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On 24 Forms of the Acoustic
Wave Equation in Vortical Flows
and Dissipative Media
The 36 forms of the acoustic wave equation derived in an earlier review (Campos, L. M.
B. C., 2007, “On 36 Forms of the Acoustic Wave Equation in Potential Flows and
Inhomogeneous Media,” Appl. Mech. Rev., 60, pp. 149–171) were grouped in four
classes, of which the last (Class IV) concerned sheared mean flows; another type of
vortical flow is swirling flow, and thus the present review completes the preceding by
starting with Class V of linear, nondissipative acoustic wave equations in axisymmetric
swirling, and also sheared, mean flow. These include general swirl and, in particular,
rigid body and potential vortex swirl, combined or not with shear, for axisymmetric or
general nonaxisymmetric acoustic modes, in two types of media: (i) inhomogeneous
isentropic and (ii) homogeneous homentropic. Besides the 14 acoustic wave equations in
sheared and swirling mean flows, the remaining ten acoustic wave equations derived in
the present review all concern waves in homogeneous and steady media at rest, with
dissipation or nonlinear effects to second-order or a combination of these two opposing
effects, viz., (i) Class VI of linear, nondissipative wave equations with weak or strong
thermoviscous dissipation in a homogeneous medium at rest; (ii) Class VIIA nonlinear
one-dimensional wave equations in steady, homogeneous medium at rest without dissi-
pation, or with viscous or thermoviscous dissipation, also in the case of a duct of varying
cross section; (iii) Class VIIB of weakly nonlinear, three-dimensional waves or beams
with thermoviscous dissipation in a homogeneous steady medium at rest. The 24 forms of
the acoustic wave equation derived in the present review add to the 36 forms in the
preceding review to form the set of 60 acoustic wave equations, whose interconnections
are indicated in a family tree at the end. Numerous examples of the applications of the
wave equations to the physical world are given at the end of each written section.
�DOI: 10.1115/1.2804329�
Introduction
The 36 forms of the acoustic wave equation �W1–W36� in the

receding review �1� ended with the case of a sheared mean flow.
nother case of interaction of sound with vorticity is that of swirl-

ng mean flow, which may or may not be combined with shear. In
oth cases, there is no acoustic potential, so the acoustic pressure
s used as wave variable again in the presence of swirl �W52�. The
implest particular case is that of axisymmetric acoustic modes
W47�, although it is simple to generalize it to nonaxisymmetric
coustic modes. In an axisymmetric mean flow with arbitrary
wirl and shear, the acoustic wave equation is somewhat complex
or arbitrary swirl �W50�, although it simplifies somewhat for
igid body �W48� and potential vortex �W49� swirl. A significant
implification is to assume that the swirling component of the
ean flow is of low Mach number, including a shear flow contri-

ution; this leads to simpler wave equations in axisymmetric
wirling and shear flow, either isentropic �W42� or homentropic
W41�. Two particular cases of interest are as follows: �i� rigid
ody shear, when the angular velocity is constant in the isentropic
W44� or homentropic �W43� wave equation; �ii� the tangential
ean flow velocity decaying as the inverse of distance, i.e. the

otential vortex, also leads to a simplification of the wave equa-
ion in the isentropic �W46� or homentropic �W45� cases. A fur-
her simplification is to omit the shear flow component and con-
ider only the swirl flow component, both for the isentropic �W40�
nd homentropic �W39� wave equations; conversely, no swirl and
nly axisymmetric sheared mean flow may be considered for non-
xisymmetric acoustic modes in isentropic �W38� and homen-
ropic �W37� conditions.
Transmitted by Editorial Advisory Board Member E. H. Dowell.
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All of the preceding 50 wave equations, of which 36 �viz.,
W1–W36� are in the earlier review �1�, and 14 are the first �viz.,
W37–W50� in the present review are nondissipative. The dissipa-
tive acoustic wave equation �Sec. 3� is obtained most readily for
linear waves in a medium at rest. The simplest case must take into
account viscosity and thermal conduction, since the two effects
are generally comparable; it is important to include shear as well
as bulk viscosity, since the decoupling of the vorticity from the
dilatation shows that the former is affected only by shear viscos-
ity. Thus, it is possible to obtain a scalar dissipative acoustic wave
equation for the dilatation, i.e., the divergence of the acoustic
velocity. The linear dissipative wave equation in a homogeneous
medium at rest �W52� involves products of diffusivities, in the
case of strong dissipation. Since in many situations the viscous
and thermal diffusivities are small, the neglect of their products
leads to useful simplification of the dissipative wave equations,
including linearly bulk and shear viscosities and thermal conduc-
tion �W51�. In the case of weak dissipation of sinusoidal waves,
the bulk and shear viscosities appear combined with the thermal
conductivity, in a thermoviscous dissipation coefficient; the latter
involves the specific heats at constant pressure and volume and
appears also for weakly nonlinear and dissipative waves.

An interesting combination is nonlinear waves with linear dis-
sipation, since it leads to a competition of two effects. Nonlinear
unidirectional waves �W53� are specified by the conservation of
Riemann invariants along characteristics �Sec. 4�, implying that
the propagation speed is larger in the compression phase of the
wave than in the rarefaction phase, leading to a steepening of the
wave form. This steepening can be countered by geometrical
spreading, in the case of nonlinear waves in duct of nonuniform
cross section �W54�, e.g., spherical waves in a conical duct. For

plane unidirectional nonlinear waves, linear dissipation is suffi-
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ient to limit wave steepening, and leads to Burger’s equation
W55�, which can be generalized to ducts of nonuniform and un-
teady cross section �W56�, in the presence of shear and bulk
iscosities. The method of characteristics can be checked, by de-
iving by elimination among the equations of motion, the wave
quation for weakly nonlinear, linearly dissipative waves, includ-
ng thermal conduction besides shear and bulk viscosities, both for
ne-dimensional free of waves �W57� and quasi-one-dimensional
ucts of nonuniform cross section �W58�. A final generalization
oncerns weakly nonlinear three-dimensional waves with thermo-
iscous dissipation �W59�, including the case of beams �W60�.

The last set of 10 acoustic wave equations include 2 nondissi-
ative, 2 with viscous and 6 with thermoviscous dissipation; 6
ne-dimensional and 4 in more than one dimension; 2 linear �in
ddition to the 21 in the first review and 14 in the present review�
nd 8 nonlinear �in addition to the 15 the first review�. The total of
0 wave equations in �36 in the earlier review and 24 in the
resent one� are numbered sequentially from W1 to W60, and
orrespond to an approximate order of increasing complexity as
ndicated in Tables 1 and 2 of �1� and in Tables 1–4. A complete
nd detailed derivation is given of each wave equation, since it is
rucial to establish its conditions of validity, as indicated in the list
f wave equations in the Appendix. The notation of the present
eview is consistent with that of the earlier review, so only new
ymbols need be listed. The introduction and conclusion are spe-
ific to each review, and the common points are not restated. The
amily tree shows the hierarchy of the 60 wave equations and
erves as final synthesis of the two reviews. The family tree may

Table 1 Fourteen linear, nondissipative wave

Medium
entropy

Low Mach number
swirl and shear

Shear only

Swirl only

Both
shear and swirl

G

Rig

v

Unrestricted swirl
Mach number and

shear

Axisymmetric mo

Nonaxisymmetric
modes

Rig

Po

Ar

able 2 Two linear, dissipative wave equations in a homoge-
eous medium at rest

Dissipative Weak Strong

Thermoviscous W 51 W 52

able 3 Six nonlinear, one-dimensional wave equations in me-
ia at rest

Characteristics Free Ducted

Nondissipative W53 W 54
Viscous W55 W 56

Thermoviscous W57 W 58
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be used to find the most appropriate acoustic wave equation for a
particular application; the list of wave equations then confirms the
conditions of validity and specifies equivalent forms of that wave
equation; the text then provides one or more proofs of the results.

The process of establishing 60 wave equations is made more
efficient by using methods, which lead to a related set, so that
there are only seven main derivations, with minor variants: �i� the
acoustic variational principle applies �Class I� to linear, nondissi-
pative acoustic waves in homogeneous or inhomogeneous, steady
or unsteady, potential mean flows �W1–W9�; �ii� the exact, non-
linear equation for a potential flow leads �Class II� to the corre-
sponding nonlinear wave equations �W10–W15�; �iii� the corre-
sponding linear �W16–W24� and nonlinear �W25–W30� equations
for nondissipative waves in a potential flow, in the case of quasi-
one-dimensional propagation in a duct of varying cross section
�Class III�, are obtained by simple transformations; �iv� the linear,
nondissipative wave equations in mean flows with �Class IV�
shear �W31–W38� and/or with �Class V� swirl �W39 to W50� are
obtained by elimination among the linearized equations of fluid,
motion; �v� a different elimination, including viscous and thermal
dissipation in a medium at rest, leads �Class VI� to the linear,
dissipative acoustic wave equations �W51–W52�; �vi� the conser-
vation or decay of Riemann invariants along characteristics ap-
plies to �Class VIIA� unidirectional nonlinear waves �W53�, also
in a duct �W54�, in the nondissipative case, and also in the pres-
ence of shear and bulk viscosities, both for free �W55� and ducted
�W56� waves; �vii� elimination between the equations of motion
adds thermal conduction to the viscous dissipation mechanisms
for �Class VIIB� the free �W57� and ducted �W58� one-
dimensional waves, and applies as well to three-dimensional
weakly nonlinear waves with thermoviscous dissipation �W59�,
including beams �W60�. The seven methods are not mutually ex-
clusive, and can be used in some cases as cross-checks, allowing
as many as three or four distinct derivations of the same wave
equation.

uations in swirling and sheared mean flows

Inhomogeneous
isentropic

Homogeneous
homentropic

W 38 W 37

W 40 W39

ral swirl W 42 W 41

ody swirl W 44 W 43

ential
x swirl

W 46 W 45

W 47 ¯

ody swirl W 48 ¯

ial vortex
wirl

W 49 ¯

ary swirl W 50 ¯

Table 4 Two weakly nonlinear, dissipative wave equations in a
homogeneous medium at rest

Water waves Three-dimensional Beam

Thermoviscous W59 W60
eq
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Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



2
S

s
m
a
�
�
i
fi
a
f
t
s
c
W
i
m
fl
l
s
t
m
s
e
n
i
a

C
a

w
a

w

w
E
�

U
c

a

w
�
�

A

Downlo
Acoustic Wave Equations in Swirling and/or
heared Flows
The wave equation for axisymmetric acoustic modes in an axi-

ymmetric mean flow �W36� can be extended to nonaxisymmetric
odes �W38�, and besides rotation or swirl of the mean flow

round the axis can be superimposed on the mean shear flow
W42�. The other particular case would be swirl without shear
W40�. The wave equation for nonaxisymmentric acoustic modes
n a mean axisymmetric sheared and swirling flow �W42� simpli-
es for two particular cases: �i� rigid body rotation �2,3� when the
ngular velocity is constant �W44�; �ii� a potential vortex �W46�,
or which the tangential velocity decays �4–6� like the inverse of
he radius, and thus the angular velocity decays like inverse
quare of the radius, and the rotation effect is included in the
onvected wave equation. These wave equations �W38, W40,

42, W44, W46� apply to an isentropic mean flow, which may be
nhomogeneous, and simplify in homentropic or homogeneous

ean flow reflectively to �W37, W39, W41, W43, W45�. A mean
ow with high Mach number swirl is always inhomogeneous, and

eads to the more complex wave equations �3� with swirl plus
hear �W50�, including the cases of rigid body �W48� and poten-
ial vortex �W49� swirl, besides the case of axisymmetric acoustic

odes �W47�. The acoustic wave equations in shear flows de-
cribe the propagation of sound in shear layers and boundary lay-
rs. In the case of an axisymmetric duct, besides the shear layer
ear the wall, there may be swirl, e.g., due to turbomachinery. The
mpedance and rigid wall boundary conditions can be obtained
lso �3� for a sheared and swirling mean flow.

2.1 Equations of Fluid Mechanics in Cylindrical
oordinates. The fundamental equations of nondissipative fluids

re the inviscid momentum equation:

�V/�t + �V · ��V + �−1 � P = 0 �1�

here V is the velocity, � the mass density, and P is the pressure,
nd the equation of continuity:

��/�t + V · �� + � � · V = 0 �2�

hich may be combined with the adiabatic condition:

�P/�t + V · �P = C2���/�t + V · ��� �3a�

C2 � ��p/���s = �P/� = �RT �3b�

here C is the adiabatic sound speed, and the last expression in
q. �3b� applies to a perfect gas. Substitution of Eq. �2� in Eq.

3a� leads to

�P/�t + V · �P + C2� � · V = 0 �4�

sing cylindrical coordinates �r ,� ,z�, the last equation �4� be-
omes

Ṗ + Vr�rP + V�r−1��P + Vz�zP + C2�r−1�r�rVr� + r−1��V� + �zVz�

= 0 �5�

nd the momentum equation �1� has the cylindrical components:

V̇r + Vr�rVr + V�r−1��Vr + Vz�zVr − V�
2r−1 + �−1�rP = 0 �6a�

V̇� + Vr�rV� + V�r−1��V� + Vz�zV� + VrV�r−1 + �−1��P = 0

�6b�

V̇z + Vr�rVz + V�r−1��Vz + Vz�zVz + �−1�zP = 0 �6c�

here dot denotes derivative with regard to time Ṗ��P /�t and
��� /�� partial derivative with regard to a cylindrical coordinate

��r ,� ,z�. The total state of the fluid is assumed to consist of

pplied Mechanics Reviews
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�V,P,�,C��x,t� = �V0,p0,�0,c0��x� + �v� ,p,�,c���x,t� �7�

of a steady, possibly inhomogeneous mean state, plus unsteady
and inhomogeneous acoustic perturbations.

