shifted argument is identical to
the ‘old’ Fourier transform times a known coefficient we obtain algebraic equations for the
Fourier coefficients of the functions involved.
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For definiteness, let us denote the Fourier pair for a function f (v) by

FTk [ f ] = 1

2π

∫ ∞
−∞

f (v)e−ikvdv,

f (v) =
∫ ∞
−∞

FTk [ f ] eikvdk, (13.52)

i.e. starting with a function f (v) we obtain the Fourier transform FTk [ f ] for which the
inverse transform reproduces f (v). We note that in our applications f (v) is often analytic,
so the integration contour may differ from the real axis, but still gives the same integral
thanks to Cauchy’s theorem as long as the real part of the contour ranges from−∞ to+∞.
If the function f (v) possesses different ‘analyticity strips’ that are separated by singularities,
then there exist Fourier transforms that are well-defined in each strip, but differ for different
strips.

For the convolution f ∗ g of functions f and g

f ∗ g(v) :=
∫ ∞
−∞

f (v − w)g(w)dw (13.53)

we note the ‘theorem’

FTk [ f ∗ g] = 2π FTk [ f ] FTk [g] . (13.54)

In most cases we will apply the Fourier transform to logarithmic derivatives of functions
like q±, q, A . . . . For any function h(v) we therefore introduce the shorthand notation

hk := FTk

[
d

dv
log h(v)

]
, (13.55)

i.e. hk is the Fourier transform of the logarithmic derivative of h(v).
As an explicit example we treat the case of a simple linear function p(v)

p(v) := v − v0,
d

dv
log p(v) = 1

v − v0
. (13.56)

For this function the Fourier integral can be evaluated explicitly by closing the integration
contour in the lower (upper) half-plane for positive (negative) values of the argument k. By
use of Cauchy’s theorem we then find

k > 0 pk =
{

0, Im(v0) > 0,

−ie−ikv0 , Im(v0) < 0,

k < 0 pk =
{
+ie−ikv0 , Im(v0) > 0,

0, Im(v0) < 0.
(13.57)

In the general case where the Fourier transform is computed for an integration path L
different from the real axis the above result still holds if the condition ‘Im(v0) > (<) 0’ is
replaced by ‘v0 above (below) L’.
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Before tackling (13.51) we note the lemma

FTk [ f (v − v0)] = e−ikv0 FTk [ f (v)] (13.58)

relating the two Fourier integrals provided that the integration contour L and L− v0 belong
to the same analyticity strip.

We apply the Fourier transform to the logarithmic derivative of (13.51) with a contour
L(L) along a straight line slightly below (above) the real axis for the function A (A).
Let us study the case k > 0 first. We note for the first equation (with path L) that the
transforms corresponding to q+(v), q(v), and φ(v − i) vanish, because the zeroes of these
functions are located aboveL. Likewise for the second equation (with pathL) the transforms
corresponding to q+(v) and q(v − 2i) vanish. We keep the remaining terms where the
transforms corresponding to q(v + 2i) and φ(v + i), q(v − 2i) are reduced to those of q(v)
and φ(v) by virtue of (13.58).

k > 0 Ak = q−k − e−2kqk

Ak = −e−kφk + q−k + qk

Ak − Ak = e−kφk − (1+ e−2k)qk . (13.59)

Applying an analogous reasoning to the case k < 0 we finally arrive at

k < 0 Ak = −ekφk + q+k + qk,

Ak = q+k − e2kqk

Ak − Ak = −ekφk + (1+ e2k)qk . (13.60)

These equations are explicit expressions for q(v). Note however, that the notation used
above is slightly ambiguous. We have used the same symbol qk for two different functions:
the Fourier transforms of the logarithmic derivative of q(v) in the upper and the lower half-
plane, respectively. For practical calculations this does not matter as for q(v) in the upper
(lower) half-plane, the Fourier coefficient vanishes for k < 0 (k > 0). A non-vanishing
Fourier coefficient is obtained for k > 0 (k < 0) and is then identical to qk . In other words,
qk for k > 0 (k < 0) is the only non-vanishing Fourier coefficient for q(v) in the upper
(lower) half-plane.

From (13.29) we find an explicit expression for the Fourier coefficient of a(v) and a(v)
in terms of q(v):

k > 0 ak = e−kφk − e−2kqk

= φk

ek + e−k
+ e−k

ek + e−k
(Ak − Ak)

k < 0 ak = −ekφk + e2kqk

= − φk

ek + e−k
+ ek

ek + e−k
(Ak − Ak) (13.61)
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where we have finally inserted the explicit expression in terms of A and A. The function φk

is known explicitly. A calculation using (13.56,13.57) yields

φk = −sign(k)i
N

2

(
ek(1−τ ) + e−k(1−τ )

)
. (13.62)

We insert this into (13.61) and obtain for both signs of k

ak = −i
N

2

ek(1−τ ) + e−k(1−τ )

ek + e−k
+ e−|k|

ek + e−k
(Ak − Ak). (13.63)

Next we apply the inverse Fourier transform to the latter equation (13.63). The first term on
the r.h.s. is evaluated by means of the identity∫ ∞

−∞

eεk

ek + e−k
eikvdk =

π
2

cosh π
2 (v − iε)

. (13.64)

The second term on the r.h.s. of (13.63) turns into a convolution by virtue of (13.54) and
we arrive at

[log a(v)]′ = −i
N

2
[e(v − i(1− τ ))+ e(v + i(1− τ ))]+ κ ∗ [(log A)′ − (log A)′],

(13.65)

where e(v) and the kernel κ(v) take the form

e(v) :=
π
2

cosh π
2 v

, κ(v) := 1

2π

∫ ∞
−∞

e−|k|

ek + e−k
eikvdk. (13.66)

The equation (13.65) is almost in its desired form. After integrating (13.65) with respect
to v we obtain a very similar equation where the primes are dropped and the first term
on the r.h.s. is replaced by its integral plus an integration constant which has to be fixed.
This constant is determined in the limit v→∞ for which the integral equation turns into
an algebraic equation for the asymptotics of log a and log A, log A. These asymptotics
are known from (13.29) and are a = exp(βh), A = 1+ exp(βh), and A = 1+ exp(−βh)
yielding the integration constant βh/2. Finally, taking the limit N →∞ and noting that
τ = β/N we find

log a(v) = +βh

2
− βe(v + i)+ κ ∗ [log A− log A]. (13.67)

This integral equation was derived for arguments v with imaginary part between+2 and−2,
the integration contours in the convolutions with log A and log A being L and L, i.e. straight
lines below and above the real axis, respectively. An integral expression for the function
log a is easily obtained as a and a are related in a simple way by virtue of (13.47).

log a(v) = −βh

2
− βe(v − i)+ κ ∗ [log A− log A]. (13.68)

The two integral equations can be solved by numerical integration (along the contours L
and L) and iteration. In what follows we consider the functions a, a etc. as explicitly known.
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13.2.4 Integral expressions for the eigenvalue II

From (13.24) we find two expressions for the eigenvalue � of the QTM

�(v) = φ(v − i)
q(v + 2i)

q(v)
A(v)

= φ(v + i)
q(v − 2i)

q(v)
A(v). (13.69)

Either of these expressions is suitable for an explicit calculation of � by use of the Fourier
transforms of the logarithmic derivatives of the respective functions involved. The com-
putations are done most elegantly if both expressions are combined yielding the following
functional equation

�(v + i)�(v − i) = φ(v − 2i)φ(v + 2i)A(v − i)A(v + i), (13.70)

where the functions on the r.h.s. are known functions. The functional equation admits a
unique solution for �

log�(v) = −βe0(v)+ 1

2π

∫ ∞
−∞

e(v − w) log[A(w − i)A(w + i)]dw, (13.71)

where the first term on the r.h.s. e0(v) is a convolution of e with logφ similar to the second
term. We do not give the explicit expression of e0(v) as we are interested in the free energy
(13.12). Hence e0(v = 0) is the groundstate energy of the Heisenberg chain with magnetic
field h = 0. Any T and h dependence enters only in the second term in (13.71).

The NLIEs (13.67,13.68) and the expression (13.71) for the eigenvalue �(v) are the
main result of this chapter and completely determine the thermoynamics of the spin- 1

2
Heisenberg chain.

Considering the historical developement of the method described above, we note that
NLIEs very similar to (13.40) were derived for the row-to-row transfer matrix in [256,257].
These equations were then generalized to the related cases of QTMs (staggered transfer
matrices) of the Heisenberg and RSOS chains [253,254] and the sine-Gordon model [100].

Very recently [440], in addition to the TBA approach (Chapter 5) and the QTM approach
(this Section) a third formulation of the thermodynamics of the Heisenberg chain has been
developed (see Appendix 13.B). At the heart of this formulation is a single NLIE with a
structure very different from that of the two sets of NLIEs discussed above. Nevertheless, this
new equation has been derived from the ‘old’ NLIEs [440, 443] and is certainly equivalent
to them. (For an algebraic derivation of the TBA equations and the ‘third formulation’ of the
thermodynamics see Appendices 13.A and 13.B.) In the first applications of the new NLIE,
numerical calculations of the free energy have been performed with excellent agreement
with the ‘Yang-Yang’ TBA and QTM results. Also, analytical high temperature expansions
up to 100th order (!) have been carried out on the basis of the new formulation [441]. The
‘third formulation’ of thermodynamics of integrable quantum chains has been extended
meanwhile to higher rank models like sl(r + 1) Uimin-Sutherland models.
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13.3 Shastry’s model as a classical analogue of the 1d Hubbard model

Here we recall the essential properties of the Hamiltonian of the Hubbard model and its
exactly solvable classical counterpart in 2d. The Hubbard model describes a lattice fermion
system with electron-hopping term and on-site Coulomb repulsion with Hamiltonian

HHubbard,L =
L∑

i=1

Hi,i+1 + Hexternal, (13.72)

Hi,i+1 = −
∑

a=↑,↓
(c†i+1,aci,a + c†i,aci+1,a)+U (ni,↑ − 1

2 )(ni,↓ − 1
2 ).

The external field term Hexternal = −
∑

i [µ(ni,↑ + ni,↓)+ B(ni,↑ − ni,↓)] will be omitted for
the time being. According to [393], it is easier to find a classical analogue after performing
the Jordan-Wigner transformation for electrons in 1d. The resulting spin Hamiltonian is

Hi,i+1 = (σ+i↑σ
−
i+1↑ + σ+i+1↑σ

−
i↑)+ (σ+i↓σ

−
i+1↓ + σ+i+1↓σ

−
i↓)+

U

4
σ z

i↑σ
z
i↓, (13.73)

where L denotes the length of the chain. Note that we are now imposing periodic boundary
conditions for the spin system (σ1,a = σL+1,a for a =↑,↓). This does not correspond to pe-
riodic boundary conditions for the underlying electron system. The differences in boundary
conditions, however, will not affect thermodynamic quantities like the specific heat.

For the classical counterpart in two dimensions (see Chapter 12) we considered a double-
layer square lattice, consisting of ↑- and ↓-sublattices. Each local Hilbert space correspond-
ing to a particular site of the lattice is indexed by an integer i , the sublattice is specified
by the additional a =↑,↓. For vanishing on-site interaction (U = 0) the R-matrix is given
by the product of vertex weights of the free-fermion six vertex model, r (λ) = r↑(λ)r↓(λ),
where

ra(λ) = cos(λ)+ sin(λ)

2
+ cos(λ)− sin(λ)

2
σ z

1,aσ
z
2,a + (σ+1,aσ

−
2,a + σ−1,aσ

+
2,a). (13.74)

Hence r acts non-trivially in the product of local Hilbert spaces corresponding to sites 1
and 2.

Taking account of a non-vanishing U as done in [393] the following local vertex weights
are found [393], (12.110)

Ř(λ,µ) = cos(λ+ µ) cosh(h(λ,U )− h(µ,U )) ř (λ− µ)

+ cos(λ− µ) sinh(h(λ,U )− h(µ,U )) ř (λ+ µ) σ z
1,↑σ

z
1,↓

where (12.108)

sinh 2h(λ,U ) := U

4
sin(2λ). (13.75)

The L-operator is related to Ř by (13.1). As shown in Appendix 12.A this R-matrix satisfies
the Yang-Baxter relation for triple R matrices. The commutativity of the row-to-row transfer
matrix is a direct consequence.
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The R matrix and H are related by an expansion in small spectral parameters,

R1,2(λ,µ) = P[1+ (λ− µ)H1,2]+ O(λ2, λµ,µ2), (13.76)

where P denotes the permutation operator, P(x ⊗ y) = y ⊗ x . Note that there is a minus
sign change in (13.76) in comparison to (13.3). We therefore follow Section 13.1 as closely
as possible with the final replacement of the parameter τ by −τ . Alternatively we may
replace U by −U , i.e. we study H (−U ) which is equivalent to −H (+U ) upon a unitary
transformation of the type of a sublattice gauge transformation, ci,a → (−1)i ci,a . Hence we
find

Z = lim
L→∞

Tr e−βH (U ) = lim
L→∞

Tr eβH (−U ). (13.77)

In order to calculate the partition function in the thermodynamic limit we further proceed
as in Section 13.1

Z = lim
L→∞

lim
N→∞

Tr [T (τ )T (τ )]N/2| τ=β/N
U→−U

. (13.78)

In particular we introduce the QTM (13.9)

T QTM(λ, τ ) := Traux

[
N/2⊗

R(λ,−τ )⊗ R̃(λ, τ )

]
. (13.79)

In the next section we will derive the BA equations by use of several of the techniques
developed in Chapter 12 for the homogeneous row-to-row transfer matrix.

13.4 Diagonalization of the quantum transfer matrix

In this section we will diagonalize the QTM by the Quantum Inverse Scattering Method
(QISM). At first glance, the diagonalization scheme for the QTM looks quite different from
the row-to-row case. The QTM has a complicated inhomogeneous structure, seemingly
demanding much more effort. Fortunately, this is not true. The crucial observation is, as
remarked in the previous section, that QTMs share the same intertwining operator with the
row-to-row transfer matrices. In view of the QISM, this results in identical operator algebras
allowing for the diagonalization of the trace of the monodromy matrix. We note that we
adopt periodic or twisted boundary conditions in the Trotter direction in order to account
for the external magnetic field B and chemical potential µ, see the end of Section 13.1.
Thus, the eigenvalue equation of the QTM involves the same combinations of ‘dressing
functions’ in the terminology of the analytic Bethe ansatz as in the row-to-row case. One
only has to replace the vacuum expectation values taking account of the inhomogeneity in
the quantum space.

We define state vectors |i〉, i = 1, · · · , 4 by

|1〉 = |+,−〉, |2〉 = |+,+〉, |3〉 = |−,−〉, |4〉 = |−,+〉. (13.80)
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A convenient vacuum in the present study is |�〉 := |1, 4, 1, 4, · · · , 1, 4〉. Then the vacuum
expectation values 〈�|Ti,i |�〉 read

〈�|Ti,i |�〉 = Ai · eβµi , i = 1, · · ·, 4,
Ai = [Ri,1

i,1(λ,−τ )R4,i
4,i (τ, λ)]N/2, (13.81)

with µ1, µ2, µ3, µ4 = µ+ B, 2µ, 0, µ− B. Here µ is a chemical potential and B an
external magnetic field. These fields merely lead to trivial modifications in � due to twisted
boundary conditions for the QTM as in Refs. [101, 230, 231, 254].

Using the explicit expressions for R we obtain

A1

A2
=

[
ω2(λ)ω2(τ )− ω3(λ)ω1(τ )

ω2(λ)ω2(τ )+ ω3(λ)ω1(τ )
· ω2(λ)ω2(τ )− ω3(λ)ω3(τ )

ω2(λ)ω2(τ )+ ω3(λ)ω3(τ )

]N/2

,

A4

A2
=

[
ω1(λ)ω2(τ )+ ω2(λ)ω1(τ )

ω1(λ)ω2(τ )− ω2(λ)ω1(τ )
· ω1(λ)ω2(τ )+ ω2(λ)ω3(τ )

ω1(λ)ω2(τ )− ω2(λ)ω3(τ )

]N/2

,

A2 = A3 =
[
cos2 λ cos2 τ cos2(λ− τ ) cos2(λ+ τ )

]N

×
(

[ω1(λ)ω2(τ )− ω2(λ)ω1(τ )][ω3(λ)ω1(τ )+ ω2(λ)ω2(τ )]

ω1(λ)ω2(λ)ω1(τ )

)N/2

.

(13.82)

Proceeding as in Section (12.6) we may derive the following expression for the
eigenvalue

�(λ) =
[

eβ(µ+B) A1

A2
+ e2βµ(−1)m

l∏
α=1

−1

a(λ,µα)
+

m∏
j=1

1

a(λ, λ j )

l∏
α=1

−1

a(µα, λ)

+ eβ(µ−B) A4

A2

m∏
j=1

−1

a(λ, λ j )

]
(−1)n A2

m∏
j=1

(
ω2(λ)

ω2(λ j )ω2(λ)+ ω1(λ j )ω1(λ)

ω2(λ j )ω2(λ)− ω1(λ j )ω3(λ)

)
.

(13.83)

This is the analogy of (12.368).
Next we replace U by−U as discussed in the last section. Furthermore we introduce the

parameterizations of λ, τ in terms of x , w

e2x = tan λ, e2w = tan τ, (13.84)

and introduce the functions

z±(x) := e2h(x)±2x , 2h(x) := − sinh−1

(
U

4 cosh 2x

)
. (13.85)
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In these notations the vacuum terms are expressed as

A1/A2 =
(

(1− z−(w)z+(x))(1− z+(w)z+(x))

(1+ z−(w)z+(x))(1+ z+(w)z+(x))

)N/2

A4/A2 =
(

(1+ z−(w)/z−(x))(1+ z+(w)/z−(x))

(1− z−(w)/z−(x))(1− z+(w)/z−(x))

)N/2

A2 = A3 =
(

cos2 λ cos2 τ cos2(λ− τ ) cos2(λ+ τ )

× e2h(w)

(
1

z−(w)
− 1

z−(x)

)(
z+(x)+ 1

z−(w)

))N/2

.

The eigenvalue (13.83) takes the form

�(λ)

A2
= eβ(µ+B) A1

A2

m∏
j=1

e2x 1+ z j z−(x)

1− z j z+(x)

+ e2βµ
m∏

j=1

−e2x 1+ z j z−(x)

1− z j z+(x)

�∏
α=1

− z−(x)− 1/z−(x)− 2iwα + 3U/2

z−(x)− 1/z−(x)− 2iwα +U/2

+
m∏

j=1

−e−2x 1+ z+(x)/z j

1− z−(x)/z j

�∏
α=1

− z−(x)− 1/z−(x)− 2iwα −U/2

z−(x)− 1/z−(x)− 2iwα +U/2

+ eβ(µ−B) A4

A2

m∏
j=1

e−2x 1+ z+(x)/z j

1− z−(x)/z j
, (13.86)

where we have set

z j := z−(λ j ), 2iwα := 2iν(µα)−U. (13.87)

The parameters {z j }, {wα} satisfy the Bethe ansatz equations,

eβ(µ−B)

(
(1+ z−(w)/z j )(1+ z+(w)/z j )

(1− z−(w)/z j )(1− z+(w)/z j )

)N/2

= −(−1)m
�∏

α=1

− z j − 1/z j − 2iwα −U/2

z j − 1/z j − 2iwα +U/2
, (13.88)

e2βµ
m∏

j=1

z j − 1/z j − 2iwα +U/2

z j − 1/z j − 2iwα −U/2
= −

�∏
β=1

2i(wα − wβ)−U

2i(wα − wβ)+U
.

Here some remarks are in order:

(i) We have checked (13.86) for the largest eigenvalue against results from numerical diagonaliza-
tions of finite systems up to size N = 6. The leading state lies in the sector m = N , � = N/2.
For the repulsive case and µ = B = 0, all z j ’s are on the imaginary axis, while all wα’s are real,
cf. figures 13.10 and 13.11.

(ii) The free-fermion partition function is recovered in the limit U → 0.
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Fig. 13.10. Plots of the parameters z j on the imaginary axis (horizontal lines) for U = 8, N = 16
and different temperatures τ = β/N = 0.05, 0.1, 1. For the sake of clarity we have omitted the axes
labels. The origin corresponds to 0, and marks are placed at integer values times i. In all three cases
there are 16 parameters z j , however only a subset is visible within the displayed window of absolute
values less than 10. Note that for τ = 0.05 all values of z j are larger than 1, for τ = 0.1 (1) two (six)
values of z j are less than 1.

(iii) Starting from another vacuum |�′〉 = |2, 3, · · ·〉, one obtains a different expression for �(λ).
The resultant one is actually identical to (13.83) after negating U and exchanging B ↔ µ.
This alternative formulation is in fact equivalent to (13.83) thanks to a partial particle-hole
transformation.

The solution to the Bethe ansatz equations (13.88) corresponding to the largest eigenvalue
shows a characteristic temperature dependence. For rather large values of the temperature
T (i.e. small values of τ = β/N ) all z j lie on the imaginary axis and have absolute values
larger than 1. Upon lowering T (i.e. increasing τ ) the parameters z j decrease and converge
towards the origin, see figure 13.10. In particular, at low temperatures a certain number of
the z j ’s have absolute values less than 1. A similar behaviour is shown by the wα parameters
on the real axis, see figure 13.11. We note that the motion of the z j parameters has profound
consequences. In the next section we will reparametrise the z j ’s in terms of s j parameters
by use of a function s(z) that is not one-to-one, i.e. z(s) is double valued. Upon the action
of s(z), parameters z on the imaginary axis with |z| > 1 and those with |z| < 1 are mapped
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Fig. 13.11. Plots of the parameters wα on the real axis (horizontal lines) for U = 8, N = 16 and
different temperatures τ = β/N = 0.05, 0.1, 1. For the sake of clarity we have omitted the axes
labels. The origin corresponds to 0, and marks are placed at integer values. In all three cases there
are 8 parameters wα , however only a subset is visible within the displayed window of absolute values
less than 10.

onto the same range of the real axis with |s| > 1. In this sense the motion of z j parameters
through the points ±i corresponds to a change of the new s j from the first branch to the
second branch (with a branch cut from −1 to +1). The set of parameters wα will be kept
and there is no branch cut in the w-plane.

13.5 Associated auxiliary problem of difference type

The thermodynamical information on the system is encoded in the solution to the Bethe
ansatz equations (13.88) in the limit N →∞. For finite N it is possible to solve the
Bethe ansatz equations numerically. However, for large N it is quite complicated to find
the numerical solution even for the ground state. Furthermore, in the Trotter limit N →∞
the roots {vk, wk} accumulate at infinity. This is similar to other models (Heisenberg model,
t - J model) where the solutions of the Bethe ansatz equations of the QTM coalesce at the
origin [100, 230–232, 253, 254]. This represents the main problem in analyzing the limit
N →∞ directly on the basis of the Bethe ansatz equations. To overcome this difficulty one
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can express the solution of the Bethe ansatz equations by a system of non-linear integral
equations in analogy with our treatment of the Heisenberg chain in Section 13.2.

The first problem to be overcome is the complicated structure of the Bethe ansatz equa-
tions (13.88). Introducing variables

s j = 1

2i

(
z j − 1

z j

)
, (13.89)

we may recast equations (13.88) in a difference form (in the rapidities {s j }, {wα})

e−β(µ−B)φ(s j ) = −q2(s j − iU/4)

q2(s j + iU/4)
, (13.90)

e−2βµ q2(wα + iU/2)

q2(wα − iU/2)
= −q1(wα + iU/4)

q1(wα − iU/4)
, (13.91)

where we have defined

q1(s) :=
m∏
j

(s − s j ), q2(s) :=
l∏
α

(s − wα), (13.92)

φ(s) :=
(

(1− z−(w)/z(s))(1− z+(w)/z(s))

(1+ z−(w)/z(s))(1+ z+(w)/z(s))

)N/2

, (13.93)

z(s) := is
[
1+

√
(1− 1/s2)

]
. (13.94)

Equations (13.90), (13.91) would be equivalent to (13.88) if the functions φ(s) and z(s)
were single-valued. However, these functions possess two branches.

The standard (‘first’) branch of z(s) is defined by requiring that z(s) ! 2is for large
values of s, with a branch cut along [−1, 1] (corresponding to values of z on the unit circle.)
Hence the first branch of z(s) maps the complex plane without [−1, 1] onto the region of
the complex plane outside the unit circle. Conversely the second branch of z(s) maps the
complex plane without [−1, 1] onto the inner region of the unit circle.

Along the branch cut we find

z(x ± i0) = ix ∓
√

1− x2, x ∈ [−1, 1]. (13.95)

We will not often refer to the second branch of z(s). We emphasize that z(s) is in no way
related to the functions z± defined in (13.85).

To summarize: equations (13.90), (13.91) are equivalent to (13.88) only if we specify on
which Riemann sheet each parameter s j in (13.90) lies. In figure 13.10 (and figure 13.11)
we plot solutions z j (and wα) to (13.88) for three typical cases at high, moderate, and
low temperatures. At high temperatures all z j have absolute values larger than 1 with the
corresponding parameters s j lying on the first sheet, cf. figure 13.12 where the positions
of s j on the first sheet are depicted by squares. At low temperatures most of the z j ’s have
absolute values larger than 1, but there are some z j with absolute values less than 1. The
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Fig. 13.12. Plots of the parameters s j on the real axis (horizontal lines) for U = 8, N = 16 and
different temperatures τ = β/N = 0.05, 0.1, 1. The origin corresponds to 0, and marks are placed at
integer values. In all three cases there are 16 parameters s j , however only a subset is visible within
the displayed window of absolute values less than 10. The depicted results correspond to those in
figure 13.10 via the relation (13.89). Parameters s j corresponding to z j ’s with absolute values larger
(smaller) than 1 are depicted by squares (diamonds). For the sake of clarity the symbols for s j ’s lying
on the second sheet are plotted slightly below the axis.

corresponding parameters s j lie on the first as well as the second sheet, cf. figure 13.12
where the positions of s j ’s that lie on the second sheet are depicted by diamonds.

We note that for N →∞ there are infinitely many rapidities on the first (upper) sheet
and finitely many on the second (lower) sheet. The number of rapidities on the second sheet
is increasing with decreasing temperature, resulting in a flow from the first to the second
sheet, see figure 13.13.

The function φ(s) defined in (13.92) has two branches as well, which we denote by φ+(s)
and φ−(s), respectively. The function φ+(s) has a zero (pole) of order N/2 at the point s0

(−s0) defined by

z(s0) := z−(w), (2is0 ! N/β for large N ). (13.96)

On the other hand,φ−(s) has a zero (pole) of order N/2 at the point−s0 + iU/2 (s0 − iU/2).
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Fig. 13.13. Depiction of the flow of rapidities s j from the first (upper) Riemann sheet to the second
(lower) one as the temperature is decreased.

We note that the general expression (13.86) for the eigenvalue �(λ) is quite complicated,
but simplifies considerably at λ = 0 and τ → 0

�(λ = 0) = eβU/4(1+ eβ(µ+B))(1+ eβ(µ−B))τ N
m∏

j=1

z j . (13.97)

At this point a comment on the difference type property of (13.91) is in order. These
equations are ‘Bethe ansatz equation compatible’ with an auxiliary system in the following
sense. Consider the auxiliary function

�aux(s) := λ1(s)+ λ2(s)+ λ3(s)+ λ4(s), (13.98)

where the λ j functions are defined by

λ1(s) := eβ(µ+B) φ(s − iU/4)

q1(s − iU/4)
, λ2(s) := e2βµ q2(s − iU/2)

q2(s)q1(s − iU/4)
,

λ3(s) := q2(s + iU/2)

q2(s)q1(s + iU/4)
, λ4(s) := eβ(µ−B) 1

φ(s + iU/4) q1(s + iU/4)
.

(13.99)

In this case, the condition of analyticity of �aux(s), i.e. the absence of poles, leads to (13.90),
(13.91), which are the Bethe ansatz equations of the eigenvalue �(λ) of the original QTM!
An important qualitative difference between �(λ) and �aux(s) is that while �(λ) is analytic
everywhere, i.e. on all branches, �aux(s) is analytic on the first (standard) branch, but may
have singularities on the other (three) branches.

Let us illustrate this point by considering the first set of the Bethe ansatz equations
(13.90). The latter set of equations arises from requiring that the zeroes s j + iU/4 in the
denominators of λ1 and λ2 are cancelled in the sum λ1 + λ2 (or equivalently that the zeroes
s j − iU/4 in the denominators of λ3 and λ4 are cancelled in the sum λ3 + λ4):

λ1(s j + iU/4)

λ2(s j + iU/4)
= −1. (13.100)

This condition is satisfied in the limit N →∞ for an infinite number of rapidities on the
first branch of the function λ1/λ2, and for a finite number of rapidities on the second branch,
see figure 13.13.

In figure 13.14 we show the distribution of zeroes, poles and the branch cut for the function
(λ1 + λ2)(s) at a relatively high temperature. Here all rapidities s j satisfy Eqn. (13.100) on
the first branch. Hence the cancellation of poles and zeroes happens entirely for the first
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wα wα

λ  + λ1 2

j
s +iU/4

2nd branch1st branch

0

i U/4−s 0

1+i U/4 +1+i U/4 1+i U/4 +1+i U/4

s  iU/4

− −

−

Fig. 13.14. Distribution of zeroes, poles and the branch cut of the function (λ1 + λ2)(s) in the complex
s-plane for zero magnetic field and chemical potential (B = 0, µ = 0). Zeroes (poles) are depicted
by open circles (crosses). Across the branch cut depicted by a dashed line, the transition from the first
to the second branch and back is possible. All poles are of simple order except those at iU/4− s0

and s0 − iU/4 which are of order N/2. The zeroes of the function (on the second branch) are not of
further importance to our analysis. Here, for not too low temperatures, the poles with imaginary part
U/4 occur on the second branch and are completely absent on the first branch. If the temperature is
lowered, the poles on the second branch move through the branch cut onto the first branch.

branch of (λ1 + λ2)(s), no cancellation takes place on the second branch. Therefore all poles
with imaginary part U/4 occur on the second branch and are completely absent on the first
one. In figure 13.15 we show the distribution of zeroes, poles and the branch cut for the
function (λ3 + λ4)(s). Last but not least, we illustrate the distribution of zeroes, poles and
branch cuts for the function (λ1 + λ2 + λ3 + λ4)(s), cf. figure 13.16. As we have two cuts
of the type discussed above there are in total four branches. We are mostly interested in the
case of the first (standard) branch.

As a final comment on the singularities of the introduced functions we note that there is
no non-zero winding number of the functions (λ1 + λ2)(s), (λ3 + λ4)(s), (λ1 + λ2 + λ3 +
λ4)(s) around their branch cuts. The reason is simple: the total number of poles on the 1st
branch is equal to N and the asymptotic behaviour of the functions is 1/s N . Of course, for
lower temperatures isolated singularities may change from one branch to the other via the



13.6 Derivation of non-linear integral equations 519

wαwα

2nd branch1st branch

λ  + λ3 4

0

1 i U/4

s  i U/4

i U/4− s0

1 i U/4 +1−i U/4+1 i U/4

s  −i U/4j

−

−

− − − −

Fig. 13.15. Distribution of zeroes, poles and the branch cut of the function (λ3 + λ4)(s) in the complex
s-plane. The notation is identical to that of figure 13.14. Here the patterns look like the complex
conjugates of those in figure 13.14. This is strictly true for zero magnetic field and chemical potential
(B = 0, µ = 0) and still holds approximately for finite fields.

branch cuts. Still the above reasoning remains correct if the loop surrounds the branch cut
as well as the emerging singularities.

The construction (13.98), (13.99) is at this point purely mathematical; however, it will
be the starting point of the derivation of integral equations in the next section.

13.6 Derivation of non-linear integral equations

In this section we are concerned with the derivation of well posed integral equations equiv-
alent to the nested Bethe ansatz equations for the largest eigenvalue of the QTM for U > 0.
(The case U < 0 is simply obtained via a particle-hole transformation, see Section 2.2.4.)
We introduce a set of auxiliary functions satisfying a set of closed functional equations
which later on are transformed into integral form.

At first glance a treatment strictly following the one for the Heisenberg chain would
appear to be possible [255]. In fact, functions like λ1(s)/λ2(s), λ2(s)/λ3(s) etc. may lead
to a closed set of equations. However, the analytic properties, i.e. distribution of poles and
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λ  + λ3 41 2λ  + λ   +
(1st branch)

0

−1+ i U/4

−1− i U/4

s − i U/4

i U/4 − s0

+1− i U/4

+1+ i U/4

Fig. 13.16. Distribution of zeroes, poles and the branch cut of the function (λ1 + λ2 + λ3 + λ4)(s)
in the complex s-plane for zero magnetic field and chemical potential (B = 0, µ = 0) and relatively
high temperature. The notation is identical to that of figure 13.14 and figure 13.15.

branch cuts, are such that the integration contours are no longer straight lines. This causes
severe problems in a numerical study and obstructs the analytical investigation of low-
temperature properties. Some problems in such a direct approach are already encountered
at moderate temperatures in a study of the BA equations for finite N . In figure 13.17 the
functions λ1/λ2 and λ2/λ3 are shown for argument s(z)+ iU/4 (with imaginary z) and
argument s (real), respectively. Note that the phases of these functions are monotonic for
λ1/λ2, but non-monotonic for λ2/λ3, which in the latter case complicates the determination
of the relevant zeroes. The parameters wα are to be determined from λ2/λ3 or equivalently
from (λ1 + λ2)/(λ3 + λ4) which shows the advantage of a monotonical varying phase.

The following explicit expressions of the functions b, b, c, c turn out to be very useful

b = l1 + l2 + l3 + l4

l1 + l2 + l3 + l4
, b = l1 + l2 + l3 + l4

l1 + l2 + l3 + l4
,

c = l1 + l2

l3 + l4
· l1 + l2 + l3 + l4

l1 + l2 + l3 + l4 + l1 + l2 + l3 + l4
, (13.101)

c = l3 + l4

l1 + l2
· l1 + l2 + l3 + l4

l1 + l2 + l3 + l4 + l1 + l2 + l3 + l4
,
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Fig. 13.17. Illustration of various functions for the case U = 4, N = 16 and τ = 0.1. Upper panel:
depiction of the phase of − λ1

λ2
(s(z)+ iU/4) for z on the positive imaginary axis (horizontal line).

Zeroes of this function correspond to the Bethe ansatz rapidities z j . Lower panel: depiction of the
phase of − λ2

λ3
(s) (dashed line) and of − λ1+λ2

λ3+λ4
(s) (solid line). Some (all) of the zeroes of the dashed

(solid) line correspond to the Bethe ansatz rapidities wα .

where the functions l j and l j are closely related to the λ j defined in (13.99)

l j (s) = λ j (s − iU/4) · e2βBφ+(s)φ−(s),

l j (s) = λ j (s + iU/4).
(13.102)

The main observation in connection with the functions defined in (13.101) is based on
elementary facts of the theory of complex functions. In particular any analytic function on
the complex plane is entirely determined by its singularities, i.e. poles and branch cuts,
as well as its asymptotic behaviour at infinity. Below we will show that the singulari-
ties of log b, log c etc. on the entire complex plane are exhausted by the singularities of
log(1+ b), log(1+ c) etc. in the vicinity of the real axis.2 Furthermore, all functions in-
volved exhibit constant asymptotics for finite N . Hence there exists a suitable integral repre-
sentation of log b, log c etc. in terms of log(1+ b), log(1+ c) etc. The latter functions will be

2 The relevant singularities are distributed exactly on the real axis for vanishing external fields. For this case the subsequent
treatment can be taken literally. For finite external fields B, µ, deviations from the real axis occur. The following reasoning still
applies mutatis mutandis.
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abbreviated by

B = 1+ b = l1 + l2 + l3 + l4 + l1 + l2 + l3 + l4

l1 + l2 + l3 + l4
,

B = 1+ b = l1 + l2 + l3 + l4 + l1 + l2 + l3 + l4

l1 + l2 + l3 + l4
,

C = 1+ c = l1 + l2 + l3 + l4

l3 + l4
· l3 + l4 + l1 + l2 + l3 + l4

l1 + l2 + l3 + l4 + l1 + l2 + l3 + l4
,

C = 1+ c = l1 + l2 + l3 + l4

l1 + l2
· l1 + l2 + l3 + l4 + l1 + l2

l1 + l2 + l3 + l4 + l1 + l2 + l3 + l4
.

(13.103)

Quite generally all the above auxiliary functions have a product representation with factors
of the type . . .+ l3 + l4 + l1 + l2 + . . . . As a matter of the Bethe ansatz equations the poles
of each l j and l j function in . . .+ l3 + l4 + l1 + l2 + . . . are canceled by the neighbouring
terms. Poles can only ‘survive’ if such a string does not begin with l1 or does not end with
l4. There are extended singularities (cuts) due to the function φ appearing in the definition
of λ1 and λ4. Hence all terms l1 + l2 + . . . and . . .+ l3 + l4 possess branch cuts along
[−1, 1]+ iU/2 and [−1, 1]− iU/2, respectively. Furthermore, terms like . . .+ l3 + l4 and
l1 + l2 + . . . have branch cuts along [−1, 1]. However in combinations . . .+ l4 + l1 + . . .

the branch cut due to the φ function disappears, because

l4(s)+ l1(s) = eβ(µ+B) φ
+(s)+ φ−(s)

q1(s)
, (13.104)

and φ+(s)+ φ−(s) is analytic everywhere as a crossing of the line [−1,+1] results into a
simple exchange φ+(s)↔ φ−(s) leaving the sum invariant.

Inspecting the function λ1 + λ2 + λ3 + λ4 more closely we find poles of order N/2 at
s0 − iU/4 and iU/4− s0 where s0 is defined in (13.96). In addition we find zeroes and
branch cuts on the lines Im(s) = ±U/4 which we write as

log[λ1(s)+ λ2(s)+ λ3(s)+ λ4(s)] ≡s − N

2
log[(s − s0 + iU/4)(s + s0 − iU/4)]

+ L−(s + iU/4)+ L+(s − iU/4), (13.105)

where ≡s denotes that left- and right-hand sides have the same singularities on the entire
plane, and L± are suitable functions possessing the desired singularities and being analytic
otherwise. These functions can be constructed quite explicitly by contour integrals of the
type (13.31). The functions L± are obtained by choosing L around the axes Im(s) = ±U/4
and setting f (v)→ L±(s), A(w)→ (λ1 + λ2 + λ3 + λ4)(w) and v − w→ s − w ± iU/4.
Alternatively, we can write the functions as L± = k ◦ l±where the function k and the symbol
◦ are defined below in (13.109), (13.110) and l±(s) = (λ1 + λ2 + λ3 + λ4)(s ± iU/4). Note
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however, that we do not need these explicit expressions for our reasoning. From (13.105)
we find the following singularities

log[l1(s)+ l2(s)+ l3(s)+ l4(s)] ≡s − N

2
log[(s − s0)(s + s0 − iU/2)]

+ log[φ+(s)φ−(s)]+ L−(s)+ L+(s − iU/2),

log[l1(s)+ l2(s)+ l3(s)+ l4(s)] ≡s − N

2
log[(s + s0)(s − s0 + iU/2)]

+ L−(s + iU/2)+ L+(s). (13.106)

From this, and (13.101, 13.103) and the identity

φ+(s)φ−(s) =
[

(s − s0)(s + s0 − iU/2)

(s + s0)(s − s0 + iU/2)

]N/2

(13.107)

we find the singularities

log b(s) ≡s L−(s + iU/2)+ L+(s)− L−(s)− L+(s − iU/2),

log B(s) ≡s −L−(s)+ rest,

log c(s)− log C(s) ≡s L−(s)− L+(s)+ rest, (13.108)

where ‘rest’ indicates singularities not located on the real axis.
Next we introduce the notation

(g ◦ f )(s) =
∫
L

g(s − t) f (t)dt (13.109)

for the convolution of two functions g and f with contour L surrounding the real axis at
infinitesimal distance above and below in anticlockwise manner. From Cauchy’s theorem
we find for any function f analytic above and below the real axis

(k ◦ f )(x ± i0) = (k ◦ f )(x)+ f (x ± i0), where k(s) = 1

2π i

1

s
, (13.110)

and x is real (see also (13.34) and (13.35)). For further convenience we introduce the
functions

K1(s) = k(s − iU/4)− k(s + iU/4) = U

4π

1

s2 + (U/4)2
,

K̂1(s) = K1(s + iU/4), K 1(s) = K1(s − iU/4),

K2(s) = k(s − iU/2)− k(s + iU/2) = U

2π

1

s2 + (U/2)2
,

(13.111)

which will play the role of integral kernels. From (13.108), (13.110), (13.111) we find

[K2 ◦ log B+ K1 ◦ (log c− log C)] ≡s L−(s + iU/2)+ L+(s)− L−(s)− L+(s − iU/2).
(13.112)
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Upon comparing (13.108), (13.112) we conclude

log b(s) = K2 ◦ log B+ K1 ◦ (log c− log C)+ const, (13.113)

as both sides are complex functions with identical singularities. For a proof of the identity
we consider the difference function which is entire, i.e. analytic on the entire complex
plane. Furthermore the difference function is bounded, hence it is constant. The constant is
computed from considering the asymptotic behaviour at s →∞. The function b(s) (13.101)
due to (13.102) has the limiting behaviour of 1/[e2βBφ+(s)φ−(s)] which simply gives e−2βB .
As the integrals on the r.h.s. of the last equation turn to 0 we have

const = −2βB. (13.114)

For the derivation of the second type of integral equations we define an intermediate set
of auxiliary functions

t = l1 + l2

l3 + l4
, T = 1+ t = l1 + l2 + l3 + l4

l3 + l4
,

t = l3 + l4

l1 + l2
, T = 1+ t = l1 + l2 + l3 + l4

l1 + l2
.

