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Preface

This book is based on the emerging notion that a thorough and fundamental
understanding of the interplay of magnetism and structure is needed if a wide
variety of functional materials are to be efficiently used in applications. The
intent is to foster interaction between researchers in three distinct but related
topics: (i) magnetoelastic materials such as magnetic martensites and mag-
netic shape memory alloys, (ii) magnetocaloric effects related to magnetostruc-
tural transitions, and (iii) colossal magnetoresistance (CMR) manganites and
related perovskites. The goal is to identify common underlying principles in
these three classes of materials that are relevant to optimize various function-
alities. The interplay between structure and magnetic properties is sensitive
to disorder and manifests itself at multiple length scales in a cross-correlated
and hierarchical fashion.

Functional materials are becoming a major theme of the XXI century re-
search. The emergence of apparently different magnetic/structural phenomena
in disparate classes of materials (mentioned above) clearly points to a need to
integrate common concepts in order to achieve a broader understanding of the
interplay between magnetism and structure in this general class of functional
materials. This book represents the first steps toward this goal and we hope
it reflects this at least in spirit. The idea for this book was born at the work-
shop Interplay of Magnetism and Structure in Functional Materials held at
the Benasque Center for Science in the Pyrenees mountains during February,
9–13, 2004.

The topics covered here are interdisciplinary in nature and the chapters
are written by expert researchers, who are from physics, materials science,
applied mathematics and engineering backgrounds. Therefore, the book is
addressed to both the experts and researchers getting into the field of magnetic
functional materials including graduate students.

The eleven chapters are arranged as follows. The first two chapters (re-
spectively by Shenoy et al. and Castán et al.) focus on the general aspects of
phase transitions in multiferroic materials such as the role of elastic compat-
ibility and long-range interactions, coupling between strain and other impor-
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tant physical variables, e.g. magnetization, polarization, orbital ordering, etc.,
role of disorder in pretransitional phenomena and transition kinetics, local
structure probes and phonon anomalies. The next two chapters by Morellon
and Ibarra, and by Egami, cover a broad variety of magnetoresistive, magne-
tostrictive and superconducting materials where the authors discuss the role
played by the interplay of spin, charge, orbital and lattice degrees of free-
dom on their properties. The chapters by Shapiro, Venkateswaran and De
Graef, and Brown et al., review and provide exciting new results concern-
ing the anomalous phonon behavior, structural and magnetic precursors and
techniques for imaging them. James and Zhang provide an applied mathe-
matical perspective on the problem of martensites as well as the conditions
for the coexistence of ferroelectricity and magnetism. The century old (but
still not fully understood) problem of the Invar as well as anti-Invar effects
are reviewed by Wasserman and Acet. Finally, Pecharsky and Gschneider Jr.
and Casanova et al. elaborate on the magnetocaloric effects and emerging new
materials and applications. The last chapter by Prof. P.-A. Lindg̊ard nicely
summarizes the workshop held in Benasque and provides perspectives for the
future.

We would like to dedicate this book to the memory of Prof. James A.
Krumhansl who passed away while writing the Introductory chapter. This
unfinished chapter with his thoughts on the complex functional materials is
also included in the beginning of this book. Over six decades Prof. Krumhansl
inspired many generations of scientists in the multidisciplinary field of complex
materials and brought the concept of (elastic) solitons in materials science
as simply being domain walls or twin boundaries. He also popularized the
physicist’s notion of phonons among metallurgists which has undoubtedly
helped the interpretation of many experimental observations.

Finally, we gratefully acknowledge financial support from MCyT (Spain),
AGAUR (Catalonia), University of Barcelona, Los Alamos National Labora-
tory, the U.S. Department of Energy and Benasque Center for Science. We
specially thank Prof. Pere Pascual (Director of Benasque Center) for grace-
fully providing the conference facilities at Benasque.

Antoni Planes
Barcelona and Los Alamos, Llúıs Mañosa
October 2004 Avadh Saxena
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1

Complex Functional Materials

J.A. Krumhansl

[Based on notes provided by Prof. J.A. Krumhansl to the editors.]

To begin with, I want to say that the idea that complex functional/adaptive
materials are a new, recent discovery displays a shallow knowledge of met-
allurgy, last century’s condensed matter physics, and electrical engineering.
But to get on to the point of the title: Some ten years ago when many com-
plex . . .materials were being widely publicized for new funding, Dick Slansky,
then Director of the Theoretical Division at Los Alamos National Laboratory,
was complaining to me: “What good does ‘complex’, defined as non-simple,
do for us scientifically? What kind of a guiding principle for science is that?”

To our great surprise we found that the main definition of “complex” has
a well-defined meaning and is very useful to generalize to materials. Simple,
we found the answer in most dictionaries! To me it is a most conceptually
useful definition, and I hope you find it so too:

Complex (def. 1): “Composed of interconnected or interwoven parts”. . .
This is the main meaning.

And it clearly describes many early Complex Functional Materials, such
as a ferromagnet. That early work identified multiple domains which moved
at the mesoscopic scale in response to an applied field by motion of magnetic
domain walls. The effect is to change the average macroscopic magnetization.
So this definition describes an array of interwoven microscopic phases which
move, respectively, to change a macroscopic condition. Not surprisingly the
same ideas apply to ferroelectrics and ferroelastics (martensites) and shape
memory materials. The materials discussed in this book now can also be
thought of in this context.

I offer some miscellaneous remarks on modern materials science. An impor-
tant reference is “Renormalization Group Theory: Its basis and formulation in
statistical physics”, Michael E. Fisher, Reviews of Modern Physics 70, p. 653
(1998). Read particularly pp. 653–655 and consider the following questions (1)
Is the Renormalization Group (RG) a fundamental principle or a calculation
method? (2) What fraction of all phase transitions are second order? Is Renor-
malization Group needed generally in Materials Science? (3) Is there really
such a thing as First Principles calculations (at finite temperature)? What
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is an effective Hamiltonian in modern condensed matter physics? I provide a
few hints and partial answers. A vast majority (more than 90%) of all phase
transitions in nature are of first order. Renormalization Group is essentially
a calculational procedure. However, the Landau theory is of fundamental im-
portance in materials science and so forth.

The key word for modeling is multiscale. Physically realistic models can
start at the mesoscopic scale where the notion of an order parameter and
the corresponding Ginzburg–Landau free energy (for phase transitions) are
essential. The coefficients of this free energy must be determined from ex-
perimental data such as structural, phonon dispersion, and thermodynamic
response functions. Alternatively, these coefficients can be determined from
microscopic calculations, e.g., electronic structure calculations and molecular
dynamics simulations. The single crystal Ginzburg–Landau models can be ex-
tended to polycrystals and then suitably coarse grained to serve as input for
continuum level constitutive response models.

Over the past half century I have had spirited discussions and shared many
ideas with most of the authors in this book, and my own understanding of
complex materials and multiferroics, using martensites as a prototypical ex-
ample, has evolved. Understanding is always a relative word and I believe that
the younger generation of scientists will take it to the next level by exploiting
the modern tools of computational science, high resolution microscopies, and
a suite of characterization techniques. The path to new ideas and applications
in the field of functional materials is multidisciplinary – a synergy between
metallurgists, materials scientists, physicists, applied mathematicians, engi-
neers, and even biologists. We have to learn a lot from biology in terms of
how evolution has optimized biological functionality.
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Spin, Charge, and Lattice Coupling
in Multiferroic Materials

S.R. Shenoy, T. Lookman, and A. Saxena

2.1 Introduction

Functional materials are those with technologically useful properties that can
be sensitively controlled by external parameters. The need to understand and
to use functionalities of shape memory alloys, relaxor ferroelectrics, colossal
magnetoresistance manganites, superconducting cuprates and other materi-
als, is one motivation for their intense current study [1–11]. Of course, ap-
plied stress, magnetic field or voltage will, respectively, induce direct-variable
changes in strain, magnetization and electric polarization. More interestingly,
in multifunctional materials with mutually coupled variables, there is also a
cross-variable response, so a given field could control two or more variables,
or a variable can be switched by two or more external fields.

Thus in magnetic shape memory alloys, with coupled strain and mag-
netization, the external shape can be controlled both by pressure and by
magnetic field; and stress changes magnetization, while magnetic field affects
structure [12]. In colossal magnetoresistance manganites [3], the conductance
(that is related to magnetization), rises by many orders of magnitude in re-
sponse to uniform magnetic fields as well as to hydrostatic pressure; while
voltage induces changes in local structure and conductance [13, 14]. In fer-
roelectric manganites, polarization can be switched by a magnetic field [15].
In cuprates [7] the superconductivity is suppressed as usual by a magnetic
field, but is also controlled by stress [16]; shape memory-like effects can oc-
cur [17]; and surprisingly (for these doped antiferromagnets), an external uni-
form magnetic field can rotate elastic domain walls [18]. Thus a variety of
materials show cross-variable response in their macroscopic multifunctionali-
ties, implying strong coupling of magnetic spin, electronic charge and lattice
strain.

Finescale local probes have revealed something surprising, however. Many
transition metal oxides spontaneously form nonuniform complex patterns
of charge, spin and strain variables at scales of a nanometer and up-
wards [4–6, 19–26]. The multivariable patterning includes structural stripes,
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magnetic droplets and conducting filaments, and there has been much exper-
imental and theoretical interest in this “nanoscale phase separation” or “in-
trinsic heterogeneity” [4–6]. There is also a remarkable cross-scale response: a
uniform or macroscale magnetic field can induce mesoscale structural changes,
or nanoscale conductance variations [18,19].

An understanding of these multiscale, multivariable textures is crucial to
tailoring multifunctionalities on the macroscale [10]. Clearly, a uniform order
parameter (OP) Landau model is insufficient. The spatially varying patterns of
charge, magnetization, and strain must emerge as the locally stable minimum
of some multivariable, nonlinear, free energy functional.

Spatial variation as a preferred state is not new, of course. Purely fer-
roelastic materials with a strain tensor order parameter, such as shape mem-
ory alloys like FePd, show mesoscale “twins” or bands of coexisting unit-cell
variants, below the structural transition [27]; or woolen-fabric-like “tweed” of
oriented criss-cross striations on a finer nanoscale, above the transition [28].
In martensites, interfaces can also be dynamic, with acoustic emission on
quenching, from domains advancing at sound speeds [29]. Superconducting
cuprates are also doped ferroelastics [30], and show both twinning and tweed,
as emphasized by Krumhansl [7]. Magnetoresistant metallic glasses exhibit
mesoscale tweed [31]. Relaxor ferroelectrics/magnetoelastics also show twins
and tweed in electric polarization/magnetization [12,32].

The similarity and ubiquity of textures in very different materials prompts
a search for a common link. Competition between short- and long-range forces,
and/or sign-varying frustration effects are known to generically favour pat-
terning [33]. Since all variables live on a discrete, d-dimensional crystal lat-
tice, it follows that local deformation or strain of the lattice both affects
spin and charge, and in turn is influenced by them. It turns out that in fer-
roelastics, generic lattice-integrity constraints on the 1

2d(d + 1) components
of the symmetric strain tensor [34] can induce effective long-range interac-
tion potentials, with sign-varying angular variation, and power-law decay.
Working in a strain representation, rather than in the more conventional dis-
placement representation, reveals these hidden, texture-inducing correlations.
The origins of intrinsic inhomogeneities could lie in the ubiquitous strain
tensor: its power-law interaction, its nonlinearity, and its coupling to other
variables.

We focus on this emerging viewpoint [35–42], without giving a proper re-
view of other approaches, or any more than illustrative references. In Sect. 2.2
we consider coupled “multiferroic” order parameters. Section 2.3 discusses
the St Venant compatibility constraint that induces the effective long-range
potential. Intrinsic inhomogeneities in proper ferroelastics and multiferroic
oxides, are discussed in Sects. 2.4 and 2.5, respectively. Section 2.6 outlines
the modelling of oxides, with charge and spin acting as local stresses and
temperatures. A summary, with speculations on further work, is given in
Sect. 2.7.
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2.2 Order Parameters and Multiferroics

The order parameter is a basic concept in phase transitions [43]: a variable
whose thermal average becomes nonzero below a transition temperature or
pressure either continuously (second-order) or discontinuously (first-order).
The free energy lowering can involve a global dominance of a uniform state:
only one out of NV competing, lower symmetry, degenerate minima or “vari-
ants” is finally present. Nonlinearity of the free energy functional in such
second order transitions is manifest close to the transition, where renormal-
izations occur due to nonuniform critical fluctuations of competing variants.

Structural phase transitions involve a change in the discrete symmetry of
the unit cell, with lattice points shifting on cooling (or application of stress)
to new lower-symmetry positions. Ferroelastic displacive structural transi-
tions [1] are those for which the symmetry of the low-temperature unit cell is
a subgroup of the high-temperature unit cell symmetry. The order parameters
(OP) for first-order ferroelastic transitions are NOP ≤ d independent com-
ponents of the strain tensor, that can exhibit strain hysteresis under applied
stress. The free energy lowering can involve a global coexistence of nonuniform
states: all the NV lower symmetry variants are finally present. Nonlinearity of
the free energy functional in such first-order transitions is manifest for tem-
peratures all the way below, and for a range above, the transition. Structural
static domain walls such as in twins or tweed, and dynamic excitations, are
elastic solitons [27,28,44], and the nonuniformity is a signature of nonlinearity.

Domains and hysteretic switching occur, of course, in several types of mate-
rials – indeed the very name “ferroelastic” and “ferroelectric” derive from the
analogy with ferromagnets: they all have such behaviour in common (but not
the element of Fe, ironically!) These three materials classes can be grouped
under the common rubric of “ferroics” as they all “undergo nondisruptive
phase transitions that alter their point group symmetry” with strain, electric
polarization, or magnetization as the respective order parameters [9]. Materi-
als with two or more ferroic OPs, and a sequence of nested phase transitions,
are multiferroics, that can have mutually coupled nonlinearities. A primary
order parameter at its transition temperature (or composition), can drive the
other, secondary OPs; with roles exchanged at the other, nested transitions.
For example cuprates have a ferroelastic structural transition [30], with strain
as the primary OP, that can be followed on cooling by a Néel transition, with
staggered magnetization as the primary OP [7]. In manganites depending on
the doping, there is a complex phase diagram, with ferromagnetic, charge-
order, ferroelastic and Jahn-Teller transitions [3, 6].

As illustrated in later sections, cuprates and manganites could be re-
garded as examples of complex multiferroics in the sense of Krumhansl,
who speaks in this volume of complex materials as composed of inter-
connected parts, with interwoven microscopic phases moving relatively, to
change a macroscopic condition. This picture of annealed-variable texturing
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is complementary to quenched-disorder effects, certainly also present [6]. The
multiferroic conceptual umbrella, and an approach that studies cuprates in the
context of manganites and other oxides [23], might have pleased Krumhansl,
who also remarked that “by and large, the physics literature on high Tc seems
to be unfortunately disjoint from much earlier work on displacive phase tran-
sitions, or other areas of materials science, notably ferroelectricity and met-
allurgy” [7].

2.3 Strain Tensor and Elastic Compatibility

In this section we focus on “proper” ferroelastics that have only a strain
tensor order parameter [1] and later consider couplings to other variables,
in “improper” ferroelastics. Suppose we only consider those deformations of
the crystal lattice that do not create dislocations and vacancies. Then the
central point is that this seemingly innocuous “no-defect” constraint, of lattice
integrity maintained at every instant, implies the existence of anisotropic,
power-law (APL) correlations between order-parameter strains.

2.3.1 Levels of Description

The unit cell sets the minimum scale for strain variations. More generally, it
is useful to define levels of description for probe distances R, as in Fig. 2.1.
Level 0 or L0 ∼ R � a0 (lattice constant) is the macroscopic regime of
engineering strains, and of system size and shape. Level 1 is the regime
of unit-cell strains, that can have meso- and nanoscale variations within the
large range L0 > R > a0. The intracell regime of Level 2 involves the bond
angles and lengths, a0 > R ∼ �0, of the atomic basis whose deformation

Fig. 2.1. Levels of description. See text, Sect. 2.3.1
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may be termed as the “microstrain”, e.g. Jahn–Teller-like distortions of per-
ovskite octahedra [21]. Finally, Level 3 is the Ångstrom-scale regime of the
electron occupancies/spin states of individual-atom wavefunctions on scales
�0 > R ∼ r0, e.g. d-wave orbitals or core spins. Of course, the levels are
coupled. The Level 1/Level 2 interface is where the elastic physics meets the
structural chemistry. Jahn–Teller Hamiltonians [3] link Level 3 orbital occu-
pancies to Level 2 octahedral “Q2, Q3” stretchings; these in turn represent
Level 1 unit-cell strain distortions.

The material specifics of the multiferroics are in the detailed nature of the
charge/polarization/spin variables; their symmetry-dictated couplings to each
other and to strains; and the values and signs of the coupling constants as
well as energy scales. But for materials with strong elastic anisotropy (from
directional Level 2 bonding, or basis atoms with widely different sizes), the
common key is the Level 1 strain. Its APL elastic correlations, nonlinearities,
and couplings to other variables, could possibly induce domain-wall patterned
states, as local minima of a multivalley free energy landscape. The power-law
correlations are in a certain sense, scale-free, and could link widely separated
variables at finer levels of description.

2.3.2 Definition of Unit-Cell Strain Tensor

Engineering strain is a Level 0 description of distortions of a medium, with
derivatives of a continuous displacement u(r′), labelled by a continuum posi-
tion r′ [43,45]. On the other hand, unit-cell strain in a crystal lattice with lat-
tice points ri can be defined as a Level 1 continuous variable, that is a discrete
difference of lattice-point displacements u(ri). It reduces to macroscopically
varying engineering strains in the continuum limit of lattice constant a0 → 0,
when the discrete differences become derivatives. Consider for simplicity, a cu-
bic lattice with atoms at lattice points ri (scaled in a0) interacting through a
two-body potential V that depends only on the magnitude of their separation
ri,j = ri − rj . Then for a deformed lattice with points at Ri = ri + u(ri),
the energy change ∆V = V (|Ri,j |) − V (|ri,j |) is

∆V = V (|ri,j + u(ri) − u(rj)|) − V (|ri,j |) . (2.1)

For nearest-neighbour lattice points, ri = rj + µ̂ (where µ̂ = x̂, ŷ, ẑ) the dis-
crete difference [46] of the displacement-vector components naturally appears,
∆µuν(rj) ≡ uν(rj + µ̂)− uν(rj). More specifically, in changes of the squared
separations

|Rj+x̂,j |2 − |rj+x̂,j |2 = 2Exx , (2.2)

the differences appear as 1
2d(d + 1) components of a unit-cell, symmetric strain

tensor that is defined by

Eµν ≡ 1
2

[∆µuν(ri) + ∆νuµ(ri) + Gµν ] . (2.3)
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Here the last term Gµν ≡ ∆µu(ri) · ∆νu(ri) is the “geometric nonlinear-
ity”. An expansion, ∆V = 1

2

∑
µν

∑
iKµνE2

µν(ri)+ · · · will include harmonic
strain terms, with Kµν an appropriate spring-constant matrix.

All this is simply to motivate the definition of the unit-cell strain tensor
(2.3) of Level 1, that appears in the Ginzburg–Landau free energy expansion
below. Although here only the static case is considered, the dynamic case has
also been treated [37]. In a Lagrangian approach, expressing the displacement
kinetic energy in terms of strain rates yields a strain-representation nonlinear
dynamics for ferroelastic transitions; dynamic compatibility kernels can be of
a resonant form to drive nonequilibrium interfaces at sound speeds [37].

The six physical strains that transform according to irreducible represen-
tations of the point group for the 3D cubic case, are one compressional, two
deviatoric, and three shear strains, defined by linear combinations [38]

e1 =
1√
3
(Exx+Eyy+Ezz), e2 =

1√
2
(Exx−Eyy), e3 =

−1√
6
(Exx+Eyy−2Ezz),

e4 = Eyz, e5 = Ezx, e6 = Exy . (2.4)

The three physical strains in 2D for the square lattice are one compressional,
one deviatoric and one shear strain

e1 =
1√
2
(Exx + Eyy), e2 =

1√
2
(Exx − Eyy), e3 = Exy , (2.5)

and we focus on this illustrative case, in Sect. 2.3.3.
A simplifying approximation is useful. The displacement differences can be

scaled in a typical strain value λ through ∆u → λ∆u or E → λE(λ), with λ
determined in terms of material parameters, e.g. for FePd, λ ∼ 0.02 [37]. The
last term in (2.3) is smaller by a relative factor of λ � 1 and can be neglected
as a first approximation, setting λGµν = 0. (The geometric nonlinearity can
later be included perturbatively, or by using the second-order compatibility
equations [45].) For now, we take strain as the defined linear symmetric tensor.
A Ginzburg–Landau expansion in quadratic and higher invariants of λE(0) is
then formally a power series in λ.

2.3.3 Strain Free Energy

To describe structural transitions, with free energy nonlinearities to drive the
finite-temperature transition, a partition function partial trace over Level 2
variables will yield a variational free energy Fstrain in terms of the Level 1
strains. The coefficient of the OP harmonic term, that decreases linearly on
cooling is A(0)(T − Tc), and the nonlinear terms generate a first-order phase
transition, at some temperature T0 > Tc, that pre-empts the full softening on
cooling to Tc. There are also non-OP harmonic terms. Scaling all strains in a
typical value λ and all energy densities in a typical value D0, and with scaled
OP strains notationally distinguished through, e.g. ε ≡ e2 for a deviatoric OP,
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the free energy Fstrain = D0

∑
f . The dimensionless scaled free energy density

f = f0(ε) + fgrad(∆ε) + fnon(e1, e3) can be expanded in symmetry-allowed
invariants, that for the 2D square–rectangle case are

f = [(τ − 1)ε2 + ε2(ε2 − 1)2] + ξ0
2(∆ε)2 +

1
2
(A1e1

2 + A3e3
2) . (2.6)

Here the dimensionless ξ0 sets a domain-wall thickness. The scaling of the
Landau free energy f0(ε) to a factorized form as in the square brackets can be
done for all ferroelastic transitions in 2D and 3D [37,47], generalizing a proce-
dure of Barsch and Krumhansl [48]. The important dimensionless temperature
variable τ = (T −Tc)/(T0−Tc) is unity at a temperature T0, when all nonzero
free energy minima in OP space fall on a “unit sphere” of radius |ε| = 1, and
are degenerate with the ε = 0 high-temperature minimum. Dimensionless elas-
tic parameters are elastic constant anisotropy ratios, related to the unscaled
values by A1,3 = A(1,3)/[A(0)(T0 − Tc)], that can in principle be determined
from experiment, molecular dynamics simulations, or electronic structure cal-
culations. The scaled values can be large for anisotropic systems (e.g. for FePd
parameters, A1 = A3/2 = 150), that has consequences discussed later.

It is tempting to say that since the non-OP free energy terms in (2.6)
are harmonic, the optimization must set e1 = e3 = 0 at the outset, so that
(for τ < 1) a uniform ε = ε̄(τ) �= 0 minimum determined by the Landau
free energy alone, is picked out. However, this procedure incorrectly treats
all strain components with wavevector k �= 0 as independent, and misses
nonuniform states that are also local minima.

Simulations in a displacement representation of (2.6) minimize f in the
d-dimensional variable u(r) at each lattice site. If instead, we want to work in
terms of the physical unit-cell variables of compression, shear and deviatoric
strain, then in fact, we have too many variables! The 1

2d(d+1) variables must
be reduced in number by Nc = 1

2d(d − 1) constraints, to yield the required
number of 1

2d(d + 1)−Nc = d degrees of freedom. Such constraints exist [34],
and are implicit in the very definition (2.3) of the strain tensor.

2.3.4 St Venant Compatibility Constraints

In a “dyadic” notation, the strain tensor in real and Fourier space (without
geometric nonlinearity) can be written as

E =
1
2

[
∆u(r) + (∆u(r))T

]
,

E(k) =
i
2

[Ku(k) + u(k)K] ,
(2.7)

where T is “transpose”, and in Fourier space, the difference operator is ef-
fectively ∆µ → iKµ ≡ i 2 sin(kµ/2). (The differences are bond-midpoint vari-
ables [46], and the physical strains can be assigned to the unit-cell centres,
i.e. the dual lattice.)
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Since Curl(Grad) acting on a single-valued function is zero, manifestly:

Inc[E] ≡ ∆ × [∆ × E]T = 0 ;

K × E × K = 0 .
(2.8)

This compatibility constraint was obtained, in the continuum limit, by St
Venant [49] in an 1864 commentary on a work of Navier, and its impor-
tance was emphasized more recently by Baus and Lovett [34]. It expresses the
physical requirement that if a unit-cell is deformed, then the neighbouring
and further-off cells must also deform in a decreasing way, so the cells all fit
together in a smoothly “compatible” manner. Clearly, even if the cell that
initiates these knock-on effects [1] is a pure deviatoric strain say, the compres-
sion/shear strains could still be needed, to maintain lattice integrity [37].

In (2.8), Inc[· · · ] defines an “incompatibility” operation on tensor fields,
such as the Div[· · · ] or Curl[· · · ] operations on vector fields. In fact Inc[E] = 0
is a zero-incompatibility, no-defect condition analogous to the zero-divergence,
no-monopole field equation Div[B] = 0 in electromagnetism. In terms of
single-valued auxiliary variables, i.e. displacements or vector potentials u,A,
both are trivial mathematical identities; but in terms of the physical variables,
i.e. unit-cell strain or magnetic field E,B, both are physical field equations.

In 1D there is only a single strain ε = ∆xux(x) and there are no compati-
bility constraints: Nc = 1

2d(d− 1) = 0. In 2D, the explicit difference equation
with Nc = 1 is

1√
2

∆2e1 − 2∆x∆ye3 −
1√
2
(∆2

x − ∆2
y)e2 = 0 . (2.9)

In 3D with Nc = 3 we have [38,45]

2∆y∆zEyz = ∆2
zEyy + ∆2

yEzz ,

2∆z∆xEzx = ∆2
xEzz + ∆2

zExx , (2.10)
2∆x∆yExy = ∆2

yExx + ∆2
xEyy .

There are also three other equations that emerge,

∆y∆zExx + ∆2
xEyz = ∆z∆xExy + ∆x∆yEzx ,

∆z∆xEyy + ∆2
yEzx = ∆y∆zExy + ∆x∆yEyz , (2.11)

∆x∆yEzz + ∆2
zExy = ∆y∆zEzx + ∆z∆xEyz ,

but solving for shears in Fourier space, or applying appropriate difference
operators, one gets identities.

2.3.5 Compatibility Potentials

The derivations of the St Venant compatibility potentials for a given transi-
tion are straightforward, as the interested reader can easily confirm by work-
ing through the square–rectangle case below. (The uninterested one can skip
directly to (2.14), and conceptual comments.)
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There are 1
2d(d + 1) physical strains, of which NOP are order parameters,

and the other n = 1
2d(d + 1)−NOP components are non-OP strains. One can

use Nc Lagrange multipliers for the constraints [35–37]. More simply [42]:

1. Solve the Nc compatibility equations for n non-OP strains in Fourier space
and substitute into the harmonic non-OP free energy, thus guaranteeing
compatibility. The free energy now has d = (d/2)(d + 1) − Nc strains.

2. Then further minimize (freely) with respect to the remaining n − Nc =
d − NOP � 0 non-OP strains, that are harmonic or bilinear in the free
energy.

This procedure converts the harmonic, local, non-OP free energy fnon to a
harmonic, non-local OP free energy fcompat.

For the square–rectangle transition, NOP = 1, n = 2 and from (2.9), the
Nc = 1 compatibility equation in fourier space is

e1(k) = −[O2(k) ε(k) + O3(k) e3(k)]/O1(k) , (2.12)

where O1(k) = − 1√
2
|K|2, O2(k) = 1√

2
(K2

x − K2
y), O3(k) = 2KxKy. By

substituting for e1 and minimizing in e3, the final result yields the com-
pressional and shear strains as proportional to the OP deviatoric strain,
e1,3(k) = B1,3(k) ε(k). Here B1 ≡ −O1 O2/D, B3 ≡ −(A1/A3)O3 O2/D,
whereas D ≡ [O2

1 + (A1/A3)O2
3], and it is seen that the compatibility con-

straint (2.12) is satisfied as an identity. Note that for an equilibrium ε(k)
texture peaking at diagonal orientations k̂x = k̂y, the non-OP strains e1,3

vanish, as the coefficients B1,3 ∼ O2 = 0.
The non-OP harmonic free energy density becomes [35–37,42]

fnon(e1, e3) = fcompat(ε) =
A1

2
|e1|2 +

A3

2
|e3|2 =

A1

2
U(k) |ε(k)|2 , (2.13)

where U(k) = |B1|2 + (A3/A1)|B3|2. The free energy Fstrain(ε) is obtained in
terms of the OP alone, with the non-OP strains as derived quantities

Fstrain =
∑

r

[(τ − 1)ε2 + ε2(ε2 − 1)2] + fgrad(∆ε)+
A1

2

∑

r,r′

ε(r)ε(r′)U(r− r′) .

(2.14)
This is a central conceptual result. In the usual displacement representation,
every term in the free energy (2.6) involves anisotropic, nearest-neighbour
differences of a d-dimensional variable u defined at the lattice points, e.g.
e2
1 = (1/2)(∆xux + ∆yuy)2, while ε6 = (1/8)(∆xux − ∆yuy)6. On the other

hand, in the OP strain representation, the free energy of (2.14), in the spirit
of Landau, depends only on the NOP ≤ d order parameters (on the dual
lattice), and there is now an explicit, far-neighbour, potential that carries all
the anisotropies [36,37].

The Landau part in square brackets is diagonal in coordinate space, while
the compatibility potential is diagonal in Fourier space. The St Venant ker-
nel U(k) = O2

2/2D ∼ (K2
x − K2

y)2/K2, and the lattice Green’s function



12 S.R. Shenoy et al.

G(k) = [K2
x + K2

y ]−1, both reflect the discreteness of the lattice in their
anisotropy at short wavelengths. However, at long wavelengths U(k) → U(k̂)
is still anisotropic and moreover, independent of the wavevector magnitude,
in contrast to the isotropic G(k) → 1/k2 that depends (only) on |k|. This
generic feature of U arises from solving the compatibility equation in terms
of factors Oi/O1 (i = 2, 3), that depend on ratios K2

µ/K2 → k2
µ/k2 = k̂2

µ.
As an important consequence, U(R) is asymptotically anisotropic, with a

numerator that reflects the symmetry of the unit cell multiplying a power-law
decay whose exponent is the dimensionality. By contrast, G(R) ∼ 1/Rd−2 is
asymptotically isotropic. Explicitly, the d = 2 square-lattice kernel in coordi-
nate space, at distances beyond a lattice scale is [35–37]

U(R) →
∫

ddk eik·R U(k̂) ∼ cos(4[θ − θ′])/Rd , (2.15)

where r̂ · r̂′ = cos(θ−θ′) and the fourfold symmetry is manifest. Clearly, the as-
ymptotic power-law decay has nothing to do with proximity to a second-order
critical point: it arises from a change of variables (k → k/R) and wavevector
phase space, with no contribution from the |k|-independent, long wavelength
kernel. The strain at a site can receive sign-varying, conflicting instructions
from the other strains around it, in elastic frustration. While the spatial in-
tegral of the truly long-range G(R) diverges as a power of system size, and
that of an isotropic power-law 1/Rd is logarithmically divergent, the integral
is zero over the sign-varying U(R) power-law potential.

The compatibility kernels are different for different ferroelastic transitions,
as they encode the transition symmetries. They have been evaluated for the
case of 2D transitions, including square–rectangle (NOP = 1, NV = 2), tri-
angle to centered rectangle (NOP = 2, NV = 3), triangle-oblique (NOP = 2,
NV = 6) [37]. For 3D transitions, evaluated kernels include cubic–tetragonal
(NOP = 2, NV = 3), cubic–trigonal (NOP = 3, NV = 4) and so on [40,47].

2.3.6 Other Approaches

There are many other complementary approaches to elastic textures, and we
can merely list some of them.

1. Simulations in the displacement representation: This is widely used [35,
50]. Strains are derived from the equilibrium displacement-vector texture.

2. Sharp-interface minimizers: In the limit ξ0 → 0 the gradient cost tends
to zero, yielding sharp-step domain walls. The applied mathematics prob-
lem is then to find distributions of domain walls with positive/negative
constant-strain regions in between them, such that the nonlinear free en-
ergy is a local minimum [51,52].

3. Simulations in morphological variables: This “phase-field” method focuses
on atomic-basis morphological variables coupled to the strain, to describe
the variants, with the inhomogeneous strain treated as a local-inclusion.
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The effective free energy is nonlinear in the morphological variables, and
has an anisotropic power-law potential between their squares. Strains are
derived quantities [53].

Nonperiodic or disordered elastic systems, such as network glasses, can be
studied through a discrete approach to their rigidity, that finds floppy, inter-
mediate and rigid phases, as the average number of local bonding constraints
varies [54].

In contrast to the above approaches, we describe here a representation that
directly works with the strain, using derived compatibility kernels specific
to each transition and an anisotropic power-law between OP strains (not
their squares). The displacement vector can then be obtained from the strain
field [34]. This approach is easily extended to include strain coupling to
other variables, as discussed in the following sections. Complementary models
for charge, spin or lattice texturings include those that invoke Coulombic
forces and/or polaronic lattice couplings; charge states as Eshelby inclusions;
quenched-disorder Griffiths models with locally suppressed transition temper-
atures; Ising-spin toy models; or inhomogeneities linked to trapped stresses
[6, 55,56].

2.4 Inhomogeneities in Ferroelastics

The local minima of the free energy Fstrain of (2.14) are found by longtime
ε(r, t) states emerging from a relaxational dynamics (that can be obtained in
some limit from an underdamped dynamics),

ε̇ = −∂Fstrain(ε)/∂ε (2.16)

with random ε(r, t = 0) initial conditions. The non-OP strains e1, e3 are
obtained as derived quantities. With additional free energy terms, as discussed
below, the asymptotic states can show equal-width twins, and tweed.

Twins

Figure 2.2a shows, for large anisotropies A1 = 100, the final state of oriented
domain walls. The preferred orientation follows from the compatibility ker-
nel U ∼ (k̂2

x − k̂2
y)2 that favours diagonal domain walls, but does not set a

mesoscale domain wall separation length. The costly non-OP strains e1,3(k)
vanish at diagonal orientations, as mentioned, in a kind of “elastic Meissner ef-
fect” [36]. (This is not true for all textures – e.g. the triangle to centred rectan-
gle transition has states with three degenerate structural domains meeting at a
point, where compatibility forces the e1(r) non-OP strain to be nonzero [37].)
Figure 2.2b shows that for smaller A1 	 1 and other parameters the same, we
get multiscale domains. These are qualitatively similar to martensites, that
Krumhansl has termed a paradigm for the multiscale concept [10].
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Fig. 2.2. Ferroelastic domain walls, below the square-to-rectangle transition tem-
perature. (a) Large coefficient of the (bulk) compatibility potentials A1 = 100 � 1.
(b) Smaller coefficient of the (bulk) compatibility potentials, A1 ∼ 1. (c) Same as
(a), but with different initial random seed, showing different quasidegenerate final
state. (d) Same as (a), but with an added surface compatibility potential setting a
length scale for equal-width twins

Why do such domain-wall states occur? After all, since the coefficient ξ2
0 of

the squared-gradient term in the free energy is positive, domain walls always
cost energy. Figure 2.2c shows that with the same parameters as Fig. 2.2a,
but a different initial-state random seed, the number Ndom of domain walls
changes; although with the free energy density f = F/L2

0 almost unchanged.
This is easily understood: if the uniform case ε = ε̄(τ) has a free energy
density f = −|f0(ε̄)|, then a state with walls of width ξ0 will have a nearly
degenerate f = −

[
|f0(ε̄)| − (ξ0/L0)Ndom ε̄2

]
. And once an elastic soliton (or

domain wall) is oriented by the compatibility potential A1U (that vanishes
at a preferred angle), then the free energy barrier to a deviating segment
of finite-fraction L0 length will be Fbarrier ∼ A1(ξ0L0) ε̄2. Thus one has the
possibility of multiple wells separated by macroscopic barriers, in a rugged
“free energy landscape” sculpted by the St Venant lock-in of multiple domain-
wall segments, with all preferred orientations present. It would be interesting
to make this “configurational strain-glass” picture more quantitative [57]. The
Ndom = 0 uniform state may be the lowest in energy, but only marginally so;
moreover it has many competitors, and so is hard to find!

Of course, all this is with periodic boundary conditions. However, finite
systems or nonperiodic boundary conditions can also be handled in princi-
ple. Consider an L0 ×L0 square martensite embryo within a sea of austenite.



2 Spin, Charge, and Lattice Coupling in Multiferroic Materials 15

The austenite/martensite interface (habit plane) at x = 0 say, can be treated
by including decaying surface strains ε̃(r), in the austenite; and also adding
on to a “bulk” strain ε̄(r) deep inside the martensite. We demand continuity
of the total strain on either side, plus strain–gradient matching as dictated
by integrating the St Venant equation across the boundary. Then the surface
strain amplitudes [in a Laplace–Fourier expansion for ε̃(r)] can be written
in terms of the bulk amplitudes [in a Fourier expansion for ε̄(r)]. The sim-
ulations can be performed in terms of the periodic boundary condition bulk
strains in an L0 × L0 surrogate system, with the surface strain contributions
integrated out to yield a surface compatibility potential that adds on to the
bulk compatibility potential. The necessarily nonzero decay constant in the
positive x direction in the austenite side, then forces a modulation wavevec-
tor or martensitic twinning in the y direction inside the embryo. Explicitly,
this elastic fringing-field energy is Fsurf ∼ (1/L0)A3

∑
k |ε̄(kx, ky)|2/|ky|, in

agreement with a displacement representation calculation. Figure 2.2d shows
that Fsurf clearly does set a mesoscopic length scale (has long wavelength |k|
dependence), yielding equal-width “true” twins, and inducing a width–length
scaling W ∼ L0

1/2, as in early experiments [27,36].

Tweed

In (some) martensites above the structural phase transition, nanoscale criss-
cross domains are seen, that have been called “tweed” textures by Tanner [28].
Tweed (and twins) has been seen in cuprates, giant magnetoresistance (GMR)
manganites, and relaxor ferroelectrics [7, 31, 32]; and magnetic tweed can
also be imaged and modelled [58]. Its ubiquity suggests an explanation in
terms of a common variable, e.g. strain. For ferroelastics, tweed has been
linked [28] to an incipient softening on cooling of the elastic constant coeffi-
cient C ′ = C11 − C12 of the harmonic deviatoric strain ε2, that is τ in scaled
form. Since compositional disorder is almost always present in alloys (and
the transition temperature varies sharply with it), models that couple strains
to the local composition η(r) have been considered. These ftweed terms in-
clude: (i) η(r)ε2(r) or spatially local structural transition temperature [35];
(ii) η(r)e1(r) or local compressional stress [59]; (iii) [(∆2

x − ∆2
y)η(r)]ε(r) or

local deviatoric stress [36]. Simulations with a fixed disorder realization show
diagonally oriented tweed-like domains. For model (ii), an infinite anisotropy
(A1 → ∞) yields a spin-glass picture of tweed [7, 35].

If η(r) is treated like an annealed disorder random variable with distrib-
ution P = e−η2/2σ2

in the partition function, then the average of the Boltz-
mann factor e−βFtweed for models (i) and (ii) yields just renormalization of the
ε4 or e1

2 terms, respectively. However, model (iii) yields the nontrivial term
fcross ∼ −βσ2[(∆2

x −∆2
y)ε]2, that favours crossings/steps in the domain-walls

(being nonzero at intersections/corners). Since η(r) is actually a quenched-
disorder random variable, averages must be performed through replicas and
the n → 0 trick. Then including only Gaussian replica correlations, we obtain
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the effective tweed term ftweed = [1 − (Ttweed/T )2]fcross with an extra tem-
perature factor, that favours tweed only at temperatures T > Ttweed ∼ σ.

2.5 Inhomogeneities in Multiferroic Oxides

High-resolution microscopies on complex oxides have revealed multiscale het-
erogeneities on scales from hundreds to a few lattice spacings. These in-
clude stripes, conducting filaments, superconducting islands and so on [4–6].
Cuprates like LaSrCuO undergo tetragonal to orthorhombic ferroelastic tran-
sitions with strain as the primary order parameter, and a Néel transition
of the antiferromagnetic (AF) state at lower temperatures. Both structural
and AF transition temperatures vary sharply with doping, e.g. substitution of
one rare earth element by another of a different valency. The superconduct-
ing and pseudogap temperatures show large isotope effects over a range of
dopings [60]; and there can be a downward cusp close to 1/8 doping. Angle-
resolved photoemission shows lattice signatures [61]. Shape memory effects
have been reported [17]. Diffuse X-ray, and neutron scattering show stripes
of competing unit-cell structures at nanoscales, and staggered-magnetization
domain walls [21, 22]. Scanning tunneling microscopy (STM) in the super-
conducting state shows a gap magnitude that varies over regions from 1 nm
upwards [20]. Remarkably, a uniform magnetic field can couple to mesoscale
elastic twin boundaries, and rotate their orientation [18]. Hence it is clear
that cuprates can show both cross-variable and cross-scale response, and are
complex multiferroics with strong charge/spin/strain coupling.

Colossal magnetoresistance (CMR) manganites like LaCaMnO show a
complex phase diagram as a function of doping, with the transition temper-
atures between phases showing cusps close to multiples of 1/8 [3, 6]. At high
and low dopings, there are AF insulator, and charge/orbital ordered regions.
At intermediate dopings there is a ferromagnetic metal region that goes over
into a paramagnetic insulator as the temperature is raised, with the Curie
and metal–insulator temperatures quite close, and a resistivity peak around
these temperatures. The Curie temperature has a strong isotope effect [60].
Theoretical double exchange models link the electron mobilities to orderings
of the core level ferromagnetic spins [3]. With resistance changing by orders of
magnitude, the “colossal” cross-variable responses include magneto-resistance
in a magnetic field ∼ T [3]; stresso-resistance under external pressure ∼ GPa
[13]; nonlinear resistance with switching/memory, under a voltage ∼ kV [14];
and photoconductance under laser power ∼ mW [62]. In short, here too, there
is strong charge/spin/strain coupling and complex multiferroic behaviour.

STM probe studies by Faeth et al. [19] on CMR manganites reveal that
the above macroscopic functionalities conceal a hidden nanoworld of spatial
variations. Although STM is a surface probe, they found that the integrated
STM resistivity versus temperature closely tracks the measured bulk re-
sistivity peak, implying the intrinsic inhomogeneity is not just superficial.
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Fig. 2.3. STM picture in coordinate space of manganite local conductance near
the ferromagnetic transition [19]. Insulator/metal denoted as light/dark. Panels,
reading left to right from the top, show cross-scale responses in meso- and nanoscale
texturing, with increasing uniform magnetic field in Tesla: 0, 0.3; 1.0, 3.0; 5.0, 9.0.
Scale bar in the lower-most right panel (9T) is 100 nm

Figure 2.3 shows the local conductance at a few volts. The dark (light) areas
are metallic (insulating). The upper left panel shows that the zero field resis-
tivity is already intrinsically inhomogeneous, from nano- to mesoscales. With
increasing strength of magnetic field, the meandering high-conductance chan-
nels expand, and the resistivity drops: the global CMR is associated with the
magnetic field or temperature controlling a percolative metallicity , that adap-
tively coexists with insulating regions [26]. This is a remarkable cross-scale
response, as it is uniform fields that produce these nanoscale, “cloud-like”
conductance variations [19]. It would be interesting to see how STM images
vary with applied uniform voltage, stress, or illumination.

Analogies between manganites and martensites [10] have been noted in
lenticular domain-wall texturings; or in their dynamics, with long incubation
times, or avalanche-type acoustic emissions; and noise spectroscopy can be a
state diagnostic [25, 29, 56, 63]. Multiferroics with a ferroelectric-polarization
order parameter have not been emphasized here, but they can also show tweed
and twins [32]. Piezoresponse force microscopies have revealed meandering
mesoscale channels [64] reminiscent of manganites [19]. Magnetic fields can
switch electric polarization in TbMnO ferroelectric manganites [15]. Early
work has indicated ferroelectric signatures in cuprates [65] (and there are
Level 2 models for pairing based on paraelectric fluctuations [66]).
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With the nonlocality already inherent in the anisotropic and unruptured
lattice, the viewpoint is that these complex textures are the adaptive responses
of nonlinear media to simple local couplings of strain to other variables.

2.6 Charge and Spin as Local Stresses
and Transition Temperatures

2.6.1 Coupling of Variables

The charges and spins couple in symmetry-allowed ways to strain tensor com-
ponents. When coupled to linear (or quadratic) powers of strains, they act as
local stresses (or local elastic constants). Conversely, when strains are coupled
to quadratic powers of the magnetization (whether staggered or direct), then
they act as local magnetic transition temperatures (whether Curie or Néel).
Compatibility-induced power-law correlations then spread the influences of
charge and spin states over large distances, and nonlinearities can mix scales.
The magnetization contribution is (with ξm being the magnetic domain wall
width)

Fmag = g0

∑

r

[

(T − Tcm)m2 +
1
2
m4

]

+
∑

r

ξ2
m(∆m)2 , (2.17)

where g0 < 1 is a ratio of magnetic to elastic energy densities. The charge
carrier–lattice interaction is in general, a symmetry-allowed coupling to a spe-
cific physical strain. For harmonic, isotropic solids, it is often sufficient to write
displacement as u(q) = û u(q) where û is a polarization direction, and then
angular average the coupling to 〈α(q)〉 ≡ α to get an “electron–phonon” inter-
action, −α

∑
q n(q)u(q). However for anisotropic multiferroics, nonlinearities

single out the OP strains; and spins/charges have different symmetry-dictated
couplings to the different physical strains, that have unequal elastic constants.
It is preferable to remain in the strain representation, and avoid truncations.

A charge state in a directional d-wave orbital can act as a deviatoric stress,
while an isotropic “mobile” [67] charge state can act as a compressional stress.
To focus on the anisotropy from the compatibility potentials, we consider
an s-wave number density n(|r|) > 0 of the charge. Ignoring higher order
magnetoelastic terms such as Amεm

2ε2, the charge/spin/strain couplings [39]

Fcoupling =
∑

r

An1ne1 + Am1m
2e1 + Anεnε2 + Anmnm2 (2.18)

act on strains as local stress “p1 e1” terms, or local shifts in the structural
transition temperature “τε2”. Note that the m2 terms can be combined with
the (T − Tcm)m2 term of (2.17) to define a Curie or Néel local transition
temperature, enhanced/suppressed essentially by the annealed local strain

T ′
cm(r) ≡ Tcm − [Am1e1(r) + Anmn(r)]/g0 . (2.19)
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The signs of the coupling constants are chosen to mimic some aspects of
cuprates and manganites [39]. Thus Am1 > 0 implies that compression e1 < 0,
that brings spins closer, favours magnetization, where m is the direct (stag-
gered) magnetization for manganites (cuprates). Since doping reduces the
structural transition temperature, Anε > 0, and for cuprates Anε � 1. For
manganites we take Anm < 0 to mimic double exchange, where the presence
of a mobile hole favours local ferromagnetism m(r) of the core spins. For
cuprates, Anm > 0, as doping dilutes spins, and in fact strongly suppresses
the Néel temperature, Anm � 1.

2.6.2 Simulations

We use a coupled relaxational dynamics with random initial conditions in
strain and magnetization, to find the free energy local minima through

ṁ = −∂F/∂m; ε̇ = −∂F/∂ε , (2.20)

where we drop Ftweed and Fsurf of Sect. 2.4 for simplicity:

F = F (ε, n,m) = Fstrain + Fmag + Fcoupling . (2.21)

The number-densities of the charges are normalized exponentials ∼e−2r,
placed randomly, with fixed positions and profiles. It would be interesting to
introduce a charge-density (ordering) dynamics, as considered elsewhere [68].

The bare Curie (Néel) transition temperatures are taken to be Tcm = 0
(Tcm �= 0) for manganite (cuprate) parent compounds treated as paramagnets
(antiferromagnets). We take [39] A1 = 50 = A3/2, ξ2

0 = 1
8 , ξ2

m = 1
2 , T0 =

1, Tc = 0.8, g0 = 0.3, Am1 = +5. The other, “manganite” parameters are
Tcm = 0, Anm = −1, An1 = +5, Anε = +2. The “cuprate” parameters are
Tcm = 0.6, Anm = +9, An1 = −5, Anε = 20. This is a regime of globally weak
magnetism, relatively strong lattice couplings, and dominant compatibility
forces.

Figure 2.4a shows the e1(r) strain of two textured manganite polarons,
that are large and floppy, and deform each other [39]. These are multivari-
able polaronic elasto-magnetic textures or pemtons, and finite-doping tex-
tures are multipemton states. Note that although the local stress An1n has
a given sign, compatibility induces quadrupoles, with both signs of strain
(compression and expansion). Figure 2.4b shows that x = 0.15 produces large
m2 �= 0 magnetization variations at multiple scales, but only in those regions
where the temperature is below the strain-induced local transition tempera-
ture, T < T ′

cm(r); whereas m2 = 0 in T > T ′
cm(r) regions. The ferromagnetic

formation of a symmetry-breaking average 〈m〉 �= 0 on this (conducting) back-
bone will also have a percolative character. For cuprates Fig. 2.4c shows a more
compact, smaller pemton, while Fig. 2.4d shows stripe-like structural variants
for x = 0.1. The multipemton strain structure factors |ε(k)|2, |e1(k)|2 reveal
the fourfold symmetry hidden in the apparently disordered coordinate-space
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Fig. 2.4. “Manganite” parameters: see text. (a) Two charges showing compressional
strain of two textured polarons. (b) Multipolaron magnetization for random-position
doping fraction x = 0.15. “Cuprate” parameters: see text. (c) Single textured po-
laron. (d) Multipolaron deviatoric strain for doping fraction x = 0.1 showing stripe-
like texturing

textures [39,42], showing butterfly-shape contours reminiscent of experimental
diffuse scattering plots [69].

The application of long-wavelength external magnetic fields and stresses
produces delicate short-wavelength “cloud-like” variations [39]. Note that in
linear response, e.g. m(q, ω) = χ(q, ω)h(q, ω), the response wavevector/
frequency is the same as that of the applied field, and increasing the field
strength merely magnifies the response. However, very different modes can
be mixed by the nonlinear free energy strain ε6(r, t) →

∏6
i=1 ε(qi, ωi) and

magnetization m4(r, t) →
∏4

i=1 m(qi, ωi) terms. Hence cross-scale responses
in length and time are another signature of nonlinearity [19, 44].

Thus simulations show multivariable, multiscale texturing, with textured
single polarons, and stripe or channel-like multipolaronic states. There is one
conceptual problem, however. The textures are supposedly from the generic
feature that doping does not produce dislocations. But then complex textures
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should always be seen – the picture is “too generic”! A further analysis [70]
shows that the key response function is the compliance describing the strain
from local internal stresses, e1(k) = χ11(k) p1(k). It contains the compatibil-
ity kernel in the denominator, and has a power-law tail in coordinate space,
χ11(R) ∼ 1/Rd, beyond an onset length ξ = ξ0/

√
A1. Hence if ξ � 1, the

compliance is already negligible before the power-law sets in; while for ma-
terials with ξ ∼ 1 there is power-law behaviour over most of the range. For
FePd, we have ξ = 1.2.

Although we have emphasized annealed-variable adaptive texturing, it is
clear that quenched variables play an important and complementary role.
Quenched compositional disorder acting as local stresses at random sites
will have nonlocal compliance effects on the strain even at far-off sites, with
total random-stress correlations showing APL decays. This could addition-
ally motivate effective random-field, correlated disorder models as studied
by Dagotto and coworkers [6]; or nonequilibrium stress-trapping scenarios of
inhomogeneities [56].

It would be interesting to extend various Level 2, models for CMR be-
haviour or cuprate pairing [66, 71] to include Level 1 strain compatibility
potentials and annealed-variable/quenched-disorder internal stresses, that in-
duce multivariable heterogeneity. Parameter regimes where electronic states
are sensitive to local quenched disorder [72], could be relevant for such strain-
induced wavefunction texturing. The inhomogeneous states will have their own
electronic and lattice excitations, e.g. domain-wall ripplings (“dyadons”) [27].

2.7 Summary and Further Work

Intrinsic heterogeneities in multiferroics are both multivariable and multiscale,
and can have cross-variable and cross-scale responses. As noted by Krumhansl,
the simultaneous presence of multiple, distinct scales could require novel ap-
proaches to materials science that treat Ginzburg–Landau functionals as ef-
fective field theories [10]. Although there are different levels of description
as in Fig. 2.1, the viewpoint outlined here regards the unit-cell strain ten-
sor as a central factor in multiferroic texturings, that involve three elements:
symmetry, compatibility, and nonlinearity.

The symmetry of the discrete point group of the unit-cell dictates the
series expansion of the strain free energy in allowed invariant combinations
of physical strain-tensor components. It also determines allowed local cou-
plings of strain components to other variables like charge density, magnetiza-
tion, and electric polarization, that can induce strain-driven local variations
of (other) multiferroic transition temperatures. Compatibility constraints on
strain components become effective interaction potentials with (symmetry-
specific) sign-varying anisotropies and (dimensional) power-law decays, when
some strains are eliminated. And the coupled order-parameter nonlinearity
that is present over wide temperature ranges supports solitonic domain walls
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(elastic or otherwise), that under orienting compatibility potentials, can lock
in to complex patterns, as local minima of a multivalley free energy landscape:
a multiferroic configurational glass. Further texturing, or a stabilization of in-
homogeneous states relative to uniform states, could occur from compositional
quenched disorder, that is nonlocally magnified by compatibility effects.