2.2 Acoustic Modes in an Axisymmetric Swirling and
Sheared Flow. The mean flow is assumed to be axisymmetric,
with a sheared axial velocity U�r� and swirl specified by an an-
gular velocity ��r�, which may also be nonuniform, both depend-
ing on the radius alone:

v0 = ezU�r� + e��r��r� �8a�

and the corresponding linearized material derivative is

d/dt � �/�t + v0 · � = �/�t + U�r��/�z + ��r��/�� �8b�

The mean flow �8a� satisfies the momentum equation �6a�–�6c�,
where the pressure depends only on the radius, and its gradient is
due to the centrifugal force:

�p0/�� = 0 = �p0/�z dp0/dr = �0�2r = ��p0/r���r/c0�2 �9�

where the sound speed �3b� for the mean state c0
2=�p0 /�0 was

introduced; it follows that for low Mach number swirl, the mean
flow pressure may be taken as constant:

��r�2 � �c0�r��2 p0 = const � p* �10a�

otherwise it is a function of the radius,

p0�r� = p* +�
0

r

�0�r����r��2rdr �10b�

where p*= p0�0� is the pressure on the axis. The adiabatic conti-
nuity equation �5� is linearized �7� as

c0
−2�dp/dt + �dp0/dr�vr� + �0�r−1�r�rvr� + r−1��v� + �zvz� = 0

�11�

using the linearized material derivative �8b�. The axial component
�6c� of the momentum equation is linearized:

dvz/dt + vrdU/dr + �0
−1�zp = 0 �12�

and involves mean flow shear in the second term. The radial com-
ponent of the momentum equation �6a� is linearized:

dvr/dt − 2�v� − �2r�0
−1� + �0

−1�rp = 0 �13�

where mean flow swirl appears in two terms, one coupling rota-
tion to nonaxisymmetric modes v��0 and to the other coupling
rotation to the density perturbation ��0. For nonaxisymmetric
modes, the azimuthal component �6b� of the momentum equation
is linearized:

dv�/dt + �2� + rd�/dr�vr + �0
−1r−1��p = 0 �14�

where mean flow swirl appears the second term. Equations
�11�–�14� coincide with those in Ref. �3�, using the linearized
material derivative �8b� for compact notation.

2.3 Wave Equation for Nonaxisymmetric Acoustic Modes.
For axisymmetric acoustic modes, since ���� /��=0, the material
derivative �86� omits the last term; since also v�=0, it follows
from Eq. �14� that axisymmetric acoustic modes can exist only if

v� = 0 = �/�� rd�/dr + 2� = 0 �15a�

corresponding �4–6� to a potential flow vortex

const = �r2 = v�r = �̄/2� �15b�

where �̄ is the circulation. For nonaxisymmetric modes in a po-

tential vortex, Eq. �14� simplifies to

NOVEMBER 2007, Vol. 60 / 293
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�r2 = const dv�/dt + �0
−1r−1��p = 0 �16�

hich does not involve rotation; since for low Mach number swirl
13� simplifies to

��r�2 � c0
2 dvr/dt − 2�v� + �0

−1�rp = 0 �17�

t follows that the rotation appears only in Eq. �17� and in the
inearized material derivative �8b�. In the case of rigid body rota-
ion, the linearized material derivative also appears in Eq. �14�,
iz.,

� = const:l dv�/dt + 2�vr + �0
−1r−1��p = 0 �18�

his is a simplification of Eq. �14�, distinct from the case �16� of a
otential vortex.

Both for axisymmetric and nonaxisymmetric acoustic modes,
he linearized adiabatic equation �3a�:

dp/dt + vrdp0/dr = c0
2�d�/dt + vrd�0/dr� �19�

eads on substitution of Eq. �9� to

d�/dt = c0
−2dp/dt + r−1vr��0��r/c0�2 − rd�0/dr� �20�

hich simplifies for low Mach number swirl to

��r�2 � c0
2 d�/dt = c0

−2dp/dt − vrd�0/dr �21�

he material derivative �8b� commutes with all components of the
radient:

��d/dt = d/dt�� �22a�

�zd/dt = d/dt�z �22b�

xcept the radial

�rd/dt − d/dt�r = �dU/dr��z + �d�/dr��� �23�

he preceding results allow elimination of the acoustic wave
quation in an axisymmetric unidirectional swirling and sheared
ean flow, for nonaxisymmetric modes and low or high Mach

umber swirl.

2.4 Simplification for Low Mach Number Swirl and
hear. For the general case of nonaxisymmetric acoustic modes,

n a low Mach number swirling flow, Eqs. �12� and �14� are un-
hanged, Eq. �13� simplifies to Eq. �17�, and Eq. �11� simplifies to

c0
−2dp/dt + �0�r−1vr + �rvr + r−1��v� + �zvz� = 0 �24�

pplying d /dt to Eq. �24� and using Eqs. �22a�, �22b�, and �23�
eads to

c0
−2d2p/dt2 + �0�r−1dvr/dt + �r�dvr/dt� + r−1���dv�/dt� + �z�dvz/dt��

= �0��dU/dr��zvr + �d�/dr���vr� �25�

here Eqs. �17�, �14�, and �12� may be substituted

c0
−2d2p/dt2 − r−1�rp − �0�r��0

−1�rp� − r−2���p − �zzp

= 2�0�dU/dr��zvr − 2�0��rv� + 2�0�d�/dr + �/r����vr − v��
�26�

n the absence of shear and swirl �26� reduces to the inhomoge-
eous convected wave equation �see paper I �1� Eq. �178��, with
n extra term relative to �209� in �1�:

dU/dr = 0 = � c0
−2d2p/dt2 − r−1�rp − �rrp − r−2���p − �zzp

+ �0
−1�d�0/dr��rp = 0 �27�

ecause the acoustic modes are nonaxisymmetric ���p�0.
In the presence of shear and/or swirl, the velocity perturbation

s eliminated from Eq. �26� application of d /dt and use of Eqs.

22a�, �22b�, and �23�, viz.,
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d

dt
	 1

c0
2

d2p

dt2 −
1

r

�

�r

r

�p

�r
� −

1

r2

�2p

��2 −
�2p

�z2 +
1

�0

d�0

dr

�p

�r
�

= 2�0�dU/dr��z�dvr/dt� − 2�0��r�dv�/dt� + 2�0���dU/dr��zv�

+ �d�/dr���v�� + 2�0�d�/dr + �/r�����dvr/dt� − dv�/dt�
�28�

Substituting Eqs. �17� and �14� in Eq. �28�, and using the condi-
tion �10a� of low Mach number swirl in the stronger form,

r2�� + dU/dr�2 � �c0�r��2 d

dt
	 1

c0
2

d2p

dt2 −
�0

r

�

�r

 r

�0

�p

�r
� −

1

r2

�2p

��2

−
�2p

�z2 � + 2
dU

dr

�2p

�z�r
+ 2

d�

dr

�2p

���r

−
2�0

r
	 d

dr

�

�0
�� �p

��
= 0 �29�

lead to the axisymmetric inhomogeneous convected shear and
swirl acoustic wave equation valid for general, nonaxisymmetric
acoustic modes in an axisymmetric sheared and swirling mean
flow of low Mach number.

2.5 Acoustic Wave Equations for Isentropic Inhomoge-
neous Mean Flow. The inhomogeneous shear and swirl acoustic
wave equation �29�,

W42:
d

dt
	 1

c0
2

d2p

dt2 −
�2p

�r2 −
1

r

�p

�r
−

1

r2

�2p

��2 −
�2p

�z2 +
1

�0

d�0

dr

dp

�r
�

+ 2
dU

dr

�2p

�z�r
+ 2

d�

dr

�2p

���r
−

2�0

r
	 d

dr

�

�0
�� �p

��
= 0 �30�

in the absence of swirl �=0 simplifies to the axisymmetric inho-
mogeneous convected shear acoustic wave equation:

W38:
d

dt
	 1

c0
2

d2p

dt2 −
�2p

�r2 −
1

r

�p

�r
−

1

r2

�2p

��2 −
�2p

�z2 +
1

�0

d�0

dr

�p

�r
�

+ 2
dU

dr

�2p

�z�r
= 0 �31�

which extends �210� from Paper I �1� to nonaxisymmeytric acous-
tic modes for which �2p /��2�0; in the absence of shear dU /dr
=0 there is less simplification of Eq. �30� to the inhomogeneous
swirl acoustic wave equation:

W40:
d

dt
	 1

c0
2

d2p

dt2 −
�2p

�r2 −
1

r

�p

�r
−

1

r2

�2p

��2 −
�2p

�t2 +
1

�0

d�0

dr

�p

�r
�

+ 2
d�

dr

�2p

���r
− 2

�0

r
	 d

dr

�

�0
�� �p

��
= 0 �32�

In the presence of shear and rigid body swirl �=const, Eq. �30�
simplifies to the shear and rigid body swirl acoustic wave equa-
tion:

W44:
d

dt
	 1

c0
2

d2p

dt2 −
�2p

�r2 −
1

r

�p

�r
−

1

r2

�2p

��2 −
�2p

�z2 +
1

�0

d�0

dr

�p

�r
�

+ 2
dU

dr

�2p

�z�r
+ 2

�

�0r

d�0

dr

�p

��
= 0 �33�

and in the case �15a� of potential vortex swirl, Eq. �30� simplifies

to
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W46:
d

dt
	 1

c0
2

d2p

dt2 −
�0

r

�

�r

 r

�0

�p

�r
� −

1

r2

�2p

��2 −
�2p

�z2 � + 2
dU

dr

�2p

�z�r

− 4
�

r

�2p

���r
+

2�

r

 1

�0

d�0

dr
+

2

r
� �p

��
= 0 �34�

hich is the inhomogeneous shear and potential vortex swirl
coustic wave equation.

For low Mach number swirl, the mean flow pressure is constant
10a�, and if the mean flow is homentropic, then it is homoge-
eous, allowing further simplification of the wave equations
30�–�34�. The wave equation for general nonaxisymmetric acous-
ic modes in an axisymmetric sheared and swirling homogeneous

ean flow with low Mach number is given by the following.

�i� In the presence of shear and swirl, by Eq. �29� the shear
and swirl acoustic wave equation:

W41:
d

dt
	 1

c0
2

d2p

dt2 −
1

r

�

�r

r

�p

�r
� −

1

r2

�2p

��2 −
�2p

�z2 �
+ 2

dU

dr

�2p

�z�r
+ 2

d�

dr

�2p

���r
−

2

r

d�

dr

�p

��
= 0 �35�

�ii� In the absence of swirl, by Eq. �31� the shear acoustic
wave equation:

W37:
d

dt
	 1

c0
2

d2p

dt2 −
1

r

�

�r

r

�p

�r
� −

1

r2

�2p

��2 −
�2p

�z2 �
+ 2

dU

dr

�2p

�z�r
= 0 �36�

which generalizes �211� in paper I �1� to nonaxisymmetric
acoustic modes, for which ���p�0.

�iii� In the absence of shear, by Eq. �32� the swirl acoustic
wave equation:

W39:
d

dt
	 1

c0
2

d2p

dt2 −
1

r

�

�r

r

�p

�r
� −

1

r2

�2p

��2 −
�2p

�z2 �
+ 2

d�

dr

�2p

���r
−

2

r

d�

dr

�p

��
= 0 �37�

�iv� For rigid body swirl, by Eq. �33� the rigid body swirl
acoustic wave equation:

W43:
d

dt
	 1

c0
2

d2p

dt2 −
1

r

�

�r

r

�p

�r
� −

1

r2

�2p

��2 −
�2p

�z2 �
+ 2

dU

dr

�2p

�z�r
= 0 �38�

which differs from Eq. �36� since Eq. �36� omits the last
term in the linearized material derivative �8b�.

�v� For potential vortex swirl, by Eq. �34� the potential vortex
swirl acoustic wave equation:

W45:
d

dt
	 1

c0
2

d2p

dt2 −
1

r

�

�r

r

�p

�r
� −

1

r2

�2p

�	2
−

�2p

�z2 �
+ 2

dU

dr

�2p

�z�r
− 4

�

r

�2p

���r
+

4�

r2

�p

��
= 0. �39�

These homogeneous cases �35�–�39� can be compared
with the inhomogeneous cases �30�–�34�.

2.6 Acoustic Wave Equations for Homentropic Or Homo-
eneous Mean Flow. For nonaxisymmetric acoustic modes, the

coustic pressure spectrum is introduced:
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p�r,�,z,t� = 

m=−


+


eim��
−

+�






p̃�r;m,k,��ei�kz−�t�dkd� �40�

where �i� the Fourier integrals involve the frequency � and axial
wave number k as for axisymmetric acoustic modes �212� in Pa-
per I �1�; �ii� nonaxisymmetric acoustic modes introduce a Fourier
series in the azimuthal direction � with integral wave number m.
The linearized material derivative �8b� leads to the Doppler
shifted frequency:

d/dt → − i�4 �41a�

�4�r� � � − kU�r� − m��r� �41b�

which reduces to Eq. �41c� in the absence of swirl and to Eq.
�41d� in the absence of shear:

�3�r� � � − kU�r� �41c�

�5�r� � � − m��r� �41d�

where Eq. �41c� coincides with �213b� in paper I �1�. Substitution
in Eqs. �30�–�39� leads to the wave equations for the acoustic
pressure spectrum of nonaxisymmetric modes in an axisymmetric
sheared and swirling mean flow of low Mach number, in ten cases
of increasing complexity from Eqs. �42�–�47�, and particular cases
�48�–�51�, namely, �i� homogeneous mean flow without swirl �36�:

W37*: d2p̃/dr2 + �r−1 + 2�k/�3�dU/dr�dp̃/dr + ���3/c0�2 − k2

− m2/r2�p̃ = 0 �42�

�ii� inhomogeneous mean flow without swirl �31�:

W38*: d2p̃/dr2 + �r−1 − �0
−1d�0/dr + 2�k/�3�dU/dr�dp̃/dr

+ ���3/c0�2 − k2 − m2/r2�p̃ = 0 �43�

�iii� homogeneous mean flow without shear �37�:

W39*: d2p̃/dr2 + �r−1 + 2�m/�5�d�/dr�dp̃/dr + ���5/c0�2 − k2

− m2/r2 − 2�m/�5�r−1d�/dr�p̃ = 0 �44�

�iv� inhomogeneous mean flow without shear �32�:

W40*: d2p̃/dr2 + �r−1 − �0
−1d�0/dr + 2�m/�5�d�/dr�dp̃/dr

+ ���5/c0�2 − k2 − m2/r2 − 2�m/�5�r−1�d�/dr

− ��/�0�d�0/dr��p̃ = 0 �45�

�v� homogeneous mean flow with swirl and shear �35�:

W41*: d2p̃/dt2 + �r−1 + 2�kdU/dr + md�/dr�/�4�dp̃/dr

+ ���4/c0�2 − k2 − m2/r2 − 2�m/�4�r−1d�/dr�p̃ = 0 �46�

�vi� inhomogeneous mean flow with swirl and shear �30�:

W42*: d2p̃/dt2 + �r−1 − �0
−1d�0/dr + 2�kdU/dr

+ md�/dr�/�4�dp̃/dr + ����4/c0�2 − k2 − m2/r2

− 2�m/�4�r−1�d�/dr − ��/�0�d�0/dr���p̃ = 0 �47�

�vii� homogeneous mean flow with rigid body swirl �38�:

W43*: d2p̃/dt2 + �r−1 + 2�k/�4�dU/dr�dp̃/dr + ���4/c0�2 − k2

− m2/r2�p̃ = 0 �48�

�viii� inhomogeneous mean flow with rigid body swirl �39�:

W44*: d2p̃/dt2 + �r−1 − �0
−1d�0/dr + 2�k/�4�dU/dr�dp̃/dr

+ ���4/c0�2 − k2 − m2/r2 + 2r−1�m/�4���/�0�d�0/dr�p̃ = 0

�49�
�ix� homogeneous mean flow with potential vortex swirl:
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W45*: d2p̃/dr2 + �r−1 + 2�kdU/dr − 2m�/r�/�4�dp̃/dr

+ ���4/c0�2 − k2 − m2/r2 + 4�m/r2���/�4��p̃ = 0 �50�

x� inhomogeneous mean flow with potential vortex swirl �34�:

W46*: d2p̃/dr2 + �r−1 − �0
−1d�0/dr + 2�kdU/dr

− 2m�/r�/�4�dp̃/dr + ���4/c0�2 − k2 − m2/r2 + 2�m/�4���/r�

��2/r + �0
−1d�0/dr��p̃ = 0 �51�

he cases W37* /W38* in Eqs. �39� and �40� can be compared,
espectively, with the cases W35* /W36* of axisymmetric acous-
ic modes in axisymmetric shear �214,215� in Paper I �1�.