(13.115)

Quite similar to the above reasoning we find

log[λ1(s)+ λ2(s)] ≡s −N

2
log(s + s0 − iU/4)+ L(s − iU/4)− log q2(s),

log[λ3(s)+ λ4(s)] ≡s − logφ(s + iU/4)− N

2
log(s + s0 + iU/4)

+ L(s + iU/4)− log q2(s) (13.116)

with a suitable function L(s). From this we find the singularities

log t(s) ≡s
N

2
log

s + s0

s + s0 − iU/2
+ logφ(s)− L(s)+ L(s − iU/2)

log B(s)+ log T(s) ≡s −L(s)+ rest, (13.117)

where ‘rest’ again indicates singularities not located on the real axis. Hence we conclude

log t(s) = β(µ+ B)+ N

2
log

s + s0

s + s0 − iU/2
+ logφ(s)− K1 ◦ (log B+ log T).

(13.118)

The constant on the r.h.s. has been determined similarly to above from the limit of t(s)
which is straightforwardly found from (13.99) to be exp(β(µ+ B)).

Next we deform the integration contour for log B in (13.118) from a narrow loop around
the real axis to a wide loop consisting of the two horizontal lines Im(s) = ±α, with 0 <

α ≤ U/4. The corresponding convolution is denoted by ‘��’

K1 ◦ log B = K1�� log B− log B, (13.119)
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and the additional contribution is due to the residue of K1, see (13.110). Taking into account
(13.101, 13.115) we find

log c = log t− log B, � log T = � log C, (13.120)

where� f (x) = f (x + i0)− f (x − i0) denotes the discontinuity along the real axis. There-
fore, (13.118) turns into

log c(s) = β(µ+ B)+ N

2
log

s + s0

s + s0 − iU/2
+ logφ(s)− K1�� log B− K1 ◦ log C.

(13.121)

Lastly, we perform the limit N →∞ in the above equations yielding

log b = −2βB + K2�� log B+ K1 ◦ (log c− log C),

log c = −βU/2+ β(µ+ B)+ logφ − K1�� log B− K1 ◦ log C,

log c = −βU/2− β(µ+ B)− logφ + K̂1�� log B+ K̂1 ◦ log C,

(13.122)

where the equation for log c has been derived in analogy to the one for log c, and for N →∞
the function φ takes the simplified form

logφ(s) = −2βis
√

1− 1/s2. (13.123)

yielding at the branch cut

logφ(x ± i0) = ±2β
√

1− x2, x ∈ [−1, 1]. (13.124)

We want to point out that the function b will be evaluated on the lines Im(s) = ±α (notably
with α = U/4). The functions c and c need only be evaluated on the real axis infinitesimally
above and below the interval [−1, 1]. Also the convolutions involving the ‘c functions’ in
(13.122) can be restricted to a contour surrounding [−1, 1] as these functions are analytic
outside.

Finally, we want to comment on the structure of the equations determining the ther-
modynamical properties of the Hubbard model. In contrast to long-range interaction sys-
tems [161,240] we have to solve a set of subsidiary equations (13.122) for the ‘distribution
functions’ b, c, and c before evaluating the free energy (13.154). Obviously, the dynamics
of the elementary excitations of the nearest-neighbour systems are more involved than those
of [161, 240] which may be viewed as ‘free particles with exclusion statistics’.

13.7 Integral expression for the eigenvalue

Here we turn to the derivation of expressions for the largest eigenvalue of the QTM (13.97)
in terms of the above auxiliary functions. We write

∑
j log z j =

∑
j log z(s j ) (13.89) as a

Cauchy integral of the function

f (s) = log z(s)
[
log (1+ l4/l3(s))

]′
, (13.125)
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where the s j are precisely the zeroes of both branches of (1+ l4/l3(s)) on or close to the
real axis. Therefore, we use a contour L0 surrounding the s j in anticlockwise manner.
The s j are not located on the branch cut of log z(s) from −1 to 1, hence L0 consists
of two disconnected parts. (For vanishing external fields these contours are loops around
]−∞,−1] and [1,∞[, respectively. In the general case they are appropriately deformed.)
For not too low temperatures the z j corresponding to a particular s j are calculated by use
of the first branch of log z(s). This is no longer possible at lower temperatures, so for the
general case we must write

2π i
∑

j

log z(s j ) =
∫
L0

f (s)
∣∣
1st branchds︸ ︷︷ ︸

=: �1

+
∫
L0

f (s)
∣∣
2nd branchds︸ ︷︷ ︸
=: �2

,
(13.126)

where the first and second term on the right hand side, �1 and �2, will be separately
evaluated below.

13.7.1 First integral expression in terms of auxiliary functions

The function l4(s)/l3(s) for s →∞ behaves like a rational function with finite limiting value
exp(β(µ− B)) and next-leading asymptotics of orderO(1/s). As we also have z(s) of order
O(s) we find the asymptotics of f (s) as O(log s/s2). Therefore we are allowed to add two
large ‘semi-circles’ to the contour L0 without changing the integral expression of �1. Next
we deform the integration contour by leaving the value of the integral unchanged. Due to
Cauchy’s theorem we may do so as long as the contour is not moved over singularities of
f (s) which result from a branch cut along the interval [−1,+1] (depicted by a dashed line
in figure 13.18), and poles resulting from zeroes and poles of the expression 1+ l4/l3(s)
(depicted by open circles and crosses). Ultimately we find a contour consisting of three
separate parts, cf. figure 13.19. Contour (a) consists of a path (a1) from −∞ to −1, a loop
(a2) around the interval [−1,+1] and a path (a3) back to −∞.

Note that (a1) and (a3) are inverse to each other, but do not lead to a cancellation in the
integral as the integrand shows a jump from (a1) to (a3), because log z(s) jumps by −2π i.
We find∫

(a1,a3)
log z(s)

[
log (1+ l4/l3(s))

]′
ds =

∫
(a3)

(−2π i)
[
log (1+ l4/l3(s))

]′
ds

= −2π i log [1+ l4/l3(s)]
∣∣∣s=−∞
s=−1

. (13.127)

Here we like to point out that a similar expression will be encountered below where the
function l4/l3 will be evaluated on its second branch. Fortuitously, the values at the points
−1 and−∞ are independent of the particular branch (eventually leading to cancellation of
these terms).
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αw    − i U/4

s0

sj

−1 +1

Fig. 13.18. Distribution of zeroes and poles of the function 1+ l4/l3(s). Zeroes (poles) are depicted
by open circles (crosses) and are located at s j (wα − iU/4). A pole of order N/2 is located at s0.
The integration contour L0 is indicated by thick solid lines. We can add two large ‘semi-circles’ with
radius R depicted by thin solid lines without changing the integral as the integrand vanishes like
O(log R/R2).

sj

s0

αw   − i U/4

−1 +1

(a)

(b)

(c)

Fig. 13.19. Integration contour equivalent to that of the previous figure. There are three separate parts:
(a) starting at −∞, encircling the interval [−1,+1] in clockwise manner, returning to −∞, (b) loop
surrounding the parameters wα − iU/4, (c) small circle arround s0.
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+1−1 −1 +1

1st branch 2nd branch

−1

−1 +1

(a)

(a  )

(a  )

(a  )1
2

3

Fig. 13.20. Decomposition of the integration contour (a) into two parts. The function f (s)
∣∣
1st branch

on the upper/lower part of the loop takes values identical to f (s)
∣∣
2nd branch

on the lower/upper part of
the loop.

The integrals along the parts (b) and (c) can be explicitly evaluated yielding

�1 = +2π i

(∑
α

log z(wα − iU/4)+ N

2
log z(s0)− [

log (1+ l4/l3(s))
] ∣∣∣s=−∞

s=−1

)
+

∫
(a2)

log z(s)
[
log (1+ l4/l3(s))

]′
ds. (13.128)

In figure 13.20 the separation of path (a) into the components (a1, a3) and (a2) is shown.
The integral of f (s)

∣∣
1st branch along (a2) is identical to the integral of f (s)

∣∣
2nd branch along

(a2) in reversed sense. Next we join the remaining integrals in �1 with the one in �2. The
‘surgery’ of integration contours is explained in figure 13.21. The resulting integral is over
f (s)

∣∣
2nd branch along a path L surrounding the real axis in anti-clockwise manner from−∞

to +∞ and back to −∞ where the integrand shows a jump. In addition there are integrals
over the paths (a1) and (a3) that can be done explicitly∫

(a1,a3)
f (s)

∣∣
2nd branchds =

∫
(a3)

(2π i)
[
log

(
1+ l4/l3(s)

∣∣
2nd branch

)]′
ds

= 2π i log
[
1+ l4/l3(s)

∣∣
2nd branch

] ∣∣∣s=−∞
s=−1

= 2π i log [1+ l4/l3(s)]
∣∣∣s=−∞
s=−1

. (13.129)

This calculation resembles that of (13.127). The different sign is due to the jump of
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−1 +1−1 +1

−1 +1

−1 +1

+

+ −1

Fig. 13.21. The remaining integral in (13.128) and �2 can be joined to a simple contour consisting of
two lines above and below the real axis. The integrand is strictly f (s)

∣∣
2nd branch

. Note that this integrand
is analytic on the contour from −1 to −∞, then from −∞ to +∞ and back to −1, but there is a
discontinuity at −1. We can move this discontinuity from −1 to −∞. This procedure involves an
integral of f (s)

∣∣
2nd branch

along the contour (a1,a3).

log z|2nd branch by +2π i which is ultimately a consequence of

z|2nd branch = −1/z|1st branch. (13.130)

Hence (13.129) cancels exactly the corresponding term in (13.128), namely (13.127), yield-
ing

�1 +�2 = +2π i

(∑
α

log z(wα − iU/4)+ N

2
log z(s0)

)
+

∫
L

f (s)
∣∣
2nd branchds.

(13.131)

Next we want to show that the r.h.s. of (13.131) is practically identical to

� :=
∫
L

[
log z(s − iU/2)

]′
log C(s)ds +

∫
L

[log z(s)]′ log
1+ c+ c

c
ds, (13.132)

which will complete our derivation. The necessary calculations are done by use of the
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explicit definitions of the involved functions (13.103)

C = l1 + l2 + l3 + l4

l3 + l4
· l3 + l4 + l1 + l2 + l3 + l4

l1 + l2 + l3 + l4 + l1 + l2 + l3 + l4
,

1+ c+ c

c
= l1 + l2 + l3 + l4

l3 + l4
· l3 + l4 + l1 + l2

l3 + l4︸ ︷︷ ︸
= 1+ l4

l3

∣∣
2nd branch

, (13.133)

where the last fraction involving l and l functions was simplified by explicit use of (13.99)
and (13.102). From the last expression and (13.99) the asymptotics can be easily read off

1+ c+ c

c
→ (

1+ eβ(µ+B)
) (

1+ eβ(µ−B)
)
. (13.134)

We begin the manipulations of (13.132) by performing integrations by parts. The second
term on the r.h.s. of (13.132) contributes a non-vanishing ‘surface term’ as log z(s) shows
a jump after surrounding the real axis, not so log z(s − iU/2), log C and log(1+ c+ c)/c:

� = −
∫
L

log z(s − iU/2)[log C(s)]′ds −
∫
L

log z(s)

[
log

1+ c+ c

c

]′
ds

+ 2π i log
[(

1+ eβ(µ+B)
) (

1+ eβ(µ−B)
)]

. (13.135)

Note that in the integral over C only the first ‘fraction of l functions’ has to be kept, the
second such term is analytic along the entire real axis and hence drops out according to
Cauchy’s theorem (note that the factor log z(s − iU/2) is analytic!). The only non-vanishing
contribution to the first integral on the r.h.s. of (13.135) is

−
∫
L

log z(s − iU/2)

[
log

l1 + l2 + l3 + l4

l3 + l4

]′
ds (13.136)

where the zeroes and poles of the fraction (l1 + l2 + l3 + l4)/(l3 + l4) are depicted in fig-
ure 13.22. We deform the integration contour L as explained in the figure caption and obtain
a contour with three separate parts shown in figure 13.23. The contribution of the first and
third path to the integral in (13.136) can be explicitly given in terms of the surrounded
poles. The contribution of the second path being identical to L+ iU/2 (in reversed sense)
can be reformulated by a shift of the variable of integration from s to s + iU/2 leading to
a replacement of the l j functions by l j functions:

(13.136) = +
∫
L

log z(s)

[
log

l1 + l2 + l3 + l4

l3 + l4

]′
ds

+ 2π i

(
−N

2
log z(−s0)+

∑
α

log z(wα − iU/4)

)
(13.137)

Next, we insert this result into (13.135) and see that the integral term on the r.h.s. of
(13.137) cancels one part of the contribution of the second integral in (13.135), i.e. that over
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−1 +1

αw   + i U/4

0

i U/2

i U/2 −  s

Fig. 13.22. Illustration of the singularities of (l1 + l2 + l3 + l4)/(l3 + l4): branch cuts are depicted by
dashed lines, zeroes by open circles and the pole by a cross. The integration contour L is depicted
by thick solid lines. To the lower half-plane we add a large semi-circle with radius R depicted by a
thin solid line. This path does not contribute to the integral (13.136) as the integrand asymptotically
vanishes like O(log R/R2). We also add a path depicted by a thin solid line to the upper part of the
complex plane. This path has no contribution as it can be closed to a point without touching any of
the singularities. Finally, we deform the contour by letting the lower part consisting of the semi-circle
and a straight line shrink to a point, and the upper semi-circle is dropped as its contribution vanishes.
The remaining contour encircles the zeroes wα + iU/4, the branch cut [−1,+1]+ iU/2, and the pole
iU/2− s0 in clockwise manner, see figure 13.23.

(1+ c+ c)/c, which can be seen from the explicit form (13.133).

� = 2π i log
[(

1+ eβ(µ+B)
) (

1+ eβ(µ−B)
)]

+2π i

(
−N

2
log z(−s0)+

∑
α

log z(wα − iU/4)

)

−
∫
L

log z(s)

[
log

(
1+ l4

l3
(s)

) ∣∣∣
2nd branch

]′
︸ ︷︷ ︸

−→ − f (s)
∣∣
2nd branch

ds. (13.138)
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−1 +1

0

α

i U/2 −  s

w   + i U/4

i U/2

Fig. 13.23. Depiction of the three remaining contours around the zeroes wα + iU/4, the branch cut
[−1,+1]+ iU/2, and the pole iU/2− s0 in clockwise manner. The integrals over the first and third
contour can be explicitly evaluated. Note that the second contour cannot be closed to a loop around
[−1,+1]+ iU/2 as the integrand in (13.136) contains the factor log z(s − iU/2) with a non-zero
winding number along the contour.

In order to understand the last transformation we only have to replace in the last integral

log z(s) = log z(s)|1st branch = π i− log z(s)|2nd branch (13.139)

where the constant π i drops out as the winding number around the branch cut is zero and
the remaining terms recombine into f , cf. (13.125). Comparing (13.138) with (13.131) we
find

�1 +�2 = � + 2π i
(
N log z(s0)− log

[(
1+ eβ(µ+B)

) (
1+ eβ(µ−B)

)])
, (13.140)

where we have dropped a term 2π i · N · log(−1) as it does not contribute to log�. Inserting
(13.126) into (13.97) by respecting (13.140) and (13.132) we are left with

2π i log� = 2π i (βU/4+ N log τ + N log z(s0))

+
∫
L

[
log z(s − iU/2)

]′
log C(s)ds +

∫
L

[log z(s)]′ log
1+ c+ c

c
ds.

(13.141)

This is the final result for the largest eigenvalue of the QTM in the case of finite Trotter
number N . The constant on the r.h.s. may be simplified by use of (13.92), τ = β/N , and
(13.96), (13.84), (13.85). In the limit N →∞ we find

2π i log� = − 2π iβ
U

4
+

∫
L

[
log z(s − iU/2)

]′
log C(s)ds

+
∫
L

[log z(s)]′ log
1+ c+ c

c
ds. (13.142)
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13.7.2 Alternative integral expressions

Next we like to give two alternative expressions for the integrals contributing to (13.141)
and (13.142). First we separate on the r.h.s. of (13.142)

I :=
∫
L

[log z(s)]′ log(1+ c+ c)ds

+
∫
L

[
log z(s − iU/2)

]′
log C(s)ds −

∫
L

[log z(s)]′ log c ds. (13.143)

Noting c = t/B and performing integration by parts on the contribution by t we get∫
L

[log z(s)]′ log t(s) ds = −2π iβ(µ+ B)−
∫
L

log z(s)[log t(s)]′ ds, (13.144)

where the constant is obtained from the ‘surface term’ and the asymptotic behaviour t(∞) =
exp(−β(µ+ B)). In the last expression the integrand possesses several singularities: there
is a branch cut at [−1,+1] with integration contour L around it. There is another branch cut
at [−1,+1]− iU/2, and poles due to a zero and a pole of t(s) of order N/2 at s0 − iU/2
and −s0, respectively. We blow up the integration contour L and find (cf. figure 13.24) the
equivalent contours L− iU/2 (in reversed sense) and clockwise loops around the poles

−s0

0s − i U/2

−1− i U/2 +1− i U/2

−1 +1 L

Fig. 13.24. Depiction of the singularities of t, the integration contour L and its equivalent contours
L− iU/2 (in reversed sense) and clockwise loops around s0 − iU/2 and −s0.
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yielding ∫
L

[log z(s)]′ log t(s) ds = −2π i

[
β(µ+ B)+ N

2
log

z(s0 − iU/2)

z(−s0)

]
+

∫
L−iU/2

log z(s)[log t(s)]′ ds. (13.145)

We use t(s) = 1/t(s + iU/2) and again we perform an integration by parts∫
L−iU/2

log z(s)[log t(s)]′ ds = −
∫
L−iU/2

log z(s)[log t(s + iU/2)]′ ds

= −
∫
L

log z(s − iU/2)[log t(s)]′ ds =
∫
L

[log z(s − iU/2)]′ log t(s) ds,

(13.146)

where in the last line no ‘surface term’ appears. The last integral is of the same type as the
one in (13.143) involving C. Combining these terms we find

C

t
= l1 + l2 + l3 + l4

l1 + l2
· l3 + l4 + l1 + l2 + l3 + l4

l1 + l2 + l3 + l4 + l1 + l2 + l3 + l4

= 1

B

l3 + l4 + l1 + l2 + l3 + l4

l1 + l2
(13.147)

where the last ratio of l-functions may be dropped as this ratio is analytic in the neighbour-
hood of the real axis as is the factor

[
log z(s − iU/2)

]′
in (13.143). We therefore find

I = 2π i

[
β(µ+ B)+ N

2
log

z(s0 − iU/2)

z(−s0)

]
(13.148)

+
∫
L

[log z(s)]′ log(1+ c+ c)ds −
∫
L

[
log

z(s − iU/2)

z(s)

]′
log B(s)ds,

yielding the first alternative expression to (13.142).
Next, we note that B and B enter the NLIE in a symmetric way, not however the last

integral expression for the eigenvalue. Such a symmetric expression can be derived by
considering ∫

L

[
log

z(s + iU/2)

z(s)

]′
log B(s)ds

= −
∫
L

[
log

z(s + iU/2)

z(s)

]′
log(l1 + l2 + l3 + l4)(s)ds (13.149)

−
∫
L

[
log z(s)

]′
log(l1 + l2 + l3 + l4 + l1 + l2 + l3 + l4)(s)ds,

where we have used the explicit expression (13.103) and in the last integral we have dropped
the contribution due to z(s + iU/2) leading to an analytic integrand. The first integral on
the r.h.s. is treated by deformation of the path L illustrated in figure 13.25. The integrals
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  − s0

0s  −i U/2

−1− i U/2 +1− i U/2

−1 +1 L

Fig. 13.25. Depiction of the integration contour L and its equivalent contours L− iU/2 (in reversed
sense) and contours from −∞ to s0 − iU/2 (respectively −s0) and back to −∞.

along the paths from −∞ to the pole s0 − iU/2 (respectively −s0) of l1 + l2 + l3 + l4 and
back to −∞ yield∫ −∞

−s0

[
log

z(s + iU/2)

z(s)

]′
2π ids = 2π i log

[
z(−s0)

z(−s0 + iU/2)

]
∫ −∞

s0−iU/2

[
log

z(s + iU/2)

z(s)

]′
2π ids = 2π i log

[
z(s0 − iU/2)

z(s0)

]
(13.150)

which cancel out. The remaining integral is∫
L

[
log

z(s + iU/2)

z(s)

]′
log(l1 + l2 + l3 + l4)(s)ds

= −
∫
L−iU/2

[
log

z(s + iU/2)

z(s)

]′
log(l1 + l2 + l3 + l4)(s)ds

= −
∫
L

[
log

z(s)

z(s − iU/2)

]′
log

(l1 + l2 + l3 + l4)(s)

e2βBφ+(s)φ−(s)
ds

= 4π iβB +
∫
L

[
log

z(s − iU/2)

z(s)

]′
log(l1 + l2 + l3 + l4)(s)ds, (13.151)
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where the φ+(s)φ−(s) terms drop out after a short calculation. Inserting this into (13.149)
we find ∫

L

[
log

z(s + iU/2)

z(s)

]′
log B(s)ds

= −4π iβB −
∫
L

[
log

z(s − iU/2)

z(s)

]′
log(l1 + l2 + l3 + l4)(s)ds

−
∫
L

[
log z(s)

]′
log(l1 + l2 + l3 + l4 + l1 + l2 + l3 + l4)(s)ds

= −4π iβB +
∫
L

[
log

z(s − iU/2)

z(s)

]′
log B(s)ds. (13.152)

Applying this to (13.148) we obtain

I = 2π i

[
βµ+ N

2
log

z(s0 − iU/2)

z(−s0)

]
+

∫
L

[log z(s)]′ log(1+ c+ c)ds

−1

2

∫
L

[
log

z(s − iU/2)

z(s)

]′
log B(s)ds

−1

2

∫
L

[
log

z(s + iU/2)

z(s)

]′
log B(s)ds. (13.153)

This is the second alternative formula for the eigenvalue of the QTM. We collect the two
alternative expressions (13.148) and (13.153) in the limit N →∞.

2π i log� = 2π iβ(µ+ B +U/4)+
∫
L

[log z(s)]′ log (1+ c+ c) ds

−
∫
L

[
log

z(s − iU/2)

z(s)

]′
log B(s)ds,

= 2π iβ(µ+U/4)+
∫
L

[log z(s)]′ log (1+ c+ c) ds

− 1

2

∫
L

[
log

z(s − iU/2)

z(s)

]′
log B(s)ds

− 1

2

∫
L

[
log

z(s + iU/2)

z(s)

]′
log B(s)ds.

(13.154)

These formulas are of particular importance to our further numerical and analytical
treatment.

13.8 Numerical results

For the numerical treatment of equations (13.122), (13.154) we rewrite them in terms of
usual convolutions of functions of a real variable

K ∗ f =
∫ ∞
−∞

K (x − y) f (y) dy. (13.155)
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For the functions (13.101) evaluated on the contours involved in (13.122), (13.154) we use
the notation b±, c± and c±

b±(x) = b(x ± iU/4), c±(x) = c(x ± i 0), c±(x) = c(x ± i 0). (13.156)

Furthermore, we introduce the following relations:

B± := 1+ b±, B± := 1+ 1/b±,

C± := 1+ c±, C± := 1+ c±, (13.157)

� log C := log(C+/C−), � log C := log(C+/C−), etc.

Thus (13.122) is written in the form

log b+ = −2βB − K2,0 ∗ log B+ + K2,U/2 ∗ log B− − K1,0 ∗� log(c/C),

log b− = −2βB − K2,−U/2 ∗ log B+ + K2,0 ∗ log B− − K1,−U/2 ∗� log(c/C),

log c± = �±c + K1,−U/2 ∗ log B+ − K1,0 ∗ log B− + K1,−U/4 ∗� log C± 1
2� log C,

log c± = �
±
c − K1,0 ∗ log B+ + K1,U/2 ∗ log B− − K1,U/4 ∗� log C± 1

2� log C,

(13.158)

where

�±c = −βU/2+ β(µ+ B)+ logφ±0,

�
±
c = −βU/2− β(µ+ B)− logφ±0, (13.159)

and we have used the notation fα for a function f with shift of the argument by iα

fα(x) = f (x + iα),

and Kn,α := (Kn)α where the first index specifies the function and the second one specifies
the shift of the argument. In particular φ±0 denotes the function φ evaluated on the real axis
from above/below. Notice that the convolutions of K1,±U/4 with � log C and � log C are
determined by Cauchy’s principal value. Remember that these functions vanish outside the
interval [−1, 1].

Similarly, from (13.142) and (13.154) we obtain two different relations for the eigenvalue

log� =− βU/4−
∫ 1

−1
K+0 log[(1+ c+ + c+)(1+ c− + c−)/(c+ c−)] dx

−
∫ 1

−1
K−U/2 log[(1+ c+)/(1+ c−)] dx,

=β(µ+ B +U/4)−
∫ 1

−1
K+0 log[(1+ c+ + c+)(1+ c− + c−)] dx

=+
∫ ∞
−∞

[(K−U/4 −KU/4) log B+ − (K−3U/4 −K−U/4) log B−] dx (13.160)
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with

K(s) = 1

2π i
[log z(s)]′ =

(
2π i s

√
1− 1/s2

)−1
, (13.161)

and at the branch cut we find

K(x ± i0) =∓
(

2π
√

1− x2
)−1

, x ∈ [−1, 1]. (13.162)

The branch of K is fixed by the requirement K(s) ! 1/(2π is) for large s and Kα is the
related function with shifted argument. By means of the relation

� log c = −� logφ +� log C, (13.163)

the first equation of (13.158) turns into

log b+ = �+b − K2,0 ∗ log B+ + K2,U/2 ∗ log B− − K1,0 ∗� log(C/C),
log b− = �−b − K2,−U/2 ∗ log B+ + K2,0 ∗ log B− − K1,−U/2 ∗� log(C/C),

(13.164)

where

�+b = −βU − 2βB + logφU/4 − logφ−U/4,

�−b = −βU − 2βB + logφ−U/4 − logφ−3U/4. (13.165)

For the sake of completeness rather than for further applications we mention the results
for finite Trotter number N . All equations above hold true after the replacement of the
‘driving functions’ ψ by (see also (13.121))

�+b = −2βB + logφU/4 − logφ−U/4 − N
2 log x−s0+3iU/4

x−s0−iU/4 ,

�−b = −2βB + logφ−U/4 − logφ−3U/4 − N
2 log x−s0+iU/4

x−s0−3iU/4 ,

�±c = +β(µ+ B)+ logφ±0 + N
2 log x+s0

x+s0−iU/2 ,

�
±
c = −β(µ+ B)− logφ±0 + N

2 log x−s0
x−s0+iU/2 , (13.166)

where s0 is defined in (13.96). These relations for finite Trotter number N have been used
for a comparison of the results of the integral equations with a direct treatment based on
the Bethe ansatz equations of Sections 13.4 and 13.5. Thus it was possible to ensure the
accuracy (10−6) of our numerics based on iterations and fast Fourier transform.

Next we present our numerical results for various physical quantities and discuss them in
terms of the elementary spin and charge excitations, i.e. ‘spinons’ and ‘holons’ (plus gapped
excitations based on ‘doubly occupied sites’). Note that at half-filling the system possesses
a charge gap such that the holons do not contribute at low temperatures. Furthermore, the
hopping integral of the kinetic energy has been set to t = 1.

In figure 13.26 the temperature dependence of the specific heat is shown for densities
n = 1, 0.8, and 0.5. For half-filling (n = 1.0) the specific heat shows one pronounced tem-
perature maximum for lower values of the interaction U . For stronger U this maximum
splits into a lower and a higher temperature maximum which are due to spin and (gapped)
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Fig. 13.26. Specific heat c (in units of kB) versus T (in units of t/kB) for particle densities n = 1,
n = 0.8 and n = 0.5.
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charge excitations, respectively. (These findings agree largely with those of [397].) The
picture remains qualitatively true for small dopings (n = 0.8), however now the lower tem-
perature peak receives contributions by gapless charge excitations, hence some weight is
shifted from higher to lower temperatures. The situation changes quite drastically for fill-
ings n ≈ 0.5. Here a pronounced maximum in the specific heat is located at a temperature
of about T ≈ 0.6 which seems rather insensitive to the interaction. This is explained by
the irrelevance of the onsite interaction at sufficiently large temperatures, because of the
low-particle density. In addition, we find a maximum at very low temperatures which de-
pends very sensitively on U as well as on the particle density n. In order to clarify the
origin of this additional structure the variation of the specific heat with n is shown in fig-
ure 13.27 for U = 8. Decreasing the particle density n from half-filling (n = 1) to lower
values (n ≈ 0.8) the lower-temperature maximum increases. This picture is changed drasti-
cally below n � 0.8. Here the lower-temperature maximum and its location are suppressed
for lower n and a shoulder at a slightly higher temperature develops into a clear maximum.
This new structure in the specific heat is located at about T ≈ 0.6 and quite independent
of U as already mentioned. We interpret this maximum to be of ‘charge’ type. The com-
plex behaviour at intermediate densities 0.5 � n � 0.7 is due to a crossover of the ‘spin’
and ‘charge’ maxima, see also figure 13.32. For densities n ≈ 1 the ‘spin’ maximum is
located at finite temperature with finite height whereas the ‘charge’ maximum is located
at very low temperature with small height. For densities close to n ≈ 0 the situation is
reversed.

In figure 13.28 and figure 13.29 the magnetic susceptibility χ is presented. Again we be-
gin our discussion with the half-filled case which is known to correspond to the Heisenberg
spin chain with interaction strength of order O(t2/U ). Indeed, we observe a Heisenberg-like
temperature dependence of the susceptibility with χmax and Tmax scaling with U and 1/U
in the range of U = 4, . . . , 8. Upon doping this behaviour remains qualitatively and quan-
titatively unchanged even for n = 0.5. Quite generally, the location Tmax is shifted to lower
temperatures, see figure 13.28. The maximal value χmax decreases for decreasing particle
density from n = 1 to n ≈ 0.8, cf. figure 13.29. Below the value n � 0.8 the maximum
χmax increases for further decrease of the particle density. This behaviour is qualitatively
explained by partially filled bands of charge carriers with spin. If the chemical potential
moves away (towards) a band edge, the susceptibility decreases (increases). Somewhere
inbetween the lower and the upper edge the minimal value is taken.

In contrast to χ the charge susceptibility κ (= ∂n/∂µ, i.e. compressibility) shows a more
interesting dependence on the particle density n, see figure 13.30 and figure 13.31. At
half-filling κ shows the expected exponentially activated behaviour in particular κ = 0 for
T = 0 due to the charge gap. For any doping this behaviour is changed completely showing
a finite value at zero temperature consistent with a partial filling of the lower Hubbard
band. For density n = 0.5 we observe two different structures at low temperature similar
to the case of the specific heat. The lower temperature ‘spin’ peak resembles the structure
in the susceptibility χ , whereas the ‘charge’ maximum at slightly higher temperature is
caused by the single-particle motion of the bare electrons. The charge susceptibility has a
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Fig. 13.27. Specific heat c (in units of kB) versus T (in units of t/kB) for fixed U = 8.
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singular dependence on doping. The smaller the doping the closer the curves are to the case
n = 1 at high temperatures and the more divergent at lower temperature, see first graph of
figure 13.31. This, of course, is exactly the behaviour of a system exhibiting a Mott-Hubbard
transition at half-filling.

Our findings are qualitatively in accordance with the results3 of [241,469] for the dopings
treated therein. In particular for specific heats, magnetic and charge susceptibilities the re-
sults compare well for densities 0.7 ≤ n ≤ 1 and temperatures T ≥ 0.1, giving independent
support to the truncation treatment of the infinitely many NLIEs adopted in [241,469]. Very
recently, an elaborate treatment [442] of the TBA equations of the Hubbard model [435]
yielded extremely satisfactory agreement with the results presented here.

The present approach has the advantage of explicit evaluations over extremely wide
temperature and density regions. The linear dependence of the specific heat on T at very low
temperatures, as expected from CFT, is clearly observed. There are additional structures
at lower temperatures and densities especially in the charge susceptibility as mentioned
above. These structures can be interpreted in terms of CFT and elementary excitations with
finite band width due to the underlying lattice. We conclude that the presented approach
allows for a study of the crossover from the very low temperature (CFT) to the very high
temperature region in an exact way.

In figure 13.32 we show a separation of the specific heat into spin and charge components.
This is done in principle on the basis of eigenvalue expressions like (13.160). As motivated
by the study of the strong-coupling limit in Section 13.9.1, contributions by b and c functions
are interpreted as spin and charge contributions, respectively. However, the procedure is not
unique as we have various alternative formulations resulting in different separations. In
particular we like to note the expression (not derived in this presentation)

log� = −β(e0 −U/4− µ)

+
∫ 1

−1

[
c0� log C/C−K log(1+ c+ + c+)(1+ c− + c−)

]
dx

+
∫ ∞
−∞

c2(x) log B−(x)dx +
∫ ∞
−∞

c1(x) log B
+

(x)dx, (13.167)

with

c0(x) = 1

2π

∫ ∞
−∞

J0(k)

1+ eU |k|/2
eikx dk, c1,2(x) = 1

2π

∫ ∞
−∞

J0(k)

1+ e∓Uk/2
eikx dk.

(13.168)

Here e0 is the ground-state energy at half-filling as given in [298] and the additional b and
c terms represent contributions due to spin and charge excitations. In figure 13.32 we show
the results for the specific heat

c = T

(
∂S

∂T

)
µ

+ T

(
∂n

∂T

)
µ

(
∂µ

∂T

)
n

, (13.169)

3 In [241, 469] notice the factor 4 in the definition of the interaction parameter U .
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Fig. 13.32. Separation of specific heat (solid) in spin (dashed) and charge components (dashed-
dotted).

where we have applied the separation based on (13.167) to the temperature derivatives of
S and n. Note the functional form of the spin part is rather independent of the doping.
Upon small doping the charge contribution develops a low-temperature shoulder which
disappears for larger dopings. We would like to warn about the formal ‘separation’ of spin
and charge that it may give rise to artificial results. For instance, at high (low) temperatures
the ‘partial specific heats’ show negative values whereas the total specific heat, of course,
is always positive. In Section 13.9.3 the spin-charge separation is treated properly at low
temperatures and arbitrary particle density via an involved interplay of the various degrees
of freedom rather than by a superficial interpretation of formulas.

13.9 Analytical solutions to the integral equations

In the previous sections we have derived non-linear integral equations for the largest eigen-
value of the QTM yielding directly the free energy of the Hubbard model at finite tem-
peratures T = 1/β. For arbitrary temperatures and densities the integral equations can be
solved only numerically. However, in some limiting cases analytical results can be derived
and relations obtained which permit a comparison to known analytical results.
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13.9.1 Strong-coupling limit

In the strong-coupling limit U →∞ at half-filling (µ = 0) the Hubbard model is expected
to reduce to the Heisenberg chain. Indeed, in the strong-coupling limit we find that c± and
c± tend to zero, see (13.159), yielding large negative driving terms for c± and c± in (13.158).
Hence all contributions of C± and C± can be dropped on the r.h.s. of (13.164) and (13.122).
The remaining equations from (13.164) read

log b+ = �+b − K2,0 ∗ log B+ + K2,U/2 ∗ log B−,
log b− = �−b − K2,−U/2 ∗ log B+ + K2,0 ∗ log B−, (13.170)

and �±b are obtained from (13.165), (13.123), and (13.111) as

�+b = −2βB + 2πβ K1,0, �−b = −2βB + 2πβ K1,−U/2, (13.171)

and K j,α(x) = K j (x + iα). According to equation (13.160) and dropping an irrelevant
energy shift U/4, the QTM eigenvalue is

log� = βB +
∫ ∞
∞

K1,0(x) log B+(x)dx −
∫ ∞
∞

K1,−U/2(x) log B−(x)dx

= βB + K1,0 ∗ log B+|x=0 − K1,U/2 ∗ log B−|x=0, (13.172)

where we have replaced (K−U/4 −KU/4) by K1 etc., see (13.161), and (13.111).
In the above equations the limit U →∞ can be performed explicitly by rescaling the

argument of the auxiliary functions x (→ (U/4)x . To this end we define

a±(x) := b±
(

U

4
x

)
, A±(x) := B±

(
U

4
x

)
= 1+ a±(x) (13.173)

which are inserted into the integral equations yielding

log a+ = �+ − K̃2,0 ∗ log A+ + K̃2,2 ∗ log A−,

log a− = �− − K̃2,−2 ∗ log A+ + K̃2,0 ∗ log A−, (13.174)

which follows from (13.173) by use of the general relation (K ∗ B)( U
4 x) = (K̃ ∗ A)(x)

for K̃ (x) := U
4 K ( U

4 x) and A(x) := B( U
4 x). In (13.174) the following definitions were em-

ployed

K̃1(x) = U

4
K1

(
U

4
x

)
= 1

2π

2

x2 + 1
,

K̃2(x) = U

4
K2

(
U

4
x

)
= 1

2π

4

x2 + 4
,

�+(x) = −β̃h̃ + 2πβ̃ K̃1,0(x) = −β̃h̃ + 2β̃

x2 + 1
,

�−(x) = �+(x − 2i), (13.175)

and we have introduced the rescaled (reciprocal) temperature β̃ := (4/U )β and rescaled
magnetic field h̃ := (U/2)B.
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By inspection, we see that equations (13.174) for a± are identical to (13.48) for a in the
case of the Heisenberg model if we identify a±(x) = a(x ± i).

Finally, the eigenvalue (13.172) is written as

log� = β̃h̃/2+ K̃1,0 ∗ log A+|x=0 − K̃1,2 ∗ log A−|x=0, (13.176)

which is identical to the Heisenberg model result (13.49) (with v = 0) upon the identification
a±(x) = a(x ± i).