A microscopic treatment of the ideas would clearly be useful. If we inte-
grate out the strains in Gaussian approximation, the effective free energy for
the remaining variables in Fourier space Feff = D0

∑
k feff is

feff =
{
ACoul|n|2/k2

}
+

1
2
χ11|An1n + Am1m

2|2 + · · · , (2.22)

where we have added a charge–charge Coulomb interaction, and have not
shown the implicit higher-order in n–n, n–m2, and m2–m2 interactions, from
strain nonlinearities. Even for large isotropic Coulomb strength ACoul �
(An1, Am1), the treatment of correlated electrons [73] could more generally
include these qualitatively distinct anisotropic interactions between charges
and spins; and the consequent intrinsic inhomogeneities. One might conjec-
ture that whereas Mott and Anderson localizations involve metal-insulator
transitions across the system, there is a possibility here of “St Venant local-
ization”, i.e. inhomogeneous multipolaronic trapping, that coexists with the
metallicity of electrons self-focussed into channels, as they propagate through
a nonlinear, anisotropic, elastic medium, with mobility edges in coordinate
space.

The emerging viewpoint is speculative and undoubtedly needs modifica-
tion in detail, but seems worth exploring further. The unifying concept is
of annealed order parameters that are adaptively complex in the sense of
Krumhansl, whose insights have helped bring conceptual order to so many
issues in condensed matter physics and materials science.
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3

Disorder in Magnetic and Structural
Transitions: Pretransitional Phenomena
and Kinetics

T. Castán, E. Vives, L. Mañosa, and A. Planes, and A. Saxena

3.1 Introduction

According to standard textbooks on thermodynamics [1], first-order phase
transitions occur abruptly at given values of external control parameters such
as temperature, pressure or applied field (stress, magnetic or electric). In real
materials, however, these transitions rarely show such an ideal behaviour.
Commonly, the expected sharp change of the order parameter is smoothed out
and thus the transition spreads over a certain range of the external control
parameter. Moreover, in a number of systems the transition is even preceded
by anomalies, typically detected in the response to certain excitations, which
may arise from local symmetry breaking perturbations. Actually, all the anom-
alies which originate from the tendency of the system to perform anticipatory
visits to the low-symmetry phase are related to the so-called pretransitional
effects which can be defined as phenomena that announce that the system
is preparing for a phase transition before it actually occurs. In what follows,
transitions exhibiting the behaviour described above will be denoted extended
first-order transitions.

Nowadays, it is accepted that the influence of disorder in the form of ran-
domly quenched defects or impurities, almost always present in any solid sys-
tem, is at the origin of all these deviations with respect to the ideal first-order
behaviour. In this sense, there is an emerging point of view in materials physics
that disorder, understood in a broad sense (as imperfections, inhomogeneities,
point defects, boundaries, etc.), is intrinsic to real materials. In fact, a wide
variety of interesting properties in materials have only been understood when
considering disorder as something inherent to the system [2]. There are two
essential issues that enable us to account for the above-mentioned deviations
from the ideal first-order transitions. On one side, the system must sensitively
respond to quenched defects by, for instance, giving rise to variations of the
effective local transition temperature. On the other side, as already pointed
out by Imry and Wortis [3], when the transition starts the growth of the cor-
relations is blocked by defects. More recently, the existence of an associated
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disorder induced transition related to the change from a sharp to a smooth
transition has been predicted [4]. It is worth noting that in all cases long-range
interactions, as arising from surface (or interface) effects through compatibility
conditions [5,6], play a fundamental role. They enable a cooperative response
of the system to occur in the pretransitional regime by connecting the dif-
ferent perturbed regions. Moreover, they provide the necessary conditions for
the transition kinetics to be athermal as opposed to thermally activated [7].

In the present chapter we will discuss and try to establish the general
requirements for magnetic and structural materials to show pretransitional
effects. Furthermore, the effect of disorder on the transition kinetics will also
be analysed. The observed phenomenology will be illustrated with examples
for magnetic and non-magnetic materials undergoing martensitic transitions
(MTs). In addition, the possibility of simultaneous structural and magnetic
precursors will be shown in the case of materials displaying magnetostructural
transitions.

3.2 Disorder Distribution

As mentioned earlier, the point of view adopted in this work is that disorder
is intrinsic to real materials. Generically, one might characterize the disorder
in terms of a distribution such as sketched in Fig. 3.1. Intuitively the effects
of the tails can be separated from the center of the disorder distribution
as follows: The typical disorder affects the central values and fluctuations
of most of the bulk properties, and will be important in determining the
properties and kinetics of the transition. The tails of the distribution include
non-typical disorder in the sense of non-dominant contributions such as from
boundaries and extreme values, and become more relevant for small systems.
It is expected that the properties affected by this kind of disorder will be much
more sample dependent than in the case of typical disorder. We suggest that
pretransitional effects are mainly determined by non-typical disorder. Based
on this viewpoint, in this chapter we separately discuss the transition kinetics
and pretransitional effects.

Fig. 3.1. Schematic representation of the disorder distribution in materials. N is
the size of the system
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3.2.1 Pretransitional Phenomena

Pretransitional effects have been observed in a wide variety of materials. Typ-
ical examples include elastic constant and phonon anomalies in High Tc su-
perconductors [8], ferroelectrics [9], manganites [10, 11] and shape memory
alloys [12]. In addition, many of these anomalies are associated with precur-
sors such as satellites in diffraction patterns and modulated structures [13–17].
It must be noted that these structures cannot be understood as a coexistence
of different phases but rather as a mesoscopic texture within a single thermo-
dynamic phase because variations in the physical properties occur over very
small distances (at the nanometer scale) [18]. Here, we shall focus on solids
(magnetic and non-magnetic) undergoing MTs and we begin by clarifying
what we mean by pretransitional phenomena.

The high temperature phase of most materials undergoing an MT exhibits
a cubic bcc-based open structure. This turns out to be of crucial importance in
the pretransitional behaviour of the material already well above the (marten-
sitic) transition temperature (TM). Among pretransitional effects, we shall
call precursors those that involve structural changes – either dynamic or/and
static – and consequently might influence the way in which the system ap-
proaches the incoming MT. To describe pretransitional effects that do not
involve structural changes we shall use the term premonitory . These originate
from the existence of low restoring forces along specific directions related to
the symmetry of the high temperature cubic phase. More precisely, in bcc
systems to the low resistance against distortions of the {110} planes along the
〈11̄0〉 directions which is a signature of the intrinsic instability of the lattice
already pointed out by Zener [19] and Friedel [20]. Such a low resistance is
reflected by the low energy of the corresponding transverse acoustic phonon
branch TA2 and the low value of the shear elastic constant C ′ = (C11−C12)/2.
It naturally follows that premonitory effects are inherent to the cubic struc-
ture rather than to the MT itself. They are even observed in materials that
do not transform martensitically [16]. Nevertheless, they are at the origin of
a wide variety of observed precursors and in the case of martensitic materials
they participate actively in the structural instability.

3.2.2 Premonitory Behaviour: Temperature Softening

The response of a solid to long wavelength vibrational excitations is given by
the elastic constants. A quite general characteristic of bcc materials is the low
value of the elastic constant C ′ compared with other elastic moduli. Often,
this is accompanied by a low value of the energy of phonons propagating along
the [110] direction with [11̄0] polarization (i.e. the TA2 phonon branch) over
the entire Brillouin zone. In effect, these two features are a consequence of the
open character of the bcc structure which enables easy motion of the {110}
planes. This incipient mechanical instability provides an easy channel for the
MT. On the other hand, the low energy of the overall TA2 phonon branch
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Fig. 3.2. (a) Temperature softening of the elastic constant C′ in Ni63Al37 and
Cu2.742Al1.105Ni0.152. (b) Corresponding behaviour of the elastic anisotropy A. Data
from [23,24]

results in a high vibrational entropy which, from a thermodynamical point of
view, is responsible for the stability of the bcc phase [12, 21]. Regarding MT
the relevant aspect is the softening of both C ′ and the TA2 phonon branch
with cooling. In addition, there appears to be an intimate relationship between
the value of the elastic anisotropy A = C44/C ′ and the structural instability
in the sense that the value of A at TM has some degree of universality [12,22].
Figure 3.2 illustrates the temperature softening of C ′ (a) for Cu–Al–Ni and
Ni–Al crystals and the corresponding increase in the elastic anisotropy A and
(b) when approaching the transition TM from above.

Eventually, certain martensitic materials might exhibit a dip on the TA2

phonon branch. That is, the phonon branch shows a minimum at a particular
value of the wave vector q �= 0. This dip is particularly noticeable when
the energy of the whole branch is not very low (although still lower than
the other branches). Examples are presented in Fig. 3.3 for Ni–Al, Cu–Al–Be
and NiTi(Fe) crystals. In that case, the dip becomes more pronounced when
cooling which means that the anomalous phonon(s) soften more than the rest.
The origin of this phonon dip anomaly is not intrinsic to the cubic symmetry
but is due to the particular shape of the Fermi surface which has nesting
features at specific wave vectors [25]. It is worth noting that for alloys, the
position of the dip depends on composition [26].

Since at TM there is no complete softening of any of the phonons (in-
cluding the elastic limit q =0), it has been suggested that the transition is
due to a highly anharmonic coupling between both homogeneous (q = 0) and
inhomogeneous (q �= 0) distortions [28].

It is worth remarking that the presence of a dip on the TA2 branch is not
a necessary condition for the subsequent MT. Nevertheless, the existence of
low energy excitations in the system should affect the actual transformation
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Fig. 3.3. TA2 phonon branch in Ni0.625Al0.375, Cu0.7373Al0.2272Be0.0355 and NiTi
(Fe). Right panel shows the temperature softening of the phonon dip anomaly for
NiTi(Fe). Lines are guides to the eyes. Data from [26,27]

path. In this sense it has been suggested [26] that the wave vector of the
dip anomaly is related to the periodicity of the close-packed planes in the
martensitic structure. This is, however, an open issue since there are materials
for which such stacking periodicity does not seem to be related to the dip
anomaly (if there is any significant softening) [12].

3.2.3 Structural Precursors

The signature of the softening behaviour described in Sect. 3.2.2 is seen in
the form of diffuse scattering. Actually, the low value of C ′ will produce
strong ridges of thermal diffuse scattering running in the [110] directions [29].
Anisotropic thermal scattering has been observed in electron [17, 30–34],
X-ray [35] and neutron [26] diffraction experiments. As an example, we show
in Fig. 3.4 the electron diffraction (ED) patterns obtained for Ni–Al and
Cu–Zn–Al crystals [33]. It is worth noting that Cu–Zn–Al, which has larger
elastic anisotropy (A) [12], exhibits stronger anisotropic diffuse scattering than
Ni–Al. In agreement with the ideas exposed above, diffuse scattering is ob-
served in a wide variety of cubic materials with large values of A, indepen-
dently of whether or not they exhibit a MT at finite temperatures.

In some cases, additionally to the thermal displacement fluctuations men-
tioned above, there exist static or long-lived fluctuations. As will be stated
later, these fluctuations originate from the presence of quenched-in disorder
(imperfections, inhomogeneities, etc.) that pin the fluctuations and are at the
origin of the so-called tweed precursor strain modulations or simply structural
tweed. It is the natural long-range elastic response to local disorder in cubic
systems with large elastic anisotropy. Below we shall generalize this concept
to other systems with modulations in other physical variables.
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Fig. 3.4. ED pattern of samples with [001] normal of Ni–Al (left) and Cu–Zn–Al
(right). Data from [33]

Fig. 3.5. HTEM strain contrast of samples with [001] normal for Ni–Al (left) and
Cu–Zn–Al (right). Data from [33]

The contribution of such static (or long-lived) displacement fluctuations to
the diffuse streaking shows up in real space strain contrast TEM images [16,30,
33,36,37]. It consists of a dense array of quasi-periodic striations lying parallel
to {110} plane traces giving rise to the tweed pattern which is cross-hatched
with correlations along the diagonals. The tweed striations are perpendicular
to the [110] diffuse streaking and have been identified to correspond to strain
waves of [110]〈11̄0〉 displacements [16].

It is very interesting to compare the characteristics of tweed in Ni–Al with
that observed in Cu–Zn–Al, both shown in Fig. 3.5. We remind that whereas
Ni–Al shows a significant dip accompanied with satellites in diffraction ex-
periments, Cu–Zn–Al does not show any significant phonon anomaly but the
whole TA2 branch is very low lying in energy [38]. In both the materials the
elastic anisotropy is quite large and the characteristics of the underlying mod-
ulation are the same. Nevertheless, whereas in Ni–Al tweed is mostly static,
in Cu–Zn–Al the dynamic component is predominant [33]. We suggest this
difference is due to a local coupling between the strain and the anomalous
phonon in the case of Ni–Al.

For those materials exhibiting a significant dip anomaly one observes elas-
tic scattering at the same wave vector as the phonon softening. This is the cen-
tral peak reported in neutron scattering experiments and corresponds to the
satellites observed in either X-ray [39], or electron [33, 40, 41] or neutron [42]
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diffraction patterns. These satellites are broad peaks which indicate that they
come from correlations which do not attain true long-range order. Neverthe-
less, there is an underlying structural modulation, either static or dynamic,
whose wavelength is predicted by the dip anomaly and that eventually might
correspond to the stacking fault periodicity of the martensitic phase.

3.2.4 Coupling to Magnetism

Recently, magnetic shape memory alloys have received an increasingly high
interest because of the possibility of inducing large deformations by applica-
tion of an external magnetic field. This effect was first discovered in Ni–Mn–
Ga [43]. The corresponding phase diagram is shown in Fig. 3.6 as a function
of the electron concentration per atom (e/a).

An extensive amount of research has been devoted to finding alternative
materials showing magnetic shape memory effect. Among others some exam-
ples include Co–Ni–Al, Co–Ni–Ga, Ni–Mn–Al, Fe–Mn–Ga, etc. The pretran-
sitional behaviour of these materials shows specific features which are due
to coupling between structural and magnetic degrees of freedom. Although,
up to now, experimental data of vibrational properties are only available for
Ni2MnGa, these bcc-based alloys should conform to the general scenario de-
scribed above: The temperature softening of the TA2 phonon branch at q = 0
and eventually a dip at q �= 0. In the case of Ni–Mn–Ga, a dip anomaly is
observed at a value of q which depends on composition [44, 45] as illustrated
in Fig. 3.7 for e/a = 7.56 (left panel) and e/a = 7.71 (right panel) crystals.

Associated with the dip anomaly, structural precursors such as broad satel-
lite peaks are observed. The signature of the coupling to magnetism is primar-
ily observed as an enhancement of the softening of the anomalous phonon (dip)

Fig. 3.6. Phase diagram of Ni–Mn–Ga as a function of the electron concentration
per atom (e/a). P stands for paramagnetic, F, ferromagnetic and M, for marten-
sitic. The dotted line denotes the intermediate transition (TI), TM is the martensitic
transition and TC is the Curie line
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Fig. 3.7. Phonon dip anomaly for Ni52.0Mn23.0Ga25.0 (left) and Ni50.5Mn29.5Ga20.0

(right) crystals, which transform, respectively, to different modulated structures.
Note the difference in the location of the dip. Lines are guides to the eye. Data
from [44]

below the Curie point (TC) [44,46]. This is shown in Fig. 3.8 for the same sam-
ples as before (left panel of Fig. 3.7).

Concerning the long wavelength limit (Fig. 3.8b), apparently, there is no
change in the temperature dependence of C ′ when crossing the Curie point
(TC) [47]. It has been suggested that, in the absence of external magnetic field,
the magnetic domain structure below TC results in an almost zero magneti-
zation and therefore no significant change in the macroscopic elastic response
is expected [47]. The magnetoelastic coupling is revealed in this case by an
increase of the elastic constants with applied magnetic field [48]. We now focus
on a new feature, that is the upturn observed in both the anomalous phonon
and in C ′ at a temperature (TI) slightly above the MT for the low e/a crystal.
This is the signature of a phonon condensation which gives rise to the devel-
opment of a modulated phase, which in turn is evidenced by the fact that the
broad satellites become true Bragg peaks [49]. Such an intermediate phase con-
sists of a micromodulated domain structure without resulting in a macroscopic
deformation so that the cubic symmetry is preserved on average. It has been
shown that magnetoelastic coupling is responsible for the occurence of such
intermediate phase [50] and that the associated phase transition (TI) is of first
order [51,52]. This behaviour is characteristic of multi-stage structural trans-
formations [53]. For the large e/a crystal the phonon condensation (and there-
fore the intermediate phase) is suppressed by the occurrence of a structural
instability which leads (directly) to the low temperature martensitic phase.
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Fig. 3.8. (a) Energy of the anomalous phonon (dip) as a function of temperature
for two Ni–Mn–Ga crystals. Lines are guides to the eye. Note the change in slope at
TC for the two cases and the upturn for the sample (low e/a) with the intermediate
phase transition at TI. Data from [44]. (b) Relative change of shear elastic constant
C′ as a function of temperature for the same two Ni–Mn–Ga crystals. Data from [47].
Again, note the upturn at TI in C′ for the low e/a crystal

Note the remarkable kink observed in the softening of the anomalous phonon
at TC (see Fig. 3.8a) for the sample with high value of e/a. From Fig. 3.6, it
follows that this intermediate modulated phase exists only for low e/a, that
is in the region where the MT is far below the Curie point.

3.2.5 Ferroic Precursors: Magnetic and Others

In this section we generalize the tweed concept to other systems than purely
structural, and special attention is given to magnetic systems. The starting
point is a general framework aimed to understand precursor modulations in
the so-called ferroic materials [54], that is, modulations in either strain, or
magnetization or polarization observed above the ferroic transition. We re-
mark that since such modulations occur prior to a phase transition one ex-
pects the properties of the incoming phase to be affected by the actual initial
state of the system.

Recent advances in high resolution imaging of magnetic domain patterns,
such as magnetic force microscopy [55] and Lorentz transmission electron mi-
croscopy (LTEM) [56], have revealed fascinating modulated magnetic patterns
both above and below the Curie temperature in certain magnetic alloys. In
contrast to the structural tweed discussed above, the magnetic modulations
that occur as precursors to the magnetic transition give rise to a stripe-like
pattern. Figure 3.9 shows the magnetic pattern observed by Lorentz micro-
scopy in Co–Ni–Al above the Curie point.

Very recently [58], TEM observations in Co2NiGa alloys showing both
strain and magnetic modulations have been presented, and a model that
explains these observations has been proposed. From the observation of the



36 T. Castán et al.

Fig. 3.9. Magnetic tweed-like modulations observed by Lorentz microscopy in
Co0.380Ni0.330Al0.290 above the Curie point. Data from [57]

magnetic modulations it naturally follows that the tweed concept is not just
structural but applicable to a much broader class of materials. In addition,
it is shown that, independently of specific details of the pattern or the phys-
ical variable involved in modulation, the origin of tweed lies in very general
requirements, likely to be fulfiled in quite different systems undergoing phase
transitions. For instance, polar (or dielectric) tweed has been observed in
ferroelectrics [15, 59]. Extending ideas put forth earlier by other authors in
the context of (purely) structural tweed [5, 60], we suggest that the tweed-
like modulations above the transition (structural, magnetic or other) are a
natural cooperative response in systems that are sensitive (in the sense of,
e.g. phonon softening, “susceptibility” or other response functions) to local
symmetry breaking perturbations (e.g. due to statistical disorder) assisted by
anisotropic long-range interactions. The long-range nature of such interactions
(elastic, magnetic or other) connects the different perturbed regions while the
anisotropy determines the specific modulations of the resulting pattern. We
note that statistical compositional disorder is intrinsic to alloys and therefore
they are the most probable candidates to exhibit such phenomena.

The magnetic tweed-like modulations could conceivably arise in two differ-
ent ways: (1) Purely due to magnetic disorder without any structural degrees
of freedom being involved. This can be called purely magnetic tweed or sim-
ply magnetic tweed . It has been observed [57] above the Curie temperature
(TC) in Co0.38Ni0.33Al0.29 alloys, see Fig. 3.9. (2) Due to structural or com-
positional disorder which produces a structural tweed above the structural
transition temperature (TM) in magnetic alloys undergoing a MT. A coupling
of strain with magnetism can then lead to a magnetic modulation both above
and/or below TC. This kind of tweed is termed magnetoelastic tweed . It has
been observed by LTEM in ferromagnetic (Heusler) Ni2MnGa [61, 62] and
Co2NiGa alloys [63]. By using two-dimensional models on a square lattice it
can be shown [58] that magnetic tweed patterns are stripe-like whereas mag-
netoelastic tweed produces cross-hatched patterns.
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The concept of a structural or a magnetic tweed can be generalized to a
“ferroelastic tweed”. A “proper” ferroelastic tweed would correspond to strictly
the structural tweed [5, 6]. However, magnetic tweed (in magnetic or magne-
toelastic materials) and polar tweed in ferroelectrics [15, 59, 64] would corre-
spond to an “improper” ferroelastic tweed because both the disorder and the
long-range interaction may arise from a physical variable other than strain,
e.g. magnetization or polarization. Improper ferroelastic tweed may also be
observable in Jahn–Teller distorted colossal magnetoresistance (CMR) materi-
als, giant magnetoresistance compounds [65], high Tc superconductors [66] and
other perovskites with disorder in, for instance, octahedral tilts. The origin
of the anisotropic long-range interaction in proper ferroelastic (or structural)
tweed is the elastic compatibility constraint [5, 6] whereas polar or magnetic
dipole interaction can arise from the crystal surface.

3.3 Transition Kinetics

In the previous sections, we have dealt with the effect of the non-typical
disorder in materials undergoing extended first-order phase transitions. We
now turn our attention to the effect of typical disorder on these transitions.
The most evident effect is that, instead of occurring at a given point of the
phase diagram, they spread in a certain region of the control parameters. In
this region there is a coexistence of the high and low temperature phases.
Usually these driving parameters are the temperature or conjugated fields of
the order parameters. In practice, distinction between pretransitional effects
and the actual transition process is not always evident. We propose, as a
general criterion, that significant hysteresis occurs in the transition region,
whereas pretransitional effects are almost reversible.

3.3.1 Athermal Transitions

The transitions to be considered are always associated with the existence
of high energy barriers, which separate the parent and product phases that
must be overcome for the transition to proceed. Figure 3.10 shows schemati-
cally a phase diagram for such systems as a function of temperature T and a
generic driving field H. We indicate the region of pretransitional effects and
the hysteresis region, that typically has a width ∆H (or ∆T ). Indeed, in the
irreversible region the actual state of the system is metastable and history
dependent. It is also worth noting that, although we have plotted a single
axis for the field, in multiferroic materials (such as those with two or more
coupled ferroic properties, e.g. magnetoelastic materials) there can be more
than one different external fields coupled to the relevant order parameters.

The following main characteristics of such extended first-order phase tran-
sitions must be emphasized:
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Fig. 3.10. Schematic phase diagram of an extended first-order phase transition as
a function of the conjugated field and temperature. Pretransional and transitional
regions are indicated. Arrows denote that the transition can be induced either by
cooling or by applying an external field

• The existence of long-range forces of elastic, magnetic or electric nature
arising from compatibility conditions (or dipolar forces) associated with
the system boundaries and/or interfaces. The external force driving the
transition must then compete with the whole system and not only with
a small microscopic domain. Thus thermal fluctuations play, in general,
only a minor role, which means that the time scale of the thermal ac-
tivation processes τth is very large. This time scale is proportional to
exp[−Eb/kBT ], where Eb is a measure of the free-energy barriers.

• The existence of quenched disorder. In the scenario described in the pre-
vious paragraph it is clear that any perturbation that locally modifies the
profile of the energy landscape will be crucial for the transitions to pro-
ceed. Therefore, as a consequence of quenched disorder the energy barriers
are inhomogeneously distributed in the system. This gives rise to the exis-
tence of a complex energy landscape with multiple energy minima where
almost divergent barriers may coexist with low energy paths. Thus, in this
class of transitions quenched disorder of any kind (dislocations, vacancies,
composition fluctuations, impurities, etc.) is expected to strongly mod-
ify the transition path and the hysteresis features. In many cases disorder
cannot be considered strictly quenched, since their characteristics (amount
of disorder and spatial distribution) can be modified by cycling through
the transition. In this case modification of disorder enables to establish
an optimal transition path that avoids high energy barriers which arise
from long-range forces. Moreover, in some cases aging effects have been
reported (for instance, associated with reordering processes [67]), but on
time scales of τth.

• As a consequence of these complex free-energy landscapes, the interme-
diate and the final state of the transition exhibit a mesoscopic domain
pattern which in some cases displays self-similar properties and a lack
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Fig. 3.11. Optical micrograph with polarized light on the surface of a Cu–Al–Zn
sample after cooling through MT. Domains corresponding to different martensite
variants with many different characteristic lengths coexist

of characteristic scales. An example is presented in Fig. 3.11, that corre-
sponds to the final structure of a MT in a Cu–Zn–Al single crystal. Note
the multiple lengthscales of the martensitic domain structure.

• The response of the system to the driving parameter shows, in a broad
range of driving rates, avalanche behaviour [68]. Different experimental
detection techniques reveal that the evolution of the transition is charac-
terized by burst-like events separated by inactivity periods. Such events
correspond to jumps from one metastable state to another involving dis-
sipation of energy. In many cases the properties of the avalanches reveal
a lack of characteristic scales within a broad range of time, sizes and en-
ergies. Although this makes it difficult to properly define a characteristic
time scale associated with the avalanches, the duration of the longest de-
tected avalanche event τav is typically much smaller than the time scales
associated with thermal activation processes τth.

• The last common feature is the dependence of the hysteresis properties
and the avalanche behaviour on the driving rate Ḣ. A convenient way to
describe the dependences with the driving rate is by defining a third time
scale τdr which is given by ∆H/Ḣ. In most cases, when τdr is much larger
than τav, the avalanche response of the system is essentially deterministic
and reproducible (rate independent hysteresis), but in other cases when
τdr and τav compete, rate dependent hysteresis effects are observed.

These factors may simultaneously exist in MT [69,70] and in some ferromag-
netic systems [71] at low enough temperatures. Interestingly, similar behav-
iour is also observed in perovskite manganites [72–74]. The dynamics of such
transitions have been termed as athermal . In practice, this means that the
transition driven by a temperature change shows similar kinetic effects as
compared to those observed in the transition driven by an external field (ap-
plied stress, magnetic field, etc.). These two paths are indicated in Fig. 3.10.
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Note that the case of a simple uniaxial ferromagnetic material is a particular
case in which the phase transition region in Fig. 3.10 is horizontal and sym-
metric with respect to the temperature axis. Thus the athermal transition can
only driven by external (magnetic) field.

3.3.2 Modelling Athermal Transitions

From a more fundamental point of view, athermal represents a limiting case
in which the time scale of thermal activation τth is much larger than τav and
τdr. A first attempt to analyse this situation has been recently considered by
Pérez-Reche et al. [7, 70]. The proposed model enables a good understanding
of the possible interplay of the three time scales introduced above. However,
since the existence of spatial inhomogeneities which arise from disorder are
not explicitly included in the model, it only allows for the description of the
onset of the transition but it is not appropriate for the study of its subsequent
evolution. Therefore, one of the main drawbacks of the model is that it does
not provide an explanation for the avalanche behaviour. The approach is based
on a mean-first-passage time model [75] which assumes that the energy barrier
(associated with the first transforming domain) changes monotonically with
the driving field H. The barrier Eb(H) is infinite for H > Hh and vanishes for
H ≤ Hl. Only within this interval Hh−Hl thermal fluctuations can play a role
in determining the onset of the transition. Therefore, the transition onset field
Ht (or transition temperature) is a random variable that must be averaged
over different equivalent experimental realizations. From the dependence of
the average transition field and its standard deviation on the driving field
rate, the fields Hh and Hl can be estimated.

Within the preceding framework, the ideal athermal case corresponds to
the limit in which the interval Hh−Hl → 0 not only for the first transforming
domain but also for all the subsequent barriers to be overcome. This is equiva-
lent to the assumption that τth → ∞. In this case the detailed response of the
order parameter m(H) is time independent and its derivative must satisfy:

dm

dt
=

dm

dH
Ḣ . (3.1)

Thus, although dm/dt may exhibit a dependence on the driving rate, the
product Ḣ−1dm/dt must be rate independent. This scaling behaviour can be
used to test the validity of the athermal hypothesis of a given transition.

Figure 3.12 shows an example of the scaling behaviour corresponding to a
first order MT in a Cu–Zn–Al alloy. The dynamics is monitored by detecting
the acoustic emission (AE) generated during the transition.

3.3.3 Avalanche Dynamics

As mentioned above, avalanches are typically detected in a broad range of
energy, size and time scales. This supported the idea of the existence of criti-
cality in such systems. Experiments for the detection of avalanches are usually
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Fig. 3.12. (a) Number of AE signals per unit time (ν) as a function of temperature
recorded during continuous cooling runs for a Cu–Zn–Al sample at different rates
from Ṫ = 0.5 K/min−1 (upper curve) to 5 K/min−1 (lower curve). (b) Scaled AE as
a function of temperature. Inset shows an enlarged view of the tail region

performed on systems which exhibit a strong athermal character. In this case,
avalanches only occur when the system is driven by the control field. If the field
is kept constant no response is observed. However, in some cases avalanches
have been detected at constant field and temperature as a function of time.
In these cases, the systems are sufficiently close to the athermal limit so that
avalanches can still be discriminated by an experimental threshold, although
thermal fluctuations cannot be ruled out. An example is presented in Fig. 3.13
(isothermal transformation in Cu–Al–Ni). This discussion suggests that, in
practice, the athermal character of a system depends not only on its intrinsic
features but also on the resolution of the experimental technique being used
and the range of driving rates that are experimentally accessible. The exper-
imental analysis of the avalanche properties has been performed by means of
several techniques which enable its study at different scales. These include AE
for the detection of the elastic waves associated with the avalanches in MT,
Barkhausen noise recordings in magnetic systems, calorimetry, or even direct
imaging methods that allow an analysis of the spatial scales of the avalanches.
The statistical distributions of avalanche size, duration, energy, etc. are com-
monly described in terms of the following probability distribution with two
free parameters,
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Fig. 3.13. Number of AE signals per unit time (ν) as a function of time for MT of
a Cu–Al–Ni sample recorded during stepwise cooling. Inset shows a detailed view of
AE recorded isothermally

p(Z) =
e−λZZ−x

∫ Zmax

Zmin
e−λZZ−xdZ

, (3.2)

where Zmin and Zmax are the minimum and maximum experimentally de-
tectable values of the magnitude Z, x is a characteristic power-law expo-
nent and λ determines the exponential correction to the power-law behav-
iour. When |λ| is much smaller than Z−1

max, the exponential correction can
be neglected and the system is assumed to exhibit critical behaviour. When
this is not the case, for λ> 0 the system is called subcritical while for λ< 0
it is called supercritical. Figure 3.14 shows an example of the distribution
of the amplitudes of AE avalanches during the MT in a Ni–Mn–Ga alloy.
It has been shown that the distribution of avalanches in structural [76] and
magnetostructural [77] transitions exhibits a dependence on cycling. The first
transition after proper annealing of the sample at high enough temperature
usually exhibits a clearly non-critical distribution of avalanches (supercritical
or subcritical). The effect of a subsequent cycling is to modify the value of |λ|
until a stable critical distribution is reached with well-defined values of the
exponents. In MT this has been related to the increase of the density of dis-
locations which in turn results in an increase of favourable nucleation centers
for the transition.

For Barkhausen noise in magnetic systems and AE in MT, different uni-
versality classes have been proposed that are characterized by sets of crit-
ical exponents. Nevertheless, dependences on temperature [78] and driving
rate [79, 80] have also been reported. Thus, whether the exponents are really
universal or not is still a question under debate.
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Fig. 3.14. Distribution of AE avalanches during MT in a Ni–Mn–Ga alloy. Lines
are fits to the distribution (3.2)

3.3.4 Modelling Avalanches

The prototypical model for understanding avalanche behaviour in first-order
athermal phase transitions is the Random Field Ising Model with T = 0
metastable dynamics [4]. This is a lattice model with spin variables Si (which
can represent domains or small regions of the material) localized on each
lattice site and coupled ferromagnetically. Quenched Gaussian random fields
with zero mean and standard deviation σ are defined on each site. They rep-
resent the effect of compositional and morphological disorder. The model is
subjected to an external field. When the system is driven by very high val-
ues of the field H, the saturated state with all Si = +1 evolves following a
deterministic dynamics consisting of a local energy relaxation of single spins.
Once a spin flips, this may trigger the flip of neighbouring spins and initi-
ate an avalanche. During avalanches the driving field is kept constant until a
new metastable situation is reached. This kinetics, which has also been called
adiabatic, conveniently mimics athermal dynamics in real systems and cor-
responds to a situation of rate independent hysteresis in which τav is much
smaller than τdr and τth.

By numerical simulations one obtains hysteresis loops consisting of a se-
quence of avalanches joining metastable states. These avalanches are in gen-
eral microscopic which means that in the thermodynamic limit, the associated
jumps involve the transformation of a vanishingly small fraction of the system.
Interestingly, the loops exhibit a transition from being smooth when σ > σc

to showing a ferromagnetic macroscopic discontinuity when σ < σc. At σc the
distribution of avalanches is critical and can be characterized by a well defined
exponent.

Other similar models including random bonds, random anisotropy, vacan-
cies, etc. have also been studied. They all display similar behaviour and it
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has been shown that the critical exponents exhibit a high degree of universal-
ity [81].

These models reveal that, indeed, the existence of disorder is one of the key
ingredients in the scenario described in the previous sections. Nevertheless, we
note that they do not take into account the existence of long-range interactions
arising from compatibility conditions which are essential to understand the
formation of multidomain structures. Moreover, one may speculate that long-
range forces are also responsible for the observed learning process during
cycling in which the system seeks an optimal path connecting the high and
low-symmetry phases which avoid high energy barriers. After the learning
period, a stationary state for which the transition is reproducible from cycle
to cycle should be reached. This state should be determined by a compromise
between the increase of energy associated with the increase of disorder and
the corresponding reduction of metastability (which supposes a reduction of
dissipated energy). The tendency of the distribution of avalanches to become
critical after a certain number of cycles supports that learning is induced by
long-range interactions.

Recently, a more realistic approach to modelling avalanches in MT has
been undertaken by Ananthakrishna and collaborators [82]. They proposed a
model based on a free energy functional which includes an effective long-range
term that describes the transformation induced strain–strain interaction and
an inhomogeneous stress field (Gaussian distributed) adequate to mimic the
nucleation of martensitic domains in the vicinity of defect sites. Dissipation
is accounted for by means of a Rayleigh dissipative functional. While elastic
compatibility is, for the sake of simplicity, not properly taken into account, the
model has the ability of reproducing most of the dynamical signatures typical
of MT in shape memory alloys including the athermal character. The model
generates dynamical disorder during the transformation which occurs through
energy bursts which in turn are identified with AE signals. These bursts are
correlated with the growth and shrinkage of martensitic plates. In agreement
with the experiments, they obtained that size and duration of AE bursts
follow power-law statistics with exponents comparable to those reported for
Cu-based alloys. An interesting result of the model relates the evolution of
the martensitic morphology with thermal cycling during a certain training
period [83]. After this initial number of cycles the model exhibits repetitive
bursts of energy under successive cycles. This cycling evolution, which is in
agreement with cycling experiments [76], is shown to be mediated through
strain–strain long-range interactions. The authors concluded that during the
training period the long-range term has a tendency to smooth out higher
energy barriers in the free energy landscape which induces a transformation
pathway along a unique set of low energy metastable configurations.
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3.4 Conclusion

A vast majority of functional materials invariably have some form of disor-
der which crucially affects their properties. In particular, disorder extends
the region of the first-order transition. Disorder typically has a distribution
sketched in Fig. 3.1. The central part of the distribution impacts the kinet-
ics of the transition such as the athermal nature and avalanche behaviour
of AE in MT. In contrast, the tails of the distribution are responsible for
pretransitional effects, including prescursor modulations, taking advantage
of the premonitory softening behaviour. We illustrated these points in both
purely elastic shape memory alloys (Ni–Al, NiTi, Cu–Al–Ni, Cu–Zn–Al and
Cu–Al–Be) and magnetoelastic alloys (Ni–Mn–Ga, Co–Ni–Ga). The coupling
of structure to magnetism enhances the softening of the anomalous phonon
below the Curie point and may also lead to a magnetoelastic tweed. In some
alloys (e.g. Co–Ni–Al) a purely magnetic modulation (i.e. magnetic tweed)
can be present above the Curie temperature. Thus, the notion of tweed ap-
pears to be very generic and the tweed can exist in such diverse materials as
ferroelectrics, CMR manganites and high-temperature superconductors. We
pointed out the common ingredients in these materials that are responsible for
tweed. These materials are sensitive to local symmetry breaking perturbations
(i.e. disorder). Therefore, various tweed patterns are stabilized by anisotropic
long-range interactions which may arise from elastic compatibility constraints
and from the surface of the crystal. We emphasized the athermal nature of
the transition in some of these materials and discussed the main characteris-
tics including complex free energy landscapes due to the presence of quenched
disorder and the dependence of hysteresis as well as avalanche behaviour on
the driving rate (of an external field). We also outlined a simple model for
understanding the avalanches. This chapter represents an attempt to unify
some disorder related concepts in ferroic materials but clearly many questions
remain open in this field.
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Huge Magnetoresistance in Association
with Strong Magnetoelastic Effects

L. Morellon and M.R. Ibarra

There exists a broad phenomenology in solid state physics in which the inter-
play of interactions of different nature may be changed and controlled by exter-
nal parameters such as temperature, magnetic field, and hydrostatic/chemical
pressure. In some cases, this results in the modification of a delicate energetic
balance in the system and, as a consequence, a phase transition or trans-
formation can occur. In this review, we report significant magnetoresistance
associated with strong magnetoelastic effects, as observed in intermetallic and
magnetic oxide compounds.

4.1 Introduction

Functional materials with a strong coupling between structural, magnetic, and
electronic degrees of freedom are of prime interest nowadays because many
different physical properties of both fundamental and applied interest, such as
the magnetocaloric effect, magnetostriction, and magnetoresistance [1–5], are
maximized. All the relevant phenomenology, which usually takes place in the
vicinity of phase transitions, typically of first order, occurs in these systems
upon changing external thermodynamic parameters, e.g., magnetic field, tem-
perature, or hydrostatic pressure. For a general review on the recent advances
and future directions in magnetic materials, the excellent review by Jiles [6]
is recommended. In this contribution we focus on systems where an applied
magnetic field brings about simultaneously a strong change in both the length
of the sample (magnetostriction) and in the electrical resistivity (magneto-
resistance). We present relevant examples of different materials exhibiting
this distinct feature and the physical scenarios underlying the observed phe-
nomenology will be described and discussed. Briefly, the most outstanding
prototypes are systems undergoing one or more of the following phase transi-
tions as a function of temperature:

• Magnetic–crystallographic transformations
• Moment instabilities and spin fluctuations
• Metal–insulator transitions
• Charge/orbital instabilities.
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4.2 Magnetic–Crystallographic Transformations

4.2.1 Gd5(SixGe1−x)4

Gd5(SixGe1−x)4 is a unique family of intermetallic materials where many
interesting properties and intriguing behavior have been recently discovered
[7]. The unprecedented giant magnetocaloric effect [8–10], strong magnetoelas-
tic effects [11, 12], and giant magnetoresistance [13–15] can be highlighted as
the most relevant. This phenomenology has been associated with an intrinsi-
cally layered crystallographic structure combined with a magnetic–martensitic
first-order phase transformation [16]. The coupled magnetic–crystallographic
transition can be induced reversibly by the change of external parameters
such as temperature, magnetic field, or applied pressure, and therefore, these
alloys are attractive for their potential applications in magnetic refrigeration
and/or as magnetic sensors and actuators [17].

Three extended solid solution regions exist in the temperature–composition
(T–x) phase diagram [18,19]: the Si-rich solid solution, 0.575 ≤ x ≤ 1, has the
orthorhombic Gd5Si4-type structure [O(I)]; the intermediate phase 0.4 < x ≤
0.503 has a room temperature monoclinic (M) structure; and the Ge-rich
region, 0 < x ≤ 0.3 crystallizes in the Gd5Ge4-type orthorhombic struc-
ture [O(II)]. All three structures are composed of identical two-dimensional
(2D) subnanometer-thick layers (slabs) interconnected via partially covalent
interslab X–X bonds (X = Si, Ge). In the O(I) structure, all the slabs are
interconnected by X–X bonds; half of these bonds are broken in the M struc-
ture and none remain in the O(II) structure. The magnetic–crystallographic
transition involves breaking/reforming specific covalent X–X bonds [16] and
the low-temperature ground state for all compositions 0 < x ≤ 1 is always
ferromagnetic (FM) with all the slabs being interconnected, i.e., with the O(I)
structure. The M structure is always paramagnetic (PM) whereas the O(II)
can support either PM or antiferromagnetism (AFM) [12, 19]. The magnetic
behavior of the R5(SixGe1−x)4 compounds can be understood qualitatively
in terms of competition between intralayer (within the 2D slabs, conventional
indirect 4f–4f RKKY) and interlayer exchange interactions (between slabs,
direct Gd–Si/Ge–Gd superexchange propagated via the X–X bonds) [7, 20].

As an example we selected a Ge-rich alloy, Gd5(Si0.1Ge0.9)4. This com-
pound shows upon cooling a second-order transition to the AFM state at
TN = 127 K without changing the room-temperature O(II) structure, followed
by a first-order magnetostructural transition O(II)[AFM] → O(I)[FM] at
TC = 81 K. As seen in Fig. 4.1 the low-temperature O(I)[FM] state has a
lower resistivity, ∆ρ/ρ ≈ 50%, and a larger length, ∆l/l ≈ 0.16% (along the
particular direction represented in Fig. 4.1, a decrease as large as 1.6% being
expected along the a direction [12]). Applying a magnetic field at T > TC in-
duces a first-order transition into the O(I)[FM] state (Fig. 4.2) and, therefore,
large magnetovolume and giant magnetoresistance effects [14] are expected as
can be clearly seen in Fig. 4.3 at selected temperatures.
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Fig. 4.1. Zero-field electrical resistivity (ρ) and linear thermal expansion (∆l/l)
of Gd5(Si0.1Ge0.9)4 as a function of (increasing) temperature. The ρ values have
been normalized to the 200 K value (ρ/ρ200 K). The different crystallographic and
magnetic phases are indicated

Fig. 4.2. Schematic representation of the crystallographic and magnetic structures
of Gd5(Si0.1Ge0.9)4 in the (a, b) plane at T < TN. Only the X = Si, Ge atoms
participating in the X–X covalent-like bonds are depicted as solid spheres. A solid
line linking the X atoms represents a formed bond [O(I)] whereas a dashed line is
used for a broken one [O(II)]. Solid arrows are used to illustrate the change in the
magnetic coupling as a function of magnetic field

4.2.2 MnAs

Another well-known example of a system with a magnetostructural transition
is MnAs. This alloy is ferromagnetic at room temperature and exhibits a first-
order loss of magnetic ordering during heating at TC ≈ 310 K, accompanied
by a volume contraction of about 2% [21,22]. This magnetic–crystallographic
transformation involves a distortion from the FM high-symmetry hexagonal
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Fig. 4.3. Magnetoresistance ∆ρ/ρ (block symbols) and magnetostriction λ (open
symbols) isotherms as a function of the applied magnetic field at selected tempera-
tures of T = 100 K (squares) and 110 K (circles)

NiAs-type B81 phase (space group P63/mmc) into the lower symmetry PM
orthorhombic MnP-type B31 phase (space group Pnma) [23]. At higher tem-
peratures, TD ≈ 394 K, MnAs undergoes an additional second-order displacive
transition back to the NiAs-type structure.

The detailed magnetic phase diagram of MnAs was first established
by Zieba et al. [24] and revised more recently by Chernenko et al. [25].
Magnetostriction values of 0.66% (linear contraction) were reported at the
field-induced PM(B31) → FM(B81) transition in good agreement with the
values determined from thermal expansion in zero field, see Fig. 4.4. Assuming
isotropic behavior, the maximum volume magnetostriction is approximately
equal to 2.1% at 310 K, nearly three times larger than the value associated to
the AFM–FM transition in FeRh, see Sect. 4.3 and [26].

Recent neutron diffraction data in an applied field [27] give a direct
microscopic evidence that the crystallographic transformation involves break-
ing and reforming metal–metal bonds. Coexistence and growth of the FM
phase at the expense of the PM B31 phase as the magnetic field increases is
observed, which is possible since the B31 phase is derived from the B81 phase
by a cooperative displacement of pairs of [1,−1, 0] rows toward one another
to form stronger Mn–Mn bonds. These also create shorter Mn–As bonds,
which raise the antibonding states that σ-bond to the As atoms and trigger
the transition to a low-spin state [28]. The field-induced phase transition is
accompanied by an enhanced magnetoresistance response of about 17% at
310 K, see Fig. 4.5, in a similar fashion to that of the colossal magnetoresis-
tance (CMR) Mn perovskites, as will be discussed later.
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Fig. 4.4. Linear thermal expansion as a function of temperature. The data points
were measured in magnetic fields [25]

Fig. 4.5. Magnetoresistance ratio MR = {[ρ(0) − ρ(5 T)] /ρ(0)} × 100 versus tem-
perature of MnAs. Inset: MR versus H [27]

4.3 Moment Instabilities and Spin Fluctuations

4.3.1 FeRh

It is well known that in the ordered CsCl crystallographic structure of
Fe0.5Rh0.5 a PM–FM phase transition occurs at TC ≈ 650 K, within the
FM phase a peculiar FM–AFM phase transition takes place at a tempera-
ture TF−AF ≈ 350 K [29]. Simultaneously, at this transition a 0.9% volume
contraction occurs without change in the crystallographic structure together
with a large drop in the electrical resistivity [30]. This singular transition
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strongly depends on the concentration, and it is only present in a very narrow
concentration range of 5% around x = 0.5 in the binary Fe1−xRhx phase di-
agram [31]. Neutron diffraction experiments [32] performed in the AF phase
showed that only the iron atoms carry a relatively large local magnetic mo-
ment µFe ≈ 3.2 µB with no magnetic moment on the rhodium sites. In the
FM phase, the iron moment remains with the same value, however, a local
magnetic moment appears on the rhodium sites µRh ≈ 0.9 µB. First-principles
total-energy band-structure calculations [33] predicted an equilibrium type-II
AF magnetic ordering [antiferromagnetic coupling between successive layers
of (111) iron layers] with no magnetic moment on the Rh sites. A metastable
FM state is also predicted to exist with a larger unit cell volume than in the
AF ground state. The FM state is very close in energy to the low-volume AF
state and can be reached either thermally or by applying a magnetic field, as
seen in magnetization measurements [26].

Thermal expansion measurements reveal that the stoichiometric FeRh
alloy is an interesting system in which both Invar and anti-Invar effects are
present in different range of temperatures [34]. The Invar-like behavior is ob-
served at and below TC and is mainly attributed to transverse fluctuations
of the local magnetic moments, which remain practically constant through
and below the transition within the FM phase. The anti-Invar behavior is
observed at TF−AF and is associated with the collapse of the local µRh, as a
consequence of the longitudinal spin fluctuations at low temperatures.

Huge field-induced volume magnetostriction (the anisotropic magnetostric-
tion is negligible) has been observed in this alloy above room temperature,
ω = (8.2 ± 0.2) × 10−3 [34]. As shown in Fig. 4.6, this value is reached above
a certain critical field, above which it remains constant. The value observed
for the field-induced volume magnetostriction is comparable to that found

Fig. 4.6. Isotherms of the volume magnetostriction ω for FeRh as function of the
applied magnetic field (the arrows indicate the direction of the field variation) [34]
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Fig. 4.7. Thermal dependence of the critical field obtained from magnetostriction
(filled circle) [34] and magnetoresistance (open circle) measurements [35]

in thermal expansion measurements and, therefore, the effect of the field is
that of inducing a transition from the low-volume AF to the high-volume FM
state through a first-order magnetic phase transition at a certain critical field.
This gives experimental support to the theoretically predicted existence of a
metastable ferromagnetic high-volume state in which Rh has a local magnetic
moment.

In addition, a large magnetoresistance ratio, ∆ρ/ρ ∼= −50% has been found
[35] at the field-induced transition in good agreement with that observed in
zero field at the transition temperature. In Fig. 4.7 the temperature–magnetic
field phase diagram as determined from both magnetoresistance and magne-
tostriction experiments is displayed, clearly demonstrating that both effects
are coupled, and confirming earlier theoretical predictions [36] that proposed
FeRh should behave as a natural multilayer system.

4.3.2 Hf1−xTaxFe2

The Hf1−xTaxFe2−y intermetallic compounds crystallize in the hexagonal
MgZn2-type structure (C-14 Laves phase, space group P63/mmc) with one
Mg site (4f) and two sites for Zn (2a and 6h). HfFe2 is a ferromagnet with
an order temperature TC ≈ 600 K [37], and TaFe2 is a paramagnet [38]. The
magnetic phase diagram of the Hf1−xTaxFe2 series was reported by Nishihara
and Yamaguchi [39–41], a first-order AFM–FM transition with decreasing
temperature within the concentration range 0.1 < x < 0.3 being detected. In
the FM state, the Fe ions in both sites carry a local magnetic moment of
≈1 µB, whereas in the AFM state only the ions at the 6h site have a local
magnetic moment of ≈0.7 µB, with no magnetic moment being detected at the
2a sites. The fundamental question on whether the 2a Fe moment is identically
zero, i.e., a nonlocal moment, or there is a local paramagnetic moment which
vanishes on time averaging due to fast fluctuations within the experimental
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characteristic time has been answered in a recent contribution by means of
Mössbauer spectroscopy in an applied magnetic field [42]. The H–T phase
diagram can be explained qualitatively in the framework of the Moriya and
Usami theory for an itinerant electron system in which ferro- and antiferro-
magnetism coexist [43].

The thermally induced AFM–FM transition is accompanied by a large
volume jump of ∆V/V ≈ 1.2% [40] and a resistivity anomaly of ∆ρ/ρ ≈ 25%
(x = 0.2) [44]. The FM state can be reached from the AFM state by
application of an external magnetic field and, therefore, strong magnetostric-
tion and magnetoresistance effects are expected and indeed found experi-
mentally [44–46]. In Fig. 4.8 the volume magnetostriction ω isotherms for
Hf0.83Ta0.17Fe1.98 at selected temperatures are shown (the anisotropic mag-
netostriction is negligible). A huge value ω ≈ 0.7% close to room temperature
is found. This value coincides with the zero-field thermal expansion, thus
demonstrating this transition can be understood on the basis of a first-order
transition from a low-volume low-spin state (AFM) to a high-volume high-spin
state (FM), i.e., Invar behavior according to Moruzzi [47], and is attributed
to the variation of the local moment of Fe at both sites of the crystallographic
structure.

The associated magnetoresistance effect in a Hf0.845Ta0.155Fe2 at various
temperatures is displayed in Fig. 4.9. The observed giant magnetoresistance
has been attributed to changes in the conduction electron scattering caused
by the metamagnetic transition.

4.3.3 La(FexAl1−x)13

The La(FexAl1−x)13 alloys crystallize in the cubic NaZn13-type structure in
the composition range between x = 0.46 and x = 0.92. Such a dense structure

Fig. 4.8. Volume magnetostriction isotherms ω for Hf0.83Ta0.17Fe1.98 at some
selected temperatures [46]



4 Huge Magnetoresistance in Association 57

Fig. 4.9. Magnetoresistance measured for Hf0.845Ta0.155Fe2 at various tempera-
tures [45]

similar to fcc-Fe support different magnetic states due to the itinerancy of
the 3d electrons, whose correlations bring about the complicated behavior of
spin fluctuations [43]. The FM and AFM states are stabilized in the concen-
tration range 0.60 ≤ x ≤ 0.86 and 0.87 ≤ x ≤ 0.92, respectively [48]. The FM
and AFM states are very close in energy, and the AFM–FM metamagnetic
transition takes place by application of magnetic field and pressure [48–50].
In addition, a temperature-induced first-order transition has been found in a
narrow concentration range 0.860 < x < 0.869 [51].

As an example, the magnetoresistance and volume magnetostriction of the
antiferromagnetic alloys x = 0.88 and x = 0.89, respectively, are depicted in
Fig. 4.10. The magnetoresistance amounts to about 17% in a field of 4.76 T at
low temperatures for x = 0.88. For x = 0.89, the volume magnetostriction at
4.2 K and above the spin-flip transition is huge, ω = 1%. The irreversibility
at low fields seen in Fig. 4.10 (right) is due to the appearance of visible cracks
in the sample. More information on the antiferromagnetic structure of these
alloys can be found elsewhere [52].