2.7 Impedance Wall Boundary Condition With Arbitrary
wirl. In order to eliminate for the acoustic pressure among Eqs.
12�–�14� and Eq. �11�, without the restriction on mean flow shear
n swirl in Eq. �29�, d /dt is applied to Eq. �13�:

d2vr/dt2 − 2�dv�/dt − �0
−1�2rd�/dt + �0

−1d��rp�/dt = 0 �52�

nd �14� and �20� substituted to yield:

d2vr/dt2 + �2��2� + rd�/dr� − �2���r/c0�2 − �r/�0�d�0/dr��vr

= − �0
−1�d��rp�/dt + 2��/r���p − ��/c0�2rdp/dt� �53�

ntroducing in addition to the pressure perturbation spectrum �40�,
he velocity perturbation spectrum ṽr, leads to the relation

i�0Xṽr = �4dp̃/dr − �2m� + ��r/c0�2�4�p̃/r �54�

here

X � ��4�2 + �2���r/c0�2 − �r/�0�d�0/dr� − 2��2� + rd�/dr�
�55�

nvolves the Doppler shifted frequency �41b�.
The boundary condition at a cylindrical wall r=r0 of impedance

or specific impedance Z̄�Z /�0c0 is

r = r0 p̃�r0� = − Zṽr�r0� = − �0c0Z̄ṽr�r0� �56�

n the general case of swirling flow �54�, this implies the boundary
ondition

r = r0 dp̃/dr = �r−1���r/c0�2 + 2m�/�4� − iX/�c0�4Z̄��p̃
�57�

or low Mach number swirl, this simplifies to

��r/c0�2 � 1 dp̃/dr = �2�m/r���/�4� − iX1/�c0�4Z̄��p̃ �58�

here Eq. �55� reduces to

X1 � ��4�2 − �2�r/�0��d�0/dr� − 2��2� + rd�/dr� �59�

n the absence of swirl, there is the further simplification,

� = 0 dp̃/dr = − i��4/�c0Z̄��p̃ �60�

n the case of a rigid wall Z=
, the acoustic boundary condition
57� is

Z = 
 dp̃/dr = ���r/c0�2 + 2m�/�4�p̃/r �61�

or arbitrary swirl, and

��r/c0�2 � 1 
 1/Z̄ dp̃/dr = 2�m/r���/�4�p̃ �62�

or low Mach number swirl, and

� = 0 = 1/Z dp̃/dr = 0 �63�
n the absence of swirl.
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2.8 Wave Equation With High Mach Number Swirl and
Shear. In order to obtain the acoustic wave equation for the pres-
sure perturbation spectrum p̃ in Eq. �40�, in the presence of arbi-
trary swirl and shear, it suffices �3� to eliminate ṽr between Eq.
�54� and another independent relation between p̃ and ṽr. The latter
satisfy �11�, viz.,

− i�4c0
−2�0

−1p̃ + �1 + ��r/c0�2�r−1ṽr + dṽr/dr + i�m/r�ṽ� + ikṽz = 0

�64�

where Eq. �9� was used, and ṽ� may be substituted from Eq. �14�:

i�4ṽ� = �2� + rd�/dr�ṽr + i�m/r��0
−1p̃ �65�

and ṽz from Eq. �12�:

i�4ṽz = �dU/dr�ṽr + i�k/�0�p̃ �66�

Substitution of Eqs. �65� and �66� in Eq. �64� yields

���4/c0�2 − k2 − m2/r2��0
−1p̃ + i�4dṽr/dr + i���4/r��1 + ��r/c0�2�

+ m�2�/r + d�/dr� + k�dU/dr��v�r = 0 �67�

Eliminating ṽr between �54� and �67� and leads to

W50*:
d2p̃

dr2 + 	1

r
+

k

�4

dU

dr
+

m

�4

d�

dr
+

�0X

�4

d

dr

 �4

�0X
��dp̃

dr

+ �X
 1

c0
2 −

k2 + m2/r2

��4�2 � −
�0X

�4

d

dr
� �4

�0Xr
	2m�

�4

+ 
�r

c0
�2��� −

1

r
	2m�

�4
+ 
�r

c0
�2��1

r
	1 + 
�r

c0
�2�

+
m

�4

2

�

r
+

d�

dr
� +

k

�4

dU

dr
� p̃ = 0 �68�

which is the wave equation for the acoustic pressure spectrum of
nonaxisymmetric modes in an axisymmetric isentropic mean flow
with arbitrary shear and swirl involving the Doppler shifted fre-
quency �41b� and the parameter �55�. This equation has been de-
rived before �3�, using a different notation, with a difference in the
coefficient of dp̃ /dr.

The case of axisymmetric acoustic modes corresponds to m
=0,

W47*:
d2p̃

dr2 + 	1

r
+

k

�3

dU

dr
+

�0X

�3

d

dr

 �3

�0X
��dp̃

dr

+ �X	 1

c0
2 − 
 k

�3
�2� −

�0X

�3

d

dr
	 �3

�0Xr

�r

c0
�2� −

1

r2
�r

c0
�2

�	1 + 
�r

c0
�2

+
kr

�3

dU

dr
�� p̃ = 0 �69�

where the Doppler shifted frequency �41b� reduces to �41c� for
m=0. It also simplifies in the case of low Mach number swirl,
when Eq. �55� reduces to X= ��4�2 and the wave equation �68�
reduces to

r2
� +
dU

dr
�2

� c0
2 d2p̃

dr2 + 	1

r
+

k

�4

dU

dr
+

m

�4

d�

dr

+ �0�4
d

dr

 1

�0�4
��dp̃

dr
+ 	
�4

c0
�2

− k2 −
m2

r2

−
2m�0�4

r

d

dr

 �

�0��4�2��p̃ = 0 �70�
Noting that from Eq. �41b� follows
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�4d��4
−1�/dt = − �4

−1d�4/dr = �kdU/dr + md�/dr�/�4 �71�

t is clear that Eq. �70� coincides with Eq. �47� in the low Mach
wirl and shear approximation. This proves the consistency of the
eneral wave equation �68� for unrestricted shear and swirl, with
he particular cases of low Mach number shear and swirl. It would
lso be possible to derive the generalization of these from low
ach number swirl to unrestricted swirl and shear; since in the

atter case the mean flow is inhomogeneous, this leads to five
ave equations, of which Eq. �68� is one example. The number of
ave equations would double from 15 to 30 by considering the
articular cases of axisymmetric acoustic waves, of which Eq.
69� is an example. Of these 30 acoustic wave equations in axi-
ymmetric sheared and/or swirling flow, only 16 are listed explic-
tly, viz., two more examples, in addition to the preceding cases
42�–�51� plus �68� and �69�.

2.9 Rigid Body and Potential Vortex Swirl. For high Mach
umber shear �10b� the mean flow is always inhomogeneous. The
implest case is rigid body swirl:

� = const p0�r� = p* + �2�
0

r

�0�r�rdr �72�

hen Eq. �52� simplifies to

� = const X2 � ��4�2 − �2�4 − ��r/c0�2 + �r/�0�d�0/dr� �73�

nd the wave equation �68� becomes

W48*:
d2p̃

dr2 + 	1

r
+

k

�4

dU

dr
+

�0X2

�4

d

dr

 �4

�0X2
��dp̃

dr
+ �X2	 1

c0
2

−
k2 + m2/r2

��4�2 � −
�0X2

�4

d

dr
� �4

�0X2r
	2m�

�4
+ 
�r

c0
�2��

−
1

r2	2m�

�4
+ 
�r

c0
�2�	1 + 
�r

c0
�2

+
2m�

�4
+

kr

�4

dU

dr
�� p̃ = 0

�74�

he next simplest case is potential vortex swirl �15a� and �15b�,
or which the mean flow pressure �10b� is given by

�r2 = const p0�r� = p* + �r2��r��2�
0

r

�0�r�r−3dr �75�

nd Eq. �55� simplifies

r2� = const X3 � ��4�2 + �2���r/c0�2 − �r/�0�d�0/dr� �76�

nd the wave equation �68� becomes

W49*:
d2p̃

dr2 + 	1

r
+

k

�4

dU

dr
− 2

m

�4

�

r
+

�0X3

�4

d

dr

 �4

�	X3
��dp̃

dr

+ �X3	 1

c0
2 −

k2 + m2/r2

��4�2 � −
�0X3

�4

d

dr
� �4

�0X3
	2m�

�4

+ 
�r

c0
�2�� −

1

r2	 2̄m�

�4
+ 
�r

c0
�2�	1 + 
�r

c0
�2

+
kr

�4

dU

dr
�� p̃ = 0 �77�

or axisymmetric acoustic modes m=0, there is further simplifi-
ation of Eqs. �77� and �74�.

The most general wave equation with axisymmetric shear and
wirl is Eq. �68�, which applies to the acoustic pressure spectrum
40� of nonaxisymmetric modes �W50*� and simplifies to Eq. �69�
or axisymmetric modes �W47*�; for nonaxisymmetric modes,

*
q. �68� simplifies to Eq. �74� for rigid body swirl �W48 � and
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Eq. �77� for potential vortex swirl �W49*�. In the case of low
Mach number, considering nonaxisymmetric acoustic modes, the
wave equations may be written either �40� for the acoustic pres-
sure p or for its spectrum p̃. The wave equation �30� for the
acoustic pressure of nonaxisymmetric modes in low Mach number
�29� mean axisymmetric shear and swirl �W42� simplifies to �33�
for rigid body �W44� and �34� for potential vortex �W46� swirl; it
also includes the cases �31� of shear only �W38� or �32� of swirl
only �W40�. In the case of low Mach number swirl, the mean flow
may be homogeneous, in which case �W41� the wave equation for
the acoustic pressure of nonaxisymmetric modes in a low Mach
number homogeneous mean shear and swirl is Eq. �35�. It simpli-
fies to Eq. �36� for shear only �W37� and Eq. �37� for swirl only
�W39�. In the case of shear and swirl, it simplifies to Eq. �38� for
rigid body �W43� and Eq. �39� for potential vortex �W45� swirl.

Taking the example of jet engines as ducted flows: �i� the noise
radiation out of the inlet, upstream of the compressor is affected
by shear flow �7–50� �these references also appear in Paper I �1��;
�ii� the noise radiation out of the exhaust, downstream of the
turbine is affected not only by shear but also by swirl
�2–6,51–54�. Exact solutions of the acoustic wave equation in an
axisymmetric swirling mean flow, with a uniform �not sheared�
axial velocity, are known for two cases: �i� rigid body swirl �3�, in
terms of Bessel functions; �ii� potential flow swirl �6�, using
asymptotic expansions of extended Bessel functions �55,56�. The
propagation of sound in sheared and swirling flows may lead to
the appearance of critical layers, where the Doppler shifted fre-
quency vanishes; these critical layers may also occur for other
types of waves in fluids, e.g., water waves �57� and waves in gases
�58�. The latter include gravity waves �59–64� associated with
stratification, hydromagnetic waves in ionized fluids under exter-
nal magnetic fields �65–68�, inertial waves associated with rota-
tion �69,70�, and their couplings in magnetoacoustic-gravity-
inertial waves �71,72�.

Returning to the acoustics of ducts, the modal propagation is
described by solving the appropriate wave equations �e.g., Classes
I, II, IV, or V� with boundary conditions; this is simpler in the case
of ducts of constant cross section as concerns modes �73–75�,
mean flow effects �76–78�, acoustic momentum and energy bal-
ance �79,80�, the effects of variable sound speed �81�, changes in
cross section �82�, and radiation out of open ends �83–86�. The
modal decompositions can be extended to ducts with nonuniform
cross section and simple shapes, e.g., conical �87,88�, otherwise
approximate, and numerical and experimental methods are used
�89–97�. There is no need to use boundary conditions in the case
of the fundamental longitudinal mode, for quasi-one-dimensional
propagation in ducts of nonuniform cross section, e.g., horns and
nozzles �98–175� using wave equations of Class III. The simplest
and most used �176–179� is Webster’s horn equation, which has
been extended to two dimensions �180�, as for waveguides �181�.
The acoustics of straight and bent tubes �182� is relevant to mu-
sical instruments �183–185� and to sound reproduction �186�, ei-
ther by electromechanical devices �150–154� or in concert halls
�187–189�.

The preceding applications of acoustic wave equations include
several examples of sound in inhomogeneous �190,191� and mov-
ing �192–194� media. Nonuniform media may have a determinis-
tic structure or have random inhomogeneities, i.e., the interface
between two media may be a smooth surface �e.g., a plane� or
may be randomly irregular. Flows may be laminar, i.e., with de-
terministic fluid variables, or turbulent with velocity, which is a
random function of position and time. The convected wave equa-
tion applies to sound in turbulent media in the ray limit, when the
wavelength is small relative to the length scale of the variation of
the turbulent velocity; in this case the coefficients of the wave
equation are random functions of position and time. There are
theories of the interaction of sound with turbulence not restricted
to high frequencies �195–197�. Turbulence is also one of the main

mechanisms �198–201� of noise generation �202–221� together
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ith fluid inhomogeneities �222–224�. Turbulence thus acts both
s a source and a scatterer of sound, making more difficult the
ransposition between ground and in-flight noise measurements
225,226�. Acoustic measurements of sound propagating through
urbulence �227–229� demonstrate random amplitudes and phases.
he interference of phases is the common characteristic of all
aves in random media �230–234� and leads to spectral and di-

ectional broadening of jet noise �26–28,235–240�, and also to
andom pressures, relevant to �i� boundary-layer noise �241–249�,
nd �ii� acoustic fatigue �250–252�.

