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Preface

This book provides the material for an introductory course in engineering
acoustics for students with basic knowledge in mathematics. It is based on
extensive teaching experience at the university level.

Under the guidance of an academic teacher it is sufficient as the sole text-
book for the subject. Each chapter deals with a well defined topic and rep-
resents the material for a two-hour lecture. The chapters alternate between
more theoretical and more application-oriented concepts.

For the purpose of self-study, the reader is advised to use this text in
parallel with further introductory material. Some suggestions to this end are
given in Appendix 15.3.

The authors thank Dorea Ruggles for providing substantial stylistic refine-
ments. Further thanks go to various colleagues and graduate students who
most willingly helped with corrections and proof reading. Nevertheless, the
authors assume full responsibility for all contents.

Bochum and Troy, Jens Blauert
February 2008 Ning Xiang
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1

Introduction

Human beings are usually considered to predominantly perceive their environ-
ment through the visual sense – in other words, humans are conceived as visual
beings. However, this is certainly not true for inter-individual communication.

In fact, it is audition and not vision that is the most relevant social sense of
human beings. The auditory system is their most important communication
organ. Please take as proof that blind people can be educated much more easily
than deaf ones. Also, when watching TV, an interruption of the sound is much
more distracting than an interruption of the picture. Particular attributes of
audition compared to vision are the following.

• In audition, communication is compulsory. The ears cannot be closed by
reflex like the eyes

• The field of hearing extends to regions all around the listener – in contrast
to the visual field. Further, it is possible to listen behind optical barriers
and in darkness

These special features, among other things, lead many engineers and physi-
cists, particularly those in the field of communication technology, to a special
interest in acoustics. A further reason for the affinity of engineers and physi-
cists to acoustics is based on the fact that many physical and mathematical
foundations of acoustics are usually well known to them, such as mechanics,
electrodynamics, vibration, waves, and fields.

1.1 Definition of Three Basic Terms

When you work your way into acoustics, you will usually start with the phe-
nomenon of hearing. Actually, the term acoustics is derived from the Greek
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verb ακoύειν [akúIn], which means to hear. We thus start with the following
definition.

Auditory event ... An auditory event is something that exists as heard.
It becomes actual in the act of hearing. Frequently used synonyms are
auditory object, auditory percept, and auditory sensation

Consequently, the question arises of when do auditory events appear? As
a rule, we hear something when our auditory system interacts via the ears
with a medium that moves mechanically in the form of vibrations and/or
waves. Such a medium may be a fluid like air or water, or a solid like steel or
wood. Obviously, the phenomenon of hearing usually requires the presence of
mechanic vibration and/or waves. The following definition follows this line of
reasoning.

Sound ... Sound is mechanic vibration and/or mechanic waves in elas-
tic media

According to this definition, sound is a purely physical phenomenon. Please
be warned, however, that the term sound is also sometimes used for auditory
events, particularly in sound engineering and sound design. Such an ambiguous
usage of the term is avoided in this book.

It should be briefly mentioned that vibrations and waves can often be
mathematically described by differential equations – see Chapter 2. Vibration
requires a common differential equation since the dependent variable is a func-
tion of time, while waves require partial ones since the dependent variable is
a function of both time and space. Further, it should be noted that, although
rare, auditory events may happen without sound being present, as with tin-
nitus. In turn, there may be no auditory events in the presence of sound, for
example, for deaf people or when the frequency range of the sound is not in
the range of hearing. Sounds can be categorized in terms of their frequency
ranges – listed in Table 1.1 .

Table 1.1. Sound categories by frequency range

Sound category Frequency range

Audible sound ≈ 16 Hz–16 kHz

Ultrasound > 16 kHz

Infrasound < 16Hz

Hypersound > 1GHz

The interrelation of auditory events and sound is captured by the following
definition of acoustics.
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Acoustics ... Acoustics is the science of sound and of its accompanying
auditory events

This book deals with engineering acoustics. Synonyms for engineering acous-
tics are applied acoustics and technical acoustics.

1.2 Specialized Areas within Acoustics

In Fig. 1.1 (a) we present a schematic of a transmission system as it is often
used in communication technology. A source renders information that is fed
into a sender in coded form and transmitted over a channel. At the receiving
end, a receiver picks up the transmitted signals, decodes them, and delivers
the information to its final destination, the information sink.

Fig. 1.1. Schematic of a transmission system (a) general, (b) electroacoustic trans-
mission system – receiving end

In Fig. 1.1 (b) the schematic has been modified so as to describe the receiv-
ing end of a transmission chain with acoustics involved. This schematic can
help distinguish between major areas within engineering acoustics. The trans-
mission channel delivers signals that are essentially chunks of electric energy.
These signals are picked up by the receiver and fed into an energy transducer
that transforms the electric energy into mechanic (acoustic) energy. The acous-
tic signals are then sent out into a sound field where they propagate to the
listener. The listener receives them, decodes them and processes the informa-
tion. Please also note that, in addition to the desired signals, undesired noise
may enter the system at different points.
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The main areas of acoustics are as follows. The field that deals with the
transduction of acoustic energy into electric energy, and vice versa, is called
electroacoustics. The field that deals with the radiation, propagation, and re-
ception of acoustic energy is called physical acoustics. The fields that deal
with sound reception and auditory information processing by human listen-
ers are called psychoacoustics and physiological acoustics. The first of these
focuses on the relationship between the sound and the auditory events associ-
ated with it, and the second deals with sound-induced physiological processes
in the auditory system and brain.

Acoustics as a discipline is usually further differentiated due to practical
considerations. The cover labels of the sessions at a recent major acoustics
conference are illustrative of the broadness of the field:

Active acoustic systems, audiological acoustics, audio technology,
building acoustics, bioacoustics, electroacoustics, vehicle acoustics,
evaluation of noise, hydro-acoustics, structure-borne sound, noise
propagation, noise protection, effects of noise, education in acoustics,
acoustic-measurement engineering, musical acoustics, medical acous-
tics, numerical acoustics, physical acoustics, psychoacoustics, room
acoustics, virtual reality, vibration technology, acoustic and auditory
signal processing, speech-and-language processing, flow acoustics, ul-
trasound, virtual acoustics

Accordingly, a large variety of professions can be found that deal with acous-
tics, including a variety of engineers, such as audio, biomedical, civil, electrical,
environmental and mechanical engineers. Further, for example, administra-
tors, architects, audiologists, designers, ear-nose-and-throat-doctors, lawyers,
managers, musicians, computer scientists, patent attorneys, physicists, phys-
iologists, psychologists, sociologists and linguists.

1.3 About the History of Acoustics

Acoustics is a very old science. Pythagoras already knew, around 500BC, of
the quantitative relationship between the length of a string and the pitch of its
accompanying auditory event. In 1643, Torricelli demonstrated the vacuum
experimentally and showed that there is no sound propagation in it. At the
end of the 19th century, classical physical acoustics had matured. The book
“The Theory of Sound” by Rayleigh 1896, is considered to be an important
reference even today.

At about the same time, basic inventions in acoustical communication
technology were made, including the telephone (Reis 1867), television (Nipkow
1884) and tape recording (Ruhmer 1901). It was only after the independent
invention of the vacuum triode by von Lieben and de Forest in 1910, which
made amplification of weak currents possible, that modern acoustics enjoyed a



1.4 Relevant Quantities in Acoustics 5

real up-swing through applications such as radio broadcast since 1920, sound-
on-film since 1928, and public-address systems with loudspeakers since 1924.

Starting in about 1965, computers made their way into acoustics, making
effective signal processing and interpretation possible and leading to advanced
applications such as acoustical tomography, speech-and-language technology,
surround sound, binaural technology, auditory displays, mobile phones, and
many others. Acoustics in the context of the information and communication
technologies and sciences is nowadays called communication acoustics.

In this book we shall, however, concentrate on the classical aspects of
engineering acoustics, particularly on physical acoustics and electroacoustics .
To this end, we shall make use of the following theoretical tools: the theory of
electric and magnetic processes, the theory of signals, vibrations and systems,
and the theory of waves and fields.

1.4 Relevant Quantities in Acoustics

The following quantities are of particular relevance in acoustics.

• Displacement, elongation
−→
ξ , in [m] . . .displacement of an oscillating particle
from its resting position

• Particle velocity

−→v , in [m/s] . . . alternating velocity of an oscillating particle

• Sound pressure

p, in [N/m2 = Pa] . . . alternating pressure as caused by
particle oscillation1

• Sound intensity

−→
I , in [W/m2] . . . sound power per effective area, A⊥, that is the area
component perpendicular to the direction of energy propagation

• Speed of sound

−→c , in [m/s] . . . propagation speed of a sound wave2

The superscribed arrows denote vectors, but we shall use them only when the
vector quality is of relevance. Otherwise we use the magnitude, c = |−→c |.

Since sound is essentially vibrations and waves, the quantities ξ, v, and
p are periodically alternating quantities. According to Fourier, they can be

1 1Pa = 1N/m2 = 1 kg/(ms2) = 1 (Ws)/m3

2 Warning: −→c must not be mistaken as a particle velocity!
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decomposed into sinusoidal components. These components can then be de-
scribed in complex notation – see Appendix 15.3. Quantities known to be
complex are underlined in this book.

In acoustics, there are the following three definitions of impedances.

• Field impedance

Z f =
p

v
, in [

Ns
m3

] (1.1)

• Mechanic impedance

Z mech =
F

v
, in [

Ns
m

] (1.2)

• Acoustic impedance

Za =
p

v A
, in [

Ns
m5

] (1.3)

with F being the force, F = p A, and q being the so-called volume velocity,
q = v A. The different kinds of impedances can be converted into each other,
provided that the effective radiation area of the sound source, A, is known.

Please note that impedances represent the complex ratio of two quantities,
the product of which forms a power-related quantity.

1.5 Some Numerical Examples

In order to derive some illustrative numerical examples, we consider a plane
wave in air3. A plane wave is a wave where all quantities are invariant across
areas perpendicular to the direction of wave propagation. The field impedance
in a plane wave is a quantity that is specific to the medium and is called the
characteristic field impedance, Zw – see Section 7.4. Disregarding dissipation,
this is a real quantity. In air we have Zw, air ≈ 412 Ns/m3 under standard
conditions.

• Sound pressure

Sound pressure at the threshold of discomfort (maximum sound pres-
sure),

pmax, rms ≈ 102 N/m2 = 100 Pa (1.4)

3 We present rms-values rather than peak values in the following synopsis to account
for all kinds of finite-power sounds, such as noise, speech and music, besides
sinusoidal sounds. See Appendix 15.4 for the definition of rms. Peak values of
sinusoidal signals – as usually used in complex notations throughout this book –
exceed their rms-values by a factor of

√
2, that is x̂ =

√
2 x rms
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Sound pressure at a normal conversation level at 1m distance from
the talker (normal sound pressure),

p normal, rms ≈ 0.1 N/m2 = 100 mPa (1.5)

Sound pressure at 1 kHz at the threshold of hearing (minimum sound
pressure),

pmin, rms ≈ 2 · 10−5 N/m2 = 20 μPa (1.6)

For reference: The static atmospheric pressure under normal condi-
tions is about 105 N/m2 = 1000 hPA=̂ 1 bar

• Particle velocity

The following particle velocities appear with the above sound pressures,
considering the relationship p = Zw,air v.

Maximum particle velocity, vmax, rms ≈ 0.25 m/s

Normal particle velocity, vnormal, rms ≈ 25 · 10−5 m/s

Minimum particle velocity, vmin, rms ≈ 5 · 10−8 m/s

For reference: The speed of sound in air is c ≈ 340 m/s

• Particle displacement

The relationship between particle velocity and particle displacement
is frequency dependent as follows, ξ(t) =

∫
v(t) dt, or, in complex

notation, ξ = v/jω. A comparison thus requires selection of a specific
frequency. We have chosen 1 kHz here. With this presupposition we
get,

Maximum particle displacement, ξmax,rms ≈ 4 · 10−5 m

Normal particle displacement, ξnormal,rms ≈ 4 · 10−8 m

Minimum particle displacement, ξmin,rms ≈ 8 · 10−12 m

For reference: The diameter of a hydrogen atom is 10−10 m. Actually,
for the small displacements near the threshold of hearing it becomes
questionable whether consideration of the medium as a continuum is
still valid

It is also worth noting here that the particle displacements due to the Brow-
nian molecular motion are only one order of magnitude smaller than those
induced by sound at the threshold of hearing. Thus the auditory system works
definitely at the brink of what makes sense physically. If the system where only
a little more sensitive, one could indeed “hear the grass growing.”
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1.6 Levels and Logarithmic Frequency Intervals

As shown above, the range of sound pressures that must be handled in acous-
tics is at least 1 : 10,000,000, which is 1 : 107. This leads to unhandy numbers
when describing sound pressures and sound-pressure ratios. For this and other
reasons, a logarithmic measure called the level is frequently used. The other
reasons for its use are the following.

• Equal relative modifications of the strength of a physical stimulus lead
to equal absolute changes in the salience of the sensory events, which is
called the Weber-Fechner law and can be approximated by a logarithmic
characteristic

• When connecting two-port elements in chain (cascade), the overall level
reduction (attenuation) between input and output turns out to be the sum
of the attenuations of each element

The following level definitions are common in acoustics, with lg = log10.

• Sound-intensity level

LI = 10 lg
|−→I |
I0

dB , with I0 = 10−12 W/m2 as reference (1.7)

• Sound-pressure level

Lp = 20 lg
p rms

p0
dB , with p0 = 2 · 10−5 N/m2 = 20 μPa

as reference (1.8)

• Sound-power level

LP = 10 lg
|P |
P0

dB , with P0 = 10−12 W as reference (1.9)

The reference levels are internationally standardized, and the first two roughly
represent the threshold of hearing at 1 kHz. Other references may be used,
but in such cases the respective reference must be noted, for example, in the
form L= 15dB re 100μPa. The symbol used to signify levels computed with
the above definitions is [dB], which stands for deciBel, named after Alexan-
der Graham Bell. Another unit-like symbol based on the natural logarithm,
loge = ln, the Neper [Np], is also used to express level, particularly in trans-
mission theory. Levels in Neper can be converted into levels in deciBel as
follows, L [Np] = 8.69L [dB]4

4 Note that deciBel [dB] and Neper [Np] are no units in the strict sense but let-
ter symbols indicating a computational process. When used in equations, their
dimension is one
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In the case of intensity and power levels, it should be noted that the levels
describe ratios of the magnitudes of intensity and/or power. These magnitudes
read as follows in complex notation, taking the intensity as example – see
Appendix 15.2.

|−→I | =
∣
∣
∣I ejω (φp−φq)

∣
∣
∣ =

1
2

∣
∣
∣ p q∗

∣
∣
∣ . (1.10)

For practical purposes, it is useful to learn some level differences by heart. A
few important examples are listed in the Table 1.2. By knowing these values,
it is easy to estimate level differences. For instance, the sound-pressure ratio
of 1 : 2000 = (1 : 1000) (1 : 2) corresponds to -60dB - 6 dB = -66dB.

Table 1.2. Some useful level differences

Ratio of sound pressure Ratio of sound intensity or power√
2 : 1 ≈ 3 dB

√
2 : 1 ≈ 1.5 dB

2 : 1 ≈ 6 dB 2 : 1 ≈ 3 dB

3 : 1 ≈ 10 dB 3 : 1 ≈ 5 dB

5 : 1 ≈ 14 dB 5 : 1 ≈ 7 dB

10 : 1 = 20 dB 10 : 1 = 10 dB

In order to compute the levels that add up when more than one sound source
is active, one has to distinguish between (a) sounds that are coherent, such
as stemming from loudspeakers with the same input signals, and (b) those
that are incoherent, such as originating from independent noise sources like
vacuum cleaners. Coherent signals interfere but incoherent ones do not. Con-
sequently, we end up with the following two formulas for summation.

• Addition of coherent sources

LΣ = 20 lg

(
|p

1
+ p

2
+ p

3
+ · · · + p

n
|

p0

)

dB (1.11)

• Addition of incoherent sources

LΣ = 10 lg

(
|−→I 1| + |−→I 2| · · · + |−→I n|

I0

)

dB (1.12)

We see that inter-signal phase differences need not be considered when the
signals do not interfere.

• Logarithmic frequency intervals

What holds for the magnitude of sound quantities, namely, that their range is
huge, also holds for the frequency range of the signal components. The audible
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frequency range is roughly considered to extend from about 16Hz to 16kHz
in young people, which is a range of 1 : 103. With high-intensity sounds, some
kind of hearing may even be experienced above 16 kHz. Sensitivity to high
frequencies decreases with age.

We find a logarithmic relationship also with regard to frequency. The equal
ratios between the fundamental frequencies of musical sounds lead to equal
musical intervals of pitch.

Therefore, a logarithmic ratio of frequencies called logarithmic frequency
interval, Ψ , has been introduced. It is based on the logarithmus dualis,
ld = log2, and is of dimension one. The following four definitions are in use,

Ψoct = ld (f1/f2), in [oct] ... octave
Ψ1/3rd oct = 3 ld (f1/f2), in [13 oct]
Ψsemitone = 12 ld (f1/f2), in [semitone]
Ψcent = 1200 ld (f1/f2), in [cent]

These four logarithmic frequency intervals have the following relationship to
each other, 1 oct = 3 (1

3 oct) = 12 semitone = 1200 cent. In communication
engineering, decades (10 : 1) are sometimes preferred to octaves (2 : 1). Con-
version is as follows: 1 oct ≈ 0.3 dec or 1 dec ≈ 3.3 oct.

Wavelength, λ, and frequency, f , of an acoustic wave are linked by the
relationship c = λ f . In air we have c ≈ 340 m/s. In Table 1.3, a series
of frequencies is presented with their corresponding wavelengths in air. The
series is taken from a standardized octave series that is recommended for use
in engineering acoustics.

Table 1.3. Wavelengths in air vs. octave-center frequencies

Octave-center frequency [Hz] 16 32 63 125 250 500 1k 2k 4k 8k 16k

Wave length in air [m] 20 10 5 2.5 1.25 0.63 0.32 0.16 0.08 0.04 0.02

It becomes clear that just in the audible range the wavelengths extend from a
few centimeters to many meters. Because radiation, propagation, and recep-
tion of waves is characterized by the linear dimension of reflecting surfaces
relative to the wavelength of the waves, a broad variety of different effects,
including reflection, scattering and diffraction, are experienced in acoustics.

1.7 Double-Logarithmic Plots

By plotting levels over logarithmic frequency intervals, we obtain a double-
logarithmic graphic representation of the original quantities. This way of plot-
ting has some advantages over linear representations and is quite popular in
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acoustics5. Figure 1.2 (a) presents an example of a linear representation, and
Fig. 1.2 (b) shows its corresponding double-logarithmic plot.

Fig. 1.2. Different representations of frequency functions. (a) linear, (b) double
logarithmic

In double-logarithmic plots, all functions that are proportional to ωy appear
as straight lines since

x = aωy → log x = log a+ y logω . (1.13)

For integer potencies, y = ±n with n = 1, 2, 3, · · ·, we arrive at slopes of
±n · 6 dB/oct for sound pressure, displacement, and particle velocity, and of
±n · 3 dB/oct for power and intensity. For decades the respective values are
≈ 20dB/dec resp. ≈ 10 dB/dec.

Functions with different potencies of ω are actually quite frequent in acous-
tics. They result from differential equations of different degree that are used to
describe vibrations and waves. The slope of the lines in the plot helps estimate
the order of the underlying oscillation processes.

5 In network theory, double-logarithmic graphic representations are know as Bode
diagrams



2

Mechanic and Acoustic Oscillations

When physical or other quantities vary in a specific way as a function of time,
we say that they oscillate. A common, very broad definition of oscillation is
as follows.

Oscillation ... An oscillation is a process with attributes that are re-
peated regularly in time

Oscillating processes are widespread in our world, and they are responsible for
all wave propagation such as sound, light or radio waves. The time functions
of oscillating quantities can vary extensively because of the wide variation
between sources. Oscillations can, for example, be initiated by intermittent
sources like fog horns, sirens, the saw-tooth generator of an oscilloscope, or
the blinking signal of a turning light.

A prominent category of oscillations is characterized by energy swinging
between two complementary storages, namely, kinetic vs. potential energy
or electric vs. magnetic energy. In many cases one can approximate these
oscillating systems as linear and constant in time, which defines what is called
a linear, time-invariant (LTI) system.

Mathematical treatment of LTI systems is particularly easy. A specific
feature of these systems is that the superposition principle applies. Excitation
of an LTI system by several individual excitation functions leads the system
to respond according to the linear combination of the individual response to
each excitation function.

The superposition principle can be written in mathematical terms as

y(t) =
∑

k

bk yk(t) = F
{
∑

k

bk xk(t)

}

, assuming yk(t) = F{xk(t)} . (2.1)
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The general exponential function with the complex frequency, s = ᾰ+ jω,

A es t = A eᾰ t+j ω t = A eᾰ t(cosω t+ j sinω t) , (2.2)

is an eigen-function of LTI systems. This means that an excitation by a sinu-
soidal function results in a response that is a sinusoidal function of the same
frequency, although generally with a different phase and amplitude. This spe-
cial feature of LTI systems is one of the reasons why sinusoidal functions play
a prominent role in the analysis of LTI systems and linear oscillators.

Operations with LTI systems are often performed in what is called the
frequency domain. To move from the time domain to the frequency domain,
the time function of the excitation is decomposed by Fourier transforms into
sinusoidal components. Each component is then sent through the system, and
the time function of the total response determined by summing up all the
individual sinusoidal responses and performing the inverse Fourier transforms.

In this book, we shall not deal with Fourier transforms in great detail,
but the fact that all sounds can be decomposed into sinusoidal components
and (re)composed from these, may be taken as a good argument for using
sinusoidal excitation in LTI systems for our analyses.

2.1 Basic Elements of Linear, Oscillating,
Mechanic Systems

Three elements are required to form a simple mechanic oscillator, and they
include a mass, a spring and a fluidic damper(dashpot) – shown in Fig. 2.1.

Fig. 2.1. Basic elements of linear time-invariant mechanic oscillation systems, (a)
mass, (b) spring, (c) fluidic damper (dashpot)

For the introduction of these elements, we make three idealizing assumptions.

(a) All relationships between the mechanic quantities displacement, ξ, particle
velocity, v, force, F , and acceleration, a, are linear
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(b) The characteristic features of the elements are constant
(c) We consider one-dimensional motion only

• Mass

An alternating force may be applied to a solid body with mass, m –
shown in Fig.2.1 (a) – so that Newton’s1 law holds as follows,

F (t) = ma(t) = m
dv
dt

= m
dξ2

dt2
. (2.3)

For sinusoidal quantities we can write this law in complex notation as

F = ma = jωmv = −ω2mξ . (2.4)

Later we will derive that the mass stores kinetic energy. It is a one-
port element in terms of network-theory because there is only one
in/output port through which power can be transmitted. The me-
chanic impedance of a mass is imaginary and expressed as

Z mech = jωm (2.5)

• Spring

According to Hook, the following applies for linear springs2 with a
compliance of n – as seen in Fig. 2.1 (b)

F (t) =
1
n
ξΔ(t) =

1
n

∫
vΔ(t) dt =

1
n

∫ [∫
aΔ(t) dt

]

dt . (2.6)

For sinusoidal quantities in complex notation this is equivalent to

F =
1
n
ξ
Δ

=
1

jω n
vΔ =

−1
ω2n

aΔ . (2.7)

The spring stores potential energy. It is a two-port element because
it has both an input and an output port. The mechanic impedance of
the spring is imaginary and equal to

Z mech =
1

jω n
(2.8)

1 Newton’s law is valid in so-called inertial spatial coordinate systems. These are
such in which a mass to which no force is applied moves with constant veloc-
ity along a linear trajectory. As origin of the coordinate system we usually use
“ground”, which is a mass taken as infinite. Gravitation forces are not considered
here

2 In acoustics, the compliance, n, is often preferred to its reciprocal, the stiffness,
k = 1/n, as this leads to formula notations that engineers are more accustomed
to – refer to Chapter 3
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• Damper (Dashpot)

A dashpot is a damping element based on fluid friction due to a vis-
cous medium – see Fig. 2.1 (c). At a dashpot with damping (mechanic
resistance), r, the following holds,

F (t) = r vΔ(t) = r
dξΔ
dt

= r

∫
aΔ(t)dt . (2.9)

In complex notation for sinusoidal quantities this is

F = r vΔ = jω r ξ
Δ

=
r

jω
aΔ . (2.10)

The mechanic impedance of the damper is real and expressed as

Z mech = r . (2.11)

The dashpot does not store energy. It consumes it through dissipation,
which is a process of converting mechanic energy into thermodynamic
energy, in other words, heat . The dashpot is a two-port element

2.2 Parallel Mechanic Oscillators

We now consider an arrangement where a mass, a spring and a dashpot are
connected in parallel by idealized, that is, rigid and massless rods – see Fig. 2.2.

Fig. 2.2. Mechanic parallel oscillator, exited by an alternating force. The second
port is grounded here for simplicity

The arrangement may be excited by an alternating force, F (t), that is com-
posed of three elements,

F (t) = Fm(t) + Fn(t) + Fr(t) . (2.12)
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In this way, we arrive at the following differential equation,

F (t) = m
d2ξ

dt2
+ r

dξ
dt

+
1
n
ξ or F (t) = m

dv
dt

+ r v(t) +
1
n

∫
v(t) dt . (2.13)

As only one variable, ξ or v, is sufficient to describe the state of the system,
it represents what is often called a simple oscillator.

Please note that, for simplicity of the example, we have connected both
the spring and the dashpot to ground. In this way, the quantities ξ2 and v2
are set to zero at the output ports, enabling the subscript Δ to be omitted.

2.3 Free Oscillations of Parallel Mechanic Oscillators

In this section we deal with the special case in which the oscillator is in a
position away from its resting position, and the introduced force is set to
zero, that is F (t) = 0 for t > 0. The differential equation (2.13) then converts
into a homogenous differential equation as follows,

m
d2ξ

dt2
+ r

dξ
dt

+
1
n
ξ = 0 . (2.14)

The solution of this equation is called free oscillation or eigen-oscillation of
the system. Trying ξ = est, we obtain the characteristic equation3

ms2 + r s+
1
n

= 0 , (2.15)

where s denotes the complex frequency. The general solution of this quadratic
equation can be expressed as

s1,2 = − r

2m
±

√
r2

4m2
− 1
mn

or s1,2 = −δ ±
√
δ2 − ω2

0 , (2.16)

where δ = r/2m is the damping coefficient and ω0 = 1/
√
mn the character-

istic angular frequency. This general form renders the three different types of
solutions, namely,

Case (a) with δ < ω0 ... weak damping, both roots are complex

Case (b) with δ > ω0 ... strong damping, both roots real, s negative

Case (c) with δ = ω0 ... critical damping, only one real solution of the root

3 As noted in the introduction to this chapter, the general exponential function is
an eigen-function of linear differential equations. It stays an exponential function
when differentiated or integrated
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The differential equation for a simple oscillator is of the second order, making
it necessary to have two initial conditions to derive specific solutions. The
following three forms of general solutions can be applied. It remains to adjust
them to the particular initial conditions to finally arrive at special solutions.

•Case (a)

ξ(t) = ξ
1
e−δte−jωt + ξ

2
e−δte+jωt , with ω =

√
ω2

0 − δ2 . (2.17)

This solution, called the oscillating case, describes a periodic, decaying
oscillation. That we have indeed an oscillation, can best be illustrated
by looking at the special case of ξ

1
= ξ

2
= ξ

1, 2
, because there we get

ξ(t) = ξ
1, 2

e−δt cos(ωt) (2.18)

•Case (b)

ξ(t) = ξ
1
e−(δ−

√
δ2−ω2

0)t + ξ
2
e−(δ+

√
δ2−ω2

0)t . (2.19)

This solution, called the creeping case, describes an aperiodic decay

•Case (c)
ξ(t) = (ξ

1
+ ξ

2
t) e−δt . (2.20)

This case is at the brink of both periodic and aperiodic decay. De-
pending on the initial conditions, it may or may not render a single
swing over. It is called the aperiodic limiting case

Fig. 2.3. Decays of a simple oscillator for different damping settings (schematic),
(a) aperiodic case, (b) aperiodic limiting case, (c) oscillating case
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Figure 2.3 illustrates the three cases. The fastest-possible decay below a
threshold – which, by the way, is the objective when tuning the suspension
of road vehicles – is achieved with a slightly subcritical damping, that is
δ ≈ 0.6ω0.

In addition to δ = r/2m, the following two quantities are often used in
acoustics to characterize the amount of damping in an oscillating system,

Q ... quality or sharpness-of-resonance factor
T ... reverberation time

The quality factor, Q, is defined as

Q =
ω0

2 δ
=
ω0m

r
, (2.21)

is a measure of the width of the peak of the resonance curve – see Section 2.4.
A more illustrative interpretation is possible in the time domain when one
considers that afterQ oscillations a mildly damped oscillation has decreased to
4 % of its starting value, which is about what can just be visually discriminated
on an oscilloscope screen.

The reverberation time, T , measures how long it takes for an oscillation
to decrease by 60dB after excitation has been stopped. At this level, velocity
or displacement has decayed to one thousandth and power to one millionth of
its original value. T and δ are related by T ≈ 6.9/δ – refer to Section 12.5 for
details.

Table 2.1 lists characteristic Q values for different kinds of technologically
relevant oscillators. For comparison, in the aperiodic limiting case Q has a
value of 0.5.

Table 2.1. Typical Q values for various oscillators

Type of element Q factor

Electric oscillator of traditional
construction (coil, capacitor, resistor) Q ≈ 102–103

Electromagnetic cavity oscillator Q ≈ 103–106

Mechanic oscillator, steel in vacuum Q ≈ 5 · 103

Quartz oscillator in vacuum Q ≈ 5 · 105

Concert hall with T = 2 s at 1 kHz Q ≈ 900

2.4 Forced Oscillation of Parallel Mechanic Oscillators

The exciting force was zero for free oscillations, but we will now con-
sider the case where the oscillator is driven by an ongoing sinusoidal force,
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F (t) = F̂ cos(ωt+ φ), with frequency f = ω/2π. The oscillation of the sys-
tem at this point is stationary4. We call this mode of operation force-driven or
forced oscillation. The mathematical description leads to an inhomogeneous
differential equation as follows,

F̂ cos(ωt+ φ) = m
d2ξ

dt2
+ r

dξ
dt

+
1
n
ξ . (2.22)

As we want to restrict ourselves to sinusoidal excitations here, this equation
can be expressed in the following complex form

F = −ω2mξ + jω r ξ +
1
n
ξ . (2.23)

Substitution of ξ by v yields

F = jωmv + r v +
1

jω n
v . (2.24)

Fig. 2.4. (a) Mechanic impedance and (b) admittance, in the complex Z and Y
planes as functions of frequency

This equation directly admits the inclusion of the mechanic impedance, Z mech,
as well as its reciprocal, the mechanic admittance, Y mech = 1/Zmech, so that

Z mech =
F

v
= jωm+ r +

1
jω n

and (2.25)

4 We can also deal with cases where the frequency varies slowly, by assuming that a
stationary state has (approximately) been reached at each instant of observation
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Y mech =
v

F
=

1
jωm+ r + 1

jω n

. (2.26)

Figure 2.4 illustrates the trajectories of these two quantities in the complex
plane as a function of frequency. The two quantities become real at the char-
acteristic frequency, ω0. At this frequency, the phase changes signs (jumps)
from positive to negative values or vice versa.

Fig. 2.5. Mechanic responses as a function of frequency for constant-amplitude
forced excitation

When varying the frequency of excitation slowly, we observe functions of ξ(ω)
and v(ω) as schematically shown in Fig. 2.5. For simple oscillators these curves
have a single peak. In this example, for a case of subcritical damping with
Q ≈ 2, we have kept the exciting force constant over frequency. The course of
calculations to arrive at these functions is as follows,

F

v
=

F

jω ξ
= jωm+

1
jω n

+ r, (2.27)

ξ

F
=

1
−ω2m+ 1

n + jω r
, (2.28)

|ξ|
|F | =

1
√

( 1
n − ω2m)2 + (ωr)2

, (2.29)

|v|
|F | =

1
√

(ωm− 1
ωn )2 + r2

. (2.30)

Please note that the phase of v is decreasing and passes zero at ω0, while
the phase of ξ is also decreasing but goes through −π/2 at this point – see
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Fig. 2.6. Furthermore, the position of the peak for the |ξ|(ω) curve is exactly
at the characteristic frequency, while the peak of the |v|(ω) curve lies slightly
lower – the higher the damping, the lower the frequency at this peak! Hence,
we call this peak the resonance. Consequently, we should properly distinguish
between the terms resonance frequency and characteristic frequency.

Fig. 2.6. Double-logarithmic plot of resonance curves of the particle velocity, illus-
trating the role of the sharpness-of-resonance factor, Q

Figure 2.6 shows the resonance curves for the particle velocity in a slightly
different way to illustrate the role of the Q-factor with respect to the form of
these curves. We see that the resonance peak becomes higher and more narrow
with increasing Q. This is the reason that Q is termed sharpness-of-resonance
factor, besides quality factor.

2.5 Energies and Dissipation Losses

To derive the energies and losses in the elements from which the oscillator is
built, (2.13) is at first multiplied with v(t) to arrive at what is called instan-
taneous power, namely

P (t) = F (t) v(t) = m
dv
dt

v(t) + r v2(t) +
1
n
v(t)

∫ dξ
︷ ︸︸ ︷
v(t) dt . (2.31)

Integration over time then leads to a term with the dimension energy (work)
as follows,
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W 0, t1 =
∫ t1

0

F (t)

dξ
︷︸︸︷
v dt = m

∫ t1

0

v
dv
dt

dt+ r

∫ t1

0

v2dt+
1
n

∫ t1

0

ξ v dt . (2.32)

For the case that motion of the oscillator starts from resting position, that is,
for ξ t=0 = 0, this can be converted into the form

∫ ξ1

0

F (t) dξ =
1
2
mv2

1 + r

∫ t1

0

v2dt +
1
2

1
n
ξ21 . (2.33)

The left term denotes the energy that is fed into the system. The terms on
the right side of the equality sign stand, from left to right, for the kinetic
energy of the mass, the frictional losses (dissipation) in the dashpot, and the
potential energy in the spring.

For discussion we start with the case of no losses, that is, when r ≡ 0.
In this case the total energy in the system does not change. It simply swings
between the mass and spring. Thise relationships can be expressed as

W =
1
2
mv(t)2 +

1
2n

ξ(t)2 . (2.34)

At the instant that ξ = 0, all energy is potential, and when we have v = 0,
all energy is kinetic. In mathematical terms this is

W (ξ = 0) =
1
2
m v̂2 = W (v = 0)=̂

1
2n

ξ̂ 2 . (2.35)

When losses are present due to friction, that is, when r �= 0, the stationary
state must be preserved with a driving force. Recall that we discuss force-
driven oscillation. Power has to be supplied to the system to keep the oscilla-
tion amplitude constant. This supplementary power can be derived from the
middle term of (2.33) and amounts to

Wr = r

∫ t1

0

v(t)2dt , and, thus Pr = r
d
dt

∫ t1

0

v(t)2dt . (2.36)

Averaging over a full period, T , with arbitrary φ, finally results in

P = r
1
T

∫ T

0

v̂2 cos2(ωt+ φ)dt =
1

2T
r v̂2T =

1
2
r v̂2 =

1
2
F̂ v̂ = Frms vrms .

(2.37)
At the dashpot v and F are in phase, which means that the supplied power
is purely resistive (active) power. This holds for the complete system when
driven at its characteristic frequency. Off this frequency, additional reactive-
power is needed to keep the system stationarily oscillating.
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2.6 Basic Elements of Linear, Oscillating,
Acoustic Systems

In addition to the mechanic elements, there is a further class of elements for
oscillators that are traditionally called acoustic elements. Please note that the
terms mechanic and acoustic are historic in this case. Since sound is mechanic,
the oscillators built from both classes of elements are, to be sure, mechanic
and acoustic at the same time.

The acoustic elements are formed by small cavities filled with fluid, that
is, gas or liquid. In order to deal with these cavities as concentrated elements,
their linear dimensions must be small compared to the wavelengths under
consideration. To define the acoustic elements, we use the sound pressure, p,
the sound-pressure difference, pΔ = p1 − p2, and the volume velocity,

q =
dV

dt
= A

dξ

dt
= A v(t) . (2.38)

Figure 2.7 schematically illustrates the three acoustic elements – acoustic
mass, ma, acoustic spring, na, and acoustic damper, ra. Please note that
here the damper and the mass are two-port elements while the spring has
only one-port.

Fig. 2.7. Basic elements of linear acoustic oscillators. (a) acoustic mass, (b) acous-
tic spring, (c) acoustic damper

The following equations define these elements.

•Acoustic Mass

pΔ(t) = ma
dq
dt

or, in complex notation, p
Δ

= jωma q (2.39)

•Acoustic Spring

p(t) =
1
na

∫
q dt or, in complex notation, p =

1
jω na

q (2.40)
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•Acoustic Damper5

pΔ(t) = ra q or, in complex notation, p
Δ

= ra q (2.41)

2.7 The Helmholtz Resonator

The Helmholtz resonator is the best known example of an oscillator with an
acoustic element. A Helmholz resonator is commonly demonstrated by blowing
over the open end of a bottle to produce a musical tone. This is an auditory
event with a distinct pitch that can be varied by filling the bottle with some
water.

What happens when the bottle is blown on? The air in the bottle neck
is a mass oscillating on the air inside the bottle, which can be considered a
spring.6

Fig. 2.8. Helmholtz resonator with friction

Figure 2.8 schematically illustrates the Helmholtz resonator with friction that
causes damping. The three elements, mass, damping and spring, are connected
in cascade (chain), so that the total pressure results in

p
Σ

= p
Δma

+ p
Δra

+ p
Δna

. (2.42)

By dividing p
Σ

by the volume velocity, q, we arrive at the acoustic impedance,
Za, namely,

Za =
p
Σ

q
= jωma + ra +

1
jω na

. (2.43)

5 For the characteristic parameters of the acoustic elements, the following relations
hold: ma = � l/A with � being density, na = V η with η = cv/cp p, and ra = Ξ l

A

with Ξ being flow resistivity – for details refer to Section 11.5
6 Normally we do not experience the spring characteristics of air because the air

can evacuate, but the effect in this case is similar to operating a tire pump with
the opening hole pressed closed
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Electromechanic and Electroacoustic Analogies

During the discussion of simple mechanic and acoustic oscillators in Chapter 2,
readers with some electrical engineering experience may have realized that
many mathematical formulae are similar to those that appear when dealing
with electric oscillators. There is a general isomorphism of the equations in
mechanic, acoustic and electric networks that can be exploited for describing
mechanic and acoustic networks via analogous electric ones. Formulation in
electrical coordinates is often to the advantage of those who are familiar with
the theory of electric networks since analysis and synthesis methods from
network theory can be easily and figuratively applied.

There is more than one way to portray a mechanic or acoustic network
by an analogous electric one, depending on the coordinates used. To be sure,
there is never a best analogy but rather one which is optimal with respect
to the specific application considered. Also, please note that analogies have
limits of validity. If they mimicked the problem completely, they would cease
to be analogies.

For electrical engineers, dealing with mechanic and acoustic networks in
terms of their electric analogies often means transforming uncommon prob-
lems into common ones, which is why they often prefer this method. Never-
theless, it is always possible to deal with the problems in their original form
as well.

The following fundamental relations are to be considered when selecting
coordinates for analogous representations. The two terminals of an electric cir-
cuit may serve for electric energy to be fed into the system or to be extracted
from it, and in both cases the two terminals form a port. By restricting our-
selves to monofrequent (sinusoidal) signals, it is sufficient to consider complex
power instead of energy.
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Electric power is the complex product of the electric voltage, u, and the electric
current, i – as derived in Appendix 15.2. Please note that u and i denote
electric coordinates in complex notation, with peak values as magnitudes.
Thus, the complex electric power is

P el =
1
2
u i∗ , (3.1)

with the asterisk denoting the conjugate complex form. By applying the as-
terisk to i and not to u, we have defined inductive reactive power as positive.