13.9.2 Free-Fermion limit

Let us consider the opposite limit U → 0, that is the case of two independent free-fermion
systems. The non-linear integral equations (13.158) simplify to an algebraic set of equations
due to K1,0(x)→ δ(x), K1,±U/2(x)→ 0, K2,α(x)→ δ(x) if |α| ≤ U/2, and K1,±U/4(x)→
1
2δ(x) (in principal value integrals):

log b± = −2βB − log B+ + log B− − ( 1
2 ± 1

2 )� log(c/C),

log c± = +β(µ+ B)+ logφ± − log B
− + ( 1

2 ± 1
2 )� log C, (13.177)

log c± = −β(µ+ B)− logφ± − log B+ + (− 1
2 ± 1

2 )� log C.

WithK−U/4(x)→ K−0(x) = −K+0(x) for arguments x ∈ [−1,+1] we find from (13.160)

log� = −
∫ 1

−1
K+0 log

(1+ c+ + c+)(1+ c− + c−)(1+ c−)

c+ c− (1+ c+)
dx . (13.178)

The equations (13.177) can be solved by standard techniques. Alternatively, we may just
use the Bethe ansatz expressions (13.101) and (13.99) that we started with. There, all q1 and
q2 functions cancel or completely factor out as they have the same argument. Hence, only
the ‘trivial’ function φ remains, however, care has to be applied. The relevant arguments
have real part in [−1, 1], but infinitesimal imaginary part of both signs with φ(x − i0) =
1/φ(x + i0). Hence, we obtain the following expressions

b+ =
[
1+ eβ(µ+B)φ

] [
1+ eβ(µ−B)/φ

]
e2βB

[
eβ(µ+B)/φ + e2βµ + 1+ eβ(µ−B)/φ

] ,
b− =

[
eβ(µ+B)/φ + e2βµ + 1+ eβ(µ−B)/φ

]
e2βB

[
1+ eβ(µ+B)/φ

] [
1+ eβ(µ−B)φ

] , (13.179)

c+ = eβ(µ+B)

φ

1+ eβ(µ−B)φ

1+ eβ(µ−B)/φ

b+

1+ b+
, c− = eβ(µ+B)

φ

b−

1+ b−
,

c+ = 1

eβ(µ+B)φ(1+ b+)
, c− = φ

eβ(µ+B)

1+ eβ(µ−B)/φ

1+ eβ(µ−B)φ

1

1+ b−
,
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Lastly, we substitute x = sin k in the integration for the eigenvalue leading to

log� = + 1

2π

∫ π

−π
log

[
1+ exp (β(µ+ B + 2 cos k))

]
dk

+ 1

2π

∫ π

−π
log

[
1+ exp (β(µ− B + 2 cos k))

]
dk. (13.180)

This is the result expected from the well-known properties of ideal Fermi gases.

13.9.3 Low-temperature asymptotics

The low-temperature regime is the most interesting limit as here the system shows
Tomonaga-Luttinger liquid behaviour. We will derive analytic expressions for the thermody-
namics within our first principles calculations and confirm the field theoretical predictions.
In particular we will show how the non-linear integral equations correspond to the known
dressed energy formalism of the Hubbard model. This represents a further and in fact the
most interesting consistency check of the field-theoretical picture of the 1d Hubbard chain.

For T = 1/β � 1 we can simplify the non-linear integral equations as follows. We adopt
fields B > 0, µ < 0, such that b− → 0, c± → 0 for β →∞ with uniform exponential
convergence for all arguments (which is observed numerically). The property c± → 0 is a
consequence of the third equation in (13.158) and (13.159) for negative µ. The behaviour
b− → 0 can be understood from the second equation in (13.158). However, b+ and c± do
not vanish.

We simplify the notation by use of

b(λ) := b+(λ), c(k) :=
{

1/c+(sin k), for k ∈ [− 1
2π,+ 1

2π
]
,

1/c−(sin k), for k ∈ [+ 1
2π,+ 3

2π
]
.

(13.181)

and find from (13.158)

log b(λ) = −βε0
s (λ)−

∫ ∞
−∞

K2(λ− λ′) log[1+ b(λ′)] dλ′

+
∫ π

−π
K1(λ− sin k ′) cos k ′ log[1+ c(k ′)] dk ′ (13.182)

log c(k) = −βε0
c (k)+

∫ ∞
−∞

K1(sin k − λ′) log[1+ b(λ′)] dλ′,

where ε0
s = 2B, ε0

c = −µ−U/2− B − 2 cos k and all log B− and log C± have been
dropped. These expressions are valid at low temperatures where the correction terms are
exponentially small, i.e. corrections are of order O(exp(−const× β)) with some positive
real constant related to the charge gap.
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Also the eigenvalue expressions simplify in a similar way. From (13.160) we find

log� = −βU/4−
∫ 1

−1
K+0(x) log

[(
1+ 1

c+(x)

)(
1+ 1

c−(x)

)]
dx

= −βU/4+ 1

2π

∫ π

−π
log[1+ c(k)] dk (13.183)

Next we note that the solutions log b and log c to (13.182) are analytic functions of order
O(β), or more precisely log b = −β εs and log c = −β εc with some analytic functions
εs and εc. These functions will be investigated in quite some detail below. They are real,
symmetric functions possessing zeroes ±λ0, ±k0 and have the properties

εs(λ), εc(k) < 0 for |λ| < λ0, |k| < k0

εs(λ), εc(k) > 0 for |λ| > λ0, |k| > k0. (13.184)

such that b and c show steep crossover behaviour at low temperatures

|b(λ)|, |c(k)| � 1 for |λ| < λ0, |k| < k0

|b(λ)|, |c(k)| � 1 for |λ| > λ0, |k| > k0. (13.185)

As a consequence, the functions log(1+ b) and log(1+ c) are no longer analytic at low
temperature: for arguments smaller than λ0 and k0 these functions are identical to−β εs and
−β εc, for arguments larger than λ0 and k0 the functions are identical to 0! Nevertheless,
the convolutions on the r.h.s. of (13.182) yield (β×) analytic functions.

Linearization

The slopes at the crossover points are steep, allowing for certain approximations to the
integral equations (13.182). We split the contribution of a typical integral term in (13.182)
into three pieces∫ ∞ (π )

−∞ (−π )
K (x ′) log(1+ f (x ′)) dx ′

=
∫
|x ′|<x0

K (x ′) log f (x ′) dx ′

+
∫
|x ′|<x0

K (x ′) log

(
1+ 1

f (x ′)

)
dx ′ +

∫
|x ′|>x0

K (x ′) log(1+ f (x ′)) dx ′︸ ︷︷ ︸
=: I

,

(13.186)

where in our applications f (x) is an even function like b(λ) or c(k) with log f of orderO(β),
x (x0) corresponding to λ or k (λ0 or k0), respectively. The function K (x ′) is a shorthand
for K j (· · · − λ′) or K j (· · · − sin k ′) cos k ′ with x ′ corresponding to λ′ or k ′, respectively.

As the slope (log f )′(x0) is of orderO(β) and hence sufficiently steep at low temperatures,
we can approximate 1/ f (x)(|x | < x0) and f (x)(|x | > x0) by exp(+(log f )′(x0)|x ± x0|) in
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the vicinity of the ‘Fermi’ surfaces ±x0 (note that (log f )′(x0) is negative). For the last
two integrals in (13.186) this linearization can be justified over the total integration range.
Hence the last two terms in (13.186) reduce to

I = 2[K (x0)+ K (−x0)]
∫ ∞

0
log

(
1+ e(log f )′(x0) x

)
dx + o

(
1

β

)
= [K (x0)+ K (−x0)]

−π2

6(log f )′(x0)
+ o

(
1

β

)
,

(13.187)

where we have evaluated the integral
∫∞

0 log(1+ ez)dz = π2/12.
The resultant equations are now given by linear integral equations over finite integration

intervals

log b(λ) = φb(λ)−
∫ +λ0

−λ0

K2(λ− λ′) log b(λ′) dλ′

+
∫ +k0

−k0

K1(λ− sin k ′) cos k ′ log c(k ′) dk ′

log c(k) = φc(k)+
∫ +λ0

−λ0

K1(sin k − λ′) log b(λ′) dλ′.

(13.188)

The driving terms read

φb(λ) = −βε0
s (λ)+ π2[K2(λ− λ0)+ K2(λ+ λ0)]

6(log b)′(λ0)

− π2[K1(λ− sin k0)+ K1(λ+ sin k0)]

6(log c)′(k0)
cos k0,

φc(k) = −βε0
c (k)− π2[K1(sin k − λ0)+ K1(sin k + λ0)]

6(log b)′(λ0)
. (13.189)

Retaining the leading terms in the integral equations we find the following connection
between auxiliary functions and the dressed energy functions:

log b = −β εs + O(1/β) and log c = −β εc + O(1/β). (13.190)

For a comparison with [140,141] note the different normalization of the chemical potential.
A similar linearization of (13.183) yields

log� = −βU/4− π

6(log c)′(k0)
+ 1

2π

∫ k0

−k0

log c(k) dk. (13.191)

For our further manipulations we note the (linear) integral equations for the root density
functions ρs and ρc characterizing the ground state (6.12,6.13) or in the notation of this
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chapter

ρs(λ) = −
∫ +λ0

−λ0

K2(λ− λ′) ρs(λ′) dλ′ +
∫ +k0

−k0

K 1(λ− sin k ′) ρc(k ′) dk ′,

ρc(k) = 1

2π
+ cos k

∫ +λ0

−λ0

K1(sin k − λ′) ρs(λ′) dλ′.
(13.192)

Note that the kernel matrices for the integral equations (13.188), (13.192) are mutually
transpose.

Dressed function formalism

The above equations (13.188) can be summarized in the form

li (x) = l0
i (x)+

∑
j

∫ X j

−X j

Ki j (x − x ′)l j (x
′)y j (x

′)dx ′ (13.193)

with the correspondence of l1, l2 with log b, log c, and X1, X2 with λ0, k0 etc. In particular
we have

l0
i (x) = −βε0

i (x)− π2

6

∑
j

Ki j (x − X j )+ Ki j (x + X j )

l ′j (X j )
y j (X j ). (13.194)

The functions li (l0
i ) are referred to as dressed (bare) functions in the sense that the functions

li are identical to the bare l0
i functions dressed by integral terms along (13.193) . At low

temperature the dressed li functions are related to the dressed energy functions εi

li = −β εi +O(1/β). (13.195)

The equations (13.192) for the density functions can be written as

ρi (x) = ρ0
i (x)+ yi (x)

∑
j

∫ X j

−X j

K T
i j (x − x ′)ρ j (x

′)dx ′ (13.196)

with ρ1, ρ2 corresponding to ρs , ρc and bare densities ρ0
1 = 0 and ρ0

2 = 1/2π . The integra-
tion kernel in (13.196) is the transpose of the one in (13.193)

(K T )i j (z) := K ji (−z). (13.197)

The expression (13.191) for the eigenvalue can be cast into the form

log� = −βU/4+
∑

j

[
−π2

3

ρ0
j (X j )

l ′j (X j )
+

∫ X j

−X j

ρ0
j (x)l j (x)dx

]
. (13.198)

It is this expression we want to simplify by use of (13.193) and (13.196).
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It is an elementary excercise to prove the identity∑
j

∫ X j

−X j

ρ0
j (x)l j (x)dx =

∑
j

∫ X j

−X j

ρ j (x)l0
j (x)dx, (13.199)

i.e. the sum of integrals of bare ρ0 times dressed l functions is identical to the sum of
integrals of dressed ρ times bare l0 functions. The l.h.s. of (13.199) appears in (13.198),
however the r.h.s. of (13.199) is more tractable as we have the explicit expression (13.194)
for the bare l0 functions. Inserting (13.194) (after an exchange of the ‘dummy’ indices i , j)
into the r.h.s. of (13.199) we obtain

log� = − βU/4−
∑

j

(
β

∫ X j

−X j

ε0
j (x)ρ j (x)dx + π2

3

ρ0
j (X j )

l ′j (X j )

)

−
∑

i

∑
j

[
π2

6

yi (Xi )

l ′i (Xi )

∫ Xi

−Xi

[K T
i j (Xi − x)+ K T

i j (−Xi − x)]ρ j (x)dx

]
. (13.200)

Next, the integrations and sum over j in the last line can be performed explicitly by use of
(13.196). The last line turns into

−
∑

i

[
π2

3

ρi (Xi )− ρ0
i (Xi )

l ′i (Xi )

]
(13.201)

hence the eigenvalue is

log� = −βU/4− β
∑

j

∫ X j

−X j

ε0
j (x)ρ j (x)dx − π2

3

∑
j

ρ j (X j )

l ′j (X j )
. (13.202)

At low temperature the l j functions can be replaced by the dressed energies (13.195)

π2

3

ρ j (X j )

l ′j (X j )
= −π2

3

ρ j (X j )

βε′j (X j )
= − π

6β

1

v j
, (13.203)

where we have introduced the velocity v j of the elementary excitation number j

v j =
ε′j

2πρ j

∣∣∣
X j

. (13.204)

Finally, the eigenvalue reads

log� = −βε0 + π

6β

∑
j

1

v j
, (13.205)

where the groundstate energy is given by

ε0 = U/4+
∑

j

∫ X j

−X j

ε0
j (x)ρ j (x)dx . (13.206)

The computational framework is rather general as the expressions hold for many models.
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Applied to the Hubbard chain we find the free energy up to O(T 2) terms in the low-
temperature expansion

f = ε0 − π

6β2

(
1

vc
+ 1

vs

)
. (13.207)

This agrees with general expressions of conformal field theory for low temperatures, see
Section 9.2.1, where the spin and charge channels contribute independently each with central
charge c = 1 and sound velocities vs,c = ε′s,c/2πρs,c|λ0,k0 . The groundstate energy is given
in terms of the densities by

ε0 =
∫ +k0

−k0

ρc(k) ε0
c (k) dk +

∫ +λ0

−λ0

ρs(λ) ε0
s (λ) dλ.

Here the trivial shift in the energy U/4 is omitted. We thereby conclude that our formalism
completely recovers the correct contribution from spinon and holon excitations in the low
temperature behaviour. This is a manifestation of spin-charge separation due to which each
elementary excitation contributes independently to (13.207) where the velocities vc and vs

typically take different values.

13.9.4 High-temperature limit

Finally, we consider the high-temperature limit T →∞with B,U as well as βµ fixed. The
auxiliary functions in (13.158) become constant and convolutions K2,±U/2 ∗ f , Kn,0 ∗ f
with a constant f yield f , but K1,±U/2 ∗ f yields 0. From (13.158) we find

log b± = 0, log c± = βµ− log 2, log c± = −βµ− log 2, (13.208)

and from (13.142)

log� = log(1+ c+ c)/c = 2 log(1+ eβµ). (13.209)

Thus, the free energy reads

f = −2 T log(1+ eµ/T ) with µ/T = log
n

2− n
, (13.210)

where n is the particle density. We obtain the entropy

S = 2 log
2

2− n
− n log

n

2− n
, (13.211)

as expected by counting the degrees of freedom per lattice site. Especially, at half-filling
n = 1 this is equal to S = log 4.

13.10 Conclusions

In this chapter, the QTM formulation of the thermodynamics of 1d quantum systems has
been developed for the Heisenberg model and the Hubbard model. Several quantities of
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physical interest have been evaluated with high numerical precision and various limiting
cases have been studied analytically.

As already noted above, we may consider as one of the most practical advantages of
the present formulation the fact that one only has to deal with a finite number of unknown
functions and non-linear integral equations among them. This does not only imply conve-
nience, rather it opens a more fundamental understanding related to the particle picture of
1d quantum systems. For the Heisenberg model, the complex conjugate auxiliary functions
play a role which seems to correspond to the elementary spinon excitations [86,133,227]. In
our treatment of the Hubbard model we have shown that the complete thermodynamics are
described by three independent functions b, c, c , physically corresponding to spinons, and
holons in upper and lower Hubbard bands. In the T → 0 limit, these functions are shown
to reduce to energy-density functions (‘dressed energy functions’) for such elementary
excitations.

The two apparently different approaches, the combinatorial TBA and the operator-based
QTM, are not at all independent! In the latter approach there are several quite different ways
of analysis of the eigenvalues of the QTM. This is very well understood for the case of the
Heisenberg model. In the standard (and most economical) way a set of just two coupled
non-linear integral equations (NLIE) is derived. Alternatively, an approach based on the
‘fusion hierarchy’ leads to a set of (generically) infinitely many NLIEs [253, 281] that are
identical to the TBA equations, though a completely different reasoning has to be applied!

For the Hubbard model this explicit relation has not yet been established. It is still an open
problem how to derive the TBA equations of the Hubbard model from the largest eigenvalue
of the QTM. We leave the investigation of these questions as an interesting future problem.

Obviously, our formulation can be extended to the evaluation of the asymptotics of
correlation functions, such as spin-spin correlation lengths etc. For the Heisenberg model
the reader is referred to [253, 254, 258]. In the case of the Hubbard model, there is only
preliminary (numerical) work on correlation lengths at finite temperature [459] and [465]
(the latter on the basis of the formulation of Section 13.4).
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13.A Derivation of TBA equations from fusion hierarchy analysis

In this appendix we present a treatment of the eigenvalue problem (13.23) different from
that in Section 13.2. For all integers j = 0, 1, 2, . . . we define the objects

T j (v) := q(v − ( j + 1)i)q(v + ( j + 1)i) ·
j∑

l=0

e(2l− j)βh/2ϕ(v + (2l − j)i)

q(v + (2l − j − 1)i)q(v + (2l − j + 1)i)
,

(13.A.1)

which are analytic functions due to the Bethe ansatz equations (13.28). In order to understand
the cancellation of poles of the individual summands we consider the case j = 1 leading
to the function (indeed identical to (13.24))

T1(v) := q(v − 2i)q(v + 2i) ·
[

e−βh/2ϕ(v − i)

q(v − 2i)q(v)
+ e+βh/2ϕ(v + i)

q(v)q(v + 2i)

]
,

(13.A.2)

which is a meromorphic function with possible poles at the singularities of the function in
square brackets. These singularities are of two types: either we have singularities due to
the zeroes of q(v ∓ 2i) which are canceled by the prefactor in front of the square bracket,
or the singularities are due to zeroes of q(v) occurring in the first as well as second term in
square brackets and cancel each other thanks to the BA equations.

The analyticity of (13.A.1) comes about in a very similar way. The only possible poles
might arise due to zeroes of the functions q(v − ( j + 1)i), q(v − ( j − 1)i), . . . , q(v + ( j −
1)i), q(v + ( j + 1)i) occurring in the denominators of the summands in (13.A.1). Again, the
zeroes of the first and the last function are precisely cancelled by the prefactor of the sum in
(13.A.1). The ‘intermediate poles’ cancel pairwise: the function q(v + (2l − j + 1)i) with
l = 0, . . . , j − 1 appears in two terms of (13.A.1), namely the summands corresponding to
labels l and l + 1. The sum of these two terms is identical to the square bracket in (13.A.2)
(with a shift of the argument by (2l − j + 1)i and a common constant factor e(2l− j+1)βh/2)
and hence the poles cancel as in (13.A.2).

557
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Next, we aim at the derivation of the following (quadratic) functional relation for j =
1, 2, 3 . . .

T j (v + i)T j (v − i) = ϕ(v − ( j + 1)i)ϕ(v + ( j + 1)i)+ T j−1(v)T j+1(v). (13.A.3)

For the proof we introduce the compact notation

λ j (v) := e jβh/2ϕ(v + j i)

q(v + ( j − 1)i)q(v + ( j + 1)i)
, (13.A.4)

by use of which (13.A.1) is equivalent to

T j (v) = q(v − ( j + 1)i)q(v + ( j + 1)i)
j∑

l=0

λ2l− j (v). (13.A.5)

From this we find

T j (v − i)T j (v + i)

q(v − j i)q(v + j i)q(v − ( j + 2)i)q(v + ( j + 2)i)
=

j∑
l=0

j∑
l ′=0

λ2l− j (v − i)λ2l ′− j (v + i)

=
j∑

l=0

j∑
l ′=0

λ2l− j−1(v)λ2l ′− j+1(v),

(13.A.6)

where in the last step we have used that in λ...(. . . ) a shift of the argument by i is equivalent
to a shift of the index by 1 (with a constant factor of e−βh/2). Rearranging the sums we find

r.h.s.(13.A.6)

=
[

j+1∑
l=0

λ2l− j−1(v)− λ j+1(v)

][
j−1∑
l ′=0

λ2l ′− j+1(v)+ λ j+1(v)

]

=
j+1∑
l=0

λ2l− j−1(v)
j−1∑
l ′=0

λ2l ′− j+1(v)+ λ j+1(v)
[
λ− j−1(v)+ λ j+1(v)

]− [λ j+1(v)]2

= T j−1(v)T j+1(v)

q(v − j i)q(v + j i)q(v − ( j + 2)i)q(v + ( j + 2)i)
+ λ− j−1(v)λ j+1(v).

(13.A.7)

From (13.A.6), (13.A.7) and the identity

q(v − j i)q(v + j i)q(v − ( j + 2)i)q(v + ( j + 2)i)λ− j−1(v)λ j+1(v)
= ϕ(v − ( j + 1)i)ϕ(v + ( j + 1)i), (13.A.8)

(13.A.3) follows immediately.
We may rewrite (13.A.3) by introducing a function Y j as the ratio of the two terms on

the r.h.s.

Y j (v) = T j−1(v)T j+1(v)

ϕ(v − ( j + 1)i)ϕ(v + ( j + 1)i)
, j = 1, 2, . . . . (13.A.9)



13.A Derivation of TBA equations 559

Hence (13.A.3) takes the form

T j (v + i)T j (v − i) = ϕ(v − ( j + 1)i)ϕ(v + ( j + 1)i)[1+ Y j (v)], (13.A.10)

for all j = 1, 2, 3, . . . and also j = 0 if we use

T0(v) = ϕ(v), Y0(v) := 0. (13.A.11)

From (13.A.9) and (13.A.10) we immediately obtain for all j = 1, 2, 3, . . .

Y j (v + i)Y j (v − i) = [1+ Y j−1(v)][1+ Y j+1(v)], (13.A.12)

which is the final set of functional relations.
The strategy for solving these relations is: (i) solve (13.A.12) for the functions Y j , (ii) by

use of the solutions Y j solve (13.A.10) for Tj . Quite generally, as in Section (13.2) above,
we transform the multiplicative functional equations into (nonlinear) integral equations by
first taking the logarithm of the functional equations and then the Fourier transform. In this
manner and as Y j (v), j = 2, 3, . . . has neither pole nor zero in −1 ≤ Imx ≤ 1, we find

ln Y j (v) = s ∗ [ln(1+ Y j−1)+ ln(1+ Y j+1)], j ≥ 2, (13.A.13)

where ∗ denotes convolutions and s is the function

s(v) := 1

4 coshπx/2
. (13.A.14)

For Y1(v) the functional equation reads explicitly

Y1(v − i)Y1(v + i) = 1+ Y2(v), (13.A.15)

and looks slightly simpler, however care has to be taken as Y1 has zeroes at ±(1− τ )i and
poles at ±(1+ τ )i. We set

Y1(v) =
[

tanhπ
4 (v + (1− τ )i)

tanhπ
4 (v + (1+ τ )i)

]N/2

Ỹ1(v), (13.A.16)

which defines a function Ỹ1(v) that is analytic and non-zero in the domain comprising the
strip −1 ≤Im(v) ≤ +1 and satisfies the same inversion identity as Y1(v)

Ỹ1(v − i)Ỹ1(v + i) = 1+ Y2(v). (13.A.17)

This equation can now be cast in integral form

ln Ỹ1(v) = s ∗ ln(1+ Y2), (13.A.18)

and for Y1 we obtain

ln Y1(v) = N

2
log

[
tanhπ

4 (v + (1− τ )i)

tanhπ
4 (v + (1+ τ )i)

]
+ s ∗ ln(1+ Y2). (13.A.19)
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Since τ = β/N , the first term on the r.h.s. of (13.A.19) has a well defined limit for
N →∞

log

[
tanhπ

4 (v + (1− τ )i)

tanhπ
4 (v + (1+ τ )i)

]N/2

= −Nτ i
d

dx
log tanh

π

4
(v + i) = −β

π
2

cosh π
2 x

. (13.A.20)

Therefore, in the Trotter limit N →∞ we have

ln Y1(v) = −β
π
2

cosh π
2 x
+ s ∗ ln(1+ Y2). (13.A.21)

Using equations (13.A.21), (13.A.13) together with the asymptotic behaviour with respect
to large indices

lim
j→∞

ln Y j (v)

j
= βh (13.A.22)

we have a closed set of NLIEs.
Finally, from (13.A.10) we obtain for the largest eigenvalue �(v) ≡ T1(v) of the QTM

ln�(v) = ln T1(v) = −βe(v)+ s ∗ ln(1+ Y1), (13.A.23)

where e(v) is some β-independent function with e(v = 0) being the groundstate energy.
For the free energy per lattice site we find

β f = βe −
∫ ∞
−∞

s(x) ln(1+ Y1(x))dx . (13.A.24)

The equations (13.A.21), (13.A.13), (13.A.22) and (13.A.24) are completely identical to
the TBA equations upon identifying Y j (x) ≡ η j (x).

There are non-linear integral equations for a finite number of auxiliary functions ‘inter-
polating’ between 2 and∞. These equations are particularly useful for the study of higher
spin SU (2) models [424].

13.B Derivation of single integral equation

From (13.A.3) we find for j = 1

T1(v − i)T1(v + i) = ϕ(v − 2i)ϕ(v + 2i)+ ϕ(v)T2(v), (13.B.1)

where we have used T0(v) = ϕ(v). We want to solve for T1(v)(= �(v)) which is a poly-
nomial of degree N . The methods of Section 13.2 and appendix 13.A were based on the
solution of multiplicative functional equations. In Section 13.2 the eigenvalue T1(v) was
found by an ansatz satisfying the desired asymptotics and the location of zeroes (there are
no singularities).

Here we want to apply a different strategy. We define a suitable function u1(v) as the
ratio of T1(v) and a polynomial ψ(v) of degree N with zeroes of order N/2 at points ±v0
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soon to be specified

u1(v) := T1(v)

ψ(v)
, ψ(v) := [(v − v0)(v + v0)]N/2. (13.B.2)

For this function the equation (13.B.1) turns into

u1(v − i)u1(v + i) = b(v)+ u2(v), (13.B.3)

with

b(v) := ϕ(v − 2i)ϕ(v + 2i)

ψ(v − i)ψ(v + i)
,

u2(v) := ϕ(v)

ψ(v − i)ψ(v + i)
T2(v). (13.B.4)

For our further analysis we need the properties:

(i) the points ±(v0 − i) be zeroes of ϕ(v),
(ii) the points ±(v0 − 2i) be far from the zeroes of u1(v). (13.B.5)

For this setting we obtain from (13.B.3)

u1(v + i) = b(v)

u1(v − i)
+ u2(v)

u1(v − i)
, (13.B.6)

where v0 − i is a singularity of the l.h.s., but no singularity of the 2nd term on the r.h.s. as
u2(v) is analytic due to property (i), u1(v − i) is non-zero due to (ii). If C is a suffiently
narrow path surrounding 0 once in counterclockwise manner, the integral

1

2π i

∮
C+v0−i

1

v − w

b(w)

u1(w − i)
dw, (13.B.7)

defines, for v outside the contour C + v0 − i, a meromorphic function with asymptotics 0
and only singularity at v0 − i being identical to that of the r.h.s. of (13.B.6), i.e. identical to
the singularity of u1(v + i) at v0 − i. Analogously we find

1

2π i

∮
C−v0+i

1

v − w

b(w)

u1(w + i)
dw (13.B.8)

defines a meromorphic function with 0 asymptotics and only singularity at−v0 + i identical
to that of u1(v + i). Hence

1

2π i

∮
C+v0−i

1

v − i− w

b(w)

u1(w − i)
dw + 1

2π i

∮
C−v0+i

1

v + i− w

b(w)

u1(w + i)
dw (13.B.9)

is a meromorphic function with the same singularities of u1(v) (namely at±v0). The function
in (13.B.9) can be written by a shift of the variable of integration

1

2π i

∮
C

[
1

v − v0 − w

b(w + v0 − i)

u1(w + v0 − 2i)
dw + 1

v + v0 − w

b(w − v0 + i)

u1(w − v0 + 2i)

]
dw.

(13.B.10)
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From this and a comparison of the asymptotic behaviour, which for u1(v) is the constant
2 cosh(βh/2), we obtain the identity

u1(v) = 2 cosh(βh/2)

+ 1

2π i

∮
C

[
1

v − v0 − w

b(w + v0 − i)

u1(w + v0 − 2i)
+ 1

v + v0 − w

b(w − v0 + i)

u1(w − v0 + 2i)

]
dw.

(13.B.11)

Finally, we have to show that v0 exists such that (13.B.5) is satisfied. Part (i) is satisfied by
the choice v0 = iτ or v0 = i(2− τ ), but only in the latter case also (ii) is satisfied. Therefore

v0 =
i(2− τ ) = i

(
2− β

N

)
, for finite N ,

i2, for N →∞.
(13.B.12)

We note that the resulting function u1(v) is identical to the function �(iv, τ ) defined in
(13.23). The function u2(v) is given by

u2(v) = T2(v)

[(v − i(3− τ ))(v + i(3− τ ))]N/2
. (13.B.13)

More interestingly, the function b(v) occurring in (13.B.11) takes the explicit form

b(v) =


[

(v − i(1+ τ ))

(v − i(1− τ ))

(v + i(1+ τ ))

(v + i(1− τ ))

]N/2

, for finite N ,

exp

(
i

β

v + i
− i

β

v − i

)
, for N →∞.

(13.B.14)

The integral equation in the limit N →∞ reads

u1(v) = 2 cosh(βh/2)+ 1

2π i

∮
C

[
b(w + i)

v − 2i− w
+ b(w − i)

v + 2i− w

]
1

u1(w)
dw. (13.B.15)
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The Yangian symmetry of the Hubbard model

In this chapter we will reveal another piece of the algebraic structure of the Hubbard
model. As was first observed by Uglov and Korepin [462], the Hubbard Hamiltonian
on the infinite line is invariant under the action of the direct sum of two so-called
Yangian quantum groups, extending the rotational and the η-pairing su(2) symmetries we
encountered earlier. Following [172] we shall address the issue in a more general con-
text. We present two pairs of fermionic representations of the Y(su(2)) Yangian quantum
group which commute with the trigonometric [162] and hyperbolic [40, 41] versions of
a Hubbard Hamiltonian with non-nearest-neighbour hopping. In both cases the two rep-
resentations are also mutually commuting, hence can be combined into a representation
of Y(su(2))⊕Y(su(2)). The generators of the Yangian symmetry of the ordinary Hubbard
model (with nearest-neighbour hopping) and of a number of other interesting models like
the Haldane-Shastry spin-chain [194, 394] are obtained as special cases of our general
result.

14.1 Introduction

Quantum groups were introduced by Drinfeld [107, 109]. His original intention was to
put what we called the Yang-Baxter algebra into the mathematically more conventional
context of Hopf algebras. The Yangians are special quantum groups. Their representation
theory [80,81] is intimately related to the classification of integrable quantum systems with
rational R-matrices.

Later [57] it became apparent that Yangians also play an interesting role as addi-
tional hidden symmetries of integrable systems, and moreover [58], that Yangians are
part of the symmetry algebra of such well studied integrable systems as the nearest-
neighbour Heisenberg model. These symmetries had been overlooked for a long time,
since for the models with nearest-neighbour interactions they are incompatible with peri-
odic boundary conditions and for this reason do not combine with the familiar Bethe ansatz
methods.

563
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14.2 The variable-range-hopping Hamiltonian

We shall consider here a variant of the Hubbard model with more general hopping ampli-
tudes:

H =
∑

j,k

t jkc†j,ack,a + u
∑

j

(1− 2n j↑)(1− 2n j↓) , (14.1)

where t jk = t j−k is a function of the difference of the site indices and

tn =
{
−i sh(κ)sh−1(κn) for n �= 0,

0 for n = 0.
(14.2)

The Hamiltonian (14.1) is hermitian if and only if the hopping matrix is, t jk = t̄k j . Setting
κ = a + ib in the definition (14.2) the requirement of hermiticity of the the Hamiltonian
is seen to be equivalent to a = 0 or b = mπ , m ∈ Z. Moreover, the case b = mπ is easily
recognized to be gauge equivalent to the case b = 0. We therefore restrict ourselves to purely
real or purely imaginary values of κ . More precisely, our choices for κ are κ = iπ/N for a
finite lattice of N sites (‘trigonometric case’), and κ > 0 for an infinite lattice (‘hyperbolic
case’). The energy scale has been chosen such as to give hopping amplitudes of absolute
value 1 between neighbouring sites. The summation indices run from 0 to N − 1 in the
trigonometric case, and over all integers in the hyperbolic case. The thermodynamic limit
of the trigonometric model and the limit κ → 0 of the hyperbolic model coincide. In both
cases t jk turns into −i/( j − k). The model is then called the 1/r -Hubbard model or, for
reasons that will become clear immediately, the chiral Hubbard model. In the limit κ →∞,
the hyperbolic model turns, up to a local gauge transformation described below, into the
nearest-neighbour Hubbard model.

It may be interesting to notice, that the trigonometric and hyperbolic hopping amplitudes
can be interpreted as q-deformed 1/r -hopping. The notion of q-deformation is defined by
rq = (qr − q−r )/(q − q−1). Setting q equal to eκ the hopping amplitudes become t jk =
−i/( j − k)q . The trigonometric case corresponds to q being the N -th root of unity, the
hyperbolic case to q > 1 (see figure 14.1).

In order to understand the physical meaning of the above kind of hopping amplitudes,
one has to consider the dispersion relation of the free model (u = 0) [40,158,162,172]. For
the trigonometric case we obtain

ε(p) =
N−1∑
n=1

tneipn = N

π
sin

( π

N

)
(π − p) , (14.3)

where p = 2π (m + 1/2)/N , m = 0, . . . , N − 1. This yields ε(p) = π − p in the thermo-
dynamic limit. The dispersion relation (14.3) is linear in the first Brillouin zone, the model
is chiral. It contains only left-moving particles. The physically most interesting point about
this chiral model is the appearance of a Mott transition at finite u > 0 [161, 162]. In the
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−1 1q =

chiral model

i

Fig. 14.1. Parameter space of the variable range hopping amplitude t jk = −i/( j − k)q . Points on the
thick line correspond to hermitian Hamiltonians.

hyperbolic case the dispersion relation reads

ε(p) =
∞∑

n=1

tneipn = 2sh(κ)
∞∑

n=1

sin(pn)

sh(κn)
. (14.4)

The last expression is easily recognised as being, up to a redefinition of scales, the logarith-
mic derivative of the Jacobi theta function ϑ4 (see [479]). As a function of κ it interpolates
between the sinusoidal dispersion relation of the of the nearest-neighbour model and the
saw-tooth-shaped dispersion relation of the 1/r model (see figure 14.2).

The local gauge transformation c j,a → eiϕ j c j,a , ϕ j real, does not alter the canonical anti-
commutation relations between the Fermi operators. The electron densities n j = n j,↑ + n j,↓
are invariant under this transformation, hence the interaction part of the Hamiltonian (14.1)
is invariant as well. This means that we can always use a local gauge transformation to mod-
ify the hopping term to our convenience. The modified model will be completely equivalent
to the original one. Consider the example ϕ j = jπ . This transformation introduces a factor
of (−1) j−k into the expression for the hopping amplitudes and shifts the dispersion rela-
tions by a half period. Using this transformation our conventions meet the conventions of
Gebhard and Ruckenstein [162]. To recover the nearest-neighbour Hubbard model in its
familiar form (2.31), it is not sufficient to consider κ →∞. In addition we have to apply a
gauge transformation with ϕ j = jπ/2. This transformation removes the factor of ‘i’ in front
of the hopping amplitude, changes the hopping amplitude to an even function, and shifts
the dispersion relation by a quarter period. Hence, the quadratic bottom of the sinusoidal
band is shifted to p = 0.
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p
p/2 3p/2p

-p

2p

∋

p
(p)

Fig. 14.2. The dispersion curve of the one-dimensional Hubbard model with hyperbolic hopping
amplitudes. As a function of q = eκ the dispersion curve interpolates between the linear dispersion
curve ε(p) = π − p of the chiral model and the sinusoidal dispersion curve of the nearest-neighbour
model.

For our Hamiltonian (14.1) the role of the Shiba transformation (2.59) is taken by

c j↓ → c†j↓ . (14.5)

This transformation leaves every Hamiltonian of the form (14.1) with antisymmetric hop-
ping matrix invariant. However, the operator of the total spin is mapped to a new independent
operator. Thus, the occurrence of two su(2) symmetries is generic for Hubbard models with
antisymmetric hopping amplitudes. The ordinary nearest-neighbour Hubbard model has
two su(2) symmetries, because it is gauge equivalent to the model with antisymmetric hop-
ping amplitudes obtained as the limit κ →∞ of the hyperbolic version of our Hamiltonian
(14.1). We shall see below that the additional generators of the Yangian symmetry as well
are doubled by the transformation (14.5).

14.3 Construction of the Yangian generators

We shall now present an ad hoc construction of the generators of the Yangian symmetry of
the Hamiltonian (14.1). The generators will be written as sums involving the local current
operators S0

jk , Sα
jk introduced in Chapter 2 (see (2.73)). The true usefulness of this formu-

lation will become apparent to those readers who try to verify the commutation relations
between the generators of the Yangian (Yangian Serre relations). The calculation consid-
erably simplifies if one uses the algebra of the current operators instead of the elementary
commutation relations between the Fermi operators.
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The algebra of the current operators is rather rich. First of all we have the commutators
derived in Chapter 2 (see equation (2.74)):

[S0
jk, S0

lm] = δkl S
0
jm − δmj S0

lk , (14.6a)

[S0
jk, Sα

lm] = δkl S
α
jm − δmj Sα

lk , (14.6b)

[Sα
jk, Sβ

lm] = δαβ
(
δkl S

0
jm − δmj S0

lk

)+ i εαβγ
(
δkl S

γ

jm + δmj Sγ

lk

)
. (14.6c)

However, there are more, ‘anticommutator-like’ relations which are easily derived in a
similar way as the relations (14.6),

Sα
jk Sα

lm + S0
jk S0

lm + 2S0
jm S0

lk = 4δkl S
0
jm + 2δlm S0

jk , (14.7a)

S0
jk Sα

lm + S0
lm Sα

jk + S0
lk Sα

jm + S0
jm Sα

lk = δ jk Sα
lm + δlm Sα

jk + δlk Sα
jm + δ jm Sα

lk , (14.7b)

Sα
jk Sβ

lm + Sβ

jk Sα
lm + Sα

jm Sβ

lk + Sβ

jm Sα
lk = δαβ

(
S0

jm(2δlk − S0
lk)+ Sγ

jm Sγ

lk

)
, (14.7c)

−iεαβγ Sβ

jk Sγ

lm − S0
jm Sα

lk + S0
lk Sα

jm = 2δlk Sα
jm + δ jk Sα

lm − δlm Sα
jk . (14.7d)

Equations (14.6) and (14.7) generate a long list of succeedingly less general relations by
systematically equating all possible combinations of site indices. Generating this list one
may find convenient to introduce S0

j as a short-hand notation for the particle number operator
S0

j j .
When written in terms of the current operators the Hamiltonian (14.1) assumes the

form

H =
∑

j,k

t jk S0
jk + 2u

∑
j

(
(S0

j − 1)2 − 1
2

)
. (14.8)

Since the particle number N̂ =∑
j S0

j is conserved, only the term (S0
j )

2 is relevant in
the interaction part of the Hamiltonian. The other terms could be removed by a shift of
the chemical potential. Similar to the case of the nearest-neighbour model in Chapter 2
we retained them here to make obvious the invariance of H under the transformation
(14.5).