Wave Equations With Viscous and Thermal Dissipa-
on

All of the preceding 50 wave equations �W1–W50� are nondis-
ipative. The dissipative acoustic wave equations are simplest for
inear waves in a homogeneous medium at rest. In can be shown
hat the shear viscosity affects only the vorticity, and thus a scalar
ave equation can be obtained for the dilatation. For linear acous-

ic waves in a homogeneous medium at rest, the dissipation of the
ilatation by bulk and shear viscosity and thermal conduction are
omparable. The linear, dissipative acoustic wave equation �W52�
or the dilatation in a homogeneous medium at rest involves prod-
cts of the bulk and shear viscosities by the thermal conductivity,
hich are relevant only in the case of strong dissipation. Since the
iffusivities are often small, their products may be neglected, thus
implifying the linear dissipative acoustic wave equations in a
omogeneous medium at rest, in the presence of weak shear and
ulk viscosities and thermal conduction �W51�. Sinusoidal waves
re considered in both cases of strong and weak dissipation, the
atter leading to the usual thermoviscous dissipation coefficient
253�, which will reappear in connection with weakly nonlinear
issipative acoustic waves �Secs. 4.8 and 4.9�.

3.1 Effects of Viscosities and Thermal Conductivity. For
issipative fluids, �i� the equation of continuity �2� is unchanged,
nd �ii� the viscous stresses are added to �1� the momentum equa-
ion:

DV/Dt + �−1 � P = ��2V + �v + �/3� � �� . V� �78�

here and D /Dt the exact material derivative,

D/Dt � �/�t + V . � �79�

, v denote, respectively, the shear and bulk kinematic viscosities
r viscous diffusivities; �iii� the adiabatic equation �3a� is replaced
y the energy equation in entropy production form:

1

� − 1

DP

DT
− C2D�

DT
� = ��2T + �	 �Vi

�xj
+

�Vj

�xi
−

2

3
�� . V��ij�2

+ v�� . V�2 �80�

here � is the thermal conductivity and C the adiabatic sound
peed �3b�; �iv� the equation of state is used in the form P�� ,T�.

The total state of the fluid is assumed to consist �compare with
q. �7�� of a homogeneous mean state of rest plus a nonuniform
nsteady perturbation:

�v,p,P,T��x,t� = �O,p0,T0� + �v,p,p,���x,t� �81�

inearizing with regard to the perturbations, the fundamental equa-
ions �1� and �78�–�80� lead to

��/�t = − �0 � . v �82a�

�v/�t − ��2v − �v + �/3� � �� . v� = − �1/�0� � p �82b�

�p/�t − c0
2��/�t = �� − 1���2� �82c�

here the adiabatic sound speed is now calculated c0
2= ��p0 /�p0�,

rom the pressure p0 and mass density �0 in the mean state. The

inearized equation of state is
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�� = ��p0/��0�T� + ��p0/�T0��� �83�

where the thermodynamic derivatives are evaluated for the mean
state.

3.2 Adiabatic and Isothermal Sound Speeds. The first co-
efficient of Eq. �83� is the isothermal sound speed �compare with
the adiabatic sound speed �3b��:


 �P

��
�

T

=
��P,T�
��P,S�

��P,S�
���,S�

���,S�
���,T�

= C2���S/�T��/��S/�T�P�

� C2Cv/Cp = C2/� = RT �84�

where we used the specific heats at constant volume Cv and pres-
sure Cp, and their ratio, which is the adiabatic exponent �:

Cp � T��S/�T�p �85a�

Cv � T��S/�T�� �85b�

� � Cp/Cv �85c�

Cp − Cv = R �85d�

Note that the last equality in Eq. �84� applies to a perfect gas �3b�
as well as �85d�.

The second thermodynamic derivative in Eq. �83� follows the
equation of state in the form S�T , P�� ,T��, viz.,


 �S

�T
�

�

= 
 �S

�T
�

P

+ 
 �S

�P
�

T

 �P

�T
�

�

�86�

leading to


 �P

�T
�

�

= 	
 �S

�T
�

�

− 
 �S

�T
�

P
��
 �S

�P
�

T

=
Cp − Cv

�T
= �� − 1�

Cv

�T

�87�

where � is the coefficient of thermal expansion,

� � − ��S/�P�T = ���1/��/�T�P �88�

Substituting Eqs. �84� and �87� in Eq. �83� yields

p = �c0
2/��� + �� − 1��Cv/T0��� �89�

as the linearized equation of state consistent with Eqs. �82a�–�82c�
i.e., suitable for elimination of p, �, �, and leading to a single
equation for the velocity perturbation v, which is the linear dissi-
pative acoustic wave equation.

3.3 Dissipative Wave Equation for the Velocity
Perturbation. The process of elimination for v is started by tak-
ing the time derivative of Eq. �82b�, and substituting Eqs. �89� and
�82a� in succession:

�2v/�t2 − ��2��v/�t� − �v + �/3� � �� . ��v/�t��

= − �1/�0� � ��p/�t�

= − �� − 1��Cv/T0��0� � ���/�t� − �c0
2/��0� � ���/�t�

= − �� − 1��Cv/T0��0� � ���/�t� + �c0
2/�� � �� . v� �90�

another relation between the velocity v and temperature � pertur-
bations is obtained from Eq. �82c�, substituting Eqs. �89� and
�82a�:

��2� = �Cv/T0����/�t − ��c0
2 − c0

2/��/�� − 1����/�t

= �Cv/T0����/�t + �c0
2/���0�� . v� �91�

The temperature perturbation can be eliminated between Eqs. �90�

and �91�,
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���2 − �Cv/T0���/�t���2/�t2 − �c0
2/�� � �� . − ��2��/�t − �v

+ �/3� � �� . �/�t��v = ���2 − �Cv/T0���/�t��− �� − 1�

��Cv/T0��0� � ���/�t�� = �− �� − 1��Cv/T0��0� � ��/�t��

���c0
2/���0�� . v�� = − c0

2�1 − 1/���Cv/T0�� � �� . ��v/�t��
�92�

eading to

W52: �3v/�t3 − c0
2 � �� . ��v/�t�� = ��2��2v/�t2� + �v

+ �/3� � �� . ��2v/�t2�� − ��c0
2/���2���� . v�� + ���/�t�

���2��v/�t� − �v + �/3��2���� . v�� − ��4v� �93�

or the velocity perturbation in a medium at rest, which is the
inear dissipative acoustic wave equation; note that the parameter

in Eq. �94a�

� � T0��/Cv = �0T0��̄ �94a�

�̄ � �/�0Cv �94b�

nvolves the thermal conductive diffusivity �̄ in Eq. �94b�, multi-
lied by the dimensionless factor �0T0�; for a perfect gas it fol-
ows substituting the equation of state P=�RT in Eq. �88� that
=R / P=1 /�T, and thus the factor �0T0�=1 is unity, so that �̄
�.

3.4 Dissipation of the Vorticity by Shear Viscosity. Taking
he curl of the linearized momentum equation �82b� and denoting
y dot a time derivative, e.g., ���� /�t, it follows that

� � � ∧ v �̇ = ��2� �95�

he vorticity decouples and is dissipated only by shear viscosity.
hus, a plane wave solution for the unsteady vorticity,

��x,t� = �0ei�k.x−�t� �96�

ith wave vector k and “frequency” � leads to the dispersion
elation:

� = − ik2� �97�

hich shows that there is only one “mode” with imaginary fre-
uency, implying that a sinusoidal oscillation in space

��x,t� = �0eik.xe−k2�t �98�

ecays exponentially in time, in proportion to the shear diffusity
nd to the square of the wave number.

3.5 Dissipative Wave Equation for the Dilatation. Taking
he divergence of Eq. �93�, it follows that the dilation � satisfies
dissipative wave equation:

W52*: � � � . v
�99�

�
�

− c0
2�2�̇ = �4�/3 + v + ���2�̈ − c0

2��/���4� − ��4�/3

+ v��4�̇

hich is generally of the third order in time and fourth order in
osition. The viscous and thermal diffusivities are generally small,
nd thus the last term in Eq. �21�, involving their product

��4�/3 + ���4�̇ � �4�/3 + v��2�̈ �100�

an be neglected

W51*: �� − c0
2�2�̇ = �4�/3 + v + ���2�̈ − c0

2��/���4�

�101�
or a plane wave,

pplied Mechanics Reviews

aded 21 Jan 2008 to 203.88.129.4. Redistribution subject to ASME
��x,t� = �0ei�k.x−�t� �102�

in the case of weak dissipation �100���103a�,

��2� � �2�̇ 
 ��4� � k2��2� �103a�

� � �/k2 �103b�

which is equivalent to �103b�. The last two terms in the weakly
dissipative acoustic wave equation �101� the viscous diffusivities
are “interchangeable” and can be combined in a total viscous dif-
fusivity �104a�:

� � � + 4�/3 �104a�

�
�

− c0
2�2�̇ = �� + ���2�̈ − c0

2��/���4� �104b�

but the latter is not interchangeable with the thermal diffusivity in
Eq. �26b�. If the diffusivities are negligible

�� + ���2�̈ � �
�

�105a�

��4� � �2�̇ �105b�

then the classical wave equation W1 follows:

�,� � �/k2 �̈ − c0
2�2� = 0 �106�

in the agreement with Eq. �38� in Ref. �1�. Thus, there is a hier-
archy of linear wave equations in a homogeneous medium at rest:
�i� the classical wave equation W1 for negligible dissipation
�106�; �ii� the weakly dissipative classical wave equation W51 for
small diffusivities �103b�, which appear linearly in Eq. �101�; �iii�
the strongly dissipative classical wave equation �99�:

W52*: �� − c0
2�2�̇ = �� + ���2�̈ − �c0

2�/���4� − ���4�̇

�107�

which involves the product of viscous �104a� and thermal �94a�
and �94b� diffusivities in Eq. �107�.

3.6 Heat Equation as the Incompressible Limit. In the in-
compressible limit,

c0 → 
 �̇ = ��/���2� = �1�
2� �108�

the dissipative wave equation �99� reduces without approximation
to a �254,255� heat equation with heat diffusivity:

�1 � �/� = T0��/�Cv = T0��/Cp = �0T0��2 �109a�

�2 � �/�0Cp �109b�

which is similar to Eqs. �94a� and �94b� replacing the specific heat
at constant volume by that at constant pressure �85a�–�85c�. In
conclusion, the dissipative acoustic wave equation W52* for the
dilatation in a homogeneous medium at rest �99� includes limiting
cases, the heat equation �108� and the W1 classical wave equation
�106�; in its general form �107�, it involves the diffusivities �104a�
and �94a� linearly in the case W51* of weak dissipation �103b�
and second-order products �107� in the case W52* of strong
dissipation.

The general linear, nondissipative acoustic wave equation in a
homogeneous medium at rest �99� consists of eight terms: �i� the
first two coincide with the classical wave equation �106� without
dissipation; �ii� the next four are linear in the diffusivities, viz.,
shear � and bulk � viscous diffusivities and conductive � thermal
diffusivitiy, the latter appearing also multiplying the isothermal
sound speed c0

2 /� in Eq. �84�; �iii� the last two terms involve cross
products of the diffusivities, viz., the viscous �shear and bulk�
diffusivities times the thermal conductive diffusivity. As seen in

Table 2, the most general linear, dissipative acoustic wave equa-
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ion in a homogeneous medium at rest is �107���99�, which ap-
lies �W52*� in the presence of arbitrary shear and bulk viscosi-
ies and thermal conduction. In the case of weak diffusivities
W51*�, it simplifies to Eq. �104b�. In the incompressible limit

0→
, all linear dissipative wave equations reduce to the heat
quation �108�, with heat condutivity as diffusivity �109a� and
109b�. A vector heat equation �95� applies to the vorticity, with
he shear viscosity as diffusivity. The equations for the vorticity
95� and dilatation �107���99� follow from the linear, nondissi-
ative acoustic wave equation W52 for the velocity perturbation
n a homogeneous medium at rest, in the presence of shear and
ulk viscosities and thermal conduction �93�.

3.7 Sinusoidal Waves With Strong Dissipation. The shear
nd bulk viscosities appear combined �104a� in the exact dissipa-
ive wave equation for the dilatation �104b�, which involves also
he modified thermal diffusivity �94a� and �94b� and adiabatic
110a���3b� and isothermal �110b���84� sound speeds:

c0
2 = ��p0/��0�s0

= �p0/�0 = �RT0 �110a�

��p0/��0�T0
= c0

2/� = p0/�0 = RT0 � c1
2 �110b�

he exact dispersion relation for a plane wave �102� solution of
q. �107� is of the third degree in frequency:

0 = �3 + i�� + ��k2�2 − k2�c0
2 + ��k2�� − ik4c2�/� �111�

t has there roots, two corresponding to dissipative sound waves,
nd the third to a dissipative mode coupling thermal diffusion
ith viscosity and/or compressibility. Rewriting Eq. �111� in the

orm

0 = �3 + i��1 + �2��2 − ��0
2 + �1�2�� − i�1�1

2 = 0 �112�

t involves �i� the frequencies for adiabatic �113a� and isothermal
113b� nondissipative sound waves:

�0 � c0k �113a�

�1 � c0k/�� � �0/�� = c1k �113b�

ii� the damping rates �compare with Eqs. �97� and �98�� due to
hermal �114a� and viscous �114b� dissipations,

�1 � �k2 �114a�

�2 � �k2 = �4�/3 + v�k2 �114b�

n order to solve Eq. �112� exactly, it is rewritten

�3 + i��2 − �2
2� − i�1�1

2 = 0 �115�

here �2 is a strongly dissipative correction to Eq. �113b�, the
diabatic sound frequency �116a�:

�2
2 � �0

2 + �1�2 = �c0
2 + ���k2 �116a�

� � �1 + �2 = �� + ��k2 = �� + 4�/3 + v�k2 �116b�

nd � is the total damping rate �116b�. The square term is elimi-
ated from Eq. �115� by a simple substitution �117a�, so that �115�
implifies to �117b�:

� = �̄ − i�/3 �117a�

�̄3 + a�̄ + b = 0 �117b�

here

a � �2/3 − �2
2 �118a�

− b � 2i�3/27 − i��2
2/3 + i�1�1

2 �118b�
he roots of Eq. �117b� are
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�̄ = �3 − b/2 + f + �3 − b/2 − f �119a�

f � �b2/4 + a3/27 �119b�

Thus, the strongly dissipative acoustic wave equation �107� has
three plane wave solutions �102�, with arbitrary wave vector k,
and three frequencies �, which are given by Eqs. �117a� and
�119a�, where the constants �a ,b , f� in Eqs. �118a�, �118b�, and
�119b� are specified through Eqs. �116a� and �116b� by the fre-
quencies for adiabatic �113a� and isothermal �113b� sound waves,
and the thermal �114a� and viscous �114b� dampings. The fre-
quencies �119a� are generally complex, so that

exp�i�k . x − �t�� = exp�i�k . x − t Re�����exp�t Im����
�120�

so that the real part specifies the phase speed of wave fronts, and
the imaginary part the decay in time, as in Eqs. �97� and �98�. This
will be illustrated next in the case of weak dissipation.