The terminals of mechanic elements and the openings of acoustic elements
also form ports, but in these cases, in contrast to the electrical case, one
terminal or opening forms a port by itself.

The mechanic power is defined as the complex product of force, F , and
particle velocity, v, as follows,

P mech =
1
2
F v∗ . (3.2)

Analogously, we get the acoustic power as the complex product of sound
pressure, p, and volume velocity, q,

P a =
1
2
p q∗. (3.3)

Since the asterisk has been applied to v and q, the reactive power of mass is
defined to be positive.

To arrive at isomorphisms, we use the electrical coordinates, u and i,
in analogy to the mechanic, F and v, or the acoustic ones, p and q. These
analogies are restricted by the fact that the electrical coordinates are one-
dimensional and can only represent one dimension of the mechanic/acoustic
coordinates. For the vectors −→

F , −→v , and −→q , this means that only the spatial
component that excites the terminal or opening in the normal direction is
represented.

3.1 The Electromechanic Analogies

There are two kinds of analogies possible with mechanic networks. Anal-
ogy# 1, usually called impedance analogy1, is expressed as

F =̂ u and v =̂ i , (3.4)

and analogy# 2, also known as mobile analogy or dynamic analogy, is ex-
pressed as

F =̂ i and v =̂u . (3.5)

Both kinds of electromechanic analogies are used in praxi and shall be dis-
cussed here. Figure 3.1 provides an overview.
1 The names for the analogies are traditional but may make sense in the light of

the discussion in Section 3.6
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Fig. 3.1. Electromechanic analogies

3.2 The Electroacoustic Analogy

While both variants of electromechanic analogies are used in praxi, this is
not the case with the electroacoustic ones. Here only one of the two possible
analogies is actually used, namely,

p =̂u and q =̂ i . (3.6)

Figure 3.2 presents the overview.
Please note that all analogies dealt with in Sections 3.1. and 3.2. relate to

networks with lumped (concentrated) elements. This means that wave propa-
gation is not considered. Accordingly, it is required that the acoustic elements
be small compared to the wavelength of longitudinal waves across the di-
mensions of the elements2. We also assume that the individual elements are
decoupled in every way except through their terminals.

3.3 Levers and Transformers

Besides m, n, r and L, C, R, respectively, there is an additional mechanic
linear element that is frequently found in practical networks, namely, the me-
2 An additional type of electroacoustic analogy that allows for waves will be intro-

duced later in Section 8.5
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Fig. 3.2. Electroacoustic analogy

chanic lever. Its electric counterpart is the ideal, galvanically coupled (single-
coil) transformer. Both lever and single-coil transformer are triple-port ele-
ments. Figure 3.3 illustrates the isomorphic relationships for the free-floating
lever in static equilibrium for both kinds of electromechanic analogies.

Fig. 3.3. Ideal one-coil transformers as electric analogies for the free-floating me-
chanic lever. l ... lever length, ν ... number of turns, nt ... transformation ratio

In the domain of electro-acoustic analogies, a lever does not exist. The so-
called velocity transformer – sketched in Fig. 3.4 – is frequently mistaken for
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an acoustic lever, but it actually acts as a mechanic lever with one terminal
fixed to ground.

Fig. 3.4. Velocity transformer

Please note that mass and compliance in the cavity are neglected and that
the linear dimensions of the cone are small compared to the wavelength. With
q and p being continuous, one gets

q = v1A1 = v2A2 and p =
F 1

A1
=
F 2

A2
. (3.7)

Introducing nt = A1/A2 for the area ratio leads to the following equations,

v2 = nt v1 and F 2 =
1
nt

F 1 , (3.8)

and, consequently,

Z2mech =
1
n2

t

Z1mech . (3.9)

Velocity transformers are applied as impedance transformers as exemplified by
the compression chamber at the mouth of a horn loudspeaker – see Section 5.2
for details.

3.4 Rules for Deriving Analogous Electric Circuits

When deriving the analogous electric circuit of a mechanic or acoustic circuit,
the mechanic or acoustic one-, two- or triple-port elements must be replaced
by analogous electric elements. When connecting those elements, the following
rules apply.

For electromechanic analogies – refer to Fig. 3.5,

• Chains (cascades) of mechanic elements result in chains of electric ele-
ments. The masses or their analogous single-port electric elements always
form the end of a chain or of a branch
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• Branching of mechanic two-port elements leads to parallel branching in
analogy# 2 and to serial branching in analogy# 1, in each case by means of
rigid, massless rods. Again, the single-port elements form the end elements

Fig. 3.5. Electromechanic analogies for mono-, dual- and triple-port elements

For electroacoustic analogies,

• Chains of acoustic elements result in chains of electric elements. The single-
port spring and its analogous electric element form end elements

• Parallel branching of acoustic elements leads to parallel branching of elec-
tric elements

Fig. 3.6. Electric analogies of a simple mechanic parallel-branch oscillator, (a)
analogy # 1, (b) analogy # 2
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3.5 Synopsis of Electric Analogies of Simple Oscillators

The schematic in Fig. 3.6 shows how the electric analogies are derived for
mechanic parallel-branch oscillators, often simply called parallel oscillators,
and further, how the electric analogies are derived for mechanic serial-branch
oscillators, often simply called serial oscillators. Figure 3.7 provides a synopsis
of the different possible analogous relationships.

Fig. 3.7. Synopsis of the electric analogies of simple mechanic and acoustic oscilla-
tors

3.6 Circuit Fidelity, Impedance Fidelity and Duality

By looking at the electromechanic analogies given in Fig. 3.7, it becomes ap-
parent that the circuits derived by analogy# 2, namely, with F =̂ i and v =̂u,
show the same topology as their mechanic counterpart. This behavior is called
circuit fidelity or topological fidelity. Please note that in this case impedances
transform into admittances and vice versa.

However, those circuits derived with analogy# 1, that is, with F =̂ u and
v =̂ i, result in a topology that is dual with respect to the mechanic original.
In this case the impedances lead to isomorphic expressions, what is called
impedance fidelity. The circuit topologies transform into the dual ones.

In electrical networking terminology, the term dual refers to two circuits
where one behaves in terms of voltages just as the other one behaves in terms
of currents. We find that Y = const2 Z for the elements of dual circuits. This
means that the impedance of the one circuit is proportional via a real constant



34 3 Electromechanic and Electroacoustic Analogies

to the admittance of its dual pair. Important dual pairs include the elements
capacitance, C, v.s. inductance, L, and resistance, R, v.s. conductance, G.
Further, in dual networks, closed loops of one (meshes) correspond to nodes
of the other, and vice versa. Consequently T-circuits correspond to π-circuits,
and serial-branching circuits correspond to parallel-branching ones.

The electroacoustic analogy that we use possesses both circuit fidelity and
impedance fidelity, which is why the other possible analogy is never applied.

To understand the characteristic features discussed above, it is helpful to
realize that the loop equation3 holds for the quantities u, vΔ and p

Δ
, while

the node equation holds for i, F , and q.
In this book we prefer the electromechanic analogy# 2 for its topologic

fidelity. Yet, this leads to a complication when mechanic and acoustic cir-
cuits are to be merged. If you want to connect an acoustic circuit with a
mechanic one, for example, through its input impedance Za, you may start
with deriving the equivalent mechanic impedance, Z mech = A2 Za. Now, in
the electromechanic analogy# 2, Z mech corresponds to Y el, while in the elec-
troacoustic analogy Za corresponds to Z el. The inversion of Z el into Y el can
be accomplished by means of an ideal gyrator – see Section 4.3 for details of
this dual-port element.

3.7 Examples of Mechanic and Acoustic Oscillators

Two examples of simple oscillators and their electric analogies are described
below. The first is a mechanic oscillator with two finite masses. This kind
of oscillator can be found in many practical applications, including engines
dynamically based on concrete plates, ultrasound-source transducers, and vi-
brating engine parts. The circuit diagrams are given in Fig. 3.8.

The characteristic frequency for the mechanic oscillator is

ω0 =
1√
nmΣ

. (3.10)

This relationship becomes evident by looking at the analogue electric circuit
and noting that the two capacitances are serially linked. Consequently, the
effective mass is

mΣ =
m1m2

m1 +m2
. (3.11)

Figure 3.9 shows a simple cavity resonator with two finite compliances, other-
wise known as an acoustic oscillator . Such closed-cavity resonators are, for ex-
ample, applied for calibration of microphones because they are well insulated

3 Recall that in electrical terms the loop equation is
∑

un = 0, with n = 1, 2, 3, · · ·,
meaning that by completely circling a mesh we end at the same electric potential.
The node equation is

∑
in = 0, with n = 1, 2, 3, · · ·, meaning that all electric

charge that flows into a node must leave it at the same time
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Fig. 3.8. Analogous circuit diagram (analogy # 2) of a two-mass mechanic oscillator,
(a) mechanic arrangement, (b) analogous electric circuit. The plot in the middle
illustrates how the electric circuit is derived

from external noise and have low power losses as may be caused by radiation.
A vibrating piston excites the system and delivers an exactly known volume
velocity of q0.

The characteristic frequency of the acoustic resonator is

ω0 =
1√

man aΣ

, (3.12)

and its effective compliance is

naΣ =
na1 na2

na1 + na2

. (3.13)

Fig. 3.9. Circuit diagram for a two-cavity acoustic oscillator, (a) acoustic arrange-
ment, (b) analogous electric circuit
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Electromechanic

and Electroacoustic Transduction

In the preceding chapter, we dealt with simple linear, time-invariant mechanic
and acoustic networks and their electric analogies. In general, these networks
can be quite complicated and may assume any number of degrees of freedom.
Yet, regardless of how sophisticated the networks are, the energy and power
transported in these networks is either mechanic, acoustic, or electromagnetic.
Acoustic power and energy are of mechanic nature. Thus the terminologi-
cal distinction between mechanical, F , v, and acoustical coordinates, p, q, is
purely operational. In this chapter, we shall present the possibility of coupling
electrical and mechanical domains, which results in a coupling of electric and
mechanic energy and power. This topic is extremely important for modern
acoustics.

This coupling can be manifold. The coupling element, the electromechanic
coupler, can contain its own power sources and may be either active or passive.
The relationship between mechanic/acoustic and electric coordinates can be
linear or nonlinear. Coupling may be bi-directional, that is, exist for both
directions, electric to mechanic and vice versa, or only mono-directional. It
may be retroactive or not.

In this chapter we restrict ourselves to examples of practical importance.
On the mechanic/acoustic side we use the coordinates F and v, which can be
transformed into p and q, given that the effective area, A⊥, is known. In most
practical cases, a linear and time-invariant physical relationship between F ,
v and u, i is presumed. If this is not the case, approximate linearity may be
assumed for small alternating quantities superimposed on large steady offsets.
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4.1 Electromechanic Couplers
as Two- or Three-Port Elements

A coupling element between mechanic and electric domains is generally rep-
resented as a three-port representation – shown in Fig. 4.1 (a). In a housing
of mass, m, rigidly connected to the terminal 2, there is a movable component
which can be operated by means of a rigid, massless rod. This rod penetrates
the housing from the left, denoted terminal 1 in the figure.

Fig. 4.1. Black-box representations of a coupling element, (a) three-port represen-
tation, (b) two-port representation

The power that is transported into the movable component is

PΔ =
1
2
FΔ v∗Δ . (4.1)

Fig. 4.2. Schematic representation of a coupling element, distinguishing mobile
components and components blocked to the housing

The schema shown in Fig. 4.2 is the result of counting all masses rigidly
blocked to the housing as part of the housing mass, m. Assuming lossless
coupling at this point we have the following balance of power,
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FΔ v∗Δ = F 1 v
∗
1 − F

′
2 v

∗
2 , (4.2)

which consequently leads to

FΔ =
F 1 v

∗
1 − F

′
2 v

∗
2

v∗1 − v∗2
with vΔ = v1 − v2 . (4.3)

When the housing is fixed to the ground, as is frequently the case, v2 becomes
0 and yields vΔ = v1 and FΔ = F 1. In this case, terminal 2 may be disregarded
because no power passes through it.

Regardless of the specific case, the essential role of the electromechanic
coupler is to couple the introduced mechanic power, (1/2)FΔ v∗Δ, at one port
and the provided electric power, (1/2)u i∗, at the other – or vice versa. Fig-
ure 4.1 (b) illustrates the situation in the form of a two-port element. This
figure will be the basis for the rest of this chapter.

4.2 The Carbon Microphone – A Controlled Coupler

An important class of electromechanic couplers consists of couplers where the
signal-representing quantities in one network, mechanic or electric, accomplish
the coupling by controlling elements of the other network.

An illustrative historic example is the carbon microphone, which was an
important part of telephone technology for about a century and was, during
that period, the most frequently-used microphone type worldwide.

The carbon microphone is a unidirectional coupler working in the mechanic
to electric direction. It requires a DC power supply and behaves as an active
element at its output port. It can actually perform a power amplification on
the order of 30, which is about 15 dB. This property was the main reason for
its widespread use at a time when telephone terminals had no other built-in
amplifiers.

Fig. 4.3. Section view of a carbon microphone
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Figure 4.3 illustrates a section through a carbon microphone. The electrically
conducting (carbone) membrane is excited by the sound-pressure impinging
on it.

A carbon electrode is positioned behind the membrane, and the gap be-
tween this back electrode and the membrane is filled with fine-grain carbon
gravel. Further, a Helmholtz resonator may be arranged in front of the mem-
brane to boost the sensitivity in the main spectral range of speech signals.

The electric resistance of the gravel, about 100Ω, varies according to the
alternating pressure on it. If a DC current is applied to this arrangement,
the current will be superimposed on an alternating current as the resistor
varies. The AC component of the current can be filtered out using a trans-
former – shown in Fig.4.3. Typical carbon microphones have a sensitivity of
Tup ≈ 500mV/Pa, which corresponds to 500mV for a 94-dB sound.

Several disadvantages should be mentioned though. First, carbone micro-
phones produce many upper harmonics with a power of up to 25% of the
fundamental harmonic. Second, they generate quite a bit of internal noise,
and, finally, they are power consuming. For these reasons, these microphones
have been replaced in modern technology with electret or chip microphones –
see Section 6.6.

Other examples of controlled couplers are the foil-strain gauge (a con-
trolled resistor), the piezotransistor (a pressure-sensitive transistor), and the
compressed-air loudspeaker in which an electromagnetic valve controls a
stream of compressed air to generate sounds of up to 160dB.

4.3 Fundamental Equations
of Electroacoustic Transducers

From an application standpoint, the most important electromechanic couplers
are those where electric power is directly transformed into mechanic power,
or vice versa. This class of coupler is called transducers. The term transducer
is usually reserved for those couplers that can work bi-directionally and are
intrinsically passive, meaning that they do not have power sources of their
own. Coupling by means of transducers is retroactive because there is power
flowing across the domains.

Fig. 4.4. Schematic plot of a linear, time-invariant transducer
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The following system of linear equations applies when the transducers are lin-
ear and time-invariant. This most important case is schematically illustrated
in Fig. 4.4. (

v
F

)

=
(
A11 A12

A21 A22

)(
u
i

)

, (4.4)

where we omit the subscript Δ from now on for simplicity. This form of the
fundamental transducer equations is called the primary form. The coefficients
of the transfer matrix, Aik, are called chain parameters.

We will now concentrate on transducers that transform power using force
effects in electromagnetic fields. In such transducers the Lorentz force is effec-
tive. It can be generally expressed as

−→
F = Q el

−→
E +Q el (−→v ×−→

B ) , (4.5)

or, in expanded form, with l being the path of i in the B-field,

−→
F = (C u)−→E + i (−→l ×−→

B ) . (4.6)

If we assume the simple case in which the electric field strength, −→E , and the
magnetic-flux density, −→B , are constant, we can derive the following principles
from these equations for the forces in transducers1.

• For purely electric fields the force, F , is proportional to the voltage, u
• For purely magnetic fields the force, F , is proportional to the current, i

Real transducers have additional components beyond the actual energy-
transducing elements. Transducers working with magnetic fields always con-
tain an inductance, and those working with electric fields always have a capac-
itance. We also have to expect a resistance, representing electric power losses.
On the mechanical side, mass is unavoidable. A spring is required to provide
a restoring force on the oscillating mass and to compensate for gravitation,
and there is usually some mechanic damping as well.

It is possible to mathematically separate the real transducer into a chain
of three two-port elements – depicted in Fig. 4.5. The inner transducer can be
configured as ideal, that is, without any resistances, dampers, or reactances.
The inner transducer cannot store energy in any way because it is lossless,
and it is not directly accessible from the outside. For the complex power at
its ports we can write

F i v
∗
i = ui i

∗
i . (4.7)

We shall now derive the fundamental equations for inner transducers based
on either magnetic or electric fields.

1 In general, higher forces can be achieved with magnetic fields because the electric
field-strength is limited by the danger of disruptive discharge. This is the reason
that electric motors and generators usually use magnetic fields
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Fig. 4.5. A real transducer as a chain of three two-ports

As noted above, F and v are proportional in magnetic-field transducers. The
proportionality coefficient, M , is a real constant and specific to a particular
transducer. With the movable component blocked, meaning vi = 0, and the
electric port cut short, meaning ui = 0, we measure a force, F i, when applying
a current, ii, as follows,

F i = M ii . (4.8)

Since energy is neither lost nor stored in the inner transducer, the power
at the two ports is identical by definition. Consequently, we also know the
relationship between vi and ui when F i and ii are zero, namely,

vi =
1
M

ui . (4.9)

A combination of the two yields
(
vi

F i

)

=
(

1/M 0
0 M

)(
ui

ii

)

. (4.10)

By applying an electromechanic analogy# 2, we can identify the ideal trans-
former as analogy of the magnetic transducer shown in Fig. 4.6.

Fig. 4.6. The ideal transformer as analogy for the ideal magnetic-field transducer

Electric-field transducers show proportionality of F and u. The proportional-
ity coefficient, N , is again a real constant, and specific to a particular trans-
ducer. With the movable component fixed so that vi = 0, the equation is

F i = N ui , (4.11)

and, due to the identity of the power at the two ports, it follows that
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vi =
1
N

ii , (4.12)

which results in the subsequent matrix equations,
(
vi

F i

)

=
(

0 1/N
N 0

)(
ui

ii

)

. (4.13)

Electromechanic analogy# 2 renders the ideal gyrator as analogy for the
electric-field transducer – see Fig. 4.7. The ideal gyrator is a two-port element
that is dual to the ideal transformer2.

Fig. 4.7. The ideal gyrator as analogy of the ideal electric-field transducer

4.4 Reversibility

In mechanics as well as in electric networks, the principle of reciprocity may
apply. In mechanics, for example, we can observe it in experiments like the
one shown in Fig. 4.8.

Fig. 4.8. Mechanic reciprocity experiment with a bending beam, (a) Force applied
at position x2, deflection at position x1, (b) vice versa

The experiment demonstrates that when we apply a force to a bending beam
at position 2 and observe a deflection of the beam in position 1, the ratio of
2 When using the analogy #1, the transformer would represent the electric-field

transducer and the gyrator the magnetic-field tranducer
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force and deflection is the same as would be observed if the force were applied
at position 1 and the deflection were observed at position 2, assuming that all
other forces are zero. This situation is illustrated by the following equation.

F (x2)
ξ(x1)

∣
∣
∣

F (x1)=0
=
F (x1)
ξ(x2)

∣
∣
∣

F (x2)=0
. (4.14)

The same principle holds in electric networks for the ratio of voltages at
one port and currents at another, assuming that these networks are only
constructed of inductances, capacitances, resistances, and ideal transformers.
Mathematically, the formulation of the principle of reciprocity is as follows,

det |A| = A11 A22 −A12A21 = +1 , (4.15)

with chain parameters and by using the chain reference system for currents
and voltages – see Fig. 4.4.

In order to cover electric-field transducers, gyrators must be included as
additional elements, which requires us to modify equation (4.14). This re-
quirement becomes clear when we use analogy# 2 to check the reciprocity for
magnetic-field and electric-field transducers. For magnetic-field transducers
we find 1

M M − 0 = +1, but for electric-field transducers, 0 − 1
N N = −1.

Compare Figs. 4.6 and 4.7 for more clarification. The gyrator obviously in-
troduces a 180◦ phase shift, but this phase shift is irrelevant in most cases.
Please note that it can be introduced just by the choice of analogy!

Consequently, it is sufficient to require only that det|A| != 1, which leads
to the following, more general equation,

∣
∣
∣
u

F

∣
∣
∣

i=0
=

∣
∣
∣
v

i

∣
∣
∣

F=0
. (4.16)

This equation essentially says that the ratio of the power at port 1 and port 2
is independent of the direction of transduction, provided that both ports are
terminated with a real, purely resistive impedance. When the above equation
holds, we call a transducer power symmetric or reversible.

4.5 Coupling of Electroacoustic Transducers
to the Sound Field

In order for electromechanic transducers to work, they must be coupled to the
sound field in such a way that they can either act as receivers3 by withdraw-
ing power from the field or as emitters4 by delivering power to it. Fig. 4.9
illustrates these roles. In this way, we have moved from electromechanic to
electroacoustic transducers.
3 Note that in hearing-aid technology the sound emitter is called receiver because

it receives electrical signals
4 Emitters are sometimes also called transmitters, to denote that an electrical sig-

nals is transmitted to the sound field
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Fig. 4.9. Coupling electromechanic transducers to the sound field renders electro-
acoustic transducers

Let us consider the sound emitters first. The following thought experiment
may help us to better understand sound-field coupling at the emitter’s end –
see Fig. 4.10. A sound emitter may be operated in a vacuum. In this case, cou-
pling does not take place because there is no sound field. The mechanic output
is idle, meaning that F = 0. An electric input impedance of Zel|F=0 = u/i
can be measured at the input of the transducer in this condition.

Fig. 4.10. Thought experiment to illustrate the radiation impedance, (a) evacuated
volume, no sound radiation, (b) gas-filled volume, sound is radiated

Now let air flow into the volume. A different input impedance is measured
afterwards, which is explained by the fact that the emitter is no longer idle at
the output port. This port is now terminated by a finite impedance called the
radiation impedance, Z rad = F/v. The radiation impedance is a mechanic
impedance. The emitter now delivers power to the sound field that can be
expressed as

P =
1
2

Re {Z rad}
∣
∣v2

∣
∣ =

1
2
r rad |v|2 =

1
2

Re {F v∗} . (4.17)

The radiation impedance depends on the type of sound field. In the case of
plane waves, it is a real quantity. We than have Z rad = r rad, where r rad is
called radiation resistance. In the free field, plane waves are hard to realize,
but they may be approximated in the beam of a highly directional sound
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source – see Section 10.4 Exact plane waves only exist in tubes – as dealt with
in Section 7.5.

In the case of omnidirectional radiation, characterized by spherical sound
fields of zero order, Re {Z rad} is proportional to ω2 below a limiting frequency,
ω′ – see Section 9.1 for details. This holds, for example, for built-in loudspeak-
ers – refer to Section 5.2. One way to ensure that the radiated power does not
decrease below the limiting frequency is to increase the volume velocity with
decreasing frequency according to the formula

|v|2 ∼ 1
ω2

, which means |a| = ω|v| != constant . (4.18)

For sound receivers, the coupling to the sound field depends on directional
characteristics as well. The relevant question in this case is which sound-
field quantity drives the movable component of the transducer because this
determines the receiver principle. The most important cases are the following.

• The driving force is proportional to the sound pressure, that is F ∼ p
• The driving force is proportional to the sound-pressure gradient, namely,

F ∼ ∂p/∂r

We speak of pressure receivers in the former and pressure-gradient receivers
in the latter case.

4.6 Pressure and Pressure-Gradient Receivers

Figure 4.11 (a) schematically illustrates the construction of pressure receivers.
There is a closed volume with a membrane of effective area, A, covering part of
the surface. The complete arrangement is small compared to the wavelength
of the sound, λ.

Fig. 4.11. Pressure receiver, (a) construction, (b) directional characteristic
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The driving force in this case turns out to be F = Ap
1
. This relation does

not depend on frequency, that is, F �= f(ω). The sensitivity of the de-
vice has a spherical directional characteristic5, Γ = 1 – see in Fig. 4.10 (b).
Here we take the microphone axis as the reference direction. In other words,
Γ = F (δ)/F max, with δ being the angle between microphone axis and the
sound-incidence direction. Please note for all plots of directional characteris-
tics that they have to be considered as three-dimensional, although only the
vertical projection is shown here.

Fig. 4.12. Pressure-gradient receiver, (a) construction, (b) directional character-
istic

Figure 4.12 (a) illustrates the construction of pressure-gradient receivers. As
with the pressure receivers, the linear dimensions are small compared to the
wavelength. There are two membranes, one on each side of the otherwise
closed volume, and each having effective area A. The movable component is
coupled to the membrane in such a way that its driving force is equal to the
difference of the forces affecting each membrane. The same can, by the way,
be achieved with only one membrane that is accessible for sound from both
sides. The driving force, consequently, becomes

F = A (p
1
− p

2
) = A p

Δ
. (4.19)

For the pressure difference between two points in a sound field in the direction
of wave propagation, we have

p
Δ

=
∂p

∂x
Δx , (4.20)

with ∂p/∂x being a vector, called sound-pressure gradient, −−−→gradp . To create
a pressure difference between the two membranes, only that portion of −−−→grad p
that coincides with the microphone axis becomes effective. This portion is
5 Γ , the directional characteristic, is the ratio of the magnitude of the driving force

taken for a sound incidence from a certain direction compared to the magnitude
of the driving force in the direction of maximum sensitivity
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p
Δ

= −−−→gradp Δx cos δ . (4.21)

The directional characteristic – depicted in Fig. 4.12 (b) – turns out to be

Γ = cos δ . (4.22)

This is called the figure-of-eight characteristic. The plus signs and minus signs
in the plot denote a 0◦- or 180◦-phase difference, respectively, between the
pressure-gradient signal and the electric output signal.

Let us now consider two special cases, a plane sound field and a spherical
one. For a diverging plane wave, we have in simplified form

p(x) ∼ e−jβx, with β = ω/c , (4.23)

as will be derived in Section 7.3. Consequently, we get

∂p

∂x
∼ ω

c
e−jβx . (4.24)

This means that the driving force and, thus, the transducer sensitivity be-
comes proportional to the frequency, that is F ∼ ω.

Fig. 4.13. Two sound-pressure waves of different frequencies

Figure 4.13 illustrates this fact. It shows two sound-pressure waves of different
frequencies, ω2 > ω1, frozen at an instant t = t1. Clearly, the pressure dif-
ference, p

Δ
, between two points Δx apart is higher for the higher frequency.

Note what would happen if the microphones were not small compared to the
wavelength, λ. For a finite Δx, the pressure difference, p

Δ
, would vanish for

Δx = n λ/2. For real microphones this happens above about 4–10kHz.
For a diverging spherical wave of zero order, which we shall introduce in

more detail in Section 9.1, a simplified equation for the sound pressure is

p(r) ∼ 1
r

e−jβr . (4.25)
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The factor 1/r is due to lossless spherical expansion, where it is assumed that
the same active power passes through all spherical areas (shells) around the
sound source. The sound-pressure gradient, then, results as

∂p

∂r
∼

(
1
r

+
jω
c

)
1
r

e−jβr with β = ω/c . (4.26)

Fig. 4.14. Illustrating the near-field component of the sound-pressure gradient

When approaching the sound source, the frequency-independent sum term,
1/r, increases relative to the frequency dependent one, jω/c. This leads to a
relative gain of the low frequencies compared to the higher ones.

The first term in the sum is sometimes called the near-field gradient, and
the second one the far-field gradient. While the far-field gradient originates
from phase differences – explained in Fig. 4.13 – the near-field gradient stems
from the decrease of amplitude with distance, an effect that is independent of
frequency. Figure 4.14 further illustrates this latter effect.

Pressure-gradient receivers are usually much less sensitive than pressure
receivers since ∂p/∂r � p(r). The relative increase of the low frequencies in
the near field is exploited to construct microphones for acoustically adverse
conditions like very noisy or reverberant situations. These microphones are
less sensitive for distant sources than they are, for instance, for a speaker’s
voice when held close to the mouth. We can find them used by bus-drivers or
announcers at fairs for example.

4.7 Further Directional Characteristics

When linearly superimposing a pressure and pressure-gradient receiver, one
arrives at a directional characteristic called cardioid. Figure 4.15 (a) shows
such a characteristic. The mathematical expression for it is
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Γ =
1
2

(1 + cos δ) , (4.27)

where the reference direction for normalization is again the receiver axis. There
are two ways of realizing such a receiver. The first one is to arrange both
receivers in practically the same position (coincidence microphones) and add
their output signals in phase and with the same amplitude at frontal incidence.
The second one – illustrated in Fig. 4.15 (b) – uses an acoustic delay line to
guide sound from the rear side of the receiver to the back of the membrane.

Fig. 4.15. Cardiod microphone, construction and directional characteristics

Receivers that select higher-order pressure gradients from the sound field than
gradient receivers with figure-of-eight characteristics achieve even sharper spa-
tial selectivity. The higher orders are determined according to ∂np/∂rn and
lead to directional characteristics as depicted in Fig. 4.16. These receivers
are, however, even less sensitive and very frequency dependent, according to
F ∼ ωn. The analytical expression for their directional characteristics is

Γ = cosn δ . (4.28)

Fig. 4.16. Higher-order figure-of-eight directional characteristics

The receivers we have dealt with so far have all been small compared to the
wavelengths considered, so that no interference takes place. We shall now dis-
cuss an example of a receiver that is clearly larger than typical wavelengths.
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This so-called line microphone – schematically depicted in Fig. 4.17 – delib-
erately exploits interference of incoming waves.

Fig. 4.17. Line microphone

The line microphone is a receiver with an extremely narrow directionality that
can be realized for a fairly broad frequency band. It consists of a tube that
is typically open at one end and fitted with a microphone at the other end.
Along the tube there is a slit through which sound can enter.

Fig. 4.18. Directional characteristics of line microphones of different length

Now consider the following two extreme cases.

• Sound impinges laterally, meaning that all points on the slit are excited in
phase, prompting waves that all propagate to the microphone. They can-
cel each other out upon arrival because of their different travel distances,
making the receiver insensitive to this direction

• Sound impinges frontally. Now all waves propagate in phase to the mi-
crophone and add up there upon arrival. The receiver has its maximum
sensitivity in this direction

Figure 4.18 illustrates the complete directional characteristics for two receivers
of different length. The computation of such diagrams will be discussed in
Section 9.4. It should be noted that the slit is often covered with fabric with a
flow resistance that varies along the tube. This compensates for losses during
wave propagation in the tube.
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4.8 Absolute Calibration of Transducers

This section explains how the principle of reversibility can be used for abso-
lute calibration of an electroacoustic coupler, M . A necessary tool is a small
supporting transducer, X , that is reversible and has a spherical directional
characteristic. A constant sound source is also required. At the supporting
transducer we have, due to reversibility as stated in (4.16),
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∣
∣
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. (4.29)

Fig. 4.19. Overview of the reversibility method for absolute transducer calibration.
M ... electroacoustic coupler to be calibrated, X ... supporting transducer (reversible)

Figure 4.19 denotes the two steps to be taken. In the first step, both the
supporting transducer and the microphone to be measured are positioned
closely together (spatially coincident) in a free sound field. The output voltages
of both components are measured with their electric output ports at idle. The
ratio of the two voltages measured corresponds to the ratio of the sensitivities
of the two transducers and is expressed as

∣
∣
∣
∣
uX

uM1

∣
∣
∣
∣ =

|T up|X
|T up|M

. (4.30)

In a second step, we now use the supporting transducer as a spherical sound
source. This source is excited with a current, i, and generates a volume velocity
of q. Due to the negligible power efficiency of such a source, we can assume
that its acoustic port is mechanically idling, that is F = 0. This means with
(4.29) that we have

|q| = |T up|X |i| . (4.31)

With the acoustic impedance, |p/q| = |Za|, which can be computed for the
spherical sound field with the distance known, we arrive at

|u|M2 = |p| |T up|M = |q| |Za| |T up|M . (4.32)
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Inserting (4.30) into (4.31) produces

|q| = |T up|X |i| =
∣
∣
∣
∣
uX

uM1

∣
∣
∣
∣
∣
∣T up

∣
∣
M

|i| . (4.33)

Filling this expression into (4.32) results in

|u|M2 = |Za| (|T up|M)2
∣
∣
∣
∣
uX

uM1

∣
∣
∣
∣ |i| , or (4.34)

|T up|M =

√
|uM1

| |uM2
|

|Za| |uX| |i|
. (4.35)

Please note that only electric measurements were necessary to determine the
sensitivity coefficient, |Tup|M , of the electroacoustic coupler to be calibrated,
which does not need to be reversible.

An overall accuracy of 1% can be achieved with this calibration method
because electric measurements are very accurate. It is therefore in use in
certified calibration laboratories. The conceptual essence of the method is
summarized in Fig. 4.20. The point is that by knowing the ratio and the
product of two quantities, both of them can be determined.

Fig. 4.20. Conceptual summary of the absolute-calibration method
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Magnetic-Field Transducers

While dealing with magnetic-field transducers in this chapter and electric-field
transducers in the next, we will demonstrate that the force-law relationship
between the mechanic force, F , and the coupled electric quantity, u or I, is
either linear or quadratic. A linear force law, characterized by F ∼ u or F ∼ i,
is observed when the energy content of the magnetic or electric field does not
vary when the movable component changes position. A quadratic force law,
characterized by F ∼ u2 or F ∼ i2, appears when the movable component
meets the electric or magnetic field at a boundary, implying that the energy
of the field varies when the movable component changes position. The force
in the boundary area is given by the relationships described below that can
be derived by imagining a small virtual shift of the border area. We have

F (x) = − d
dx

[
1
2
L(x) i2

]

, (5.1)

for the magnetic field, and

F (x) = − d
dx

[
1
2
C(x)u2

]

, (5.2)

for the electric field, having recalled from electrodynamics that the energy,
W =

∫
F (x) dx, stored in an inductance is WL = (L i2)/2, and the energy

stored in a capacitance is WC = (C u2)/2.
Such quadratic force laws must be linearized before they can be used with

linear transducers. This linearization is performed by adding a constant offset
quantity (bias) to the alternating quantity under consideration. Magnetization
bias can, for instance, be achieved with a permanent magnet or a constant
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magnetization current for magnetic-field transducers, and, similarly, polariza-
tion bias can be achieved with an electret or a constant polarization voltage
for electric-field transducers.

Fig. 5.1. Linearization of force characteristics

Figure 5.1 illustrates the basic idea of this kind of linearization. Adding bias
shifts the alternating quantity to a less curved part of the force plot. In mathe-
matical form we get for x= 	 x∼,

F ∼ x2 = (x= + x∼)2 = x2
=︸︷︷︸
1

+ 2 x= x∼︸ ︷︷ ︸
2

+ x2
∼︸︷︷︸
3

. (5.3)

The right side of equation (5.3) has three parts,

• Part 1 denotes a constant quantity. This part can be filtered out with an
appropriate high-pass filter

• Part 2 shows a linear relationship with respect to the force. We are pri-
marily interested in the alternating force, x∼, but it is important to note
that its amplitude is controlled by the amount of bias, x=

• Part 3 becomes more and more irrelevant with increasing bias, that is, for
x∼ � x=

Part 3 describes an alternating quantity with a doubled frequency. For for
sinusoidal excitation it behaves according to

sin2 ω t =
1
2

[1 − cos(2ω t)] . (5.4)
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Energy-converting elements with an intrinsically quadratic force law do not
become transducers in the strict sense until after they have been linearized.
It is also only at this point that they become reversible. If they were not
linearized, they could only work as sound emitters and not as receivers, and
they would only transmit sounds with twice the frequency of the original
electric excitation signal.

Magnetic-field transducers are called velocity transducers because the out-
put voltage of the internal transducer is proportional to the particle velocity,
that is ui ∼ vi. In comparison, electric-field transducers are called displacement
transducers because the output voltage of the inner transducer is proportional
to particle displacement, namely, ui ∼ ξi. The distinction between velocity and
displacement transducers is relevant for optimal mechanic tuning, which will
be discussed later.

5.1 The Magnetodynamic Transduction Principle

The Inner Transducer

Consider a rod-shaped conductor exposed to a stationary magnetic field, −→B
– drawn in Fig. 5.2. If an electric current, i, passes through this conductor, a
force, −→F , will act on it according to the expression

−→
F = i (−→l ×−→

B ) . (5.5)

Moving the rod within the stationary field induces an electric voltage, u, of

u = −→
l (−→v ×−→

B ) . (5.6)

Fig. 5.2. Rod conductor in a stationary magnetic field

The equations are vector equations, but they may be simplified by consider-
ing only movements within one spatial dimension. For movements of the rod
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perpendicular to in the direction of the magnetic induction, −→B , the equations
for the inner transducer in complex notation reduce to (5.7) and (5.8),
The first transducer equation becomes

F i = B l ii , (5.7)

and the second one, showing that this is a velocity transducer, becomes

ui = B l vi . (5.8)

In these equations, the term M = B l is referred to as the transducer coeffi-
cient. It is also possible to derive (5.8) from (5.7) as shown below, by defining
the power at both ports to be equal, which means

ui i
∗
i = F i v

∗
i . (5.9)

The Real Transducer

Real magnetodynamic transducers1 have elements besides the inner trans-
ducer. A simple equivalent circuit for a real magnetodynamic transducer is
given in Fig. 5.3. At the electrical end we see an inductance, L, and a resis-
tance, R. On the mechanical side we have the mass of the movable component,
m, the necessary spring, n, and some fluid damping, r.

Fig. 5.3. Equivalent circuit for a magnetodynamic transducer

From such an equivalent circuit it is, for example, possible to derive the electric
input impedance of the device, Zel, when it is used as a sound emitter. The
efficiency of electroacoustic sound sources is normally very low, usually only
a few percent. For this reason, it is usually assumed that the mechanic port
is idle, meaning that it has no load connected to it. In this case we get

Zel

∣
∣
F=0

= jω L+R +

[
M2

jωm+ 1
jω n + r

]

. (5.10)

1 The name for this kind of transducer, magnetodynamic or just dynamic, is of his-
toric origin. In the terminology of mechanics, transducers of all kinds are dynamic
devices
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5.2 Magnetodynamic Sound Emitters and Receivers

Dynamic Loudspeakers

The dynamic loudspeaker, illustrated in Fig. 5.4, is arguably the most impor-
tant magnetodynamic sound emitter.

Fig. 5.4. Section view of a dynamic cone loudspeaker

A membrane is elastically supported and driven by a coil carrying alternating
current in a stationary magnetic field. The membrane, usually a cone, plate or
dome, transmits sound into the surrounding air. It should oscillate as a whole,
without any bending waves. Membranes are typically of a non-deconvolveable
form, that is, they cannot be unfolded into a plane. They are manufactured
from stiff, sandwich-like layered foils or light foam.

Figure 5.5 illustrates how short coils in a long air gap or long coils in a
short air gap are used to make sure that the coil does not suffer from field
nonlinearities when moving inside the air gap. The long-coil solution allows
for smaller permanent magnets, making it more economical for high magnetic
fields. The resistive part of the coil impedance is normally 4–8Ω. The reactive
part, however, can be much larger but may be reduced by a built-in copper
ring. This ring also decreases nonlinearities and increases mechanic damping.
The damping, in turn, decreases the power efficiency of the device.

The power efficiency of a loudspeaker is proportional to the square of the
magnetic-flux density, B, in the air gap. With a common B of 1–2Tesla, which
is 1–2Vs/m2, the power efficiency is only a few percent. Horn loudspeakers –
as dealt with in Section 8.3 – may achieve up to 15%.
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Fig. 5.5. Coil and air gap of a dynamic loudspeaker

Loudspeakers are normally built into cabinets or baffles. This prohibits acous-
tic shortening, which is a balancing air flow between the front and back sides of
the loudspeaker. Undesired cavity resonances of the housing can be dampened
with absorptive material like rock wool or porous foam – refer to Section 11.2.