Let us forget temporarily our definition (14.2) and consider the Hamiltonian (14.8) with
antisymmetric but otherwise unspecified hopping matrix, t jk = −tk j . For α = x, y, z we
define the operators

J α = 1
2

∑
j,k

[(
f jk + h jk(S0

j + S0
k − 2)

)
Sα

jk + 4g jk ε
αβγ Sβ

j Sγ

k

]
, (14.9)

where g jk and h jk are odd functions, and f j j = g j j = h j j = 0 by convention. Using
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equations (14.6) and (14.7) the reader may verify that H commutes with J α if and only if
the following functional equations for the coefficients are satisfied,

t jk = h0h jk , (14.10a)

(g jl − gkl)h jk = i
2 h jlhkl , j �= k �= l �= j , (14.10b)

iu f jk/h0 + g jkh jk = − i
4

∑
l

h jlhkl , j �= k , (14.10c)∑
l

( f jlhkl − flkhl j ) = 0 . (14.10d)

Here h0 is a free parameter which fixes the scale for J α .
The only solutions to the equations (14.10) correspond to the cases of trigonometric and

hyperbolic hopping amplitudes (14.2) under consideration. In the trigonometric case we
find

f jk = 0 , g jk = 1
2 ctg (π ( j − k)/N ) , h jk = i sin−1(π ( j − k)/N ) , (14.11)

whereas the solutions in the hyperbolic case are

f jk = sh(κ)( j − k)

2u sh(κ( j − k))
, g jk = 1

2 cth(κ( j − k)) , h jk = i sh−1(κ( j − k)) . (14.12)

The parameter h0 has to be real in order for J α to be self adjoint. Choosing h0 =
− sin(π/N ) in the trigonometric case and h0 = −sh(κ) in the hyperbolic case we get
back to our original definition (14.2) of the hopping amplitudes. It is an unexpected
fact that J α does not depend on u in the trigonometric case, where therefore (see Sec-
tion 14.4) hopping part and interaction part of the Hamiltonian separately commute
with J α .

What is the nature of the operators J α? They are of different kind than the conserved
operators generated by the logarithm of the transfer matrix of the Hubbard model. In fact it
turns out that the operators J α combined with the spin operators Sα (see equation (2.66))
generate a representation of Drinfeld’s Y(su(2)) Yangian [107], i.e., the spin operators Sα

and the conserved quantities J α satisfy the relations

[Sλ, Sµ] = cλµν Sν , (14.13a)

[Sλ, Jµ] = cλµν J ν , (14.13b)[
[J λ, Jµ], [Sρ, J σ ]

]+ [
[J ρ, J σ ], [Sλ, Jµ]

] =
− 4δ(aλµναβγ cρσν + aρσναβγ cλµν){Sα, Sβ, J γ }, (14.13c)

where δ = −1 in the trigonometric case, δ = 1 in the hyperbolic case, and the
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further abbreviations

cλµν = i ελµν , (14.14a)

aλµναβγ = cλαρcµβσ cνγ τ cρστ , (14.14b)

{x1, x2, x3} = 1
6

∑
i �= j �=k �=i

xi x j xk (14.14c)

have been used. Equations (14.13a) are nothing but the su(2) commutation relations between
the spin operators. Equations (14.13b) mean that the J α transform like a vector represen-
tation of su(2), and are easily confirmed for our J α . (14.13c) is called the Yangian Serre
relation. Since both, (14.13b) and (14.13c), are homogeneous, we could have introduced
a deformation parameter, say h2 �= 0, on the right-hand side of the Yangian Serre relation
(14.13c). Because this parameter merely fixes the scale of J α and has no deeper physical
meaning, we suppressed it here. Equations (14.13) have been confirmed by direct calcula-
tion [172]. We have to warn the reader though, that the calculation is rather lengthy. Before
we comment on its details we formulate one more result.

Under the transformation (14.5) the generators Sα , J β transform into an independent
set of generators S′α , J ′β of another representation of the Y(su(2)) Yangian. The two
representations mutually commute, hence can be combined into a representation of the
direct sum Y(su(2))⊕Y(su(2)). Their mutual commutativity is non-trivial. It depends on
the specific form of the hopping amplitudes t jk and on the functional equations (14.10).
It thus may be claimed as being of ‘dynamical origin’. Of course, applying a local gauge
transformation with parameters ϕ j = jπ/2 to the operators −S′± they turn into η± while
S′z turns into ηz . Thus, one of the Yangian representations extends the spin representation
of su(2) while the other one extends the η-spin representation.

It seems rather hard to verify the validity of the Yangian Serre relation for our operators J α

in the original formulation formulation (14.13c). We may use the following simplification
instead: let

K α = −iεαβγ [J β, J γ ]− 4δ(Sβ)2Sα . (14.15)

Then a short but slightly tricky calculation (see appendices 14.A.5 and 14.A.7) shows that
(14.13c) can be replaced by the equation

[J α, K β]+ [J β, K α] = 0 . (14.16)

The left-hand side of (14.16) has a property that turns out to be very useful in practical
calculations. It is traceless. Assume we are given an operator J α , and we do already know
that it transforms as a vector representation of su(2). Then this knowledge assures the
identity [J α, K α] = 0. It is therefore sufficient to show that the left-hand side of equation
(14.16) is proportional to δαβ . This is a severe simplification, since the symmetrization
of the commutator produces numerous terms proportional to δαβ , which can be neglected
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according to the above argument. In our case the explicit expression for K α is

K α = 1
2

∑
j,k,l

{
8(8g jk g jl − δ)Sβ

j Sβ

k Sα
l + 2A jl Alk Sα

jk − 8iA jk(g jl − gkl)S0
jk Sα

l

+ 4A jk(g jl + gkl)εαβγ Sβ

jk Sγ

l + ih jlε
αβγ (A jk Sβ

jk − Akj Sβ

k j )(Sγ

jl − Sγ

l j )
}
,

(14.17)

where A jk = f jk + h jk(S0
j + S0

k − 2). To verify (14.16), one has to use the following rela-
tions among the coefficients f jk , g jk , h jk in addition to their defining functional equations
above.

f jk(g jl − gkl) = i
2 ( f jlhkl − fklh jl) , j �= k �= l �= j , (14.18a)

g jk g jl + gkl gk j + gl j glk = δ/4 , j �= k �= l �= j , (14.18b)

4g2
jk + h2

jk = δ , j �= k . (14.18c)

The homogeneity of the lattices has not been used in the verification of the Yangian Serre
relation in the bulk. However, it is necessary to guarantee the commutativity of J α with
the Hamiltonian. This situation is similar to the case of the Yangian symmetric spin chains.
Therefore the existence of a Yangian symmetric long-range Hubbard Hamiltonian on an
inhomogeneous lattice was conjectured in [172]. In analogy to the spin chain case [199] the
generator of its Yangian symmetry might be constructed by adding ‘potential terms’ to the
second order Yangian generator K α , equation (14.15).

We would like to emphasize that Yangian symmetry does not imply integrability. Never-
theless, it seems likely that the models considered here are exactly solvable, and are special
cases of a more general exactly solvable non-Yangian-symmetric model with elliptic hop-
ping amplitudes, which is known to have additional conserved operators of non-Yangian
type [210]. A proof of the ‘integrability’ of this model would provide the basis for an under-
standing of the Haldane-Shastry spin chain and the nearest-neighbour Hubbard model on a
common ground. At our present state of knowledge these models appear rather dissimilar.
The integrability of the Haldane-Shastry chain has been shown by exploiting a mapping
to a related dynamical model [446], whereas the integrability of the nearest-neighbour
Hubbard model is based on Shastry’s R-matrix (12.120). We expect that a proof of the
integrability of the non-nearest-neighbour Hubbard models would reveal a more generic
structure.

14.4 Special cases

Our representation (14.9) of the generators J α of the Y(su(2)) Yangian contains two free
parameters κ and u in the hyperbolic case. This offers the possibility to consider various
limiting cases. Another possibility comes from considering the restriction to the spin chain
space of states with every lattice site occupied by precisely one electron. As we shall
see below this restriction makes sense in the trigonometric as well as in hyperbolic the
case.
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We have shown above that the ordinary Hubbard Hamiltonian is a special case of the
Hamiltonian (14.1) with hyperbolic hopping amplitudes and is recovered in the limitκ →∞
through a local gauge transformation c j,a → i j c j,a . Let us apply the same manipulations to
the first-level generator J α of the representation of the Yangian. For κ →∞ the solutions
(14.12) of the functional equations (14.10) have the limits f jk = δ| j−k|,1/2u, g jk = sign( j −
k)/2, h jk = 0. We thus obtain

J α = i
4u

∑
j

(
Sα

j j+1 − Sα
j j−1

)− 2
∑
j<k

εαβγ Sβ

j Sγ

k (14.19)

for α = x, y, z. These operators are the generators of the Yangian symmetry of the Hubbard
model on the infinite lattice. The Yangian generators E1, F1 and H1 of Uglov and Korepin
[462] are linear combinations of these operators, E1 = 2u(J x + iJ y), F1 = 2u(J x − iJ y)
and H1 = 4u J z .

Keeping κ fixed but sending u to infinity we obtain another interesting limiting case.1

Let us define

J α
0 = 1

2

∑
j,k

[
h jk(S0

j + S0
k − 2)Sα

jk + 4g jk ε
αβγ Sβ

j Sγ

k

]
, (14.20)

J α
1 = u

2

∑
j,k

f jk Sα
jk . (14.21)

Then J α
1 is independent of u and

J α = J α
0 + 1

u J α
1 . (14.22)

This formula also holds for the trigonometric case where f jk = 0. Clearly, Sα and J β

0 ,α, β =
x, y, z, generate a representation of Y(su(2)). But what is the corresponding Y(su(2))-
invariant Hamiltonian?

We note that

[Sα, P0] = [J α
0 , P0] = 0 , (14.23)

where P0 =
∏

j (1− n j↑n j↓) is the familiar projection operator (see appendix 2.A and
Chapter 12.3.5) onto the space with no doubly occupied lattice site. The equations (14.23)
mean that Sα and J α

0 leave the space with no doubly occupied lattice site invariant. They
are consequences of the local identities

[Sα
j , P0] = [(S0

j + S0
k − 2)Sα

jk, P0] = 0 (14.24)

which follow from (14.6), (14.7). Let us consider the Hamiltonian H = T + 4u D, where

T =
∑

j,k

t jkc†j,ack,a , D =
∑

j

n j↑n j↓ . (14.25)

1 This limiting case was explained to us by V. Inozemtsev to whom we are deeply grateful.
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This Hamiltonian commutes with J α , since the Hamiltonian (14.1) does and since [J α, N̂ ] =
0. Hence,

[H, J α] = [T, J α
0 ]+ 4u[D, J α

0 ]+ 1
u [T, J α

1 ]+ 4[D, J α
1 ] = 0 (14.26)

for all u ∈ R. We conclude that [D, J α
0 ] = 0, which proves our claim above that in the

trigonometric case hopping part and interaction part of the Hamiltonian separately commute
with J α . We further conclude that [T, J α

0 ] = 4[J α
1 , D] and thus, using (14.23) and P0 D =

D P0 = 0,

[P0T P0, J α
0 ] = P0[T, J α

0 ]P0 = 4P0[J α
1 , D]P0 = 0 . (14.27)

This means that the t-0 Hamiltonian

Ht−0 = P0

∑
j,k

t jkc†j,ack,a P0 (14.28)

with trigonometric [476] or hyperbolic hopping amplitudes (14.2) commutes with the Yan-
gian generators J α

0 . Again by (14.23) it also commutes with the spin operators Sα . Therefore
the trigonometric and hyperbolic t-0 models are Yangian invariant.

We have yet another option to further specialize the generators J α
0 . Equation (14.23)

means that Sα and J α
0 leave the space with a fixed number of doubly occupied sites invariant.

Moreover, [J α
0 , N̂ ] = [Sα, N̂ ] = 0. It follows that the restrictions of J α

0 and Sα to the ‘spin
chain space of states’, say HS , where every lattice site is occupied by exactly one electron,
form a representation of the Y(su(2)) Yangian. Now, since [(S0

j + S0
k − 2), Sα

jk] = 0 and
since S0

j + S0
k − 2 annihilates HS , the restriction of J α

0 to HS is

J α
S = 2

∑
j,k

g jk ε
αβγ Sβ

j Sγ

k . (14.29)

The restriction of Ht−0 onto HS , however, vanishes identically. A non-trivial Hamiltonian
commuting with J α

S has to be construct by independent means. Using the simple ansatz

HS =
∑

j,k

s jk Sα
j Sα

k (14.30)

with an even function s jk vanishing at j = k we obtain the commutator

[HS, J α
S ] = 4i

∑
j �=k �=l �= j

[
s jk(gl j − glk)+ s jl(gkj − gkl)

]
Sα

j Sβ

k Sβ

l + 4i
∑
j �=k

s jk gk j Sα
j (2− S0

k )S0
k .

(14.31)

For this expression to be zero both sums have to vanish independently. The vanishing of
the square bracket under the first sum is easily seen to be equivalent to s jk = c|t jk |2, where
t jk is the hopping amplitude (14.2) and c is an arbitrary constant. Inserting this result into
the second sum we see that it only vanishes when restricted to the spin chain space of
states, where we can replace S0

k by 1 and Sα
j by 1

2σ
α
j . On the spin chain space of states

the Hamiltonian HS reduces to the well studied (for a review see [195]) Haldane-Shastry
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Hamiltonian [194, 394] or to its hyperbolic counterpart [209]. The Yangian symmetry of
these models was discovered and discussed in [59, 196].

Remark. We finally wish to point out the following subtlety: In the hyperbolic case the
limit κ →∞ of the Yangian generators J α

S yields

J α
S =

∑
j �=k

sign( j − k) εαβγ Sα
j Sβ

k . (14.32)

As we have seen above, these operators (together with the corresponding spin operators)
generate a representation of Y(su(2)) commuting with the Hamiltonian

Ht−0 = −P0

∑
j

(c†j,ac j+1,a + c†j+1,ac j,a)P0 (14.33)

of the usual t-0 model (compare [179]). One might naively think that J α
S , equation (14.32),

would also commute with
∑

j Sα
j Sα

j+1 and that for this reason the t-J Hamiltonian

Ht−J = P0

[
−

∑
j

(c†j,ac j+1,a + c†j+1,ac j,a)+ J
∑

j

Sα
j Sα

j+1

]
P0 (14.34)

would be Yangian invariant. This is, however, not the case. Due to (14.31) only the restriction
of Ht−J to the spin chain space of states, which is equivalent to the Heisenberg Hamiltonian,
commutes with J α

S . This nicely relates to the fact that for general J the t-J model is not
solvable by nested Bethe ansatz [377].

14.5 Conclusions

Following [172] we have constructed a pair of fermionic representations of the Y(su(2))
Yangian, one of them extending the spin representation of su(2) the other one the η-spin
representation. The two representations of the Yangian are simply related to one another by
the Shiba transformation (14.5). It is was therefore sufficient to concentrate our discussion
on the spin representation of the Yangian defined by the spin operators Sα and the addi-
tional ‘first level generators’ J α , equations (14.9), (14.11) and (14.12). These generators
commute with the Hamiltonian (14.1) which therefore can be called Yangian symmetric.
For the Hamiltonian as well as for the generators J α we have to distinguish between a
trigonometric case which applies to a finite chain with periodic boundary conditions and
a hyperbolic case which applies to an infinite chain. The hyperbolic case has two free pa-
rameters, the Hubbard interaction u and the decay length of the hopping κ . Thus, we could
rather say we have obtained a two-parametric family of representations of the Y(su(2)) Yan-
gian together with a two-parametric Yangian invariant Hamiltonian. This two-parametric
family has several interesting limiting cases which were discussed in Section 14.4. Most
important for us is the limit κ →∞which, in conjunction with a gauge transformation, led
us to the generators (14.19) of the spin representation of the Yangian of the usual Hubbard
model.
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This representation commutes with the Hubbard Hamiltonian on the infinite interval and
is not compatible with periodic boundary conditions. Hence, there is no natural action of the
first level Yangian generators on the Bethe ansatz eigenstates of Chapter 3 and Chapter 12.
Yet, we shall see in Chapter 15 that the eigenstates of the Hubbard model one the infinite
interval over the empty lattice vacuum can be constructed directly by a variant of the
quantum inverse scattering method. These eigenstates are then shown to transform like
tensor products of so-called evaluation representations of the Yangian.

In a number of appendices we shall present some background material about Yangians.
Our account will stay elementary. We will concentrate on the specific example of the
Y(su(2)) Yangian and will not say much about the general theory of quantum groups. We
included proofs of several theorems which are not easily accessible in the literature. It
is our hope that the appendix will provide a useful bridge for those readers who are familiar
with the quantum inverse scattering method and would like to start studying the mathe-
matical literature on quantum groups.



Appendices to Chapter 14

14.A Yangians

In this appendix we elaborate further on the mathematical structure of the class of models
which have the same R-matrix R(λ) = P Ř(λ) as the su(d)-XXX spin chain (see (12.49),
(12.55)). For our convenience we write this R-matrix here as

R(λ) = λ+ ηP , (14.A.1)

i.e., we set η = ic and change the normalization as compared to (12.49). R(λ) is often called
the gl(d) invariant R-matrix.

14.A.1 Symmetrizers and antisymmetrizers

In the following we will need projection operators P±1,...,N onto the completely symmetric
and antisymmetric subspaces of N -fold tensor products of C

d . The purpose of this section
is to define these operators and to derive their characteristic properties.

We shall denote the canonical basis of C
d as before by {ea}da=1. As we observed in

appendix 3.B the formula

P(ea1 ⊗ · · · ⊗ eaN ) = eaP−1(1)
⊗ · · · ⊗ eaP−1(N )

(14.A.2)

where P ∈ SN and a j = 1, . . . , d, defines a representation of the symmetric group acting
on (Cd )⊗N . Referring to this representation we define the operators

P−1,...,N =
1

N !

∑
P∈SN

sign(P) P , (14.A.3a)

P+1,...,N =
1

N !

∑
P∈SN

P . (14.A.3b)

If the operators P±1,...,N act non-trivially on the factors m, . . . , n = m + N − 1 of multiple
tensor products of spaces C

d we use the notation P±m,...,n .

575
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Lemma 21. Properties of the operators P±1,...,N .

(i) Projection property. The operators P±1,...,N are projection operators,

(P±1,...,N )2 = P±1,...,N , (14.A.4a)

P−1,...,N P+1,...,N = P+1,...,N P−1,...,N = 0 . (14.A.4b)

(ii) Determinant formula. Let A ∈ End(Cd ), N ≤ d. Then

tr
(
P−1,...,N A⊗N

) = ∑
a1<···<aN

∑
P∈SN

sign(P) A
aP(1)
a1 . . . A

aP(N )
aN . (14.A.5)

This implies, in particular, for N = d that

tr
(
P−1,...,N A⊗d

) = det A . (14.A.6)

(iii) Recursion formulae.

P−1,...,N+1 = P−2,...,N+1

N − P1,N+1

N + 1
P−1,...,N , (14.A.7a)

P+1,...,N+1 = P+1,...,N
N + P1,N+1

N + 1
P+2,...,N+1 , (14.A.7b)

where P1,N+1 is the familiar transposition operator interchanging the first with the
(N + 1)th factor in a multiple tensor product of spaces C

d .
(iv) Resolution of the recursion formulae. The recursion formulae (14.A.7) can be resolved

as

P−1,...,N+1 =
1− PN ,N+1

2
· 2− PN−1,N+1

3
. . .

N − P1,N+1

N + 1
P−1,...,N , (14.A.8a)

P+1,...,N+1 = P+1,...,N
N + P1,N+1

N + 1
. . .

2+ PN−1,N+1

3
· 1+ PN ,N+1

2
. (14.A.8b)

Proof. Point (i) is obvious from the definition (14.A.3).
Point (ii) is proven by direct calculation,

tr
(
P−1,...,N A⊗N

) = tr
(
P−1,...,N eb1

a1
⊗ · · · ⊗ ebN

aN

)
Aa1

b1
. . . AaN

bN

= 1

N !

∑
P∈SN

sign(P) tr
(
eb1

aP−1(1)
⊗ · · · ⊗ ebN

aP−1(N )

)
Aa1

b1
. . . AaN

bN

= 1

N !

∑
P∈SN

sign(P) A
aP(1)
a1 . . . A

aP(N )
aN

=
∑

a1<···<aN

∑
P∈SN

sign(P) A
aP(1)
a1 . . . A

aP(N )
aN . (14.A.9)

Here we used the identity

tr
(
eb1

aP−1(1)
⊗ · · · ⊗ ebN

aP−1(N )

) = tr(eb1
aP−1(1)

) . . . tr(ebN
aP−1(N )

) = δb1
aP−1(1)

. . . δbN
aP−1(N )

(14.A.10)
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in the third equation and the fact that the matrix elements of A commute in the third and in
the fourth equation.

Equation (14.A.7a) in point (iii) follows from

(N !)2 P−2,...,N+1(N − P1,N+1)P−1,...,N

= N !P−2,...,N+1

∑
P∈SN+1

P(N+1)=N+1

sign(P)(N − P1,N+1)P

=
∑

Q∈SN+1

Q(1)=1

∑
P∈SN+1

P(N+1)=N+1

sign(P Q)Q(N − P1,N+1)P

=
∑

Q∈SN+1

Q(1)=1

[ ∑
P∈SN+1

P(N+1)=Q(N+1)

N sign(P)P +
∑

P∈SN+1

P(N+1)=Q(1)

sign(P)P

]

= (N − 1)!
N+1∑
k=2

∑
P∈SN+1

P(N+1)=k

N sign(P)P + N !
∑

P∈SN+1

P(N+1)=1

sign(P)P

= N !
∑

P∈SN+1

sign(P)P . (14.A.11)

The proof of (14.A.7b) is very similar and is left as an exercise to the reader.
The proof of (iv) relies on a simple induction argument using (14.A.7) and the properties

P−2,...,N P−1,...,N = P−1,...,N and P+1,...,N P+2,...,N = P+1,...,N of the projection operators. �

14.A.2 Quantum symmetric functions and a theorem of Kulish and Sklyanin

Using (14.A.5) we can represent the sum over the principle minors of rank N of the de-
terminant of a monodromy matrix T (cl)(λ) ∈ End(Cd ) belonging to a classical integrable
system as σ

(cl)
N (λ) = tr

(
P−1,...,N

(
T (cl)(λ)

)⊗N )
. This function is easily seen to be the N th or-

der symmetric polynomial in the eigenvalues of T (cl)(λ) which is known to be a generating
function of involutive integrals of motion (see [277] and references therein). One may ask,
what is the quantum analogue of σ (cl)

N (λ)? The answer is not known in the general case. For
models with the R-matrix (14.A.1), however, Kulish and Sklyanin were able to construct
such quantum analogue [277]. Their construction is based on equation (14.A.5) and will be
presented below.

For any monodromy matrix T (λ) representing the Yang-Baxter algebra with rational
R-matrix (14.A.1) and for any N = 1, . . . , d we define the ‘quantum symmetric function’

σN (λ) = tr
(
P−1,...,N T1(λ)T2(λ+ η) . . . TN (λ+ (N − 1)η)

)
. (14.A.12)

Note that the classical limit (η→ 0) of σN (λ) is σ (cl)
N (λ) and that σ1(λ) is the transfer matrix

of the system.
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Theorem 1. (Kulish and Sklyanin [277]). The quantum symmetric functions σN (λ) form a
commutative family:

[σN (λ), σM (µ)] = 0 , (14.A.13)

for all N , M = 1, . . . , d and for all λ,µ ∈ C.

The higher quantum symmetric functions may generate additional conserved quantities
which, because of the theorem, commute with the conserved quantities generated by the
transfer matrix t(λ) = σ1(λ).

The remaining part of this subsection is devoted to the proof of the theorem. Since the
proof is rather lengthy, we divided it into several lemmata.

Lemma 22.

P−1,...,N T1(λ) . . . TN (λ+ (N − 1)η) = TN (λ+ (N − 1)η) . . . T1(λ) P−1,...,N , (14.A.14a)

P−1,...,N TN (λ− (N − 1)η) . . . T1(λ) = T1(λ) . . . TN (λ− (N − 1)η) P−1,...,N , (14.A.14b)

P+1,...,N T1(λ+ (N − 1)η) . . . TN (λ) = TN (λ) . . . T1(λ+ (N − 1)η) P+1,...,N , (14.A.14c)

P+1,...,N TN (λ) . . . T1(λ− (N − 1)η) = T1(λ− (N − 1)η) . . . TN (λ) P+1,...,N . (14.A.14d)

Proof. We will prove equation (14.A.14a) by induction over N . The argument is based on
the resolved recursion formula (14.A.8a) and on the elementary fact that

R jk(−Nη) = −η(N − Pjk) . (14.A.15)

Using the latter equation for N = 1 we find

P−1,2 T1(λ)T2(λ+ η) = − R12(−η)

2η
T1(λ)T2(λ+ η)

= −T2(λ+ η)T1(λ)
R12(−η)

2η
= T2(λ+ η)T1(λ) P−1,2 , (14.A.16)

and (14.A.14a) is proven for N = 2.
For the induction step we assume (14.A.14a) to be true for some N ≥ 2. Inserting

(14.A.15) into (14.A.8a) we obtain

P−1,...,N+1 =
(−1)N

ηN (N + 1)!
RN ,N+1(−η) . . . R1,N+1(−Nη) P−1,...,N . (14.A.17)



14.A Yangians 579

Hence,

P−1,...,N+1T1(λ) . . . TN+1(λ+ Nη)

= (−1)N

ηN (N + 1)!
RN ,N+1(−η) . . . R1,N+1(−Nη)

× TN (λ+ (N − 1)η) . . . T1(λ)TN+1(λ+ Nη) P−1,...,N

= (−1)N

ηN (N + 1)!
TN+1(λ+ N )η) . . . T1(λ)

× RN ,N+1(−η) . . . R1,N+1(−Nη) P−1,...,N

= TN+1(λ+ Nη) . . . T1(λ) P−1,...,N+1 , (14.A.18)

and the proof of (14.A.14a) is complete. We used (14.A.17) and the induction hypothesis
in the first equation, the Yang-Baxter algebra in the second equation, and again (14.A.17)
in the third equation. The proof of the remaining equations is very similar. For the proof of
(14.A.14b) and (14.A.14d) one has to take into account that R12(λ) = R21(λ). �

In preparation of the next lemma we define for fixed M, N = 1, . . . , d

R̃�(λ) = RM,M+�(λ+ (M − �)η) . . . R1,M+�(λ+ (1− �)η) , � = 1, . . . , N ,

R̃�(λ) = R�,M+1(λ+ (�− 1)η) . . . R�,M+N (λ+ (�− N )η) , � = 1, . . . , M ,

RM+1,...,M+N
1,...,M (λ) = R̃1(λ) . . . R̃N (λ) P−1,...,M P−M+1,...,M+N . (14.A.19)

Lemma 23. (
1− P−1,...,M P−M+1,...,M+N

)
RM+1,...,M+N

1,...,M (λ) = 0 . (14.A.20)

Proof. First of all we have

R̃1(λ) . . . R̃N (λ) = RM,M+1(λ+ (M − 1)η) . . . R1,M+1(λ)

RM,M+2(λ+ (M − 2)η) . . . R1,M+2(λ− η)

. . .

RM,M+N (λ+ (M − N )η) . . . R1,M+N (λ+ (1− N )η)

= RM,M+1(λ+ (M − 1)η) . . . RM,M+N (λ+ (M − N )η)

RM−1,M+1(λ+ (M − 2)η) . . . RM−1,M+N (λ+ (M − 1− N )η)

. . .

R1,M+1(λ) . . . R1,M+N (λ+ (1− N )η)

= R̃M (λ) . . . R̃1(λ) . (14.A.21)
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Since R(λ) is a solution of the Yang-Baxter equation, Tj (λ) = R j,n(λ) is a representation
of the Yang-Baxter algebra, and we can apply lemma 22,

P−1,...,M R1,M+�(λ+ (1− �)η) . . . RM,M+�(λ+ (M − �)η)

= R̃�(λ) P−1,...,M , � = 1, . . . , N . (14.A.22)

It follows that

R̃�(λ) P−1,...,M = P−1,...,M R̃�(λ) P−1,...,M , � = 1, . . . , N (14.A.23)

and by iteration

R̃1(λ) . . . R̃N (λ) P−1,...,M = P−1,...,M R̃1(λ) . . . R̃N (λ) P−1,...,M . (14.A.24)

Similarly, using R j,n(λ) = Rn, j (λ) we conclude with lemma 22 that

P−M+1,...,M+N R�,M+N (λ+ (�− N )η) . . . R�,M+1(λ+ (�− 1)η)

= R̃�(λ) P−M+1,...,M+N , � = 1, . . . , M . (14.A.25)

Hence,

R̃�(λ) P−M+1,...,M+N = P−M+1,...,M+N R̃�(λ) P−M+1,...,M+N , � = 1, . . . , M . (14.A.26)

Iterating this equation and using (14.A.21) we arrive at

R̃1(λ) . . . R̃N (λ) P−M+1,...,M+N = P−M+1,...,M+N R̃1(λ) . . . R̃N (λ) P−M+1,...,M+N . (14.A.27)

Finally, the lemma follows from (14.A.24) and (14.A.27). �

For the formulation of the last lemma needed in the proof of theorem 1 we define the
operators

T1,...,M (λ) = P−1,...,M T1(λ) . . . TM (λ+ (M − 1)η) , (14.A.28)

TM+1,...,M+N (µ) = P−M+1,...,M+N TM+1(µ) . . . TM+N (µ+ (N − 1)η) , (14.A.29)

where M, N = 1, . . . , d. These operators satisfy a Yang-Baxter algebra like relation.

Lemma 24.

RM+1,...,M+N
1,...,M (λ− µ) T1,...,M (λ)TM+1,...,M+N (µ)

= TM+1,...,M+N (µ)T1,...,M (λ)RM+1,...,M+N
1,...,M (λ− µ) . (14.A.30)

Proof. We first note that

R̃�(λ− µ) TM (λ+ (M − 1)η) . . . T1(λ)TM+�(µ+ (�− 1)η)

= RM,M+�(λ− µ+ (M − �)η) . . . R1,M+�(λ− µ+ (1− �)η)

× TM (λ+ (M − 1)η) . . . T1(λ)TM+�(µ+ (�− 1)η)

= TM+�(µ+ (�− 1)η)TM (λ+ (M − 1)η) . . . T1(λ)R̃�(λ− µ) . (14.A.31)
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Then, it follows that

RM+1,...,M+N
1,...,M (λ− µ) T1,...,M (λ)TM+1,...,M+N (µ)

= R̃1(λ− µ) . . . R̃N (λ− µ) P−1,...,M T1(λ) . . . TM (λ− (M − 1)η)

× P−M+1,...,M+N TM+1(µ) . . . TM+N (µ+ (N − 1)η)

= R̃1(λ− µ) . . . R̃N (λ− µ) TM (λ− (M − 1)η) . . . T1(λ)

× TM+N (µ+ (N − 1)η) . . . TM+1(µ) P−1,...,M P−M+1,...,M+N

= TM+N (µ+ (N − 1)η) . . . TM+1(µ)TM (λ− (M − 1)η) . . . T1(λ)

×RM+1,...,M+N
1,...,M (λ− µ)

= TM+1,...,M+N (µ)T1,...,M (λ)RM+1,...,M+N
1,...,M (λ− µ) , (14.A.32)

and the proof of the lemma is complete. We used (14.A.4a) in the first equation, lemma 22
in the second equation, (14.A.31) in the third equation, and lemma 23 and lemma 22 in the
last equation. �

We now proceed with the proof of theorem 2: P−1,...,M and P−M+1,...,M+N project on proper

subspaces of (Cd )⊗(M+N ). Therefore RM+1,...,M+N
1,...,M has no inverse. However, RM+1,...,M+N

1,...,M

leaves the subspace

H = P−1,...,M P−M+1,...,M+N (Cd )⊗(M+N ) ⊂ (Cd )⊗(M+N ) (14.A.33)

invariant by lemma 23. The same is true for T1,...,M and TM+1,...,M+N by definition. Now(
P−1,...,M P−M+1,...,M+N

)∣∣
H = id

∣∣
H, and R̃� is invertible for � = 1, . . . , N . It follows that

RM+1,...,M+N
1,...,M

∣∣
H is invertible and, by lemma 24, that

RM+1,...,M+N
1,...,M

∣∣
H(λ− µ) T1,...,M

∣∣
H(λ)TM+1,...,M+N

∣∣
H(µ)

(
RM+1,...,M+N

1,...,M

∣∣
H
)−1

(λ− µ)

= TM+1,...,M+N

∣∣
H(µ)T1,...,M

∣∣
H(λ) . (14.A.34)

Therefore

trH
(
T1,...,M

∣∣
H(λ)TM+1,...,M+N

∣∣
H(µ)

) = trH
(
TM+1,...,M+N

∣∣
H(µ)T1,...,M

∣∣
H(λ)

)
, (14.A.35)

where trH denotes the trace on H.
Let H⊥ be the orthogonal complement of H. Then H⊕H⊥ = (Cd )⊗(M+N ) and there

are orthonormal bases B and B⊥ of H and H⊥, such that B ∪ B⊥ is a basis of (Cd )⊗(M+N ).
Using lemma 22 we obtain

T1,...,M (λ)TM+1,...,M+N (µ)|b⊥〉 = TM+1,...,M+N (µ)T1,...,M (λ)|b⊥〉 = 0 (14.A.36)
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for all |b⊥〉 ∈ B⊥. We conclude that

tr
(
T1,...,M (λ)TM+1,...,M+N (µ)

)
=

∑
|b〉∈B
〈b|T1,...,M (λ)TM+1,...,M+N (µ)|b〉

+
∑
|b⊥〉∈B⊥

〈b⊥|T1,...,M (λ)TM+1,...,M+N (µ)|b⊥〉

= trH
(
T1,...,M

∣∣
H(λ)TM+1,...,M+N

∣∣
H(µ)

)
= tr

(
TM+1,...,M+N (µ)T1,...,M (λ)

)
. (14.A.37)

Hence, [
tr
(
T1,...,M (λ)

)
, tr

(
T1,...,N (µ)

)] = 0 , (14.A.38)

which completes the proof of the theorem.

14.A.3 The quantum determinant

In this section we work out the properties of the ‘highest’ quantum symmetric function
σd (λ). We have already seen that this function turns into the determinant of the classical
monodromy matrix in the classical limit η→ 0. We shall see below that even for non-zero
η the function σd (λ) has all the characteristic properties of the usual determinant. For this
reason we call

detq (T (λ)) = σd (λ− (d − 1)η) (14.A.39)

the quantum determinant of the monodromy matrix T (λ). The shift in the spectral parameter
by (d − 1)η has been introduced for later notational convenience.

The quantum determinant was first introduced in [213], where it was used to invert the
monodromy matrix. Its most remarkable property is its commutativity with all the elements
of the monodromy matrix. In other words, the quantum determinant is in the centre of the
Yang-Baxter algebra. The reason why we discuss the quantum determinant here is that it
also generates the centre of the Yangian quantum group Y(gl(n)) which (for n = 2) will be
introduced in the following section.

Let us mention two alternative expressions for the quantum determinant of T (λ). Using
the totally antisymmetric tensor

εb1,...,bd
a1,...,ad

=
{

sign(Q) if a = bQ, Q ∈ Sd and a j �= ak for all j �= k

0 else
(14.A.40)

we can write

detq (T (λ)) = 1

d!
εb1,...,bd

a1,...,ad
T a1

b1
(λ− (d − 1)η) . . . T ad

bd
(λ) . (14.A.41)
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Another expression comes from the observation that P−1,...,d projects on the one-dimensional
subspace of (Cd )⊗d spanned by the vector

|−〉 = 1√
d!

∑
P∈Sd

sign(P) eP(1) ⊗ · · · ⊗ eP(d) . (14.A.42)

This vector is of unit length, 〈−|−〉 = 1. Hence, P−1,...,d = |−〉〈−| and therefore

detq (T (λ)) = 〈−|T1(λ− (d − 1)η) . . . Td (λ)|−〉 . (14.A.43)

Before coming to the general properties of the quantum determinant we would like
to consider the important example of the fundamental representation of the Yang-Baxter
algebra generated by (14.A.1). Recall that the corresponding fundamental L-matrix (see
Section 12.1) has matrix elements Lα

β(λ) = Rαγ

βδ (λ)eδ
γ .

Lemma 25. The quantum determinant of the fundamental L-matrix associated with the
rational R-matrix (14.A.1) is

detq (L(λ)) = Id (λ+ η)
d−1∏
n=1

(λ− nη) . (14.A.44)

Proof. 1 We are free to interpret the matrices Rn,d+1(λ), n = 1, . . . , d , as matrices in the
tensor product (Cd )⊗d with entries acting on a quantum space C

d carrying the label d + 1.
With this interpretation in mind we find

L(λ− (d − 1)η)⊗ · · · ⊗ L(λ) = R1,d+1(λ− (d − 1)η) . . . Rd,d+1(λ)

= (λ− (d − 1)η + ηP1,d+1) . . . (λ+ ηPd,d+1)

= p(λ)+
d∑

j=1

p j (λ) Pj,d+1 +
d∑

j,k=1
j<k

p jk(λ) Pj,d+1 Pk,d+1

+ · · · + p1,...,d (λ) P1,d+1 . . . Pd,d+1 , (14.A.45)

where the coefficients in the sums over products of transposition operators on the right-hand
side are polynomials in λ, e.g.

p(λ) =
d−1∏
n=0

(λ− nη) . (14.A.46)

We have to multiply equation (14.A.45) by P−1,...,d from the left and have to take the trace
with respect to the auxiliary spaces. Then the right-hand side of (14.A.45) simplifies thanks

1 FG is indebted to Y. Komori for the communication of this proof.
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to the identities

P−1,...,d Pj,k = −P−1,...,d , j, k = 1, . . . , d , j �= k ,

tr1,...,d
(
P−1,...,d

) = Id ,

tr1,...,d
(
P−1,...,d Pj,d+1

) = Id

d
, j = 1, . . . , d ,

(14.A.47)

where Id is the d × d unit matrix. Using Pj1,d+1 . . . Pjn ,d+1 = Pj2, j1 . . . Pjn , j1 Pj1,d+1 and the
identities (14.A.47) we obtain

tr1,...,d
(
P−1,...,d L(λ− (d − 1)η)⊗ · · · ⊗ L(λ)

)
= Id p(λ)− Id

d

[
−

d∑
j=1

p j (λ)+
d∑

j,k=1
j<k

p jk(λ)+ · · · + (−1)d p1,...,d (λ)
]

= Id

[
p(λ)+ 1

d
p(λ)− 1

d
p(λ− η)

]
= Id (λ+ η)

d−1∏
n=1

(λ− nη) . (14.A.48)

Note that the term in brackets on the right hand side of the first equation is up to a missing
term p(λ) equal to the right hand side of (14.A.45) with all the transposition operators
replaced by minus one. This fact was used in the second equation. �

Now we turn to a description of the properties of the quantum determinant in the general
case.

Theorem 2. Properties of the quantum determinant [277].

(i) Invariance under similarity transformations. Let A ∈ End
(
C

d
)
, A invertible. Then

detq (AT (λ)A−1) = detq (T (λ)) . (14.A.49)

(ii) Multiplicativity. For two commutative representations T (λ|1), T (λ|2),
[T1(λ|1), T2(µ|2)] = 0, the multiplication formula

detq (T (λ|1)T (λ|2)) = detq (T (λ|1)) detq (T (λ|2)) (14.A.50)

is valid.
(iii) Kramer’s rule.

T−1(λ) = d

detq (T (λ))
tr1,...,d−1

(
P−1,...,d T1(λ− (d − 1)η) . . . Td−1(λ− η)

)
.

(14.A.51)

(iv) Commutativity.

