
Emergence, Complexity and Computation ECC

Jing Tang Xing

Energy Flow Theory 
of Nonlinear 
Dynamical Systems 
with Applications



Emergence, Complexity and Computation

Volume 17

Series editors

Ivan Zelinka, Technical University of Ostrava, Ostrava, Czech Republic
e-mail: ivan.zelinka@vsb.cz

Andrew Adamatzky, University of the West of England, Bristol, United Kingdom
e-mail: adamatzky@gmail.com

Guanrong Chen, City University of Hong Kong, Hong Kong
e-mail: eegchen@cityu.edu.hk

Editorial Board

Ajith Abraham, MirLabs, USA
Ana Lucia C. Bazzan, Universidade Federal do Rio Grande do Sul, Porto Alegre

RS Brasil
Juan C. Burguillo, University of Vigo, Spain
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Preface 

It has been widely recognised that the power-flow analysis (PFA), or the energy-
flow analysis (EFA) and or the statistical energy analysis (SEA) provides a 
technique able to model the high-frequency dynamic responses of structural or 
fluid dynamical systems of high modal density. The fundamental concepts of PFA 
were discussed by Goyder & White (1980abc), whereas an ASME special 
publication NCA-3: statistical energy analysis edited by Hsu, Nefske & Akay 
(1987), Fahy’s (1994) comprehensive critical review of SEA, an monograph by 
Price & Keane (1994) and an IUTAM symposium on SEA (Fahy & Price 1998) 
highlighted its origins, developments, applications, significant advances and 
possible future directions. The interested reader may wish to consult these 
important historical publications for more valuable references with important 
practical techniques.  

The energy flow approach provides a fundamental basis to investigate dynamic 
systems, for which we may summary the following essential points. The principle 
used in this method is based on the universal law on energy conservation and 
transformation to investigate dynamic systems, therefore, it provides a common 
approach to analyse various types of systems including mechanical, thermal and 
electrical / magnetic ones, such as solid, fluid, acoustic and control systems, as 
well as more complex systems involving their couplings or interactions. The 
variable studied in the power flow analysis combines the effects from both forces 
and velocities, and it takes their product, power, i.e. the change rate of energy, as a 
single parameter to characterise / to describe the dynamic behaviour and responses 
of a system, which includes and reflects the full information on the equilibrium 
and motion of the system, and therefore overcomes the limitations to study force 
and motion responses separately. The approaches adopted in power flow analysis 
focus on a global statistical energy estimations, distributions, transmissions, 
designs and controls for dynamic systems or sub-systems rather than the detailed 
spatial pattern of the structural responses. It overcomes difficulties encountered 
while using finite element methods or experimental modal analyses of vibration 
responses at medium to high frequency regions, which requires extreme small size 
of elements to reach a necessary computational accuracy. The applications are 
quite wide as described in the short review on this method given in Chapter 1. 

Recently, the more and more increasing interests for scientists and engineers to 
study nonlinear dynamical systems (NDS) may be due to the following main 
reasons. Firstly, practical engineering systems are inherently nonlinear ones, so 
that in some cases linear assumptions and analyses have hidden some important 



VI Preface
 

phenomena and provided no accurate results, and therefore nonlinear analyses are 
necessary. Secondly, with the extreme fast developments of modern computers 
associated with computational methods and software, many complex nonlinear 
problems failed to be solved before due to pour computation capacities, can now 
be tackled. Thirdly, a most important reason, it has been demonstrated that for 
many dynamical systems, introductions of nonlinear members can significantly 
improve the performance of the system. For example, i) nonlinear suspension / 
isolation systems can provide extremely low or extremely high dynamic 
supporting stiffness and much better performance which were unable to be 
realised by linear systems; ii) possible periodical solutions and harmful flutter 
phenomenon existing in  nonlinear oscillators offer more possibilities to design 
effective wave / wind energy harvesting devices.  

Based on the above theoretical and practical bases, it has been shown a growing 
interest to use the energy flow approach developed from the universal law of 
energy conservation and transformation in the world to investigate nonlinear 
dynamical systems and to reveal their possible energy flow behaviour. The 
searched limited references reported for NDS are mentioned in Chapter 1 and 
listed in the References. While reading these available publications on the power 
flows of NDS, we have noted that all of them just follow the definitions of energy 
flow variables in linear systems, such as physical kinetic, potential and damping-
dissipated energies, which is difficult to be identified in the governing equations 
of NDS due to couplings of unknown variables in some terms, so that we cannot 
separate the kinetic, potential and dissipated energies. This suggests that we have 
to find more suitable energy flow variables suitable to investigate generalised 
NDS. Furthermore, it is generally sufficient to regard any NDS as a set of first 
order-differential equations in a form of vector field defined in a phase space; 
therefore, it is necessary to create a suitable energy flow theory to deal with NDS 
based on the vector field form.  

The main aim of this monograph is to develop an energy flow theory and 
approach for nonlinear dynamical systems to address the above difficulties. For 
this purpose, it would be useful to compare NDS with linear ones to realise the 
main differences. The first well-known difference is that the solutions of a 
nonlinear dynamical system are not unique, and therefore at some points on the 
solution orbit, there may appear branches, bifurcations. The second obvious 
difference is that the “frequency reservation” for linear systems is not valid, so 
that a harmonic force of frequencyΩ  applied to a nonlinear system might excite 
the dynamic responses with difference frequencies. Moreover, the amplitude of 
nonlinear dynamic response will not be proportional to the amplitude of the force 
as valid for linear systems. The third difference behaviour concerns possible 
periodical motions. For a linear system in a periodical motion, the averaged time 
change rate of kinetic and potential energies over the time period respectively 
vanish. This implies that the kinetic energy and the potential energy are 
respectively conservative in the time period and the work done by the force in the 
period is totally dissipated by the damping of the system. This conclusion is not 
generally valid for periodical motions of nonlinear systems. Due to the couplings 
of dynamic variables in each term of equation, the work done by each term in the 
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period normally does not vanish, although the total work done by all terms of 
equation vanishes for periodical motions. This implies that in the time period, 
energy exchanges between the terms happen. Finally, chaotic motions have been 
observed for many nonlinear systems, which are very sensitive to the changes of 
the system parameters. Those different characteristics of NDS must cause the 
corresponding changes of the energy flows of the system.  

This monograph intends to investigate these differences using the proposed 
energy flow method and to reveal the related energy flow phenomena and 
mechanism of NDS. Three scalar energy flow variables based on the vector field 
equations of nonlinear dynamical systems in the phase space are defined. These 
are the generalised potential energy relating to the position of a point in the phase 
space, the generalised kinetic energy involving the tangent vector of the solution 
orbit, and the generalised force power reflecting the energy flow of the system, i.e. 
the time change rate of the generalised potential energy. The generalised potential 
and kinetic energies are two real numbers embedded into the phase space to build 
the basis to investigate the energy flow characteristics of NDS governed by 
generalised vector field equations. Obviously, in general, these three variables are 
not the corresponding physical energies for the equation in phase space, therefore 
we use the word, “generalised”, to distinguish them throughout the texts.  

This monograph consists of 10 Chapters. Chapter 1 is the introduction, which 
gives the energy flow equations for some linear dynamical systems: 1-DOF 
system, n-DOF system, continuum system, structural members (rods, shafts, 
Timoshenko beams and shear plates) as well as electromagnetic fields, from which 
some definitions of the notations and terminologies that are used in the rest of the 
monograph are given and explained. Following these fundamental equations, a 
short review on current state of energy flow or power flow analyses is presented, 
which summaries the successful approaches developed for power flow analyses of 
linear systems with their applications. The limited publications involving 
nonlinear dynamical systems are also reviewed. Characteristics of energy flow 
analysis are described, which confirms it is a universal approach to investigate any 
dynamical systems in science and engineering fields. From a comparison of linear 
and nonlinear problems as well as their mathematical formulations, limitations of 
energy flow variables defined in linear analyses are mentioned. To overcome these 
limitations, it is proposed an initial idea to define some new energy flow variables 
suitable to investigate energy flows of nonlinear systems governed by the 
equations of vector field in the phase space by using a simple example, which 
would be easily understood by those readers who are not familiar with power flow 
approaches. Chapter 2 gives the fundamental knowledge on dynamical systems 
and differential equations in vector field forms defined in the phase space, which 
outlines the generalised problems and equations to be tackled using energy flow 
approach in this monograph. Chapter 3 presents the proposed energy flow theory 
for nonlinear dynamical systems governed by the vector field equations in the 
phase space, in which the two positive energy flow variables: generalised potential 
and kinetic energies are defined and embedded into the phase space. These two 
positive real variables directly link with the position and its tangent vector of a 
phase point on the orbit of a nonlinear dynamical system, which provides an 
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energy flow approach to reveal the behaviour of the system. The energy flow 
equation, energy flow field and its geometrical characteristics in the vector field 
are defined and its variations with respect to time and space points are formulated. 
Chapter 4 gives some energy flow theorems to investigate the stability about a 
fixed point as well as the possible periodical orbits of nonlinear dynamical 
systems using the developed energy flow variables. Chapter 5 presents the first 
order approximation formulations of the energy flow equation, in which there four 
spaces: Jacobian, energy flow, kinetic energy and spin spaces with the 
corresponding matrices are defined, which can be used to investigate nonlinear 
dynamical systems based on the first order approximation equations. Chapter 6 
discusses the energy flow characteristics of local bifurcations, where a central 
energy flow theorem is presented and 5 types of local bifurcations: simplest 
bifurcations of equilibria, saddle-node bifurcation, transcritical, pitchfork and 
Hopf bifurcations are investigated. Chapter 7 investigates the global bifurcations 
including saddle connections, Hopf bifurcation and Lorenz equation. Chapter 8 
reveals energy flow characteristics of chaos, in which the energy flow 
characteristic factors are used to study Lorenz and Rössler systems. The behaviour 
of time average energy flow in chaotic motions is observed by numerical solutions 
of 5 nonlinear systems: Forced Van der Pol’s, Lorenz and Duffing’s equations, as 
well as Rössler and SD attractors. Chapter 9 discusses the Hamiltonian System, in 
which its energy flow equation and canonical transformation are studied from the 
energy flow point of view. The final Chapter 10 provides a numerical solution 
approach and the corresponding Matlab code for the energy flow analyses of 
nonlinear dynamical systems, which can be used to solve various nonlinear 
dynamical equations. The defined functions used in the code, the main program 
code and some input and output files for examples are provided in the Appendices 
for readers to learn running the developed program quickly. 

Throughout the monograph the author continually return to some examples in 
each chapter and has tried to illustrate even the most abstract results, from which 
to demonstrate the developed theory and approaches as well as applications. For 
the references, the author makes no claims for the completeness of the listed 
publications, however, he has tried to include the bulk of the papers, monographs 
and books which have been proved useful to the author and his colleagues, but he 
recognises that his bias probably makes this a rather eclectic selection, especially 
the papers by the author and his colleagues in the collaboration researches on 
Power Flow Analysis. The author also makes no claims for the completeness, 
mathematical accuracy and logicality of the proposed theory and approaches, but 
he would be very happy if the proposed ideas, which seems like a child casually 
picked up a cheapest brick from the surface of ground, might attract the interested 
readers including scientists, mathematicians, engineers and hopeful young 
students continuously to dig out more valuable jades underneath the ground. The 
author deeply welcomes any comments, suggestions and corrections for the 
monograph from those readers who will read this book, and express his thanks to 
them in advance. 

The author would like to give his thanks to the Faculty of Engineering and 
Environment, the University of Southampton for awarding him an Emeritus 
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Professor Position allowing the university’s office as well as facilities to be used 
in writing this monograph. The author’s colleagues in the Fluid-Structure 
Interaction Group and the Institute of Sound and Vibration Research of the 
University, especially Professor W. G. Price, FRS, deserve more thanks than the 
author can give for their important helps and supports lasting more than 20 years 
while working together. 

Finally, the author would especially like to acknowledge the encouragement, 
advice, and gentle criticisms of editors, whose careful readings of the manuscripts 
enabled him to make corrections and improvements.  

At the last, the author thanks his wife and children for their understanding, 
patience and supports during the production of this addition to his family in the 
author’s retired life. 

January 2015            Jing Tang Xing 
Southampton 
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Chapter 1 

Introduction  

In this introductory chapter to explain and understand the concept of energy flows 
or power flows for various dynamical systems and its characteristics, we discuss 
some energy flow equations and their physical meanings developed for linear sys-
tems. Starting from a simple 1-DOF system consisting of a mass, a spring and a 
damper, we derive its energy flow balance equation and introduce the correspond-
ing terms and concepts used in power flow analysis, and then we directly extend 
them into n-DOF system. Furthermore, the developed energy flow equations and 
their physical explanations for continuum systems, structural members and elec-
tromagnetic fields are presented. Following the description of above fundamental 
knowledge, a comprehensive review on power flow analysis is given, in which the 
main characteristics, original history and developments, fundamental approaches 
with applications of power flow analysis for linear dynamic systems are described. 
Recent applications and publications on power flow analysis to nonlinear systems 
are given. 

Based on above discussions, it is realised that current energy flow variables de-
fined for linear physical dynamical systems are inconvenience to investigate non-
linear dynamical systems formulated in the form of vector fields in the phase 
space. To address these inconveniences, the 1-DOF system is again studied but in 
the phase space, from which the generalised potential and kinetic energies for a 
generalised nonlinear differential equation in the vector field form of phase space 
are proposed. These two generalised energy flow variables are the two scalars re-
spectively linking with the position vector of phase space and the corresponding 
tangent vector of the vector field of nonlinear dynamical system, from which a  
generalised energy flow theory, based on vector field equations of nonlinear dy-
namical system, is proposed. The main aim of this monograph is to develop this 
theory and to use it to investigate some nonlinear systems in order to reveal their 
nonlinear behaviour from the view of energy flow point. 

1.1 Energy Flow Equation of 1-DOF System 

Firstly, we consider a very simple case, a linear dynamic system with only one de-
gree of freedom (1-DOF), as shown by Fig. 1.1. Taking the static equilibrium 
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point O  of the system as our reference point at which the origin O of coordinate 

system xO − is located, and using the second Newton’s law, we can derive its 
dynamic equilibrium equation 

,)0(,)0(),( 00 xxxxtfkxxcxm ===++                (1.1) 

where m , c , k  and )(tf respectively represent the mass, damping coefficient, 

stiffness of the system and an external force exciting the motion of the system. 

The variables 0x  and 0x denote the initial displacement and velocity of the sys-

tem at the initial time t = 0, respectively. Due to the excitation of the force, the 
displacement x , velocity x and acceleration x of the mass are functions of time t. 
For a practical physical system, these dynamical variables are real numbers.  
 
 
 
 
 
 
 
 
 

 

 
 

Fig. 1.1 A linear dynamic system of 1-DOF consisting of a mass m , a damper c and a 

spring k and excited by an external force )(tf . 

1.1.1 Energy Flow Equation 

Now, multiplying Eq. 1.1 by the velocity x of the system, we obtain 

),(tfxxkxxxcxxm =++                                     (1.2) 

which may be rewritten in the form 
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Physically, K  and Π  represent the kinetic energy and the potential energy of the 
system, D denotes the energy dissipated by the damping force and P is the power 
of the external force, i.e. the work done by the external force per second. There-
fore, Eq. 1.3 implies that the input power into the system by the external force 
equals the time change rates of the mechanical energy, i.e. the sum of kinetic and 
potential energies, and the energy dissipation rate by the damping force of the sys-
tem. More generally, Eq. 1.3 gives a particular form of the universal law of energy 
conservation for this 1-D dynamic system.  

1.1.2 Time Averaged Energy Flow 

If we choose a reference time period T as an average time and denote the time  
averaged value of a time variable α by a notation 

Tt

t
dt

T
0

0

1
, 

                                        
(1.4)

 

the corresponding time averaged form of Eq. 1.3 is given by 

.>>=<Π<+><+>< PDK                           (1.5) 

1.1.3 Energy Flows in Free Vibrations 

If there is no external force applied to the system, Eq. 1.1 takes the form 

,)0(,)0(,0 00 xxxxkxxcxm ===++             (1.6) 

of which the solution is called as a free vibration depending on the initial  
conditions. The corresponding energy flow balance equation and time averaged 
one for free vibrations can be obtained by setting 0=P in Eqs. 1.3 and 1.5,  
respectively, i.e.  

,
2
1

,
2
1

,0 2
0

2
0 00 kxxmKDK =Π==Π++                   (1.7) 

.0>=Π<+><+>< DK                                      (1.8) 
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The solution of free vibrations of the linear underdamped system, i.e. small damp-
ing in Eq. 1.6, is given by 

,1/tan),2/(
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where Ω and dΩ are called as the natural frequency and the frequency of free vi-

bration of the system, respectively, and η is a non-dimensional damping coeffi-

cient of the system. The amplitude dX and phase angle dφ can be determined by 

using the initial conditions given in Eq. 1.6, that is 
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From the solution given by Eq. 1.9, we conclude that the amplitudes of the dis-
placement and the velocity of the free vibration of the system are decreased in the 

form te η− Ω due to the positive damping coefficientη . Therefore the potential and 

kinetic energies of the system in the time period ddT Ω= /2π are also decreased. 

For example, at time dt T=  after the first period from the initial time 0,t = the 

potential and kinetic energies of the system respectively take the following values 
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of which the logarithmic decrement rates are  
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The decreased mechanical energy is dissipated by the damping of the system. The 
dissipated rate depends only on the non-dimensional damping coefficient. If there 
is no damping in the system, the initial mechanical energy of the system is not 
changed and the system undergoes a natural harmonic vibration of frequencyΩ . 

1.1.4 Energy Flows in Forced Vibrations  

If the external force ( )f t  is a sinusoidal force of amplitude F and frequencyω   

,cos)( tFtf ω=                                                (1.13) 

the general solution of Eq. 1.1 consists of two parts, one is the free vibration and 
another is a forced vibration, i.e. a particular solution of Eq. 1.1. Due to the damp-
ing of the system, the free vibration is gradually reduced to zero with time, as dis-
cussed in subsection 1.1.3, so that the forced one is more interested for practical 
applications of vibration analysis.  
     For linear systems, the forced vibration will be a harmonic oscillation with the 
same frequency ω  as the one of external force, which is called as the “frequency 
reservation” characteristic of linear systems. For a convenience to derive the 
forced vibration of Eq. 1.1 with discussions late, we may rewrite Eq. 1.1 asso-
ciated with Eq. 1.13 into the form 

),/(/,/

,cos2
2

00

12

Ω===
=+Ω+Ω −−

mFkFXXxx

txxx ωη
                   (1.14) 

where 0X denotes a static displacement of the spring caused by the fore ampli-

tude F , and x  is non-dimensional displacement of the system. A general forced  
vibration can be assumed as 

,/),cos( 0XXtx fff =+= ψϕωψ                           (1.15) 

which, when substituted into Eq. 1.14, gives 

,cos)sin(2)cos()1( 2 ttt ff ωϕωζηψϕωψζ =+−+−     (1.16) 

where 

,/Ω= ωζ                                                  (1.17) 

represents a frequency ratio. Introducing a phase angle fφ determined by 

,
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2
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ζηφ
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=f                                            (1.18) 
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we can rewrite Eq. 1.16 as 

.cos
4)1(
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=++               (1.19) 

For Eq. 1.19 to be valid, we obtain the forced vibration of the system in the form 
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Here, ψ is called the amplifying factor of amplitude, which represents the ratio of 

the amplitude fX of forced vibration over the static displacement 0X of the 

spring, and is dependent of the frequency ratio ζ and the damping coefficient 

η of the system. Now the dynamic equation satisfied by the force vibration in  

Eq. 1.20 can be represented as 

,cos)sin(2)cos()1( 2 ttt ff ωϕωζηψϕωψζ =+−+−             (1.21) 

in which the first term on the left hand side represents the difference between the 
spring force and the inertial force of the system, while the second term is the 
damping force.  

Based on this solution, we can now investigate the energy transmission and ex-
changes in the system undergoing the forced vibration. Multiplying the both sides 

of Eq. 1.14 by the velocity fx in Eq. 1.20, we derive the time change rates of  

potential, kinetic and dissipated energies and the power of the external force, as 
denoted in Eq. 1.3, in the forms 
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(1.22)

 

From the expressions in Eq. 1.22, we can conclude the following characteristics of 
energy flows in the forced vibration of the linear system. 
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i) The averaged time change rates of the potential and kinetic energies of 

the system in a time period ωπ /2=fT  vanish, respectively, i.e. 

>=<>=Π< ff K0 .                                         (1.23) 

ii) The potential and kinetic energies of the system are not changed in the 

time period ωπ /2=fT , i.e. 

).()(),()( ffffff TtKtKTtt +=+Π=Π                      (1.24) 

iii)  In the time period ,fT  the work fW  done by the force is totally dissi-

pated by the damping of the system, that is 
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Here, we have used Eq. 1.18 in the above derivation. 
iv) The process of energy transmission and exchanges of the system during 

the motion depends on the frequency of the force in the following manners. 
For very low frequency range :1<<ζ  Eq. 1.21 can be approximately  

reduced to  

,cos)cos( tt f ωφωψ ≈−                                 (1.26) 

so that the excitation force mainly balances the spring force. The amplifying factor 

is 1≈ψ with phase angle 0≈fφ , which indicates that the motion of the system is 

similar to the one of the spring subject to the force. The dominant energy ex-
changes happen between the force source and the potential energy of the spring. In 
the time when the displacement increases, the work done by the force inputs into 
the system to increase the potential energy of the spring; while in the time when 
the displacement decreases, the potential energy of the spring reduces, which  
restore the energy into the force source with the potential energy unchanged in one 

time period ./2 ωπ=fT  
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For the range of frequency around the resonance frequency, :1≈ζ the spring 

force and the inertial force of the system are balanced each other and Eq. 1.21 is 
approximately reduced to  

,cos)sin(2 tt f ωφωζηψ =−−                           (1.27) 

implying the excitation force balances the damping force. The amplifying factor 

is )2/(1 ηψ ≈ with phase angle 2/πφ ≈f . In this case, the time change rate of 

mechanical energy vanishes due to automatically balance between the spring and 
inertial forces. The instant power of force equals the energy dispassion power by 
the damping force. 

For very high frequency range :1>>ζ  Eq. 1.21 can be approximately  

reduced to  

,cos)cos(2 tt f ωφωψζ =−−                                 (1.28) 

so that  the excitation force mainly balances the inertial force. In this case, the am-
plitude of motion is small but the frequency is very high, of which the amplifying 

factor is 2/1 ζψ ≈ with phase angle πφ ≈f . The dominant energy exchanges are 

between the force source and the kinetic energy. In the time when the velocity in-
creases, the work done by the force inputs into the system to increase the kinetic 
energy of the mass; while in the time when the velocity decreases, the kinetic 
energy of the mass reduces, which restore the kinetic energy into the force source 

with the kinetic energy unchanged in one time period ωπ /2=fT . 

1.1.5 Complex Representation of Harmonic Variables 

For the convenience of mathematical operations, a harmonic force of amplitude 
F and frequencyω  

( ) cos ,f t F tω=                                          (1.29) 

is denoted by a complex form  

i( ) , ( ) Re{ ( )} cos ,tf t Fe f t f t F tω ω= = =              (1.30) 

where the complex notation i -1,=  and here we use the real part of the com-

plex force to denote the real physical force. Consequently, Eq. 1.1 is also 
represented in a complex form 

),(
~~~~ i tfFexkxcxm t ==++ ω                               (1.31) 
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where, the wave notation “~” over a variable denotes a complex variable. It is im-
portant to remember that for the complex Eq. 1.31, all variables of its solution are 
complex numbers of which their real (or imaginary if chosen) parts represent the 
corresponding real physical variables, respectively (see, for example, Pippard 
1978). The adoption of a complex representation of a harmonic quantity allows for 
mathematical flexibility, but it is noted that with some mathematical operations 
the instantaneous real or imaginary part only carries physical meaning. In such 
circumstances, in general, the safe course of action is to take the real or imaginary 
part of the quantity at the outset before any operation is performed. Therefore, 
when we calculate the energy flow quantities defined for the real physical va-
riables by Eq. 1.3, we have to use their complex-valued mathematical counterparts 
to do multiplications. For example, as adopted in this book, we assume that the 
real part of a complex variable denotes the real physical variable. The complex  
velocity of the solution of Eq. 1.31 can be represented as 

,
~

)(~~ )i(i θωω +=== tt VeeVtvx                                 (1.32) 

where V
~

and V represent the complex amplitude and real amplitude of the veloci-

ty, respectively, and θ is a phase angle of the velocity relative to the external 
force. The physical velocity of the system is the real part of its complex velocity 
given by Eq. 1.32, i.e. 

).cos(}Re{}
~

Re{}~Re{)( )i(i θωθωω +===== + tVVeeVvtvx tt     (1.33) 

The instantaneous power of the external force is calculated by a multiplication of 
the real force and the real velocity, that is 

( ) ( ) Re{ }Re{ } cos( )cos .P v t f t v f FV t tω θ ω= = = +          (1.34) 

The time-averaged power P over the time period ωπ /2=T  of the external 
force can be calculated by completing the following time integration 

.cos
2

)sincossincos(cos

cos)cos(1

0

2

0

FVdtttt
T
FV

tdttFV
T
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T

T

   

(1.35)

 

To compare with the result obtained by the complex force f
~

multiplying the 

complex velocity v~ , we use Eqs. 1.30 and 1.32 to calculate a complex quantity 

P
~

 and its time-averaged values as follows 
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(1.36)

 

From above results, we can find that Eq. 1.36 obtained by multiplying two com-
plex variables does not give the real power and its time-averaged power done by 
the real force through the real velocity. However, the time averaged power in  
Eq. 1.35 can be obtained by using the complex force and velocity based on the 
formulation 

,
~~~,

~~~},~Re{}
~~Re{}

~~Re{ ***** fvpfvppfvfvP =====          (1.37) 

where *() denotes the conjugate number of a complex number (), and p~ is called 

a complex power which will be further discussed in sub-section 5.5.3. 

1.2 Energy Flow Equation of n-DOF System 

The energy flow equation with some energy flow characteristics discussed in  
section 1.1 for 1-DOF system can be directly extended to investigate a linear  
dynamical system with n-DOF governed by the following matrix equation 

,(0)(0))( 00 xx,xx,fkxxcxm ===++ t            (1.38) 

where m ,c , k  and )(tf respectively represent the mass, damping and stiffness 

matrices, order ,nn× of the system and an external force vector, a column vector 

of order n, exciting the motion of the system. Normally, the matrices m ,c  

and k are symmetrical matrices. The vectors 0x  and 0x denote the initial dis-

placement vector and velocity vector of the system at the initial time t = 0, respec-
tively. Due to the excitation, the dynamic response of the system, displacement x , 
velocity x and acceleration x , are functions of time t.  For a practical physical sys-
tem, these dynamical variables are real numbers. Here, for saving text, we only 
derive the energy flow equation for linear n-DOF system as follows.  

Multiplying Eq. 1.38 by the transpose Tx of the velocity vector of the system, 
we obtain 

),(tTTTT fxkxxxcxxmx =++                            (1.39) 
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which may be rewritten in the form 

).(,
2
1,,

2
1

,

0
tPdDK

PDK

TTTT fxkxxxcxxmx
x

     

(1.40)

 

These real quantities have same physical meanings described for 1-DOF system, 
that is, K ,Π , D and P  represent the kinetic energy, the potential energy, the 
energy dissipated by the damping force and the  power of the external force, re-
spectively. Eq. 1.40 gives the form of the universal law of energy conservation for 
the n-DOF dynamic system. 

If the external force )(tf is a sinusoidal force of amplitude F of frequencyω , 

i.e. 

( ) cos ,t tω=f F                                            (1.41) 

Eq. 1.39 can also be written in a complex form  

).(
~~~~ i te t fFxkxcxm ==++ ω                               (1.42) 

All variables of the solution of Eq. 1.42 are complex numbers of which the real or 
imaginary parts represent the corresponding real physical variables, respectively.  
For example, the physical force 

,cos}Re{}
~

Re{)( i tet ωt ωFFff ===                             (1.43) 

and the complex velocity of the system is given by 

,
~

)(~~ iωtet Vvx ==                                            (1.44) 

from which, the physical velocity of the system is obtain by the real part of the 
complex velocity in Eq. 1.44, i.e. 

}.
~

Re{}~Re{)( iωtet Vvvx ===                           (1.45) 

The instantaneous power of the external force is calculated by a multiplication of 
the real force and the real velocity, that is 

.cos}~Re{}
~

Re{}~Re{)( ttP TTT ωFvfvfv ===            (1.46) 

The time-averaged power P over the time period 2 /T π ω=  of the external 
force can be calculated by using the following complex formulations 
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====
          (1.47) 

1.3 Energy Flow Equation of Linear Continuum System 

For a linear dynamical continuum system, Xing & Price (1999) presented the fun-
damental theory to investigate the power flow behaviour of the system, in which 
the energy flow equations for structures, such as rods, shafts, beams and plats, are 
given. A summary of these equations is given herein, of which the detailed ma-
thematical derivation may be consulted the above original reference. To develop 
the necessary energy flow equations describing the dynamics of the continuum, a 
standard Cartesian tensor notation and a summation convention are used herein 

(Fung, 1977). Therefore, as shown in Fig. 1.2, let 321 xxxO −  be a conveniently 

chosen fixed frame of reference such that at time 0tt = a material particle is at 

position coordinate )3,2,1(, == iax ii . At a subsequent time t, this particle 

now labeled ia has moved to a new location ix  through a displacement iu   

expressed as 

.),,( iiijii axutaxx −==                                  (1.48) 

If this information is known for every particle in the body, the history of the  
motion of the whole body is quantified. Mathematically, Eq. 1.48 defines the 

transformation, or mapping, of a domain )( iaΩ  into a domain )( ixΩ , with t as a 

parameter. If the mapping is continuous and one-to-one, then the functions 

),( taxx jii =  are single valued, continuous and continuously differentiable, and 

the Jacobian 0/ >∂∂ ji ax  in the domain Ω. 

The mapping in Eq. 1.48 provides a material description of the motion of the 
continuum. This allows the velocity and acceleration of the particle at time t to be 
written as 

,),(,),( ,, a
a

a
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tti
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i

ji x
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t

x
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∂==

∂
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respectively, and the conservation of mass expressible in the form 
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Fig. 1.2 Energy transmission from one part to another in continuum (Xing & Price 1999) 

Here, )(0 aρ and )(xρ  denote the mass density of the continuum at times 

0t and t , respectively. This material description is usually adopted in solid me-

chanics, but in fluid mechanics it is more convenient to examine the fluid flow 
through the instantaneous velocity field and its evolution with time. This leads to a 

spatial description with location ix  and time t taken as independent variables. 

Consequently, the instantaneous motion of the continuum is described by the ve-

locity vector field ),( txv ji and the acceleration vector field expressed as 

,),( ,, jijtiji vvvtxv +=                                   (1.51) 

where (˙) represents the material derivative of ( ) defined by 

./()()())( ,, jjtt xv ∂∂+==
xa

                          (1.52) 

Let us examine the motion of a continuum system B from time 0t to t  ( 0t < t ). As 

schematically illustrated in Fig. 1.2, in the frame of reference, the continuum oc-

cupies the domain Ω with the surface S, which has the unit vector iν  defined 

along the outer normal. In this study it is assumed that for linear continuum dy-

namics, the variables iu , iv  and p represent displacement, velocity and pressure, 
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respectively; ijσ  a symmetrical stress tensor; 2/)( ,, ijjiij uue += a symmetrical 

strain tensor; 2/)( ,, ijjiij vvV += a strain-rate tensor; if̂ a body force per unit 

volume of the continuum. Also, we use a linear approximation for 

ijijjiij Vuue =+= 2/)( ,, . 

1.3.1 Energy Flow Density Vector 

The energy transmission from one part to another in a continuum excited by ex-
ternal forces can be investigated by analysing the energy flow across the closed 

surface s within the continuum B illustrated in Fig. 1.2. Let sΔ  denote an ele-

mental surface on s and iν a unit normal to sΔ with its positive direction pointing 

outward from the (negative) interior to the (positive) exterior. The interactions be-
tween material lying on either side of this surface cause internal actions defined by 

the traction or stress vector ν
iT representing the force per unit area acting on the 

surface s. Through the rate of work done by this traction ν
iT  the rate of energy 

flow along the direction iν given by 

νν
iiTvq −= .                                            (1.53) 

A positive value of νq  represents the transmission of energy per unit time 

through the unit area of sΔ from the material within s to the outside. It follows 
from Cauchy’s formula (see, for example, Fung 1977) that the traction 

,jijiT νσν =                                             (1.54) 

and hence the rate of energy flow 

jjjiji qvq ννσν =−= .                                    (1.55) 

Here, the energy-flow density vector 

ijij vq σ−= ,                                             (1.56) 

is defined by the negative dot product of the velocity  iv  and stress tensor ijσ  and 

is a vector field function dependent on the coordinate ix and the time t. In a conti-

nuum mechanics approach, this energy-flow density vector jq  specifies the ener-

gy transmission from one part to another in the dynamical system and allows the 
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determination of the rate of energy flow at each point in or on the continuum in 

any direction with unit normal iν  by the expression given in Eq. 1.55.  

The energy-flow vector jq defines a vector field so that the theory of vector 

field can be used to investigate its characteristics, such as energy flow lines,  
energy flow potential, etc. as presented by Xing & Price (1999). 

1.3.2 Energy Flow Line and Potential 

An energy-flow line is defined as a line in the direction of the energy flow in the 
continuum, and satisfies the differential equations 

.
3

3

2

2

1

1

q

dx

q

dx

q

dx ==                                        (1.57) 

These energy-flow lines are the vector lines of the vector field of the energy-flow 

density jq and give a geometrical description of the energy flow field. Based on 

this theory, the energy-flow lines for many dynamic systems have been given, see 
for examples, Xing, Price & Wang (2002); Xing, Price & Xiong (2003); Xing, 
Xiong & Price (2004); Wang (2002); Wang , Xing & Price (2002ab, 2004). 

If there exists a differentiable scalar field function ),( txiφ satisfying 

,/ jj xq ∂∂= φ                                           (1.58) 

this energy flow vector field defined by vector iq is irrotational and the scalar 

field function ),( txiφ is called the potential of the energy flow field. There have 

been some examples and more detailed information on the potential of energy 
flow given in the original paper by Xing & Price (1999). 

1.3.3 Energy-Flow Equation 

Based on the dynamic equilibrium equation of a continuum 

,ˆ
, iijij vf ρσ =+                                              (1.59) 

an energy-flow equation governing the energy balance of the continuum can be 

derived through a multiplying Eq. 1.59 by the velocity iv , that is 

.ˆ
, iiiijiji vvfvv ρσ =+                                        (1.60) 
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We assume that the Cauchy’s stress can be represented a summation of the stress 
e
ijσ caused by any deformations of the continuum and the stress 

d
ijσ produced by 

any material damping, i.e.   
d
ij

e
ijij σσσ += , so that considering the symmetric 

stress tensor, we can obtain 

d
ijij

e
ijijijijijijijijjiijji VVVevvv σσσσσσ +===+= 2/)( ,,, .       (1.61) 

This allows the energy-flow balance Eq. 1.60 to be rewritten as 

,,ˆ,, DKPqPPPq AfIAI
jj +Π+==−=          (1.62) 

where,  
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       (1.63)

 

Here, physically, K , Π  and D represent the densities of kinetic energy, defor-
mation energy and dissipation energy per unit volume of the continuum, respec-

tively, while k gives the kinetic energy over a unit mass and If Pq =ˆ denotes the 

power done by the body force into the continuum.  The time change rate 

DKPA +Π+=  can be considered as an absorption power consisting of the 
rates of kinetic, deformed and dissipated energies of the continuum. Eq. 1.63 de-
fined at any point in the continuum, states that the divergence of the energy-flow 
density vector equals the difference between the input power of body force and 

absorption power AP .  
As same as Eq. 1.23 given for 1-DOF system, for the forced vibration excited 

by a harmonic external force, the averaged time change rates of kinetic / potential 
energies of continuum system in a time period of the force also vanish, i.e. 

,0 >Π=<>=< K  so that the time averaged energy flow equation takes the 

form 

,ˆ, ><−>>=<< Dqq f
jj                                (1.64) 

which physically implies that the time averaged transmission power in the  
continuum equals the time averaged input power of body force reduced by  
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the time averaged dissipation power. Furthermore, if there are no body forces, the 
time averaged energy flow in the continuum depends only on the time averaged 
dissipation power, i.e.  

,, >>=<<− Dq jj                                                (1.65) 

 
implying that in an element of continuum, the time averaged energy flow, 

,j jq− < > , transmitted into it will totally be dissipated by its damping. 

The quantity jjq .  can be further represented by the power of transmission on 

the surface of a closed element of volume surrounding the point. Let us consider 

the volume element sΩ with its closed surface s in Fig. 1.2 An integration of  

Eq. 1.62 over this elemental volume and the application of Green’s theorem give 

,

,)(,

dsqdPdP

dPPdsqdq

js j
AI

AI
js jjj

ss

ss                           (1.66)

 

which implies that the input power from the body force in this volume equals the 

absorbed power of the volume sΩ plus the transmitted power j js
q dsν∫  through 

the surface s into outside of the volume. 
     The energy-flow balance equation should be with the corresponding boundary 
conditions to investigate the power flow behaviour of a practical problem. The 
boundary condition can be derived by 

ii
ss

iijj TvqqTvq =−=−= ,ν ,                                (1.67) 

in which iT denotes the traction force vector on the boundary of the continuum. 

For different problems, the boundary conditions will be different. For example, for 
solid mechanics problems, we have 

,0=sq                                                  (1.68) 

on the free surface boundary where the traction force vanishes and the fixed  
boundary on which the velocity vanishes. For fluid dynamics problems, if the 
boundary is fixed, the velocity vanishes, so that Eq. 1.68 is still valid. If the in-

coming velocity of fluid boundary is given by iv̂ and its traction force equaling the 

atmosphere pressure 0p , the energy flow boundary condition on the incoming 

boundary will be 

.ˆˆˆ 00 iijijiii
s pvpvTvq ννδ −=−==                               (1.69) 
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1.4 Energy Flow Equations of Structural Members  

The power-flow equations for structural members (Xing & Price 1997 / 1998), i.e. 
rod in tension or compression, rod in torsion, Timoshenko beam and shear plate, 
are listed as follows. 

1.4.1 Rod in Tension or Compression 

In this example, it is assumed that the longitudinal axis of the rod ( 10 xx ≤≤ ) 

coincides with the x-axis of a rectangular Cartesian axis system. The governing 
equations describing the linear dynamics of a Voigt visco-elastic (see, for  
example, Fung 1977) rod with a unit sectional area, elastic modulus C and viscous 
coefficient d, are as follows: 

dynamic equation:                          ,ˆ
,, tx vfT ρ=+  

constitutive equation:                     tdeCeT ,+= , 

displacement-strain relation:         xue ,= ,                                                      (1.70) 

displacement-velocity relation:      tuv ,= , 

boundary conditions:                     ,0,ˆ == xTT  

                                                     .,ˆ 1xxuu ==  

The energy-flow density vector q, the energy-flow potential φ  and the energy-

flow equation are, respectively, written as 

,on,ˆ

,0on,ˆ

,ˆ

,,

11
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,
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xxqq

xqq

DKqq

qvTq
f

x

x

==
==
−Π−−=

−=−= φ

                                  (1.71) 

where 
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          (1.72)
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1.4.2 Rod in Torsion 

Let us assume that the longitudinal axis of the rod coincides with the z-axis of a 
cylindrical coordinate system; ,M m̂  and θ represent the internal torque, the 

prescribed distributed torque and the twist of the rod, respectively. On using J to 
denote the polar moment of the cross section area of the rod, the governing equa-
tions of the rod in torsion are represented as follows: 

dynamic equation:                           tz JmM ,, ˆ ωρ=+  

constitutive equation:                      tdeGJeM ,+= , 

displacement–strain relation:               ze ,θ= ,                                               (1.73) 

displacement–velocity relation:        t,θω = , 

boundary conditions:                       ,0,ˆ == zMM  

                                                       1,ˆ zz ==θθ . 

The energy-flow density vector q , the energy-flow potential φ  and the energy-

flow equation are, respectively, expressed in the following way: 

,,ˆ

,0,ˆ

,ˆ
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,
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zzqq

zqq

DKqq

qMq
f

z

z

==
==
−Π−−=

−=−= φω

                              (1.74) 

where 

0 0 1 1 ,

2 2
, ,0

ˆˆˆ ˆ ˆ ˆ, , ,

/ 2, / 2, .

f
t

t

t t

q m q M q M

K J GJe D de e dt

ω ω θ

ρ ω

= = − = −

= Π = = ∫
          (1.75) 

1.4.3 Timoshenko Beam 

Here, we assume that the central line of the beam, of cross section area A with its 
second order moment I ,  is along the x -axis, and the shear force, bending mo-
ment, deflection and shearing angle of the beam are represented by Q , M , 
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w and ψ , respectively. The governing equations describing the linear dynamics 

of a Timoshenko beam in bending are as follows (Timoshenko, Young & Weaver 
1974): 

dynamic equations:                        ,ˆ
,, tx AvfQ ρ=+  

                                                     ,,, tx IQM ωρ=−  

constitutive equations:                  , ,M tM CI dκ κ= +                     

                                                    , ,Q tQ GA dγ γ= +                      

geometrical relations:                      ,, ,, xx w+== ψγψκ                  (1.76) 

deflection-velocity relations:         , ,, ,t tv w ω ψ= =    

boundary conditions:                   ˆˆ , , 0,M M Q Q x= = =   

                                                  1ˆˆ , , .w w x xψ ψ= = =   

The energy-flow density vector q , the energy-flow potential φ  and the energy-

flow equation are, respectively, defined as 

,,ˆ
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                          (1.77) 

in which, the relevant quantities take the following forms: 
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         (1.78)
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1.4.4 Shear Plate 

Here, the subscripts α  and β  take values 1 or 2 and the summation convention 

for repeated subscript applies. For example, the plate-stress-resultants are denoted 

by the transverse shear force αQ  and the moment αβM  per unit length, with their 

components ,1Q ,2Q ,11M ,12M  etc. The bending stiffness of the plate is 

represented by D
~

. The motion of the plate is investigated by the deflection w  and 

sharing angle ψ of its mid-plane of the unit outward normal vector αν and  

the unit tangent vector ατ . This notation allows the governing equations describ-

ing the linear dynamics of a shear plate to be expressed in the following forms 
(Reismann & Pawlik 1980): 

dynamic equations:                 ,ˆ
,, thvfQ ραα =+

 
 

                                               ,,, tIQM ααβαβ ωρ=−  

constitutive equations:    

         ],)1[(])1[(
~

,, αβαβαβαβαβ δμκκμμκδκμ ttMdDM +−++−=  

         ,,tQdGhQ ααα γγ +=  

geometrical relations: 

          ,,,2/)( ,,,, ααααααββααβ ψκψγψψκ =+=+= w  

deflection-velocity relations:  

,, ,, ttwv αα ψω ==                               (1.79) 

boundary conditions: 

                                    ,on  ,ˆ,ˆ dSww νν ψψ ==  

                                   
.on  ,ˆˆ
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where    

                                    .33 γβγααβ
ν
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ντ ννν MeMeM ==  
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The energy-flow density vector αq  is defined as 

).( βαβαα ω MvQq +−=                                       (1.80) 

If 2,11,2 qq = , there exists an energy potential φ satisfying 

.,αα φ−=q                                                   (1.81) 

The energy-flow equations are 
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                                    (1.82) 
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     (1.83)

 

1.5 Energy Flow Equation of Electromagnetic Fields 

Consider a linear electromagnetic field defined in a space of uniform isotropic 

continuum with its electric constant )4/(10 27
0 cπε = )(Fm 1− and the permea-

bility of free space 7
0 104 −×= πμ )(Hm 1−  , 2

00
−= cμε )m(s 22 − , where c  

)(ms-1 is the speed of light in vacuum. Using the following notations with SI 

units: E electric field intensity )(Vm 1− , B magnetic flux density )(Wbm 2− , 

H magnetic field intensity )(Am 1− , ρ electric charge density )(Cm 3− , j elec-

tric current density )(Am-2 , we can write the governing equations describing the 

electromagnetic field dynamics as follows (see, for examples, Becker 1982; Reitz, 
Milford & Christy 1993 ; Thide 2011). 
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Pre-dot-multiplying the third and fourth equations above by B and E , respectively, 
we obtain 

,/)/1(

,0/

0
2 jEEEBE

BBEB

⋅=∂∂⋅−×∇⋅
=∂∂⋅+×∇⋅

μtc

t
                        (1.85) 

of which the difference gives  

./)/1(/ 0
2 jEEEBBBEEB ⋅−=∂∂⋅+∂∂⋅+×∇⋅−×∇⋅ μtct   (1.86) 

The application of vector formulation  

,)( BEEBBE ×∇⋅−×∇⋅=×⋅∇                              (1.87) 

as well as a further modification of Eq. 1.86 provide the following result 

,/elec EjS ⋅−=∂∂+⋅∇ tu                                               (1.88) 

where 

.2/)(,/ 2
0

elec2
00 BBEEBEBES ⋅+⋅=×=×= cuc εεμ      (1.89) 

The electric current density j equals the multiplication of the electric charge  

density ρ  and its mechanical moving velocity v , i.e. 

vj ρ= ,                                                    (1.90) 

which, when substituted into Eq. 1.88, gives the energy flow balance equation of 
electromagnetic field in the form 

./elec tu ∂∂−⋅−=⋅∇ vES ρ                                    (1.91) 

Here elecu -3(Jm ) is the energy density of the electromagnetic field, 

S -2(Wm ) is called the Poynting vector (Poynting 1884) which is the energy-

flow density vector for electromagnetic field and represents the energy flux, the 
energy passing through a unit area per second. Considering the variable 
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Eρ -3(Nm ) represents the force density and the term ρ ⋅E v gives the power 

done by the force, called as the Lorentz power density, we may write  

tu ∂∂=⋅ /mechvEρ ,                                       (1.92) 

where mechu denotes the mechanical energy density of the field. Eq. 1.91 can now 
be rewritten as 

.0// elecmech =∂∂+∂∂+⋅∇ tutuS                        (1.93) 

This equation implies that input power S⋅∇ into the system is balanced by the 
rates of mechanical and electromagnetic energy densities. 

1.6 Short Review on Current State of PFA  

1.6.1 Characteristics of Power Flow Analysis 

The energy flow balance equations presented in sections 1.1-1.5 provide a funda-
mental basis to investigate dynamic systems using a power flow analysis  
approach, for which we may summary the following essential points.  

 
The principle used in this method is based on the universal principle of energy 
balance and conservation law to investigate dynamic systems and, therefore,  
it provides a common approach to analysis various systems including mechanical, 
thermal and electrical / magnetic systems, such as solid, fluid, acoustic and  
control systems, as well as more complex systems involving their couplings or  
interactions.  
 
The variable studied in the power flow analysis combines the effects from both 
forces and velocities, and it takes their product, power, i.e. the change rate of 
energy, as a single parameter to characterise / describe the dynamic behaviour and 
responses of a system, which includes and reflects the full information on the 
equilibrium and motion of the system, and therefore overcomes the limitations to 
study force and motion responses separately. For example, designs relying on the 
strength criteria of maximum stress can guarantee the maximum stress being in  
the allowable range, but the maximum displacement, stiffness behaviour, of the 
designed product might not be satisfied. In reverse cases, designs following  
the strength criteria of maximum strain can keep the stiffness characteristics  
satisfied, but the maximum stress of the designed product might be higher that the 
allowable one.  
 
The approaches adopted in power flow analysis focuses on a global statistical 
energy estimations, distributions, transmissions, designs and controls for dynamic 
systems or sub-systems rather than the detailed spatial pattern of the structural 
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responses. It overcomes difficulties encountered while using finite element me-
thods or experimental modal analyses of vibration responses at medium to high 
frequency regions, which requires extreme small size of elements to reach a  
necessary computational accuracy.  
 
The applications include: i) to analyse the vibration characteristics of various sim-
ple / complex / coupled systems from a point view of power flows including  
energy transmissions from one part to another and transmission paths, energy dis-
tributions and patterns, geometrical pictures of energy flow field and variations  
affected by system parameters; ii) active and passive vibration controls to reduce 
the excitation power transmission into structures and to minimise the power flow 
within structures; iii) noise reductions to reduce noise levels by controlling the 
dominant noise power and transmission and using noise absorption materials;  
iv) damage detections based on energy flow variables; v) power flow designs and 
control to satisfy practical requirements, etc. 