If a loudspeaker is built into a sealed cabinet, the compliance of the en-
closed air has to be considered when determining the resonance frequency
of the system. At low frequencies, loudspeakers in baffles act as hemispheric
radiators while those in closed cabinets (boxes) radiate spherically. We shall
analyze this behavior in detail in Section 9.3.

Increasing the size of loudspeakers increases the linear dimensions of the
membranes until they are on the order of sound wavelengths in air, causing
previously omnidirectional radiation to become increasingly directional. The
theory behind this phenomenon is discussed in Section 10.3. The membrane
may also enter into bending movements, which contradicts the otherwise in-
creasing directionality. Making the center of the membrane cone a little stiffer
encourages the high frequencies to be emitted from a smaller center area,
which reduces the effective mass of the system as frequency increases.

Because the cone center moves with the whole membrane, high frequencies
are radiated from a moving source, leading to audible Doppler shifts. This can
be avoided by producing high and low frequencies with different loudspeakers.
This arrangement – illustrated in Fig. 5.6 – consists of a tweeter for high
frequencies and a woofer for low frequencies. The frequency-cross-over network
must be carefully designed.

Fig. 5.6. Tweeters and woofers driven through a cross-over network
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Magnetodynamic tweeters2 (dome tweeters) look very much like the moving-
coil microphone shown in Fig. 5.10. To avoid focussing directional charac-
teristics at high frequencies, more than one tweeter can be employed. Then,
however, a serious problem experienced in all multi-path loudspeaker arrange-
ments has then to be faced an carefully treated, namely, interference of signals
radiated from loudspeakers at different locations.

Balancing all the different parameters of loudspeaker systems makes loud-
speaker design an art that requires extensive experience and knowledge of
materials. A membrane, for example, must not be too stiff, which would cause
resonance peaks, but also not too compliant, which would reduce efficiency.
The inner membrane support is normally fitted with some damping, the outer
support provides an impedance match that prevents the bending waves of the
membrane from being reflected.

The mechanic tuning of the loudspeaker usually shifts the main resonance
to the low end of the transmitted frequency range. Spherical waves are pre-
dominately emitted in this frequency range, and, below a limiting frequency
ω′, the real part of the radiation impedance, Zrad, increases proportional
to ω2. The radiated power situation depicted in Fig. 5.7 accounts for both
of these effects. In Fig. 5.7 it is assumed that the system is excited with a
constant force, F , which is equivalent to constant-current excitation.

Fig. 5.7. Tuning the frequency response of dynamic loudspeakers

Tuning the mechanic resonance to lower frequencies extends the range. The
acceleration, a, of the membrane should be constant to keep the radiated
power independent of frequency since |v2| ∼ 1/ω2 means |a| = ω|v| = const.

The decrease of power radiation at high frequencies is partly counterbal-
anced by increased focussing toward receiving points inside the range of the

2 For piezoelectric tweeters see Section 6.4.
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radiation beam. Properly designed higher-order resonances further improve
the efficiency of the system.

Possible audible booming, that is, low-frequency ringing, is avoided by re-
ducing the inner impedance of the electric source until it becomes a matched-
power source. This reduces the peak of the resonance. Further reduction of the
inner impedance and the current excitation causes the constant-force excita-
tion to convert into a constant-voltage excitation and, thus, into a constant-
velocity excitation. Modern power amplifiers can have inner impedances of
few mΩ only.

Electric equalization using the techniques discussed here can overcome
the mechanic deficiencies of the loudspeaker, but be aware that very large
mechanic forces may be needed, reducing the power efficiency. Monitoring the
movement of the membrane with sensors and controlling the driving force
accordingly is called motional feedback and has been successful at reducing
distortions – particularly at the lower end of the frequency range.

Dynamic Headphones

There are basically two types of dynamic headphones, open and closed. The
open version is traditionally worn supra-aurally, or on top of the ear, and the
closed version is worn circum-aurally, or surrounding the ear.

Open (open-back) headphones are mechanically tuned like loudspeakers
(low-end tuning), although these headphones are not mounted in a baffle or
box. This results in acoustic shorting, but the effect is not problematic in this
instance because the listeners’ ears are very close to the transducers.

Closed headphones work on a closed air volume, na, which may have some
degree of parallel leakage. According to an extremely simplified model that
disregards leakage-mass effects, sound passing through this leakage will expe-
rience some fluid damping, ra.

Fig. 5.8. Simplified model of a closed headphone

The situation is depicted in Fig. 5.8. Resulting from

q

p
= jω na +

1
ra
, we have p =

q

jω na + 1
ra

. (5.11)
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In order to achieve a constant sound pressure, p, over the entire frequency
range, q

0
and v must increase proportionally with ω from the middle frequen-

cies on. This is typically accomplished with high-end tuning and aperiodic
damping, where ξ is held constant and v ∼ ω. At low frequencies, an addi-
tional resonance is sometimes applied to create a “fuller” perception of sound.

Dynamic Microphones

Dynamic microphones have been the most widely used consumer microphone
type for a long time. Only recently have they been outnumbered by electret
and silicon-chip microphones – see Section 6.6.

The ribbon microphone type represents the fundamental principle of dy-
namic microphones in the clearest form. A softly supported ribbon of light
conductive material like aluminium moves between the poles of a permanent
magnet – illustrated in Fig. 5.9.

Fig. 5.9. Ribbon microphone

As the sound field reaches the ribbon from both sides, the system acts as
a pressure-gradient receiver. It is mechanically low-end tuned. This means
that it works in the region above its characteristic frequency, that is, where
the ribbon responds as a mass and we have v ∼ 1/ω. This compensates for
sensitivity that would typically decrease with ω. As a direct result of this
tuning, the ribbon microphone is unfortunately mechanically delicate and
very sensitive to structure-borne sound transmitted from the floor as well
mechanic impact. It is usually elastically supported to reduce these effects.

The sensitivity and inner impedance of the ribbon microphone are low
since there is only one ribbon in the magnetic field. With a transformer in
chain, which that transforms the inner impedance to about 200 Ω, a typical
sensitivity would be Tup ≈ 1 mV/Pa.

Ribbon microphones can also be built to form spherical or cardioid re-
ceivers by positioning an acoustic sink to one side of the ribbon. Ribbon
microphones are rare today but sometimes irreplaceable. Trumpet sounds in
studios, for instance, are often picked up with these microphones since they are
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difficult to overload, meaning that they do not produce nonlinear distortions
even at very high sound pressures like > 130 dB.

Fig. 5.10. Moving-coil microphone

The moving-coil microphones is a type of velocity transducer that increases
sensitivity by using a coil instead of a ribbon – depicted in Fig. 5.10. As a
result, the induced voltage increases with the number of turns, ν. Unfortu-
nately the mass of the movable component also increases, which may cause
audible transient effects due to arrival-time distortions. Typical sensitivities
are Tup > 1.5mV/Pa. There are many different, sometimes very sophisticated
constructions of dynamic microphones with sizes as small as about 20mm in
diameter. Since moving-coil microphones have a low inner impedance, they
do not require an amplifier close to the transducer. The coil, however, makes
them susceptible to magnetic interference, a susceptibility that can be dimin-
ished by putting a fixed compensation coil in series with the moving coil.
The mechanic tuning depends on whether the receiver is pressure or pressure
gradient and on the directional characteristics.

The input impedance of pressure receivers like the one shown in Fig. 5.10
should be purely resistive to achieve a constant ratio of p/v and a constant
resultant output voltage. To accomplish this, the system is usually heavily
damped and the main resonance of the system is tuned to middle frequencies
– illustrated in Fig. 5.11. Further resonances can be applied at the upper and
lower end of the frequency region for the purposes of equalization. These res-
onances are created by additional cavities behind the membrane in Fig. 5.10,
which also shows the felt rings that produce the damping.

Pressure-gradient microphones, that is, figure-of-eight microphones as well
as cardioid microphones, can usually be recognized by a second sound inlet on
the backside, leading to a carefully specified acoustic delay-line. The system
is mechanically tuned to the low end, so that the system acts as a mass in its
main operational frequency range. The following construction features can be
observed in actual cardioid microphones. Both principles can be employed to
decrease the near-field effect.
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• The variable-distance principle uses delay lines with different effective
lengths for different frequencies in order to increase the driving force at
low frequencies

• The double-path principle uses two transducers with different delay lines,
one for the high frequencies and one for the low. The two transducers are
connected by an appropriate cross-over network

Fig. 5.11. Mechanic tuning of a moving-coil microphone

5.3 The Electromagnetic Transduction Principle

The Inner Transducer

Figure 5.12 illustrates the fundamental arrangement for the inner-transducer
principle.

Fig. 5.12. Electromagnet with a movable armature

To derive the transducer equation, we must compute the force on the movable
armature. This is done by imagining a small virtual shift of the armature, dx.
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We start with a fundamental relation from electrodynamics, Ampere’s law,
which states that in an arrangement as shown in Fig. 5.12, the electric current,
i, and the magnetic-flux density, B, are proportional as follows,

i ν = (B/μ0) 2x , ν . . . number of turns in the coil (5.12)

whereby it is assumed that the iron cores of the yoke and the movable armature
are highly permeable, so that the energy of the magnetic field is concentrated
in the air gap, 2x. Multiplication with the cross-sectional area of the air gap,
A, yields

A i ν = (AB/μ0) 2x = (Φ/μ0) 2x , (5.13)

Φ is the magnetic flux. By inserting the definition of the inductance, L = νΦ/i,
into (5.13), we get the inductance of our arrangement in the form

L = ν2 μ0A

2x
. (5.14)

Referring to (5.1) and (5.14), we now compute the contracting force as

F (x) = − d
dx

[
1
2
L(x) i2

]

=
1
2
i2 ν2

2 x2
︸ ︷︷ ︸
(B/µ0)2

μ0A =
B2A

μ0
=

Φ2

μ0A
. (5.15)

This is clearly a quadratic power law. To linearize it, we add a permanent
magnetic flux, Φ=, as a magnetic bias – either by applying a permanent mag-
net or due to a constant current, i=. This flux is large in comparison to the
alternating flux, Φ∼, and the two result in Φ = Φ= + Φ∼, which leads to

F (x)∼ ≈ 2Φ= Φ∼
μ0A

=
2Φ=

μ0A

ν μ0A

2x
, with Φ∼ =

L i∼
ν

= ν
μ0A

2 x
i∼ . (5.16)

In this way, we obtain the first transducer equation,

F i ≈
(
ν Φ=

x

)

ii . (5.17)

The second equation can be easily derived by considering the equality of the
in- and output power, which results in

ui ≈
(
ν Φ=

x

)

vi . (5.18)

It is important to note that the permanent flux, Φ=, and the number of turns,
ν, appear in the relationship for the transducer coefficient, M = (ν Φ=)/x.
This means that the transducer becomes more efficient and, therefore, more
sensitive with increasing magnetic bias and increasing number of coil turns.
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The Real Transducer

The equivalent circuit of the real electromagnetic transducer corresponds to
the magnetodynamic transducer circuit, with the addition of one very in-
teresting feature. The mechanic compliance is supplemented by a negative
compliance called the field compliance, nf = dx/dF |i= , which results from
decreasing the air gap3. This decreasing gap increases the force attracting the
armature and opposing the reversing mechanic force. For large displacements
this may cause the membrane to bounce to one of the magnet poles and cling
there. This is a very undesired effect that becomes more likely with increasing
permanent magnetic bias.

5.4 Electromagnetic Sound Emitters and Receivers

Electromagnetic transducers can be built to be very small and very efficient,
but, because of their intrinsically quadratic force law, nonlinear distortions are
harder to manage than with magnetodynamic transducers. Examples of tradi-
tional applications include telephone-receiver capsules, miniature microphones
for hearing aids, pick-up transducers for record players and free-swinging loud-
speakers. An electromagnetic telephone-receiver capsule and a hearing-aid mi-
crophone are shown in Figs. 5.13 and 5.14 for historical reasons.

Fig. 5.13. Telephone-receiver capsule

In the traditional telephone capsule, a Helmholtz resonator tuned to the middle
of the speech spectrum is put on top of the membrane to improve sensitiv-
ity to speech signals. Please note that low-frequency tuning would support
membrane clinging as explained above.

3 The field compliance can be derived by virtual shift as sketched in the following.
1

nf

∣
∣
i=

= dF
dx

= 2Φ=
µ0A

dΦ=
dx

= 2Φ=
µ0A

−νi= µ0A
2x2 = 2Φ=

µ0A
−Φ=

x
= ( νΦ=

x
)2 −2x

µ0Aν2 = −M2

L
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A special construction trick – shown in Figure 5.14 – has long been used to
manufacture efficient miniature microphones. The reed can be made very thin
because it is not pre-magnetized. The result is a microphone that is less than
1 cm large and has a sensitivity on the order of T up ≈ 1mV/Pa.

Fig. 5.14. Hearing-aid microphone

5.5 The Magnetostrictive Transduction Principle

Rods made of ferromagnetic material experience a variation of their lengths
when exposed to magnetic fields. The effect can be conceptualized by con-
sidering the distances between the molecules as forming a fictive air gap.
This model leads to the same transducer equations as derived for the elec-
tromagnetic transducer. The force law is intrinsically quadratic and must be
linearized for transducer use.

Table 5.1. Magnetization coefficients of different magnetostrictive materials

Material Magnetization Coefficient

Iron Δl/l = −8 · 10−6

Kobalt Δl/l = −55 · 10−6

Nickel Δl/l = −35 · 10−6

Ferrite Δl/l = −100 to + 40 · 10−6

Table 5.1 lists one-dimensional magnetization coefficients, Δl/l, for a num-
ber of magnetostrictive materials. A negative sign means that the rod length
decreases when the material is magnetized. Yet, increases do also occur, for
example, in ferrit rods. More sophisticated models than the simple air-gap
model are obviously necessary to explain this effect.
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5.6 Magnetostrictive Sound Transmitters and Receivers

Magnetostrictive transducers have a very high mechanic impedance, which
makes them well-suited to underwater and/or ultrasound applications. This
type of transducer may achieve efficiencies of more than 90% when used in
water at ultrasound frequencies. Sometimes pre-magnetization is not applied
when this principle is used to build narrow-band emitters. In such cases, the
transducer emits sound signals with twice the frequency of the exciting electric
signals. It is important to remember that in such a context, electric transform-
ers for 60Hz emit sound at 120Hz, making them electrostrictive devices.

Fig. 5.15. Magnetostrictive transducers

Figure 5.15 shows two exemplary realizations of magnetostrictive transducers.
The left one is a two-mass resonator with the bridging bars acting as springs.
The different layers of ferromagnetic material are divided by thin isolating
foils to avoid eddy currents, which would cause losses. Typical applications
include emitters and receivers for echo sounders, and emitters of ultrasound
for drilling, cleansing and melding purposes.
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Electric-Field Transducers

In electric-field transducers mechanic forces are caused by electric fields or, in
the reverse effect, electric polarization is influenced by mechanic forces. Even
more than magnetic-field transducers, electric-field transducers exist in a wide
variety of forms and shapes. There are transducers that are intrinsically linear
and others that naturally have a quadratic force law and must be linearized.
There are also irreversible controlled couplers. In this chapter we concentrate
on the basic principles of electric-field transducers and discuss some illustrative
examples.

6.1 The Piezoelectric Transduction Principle

Certain crystals may be exploited as transducers because they have the follow-
ing properties. (a) The crystal’s physical dimensions change when an electric
field is applied to it. (b) Deformations caused by mechanic forces cause elec-
tric polarization on the surfaces of the crystal. These effects are subsumed
under the term piezoelectricity (pressure electricity). In order for piezoelectric
effects to occur, it is essential that the crystals have no center of symmetry –
illustrated in Fig. 6.1 (b).

Two characteristic material parameters are used to characterize piezoelec-
tricity, the piezoelectric coefficient, e, and the piezoelectric module, d. These
parameters are defined by the following equations,

σ = e s, and σ = d θ , (6.1)

where σ is the electric polarization, s = ξ/x is the strain (amount of stretch-
ing) and θ is the stress (mechanic tension). The piezoelectric module, d, is
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Fig. 6.1. Crystal lattices, (a) with, (b) without center of symmetry

often preferred over e by application experts1, but in this chapter we shall
work with e for systematic reasons.

There are generally six different strains that may exist in solid bodies.
Three of these exist as normal strains in the directions of the spatial coordi-
nates, x, y, z, and the other three are shear strains along the planes, xy, yz,
and xz. As an example, the dielectric flux density, D, for just the x-direction
is expressed as

Dx =
∑

i

ex,i si +
∑

j

εx,jEj , ε . . . dielectric permittivity (6.2)

with i . . . x, y, z, xy, yz, xz, and j . . . x, y, z. In many materials, however, most
of the piezoelectric coefficients are zero. We shall only deal with one coefficient
at a time in the following examples. Due to linearity, the total result can be
obtained by superposition.

Important materials with inherent piezoelectricity are the natural crystals
quartz and turmaline, and the artificial crystals potassium sodium tartrate
(known as Rochelle or Seignette salt), lithium niobate, lithium sulfate hydrate
and cadmium sulfide. Table 6.1 lists exemplary material characteristics, where
ε0 is the permittivity of the vacuum. Quartz is particularly stable with regard
to temperature and has very low internal losses. Rochelle salt has a high
piezoelectric effect but is very sensitive to temperature and humidity.

In addition to the materials noted above, many electrostrictive substances
can be treated to become piezoelectric. We shall deals with this influenced
piezoelectricty in Section 6.3.

The Inner transducer

Now we will derive the piezoelectric transducer equation for the longitudinal
piezoelectric effect, which is incorporated in the quartz thickness vibrator
shown in Fig. 6.2. The other five dimensions would be derived similarly.

As stated earlier, we have σ = e s and ξ = s x, from which we get σ =
e ξ/x. This allows us to write

1 It is possible to derive d from e with the modulus of elasticity, Young’s modulus,
being known and linearity according to Hook’s law being assumed
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Table 6.1. Typical characteristics of inherently piezoelectric materials∗)

Name Material Piezoelectric
coefficient, e

Piezoelectric
module, d

Dielectric
permittivity, ε

Remark

Quartz,
SiO2

Natural
crystal

170 mC/m2

(normal strain)
2.3 pC/N 4.6 ε0 Curie temp.

570 ◦C

Rochelle
salt

Synthetic
crystal

4.7 C/m2

(shear strain)
2300 pC/N 200 ε0

to 1300 ε0

Curie temp.
24–35 ◦C

∗)[C/N] = [m/V], ε0 = 8.854188 pF/m,

Fig. 6.2. Arrangement for the longitudinal piezoelectric effect

A σ = Q el = A
e

x
ξ , (6.3)

where Q el = σ A is the electric charge. By making use of i(t) = dQ el/dt and
v(t) = dξ/dt, and by assuming that the power is equal at the two ports, that
is F v∗ = u i∗, we arrive at the two transducer equations,

F =
(
e A

x

)

u, and i =
(
e A

x

)

v . (6.4)

The transducer coefficient, N, thus, comes out as

N =
e A

x
. (6.5)

Piezoelectric transducers, like all electric-field transducers, are elongation (dis-
placement) transducers. With the capacitance being C = Aε/x, we get

Q el = A
e

x
ξ = C u , (6.6)

which results in
u =

e

ε
ξ , that is u ∼ ξ . (6.7)

Note that the ratio of e/ε is the relevant quantity for characterizing the dis-
tinction of the piezoelectric effect.
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As stated above, we consider the inner transducers to be lossless. Yet, in
ferroelectric materials there may be losses due to hysteresis. These can be
accounted for in the equivalent circuit of the real transducer as shown below.

The Real Transducer

There is a gyrator in the equivalent circuit based on electromechanic anal-
ogy# 2. To avoid this, the mechanic part of the circuit can be replaced with
its dual, which is actually equivalent to switching to analogy# 1. Figure 6.3
shows a simplified equivalent circuit in both forms. The bottom one is usually
found in the literature.

Fig. 6.3. Equivalent circuits for electric-field transducers

The electric input impedance is most easily derived from analogy# 1 and is
equal to

Zel

∣
∣
∣
F=0

=
1

G+ jωC +
[

N2

r+jω m+ 1
jω n

] . (6.8)

The equivalent circuits depicted above can also be applied to the other kinds
of electric-field transducers.

6.2 Piezoelectric Sound Emitters and Receivers

Piezoelectric sound emitters and receivers have a wide range of applications
involving airborne, waterborne and solid-borne sound. Their realizations de-
pend heavily on the particular application. Figure 6.4 provides an overview of
more important vibration forms.
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Fig. 6.4. Various vibration forms induced by piezoelectricity

The bending oscillator is especially interesting. Two piezoelectric layers are
glued back-to-back with a conducting foil in between – shown in Fig. 6.5.
High capacitance, C, results in a low inner electric impedance that allows for
long connecting wires. The mechanic impedance is also relatively low, which
provides for an adequate impedance match, particularly in airborne-sound
fields. Since the two layers act electrically in parallel, good electrical shielding
is also achieved.

Fig. 6.5. Piezoelectric layers as a bending vibrator

A traditional domain for piezoelectric sound emitters is underwater appli-
cations, especially utilizing ultrasound. Figure 6.6 (a) shows a two-mass lon-
gitudinal vibrator that finds one of its applications in echo sounders. The
transducer is reversible, allowing it to also be used as an underwater sound
receiver, also called a hydrophone.

Piezoelectric sound receivers exist in a variety of forms. A relatively high
capacitance of about 1–3 μF is valuable from a practical standpoint because
it allows for a few meters of cable before amplification becomes necessary.
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Fig. 6.6. (a) Two-mass longitudinal vibrator, (b) crystal microphone

Figure 6.6 (b) shows a traditional microphone construction that has been
known as the crystal microphone. The interesting construction trick, worth
mentioning here, is that a saddle oscillator is used to achieve low compliance.

This kind of microphone has high-frequency tuning when used as a pressure
receiver and mid-frequency tuning with high damping when used as a pressure-
gradient receiver. To understand these rules, recall that they are elongation
receivers, and ξ = v/jω.

Fig. 6.7. Piezoelectric hydrophone

Figure 6.7 shows a hydrophone where several piezoelements are mechanically
stacked (cascaded). Stacking is a widely used method to increase the sensitiv-
ity of piezoelectric devices. Piezoelectric transducers are also used as accelera-
tion and/or velocity sensors in vibration meters. Three different construction
principles are depicted in Fig. 6.8.

Piezoelectric resonators are used in large quantities as frequency-determin-
ing elements in electric circuits, for example, quartz filters in electric watches.
Quartz is a preferred material here because of its low internal damping and
high thermal stability. The quartz crystal is operated in a vacuum in order to
achieve very high quality factors on the order of Q ≈ 5 · 105.
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Fig. 6.8. Acceleration/velocity sensors

Figure 6.9 illustrates an equivalent circuit for a quartz filter. There are two
resonances, one parallel and one serial, that lie very closely together, so that
ωp = 1.01ωs. The formulae for the resonance frequencies are

ωs =
1√

Lm Cm

, and ωp =
1

√
Lm( C Cm

C+Cm
)
. (6.9)

The curve of the impedance and admittances of the quartz filter over frequency
can roughly be estimated by applying Foster ’s reactance rules, which are well
known to network specialists. Figure 6.10 shows schematically the resulting
plots of the reactance and the magnitude of the input-impedance as a function
of frequency2.

Fig. 6.9. Equivalent circuit for a quartz filter

2 When plotting such curves, it is often advantageous to start with the lossless case
and then introduce small losses later
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Fig. 6.10. Reactance and magnitude of the input impedance of a quartz filter

6.3 The Electrostrictive Transduction Principle

All dielectric materials experience mechanic deformations when exposed to an
electric field. There is a basic quadratic relationship between the strength of
the field and the stress of the material, which can, however, be linearized with
the bias of a permanent electric field. It is in this way that the electrostrictive
effect becomes reversible and can be exploited for transducer use.

A particularly strong electrostrictive effect can be observed in ferroelectric
materials. Some of these materials can be permanently polarized by heating
them up above their Curie temperature and letting them cool down while
being exposed to a strong electric field. The ferroelectric Weiss domains ori-
ent themselves according to the direction of the electric field and keep this
orientation when cooled down.

The behavior of polarized electrostrictive materials is called influenced
piezoelectricity. It acts equivalently to inherent piezoelectricity. Literature of-
ten does not even distinguish between inherent and influenced piezoelectricity.
Important materials for technological applications are,

(a) Ceramic (polycrystaline) materials such as barium titanate and lead
zircone titanate,

(b) Amorphous piezopolymeres (polycrystalline or high-polymere semicrys-
taline artificial materials), such as polyvinyliden fluoride and polyvinyl cloride.

Among the piezoceramics, there are a number of proven compositions with
different characteristics, some of them having very high piezoelectric coeffi-
cients. Piezopolymers obtain their piezolectric features by being stretched in
one direction first and subsequently being polarized permanently. Transducer
equations and simple equivalent circuits are identical for inherent and influ-
enced piezoelectricity.

Some example material characteristics are compiled in Table 6.2. Note that
the material in the third line is not piezoelectric but an electret. Section 6.6
will give more details on electrets.
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Table 6.2. Characteristics of materials with influenced piezoelectricity (line 1
and 3). The material in line 3, shown for comparison, is a piezoelectret∗)

Name Material Piezolelectric
coefficient, e

Piezoelectric
module, d

Dielectric per-
mittivity, ε

Remark

Lead-zircone
titanat, PZT

Ceramic ≈ 20C/m2

(shear strain)
300 pC/N 1400 ε0

to 1700 ε0

Curie temp.
≈ 350 0C

Polyvinyliden
fluoride, PVF2

Polymer 50mC/m2

(transversal
strain)

25 pC/N 13 ε0 Curie temp.
> 100 0C

Polypropylene
cellular film, PP

Polymer 0.50 mC/m2

(normal str.)
0.50 pC/N 1.5 ε0 temp. limit

≈ 50 ◦C

∗)[C/N] = [m/V], ε0 = 8.854188 pF/m

6.4 Electrostrictive Sound Emitters and Receivers

Among the electrostrictive sound emitters and receivers there are many shapes
in addition to those used in piezoelectric transducers. It is indeed the great
advantage of influenced piezoelectricity that many relevant materials are freely
formable. Piezopolymeres can even be manufactured into foils (films) as thin
as a few μm that are elastic and can be stretched across curved surfaces.
Figures 6.11 and6.12 present a collection of realized forms.

Fig. 6.11. (a) Piezoceramic telephone receiver, (b) headphone with piezopolymer
foil, (c) ultrasound beamer with piezopolymer foil, (d) piezoceramic hydrophone
for ultrasound (diameter ≤ 0.5 mm)
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Fig. 6.12. (a) Piezoceramic horn tweeter, (b) piezoceramic calotte tweeter. NB:
Due to their high impedance, piezoelectric tweeters may be operated in parallel with
dynamic loudspeakers without cross-over networks

6.5 The Dielectric Transduction Principle

Historically this principle was called the electrostatic principle. The result of
the arrangement shown in Fig. 6.13 is a quadratic force law. Two conducting
plates, one fixed and one movable, are exposed to an electric voltage, u. The
plates become electrically charged, resulting in an electrostatic pulling force.

Fig. 6.13. Schematic sketch illustrating the dielectric transducer principle

The Inner Transducer

The transducer equations are again derived by assuming a virtual shift, dx,
of the movable plate after the electric source has been disconnected and the
plates hold a constant electric charge, Q el. For the energy of the field between
the plates, we obtain

WC =
1
2
C u2 =

1
2
εA

x
u2 =

1
2
Q2

el

C
, (6.10)

with Q el = C u and C = εA/x. With the electric charge, Q el, held constant,
a virtual shift of dx reveals a quadratic power law as follows.
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F (x) = − d
dx

[
1
2
C(x)u2

]

=
Q2

el

2 εA
=

C2

2 εA
u2 =

Aε

2 x2
u2 =

1
2
C

x
u2 . (6.11)

After linearizing with a DC voltage, so that u = u= + u∼ with u= 	 u∼,
and assuming equality of the port powers, that is F v∗ = u i∗, the following
transducer equations result,

F ≈
(
C u=

x

)

u, and i ≈
(
C u=

x

)

v . (6.12)

The dielectric transducer coefficient then becomes

N =
(
C u=

x

)

. (6.13)

The dielectric transducer is an elongation (displacement) transducer since,
with u = Q el/C, it follows that du ∼ dx and u ∼ ξ.

The Real Transducer

The equivalent circuit for the real dielectric, linearized transducers is identical
to the one shown in Fig. 6.3 for piezoelectric transducers. Electrical losses,
however, can be neglected in praxi. The mass of the membrane and, at least
for pressure receivers, the mechanic damping are made very small compared to
the compliance of the air cushion. In other words, the electric input impedance
becomes practically a capacitance, which results in

Zel

∣
∣
∣
F=0

≈ 1
jω(C + nN2)

. (6.14)

As with electromagnetic transducers, a detailed analysis shows that a negative
field compliance appears in parallel with the compliance of the air volume. As
a result, we again face some danger of the membrane jumping to one plate
and clinging to it, especially when the polarization voltage is too high.

6.6 Dielectric Sound Emitters and Receivers

Dielectric sound emitters are used as loudspeakers, especially tweeters, and as
ultrasound emitters – see Fig. 6.14. When light, tightly stretched membranes
are used, mechanic tuning to the high-frequency end is unavoidable but may
be compensated for with equalization in the electric circuit.

Since the membrane experiences only very small displacements, large areas
that move in phase are necessary for efficient sound emission. The efficiency
increases proportional to the square of the polarization voltage, but high volt-
ages carry the danger of electric burn-throughs. Fortunately, there are self-
healing membrane materials. A variety of shapes are possible, including large
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Fig. 6.14. Examples of dielectric sound emitter constructions

planes and spheres, whereby wire meshes may be used for the back electrodes.
Loudspeakers have been built with a frequency range down to 50Hz using
this principle. Figure 6.15 shows two realized push-pull arrangement. There
are also dielectric (electrostatic) headphones, which are known for their par-
ticularly “clear” presentation. This auditory clearness, which also holds for
electrostatic loudspeakers, can be attributed to the small moving masses that
do not cause any severe phase distortions.

Fig. 6.15. Electrostatic loudspeaker with push/pull driving forces, (a) arrangement
as used in high-quality loudspeaker, (b) arrangement as, e.g., used in spherical
loudpeakers

Dielectric sound receivers are known as condenser microphones. They have a
broad frequency range and only minimal distortions, making a high-quality
condenser microphone a good choice for studio and measuring applications.

Figure 6.16 presents a schematic section of such a microphone. The air gap
behind the membrane is typically 5–100μm, and capsule capacitances are 20–
100pF for studio and measuring microphones. The membranes are usually
gold-coated plastic foils. Polarization voltages are 40–200V. The losses of the
capsule capacitance are very low, represented by a so-called charge resistance
as high as 0.5–300GΩ. Due to the high inner impedance, the connecting wires
are prone to induce noise, such as humming. Further, they add a parasitic
capacitance and may cause mechanical problems. To avoid this, there is often
an impedance-converting amplifier positioned back-to-back with the capsule.
After this stage, typical sensitivities are about Tup ≈ 10–30mV/Pa.

Condenser microphones, when driven with in a so-called low-frequency
circuit – shown in Fig. 6.16 – have, on principle, a low-end roll-off that is
determined by the 1st-order R/C high-pass formed by the capsule capacitance
and the charge resistance.
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Fig. 6.16. Condenser microphone with accompanying electric circuit

An alternative method of operating dielectric microphones, the so-called high-
frequency circuit , avoids this high-pass behavior. Here, as a result of their vary-
ing capacitance, condenser microphones are integrated into electric-oscillator
circuits as frequency-determining elements. However, in this mode, the con-
denser microphones no longer act as reversible transducers but as controlled
couplers. The principle is applied for measurement microphones because it is
extremely resistant to induced noise. Also, as it does not have a lower cut-off
frequency, you can actually measure the static air pressure with it!

Condenser microphones are elongation transducers. As pressure receivers
they are high-end tuned, and as figure-of-eight or cardioid microphones – such
as shown in Fig. 6.17 – they are low-end tuned with prominent damping.

Fig. 6.17. Figure-of-eight or cardioid microphone

High symmetry of the figure-of-eight directional characteristics is achieved by
placing a counter electrode on the other side of the capsule. This also allows
the directional characteristics to be steered electrically since the sensitivities of
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the membranes are controlled by the applied polarization voltages. Figure 6.18
provides an overview.

Fig. 6.18. Microphone with steerable directional characteristic, (a) sphere (b)
supercardiod, (c) cardiod (d) hypercardiod, (e) figure-of-eight

Miniature dielectric microphones are micromanufactured very much like elec-
tronic chips are produced, for instance, by etching little membranes with an
air gap into the substrate of silicon wafers. This leads to silicon-chip micro-
phones – schematically shown in Fig. 6.19. Due to their very small dimensions,
chip microphones can easily be arranged to form arrays. Both during the pro-
duction process and the actual use, these microphones can withstand fairly
high temperatures.

Fig. 6.19. Silicon-chip microphone (schematic)

In a similar way as magnetization can be achieved with magnets, polarization
can be achieved with so-called electrets. These are materials that show perma-
nent polarization after appropriate treatment, such as exposure of heated ma-
terial to strong electric fields and subsequent down-cooling, corona discharge
or other forms of electron bombardment. If such a material, for example teflon
or flourcarbon, is positioned behind the membrane, an external polarization
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voltage becomes superfluous. Actually, these electrets easily mimic polariza-
tion voltages of 100V.

Figure 6.20 illustrates the principle. Electret microphones, including an
integrated impedance converter, can be manufactured very economically and
have become a widespread microphone type worldwide.

Fig. 6.20. Electret microphone, (a) version with electret membrane, (b) version
with electret back electrode

Recently, elastic electrets have become available. An example would be piezo-
electric polymere films, made from polyethylene. They are extruded and
treated mechanically afterwards in such a way that they develop a cellular
structure with ample void bubbles in it – sketched in Fig. 6.21.

Polarization is performed by corona discharge with the effect that sur-
face polarization develops around the voids. These so-called piezoelectrets be-
have very much like piezoelectric material – see Table 6.1 for comparison. If
piezoelectret films are coated with conducting layers, they act as microphones
without further attachments. With stacked ≈ 50-μm layers of these films,
sensitivities of ≥ 20 mV/Pa can be achieved.

Fig. 6.21. Piezoelectret film

6.7 Further Transducer and Coupler Principles

In addition to the transducer principles that we already dealt with in this and
the prior sections, there are some further techniques, even without magnetic
and electric fields that we would like to briefly mention.
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The first is based on the fact that a wire with a varying current passing
through it heats up, causes variations of the air pressure around it, and ra-
diates sound. This is called a thermophone. The resistance of the wire will
also vary in response to the varying velocity of air flow, making it useful as a
velocity receiver. This is called a hot-wire anemometer . Modern constructions
employ micromachined sensors with two very thin, heated wires. These cover
a frequency range from 0Hz up to more than 20 kHz.

A second transducer exploits the fact that a high-frequency glowing dis-
charge emits sound when modulated with an audio signal, creating the ba-
sis for an ionophone. The reverse effect, namely, that exposing the glowing
discharge to airborne sound changes its resistance in synchrony, is called a
cathodophone.

Further methods for picking up sound or evaluating vibrations include
the laser interferometer and optical microphones. The latter is comprised of
a light-conducting glass fiber that modulates light when deflected by sound.
These microphones can withstand high temperatures, making them useful, for
example, in the measurement of sound inside combustion engines. Further,
silicon-chip microphones have been built in such a way that the membrane
movements are monitored by optic rather than electric means. Optical micro-
phones are insensitive to electromagnetic fields, which can be an advantage
in adverse environments. They are not reversible, which means that they are
controlled couplers and not transducers.
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The Wave Equation in Fluids

So far in this book we have dealt with vibrations. These are processes that vary
as functions of time. We were able to describe relevant types of vibrations with
common differential equations. This chapter now focuses on waves, which are
processes that vary with both time and space. Their mathematical description
requires partial differential equations.

Motivated by the electroacoustic analogies, we start this chapter with an
excursion into electromagnetic waves. This excursion will bring us back to
sound waves in the next section1.

Fig. 7.1. Equivalent circuit for a differential section of a homogeneous, lossless
electrical transmission line

Figure 7.1 illustrates the equivalent circuit for a elementary section of a ho-
mogeneous, lossless electrical transmission line. For this section, the following
loop and node equations hold,

1 Readers who have not yet heard of electromagnetic waves may wish to read
Sections 7.1–7.2 first
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u−
(

u+
∂u

∂x
dx

)

= L′ dx
∂i

∂t
, and (7.1)

i−
(

i+
∂i

∂x
dx

)

= C′ dx
∂u

∂t
. (7.2)

The following two linear differential equations are obtained by neglecting
higher-order differentials,

−∂u
∂x

= L′ ∂i
∂t

and − ∂i

∂x
= C′ ∂u

∂t
. (7.3)

This set of equations shows that a temporal variation of the slope of one of
the variables results in a proportional spatial variation of the slope of the
other. This causes that the total energy on the line swings between two types
of complementary energies, namely,

• magnetic energy per length, W ′ = 1
2L

′ i2

• electric energy per length, W ′ = 1
2C

′ u2

The two linear differential equations (7.3) can be combined into a differential
equation of second order, which is

∂2u

∂x2
=

1
c2line, el

∂2u

∂t2
. (7.4)

This is the so-called wave equation, here in the formulation for electromagnetic
waves on an electrical transmission line. Hereby c line, el is the propagation
speed of electromagnetic waves on the transmission line, namely,

c line, el =
1√
L′ C′ . (7.5)

In acoustics we also have waves that propagate along one coordinate, for
example, in gas-filled tubes with small diameters compared to wavelength.
Such longitudinal compression waves are schematically sketched in Fig. 7.2.

Fig. 7.2. One-dimensional longitudinal acoustic wave. Zones of compression and
rarefaction are schematically indicated

Two complementary forms of energies are as well required for these types of
waves to occur, but in this case we choose energies per volume to be compatible
with the use of p and v as characteristic sound-field quantities. We thus get
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• potential energy per volume, W ′′ = 1
2κ p

2 κ ...volume compressibility
• kinetic energy per volume, W ′′ = 1

2� v
2 � ...mass density

Mimicking the wave equation for the electromagnetic waves, we now suggest
the following wave equations for one-dimensional acoustic waves,

− ∂p

∂x
= �

∂v

∂t
and − ∂v

∂x
= κ

∂p

∂t
, (7.6)

and the combined second order expression as

∂2p

∂x2
=

1
c2
∂2p

∂t2
, (7.7)

with the propagation speed of sound waves to be

c =
1√
κ �

. (7.8)

The pressing question now is whether these supposed equations, which are
so neatly analogous to electric expressions, are actually in compliance with
physical reality. The answer is yes, at least approximately. Yet, there are a
number of features of the media where sound exists that must be idealized.
The following section will elaborate on them.

7.1 Derivation of the One-Dimensional Wave Equation

We assume an idealized medium as a model of the real physical medium. Only
compression and expansion but no shear stress are allowed in this medium,
which limits us to a category of media called fluids . Many gases and liquids can
be treated as fluids, which only experience longitudinal waves. The following
features of the idealized medium are assumed.

• The medium is homogeneous and does not crack, meaning that there are
no inclusions of vacuum as might be caused by cavitation

• The thermal conductivity is zero, which assumes adiabatic compression

• The inner friction is zero, meaning that there are no energy losses and no
viscosity

• The medium has defined mass and elasticity

We now assume that the medium is not flowing and that there is no drift,
meaning that v= ≈ 0. The alternating part of the pressure be small compared
to the static pressure, that is, p= 	 p∼. The alternating part of the density
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is also small then in comparison to the static one, �= 	 �∼. This results in a
so-called small-signal operation of the medium.

We must recollect three fundamental physical relationships in order to
arrive at the wave equation. These are listed in the following.