[detq (T (λ)), T (µ)] = 0 (14.A.52)

for all λ,µ ∈ C.
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Proof. (i) is left as an exercise to the reader.
(ii) is obtained as

detq (T (λ|1)T (λ|2))

= 〈−|T1(λ− (d − 1)η|1) . . . Td (λ|1)T1(λ− (d − 1)η|2) . . . Td (λ|2)|−〉
= 〈−|T1(λ− (d − 1)η|1) . . . Td (λ|1)|−〉〈−|T1(λ− (d − 1)η|2) . . . Td (λ|2)|−〉
= detq (T (λ|1)) detq (T (λ|2)) . (14.A.53)

Here we used the form (14.A.43) of the quantum determinant and the commutativity of the
two representations in the first equation and the fact that P−1,...,d = |−〉〈−| and lemma 22 in
the second equation.

(iii) Using lemma 22 and the representation (14.A.43) of the quantum determinant we
obtain

T1,...,d (λ− (d − 1)η) = P−1,...,d T1(λ− (d − 1)η) . . . Td (λ)

= |−〉〈−|T1(λ− (d − 1)η) . . . Td (λ)|−〉〈−|
= detq (T (λ)) P−1,...,d = P−1,...,d detq (T (λ)) . (14.A.54)

Multiplying by d (detq (T (λ)))−1 from the left and by T−1
d (λ) from the right and taking the

trace with respect to the first d − 1 auxiliary spaces we conclude that

d

detq (T (λ))
tr1,...,d−1

(
P−1,...,d T1(λ− (d − 1)η) . . . Td−1(λ− η)

)
= d tr1,...,d−1

(
P−1,...,d T−1

d (λ)
)

= 1

(d − 1)!
εa1,...,ad−1,b

a1,...,ad−1,a

(
T−1

)a

c
(λ) ec

b = T−1(λ) . (14.A.55)

(iv) The assertion follows from lemma 24 with M = d and N = 1. In order to see this
we first note that Rd+1

1,...,d (λ) = R̃1(λ)P−1,...,d (compare equation (14.A.19)). Using (14.A.54)
and lemma 22 and lemma 24 we obtain

Rd+1
1,...,d (λ− µ)T1,...,d (λ)Td+1(µ)

= R̃1(λ− µ)P−1,...,d detq (T (λ− (d − 1)η))Td+1(µ)

= Rd,d+1(λ− µ+ (d − 1)η) . . . R1,d+1(λ− µ)P−1,...,ddetq (T (λ+ (d − 1)η))Td+1(µ)

= P−1,...,d R1,d+1(λ− µ) . . . Rd,d+1(λ− µ+ (d − 1)η)detq (T (λ+ (d − 1)η))Td+1(µ)

= Td+1(µ) detq (T (λ− (d − 1)η))P−1,...,d R̃1(λ− µ)P−1,...,d

= Td+1(µ) detq (T (λ− (d − 1)η))

× P−1,...,d R1,d+1(λ− µ) . . . Rd,d+1(λ− µ+ (d − 1)η) . (14.A.56)
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Then we take the trace with respect to the first d auxiliary spaces of the fourth and the sixth
line of this equation, making use of the formulae

tr1,...,d (ABd+1) = tr1,...,d (A) B ,

tr1,...,d (Bd+1 A) = B tr1,...,d (A) ,
(14.A.57)

which holds for any A ∈ End
(
(Cd )⊗(d+1)

)
, B ∈ End(Cd ). The resulting equation is

detq (L(λ− µ+ (d − 1)η)) detq (T (λ− (d − 1)η))T (µ)

= T (µ) detq (T (λ− (d − 1)η)) detq (L(λ− µ+ (d − 1)η)) , (14.A.58)

where detq (L(λ)) is the quantum determinant of the fundamental L-matrix associated with
the R-matrix (14.A.1). According to lemma 6 this quantum determinant is proportional to
the unit matrix Id , which completes the proof of (iv). �

In the next section, where we introduce the Yangians Y(gl(2)) and Y(sl(2)), we shall
need the quantum determinant for the case d = 2. For this case we would like to derive four
more alternative expressions for the quantum determinant. Starting point of our derivation
is lemma 3 with N = d = 2. Multiplying (14.A.14d) by P−1,2 and (14.A.14b) by P+1,2 from
the left and using (14.A.4b) we obtain

P−1,2
(
T (λ− η)⊗ T (λ)

)
P+1,2 = 0 , (14.A.59a)

P+1,2
(
T (λ)⊗ T (λ− η)

)
P−1,2 = 0 . (14.A.59b)

These are two 4× 4 matrix equations. Picking out the inner 2× 2 block of these equations,
i.e., the intersections of the second and third rows and columns, we find, in particular,

(
1 −1
−1 1

)(
A(λ− η)D(λ) B(λ− η)C(λ)
C(λ− η)B(λ) D(λ− η)A(λ)

)(
1 1
1 1

)
= 0 , (14.A.60a)

(
1 1
1 1

)(
A(λ)D(λ− η) B(λ)C(λ− η)
C(λ)B(λ− η) D(λ)A(λ− η)

)(
1 −1
−1 1

)
= 0 , (14.A.60b)

where the four matrix elements of the monodromy matrix have been denoted
A(λ), . . . , D(λ). Each of these matrix equations is equivalent to a single equation for the
elements of the monodromy matrix,

A(λ− η)D(λ)− C(λ− η)B(λ)+ B(λ− η)C(λ)− D(λ− η)A(λ) = 0 , (14.A.61a)

A(λ)D(λ− η)+ C(λ)B(λ− η)− B(λ)C(λ− η)− D(λ)A(λ− η) = 0 . (14.A.61b)
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Using (14.A.61a) we infer that

A(λ− η)D(λ)− C(λ− η)B(λ)

= D(λ− η)A(λ)− B(λ− η)C(λ)

= 1
2

[
A(λ− η)D(λ)− C(λ− η)B(λ)+ D(λ− η)A(λ)− B(λ− η)C(λ)

]
= tr

(
P−1,2

(
T (λ− η)⊗ T (λ)

)) = detq (T (λ)) . (14.A.62)

Equation (14.A.61b), on the other hand, implies

A(λ)D(λ− η)− B(λ)C(λ− η)

= D(λ)A(λ− η)− C(λ)B(λ− η)

= 1
2

[
A(λ)D(λ− η)− B(λ)C(λ− η)+ D(λ)A(λ− η)− C(λ)B(λ− η)

]
= tr

((
T (λ)⊗ T (λ− η)

)
P−1,2

) = detq (T (λ)) . (14.A.63)

We summarize the various expressions we have found for the quantum determinant of the
gl(2) invariant R-matrix ((14.A.1) with d = 2) in the following lemma.

Lemma 26. Equivalent forms of the gl(2) quantum determinant [407].

detq (T (λ)) = tr
(
P−1,2

(
T (λ− η)⊗ T (λ)

))
= tr

((
T (λ)⊗ T (λ− η)

)
P−1,2

)
= A(λ− η)D(λ)− C(λ− η)B(λ)

= D(λ− η)A(λ)− B(λ− η)C(λ)

= A(λ)D(λ− η)− B(λ)C(λ− η)

= D(λ)A(λ− η)− C(λ)B(λ− η) . (14.A.64)

Let us illustrate some of our results again with our chief example, the inhomogeneous
spin- 1

2 -XXX chain (see Sections 12.1.6 and 12.1.7). The quantum determinant of the ele-
mentary L-matrix, (12.52) with α, β = 1, 2, follows from lemma 6 by a change in notation
and normalization,

detq (L j (λ, ν j )) = λ− ν j − ic

λ− ν j
. (14.A.65)

Here we suppressed the identity operator in quantum space on the right-hand side of the equa-
tion. The quantum determinant of the monodromy matrix T (λ) = L L (λ, νL ) . . . L1(λ, ν1)
then follows by multiplicativity, equation (14.A.50),

detq
(
T (λ)

) = L∏
j=1

λ− ν j − ic

λ− ν j
. (14.A.66)

Thus, for the fundamental representation the quantum determinant is just a number (multi-
plied by the identity operator) and generates no additional conserved quantities. We wish
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to emphasize, however, that the situation may be different for general non-fundamental
representations, where the quantum determinant may be a non-trivial operator.

It follows from (14.A.66) and (14.A.51) that the monodromy matrix T (λ) of the inho-
mogeneous spin- 1

2 -XXX chain is invertible for λ �= ν j , ν j + ic, j = 1, . . . , L , and that

T−1(λ) =
L∏

j=1

λ− ν j

λ− ν j − ic

(
D(λ− ic) −B(λ− ic)
−C(λ− ic) A(λ− ic)

)
. (14.A.67)

14.A.4 The Yangians Y(gl(2)) and Y(sl(2))

Yangians associated with any simple Lie algebra a were introduced by Drinfeld in his
seminal article [107] which marked the advent of quantum groups. Of the different possible
characterizations of the Yangians [107, 108, 247] (see also Chapter12 of [82]) in terms of
generators we shall choose the least general one [247] as a starting point of our account.
It has the advantage of being closely related to concepts we are already familiar with,
the Yang-Baxter algebra and the quantum determinant. This is the favoured approach to
Yangians in the physics literature (e.g. [58,195,337]). For simple Lie algebras it is restricted
to a = sl(n), but an extention to a = gl(n) is possible. We shall be rather modest and consider
only the Yangians associated with sl(2) and gl(2) which will be enough for our purposes.
Our presentation in this section closely follows the appendix of [337].

The Yangian Y(gl(2)) is the associative algebra (with unit e) generated by the entries of
the matrix coefficients Tn in the formal asymptotic series

T (λ) = I2e + η

∞∑
n=1

Tn

λn
(14.A.68)

modulo the constraints imposed by the defining relations

Ř(λ− µ)
(
T (λ)⊗ T (µ)

) = (
T (µ)⊗ T (λ)

)
Ř(λ− µ) (14.A.69)

of the Yang-Baxter algebra with rational R-matrix Ř(λ) = η + λP .
Inserting (14.A.68) into (14.A.69) and comparing order by order in λ and µ we obtain

two infinite sets of relations for the Tm :

T1 ⊗ Tn − P(Tn ⊗ T1)P = P(Tn ⊗ I2 − I2 ⊗ Tn) , (14.A.70a)

Tm ⊗ Tn+1 − P(Tn+1 ⊗ Tm)P − Tm+1 ⊗ Tn + P(Tn ⊗ Tm+1)P

= ηP(Tm ⊗ Tn − Tn ⊗ Tm) (14.A.70b)

for m, n ∈ N.
We will get deeper insight into the structure of the Yangian by expanding the Tn in a gl(2)

basis consisting of the matrices I2, σ x , σ y and σ z ,

Tn = J 0
n−1 I2 + J α

n−1σ
α , n ∈ N . (14.A.71)

The set {I2, σ
x , σ y, σ z} is a gl(2) orthonormal basis with respect to the scalar product

〈X, Y 〉 = 1
2 tr(XY ). Thus, J 0

n−1 = 1
2 tr(Tn) and J α

n−1 = 1
2 tr(σαTn). The commutators between
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the J 0
n , J α

n are obtained from (14.A.70) by use of the formulae

P = 1
2 (I2 ⊗ I2 + σα ⊗ σα) , (14.A.72a)

(σα ⊗ I2)P = 1
2 (σα ⊗ I2 + I2 ⊗ σα − iεαβγ σ β ⊗ σγ ) , (14.A.72b)

(I2 ⊗ σα)P = 1
2 (σα ⊗ I2 + I2 ⊗ σα + iεαβγ σ β ⊗ σγ ) , (14.A.72c)

(σα ⊗ σβ)P = 1
2

(
σα ⊗ σβ + σβ ⊗ σα + δαβ(I2 ⊗ I2 − σγ ⊗ σγ )

+ iεαβγ (σγ ⊗ I2 − I2 ⊗ σγ )
)
, (14.A.72d)

(σα ⊗ σα)P = 1
2 (3 I2 ⊗ I2 − σα ⊗ σα) . (14.A.72e)

To obtain an example of how this works take, for instance, the trace of equation (14.A.70a).
Then, because of the invariance of the trace under cyclic exchange of matrices with com-
muting entries, the left-hand side of the equation turns into [J 0

0 , J 0
n−1]. The right-hand side

can be calculated by means of (14.A.72a). It vanishes since tr(I2) = 2 and tr(σα) = 0.
Proceeding in this spirit we arrive after a little algebra at the following set of equations,

[J α
0 , J 0

n ] = 0 , (14.A.73a)

[J α
0 , J β

n ] = iεαβγ J γ
n , (14.A.73b)

[J 0
m, J 0

n ] = 0 , (14.A.73c)

[J 0
m, J α

n ]− [J 0
n , J α

m ] = 0 , (14.A.73d)

[J 0
m, J α

n+1]− [J 0
m+1, J α

n ] = iη
2 ε

αβγ (J β
m J γ

n − J β
n J γ

m ) , (14.A.73e)

[J α
m , J β

n ]− [J α
n , J β

m ] = 0 , (14.A.73f)

[J α
m , J β

n+1]− [J α
m+1, J β

n ] = iηεαβγ (J γ
m J 0

n − J γ
n J 0

m) . (14.A.73g)

These equations are equivalent to (14.A.70). They provide a characterization of the Yangian
Y(gl(2)) in terms of the generators J 0

n and J α
n .

It turns out that the generators are not all independent. (14.A.73g) can be used to derive
a recursion relation expressing J α

n in terms of J 0
m , J β

m , m ≤ n − 1. For this purpose we first
set m = 0 and replace n by n − 1 in (14.A.73g). Then we use (14.A.73b) on the left-hand
side and multiply by εδαβ . The resulting equation is equivalent to the recursion relation

J α
n = 1

2iε
αβγ [J β

1 , J γ

n−1]+ η(J α
0 J 0

n−1 − J α
n−1 J 0

0 ) (14.A.74)

which determines J α
n for n = 2, 3, . . .

To get a complete recursive description of the algebra, which includes the J 0
n , we consider

the asymptotic expansion of the quantum determinant,

detq (T (λ)) = A(λ)D(λ− η)− B(λ)C(λ− η) (14.A.75a)

= D(λ)A(λ− η)− C(λ)B(λ− η) (14.A.75b)

= 1+ η

∞∑
n=0

an

λn+1
. (14.A.75c)

This equation defines the coefficients an . It enables us to express the an in terms of the
J 0

n , J α
n by inserting the formal asymptotic series (14.A.68) into (14.A.75a) and (14.A.75b).
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From the comparison of (14.A.75c) and (14.A.75a) we obtain a0 = 2J 0
0 and

an = Tn+1
1
1 +

n∑
m=0

(
n

m

)
ηn−m Tm+1

2
2

+
n−1∑
l=0

n−l−1∑
m=0

(
n − l − 1

m

)
ηn−l−m

(
Tl+1

1
1Tm+1

2
2 − Tl+1

1
2Tm+1

2
1

)
(14.A.76)

for n ∈ N. If we use (14.A.75b) instead of (14.A.75a), then Tn
1
1 and Tn

2
2 are interchanged

and so are Tn
1
2 and Tn

2
1. It follows that

an = 1
2 (Tn+1

1
1 + Tn+1

2
2)+

n∑
m=0

(
n

m

)
ηn−m 1

2 (Tm+1
1
1 + Tm+1

2
2)

+
n−1∑
l=0

n−l−1∑
m=0

(
n − l − 1

m

)
ηn−l−m

× 1
2

(
Tl+1

1
1Tm+1

2
2 + Tl+1

2
2Tm+1

1
1 − Tl+1

1
2Tm+1

2
1 − Tl+1

2
1Tm+1

1
2

)
. (14.A.77)

Now the right-hand side is easily expressed in terms of J 0
n and J α

n , and we end up with

an = 2J 0
n +

n−1∑
m=0

(
n

m

)
ηn−m J 0

m +
n−1∑
l=0

n−l−1∑
m=0

(
n − l − 1

m

)
ηn−l−m

(
J 0

m J 0
l − J α

m J α
l

)
.

(14.A.78)

This formula determines the coefficients of the asymptotic expansion of the quantum de-
terminant in terms of J 0

n , J α
n . Turning it around we obtain

J 0
n = 1

2 an − 1
2

n−1∑
m=0

(
n

m

)
ηn−m J 0

m − 1
2

n−1∑
l=0

n−l−1∑
m=0

(
n − l − 1

m

)
ηn−l−m

(
J 0

m J 0
l − J α

m J α
l

)
(14.A.79)

for n ∈ N. Using J 0
0 = a0

2 and equations (14.A.74) and (14.A.79) we can recursively express
J 0

n and J α
n in terms of J α

0 , J α
1 and the an . In other words, the Yangian Y(gl(2)) is generated

by J α
0 , J α

1 , α = x, y, z, and by the coefficients of the asymptotic expansion of the quantum
determinant which belong to its centre. Setting all the an equal to zero we obtain the
Yangian Y(sl(2)). Thus, the Yangian Y(sl(2)) is the associative algebra generated by entries
of the matrices Tn in (14.A.68) modulo the relations (14.A.69) and the further constraint
that detq (T (λ)) = 1. The Yangian Y(sl(2)) has only six independent generators, J α

0 , J α
1 ,

α = x, y, z.

14.A.5 The deformed Serre relation for Y(sl(2)) and Y(gl(2))

We have seen in the preceding section that the Yangian Y(sl(2)) has only a finite number
of independent ‘elementary’ generators: given J α

0 and J β

1 , the infinitely many remaining
generators occurring in (14.A.73) are determined by the recursion relations (14.A.74) and
(14.A.79). This raises the interesting question of whether we can define the Yangian entirely
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in terms of its elementary generators J α
0 , J β

1 by imposing a finite set of relations on them.
This set must include the sl(2)-relations

[J α
0 , J β

0 ] = iεαβγ J γ

0 , (14.A.80a)

[J α
0 , J β

1 ] = iεαβγ J γ

1 (14.A.80b)

which are contained in (14.A.73b) and are the only relations in (14.A.73) which relate
only J α

0 and J β

1 . It is clear on the other hand, that these two relations do not completely
determine the structure of the Yangian, for they merely indicate that the J α

0 generate sl(2)
as a subalgebra of Y(sl(2)) and that the J β

1 transform like a vector representation of sl(2).
Starting from (14.A.73) we shall derive an independent higher-order relation between

the elementary Yangian generators J α
0 , J β

1 which is called the Yangian Serre relation. The
Yangian Serre relation was introduced by Drinfeld [107]. Drinfeld could show that the Yan-
gian Serre relation together with the two equations (14.A.80) uniquely determines Y(sl(2))
as a Hopf algebra (for the Hopf algebra structure of Y(sl(2)) see the next Section 14.A.6).

For our derivation of the Serre relations from (14.A.73) we shall need the explicit ex-
pressions for J β

2 , J 0
0 and J 0

1 as obtainable from (14.A.79) and (14.A.74),

J β

2 = 1
2iε

βγ δ[J γ

1 , J δ
1 ]+ η(J β

0 J 0
1 − J β

1 J 0
0 ) , (14.A.81)

J 0
0 = a0/2 , J 0

1 = a1/2− η

2

(
a0/2+ (a0/2)2

)+ η

2 (J δ
0 )2 . (14.A.82)

Using (14.A.81) and (14.A.73b) we obtain

ερσαελµβ[J α
1 , J β

2 ] = [
[J λ

1 , Jµ

1 ], [J ρ

0 , J σ
1 ]

]+ ηερσαελµβ[J α
1 , J β

0 J 0
1 − J β

1 J 0
0 ] . (14.A.83)

Now [J α
1 , J β

2 ] = −[J β

1 , J α
2 ] due to (14.A.73f). Therefore the left hand side of (14.A.83)

is antisymmetric under exchange of the ordered pairs of indices (λµ) and (ρσ ). Upon
symmetrizing in these index pairs we obtain[

[J λ
1 , Jµ

1 ], [J ρ

0 , J σ
1 ]

]+ [
[J ρ

1 , J σ
1 ], [J λ

0 , Jµ

1 ]
]

= −η(ερσαελµβ + ελµαερσβ)[J α
1 , J β

0 J 0
1 − J β

1 J 0
0 ] . (14.A.84)

This is already the deformed Serre relation for Y(sl(2)). In order to match Drinfeld’s original
formulation we have to eliminate J 0

0 and J 0
1 by means of (14.A.82).

The commutator on the right hand side of (14.A.84) is

[J α
1 , J β

0 J 0
1 − J β

1 J 0
0 ] = J β

0 [J α
1 , J 0

1 ]+ [J α
1 , J β

0 ]J 0
1 − J β

1 [J α
1 , J 0

0 ]− [J α
1 , J β

1 ]J 0
0

= J β

0 [J α
1 , J 0

1 ]+ · · · = [J α
1 , J 0

1 ]J β

0 + . . . (14.A.85)

Here we used (14.A.82) to conclude that [J α
1 , J 0

0 ] = 0. The dots denote terms which are
antisymmetric in α and β. The second equation in the second line follows from (14.A.73a)
which states, in particular, that [J β

0 , J 0
1 ] = 0. Alternatively, it can be derived using (14.A.82).

Exploiting the fact that the combination of ε-tensors on the right hand side of (14.A.84) is



592 Appendices to Chapter 14

symmetric in α and β we conclude that[
[J λ

1 ,Jµ

1 ], [J ρ

0 , J σ
1 ]

]+ [
[J ρ

1 , J σ
1 ], [J λ

0 , Jµ

1 ]
]

= η(ερσαελµβ + ελµαερσβ)


J β

0 [J 0
1 , J α

1 ]

[J 0
1 , J α

1 ]J β

0

1
2 {J β

0 , [J 0
1 , J α

1 ]}

= − iη2

2 (ελµνερσα + ελµαερσν)ενβγ


J α

0 J β

0 J γ

1 + J α
0 J γ

1 J β

0

J β

0 J γ

1 J α
0 + J γ

1 J β

0 J α
0

1
2 {J α

0 , {J β

0 , J γ

1 }}
. (14.A.86)

We used (14.A.82) and (14.A.73b) in the second equation. The large curly brackets indicate
that we have three alternative expressions. In order to achieve complete symmetrization we
use (14.A.73b) to rewrite the third expression on the right-hand side as

1
2 {J α

0 , {J β

0 , J γ

1 }} = 1
2

[
J α

0 , [J β

0 , J γ

1 ]
]+ J α

0 J γ

1 J β

0 + J β

0 J γ

1 J α
0

= 1
2

([
J β

0 , [J α
0 , J γ

1 ]
]− [

J γ

0 , [J α
0 , J β

1 ]
])+ J α

0 J γ

1 J β

0 + J β

0 J γ

1 J α
0 .

(14.A.87)

It follows that

1
2ε

νβγ {J α
0 , {J β

0 , J γ

1 }} = ενβγ
(
J β

0 J α
0 J γ

1 + J γ

1 J α
0 J β

0

)
, (14.A.88)

and thus, inserting the latter result back into (14.A.86),[
[J λ

1 , Jµ

1 ], [J ρ

0 , J σ
1 ]

]+ [
[J ρ

1 , J σ
1 ], [J λ

0 , Jµ

1 ]
]

= −iη2(ελµνερσα + ελµαερσν)ενβγ {J α
0 , J β

0 , J γ

1 }
= η2(aλµναβγ cρσν + aρσναβγ cλµν){J α

0 , J β

0 , J γ

1 } . (14.A.89)

Here we introduced the notation (14.14) for the fully symmetrized triple product {·, ·, ·} and
the ‘structure constants’ aλµναβγ and cλµν in the last line.

Equation (14.A.89) is the Yangian Serre relation as introduced by Drinfeld [107].
(14.A.80) and (14.A.89) are compatible with a Hopf algebra structure (co-product, co-unit
and antipode) which will be derived the following section.

To round off this section let us introduce another, basis independent form of the Yangian
Serre relation which is frequently encountered in the literature (see e.g. [80–82]). For this
purpose we introduce the notation

J0(x) = 1
2 tr(xT1) = xα J α

0 , (14.A.90a)

J1(x) = 1
2 tr(xT2) = xα J α

1 , (14.A.90b)
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where x = xασ
α ∈ sl(2). Using (14.A.73b), we then rewrite the first equation (14.A.89) as[

[J λ
1 , Jµ

1 ], [J ρ

0 , J σ
1 ]

]+ [
[J ρ

1 , J σ
1 ], [J λ

0 , Jµ

1 ]
]

= −iη2
(
(δλβδµγ − δλγ δµβ)ερσα + ελµα(δρβδσγ − δργ δσβ)

){J α
0 , J β

0 , J γ

1 }
= −η2

({[J λ
0 , Jµ

0 ], J ρ

0 , J σ
1 } − {[J λ

0 , Jµ

0 ], J σ
0 , J ρ

1 }
+ {[J ρ

0 , J σ
0 ], J λ

0 , Jµ

1 } − {[J ρ

0 , J σ
0 ], Jµ

0 , J λ
1 }

)
(14.A.91)

and project it onto four sl(2) vectors x, y, w, z with components xα, yα, wα and zα . We
obtain [

[J1(x), J1(y)], [J0(w), J1(z)]
]+ [

[J1(w), J1(z)], [J0(x), J1(y)]
]

= −η2
({[J0(x), J0(y)], J0(w), J1(z)} − {[J0(x), J0(y)], J0(z), J1(w)}

+ {[J0(w), J0(z)], J0(x), J1(y)} − {[J0(w), J0(z)], J0(y), J1(x)}) . (14.A.92)

Similarly, the sl(2) relations (14.A.80) can be rewritten as

[J0(x), J0(y)] = J0([x, y]) , (14.A.93a)

[J0(x), J1(y)] = J1([x, y]) . (14.A.93b)

By virtue of (14.A.93a) J0(x) generates sl(2) as a Lie subalgebra of the Yangian. Since
the map x → J0(x) is bijective, one may therefore identify x with J0(x) as, for instance,
in [80–82].

Remark. The Yangian Serre relation (14.A.89) holds for Y(sl(2)) and also for Y(gl(2))
as should be clear from our derivation. However, while the algebra Y(sl(2)) is uniquely
defined by the sl(2) relations (14.A.80) and the Yangian Serre relation (14.A.89), these
relations define Y(gl(2)) only modulo its non-trivial centre, generated by the quantum
determinant. Saying that Y(sl(2)) is uniquely defined by (14.A.80) and (14.A.89) means
to say that the whole set of relations (14.A.73) follows from (14.A.80), (14.A.89) and the
recursion relations (14.A.74) and (14.A.79). We are not aware of a direct proof of this fact
in the literature. Clearly a proof should proceed by induction over n, but due to the rather
complicated form of (14.A.79) this proof may be involved. Instead Drinfeld [107] used the
‘natural’ Hopf algebra structure of Y(sl(2)) to be discussed in the following section in order
to show its uniqueness as a ‘quantized Lie bialgebra’.

14.A.6 The Hopf algebra structure of Y(sl(2))

Up to this point we have regarded the Yangian Y(sl(2)) as an associative algebra, i.e., as
a vector space endowed with an associative multiplication. We shall see below that much
more structure is implicitly contained in our definition.

We observed in Section 12.1.5 that tensor products of representations of the Yang-Baxter
algebra (e.g. products of elementary L-matrices) are again representations. This is one of
the essential properties of the Yang-Baxter algebra. It allowed us to construct integrable,
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interacting L-site spin chains from elementary L-matrices describing a single site. In antic-
ipation of a definition below, which is obtained by promoting this property from the level
of representations to the level of algebras, we called it the co-multiplication property.

The elements of a monodromy matrix obtained by ‘co-multiplication of elementary L-
matrices’ are

T i
k (λ) = (

L L (λ) . . . L1(λ)
)i

k
= Li

jL−1
(λ)⊗ L jL−1

jL−2
(λ)⊗ · · · ⊗ L j1

k (λ) , (14.A.94)

where the tensor products on the right hand side are tensor products in quantum space. In
former sections we were hiding these tensor products in our notation, either by using
subindices, or the notation L(λ| j) (see e.g. theorem 2) in order to indicate on which
quantum space the L-matrix was acting non-trivially. In the following we shall partially
adjust our notation to the conventions used in mathematics. We will write (multiple) tensor
products of Y(sl(2)) explicitly and use indices for the description of the matrix structure in
auxiliary space. Then (14.A.69), for instance, turns into

Řil
jm(λ− µ) T j

k (λ)T m
n (µ) = T i

j (µ)T l
m(λ) Ř jm

kn (λ− µ) . (14.A.95)

For brevity let us now write A = Y(sl(2)). We define a homomorphism of vector spaces
(linear map) � : A→ A ⊗ A by

�(T (λ))i
k = �

(
T (λ)i

k

) = T i
j (λ)⊗ T j

k (λ) . (14.A.96)

Using (14.A.95) we find that

Řil
jm(λ− µ)�

(
T j

k (λ)
)
�
(
T m

n (µ)
) = �

(
T i

j (µ)
)
�
(
T l

m(λ)
)

Ř jm
kn (λ− µ) . (14.A.97)

Furthermore, the multiplication property (14.A.50) of the quantum determinant implies

detq (�(T (λ))) = (
detq (T (λ))

)2 = 1 . (14.A.98)

Now (14.A.97) and (14.A.98) are precisely the equations that define the algebra structure of
A = Y(sl(2)). This means that � is a homomorphism of algebras. In other words � induces
the algebra structure of A onto the tensor product A ⊗ A. � is called the co-multiplication
or co-product.

It is not difficult to compute the images of the elementary generators J α
0 and J β

1 under
the action of �. On the one hand we have

�
(
T i

k (λ)
) = [

δi
j e + η

∞∑
n=1

Tn
i
j

λn

]
⊗

[
δ

j
k e + η

∞∑
n=1

Tn
j
k

λn

]
= δi

k e ⊗ e + η

λ

(
T1

i
k ⊗ e + e ⊗ T1

i
k

)
+ η

λ2

(
T2

i
k ⊗ e + e ⊗ T2

i
k + ηT1

i
j ⊗ T1

j
k

)+ . . . , (14.A.99)
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while, on the other hand, by linearity of �

�
(
T i

k (λ)
) = δi

k�(e)+ η

λ
�
(
T1

i
k

)+ η

λ2
�
(
T2

i
k

)+ . . . (14.A.100)

Comparing (14.A.99) and (14.A.100) we obtain

�
(
T1

i
k

) = T1
i
k ⊗ e + e ⊗ T1

i
k , (14.A.101a)

�
(
T2

i
k

) = T2
i
k ⊗ e + e ⊗ T2

i
k + ηT1

i
j ⊗ T1

j
k . (14.A.101b)

It follows again by linearity that

�(J α
0 ) = 1

2 (σα)k
i �

(
T1

i
k

) = J α
0 ⊗ e + e ⊗ J α

0 , (14.A.102a)

�(J α
1 ) = J α

1 ⊗ e + e ⊗ J α
1 + η

2 (σα)k
i T1

i
j ⊗ T1

j
k

= J α
1 ⊗ e + e ⊗ J α

1 + iηεαβγ J β

0 ⊗ J γ

0 , (14.A.102b)

where we used the fact that J 0
0 = a0/2 = 0 and (14.A.72c) in (14.A.102b). Equation

(14.A.97) implies, of course, that �(J α
0 ) and �(J β

1 ) satisfy the sl(2) relations (14.A.80)
and the Yangian Serre relation (14.A.89).

Next, we define a linear map ε : A→ C, setting

ε
(
T i

k (λ)
) = δi

k . (14.A.103)

ε is called the co-unit.
With the aid of the co-unit we obtain (in a sense) the inverse of �, for we have

(ε ⊗ id)�
(
T i

k (λ)
) = ε

(
T i

j (λ)
)⊗ T j

k (λ) = 1⊗ T i
k (λ) = T i

k (λ) , (14.A.104a)

(id⊗ ε)�
(
T i

k (λ)
) = T i

j (λ)⊗ ε
(
T j

k (λ)
) = T i

k (λ)⊗ 1 = T i
k (λ) . (14.A.104b)

In the last equations we identified as usual A with C⊗ A or A ⊗ C.
The images of the elementary generators J α

0 and J β

1 under the action of the co-unit are
again easily obtained. Because of the linearity of ε we have ε(δi

k e) = δi
k and ε(Tn

i
k) = 0 for

all n ∈ N. Thus,

ε(J α
0 ) = ε(J α

1 ) = 0 . (14.A.105)

With this trivial action on the generators ε is an algebra homomorphism A→ C which
generates the so-called trivial representation in C.

A vector space equipped with a co-unit ε and a co-multiplication � which satisfy the
‘compatibility conditions’ (14.A.104) is called a coalgebra. Thus, we have seen that the
Yangian Y(sl(2)) has a natural coalgebra structure. It is an algebra and a coalgebra at the same
time. Clearly the co-multiplication � defined in (14.A.96) is coassociative: (�⊗ id)� =
(id⊗�)�.

Algebras and coalgebras are described as ‘dual notions’ in the mathematical literature
(see e.g. [82]): the multiplication in an algebra naturally defines a linear map µ : A ⊗
A→ A if one sets µ(a ⊗ b) = ab for any two elements a, b ∈ A. Mathematicians call this
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map ‘the multiplication’. They further introduce a linear map ι : C→ A which formalizes
the identification of a number λ ∈ C with the element λe ∈ A, ι(λ) = λe. Then ι and µ

satisfy relations similar (or dual) to the relations between ε and �. The associativity of the
multiplication is, for instance, expressed as µ(µ⊗ id) = µ(id⊗ µ). The idea of duality
becomes more transparent when expressed in the language of commutative diagrams. For
this issue the reader is referred to [82].

We are now prepared for the abstract definition of a Hopf algebra.

Definition. Hopf algebra.

(i) A Hopf algebra A (over C) is both an associative algebra and a coassociative coalgebra.
(ii) The co-multiplication � and the co-unit ε are homomorphisms of algebras.

(iii) A is equipped with a bijective map S : A→ A, called the antipode, such that

µ(S ⊗ id)� = µ(id⊗ S)� = ι ◦ ε . (14.A.106)

We have seen so far that the Yangian Y(sl(2)) with co-unit (14.A.103) and co-
multiplication (14.A.96) satisfies (i) and(ii). Can we find an antipode such that also
(14.A.106) holds? To answer this question let us act with (14.A.106) on T i

k (λ). We obtain

S
(
T i

j (λ)
)
T j

k (λ) = T i
j (λ)S

(
T j

k (λ)
) = δi

k e . (14.A.107)

From the latter equation we conclude that we must necessarily have S(T (λ)) = T−1(λ).
But, since detq (T (λ)) = 1, this inverse exists for the Yangian, and we obtain by (14.A.51)

S
(
T i

k (λ)
) = (T−1)i

k(λ) = (σ y T t (λ− η)σ y)i
k . (14.A.108)

We have thus shown that the Yangian Y(sl(2)) has the structure of a Hopf algebra.
Let us calculate the action of the antipode S on the elementary generators J α

0 and J β

1 .
First of all,

S
(
T i

k (λ)
) = (

σ y
[

I2e + η

λ− η
T t

1 +
η

(λ− η)2
T t

2 + . . .
]
σ y

)i

k

= δi
k e + η

λ

(
σ y T t

1σ
y
)i

k
+ η

λ2

(
σ y(T t

2 + ηT t
1 )σ y

)i

k
+ . . .

= δi
k S(e)+ η

λ
S
(
T1

i
k

)+ η

λ2
S
(
T2

i
k

)+ . . . (14.A.109)

Comparing the last two lines we obtain

S
(
T1

i
k

) = (
σ y T t

1σ
y
)i

k
(14.A.110a)

S
(
T2

i
k

) = (
σ y(T t

2 + ηT t
1 )σ y

)i

k
. (14.A.110b)

It follows that

S(J α
0 ) = 1

2 tr
(
σασ y T t

1σ
y
) = −J α

0 (14.A.111a)

S(J α
1 ) = 1

2 tr
(
σασ y(T t

2 + ηT t
1 )σ y

) = −J α
1 − ηJ α

0 . (14.A.111b)
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As an exercise for the reader we propose to verify (14.A.106) for the elementary generators
J α

0 and J β

1 .
Setting S(T (λ)T (µ)) = (T (λ)T (µ))−1 = T−1(λ)T−1(µ) we see that the antipode nat-

urally extends to an antiautomorphism of A, i.e., S(ab) = S(b)S(a) for any two
elements a, b ∈ A. This is a property of the antipode which holds in any Hopf
algebra [1].

Let us summarize: we have shown by identifying the structure maps �, ε, µ, ι and S
that the Yangian Y(sl(2)) has a natural Hopf algebra structure, and we have computed the
images of the elementary generators J α

0 and J β

1 under �, ε and S.
Although it would provide a deeper insight into the algebraic structure of integrable sys-

tems we avoided Drinfeld’s original way [107, 109] of introducing Yangians as ‘quantiza-
tions of Lie bialgebras’ (see also [82]). Drinfeld’s original reasoning requires a background
in algebra which is beyond the needs and the level of abstraction of this book. The intention
of this appendix is to provide a bridge from the quantum inverse scattering method to the
theory of quantum groups (the Yangians are special quantum groups), such that the inter-
ested reader is able to start studying the mathematical literature (e.g. the books [82, 310])
on his or her own.

Recall that we began our considerations with the Yang-Baxter algebra relations (14.A.69)
imposed on the formal asymptotic series (14.A.68). We have shown that the algebra
generated by the coefficients of the formal asymptotic series has a finite number of el-
ementary generators J α

0 and J β

1 , α, β = 1, 2, 3, if we impose the additional constraint
detq (T (λ)) = 1. Then we have derived a set of relations (14.A.80) and (14.A.89) satisfied
by the elementary generators and have finally worked out the Hopf algebra structure of the
algebra.

Drinfeld reverses this reasoning. He defines the Yangian Y(a) of an arbitrary simple
Lie algebra a by prescribing the action of the Hopf algebra structure maps on a finite
number of generators (J0(I α), J1(I α) with {I α} an orthonormal basis of a) and imposing
appropriate ‘constraints’ (the deformed Serre relations) on these generators in such a way
that the co-multiplication becomes a homomorphism of algebras. For a = sl(2) this means,
in particular, that the Hopf algebra structure is defined by (14.A.102), (14.A.105) and
(14.A.111) and the algebra structure by the sl(2) relations (14.A.80) and the Yangian Serre
relation (14.A.89). In Drinfeld’s approach the choice of the co-multiplication is primary.
His choice is motivated by the ‘quantization problem’ for Lie bialgebras [107,276] which is
related to the problem of assigning a solution of the Yang-Baxter equation to every solution
of the classical Yang-Baxter equation. A theorem of Drinfeld (theorem 1 of [107]) states
that the Yangian Y(a) is unique as a quantization of the Lie bialgebra associated with a (for
details see [82, 107, 109]).

The representation theory of the Yangian Y(sl(2)) has been worked out by Chari and
Pressley. Their paper [80] is written on a moderate level of abstraction and should be rather
easily accessible. The representation theory makes essential use of an alternative realization
of the Yangians, again introduced by Drinfeld [108].
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14.A.7 Some details of the verification of the Yangian Serre relation for the Hubbard
model with variable range hopping

In this last section of the appendix we would like to relate the appendix with the main body
of the chapter and add a few technical comments.

First of all we have to adjust the notation. Equation (14.13) follows from (14.A.80)
and (14.A.89) by setting δ = −η2/4, Sα = J α

0 and J α = J α
1 . Moreover K α = 2J α

2 , and
(14.15) follows from (14.A.81) and (14.A.82) in the Y(sl(2)) case a0 = a1 = 0. Our claim
in the main text that we obtain an equivalent set of equations by replacing the Yangian
Serre relation in (14.13) with (14.16) is easily proven by reversing the order of steps in the
calculation in appendix 14.A.5 that led from (14.A.83) to (14.A.89).