3.8 Dispersion Relation for Weak Dissipation. The case of
weak dissipation �103b� is specified in terms of dampings �114a�
and �114b� and sound frequencies �113a� and �113b� by

��1�2,��2�2,�1�2 � ��0�2,��1�2,�0�1 �121�

the dissipative terms �118a�, �118b�, and �119b� are approximated
to lowest order 0��� by

a = − �0
2 �122a�

− b = − i��0
2/3 + i�1�1

2 �122b�

f � i�0
3/3�3 �122c�

and thus the three roots of Eqs. �117a� and �117b� are given by Eq.
�119a�, viz.,

�̄ = ��0/�3���3 ig− + �3 − ig+� �123a�

where

g± � �3 1 ± b/2f = 1 ± ��3/2�0���/3 − �1/�� �123b�

One pair of roots �123a� and �117a� is complex:

�± = ± �0 − i�/2 + i�1/2� = ± �0 − i�2/2 − i�1�1 − 1/��/2
�124�

and corresponds to sound waves propagating in opposite direc-
tions and specifies their damping to lowest order. The third root is
pure imaginary ��114a� and �94a�, �95��:

�3 = i�1/� = i�k2/� = − ik2T0��/Cp �125�

and corresponds to a purely damped motion, with the decay rate
specified by thermal conduction at constant pressure:

exp�i�3t� = exp�− �k2t/�� = exp�− T0��k2t/Cp� = exp�− �1k2t�
�126�

as in the classical heat equation �108� �compare with Eq. �98��. It
could be expected that the imaginary part of Eq. �124� specifies
the thermoviscous dissipation coefficient for acoustic waves. This
will be confirmed next.

3.9 Acoustic Thermoviscous Dissipation Coefficient. The
case of weak dissipation �103�a��127a� implies

�� � �2/k4 �127a�

�1�2 � �0
2 �127b�

for the diffusivities �114a� and �114b� and adiabatic sound fre-

quency �113a�, the condition �127b�, which simplifies Eq. �112� to
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0 = �3 + i��1 + �2��2 − �0
2� − i�1�1

2 �128�

orresponding to the weakly dissipative wave equation �104b�,
ithout the �� term in Eq. �107�. In the absence of dissipation

106�, sound waves have the adiabatic frequency �113a�; thus one
olution of Eq. �128� must be �113a� with a small correction,
ecause dissipation is weak but non-negligible:

� = ± �0 + � 0 = �0
2�2� + i�1 + i�2 − i�1/�� + 0��2,���

�129�

here the product of small quantities is also neglected. This may
e solved for �,

� = − i��1�1 − 1/�� + �2�/2 = �± � �0 �130�

nd agrees with the previous result �124�. From �124���130�, it
ollows that sound waves have weak damping:

exp�i�t� = exp��i�0t�exp�− ��1�1 − 1/�� + �2�t/2� = exp�− i�±t�
�131�

he latter can be set in the form:

�± = ± kc0 − i�/c0 �132�

o that the temporal damping rate is � /c0 and spatial damping rate
is given by

� � ��2 + �1�1 − 1/���/2c0 = ��4�/3 + v� + ��1 − 1/���k2/2c0

�133�

here Eqs. �114a� and �114b� were used; using Eq. �94a� leads, to
he same order of approximation, to

� = ��2/2c0
2��4�/3 + v + �T0����1/Cv − 1/Cp�� �134�

hich is known as the spatial damping coefficient �253� for linear
ound waves; the acoustic thermoviscous dissipation coefficient
134� is restricted to weak damping as follows from restricting the
nalysis in Secs. 3.8 and 3.9 to it will reappear next in connection
Secs. 4.8 and 4.9� with weakly nonlinear dissipative acoustic
aves in Eq. �200�, bearing in mind that for a perfect gas �0T0�
1 and �= �̄ in Eqs. �94a� and �94b� and thus T0��=� /�0.
The thermoviscous dissipation coefficient for weak dissipation

f sound can be deduced without recourse to wave equation, by
253� an energy balance; its derivation from the acoustic wave
quation W51 with weak dissipation thus serves as an independent
onfirmation of the latter. Although the classical and convected
ave equations appear in almost every textbook and monograph
n acoustics, that does not seem to be the case for its extension to
eak W51 or strong W52 thermoviscous dissipation. The thermo-
iscous damping of sound waves is usually treated in the weak
issipative case by means of the damping coefficient, e.g., in at-
ospheric acoustics �256–258�. The subject of outdoor sound

ropagation �259,260� concerns not only the aerial absorption of
ound �261–267�, but also the effect of ground impedance
268,269� and natural obstacles or man-made barriers to sound
ropagation. Viscothermal dissipation of sound also occurs near
he walls of ducts �270,271�. Another mechanism of sound ab-
orption is resonance in cavities �272–274�, which may be nonlin-
ar �275,276�. Sound absorption in ducts is enhanced by the use of
coustic liners, which may have uniform �35,36,40,277–282� or
onuniform �283–291� impedance. The sound absorption by
coustic liners is not mainly an effect of thermoviscous dissipa-
ion, but rather of vortex sheding from orifices in the liner, and the
esultant acoustic-vortical interactions �292–295�. These sound
cattering �296� and attenuation �297� effects fall under the gen-

ral heading of fluid-structure interaction �298–303�.

pplied Mechanics Reviews

aded 21 Jan 2008 to 203.88.129.4. Redistribution subject to ASME
4 Nonlinear Dissipative and Inhomogeneous Wave
Equations

The combination of nonlinear �Sec. 2� and dissipative �Sec. 3�
waves is considered in the context of the theory of characteristics,
first developed �304� for nonlinear isentropic one-dimensional
waves �W53�; there is an extension to nonuniform collapsible
ducts both for isentropic characteristics �W54� and the weakly
dissipative �305–307� case �W55�. Whereas linear nondissipative
waves in a homogeneous medium propagate an undeformed wave
form, nonlinear sound propagates faster at the crests than at the
troughs, leading to wave form steepening, and to shock formation;
this process is opposed by dissipation. If the latter is weak, it leads
to Burgers equation �308,309�, which can be transformed to the
heat equation �254,255� via the Cole–Hopf transformation
�310,311�, which thus provides a method of solution �312�. These
one-dimensional wave equations with viscous dissipation can be
extended to include thermal conduction as well �W57�, allowing
also for nonuniform and collapsible ducts �W58�. The final exten-
sion to weakly nonlinear, weakly dissipative waves, is of interest
�W59� to sonar pulses in water �313�, including beams �W60�, in
the presence of viscous �314,315� or thermoviscous dissipation.

4.1 Conservation of Riemann Invariants Along
Characteristics. Adding and subtracting the one-dimensional
adiabatic equation of continuity �4� in the form:

1

�C

�P

�t
+

V

�C

�P

�x
+ C

�V

�x
= 0 �135�

to the one-dimensional inviscid momentum equation �1b�:

�V

�t
+ V

�V

�x
+

1

�

�P

�x
= 0 �136�

leads to


 �V

�t
±

1

�C

�P

�t
� + �V ± C�
 �V

�x
±

1

�C

�P

�x
� = 0 �137�

This can be written in the form

W53: � �

�t
+ �V ± C�

�

�x
� �138a�

J±�x,t� = 0 �138b�

showing that the Riemann invariants

J±�x,t� � V ±� ��C�−1dP �139�

are conserved along the characteristics:

�dx/dt�± = V ± C �140�

which are the curves along which travel sound waves in opposite
directions ±C, at sound speed C superimposed on the velocity
perturbation V, which can be comparable to C for a nonlinear
wave. In adiabatic conditions,

S = const P�� = const �141�

substituting the sound speed �3b� in the integral in Eqs. �139�

� ��C�−1dP = 2C/�� − 1� �142�

specifies

J± = V ± �2/�� − 1��C �143�
the Riemann invariants.
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4.2 Wave Front Steepening for Nonlinear Waves. In the
ase of linear, nondissipative waves in a homogeneous medium at
est, the velocity perturbation v is small relative to the constant
ound speed c0, and �Eqs. �138� and �139��:

� �

�t
+ �V ± C�

�

�x
�
V ±

2C

� − 1
� = 0 �144�

implify to:

v � c0const �145a�

�v/�t ± c0�v/�x = 0 �145b�

ts solution involves arbitrary functions,

v±�x,t� = �±�x ± c0t� �146�

nd shows that wave forms propagate without deformation in the
ositive and the negative x direction with constant phase velocity
c0. Combining Eqs. �145a� and �145b� leads

W1: 0 = ��/�t + c0�/�x���/�t − c0�/�x� = v̈ − c0
2v� �147�

o the classical wave equation �106�, as should be expected for
inear, nondissipative waves in a homogeneous medium at rest.

In the case of nonlinear, nondissipative waves �138�, it follows
hat the Riemman invariants are given by

J±�x,t� = �±�x − �V ± C�t� �148�

sing Eq. �143� follows the coupled system,

V ± 2C/�� − 1� = �±�x − �V ± C�t� �149�

hich confirms �140� that the propagation speed is the group ve-
ocity:

W± � V ± C �150�

hus, the propagation speed is larger in the compression part V
0 of the wave than in the rarefaction part V�0, leading to wave

orm steepening and shock formation.

4.3 Conservation of the Self-Convected Group Velocity.
or unidirectional waves, one of the Riemann invariants �143� is
ero:

J− = 0 V = 2C/�� − 1� �151�

nd the other can be expressed in terms of the velocity perturba-
ion V or sound speed C alone:

J+ = 2 V = �4/�� − 1��C �152�

ny other wave variable can be used, e.g., the group velocity,

W � V + C = ��� + 1�/2�V = ��� + 1�/�� − 1��C �153�

he conservation of the Riemann invariant along the characteristic

�V/�t + �V + C��V/�x = 0 �154�

pplies to any wave variable, and in the case of the group velocity
153�

W53*: �W/�t + W�W/�x = 0 �155�

hows that it is self-convected.

4.4 Weak Viscous Dissipation of Nonlinear Waves. The
teepening of the wave front of nonlinear waves is opposed by
iscosity, suggesting that the latter be added to Eq. �136�, in the
iscous momentum equation:

�V/�t + V�V/�x + �−1�P/�x = ��2V/�x2 �156�

here � denotes the total viscosity �104a�. Adding and subtract-

ng Eq. �135� lead to
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W55: ��/�t + �V ± C��/�x�J±�x,t� = ��2V/�x2 �157�

which shows that the Riemann invariants �139���143� are dissi-
pated along the characteristics �140�. For weak dissipation, it is
still possible to consider unidirectional waves �151� and �152� and
thus Eq. �157� simplifies to

�V/�t + �V + C��V/�x = ��/2��2V/�x2 �158�

Use of Eq. �153� shows that the group velocity satisfies Burger’s
equation,

W55*: �W/�t + W�W/�x = ��/2��2W/�x2 �159�

with half the total viscosity. This nonlinear convection plus diffu-
sion equation was first introduced �308� as a one-dimensional vis-
cous momentum equation without pressure gradient, in the hope
of representing turbulence; in fact, “burgulence” is best seen as a
competition between nonlinearity and diffusion �309�.

4.5 Transformation of Burger’s to a Heat Equation. The
nonlinearity is accounted by noting that Eq. �159� in the form

− 2�W/�t = ��W2 − ��W/�x�/�x �160�

is satisfied if a function � exists such that

W = − ���log ��/�x �161a�

W2 − ��W/�x = 2���log ��/�t �161b�

From Eq. �161a� follows the Cole–Hopf �310,311� transformation,

��x,t� = exp�− �−1� W�x,t�dx� �162�

and also by substitution into Eq. �161b�, viz.,

��/�t + ��/2��2�/�x2 = 0 �163�

the heat equation �254,255� such as Eqs. �95� and �108� with half
the total viscosity � /2 as diffusivity.

4.6 Collapsible Duct of Varying Cross Section. In the case
of propagation in a duct, whose cross-sectional area A�x , t� can
vary with position �nonuniform� and time �collapsible�, the mass
density per unit volume � is replaced by the mass density per unit
length �A in the one-dimensional equation of continuity �2�, viz.,

0 =
�P

�t
��A� +

�

�x
��AV� = A
 ��

�t
+ V

��

�x
� + A�

�V

�x

+ �
 �A

�t
+ V

�A

�x
� �164�

and the adiabatic condition �3a� can be used

0 =
A

C2
 �P

�t
+ V

�P

�x
� + A�

�V

�x
+ �

DA

Dt
�165�

Multiplying by C /A�,

1

�C

�P

�t
+

V

�C

�P

�x
+ C

�V

�x
= −

C

A

DA

Dt
�166�

which added or subtracted from Eq. �136� leads to

W54: � �

�t
+ �V ± C�

�

�x
�J±�x,t� = �

C

A

 �A

�t
+ V

�A

�x
� �167�

showing that the Riemann invariants �139���143� are not con-
served along characteristics for a nonuniform �A /�x�0 or col-
lapsible �A /�t�0 tube, due to wave reflections, which cancel in
the sense that the sum of Eq. �167� implies

� �
+ �V + C�

� �J+ + � �
+ �V − C�

� �J− = 0 �168�

�t �x �t �x
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s a conservation law.
For gradual changes of cross section, unidirectional waves

151� and �152� may be considered in Eq. �167�:

�V/�t + �V + C��V/�x = − �C/2�D�log A�/Dt �169�

t follows that the group velocity �153� varies along characteristics

W54*: �W/�t + W�W/�x = − ��� + 1�/4�CD�log A�/Dt

�170�

ue to changes in cross section. The case of a rigid duct whose
ross section A�xn varies like a power with exponent n of the
xial coordinate:

A�x� = A�0�xn �W/�t + W�W/�x + �W/2�C�n/x� = 0 �171�

ncludes, in particular, �i� for n=0 nonlinear plane waves in a
niform duct �155�; �ii� for n=2 nonlinear spherical waves in a
onical duct; �iii� the intermediate case n=1 corresponds to non-
inear cylindrical waves in duct with parabolic side profile, viz.,
A��x�r0 in the case of circular cross section of radius r0.