1.6.2 Linear Power Flow Analysis 

The universal energy conservation law has been well known in physics, for which 
it has been very difficult to trace its originality. For example, it was said that  in 
1850, William Rankine (1853)  first used the phrase the law of the conservation of 
energy for the principle, however,  in 1877 Peter Guthrie Tait (see, Hadden 1994) 
claimed that the principle originated with Sir Isaac Newton, based on a creative 
reading of propositions 40 and 41 of the Philosophiae Naturalis Principia Mathe-
matica. This is now regarded as an example of Whig history (Hadden 1994). Al-
though this law has been widely used to derive various type of energy equations in 
continuum mechanics, especially classical thermodynamics (see, for example, 
Love 1927; Green & Zerna 1954;  Fung 1965, 1977; Fung & Tong 2001), its first 
form with a defined energy flux density vector, Poynting vector, was contributed 
by Poynting to describe energy transmission in  electromagnetic fields (Poynting 
1884) . However, more recent interests and attentions of scientists and engineers 
into power flow investigations for vibration systems were lighten by Lyon’s 
(1975) important contribution, where statistical energy analysis involving random 
probabilistic theory (Newland 1975; Price & Bishop 1974) was proposed.  

Now, it has been widely recognised that the power-flow analysis (PFA) or the 
statistical energy analysis (SEA) provides a technique able to model the high-
frequency dynamic responses of structural or fluid dynamical systems of high 
modal density. The fundamental concepts of PFA are discussed by Goyder & 
White (1980abc), whereas an ASME special publication NCA-3: statistical energy 
analysis edited by Hsu, Nefske & Akay (1987) and Fahy’s (1994) comprehensive 
critical review of SEA highlighted its origins, developments and possible future 
directions. The interested reader may wish to consult these references together 
with Price & Keane (1994) for they include discussions of the contributions of 
Lyon (1975) and other investigators to the subject area of high-frequency, excited 
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dynamical systems. At an IUTAM symposium on SEA (Fahy & Price 1998) sig-
nificant advances in the subject were reported. Of particular interest in the context 
of this monograph were the contributions of Bocquillet et al. (1998), who re-
viewed the validity of a solution of high-frequency models including SEA (see al-
so Langley 1992), and Carcaterra (1998), who examined wavelength-scale effects 
on the energy propagated in selected structures. In a critical review paper (Mandal 
& Biswas 2005) on vibration power flows, the reported experimental approaches 
to measure the power flow intensity or sound intensity, particularly focusing on 
flexural waves, were discussed and compared.  This review paper provides many 
valuable references with important practical techniques, such as, the pioneering 
work of Noiseux (1970) in the measurement of power flow in uniform beams and 
plates.  

Many of the PFA or SEA investigations discussed in the above literatures refer 
to a particular dynamical system at the outset: for example, a study of the power 
flow or energy transfer between two vibrating rods or oscillators connected 
through a spring-damper coupling. The dynamical system can be made structural-
ly complex but the general approach is to conceive the system, derive the relevant 
equations of motion, and implement a PFA or SEA in one of its many variant 
forms. Following the original discussion on the flux of energy in vibratory motion 
described by Love (1927), Xing & Price (1999) investigated power flows from a 
more generic viewpoint; namely, the development of a mathematical model based 
on the fundamental equations and principles of continuum mechanics to describe 
the power flow in a continuum and to apply the relevant results to particular appli-
cations (Xing & Price 1997 / 1998), that is, the reverse of the more traditional ap-
proaches. In this more generalised paper, the energy-flow density vector with its 
geometrical lines, energy-flow potential and energy flow equation for continuum 
systems were defined, based on which, the energy-flow lines for many dynamic 
systems have been investigated as shown in the references mentioned in sub-
section 1.3. Also, through this proposed mathematical model, it has been possible 
to validate a selection of results and hypotheses used in PFA. For example, a fun-
damental assumption of PFA is that transmitted power is proportional to the ener-
gy difference between two interacting subsystems. This is an extension of the  
relation derived by Scharton & Lyon (1968) for the power flow between two sim-
ple oscillators (Lyon & Maidanik 1962). Furthermore, it has been proposed by 
Nefske & Sung (1987) that the flow of mechanical energy through a structural / 
acoustic system may be modelled in a manner similar to that of the flow of ther-
mal energy in a heat-conduction problem. If this hypothesis is true, it would result 
in relatively efficient numerical models being developed to determine the trans-
mission of structural-borne energy in large built-up structures. Wohlever &  
Bernhard (1992) investigated this hypothesis through rods and beams and con-
cluded that the energy flow in a rod behaves approximately according to the ther-
mal energy-flow analogy, but a beam solution demonstrates significantly different 
characteristics than those predicated by the thermal analogy governed by a heat 
conduction equation (Courant & Hilbert 1962). Investigations by Carcaterra & 
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Sestieri (1995) and Xing & Price (1997/1998) confirmed the general lack of simi-
larity between mechanical and thermal concepts. From the viewpoint of a conti-
nuum-mechanics-based PFA, such relations and hypothesis were investigated. 

There have been various approaches for power flow analysis proposed in the 
references, which is too many to be listed herein, but in a short summary, the  
following contributions should be highlighted. 

1.6.2.1   Travelling Wave Approaches 

A more successful approach in power flow analysis with its applications is a tra-
velling wave method developed to predicate wave energy distribution and propa-
gation in structures. This method is based on the classical wave theory and tech-
niques used to investigate elastic waves in structures. For example, Langley 
(1992) expressed the solution of each substructure in terms of exact wave mode, 
then forced equilibrium and continuity conditions at the junction were employed 
to calculate the junction scattering and generation matrices. Power flow results can 
be extracted from a wave scattering analysis using the wave mode amplitudes as 
the basic unknowns. This approach was applied to study the power flow in a net-
work of structural members (Miller & Von Flotow 1989), in beams and joints of 
beam-like structures (Horner & White 1991), in a number of panel arrays (Lang-
ley 1992) and in two- and three-dimensional frames (Beale & Accorsi 1995). 
More related recent publications on this method may be found in the references of 
a comprehensive paper by Renno & Mace (2011), such as: Mace (1984); von  
Flotow (1986); Langley & Heron (1990); Cai & Lin (1991); Mace (1992); Young 
& Lin (1992); Cremer, Heckel & Petersson (2005); Doyle (2007); Chouvion et al 
(2010). Especially, the important contributions by Miller and colleagues should be 
highlighted: the power flows in structural networks (Miller & von Flotow 1989), 
the optimal control of power flow at structural junctions (Miller, Hall & von Flo-
tow 1990) and the experimental results using active control of travelling wave 
power flow (Miller & Hall 1991). Furthermore, Heron (1997) presented a paper on 
predictive sea using line wave impedances. Walsh & White (2000) investigated 
the vibrational power transmission in curved beams, and Bosmans & Nightingale 
(2001) focused on the vibrational energy transmission at bolted junctions between 
a plate and a stiffening rib. More importance, Wester & Mace (2005abc) contri-
buted three papers for wave component analysis of energy flow in complex struc-
tures, which focuses on a deterministic model, ensemble statistics and two coupled 
plates, respectively.  

1.6.2.2   Impedance-Mobility Approaches  

Considering the term “impedance / mobility” in a more generalised meaning to 
cover, such as, “receptance”, “dynamic stiffness, i.e. displacement impedance”, 
etc., the impedance-mobility approaches are  based on the classical theory and 
techniques of mechanical impedance-mobility of dynamical systems (see, for ex-
ample, Harris 1998) to calculate the input / transmitted powers of the investigated 
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dynamical systems. These methods are convenient to a power flow analysis main-
ly focusing on individual structures, coupled beam- or plate-like structures or  
periodic systems. 

Langley (1989) proposed the dynamic stiffness (a force per unit displacement) 
method to investigate the transverse response of a row of coupled plates subject to 
distributed acoustic load. The panel was stiffened transversely and simply-
supported along the longitudinal edges so that the dynamic equation of each un-
coupled plate can be derived independently. The dynamic stiffness matrix of each 
individual component was obtained. The dynamic stiffness matrix of the whole 
structure was then assembled by using standard structural matrix analysis tech-
niques. By applying the force balance conditions and geometrical compatibility 
requirements at the coupling edges, the dynamic behaviour of the whole panel can 
be obtained. Expressions can thus be derived for the mean energy stored in the in-
dividual components and for the power flow between different components. This 
method was used to examine the power flows in beams and frameworks (Langley 
1990) and the in-plane vibrations of plate frames (Bercin and Langley 1996).  

Similar to the dynamic stiffness method, the receptance (a displacement per 
unit force) method was proposed to study the power flows. A major difference be-
tween this approach and the dynamic stiffness method lies in the chosen unknown 
variables to be solved. The former method chooses the coupling forces at the inter-
faces as the variables while the latter chooses the coupling interface displace-
ments. This approach was employed to investigate the amount of power flows at 
joints of beams and plates (Clarkson 1991) and at the interface of two coupled rec-
tangular plates (see, Dimitriadis & Pierce 1988; Farag & Pan 1996; Beshara & 
Keane 1998). 

The mobility (a velocity per unit force) power flow approach divides a global 
structure into a set of coupled sub-members with forces and moments introduced 
at their junctions. The vibrational power flow into a sub-member and between 
them is expressed in terms of input and transfer structural mobility functions to 
explore the power flow behaviour of dynamic structures. Petersson & Plunt (1982) 
proposed an effective point mobility method in the prediction of structure-borne 
sound transmission between a source and a receiver structure, which was used to 
model the vibration power flow transmission through periodic structures by Cu-
schieri (1990ab), multiple beams, coupled beam structures under in-plane loading 
by Farag & Pan (1996). The mobility functions of vacuous elastic cylindrical 
shells were numerically studied by Ming, Pan & Norton (1999) and applied to es-
timate both the input power and the power flow in coupled finite cylindrical shell 
systems. Mead, White & Zhang (1994) studied power transmission in a periodical-
ly supported infinite beam subject to a single excitation. Su, Moorhouse & Gibbs 
(1995) developed a power flow expression using the eigenvalues and the corres-
ponding eigenvectors of the real part of the mobility matrix for a practical charac-
terisation for structure borne sound sources. Gardonio, Elliot & Pinnington 
(1997ab) presented a model of vibration isolation systems by developing a matrix 
method using mobility or impedance representations of three separate elements: 
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the source of vibration, the receiver and the mounting system and investigated var-
ious active control strategies to reduce the structural power transmission from a 
source to a receiver via a number of active mounts. Moorhouse (2002) presented a 
dimensionless mobility formulation for evaluation of the upper and lower bounds 
of power flows.  

Mobility matrices describing the dynamic characteristics of some typical ele-
ments, such as, rod, shaft, beam and plate, etc., are very useful in calculating 
structural power flows. However, they are not readily available when analysing 
complex coupled systems. To predict dynamic power flow characteristics trans-
mitted in coupled systems consisting of various structural members as mentioned 
above or more generally many different substructures, the impedance / mobility 
approaches were further developed. Clarkson (1991) applied the receptance me-
thod (Bishop & Johnson 1960) to investigate the transmission of vibrational ener-
gy across structural joints of connected beams and connected plates. The transfer 
matrix or four-pole parameter method is more suitable to an assembled system 
connected in series or in parallel (Molly 1957; Snowdon 1971). This method orig-
inally limited to unidirectional single-input / single-output linear mechanical sys-
tems was extended to multiple-input / multiple-output linear systems (Ha & Kim 
1995; Xiong 1996).  However, when assembling substructures in these systems 
with different inputs and outputs, generalised inverse or pseudo-inverse processes 
(Pringle & Rayner 1971) associated with rectangular four-pole parameter matrices 
are required to examine or to estimate coupling interactions. This causes increased 
complexity in the mathematical model and subsequent solution. 

1.6.2.3   Progressive Approaches 

To overcome the difficulty met in dealing with power flow analysis using the 
above classical impedance mobility methods, Xiong, Xing & Price (2001) ex-
tended their proposed impedance / mobility approaches ( Xiong, Xing & Price 
2000ab) and derived a generalised mobility and impedance matrices for three-
dimensional rigid and elastic structures, based on which equivalent mobility and 
equivalent impedance matrices are introduced to describe the dynamical power 
flow behaviour of a subsystem assembled from several inter-connected substruc-
tures within the overall system. As a result of this, the two progressive approaches 
were developed to predict force vector, velocity response vector and power flows 
transmitted between substructures in a complex coupled system consisting of n 
substructures subject to selected boundary conditions and multiple excitations. 
The proposed methods are very efficient and greatly reduce the complexity of the 
power flow analysis when examining complex dynamic coupling systems. For the 
special case of periodic systems, where the substructures are identical, these  
methods become even more effective.  
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1.6.2.4   FEA and Numerical Substructure-Subdomain Approaches 

Although applications of the above analytical PFA approaches described above 
can provide physical insight of the energy and power flow patterns within struc-
tures, they are limited to simple uniform structures. For complex structures,  
numerical methods have to be adopted to obtain approximate solutions. 

The finite element methods (FEA) (see for example, Bathe 1996; Zienkiewicz 
& Taylor 1989, 1990; Huebner et al. 1995) provide very powerful numerical ap-
proaches with commercial software to simulate various engineering problems us-
ing computers. A noticeable limitation of FEA is inherently to analyse vibrations 
at relatively low frequencies where the number of mode shapes is lower, due to at 
high frequencies requiring small meshes to describe the rapidly changing modes 
of the structures (Kim, Kang & Kim 1994abc). It is widely accepted that the ele-
ment size in element-based acoustic computations should be 1/6~1/10 of the wa-
velength to obtain a necessary numerical accuracy for engineering applications. 
Based on these criteria, FEA approaches were still used in vibration / acoustic 
analysis with the fast development of the speed and capacity of modern comput-
ers. Earlier, Lyon (1975) suggested the use of FEA in predicting coupling loss fac-
tors during the early development stage of statistical energy analysis. Hambric 
(1990) used the FEA to estimate the power flow in more complex structures, such 
as ribbed-panel and truss structures. In parallel, a modal analysis was used to es-
timate power flow in beams, plates and shells (Gavric & Pavic 1990, 1993;  
Hambric & Taylor 1994; Hambric, 1995). In the context of a gear-box top plate, 
Nejade & Singh (2002) carried out an analytical computation using the FEA to in-
vestigate the effects of uncorrelated noise, edge reflections, and damping on sound 
intensity.  

Nefske & Sung (1987, 1989) presented a second-order differential equation, simi-
lar to the heat conduction equation, based on which to conduct a power flow infinite 
element analysis of beams, which was further studied by Wohlever and Bernhard 
(1992), and to derive energy flow coefficients by Fredo (1997), although meeting 
difficulties in representing the location of dynamic sources and establishing energy 
conditions clearly at the discontinuity (Lase, Ichchou & Jezequel 1996).  

In all these studies, the response of a finite element model was expressed in 
terms of an energy flow model and a global FEA was performed on the global sys-
tem. To avoid the complexity associated with a global FEA, Shankar & Keane 
(1995ab, 1997) proposed a local FEA method using a receptance approach. The 
response of each subsystem was described by Green functions, obtained analyti-
cally or by using FEA, to study the energy flow in both simple and complex struc-
tures. Mace and Shorter (2000) established energy flow analysis models based on 
component-mode synthesis. However, from the analysis of two simple examples, 
Xing & Price (1999) concluded that, in general, there lacks a direct similarity be-
tween the flow of mechanical energy through a structural / acoustic dynamical 
system and the flow of thermal energy in a heat-conduction problem, confirming 
the findings of Carcaterra & Sestieri (1995) and development of any hypothesis or 
modelling based on such an analogy is of limited value.  
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The energy flow density vector or sound intensity for noise analysis involves 
the distributions of the both velocity and stress fields of the dynamic system, so 
that the accuracy of energy flow calculations is affected by the both velocity and 
stress accuracies. FEA can provide a very good accuracy for displacement and ve-
locity but not for stress, since the stress calculation concerns the spatial derivatives 
of displacement field, and therefore not for power flow variables (Alves and Arru-
da, 2001). Especially, for acoustic problems with more high frequencies, the wa-
velength decreases largely and the displacement gradient changes sharply, which 
significantly affects the accuracies of calculated stress as well as the power flows, 
if the element size is not sufficiently small. The adoption of smaller element sizes 
less than 1/6 wavelength of highest frequency mode greatly increases computer 
simulation costs, since for the dynamic analysis of a problem, the computation 
time is proportional to its total degree of freedom (DOF) squared  or cubed. To re-
duce calculation costs, the substructure-subdomain methods (see, for example, 
Xing 1986ab; Xing & Price 1991; Xing, Price & Du 1996) for dynamic analysis of 
complex coupled systems with large DOF were proposed for power flow analysis. 
The fundamental idea of the substructure – subdomain techniques is: i) to divide 
the whole system into many small subsystems; ii) to solve each subsystem in order 
to obtain its dynamic information, respectively; iii) to synthesise the information 
of all subsystems to get the dynamic behaviour of the whole system, which has ef-
fectively reduced the computation cost for dynamic analysis. This technique was 
used for the power flow analysis of indeterminate rod / beam systems, L-shaped 
plates and a coupled plate-cylindrical shell system (Wang, Xing & Price 2002ab, 
2004). Using the developed computer code for substructure-subdomain method 
(Xing, 1991/1995ab), the power flows in the fluid-structure interaction systems 
were also investigated. For example, the generalised theory and formulation was 
presented by Xing, Price & Xiong (2003), an application to beam-water interac-
tions by Xing, Xiong & Price (2004), a linear wave energy harvesting device de-
sign by Xing et al (2009) as well as ship vibrations with controls by Xiong & Xing 
(2005), and Xing, Xiong & Tan (2009).  Furthermore, considering the interaction 
between the free surface wave on the water surface and the compressive waves 
caused by explosion in the water, Xing (2007, 2008) proposed a new suitable radi-
ation condition to model the dynamics and energy flows of this free surface-
compressible waves coupled system. It is also noted that Kwon et al. (2011)  
proposed a power flow boundary element analysis for multi-domain problems in 
vibrational built-up structures, which obtained the agreed results of the power  
flow density of simply supported coupled beams and coupled plates with the  
conventional approaches. 

1.6.2.5   Vector Field Approach 

The Poynting vector of electromagnetic fields defined by Poynting (1884) and the 
energy flow density vector defined by Xing & Price (1997, 1999) from a more ge-
neric viewpoint of continuum mechanics governing the dynamic behaviour of solids, 
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fluids and their interactions provide the variables to explore the energy flow trans-
missions and exchange within the continuum. Based on this definition, the energy 
flow lines and energy flow potential were defined and investigated through the theo-
retical analysis with some examples demonstrations (Xing & Price, 1999). This 
progress leads to a vector field approach to investigate the energy flow field using 
geometrical methods (Xing, Price & Wang 2002), which can show the energy flow 
picture in a dynamic system based on classical vector analysis (Weatherburn 1962). 
This method was used to provide the energy flow pictures of  L-shaped plates and a 
coupled plate-cylindrical shell system (Wang, Xing & Price 2002b, 2004), as well as 
the one of a beam-water dynamic system subject to explosion waves (Xing, Xiong 
& Price 2004). However, the analytical solutions of the energy flow vector can be 
obtained only for some simple problems, and therefore numerical approaches have 
to be used to get its solutions for more complex systems. 

1.6.2.6   Power Flow Mode Theory with Energy Flow Designs and Controls 

For linear dynamical systems subjected harmonic forces, it has been recognised 
that the averaged time change rate of kinetic / potential energies over a time period 
of excitation force vanish, as shown in Eq. 1.23. Therefore, the time averaged 
energy flow of a dynamic system can be considered as its natural characteristic 
depending on its inherent damping distribution, from which a power flow mode 
theory was developed (Xiong, Xing & Price, 2004, 2005ab). In this theory, the 
system’s characteristic damping matrix including material damping (Goodman 
1976) is constructed and it is shown that the eigenvalues and eigenvectors of this 
matrix identify natural power flow characteristics. These eigenvectors, or power 
flow mode vectors, are chosen as a set of base-vectors spanning the power flow 
space and completely describe the power flow in the system. The generalised 
coordinate of the velocity vector decomposed in this space defines the power flow 
response vector. A time averaged power flow expression and theorems relating to 
its estimation are presented.  

Furthermore, from this theory, a power flow design / control approach was pro-
posed to identify energy flow patterns satisfying vibration control requirements. 
The mode control factor defines the measure of the correlation between a power 
flow mode and a natural vibration mode of the system. Based on this theory and 
the method, considering practical requirements and possibilities, scientists and en-
gineers may design an energy dissipation pattern, modify energy dissipation of a 
system, adjust energy transmission path and control energy flow level / pattern to 
realise an effective vibration isolation and control . Power flow design theorems 
were presented providing guidelines to construct damping distributions maximis-
ing power dissipation or to suppress / retain a particular vibration mode and / or a 
motion. The developed damping-based power flow mode theory provides insight 
into the power flow dissipation mechanisms in dynamic system, compared with a 
mobility based power flow model by Ji, Mace & Pinnington (2003). The later was 
based on an eigen-decomposition of the real part of the mobility matrix to express 
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the force power input consisting of the power input of each power modes and to 
estimate the upper and lower bounds of power flow as well as its mean value, of 
which the applications require full information of a system's mobility. Examples 
were given to demonstrate the generality of the damping based theory, including 
non-symmetric damping matrices, and illustrate  applications through modifica-
tions of the system’s damping distribution using passive and/or active control 
components, (Xiong, Xing & Price 2005c; Xiong & Xing 2008). 

1.6.2.7   Power Flows in Structure-Control Systems  

Vibration control problems have received much attention over past decades  
(Meirovitch 1990; Fuller, Elliott & Nelson 1996; Housner et al 1997; Hu & Wang 
2002). The control of structural vibrations produced by earthquakes, winds, sea 
waves, explosions, impacts and other vibration sources enhances the safety of op-
eration of an overall dynamical system under examination. Successful applications 
of control strategies have been reported in many branches of engineering, like civ-
il, aerospace and marine ones as well as mechatronics (Housner et al 1997). In the 
past, vibration control systems were primarily studied adopting passive control 
methods such as flexible mounts, elastomeric bearing systems, damping or absorb-
ing mechanisms, (Thomson 1988; Harris 1988; Merian & Kraige 1998). By con-
ducting power flow analysis, the power flow transmissions from a machine into 
the base structure can be identified, which is a more appropriate indictor of isola-
tion performance than the traditional force or displacement transmissibility. For 
this reason, many researches focused their attentions on the analysis and control of 
vibrational power flows of dynamical systems (see, for example, Pinnington 1987; 
Pinnington & White 1981; Pan, Pan  & Hansen 1992; Gardonio, Elliott &  
Pinnington 1997ab; Mahajan & Redfield 1998; Li & Lavrich 1999; Xiong, Xing 
& Price 2000c, 2003).  

Although the passive vibration control is a proven technique to reduce vibration 
transmission between vibration sources and receiving structures, conflicting re-
quirements are often encountered in practices, which leads to limitations in control 
capabilities when the source and receiving structures are compliant and dynamical 
interactions between them exist (Jenkins et al 1993; Xiong 1996; Xiong & Song 
1996). Active control systems are capable of overcoming these limitations and al-
low the performance enhancement and increasing the efficiency of vibration  
control as demonstrated by references, see for examples, Gardonio, Elliott &  
Pinnington (1997ab); Sciulli & Inman (1998); Serrand & Elliott (2000); Kim,  
Elliott & Brenan (2001); Kaplow & Velman (1980); Scribner, Sievers & Von  
Flotow (1993); Clark & Robertshaw (1997); Gardonio &  Elliott (2000); Margolis 
(1998); Xing, Xiong & Price (2005). Their applications range widely and include, 
for example, the reduction of ground excitation to vehicle passengers; the elimina-
tion of transmitted vibrations in machines, aircrafts  (Wang et al  2008) and space 
structures; the prevention of machinery vibrations transmitting to surrounding en-
vironments; the vibration protection of sensitive equipments operating in harsh 
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environments, reductions of noise in aircrafts (Unruh 1987; Gardonio &  Elliott 
1999) and buildings (Luzzato & Ortola 1988); to name but a few. The improve-
ment of isolation effectiveness adopting active control strategies was undertaken 
by Jenkins et al. (1993), who illustrated the potential for combined active / passive 
isolation schemes. Leo and Inman (1999) developed a quadratic programming al-
gorithm to study the design trade-offs of a one-degree-of freedom single-axis ac-
tive-passive vibration isolation system. Pare and How (1999) proposed a hybrid 
feed-forward and feedback controller design approach to structural vibration con-
trol and developed a simple structural isolation example to demonstrate the benefit 
of an optimal hybrid controller to improve simultaneously isolation performance 
together with a reduction in closed loop control bandwidth. Xing, Xiong & Price 
(2005) presented a theoretical design of passive-active vibration isolation systems 
to obtain zero or infinite dynamic modulus. 

Following the success of power flow and energy transfer approaches for pas-
sive controls, these methods were also used to examine the control performance in 
an active manner, a vibration isolation system described by one- and two-degree-
of-freedom dynamic models (Pinnington 1987; Pinnington & White 1981; Maha-
jan & Redfield 1998; Margolis 1998;  Gardonio &  Elliott 2000) in which funda-
mental concepts of active damping systems were studied by examining the  
average power flow in the controlled and passive actuators subject to harmonic in-
puts. Pan and Hansen (1993, 1994) studied the dynamics of an active isolator by 
considering power transmission and thus extended the modelling of passive isola-
tion systems in terms of power flow to the modelling of active isolators. They also 
applied this power flow control strategy to isolate vibrations from a rigid body to a 
plate through multiple mounts demonstrating the possibility of reducing power 
transmission to the plate.  More complex cases relating to vehicle-bridge-control 
interaction systems, complex multi-dimensional flexible isolation systems and 
systems consisting of composite parts are also examined (Xiong, 1999; Xiong, 
Xing & Price 1999, 2000abc; Xiong et al 2001, 2002).  

After searching the publications for power flow analysis of passive / active con-
trol systems, it was found that investigation into the dynamics and energy trans-
mission mechanisms of a generalised integrated structure-control system in which 
active control subsystems are retrofitted into a complex existing passive control 
system are few and far between, although the progress has been made for simple 
systems as listed above. The modelling and design of an active control system 
consisting of flexible structures / components is of practical importance for tech-
nological developments in many engineering sectors. The fundamental barriers to 
progress and development of a comprehensive approach are found in the lack of 
good mathematical models to deal with general passive-active dynamical interac-
tion systems and the difficulties to perform effectively the dynamic analysis in  
extensive, multi-dimensional complex coupled systems.  

To address this problem, Xiong, Xing & Price (2003) developed a general  
linear mathematical model of power flow analysis and control for integrated struc-
ture-control systems. In this paper, the interactions between the mechanical system 
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and the control system, i.e. electric - mechanical interactions, were omitted, which 
implies that characteristics of the control system is not affected by mechanical mo-
tions and vice versa. To amend this, Xing, Xiong & Price (2009) further presented 
a generalised mathematical model and analysis for integrated multi-channel vibra-
tion structure-control interaction systems. These mathematical works allow to 
model generic complex structure-control systems consisting of any number of 
three-dimensional rigid / flexible substructures and control subsystems with mul-
tiple passive, active, hybrid control channels as well as their dynamic interactions, 
which provides a basis to develop a general computer program that may allow the 
user to build arbitrarily complex linear control models using simple commands 
and inputs. 

1.6.2.8   Damage Detections 

Early damage detections of structures under fatigue or extreme impact loads and 
measures have received extensive investigations. Approaches, such as acoustic or 
ultrasonic methods and magnetic or thermal field methods, are time consuming 
and costly (see, for example, Li , Zhang & Liu 2001). To reduce the cost, a model-
based approach has been developed, which examines the changes in global vibra-
tion characteristics of a structure. The fundamental concept is that any damages, 
geometric or physical / material ones, would lead to decrease in dynamic stiffness, 
which in turn reduces the natural frequency of the system. However, since the 
maximum stress point and the maximum displacement point in a dynamic struc-
ture are not necessary located at a same point. In some situations, if the damage 
causes very limited change of the global stiffness, the corresponding natural fre-
quency of the structure remains unchanged. For example, a geometrical damage at 
the free end of a cantilever beam due to its too large displacement will not affect 
the basic natural frequency of this beam. The damage detection using the power 
flow variable, a product of velocity and stress, can reflect both changes by mo-
tions and stress and therefore give more suitable results. Based on this, Li, Zhang 
& Liu (2001), Li, Liu & Zhang (2004) and Li et al. (2004) applied power flow 
analysis on a damaged Euler beam and a circular plate structure. It was shown that 
vibrational power flow is highly dependent on the degree and location of damage. 
Khun, Lee & Lim (2003) studied the power flow pattern of a plate with single or 
multiple cutouts. Lee, Lim & Khun (2006) extended their work and showed that 
this feature can be used to locate the crack.  Zhu et al. (2006, 2007) examined a 
cracked Timoshenko beam as well as a thin cylindrical shell with a circumferential 
surface crack and found that the power flow passing through the crack was highly 
sensitive to its location and depth. Wong, Wang & Cheng (2009) investigated 
power flow features associated with vibration modes of both intact and damaged 
beams and suggested that the modal power flow behaviour can be used for dam-
age detection. 
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1.6.3 Nonlinear Power Flow Analysis 

1.6.3.1   Interests for Nonlinearities  

The more and more increasing interests for scientists and engineers to study nonli-
near dynamical systems (NDS) may be the following main reasons. Firstly, prac-
tical engineering systems, solids, fluids or their coupling systems are inherently 
nonlinear ones with various nonlinearities, so that in some cases linear assump-
tions and analyses have hidden some important phenomena and provided no  
accurate results. Therefore a nonlinear analysis is necessary in order to obtain 
more accurate results to satisfy practical applications. Secondly, with the extreme 
fast developments of modern computers associated with computational methods 
and corresponding software, many complex nonlinear problems, which were 
failed to be solved before due to pour computation capacities, can now be tackled. 
Thirdly, a most important reason, it has been demonstrated that for many dynami-
cal systems, introductions of nonlinear members can significantly improve the 
performance of the system. Here we mention some examples. 

i) Nonlinear suspension systems can provide extremely low or extremely 
high dynamic supporting stiffness to obtain the required supporting frequencies. 
As we have known that high performance vibration suspension systems with a 
very low or a very high dynamic stiffness are widely required in engineering and 
industrial fields. For ground vibration tests of full scale aircrafts, the suspension 
frequency of the assumed rigid aircraft on the supporting system must be lower 
than one third of its first elastic natural frequency to meet the requirements for ac-
curate aircraft’s flutter analysis. The weight of a large aircraft is very huge but its 
first elastic natural frequency is quite low so that the stiffness of the supporting 
system must have a big static one to support the large weight and also a very low 
dynamic one to have a very low supporting frequency (Molyneux 1958; Xing 
1975). The low supporting frequency is also a fundamental standard for effective 
vibration isolations (Harris & Crede 1961/1988; Rivin 2003) of high precision  
optical instruments used in spacecrafts, such as for gravitational wave detection 
(Winterwood 2001).  

On the other side, in laboratories, dynamic tests of structures are often expected 
to be fixed on a rigid foundation. To realise this condition, the dynamic stiffness 
of supporting system must be extremely high, otherwise, the foundation could not 
be considered as rigid. As experienced practically, an extremely “rigid” founda-
tion for static tests could be very soft for high frequency dynamic tests.  

To design these supporting systems with particular performance, there are two 
approaches used. One is to adopt active feedback controls in a passive system to 
modify its dynamic stiffness (Fuller, Elliott & Nelson 1996; Xing, Xiong & Price 
2005). This method requires an energy supply for the control system, which some-
times cannot be realised if the required energy is huge. Another approach is to use 
nonlinear springs with a variable dynamic stiffness. For ground vibration tests of 
aircrafts, a nonlinear supporting system was proposed and used (Molyneux 1958; 
Xing 1975) to obtain a very low supporting frequency. The detailed investigations 
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on designs, practical techniques and performance of nonlinear suspension systems 
were reported quite late, see, for example, Alabuzhev et al (1989), Platus (1992), 
Zhang et al (2004), Carrela, Brennan & Waters (2007),  Carrela et al (2008),  Kovaic, 
Brennan & Waters (2008),  Ahn (2008),  Cao et al (2008ab), Liu, Chen & Cao 
(2010). More recently, Araki et al. (2013) presented the effective designs of quasi-
zero-stiffness vibration isolators for their restoring forces to satisfy the conditions 
resisting large self-weight and to have the tangent stiffness close to zero around 
the static equilibrium position. In this paper, more published references on quasi-
zero-stiffness vibration isolators were introduced, which involves the designs  
using geometric nonlinearity, magnets and shape memory alloys. 

ii) Nonlinear vibration isolators / absorbers provide better performance. To 
improve the effectiveness of linear vibration isolators, different configurations of 
nonlinear designs have been proposed by introducing nonlinear stiffness or damp-
ing elements, of which the more details can be referred in a comprehensive review 
paper by Ibrahim (2008). In an very important book by Vakakis et al. (2008) pre-
sented the detailed information on the phenomenon of nonlinear energy pumping 
or targeted energy transfers, where energy of some form is directed from a source 
to a receiver in a one-way irreversible fashion. The vibrational energy from a li-
near system is transferred to a passive nonlinear energy sink where it localises and 
diminishes with time due to damping dissipation. Based on this mechanism, non-
linear vibration absorbers were designed to suppress the undesirable vibrations 
from seismic excitations (Nucera et al. 2007) and to improve the stabilities of 
aeroelastic or drill-string systems (Lee et al. 2007b; Viguifie et al. 2009). 

iii)    Nonlinear oscillators could be effective energy harvesting designs. Inves-
tigations on wave energy harvesting devices have attracted a wide interest around 
the world, for example, Thorpe (1999), Falnes (2002) and Rhinefrank (2005). 
Among these designs, the fundamental principle is to use waves to excite the me-
chanical motions of energy harvesting devices to convert mechanical energy to 
storable energies. Therefore, the motions of wave energy harvesting devices ex-
cited by waves are required as large as possible. Two approaches may be adopted 
to realise this aim. One is to design a linear device with its natural frequency clos-
ing to the wave frequency so that a resonance is reached. In considering fluid-
structure interactions (FSI) and using the developed numerical method ( Xing & 
Price 1991; Xing, Price & Du 1996)  with computer program FSIAP (Xing 
1995ab) , it was numerically investigated a wave energy harvesting device-water 
interaction system subject to the wave maker excitation in a towing tank (Xing et 
al 2009). Another idea is to design a nonlinear energy harvesting system and to 
use its inherent large stable orbit motion to extract energy. One example is to use 
the possible rotational motion, a periodical solution, of a nonlinear pendulum sub-
ject to base wave excitations aiming to wave energy harvest. Wiercigroch and his 
team (see, Xu el al 2005, 2007; Litaka et al 2008, 2010; Lencia et al 2008; Horton 
2011; Nandakumar et al 2012; Pavlovskaia 2012) theoretically and experimentally 
investigated this type of device and obtained very useful results. Another example 
is a flapping foil device located in air / water flows. As we have learnt that this 
system is a flutter system (Bisplinghoff, Ashley & Halfman 1955; Fung 1969) of 
which a periodical oscillation happens when the speed of flow reaches its critical 
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one. In aircraft designs, flutters are very harmful and have to be avoided. In this 
oscillation, the fluid flow supplies the energy to be dissipated by the damping of 
the system, which in principle provides a mechanism to design wave energy har-
vesting device. Considering the energy harvesting element plays a damping role in 
the integrated system demonstrated by Xing et al. (2009), we can design a flap-
ping foil system to reach its “flutter” state by adjusting its parameters as well as 
energy harvesting amplitude according to the flow speed, from which to collect 
energy. Yang, Xiong & Xing (2011) numerically investigated this system and re-
vealed that the efficiency of energy harvest was largely increased. 

1.6.3.2   Power Flow Analysis in NDS  

To evaluate the efficiencies of different designs of nonlinear systems described 
above, the force or the displacement variable, such as their transmissibility, is of-
ten used as the performance indicator. As we have mentioned that the power flow 
analysis approach is based on the universal law of energy conservation suitable to 
various systems in different fields, therefore it is no doubt to deal with nonlinear 
systems. In fact, the classical Hamilton Principle (see, for example, Abraham & 
Marsden 1978; Oden & Reddy 1976) and its more generalised forms (Xing 1990; 
Xing & Price 1991) in the theoretical mechanics were derived from the work-
energy principle. More directly, Li (1996, 1999) and Li & Ye (2003, 2006) pro-
posed an energy method to investigate periodical solutions of strongly nonlinear 
systems, which was further completed and given in their book (Li & Ye 2008). 
This method considers the sum of physical kinetic and potential energies as the 
mechanical energy E of nonlinear systems, from which a closed equal energy 
curve in the phase space ),( xx was geometrically obtained by letting E =  

constant. Any point on this equal energy curve is defined by two variables: energy 
amplitude E and an angleθ , satisfying bax += θcos , called as energy coordi-
nates. Here, a and b was determined by some complex geometrical conditions.  
Using this method, the possible periodical solutions and stabilities were discussed.  

Recently, it has been shown a growing interest in PFA of nonlinear dynamical 
systems. Royston & Singh (1996) employed vibratory power transmission as a 
performance index in optimisation of multiple degrees-of-freedom nonlinear 
mounting systems. The same authors also examined an automotive hydraulic en-
gine mount and investigated the vibratory power flow from an excited rigid body 
through a nonlinear path into a resonant receiver (Royston and Singh 1997). Xing 
& Price (2004) proposed a generalised mathematical model for the power flow 
analysis of a complex system consisting of linear substructures / subdomains con-
nected by nonlinear controllers, providing a generalised approach to deal with 
many vibration control problems which are often met in engineering. Xiong, Xing 
& Price (2003b, 2005d) studied an interactive system consisting of a machine, a 
nonlinear isolator with a p-th power damping and q-th power stiffness as well as a 
flexible ship excited by sea waves. The input power spectrum was found to be not 
globally sensitive to the nonlinearities in damping and stiffness of the isolator, but 
affected significantly around resonance frequencies of the coupled system. More 
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recently, Xiong & Cao (2011) investigated the nonlinear power flow characteris-
tics of a two degrees-of-freedom system with nonlinear stiffness created by a pair 
of oblique springs. Xing et al. (2011) presented a mathematical model with solu-
tion approaches for an integrated electric converter, a nonlinear oscillator and wa-
ter interaction system to harvest wave energies. Yang, Xiong & Xing (2011)  
evaluated the energy harvesting capability of a nonlinear flapping foil system us-
ing PFA. They also investigated the time-averaged power flows of nonlinear vi-
bration isolation systems to assess the isolation performance (Yang, Xiong & 
Xing 2012a, 2013) and the instantaneous power flow characteristics of the Duffing 
oscillator (Yang, Xiong & Xing 2012b, 2014). In the Jian’s PhD thesis (2013), 
more detailed investigations on nonlinear dynamic systems are given, which  
include the power flow characteristics of the Duffing and the Van der Pol oscilla-
tors as well as the two degrees of freedom systems for vibration isolations and  
absorptions.  

1.7 Energy Flows Defined for Vector Fields of NDS  

1.7.1 Limitations of Linear Energy Flow Variables 

While reading available publications on the power flows of NDS described in sub-
section 1.6.3, we have noted that all of them follow the definitions of energy flow 
variables in linear systems, such as physical kinetic, potential and damping-
dissipated energies. For a linear dynamical system, each term of its governing 
equation involves only one of unknown variables: displacement, velocity or accel-
eration, so that there are no couplings between them, and therefore the physical 
energies are clearly identified and calculated. However, generally, the governing 
equations of NDS will normally include some terms affected by two unknown 
variables, so that the couplings between the unknown variables happen. In these 
cases, it is difficult to identify the pure kinetic energy, potential energy or damp-
ing dissipated energy. For example, in the Van der Pol equation (Van der Pol 

1920), one term is xx )1( 2 −α , where α denotes a constant. This term involves 

the coupling between the displacement x and the velocity x of the Van der Pol’s 
oscillator, so that we cannot separate the potential energy and the dissipated en-
ergy by the damping of the system. This suggests that we have to find more suit-
able energy flow variables to investigate generalised NDS. 

Furthermore, it is generally sufficient to regard any NDS as a set of first order-
differential equations defined in a phase space. As it will be discussed in Chapter 
2, the left hand side of this equation is a derivative of a vector valued function of 
independent variable (usually time) and its right hand side being a vector field 
function defined on some subset of the phase space. The solutions of this set of 
differential equations are generated by the vector field function and are called 
flows. Obviously, we have to create a suitable energy flow theory to deal with 
NDS based on this vector field form. 
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1.7.2 Energy Flows in Phase Space 

To develop an approach and theory to study the energy flows of NDS based on the 
vector field theory, we investigate the linear dynamic Eq. 1.1 of 1-D system in a 
form of a phase space as follows 
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or in a vector form 
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We consider that 2)( Rt ∈= yy is a vector valued function of an independent va-

riable 1 2( , )t I t t R∈ = ⊆  and 2:U R→f is a smooth function of the variable 

t and the vector y  defined on some subset 2RU ⊆ , a 2-dimensional phase 

space.  Often we seek a solution ),( 0 tyφ such that  

.)0,( 00 yyφ =                                           (1.96) 

 

The solution 2
0 :),( RI →⋅yφ defines a solution curve )( 0yφt , trajectory or or-

bit of the differential Eq. 1.95 based at 0y  as shown by Fig. 1.3 (a). The solution 

set 2:),( RIU →⋅φ defines a flow )(Utφ  in 2R  in Fig. 1.3 (b).   

Based on the above definition on the flows in 2-D phase space, the instant pow-

er )(tfxP = of the external force given by Eq. 1.3 may be denoted as )( 0ytP for 

Eq. 1.95, which is a real scalar time function corresponding to the solution 

curve ),( 0 tyφ in the phase space. The instant power set RIUP →⋅ :),( of the 

external force defines an energy flow )(UPt corresponding to the flow )(Utφ . 

The term of energy flow or power flow may be further understood from the con-
cept of flows in the phase space.  
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Fig. 1.3 A solution curve and the flow for 1-D system of Eq. 1.95: (a) the solution 

curve )( 0yφt  and its tangent vector fy = ; (b) the flow )(Utφ  

As mentioned in subsection 1.7.1, in a term of the governing equation of a non-
linear dynamical system, there exists the coupling of dynamic variables, so that we 
cannot distinguish and construct the physical kinetic ( K ), dissipated ( D ) and po-
tential (Π ) energies as well as force power ( P ) given in Eq.1.3 for the nonlinear 
system. Actually, these physical energies cannot provide any information with the 

geometrical properties of the solution orbit )( 0yφt , more generally, the flow 

)(Utφ shown in the phase space. Therefore, they are not suitable to investigate 

NDS in the phase space based on the vector field theory using energy flow ap-
proach. To address this difficulty, giving up the physical definitions given in Eq. 
1.3, and considering the solution in the phase space of the problem, we introduce 
the following energy flow variables based on Eq. 1.95 in the phase space, i.e.   

.:power force dgeneralise      

,2/:energy kinetic dgeneralise   

,2/:energy potential dgeneralise
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The corresponding energy flow balance equation takes the form 
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Fig. 1.4  The potential energy flow )( 0ytE and its time change rate PE = correspond-

ing to solution curve )( 0yφt  and )(UEt  relating to flow )(Utφ  for 1-D system of Eq. 

1.95 shown in Fig. 1.3 

These are three scalar variables defined for the phase space. The generalised 
potential energy relates the position of a point in the phase space, while the gene-
ralised kinetic energy involves the tangent vector of the solution curve, and the 
generalised force power gives the energy flow, i.e. the time change rate of the ge-
neralised potential energy. The generalised potential and kinetic energies are non-
negative real number. The generalised force power gives the work done by the 
force vector along the tangent vector of the solution orbit, which may be positive, 
zero or negative.  If we add an axis for generalised potential energy into the phase 
space in Fig. 1.3, we can obtain its potential energy flows shown in Fig. 1.4.  

Obviously, in general, these three variables are not corresponding physical ener-
gies for the equation in phase space, therefore, we use the word, “generalised”, to 
distinguish them. In chapter 3, three energy flow variables will be more detailed  
investigated, based on which the energy flow behaviour of nonlinear dynamical  
systems described in phase space will be examined and explored in this book. 

1.7.3 Characteristics of NDS 

Compared with linear dynamical systems, NDS have shown the following main 
different behaviours. 

i) For a linear system subject a harmonic excitation of frequencyΩ , its  
dynamic responses, displacement, velocity and acceleration are all harmonic  
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variables of frequencyΩ , which is called as the “frequency reservation” of linear 
systems. For nonlinear systems, this is not still valid. The frequencies of the dy-
namic responses of a nonlinear system could be lower or higher than the fre-
quency of the harmonic force. There are some components with possible fractional 
or multiple frequencies in the dynamic responses. Moreover, the amplitude of 
nonlinear dynamic response will not be proportional to the amplitude of the force 
as valid for linear systems. 

ii) For a linear system in a periodical motion, the averaged time change rate 
of kinetic and potential energies over the time period respectively vanish. This im-
plies that the kinetic energy and the potential energy are respectively conservative 
in the time period and the work done by the force in the period is totally dissipated 
by the damping of the system. This conclusion is not generally valid for periodical 
motions of nonlinear systems, in which the averaged time change rates of kinetic 
and potential energies are no longer respectively vanish in the time period of the 
periodical motion. Due to the couplings of dynamic variables in each term of the 
equation, the work done by each term in the period normally does not vanish, al-
though for periodical motions the total work done by all terms of the nonlinear 
equation vanishes. This implies that in the time period, some energy exchanges 
between each term happen.  

iii) The solution of a linear system is unique, but generally the solutions of a 
nonlinear system are not unique. At some points on the solution orbit, there may 
exist some branches, bifurcations, and therefore the stability about a solution is 
necessary to be studied.  

iv) Chaotic motions have found for many nonlinear systems, which are very 
sensitive to the changes of the system parameters. 

 
Those different characteristics of NDS must cause the corresponding changes 

of the energy flows of the system. To identify these changes from which to reveal 
some energy flow phenomena and mechanism of NDS is a main aim of this book 
using the defined energy flow variables for vector field equations in phase space. 
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Chapter 2 

Dynamical Systems and Differential Equations 

In this chapter, we review some basic topics in the theory of ordinary differential 
equations from the viewpoints of the global geometrical approach which is a base 
to develop the energy flow analysis for NDS. In the first two sections the review 
of basic theory for dynamical systems and differential equations is rapid. The third 
section discusses the fixed points of differential equations and defines the fixed 
point surfaces, from which the translation velocity and transmission velocity of a 
fixed point surface are formulated. The fourth section quickly mentions the  
stability of a solution of differential equations. We assume that the reader is  
fairly familiar with this material and with the fundamental notions form analysis 
used in its derivation, which could be further read in publications, such as Guck-
enheimer & Holmes (1983); Thompson & Stewart (1986); Chen & Tang (1992);  
Yang et al (2011). 

2.1 Differential Equations and Solutions 

The nonlinear dynamic systems investigated in this book are generally sufficient 
to regard a second order differential equation with its initial conditions in a non-
dimensional form as follows 
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=≡ t
dt
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                                            (2.1) 

where x  is a vector valued function of an independent variable time t , x is the 

time derivative of the vector x  and f
~

is a smooth function of the variable t , the 
vector x and its time derivative x . In the discussions of this book, with no further 
mentions to neglect the word “non-dimensional”, we always consider all equations 
and involved variables as their non-dimensional ones.  
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Equation 2.1 can be transformed into the first order differential equation  
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which can be rewritten in the form 
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Generally, we consider that nRt ∈= )(yy is a vector valued function of an in-

dependent variable RttIt ⊆=∈ ),( 21  and nRU →:f is a smooth function 

of the variable t and the vector y  defined on some subset nRU ⊆ , an  

n-dimensional phase space. Often we seek a solution ),( 0 tyφ such that  

.)0,( 00 yyφ =                                           (2.4) 

The solution nRI →⋅ :),( 0yφ defines a solution curve, trajectory or orbit of  

the differential equation given in Eq. 2.3 based at 0y . The basic local existence 

and uniqueness theorem (Hirsch & Smale, 1974) can be stated, without proof, as 
follows. 

Theorem 2.1 Let nU R⊂ and : nU R→f be an open subset of real Euclidean 

space and a continuously differentiable map, respectively and 0 ,U∈y  then 

there is some constant 0>C and a unique solution UCC →−⋅ ),(:),( 0yϕ
 

satisfying the differential equation ( )=y f y with initial condition 0(0) .=y y  

According to this theorem, there exist no intersections of the trajectories of  
Eq. 2.3 in the solution space except at its fixed points.  

The solution vector y of Eq. 2.3 is written as the following matrix 

[ ] .2,11 mnppxx T
mm ==y               (2.5) 
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Fig. 2.1 A solution curve and the flow: (a) the solution curve )( 0yφt  of which of its  

tangent vector at a point y is =y f ; (b) the flow in
nR  

In the n-dimensional phase space, each pair of components ),( ii px  constructs of 

a subspace n
i RR ⊆2  and 2

1
i

m

i

n RR ∑
=

= . For the subspace n
i RR ⊆2 , we intro-

duce a corresponding polar coordinate system ),( ii θρ defined by 

.,sin,cos,22 iIpxpx iIiiIiiiI ===+= θρθρρ             (2.6) 

Therefore, the solution in Eq. 2.5 can be expressed in a polar coordinate form  

[ ]
.

,cossincoscos 1111

mM

T
MMMM

=
= θρθρθρθρy

   (2.7) 

This form of the solution in the polar coordinate system is convenient to investi-
gate periodic solutions of nonlinear dynamical systems. 