4.4 Metal–Insulator Transitions

The compounds that we describe are the mixed valent manganites, with for-
mula R1−xAxMnO3 where R3+ is a rare-earth ion and A2+ is an alkali earth.
In the extreme compounds, RMnO3 and AMnO3, the manganese ions are
either Mn3+ (d4) or Mn4+ (d3). These compounds have crystallographic struc-
tures derived from the ideal cubic perovskite, the manganese ion occupying
the center of oxygen octahedra. The crystal-electric-field splitting created by
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Fig. 4.10. Temperature dependence of the electrical resistivity ρ for an antiferro-
magnetic x = 0.88 alloy in zero field and in an applied magnetic field of 4.76 T
greater than the critical field of the AFM–FM transition (left). Forced volume mag-
netostriction isotherm at 4.2 K for an AFM alloy x = 0.89 (right) [48]

the negative ligands imposes the symmetry of the magnetic electrons: t2g3eg
1

in the case of Mn3+ and t2g3 in the case of Mn4+. The magnetic interactions
are governed by the superexchange antiferromagnetic interaction through the
π-oxygen orbital t2g(Mn)–2pπ(O)–t2g(Mn). As a result, these compounds are
antiferromagnets at low temperature. Substitution of R3+ by A2+ has a strong
influence on the magnetic, structural, and magnetotransport properties of
these compounds, leading to complex phase diagrams. The main effect is the
creation of holes with eg symmetry. These electronic states are strongly hy-
bridised with the σ oxygen orbitals in such a way that eg holes can easily
hop from one Mn3+ ion to other Mn3+ with the only condition that the first
Hund rule should not be violated (high spin state). Within this scheme the
hole transfer is conditioned to the existence of eg occupied states with the
same spin polarisation, i.e., the electronic transfer is favored under ferromag-
netic alignment of the t2g spin (S = 3/2) cores. This corresponds to the
double exchange interaction in which electron hopping over a ferromagnetic
background gives rise to a very high conductivity. Then, ferromagnetism in
these compounds is usually associated with a metallic behavior. The formal-
ism to describe this interaction was proposed by Zener [53] and current models
involve the use of ferromagnetic Kondo Hamiltonian to explain the relevant
phenomena, see for instance the recent review article by Moreo et al. [54].

In general, the lack of long-range magnetic order or the existence of
antiferromagnetic long-range order originated from the superexchange inter-
action are incompatible with the electron mobility, and the system is an insu-
lator. Therefore, we can find very interesting systems in which the conduction
electrons are fully polarized and show a high itinerancy under ferromagnetic
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alignment of the magnetic moments (“Half-metallic ferromagnets”). Because
the hopping probability between neighboring Mn atoms is modulated by the
alignment of the core t2g magnetic moments, large magnetoresistance can be
expected. The optimum hole doping concentration is around x = 1/3, and
for concentrations larger than x = 0.5, long-range ferromagnetic order is not
present.

In the paramagnetic phase a tendency toward localization takes place due
to the electron–phonon interaction, which is quite relevant in these compounds
as was demonstrated by the strong isotopic effect [55]. The interplay of the
above mentioned interactions gives rise to a rich phenomenology reviewed
in [56–58].

4.4.1 Colossal Magnetoresistance (CMR)
and Huge Volume Effects

In this section we concentrate on the relevant magnetovolume effect dis-
covered in the mixed-valent manganites. The measurements were performed
on polycrystals by using the strain-gauge technique at low temperature and
the push-rod method at temperatures higher than room temperature. These
measurements compared quite well with the results obtained from neutron
diffraction experiments. In Fig. 4.11 we show the thermal dependence of the
resistivity and the thermal expansion for La0.6Y0.7Ca0.33MnO3. In the para-
magnetic phase (T ≥ TC = 160 K) the resistivity has a semiconductor-like
behavior. In this phase the compound is paramagnetic and insulator (PMI).
Below TC the system is ferromagnetic and the resistivity sharply decreases
by four orders of magnitude. This is a consequence of the double exchange
interaction, which favors the electronic itinerancy. In this phase we found fer-
romagnetic and metallic resistivity (FMM). The observed dramatic effect on

Fig. 4.11. Thermal expansion and resistivity in La0.6Y0.07Ca0.33MnO3. An anom-
alous contribution over the phonon expansion above TC is observed. At this tem-
perature, a sharp decrease in the resistivity takes place (metal–insulator transition)
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the resistivity also has a strong influence on the thermal expansion, which is
manifested by a sharp decrease in the sample volume as one crosses from
the PMI to the FMM phase [59] (the thermal expansion is isotropic). The
Grüneisen fit of the thermal expansion curve using a Debye temperature
θD = 500 K gives the results shown in Fig. 4.11, in which the thermal ex-
pansion in the FMM phase follows the phonon lattice behavior. However, in
the PMI phase an extra anomalous contribution was found, being necessary to
increase the temperature up to three times TC in order to recover the phonon
behavior.

Other interesting compound with the same hole concentration is the mixed
valent manganite Pr0.7Ca0.3MnO3 [60]. The resistivity shows an insulating be-
havior even at low temperatures, which is a direct consequence of the absence
of ferromagnetic order, and the thermal expansion results do not show any
sharp anomaly, as observed in the former La–Ca compounds. Only a small
bump at TCO = 210 K is observed, which is associated with the establishment
of a charge ordering state. However, the thermal expansion does not follow
the Grüneisen behavior. The extra volume contribution at low temperature
is associated with the existence of an insulator antiferromagnetic state at low
temperature below TN = 150 K.

From these results one can easily conclude the existence of an extra volume
contribution associated with the insulator state. The source of this volume
anomaly was associated with a polaronic effect [59]. When an electron moves
on an ionic background with an average lifetime shorter than 10−15 s (char-
acteristic time associated with a 3d metal bandwidth) the wave function is
characterized by a Bloch function. However, if the electron is near the ionic
core for a period of ≈10−12 s, a polarization of the lattice is possible. The
electric field created by the electron will attract the positive ions and push
away the negative ions. The resultant electric field decreases because of the
increase of the dielectric constant, due to the combined effect of polarization
and ionic displacement. If the electron tries to move, it will feel a force that
tends to restore it back to the original position. The result is the formation of
a potential well originated by the electrostatic and elastic energy. The entity
formed by the charge + distortion is called lattice polaron. Depending on the
temperature range this polaron can move in the lattice, either by thermal
activation overcoming the potential barrier or by tunneling forming a narrow
polaronic band with a bandwidth given by the Heisenberg’s uncertainty rela-
tionship (∆ω∆τ = �). Recent NMR spin echo experiments [61] revealed that
the average lifetime of these entities is ∆τp > 10−5 s.

The extra contribution on the thermal expansion observed in the insulator
regime is a consequence of this lattice polaron formation. The comparison of
these results with small angle neutron scattering (SANS) gave evidence for
the magnetic nature of the polaron responsible for the anomalous volume
effect. One observes in a SANS experiment a magnetic contribution of ferro-
magnetic clusters with magnetic correlation length of the order 10–30 Å [62].
The SANS intensity is related to the number of dispersion centers with short-
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range ferromagnetic correlations. By comparison with the thermal expansion
anomaly, one can demonstrate how the volume anomaly associated with the
localized charges or polarons has a magnetic origin. The magnetic correlation
length diverges as TC is approached.

This conclusion supported by SANS experiments can also be extracted
from magnetostriction measurements. The magnetic polaron is the combina-
tion of a lattice polaron plus ferromagnetic clusters. This is a logical situation
within the framework of the double exchange in mixed valent manganites. If
the charge (electron or hole) is localized on a Mn ion, a probability of charge
transfer to the next neighbor exists and this implies a parallel alignment or the
Mn moments, i.e., the electronic hopping between surrounding Mn ions gives
rise to the formation of a magnetic polaron with an average lifetime at a de-
termined ionic site ∆τp ≥ 10−5 s, as determined from NMR experiments [61].
The same experiment also allowed to determine that the hopping time for
the electron within the polaron is less than 10−9 which is the characteristic
time given by the Larmor frequency for the indistinguishable Mn3+–Mn4+

resonance line.

4.4.2 Magnetostriction and Magnetoresistance
in the Paramagnetic Phase

The magnetostriction measured in paramagnetic phase in mixed valent man-
ganites with CMR is rather anomalous [59] with values, field and thermal
dependence never observed before in a disordered magnetic phase. The Callen
& Callen theory [63] using the one and two ion correlation functions pre-
dicts that the volume (ω) and anisotropic magnetostriction (λt) in para-
magnetic phase are proportional to the square of the applied magnetic field
(ω = λ‖ + 2λ⊥ ≈ H2 and λt = λ‖ − λ⊥ ≈ H2) for localized magnetic mo-
ment systems. That is what is observed in many rare-earth intermetallics. The
use of the crystal-electric-field theory allows using perturbation techniques to
obtain information about the quadrupolar interaction in intermetallics [64].
This theory also predicts a quadratic dependence of parastriction with field.
Usually the parastriction is very small and anisotropic in magnetic crystalline
materials with well localized magnetic moments.

We found in mixed valent manganites a very unusual behavior: the paras-
triction is huge, corresponds to a volume effect, and does not have a quadratic
dependence with the field for temperaztures between TC < T < 1.8TC. In
Fig. 4.12a we show the magnetostriction measured in the paramagnetic phase
of La0.6Y0.07Ca0.33MnO3 and, in Fig. 4.12b, we show the comparison with
the anomalous contribution to the thermal expansion. The anisotropic mag-
netostriction was found to be negligible (λ‖ ≈ λ⊥). In this compound the
long-range magnetic order is destroyed at TC = 150 K as determined from the
thermal dependence of the intensity of the neutron diffraction peaks. We can
observe the large value of ω at fields larger than 2 T and a field dependence
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Fig. 4.12. Magnetostriction in the paramagnetic phase. (a) Volume magnetostric-
tion isotherms. (b) Comparison of the extra contribution to the volume thermal
expansion to the volume magnetostriction at 12 T. The lack of correspondence at
temperatures well above TC is due to the lack of saturation of λt(H)

uncharacteristic of a paramagnet. This is, to our knowledge, the largest magne-
tostriction ever measured in a paramagnet, making this compound attractive
not only from the point of view of the relevant magnetoresistance behavior,
but also from the spectacular magnetostriction effect. Moreover, the tight
relation between the magnetostriction and magnetoresistance offers a unique
opportunity to get an insight into the relevant mechanisms operational in
these compounds. The comparison of the anomalous spontaneous and high
field value of magnetostriction shows that the field effect is the suppression of
the volume anomaly in the thermal expansion. If we reconsider the previous
argument, the observed magnetostriction in the paramagnetic phase should
have its origin in the destruction of magnetic polarons under field, i.e., in
the delocalization under field of the trapped charges. This argument would
explain the sharp decrease of the resistivity under field (CMR). In addition
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to magnetostriction measurements, a microscopic study by means of SANS
supported this assumption [62].

From the previous considerations we can describe the paramagnetic state
of the CMR mixed valent manganite La–Ca as an insulating state in which
localized charges give rise to an extra contribution to the spontaneous ω.
These localized charges carry a ferromagnetic polarized cloud with a correla-
tion length ξ ≈ 12 Å. Under applied magnetic field ξ increases and the mag-
netic polarons percolate, inducing a ferromagnetic conducting state. Then, the
huge magnetostriction observed in the paramagnetic phase originates from an
insulator–metal transition, which is related to a percolative transition [62]
from a high to a low volume state. We should call the attention of the read-
ers to the peculiar and new behavior described here. First, the existence of
well-defined nanometric ferromagnetic electronic cloud with an average life
time larger than 10−5 s. This constitutes a kind of dynamic phase segrega-
tion known as magnetic polarons. They are responsible for the CMR and
parastriction effects in manganites. Second, the magnetic polarons are of dif-
ferent nature than those proposed by Kasuya [65] and Nagaev [66] which are
based on an impurity effect which does not give rise to magnetovolume effects.

4.4.3 Magnetostriction in Inhomogeneous Electronic Systems:
Static Phase Segregation

In Sect. 4.4.2 we underlined the relevance of dynamic phase segregation, in the
form of magnetic polarons, on the magnetostriction in mixed valent mangan-
ites. In this section, we deal with a new phenomenology also found in these
magnetic oxides. We show how magnetostriction experiments were essential
to predict the existence of static phase separation, subsequently confirmed
by other microscopic techniques. Nowadays, the existence of inhomogeneous
states in different series of mixed valent manganites is well established [54].
The situation can be complex considering different doping level on the eg

band as a result of x variation in compounds La1−xMxMnO3 where M is an
alkaline earth. In order to illustrate the magnetostriction effect when this phe-
nomenon takes place, we selected a fixed hole concentration Mn4+ of 0.33, i.e.,
La2/3Ca1/3MnO3.

This compound is ferromagnetic below TC = 260 K and shows at this
temperature a first-order transition [67] from the insulator state with forma-
tion of magnetic polarons to the metallic state, as we already described for
La0.6Y0.07Ca1/3MnO3. The substitution of ≈10% of La by Tb has a strong
effect on the ordering temperature, decreasing to TC = 150 K, but all the phe-
nomenology is similar to that found in the sample with Y described previously.
This is a general trend in manganites: the substitution of La3+ by another
rare-earth ion as Tb3+, keeping the same hole-doped concentration, produces
a decrease of the ferromagnetic double exchange interaction strength. This is a
result of the narrowing of the electronic eg bandwidth driven by the reduction
of the Mn–O–Mn bond angle as a consequence of the smaller ionic radii of
Tb3+ ions [68,69]. At x > 0.25 the compounds are not long-range magnetically
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Fig. 4.13. Volume thermal expansion for different compounds of the series La–Tb.
Notice the low temperature behavior. The extra contribution to the thermal expan-
sion persists for the insulating compounds. The metallic state follows the Grüneisen
calculated phonon thermal expansion. The compound x = 0.25 remains in an in-
termediate state, which is an indication of the existence of an inhomogeneous state
with static phase segregation (coexistence of FMM and PMI)

ordered and a spin glass state (disordered ferromagnetic clusters of ξ ≈ 20 Å)
is found in the region close to x = 0.25. At this particular concentration,
long-range ferromagnetic ordered regions coexist with paramagnetic regions.
First experimental evidence of phase segregation in this compound was ob-
tained from the thermal expansion measurements. In Fig. 4.13 we show the
thermal expansion results for x = 0.25 and other compounds of the series. At
larger Tb doping level (x > 0.25) the systems are insulators at low tempera-
tures and show similar behavior (i.e., high volume insulator state). However,
for low Tb doping, x < 0.25, there exists a sharp anomaly associated with
the volume reduction at TC, consequence of the insulator–metal transition
as explained before. Unlike the two former systems, the considered compound
x = 0.25 displays an intermediate volume state at low temperature. This state
was considered as a result of an inhomogeneous para–ferromagnetic transition
at TC ≈ 80 K [70].

The isothermal volume magnetostriction curves (not displayed here) do
not saturate, which is interpreted as an indication of the stability of the in-
homogeneous state even at 12 T. We can explain these results considering the
establishment of microferromagnetic metallic regions below TC ≈ 80 K coex-
isting with a paramagnetic insulator even at very low temperature. Under
field, the volume fraction of the ferromagnetic region increases with field, and
consequently reducing the overall volume of the sample. These conclusions, di-
rectly obtained from magnetostriction measurements, were further confirmed
by resistivity and SANS experiments. In Fig. 4.14 we show the temperature
dependence of magnitudes of both quantities. We can observe a drop in the
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Fig. 4.14. Comparison of the resistivity with the SANS intensity at q = 0.1 Å in
x = 0.25. The field effect on the resistivity is also shown

resistivity at TC but the remnant low temperature resistivity is rather high
(ρ ≈ 50Ω cm). However, under applied field it decreases in two orders of mag-
nitude. The final confirmation of the existence of an inhomogeneous state is
the thermal dependence of SANS intensity. The enhancement of the SANS in-
tensity as temperature decreases is the result of magnetic polaron formation
as explained before. The sharp decrease of this magnitude at TC is an indi-
cation of formation of large clusters. These clusters are large enough to give
a magnetic coherent contribution to the Bragg neutron diffraction intensity,
as demonstrated in powder neutron diffraction experiments [70] (ξ > 500 Å).
This contribution is far from the magnetic signal expected from the estab-
lishment of long-range ferromagnetic order. Once more, the remanent SANS
contribution at low temperatures can be attributed to the existence of short-
range ferromagnetic clusters.

4.5 Charge/Orbital Instabilities

Charge ordering (CO) is a well-known phenomenon in magnetic oxides. The
archetypical example is the magnetite Fe3O4. In this compound Verwey [71]
proposed the long-range ordering of the Fe2+ and Fe3+ ions at the octa-
hedral oxygen site of the spinel structure. This implies an extra charge pe-
riodicity which has been used as an example of Wigner crystal formation.
This is a good example of strongly correlated states, i.e., the electrons in
the real space try to keep away from each other as much as possible. The
ground state is consequently insulating. Nevertheless, the exact nature and
pattern of CO state in magnetite is a matter of discussion [72]. In mixed
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valent manganites the existence of CO has extensively been found in many
compounds and is associated with the existence of orbital ordering. The static
situation originates from the strong Coulomb repulsion. However, the ordered
charges have eg symmetry with an anisotropic charge density on the ionic
sites: 3z2 − r2, x2 − y2 (Jahn–Teller degeneracy), this implies a new degree of
freedom (pseudospin space) [73,74]. Of course, the space symmetry breaking of
the pseudospin would make independent the charge and the orbital ordering.
Nevertheless this situation is not observed in mixed valent manganites. The
order of the charges alone would give rise only to an isotropic distortion of the
unit cell. In spite of it, a strong anisotropic tetragonal distortion of the unit cell
(without changing the symmetry) is found. A nice example is the compound
La0.35Ca0.65MnO3 where superlattice electron diffraction spots indicated the
long-range charge order [75] below TCO = 270 K. In addition, lattice distor-
tions were detected by neutron diffraction experiments [76] suggesting the
existence of an orbital ordering. The magnetic ordering is not always related
to the existence of charge/orbital ordering. For instance, in this compound
the long-range antiferromagnetic state occurs at TN ≈ 140 K, well below
TCO [77].

Spin disorder or antiferromagnetism brings about charge localization.
However, ferromagnetism causes delocalization through the double exchange
mechanism. In this case the kinetic energy avoids the formation of the Wigner
crystal. Transitions between charge ordering insulator and ferromagnetic-
metallic states can occur either spontaneously or under an applied field, when
these two “quantum phases” have nearly degenerate minima in the free energy.

We focus our attention on Pr0.7Ca0.3MnO3. The crystallographic struc-
ture is orthorhombic, Pbnm space group. At TCO ≈ 210 K a transition to a
charge ordering state takes place. Below this temperature the compound is an
insulator down to 4 K. Nevertheless, a first-order insulator–metal transition
can be induced by the application of a magnetic field. Below TN ≈ 150 K this
compound orders antiferromagnetically in a CE-type structure. Below ≈100 K
a canting of the magnetic moment was proposed giving rise to a ferromagnetic
component [78]. A great effort was dedicated to establish the deep connection
between magnetic and transport properties in this compound. Our effort was
oriented toward the study of the lattice effects, with the aim of getting an
insight into the underlying spin–charge–lattice coupling.

In Fig. 4.15a we show the thermal expansion results on Pr0.7Ca0.3MnO3

under applied magnetic field of 0, 6 and 12 T. A comparison of the experimen-
tal results and the calculated lattice contribution (using a θD = 500 K) allows
us to distinguish three different temperature ranges. Below ≈400 K there ex-
ists an extra contribution, as observed in the La–Ca compound, which we
associated with the charge localization of small polarons. At TCO ≈ 210 K we
observe a smooth anomaly which coincides with the temperature at which the
charge ordering was observed in neutron diffraction experiments [78]. We pro-
posed [60] at this temperature a transition from an incoherent small polaron
regime above TCO to a coherent regime in which a charge ordered lattice is
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Fig. 4.15. Linear thermal expansion (a) and resistivity (b) at different field values
of Pr0.7Ca0.3MnO3. Inset in (a) is the extra anharmonicity associated with the
insulator state

formed. We would like to underline the lack of volume effect (isotropic distor-
tion) at this transition, yet the lattice is strongly distorted (large anisotropic
change in the lattice parameters). Under an applied magnetic field of 6 T at
≈80 K a change in the volume is observed (≈0.14%). At 12 T the field induced
transition is shifted up to 210 K. It apparently seems that at this field value,
the charge ordering is completely suppressed in the whole temperature range.
These results can be understood considering that the volume distortion asso-
ciated with the charge localization (due to an extra anharmonic contribution)
disappears as the charge is released. When that happens, the thermal expan-
sion recovers the Grüneisen thermal dependence (phonon contribution). This
is the situation of the metallic state in La2/3Ca1/3MnO3. To make this effect
more clear the extra anharmonicity is displayed in the inset of Fig. 4.15a.
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In this compound, as happens in the reported La–Ca compounds, a close
correlation of the volume with the resistivity exists. As can be observed in
Fig. 4.15b, the spontaneous behavior is characterized by a semiconductor-like
dependence of the resistivity with a smooth anomaly at 210 K. Under a field
of 6 T an insulator–metal transition takes place at ≈80 K and at 12 T the
charge ordered state is not reached, in good agreement with thermal expansion
measurements.

The analysis of the magnetostriction and magnetoresistance allows an ad-
ditional piece of information to be obtained. Two different behaviors were
found above and below TCO as can be observed in Fig. 4.16a, b, respectively.
The volume magnetostriction above TCO shows a continuous increase of vol-
ume with field and no hysteresis is observed. This behavior is similar to the
already reported one for the La–Ca compound with the same carrier concen-

Fig. 4.16. Volume magnetostriction isotherms above (a) and below (b) the charge
ordering transition
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tration. Thus, we associate this magnetostriction with the progressive delocal-
ization of the carriers. The small value of this magnetostriction and the lack
of saturation may be related to a weak magnetic character of the polaron.
Fields higher than 14 T would be necesary in order to completely release the
charge. The behaviour below TCO is completely different. Below 150 K the
volume magnetostriction isotherms show a clear saturation with a very large
hysteresis. This constitutes an indication of the complete destruction of the
charge ordered state with the field, and also the first-order nature for the
insulator–metal transition. The change in volume at the field-induced tran-
sition has the same value as the spontaneous extra volume contribution and
opposite sign. A comparison of Fig. 4.17a, b shows the close relation between
the magnetoelastic and magnetotransport properties in this compound.

All the reported results on this compound reveal the different nature of
the interplaying interactions in mixed valence manganites. Above TCO the
Weiss temperature is positive [79] and the presence of lattice polarons with a
weak magnetic character supports the presence of short-range ferromagnetic

Fig. 4.17. Comparison of the close correlation between magnetostriction and resis-
tivity in Pr0.7Ca0.3MnO3
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correlations of double exchange origin. The existence of lattice polarons is an
indication of the strong electron–phonon interaction. Below TCO the progres-
sive localization of the carrier favors the ordering of the charges, probably by
the long-range coulomb interaction. Below TN the compound orders antiferro-
magnetically due to the superexchange interaction. Then, it is not surprising
to find a large field effect, given the different ground states available which
are almost degenerate in energy.

It is also worth mentioning some recent magnetovolume effects found in
compounds in which the long-range charge/orbital ordering is not achieved,
but the existence of short-range orbital order can lead to large magnetovol-
ume effects when the system is close to an orbital instability, due to the above
mentioned competition between ferrometallic and charge/orbital order insu-
lator. This situation is realised in the series Sm1−xSrxMnO3. This compound
has para-insulator to ferromagnetic-metallic transition below TC = 120 K. At
this transition a sharp decrease of the resistivity in more than three orders of
magnitude was found and also large field induced strains [80]. To get an in-
sight on the mechanisms underlying this behavior [81] we performed thermal
expansion and magnetostriction measurements. The results can be explained
in a similar way as in the former La2/3Ca1/3MnO3 compound described pre-
viously. The extra contribution to the thermal expansion was associated with
the existence of magnetic polarons above TC. In these compounds, however,
short-range orbital order has been observed from the analysis of the X-ray
resonant scattering around the 220 Bragg reflection [74]. The extra contribu-
tion to the volume thermal expansion nicely scales with the intensity of the
diffuse X-ray scattering, in a similar fashion to the scaling of the extra contri-
bution to the thermal expansion above Tc in La2/3Ca1/3MnO3 with the SANS
intensity. This short-range orbital ordering may be also associated with the
formation of a ferromagnetic cloud and consequently with magnetic polarons.
SANS experiments confirmed the coexistence of both kinds of short-range or-
dered regions [82]. With all the experimental evidence a polaronic behavior
(Janh–Teller or orbital polarons) seems to be responsible for the localization
of carriers which gives rise to the spontaneous magnetoelastic effects.

4.6 Conclusion

In this short review, we selected a number of different archetypal compounds in
which magnetoresistance and magnetostriction effects are intimately related.
In general, the underlying mechanism is the electron itinerancy in magnetic
oxides and, the change of the electronic structure due to a structural trans-
formation or the modification of the magnetic moment due to a change of
the longitudinal fluctuations. In spite of the vast phenomenology, a complete
and unified theoretical description of the experiments is still lacking. The aim
of this review has been to show that magnetostriction can provide relevant
information on physical processes in solids and how the volume or anisotropic
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magnetostriction are at the base of magnetic or orbital instabilities which
drastically influence the electrical transport properties.
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5

Interplay of Spin, Charge, and Lattice
in CMR Manganites and HTSC Cuprates

T. Egami

5.1 Introduction

In the field of electronics technology oxides have been primarily used only as
insulators, such as native SiO2, or as magnetic materials, for instance ferric
oxides as recording media and recording heads. For semiconductors doped sil-
icon has been used almost exclusively, and simple metals, such as aluminum,
copper and gold, have been used for contacts and connectors. This practice,
however, could change dramatically in the next decade or so. Firstly, high-
temperature superconductivity (HTSC) was discovered in the cuprates by
Bednorz and Müller [1]. This was a major surprise, since majority of oxides
are insulators or poor conductors. Then the so-called colossal magnetoresis-
tivity (CMR) was observed in some manganites [2]. These discoveries could
be harbingers for oxides to become mainstream electronic materials in the
future.

These functional oxides are not simple oxides such as SiO2 or Al2O3, but
are complex oxides composed of many elements including transition metals,
and usually have a complex lattice structure. Not only is the lattice struc-
ture complex but also the physical interactions in these solids are complex,
involving spin, charge, orbital, and lattice degrees of freedom. The remarkable
properties of these complex oxides originate from the interplay, i.e., competi-
tion and collaboration, among these multiple degrees of freedom. Such a state
of strongly interacting forces was rarely encountered in the history of the con-
densed matter research, where most phenomena were explained in terms of
the linear response to small perturbation. Understanding of these competing
forces requires the use of a multitude of novel experimental techniques and
new theoretical approaches, usually involving extensive numerical simulations.

A major difficulty often faced in studying these intertwined multiple de-
grees of freedom is that complexity of the phenomena often conceals the true
order parameter. In particular, disorder in the system tends to have much
more profound effects than in simple systems, leading to localization of the ef-
fects and destroying the long-range order. Thus the conventional experimental



76 T. Egami

and theoretical approaches that rely on the long-range order are frequently
ineffective, and we need local approaches to separate intertwined forces. In
this chapter we describe how the pulsed neutron atomic pair-density func-
tion (PDF) approach has facilitated understanding of the mechanism of the
ionic size effect on the CMR manganites and the spin–charge stripes in the
cuprates, and how PDF measurements and inelastic pulsed neutron scatter-
ing measurements of phonons revealed involvement of phonons in the HTSC
phenomenon.

5.2 Stability of Polaronic Phase in the CMR Manganites

5.2.1 Colossal Magnetoresistivity

Certain transition metal oxides such as manganites A1−xA′
xMnO3, where A

is a trivalent ion (rare earths) and A′ is a divalent ion (alkali earth or Bi and
Pb), undergo a phase transition from a paramagnetic or antiferromagnetic in-
sulator to a ferromagnetic metal. Near the point of the metal–insulator transi-
tion (MIT), an applied magnetic field can induce the ferromagnetic transition
and thus can greatly change the resistivity. This effect, called CMR [2], was
extensively studied during the last ten years as a representative case of un-
usual properties of complex oxides fueled by the possibility of application. The
basic properties of the oxides involved have been known for a long time, going
back to the pioneering study by Jonker and Van Santen [3]. Initially the MIT
in the manganites was considered to be caused purely by the magnetic inter-
action; metallic conduction is possible only in the ferromagnetic state, while
in the paramagnetic state spin scattering causes high resistivity and creates
spin polarons. This simple view was first questioned by Millis et al. [4] who
advocated the need for considering other interactions to confine and localize
charge carriers as polarons, most likely the lattice contribution involving the
Jahn–Teller (JT) effect, to fully explain the experimental results.

The lattice contribution to polarons was soon experimentally confirmed
by various local probes [5–8]. For instance a Mn3+ ion in insulating LaMnO3

has four d-electrons in the t2g3-eg
1 high-spin configuration. Because of the

singly occupied eg level this ion is JT active, and the MnO6 octahedron be-
comes elongated along one axis. In this case there are two Mn–O bond lengths,
four short (∼1.95 Å) and two long (∼2.1 Å) within the MnO6 octahedron. On
the other hand a Mn4+ ion has no eg electron, so that the MnO6 octahedron
retains cubic symmetry and all the six Mn–O neighbor distances are the same.
If doped holes in La1−xCaxMnO3 are localized to form polarons they affect
the lattice structure by locally reducing the JT distortion. But unless polarons
form a long-range order such changes in the local JT distortion cannot be eas-
ily detected by the standard diffraction methods. On the other hand the local
structural probes, such as the atomic PDF analysis of neutron diffraction or
the extended X-ray absorption fine structure (EXAFS) method, convincingly



5 Interplay of Spin, Charge, and Lattice in Manganites and Cuprates 77

demonstrated that the local JT distortion exists at some Mn sites but not at
others. The Mn sites without or reduced JT distortion must coincide with the
sites with localized holes.

5.2.2 Pulsed Neutron PDF Method

The structure of a crystal is defined by its symmetry, lattice parameters, and
atomic positions within the unit cell, all of which can be determined by mea-
suring the position and the intensity of the Bragg diffraction peaks. Thus
usually structure determination implies the analysis of the Bragg peaks in
the diffraction pattern. However, real crystals are never perfect and contain
lattice defects. In complex systems such as the CMR oxides electron–lattice
interaction causes local changes in the lattice structure and destroys trans-
lational symmetry, but such local changes are not directly reflected in the
crystal structure. These short-range deviations from the perfect lattice struc-
ture produce diffuse scattering [9]. If the diffuse scattering forms a broad peak,
the position of the peak indicates the periodicity of the superstructure and
the width gives the information on the structural correlation length. But in
order to determine the actual deviations, for instance in terms of atomic dis-
placements, many diffuse scattering peaks have to be studied and analyzed.
While such studies are possible and useful information has been obtained [10],
a simpler and more reliable approach is to use the PDF analysis.

In the PDF analysis the powder diffraction intensities are determined with
neutrons and X-rays with relatively high energies up to a large momentum
transfer, Q (=4π sin θ/λ, θ is the diffraction angle and λ is the wavelength
of the scattering probe), and the results are Fourier-transformed to obtain
the atom–atom correlation function after correction for absorption and other
factors [11]. The pair-density function, ρ(r), is defined by

ρ(r) = ρ0 g(r) =
1

4πNr2

∑

i,j

δ(r − rij) , (5.1)

where rij is the distance between atoms i and j, ρ0 is the number density
of atoms, and N is the number of atoms in the system. It is customary to
call g(r) the pair-distribution function, and 4πr2ρ0g(r) the radial-distribution
function (RDF). They are obtained from the diffraction data by

ρ(r) = ρ0 +
1

2π2r

∫ ∞

0

[S(Q) − 1] sin(Qr)QdQ , (5.2)

where S(Q) is the normalized structure function determined by powder dif-
fraction measurement.

In powder diffraction measurement all the diffuse scattering intensities
are measured in addition to the Bragg peaks, while in the case of direct
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Fig. 5.1. The Neutron Powder Diffractometer (NPDF) of the Lujan Center, Los
Alamos National Laboratory, during the upgrading work supported by the Na-
tional Science Foundation DMR00-76488. A large backscattering detector frame for
position-sensitive 3He detectors is seen with a technician inside

measurement of diffuse scattering from a single crystal usually only a few
peaks are chosen for measurement, since the diffuse scattering intensities are
usually weak and the measurement is time consuming. Thus the PDF repre-
sents full atomic correlation, not compromised by shortcuts in the experiment.
This is an important point, since it is so easy to miss critical information by
not studying all the diffuse intensities. Even though the angular information
is lost by powder averaging the PDF method is a valuable tool that should
be used first in evaluating the local disorder.

The PDF method has long been used almost exclusively for the study
of short-range order in liquids and glasses, but the advent of modern ra-
diation sources, such as pulsed neutron sources and synchrotron radiation
sources, which deliver short wavelength probes, made it possible to apply this
technique on crystalline solids with strong disorder [11]. Also by the use of
high Q-resolution spectrometer, such as the Neutron Powder Diffractometer
(NPDF) of the Lujan Center, Los Alamos National Laboratory (Fig. 5.1), it
is now possible to determine the PDF up to 200 or 300 Å as shown in Fig. 5.2,
thereby seamlessly connecting the short-range structural analysis with the
conventional analysis of the long-range order [12, 13]. This method has been
quite effective in characterizing the local structure of CMR manganites and
related oxides, and facilitating understanding of their physical properties in
terms of their local structure [11,14].
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Fig. 5.2. The pair-density function (PDF) of crystalline Ni powder at T = 10K
obtained by the NPDF [13]

5.2.3 Polaron Stability

While the polaron formation is central to the phenomenon of MIT in the
manganites, it soon became recognized that the highly collective nature of
the ground state is necessary to explain the high response to the magnetic
field by the CMR manganites. In the insulating phase charges are not only
confined in the polaronic state, but also form a charge-ordered state. CMR
is achieved in the mesoscopic mixed phase state of charge-ordered insulator
and metal [15]. Note that charge ordering and polaron formation are actually
very closely related phenomena, since the charge-ordered state is simply the
crystallized state of polarons (polaron lattice), rather than the charge-density
waves (CDW) state driven by the Fermi surface instability. The competing
forces that determine the stability of polarons, thus MIT, are the following:

1. Forces to localize charges; electron–phonon (e–p) interaction and spin cor-
relation

2. Forces to delocalize charges; electron kinetic energy and lattice elasticity

In classical mechanics a localized static body has a lower kinetic energy, but
in quantum mechanics localization results in strong local variation in the
wavefunction, and thus in a higher kinetic energy. Thus electron kinetic energy
prefers charge delocalization. The balance between the two forces could be
expressed by the renormalized e–p coupling constant,

λ =
g2

Kt〈cos θ
2 〉

, (5.3)

where K is the relevant elastic constant, g is the bare e–p coupling parameter,
t is the hopping integral in the tight-binding approximation and θ is the angle
made by neighboring spins [16, 17]. If λ exceeds a critical value charges will
be localized as polarons in the charge-ordered state.

The value of λ varies with composition, and even when the charge density is
the same, it depends on the ionic size of the A-site ions, 〈rA〉 [18]. When the
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value of 〈rA〉 is large, the system is a stable ferromagnetic metal for x < 0.5,
and when it is small it is an insulator. At the crossover state the solid is
precariously balanced and the CMR behavior is observed. Therefore under-
standing this ionic size effect is crucial in understanding the forces that cause
the CMR effect. It is generally considered that the balance is affected through
the change in t, thus the electronic bandwidth [18, 19]. A large A-site ion
expands the lattice and makes the Mn–O–Mn bond straight, while a small
A-site ion contracts the lattice and makes the Mn–O–Mn bond buckled. In
the buckled Mn–O–Mn bond the p–d overlap is reduced and the value of t is
reduced accordingly. While this explanation sounds reasonable, a closer look
reveals a fault in this explanation. Actually the change in the buckling angle
of the Mn–O–Mn bond due to the ionic size change is rather small, and the
expected change in t is too small to explain the observed drastic effect [20,21].
It is true that the manganites with small A-site ions have a narrow band, but
that is a consequence of charge localization, and not the cause, because polaron
formation renormalizes the electron bandwidth as shown by Holstein [22].

The true story is a bit more complex and involves the elastic field around
a polaron [23, 24]. A lattice polaron is formed by displacements of neighbor-
ing ions that trap the charge carrier. In the case of the manganites these
displacements are related to the JT distortion. The polaron site should have
no JT distortion and has six short Mn–O bonds, while the insulating sites
outside are JT distorted and have four short bonds and two long bonds as
for Mn3+. Thus the fraction of the sites without the JT distortion can be
deduced by comparing the density of short Mn–O bonds and that of long
Mn–O bonds. They can be determined by the PDF analysis. As shown in
Fig. 5.3 Mn–O bonds are seen as split peaks in the neutron PDF. The peaks
are negative since the neutron scattering length of Mn is negative. By eval-
uating the areas of these peaks the number ratio of long and short Mn–O
bonds can be obtained, and the fraction of the sites with or without the local
JT distortion can be calculated from the ratio. Figure 5.4 shows the fraction
of the sites without the JT distortion as a function of the A-site ionic size,
〈rA〉, evaluated by the pulsed neutron PDF study for A0.7A′

0.3MnO3 [24]. By
dividing the density of sites without the local JT distortion by the charge
density (x = 0.3) it is possible to evaluate the size of the polaron. Figure 5.4
shows that when the ionic size is small polarons occupy a single site, and as
the ionic size is increased the polaron expands, and finally practically all the
sites lose local JT distortion and the system becomes a homogeneous metal.

If the value of 〈rA〉 is large and the Mn–O–Mn bond is straight this local
lattice contraction associated with the loss of local JT distortion produces a
long-range strain field around it as shown in Fig. 5.5a. But if the Mn–O–Mn
bond is sufficiently buckled when 〈rA〉 is small, the local lattice contraction
is accommodated by the unbuckling of the bond as in Fig. 5.5b. In other
words transverse phonons can screen the local strains. The effect of the long-
range strain field on the polaron formation energy was evaluated using the
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Fig. 5.3. The RDF of Y0.5La0.2Ca0.3MnO3 in the range of r from 1.7 to 2.3 Å,
showing the peak for the Mn–O bonds, determined by pulsed neutron diffraction
[23]. Here the RDF = 4πr2ρ(r), where ρ(r) is the PDF and 〈b〉 is the composition
average of the neutron scattering length. The Mn–O peak can be fit by two sub-peaks
corresponding to short and long Mn–O bonds

Fig. 5.4. The fraction of the Mn sites without the local Jahn–Teller distortion in
A0.7A

′
0.3MnO3 with various A and A′ ions, as a function of the average ionic size,

〈rA〉, determined by the PDF analysis of the pulsed neutron diffraction data [24].
It gives the size of the polaron when divided by the charge density in terms of the
number of Mn sites involved
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Fig. 5.5. The mechanism of local accommodation of polaronic strain. When the
Mn–O–Mn bond is straight, loss of local Jahn–Teller distortion reduces the long (L)
Mn–O bond to a short (S) one and creates a long-range stress field (a). However,
when the Mn–O–Mn bond is sufficiently buckled, unbuckling locally accommodates
the polaronic strain, and the long-range stress field will not be created (b) [23]

Fig. 5.6. The effective electron–lattice coupling parameter normalized to the single-
site value without the long-range stress field. The effect of the long-range stress field
is to reduce the effective coupling parameter, since the energy to create a polaron is
increased. The dashed line is for a slightly different choice of critical parameters [23]

continuum approximation by Eshelby [23]. It was found that the presence or
absence of the long-range strain field changes the effective coupling constant λ
by nearly a factor of 2, as shown in Fig. 5.6 [23]. In other words what changes
with the A-site ionic size is not the value of t, but the effective value of K.
This example shows that the details of the local atomic structure can have
profound effects on the properties of complex oxides by affecting the balance
among the competing forces.
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Fig. 5.7. Dependence of the superconductive transition temperature, TC, on the
ionic size of the site for La/Nd and Sr/Ba due to the formation of the stripe state
[23,26,27]

5.3 Stability of Spin–Charge Stripes in the Cuprates

In some cuprate compounds doped charges are localized in the spin–charge
stripes composed of charged stripes and antiferromagnetic stripes [25]. The
stability of the stripes also depends on the ionic size as well as charge den-
sity [25], and the size effect can be explained by the same mechanism
just discussed for the CMR manganites [23]. For example, in the system
(La,Nd)1.88(Sr,Ba)0.12CuO4 with the hole density x 	 1/8 the superconduct-
ing critical temperature, TC, depends strongly on the ionic size as shown in
Fig. 5.7, and the stripes are observed when TC is suppressed, suggesting that
the stripes and superconductivity compete against each other [26,27].

Doped holes enter the hybridized Cu(dx2−y2)–O(px) anti-bonding σ-orbital,
thus when holes are localized they reduce the local Cu–O bond distance.
Indeed the Cu–O distance in the averaged lattice structure changes from
1.903 Å in La2CuO4 [28] to 1.889 Å in La1.85Sr0.15CuO4 [29] and 1.882 Å in
La1.8Sr0.2CuO4 [30], all at 10 K, indicating contraction of about 0.1 Å for each
hole. Since the linear hole density in the stripe is 50%, if all the holes are in
the single row of oxygen or copper the Cu–O bond will contract by 0.05 Å.
Figure 5.7 shows that the optimum state is achieved for 〈rA〉 = 1.237 Å, and
when 〈rA〉 is reduced by 0.07 Å the stripe structure becomes stable. This
change in the La/Nd–O distance corresponds to the change in the Cu–O dis-
tance of 0.05 Å, exactly the amount expected. Thus if this much of a change
in the Cu–O distance can be accommodated by the unbuckling of the Cu–O–
Cu bond, the stripe state can be stabilized. If the Cu–O–Cu bond is nearly
straight and the contraction of the Cu–O bond creates a long-range stress field,
the cost of the elastic energy to create the stripe state suppresses the stripes
and superconductivity remains alive. When a large Ba ion (rA = 1.47 Å [31])
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is added instead of Sr, it expands the Cu–O–Cu bond locally, allowing it to
become bifurcated and stabilizing the stripes. This analysis demonstrates that
the same strain accommodation mechanism explains both the CMR phenom-
enon in the manganites and the stability of the stripes in the cuprates.

5.4 Electron–Phonon Coupling and Mechanism
of Superconductivity in the Cuprates

5.4.1 Local Lattice Distortion
and Inhomogeneous Electronic States

For a long time the majority opinion on the microscopic mechanism of HTSC
in the cuprates has been that it is a purely electronic phenomenon, probably
described by the t–J Hamiltonian, and the lattice has no role [32]. However, re-
cent evidences [33–35] are seriously beginning to challenge this long-held opin-
ion by the majority. Indeed a large number of studies indicate that the lattice
of the cuprates has local distortion, which changes near the superconducting
transition temperature, TC, or the pseudo-gap temperature, TPG [36,37]. It is
even possible that the lattice plays a crucial role in the HTSC phenomenon.

Local structural probes suggest that below a certain temperature the local
environment of Copper ion appears to show two distinct configurations, possi-
bly corresponding to fully doped and strongly underdoped states [38,39]. The
appearance of these two components is consistent with the presence of spin–
charge stripe structure, but the evidence for the existence of such a structure
is weak. The earlier discussion on the stripes suggests that unless the ionic size
is favorable strong charge localization into the stripe structure is not likely to
take place. It is more likely that weaker localization into some nanoscale do-
mains with different charge densities is taking place. Indeed beautiful scanning
tunneling microscopy–scanning tunneling spectroscopy (STM–STS) observa-
tions [34,35] revealed the presence of such nano-scale electronic inhomogeneity.
While there are still some controversies regarding the STM results on the ef-
fect of surface, it is now generally accepted that in the cuprates the presence of
electronic inhomogeneity does not interfere with superconductivity for some
mysterious reason. However, not everybody agrees that the electronic inho-
mogeneity is necessary for superconductivity to occur. An experiment that
would give an answer to this point will have an enormous impact.

5.4.2 Electron–Phonon Coupling in the Cuprates

The observation of local lattice distortion associated with electronic inhomo-
geneity obviously implies coupling of the lattice with the electrons, but it
could merely be a consequence of electronic inhomogeneity, rather than the
cause. On the other hand more direct evidence of strong e–p coupling was
found in the angle-resolved photoemission spectroscopy (ARPES) study [33].
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It is particularly important that the ARPES result showed that the e–p
coupling is strong only for a particular branch of the phonons, the Cu–O
bond-stretching longitudinal optical (LO) modes toward the zone-boundary
half-breathing mode (Fig. 5.8) that shows strong softening with doping and
anomalous temperature dependence [40–44]. Inelastic neutron scattering study
of the phonons in YBa2Cu3O6.95 has shown that a shift in the spectral inten-
sity of scattering occurs with temperature [44]. In the energy range related
to the Cu–O bond-stretching LO modes intensities are transferred from the
range around 62 meV to the range around 53 meV as temperature is reduced.
To illustrate this change the inelastic neutron scattering intensity was mea-
sured at various temperatures at Q = (3.25, 0, 0) in the units of reciprocal
lattice vectors, or q = (π/2, 0, 0) in the phonon vector in the units of inverse
lattice parameter. Figure 5.9 shows the difference in the average intensity from
51 to 55 meV, I(1), and from 56 to 68 meV, I(2), as a function of tempera-
ture [44]. The change occurs below about 90 K, close to TC = TPG (=93 K).
For YBa2Cu3O6.95 (TC = 60 K) a similar change starts around 150 K (	TPG),
so that the change must be related to the pseudo-gap temperature, rather
than TC.

Fig. 5.8. In plane Cu–O half-breathing mode at q = (π, 0)

Fig. 5.9. Difference in the average inelastic neutron scattering intensity from a single
crystal of YBa2Cu3O6.95 at Q = (3.25, 0, 0), from 51 to 55meV, I(2), and from 56
to 68 meV, I(1), as a function of temperature [44]. TC is 93K for this sample
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Fig. 5.10. Optical conductivity of the Cu–O chain with and without doping (x =
0, 0.25) and with and without e–p coupling (α = 0, 1) for the phonon with q = 0.25
and 0.5, calculated for a one-dimensional Hubbard model [48]. Note that the effect
of phonon is found up to a large energy range

Such a strong e–p coupling of the Cu–O bond-stretching mode was theoret-
ically predicted [45,46]. In simple metals the lattice vibration can be described
in terms of the deformation potential, which is almost totally screened by
free electrons, except for the Friedel oscillation. In the cuprates the screening
length is longer than the interatomic distances because of low charge den-
sity, and Cu and O maintain their ionicity. Thus the d-orbitals of Cu and the
p-orbitals of O move with the nuclei, so that the change in the interatomic
distance between Cu and O due to lattice vibrations changes the p–d overlap.
This changes the hopping integral, t, between Cu and O, in the mechanism
known as the Su–Schrieffer–Heeger (SSH) coupling [47]. For simple metals
the effect of phonons is limited to the electrons close to the Fermi level within
the phonon frequency ωph. However, in the cuprates the effect extends up
to many eVs away from the Fermi level, since the whole band structure is
modified by the phonons. Consequently the optical conductivity is modified
up to high energy scale as shown in Fig. 5.10 as calculated with the Hubbard
model with the SSH coupling [48]. It was found that the optical conductivity
is modified up to a large energy scale by superconductive transition and this
was argued to be the evidence for an electronic mechanism [49–51]. However,
this result suggests that the change in the optical conductivity with the onset
of superconductivity is perfectly consistent with the phonon mechanism.

It is interesting to note that in ferroelectric oxides, such as BaTiO3, this
SSH coupling produces electronic polarization as large as the ionic polarization
[52, 53]. In the ionic state Ti4+ and O2− have d0 and p6 orbital occupation,
but upon forming a covalent bond they hybridize to form a p–d orbital. Ti–O
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Fig. 5.11. The q dependence of the effective charge of oxygen in the 1-d Hubbard
model due to the LO phonon mode, calculated for the ring of N = 12 sites with
doping level x = 0, 1/3 and for N = 16 with x = 0, 1/4. The dashed line indicates
the ionic value (static charge) [48]

bond-stretching phonons modify this p–d overlap, thus t between Ti and O.
If the Ti–O distance is reduced the p–d overlap will increase, and electron
will be transferred from O to Ti. The current due to the charge transfer
produces the electronic polarization [52, 53]. In the doped cuprates, on the
other hand, reducing the distance between Cu and O results in the transfer
of holes, rather than electrons, and the resulting electronic polarization has
an opposite sense as the ionic polarization as shown in Fig. 5.11 [48]. It is
noted that for the titanates the electronic polarization is maximum at q = 0,
resulting in uniform ferroelectric polarization, but in the doped cuprates it is
large at a finite wavevector q, roughly corresponding to 2kF, where kF is the
Fermi momentum. The maximum electronic polarization is as large as the ionic
polarization, just as in the case of the titanates. This explains the strong e–p
coupling of the Cu–O bond-stretching mode for q > 0. Moreover, the phonon-
induced charge transfer is spin polarized due to the strong electron correlation
effect, and therefore the phonon strongly modifies the spin excitation energies
and spin correlations [48]. This extra spin–phonon coupling may justify calling
the e–p coupling in this system unconventional.

5.4.3 Vibronic Mechanism
of High Temperature Superconductivity

The earlier discussions above demonstrate the unconventional nature of the
e–p coupling for the Cu–O bond-stretching mode in the cuprates, but would it
be strong enough to explain the high temperature superconductivity? Within
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the framework of the Bardeen Cooper and Schrieffer (BCS) mechanism [54]
the answer is almost certainly negative. The charge carrier density is low,
and the e–p coupling estimated from the ARPES data [33] is not strong enough
to explain the value of TC over 100 K. However, if phonons were to contribute
to the HTSC, it is not likely to be through the conventional BCS mechanism.
The BCS theory assumes the Fermi level of electrons to be far larger than
the phonon energy, and thus the Fermi velocity is much greater than the
sound velocity, and the Migdal theorem [55] applies. However, the carriers
that show a large superconducting gap are around the (π, 0) point, which is a
saddle point and has a zero velocity. Furthermore the strong electronic spatial
inhomogeneity observed by the STM–STS suggests that the BCS picture of
fast electrons interacting with the phonon once may not be appropriate.

The possible importance of spatial inhomogeneity was first suggested
by Gor’kov [56], and was extensively discussed by Phillips [57–59] and by
Bianconi [38, 60]. The idea is that inhomogeneity results in charge confine-
ment that produces jumps in electron dispersion and a high density of states
(DOS) at the Fermi level (shape resonance). Phillips further speculated that
the resultant superconductivity is highly inhomogeneous, and has filamental
character, which seems to be true for underdoped samples.

While these arguments assume a conventional e–p coupling with Fermi
liquid, it is possible that the e–p coupling is unconventional and nonadiabatic.
As a result of confinement the group velocity of electrons is further reduced.
If it is comparable to the sound velocity the Migdal theorem is no longer
valid, and we have to consider a resonant, nonadiabatic vibronic coupling in
real space [61, 62]. Superconductivity due to real space pairs was proposed
by Schafroth [63]. Due to mathematical difficulties his theory could not be
advanced as much as the BCS theory at that time, but with modern computers
it may now be possible to go beyond what has been done nearly a half century
ago. Here we briefly sketch the idea of vibronic pairing that could explain the
HTSC phenomenon.

Coupling of the wave packet of the half-breathing phonon to the electron
wave packets, made of regions in k space around four reciprocal lattice points
equivalent to the (π, 0) point, could lead to formation of phonon-induced
vibronic two-hole bound states with each hole in two different sublattices,
thereby reducing the repulsive Coulomb energy and gaining the exchange en-
ergy [64]. Strong vibronic coupling of such a bound state can result in large
values of TC [62]. The spatial extent of such a bound state is determined
by the area of the flat band in the k space near the (π, 0) point, and would
form domains of 20–30 Å in size, in agreement with the STM observation.
Such a bound state could be the origin of the electronic inhomogeneity. In
between the bound states hole-poor regions will develop antiferromagnetic
spin correlations, which can create a pseudo-gap. Since the bound state can
be formed stably only when the Fermi surface is close to the saddle point
of electron dispersion, forming a bridge around the (π, 0) point. In strongly
underdoped systems small Fermi surfaces are formed around the (π, π) points
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and the energy at the (π, 0) point is low, which makes the bound state un-
stable. In the overdoped state a large Fermi surface is formed and the energy
at the (π, 0) point is high, again making the bound state unstable. Thus the
phonon-induced vibronic bound state can be formed only in the intermediate
hole densities when the Fermi level is close to the saddle point, explaining
why TC forms a dome as a function of doping [64]. While this scenario needs
further development and experimental and theoretical verification, it appears
to explain so many properties of this complex system, and is worth pursuing
further.

5.5 Conclusions

It is clear that the complex interplay of spin, charge, orbital, and lattice
degrees of freedom is the underlying mechanism that produces remarkable
properties such as HTSC and CMR in transition metal oxides. In trying to
disentangle this intertwined state of multiple variables we have to deal with
all these factors together on the same footing. Such an approach, however,
marks strong departure from the past practice, where we usually start from
the state well defined by a dominant interaction, and take into account of less
dominant forces by perturbation. In some cases we can start from the balanced
state defined by the mean-field approximation and correct for the deviations.
However, collective effects of multiple degrees of freedom can render the mean-
field approximation invalid, particularly in the close vicinity of the critical
point. A novel approach, which appears to be more effective in this new world
of complexity, is the local approach, both in experiment and theory.

As examples of local approach we discussed two subjects, the polaron
stability in the CMR manganites and the vibronic mechanism of high tem-
perature superconductivity. The latter is a mere speculation at this moment,
and further research is warranted to test this scenario. When we succeed in
constructing a full theory of the vibronic mechanism it could form a new plat-
form for the science of strongly interacting complex systems. The research in
this field is important and exciting even for this reason alone.