• Hook ’s law, applied to fluids
• Newton’s mass law
• The mass-preservation law

These three relationships will now be formulated in their differential forms
that are required for the rest of our discussion. In differential form, they are
known as

• State equation
• Euler ’s equation
• Continuity equation

The State Equation

The relationship p = f(�) applies to the medium because it has mass and
elasticity. For small-signal operation, that is �∼ � �=, we substitute this
function with its tangent at the operating point, that is

p∼ =
∂p

∂�

∣
∣
∣
�=

�∼ or p∼ = c2 �∼ . (7.9)

This leads us to the state equation in the form

∂� =
1
c2
∂p

∣
∣
∣
�=

or c =

√
∂p

∂�

∣
∣
∣

�=

. (7.10)

In this way we make our first linearization by assuming a linear spring charac-
teristic for the fluid. We shall later prove that c is actually the speed of sound,
which is specific for a material but are also dependent on its temperature and
static pressure.

The proportionality coefficient in the state equation, c2, can be estimated
theoretically for most single-atom gases by assuming a perfect gas. If such
a gas is compressed in the absence of heat conduction, we have so-called
adiabatic compression. The then applicable adiabatic law of thermodynamics
states that

p V η = const = p= V η
= , (7.11)

where V is the volume of a mass element concerned and η = cp/cv (usually
known as γ) is the ratio of the specific heat capacities2, with which we derive

2 These quantities are taken from thermodynamics, where cp is the specific heat
capacity at constant pressure and cv the specific heat capacity at constant volume



7.1 Derivation of the One-Dimensional Wave Equation 91

p =
(
V=

V

)η

p= =
(
�

�=

)η

p= . (7.12)

Differentiation of this expression at the position � = �= renders the following,

∂p

∂�

∣
∣
∣
�=

= η

(
�

�=

)η−1

︸ ︷︷ ︸
1 for � = �=

1
�=

p= , (7.13)

and then
∂p

∂�

∣
∣
∣
�=

= c2 =
η p=

�=
. (7.14)

Finally we get for the speed of sound in the perfect gas,

c =
√
η p=

�=
=

√
1

�= κ=
whereby κ= = κ |�== 1/(η p=) . (7.15)

The expression is written in a similar way for liquids, but there the reciprocal
value of the volume compressibility, the compression module K = 1/κ, is more
often used. Some specific material values are given in Table 7.1.3

Table 7.1. Values of typical materials

Material Density, �= Sound speed, c Characteristic
impedance, Zw

Air at 1000 hPa and 20◦C 1.2 kg/m3 343 m/s 412 Ns/m3

Water at 10◦C 1000 kg/m3 1440 m/s 1.44 · 106 Ns/m3

Steel (longitudinal wave) ≈ 7500 kg/m3 ≈ 6000 m/s ≈ 45 ·106 Ns/m3

Euler ’s Equation

Figure 7.3 depicts a differential mass of gas in a tube with rigid walls and a
diameter small compared to the wavelength. The mass element is accelerated
due to a pressure difference, and the total differential of the particle velocity,
v, a function of time and space, is

dv (x, t) =
∂v

∂t
dt+

∂v

∂x
dx . (7.16)

From this we arrive at the acceleration,

a =
dv
dt

=
∂v

∂t
+
∂v

∂x

dx
dt

, where
dx
dt

= v . (7.17)
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Fig. 7.3. An accelerated differential mass, dm, of fluid in a tube

According to Newton′s mass law, F = m a, we can now write

A

[

p−
(

p+
∂p

∂x
dx

)]

= (�Adx)
(
∂v

∂t
+
∂v

∂x
v

)

, (7.18)

which is Euler’s equation.
Please note that a second linearization is implemented by replacement of

� with its static value, �=. Further, the second term in the sum, v ∂v/∂x,
is usually irrelevant in acoustics since v is zero in resting media, and also
because the variation of v over space is usually small, which means that the
term is actually a differential of the second order. Neglecting it is our third
linearization4. We thus end at our first linear wave equation as follows,

− ∂p

∂x
= �=

∂v

∂t
. (7.19)

The Continuity Equation

Figure 7.4 depicts a fixed volume in a tube where mass flows in and out. This
situation follows the mass-conservation law, which states that what flows in
and does not come out again will remain inside the volume since mass does
not vanish.

The mass flowing in during a time, dt, is

dm in = A �=

dx
︷︸︸︷
v dt , (7.20)

and the mass flowing out during the same time is

3 The characteristic field impedance, Zw, also known as wave impedance, will be
introduced in Section 7.4

4 We must check whether this linearization is still justified when the medium is
flowing fast as it would in an exhaust system, and/or if we have rapid changes
of v over x as would occur at area steps in a tube. It is worth noting that the
second term is the more significant one in flow dynamics while the first term is
typically neglected there
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Fig. 7.4. A spatially-fixed differential volume, dV , of fluid in a tube

dm out = A�= v dt+A�=
∂v

∂x
dxdt . (7.21)

The difference, also known as the mass surplus, is

dmΔ = −A�=
∂v

∂x
dx dt . (7.22)

If the mass inside the volume has changed, the mass density in the volume
must have also changed, allowing us to write the mass surplus as

dmΔ = Adx
∂�

∂t
dt . (7.23)

Combining the two surplus expressions yields

−�=
∂v

∂x
=
∂�

∂t
, (7.24)

which is the continuity equation.
Since we want to use the field quantities p and v, we now substitute p by

v by applying the state equation (7.10) as follows,

∂�= =
∂p

c2
= κ=�= ∂p . (7.25)

By combining equations (7.24) and (7.25) we finally find the second linear
differential wave equation, that is

−∂v

∂x
= κ=

∂p

∂t
. (7.26)

Please note that κ has been replaced by κ=, which is our fourth linearization.

7.2 Three-Dimensional Wave Equation
in Cartesian Coordinates

The two wave equations that we have just derived are valid for a one-
dimensional axial wave in a tube. The walls of the tube do not play any role
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since we have a purely longitudinal wave that actually propagates in parallel
to the walls.

Our equations are also valid for a bundle of tubes – shown in Fig. 7.5 –
and nothing would change with respect to the wave if we took the tubes away.
Consequently, the equations still hold for one-dimensional longitudinal waves
in infinitely extended media.

Fig. 7.5. Bundle of tubes with one-dimensional waves in them

Since there is no shear stress in fluids, waves from different directions in the
medium just superimpose without influencing each other. This property allows
us to formulate the three-dimensional wave equations in Cartesian coordinates
by superimposing the wave components of the x, y, and z directions. By using
the following three operators from vector analysis,

−−−→gradp = −→∇ p =
{∂px

∂x
;
∂py

∂y
;
∂pz

∂z

}
, a vector, (7.27)

div−→v = ∇−→v =
{∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

}
, a scalar, and (7.28)

div−−−→grad p = ∇2p =
{∂2px

∂x2
+
∂2py

∂y2
+
∂2pz

∂z2

}
, a scalar, (7.29)

we can write the following handsome set of linear acoustical wave equations
for lossless fluids, with v̇ and ṗ denoting first-order time derivatives,

−gradp = �= v̇ , (7.30)

−div v = κ= ṗ , (7.31)

where we have omitted the vector arrows for simplicity. Combination of (7.30)
and (7.31) renders the wave equation with the second-order time derivative,

∇2 p =
1
c2
p̈ . (7.32)
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The corresponding equations for the particle velocity, v, shown below, looks
formally identical5, namely,

∇2v =
1
c2
v̈ . (7.33)

7.3 Solutions of the Wave Equation

Now we will present solutions of the wave equation. To keep the discussion
simple, we restrict ourselves to one dimensional cases, specifically the wave
equation in the following form, as predicted at the beginning of this chapter6.

∂2p

∂x2
=

1
c2
∂2p

∂t2
. (7.34)

Two or three-dimensional solutions can be formed by superposition of one-
dimensional solutions.

General Solution

This solution is known as the d’Alembert solution. d’Alembert assumes two
waves propagating in opposite directions, x and −x. Both the forward pro-
gressing and returning waves have the same speed, c. The solution is written
as

p(x, t) = p+

(
t− x

c

)
+ p−

(
t+

x

c

)
. (7.35)

Please note that, since this equation is a differential equation of the second
order, it can be satisfied by any function f(t±x/c) that is differentiable twice
with respect to both time and space.

Solution for Harmonic Functions

This solution, called the Bernoulli solution, is a special case of d’Alembert’s
solution applied to harmonic functions (sinusoids). Dealing with harmonic
functions allows us to take advantage of complex notation by rewriting the
wave equation as follows,

∂2p

∂x2
− (jβ)2p = 0 . (7.36)

This is known as the Helmholtz form, in which

5 In theoretical acoustics, the velocity potential, Φ, is frequently used. It is defined
as −→v = −−−−−→

grad Φ. Its wave equation is ∇2 Φ = (1/c2) Φ̈
6 This form can also be derived by combining the differential of (7.19) by x with

that of (7.26) by t
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β =
ω

c
= ω

√
�= κ= , (7.37)

is called phase coefficient7.
The solution can be found with the trial p = eγ x, which leads to the charac-
teristic equation γ2 = (jβ)2 and its solutions, γ

1,2
= ±(jβ)8. These solutions

allow again for two waves in opposite directions, namely,

p(x) = p
+
e−jβ x + p−e

+jβ x . (7.38)

Both the forward progressing and the returning waves go through a complete
period for β x0 = 2π. With x0 equal to the wavelength, λ, we obtain the
well-known formulae

λ f = c and β =
ω

c
=

2π
λ
. (7.39)

7.4 Field Impedance and Power Transport
in Plane Waves

First we look at the forward progressing wave, expressed as

p(x) = p
+
e−jβ x, and v(x) = v+e−jβ x . (7.40)

Following Euler, we obtain

�=
∂v

∂t
= − ∂p

∂x
and jω v+ e−jβ x �= = −(−jβ) p

+
e−jβ x , (7.41)

and, finally, considering the returning way likewise,

Zw =
p
+

e−jβ x

v+e−jβ x
= −

p− e+jβ x

v− e+jβ x
= �= c =

√
�=

κ=
. (7.42)

The real quantity, Zw, is known as characteristic field impedance or wave
impedance9. Since Zw is real in our case, sound pressure and particle velocity
are in phase, which generally holds for plane waves in lossless fluids.

The thus purely active (resistive) intensity, I = Re{I}, transported by the
forward progressing wave is

7 In physics this quantity is often called wave number or, more precisely, angular
wave number and denoted by k. In fact, it is not a “number” since is has the
dimension [1/length]

8 γ is called complex propagation coefficient, also denoted complex wave number k.
We shall make use of it later, particularly, in Sections 8.3 and 11.2

9 If losses in the medium are to be considered, Zw becomes necessarily complex
with the addition of an imaginary component
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I =
1
2

Re
{
p
+
e−jβ x

(
v+ e−jβ x

)∗}
=

1
2
|p

+
| |v+| =

1
2
Zw| v+|2 , (7.43)

which also holds for the returning wave.
The transported active power, P , results from multiplying the intensity

with the area that it crosses perpendicularly, resulting in the following scalar
product of two vectors, P = −→

I · −→A⊥.

7.5 Transmission-Line Equations and Reflectance

As previously mentioned, there is only axial wave propagation in tubes with
much smaller diameters than wavelengths, d� λ.

Since the ratio of p and v inside the tube is only dependent on the termi-
nating impedance of the tube, Z0 = p

0
/v0, it is convenient to formulate the

solution of the wave equation in terms of the distance to the position of Z0.
To this end, we substitute the coordinate x with −l – shown in Fig. 7.6.

Now, because of e±jβ l|l=0 = 1 at position l = 0, we have p
0

= p
+

+ p−
and v0 = v+ + v− . Keeping (7.42) in mind, we further have Zw = p

+
/v+ =

−p−/v−, which leads to the expressions

Zw v0 = p
+
− p− and p

0
/Zw = v+ − v− . (7.44)

From this point it follows that

p
+

=
1
2

(
p
0

+ Zw v0

)
, p− =

1
2

(
p
0
− Zw v0

)
and (7.45)

v+ =
1
2

(
p
0

Zw
+ v0

)

, v− = −1
2

(
p
0

Zw
− v0

)

. (7.46)

Fig. 7.6. One dimensional wave in a tube

For an arbitrary position, l = −x, the following expressions result,

p(l) =
1
2

(
p
0
+ Zw v0

)
e jβ l +

1
2

(
p
0
− Zw v0

)
e−jβ l and (7.47)
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v(l) =
1
2

(
p
0

Zw
+ v0

)

ejβ l − 1
2

(
p
0

Zw
− v0

)

e−jβ l . (7.48)

Complex decomposition with e−jα = cosα− j sinα leads to the following two
equations that are known as transmission-line equations10,

p(l) = p
0

cosβ l + jZw v0 sinβ l , (7.49)

v(l) = j
p
0

Zw
sinβ l + v0 cosβ l . (7.50)

Another popular way of writing these equations is

p(l)
p
0

= cosβl + j
Zw

Z0

sinβl , (7.51)

v(l)
v0

= cosβl + j
Z0

Zw
sinβl . (7.52)

Let us now discuss different terminations of the tube. Three cases are espe-
cially interesting.

• Z0 = p
0
/v0 = Zw ... This means that there is no reflection at the terminal,

and all power moves on. This case is called wave match and results in no
returning wave. Consequently, (7.49) becomes

p(l) = p
0
ejβ l (7.53)

• Z0 = ∞ and, hence, v0 = 0 ... This case is called hard termination and
is achieved by closing the tube with a rigid surface. In this case the for-
ward progressing wave will be fully reflected and no power is able to leave
through the terminal. Equations (7.49) and (7.50) render

p(l) = p
0
cosβl and v(l) = j

p
0

Zw
sinβl (7.54)

This describes a so-called standing wave. The sound pressure varies at all
positions sinusoidally as a function of time. Sound pressure and particle
velocity are 90◦ out of phase

• Z0 = 0 and, thus, p
0

= 0 ... Now the end of the tube is open, resulting in
soft termination. Neglecting any radiation out of the open end – which is
of course idealizing – the sound pressure is zero on the terminating plane.
The forward progressing and the returning wave will again superimpose
to a standing wave but will have a different phase angle than the one in
the hard-termination case. Again, there is no power leaving through the
terminal

10 This name originates from electrical engineering where the same equations hold
but with p being replaced by u and v by i
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To describe the reflection at the terminal plane of the tube, the reflectance,
r, is a useful quantity. It is defined as

r =
p−
p
+

=
1
2 [p

0
− Zwv0]

1
2 [p

0
+ Zwv0]

=
Z0 − Zw

Z0 + Zw
. (7.55)

We have r = 0 for wave match, r = +1 for hard termination and r = −1 for
soft termination. If intensity or power are under consideration, the following
definitions11 are used.

• |r|2 ... degree of reflection
• 1 − |r|2 = α ... degree of absorption

7.6 The Acoustic Measuring Tube

The acoustic measuring tube, also known as Kundt ’s tube, can be used to
measure field impedances and reflectances in the terminal plane of a tube.
Such a tube is schematically shown in Fig. 7.7. The tube can be excited by
a sound source from one end, a sinusoidal sound in our case. The other end
is terminated by the impedance to be measured. There is an arrangement of
absorbing material in front of the source to avoid back reflection.

Standard Method

A microphone can be moved along the axis of the tube to measure the sound
pressure as a function of its position. The sound pressure inside the tube
follows the following equation, whereby r = |r| e−jφr ,

p (l) = p
+

(e+jβ l + r e−jβ l) = p
+
(e+jβ l + |r|e−jβ l−φr) . (7.56)

For any |r| �= 0, this function will have maxima and minima along l. In other
words, a standing-wave behavior will show up – illustrated in the lower panel
of Fig. 7.6. The maxima will be located at all positions of l where the phase
angles of the two terms in (7.56) are equal, the minima accordingly, where the
phase angles are opposite. The actual positions thus are,

• Maxima at β l = −(β l − φr) ± nπ
• Minima at β l = +(β l − φr) ± nπ

This results in the following standing-wave ratio, S,

11 In the literature, these terms are often called reflection coefficient and absorp-
tion coefficient. However, their dimension is [1] and their value range is 0–1, or
0%–100%, respectively. This is why we prefer the term degree
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Fig. 7.7. Kundt ’s tube for impedance measurement

S =
∣
∣
∣
pmax

pmin

∣
∣
∣ =

1 + |r|
1 − |r| , (7.57)

from which we get the magnitude of the reflectance12 as

|r|(l = 0) =
S − 1
S + 1

. (7.58)

The phase angle of the reflectance, φr, can, for instance, be computed from
the position of the first minimum, lmin, and results as

φr(l = 0) = β lmin . (7.59)

Transfer-Function Method

In an alternative approach, the so-called transfer-function method , the com-
plex reflectance, r (l = 0), and, consequently, the terminating impedance,
Z0 = p

0
/v0, can be measured without microphones having to be shifted me-

chanically. Instead, two microphones at a mutual distance of lΔ = l2 − l1 are
employed at the positions 2 and 1 – depicted in Fig. 7.8. Starting from (7.49),
we write13

p
2

= p
1
cos(β lΔ) + jZw v1 sin(β lΔ) and, thus, (7.60)

p
2

p
1

= cos(β lΔ) + j
Zw

Z1

sin(β lΔ), or (7.61)

12 The theory of Kundt’s tube is homomorphic to the theory of the measuring line for
electromagnetic waves. To convert reflectances into impedances, and vice versa,
a graphical tool called Smith chart is useful. It converts an image of the complex
Z-plane onto an image of the complex r-plane

13 Note that all distances involved, that is, l1, l2 and lΔ = l2 − l1, have positive
values
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Z1 =
jZw sin(β lΔ)

(p
2
/p

1
) − cos(β lΔ)

. (7.62)

With a straight-forward transformation along the distance −l2, which follows
from the transmission-line equations (7.51) and (7.52), Z2 can be transformed
into the impedance at the surface of the probe to be tested, Z0. The relevant
formula is

Z0 =
Z1 cos(βl1) + jZw sin(βl1)

cos(βl1) + j(Z1/Zw) sin(βl1)
, (7.63)

In a similar way, we obtain a widely used formula for the complex reflectance,
namely

r =
(p

1
/p

2
) − e−jβ lΔ

e+jβ lΔ − (p
1
/p

2
)

e+j2β l2 . (7.64)

Fig. 7.8. Impedance measurement with the transfer-function method

The ratio p
1
/p

2
= T pp for a given frequency, ω1, is a transfer factor. Its

frequency function, H pp(ω), is called a transfer function. This fact lends the
method its name.

The transfer-function method fails for frequencies where the nominator
or denominator in (7.63) or (7.64) become zero. This is the case whenever
lΔ = λ/2. To cover a wide frequency range, the condition lΔ < π c/ω must
be fulfilled. To this end, more than two microphones at different positions
may be employed – or one microphone that measures sequentially at different
positions.
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Horns and Stepped Ducts

The wave equations derived in the preceding chapter allow for calculation of
arbitrary sound fields with any possible, physically meaningful boundary con-
ditions. We had restricted ourselves to one-dimensional waves so far. These
can, for instance, be observed in tubes with a diameter being small compared
to the wavelength, that is d � λ. This condition guarantees that no other
waveforms than axial ones can propagate in the tube. One-dimensional prop-
agation also means that all wave planes perpendicular to the axial direction
are planes of constant phase.

In the following, ducts shall be considered where the diameter varies
with x. In other words, the area function A = f(x) is no longer constant.
Nevertheless, the condition d � λ shall still holds. Two cases – depicted in
Fig. 8.1 – will be discussed.

Fig. 8.1. Two types of ducts with non-constant area function. (a) continuous vari-
ation of the cross-sectional area, (b) stepped variations



104 8 Horns and Stepped Ducts

• Continuous variation of the cross area. As long as this variation is only
gradual compared to the wavelength, it is still justified to assume one-
dimensional, axial propagation. Radial propagation can then be neglected

• Step-like mutations of the cross area as a function of x – so-called stepped
ducts. Very close to the position where the step occurs, we certainly have
radial components of the particle velocity. Yet, as radial waves cannot
propagate, they can be neglected already at small distances away from the
step. In fact, there we have plane waves again. If we look at the cross area
just Δx in front of the step and again Δx behind it, we can state that the
axial component of the volume velocity, q = A v, is the same in both cross
sections. Thus, in our calculations, we can neglect any modal dispersion in
the immediate vicinity of the step position and set the volume velocity at
both sides of the step to equal

8.1 Webster’s Differential Equation – the Horn Equation

This chapter deals with the condition where the area function varies only
gradually, and perpendicular areas are areas of approximately constant phase.
This case is captured by the so-called Webster equation or Horn equation. Fig-
ure 8.2 illustrates the derivation of this differential equation. Please consider
the elementary volume between the cross areas at x and x+dx.

Fig. 8.2. Cross-section of a horn, i.e. a duct with gradually increasing cross area

The state equation and Euler’s equation are applied in their original form,
namely,

∂� = κ= �= ∂p and − ∂p

∂x
= �=

∂v

∂t
, (8.1)

whereby, to be sure, p = p(t, x) and v = v(t, x) are functions of both time and
space. In the continuity equation, the non-constant area function, A(x), must
be reconsidered in the following way. The inflowing mass is

dm in = �=A(x) v dt . (8.2)
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The outflowing mass is

dm out = �=

[
A(x) + dA

dx dx
] (
v + ∂v

∂x dx
)
dt =

�=

⎡

⎢
⎣A(x) v +A(x)

∂v

∂x
dx+ v

dA
dx

dx+

2nd order differentials
︷ ︸︸ ︷
(· · · · · ·)

⎤

⎥
⎦dt . (8.3)

Neglecting the second-order differentials in the sum, we get the mass surplus
as follows,

dmΔ = −�=A(x)
(
∂v

∂x
+

1
A(x)

∂A

∂x
v

)

dt dx =

average area
︷ ︸︸ ︷(

A(x) +
dA(x)

2

)

dx
∂�

∂t
dt .

(8.4)
Again neglecting second-order differentials consequently yields

−�=

(
∂v

∂x
+

1
A(x)

dA
dx

v

)

=
∂�

∂t
, (8.5)

which is the modified continuity equation.
To get p as the second field quantity instead of �, the state equation (8.1)

is used and we arrive at

−
(
∂v

∂x
+

1
A(x)

dA
dx

v

)

= κ=
∂p

∂t
. (8.6)

Combining (8.1) and (8.6) leads to Webster’s equation, which is

∂2p

∂x2
+

[
1

A(x)
dA
dx

]
∂p

∂x
=

1
c2

∂2p

∂t2
. (8.7)

Please note that the term [1/A(x)] (dA/dx) is identical to d[lnA(x)]/dx. For
A(x) = const, Webster’s equation reduces to the normal one-dimensional wave
equation1.

For a number of analytically defined area functions, Webster’s equation
can be integrated in closed form. In the following section, we take two of
them as examples, namely, conical and exponential horns.

8.2 Conical Horns

For the conical horn – sketched in Fig. 8.3 – the area function is

A(x) = A0

(
x

x0

)2

. (8.8)
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Fig. 8.3. Conical horn

Inserting the area function into Webster’s equation results in

∂2p

∂x2
+

2
x

∂p

∂x
=

1
c2

∂2p

∂t2
, (8.9)

whereby we have used

1
A(x)

dA
dx

=
A0

A(x)
2
(
x

x0

)
1
x0

=
2
x
. (8.10)

Equation (8.9) can also be written in the following form as can be proven by
differentiating,

∂2(p x)
∂x2

=
1
c2
∂2(p x)
∂t2

. (8.11)

By inspecting this formula, it becomes obvious that its form corresponds to
the one-dimensional wave equation, yet, instead of p, we now have a product
p x = g. The solution is approached in the well known way by

g(x) = p(x)x = g
+
e−jβx + g−e+jβx . (8.12)

By restricting ourselves to the forward progressing (outbound) wave, we get
the following results for p and v,

p
+
(x) =

g
+

x
e−jβx and (8.13)

v+(x) = g
+

[
1

�= c x
+

1
jω �= x2

]

e−jβx , (8.14)

where the solution for the particle velocity, v, has been found via the solution
for p by applying Euler’s equation (8.1) with β = ω/c as follows,

−g
+
(x)

[

− 1
x2

e−jβx − jβe−jβ x 1
x

]

= jω �= v . (8.15)

1 Webster’s equation for v looks different from that as derived above for p
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The sound-field from the conical horn can be divided into a near field and
a far field. The threshold between the two is defined as the position where
the magnitudes of the real and imaginary parts of the velocity are just equal,
which is at ∣

∣
∣
∣

1
�= c xff

∣
∣
∣
∣ =

∣
∣
∣
∣

1
jω �= x2

ff

∣
∣
∣
∣ , (8.16)

resulting in a far-field distance of

xff =
λ

2π
=

1
βff

=
c

ωff
, (8.17)

with x < λ/2π being the near field and x > λ/2π the far field.
The sound pressure, p, decreases to half with a doubling of the distance, x.

In other words, the decrease is 6 dB per distance doubling. For v the situation
is more complicated. In the near field, v decreases with 1/x2 per distance
doubling, which is 12 dB decrease per distance doubling. However, in the far
field, v behaves like p with 6 dB decrease per distance doubling.

The field impedance Zf of the conical sound field results from dividing
(8.13) by (8.14) and is

Zf(x) =
p
+
(x)

v+(x)
=

1
1

�=c + 1
jω�=x

= �= c
j2πx

λ

1 + j2πx
λ

. (8.18)

For this field impedance we can draw a substitute, namely, a long tube with
a short branch where a concentrated mass is positioned – depicted in Fig. 8.4.
The right panel of the figure shows an electro-acoustic analogy.

Fig. 8.4. Equivalent circuits for conical horns

The reactive (imaginary) component, jω �= x, is the so-called co-vibrating
medium mass. This component swings about without transporting active
power. The active (real) component �= c becomes relatively (not absolutely!)
stronger with increasing distance. For x 	 λ/2π, Zf approaches �= c. Note
that �= c is the field impedance in a tube with a constant diameter and, thus,
the specific field impedance of the medium, Zw.
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8.3 Exponential Horns

The area function of the exponential horn – see Fig. 8.5 – is given by

A(x) = A0e2εx, (8.19)

with ε > 0 being the so-called flare coefficient.

Fig. 8.5. Exponential horn

By differentiation we get

1
A(x)

dA
dx

=
d [lnA(x)]

dx
= 2ε and, thus, (8.20)

∂2p

∂x2
+ 2 ε

∂p

∂x
=

1
c2
∂2p

∂t2
. (8.21)

The structure of this equation can most easily be understood by applying
complex notation, which leads to

δ2p

∂x2
+ 2ε

∂p

∂x
+
ω2

c2
p = 0 , (8.22)

an equation which recalls the equation of the damped oscillator – see Sec-
tion 2.3. We confine to the forward progressing wave again and, consequently,
try the approach p(x) = eγx that leads to the characteristic quadratic equation

γ2 + 2εγ +
ω2

c2
= 0 (8.23)

with its two solutions

γ
1,2

= −ε±
√

ε2 − ω2

c2
= −ε± j

√
ω2

c2
− ε2 . (8.24)

The complex quantity, γ, is termed propagation coefficient, whereby

γ = α+ jβ , (8.25)

with α being the damping coefficient and β the phase coefficient.
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The solution of the wave equation, hence, is an exponential function decreasing
with x. This is called spatial damping. The general solutions for p and v in
the forward progressing wave can be formulated as follows,

p
+
(x) = p

+
(0) e−εxe−j (

√
ω2

c2
−ε2) x = p

+
(0) e−αxe−jβx and (8.26)

v+(x) =
ε+ j

√
ω2

c2 − ε2

jω �=
p
+
(x) . (8.27)

Again, the solution for v has been derived from the one for p by applying
Euler’s equation (8.1).

A prerequisite for wave propagation is that the expression under the square
root is positive and, thus, results in a phase coefficient, β. This is the case
when ω2/c2 > ε2 and, accordingly, 2π/λ > ε holds. In fact, this is fulfilled
above a limiting frequency

ωl = ε c . (8.28)

Below ωl, there is an exponential fade-out as the expression under the root
becomes negative, and we then end up with pure damping without wave prop-
agation. Physically, this means that mass is shifted about, but no energy is
transported as no sufficient compression takes place. ωl decreases with de-
creasing flare coefficient, ε. In other words, the slimmer the horn, the lower
the limiting frequency.

Please note that the phase velocity, c ph, in the exponential horn, is differ-
ent from that in a free plane wave, c, namely,

c ph =
ω

β
=

ω
√

ω2

c2 − ε2
. (8.29)

Furthermore, c ph is frequency-dependent. This effect is called dispersion since
different frequency components travel with different speed and, thus, the dif-
ferent wave components arrive at the end of the horn at different instances2.

The so-called group-delay distortions, which describe the frequency-depen-
dent delay of the envelope of a transmitted signal, are highest close to the
limiting frequency. The group delay , τ gr, over a wave-traveling distance of l
is in our case

τ gr =
dβ
dω

=
l

c
√

1 − (ωl
ω )2

, (8.30)

The field impedance in the exponential horn, Z f , is given by

Z f =
p
+

v+

=
jω�=

ε+ j
√

ω2

c2 − ε2
= �= c

[√

1 − (
ωl

ω
)2 + j(

ωl

ω
)
]

. (8.31)

As with the conical horn, Z f approaches �= c = Zw with increasing frequency
since we have Z f ⇒ �= c for ω 	 ωl.
2 This, by the way, contributes to the characteristic sound of horn loudspeakers
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8.4 Radiation Impedances and Sound Radiation

The acoustic power that is sent out by an electro-acoustic transducer or any
other sound source, is proportional to the real part of the impedance, r rad =
Re{Z rad} that terminates the source at its acoustic output port. Since this
impedance is formed by the sound field coupled to the source, we call it
radiation impedance Z rad, and its real part radiation resistance. The radiation
impedance is a mechanic impedance – refer to Section 4.5 – namely,

Z rad =
F

v
. (8.32)

The radiated power, then, is

P =
1
2

Re {Z rad} |v|2 =
1
2
r rad |v|2 . (8.33)

The following relation holds between the field impedance, Zf , and the radia-
tion impedance, Z rad,

Z rad =
∫

A

Zf dA , (8.34)

with A being the effective radiation area.
For transducers that radiate into a horn, the effective area is equal to the

area of the mouth of the horn in the optimal case. In the synopsis shown in
Fig. 8.6, we assume that the tube/horn is so long that no waveforms are re-
flected back from the opening, but that the diameter is still small as compared
to the wavelength, that is d� λ. This is, of course, an idealized assumption.

Fig. 8.6. Schematic plot of the radiation resistance of (a) a tube, (b) a conical
horn, and (c) an exponential horn. Frequencies normalized to the limiting frequency,
ωl, of the exponential horn
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For the tube with a constant cross section, we get

r rad = Zw A0 = �= cA0 , (8.35)

for the conical horn

r rad (A0) = A0 Re{Zf} = A0 �= c
(ω

c x0)2

1 + (ω
c x0)2

, (8.36)

and for the exponential horn

r rad (A0) = A0 Re{Z f} = A0 �= c

√

1 − (
ωl

ω
)2 . (8.37)

For the conical horn, ωff , which forms the threshold between near- and farfield
at a given distance from the mouth, x1, is independent of the opening angle
of the horn. For the exponential horn, however, the limiting frequency, ωl

depends on the flare coefficient, ε.
The exponential horn is, among all horns that can be described with Web-

ster’s equation, the one with the steepest increase of Re{Z rad} = r rad as a
function of frequency. However, by considering the curvature of the waves, one
can find even more advantageous forms – for example, spherical-wave horns.

8.5 Steps in the Area Function

We shall now discuss the situation at the position of the step in a tube – shown
in Fig. 8.7. Left and right of the step, we have tubes with constant, though
different diameters. As already mentioned at the beginning of this chapter,
perpendicular modes at this position may be neglected because they cannot
propagate as long as d� λ holds at both sides of the step.

Fig. 8.7. Tube with steps in the area function

This means that, slightly away from the step, we only have axial waves again.
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The boundary conditions, thus, are

p
1

= p
2
, and (8.38)

A1 v1 = A2 v2, which is q
1

= q
2
. (8.39)

This means that both quantities are taken as continuous at the step. At the
step a reflected wave is created. Accordingly, by combining

p
1+

+ p
1− = p

2+
with A1

(p
1+

Zw
−
p
1−
Zw

)

=
p
2+

Zw
A2 , (8.40)

we get a reflectance

r =
p
1−
p
1+

=
A1 −A2

A1 +A2
. (8.41)

As q is continuous at the step, it makes sense to introduce this quantity
to deal with stepped-duct problems rather than the particle velocity v. The
transmission-line equations (7.49) and (7.50) can, thus, be rewritten with q
instead of v as follows,

p(l) = p
0

cosβ l + jZL q0 sinβ l, and (8.42)

q(l) = j
p
0

ZL
sinβ l + q

0
cosβ l , (8.43)

where

ZL =
Zw

A
=

1
A

√
�=

κ=
=

√
m′

a

n′
a

, (8.44)

is the specific acoustic impedance of the respective tube. m′
a is the acoustic

mass per length, the mass load, n′
a is the acoustic compliance per length, the

compliance load .
The two relevant energies now also come out as length-related quantities,

namely, kinetic-energy per length,

W ′ =
1
2
m′

a q
2, (8.45)

and potential-energy per length,

W ′ =
1
2
n′

a p
2 . (8.46)

The reflectance at the step between two tubes, each with constant cross-
section, results as

r =
ZL2 − ZL1

ZL2 + ZL1

. (8.47)

Please note that by taking p analogous to u, and q for i, we see a complete
analogy to the electric transmission line where we observe i1 = i2 and u1 = u2

at steps.
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8.6 Stepped Ducts

With q as the second wave quantity, we can easily deal with stepped ducts
by means of electric analogies. Furthermore, we can include acoustic concen-
trated elements into our consideration within the same analogue circuits –
refer to Section 2.6. This means, in fact, that the theories of analysis and
synthesis of electric networks, including transmission lines with and without
losses, can be directly used to deal with acoustical problems. For example,
acoustic filters with pre-described transfer functions can be designed in this
way, including high-pass, low-pass and band-pass filters. This possibility is,
for example, exploited in the design of mufflers for car-exhaust systems.

Fig. 8.8. Equivalent circuit for an acoustic tube segment

For the application of this method it is worth recalling that sections of
transmission lines and, consequently, acoustic tubes, can be described by T -
equivalents as given in the following matrix equation – see Fig. 8.8.

(
p
1
q
1

)

=
(

cosβl jZL sinβl
j 1
ZL

sinβl cosβl

)(
p
2
q
2

)

. (8.48)

These are the so-called two-port equations of a tube section, formulated in
wave-parameter form. Two-port theory says that the following relations holds,

1 +
Za1

Za2

= cosβ l and
1
Za2

= j
1
ZL

sinβ l , (8.49)

further,

Za1
= jZL tan

β l

2
and Za2

= −jZL
1

sinβ l
. (8.50)

Please note that because transcendental functions (tan, sin) are involved, the
elements can in principle not be realized by concentrated acoustic elements.
Yet, for sections of small lengths, that is l � λ, the following approximations
apply,

tan
β l

2
≈ β l

2
and

1
sinβ l

≈ 1
β l

. (8.51)
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Thereupon, with

ZL =
1
A

√
�=

κ=
and β = ω

√
�= κ= , (8.52)

we get

Za1
≈ 1

2
jω

�=

A
l =

1
2

jωm′
a l and Za2

≈ 1
jω κ=A l

=
1

jω n′
a l
. (8.53)

Fig. 8.9. Equivalent circuit for a tube segment

Figure 8.9 shows an equivalent circuit for a short section of a tube. This equiv-
alent circuit is, for example, in use to calculate the transfer function of the
human vocal tract or ear canal. The principle is depicted in Fig. 8.10. The
higher the attempted accuracy of the calculation, the more sections have to
be assumed.

Fig. 8.10. Approximation of a tube with varied cross-sectional area

Finally, in this section, we shall treat the case of a very short narrowing or
widening in a tube with otherwise constant cross section. The widening acts
like a concentrated, branching spring, Δn, the narrowing like a concentrated
serial mass, Δm. This can be figurately conceptualized as follows, taking a
widening section with the length l2 � λ as example – Fig. 8.11(a).
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Fig. 8.11. Equivalent circuit for short tube segments, (a) short widening in a long
constant-diameter tube, (b) short narrowing

From (8.53) we learn that

m′
a1

=
A2

A1
m′

a2
and n′

a1
=
A1

A2
n′

a2
. (8.54)

Now, the widening section with the length contains the mass

m a = m′
a2
l2 . (8.55)

If this mass were loaded upon the constant-diameter tube, we would need the
length

l1 =
A1

A2
l2 . (8.56)

Yet, a section of cross section A1 and length l1 would have a compliance of

n a =
A2

A1
n′

a2
l1 . (8.57)

What we actually have at the widening section, is, however,

na = n a2 l2 =
(
A1

A2

)

n a1

(
A1

A2

)

l1 =
(
A1

A2

)2

n a1 l1 . (8.58)

In other words, the widening section acts like a section of the constant-
diameter tube that has a cross section of A1 and a length of

l1 =
A1

A2
l2 , (8.59)

plus an additional parallel spring of

nΔ =

[(
A2

A1

)2

− 1

]

n a . (8.60)

For the additional serial mass for a narrowing section, mΔ – see Fig. 8.11(b) –
the explanation would run accordingly.
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Spherical Sound Sources and Line Arrays

The wave equation, ∇2p = p̈/c2 as derived in Sections 7.1 and 7.2 theoret-
ically determines all possible sound fields in idealized fluids, that is, gases
and liquids. The special task of computing sound fields for particular cases
requires solutions of the wave equation for particular boundary conditions.
In general, this task can be mathematically expensive, but there are helpful
computer programs available, some of which are based on numerical methods
like the finite-element method, FEM, or the boundary-element method, BEM.
In praxi, approximations are often sufficient to understand the structure of a
problem.

Closed solutions of the wave equation only exist for a limited num-
ber of special cases. We have already introduced the plane wave as one-
dimensional solution in Cartesian coordinates. A few further one-, two- and
three-dimensional cases are solvable in closed form, especially when symme-
tries allow for simplified formulations using appropriate coordinate systems
as is the case for spherical or cylindrical coordinates.

In this chapter, we shall discuss basic solutions of the wave equation in
spherical coordinates. In the same way that periodical time signals can be de-
composed into Fourier harmonics, spherical sound waves can be decomposed
into spherical harmonics1.

In order to start with the essential basics, we focus on the spherical har-
monics of 0th and 1st order and the sound sources that emit them. This also
makes sense from the engineering standpoint since 0th and 1st order sound
sources are of great practical relevance, mainly for the following two reasons.

1 Spherical harmonics are eigen-functions of the wave equation in spherical coor-
dinates
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• At low frequencies many sound emitters act approximately like sources of
0th or 1st order spherical waves

• According to the principle of Huygens, each point on a wave front can be
considered to be the origin of a spherical wave. Many sound fields can be
estimated in a comparatively simple way by using this principle. Sound
radiators with arbitrary directional characteristics can also be synthesized
from spherical sound waves

9.1 Spherical Sound Sources of 0th Order

The wave equation allows for a one-dimensional, point-symmetric solution.
This is a sound wave where all parameters only depend on the distance from
the origin, r. The solution does not depend on the direction of propagation,
which is always radial and directed either outward or toward the center. This
type of wave is called a spherical wave of the 0th order, and a sound source
that emits such a wave is called a spherical source of 0th order.