Systems governed by Eq. 2.3, in which the vector field does not explicitly con-
tain time, are called autonomous. Since the vector field of the autonomous system 

is invariant with respect to translation in time, the solutions based at times 00 ≠t  

can always be translated to 00 =t .  

Equation 2.3 allows explicit time dependence and therefore the vectors and the 
trajectories would always be wiggling, which would ruin the geometric picture. To 
visualise a phase space with trajectories frozen in it, we introduce a variable 
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t=θ  so that the equivalent system of Eq. 2.3 is an (n+1)-dimensional system 
described as follows 
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                                            (2.8) 

2.2 Dynamical System  

Equation 2.3 defines a dynamical system. More generally, a dynamical system is 
considered as a flow on a differentiable manifold M arising from a vector field f , 
regarded as a map ,: TMM →f  where TM is the tangent bundle of M.  

Fig. 2.1 shows the solution curve )(),( 00 yφyφ tt =  and the flow 

).(),( UtU tφφ =  The tangent vector at a point y of the solution curve  

)(),( 00 yφyφ tt =  is determined by fy =dtd / which may considered as the 

velocity of the flow curve. 
In this monograph, we will not usually need the more concepts on a differential 

manifold involving a dynamical system. For those interested, the book by Abra-
ham & Marsden (1978) provides a good introduction and the detailed knowledge. 

2.3 Fixed Points 

Fixed points, also called equilibria or zeroes, are an important class of solutions of 

a differential equation. Fixed points ŷ are defined by the vanishing of the vector 

field 0)ˆ,( =yf t . Assume that  

,yyz −=                                                (2.9) 

where y is a solution of Eq. 2.3 and therefore 0)0( yy = . The substitution of  

Eq. 2.9 into Eq. 2.3 gives that 
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which has a zero solution 0ˆ =z , a fixed point of Eq. 2.10. Therefore, investiga-
tions on the characteristics of a solution )(ty  of the differential Eq. 2.3 can  

be completed by investigating the characteristics of the zero solution 0)(ˆ =tz ,  

a fixed point, of Eq. 2.10. 

2.3.1 Fixed Point Surfaces 

The components of vector equation ( , ) 0,t =f y  constructs n generalised curved 

surfaces, called as the fixed point surfaces of the dynamic system, in the space nR . 

For an autonomous system, its fixed point surfaces are fixed in the space nR . 
However, for a non-autonomous system, its fixed point surfaces move with time 

in nR . To investigate the motion of the fixed point surfaces, let us consider the 

fixed point surfaces in the space nR defined by equation 

( , ) 0,t =f y                                             (2.11) 

where ),( yf t is a smooth function of the variable t and the vector y  defined on 

subset nRU ⊆ . Since f is a vector, a component equation  

),2,1(,0),( nitfi ==y                         (2.12) 

denotes a generalised curved surface corresponding to the function ).,( ytf i  The 

fixed point ŷ  is an intersection of the fixed point surfaces, that is 

.0),(ˆ 1 =∩= = yy tfi
n
i                                  (2.13) 

2.3.2 Translation Velocity of a Fixed Point Surface 

The differential of the function ),( yf t in Eq. 2.11 takes the form 

.0),( , =+= yJfyf ddttd t                                (2.14) 

Here,  

[ ]Ttnttt fff
t ,,2,1, =
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∂= f

f                       (2.15) 
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[ ] ,/()/()/() 21
T

nyyy ∂∂∂∂∂∂=∇                    (2.17) 

where J  is the Jacobian matrix of the vector function f , ∇ denotes a differential 
operator, T denotes transpose and the subscripts ni ,,2,1=  and 

nj ,,2,1= . The Eq. 2.14 can be written in the form of components 

represented by the subscripts i , j , etc.  

,0,, =+ jjiti dyfdtf                                      (2.18) 

where the repetition of index j (called a dummy index) denotes a summation with 

respect to it over its range, i.e. ∑
=

==
n

I
IIiijj

1

)()()( . We define a normal 

vector matrix of the fixed point surface i  

,grad/, Ijiij ff=η                                                   (2.19) 

where ()grad denotes a gradient operator and 2/1
,, )(grad jIjII fff = . The 

subscript I = i, but it does not be considered as a dummy index. From Eqs. 2.18 
and 2.19, it follows that 

,0gradgrad ,, =+=+ iItijijIti drfdtfdyfdtf η                        (2.20) 

where jiji dydr η= denoting the projection of the elemental length jdy onto the 

normal vector ijη  of  the surface 0=if . The translation velocity of the curved 

surface 0),( =ytf i is defined by  

,
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,

I

tii
i f

f

dt

dr
N −==                                       (2.21) 
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from which the translation velocity vector for the curved surfaces 0),( =yf t  can 

be obtained  
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where ()diag denotes a diagonal matrix.  

For autonomous systems 0, =tif , the fixed point surfaces are fixed in the 

space and therefore from Eqs. 2.18, 2.20 and 2.21 we respectively obtain 

,0, =jji yf                                                    (2.23) 

,0grad =jijI yf η                                               (2.24) 

.0=iN                                                        (2.25) 

Equations  2.23-2.25 represent that the motion velocity of a fixed point surface of 
an autonomous system can be only along the tangent direction of the fixed point 
surface. 

2.3.3 Transmission Velocity of a Fixed Point Surface 

The transmission velocity of the fixed point surface 0=if is defined by the  

relative velocity 

,)
grad

/
(

yI

i
iii f

DtDf
vN −=−= ηϑ                            (2.26) 

where  

,/ ,, jijtii fyfDtDf +=                                     (2.27) 

 

denotes a material derivative of the function ),( ji ytf , if the solution )(ty  is 

considered as a fluid flow.   
 
 
 
 



52 2   Dynamical Systems and Differential Equations 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2.2 The fixed point surface 0),( =ji ytf and its translation velocity iN  as well as 

the normal component 
η
iv of the flow y on the normal vector ijη  of the surface 0=if . 

As shown in Fig. 2.2, physically, the translation velocity iN  of a fixed point 

surface 0),( =ji ytf is the velocity observed by an observer standing on the 

fixed reference coordinate system, but the transmission velocity iϑ represents the 

velocity observed by one standing on the ‘material particle’ of the flow iy with 

the velocity iy  at a point jj yy = of the surface 0),( =ji ytf . Therefore, if 

0=iϑ or 0)/( =
y

DtDfi , the surface is a flow trajectory of the system and 

if ηϑ ii v−= , it reduces to a fixed surface in the space.  For the two dimensional 

phase space, Fig. 2.2 geometrically shows the fixed point surface 

0),( =ji ytf and its translation velocity iN  as well as the normal component 

η
iv of the flow on the normal vector ijη  of the surface 0=if . Here, the  

dashed line indicates the position of the surface 0=if caused by the translation 

velocity iN . 
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2.4 Stability 

A solution )(ty  of Eq. 2.3 is said to be stable if a solution )(ty based nearby re-

mains close to )(ty for all time. This implies that for every neighbourhood V  of 

)(ty in U  there is a neighbourhood VV ⊂1 such that every solution ),( 0 tyy  

with 10 V⊂y is defined and lies in V for all 0>t . If, in addition, VV ⊂1 can 

be chosen so that yy →)(t as ∞→t then )(ty is said to be asymptotically 

stable.  
Since the solution )(ty of Eq. 2.3 corresponds to a fixed point 0ˆ =z  of  

Eq. 2.10, the investigation of the stability of the solution )(ty  of Eq. 2.3 can be 

done by investigating the stability of the fixed point 0ˆ =z  of Eq. 2.10. Hirsch 
and Smale (1974) presented a detailed discussion of stability of fixed points. A 
Liapunov function method is often used to investigate the stability of a fixed point, 
which relies on finding a positive definite function RUF →: , called the  
Liapunov function, decreasing along solution curves of the differential equation, 
which is stated as follows (Hirsch and Smale 1974). 

Theorem 2.2 Let )(ty be a fixed point for equation  

,)0(),( 0yyyfy ==                          (2.28) 

and :F V R→ be a differentiable function defined on some neighbourhood 

V U⊆ of )(ty such that: 

i) 0)( =yF and ( ) 0F >y if ;≠y y  and 

ii) },{,0)( yyy −∈≤ VF  

then )(ty is stable. Moreover, if 

iii) },{,0)( yyy −∈< VF  

then )(ty is asymptotically stable. 

2.5 Linear Systems  

Considering a linear system governed by the equation 

0, (0) ,= =y Ay y y                                   (2.29) 
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where A is an nn× matrix with constant coefficients. The solution of this equa-
tion is given by 

0.te= Ay y                                                (2.30) 

The matrix function Ate is the nn× matrix defined by the convergent series 

2
2 .

2! !

n
t nt t

e t
n

= + + + + +A I A A A                    (2.31) 

It can be demonstrated that this matrix function satisfies the equation 

1( ) (0),te t −=A Y Y                                          (2.32) 

where 

1 2( ) , ( ), [ ].t n
Jt e diag λ= = =ΛY Φ Λ Φ φ φ φ   (2.33) 

Here, Jλ and Jφ , (J = 1,2,…,n), represent the eigenvalue and corresponding  

eigenvector of matrix A , satisfying  

.J J
Jλ=Aφ φ                                              (2.34) 

Example 2.1 
To understand the above formulations, we consider the following 2-D system 
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where A is an 22× matrix and its eigenvalue and eigenvector can be solved by 
Eq. 2.34, that is 
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The characteristic equation of Eq. 2.36 is given by 
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from which and Eq. 2.36, it follows 
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Therefore, from Eqs. 2.31-3, we have 
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Finally, we obtain the solution of Eq. 2.35 as 
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Noting )(21)( tt αα +=  and 0)0( =α , we can confirm that Eq.2.40 is the  

solution of Eq. 2.35. 
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Chapter 3 

Energy Flow of Nonlinear Dynamical Systems 

This chapter gives the developed energy flow theory and approach for nonlinear dy-
namical systems defined by vector fields in phase space, which will be used in the 
following chapters of this monograph. The generalised potential energy and kinetic 
energy in phase space are defined, which are two scalar variables embedded into the 
phase space to investigate the energy flow behaviour of nonlinear dynamical sys-
tems. The first one involves positions of flow points in phase space and the second 
one links to the tangent vector, flow directions, in tangent bundle of vector fields. 
Surfaces of potential energy level are introduced to measure the potential energy at 
each point in phase space. The energy flow equation for nonlinear dynamical sys-
tems is derived, and the corresponding energy flow field with its characteristics, 
such as, energy flow lines, energy flow gradient vectors, energy flow characteristic 
factors, are discussed. The formulations for time and spatial derivatives of genera-
lised potential energy and the variations of energy flow are presented. Zero energy 
flow surfaces, on which the time change rate of generalised potential energy of the 
system vanishes, with their normal vectors are defined, and its local behaviour are 
investigated. The time change rate of phase volume strain is formulated. To under-
stand the defined energy flow gradient vector and energy flow characteristic factors, 
three examples are given in the last subsection of this chapter. 

3.1 Generalised Potential and Kinetic Energies 

A solution ),( 0 tyy of Eq. 2.3 defines a trajectory passing through the point 0y in 

the space nR . In order to investigate the solution ),( 0 tyy of a nonlinear dynami-

cal system from a view of energy flow point, we embed the generalised potential 

energy E and the generalised kinetic energy K into the phase space nR , which are 
defined as follows 
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,
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2
1

ppxxyy TTTK +==                                             (3.2) 

These two positive scalar functions depend on the position vector y  and the veloc-

ity vector y , tangent vector at a point on a trajectory in the phase space nR , re-

spectively. Therefore, they are used as the two variables to measure the position 

and its velocity of a point on the trajectory in the space nR , respectively. Geome-
trically, the generalised potential energy represents a half square of the distance  
of a point to the origin of the phase space. The generalised kinetic energy has a 
similar geometrical meaning in the tangent bundle space. 

For a linear dynamic system with x and x  respectively representing its physi-

cal displacement and velocity vectors, the terms 2/xxT  and 2/ppT  may 

represent its physical potential energy and kinetic energy of the system, respec-
tively. Therefore, E  could be the total mechanical energy of the system. The 

terms  2/xxT  and 2/ppT  may represent the physical kinetic energy and the 

acceleration energy of the system, respectively.  However, generally, for differen-
tial equations of nonlinear dynamic systems in phase space, x and x may not be 
defined as the physical displacement vector and velocity vector, respectively, so 
that E may not be the total mechanical energy of the system.  The word of “gene-
ralised” is used to avoid any confusion with physical potential and kinetic energies 
of the system. For a convenience in the descriptions of this book, we may neglect 
the word “generalised” if it is no confusions. 

3.2 Surfaces of Potential Energy Level 

From Eq. 3.1, we can define a set of surfaces of potential energy level in the phase 
space by equation 
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),( =−+=−= EEEe TTT ppxxyyy               (3.3) 

which, for a given positive real number E  (potential energy level), represents a 

generalised closed curve around the origin 0=y  in the space nR . Therefore on 

a potential energy level surface, the energy of the system is constant. At the origin 
0=y of the space the energy 0=E  which is considered as a reference point 

with a zero potential energy of the phase space. With increasing of the dis-

tance y=d , the amplitude of position vector y , the energy E level increases. 

There are no intersections of two energy level surfaces. The normal vector of 
energy level surface takes the form 
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Fig. 3.1 Potential energy level surfaces (circles) and its normal vector in 2 dimensional cases 
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Fig. 3.1 shows the potential energy level surface as well as its normal vector eN  
for the 2-dimensional phase space. On a potential level surface, the potential ener-
gy keeps a constant and the time change rate of potential energy vanishes. 

3.3 Energy Flow Equation and Energy Flow Field 

3.3.1 Energy Flow Equation 

The energy flow equation of the nonlinear dynamic system described by Eq. 2.3 
can be derived by pre-multiplying the two equations given in Eq. 2.3 by the vector 

Ty  and 2/)0(Ty , respectively, that is 
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Here, the left-hand and right-hand sides of the first equation in Eq. 3.5 represent 

the time change rate E of the generalised potential energy E  and the power P , 
the work done by the generalised force ),( yf t per unit time, respectively.  
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The second equation in Eq. 3.5 is defined by the initial generalised potential ener-

gy 0E  of the system at time 0=t . Therefore, Eq. 3.5 defines an energy flow bal-

ance equation of a dynamic system, which can be described as: for a nonlinear 

dynamic system with an initial potential energy 0E , its time change rate of gene-

ralised potential energy equals the power of its generalised force.  
Physically, the energy flow balance equation represents the universal work-

energy principle for nonlinear dynamic systems. In fact, using Eq. 2.2, from the 
energy flow Eq. 3.5, it follows that 
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where 2/ppTT =  may be the physical kinetic energy of the system. This equa-

tion implies that the time change rate of the physical kinetic energy equals the 

power of the physical force ),,(
~

pxf t  of the system. If this force is a potential 

force relating a physical potential function )(xΠ defined by  

xf ∂Π−∂= /
~

,                                         (3.7) 

so that  the system is a conservative system and its total mechanical energy H is 
conservative, i.e. 

.,0 Π+===Π+ TH
dt
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d
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                       (3.8) 

We can also obtain that the generalised kinetic energy K of the nonlinear dynami-
cal system described by Eq. 2.3 satisfies the equation 
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This gives an equation governing the time change rate of generalised kinetic  
energy of the system, which may called as the kinetic energy flow equation of the 
system. In the flowing discussion, we mainly concentrate on the energy flow  
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Eq. 3.5 that involves the potential energy and its time change rate, and therefore 
the position vector and its time change rate at a phase point on the orbit. Further 
similar explanations on the kinetic energy flow equation may be completed by 
readers. 

3.3.2 Energy Flow Field and Energy Flow Lines 

The power ),( ytP of the generalised force constructs a scalar field called as the 

energy flow field of a nonlinear dynamical system. Comparing Eq. 3.5 with Eq. 
2.3 of the dynamical system shown in Fig. 2.1, we can say that for the dynamical 
system governed by Eq. 2.3, Eq. 3.5 defines its energy flow on the differential 
manifold M arising from the scalar energy flow or power flow field ),( ytP , re-

garded as a map ,: MTMP E→  where MTE is the corresponding tangent 

bundle of M that this energy flow field P generates an energy flow 

),( ytEEt = through the energy flow Eq. 3.5. Fig. 3.2 shows the solution curve, 

an energy flow line, of Eq. 3.5, )(),( 00 yy tEtE =  and the flow 

).(),( UEtUE t=  The tangent vector at a point y of the energy flow 

line )(),( 00 yy tEtE = is determined by PdtdE =/ which is considered as the 

velocity of the energy flow, the power done by the generalised force ),( yf t  on 

the solution curve )(),( 00 yφyφ tt = . 

The systems governed by Eq. 3.5, in which the energy flow field does not con-
tain time explicitly, are called autonomous. Depending on the signs of the pow-
er ),( ytP  in the full phase field, we may define the following particular energy 

flow fields. 

3.3.2.1   Conservative Field 

An energy flow field satisfying equation 

( , ) 0,E P t= ≡y                                       (3.10) 

is called a conservative field. This implies that the generalised potential energy at 
any points on the flow is a constant equaling its initial generalised potential ener-
gy. The solution flow would be an equilibrium point or a closed orbit on a poten-
tial energy level surface of the space on which each point has a same distance to 
the origin.  
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Fig. 3.2 The energy flow field for the solution orbit and the flows shown in Fig. 2.1: (a) 

The energy flow line )( 0ytE  of which of its tangent vector at a point y is PdtdE =/ , 

the power of generalised force; (b) the energy flow )(UEt . 

3.3.2.2   Diverging Field 

,0),( ≡= ytPE                                     (3.11) 

implying the generalised potential energy along the flow always increases with the 
time due to the power of the force is positive at every points and time. Therefore, 
the flow tends to infinity. 

3.3.2.3   Contracting Field 

,0),( >= ytPE                                     (3.12) 

implying the generalised potential energy along the flow decreases with time and 
the flow line is attracting to the origin due to negative power of the force at every 
points and time. 

3.3.3  Time Derivatives of Generalised Potential Energy 

The generalised potential energy E of a nonlinear dynamical system is a function 
of time t and space position y . For a flow )(ty  satisfying Eq. 2.3, from the  
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energy flow Eq. 3.5, we obtain the generalised potential energy and its time deriv-
atives on this flow as follows 
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Here, the differential operator jj yytDtD ∂∂+∂∂= /()/()/() as used by  

Eq. 2.27. The generalised potential energy and its time derivatives are functions  
of flow )(ty  and therefore they are functionals. Based on Eqs. 2.3 and 3.2, we  

obtain that 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.3 Force vector f is orthogonal to normal vector 
eN of potential energy level surface 

and the potential energy E keeps a constant along the flow on potential level surface. 
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These equations have their component forms 
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In general, we have the )1( +m  order time derivative of the generalised potential 

energy E in the form 
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Using Eqs. 2.26 and 3.13, the first and second order time derivatives of the gene-
ralised potential energy in Eq. 3.15 are respectively represented as 
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From Eqs. 3.13-3.17, we may draw the following conclusions. 
 

i) As shown in Fig. 3.3 for 2R phase space, if the generalised force vector 

f is orthogonal to the normal vector eN of the generalised potential level surface, 
which implies that the generalised force vector is on the tangent plane of the gene-
ralised potential level surface, this force does not do work for the system, so that 
the time change rate of generalised potential energy vanishes and the generalised 
potential energy E keeps its original value unchanged.  

 

ii) As indicated by Eq. 3.17, if the transmission velocity iϑ of fixed point 

surface is orthogonal to the normal vector eN of the generalised potential level 
surface, the second order time derivative of the generalised potential energy equals 
to two times of generalised kinetic energy of the system.  

 
iii) As shown in Fig. 3.1, a large value of the generalised potential energy 

E at a point implies that this point is far from the origin of the phase space. Also, 

its energy flow value E defines the flow direction of the system: the 

0<E , 0=E and 0>E imply that the flow directions towards the origin to re-
duce the potential energy, along the tangent direction of the potential energy level 
surface, and backwards the origin to increase the potential energy, respectively. 

 
iv) Equations 3.10, 3.11 and 3.12 respectively define a conservative, diverg-

ing and contracting energy flow field for nonlinear dynamical systems. 
 
v) Assume that V denotes a single connected domain around the origin of 

the phase space of a nonlinear dynamical system. If in this volume the potential 

energy is not larger than a maximum value, i.e. maxEE ≤ , and the energy 

flow 0≤E everywhere in / on V, then all possible solution flows are located in V.  
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3.3.4 Space Derivatives of Generalised Potential Energy 

To compare the generalised potential energies of different flow orbits of a nonli-
near dynamical system, we need to know the space derivatives of the generalised 
potential energy E and its time change rate. From Eq. 3.15 it follows that 
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The time and space derivatives discussed above provide a basis to investigate the 
distribution and time / space change rates of the generalised potential energy of 
the nonlinear dynamic system. 

3.3.5 First and Second Order Variations of Energy Flow 

The energy flow defined by Eq. 3.5 is a functional of time t and vector function 
y , to reveal its behaviour we need to investigate its variations about a time t and 

position y  subject to a disturbance variation tδ . Since flow y is a function of 

time, its corresponding variation  .tδδ yy =  For a functional in the form 

),( ytF , we respectively defined its first local variation Fδ , isochronal variation 

FΔ and total variation Fδ  as 
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We may represent Eq. 3.19 in a matrix form 
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from which the second variation of functional ),( ytF can be defined as 
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The above second variation of energy flow is a quadratic form of which the matrix 

FTLL is a real symmetrical matrix with real eigenvalues IΛ . The transformation 

based on its eigenvectors can transform it into a diagonal matrixΛ~ and the corres-
ponding variables denoted by the notations with “~”. The positive, negative or  
zero value of this quadratic form is determined by the characteristics of the real 

eigenvalues. If all eigenvalues of the matrix FTLL  are positive or negative, this 
quadratic form is definitely positive or definitely negative, respectively. 

Following these definitions, we can distinguish the three types of first  

variations of the energy flow ),( ytE as follows. 

3.3.5.1   Local Variation 

A local variation of energy flow ),( ytE is given by 

,
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t

δ δ∂=
∂

                                                  (3.22) 

implying the variation of energy flow at fixed phase point y due to the time varia-

tion .tδ   

3.3.5.2   Isochronal Variation 

When considering any variations of the energy flow ),( ytE at a given time t due 

to a flow variation ,yδ we obtain its isochronal variation  

( , ) ,TE t EδΔ = ∇y y                                              (3.23) 
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which, when Eq. 3.18 introduced, gives  

( , ) ( ).T TE t δΔ = +y y f J y                                   (3.24) 

3.3.5.3   Total Variation  

The total variation of energy flow can be derived as 
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3.3.5.4   Second Order Variation 

Using the definition of second order variation of the functional F given by  
Eq. 3.21, we obtain the second order variation of energy flow in the form 
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3.3.6 High Order Isochronal Variations of Energy Flow 

To reveal the more detailed characteristics of the flow field structure of a nonlinear 
dynamical system at a time t, in some cases, we may need to investigate more high-
order isochronal variations of the energy flow of the system about a flow y subject 

to a disturbance flow η  at the same time t. For example, for a system of its first and 
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second variations vanishing, we need to rely on its third order variation to explore its 
flow behaviour. To this end, at a time t we can respectively express the vector func-
tion ),( ηyf +t , the energy flow ),( ηy +tP and the generalised kinetic energy of 

nonlinear dynamical system in their Taylor series forms 
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The corresponding energy flow / generalised kinetic energy and their isochronal 
variation respectively are given by the following equations, 
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For an equilibrium point 0)0,( ==yf t , the above isochronal variations are fur-

ther reduced to 
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 (3.29)  

Here symmetrical matrix E and anti-symmetrical matrix U are defined as the 
energy flow matrix and spin matrix of the system, for which a detailed discussion 
will be given in Chapter 4. 

3.3.7 Local Spatial Extrema of Generalised Potential Energy 

The generalised potential energy E at time t in Eq. 3.13 for a nonlinear dynamical 
system is a functional of the flow )(ty  defined by Eq. 2.3 of the system. Consi-

dering a variation flow η  from the flow )(ty and Eq. 3.27, we can calculate the 

variation of the potential energy as follows 
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(3.30)

 

 
 
 



70 3   Energy Flow of Nonlinear Dynamical Systems 

The first and second order variations of the generalised potential energy are re-
spectively given by  
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                       (3.31)

 

Based on the variational expressions in Eq. 3.31, we can conclude that the genera-
lised potential energy for a flow )(ty takes a stationary value if the first variation  

,0),(,0 =+=Δ yJyf TtE                                  (3.32) 

and this stationary value is a local minimum if the second variation 02 >Δ E , or 

maximum if .02 <Δ E  
For equilibrium point ,0ˆ =y Eq. 3.32 is satisfied due to 0)ˆ,( =yf t and the 

second variation reduces to .
0

2 dtE
t TEηη  As a result of this, if the energy 

flow matrix E is definitely positive, the generalised potential energy at the equili-
brium point is minimum and it is maximum if the matrix E is definitely negative. 
Here, it should be emphasis that the minimum generalised potential energy does 
not imply the equilibrium point is a stable point. 

3.3.8 Equi- / Zero-Energy Flow Surfaces and Its Local Behaviour 

In subsection 3.2, we define the surface of potential energy level of the phase 
space by Eq. 3.3, which is a geometric structure of the phase space to measure the 
generalised potential energy of any nonlinear dynamical systems. To investigate a 
nonlinear dynamical system, we may introduce the concept of equi- / zero-energy 
flow surfaces as follows. We have known that the power ),( ytP of generalised 

force in Eq. 3.5 constructs a scalar field called as the energy flow field of a nonli-
near dynamical system. The equations  
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                                 (3.33) 

define two generalised surfaces or  subspace in the phase space. We call the first 

surface as an equi- energy flow surface on which the energy flow is a constant eP  

at time t. The second surface is called as a zero energy flow surface on which the 

energy flow vanishes. Therefore, the first order time derivative 0=E of the ge-
neralised potential energy of the nonlinear dynamical system is a necessary condi-
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tion to exist an extremum point y  of generalised potential energy given in Eq. 

3.15 at time t. Its sufficient condition may be determined by Eq. 3.18 to consider 
the second time derivative of the generalised potential energy. 

There are the following three cases satisfying condition in Eq. 3.33: 
Case1: ,0=y that represents the origin of the phase space, at which the gene-

ralised potential energy is defined as zero;  
Case 2: ,0),( =yf t implying an equilibrium point;  

Case 3: ,0),( =yfy tT ),,(0 yfy t≠≠ corresponding to a generalised sur-

face with zero energy flow.  
Equation 3.28 with the second order approximation can be used to calculate the 

variation of energy flow caused by orbit variationη  around y at a time t, that is  
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)(),(),( ηηηyηy PPtPtPE TTT ∇⋅∇+∇=−+=Δ        (3.34) 

Assume that ηy + represents a neighbour point around y  on the zero energy 

flow surface and EΔ  is the corresponding energy flow variation. From the defini-
tion of generalised potential energy given in Eq. 3.1, we can discuss the local  
behaviour of the energy flow at time t around this zero energy flow surface as  
follows. 

i) ,if yηy <+  then from Eq. 3.1, ),,(),( yηy tEtE <+ so that 

0>ΔE implies the flow towards to the zero energy flow surface while 

0<ΔE  indicates the flow backwards from the zero energy flow surface; 

ii) ,if yηy >+ then ),,(),( yηy tEtE >+ so that 0<ΔE implies the 

flow towards to the zero energy flow surface while 0>ΔE  indicates the 
flow backwards from the zero energy flow surface; 

iii) if the flows from both sides of the zero energy flow surface is towards it, 
this surface is an attracting surface. 

3.3.8.1   Normal Vector of Zero Energy Flow Surface 

Similar to section 2.3 for fixed point surface, we define the normal vector of the 
zero energy flow surface governed by Eq. 3.33 as 
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If the orbit variationη  around y at a time t is required to satisfy ,0)( =∇ ηTP  so 

that ,0=⋅ Eηη  which implies that the orbit disturbance η  on the tangent plane 

of the zero energy flow surface, Eq. 3.34 reduces to 

.])[(
2
1 ηη PE TT ∇⋅∇=Δ                                              (3.36) 

3.3.8.2   Translation / Transmission Velocities of Zero Energy Flow Surface 

The translation and transmission velocities of the zero energy flow surface are also 
defined by 
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and 
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Dt
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respectively. Here, 
Ev denotes the projection of the velocity of )(ty onto the 

normal vector 
E
jη of the zero energy flow surface, that is 
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3.3.8.3   Singular Points of Zero Energy Flow Surface 

If at a point on the zero energy flow surface, the partial derivative  
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P
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                                 (3.40) 

this point is called a singular point of this surface. At this point, the definition Eq. 
3.35 of the normal vector of the energy flow surface is not valid, but Eq. 3.36 is 
valid.  

From Eqs. 3.33 and 3.40, it follows that 
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that is  

.0=+ yJf T                                              (3.42) 

Equation 3.40 or 3.41 gives a set of equation to determine the singular points of 
the zero energy flow surface.  

Obviously, an equilibrium point ŷ satisfying 0=f locates on the zero energy 

flow surface, so that this equilibrium point ŷ is also a singular point of the zero 

energy flow surface if the equation  

,0ˆ =yJT                                                 (3.43) 

 
is satisfied. If the determinant of Jacobian matrix J at point ŷ is not zero, the so-

lution ŷ of Eq. 3.43 must be zero, which implies that only zero equilibrium point 

0ˆ =y with 0|| ≠J can be a singular point of the zero energy flow surface.  

A non-zero equilibrium point 0ˆ ≠y could be a singular point of the zero energy 

flow surface if 0|| =J . 

3.3.9 Equi- / Zero-Generalised Kinetic Energy Surfaces  

Similar to subsection 3.3.8, we can define an equi- / zero-generalised kinetic  
energy surfaces of a nonlinear dynamical system respectively as follows, 
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where eK  is a constant at time t.  Obviously, the equilibrium points of nonlinear 

system are on the zero-generalised kinetic energy surface of the system. Also, we 
can similarly define the following geometrical vectors: 

3.3.9.1    Normal Vector of Zero-Generalised Kinetic Energy Surface 
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y

K

j

K
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3.3.9.2   Translation / Transmission Velocity of Zero-Generalised Kinetic 
Energy Surface 

|,grad|/ K
t

K
N K

∂
∂−=                                      (3.46) 
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Here, 
Kv denotes the projection of the velocity of )(ty onto the normal  

vector
K
jη , that is 
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3.3.9.3   Singular Points of Zero-Generalised Kinetic Energy Flow Surface 

The singular points are defined by 
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                             (3.49) 

at which, the definition Eq. 3.45 of the normal vector of the  surface is not valid. 
Furthermore, from Eq. 3.44, it follows  
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2
1 ==∇=∇=∇ fJffff TTTK                      (3.50) 

which gives a set of equation to determine the singular points of the zero-
generalised kinetic energy  surface. 

Obviously, an equilibrium point ŷ satisfying 0=f  is also a singular point of 

the zero-generalised kinetic energy surface. If the determinant of Jacobian matrix 
J  is not zero, the solution f of Eq. 3.49 must be zero, which implies that only 
equilibrium point with 0=y can be a singular point of the zero-generalised ki-

netic energy flow surface. A non-equilibrium point could be a singular point of the 
zero-generalised kinetic energy surface if 0|| =J . 
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Fig. 3.4 The integration of the divergence of vector field over a phase space volume 

3.4 Time Change Rate of Phase Volume Strain 

As shown in Fig. 3.4, considering a phase space volume V closed by a surface S  

of unit outside normal iν , which moves to its new position represented by dashed 

line due to a displacement tΔy caused by the flows of points on the surface S in 

a time interval tΔ . Integrating the divergence of Eq. 2.3 over volume V and using 
Green theorem (Fung, 1977), we obtain  

,/,, tVdSydVydVf
S iiV iiV ii                       (3.51)

 

where, VΔ  represents a volume change of the original volume V  in the time in-

terval tΔ . Eq. 3.51 is valid for any size of original volumeV , so that we can in-

vestigate a differential volume element 0V for which the integration on the left 

hand side of Eq. 3.51 may be approximate to 0, Vf ii . As a result of this, Eq. 3.51 

gives 
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DV DV
V f f V V V

Dt V Dt
υ υ= = = = −         (3.52) 

Here, υ and υ  are defined as the phase volume stain and its time change rate. 
Generally, they are functions of phase point and time.  
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From Eqs. 2.3 and 2.16, it follows 
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and therefore  
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In above mathematical development, we have considered that the energy flow ma-
trix E is a real symmetrical matrix, so that its trace )(tr E equals a summation of 

its eigenvalues Iλ , (I = 1, 2, 3,…, n).  

Eq. 3.54 represents that the time change rate of phase volume strain of phase 
space equals the summation of the eigenvalues of the energy flow matrix of nonli-
near dynamical system.  

For a nonlinear dynamical system with a constant energy flow matrix E , the 
phase volume strain and its time change rate have the following characteristics. 
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which correspond a contracting, isovolumetric and expanding phase space for the 
nonlinear dynamical systems, respectively.  

3.5 Energy Flow Gradient Vector and Characteristic Factors 
3.5 Energy Flow Gradient Vector and Characteristic Factors 
As we have discussed that the energy flow E is a scalar quantity identifying the 
time change rate of the generalised potential energy E of a nonlinear dynamical 

system, which directly links with the amplitude E2=y of the position vector 

in the phase space, so that the energy flow provides some information relating to 
the time change rate of the amplitude of position vector at a point on the orbit.  
The energy flow is a function of time and position vector and it is a scalar field. 
To reveal the change of the energy flow fields caused by position variation, we de-
fine the energy flow gradient vector and the energy flow characteristic factors of a 
nonlinear dynamical system as follows. 
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3.5.1 Energy Flow Gradient Vector 

Neglecting the higher order terms than ηηT , from Eq. 3.28 we obtain 
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)( ηηη PPE TTT ∇⋅∇+∇=Δ                                    (3.56) 

From Eq. 3.41, it follows that the energy flow gradient vector 
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and 
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Substituting  Eqs. 3.57 and 3.58 into Eq. 3.56, we obtain 
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            (3.59) 

In the above derivation, we have considered that the matrix 1U is an anti-

symmetrical matrix and therefore .01 =ηUηT  According to Eq. 3.29, the defini-

tion of energy flow matrix 2/)( TJJE +=  is based on the Jacobian matrix, or 

more generally, “zero-order space derivatives” of .J  Therefore, we use a sub-

index 1 to mark the matrix 1E defined from “1-order space derivatives” of .J  For 

further more clear description, if it is needed to distinguish them, we will call ma-

trices E , 1E and E as the zero-order, 1-order and total energy flow matrix of non-

linear system, respectively. If this distinction is not necessary, we will simply call 
them as energy flow matrices. 
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The energy flow gradient vector p given in Eq. 3.57 defines the direction of max-

imum energy flow at a point y in the phase space at time t. An element Ip of p  

gives the energy flow caused by a unit position variation Iη . A positive, zero or neg-

ative value of Ip implies that the energy flow caused by a positive Iη is increased, 

unchanged or decreased, respectively. If the energy flow gradient vector at a point 
y  in the phase space does not vanish, we can calculate the first order change of the 

energy flow along an arbitrary variation vector η  at this point using equation 

.pηηp TTE ==Δ                                         (3.60) 

The energy flow gradient vector plays a same role as the energy flow density vec-
tor proposed by Xing & Price (1999) for the power flow analysis in continuum 
mechanics. 

3.5.2 Energy Flow Characteristic Factors 

We are more interested in the energy flow variations about a point on the zero 
energy flow surface to investigate possible chaos and attractors. For an equili-
brium point 0=y , which is on the zero energy flow surface and also a singular 

point of the surface, its energy flow gradient vector vanishes, so that the first order 
variation of energy flow in Eq. 3.56 vanishes. More generally, if the vector η  is 

along the tangent direction of a point on the zero energy flow surface, implying it 
is perpendicular to the normal vector given by Eq. 3.38 of the zero energy flow 
surface, the first term in Eq. 3.56 also vanishes. For these cases, we have to reveal 
the energy flow characteristics considering the 2nd order term in Eq. 3.59, i.e. 

.ηEηTE =Δ                                              (3.61) 

As detailed discussion for the zero-order energy flow matrix E given in Chapter 5, 

the real symmetrical energy flow matrix E  has real eigenvalues Iλ and corres-

ponding eigenvector matrixΦ satisfying IΦΦ =T and )(diag I
T λ=ΦEΦ . 

These eigenvectors span an energy flow space in which the disturbance ηcan be 

represented by 

,ζΦη =                                                  (3.62) 

which, when substituted into Eq. 3.61, gives  
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Therefore, an eigenvalue Iλ represents the energy flow change caused by a unit 

disturbance 12 =Iζ in the I-th principal direction of the energy flow matrix. The 

positive, zero or negative value of the eigenvalue Iλ respectively implies the ener-

gy flow increase, unchanged or decrease caused by the disturbance 2
Iζ  in the I-th 

principal direction. Based on this explanation, we call Iλ as the energy flow cha-

racteristic factors. Based on Eq. 3.63, we can obtain the following theorem. 

 

Theorem 3.1 For a singular point on the zero energy flow surface of a nonlinear 

dynamical system, if its energy flow characteristic factors Iλ  are not all semi-

negative or all semi-positive, there will exist a small subdomain around this point 
in the phase space which is determined by 
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Fig. 3.5 A 2nd order zero energy flow surface about the origin, a singular point of the zero 

energy flow surface for 3-D space, where we assume that 01 >λ , 02 >λ , 03 <λ , so 

that 1/1 λ=a , 2/1 λ=b  and ./1 3λ−=c  
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At every point ζ in this subdomain, the variation )(ζEΔ of the energy flow 

vanishes, so that this subdomain is called a 2nd order zero energy flow surface for 

this point of the zero energy flow surface defined by 0)( =ζE . The condition in 

Eq. 3.64 divides the small phase space about this point into three subdomains with 

a positive, zero or negative values of the energy flow variation )(ζEΔ , respective-

ly. Considering 3-dimensional case with 01 >λ , 02 >λ  and 03 <λ , we draw 

this zero energy flow domain, now a surface in Fig. 3.5. This is an elliptical-cone 
surface about the origin, a singular point of the zero energy flow surface, on 

which 0=E . The disturbance points inside this surface with 0<ΔE  so that 
they move towards the origin. However, the disturbance points outside this surface 

with 0>ΔE and they move far from the origin. For the case with 01 <λ , 

02 <λ  and 03 >λ , the zero energy flow variation surface is same as the one 

shown in Fig. 3.5, but the in this case we have 0>ΔE inside and 0<ΔE out-
side the surface. 

3.5.3 Examples 

To understand the defined energy flow gradient vector and energy flow characte-
ristic factors, we consider the following examples. 

3.5.3.1   A Linear Conservative System 

A linear conservative system can be governed by the following equation 
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where x  and y are the displacement and velocity vectors of the system. For this 

system, the Jacobian and energy flow matrices are respectively as follows, 
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from which the energy flow gradient vector 
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Since the energy flow matrix 0=E and its eigenvalues 02,1 =λ , the all energy 

flow characteristic factors vanish. Physically, this is a conservative system of 
which the energy flow vanishes everywhere in its phase space since its generalised 
potential energy E does not change. 

3.5.3.2   A Linear Damping System 

Now we introduce a damping coefficient ν into the system governed by Eq. 3.65, 
so that we have the following equation 
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For this system, the Jacobian and energy flow matrix are respectively given by, 
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Fig. 3.6 The energy flow curve of the linear damping system 

The energy flow gradient vector is derived as 
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and the zero energy flow surface is 

,0,02 ==− yyν                                       (3.71) 

which now is the x axis of 2-D space. At any point on the x axis, the energy flow 
gradient of the system vanishes, so that every point on the x axis is a singular point 
of the zero energy flow axis. 

The eigenvalues of the energy flow matrix are 

,,0 21 νλλ −==                                             (3.72) 

so that the energy flow is unchanged in x direction but decreased in both positive 
and negative y directions. Fig. 3.6 shows the energy flow curve of this system, 
from which we can observe that the energy flow on x axis vanishes since it is the 
zero energy flow line. It is also found that the energy flow along a line parallel to 
the x axis on the energy flow curve keeps a constant, since the energy flow charac-

teristic 01 =λ in x direction. 

3.5.3.3   Van der Pol’s Equation 

Van der Pol’s equation and its energy flow equation can be represented by 
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for which the energy flow equation is in the form 
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The Jacobian matrix, the energy flow gradient vector are derived respectively as 
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from which with Eq. 3.58, it follows the matrix 

        

(3.76)
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Fig. 3.7 The zero flow energy lines of the Van der Pol’s equation and the energy flow  
characteristics around them. 

Therefore, from Eq. 3.59, we obtain the energy flow matrices 
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The zero energy flow lines can be drawn by vanishing Eq. 3.74, so that we obtain 
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,0

±=
=

x

y
                                              (3.78) 

which defines the x axis and the two lines perpendicular to x axis, as shown by 
two dashed lines in Fig. 3.7. 

On the x axis, the energy flow gradient vector vanishes, which implies that any 
point on x axis is singular point of the zero energy line. As a result of this, around 
x axis (y = 0), the energy flow change is obtained by the second order terms in  
Eq. 3.59, i.e. 
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This represents the disturbance 2η  along y direction, negative or positive, at point 

on x axis will cause the change of energy flow as follows 

0
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which is shown by the related arrows in Fig. 3.7. 
However, on the dashed lines the energy flow gradient vector does not vanish 

except their intersection points with x axis, so that we must use the first order term 
in Eq. 3.59 to estimate the energy flow change, i.e. 
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By considering a positive or negative disturbance 1η , from Eq. 3.81, the corres-

ponding motions of the phase points around the point on the two vertical dashed 
lines can be identified as shown in Fig 3.7. In this figure, the circle 

422 =+ yx will be explained in subsection 4.4.2 where this system is further  

investigated using a polar coordinate system. 
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Chapter 4 

Energy Flow Theorems  

Here, we investigate the dynamic characteristics of nonlinear dynamical systems 
from a viewpoint of energy flows defined in Chapter 3. These include the energy 
flow behaviour of fixed points, periodical solutions or closed orbits as well as their 
stabilities. Some stability theorems in the energy flow forms are presented and  
two examples, a planar system and the Van der Pol’s equation are investigated to 
illustrate the applications of the developed energy flow theorems. 

4.1 Fixed Point Energy Flow 

Theorem 4.1 The necessary and sufficient condition of a fixed point of a nonli-

near dynamical system defined by Eq. 2.3 is its generalised kinetic energy 0=K . 
Furthermore, the energy flow at a fixed point vanishes and its generalised  

potential energy Constant=E .  
The necessary and sufficient condition of this theorem can be obviously dem-

onstrated by using the definition of fixed point and the definition of the genera-
lised kinetic energy K  represented by Eq. 3.9. Actually, if the generalised kinetic 

energy 0=K , from Eq. 3.9 it follows [ ] ,0
~

ffp ==
TTT implying a fixed 

point, and vice versa. Also, since for a fixed point ŷ , the vector field 0)ˆ,( =yf t , 

and therefore from Eq. 3.5 it follows that 0=E , so that 0EE = .  

Following this theorem, we can determine the fixed points of nonlinear dynam-
ical systems governed by Eq.2.3 by finding the zero points of two scalar functions, 
the generalised potential and kinetic energies, which may be more effective than 

to solve a vector equation 0)ˆ,( =yf t  representing n equations.  It is necessary to 

note that 0=E  only gives a necessary condition of the fixed points of the nonli-

near dynamical system. Therefore, the solution of 0=E  may not be a fixed 
point, as described by Eq.3.33. 



86 4   Energy Flow Theorems 

4.2 Periodic Solutions or Closed Orbits 

A periodic solution is an isolated closed trajectory such that neighbouring trajecto-
ries are not closed and they spiral either towards or away from the closed one. 

Since the trajectory is periodic and closed, there exists a time period ∞<< T0  
such that )()( Ttt += yy for all time t. As a result of this, the generalised poten-

tial energy function E, a continuous single-valued function of )(ty , defined by 

Eq.3.1, satisfies  

)],([),(
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TtEEdtt

EdtttE
tT T

t T

yyfy

yfyy
                     (4.1)

 

which implies that  integration over the periodic trajectory satisfies 

.0),(

),(),(
00

dtEdtt

dttdtt
tT

t

tT

t

T

t TtT T

yfy

yfyyfy

                           (4.2)

 

Therefore, Eq.4.2 is a necessary condition of a periodic solution. On the other 
side, if the integration of Eq.4.2 along a single connected closed curve is valid, 
Eq.4.1 is also valid, so that from Eq.3.1 noting the starting and ending points for 
the closed curve are a same one in the phase space, and it follows 

).()(),()()()( TttTtTttt TT +=++= yyyyyy                  (4.3) 

Furthermore, by using Eq.2.3, the integration in Eq. 4.2 can be further simplified 
as follows. 
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since the integration along the closed curve 
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Therefore, if Eq.4.2 is valid, we have one of the following three results: 
Case 1: 0),( =yf t corresponding to a fixed point of the system at which the 

generalised kinetic energy K = 0. A fixed point might be considered as a particular 
closed orbit on which only one point in the phase space. 

Case 2: 0),( == EtT yfy with 0),( ≠yf t  ( 0≠K ) corresponding to a 

zero energy flow surface defined by Eq. 3.33.  In this case, the vector ),( yf t  is 

orthogonal to the normal of the potential energy level surface of the phase space at 
point y at time t , so that it does not do work to change the potential energy of the 

system. 

Case 3:  the instant time change rate E of the generalised potential energy does 
not vanish at the all points of the trajectory but its time integration in Eq. 4.2  
vanishes. This represents that during the time period T, the increment of the  
potential energy equals its decrement such that the total potential energy is not 
change. Therefore, the total work done by the generalised force over the time  
period is zero. 

Following the above demonstration and discussions, we conclude the following 
theorem. 

Theorem 4.2: The necessary and sufficient condition of a periodic solution of a 
nonlinear dynamical system defined by Eq.2.3 is there exists a time period T and 
its corresponding closed orbit such that the integration in Eq. 4.2 over the orbit 
vanishes.  

Furthermore, if there is a zero energy flow surface, closed generalised surface 

on which everywhere the energy flows 0),( == EtT yfy with 0),( ≠yf t ex-

cept at the individual fixed points, a closed flow curve defined by Eq.2.3 on this 
surface must be a periodic solution orbit. 

 
Based on theorem 4.2, the closed trajectories of a nonlinear system can be de-

termined by investigating the time integration in Eq. 4.2. As discussed above, 
Case 2 can directly be used to determine the equation of the closed trajectory of 
the system. Generally, to check if Eq.4.2 is valid, it is convenient to use the ex-
pression in Eq. 2.7 of the solution in the polar coordinate system. Also, we may 
consider a periodic solution of the system using the Fourier’s expansion form 
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where k1X  and k2X  represent the two amplitude vectors and 010 ≡X . Substi-

tuting the solution in Eq. 4.6 into Eq.3.5, we may further demonstrate that Eq.4.3 
is valid as follows  
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where we take the integration starting time t = 0 and also the equa-

tion 2112 XXXX TT =  has been used. The integration in Eq. 4.4 now takes the 

form 
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4.3 Stability Theorem in the Energy Flow Form 

As discussed in Chapter 2, investigations on the characteristics of a solution )(ty  

of the differential equations in Eq. 2.3 can be completed by investigating the cha-
racteristics of the zero solution 0)(ˆ =tz , a fixed point, of Eq. 2.10. Here, we  

consider the stability of the fixed point 0)(ˆ =tz  of Eq. 2.10. The energy flow 

balance equation of the system governed by Eq. 2.10 takes the form 

),,(/)2/( zFzzz tdtdE TT ==                               (4.9) 

from which and Eq.2.10 it follows that the generalised potential energy E of a  

disturbance flow zzz ˆ−= with initial value )0(ˆ00 zzz −=  is derived as 

2/),(2/2/ 2
00

2 zzFzzzz dttE
t TT .                  (4.10)

 

For an arbitrarily prescribed small positive number 0>ε to satisfy ε<z , it  

requires that  

2/2/),(2/2/ 22
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from which it follows that 

.),(2
0

22
0 dtt

t T zFzz                                     (4.12)
 

Therefore, if the integration ,0),(
0

≤∫ dtt
t T zFz  there exists a small positive 

number  

,),(2
0

2 t T dtt zFz                                    (4.13)
 

such that  

.0 δ<z                                                        (4.14) 

In another case of ,0),(
0

dtt
t T zFz  there exists no the positive number δ  in 

Eq.4.13. The integration dtt
t T

0
),( zFz  is defined for any time intervals [0, t] so 

that the signs of its values are same as the one of the integrand, i.e. the signs of the 

energy flow rate ).,( zFz tE T=   

Theorem 4.3: A fixed point 0)(ˆ =tz  of nonlinear dynamical systems governed 

by Eq.2.10 is stable or unstable if its time change rate ),( zFz tE T=  of genera-

lised potential energy is non-positive ( 0≤E ) or positive ( 0>E ) on some 
neighbourhood of the fixed point, respectively. Furthermore, if this rate is nega-

tive ( 0<E ) then the fixed point is asymptotically stable. 