Acknowledgments

The author acknowledges his collaborators, in particular, D. Louca, P. Piekarz,
M. Tachiki, J.-H. Chung, R.J. McQueeney, M. Arai, M. Yethiraj, H.A. Mook,
C. Frost, S. Tajima and Y. Endoh for their contributions, and K.A. Müller,
J.B. Goodenough, L. Gor’kov, J.C. Phillips, P.W. Anderson, A. Bussmann-
Holder, N. Nagaosa, M. Khomoto, Z.-X. Shen, A. Lanzara, D. Mihailovic,
E. Weger, J.J. Tu, E.W. Plummer, A.R. Bishop, and P. Dai for valuable
insights, discussions, and comments. This work was supported by the National
Science Foundation through DMR01-02565.



90 T. Egami

References

1. J.G. Bednorz, K.A. Müller: Z. Phys. B 64, 189 (1986)
2. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen:

Science 264, 413 (1994)
3. G.H. Jonker, J.H. Van Santen: Physica 16, 337 (1959); J.H. Van Santen, G.H.

Jonker: Physica 16, 599 (1950)
4. A.J. Millis, P.B. Littlewood, B.I. Shraiman: Phys. Rev. Lett. 74, 5144 (1995)
5. S.J.L. Billinge, R.G. DiFrancesco, G.H. Kwei, J.J. Neumeier, J.D. Thompson:

Phys. Rev. Lett. 77, 715 (1996)
6. C.H. Booth, F. Bridges, G.J. Snyder, T.H. Geballe: Phys. Rev. B 54, R15606

(1996)
7. D. Louca, T. Egami, E.L. Brosha, H. Röder, A.R. Bishop: Phys. Rev. B 56,
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6

Neutron Scattering Studies
of Anomalous Phonon Behavior
in Functional Materials

S.M. Shapiro

6.1 Introduction

Functional materials can be defined as those materials with crucial materials
properties that are primarily the output arising from the electrical, magnetic,
or mechanical responses to changes in the environment, such as temperature,
stress, electrical or magnetic fields. These materials differ from what are called
structural materials, which are utilized for their strength and other mechanical
properties. In most cases the strong response of the useful functional mate-
rials arises from the proximity of operating conditions to a phase transition
in these materials, such as metal–insulator (MI) transitions, the onset of fer-
roelectricity, ferromagnetism, superconductivity or structural transitions such
as martensitic phase transitions in shape-memory alloys. These phase tran-
sitions, together with their associated functional responses are known to be
highly sensitive to the presence of impurities, alloying additions, crystalline
defects and their state of organization, i.e., to the atomic scale structures,
nanostructures and microstructures.

In this chapter the focus will be on the magnetic and structural proper-
ties of several functional materials with particular emphasis on characterizing
their properties by inelastic neutron scattering. We shall consider the strong
interaction between the lattice and the electronic or magnetic properties of
the material as revealed by studying the lattice dynamics of the system. First
there will be a brief description of the neutron scattering technique and what is
measured followed by a discussion of the types of phonon anomalies occurring
as a result of electron–phonon coupling. Examples from the literature will be
given of these interactions observed in the giant or colossal magnetoresistance
materials and high temperature superconductors. The chapter will conclude
with a discussion of the anomalous phonon behavior observed in magnetic
shape memory alloys.
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6.2 Neutron Scattering

Neutrons are an ideal probe for studying the lattice and spin dynamics of
solids [1]. The wavelength of the neutron is comparable to the inter-atomic
spacing in solids, (1–2 Å) and the energies of the neutrons are comparable to
lattice energies (∼50 meV). The energy resolution needed in an experiment
to measure excitations is on the order of 10%, which is readily achievable
in a triple axis spectrometer. With the new generation of synchrotron X-ray
sources, inelastic X-ray scattering is demonstrating that it, too, can measure
dispersion curves in solids [2]. Since the incident energy of the photons is in
the keV regime, an energy resolution of 10−6 is needed to probe the lattice
dynamics. Nevertheless, the flux is so great with synchrotron X-ray sources
that it is now feasible to do such high-resolution experiments. The advantage
with X-rays is that small samples can be studied along with thin films. How-
ever, for magnetic scattering the coupling of neutrons is more direct and still
the preferred method.

In an X-ray or neutron experiment an incident beam with a well defined
energy (Ei) and momentum (ki) prepared by a monochromator crystal strikes
the sample. The particles are scattered by the sample and their energy ana-
lyzed by an analyzer crystal. The rules of momentum and energy conservation
govern the entire process:

Q = τ + q = ki − kf , (6.1)

�ω = Ei − Ef , (6.2)

Q and �ω are the momentum and energy, respectively, transferred to the
material and they are inferred by measuring differences between the incident
and final neutron wavevectors (ki, kf) and energies (Ei, Ef). τ is a recipro-
cal lattice vector and q is the momentum measured within a Brillouin zone.
The neutron also has a spin and this is important in measuring the mag-
netic properties of a material including the magnetic structure and spin wave
excitations.

In studying lattice vibrations the neutron couples to the atomic displace-
ments through a neutron–nuclear interaction. The intensity of the scattered
neutrons is proportional to the scattering function S(Q, ω), which can be
written as

S(Q, ω) = [n(ω + 1)] χ′′(Q, ω) , (6.3)

where [n(ω) + 1] is the Bose–Einstein distribution function and for high tem-
peratures where kT � �ω, n(ω) + 1 is approximated by kT/�ω. χ′′(Q, ω)
is the imaginary part of the dynamical susceptibility and for the case where
neutron scattering from the lattice creates or destroys a single phonon one
has
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Fig. 6.1. Phonon dispersion curve of Ni2MnGa measured at room temperature.
Data from [3]

χ′′(Q, ω) =
1
2

(2π)3

ν0

∑

τ ,q

δ(Q − q − τ )

×
∑

s

1
ωqs

F (Q)2[δ(ω − ωqs) − δ(ω + ωqs)] , (6.4)

F (Q) is the dynamical structure factor given by

F (Q) =
∑

j

bj√
mj

(Q · ξj,s) ei(Q·dj)e−Wj . (6.5)

Here, bj is the neutron scattering length for atom j with mass mj . ξj,s is the
eigenvector of atom j of the s phonon branch with frequency ωs and e−Wj is
the Debye–Waller factor. By measuring the intensity of a phonon in different
Brillouin zones with the same q, one can in principle determine the atomic
displacements ξj,s. Equation (6.5) is used to separate out the transverse from
longitudinal modes due to the dot product. With a triple axis instrument
it is straightforward to keep q constant and vary ω during an experiment.
Doing this for several q with different τ a dispersion curve can be measured.
Figure 6.1 shows the phonon dispersion curve measured for the ferromagnetic
shape memory alloy Ni2MnGa [3], which will be discussed in more detail later.

The most obvious feature is the very low energy of the TA2 mode prop-
agating along the [ζζ0] direction and the strong dip around ζ = 1/3. The
arrows indicate anomalies that are most likely due to strong electron–phonon
coupling at particular wavevectors predicted by the Fermi surface.

6.3 Phonon Anomalies

A lattice dynamical theory involves calculating the eignevalues of a dynamical
matrix, which is proportional to the interatomic force constants [4]. A simple
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Born–von Kármán model is usually a good starting point. This essentially is
a fit of a dispersion curve to a number of Fourier components. For a nearly
harmonic solid, the acoustic dispersion curves are sinusoidal and there are only
a few Fourier components needed which are proportional to near or next-near
neighbor force constants. If there are anomalies as shown in Fig. 6.1, more
terms are needed in the Fourier analysis and the simple Fourier expansion is
no longer adequate and more sophisticated methods are needed.

In this section we shall consider here two types of phonon anomalies: (1)
Kohn anomalies which are directly related to the Fermi surface and very often
are subtle features or kinks in a dispersion curve; and (2) soft mode anomalies
that are considered as precursor to a phase transformation and show large
temperature or pressure dependence of the phonon energies at a particular
wavevector.

6.3.1 Kohn Anomalies

Kohn anomalies are a direct consequence of electron–phonon coupling. We
can describe the dynamical matrix as a sum of two terms [5]

D = DSR + DLR . (6.6)

DSR are the short range mostly harmonic terms that can be described by a
Born–von Kármán analysis. In a metal DLR are longer range terms such as
electron–phonon interactions. Many authors calculated the electron–phonon
coupling for metals, but the approach of Varma and Weber [6] is generally
used. This term is related to the generalized electronic susceptibility and is a
negative quantity, which would reduce the eigenvalues of D and thus cause a
reduction in the phonon frequency

DLR ≈ −
∑

k,µ,ν

fk,µ(1 − fk+q,ν)
εk+q,ν − εk,µ

Mk,µ;k+q,ν Mk+q,ν;k,µ . (6.7)

Here, f is the Fermi function and εk,µ are energies of the µth electronic band
with momentum k. It can be seen that if there is a wavevector spanning the
Fermi surface the denominator will be small and DLR can be large enough to
cause a reduction in the phonon energy. The quantities, M, are the complicated
matrix elements giving the strength of the electron–phonon coupling. Both
quantities, the electronic structure and the matrix elements, are amenable to
calculation and determine the strength of the observed anomalies.

Figure 6.2 demonstrates the validity of the calculations [7]. The data points
were measured by inelastic neutron scattering after the calculations of Zhao
and Harmon [8], who predicted anomalies in the binary alloy, Ni50Al50 at the
positions of the arrows. As it can be seen they are in close agreement with the
experimental results, which were obtained after the predictions were made.

Not only were the positions of the anomalies well predicted, but their
strengths as well. It is stronger along the [ζζζ] direction than the [ζ00] direc-
tion. The crosses in Fig. 6.2 are from earlier measurements on this material [9].
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Fig. 6.2. The measured phonon dispersion curve of the [ζζζ]–TA (top) and the
[ζ00]–LA (bottom) branch in the Ni50Al50 alloy. The arrows indicated the predicted
q-values of the anomaly by Zhao and Harmon [8]. Data from [7]

These authors measured the dispersion curve at well-separated q-values and
were not able to confirm the anomalies predicted later. It shows the impor-
tance of having sufficient number of data points to accurately determine the
shape of the dispersion curve.

6.3.2 Soft Modes

Soft modes in structural phase transitions are another example of phonon
anomalies, but that are more dramatic than the small features of Kohn anom-
alies. The soft mode theory of structural phase transitions was first proposed
by Anderson [10] and Cochran [11] to describe the phase transition occurring
in ferroelectrics. In this theory there is a particular lattice vibration whose
displacements are those that are needed to transform the system from its
high temperature-high symmetry phase to its lower symmetry-low tempera-
ture ground state. The restoring forces for this mode get weaker and weaker
as the transition is approached and the frequency tends to zero. Looking at
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the dynamical matrix of (6.6) the short-range forces can be viewed as har-
monic forces which are temperature independent. They can be parametized as
DSR = −KTc. The longer ranged anharmonic forces are proportional to tem-
perature: DLR = KT . The eigenvalue of the dynamical matrix is proportional
to the square of the mode energy, �ω

(�ω)2 = K(T − Tc) . (6.8)

This shows that the phonon energy would go to zero at the critical temper-
ature, Tc. The crystal becomes unstable at this temperature and transforms
into its low temperature structure.

The soft mode theory of phase transitions has been demonstrated in many
systems [12]. The prototypical one is SrTiO3, which undergoes an antiferro-
electric transition [13] near 100 K. The soft mode is a zone boundary phonon
and the temperature dependence is shown in Fig. 6.3. The bottom portion
shows the energy of the zone boundary mode measured at the (1/2, 1/2, 1/2)

Fig. 6.3. The temperature dependence of the soft mode measured at the
(1/2, 1/2, 1/2) zone boundary (bottom) and the intensity of the elastic scattering
at this position (top), which becomes a new Bragg peak in the low temperature
phase. Data from [13]
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R-point of the Brillouin zone. The solid line is a fit to (6.8) with Tc = 108 K.
The upper portion shows the intensity of the elastic scattering as a function
of temperature and reveals a new Bragg peak appearing below the transition
temperature corresponding to a lowering of the symmetry.

6.4 Phonon Anomalies in the Manganites

The ferromagnetic perovskites of the type La1−xMexMnO3 (Me=Ca or Sr) are
under intense study due to the important discovery of their giant magnetore-
sistance for certain regions of doping [14]. In these regions the ground state is
ferromagnetic and at temperatures above the Curie temperature they become
insulating. The magnetic ordering can partly be explained by the double ex-
change mechanism. However, to explain the temperature dependent behavior
of the resistivity requires a strong electron–phonon interaction arising from
the Jahn–Teller splitting of the Mn3+ d-band eg levels. The structural and
magnetic phase diagrams are complex and exhibit regions where charge or-
dering of the Mn3+ and Mn4+ occurs. The exciting physics in these systems
lies in the coupling between the spin, the charge, the electrons, the lattice,
and orbital degrees of freedom – all the fundamental entities in solid state
physics.

Below we review one of the experiments on this system where inelastic
neutron scattering experiments have shed light on the interaction between the
spins and the lattice. The lattice vibrations associated with the Jahn–Teller
distortions involve the atomic motions of the MnO6 octahedra and should
show anomalous behavior as the temperature is reduced below the MI phase
transition. Zhang et al. [15] studied this in detail in La0.7Ca0.3MnO3 above
and below the ferro-to-paramagnetic transition temperature, Tc ∼ 240 K,
which coincides with the MI transition. Figure 6.4 shows the dispersion curve
of the optic modes along the [ζ00] direction measured at 10 K. The interest-
ing mode is the highest energy mode with energy �ω3 ∼ 71 meV at ζ = 0.
This is the in plane MnO3 bond stretching mode, which is the Jahn–Teller
mode. Calculations and measurements in the undoped materials show that
this upper mode is essentially dispersionless or should bend upwards as ζ in-
creases. Instead, the mode bends downward with a negative dispersion. This
anomalous effect is related to the charge ordering that occurs at the MI phase
transition.

Figure 6.5 shows the temperature dependence of this mode. It exhibits
anomalous damping and a decrease of intensity throughout the Brillouin zone
with increasing temperature. It is argued that this anomalous behavior is
due to the decoherence effects of the local dynamic phase fluctuations asso-
ciated with short-range polaron or charge/orbital orderings when the system
approaches Tc.
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Fig. 6.4. Measured optical phonon dispersion curves in La0.7Ca0.3MnO3 at 10 K.
The open circles were measured in the Sr doped material. The solid lines are the
results calculated by a screened shell model under cubic symmetry. Data from [15]

6.5 Phonon Anomalies in High Temperature
Superconductors

Since the discovery of high temperature superconductors nearly 20 years ago,
the basic mechanism behind the electron pairing leading to the superconduc-
tivity remains unexplained [16]. All of the cuprates have interesting magnetic
properties that change dramatically with doping. Therefore, it is thought that
magnetism plays an important role in the coupling mechanisms that lead to
the high Tc. Up until recently electron–phonon coupling was thought to play a
minor role in establishing the high superconducting transition temperatures.
The discovery of stripes [17] in the cuprates – the separation of spin and
charge – has given more impetus to the study of phonon anomalies in these
compounds. It is unclear whether the appearance of stripes helps or hinders
the onset of superconductivity. Studies of phonon behavior can help elucidate
the role of charge ordering in superconductivity because phonons with a dis-
placement pattern closely related to the charge stripe wavevector should have
anomalously low energies analogous to what has been observed as precursor
phenomenon to charge-density wave order in low-dimensional metals [18]. The
phonon most likely connected to stripes is the highest frequency phonon, a
longitudinal optic branch involving Cu–O stretching vibrations.

A study of the phonon anomalies in the high temperature superconduc-
tor YBCO (YBa2Cu3O6.6) with Tc ∼ 60 K was performed by Pintschovius
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Fig. 6.5. Temperature dependence of energy scans at the Brillouin zone center in
La0.7Ca0.3MnO3. ω3 is the Mn–O bond stretching Jahn–Teller mode. Data from [15]

et al. [19]. They chose this material because incommensurate magnetic fluc-
tuations are well documented and the wavevector of any phonon anomalies
would be twice the wavevector of the magnetic fluctuations if the anomaly is
related to the stripes. The structure of this crystal is orthorhombic and the
crystal is twinned in the (0, 0, 1) plane. It is difficult, therefore, to separate the
modes propagating along the [ζ00] and [0ζ0] directions, but Pintschovius et
al. [19] were able to do so. Figure 6.6a shows the calculated dispersion curves
of the ∆1 longitudinal optic modes calculated from an interaction potential
model. The red and blue color corresponds to modes propagating along the
[ζ00] and [0ζ0] directions, respectively. The phonons propagating along [ζ00]
have a slightly higher energy because of the smaller Cu–O distance. The up-
per branches between 65 and 75 meV are the Cu–O stretching vibrations. In
Fig. 6.6b the measured phonon dispersion curves with the same color repre-
sentation are shown. The most anomalous feature is the rapid drop of the
frequencies for the high-energy phonons propagating along the [0ζ0] direction
at about halfway to the zone boundary at ζ ∼ 0.25.
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Fig. 6.6. Dispersion curves of the high energy longitudinal phonons in YBCO0.66.
(a) Calculated curves from an interaction potential mode. The red (blue) curve
corresponds to the [ζ00] ([0ζ0]) direction. (b) Measured dispersion curves. Red (blue)
correspond to the [ζ00] ([0ζ0]) direction. The black symbols denote phonon peaks
where the assignment could not be resolved. From [19]

If one studies the displacement pattern associated with this phonon it is
seen that it is readily compatible with dynamic charge stripe formation with
a period of about 4 times the b lattice parameter. However, there are some
inconsistencies when compared to the magnetic data, which suggests that the
modulation is along the a direction and the above phonon measurements im-
ply that the charge modulation is along the b direction. This was discussed
in a later paper where the phonons in an optimally doped YBCO6.95 sam-
ple were studied [20]. In this experiment they studied the dispersion and the
temperature dependence of ∆4 phonons. These phonons also involve Cu–O
stretching, but they differ from the ∆1 symmetry in that the elongations in
the Cu–O bi-layer are out of phase for ∆4 and in phase for ∆1. The behav-
ior of the two are similar, but the interactions of the ∆1 modes with c-axis
polarized branches leads to complications in the measurements. These latest
results provide more convincing arguments that the phonon anomalies in the
Cu–O stretching mode indicate a dynamic one-dimensional charge density
modulation with the Cu–O planes.

6.6 Ferromagnetic Shape Memory Alloys

Most shape memory materials are tuned by varying the temperature. How-
ever, there is a growing list of shape memory alloys that, in addition to the
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Martensitic transformation exhibit ferromagnetic ordering. The major inter-
est in these materials arises from the possibility of tuning the strain and the
shape memory transition by applying a magnetic field, rather than temper-
ature. This opens up a new domain for actuator applications since chang-
ing a magnetic field is a quicker operation than changing temperature. In
Ferromagnetic Shape Memory Alloys (FSMA), the Curie temperature (TC)
is weakly dependent on composition and the Martensitic temperature (TM) is
strongly dependent upon the composition. TM can therefore be tuned to be
higher or lower than TC. The fundamental excitations in the spin system are
magnons and those of the lattice are the phonons. Since these collective excita-
tions are proportional to the couplings between the individual spins (magnons)
and atoms (phonons) a study of them is important to understanding the fun-
damental mechanism of the transformations and the coupling between the
spin and the lattice. Precursor effects such as critical scattering and softening
of magnon energies are well known in magnetic transitions, but not ubiquitous
in the Martensitic transformations. A study of the temperature dependence of
the magnons and phonons is therefore important in delineating the precursor
phenomena and the interaction of the magnetic and structural properties.

6.6.1 Iron-Based Alloys

The coupling of the structural and magnetic properties in iron-based alloys
has been known for many decades. Invar alloys have the interesting and tech-
nologically very important property of having zero or slightly negative thermal
expansion over a very wide temperature range [21]. This useful property has
been exploited in the construction of high precision mechanical instruments,
but is not fully explained. It disappears above the Curie temperature so is
related to the magnetic ordering. Most theories are based upon the volume
instabilities of the magnetic moments that give rise to a magneto-elastic cou-
pling that will offset the normal lattice expansion. Understanding the tem-
perature dependent behavior of the phonons will shed light on this coupling.

Fe65Ni35 is the canonical invar alloy but other Fe-alloys, such as Fe–Pt
and Fe–Pd exhibit similar invar properties. All of these show a change in
phonon dispersion as the system orders ferromagnetically. Figure 6.7 shows
the dispersion curve [22] of the [ζζ0] TA2 phonon branch for several invar
alloys along with bcc Fe. At temperatures above the Curie temperature the
dispersion follows the normal linear acoustic behavior for small ζ-values. For
temperatures below the Curie temperature an anomalous curvature in the
dispersion over nearly the entire Brillouin zone develops. A more detailed pic-
ture is shown for Fe72Pd28 in Fig. 6.8 [23]. At 676 K, which is higher than the
Curie temperature TC ∼575 K, the dispersion shows the usual linear behavior.
Below TC it develops a concave behavior, which increases as the temperature
is lowered. This is demonstrated in Fig. 6.9 where the ratio of the phonon
energies measured below TC to that above TC is plotted for several ζ-values
as a function of temperature. For all ζ, the softening starts at TC and is
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Fig. 6.7. [ζζ0]-TA2 dispersion curves for several Fe-based alloys and bcc Fe. Data
from [22]

largest for the smaller ζ. This behavior is also observed in the other alloys
shown in Fig. 6.7 and demonstrates the coupling between the magnetic order-
ing and the phonon behavior. A measure of the phonon linewidth also shows
an increase with decreasing temperature starting at the Curie temperature as
shown in Fig. 6.10. This broadening was confined only to the [110] TA2 branch
which exhibits the softening. The other branches measured along symmetry
directions exhibit normal behavior.

6.6.2 Heusler-Based Alloys

Ni2MnGa

This material has generated a tremendous amount of interest over the past 10
years largely due to the coexistence of a shape memory Martensitic transition
with ferromagnetic ordering and the possibility of inducing a large strain by
application of a magnetic field. Recently it was shown that a 10% strain can
be induced by application of a magnetic field at room temperature [24]. This
is an enormous amount; much larger than piezoelectric induced strain. The
symmetry of the high temperature phase of this material is cubic with the
fcc Heusler-L21 structure (Fm3m) with Curie temperature near 380 K, which
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Fig. 6.8. Temperature dependence of the [ζζ0]-TA2 branch for Fe72Pd28. Data
from [23]

Fig. 6.9. Temperature dependence of the [ζζ0]-TA2 phonons for Fe72Pd28, normal-
ized by the phonon energy above TC. Data from [23]

varies little with composition. The Martensitic transformation temperature
varies drastically with composition and the low symmetry phase is either or-
thorhombic or tetragonal, depending upon the composition. Figure 6.11 shows
the phase diagram of Ni2MnGa constructed from published reports [25]. The
quantity α is a weighted composition of Mn and Ga, which is easily converted
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Fig. 6.10. Temperature dependence of the phonon linewidth of the [ζζ0]-TA2

branch for Fe72Pd28. Data from [23]

Fig. 6.11. Phase diagram of Ni2MnGa from [25]. The filled circles and filled tri-
angles are the Martensitic and Curie temperatures, respectively. The open triangles
represent the transition to the intermediate modulated phase. The hatched region
in the inset represents the composition range from which the data have been taken

to the electron per atom ratio. For α = 25 the composition is stoichiometric
and e/a = 7.5. The solid circles show the variation of the Martensitic transfor-
mation temperature and the solid triangles represent the Curie temperature,
which is nearly independent of composition, whereas the Martensitic tem-
perature varies dramatically with composition. The open triangles delineate
a phase transformation into an intermediate modulated cubic phase, which
exists just prior to the transformation to the Martensitic phase.
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Fig. 6.12. Temperature dependence of anomalous TA2 branch in Ni2MnGa. Data
from [26]

The phonon dispersion curve for Ni2MnGa is shown in Fig. 6.1. The ob-
vious anomaly is the [ζζ0]-TA2 mode. A more detailed temperature study of
the low energy portion of this branch is shown in Fig. 6.12 [26]. At the high-
est temperature, 400 K, which is above the Curie temperature, the dispersion
branch shows a small wiggle. Since the anomaly is still present about the Curie
temperature this suggests that the coupling between the magnetic and lattice
properties is small. As the temperature is lowered towards the Martensitic
temperature, TM ∼ 220 K, a distinct minimum develops at ζ0 = 0.33. The
energy of the mode never goes to zero and reaches a minimum at TI = 260 K,
40 K above TM and then begins to increase again, still within the cubic phase.
This suggests that another phase develops between TI and TM and coexists
with the parent phase. This is the ferromagnetic intermediate phase shown in
the phase diagram of Fig. 6.11.

The elastic scans along the [ζζ0] transverse direction are shown in Fig. 6.13.
At elevated temperature a small diffuse bump is observed at ζ0 = 0.33, the
same wavevector as the anomaly seen in the dispersion curve. As T decreases
the intensity grows as the frequency decreases. Around 260 K there is a strong
increase in the intensity and it becomes narrower and Bragg-like, indicating
that an ordered modulation of the cubic phase sets in. This temperature is the
same as the minimum of the dispersion curve. This type of elastic scattering
associated with a phonon softening is ubiquitous in many structural transfor-
mations and is related to defects of the lattice [27]. The phonon softening is
usually viewed as a precursor to the low temperature phase. It is worth noting
that in the Martensitic phase, there is a modulation of the lattice [28] with
a wave vector ζ0 ∼ 0.43, which is quite different from 0.33. Thus the phonon
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Fig. 6.13. Temperature dependence of the elastic scattering along the [ζζ0] trans-
verse direction. Data from [26]

softening should not necessarily be viewed as a precursor to the Martensitic
phase, but more appropriately a precursor to the intermediate phase.

Since the phonon dispersion curve did not become linear above the Curie
temperature it was suggestive that the coupling to the magnetization is weak
and there was little effect of the magnetic ordering on the phonon behavior.
This is not strictly correct. When the square of the phonon frequency mea-
sured at ζ0 ∼ 0.33 is plotted as a function of temperature a change of slope
occurs at the magnetic ordering temperature [28] as seen in Fig. 6.14.

What is the origin of the phonon softening and modulation observed at
the wavevector ζ = 0.33? Self-consistent first principles calculations of the
electron energy spectrum, density of electronic states, and the generalized
susceptibility and of various Fermi surface cross sections have been carried
out by several groups. One group [29] concluded that Fermi surface nesting
could not be the driving force of the phonon softening because the calculation
showed that the nesting wavevector in the ferromagnetic phase of Ni2MnGa
is ζ0 = 0.42, which is substantially larger than the experimental value of
ζ0 = 0.33 as shown above. This was reconciled by a later study [30] where the
changes in the Fermi surface upon magnetic order were calculated. Since the
phonon softening persists down to TM, which is well above zero, the magne-
tization is not fully saturated. Lee et al. [30] showed that the nesting vector
does, indeed, depend upon the magnetization. They found that the Fermi sur-
face nesting is optimized at 80% of full magnetization and the nesting vector
is ζ0 = 1/3, the same wavevector as the observed phonon softening. However,
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Fig. 6.14. Square of phonon energy of [ζζ0]-TA2 mode, ζ = 0.33 vs. temperature for
Ni2.06Mn0.94Ga. The Curie temperature for this alloy is TC = 364K and TM = 284 K.
Data from [28]

these calculations would suggest that the nesting vector and therefore the
wavevector of the anomaly and its associated diffuse elastic peak should be
temperature dependent, which it is not. The 80% magnetization level occurs
close to the temperature region near where the premartensitic transition oc-
curs. At lower temperatures in the Martensite phase, the magnetism is near
saturation and the nesting vector has shifted to ζ0 = 0.42, consistent with
the observations [31]. Studies of single domain samples of Ni2MnGa in the
tetragonal Martensite phase show that the lattice modulation is at ζ0 = 0.42,
which corresponds to the weakly temperature dependent phonon anomaly of
the [ζζ0] TA2 phonons [31].

Co2NiGa

This compound was recently discovered [32] and is isomorphic to Ni2MnGa,
although much less is known about the material. For example, in the Ni-
compound, most of the magnetization is localized on the Mn sites, with a
small moment (10%) on the nickel sites. The magnetic properties for the Co
compound are unknown. It orders around 380 K and the Martensitic trans-
formation temperature is near room temperature. The stoichiometery can
be varied and a complete phase diagram has not been mapped out. The
variation of the transition temperature with e/a ratio [33] is nearly identi-
cal to Ni2MnGa. A single crystal of Co2NiGa was grown with composition
Co1.92Ni0.88Ga1.2 with a TM on cooling near ∼280 K. The phonon dispersion
curve and the elastic scattering along the [ζζ0]-TA2 direction were measured
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Fig. 6.15. The [ζζ0]-TA2 phonon branch measured in Co1.92Ni0.88Ga1.2 at sev-
eral temperatures within the cubic phase. The dashed line shows the same branch
measured in Ni2MnGa. Data from [34]

in the Austenite phase at several temperatures [34] and is shown in Fig. 6.15.
There is no anomaly in the dispersion curve nor is there any temperature
dependence. The elastic scans revealed no diffuse peaks and thus no modula-
tion. Therefore, no intermediate phase exists between the Austenite and the
cubic phase.

The absence of any anomaly and diffuse scattering in Co1.92Ni88Ga1.2 is
surprising since it is so similar to Ni2MnGa in terms of structural and magnetic
properties. On the other hand, the absence of the intermediate phase and no
phonon softening implies that the phonon softening observed in Ni2MnGa is
more likely a precursor to the intermediate phase rather than the Martensite
phase. This argument can be extended to the phonon softening observed in
other shape memory alloy systems and raises the question of whether phonon
anomalies are precursors to the Martensitic transformation or to the pre-
martensitic phase.

6.7 Summary

The technologically important functional materials exhibit phase transitions
that are driven by a coupling of fundamental quantities, such as electron
phonon coupling or a coupling of two different degrees of freedom such as
magnetic spins or atomic displacements. It was demonstrated in this chapter
that by inelastic neutron scattering studies of the lattice dynamics, a great
deal of information about the coupling can be learned. These measurements,
coupled to the theory, can lead to an understanding of the driving mechanism



6 Neutron Scattering Studies of Anomalous Phonon Behavior 111

of the transitions. Examples from studies of a diverse group of materials rang-
ing from high Tc compounds, the manganites and magnetic shape memory
alloys show anomalies in various relevant phonon branches.
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The Structures and Transformation
Mechanism in the Ferromagnetic Shape
Memory Alloy Ni2MnGa

P.J. Brown, T. Kanomata, and M. Matsumoto, K.-U. Neumann,
and K.R.A. Ziebeck

7.1 Introduction

The phenomenon of coupled magnetic and structural phase transitions is very
rare in condensed matter physics. Such systems can exhibit many interesting
properties including giant magneto-caloric, magneto-resistance and magneto-
striction, and consequently have great technological potential. Of particular
interest are materials that can be formed at one temperature TF , then cooled
to a lower temperature TM and plastically deformed and on heating to TF

regain their original shape. In recovering their shape the alloys can produce a
displacement or a force, or a combination of the two. Such behaviour is known
as the shape memory effect and usually takes place by change of temperature
or by applied stress. However for many applications such as for actuators the
transformation is not sufficiently rapid. Poor energy conversion also limits the
applicability of many shape memory alloys. Therefore considerable effort has
been made to find a magnetic system in which the phase transition can be
controlled by a magnetic field at constant temperature. Numerous materials
have been studied but the Ni–Mn–Ga system has proved the most encouraging
[1]. Since Ni2MnGa orders ferromagnetically below TC = 365 K the possibility
of producing giant field induced strains which are an order of magnitude larger
than those observed in rare-earth transition metal alloys has stimulated a
large number of investigations aimed at applications [2, 3]. The origin of the
shape memory effect in Ni2MnGa is the thermo-elastic phase change from
the cubic L21 Heusler structure to a phase of lower symmetry which takes
place at Tm

∼= 200 K on cooling [4]. Different transformation temperatures
and structures [5, 6] have been reported for the low temperature phase. The
variations are probably due to non-stoichiometry or stress.

7.2 The Crystal Structure of the Cubic Austenite Phase

Intermetallic compounds formed at the stoichiometric composition X2YZ and
with the cubic L21 structure as shown in Fig. 7.1 are usually classified as
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Site A B C D

L21 Mn Ni Ga Ni

B2 Mn/Ga Ni Mn/Ga Ni

Fig. 7.1. The Heusler L21 and B2 structures

Heusler alloys. The X and Y constituents are normally transition metals and
Z a group B element. Initial interest focussed on the ferromagnetic prop-
erties of Cu2MnAl [7] at a time when the antiferromagnetic properties of
manganese were not known. Subsequently a large number of Heusler alloys
have been discovered with a wide range of physical properties [8]. Particular
interest has focussed on X2MnZ compounds in which the magnetic moment is
confined to the manganese atoms. Since the Mn atoms are separated by a/

√
2

with a ∼ 6 Å, direct overlap of the 3d functions is negligible. Consequently
these compounds provide good model systems for studying localised magnetic
behaviour in metallic systems. Galvanomagnetic measurements indicate that
the transport properties are due only to the s and p electrons. Extensive mea-
surements have shown that the physical properties are sensitive to the degree
of stoichiometry and the degree of atomic order. However in many studies
these parameters have not been established and therefore it is impossible to
correlate results from different investigations.

Experiments on Ni–Mn–Ga alloys show that stoichiometry strongly influ-
ences the transition temperature TM but that the change in Curie temperature
is less pronounced. Furthermore, although a wide range of heat treatments is
used to make the alloys, a detailed structural analysis is seldom carried out and
hence the degree of atomic order remains uncertain. It is frequently assumed
that the austentite phase has the L21 structure, but sometimes this is just
inferred from the lattice parameter or from observation of fundamental reflec-
tions which are order independent. Thus there are very few examples where
the correlation between changes in physical properties and the crystallographic
structure, which is essential for a complete understanding of shape memory,
have been made. Since the atomic numbers of Ni, Mn and Ga (28, 25 and 31)
are close it is difficult to obtain a reliable estimate of the atomic order from
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X-ray powder diffraction measurements. Neutron diffraction which probes the
bulk structure (10−2 m), enables a quantitative structural refinement to be
obtained from powder data particularly if the profile refinement technique [9]
is employed. The nuclear coherent scattering amplitudes of 1.03, −0.373 and
0.723 [10−12 cm] for Ni, Mn and Ga respectively are significantly different
making neutron diffraction particularly appropriate for these materials.

The Heusler unit cell shown in Fig. 7.1 is comprised of four interpenetrating
fcc lattices A, B, C and D with origins at (000), (1

4
1
4

1
4 ), (1

2
1
2

1
2 ) and (3

4
3
4

3
4 ).

Bragg reflections are permitted when the Miller indices are unmixed which
gives rise to three types of structure factors:

• h, k, l all odd

F (111) = 4[(fA − fC) + i(fB − fD)] ; (7.1)

• h, k, l all even and h + k + l = 4n + 2

F (200) = 4|fA − fB + fC − fD| ; (7.2)

• h, k, l all even and h + k + l = 4n

F (220) = 4|fA + fB + fC + fD| ; (7.3)

where fA, fB, fC and fD are the average scattering factors of the atoms in the
respective sublattices. The reflections for which h + k + l = 4n are the order
independent principal reflections.

If the alloys are ordered in the L21 structure the structure factors become

F (111) = 4|fA − fC| , (7.4)

F (200) = 4|fA + fC − 2fB/D| , (7.5)

F (220) = 4|fA + fC + 2fB/D| . (7.6)

A comparison between the square of the structure factors of Ni2MnGa for
both X-rays and neutrons in Table 7.1 shows that the latter technique is more
appropriate for structural analysis. Possible types of atomic disorder and mod-
els describing disorder have been extensively discussed [9]. Although there is
an infinite number of ways in which the atoms XYZ can be distributed over
the lattices ABCD there are several types of preferential disorder which fre-
quently occur in Heusler alloys. B2 disorder implies the interchange of atoms

Table 7.1. X-ray and neutron structure factors of Ni2MnGa in the L21 structure

F 2(111) F 2(200) F 2(220)

X-ray (10−24 cm2) 45.74 0 15937.0
Neutron (10−24 cm2) 19.22 46.79 92.93
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Fig. 7.2. The effect of preferential disorder on the neutron structure factors of
Ni2MnGa

on the A and C lattices which can lead to a substantial change in properties
since the atomic separation between some pairs of Mn atoms is reduced to
a/2. The effects of preferential disorder on the structure factors can be char-
acterised using a single parameter α defined as the fraction of either Y or Z
atoms not on their ‘correct’ sites. The effects of the various types of disorder
on the squares of the structure factors and hence Bragg intensities for neutron
scattering are shown in Fig. 7.2.

7.3 Bulk Magnetic Properties

Between 200 K and the Curie temperature 370 K the thermal variation of
the magnetisation of stoichiometric Ni2MnGa follows that expected for an
isotropic ferromagnet. The structural phase transition at 200 K introduces a
preferred axis of magnetisation (c axis) which in low fields (<1 T) produces
an abrupt decrease in the magnetisation measured on polycrystalline samples
as shown in Fig. 7.3. However the field dependence of magnetisation below
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Fig. 7.3. The thermal dependence of the magnetisation of stoichiometric Ni2MnGa
measured in different applied fields

Table 7.2. A summary of the bulk magnetic properties of stoichiometric Ni2MnGa

µ00 (µB) TC (K) Θ (K) Peff/Mn (µB) µp/Mn (µB) µp/µ00

4.17 376 378 4.75 3.85 0.89

Table 7.3. A summary of the structural parameters of stoichiometric Ni2MnGa

a295 (Å) V295 (Å3) TM (K) a4.2 (Å) c4.2 (Å) c/a V4.2 (Å3)

5.825 198 202 5.92 5.566 0.94 195

TM suggests that the magneto-crystalline anisotropy is small [10]. Measure-
ments on a single crystal with one variant (crystallographic domain) gives the
anisotropy for the 〈100〉 hard axis as ∼3.9 J/kg [11]. Thus for fields above ∼1 T
it is possible to approach saturation and determine the spontaneous magneti-
sation from standard Arrott plots. A summary of the magnetic properties
is given in Table 7.2. From these measurements it is clear that the magnetic
moment essentially remains constant through the structural phase transition.
This is in contrast to the Laves phase compound YMn2 and the metal insula-
tor system V2O3 in which a collapse of the transition metal moment destroys
long range magnetic order producing a structural phase transition involving
∼5% change in cell volume [12]. The neutron diffraction measurements on
Ni2MnGa, above and below TM, summarised in Table 7.3, show that there is
negligible volume change. Further evidence that the amplitude of the man-
ganese moment remains fixed is provided by the Curie–Weiss susceptibility
observed above the Curie temperature. The Curie constant yields a paramag-
netic moment µp = 2S = 3.85µB close to the ground state value. This feature
is common to all X2MnZ compounds in which the bulk of the moment is on
the Mn atoms [8].
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7.4 Spin Dynamics

Inelastic neutron scattering experiments [13] in the cubic ferromagnetic phase
of Ni2MnGa give the spin wave stiffness of 108 meV Å2. This is the only study
yet reported of the spin dynamics in the ferromagnetic phase. However in-
sight into what might be expected can be obtained from results obtained on
isostructural compounds [8]. The spin wave dispersion in Ni2MnSn, which
has a similar moment distribution and Curie temperature, has been mea-
sured at 50 K in three principal symmetry directions out to the zone bound-
aries [14]. Local moment systems in which the spectrum of quantum (single
particle) fluctuations is well separated from the thermal region are expected
to support spin waves throughout the Brillouin zone. Evidence that this sit-
uation prevails is provided by the spin wave energy at the zone boundary
∼40 meV (∼450 K) which is comparable to the Curie temperature 360 K. The
dispersion was analysed using a Heisenberg model including exchange con-
stants out to the 8th nearest neighbour. Both positive and negative exchange
constants were obtained as expected for an indirect RKKY exchange mecha-
nism. The exchange constants derived yield a paramagnetic Curie temperature
kBΘP = 2

3S(S + 1)
∑

i zi Ji = 337 K which is close to 344 K, the value ob-
served from susceptibility measurements. A similar analysis leads to a ground
state spin wave stiffness constant D(0) = 1

3S
∑

i Ji ξ2
i a2 of 154 meV Å. Renor-

malisation of the spin wave stiffness constant in these systems is observed to
be stronger than expected on the basis of spin wave scattering alone. The
value is consistent with that observed for Ni2MnGa in the cubic phase. These
measurements and others on Heusler alloys [8] suggest that the response in
Ni2MnGa will be similar and of a local nature.

7.5 Paramagnetic Response

The local nature of the magnetic interactions is also expected to characterise
the paramagnetic phase. Although no experimental data are yet available for
Ni2MnGa, support for this conjecture is provided by the Curie–Weiss suscep-
tibility and paramagnetic neutron scattering experiments on the isostructural
compound Pd2MnSn. The temperature dependence of the susceptibilities of
X2MnZ alloys [8] and in particular of both Ni2MnGa and Pd2MnSn show that
the amplitude of the Mn moment remains constant and persists into the para-
magnetic phase. For Pd2MnSn polarised neutron scattering experiments [15]
show that the paramagnetic phase is characterised by directionally disordered
local moments of fixed magnitude. Since relativistic effects are unimportant
and spin is conserved the observed scattering extrapolates to the cross section
at Q = 0 given by the uniform susceptibility χ, i.e. the ω = 0 suscepti-
bility. The spin–spin correlation function 〈Sq · S−q〉 at Q = 0 is given by∑

j〈Si ·Sj〉 = 3kB χ T which is related to the partial differential cross section
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by dσ
dΩ =

∑
j

2
3 〈Si · Sj〉(roγ)2f2, where (roγ) = 0.54 × 10−13 cm and f is the

form factor which is unity at Q = 0.
The magnetic correlation function

S(q, ω) =
∫ ∞

−∞
dt e−iωt

∑

i,j

eiq(Ri−Rj) 〈Si(t) · Sj(0)〉 (7.7)

is related to the imaginary part of the dynamic susceptibility

S(q, ω) =
1

1 − e−
�ω
kT

χ′′(q, ω) . (7.8)

For a system of local magnetic moments a sum rule for the scattering can
then be defined
∑

q

∫ ∞

−∞
dω S(q, ω) =

∫ ∞

−∞
dω

∑

q

∫ ∞

−∞
dt e−iωt

∑

i,j

eiq(Ri−Rj) 〈Si(t) · Sj(0)〉

(7.9)
which yields

N〈S2〉 = NS(S + 1) . (7.10)

Typically the sum rule is obtained by integrating the scattering up to
some finite energy, which for a system with an ordered ground state is usually
the maximum spin wave energy ∼k TC. By integrating the response over the
same range in q and ω as in the ground state the sum rule was conserved.
In the paramagnetic phase the response is diffusive centred on ω = 0 with a
width ∆ω that increases from zero at q = 0 to the maximum value ∼k TC

at the zone boundary. The scattering function can be described by a double
Lorentzian appropriate for diffusive behaviour [16]

S(q, ω) ∝ T

[
1

(κ2
1 + q2)

] [
Λ1 q2

(Λ1 q2)2 + ω2

]

, (7.11)

where κ1 is the inverse correlation length and Λ1 characterises the line width.

7.6 Inelastic Neutron Scattering

The dispersion of acoustic phonons in the cubic austenite phase of Ni2MnGa
has been determined using inelastic neutron scattering and a single crystal
with TM ∼ 220 K [17]. The measurements show a pronounced softening of the
TA2 phonon propagating in the [110] direction at a wave vector q ∼ 0.33. This
softening begins above the Curie temperature in the paramagnetic phase and
becomes more pronounced but not complete as the temperature is lowered.
A maximum softening was observed at ∼260 K below which temperature a
pre-martensitic phase, characterised by a

[
1
3

1
30

]
propagation vector, is estab-

lished down to TM. The lack of complete softening often observed in structural
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phase transitions has been attributed to a coupling of the phonon modes with
lattice strains [18]. The thermal variation of the q = 0.325 mode is shown in
Fig. 7.4. From this figure it may be seen that the mode reaches a minimum
frequency close to 260 K but below this temperature the frequency begins
to increase. Above 260 K the square of the phonon energy has a linear de-
pendence on temperature as expected for a soft mode. Extrapolation of the
straight line fit yields a transition temperature T0 ∼ 250 K which is somewhat
lower than the transition temperature for the sample. This has led to the con-
jecture that an additional phase occurs between 250 and 220 K, possibly of an
incommensurate nature which would give rise to tweed behaviour [19]. How-
ever neutron diffraction measurements show that pre-martensitic phase with
the

[
1
3

1
30

]
modulation extends down to the martensitic phase transition [20].

Precursor phenomena are not expected for first order phase transitions
but they can occur in second order transformations. Their presence prior to
some martensitic phase transitions has been explained assuming anharmonic
coupling between a TA2 phonon mode and the long wavelength shear mode
associated with c′ = 1

2 (c11 − c12). The shear constants c44 and c′ [21–23] both
show a pronounced dip at the onset of the pre-martensitic phase with that of c′

being substantially larger at ∼60%. Consequently the elastic anisotropy c44/c′

increases significantly at this temperature. Below the transition c′ increases
thus reducing c44/c′ to a value smaller than that observed in related Cu–Ni–Al
and Cu–Zn–Al compounds undergoing a structural phase transition [24].

The neutron elastic scattering in the martensitic phase of the crystal, used
to establish the soft mode behaviour, has also been investigated [25]. The
five fold modulation along the [ξξ0] direction which had been proposed [5] on
the basis of X-ray measurements could not be observed. However, new Bragg
peaks were found in scans along [ξξ0], the peak at ξ = 0.43 being the most

Fig. 7.4. The temperature dependence of the soft mode behaviour of the TA2[110]
phonon with q = 0.325. TM, TP and T0 are the martensitic, pre-martensitic and
extrapolated transition temperatures
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intense. This value corresponds to ξ = 3/7 and is consistent with the recently
proposed [20] seven fold modulated structure for the martensitic phase. A
calculation of the structure factors for the proposed model shows that the
majority of the satellites are weak but the strongest reflection is

[
3
7

3
70

]
. More

recent inelastic measurements have identified a partial softening of the TA
mode at this wave vector [26].

7.7 Neutron Diffraction

High resolution powder and single crystal measurements have enabled the
phase diagram and structures of stoichiometric Ni2MnGa to be established
[20]. The low absorption cross section and the difference in the coherent nu-
clear scattering amplitudes of the three elements make neutron scattering the
appropriate technique.

When annealed at 800◦C and then quenched, Ni2MnGa has the L21 struc-
ture. This was confirmed by neutron powder diffraction measurements in the
paramagnetic phase at 400 K. The lattice parameter was determined to be
5.8636 Å. At 300 K the compound still has the L21 structure as shown in
Fig. 7.5 but is ferromagnetic with a moment of 2.4 µB located on the Mn

Fig. 7.5. The observed and calculated neutron diffraction patterns of stoichiometric
Ni2MnGa in the ferromagnetic phase at 300K, together with the difference pattern
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Table 7.4. Parameters of the cubic L21 structure of stoichiometric Ni2MnGa
determined from profile refinement of neutron powder diffraction patterns at 300
and 400K

Cubic Heusler L21 structure, space group Fm3̄m

Mn 4a 000 Ga 4b 1
2

1
2

1
2

Ni 8c 1
4

1
4

1
4

300 K 400 K
a (Å) 5.8229(2) 5.8636(2)

Ferromagnetic Paramagnetic
Mn moment (µB) 2.4(2) –
Mn occupancy 1 1
Ga occupancy 1 1
Ni occupancy 1 1
χ2 4.9 4.7

atoms in excellent agreement with the value obtained from magnetisation
measurements. A refinement carried out in which the Ni atoms were allowed
to carry a moment did not improve the goodness of fit as indicated by a chi-
squared test. The results of the refinement are given in Table 7.4. However
polarised neutron measurements indicate that the nickel atoms carry a small
moment [27].

7.8 Pre-Martenstic Phase

At 220 K there was a slight change to the powder diffraction pattern. The main
fcc peaks remained essentially unchanged but in addition a number of smaller
peaks were observed. The position of the smaller peaks could be accounted for
using the reported three fold modulation of the lattice in the pre-martensitic
phase [16]. However a detailed investigation of the pre-martensitic phase was
undertaken using neutron single crystal diffraction.

At room temperature, the reflections observed in single crystal measure-
ments were just those characteristic of the cubic Heusler L21 structure. On
cooling from 300 K additional reflections became apparent around 255 K which
could be indexed as g ± τ , where g is a reciprocal lattice vector of the fcc
lattice and τ = 1

3 ,− 1
3 , 0. The six domains which give the six armed star of τ

correspond to three different possible orientations of corth [001]cubic, [010]cubic

and [100]cubic for each of which aorth can have two different orientations. The
six domains occurring around the (−2−2 0) reflection are shown in the neu-
tron Laue pattern presented in Fig. 7.6 [28]. A q scan along h −h 0 from −1.45
−2.55 0 to −2.55 −1.45 0 carried out at 215 K is shown in Fig. 7.7.

The data are plotted on a log scale to enable comparison of the satellite
reflections with the fundamental −2−2 0 peak. The satellites arising from
the 1

3
1
30 modulated pre-martensitic phase persisted down to ∼200 K at which
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Fig. 7.6. A neutron Laue photograph in the premartensitic phase of Ni2MnGa
showing the fundamental −2−2 0 reflection and the 1

3
1
3
0 satellite reflections

Fig. 7.7. q scan along hh̄0 through the 2̄2̄0 reflection at 215 K

temperature the crystal transformed to the martensitic phase. Other than the
fundamental fcc and satellite reflections no further Bragg peaks were observed
in this temperature range. This was also confirmed at 220 K using high res-
olution neutron powder diffraction. The thermal evolution of the integrated
intensity of three reflections −4 −4 4; −4 + 1

3 , −4 − 1
3 , 4 and −4 + 1

3 , −4,
4 + 1

3 are shown in Fig. 7.8. The integrated intensities of the satellite peaks
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Fig. 7.8. The temperature dependence of the fundamental 44̄0 reflection (triangles)
and the (−3.66, −4.33, 4) satellite reflection (squares) in the premartensitic phase
of stoichiometric Ni2MnGa. The open symbols are for zero field and the filled ones
for B = 0.5 T

generated using all members of the star from all accessible reciprocal lattice
vectors in the positive quadrant of reciprocal space were measured at 230 and
215 K. The measured reflections were assigned to their respective domains and
the domain populations estimated from reflections measured in more than one
domain. The populations were used to scale and average all the measurements
to obtain a set of integrated intensities for the satellite reflections scaled to
the whole crystal volume. The atomic positions refined for a modulated struc-
ture which has space group Pnnm are given in Table 7.5. The orthorhombic

Table 7.5. Structural parameters for the pre-martensitic and martensitic phases
refined in space group Pnnm. Only the values given as decimal fractions were refined

230 K 215 K 20 K

Atomic positions x y z x y z x y z

2Mn1 2a 000
4Mn2 0.013 1

3
0 0.02189 1

3
0 0.041 1

7
0

4Mn3 4g xy0 −0.070 2
7

0
4Mn4 0.072 3

7
0

2Ga1 2b 00 1
2

4Ga2 0.015 1
3

1
2

0.0051 1
3

1
2

0.009 1
7

1
2

4Ga3 4g xy0 0.026 2
7

1
2

4Ga4 0.062 3
7

1
2

4Ni1 4f 1
2
0z 1

4
1
4

1
4

8Ni2 0.4930 1
3

1
4

0.4870 1
3

1
4

0.476 1
7

1
4

0.549 2
7

1
4

0.433 3
7

1
4

Manganese moment (µB) 3.05 3.07
χ2 10 9 9
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Fig. 7.9. Displacements parallel to aorth of atoms in successive (010) planes of
(a) the pre-martensitic phase at 215 K and (b) the martensitic phase at 20K. The
displacements are represented on an arbitrary scale. For clarity that in (a) is twice
that in (b). d is the lattice spacing of the cubic cell in the 〈110〉 direction acubic/

√
2

super-cell which accounts for all the observed reflections has aortho = acub/
√

2,
bortho = 3acub/

√
2 and cortho = acub; with aortho ‖ [110]cub, bortho ‖ [1−10]cub

and cortho ‖ [001]cub. In this structure successive (110) planes of atoms are
displaced with respect to one another in the [110] direction by an amount
which is modulated with a period of three lattice spacings in the [110]. The
displacement along aortho of the sublattices of Mn, Ni and Ga atoms in planes
parallel to (010)ortho are plotted against their positions on the bortho axis in
Fig. 7.9. It may be seen that the modulations of the Mn and Ni sublattices
are out of phase and so the structural distortion is more nearly equivalent
to a compression wave in the (010)ortho planes, propagating in the [100]ortho

direction, than it is to a simple displacement of the planes. There is some
evidence for reflections with h = 0 that the structure may relax in other
directions as well but the data were not sufficient to permit the associated y
or z displacements to be determined.

7.8.1 Field Dependence

The effect of a magnetic field on the pre-martensitic phase and the possibility
of domain switching has also been investigated [29]. After cooling from the
cubic phase to 219 K the relative populations of the 6 different domains of
the 1

3
1
30 modulated pre-martensitic phase were found to be essentially equal.