4.7 Nonlinear Dissipative Waves in a Variable Duct. Com-
ining changes in cross section of the duct in the adiabatic conti-
uity equation �166� with viscous dissipation in the momentum
quation �156� implies that both effects cause the Riemann invari-
nts �139���143� to vary along characteristics:

W56: � �

�t
+ �V ± C�

�

�x
�J± = �

�2V

�x2 �
C

A

DA

Dt
�172�

nd although reflections cancel,

� �

�t
+ �V ± C�

�

�x
�J+ + � �

�t
+ �V − C�

�

�x
�J− = 2�

�2V

�x2

�173�

issipation breaks the conservation law �168�. For weak viscous
issipation and gradual changes of cross section, a unidirectional
ave �151� and �152� may be considered,

�V/�t + �V + C��V/�x = ��/2��2V/�x2 − �C/2��log A�/Dt

�174�

se of Eq. �153� implies that the group velocity satisfies

W56*: �W/�t + W�W/�x = ��/2��2W/�x2 − ���

+ 1�/4�CD�log A�/dt �175�

hich is a Burgers equation �159� for half the viscosity, forced by
uct area changes. In the case of rigid duct whose cross section
ncreases with a power of the axial distance leads to

A�x� = A�0�xn �W/�t + W�W/�x = ��/2��2W/�x2 − �W/2�C�n/x�
�176�

hich a linearly forced Burgers equation, generalizing Eq. �171�
o include viscous dissipation. It includes the cases: �i� n=0 of
onlinear viscous plane waves �159�; �ii� n=2 of nonlinear vis-
ous spherical waves; �iii� n=1 of nonlinear viscous cylindrical
aves. The method of characteristics has been applied to �W53�
onlinear isentropic waves �138� and �143�; the extensions include
W54� variable ducts �167�, viscous �W55� dissipation �157� and
oth �W56� together �172�; the respective equations for the group
elocity of unidirectional waves specify �W53*� free �155� and
W54*� forced �170� self-convection, and �W55*� free �159� and
W56*� forced �174� Burgers equations.

4.8 Thermoviscous Dissipation of Nonlinear Waves. The
ffects of viscosity and thermal conduction are comparable in the
issipation of linear acoustic waves in a homogeneous medium at

est �Sec. 3�. Thus, it is desirable to extend the one-dimensional

pplied Mechanics Reviews
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nonlinear wave equation �158� in the presence of viscosity �W55�
to include thermal conduction �W57� as well. As an independent
check of the method of characteristics �Secs. 4.1–4.4� used to
derive W55, its generalization W57 will be obtained directly from
the equations of motion. The inertia force, in the inviscid ��1�� or
viscous �78� momentum equation, can be set into the form:

�DVi/Dt = ���Vi/�t + Vj�Vi/�xj� = ���Vi�/�t + ���ViVj�/�xj

− Vi���/�t + ���Vj�/�xj� �177�

where the term in square brackets vanishes, on account of the
equation of continuity �2�:

0 = ��/�t + Vi��/�xi + ��Vi/�xi = ��/�t + ���Vi�/�xi �178�

Substituting Eq. �173�, the viscous momentum equation �78� takes
the form

0 = ���Vi�/�t + ��/�xj���ViVj + P�ij − ���Vi/�xj

− �� + �/3���Vj/�xi� �179�

where �� and �� are, respectively, the static shear and bulk vis-
cosities, since � ,� denote the kinematic shear and bulk viscosi-
ties. Applying � /�t to Eq. �178� and subtracting � /�xi applied to
�183� lead to

�2�/�t2 = ��/�xi�xj���ViVj + P�ij − ���Vi/�xj − �� + �/3���Vj/�xi�
�180�

For a perturbation from a homogeneous mean state of rest �81�,
this may be approximated as

�2�/�t2 − c0
2�2� = ��2/�xi�xj���p − c0

2���ij + �0viv j − ��0�vi/�xj

− �� + �/3��0�v j/�xi� �181a�

where �i� the linear, nondissipative terms form the classical wave
equation W1 on the left hand side �lhs� �106�; �ii� the dissipative
terms on the right hand side �rhs� are linearized, replacing total �
by mean state �0 density, for weak dissipation; �iii� the nonlinear,
nondissipative terms are taken to second order, for weak nonlin-
earity. In the one-dimensional case, ��181a�� simplifies to

�2�/�t2 − c0
2�2�/�x2 = ��2/�x2��p − c0

2� + �0v
2 − �0��v/�x�

�181b�

where � is the total kinematic viscosity �104a�.
The pressure perturbation in Eq. �181a� and �181b� is specified

by the equation of state p�� ,s�, which in the weakly nonlinear,
weakly dissipative approximation has the terms

p = ��p0/��0�s� + 1
2 ��2p0/��0

2�s�
2 + ��p0/�s0��s �182�

viz., �i� the term linear on the density, which involves the adia-
batic sound speed �110a�, where the last equality is valid only for
a perfect gas �3b�; �ii� the weak nonlinearity is represented by the
quadratic term on density, with coefficient,

��2p0/��0
2�s = ���c0

2�/��0�s = ��/�0���p0/��0�s − �p0/�0
2

= �c0
2/�0��� − 1� �183a�

where the ratio of specific heats � was taken as a constant �85c�;
�iii� the weak dissipation is represented by taking only a linear
term in the entropy �no cross term �s or quadratic term s2�, whose
coefficient

��p0/�s0�� = ��p0/�T0����T0/�s0�� = �� − 1�/� �183b�

is calculated from Eqs. �87� and �85b�, and involves the thermal
expansion coefficient �88�. The equation of state ��182� and

�110a�; �183a� and �183b��
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p = c0
2� + �c0

2/2�0��� − 1��2 + ��� − 1�/��s �184�

an be substituted in the weakly nonlinear, weakly dissipative
coustic wave equation �181b�:

�2�/�t2 − c0
2�2�/�x2 = ��2/�x2���c0

2/2�0��� − 1��2 + �0v
2

+ ��� − 1�/��s − �0��v/�x� �185�

n the quadratic nondissipative and linear dissipative terms on the
hs of Eq. �185�, it is permissible to substitute linear nondissipa-
ive relations, because the error is the negligible �i.e., cubic non-
issipative or quadratic dissipative terms�. For example, the linear,
ne-dimensionnal nondissipative momentum equation,

�0�v/�t = − �p/�x = − c0
2��/�x = c0��/�t �186�

here Eq. �145a� was used with � sign, leads to the polarization
elations,

v/c0 = �/�0 = p/��0c0
2� �187�

hich show that acoustic velocity perturbation � is a fraction of
he sound speed c0, equal to the acoustic density perturbation � as

fraction of the mean state mass density �0. Substituting Eq.
187� in the rhs of Eq. �185�,

�2�/�t2 − c0
2�2�/�x2 = ��2/�x2���c0

2/2�0��� + 1��2 − c0���/�x

+ ��� − 1�/��s� �188�

nly the density perturbation � appears, except in the last term,
hich is transformed next.
The entropy S satisfies the energy equation �79�,

�TDS/DT = ��2T + ���Vi/�xj + �Vj/�xi − 2
3 �� . V�2�ij�2

+ ��� . V�2 �189�

hich can be linearized �81� in the weekly dissipative approxima-
ion:

�0T0�s/�t = ��2� �190�

his simplifies in the one-dimensional case to

��/�0T0��2�/�x2 = �s/�t = − c0�s/�x �191�

hich implies that the density perturbation is specified by

s = − ��/�0T0c0���/�x �192�

n terms of the temperature perturbation �. The latter is related to
he density perturbation � by

�/� = ��T0/��0�s = ��T0,s0�/���0,s0� =
��T0,s0�
��T0,p0�

��T0,p0�
��s0,�0�

��s0,�0�
��p0,s0�

= �
T0

Cp
c0

2 �193�

here the thermodynamic derivatives were evaluated in terms of
he thermal expansion coefficient �88�, the specific heat at con-
tant pressure �85a� and the adiabatic sound speed �110a�, all for
he mean state. Substitution of Eq. �193� in Eq. �188� relates the
ntropy s and density � perturbations:

s = − ���c0/�0Cp���/�x �194�

ubstitution of Eq. �194� in Eq. �188� leads to the one-
imensional, weakly nonlinear, linearly dissipative acoustic wave
quation:

W57: �2�/�t2 − c0
2�2�/�x2 = �c0

2/2�0��� + 1��2��2�/�x2 − c0�� �3�/�x3

�195�

ith the density perturbation � as variable, where the thermovis-

ous diffusivity
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�̄ � � + ��� − 1�/�oCp = � + 4�/3 + ��/�0��1/Cv − 1/Cp�

= 2�c0/��2� �196�

which includes �i� the total kinematic viscosity �104a� and �ii� the
effect of thermal conduction � divided by the mean state mass
density �0 to have the dimensions of diffusivity �L2T−1�, taking
into account the specific heats at constant volume Cv and pressure
Cp. Note that the thermoviscous diffusivity �196� includes all the
diffusivities appearing in the thermoviscous dissipation coefficient
�134�.

For linear, nondissipative waves �147�, corresponding to the lhs
of Eq. �195�, the sound field consists of unidirectional waves
�145a� and �145b� whose wave forms �146� do not change in a
frame moving at sound speed, e.g.,

� � x − c0t, �/�t → �/�t − c0�/��, �/�x = �/�� �197�

for a wave propagating in the positive x direction. The rhs of Eq.
�195� implies that the wave form is deformed slowly in the scale
of a wavelength, by two weak and opposing effects: �i� the qua-
dratic nonlinearity, which causes wave form steepening �Sec. 4.2�;
�ii� the linear dissipation, which causes wave decay. Thus, chang-
ing from space-time � �x , t� to coordinates �197� moving at sound
speed ��� , t�, i.e., substituting �197� in Eq. �195�, leads to

�2�/�t2 − 2c0�
2�/�t�� − �c0

2/2�0��� + 1��2��2�/��2 = − c0�̄�3�/��3

�198�

which may be simplified on account of the slow variation of the
wave form:

��/�t � 2c0��/�� ��/�t + �c0/2�0��� + 1����/�� = ��̄/2��2�/��2

�199�

The linear relation �187� may be used in the quadratic nonlinear
and linear dissipative terms in Eq. �199�, and also in the slowly
varying term �� /�t, leading to the one-dimensional, weakly non-
linear, weakly dissipative acoustic wave equation in terms of the
velocity perturbation.

W57*: �v/�t + ��� + 1�/2�v�v/�� = ��̄/2��2v/��2 �200�

Introducing the group velocity for a unidrectional wave �153�
leads to

W57*: �W/�t + W�W/�� = ��̄/2��2W/��2 �201�

which is the Burgers equation �159�, with two differences: �i� the
position x is replaced by the coordinate �197� moving at sound
speed; �ii� the dissipation coefficient �197� includes viscous
�104a� and thermal dampings as in the thermoviscous dissipation
coefficient �134�.

4.9 Weakly Nonlinear and Dissipative Three-Dimensional
Beam. The preceding weakly nonlinear wave equation, with lin-
ear thermoviscous dissipation, was one-dimensional W57 in Eq.
�195� and W57* in Eq. �204���205�, and will be extended to the
three-dimensional case. Since there are important applications to
sonars, i.e., nonlinear acoustic waves in water, it should be noted
that the weakly nonlinear, weakly dissipative equation of state
�182� applies not only to perfect gases ��110a�; �183a� and �183b��
but also to liquids in the same form �184�. For a liquid the equa-
tion of state of a perfect gas,

P = R�T �202�

can be replaced by Tate’s relation:

P = p0 + B���/�0�� − 1� �203�

which involves a constant B, in addition to the adiabatic exponent
�85c� in Eq. �141�. The adiabatic sound speed �3b� is given for

liquid by
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C2 = ��P/���s = �B�/�0���/�0��−1 = ��/���P − p0 + B�
�204�

nd its derivative with regard to the density by

��2P/��2�s = ���C2�/���s = ��/���− �P − p0 + B�/� + ��P/���s�

= ���� − 1�/�2��P − p0 + B� = �� − 1�C2/� �205�

hich coincides with Eq. �183a� when applied to the mean state;
ince Eq. �183b� also holds for liquids, so does Eq. �184�. Recall-
ng the exact material derivative,

DV/Dt = �V/�t + ��V2/2� + �� ∧ V� ∧ V �206�

nd assuming that weakly nonlinear and weakly dissipative sound
aves remain irrotational

� ∧ V = 0 DV/Dt = �V/�t + ��V2/2� �207�

nd thus the viscous momentum equation �78� simplifies to

�V/�t + ��V2/2� + �−1 � P = ��2V �208�

here � is the total kinematic viscosity in Eq. �104a�. The conti-
uity equation �2� is used in the form

��� . V� + ��/�t + V . �� = 0 �209�

nd the mean state is taken to be �81� homogeneous at rest.
When substituting Eq. �81� in Eqs. �208� and �209�, the linear

ondissipative terms are written on the lhs and on the rhs are
etained only linear dissipative and nonlinear quadratic terms:

�0�v/�t + �p = − pc0
−2�v/�t − ��0/2� � �v2� + �0��2v

�210a�

�0�� . v� + ��/�t = − v . �� − � � . v �210b�

he equation of state �184� may be solved for �, and p=c0
2� re-

laced in the nonlinear and entropy terms:

� = c0
−2p − ��� − 1�/2�0c0

4�p2 − ��� − 1�/c0
2��s �211�

ubstitution of Eq. �211� in Eq. �210b� leads to

�0�� . v� + c0
−2�p/�t = − c0

2v . �p + ��� − 1�/2�0c0
4���p2�/�t

− c0
−2p�� . v� + ��� − 1�/c0

2���s/�t �212�

he entropy perturbation is eliminated using Eqs. �190� and �193�,

�s/�t = ��/�0T0��2���T0c0
2/Cp��� = ���/�0Cp��2p �213�

he velocity perturbation may be substituted from the linear rela-
ions �187� and

�0�v/�t = − �p �214a�

� . v = − �0
−1��/�t = − �0

−1c0
−2�p/�t �214b�

� ∧ v = 0�2v = ��� . v� = − �0
−1c0

−2���p�/�t �214d�

n the lhs of Eqs. �210� and �212�,

�0�v/�t + �p = − c0
−2����p�/�t �215a�

�0 � . v + c0
−2�p/�t = ��/2�0c0

4���p2�/�t − c0
−2v . �p

+ ��� − 1��/c0
2�0Cp��2p �215b�

The velocity perturbation v may be eliminated between the lhs
y applying the divergence to Eq. �215a� and subtracting � /�t
pplied to Eq. �215b�, leading to