To derive the appropriate wave equation, it is helpful to transform the
wave equation from Cartesian coordinates, x, y, z, into spherical coordinates,
φ, δ, r. This is accomplished with the following well known formula,

Δ = ∇2 =
[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]

=
[

1
r2

∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin δ
∂

∂δ

(

sin δ
∂

∂δ

)

+
1

r2 sin2 δ

∂2

∂ϕ2

]

. (9.1)

Because the assumed sound field is point symmetric and only changes in the
radial direction, we can state that

∂

∂δ
=

∂

∂ϕ
≡ 0 . (9.2)

This leads to the wave equation for the 0th order spherical wave,

1
r2

∂

∂r

(

r2
∂

∂r

)

p =
∂2p

∂r2
+

2
r

∂p

∂r
=

1
c2

∂2p

∂t2
. (9.3)

Note that this equation is identical to the wave equation for conical horns,
which we derived in Section 8.2. The only difference is that x has been replaced
by r. This congruence is intuitively plausible since the spherical wave can be
thought of as a sound field composed of an infinite number of adjacent, very
slim conical horns. This is illustrated in Fig. 9.1. If the walls of these conical
horns are removed, the sound field stays the same since there is only radial
propagation.
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Fig. 9.1. Spherical waves of 0th order as a composition of conical waves

The solutions for the outward-progressing wave in the 0th-order spherical
sound field are

p
+
(r) =

g
+

r
e−jβr and (9.4)

v+(r) = g
+

[
1

�= c r
+

1
jω �= r2

]

e−jβr . (9.5)

The field impedance of the diverging wave is

Z f = �= c
j2π

λ

1 + j2πr
λ

=
1

1
�=c + 1

jω�=r

. (9.6)

The near field is r < λ/2π, and the far field is r > λ/2π.
Spherical sound fields of the 0th order are radiated by spherical sound

sources of 0th order, also called breathing spheres – shown in Fig. 9.2 (a).

Fig. 9.2. Sound sources for spherical waves. (a) 0th-order source, also called breath-
ing sphere, (b) an example of 1st-order sources, also called rigid oscillating spheres,
(c) an example of 2nd-order sources. NB: There are 2n+1 possible modes per order,
n, with n = 0, 1, 2 ...
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The Co-vibrating Medium Mass

It is an interesting exercise to calculate which part of the near field medium
mass moves back and forth without being compressed. Because this part does
not transmit active power, it is sometimes called the Watt -less-vibrating mass.
The equivalent circuit in Fig 8.4 illustrates this situation. The diameter of the
breathing sphere is r0.

In the far field the real term outweighs the imaginary one. As a result,
there is no reactive power and no Watt-less vibrating mass. In the near field
the particle velocity flows through the mass so that

∣
∣
∣
∣
p

v

∣
∣
∣
∣ = ω �= r0, (9.7)

and therefore, by implementing Newton’s law,
∣
∣
∣
∣
F

v

∣
∣
∣
∣ = ωm = ω �= r0A0 . (9.8)

By inserting the formula for the area of the sphere, A0 = 4π r20 , the co-
vibrating mass is found to be

m co = 4π r30 �= . (9.9)

This is three times the mass of the medium inside the sphere if the medium
is the same inside and outside.

Radiated Active Power and Source Strength

The radiated active power of a 0th-order spherical sound source is as follows
– refer to Section 8.4,

P =
1
2

radiation resistance, rrad︷ ︸︸ ︷
A(r)Re{Zf(r)} |v(r)|2

=
1
2
�= c

(
ωr
c

)2

1 +
(

ωr
c

)2 4π r2 |v|2

=
1
2
�= c

(
ω
c

)2

4π
[
1 +

(
ωr
c

)2
] (4π r2| v|)2

︸ ︷︷ ︸
volume velocity, q

. (9.10)

In the near field we have 2πr/λ = ωr/c� 1, allowing us to write

P =
1
2
�= c

(
ω
c

)2

4π
(4π r2 |v|)2 =

1
2
�= ω

2

4π c
|q

0
|2 . (9.11)
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With |v| ∼ 1/r2, the following also holds,

(4π r2 |v|)2 ≈ |q
0
|2 = const , (9.12)

which actually means in the near field that the volume velocity, q, is fairly
independent of the distance, r, and converges to q

0
. This primary volume

velocity, q
0
, is called the source strength of spherical radiators.

The active power transmitted, P , does not depend on the distance r, given
that the medium is lossless. As a result of this and the fact that active power
flows through all spherical shells, we can write

P = 4πr2 Re{I} �= f(r) . (9.13)

The term 4π in the denominator of equation (9.11) denotes the full spheri-
cal angle, ΩΣ = 4π. If a 0th-order spherical source with the source strength
q
0
, radiates into a smaller spherical angle, Ω1, that is only a section of the

available volume, then the radiated power increases by a ratio of 4π/Ω1. Since
this power is only radiated into the smaller angle the intensity, Re{I}, in this
section increases by (4π/Ω1)2 or 20 lg(4π/Ω1) dB.

This relationship is of practical relevance, for instance, for horn loudspeak-
ers, further for all 0th-order spherical sound sources when placed in front of
a wall or in a corner or edge of a room. The following level increases result
from such placements2,

• Placement in front of a wall (hemisphere) =⇒ +6dB
• Placement in a room edge (quarter sphere) =⇒ +12dB
• Placement in a corner (1/8th sphere) =⇒ +18dB

Point Sources of 0th Order (Monopoles)

In the 0th-order spherical sound field we have

p(r)
v(r)

=
1

1
�= c + 1

jω �= r

, or g
+

e−jβr

r
=

v(r)
1

�= c + 1
jω �= r

, (9.14)

from which follows

g
+

=
4π v(r) r2

4π
(

r
�= c + 1

jω �=

) e+jβr . (9.15)

We now let the radius of the sphere go to zero while keeping g
+

constant.
In this way we obtain

lim
r→0

[4π r2 v(r)] = q
0
, (9.16)

2 Please note that loudspeakers in closed cabinets become spherical radiators at
low frequencies – refer to Section 9.5. Their low-frequency-response can thus be
optimized by appropriate placement
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from which follows

lim
r→0

g
+

=
jω �= q

0

4π
. (9.17)

Finally we arrive at the the sound field of the point source of 0th-order, which
is also known as monopole,

p
+
(r) =

jω �=

4π
q
0

e−jβr

r
. (9.18)

Any 0th-order spherical sound source, that is, any breathing sphere, can be
represented by an equivalent monopole .

9.2 Spherical Sound Sources of 1st Order

A rigid sphere may oscillate according to the sketch in Fig. 9.2 (b), and a
sound field created in this way is called a 1st-order spherical sound field. Such
a sound field is no longer point-symmetric, which means that the shells around
the sphere do not represent areas of equal phase. This may also be expressed
as ∂/∂δ �= 0 and ∂/∂ϕ �= 0.

Since the problem is axial-symmetric, it is sufficient to deal with one sec-
tion through the sphere, and in this case we will take a vertical section along
the x-axis. The following boundary condition is valid for the radial component
on the surface of the sphere,

v(δ) = v(0) cos δ . (9.19)

It will be shown in the following section that the fields of two complementary
monopoles with opposite phase can be combined to create a sound field as
of an oscillating sphere. The solution of the wave equation for the 1st-order
spherical sound field can be derived relatively easily by exploiting this fact.

Point Sources of 1st Order (Dipoles)

Two point sources with equal strength but of opposite phase, that is q
1

= −q0
and q

2
= +q

0
, are positioned a distance 2d apart, forming a so-called dipole.

Due to the linearity of the wave equation, the sound field of this arrangement
is given by superposition of the two individual sound fields, namely,

p
+

=
jω�=

4π
q
0

(
e−βr2

r2
− e−βr1

r1

)

. (9.20)

Figure 9.3 (a) illustrates this situation. Since the two 0th-order point sources
have zero radius, possible reflection or diffraction caused by their presence
need not be considered.
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Fig. 9.3. Derivation of the dipole sound field. (a) two monopoles of opposite phase
at a distance, 2d, (b) equivalent with only one monopole

The next step is to perform a limes-operation in such away that 2d goes to
zero, while, by definition, the dipole momentum, μ

d
= 2d q

0
, is kept constant.

This condition prohibits the two monopoles from canceling each other, and
we can write

p
+

=
jω �=

4π
μ

d
lim

2d→0

[
1
2d

(
e−jβr2

r2
− e−jβr1

r1

) ]

. (9.21)

Figure 9.2 (b) illustrates that the previous equation can also be interpreted as
the result of the differentiation of a monopole sound field in the x-direction.
By taking ∂x = ∂r/ cos δ we get

∂

∂x
f(x) = lim

Δx→0

[
f(x+ Δx) − f(x)

Δx

]

, where Δx = 2d . (9.22)

The resulting solutions of the wave equation for the dipole field are as follows
– outward-progressing waves only,

p
+

(r, δ) =
jω �=

4π
μ

d
cos δ

∂

∂r

(
e−jβr

r

)

=
−jω �=

4π
μ

d
cos δ

(
1
r2

+
jβ
r

)

e−jβr, (9.23)

v+(r, δ) =
μ

d

4π
cos δ

(

− 2
r3

− 2jβ
r2

+
β2

r

)

e−jβr . (9.24)

The solution for v has again been derived via Euler’s equation. Please note
that the sound pressure possesses a 1/r2-component, which means that it has
a near field. The field impedance is, with β = 2π/λ = ω/c,
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Z f =
p
+

v+

= �= c
−j 2πr

λ +
(

2πr
λ

)2

2 − (
2πr
λ

)2 + j2
(

2πr
λ

) . (9.25)

The real part thereof is

Re{Zf} = �= c

(
2πr
λ

)4

4 +
(

2πr
λ

)4 . (9.26)

In the near field we thus have an approximate proportionality of Re{Zf} ∼ ω4.
Please recall that for the monopole we found Re{Zf} ∼ ω2 for the near field.

Fig. 9.4. Directional characteristics, Γ , of a dipole sound source

The dipole sound field shows a directional characteristic for both sound pres-
sure and particle velocity,

Γ =
p
+
(r, δ)

p
+
(r, 0)

=
v+(r, δ)
v+(r, 0)

= cos δ , (9.27)

as plotted in Fig. 9.4. Note that the plot only shows the vertical plane, but
the directional characteristics are axial-symmetric around the x-axis.

We see a figure-of-eight characteristic that complies with the boundary
conditions of the rigid oscillating sphere. As a result, the sound field of oscil-
lating spheres can be represented by 1st-order spherical point sources (dipoles).

9.3 Higher-Order Spherical Sound Sources

Any sound-field can be considered to be composed of a series of orthogo-
nal spherical harmonics of different orders. These spherical harmonic waves
are eigen-functions of the wave equation in spherical coordinates. The first
two, the spherical waves of 0th and 1st order, have been introduced in the
preceding sections. Spherical waves of higher order are radiated by spheres
with surfaces that oscillate with velocities determined by higher-order spher-
ical functions. Figure 9.2 (c) depicts one possible 2nd-order spherical vibra-
tion. Spherical sources of higher order can be represented by combinations of
monopoles and dipoles.
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Fig. 9.5. Schematic plots of the sound fields of breathing, (a), and oscillating sound
sources, (b)

For spherical sound emitters of nth order in the near field, the resistive part
of the field impedance, Re{Z f}, increases with frequency as follows.

Re{Zf} ∼ ω2(n+1) . (9.28)

If the linear dimensions of the emitter are small compared to wavelength, that
is 2π r0 � λ, the radiation of higher-order spherical waves may be neglected
at low frequencies, making it possible to approximate most sound sources at
low frequencies with either a monopole or a dipole. In fact, the monopole or
0th-order spherical source provides good low-frequency approximation for all
breathing sound sources such as a loudspeaker mounted in a cabinet, while
the dipole or 1st-order spherical source serves well to approximate oscillating
sources such as a loudspeaker without a baffle– see Fig. 9.5 (a, b).

9.4 Line Arrays of Monopoles

Arrangements of several sources along a line in space are called line arrays
(linear arrays) and play an important role in practical applications. Sharply
bundled radiation can be achieved with these sources because the sound fields
of the individual sources interfere with each other. A common application of
this principle is the line array of loudspeakers.

In the following discussion, the directional characteristics of linear arrays
composed of monopoles will be considered by restricting ourselves to the sound
field far away from the array.

Line Array of Identical and Equidistant Monopoles

In an arrangement like the one depicted in Fig. 9.6, we look at a reference
point at a distance of r0 	 2h. The sum of the contributions of all monopoles
of the array is

p
+
(r, δ) =

jω �= q
0

4π

n∑

i=1

e−jβ [r0−(i−1)2d cos δ]

r0 − (i− 1)2d cos δ
. (9.29)
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We may neglect the differences in magnitude of the individual contributions
because of r0 	 2h. This allows us to only consider the phase differences.

Fig. 9.6. Linear array with monopole sources

This leads to the following approximation,

p
+
(r, δ) =

jω �= q
0

4π
e−jβ r0

r0

n∑

i=1

e+jβ (i−1) 2d cos δ . (9.30)

Substituting β d cos δ with b in the expression for the sum, we obtain an
expression with a known series summation,

∑
e+j(i−1)2b = 1 + e+j2b + e+j4b + · · · e+j2(n−1)b =

1 − e+j2nb

1 − e+j2b
. (9.31)

Writing with an expansion using sinx = (e+jx − e−jx)/2j, yields,

∑
e+j(i−1)2b =

e+jnb

e+jb

[
e−jnb − ejnb

e−jb − ejb

]

= e+j(n−1)b sin(nb)
sin(b)

. (9.32)

The term sin(nb)/ sin b determines the directional characteristic. We shall dis-
cuss it more easily in the following paragraph, where a continuously loaded
line of monopoles is dealt with.

Continuously Loaded Line Array

First we perform a limit operation by letting the distance between the indi-
vidual monopoles, 2d, and, consequently, b, go to zero. With the length of line
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array, 2h, kept constant, we then get n → ∞. To also keep the total source
strength, n q0 = q′(x) 2h, constant, we normalize by n, with q′(x) being a
constant velocity load. The result of this operation, namely,

lim
2d→0

sin(nb)
n sin(b)

=
sin(nb)
nb

= si(nb) , (9.33)

is a so-called si-function. With 2h ≈ n 2d and, therefore, nb = βh cos δ, it
follows that

Γ = si (βh cos δ) . (9.34)

This is the directional characteristic of the in-phase, continuously loaded line
array. The formula can also be loosely applied to arrays with a limited number
of monopoles.

As an example, Figure 9.7 illustrates a line array with a length of two wave-
lengths, 2h = 2λ, and βh = 2π. The upper panel illustrates the directional
characteristics in Cartesian coordinates. The lower panel shows the typical
club-shaped form of the beam in spherical coordinates – vertical section only.

Fig. 9.7. Directional characteristics, Γ , of a line array of length 2h = 2λ

9.5 Analogy to Fourier Transforms as Used
in Signal Theory

In the preceding section we assumed a continuous volume-velocity load, q′(x),
having the dimension [volume velocity/length]. We continued to presume that
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each point on the line acts as a monopole – shown in Fig. 9.8. With the fol-
lowing integration we can now calculate the sound pressure at the observation
point, r0 	 2h. The expression in front of the integral is a constant term for
a given r0.

p
+

(r, δ) =
jω �=

4π
e−jβ r0

r0︸ ︷︷ ︸
const.

∫ +h

−h

q′(x) e+j(β cos δ)x dx . (9.35)

This expression is clearly isomorphic to the well-known Fourier integral from
signal theory, which can be written as

S(ω) =
∫
s(t) e−jω tdt , or, symbolically, as (9.36)

s(t) ◦ • S(ω) , (9.37)

where t corresponds to x and ω corresponds to −β cos δ.

Fig. 9.8. Sound fields of a line array with a continuous volume-velocity load

Disregarding the constant factor, we find the following quantitative analogies
between the time functions and the volume-velocity loads of line arrays.

Time function, s(t) Volume-velocity load, q′(x)◦
• ⇐⇒

◦
•

Spectrum, |S(ω)| Directional characteristic, Γ (δ)

The correspondences shown in Table 9.1 lists examples we have treated so
far3.
3 For the definition of Γ see (9.27). In the table, the directional characteristics,

Γ (δ), have been normalized so that their maxima equal one. ϑ(z) is called Dirac
impulse. It is a special mathematical distribution that picks out the value of a
function at the position of its argument as follows,

∫ +∞
−∞ y(z)ϑ(z−z0) dz = y(z0).

The area under the Dirac impulse is
∫ ∞
−∞ ϑ(z) dz = 1. NB: Dirac impulses are

usually written δ(z) instead of ϑ(z)
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Table 9.1. Some examples of the equivalence of time signal and spectrum v.s.
velocity load and directional characteristics

Linear array with constant load Rectangular impulse
{

q′ = const for − h < x < +h
q′ = 0 others

{
s(t) = const for − τ < t < τ
s(t) = 0 others

◦
•

◦
•

Γ = si (−hβ cos δ) S(ω) = 2τ si (τ ω)

Monopole Dirac impulse

q′(x) = q
0
ϑ(x) s(t) = ϑ(t)

◦
•

◦
•

Γ = 1 S(ω) = 1

Dipole Double Dirac impulse

q′(x) = μ
d

d
dx

ϑ(x) = μ
d

ϑ′(x) s(t) = d
dt

ϑ(t) = ϑ′(t)
◦
•

◦
•

Γ = cos δ S(ω) = ω

At the end of this section we would like to discuss two additional directional
characteristics which are relevant from an application point of view and can
also be obtained from analogous relationships in signal theory.

Fig. 9.9. (a) Shaping, and (b) shifting of directional characteristics (schematic)
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• A volume-velocity load with a Gaussian envelope leads to a Gaussian
directional characteristic. This is a beam without side lobes – shown in
Fig. 9.9 (a)

• A volume-velocity load with a phase shift increasing linearly with position,

q′2(x) = q′1(x) e−jβ cos(Δδ) x ◦ • Γ2 = Γ1 [β cos δ − β cos(Δδ)] (9.38)

leads to a tilted directional characteristics – schematically shown in
Fig. 9.9 (b). The shifting theorem of Fourier transforms has been used here4

9.6 Directional Equivalence of Sound Emitters
and Receivers

When a reversible transducer or transducer array is operated as sound emitter,
its directional characteristic is equivalent to its directional sensitivity charac-
teristic when operated as a receiver.

This can be shown by using the following two elements,

M ... a transducer with arbitrary directional characteristics
X ... an auxiliary point source with monopole characteristics

The point source is positioned far away from the transducer under consider-
ation. The proof is done in two steps as follows.

• The transducer is fed with an electric current, i0. At the position of the
auxiliary source we then have

|p
X
| = |T ip (ω, φ, δ, r)| |i0| (9.39)

• The auxiliary point source emits a volume velocity amounting to its source
strength, q0. At the position of the transducer, which is not present at this
point, we get

|p
M
| =

ω �=

4πr
|q

0
| (9.40)

If the transducer is now introduced into the sound field, a voltage, ul, can be
measured at its electric output port according to

|ul| = |T pu (ω, r, δ, φ)| |p
M
|. (9.41)

4 An application of this algorithm, based on the directional equivalence of emitters
and receivers – see next Section – is the electronic steering of SONAR antennas
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Since the sound field is linear and passive, reversibility according to (4.16)
applies as follows,

∣
∣
∣
∣
∣
i0
p
X

∣
∣
∣
∣
∣
q=0

=
∣
∣
∣
∣
q
0

ul

∣
∣
∣
∣
i=0

, (9.42)

and, hence,
∣
∣
∣
∣
Tip

Tpu

∣
∣
∣
∣ =

∣
∣
∣
ω�=

4πr

∣
∣
∣ . (9.43)

The first thing that can be seen from this equation is that the transfer coef-
ficient of the transmitter in emitting function increases with frequency with
respect to the transfer coefficient for receiver operation (sensitivity). This ac-
tually means that

Transducers receive low frequencies better than they emit them!

A good example for this law is a small reversible microphone.
Finally, to show that the directional characteristic, Γ , for transmitter op-

eration is identical to the characteristic for receiver operation, we set

|T ip (φ, δ)|
|T pu (φ, δ)| =

|T ip (0, 0)| Γip

|T pu (0, 0)| Γpu
=

∣
∣
∣
∣
T ip (0, 0)
T pu (0, 0)

∣
∣
∣
∣ , (9.44)

which results in
Γ ip = Γpu. (9.45)

In the context of the examples that we have dealt with in this book, we find
the following correspondences,

Pressure receiver ⇐⇒ 0th-order spherical source
Pressure-gradient receiver ⇐⇒ 1st-order spherical source
Line microphone ⇐⇒ line array with constant source-strenght

and 90◦ shifted directional characteristic
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Piston Membranes, Diffraction and Scattering

In the last chapter the sound field produced by point-source arrangements
was calculated by linear superposition of individual spherical sound fields.
For continuously loaded line arrays we further substituted the source strength
of the individual sources with a length-specific source-strength load, q′

0
(x).

The source-strength load has the dimension [volume-velocity/length].
It seems natural to extend this method to area radiators like oscillat-

ing membranes. There we will obtain an area-specific source-strength load,
q′′
0
(x, y) = v(x, y), with the dimension [volume velocity/area], which is indeed

equal to [particle velocity].
In the case of a line array composed from point sources, reflection and

diffraction of the sound field due to the array itself can be disregarded. This
does no longer hold for area radiators because the area can act as both reflector
and diffractor. Computations related to the sound fields of such radiators can
thus become complicated1.

There is a particular case, however, where reflection and diffraction do
not occur. In this book, we will restrict ourselves to just this case, which is
a flat membrane in an infinitely extended, rigid plane baffle. The Huygen’s
principle can be applied to this special case in an elementary way by simply
superimposing 0th-order point sources2. In addition, many practical problems
can be approximated by this special case.

1 The sound-field can, for example, be calculated with the Kirchhoff–Helmholtz
integral equation that determines the sound field inside an enclosed space from
the sound-pressure and the pressure-gradient distributions on an enclosing surface

2 The Kirchhoff–Helmholtz integral equation then reduces to the so-called Rayleigh
or Huygens–Helmholtz integral – see Section 10.1
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10.1 The Rayleigh Integral

A small vibrating piston results in a 1st-order spherical sound field– see
Fig. 9.5 (b). Yet, building this piston into an infinitely extended, plane and
rigid baffle prohibits hydrodynamic shorting between the front and back of
the baffle. This results in a hemispherical sound field of 0th order radiating
into half of the space – shown in Fig. 10.1. The hemispherical sound field is

p
+
(r) =

jω �=

2π
q
0

e−jβr

r
, (10.1)

where 2π is the spatial angle of a hemisphere. Assuming that the baffle is
flat, this sound field has no normal components in the plane of the baffle and,
therefore, the baffle cannot cause any reflection or diffraction.

Fig. 10.1. Hemispherical sound field, originating from a point source in a flat and
rigid baffle

Now consider an oscillating membrane with an area, A0, in this infinitely ex-
tended, flat and plane baffle where all area elements oscillate perpendicularly
to the area. This arrangement can be considered to be the superposition of
an infinite number of adjacent monopoles, dq

0
= v dA – shown in Fig. 10.2.

The total sound pressure at an observation point is found by the following
superposition of these monopoles,

p
+
(r) =

jω �=

2π

∫

A0

v
e−jβr

r
dA . (10.2)

In acoustics, this integral is usually called Rayleigh integral. It is valid at all
distances from the membrane.

It is worth noting that v (x, y) does not need to be the same everywhere on
the membrane, that is, its value may depend on the position of the membrane.
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Fig. 10.2. Sound field in front of a membrane in a flat and rigid baffle

For the Rayleigh integral to converge without additional assumptions, such as
propagation losses in the medium, it is necessary that A0 is finite. Further,
propagation in the considered hemisphere must be free of obstacles.

10.2 Fraunhofer’s Approximation

Fraunhofer’s approximation applies when the distance from the reference point
to the membrane is very large in comparison to the linear dimensions of the
radiating membrane. Figure 10.3 depicts the situation to be discussed.

Fig. 10.3. Fraunhofer’s approximation

The quantity r0 is the distance from the reference point to any position on
the membrane with the area A0. That position is preferably the membrane’s
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center of gravity. The angle between r and r0 is very small, and the two lines
are practically parallel. The following linear approximation is thus applicable
as a result,

r ≈ r0 − ρ cosΘ , (10.3)

where Θ is the angle between r0 and the ρ-axis. We can write this in Cartesian
coordinates as

r ≈ r0 − x cos δ − y cosϕ , (10.4)

where δ is the angle between r0 and the x-axis, and ϕ is the angle between r0
and the y-axis. The factor 1/r can brought out in front of the integral because
1/r ≈ 1/r0 – as we saw in Section 9.5 – which brings us to

p
+
(r, δ, ϕ) =

jω �=

2π r0
e−jβr0

∫ +∞

−∞

∫ +∞

−∞
v(x, y) ej(β cos δ)x ej(β cos ϕ)y dxdy .

(10.5)
This expression is again isomorphic to a Fourier transform. It is actually a two-
dimensional, spatial Fourier transform, where β cos δ is the phase coefficient
in x-direction, and β cosϕ is the phase coefficient in y-direction. Recall that
β = 2π/λ.

10.3 The Far Field of Piston Membranes

This section deals with the sound field produced by rigid membranes, so-called
piston membranes in infinitely extended, rigid, flat baffles. In other words, we
speak of baffled pistons with identic v (x, y) everywhere on the piston. Such
piston membranes can serve as models for loudspeakers in large baffles as long
as the membranes of the loudspeakers vibrate in phase.

Fig. 10.4. Rectangular membrane
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Rectangular Piston Membranes

The sound field of a rectangular piston membrane in an infinitely extended,
rigid, flat baffle can be computed with Fraunhofer’s approximation according
to Fig. 10.4. By symbolizing the constant factors left of the integral as C1

or C2, respectively, we can write Fraunhofer’s approximation and its Fourier
transform as

p
+
(r, δ, ϕ) = C1

∫ +b

−b

[∫ +h

−h

v ej(β cos δ)x ej(β cos ϕ)y dx

]

dy (10.6)

= C2

∫ +h

−h

ej(β cos δ)x dx
︸ ︷︷ ︸

◦
•

∫ +b

−b

ej(β cos ϕ)y dy
︸ ︷︷ ︸

◦
•

, (10.7)

p
+
(r, δ, ϕ) ◦ • C2 2h si (hβ cos δ)

︸ ︷︷ ︸
Γ (δ)

2b si (b β cosϕ)
︸ ︷︷ ︸

Γ (ϕ)

. (10.8)

Because each of the two integrals is actually a one-dimensional Fourier in-
tegral, the integration can be performed by well known rules. The result is
(10.8), where the first term on the right side includes the directional char-
acteristics with respect to δ and the second with respect to ϕ. The total
two-dimensional directional characteristics is formed by multiplying two one-
dimensional characteristics. Each represents a continuously loaded line array,
one on the x-axis and one on the y-axis, which can be written as

Γ (δ, ϕ) = Γ (δ) Γ (ϕ) . (10.9)

The third dimension, r, is not considered as the derivation above only deals
with the sound field far away from the membrane.

Circular Piston Membranes

The calculation of circular pistons is slightly more complicated and requires
a transformation into polar coordinates – illustrated in Fig. 10.5. The result
of the calculation is given below,

Γ (r) =
2J1(Rβ cosΘ)
Rβ cosΘ

, (10.10)

where Θ is the angle between the membrane and a line leading from the
observation point to the middle of the membrane. R is the radius of the
membrane, and J1 is the the first order Bessel function of the first kind.

The functions sinx/x = si (x) and J1(x)/x look very similar. This means
that circular membranes have directional characteristics similar to rectangu-
lar ones. The example shown in Fig. 10.6 illustrates the similarities when we
choose b = h = R.
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Fig. 10.5. Circular membrane from a perspective view

Fig. 10.6. Examples for directional characteristics of (a) circular membrane, (b)
quadratic membrane

10.4 The Near Field of Piston Membranes

Because the sound field close to a membrane can not be computed by Fraun-
hofer’s approximation, the Rayleigh integral itself must be solved. Discrete
numerical methods are commonly used to accomplish this.

Zone Construction after Huygens and Fresnel

In this discussion, we introduce a traditional method of solving this integral by
graphic interpretation of the conditions near the membrane. This technique
is called Huygens–Fresnel zone construction and can be applied to piston
membranes, or more specifically, vibrating plane areas where v is constant
across the area.

As shown in Fig. 10.7, the radiating area is subdivided into ring-shaped
zones. The average difference in radial distance of two adjacent zones is λ/2.
As a result, the average contributions rendered by two adjacent zones have a
phase difference of 180◦. The ring zones are constructed in such a way that
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Fig. 10.7. The construction of Huygens–Fresnel zones

all complete zones make identical contributions, and adjacent complete zones
cancel each other out. The magnitude of the resulting sound pressure at the
observation point is estimated from the contributions of the remaining areas
after cancelation.

We will now prove that the contributions of the complete zones are actually
identical. On the one hand, the area of a ring zone is

An = π(R2
n −R2

n−1) . (10.11)

By applying Pythagoras ’ law repeatedly, we find

An = π

[(

r0 + n
λ

2

)2

−
(

r0 +
(n− 1)λ

2

)2
]

= πλ

[

r0 + (2n− 1)
λ

4

]

.

(10.12)
On the other hand, the average distance of a ring zone from the reference
point is

r̄n =
1
2

[

r0 +
nλ

2
+ r0 + (n− 1)

λ

2

]

=
[

r0 + (2n− 1)
λ

4

]

. (10.13)

The resulting ratio of the ring-zone area to the average distance is constant
and equal to

An

r̄n
= π λ . (10.14)

Now we will calculate the contribution of a single ring zone to the sound
pressure at the reference point, namely,

p
+, zone

=
jω �=

2π

∫

A1

v
e−jβr

r
dA =

jω �= 2π v
2π

∫ r0+λ/2

r0

e−jβr dr , (10.15)

where A = π(r2 − r20), and dA = 2π r dr.
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Taking the 1st zone as an example, this can be rewritten as

p
+, zone 1

= �= c v e−jβr0 − �= c v e−jβ(r0+λ/2) = �= c 2v e−j βr0 , (10.16)

where β = 2π/λ = ω/c and e−jβλ/2 = −1.
The following interpretation follows directly from this expression. The first

term on the right side of the equation describes an undisturbed plane wave.
The second term stands for a wave that results from diffraction at the outer
rim of the ring zone. Therefore, we actually find two times the magnitude of
the sound pressure magnitude of a plane wave at the reference point. This
means, for example, that if a plane wave is interrupted by an infinitely ex-
tended, or at least very large baffle with a circular hole in it – see Fig. 10.11
– the sound pressure at the observation point behind the baffle can be up to
two times larger!

The following rules are helpful for graphical evaluation of Huygens–Fresnel
zone construction. The contribution of incomplete zones is considered to be
approximately proportional to the ratio of the remaining area to the complete
area and must assume the appropriate sign. When summing up, one starts
by letting the contribution of the first half zone stand while its second half
cancels out with the first half of the adjacent zone, and so on. This procedure
allows the resulting field to be interpreted as the sum of a plane wave and
interfering diffracted waves from the rims of the radiating areas.

On-Axis Sound Pressure and Radiation Impedance
of Circular Piston Membranes

We will now discuss the sound pressure of a diverging wave, |p
+
(r0)|, on the

middle axis of a circular piston membrane. This is an example of the near field
of a circular piston membrane in an infinitely extended, rigid, plane baffle with
radius R.

For a given r0 and wavelength, λ, the number of Huygens–Fresnel zones is
equal to

νz =

√
R2 + r20 − r0

λ/2
. (10.17)

Maxima and minima occur whenever νz is exactly an integer number, which
occurs for

r0 =

(
R
λ

)2 − (
νz
2

)2

νz/λ
=̇ ν z, integer , (10.18)

where odd integers result in maxima and even integers result in minima.
Exactly one zone exists for νz = 1. For distances greater than r0|νz=1, the

sound pressure decreases monotonically, which means that we then are in the
far field. The equation cannot be fulfilled for R < λ, meaning that there is no
zero. There is a finite number of zeros for R > λ – depicted in Fig. 10.8.
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Fig. 10.8. Sound pressure on the axis of a circular piston membrane as a function
of distance and wavelength

Calculation of the acoustic power transmitted by a piston in a baffle requires
the real component of the radiation impedance, called the radiation resistance,
that is

r rad = Re{Z rad} , with Z rad =
F

v
=

∫
A0

p dA

v
. (10.19)

Now we shall describe the steps of how to calculate this resistance. Details
are available in the relevant literature. The calculation is performed using
the sound pressure directly on the surface area, A0, of the radiating piston.
Integration across this area is shown in Fig. 10.9.

Fig. 10.9. Coordinates for calculating the radiation resistance of a circular piston

For a circular piston membrane the sound pressure follows from the Rayleigh
integral as follows,
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p
+
(l1, Θ1) =

jω �=

2π

∫ l2=R

l2=0

∫ Θ2=2π

Θ2=0

v
e−jβd

d
l2 dl2 dΘ2 , (10.20)

where d =
√
l21 + l22 − 2 l1 l2 cosΘ2 is the distance between the reference point

and the area element, dA = l2 dl2dΘ2. To derive the force acting on the
membrane, that is, F =

∫
p
+

dA =
∫
p
+
l1 dl1dΘ1, the following integration

must be performed,

F =
∫ R

0

∫ 2π

0

p
+
(l1, Θ1) l1 dl1dΘ1 . (10.21)

The evaluation of this expression is tedious. Details are available in the rele-
vant literature. We only present the result, which is

r rad = Re {Z rad} =
(

1 − J1(2β R)
β R

)

A0 �= c , (10.22)

where J1 is the first-order Bessel function of the first kind. Figure 10.10 il-
lustrates the results for the circular piston and its area-equivalent 0th-order
spherical source – shown in Fig. 8.6 (b). Their courses are clearly related, with
the exception of some overshoots that can be explained by diffraction happen-
ing at the rim of the circular membrane. The results for rectangular pistons
are quite similar.

Fig. 10.10. Radiation resistance of a circular-piston membrane as a function of
distance and wavelength

10.5 General Remarks on Diffraction and Scattering

The calculations performed above for pistons can be expanded to the phe-
nomenon of diffraction caused by circular holes in baffles – see Fig. 10.11. We
assume that a plane wave hits such a baffle perpendicularly, and that there is
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a constant velocity, v (x, y), normal to the plane of the area of the hole. The
situation is actually identical to the piston in a baffle.

The sound field behind the baffle is calculated with the Rayleigh integral,
using the method of superposition of 0th-order point-source waves, keeping in
mind their phases and mutual interferences.

Fig. 10.11. Upper panel: wave-field plots for a circular hole in a baffle when hit
by a plane wave. Lower panel: corresponding directional characteristics. Linear
dimensions of the hole: (a) small compared to the wavelength, (b) on the order of
the wavelength, (c) large compared to the wavelength

Figure 10.11 illustrates three typical cases, namelyR � λ , R ≈ λ, andR 	 λ.
The upper panels represent the sound fields yielded by the Rayleigh integral,
the lower panels show their respective directional characteristics, Γ . For R �
λ, diffraction causes the waves to propagate into a full hemisphere behind
the baffle without any shadowing effects. For R ≈ λ, both diffraction and
shadowing occur. We see pronounced side lobes in addition to the main beam.
For R 	 λ, the waves propagate mainly in the direction of the main beam.
Side lobes are present but negligible, resulting in a well pronounced beam.
The sound wave thus propagates straight along the axis of the beam like a
ray.

Diffraction also occurs when obstacles of finite dimension are positioned
in a sound field. If a sound wave hits such an obstacle, it causes parasitic
waves that superimpose themselves upon the original ones. Solving the wave
equation consists of the following tasks.
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• Formulating the boundary conditions at the surface. For resting, rigid ob-
stacles for example, the normal component of the volume velocity, v⊥,
must be zero at the surface

• Summing the original and parasite waves. This results in a sound field that
meets the given boundary conditions

• Considering far-field effects. The parasite sound field vanishes at large
distances from the obstacle

Fig. 10.12. Directional characteristics of the sound field of a rigid sphere exposed
to a plane wave

As an example, Figure 10.12 illustrates the sound field resulting from the
impingement of a plane wave on a rigid sphere. The figure contains data for
three different relative sphere sizes, namely, βR = 2π(R/λ) = 0, 1.5, and 7.
The curves depict the magnitude ratio |p(δ)/p

0
|, of the sound pressure on the

surface of the sphere, p, with respect to the sound pressure in the undisturbed
free field, p

0
. The following interesting details become obvious.

On the side facing the incoming wave the sound accumulates (piles up)
whereby the sound pressure increases by a factor of up to 2 (6 dB) at high
frequencies. One situation where this effect must be taken into account is in
the designing of microphones. On the opposite side of the obstacle, the sound
pressure is nonzero. There is actually a pronounced maximum at δ = 180◦,
called a bright spot. This effect is caused by waves creeping around the sphere
and adding in phase at δ = 180◦.

The conclusion we draw from this example is that there are two important
effects at work. The first is called scattering and is seen when the sound waves
are bounced back by the surface facing the incoming wave. The other is called
diffraction and leads to the interference field building up on the opposite side
of the obstacle as a result of wave components being deflected into the space
behind the obstacle.
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Dissipation, Reflection, Refraction,

and Absorption

The wave equation as derived in Section 7.1 and used so far in this book,
is valid for sound propagation in lossless media. The Helmholtz form of this
equation is

∂2p

∂x2
− (jβ)2 p = 0 . (11.1)

Its solution for the forward-progressing plane wave can be expressed as

p
+

(x) = p
+
e−jβ x . (11.2)

The assumption of a lossless medium, however, is an idealization. There is
always some loss of acoustic energy when sound propagates in real media. This
is the so-called dissipation of sound energy into thermal energy. Dissipation
causes spatial damping of the sound waves.

The wave equation can account for small dissipation by replacing the imag-
inary term, the phase coefficient1, jβ, by a complex one. This term is the
complex propagation coefficient

γ = ᾰ+ jβ , (11.3)

where ᾰ is the damping coefficient that describes spatial damping2. The re-
sulting form of the wave equation is

1 As mentioned before, we prefer the letter symbol β to k ... wave number
2 Recall that we had already introduced ᾰ with the exponential wave in Section 8.3.

There, however, the damping was caused by geometric expansion of the wave and
not by dissipation
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∂2p

∂x2
− γ2 p = 0 , (11.4)

and has the plane-wave solution

p
+
(x) = p

+
e−ᾰx e−jβ x . (11.5)

The mathematic description mentioned above is analogous to wave propaga-
tion in loss-afflicted electric transmission lines. In fact, the relevant electric
and acoustic equations are homomorphic. Figure 11.1 illustrates the equiva-
lent electric circuit with the resistance load, R′, the inductance load, L′, the
susceptance load, G′, and the capacitance load, C′.

Fig. 11.1. Equivalent circuit for spatially-damped plane-wave propagation

The wave equation and the complex propagation coefficients for the equivalent
electric system are known from electrical transmission theory as

∂2u

∂x2
− γ2u = 0 and, consequently, (11.6)

γ =
√

(R′ + jω L′)(G′ + jω C′) . (11.7)

This leads to the characteristic impedance of the transmission line, the so-
called line impedance, ZL, namely,

ZL =

√
R′ + jω L′

G′ + jω C′ . (11.8)

Please note that, in general, the line impedance ZL becomes complex when
losses are involved. This holds for acoustic wave propagation as well – as will
be shown in Section 11.2.

In acoustics, the term dissipation does not have the same meaning as
absorption. Absorption means that sound disappears from a specified space
through a boundary. The sound energy that leaves the space is called ab-
sorbed, no matter whether it dissipates or just transmits into another space.
The current chapter will deal with absorption in Section 11.4. Absorption is
a phenomenon of high technical relevance – for example, in room-acoustics
practice.
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11.1 Dissipation During Sound Propagation in Air

The assumptions for lossless sound propagation, as put forward in Section 7.1
are as follows,

• No inner friction, which means no viscosity
• Negligible thermal conduction
• Behavior as a perfect gas

It goes without saying that these assumptions are not strictly valid in real
fluids. Therefore we have to consider the following three reason for dissipation.

• Viscosity ... Real media, such as air, show at least some viscosity. As a re-
sult, the periodical compressions and expansions of the medium go along
with losses due to friction

• Thermal conduction ... There is transfer of thermal energy from the com-
pressed and thus warmer zones to the expanded and thus cooler ones. In
consequence, the compression is no longer strictly adiabatic and, hence,
pressure differences are attenuated. This leads to dissipation

• Deviation from perfect gas ... molecular dissipation. Most gases are com-
posed from multi-atomic molecules. For example, air contains O2, N2 and
H2O. These molecules do not only have a translatory degrees of motional
freedom but also such as vibratory and rotatory degrees of freedom. En-
ergy from translatory to, for example, vibratory and/or rotatory motion
occurs with some delays, and effect which is called relaxation. This causes
a deviation from adiabatic compression since energy is taken from trans-
latory motion and returned to it at a different instance in time

It is known that all three kinds of dissipation in free sound propagation in air
are proportional to the second power of the frequency, f2. The molecular dis-
sipation is paramount in the audio frequency range of 16Hz–16 kHz – mainly
due to vibratory modes of the molecules.