The equality was found not to be altered by the application of a field of 2 T
applied parallel to [001]. The 2 T field increased the mean satellite intensity by
a small amount, consistent with the alignment of the magnetisation parallel
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to [001]. In a further experiment the crystal was cooled into the martensitic
phase at 165 K and a field of 2 T was applied along [001] and then removed.
This treatment completely suppressed all twins with c-axes perpendicular to
[001]. Hence the domain population of the martensitic phase was substantially
modified. The crystal with this configuration was then warmed to 219 K and
the relative populations of the pre-martensitic domains determined. Again all
6 domains were found to be essentially equally populated; they do not follow
the distribution of domains in the martensitic phase.

7.9 The Martensitic Phase

Below 200 K the powder diffraction pattern is considerably more complicated
as may be seen from the pattern obtained at 20 K and shown in Fig. 7.10.
Apart from the improved resolution the diffraction pattern is similar to that
originally reported [4]. Some of the original fcc peaks split, the weak peaks
observed at 220 K disappear and new peaks emerge. The number and po-
sition of the Bragg peaks remained essentially unchanged down to 4 K the
lowest temperature at which measurements were made. The splitting of the
Bragg peaks is consistent with the loss of cubic symmetry whilst the appear-
ance of new peaks suggests that the translational symmetry is also altered.

Fig. 7.10. The observed and calculated neutron diffraction patterns of ferromag-
netic Ni2MnGa in the transformed phase at 20 K, together with the difference
pattern
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An initial refinement was carried out based on the previous report [4] that
the low temperature phase was tetragonal. A bct tetragonal cell was employed
with space group I4/mma and lattice parameters a = b = at/

√
2 = 4.187 Å

and c = ct = 5.566 Å. However this model only accounted for some of the
strong peaks. The possibility that the material had not fully transformed and
that there remained a residual cubic component was also considered. How-
ever the cubic pattern could not account for the extraneous intense peaks.
Closer inspection of the intense Bragg peaks which above Tm were of the
form (h + k + l) = 2n suggested that they split into three at the transfor-
mation suggesting orthorhombic symmetry and the loss of the four fold axis.
Based on this observation a new refinement was carried out using the space
group Imma. This structure accounted for the splitting of the intense peaks
but was unable to account for the additional weaker ones.

Having established the nature of the transformation, the possible modifi-
cations to the orthorhombic cell which could account for the additional peaks
were considered. Based on X-ray measurements a five fold modulation of the
low temperature bct phase has been proposed [5]. Dependent on stoichiometry
or residual stress other periodicities have also been suggested [4,29]. However
none of these structures accounted for the ‘additional’ peaks observed in the
neutron powder diffraction pattern. However a structure similar to that of the
precursor phase but with a seven fold increase in the length of the b axis was
able to account for all of the observed reflections. Using the new super-cell
with lattice parameters a = 4.2152, b = 29.3016 and c = 5.5570 Å, and space
group Pnnm a refinement accounted for all of the observed peaks and did not
generate any additional ones. It may be seen that the degree of orthorhombic
distortion (a−b/7) is relatively small; its observation is only made possible by
the high resolution of the diffractometer. The results of the refinement in which
the atomic positions were permitted to vary consistent with the space group
Pnnm are given in Table 7.5. In addition the manganese atoms were allowed to
carry a ferromagnetic moment. As for the refinement at higher temperatures
the moment was confined to the manganese atoms with an additional con-
straint that the four manganese atoms had the same moment. The moment
was found to lie along the c axis. Displacements parallel to aortho of the atoms
in successive planes parallel to (010)ortho are plotted in Fig. 7.9. Comparison
with the results obtained for the pre-martensitic phase shows that although
the unit cells of the phases are quite distinct the modulation of the martensitic
phase is far from sinusoidal and its dominant frequency is not very different
from the pre-martensitic phase. In both phases the displacements of the Mn
and Ni sublattices are out of phase.

7.10 Structural and Magnetic Phase Diagram

These high resolution neutron powder and single crystal diffraction experi-
ments on stoichiometric samples of Ni2MnGa with TM = 200 K have enabled
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Ferromagnetic Ferromagnetic Ferromagnetic Paramagnetic
Orthorhombic Orthorhombic Cubic Cubic

4 K ←→ 200 K ←→ 260 K ←→ 376 K ←→
7M 3M L21 L21

Fig. 7.11. The sequence of structural and magnetic phase transitions in stoichio-
metric Ni2MnGa

Fig. 7.12. Projection on the (001) plane of the ideal L21 Heusler structure, showing
the L21 cell, the body centred tetragonal cell and the two orthorhombic super-cells.
All the cells have the same c axis

the sequence of structural phase transitions shown in Fig. 7.11 to be estab-
lished. The relationships between the unit cells of the three structurally dif-
ferent phases is illustrated in Fig. 7.12. The super-structures found for the
two low temperature phases are derived from the cubic Heusler structure by
a periodic displacement of the atoms in successive (110) planes along the
[1 − 10] direction. This leads to an orthorhombic unit cell with space group
Pnnm with aortho ‖ [1−10]cubic, bortho ‖ [110]cubic and cortho ‖ [001], and
aortho = acubic/

√
2, bortho = nacubic/

√
2 and cortho = acubic, where n is the

periodicity of the displacement. The periodicities were found not to change
on the application of magnetic fields up to 2 T or stress up to 560 MPa. The
change from three to seven fold modulation occurs abruptly at Tm without
any intermediate step. A seven fold modulation has been reported [30,31] for
shape memory alloys in the series NixAl1−x with 0.6 ≤ x ≤ 0.65. In the higher
temperature phase the materials have the CsCl structure which is closely re-
lated to the Heusler structure through B2 disorder. On the basis of Landau
analysis [32] it has been proposed that the modulation arises again from the
anharmonic coupling of a Σ4 phonon with the elastic constant c′.
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7.11 Mechanism

The martensitic phase transition in Ni2MnGa, fundamental to its shape mem-
ory behaviour, can be described by two successive 110 type shears leading to
36 possible different orientations for the axes of the pseudo-tetragonal marten-
sitic phase. Identification of the tetragonal domains is facilitated by the rel-
atively large c/a ratio ∼0.94. However it is still necessary to determine the
distribution and orientation of the domains which has been made possible by
the use of multidetectors available on the diffractometers at the ILL in Greno-
ble. Neutron diffraction is an appropriate tool since the tetragonal distortion
is well within the instrumental resolution and the low absorption allows the
whole of relatively large samples (∼50 mm3) to be studied.

Diffraction experiments have been carried out on annealed and on pre-
stressed crystals and also on crystals subject to in situ stress and applied
magnetic field [29]. Scans through the position of the fundamental reflections
were made at small temperature intervals in the range 220 to 174 K both heat-
ing and cooling. The contour plot in Fig. 7.13 shows the evolution of the 400
and 040 reflections from an annealed sample above during and below the tran-
sition. At temperatures above 206 K all the samples were found to resume their
original form giving, for each reflection, in each thermal cycle, a single well

Fig. 7.13. Contour plots of the counts summed over the vertical pixels of the
detector from 7 to 25 as a function of the scattering angle (vertical axis) and the scan
step (horizontal axis) for scans through the 040 and 400 reflections of an annealed
crystal. Higher values of x correspond to smaller scattering angles. At 220K (a) the
sample is in the cubic phase, at 196K (b) it is transforming and at 174 K (c) it is
in the pseudo-tetragonal phase
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defined diffraction peak in a constant position no matter how many different
peaks were present in the martensitic phase. The number and orientation of
the martensitic twins observed in the transformed phase is different for each
sample and evolves during thermal cycling. The number of twins observed is
always many fewer than allowed by symmetry. The positions of peaks in the
scans enable the orientation relationships of the martensitic twins relative to
the cubic crystal to be determined. These were found to be consistent with
the transformation proceeding by two successive shears on {110} planes in
〈1 − 10〉 directions. There are two ways in which such shears can lead to a
pseudo-tetragonal cell (c/a < 1).

A general shear stress, such as those expected to occur in martensitic
transformations, can be described by a shear displacement τ in a plane k; τ
must lie in the plane so τ · k = 0. The displacement of a point with radius
vector r due to stress is

δ = (r · k)τ , (7.12)

and the matrix M describing the transformation of the unit cell r′ = M r is
given by

Mij = δ(ij) + τikj . (7.13)

For two successive shears τ on k and σ on q, small enough for the products
of the displacements to be negligible, the matrix, written out in full, becomes

M =

⎛

⎝
1 + τ1k1 + σ1q1 τ1k2 + σ1q2 τ1k3 + σ1q3

τ2k1 + σ2q1 1 + τ2k2 + σ2q2 τ2k3 + σ2q3

τ3k1 + σ3q1 τ3k2 + σ3q2 1 + τ3k3 + σ3q3

⎞

⎠ . (7.14)

The matrix represents an orthogonal transformation if

τ1k2 + τ2k1 = −σ1q2 − σ2q1 ,

τ2k3 + τ3k2 = −σ2q3 − σ3q2 , (7.15)
τ3k1 + τ1k3 = −σ3q1 − σ1q3 ,

and in this case the volume of the transformed cell, given by

V ′ = V (1 + τ1k1 + σ1q1 + τ2k2 + σ2q2 + τ3k3 + σ3q3) (7.16)

is unchanged because of the orthogonality between τ and k, and σ and q.

7.12 Martensitic Twinning in Ni2MnGa

In Ni2MnGa the shears occur on 110 planes in the 〈−110〉 directions. Taking
k, τ as (011), [0−ττ ] and q, σ as (101), [σ0−σ]; the transformation matrix
becomes

M =

⎛

⎝
1 + σ 0 σ

0 1 − τ −τ
−σ −τ 1 + τ − σ

⎞

⎠ . (7.17)



7 The Structures and Transformation Mechanism in Ni2MnGa 131

For the pseudo-tetragonal shears in Ni2MnGa c/a < 1, so either τ = −σ and
the c axis of the pseudo-tetragonal cell is parallel to the cubic [001] direction,
or τ = 2σ and the c axis is parallel to [010]. The two possibilities are given by

M1xy =

⎛

⎝
1 + σ 0 σ

0 1 + σ σ
−σ −σ 1 − 2σ

⎞

⎠ , M2xy =

⎛

⎝
1 + σ 0 σ

0 1 − 2σ −2σ
−σ 2σ 1 + σ

⎞

⎠ . (7.18)

The first index in the subscript indicates whether it arises from equal shears
(type 1) or if the second shear is twice the first (type 2). The second and third
indices identify the axes perpendicular to the two shears, for type 2 twins the
second index corresponds to the longer displacement.

M2zy =

⎛

⎝
1 + σ −σ −2σ

σ 1 + σ 0
−2σ 0 1 − 2σ

⎞

⎠ , M2zx =

⎛

⎝
1 + σ σ 0
−σ 1 + σ 2σ
0 −2σ 1 − 2σ

⎞

⎠ . (7.19)

The three matrices, M1xy, M2zy and M2zx have identical diagonal components
but are distinguished by off diagonal terms which describe the orientation of
tetragonal axes with respect to the cubic ones; for example the component
M23 gives the rotation of the y and z axes about x. In all three matrices
one of the three pairs of off diagonal elements is zero and this may be used
to identify the shears, giving rise to different domains in the transformed
crystal. For the type 1 domains it is the tetragonal c axis about which there
is no rotation, whereas for type 2 domains it is one of the other a axes. The
shear displacement σ = 2(a− c)/3(a+ c). For type 1 shears the mean rotation
about the three axes is 2σ/3 whereas for type 2 it is σ.

The two shears giving rise to type 1 matrices are equivalent: there are 12
different ways in which pairs of 110 planes inclined at 120◦ to one another may
be chosen, leading to 12 differently oriented type 1 twin domains. Each type 1
twin shares one a axis with another twin and the other a axis with a third.
For type 2 matrices the two shears are distinct, so there are 24 differently
oriented type 2 twin domains. Each type 2 twin shares its c axis with one
other member of the set and one of its a axis with a third.

The effects of applying a uniaxial stress and magnetic field above and below
TM were studied in a thermal cycling experiment similar to that described
previously. Figure 7.14 shows the effect of a very small uniaxial stress on the
twin populations. The domains whose c axes are parallel to the stress are
favoured, while those with perpendicular c axes, disappear. A very similar
behaviour is observed on applying a magnetic field; 0.03 T was sufficient to
convert all twins whose c axes were perpendicular to the field direction to
ones with parallel c axes. These results suggest that magneto-strictive strain
rather than magneto-crystalline anisotropy is responsible for the change in
domains brought about by applying a magnetic field. The domains can change
identity by simple reversal of the unfavourable shears. For example a [010]
domain formed by type 1 shears on 101 and 011 will change to an [001]
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Fig. 7.14. Intensity recorded at 172 K in scans through the position of the cubic
400 reflection plotted against the scattering angle (2θ). (a) After cooling with no
applied stress, (b) is (a) with 30 MPa applied at 172 K ‖ [001]; (c) is (b) with
the 30 MPa stress removed, and (d) is after heating to 250K and recooling with
no stress applied. The higher angle peak in the scans is due to domains with the
pseudo-tetragonal c axis parallel to [100]; they are suppressed by the stress

domain of type 2 if the shear on 011 is reversed and doubled. Similarly a
[100] domain of type 2 formed by shears on 110 and 101 can be converted
to a type 1 [001] domain by reversing and halving the shear on 101. The
temperatures and fields at which different types of domain were found to
switch are reported in Table 7.6. Type 1 domains were found to occur with
twice the frequency of type 2 amongst both the annealed and the stressed
samples. Using this classification, the mean rotations for the types of domain
were calculated. These gave σ = 0.019(3) for the type 1 domains and σ =
0.14(2), 2σ = 0.24(2) for type 2 domains. The values calculated from the
lattice parameters is σ = 0.02. The rotations are roughly in accord with the
model for the type 1 domains but are significantly smaller than expected for
the type 2 domains. Using the position of the superstructure reflections below
TM the orientations of the long orthorhombic axis with respect to the rotation
matrices were determined. For all type 1 domains for which data were available
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Table 7.6. The temperature and fields at which domain switching occurs in the
martensitic phase of Ni2MnGa with initial twin configurations

Dominant twins

Temperature (K) Field (T) Constant Before After

174 0.2 T 2xy 1xy
159 0.25 H 1yz (2yz) 2zx
164 0.25 T 1xz 1xy
179 0.3 T 1yz 1xz 1xy
174 <0.5 T 1xz 1yz 2zy 1xy
176.5 4.5 H 2yz 2xz 2zx

this axis was found to be parallel to the bisector of the normals to the two
slip planes involved. For type 2 domains the long y axis was either parallel or
perpendicular to the slip plane on which the smaller of the two shears occur.

7.13 Non Stoichiometric Samples

The influence of stoichiometry on the magnetic and structural properties of
Ni–Mn–Ga alloys have been investigated by several groups [33–35]. Discussion
here will focus on the Ni2+xMn1−xGa series in which only the amounts of
Ni and Mn are varied. X-ray and resistivity measurements [33] have been
used to study the effects of stoichiometry on the transition temperature TM

and the Curie temperature TC. The resulting phase diagram presented in
Fig. 7.15 shows that TM increases with x, while TC slowly decreases with the
two temperatures coinciding at ∼325 K for x = 0.19.

Fig. 7.15. Magnetic phase diagram of Ni2+xMn1−xGa
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In addition to optimising the transition temperatures the mechanical
properties are also improved. They are more ductile so that the manu-
facture of devices becomes feasible. The electronic structure calculations
on Ni2.17Mn0.83Ga predict that the martensitic phase can have tetragonal,
orthorhombic or a monoclinic structure, with the latter being the most prob-
able [36]. The choice of the monoclinic structure arises from differences in
kinetic energy to which the excess nickel atoms make an important contri-
bution. It is predicted that the excess nickel atoms preferentially occupy the
manganese sites and that the magnetic moments in the monoclinic structure
are smaller by about 0.3 µB than in the parent cubic structure. The crys-
tallographic structure of Ni2.19Mn0.81Ga has been investigated by neutron
diffraction [37,38] using a triple axis spectrometer and a sample in which the
structural phase transition and Curie temperature coincide at 350 K. This
temperature is higher than that reported by [39] for an alloy of the same
composition. In the paramagnetic phase the compound was reported to have
the Heusler structure with the excess nickel atoms occupying the deficit Mn
sites. On cooling, the martensitic phase was found to contain two phases
with different structures, although details of the refinement, in particular the
atomic positions were not given. At 297 K one phase is reported to have an
orthorhombic modification of the Heusler structure with lattice parameters
6.092, 5.751 and 5.483 Å, and the other a monoclinic structure with parame-
ters of 4.246, 5.463 and 12.678 Å, and β = 99.2◦ [38]. At 350 K 30% of the
sample was found to be in the cubic parent phase and 70% in the transformed
martensitic phase. Analysis of the high angle data for which the magnetic
Bragg component was negligible revealed that the percentage of cubic phase
was reduced to 15% by application of a field of 5 T. On removal of the field the
volume of the cubic phase only returned to 22%. This observation suggests
that the phase transition in Ni2.19Mn0.81Ga can be controlled isothermally
by the application of a field. Subsequent neutron powder diffraction measure-
ments on Ni2.17Mn0.83Ga confirm that the crystallographic structure is field
dependent in the vicinity of TM [40]. The choice of composition was dictated
by the temperature range of the cryomagnet available at the ILL. High res-
olution diffraction experiments on both Ni2.19Mn0.81Ga and Ni2.17Mn0.83Ga
show that the sequence of phase transitions is the same for both compounds
although the transition temperatures were slightly higher for the Ni rich com-
pound. The measurements also show that the thermal evolution of the phase
transition is more complex than previously reported. Although the sequence
of transitions has been established the structures of the phases have not been
completely determined. Above 310 K Ni2.17Mn0.83Ga has the L21 structure
with lattice parameter a = 5.79 Å in which the excess Ni atoms occupy the
vacant manganese sites. In the refinement it was assumed that the moment
is confined to the Mn atoms. A small moment ∼0.2 µB may be associated
with the Ni atoms but polarised single crystal measurements are required to
confirm this. At low temperatures, in the ground state, the compound has a
tetragonal structure with cell parameters a = b = 3.87, c = 6.47 Å and space
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group I4/mmm. Although the a and b axes change by ∼5.5% and the c axis
by almost 12% there is negligible change in atomic volume. The large change
in cell parameters and the relatively high transition temperature TM = 301 K
make the compound a promising candidate for applications. However below
∼305 K an intermediate phase appears and for a significant temperature inter-
val this phase coexists with the cubic and tetragonal structures. By ∼250 K the
tetragonal phase dominates with only small remnants of the Bragg peaks of the
intermediate structure remaining. The complexity of the transition is reflected
in the strong hysteresis in the transport properties [41]. An orthorhombic unit
cell based on that proposed by Inoue et al. [38] enabled all of the strong peaks
of the intermediate phase to be indexed. Although the structure determination
is not yet complete it is clear that unlike stoichiometric Ni2MnGa the marten-
sitic phase of the non-stoichiometric material is not a simple modulation of
the cubic parent structure.

7.14 Electron Concentration

Fermi surface nesting and strong electron–phonon coupling have been shown
to give rise to phonon softening in systems undergoing a martensitic phase
transition [42]. The generalised susceptibility and the Fermi surface geometry
of Ni2MnGa have been computed in both the ferromagnetic (T = 0) and para-
magnetic phases [43]. In the ferromagnetic phase a nesting wave vector was
found at [0.43, 0.43, 0]. Subsequently the peak in the generalised susceptibility
was calculated as a function of magnetisation [44]. Using a moment of 80% of
the ground state value, which is appropriate for the pre-martensitic phase, the
nesting wave vector was estimated to be

[
1
3

1
30

]
. These wave vectors are consis-

tent with the features observed in inelastic neutron scattering and diffraction
measurements. The importance of Fermi surface nesting on the structural and
magnetic properties of chromium and its dilute alloys [45] is well established.
In these alloys the magnitude of the nesting wave vector depends on whether
the solute is electron rich or poor with respect to chromium. Thus if Fermi
surface nesting drives the phase transition in Ni2MnGa this transition will
also be sensitive to changes in electron concentration.

Both the phase stability and magnetic properties of Heusler alloys, parti-
cularly those based on X2MnZ, are known to depend on the electron con-
centration. This has been shown most forcibly in the Pd2MnIn system by
changing In for Sn and Sb [46]. By making these substitutions, new magnetic
phases are introduced with only half as much Sb as Sn required to produce
the same effect. Although some models have assumed that the electron con-
centration is only affected by the Z atom while the X atoms just change
the lattice parameter, a similar magnetic phase diagram has been observed
in Pd2−xAgxMnIn [47]. Recent measurements on Ni2−xCuxMnGa [48] and
Ni2MnGa1−xSnx [49] show that the structural phase transition is progres-
sively suppressed with increasing x. The magnetisation of Ni2MnGa0.95Sn0.05
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Fig. 7.16. The magnetisation of Ni2MnGa0.95Sn0.05 measured in different external
fields as indicated in the figure. The measurement were made while both heating
and cooling as indicated by the arrows

is shown in Fig. 7.16. The reduction in magnetisation at low temperatures is
similar to that observed in Ni2MnGa as a result of the martensitic transition
which suggests that in Ni2MnGa0.95Sn0.05 TM is reduced to ∼150 K. Since Sn
is located to the right of Ga in the periodic table its substitution for Ga adds
electrons to the band raising the chemical potential. Consequently a change in
nesting wave vector should also be observed. Recent neutron powder diffrac-
tion measurements [50] carried out on the alloy at 5 K suggest some change
to the structure of the transformed phase compared to that observed in the
parent compound.

The influence of atomic order on the magnetic properties of X2MnZ is well
established [8]. Stoichiometric Ni2MnGa is reported to melt at 1382 K [51]
and on cooling undergoes a B2→L21 phase transition at 1071 K [52]. Mag-
netisation and resistivity measurements on a sample quenched from 1000◦C
indicate that the phase transition occurs at TM ∼ 103 K, substantially lower
than the value reported for samples quenched from 800◦C. A small reduction
in the ferromagnetic moment was also observed although the Curie temper-
ature remained largely unaffected. The electronic Sommerfeld coefficient ob-
tained from heat capacity measurements although enhanced is smaller than
that observed for the 800◦C quenched sample [10]. The results are consis-
tent with band structure calculations [53] and the electronic changes brought
about by atomic disorder.

7.15 Polarised Neutron Scattering

Electronic structure calculations for Ni2MnGa show a peak in the density of
states (DOS) at the Fermi level [53]. On the basis of these calculations it was
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Table 7.7. Least squares fit to the magnetic structure factors of Ni2MnGa at 230
and 100 K. The first line gives the results for a model in which the magnetisation is
only associated with atoms on the A and B/D sites. The results in the second line
are for a model in which a moment is also allowed on the C sites

Site T = 230 K T = 100 K

A(Mn) C(Ga) B/D(Ni) A(Mn) C(Ga) B/D(Ni)

Moment (µB) 2.3 0 0.22 2.84 0 0.38
χ2 142 32
Moment (µB) 2.27 −0.12 0.19 2.82 −0.08 0.36
χ2 20 13
Moment (µB) 2.29 −0.11 0.20 2.80 −0.06 0.358
eg (%) 51.0 58 x2 − y2 (%) 23 15.0

3z2 − r2 (%) 20 48.0
t2g (%) 49.0 42 xy (%) 13 27.0

zx ± zy(%) 44 9.0
χ2 20 9

argued that it is the redistribution of electrons around the Fermi level which
drives the phase transition. The reduction in symmetry is able to lift the de-
generacy of electron bands at the Fermi level causing the peak in the DOS
to split. Combined with the energy required for creating the lattice distor-
tion the resulting shift in the energy bands and the resulting re-population of
these bands lowers the free energy of the whole system making such a trans-
formation energetically favourable. A polarised neutron diffraction measure-
ment [27] of the unpaired spin distribution has revealed a change in symmetry
at the phase transition. A summary of the results is given in Table 7.7. In the
cubic phase the unpaired electrons have overall eg symmetry. In the trans-
formed phase there is a transfer of moment from the Mn xy (t2g) to the Ni
3z2−r2 (eg) orbitals. Although the experimental moments differ in detail from
those expected from band structure calculations, the change in symmetry of
the magnetisation distribution is consistent with a band Jahn–Teller origin
for the phase transition.

7.16 Conclusion

The bulk magnetic properties of Ni2MnGa are similar to those of other Heusler
alloys in which the moment is confined to the Mn atoms. Consequently the
magnetic response is also expected to be of a local nature characteristic
for moments of fixed amplitude. Both magnetisation and neutron diffrac-
tion measurements show that the structural phase transition responsible for
shape memory behaviour is not driven by a collapse of the manganese mo-
ment. Polarised neutron diffraction measurements show that at TM there is a
redistribution of electrons between 3d sub-bands of different symmetries, as
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expected for a band Jahn–Teller mechanism. Further support for this elec-
tronic origin for the transition is provided by the dependence of TM on atomic
order and electron concentration.

A combination of powder and single crystal neutron diffraction measure-
ments has enabled the sequence of structural phase transitions in stoichio-
metric Ni2MnGa to be established. For the first time the atomic positions
in the three phases have been determined. The modulated structures of the
pre-martensitic and martensitic phases are consistent with the soft mode be-
haviour of the TA2 phonon observed in the two phases. Structural models
based on X-ray and electron diffraction measurements, and in particular a
five fold modulation do not account for the neutron diffraction pattern below
TM. The neutron measurements show that the three fold modulation observed
in the pre-martensitic phase becomes a seven fold modulation below the phase
transition. Both modulations take place in the [110] direction of the cubic par-
ent phase. Similar measurements on non-stoichiometric samples show that the
phase diagram is significantly altered.

The single crystal measurements undertaken in a magnetic field or under
applied stress provide detailed insight into the mesoscopic origin of the shape
memory effect. A very small amount of stress applied in the martensitic phase
introduces an inelastic response in the martensitic domain population. It is
proposed that such stress induced twinning substitutes for normal slip by
movement of dislocations, in the plastic deformation process. The martensitic
twin domains transform into one another; those whose c axes are parallel
to the axis of stress being favoured. However the only domains which can
form are those which bear fixed relationships to the parent cubic crystal and
these relationships are determined by the orientation of the {110} planes on
which the shears occurred in the martensitic transformation. When the reverse
shears occur on warming, they all lead to the original cubic crystal orientation.
A polycrystalline sample in the martensitic phase would consist of a large
number of different martensitic twin domains each of which would have formed
part of a parent cubic crystallite with a certain orientation. Deformation in
the martensitic phase has the same effect within each crystallite as applying
stress to the single crystal; the crystallite deforms plastically by stress induced
twinning, which switches the c axis of unfavourably oriented domains. However
all twins formed from a single cubic crystallite always transform back into the
original orientation regardless of how their population may have been changed
in the martensitic phase. Hence the original shape is restored.
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8

Imaging Techniques
in Magnetoelastic Materials

S.P. Venkateswaran and M. De Graef

8.1 Introduction

One of the main characteristics distinguishing magnetoelastic materials from
other materials is the presence of magnetic domains in addition to the more
conventional microstructural features, such as twin boundaries, planar defects,
dislocations, and so on. In this chapter, we will briefly review the imaging of
these magnetic domains and domain walls by means of Lorentz transmission
electron microscopy (LTEM). Lorentz microscopy occupies a special place
among the methods for domain characterization in the sense that it is possible
to obtain direct quantitative information about critical parameters, such as
the domain wall width, which play an important role in the overall magnetic
behavior of the material. In addition, LTEM enables a direct study of the
interactions between magnetic domain walls and structural features, such as
twin boundaries and defects. Other characterization techniques for magnetic
domain structures will not be covered in detail, since there are many good
review articles or textbooks available for them (e.g., [1, 2]).

In this chapter, we will first describe the Lorentz microscopy method from
the classical physics point of view, followed by a quantum mechanical descrip-
tion in terms of the phase of the electron wave traveling through the sample.
Then, we introduce a phase reconstruction method, based on the transport-
of-intensity equation, which permits determination of the total phase shift of
the electron wave. In the second half of the chapter, we will apply the method
to selected magnetoelastic compounds, in particular Ni2MnGa and Co2NiGa.
One of the most important observations is the presence of magnetoelastic
tweed in the austenitic state of Co2NiGa.

8.2 Lorentz Image Formation Theory

8.2.1 Classical Description

A high energy electron moving with velocity v through a region of space (in
this case, a thin foil of thickness t, Fig. 8.1a) containing a (static) magnetic
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Fig. 8.1. (a) Illustration of a high energy electron traveling through a foil with a
permanent magnetic induction; electron trajectories for the Fresnel (out-of-focus)
imaging mode (b), and the Foucault mode (c)

induction B, experiences a Lorentz force F L given by

F L = −|e|(v × B) . (8.1)

If we decompose B into a component Bz along the beam direction n and a
component B⊥ in the plane normal to n, then one can readily show [3] that
the electron will be deflected by an angle θL, given by

θL =
e λ

h
B⊥t ≡ C B⊥ t (8.2)

with λ the electron wavelength; e and h have their usual meaning. The pre-
factor C depends on the electron microscope accelerating voltage, and is typ-
ically about 0.5 µrad nm−1 T−1. In other words, for a 100 nm thick foil with
a saturation induction of 1 T, the deflection angle is 60.6 µrad for a 200 kV
electron. This angle is about two orders of magnitude smaller than the typical
Bragg angle for electron diffraction, indicating that all magnetic information
is confined close to the transmitted electron beam.
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Lorentz microscopy observations of magnetic domains in a material require
that this material is placed in a field-free region of the microscope, instead
of the typical 2 T field of the objective lens. This can be achieved by turning
off the main objective lens and using a weaker lens placed below the sample,
or, alternatively, one can shield the specimen area from the magnetic field.
In many situations, the total attainable magnification is severely reduced, so
that additional magnification (for instance, through a postcolumn imaging
energy filter [4]) may be required.

There are two standard imaging methods in Lorentz microscopy. The first
is known as the Fresnel mode (or out-of-focus mode). In this mode, the
main objective lens of the microscope is focused on a plane slightly above
or below the sample, producing an out-of-focus image (Fig. 8.1b). Electrons
which travel near a magnetic domain wall, indicated by the vertical lines,
will be deflected in opposite directions, and in the out-of-focus image an
increase/decrease of intensity will be observed. An intensity increase is known
as a convergent wall image and a decrease corresponds to a divergent wall
image. A reversal of focus from under-focus to over-focus also reverses the
image contrast. While the Fresnel image delineates the location of magnetic
domain walls, it is an out-of-focus image and, therefore, slightly blurred. For
materials with a low saturation induction, a significant microscope defocus
may be required to create the Fresnel images, and there may also be a mag-
nification change associated with the defocus.

The second observation mode is known as the Foucault mode. In this
mode, the image is always in-focus, and a circular aperture in the back focal
plane of the main imaging lens is used to eliminate certain electrons from the
beam (Fig. 8.1c). Magnetic domains which deflected electrons into the blocked
section of the beam will remain dark in the image, whereas other domains
will be bright. The Foucault image mode therefore produces contrast between
entire magnetic domains. Given the small deflection angles, it is difficult to
reproducibly position the aperture. In the present chapter, we will only make
use of the Fresnel imaging method.

It is also possible to send a fine electron probe through the thin foil, and
record the deflections of this probe as the beam is scanned across the sample.
This technique is known as Differential Phase Contrast microscopy, and is
described in detail in the literature [5].

8.2.2 Quantum Mechanical Description

The quantum mechanical description of electron scattering from a magnetic
thin foil is based on the Aharonov–Bohm relation [6], which states that the
wave function of an electron traveling with velocity v through a region of
space with an electrostatic potential V (r) and a magnetic vector potential
A(r) acquires a phase shift ϕ, equal to

ϕ = ϕe + ϕm = σ

∫

L

V (r) dz − e

�

∫

L

A(r) · dr , (8.3)
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Fig. 8.2. (a) Illustration of the electron trajectories used for the quantum mechani-
cal description of Lorentz deflection. (b) schematic of the specimen and the objective
lens back focal plane and image plane

where L represents the electron trajectory and σ = 2πγm0eλ/h2 is the inter-
action constant (γ = (1 − v2/c2)−1/2 is the relativistic parameter, m0 is the
rest mass of the electron, and c denotes the speed of light). The prefactor of
the magnetic term is 0.00151927 T−1 nm−1. Usually, one works with the phase
difference between two trajectories, as shown in Fig. 8.2a. It is straightforward
to show that the phase of electron 2 with respect to electron 1 is given by

ϕm = π
Φm

Φ0
, (8.4)

where Φm is the flux between the two trajectories and Φ0 is the flux quantum
h/2e.

If the incident electron wave is described by a plane wave with wave vector
k, with inverse length 2π/λ, then the exit wave (i.e., the wave function at the
exit plane of the thin foil) is given by a modulated plane wave (modulated
both in phase and amplitude):

ψ(r) =
√

I(r⊥) eiϕ(r⊥) eik·r . (8.5)

The vector r⊥ is a vector in a plane normal to the beam direction and I(r)
is the intensity.

This wave then travels down the microscope column and is affected by
the magnetic lenses (primarily the objective mini-lens or the special Lorentz
lens). The action of a magnetic lens is conveniently described by a point
spread function T (r) in direct space, or a microscope transfer function T (q)
in reciprocal or Fourier space. One can show that the lens produces a Fourier
transform of the wave function in its back focal plane (bfp); a second Fourier
transform then produces an amplitude in the image plane (ip) (see Fig. 8.2b).
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Mathematically, this is described as

ψbfp(q) = F [ψ(r)]T (q) ; (8.6)
ψip(r) = F−1[F [ψ(r)]T (q)] = ψ(r) ⊗ T (r) . (8.7)

F [· · · ] represents the Fourier transform operator and ⊗ is the convolution
operator. The image intensity is then simply the modulus-squared of the last
expression.

The microscope transfer function consists of three components (for the
so-called linear imaging model):

T (q) = a(|q − q0|) eiχ(q) e−g(q) . (8.8)

In this relation, we have

• a(|q − q0|): the aperture function, which represents a circular aperture
(1 inside and 0 outside the aperture hole). The vector q0 represents the
center location, so that Foucault images can also be considered;

• eiχ(q): the phase contrast function, which contains all lens aberrations,
including spherical aberration, astigmatism, and defocus, which produce
a phase shift;

• e−g(q): the attenuation or damping function, which contains all microscope
instabilities (accelerating voltage, lens currents, etc.) and also the beam
divergence, which can be taken as a measure of the beam coherence.

For Lorentz microscopy, one can employ a Taylor expansion of both expo-
nential functions, since the deflection angles, and, therefore, the length of the
relevant q-vectors, are small. The aperture function is chosen so that all Bragg-
scattered electrons are removed, and the attenuation function contains only
the beam divergence contribution. The resulting Lorentz transfer function can
then be written explicitly as

TL(q) = a(q − q0) ez2q2
ez4q4

(8.9)

with

z2 = − (πθc∆f)2 + iπλ∆f ;

z4 = − (πλ∆)2

2
.

In these equations, we have the following symbols: θc (beam divergence angle),
∆f (microscope defocus), and ∆ (defocus spread). For Lorentz microscopy,
all other aberrations, including spherical aberration, can be ignored.

8.2.3 Phase Reconstruction

Keeping only terms of order q2 in (8.9), we can compute the intensity in the
image plane, by an inverse Fourier transform. Taking the modulus squared,
we obtain the following expression:
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I(r,∆f) = I(r, 0) − λ∆f

2π
∇ · (I(r, 0)∇ϕ)

+
(θc∆f)2

2 ln 2

[√
I(r, 0)∇2

√
I(r, 0) − I(r, 0)(∇ϕ)2

]
.

In this equation, the intensity in the image plane for a defocus ∆f is repre-
sented by I(r,∆f); in particular, the in-focus image is represented by I(r, 0).
If we ignore the beam divergence term, and we assume that there is no contrast
in the in-focus image, then we find

I(r,∆f) = 1 − λ∆f

2π
∇2ϕ . (8.10)

In other words, the image intensity is only different from 1 when the lens is
defocused, and then only where the Laplacian of the phase is nonzero, i.e.,
at the magnetic domain walls. This relation expresses the origin of Fresnel
domain wall contrast. Changing the sign of the defocus changes the contrast
of the domain wall image.

Subtracting the expression for I(r,−∆f) from I(r,∆f), and rearranging
terms we have

−2π

λ

I(r,∆f) − I(r,−∆f)
2∆f

= ∇ · (I(r, 0)∇φ) . (8.11)

In the limit of vanishingly small defocus, the left-hand side becomes a deriv-
ative and we arrive at the so-called Transport-of-Intensity Equation (TIE)1

[7–10]

∇ · (I(r, 0)∇φ) = −2π

λ

∂I(r, 0)
∂z

. (8.12)

There are various methods to solve this equation. The most straightforward is
by means of Fourier transforms, as described in detail in [10, 11]. The formal
solution is given by

φ(r, 0) = −2π

λ
∇−2

{

∇ ·
[

1
I(r, 0)

∇
(

∇−2

[
∂I(r, 0)

∂z

])]}

. (8.13)

The operator ∇−2 is the inverse Laplacian operator, which can be defined in
terms of Fourier transforms as

∇−2[f(r)] = − 1
4π2

F−1

[
F [f(r)]
|q|2

]

. (8.14)

As an example, consider the series of images in Fig. 8.3. Figure 8.3a is a
1024 × 1024 gray-scale image of the red spot on Jupiter and is taken to be
the amplitude of the exit wave function. For the phase we select an image

1The name of this equation was first coined by Teague [7], who showed that this
formalism could be applied to phase retrieval.
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Fig. 8.3. Illustration of the phase reconstruction algorithm, using a “wave function”
which consists of (a) Jupiter’s red spot (amplitude) and (b) the NGC4414 spiral
galaxy (phase). (c–e) Represent a through-focus series computed for a 200 kV TEM
and (f–k) are the intermediate steps of the algorithm (see text for more details). A
linear profile across the center of the input and reconstructed phases are also shown

of the NGC4414 spiral galaxy (shown in Fig. 8.3b).2 A small constant was
added to the amplitude image to ensure that its minimum intensity is strictly
larger than zero. From these two images we compute a through-focus series
using (8.7). The in-focus image is simply given by the square of the amplitude
image. The defocus value used for the series of images shown in Fig. 8.3c–e
is ∆f = 1 nm, with a wavelength of λ = 0.002508 nm (for 200 kV electrons),
and a pixel size of 1 × 1 nm. Next, we use the computed through-focus series
to reconstruct the phase of the exit wave. Figure 8.3f shows the longitudinal

2Both images are in the public domain and were taken from http://nix.nasa.gov/.



148 S.P. Venkateswaran and M. De Graef

derivative ∂I/∂z as the difference between the over-focus and under-focus
images. It is clear that this difference image contains mostly phase informa-
tion. The result of the inverse Laplacian operating on image (f) is shown in
(g). Then we take the gradient of (g) and divide both components by the
in-focus image. The resulting components are shown in (h) and (i). The di-
vergence operator combines (h) and (i) into (j), and a final inverse Laplacian
results in the reconstructed phase shown in (k). It can be shown [8] that this
reconstruction is unique. Since the inverse Laplacian is a low-pass filter op-
eration, there are fewer small details in the reconstructed phase compared to
the input phase. The overall phase variations are reconstructed with sufficient
accuracy, as seen from the line scan comparison on the bottom row: the top
profile represents the intensity variations along a horizontal line through the
center of the input image. The bottom profile is the reconstructed intensity;
the reconstructed profile appears smoother than the input profile, but contains
all significant phase variations.

8.3 Applications of LTEM
to Ferromagnetic Shape Memory Alloys

After this somewhat lengthy introduction about the experimental methods we
now turn our attention to the application of phase reconstruction methods to
ferromagnetic shape memory alloys, which form a special class of magneto-
elastic materials. We will focus on the Ni2MnGa and Co2NiGa systems in both
the austenitic and martensitic states. Around the stoichiometric composition,
both alloy systems have the cubic Heusler structure (space group Fm3̄m, al-
though it is sometimes more convenient to describe the unit cell as consisting
of 2 × 2 × 2 “body-centered cubic” cells) [12, 13]. In the austenitic state, the
magnetocrystalline anisotropy is very small [14], so that the magnetization
vector orientation, nominally along the 〈111〉 directions, is dominated by the
demagnetization energetics. As a consequence, the magnetic domain config-
urations in the austenitic Ni2MnGa composition range are strongly affected
by the sample shape, in particular for the thin foils used for LTEM. In the
martensitic state, the tetragonal crystal structure has a significantly larger
magnetocrystalline anisotropy, so that the magnetization is aligned along the
tetragonal axis [001]. This orientation is not very sensitive to the sample shape,
so that the magnetic domain configurations in thin foils are likely similar to
those in the bulk. In the following subsections, we will describe representative
magnetic domain configurations for both alloy systems, in both austenitic and
martensitic states.

Observations on Ni2MnGa were performed on a [001]-oriented stoichio-
metric single crystal thin foil, and on off-stoichiometry polycrystalline foils,
which were electrolytically thinned. We prepared the Co–Ni–Ga alloys used
for this work as described in [15]. Thin foils for TEM observations were pre-
pared using mechanical thinning followed by argon ion milling. In this chapter,
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Fig. 8.4. (a–c) Four hundred kilo volt through-focus series of a relatively featureless
region in a [001] oriented Ni2MnGa foil; (d) reconstructed phase, and (e–f) are the
components of the projected in-plane magnetic induction

we report on the nominal compositions Ni50Mn29Ga21 and Ni48Mn22Ga30.
Lorentz observations were carried out on a JEOL 4000EX atomic resolution
TEM operated at 400 kV and equipped with a Gatan Imaging Filter which
enables zero-loss filtered Lorentz work at magnifications of 60,000× at the
CCD camera. A 300 kV JEOL 3000F was used at the Brookhaven National
Laboratory for energy filtered in situ cooling observations in Lorentz mode.

8.3.1 Ni2MnGa, Austenitic State

Figure 8.4 shows a through-focus series (a–c) of a domain wall configuration
in a stoichiometric Ni2MnGa single crystal foil, oriented with the [001] direc-
tion close to the electron beam. The center image (b) is the in-focus image
and shows very little contrast, apart from some bend contours.3 In the under-
focus (a) and over-focus (c) images, two types of contrast are observed: high
contrast lines [arrowed in (a)], corresponding to 180◦ domain walls, and lower
contrast fringe-like lines. A reconstructed phase is shown in (d), along with the
components of the gradient of the phase in (e) and (f). For a foil of uniform
thickness, with weak demagnetization field, one can show that these gradi-
ent components are proportional to the in-plane components of the magnetic
induction, multiplied by the foil thickness. From these images, we find that

3Bend contours arise when the thin foil is slightly bent or warped, and locally the
Bragg condition for a particular set of planes is satisfied, giving rise to dark curved
lines.
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the striations, which have a periodicity of about 100 nm, correspond to do-
main walls between regions with [111]-type magnetization directions. When
the magnetization oscillates between the [111] and [111̄] directions, i.e., the
vertical component oscillates in the upward and downward directions, domain
walls of the 71◦ and 109◦ type are formed. This type of oscillatory behavior
reduces the demagnetization field and hence the magnetostatic energy with re-
spect to a large domain with a single [111] magnetization direction (recall that
the foil normal is [001], so that the magnetization always has an out-of-plane
component).

Another example of this oscillatory behavior is shown in Fig. 8.5. The ar-
rows indicate the locations of dislocations in the foil. The figure shows the
magnitude of the in-plane magnetization component multiplied by the foil
thickness, t

√
B2

x + B2
y . The nearly circular domain configuration is due to pin-

ning by the dislocations, and the domain walls are of the 71◦ and 109◦ type.
The contrast is brighter at the domain walls, indicating that the in-plane
component of the magnetic induction is larger, consistent with the inter-
pretation of the previous paragraph. In the thinnest portions of the sample
foil, the domain wall character changes, and one finds mostly cross-tie walls.
This observation is potentially important for thin film applications of these
materials.

Occasionally, the 180◦ domain walls show a diamond-like feature, as illus-
trated in the through-focus series in Fig. 8.6a–c. The reconstructed in-plane
induction components are shown in (d) and (e). This can be interpreted as
a short segment of 180◦ which is orthogonal to the main domain wall, and
separated from the other magnetic domains by means of 90◦ domain walls.
Model phase computations confirm that the observed domain configuration is

Fig. 8.5. Nearly circular domain wall configuration in a stoichiometric single crystal
foil of Ni2MnGa. Arrows indicate dislocations which pin the domain walls. The image
intensity is proportional to t

√
B2

x + B2
y and was computed from the reconstructed

phase (not shown)
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Fig. 8.6. Diamond-like domain wall configuration observed on a 180◦ domain wall
in a [001]-oriented single crystal foil of stoichiometric Ni2MnGa

consistent with the configuration illustrated in (f), which shows the simulated
over-focus and under-focus images.

While all observations in the preceding paragraphs were carried out on
a single crystal foil, oriented with [001] along or close to the beam direc-
tion, observations on polycrystalline foils reveal that for an arbitrary foil ori-
entation the magnetization pattern consists of wavy domain boundaries, as
shown in the through-focus series of Fig. 8.7. The composition of this alloy is

Fig. 8.7. Through-focus series of a triple junction of grain boundaries in a poly-
crystalline Ni50Mn29Ga21 foil. The straight lines in each grain are planar stacking
faults
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Ni50Mn29Ga21. Wavy domain walls are present in all three grains. The domain
walls do not appear to be hindered by the presence of the grain boundaries.

8.3.2 Ni2MnGa, Martensitic State

Observations in the martensitic state of the stoichiometric Ni2MnGa thin
foil were carried out using an in situ liquid nitrogen cooling stage at the
Brookhaven National Laboratory’s 300 kV field emission TEM. Lorentz im-
ages were recorded during cooling from room temperature to about 90 K.
Representative Fresnel under-focus images are shown in Fig. 8.8a–c. In (a),
the transformation has just started, and the domain walls begin to break up
into smaller domain wall segments. It is possible that the strain associated
with the advancing martensite plates causes the large initial domains to be-
come unstable and break up into smaller, oval-shaped domains. In (b), several
martensite plates have crossed the field of view, and the small domains are
located inside neighboring martensite variants. The domain walls rotate and
become aligned with the variant boundaries, as can be seen in the upper re-
gion of (b). Finally, when the transformation is complete, all martensite plate
boundaries coincide with magnetic domain walls, as can be seen from the dark
and bright fringe contrast at each of the twin boundaries. Due to excessive
sample motion during the transformation, it was nearly impossible to record
through-focus series for phase reconstruction. The fine-scale mottled contrast
in all images is due to “dirt” being deposited on the cold sample inside the
microscope vacuum.

Room temperature observations in Ni50Mn29Ga21, with the transforma-
tion temperature TM ≈ 320 K, are shown in Fig. 8.9. At room temperature,
due to chemical inhomogeneity of the sample, some regions are still in the
austenite phase, while others have already transformed into martensite. The
central in-focus image in Fig. 8.9 shows several martensite plates entering an
austenite grain. The out-of-focus images show the typical wavy domain walls
of the austenitic state, whereas in the martensitic state, the domain walls are
straight, because of the larger magnetocrystalline anisotropy. Note also that

Fig. 8.8. In situ cooling observations of a stoichiometric Ni2MnGa thin foil. From
(a) to (c) the martensitic transformation progresses by first breaking up the long
magnetic domains, then the martensite plates grow across the field of view, and
finally all martensite plate boundaries coincide with magnetic domain walls
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Fig. 8.9. Through-focus series in a two-phase Ni50Mn29Ga21 thin foil. The austenite
grain, with wavy domain walls, contains several martensite plates (arrowed)

the domain walls across the martensite needles are still attached to the do-
mains in the neighboring austenite. The continuity of the domain walls across
the phase boundaries is a topic of ongoing investigation.

8.3.3 Co2NiGa, Austenitic State

Lorentz TEM observations were carried out on a Co50Ni29Ga21 alloy that was
quenched from 1200 K. This alloy was chosen so that the structural transfor-
mation, TM, and Curie temperatures, TC, were located below and above room
temperature, respectively, i.e., TM 	 148 K and TC 	 393 K, as determined by
elastic spectroscopy and vibrating sample magnetometry. Figure 8.10 shows a
bright-field image of the (400) bend contour of this alloy, taken at room tem-
perature near the [110] zone axis orientation. The image reveals ferroelastic
or structural domains. Tweed-like contrast can be seen, with a characteristic
length scale of about 10 nm. In this image, the cross-hatched tweed patterns
are clearly evident on both sides of the bend contour. In electron diffraction
patterns (inset in Fig. 8.10), diffuse streaks along the 〈110〉-type directions
were observed, typical for tweed modulated structures.

Figure 8.11 shows a through-focus series of Fresnel Lorentz images for this
alloy. Image (c) is the in-focus image and it shows tweed contrast near the
central bend contour. The under-focus (a) and over-focus (b) images show
strong striations of a length scale similar to that of the tweed striations.
Since these striations are only visible in the out-of-focus images, they must be
ascribed to magnetic modulations. This is further shown in Fig. 8.11d, which
is the difference between images (a) and (b). It was shown in Sect. 8.2 that this
difference image is proportional to the Laplacian of the magnetic component
of the phase of the electron wave, which indicates a magnetic origin for the
striations. The coincident elastic and magnetic modulations have a wavelength
in the range of 50–100 nm.

While tweed-like striations, such as the ones shown in Fig. 8.10, have
been observed in many systems that undergo martensitic transformations, the
appearance of tweed contrast in Lorentz images is relatively uncommon.
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Fig. 8.10. Bright field image and corresponding electron diffraction pattern for the
near [110] zone axis orientation of Co48Ni22Ga30). The tweed contrast near the (004)
bend contour is consistent with the appearance of diffuse streaks along apparent [112]
directions (indicated by solid white lines in the diffraction pattern). B2 superlattice
reflections are clearly present (micrographs taken on a Philips CM20 operated at
200 kV)

Two types of tweed contrast have been observed in Lorentz mode: (a) anal-
ogous to structural tweed, magnetic tweed is diffraction contrast present in
TEM observations, corresponding to modulations in the magnetization (in-
stead of strain) above the Curie temperature TC (instead of the structural
transition temperature TM); (b) magnetoelastic tweed contrast is due to the
coupling of strain to magnetization in the temperature range above TM (and
possibly also above the Curie temperature). Magnetic tweed has likely been
observed above the Curie temperature in Co38Ni33Al29 alloys [15, 16]. For a
detailed analysis of magnetic and magnetoelastic tweed we refer to the recent
paper by Saxena et al. [17].

8.3.4 Co2NiGa, Martensitic State

Figure 8.12 shows a series of twins in the martensitic state of the Co48Ni22Ga30

alloy. This alloy has a martensitic transformation temperature at room tem-
perature (about 296 K). The in-focus image (top center) shows finely spaced
twin boundaries, with an average twin width of around 200 nm. The out-of-
focus images reveal that most of the twin boundaries coincide with magnetic
domain walls. However, the domain walls occasionally traverse the twin do-
mains, giving rise to a stepped appearance, as is clearly visible in the recon-
structed phase map and its gradient components (bottom row). A detailed
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Fig. 8.11. Zero-loss under-focus (a) and over-focus (b) images (Fresnel imaging
mode, 400 kV) of a region near a bend contour. The in-focus image (c) shows tweed
contrast, and the out-of-focus images reveal the presence of an additional modulated
structure (arrowed) which is magnetic in nature. (d) shows the difference between
(a) and (b), and is proportional to the Laplacian of the phase of the electron wave.
Contrast variations in (d) are indicative of magnetic contrast

Fig. 8.12. Through-focus series of martensite twin boundaries in a Co48Ni22Ga30

alloy, along with reconstructed phase and phase gradient components

analysis of these images also shows that not every twin boundary coincides
with a magnetic domain wall.

A more detailed study of magnetoelastic tweed and the domain structure of
the martensitic state in the Co–Ni–Ga system is currently underway. In order
to determine the interactions between domain walls and twin boundaries, an
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in situ magnetic field sample holder is being designed, so that the behavior of
the domains can be studied in real time under an applied magnetic field.

8.4 Summary

In this chapter, we have reviewed the application of LTEM methods to the
study of the magnetic microstructure of ferromagnetic shape memory alloys.
After a brief overview of the image formation theory, including the beam
deflection due to the Lorentz force, we have introduced the concept of the
TIE, which can be used to reconstruct the phase shift of the electron beam.
This phase shift contains all the information on the magnetic microstructure.

The phase reconstruction method was then applied to the austenitic and
martensitic states of Ni2MnGa and Co2NiGa alloys, both stoichiometric single
crystals and nonstoichiometric polycrystals. In the austenitic state, Ni2MnGa
exhibits wavy magnetic domain boundaries, consistent with the low magne-
tocrystalline anisotropy. Upon cooling, the martensite plates form, and the
magnetic domain structure adapts itself to the now strongly uniaxial magne-
tization state. In alloys with a room temperature MS, the wavy domain walls
of the austenite continue across individual martensite plates.