�2p − c0
−2�2p/�t2 + c0

−2�̄�2��p/�t� = Y �216a�

here the linear terms are the classical wave operator �106� with

he thermoviscous diffusivity �196�, and the nonlinear terms
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Y + ��/2�0c0
4��2�p2�/�t2 = c0

−2�v · ���p/�t� + �p · �v/�t�

= − �0v · �2v − �0
−1c0

−2��p�2

= − �0
−1c0

−2�p�2p + ��p�2�

= − �0
−1c0

−4�p�2p/�t2 + ��p/�t�2�

= − �2�0c0
4�−1�2�p2�/�t2 �216b�

were simplified using the linear, nondissipative relations
�214a�–�214c�, �187�, and the classical wave equation �106� and
relation ��p�2=c0

−2��p /�t�2 for plane waves.
Substituting �216b� in �216a� leads to the three-dimensional

weakly nonlinear, linearly dissipative acoustic wave equation:

W59: �2p − c0
−2�2p/�t2 + �̄c0

−4�3p/�t3 = ��� + 1�/2�0c0
4��2�p2�/�t2

�217�

which consists of �i� the linear nondissipative terms �106� of the
classical wave equation W1; �ii� linear dissipation specified by the
thermoviscous diffusivity �196�; �iii� quadratic, i.e., weakly non-
linear terms, which coincide with those in the Westerwelt �314�
equation, which is valid in the nondissipative case:

� = 0 �2p − c0
−2�2p/�t2 = ��� + 1�/2�0c0

4��2�p2�/�t2 �218�

Since the wave equation �217� represents a slow deformation of
the wave form in coordinates moving at the sound speed �197�,
the retarded time �219a� is used:

� = t − x/c0 �219a�

x̄ = �x �219b�

ȳ = ��y �219c�

z̄ = ��z �219d�

and a similarity transformation is used in Eq. �219b� in the propa-
gation direction x with parameter �, whereas the parameter �� is
used in the transverse directions �219c� and �219d� to represent a
narrow beam:

�/�t = �/�� �/�x = ��/�x̄ − c0
−1�/�� ��/�y,�/�z� = ����/�ȳ,�/�z̄�

�220�

The substitution of �220� in Eq. �217� leads to

W60: ��/�����p/�x̄ + ��� + 1�/2�0c0
3�p�p/�� − ��̄/2c0

3��2p/��2�

= �c0/2���2p/�x̄2 + �2p/�ȳ2� �221�

where the term in square brackets on the rhs is the two-
dimensional Laplacian transverse to the direction of propagation.
The weakly nonlinear wave equation for an acoustic beam �221�
was first obtained without dissipation �=0 by Zabolotskaya and

Khoklov �314�; dissipation by viscosity, i.e., �̄=� in Eq. �104a�,
was included by Kuznetsov �315�, so that it is known as the KZK
equation. In the present derivation, thermal conduction was in-
cluded as well, since it is comparable to viscous dissipation in the
total diffusivity �196�. Using Eq. �187�, the acoustic velocity per-
turbation appears as variable:

W60: ��/�����v/�x̄ + ��� + 1�/2c0
2�v�v/�� − ��̄/2c0

3��2v/��2�

= �c0/2���2v/�ȳ2 + �2v/�z̄2� �222�

In the absence of transverse propagation, Eq. �222� reduces to the
Burgers equation in curly brackets:

�/�ȳ = 0 = �/�z̄
�23�
NOVEMBER 2007, Vol. 60 / 305
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c0�v/�x + ��� + 1�/2��v/c0��v/�� = ��̄/2c0
2��2v/��2

ith nonlinearity parameter ��+1� /2. Using Eq. �53�, the group
elocity leads to

W60: ��/����c0�W/�x̄ + �W/c0��W/�� − ��̄/2c0
2��2W/��2�

= c0
2��2W/�v̄2 + �2W/�z̄2� �224�

n the absence of transverse propagation � /�ȳ=0=� /�z̄, then Eq.
224� reduces to the terms in curly brackets, which coincide with
urgers equation �159�, with time derivative � /�t=c0� /�x̄ and

patial derivative � /�x=c0
−1� /��.

The acoustic pressure perturbation p is related to the potential �
hrough �18,19� in Paper I:

− p/�0 = d�/dt = �̇ + ����2 = �̇ + c0
−2��2 �225�

here the second expression is valid in the quadratic approxima-
ion. Substituting Eq. �225� in Eq. �217�, the linear terms are un-
hanged and the nonlinear terms cancel on the lhs:

W59: �2� − c0
−2�̈ + �̄c0

−4�
�

= ��� + 1�/2�c0
−4���̇2�/�t �226�

here on the rhs the acoustic pressure is replaced by the first term
n Eq. �225�, and in the quadratic approximation,

��� + 1�/2�c0
−2���̇2�/�t = �� − 1��̇c0

−2�̈ + �����2/�t = �� − 1��̇�2�

+ 2 � � · ��̇ �227�

ubstituting Eq. �227� in Eq. �226� leads to the weakly nonlinear,
inearly dissipative acoustic wave equation in a homogeneous me-
ium at rest, in the form

W59: �̈ − c0
−2�2� + 2 � � · ��̇ + �� − 1��̇�2� = − �̄c0

−2�
�

�228�

hich should be compared with the nonlinear classical wave
quation W10, which applies ��76� in Paper I� to strongly nonlin-
ar, nondissipative acoustic waves in a homogeneous medium at
est

W10: �̈ − c0
−2�2� + 2 � � · ��̇ + �� − 1��̇�2� + ��� − 1�/2�

�����2�2� + �� · ���� · �� � �� = 0 �229�

iz., �i� the first four linear and quadratic nondissipative terms are
he same in Eq. �229� and in Eq. �228�; �ii� the last two cubic
onlinear terms in the exact nondissipative equation �229� are
mitted in the weakly nonlinear approximation in Eq. �228�; �iii�
he linear dissipative term in Eq. �228� is absent in the nondissi-
ative equation �229�. An acoustic beam in three dimensions �224�
iffers from a one-dimensional wave in a duct of varying area
ecause �i� there is no transverse propagation � /�y=0=� /�z; �ii�
he remaining term in the Laplacian in Eq. �217� is replaced by the
uct wave operator ��119� in Paper I�:

�2� → A−1�A���� = �� + �A�/A��� �230�

eading to

W58: A−1�Ap��� − c0
−2p̈ + �̄c0

−4p
�

= ��� + 1�/2�0c0
4��2�p2�/�t2

�231�

hich is the one-dimensional, weakly nonlinear, linearly dissipa-
ive acoustic wave equation in a duct of varying cross section
�x�, containing a homogeneous fluid at rest. It can be expressed
n terms of the acoustic potential � using �225�, viz.,
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W58: �̈ − c0
2��� + ��A�/A� + 2�̇��� + �� − 1��̇��� + ��A�/A�

= − �̄c0
−2�

�

�232�

which can be compared with W25 the nonlinear horn equation
��147� in Paper I�, viz.,

W25: �̈ − c0
2��� + ��A�/A� + 2�̇��� + �� − 1��̇��� + ��A�/A�

+ ��� − 1�/2���3A�/A + ��� + 1�/2���2�� = 0 �233�

�i� the first six linear and quadratic terms coincide; �ii� the last two
cubic terms in Eq. �233� are omitted in the weakly nonlinear ap-
proximation in Eq. �232�; �iii� the linear dissipative term in Eq.
�232� is omitted in the nondissipative equation �233�.

Burgers equation has been derived by two approaches: �Sec.
4.4� the propagation W55 of unidirectional waves along charac-
teristics �158���159� in the presence of weak viscous diffusivity
�156�; �Sec. 4.8� one-dimensional, weakly nonlinear W57 acoustic
waves �205���199� with linear thermoviscous diffusivity �196�.
The Burgers equation simplifies �Sec. 4.3� to the conservation of
the group velocity along characteristics �154���155� for nondis-
sipative unidirectional waves W53; the generalization to one-
dimensional nonlinear waves in nonuniform and collapsible tubes
involves a forcing term in both W54 the nondissipative �169�
��170� and viscous W56 case �176���179�. All these one-
dimensional equations are particular cases of the three-
dimensional weakly nonlinear acoustic wave equation W59 with
thermoviscous dissipation �217�, which leads to W60 for a narrow
beam �225���226���228�, and also includes the case �235�
��236� of weakly nonlinear one-dimensional sound waves with
thermoviscous dissipation in a duct varying cross-section W58.

Burgers and related equations �305–315� appear in connection
with other weakly nonlinear, dissipative or dispersive waves
�316–318�, such as sound waves in a relaxing gas �319–321� or in
a liquid with gas bubbles �322� or in a shock tube �323�, and other
cases not covered here. The preceding account is a typical ex-
ample of the study of nonlinear waves �324–329�. The best known
is the Korteweg–de Vries equation �330–333�, which has soliton
type solutions �334,335�; there are soliton-type solutions for other
types of nonlinear wave equations. Nonlinear sound waves been
studied and observed �336–338� in various situations, e.g., �i�
resonances in cavities �276� and tubes �275�; �ii� in ducts
�339,340� �iii� due to intense sound sources �341,342�; �iv� in air
jets �343�; �v� in the presence of dissipation �344�; �vi� in ultra-
sonics �345�. Perhaps the most notorious of nonlinear waves is the
sonic boom of aircraft �346�; shock cells �347� in supersonic jets
�348,349� contribute to jet noise.

5 Discussion
The 60 forms of the acoustic wave equation obtained �36 in �1�

and 24 in the present paper� include �i� linear and nonlinear
waves; �ii� nondissipative waves and dissipation by shear and bulk
viscosity and by thermal conduction; �iii� waves in homogeneous
or inhomogeneous, and steady and unsteady mean states; �iv� me-
dia at rest and potential and vortical mean flows. Concerning �iv�,
the �a� potential flows were considered exhaustively, including
cases of low Mach number and unrestricted Mach number; the �b�
vortical mean flows were considered only for �b1� plane and �b2�
spatial unidirectional shear and for �b3� axisymmetric shear and/or
swirl. Altogether, these 60 acoustic wave equations represent a
substantial extension and cover a much wider range of applica-
tions than the classical and convected wave equations, which are
restricted to �i� linear �ii� nondissipative waves in �iii� homoge-
neous media �iv� at rest or in uniform motion.

The extensions of the classical and convected wave equations
cover �I� each of the four aspects �i�–�iv� in isolation. A fair num-
ber of �II� double extensions were considered, e.g., �a� linear,

nondissipative waves in inhomogeneous or unsteady flows �II1
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iii+ iv�; �b� nonlinear, nondissipative waves in homogeneous
ows �II2=i+iv�; �c� nonlinear, nondissipative waves in inhomo-
eneous medium at rest �II3=i+iii�; �d� nonlinear, dissipative
aves in homogeneous media at rest �II4=i+ii�. A few cases of

III� triple extensions were considered, e.g., �a� nonlinear, nondis-
ipative waves in inhomogeneous flows �IIIa=i+iii+ iv� and �b�
onlinear, dissipative waves in inhomogeneous medium at rest
IIIb=i+ii+ iii�. The case �IV� of quadruple interactions is not
ractable, so there is no single general wave equation from which
ll others could be derived. Between the 60 acoustic wave equa-
ions indicated and the ultimate nonlinear, dissipative wave equa-
ion in inhomogeneous moving media, there remains plenty of
cope for further developments.

The extent to which the four combinations of �i� linear and
onlinear, �ii� dissipative and nondissipative waves, in �iii� homo-
eneous or inhomogeneous and steady or unsteady, media at �iv�
est or in motion have been covered is indicated in the Tables 1–4.
quivalently, the extent to which some combinations have been
overed fairly thoroughly and others rather sparsely can be appre-
iated from the diagram of the family tree of acoustic wave equa-
ions �Fig. 1�. The family tree is formed by applying successively
he following criteria to the 60 wave equations: �i� dissipative �8�
nd nondissipative �52� waves; �ii� linear �40� or nonlinear �20�
aves; �iii� ducted or one-dimensional �21� and free three-
imensional �39� waves; �iv� mean potential �30� or vortical �20�
ows; �v� vortical mean flow with shear �8�, swirl �2�, or both
10�; �vi� shear flow unidirectional �4� or axisymmetric �16�; �vii�
nidirectional shear flow plane �2� or spatial �2�; �viii� axisymmet-
ic flow �12� with axisymmetric �3� or nonaxisymmetric �9�
coustic modes; �ix� potential mean flow �30� of low Mach num-
er �10�, high-speed �10� or media at rest �10�; �x� mean state
omogeneous �27�, inhomogeneous �27�, or unsteady �6�. The
umber of wave equations in each category can be cheked by
ollowing the family tree.

Of the 60 wave equations, only 8 are dissipative �see Tables
–4�, of which 6 nonlinear and 2 linear. Of the six nonlinear
issipative wave equations four are one-dimensional �3�, viz., the
urgers equation �W55� for weak viscosity and its forced form

W56� in a quasi-one-dimensional duct plus the extensions to in-
lude thermal dissipation in the one-dimensional �W57� and
uasi-one-dimensional �W58� cases. The three-dimensional exten-
ions �4� include weakly nonlinear waves with thermoviscous dis-
ipation �W59�, and the particular case of beams �W60�. The lin-
ar dissipative wave equations �Table 2� all apply to a
omogeneous medium at rest and include shear and bulk viscosity
nd thermal conduction, with strong W52 or weak W51 diffusivi-
ies.

The 52 nondissipative wave equations consist of 38 linear and
4 nonlinear. Of the 14 nonlinear nondissipative wave equations,
concern one-dimensional characteristics �3� and the remaining

2 potential mean flows �Table 1�. In each group, half the equa-
ions concern quasi-one-dimensional ducts: �i� the Riemann in-
ariants along characteristics concern �Table 5� nonlinear nondis-
ipative one-dimensional free W53 or ducted W54 waves; �iii� the
2 nonlinear, nondissipative acoustic wave equations in mean po-
ential flows consist of the same six cases each for free three-
imensional �quasi-one-dimensional ducted� propagation. The six
ases are �Table 1� nonlinear, nondissipative three-dimensional
quasi-one-dimensional� acoustic waves in a inhomogeneous
igh-speed W15 �W30�, low Mach number W13 �W28� potential
ean flow or inhomogeneous medium at rest W11 �W26�, plus

he six cases of nonlinear, nondissipative three-dimensional
quasi-one-dimensional� acoustic waves in a homogeneous high-
peed W14 �W29� or low Mach number W12 �W27� mean flow or
omogeneous medium at rest W10 �W25�.