 
This theorem is consistent with Liapunov stability theorem described in Chap-

ter 2 (Guckenheimer & Holmes 1983). However, the main contribution developed 
herein is that the well-defined generalised potential energy function E takes the 
role of the Liapunov function, which is suitable to any nonlinear dynamical  
systems, governed by Eq.2.10 and therefore provides a method to construct a  
Liapunov function. 

For a closed orbit case, the instant time change rate of ),( zFz tE T= may  

be negative or positive but Eq.4.2 is valid. To check the stability of a closed  

orbit governed by Eq.4.2 with 0),( ≠= zFz tE T  , we need to consider  

the change of the generalised potential energy E in Eq.4.11 in one cycle. Therefore 

the integration dtt
t T∫0 ),( zFz  in Eqs.4.11, 4.12 and 4.14 is replaced by the  
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integration dtt
T T∫0 ),( zFz  over a time period T. Based on this discussion and 

Eqs.3.27-29, we have the following theorem to determine the stability of a closed 
orbit of a nonlinear dynamical system. 

Theorem 4.4: A closed orbit of nonlinear dynamical systems governed by  
Eq. 2.10 is:  

1) outside stable or unstable if the integration dttE
T T

T ∫= 0
),( zFz  of the 

generalised potential energy in one time period is non-positive ( 0≤TE ) or posi-

tive ( 0>TE ) on some outside neighbourhood of the closed orbit, respectively. 

Furthermore, if this energy change is negative ( 0<TE ) then the closed orbit is 

outside asymptotically stable;  

2) inside stable or unstable if the change TE  of the generalised potential 

energy is non-negative ( 0≥TE ) or negative ( 0<TE ) on some inside neigh-

bourhood of the closed orbit, respectively. Furthermore, if this energy change is 

positive ( 0>TE ) then the closed orbit is inside asymptotically stable. 

 
More generally, if flow z satisfying  ,0),( =zF t  i.e. a fixed point or an orbit, 

then the time change rate .0),( == zFz tE T  Assume there is a disturbance flow 

ηaround the flow z . According to the definition of generalised potential energy, 

we obtain  
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Therefore, we can conclude that  

i) Disturbances  :zηz <+ 0][ >+ ηzE implies generalised energy in-

creases with time and the disturbance orbit ηz +  tends to the orbit z , 

while 0][ <+ ηzE indicates generalised energy decreases with time and the dis-

turbance orbit ηz + moves towards the origin of the phase space from orbit z ; 

ii) Disturbances :zηz >+ 0][ >+ ηzE implies generalised energy in-

creases with time but disturbance orbit ηz + moves backwards the origin of the 

phase space from orbit z , while 0][ <+ ηzE indicates generalised energy  

decreases with time but the disturbance orbit ηz + tends to orbit z . 

From this conclusion, we have the following stability theorem. 
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Theorem 4.5: A flow orbit z satisfying 0),( =zF t  for nonlinear dynamical sys-

tems governed by Eq. 2.10 is:  

1) outside stable or unstable if the energy flow 0][ <+ ηzE  or 

0][ >+ ηzE for zηz >+ ; 

2) inside stable or unstable if the energy flow 0][ >+ ηzE  or 

0][ <+ ηzE for zηz <+ . 

4.4 Examples 

In this sub-section, based on the energy flow theorems presented above for nonli-
near dynamical systems, we investigate two examples. 

4.4.1 Example 4.1: A Planar System 

We consider a planar system governed by the following two equations in 2R  with 
its two coordinate variables represented by x and y , that is 
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.                                  (4.16) 

On using Eqs.3.1 and 3.2, the generalised potential energy E and kinetic energy K 
of this system are respectively derived in the forms 
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The energy flow balance Eq.3.5 of this system takes the form 

2 2 2 2

2 2 2 2

[ ( )] [ ( )]

( )[( ) 1].

E x x y x x y y x y y x y

x y x y

= − − + + + − +
= − + + −

              (4.18) 

4.4.1.1   Fixed Point 

Using theorem 4.1 and Eq.4.17, we find that a point )0,0(),( =yx at which the 

generalised kinetic energy of the system vanishes, i.e. 0=K . Therefore, the 
point )0,0(),( =yx is a fixed point of the system. 
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4.4.1.2   Periodic Orbit  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1 The energy flow characteristics of the fixed point ( , ) (0,0)x y =  and the periodic 

orbit 122 =+ yx of the planar system 

Letting Eq.4.18 be zero, 0=E , we can find the following two solutions of the 
system  

,022 =+ yx                                           (4.19) 

and  

,122 =+ yx                                              (4.20) 

of which the solution given by Eq. 4.19 is the fixed point )0,0(),( =yx  with 

0=K  and the solution in Eq. 4.20 is a periodic orbit with 0≠K  according to 

theorem 4.2. On this periodic orbit, the generalised potential energy 2/1=E that 
is a potential energy level surface of the system. On this orbit, the generalised  
kinetic energy of the system is also a constant, .2/1=K  

4.4.1.3   Stability 

Using theorem 4.3, we can conclude that the fixed point )0,0(),( =yx is unsta-

ble due to 0>E  on the domain 122 <+ yx  around the point )0,0(),( =yx . 

However, we have the generalised potential energy 0=E  at this point, which is 
a minimum. As shown in Fig. 4.1, the closed orbit in Eq.4.20 is stable, since the 
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energy flow 0<E  outside the circle )1( 22 >+ yx  but 0>E inside the  

circle )1( 22 <+ yx . Furthermore, this orbit is an attracting circle.  

4.4.2 Example 4.2: Van der Pol’s Equation 

Van der Pol’s equation provides an example of an oscillator with nonlinear damp-
ing, energy being dissipated at large amplitudes but generated at low amplitudes. 

Therefore, its instant time change rate E of generalised potential energy does not 
vanish during all the time. However, such systems typically possess periodic  
orbits around which energy generation and dissipation balance in one cycle.  
This basic system can be written in the form 

),()( tfxxxx βαψ =++                                          (4.21) 

where )(xψ is even and 0)( <xψ for 1|| <x , 0)( >xψ  for 1|| >x , )(tf is 

a periodic time function and α , β  are nonnegative parameters. It will be conve-

nient to consider 1)( 2 −= xxψ  and 0)( =tf to rewrite Eq. 4.21 in the form in 

its phase space with variables x  and yx = , i.e. 

xyxy

yx

−−−=
=

)1( 2α
,                                           (4.22) 

for which the generalised potential energy, kinetic energy and energy flow equa-
tion of this system take, respectively, the following forms 
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4.4.2.1   Fixed Point 

Based on Theorem 4.1, there exists a fixed point )0,0(),( =yx  at which the  

generalised kinetic energy vanishes. 
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4.4.2.2   Periodic Orbit 

From Eq.4.23, we find that there exist no closed orbits on which everywhere 0=E . 
To check if there exists a periodic orbit of the system, an investigation of Eq.4.2 for 
this system based on Theorem 4.2 is necessary. Here, we use the polar coordinate 
system to express the phase variable as 

,,cos,sin tyx === θθρθρ                    (4.24) 

from which we obtain that 
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From this equation, it follows that the integration in Eq. 4.25 vanishes if the am-
plitude 2=ρ , at which a periodic orbit exists.  

4.4.2.3   Stability 

Based on Theorem 4.3, we can conclude that the fixed point )0,0(),( =yx is un-

stable due to 0>E  on some neighborhood ( 1|| <x ) of the 

point )0,0(),( =yx . To check the stability of the closed orbit, using theorem 4.4, 

we need to consider the sigh of energy change TE  inside the closed orbit 

)4( 222 <=+ ρyx and outside the closed orbit )4( 222 >=+ ρyx . We 

find that 0>TE from inside the orbit and 0<TE from outside the orbit, so that 

the closed orbit is asymptotically stable and the flows from both sides are attract-
ing to the closed orbit with 2=ρ . Fig. 4.2 shows the energy flow characteristics 

of the Van der Pol’s system. 
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Fig. 4.2 The energy flow characteristics of the Van der Pol’s system 
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Chapter 5 

First Order Approximations and Matrix Spaces 

This chapter investigates first order approximations of the energy flow equation of 
nonlinear dynamical systems. The differential equation of nonlinear dynamical 
system is expanded into the Taylor series at zero equilibrium point, and is approx-
imated to the first order of disturbance. The corresponding energy flow equation is 
approximated to the form of second order of disturbance. Using a summation de-
composition of a matrix, the non-symmetrical Jacobian matrix is expressed into a 
summation of a real symmetric energy flow matrix and a real anti-symmetric spin 
matrix. The energy flow of the system involves only the energy flow matrix and 
the spin matrix concerns the possible periodical solution of the system. A physical 
explanation of this summation decomposition is given. The four matrix spaces: Ja-
cobian, energy flow, spin and kinetic energy spaces are defined, and nonlinear dy-
namical systems are investigated in these four spaces.  

5.1 First Order Approximation 

Introducing a control vectorμ  into the generalised dynamical system governed by 

Eq. 2.10, for which an equilibrium point 0ˆ =z corresponding to a solution y of 

Eq. 2.3 exists, we obtain the corresponding equations  

),,,( zμF
z

t
dt

d =         .0)0( =z                                   (5.1) 

    
The generalised potential energy, kinetic energy and energy flow equation of this 
system take, respectively, the following forms 

,,
2
1

2
1

,
2
1

FzFFzzzz TTTT EKE ====            (5.2) 

which now involves the control vector μ . Let us proceed to examine the stability 

of the equilibrium point ẑ . According to our definition, we must superimpose a 
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disturbance η  to ẑ  in order to derive the perturbed energy flow equation by us-

ing Eq. 3.28. This equation now takes the form 
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where the notationΔ in front of E  in Eq. 3.28 is neglected herein. For an equili-
brium point 0)0ˆ,( ==zμF , this equation is further reduced to 
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In considering 0ˆ =z and ηηzz =+= ˆ , Eq. 5.1 now becomes 
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As we have seen, stabilities can be detected by examining a small neighbourhood 
of the equilibrium point, so η  is assumed small, and its successive pow-

ers jiηη , kji ηηη , etc. can normally be neglected. We obtain the following varia-

tional equations for the main disturbance parts of the energy flow, potential energy 
and kinetic energy of the nonlinear dynamical system at an equilibrium 
point 0ˆ =z . 
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Here, J defined by Eq. 2.16 is the Jacobian matrix of the vector function F and 

JJK T=  is a symmetrical matrix. Generally, the Jacobian matrix J is a non-
symmetrical matrix which can be expressed in a summation of a real symmetrical 
matrix E  and a real anti-symmetrical matrix U  in the form  
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Using Eq. 5.7, we can represent Eq. 5.6 in the following form 

2

( ) ,

( ) , 0,

1
( ) , ,

2
, , ,

1 1 1
( ) , ( ) , ( ) .

2 2 2

T T T T

T E C U

E C U T

E T E C T C U T U

E

K

K K K

= = +

= + = =

= = + +

= = − =

= = =

z η η Eη Uη
η η Eη η Uη η Eη η Uη

η η Kη K K K K

K E K EU UE K U U

η η K η η η K η η η K η

   (5.8) 

For the nonlinear dynamical system, we define that the real symmetrical matrix-
es E  as an energy flow matrix which constructs a quadratic form of the energy 

flow of the system. The matrix UUUEEUEJJK TT +−+== 2 is called as 
the kinetic energy matrix of the system, which consists of three parts. The anti-
symmetrical matrix U is called a spin matrix of the system, which does not affect 
the energy flow of the system.  

5.2 Physical Explanations in 3-Dimensional Case 

To understand the physical meanings of these matrices, we consider three-

dimensional cases ( 3,2,1,,, =kji ) for which the spin matrix jiij UU −=  

corresponds a dual vector  

,,
2

1
kijkijijkijk eUUe Ω==Ω                         (5.9) 

in which ijke  represents a permutation tensor. From Eqs. 5.6-5.8 it follows that 

( ) ( )

( ) ( ) .
i i ij j ij ij j

ij j ijk j k i i

z J E U

E e

η η η
η η

= + = +

= + Ω = ⋅ + ×

η
E η η Ω

                     (5.10) 
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By using the tensor notations and the δ−e identity: klirkriljlrjik ee δδδδ −=  

(See, Fung, 1977), it is obtained that 

,
2

1 2ηEηTEK =                                                                       (5.11) 

1
(2 )

2
1 1

(2 ) [2 ( )],
2 2

C
i ij jk k

k krj r ji i

K E U

e E

η η

η η

=

= Ω = ⋅ × ⋅η Ω E η
             (5.12) 

22 2 22

1 1
( )

2 2
1

( )
2
1 1

[ ( / ) ] [ .
2 2

U
i k jik jlr r l i k il kr ir kl r l

l l r r r r l l

K e eη η η δ δ δ δ η

ηη η η

⊥

= Ω Ω = Ω − Ω

= Ω Ω − Ω Ω

= − ⋅ =Ω η η Ω Ω Ω η

    (5.13) 

Here, EK represents the part of kinetic energy caused by the symmetrical motion 
which changes the potential energy of the system. As shown in Fig. 5.1, the vec-

tors ||/ ΩΩη ⋅  and ⊥η  represent the parallel and orthogonal components of the 

disturbance vector η  relative to the rotation vectorΩ , so that UK is the corres-

ponding rotational kinetic energy. The term CK  involves the Coriolis accelera-
tion )(2 ηEΩ ⋅× which vanishes if 0=⋅ ηE . For the case of 0=⋅ ηE , the dis-

turbance is a “rigid” rotation which does not change the potential energy of the 
flow field so that it does not affect the energy flow of the system.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 5.1 The decomposition of the disturbance vector relative to the rotation vector 

||/ ΩΩη ⋅

⊥η

η

Ω  
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5.3 Jacobian Matrix and Jacobian Space  

The matrix J  is a real non-symmetrical matrix, so that its eigenvalues and corres-
ponding eigenvectors may be conjugate complex numbers marked by a wave “~” 
on them. We denote an eigenvalue and its corresponding eigenvector by 

III βαλ i
~ +=  and III ϑi~ += χφ satisfying a normalisation condi-

tion T
III

T
I

** ~~1~~ φφφφ == , respectively. Since the matrix J  is a non-symmetrical 

matrix, JIJ
T

I ≠≠ ,0~~* φφ , although 1~~* =I
T

I φφ . Here, the * denotes the con-

jugate of the involved complex variables. The eigenvalue and its corresponding 
eigenvector satisfy the equations 

.
~~~,

~~~
,~~~,~~~,~~~

***

******

II
TT

III
T

I

T
II

TT
IIIIIII

λλ
λλλ

==

===

φJφφJφ

φJφφφJφφJ
              (5.14) 

Taking the first n eigenvectors of the Jacobian matrix J  as the base vectors, we 
generate a vector space called as Jacobian space of the nonlinear dynamical  
system. In this space, the real disturbance vector η  can be represented by a  

similar transformation  

[ ]nφφφΦηΦη ~~~~
,~~

21== ,                           (5.15) 

by which Eq. 5.6 is transformed into the form  

.~~~,~~~,~~~
,~~~,~~~~,~~~

2
1)~(

,~~~~
2
1)~(

,~~~~~~~~~~~~)~(~
),~(diag~~~,~~~~~~

***

**

**

******

11

ΦKΦKΦKΦKΦKΦK

ΦKΦKKKKKηKηη

ηΦΦηη

ηΦUΦηηΦEΦηηΦJΦηη

ΦJΦΛηΛηΦJΦη

UTUCTCETE

TUCET

TT

TTTTTT

I

K

E

E

    (5.16)

 

Taking a conjugate and transpose of the quantities ηΦEΦη ~~~~ ** TT  

and ηΦUΦη ~~~~ ** TT , we can demonstrate that ηΦEΦη ~~~~ ** TT  is a real number and 

ηΦUΦη ~~~~ ** TT  is a pure imaginary number. Therefore, the energy flow )~(
~ ηE in 

this space is complex power, which will be discussed in Sub-section 5.5.4. 
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5.4 Energy Flow Matrix and Energy Flow Space 

The energy flow matrix E is a real symmetrical matrix of which the eigenvalues 
and eigenvectors are real. We denote an eigenvalue and its corresponding eigen-

vector by Iλ  and Iφ  satisfying an orthogonal condition IΦΦ =T , 

[ ]nφφφΦ 21= , respectively. The eigenvector matrix Φ  of the 

energy flow matrix E  constructs an orthogonal transformation 

[ ],, 21 n
T ζζζ== ζΦζη                              (5.17) 

which transforms Eqs. 5.6 to the forms  

.,,

,,
2
1

)(

,
2
1

2
1

)(

,0,)(

,),(diag,

2

2

1

ΘΘKΛΘΛΘKΛK

KKKKKζζζ

ζζΦζΦζζ

ΘζζΛζζζ

ΘUΦΦΘEΦΦΛΘζΛζζ

TUTCE

UCET

TTT

T
I

n

I
I

T

TT
I

T

K

E

ζE

=+==

++==

==

===

−====+=

∑
=

λ

λ

     (5.18) 

We may define an energy flow space span by the orthogonal eigenvectors Iφ , 

),,3,2,1( nI = , of the energy flow matrix E . Equation 5.18 provides the go-

verning equations of the system in the energy flow space. The eigenvector Iφ  and 

the eigenvalue Iλ  are called as the energy flow mode vector and energy flow cha-

racteristic factor of a nonlinear dynamical system, respectively. The energy flow 

mode vector Iφ  and the energy flow characteristic factor Iλ  are the inherent 

characteristics of the nonlinear dynamical system and are independent of any ex-

ternal disturbance. The characteristic disturbance Iζ  is the I-th component of the 

external disturbance vector η  on the energy flow mode vector Iφ , which is de-

termined by Eq. 5.17. For each energy flow mode Iφ , the energy flow mode com-

ponent 2
IIIp ζλ=  is determined by the energy flow characteristic factor Iλ  of 

the system and the characteristic disturbance Iζ . For a unit characteristic distur-

bance Iζ , the energy flow mode component IIp λ=  which is independent of all 

external disturbance. 
According to negative, zero or positive values of the energy flow characteristic 

factor Iλ  of the system, the energy flow )(ηE , the time change rate of the gene-
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ralised potential energy )(ηE of the system, is negative, zero or positive, respec-

tively. Therefore, based on negative, zero or positive values of energy flow cha-

racteristic factor Iλ , the stability of a fixed point can be determined. The stability 

Theorem 4.3 can be re-described as the following theorem 

Theorem 5.1 A fixed point 0)(ˆ =tz of nonlinear dynamical systems governed by 

Eq. 2.10 is asymptotically stable, stable or unstable, 

(1) if its quadratic form of energy flow in Eq. 5.18 is definitely negative 

( 0)( <ηE ), semi-negative ( 0)( ≤ηE ) or definitely positive 

( 0)( >ηE ) on the neighbourhood about the fixed point, respectively, 

or 
(2) if the energy flow characteristic factors of the system are all negative 

( 0<Iλ ), semi-negative ( 0≤Iλ ) or there exists at least one posi-

tive factor ( 0>Jλ ) on the neighbourhood about the fixed point, re-

spectively. 

If all energy flows characteristic factors are zero, the energy flow 0)( =ηE , 

which implies that the main part of the disturbance energy flow vanishes. To de-
termine the energy flow variation, the higher order terms in Eq. 5.5 have to be 
considered. Using the transformation in Eq. 5.17, we can transform Eq. 5.5 into its 
form in the energy flow space 

2 31 1
( ) ( ) ( ) .

2 6
T T T T T T T T TE = + ∇ + ∇ +η ζ Λζ ζ Φ ζ Φ F ζ Φ ζ Φ F     (5.19) 

Similar to the discussion for Fig. 3.5 which concerns a singular point of the ze-
ro energy flow surface, we discuss the characteristics of energy flow about the 

equilibrium point 0ˆ =z . If the energy flow characteristic factors Iλ of the prob-

lem are not all semi-negative or semi-positive, there exists a subdomain defined 
by  

,0)( 2

1

==∑
=

I

n

I
IζE λζ                                         (5.20) 

about the fixed point. At every point ζ in this subdomain, the variation )(ζE of 

the energy flow vanishes, so that this subdomain is called a zero energy flow do-
main for the fixed point of the system. The condition in Eq. 5.20 divides the small 
domain about the fixed point in the energy flow space into three subdomains with 

a positive, zero or negative values of the energy flow variation )(ζE , respectively.  
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Fig. 5.2 A zero energy flow surface about the origin of 3-D space, where we assume 

that 01 >λ , 02 >λ  and 03 <λ , so that 1/1 λ=a , 2/1 λ=b  and 

./1 3λ−=c  

Considering the 3-dimensional case with 01 >λ , 02 >λ  and 03 <λ , we 

draw its zero energy flow surface in Fig. 5.2. This is an elliptical-cone surface 

about the origin, on which 0=E . The disturbance points inside this surface are 

with 0<E  so that they move towards the origin. However, the disturbance 

points outside this surface are with 0>E and they move far from the origin. For 

the case with 01 <λ , 02 <λ  and 03 >λ , the zero energy flow variation surface 

is same as the one shown in Fig. 5.2, but in this case we have 0>E inside and 

0<E outside the surface. 

5.5 Spin Matrix, Spin Space and Complex Power 

5.5.1 Eigenvalues 

The spin matrix U is a real anti-symmetrical matrix, and therefore its nonzero 
eigenvalues must be pure conjugate complex numbers and its eigenvectors are 

c  

b

2ζ1ζ  

3ζ

a  
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orthogonal. Assume that its eigenvalue diagonal matrix and the corresponding 

eigenvector matrix are denoted by )~(diag~
Iκ=κ  and 

[ ]nψψψΨ ~~~~
21= , respectively. The eigenvector matrix satisfies an or-

thogonal condition TT ** ~~~~ ΨΨIΨΨ == . According to the definition of the ei-

genvalues, we have 

.~~~
,~~~ * κΨUΨκΨΨU == T                                       (5.21) 

Taking the conjugate transposition of Eq. 5.21 gives that  

,0~Re2~~
,~~~~~~

*

***

==+

−=−==

κκκ

κΨUΨΨUΨκ TTT

                                  (5.22) 

which confirms that the nonzero eigenvalues of the spin matrix U  is pure imagi-

nary numbers. From this result, we conclude that a spin matrix U of order odd 
must have at least one zero eigenvalue. 

5.5.2 Spin Space  

The complex eigenvector matrix of the spin matrix U  satisfies the orthogonal 

condition TT ** ~~~~ ΨΨIΨΨ ==  which can be chosen as a set of base vectors to 

construct a spin space. Using an orthogonal transformation 

[ ]n
T ξξξ ~~~~

,
~~

21== ξξΨη  ,                               (5.23) 

we can transforms Eq. 5.6 into the forms in the spin space 

.
~~~~~~~~~~~

)
~

(
~

,
~~~~

,
~~~~~

1

2
***

**

∑
=

+=+=

==+=
n

I
II

TTT

TT

ξE κξΗξξκξξΗξξ

ΗΨEΨΗξκξΗξ
                  (5.24) 

* *

2 * *

1 1
( ) , ( ) , ,

2 2

, ( ), .

T T E C U

E C U

E K= = = + +

= = + =

ξ ξ ξ ξ ξ Kξ K K K K

K Η K κ Η Ηκ K κ κ
 (5.25) 

Since the base vectors of the space are the complex eigenvectors of the matrix U , 
the spin space is a linear space defined in a complex domain and therefore, in gen-
eral, Eqs. 5.23-25 are complex equations. It is not difficult to demonstrate that the 
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terms ξΗξ ~~~*T , E , EK , CK  and UK  are real number. Therefore, only Eq. 5.24 

involving energy flows are complex. As discussed in references on power flow 
analysis, see for example, Xing & Price (1999), the power of a force is a real 
physical quantity, so that it is necessary to understand the physical meanings of 
complex powers, which is discussed as follows. 

5.5.3 Complex Power  

In the dynamics, we often express a physical quantity by a complex number, 
which implies that the real physical quantity is the real part or the imaginary part 

of the complex number. For example, a real force 1f is represented by a complex 

force f
~

 in the following definition 

)
~~

(
2

1~
Re *

1 ffff +== ,       0i
21 i

~ ϑfefff =+=  .                     (5.26) 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5.3 The complex force and velocity are represented as two vectors in the complex plane 

A real physical velocity produced by this force can be expressed as 

.i~),~~(
2
1~Re )i(

21
*

1
0ϑϑ+=+=+== vevvvvvvv                  (5.27) 

Here f  and 0ϑ  denote the magnitude and phase angle of the force, respectively. 

The velocity of amplitude v  has a lag phase angle ϑ  compared with the force. 
These two complex quantities can be represented by the corresponding vectors in 
a complex plane as shown in Fig. 5.3. 

pv  

ϑ  

v~  

f
~

 

0ϑ  

nv  

Re  

Im  
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The instant power done by the force equal a multiplication of the real force 
with the real velocity, that is 

.2sin
2

2sinsin
2

)(

),2cos1(
2

)2cos1(cos
2

)(

,)cos(cos

00i

00r

ir0011

ϑϑϑ

ϑϑϑ

ϑϑϑ

p

n

fvfv
tp

fvfv
tp

ppfvvfp

−
=−=

+=+=

+=+==

             (5.28) 

If the amplitudes of the force and velocity as well as the phase angle between 

them are not changed. The time averaged power in a period π2 , the angle 0ϑ  ro-

tating one cycle, can be calculated by the following equation 

.0)2sin
4

sin
2
1

,cos
2

)2cos1(
4
cos

2
1

,

0

2

0 00

2

0 ii

0

2

0 00

2

0 rr

ir

dfvdpp

fvdfvdpp

ppp

  (5.29)

 

This implies that in a cycle period, the force imports )0( r >p or extracts 

)0( r <p the energy r2 pπ  into or from the system through its first part of pow-

er rp , but there is no averaged energy changes through the second power ip al-

though its instantaneous value, representing an instantaneous energy exchange be-
tween the force and the system, may not be zero. Based on this result, we call the 

first power rp and the second power ip  as the real power and the imaginary 

power of the system, respectively. As shown in Fig. 5.3, the velocity v~ is decom-

posed into the two components ϑcosp vv =  and ϑsinn vv = . The component 

pv  is a parallel component in the force direction and the component nv is a nor-

mal component orthogonal to the force. Therefore, the second power produced by 
the normal component does not contribute any averaged energy in a cycle period. 

To distinguish this real power and imaginary power in dynamics, we define a 
complex power p~  in the form 

,ii

sinicos

~~~

irnp

i)i(i* 00

AAfvfv

fvfv

fvevefevfp

+=+=
+=

=== +−

ϑϑ

ϑϑϑϑ

                                    (5.30) 
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where pr fvA = and ni fvA = . Therefore, the real part and the imaginary part of 

the complex power p~  defined by Eq. 5.30 give the two times of the averaged 

power and the two times of the amplitude of the instant imaginary power of the 
system.  

Now from Eq. 5.24, we obtain the real part and the imaginary part of the com-

plex power flow )
~

(
~ ξE in the forms 

.~~Im~~)~Im()]~(~Im[

,~~~)]~(~Re[

*

1

2

*

ξκξξ

ξΗξξ

T
n

I
II

T

ξE

E
                          (5.31)

 

As mentioned for Eqs. 5.1 and 5.2 at the beginning of this chapter, the matrix 

Η~  are defined at the equilibrium point 0ˆ =z , which corresponds a fixed point in 

the space or a solution y  of Eq. 2.3. Therefore, in general case, the matrix Η~ is 

dependent of the solution y , a vector function of time, so that the real part of the 

complex power flow )
~

(
~ ξE  is not the averaged real power of the system. To ob-

tain the averaged real power, a time average is needed. If the matrix Η~ is a con-

stant matrix, the real part of the complex power flow )
~

(
~ ξE  gives the two times 

of time averaged real power of the system. 

5.6 Kinetic Energy Matrix and Kinetic Space 

The kinetic energy matrix K is also a real symmetrical matrix of which the ei-
genvalues and eigenvectors are real. We denote an eigenvalue and the correspond-

ing eigenvector by Iλ̂  and Iφ̂  satisfying an orthogonal condi-

tion TT ΦΦIΦΦ ˆˆˆˆ == , [ ]nφφφΦ ˆˆˆˆ
21= , respectively. These 

eigenvectors can be taken as the base vectors to construct a kinetic space. In this 
space, the disturbance vector can be represented by an orthogonal transformation 

ζΦη ˆˆ=                                                  (5.32) 
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which transforms Eq. 5.6 into the forms  

2

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆˆˆ( ) , 0,

1 1ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ,
2 2
1ˆ ˆ ˆ ˆ ˆ( ) , diag( ),
2

ˆ ˆ ˆ ˆˆ ˆ ˆ, , .

T T T

T T

T T T

T E C U
I

E C T U T

E

E

K λ

= + = = = −

= =

= =

= = + + = =

= = + =

ζ Ηζ Θζ Η Φ EΦ Θ Φ UΦ Θ

ζ ζ Ηζ ζ Θζ

ζ ζ Φ Φζ ζ ζ

ζ ζ Kζ K K K K Λ

K Η K Θ Η ΗΘ K Θ Θ

      (5.33) 

5.7   Relationships between Matrices J,E,U and

 

K 

5.7   Relationships between Matrices UEJ ,, and K  

Equation 5.6 or 5.8 presents the first order approximation equation in the phase 
space for nonlinear dynamical systems. In this phase space, the variable is the real 
vector η  and the approximation equation is a linear equation based on the Jaco-

bian matrix J  defined at a fixed point. We have decomposed the non-symmetrical 

matrix J  into the summation of the symmetrical energy flow matrix E and the 

spin matrix U . The energy flow generated by a disturbance η  depends only on 

the energy flow matrix E but does not involve the spin matrix U , that is 

Eηηη TE =)(  but 0=UηηT . The spin matrix U involves a rotation motion 

for 3-D space and generally concerns periodical orbits in the phase space. The ge-
neralised kinetic energy matrix K  consists of three parts of which the matrix 

EK  involves energy flow matrix, the matrix UK  concerns the spin matrix and 

the matrix CK  relates their couplings.  
Based on the eigenvectors and eigenvalues of these matrices, the corresponding 

spaces are defined, which provides different approaches to investigate a system 
from different views of point. Table 5.1 lists the related formulations for the four 
spaces.  
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We discuss the relationships between them as follows. From the matrix theory 
(See, for example, Norman 1986), we can demonstrate the following theorems. 

Theorem 5.2 The summation of real parts of eigenvalues of the Jacobian matrix 
of a nonlinear dynamical system equals the summation of the eigenvalues of its 
energy flow matrix; while the summation of its imaginary parts vanishes and 
equals the trace of the spin matrix. 

Proof: we know that the trace of a square matrix equals the summation of its ei-
genvalues. Therefore, from Eq. 5.7, we have  

1 1 1

1 1

1

( i ) i

tr tr tr tr ,

tr 0,

n n n

I I I I
I I I

n n

I I
I I

n

I
I

α β α β

α λ

β

= = =

= =

=

+ = +

= = = + = =

= =

∑ ∑ ∑

∑ ∑

∑

J E U E

U

              (5.34) 

since the eigenvalues of matrix U are zero and conjugate pure imaginary num-
bers.  

Theorem 5.3 The traces of matrices ΦEΦ ~~ 1−  and ΦUΦ ~~ 1−
 respectively equal 

the summations of the real and imaginary parts of eigenvalues of the Jacobian 
matrix of a nonlinear dynamical system.  