In the Co2NiGa system, we have presented evidence for the presence of
magnetoelastic tweed contrast in the austenitic state, due to the coupling
of strain to magnetization. In the martensitic state, magnetic domain bound-
aries coincide with martensite variant boundaries, but often complex interac-
tions are observed in which domain walls cross groups of martensite plates.
The interactions between structural interfaces and magnetic domain walls is
the topic of ongoing research.
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9

A Way to Search for Multiferroic Materials
with “Unlikely” Combinations
of Physical Properties

R.D. James and Z. Zhang

9.1 Introduction

The ideas presented in this chapter begin with the observation by physicists
(Hill [1, 2] and Hill and Rabe [3]), probing new phenomena through the use
of first principles studies, that the simultaneous occurrence of ferromagnetism
and ferroelectricity is unlikely. While these studies do not usually consider the
possibility of a phase transformation, there is a lot of indirect evidence that,
if the lattice parameters are allowed to change a little, then one might have
coexistence of “incompatible properties” like ferromagnetism and ferroelec-
tricity. Thus, one could try the following: seek a reversible first-order phase
transformation, necessarily also involving a distortion, from, say, ferroelec-
tric to ferromagnetic phases. If it were highly reversible, there would be the
interesting possibility of controlling the volume fraction of phases with fields
or stress. The key point is reversibility.

This chapter is an exploration of these ideas. To use these ideas as the
basis for the search for new materials there are two major questions that need
to be addressed:

1. Why are electromagnetic properties of crystalline materials so sensitive to
the precise values of the lattice parameters of the crystal, and how does
one understand the dependence?

2. What governs the reversibility of phase transformations?

Here we offer a few thoughts on (1) and a deeper analysis of (2).
Even big first-order phase changes can be highly reversible (liquid water

to ice, some shape memory materials), and we argue here that in solids it is
the nature of the shape change that is critical. We suggest, based on a close
examination of measured hysteresis loops in various martensitic systems, that
an idea based on “good fitting of the phases” governs reversibility, and we
quantify this idea. The idea lends itself to alloy development and we present
work in this direction.
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9.2 Single Phase Multiferroics

A prototype for this idea is the search for materials that are both ferromag-
netic and ferroelectric. All previous work on the search for materials that
are simultaneously ferroelectric and ferromagnetic has been done on single
phase materials, or on dual phase materials in which the phases are fixed
and may only interact through elasticity. Recently there has been renewed
interest in the physics community with the development of methods of den-
sity functional theory (DFT) that treat spin accurately. This work is nicely
summarized by Hill [1, 2]. The materials that have been discovered, either
experimentally or from DFT studies, are mostly of the family BiXO3, the
example BiMnO3 having apparently been discovered by DFT. Hill [2] explains
why single phase ferroelectric plus ferromagnetic materials are so rare. Briefly,
the ferromagnetism is commonly associated with filled 3d orbitals, while fer-
roelectricity, at least in perovskites, is nearly always caused by displacement
of the cation which is favored by vacant d orbitals. BiMnO3 just happens to
have the “accident” of strongly directional d orbitals that are vacant in just
the right directions to promote a ferroelectric displacement. Hill concludes,
“Therefore, we should in fact never expect the coexistence of ferroelectricity
and ferromagnetism.”

These studies leave open the possibility of simultaneous ferroelectricity
and ferromagnetism in nonperovskite crystal structures. A natural starting
place for such studies would be rare earth materials, that utilize unpaired 4f
electrons. But ferroelectricity is rare in these systems.

Turning these ideas around, if one simply alloys a ferromagnetic oxide with
a ferroelectric oxide1 then one should expect a phase transition. Of course,
the phase transformation could be diffusional, and there might be a sub-
stantial degradation of e.g., the ferromagnetic properties, as the ferroelectric
compound is added.

9.3 Basic Idea

In a nutshell, our idea is that materials with properties that are considered
“unlikely” or “impossible” in single phase may become possible in multi-
phase materials. This is particularly true for certain unlikely combinations of
interesting electromagnetic properties. In recent years, based on first principles
studies referenced earlier, it has become clear that electromagnetic properties
like ferromagnetism, ferroelectricity, and linear (dielectric tensor) and non-
linear optical properties are extremely sensitive to the precise values of the lat-
tice parameters of the material. In a first-order phase transformation involving
a change of lattice parameters – and therefore a local change of shape – there is

1There was substantial empirical work of this type in the former Soviet Union in the
late 1950s and early 1960s, also unpublished work from Phillips Lab, involving the
replacement of the cation of ferroelectric perovskites by magnetic cations.
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the possibility of coexistent phases with completely different properties. If the
phase transition is highly reversible, the relative volume fraction of the two
phases can be readily changed.

To exhibit this behavior, a material must simultaneously satisfy several
conditions (1) the system must have a phase boundary between two distinct
phases; (2) it must be possible to induce a transformation from one phase to
another by a reasonable applied field or stresses; (3) the kinetics of transforma-
tion should be sufficiently fast (i.e., diffusional processes and reordering should
be avoided); and (4) the transformation must be highly reversible. Items (2)
and (3) suggest the use of martensitic phase transformations which are diffu-
sionless and which also, because of the distortion, can take advantage of the
lattice parameter sensitivity of properties. We discuss item (4) in detail later.

9.4 Lattice Parameter Sensitivity

An important piece of insight gained from the first principles’ calculations is
that the conditions for simultaneous ferromagnetism and ferroelectricity are
often highly dependent on the lattice parameters of the material: change the
lattice parameters a little and the existence of ferroelectricity/ferromagnetism
can change drastically. The issue is well known in the first principles study of
ferroelectrics: as Cohen explains in a recent review [4], “Properties of ferro-
electrics are extremely sensitive to volume (pressure), which can cause prob-
lems since small errors in volume . . . can result in large errors in computed
ferroelectric properties.” In fact, it is not that uncommon for workers to ad-
just lattice parameters to unphysical or nonequilibrium values so as to get
ferroelectric properties right.

This sensitivity is also well known in ferromagnetic materials. The oft
stated “reason” for ferromagnetism in Heusler alloys like Ni2MnGa is that the
Heusler structure “expands the lattice” by putting the Mn atoms far apart.
Similarly, the magnetic properties of strong magnets are improved by diffusing
nitrogen into the lattice [5]. The latter is thought not to be due to important
band structure interactions involving N but to a small average expansion of
the lattice parameter. More recent examples show that this expansion can be
affected in BiFeO3 by using epitaxial lattice mismatch to expand the lattice;
this has led [6] to the single phase ferroelectric/ferromagnetic with apparently
the strongest single-phase polarization/magnetization.

A specific example that does involve a martensitic phase transformation
is the ferromagnetic shape memory alloy Ni2MnGa. This alloy undergoes
a diffusionless cubic to tetragonal transformation at −10◦C (composition
Ni51.3Mn24.0Ga24.7) with less than 3◦C hysteresis, and having a distortion
matrix

U1 =

⎛

⎝
0.952 0 0

0 1.013 0
0 0 1.013

⎞

⎠ , (9.1)
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i.e., U1 represents the linear transformation (in the cubic basis) that maps the
austenite lattice to the martensite lattice. In transforming from austenite to
martensite the saturation magnetization increases about 25%, and the mag-
netic anisotropy undergoes a dramatic change: austenite is almost perfectly
isotropic and saturates at about 600 Oe, while martensite saturates at about
1,000 Oe on the (easy) c-axis and at 12,000 Oe on the (hard) a-axis [7].

What are the origins of this sensitivity to changes of lattice parameters? In
general terms sensitivity can arise from various sources, e.g., large mismatch
in dimensionless material constants, percolation. In the present case our feel-
ing is that it arises from bifurcation. That is, it seems that the appearance of
properties like ferroelectricity and ferromagnetism can be viewed as bifurca-
tions, in which the bifurcation parameters are the lattice parameters. If such
bifurcations are of the usual “pitchfork” type, then the implied infinite slope
of the bifurcation curve at the bifurcation point implies sensitivity to changes
of lattice parameters. Very often, in areas ranging from the structural mechan-
ics of shells to the Jahn–Teller effect [8], bifurcation is associated with broken
symmetry. Fortunately, bifurcation theory (with symmetry) can be quantita-
tive, and it is expected that such analyses could guide the implementation of
the present idea.

9.5 What Makes Big First Order Phase
Transformations Reversible?

For the discussion of the reversibility of martensitic phase transformations
we will use the sizes of hysteresis loops as a measure of reversibility. This
provides one measure of reversibility, but other measures are also important,
e.g., the number of times one can go back and forth through the transformation
without unacceptable damage to the material measured via degradation of
some physical property. In plasticity, the area inside the initial hysteresis loop
correlates in many cases with fatigue life and the simplest theories of plasticity
take the “cold work” as proportional to this area. Similar ideas are believed to
hold for transformations and the little available data supports this [9]. We will
concentrate on shape memory alloys, which already show good reversibility.

The most widely accepted explanations of hysteresis in structural phase
transformations arise from two sources (a) pinning of interfaces by defects and
(b) thermal activation. A close examination of the experimental data does not,
however, seem to support either of these ideas.

Consider, for example, the revealing measurements of hysteresis of Otsuka,
Sakamoto, and Shimizu [10] on Cu–14.0Al–4.2Ni (mass%). This alloy is in-
teresting in that it has fully reversible transformations cubic → orthorhombic
(β1 → γ′

1), cubic → monoclinic (β1 → β′
1, β1 → β′′

1 ), as well as intermarten-
site transitions, also including an α′

1 phase. These are all considered highly
reversible, but there are dramatic differences in the sizes of the hysteresis
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loops. In particular, the β1 → β′
1 transformation has incredibly small hystere-

sis relative to the others. But this data of Otsuka et al. were all measured on
the same specimen. Thus, each of these transformations sees the same sea of
underlying defects in the material. If “pinning” was the explanation for these
dramatic differences in the size of the hysteresis, then it would somehow have
to involve the interaction of the phase transformation with the defect. But if
one looks at all the fundamental measured transformation data for β1 → β′

1

vs. say β1 → γ′
1, e.g., transformation strain, latent heat, elastic moduli of

phases, one does not see major differences. In fact, β1 → β′
1 has a bigger

transformation strain matrix by any reasonable measure than β1 → γ′
1.

Thermal activation (e.g., transition state theory) also does not seem to be
relevant. In fact, the data of Otsuka et al. [10] shows that the hysteresis for the
β1 → β′

1 is bigger at higher temperatures, in contradiction to the predictions
of theories based on thermal activation.

In the CuZnAl system there are very similar observations, even though the
parent phase here has essentially DO3 ordering. A β1 → β′

1 transformation
Cu68Zn15Al17 has dramatically smaller hysteresis than the other transforma-
tions in this system.

It is also instructive to look at the widely studied NiTiCu system. Certain
of these alloys are used in orthodontic applications precisely because of their
low hysteresis. Alloys of NiTiCu with 10–20 at. % Cu have the lowest known
hysteresis in this system. A tabulation of the width of the hysteresis during
stress-induced transformation by Miyazaki and Otsuka [11] is summarized in
Table 9.1.

We believe that a completely different idea explains, at least qualitatively,
these observations. To explain the idea, in Table 9.2 we write the distortion
matrices of the very low hysteresis alloys mentioned earlier (these are obtained
from the measured lattice parameters of both phases by formulas given in [12]).
For the purpose of comparison, those of NiTi and the cubic to orthorhombic
β1 → γ′

1 transformation in Cu69Al27.5Ni3.5 are also listed.
Notice first that determinants of all of these matrices are close to 1.

Since distortion matrices deform unstressed austenite to unstressed marten-
site, the determinant measures the volume ratio of martensite to austenite,

Table 9.1. Width of the stress hysteresis in NiTiCu alloys according to Miyazaki
and Otsuka [11]

Alloy Width of the hysteresis (MPa)

Ti41.5Ni48.5Cu10.0 400
Ti45.5Ni49.5Cu5.0 300
Ti44.5Ni50.5Cu5.0 200
Ti44.5Ni45.5Cu10.0 100
Ti45.5Ni44.5Cu10.0 100
Ti50.0Ni40.0Cu10.0 100
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Table 9.2. Distortion matrices for various transformations with their eigenvalues
and determinant

Alloy Distortion matrix Eigenvalues Determinant

Ni50Ti50

(
1.0243 0.05803 −0.04266

0.05803 1.0243 −0.04266

−0.04266 −0.04266 0.9563

)
1.1066

0.9663

0.9321

0.9966

Ni40.5Ti49.5Cu10.0

(
1.0260 −0.02740 0

−0.02740 1.0260 0

0 0 0.9508

)
1.0534

0.9986

0.9508

1.0002

Cu69Al27.5Ni3.5

(β1 → γ′
1)

(
1.0424 0.0194 0

0.0194 1.0424 0

0 0 0.9178

)
1.0618

1.0230

0.9178

0.9969

Cu69Al27.5Ni3.5
(β1 → β′

1)

(
1.0716 0.0516 0

0.0516 1.0311 0

0 0 0.9127

)
1.1067

0.9959

0.9127

1.0060

Cu68Zn15Al17
(β1 → β′

1)

(
1.087 0.0250 0

0.0250 1.010 0

0 0 0.9093

)
1.0944

1.0026

0.9093

0.9977

The alloys shown in bold have the lowest hysteresis in their respective systems;
middle eigenvalues are also shown in bold

so a determinant of 1 means no volume change. It is well understood that
this condition is important for reversibility, especially in polycrystals: if there
is a volume change then an island of martensite growing in austenite would
generate stress and vice versa. This would happen both ways through the
transformation, and therefore any (total) free energy decreasing path between
phases would necessarily be part of a hysteretic loop. According to a result
of Bhattacharya [13], in a material with cubic austenite, det = 1 is also suf-
ficient that there be a microstructure of martensite filling an interior region,
with no long range stresses, that satisfies the boundary conditions imposed by
the surrounding austenite. However, all the determinants listed in Table 9.2
apparently must be sufficiently close to 1 to minimize this effect on hysteresis,
as there does not seem to be a correlation with the low hysteresis cases.2

However, there is a striking correlation between the low hysteresis alloys
and the condition λ2 = 1, where λ1 ≤ λ2 ≤ λ3 are the ordered eigenvalues of
the distortion matrix. From Table 9.2 one can see that |λ2 − 1| is an order of
magnitude smaller in the low hysteresis alloys than in the others.

2Though we should add that these were measurements of hysteresis in stress-induced
transformation, and also the measurements on the copper based alloys were done
on single crystals. While there is typically a correlation between stress-induced and
temperature-induced hysteresis, the full explanation for the relevance of the special
conditions could be more subtle.
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The condition λ2 = 1 is relevant to issues of compatibility [14]. This condi-
tion is necessary and sufficient that the austenite be exactly compatible with
the martensite (without fine twinning). Mathematically, given a symmetric
distortion matrix U1, the condition λ2 = 1 is necessary and sufficient that
there exist a rotation matrix R and a pair of vectors a,n such that

RU1 − I = a ⊗ n. (9.2)

In fact, if λ2 = 1, there are precisely two solutions (R1,a1⊗n1) and (R2,a2⊗
n2) of (9.2) and these can be written down explicitly [12, 14]. This contrasts
sharply with the typical case λ2 �= 1. In that case the typical microstructure
at transition is shown in Fig. 9.1.

As is well known in the theory of martensite, the microstructure of Fig. 9.1
is governed by the crystallographic theory of martensite. For our later purposes
we will need to describe a few of the results of that theory. First, we need to
display the full set distortion matrices corresponding to the martensite. There
is a theory for constructing these [15] based on symmetry and the Ericksen–
Pitteri neighborhood, but we will just present the final results, shown below
in the cases relevant to this chapter.

1. Cubic to tetragonal:

U1 =

⎛

⎝
β 0 0
0 α 0
0 0 α

⎞

⎠ , U2 =

⎛

⎝
α 0 0
0 β 0
0 0 α

⎞

⎠ , U3 =

⎛

⎝
α 0 0
0 α 0
0 0 β

⎞

⎠ . (9.3)

2. Cubic to orthorhombic:

U1 =

⎛

⎝
α δ 0
δ α 0
0 0 β

⎞

⎠ , U2 =

⎛

⎝
α 0 δ
0 β 0
δ 0 α

⎞

⎠ , U3 =

⎛

⎝
β 0 0
0 α δ
0 δ α

⎞

⎠ ,

U4 =

⎛

⎝
α −δ 0
−δ α 0
0 0 β

⎞

⎠ , U5 =

⎛

⎝
α 0 −δ
0 β 0
−δ 0 α

⎞

⎠ , U6 =

⎛

⎝
β 0 0
0 α −δ
0 −δ α

⎞

⎠ .

Fig. 9.1. Austenite/martensite interface in the β1 → γ′
1 transformation of

Cu69Al27.5Ni3.5. (Picture courtesy: C. Chu)
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3. Cubic to monoclinic
(a) 〈110〉 polarized:

U1 =

(
σ τ ρ
τ σ ρ
ρ ρ ξ

)

, U2 =

(
σ ρ τ
ρ ξ ρ
τ ρ σ

)

, U3 =

(
ξ ρ ρ
ρ σ τ
ρ τ σ

)

,

U4 =

(
σ −τ −ρ
−τ σ ρ
−ρ ρ ξ

)

, U5 =

(
σ −ρ −τ
−ρ ξ ρ
−τ ρ σ

)

, U6 =

(
ξ −ρ −ρ
−ρ σ τ
−ρ τ σ

)

,

U7 =

(
σ −τ ρ
−τ σ −ρ
ρ −ρ ξ

)

, U8 =

(
σ −ρ τ
−ρ ξ −ρ
τ −ρ σ

)

, U9 =

(
ξ −ρ ρ
−ρ σ −τ
ρ −τ σ

)

,

U10 =

(
σ τ −ρ
τ σ −ρ
−ρ −ρ ξ

)

, U11 =

(
σ ρ −τ
ρ ξ −ρ
−τ −ρ σ

)

, U12 =

(
ξ ρ −ρ
ρ σ −τ
−ρ −τ σ

)

.

(b) 〈100〉 polarized:

U1 =

(
ρ σ 0
σ τ 0
0 0 β

)

, U2 =

(
τ 0 σ
0 β 0
σ 0 ρ

)

, U3 =

(
β 0 0
0 ρ σ
0 σ τ

)

,

U4 =

(
τ σ 0
σ ρ 0
0 0 β

)

, U5 =

(
ρ 0 σ
0 β 0
σ 0 τ

)

, U6 =

(
β 0 0
0 τ σ
0 σ ρ

)

,

U7 =

(
ρ −σ 0
−σ τ 0
0 0 β

)

, U8 =

(
τ 0 −σ
0 β 0
−σ 0 ρ

)

, U9 =

(
β 0 0
0 ρ −σ
0 −σ τ

)

,

U10 =

(
τ −σ 0
−σ ρ 0
0 0 β

)

, U11 =

(
ρ 0 −σ
0 β 0
−σ 0 τ

)

, U12 =

(
β 0 0
0 τ −σ
0 −σ ρ

)

.

Note that there are two ways to transform from cubic to monoclinic phases,
which we label 〈110〉 polarized and 〈100〉 polarized. We should also remark
that many martensitic transformations involve shuffling. In that case the crys-
tal structures of austenite and martensite can each be viewed as the union of
a set of identical interpenetrating Bravais lattices, translated with respect to
each other. In that case the meaning of a distortion matrix is a matrix of a
linear transformation (again, with respect to the cubic basis) that maps one
of these Bravais lattices for austenite to the corresponding one for marten-
site. This definition is consistent with the measurements presented earlier for
particular systems.
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To describe the microstructure in Fig. 9.1, we consider two variants of
martensite, described by two distortion matrices, say, U1 and U2. To de-
scribe the bands of martensite on the left of Fig. 9.1, we solve the “twinning
equation,”

RU2 − U1 = a ⊗ n , (9.4)

R being a rotation matrix. As above, we get two solutions RI,aI,nI and
RII,aII,nII, these being associated with Type I and Type II twins. We call
a solution (a,n) of (9.4) a twin system. Taking one of these solutions, one
can make a compatible layering of these distortions, RU2/U1/RU2/U1, etc.,
with a suitable volume fraction λ of say variant 2. This describes the structure
on the left of Fig. 9.1. Introducing a transition layer between this layering and
the austenite phase, one finds that the elastic energy in this transition layer
can be made arbitrarily small by making the twins finer and finer, if and only
if the following equation holds,

R̂ (λRU2 + (1 − λ)U1) = I + b ⊗ m , (9.5)

for some rotation matrix R̂ and vectors b,m. Here m is the normal to the
austenite/martensite interface, and R̂ is a suitable rigid body rotation of the
martensite laminate needed to secure this approximate compatibility. Equa-
tions (9.4) and (9.5) comprise one form of the equations of the crystallographic
theory of martensite.

Given a twin system, the calculation of the solution of (9.5) is quite rigid
in the usual case λ2 �= 1. One finds [14] that given the twin system (a,n)
there are four values of b ⊗ m, that is, four austenite/martensite interfaces,
corresponding to just two values3 of the volume fraction λ. The shape changes,
angles between boundaries, and volume fractions predicted by this calculation
agree very well with those shown in Fig. 9.1, and with a great many other cases.

The crystallographic theory of martensite does not determine the fineness
of microstructure. That is believed to involve a balance between the interfa-
cial energy of the twin boundaries on the left of Fig. 9.1 and the elastic energy
in the transition layer. In fact if one looks closely at Fig. 9.1 then one sees
that there is branching of the twins near the interface. This is also under-
stood (Kohn and Müller [16]) as a mechanism for reducing energy, in which
the elastic energy of the transition layer becomes delocalized and the twins
split into finer and finer arrays near the interface, but always with the volume
fraction given by (9.5). In any case the energy of the austenite/martensite in-
terface is the sum of bulk and interfacial energies arising from incompatibility
of austenite and martensite. This energy has to be created both ways through
the transformation. Any free energy decreasing path from one phase to the
other must therefore be part of a hysteretic loop.

3Two interfaces have volume fraction, say, λ∗, and the other two have volume fraction
(1 − λ∗).
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However, if λ2 = 1, then austenite is compatible with martensite and
both elastic and interfacial energies are avoided, except for the single (likely
atomically sharp) interface separating austenite and martensite. Since many
millions of these austenite/martensite interfaces may be created in a macro-
scopic sample during transformation, one can imagine that λ2 = 1 can be
relevant for hysteresis, as noticed earlier.

We have discussed two conditions for reversibility: detU1 = 1 and λ2 = 1,
λ2 being the middle eigenvalue of U1. Due to the structure of distortion
matrices [15], both the middle eigenvalue and the determinant of all distor-
tion matrices corresponding to a given transformation (e.g., as listed earlier)
are the same. We now propose to introduce a third set of conditions, we call
the cofactor conditions, at which an even more spectacular “accident” of com-
patibility occurs. The cofactor conditions presuppose that λ2 = 1, and they
also depend on the choice of the twin system, a,n. These conditions can be
easily extracted from the treatment of the crystallographic theory in [14],
although one of the hypotheses was inadvertently omitted there. The cofactor
conditions are

λ2 = 1, trU2
1 − detU2

1 − 2 − 1
4
|a|2 > 0, a · U1cof (U2

1 − I)n = 0 . (9.6)

Here, cof A denotes the cofactor of the matrix A: (cof A)ij = (−1)i+j det Âij ,
where Â is the 2 × 2 matrix obtained by deleting the ith row and jth col-
umn of A. If the cofactor conditions are satisfied, then, in addition to the
austenite single-variant interfaces arising from λ2 = 1, it is possible to have
austenite/martensite interfaces with any volume fraction4 between 0 and 1.

As an example, a distortion matrix belonging to a cubic to monoclinic
transformation (〈100〉 polarized) that satisfies exactly the cofactor condi-
tions is

U1 =

⎛

⎝
1.09 0.030 0
0.030 1.010 0

0 0 0.93

⎞

⎠ . (9.7)

[Here, the chosen twin system is the Type I twin relating variants 1 and
12, the notation as above, which gives a = (−0.17182,−0.0572727, 0.145266),
n = (101).] Notice that this matrix is not far away from the real measured
transformation matrix of Cu68Zn15Al17, Table 9.2. The best way to illustrate
the result in italics just above is to plot a family of austenite/martensite
interfaces corresponding to a sequence of volume fractions going from 0 to 1.
This is done in Fig. 9.2. This should be contrasted with the restrictive results
(4 interfaces, just 2 volume fractions) mentioned above in the usual case when
the cofactor conditions are not satisfied.

4If the inequality in (9.6) is weakened to the statement trU2
1 −detU2

1 − 2 > 0, then
there is a limited range of volume fractions, given precisely by [0, λ∗] ∪ (1 − λ∗, 1],

where λ∗ = 1
2

(
1 −

√
1 − 4(µ/|a|2)

)
and µ = trU2

1 −detU2
1 − 2, for which there are

austenite/martensite interfaces.
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Fig. 9.2. Illustration of the continuous variation of volume fraction of martensite
possible under the cofactor conditions. Distortions accurately drawn using the dis-
tortion matrix and twin system given in (9.7)ff

Note the remarkable degree of flexibility indicated by these pictures. In
fact, as the volume fraction of martensite goes from 0 to 1, the (perpendicu-
lar) directions of maximum and minimum principle strain in the martensite
actually exchange places. Thus, these special conditions on lattice parameters
do not mean that the martensite is compatible with the austenite because it
does not deform with volume fraction changes. On the contrary, it undergoes
large average deformations while remaining compatible with austenite.

One possible objection to the usefulness of the cofactor conditions is that
they only appear to apply to one twin system. As we shall see later, this is not
the case. In cubic to monoclinic transformations, if the cofactor conditions are
satisfied for one twin system, then they are satisfied for many twin systems.

9.6 Specific Relationships Among Lattice Parameters
for a High Degree of Reversibility

Here we answer the question of what precisely are the conditions on lattice pa-
rameters that imply the satisfaction of the proposed conditions for reversibil-
ity. It is easy to write down the conditions detU1 = 1 and λ2 = 1 in terms of
the parameters in U1, so, instead, we concentrate on the most interesting case
of satisfying simultaneously all of the conditions: detU1 = 1, λ2 = 1 and the
cofactor conditions. We focus only on cases where the austenite is cubic, and
the symmetries have a group/subgroup relationship. In this case it is easy
to see that the full set of conditions cannot be satisfied if the distortion is
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such that the martensite has tetragonal or trigonal (rhombohedral), symme-
try, but can be satisfied for lower symmetry martensites, as discussed later.
Later, when we discuss the variants of martensite, we refer to the numbering
of distortion matrices given in Sect. 9.5.

9.6.1 Cubic to Orthorhombic Transformations

In the cubic to orthorhombic case there are precisely two matrices that satisfy
all three conditions. These matrices are

UI
1 =

⎛

⎜
⎜
⎝

1
2 (1 + 1√

2
) 1

2 (1 − 1√
2
) 0

1
2 (1 − 1√

2
) 1

2 (1 + 1√
2
) 0

0 0
√

2

⎞

⎟
⎟
⎠ , UII

1 =

⎛

⎜
⎜
⎝

1
2 (1 +

√
2) 1

2 (
√

2 − 1) 0
1
2 (
√

2 − 1) 1
2 (1 +

√
2) 0

0 0 1√
2

⎞

⎟
⎟
⎠ .

Each of these matrices satisfies the cofactor conditions simultaneously for 12
twin systems, all Type I twins for the case of UI

1 and all Type II twins for the
case of UII

1 (the compound twins never satisfy all three conditions). These are
quite big matrices by any measure, and therefore unlikely to be realistic; they
may also fall outside of the Ericksen–Pitteri neighborhood and therefore call
into question the basic theory. Nevertheless, they are useful for the purpose
of illustration.

9.6.2 Cubic to Monoclinic Transformations

〈100〉-Polarized

In the 〈100〉 polarized cubic to monoclinic case there are two one-parameter
families of matrices satisfying all three conditions, given below.

UI
1 =

⎛

⎜
⎜
⎝

α + α2 − α3
√

α2(1 + α)(1 − α)3 0
√

α2(1 + α)(1 − α)3 1 − α2 + α3 0

0 0 1
α

⎞

⎟
⎟
⎠ , α ≤ 1 , (9.8)

UII
1 =

⎛

⎜
⎜
⎝

(α2 + α − 1)/α2 1
α2

√
(α − 1)3(α + 1) 0

1
α2

√
(α − 1)3(α + 1) (α3 − α + 1)/α2 0

0 0 1
α

⎞

⎟
⎟
⎠ , α ≥ 1 . (9.9)

Each of these works simultaneously for 12 twin systems. These are Type I
twins in case (9.8) and Type II twins in case (9.9), but not all are included
(i.e., there are more than 12 Type I twins in this system). Note that both
families begin at the identity, corresponding to no transformation, at α = 1.
The case (9.9) is particularly interesting in its proximity to real examples of
distortion matrices.
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There are also several one-parameter families corresponding to β = 1 in
the notation above. These are less interesting because they do not seem to
be close to any realistic cases that could provide starting points for alloy
development. On the other hand, some of these cases apply to many twin
systems.

〈110〉-Polarized

In the 〈110〉 polarized cubic to monoclinic case there are several one-parameter
families of matrices satisfying all three conditions. We found seven such fami-
lies, all passing through the identity, and all applying simultaneously to mul-
tiple twin systems. There is also a two-parameter family of matrices satisfying
all three conditions, but only applying to a limited family of compound twins.
While it is possible to write analytical expressions for the seven families ma-
trices satisfying these conditions, these are somewhat complicated to write
down so we do not give them here.

9.6.3 Relationships for Martensite/Martensite Transitions

The conditions we propose for reversibility are applicable to martensite–
martensite transitions, such as the tetragonal to trigonal transformation that
occurs at a morphotropic boundary. These should imply low hysteresis by the
same reasoning that we have given for the austenite/martensite transitions.
If U and V denote (positive-definite, symmetric) distortion matrices corre-
sponding to two different martensites, the condition (1) of no volume change
is detU = detV, (2) the exact compatibility is that the middle eigenvalue
of V−1U2V−1 is 1. The cofactor conditions are (9.4) and (9.5) with U1,U2

replaced by U,V, respectively, and I replaced by either U or V. It is also
possible to pass from the description (9.4) and (9.5) to more compact condi-
tions like (9.6) in the martensite/martensite case using the methods of [14].
There are also further conditions that would make two compatible laminates of
martensite additionally flexible, that would likely also enhance the reversibil-
ity of transition.

9.7 Tuning Lattice Parameters
to Satisfy Two of the Proposed Conditions
in the NiTiCuPd System

We have recently put these ideas into practice in a special case, that of the
NiTiCuPd system. It is known that a family of alloys in the system NiTiCu
nearly satisfy the second condition λ2 = 1, which suggested to us that this
is a good starting place. We focused on trying to determine the alloys that
satisfy just the first two conditions detU1 = 1 and λ2 = 1.
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Fig. 9.3. A part of the compositional triangle NiCuPd at Ti = 50%. Compositions
on the line satisfy the condition λ2 = β = 1. A small subset of the measured samples
is also shown. The shaded region indicates the error expected in this determination

Briefly, we measured lattice parameters of both austenite and martensite
by X-ray diffraction and thereby established the mapping between composi-
tion and distortion matrices. (For a more detailed description of these exper-
iments, see Zhang [17].)

Over a large compositional region we found that detU1 = 1 within our
error of measurement. However, the middle eigenvalue λ2 was more sensitive
to composition.5 An example of our results is shown in Fig. 9.3. The com-
positional space NiTiCuPd is three-dimensional. Figure 9.3 shows a 2D slice
through this surface at constant Ti composition of 50%.

9.8 Further Comparisons with Experiment

After determining the mapping between composition and distortion matrices
as described in Sect. 9.7, we were informed of additional data on hysteresis in
the literature for alloys of particular composition. (We are grateful to Wuttig,
Quandt, and Berg for these references.)

5Also, the error of the measurement of λ2 was smaller than that of detU1.
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We first describe measurements of Winzek and Quandt [18]. They mea-
sured thermal hysteresis in both free standing and stressed films, and both
had similar trends, but, for definiteness, we compare with the measurements
on the free standing films. Winzek and Quandt also measured hysteresis in
two different ways: by using the width of a parallelogram approximation of
the loop, and by using the thinnest place on the loop (some loops had a
“waist”). We compare with the former method. In their measurements on
NiTiCu, they found that an alloy with approximate composition Ni34Ti50Cu16

exhibited the lowest hysteresis among alloys they studied. We did not find
any alloys in the NiTiCu system that satisfy λ2 = 1 within our experimen-
tal error. However, the alloy in the NiTiCu system that most closely sat-
isfies λ2 = 1 is Ni30Ti50Cu20, which is quite close to that of Winzek and
Quandt (in fact, the closest of those they measured). We believe that if they
had measured the alloy Ni30Ti50Cu20, it would have exhibited the lowest
hysteresis.

More interestingly, Winzek and Quandt [18] also made similar measure-
ments on NiTiPd films. They found that there was a rather sharp drop in the
hysteresis at the composition Ni40Ti50Pd10, among alloys they tested. This is
very close to the crossing point of our surface λ2 = 1, as can be seen from
Fig. 9.3; in fact, the exact crossing is at Ni39Ti50Pd11.

Also interesting is the data we have collected from the US Patent 5, 951, 793
shown in Table 9.3. Some of these alloys have small percentages of elements
that we have not studied, and these can either be excluded from the compari-
son or else included (by, e.g., assigning their percent to the element for which
they substitute). It is seen from Table 9.3 that there are dramatic differences
in the size of the stress hysteresis. The closest alloy to our surface λ2 = 1 is
the alloy shown in bold and it is indeed very close. This is the one with the
lowest hysteresis.

Table 9.3. Data on stress hysteresis vs. composition for various alloys collected
from US Patent 5,951,793

Width of the
Ti Ni Pd Other hysteresis (MPa) Af (◦C)

49.5 43.5 0 Cu 7 236 25
50 40 0 Cu 10 172 60
50 47 2.5 263 55
49.5 47 3 Cr 0.5 148 5
49.5 46.5 4 137 5
50 42.5 7.5 95 25
50 42 7.5 Co 0.5 82 15
49.5 40.5 10 54 −20
49.5 38 12 V 0.5 106 30
49 36 13 Fe 2 103 −30
51 35 14 127 60
49 36 15 170 −50
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9.9 Summary and Outlook: A General Method
for Seeking New Classes of Functional Materials

We have proposed three relationships for reversibility: detU1 = 1 (and, as
many compatible variants of martensite as possible), λ2 = 1, λ2 being the
middle eigenvalue of U1, and the cofactor conditions

λ2 = 1, trU2
1 − detU2

1 − 2− 1
4
|a|2 > 0, a ·U1cof (U2

1 − I)n = 0 . (9.10)

The experimental evidence rather strongly suggests that the first two of these
govern the main part of the hysteresis, while the third condition is a natural
extension of these concepts. The standard ideas that are usually quoted as
governing hysteresis in martensitic phase transitions do not seem to us to be
the most influential factors.

More generally, our idea can be expressed as follows. Arrange to have a
big first order, reversible (martensitic, i.e., diffusionless) phase transforma-
tion that separates two phases with different electromagnetic properties. This
leads to the following advantageous situation. (1) Since the two phases have
different lattice parameters, and different band structures, the possibilities for
simultaneous unlikely properties are greatly improved. (2) If the phase trans-
formation is reversible then the volume fraction of the two phases could be
changed by using an electric field, a magnetic field, or a stress, depending on
the shape change and electromagnetic properties of the two phases.

Besides ferroelectricity – ferromagnetism, there are many potential prop-
erty pairs that exhibit lattice parameter sensitivity and are candidates for
the proposed strategy: solubility–insolubility of H2, high band gap–low band
gap semiconductors, insulator–conductor (electrical or thermal), opaque–
transparent (at various wavelengths), high–low index of refraction, lumines-
cent–nonluminescent. Also possible according to this strategy are new kinds
of thermoelectric and thermomagnetic materials, that utilize the lattice para-
meter sensitivity of electromagnetic properties together with the latent heat
of transformation.

Acknowledgments

We are grateful to K. Rabe, M. Wuttig, E. Quandt, J.M. Ball, T. Shield,
J. Cui and B. Berg for stimulating discussion of these ideas. This work was
supported by MURI N00014-010100761 administered by ONR. The work also
benefitted from the support of NSF-NIRT DMS-0304326.

References

1. N.A. Hill: J. Phys. Chem. B 104, 6694 (2000)
2. N.A. Hill: Annu. Rev. Mater. 32, 1 (2002)



9 Materials with “Unlikely” Properties 175

3. N. Hill, K.M. Rabe: Phys. Rev. B 53, 8759 (1999)
4. R.E. Cohen: J. Phys. Chem. Solids 61, 139 (1999)
5. Y.C. Yang, X.D. Zhang, S.L. Ge, Q. Pan, L.S. Kong, H. Li, J.L. Yang,

B.S. Zhang, Y.F. Ding, C.T. Ye: J. Appl. Phys. 70, 6001 (1991)
6. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland,

V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe,
M. Wuttig, R. Ramesh: Science 299, 1719 (2003)

7. R. Tickle, R.D. James: J. Magn. Magn. Mater. 195, 627 (1999)
8. H.A. Jahn, E. Teller: Proc. R. Soc. London A161, 220 (1937)
9. R.M. Tabanli, N.K. Simha, B.T. Berg: Metall. Mater. Trans. A 32, 1866 (2001);

Mater. Sci. Eng. A, 273, 644 (1999)
10. K. Otsuka, H. Sakamoto, K. Shimizu: Acta Metall. 27, 585 (1979)
11. S. Miyazaki, K. Otsuka: ISIJ Int. 29, 353 (1989)
12. R.D. James, K. Hane: Acta Mater. 48, 197 (2000)
13. K. Bhattacharya: Arch. Rational Mech. Anal. 120, 201 (1992)
14. J.M. Ball, R.D. James: Arch. Rational Mech. Anal. 100, 13 (1987)
15. J.M. Ball, R.D. James: Philos. Trans. R. Soc. London A338, 389 (1992)
16. R.V. Kohn, S. Müller: Philos. Mag. A 66, 697 (1992); Commun. Pure Appl.

Math. 47, 405 (1994)
17. Z. Zhang: MS thesis, University of Minnesota (2004)
18. B. Winzek, E. Quandt: Proc. Mater. Res. Soc. Symp. 604, 117 (2000)



10

Invar and Anti-Invar:
Magnetovolume Effects
in Fe-Based Alloys Revisited

E.F. Wassermann and M. Acet

10.1 Introduction

In search for a cheaper length standard than Pt–Ir, Guillaume found in 1897
“Invar,” a ferromagnetic (FM) fcc Fe65Ni35 alloy showing small, almost tem-
perature independent thermal expansion below the Curie temperature. After
discovering “Elinvar,” an FM fcc Fe–Ni–Cr alloy with constant elastic behav-
ior, “revolutionizing” the watch industry with newly designed balance springs,
Guillaume was honored with the Nobel Price in physics in 1920. In spite of
worldwide research, understanding of Invar and Elinvar remained a centen-
nial problem until the beginning of the 1990s, when ab initio calculations gave
basic insights into the relations between lattice structure, atomic volume and
magnetic properties. At that time, “anti-Invar” also was recognized, the effect
being the enlargement of the atomic volume of fcc Fe and fcc Fe-rich alloys
at high temperatures in the paramagnetic range by FM spin fluctuations. In
this chapter we briefly review the basic experimental properties of Invar and
anti-Invar and discuss the properties of Fe, the element inspiring Weiss to
his historical 2γ-states model. We then revisit the theoretical situation and
specifically discuss the models stressing the importance of charge transfer at
the Fermi energy between electronic levels with different symmetry (eg and
t2g) and nonbonding or antibonding character.

10.2 Invar

In spite of intensive research for more than a century, the Invar problem
remains to be only partially solved. The actual knowledge at the time being, as
well as the progress in the understanding of Invar, can be traced best in some
review articles [1–5], in a recent book [6] and in some key experimental [7–9]
and theoretical [10–12] papers. To date, the situation can be characterized by
the statement that especially concerning the behavior at finite temperatures,
there is appreciable disagreement between experiment and theory. The main
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reason is the lack of appropriate theoretical “tools” to reliably describe the
finite temperature behavior of itinerant magnets from first principles. This
is, however, a prerequisite to fully explain the experimentally observed Invar
typical features, most significantly the temperature dependence of the thermal
expansion coefficient α(T ). Invar materials show a volume increase in the
magnetically ordered range below the ordering temperature, and therefore
relative to a nonmagnetic lattice curve (Grüneisen curve) a reduced thermal
expansion. In ferromagnetically ordered alloys below the Curie-temperature
TC, this is called “FM Invar-effect,” in antiferromagnetically (AF) ordered
systems below the Néel temperature TN we get “AF Invar-effect”. Figure 10.1
shows some typical experimental examples of the thermal expansion coefficient
α(T ) of fcc FM Fe65Ni35 Invar (open circles), FM Cementite Fe3C+2 at% Cr
(full circles), and AF Ti35Fe65 with hexagonal Laves phase C14 structure. Note
that in all alloys, the FM or AF Invar effect vanishes for T > TC or T > TN and
thus the reference curve (αlattice) can be obtained by a Grüneisen analysis.
The area between the Grüneisen curve and the experimental data give the
maximum volume enhancement due to the Invar effect – the “spontaneous”
volume magnetostriction at zero temperature ωso. The values are ωso = 1.6%

Fig. 10.1. Thermal expansion coefficient α vs. the temperature for fcc FM In-
var Fe65Ni35, FM cementite Fe3C + 2at%Cr, and AF Invar Ti35Fe65 with Laves
phase C14 hexagonal structure. Dashed curve: nonmagnetic Grüneisen reference
αlattice(T ). Arrows mark the magnetic ordering temperatures [6]
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Table 10.1. Invar systems

Structure Material

fcc Fe–Ni, Fe–Pt (ord.) Fe–Pt (disord.), Fe–Pd, Fe–Mn, Co–Mn,

Fe–Ni–Mn, Fe–Ni–Cr, Fe–Ni–Co, Fe–Ni-Pt, Fe–Ni–Pd

bcc Cr–Fe, Cr–Mn, Fe–Cr–Mn

hexagonal Co–Cr

amorphous Fe–B, P

Fe–TE, TE: Sc, Y, Zr, Hf

(Fe–TE)X TE: Mn, Co, Ni; X: Si, B, P

Laves phases TEFe2 TE: Ti, Zr

and compounds RECo2 RE: all except Eu

RE2Fe17 RE: Y, Dy, La

Dy2(FeCo)17, Fe3C, Fe14Nd2B

for FM Invar Fe65Ni35, ωso ≈ 1.0% for cementite and ωso ≈ 0.6% for AF Invar
Fe65Ti35.

As shown in Table 10.1, Invar behavior (and often Elinvar behavior, the
temperature independent elastic behavior) is not bound to fcc Fe-based sys-
tems alone. But, because of technical importance, Fe-based alloys are most
widely investigated. Applications of Invar range from large scale, e.g., Fe–
Ni for ship tanks for transportation of liquified natural gas at temperatures
around 110 K [4] (Fig. 10.2), to small scale in e.g., chip base plates or bi-metals.

Fig. 10.2. Large scale application of iron–nickel Invar: View into a tank of a ship
for transport of liquid natural gas (capacity 130, 000 m3, atm. pressure, T = 110 K).
The tank walls are made of weldable Fe65Ni35 Invar, specially treated to withstand
repeated thermal cycling (Photo: Imphy Ugine Precision [4])
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Fig. 10.3. Magnetic contribution cmag to the specific heat as a function of the
reduced temperature for pure Ni and Fe100−xNix alloys with different composition
[13]. For details see text

Most important on the world’s Invar market, also by tonnage share, has been
Fe65Ni35 Invar used for shadow masks in television tubes. With increasing
spread of flat screens, this market section of Invar is, however, dying away,
none the least because the current and voltage feedthroughs of the glass TV
tubes are also made of Invar (an Fe–Ni–Co alloy known as “Kovar”). Guil-
laume’s original Elinvar alloy (Fe54Ni34Cr12) began losing its importance a
long time ago too, when Invar balance springs in watches were replaced by
quartz crystals. Today, Elinvar finds applications in RHEED contacts, relays,
and frequency standards – a relatively small but a high-tech market.

Invar characteristic properties are by no means limited to the thermal
expansion, but anomalies are found in all physical properties of the alloys
mentioned, especially the magnetization M(T,H) (in the context where the
problem of the “hidden excitations” is still debated; see e.g. [1–5]), the elastic
constants CL,T(T ) and the bulk and shear moduli B(T ) and G(T ), the latter
three revealing the characteristics of the not fully understood “softness” of the
Invar materials [1–6]. Invar-typical is also the behavior of the specific heat.
This is depicted for Fe–Ni alloys in Fig. 10.3 [13] showing that relative to the
reference behavior of pure FM Ni, there are appreciable magnetic contribu-
tions cmag to the specific heat in FM fcc Fe100−xNix alloys at temperatures
below as well as above TC. Starting from a composition Fe50Ni50, this excess
contribution to cmag finds its maximum at the Invar concentration x = 35.
The excess magnetic specific heat is caused by thermal Invar-characteristic
excitations – still debated concerning their nature as will be discussed be-
low. These are known as moment–volume fluctuations and are also referred
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to as “elasto-magnons”. Figure 10.3 reveals that there is also an appreciable
magnetic contribution to the specific heat in the paramagnetic temperature
range for T > TC, which is also maximum in Fe65Ni35 Invar. This excess is
very likely caused by FM spin fluctuations [14], though, again, the physical
nature of the underlying excitations is not understood.

10.3 From Invar to Anti-Invar

Our investigations [6–9] have shown that increasing the Fe-concentration in
Fe100−xNix alloys to above the Invar composition, x > 65 (electrons per atom,
e/a < 8.75), results in a continuous transition to another magnetovolume
effect called “anti-Invar” [15]. Anti-Invar is the opposite of Invar behavior
and denotes the increase of the volume and the enhancement of the thermal
expansion relative to a nonmagnetic reference. Anti-Invar is observed in γ-
Fe [16] and fcc Fe-rich systems in the high temperature paramagnetic range.
The relative volume increase through the anti-Invar effect can be determined
quantitatively by plotting Tmα(T ) as a function of T/Tm, where Tm is the
melting temperature. For “normal” metals and alloys, such a plot results in an
almost universal expansion curve, which we use as a Grüneisen-like reference
for the thermal expansion of the magnetic alloys in question. Figure 10.4
shows such a plot for Fe100−xNix alloys in the fcc stability range together
with the data for pure γ-Fe above the A3 point (1184 K) and αlatticeTm vs.
T/Tm, the Grüneisen reference curve mentioned. The Fe–Ni curves terminate
at the martensite start temperatures Ms/Tm, where a transition from the high
temperature austenitic fcc phase into the bcc (or bct) martensitic phase takes
place on decreasing T . Very important in this context is the thermal expansion
curve of Fe77Ni13Mn7C3 (open circles in Fig. 10.4). This paramagnetic alloy
has fcc stability in the range 0 ≤ T ≤ Tm, and thus can serve as an “anti-Invar
reference” [17], i.e., it provides the course of the thermal expansion behavior
α(T ) for the Fe–Ni alloys in the temperature range where the fcc phase is not
stable.

Note that the transition from Invar to anti-Invar behavior in Fig. 10.4
can be observed twice: with increasing Fe-concentration (at constant temper-
ature) starting from pure fcc Fe65Ni35 FM Invar to pure fcc anti-Invar in
Fe77Ni13Mn7C3, and with increasing temperature (at constant composition),
as observed in, e.g., Fe70Ni30 through the “negative” deviation from the lat-
tice reference at low temperatures changing to a “positive” deviation at higher
temperatures. For x > 75 to pure γ-Fe, all the alloys in Fig. 10.4 are paramag-
netic and show only anti-Invar behavior. Analogous transitions from Invar to
Anti-Invar behavior with increasing Fe concentration as in Fig. 10.4 have also
been found in Fe–Pt and Fe–Ni–Co alloys.

Anti-Invar typical anomalies can be found in other physical properties of
the alloys mentioned above. However, since there is no magnetic long range
order, and the anomalies occur at relatively high temperatures, the number of
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Fig. 10.4. αTm vs. Tm (melting temperature) for Fe-rich Fe–Ni alloys. The curves for
0 ≤ x ≤ 30 are measured down to their corresponding martensite start temperatures
Ms/Tm. Dashed : lattice reference curve (Grüneisen). Open circles: anti-Invar alloy
Fe77Ni13Mn7C3 [17]

available data is limited. Attempts to find anti-Invar typical behavior in, e.g.,
the elastic constants (e.g., [2]) have so far not been very successful. In Fig. 10.5,
we present (analogous to Fig. 10.3) our recent data on the magnetic contri-
bution cmag to the specific heat through the anti-Invar effect for three alloys,
Fe80Ni20, Fe74Ni26, and Fe77Ni13Mn7C3 [13] together with some theoretical
data from Monte Carlo simulations of high-moment–low-moment transitions
in Fe–Ni anti-Invar [18]. There is no room to discuss the details here, but it is
obvious from the figure that there are very large magnetic anomalies in these
alloys (the low temperature minimum in Fe65Ni35Mn7C3 results from a spin
glass order), which can be described by a Schottky-type analysis that could
follow from a low-spin–high-spin transition in a two level system (see also,
Sects. 10.4 and 10.5).

Since the thermal expansion of almost all fcc Invar and anti-Invar alloys
(besides those that are Co based) is isotropic, i.e., 3(∆l/l) = ∆V/V , using
the Grüneisen lattice and the Fe77Ni13Mn7C3 anti-Invar references and the ex-
perimental α(T ) data, one can work out a plot demonstrating the systematic
transition from Invar to anti-Invar as a function of composition in very differ-
ent alloy systems. Figure 10.6 gives the result in the form of maximum relative
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Fig. 10.5. (a) Anti-Invar contribution to the specific heat canti-Invar vs. temperature
determined experimentally [13] for x = 20, 26 and Fe77Ni13Mn7C3 anti-Invar alloys
and (b) compared results of Monte Carlo simulations for a two level low-spin–high-
spin transition system [18]

volume enhancement (∆V/V )max vs. composition (in electrons per atom, e/a,
counting s +d electrons) for a series of alloys (see symbols in Fig. 10.6). In-
var behavior with a maximum volume increase of (∆V/V )max ∼ 1.6% at
e/a = 8.75 diminishes with decreasing electron concentration and vanishes
for e/a < 8.5. There is Invar and anti-Invar simultaneously present (also as a
function of temperature – which this plot does not show directly) in a small
interval 8.5 < e/a < 8.8. There is then the anti-Invar developing with de-
creasing e/a, with a maximum relative volume increase up to almost 6% in
Fe–Mn. This relative volume increase by the anti-Invar effect occurs in addi-
tion to the relative volume increase of (∆V/V ) ∼ 7% all metals and alloys
experience between 0 K and their melting temperature (Grüneisen law).

The continuous transition from Invar to anti-Invar when reducing the elec-
tron concentration e/a as shown in Fig. 10.6 is directly reflected in the ab initio
ground state calculations [10, 11] of the total energy as a function of atomic
volume in the Fe–Ni system. Simultaneously, the composition dependence of
the electronic density of states (DOS) in these fcc alloys reveals typical features
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Fig. 10.6. Relative volume enhancement (∆V/V )max as a function of the electron
concentration per atom e/a for different Invar and anti-Invar alloys (see symbols)

at energies around the Fermi energy (see also below, Sect. 10.6), which can be
interpreted in terms of the long debated high-spin (HS)–low-spin (LS) model,
frequently used for the microscopic explanation of both, Invar and anti-Invar.
Since the volume and temperature dependences of the total energy of pure
iron already exhibit these HS–LS features, an understanding of elemental Fe
is a prerequisite for the discussion of different Invar and anti-Invar (and also
martensite) models. Iron will therefore be discussed in Sect. 10.4.

10.4 Allotropy of Pure Fe

Figure 10.7 shows the allotropy of elemental Fe in a plot of temperature vs.
pressure. At atmospheric pressure, Fe solidifies in the bcc δ-phase and below
1665 K (A4 point) structurally transforms on cooling, so that for 1184K <
T < 1665 K it has the fcc structure (γ-Fe). Yet, unexpected from entropic
arguments, on further cooling below A3, Fe does not become hexagonal close
packed (hcp; ε-Fe), as one would also expect from its position in the periodic
table (the elements Ru and Os below Fe in column VIII are hexagonal), but
the bcc structure returns (α-Fe), and remains as the stable structure down to
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Fig. 10.7. Structural phase diagram of iron. For discussion see text

0 K. Thermodynamic considerations [19] show that the presence of strong FM
correlations is a sufficient condition for the stability of the α-phase. Long range
FM ordering, which occurs well below A3 at the Curie-temperature TC =
1040 K, is not a necessary condition. With respect to Invar and anti-Invar,
the key feature of Fe is that the atomic volume of the high temperature fcc
γ-phase is smaller than that of the low temperature bcc (α)-phase. Only ε-Fe
occurring under high pressure is denser packed than γ-Fe, as the course of the
γ–ε boundary line in Fig. 10.7 shows. If one extrapolates linearly this boundary
line to zero pressure (dashed line), one obtains at ∼490 K the hypothetical γ–ε
transition temperature, in the case that α-Fe were nonmagnetic (NM).

The allotropy of Fe can be understood from first principles ab initio band
calculations [10–12], showing that magnetic coupling in the ground state of fcc
Fe could be AF or FM depending on the volume, thereby also corroborating
the 2γ-states model of Weiss [20]. In Fig. 10.8, we show a recent result [21] in
plots of the total energy E (bottom panel) and the magnetic moment µ (top
panel) vs. the atomic volume Va for bcc, fcc, and hcp Fe.