In Table 11.1 we present some estimates for the damping coefficient, ᾰ, in
air. According data in the literature show profound variances.

Table 11.1. Damping coefficients of air in two meteorological conditions (values
given in Neper – refer to Section 1.6)

Frequency,f 0.5 1 2 4 8 16 kHz

ᾰ (10◦ C, 70 %) 0.23 0.42 1.04 3.40 12.30 39.96 10−3 Np/m

ᾰ (20◦ C, 50 %) 0.32 0.57 1.13 3.20 11.00 38.60 10−3 Np/m
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Dissipation During Sound Propagation in Tubes

In contrast to free propagation, viscosity and thermal transfer can gain in
relevance when the sound propagates along a duct. In a tube with rigid walls
made of heat-conducting material, one has to consider the following two ef-
fects.

• Viscosity ... The walls of the tubes are rigid compared to the air. Hence
the particle velocity, v, is zero directly on the surface of the wall. Yet, at a
little distance from the wall the velocity already acts as in the progressive
wave. Consequently, we have a strong velocity gradient in the radial di-
rection within a thin boundary layer. Although the viscosity of air is low,
the frictional losses occurring in this way become considerable

• Thermal conduction ... With the walls conducting heat well, dissipation
due to heat transfer is likely. These effects are certainly larger than in a
free wave as there the compressed and expanded sections are separated
by quarter-wavelength air distances, namely, λ/4. But now, due to well-
conducting walls, these sections are in a more direct contact

Both effects are proportional to (a) the ratio of circumference, U , and cross-
sectional area, A, and (b) the root of the frequency,

√
ω. The following approx-

imation has been derived by Cremer for so-called wide tubes, that is, tubes
where the boundary layer is small compared to the diameter, namely,

ᾰ ≈ 6.7 · 10−6 (U/A)
√
ω/Hz . . . for wide tubes . (11.9)

It has been shown that viscosity accounts for ≈ 2/3rd of the damping coeffi-
cient resulting from this formula3.

11.2 Sound Propagation in Porous Media

From the previous discussion it is easy to comprehend that sound propagation
in media that are perforated by many narrow tubes and connected cavities,
must be profoundly damped. Media of this consistency are called porous4.
With the set as shown in Fig. 11.2, the characteristic flow resistance, Ξ,
of porous media can be measured, though, to be precise, only for the
“static”(steady) case of a continuous gas flow. Ξ is defined as follow,

Ξ va = −Δp
Δx

≈ − ∂p

∂x

∣
∣
∣
x
. (11.10)

3 In the analogous circuit of Fig. 11.1, viscosity corresponds to R′ and thermal
conduction to G′

4 Note that a medium with fully enclosed, that is, mutually unconnected cavities
is not porous. Artificial foams can be produced both ways, that is, either with or
without connections between the internal voids (gas bubbles)
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Fig. 11.2. Set up for measuring the static flow resistance, Ξ

In a strongly simplified model introduced by Rayleigh, the porous medium is
replicated as a rigid skeleton that is perforated by perpendicular narrow ducts
– illustrated in Fig. 11.3. The ratio of the duct area inside the probe, Ai, to
the total area outside the probe, Aa, is called porosity, σ, namely,

σ =
Ai

Aa
< 1 . (11.11)

The volume velocities inside, q
i
, and outside the probe, q

a
, are the same due

to mass conservation, that is q
i
= q

a
. This means that the respective particle

velocities, vi and va, relate as follows.

σ vi = va and σ Ξ vi = − ∂p

∂x
. (11.12)

Euler ’s equation is now complemented by this loss term while the continuity
equation stays the same. We thus get the following pair of linear differential
wave equations for inside porous media,

− ∂p

∂x
= �=

∂vi
∂t

+ σ Ξ vi and − ∂vi
∂x

= κ=
∂p

∂t
. (11.13)

Fig. 11.3. Rayleigh’s model of porous materials
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In complex notation this reads

− ∂p

∂x
= jω �= vi + σ Ξ vi and − ∂vi

∂x
= jω κ= p . (11.14)

Combination of these two equations results in the 2nd-order wave equation for
porous media,

∂2p

∂x2
− (jω�= + σ Ξ)(jω κ=) p = 0. (11.15)

For the complex propagation coefficient we subsequently get

γ =
√

(jω�= + σ Ξ)(jω κ=) , (11.16)

and for the characteristic impedance,

Zw =
p
i+

vi+

=

√
jω �= + σ Ξ

jω κ=
. (11.17)

For low frequencies the complex propagation coefficient is approximately pro-
portional to the root of the frequency, that is

γ ≈
√
σ Ξ ω κ= e j45◦

and, thus, ᾰ =
√
σ Ξ ω κ= ∼

√
f . (11.18)

For high frequencies the propagation coefficient asymptotically reaches a lim-
iting value that is real, as can be shown by eliminating ᾰ from the formula
for γ, namely,

ᾰ asymp =
σ Ξ

2 �= c
. (11.19)

To be sure, the Rayleigh model mimics porous media only very roughly. For
practical applications the porosity σ can be determined by measurements. Fur-
thermore, it has to be considered that the air in cavities inside the medium
increases the volume compliance, κ, but is not accelerated. This is accounted
for by a structural factor, χ ≤ 1, which can be determined by dynamic mea-
surements. This factor is introduced into the wave equation by substituting
�= by �= χ.

Fig. 11.4. Equivalent circuit for inside a porous medium

The equivalent electric circuit – shown in Fig. 11.4 – is appropriate for the wave
equation inside porous media as derived above. Obviously, only viscosity and
no thermal conduction has been included in the modeling.
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11.3 Reflection and Refraction

Reflection and refraction are important phenomena in wave propagation.
They can be treated together by assuming a situation where a wave hits
the boundary between two media, medium 1 and medium 2, with different
speeds of sound, c1 and c2. If we take both the boundary and the wave as in-
finite in space, the situation can be depicted in one plane – shown in Fig. 11.5.

Fig. 11.5. Wave propagation at the boundary between two fluid media

Reflection

The incoming wave can be split into two orthogonal components, one of
which propagates in −y-direction and the other one in +x-direction. The
x-component is not affected by the boundary in any way. The −y-component,
however, inverts its direction at the boundary from −y to +y, due to reflection,
while maintaining its speed c1.

The components of the phase coefficient in x-direction, βx, are identical
for the incoming and reflected waves, in other words

β1 sinΘ1 = β1 sinΘ′
1 , (11.20)

or, with β1 = 2π/λ1,
λ1

sinΘ1
=

λ1

sinΘ′
1

= λT , (11.21)
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where λT is the wavelength of the trace of the wave along the boundary, the
so-called trace wavelength.

Since, due to the boundary condition p1(x) = p2(x), the trace wavelength
is identical for both the incident and reflected waves, we directly arrive at
the law of reflection that states that the incoming angle is identical to the
outgoing one, or

Θ1 = Θ′
1 . (11.22)

Refraction

The non-reflected part of the incoming wave transmits into medium 2 and
propagates there with a different sound speed, c2, and at a different angle, Θ2.
At the boundary, the phase coefficient and, hence, the trace wavelengths are
again identical for both the incoming and the transmitted waves. The physical
reasons for this are that fluids exhibit no shear, and that the sound pressure
is homogeneous at the boundary. Consequently, one can write

β1 sinΘ1 = β2 sinΘ2 , (11.23)

and, thus,
λ1

sinΘ1
=

λ2

sinΘ2
= λT . (11.24)

By multiplying with the frequency, which is identical for both waves, we arrive
at the following form,

c1
c2

=
sinΘ1

sinΘ2
. (11.25)

This equation is known as the refraction law of Snellius.
If the conditions of Snellius ’ law are not met, no sound is transmitted

into medium 2. This may, for example, happen for shallowly oblique (grazing)
incidence of sound from air to water. In such a case, which is called total
reflection, there is no refracted wave at all.

11.4 Wall Impedance and Degree of Absorption

This section deals with the wave effects at the boundary between two fluid me-
dia in more detail and, by appropriate extrapolation, will also approximately
cover the effect of waves encountering a wall.

Boundary Between Two Fluids

As a starting point we take a case as depicted in Fig. 11.5. The char-
acteristic impedances of the two media are Zw1 = �1= c1 and Zw2 =
�2= c2. We now consider the boundary to medium 2 as a wall with the wall
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impedance Zwall = Zw2. Following Section 7.5, the reflectance r for perpen-
dicular incidence from medium 1 on medium 2 is found to be

r⊥ =
Zwall − Zw1

Zwall + Zw1
=
�2= c2 − �1= c1
�2= c2 + �1= c1

. (11.26)

For oblique incidence, only those components of the particle velocity that are
perpendicular to the boundary are reflected or transmitted. In acoustics, the
wall impedance, Zwall, is defined as the ratio of the total sound pressure and
the normal velocity in the wall. Accordingly, we get

Zwall(Θ1) =
p
+2

v+2 cosΘ2
=
Zwall(Θ = 0)

cosΘ2
, (11.27)

where application of Snellius ’ law yields

cosΘ2 =

√

1 −
(
c2
c1

)2

sin2Θ1 . (11.28)

In conclusion, the reflectance for oblique incidence results in

r(Θ1) =
Z wall(Θ1) − �1= c1

cos Θ1

Z wall(Θ1) + �1= c1
cos Θ1

=
Z wall(Θ1) cosΘ1 − �1= c1
Z wall(Θ1) cosΘ1 + �1= c1

. (11.29)

This simple case shows already that the wall impedance Z wall, in general, is
a function of the incoming oblique angle Θ1. Further, in (11.29) it is weighted
with cosΘ1.

Locally Reacting Boundaries and Walls

With c2 � c1, the angle of the refracted sound, Θ2, approaches zero. Ergo, the
refracted wave propagates perpendicularly away from the boundary. The wall
impedance, then, no longer depends on the angle of incidence of the incoming
sound. This means that Z wall �= f(Θ1).

The same holds for wall structures where adjacent wall elements are not
coupled to each other because this causes that all movements parallel to the
wall are suppressed. Walls which react in this way are said to be locally re-
acting. The Rayleigh model of porous materials shows this feature, but many
technologically relevant porous materials and wall constructions do actually
behave approximately the same.

Deriving the Degree of Absorption from Wall Impedances

The acoustic power that is absorbed at a boundary is described by the degree
of absorption, α, that has been introduced in Section 7.5 as
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α = 1 − |r|2 . (11.30)

If we plot the wall impedance, Z wall, in the complex Z-plane – as depicted
in Fig. 11.6 – we find the trajectories for constant |r| and constant α to be
so-called Appollonian circles.5

Fig. 11.6. Trajectories of constant degrees of absorption, α, in the complex Z-plane

An Appollonian circle is the geometric location of all positions from which the
ratio of the distances to two reference points is constant. Conveniently, this is
exactly what is required by the formula

|r(Θ1)| =
∣
∣
∣
∣
Z(Θ1) − �1= c1
Z(Θ1) + �1= c1

∣
∣
∣
∣ . (11.31)

The trajectories of Z(Θ1) = Z wall cosΘ1, for 0 ≤ Θ ≤ 90◦, are straight lines
that can be used to determine the degree of absorption, α. In Fig. 11.7, two
choices are shown as examples. To understand how they have been derived,
think of the α-circles as isohypses – that is, lines of equal height.

It becomes clear that α approaches zero for wall-parallel incidence. For
|Z wall| > �1= c1, there exists an optimum match in the sense that α assumes
a maximum at a specific Θ1. For |Z wall| < �1= c1, the best possible match
and, thus, the highest degree of absorption are achieved for perpendicular
sound incidence.

5 By conformal transformation of the complex Z-plane into the complex r-plane
we get a so-called Smith chart, which could also be used in this context
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Fig. 11.7. Absorption as a function of angle Θ1

In practical room acoustics what is mostly of interest is the degree of ab-
sorption averaged over all possible angles of incidence – so-called diffuse-field
incidence or random incidence. As will be derived in Section 12.5, this diffuse-
field incidence is given by the integral

α =
∫ π/2

0

α(Θ1) sin(2Θ1) dΘ1 . (11.32)

Note that for locally reacting walls this quantity will never reach one.

11.5 Porous Absorbers

Porous absorbers are very important for practical applications. They are, for
example, built from fibrous materials such as fabric, mineral wool or cocos fibre
that is compressed into mats or plates as well as from porously extruded arti-
ficial foams. To arrive at an estimate of the absorptive behavior, the Rayleigh
model – see Section 11.4 – is useful again. When considering perpendicular
sound incidence and substituting vi by va in (11.17) Zw, the wall impedance
is found to be

Z wall =
1
σ

√
jω�= +Ξ σ

jω κ=
. (11.33)

For high and low frequencies the following approximations hold. For high
frequencies we get

Z wall ≈
1
σ

√
�=

κ=
=

1
σ
�= c , (11.34)

which is real and does not depend on frequency. For low frequencies, however,
we find a complex and frequency-dependent relationship, namely,

Z wall ≈
1
σ

√
Ξ σ

ω κ=
e−j 45◦

. (11.35)
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The trajectory of Z wall in the Z-plane is shown in Fig. 11.8. To discuss the
course of α, it is helpful to think of the α-circles as isohypses again. Accord-
ingly, for α(ω) one gets a monotonically increasing curve with a maximum
of

αmax =
4σ

(1 + σ)2
. (11.36)

Fig. 11.8. Trajectory of Z wall in the Z-plane for porous absorbers

These conditions are valid for an infinitely thick layer of porous material. If
the absorber thickness is finite and the material is placed upon a rigid wall,
part of the energy will be reflected and re-transmitted – after having passed
the absorbing material a second time.

The situation can be illustrated by regarding that in front of the wall a
standing wave will develop. Directly upon the wall the perpendicular compo-
nent of the particle velocity is zero, that is v⊥ = 0. Consequently, the absorber
is ineffective at this point – see Fig. 11.9. Thus, for low frequencies, a finite
layer of material will provide less absorption than an infinitely thick one. The
material is actually best exploited when positioned at a distance to the reflect-
ing, rigid wall. α will arrive at a relative maximum whenever the absorptive
layer is in a velocity maximum. This arrangement is frequently used in praxi.
Figure 11.10 schematically shows the three cases as discussed above.

Real porous absorbers are not well-represented by the Rayleigh model,
even with the structural factor, χ, being employed. Among other things, it is
often not clear whether the absorber arrangement is actually locally reacting.
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Fig. 11.9. Illustrating absorption by a layer of porous material in front of a hard
wall, (a) with air gap, (b) directly on the wall

Fig. 11.10. Absorption of porous material as a function of frequency – schematic.
(a) infinite thickness, (b) finite layer with air gap, (c) finite layer directly on wall

This can be enforced by cassetting – sketched in Fig. 11.11 – although for
compressed mineral wool this is usually not necessary.

To achieve a very high α, one can try to enhance the effective absorp-
tive area, for instance, with porous wedges. Audience, by the way, is also a
considerable absorber.

Fig. 11.11. Cassetted porous absorber
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11.6 Resonance Absorbers

As we have seen above, with absorptive materials the effective layer must be
placed a quarter wavelength, λ/4, in front of the wall. For a 100-Hz frequency
with a wavelength of 3.40m, for instance, this would mean a placement of
85 cm before walls. In praxi, so much space is usually not available.

Especially for low frequencies, that is, for so-called bass traps, a different
absorber principle is therefore often employed, based on resonance absorption.
To this end, the absorptive wall is covered with acoustic resonators, the input
impedance of which is very low at their resonance frequency. Such resonators
can be efficiently positioned within enclosed spaces, for example, in the corners
of a room.

Fig. 11.12. Absorption of resonance absorbers as a function of frequency

The principle frequency relationship of α for resonance absorbers is plotted
in Fig. 11.12, both with and without additional porous material.

Technical data for diffuse sound incidence for practical application are
usually taken from the literature or directly from the suppliers. In the fol-
lowing, we only present fundamental theoretic ideas. Two types of resonance
absorbers are in use, Helmholtz absorbers and membrane absorbers, which also
exist in combined and/or integrated form.

Helmholtz Absorbers

Plates with holes or slits in them are placed at a distance from a wall. Ab-
sorptive materials may be put on the rear side of the plates. Figure 11.13 (a)
illustrates the arrangement. For the wall impedance we get

Z wall =
p
+

v+

= Za A = jωm′′ +
1

jω n′′ + r′′ , (11.37)

where r′′ = Ξ b1 is the area-specific resistance, n′′ = κ b2 the area-specific
compliance, and m′′ = �= (b3+η)σ the area-specific mass. Thereby σ=π r2/b24
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is the degree of perforation (porosity). η is a correction factor (mouth correc-
tion) which considers that at the mouth of a hole or slit more air mass is
moved than is actually inside the mouth. An estimate for circular holes is
η = 1.6 r.

Fig. 11.13. Resonance absorbers. (a) Helmholtz absorber, (b) membrane absorber

Membrane Absorbers

These absorbers are built with co-vibrating membranes in front of an air gap
before a wall. The membranes can, for example, be plates or other mass-
afflicted materials, such as foils, and can additionally be loaded with weight
to decrease the resonance frequency. Absorptive material may also be put
into the air space. The arrangement is depicted in Fig. 11.13 (b). Numerous
different built forms have been applied, including such with more than one
membrane layer.

Although bending waves of the membranes are certainly possible, for rough
calculations one usually assumes wall-perpendicular movements only. The rea-
son for this assumption is that reacting forces due to bending of the material
are usually negligible compared to those due to the stiffness of the air cushion.
m′′ is the area-specific mass of the plate, and n′′ = κ= b is its compliance.
The area specific resistance, r′′, is hard to estimate. It contains losses within
the plate.

Microperforated Absorbers

A special kind of membrane absorbers uses microperforated membranes. These
absorbers are built with perforated thin panels or foils in front of an air gap
before a rigid wall, similar to what is shown in Fig.11.13 (a), but without
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absorptive materials on the rear side of the panel. The perforations in the
thin panel or foil is in the sub-millimeter range (diameter 0.5 – 1 mm) so as to
provide high acoustic resistance but low area-specific acoustic-mass reactance.
This is necessary for wide-band absorber. Besides the microperforated panel
or foil, there is no additional fibrous, porous materials.

Microperforated absorbers are of resonant type. The bandwidth of single-
panel absorbers can be designed to be as wide as 1 – 2 octaves. With two
different resonant frequencies about 20% apart as can be realized with
double-layered microperforated panels, even broader absorption bandwidths
are achieved. Yet, the most intriguing feature is that microperforated ab-
sorbers can be made from a great variety of panel or foil materials, including
thin metal sheets and flexible and/or translucent foils.



12

Geometric Acoustics and Diffuse Sound Fields

So far in this book we dealt with sound propagation in terms of the wave
equation. This procedure becomes very complicated, however, when treat-
ing sound fields inside rooms with complicated shapes like concert halls or
churches. An approximate method called geometrical acoustics is often useful
in these cases.

This method considers sound propagation in terms of so-called sound rays.
Sound rays were already introduced in Section 10.4, where a ray symbol was
used to designate the wave bundle that emerges from a circular hole in a
rigid wall when R 	 λ. The idea is that the wave bundle propagates along a
straight line like a ray of light.

The concept of rays is mathematically achieved by maintaining plane areas
of constant phase and letting the wavelength go to zero. In praxi, wave propa-
gation can be approximated by rays when the following condition is met. The
wavelength of the sound under consideration must be small compared to the
linear dimensions of boundary areas and obstacles. Diffraction is neglected in
this view.

The energy density, W ′′, within a ray is equal to the energy density in a
plane propagating wave. To compute its amount, we consider a wave bundle
propagating through an area of 1/m2 for 1m – see Fig. 12.1 for illustration.
The energy density, then, is the active power, P , times the traveling time,
t1 = (1/c) · 1 m, divided by the volume of 1 m3, or – in mathematical terms,

W ′′
ray = |−→I | · 1 m2

︸ ︷︷ ︸
P

1
c
· 1 m

︸ ︷︷ ︸
t1︸ ︷︷ ︸

W

1
1 m3
︸ ︷︷ ︸
V −1

=
|−→I |
c

=
I

c
. (12.1)
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Fig. 12.1. Sound rays propagating through a unit volume

Rays are usually considered to be incoherent so that their energy densities
superimpose when they meet1. The sum up of the rays is

∑
W ′′

ray =
∑ |−→I |
c

=
IΣ

c
. (12.2)

The assumption that the rays are incoherent is valid for most broadband
signals like speech or music, assuming that the rays have traveled different
distances from the source. This is not the case, however, for impinging and
reflected waves close to reflecting surfaces. Incoherence can also not be as-
sumed for narrow-band or pure-tone signals.

12.1 Mirror Sound Sources and Ray Tracing

The behavior of rays at plane reflecting surfaces is particularly relevant for
geometrical acoustics. Plane means here, that any unevenness of the surface
is small compared to the wavelengths of the sound considered. The reflection
law, Θ1 = Θ′

1 holds, and may even be applied to slightly curved planes as long
as the curvature is small compared to the wavelength – shown in Fig. 12.2.

Fig. 12.2. Reflection of sound rays at (a) planes, and (b) moderately curved plates

It is particularly useful to treat sound propagation by using rays when study-
ing room acoustics and outdoor sound propagation over longer distances – as
often necessary in connection with noise control problems. When using the

1 Consult Section 1.6 for incoherent superposition
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concept of sound rays, relevant rules and laws from optics can directly be
applied. The length of a ray is proportional to its traveling time, making it
possible to not only determine the direction of sound propagation, but also
the arrival times of different rays at a certain point of interest.

Reflection on plane surfaces can be depicted by mirror sources (virtual
sources) – shown in Fig. 12.3. The mirror source, q

m
, and the primary source,

q
0
, simultaneously send out identical sound fields. The combination of these

sound fields on the surface produces a reflected wave that fulfills the boundary
condition for full reflection, namely, the normal component of the particle
velocity, v⊥, being zero.

Fig. 12.3. Mirror sound sources emanating from reflection at a plane

In Figure 12.4, it is assumed that both sources transmit a short sound impulse
at the initial time, t0. The figure shows the wave fronts of both the primary
and the reflected sounds and illustrates how the second wave front arrives at
the receiver later than the first.

Fig. 12.4. Wave fronts of both the primary and the reflected sounds
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Investigations into the relative arrival times of reflections are important, espe-
cially since reflections that arrive at the receiver with a delay may cause the
perception of disturbing echoes, which should be avoided in room acoustics.

The actual perceptual echo threshold is dependent on the character of the
sound. It is about 50ms for running speech, larger for music and shorter for
impulses.

Fig. 12.5. Mirror sources at edges and in corners

Complications may arise for higher order reflections on the edges and in the
corners of rectangular spaces. Mirror sources may coincide spatially. This is
illustrated in Fig. 12.5 where the 2nd-order mirror sources, q

mm1
and q

mm2
,

coincide in the rectangular corner.

Fig. 12.6. Focussing or scattering effects (ρ denotes the source position) (a) at
concave, (b) at convex surfaces
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Focussing or scattering may happen as a result of curved surfaces, – shown in
Fig. 12.6. Unwanted echoes caused by focussing can be avoided by modifying
the form of the reflecting surface, employing irregular reflecting structures
with linear dimensions that are on the order of the wavelength, or by covering
the surfaces with sound-absorbing materials.

Fig. 12.7. Guiding sound via the ceiling of an auditorium

Figure 12.7 presents an application example for geometrical acoustics. In an
auditorium, the sound from a speaker, q

0
, is guided to the audience via ceiling

reflections. q
m1

and q
m2

are the mirror sound sources representing the tilted
and horizontal parts of the ceiling, respectively. Two sample rays are depicted
for illustration. The two mirror sources illuminate the spatial sections Θ1 and
Θ2. The rear wall is made absorptive to avoid audible echoes.

As to the construction of the graph please note that the mirror sources are
positioned perpendicularly to the reflecting surfaces at the same distance to
the surface as the original source, yet, outside the room under consideration.
The rays originating from them are restricted to the spatial sector defined by
the individual reflecting surfaces concerned.

12.2 Flutter Echoes

We will now consider a case involving a highly directional sound source, p
1
,

between two parallel walls a distance, l, apart. The source emits a short sound-
pressure impulse directed perpendicularly toward one of the walls and prop-
agating like a ray – shown in Fig. 12.8 (a). The two walls may be slightly
absorbent, characterized by a degree of absorption, α. A microphone close to
the position of the source would records a signal as schematically plotted in
Fig. 12.8 (b).

If the interval between the individual impulses at the receiver, τ = l/c, is
larger than the echo threshold, the impulses become perceptible as a series



166 12 Geometric Acoustics and Diffuse Sound Fields

of individual echoes, called flutter echo. Flutter echoes should be avoided in
room acoustics. This can be accomplished by slightly tilting the two walls by
> 5◦ or by making their surfaces absorbing or scattering.

Fig. 12.8. Multiple reflections between parallel walls – the origin of flutter echoes

The envelope of the impulse series decreases exponentially for α > 0, meaning
that the ray looses a given percentage of its energy whenever a reflection takes
place2. The following variables are involved in the flutter echo situation, with
W ′′

0 being the energy density of the impinging ray,

W ′′
1 = (1 − α)W ′′

0 . . . energy density after the 1st reflection
W ′′

n = (1 − α)n W ′′
0 . . . energy density after the nth reflection

With l being the traveled distance between two reflections, we arrive at a
temporal reflection density, n′, that is the number of reflections per time, of

n′ ≈ c/l . (12.3)

Please note that n′ is correct up to a rest that is negligible when l � 340m
holds. 340 m is the distance that sound propagates in air in one second.

For large n, the expression for W ′′
n can be substituted with a monotonic

function as follows,

W ′′(t) = W ′′
0 (1 − α)n′ t = W ′′

0 (1 − α) (c/l) t . (12.4)

The discrete energy losses are replaced in this way by continuous spatial damp-
ing, which allows the above expression to be written using y = eln y, namely,

W ′′(t) = W ′′
0

[
e ln(1−α)

]n′ t

= W ′′
0 en′ ln(1−α) t . (12.5)

2 The chunks of sound energy that the source sends out and that subsequently
oscillate between the two walls are sometimes dubbed “sound particles”
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This decreasing exponential function is actually an analytical description of
the decreasing envelope in Fig. 12.8 (b).

For very small amounts of absorption, α � 1, the expression can be sim-
plified by using the serial expansion

−ln(1 − α) = α+
α2

2
+
α3

3
+ . . . ≈ α (12.6)

and truncating it after the first term, so that

W ′′(t) ≈W ′′
0 e−n′α t . (12.7)

12.3 Impulse Responses of Rectangular Rooms

We will now move beyond the case of two parallel walls and consider a rect-
angular (cuboid) room with six reflecting boundaries, namely, four walls, one
floor and one ceiling. This room will illustrate an important rule in room
acoustics that which states that the reflection density, n′, increases with t2 in
many rooms.

Fig. 12.9. Image sources of one sound source for a rectangular room
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Figure 12.9 illustrates this concept. The figure shows the plan of a rectangular
room with a single sound source in it, along with mirrored rooms of nth order
with one mirror source in each of them3.

Let V be the volume of the cuboid room. Now all of the mirror sources
simultaneously transmit a sound impulse at t = 0. All impulses that originate
from within a hollow sphere with the radius rΔ = c · 1 s, arrive at the receiver
in the original room within the same interval of 1 s. The number of mirror
sources in the hollow sphere is approximately the volume of the hollow sphere
divided by the volume of the original cuboids, V , which is

n ≈
4
3 π

[
(r + rΔ)3 − r3

]

V
. (12.8)

For r � rΔ, neglecting higher-order difference terms, r2Δ and r3Δ, this expres-
sion approaches

n′(t) =
4π r2 rΔ
V · 1 s

=
4π c3 t2

V
. (12.9)

In other words, the density of the impulses arriving at the receiver is increasing
with the square of expired time. The reflections also come from more directions
over time, resulting in an ever more homogeneously distribution both over
time and space.

Figure 12.10 is a simplified illustration of what is called an echogram, par-
ticulary, an impulse echogram. We see the direct sound and the early, low-order
reflections as discrete event. Then the echogram becomes denser and denser,
so that individual impulses can no longer be discriminated. This late part of
the echogram is called reverberation tail.

Fig. 12.10. Echogram

It is important to consider the intensity characteristics of this situation. As-
suming that the sound source is a spherical source of 0th order, the active
3 This is the case for rectangular rooms where many mirror sources coincide spa-

tially due to the rectangular corners. In more irregular rooms the situation may
become more complicated, particularly, when focussing occurs
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intensity of the transmitted sound will drop with 1/r2. On the one hand, this
effect can be seen for the early reflections of the echogram, but on the other
hand, the reflection density increases with t2. The active intensity measured
over an interval, tΔ, is therefore constant.

Now we have to keep in mind at this point that real instruments used to
measure echograms always measure with a running time window, tΔ, because
they have low-pass characteristics. Thus, any echogram measurement would
show a constant envelope as long as no absorption or dissipation occurred.
Consequently, the energy in the running time window would stay constant
over time. The latter is unrealistic in praxi, however, since there are always
some losses. We will now show that the envelope of the reverberation tail
decreases exponentially in real rooms.

12.4 Diffuse Sound Fields

From the discussion in Section 12.3, it is obvious that it is hardly possible to
trace the fate of each individual sound ray, particularly in the reverberation
tail. Nevertheless, it is possible to make important statements about the aver-
age fate of late reflections. Such an approach is called statistical room acous-
tics. We begin with an idealized model that adequately describes the sound
field of the reverberant tail, also called the diffuse sound field. The model
diffuse sound field is characterized by the following assumption, expressed in
term of geometrical room acoustics.

A diffuse sound field is composed of many rays with the average prop-
erties of equal intensity and equal spatial distribution

This assumes that all rays, on average, have been reflected the same number
of times and have, on average, traveled the same distance. It also means that
the mean free-path length between two reflections is the same for all rays.

The results of statistical room acoustics are independent of room shape
because only the average fate of rays is considered and described by statistical
parameters.

Sound Power Impinging Upon the Walls

In a diffuse sound field composed of rays from all possible directions, the
magnitude of the intensity is given by

Id =
∫∫

4π

|−→I (Ω)| dΩ = W ′′
d c , (12.10)

whereby Ω is the spatial angle and W ′′
d c denotes the energy density. The rays

that impinge on a wall from all directions transport sound power onto the
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wall. In the following we shall determine the total power that hits the walls
perpendicularly.

We start by computing the active intensity that hits a small surface el-
ement, dA, on the wall. This intensity is obtained by integration over all
differential intensities on a hemisphere of – as depicted in Fig. 12.11.

Fig. 12.11. Diffuse field impinging on a wall

The wave bundle that arrives from a spatial angle of dΩ yields the energy-
density component

dW ′′
d =

W ′′
d

4π
dΩ , (12.11)

where dΩ = 2π sinΘ dΘ is derived from Azone = 2 π h, the area of a spherical
zone on a unit-radius sphere. Consequently, we get

dI =
W ′′

d c

2
sinΘ dΘ . (12.12)

The perpendicular component of the differential intensity, dI, is obtained as

dIwall = dI cosΘ . (12.13)

To get the total intensity that hits the surface element perpendicularly, we
integrate over the angel Θ as follows,

dIwall =
W ′′

d c

2

∫ π
2

0

cosΘ sinΘ dΘ

=
W ′′

d c

2
1
2

∫ π
2

0

sin 2Θ dΘ =
W ′′

d c

4
. (12.14)
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This is apparently only 1/4th of the total diffuse intensity. The total power
impinging on a wall with total wall area, A, thus is

P wall =
W ′′

d c

4
A. (12.15)

Sound Power Absorbed by the Walls

The power absorbed by the walls is

P wall, abs =
W ′′

d c

4
αA , (12.16)

where α is the degree of absorption for diffuse sound incidence. It can be
determined by the equation

α =
∫ π

2

0

α(Θ) sin 2ΘdΘ . (12.17)

This expression is known as Paris’ formula and has already been mentioned
in Section 11.4. The validity of Paris ’s formula becomes clear by realizing that
the absorbed power is equal to

dIwall, abs(Θ) = α(Θ) dIwall . (12.18)

Average Reflection Density and Average Free-path Length

The energy that hits the walls during a time span of one second is

W1 s =
W ′′

d c

4
A · 1 s . (12.19)

The total diffuse-field energy present in a room with the volume, V , is

Wroom = W ′′
d V. (12.20)

The rays transport this energy to the wall on an average of n ′ times per
second, that is

n ′W ′′
d V =

W ′′
d c

4
A · 1 s, with n ′ =

A c

4V
. (12.21)

This leads to the expression for the mean free-path length as

l =
c

n ′ =
4V
A

. (12.22)
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12.5 Reverberation-Time Formulae

When we insert the average reflection density n ′, and the average degree of
absorption, α, into (12.5), which describes the decay of a multiply reflected
wave bundle – see Section 12.2 – we obtain the following expression for the
time-dependency of the energy density in the diffuse sound field

W ′′
d (t) =

∑
W ′′

ray(t) = W ′′
d (t = 0) exp

[
Ac

4V
ln(1 − α) t

]

. (12.23)

According to Sabine, the time span required for the energy density to de-
crease to 1millionth of its initial value, that is, by 106 or 60 dB, is called the
reverberation time, T . Inserting this reverberation time into (12.23) results in

10−6W ′′
d (t = 0) = W ′′

d (t = 0) exp
[
Ac

4V
ln(1 − α)T

]

. (12.24)

In air under normal condition, that is 20◦ C temperature and 1000hPa static
pressure, the sound speed, c, is about 340m/s. Using this value, we obtain

T = 0.163
[ s
m

] V

−ln(1 − α)A
, (12.25)

an expression that is known as Eyring’s reverberation formula. For small
amounts of absorption, α � 1, this formula simplifies to

T ≈ 0.163
[ s
m

] V

αA
, (12.26)

which is preferred in praxi and known as Sabine’s reverberation formula.

Fig. 12.12. Time trace of a reverberant noise sound after being switched off

The reverberation time, T , can be measured in many ways, including the
following switch-off method. A room is excited with a noise source until a
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stationary average sound-pressure level is reached. Then the sound source is
switched off, and the sound-pressure level is recorded as a function of time,
producing a curve like the one shown in Fig. 12.12. The time interval between
switching-off the source and the instance where the curve has decreased by
60 dB, is taken to be the reverberation time, T .

Consideration of the theory an actual reverberation plots shows that the
diffuse sound field assumption is sufficiently valid when the following condi-
tions are met.

• Sound absorption is well distributed about the boundaries of the room
• The shape of the room is irregular and focussing elements are particularly

avoided
• Total sound absorption is small or moderate. A good check is if the ratio

of room volume and equivalent absorptive area – see next paragraph – is
not too small, usually > 1 m

The Equivalent Absorptive Area

The following expression,

Aα = −ln(1 − α)A ≈ αA , (12.27)

is understood to be a fictive area with a unit degree of absorption, that is
100% of absorption or α = 1, representing the total absorption present in the
room. This fictive area is called equivalent absorptive area.

If there are partial areas at the boundary of a room, each with an individual
absorption value of αi, then the equivalent absorptive area is defined to be

Aα =
∑

i

Ai αi + 8 αV︸ ︷︷ ︸
correction

, (12.28)

where Ai are the individual areas with individual degrees of absorption αi.
The correction component in the formula, not derived here, is only used

to account for dissipation in the transmission medium of large rooms. Values
for air are given in Table 11.1.

12.6 Application of Diffuse Sound Fields

We will now introduce three well known and frequently used applications of
the diffuse-sound-field model.
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Reverberation-time Acoustics

The reverberation time, T , estimated with either Eyring’s or Sabine’s formula,
is considered to be a relevant parameter of the acoustic quality of spaces, which
includes, among other things, their suitability for specific performances.

Table 12.1 presents preferred values of T for various performance styles.
The values are drawn from literature and refer to the 500–1000Hz range. A
moderate increase toward low frequencies is considered adequate since it is
said to increase the listeners’ sense of envelopment and warmth.

Table 12.1. Reverberation times

Speech Chamber music Opera houses Concert halls Organ music

0.8–1.0 s 1.4–1.6 s 1.5–1.7 s 1.9–2.2 s 2.5 s and more

The following guidance holds for speech. A too-short reverberation time pro-
duces high intelligibility but also increases the effort required from the speaker.
If T is too long, auditory smearing takes place and deteriorates intelligibil-
ity. 0.8–1.0 s is a reasonable compromise for speech running at normal speed,
which is roughly 50 syllables/minute.

Reverberation time is undoubtedly an important parameter of acoustic
quality but certainly not the only one. Proper guidance of early reflections
and avoidance of echoes are at least as important.

Measurement of Spatially Averaged Absorption

Absorption measurements are taken in reverberation chambers, which are
rooms where a diffuse sound field has been realized using highly reflective,
obliquely oriented walls and planes4.

The equivalent absorptive area, Aα1 , of the empty chamber must be de-
termined beforehand, usually by a reverberation-time measurement. With a
sample of the material to be measured in the chamber, the reverberation-time
measurement is then repeated. For the measured reverberation-time data,
then, the equivalent absorptive area of the chamber including the sample is,

Aα2 = 0.163
[ s
m

] V

T
. (12.29)

Consequently, the equivalent absorptive area of the sample results as

Aα,sample = A sample α sample = Aα2 −Aα1 . (12.30)

4 In order to measure α for perpendicular sound incidence only, a measuring tube
may be applied – see Section 7.6
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Measurement of the Total Power of a Sound Source

Sound power measurements are also undertaken in the diffuse sound field of a
reverberation chamber. The source is brought into the chamber and operated
to transmit ongoing sound.

The sound power transmitted by the source and the sound power absorbed
by the equivalent absorptive area of the reverberation chamber will reach a
stationary balance as follows5,

P source︸ ︷︷ ︸
introduced

=
Aα W

′′
d c

4︸ ︷︷ ︸
absorbed

with W ′′
d =

Id
c

=
p2

rms

�= c2
. (12.31)

The power of the sound source, consequently, is

P source = p2
rms

Aα

4 �= c
. (12.32)

The following rules are useful when performing the measurements. A sufficient
number of measuring points must be well-distributed across the room but not
too close to walls or corners because full incoherence of incoming and reflected
sounds can not be guaranteed in such locations. This may result in measured
values that are too high.

The Critical Radius

A stationary, diffuse sound field has the same average energy density, W ′′
d ,

everywhere in space. Close to a sound source, however, the energy density of
the direct sound may be much higher. The situation is depicted in Fig. 12.13.

Fig. 12.13. The critical radius – equilibrium of direct- and diffuse-field energy
densities with a 0th-order spherical source

5 With p rms being the rms-value of p – see Section 15.4 for a definition
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The critical radius is the distance from a 0th-order spherical source where the
direct and diffuse energy densities are just equal. Equality of the two energy
densities is given at

W ′′
direct =

P source

4π r2︸ ︷︷ ︸
Idirect

1
c

!= W ′′
d =

4P source

Aα︸ ︷︷ ︸
I diffuse

1
c
, (12.33)

which leads to the critical radius as follows,

rc =

√
Aα

V
. (12.34)

For directional sources the distance of equilibrium of direct and diffuse field
is higher in the direction of focussed transmission. We then speak of critical
distance or diffuse-field distance.

Knowing the critical radius or critical distance is useful when taking sound
recordings because microphone placement within this radius or distance will
predominantly render direct-sound signals. Placement outside will predomi-
nantly render diffuse-sound signals, which are auditorily perceived as spatial
impression.
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Isolation of Air- and Structure-Borne Sound

Sound isolation is the confinement of sound to a space in such a way that
transmission to neighboring spaces is totally or partially prevented. Sound
isolation is predominantly based on reflection caused by impedance disconti-
nuities in possible transmission paths. Dissipation and absorption may also
play a role in sound isolation, but it is usually minor. Another term for sound
isolation is sound damming because the sound is, so-to-say, “dammed in”.