Proof  Considering Eq. 5.16, we obtain that  

).(diag,)(diag

,i
~~~~~~~ 111

II βα ==
+==+= −−−

βα
βαΛΦUΦΦEΦΦJΦ

                          (5.35) 

This represents that the summation of the matrices ΦEΦ ~~ 1−  and ΦUΦ ~~ 1−  is a 
diagonal matrix, which implies the non-diagonal elements of these two matrices 

are cancelled each other. Since the matrix ΦEΦ ~~ 1−  and the matrix ΦUΦ ~~ 1−  are 

similar to the matrix E and matrix U , respectively, based on matrix theory (See, 

for example, Norman 1986), we know that the trace of matrix ΦEΦ ~~ 1−  and ma-

trix ΦUΦ ~~ 1−  equal the summation of the eigenvalues of matrix E and the ones of 

matrix U , respectively. Therefore we have 
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ΦEΦ
                          (5.36) 

Theorem 5.4 The diagonal elements of the Hermitian matrix ΦEΦ ~~ *T  and the 

skew-Hermitian matrix ΦUΦ ~~ *T
respectively equal the real and imaginary parts 

of the corresponding eigenvalues of the Jacobian matrix of a nonlinear dynamical 
system.  

Proof We investigate the Hermitian matrix ΦEΦ ~~ *T  and the skew-Hermitian 

matrix ΦUΦ ~~ *T . Calculating the diagonal elements of the matrices ΦEΦ ~~ *T  and 

ΦUΦ ~~ *T  based on Eqs. 5.6-5.8 and 5.14, we obtain that 
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   (5.37) 

These equations confirm that the each diagonal element of the matrices ΦEΦ ~~ *T  

and ΦUΦ ~~ *T equals the real part and imaginary part of the corresponding eigen-

value III βαλ i
~ += of the Jacobian matrix J , i.e. 

.i)
~~

(

,)
~~

(
*

*

III
T

III
T

β=

=

ΦUΦ

ΦEΦ α
                                          (5.38) 

5.8 Periodic Orbits 

For a nonlinear dynamical system, if there is a periodic orbit, the time averaged 
change of generalised potential energy in a time period T  vanishes as mentioned 

in Theorem 4.2. We assume that y  with 0)0( yy = is a periodic solution of Eq. 

2.3. Using Eq. 2.9, we obtain Eq. 2.10 for which the fixed point 0ˆ =z  represents 
the periodic solution. Now we explore how the characteristics of the periodic solu-
tion of the original system affect its first order approximation Eqs. 5.6 and 5.8. For 
linear systems, Eqs. 5.6 and 5.8 exactly are same as Eq. 2.10 since the high order 
derivatives of vector function F in Eq. 5.5 vanish. Assume that the variation η  is 
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also periodic with the same time period as the one of the periodic solution ẑ , so 
that based on theorem 4.2, for linear systems, it must be valid that 

01)(1
00

dt
T

dtE
T

TTT
Eηηη .                      (5.39)

 

However, for nonlinear systems, the total time averaged energy flow on the left 
side of Eq. 5.39 may not equal to its first order approximation in the middle inte-
gration of the same equation. We discuss the possible periodical variation η  for 

different spaces as follows. 

5.8.1 Jacobian Space 

Generally, we may consider that a periodic variation η  of frequency 

T/2πω = being the real part of the following complex variation 

,~ /2iiii
0

21 TtT
eeee nη                 (5.40)

 

where 0η  and ),...,2,1(, nJJ =φ  represent the amplitude and phase angles of 

the variation, which may be functions of time. That is 

./cos, 0
1

2
0 ηηφηη II

n

I
I == ∑

=
                            (5.41) 

0 1 2
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2 2 2
cos( ) cos( ) cos( ) .

T

n

t t t

T T T

π π πη ϕ ϕ ϕ

=

⎡ ⎤= + + +⎢ ⎥⎣ ⎦

η η
     (5.42) 

5.8.2 Energy Flow Space  

The variation vector in Eq. 5.42 can be transferred into the variable vector in the 
energy space 

0 1 2

2 2 2
cos( ) cos( ) cos( ) ,

T

T

n

t t t

T T T

π π πη ϕ ϕ ϕ= + + +⎡ ⎤
⎢ ⎥⎣ ⎦

ζ Φ   (5.43) 
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using the transformation in Eq. 5.17. Based on Eq. 5.18, the left term in Eq. 5.39 
takes the form 

dtζ
T

dtE
T I

n

I
I

TT 2

1
00

1)(1 η .                                 (5.44)
 

Therefore, if all eigenvalues Iλ  of the energy flow matrix E  are positive or nega-

tive, the value of the integration in Eq. 5.44 is positive or negative for any non-
zero disturbance vector ζ , so that the value of the first order approximation of the 

time averaged energy flow of the nonlinear system is not zero. This first order 
quantity is larger than the one caused by the neglected terms in Eq. 5.5, and there-
fore the total time averaged energy flow of the system must not be zero, which 
implies that the periodic orbits are not possible. From this discussion, we may 
conclude that a necessary condition of possible periodic orbits requires the eigen-

values Iλ  of the energy flow matrix E  are not all positive or all negative. For 

example, if there is a zero eigenvalue 0=Jλ , a variation vector ζ of only com-

ponent 0≠Jζ in Eq. 5.43 could be a periodic motion with Eq. 5.44 vanishing. 

5.8.3 Spin Space 

In this space, the complex energy flow is defined by Eq. 5.24. The complex varia-
tion in Eq. 5.40 can be transferred into the form with the variable in the spin 
space,  

1 2 ii i* * i
0 ,n

TT T te e e eϕϕ ϕ ωη ⎡ ⎤= = ⎣ ⎦ξ Ψ η Ψ                      (5.45) 

by using the orthogonal transformation Eq. 5.23. From Eq. 5.31, the corresponding 
imaginary part of the complex energy flow is 

,0
~

)~Im()]
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(
~

Im[
1

2

∑
=

==
n

I
II ξE κξ                                (5.46) 

because the eigenvalues Iκ~  of the spin matrix U consist of zero and conjugate 

pure imaginary numbers and 2
0

2~ η=Iξ  based on the orthogonal transformation. 

In fact, we can calculate that 
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    (5.47) 
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As explained for Eq. 5.13, the spin matrix involves a rotation motion. Therefore, if 
the spin matrix vanishes, the rotational kinetic energy vanishes that implies no ro-
tational motion. A possible periodic solution implies a close orbit in the space. 
The motion in the close orbit forms a rotation. Therefore the spin matrix does not 
vanish. To summary the discussion above, we have the following theorem for ne-
cessary conditions of possible periodic orbits. 

Theorem 5.5 A necessary condition for possible periodic orbits of nonlinear dy-
namical systems is a) the eigenvalues of its energy flow matrix E are not all posi-

tive (or negative), and the spin matrix 0≠U .  
It should be noted that the energy flow matrix E is defined on the periodic orbit of 

the system. It is convenient to transform the orbit to a zero fixed point using Eq. 2.9. 

5.9 Examples 

5.9.1 Example 5.1 A Linear System with One Degree of Freedom 

We consider a linear vibration system with one degree of freedom described by 
equation 

,02 =++ xxx η                                     (5.48) 

which can be expressed in a phase space as follows 
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       (5.49) 

In the energy flow space, the eigenvalues of the energy flow matrix E are 

01 =λ  and ηλ 22 −=  from which and Eq. 5.13 the energy flow is 

.2)( 2
2

2
2

1

ζζE I
I

I ηλ −==∑
=

ζ                                       (5.50) 
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In the spin space, the eigenvalues and the corresponding eigenvectors of the 
spin matrix 0≠U  are 
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                            (5.51) 

 
From Eqs. 5.23-25 and 5.51, it follows that 
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         (5.52) 

Let us consider the periodic solution 

t

y
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=
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=

θ
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θρ
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,cos

                                            (5.53) 

which is transferred, by using Eq. 5.23, into the variables in the spin space  
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The substitution of Eq. 5.54 into Eq. 5.52 gives  
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Therefore, this system satisfies the necessary condition for a possible periodic so-

lution. The eigenvalues of the energy flow matrix E are 01 =λ  and ηλ 22 −=  

which are not all positive or negative, and the spin matrix 0≠U , satisfying theo-
rem 5.2. For the periodical orbit in Eq. 5.53, the imaginary part of the complex 
power in the spin space vanishes as shown in Eq. 5.55. We conclude the characte-
ristics of this linear system as follows. 

a) ,0=η the energy flow )(ζE  in the energy flow space vanishes every-

where as shown in Eq. 5.50, and the constant spin matrix 0≠U is valid in the 
phase plane. For periodical orbits in Eq. 5.53, the real part and imaginary part of 
complex energy flow in the spin space vanishes. There is a periodic solution as 
expected by theorem 4.2. 

b) ,0>η  the energy flow 0)( <ζE and the time average of the real part 

)}
~

(
~

Re{ ξE of the complex power is also negative, so that the fixed point at the 

origin is stable.  

c) 0<η , the energy flow 0)( >ζE and the time average of the real part 

)}
~

(
~

Re{ ξE of the complex power is also positive, so that the fixed point at the 

origin is unstable. 

5.9.2 Example 5.2 Van der Pol’s Equation 

Here as an example, we consider the Van der Pol’s equation )0( >α  given in 

Eq. 4.21 which has a periodical orbit as demonstrated in Example 4.2. We intend 
to check if Theory 5.2 is valid. The Jacobian, energy flow and spin matrices of this 
system are obtained respectively as follows. 
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                              (5.56) 

The eigenvalues of the energy flow matrix E can be obtained by solving its cha-
racteristic equation  

,0)1( 22222 =−−+ yxx αλαλ                          (5.57) 
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that is  

,
2
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2,1
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                   (5.58) 

of which one solution is negative and another solution is positive. The energy flow 
is 
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The eigenvalues and eigenvectors of the spin matrix U can be derived by solv-
ing the related eigenvalue equation, that is 
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From Eq. 5.24 and the above results, it follows that 
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Now considering the possible periodic orbit defined in Eq. 5.53, we have  

0.)
22

xy)((1)}
~

(
~

Im{

],2sin2)12)(cos1[(
2

)}
~

(
~

Re{

22

2
2

=−+=

+−−=

ρρα

θθαρ

ξ

ξ

E

xyxE
        (5.62) 



120 5   First Order Approximations and Matrix Spaces 

 

The imaginary part of complex power vanishes. Therefore, the necessary condi-
tions in theorem 5.2 are satisfied. This shows that the possible periodical orbit 
may exist although the energy flow, such as Eq. 5.59 and the real part of the com-
plex power, such as Eq. 5.62 for Van der Pol’s equation, do not vanish. 

5.9.3 Example 5.3 A Generalised Linear System with n-DOF 

We consider a generalised linear system with n degrees of freedom described by 
equation 

,)0(, 0xxAxx ==                                      (5.63) 

where A denotes a constant square matrix of order nn× and x is a vector. The 
matrix A can be decomposed in summation as follows 

.2/)(,2/)(, TT AAUAAEUEA −=+=+=        (5.64) 

The energy flow equation and the kinetic energy of the linear system in Eq. 5.63 
are given by 

,2/)0(, 00 xxExxAxx TTT EE ===                          (5.65) 

and  
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K A A E U E U E EU U
    (5.66) 

respectively. 
As given in Eq. 2.30, the solution of Eq. 5.63 can be expressed in the following 

form 

,000
)(

0 xxxxx EUUEUEA tttttt eeeeee ==== +                     (5.67) 

where the function of a matrix, such as E , is defined as 
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n
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tIe EEEE                      (5.68)  

The energy flow characteristic factors )(diag Iλ=Λ and corresponding energy 

flow mode vector matrix [ ]nφφφΦ 21= , an orthogonal matrix,  

 
 
 



5.9 Examples 121 

 

for this linear system can be obtained by solving the eigenvalues and eigenvectors 
of the energy flow matrix E . The energy flow matrix E can be denoted as 

1

,
n

T T
I I I

I

λ
=

= =∑E ΦΛΦ φ φ                              (5.69) 

so that  
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Since the eigenvalues Iλ of real symmetrical matrix E  are real numbers, so that 

the solution consists of real exponent functions Ite λ that is not periodical.  

Based on the eigenvalue diagonal matrix )~(diag~
Iκ=κ  and the correspond-

ing eigenvector matrix [ ]nψψψΨ ~~~~
21=  of the spin matrix U , we can 

express the spin matrix as  
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As we have demonstrated, the non-zero eigenvalues Iκ~ of spin matrix U consist 

of n~ , ( }2/{Int~ nn ≤ ), pairs of conjugate pure imaginary numbers. For exam-

ple, we can assume that the J-th pair of these conjugate pure imaginary eigenva-
lues with corresponding conjugate eigenvectors is represented as 
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from which with Eqs. 5.67 and 5.72 it follows that the solution component  
)( J

Ux contributed by the J-th pair of conjugate eigenvalues takes the form 



122 5   First Order Approximations and Matrix Spaces 

 

( ) ( ) *
0 0

i i i
0

-i -i i
0

i i i
0

i i i

( )

diag( ) diag( )

diag( ) diag( )

2Re{ diag( ) diag( ) }

2 Re{ diag( ) }

2 diag( )[cos( )cos

J

T

T

T

tJ t J T
U J J

J

t
JI JI

t
JI JI

t
JI JI

t
JI

JI

e e

e e e

e e e

e e e

e e e

t

κ

β

β

β

β γ

ψ ψ

ψ ψ

ψ ψ

ρ ψ
ρ ψ β γ

−

−

= =

=

+

=

=

= + −

∑U

α α

α α

α α

α

x x ψ ψ x

x

x

x

α

i
0 0

1

i
R I

2 2
R I R I

sin( )sin ],

diag( ) (cos i sin )

i ,

, cos / , sin / .

T
n

JI JI I I I
I

t

e x

e γ

β γ

ψ ψ α α

ρ ρ ρ

ρ ρ ρ γ ρ ρ γ ρ ρ

−

=

+

= −

= + =

= + = =

∑α

α

x

      (5.74) 

This implies that the solution component )( J
Ux  is periodical solution of pe-

riod βπ /2)( =JT . For the spin space, there exist n~  periodical components of 

the system. Here, ρ and γ depends on the initial condition 0x in Eq. 5.63. There-

fore, the solution factor in Eq. 5.67 generated by the spin matrix is obtained by 

,
~

1

)(
0 ∑

=

==
n

J

J
U

t
U e xxx U                                     (5.75) 

which is a summation of n~ periodical solutions, so that it is a periodical solution 

with a period T
~

, the least common  multiple of )( JT , )~,,2,1( nJ = .  

More generally, as shown in Eq. 5.23, a solution x can be expressed in the fol-
lowing form by the complex orthogonal transformation  

[ ]n
T ξξξ ~~~~

,
~~

21== ξξΨx  ,                        (5.76) 

which transforms Eqs. 5.63 and 5.65 into the forms in the spin space 
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A periodical solution is a closed orbit in the phase space and the change of genera-
lised energy in a time period vanishes, so that the time integration of energy flow 

.0~~~)~(~ * dtdtE T ξΗξξ                        (5.78)
 

To conclude the above analysis, we have the following theorem 

Theorem 5.3 A sufficient and necessary condition for a possible periodic orbit of 
a linear dynamical system is that the spin matrix 0≠U  and there exists a period-
ical vector function in Eq. 5.76 and a zero energy flow integration Eq.5.78. 

The necessary condition is obvious, because for an existing periodical solution, 
it must be the spin matrix 0≠U , otherwise there exist no periodical solution. The 
periodical solution is a closed orbit in the space so that its change of the potential 
in a period vanishes, i.e. Eq. 5.78 is valid. On considering the sufficient condition, 
if the spin matrix 0≠U , there exist n~ , ( 0~ ≠n ), pairs of conjugate pure imagi-
nary eigenvalues with corresponding conjugate eigenvectors constructed a set of 
base vectors of spin space. In this space, a periodical function can be expressed by 
Eq. 5.76. If this function satisfies Eq. 5.78, it is a closed orbit. 
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Chapter 6 

Energy Flow Characteristics of Local 
Bifurcations 

This chapter investigates the energy flow characteristics of local bifurcations for 
nonlinear dynamical systems. Similar to the centre manifold theorem developed 
from the Jacobian matrix, we propose a centre energy flow theorem based on the 
eigenvalues of the energy flow matrix, for which two examples are given to dem-
onstrate its applications. Four simplest energy flow bifurcations of equilibria: sad-
dle-node, transcritical, pitchfork and Hopf ones are discussed.  

6.1 Central Energy Flow Theorem 

The system governed by Eqs. 5.1 and 5.2 involves a control vectorμ , so that the 

eigenvalues Iλ  of the energy flow matrix E and the eigenvalues Iλ  of the kinet-

ic energy matrix K are dependent on the control vectorμ . As this control vector 

varies, changes may occur in the qualitative structure of the solutions for certain 
control parameter values. These changes are called bifurcations and the parameter 
values are called bifurcation values (Guckenheimer & Holmes 1983). A bifurca-
tion point is defined as a point in the parameter-control space corresponding to a 
structurally unstable vector field (Thompson & Stewart 1986). Local bifurcations 
of a nonlinear dynamical system with controls are the qualitative changes in the 
phase portrait that can be characterised near a single point in phase space. Equili-
brium point bifurcations and the bifurcations of limit cycles can be characterised 
near to a point, so these are considered as local bifurcations. The important local 
bifurcations are all identified by an appropriate local simplification of the dynam-
ics. This approximation involves the Jacobian matrix J  of the vector field and ac-
counts for the lowest-order of the vector field near a point in phase space, as well 
as for the lowest-order part of its dependence on the controls. Based on the charac-
teristics of complex eigenvalues of the Jacobian matrix J at a fixed point, the  
Centre manifold theorem (See, for example, Guckenheimer & Holmes 1983; 
Thompson & Stewart 1986) divides the phase space into three subspaces to  
examine manifold structure of the system at the fixed point. 
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The Sylvester’s law of inertia (Norman 1986) confirm that the number of posi-

tive, negative and zero eigenvalues Iλ of the energy flow matrix E  are invariant, 

based on which we can divide the phase space into three subspaces to examine its 
energy flow behaviour at a fixed point. Similar to the centre manifold theorem, we 
may have the following centre energy flow theorem of which the proof is neg-
lected since it is similar to centre manifold theorem that can be read in the above 
references. 

Theorem 6.1 (Centre Energy Flow Theorem): Let F  be a rC vector field on nR  

vanishing at the origin 0)0( =F and let E be the energy flow matrix of the non-

linear dynamical system. Divide the energy flow characteristic factors λ of E in-

to three sets, ucs σσσ ,,  with  

⎪
⎩

⎪
⎨

⎧

∈>
∈=
∈<

. if0

, if0

, if0

u

c

s

σλ
σλ
σλ

λ                                                 (6.1) 

Let the energy flow subspaces spanned by the energy flow mode vectors sets 

,,, ucs ΦΦΦ  corresponding to the characteristic factor sets ucs σσσ ,, be 

cs EE , and uE , respectively. Then there exist rC stable and unstable invariant 

manifolds sW and uW tangent to sE and uE  at 0 and a 1−rC centre manifold 

cW  tangent to cE at 0. The manifolds sW , uW and cW are all invariant for the 

flow of F . The stable and unstable manifolds are unique. 
 

In base of entre energy flow theory, we may represent the mode transformation 
Eq. 5.17 in the energy flow space in the form 

,, T
u

T
c

T
s

T

u

c

s

ucs ζζζζ
ζ
ζ
ζ

ΦΦΦη                       (6.2)
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from which, when Eqs. 5.5, 5.7 and 5.19 are used, it follows that 
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Here, ζζ
IF denotes the second order term of the variable ζ of the expanded series 

at the fixed point and three diagonal matrices ucs ΛΛΛ ,,  represent the eigenva-

lue matrices corresponding to sets ucs σσσ ,,  respectively. The eigenvalue ma-

trix ,0=cΛ  therefore we have a centre manifold cW  tangent to cE at 0 so that 

around the origin the coordinate vectors sζ and uζ can be approximated as func-

tions of cζ  to reduce the degree of the system. 

Compared with the centre manifold theorem, the main progress is that the in-
vestigation of a real symmetrical energy flow matrix E  is used to replace the in-

vestigation of non-symmetrical Jacobian matrix J  in the theorem, which will be 
more convenient to eigenvalue calculations using numerical approaches. Also, the 
approximation for higher order term of the centre manifold based on the energy 
flow matrix can provide the information on the stability of the system, which is 
unable to be confirmed based on the one from Jacobian matrix. 
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6.2 Examples 

6.2.1 Example 6.1 

Consider the system 

,

,
2 uvuvv

vu

βα ++−=
=

                              (6.5) 

for which, there is a unique fixed point at (0,0). The Jacobian and the energy flow 
matrix at the fixed point take the following forms,  

,
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respectively. We can examine this system in the Jacobian space and energy flow 
space as follows. 

6.2.1.1   Jacobian Space 

The eigenvalues and corresponding eigenvectors of the Jacobian matrix as well as 
the transformation are given by 
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based on which Eq. 6.5 is transformed into the form 
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     (6.8) 

Therefore, in 2
~η direction with a negative eigenvalue -1, the system is stable. 

However, in 1
~η direction with a zero eigenvalue, the behaviour of the system can 

only be determined by examining high order term in Eq. 6.8. Based on Centre  
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Manifold Theorem and Henry’s theorem, Guckenheimer & Holmes (1983)  
demonstrated that  

),~O(~~ 3
1

2
11 ηηαη +=                                         (6.9) 

and showed the centre manifold in 1
~η direction. As ,0~

2 →η  from Eq. 6.8 we 

have 2
11

~~ ηαη → to examine the behaviour of the system at the fixed point in 

1
~η direction. 

6.2.1.2   Energy Flow Space 

The eigenvalues and corresponding eigenvectors of the Energy Flow matrix as 
well as the transformation are given by 
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         (6.10) 

based on which the linear part of the energy flow variation in Eq. 6.4, i.e. 

,)( Λζζζ TE =                                         (6.11) 

is enough to examine the stability of the system at fixed point. From theorem 5.1, 

we can confirm that the system at fixed point is stable in 2ζ direction but unstable 

in 1ζ direction.  

6.2.2 Example 6.2 

Consider the system 

,

,
2uvv

uvu

α+−=

=
                                   (6.12) 

for which there is also a unique fixed point at (0,0). As discussed by Guckenhei-
mer & Holmes (1983), the tangent space approximation based on Jacobian matrix 
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does not determine the stability near to 0. Here, we can examine the system based 
on the energy flow matrix at the fixed point,  

.
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⎥
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⎢
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=E                                                 (6.13) 

The eigenvalues and corresponding eigenvectors of this matrix as well as the 
transformation are given by 
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From theorem 5.1, we can confirm the system at fixed point is stable in 2ζ direc-

tion. In 1ζ direction due to a zero eigenvalue, it is necessary to consider the 

second order in Eq. 6.4 which is now takes the form 

.22/)(
2
1)( 2

1
2
2

2
1

TTTE ζΛζζζ                   (6.15)
 

We can now confirm that in 1ζ direction with 02 =ζ , 4/)( 3
1ζ=ζE . As a re-

sult of this, the system subject to a disturbance of ( 0,0 21 =< ζζ ) will return 

to the fixed point but a disturbance of ( 0,0 21 => ζζ ) will cause the system 

shifted from the fixed point, so that the system at fixed point in 1ζ direction is not 

stable.  

6.3 Simplest Bifurcations of Equilibria 

We discuss the simplest energy flow bifurcations of equilibria. These are 
represented by the following four differential equations with corresponding energy 
flow equations depending on a single parameter  :μ  

,,:nodeSaddle 32 xxExx −=−=− μμ                  (6.16) 

,,:calTranscriti 322 xxExxx −=−= μμ                (6.17) 

,,:Pitchfork 423 xxExxx −=−= μμ                      (6.18) 
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Fig. 6.1 The energy flow characteristics of Saddle-node bifurcations governed by Eq. 6.16 

The bifurcation diagrams for these four equations are depicted in Figs. 6.1-6.4. In 
each figure, an energy coordinate axis is used to determine the local qualitative 
behaviour of the energy flow bifurcation of equilibrium.  

6.3.1 Saddle-Node Bifurcation 

Fig. 6.1 shows the saddle-node bifurcations described by Eq. 6.16. In this figure, 
the arrows parallel to x axis represent the time change rate of x while the vertical 
arrows parallel to E axis give the energy flow direction. The zero energy flow 

curve is defined by 2x=μ  on which the potential ener-

gy 0
2 2/2/ ExE === μ . Based on theorem 4.5, we can determine the stabili-

ties of the system along different bifurcation branches as follows. 
 

(1) Branch )0,0,( >>= μμ xx  represented by the black line in Fig. 

6.1. In this domain, the energy flow at different points near to the branch 
curve takes the following values  

2/2xE =

E  

2x=μ  

Stable 

Unstable 

x

μ  
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Therefore, at the disturbance point μ<x , we have 0EE < and 0>E , so that 

the generalised potential energy increases towards 0E with time and the distur-

bance point moves to the bifurcation branch. On the other side, at the disturbance 

point μ>x , we have 0EE > and 0<E , and therefore the generalised poten-

tial energy decreases towards 0E with time and the disturbance point also moves 

to the bifurcation branch. This implies that this branch is stable. 
 

(2) Branch )0,0,( ><−= μμ xx  represented by the dashed line in Fig. 

6.1. In this domain, the energy flow at different points near to the branch 
curve takes the following values  
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Therefore, at the disturbance point μ−>x , we have 0EE < and 0<E , so 

that the generalised potential energy decreases with time and the disturbance point 
moves backwards the bifurcation branch. On the other side, at the disturbance 

point μ−<x , we have 0EE > and 0>E , and therefore the generalised po-

tential energy increases with time and the disturbance point also moves backwards 
the bifurcation branch. This implies that this branch is unstable. 

 

(3) Point )0,0( == μx  represented by the origin in Fig. 6.1. About this 

point, the energy flow at different points near to it takes the following values  
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Therefore, at the disturbance point 0>x , we have 0EE > and 0<E , so that the 

generalised potential energy decreases with time and the disturbance point moves 
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towards the origin implying stable. On the other side, at the disturbance 

point 0<x , we have 0EE > and 0>E , and therefore the generalised potential 

energy increases with time and the disturbance point moves away from the origin 
implying unstable. 

6.3.2 Transcritical Bifurcation 

Fig. 6.2 shows the transcritical bifurcations described by Eq. 6.17 for which the 
eigenvalue of the energy flow matrix at equilibria vanishes. Similar to Fig. 6.1, the 
arrows parallel to x axis represent the time change rate of x while the vertical ar-
rows parallel to E axis give the energy flow direction. The zero energy flow lines 

are line 0=x  of 00 =E  and line x=μ  of 2/2
0 μ=E . The stabilities of the 

system along different bifurcation branches are discussed as follows. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6.2 The energy flow characteristics of Transcritical bifurcations governed by Eq. 6.17 

(1) Branch )0,0,( >>= μμ xx  represented by the black line in Fig. 6.2. 

In this domain, the energy flow at different points near to the branch line 
takes the following values  

x=μ

2/2xE =

Unstable

Stable 

x

E

μ
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Therefore, at the disturbance point x>μ , we have 0EE < and 0>E , so that 

the generalised potential energy increases towards 0E with time and the distur-

bance point moves to the bifurcation branch. On the other side, at the disturbance 

point x<μ , we have 0EE > and 0<E , and therefore the generalised potential 

energy decreases towards 0E with time and the disturbance point also moves to 

the bifurcation branch. This implies that this branch is stable. 
 

(2) Branch )0,0,( <<= μμ xx  represented by the dashed line in  

Fig. 6.2. In this domain, the energy flow at different points near to the branch 
line takes the following values  
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Therefore, at the disturbance point x>μ , we have 0EE > and 0>E as well as 

at the disturbance point x<μ , we have 0EE < and 0<E , so that changes of 

the generalised potential energy at the both cases make the disturbances move 
away from the bifurcation branch implying unstable. 

 

(3) Branch )0,0( <= μx  represented by a black line along negative μ axis. 

In this branch, the energy flow at different points near to the branch plane 
takes the following values  
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Therefore, at both disturbance points 0>x and 0<x , we have x=μ and 0<E , 

so that the generalised potential energy with time decreases and the disturbance 
points moves towards the bifurcation branch implying stable.  
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(4) Branch )0,0( >= μx  represented by a dashed line along positive 

μ axis. In this branch, the energy flow at different points near to the branch 

plane takes the following values  
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Therefore, at both disturbance points 0>x and 0<x , we have x=μ  
and 0>E , so that the generalised potential energy with time increases and the 
disturbance points moves away from the bifurcation branch implying unstable.  

 

(5) Point )0,0( == μx , the origin. About this point, the energy flow at  

different points near to the branch plane takes the following values  
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Therefore, the disturbance from 0>x is stable but the one from 0<x is unstable  

6.3.3 Pitchfork Bifurcation 

Fig. 6.3 shows the pitchfork bifurcation described by Eq. 6.16. The zero energy 

flow surfaces include line 0=x  of 00 =E  and curve 2x=μ  of 2/0 μ=E . 

The stabilities of the system along different bifurcation branches are as follows. 

(1) Branch )0,( 2 >= μμ x  represented by the black line in Fig. 6.3. In this 

domain, the energy flow at different points near to the branch curve takes the 
following values  
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Therefore, at the disturbance point 2x>μ , we have 0EE < and 0>E  so that 

the generalised potential energy increases with time, while at the disturbance 
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point 2x<μ , we have 0EE > and 0<E  representing the generalised potential 

energy decreases. For both cases, the disturbance points move to the bifurcation 
branch. This implies that this branch is stable. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 

Fig. 6.3 The energy flow characteristics of Pitchfork bifurcation governed by Eq. 6.18 

(2) Branch )0,0( =≤ xμ  represented by the black line along the nega-

tive μ axis in Fig. 6.3. In this domain, the energy flow at different points 

near to the branch curve takes the following values  

                      (6.29) 

 

Therefore, at the disturbance points 0≠x , we have 0EE > and 0<E , so that 

the generalised potential energy decreases with time and the disturbance point 
move towards the bifurcation branch and it is stable. 

 

(3) Branch )0,0( >= μx  represented by the dashed line along positive 

μ axis in Fig. 6.3. the energy flow at different points near to this branch 

takes the following values  

Stable 

Unstable 

x  

E

μ
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Therefore, at the disturbance points 0≠x , we have 0EE > and 0>E , so that 

the generalised potential energy increases with time and the disturbance points 
move away from the bifurcation branch implying unstable. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6.4 The energy flow characteristics of Hopf bifurcation governed by Eq. 6.19 

6.3.4 Hopf Bifurcation 

Fig. 6.4 shows the Hopf bifurcation described by Eq. 6.19 from which, a zero 

energy flow surface 22 yx +=μ with 2/0 μ=E  and a zero energy flow ma-

trix as well as a non-zero spin matrix can be obtained. Based on theorem 5.2, this 
orbit could be a periodical equilibrium orbit. In this figure, it is not possible to 
drawn an energy axis so that the positive and negative energy flows are denoted 
by up and down arrows, respectively. 
 

(1) Branch )0,( 22 >+= μμ yx  represented by a parabolic surface in  

Fig. 6.3. In this domain, the energy flow at different points near to the  
surface takes the following values  

             (6.31) 

 

Stable 

y x  

μ  
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Therefore, at the disturbance point 22 yx +>μ , we have 0EE < and 0>E  so 

that the generalised potential energy increases with time, while at the disturbance 

point 22 yx +<μ , we have 0EE > and 0<E  representing the generalised po-

tential energy decreases. For both cases, the disturbance points move to the bifur-
cation surface. This implies that this orbit is stable. 

 

(2) Branch )0,0( yx ==≤μ  represented by the black line along the nega-

tive μ axis in Fig. 6.4. In this domain, the energy flow at different points 

near to the branch curve takes the following values  

.
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2/)(,0,0
:

0
22

0
2222

⎩
⎨
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===+=
>+=≠+<

EEyx

EyxEyx
E               (6.32)  

Therefore, at the disturbance points 022 ≠+ yx , we have 0EE > and 0<E , so 

that the generalised potential energy decreases with time and the disturbance point 
move towards the bifurcation branch implying stable. 
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Chapter 7 

Energy Flows of Global Bifurcations 

In Chapter 6 we dealt with the energy flow properties of equilibrium points and 
periodic orbits for local bifurcations. The developed centre energy flow theorem 
relying upon the coordinate transformations transforms the general system into its 
normal form in the energy flow space, from which dynamical information can be 
deduced from the Taylor series of an energy flow at a single point. In this chapter, 
we shall consider dynamical properties which cannot be deduced from local ener-
gy flow information. These situations involve global aspects of energy flows. 
Saddle connections, Hopf bifurcation and Lorenz system are investigated respec-
tively in sections 7.1, 7.2 and 7.3. 

Let us consider the system governed by Eq. 5.1. We can find its equilibria for a 

given bifurcation parameter 0μμ = by solving equation 

,0),,( 00 =zμF t                                                     (7.1) 

which corresponds to an energy flow 

.0),,(),( 00000 == zμFzzμ tE T                                        (7.2) 

For our convenience to discuss the stability at an equilibrium point we assume the 

equilibrium point ,00 =z otherwise, we can transform this equilibrium point to a 

zero point using Eq. 2.9. In the following discussion, we assume this necessary 

transformation has been completed and therefore we always take .00 =z  

We wish to reveal the global dynamical properties of the system when a pertur-

bation of the bifurcation parameter μμμ ~
0 += with corresponding perturbation 

ηηzz =+= 0 of equilibria. Using Taylor series, we derive 
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where 

,/()/()/()~
,ˆ,~ˆ

21
T

k

TTTTTT μηη
                        (7.4)

 

and the sub-index k denotes the dimension number of parameter vector .μ  From 

Eq. 7.3, we can obtain the energy flow change )~,( μzEΔ  at a point ),( zt caused 

by the perturbation μ~ of the bifurcation parameterμ  

21
( , ) [( ) ( , , ) ( ) ( , , ) ],

2
T T TE E t tμΔ = Δ = ∇ + ∇ +z μ z μ F μ z μ F μ z    (7.5) 

and the one caused by the perturbation ηz = about equilibria for a given 0μμ =  

0

2
0 0

( , )

1
[( ) ( , , ) ( ) ( , , ) ].

2
T T T

E E

t t

ηΔ = Δ

= ∇ + ∇ +

η μ

η η F μ z η F μ z
      (7.6) 

To reveal the dynamical behaviour of the system caused by the perturbation of the 
bifurcation parameter, the following procedure can be followed. 
 
(i) Reveal the local stability of equilibria of the system for the parameter 

0μμ = by investigating the energy flow perturbation caused by perturbation 

ηaround the equilibria using Eq. 7.2 or 7.6.  

 

(ii) Determine the new equilibria ηzz += 0 for the parameter μμμ ~
0 +=  

based on Eq. 7.3 vanished. 
 

(iii) Determine the flow picture movement at non-equilibrium points due to  
bifurcation parameter perturbation using Eq. 7.5. 

7.1 Saddle Connections 

The simplest global bifurcations occur for planar vector fields when there is a tra-
jectory joining two saddle points or forming a loop containing a single saddle 
point, which are discussed as follows. 
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7.1.1 Two Saddle Points 

Consider the planar system governed by the following differential equation and its 
energy flow equation 
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1

222

22

2

−−+−+=
⎩
⎨
⎧

−−=
−+=

xyyxyxxE
xyy

xyxx μμ
      (7.7) 

which has two saddle equilibrium points ( 1,0 ± ) when 0=μ . We assume 

1∓yy = , which transform Eq. 7.7 into the form 
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        (7.8) 

with their two equilibrium points being at the origin 0,0 == xy , respectively. 

Using Eqs. 7.3, 7.5 and 7.6, we respectively obtain their first order approxima-
tions in the forms 
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From Eq. 7.9, we reveal the following behaviour of the system.  
 

(i) Two saddle equilibrium points ( 1,0 ± ) are unstable since  
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         (7.10) 

of which the energy flow matrix has a negative and a positive eigenvalue, respec-
tively, so that both equilibrium points are unstable according to Theorem 5.1.  
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Now we can stand at an equilibrium point, which is the origin ( 0, 0)x y= = of 

the new coordinate system o xy−  to investigate the flow direction. For example, 

standing at the equilibrium point (0, 1)+  shown in Fig.7.1(b), since the distur-

bance 1η in x direction produces an increment (0, 1) 0EηΔ + <  in Eq. 7.10 to 

decrease the generalised potential energy, so that we see the flow direction to-

wards the equilibrium point; while the disturbance 2η in y direction produces an 

increment (0, 1) 0EηΔ + >  in Eq. 7.10 to increase the generalised potential ener-

gy, therefore, we see the flow direction backwards the equilibrium point. Howev-
er, standing at the equilibrium point (0, 1)−  shown in Fig.  7.1(b), we can ob-

serve the reverse flows: the disturbance 1η in x direction produces an increment 

(0, 1) 0EηΔ − >  in Eq. 7.10 to increase the generalised potential energy and the 

flow direction backwards the equilibrium point; while the disturbance 2η in y di-

rection produces an increment (0, 1) 0EηΔ + <  in Eq. 7.10 to decrease the gene-

ralised potential energy and the flow direction towards the equilibrium point.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.1 The flows of Eq. 7.7 affected by energy flow variation xμE ~=Δ μ : (a) 0~ <μ , 

(b) 0~ =μ , (c) 0~ >μ  

(ii) To determine the new equilibria for the parameter μμ ~= , it is required 

that the variations of energy flow (0, 1)EημΔ + and (0, 1)EημΔ − from Eq. 7.9  

vanish, respectively, i.e. equations 

1−=y  

x  

1=y  

y

0<Δ μE  0>Δ μE  0>Δ μE 0<Δ μE

(a) (b) (c) 
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 (7.11) 

are valid for any possible perturbations μ~ , from which we obtain the following 

new equilibrium points: 

.1,0,~,0,~
21 ±==±==±= yyx μημη         (7.12)  

Therefore, as shown in Fig.  7.1, the original equilibrium points ( 1,0 ± ) in (b) 

move to points ( 1,~ ±± μ ), respectively, for example, point ( 1,0 ) moves to the 

right if 0~ >μ  in (c) but to the left if 0~ <μ in (a). 

(iii) To determine the flow direction at new equilibrium points due to bifurca-

tion parameter perturbation, we consider xμE ~=Δ μ in Eq. 7.9 affected by x  

only. For 0~ >μ , as shown in Fig.  7.1(c), for flow domain with 

,0>x ,0~ >=Δ xμEμ the flow picture moves away from the new equilibrium 

point, the origin in yxo − ,  along the vertical line for a given x   to increase ge-

neralised potential energy, but the flow picture in domain with 0<x  moves to-
wards the new equilibrium point along the vertical line for a given x    to reduce 

potential energy due to .0~ <=Δ xμEμ  For 0~ <μ , as shown in Fig. 7.1(a), the 

flows take the reverse directions compared with the case of 0~ >μ . Fig. 7.1 

shows the detailed flow pictures discussed above using our energy flow theory  
developed in this paper. 

7.1.2 A Loop Containing a Single Saddle Point 

Consider the system respectively governed by the following differential equation 
and its energy flow equation 
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= + − +

                             (7.13) 
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which has two equilibrium points (0,0) and (1,0) when 0=μ . The origin (0, 0) is 

a saddle point, but around point (1,0) there are the closed orbits. For point (1, 0), 
by using the transformation 1−= xx , we transform Eq. 7.13 into the form 
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E xy y x x y
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                             (7.14) 

Using Eqs. 7.3, 7.5 and 7.6, we respectively obtain the first order approximate 
terms for point (0, 0) as 
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Similarly, for point (1, 0), we have 
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            (7.16)

 

From Eqs. 7.15 and 7.16, we reveal the following behaviour of this dynamical  
system.  

 
(i) Two equilibrium points are unstable since  
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The energy flow matrix at Point (0, 0) has a positive eigenvalue 1 and a negative 
eigenvalue -1, so that it is unstable. The energy flow at Point (1, 0) vanishes due to 
a typical spin matrix, so that it is a central point with closed orbits about it. 
 

(ii) To determine the new equilibria for the parameter μμ ~= , it is required 

that the variations of energy flow (0,0)EημΔ and (1,0)EημΔ from Eqs. 7.15 and 

7.16 vanish, respectively, i.e. equations 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.2 The phase portraits for Eq. 7.13. Due to variation ,~μ the closed orbits around 

point ( 0,1 ) at case 0~ =μ  are broken and this point becomes an unstable and a stable fo-

cus point for 0~ >μ and 0~ <μ , respectively.  The original point denoted by a small cir-

cle moves to a black point far from the origin for 0~ >μ and a one near to the origin 

for 0~ <μ . 

y

0~ <= μμ

0=μ x

0~ >= μμ

μ
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are valid, which is independent from any possible perturbations μ~  so that the 

original equilibrium points ( 0,0 ) and ( 0,1 ) are still in equilibrium. For the para-

meter μμ ~= , from Eqs.7.15 and 7.16 it follows 
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At point ( 0,0 ) the eigenvalues of energy flow matrix are 2/)4~~( 2 +± μμ , 

one negative and another positive, so that this point is unstable. At point ( 0,1 ), the 

energy flow matrix (symmetric part) has a zero eigenvalue and an eigenvalue μ~  

and also there is a typical spin matrix (anti-symmetric part). Therefore, as shown 

in Fig. 7.2, if 0~ <μ , we have 0<Δ ηE , implying a local stable focus point, and 

if 0~ >μ  then 0>Δ ηE , implying an unstable focus point.  

(iii) To determine the flow directions at new equilibrium points due to bifurca-

tion parameter perturbation, we consider 2~yμE =Δ μ in Eqs. 7.15 and 7.16. As 

shown in Fig. 7.2, if 0~ >μ , for flow domain with 0≠y , ,0>Δ μE the flow pic-

ture moves away from the origin to increase generalised potential energy, so that an 
original point denoted by a small circle in 0=μ moves to a black point far from 

the origin. The integration of the energy flow perturbation 2~yμE =Δ μ with respect 

to time in the time period of closed orbit around point ( 0,1 ) is definitely positive, 

therefore this point turns to an unstable focus point. 
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If 0~ <μ , the flow picture in domain with 0≠y  moves towards the origin to 

reduce potential energy due to ,0<Δ μE  therefore the original small circle in 

0=μ moves to a black point near to  the origin The integration of the energy 

flow perturbation 2~yμE =Δ μ with respect to time in the time period of closed  

orbit around point ( 0,1 ) is definitely negative, so that this point turns to a stable 

focus point. 

7.2 Hopf Bifurcation 

Here, using the energy flow theory, we investigate the generalised system studied 
in Example 4.1 on possible closed orbits by introducing a bifurcation parame-
ter μ , that is 
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                       (7.20) 

We aim to see the global behaviour of the system while the bifurcation parameter 
changes.  

For this system, its energy flow matrix and spin matrix as well as energy flow 
equation are as follows 

2 2

2 2

2 2 2 2

0 1(3 ) 2
, ,

1 02 ( 3

( )[ ( )].

x y xy

xy x y

E x y x y

μ
μ

μ

−⎡ ⎤− + − ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− − + ⎣ ⎦⎣ ⎦
= + − +

E U
     (7.21) 

7.2.1 Fixed Point (0, 0) 

At this point the energy flow vanishes and the energy flow matrix has two equal 
eigenvalues μ . According to Theorem 5.1, on the domain around this point, if 

0≤μ , then ,0<E  this point is stable while if 0>μ it is unstable due to 

,0>E  as shown in Fig.  7.3. 

7.2.2 Closed Orbits 

For 0>μ , if )( 22 yx +=μ , the energy flow vanishes. This is a circle of  

radius μ  on which the generalised potential energy equals a constant 2/μ . 

Substituting this relation into Eqs. 7.20 and 7.21, we find the energy flow 



148 7   Energy Flows of Global Bifurcations 

 

0=E on this cycle, but the spin matrix does not vanish, so that the necessary 
condition for closed orbit given by Theorem 5.2 is satisfied. In fact, following 
Theory 4.2, this circle has constructed a closed orbit. As shown in Fig. 7.3, in  

outside of this orbit, )( 22 yx +<μ  and 0<E  but in inside of this orbit, 

)( 22 yx +>μ  and 0>E , so that this closed orbit is stable according to  

Theorem 4.5.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.3 Energy flow behaviour of Hopf system affected by bifurcation parameter μ  

 
Given a different bifurcation parameter ,μ  there is a corresponding closed or-

bit. Actually, these closed orbits define a set of potential energy level surfaces as 
indicated by Eq. 3.3 or Eq. 3.10. With increasing of the bifurcation parameter ,μ  

the distance μ=d from the energy surface to the origin of phase space, the 

energy E level, increases. This set of closed orbits controlled by bifurcation  
parameter μ has a similar geometrical structure, so that we can reveal the global 

dynamic behaviour of the system by investigating only one closed orbit, such as 
.1=μ  

7.3 Lorenz Equation 

The Lorenz equation is defined by the following equation 
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in which the three parameters α , β  andγ denote the Prandtl number, the Ray-

leigh number and an aspect ratio, respectively. The Jacobean, energy flow and 
spin matrices of the system are derived as 
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which are functions of the space point. The energy flow equation of the Lorenz 
equation is given by 
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where the energy flow matrix ),0(0 ==== zyxEE that is 
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Equation 7.24 shows that the energy flow at every point in the phase space is a 

quadratic form of which the matrix 0E depends only on the bifurcation parameters 

and it is independent of the space point. Therefore, this matrix can be used to  
investigate the global behaviour of the energy flow of the system. 
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Fig. 7.4 The bifurcation parameters range affecting the energy flow factor values of the system 

As shown in Fig. 7.4, with different bifurcation parameters, the energy flow ma-

trix 0E  has the following three energy flow factors 
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and the corresponding eigenvector matrix  
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It can be demonstrated that 
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When 1=β , the eigenvalues of 2,1λ  given by Eq. 7.26) become  
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Using an orthogonal transformation,  

,321 ΦζΦx TTzyx                            (7.30)
 

we can transform Eq. 7.24 into 

.2
33

2
22

2
11 ζλζλζλ ++=E                                              (7.31) 

This is a standard form of the energy flow in the energy flow space span by the 

three principal directions 1ζ , 2ζ and ,3ζ  of which ,3 z=ζ as well as 1ζ and 

2ζ can be positioned respectively by xO − and yO − axis, when the coordinate 

system xyzO −  is rotated an angle θ  about zO − axis, as shown in Fig. 7.5. 

Since the energy flow characteristic factors 2λ  and 3λ are negative, along these 
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two principal directions, the energy flows decrease. However, the factor 1λ values 

depend on the bifurcation parameters as shown by Eq. 7.26, so that in 1ζ direc-

tion, the energy flow may be increased, decreased or unchanged.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 7.5 The zero energy flow surface governed by 0=E from Eq. 7.31 in 

which 01 >λ , 02 <λ and 03 <λ . Here ,/1 1λ=a  2/1 λ−=b
 

and 

./1 3λ−=c  The long dash dot-dot lines define an elliptical cylinder for the case 

of 1=β , 1=α , and 01 =λ . 

For the case of 01 >λ , the corresponding zero energy flow surface can be 

drawn in Fig.  7.5 by 0=E using Eq. 7.31. This Fig. is similar to Fig. 5.2 but the 

parameters are: ,/1 1λ=a 2/1 λ−=b and ./1 3λ−=c  Due to two neg-

ative energy flow factors, in the inside of surface the energy flow 0>E and in 

the outside of surface the energy flow 0<E . Therefore, the flows at points in the 
outside of this surface move towards the origin in order to reduce the potential 
and the flows in the inside of the surface move backwards the origin to increase 
the potential. As result of this, this surface would be an attracting surface. 

c  0<E

0>E  

01 =λ
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θ
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For the case of 1=β  with 1=α , we have 01 =λ as given by Eq. 7.29, so that 

from Eq. 7.27 it follows that 4/πθ =  and the corresponding zero energy flow sur-
face becomes an elliptical cylinder shown by two long dash dot-dot lines in Fig. 7.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 7.6 The two nontrivial fixed points )1,)1(( −==−±= ββγ zyx for 1>β  

and its position on the elliptic-cone surface 

Considering the volume-averaged integration of Eq. 7.31 over a cubic volume 

V defined by ),,( 321 AAAAAA ≤≤−≤≤−≤≤− ζζζ , we obtain  

,0)(
3

)(
8
4

)(
8

11

321

2

3
2
332

2
221

2
113

2

321
2
33

2
22

2
113321

A

ddd
A
A

ddd
A

dddE
V

A

A

A

A

A

A

VV

   (7.32)
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therefore, the averaged energy flow over the volume V  in the phase space is  
negative and the generalised potential energy in the volume always decreases. 
This implies the set of solution orbits are in a finite volume about the origin. 

7.3.1 Fixed Points  

7.3.1.1   Origin (0, 0, 0) 

Obviously, the origin (0, 0, 0) is a fixed point of the system. According to Eqs. 

7.24 and 7.26, this point is global stable if ααβ −≤ 2 and unstable if 

.2 ααβ −>  For the case of ααβ −> 2 as shown in Fig. 7.5, the zero 

energy flow surface about the origin divides the domain about the origin into three 
subdomains, outside this surface any disturbance points having higher potential 
energy move towards the origin due to negative energy flow but any disturbance 
points inside this surface with higher potential energy move to more high potential 
points far from the origin because of positive energy flows. 

7.3.1.2   Nontrivial Point 
From Eqs. 7.22 and 7.24 with condition ,yx = we obtain the energy flow  

⎪
⎩

⎪
⎨

⎧

−<>
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=−−=
,1,0

,1,0

,1,0

)1( 22

β
β
β

γβγ
z

z

z

zE                        (7.33) 

and two nontrivial fixed points for 1>β    

.1,)1(,)1( −=−±=−±= ββγβγ zyx                (7.34) 

At these two fixed points, the energy flows vanish and the potential energy takes a 
same value 

.2/)12)(1( −+−= βγβE                                  (7.35) 

For the case of 1>β , the condition ααβ −> 2 is valid, so that from Eq. 

7.26 it follows that 01 >λ and there is an elliptic-cone surface, the zero energy 

flow surface on which 0=E . Since at these two fixed points, the energy flow 
vanishes, therefore they must be on the elliptic-cone surface. As shown in Fig.  
7.6, the two intersection curves of the plane 1−= βz with the elliptic-cone sur-

face are the two branches of a hyperbolic curve that is obtained by letting 

13 −= βζ  and 0=E  in Eqs. 7.31-7.32. This hyperbolic curve has the two  
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intersection points with the vertical plane yx = , which are the two fixed points 

given by Eq. 7.34. With the parameter 1→β , these two fixed points tend to the 

origin of the space, so that the three fixed points are merged into the origin one. 
The flow directions about these two points are similar to the one about the origin, 
which is governed by Eqs. 7.31-7.32 as explained in Fig. 7.5. 

7.3.2 Closed Orbits 

The spin matrix of the system is given by Eq. 7.23, which vanishes only at a 

point αβ −=== zyx ,0 . The eigenvalues of this spin matrix at its other 

non-zero value points consist of a zero and a pair of pure conjugate imaginary 
number as follows 

.0~,4/)(4/i~
3

222
2,1 =+−++±= κβακ zyx              (7.36) 

At the fixed points, these two pure imaginary eigenvalues take the following  
values 

2
1,2

2
1,2

i ( ) / 4 i / 2, 0,

i 5 ( 1) ( 1) / 2,

( 1) , 1, 1,

x y z

x y z

κ α β α β

κ γ β α

γ β β β

= ± − = ± − = = =

= ± − + −

= ± − = = − >

         (7.37) 

respectively. The energy flow matrix in Eq. 7.24 is valid at any points of the space 

and its energy flow factor 01 >λ  if ααβ −> 2 , so that the necessary condi-

tion, theorem 5.2, for existing periodical orbits is satisfied. 
 To confirm a periodical orbit, it is required to check if there is a periodical so-

lution of Eq. 7.22 and the energy flow integration along this solution orbit in its 
time period vanishes. It is convenient to rewrite Eq. 7.22 and its solution in the 
following form 

,),0(,][ 0000
00 xxUUxUEx UE tt eezy ====+=      (7.38) 

by using Eq. 5.67. In this form, the energy flow matrix 0E  is independent of 

space points. However, the spin matrix 0U involves the space coordinate x, there-

fore the solution in Eq.7.38 is an approximate one when we assume the coordinate 

x in spin matrix 0U unchanged. 
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The energy flow characteristic factors ),,(diag 321 λλλ=Λ and correspond-

ing energy flow mode vector matrixΦ of the system are given by Eqs. 7.26 and 
7.27. Using an orthogonal transformation  

Φζx = ,                                                   (7.39) 

we can transform Eq. 7.38 into the form 

31 2

0

0

( ) , ,

, diag( , , ).

T T

tt tt t te e e e e e λλ λ

= + = = −

= =Λ Θ Λ

ζ Λ Θ ζ Θ Φ U Φ Θ

ζ ζ
              (7.40) 

The transformation in Eq. 7.39 does not change the eigenvalues of the spin ma-

trix 0U  and therefore for a given position x, the eigenvalues take the values 

1,2 3

2 2

i , 0,

( ) / 4,x

κ ω κ

ω α β

= ± =

= + −
                                 (7.41) 

obtained by letting zy == 0 in Eq. 7.36. Based on the eigenvalue diagonal  

matrix )~(diag~
Iκ=κ  and the corresponding eigenvector matrix 

[ ]321
~~~~ ψψψΨ =  of the matrixΘ , we can express it as  
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and therefore  
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As shown in Eq. 7.41, the non-zero eigenvalues ωκ i~
2,1 ±=  are a pair of  

conjugate pure imaginary numbers, so that the eigenvectors  2,1
~ψ  are a pair of 

conjugate complex vector. We assume that 
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ii ii

1 1 1 1
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From Eqs. 7.43 and 7.44, it follows that 
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   (7.45) 

in which 0~
3 =κ and real eigenvector 3

~ψ have been introduced. In this expres-

sion, the parameters ρ~ , γ~  and 3

~ξ  can be determined by the initial condition but 

the rest of parameters are obtained by the eigenvectors which are fixed by the spin 
matrix.  

 Combining Eqs. 7.40 and 7.45, we obtain the solution of the system as follows 
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                  (7.46) 

The change of the generalised potential of the system in a time period 
ωπ /2=T  can be obtained by integrating Eqs. 7.31-7.32, i.e. 

.
0

2
330

2
220

2
110

TTTT
dtdtdtdtE                    (7.47)

 

For the case of 01 <λ , 02 <λ and 03 <λ  this time integration is negative for 

nonzero solution 0≠ζ so that a periodical orbit is impossible. While 01 =λ , a 

one-dimensional solution with 01 ≠ζ and 32 0 ζ==ζ might exist. For the case 

of 01 >λ , 02 <λ and 03 <λ , this integration can be vanished by suitable  

parameters γ~  and 3

~ξ . Therefore, the periodical solution exists. 
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Chapter 8 

Energy Flow Characteristics of Chaos 

This chapter reveals the energy flow characteristics of chaos in nonlinear 
dynamical systems. For examples, for possible chaotic motions, their flows are 
restricted in a finite volume and the time averaged energy flow tends to zero with 
the average time increasing. A strange attractor energy flow theorem is given and 
the energy flow characteristic factors are proposed to identify chaotic motions. 
These characteristics are examined for Lorenz system, Rössler system, Van der 
Pol’s equation, Duffing’s oscillator and SD attractor, respectively by analysing or 
numerical simulations based on Runge-Kutta method. 

An early proponent of chaos theory was Poincare (1890). In the 1880s, while 
studying the three-body problem, he found that there can be orbits which are non-
periodic, and yet not forever increasing or approaching a fixed point Diacu & 
Holmes (1996). However, this proponent did not cause more attentions of 
scientists and engineers until Lorenz (1963), an early pioneer of the theory, whose 
interest in chaos came about accidentally through his work on weather prediction. 
After Lorenz’s discovery, investigations on chaos have been developed very fast. 
There have been many books and papers highlighting its origin, developments and 
possible future directions, for example, Sparrow (1982); Guckenheimer & Holmes 
(1983); Thompson & Stewart (1986); Abraham, Arecchi & Lugiato (1988); 
Kellert (1993); Strogatz (1994); Alligood, Sauer & Yorke (1997); Serletis & 
Gogas (1999); Kyrtsou & Labys (2006); Ivancevic & Ivancevic (2008);  
Werndl (2009), to be listed but a few. The interested reader may wish to consult 
these references for more detailed discussions on chaos.  

"Chaos" is normally understood as "a state of disorder". However, in chaos 
theory, the term is defined more precisely. Although there is no universally 
accepted mathematical definition of chaos, a commonly used definition says that, 
for a dynamical system to be classified as chaotic, it must have the following 
properties Hasselblatt & Katok (2003). 

i) It must be sensitive to initial conditions. Small differences in initial 
conditions (such as those due to rounding errors in numerical computation) yield 
widely diverging outcomes for chaotic systems, rendering long-term prediction 
impossible in general. Each point in such a system is arbitrarily closely 
approximated by other points with significantly different future trajectories. Thus, 
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an arbitrarily small perturbation of the current trajectory may lead to significantly 
different future behaviour.  

ii) It must be topologically mixing or topological transitivity, which means 
that the system will evolve over time so that any given region or open set of its 
phase space will eventually overlap with any other given region. Starting from a 
point and then simply plotting its subsequent orbit, we could likely produce a 
picture of the strange attractor because of the topological transitivity condition.  

iii)  Its ‘periodic’ orbits must be dense, so that every point in the space is 
approached arbitrarily closely by periodic orbits.   

In base of these characteristics of chaos mentioned above, we discuss their cor-
responding energy flow behaviour as follows. We have known that the generalised 
potential energy ),( tE y at a point y and time t  is a scalar function of a nonlinear 

dynamical system, which, from Eq. 3.13, takes the form  

.),(),(
00 dEtE
t T yfyy                                          (8.1)

 

Geometrically, it defines the distance d of a point to the origin of the phase space 
in the form 

.),(2),( tEtd yy =                                                (8.2) 

The time change rate of this distance is calculated as 

.2// EEDtDd =                                                 (8.3) 

Therefore as shown in Fig. 3.1, the energy flow Eq. 3.5 describes the flow direc-
tions of the system. A positive, zero or negative energy flow indicates that the 
flow is outward, along a potential energy level or inward in the phase space, re-
spectively.  

Based on these geometrical representations of the energy flow and the genera-
lised potential energy, we may obtain the following energy flow behaviour of a 
chaotic nonlinear system, which correspond the three properties mentioned above. 

i)       Sensitive to initial conditions: small differences in initial energy 

2/000 yyTE =  yield widely diverging the distance ),( td y  for chaotic systems, 

rendering long-term impossible prediction.  

ii) Topological transitivity: starting from a point 0y with distance 

00 2Ed = and then simply plotting its subsequent orbit by point )(ty  with dis-

tance ),( td y , we could produce the phase diagram around a strange attractor in 

the phase space. Since the orbit points are attracted to this attractor, we may obtain 
the following conclusion. Assume that a point on this attractor is determined by its 

distance 0=E
d  to the origin, and another point with its position distance d  is near 
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to this point. This neighbor point will move toward the attractor as the time goes. 
Therefore, the energy flow at this neighbor point should satisfy the following 
condition 

0
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d E
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d d

E d d

d d

=

=

=

> <⎧
⎪= = =⎨
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                                           (8.4) 

This implies that the energy flow dE is positive, zero or negative, so that the 

distance d will increases, not change or decreases toward the point 0=E
d on the 

attractor. The energy flow must vanish on this attractor. We call this attractor as a 
zero energy flow “surface” of a nonlinear system. The position of a point on this 

surface in the phase space may be determined by condition 0=E , which will be 
variable with time. Since existing strange attractors for nonlinear systems with 

chaotic motions, the curve of energy flow time history E must un-predictably os-
cillate around a zero line.  
 

iii) Flows are restricted in a finite volume: the flows of the system can only 
be attracted in a finite volume V in the phase space. From Eq. 3.36, it follows that 
the space averaged time change rate of volume strain of the phase space must not 
be positive, i.e. 

V

n

I
IVV dV

V
dV

V
.011

1
                                  (8.5)

 

otherwise, the flow orbits will be out of this volume. If the eigenvalues of the 
energy flow matrix of nonlinear system are all constants, they must not be all posi-
tive. 
 

iv) Time averaged power tends to zero with average time increasing: that is 
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    (8.6.1)

 

This is because the chaotic motion can be considered as a periodic motion with an 
infinite period. Actually, due to the orbit is included in a finite volume and the 
values of instant energy flows oscillate around the zero energy flow surfaces; the 
integration in Eq. 8.6.1 gives a finite value, so that the limitation tends zero 
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when ∞→T . The power of the system consists of two parts: one internal power 
sE∞ of the system and another external force power fE∞ , so that Eq. 8.6.1 may be 

rewritten as 

.constant

,0}{lim

→−→

→+=+=
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∞∞∞→∞

sf

fsf
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s
T

T

EE

EEEEE
                                  (8.6.2) 

For a large finite timeT , the time averaged powers s
TE and f

TE in Eq. 8.6.1 

could be two small real numbers with its summation approximately vanishing. 
 

v) Dense periodic orbits : on the zero energy flow surface, any closed 
curves would be a ‘periodic’ orbit along which a cycle integration of the energy 
flow vanishes, which implies existing dense periodic orbits of the system. 
However, due to the zero energy flow surface is unstable; these periodic orbits 
would be unstable. To identify the energy change along a closed orbit around the 
zero energy flow surface and to generate a Poincare map of the system to discover 

possible chaos motions, we calculate the energy change IEΔ in a time cycle and 

the energy value )(nE at the end of n-th time cycle as follows 

,,3,2,1,)(2)(,)(,
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0)1(
==Δ+==Δ ∑∫

=
−

InEndEEnEdtEE
n

I
I

IT

TII  (8.7) 

where T  is a time period for a closed motion along a closed orbit. Here IEΔ gives 

the energy change for a time period, which has a different value for a different I . 
A Poincare map could be generated according to the value of ).(nd  

8.1 Energy Flow Characteristic Factors  

As discussed in sub-sections 3.5.2 and 5.4, the eigenvalues Iλ or ,Iλ  
),...,2,1( nI = , of energy flow matrix E or E are defined as the energy flow 

characteristic factors, we discuss how they are used to identify possible chaotic 
motions of nonlinear dynamic systems.  Considering the energy flow Eq. 3.5, i.e. 

,2/)0(),,(),( 000 EEtPtE TT ==== yyyyfy             (8.8.1)  

we respectively obtain an energy flow and its zero energy flow surface as 

),,()( 0 tEtE tφ=                .0),(),( === yfyy ttPE T             (8.8.2) 
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The variation of the energy flow caused by a disturbance η  is given by Eq. 3.28 

which, when the higher order quantities than ηηT are neglected, is reduced to 

.])[(
2

1
)(),(),( ηηηyηy PPtPtPE TTT ∇⋅∇+∇=−+=Δ       (8.8.3) 

As discussed for Eq. 8.4, the zero energy flow surface could form a strange 
attractor of the nonlinear dynamical system. To this end, it is needed to investigate 
the variation of the energy flow around the zero energy flow surface based on Eq. 
8.8.3 and to check if the condition of Eq. 8.4 is satisfied. For any disturbances 

satisfying 0)( ≠∇ ηTP , the first term in Eq. 8.8.3 can give the required answer. 

However, if a disturbanceη is constrained by the zero energy surface in Eq. 8.8.2, 

which implies that it satisfies the following variation condition 

.0)( ==+=∇ pηyJfηη TTTT P                                  (8.8.4) 

Physically, this implies that the disturbance η  is along the tangent direction or at 

a singular point of the zero energy flow surface. For these cases, the change of the 
energy flow of the system can be represented by Eq. 3.61, i.e. 

.ηEηTE =Δ                                                      (8.8.5) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.1 An explanation figure for theorem 8.1 
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The eigenvectors of the energy flow matrix E span an energy flow space in which 
the disturbance ηcan be represented by 

,ζΦη =                                                            (8.8.6) 

which, when substituted into Eq. 8.8.5, gives  

.),( 2

1
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n

I
ItE ζy ∑

=

=Δ λ                                           (8.8.7) 

Based on the results given above and the discussion for Eq. 8.4, we may have the 
following theorem for possible strange attractors. 

Theorem 8.1 Strange attractor energy flow theorem. If the zero energy flow 
surface in Eq.8.8.2 of a nonlinear dynamical system is a strange attractor of the 
system, the energy flow characteristic factors of its energy flow matrix E  
in Eq.3.59 on the surface must simultaneously have negative and positive values, 
except at some isolated individual points. 

Proof  Assume that all of energy flow factors of the energy flow matrix E at 
every points on the zero energy flow surface are positive or zero, the energy flow 

variation EΔ given by Eq. 8.8.7 must be positive, which implies that it is in-
creased the energy flow caused by any disturbance ηalong the tangent direction at 

a point marked by position vector r on the energy flow surface shown in Fig. 8.1, 

so that the disturbance point identified by the dashed vector rηr >+ will 

moves away from the origin of the phase space. As a result of this, these distur-
bance points will move away from the zero energy flow surface, but not be at-
tracted to it. Similarly, if all of energy flow factors of the energy flow matrix are 
negative or zero, the energy flow variation caused by any disturbance is negative, 
so that the disturbance points inside the energy flow surface in Fig. 8.1 will moves 
towards the origin of the phase space, which is also not attracted to it. 
     This theorem is a necessary condition for possible strange attractor involving 
chaotic motions. For a nonlinear system with a constant energy flow matrix in the 
full phase space, if its energy flow factors consist of  negative and positive real 
numbers at every point of the phase space, the unstable zero energy flow surface 
of this system should be a strange attractor. Here, we consider the Lorentz system 
discussed in Section 7.3 as follows. 
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8.1.1 Example 8.1: Lorenz System 

As shown by Eq. 7.24, the energy flow of the Lorentz system can be denoted by 

.
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(8.8.8)

 

Here, the energy flow matrix 0E is a constant matrix which is independent of the 

phase points and has the following three energy flow characteristic factors 
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Therefore, with the parameters satisfying ααβ −> 2 , the energy flow charac-

teristic factors of the system consist of a positive 1λ and two negative 2λ and 3λ . 

The zero energy flow surface shown in Fig. 7.5 is unstable and it forms a  
strange attractor. Actually, in reported publications, such as Guckenheimer,  
J. & Holmes, P. (1983), and Lamford (1977), the parameters for the chaotic  

motions with strange attractor satisfy the condition ααβ −> 2 . We will  

numerically investigate its energy flow behaviour in subsection 8.4. 

8.1.2 Example 8.2: Rössler System 

Rössler system (Rössler 1976) is governed by equation 
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                                            (8.8.10) 

of which the energy flow equation is given by 

.)()( 22 zxzxyE βγα −−−+=                             (8.8.11) 
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From Eqs. 3.56-3.59, it follows that the Jacobian matrix, the energy flow matrix, 
the second order energy flow matrix are respectively derived as 

,

02/)1(

00

2/)1(00

,

0

01

110

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−
=

γ
α

γ
α

xz

z

xz

EJ     (8.8.12) 

.