In accordance with the phase diagram of Fig. 10.7, the most stable state,
i.e., lowest in total energy, is the FM bcc ground state with the minimum
at Va = 77.37 a.u.3 (lattice constant a = 2.84 Å). This is about equal to
the experimental value Va = 76.55 a.u.3 (a = 2.83 Å). The bcc (FM) mo-
ment changes continuously with volume and has a value of about µ = 2.2µB

at equilibrium. Note that if the bcc state were NM, the total energy curve
(not shown in Fig. 10.8) would have lied about 35 mRy higher than the bcc
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Fig. 10.8. Total energy and magnetic moment vs. volume at T = 0 K of Fe in the
bcc, fcc, and hcp structures [21]

state (1mRy = 150 K), so that NM bcc Fe is never stable. The structure with
the next highest energy is hcp (NM) (dashed-dotted), situated about 5 mRy
above the bcc ground state. However, the minimum lies ∼ 10 a.u.3 lower in
volume, so that this state can only be reached under high pressure, in agree-
ment with Fig. 10.7. The next stable structure in Fig. 10.8 is fcc (AF) (dashed)
with µ ∼ 1.5µB at the equilibrium volume of Va = 73 a.u.3 (a = 3.51 Å). The
experimental values are µ ∼ 0.7µB and Va = 76.19 a.u.3 (a = 3.56 Å). This is
the state with the small moment and small volume of fcc Fe – the LS state
in the 2γ-states model of Weiss [20]. Energetically, this LS-state is 7.5 mRyd
(∼1125 K) above the bcc ground state, a value almost in quantitative agree-
ment with A3 = 1180 K in Fig. 10.7. If the volume of the fcc AF LS-state is
enlarged, for V > 80 a.u.3 (a = 3.62 Å), an fcc (FM) state is energetically
favored. In agreement with the Weiss model [20], this is the FM HS state of
γ-Fe with a magnetic moment of µ ∼ 2.7µB, a value close to µ = 2.8µB as
extrapolated from the Slater–Pauling curve. An LS state solution also exists
for the fcc (FM) curve having a minimum near the equilibrium volume of
the AF solution with µ ranging between 0 and 1µB, so that µ in the FM
solution changes rapidly from small values to 2.7µB. This is known as the
moment–volume instability.
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Fig. 10.9. Hyperfine field Bhf as a function of the atomic volume for fcc γ-Fe
anti-Invar [22]. Data from Mössbauer experiments on epitaxial films grown on Cu
(001) (filled square, filled circle), Cu3Au (filled triangle), CuAu (filled diamond),
and coherent precipitates in Cu–Al (open down triangle, open square)

The step-like behavior of the moment as a function of the atomic volume
has been found experimentally for fcc Fe. Results are given in Fig. 10.9 showing
the hyperfine field vs. the atomic volume from low temperature Mössbauer
investigations on fcc Fe films epitaxially grown on substrates with different
lattice constants: Cu(001) (filled square, filled circle), Cu3Au (filled triangle),
CuAu (filled diamond), and coherent precipitations of γ-Fe in Cu–Al alloys
(open down triangle, open square) [22]. Since the hyperfine field is directly
proportional to the magnetic moment, these data show in a convincing fashion
the validity of the findings by Weiss [20]. We will demonstrate later (Sect. 10.6)
that similar behavior can be detected in pressure experiments on Invar alloys.

10.5 Ground State Properties of Invar and Anti-Invar

Like for pure Fe, first principles ab initio band calculations of the total energy
as a function of atomic volume, magnetic moment, and composition have
given insight into the ground state properties of systems like Fe–Ni or Fe–
Pt [10–12]. All important is that, independent of the system, the basic features
in the total energy behavior are similar. In Fig. 10.10a–d, we give the results
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Fig. 10.10. Total energy E relative to a ground state energy E0 (full curves),
and magnetic moment (in µB/atom; dashed) as a function of the lattice constant
(in atomic units a.u.) for fcc FM Fe–Ni–Co alloys with different compositions [23],
showing anti-Invar properties in (a) and Invar in (b–d). For details see text

of the calculations for Fe–Ni–Co [23], a ternary system of technical impor-
tance, because it incorporates “Kovar” (composition around Fe55Ni29Co16)
and “Super-Invar” (Fe64Ni31Co5), the alloy with the smallest known expan-
sion coefficient of α = 0.2 × 10−6 K−1 at room temperature. The plots in
Fig. 10.10a–d give the total energy E (relative to the ground state energy E0;
full curves) and the magnetic moment µ (dashed curves) as a function of the
lattice constant a (in a.u.) for four different compositions (Co content constant
at 16.5 at%) in the transition range from anti-Invar (Fig. 10.10a; e/a = 8.625)
to Invar (Fig. 10.10b–d; 8.685 ≤ e/a ≤ 8.805). Typical for both anti-Invar and
Invar is a “double well potential” in the total energy curve E(a) and a “step-
like” feature (moment–volume instability) in the magnetic moment. However,
while in anti-Invar (Fig. 10.10a) the “anharmonicity” in E(a) is found at larger
volumes than the equilibrium value V0, and this ground state is an NM state,
in Invar (Fig. 10.10c–d), the “anharmonicity” occurs at smaller volumes than
V0. The ground state is always a HS state. The change from anti-Invar to
Invar with increasing concentration e/a (cf. Fig. 10.6) at zero temperature
is, therefore, characterized by a reversal of the transition from NM–HS in
anti-Invar to HS–NM in Invar. The energetic difference ∆E = ENM − EHS is
an almost linear function of e/a [11], changing sign around e/a ∼ 8.65. The
theoretical results in Fig. 10.10a–d almost agree with experiment. Only the
anti-Invar behavior of the alloy in Fig. 10.10a is not very pronounced because
of the occurrence of martensite [23].
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The HS–NM transitions in E(a) occur at saddle points (see dotted vertical
lines in Fig. 10.10, where a third state, called the LS state with an intermediate
value of the magnetic moment like in fcc Fe (cf. Fig. 10.8) might be involved.
However, the presence of an LS state is not a necessary condition for the
occurrence of Invar or anti-Invar behavior, a two level NM–HS scheme is
sufficient. Moreover, for all Invar and anti-Invar alloys studied in ab initio
calculations, the energetic differences between the HS and the LS or NM
states turn out to be of the order of 1 mRy. It is thus tempting to assume that
by raising the temperature, “excitations” – of whatever physical nature – from
the large volume high moment ground state to the energetically elevated zero
(or small) moment state at smaller volumes compensate the normal Grüneisen
expansion and thus cause the Invar magnetovolume anomaly; and vice versa
NM–HS transitions from small to large volumes cause anti-Invar. This scenario
reminds us in many ways of the long standing widely debated 2γ-states (or
HS–LS states) model of Weiss [20] introduced by him to understand fcc Fe and
the Invar effect at finite temperatures in Fe–Ni (the vocabulary “anti-Invar”
was not yet in use at that time).

10.6 Pressure Experiments: Evidence for High Spin
to Low Spin State Transitions

While in anti-Invar a lattice expansion yields a step-like LS to HS state transi-
tion (see γ-Fe in Fig. 10.9), in Invar a lattice contraction with pressure should
lead to the reverse, a HS to LS state transition. Abd-Elmeguid and Mick-
litz [24] were first to show in Mössbauer investigations under high pressure
at 4.2 K that indeed such a behavior could be inferred from their results on
ordered and disordered Fe72Pt28 as well as Fe68.5Ni31.5 Invar. Unfortunately,
Fe65Ni35 cannot be investigated, because samples of this composition trans-
form martensitically under pressure. For this reason, also recent investigations
of the ac-susceptibility as a function of pressure and temperature were car-
ried out on Fe68.1Ni31.9, also disordered Fe72Pt28 and Fe70Pt30, and Fe66Pd34

Invar alloys [25–27]. In Fig. 10.11a and b, we summarize all the data [24–27].
In Fig. 10.11a, the relative effective hyperfine fields Beff(p)/Beff(0) and in
Fig. 10.11b, the relative Curie temperatures are plotted as a function of the
pressure with compositions as indicated in the figure. Especially in Fig. 10.11a,
for ordered (filled triangle) and disordered (open triangle) Fe72Pt28 Invar,
there is definitely a critical pressure necessary to induce a reduction of the
magnetic moment. In Fe66Pd34 the moment even remains almost constant up
to p ∼ 5 GPa. There is also a change in slope in the Beff(p) curves of all three
Invar samples, Fe68.5Ni31.5 and Fe72Pt28 (ordered and disordered), with the
tendency towards a second plateau at high pressures. This is, to some extent,
supported by the plateaus occurring in the Curie-temperature curves TC(p)
in Fig. 10.11b. In disordered Fe70Pt30 (open square) and Fe68.1Ni31.9 (filled
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Fig. 10.11. (a) Normalized pressure dependence of the average effective hyperfine
fields at 4.2 K, Beff(p)/Beff(0) [24], and magnetization M(p)/M(0) at room temper-
ature [25]. (b) Normalized Curie-temperatures TC(p)/TC(0) vs. pressure [24–27] for
different Invar alloys as given indicated by various symbols

square), even AF components in a type of low magnetization reentrant spin
glass state are found at high pressure. Though not in absolute clearness, all
these data give strong support for the existence of HS and LS states and tran-
sitions within these states with pressure (at 4.2 K) in the sense of the model
by Weiss [20]. Strong support for the Weiss hypothesis also stems from the
pressure experiments by Odin et al. [28], who investigated Fe72Pt28 Invar at
room temperature with X-ray Magnetic Circular Dichroism (XMCD) up to
20 GPa. The result for disordered Fe–Pt is shown in Fig. 10.12 in a plot of
the relative XMCD signal vs. pressure. From these data, it is clear that on
reduction of the volume with increasing pressure in disordered Fe72Pt28 Invar,
there are two step-like transitions, from the initial HS state (admixed with
LS states, as the authors claim) to a pure LS state and then to an NM state.
This finding is in agreement with ab initio first principle calculations on Fe–Pt
Invar by Podgorny [29]. However, it is to some extent in contradiction with
the results of another group to what has been found on disordered Fe72Pt28
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Fig. 10.12. Normalized X-ray magnetic circular dichroism signal, XMCD(p)/
XMCD(0), vs. pressure as measured at room temperature for disordered Fe72Pt28
Invar [28]

Invar at room temperature in the pressure dependence of the magnetization
(see Fig. 10.11a (filled circle)).

What are further pros and cons concerning the existence of different en-
ergetic “states” in the sense of Weiss [20] and the band structure results?

1. The calculations [10,11] predict the HS–LS (or NM) state transitions to be
of first order. To some extent this is contradicted by the experiments, e.g.,
the temperature dependence of the specific heat or the magnetization [3–6]
or the relatively smooth Invar to anti-Invar transition with composition
(Fig. 10.6).

2. The LS state in Fe–Ni Invar in the Weiss model has AF order. AF order,
however, is definitely not in play, neither in FM ordered Fe72Pt28 nor
in FM cementite Fe3C Invar. The existence of an AF LS state is not a
necessary condition for the occurrence of Invar. This argument is in favor
of some of the band calculations revealing HS and NM states without the
presence of an LS state.

3. Models explaining specific “Invars” like Fe–Ni as a weak itinerant FM or
Fe–Pt as a strong itinerant FM do not provide satisfactory solutions.

4. In this context, there has been a recent view claiming that the Invar be-
havior in the thermal expansion and the small bulk modulus B of Fe65Ni35
are associated with a noncollinear FM state, i.e., with canting of the mo-
ments [30, 31]. Canting, though earlier already introduced for γ-Fe and
Fe72Pt28 Invar by Uhl et al. [32], in Fe65Ni35 Invar according to [24] led to
a “wash-out” of the HS–LS features in the total energy, and to a smooth
anharmonic E(V ) curve. In a recent neutron experiment with polarization
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analysis by Cowlam and Wildes [33], it has been demonstrated, however,
that Fe65Ni35 Invar alloys are collinear ferromagnets, supporting earlier in-
elastic polarized neutron scattering experiments of Lynn et al. [34], where
there is no indication for the presence of noncollinearity. Furthermore,
the presence of a clear discontinuity observed in the pressure dependence
of the bulk modulus of Fe64Ni36 Invar in high pressure ultrasonic ex-
periments [35] demonstrates that the HS–LS transition is more reliably
explained in terms of the Weiss model rather than in terms of a smooth
transition from a collinear to a noncollinear state.

5. The “softness” of Invar, i.e. the small bulk modulus as found experimen-
tally [36] remains unexplained in the band calculations and is, thus, one
of their main draw backs.

In general, there is ample experimental evidence for the existence of HS, LS,
and NM states in anti-Invar and Invar materials. This provides the basis for
the microscopic explanation of these effects as discussed in Sect 10.7.

10.7 HS–LS Transitions in a Microscopic Picture

A first idea not much recognized at its time of what could be the microscopic
origin of the Invar effect was published in 1981 by Kaspar and Salahub [37].
From band structure calculations on fcc Fe–Ni clusters with different com-
positions, these authors predicted that in Invar, a charge transfer from anti-
bonding (AB) majority to nonbonding (NB) minority electronic orbitals in
the vicinity of the Fermi energy EF could be the reason for the transition
from a large volume, large moment HS state to a low volume, low moment LS
state. This result was corroborated much later in calculations for ordered (L12)
Fe3Ni by Entel et al. [10]. These calculations revealed that in Invar, for large
atomic volume in the HS state, there is a sharp peak in the majority density
of states (DOS) just below EF formed by electrons with t2g↑-symmetry (max-
imum charge density in [110] direction) and AB character. This peak faces a
minimum in the DOS of the minority band at EF formed by electrons with
eg↓-symmetry (maximum charge densities in [100]-direction) and NB charac-
ter. In the low volume LS state, the NB eg↓-minimum in the DOS remains at
EF, while the t2g↑-maximum shifts energetically to above EF. Although in-
troduction of structural disorder washes out the sharp peaks in the DOS [11],
calculations for disordered Fe–Ni alloys [28] demonstrated that the impor-
tant features survive. The results also demonstrated how the position of these
DOS peaks relative to EF varies as a function of composition, thus highlight-
ing the differences in the DOS typical for Invar and anti-Invar when including
the structural fcc to bcc transition even for martensite.

For a closer discussion of what to date is called the “t2g↑ � eg↓” scenario,
we show in Fig. 10.13a and b examples of the electronic DOS [10, 11] typical
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Fig. 10.13. Ab initio calculated electronic density of states for Fe62.5Ni37.5 in the
high-spin and the low-spin state [10,11]. The arrow indicates the t2g↑ � eg↓ transi-
tions possibly taking place at finite temperatures

for a HS state (Fig. 10.13a) and LS (or NM) state (Fig. 10.13b). These DOS
represent the ground state of Invar (Fig. 10.13a) and anti-Invar (Fig. 10.13b).
The calculations [10,11] also revealed that in Fe3Ni Invar, in a certain direction
of the Brillouin zone at the equilibrium volume of the HS ground state, an AB
t2g↑ spin band crosses with NB eg↓ bands right at EF. Concerning the charge
transfer as proposed by Kaspar and Salahub [37], the band calculations [10]
revealed that at the critical volume Vc, where the HS to LS state transition
takes place, there is a step in the occupation of levels, i.e. a charge transfer
with a depopulation of the AB t2g↑ level at the expense of the NB eg↓ level
when the volume is decreased. This AB t2g↑ → NB eg↓ charge transfer causes
the volume to shrink (Invar effect), because the internal electronic pressure
favoring a large volume is reduced. The opposite, i.e., an NB eg↓ → AB t2g↑
charge transfer, causes the pressure to rise and thus the volume to increase
(anti-Invar effect).
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Support for the validity of this t2g↑ � eg↓ scenario comes from various
sources:

• First, within this picture, it is not necessary to differentiate between weak
and strong itinerant FM Invar and to assume different and system spe-
cific physical reasons for the occurrence of Invar and anti-Invar behavior.
The experimental systematics (cf. Fig. 10.6) demonstrating the continuous
transition from Invar to anti-Invar with a variation of the electron concen-
tration (e/a) is naturally explained by accompanying changes in the DOS
features for all alloy systems.

• Second, the pressure experiments prove the existence of HS, LS and NM
states, theoretically revealed in the ab initio ground state calculations. The
experiments show that these states are even present at finite temperatures.

• Third, the t2g↑ � eg↓ scenario is corroborated by our [39] high tempera-
ture paramagnetic neutron scattering investigations on Fe100−xNix alloys
within the fcc stability range. Figure 10.14 shows the results in a plot of
the magnetic moment µnorm normalized to the value of fcc Fe given in [40]
vs. the temperature T for compositions between x = 35 (Invar) through
the anti-Invar range (10 ≤ x ≤ 25) and to pure γ-Fe, for which we use
earlier data from the literature [40]. Note that with increasing Fe concen-
tration the slope of the curves in Fig. 10.14 changes its sign. While the

Fig. 10.14. Temperature dependence of the normalized magnetic moment as
observed in Fe–Ni alloys in the paramagnetic range [39]
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decrease of µnorm with increasing T occurs in all FM materials, the in-
crease of the average moment with temperature as observed for Fe90Ni10
and Fe77Ni13Mn7C3 anti-Invar is logically explained by an eg↓ → t2g↑
charge transfer. This enhances with rising temperature the DOS of the lo-
cal band within the ferromagnetic short range correlations, thus enhancing
the amplitude of the longitudinal FM spin fluctuations. This simultane-
ously supports the LS–HS transition picture.

• Fourth, we mention that recently, the zero thermal expansion of YbGaGe
was found to be of electronic origin, a temperature-induced valence tran-
sition in the Yb atoms [41].

10.8 Questions and Outlook

The t2g↑ � eg↓ scenario as described has certain weaknesses and drawbacks
raising doubts and further questions. On the one hand, recent polarized neu-
tron experiments trying to find evidence for the eg↓ � t2g↑ charge transfer
to take place with temperature in Fe65Ni35 [42] and ordered Fe72Pt28 [43,44]
Invar have not been successful. The changes in the eg electron concentration
in the temperature range from 100 to 600 K were found to be on the order
of a percent in both systems, an amount probably not sufficient to explain
the Invar effect on the basis of a charge transfer. On the other hand, these
experiments for both alloys showed the existence of some additional excita-
tion, a “forbidden” mode with the same dispersion as the TA1[110] phonon
but with mixed phonon–magnon character. This could be what can be called
the “elasto-magnon,” the unknown HS to LS state excitation. Undoubtedly,
it has been always one of the main drawbacks of the t2g↑ � eg↓ scenario that
the explanation of the magnetovolume effects Invar and anti-Invar did not
include phonons. Entel et al. [10] speculated about the electron–phonon cou-
pling through the formation of a “pseudo-gap” pinning the eg↓-DOS minimum
at the Fermi energy and holding it there when the temperature is increased.
This has, however, not yet been confirmed experimentally.

Instead, theory revisited the disordered local moment (DLM) picture,
which was earlier used to explain finite temperature properties of Fe–Ni al-
loys [45] and Invar [46]. Within this model, an originally binary alloy system
such as Fe100−xNix is turned into a pseudo ternary alloy by differentiating
between Fe-spin up and Fe-spin down atoms, (Fe1−c ↑Fec ↓)100−xNix, in a
fashion that at T = 0 K, all spins are up (c = 0), while at T = TC, 50% of the
Fe-moments are pointing up and the other 50% point down (c = 0.5), which
means that the magnetization has vanished [47]. Within this picture, a recent
study [48] claims that the Invar effect and the “hidden” excitations are now
understood, at least for disordered Fe–Pt Invar. For Fe–Ni alloys, where both
types of atoms carry a moment, the LSD formalism is less straightforward.
This led to the development of a magnetochemical model, in which the non-
equilibrium local chemical order on an fcc Fe–Ni lattice gives rise to the Invar
anomalies [49].
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We think that as long as these models can neither explain the FM nature of
the short range correlations found in the paramagnetic range in Fe–Ni Invar
and anti-Invar [39] nor reveal the physical nature of the “elasto-magnons”
[42–44] in a general picture for all Invar and anti-Invar type materials, more
research from theoretical and experimental side is necessary to fully solve
the “Invar problem,” which is, concerning the time scale now, older than a
century.
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Magnetocaloric Effect
Associated with Magnetostructural Transitions

V.K. Pecharsky and K.A. Gschneidner, Jr.

11.1 Introduction

The discovery of the giant magnetocaloric effect in Gd5(Si4−xGex) in 1997
stimulated a considerable growth of research in order to both find new materi-
als where the effect is just as potent and to understand the role magnetostruc-
tural transitions play in its enhancement. Results obtained to date indicate
that the coupling between magnetic and crystal lattices is critical in achieving
strong magnetothermal responses in weak magnetic fields and that advanced
magnetocaloric materials should exist in solids where structural changes are
linked to ferromagnetic ordering and disordering, and therefore, can be trig-
gered by a magnetic field.

11.2 Magnetic Cooling or Why Having
a Strong Magnetocaloric Effect in a Weak Magnetic
Field Makes a Difference?

Magnetic cooling has a potential to reduce global energy consumption and
eliminate or minimize the need for ozone depleting and greenhouse chemi-
cals. It may soon become an alternative to vapor-compression technology. In-
stead of a working fluid undergoing a liquid–vapor transition in a conventional
cooling system, a magnetic refrigerator (see Fig. 11.1) employs a solid, which
heats up when magnetized and cools down when demagnetized. Originally
measured in iron and reported by Warburg in 1881 [1], these magnetic field-
induced temperature variations are known today as the magnetocaloric effect
(MCE). Intrinsic to every magnetic solid, the MCE has exceptional funda-
mental importance because it bridges length, energy and time scales spanning
over many orders of magnitude: from quantum mechanics to micromagnetics,
from statistical to macroscopic thermodynamics and from spin dynamics to
heat transfer [2–11].
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Fig. 11.1. Laboratory prototype magnetic refrigerator designed and constructed
by the Astronautics Corporation of America in 2001 [18]. A ∼1.5 T magnetic field
around the magnetocaloric wheel filled with Gd spheres is produced by a permanent
magnet. The refrigerator operates at ambient conditions with a maximum tem-
perature span of ∼20◦C and maximum cooling power of 95W. The photograph is
courtesy of the Astronautics Corporation of America, 4115 N. Teutonia Avenue,
Milwaukee, WI 53209

In addition to its role in basic science, the magnetocaloric effect has
a substantial practical potential since its extent is one of the most criti-
cal parameters defining the performance of a magnetic refrigerator – the
stronger the MCE, the higher the efficiency of the device all other things
being equal [11–19]. As is often the case with emerging technologies, numer-
ous applications of magnetic refrigeration may stem from a reliable foundation
formed by advanced materials. For example, the availability of low-cost high-
performance solids exhibiting enhanced MCE between ∼250 and ∼350 K is an
important requirement in order to facilitate commercialization of magnetic re-
frigeration for a variety of consumer uses – from home appliances to climate
control in motor vehicles. Also, when suitable magnetocaloric compounds sup-
porting continuous magnetic cooling from ∼300 to ∼20 K are developed, the
energy penalty incurred during hydrogen liquefaction using the conventional
gas-compression approach may no longer be a limiting factor preventing the
widespread use of liquid hydrogen fuel in transportation. The list of materials
capable of satisfying future magnetocaloric requirements is, however, limited
and if a solid is needed with a certain MCE to meet a set of specific con-
straints that lie beyond our current state of knowledge, one often relies on an
accidental discovery rather than on design guided by a rational theory.
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Fig. 11.2. The total entropy in zero and 7.5 T magnetic fields (a) and the magne-
tocaloric effect of the elemental Gd in the vicinity of its Curie temperature, TC, for
a magnetic field change from 0 to 7.5 T (b). The data are for a high purity single
crystalline Gd with the magnetic field vector parallel to the [0001] crystallographic
direction of the specimen

As illustrated in Fig. 11.2, the magnetocaloric effect can be expressed as
either or both the isothermal entropy change, ∆SM (an extensive quantity) or
the adiabatic temperature change, ∆Tad (an intensive parameter). For a given
material at constant pressure, the two quantities are functions of absolute
temperature (T ) and magnetic field change (∆B = Bf − Bi), where Bf and
Bi are the final and initial magnetic fields, respectively. The MCE can be
easily computed (see [16, 20] and Fig. 11.2a) provided the behavior of the
total entropy (S) of a compound is known as a function of temperature in
both the initial and final magnetic fields

∆SM(T,∆B)∆B=Bf−Bi = S(T,B)B=Bf − S(T,B)B=Bi , (11.1)

∆Tad(T,∆B)∆B=Bf−Bi = T (S,B)B=Bf − T (S,B)B=Bi . (11.2)

Equation (11.2) is also straightforwardly employed in direct measurements
of ∆Tad [21–23]. At equilibrium, both ∆SM and ∆Tad are correlated with
magnetization (M), magnetic flux density (B), heat capacity at constant
pressure (C), and absolute temperature by one of the following fundamental
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relationships [24]:

∆SM(T,∆B)∆B=Bf−Bi =
∫ Bf

Bi

(
∂M(T,B)

∂T

)

B

dB , (11.3)

∆Tad(T,∆B)∆B=Bf−Bi = −
∫ Bf

Bi

(
T

C(T,B)
× ∂M(T,B)

∂T

)

B

dB . (11.4)

As immediately follows from (11.1) to (11.4), materials whose total entropy
is sharply influenced by a magnetic field and where magnetization changes
rapidly with temperature, are expected to exhibit enhanced MCE. The latter
peaks when |(∂M(T,B)/∂T )B | is the greatest, i.e., around the Curie tempera-
ture (TC) in a conventional ferromagnet or near the absolute zero temperature
in a paramagnet. The MCE usually decreases both below and above the TC,
as clearly seen in Fig. 11.2b.

To amplify the MCE, conventional wisdom calls for increasing the mag-
netic field change in addition to maximizing both the derivative,
|(∂M(T,B)/∂T )B |, and the region of magnetic fields and temperatures where
the magnetization remains highly sensitive to temperature. Considering the
current state-of-the-art in permanent magnet materials, however, it is quite
unlikely that magnetic fields in excess of about 2 T will become common in a
foreseeable future. That is why maximizing the MCE by manipulating one or
several most critical parameters of a compound appears to be the most realis-
tic option in order to reach the strongest possible MCE’s in readily available
magnetic fields. Although it remains a formidable challenge for basic science, a
better understanding, and therefore, the ability to control a variety of chem-
ical, structural, and physical degrees of freedom that define the properties
of complex solids may improve the existing materials and should eventually
result in novel compounds exhibiting large magnetocaloric effects.

11.3 Gd5(Si4−xGex) System
and the Giant Magnetocaloric Effect

The use of the term “giant” referring to the “magnetocaloric effect” can be
traced back to 1973 [25], yet the phenomenon was not given much consid-
eration before 1997 when Pecharsky and Gschneidner [26–28] observed the
unusually potent MCE in Gd5(Si2Ge2) and other Gd5(Si4−xGex) alloys with
x ≥ 2, Fig. 11.3.

Between 1973 and 1997, there were a few accounts of a strong MCE,
the most notable examples were FeRh [31, 32], (Hf0.83Ta0.17)Fe2±x [33], and
(La1−xCax)MnO3 [34]. The larger than average MCE’s reported before 1997
were primarily attributed to magnetic field induced transformations involv-
ing two magnetic states: low magnetic field antiferromagnetic and high mag-
netic field ferromagnetic (e.g., FeRh), or to large phase volume changes
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Fig. 11.3. The giant MCE of Gd5(Si2Ge2) in the as-prepared and annealed (1570 K,
1 h) states: (a) −∆SM calculated from magnetization data using Eq. (11.3) [29];
(b) −∆Tad calculated from heat capacity data using Eq. (11.2) (lines) and measured
directly during increasing (solid symbols) and decreasing (open symbols) magnetic
fields [30]

(La1−xCaxMnO3). In addition to a tendency for irreversibility of the effect in
FeRh, this and other systems available before 1997 were not flexible enough
to enable easy tuning of the temperature range where the enhanced MCE was
observed. Consequently, there was much uncertainty whether or not these
materials could be used in a practical magnetic refrigerator in future.

The R5T4 compounds (R = rare earth metal and T =Si and/or Ge) have
been known since 1966 [35–37]. For the next 30 years, they received little
attention despite a striking observation made by Holtzberg et al. [37] that
instead of the expected reduction of the Curie temperature of the elemental
Gd (TC = 293 K), the ferromagnetic ordering temperature of the intermetal-
lic compound Gd5Si4, in which nearly half of magnetic Gd atoms have been
replaced with nonmagnetic Si atoms, was increased by 43 K to TC = 336 K.
Among several other features noted by Holtzberg et al. [37], the following two
were quite unusual: (i) the closely structurally related germanide, Gd5Ge4,
orders antiferromagnetically at TN = 15 K, while its paramagnetic Curie tem-
perature (θp = 94 K) was large and positive and (ii) upon substitution of Si
for its electronic twin Ge in the pseudobinary Gd5(Si4−xGex) system, no con-
tinuous solubility was observed, instead, a new phase emerges for x between
2 and 2.8.

Studies performed 30 years later [38–40] indicated that the room tem-
perature crystal structures of Gd5Si4 and Gd5Ge4 are different, yet they are
intimately related to one another. The major difference is in the interactions
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Fig. 11.4. Crystallography of the Gd5T4 system: the Gd5Si4-type where all slabs are
linked via T–T bonds (the bonding distances shown as T–T dumbbells are ∼2.5 Å);
the Gd5(Si2Ge2)-type with the slabs connected into pairs, i.e., with half of the
interslab T–T bonds broken; and the Sm5Ge4-type where no interslab T–T bonds
exist. The interslab T–T distances increase from the bonding ∼2.5 Å to nonbonding
∼3.5 Å as the slabs slide by ∼0.2 to ∼0.4 Å in the directions indicated by short
open arrows. To date, the Gd5(Si2Ge2)-type ↔ Sm5Ge4-type transitions have been
induced only by varying composition; the other two transformations can be triggered
by any one or a combination of the listed thermodynamic variables

between the well-defined subnanometer-thick layers (or two-dimensional slabs)
of tightly bound atoms as illustrated in Fig. 11.4. From x = 0 to x ∼= 2,
Gd5(Si4−xGex) alloys maintain orthorhombic Gd5Si4-type structure at room
temperature [38]. When Ge concentration exceeds that of Si, half of the inter-
slab T–T bonds break and monoclinic Gd5(Si2Ge2)-type structure becomes
stable at room temperature for x from ∼1.9 to ∼2.5 [38,41]. Further increas-
ing the Ge concentration eliminates all interslab T–T bonds and a different
orthorhombic structure (Sm5Ge4-type) emerges at room temperature when
2.8 ≤ x ≤ 4 [38,42].

Soon after the original reports on the giant MCE of Gd5(Si2Ge2), Morel-
lon et al. [43, 44] showed that a transition from the Gd5(Si2Ge2)-type struc-
ture to the Gd5Si4-type structure coincides with the temperature-induced
ferromagnetic ordering of the Gd5(Si4−xGex) alloy with x = 2.2. A number
of studies that followed [39, 40, 45–53] confirmed that ferromagnetically or-
dered Gd5(Si4−xGex) alloys always adopt the Gd5Si4-type structure, while
both the magnetically disordered and antiferromagnetically ordered com-
pounds may exist in any of the three structure types illustrated in Fig. 11.4.
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Although diffraction studies were only performed as functions of tempera-
ture in zero magnetic fields [39, 43, 45, 47, 52], thermal expansion and magne-
tostriction data measured as functions of temperature, magnetic field, and/or
pressure [43, 49, 50, 53], were taken as indications that the same structural
transition can be triggered by either or both magnetic field and pressure in
addition to temperature (see Fig. 11.4). Hence, the existence of the giant mag-
netocaloric effect in Gd5(Si4−xGex) alloys has been implicitly related to the
coupling of magnetic and crystallographic sublattices in these materials.

It is worth noting that the coupled magnetostructural transitions in the
Gd5T4 system are thermodynamically first-order transformations, and there-
fore, the behavior of the MCE as a function of temperature is expected to be
different from that illustrated in Fig. 11.2. We refer the reader to the analy-
sis presented by Pecharsky et al. [54], although by comparing Fig. 11.2b with
Fig. 11.3 it is easy to see that regardless of the differences in the magnetic
field values and apart from sharp spikes1 observed in the behavior of ∆SM, the
maximum MCE in Gd5(Si2Ge2) extends over a broader temperature range but
then falls off more quickly when compared to the same in Gd. As ∆B increases,
the temperature range over which the MCE remains large and nearly constant
in first-order phase transition materials also increases, while the magnitude of
the maximum magnetocaloric effect is affected to a much lesser degree [54].

As we noted above, the discovery of the giant magnetocaloric effect
in Gd5(Si4−xGex) alloys catalyzed further research. As a result, several
different families of materials have been recently reported to also exhibit
the giant MCE. These include: a host of colossal magnetoresistive man-
ganites (e.g., [17, 55]), MnAs and MnAs1−xSbx [56],2 MnFe(P1−xAsx) [59],
and La(Fe13−xSix) [60] compounds.2 Changes of the magnetic structures
in these materials are coupled with modifications of the crystal lattices.
In manganites, crystallographic symmetry often varies similarly to that ob-
served during the Gd5(Si2Ge2)-type to the Gd5Si4-type transition, while in
MnAs, MnFe(P1−xAsx), and La(Fe13−xSix), only unit cell volumes are al-
tered. The latter, though comparable to the Sm5Ge4-type ↔ Gd5Si4-type
transition observed in Ge-rich Gd5T4 materials, is notably different be-
cause a martensitic-like structural transformation accompanies the unit cell
volume changes without affecting symmetry in the Gd5(Si4−xGex) system
(see Fig. 11.4 and [38, 40]). Reminiscent of R5T4 systems, structural changes
in other materials exhibiting the giant MCE are normally assumed to be

1Spikes observed in Fig. 11.3a are experimental artifacts likely originating from a
combination of data collection and processing errors, the greatest being numerical
integration of magnetization data measured with finite temperature and magnetic
field steps.

2We note that both the MCE and temperature-induced polymorphism in MnAs were
reported as far back as 1958 [57]. Similarly to R5T4 materials, the La(Fe13−xSix)
phases are known since 1968 [58], i.e., long before their magnetocaloric properties
were measured.
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triggered by a magnetic field as deduced from the combination of temperature-
dependent zero magnetic field diffraction data and temperature- and magnetic
field-dependent measurements of bulk physical properties, such as thermal ex-
pansion and/or magnetostriction.

The Gd5(Si4−xGex) system remains the most studied to date, both with
respect to its magnetocaloric effect and understanding the interplay between
structure, magnetic, and thermodynamic properties of these materials. There-
fore, below we will concentrate on several different Gd5T4 stoichiometries in
order to illustrate the role structural transitions play in enhancing the MCE
in low magnetic fields. We will examine how the magnetic field alters the crys-
tal structure of these materials, which by itself is an intriguing phenomenon
that is not nearly as common as temperature or pressure induced polymor-
phism, and also evaluate the relative contributions from both crystallographic
and magnetic phase changes into the appearance of the giant magnetocaloric
effect in the Gd5(Si4−xGex) system.

11.4 Altering Crystal Structures with a Magnetic Field

One of the most interesting compounds in the Gd5(Si4−xGex) system is the
germanide, Gd5Ge4. According to a variety of experimental data [38, 53, 61–
68], it orders antiferromagnetically at TN

∼= 130 K and in low magnetic fields,
the antiferromagnetic ground state is preserved down to 1.8 K. When Gd5Ge4

is exposed to a magnetic field exceeding ∼1 T, however, a ferromagnetic state
can be induced irreversibly below 10 K, partly reversibly between 10 and 20 K
and fully reversibly above 20 K. Critical magnetic field, BC, needed to induce
the ferromagnetic state behaves differently in different temperature regions.
Below 10 K it increases as temperature decreases; above 20 K, BC rises with
the increasing temperature, and the critical magnetic field remains constant
from ∼10 to ∼20 K [65].

As shown recently by Pecharsky et al. [63], magnetism of Gd5Ge4 is closely
related to its crystallography. As long as the compound remains antiferro-
magnetic, it maintains the Sm5Ge4-type structure and only lattice parame-
ters of the material (see Fig. 11.5) are anisotropically reduced upon cooling
from 300 to 5 K in a zero magnetic field. Between ∼90 and 300 K, all unit
cell dimensions vary nearly linearly with the following coefficients of linear
thermal expansion: 6.90 × 10−6, 1.18 × 10−5, and 1.03 × 10−5 K−1 along
the a-, b-, and c-axis, respectively [69]. These values are in agreement with
αl = (dl/dT )/l = 1.03 × 10−5 K−1 in the same temperature range as de-
termined dilatometrically using polycrystalline Gd5Ge4 [53, 64, 70]. We note
that along the a-axis, i.e., parallel to the direction along which the slabs slide
during a structural change (see Fig. 11.4), thermal expansion is considerably
smaller than that along either the b- or c-axis. The volumetric thermal expan-
sion between ∼90 and 300 K varies with αV = (dV/dT )/V = 2.91×10−5 K−1.
Thermal expansion along the a-axis becomes nearly negligible below ∼100 K,
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Fig. 11.5. Fragments of X-ray powder diffraction data of Gd5Ge4 collected using
Mo Kα radiation during cooling from 300 to 5K in a zero magnetic field (left) and
temperature dependencies of the unit cell dimensions determined from X-ray powder
diffraction data (right). The lines drawn through the data points on the right are
guides to the eye

while it approaches zero only below ∼30 K along the other two principal crys-
tallographic directions. No obvious anomalies of thermal expansion have been
detected around the Néel temperature, TN = ∼130 K.

A magnetic field has a profound effect on the crystal structure of Gd5Ge4,
as evidenced by the X-ray powder diffraction data depicted in Figs. 11.6 and
11.7. Isothermal exposure to an increasing magnetic field at 6.1 K results in a
structural transition that begins around 1.5 T and is nearly complete at 2.5 T.
The magnetic field-induced structural transition in Gd5Ge4 is irreversible at
this temperature, as can be concluded from the powder patterns that barely
change when the magnetic field is removed (Fig. 11.6).

Thus, after magnetizing and subsequent demagnetizing, Gd5Ge4 retains
its high magnetic field crystal structure. When the magnetic field is cycled at
this temperature again, the crystal structure of Gd5Ge4 remains unaffected,
which is consistent with a variety of bulk physical property measurements,
including magnetization [62, 64], electrical resistivity [61], thermal expansion
[64], and magnetostriction [53]. Dependence of the Gd5Ge4 crystal structure
on magnetic field is different from the above behavior when the magnetic
field is cycled isothermally at 25 K. Just as at 6.1 K, the low magnetic field
crystal structure transforms into the high magnetic field polymorph between
1.5 and 2.5 T (Fig. 11.7). But when the magnetic field is reduced at 25 K,
the structural transformation becomes reversible and the zero magnetic field
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Fig. 11.6. Fragments of the X-ray powder diffraction patterns of Gd5Ge4 collected
at 6.1 K with the magnetic field varying from 0 to 3.5 T and then back to 0 with a
0.5 T step

Fig. 11.7. Fragments of the X-ray powder diffraction patterns of Gd5Ge4 collected
at 25 K with the magnetic field varying from 0 to 3.5 T and then back to 0 with a
0.5 T step
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diffraction patterns are restored between 1.5 and 0.5 T (Fig. 11.7), displaying
a ∼1 T hysteresis.

As follows from the results of the structure determination using powder dif-
fraction data [63], the low magnetic field crystal structures of Gd5Ge4 observed
at 6.1 and 25 K are identical to one another within the accuracy of the tech-
nique, and so are the high magnetic field polymorphs. The low field Gd5Ge4

adopts the Sm5Ge4-type structure, which is transformed into the Gd5Si4-type
(see Fig. 11.4) by the magnetic field. The two crystal structures are related to
one another via shear displacements of the neighboring layers by more than
0.2 Å each. These large shifts in opposite directions alter numerous interatomic
distances (Fig. 11.8), and therefore, interactions among atoms from adjacent
layers. The most prominent magnetic field induced change occurs in the inter-
layer Ge–Ge bonds. In the low field-Gd5Ge4 – the corresponding interatomic
distances are δGe–Ge = 3.62(1) Å – the bonds are weak but in the high field-
Gd5Ge4, where δGe–Ge = 2.62(1) Å, they become much stronger due to a 1 Å
contraction. Despite substantial differences between the two structures, the
layers themselves undergo little change, as evidenced by small variation of the
interatomic distances inside each layer (see [63,67], and Fig. 11.8).

The magnetic field, therefore, triggers a martensitic-like structural transi-
tion, which results in the breaking (in low magnetic fields) and the reform-
ing (in high magnetic fields) of the covalent-like interlayer Ge–Ge bonds.
This structural change is practically identical to that induced by the varying

Fig. 11.8. Fragments of the low field (antiferromagnetic) and high field (ferromag-
netic) crystal structures of Gd5Ge4 with selected distances labeled in Å (after [63]).
The intraslab distances vary by a maximum of ∼5%, while the interslab distances
change up to ∼28% during the transformation. The open arrows indicate the direc-
tions and the magnitudes of the shifts of the slabs during the respective transitions
(from low to high field and vice versa)
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Fig. 11.9. Left – normalized magnetization (lines) and concentration of the high
field Gd5Ge4 structure (symbols) [63]; right – unit cell dimensions of the majority
phase at 6.1 K [69]. Short straight arrows indicate the direction of the magnetic field
change

stoichiometry in the Gd5(Si4−xGex) system, i.e., when x decreases from x = 4
to x = 0 and the large germanium atoms are substituted with the smaller Si
atoms. Hence, the application of the magnetic field in the case of Gd5Ge4

resembles chemical pressure effect when the phase volume, and consequently,
interatomic distances are systematically reduced by chemical substitutions.

The irreversibility and reversibility of the magnetic field induced structural
transition in Gd5Ge4 closely follows the irreversible and reversible behavior of
the magnetization and the underlying magnetic structure changes of the com-
pound. As illustrated in Fig. 11.9 (left), the fraction of the high field-Gd5Ge4

structure formed at 6.1 K by an increasing magnetic field follows the initial
magnetization path. Upon removal of the magnetic field isothermally, Gd5Ge4

remains ferromagnetic at 6.1 K [62, 64]. Consistently with macroscopic mag-
netism, the system preserves the high magnetic field-Gd5Ge4 structure, which
is ferromagnetic, and whose concentration is only slightly reduced from ∼93%
to ∼86% when the magnetic field is lowered isothermally from 3.5 T to 0.

At 25 K, where the ferromagnetic–paramagnetic transformation becomes
reversible, both the initial magnetization and the subsequent demagnetization
paths are followed with high precision by the amount of the high magnetic
field Gd5Ge4 structure formed in the specimen, see Fig. 11.10 (left). It is worth
noting that no more than 93 mol. % of the sample has been transformed from
the low magnetic field Gd5Ge4 to the high magnetic field Gd5Ge4 structure
by a 3.5 T field at either temperature, even though at this magnetic field the
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Fig. 11.10. Left – normalized magnetization (lines) and concentration of the high
field Gd5Ge4 structure (symbols) [63]; right – unit cell dimensions of the majority
phase at 25K [69]. Short straight arrows indicate the direction of the magnetic field
change

magnetization is at ∼99% of its saturation value of 7.5µB/Gd atom, indicating
a nearly complete collinearity of the spin structure.

The effect of the magnetic field on the crystal structure of Gd5Ge4 is,
therefore, different from the effect of temperature on the crystal structures of
the related Gd5Si2Ge2 and Gd5Si0.4Ge3.6 phases. In the latter two systems,
the respective temperature induced structural transitions are complete [39,45],
yet a small but measurable fraction of Gd5Ge4 retains its low field crystal
structure while clearly ordering ferromagnetically. Even in a 3.5 T magnetic
field, the crystallites of the ferromagnetic low field-Gd5Ge4 (Sm5Ge4-type)
remain large enough to be discernible in the powder diffraction data.

As shown by Holm et al. [67], when Gd5Ge4 is magnetized and subse-
quently demagnetized at 15 K, i.e., where the antiferromagnetic–ferromagnetic
transformation is partially reversible [53, 61, 62, 65], the structural transfor-
mation between the Sm5Ge4- (low magnetic field) and Gd5Si4-types (high
magnetic field) of crystal structure is also partially reversible. Thus, 48 mol%
of the Gd5Ge4 sample retains the high magnetic field crystal structure, while
52 mol% reversibly transforms into the low magnetic field polymorph after
magnetizing and demagnetizing at 15 K [67]. According to Tang et al. [65],
49 mol% of the specimen retains the ferromagnetic state after magnetizing
and demagnetizing at 15 K, while 51 mol% of the zero magnetic field anti-
ferromagnetic state is recovered. The agreement between bulk magnetization
and X-ray diffraction measurements, which were carried out independently, is
excellent.
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Our primary concern here is the role of magnetostructural transitions in
the appearance of the giant magnetocaloric effect, yet we should also em-
phasize the significant variations of the unit cell dimensions of Gd5Ge4, and
therefore, predictable magnetic field induced shape changes of the material in
either a single crystalline or in a textured polycrystalline states. The magni-
tude of the forced magnetostriction along the [100] direction places Gd5Ge4

and other members of the R5T4 family prominently among the so-called fer-
romagnetic shape memory alloys – materials in which considerable shape
changes can be controlled by a varying magnetic field. As seen in Fig. 11.10
(right), the a-axis of Gd5Ge4 reversibly contracts and expands by an enormous
1.9% (19, 000 parts per million) upon, respectively, magnetizing and demagne-
tizing the material. For comparison, the largest magnetic field induced shape
changes known today are those observed in stressed Ni2MnGa single crys-
tals [71,72]. Up to 6% (theoretical) strains in Ni2MnGa that could be induced
by the application of a magnetic field along the [001] direction, occur as a
result of rearranging twin variants in a ferromagnetic tetragonally distorted
Heusler-type cubic structure. This rearrangement, which aligns the easy mag-
netization directions of all twin components with the external magnetic field
vector, is however, not a true magnetic field-induced crystallographic phase
transformation, as is the case in the R5T4 materials.

The ability of the magnetic field to induce a structural change in a ma-
terial where spin–orbit contributions are negligible (Gd is an S-state ion),
can be related to the coupling of the localized magnetic moments of the Gd
atoms with the external magnetic field. The latter reverses the sign of mag-
netic exchange interactions and induces a metamagnetic transformation of
the antiferromagnetic Gd5Ge4 (negative exchange parameter) into the ferro-
magnetically ordered system (positive exchange parameter). The increasing
magnetic field causes a spin flip and the resulting collinear or nearly collinear
spin system minimizes its free energy via a martensitic magnetic field-induced
structural transition from the low field-Gd5Ge4 to the high field-Gd5Ge4 struc-
tures. The sample remains both structurally [63,67] and magnetically [61–65]
inhomogeneous in a certain range of magnetic fields because the transition
is magnetoelastic. Hence, work performed by the magnetic field to increase
bulk magnetization is balanced by work required to overcome strain created
by a 1.1% change of the phase volume. Since magnetic work (B dM) becomes
negligible near saturation as dM approaches zero but strain remains consider-
able, this may explain the presence of a small amount of the ferromagnetic low
field-Gd5Ge4 structure in a nearly completely magnetically saturated sample.

The magnetocaloric effect of Gd5Ge4, calculated from magnetization data
employing (11.3), is shown in Fig. 11.11. The isothermal magnetic entropy
change of a virgin sample, i.e., when the material is in the antiferromag-
netic state before the application of a magnetic field, is negligible as long as
the field remains lower than the ∼1 T needed to induce the magnetostruc-
tural transition in Gd5Ge4. When Bf is 2 T and higher (Bi is 0 in all cases),
the MCE rapidly increases in magnitude and extends towards the higher
temperatures with increasing ∆B, consistent with the values of magnetic field
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Fig. 11.11. The MCE of Gd5Ge4 calculated using (11.3). The plot on the left is
obtained from M(H)T=const data measured during magnetizing a sample cooled in
zero magnetic field from ∼150 K to each measurement temperature. The plot on the
right is for M(H)T=const data measured after the same sample was magnetized by
a 5 T field and then demagnetized

that are required to complete the magnetostructural transition in the com-
pound [53, 61, 63, 65]. Conversely, when the sample was pre-magnetized by
a 5 T magnetic field (the field, which is strong enough to induce the ferro-
magnetic state and complete the transformation below ∼30 K), an additional
contribution to the MCE in the form of ∆SM peak centered around 17 K be-
comes clearly visible. Except for this additional contribution, the MCE in the
pre-magnetized Gd5Ge4 remains identical to that of the virgin sample.

The behavior of the low temperature ∆SM peak in the pre-magnetized
Gd5Ge4 sample is consistent with that of a conventional ferromagnet, while
the high-temperature component of ∆SM behaves as expected for a first-order
phase transition material. Although quite unusual for a Gd-based compound,
the dependence of the magnetocaloric effect on the magnetic history of the
sample is in agreement with the existence of the ferromagnetic Gd5Si4-type
structure induced either irreversibly (below ∼10 K) or partially reversibly (be-
tween ∼10 and ∼20 K) by a magnetic field.

Recently, Holm et al. [69] showed that magnetic field also triggers a
structural transformation in Gd5(Si1.7Ge2.3), which is another member of
the same family of materials as Gd5Ge4, except that the former compound
has the monoclinic Gd5(Si2Ge2)-type crystal structure at room temperature.
In the past, the structural transition to the orthorhombic Gd5Si4-type struc-
ture from the room temperature monoclinic phase of the Gd5(Si4−xGex)
system was assumed from temperature dependent X-ray diffraction data
[39,43] and from the magnetic field dependent physical property measurements
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Fig. 11.12. Fragments of the X-ray powder diffraction patterns of Gd5(Si1.7Ge2.3)
collected at 235K with the magnetic field varying from 0 to 3.5 T and then back to
0 with a 0.5 T step

(e.g., see [40,43]). As illustrated in Fig. 11.12, in situ X-ray powder diffraction
demonstrates that when a Gd5(Si1.7Ge2.3) sample is magnetized at T = 235 K,
a structural transformation begins around 1.5 T and is nearly complete at
2.5 T. Upon subsequent isothermal demagnetization, the low magnetic field
crystal structure begins to emerge at ∼1.5 T and the reverse transforma-
tion is complete at 0.5 T. Similar behavior is observed in Gd5(Si1.7Ge2.3) at
other temperatures above its zero magnetic field TC. According to Holm et
al. [69], the high magnetic field crystal structure of Gd5(Si1.7Ge2.3) is iden-
tical to the high magnetic field crystal structure of Gd5Ge4. In other words,
both ferromagnetically ordered materials belong to the Gd5Si4-type, in which
all interslab T–T bonds are present. This result also confirms that the high
magnetic field polymorphs are the same as the low temperature zero magnetic
field crystal structures of materials in this phase region of the Gd5(Si4−xGex)
system.

11.5 To What Extent a Structural Change
Enhances the Giant Magnetocaloric Effect?

In the previous section, we provided sufficient evidence that in the
Gd5(Si4−xGex) system, a martensitic-like structural transition follows ferro-
magnetic ordering/disordering when x � 2 and that both the magnetic and
crystallographic changes can be reversibly triggered by a magnetic field at
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ambient pressure. Although magnetic field-induced polymorphism apparently
occurs in other giant magnetocaloric effect systems, such as the mangan-
ites [55], the Gd5(Si4−xGex) alloys are unique because they enable one to
obtain further insights on the role the structural transition plays in the en-
hancement of the magnetocaloric effect. This is especially true because alloys
that have nearly identical stoichiometry, and therefore, closely spaced Curie
temperatures around x = 2, can be prepared in two different crystal struc-
tures in the paramagnetic state [38,41,42]. When x is less than 1.91 [38], the
paramagnetic Gd5(Si4−xGex) alloys crystallize in the Gd5Si4-type and their
crystal structures are preserved when they become ferromagnetic. As a re-
sult, the magnetic ordering in these materials occurs via a second-order phase
transformation, i.e., Gd5(Si4−xGex) alloys with x < 1.91 exhibit a conven-
tional magnetocaloric effect, e.g., see Fig. 11.2. When x is 1.91 or greater, the
paramagnetic Gd5(Si4−xGex) phases adopt the Gd5(Si2Ge2)-type structure
and they order ferromagnetically concurrently with a structural change to
the Gd5Si4-type structure (Fig. 11.12), which results in a first-order paramag-
netic to ferromagnetic transformation and the giant magnetocaloric effect, see
Figs. 11.3 and 11.11.

Taking into consideration this difference in the thermodynamic nature of
phase transitions occurring in closely related intermetallic phases, in Fig. 11.13
we illustrate the behavior of the total entropies of Gd5(Si2.5Ge1.5) and
Gd5(Si2Ge2) in a zero magnetic field.3 The former orders ferromagnetically
in a conventional (second-order) fashion at TC

∼= 312 K, while the latter
undergoes a first-order magnetostructural transition at TC

∼= 270 K. Since
the Curie temperatures of two materials are slightly different, all data in
Fig. 11.13 are plotted as functions of the normalized temperature, T − Ttr,
where Ttr is taken just above TC as the temperature at which the magne-
tostructural transformation in Gd5(Si2Ge2) is complete. For clarity, the total
entropy functions of Gd5(Si2.5Ge1.5) were also normalized by subtracting a
constant value of ∼5.5 J g-at−1 K−1 to match the total zero magnetic field
entropy of Gd5(Si2Ge2) just below the magnetostructural transition.

As expected from the similarity of the chemical compositions, identical
crystallography and ferromagnetism, the total entropy functions of the two
materials after normalization show nearly indistinguishable behavior in a
zero magnetic field immediately below their respective Curie temperatures.