The 38 linear, nondissipative wave equations consist of 18 in
otential flows �Table 1� and 20 in vortical flows �Tables 2 and 3�.
he 18 linear, nondissipative acoustic wave equations in potential

ean flows divide �Table 1� equally in 9 for three-dimensional
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�quasi-one-dimensional� propagation in there cases: �i� high-speed
mean potential flow, either homogeneous W7 �W22�, or inhomo-
geneous W8 �W23�, or unsteady W9 �W24� as well; �ii� low Mach
number potential mean flow, either homogeneous W4 �W19�, or
inhomogeneneous W5 �W20�, or unsteady W6 �W21� as well; �iii�
medium at rest, either homogeneous W1 �W16�, or inhomoge-
neous W2 �W17�, or unsteady as well W3 �W18�.

The 20 linear, nondissipative acoustic wave equations in vorti-
cal flows �Tables 2 and 3�, consist of 8 with mean shear, 2 with
swirl, and 10 with both shear and swirl. The 18 linear, nondissi-
pative wave equations in sheared mean flows consist of 4 for
unidirectional shear and 4 for axisimmetric shear, with half each
for homogeneous or inhomogeneous medium. The 4 linear, non-
dissipative acoustic wave equations in homogeneous �inhomoge-
neous� unidirectional shear flows consist of the plane W31 �W33�
and spatial W32 �W34� cases. The four linear nondissipative
acoustic wave equations in homogeneous �inhomogeneous� axi-
symmetric shear flows concern axisymmetric W35 �W36� and
nonaxisymmetric W37 �W38� acoustic modes.

The two linear, nondissipative acoustic wave equations in a
swirling mean flow concern homogeneous W39 or inhomoge-
neous W40 fluid. Of the ten linear, nondissipative acoustic wave
equations in axisymmetric sheared and swirling mean flow, six
apply at low Mach number and four with unrestricted Mach num-
ber. The six linear, nondissipative acoustic wave equations in axi-
symmetric low Mach number sheared and swirling mean flows
consist of homogeneous �inhomogeneous� fluids with arbitrary
swirl W41 �W42�, rigid body swirl W43 �W44�, and potential
vortex swirl W45 �W46�. The four linear, nondissipative acoustic
wave equations in axisymmetric sheared and swirling mean flows,
with unrestricted Mach number, consist of one W47 for axisym-
metric acoustic modes and three for nonaxisymmetric acoustic
modes. The three linear, nondissipative wave equations for non-
axisymmetric acoustic modes in an axisymmetric mean sheared
and swirling flow with unrestricted Mach number correspond to
the general case of arbitrary swirl W50, and particular cases of
rigid body W48 and potential vortex W49 swirl.

Of the 60 wave equations, 9 may be considered the core set, of
which all others are particular cases: �i� the 9 �W1–W9� linear,
nondissipative acoustic wave equations in a potential mean flow
are all particular cases of the high-speed unsteady wave equation
W9, consisting of ten terms �63� in �1� i.e., �I.63�, which can be
written in the compact form �I.45�; �ii� the 9 �W16–W24� linear,
nondissipative wave equations in a quasi-one-dimensional duct
are all particular cases of the high-speed nozzle wave equation
W24, which consist of 11 terms �I.131;� and can be written in the
compact form �I.131�; �iii� the 6 �W10–W15� nonlinear, nondissi-
pative wave equations in a steady potential flow are all particular
cases of the nonlinear high-speed wave equation W15, which con-
sists of 16 terms �I.107� and can be written in the compact form
�I.105�, using the nonlinear �I.86� and self-convected �I.88a� ma-
terial derivates; �iv� the 6 �W25–W30� nonlinear, nondissipative
wave equations in a quasi-one-dimensional duct are all particular
cases of the nonlinear high-speed nozzle wave equation W30,
which consists of terms �I.166� and can be written in the compact
form �I.164�, using the nonlinear �I.151a� and self-convected
�I.152a� material derivatives; �v� the 4 �W31–W34� linear, nondis-
sipative wave equations in plane or spatial unidirectional shear
mean flow are all particular cases of the spatial isentropic shear
wave equation W34 for the acoustic pressure p in �I.195� or W34*

for �I.200� the acoustic pressure spectrum p̃ defined by �I.197�;
�vi� the 12 linear, nondissipative wave equations for axisymmetric
or nonaxisymmetric acoustic modes in an axisymmetric mean
flow with low Mach number swirl and/or shear �W35–W46� are
all particular cases of the linear, nondissipative low Mach number
asisymmetric shear and swirl wave equation W46 for the acoustic
pressure p in Eq. �39� of the present paper II, i.e., �II.39�, or W46*

for �II.51� the acoustic pressure spectrum p̃ in �II.40�; �vii� the

preceding �vi� plus the 4 linear, nondissipative acoustic wave
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Fig. 1 Family tree of 60 acoustic wave equations, showing relations between them. It is divided in 13 regions I–XIII for different classes of wave equations. Includes all 60 wave
equations, viz. W1–W36 listed in †1‡ in Tables 1 and 2, and W37–W60 listed in Tables 1–4 in the present paper.
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quations for axisymmetric or nonaxisymmetric acoustic modes in
xisymmetric mean flow with unrestricted shear an/or swirl
W37–W50� are all particular cases of the linear, nondissipative
xisymmetric shear and swirl wave equation W50 for �II.68� the
coustic pressure spectrum p̃ in �II.40�; �viii� the two linear, dis-
ipative wave equations in a homogeneous medium at rest �W51–

52� are all particular cases of W52 including strong shear and
ulk viscosities and conductive thermal diffusivity, using as vari-
ble the acoustic velocity perturbation v in �II.93�, the vorticity
erturbation � in �II.95�, and W52* the dilatation � in �II.99�;
ix� the weakly nonlinear one-dimensional or quasi-one-
imensional ducted acoustic waves without dissipation �W53 and
54�, with viscous �W55 and W56� or thermoviscous �W57 and
58� dissipation, are all particular cases of the three-dimensional
eakly nonlinear thermosviscous acoustic wave equation W59,

ncluding beams W60, and specified by the four terms in �II.221�.
Although the nine core wave equations �W9, W15, W24, W30,
34, W46, W50, W54, W59� are sufficient to derive all 60 wave

quations �W1–W60� as particular cases, the other 50 wave equa-
ions deserve explicit mention, because they have significant ap-
lications. Once the most appropriative acoustic wave equation
or problem at hand has been identified either from the family tree
r from Tables 1–6, the details of that wave equation can be found
n the list in the Appendix, which contains the following informa-
ion: �i� number of the wave equation �W1–W60� followed by
ame of the wave equation most commonly used, or otherwise a
ame thought appropriative; �ii� all the conditions of validity of
he wave equation and the numbers of equations in the text, which
quivalently describe the wave equation. This indicates the section
f the text where the wave equation was proved; also the param-
ters in the wave equation can be traced to their defining equa-
ions through the list of symbols. The references attempt to indi-
ate the first use of each wave equation, to the best of the author’s
imited historical knowledge. In 24 cases maybe the wave equa-
ion appears explicitly for the first time in the present paper, al-
hough it may be a particular case of a previously known wave
quation; the latter situation can be verified from the family tree
f wave equations, which shows the general and particular cases,
nd also from the text. The family tree is divided by dotted lines
n 13 regions I–XIII containing distinct types of wave equations.

ith this understanding, it is possible that in the 60 wave equa-
ions, a maximum of 41 were derived by the author, 24 in this, and
9 in earlier papers.

The wave equations in the list were given technical rather than
ersonal names since such nomenclature has proven to be histori-
ally quite inaccurate in some cases, e.g., the Webster �98� horn
ave equation �I.117a,b�, was derived four years earlier by Ray-

eigh �99�, and can be traced more than one century back
350,106� to the research of Lagrange �101�, Euler
102,351,104,105�, Bernoulli �103�, Poisson �352�, and Green
123�. Also the same author can be the first to obtain several
istinct wave equations, making a technical nomenclature the un-
mbiguous choice. Of the nine core wave equations, seven were
erived by the author, five in the present paper �W9, W24, W46,
54, W59�, and two in earlier papers �W15, W30�. The fact that

ossibly 41 of the 60 wave equations appear first in the present
aper is a necessary consequence of trying to bridge the gaps in
he literature, and presenting a unified and comprehensive ac-
ount, within the limits of current knowledge. It has the natural
onsequence of providing many cross-checks, including multiple
istinct derivations of several wave equations. This material
hould be a useful background when attempting to derive new
ave equations valid in more general conditions than those pre-

ented here, for which there is plenty of scope left.

omenclature
a ,b  parameters in the solution of acoustic thermo-

viscous dispersion relation �118a� and �118b�

c0  adiabatic sound speed of mean state �110a�
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c1  isothermal sound speed of mean state �110b�
f ,g±  parameters in the solution of acoustic thermo-

viscous dispersion relation �119b� and �123b�
k  axial wave number in Eq. �40� and Sec. 2 total

wave number �k� in Eq. �111� and Sec. 3
k  wave vector �96�
m  azimuthal wave number �40�
r0  radius of cylindrical duct �56�
s  entropy perturbation �194�

vr ,v� ,vz  components of acoustic velocity perturbation in
cylindrical coordinates �r ,� ,z�, e.g., in
�112�–�114�

x ,y ,z  Cartesian coordinates
B  parameter in Tate’s equation of state �207� for

liquids
Cp ,Cv  specific heats at constant pressure �85a� and

volume �85b�
J±  Riemann invariants �139�
R  perfect gas constant �85d�
S  total entropy �193�
Y  set of terms in Eqs. �220�

Z , Z̄  wall impedance, specific impedance �56�
W  group velocity �153�

� , �̄  thermal conductive diffusivity �94a� and �94b�
�1 ,�2  heat diffusivities �109a� and �109b�

�  total kinematic viscosity �104a�
�  adiabatic exponent �85c�

�1 ,�2 ,�  damping factors �114a�, �114b�, and �116b�
�  coefficient of thermal expansion �88�
�  transformation variable from Burger’s to heat

equation �162�
�  thermal conductivity �80�

� ,�  shear, bulk kinematic viscosities �78�
�  wave frequencies �40�

�0 ,�1  frequency of plane adiabatic �113a�, isothermal
�113b� sound waves

�2  strongly dissipative correction to adiabatic fre-
quency �116a�

�̄  transformation of wave frequency �117a�
�  retarded time �223�
�  acoustic thermoviscous dissipation coefficient

�134�
�̄  thermoviscous diffusity �200�
�  similarity parameter �223�
�  moving coordinate �201a�
�̄  circulation of a potential vortex �15b�
�  acoustic dilatation �99�
�  temperature perturbation �81� and �82c�
�  vorticity perturbation �95�

Appendix: List of Acoustic Wave Equations: W37 to
W60

*W37-Acoustic shear wave equation. Linear, nondissipative,
nonaxisymmetric acoustic modes in a unidirectional axisym-
metric homentropic shear mean flow �36���42�.
*W38-Inhomogeneous acoustic shear wave equation. Idem
isentropic �31���43�.
*W39-Swirl acoustic wave equation. Linear, nondissipative
nonaxisymmetric waves in an axisymmetric swirling homen-
tropic mean flow �37���44�.
*W40-Inhomogeneous swirl acoustic wave equation. Idem
isentropic �32���45�.
*W41-Shear and swirl acoustic wave equation. Linear, nondis-
sipative nonaxisymmetric waves in an axisymmetric homen-
tropic mean flow with low Mach number shear and swirl �35�

��46�.
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*W42-Inhomogeneous shear and swirl acoustic wave equation.
Idem isentropic �30���47�.
*W43-Shear and rigid body swirl acoustic wave equation. Lin-
ear, nondissipative nonaxisymmetric waves in an axisymmetric
homentropic mean flow with low Mach number shear and rigid
body swirl �38���48�.
*W44-Inhomogeneous shear and rigid body swirl acoustic
wave equation. Idem isentropic and rigid body swirl �33�
��49�.
*W45-Shear and potential vortex swirl acoustic wave equation.
Idem homentropic and potential vortex swirl �39���50�.
*W46-Inhomogeneous shear and potential vortex swirl acoustic
wave equation. Idem isentropic and potential vortex swirl
�34���51�.
*W47-Axisymmetric high-speed shear and swirl acoustic wave
equation. Linear, nondissipative, axisymmetric waves in an axi-
symmetric isentropic mean flow with shear and swirl of unre-
stricted Mach number �69�.
*W48-High-speed shear and rigid body swirl acoustic wave
equation. Linear, nondissipative nonaxisymmetric waves in an
axisymmetric isentropic mean flow with shear and rigid body
swirl of unrestricted Mach number �74�.
*W49-High-speed shear and potential vortex swirl acoustic
wave equation �3�. Idem, potential vortex swirl �77�.
*W50-High-speed shear and swirl acoustic wave equation. Lin-
ear, nondissipative nonaxisymmetric waves in an axisymmetric
isentropic mean flow with shear and swirl of unrestricted Mach
number �68�.
*W51-Dissipative acoustic wave equation. Linear, dissipative
sound waves in a homogeneous medium at rest with weak shear
and bulk kinematic viscosities and thermal conductive diffusiv-
ity �95�+ �101�.
*W52-Strongly dissipative acoustic wave equation. Idem with
strong shear and bulk viscosities and and thermal conductive
diffusivity �93���95�+ �99���107�.
*W53-Characteristic acoustic wave equation �304�. Nonlinear,
nondissipative one-dimensional waves in an homogeneous me-
dium at rest �138���155�.
*W54-Characteristic horn wave equation. Nonlinear, nondissi-
pative quasi-one-dimensional waves in a collapsible duct of
nonuniform cross section, containing a homogeneous fluid at
rest �167���170�.
*W55-Viscous characteristic wave equation �305�. Nonlinear,
one-dimensional waves in homogeneous viscous fluid at rest
�157���159�.
*W56-Viscous characteristic horn wave equation. Nonlinear,
quasi-one-dimensional waves in a collapsible duct of nonuni-
form cross section containing a homogeneous viscous fluid at
rest �172���175�.
*W57-Nonlinear thermoviscous plane wave equation. Weakly
nonlinear, weakly dissipative one-dimensional waves in a vis-
cous and thermally conducting homogeneous steady fluid at rest
�195���200���201�.
*W58-Nonlinear, thermoviscous horn wave equation. Idem
quasi-one-dimensional waves in a rigid duct of nonuniform
cross section �231���232�.
*W59-Nonlinear, thermoviscous wave equation. Weakly non-
linear, weakly dissipative three-dimensional waves in a viscous
and thermally conducting homogeneous steady fluid at rest
�221�.
*W60-Nonlinear, thermoviscous beam equation. Idem for a
beam �225�.
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