02/1

00

2/100

,

00

000

00

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

γ
α

xz

z

z

z

EB                 (8.8.13) 

By solving the eigenvalues of the matrix E , we obtain the energy flow characte-
ristic factors of the system as follows  

.
2

)2/1(4)()(
,

22

3,21

−+−±−
==

zxx γγλαλ              (8.8.14) 

These factors are the functions of the space point, but as shown by Eq. 8.8.14 that 

at any point in the phase space, the factors 3,2λ always are one negative and 

another positive except at the two points of coordinates γ=x , 2/1=z  and 

),(,)2/()( βγαβγ ≥−±=y  where .03,2 =λ  Therefore, the zero ener-

gy flow surface could be a strange attractor. Actually, the properties of the system 

with parameters 14,1.0 === γβα have been more commonly discussed for 

chaotic motions of which the energy flow characteristics will be numerically  
investigated by using the Runge-Kutta method in subsection 8.6. 

8.1.3 Example 8.3: A 2-D Nonlinear System 

We consider the following 2-D nonlinear system governed by equation 

,

,2

yxyy

yxx

+−=
+=

                                         (8.8.15) 

of which the energy flow equation is 

2 2 ,E x y= +                                           (8.8.16) 
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and the zero energy flow surface is a point yx == 0 that is the equilibrium 

point, and also the singular point of the zero energy flow surface with .0=∇E  It 
is easily to derive the related matrices of the system as 
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so that the two energy flow factors, 21 1 λλ ==  , are positive. Therefore, the 

point yx == 0  cannot be an attractive point. 

8.2 A Linear System 

In order to compare the energy flow characteristics between linear and nonlinear 
systems, before we examine several nonlinear dynamical systems, we investigate a 
linear damped system.  

8.2.1 Problem and Its Energy Flow Equation 

Considering a linear damped system subject a sinusoidal force governed by the 
dynamic equation 

2

0

0

2 cos( ),

(0) ,

(0) .

x x x F t

x x
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η ω+ Ω +Ω =
=
=

                                   (8.9) 

which can be rewritten in the form of phase space as 
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The energy flow equation of this system is given by 

2 2
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(1 ) 2 ,

cos( ).

s f

s

f

E E E

E xy y

E Fy t

η
ω

= +

= −Ω − Ω
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                                   (8.11) 

8.2.2 Energy Flow Matrix & Time Change Rate of Phase 
Volume Strain 

The Jacobian matrix, the energy flow matrix and the time change rate of phase vo-
lume strain of the linear system in Eq. 8.10 can be respectively obtained using 
Eqs. 2.16, 3.29 and 3.54, i.e. 
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= = − Ω

J

E                               (8.12) 

Therefore, the phase space volume of the linear system is contracting due to 
0<υ for positive dampingη , expanding for negative η  and isovolumetric for 

non-damping case of .0=η  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.2 A set of zero energy flow lines of slope 
2(1 ) / (2 ),η−Ω Ω  ( 1, 0)ηΩ < > for 

the linear system defined by Eq. 8.1. 
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8.2.3 Zero Energy Flow Lines 

The zero energy flow curves of the system can be derived by setting 0=E , and 

the local variation EΔ of energy flow about the zero energy flow curves can be 

obtained by setting [ ]Tx y= Δ Δη in Eqs. 3.27-28, i.e. 
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2 2
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(1 ) 2 cos( ) 0,
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η ω
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                 (8.13) 

from which  it follows that 

2

0,

(1 ) 2 cos( ) 0.

y

x y F tη ω
=
−Ω − Ω + =

                          (8.14) 

The first equation implies that the energy flow of the system vanishes at points 
with zero velocity 0y x= = that is x axis. The second equation in Eq. 8.14 

defines a set of straight lines with parameter t, which are shown in Fig. 8.1. All of 
these lines are parallel each other and between the top line 0tω = and the bottom 
line tω π= .  

Now we discuss the flow motion around the zero energy flow line 
/ 2tω π= shown in Fig. 8.2. Assume that at a time / 2tω π= , a point 

( , )x y is on this line, which is the intersection point of two dashed lines in the 

figure. From Eq. 8.13, the energy flow at this point is zero, 0E = . For a point 

( , )x y y+ Δ  above this zero energy line and on the vertical line x x= , the 

energy flow variation ( , ) 2 0E x y y yηΔ = − Ω Δ <  so that the flow is towards 

the zero energy flow line to reduce the distance to the origin. On the other side, for 
a point ( , )x y y−Δ  below this zero energy line and on the vertical line x x= , 

the energy flow variation ( , ) 0,E x yΔ >  so that the flow is also towards the zero 

energy flow line to increase the distance to the origin. 

8.2.4 Variations of Energy Flow and Its Stationary Value 

From Eq. 3.20, it follows that the first order variations of energy flow of this linear 
system are given as follows 



170 8   Energy Flow Characteristics of Chaos 

 

[ ]

[ ] 2

2

/
( )

/

/ ( )

/

cos( )

(1 ) ,

(1 ) 4 cos( )

T T t
E t E t

t

t x y x

y

Fy t

t x y y

x y F t

δ δ δ δ δ

δ δ δ

ω ω
δ δ δ

η ω

∂ ∂⎡ ⎤⎡ ⎤ ⎡ ⎤= = ⎢ ⎥⎣ ⎦ ⎣ ⎦ ∇⎣ ⎦
∂ ∂⎡ ⎤
⎢ ⎥= ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

−⎡ ⎤
⎢ ⎥= −Ω⎢ ⎥
⎢ ⎥−Ω − Ω +⎣ ⎦

y L y yf

yf            (8.15) 

that is  
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Furthermore, we can derive the second order variations from Eqs. 8.15 and 3.21, 
i.e. 
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 (8.17) 

For arbitrary variations, vanishing the first variation of energy flow, 0Eδ =  in 
Eq. 8.16, gives the stationary conditions of energy flow as 
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                         (8.18) 

from which the stationary point ˆ ˆ( , )x y can be derived for any time t. The 

stationary value ˆ ˆ( , , )E x y t  is local maximum, minimum or just stationary one 

depended by 02 <Eδ , 02 >Eδ  or 02 =Eδ , respectively. To this end, it is 
needed to solve the eigenvalues of the matrix of quadratic form in Eq. 8.17. For 
this example, it is not difficult to check that the quadratic form in Eq. 8.17 is not 
definitely positive or negative due to no all positive or negative eigenvalues. For 
example, for the time / 2tω π= , the eigenvalues are determined by the 
characteristic equation 
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from which, we have the following eigenvalues 
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                       (8.20) 

The eigenvalues consist of a positive, a negative and a zero value. 

8.2.5 Time Averaged Energy Flow 

Taking the time period ωπ /2=T  of the excitation force as an averaged time, we can 
derive the time averaged energy flow over each time period of the system as follows, 
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8.2.6 Theoretical Solution of the Problem 

The solution of Eq. 8.9 is a summation of the general solution of free vibration 
without the external force and a special solution of forced vibration, which can be 
expressed in the form 
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Here, the constants α  and β are determined by the initial conditions of the 

system. Generally, this solution is not a periodical solution due to time 

function te Ω−η . However, with the time forward, this function tends to zero and 
the solution tends a stationary periodical solution with a same frequency of the ex-
ternal force. We can set the constants 0α β= = to obtain a forced periodical 

vibration  

cos( ), sin( ).x X t y x X tω ϕ ω ω ϕ= − = = − −                  (8.23) 

and the corresponding initial conditions  

0 0cos , sin .x X y Xϕ ω ϕ= =                          (8.24) 

From Eq. 8.11, the instant energy flows are obtained 
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The time averaged energy flows can be calculated by using Eq. 8.21, i.e.  
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where, 2 2 2 2sin 2 / (1 ) 4 2 /X Fϕ ηζ ζ η ζ ηω= − + = Ω from Eq. 8.22 has 

been introduced. Therefore, in a vibration period, the time averaged force input 
power is a constant equaling to the dissipated power by the damping of the sys-
tem, and the total time averaged power of the system vanishes. 

8.2.7 Numerical Solution 

Using Runge-Kutta method of order 5, we solve a linear system with parameters 

1,Ω = 0.05,η =  1,F = / 2.5ω π=  and initial conditions 0 00x y= = .  
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Fig. 8.3 (a) Phase diagram y(t), (b) generalised energy potential GEP and (c) the distance 

DD of flow point to the origin for a linear system with parameters 1,Ω = 0.05,η =  

1,F = / 2.5ω π=   and initial conditions 0 00x y= = . 
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Fig. 8.3 shows (a) the phase diagram, (b) the generalised potential energy and (c) 
the distance of phase point to the origin of the space. In this case, the solution of  
the system consists of a non-periodical free vibration, the first part of Eq. 8.22 and 
a forced vibration, the second part of the same equation. Due to damping, with the 
time forwards the non-periodical free vibration is being damped and the system 
reaches a stationary forced vibration with the corresponding phase diagram 
showing a periodical orbit. The time histories of generalised potential energy and 
the one of distance of phase point to the origin of space behave periodical 
oscillations. 

The time histories of instant energy flows in Fig. 8.4 also show periodical 
oscillations, in which the damping one, representing the dissipated power, is 
negative.  We use the time period 2 /T π ω=  as the averaged time to calculate 

the time averaged power in each time period ( 1) ,nT nT n T= − −  

( 1, 2,3, )n = … and show the calculated value at the end time of each period in 

Fig. 8.5. Since the solution of the system reaches a stationary periodical motion, 
its time averaged force power equals the time averaged damping-dissipated one 
within the error range. 
     For the initial conditions given in Eq. 8.24, the solution of the system is a sta-
ble forced vibration described by Eq. 8.23 with no free vibration components. The 
corresponding curves of the system are given in Figs. 8.6-8.8, which show the 
characteristics of periodical motion of the system as described by the theoretical 
solution in Eq. 8.23 with energy flow solution in Eq. 8.26. 
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Fig. 8.4 Instant energy flows: (a) total, (b) force, (c) damping, for a linear system with 

parameters 1,Ω =
 

0.05,η =  1,F =
 

/ 2.5ω π=   and initial conditions 

0 00x y= = . 
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Fig. 8.5 Time averaged energy flows: (a) total, (b) force, (c) damping, for a linear system 

with parameters  1,Ω =
 

0.05,η =  1,F =
 

/ 2.5ω π=   and initial conditions 

0 00x y= = . 
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Fig. 8.6 (a) Phase diagram y(t), (b) generalised energy potential GEP, (c) distance DD of 

flow point to the origin of phase space for a linear system with parameters ,1=Ω
 

,05.0=η  ,1=F
 

5.2/πω =  and initial conditions φcos0 Xx = . 

0 siny Xω ϕ= . 
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Fig. 8.7 Instant energy flows: (a) total, (b) force, (c) damping, for a linear system with 

parameters ,1=Ω
 

,05.0=η  ,1=F
 

5.2/πω =  and initial conditions 

φcos0 Xx = . φω sin0 Xy = . 
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Fig. 8.8 Time averaged energy flows: (a) total, (b) force, (c) damping, for a linear system 

with parameters 1,Ω =
 

0.05,η =  1,F =
 

/ 2.5ω π=  and initial conditions 

0 cosx X ϕ= . 0 siny Xω ϕ= . 
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8.3 Forced Van der Pol’s Equation 

8.3.1 Governing Equation and Energy Flow Equation 

The unforced Van der Pol’s equation has been discussed in Examples 4.2 and 5.2. 
We have learnt that for the unforced Van der Pol’s system, there is an unstable 
equilibrium point )0,0(O and an asymptotically stable periodic orbit defined by 

the polar coordinate 2=ρ . Here we investigate the forced one to reveal its chaos 

behaviour using the energy flow theory developed in this book. We write the 
forced Van der Pol’s equation in Eq. 4.21 in the form 
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ω
α
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−−=
                                      (8.34) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.9 Half curve of the symmetrical energy flow function )13/( 22 −−= xxEs α . 

The energy flow and the kinetic energy of the system are respectively derived as 
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Here, sE denotes the energy flow independent of the external force but is  

governed by the parameter of the system. Fig. 8.9 shows the half curve of this 
symmetrical energy flow function which has the following characteristics 
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As we have seen in the unforced case, there exists suitable amplitude for which 

the integration of )13/( 22 −−= xxEs α  in a cycle vanishes and the motion of 

the system follows a periodic orbit.   
 

 
 
 
 
 
 
 

       
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 8.10 Projected curve of zero energy curves on the phase plane of the forced Van der 

Pol’s system: the piece of curve for )1,1(−∈x is unstable but the ones for 

)1,( −−∈ Fx  
and  ),1( Fx∈ are attractive curves of the system. 

8.3.2 Energy Flow Matrix and Time Change Rate of Phase 
Volume Strain 

The Jacobian matrix and the energy flow matrix of the system in Eq. 8.34 can be 
obtained using Eqs. 2.16, 3.29 and 3.54, i.e. 
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Therefore, for a positive parameter 0>α the phase space volume strain of the 
system show the following characteristics 
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8.3.3 Zero Energy Flow Curve and Flow Analysis 

We investigate the zero energy flow curve of the system defined by the  
t-parametric equations 

),3/(

,cos
3 xxy

tFx

−=

=

α
ω

                                                  (8.39) 

of which the projection on the phase plane is the curve )3/( 3 xxy −=α  and the 

projection on the xtO −  plane is the curve tFx ωcos= , as shown in Fig. 
8.10.  Based on these two projection curves, we discuss the flows of the system 
caused by any disturbances as follows.  

8.3.3.1   Unforced Case 

The force energy flow 0=fE  and the energy flow of the sys-

tem )13/( 22 −−== xxEE s α . Following Eqs. 8.36 and 8.38, we have learnt 

that in the domain )1,1(−∈x about the origin )0,0(O , the energy flow caused 

by the disturbance from the zero energy curve is positive and the phase space vo-
lume is expanding, so that the disturbance point moves away from the zero energy 
flow curve, which implies the corresponding piece of the zero energy curve is  
unstable.  

When 1>x , the phase space volume is contracting. In the domain ),1( Fx∈ , 

we also know 0>E on the left side )3,1(∈x , but 0<E  on the right side 

),3( Fx∈ of the curve, so that the disturbance point from the curve moves to-

wards the curve, which shows a piece of attracting curve on the zero energy flow 
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curve. Similarly, the piece of curve for the domain )1,( −−∈ Fx is also an attract-

ing one. We know for the unforced system, the point )0,0(O is an unstable equi-

librium point and the points 3±=x correspond to the stable periodic orbit with 

a zero integration of sE  in a cycle. 

8.3.3.2   Forced Case 

For the forced case, the external force adds an energy flow tFyE f ωcos= . If 

the motion starts from the static point )0,0(O , the disturbance of external force 

causes the motion away from the origin and the unstable piece of zero energy flow 
curve, and is attracted to the attracting pieces of zero energy flow curve. With time 

increasing, the energy flow tFyE f ωcos=  may be negative and also the ener-

gy flow sE is negative when 3>x , as a result of this, the solution point moves 

towards the origin and is also attracted to the curve. The two points defined 

by 1=x are the boundary points between the unstable and stable curves, and 

therefore at which jumps from the unstable one to the stable one happen. 

8.3.4 Generalised Potential Energy & Phase Point Distance 
to Origin 

The generalised potential energy E of the system at time t can be obtained by inte-
grating the energy flow Eq. 8.35, i.e. 
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              (8.40)

 

from which the distance of phase point to the origin of phase space can be calcu-
lated as 

.)(2)( tEtd =                                                   (8.41) 

For chaotic cases, the phase point at any time t is not predicated, so that the gene-
ralised potential energy and the distance of phase point to the origin are also not 
predicated. The time history curves of both them do not show any periodical cha-
racteristics. However, due to the flows restricted in a finite volume in the phase 
space, the amplitudes of E(t) and d(t) on their time history curves are finite. 
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Considering the distance ωπ /2),( IITttd II == , ,,3,2,1 …=I in Eq. 

8.41, we can obtain a series to generate a Poincare map from which the characte-
ristics of the solution may be determined as follows 

⎪
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∈

→

).0,0int(poequlibrium0,
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,orbitperiodical stable,
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:)( d

d

td I                 (8.42) 

Here, d
~

and d are two constants. 

8.3.5 Time Averaged Energy Flows 

Taking the time period of external force ωπ /2=T as an averaging time, we can 
calculate the time averaged energy flows and the increments of generalised poten-
tial energy during a time period ,)1( TIITT −−= ,,3,2,1 …=I by using the 

following equations 
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                                  (8.43)

 

Generally, the increment IEΔ of generalised potential energy and the correspond-

ing time averaged energy flow TE in a cycle are functions of the cycle number I. 

Since the motion is chaotic, this series of time averaged energy flows are also 
chaotic. 

8.3.6 Numerical Results 

8.3.6.1   Chaotic Motion of .466.2,5,5 === ωα F  

Parlitz & Lauterborn (1987)   revealed a chaotic motion of Van der pol’s equation 
with ,5=α  ,5=F .466.2=ω  Using Runge-Kutta method of order 5 and 

considering zero initial conditions; we investigate this equation and obtain the fol-
lowing results. Fig.8.11 (1) shows a) the phase diagram, b) generalised energy  
potential and c) distance of phase point to the origin of phase space. There is no 
periodical orbit observed in a), and the generalised energy potential and distance 
of the phase point at time t behave chaotic motions. Fig.8.12 (1) provides the  
instant total, force and internal energy flows of the system in a), b) and c), respec-
tively, of which any periodical behaviour is not observed if comparing with  
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Fig. 8.7 for a periodical solution of linear case. Taking the period ωπ /2=T of 
external force as an averaged time, we calculate the time averaged energy flow of 
each time period from beginning time until 250 seconds. The obtained averaged 
energy flow value for each average time period is marked by a small vertical line 
at the end time of each time period in Fig. 8.13 (1). Here, the time averaged ener-
gy flow per time period T is not predicable, and is not like the linear periodical 
case with a zero value shown in Fig. 8.8. 

 
Fig. 8.11 Phase diagram, generalised energy potential and distance of phase point to the 

origin of phase space for Van der Pol systems of  parameters: (1) F== 5α , 

466.2=ω  by Parlitz & Lauterborn  (1987); (2) 185.4=α , 9=F , 146.3=ω  
by Xu & Jiang  (1988). 
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Fig. 8.12 Instant energy flows for the Van der Pol systems of parameters:  

(1) F== 5α , 466.2=ω  by Parlitz & Lauterborn  (1987); and  

(2) 185.4=α , 9=F , 146.3=ω  by Xu & Jiang  (1988). 

8.3.6.2   Chaotic Motion of .146.3,9,185.4 === ωα F  

Xu & Jiang (1988) reported another chaotic motion of Van der pol’s equation with  
,185.4=α  ,9=F .146.3=ω  Using the same Runge-Kutta method of order 5, 

we also investigate this system with zero initial conditions and obtain the results shown 
in Figs. 8.11 (2) - 8.13 (2). The chaotic characteristic observed in Parlitz & Lauterborn’s 
system discussed in sub-section 8.3.6.1 is also found in Xu & Jiang’s system.  
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Fig. 8.13 Time averaged energy flows under averaging time period ωπ /2=T  for the 

Van der Pol systems of parameters: (1) F== 5α , 466.2=ω  by Parlitz &  

Lauterborn  (1987); and (2) 185.4=α , 9=F , 146.3=ω  by Xu & Jiang  (1988) 
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Fig. 8.14 Time averaged energy flows as functions of average time for Van der pol’s  
systems: (1) by Parlitz & Lauterborn (1987); and (2) by Xu & Jiang (1988) 

As we have given in Eqs. 8.6.1 and 8.6.2, chaotic motions can be considered as 
a particular periodical motion with an infinite period. Therefore, it should have the 
characteristic of periodical motion: the time averaged power vanishing in its infi-
nite period, so that if we let the averaged time tends to infinite, the time averaged 
powers of both Van der pol systems discussed herein will tend zero as described 
by Eq. 8.6.1. For a large finite average time, the corresponding time averaged 
powers caused by the external force and the internal factor of system will reach 
two small real values, one positive and another negative, and summation approx-
imately tending zero . To check this conclusion, we calculate the time averaged 
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 powers of these two systems with different average time ranging from the first 
time step until 250 seconds.   The obtained results are shown by Fig. 8.14, in 
which the averaged powers show large values at the initial time range due to the 
average time is small. This has affected the clearance of the curves in the follow-
ing time. To observe the characteristic of the time averaged power when the aver-
age time increases, we have chopped the curves before 150 seconds, and after 
which the resultant curves are shown in Fig. 8.15. We can see from this figure, 
with the average time increasing, the time averaged internal powers (c) tend to 
smaller negative values implying dissipated powers of the two systems, but the 
averaged force powers (b) tend to smaller positive values as input powers from the 
external forces, and the time averaged total powers (a) display smaller positive 
value tending to zero with average time increasing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

Fig. 8.15 Copped time averaged energy flows as functions of average time for Van der pol’ 
systems: (1) Parlitz & Lauterborn (1987); (2) Xu & Jiang (1988). 
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8.4 Lorenz Equation  

The Lorenz Eq. 7.22 has been studied in sub-section 7.3 for its equilibrium points 
and bifurcation characteristics. We have learnt that there three unstable equilibria: 

the origin and the two nontrivial fixed points when ααβ −> 2 , as well as un-

stable periodic orbits. The energy flow of the system can be represented by the 
quadratic form given in Eq. 7.24 which can be transformed into the standard form 
in Eq. 7.31 in the energy flow space. The zero energy flow surface of this system 
is shown by Fig. 7.5. This surface is an attracting surface and the flows at points 
outside this surface move towards the origin in order to reduce the potential and 
the flows inside the surface move backwards the origin to increase the potential.  
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Fig. 8.16 Phase diagram (a), generalised energy potential (b) distance of phase point to the 

origin of phase space (c) for Lorenz system: ,10=α 3/8=γ and 28=β by Lanford 

(1977). 
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Fig. 8.17 Instant energy flow (a) and  time averaged energy flows over three average times 

TT : (b)  2 seconds; (c) 3 seconds; (d) 5 seconds  for Lorenz system: ,10=α   
3/8=γ  

and  28=β  by Lanford (1977). 

We have also known by Eq. 7.32 that the set of solution orbits are in a finite vo-
lume about the origin. Actually, based on Eqs. 3.54 and 7.23, we obtain a negative 
time change rate of phase volume strain of the Lorenz system with positive para-
meters α  andγ , that is 

,01tr <−−−== γαυ E                               (8.44) 

which is independent of the position of phase point. Therefore, the phase volume 
of Lorenz system is attractive at every point in the phase space. 

Lanford (1977) revealed the strange attractor of a Lorenz system with parame-
ter ,10=α 3/8=γ and 28=β . We use the Runge-Kutta method of order 5 

to solve the lanford’s system with an initial condition (0.1, 0.1, 0), of which the 
numerical results are shown in Figs. 8.17 and 8.16. From Fig. 8.17, we can ob-
serve that the generalised energy potential and the distance of phase point to the 
origin of phase space are both unpredictable but with finite values. The instant 
energy flow shown in Fig. 8.17 (a) also behaves unpredictable. Since there is no 
external force in this system, we choose three average times: 2, 3, and 5 seconds to 
calculate the time averaged powers at the end of every time period, which are 
shown by short vertical lines in Fig. 8.17 (b)-(d), respectively. We have not found 
that the time averaged power for a chosen average time vanishes.  To check if the 
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time averaged power tends to zero when the average time increases towards infi-
nite for chaotic motions. We provide a time history of time averaged power in Fig. 
8.18 (a) of which the average time ranging from 0 to 250 seconds. To more clearly 
show its tendency, Fig. 8.18 (b) gives an enlarged curve of the time averaged 
power, in which the part of curve before 100 seconds is chopped. We can observe 
that the time averaged power tends to zero with average time increasing, but it still 
shows unpredictable data within finite average time 250 seconds. 
 

Fig. 8.18 Time averaged power as a function of average time: (a) full curve; (b) enlarged 
curve in which the part before 100 seconds is chopped 

8.5 Duffing’s Equation 

Duffing (1918) introduced a nonlinear oscillator with a cubic stiffness term to de-
scribe the hardening spring effect observed in many mechanical problems. Since 
then this equation has become, together with van der Pol’s equation, one of the 
commonest examples in nonlinear oscillation text books and research publications. 
Duffing’s equation can be written in the form 

,0,0,cos3 >>=+−+ γαωγα tFxxxx              (8.45.1) 

in which the linear stiffness term is negative and the linear damping term is  
positive. Eq. 8.45.1 can be written in a form for the phase space  
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3
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x y

y x x y F tγ α ω α γ
=
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                (8.45.2) 

of which there are three equilibria: a saddle )0,0( and two sinks )0,1(±  for un-

forced case.  The energy flow of the system includes two parts, one SE depends 

on the system parameters and another one fE is the force input, as follows 
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8.5.1 Unforced Case 

For the unforced case, the Jacobian matrix and the energy flow matrix are respec-
tively derived as 
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from which it follows  the time change rate of its phase volume strain  

,0,0tr ><−== ααυ E                                (8.48) 

so that the phase space is attractive.   The zero energy curves of unforced system 
are  

),0(,/])1[(

),0(axis,
3 ≠−+=

=

yxxy

yx

αγ
                            (8.49) 

as shown in Fig. 8.19 when 1=γ . The axis−x corresponds to the static equili-

bria when .0=y  The curve α/)2( 2 −−= xxy is a centre-symmetrical curve. 

As indicated on Fig. 8.19, for the domain )2,0(∈x , the energy flow above the 

curve is negative while it is positive under the curve, so that both of flow fields 
above and under the curve are attracted to the curve. For the do-

main ),2( maxxx∈ , a same conclusion can be obtained from the energy flow 

notations.  This implies this zero energy curve is an attracting curve.  
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Fig. 8.19 Zero energy flow curve of unforced Duffing’s Equation. ( 1=γ ) 

8.5.2 Forced Case 

 For the forced case, we introduce a variable t=θ and write the equation of the 
system in the following form 
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of which the Jacobian matrix and energy flow matrix respectively are 
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and Eq. 8.48 is still valid, so that the phase space including time dimension is also 

attractive. In fact, the input energy flow fE in Eq. 8.46 is limited due to the  

characteristics of the cosine function and finite value of variable y .   
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8.5.3 Energy Flows of Duffing’s Systems by Moon & Holmes 
(1979) 

Mood & Homes (1979, 1980) reported a detailed investigation of the Duffing’s 
systems with the linear stiffness 1=γ  and the external force frequency 0.1=ω . 

It revealed that the system with the same force amplitude 30.0=F  showed the 
orbit co-existing a strange attractor and a large stable period 1 orbit for small 
damping factor ,15.0=α but only stable period 3 orbit for larger damping  

factor 22.0 . We use the Runge-Kutta method of order 5 to simulate these  
two Duffing’s systems by Moon & Homes (1979) to reveal their energy flow  
characteristics, of which the results are shown in Figs. 8.19-8.22.  

Figure 8.20 shows (a) the phase diagram, (b) the generalised energy potential 
and (c) the distance of phase point to the origin of space, from which we can ob-

serve that the motion in case (1) of damping factor 15.0=α is chaotic consisting 
of a strange attractor and a large period orbit, while the motion in case (2) of 
damping factor 22.0=α is stable period 3 orbit. For case (2), (b) the generalised 
energy potential and (c) the distance of phase point to the origin show the periodi-
cal curves, respectively, except during a short starting time range when the mo-
tions caused by initial condition (0,0) have not damped.  

Figure 8.21 show (a) the total energy flow, (b) the force one and (b) the internal 
one. The tree curves for case (1) are chaotic and periodic for case (2).  We take the 

time period ωπ /2=T of the external force as the average time to obtain the 
time averaged energy flows for each time period from 0s to 250s, which are 
shown by a series of small vertical lines at the end of each time period. The points 
in case (2) of Fig. 8.22 behave periodic but not like the case with only one fre-
quency component as discussed for linear problem shown in Fig. 8.8, since here 
there exist three frequency components.  

To reveal the change of time averaged energy flows with different average 
time. We calculate the time averaged energy flows using average time from 100s 
to 250s and the obtained curves are given in Fig. 8.23. From this figure, we ob-
serve that the force averaged energy flow is positive to input power into the sys-
tem, while the internal averaged energy flow is negative to dissipate energy by 
damping. The time averaged powers for both of case (1) chaotic motion and case 
(2) periodic motion tend to zero with average time increasing, but case (2) curves 
show clearly periodic characteristic. 
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Fig. 8.20 Phase diagram (a), generalised energy potential (b) and distance of phase point to 

the origin of phase space (c) for Duffing’s systems with parameters 1=γ ,  30.0=F  

and damping factors: (1) 15.0=δ  and (2) 22.0=δ by Moon & Homes (1979). 
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Fig. 8.21 Instant energy flows (a) total, (b) force and (c) internal ones for Duffing’s systems 

with parameters 1=γ ,  30.0=F  and damping factors: (1) 15.0=α  and (2) 

22.0=α by Moon & Homes (1979). 
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Fig. 8.22 The time averaged energy flows during time period ωπ /2=T (a) total, (b) 

force and (c) internal ones for Duffing’s systems with parameters 1=γ ,  30.0=F  

and damping factors: (1) 15.0=α  and (2) 22.0=α by Moon & Homes (1979). 
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Fig. 8.23 Chopped time histories (100s – 250s) of averaged energy flows as functions of 
average time (a) total, (b) force and (c) internal ones for Duffing’s systems with parameters 

1=γ ,  30.0=F  and damping factors: (1) 15.0=α  and (2) 22.0=α by Moon 

& Homes (1979). 
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8.6 Rössler Attractor 

The so called Rössler system is credited to Rössler (1976), which was arose from 
work in chemical kinetics. The system is governed by the following three coupled 
nonlinear differential equations  

),(

,

),(
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−+=
+=
+−=

xzz

yxy

zyx

                                         (8.52) 

for which, if αβγ 42 ≥ , letting αβγ 42 −=d ,  there are two equilibrium 

points  

0 0 0

0 0 0

point I:

( ) / 2, ( ) / (2 ), ( ) / (2 ),

point II:

( ) / 2, ( ) / (2 ), ( ) / (2 ).
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γ γ α γ α
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   (8.53) 

The Jacobian matrix, the energy flow matrix, the energy flow equation and the 
time rate of phase volume strain of the system are respectively derived as 

2 2
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E

     (8.54) 

Therefore, for sufficient large constant γ  and smallα , the phase space could be 

attractive if αγ −<x . The properties of the system with parameters 

14,1.0 === γβα have been more commonly discussed. Here, we numeri-

cally investigate its energy flow characteristics using the Runge-Kutta method of 
order 5. 
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Fig. 8.24 A half part of zero energy flow surface in a range of ]5,25[−∈x ,  

]5,25[−∈z  and )0( ≥y  for the Rössler system with parameters 

14,1.0 === γβα . 

8.6.1 Zero Energy Flow Surface 

The zero energy flow surface is defined by letting the instant energy flow vanish, 
i.e.  

,0)()( 22 =−−−+= zxzxyE βγα                         (8.55) 

which describes a surface in the 3-dimensional space.  Studying this equation, we 
find that:  1) this surface is symmetrical to the zox  plane; 2) the x axis 

)0( zy == is on this surface. We consider a range of ]5,25[−∈x , 

]5,25[−∈z and draw its half curve )0( ≥y  in Fig. 8.24.  

Fig.8.25 (1) and (2) show the phase diagram and the instant energy flow, re-
spectively.  It is observed that the orbit is restricted in a finite space and the instant 
energy flow behaves a non-predicated curve but oscillates around the zero. There-

fore, all phase points of 0=E  locate on the zero energy flow surface shown in 
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Fig. 8.24.  The phase points with non-zero energy flows are around the zero ener-
gy flow surface, so that the phase diagram shows a similar form of the zero energy 
flow surface.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 8.25 (1) Phase diagram and (2) Instant energy flow of the Rössler system with 

14,1.0 === γβα  and initial position [ ]T011
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8.6.2 Time Averaged Energy Flows 

Since the system is in a chaotic motion, its generalised energy potential and  
distance of each phase point to the origin are also non-predicated, as shown by 
Fig. 8.26 (a) and (b). To examine possible periodical motions, we choose three av-
erage times 2s, 3s and 5s to calculate the corresponding time averaged energy 
flows, and the results are shown by the corresponding short vertical  lines at each 
end of average times in Fig. 8.27 (1), which does not show any periodical charac-
teristic. Fig. 8.27 (2) (a) provides a full time averaged energy flows as a function 
of average time from 0 to 250s, which shows its value approaches zero with aver-
age time increasing. To observe its tendency more clearly, Fig. 8.27 (2) (b) gives a 
chopped curve to show the details after 50s. We can find that within 250s, the time 
averaged energy flow approaches zero with still non-predicated values. Chaotic 
motions can be considered as a periodical one with infinite time period, and its 
time averaged energy flow vanishes over its infinite time period. 

 

0 50 100 150 200 250
0

200

400

600

800
(a) Generalised Energy Potential

t

G
E

P

0 50 100 150 200 250
0

10

20

30

40
(b) Distance to origin

t

D
D

 

Fig. 8.26 (a) Generalised energy potential and (b) Distance of phase point to the origin of 

phase space for the Rössler system with 14,1.0 === γβα  and initial position 

[ ]1 1 0
T

.
 

 
 
 



8.7 SD Attractor 201 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Fig. 8.27 (1) Time averaged energy flows over three average times: (a) 2s, (b) 3s and (c) 5s; 
and (2) Time averaged energy flow as a function of average time: (a) full history, (b) 
chopped history to show details after 50s, for Rössler system with 

14,1.0 === γβα  and initial position  [ ]1 1 0
T

. 

8.7 SD Attractor 

Geometrical nonlinear springs were used as a nonlinear isolator to realise a very low 
supporting frequencies for aircraft ground vibration tests (Molyneux , 1958; Xing, 
1975). In recent years, this type of geometrical nonlinear spring has been further  
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investigated on its nonlinear dynamical characteristics and it is called as SD Oscilla-
tor or attractor (Cao et al, 2007, 2008a, 2008b). Physically, this system consists of a 
mass m, moving only in Y-direction, supported by two inclined linear springs of stiff-
ness k and a linear viscous damper c, as shown in Fig. 8.28.  Since the two linear 
springs are symmetrically arranged in the two inclined directions, their resultant stiff-
ness component in the direction perpendicular to Y-direction vanishes but the one in 
Y-direction behaves a geometrical nonlinearity depending on their dynamic position. 
If the initial length of the springs is L, using Newton’s law, we can obtain the dy-
namic equation in the form 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8.28 SD Oscillator consisting of a mass supported by two inclined linear springs and a 
damper. 
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where  
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=
,direction horizontal a is 0,

,direction  verticala is ,1

Y

Y
δ                (8.56.2) 

which defines that the gravitational force of the mass is considered only when Y is 
defined in a vertical direction. Equation 8.56 may further be rewritten in a non-
dimensional form 
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where,  
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Here, γ represents a non-dimensional viscous damping coefficient, and 0ω is a natu-

ral frequency of the linear system with 0=α  that represents the mass is on the top 
or bottom position supported by the two springs located in Y-direction, for which Eq. 
8.57 reduces to 
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8.7.1 Vector Field Equations 

Equation 8.57 may be written in a vector field form as follows,  
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and its Jacobian matrix and energy flow matrix are respectively derived as 
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8.7.2 Equilibrium Points 

The equilibrium points of the system can be determined from Eq. 8.60., i.e. 
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                         (8.62) 

which gives the following solutions. 
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Horizontal oscillator ( 0=δ ) 
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Vertical oscillator ( 1=δ ) 
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Here, the 1y  values for the two cases of α can be obtained by solving the second 

identity in Eq. 8.62. Physically, the value 10 <<α represents Ll < , implying the 
natural length of the spring is larger than the distance from its fixed point to Y 
axis, so that at the equilibrium point the spring is in a compression state and 

1y must positive to balance the gravitational force of the mass. However, 

when 1≥α ,at the equilibrium point the spring is in a stretched state and 1y must 

be negative value. 

8.7.3 Energy Flow Equation and Zero Energy Flow Surface 

The energy flow equation of the system is given by 
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The distance of a phase point to the origin of phase space and its time change rate can 
respectively be obtained as 

,2/,2 EEdEd ==                            (8.64.2) 
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implying that the phase point moves towards the origin if ,0<E and backwards the 

origin if ,0>E as well as on the zero energy curves with .0=E  

For non-forced system, the zero energy flow surface determined by ,0=sE i.e. 
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from which it follows  
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representing the 1yo − axis and a curve as shown in Fig. 8.29. This curve is anti-

symmetrical about point ),/~5.0,0( γδg−  and it gradually approaches to lines 

γδ /)~1(5.02 gy −= and γδ )~1(5.02 gy +−= if ∞→1y  and −∞→1y , re-

spectively. Based on Eqs. 8.65 and 8.66, around the curve we obtain  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.29 Zero energy flow curves of the non-forced SD oscillator 
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This implies that the disturbance points will be attracted onto the zero energy 
curve as 4 arrows indicated on Fig. 8.29. 

8.7.4 Time Averaged Energy Flow and Poincare’s Map 

Taking the time period ωπ ~/2=T of the external force as a chosen average 
time, we can obtain a series of time averaged energy flow  
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  (8.68.1) 

For a possible chaotic motion, over an infinite average time period we will have 
the corresponding time averaged energy flow tends zero, i.e. 

lim 0.T
T

E E∞ →∞
= →                                 (8.68.2) 

We can also calculate the increments IEΔ of the generalised energy potential 

for each period as well as calculate the distances of the flow phase points to the 
origin at the end time of each period, i.e. 
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I

IT

TII
  (8.68.3) 

from which to obtain a Poincare’s map to identify chaos motions. 

8.7.5 Phase Space Volume Strain 

Using energy flow matrix given in Eq. 8.61, we obtain the time change rate of 
phase space volume strain of the SD oscillator as 

,2tr γυ −== E                                             (8.67) 

which is negative for a positive damping, implying the phase space volume is  
attractive and the phase orbit is restricted in a finite volume. 



8.7 SD Attractor 207 

 

8.7.6 Numerical Investigation 

Using the Runge-Kutta method with the MATLAB program provided in this book, 
we numerically investigate the energy flow characteristics of a SD oscillator with 
parameters: 

8.0,5.0~,0605.1~,01415.0,01.0 Fg ,  ,  (8.68) 

of which the horizontal SD with no gravitational force was investigated for its 
chaotic motions (Cao et al, 2007, 2008).  

Fig.8.30 shows the phase diagrams of vertical and horizontal SDs. Both of them 
are located in their finite volumes in phase space, since the time change rate of 
phase space volume strain is negative as given by Eq. 8.67, so that the system is 
attractive. The phase orbits are chaotic, but the one for vertical SD (Fig. 8.30 (a)) 
shows larger amplitude caused by the gravitational force. The generalised energy 
potentials and the distances of phase points to the origin of phase space for the 
vertical and horizontal SDs are respectively shown in Fig. 8.31 (a) and (b). These 
two variables are positive and also behave chaotic. Fig. 8.32 gives the time histo-

ries of instant total energy flow dtdEe / , force one dtdE f /  and internal one 

dtdEs / of the investigated SDs. The total instant energy flows (a) and (b) show os-

cillations about zero value which is on the zero energy flow surface. However, the 
one for vertical SD is with larger amplitude than the one for horizontal SD, because 
of the gravity. 
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Fig. 8.30 Phase diagrams of SD oscillators: (a) vertical one, and (b) horizontal one 
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For further revealing the chaotic behaviour of the system, we take the time pe-
riod T of the external force as the average time to calculate the time averaged en-
ergy flow for each time period ,2,1=n  and the obtained values at 

time ωπ ~/2nnT = are shown by small pieces of vertical lines in Fig. 8.33. We 
have known that for periodical motions, the total time averaged energy flow in a 
period vanishes, but the force one and internal one take a constant, one positive 
and another negative but with same absolute value. Fig.8.33 does not show peri-
odic motions of the system. Fig.8.34 gives the time averaged energy flows as the 
functions of average time t . These time functions are obtained by using Eq. 8.68.1 
in association with setting T = t . We can observe from Fig. 8.34, with average 
time t increasing, the total time averaged flows tend to zero, and the force time 
averaged ones tend two positive constants for vertical and horizontal SDs, respec-
tively, while the internal ones tend two negative constants. This is because a  
chaotic motion may be considered as a periodical motion with infinite time period.  
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Fig. 8.31 Generalised energy potentials (GEP) and distances (DD) of phase points to the  
origin of phase space: (a)(b) for vertical SD; (c)(d) for horizontal SD. 
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Fig. 8.32 The instant total ( dtdEe / ), force ( dtdE f / ) and internal ( dtdEs / ) energy 

flows of SD oscillators: (a)(c) (e) for vertical SD; and (b)(d)(f)  for horizontal SD. 
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Fig. 8.33 Time averaged total (TAe), force (TAf) and internal (TAs) energy flows at the 

end of each time period ,~/2 ωπnnT = ,2,1=n of SD oscillators:  (a)(c)(e) for 

vertical SD; (b)(d)(f) for horizontal SD. 
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Fig. 8.34 Time averaged total (Ee/t), force (Ef/t) and internal (Es/t) energy flows as  
functions of average time t of SD oscillators: (a)(c)(e) for vertical SD; (b)(d)(f) for  
horizontal SD. 
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Chapter 9 

Hamiltonian System 

Hamiltonian system is a very important dynamical system in engineering, of 
which the detailed theory can be found in many publications, such as Abraham 
and Marsden (1978 / 1980); Guckenheimer and Holmes (1983); Thompson and 
Stewart (1986); Zhu (1996, 2003). This chapter discusses the Hamiltonian system 
from the point view of energy flows. After giving the general fundamental  
equation governing Hamiltonian systems, its energy flow equations as well as  
corresponding energy flow matrix are formulated. The relationship between the 
Hamilton’s function of integrable systems and the generalised potential energy of 
the system is investigated. The examples are given to demonstrate the developed 
theories.  

9.1 Hamiltonian Formalism 

As discussed in Chapter 2, the motion of a system with m DOF is described by a 

trajectory in a 2m dimensional phase space 2mU R⊆ with two local n-

dimensional coordinate vectors ( , )q p . The dynamical variables are func-

tions :f U I R× → , so that ( , , )f tq p  where t I R∈ ⊆  is called time. Let 

two functions ),,( tf pq  and ),,( tg pq are such two dynamical variables. Define 

a Poisson bracket of ,f g to be a function 

1

{ , }: { },
m

k k k k k

f g f g
f g

q p p q=

∂ ∂ ∂ ∂= −
∂ ∂ ∂ ∂∑                              (9.1) 

which satisfies 

{ , } { , },

{ ,{ , }} { ,{ , }} { ,{ , }} 0.

f g f g

f g h g h f h f g

= −
+ + =

                            (9.2) 
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The second property in Eq. 9.2 is called the Jacobian identity. The coordinate 
functions ( , )q p satisfy the canonical commutation relations 

{ , } 0, { , } 0, { , } .j k j k j k jkq q p p q p δ= = =                     (9.3) 

Given a Hamiltonian function ( , , )H tq p , the dynamical system is determined by 

{ , },
Df f

f H
Dt t

∂= +
∂

                                        (9.4) 

for any functions ),,( tf pq . Setting jf q= and jf p= yields the Hamilton’s 

equation of motion (see, for example, Goldstein 1980; Zhu 2003) 

0 0

, ,

(0) , (0) ,

H H∂ ∂= = −
∂ ∂
= =

q p
p q

q q p p

                                     (9.5) 

where the derivative of the Hamilton’s function ( , , )H tx p  with respect to a  

vector, such as T
mxxx ],,,[ 21=x is defined as 

[ ]
[ ]

1 2

1 2

/ / / / ,

/ / / / .

T

m

T
m

H H x H x H x

H H x H x H x

∂ ∂ = ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ = ∂ ∂ ∂ ∂ ∂ ∂

x

x
               (9.6) 

The system in Eq. 9.5 of 2m order differential equations is deterministic if the co-
ordinate vectors ( , )q p are uniquely determined by initial conditions. A dynamical 

systems governed by Eq. 9.5 is called as a Hamiltonian system. 
A function ( , , )f tx p satisfying / 0Df Dt = when Eq. 9.5 holds is called a 

first integral or a constant of motion, i.e. 

( , , ) const,f t =q p                             (9.7) 

if ( , )q p satisfies Eq. 9.5. The time derivative of the Hamilton’s function  

,T TH H H H
H

t t

∂ ∂ ∂ ∂= + + =
∂ ∂ ∂ ∂

q p
q p

                       (9.8) 

from which, if / 0,H t∂ ∂ =  the Hamilton’s function H f= satisfying the con-

dition / 0Df Dt = , so that it gives the first integration of Eq. 9.5 as 

0 0 0( , , ) ( , ,0) .H t H H= =q p q p                                  (9.9) 
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Therefore, if the Hamilton’s function ( , , )H tq p is independent of time t, Eq. 9.8 

is automatically satisfied. 

9.2 Energy Flow Equation of Hamiltonian System 

9.2.1 Equilibrium Point 

The equilibrium point of the Hamiltonian system can be determined by  

/ 0, / 0,H H∂ ∂ = ∂ ∂ =p q                          (9.10) 

which gives the stationary points of the Hamilton’s function ),( pqH . The  

Jacobian matrix of the Hamiltonian system is calculated by Eq. 2.16, i.e. 

/
/ /

/

( ) ( )

( ) ( )

T T

T T

T T

H

H

H H

H H

∂ ∂⎡ ⎤ ⎡ ⎤= ∂ ∂ ∂ ∂⎢ ⎥ ⎣ ⎦−∂ ∂⎣ ⎦
∂ ∂ ∂ ∂⎡ ⎤

⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥=
∂ ∂ ∂ ∂⎢ ⎥− −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

p
J q p

q

q p p p

q q p q

.                       (9.11) 

9.2.2 Energy Flow Equation 

The energy flow equation of the Hamiltonian system takes the form 

0 0 0 0 0

/
,

/

( ) / 2.

T T

T T

H
E

H

E

∂ ∂⎡ ⎤
⎡ ⎤= ⎢ ⎥⎣ ⎦ −∂ ∂⎣ ⎦
= +

p
q p

q

q q p p

                                          (9.12) 

The zero energy flow surface of the Hamiltonian system can be obtained by va-
nishing the energy flow, i.e.  

/ /
0.

/ /

T
T T

T

H H

H H

∂ ∂ ⎡ ⎤∂ ∂⎡ ⎤ ⎡ ⎤⎡ ⎤ = =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ −∂ ∂ −∂ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦

p qp
q p

q pq
                        (9.13) 
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The generalised kinetic energy of the Hamiltonian system is given by 

/1 1
( ),

/2 2
T T TH H H

K T
H

∂ ∂⎡ ⎤ ∂ ∂⎡ ⎤= = −⎢ ⎥⎣ ⎦ −∂ ∂ ∂ ∂⎣ ⎦

p
q p q p

q p q
                (9.14) 

and its symmetric energy flow matrix E  as well as anti-symmetric spin matrix 
U  can be respectively obtained by the following formulations 

1
( )

2

( ) ( ) ( ) ( )
1

( )
2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

2
( ) ( ) (

T

T T T T

T T T T

T T T T

T T T

H H H H

H H H H

H H H H

H H H

= +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥= +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂ ∂ ∂− −
∂ ∂ ∂ ∂ ∂ ∂

E J J

q p p p q p q q

q q p q p p p q

q p q p p p q q

p p q q p q

,

) ( )
T

H

⎡ ⎤
⎢ ⎥
⎢ ⎥

∂ ∂⎢ ⎥−⎢ ⎥∂ ∂⎣ ⎦p q

 (9.15) 

1
( )

2

( ) ( ) ( ) ( )
1

.
2

( ) ( ) ( ) ( )

T

T T T T

T T T T

H H H H

H H H H

= −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤− +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥=
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥− − − +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

U J J

q p q p p p q q

p p q q p q p q

         (9.16) 

Using the theorems in the energy flow forms for stability and periodical orbit of 
nonlinear dynamical systems given in Chapter 4, we can investigate the related 
characteristics of the Hamiltonian systems. For example, for an equilibrium point 

0= =q p  of a Hamiltonian system, the system at this point will be asymptotical-

ly stable it the energy flow (0,0) 0E < , i.e.  

/ / , ( , ) (0),T TH H ε∂ ∂ < ∂ ∂ ∈q p p q q p                   (9.17) 
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9.2.3 Time Change Rate of Phase Volume train 

Following Eq. 3.52, we can derive the time change rate of phase space volume of 
Hamiltonian systems as 

2 2 2 2

1

( ),
m

Ii i i i I I I I

H H H H

q p p q q p p q
υ

=

∂ ∂ ∂ ∂= − = −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∑                    (9.18) 

from which it follows that the phase volume train of a Hamiltonian system is a 
constant if the Hamiltonian function of the system is continuous and differentiable 
with respect to phase coordinates in the defined domain, i.e. 