Sound isolation must not be confused with sound damping. Damping of
sound means that sound energy has been removed from a sound field by
means of dissipation and/or absorption. The transmission of sound to another
space is one possible method of absorption. Thus, absorption is not necessarily
dissipation, the latter being transformation of acoustic/mechanic into thermal
energy.

Measures of airborne and structure-born sound isolation are of particular
technological relevance. Non-porous leaves or walls are typically inserted into
airborne transmission paths to achieve isolation, and isolation of structure-
borne sound is accomplished by inserting elastic elements (springs) or layers
(resilient materials, air gaps). Sometimes heavy interlocking masses are also
used. In every case, the goal is to create impedance discontinuities that result
in reflection.

13.1 Sound in Solids – Structure-Borne Sound

An important difference between solids and fluids is that solids experience
shear forces. This means that solids can store energy through both volume
changes and changes of form. Solids consequently experience a number of
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wave types in addition to longitudinal waves since transverse movement with
respect to the direction of propagation is possible. The types of waves that
are actually possible in a specific case are dependent, among other things, on
the specific form or the configuration of solid bodies under consideration.

Fig. 13.1. Longitudinal, (a), and transversal waves, (b)

Infinitely extended solids only experience longitudinal density waves and
transverse shear waves – shown in Fig. 13.1, but finite solids like rods or plates
can also carry dilatation, surface, torsion, and bending waves – illustrated in
Figs. 13.2 and 13.3.

Fig. 13.2. Quasi-longitudinal (dilatational), (a), and surface waves, (b)

The different types of waves listed above couple with each other at bound-
aries, junctions and/or points of impact. This means that selective damping
of one wave type does not prevent this kind of wave from being excited again
somewhere else. For example, a rod that is perpendicularly fixed to a plate
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Fig. 13.3. Bending, (a), and torsion waves, (b)

and carrying an elongation wave will excite bending waves at the junction
with the plate.

13.2 Radiation of Airborne Sound by Bending Waves

The specific combination of transverse and angular motion that characterizes
bending waves result in considerable surface velocities and, consequently, the
emission of airborne sound. This type of wave is of particular practical rele-
vance because of this effect.

The Wave Equation for the Bending Waves

The wave equation for a lossless free bending wave in thin plates will now
be derived. Energy storage in these waves is accomplished by the mass load,
m′′ [mass/area], and the bending stiffness, B′. Fig. 13.4 illustrates the situa-
tion.

Fig. 13.4. Element of a plate with mass and bending stiffness

The bending stiffness, B′, excites a torque per width, T ′, that is proportional
to the flexion, ∂2ξx/∂y

2. The following consequently holds,
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T ′ = −B′ ∂
2ξx
∂y2

. (13.1)

The relative pressure on an area element is equal to

p
B′ =

∂2T ′

∂y2
= −B′ ∂

4ξ
x

∂y4
=

−B′

jω
∂4vx

∂y4
, (13.2)

which is counterbalanced by the pressure due to mass persistence, expressed
as

p
m′′ = jωm′′ vx . (13.3)

Combining (13.2) and (13.3) renders the wave equation for bending waves,
namely,

jωm′′ vx +
B′

jω
∂4vx

∂y4
= 0 . (13.4)

The solution for propagating bending waves of this 4th-order differential equa-
tion is

vx(y) = vx+e−βby . (13.5)

Inserting this solution into the wave equation result in the phase coeffi-
cient, βb, which is equal to

βb =
√
ω

4

√
m′′

B′ . (13.6)

This leads directly to the phase velocity of the free bending wave, cb,

cb =
√
ω

4

√
B′

m′′ =
ω

βb
. (13.7)

In other terms, different spectral components of the wave propagate with dif-
ferent speeds because the phase velocity is a function of frequency. This means
that bending waves are dispersive.

Sound Emission by Bending Waves

The velocity perpendicular to the surface of the plate is continuous with the
velocity of the plate, meaning that the solution for velocity given above also
holds for the adjacent layer of air. Equality of the phase coefficients at the
boundary, βb = β cosΘ = βy, yields

βb =
ω

cb
= β sinΘ =

ω

c
sinΘ , (13.8)

from which follows
c = cb sinΘ . (13.9)

This equation is similar to the law of refraction – as introduced in Section
11.3. The equation includes the following two distinguishable cases.
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• Case I ... Equation (13.9) is fulfilled for c < cb or, equivalently, β > βb

or λ < λb. This results in radiation of airborne sound at an angle of Θ –
shown in Fig. 13.5. This is because the equation

βx = β cosΘ =
√
β2 − (β sinΘ )2 = ω

√
1
c2

− 1
c2b

= βb , (13.10)

results in a real (non-complex) solution for βx. This means that a compo-
nent of the phase coefficient exists along the x-direction

• Case II ... Equation (13.9) cannot be fulfilled for c > cb because β would
become imaginary and result in the real damping coefficient αx = j(jβx).
In this case, we observe an exponential decrease in the x-direction, which
physically amounts to a hydrodynamic short-circuiting near the surface.
This situation is parallel to total reflection in refraction

Fig. 13.5. Radiation of airborne sound by bending waves

13.3 Sound-Transmission Loss of Single-Leaf Walls

We will restrict ourselves to non-porous walls in this section. In acoustical
terms single leaf refers to a panel in which the cross-sectional particle velocity,
vx, is identical at all points inside the leaf. This is the case in thin, solid leaves.
Elongation waves inside the leaf may thus be neglected there.

Consider an infinitely extended, thin single-leaf wall in an infinitely ex-
tended fluid like an air space. The wall may have a mass load, m′′, and a
bending stiffness, B′.
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An enforced bending wave is excited by the sound-pressure distribution in
front of and behind the leaf. The excitation is controlled by the pressure
difference between the two sides of the leaf shown in Fig. 13.6.

Fig. 13.6. Sound-pressure distribution at the two sides of a leaf

If we insert this differential pressure into the bending wave equation as the
exciting term that represents the pressure balance, we obtain the following
expression

[ p
1+

e−jβ (sin Θ)y + p
1−e−jβ (sin Θ)y ] − p

2+
e−jβ (sin Θ)y

= jωm′′ vx +
B′

jω
∂4vx

∂ y4
. (13.11)

Inserting the solutions

vx+(y) = vx+e−jβ (sin Θ)y with vx+(y) = v2+(y) cosΘ , (13.12)

yields

[ (p
1+

+ p
1−) − p

2+
] e−jβ (sin Θ) y

= (jωm′′ +
B′

jω
β4 sin4Θ)e−jβ (sin Θ) y

vx+(y)
︷ ︸︸ ︷
v2+ cosΘ . (13.13)

Now, since it is true that

v2+ =
p
2+

�= c
and v2+ = v1+ + v1− =

p
1+

�= c
−
p
1−
�= c

, (13.14)

we may eliminate p
1− and v2+ and obtain

p
2+

p
1+

=
1

1 + cos Θ
2�= c

(
jωm′′ + B′

jω β4 sin4Θ
) . (13.15)

Inverting and rewriting in logarithmic terms yields the so-called transmission
loss, R,

R = 20 lg

∣
∣
∣
∣
∣

p
1+

p
2+

∣
∣
∣
∣
∣
dB = 20 lg

∣
∣
∣
∣1 +

j cosΘ
2�=c

(

ωm′′ − B′

ω
β4 sin4Θ

)∣
∣
∣
∣dB .

(13.16)
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Perpendicular Sound Incidence

In the case of perpendicular sound incidence sinΘ = 0, the 2nd term in the
parentheses of (13.16) vanishes. This also holds for leaves that are very com-
pliant for bending waves, that is, for B′ → 0. The insertion loss, R, now
approximately becomes

R ≈ 20 lg
(
ωm′′

2�= c

)

dB . (13.17)

In this case the insertion loss only depends on the mass load, m′′, and in-
creases at a rate of 6 dB per doubling of the mass load, This is called the mass
law for walls.

Oblique Sound Incidence

An important special case related to oblique sound incidence is when the entire
parenthetical term vanishes and we thus have R = 0. This is the case when
the y-component of the phase coefficient of the sound wave in air is equal to
the phase coefficient of the bending wave in the leaf, such that

β4 sin4Θ = ω2 m
′′

B′ and, thus, (β sinΘ)4 = (βb)4 , (13.18)

and, finally,
β sinΘ = βb . (13.19)

This equality of phase coefficients is called trace matching and can be un-
derstood as a kind of spatial resonance. A lossless wall like a window grate
becomes completely transparent when these conditions occur. It follows from
(13.19) that

ω

c
sinΘ =

√
ω

4

√
m′′

B′ , (13.20)

which in turn leads to

ωc = 2π fc =

√
m′′c4

B′ sin4Θ
. . . for sinΘ < 1 . (13.21)

This critical frequency, fc = ωc/(2π), is called coincidence frequency. The
inclusion of fc leads to the following formula for R,

R = 20 lg
∣
∣
∣
∣1 +

j cosΘ
2 �= c

ωm′′
(

1 − f2

f2
c

)∣
∣
∣
∣ dB . (13.22)

Below a limiting coincidence frequency, f c, lim, trace matching becomes im-
possible because

λ air > λb . (13.23)
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This limiting frequency is determined by λ air = λb, which leads to

f c, lim =
1
2π

√
m′′ c4

B′ . . . for sinΘ = 1 , which is Θ = 90◦ . (13.24)

The following advisements are interesting for practical purposes. To achieve
high transmission loss, the coincidence frequency should be well above or
below the spectral region under consideration. The coincidence frequency
of leaves made of solid brick or concrete usually lies in the range of 50 –
100Hz. Plywood and dry-plaster panels show coincidence frequencies of about
1 – 3 kHz. The limiting coincidence frequency can be increased by loading the
panel with additional mass or by cutting slits into it, which makes it more
compliant for bending waves. One can also try to dampen the bending waves
by applying absorptive coatings or viscous internal sandwich layers.

Fig. 13.7. Transmission loss as a function of frequency for a single-leaf wall. (a)
directed oblique incidence, (b) random incidence

The principal frequency relationship ofR as a function of f for both directional
and random (diffuse-field) sound incidence is shown in Fig. 13.7. Below fc, the
amount of isolation afforded by single-leaf walls is essentially proportional to
the mass load, which is proportional to the frequency. This means an increase
of 6 dB/oct. Above fc, the stiffness term becomes dominant and proportional
to ω3, amounting to an 18-dB/oct increase. This slope is, however, rarely
achieved in praxi, amongst other reasons, due to the way the wall is clamped
and to bypasses - refer to Fig. 13.12.

13.4 Sound-Transmission Loss of Double-Leaf Walls

As we just discussed, the sound-transmission loss of single-leaf walls is gov-
erned by the mass load. This certainly holds below the coincidence frequency,
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but it is also usually sufficient above it since the bending stiffness, B′, of many
wall materials is proportional to the mass load, m′′.

In cases where the mass of walls is structurally limited, double-leaf walls –
pictured schematically in Fig. 13.8 (b, lower panel) – can be used to achieve
sufficient sound isolation.

Fig. 13.8. Equivalent circuits for (a) single-leaf walls, (b) double-leaf walls

In terms of electro-acoustic analogies, a single-leaf wall experiencing per-
pendicular sound incidence can be represented by a two-port – shown in
Fig. 13.8 (a). A double-leaf wall with an air gap inside can be represented
as in Fig. 13.8 (b, upper panel). In terms of network theory, the two represent
low-pass filters of the 1st and 3rd order, respectively.

With a low-pass filter of the 3rdorder, a transmission loss of 3 times
6 dB/oct or 18 dB/oct can be achieved. This, however, only holds above the
fundamental drum resonance, ω0. It may be helpful to compare this configu-
ration to the two-mass resonator discussed in Section 3.7. The drum resonance
is determined by the equation

ω0 =
1

√
n′′ m′′

total

, (13.25)

in which the total effective mass is equal to

m′′
total =

m′′
1 m

′′
2

m′′
1 +m′′

2

. (13.26)

Below its fundamental resonance, a double-leaf wall behaves like a single-leaf
one because the two leaves are more or less rigidly coupled via the air gap.
When the linear dimension of the air gap matches the wavelength of sound
waves in air, cavity resonances arise that may reduce the transmission loss.
This effect can be reduced by loosely filling the air space between the leaves
with absorptive material like mineral wool.

Coincidence effects may occurs in the case of angular sound incidence, but
their negative impact can be avoided by making the mass loads of two leaves
different.
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Fig. 13.9. Transmission loss as a function of frequency for a double-leaf wall. (a) di-
rected oblique incidence, (b) random incidence

Figure 13.9 depicts the principal course of R as a function of frequency for
directional and diffuse (random) sound incidences. The cavity resonances are
labeled. The advantage of a double-leaf wall over a single-leaf one lies in the
region above the drum resonance, where R may increase with a slope of up
to 18 dB/oct – at a much lower weight than comparable single-leaf walls.

In real walls in buildings, sound transmission does not only occur via the
wall itself but also through the clamping at its rim. Transmission through this
path can be substantially reduced by making at least one of the two leaves
very compliant for bending waves by setting its coincidence frequency, f c, lim,
above the spectral region concerned. In this case, bending waves may be trans-
ferred into the compliant leaf without being emitted as airborne sound. The
bending-wave-compliant leaves may, for instance, consist of gypsum board,
metal sheets or heavy foils. A common construction is sketched in Fig. 13.10.

13.5 The Weighted Sound-Reduction Index

In architectural acoustics and related fields the sound-isolation capability of a
wall is characterized by an internationally standardized single-number index
called the Weighted Sound-Reduction Index, Rw. This index is specific to the
wall element considered and independent of its actual installation, for instance,
in a building.

The procedure for measuring Rw assumes diffuse sound incidence and a
relevant spectral region of 100 – 3200Hz. Figure 13.11 shows the measurement
set-up. The sending room is excited by noise, and the diffuse-field sound-
pressure, L ds, is determined. The receiving room has a known equivalent
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Fig. 13.10. Arming a single-leaf wall with an additional, bending-compliant leaf

absorption area, Aα, r – refer to Section 12.5 for this quantity. The sound-
pressure level, L dr, is measured in the diffuse field of this room.

Fig. 13.11. Measurement set-up for the transmission loss of walls, windows etc.

The sound-reduction index, R, is defined as

R = 10 lg
(
Ids

Idr

)

dB = 10 lg
(
Pds

Pdr

)

dB , (13.27)

where the sound power impinging on the wall, Pds, is

Pds =
S W ′′

ds c

4
=
S p2

ds, rms

4 �= c
, (13.28)

and the sound power transmitted through the wall into the receiving room,
Pdr, is

Pdr =
Aα, r W

′′
dr c

4
=
Aα, r p

2
ds, rms

4 �= c
. (13.29)

These terms may be combined into the ratio,

Pds

Pdr
=

S

Aα, r

p2
ds, rms

p2
dr, rms

, (13.30)
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and rewritten in logarithmic terms,

R = L ds − L dr + 10 lg
(

S

Aα, r

)

dB . (13.31)

Please be aware of the fact that in real installations sound may be transmitted
from one room to another via other paths besides the wall itself. Common by-
passes are shown in Fig. 13.12. To reduce their effect, the following measures
are taken. The flanking walls must be of sufficiently heavy construction, the
air gap above a suspended ceiling should be compartmentalized and damped,
and the covering floor should be extended beneath the wall.

Fig. 13.12. Possible paths of sound transmission between two enclosed spaces

According to the standard, R is measured in 1/3rd-oct bands. To obtain a
single-number criteria, the frequency curve of the measured R is compared
to a reference curve that defines a so-called Weighted-Sound-Reduction-Index
value of Rw = 52dB1. The measured curve is then shifted parallel to itself
and toward the reference curve in 1-dB steps until the sections below reference
remain on average ≤2 dB – depicted in Fig. 13.13. The amount of plus or
minus shifting in dB is then added to 52 dB. The resulting Weighted Sound-
Reduction Index of the wall is

Rw = (52 ± shifting) [dB] . (13.32)

Minimum requirements for Rw and R′
w, respectively, have been standardized

but vary form country to country. Reasonable values are as follows. Walls
between apartments should have an R′

w > 52 dB. Between separate dwellings
and rooms used for activities that do not belong to the apartment considered,
the respective value is 62dB.

1 When Rw has been measured in a test set-up with standardized by-passes, this
is indicated by an inverted comma, namely, R′

w instead of Rw
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Fig. 13.13. Determination of the Weighted Sound-Reduction Index

13.6 Isolation of Vibrations

Isolation of structure-borne sound often turns out to be difficult in praxi. On
the one hand, materials like steel or concrete have only very low damping
coefficients for structure-borne sound waves. On the other hand, it is often
not possible to construct adequate isolation measures like soft resilient inlays
in optimal positions. For these reasons, it is best to take care of preventing
structure-borne sound from entering structures like buildings, vehicles, and
engines in the first place. This is accomplished by directly isolating the source,
usually by providing elastic support. We will elaborate on how elastic support
works acoustically.

Since sources of structure-borne sound are usually small compared to the
wavelength of structure-borne sound waves, the fundamental principle of vi-
bration isolation can be illustrated with concentrated elements. We further
restrict ourselves to an example with only one degree of freedom. If there are
more degrees of freedom involved, comparable measures are taken for each of
them.

The example with a single-mass vibrator pictured in Fig. 13.14 is known
as the engine-support problem. The figure shows a sketch of the situation and
a mechanic-circuit diagram with an equivalent electric circuit of the 1st-kind
analogy.

In our example, it is assumed that the exciting force, F 0, is a constant
sinusoidal force2. The task at this point is to tune the system in such a way
that the force draining into the ground, F 1, is minimized. To this end, an
Isolation Index, RI, is defined as follows,

2 Alternatively one could, for example, assume constant velocity, v0
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Fig. 13.14. Isolation of a single-mass vibrator. Illustration of the situation and
equivalent circuits, (a) mechanic, (b) electric

RI = 20 lg
∣
∣
∣
∣
F 0

F 1

∣
∣
∣
∣ . (13.33)

After a short calculation – based on Fig 13.14 – one gets

F 0

F 1

=
r + jωm+ 1

jω n

r + 1
jω n

. (13.34)

From this point, with

ω0 =
1√
mn

and Q =
ω0m

r
≈ ω0

Δω
, (13.35)

RI = 20 lg
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√
√
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. (13.36)

A plot of this function is given in Fig. 13.15 for various values of the quality
factor, Q. Asymptotic values for the slopes of the curves are as follows.

• Q → ∞ ... which is vanishing damping. After dividing (13.36) by Q2 and
neglecting small members of the sums, we get RI � 20 lg

√
(ω/ω0)4 ∼ ω2.

This means that the slope approximates 12 dB/oct

• Q = 1 ... which is a considerably damped oscillating case. Neglecting small
sum members again, we get RI � 20 lg

√
(ω/ω0)2 ∼ ω. The slope, then, is

6 dB/oct

Please note that RI only becomes positive for values of ω/ω0 >
√

2. To isolate
a source of structure-borne sound, the support must therefore be tuned to
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Fig. 13.15. Transmission loss as a function of frequency

a resonance frequency well below the operating frequency, which is usually
the frequency of the exciting force. This technique is called low-end tuning.
Usually one aims for a frequency ratio of 1/5th – 1/10th.

The isolation index decreases with increased damping of the system be-
cause the damping acts as a sound bridge. Moderate damping is still impor-
tant, however, because it may limit the “dancing” effect experienced by the
sound source at or close to the resonance frequency. This may also occur when
a rotating engine starts up and runs slowly through the resonance point of
the support. It is certainly wise to limit movement at these frequencies with
properly adjusted dashpots or even hard mechanic boundaries.

Many types of elastic elements are currently used for acoustic isola-
tion, including steel springs, rubber-metal-compound elements, rubber, and
synthetic-foam plates. Progressive spring characteristics like those provided
by rubber can help avoid dancing of the source.

If the elastic element in use is known to have a linear characteristic, the
resonance frequency, ω0, can be determined from the amount the element
compresses under a load, x0. This is a handy on-site check for whether the
right elastic elements have been installed or if there are accidental sound
bridges. The relevant formula is

f0

Hz
≈ 5

√
x0/cm

, (13.37)

with

ω0 =
1√
m n

, n =
x0

F
, and applying F = m · 9.81

m
s2
. (13.38)
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When a sound-isolation increase of 12 dB/oct is not sufficient, multi-layer
supports can be applied. In terms of transmission theory, this technique is
equivalent to low-pass filters of higher order. Vibrations at distinct frequencies
can be further reduced using tuned resonating absorbers, also called vibration
extinctors.

The reciprocal nature of vibration isolation enables it to also be used to
protect equipment that would be impaired by vibration, like fine-weighing
scales or electron microscopes. One possible technique is to place sensitive
equipment on a heavy table supported by air cushions.

13.7 Isolation of Floors with Regard to Impact Sounds

In architectural acoustics tapping sound, that is, structure-borne sound excited
by walking on floors (footfall), is of particular relevance. Such sound can
be transmitted to adjacent rooms, especially below the floor, and then be
radiated as airborne sound. This also holds for other approximately point-wise
sources of excitation like knocking, falling items, pushed chairs, or household
appliances.

Isolation against this kind of sound can be accomplished with resilient floor
coverings, such as carpets, plastics layers or wooden plates, under-packed with
a compliant layer. The achieved isolation can be estimated in the same manner
that was described earlier. The quantity used as mass in such an estimation
should be that part of the total source mass that is in direct contact with the
floor, and the value used as compliance is the one given by the contact area.

The floating or resilient floor is another very efficient method for reducing
tapping sounds. As sketched in Fig. 13.16, such a floor consists of a load-
distributing plate, possibly made of cast concrete, supported by a compliant
layer, usually made of mineral wool or elastic synthetic foam.

Fig. 13.16. Floating-floor construction for isolation against tapping sounds

The assembly consists of two plates in which bending waves may propagate,
the floor itself and the concrete plate on top of it. The latter two are complexly
coupled with the elastic under-packing. It has been shown that the bending
stiffness of the top plate can be neglected if certain conditions are met. These
conditions are as follows. The top plate must be considerably thinner than
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the floor itself and the under-packing must have a high enough flow resistance
to prohibit sound propagation along it.

In most cases the same formulae can be used that have already been de-
rived for isolation with concentrated elements – see Section 12.5. The reso-
nance frequency of the floating floor is thus determined by

f0 =
1
2π

√
s′′

m′′ with s′′ =
1
n′′ , (13.39)

where m′′ is the mass load and s′′ the dynamic stiffness, which is the inverse
of the dynamic compliance, n′′. The dynamic stiffness of a resilient layer is
measured according to international standards. It contains the stiffness of the
enclosed air, which allows it to account for the fact that isothermal compres-
sion dominates within the layer.

In architectural acoustics, the resonance frequency, f0, should be chosen
to be well below 100Hz, so that human speech is sufficiently isolated from.
Extreme care must always be taken to prevent rigid contact between the
floating plate with the rigid floor or the walls. Such contact, often called a
sound bridge, impairs the isolation significantly. One small sound bridge may
easily reduce the isolation by more than 10 dB.
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Noise Control – A Survey

So far we have dealt with sound sources that convert electric energy into
mechanic/acoustic energy. These sound sources are mainly used to radiate
desired sounds because the mechanic/acoustic signals are easily controlled
by the electric ones. In addition to desired sound, there is undesired sound
that one would reduce or even eliminate if possible. This kind of sound is
called noise1. A reasonable definition of noise in acoustics must cover various
aspects, such as the following one.

Noise is audible sound that disturbs quietness, or the reception of in-
tentional sound, or leads to damage, annoyance or health impairment

In our engineered and industrialized environment, noise has become a sig-
nificant problem because it tends to be the byproduct or “garbage” of tech-
nological processes. Industrial machines and appliances that have not been
treated with special noise-control measures radiate 1 – 10 0/00 of their driving
power as sound. Although it is only a small fraction of the total power that is
converted into sound, considerable sound-power values may still be reached.
Table 14.1 lists the sound power of some prototypical sources for comparison.

The sound-power level, Lp, is a temporal and spatial average. In a free
sound field it is determined by integrating over all directions of radiation. In
a reverberant space the diffuse-field is measured as described in Section 12.6.
The sound-pressure level at a certain point in space can be derived from the
sound-power level of the source, but that is usually not a simple process.

1 In signal theory the same term is used for stochastic signals that are not prone
to carry information
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Table 14.1. Sound power of some typical sources

Source type P Lw re 10−12 W

Space rocket (Saturn) > 107 W > 190 dB

Jet airplane 104 W 160 dB

Large brass orchestra 10 W 130 dB

Large machine tool 1W 120 dB

Passenger cars on highway 10−2 W 100 dB

Normal speech 10−5 W 70 dB

Soft whispering 10−9 W 30 dB

14.1 Origins of Noise

Reasons why noise is generated are manifold, and a few examples of noise
sources are listed below – ordered with respect to their sound excitation types.
The list is not intended to be complete.

• Airborne sound sources
– excitation by explosion or implosion −→ impulsive sounds
– excitation by turbulent flow −→ non-periodic sounds
– excitation by intermittent flow, e.g., siren, car exhaust −→ periodic or

quasi-periodic sounds
• Structure-borne sound sources

– excitation by stroke or knock −→ impulsive sounds
– excitation by friction −→ non-periodic sounds
– excitation by periodic forces, e.g., magnetic or electric ones −→ periodic

or quasi-periodic sounds

In airborne sound sources, forced or free vibrations are excited in air or gas vol-
umes. In structure-borne sound sources, structures are excited by free or forced
vibration. Such structural vibrations may be radiated as airborne sound, par-
ticularly when large plates like walls, shells or housings are vibrating.

14.2 Radiation of Noise

Radiation of noise follows the general laws of sound radiation that have been
discussed throughout this book, especially in Chapters 9, 10 and11. Radiation
has specific directional characteristics that depend on the form of the gas
volumes or structures and the type of vibration they experience.

We will now discuss sound radiation by line arrays of non-coherent sound
sources and the role of meteorological conditions, two items that have not been
considered up to this point. Of course, both items can also be related to the
radiation of intentional sound signals, but they are rarely of importance there.
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Line Arrays of Incoherent Sources

The significant difference between arrays of coherent and incoherent sound
sources is that no interference occurs in the latter case. For this reason, it is not
necessary to consider the phase of partial sound pressures when computing the
sound field. Partial intensities are added up instead – explained in Section 1.6.

We will consider as an example a line array that is densely occupied by
incoherent point sources of 0th order and positioned on a reflecting surface.
Such an array may be taken as a model for a heavily used road.

Fig. 14.1. Sound radiation from a line array to a reference position

The line array is schematically plotted in Fig. 14.1. We assume that it expe-
riences a constant load of active sound power, P ′, which is also expressed as
constant power per length.

The reference point where the sound field will be computed should be in
the far field, where it holds that

p2
rms

�= c
=

∣
∣
∣
−→
I
∣
∣
∣ = I . (14.1)

The element, dx, yields a partial intensity at the reference point of

d
[∫ ∣

∣
∣
−→
I
∣
∣
∣ dϕ

]

. (14.2)

With a spatial angle of 2π since the reflective floor restricts us to only the
upper hemisphere, we get

d
[∫ ∣

∣
∣
−→
I
∣
∣
∣dϕ

]

=
P ′ dx

2π r2(x)
=

P ′ dx
2π (r20 + x2)

. (14.3)

With the end points of the line array defined to be x1 and x2, and the length
equal to d, integration yields
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∫ ϕ2

ϕ1

∣
∣
∣
−→
I
∣
∣
∣ dϕ

︸ ︷︷ ︸
IΣ

=
P ′

2π

∫ x2

x1

dx
r20 + x2

=
P ′

2π
1
r0

⎡

⎢
⎢
⎣arctan

x2

r0︸ ︷︷ ︸
ϕ2

− arctan
x1

r0︸ ︷︷ ︸
ϕ1

⎤

⎥
⎥
⎦ . (14.4)

Very long and very short arrays are two especially noteworthy cases. We shall
thus discuss them in the following.

• Very long line array

In the case of r0 � d, the difference of the apparent angles, ϕ2 −ϕ1, becomes
constant and independent of r0. An important case is ϕ2−ϕ1 = π, from which
it follows that

IΣ =
P ′

2
1
r0
, (14.5)

which amounts to - 3 dB per distance doubling. This is half the attenuation
rate of -6 dB associated with a spherical source. This is because the situation
imitates cylindrical radiation, and the shell area of a cylinder increases pro-
portional to the distance, r, from the center axis.

• Very short line array

Figure 14.2 illustrates that in the case of a very short array, when r0 	 d, the
following approximation applies, with r being the average distance,

tan (ϕ2 − ϕ1) ≈ ϕ2 − ϕ1 ≈ d

r0
cos2 ϕ . (14.6)

Insertion yields

IΣ =
P ′ d
2π r2

, (14.7)

which indicates - 6 dB per distance doubling. Very short line arrays may
therefore be dealt with as 0th-order spherical sources with a sound power
of P = P ′ d.

Influence of Meteorological Conditions

Temperature and wind profiles are the most relevant meteorological condi-
tions. We shall thus briefly comment on them in the following.
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Fig. 14.2. Sound radiation from a very short line array to a reference position

• Temperature profiles

The speed of sound, c, is the speed at which a wave front propagates, and it
depends on the temperature of the medium according to

c ∼
√
T ∼

√
1/� . (14.8)

Refraction always deflects sound into the colder and thus denser medium –
discussed in Section 11.3. Three typical cases are illustrated in Figs. 14.3, 14.4
and 14.5.

Fig. 14.3. Sound propagation in a normal temperature profile

In Figure 14.3, we see a normal temperature profile that might belong to a
sunny day when the ground is heated up. The sound is reflected upwards,
creating a shadow zone. Sound from sources beyond an acoustic horizon does
not come across.

Figure 14.4 shows a case of inversion that is characterized by a reversed
sign in the gradient of the temperature profile. This situation may occur on
a clear summer night when the ground has already radiated its heat while
the air is still warm. Sound is able to propagate along very long distances.
It is actually under similar conditions that African drum telephony becomes
effective.
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Fig. 14.4. Sound propagation while inversion of the temperature profile occurs

Figure 14.5 illustrates the sound-channel effect, which may occur in early
morning. Such sound channels are common in underwater sound environment
and must be considered in SONAR explorations.

Fig. 14.5. Sound propagation in a sound channel

• Wind profiles

Due to friction, a wind velocity gradient develops above the surface of the
ground. Sound propagation is deflected because the static wind velocity, v=,
superposes with the alternating particle velocity of the sound, v∼. A shadow
zone appears at the windward (luff) side – shown in Fig. 14.6 – but the bound-
ary of the shadow zone is blurred due to turbulence2.

14.3 Noise Reduction as a System Problem

Noise that is generated and radiated from one or more sound sources prop-
agates along one or multiple paths before arriving at one or more receivers
(sinks). It seems natural to discuss this situation as a system in transmission-
theory terms. Measures for noise control in this system require knowledge
2 It is worth noting that the influence of wind leads to violation of the principal of

reciprocity
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Fig. 14.6. Sound propagation under the influence of wind

of the structure of the system and of the characteristics of its components,
including sources, transmission channels and receivers.

Fig. 14.7. Different kinds of noise radiation and different propagation paths indoors

In Fig. 14.7 the situation is illustrated by a person who is exposed to noise
from a rotating engine on an enclosed machine floor. Sound emission happens
(1) by airborne sound radiation from vibrating surfaces, (2) by turbulent and
intermittent gas flows, and (3) by the vibrating floor. The sound arrives at
the exposed person via several different propagation paths – schematized in
Fig. 14.8. The planning of noise-control usually includes three groups of tasks,
namely, system analysis, goal setting, and decision making. More details are
listed below.

System Analysis

The main steps in system analysis are

• Identification of the sources, investigation of the sound-generation mecha-
nisms and determination of sound powers and directional characteristics
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Fig. 14.8. The topology of the system – illustrated for system analysis

• Identification and surveying of the sound-transmission paths. In praxi, it
is often useful to explore airborne-sound and structure-borne-sound paths
separately

• Investigation of the effect of the noise on the exposed receiver

Receiver-related Limits of Exposure

If the exposed receivers are human beings, the following criteria are important
when settling on limiting values.

• Just acceptable interference with communication
• Just acceptable annoyance
• Protection against damage of hearing
• Protection against damage of further organs

Obligatory noise-exposure limits are set by applicable laws, standards and
work-protection codes, but it is often difficult to predict the reliability of lim-
its, especially in cases of annoyance due to noise that conveys information.

Adequate Noise-control Measures

When making decisions, it is useful to list all possible measures and weight
them according to feasibility and effort. An optimized battery of measures can
be compiled on this basis. It is important to also consider extreme measures
like replacing machines and completely terminating production in a certain
setting. Personal solutions like frequent temporary replacement of persons
with extreme noise exposure helps to mitigate harmful effects.

When considering multiple sources and transmission paths, the rules of
level addition – introduced in Section 1.6 – require that one always starts
with that component that contributes the most to the overall level.

Annoying low level sound signals can be made inaudible by masking them
with more pleasant sounds at the same or a slightly higher level. In an open-
office space, for example, the noise of the air-conditioning system can be used
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to mask disturbing voices. Also, the diffuse bubble of voices that is typical
for restaurants improves the situation for people at one table by making talk
from other tables unintelligible and thus providing a sense of privacy.

14.4 Noise Reduction at the Source

It goes without saying that the best method of noise control is avoiding or
reducing the generation of noise in the first place. This type of noise control
is called primary (active) noise control, and it starts at the earliest phases of
construction. Some relevant aspects are listed and discussed below.

Avoidance/Reduction of Excitation of Airborne Noise

• Explosions and implosions can usually not be avoided, but their temporal
and spectral noise properties may be modified, for example, by redesigning
combustion chambers

• Turbulent flow creates noise levels that increase with flow velocity with a
proportionality constant of up to the 8th power of it. Reduction of flow
velocity is therefore of paramount importance and may be accomplished
using ducts with larger cross sections and avoiding constrictions and edges.
Flow-compliant profiles should be applied instead

• Intermittent flows should not be coupled to resonant cavities

Avoidance/Reduction of Excitation of Structure-borne Noise

• Jolts can be avoided by constructive measures like making the kinetic se-
quences steady up to their 3rd derivatives. If this is impossible, the moving
masses and their velocities might be reducible. Further relevant precau-
tions include insertion of elastic layers, allowing for some slack in power
trains, reduction of slackness where components hit each other, balancing
of rotation elements, and provision for phase compensation by tuned vi-
brators – refer to Section 13.6

• Friction can be reduced with lubrication and/or high-quality surfaces.
When choosing materials, their acoustic characteristics should definitely
be considered. Materials with elasticity and high internal losses are usually
preferable

• Periodic forces can be minimized by careful balancing, provided that they
are mechanically induced. When they are excited by electric or magnetic
forces, proper construction is of paramount importance



204 14 Noise Control – A Survey

Often significant progress in sound control can be made by modifying a pro-
cess. This alternative is thus worthy of keeping in mind.

Avoidance/Reduction of Radiation of Structure-borne
as Airborne Noise

Engine elements and housings are to be designed for low airborne sound ra-
diation, among other measures, by minimizing and perforating surfaces. It is
also helpful to divide those same surfaces so that knots of vibration result.
One can also avoid resonances by adding mass, using plates that are heavy
but compliant for bending waves, and/or applying coatings with absorbent
layers and/or internal viscous layers for dampening purpose.

14.5 Noise Reduction Along the Propagation Paths

Noise control along propagation paths is called secondary (passive) noise con-
trol. We will now give an overview with respect to air- and structure-borne
noise, organized according to the three main noise-reducing effects on the
propagation paths, namely, distribution, reflection and absorption.

Reduction by Distribution

During propagation, sound usually spreads to fill out geometrically larger area.
As a result, the intensity and sound-pressure level decrease with increasing
distance from the source. Airborne noise displays this behavior not only for
free-field propagation but also for guided propagation as occurs in branching
ducts. Diffraction and scattering may also support distribution by breaking up
beams. Geometric distribution is also a factor for structure-borne noise, where
it occurs in plates or at the edges and joints of structures. Distribution does
not take place in canals or rods with constant or decreasing cross-sectional
area or in enclosed spaces beyond the critical distance (diffuse-field distance),
which is determined by the directional characteristics of the source – refer to
Section 12.6. The more the sound is focussed, the longer the critical distance.

The maximum level decrease due to geometric distribution is associated
with 0th-order spherical sources in the free field, which experience 6 dB per
distance doubling. Only 3 dB per distance doubling can be achieved for very
long line arrays and for small sources in shallow rooms because of the geometry
of cylindrical wavefronts.

Whenever the situation allows for it, proper geometric placement of sound
sources with respect to receivers should be considered as an effective approach
to noise control. The farther, the better!
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Reduction by Reflection

Reflection can provide isolation from airborne noise by creating shadow zones
behind occlusions like walls and barriers. Refraction at boundaries and inho-
mogeneities also supports isolation as do meteorological conditions. Structure-
borne sound is reflected at boundaries where the impedance changes. The
most effective noise-reduction measure during propagation is reflection, which
is implemented by encapsulating the source with non-porous walls and other
dividers for airborne sound or with elastic layers for structure-borne sound.

Complete encapsulation3, however, is often not feasible, especially out-
doors or in open-space offices. In these cases one is restricted to noise barriers,
which are less effective. The maximum shadowing ability of barriers is reduced
by diffraction so that their maximum insertion loss for airborne sound is only
about 20 dB.

Fig. 14.9. Sound barrier

Diffraction about a barrier can be theoretically described by assuming a line
array at the rim of the barrier, but actual calculation of the effect is tedious.
For this reason, many noise-control standards provide approximate procedures
for estimating the insertion loss. The insertion loss, Di, increases monotoni-
cally with the relative lengths of the detour around the barrier and the wave-
length of the sound. An example for an empirical formula corresponding to
Fig. 14.9 is

Di = 10 lg (20.4 kf + 3) , (14.9)

where kf is the Fresnel number and equal to

kf =
(a+ b) − c

λ/2
. (14.10)

Formula 14.10 requires that the sound source be a 0th-order spherical source,
that kf > −0.1, and that the bypass around the edges of the barrier, y, is long
enough. A rule is, with z being the barrier height,
3 To increase their efficiency, capsules should have some sound-absorbing material

inside
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either y > 5z or y > z + λ . (14.11)

On the side of the barrier facing the source, a level increase of up to 6 dB may
be observed due to reflection from the barrier. This effect can be avoided by
equipping the barrier with an absorptive surface4.

An example of a case where reflection is not viable is given by ducts that
carry flowing media, like exhaust systems or air-conditioning ducts. Non-
porous walls cannot be applied because the media flow must not be inter-
rupted. Impedance changes, however, may still be implemented in several
ways, including coupled, cascaded or branching resonators, detours, bypasses,
and steps in the cross-sectional areas – dealt with in Sections 8.5 and 8.6.

Fig. 14.10. (a) Reflection muffler, (b) comb-filter muffler

According to the theory of transmission-line and reactance filters, reflection
and interference can be used to build mufflers to spectral specification. See
Fig. 14.10 for two examples of how this is built, namely, a low-pass and a
comb filter. For the reflection muffler, the different chambers may be of dif-
ferent volume to increase the effective bandwidth. Comb-filter mufflers are
delicate since interference minima (comb-filter minima) are narrow and hard
to adjusts. Where exactly in a duct system mufflers are actually positioned
is very important5.

Reduction by Absorption

Dissipation in the medium is an important reason for absorption of airborne
sound, especially at boundaries. The means of absorption for structure-borne
sound are dissipation in the materials themselves (internal losses) and absorp-
tion due to absorptive coating, padding and inlays.
4 Barriers in enclosed spaces are only sensible if the ceiling above them is absorbing
5 The sound level may actually increase at the input port of a muffler, due to

reflection
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When sound propagates outdoors, additional absorption is provided by the
ground. The nature of this effect depends on the character of the surface, which
may be lawn, bushes, trees or a number of other terrains. This supplementary
absorption is often overestimated. As a rule, it is negligible at small distances
from the source, r < 100 m. Beyond that distance, a supplementary loss of
8 dB per 100m is a reasonable estimate for traffic noise propagating over grass
and bush or through woodland. This loss is smaller during the winter when
the leaves are fallen.