3When x ∼= 2, either the monoclinic Gd5(Si2Ge2)-type or the orthorhombic Gd5Si4-
type structures can be retained in the paramagnetic state at constant x by heat
treating Gd5(Si4−xGex) alloys at different temperatures [48, 51]. As we showed re-
cently [73], it is conceivable, however, that the Gd5Si4-type structure in the paramag-
netic state can be stabilized by oxygen as a result of heat treatment. Considering the
martensitic-like mechanism of the structural transition (see Figs. 11.4 and 11.8) and
the potential effect of oxygen, apparently located inside specific interslab voids [73],
on the occurrence of the transformation, we will base our analysis on materials with
close though different x but low and nearly the same amount of interstitial impuri-
ties, rather than on materials with the same x but different and usually uncontrolled
impurity contents.
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Fig. 11.13. The behavior of the total entropies of Gd5(Si2.5Ge1.5), where ferro-
magnetic ordering at TC is a second-order phase transformation (solid lines), and
of Gd5(Si2Ge2) where ferromagnetic ordering is a first-order phase transformation
(dash-dotted lines) in the vicinities of their respective Curie temperatures in 0 and
7.5 T magnetic fields. The three vertical arrows around Ttr indicate the magnitudes
of the magnetocaloric effects of Gd5(Si2.5Ge1.5) and Gd5(Si2Ge2), and entropy of
the first-order phase transition in Gd5(Si2Ge2), all at T = Ttr

A major deviation occurs in the vicinity of TC, where the entropy of Gd5(Si2Ge2)
is increased by ∆Sstr = ∆Hstr/Ttr, (∆Hstr is enthalpy or latent heat of a
first-order phase transformation). It is worth noting that in theory, the total
entropy is expected to undergo a discontinuous change by ∆Sstr at TC, but
in reality, this change occurs over a few Kelvin wide temperature range. As
is easy to see from Fig. 11.13, the two zero magnetic field entropy functions
continue to behave very similarly above the TC, in fact, the difference between
them remains nearly constant and equal to ∆Sstr. Once again, we relate this
similarity in the behavior of the two entropies to close relationships between
crystallography and magnetism of these two compounds.

The total entropies of the two materials after the application of the
magnetic field do not match as well as the zero magnetic field entropies
do, as also clearly seen in Fig. 11.13. This mismatch can be related to
different effects of the magnetic field on conventional ferromagnets, which
Gd5(Si2.5Ge1.5) is, when compared to Gd5(Si2Ge2), which is the system with a
first-order magnetic-martensitic phase change. In fact, since the crystal struc-
ture is not coupled to a magnetic sublattice in the case of Gd5(Si2.5Ge1.5),
the magnetic field does not actually transform the system into a nearly
collinear ferromagnet, nor does it raise the Curie temperature of the material.
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Conversely, in the case of Gd5(Si2Ge2), where the magnetic field induces a
magnetostructural phase change, the Curie temperature is increased nearly
linearly with field [26]. Furthermore, the conventional ferromagnetic ordering
of the orthorhombic paramagnetic Gd5(Si2Ge2) would occur at a much higher
temperature than a conventional ferromagnetic ordering of the monoclinic
paramagnetic Gd5(Si2Ge2) provided the latter crystal lattice can co-exist
with a ferromagnetic sublattice [51]. This difference in Curie temperatures
of the two structures nearly completely eliminates spin fluctuations and mag-
netic clustering in the case of Gd5(Si2Ge2), while both should be present in
Gd5(Si2.5Ge1.5).

The magnetocaloric effects at TC are shown in Fig. 11.13 as arrows for both
materials (the arrows are offset along the temperature axis for clarity). Ob-
viously, the two MCE’s are considerably different and the difference between
them must be ascribed to the absence and the presence of a structural change
in Gd5(Si2.5Ge1.5) and Gd5(Si2Ge2), respectively. Even though the magnetic
field has slightly different effect on the total entropies of the two compounds,
the difference in ∆SM at TC is nearly identical to ∆Sstr. The large mag-
netic field induced phase volume and chemical bonding changes, observed in
Gd5Ge4, Gd5(Si1.7Ge2.3), and other R5T4 materials, therefore, indicate that
the giant MCE is achieved due to the concomitant change of the entropy
during the structural transformation, designated in Fig. 11.13 as ∆Sstr. As a
result, it is possible to speculate that the observed giant magnetocaloric effect
is the sum of the conventional magnetic entropy-driven process (11.3) and the
difference in the entropies of the two crystallographic modifications (∆Sstr)
of a solid

∆SM(T,∆B)∆B=Bf−Bi = ∆Sstr +
∫ Bf

Bi

(
∂M(T,B)

∂T

)

B

dB . (11.5)

Although the first factor in the right-hand side of (11.5) is a hidden parameter
in conventional magnetization, heat capacity and direct magnetocaloric effect
measurements because either property reflects both the magnetic and crys-
tallographic states of the material [e.g., imagine the absence of the data for
Gd5(Si2.5Ge1.5) in Fig. 11.13], an estimate based on comparing the MCE’s ex-
hibited by these two members of the Gd5(Si4−xGex) family is possible. This
is illustrated in Fig. 11.14, where we plot the isothermal magnetic entropy
change of Gd5(Si2Ge2) taken from [29] and the same of Gd5(Si2.5Ge1.5) [74]
for ∆B varying from 2 to 10 T. Considering (11.5) and recalling that ∆Sstr is
independent of the magnetic field, provided the entire volume of the mater-
ial retains the low magnetic field crystal structure at Bi and it is completely
converted into the high magnetic field polymorph by Bf , the difference be-
tween the peak values of ∆SM should remain constant (or nearly constant
in view of Fig. 11.13) regardless of ∆B. This constant difference, indeed, is
approximately equal to ∆Sstr.

Numerical data representing the peak ∆SM values for both materials are
listed in Table 11.1. After recalling that the crystallographic phase change
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Fig. 11.14. The magnetocaloric effects of Gd5(Si2Ge2) (left) and Gd5(Si2.5Ge1.5)
(right) calculated from heat capacity measured in constant magnetic fields of 0, 2,
5, 7.5, and 10 T. In every case, Bi = 0

Table 11.1. Peak values of the magnetocaloric effect of Gd5(Si2Ge2) and
Gd5(Si2.5Ge1.5) for different ∆B (Bi is always 0) and ∆Sstr estimated as the average
difference between the peak ∆SM values of the two compounds

Compound Isothermal magnetic entropy change, −∆SM (J g-at−1 K−1)

∆B = 2T ∆B = 5 T ∆B = 7.5 T ∆B = 10T

Gd5(Si2Ge2) 1.75 2.15 2.42 2.61

Gd5(Si2.5Ge1.5) 0.57 1.03 1.33 1.57

Difference 1.19 1.12 1.09 1.04

Average (excluded) ∆Sstr = 1.08(4)

was not complete even in a 3.5 T magnetic field in Gd5Ge4 and assuming that
similar effect is feasible in Gd5(Si2Ge2), it only makes sense to discard ∆SM

difference for the smallest ∆B, where Bf = 2 T. The values for the remaining
three field changes are constant to within one standard deviation of the mean,
which is ∆Sstr = 1.08(4) J g-at−1 K−1. The latter is of the same order of
magnitude as the entropies of transformations of pure metals, which could be
approximated [75] as ∆Sstr = 0.75ν J g-at−1 K−1 for an fcc→ bcc transition
(the actual values vary from 0.5 to 3.01 J g-at−1 K−1 for γ → δ transitions
in Fe and Ce, respectively), or as ∆Sstr = 0.62 + 0.75ν J g-at−1 K−1 for a
hcp→ bcc transition (the actual values vary from 0.56 J g-at−1 K−1 in Li to
3.68 J g-at−1 K−1 in Ti), where ν is the number of valence electrons.

Analysis of data presented in Fig. 11.14 and Table 11.1 indicates that
∆Sstr accounts for 50% or more of the total extensive magnetocaloric effect
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in magnetic fields below 5 T. Its relative contribution to ∆SM increases as the
magnetic field decreases as long as the final magnetic field (Bf) is strong
enough to complete the magnetostructural transition. Advanced magneto-
caloric materials should exist in other solid systems where structural changes
are coupled with ferromagnetic ordering, and therefore, can be triggered by a
magnetic field. Considering (11.5), the strongest MCEs in the weakest mag-
netic fields should be found in novel materials, engineered in order to maximize
the difference in the entropies of the low magnetic field and high magnetic field
phases, and therefore, the resulting entropy of a structural transformation,
∆Sstr.

11.6 Conclusions

In summary, analysis of the magnetic-martensitic transformations and the
magnetocaloric effects in a few representatives of the R5T4 family of inter-
metallic compounds – Gd5Ge4, Gd5(Si1.7Ge2.3), Gd5(Si2Ge2), and
Gd5(Si2.5Ge1.5) – indicates that the coupling between the magnetic and
crystal lattices is critical in bringing about the giant magnetocaloric effect.
Although in general it is difficult to separate the contributions from either
sublattice into the MCE, in the R5T4 series it was possible experimentally be-
cause these materials can be prepared in two different states: one that exhibits
a conventional MCE and another where the magnetic and crystal lattices are
coupled and the giant magnetocaloric effect is the result of a first-order mag-
netostructural transformation.

Especially the extensive measure of the magnetocaloric effect, i.e., the
isothermal magnetic field-induced entropy change, can be strongly enhanced
by the added entropy of a structural transition provided the magnetic field
completes the polymorphic transformation. This additional entropy is mag-
netic field independent, and therefore, may account for more than a half of the
observed magnetocaloric effect, especially in relatively weak magnetic fields.
Design of novel materials exhibiting potent magnetocaloric effects in magnetic
fields that can be created by using modern permanent magnets is, therefore,
possible by ensuring that (i) a structural transition can be triggered and com-
pleted or nearly completed by a weak magnetic field; (ii) the transformation
has low thermal and magnetic field hystereses, i.e., is reversible, and (iii) the
difference between the total entropies of two polymorphic modifications, and
therefore, ∆Sstr, is maximized.
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Entropy Change and Magnetocaloric Effect
in Magnetostructural Transformations

F. Casanova, X. Batlle, A. Labarta, J. Marcos, E. Vives, and
L. Mañosa, and A. Planes

12.1 Introduction

The physics of the magnetocaloric effect (MCE) is an old subject with renewed
interest in the last decades owing to its potential application for refrigera-
tion [1]. In fact, magnetic refrigeration offers the prospect of an energy-efficient
and environment friendly alternative to the common vapor-cycle refrigeration
technology in use today [2, 3]. The MCE is commonly defined as the heat-
ing or cooling (i.e., the temperature change) of a magnetic material due to
the application of a magnetic field. This effect has been called adiabatic de-
magnetisation for years, though this phenomenon is one particular practical
application of the MCE in magnetic materials. For excellent reviews on the
magnetocaloric effect, see [1, 4, 5].

All magnetic materials exhibit MCE, which is an intrinsic phenomenon,
although the intensity of this effect shows a large variation depending on the
material. MCE originates from the coupling between the magnetic sublattice
and the applied magnetic field, H, which produces an additional contribu-
tion to the entropy of the solid. Thus, the strength of the MCE in a particular
solid can be characterised as the isothermal entropy change, ∆Siso, or the adi-
abatic temperature change, ∆Tad, arising from the application or removal of
an external magnetic field. In particular, ∆Siso induced in a system when the
magnetic field is varied from Hi to Hf can be experimentally determined di-
rectly from calorimetric measurements or indirectly from magnetisation curves
by numerical integration of the Maxwell relation:

∆Siso(Hi → Hf) =
∫ Hf

Hi

(
∂M

∂T

)

H

dH . (12.1)

According to this equation, the absolute value of the derivative of magnetisa-
tion with respect to temperature should be large to get a large entropy change.
This occurs, for instance, when the system undergoes a magnetic transition.
However, in second-order magnetic transitions, the existence of short-range
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order and spin fluctuations above the ordering temperature brings about a re-
duction in the maximum value of (∂M/∂T )H , and consequently the maximum
MCE is reduced. In contrast, an ideal first-order phase transition takes place
at constant temperature, so the value of (∂M/∂T )H should be infinitely large.
Actually, in an ideal first-order magnetic transition, the discontinuities in both
magnetisation and entropy make it possible that (12.1) can be rewritten in
terms of the Clausius–Clapeyron equation as

∆Siso = −∆M
dHt

dTt
, (12.2)

where Ht is the field at which the transition takes place and Tt is the tran-
sition temperature. Therefore, the MCE may be maximised in the vicinity of
a first-order structural transition, when a large entropy change related to the
crystallographic transformation, ∆S, can be field-induced through magnetoe-
lastic coupling. The existence of a large ∆S associated with the first-order
transition brings about an extra contribution to the MCE, yielding the so-
called giant MCE. The use of this ∆S in practical applications is possible
provided that the phase transition can be induced by an external magnetic
field [6]. Extensive search for materials undergoing simultaneously structural
and magnetic transitions (magnetostructural transformations) has recently
been described in literature [7–9]. One of the most promising class of materi-
als displaying a magnetostructural transformation comprises Gd5(SixGe1−x)4
alloys with 0 ≤ x ≤ 0.5 [7, 10], in which ∆Siso values at least twice larger
than that of Gd near room temperature for H = 50 kOe are observed. This
enhanced MCE is due to a strong interplay between the magnetic and struc-
tural features in this system. These alloys have crystallographic structures
made up of parallel nanometric slabs connected by covalent-like bonds [11].
Interestingly, the interslab connectivity does not only depend on x and the ac-
tual crystallographic structure, but also on the magnetic ordering. This makes
it possible to field-induce a structural transformation in the system, driven
by a shear mechanism between the parallel slabs, which adapts the interslab
connectivity to the final magnetic state. Therefore, in these alloys, the mag-
netoelastic coupling responsible for the magnetostructural transformation is
operating at the microscopic scale of the nanometric slabs.

However, in other materials undergoing magnetostructural transforma-
tions, magnetoelastic coupling may occur at multiple scales ranging from
microscopic to mesoscopic lengths. Moreover, competing mechanisms of mag-
netoelastic coupling taking place at different scales may be present simultane-
ously. This is the case in a series of magnetic composition-related Ni–Mn–Ga
shape-memory alloys undergoing a martensitic transformation. It is shown
that the MCE, increasing the magnetic field in the vicinity of the martensitic
transition, mainly originates from two contributions with opposite sign [12]: (i)
magnetoelastic coupling on mesoscopic scale between the magnetic domains
and the martensitic variants which gives a positive contribution to the MCE,
and (ii) the microscopic spin–phonon coupling which produces a shift of Tt
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with H and gives a negative contribution to the MCE. The relative impor-
tance of these two contributions has been shown to vary with composition.
It is worth noting that, in the range of composition for which the mesoscopic
mechanism becomes dominant, (∂M/∂T )H may be positive in the vicinity of
the martensitic transformation when the magnetic field is increased. This is
a very unusual behaviour for a magnetic system.

In this chapter, the magnetostructural transformations and the MCE ex-
hibited by both families of alloys (Gd–Si–Ge and Ni–Mn–Ga) are studied,
with a discussion of the different scales at which magnetoelastic coupling
takes place.

12.2 Multiscale Origin of the MCE in Ni–Mn–Ga Alloys

Ni–Mn–Ga alloys are materials with twofold interest, as they display both
magnetocaloric and magnetic shape-memory effects. The magnetic shape-
memory property is a consequence of the coupling between structural and
magnetic degrees of freedom in a ferromagnetic alloy undergoing a marten-
sitic transformation at a temperature, TM, below the Curie temperature (TC).
Ferromagnetic Ni–Mn–Ga alloys close to the stoichiometric Heusler composi-
tion are prototypical materials exhibiting this property, in which martensitic
transformation occurs in the ferromagnetic state from a cubic structure (par-
ent phase) to a tetragonal martensitic phase below TM. One important feature
to understand for the magnetic behaviour of this system is that, in the tetrag-
onal phase, there are twin related structural domains with strong uniaxial
anisotropy compared to that of the cubic phase, which can be rearranged
by the application of moderate fields. Consequently, the martensitic trans-
formation takes place between two ferromagnetic states with very different
magnetic domain structures, being accompanied by a jump in the magnetisa-
tion of the system, which is mainly controlled by the magnetoelastic coupling
at the mesoscopic scale of the martensitic variants. For certain compositions,
this magnetisation jump may produce at moderate fields an MCE larger than
that observed in Gd for a similar range of temperatures.

We present results for a single crystal of composition Ni49.5Mn25.4Ga25.1.
The sample exhibited an L21 structure at room temperature, a TC of about
381 K and a martensitic transition on cooling at TM ≈ 177 K to a modulated
tetragonal structure (5R). The hysteresis for the martensitic transition was
∼10 K.

Isothermal magnetisation measurements were carried out in this speci-
men by the extraction technique in the range from 150 to 200 K, under
magnetic fields up to 40 kOe. Figure 12.1a shows the obtained curves for
selected temperatures, from which the field-induced entropy change, when
the field increases from 0 to H, can be evaluated by numerical integration of
(12.1). The results are plotted in Fig. 12.1b for selected values of H. The two
peaks observed in the temperature dependence of ∆Siso(0 → H) originate
from unavoidable small composition inhomogeneities and impurities, which



226 F. Casanova et al.

Fig. 12.1. (a) Magnetisation versus applied field at different temperatures around
TM for a Ni49.5Mn25.4Ga25.1 sample. (b) Field-induced entropy change as a function
of temperature for selected values of the maximum applied field, calculated from the
data in (a)

Fig. 12.2. Average field-induced entropy change 〈∆S〉 as a function of H for a
Ni49.5Mn25.4Ga25.1 sample. The continuous line is a fit of the experimental data to
a phenomenogical model, which includes two contributions to the magnetoelastic
coupling: the spin–phonon microscopic coupling (dotted line) and the martensite-
variant mesoscopic coupling (dashed line)

are known to slightly affect the actual transition path [13]. In order to com-
pare ∆Siso(0 → H,T ) for different samples it is convenient to calculate, for
each field, the average of the field-induced entropy change over ∆T (H) (the
temperature range at which the transition spreads) as

〈∆S(H)〉 =
1

∆T (H)

∫

∆T

∆Siso(0 → H,T ) dT . (12.3)

This integral is performed numerically by taking a suitable baseline which
permits elimination of any contribution arising from temperature variations of
the magnetisation outside the transformation region. The obtained 〈∆S(H)〉
values as a function of the applied magnetic field are plotted in Fig. 12.2.
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The average entropy change first increases, reaches a maximum at 13 kOe,
and decreases linearly with H at higher fields. However, the most remarkable
fact in these data is the positive value of entropy change originating from an
increase in the applied field.

A deeper understanding of the magnetoelastic coupling in this system,
which is at the origin of this peculiar magnetic behaviour, can be gained
by analysing the temperature dependence of the magnetisation curves mea-
sured at a fixed value of the magnetic field around TM, which are displayed
in Fig. 12.3a. In the transition region, a jump in the magnetisation isofield
curves is observed, which is positive or negative depending on the strength of
the applied magnetic field. The magnitude of this jump ∆M (magnetisation
difference between martensite and parent phase) displays a strong dependence
on H, as shown in Fig. 12.3b. The different regions can be understood by tak-
ing into account the magnetic and structural domain patterns formed as a
function of H [14, 15]. When the martensitic transformation takes place at
zero field, nucleation gives rise to plates formed by parallel stripes of twin
related variants with strong uniaxial anisotropy. The nucleation of the plates
with such a microstructure is very advantageous, since it minimises the elas-
tic (strain) energy arising from the crystal lattice misfit along the interfacial
boundaries.

At low fields, magnetic domains are formed within each variant, in such a
way that the magnetisation alternates between two values, which are paral-
lel to the corresponding easy axes. This configuration ensures the absence of
magnetic poles in the martensite phase giving rise to negative values of ∆M .

Fig. 12.3. (a) Magnetisation versus temperature curves at selected values of the
magnetic field applied along the [100] direction of the cubic phase. Measurements
were performed during heating. The different symbols correspond to the following
fields: H = 0 (filled square), 100 Oe (filled circle), 200Oe (filled triangle), 300 Oe
(filled down triangle), 400 Oe (filled diamond), 500Oe (filled triangle left), 700 Oe
(filled triangle right), 1 kOe (open square), 2 kOe (open circle), 4 kOe (open triangle),
6 kOe(open down triangle), 10 kOe (open diamond), 20 kOe (open triangle left) and
50 kOe (open triangle right). (b) Magnetisation change at the phase transition, as a
function of the magnetic field
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In contrast, if the sample is cooled through the transition under a magnetic
field larger than the saturation field of the parent phase, the twin related
variants are magnetised. As the field is further increased, due to the strong
uniaxial anisotropy of the tetragonal phase, the Zeeman energy is minimised
by increasing the fraction of those variants with the easy magnetisation axis
forming a smaller angle with the applied field. At high enough fields, trans-
formation results in magnetically saturated single variant crystal, and ∆M
becomes positive and constant. Interestingly, this magnetic behaviour is con-
trolled by the same magnetoelastic coupling which causes the magnetic shape-
memory effect [16,17].

Consequently, ∆M and the field-induced entropy change through the tran-
sition are mainly controlled by the magnetoelastic coupling at the mesoscopic
scale of the twin related variants. This contribution to the entropy change
is positive and dominant at low fields. In fact, for moderate values of H,
the field-induced entropy is not related to the entropy change of the struc-
tural transition. This is because of the weak spin–phonon coupling at the mi-
croscopic scale, as proven by the weak dependence of the phonon-dispersion
curves and TM on H [18,19]. High fields are required to induce the transition
even at temperatures very close to TM. However, the magnetoelastic coupling
at the microscopic scale is not entirely negligible in this material, giving rise
to a negative contribution to the entropy change which becomes dominant at
high fields and in turn gives rise to the linear decrease of 〈∆S(H)〉 shown in
Fig. 12.2 above 13 kOe.

A simple phenomenological model including the interplay between both
scales of magnetoelastic coupling accounts well for the observed experimental
behaviour of 〈∆S(H)〉 [12], as shown in Fig. 12.2. In this model, the contri-
bution coming from the magnetoelastic coupling at the mesoscopic scale of
the martensite variants is evaluated assuming that, for the sake of simplicity,
the system contains only two twin-related variants, whose relative population
varies exponentially as H increases above the saturation field of the parent
phase. The contribution arising from the spin–phonon coupling is calculated
from (12.2), taking (dTM/dH)H as a measure of the shift of TM induced by
the field. Both contributions are depicted separately in Fig. 12.2 to emphasise
their different field dependence. Thus, the mesoscopic contribution is posi-
tive and increases monotonically to reach saturation, while the microscopic
contribution is negative and decreases linearly as H increases. The relative
importance of these two contributions changes with the actual composition of
the alloy. In Fig. 12.4, 〈∆S(H)〉 obtained from magnetisation data [12] for five
alloys of different compositions, including that of Fig. 12.2, are depicted. The
continuous lines are the fits to the model of [12]. In alloys with a large dif-
ference between TC and TM (alloys 1 and 2 in Fig. 12.4), mesoscopic coupling
is dominant and a negative giant MCE (decrease in temperature caused by
an adiabatic increase of the magnetic field) is induced at moderate fields. In
contrast, for alloys in which these temperatures are very close to one another
(case 5 in Fig. 12.4), the microscopic coupling is the most relevant contribution
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Fig. 12.4. Average field-induced entropy change 〈∆S〉 as a function of H for all the
different analysed alloys. The continuous lines are the fits of the experimental data
to a phenomenogical model

and gives rise to a positive giant magnetocaloric effect. This is in agreement
with the decrease of the anisotropy of martensite phase as TM approaches
TC [20]. Therefore, the maximum values of the field-induced entropy change
in Ni–Mn–Ga alloys correspond to those with TM ≈ TC and are approximately
−30 J kg−1 K−1 for a field of 15 kOe [21]. These values are even larger than
maximum values reported for prototypical materials displaying giant MCE
at room temperature such as Gd–Si–Ge [22] and Mn–As [9] (of the order of
−15 J kg−1K−1 for a field of 20 kOe).

12.3 Direct Determination of the Entropy Change
at a First-Order Transformation

As has been discussed in Sect. 12.1, the MCE in a given magnetic material
undergoing a first-order structural transition can be characterised by quanti-
fying the field-induced ∆Siso indirectly from magnetisation data, as it is the
case for Ni–Mn–Ga in Sect. 12.2, or directly from calorimetric measurements.
Differential scanning calorimeters (DSC) are well adapted to determine ∆S at
a first-order transformation, since with this technique the heat flow exchanged
by the sample and the surroundings is directly measured and a proper inte-
gration of the calibrated signal yields the latent heat of the transformation.

A DSC operating under magnetic field is particularly well suited to study
magnetostructural transitions [23]. In these devices, the temperature is con-
tinuously scanned at a rate Ṫ , while the heat flow, Q̇, exchanged between
the sample and the thermal block is measured by the thermobatteries. From
Ṫ and Q̇, the derivative of the heat with respect to the temperature can be
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obtained (calorimetric signal). A proper integration of this signal subtracting
the baseline leads to the latent heat or the entropy change of the transition.

It is worth noting that the calorimeter can also operate by sweeping the
field maintaining a constant temperature. In this mode of operation, a mag-
netostructural transformation can be field-induced by setting a temperature
above but sufficiently close to Tt. In this case, the calorimetric signal can be
obtained from Q̇ and Ḣ and a proper integration of this signal provides the
field-induced entropy change. Consequently, this system permits a direct de-
termination of the MCE, since ∆S induced in the sample by the application
of an external magnetic field can be directly determined.

12.4 Magnetostructural Transformation
in Gd–Si–Ge Alloys

Gd5(SixGe1−x)4 alloys are one of the most promising materials for practical
applications of the MCE, which in these materials originates from a first-order
magnetostructural transformation that appears in two compositional ranges.
The phase diagram is complex [22, 24, 25], but the most relevant feature per-
tinent to the MCE is the existence of a structural transformation which takes
place simultaneously with a magnetic transition from a high-temperature
paramagnetic (PM) monoclinic phase to a low-temperature ferromagnetic
(FM) Gd5Si4-type orthorhombic phase for 0.24 ≤ x ≤ 0.5 [22,24] and from a
high temperature antiferromagnetic (AFM) Gd5Ge4-type orthorhombic phase
to an isostructural low-temperature FM phase for x ≤ 0.2 [25]. At higher tem-
perature, a second-order transition occurs from the AFM to the PM state for
x ≤ 0.2. The giant MCE in these alloys is due to the existence of a strong
coupling between the structure and the magnetic ordering which is governed
by the interslab connectivity through the number of covalent-like bonds [11].

In this section, we present a direct determination of ∆S at the first-order
transformation in Gd5(SixGe1−x)4 alloys. The samples were prepared by arc-
melting and heat-treated for 9 h at 920◦C under 10−5 mbar.

Figure 12.5 shows an example of the measured calorimetric curves by
sweeping the temperature on cooling under different values of the magnetic
field for samples with x = 0.1 (left panel) and x = 0.3 (right panel). The mag-
netostructural transformation corresponds to the sharp peak, which is present
both for x = 0.1 and 0.3, and shifts significantly with the applied magnetic
field, revealing a strong magnetoelastic coupling. The second-order transition
appears only for samples with x ≤ 0.2 as a small lambda peak, which shows
weak field dependence. At high enough fields, the first- and second-order tran-
sitions collapse and the structural transformation takes place between the FM
and PM states.

It is worth noting that the transition temperature of the structural trans-
formation for moderate fields, lower than that at which the first- and second-
order transitions collapse, varies linearly with the applied field. The reciprocal
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Fig. 12.5. Calorimetric curves recorded on cooling through the transitions of
Gd5(SixGe1−x)4 samples (x = 0.1 and 0.3) for different applied magnetic fields.
Insets show the entropy change as a function of magnetic field

of the slope of this linear dependence defined as dHt/dTt (Ht is the transi-
tion field, i.e., the field at which the transition takes place at Tt) is displayed
in Fig. 12.6a as a function of the composition. These values are in agreement
with those derived from magnetisation data [28]. In fact, dHt/dTt is related to
the strength of the magnetoelastic coupling: in these compounds, the value of
∆Siso measured when the transition is field-induced coincides with the value
of ∆Siso measured when the transition is induced by the application of pres-
sure [24]. Therefore, through the Clausius–Clapeyron equation (12.2), it is
shown that

∆M

∆V
= − dTt

dHt

dPt

dTt
. (12.4)

According to (12.4), a strong magnetoelastic coupling yields a small value of
dHt/dTt. We stress the linear dependence of dHt/dTt on x (see Fig. 12.6a),
which is decreasing for the PM-to-FM transition (solid line in Fig. 12.6a), while
it is increasing for the AFM-to-FM transition (dashed line in Fig. 12.6a). Both
lines intercept at the composition range where the second-order transition
disappears (0.2 < x < 0.24), in agreement with the phase diagram for these
alloys [22]. The decrease of dHt/dTt with increasing x for the PM–FM transi-
tion indicates a strengthening of the magnetoelastic coupling. This may be ex-
plained by taking into account that the FM exchange interactions are stronger
for increasing x, as suggested by the magnetic phase diagram [22, 25], where
Tt increases linearly with x. Concerning the AFM–FM transition, the increase
of dHt/dTt with x may be related to the fact that the transition occurs be-
tween two ordered states. Figure 12.6a thus summarises the behaviour of the
magnetostructural transformation as a function of x, T and H.

We have determined the field dependence of ∆S by proper integration
of the calorimetric curves measured by sweeping T under fixed values of the
magnetic field. Two examples which are representative of the obtained ∆S(H)
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Fig. 12.6. (a) Slope of Ht(Tt) calculated from DSC data under H. Solid line cor-
responds to the PM–FM transition, while dotted line corresponds to the AFM–FM
transition. (b) Scaling of |∆S| at the first-order transition for the Gd5(SixGe1−x)4
alloys. Data corresponding to a large variety of applied fields and compositions are
represented. Solid and open diamonds are from [26]. Symbols labelled with an H and
H = 0 correspond, respectively, to measurements with/without magnetic field

curves are shown in the insets of Fig. 12.5 for samples with composition x = 0.1
and 0.3. For x ≤ 0.2, −∆S increases linearly with H, while for 0.24 ≤ x ≤ 0.5,
−∆S decreases linearly with H. Interestingly, the absolute value of ∆S(H)
curves corresponding to samples in the range of composition 0 ≤ x ≤ 0.5
scale in two branches (one increasing and the other decreasing) when they
are plotted as a function of Tt, as shown in Fig. 12.6b. In this scaling there is
only one parameter, Tt, which is tuned by both x and H. This demonstrates
that this is the relevant quantity in determining the magnitude of |∆S| in
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these alloys, and proves that the magnetovolume effects due to H are of the
same nature as the volume effects caused by substitution [27]. Each one of
the quasi-linear branches of the scaling corresponds to one of the two ranges
of composition in which AFM–FM and PM–FM magnetostructural transfor-
mations occur in the phase diagram. As a matter of fact, the shape of the
scaling is governed through the Clausius–Clapeyron equation (12.2) by the
dependence of dHt/dTt on x (see Fig. 12.6a) provided that ∆M decreases
monotonically with Tt. Besides, the scaling is not a trivial consequence of the
scaling of both ∆M and dHt/dTt, i.e., neither ∆M nor dHt/dTt scale with
Tt, which gives further relevance to the scaling of |∆S| [27, 28]. Notice also
that |∆S| extrapolates to zero at Tt = 0, as expected from the third law of
the thermodynamics.

In systems with large magnetoelastic coupling, as it is the case for Gd–
Si–Ge alloys, the magnetostructural transformation can easily be induced by
the applied magnetic field. Figure 12.7 shows examples for x = 0.1 of the
calorimetric curves measured by increasing and decreasing the field at constant
temperatures above Tt(H = 0). As for the mode in which temperature is
swept, a proper integration of the signal corresponding to each peak yields
the entropy change of the transition. In Fig. 12.7, results are compared for
two sweeping rates which differ by one order of magnitude. Neither the shape
of the calorimetric curves nor the calculated ∆S values differ significantly
when both sets of measurements are compared.

Figure 12.8a shows the evolution of the calorimetric curve when cycling
repeatedly through the transition at 55 K with a sweeping rate of 1 kOe/min,
in a sample with x = 0.05 in the virgin state at the start of the measuring

Fig. 12.7. Calorimetric curves recorded sweeping the magnetic field (increasing and
decreasing H) in a Gd5(Si0.1Ge0.9)4 sample at several fixed temperatures and for
two different field rates
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Fig. 12.8. (a) DSC curves recorded on increasing H at 1 kOe/min for different
cycles in a Gd5(Si0.05Ge0.95)4 sample. (b) Entropy change obtained from previous
data, as a function of the number of cycle. Field rates, Ḣ, are given in the plots.
Solid lines are a guide to the eye

process. Even at first glance, it is clear that the curve corresponding to the
first cycle encloses a smaller area than the subsequent ones. It is worth not-
ing that the fine and sharp peaks superimposed on the broad peak of the
transition are not a consequence of experimental noise. Actually, they re-
veal the jerky character of the transition for alloys with x < 0.1, for which
magnetostructural transformation takes place at relatively low temperatures
at which the thermal activation does not blur the discontinuous character of
the transition. This discontinuous behaviour is associated with avalanche-type
dynamics, which originates from collective jumps between metastable states
at mesoscopic scale [29]. Similar results have also been detected in Gd5Ge4

from magnetisation measurements [30]. The superimposed peaks also evolve
by cycling, reaching a pattern which is reproducible to some extent. This
may be indicative of the athermal character of the transition [31]. That is to
say, the transition is induced when the field reaches a critical value rather
than being thermally activated. When a system is driven by an external pa-
rameter (the magnetic field in our case) through a first-order transition, the
metastable-state path followed by the system depends on the disorder (micro-
cracks, vacancies, dislocations). For an athermal transition the path can be
reproduced from cycle to cycle provided that the disorder does not evolve [32].

Figure 12.8b shows the effect of cycling on |∆S| of the transition in the
same sample. |∆S| increases strongly between first and fourth cycles and even-
tually gets saturated before the tenth cycle. This evolution is due to the forma-
tion of microcracks as a consequence of the continuous expansion/contraction
of the crystallographic cell, until the system reaches a reproducible path. Be-
sides, |∆S| values with increasing H are systematically larger than those ob-
tained with decreasing H. This might be due to the hysteresis effects between
increasing and decreasing branches.
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12.5 Conclusions

The MCE associated with magnetostructural transformations is controlled by
the interplay between magnetic and structural degrees of freedom and occurs
simultaneously at multiple length scales. In the vicinity of the martensitic
transition of Ni–Mn–Ga, it is observed from the magnetisation measurements
that the MCE originates from (i) the magnetoelastic coupling on the meso-
scopic scale between the magnetic moments and the martensitic variants, and
(ii) the microscopic spin–phonon coupling which gives rise to the shift of the
transition temperature with the applied field. The contribution from these
different scales to the MCE changes with the intensity of the applied field and
the composition of the alloy. In Gd–Si–Ge alloys, the giant MCE is controlled
by the microscopic spin–phonon coupling (which is proportional to dHt/dTt)
since the transformation entropy change can be field-induced. ∆S can also be
obtained directly from DSC operating under magnetic field. In these alloys,
we observe that |∆S| scales with the transition temperature, proving that
the magnetovolume effects due to H are of the same nature as the volume
effects caused by substitution. The jerky character of the calorimetric curves
for alloys with low transition temperatures, which indicates an avalanche-
type dynamics, evolves with cycling until a reproducible pattern is reached,
evidencing the athermal character of the transition. Interestingly, it has been
found that the avalanche size distribution evolves with cycling from a sub-
critical distribution towards a critical (power-law) distribution [33]. |∆S| also
varies with the first cycles through the transformation.
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Functional Magneto-Structural Materials:
Summary and Perspectives

P.-A. Lindg̊ard

The idea to bring many disciplines in physics and materials science together
in a fruitful way is a bold and important one. This is manifested in the present
book Interplay of Magnetism and Structure in Functional Materials. The com-
mon theme is in a sense the real and unavoidable complexity of the structural
problems found in seemingly quite unrelated fields. In my task to give an
overview, my attempt will be to concentrate on broader aspects and on the
perspectives – instead of dealing with rather smaller technical details of in-
terest mainly for specialists among specialists. For the readers interested in
further studies – beyond the chapters in this book – let me mention related
topics briefly and attempt to give some relevant references as a starting point.

It all began with the problem of understanding the martensitic phase trans-
formation. When I was first introduced to that, now long time ago – coming
from a field of statistical physics and critical phenomena – two things struck
me (1) why was this considered as a special phase transition and (2) why did
one not consider internal elastic strain modes, closely related to zone-boundary
or other finite q-phonons, as variables in free energy expansions [1, 2]. Now,
it is probably accepted by most that it is indeed a regular phase transition,
displacive and diffusion less, usually weakly first order and with a lattice de-
formation as the order parameter. And it is the accommodation of that which
is the problem because of the long-range character of the strain fields. This
gives rise to the then usually much discussed precursor effects [3], which is
not the main focus here. Neither is the remarkable nonmonotonous behavior
of the hysteresis loop: the avalanche effect and self-organized critical phenom-
ena, where analyses in terms of scaling laws and critical exponents come into
play. Important progress has been made in this direction – in particular by
the Barcelona group [4] – which I will not cover here. Part of this is covered in
Chap. 2. In a paper by Hardy et al. [5] similar phenomena have been reported
for manganites, of the type Pr1−xCaxMn1−yMyO3 (with x ∼ 0.5, y ∼ 0.05,
and where M is a magnetic or nonmagnetic cation) in a field. A competi-
tion sets in between the magnetic energy promoting the ferromagnetic phase
(FM) contrary to the antiferromagnetic (AFM) one, and the elastic energy
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associated with strains created at the FM/AFM boundaries. In addition an in-
cubation time phenomenon is observed, such that a given jump or avalanche
can occur after a certain waiting time under constant external conditions.
Vives et al. [6] reported on a new effect found in the Cu–Al–Mn alloys: a dis-
order induced critical point at low temperatures as a result of a competition
between ferro- and antiferromagnetic interactions. However, the main focus
here is not on the phase transition aspects.

The martensitic – or shape memory – transformation often occurs in quite
complex alloys or nonstoichiometric materials. A physicist would rather study
a model system to get a deep understanding of various problems – one at a
time – if possible. In old times Zr served as such a model system [1, 2, 7] in
which it was shown that the transition (from bcc to hcp) has to involve simul-
taneously both a uniform and an internal strain (corresponding to a transverse
N -point [100] phonon). In other words the transition/reaction coordinate is
(at least) two dimensional. It would come as no surprise that going from one
point A in a mountainous landscape to another, B, can usually not be ac-
complished (without excessive efforts) following the straight line between A
and B. One obviously would try to find a pass and be ready to make perhaps
big detours – the bigger detour the smaller barrier. So there is a balance –
and a transition path from A to B is not unique. One must even consider a
distribution of possible paths. This fact is often overlooked in calculations of
energy barriers in the martensitic problem, where we also deal with a rough
“mountainous” energy landscape – or rather free-energy landscape. This re-
sembles the situation found in nature’s own much more complex, and much
more functional materials: the proteins [8]. Perhaps complexity and function-
ality are interrelated.

However, there is still much work to do in understanding simple model
systems – and a good candidate for a new system, AuZn, has been reported
by Lashley et al. [9]. This has the advantage of being nonmagnetic – as Zr of
course. It has a shape-memory transition from a cubic B2 (CsCl) to a trigonal
P3 structure at ∼65 K, and may be ideal for studying the effects of nonstoi-
chiometery on the martensitic transformation. It shows an essentially perfect
second order transition with a λ-like specific heat, a transverse phonon soften-
ing at the N -point, etc. It can be obtained in perfect single crystals, which has
allowed a de Haas–van Alphen determination of the Fermi surface [10]. This
shows that there is a Fermi surface nesting feature matching the wave vector
of the transition. That system seems to be nearly ideal – and understand-
ing this in detail may be an important stepping stone toward understanding
(also magnetic) shape memory alloys like NiTi [11] and NixAl1−x [12], and
the fashionable Ni2−xMn1−xGa [13], which all show large precursor effects
at temperatures well above the martensitic transition temperature – as has
been reported by Chernenko et al. [14], Pons et al. [15], and others. Shapiro
et al. [16] performed numerous neutron scattering studies of systems in that
family and other materials. And Ziebeck’s group performed neutron studies of
the intricate Invar-problem [17] and of the Ni–Mn–Ga system [21]. Description
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of the neutron techniques and results obtained by these authors are reported
in Chaps. 5 and 6, respectively. In the case of Zr, neutron scattering measure-
ments of the phonon dispersion relations – and of soft modes – already gave
very valuable insight into the transition mechanisms. Now, with the upcoming
magneto-structural materials (promising for applications, because they can be
influenced by a magnetic field), the neutrons will remain invaluable as a neces-
sary experimental tool for gaining insight at the atomistic and the nanolevel.
In addition, the possibilities are ripening to independently measure the spin
and orbital components of the magnetic moment by X-ray/synchrotron meth-
ods, as discussed by Haskel et al. [18].

The magnetic shape memory systems come in two classes: those with uni-
axial anisotropy, where the moment prefers a particular symmetry direction
in the lattice; and those with planar anisotropy, which only confine the mo-
ments to certain preferred planes. For the shape memory effect to be useful
it is important to control the development of the equivalent variants. For a
transition from the bcc to hcp structure, there are six variants – and it can
be more complicated as reported by Ahlers [19]. A selection can be made by
a so-called “training process” of “smart” materials, during which deformation
and transition are forced through a desired path, whereby certain variants can
be promoted to nucleate earlier than others, in a complex process involving
unknown features like defects, etc. in the structure. A much simpler control
can be achieved by a magnetic field – in particular for the uniaxial materials.
Kakeshita [20] reported on the uniaxial Fe∼3Pd system, which transforms from
a cubic to a tetragonal structure at 230 K, with one variant expanding along
the applied field direction. Also studied is the planar Fe3Pt system, which
contracts in the applied field direction into a divariant tetragonal phase at
85 K. The transformation path for the rearrangement of the variants by the
magnetic field and by an applied stress has been found to be the same (with an
energy dissipated during the rearrangements of the variants of 260 kJ m−3 for
Fe3.21Pd). The effect depends strongly on the magneto-crystalline anisotropy
parameter in the Hamiltonian term of the form −K S2

z . For Fe∼3Pd a value of
K ∼ 350 kJ m−3 has been reported. It is highly important to theoretically un-
derstand the basic mechanisms behind the anisotropy, and to make accurate
calculations. This, however, still represents a significant challenge.

This has become very apparent in the seemingly totally unrelated sys-
tem of use for magnetic cooling by exploiting the magneto-caloric effect. This
relies on the entropy change, ∆S, at the phase transition. Increasing the mag-
netic order reduces the entropy, and the corresponding energy is released
as heat in the lattice – and vice versa. This can be used to cool other at-
tached objects. Pecharsky et al. [21] showed that ∆S can be significantly
enhanced by magneto-structural effects. In 1997 a giant magneto-caloric ef-
fect was found [22] in the Gd–Si–Ge materials (more precisely R5(Si4−xGex),
where R is a rare earth element). This problem is discussed in Chap. 10. Al-
though much is now understood – in particular that a shear between layers in
the structure is important – a good deal of fundamental research remains to
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be done before a basic understanding is achieved. It is thus very difficult to
understand why Gd5(Si4−xGex) is one of the best materials – with as large
an anisotropy constant as for Co. Gd, being an S-state ion, should on the
contrary show only weak magneto-crystalline anisotropy. Here, clearly more
theoretical foundation and quantitative calculations are needed. Perhaps a
mechanism as that recently proposed for pure Gd applies here as well [23].
Labarta and collaborators [24] have reported on the influence that the compo-
sition x and the field H have on the phase transition and in particular on the
entropy change ∆S. It has been concluded from the scaling behavior found for
∆S that the magneto-volume effects due to H are of the same nature as those
due to atomic substitution, x. They further showed that the field induced
maximum entropy change, ∆Smax, is even bigger per kg in the Ni–Mn–Ga
systems (∼−30 J K−1 per kg at 1.5 T) than in the Gd5(Si4−xGex) materials
(∼−15 J K−1 per kg at 2.0 T) [25]. These results are reported in Chap. 11.

When a material approaches the realm of applications, optimizations are
called for – especially it seems necessary to reduce the magnetic field from the
presently needed about 2 T (close to the maximum obtainable in permanent
magnets) to lower values. An attempt to achieve that has been reported by
Lewis et al. [26] who, by using thin films of Gd5(Si4−xGex) coated by either Fe
or Al, can reduce the needed field and even increase ∆S – equally well with
both coatings. The basic reason remains obscure, but a good guess might
be that the first-order transition starts by nucleation events in which the
surface properties obviously play a large role – hence strain effects produced
by the add atoms may create nucleation sites – irrespective of their magnetic
properties. Clearly, there is room for lots of improvements along those lines.

In a sense turning things upside down, Strässle et al. [27] reported on how
one in many systems one can obtain the magneto-caloric effect by applying
a hydrostatic pressure. The basic mechanism can be much more diversified
than the above discussed “anisotropy mechanism” and might include mech-
anisms ranging from pressure induced structural (PrxLa1−xNiO3), magnetic
(CeSb), valence [EuNi2(SixGe1−x)2] transitions, spin fluctuations (YMn2) to
electron hybridization in Kondo systems (Ce3Pd20Ge6) – with potential effects
as promising as in the above anisotropic magneto-caloric materials. Of course
this cooling method is in principle the same as the conventional gas–liquid
one. If one should make a choice between the various mechanisms, one tends
to move into a space of – for physics – irrelevant variables like cost, efficiency,
availability, noise, and other environmental effects, etc. Physics should be free
to explore possibilities (not only avenues to prosperity, but also the impracti-
cable paths) providing facts and inspiration for inventors. Unfortunately, the
mentioned variables have a tendency to catch up with physics in the funding
phase.

The magneto-volume problem is of course related to the Invar-problem,
which has been much studied by Wassermann et al. [28]. This issue is re-
viewed in Chap. 9. The name indicates “invariant”, namely an fcc Fe65Ni35
alloy, which does not show thermal expansion (because of a counteracting
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volume magnetostriction) – an invention which brought the discoverer, C.E.
Guillaume, the Nobel prize in 1920. However, in spite of almost 100 years
of intensive research the basic mechanism has not been agreed upon – but
Wassermann states that it most probably has to do with a charge transfer of
electrons between orbitals of different symmetry (eg and t2g in ionic terms)
and their nonbonding and antibonding characters; whereas a canting model
of the moments cannot account for the phenomena [29]. Perhaps the meaning
of “understanding” is relative: the more studies the stricter demands – now
one might be able to solve some of the difficult (really metallic) problems with
modern techniques and computers.

This brings us to the electronic theory part. Clearly, in most cases one must
consider the behavior of the electrons along with the structural and magnetic
changes – on the same footing, a very difficult problem. Harmon [30] is one
of the pioneers in the field, who first used the “frozen phonon” method to
elucidate the martensitic transformation in for example Zr [1, 31]. Harmon
et al. [32] reported on the advances, using the local density approximation,
augmented by a special treatment of the 4f-electrons for the electron exchange
and correlation, for the calculation of the properties of complex magnetic ma-
terials as Gd5(Si2Ge2) and Ni2MnGa. The intriguing behavior of a Zoo of
precursor phases (with different periodicity) might be understood (at least
partly) in terms of a Fermi surface nesting vector which moves with the de-
gree of magnetization. In NiTi systems the soft phonon modes can be found
quite accurately and in accordance with experiments using molecular dynam-
ics methods. An impressive work has been performed by Ayuela et al. [33] on
the efforts to calculate a number of properties, like the field dependent shape
memory effect, the phonon curves, the anisotropy energies, and the transi-
tion temperatures in the Ni–Mn–Ga systems, in which a field can induce as
much as 10% strain. They use a quite different, atomistic approach than the
above mentioned. A good agreement with the anisotropy constant has been
obtained, just by taking into account the orbital character of the electrons
and calculating the energy differences. A similar calculation should be done
for the Gd5(Si2Ge2) system. It is not clear if changes in the Fermi surface
with magnetization or if the entropy part is properly taken into account in
this treatment. Apropos entropy, it is quite important that the various con-
tributions are theoretically estimated, whether originating from the changes
in the electronic entropy or the vibrational (and disorder) entropy or other
sources.

The again seemingly totally different subject of colossal magneto-resistance
(CMR) materials of the manganite family, exemplified by Bi1−xSrxMnO3, has
been investigated by Frontera et al. [34]. Here an intimate interplay between
magnetic and structural properties exists. However, in these basically insulat-
ing materials, the theory seems to be on better grounds with the Goodenough
rules [35] than in the metallic magneto-structural alloys. These rules go a long
way in explaining the interplay between the magnetic ordering and the charge
ordering – although one additionally may have to consider a strong coupling
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between two neighboring Mn ions, which may then form a delocalized Zener
polaron [36]. Many features of the effect of Bi substitution can be explained
in terms of the Zener polaron model.

In similar materials, Ibarra’s group [37] investigated the interplay between
strong electron correlation and the lattice defects in mixed valence mangan-
ites. This is discussed in Chap. 3. They pointed out that an intrinsic inho-
mogeneous phase, even at the nanoscale, is found in which for example one
would observe coexistence of ferromagnetic clusters in a paramagnetic insu-
lating phase as well as coexistence of paramagnetic insulating regions and
ferromagnetic metallic regions. A local disorder in these materials seems to
be unavoidable. The balance is so delicate that one can observe pronounced
isotope effects by exchanging 16O by 18O. This quite unexpected phenomenon
has been shown by Egami [38], to occur both in the CMR ceramics and in the
high temperature superconducting cuprates. It is a size not a phonon effect.
He advocated for the importance of studying the ionic size effect on the CMR
phenomena. To this a new – high-q – neutron scattering technique has been
developed to very accurately determine the pair distribution function in solids.
The general conclusion is that in these materials an intrinsic, unavoidable dis-
order occurs at the nanoscale level. If this – let us call it new – phase exists it
requires rethinking of the thermodynamic treatment – namely an inclusion of
the entropy corresponding to the intrinsic (static) disorder even at very low
temperatures. This is an important challenge for theoreticians/statisticians in
the years to come. This is covered in Chap. 4.

As a theoretician, I am always impressed by the advances made in ex-
perimental techniques. De Graef et al. [39] nicely demonstrated the progress
made in imaging magnetic domains using the Lorentz transmission electron
microscope, showing for example domain walls and domain pinning on lattice
defects in Ni2MnGa. He also looked into the prospects for in situ imaging.
The technique is explained in Chap. 7. Similar studies by Tsuchiya et al. [40]
allowed an imaging of the tetragonal, intermediate, and cubic phases in the
Ni–Mn–Ga alloys. Additional use of electron holography has been discussed
by Murakami et al. [41], with applications to the Ni51Fe22Ga27 shape memory
alloy and to the hole-doped manganites La1−xSrxMnO3. A complex interplay
between the magnetic and the structural domain structure has been observed.
In the manganites it is found that both ferro- and antiferromagnetic phases
coexist. Clearly, the real space experimental methods provide very valuable,
complementary information to that obtained by the reciprocal space scatter-
ing techniques.

To help putting some order into the complexity Shenoy et al. [42] formu-
lated a classification of the disorder observed on various scales. He pointed
out the importance of the different length scales and distinguishes among
the macroscopic, the mesoscopic, the nanoscale, the atomic scale, and the
electronic scale (as we saw one may need to go to even the nuclear scale
– the O-isotope effect in manganites and cuprates). Using a Ginzburg–
Landau approach he suggested a generic and elastic origin for the ubiquitous
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inhomogeneity phenomena: stripes, droplets, channels, twins domains, etc.
The energy is lowered by the interweaving of competing low-temperature
structural variants. This is developed in Chap. 1. That may in fact be why the
martensitic transition so long took a special position among phase transitions.
It is very important to have these scales in mind when discussing phenomena
in as diversified a field as encompassed by the interplay of magnetism and
structure. In a sense we seem to face the opposite of a Babylonian confusion,
having the same language for different things. Castán et al. [43] proposed a
more detailed classification scheme for multistage displacive structural trans-
formation in terms of the presence of, or absence of precursor modulated
phases and applied it to the Ni–Mn–Ga, NiTi(Fe), Cu–Zn–Al and α-uranium
systems. Classification schemes are good at creating new perspectives.

The accommodation problem of the structural transitions has been dealt
with also at an abstract mathematical level. Lexellent et al. [44] used a
scale free, mathematical approach to discuss the joint effect of external field
and stress with the Ni–Mn–Ga systems in mind. James et al. [45] reported
(Chap. 8) on the interrelations between various strain tensors – and has solved
the problems by referring to the properties of the SU(n) symmetry groups. It
is inspiring to see the martensitic problem discussed in terms usually joggled
within elementary particle physics. Perhaps, the above classifications should
be even further extended. And perhaps our materials have rich enough physics
that they may be used as experimental testing ground for the more exotic the-
ories of the Universe.

In conclusion, the chapters cover a wide area of materials science. They
all bring something new or take a new angle on an old problem – and I
have tried to amplify this principle, set out by the editors, by mentioning a
couple of further, related investigations. Clearly the list of such works cannot
be complete here. The feeling one is left with after the confrontation of the
diverse phenomena is that physics is full of interesting phenomena and there
is a lot to do, even at a very fundamental level. A particular flavor with all the
materials covered here is further that apart from being intriguingly complex
and of academic interest they are potentially useful for the society in a not
too distant future.
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