2 2

0, , ( 1, 2,3,..., ) , ( , ) .
I I I I

H H
I m U

q p p q
υ ∂ ∂= = = ∈

∂ ∂ ∂ ∂
q p       (9.19) 

9.3 Integrable Hamiltonian Systems 

A Hamiltonian system governed by Eq. 9.5 is integrable if its first integration in 
Eq. 9.9 exists. For majority of practical problems, the first integration may not be 
explicitly obtained, but nevertheless we would certainly regard this system as in-
tegrable. In general the system governed by Eq. 9.5 will be solvable if it admits 
‘sufficiently many’ first integrals and the reduction of order can be applied by 
eliminating one equation from a first integral.  

For an integrable Hamiltonian system with its Hamiltonian independent of time 
t, the phase portraits may easily be drawn in the phase space. Figure 9.1 shows the 
geometric explanation of Eq. 9.9 for the 2-D case. In this figure, 

0( , )H x p H= indicates an integration curve of the system, of which the normal 

and tangent vectors at point A are 

/ /
, , 0.

/ /

H x H p

H p H x

∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤
= = ⋅ =⎢ ⎥ ⎢ ⎥∂ ∂ −∂ ∂⎣ ⎦ ⎣ ⎦

n τ n τ              (9.20) 
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Fig. 9.1 Geometrical explanations for the energy flow of a 2-D Hamiltonian system 

The point A of position vector [ ]Tx p=r  moves in the tangent direction τ  on 

the solution curve governed by Eq. 9.5 , so that the energy flow defined by Eq. 
9.12 is the dot product  

E = ⋅r τ .                                                    (9.21) 

Since the amplitude of the position vector of the moving point A is 2E=r , 

we can conclude that 

i) A positive energy flow 0E > at this point implies that the point A moves 
far away from the origin of phase space; 

ii) A negative energy flow 0E >  at this point implies that the point A 
moves towards the origin of phase space; 

iii)  A zero energy flow 0E > indicates that the position vector 

[ ]Tx p=r of the point A on the line of normal vector of the curve 

0( , )H x p H= . 

Theorem 9.1 If the energy flow in Eq. 9.12 vanishes at any points on a smoothly 

differential surface defined by equation 0( , )H H=q p , the surface 

0( , )H H=q p  is a zero energy flow surface and the function ( , )H q p is the 

Hamiltonian function for a linear Hamiltonian system.  

Proof According to the definition of zero energy flow surface, the surface 

0( , )H H=q p does no doubt meet the definition, and it does not change with 

n

r

A

 x 

 p 

τ

0),( HpxH =

xH ∂∂ /

pH ∂∂ /
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time. Furthermore from Eq. 9.21 it follows that 0=⋅= rτE  on the surface; 
therefore the normal vector n of the surface of can be denoted as 

,rn α=                                                (9.22) 

where α is a real number, from which we obtain that 

/

/

H

H
α

∂ ∂⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

q q
n

p p
.                                    (9.23) 

An integration of Eq. 9.8 gives the function 

0 0 0 0 0 0

( , ) ( , ),
2

( , ) , / .

T TH E

H E E H E

α α

α α α

⎡ ⎤
⎡ ⎤= =⎢ ⎥⎣ ⎦ ⎣ ⎦

= = =

q
q p q p q p

p

q p

                 (9.24)

 

As a result of this, Eq. 9.5 can be constructed as 

0 0, , (0) , (0) ,α α= = − = =q p p q q q p p                  (9.25) 

which is  a set of linear differential equations of time. 

9.3.1 Hamilton’s Principle 

Hamilton’s principle confirm that the motion of a Hamiltonian system governed 
by Eq. 9.5 makes the functional 

,)],,([],[ 2

1

dttHTt

t
pqpqpq                      (9.26)

 

to be stationary subject to the variations 1 2( ) 0 ( ).t tδ δ= =q q  This can be 

proved as follows.  
Taking an isochronal variation of the functional in Eq. 9.26, we obtain 

,]}[][{

)(]}[][{

]}[][{],[

2

1

2

1

2

1

2

1

dtHH

dtHH

dtHH

TTt

t

t

t

TTTt

t

TTTt

t

q
pq

p
qp

pq
q

pq
p

qp

q
qpq

p
qppq

   (9.27)
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in which the condition 1 2( ) 0 ( )t tδ δ= =q q has been introduced. Therefore, if 

Eq. 9.5 is valid, the functional in Eq. 9.26 is stationary, i.e. 0.δΠ = On the other 

side, 0δΠ =  yields the Hamiltonian Eq. 9.5 due to the variations δq andδp are 

independence. This principle will be used to construct a canonical transformation 
in the next subsection.  

9.3.2 Canonical Transformation and Its Generation 

Consider an integrable system consisting of a 2m-dimensional phase-space  
2mR  together with m independent functions Jf , (J = 1, 2, 3, … , m),  in a sense 

that the gradients Jf∇ are linearly independent vectors on a tangent space to any 

point in 2mR , 

2
1~ : m

J mf R R= → such that { , } 0, ( , 1, 2,3,..., ).J If f I J m= =         (9.28) 

We will show that these integrable systems lead to completely solvable Hamil-
ton’s equation of motion. Firstly, we discuss our freedom to choose the coordi-
nates in the phase space based on any canonical transformations. 

9.3.2.1   Canonical Transformation 

A transformation in the phase space 

( , , ), ( , , ),t t= =q q q p p p q p                        (9.29) 

is canonical if it can transform the Hamilton’s Eq. 9.5 into the form 

0 0

, ,

(0) , (0) .

H H∂ ∂= = −
∂ ∂
= =

q p
p q

q q p p

                                (9.30) 

Therefore, canonical transformations preserve the Hamilton’s equation.  

9.3.2.2   Generating Functions of Canonical Transformation 

The functional in Eq.9.26 and the Hamiltonian principle provide a direct approach 
to find a generating function to construct a canonical transformation. Since the 
two sets of coordinates for the phase space ( , )q p and ( , )q p describe a same  

motion governed by the Hamilton’s Eq. 9.5 or Eq. 9.30, the integrand in the func-
tional in Eq.9.26 for both coordinate sets must satisfy the condition 
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( , , ) ( , , ) ,T T DG
H t H t

Dt
− = − +q p q p q p q p                      (9.31) 

where ( , , )G tq p is called a generating function, of which the integration of the 

term /DG Dt gives a constant allowed by the variation of the functional in 
Eq.9.26. From this condition, it follows 

( , , )

( , , )

( ) ( , , ) ( ).

T

T T T

T T T

H t

G G G
H t

t

G G G
H t

t

−
∂ ∂ ∂= − + + +
∂ ∂ ∂
∂ ∂ ∂= − + + + −
∂ ∂ ∂

q p q p

q p q p q p
q p

q p q p q p q
q p

      (9.32) 

Since the integration of the term ( )Tq p , when substituting into the functional in 

Eq.9.26, gives a constant value which does not affect the stationary condition, Eq. 
9.32 can construct a canonical transformation between ( , )q p and ( , )q p by set-

ting 

, , ,
G G G

H H
t

∂ ∂ ∂= = = +
∂ ∂ ∂

q p
p q

                    (9.33) 

with the function ( , , )G tq p required to satisfy the determinant 

2

det( ) 0,
J I

G

q p

∂ ≠
∂ ∂

                                        (9.34) 

in order to this transformation can be obtained by solving Eq. 9.33. 
An idea is to seek a canonical transformation with new variables ( , )J θ for 

which the new Hamilton function relying on only one constant variable, i.e. 

( )H J  so that the new Hamilton’s equation has the form 

constant,

0,

H

H

∂= = =
∂
∂= − =
∂

θ ω
J

J
θ

                              (9.35) 
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which can be completely solvable. Using the integration of action along a closed 
curve 

III dqpJ
2
1

, 
                                        (9.36) 

we can define the corresponding angle variables 

I I Itθ ω β= + ,                                        (9.37) 

provided the all integrations 1~I nJ =  being independent constants, to obtain the 

solvable Eq. 9.35, see for example, Guckenheimer  & Holmes (1983), Abraham & 
Marsden (1978). Here, we use the generalised potential energy to find these 
canonical variables as follows. 

9.3.2.3   Generalised Potential Energy as a Canonical Variable  

We may divide the phase space 2mR constructed by the Hamiltonian vectors 

( , )q p  into m independent sub-space 2
IR  generated by vector  

( , ), ( 1,2,3, )I Iq p I m= …  such that 2 2

1

,
m

m
I

I

R R
=

=∪  from which we can 

introduce the following theorem. 

Theorem 9.2 For a Hamiltonian system in Eq.9.5, if there exist m independent 

close curves 2
I IC R∈  on which the energy flow vanishes, i.e. 

0, ( , ) ,I I I IE q p C= ∈                             (9.38) 

then the Hamiltonian system can transformed into the canonical form in Eq. 9.35 
and is completely solvable. 

 Proof The Hamilton’s equation and its corresponding energy flow equation of the 
system can be written as 

2 2

, ,

0, ( , ) ,

1
( ).

2

I I
I I

I I

I I
I I I I I I

I I

I I I

H H
q p

p q

H H
E q p q p C

p q

H q p

∂ ∂= = −
∂ ∂
∂ ∂= − = ∈
∂ ∂

= +

            (9.39) 
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Equation 9.38 implies that at any points ( , )I I Iq p C∈ , the generalised potential 

energy  

2 21
( , ) ( ) ,

2I I I I I IE q p q p E= + =          ( 1,2,3, )I m= … ,          (9.40) 

where IE  is a positive constant. Therefore, the phase coordinate 

( , )I I Iq p C∈ can be obtained by the following transformation 

2 cos , 2 sin , ,

2 sin , 2 cos ,

I I I I I I I I I

I I I I I I I I

q E p E t

q E p E

θ θ θ ω β

θ θ θ θ

= = = +

= =
    (9.41) 

which transforms the coordinates ( , )I Iq p into ( , )I IE θ and IH into ( )I IH E . 

Here, Iω is to be defined and Iβ is an initial angle identifying the initial point 

on IC chosen. Furthermore, based on the transformation in Eq.9.41, the first  

equation in Eq. 9.39 is transformed into 

2 sin

2 sin ,

I
I I I I

I

I I I I
I I I

I I I I

H
q E

p

H E H H
p E

E p E E

θ θ

θ

∂= =
∂

∂ ∂ ∂ ∂= = =
∂ ∂ ∂ ∂

                (9.42) 

which, when combining with Eq. 9.39,  gives the following equations 

, 0.I I
I I I

I I

H H
E

E
θ ω

θ
∂ ∂= = = − =
∂ ∂

                      (9.43) 

Finally, the new Hamilton’s equation in the energy flow form is as follows 

, 0, (0) , (0) ,
H H∂ ∂= = = − = = =
∂ ∂

θ ω E E E θ β
E θ

         (9.44) 

where 
1

m

I
I

H H
=

=∑ , which is completely solvable.  

Theorem 9.3 For a Hamiltonian system in Eq. 9.5, if its Hamilton’s function is 
independent of time t and satisfies  

H∂ =
∂

p
p

,                                                  (9.45) 
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and the Hamilton’s function equals the initial generalised potential energy, the 
first integration of the system takes the following form 

0 0 0 0 0

1 1
( ).

2 2
T T T TH

H d E
∂= + = = +
∂∫p p q q q p p
q

                  (9.46) 

Proof According to the conditions of the theorem, the Hamilton function must be a 
constant, so that 

0

( )

( ) ( )

1
,

2

T T

T T T T

T T

H H
H Hdt dt

H H
dt d d

H
d H

∂ ∂= = +
∂ ∂

∂ ∂= + = +
∂ ∂

∂= + =
∂

∫ ∫

∫ ∫

∫

q p
q p

q p p q p p
q q

p p q
q

              (9.47) 

and the generalised potential energy of the system can be obtained by integrating 
the energy flow Eq. 9.12, i.e. 

0

0 0

0

1
( ) ( )

2

( ) ( )

1
,

2

T T T T

T T T T

T T

H H
E dt E

H H
dt E d d E

H
d E

∂ ∂= + = − +
∂ ∂

∂ ∂= − + = − +
∂ ∂
∂= − +
∂

∫

∫ ∫

∫

p p q q q p
p q

q q q q q q
q q

q q q
q

     (9.48) 

from which it follows 

0

1
.

2
T T H

d E
∂= − +
∂∫p p q
q

                               (9.49) 

A combination of Eqs. 9.47 and 9.49 gives  

0 0

1
.

2
T T H

H d H E
∂= + = =
∂∫p p q
q

                       (9.50) 

Now we discuss some examples to explain the theory developed in this chapter. 
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9.4 Examples 

9.4.1 Example 9.1 Linear System  

Consider a linear system governed by equation 

0

00

, ,
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

qq p q

pp q p
                        (9.51) 

of which the Hamiltonian function is 

( ) / 2,T TH = +p p q q                                   (9.52) 

which is the physical mechanical energy, a summation of kinetic and potential 
energies. This expression is same as the expression of the generalised potential 
energy E defined in this monograph, i.e. 

( ) / 2 ,T TE H= + =p p q q                                (9.53) 

so that the first integration of the Hamiltonian system, the surface 0( , )H H=q p , 

is just the zero energy flow surface on which the energy flow of the system va-
nishes, i.e. 

0.T TE = − =q p p q                                        (9.54) 

The normal vector of this surface is just the position vector  

/
,

/

H

H

∂ ∂⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

q q
n r

p p
                                   (9.55) 

with corresponding tangent vector 

/
.

/

H

H

∂ ∂⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−∂ ∂ −⎣ ⎦ ⎣ ⎦

p p
τ

q q
                                   (9.56) 

Therefore, Eq. 9.21 gives a zero energy flow shown in Eq. 9.54.  
Also, since the energy flow vanishes shown in Eq. 9.54, the theorem 9.2 can 

confirm this system expressed by the form of Eq.9.44. For example, in 2-D case of 
the system, using the notations defined above, we have 

01, 0, (0) , (0) 0,
H Hθ ω E E E θ β
E θ
∂ ∂= = = = − = = = =
∂ ∂

       (9.57) 
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which gives the solution of the problem 

1 0 1 0cos , sinq E t p E t= = .                                (9.58) 

9.4.2 Example 9.2 Pendulum  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.2 A pendulum of pendulous length l and mass m. 

As shown in Fig.9.2, a pendulum is governed by equation 

,0sin =+
l

gϕ ϕ
                                              (9.59) 

which can be transformed into a non-dimensional form  
2

2
sin 0,

d

d

ϕ ϕ
τ
+ =                                              (9.60) 

by adopting non-dimensional time , /t g lτ ω ω= = . This equation is rewrit-

ten in the form in a phase space  

 

0 0, sin , (0) , (0) ,p p p pϕ ϕ ϕ ϕ= = − = =              (9.61) 

with its Hamiltonian energy function and energy flow  

 

2 / 2 cos , 0,

( sin ).

H p H

E pp p

ϕ
ϕϕ ϕ ϕ
= − =
= + = −

                                  (9.62) 

ϕ
m

l
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Here, we consider () () /d dτ= , i.e. the time derivative is for non-dimensional 

time.  
Integrating the energy flow Eq.9.62, we obtain the generalised potential energy 

as a function of angle ϕ  

2 2

0

2

00

1
( ) ( )

2

( sin ) cos ,
2

E Edt p

dt E

ϕ

ϕ

ϕ ϕ

ϕϕ ϕ ϕ ϕ

= = +

= − = + +

∫

∫
                 (9.63) 

from which it follows 
2

0cos .
2

p
H Eϕ= − =                                      (9.64) 

Therefore, for this pendulum system, the Hamilton’s function just equals the ini-
tial generalised potential energy as confirmed by theorem 9.3. 

To discuss the characteristics of the equilibrium points of this system using the 
energy flow theory given in chanters 4 and 5, we rewrite Eq. 9.61 into the matrix 
form 

0 1

, ,sin
0p p

ϕ ϕ
ϕ
ϕ

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

J J                      (9.65) 

where sin / 1,ϕ ϕ → when 0.ϕ →  A decomposition of matrix J into a sum-

mation of a symmetric matrix E and an spin matrix U gives  

( ) ,

0 ( )0 ( )
, ,

( ) 0( ) 0

sin sin
( ) (1 ) / 2, ( ) (1 ) / 2.
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E U

p p

ϕ ϕ
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⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

= − = +

E U

E U               (9.66) 

The energy flow equation of this pendulum is expressed in the matrix form 

[ ] [ ]( ) ,E p p
p p

ϕ ϕ
ϕ ϕ⎡ ⎤ ⎡ ⎤

= + =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

E U E                     (9.67) 
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due to  

[ ] 0.p
p

ϕ
ϕ ⎡ ⎤

=⎢ ⎥
⎣ ⎦

U                                          (9.68) 

The eigenvalues and eigenvectors of matrix E
~

 can be derived by solving the cha-
racteristic equation 

0,λ− =E I                                             (9.69) 

from which it follows 

 1,2 ( ) ( ),Eλ ϕ λ ϕ= ±                                        (9.70) 

in association with the corresponding eigenvectors 

1 11
, .

1 12
T⎡ ⎤

= =⎢ ⎥−⎣ ⎦
Φ Φ Φ I                        (9.71) 

Using the coordinate transformation in Table 5.1 

1

2

1 11
,

1 12p

ζϕ
ζ
⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
                                  (9.72) 

we transform Eqs. 9.65 and 9.67 respectively into 
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Λ Θ            (9.73) 

Table 9.1 The energy flow parameters at equilibrium points of the pendulum 

Equilibrium 
points ( , )pϕ  

 

 
(0,0)  

 
( ,0)π  

 
( ,0)π−  

( )Eλ ϕ  0 1/2 1/2 

( )Uλ ϕ  1 1/2 1/2 
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Table 9.1 lists the above energy flow parameters based on which we can  
discuss the characteristics at each equilibrium point of the system as follows. 

9.4.2.1   Point 1: ( , ) (0,0)pϕ =  

At this point the energy flow characteristic factor ( ) 0Eλ ϕ = , but ( ) 1Uλ ϕ = , the 

equation governed the motion of the system reduces to 

11

22

0 1
,

1 0

ζζ
ζζ

⎡ ⎤ − ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

                                (9.74) 

for which the generalised potential energy  

2 2
1 2 0

1
( ) ,

2
E Eζ ζ= + =                               (9.75) 

and the motion is 

1 0 2 02 cos , 2 sin ,E Eζ τ ζ τ= =                     (9.76) 

so that the point 1 is a centre point around which there exists periodical motions.  

9.4.2.2   Points 2 & 3: ( , ) ( ,0)pϕ π= ±  

At these two points, ( ) 1/ 2Eλ ϕ =  , therefore the two energy flow characteristic 

factors 1/ 2±  and the energy flow equation  

2 2
1 2

1
( ).

2
E ζ ζ= −                                          (9.77) 

The energy flow curves with a constant energy flow are hyperbolic and these two 

points are saddle points. The 1ζ direction with positive energy flow characteristic 

factor (1/2) is unstable while 2ζ direction with negative energy flow characteristic 

factor (-1/2) is stable. 

9.4.3 Example 9.3 A Nonlinear Dynamic System with 2 DOF 

Figure 9.3 shows a nonlinear dynamic system with 2 degrees of freedom, which 
consists of two masses, a linear spring k and a nonlinear spring k(1+y). We take the 
static equilibrium position of the system as our reference position at which the posi-
tions of two masses are chosen as the origins of the coordinates x and y, respectively. 
The dynamic equation of the system is derived in the following matrix form 
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Fig. 9.3 A nonlinear dynamic system of 2 degrees of freedom. 
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where mk /2 =Ω and I is a unit matrix.  This equation can be written in the 
form of phase space as follows 
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                        (9.79) 

The Hamiltonian function of the system is represented by 

0/ 2 ( ) .T TH d y H= + =∫p p q k q                              (9.80) 

Since the system in a conservative system, Eq. 9.80 equaling a constant gives the 
first energy integration. We now investigate this system using the energy flow ap-
proach studied herein. The energy flow equation of the system is 

0
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The generalised potential energy at a phase point ( , )q p can be obtained by the 

following integration 
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),( 00
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pq                             (9.82)

 

from which we obtain  
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Substituting this equation into Eq. 9.80, we obtain 
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as indicated by theorem 9.3. 
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Chapter 10 

Numerical Solutions of Energy Flows  

This chapter provides a generalised Matlab code to solve the energy flows of ordi-
nary differential equations for nonlinear dynamical systems. Following the de-
scription of generalised equations to be solved in sub-section 10.1, sub-section 
10.2 gives the detailed formulations of Runge-Kutta methods used in the code. 
Sub-section 10.3 is a file for users to use the provided Matlab code to solve their 
equations of nonlinear dynamical systems, of which the options include Van der 
Pol’s system, Duffing’s equation, SD oscillator, Lorenz’s system, Rössler’s equa-
tion, Linear system of order 2n and Generalised nonlinear systems of order n. The 
related input and output files are given for users to run the program and to get the 
calculated results. Appendix I designs the four functions for users to define the re-
lated functions of their nonlinear systems to be solved by JOB 7 code using the 
program PFANS.m (Power Flow Analysis of Nonlinear Systems) given in Appen-
dix II.  Users need to modify these 4 functions according to their problems.  
Appendix III listed the input files of some examples for users to learn using the 
program more quickly.  

10.1 Equations  

For general cases, it is impossible to solve the energy flow equation for a nonli-
near dynamical system using a theoretical approach. Therefore, we have to rely on 
a numerical algorithm to get its solutions. As we have learnt that a nonlinear dy-
namical system and its energy flow are governed by a set of ordinary differential 
equations. Among available numerical algorithms for ordinary differential equa-
tions, an important family of time-integration techniques which are of a high order 
of accuracy, explicit but nonlinear, and limited to two time levels is provided by 
Runge-Kutta methods. A detailed description of the Runge-Kutta method can be 
found in Gear (1971), Lambert (1974) and Van der Houwen (1977). A discussion 
and comparison with other numerical schemes for them to be used in computa-
tional fluid dynamics are given by Hirsch (1988). These methods have recently 
been applied to the solution of Rössler system in base of a Matlab code provided 
by Christodoulou (2009). In this chapter, we further develop these methods  
to solve the energy flow equations of nonlinear dynamical systems. For our  
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convenience to discuss them in this chapter, we rewrite the all equations of nonli-
near systems to be numerically solved in sub-section 10.1, although they have 
been given and discussed in the previous chapters.  

10.1.1 Equations Governing the Motion of System 

),,( yfy
y

t
dt

d =≡                                        (10.1) 

 ,)0( 0yy =                                               (10.2)  

 

Generally, we consider that nRt ∈= )(yy is a vector valued function of an in-

dependent variable RttIt ⊆=∈ ),( 21  and nRU →:f is a smooth function 

of the variable t and the vector y  defined on some subset nRU ⊆ , an n-

dimensional phase space.  Equations 10.1-2 may be further rewritten as an auto-
nomous system 
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For many practical problems, the explicit time variable t often only involves some 
external forces, so that Eqs. 10.1 and 10.2 can be expressed in the form 
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             (10.5)

 

,)0( 0yy =                                                 (10.6) 
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where )(tF  represents an external force vector, of which the I-th component  is a 

sinusoidal force )cos( III tF φω +  of frequency Iω , amplitude IF and phase 

angle Iφ .  

10.1.2 Energy Flow Equations 

The energy flow equation of the nonlinear systems governed by Eqs.10.5 and 10.6 
is given by 

,2/

),(),(,

000 yy

Fyyfyyy
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T
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T
SFS

T

E

tEEEEE

=

==+==
         (10.7) 

where  ,E SE and FE represent the instant total, internal and force energy flows 

of the nonlinear dynamical system, and  

,2/yyTE =                                              (10.8) 

being defined as the generalised energy potential, a nonnegative real number, 
which involves the distance of a phase point on the motion orbit to the origin of 
the phase space, i.e. 

.2/,2 EEdEd ==                                (10.9) 

Therefore, as discussed in previous chapters, the signs of energy flow give the 
flow directions of a phase point as follows 

⎪
⎩

⎪
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⎧

<<
==
>>

 space. phase oforigin   totowards,0,0

 surface, flowenergy  zeroon ,0,0

 space, phase oforigin   tobackwards,0,0

:

d

d

d

E    (10.10) 

10.1.3 Zero Energy Flow Surface 

The zero energy flow surfaces of a nonlinear dynamical system is defined by  

,,0),(),( nT RttPE ∈=== yyfyy                         (10.11) 

which is some generalised surface in the phase space. These surfaces are not auto-
nomous if time variable t is included, which moves with time. As we have dis-
cussed in Chapter 3, the normal vector, translation and transmission velocities of 
the zero energy flow surface are respectively given by the following equations 
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Physically, the translation velocity EN represents the velocity of the energy flow 
surface moving in the space related to a fixed Euler coordinate system, which va-
nishes for any autonomous systems. However, the transmission velocity gives a 
velocity of the zero energy flow surface relative to the flow, which implies that if 
an observer standing on a flow particle and moving with it, this observer will see 

the zero energy flow surface moving with the transmission velocity Eϑ .  

10.1.4 Time Change Rate of Phase Volume Strain  

The energy flow matrix of the nonlinear system governed by Eq. 10.1 is defined as 

.,2/)( TT ∇=+= fJJJE                   (10.15) 

Generally, the energy flow matrix is also a matrix function of time and space. The 
time change rate of phase volume strain is given by  

,trtr
1
∑
=

===
n

I
Iλυ EJ                               (10.16) 

where Iλ represent the eigenvalues of the energy flow matrix, which are real 

numbers since the matrix E is a real symmetrical matrix. 

10.1.5 Time Average Energy Flows 

Taking an average timeT , we can calculate the time averaged energy flows by the 
following time integrations 
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For periodical motions, the time averaged total energy flow vanishes, so that the 
force one and the internal one will be two real constants, one positive and another 
negative with same absolute value. For chaotic motions, which can be considered 
as a periodic motion with an infinite period, so that when ∞→T , the time aver-
aged total energy flow tends zero, and the time averaged force energy flow and in-
ternal one could approach two real numbers with its summation approximately 
vanishing, that is 
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10.2 Runge-Kutta Methods 

The Runge-Kutta methods are described to solve the governing Eqs. 10.1 and 
10.2, the energy flow Eq. 10.11 and the phase volume strain in Eq. 10.16 of the 
nonlinear dynamical system. To explain the methods, we consider the following 
generalised equation 

,)0(),,( 0uuufu == t                            (10.19) 

where u is a vector in nR  and f a vector field.  

10.2.1 Computational Formulations 

The basic idea of the Runge-Kutta methods is to evaluate the right-hand side of 
the differential systems governed by Eq.10.19 at several values of u  in a time in-

terval between tmΔ  and tm Δ+ )1( and then to combine them in order to obtain 

a high-order approximation of 1+mu . The general form of a K  stage Runge-Kutta 
method is as follows, 
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To specify a particular method, one needs to provide the integer K  (the number 

of stages), and the coefficients ,IJa Iα  and Iβ , )1( KIJ ≤<≤ . The matrix 

[ ]IJa is called the Runge-Kutta matrix, while the Iβ  and Iα are known as the 

weights and the nodes. These data are usually arranged in a mnemonic device, 
known as a Butcher tableau, (Butcher  2008): 
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The Runge-Kutta method is consistent if 
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==
αβ         (10.22) 

Therefore, the value of Iα equals the sum of line I in the Butcher tableau given by 

Eq.10.21. There are also accompanying requirements if we require the method to 

have a certain order p, meaning that the local truncation error is O(hp+1), th Δ= . 
Based on the Taylor expansion and the truncation error requirement, the 

coefficients Iβ can be determined (Butcher 2008).   

10.2.1.1   Fourth-Order Method (RK4) 

The most popular version is the fourth-order Runge-Kutta method (K = 4), defined 
by the coefficients in the Butcher tableau 

6/13/13/16/1

1001

2/102/1
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0

                        (10.23) 

leading to 
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where )1(f has been written as mf equaling ),( m
mt uf . Thus, the next value 

1+mu is determined by the present value mu plus the product of the time step 

tΔ and an estimated slope. Geometrically, this slope is a weighted average of the 
following 4 slopes: 

• mff =)1( is the slope at the beginning time mt ; 

• )2(f is the slope at the midpoint 2/ttm Δ+ of the interval, using slope 
)1(f  to determine the value  )2(u at the point 2/ttm Δ+ by means of 

Euler’s method; 

• )3(f is again the slope at the midpoint of the interval, but now using slope 
)2(f  to determine the value  )3(u at the point 2/ttm Δ+ ; 

• )4(f is the slope at the end ttm Δ+ of the interval, with the value )4(u  

determined using slope )3(f ; 

from which a weighted averaging slope is obtained as  

 )22(
6
1

slope averaging weighted )4()3()2( ffff +++= m .          (10.25) 

The RK4 method is a 4th-order method with an error per step being on order of 5h , 

while the total accumulate error order of 4h . 

10.2.1.2   Fifth-Order Method (RK5) 

The fifth-order Runge-Kutta method (K = 5) is a higher order method than RK4. 
We neglect the detailed explanations similar to the ones given in above for RK4, 
but only provide the following formulas for writing the corresponding computer 
codes. 
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10.2.2 Stability and Accuracy Analysis for RK4 

In the linear case of the model problem 

 ,)0(,)( 0uuuufu === σ                        (10.27) 

Eq. 10.24 becomes 
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and  
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Here, z  is called as an amplification factor for 1- dimensional problem, or an am-
plification matrix for general n -dimensional cases, of the RK4. The stability re-
quires  

.1)( ≤= zz ρ                                                 (10.30) 

Here )(zρ is a special radius of matrix z and defined as  
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that is the maximum absolute value of the eigenvalues of matrix z . Therefore, 
Runge-Kutta methods are conditional stable.  

The exact solution of Eq. 10.27 is given by 
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from which, we can conclude that the scheme is fourth-order accurate, since the 

amplification factor z is the Taylor expansion of the exact amplification teσ up to 
fourth order. 

10.3 MATLAB Code 

Here, we present a Matlab code which can be used to solve the ordinary differen-
tial Eqs. 10.1 - 10.2 of nonlinear systems and its energy flow Eq. 10.7 using 
Runge-Kutta methods of order 4 or 5. The detailed information on this code is  
described as follows. 

10.3.1 Job Code 

A job code, JOB, an integer, is designed to allow users to control their problems to 
be solved by running this program, which are defined as follows: 

Forced Van der Pol’s system:  JOB = 1  
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Energy flow equation 
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Forced Duffing’s system:  JOB = 2  

Equation 
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Energy flow equation 
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Forced SD oscillator:  JOB = 3  

Equation 
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Energy flow equation 
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Lorenz’s system:  JOB = 4  

Equation 
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Energy flow equation 
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Rössler’s system:  JOB = 5  

Equation 
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Energy flow equation 
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Linear system of order 2n: JOB = 6 

Equation  

Fkyycym =++ ,                                  (10.38.1) 

where m , c and k are real symmetrical mass, damping and stiffness matrices 
with order nn× of the system and   

T
nnn tFtFtF )cos()cos()cos( 222111F . (10.38.2)
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Normally, the mass matrix is invertible, so that Eq. 10.38.1 can be written in the 
form of phase space as follows 
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Energy flow equation 
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Nonlinear system of order n: JOB = 7 

Equation 
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Energy flow equation 
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10.3.2 Input and Output Files  

To run this Matlab program, except the Matlab support software, users need to  
define an input file : in.txt for the program to input the related data of the calcu-
lated problem, and an output file : out.tex for recording the calculation results. 
The detailed information on these two files is given as follows. 
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Input file: in.tex  

In the input file, the following data should be stored line by line by users. For us-
ers convenience to start using the developed Matlab program, Appendix III gives 
the input data files for 7 examples. 

Line 1 : 5  numbers, of which there is space between two numbers,  for the method 
control vector , zero value implying choosing default.  
 
                 mcard  =  [order    error   dt   kk   timelimit ] 
                               order  =  4 for RK4; 5 for RK5, 
                               error   =  maximum error of y, default 10^-4, 
                                    dt   =  time step size, default 0.05, 
                                    kk  =  time step number of solution, default 5000, 
                         timelimit  = maximum program running time, default 3000s. 
                       
Line 2:  An integer number to define the equations to be solved. 
 
              JOB = 1, 2, 3, 4, 5, 6, 7 respectively define the corresponding equations  
                          to be solved. 
 
Line 3: 10 numbers for equation parameter vector, non-involving parameters set-
ting to zero. 
 
                  ecard  =  [dim0    alpha   beta   gamma   delta  g  NF  TT1  TT2  TT3] 
                               dim0   =  dimension number,  
                                              2 for JOB 1, 2, 3;  
                                              3 for JOB 4, 5;  
                                              DOF number of a 2nd order linear system for JOB 6;  
                                              Dimension number of phase space for JOB 7. 
          ecard(2) ~ ecard(6) =  equation parameters, see equations. 
                                    NF = 0, no external forces; 
                                          > 0, number of external forces. 
               TT1, TT2, TT3   =  three average times by users, if NF = 0. 
 
Force card: used if NF > 0 only, total NF lines to define the Force Vector I,  
(I = 1,2,3,…,NF), 
 
              [degree number, amplitude, frequency, phase angle ], 
              Degree number:  line number of phase space equation for JOB not = 6; 
                                          line number of 2nd order dynamic equation for JOB = 6. 
 
Initial condition vectors:  defined as follows, only the Chosen JOB data needed.  
      
      y0 = [ y0(1)  y0(2)]  for JOB 1,2,3, that are 2 dimensional problems,            
      y0 = [ y0(1)  y0(2) y0(3)]  for JOB 4,5, that are 3 dimensional problems, 
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      y0 = [ y0(1)  y0(2)… y0(dim0)]  for JOB 7, by users, 
    y10 = [ y10(1)  y10(2)… y10(dim0)]  for JOB 6,  
                          that is dim0- dimensional problem, 
    y20 = [ y20(1)  y20(2)… y20(dim0)]  for JOB 6,  
                          that is dim0- dimensional problem, 
 
Lines : mass matrix  m  for JOB 6 only,  
 

0dim0dim02dim01dim

0dim22221

0dim11211

mmm

mmm

mmm

 

Lines : damping matrix  c  for JOB 6 only,  
 

0dim0dim02dim01dim

0dim22221

0dim11211

ccc

ccc

ccc

 

 
 
Lines : stiffness matrix  k  for JOB 6 only,  
 

0dim0dim02dim01dim

0dim22221

0dim11211

kkk

kkk

kkk

 

 

Output file:  out.tex 
 
In the output file out.tex file, the related information data on the solved problem 
are stored. For example, for JOB 2, the following information is printed in out.tex 
file: 
             This code uses Runge-Kutta method of order 5 
             It will continue until the error falls below 1.000000e-004 
             From time t = 0 to t = 250 
             The step size is dt = 0.05 
             The column number of solution kk + 1 = 5001 
             The maximum running time is = 3000 
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             Forced Van der Pol’s system: JOB = 1 
             Starting with the initial point (0.000000e+000 0.000000e+000) 
             Parameter alpha = 5.000000e+000 
             Force F, Omega. & Phi = 5.000000e+000 2.446000e+000 0.000000e+000 
            Averaged time TT = 2.568800e+000 
 

Output figures 

The following five figures are produced and shown on the screen, which can be 
saved by users. 
 
     Figure 1:  (a)   Phase diagram, for nonlinear problems with degree number 
larger than 3, this figure only gives the phase orbit of the first 3 degrees. For JOB 
6, only the displacement and velocity of the first degree of freedom are drawn on 
the phase diagram. 
                        (b)   Time history of time change rate of phase space volume. 

 
    Figure 2:   (a)   Generalised energy potential.  
                      (b)   Distance of phase point to the origin of phase space. 
 
    Figure 3:   (a)   Instant total energy flow.  
                       (b)   Instant external force energy flow. 
                       (c)   Instant internal energy flow. 
 
    Figure 4:  For the problems with external forces, the averaged time TT is cho-
sen as the minimum common number of the time periods of external forces, and 
this figure gives the following three averaged values at the end of each time period 
TT: 
                                   (a)    Time averaged total energy flow per TT.  
                                   (b)    Time averaged external force energy flow per TT. 
                                   (c)    Time averaged internal energy flow per TT. 
               
          For the problems with no external forces, three times TT1, TT2 and TT3 are 
chosen as the three averaged times, and this figure gives the following three aver-
aged values at the end of each time period: 
                                   (a)    Time averaged total energy flow per TT1.  
                                   (b)    Time averaged total energy flow per TT2. 
                                   (c)    Time averaged total energy flow per TT3. 
 
    Figure 5:  This figure gives the time averaged energy flows as the functions of 
average time t, which is increased from dt until the stop time. 
                                   (a)   Time averaged total energy flow per t.  
                                   (b)   Time averaged external force energy flow per t. 
                                   (c)   Time averaged internal energy flow per t. 
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10.3.3 Defined Functions for Main Program  

As given in Appendix I, there are four functions designed for users to define the 
functions of their nonlinear systems to be solved as JOB 7 using the program 
PFANS.m (Power Flow Analysis of Nonlinear Systems)  given in Appendix II.  
Users need to modify these 4 functions according to their problems. The detailed 
functions and the related definitions are as follows. There are 4 parameters: alpha, 
beta, gamma, delta available for users to use them to represent some parameters in 
their equations. If some of them will not be used, these parameters can be set to 
zero appearing in the body of functions, as shown in the example for Van der 
Pol’s system. 
 
 



 

Appendices 

Three Appendices are given as follows to provide the details of the Matlab Pro-
gram PFANS.m: Power Flow Analysis of Nonlinear Systems for users to use this 
program. Appendix I gives the four defined functions used for the main program 
given in Appendix II, while Appendix III provides the input files of the examples 
discussed in this monograph, which may be used by users to learn to run this  
program. 

Appendix I Defined Functions 

There are four functions designed for users to define the functions of their nonli-
near system to be solved as JOB 7 using the program PFANS.m. Users need to 
modify these 4 functions according to their problems. The detailed functions and 
the related definitions are given as follows. There are 4 parameters: alpha, beta, 
gamma and delta available for users to use them to represent some parameters in 
their equations. If some of them will not be used, these parameters can be set to 
zero appearing in the body of functions, as shown in the example for Van der 
Pol’s system. 
 
 
Function f7.m : This function is used to define the equation of nonlinear dynamic 
system as shown in equation  (10.39.1).   
 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

%           Function f7.m 
              function ff7 = f7(y, ta, alpha, beta, gamma, delta, F, omega, phi) 
% 
%            ff7 = f(y, ta, alpha, beta, gamma, delta, F, omega, phi); 
%            above is generalised definition for user use 
% 
%            the following is Van der Pol's system as an example 
%            for it beta = gamma = delta = 0 are used 
% 
               ff7 = [y(2)-(alpha + beta + gamma + delta)*y(1)*((y(1)^2)/3-1); … 
                                                                                                -y(1)+F(2)*cos(omega(2)*ta + phi(2))]; 
               end 
%           this is the function f(y,t, ..., ) in nonlinear equation  
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%                                                dy/dt = f(y,t)+F.*cos(omega*ta + phi). 
%            Please replace the above function 
%           f(y,  ta,  alpha,  beta,  gamma,  delta,  F,  omega,  phi) by your function.  
%            y  :                                                a column vector of dimension dim0; 
%            ta :                                               time; 
%           alpha, beta, gamma, delta:      4 parameters to be chosen for users to define their function. 
%           F,  omega,  phi:       to be chosen to define the force amplitude, Frequency and Phase angle. 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
 
 
Function Es7.m : This function is used to define the internal energy flow of the 
nonlinear system as shown in equation (10.39.2). 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
%            Function Es7.m 
                 function Ess7 = Es7(y, alpha, beta, gamma, delta) 
% 
%              Ess7 = Es(y, ta, alpha, beta, gamma, delta); 
%              above is the generalised function to be used by users 
% 
%              the following is Van der Pol's system as an example 
%              for it beta = gamma = delta = 0 are used 
% 
                 Ess7 = -alpha*(y(1)^2)*((y(1)^2)/3-1)+ beta + gamma + delta; 
                 end 
%              this is the system energy flow function Es(y,t, ..., )= y'*f(y,t)  
%              for nonlinear equation dy/dt = f(y,t)+ F.*cos(omega*ta + Phi). 
%              Please replace the above function  
%              Es (y, alpha, beta, gamma, delta);     by your function.  
%              y  :          a column vector of dimension dim0; 
%             alpha, beta, gamma, delta:      4 parameters to be chosen by user  
%             to define their function; 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

 
 
Function Ef7.m : This function is used to define the force energy flow of nonli-
near system shown in equation (10.39.2). 
 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
%             Function Ef7.m 
                 function Eff7 = Ef7(y, ta, F, omega, phi) 
%              Eff7 = y'*(F.*cos(omega*ta + phi)); 
%              above is generalised function to be used by users 
%              the following is Van der Pol's system as an example 
                 Eff7 = F(2)*y(2)*cos(omega(2)*ta + phi(2));  
                 end 
%              this is the force energy flow function  
%              Ef (y,t, ..., ) = y'*(F.*cos(omega*ta + phi)) 
%              for nonlinear equation  dy / dt = f(y,t)+F.*cos(omega *t + phi).  
%              y  :    a column vector of dimension dim0; 
%              ta :   time; 
%              F, omega, phi:           three vectors of dimension dim0 
%              to define the force amplitude, frequency and phase angle. 

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
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Function Vs7.m : This function is used to define the phase space volume train of 
nonlinear system shown in equation (10.39.2). 
 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

%              Function Vs7.m 
                 function Vss7 = Vs7(y, alpha, beta, gamma, delta) 
% 
%              Vss7 = Vs(y, alpha, beta, gamma, delta); 
%              above is the generalised function to be used by users 
%  
%              the following is Van der Pol's system as an example 
%              for it beta = gamma = delta = 0 are used 
% 
                  Vss7 = - alpha*(y(1)^2-1)+ beta + gamma + delta; 
% 
                  end 
%              this is the phase space volume train function  
%              Vs(y, ..., )= trace(E);                     E = (J'+J)/2;  
%                               = trace (J);                    J Jacobin matrix; 
%              for nonlinear equation dy/dt = f(y,t). 
%              Please replace the above Vs(y,... ) by your function.  
%              y  :           a column vector of dimension dim0; 
%              ta :          time; 
%              alpha, beta, gamma, delta:                 4 parameters to be chosen by user  
%              to define their function; 