Finally we wish to justify our statement that equations (14.13a) and (14.13b) imply
[J α, K α] = 0. We prove the slightly stronger statement that (14.A.80)–(14.A.82) lead
to [J α

1 , J α
2 ] = 0:

[J α
1 , J α

2 ] = [
J α

1 , 1
2iε

αβγ [J β

1 , J γ

1 ]+ η(J α
0 J 0

1 − J α
1 J 0

0 )
]

= η[J α
1 , J α

0 J 0
1 ]

= iη2

2 εαβγ


J α

0 {J β

0 , J γ

1 }
{J β

0 , J γ

1 }J α
0

1
2 {J α

0 , {J β

0 , J γ

1 }}

= iη2εαβγ {J α
0 , J β

0 , J γ

1 } = 0 . (14.A.112)

Here we used the explicit form of J 0
0 and the Jacobi identity in the second equation, the

explicit form of J 0
1 and (14.A.80) in the third equation and equation (14.A.88) (which was

shown by exploiting (14.A.80)) in the fourth equation. The large curly brackets indicate
that we have three equivalent expressions in the third equation.
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S-matrix and Yangian symmetry in the infinite
interval limit

In this chapter we carry out the thermodynamic limit on the level of the monodromy matrix
introduced in Chapter 12. This means to change the strategy as compared to the Bethe ansatz
solutions put forward in Chapters 3 and 12 which depended crucially on the use of periodic
boundary conditions. The discreteness of the quasi momenta k j in the Bethe ansatz wave
function was due to the finite length L of the system. For infinite L there will be no Lieb-Wu
equations which were our main tool for studying the Hubbard model in this book. Instead
the commutation relations for the elements of the infinite interval monodromy matrix will
utilized in the calculations shown below.

We basically follow the articles [335,336], where the quantum inverse scattering method,
in the way as originally designed in [131, 404, 454], was applied to the Hubbard model.
Our account will be restricted to the case of zero electron density. Quite generally, the
quantum inverse scattering method, as originally conceived in the spirit of the ‘inverse
scattering theory’ for classical non-linear evolution equations, is restricted to uncorrelated
vacua (ground states) which limits the applicability of the method. Nevertheless, applying
it to the empty band ground state of the Hubbard model we shall obtain valuable additional
insights into its structure. We shall reveal the connection between Shastry’s R-matrix and
the Yangian symmetry discussed in Chapter 14. We shall construct creation and annihilation
operators of elementary excitations. These form a representation of the Zamolodchikov-
Faddeev algebra which means that their commutation relations provide the full bare S-
matrix. We shall further see that the scattering states of elementary excitations transform as
tensor products of evaluation representations under the Yangian.

15.1 Preliminaries

Before proceeding to the description of the infinite interval limit we have to adapt some
of our conventions to this purpose. First of all the Hubbard Hamiltonian for the infinite
interval is

H = −
∑
j∈Z

∑
a=↑,↓

(c†j,ac j+1,a + c†j+1,ac j,a)+ u
∑
j∈Z

[
(1− 2n j↑)(1− 2n j↓)− 1

]
, (15.1)

599
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where we subtracted 1 in the local interaction part in order to have H |0〉 = 0. We also
slightly modify the L-matrix, setting

L̂ j (λ) = in j↑+n j↓L j (λ, 0) (15.2)

for j ∈ Z, where L j (λ, 0) on the right hand side of this equation is the L-matrix introduced
in (12.227). The slight modification of the L-matrix induces a modification of the R-matrix
which must be replaced with

Ř(λ,µ) = V Ř(λ,µ)V−1 , V = diag(1, i, i,−1)⊗ I4 , (15.3)

where Ř(λ,µ) is our original R-matrix (12.135). Then L̂ j (λ) is a representation of the graded
Yang-Baxter algebra with R-matrix (15.3) and grading p(1) = p(4) = 0, p(2) = p(3) = 1,

Ř(λ,µ)
(
L̂ j (λ)⊗s L̂ j (µ)

) = (
L̂ j (µ)⊗s L̂ j (λ)

)
Ř(λ,µ) . (15.4)

In preparation of the thermodynamic limit we introduce a monodromy matrix T̂mn(λ) as

T̂mn(λ) = L̂m−1(λ)L̂m−2(λ) . . . L̂n(λ) , m, n ∈ Z, m > n . (15.5)

It follows that T̂mn(λ) is another representation of the graded Yang-Baxter algebra (15.4).

15.2 Passage to the infinite interval

We shall see in what follows that the thermodynamic limit leads to drastic simplifications
of the commutation relations between the elements of the monodromy matrix encoded
in the structure of a simplified R-matrix derived from (15.3). The commutation relations
will become simple enough to allow us to identify creation and annihilation operators of
elementary excitations, generators of conserved quantities and symmetry operators.

In taking the thermodynamic limit one cannot proceed naively. Some contributions to the
monodromy matrix which oscillate at large distances have to be treated appropriately, in
close analogy with the classical case [134]. These oscillating contributions depend on the
chosen vacuum which is characterized by the density of electrons ρN and by the magneti-
zation density ρM . As a result of the thermodynamic limit we will obtain the finite energy
excitations over this vacuum. In contrast to the case of the algebraic Bethe ansatz for the fi-
nite periodic system we will not be able any more to distinguish between a pseudo-vacuum,
upon which all eigenstates of the transfer matrix are built by the action of creation operators,
and the physical vacuum, which is the true ground state of the model. In general, both states
will be characterized by different values of ρM , ρN and thus will be separated by an infinite
energy difference in the thermodynamic limit.

The oscillating contributions to the monodromy matrix will be removed by splitting off
the asymptotics of its vacuum expectation value for m,−n→∞, which therefore has to be
known a priori. For this reason the method [131, 404, 454] is restricted to (asymptotically)
uncorrelated vacua. In the case of the Hubbard model there are four possible choices:
the empty band (ρM = ρN = 0), the completely filled band (ρM = 0, ρN = 2), and the
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half-filled band with all spins up (ρM = 1, ρN = 1) or all spins down (ρM = −1, ρN = 1).
In the following we will restrict ourselves to the empty-band vacuum |0〉which is defined by

cm,a|0〉 = 0 , m ∈ Z, a =↑,↓ . (15.6)

Let us now describe the general method in which we closely follow [404]. We define the
Hilbert spaceH of states of ‘compact support’ as the space of all finite linear combinations of
vectors c†m1,a1 . . . c†m N ,aN |0〉. The vacuum expectation value of the L-matrix will be denoted
by

V (λ) = 〈0|L̂m(λ)|0〉. (15.7)

V (λ) is independent of m, since the vacuum is translationally invariant. Let us introduce

L̃ j (λ) = V (λ)− j−1L̂ j (λ)V (λ) j , (15.8)

T̃mn(λ) = V (λ)−m T̂mn(λ)V (λ)n . (15.9)

It is easy to see that the limits limn→−∞〈x |T̃mn(λ)|y〉 and limm→∞〈x |T̃mn(λ)|y〉 exist for all
|x〉, |y〉 ∈ H. These weak limits determine a pair of operators

T̃ +m (λ) = lim
n→+∞ T̃nm(λ) , (15.10a)

T̃ −m (λ) = lim
n→−∞ T̃mn(λ) (15.10b)

with asymptotics

lim
m→+∞ T̃ +m (λ) = lim

m→−∞ T̃ −m (λ) = I4 . (15.11)

Multiplying (15.5) from the left by L̂m(λ) or from the right by L̂n−1(λ), we obtain two
recursion relations for T̂mn(λ), which induce a pair of recursion relations for T̃ +m (λ) and
T̃ −m (λ). By use of the asymptotic condition (15.11) these are equivalent to the following
pair of Volterra type ‘integral equations’ for T̃ ±m (λ),

T̃ +m (λ) = I4 +
∞∑

j=m+1

T̃ +j (λ) (L̃ j−1(λ)− I4) , (15.12)

T̃ −m (λ) = I4 +
m−1∑

j=−∞
(L̃ j (λ)− I4) T̃ −j (λ) . (15.13)

The above considerations imply the existence of the weak limit

T̃ (λ) = lim
m,−n→∞ T̃mn(λ) = T̃ +m (λ)T̃ −m (λ) . (15.14)

T̃ (λ) is the ‘regularized’ monodromy matrix. As can be inferred from equation (15.12), or
(15.13) respectively, T̃ (λ) has the ‘integral representation’

T̃ (λ) = I4 +
∑

m

(L̃m(λ)− I4)+
∑
m>n

(L̃m(λ)− I4)(L̃n(λ)− I4)+ . . . . (15.15)
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Note that 〈0|(L̃m(λ)− I4)|0〉 = 0 by construction. Hence, 〈0|T̃ (λ)|0〉 = I4. Equation
(15.15) can be taken as the definition of the monodromy matrix on the infinite line. Later
we will use it in order to obtain the generators of the Yangian and to calculate the action of
products of operator entries of T̃ (λ) on the vacuum |0〉.

All we have to do to set equation (15.15) at work for a concrete model is to calculate
L̃m(λ). This is easily done for the Hubbard model. Using (12.285) and (15.2) we find

V (λ) = diag(e2h,− tg (λ),− tg (λ), tg 2(λ)e2h) , (15.16)

and we conclude that

L̃m(λ) = V (λ)−m−1L̂m(λ)V (λ)m

=


(i ctg λ)−nm↑−nm↓ ie−h

cos λ (i ctg λ)−nm↓c†m↑e
−imk(λ)

− eh

sin λ
(i ctg λ)−nm↓cm↑eimk(λ) (i ctg λ)nm↑−nm↓

− eh

sin λ
(i ctg λ)−nm↑cm↓eimk(λ) i

sin λ cos λc†m↑cm↓
1

sin2 λ
cm↓cm↑eim(k(λ)+p(λ)) − e−h

sin λ
(i ctg λ)nm↑cm↓eimp(λ)

ie−h

cos λ (i ctg λ)−nm↑c†m↓e
−imk(λ) 1

cos2 λ
c†m↓c

†
m↑e

−im(k(λ)+p(λ))

i
sin λ cos λc†m↓cm↑

ieh

cos λ (i ctg λ)nm↑c†m↓e
−imp(λ)

(i ctg λ)−nm↑+nm↓ − ieh

cos λ (i ctg λ)nm↓c†m↑e
−imp(λ)

e−h

sin λ
(i ctg λ)nm↓cm↑eimp(λ) (i ctg λ)nm↑+nm↓

 . (15.17)

Here we have used the functions k(λ) and p(λ) introduced in (12.331), (12.332).
Next we will turn to the calculation of the commutation relations between the elements

of T̃ (λ). Let

L(2)
m (λ,µ) = Lm(λ)⊗s Lm(µ) , (15.18)

T (2)
mn (λ,µ) = Tmn(λ)⊗s Tmn(µ) . (15.19)

We may apply the same regularization scheme we applied to Tmn(λ) also to the matrix
T (2)

mn (λ,µ). We simply have to replace V (λ) by

V (2)(λ,µ) = 〈0|L(2)
m (λ,µ)|0〉 . (15.20)

Note that V (2)(λ,µ) is not just the tensor product V (λ)⊗s V (µ). There appear additional
off-diagonal terms due to normal ordering of the operators. Following the same steps as in
our discussion above we obtain a regularized tensor-product matrix

T̃ (2)(λ,µ) = lim
m,−n→∞ V (2)(λ,µ)−mT (2)

mn (λ,µ)V (2)(λ,µ)n (15.21)

which satisfies 〈0|T̃ (2)(λ,µ)|0〉 = I16.
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On the other hand, taking the vacuum expectation value of the local exchange relation
(15.4) yields

R(λ,µ)V (2)(λ,µ) = V (2)(µ, λ)R(λ,µ) , (15.22)

and we conclude that

R(λ,µ)T̃ (2)(λ,µ) = T̃ (2)(µ, λ)R(λ,µ) . (15.23)

If T̃ (2)
mn (λ,µ) is defined in analogy with T̃mn(λ), with V (2)(λ,µ) replacing V (λ) in (15.9),

then

T̃mn(λ)⊗s T̃mn(µ) = Um(λ,µ)−1T̃ (2)
mn (λ,µ)Un(λ,µ) , (15.24)

where we have introduced the matrix

Un(λ,µ) = V (2)(λ,µ)−n
(
V (λ)n ⊗s V (µ)n

)
. (15.25)

Let us tentatively assume that the limits

U+(λ,µ)−1 = lim
m→∞Um(λ,µ)−1, U−(λ,µ) = lim

m→−∞Um(λ,µ) (15.26)

exist in some appropriate sense. Then, according to equation (15.24) T̃mn(λ)⊗s T̃mn(µ) has
a weak limit for m,−n→∞. This limit may be identified with T̃ (λ)⊗s T̃ (µ),

T̃ (λ)⊗s T̃ (µ) = U+(λ,µ)−1T̃ (2)(λ,µ)U−(λ,µ) . (15.27)

Inserting the above equation into (15.23), we arrive at the exchange relation for the mon-
odromy matrix T̃ (λ) on the infinite interval,

R̃(+)(λ,µ)
(
T̃ (λ)⊗s T̃ (µ)

) = (
T̃ (µ)⊗s T̃ (λ)

)
R̃(−)(λ,µ) , (15.28)

where

R̃(±)(λ,µ) = U±(µ, λ)−1R(λ,µ)U±(λ,µ) . (15.29)

The calculation of the matrices U±(λ,µ) is cumbersome but straightforward. Some of
the technical steps involved are discussed in the appendix of [336]. Here we only note
that there is no common domain of convergence for all matrix elements of U+(λ,µ) and
U−(λ,µ). Therefore equation (15.28) has to be interpreted as a set of equations for the
matrix elements with different domains of validity. The behaviour of the matrix elements
at the boundaries of these domains is singular (see appendix of [336]) and it is only at these
boundaries where the matrix elements of U+(λ,µ) and U−(λ,µ) may be distinct. In the
following we stay away from these singular points. Then U+

αβ

γ δ (λ,µ) = U−
αβ

γ δ (λ,µ) and
there is no difference between R̃(+)(λ,µ) and R̃(−)(λ,µ).

It is a nontrivial matter of fact that all the matrix elements of U±(λ,µ) calculated from
(15.25) and (15.26) turn out to be rational functions of the original Boltzmann weights
ρ j (λ,µ). Therefore the matrix elements of the new R-matrix R̃(λ,µ) = R̃(+)(λ,µ) =
R̃(−)(λ,µ) equally depend rationally on the Boltzmann weights. Numerous cancellations of
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terms occur such that the new R-matrix has only 18 non-vanishing elements as compared
to the 36 non-vanishing elements of the original R-matrix. As in our treatment of the
algebraic Bethe ansatz in Chapter 12 the structure of the commutation relations between
the monodromy matrix elements encoded in (15.28) comes out more clearly when written
in block form: we define 2× 2 matrices A(λ), B(λ), C(λ), D(λ) by assuming that T̃ (λ) is
of the form (12.272). Then applying the similarity transformation X defined in (12.279) to
(15.28) we end up with


ř 0 0 0
0 0 � 0
0 �̃ 0 0
0 0 0 š




A ⊗ Ā A ⊗ B̄ B ⊗ Ā B ⊗ B̄
A ⊗ C̄ A ⊗ D̄ −B ⊗ C̄ −B ⊗ D̄
C ⊗ Ā C ⊗ B̄ D ⊗ Ā D ⊗ B̄
−C ⊗ C̄ −C ⊗ D̄ D ⊗ C̄ D ⊗ D̄

 =


Ā ⊗ A Ā ⊗ B B̄ ⊗ A B̄ ⊗ B
Ā ⊗ C Ā ⊗ D −B̄ ⊗ C −B̄ ⊗ D
C̄ ⊗ A C̄ ⊗ B D̄ ⊗ A D̄ ⊗ B
−C̄ ⊗ C −C̄ ⊗ D D̄ ⊗ C D̄ ⊗ D




ř 0 0 0
0 0 � 0
0 �̃ 0 0
0 0 0 š

 . (15.30)

Here we suppressed the arguments of the various matrices. The 4× 4 matrices ř , �, �̃ and
š depend on λ and µ through rational functions of the Boltzmann weights ρ j introduced
in (12.121). A, B, C and D depend on λ and Ā, B̄, C̄ and D̄ on µ. We have the explicit
formulae

ř (λ,µ) =


1 0 0 0
0 1−ρ3ρ4

ρ4ρ8
− ρ9ρ10

ρ4ρ8
0

0 − ρ9ρ10

ρ4ρ8

1−ρ3ρ4

ρ4ρ8
0

0 0 0 1

 , š(λ,µ) =


ρ1

ρ4
0 0 0

0 0 ρ8

ρ4
0

0 ρ1

ρ7
0 0

0 0 0 ρ1

ρ4

 ,

�(λ,µ) =


−iρ1

ρ9
0 0 0

0 0 iρ10

ρ4
0

0 −iρ1

ρ9
0 0

0 0 0 iρ10

ρ4

 , �̃(λ,µ) =


−iρ9

ρ4
0 0 0

0 0 −iρ9

ρ4
0

0 iρ1

ρ10
0 0

0 0 0 iρ1

ρ10

 .

(15.31)

All information about the Hubbard model on the infinite line at zero density is contained
in equations (15.30), (15.31) and (15.15). These equations will be studied in the following
sections in order to determine and to classify the spectrum of elementary excitations of the
Hubbard model. We wish to emphasize that the commutation relations encoded in (15.30)
and (15.31) are much simpler as compared to the relations (12.280) which were the starting
point for the algebraic Bethe ansatz calculation of Chapter 12. In fact, if it were not for
the two diagonal elements 1−ρ3ρ4

ρ4ρ8
of ř (λ,µ) all commutation relations would reduce to the

mere interchange of two factors along with the multiplication of some rational function of
the Boltzmann weights.
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15.3 Yangian symmetry and commuting operators

It is clear from the form of (15.30) that the 2× 2 matrices A(λ), . . . , D(λ) generate sub-
algebras of (15.28). The understanding of the structure of these subalgebras will be the
key for the interpretation of our results. Our first task will be to find again the Hubbard
Hamiltonian which got lost during our passage to the infinite line. Before, in Chapter 12,
we obtained it by expanding the logarithm of str(T (λ)) in the vicinity of λ = 0. But this
cannot work anymore, because the infinite line monodromy matrix T̃ (λ) is not analytic at
λ = 0. Amazingly, the study of the subalgebra generated by A(λ),

ř (λ,µ)
(

A(λ)⊗ A(µ)
) = (

A(µ)⊗ A(λ)
)
ř (λ,µ) , (15.32)

will provide an alternative generating function of commuting operators.
The matrix ř (λ,µ) in equation (15.32) is exactly the R-matrix (12.302) introduced by

Ramos and Martins [371] which played a key role in the construction of the algebraic Bethe
ansatz for the Hubbard model. In our calculation above it appeared quite naturally and
had not to be introduced ad hoc. From Chapter 12.6 we know already that the change of
variables

v(λ) = −i ctg (2λ)ch(2h) = − sin k(λ)+ iu = − sin p(λ)− iu (15.33)

transforms ř (λ,µ) into the rational R-matrix of the XXX spin chain,

ř (λ,µ) = 2iu + (v(λ)− v(µ))P

2iu + v(λ)− v(µ)
. (15.34)

Part of the general theory of the Yang-Baxter algebra connected with this R-matrix was
developed in Chapter 12.1 and in the appendix to Chapter 14. We learned in particular that
the coefficients J 0

n , J α
n in the asymptotic expansion

A(λ) = I2 + 2iu
∞∑

n=1

J 0
n−1 I2 + J α

n−1σ
α

v(λ)n
(15.35)

generate a representation of the Yangian Y(gl(2)) (see appendix 14.A.4) and that the el-
ements in the centre of this algebra can be obtained in a similar way by expanding the
quantum determinant,

detq (A(λ)) = A1
1(λ)A2

2(λ̌)− A1
2(λ)A2

1(λ̌) = 1+ 2iu
∞∑

n=1

an−1

v(λ)n
. (15.36)

Here λ̌ is determined by the condition that v(λ̌) = v(λ)− 2iu.
In our case the asymptotic expansions (15.35) and (15.36) can be calculated term by term

from equation (15.15). Some care is necessary in the calculation since the limit v(λ)→∞
can be carried out in several different ways, only one of which leads to finite results for J α

0 ,
J α

1 . We have to take Im(λ)→∞ and at the same time have to choose the correct branch of
the solution of equation (12.109) which determines h as a function of λ. Solving (12.109) for
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e−2h we obtain

e−2h = −u sin(2λ)±
√

1+ u2 sin2(2λ) . (15.37)

In order to achieve convergence of the matrix elements T̃ α
β (α, β = 2, 3) we have to choose

the lower sign here. Then e−2h(λ) is approximately equal to −2u sin(2λ) for large positive
values of u sin(2λ), and we obtain

e2h = ie2iλ

u
+O

(
e6iλ

)
, eik(λ) = −e2iλ + 2e4iλ

u
+O

(
e6iλ

)
,

e−ip(λ) = e2iλ − 2e4iλ

u
+O

(
e6iλ

)
,

1

v(λ)
= −2ie2iλ

u
+O

(
e6iλ

)
. (15.38)

The leading terms in the series (15.15) are of order e2iλ, e4iλ, . . . . Thus, from the first two
sums in (15.15), we get the expansion of the matrix A(λ) up to the order e4iλ, and the last
equation in (15.38) yields the required expansion in v(λ)−1 up to second order.

We obtain the following explicit expressions for the zeroth and first-level Yangian gen-
erators,

J α
0 =

∑
j

Sα
j , (15.39a)

J α
1 = − i

4

∑
j

(
Sα

j j+1 − Sα
j j−1

)+ 2u
∑
j<k

εαβγ Sβ

j Sγ

k . (15.39b)

Here we used again the notation introduced in Chapter 2.2.5. J α
0 is equal to the operator

Sα of the total spin, J α
1 is up to a prefactor of −u equal to the first-level Yangian generator

obtained in Chapter 14 (see (14.19)). The prefactor is conventional and can be attributed
to a different deformation parameter (η = 2iu instead of η = −2i) in the Yangian Serre
relation (see (14.13c), (14.A.89)).

The 1
v(λ) -expansion of the quantum determinant of A(λ) yields

a0 = 0 , a1 = iH

2
, (15.40)

where H is the Hubbard Hamiltonian in the form (15.1). Thus, we have found the Hamil-
tonian among the operators in the centre of Y(gl(2)) and at the same time have shown in
a completely different way than in Chapter 14 that the Hubbard Hamiltonian is Yangian
invariant.

In Chapter 14 we have learned that the Shiba transformation (2.59) preserves the deformed
Serre relations (14.A.89) but transforms the representation (15.39) into an independent
representation connected with the η-pairing symmetry and commuting with the original
one. The reason why we obtained only the representation connected with the rotations is that
we performed the infinite interval limit with respect to the vacuum |0〉 which is rotationally
invariant but breaks the invariance with respect to the non-Abelian gauge transformations
generated by the ηα . A fully SO(4) invariant vacuum would be the singlet ground state at
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half-filling. Alas, at present we do not know how to perform an infinite interval limit with
respect to such type of correlated ground state.

15.4 Constructing N-particle states

In this section we construct creation and annihilation operators of elementary excitations
and study their commutation relations. We shall see that the elementary excitations over the
empty band vacuum decay into two classes: electrons (with charge −e and spin ± 1

2 ) and
bound states (with charge−2me, m ∈ N and spin 0). General excitation are scattering states
of elementary excitations. Our creation and annihilation operators are constructed in such a
way that products of these operators generate normalized scattering states. The information
about the S-matrix is then encoded in the commutation relations of the operators: the
operators provide representations of the Faddeev-Zamolodchikov algebra whose ‘structure
constants’ are the elements of the two-particle S-matrix.

We also obtain the commutation relations between the generators of the Yangian and
the creation and annihilation operators of the elementary excitations. These commutation
relations allow us to organize the scattering states into Yangian multiplets. It turns out, in
particular, that scattering states of N electrons form a single Yangian multiplet of expo-
nential, 2N -fold degeneracy. This means that all states in the multiplet can alternatively be
created by acting with the Yangian generators on a Yangian highest-weight state which is
a linear superposition of non-interacting plane waves (all spins point upwards). The bound
states, on the other hand, are all Yangian singlet.

15.4.1 Scattering states of electrons

The commutation relations of the monodromy matrix elements with the number operators
N̂↑ and N̂↓, (12.275), remain valid in the infinite interval limit, i.e., after replacing T (λ) with
T̃ (λ). This is because V (λ) commutes with I2 ⊗ σ z and σ z ⊗ I2. Thus, the interpretation
of the elements of T̃ (λ) as creation, annihilation or particle number conserving operators
remains the same as in Chapter 12.6.1. In particular, C1

1 (λ) and B2
2 (λ) add one up-spin

electron to a state while C1
2 (λ) and B1

2 (λ) add one down-spin electron. D1
1(λ) and D2

2(λ)
conserve the particle number.

The repeated action of operators Ba
2 (λ), C1

a (λ) on the vacuum produces N -particle eigen-
states of the quantum determinant of A(λ). This follows from the commutation relations
in appendix 15.A.3. For small enough N the associated wave functions can be calculated
from the ‘integral representation’ (15.15). They find their natural interpretation as unnor-
malized scattering states of N particles. In previous studies (e.g. [131, 366, 454]) it turned
out that the standard normalization, with the amplitude of the incident wave equal to unity,
could be obtained by introducing the operator analogue of the reflection coefficient of the
corresponding classical inverse scattering problem. For this purpose the creation operators
had to be multiplied by the inverse of generators of conserved quantities.
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This idea was applied to the Hubbard model in [336], where the following two pairs of
normalized creation operators were proposed:

Fa(λ)† = −ieh cos(λ) C1
a (λ)D1

1(λ)−1 , (15.41a)

Za(λ)† = (−1)3−a ie−h cos(λ) B3−a
2 (λ)D2

2(λ)−1 (15.41b)

for a = 1, 2 corresponding to spin-up and spin-down, respectively. The numerical prefactors
have been determined by demanding that the one-particle states generated by Fa(λ)† and
Za(µ)† be normalized,

Fa(λ)†|0〉 =
∑

m

e−imk(λ)c†m,a|0〉 , Za(µ)†|0〉 =
∑

m

e−imp(µ)c†m,a|0〉 . (15.42)

Hereafter we assume that k(λ) and p(µ) are real. Then the one-particle wave functions
which can be read off from (15.42) are bounded for m →±∞ and hence describe physical
excitations.

The behaviour of the monodromy matrix elements T̃ α
β (λ) under hermitian conjugation

can be easily calculated from (12.277), (15.2), (15.9) and (15.16). The result is shown in
appendix 15.A.1. It can be used to obtain the annihilation operators conjugated to Fa(λ)†

and Za(λ)†. Let λ′ = π
2 − λ∗ and h′ = h(λ′). Then

Fa(λ) = (−1)3−aeh′ sin(λ′)D2
2(λ′)−1C2

3−a(λ′) , (15.43a)

Za(λ) = −e−h′ sin(λ′)D1
1(λ′)−1 Ba

1 (λ′) (15.43b)

for a = 1, 2.
The commutation relations between the normalized operators follow from (15.30). For

λ �= µ (mod 2π ) they are

Fa(λ)†Fb(µ)† = −Fc(µ)†Fd (λ)†ř cd
ab (λ,µ) , (15.44a)

Fa(λ)Fb(µ)† = −Fc(µ)†Fd (λ)ř ca
db(µ, λ) , (15.44b)

Za(λ)†Zb(µ)† = −ř ab
cd (µ, λ)Zc(µ)†Zd (λ)† , (15.44c)

Za(λ)Zb(µ)† = −ř db
ca (λ,µ)Zc(µ)†Zd (λ) , (15.44d)

Fa(λ)†Zb(µ)† = −Zb(µ)†Fa(λ)† , (15.44e)

Fa(λ)Zb(µ)† = −Zb(µ)†Fa(λ) . (15.44f)

These equations show that the operators Fa(λ), Fa(λ)† and Za(λ), Za(λ)† form (right and
left) representations of the (graded) Faddeev-Zamolodchikov algebra [131, 182, 242–244,
420, 502] with two-particle S-matrix ř (λ,µ). The grading is such that all operators are
odd. The Faddeev-Zamolodchikov algebra guarantees by construction the factorization of
the N -particle S-matrix into products of two-particle S-matrices. In the context of quantum
field theory the Faddeev-Zamolodchikov algebra is usually treated as a more or less abstract
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means for handling the S-matrix. Here we are in the fortunate situation to have the explicit
expressions (15.41), (15.43), (15.15).

The aforementioned equations allow us to calculate the action of the Faddeev-
Zamolodchikov operators on the vacuum. With a growing number of particles this task
becomes very cumbersome. However, the two-particle sector can still be worked out by
hand. Using (15.15) and the commutation relations between the elements of the monodromy
matrix we obtain

F1(λ)†F1(µ)†|0〉 =
∑
n,m

c†n,↑c
†
m,↑e

−ink(λ)e−imk(µ)|0〉, (15.45a)

F2(λ)†F2(µ)†|0〉 =
∑
n,m

c†n,↓c
†
m,↓e

−ink(λ)e−imk(µ)|0〉, (15.45b)

F1(λ)†F2(µ)†|0〉 =
∑
n,m

c†n,↑c
†
m,↓

[
θ (n ≥ m)e−ink(λ)e−imk(µ) v(λ)− v(µ)

v(λ)− v(µ)+ 2iu

+ θ (n < m)e−ink(λ)e−imk(µ) − θ (n < m)e−imk(λ)e−ink(µ) 2iu

v(λ)− v(µ)+ 2iu

]
|0〉,

(15.45c)

F2(λ)†F1(µ)†|0〉 =
∑
n,m

c†n,↓c
†
m,↑

[
θ (n ≥ m)e−ink(λ)e−imk(µ) v(λ)− v(µ)

v(λ)− v(µ)+ 2iu

+ θ (n < m)e−ink(λ)e−imk(µ) − θ (n < m)e−imk(λ)e−ink(µ) 2iu

v(λ)− v(µ)+ 2iu

]
|0〉,

(15.45d)

Z1(λ)†Z1(µ)†|0〉 =
∑
n,m

c†n,↑c
†
m,↑e

−inp(λ)e−imp(µ)|0〉, (15.45e)

Z2(λ)†Z2(µ)†|0〉 =
∑
n,m

c†n,↓c
†
m,↓e

−inp(λ)e−imp(µ)|0〉, (15.45f)

Z1(λ)†Z2(µ)†|0〉 =
∑
n,m

c†n,↑c
†
m,↓

[
θ (n ≤ m)e−inp(λ)e−imp(µ) v(λ)− v(µ)

v(λ)− v(µ)− 2iu

+ θ (n > m)e−inp(λ)e−imp(µ) + θ (n > m)e−imp(λ)e−inp(µ) 2iu

v(λ)− v(µ)− 2iu

]
|0〉,

(15.45g)

Z2(λ)†Z1(µ)†|0〉 =
∑
n,m

c†n,↓c
†
m,↑

[
θ (n ≤ m)e−inp(λ)e−imp(µ) v(λ)− v(µ)

v(λ)− v(µ)− 2iu

+ θ (n > m)e−inp(λ)e−imp(µ) + θ (n > m)e−imp(λ)e−inp(µ) 2iu

v(λ)− v(µ)− 2iu

]
|0〉.

(15.45h)

Note that the two-particle states (15.45a)–(15.45d) generated by Fa(λ)† are in-states if
k(λ) < k(µ) and out-states if k(λ) > k(µ). Moreover, they are normalized in the sense



610 S-matrix and Yangian symmetry in the infinite interval limit

explained above. As for the operators Za(λ)† we observe similar things. The two-particle
states (15.45e)–(15.45h) are normalized in-states if p(λ) > p(µ) and normalized out-states
if p(λ) < p(µ). These facts, together with the examples of other integrable models [366,454]
lead us to the following conjecture:

Conjecture 1. Provided that k(λ j ) is real for j = 1, . . . , N, the N-particle state

Fa1 (λ1)† . . . FaN (λN )†|0〉 (15.46)

is a normalized in-state if k(λ1) < · · · < k(λN ) and a normalized out-state if k(λ1) > · · · >
k(λN ).
Provided that p(µ j ) is real for j = 1, . . . , N, the N-particle state

Za1 (µ1)† . . . ZaN (µN )†|0〉 (15.47)

is a normalized in-state if p(µ1) > · · · > p(µN ) and a normalized out-state if p(µ1) <

· · · < p(µN ).

The proof of this conjecture seems difficult for general N since it seems to be unavoidable
to use the series (15.15) and the explicit form (15.17) of L̃m(λ).

We have constructed two pairs (Fa(λ)† and Za(λ)†, a = 1, 2) of normalized one-particle
creation operators. Similar as in the construction of the algebraic Bethe ansatz eigenstates
in Chapter 12.6, where we could have worked with the creation operators Ba

2 (λ) instead of
C1

a (λ), not both pairs of Faddeev-Zamolodchikov operators are really needed for construct-
ing multi-particle states. We may use the operator Fa(λ)† only (or Za(λ)† only). The reason
is the following. From (15.42) we deduce that

Za(λ)†|0〉 = Fa(λ̃)†|0〉, (15.48)

where p(λ) = k(λ̃). Hence, the action of a mixed product of operators Fa(λ)† and Za(λ)†

on the vacuum can be expressed in the form (15.46) by use of (15.44e) and (15.48). In
particular, one easily obtains

ZaN (λN )† . . . Za1 (λ1)†|0〉 = (−1)
N (N−1)

2 Fa1 (λ̃1)† . . . FaN (λ̃N )†|0〉 , (15.49)

where p(λ j ) = k(λ̃ j ). The order of the operators is reversed when written in terms of Fa(λ)†

instead of Za(λ)†.

15.4.2 Action of the Yangian on scattering states of N electrons

Using the commutation relations contained in (15.30) of the submatrix A(λ) of the infinite
interval monodromy matrix with the remaining submatrices B(λ), C(λ), D(λ) and the
asymptotic expansion (15.35) we can calculate the commutators of the Yangian generators
J α

0 and J α
1 with B(λ), C(λ) and D(λ). The result is shown in appendix 15.A.2. From the
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definition (15.41) it then follows that

[J α
0 , Fa(λ)†] = 1

2 Fb(λ)†σα
ba , (15.50a)

[J α
1 , Fa(λ)†] = − 1

2 sin k(λ)Fb(λ)†σα
ba + u εαβγ Fb(λ)†σβ

ba J γ

0 , (15.50b)

[J α
0 , Za(λ)†] = 1

2 Zb(λ)†σα
ba , (15.50c)

[J α
1 , Za(λ)†] = − 1

2 sin p(λ)Zb(λ)†σα
ba − u εαβγ Zb(λ)†σβ

ba J γ

0 . (15.50d)

These formulae induce the adjoint action of the Yangian on multi-particle scattering
states [286, 337].

Taking into account that J α
0 |0〉 = J α

1 |0〉 = 0 we obtain the action of the Yangian on the
one-particle sector as

J α
0 Fa(λ)†|0〉 = 1

2 Fb(λ)†σα
ba|0〉 , (15.51a)

J α
1 Fa(λ)†|0〉 = − 1

2 sin k(λ)Fb(λ)†σα
ba|0〉 . (15.51b)

Since the action of J α
1 is − sin k(λ) times that of J α

0 , the representation is called the funda-
mental representation W1(− sin k(λ)) [80–82]. In the two-particle sector we obtain

J α
0 Fa(λ1)†Fb(λ2)†|0〉 = Fc(λ1)†Fd (λ2)† 1

2

[
σα

caδdb + δcaσ
α
db

]|0〉 , (15.52a)

J α
1 Fa(λ1)†Fb(λ2)†|0〉 = Fc(λ1)†Fd (λ2)†

× 1
2

[− sin k(λ1)σα
caδdb − sin k(λ2)δcaσ

α
db + u εαβγ σ β

caσ
γ

db

]|0〉 . (15.52b)

This is a tensor product, W1(− sin k(λ1))⊗W1(− sin k(λ2)), of two fundamental represen-
tations with co-multiplication � defined by

�(J α
0 ) = J α

0 ⊗ 1+ 1⊗ J α
0 , (15.53a)

�(J α
1 ) = J α

1 ⊗ 1+ 1⊗ J α
1 + 2u εαβγ J β

0 ⊗ J γ

0 . (15.53b)

The representation is four-dimensional and irreducible since k(λ1) and k(λ2) are real.
Due to the Yangian invariance of the Hamiltonian the four states in the Yangian multi-
plet are degenerate. The action of the su(2) sub-algebra associated with the spin degrees
of freedom decomposes the Yangian multiplet into su(2)-triplet and su(2)-singlet, or, to
turn it the other way round, the Yangian mixes spin singlet and spin triplet into a larger
multiplet.

In a similar way the N -particle states Fa1 (λ1)† . . . FaN (λN )†|0〉 with a j = 1, 2 trans-
form under the Yangian as tensor product representations W1(− sin k(λ1))⊗ · · · ⊗
W1(− sin k(λN )). These representations are irreducible since the quasi-momenta k(λ j ) are
real [80]. However, they are not irreducible with respect to the action of the sub-algebra
su(2). The 2N N -particle states form a large degenerate multiplet with respect to the
Yangian, but decompose into the usual spin multiplets under the restricted action of its
su(2) sub-algebra.
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The irreducibility of the N -particle multiplet leads us to the conclusion that we can
construct all the N -particle states (15.46) by acting with Yangian generators J α

0 , J α
1 on the

Yangian highest-weight state

F1(λ1)† . . . F1(λN )†|0〉 . (15.54)

The wave function of the highest weight state (15.54) must be of plane-wave form, since due
to the Pauli principle the on-site interaction does not affect particles of like spin. Therefore,
assuming that the state (15.54) is normalized (see Conjecture 1), we conjecture that the
above state (15.54) is equal to the superposition of plane waves

c†↑(k(λ1)) . . . c†↑(k(λN ))|0〉 , (15.55)

where c†a(k) =∑
j∈Z c†j,ae−i jk . Thus, we have found an alternative method for constructing

multi-particle scattering states. They can also be obtained by applying the Yangian to plane-
wave states of the form (15.55). A similar situation was encountered in case of the Fermi
gas with repulsive δ-function interaction [337] which is the proper continuum limit of the
Hubbard model in the zero-density phase (see appendix 2.B).

Yangian representations of multi-particle states can of course also be constructed by use of
Za(λ)†. The alert reader will have noticed the only small difference which is in the different
signs in front of u in equations (15.50b) and (15.50d), leading to different definitions of the
co-multiplication. Instead of (15.53) we obtain

�′(J α
0 ) = J α

0 ⊗ 1+ 1⊗ J α
0 , (15.56a)

�′(J α
1 ) = J α

1 ⊗ 1+ 1⊗ J α
1 − 2u εαβγ J β

0 ⊗ J γ

0 . (15.56b)

But this does not cause any harm. The order of the quasi-momenta in (15.49) is reversed in
the multi-particle states expressed in terms of Fa(λ)† compared to those expressed in terms
of Za(λ)†. This corresponds to the reversed order of the tensor product ⊗ in the definition
of the co-multiplication, which compensates the different sign in front of u in (15.53b) and
(15.56b).