Noise reduction by absorption is often the only reasonable measure to be
taken in enclosed spaces with distributed sound sources, like machine-floor
halls. For diffuse sound fields we refer to (12.32), according to which

p2
d, rms =

4P �= c

Aα
, (14.12)

holds for the sound pressure. This means that a doubling of the equivalent ab-
sorbing area results in a 3 dB decrease of the sound-pressure level. Additional
absorption is more effective, the more reverberant the space was initially.

In order to dampen structure-borne sound, panels are either coated with
an absorbent anti-boom material or provided with an internal absorbent layer,
producing what is called a sandwich panel .

Fig. 14.11. Absorption mufflers, (a) duct with absorptive lining, (b) duct with
absorptive dividers

Sound propagation in ducts can be abated with absorption mufflers . Fig-
ure 14.11 shows two examples. The absorptive material is either placed on the
walls or in the duct as absorbing dividers6.

6 If one can accept that media flow will be hindered, the duct may be entirely filled
with absorbing (porous) material, a condition called a throttling muffler
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The sound field in a duct with absorbing walls can be approximated as follows,
assuming that the cross-sectional areas are small compared to the wavelengths.
The boundaries may be locally-reacting – refer to Section 11.4. If U is the
perimeter and A is the cross sectional area, the sound power transmitted into
the walls is

dP wall(x) =
p2

rms(x)U dx
Re{Z wall}

= Iwall(x)U dx . (14.13)

This must be set equal to the incremental loss of axially propagating power,
−I dA, so that

p2
rms(x)U dx
Re{Z wall}

+
dp2

rms(x)A
�= c

= 0 . (14.14)

Rewriting this yields

d[p2
rms(x)]
dx

+
�= c

Re{Z wall}
U

A
p2

rms(x) = 0 , (14.15)

which, for the forward progressing wave, has the solution

p2
rms(x) = p2

+, rms e−2 α̌ x . (14.16)

The complex solution for harmonic functions is now approximately

p
+
(x) = p

+
e−α̌ xe−jβ x , (14.17)

with
α̌ =

1
2

�= c

Re{Z wall}
U

A
. (14.18)

This is a spatially-damped sound wave.

14.6 Noise Reduction at the Receiver’s End

Due to reciprocity, the techniques discussed in this chapter can also be applied
to reduce noise on the receiving end. The most important receivers in this
context are human beings7.

For them personal protection against noise often provides the quickest and
cheapest noise solution. Unfortunately, there can be problems with acceptance
since wearing them may cause discomfort. In the following, we list the most
common types of these protectors.

7 Long-time exposure to noise levels above 85 dB in the mid-frequency range may
cause permanent impairment of hearing. These levels are not at all uncommon in
daily life, especially in places like discotheques or when using headphones. Levels
above 130 dB may affect inner organs and may cause symptoms like vertigo and
nausea
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Personal Hearing Protectors

For insertion losses of 20 – 30 dB, ear plugs are a common product. They are
usually made from plastic or synthetic foam. The plastic ones, called oto-
plastics, can be custom-made. The foam ones are compressed by twisting
them between the fingers before inserting them into the ear canal, where they
expand again to fit.

Ear muffs usually enclose the external ears like circum-aural (closed)
headphones. They have sealing rings, sometimes filled with liquid, to tighten
against the skull. Insertion losses are 10 – 40dB, usually increasing with fre-
quency. Ear muffs can be cascaded with ear plugs.

For even higher insertion losses special helmets are available that achieve
insertion losses of more than 50 dB at higher frequencies. To protect inner
organs, special sound-and vibration-protective suits can be worn, for example,
to protect astronauts during the start phase of their space craft.

There are personal hearing protectors that apply so-called active-noise-
control principles8. These devices pick up the noise signals and add them
again in inverted phase, after some adequate signal processing. Thus they are
able to compensate the noise to a certain extent. Due to technical limitations
the active-noise-canceling method is predominantly applicable in a frequency
range of up to about 1.5 kHz.

8 In contrast to Section 14.4 the term active has a different meaning here. Here it
denotes that devices have controlled power sources of their own and an output
power that exceeds the input power
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Appendices

15.1 Complex Notation for Sinusoidal Signals

An arbitrary sinusoidal signal can be written as

z(t) = ẑ cos(ωt+ φ) , (15.1)

with the three free parameters amplitude, ẑ, angular frequency, ω, and
(zero)phase angle, φ. If the frequency is known and fixed, that is, for a
monofrequent signal, only two free parameters are left – amplitude and phase
angle.

Arithmetic operations with sinusoidal signals, such as addition, multipli-
cation, differentiation and integration, are complicated in the representation
as written above. There is thus a demand for more simple arithmetics to deal
with these signals, particularly their amplitudes and phase angles. This can
be accomplished in different ways. In this book we use the common symbolic
representation of sinusoidal signals by means of so-called complex amplitudes.

To this end, the representation above is expanded by a complex imaginary
part, but this operation is immediately inverted by forming the real part of
the expression again. We thus write

z(t) = Re {ẑ cos(ω0t+ φ) + j ẑ sin(ω0t+ φ)} . (15.2)

By applying Euler ’s formula, e jφ = cosφ + j sinφ, this expression can be
rewritten as

z(t) = Re {ẑ e j(ω0t+φ)} = Re {ẑ e jφe jω0t} = Re {z e jω0t} . (15.3)
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with the term z = ẑ e jφ being the complex amplitude as announced above.
The original real representation of the sinusoidal signal can be retrieved from
the complex amplitude by multiplication with ejω0t and subsequent forming
of the real part, that is, by applying the operator Re { . . . }.

The most relevant rules for calculations with complex amplitudes are given
below. For details please refer to the pertinent literature.

• Addition and Substraction,

z1 + z2 = (ẑ1 cosφ1 + ẑ2 cosφ2) + j(ẑ1 sinφ1 + ẑ2 sinφ2),
z1 − z1 = (ẑ1 cosφ1 − ẑ2 cosφ2) + j(ẑ1 sinφ1 − ẑ2 sinφ2) , (15.4)

• Multiplication and Division,

z1 z2 = (ẑ1 ẑ2) e j (φ1+φ2), z1/z2 = (ẑ1/ẑ2) e j (φ1−φ2) , (15.5)

• Integration and Differentiation,
∫
z dt =

1
jω

z,
dz
dt

= jω z (15.6)

The rules for integration and differentiation become clear after multiplication
of the complex amplitude, z, with the factor ejω0t, which means reinserting
the time dependency.

15.2 Complex Notation for Power and Intensity

Consider a force, Fz(t), exciting a one-dimensional motion of vz(t) along a
path z, for example at the mechanic port of an electro-mechanic transducer.
The input energy can be written as follows, whereby from now on the index
z is omitted for simplicity,

W =
∫
F (t) dz =

∫
F (t)

dz
dt

dt =
∫
F (t) v(t) dt . (15.7)

The transferred instantaneous power, P (t), is than given by

P (t) =
d
dt

∫
F (t) v(t) dt = F (t) v(t) . (15.8)

Let both the force and the particle velocity be sinusoidal time functions,
namely,

F (t) = F̂ cos(ωt+ φF) and v(t) = v̂ cos(ωt+ φv) . (15.9)

This leads to the expression

P (t) = F̂ cos(ωt+ φF) v̂ cos(ωt+ φv) . (15.10)
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Execution of the multiplication with cosα cosβ = 1
2 [cos(α+ β) + cos(α− β)]

renders

P (t) =
F̂ v̂

2
[ cos(2ωt+ φF + φv) ]

︸ ︷︷ ︸
alternating

+
F̂ v̂

2
[ cos(φF − φv) ]

︸ ︷︷ ︸
constant

. (15.11)

When determining the time average of the transmitted power, P , the first
part, which is alternating with double frequency, does not contribute. The
average power is solely given by the second part, namely,

P =
F̂ v̂

2
[ cos(φF − φv) ] . (15.12)

This average power is also called active power or resistive power.
For a complex notation with the complex amplitudes of the force and the

particle velocity, that is

F = F̂ e jφF and v = v̂ e jφv , (15.13)

we try an approach that leads us to a complex power, P , as follows,

P =
1
2

[F v∗] with v∗ = v̂ e j(−φv) , (15.14)

where the term v* is called the complex conjugate of v. Some elaboration
finally results in

P = P + jQ =
F̂ v̂

2
cos(φF − φv)

︸ ︷︷ ︸
active power

+ j
F̂ v̂

2
sin (φF − φv)

︸ ︷︷ ︸
reactive power

. (15.15)

The real part of P is the active power, P , as noted above. The imaginary part,
Q, is called reactive power and has no direct physical relevance. Please note
that by taking the complex conjugate of the particle velocity, v∗, in (15.14)
and not that of the force, we have chosen that the reactive power of mass is
counted positive.

What holds for the power, also holds for the intensity, which is power per
area. Complex intensity thus results as

I =
1
2

[p v∗] . (15.16)

Consequently, we denote the active intensity, Re {I} also as I in this book.
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15.3 Supplementary Textbooks for Self Study

The current textbook suffices as the sole teaching material for an introductory
course given by experienced academic teachers who are able to provide specific
explanations and stress relevant topics according to the prior knowledge and
special interests of their students.

Our book is also suitable for self study. In this case, however, we suggest
that the reader may use further textbooks in parallel. Some suggestions are
given in the following. The list only contains books in the English language
and does not claim to be complete.

• Kuttruff, H. (2007), Acoustics – an introduction, Taylor & Francis, Lon-
don–New York

• Raichel D.R. (2006), The science and applications of acoustics, 2nd ed.
Springer, Berlin–Heidelberg–New York

• Finch, R.D. (2005), Introduction to acoustics, Pearson Prentice Hall, Up-
per Saddle River, New Jersey

• Möser, M. (2004), Engineering acoustics – an introduction to noise con-
trol, Springer, Berlin–Heidelberg–New York

• Rossing, Th., Moore, F.R., & Wheeler, P.A. (2002), The science of sound,
3rd ed. Addison–Wesley, New York, etc.

• Kinsley, L.E., Frey, A.R., Coppens, A.B. & Sanders, J.V. (2000), Funda-
mentals of acoustics, 4th ed., John Wiley & Sons, Hoboken, New York

• Blackstock, D.T. (2000), Fundamentals of physical acoustics, John Wiley
& Sons, Hoboken, New York

• Pierce, A.D. (1981), Acoustics – an introduction to its physical principles
and applications, McGraw Hill, New York

• Ford, R.D. (1970), Introduction to acoustics, Elsevier, Amsterdam–Lon-
don–New York

• Randall, R.H. (1951), An introduction to acoustics, Reprint 2005, Dover
Publications, Mineola, New York
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15.4 Letter Symbols, Notations and Units

Roman-Letter Symbols

a Acceleration
A Area
Aα Equivalent-absorption area
A⊥ Effective area (area perpendicular to particle velocity)
b Breadth, width, also: substitution for βd cos δ
B Magnetic-flux density
B′ Bending stiffness
c Sound-propagation speed in the free field (speed of sound)
cb Propagation speed of a bending wave
cε Sound-propagation speed in an exponential horn
cp Specific heat capacity at constant pressure
cv Specific heat capacity at constant volume
C Capacitance
C′ Capacitance load (capacitance per length)
D Dielectric-displacement density
Di Insertion loss
e Piezoelectric coefficient
E Electric field strength
f Frequency
fc Coincidence frequency
F Force
g Product of sound pressure and radius, g = p r
G Electric conductance
G′ Conductance load (conductance per length)
h Length, height
H(ω) Transfer function
i Electric current
I Sound intensity (sound power per area)
j Unit of the imaginary numbers (j2 = −1)
JN Bessel function of the first kind, order N
k stiffness
kf Fresnel number
K Compression module, K = 1/κ
l Length
L Inductance
L′ Inductance load (inductance per length)
LI Sound-intensity level
Lp Sound-pressure level
LP Sound-power level
m Mass
m′

a Acoustic-mass load (acoustic mass per length)
M Magnetic-field-transducer coefficient
n Compliance
n′

a Acoustic-compliance load (acoustic compliance per length)
N Electric-field-transducer coefficient
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Roman-Letter Symbols . . . Continued

p Sound pressure
P Power
P Active (resistive) power
q Volume velocity
q0 Source strength
qm Mirror-source strength
Q Sharpness-of-resonance factor (quality factor), also: reactive power
Q el Electric charge
r Damping (fluid damping), also: distance, also: radius
r Reflectance
r c Critical distance
r rad Radiation resistance
R Sound-reduction index, also: electric resistance, also: radius
R′ Electric resistance load (resistance per length)
RI Isolation index
s Strain
s Complex frequency, s = ᾰ + jω
S Standing-wave ratio, also: area of a wall, window, etc.
T Reverberation time, also: temperature, also: torch, also: period duration
T ′ Torch per width
T ip Transfer coefficient of a transducer, driven as sender
T pu Transfer coefficient of a transducer, driven as receiver (sensitivity)
T pp Sound-pressure-transfer factor
T up Transfer coefficient of a transducer, driven as a sender
u Electric voltage
U Perimeter
v Particle velocity
V Volume
Vm Volume of a mass element concerned
W Energy, or work
W ′ Energy load (energy per length)
W ′′ Energy density (energy per volume)
x ff Far-field distance
Y Admittance, Y = 1/Z
Ya Acoustic admittance
Yf Field admittance
Y mech Mechanical admittance
Z Impedance
Z0 Terminating acoustic impedance of a tube
Za Acoustic impedance
Zf Field impedance
ZL Line impedance (acoustic impedance of a tube)
Zmech Mechanical impedance
Z rad Radiation impedance
Zw Characteristic field impedance of a medium (wave impedance)
Zwall Wall impedance
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Greek-Letter Symbols

α Degree of absorption
ᾱ Degree of absorption for diffuse sound incidence
ᾰ Attenuation coefficient
β Phase coefficient (in physics often called angular wave number, k)
γ Ratio of specific heat capacities
γ Complex propagation coefficient, γ = α+ j β
Γ Directional characteristics of a sound source or receiver
δ Elevation (vertical angle in a spherical coordinate system),

also: damping coefficient
ε Dielectric permittivity
ε0 Permittivity of the vacuum
ε Flare coefficient
η Ratio of the specific heat capacities, cp/cv, usually denoted γ.
Θ Angle of oblique sound incidence
θ Normal (stretching) stress
ϑ Kronecker symbol in ϑ(z) ...Dirac impulse [usually denoted δ(x)]
κ Volume compressibility
λ Wave length
μ0 Permeability of the vacuum
μd Dipole momentum
Ξ Flow resistivity
ξ Particle displacement
ρ Distance, also: position
� Density
σ Electric polarization, also: porosity
ς Mouth correction of a Helmholtz resonator
τ Time interval
τph Phase delay
ν Number of turns of a coil
νz Number of Huygens-Fresnel zones
φ Phase angle of a sinusoidal signal
ϕ Azimuth, i.e. horizontal angle in a spherical coordinate system
Φ Magnetic flux, also: vector potential
Ψ Logarithmic frequency interval
χ Structure factor for porous media
ω Angular frequency
Ω Spherical angle
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Specific Mathematical Notations and Terms

ẑ Amplitude, peak value
z Complex amplitude – note that the ∧ on top of z

has been skipped
z Time average, e.g., used for active power and active intensity−→z Vector
| −→z |, z Magnitude of a vector
| z |, z Magnitude of a complex amplitude
| −→z |, z Magnitude of a complex vector
Re {z} Real-part operator, Re {z} = Re {a+ jb} = a
z= Steady component of a function z(t) = z= + z∼
z∼ Alternating component of a function z(t) = z= + z∼
z rms Root of the time average of z(t)2 (root mean square)

For periodic functions of period duration T we have

z rms =
√

1
T

∫ T

0
z(t)2dt , otherwise, z rms =

√
lim

T→∞
1
T

∫ T

0
z(t)2dt

◦ • ...Fourier transform
∼ ... Proportional
Coefficient ... Multiplier of dimension �= one
Degree ... Multiplier of dimension one and values of 0 – 1 (0 – 100%)
Factor ... Multiplier of dimension one

Units∗)

Basic SI-units
m Meter ... unit of length
kg Kilogram ... unit of mass
s Second ... unit of time
A Ampere ... unit of electric current

Some often used SI-derived units
Hz = 1/s Hertz ... unit of frequency
N = (kg m)/s2 Newton ... unit of force
Pa = N/m2 Pascal ... unit of pressure
W = V A = (N m)/s Watt ... unit of power
V = W/A Volt ... unit of electric potential difference, voltage
C = A s Coulomb ... unit of electric charge
Ω = V/A Ohm ... unit of electric resistance to direct current
F = C/V Farad ... unit of capacitance
H = (V s)/A Henry ... unit of self-inductance
T = N/(A m) Tesla ... unit of magnetic flux

∗) All units used in this book are coherent with the SI-system (système international
d’unités)
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absorber

Helmholtz 158

membrane 158, 159

microperforated 159

porous 155, 156

resonance 158

resonating 192

absorption 146, 167, 173, 177, 204, 206

area, equivalent 186

coefficient 99
degree of 99, 153, 165, 171, 173

in air 173

resonance 158

absorptive area

equivalent 173, 174

acceleration 61

meter 76

acoustic

horizon 199

impedance 25

acoustics

applied 3
architectural 186, 192

communication- 5

definition of 2

electro- 4, 5

engineering 3, 5

geometrical 161

list of specialized fields 4

physical 4, 5

physiological 4

psycho- 4

room 162

statistical 169

technical 3

active 37

noise control 209

retro- 37, 40

adiabatic compression 89, 147

admittance

mechanic 20

air absorption 173

air gap 66
fictive 68

Ampere’s law 66

amplidude

complex 212

analogy 28

dynamic 28

electroacoustic 27, 29

electromechanic 27, 43

impedance 28

mobile 28

anemometer

hot-wire 86
Appollonian circle 154

approximation

by point sources 125

architectural acoustics 186, 192

area

effective 37, 46

effective radiation 6

equivalent absorptive 173

function 104

of constant phase 103, 104

array
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line 125
linear 125

arrival time 163
attenuation 8
audience 157
auditory

event 2
object 2
percept 2
sensation 2
smearing 174
system 1, 4

baffle 125, 134
rigid, flat 134

barrier 205, 206
bass traps 158
BEM 117
bending wave

enforced 182
Bernoulli solution 95
Bessel function 137, 142
bias

magnetization 55
polarization 56

Bode diagram 10
booming 62
boundary

between fluids 152
condition 117, 122, 124, 144, 163
layer 148
reflecting 167

branching
parallel 31
serial 31

breathing sphere 119
bright spot 144
Brownian motion 7
by-pass 188

cabinet 125
calibration

absolute 52
capacitance 34
carbon

gravel 40
microphone 39

cardioid 49, 83
hyper 83

super 83
case

aperiodic limiting 18
creeping 18
oscillating 18

cassetting 157
cathodophone 86
cavitation 89
ceiling 165
cent 10
chain

parameter 41
chamber

reverberation 174, 175
channel

sound 200
characteristic

cardioid 49
directional 51, 118, 124, 125, 127,

128, 130, 137, 143, 201
figure-of-eight 48
frequency 22, 77
monopole 130
one-dimensional 137
two-dimensional 137

chip microphones 40
circuit

acoustic 31
electric 31
equivalent 58
mechanic 31

clinging 67
coefficient

absorption 99
complex propagation 96
damping 109, 145, 147, 181, 189
definition of 218
flare 108
phase 109, 136, 145, 180, 181, 183
piezoelectric 71
propagation 109, 145, 146, 150
reflection 99
sensitivity 53
transducer 58, 66

coherent 197
superposition 9

coincidence
effect 185
frequency 183, 186
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frequency, limiting 183
comb filter 206
complex

amplitude 212
power 28

complex notation 6, 16
for intensity 212
for power 212
for sinusoidal signals 211

compliance 15, 31
dynamic 193
field 67
negative 67
volume 150

component
movable 46

compression
adiabatic 90
isothermal 193
module 91

condition
meteorological 198, 205

conductance 34
conical horn 105
continuity equation 90, 92, 93, 104
controlled coupler 39, 86
coordinates

Cartesian 117, 118
cylindrical 117
electric 28
polar 137
spherical 117, 118, 124

corner
of a room 164
rectangular 164
source before 121

coupler
controlled 39, 86
electromechanic 37

coupling 37
critical

distance 176
radius 176

cross-over network 60
crystal

piezoelectric 71
quartz 76

cuboid room 167
curvature 162

curved surfaces 165
cylinder 198

d’Alembert solution 95
damming

of sound 177
damper

acoustic 24
fluidic (dashpot) 14
mechanic 14

damping 16, 191
coefficient 17, 109
fluid 16, 58
mechanic 41, 59
of sound 177
selective 178
spatial 109, 145, 166
subcritical 19

dancing effect 191
dashpot 14
decade 10
deciBel 8
degree 99

definition of 99, 218
of absorption 153, 154
of freedom 37

delay line
acoustic 50

density
energy 161, 166, 170, 172, 175, 176
of impulses 168
reflection 166, 167, 169, 171, 172

differential equation 17
common 2, 87
homogenious 17
inhomogenious 20
linear 88
partial 2, 87

differentiation
of complex amplitudes 212

diffraction 122, 133, 140, 142, 144, 161,
204, 205

at the rim 142
diffuse field 169, 187

incidence 155, 184, 186
dipole 122

field 123
momentum 123

Dirac impulse 130
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direction
of sound-incidence 47
reference 47

directional
equivalence of emitter and receiver

130
characteristic 46, 47
characteristic, Gaussian 130
characteristic, shifted 130
characteristic, steerable 83

directionality
narrow 51

discontinuity
impedance 177

discotheques 208
dispersion 109, 180
displacement 5
dissipation 16, 23, 145, 146, 177, 206

molecular 147
distance

critical 176, 204
diffuse-field 176, 204
doubling 107, 198, 204

distortion
group-delay 109

distribution 204
Doppler shift 60
double-logarithmic plot 11
drum

resonance 185
telephony 199

duality 33
duct 148

air conditioning 206
continously varying 104
stepped 104, 113

ear
external 209
muff 209
plug 209

echo 164, 165, 174
audible 165
flutter 165, 166
sounder 75
threshold 164, 165

echogram 168
impulse 168

edge

of a room 164
source before 121

effect
coincidence 185
piezoelectric 73

efficiency
power 59

eigen-
function 14, 17, 117, 124
oscillation 17

elastic
element 177, 191
support 189
under-packing 192

electret 56, 84
elastic 85
piezo 78, 85

electrostriction 72, 78
element

acoustic 24
concentrated 24, 189
elastic 191
lumped (concentrated) 29

elongation 5
emission

sound 201
emitter 44

sound 45
ultrasound 81

energy
acoustic 177, 195
density in a ray 161
density in the plane wave 161
electric 195
kinetic 15, 23, 88
loss 166
mechanic 16, 177, 195
potential 15, 23, 88
sound 145
stored in capacitance 55
stored in inductance 55
thermal 145, 147, 177
thermodynamic 16
total, diffuse field 171

engine-support problem 189
envelope

decreasing 167
envelopment 174
equation
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bending-wave 179
characteristic 17
continuity 90, 92, 93, 104
differential 11, 180
Euler’s 90, 104
horn 104
inner transducer 41
state 90, 104
transducer 41, 66
transmission-line 98, 112
wave 88, 117, 145, 180, 182
Webster’s 104

Euler’s
equation 90, 92, 104
formula 211

excitation
constant-current 61
constant-velocity 62
constant-voltage 62
contant-force 61

exhaust system 206
explosion 196, 203
exponential function

general 14
exponential horn 108
Eyring’s reverberation formula 172

factor
definition of 218
quality 19
sharpness-of-resonance 19
structural 150
transfer 101

far field 119
of a membrane 136, 140
of an obstacle 144

feedback
motional 62

FEM 117
ferroelectricity 74, 78
fidelity

circuit 33, 34
impedance 33
topological 33

field
compliance, negative 81
diffuse 169, 172, 173, 187
far 119
near 119

sound 122, 133, 173
spherical sound 121, 122
strength, electric 41

figure-of-eight
characteristic 124

film
piezoelectric 79

filter
low-pass 185

flare coefficient 108
floor

floating 192, 193
resilient 192

flow
compliant profile 203
dynamics 92
intermittent 196, 203
particle velocity 120
power 121
resistance 148
resistivity 25
turbulent 196, 203

fluid 2, 89
idealized 117
lossless 94
real 147

fluorcarbon 84
flutter

echo 165
flux density

dielectric 72
flux-density

magnetic 41
focussing 165, 168
foil-strain gauge 40
foils

translucent 160
footfall 192
force 6, 41

exciting 189, 191
law 55
law, quadratic 55
mechanic 55
periodic 196, 203
shear 177
sinusoidal 189

force law
quadratic 71, 80

formula
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Eyring’s 174
reverberation 172
Sabine’s 174

Foster’s reactance rules 77
Fourier

harmonics 117
integral 128, 137
transform 14, 136
transform, inverse 14
transform, two-dimensional 136

Fraunhofer’s approximation 135, 137,
138

frequency
characteristic 17, 22
coincidence 183, 184, 186
complex 17
domain 14
doubled 56
interval, logarithmic 10
limiting 184
resonance 22, 60, 158, 191, 193
roll-off 82

Fresnel number 205
friction 89, 147, 196, 203

fluid 16
inner 89, 147

function
spherical 124
transfer 101

gas
perfect 90

geometric expansion 145
geometrical acoustics 161
gradient

far-field 49
near-field 49
pressure 133
sound-pressure 47
velocity 148

grazing incidence 152
ground 17
group delay 109
gyrator 34, 44

ideal 43

harmonics
Fourier 117
spherical 117

headphone 208, 209
circum-aural 62
dynamic 62
electrostatic 82
supra-aural 62

hearing 1
field of 1

hearing protector
circum-aural 209
personal 209

heat 16
heat capacity

specific 90
helmet

hearing-protective 209
Helmholtz

form of the wave equation 95
absorber 158
form of wave equation 145
resonator 25

Hook’s law 15, 90
horn

conical 105, 118
equation 104
exponential 108

Huygens’ principle 118, 133
Huygens-Fresnel

zone construction 138
Huygens-Fresnel zone 140
hydrogen atom 7
hydrophone 75

piezoelectric 76
hypersound 2
hysteresis 74

impairment
of health 195
of hearing 208

impedance 6
characteristic field 6
acoustic 6
characteristic 96, 150, 152
discontinuity 177
field 6, 123, 125
inner 62
input 45, 74, 77, 158
line 146
mechanic 6, 15, 20, 34, 45
radiation 45, 110, 141
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resistive 44
terminating 97
wall 153, 155, 158
wave 96, 150

implosion 196, 203
impulse 164–166, 168

sound 163, 165, 168
incidence

diffuse-field 155, 184, 186
directional 186
oblique 183
random 155, 184, 186
sound 183, 185

incoherent 197
superposition 9

index
isolation 191
sound-reduction 187

inductance 34
infrasound 2
insertion

loss 205
insertion loss 183, 205, 209
integral

Huygens–Helmholtz 133
Rayleigh 133, 134, 138

integral equation
Kirchhoff–Helmholtz 133

integration
of complex amplitudes 212

intelligibility 174
intensity 5, 121

active 96, 169, 213
complex 9, 213
resistive 96

interference 9, 51, 197, 206
muffler 206

interference field 144
interval 10

musical 10
introductory

course V
material V

ionophone 86
isohypsis 154
isolation 189, 192, 193

index 189
sound 177, 185, 186, 192
vibration 189, 192

isomorphy 27, 28, 136
isothermal compression 193

jolt 203

knock 196
Kundt’s tube 99

laser interferometer 86
law

adiabatic 90
force 55
Hook’s 90
mass-preservation 90
Newton’s 90
of Pythagoras 139
of reflection 152
of Snellius 152
reflection 162
refraction 152, 180

layer
absorbent 204
absorptive 156
boundary 148
finite 156
sandwich 184
thick 156
viscous 204

lead-circone titanat 78
length

mean free-path 169, 171
letter symbols

greek 217
roman 215

level 8
intensity 204
normal conversation 7
sound-intensity 8
sound-power 8, 195
sound-pressure 8, 187, 195, 204, 207

lever 29
mechanic 29

line array 125, 127, 197, 204
continuously loaded 126
of loudspeakers 125
very long 198
very short 198

line impedance 146
linear combination 13
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linearization 55
first 90
fourth 93
second 92
third 92

liquids 91
load

compliance 112
mass 112, 179, 181, 183–185
volume-velocity 127, 128, 130

locally reacting 153, 155, 156, 208
logarithmic ratio 8
loop 34

closed 34
equation 34

loss
energy 166
frictional 23, 148
insertion 183, 205
transmission 182, 184, 185

loudspeaker 121
cabinet 60
compressed-air 40
dynamic 59
electrostatic 82
horn 59, 109, 121

low-end tuning 191
low-pass filter 185, 192

magnet
permanent 55

masking 203
mass 31

acoustic 24
co-vibrating 120
conservation law 92
density 93
inflowing 104
interlocking 177
law 183
mechanic 14
outflowing 105
surplus 93, 105
Watt-less-vibrating 120

material
absorbing 165
electrostrictive 78
fibrous 155
piezoelectric 78

porous 153, 156, 158
mean free-path 169
measurement

of absorption 174
of source power 175

measuring tube 99
medium

as a continuum 7
flowing 92
fluid 152
idealized 89
lossless 145
porous 148–150
real 145

membrane
absorbers 158
circular 140
clinging 67, 81
far field 136
near field 138
non-deconvolvable 59
piston 136

mesh 34
meter

acceleration 76
velocity 76

metereological
conditions 198

method
boundary-element 117
finite-element 117

microperforated absorbers 159
microphone

carbon 39
cardioid 64
chip 63, 84
condenser 82
crystal 76
dynamic 63
electret 40, 63, 85
figure-of-eight 64
high-frequency circuit 83
line 51
low-frequency circuit 82
moving-coil 64
optical 86
placement 176
ribbon 63
silicon 84
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mineral wool 157
mirror

sound source 162
source 163

monopole 122, 134
motion

rotatory 147
translatory 147
vibratory 147

mouth correction 159
movable

component 55
movable component 38, 46
muffler 113, 206

absorption 207
reflection 206
throttling 207

nausea 208
near field 119

effect 64
of a membrane 138

Neper 8
network

acoustic 27, 37
cross-over 65
electric 27
linear and time-invariant 37
mechanic 27, 37

Newton’s mass law 15, 90
node 34

equation 34
noise 195, 200

airborne 203, 204
control, active 209
reduction 205
structure-borne 203, 204

noise control 202–204
active 203
passive 204
primary 203
secondary 204
source-based 203

notations
specific mathematical 218

oblique incidence 152
obstacle 161

rigid 144

octave 10
one third 10
series 10

one-port 15
oscillating sphere 119
oscillation 13

damped 19
eigen- 17
force-driven 20
forced 20
free 17

oscillator
acoustic 24, 34
bending 75
damped 108
linear 14
mechanic 14, 34
parallel 16
parallel-branch 33
saddle 76
serial-branch 33
simple 17, 21
simple mechanic 14

oto-plastic 209

parallel walls 165
Paris’ formula 171
particle

displacement 7
sound 166
velocity 5, 7

passive 37
path

transmission 177
perfect gas 147
phase

coefficient 96, 109, 151, 152
Pi (π) circuit 34
piezo

ceramic 78, 79
electret 78, 85
electret film 85
electric module 71
polymer 78, 79
transistor 40

piezoelectricity 71
influenced 72
inherent 72

piston
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baffled 136
piston membrane 136

circular 137
rectangular 137

plane wave 96
plot

double logarithmic 10
point source 122

first-order 124
polarization

electric 71
polypropylene 78
polyvinyl cloride 78
polyvinyliden fluoride 78
porosity 149, 150, 159
porous

absorbers 155
wedges 157

port
dual 31, 32
mono 32
single 31
triple 31, 32

power 171
acoustic 28, 37
active 23
complex 28
electric 28, 37
instantaneous 22
mechanic 28, 37
radiated 120
reactive 23, 28
resistive 23
sound 175, 187, 197, 198
transported 97

pressure 5
gradient, higher-order 50
sound 48, 134
static 172
static atmospheric 7

principle
double-path 65
electrostatic 80
variable-distance 65

privacy 203
profile

temperature 199
propagation

coefficient 96, 109

outdoor sound 162
sound 145, 147
wave 146, 161

Q-factor 19, 22
quality 19

acoustic 174
factor 19
of the acoustics 174

quartz 72
filter 76

quietness 195

radiation
impedance 45
impedance of piston membranes 141
omnidirectional 46
resistance 45
resistance of piston membranes 141
sound 201

radius
critical 176

random incidence 155, 184, 186
ray

of sound 143
sound 161, 163
symbol 161
tracing 162

Rayleigh
integral 134, 143
model of porous matter 149, 156

reactance
filter 206

receiver 44
cardioid 63
pressure 46
pressure-gradient 46, 47
principle 46
sound 46
spherical 63

reciprocity 43, 208
principle of 44

reflectance 99, 153
reflection 122, 133, 151, 163, 164, 166,

177, 204, 205
coefficient 99
degree of 99
density 171
early 168, 169, 174
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from the ceiling 165
law 162
muffler 206
total 152, 181

refraction 151, 152, 180, 181, 199
relaxation 147
resilient

layer 177
resistance 34

flow 51, 148, 193
mechanic 16
radiation 45, 110
specific 159

resonance 19, 22
absorber 158
cavity 185, 186
curve 19
drum 185, 186
frequency 22
fundamental 185
mechanic 61
peak 22
sharpness of 22

resonator
acoustic 158
cavity 34
Helmholtz 25, 40
piezoelectric 76
two-mass 185

retroactive 37, 40
reverberation

chamber 174
formula, Eyring’s 172
formula, Sabine’s 172
tail 168, 169
time 19, 172–174
time measurement 172

reversibility 43, 44
reversible 57
rim

of radiating area 140
rms-value 218
Rochelle salt 72
rod 178

rigid, massless 38
room

cuboid 167
irregular 168
rectangular 167

shape 173
room acoustics 166, 167

geometrical 169
statistical 169

Sabine’s reverberation formula 172
sandwich panel 207
scattering 144, 165, 204
Seignette salt 72
selectivity

spatial 50
self study V, 214
semitone 10
sensitivity 52

coefficient 131
maximum 47
spherical 47
transducer 48

sensor
acceleration 76
velocity 76

shadow zone 200, 205
sharpness

of resonance 19, 22
shear

force 177
wave 178

shift
virtual 55

shifting theorem 130
shortening

acoustic 60, 62
hydrodynamic 134

SI-
system 218
units 218

si-function 127
signal

monofrequent 211
sinusoidal 211
stochastic 195

sinusoidal signal 211
complex notation of 211

siren 196
small-signal operation 90
Smith chart 100, 154
Snellius’ law 152
SONAR 130, 200
sound
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reduction index, weighted 186
airborne 74, 177, 181, 192, 196, 205,

206
annoying 202
audible 2, 195
bridge 191, 193
categories 2
channel 200
damping 177
design 2
direct 175
engineering 2
field, spherical 119
generating mechanism 201
hyper- 2
impulsive 196
in solids 177
incidence, angular 183
incidence, perpendicular 183
infra- 2
intensity 5
intensity level 8
isolation 177
power level 8
power, list of 195
pressure 5, 6
pressure level 8
primary 163
propagation outdoors 207
ray 143
reflected 163
solid-borne 74
sources, coherent 9
sources, incoherent 9
speed 5, 90, 152, 172
structure-borne 177, 189, 190, 192,

196, 205–207
tapping 192
the term 2
ultra- 2
waterborne 74

sound emitter
dielectric 81
electrostrictive 79
piezoelectric 74

sound field
diffuse 169
free 52
hemispherical 134

spherical 133
sound isolation

airborne 177
structure-borne 177

sound receiver
electrostrictive 79
piezoelectric 74

sound source
first-order spherical 119, 122
higher-order spherical 124
second-order spherical 119
spherical 119

sound-reduction index 187
weighted 186, 188

source
area equivalent 142
directional 176
identification 201
mirror 163, 164, 168
point 122, 130
primary 163
sound 168, 195
spherical 125, 168, 176, 205
spherical sound 120
strength 121, 133
strength load 133
virtual 163
zeroth-order spherical 118

spatial
angle of hemisphere 134
damping 109, 145, 166
impression 176

speech
at normal speed 174

speed
of sound 172
propagation 89

sphere
oscillating 122

spherical
angle 121
harmonics 117, 124
wave 117

spring 58
acoustic 24
mechanic 14

stacking 76
standing wave

behavior 99
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ratio 99
state equation 90, 104
statistical room acoustics 169
stiffness 15, 159, 184

bending 179, 181, 185, 192
dynamic 193

strain 71
strength

of a source 133
stress 71

normal 72
shear 72

stroke 196
structural factor 150, 156
suit

vibration-protective 209
superposition 72

coherent 9
incoherent 162

superpositrion
incoherent 9

support
elastic 189, 192
multi-layer 192
of engines 189

switch-off method 172
symbolic representation

of sinusoidal signals 211
symmetry

axial 122
point 122

system
analysis 201
linear, time-invariant 13
LTI 13

système international d’unités 218

T-circuit 34
T-equivalent 113
teflon 84
telephone

receiver capsule 67
temperature 198
termination

hard 98
soft 98

textbooks
for self-study 214
in acoustics 214

thermal
conduction 147, 148, 150
conductivity 89
energy 177

thermophone 86
three-port element 38
threshold

echo 164, 165
of discomfort 6
of hearing 7, 8

time
arrival 163, 164
domain 14
reverberation 172

tinnitus 2
torque 179
total

reflection 181
trace

matching 183
wavelength 152

transducer 40
coefficient 58
dielectric 80
displacement 57
electric-field 42, 55
electroacoustic 44
electromagnetic 65
electromechanic 44
electrostatic 80
elongation 73, 81, 83
inner 41, 57, 65
magnetic-field 42, 55
magnetodynamic 58
magnetostrictive 68, 69
piezoelectric 73
power symmetric 44
real 41
reversible 44
supporting 52
velocity 57

transducer coefficient
dielectric 81

transfer
coefficient 131
factor 101
function 101
heat 148
thermal 148
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transfer-function method 100
transformer

ideal 30
impedance 31
velocity 30

transmission 177
airborne 177
channel 201
line filter 206
loss 182
path 177

transmission line
electric 87
electric analogue 112
equation 98
loss afflicted 146

transmitter 44
tube 148

gas-filled 88
Kundt’s 99
measuring 99
section 113
stepped 111

tuning
low-end 191

turbulence 200
turbulent flow 203
tweeter 60

calotte 79
dome 61
horn 79
piezoelectric 79

two port 15
equation 113
theory 113

two-port element 39

ultrasound 2
units 218

vector
analysis 94
potential 95

velocity 5
flow 203
load 127
meter 76
normal 153
particle 120, 149, 153, 156, 181, 200

phase 180
surface 179
volume 6, 28, 121, 144

vertigo 208
vibration 2

extinctors 192
forced 196
form 74
free 196
structural 196

vibrator
single-mass 189

virtual shift 55, 80
viscosity 89, 147, 148, 150
viscous medium 16
volume velocity 25

wall
double-leaf 185
flanking 188
impedance 153
non-porous 177, 181, 205
single-leaf 181
source in front of 121

warmth 174
wave 2, 87

equation in porous media 150
bending 178–180, 182
bundle 161, 170
compression 88
dilatation 178
elongation 179, 181
equation 117
forward progressing 96, 106
front 163
incoming 51
length 10, 96, 161, 162, 185, 189
length in air 10
length, trace 152
longitudinal 29, 88, 89, 178
match 98
number 96
number, complex 96
outbound 106
outbound progressing 119
parameter 113
parasite 144
plane 6, 45, 96
reflected 172
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returning 96
shear 178
sound 89, 117
spherical 118
spherical sound 117
standing 98, 99
surface 178
torsion 178
transverse 178
zeroth-order spherical 117

wave equation 88, 89
Helmholtz form 95
solutions 95

three-dimensional 94
Weber-Fechner law 8
Webster’s equation 104
wind

profiles 198
velocity gradient 200

woofer 60

zone
complete 139
Huygen-Fresnel 138
incomplete 140
ring 138
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