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

Appendix II Main Matlab Program: PFANS.m 

% Matlab Program PFANS.m: Power Flow Analysis of Nonlinear Systems 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%    Solution of energy flows for an ODE y' = f(y,t)  
%    using RK4 and RK5 methods where y(y1, y2, ..., yn) 
%    control by order: 4 for RK4, 5 for RK5 
% 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
% RESULTS:   Matrix y and phase diagram 
%            GEP: the generalised energy potential of system 
%            DD: the distance of phase point to the origin of phase space 
%            dE_s/dt: instant system energy flow 
%            dE_f/dt: instant force energy flow 
%            dE_e/dt: instant total energy flow 
%            dv/dt: phase space volume strain 
%            TAEe: time averaged total energy flow in force time period 
%            TAEf: time averaged force energy flow in force time period 
%            TAEs: time averaged system energy flow in force time period 
%            TEe: time averaged total energy flow history as function of 
%                 avearge time t 
%            TEf: time averaged force energy flow history as function of 
%                 avearge time t 
%            TEs: time averaged system energy flow history as function of 
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%                 avearge time t 
%            Vs:  phase volume stain 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
% 
%    Job control parameter 
%    JOB: a job number to identify the equation to be solved by this program 
% 
%&&&&&&& 
%    JOB = 1, Forced Van der Pol’s system 
%    dy_1/dt = y_2 - alpha*(y_1^3/3-y_1) 
%    dy_2/dt = -y_1 + F*cos(omega*t) 
%    dE_s/dt = - alpha*y_1^2*(y_1^2/3-1) 
%    dE_f/dt = y_2*F*cos(omega*t) 
%    dE_e/dt = dE_s/dt + dE_f/dt 
%    dv/dt = - alpha*(y_1^2-1) 
%&&&&&&& 
%    JOB = 2, Forced Duffing’s system 
%    dy_1/dt = y_2 
%    dy_2/dt = y_1-y_1^3 - alpha*y_2+ F*cos(omega*t) 
%    dE_s/dt = - alpha*y_2^2-y_1*y_2*(y_1^2-2) 
%    dE_f/dt = y_2*F*cos(omega*t) 
%    dE_e/dt = dE_s/dt + dE_f/dt 
%    dv/dt = - alpha 
%&&&&&&& 
%    JOB = 3, Forced SD oscillator 
%           delta = 0, horizontal SD; no gravity 
%           delta = 1, vertical SD; gravity g considered 
%    dy_1/dt = y_2 
%    dy_2/dt=-2*gamma*y_2-y_1*(1-1/sqrt(y_1^2+alpha^2))-delta*g+F*cos(omega*t) 
%    dE_s/dt = -2*gamma*y_2^2+y_1*y_2/sqrt(y_1^2+alpha^2)- delta*g*y_2 
%    dE_f/dt = y_2*F*cos(omega*t) 
%    dE_e/dt = dE_s/dt + dE_f/dt 
%    dv/dt = - 2*gamma 
%&&&&&&& 
%    JOB = 4, Lorenz’s system 
%    dy_1/dt =-alpha*(y_1 - y_2) 
%    dy_2/dt = beta*y_1 - y_2 - y_1*y_3 
%    dy_3/dt = -gamma*y_3 +y_1*y_2 
%    dE_s/dt = -alpha*y_1^2 - y_2^2 - gamma*y_3^2 + (alpha + beta)*y_1*y_2 
%    dE_f/dt = 0 
%    dE_e/dt = dE_s/dt + dE_f/dt 
%    dv/dt = -1 - alpah - gamma 
%&&&&&&& 
%    JOB = 5, Rössler’s system 
%    dy_1/dt = -(y_2 + y_3) 
%    dy_2/dt = y_1 + alpha * y_2 
%    dy_3/dt = beta + y_3*(y_1 - gamma) 
%    dE_s/dt = alpha*y_2^2 + y_3^2*(y_1 - gamma) + y_3*(beta - y_1) 
%    dE_f/dt = 0 
%    dE_e/dt = dE_s/dt + dE_f/dt 
%    dv/dt = alpah - gamma + y_1 
%&&&&&&& 
%    JOB = 6, Linear system of order 2dim0 
%    dy_1/dt = y_2 
%    dy_2/dt = -m^(-1)*c*y_2 -m^(-1)*k*y_1 + m^(-1)*F*cos(om*t+phi); 
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%    dE_s/dt = y_1'*y_2 - y_2'* m^(-1)*c*y_2 - y_2'*m^(-1)*k*y_1  
%    dE_f/dt = y_2'* m^(-1)*F*cos(om*t+phi); 
%    dE_e/dt = dE_s/dt + dE_f/dt 
%    dv/dt = tr(-m^(-1)*c) 
%&&&&&&& 
%    JOB = 7, General nonlinear system to be defined by users 
%    dy/dt = f(y,t) + F.*cos(omega*t +phi); defined in f7.m by users; 
%    dEs/dt = y'*f(y,t);                    defined in Es7.m by users; 
%    dEf/dt = Y'*(F.*(cos(omega*ta +phi);   defined in Ef7.m by users; 
%    dEe/dt = dEs/dt + dEf/dt; 
%    dv/dt = tr (E); E = (J'+J)/2,  Jacobin of f. defined in Vs7.m by users; 
% &&&&&&& 
% 
       tic; clear; 
% 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
%     Input method control card 
%    Calculation method card is a vector of 3 elements to define the chosen 
%    method, calculation accuracy and the allowed maximum running time 
%         mcard = [ order  error  dt  kk  timelimit] 
%         order = 4, RK4; default 5 for RK5  
%         error, defined the maximum error of y, default 10^-4, 
%         dt, time step size, default 0.05 
%         kk  solution matrix column number, default 5000 
%         timelimit, the maximum time allowed to run, default 3000 
%     if an element is zero, choose the default value 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%    OPEN the in and out files 
       fIN = fopen ('in.txt','r'); 
       fOUT = fopen ('out.txt', 'w'); 
%  
%    Reading the 5 data on 1st line in file in.tex as follows: order,  error , timestep,  kk , timelimit; 
%               
%RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
       mcard = fscanf(fIN, '%d %f %f %f %f', 5)'; 
%RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
      order = mcard (1); 
      error = mcard (2); 
      dt = mcard (3); 
      kk = mcard (4); 
      timelimit = mcard (5); 
%   check the order  
      if order <= 0 
      order = 5; 
      end 
      if  ((order == 4) || (order == 5)) 
      fprintf ('This code uses Runge-Kutta method of order %d\n', order); 
      fprintf(fOUT,'This code uses Runge-Kutta method of order %d\n', order); 
      else     
      fprintf ('The order of the method must be 4 or 5\n');      
       break  
       end 
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% 
%    check error data 
       if error <= 0 
       error = 10^-4; 
       end 
       fprintf ('It will continue until the error falls below %e\n', error); 
       fprintf (fOUT, 'It will continue until the error falls below %e\n', error); 
% 
%    check step size 
       if dt <= 0 
       dt = 0.05; 
       end 
%    check solution column number 
       if kk <=0 
       kk = 5000; 
       end 
       fprintf ('from time t=0 to t = %-3.0f\n', kk * dt); 
       fprintf ('The step size is dt = %2.12g\n', dt); 
       fprintf (fOUT,'from time t=0 to t = %-3.0f\n', kk * dt); 
       fprintf (fOUT,'The step size is dt = %2.12g\n', dt); 
% 
       fprintf ('The column number of solution kk + 1 = %d\n', kk+1); 
       fprintf (fOUT,'The column number of solution kk + 1 = %d\n', kk+1); 
% 
%    check timelimit 
       if timelimit <= 0 
       timelimit = 3000; 
       end 
       fprintf ('The maximum running time is = %2.12g\n', timelimit); 
       fprintf (fOUT, 'The maximum running time is = %2.12g\n', timelimit); 
% 
%    JOB control 
%    reading JOB number 
%    RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
       JOB = fscanf(fIN, '%d ', 1)'; 
%    RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
        fprintf ('type the job control number JOB = %d \n', JOB); 
        if (JOB < 0) || (JOB > 7) 
        fprintf ('The JOB must be positive integer of 1~7, JOB = %d\n', JOB); 
        break  
        end 
% 
%    &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
%    Input equation control card ecard defining the parameters 
%    JOB = 1 ~ 7 
%    ecard [dim0 alpha beta gamma delta g NF TT1 TT2 TT3],  
%                                                this is a vector of 10 elements; 
%    dim0:            the dimension number: 
%          = 2           for JOB 1,2,3;  
%          = 3           for JOB 4,5;  
%          dim0        for JOB 6 given by users, it is number of DOF of a linear 
%                           dynamical system with 2dim0 dimension of phase space; 
%           dim0       for JOB 7, by users, it is dimensional number of phase space; 
%    the 2-5 variables:     parameters defined by equations; 
%    NF:                 the external force number, NF = 0, no external force. 
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%    TT1, TT2, TT3:        chosen three average times for case NF = 0 in which 
%                                     there is no external forces; for NF > 0, they can be zero. 
%    the definition of each parameter can be found by equations 
%    the non-involved parameter to be set to zero. 
%    &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
% 
% 
%    RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
%     reading the 10 data on the 2nd line in in.txt as follows 
%                 alpha     beta    gamma    delta    g    NF   omega   TT1   TT2    TT3 
%     ecard is a vector with 10 elements 
% 
        ecard = fscanf (fIN, '%f ', 10); 
%     RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
       dim0 = ecard (1); 
       alpha = ecard (2); 
       beta  = ecard (3); 
       gamma  = ecard (4); 
       delta = ecard (5); 
       g = ecard (6); 
       NF = ecard (7); 
       TT1 = ecard (8); 
       TT2 = ecard (9); 
       TT3 = ecard (10); 
% 
       F = zeros (dim0, 1); 
       om = zeros (dim0, 1); 
       phi = zeros (dim0, 1); 
       TT11 = zeros (dim0,1); 
% 
       If  ((NF == 0)  &&  (TT1 == 0)  &&  (TT2 == 0)  &&  (TT3 == 0)) 
       fprintf (' all zeros of NF, TT1, TT2, TT3,= %d %e %e %e \n', NF, TT1, TT2, TT3); 
       break 
       else if (NF ~= 0)  
       TT = 1; 
       force = zeros (NF, 4);       
% 
%    reading force information card; a NF x 4 matrix, of each line gives 
%    an input line vector defining force position degree number, amplitude, 
%    frequency and phase angle. Total NF lines input data required.  
%     force = [degree number, amplitude, frequency, phase angle]_NFx4 
%     Note: degree number is defined as:  
%               line number of phase space equation for nonlinear systems, 
%               line number of 2nd order dynamic equation for linear system JOB=6. 
% 
        for iif = 1:NF 
%    RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
       force (iif, :) = fscanf (fIN, '%d %f %f %f', 4); 
%    RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
         jj = force (iif, 1); 
         F (jj) = force (iif, 2); 
         om (jj) = force (iif, 3); 
         phi (jj) = force (iif, 4); 
         if om (jj) ~= 0 
          TT11(jj) = 2*pi/om(jj)/error; 
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          TT11(jj) = round (TT11(jj)); 
          TT = lcm (TT,  TT11(jj)); 
         end 
         end 
         TT = TT * error; % this is the average time period 
         NN = round (TT/dt); 
         else if ((TT1 ~= 0) && (TT2 ~= 0) && (TT3 ~= 0)) 
           NN1 = round (TT1/dt);  % step number in TT1 
           NN2 = round (TT2/dt);  % step number in TT2 
           NN3 = round (TT3/dt);  % step number in TT3 
         end 
         end 
         end 
% 
%       reading the initial conditions & force information 
%      For JOB 1~7  
%      reading data for the initial vector y0  from file in.tex, 
%            JOB 1, 2, 3,                         y0 = [y10 y20]',                 two data 
%            JOB 3, 5,                              y0 = [y10 y20 y30]',         three data 
%            JOB 7,                                  y0 = [y0(1) y0(2) ... y0(dim0)]' 
%            JOB 6,  
%                            y10 = [y10(1) y10(2) ... y10(dim0)]',         dim0 data,  
%                            y20 = [y20(1) y20(2) ... y20(dim0)]',         dim0 data, 
% 
          if JOB ~= 6  
%      reading initial conditions 
%      RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
          y0 = fscanf (fIN, '%f ', dim0); 
%      RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR     
          else if JOB == 6 
%         reading JOB 6 initial data in in.tex 
%        RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR                
                y10 = fscanf (fIN, '%f ', dim0); 
                y20 = fscanf (fIN, '%f ', dim0); 
%        RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
                y0 = [y10; y20]; 
                yy10 = y10'; 
                yy20 = y20'; 
% 
%         reading mass matrix m, damping matrix c, stiffness matrix k 
%         setting zeros 
               m = zeros (dim0, dim0); 
               c = zeros (dim0, dim0); 
               k = zeros (dim0, dim0); 
%            reading mass matrix m, 
%         RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
               for i=1:dim0 
               for j=1:dim0 
               m(i,j) = fscanf (fIN, '%f  ', 1); 
               end 
               end  
%         RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
%         check matrix m  
            mdet = det(m); 
            if mdet <= 0; 
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            fprintf (' The mass matrix is singular with its determinant = %e\n', mdet); 
            break 
            end 
% 
%         reading damping matrix c, 
%        RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
           for i=1:dim0 
           for j=1:dim0 
           c(i,j) = fscanf (fIN, '%f  ', 1); 
           end 
           end  
%        RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
%         reading stiffens matrix k, 
%        RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
           for i=1:dim0 
           for j=1:dim0 
           k(i,j) = fscanf (fIN, '%f  ', 1); 
           end 
           end     
%        RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 
           end 
           end 
% 
%       print the parameter of each job 
%       JOB 1 
          if JOB == 1 
%      writing on screen 
          fprintf ('Forced Van der Pol’s system: JOB = %d\n',  JOB); 
          fprintf ('Parameter alpha = %e\n',  alpha); 
          fprintf ('Force ampl. F,  freq.  &  phase angle  phi = %e %e %e\n', F(2),  om(2),  phi(2)); 
          fprintf ('Averaged time TT = %e\n', TT);                                 
%       writing in out.tex 
           fprintf (fOUT,'Forced Van der Pol’s system: JOB = %d\n', JOB); 
           fprintf (fOUT,'Starting with the initial point (%e %e)\n', y0'); 
           fprintf (fOUT,'Parameter alpha = %e\n', alpha); 
           fprintf (fOUT,'Force F, omega. & phi = %e %e %e\n',  F(2),  om(2),  phi(2));  
           fprintf (fOUT,'Averaged time TT = %e\n', TT);  
%        JOB 2 
           else if JOB == 2 
%        writing on screen 
           fprintf ( 'Forced Duffing’s system: JOB = %d\n', JOB); 
           fprintf ('Parameter alpha = %e\n', alpha); 
           fprintf ('Force F, omega & phi = %e %e %e\n',  F(2),  om(2),  phi(2)); 
           fprintf ('Averaged time TT = %e\n', TT);    
%        writing in out.tex 
           fprintf (fOUT, 'Forced Duffing’s system: JOB = %d\n', JOB); 
              fprintf (fOUT, 'Starting with the initial point (%e %e)\n', y0'); 
              fprintf (fOUT, 'Parameter alpha = %e\n', alpha); 
              fprintf (fOUT, 'Force F, omega & phi = %e %e %e\n', F(2), om(2),  phi(2)); 
              fprintf (fOUT, 'Averaged time TT = %e\n', TT); 
%          JOB 3  
             else if JOB == 3 
%         writing on screen 
            fprintf ( 'Forced SD system: JOB = %d\n', JOB); 
            fprintf ('Parameter alpha = %e\n', alpha); 
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            fprintf ('Force F, omega & phi = %e %e %e\n',  F(2),  om(2),  phi(2)); 
            fprintf ('Averaged time TT = %e\n', TT);  
            fprintf ('Parameter damping gamma = %e\n', gamma); 
            fprintf ('Parameter delta = %e\n', delta); 
            fprintf ('Parameter gravity g = %e\n', g); 
%        writing in out.tex 
            fprintf (fOUT,  'Forced SD system: JOB = %d\n', JOB); 
            fprintf (fOUT, 'Starting with the initial point (%e %e)\n', y0'); 
            fprintf (fOUT, 'Parameter alpha = %e\n', alpha); 
            fprintf (fOUT, 'Force F, omega & phi = %e %e %e\n', F(2),  om(2),  phi(2)); 
            fprintf (fOUT,  'Averaged time TT = %e\n', TT);  
            fprintf (fOUT, 'Parameter damping gamma = %e\n', gamma); 
            fprintf (fOUT, 'Parameter delta = %e\n', delta); 
             fprintf (fOUT, 'Parameter gravity g = %e\n', g); 
%         JOB 4 
            else if JOB == 4 
%         writing on screen 
            fprintf ( 'Lorenz’s system: JOB = %d\n', JOB); 
            fprintf ('Parameter alpha = %e\n', alpha); 
            fprintf ('Parameter beta = %e\n', beta); 
            fprintf ('Parameter gamma = %e\n', gamma); 
            fprintf ('Three Averaged Times T1, T2, T3 = %e %e %e\n', TT1, TT2, TT3); 
%         writing in out.tex 
            fprintf (fOUT, 'Lorenz’s system: JOB = %d\n', JOB); 
            fprintf (fOUT,'Starting with the initial point (%e %e %e)\n', y0'); 
            fprintf (fOUT,'Parameter alpha = %e\n', alpha); 
            fprintf (fOUT,'Parameter beta = %e\n', beta); 
            fprintf (fOUT,'Parameter gamma = %e\n', gamma); 
            fprintf (fOUT,'Three Averaged Times T1, T2, T3 = %e %e %e\n',TT1,TT2,TT3); 
%        JOB 5 
           else if JOB == 5 
%        writing on screen 
           fprintf ( 'Rössler’s system: JOB = %d\n', JOB); 
           fprintf ('Parameter alpha = %e\n', alpha); 
           fprintf ('Parameter beta = %e\n', beta); 
           fprintf ('Parameter gamma = %e\n', gamma); 
           fprintf ('Three Averaged Times T1, T2, T3 = %e %e %e\n', TT1, TT2, TT3); 
%        writing in out.tex 
            fprintf (fOUT, 'Rössler’s system: JOB = %d\n', JOB); 
            fprintf (fOUT,'Starting with the initial point (%e %e %e)\n', y0'); 
            fprintf (fOUT,'Parameter alpha = %e\n', alpha); 
            fprintf (fOUT,'Parameter beta = %e\n', beta); 
            fprintf (fOUT,'Parameter gamma = %e\n', gamma); 
            fprintf (fOUT,'Three Averaged Times T1, T2, T3 = %e%e%e\n',TT1,TT2,TT3); 
%        JOB 6 
           else if JOB == 6 
%        writing on screen 
           fprintf ( 'Generalised linear system: JOB = %d\n', JOB); 
           fprintf ('The dimension dim0 = %d\n', dim0); 
           fprintf ('The initial displacement vector = y10 \n'); 
           display (y10'); 
           fprintf ('The initial velocity vector = y20 \n'); 
           display (y20'); 
           fprintf ('The Averaged time TT = %e \n', TT); 
%        writing in out.tex 



Appendix II Main Matlab Program: PFANS.m  257

           fprintf (fOUT, 'Generalised linear system: JOB = %d\n', JOB); 
           fprintf (fOUT,'The dimension dim0 = %d\n', dim0); 
           fprintf (fOUT, 'The Averaged time TT = %e \n', TT); 
           fprintf (fOUT,'The initial displacement vector = y10 \n'); 
%          write y10 into 'out.txt' 
             for j=1:dim0 
             fprintf(fOUT,'%e  ',y10(j)); 
             if j==dim0 
             fprintf(fOUT,'\n'); %%% change line after the end of each row 
             end  
             end 
%         write y20 into 'out.txt' 
            fprintf (fOUT,'The initial velocity vector = y20 \n'); 
            for j=1:dim0 
            fprintf(fOUT,'%e  ',y20(j)); 
            if j==dim0 
            fprintf(fOUT,'\n'); %%% change line after the end of each row 
            end  
            end 
%        write mass matrix into 'out.txt'     
            fprintf (fOUT,'The mass matrix = m \n'); 
            for i = 1:dim0 
            for j=1:dim0 
            fprintf(fOUT,'%e  ',m(i,j)); 
            if j==dim0 
            fprintf(fOUT,'\n'); %%% change line after the end of each row 
            end  
            end  
            end  
%         write damping matrix into 'out.txt'     
            fprintf (fOUT,'The damping matrix = c \n'); 
            for i = 1:dim0 
            for j=1:dim0 
            fprintf(fOUT,'%e  ',c(i,j)); 
            if j==dim0 
            fprintf(fOUT,'\n'); %%% change line after the end of each row 
            end  
            end  
            end      
%        write stiffness matrix into 'out.txt'     
            fprintf (fOUT,'The stiffness matrix = k \n'); 
            for i = 1:dim0 
            for j=1:dim0 
            fprintf(fOUT,'%e  ',k(i,j)); 
            if j==dim0 
            fprintf(fOUT,'\n'); %%% change line after the end of each row 
            end  
            end  
            end        
%        write force amplitude, frequency and phase angle into 'out.txt' 
            fprintf (fOUT,'The force number, amplitude, frequency, phase-angle \n'); 
            for j=1:dim0 
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            fprintf(fOUT,'%8.0f %e %e %e  \n', j, F(j), om(j), phi(j)); 
            if j==dim0 
            fprintf(fOUT,'\n'); %%% change line after the end of each row 
            end  
            end 
%        JOB 7 
           else if (JOB == 7) 
           fprintf ( 'A user nonlinear system: JOB = %d\n', JOB); 
           fprintf ( 'Dimension: dim0 = %d\n', dim0); 
           fprintf ( 'Parameter alpha = %e\n', alpha); 
           fprintf ( 'Parameter beta = %e\n', beta); 
           fprintf ( 'Parameter gamma = %e\n', gamma); 
           fprintf ( 'Parameter delta = %e\n', delta); 
           fprintf ( 'Force number NF = %d\n', NF); 
           if NF == 0 
           fprintf ('Three Averaged Times TT1,TT2,TT3 = %e %e %e\n', TT1,TT2,TT3);    
           else  
           fprintf ('Averaged time TT = %e\n', TT);  
           end 
%        write information in out.txt 
           fprintf (fOUT, 'A user nonlinear system: JOB = %d\n', JOB); 
           fprintf (fOUT, 'Dimension: dim0 = %d\n', dim0); 
           fprintf (fOUT, 'Parameter alpha = %e\n', alpha); 
           fprintf (fOUT, 'Parameter beta = %e\n', beta); 
           fprintf (fOUT, 'Parameter gamma = %e\n', gamma); 
           fprintf (fOUT, 'Parameter delta = %e\n', delta); 
             fprintf (fOUT, 'Force number NF = %d\n', NF); 
             if NF == 0 
             fprintf (fOUT,'Three Averaged Times TT1,TT2,TT3 =%e%e%e\n',TT1,TT2,TT3);    
             else  
             fprintf (fOUT,'Averaged time TT = %e\n', TT);  
             fprintf (fOUT, 'External forces\n'); 
             fprintf (fOUT, 'Force Number, amplitude, frequency, phase angle \n'); 
             for iif = 1:NF 
             fprintf ( '%10.0f %e %e %e\n',iif, F(iif), om(iif), phi(iif)); 
            end 
            end 
            end 
            end 
            end 
            end 
            end 
            end 
            end 
%  
%         DEFINE THE FUNCTIONS FOR EACH JOB 
% 
%           JOB = 1 
              if (JOB == 1) 
%           equation 
              f = inline('[y(2)-alpha*y(1)*((y(1)^2)/3-1);-y(1)+F*cos(omega*ta+phi)]', 'y', 'ta', 'alpha', 'F',…  
                                 'omega', 'phi');  
%           Ee = Es + Ef % total energy flow 
%           internal energy flow 
              Es = inline ('-alpha*(y(1)^2)*((y(1)^2)/3-1)','y', 'alpha');  
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%           force energy flow 
              Ef = inline ('F*y(2)*cos(omega*ta+phi)', 'y', 'ta', 'F', 'omega', 'phi');  
%           phase space volume strain 
              vstrain = inline ('- alpha*(y(1)^2-1)', 'y', 'alpha'); 
%           JOB = 2 
              else if (JOB == 2)    
%           equation 
              f = inline ('[y(2); y(1)*(1-y(1)^2) - alpha*y(2)+F*cos(omega*ta+phi)]',  'y', 'ta', 'alpha', 'F',… 
                                  'omega', 'phi');  
%           total energy flow  
              Ee = Es + Ef %           
%           internal energy flow 
              Es = inline ('-alpha*y(2)^2 - y(1)*y(2)*(y(1)^2-2)','y', 'alpha'); 
%           force energy flow  
              Ef = inline ('F*y(2)*cos(omega*ta+phi)','y','ta', 'F', 'omega', 'phi');  
%           phase space volume strain 
              vstrain = - alpha;  
%           JOB = 3 
               else if (JOB == 3)        
%            equation 
               f = inline( '[y(2);-2*gamma*y(2)-y(1)*(1-1/sqrt(y(1)^2+alpha^2))-
delta*g+F*cos(omega*ta+phi)]',... 
                                              'y', 'ta', 'alpha', 'gamma', 'delta', 'g', 'F', 'omega', 'phi');    
%            total energy flow 
%            Ee = Es + Ef  
%            internal energy flow 
                Es = inline ('-2*gamma*y(2)^2 + y(1)*y(2)/sqrt(y(1)^2+alpha^2)- delta * g * y(2)', 'y', 'alpha', 
'gamma', 'delta', 'g');  
%            force energy flow 
               Ef = inline ('F*y(2)*cos(omega*ta+phi)','y','ta', 'F', 'omega', 'phi');  
%            phase space volume strain 
               vstrain = - 2*gamma;  
%            JOB = 4 
               else if (JOB == 4)          
%            equation 
                f = inline('[-alpha*(y(1)-y(2));beta*y(1)-y(2)-y(1)*y(3); -gamma *y(3)+y(1)*y(2)]', 'y', 'alpha', 
'beta', 'gamma');  
%            total energy flow  
%             Ee = Es + Ef           
%             internal energy flow 
                Es = inline ('-alpha*y(1)^2-y(2)^2+(alpha+beta)*y(1)*y(2)-gamma*y(3)^2', 'y', 'alpha',…  
                                               'beta', 'gamma');  
%             force energy flow 
                Ef = 0;  
%             phase space volume strain 
                vstrain = -1 - alpha - gamma; 
%            JOB = 5 
                else if (JOB == 5)       
%           equation 
              f = inline('[-y(2)-y(3); y(1)+ alpha*y(2); beta  +y(3) *(y(1)- gamma)]', 'y', 'alpha', 'beta',… 
                                                   'gamma');  
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%           total energy flow  
%           Ee = Es + Ef  
%           internal energy flow 
              Es = inline ('alpha *y(2)^2 +y(3)^2*(y(1) -gamma) +y(3)*(beta - y(1))',… 
                                             'y', 'alpha', 'beta', 'gamma');  
%           force energy flow  
              Ef = 0;  
%           phase space volume strain 
               vstrain = inline ('alpha - gamma + y(1)', 'y', 'alpha', 'gamma'); 
%           JOB = 6 
              else if JOB == 6      
%           equation 
               f = inline('[y2;-inv(m)*c*y2 -inv(m)*k*y1 +inv(m)*(F.*cos(om*ta+phi))]',… 
                                      'y1', 'y2', 'm', 'c', 'k', 'F', 'om', 'phi', 'ta');       
%           total energy flow  
%            Ee = Es + Ef  
%            internal energy flow 
               Es = inline ('yy1*y2 - yy2*inv(m)*c*y2  - yy2*inv(m)*k*y1', 'y1', 'yy1', 'y2', 'yy2','m', 'c', 'k'); 
%            force energy flow  
                Ef = inline ('yy2 * inv(m)*(F.*cos(om*ta+phi))', 'yy2', 'm', 'F', 'om', 'phi', 'ta'); 
%            phase space volume strain 
               vstrain = trace (-m\c);  
%            JOB = 7     
%            if JOB == 7 
%            The functions defined by f7.m, Ef7.m, Es7.m, Vs7.m 
%            These four functions must be provided and stored with program nlode.m  
%            in the same place of computer, so that program can search and use them. 
%           
                end 
                end 
                end 
                end 
                end 
                end 
%          
%          CALCULATION PROCESS 
%          
%          a column vector to store the calculation result 
%          E =[Time; GEP; DD; Ee; Ef; Es; TAEe; TAEf; TAEs; TEe; TEf; TEs; Vs]  
%          Time: the time instant; 
%          GEP: generalised energy potential; 
%          DD: distance to origin; 
%          Ee: total instant energy flow;  
%          Ef: force instant energy flow;  
%          Es: internal instant energy flow,  
%          TAEe: time averaged Ee;  
%          TAEf: time averaged Ef;  
%          TAEs: time averaged Es; 
%          TEe: averaged total energy flow history as function of average time t 
%          TEf: averaged force energy flow history as function of average time t      
%          TEs: averaged system energy flow history as function of average time t 
%          Vs: phase volume strain 
%          
%          initial condition calculations 
%           
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ta0 = 0; 
TAEe0 = 0; 
TAEf0 = 0; 
TAEs0 = 0; 
TEe0 = 0; 
TEf0 = 0; 
TEs0 = 0; 

%          
if JOB ~= 6 
GEP0 = y0'*y0/2; 
else if JOB == 6; 
GEP0 = (yy10*y10 + yy20*y20)/2; 

         end  
end 
DD0 = sqrt (2*GEP0); 

  
%           
%           calculate the initial values of functions at time t0 
%          
%            JOB = 1 

if (JOB == 1) 
Ef0 = Ef (y0, ta0, F(2), om(2), phi(2)); 
Es0 = Es (y0, alpha); 
Ee0 = Ef0 + Es0; 
Vs0 = vstrain (y0, alpha); 
else if (JOB == 2) 

%            JOB = 2 
%          

Ef0 = Ef (y0, ta0, F(2), om(2), phi(2)); 
Es0 = Es (y0, alpha); 
Ee0 = Ef0 + Es0; 
Vs0 = -alpha; 

         else if (JOB == 3) 
%            JOB = 3 
%          

Ef0 = Ef (y0, ta0, F(2), om(2), phi(2)); 
Es0 = Es (y0, alpha, gamma, delta, g); 
Ee0 = Ef0 + Es0; 
Vs0 = -2*gamma;  
else if (JOB == 4) 

%             JOB = 4 
%          

Ef0 = 0; 
Es0 = Es (y0, alpha, beta, gamma); 
Ee0 = Ef0 + Es0; 
Vs0 = -1 - alpha - gamma; 
else if (JOB == 5) 

%             JOB = 5 
%          

Ef0 = 0; 
Es0 = Es (y0, alpha, beta, gamma); 
Ee0 = Ef0 + Es0; 
Vs0 = vstrain (y0, alpha, gamma); 
else if JOB == 6 

%            JOB = 6 
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%          
Ef0 = Ef (yy20, m, F, om, phi, ta0); 
Es0 = Es (y10, yy10, y20, yy20, m, c, k); 
Ee0 = Ef0 + Es0; 
Vs0 = trace (-m\c); 

         else if JOB == 7 
%            JOB = 7 
%          

Ef0 = Ef7 (y0, ta0, F, om, phi); 
Es0 = Es7 (y0, alpha, beta, gamma, delta); 
Ee0 = Ef0 + Es0; 
Vs0 = Vs7(y0, alpha, beta, gamma, delta); 
end 
end 
end 
end 
end 

         end 
end 

%                        
                E0 = [ta0; GEP0; DD0; Ee0; Ef0; Es0; TAEe0; TAEf0; TAEs0; TEe0; TEf0; TEs0; Vs0];                          
%          
%            calculate the values at time t 
%          
               tmax = timelimit / 4; 
%            determine the dimension number dim and initial condition number mm 

if JOB ~= 6 
%            The dimension of the system 

dim = size(y0, 1); 
%            The number of initial points 

mm = size(y0,2);  
else if JOB == 6 
     dim = size (y10, 1); 
     if dim ~= dim0 

                      fprintf ('Dimension of JOB = 6, dim = dim0 but now, %d %d', dim, dim0);  
                      break 
                      end 
                      mm = size (y10, 2); 
                      end 
                      end 
%           

     for q = 1 : mm 
     ttt = 0; 
     p = 0; 
     E = zeros (13, kk+1); 
     E(:,1) = E0 (:, q); 
     e = inf; 
     if JOB ~= 6 
     yprevious = inf(dim, kk + 1);     
     y = zeros (dim, kk + 1); 
     y(:, 1) = y0 (:, q); 
     else if JOB == 6 
     y1 = zeros (dim, kk + 1); 
     y2 = zeros (dim, kk + 1); 
     dim6 = 2*dim; 
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     y = zeros (dim6, kk+1); 
     yprevious = inf(dim6, kk+1);  
     y1(:, 1) = y10 (:, q); 
     y2(:, 1) = y20 (:, q); 
     y (:, 1) = [y1(:,1); y2(:,1)]; 
     end 
     end 

%          
      while (ttt < tmax) && (e > error) 
      n = 2^p; 
      h = dt/n; 
      ta = 0; 
      ETAe = 0; 
      ETAf = 0; 
      ETAs = 0; 
      ETe = 0; 
      ETf = 0; 
      ETs = 0; 
      ya = y0 (:, q); 
      if JOB == 6 
      ya1 = y10 (:, q); 
      ya2 = y20 (:, q); 
      end 
      t0 = clock; 
      for j = 1 : n*kk 

%                  JOB = 1 or 2 
       if (JOB == 1) || (JOB == 2)            
       if order == 4 %          This is the 4th order RK method 
       k1 = h * f (ya, ta, alpha, F(2), om(2), phi(2)); 
       k2 = h * f (ya + k1/2, ta+h/2, alpha, F(2), om(2), phi(2)); 
       k3 = h * f (ya + k2/2, ta+h/2, alpha, F(2), om(2), phi(2)); 
       k4 = h * f (ya + k3, ta, alpha, F(2), om(2), phi(2)); 
       ya = ya + (k1 + 2 * k2 + 2 * k3 + k4)/6; 
       else if order == 5 %          This is the 5th order RK method 
       k1 = h * f (ya, ta, alpha, F(2), om(2), phi(2)); 
       k2 = h * f (ya + k1/2, ta+h/2, alpha, F(2), om(2), phi(2)); 
       k3 = h * f (ya +(3 * k1 + k2)/16,ta+h/4,alpha,F(2),om(2),phi(2)); 
       k4 = h * f (ya + k3/2, ta+h/2, alpha, F(2), om(2), phi(2)); 
       k5 = h * f (ya + (-3 * k2 + 6 * k3 + 9 * k4)/16, ta+3*h/4, alpha, F(2), om(2), phi(2)); 
       k6 = h * f (ya + (k1 + 4 * k2 + 6 * k3 - 12 * k4 + 8 * k5)/7, ta+h, alpha, F(2), om(2), phi(2)); 
       ya = ya + (7 * k1 + 32 * k3 + 12 * k4 + 32 * k5 + 7 * k6)/90; 
       end 
       Eff = Ef (ya, ta, F(2), om(2), phi(2)); 
       Ess = Es (ya, alpha); 
       Eee = Eff + Ess; 
       if JOB == 1  
       Vs = vstrain (ya, alpha); 
       else 
       Vs = -alpha; 
       end 
       GEP = ya'*ya/2; 
       DD = sqrt (2*GEP); 
       ETAe = ETAe + Eee; 
       ETAf = ETAf + Eff; 
       ETAs = ETAs + Ess; 
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       ETe = ETe + Eee; 
       ETf = ETf + Eff; 
       ETs = ETs + Ess; 
       end 
       end 

%                   JOB = 3 
       if JOB == 3  
       if order == 4 %          This is the 4th order RK method 
       k1 = h * f (ya, ta, alpha, gamma, delta, g, F(2), om(2), phi(2)); 
       k2 = h * f (ya + k1/2, ta+h/2, alpha, gamma, delta, g, F(2), om(2), phi(2)); 
       k3 = h * f (ya + k2/2, ta+h/2, alpha, gamma, delta, g, F(2), om(2), phi(2)); 
       k4 = h * f (ya + k3, ta, alpha, gamma, delta, g, F(2), om(2), phi(2)); 
       ya = ya + (k1 + 2 * k2 + 2 * k3 + k4)/6; 
       else if order == 5 %          This is the 5th order RK method 
       k1 = h * f (ya, ta, alpha, gamma, delta, g, F(2), om(2), phi(2)); 
       k2 = h * f (ya + k1/2, ta+h/2, alpha, gamma, delta, g, F(2), om(2), phi(2)); 
       k3 = h * f (ya + (3*k1 + k2)/16, ta+h/4, alpha, gamma, delta, g,  F(2), om(2), phi(2)); 
       k4 = h * f (ya + k3/2, ta+h/2, alpha, gamma, delta, g,  F(2), om(2), phi(2)); 
       k5 = h * f (ya + (-3*k2+6*k3+9*k4)/16, ta+3*h/4, alpha, gamma, delta, g, F(2),… 
                                     om(2), phi(2)); 
       k6 = h * f (ya + (k1 +4*k2 +6*k3 -12*k4 +8*k5)/7, ta+h, alpha, gamma, delta, g, F(2),…   
                                         om(2), phi(2)); 
       ya = ya + (7 * k1 + 32 * k3 + 12 * k4 + 32 * k5 + 7 * k6)/90; 
       end 
       Eff = Ef (ya, ta, F(2), om(2), phi(2)); 
       Ess = Es (ya, alpha, gamma, delta, g); 
       Eee = Eff + Ess; 
       Vs = -2*gamma;  
       GEP = ya'*ya/2; 
       DD = sqrt (2*GEP); 
       ETAe = ETAe + Eee; 
       ETAf = ETAf + Eff; 
       ETAs = ETAs + Ess; 
       ETe = ETe + Eee; 
       ETf = ETf + Eff; 
       ETs = ETs + Ess; 
       end 
       end  

%                   JOB = 4 or 5 
       if ((JOB == 4) || (JOB == 5))  
       if order == 4 %          This is the 4th order RK method 
       k1 = h * f (ya, alpha, beta, gamma); 
       k2 = h * f (ya + k1/2, alpha, beta, gamma); 
       k3 = h * f (ya + k2/2, alpha, beta, gamma); 
       k4 = h * f (ya + k3, alpha, beta, gamma); 
       ya = ya + (k1 + 2 * k2 + 2 * k3 + k4)/6; 
       else if order == 5 %          This is the 5th order RK method 
       k1 = h * f (ya, alpha, beta, gamma); 
       k2 = h * f (ya + k1/2, alpha, beta, gamma); 
       k3 = h * f (ya + (3*k1 + k2)/16, alpha, beta, gamma); 
       k4 = h * f (ya + k3/2, alpha, beta, gamma); 
       k5 = h * f (ya+(-3*k2+6*k3+9*k4)/16, alpha, beta, gamma); 
       k6 = h * f (ya+(k1 +4*k2 +6*k3 -12*k4 +8*k5)/7,alpha,beta,gamma); 
       ya = ya + (7 * k1 + 32 * k3 + 12 * k4 + 32 * k5 + 7 * k6)/90; 
       end 
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       Eff = 0; 
       Ess = Es (ya, alpha, beta, gamma); 
       Eee = Ess; 
       if JOB == 4 
       Vs = -1 - alpha - gamma;  
       else if JOB == 5 
       Vs = vstrain (ya, alpha, gamma); 
       end 
       end 
       GEP = ya'*ya/2; 
       DD = sqrt (2*GEP); 
       ETAe = ETAe + Eee; 
       ETAf = ETAf + Eee; 
       ETAs = ETAs + Ess; 
       ETe = ETe + Eee; 
       ETf = ETf + Eff; 
       ETs = ETs + Ess; 
       end 
       end          

%                   JOB = 6 
       if (JOB == 6) 
       vstrain = trace (-m\c); 
       j1 = dim0; 
       j3 = dim6; 
       j2 = j1+1; 
       if order == 4 %          This is the 4th order RK method 
       k1 = h * f (ya1, ya2, m, c, k, F, om, phi, ta); 
       k2 = h * f (ya1 + k1(1:j1)/2, ya2 + k1(j2:j3)/2, m, c, k, F, om, phi, ta+h/2); 
       k3 = h * f (ya1 + k2(1:j1)/2, ya2 + k2(j2:j3)/2, m, c, k, F, om, phi, ta+h/2); 
       k4 = h * f (ya1 + k3(1:j1), ya2 + k3(j2:j3), m, c, k, F, om, phi,ta); 
       ya = ya + (k1 + 2 * k2 + 2 * k3 + k4)/6; 
       else if order == 5 %          This is the 5th order RK method 
       k1 = h * f (ya1, ya2, m, c, k, F, om, phi, ta); 
       k2 = h * f (ya1 + k1(1:j1)/2, ya2 + k1(j2:j3)/2, m, c, k, F, om, phi, ta+h/2); 
       k3 = h * f (ya1 + (3*k1(1:j1) + k2(1:j1))/16,... 
           ya2 + (3*k1(j2:j3) + k2(j2:j3))/16, m, c, k, F, om, phi,ta+h/4); 
       k4 = h * f (ya1 + k3(1:j1)/2, ya2 + k3(j2:j3)/2, m, c, k, F, om, phi,ta+h/2); 
       k5 = h * f (ya1 +(-3*k2(1:j1) +6*k3(1:j1) +9*k4(1:j1))/16, ya2 + (-3*k2(j2:j3) +… 
                          6*k3(j2:j3) + 9*k4(j2:j3))/16, m, c, k, F, om, phi,ta+3*h/4); 
       k6 = h * f (ya1+(k1(1:j1)+4*k2(1:j1) +6*k3(1:j1) -12*k4(1:j1)+8*k5(1:j1))/7, ya2 + … 
        (k1(j2:j3) +4*k2(j2:j3) +6*k3(j2:j3) - 12*k4(j2:j3) +8*k5(j2:j3))/7, m, c, k, F, om, phi,ta+h); 
%          
       ya = ya + (7 * k1 + 32 * k3 + 12 * k4 + 32 * k5 + 7 * k6)/90; 
       end 
       end 
       for i1 = 1:dim0 
       j1 = dim0 + i1; 
       ya1 (i1) = ya(i1); 
       ya2 (i1) = ya(j1); 
       end 
       yya1 = ya1'; 
       yya2 = ya2'; 
       Eff = Ef (yya2, m, F, om, phi, ta); 
       Ess = Es (ya1, yya1, ya2, yya2, m, c, k); 
       Eee = Eff + Ess; 
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       Vs = vstrain;  
       GEP = ya'*ya/2; 
       DD = sqrt (2*GEP); 
       ETAe = ETAe + Eee; 
       ETAf = ETAf + Eff; 
       ETAs = ETAs + Ess; 
       ETe = ETe + Eee; 
       ETf = ETf + Eff; 
       ETs = ETs + Ess; 
       end   

%                   JOB = 7 
       if JOB == 7  
       if order == 4     %          This is the 4th order RK method 
       k1 = h * f7 (ya, ta, alpha, beta, gamma, delta, F, om, phi); 
       k2 = h * f7 (ya + k1/2, ta+h/2,  alpha, beta, gamma, delta, F, om, phi); 
       k3 = h * f7 (ya + k2/2, ta+h/2, alpha, beta, gamma, delta, F, om, phi); 
       k4 = h * f7 (ya + k3, ta, alpha, beta, gamma, delta, F, om, phi); 
       ya = ya + (k1 + 2 * k2 + 2 * k3 + k4)/6; 
       else if order == 5 %          This is the 5th order RK method 
       k1 = h * f7 (ya, ta, alpha, beta, gamma, delta, F, om, phi); 
       k2 = h * f7 (ya + k1/2, ta+h/2,  alpha, beta, gamma, delta, F, om, phi); 
       k3 = h * f7 (ya + (3*k1 + k2)/16, ta+h/4,  alpha, beta, gamma, delta, F, om, phi); 
       k4 = h * f7 (ya + k3/2, ta+h/2,  alpha, beta, gamma, delta, F, om, phi); 
       k5 = h * f7 (ya + (-3*k2+6*k3+9*k4)/16, ta+3*h/4, alpha, beta, gamma, delta, F, om, phi); 
       k6 = h * f7 (ya + (k1 +4*k2 +6*k3 -12*k4 +8*k5)/7,… 
                                                  ta+h,  alpha, beta, gamma, delta, F, om, phi); 
       ya = ya + (7 * k1 + 32 * k3 + 12 * k4 + 32 * k5 + 7 * k6)/90; 
       end 
       Eff = Ef7 (ya, ta, F, om, phi); 
       Ess = Es7 (ya, alpha, beta, gamma, delta); 
       Eee = Eff + Ess; 
       Vs = Vs7 (ya, alpha, beta, gamma, delta);  
       GEP = ya'*ya/2; 
       DD = sqrt (2*GEP); 
       ETAe = ETAe + Eee; 
       ETAf = ETAf + Eff; 
       ETAs = ETAs + Ess; 
       ETe = ETe + Eee; 
       ETf = ETf + Eff; 
       ETs = ETs + Ess; 
       end 
       end  

%          
       if mod (j, n) == 0 
       i = j/n; 
       y (:, i+1) = ya; 
       if (JOB == 6)  
       y1(:, i+1) = ya1; 
       y2(:, i+1) = ya2;  
       end 

                       E (:, i+1) = [ta; GEP; DD; Eee; Eff; Ess; 0; 0; 0; ETe/j; ETf/j; ETs/j; Vs]; 
                         if (NF == 0) 
                         if mod (i, NN1) == 0 
                         E (7, i+1) = ETAe / (NN1*n); 
                         ETAe = 0; 
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                         end 
                         if mod (i, NN2) == 0 
                         E (8, i+1) = ETAf / (NN2*n); 
                         ETAf = 0; 
                         end 
                         if mod (i, NN3) == 0 
                         E (9, i+1) = ETAs / (NN3*n); 
                         ETAs = 0; 
                          end 
                       else if mod (i, NN) == 0    
                       E (7, i+1) = ETAe / (NN*n);     
                       E (8, i+1) = ETAf / (NN*n);   
                       E (9, i+1) = ETAs / (NN*n);   
                       ETAe = 0; 
                       ETAf = 0; 
                       ETAs = 0; 
                         end 
                         end 
                         end 
                         ta = j * h; 
                         end 

               e = max (max (abs (y-yprevious)));  
               yprevious = y; 
               %          end 
               fprintf ('The step size is dt/%         -2.0f', 2^p) 
               fprintf (' = %2.12g\n', h) 
               fprintf ('The estimated error < %2.12g\n', e) 
               ttt = etime (clock, t0); 
               fprintf ('time in seconds = %2.1f\n\n', ttt) 
               if e < error 
               fprintf ('The error limit is satisfied\n\n') 
               elseif ttt > tmax 
               fprintf ('Time limit exceeded\n\n') 
               end 
               p = p + 1;  

                       end 
     %%%%%%%%%%% 
     %               Results Figures 
     %          
     %               Figure (1) Phase figure and phase space volume strain 
     %          
                       if ((JOB ~= 6) && (dim == 2)) 
                       figure (1); 
     %               (a) 

     subplot (2,1,1) 
     plot (y(1, :), y(2, :)); 
     title ('(a) Phase diagram'); 
     xlabel ('x(t)'); 
     ylabel ('y(t)'); 
     grid on; 
     hold on; 

     %            (b) phase space volume strain 
     subplot (2,1,2) 
     plot (E(1,:), E(13,:)); 
     title ('(b) Phase space volume strain') 
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     xlabel ('t'); 
     ylabel ('Vs'); 
     hold on 
     grid on; 

                     else if ((JOB ~= 6) && (dim >= 3)) 
                     figure (1) 
      %            (a) 

          subplot (2,1,1) 
          plot3 (y(1, :), y(2, :), y(3, :)); 
          title ('(a) Phase diagram'); 
          xlabel ('x(t)'); 
          ylabel ('y(t)'); 
          zlabel ('z(t)'); 
          grid on; 
          hold on; 

     %            (b) phase space volume strain 
     subplot (2,1,2) 
     plot (E(1,:), E(13,:)); 
     title ('(b) Phase space volume strain') 
     xlabel ('t'); 
     ylabel ('Vs'); 
     hold on 
     grid on; 
     else if (JOB == 6) 
     figure (1); 

     %             (a) 
     subplot (2,1,1) 
     plot (y1(1, :), y2(1, :)); 
     title ('(a) Phase diagram of 1st degree of y1 and y2'); 
     xlabel ('y1(t)'); 
     ylabel ('y2(t)'); 
     grid on; 
     hold on; 

     %           (b) phase space volume strain 
     subplot (2,1,2) 
     plot (E(1,:), E(13,:)); 
     title ('(b) Phase space volume strain') 
     xlabel ('t'); 
     ylabel ('Vs'); 
     hold on 
     grid on; 

                    end 
                    end 
                    end 
     %          
     %            figure 2 generalised energy potential and distance to origin 
     %          
                     figure (2) 
     %            (a) generalised energy potential 
                     subplot (2,1,1) 
                    plot (E(1,:), E(2, :)); 
     %            axis ([0 250 -2 2]); 

     title ('(a) Generalised Energy Potential') 
     xlabel ('t'); 
     ylabel ('GEP'); 
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     hold on 
     grid on; 

     %            (b) Distance to origin 
     subplot (2,1,2) 
     plot (E(1,:), E(3, :)); 

     %            axis ([0 250 -2 2]); 
     title ('(b) Distance to Origin') 
     xlabel ('t'); 
     ylabel ('DD'); 
     hold on 
     grid on; 

     %          
     %            Figure (3) Energy Flow 
     %            (a) 

     figure (3); 
     subplot (3,1,1); 
     plot (E(1,:), E(4, :)); 

     %            axis ([0 250 -2 2]); 
     title ('(a) Instant Total Energy Flow') 
     xlabel ('t'); 
     ylabel ('dEe/dt'); 
     hold on 
     grid on; 

     %            (b) 
     subplot (3,1,2); 
     plot (E(1,:), E(5, :)); 

     %            axis ([0 250 -2 2]); 
     title ('(b) Instant Force Energy Flow'); 
     xlabel ('t'); 
     ylabel ('dEf/dt'); 
     hold on; 
     grid on; 

     %            (c) 
     subplot (3,1,3); 
     plot (E(1,:), E(6, :)) 

     %            axis ([0 250 -2 2]); 
     title ('(c) Instant Internal Energy Flow'); 
     xlabel ('t'); 
     ylabel ('dEs/dt'); 
     hold on; 
     grid on; 

     %          
     %            Figure 4 Time Averaged Energy Flow 
     %          

      if (NF == 0) 
      figure (4); 

     %             (a) 
     subplot (3,1,1); 
     plot (E(1,:), E(7, :)); 

     %            axis ([0 250 -2 2]); 
     title ('(a) Time Averaged Total EF per period TT1'); 
     xlabel ('t'); 
     ylabel ('Ee/TT1'); 
     hold on; 
     grid on; 
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     %            (b) 
     subplot (3,1,2); 
     plot (E(1,:), E(8, :)); 

     %            axis ([0 250 -2 2]); 
     title ('(b) Time Averaged Total EF per period TT2'); 
     xlabel ('t'); 
     ylabel ('Ee/TT2'); 
     hold on; 
     grid on; 

     %            (c) 
     subplot (3,1,3); 
     plot (E(1,:), E(9, :)); 

     %            axis ([0 250 -2 2]); 
     title ('(c) Time Averaged Total EF per period TT3'); 
     xlabel ('t'); 
     ylabel ('Ee/TT3'); 
     hold on; 
     grid on; 
     else if (NF ~= 0) 
     figure (4); 

     %            (a) 
     subplot (3,1,1); 
     plot (E(1,:), E(7, :)); 

     %             axis ([0 250 -2 2]); 
     title ('(a) Time Averaged Total EF per period TT'); 
     xlabel ('t'); 
     ylabel ('Ee/TT'); 
     hold on; 
     grid on; 

     %            (b) 
     subplot (3,1,2); 
     plot (E(1,:), E(8, :)); 

     %            axis ([0 250 -2 2]); 
     title ('(b) Time Averaged Force EF per period TT'); 
     xlabel ('t'); 
     ylabel ('Ef/TT'); 
     hold on; 
     grid on; 

     %            (c) 
     subplot (3,1,3); 
     plot (E(1,:), E(9, :)); 

     %            axis ([0 250 -2 2]); 
     title ('(c) Time Averaged Internal EF per period TT'); 
     xlabel ('t'); 
     ylabel ('Es/TT'); 
     hold on; 
     grid on; 
     end 
     end 
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     %           
     %            Figure 5 Time Averaged Energy Flow as function of average time t 
     %          
                    figure (5); 
     %            (a) 

     subplot (3,1,1); 
     plot (E(1,:), E(10, :)); 

     %            axis ([0 250 -2 2]); 
     title ('(a) Time Averaged Total EF ~ average t'); 
     xlabel ('t'); 
     ylabel ('Ee/t'); 
     hold on; 
     grid on; 

     %            (b) 
     subplot (3,1,2); 
     plot (E(1,:), E(11, :)); 

     %             axis ([0 250 -2 2]); 
     title ('(b) Time Averaged Force EF ~ average t'); 
     xlabel ('t'); 
     ylabel ('Ef/t'); 
     hold on; 
     grid on; 

     %            (c) 
     subplot (3,1,3); 
     plot (E(1,:), E(12, :)); 

     %            axis ([0 250 -2 2]); 
     title ('(c) Time Averaged Internal EF - average t'); 
     xlabel ('t'); 
     ylabel ('Es/t'); 
     hold on; 
     grid on; 
     findfigs; 
     end 
     fclose (fIN); 
     fclose (fOUT); 
     fprintf ('The total time in seconds is %2.1f\n', toc) 

%                 &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

Appendix III Examples of Input Data Files 

For users to start use this program for the energy flow analysis of a nonlinear sys-
tem, we list the following 7 input data files. 
 
JOB 1: Forced Van Der Pol’s Equation 

              ( ).0,0,446.2,5,5 00 yxF ====== φωα  

in.tex 
5 0 0 0 0 
1 
2 5 0 0 0 0 1 0 0 0 
2 5 2.446 0 
0 0 
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JOB 2: Forced Duffing’s System  

              ( ).0,0,0.1,3.0,15.0 00 yxF ====== φωα  

in.tex 
5 0 0 0 0 
2 
2 0.15 0 0 0 0 1 0 0 0 
2 0.3 1.0 0 
0 0 

 
JOB 3:  Forced SD Oscillator  

             
).0,0,0605.1,8.0

,5.0,1,01415.0,01.0(

00 yxF

g

=====
====

φω
δγα

              

              in.tex 
5 0 0 0 0 
3 
2 0.01 0 0.01415 1 0.5 1 0 0 0 
2 0.8 1.0605 0 
0 0 
 

JOB 4:  Lorenz’s system   

              ( ).0,1.0,3/8,28,10 000 ====== zyxγβα  

in.tex 
5 0 0 0 0 
4 
3 10 28 2.66666666 0 0 0 2 3 5 
0.1 0.1 0 

JOB 5: Rössler’s system  

             ( ).0,1,3/8,28,10 000 ====== zyxγβα  

in.tex 
5 0 0 0 0 
5 
3 0.1 0.1 14 0 0 0 2 3 5 
1 1 0 

 
JOB 6: A linear system of 2-DOF, as an example to use JOB 6 program 
              

.0,
0

2cos

21

12

1.00

01.0

10

01

00

⎥
⎦

⎤
⎢
⎣

⎡
==⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
y

x

y

xt

y

x

y

x

y

x
 

in.tex 
5 0 0 0 0 
6 
2 0 0 0 0 0 1 0 0 0 
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0 0 
0 0 
1 0 
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0.1 0 
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2 1 
1 2 

 

JOB 7: Ver Der Pol’s Equation ( )0,446.2,5,5 ==== φωα F ,  

              which is an example to use JOB 7 program 
 

in.tex  
5 0 0 0 0 
7 
2 5 0 0 0 0 1 0 0 0 
2 5 2.446 0 
0 0 
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