15.4.3 Free electron limit

The various parameters u, λ, h, v, k and p which we used so far are connected through
the formulae (12.109) and (15.33). Thus, only two of them are independent. As a test of
consistency of the results in this section let us consider the free fermion limit u → 0. This
limit is most conveniently taken for fixed v, for if we fix v = v(λ) and v̄ = v(µ) in equations
(15.45a)–(15.45h) and let u approach 0, we see that the products of operators Fa(λ)† and
Za(λ)† act like products of creation operators of Bloch states c†a(k0) on the vacuum. Here
k0 = p0 is determined by the corresponding limit in equation (15.33),

sin k0 = −v . (15.57)



15.4 Constructing N-particle states 613

λ and h are now dependent variables. Considering (12.109) and (15.33) for fixed v and
small u we find the following solutions

i ctg λ = 1+ u(1− v2)−
1
2 +O(u2) , (15.58a)

e2h = i(1− v2)
1
2 − v +O(u2) . (15.58b)

Using these equations and some standard trigonometric identities we can express all the
functions of h and λ, which enter the definition of L̃m(λ) (see (15.17)) in terms of v and u.
Note that equations (15.58) are not the only possible solution of (12.109) and (15.33) for
fixed v and small u. We chose the branches such that limu→0 L̃m(λ)|v = I4. For small u the
odd elements of L̃m(λ)− I4 are of the order of u

1
2 and the even elements are of the order of

u. Thus, only the first sum on the right hand side of (15.15) contributes in order u
1
2 to the

odd elements of T̃ (λ)− I4, and we obtain

C1
a (λ) = ie−h

cos λ

∑
m∈Z

c†m,ae−imk0 +O(u
3
2 ) , (15.59a)

B3−a
2 (λ) = (−1)a ieh

cos λ

∑
m∈Z

c†m,ae−imp0 +O(u
3
2 ) , (15.59b)

where e±h/ cos λ = O(u
1
2 ). Since Daa(λ) = 1+O(u), a = 1, 2, it follows from the defini-

tions (15.41) that

lim
u→0

Fa(λ)†
∣∣
v
= lim

u→0
Za(λ)†

∣∣
v
= c†a(k0) , a = 1, 2 . (15.60)

The corresponding formulae for Fa(λ) and Za(λ) are true by hermitian conjugation. Equa-
tions (15.44a)–(15.44f) turn into the usual anticommutators between Fermi operators since

lim
u→0

ř (λ,µ)
∣∣
v,v̄
= P , (15.61)

where P is the permutation matrix. Hence, it is natural to interpret the Faddeev-Zamolod-
chikov algebra as a deformation with deformation parameter u of the canonical anticom-
mutation relations between Fermi operators.

15.4.4 Bound states and scattering states of bound states

One of the delicate points in Bethe ansatz calculations is the question of completeness. For a
lattice model in a finite volume completeness can in principle be established by counting the
finitely many linearly independent Bethe ansatz eigenstates and possibly using symmetries
of the model. This programme is not as easy to apply in practice as it may seem at first
sight. It is neither easy to show the linear independence of the coordinate Bethe ansatz wave
function, nor to determine the number of solutions of a typical set of Bethe ansatz equations.
Proofs based on counting therefore usually rely on a number of further assumptions, the
most important of which is that an appropriately formulated string hypothesis gives the
correct number of (regular) Bethe ansatz states. Depending on the reader’s taste such kind
of proof may rather be called a consistency test. For the Hubbard model subject to periodic
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boundary conditions it was obtained in [123,125] and is discussed at length in appendix B
of Chapter 4.

Within our infinite chain formalism the question of completeness is even more difficult
to answer. All we can offer here is that we construct the infinite-interval bound states that
correspond to the k-� string states in the finite volume. As we have seen in the preceding
section the operators Fa(λ)† and Za(λ)† create single electrons in scattering states. These
correspond to solutions of the Lieb-Wu equations (3.95), (3.96) with real quasi momenta k j .
From the commutation relations of the infinite-interval monodromy matrix with the particle
number operator we know that the only other candidate creation operator except for Ba

2 (λ),
C1

a (λ) is the operator D1
2(λ) which adds two particles to the system. The action of D1

2(λ) on
the empty band is easily calculated from (15.15),

D1
2(λ)|0〉 = − 1

cos2 λ

∑
m,n

e−i(m+n)(k+p)/2−i|m−n|(k−p)/2c†m↑c
†
n↓|0〉 . (15.62)

We have to take into account here that k(λ) and p(λ) are not independent, but are connected
by the constraint (15.33), sin k − sin p = 2iu. Furthermore, for the wave function in (15.62)
to be bounded we need to have Im(k + p) = 0 and Im(k − p) < 0. With these conditions
(15.62) describes precisely the bound state of two electrons obtained in Section 3.2.4 within
the coordinate Bethe ansatz. In Section 4.2 we showed that this state can be interpreted as
an exact k-�-2 string.

There are no operators that create more than two particles among the elements of the
monodromy matrix. However, the string hypothesis suggests the existence of bound states
of pairs. In order to obtain an idea of how to define the corresponding bound-state operators
let us recall the string hypothesis. We will denote the spin rapidities of the coordinate Bethe
ansatz by � j and the charge momenta by k j . According to Chapter 4 there are two types of
string solutions of the Bethe ansatz equations:

(i) (�-string) m � j ’s form a string configuration in which the real parts of the � j ’s are
identical, while the imaginary parts are arranged at equal spacing 2iu. The centre of the
string should be real.

(ii) (k-�-string) 2m ki ’s and m � j ’s form a string configuration. The values of the ki ’s and
� j ’s are

k1 = π − arcsin(�′ + imu) ,

k2 = arcsin(�′ + i(m − 2)u) ,

k3 = π − k2 ,

...

k2m−2 = arcsin(�′ − i(m − 2)u) ,

k2m−1 = π − k2m−2 ,

k2m = π − arcsin(�′ − imu) ,

� j = �′ + i(m + 1− 2 j)u , �′ real , j = 1, 2, . . . ,m .

(15.63)



15.4 Constructing N-particle states 615

We expect these solutions to represent exact bound states in the infinite interval limit. Since
we are dealing with the zero density vacuum, there should be no spin excitations, and we
do not have to consider the �-string here.

We shall now introduce an alternative construction of the bound state (15.62) which can
be generalized to bound states of more particles. Using (15.15) and (15.17) it follows that
the bound state (15.62) is proportional to C1

2 (λ′)C1
1 (λ′′)|0〉, if λ′ and λ′′ satisfy the following

conditions;

p(λ′) = π − k(λ′′) mod 2π , (15.64a)

k(λ′′) = p(λ) mod 2π , (15.64b)

k(λ′) = k(λ) mod 2π . (15.64c)

These are three conditions for three parameters λ, λ′, λ′′ which at first sight seems to violate
the arbitrariness of λ. Yet, there is a redundancy in these equations. (15.64a) and (15.64b)
imply that

p(λ′) = π − p(λ) mod 2π , (15.65)

which is compatible with (15.64c) by taking into account the constraint (15.33). Thus, we
have obtained two possible 2-string creation operators, which are connected to each other
by the relation

D1
2(λ)|0〉 = ieh(λ′)+h(λ′′) cos λ′′ cos2 λ′ sin λ′

cos2 λ

×1− ei(p(λ′)−k(λ′′)))(1− ei(k(λ′′)−k(λ′)))

1− ei(p(λ′)−k(λ′)) C1
2 (λ′)C1

1 (λ′′)|0〉 . (15.66)

λ, λ′ and λ′′ in this equation have to satisfy (15.64). Note that it follows from (15.30) that

C1
2 (λ′)C1

1 (λ′′) = −C1
1 (λ′)C1

2 (λ′′) . (15.67)

We can now proceed with the general 2m-string states. We conjecture that the creation
operator of a k-�-2m-string can (up to an overall normalization factor) be expressed as

C (2m)(λ1, . . . , λ2m) = C1
2 (λ1)C1

1 (λ2)C1
2 (λ3)C1

1 (λ4) . . .C1
2 (λ2m−1)C1

1 (λ2m) , (15.68)

where

k(λ2s)+ p(λ2s−1) = π mod 2π , (15.69a)

sin k(λ2s−1) = sin k(λ1)+ 2(s − 1)iu , s = 1, . . . ,m . (15.69b)

Following previous works [166, 167, 275, 278, 279, 421, 508] we shall call this operator a
bound-state operator. The questions of the domain of existence of the term on the right
hand side and of its analytic properties are rather delicate. An interpretation as a ‘composite
operator’ was proposed in appendix C of [336]. Here we treat C (2m)(λi ) rather formally
and assume that the commutation relations of this operator with arbitrary elements of the
infinite-interval monodromy matrix are given by (12.280) for all allowed values of spectral
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parameters. One can easily verify that the functions sin k(λi ) in (15.69a) form the same
configuration as in the k-�-string, if their centre

ζ = 1

2m

2m∑
i=1

sin k(λi ) = sin k(λ1)+ (m − 2)iu (15.70)

is real.
We can normalize the bound-state operator by a similar method as used for the creation

operators of electrons Fa(λ)†. Let

D(2m)(λ1, . . . , λ2m) = D1
1(λ1)D1

1(λ2)D1
1(λ3)D1

1(λ4) . . . D1
1(λ2m−1)D1

1(λ2m) . (15.71)

Then we define a normalized bound-state operator as

F (2m)(λ1, . . . , λ2m)† = C (2m)(λ1, . . . , λ2m)D(2m)(λ1, . . . , λ2m)−1 . (15.72)

Similar definitions of bound-state operators have been used before in the context of the
XXZ-chain [275, 278, 279] and the Bose gas with attractive δ-function interaction [166,
167, 368, 508].

Formally using the commutation relations (15.30) for the elements of the monodromy
matrix we obtain for our bound state operators

F (2m)(λi )
†F (2n)(µ j )

† = ζ − η + (n + m)iu

ζ − η − (n + m)iu

ζ − η + |n − m|iu
ζ − η − |n − m|iu

·
min{m,n}−1∏

s=1

[
ζ − η + (n + m − 2s)iu

ζ − η − (n + m − 2s)iu

]2

F (2n)(µ j )
†F (2m)(λi )

† , (15.73)

F (2m)(λi )
†Fa(µ)† = ζ − sin k(µ)+ miu

ζ − sin k(µ)− miu
Fa(µ)†F (2m)(λi )

† , a = 1, 2 , (15.74)

where ζ is the centre of the 2m-string and η the centre of the 2n-string. As before, we
interpret these relations as Faddeev-Zamolodchikov algebra. This time particles without
internal degrees of freedom are involved. Then the factor on the right-hand side of (15.73)
is the S-matrix for the scattering of a bound state represented by a 2m-string on another
bound state with spectral parameters of a 2n-string. Similarly, the factor on the right-hand
side of (15.74) is the S-matrix describing the scattering of a 2m-string by an electron. The
bound-state bound-state S-matrix in (15.73) is of the same form as for the scattering of
bound states of magnons in the XXX-chain [278, 279].

As for the transformation under the Yangian we can easily see that

[J α
0 , F (2m)(λi )

†] = [J α
1 , F (2m)(λi )

†] = 0 , (15.75)

which follows from the commutation relations shown in appendix 15.A.2. We conclude that
the k-�-2m-string states are Yangian singlets,

J α
0 F (2m)(λi )

†|0〉 = 0 , J α
1 F (2m)(λi )

†|0〉 = 0 . (15.76)
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15.5 Eigenvalues of quantum determinant and Hamiltonian

In the previous section we constructed independent sets of creation operators Fa(λ)† and
F (2m)(λ1, . . . , λ2m)† (see (15.41a), (15.72)). Using the commutation relations (15.A.6) and
detq A(µ)|0〉 = |0〉 we conclude that the scattering states created by these operators are
eigenstates of the quantum determinant of A(µ), e.g.,

detq (A(µ))Fa1 (λ1)† . . . FaN (λN )†|0〉

=
[ N∏

j=1

−ρ1(λ j , µ)ρ1(λ j , µ̌)

ρ9(λ j , µ)ρ9(λ j , µ̌)

v(λ j )− v(µ)+ 2iu

v(λ j )− v(µ)

]
Fa1 (λ1)† . . . FaN (λN )†|0〉 , (15.77)

where µ̌ is defined by v(µ̌) = v(µ)− 2iu. Similar expressions follow for states created
by Za(λ)† and for states involving bound states. In order to calculate the corresponding
eigenvalue of the Hamiltonian we expand (using (15.A.7)) the terms under the product up
to second order in v(µ)−1,

−ρ1(λ j , µ)ρ1(λ j , µ̌)

ρ9(λ j , µ)ρ9(λ j , µ̌)

v(λ j )− v(µ)+ 2iu

v(λ j )− v(µ)
= 1+ 2u(cos(k(λ j ))+ u)

v(µ)2
+O

( 1

v(µ)3

)
,

(15.78)

and compare with (15.36), (15.40). We obtain

H Fa1 (λ1)† . . . FaN (λN )†|0〉 = −2
N∑

j=1

(
cos(λ j )+ u

)
Fa1 (λ1)† . . . FaN (λN )†|0〉 . (15.79)

Applying a similar procedure to general states also involving bound states we reproduce
the formula (4.52) which was obtained on the basis of the string hypothesis.

It follows from our considerations that the operator ln
(
detq (A(µ))

)
has an ‘additive

spectrum’, i.e., applying ln
(
detq (A(µ))

)
to multiple scattering states produces a sum over

terms which each depends only on λ j , j = 1, . . . , N . This observation was used in [336] to
obtain a conjecture about how the higher conserved operators generated by ln

(
detq (A(µ))

)
are related to the conserved operators [183, 187] previously constructed by hand.

15.6 Conclusions

This section was devoted to an algebraic study of the Hubbard model on the infinite interval.
Our presentation closely followed [335,336], where the relation between Shastry’s R-matrix
and the Y(su(2)) Yangian was first explained. We saw how the Yangian acts on scattering
states and we constructed explicit representations of the Faddeev-Zamolodchikov algebra
providing us in a simple way with the bare S-matrix of the Hubbard model.



Appendices to Chapter 15

15.A Some useful formulae

This appendix contains a collection of formulae that could be useful for those readers who
wish to verify the results of the present chapter.

15.A.1 Conjugation properties of the infinite interval monodromy matrix

The behaviour of the monodromy matrix elements under hermitian conjugation are obtained
by combining equation (12.277) with the definitions (15.2) and (15.16), (15.17):

A(λ)† = σ y A(π
2 − λ∗)σ y , (15.A.1)

B(λ)† = −iσ y B(π
2 − λ∗)σ y , (15.A.2)

C(λ)† = −iσ yC(π
2 − λ∗)σ y , (15.A.3)

D(λ)† = σ y D(π
2 − λ∗)σ y . (15.A.4)

As in (12.277) the dagger in these equations means hermitian conjugation of the matrix
elements but not of the 2× 2 matrices.

15.A.2 Elements of the monodromy matrix under Yangian transformations

The commutation relations of the elements of the infinite-interval monodromy matrix con-
tained in the submatrices B(λ), C(λ) and D(λ) with the Yangian generators are obtained
by extracting those of A(λ) with these matrices from (15.30) and inserting the asymptotic
expansion (15.35),

[J α
0 , B(λ)] = − 1

2σ
α B(λ) , (15.A.5a)

[J α
1 , B(λ)] = 1

2 sin p(λ)σα B(λ)+ u εαβγ σ β B(λ)J γ

0 , (15.A.5b)

[J α
0 ,C(λ)] = 1

2 C(λ)σα , (15.A.5c)

[J α
1 ,C(λ)] = − 1

2 sin k(λ)C(λ)σα + u εαβγ C(λ)σβ J γ

0 , (15.A.5d)

[J α
0 , D(λ)] = [J α

1 , D(λ)] = 0 . (15.A.5e)

618
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15.A.3 Commutators involving the quantum determinant

The quantum determinant detq (A(µ)) is in the centre of the Yang-Baxter algebra generated
by A(λ). The commutators with the remaining entries of the monodromy matrix T̃ (λ) can
be calculated from (15.30),

detq (A(µ))Ba
1 (λ) = −ρ9(λ,µ)ρ9(λ, µ̌)

ρ1(λ,µ)ρ1(λ, µ̌)

v(λ)− v(µ)

v(λ)− v(µ)+ 2iu
Ba

1 (λ)detq (A(µ)) ,

detq (A(µ))Ba
2 (λ) = − ρ4(λ,µ)ρ4(λ, µ̌)

ρ10(λ,µ)ρ10(λ, µ̌)

v(λ)− v(µ)

v(λ)− v(µ)+ 2iu
Ba

2 (λ)detq (A(µ)),

detq (A(µ))C1
a (λ) = −ρ1(λ,µ)ρ1(λ, µ̌)

ρ9(λ,µ)ρ9(λ, µ̌)

v(λ)− v(µ)+ 2iu

v(λ)− v(µ)
C1

a (λ)detq (A(µ)) ,

detq (A(µ))C2
a (λ) = −ρ10(λ,µ)ρ10(λ, µ̌)

ρ4(λ,µ)ρ4(λ, µ̌)

v(λ)− v(µ)+ 2iu

v(λ)− v(µ)
C2

a (λ)detq (A(µ)) ,

detq (A(µ))D1
2(λ) = ρ1(λ,µ)ρ1(λ, µ̌)

ρ9(λ,µ)ρ9(λ, µ̌)

ρ4(λ,µ)ρ4(λ, µ̌)

ρ10(λ,µ)ρ10(λ, µ̌)
D1

2(λ)detq (A(µ)) ,

detq (A(µ))D2
1(λ) = ρ9(λ,µ)ρ9(λ, µ̌)

ρ1(λ,µ)ρ1(λ, µ̌)

ρ10(λ,µ)ρ10(λ, µ̌)

ρ4(λ,µ)ρ4(λ, µ̌)
D2

1(λ)detq (A(µ)) ,

[detq (A(µ)), D11(λ)] = [detq (A(µ)), D22(λ)] = 0 , (15.A.6)

where a = 1, 2 and µ̌ is defined by v(µ̌) = v(µ)− 2iu. These equations involve only two
ratios of Boltzmann weights. For the calculation of the eigenvalues of the Hamiltonian their
asymptotic expansion in terms of v(µ) is needed:

− iρ1(λ,µ)

ρ9(λ,µ)
= 1+ iu

v(µ)
− (u − 2e−ik(λ))u

2v(µ)2
+O

(
1

v(µ)3

)
, (15.A.7a)

iρ10(λ,µ)

ρ4(λ,µ)
= 1+ iu

v(µ)
− (u + 2eip(λ))u

2v(µ)2
+O

(
1

v(µ)3

)
. (15.A.7b)
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Hubbard model in the attractive case

In this Chapter we discuss attractive case of the Hubbard model. We follow the papers [485]
and [121].

We shall start with the Hamiltonian

H0(u) = −
L∑

j=1

∑
σ=↑,↓

(c†j,σ c j+1,σ + c†j+1,σ c j,σ )+ 4u
L∑

j=1

(n j,↑ − 1

2
)(n j,↓ − 1

2
). (16.1)

We shall consider the case of even L [number of sites of the chain]. The energy levels of
the model are given by

E = −2
Ne∑

l=1

cos kl − 2uNe + uL . (16.2)

Here Ne is the number of electrons and kl are the momenta of individual electrons. Later
we shall add a magnetic field and chemical potential to the Hamiltonian.

In the attractive case u < 0 we can solve the model independently, using a technique
similar to the one of the repulsive case. On the other hand we can use symmetries of the
model to reduce the attractive case to the repulsive one. Let us mention relevant symmetries:

The model is invariant under the space reflection: j ↔ L − j + 1.
Partial particle-hole transformation is also important: c j,↑ ↔ c†j,↑; c j,↓ ↔ (−1) j c j,↓.
Combination of these two can be represented as a nice unitary transformation:

W1c j,↑W−1
1 = c†L− j+1,↑; W1c j,↓W−1

1 = (−1)L− j+1cL− j+1,↓ (16.3)

Here W1 is an involution W 2
1 = I . Here by I we mean the identify operator. The involution

can be represented as an exponent of a sum of local operators: W1 = exp[i Ŝ1] = W−1
1

and

Ŝ1 = π

2

L/2∑
j=1

(c j↑ − c†L− j+1↑)(c
†
j↑ − cL− j+1↑)+ (c j↓ + ic†L− j+1↓)(c

†
j↑ − icL− j+1↑)

+ (2 j − 1)(c j↓c
†
j↓ + cL− j+1↓c

†
L− j+1↓) (16.4)

620
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The involution changes the sign of the Hamiltonian:

W1 H0(u)W1 = −H0(u) (16.5)

The operator of number of electrons and the third component of spin are transformed in the
following way:

W1 N̂ W1 = L + N̂↓ − N̂↑, W1(N̂↑ − N̂↓)W1 = L − N̂ (16.6)

The involution replaces charge and spin degrees of freedom.
Another involution W2 = W−1

2 can be represented as exponential of a boost operator:
W2 = exp[i Ŝ2], here

Ŝ2 = π

L∑
j=1

j
∑

σ=↓,↑
n j,σ (16.7)

The Hamiltonian change the sign and repulsion is replaced by attraction:

W2 H0(u)W2 = −H0(−u), (16.8)

The operator of number of electrons and the third component of spin does not change under
W2.

The product of both involutions act like this:

W2W1 H0(u)W1W2 = H0(−u); W2W1 N̂ W1W2 = L − (N̂↑ − N̂↓);

W2W1(N̂↑ − N̂↓)W1W2 = L − N̂ (16.9)

This product replaces repulsion by attraction in an intelligent way. It maps low-lying
states into low-lying states. In 1983 F. Woynarovich found the action of these involutions
on Bethe Ansatz [485]. We already presented eigenfunctions of the Hubbard Hamiltonian
earlier in the book . These states parameterized by set of Ne momenta {kl} and another set
of M spin rapidities {λα}. Sometimes λα called spectral parameters. They satisfy Lieb-Wu
equations [298] :

eikl L =
M∏

α=1

sin(kl)− λα + iu

sin(kl)− λα − iu
, l = 1, . . . , Ne

Ne∏
l=1

sin(kl)− λβ + iu

sin(kl)− λβ − iu
= −

M∏
α=1

λα − λβ + 2iu

λα − λβ − 2iu
, β = 1, . . . , M . (16.10)

Here Ne and M should belong to a fundamental region: Ne ≤ L and M ≤ Ne/2.
We denote corresponding eigenfunction of the Hamiltonian by |{kl}, {λα}, u〉.
We can define operator of momentum P̂ in a formal way. It is an operator with eigen-

functions |{kl}, {λα}, u〉 and eigenvalues P =∑Ne
l=1 kl .

Woynarovich found that the involutions W act on eigenstates in the following way:

W2|{kl}, {λα}, u〉 = |{kl + π}, {−λα},−u〉
W1|{kl}, {λα}, u〉 = |{kg}, {λα}, u〉 (16.11)
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Here {kg} are holes. Let us define these holes formally. The first of the Lieb-Wu equations
can be considered as an equation for one kl [at fixed λα]. It can be represented as an equation
for the roots of a polynomial:

P(x) = x L
M∏

α=1

(x2 − 2i(λα + iu)x − 1))−
M∏

α=1

(x2 + 2i(−λα + iu)x − 1)) (16.12)

Here xl = exp[ikl]. The power of the polynomial is L + 2M , so it has L + 2M roots. We
use only Ne of them to construct the eigenfunction |{kl}, {λα}, u〉. We denote by {xg} the L +
2M − Ne remaining roots. Corresponding kg appear in the eigenfunctions after an action
of W1 involution. We call them holes. Please note that the new eigenfunction |{kg}, {λα}, u〉
still belongs to a fundamental region L + 2M − Ne ≤ L and 2M ≤ L + 2M − Ne. In
Appendix 16.A we show that kg satisfy Lieb-Wu equation with the same set of λα . In the
same Appendix 16.A we shall also see that involutions act on the momentum in the following
way:

W2 P̂W2 = P̂ + πNe, mod(2π )
W1 P̂W1 = π (L + 1)+ πM − P̂, mod(2π ). (16.13)

Since L is even we can drop it from the right-hand side. Now we can combine both
involutions into an equation:

W1W2 P̂W2W1 = π (N↑ + 1)− P̂, mod(2π ) (16.14)

We shall call the product W1W2 Woynarovich mapping. In the following sections we shall
use it to construct the ground state and excitations in the attractive case, starting from the
repulsive one.

16.1 Half-filled case

16.1.1 Ground state

Let us start our analysis of the ground state from the half filled case [no magnetic field]. In the
repulsive case the ground state was invariant under Yangian symmetry [the eigenfunction of
the ground state was annihilated by all generators of Yangian]. This high symmetry is more
typical for quantum field theory then for condensed matter. This was the reason why we
were able to solve all integral equations explicitly and get an expression for the ground-state
energy in terms of special functions. This is the reason why the half-filled band is in the
centre of the phase diagram. In the repulsive case for the ground state we had Ne = L and
2M = Ne. The product of two involutions W2W1 (Woynarovich mapping) maps it to the
ground state of the attractive case. We shall denote ground state in the infinite volume by
|gs〉 . The number of electrons and spin does not change L + 2M − Ne = L and 2M = Ne.
In the repulsive case λ filled a symmetric interval. So the set of {λ} does not change under
Woynarovich mapping. Also the set of real {kl} is mapped into a set of complex {kl}. In the
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attractive case the ground state is filled with bound states:

sin k± = λ± iu + O(exp(−L), Imλ = 0 (16.15)

This is a bound state of an electron with spin up and an electron with spin down. It is
called k − λ string. Root density of {λ} in the attractive case is the same as it was in the
repulsive:

σ (λ) = 1

2π

∫ ∞
−∞

dωeiωλ J0(ω)

2 cosh(uω)
(16.16)

Here J0 is a Bessel function. Specific energy for the ground state e(u) is the same as in the
repulsive case:

e(u) = EGS

L
= −|u| −

∫ ∞
−∞

dω

ω

e−|ωu|

cosh uω
J0(ω)J1(ω). (16.17)

Woynarovich matched the expressions for e(u) from repulsive and attractive sides. He
proved that both e(u) and de(u)/du are continuous across u = 0. Decomposition of e(u)
into Taylor series in u/π can be found in [439]:

πe(u) = −4− 7ζ (3)
( u

π

)2

−
∞∑

n=2

(
(2n − 1)(22n+1 − 1){(2n − 3)!!}3

22(n−1)(2n − 2)!!

)
ζ (2n + 1)

( u

π

)2n
(16.18)

Here ζ (s) is Riemann zeta function

ζ (s) =
∞∑

n=1

1

ns
.

The series is divergent; it is actually an asymptotic series. This indicates a singularity at
u = 0. The singularity might be related to charge and spin separation. At u = 0 excitation,
electrons carry charge and spin. For other values of u charge and spin separates.

We also need to notice that coefficients of asymptotic series can be expressed in terms of
the values of the Riemann ζ function at odd arguments and rational coefficients. The values
of the Riemann ζ function at odd arguments are important objects of number theory; they
are conjectured to be algebraically independent transcendental numbers. This has profound
consequences for correlation functions of the XXX spin chain.

Under Woynarovich mapping spin and charge degrees of freedom change places. Spin
SU (2) interchanges with η − SU (2). In the attractive case the ground state is also invariant
under both SU (2) [both spins are equal to zero]. It is a one-dimensional representation of
each SU (2). The ground state is also invariant under the whole Yangian of SO(4), as it was
in the repulsive case.
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16.1.2 Excitations

The product of the two involutions W2W1 maps exited states into exited states. Charge and
spin degrees of freedom interchange. Charge and spin separate as they did in the repulsive
case [120, 121].

Spin wave has a gap:

psw(k) = k −
∫ ∞

0

dω

ω

J0(ω)sin(ω sin(k))e−|u|ω

coshuω
(16.19)

εsw(k) = 2|u| − 2 cos(k)+ 2
∫ ∞

0

dω

ω

J1(ω)cos(ω sin(k))e−|u|ω

coshuω
(16.20)

It does not carry electrical charge. It has spin 1/2. This is actually the spinon. The η

‘spin’ of these excitations is zero.
Charge-waves (the spinless charged carriers) have the dispersions

p p
cw(λ) = π −

∫ ∞
0

dω

ω

J0(ω)sin(ωλ)

coshuω
= π + ph

cw(λ) , (16.21)

εcw(λ) = 2
∫ ∞

0

dω

ω

J1(ω)cos(ωλ)

coshuω
. (16.22)

These excitations can be called holon and antiholon. The holon has electrical charge
opposite to the electrical charge of an electron and the antiholon has electrical charge equal
to the electrical charge of an electron. The expression for the momentum of holon and
antiholon differs by π . These excitations are gapless. They have spin equal to zero. The η

‘spin’ of these excitation is 1
2 .

This is the complete list of all elementary excitations at half filled band in zero magnetic
field. All other energy levels are scattering states of these elementary excitations [120,121].
One can also calculate the scattering matrix of these excitations. Scattering matrix is the
same as in the repulsive case, one should only relabel excitations [ change charge and spin
degrees of freedom].

Another important object is a Fermi velocity:

v = ε′cw(λ)

p′cw(λ)

∣∣∣∣
λ→∞

(16.23)

It was evaluated by M. Takahashi, see [439]:

v = 2
I1

(
π

2|u|
)

I0

(
π

2|u|
) (16.24)

Here I0,1 are modified Bessel functions. Fermi velocity will be important for the descrip-
tion of correlation functions. We shall also use it in low-temperature thermodynamics.
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16.2 The ground state and low-lying excitations below half filling

Let us introduce the chemical potential µ into the Hamiltonian:

H (u) = −
L∑

j=1

∑
σ=↑,↓

(c†j,σ c j+1,σ + c†j+1,σ c j,σ )+ 4u
L∑

j=1

(n j,↑ − 1

2
)(n j,↓ − 1

2
)− µN̂ ,

(16.25)

Here N̂ is the operators of total number of electrons. For µ < 0 the band is less than half
filled. The ground state |gs〉 is still filled with k − λ strings only

sin k± = λ± iu + O(exp(−L), Imλ = 0; (16.26)

The energy of this string is

E(λ) = −4Re
√

1− (λ+ iu)2 + 4|u| − 2µ (16.27)

The momentum of the string is:

P(λ) = 2Re arcsin(λ+ iu), P ′(λ) = 2Re[1− (λ+ iu)2]−1/2 (16.28)

The root density of strings σ (λ) satisfy the following integral equation:

σ (λ)+
∫ �

−�
K (λ, ν)σ (ν)dν = 1

2π
P ′(λ) (16.29)

Here

2πK (λ, ν) = 4|u|
4u2 + (λ− ν)2

(16.30)

The full density of the ground state can be expressed as an integral of the root density:

D = Ne

L
= 2

∫ �

−�
σ (λ)dλ (16.31)

Specific energy of the ground state is equal to

e(u) = EGS

L
=

∫ �

−�
E(λ)σ (λ)dλ (16.32)

Zero value of chemical potential µ = 0 corresponds to the half filled band. The negative
value of chemical potential µc = 2|u| − 2

√
1+ u2 corresponds to an empty lattice. The

density of the ground state D = Ne/L monotonically depends on µ. Spin of the ground
state is still equal to zero.

Let us briefly discuss excitations. The simplest excitation seems to be a hole. The energy
of the hole can be denoted by ε(λ). It satisfies an integral equation:

ε(λ)+
∫ �

−�
K (λ, ν)ε(ν)dν = −E(λ) (16.33)
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The function ε(λ) has to vanish at the edges of integration ε(±�) = 0. This excitations
has spin 0 and charge 2. The momentum of ‘dressed’ k − λ string is:

−P(λ)− 2
∫ �

−�
arctan

(
λ− ν

2u

)
σ (ν)dν. (16.34)

If we map this excitation to repulsive case [by Woynarovich mapping] it will turn into a
magnon [at half filled band in a magnetic field]. In the previous chapters we showed that
the magnon is not an elementary excitation [below critical field]; a magnon is a scattering
state of two spinons. We can apply a similar analysis here in the attractive case. It will show
that the hole, which we considered above not to be an elementary excitation, consists of
two holons. Dispersions of the holons can be obtained from dispersions of the spinons [in
the repulsive case] by Woynarovich mapping.

16.3 Interaction with the magnetic field

Let us sum a magnetic field B interacting with the third component of spin:

H (u) = −
L∑

j=1

∑
σ=↑,↓

(c†j,σ c j+1,σ + c†j+1,σ c j,σ )

+ 4u
L∑

j=1

(n j,↑ − 1

2
)(n j,↓ − 1

2
)− µN̂ − B(N↑ − N↓), (16.35)

At small magnetic field the ground state is filled with k − λ strings. These are bound
states of an electron with spin up and another electron with spin down. If the magnetic field
is strong enough it will break the pairs. The energy of one electron with spin up embedded
into the ground state below half filling is:

Ee(k) = −2 cos k + 2|u| − µ− B − 2
∫ �

−�
K (2 sin k, 2λ)ε(λ)dλ (16.36)

Critical magnetic field makes this excitation gapless:

Bc1 = −2+ 2|u| − µ− |u|
π

∫ �

−�

ε(λ)

u2 + λ2
dλ. (16.37)

At half filled band the expression for critical magnetic field simplifies:

Bc1 = −2+ 2|u| + 2
∫ ∞

0

dω

ω

J1(ω)e−|u|ω

cosh(uω)
. (16.38)

At a larger magnetic field then critical free electrons with spin up will start filling up the
ground state. This means that the ground state will consist of two Fermi spheres: one consists
of k − λ strings with realλ, another consists of real k [free electrons with spin up]. The reason
why a broken pair is not replaced by one electron with spin up and another electron with
spin down is because we are considering a grand canonical ensemble. We fix the magnetic



16.4 Phase diagram 627

field and a chemical potential, and then we compare energies in the sectors with different
quantum numbers. Electrons with spin up have lowest energy because of the direction of
the magnetic field. If we increase magnetic field even further then more k − λ strings will
be replaces by electrons with spin up. When the magnetic field passes the second critical
value

Bc2 = 2+ 2|u| (16.39)

the ground state will be filled only with electrons with spin up; all k − λ strings will
disappear.

16.4 Phase diagram

In the attractive case the phase diagram can be obtained by 90 degree rotation from the
repulsive case. In figure 16.1 we present only the fundamental part of the phase diagram.
The rest of the phase diagram can be obtained by particle -hole transformation and by
replacing electrons with spin up by electrons with spin down. In order to obtain our phase
diagram in the attractive case we take the phase diagram from the repulsive case and replace
B by (−µ) and µ by (−B). Actually, ground-state energy EGS(µ, B, T, u) has the follow-
ing symmetry: EGS(µ, B, T, u) = EGS(−B,−µ, T,−u)− µ− B. Let us comment on the
phases.

Phase I is an empty lattice. Boundaries are given by the same equations as in the repulsive
case. For example

µc = 2|u| − 2
√

1+ u2. (16.40)

µ c 0
 µ

Bc2

0

Bc1

B

I

II

III

IV

V

Fig. 16.1. Phase diagram of the attractive Hubbard model.
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Phase II is less than half filled and fully polarized. The ground state is filled only with
electrons with spin up and there are fewer electrons than lattice sites. The critical point is

Bc2 = 2+ 2|u|. (16.41)

Phase III is half filled and fully polarized. The number of electrons is equal to the number
of lattice cites, all spins are up spins.

Phase IV is less than half filled and partially polarized. The ground state is filled with
k − λ strings [bound state of an electron with spin up and another electron with spin down]
and real k [electrons with spin up].

Bc1 = −2+ 2|u| + 2
∫ ∞

0

dω

ω

J1(ω)e−|u|ω

cosh(uω)
(16.42)

Phase V is less then half filled. It has no polarization [spin is equal to zero]. The ground
state is filled only with k − λ strings.

The origin µ = B = 0 corresponds to the half filled band [no polarization]. This state is
invariant under Yangian symmetry. This is the centre of the phase diagram.

The rest of the phase diagram can be restored by symmetry. The phase diagram is sym-
metric for free electrons and for the repulsive Hubbard model. Here the same symmetry
holds.

16.5 Critical behaviour

At T = 0 some correlation functions decay algebraically, others exponentially. In this
section we will be interested only in correlation functions, which decay algebraically. These
correlations can be described by conformal field theory [Virasoro algebra]. Conformal
dimensions [critical exponents] and the central charge can be extracted from the finite
size corrections. This is the same calculation we did in the repulsive case; only now spin
degrees of freedom are gapped. So we have only one conformal field theory with central
charge equal to c = 1. It describes correlations of operators, which do not change spin.
Critical behaviour in a sense is close to Bose gas. It is very well understood, see Chapter
XVIII of [270]. Conformal dimensions can be described in terms of the dressed charge. It is
a special value of a function Z (λ). The function is defined by an integral equation, similar
to (16.29):

Z (λ)+
∫ �

−�
K (λ, ν)Z (ν)dν = 1. (16.43)

The dressed charge is the value of this function at the edge of integration Z (�). Below we
shall also use

γ−1 = 2Z2(�). (16.44)

Analysis of the integral equation shows that γ is a monotonic function of the density D.
The integral equation for the dressed charge has been studied in detail in papers [65–67]. It
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was proved that γ changes in the interval:

1

2
≤ γ ≤ 1. (16.45)

The γ approaches 1
2 in the low density limit, it goes to 1 for the half filled band. It will be

important to us that

γ ≤ 1

γ
. (16.46)

It turns into equality only for the half filled band. Let us consider examples of some
correlations. Let us start with the superconducting correlation function. The formula, which
describes the long distance asymptotic as |x | → ∞ is:

〈c†x,↑c†x,↓c1,↑c1,↓〉 ∼ 1

|x |γ . (16.47)

Let us also mention the correlation function of local densities. Its asymptotic behaviour
contains oscillations:

〈c†x,↑cx,↑c
†
1,↑c1,↑〉 − 〈c†1,↑c1,↑〉2 ∼ cos(2πx D)

|x | 1
γ

, |x | → ∞ (16.48)

Let us mention that the Green function 〈c†x,↑c1,↑〉 decays exponentially. Now we can
compare asymptotic of the superconducting correlation function with density-density cor-
relation. The inequality γ ≤ 1/γ shows that the superconducting correlation function de-
cays slower than density-density correlation. This means that super conducting correlations
dominate. More details on the conformal description of correlation functions in the attrac-
tive Hubbard model can be found in [65–67, 140]. Multi-point correlations also can be
described by conformal field theory.

Entropy also can be described by conformal field theory. At zero temperature the ground
state |gs〉 is unique and the entropy of the whole infinite ground state is zero. Nevertheless
there is some entropy in a subsystem [part of the ground state]. Let us consider electrons
present on some space interval (0, x) in the ground state. They can be described by a density
matrix:

ρ = tr∞(|gs〉〈gs|)

Here we trace out the degrees of freedom of electrons on the unification of intervals
(−∞, 0) ∪ (x,∞). The entropy of the electrons on the interval (0, x) can be defined as
von Neumann entropy of the density matrix:

S(x) = −trxρ ln ρ

Here we are taking the trace with respect to degrees of freedom of electrons on the interval
(0, x). It is difficult to calculate S(x); nevertheless for large x it simplifies. In Appendix 16.B



630 Hubbard model in the attractive case

we show that the asymptotic can be described by conformal field theory:

S(x)→ 1

3
ln x .

Notice that specific entropy s = lim(S(x)/x) as x →∞ vanishes according to the third law
of thermodynamics. This result tells us that ground-state electrons from the interval (0, x)
can be in

n = exp[S(x)] = x1/3

different states |x, j〉 here j = 1, . . . , n. Outside electrons, from the intervals (−∞, 0) ∪
(x,∞) also can be in n different states |∞, j〉. The wave function of the ground state can
be represented in the form:

|gs〉 =
n∑

j=1

|x, j〉|∞, j〉

Since n is large this describes entanglement of electrons from the interval (0, x) with the
rest of the ground state.

16.6 Thermodynamics

Partition function of the model is defined by

Z = tr[e−H (u)/T ] (16.49)

In the thermodynamic limit (L →∞ , Ne →∞, density n = Ne/L fixed) the partition
function can be asymptotically represented as :

Z = e
− f L

T (16.50)

Here f is bulk free energy. We already described thermodynamics in the repulsive case in the
frame of the Yang-Yang approach. Thermodynamics was described in terms of Takahahsi’s
equations. In the attractive case we can use the same equations; now the coupling constant
u will take negative values in these equations, see [287, 288] .

Another approach to thermodynamics in the attractive case is based on symmetries men-
tioned at the beginning of the chapter. One can use the symmetries to relate the bulk free
energy in the attractive and repulsive cases:

f (µ, B, T, u) = f (−B,−µ, T,−u)− µ− B. (16.51)

This describes the bulk free energy in the attractive case.
One can study analytical properties of f as a function of coupling constant u. The bulk

free energy behaves differently from the the ground state energy e(u). The bulk free energy
f does not have a singularity at u = 0, see [21].

Let us now discuss the entropy. Specific entropy s increases with temperature. So we
shall discuss two limiting cases of small temperature and large temperature.
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At small temperature entropy density [specific entropy] vanishes linearly, see [6]:

s = S

L
= πT

3v
. (16.52)

Here v is Fermi velocity.
At very large temperature entropy also simplifies [because of a different reason]. Notice

that we fixed the density n = Ne/L . We can express the specific entropy of the Hubbard
model at infinite temperature s∞ in terms of Boltzmann entropy:

SB(p) = −p ln p − (1− p) ln(1− p)

Here p is a probability.
At infinite temperature different lattice sites are independent. If magnetic field B =

0 then half of the electrons have spin up another half have spin down. For an electron
with spin up the probability of its presence in a lattice site is p = n/2. This means that
a contribution of electrons with spin up to the specific entropy of the Hubbard model is
SB(n/2). Electrons with spin down will give the same contribution to the entropy. So the
total specific entropy of the Hubbard model at fixed density and infinite temperature is
s∞ = 2SB(n/2):

s∞ = ln 4− n ln n − (2− n) ln(2− n), T = ∞, B = 0, n is fixed
(16.53)

This agrees with the Takahashi equations. Let us emphasize again that entropy increases
monotonically with temperature from its values at small temperature to its values at large
temperature.

We can also study the entropy of electrons S(x) on the space interval (0, x). According
to the second law of thermodynamics S(x) is proportional to the length of the interval:

S(x) = sx (16.54)

Now let us comment on correlation functions. At small temperatures the correlation func-
tion can be calculated by conformal mapping. Now they decay exponentially. Asymptotic
of superconducting correlation is given by the following expression:

〈c†x,↑c†x,↓c1,↑c1,↓〉 ∼ exp [−πT γ

v
x]. (16.55)

Asymptotic of the correlation function of charge-density waves is:

〈c†x,↑cx,↑c
†
1,↑c1,↑〉 − 〈c†1,↑(0)c1,↑(0)〉2 ∼ cos(2πnD) exp [−πT

γ v
x] (16.56)

Some times nonlocal correlation are also interesting. An example is emptiness-formation
probability P(x). It is a probability that [because of fluctuations] there will be no electrons
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on a space interval of the length x . It is difficult to calculate, but large x asymptotic is
simple:

P(x) ∼ exp

(−Px

T

)
(16.57)

Here P is a pressure: P = −( f − u). This formula follows from Maxwell-Boltzmann
statistics, because Px is work necessary to remove electrons from the interval (0, x).
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16.A Appendix A

The first of Lieb-Wu equations is equivalent to the equation P(x) = 0 with

P(x) = x L
M∏

α=1

(x2 + (−2iλα + 2u)x − 1))−
M∏

α=1

(x2 + (−2iλα − 2u)x − 1)) (16.A.1)

The polynomial can be represented in the form P(x) =∏L+2M
a=1 (x − xa) . We divide

the set of all roots into two subsets: {xa} = {xl} ∪ {xg}. Here {xl} describes the original
electrons and {xg} describes the holes. We can represent the second Lieb-Wu equation in the
form:

Ne∏
l=1

x2
l + (−2iλ− 2u)xl − 1

x2
l + (−2iλ+ 2u)xl − 1

= −
M∏

α=1

λα − λ+ 2iu

λα − λ− 2iu
. (16.A.2)

Here λ belongs to the set {λα}. We want to prove that {xg} satisfy the same equation:

L+2N−Ne∏
g=1

(
x2

g + (−2iλ− 2u)xg − 1

x2
g + (−2iλ+ 2u)xg − 1

)
= −

M∏
α=1

λα − λ+ 2iu

λα − λ− 2iu
. (16.A.3)

It is equivalent to the following:

L+2N∏
a=1

(
x2

a + (−2iλ− 2u)xa − 1

x2
a + (−2iλ+ 2u)xa − 1

)
=

M∏
α=1

(
λα − λ+ 2iu

λα − λ− 2iu

)2

=
M∏

α=1

(
λ− λα − 2iu

λ− λα + 2iu

)2

. (16.A.4)

In order to prove this let us introduce roots of numerators and denominator. The roots of
the numerator we shall define by:

x2 + (−2iλ− 2u)x − 1 = (x − x+n )(x − x−n ),

x±n = iλ+ u ±
√

1+ (iλ+ u)2,

x+n x−n = −1. (16.A.5)

633
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Similar definition for denominator is:

x2 + (−2iλ+ 2u)x − 1 = (x − x+d )(x − x−d ),

x±d = iλ− u ±
√

1+ (iλ− u)2,

x+d x−d = −1. (16.A.6)

We shall need to define logarithm as a function of x :

ln

(
x2 + (−2iλ− 2u)x − 1

x2 + (−2iλ+ 2u)x − 1

)
= ln

[(
x − x+n
x − x+d

)(
x − x−n
x − x−d

)]
. (16.A.7)

Here we make one cut from x+d to x+n and another cut from x−d to x−n . Let us present the
identity; we want to prove in a logarithmic form:

L+2N∑
a=1

1

i
ln

(
x2

a + (−2iλ− 2u)xa − 1

x2
a + (−2iλ+ 2u)xa − 1

)
=

M∑
α=1

2

i
ln

(
λ− λα − 2iu

λ− λα + 2iu

)
mod(2π ).

(16.A.8)

Let us represent the left-hand side as a contour integral around all the roots of the
polynomial P(x):

L+2N∑
a=1

1

i
ln

(
x2

a + (−2iλ− 2u)xa − 1

x2
a + (−2iλ+ 2u)xa − 1

)
= 1

2π i

∮
1

i
ln

(
x2 + (−2iλ− 2u)x − 1

x2 + (−2iλ+ 2u)x − 1

)
d ln P(x) (16.A.9)

We can continuously deform the integration contour, enlarging it. The cuts of the inte-
grand will contribute in the integral. The large circle will not contribute because the in-
tegrand decays asymptotically as 1/x2. Now it is convenient to represent the logarithm
in the integrand in the form (16.A.7). The jump on the cut is 2π i , so the integral is
equal to : (∫ x+n

x+d

+
∫ x−n

x−d

)
1

i
d ln P(x) = 1

i
ln

P(x+n )

P(x+d )
+ 1

i
ln

P(x−n )

P(x−d )
(16.A.10)

We can simplify the right-hand side, because the first product in the expression for the
polynomial vanishes at xd and the second product vanishes at xn .

P(xn) = x L
n

M∏
α=1

(x2
n + (−2iλα + 2u)xn − 1),

P(xd ) = −
M∏

α=1

(x2
d + (−2iλα − 2u)xd − 1) (16.A.11)
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Now we can represent the right-hand side of (16.A.9), (16.A.10) in the form:

1

i
ln

P(x+n )

P(x+d )
+ 1

i
ln

P(x−n )

P(x−d )

= 1

i
ln

M∏
α=1

(
x+n − (x+n )−1 − 2iλα + 2u

x+d − (x+d )−1 − 2iλα − 2u

)(
x−n − (x−n )−1 − 2iλα + 2u

x−d − (x−d )−1 − 2iλα − 2u

)
(16.A.12)

Here we used x+x− = −1, see (16.A.6) and (16.A.5). From the definition of x± we know
that

x±n − (x±n )−1 = 2iλ+ 2u,
x±d − (x±d )−1 = 2iλ− 2u (16.A.13)

We can use this in order to simplify the right-hand side.

1

i
ln

P(x+n )P(x−n )

P(x+d )P(x−d )
=

M∑
α=1

2

i
ln

(
2iλ− 2iλα + 4u

2iλ− 2iλα − 4u

)
(16.A.14)

So we have proved equation (16.A.8) and equation (16.A.3). We have proved that the set
{kg} satisfy Lieb-Wu equations with the same set of {λα}. So we have completely described
the involution W1. It replaces electrons by holes W1{kl} = {kg}.

Now let us calculate the total momentum

exp[i
L+2M∑

a=1

ka] =
L+2M∏

a=1

xa .

It is equal to the coefficient at zero power of x in the polynomial, because (−1)L+2M = 1.
The coefficient is equal to

exp[i
L+2M∑

a=1

ka] = (−1)M+1

This proves equation (16.13).

16.B Appendix B

Here we follow the argument of the paper [269]. Conformal field theory [51] is useful for
the description of low-temperature behaviour of gapless models in one space and one time
dimensions. We are interested in specific entropy s [entropy per unit length]. Let us start
with specific heat C = T ds/dT . Low-temperature behaviour was obtained in [6]:

C = πT c

3v
, as T → 0 (16.B.1)

Here c is a central charge of corresponding Virasoro algebra and v is Fermi velocity. We
are more interested in s. We can integrate the equation and fix the integration constant from
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the third law of thermodynamics (s = 0 at T = 0). So for specific entropy we have the same
low temperature behaviour:

s = πT c

3v
, as T → 0 (16.B.2)

We consider entropy of electrons on the interval (0, x). The second law of thermodynamics
states that the entropy is extensive parameter. So the entropy of electrons on the interval
S(x) is proportional to the size x :

S(x) = sx at T > 0. (16.B.3)

The laws of thermodynamics are applicable to a subsystem of macroscopic size, meaning
large x . Here specific entropy s depends on the temperature. For small temperature the
dependence simplifies, see (16.B.2):

S(x) = πT c

3v
x, x � 1

T
. (16.B.4)

Let us find how S(x) depends on x for zero temperature. It is some function of the size x :

S(x) = f (x), at T = 0 (16.B.5)

Now let us apply the ideas of conformal field theory, see [6, 51] and also Chapter XVIII
of [270]. We can arrive at small temperatures from zero temperature by conformal mapping
exp [2πT z/v]. It maps the whole complex plane of z without the origin to a strip of the
width 1/T . This replaces zero temperature by positive temperature T . The function f does
not change, only its argument does. The conformal mapping results in a replacement of
the variable x [argument of the function] by [v/πT ] sinh[πT x/v]. Now the entropy of a
subsystem is given by the formula:

S(x) = f

(
v

πT
sinh

[
πT x

v

])
, at T > 0 (16.B.6)

So at positive temperature the entropy of a subsystem is described in terms of the same
function with a different argument. In order to find the function f we should match two
different expressions for asymptotic of S(x) for positive temperature. For large x the formula
(16.B.6) simplifies:

S(x) = f

(
exp

[
πT (x − x0)

v

])
, T x →∞. (16.B.7)

Here πT x0/v = − ln(v/2πT ) . This formula should coincide with (16.B.4). Both repre-
sent the entropy of a subsystem for small positive temperatures. This provides an equation
for f :

f

(
exp

[
πT (x − x0)

v

])
= πT c

3v
(x − x0) (16.B.8)
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This formula describes asymptotic of large x , so we have added −x0 to the right-hand
side. In the low-temperature case x � x0. We are considering the region x > 1/T and
x0 ∼ ln(1/T ) at T → 0.

In order to solve the equation for f , let us introduce a new variable y =
exp [πT (x − x0)/v]. Then the last equation turns into:

f (y) = c

3
ln y (16.B.9)

Thus we have found how the function f depends on its argument. The dependence will
not change as we change the notation of the argument from y to x . So at zero temperature
entropy of electrons containing on the interval (0, x) is:

S (x) = c

3
ln x as x →∞, T = 0 (16.B.10)

Let us remember that for the attractive Hubbard model c = 1, see [65].
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Mathematical appendices

17.1 Useful integrals

In this appendix we list a number of identities that are useful for manipulating the TBA
equations.

17.1.1 ‘Symmetric integration’

For any well-behaved function f (x) we have∫ π

−π
dk cos k f (sin k) = 2

∫ π

0
dk cos k f (sin k) = 0 . (17.1)

The second identity is proved by substituting k = π − k ′ and this implies that the first
integral is zero as well.

17.1.2 Fourier transforms

For a > 0 we have ∫ ∞
−∞

dx

2π
exp(−iωx)

2a

a2 + x2
= exp(−a|ω|) , (17.2)

∫ ∞
−∞

dx

2π

exp(−iωx)

2 cosh ax
= 1

4a cosh(ωπ/2a)
, (17.3)

∫ ∞
−∞

d� 2 arctan(�/a) exp(iω�) = −2π

iω
exp(−|aω|) . (17.4)

17.1.3 Identities involving the integral kernels

Let us recall the definitions for the functions s(x), R(x), an(x) and Anm(x):

s(x) = 1

4u cosh(πx/2u)
= 1

2π

∫ ∞
−∞

dω
exp(−iωx)

2 cosh(ωu)
, (17.5)

638
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R(x) =
∫ ∞
−∞

dω

2π

exp(iωx)

1+ exp(2u|ω|) , (17.6)

an(x) = 1

2π

2nu

(nu)2 + x2
. (17.7)

The following identities hold:∫ ∞
−∞

dy s(x − y) [am−1(y)+ am+1(y)] = am(x) . (17.8)

∞∑
n=1

∫ ∞
−∞

dy A−1
kn (x − y) an(y − sin k) = δk,1 s(x − sin k) . (17.9)

∞∑
n=1

∫ ∞
−∞

dy A−1
kn (x − y)

(
4Re

√
1− (y − inu)2 − 2nµ− 4nu

)
= δk,1

∫ π

−π
dk 2 cos2(k) s(x − sin k). (17.10)

∫ ∞
−∞

d� a1(x −�) s(�− y) = R(x − y) . (17.11)

∫ ∞
−∞

d� a1(x −�) [δ(�− y)− R(�− y)] = s(x − y) . (17.12)

Equation (17.8) can be proved by Fourier transformation, (17.9) is a direct consequence
of (17.8), and (17.10) follows from (17.13) and (17.9). Equations (17.11) and (17.12) are
proved by Fourier transformation.

17.1.4 A list of useful integral identities

4Re
√

1− (
�− inu

)2 − 4nu =
∫ π

−π

dk

π

cos2 k (2nu)

(nu)2 + (sin k −�)2
, u > 0. (17.13)

∫ ∞
−∞

dµ

2π

2a

a2 + (λ− µ)2

2b

b2 + (µ− ν)2
= 2(a + b)

(a + b)2 + (λ− ν)2
, a, b > 0. (17.14)

2Re [arcsin(�+ ia)] =
∫ ∞
−∞

dω

iω
J0(ω) exp(−|aω| + iω�) . (17.15)

2Re [arcsin(�+ ia)] =
∫ π

−π

dk

2π
θ
(�− sin(k)

a

)
, a > 0. (17.16)

2Re
1√

1− (�+ ia)2
=

∫ π

−π

dk

2π

2a

a2 + (�− sin k)2
, a > 0. (17.17)
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−∞

dω

iω

exp(iωx)

1+ exp(2u|ω|) = i ln

[
�
(

1
2 + i x

4u

)
�
(
1− i x

4u

)
�
(

1
2 − i x

4u

)
�
(
1+ i x

4u

)] , u > 0. (17.18)

17.1.5 Integrals involving Bessel functions

Jn(z) = 1

2π

∫ π

−π
dθ exp(i z sin θ − inθ ) . (17.19)

∫ π

−π
dk cos2(k) exp(iω sin k) = 2π J1(ω)

ω
. (17.20)

17.2 The Wiener-Hopf method

Consider a linear Fredholm integral equations of the type

f (x) = f (0)(x)−KX ∗ f (x) . (17.21)

Here KX is an integral operator which acts on a function f (x) as

KX ∗ f (x) =
∫ X

−X
dy K (x − y) f (y). (17.22)

For simplicity we assume that the both the kernel K (x) of the integral operator and the
‘driving term’ f (0)(x) are even functions

K (x) = K (−x) , f (0)(−x) = f (0)(x) , (17.23)

which are defined on the entire real axis. The integration boundary X is supposed to be
large but finite. The operator 1+K∞ is non-degenerate and its resolvent K̄, defined as

(1+K∞)−1 ≡ 1− K̄ (17.24)

can be obtained e.g. by Fourier transformation. Following Yang and Yang [495] we now
rewrite (17.21) as

(1+K∞) ∗ f (x) = f (0)(x)+
{∫ −X

−∞
+

∫ ∞
X

}
dy K (x − y) f (y). (17.25)

Acting with (1+K∞)−1 on both sides of (17.25) we arrive at

f (x) = f∞(x)+
{∫ −X

−∞
+

∫ ∞
X

}
dy K̄ (x − y) f (y) , (17.26)

where K̄ is the kernel of the integral operator K̄ introduced in equation (17.24) and f∞
is the solution of (17.21) for X = ∞. In many cases an explicit expression for f∞ can be
derived by Fourier transformation. Using that f (x) = f (−x) and shifting the variables in
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(17.26) by introducing g(z) = f (X + z) we obtain

g(z) = f∞(X + z)+
∫ ∞

0
dz′ K̄ (z − z′) f (z′)

+
∫ ∞

0
dz′ K̄ (2X + z + z′) f (z′). (17.27)

Assuming that the kernel K̄ (x) vanishes sufficiently fast with x > 0, we may solve the
integral equation (17.27) by a rapidly converging expansion [495]

g(z) =
∞∑

n=0

gn(x) . (17.28)

The functions gn(z) fulfil linear integral equations of the form

gn(z) = g(0)
n (z)+

∫ ∞
0

dz′ K̄ (z − z′)gn(z′) , (17.29)

where

g(0)
0 (z) = f∞(X + z) ,

g(0)
n (z) =

∫ ∞
0

dz′ K̄ (2X + z + z′)gn−1(z′) , n ≥ 1. (17.30)

The resulting equations for the functions gn(x) are of Wiener-Hopf type and can be solved
as follows (see e.g. [329]). We start by Fourier-transforming (17.29)

(1− K̄ (ω))g+n (ω)+ g−n (ω) = g(0)
n (ω) , (17.31)

where

g±n (ω) =
∫

dz θH (±z)gn(z) exp(iωz) (17.32)

provide a decomposition of gn(ω) into a sum of two parts that are analytic in the upper
and lower half planes, respectively (θH (z) is the Heaviside step function). The key to the
solution of the Wiener-Hopf equation (17.31) is to decompose the kernel into factors G±

that are analytic in the upper and lower complex ω-plane, respectively

1− K̄ (ω) = [G+(ω)G−(ω)]−1, lim
ω→∞G±(ω) = 1 (17.33)

Using such a factorization equation (17.31) becomes

[G+(ω)]−1g+n (ω)+ G−(ω)g−n (ω) = Q+n (ω)+ Q−n (ω) (17.34)

where Q±n (ω) are analytic in the upper and lower half planes respectively:

Q+n (ω)+ Q−n (ω) = G−(ω)g(0)
n (ω). (17.35)

Using the analytic properties of the functions involved we obtain the solution of
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equation (17.34)

g+n (ω) = G+(ω)Q+n (ω) ,

g−n (ω) = Q−n (ω)

G−(ω)
. (17.36)

For practical applications the following identities are useful∫ ∞
0

dz gn(z) = g+n (ω = 0), gn(z = 0) = −i lim
ω→∞ωg+n (ω) . (17.37)
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[62] H. W. Blöte, J. L. Cardy and M. P. Nightingale, Conformal invariance, the central

charge, and universal finite-size amplitudes at criticality, Phys. Rev. Lett. 56 (1986)
742.

[63] N. M. Bogoliubov, A. G. Izergin and V. E. Korepin, Critical exponents for integrable
models, Nucl. Phys. B 275 (1986) 687.

[64] N. M. Bogoliubov, A. G. Izergin and N. Y. Reshetikhin, Finite-size effects and
infrared asymptotics of the correlation functions in 2 dimensions, J. Phys. A 20
(1987) 5361.

[65] N. M. Bogolyubov and V. E. Korepin, The role of quasi-one-dimensional structures
in high-Tc superconductivity, Int. J. Mod. Phys. B 3 (1989) 427.

[66] — Correlation functions of the one-dimensional Hubbard model, Theor. Math. Phys.
82 (1990) 231.

[67] — The mechanism of Cooper pairing in the one-dimensional Hubbard model, Pro-
ceedings of the Steklov Institute of Mathematics 2 (1992) 47.

[68] M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford: The Claren-
don Press, 1954).

[69] C. Bourbonnais and D. Jerome, in P. Bernier, S. Lefrant and G. Bidan. eds.,
Advances in Synthetic Metals, Twenty Years of Progress in Science and Technology
(New York: Elsevier 1999). Preprint, cond-mat/9903101.
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Springer Verlag, 1997).

[103] A. Doikou, L. Mezincescu and R. I. Nepomechie, Factorization of multiparticle
scattering in the Heisenberg spin chain, Mod. Phys. Lett. A 12 (1997) 2591.

[104] — Simplified calculation of boundary S-matrices, J. Phys. A 30 (1997) L507.
[105] B. Doyon and S. Lukyanov, Fermion Schwinger’s function for the SU(2) Thirring

model, Nucl. Phys. B 644 (2002) 451.
[106] R. M. Dreizler and E. K. U. Gross, Density Functional Theory: an Approach to the

Quantum Many Body Problem ( Berlin: Springer-Verlag, 1990).
[107] V. G. Drinfel’d, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Acad.

Nauk SSSR 283 (1985) 1060.
[108] — A new realization of Yangians and quantized affine algebras, Dokl. Acad. Nauk

SSSR 296 (1987) 13.
[109] — Quantum groups, Proceedings of the International Congress of Mathematicians,

798 (American Mathematical Society, 1987).
[110] V. N. Dutyshev, 2-Dimensional isotopic model of a fermion field with broken SU(2)

symmetry, Sov. Phys. JETP 78 (1980) 1698.
[111] G. I. Dzhaparidze and A. A. Nersesyan, Magnetic-field phase transition in a one-

dimensional system of electrons with attraction, JETP Lett. 27 (1978) 334.
[112] I. Dzyaloshinskii, Some consequences of the Luttinger theorem: The Luttinger sur-

faces in non-Fermi liquids and Mott insulators, Phys. Rev. B 68 (2003) 085113.
[113] E. N. Economou and P. N. Poulopoulos, Ground-state energy of the half-filled one-

dimensional Hubbard model, Phys. Rev. B 20 (1979) 4756.



References 649

[114] R. Egger and H. Grabert, Friedel oscillations for interacting fermions in one dimen-
sion, Phys. Rev. Lett. 75 (1995) 3505.

[115] V. J. Emery, A. Luther and I. Peschel, Solution of the one-dimensional electron gas
on a lattice, Phys. Rev. B 13 (1976) 1272.

[116] F. H. L. Essler, The supersymmetric t-J model with a boundary, J. Phys. A 29 (1996)
6183.

[117] F. H. L. Essler and H. Frahm, X-ray edge singularity in integrable lattice models of
correlated electrons, Phys. Rev. B 56 (1997) 6631.

[118] — Density correlations in the half-filled Hubbard model, Phys. Rev. B 60 (1999)
8540.

[119] F. H. L. Essler and V. E. Korepin, Higher conservation laws and algebraic Bethe
Ansätze for the supersymmetric t-J model, Phys. Rev. B 46 (1992) 9147.

[120] — Scattering matrix and excitation spectrum of the Hubbard model, Phys. Rev. Lett.
72 (1994) 908.

[121] — SU(2) × SU(2) invariant scattering matrix of the Hubbard model, Nucl. Phys. B
426 (1994) 505.

[122] F. H. L. Essler, V. E. Korepin and K. Schoutens, Complete solution of the one-
dimensional Hubbard model, Phys. Rev. Lett. 67 (1991) 3848.

[123] — Completeness of the SO(4) extended Bethe ansatz for the one-dimensional Hub-
bard model, Nucl. Phys. B 384 (1992) 431.

[124] — Fine structure of the Bethe ansatz for the spin- 1
2 Heisenberg XXX model, J. Phys.

A 25 (1992) 4115.
[125] — New eigenstates of the one-dimensional Hubbard model, Nucl. Phys. B 372

(1992) 559.
[126] — New exactly solvable model of strongly correlated electrons motivated by high-Tc

superconductivity, Phys. Rev. Lett. 68 (1992) 2960.
[127] — Exact solution of an electronic model of superconductivity, Int. J. Mod. Phys. B

8 (1994) 3205.
[128] F. H. L. Essler and A. M. Tsvelik, Weakly coupled one-dimensional Mott insulators,

Phys. Rev. B 65 (2002) 115117.
[129] — Finite temperature spectral function of Mott insulators and charge density wave

states, Phys. Rev. Lett. 90 (2003) 126401.
[130] M. Fabrizio and A. O. Gogolin, Interacting one-dimensional electron gas with open

boundaries, Phys. Rev. B 51 (1995) 17827.
[131] L. D. Faddeev, Quantum completely integrable models in field theory, Sov. Sci. Rev.

Math. Phys. C 1 (1980) 107.
[132] L. D. Faddeev and L. A. Takhtajan, Spectrum and scattering of excitations in the

one-dimensional isotropic Heisenberg model, Zap. Nauchn. Sem. LOMI 109 (1981)
134. Translated in J. Soviet Math. 24 (1984) 241.

[133] — What is the spin of a spin wave?, Phys. Lett. A 85 (1981) 375.
[134] — Hamiltonian Methods in the Theory of Solitons (Berlin: Springer-Verlag, 1987).
[135] J.-P. Farges, ed., Organic Conductors (New York, Marcel Dekker, 1994).



650 References

[136] J. Favand, S. Haas, K. Penc, F. Mila and E. Dagotto, Spectral functions
of one-dimensional models of correlated electrons, Phys. Rev. B 55 (1997)
R4859.

[137] A. M. Finkel’shtein, Correlation functions in one-dimensional Hubbard model,
JETP Lett. 25 (1977) 73.

[138] A. Foerster and M. Karowski, Algebraic properties of the Bethe ansatz for an
spl(2,1)-supersymmetric t-J model, Nucl. Phys. B 396 (1993) 611.

[139] E. Fradkin, Field Theories of Condensed Matter Systems (Reading, Mass.: Addison
Wesley, 1991).

[140] H. Frahm and V. E. Korepin, Critical exponents for the one-dimensional Hubbard
model, Phys. Rev. B 42 (1990) 10553.

[141] — Correlation functions of the one-dimensional Hubbard model in a magnetic field,
Phys. Rev. B 43 (1991) 5653.

[142] H. Frahm and M. P. Pfannmüller, On the Hubbard model in the limit of vanishing
interaction, Phys. Lett. A 204 (1995) 347.

[143] H. Frahm and A. Schadschneider, Critical exponents of the degenerate Hubbard
model, J. Phys. A 26 (1993) 1463.

[144] H. Frahm and N. A. Slavnov, New solutions to the reflection equation and the
projecting method, J. Phys. A 32 (1999) 1547.

[145] H. Frahm and N.-C. Yu, Finite size effects in the integrable XXZ Heisenberg model
with arbitrary spin, J. Phys. A 23 (1990) 2115.

[146] H. Frahm, N.-C. Yu and M. Fowler, The integrable XXZ Heisenberg model with
arbitrary spin: construction of the Hamiltonian, the ground-state configuration and
conformal properties, Nucl. Phys. B 336 (1990) 396.

[147] J. Friedel, The distribution of electrons round impurities in monovalent metals,
Philos. Mag. 43 (1952) 153.

[148] A. Fring, G. Mussardo and P. Simonetti, Form factors for integrable Lagrangian
field theories: the sine-Gordon model, Nucl. Phys. B 393 (1993) 413.

[149] S. Fujimoto and N. Kawakami, Exact multicritical properties of the multicom-
ponent interacting fermion model with boundaries, Phys. Rev. B 54 (1996)
5784.

[150] H. Fujisawa, T. Yokoya, T. Takahashi, S. Miyasaka, M. Kibune and H. Takagi,
Angle-resolved photoemission study of Sr2CuO3, Phys. Rev. B 59 (1999) 7358.

[151] T. Fujita, T. Kobayashi and H. Takahashi, Large-N behaviour of string solutions in
the Heisenberg model, J. Phys. A 36 (2003) 1553.

[152] P. Fulde, Electron Correlations in Molecules and Solids (Berlin: Springer Verlag,
1991).

[153] F. B. Gallagher and S. Mazumdar, Excitons and optical absorption in one-
dimensional extended Hubbard models with short- and long-range interactions,
Phys. Rev. B 56 (1997) 15025.
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[308] M. Lüscher, Dynamical charges in the quantized renormalized massive Thirring
model, Nucl. Phys. B 117 (1976) 475.

[309] A. Luther and I. Peschel, Single-particle states, Kohn anomaly, and pairing fluctu-
ations in one dimension, Phys. Rev. B 9 (1974) 2911.

[310] Z.-Q. Ma, Yang-Baxter Equation and Quantum Enveloping Algebras (Singapore:
World Scientific, 1993).

[311] Z. Maassarani, Exact integrability of the su(n) Hubbard model, Mod. Phys. Lett. B
12 (1998) 51.

[312] — Hubbard models as fusion products of free fermions, Int. J. Mod. Phys. B 12
(1998) 1893.

[313] Z. Maassarani and P. Mathieu, The su(n) XX model, Nucl. Phys. B 517 (1998) 395.
[314] A. H. MacDonald, S. M. Girvin and D. Yoshioka, t/U expansion for the Hubbard

model, Phys. Rev. B 37 (1988) 9753.
[315] G. D. Mahan, Many-Particle Physics (New York and London: Plenum Press, 1990).
[316] J. M. Maillet and J. Sanchez de Santos, Drinfel’d twists and algebraic Bethe ansatz,

in M. Semenov-Tian-Shansky, ed., vol. 201 of Amer. Math. Soc. Transl., Ser. 2,



References 659

(Providence, R.I.: Amer. Math. Soc., 2000), 137–178. L. D. Faddeev’s Seminar on
Mathematical Physics

[317] J. M. Maillet and V. Terras, On the quantum inverse problem, Nucl. Phys. B 575
(2000) 627.

[318] S. Mandelstam, Soliton operators for the quantized sine-Gordon equation, Phys.
Rev. D 11 (1975) 3026.

[319] M. J. Martins and P. B. Ramos, The algebraic Bethe ansatz for braid-monoid lattice
models, Nucl. Phys. B 500 (1997) 579.

[320] — The quantum inverse scattering method for Hubbard-like models, Nucl. Phys. B
522 (1998) 413.

[321] D. Mattis, New wave-operator identity applied to study of persistent currents in 1d,
J. Math. Phys. 15 (1974) 609.

[322] J. B. McGuire, Study of exactly solvable one-dimensional N -body problems, J.
Math. Phys. 5 (1964) 622.

[323] V. Meden and K. Schönhammer, Spectral functions for the Tomonaga-Luttinger
model, Phys. Rev. B 46 (1992) 15753.

[324] E. Melzer, On the scaling limit of the 1d Hubbard model at half filling, Nucl. Phys.
B 443 (1995) 553.

[325] W. Metzner and D. Vollhardt, Correlated lattice fermions in d = ∞ dimensions,
Phys. Rev. Lett. 62 (1989) 324. Erratum: Phys. Rev. Lett 62 (1989) 1066.

[326] — Ground-state energy of the d = 1, 2, 3 dimensional Hubbard model in the weak-
coupling limit, Phys. Rev. B 39 (1989) 4462.

[327] P. K. Mitter and P. H. Weisz, Asymptotic scale invariance in a Massive Thirring
Model with U (n) symmetry, Phys. Rev. D 8 (1973) 4410.

[328] Y. Morita, M. Kohmoto and T. Koma, Quasi-bound states of two magnons in the
spin-1/2 XXZ chain, J. Stat. Phys. 88 (1997) 745.

[329] P. M. Morse and H. Feshbach, Methods of Theoretical Physics (New York: McGraw-
Hill, 1953).

[330] J. Moser, 3 integrable Hamiltonian systems connected with isospectral deformations,
Adv. Math. 16 (1975) 197.

[331] N. F. Mott, The basis of the electron theory of metals, with special reference to the
transition metals, Proc. Phys. Soc. A 62 (1949) 416.

[332] — Metal-Insulator Transitions (London: Taylor and Francis, 1990).
[333] G. Müller, H. Thomas, H. Beck and J. C. Bonner, Quantum spin dynamics of the

antiferromagnetic linear chain in zero and nonzero magnetic field, Phys. Rev. B 24
(1981) 1429.

[334] S. Murakami, New integrable extension of the Hubbard chain with variable range
hopping, J. Phys. A 31 (1998) 6367.
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[390] D. Sénéchal, D. Perez and M. Pioro-Ladrière, Spectral weight of the Hubbard model

through cluster perturbation theory, Phys. Rev. Lett. 84 (2000) 522.
[391] B. S. Shastry, Exact integrability of the one-dimensional Hubbard-model, Phys. Rev.

Lett. 56 (1986) 2453.
[392] — Infinite conservation-laws in the one-dimensional Hubbard-model, Phys. Rev.

Lett. 56 (1986) 1529. Erratum: 2334.
[393] — Decorated star triangle relations and exact integrability of the one-dimensional

Hubbard-model, J. Stat. Phys. 50 (1988) 57.



References 663

[394] — Exact solution of an S = 1/2 Heisenberg antiferromagnetic chain with long-
ranged interactions, Phys. Rev. Lett. 60 (1988) 639.

[395] B. S. Shastry and B. Sutherland, Twisted boundary conditions and effective mass in
Heisenberg-Ising and Hubbard rings, Phys. Rev. Lett. 65 (1990) 243.

[396] H. Shiba, Magnetic susceptibility at zero temperature for the one-dimensional Hub-
bard model, Phys. Rev. B 6 (1972) 930.

[397] — Thermodynamic properties of the one-dimensional half-filled-band Hubbard
model. II, Prog. Theor. Phys. 48 (1972) 2171.

[398] N. Shibata, K. Ueda, T. Nishino and C. Ishii, Friedel oscillations in the one-
dimensional Kondo lattice model, Phys. Rev. B 54 (1996) 13495.

[399] M. Shiroishi, H. Ujino and M. Wadati, SO(4) symmetry of the transfer matrix for
the one-dimensional Hubbard model, J. Phys. A 31 (1998) 2341.

[400] M. Shiroishi and M. Wadati, Decorated star-triangle relations for the free-fermion
model and a new solvable bilayer vertex model, J. Phys. Soc. Jpn. 64 (1995) 2795.

[401] — Yang-Baxter equation for the R-matrix of the one-dimensional Hubbard model,
J. Phys. Soc. Jpn. 64 (1995) 57.

[402] — Bethe ansatz equation for the Hubbard model with boundary fields, J. Phys. Soc.
Jpn. 66 (1997) 1.

[403] — Integrable boundary conditions for the one-dimensional Hubbard model, J. Phys.
Soc. Jpn. 66 (1997) 2288.

[404] E. K. Sklyanin, Quantum version of the method of inverse scattering problem, Zap.
Nauchn. Sem. LOMI 95 (1980) 55.

[405] — The quantum Toda chain, in Lecture Notes in Physics 226 (Berlin: Springer
Verlag, 1985), 196–233.

[406] — Boundary conditions for integrable quantum systems, J. Phys. A 21 (1988) 2375.
[407] — Quantum inverse scattering method. Selected topics, in M.-L. Ge, ed., Quantum

Group and Quantum Integrable Systems (Nankai Lectures in Mathematical Physics).
(Singapore: World Scientific, 1992), 63–97.

[408] — Separation of variables – new trends, Prog. Theor. Phys. Suppl. 118 (1995) 35.
[409] — Generating function of correlators in the sl(2) Gaudin model, Lett. Math. Phys.

47 (1999) 275.
[410] E. K. Sklyanin and L. D. Faddeev, Method of the inverse scattering problem and

quantum nonlinear Schrödinger equation, Dokl. Acad. Nauk SSSR 244 (1978) 1337.
[411] — Quantum mechanical approach to completely integrable models of field theory,

Dokl. Acad. Nauk SSSR 243 (1978) 1430.
[412] S. Skorik and H. Saleur, Boundary bound states and boundary bootstrap in the

sine-Gordon model with Dirichlet boundary conditions, J. Phys. A 28 (1995) 6605.
[413] N. A. Slavnov, Calculation of scalar products of the wave functions and form factors

in the framework of the algebraic Bethe ansatz, Teor. Mat. Fiz. 79 (1989) 232.
[414] F. Smirnov, A general formula for soliton form factors in the quantum sine–Gordon

model, J. Phys. A 19 (1986) L575.



664 References

[415] — Proof of identities which arise in the calculation of form-factors in the sine-
Gordon model, Zap. Nauchn. Sem. LOMI 161 (1987) 98.

[416] — Quantum groups and generalized statistics in integrable models, Comm. Math.
Phys. 132 (1990) 415.

[417] — Reductions of the sine-Gordon model as a perturbation of minimal models of
conformal field theory, Nucl. Phys. B 337 (1990) 156.

[418] — A new set of exact form factors, Int. J. Mod. Phys. A 9 (1994) 5121.
[419] — Counting the local fields in the sine-Gordon theory, Nucl. Phys. B 453 (1995)

807.
[420] F. A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field

Theory (Singapore: World-Scientific, 1992).
[421] K. Sogo and M. Wadati, Boost operator and its application to quantum Gelfand-

Levitan equation for Heisenberg-Ising chain with spin one-half, Prog. Theor. Phys.
69 (1983) 431.

[422] B. Sutherland, Exact solution of a two-dimensional model for hydrogen-bonded
crystals, Phys. Rev. Lett. 19 (1967) 103.

[423] — An introduction to the Bethe ansatz, in Lecture Notes in Physics 242 (Berlin:
Springer Verlag, 1985), 1–95.

[424] J. Suzuki, Spinons in magnetic chains of arbitrary spins at finite temperatures, J.
Phys. A 32 (1999) 2341.

[425] J. Suzuki, Y. Akutsu and M. Wadati, A new approach to quantum spin chains at
finite temperature, J. Phys. Soc. Jpn. 59 (1990) 2667.

[426] J. Suzuki, T. Nagao and M. Wadati, Exactly solvable models and finite size correc-
tions, Int. J. Mod. Phys. B 6 (1992) 1119.

[427] M. Suzuki and M. Inoue, The ST-transformation approach to analytic solutions of
quantum systems. I. General formulations and basic limit theorems, Prog. Theor.
Phys. 78 (1987) 787.

[428] A. Swieca, Solitons and confinement, Fortschr. Phys. 25 (1977) 303.
[429] M. Takahashi, Magnetization curve of the half-filled Hubbard model, Prog. Theor.

Phys. 42 (1969) 1098.
[430] — Ground state energy of the one-dimensional electron system with short range

interaction. I, Prog. Theor. Phys. 44 (1970) 348.
[431] — On the exact ground state energy of Lieb and Wu, Prog. Theor. Phys. 45 (1971)

756.
[432] — One-dimensional electron gas with delta-function interaction at finite tempera-

ture, Prog. Theor. Phys. 46 (1971) 1388.
[433] — One-dimensional Heisenberg model at finite temperature, Prog. Theor. Phys. 46

(1971) 401.
[434] — Thermodynamics of the Heisenberg-Ising model for |�| < 1 in one dimension,

Phys. Lett. A 36 (1971) 325.
[435] — One-dimensional Hubbard model at finite temperature, Prog. Theor. Phys. 47

(1972) 69.



References 665

[436] — Low-temperature specific heat of one-dimensional Hubbard model, Prog. Theor.
Phys. 52 (1974) 103.

[437] — Half-filled Hubbard model at low temperature, J. Phys. C 10 (1977) 1289.
[438] — Correlation length and free energy of the S = 1/2 XYZ chain, Phys. Rev. B 43

(1991) 5788. See also Phys. Rev. B. 44 (1991) 12382.
[439] — Thermodynamics of One-Dimensional Solvable Models (Cambridge: Cambridge

University Press, 1999).
[440] Simplification of thermodynamic Bethe ansatz equations, in A. K. Kirillov and

N. Liskova, eds., Physics and Combinatorics (Singapore: World Scientific, 2001),
299–304.

[441] M. Takahashi and M. Shiroishi, Integral equation generates high-temperature ex-
pansion of the Heisenberg chain, Phys. Rev. Lett. 89 (2002) 117201.

[442] — Thermodynamic Bethe ansatz equations of one-dimensional Hubbard model and
high-temperature expansion, Phys. Rev. B 65 (2002) 165104.

[443] M. Takahashi, M. Shiroishi and A. Klümper, Equivalence of TBA and QTM, J.
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