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Foreword

Internal gravity waves are now a part of mainstream meteorology. Calculations
of the atmospheric budgets, whether at the largest scales of the general circulation
or the smaller scales of surface turbulence, routinely include contributions from
wave transport and mixing. Waves were not always paid such respect: I recall
conferences where an eminent proponent of waves and their effects in the middle
atmosphere (C.O.H) would be confronted by colleagues who disputed the very
existence of internal gravity waves. But the success of models in which stresses
from breaking waves drive the middle-atmosphere circulation have made wave-
skeptics an endangered species. Most atmospheric scientists now recognize the
need to evaluate the function of waves in each dynamical situation.

There are many dynamical situations. The different layers of the atmosphere are
often studied in isolation: the boundary-layer meteorologist might spend an entire
career investigating the few-hundred meters nearest the ground, the aeronomist
might be unconcerned with anything below 80 kilometers, while between these
extremes various subspecies of meteorologist populate niches with their own
jargon and journals. In contrast, internal gravity waves cover all the bases. Some
waves travel from surface sources to the outer reaches of the atmosphere while
others couple the synoptic scales to the scales of dissipative turbulence. Wave
effects discovered at one scale or height provide clues to the dynamics in other
regimes; and atmospheric scientists find themselves working with wave systems
that have direct counterparts in the ocean sciences. Thus there is a constant
exchange of ideas between people working in seemingly diverse areas, an unusual
but stimulating state of affairs in this age of specialization.

But of course some problems are closer to solution than others. It is possi-
ble that waves control the location and timing of significant weather events, but
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xvi Foreword

evaluating such possibilities and using the information in actual forecasts is a
formidable challenge. Even the casual observer is aware how unpredictable the
weather can be. Some even find comfort in this reminder that nature does not
conform to civilization’s nine-to-five humdrum routine. However, if the casual
observer optimistically suggests that “the experts know what is going on” he is,
like most optimists, sadly mistaken. The true expert is quite certain that he does not
know what is going on. Richardson, one of the acknowledged giants of meteorol-
ogy, asked “Does the wind possess a velocity?,” and then proceeded to undermine
this basic concept of dynamic meteorology. Perhaps Richardson was being mis-
chievous, but it is worth bearing in mind that the real atmosphere bears only a
tenuous relationship to the ideal flows that the theoretician can handle, or to the
large numerical models that grind their predetermined route through the latest
supercomputers.

The current task then is not to predict the behavior of the atmosphere, but to
extract knowledge from the problems that current resources can handle. It must be
left to future generations to synthesize such knowledge into predictions—or, more
likely, to quantify the limits and cost-benefits of predictions. Given this situation,
today’s investigator needs to identify worthwhile problems that can be profitably
investigated with the available experimental techniques and the available funding.
Waves provide such problems. As an example, the saturation and breaking of
waves presents a first-class scientific problem whose nonlinear features may soon
be resolvable with remote-sensing systems. The social concerns about the ozone
layer, the Earth’s climate and boundary-layer air quality, all problems that involve
wave transports and mixing, generate financial support for such work.

It is timely to have a book that introduces the reader to current themes
in atmospheric waves. Famous persons from previous eras—Rayleigh, Taylor,
Richardson, v. Karmen, and Kolmogoroff—have made contributions to the prob-
lems that are discussed, but the problems are still largely unsolved. The optimistic
student beginning a career may find inspiration in this.

George Chimonas
Atlanta, Georgia

May, 2002



Preface

Virtually the whole theory of linear atmospheric gravity waves can be found in
the six pages of Colin Hines’ 1965 article entitled, “Atmospheric Gravity Waves:
A New Toy for the Wave Theorist” from the journal Radio Science. However,
learning about gravity waves by reading this paper is equivalent to learning to
swim by jumping into the middle of an ocean. Similar analogies can be made
concerning some of the textbooks on the subject. In these cases, instead of an
ocean, one jumps into the middle of a lake. It is with this in mind, that I set about
writing an introduction to gravity waves which I hope will, at most, place the
student into a pool of water only neck-deep.

The aim of this monograph is to present the reader with a background neces-
sary to tackle advanced texts and scientific articles. In addition to the theoretical
treatments which are a necessary part of the study of waves, I have included
chapters on practical issues such as observation techniques, data analyses, numer-
ical parameterizations of wave effects, and numerical models of gravity waves.
These chapters should be of interest to observationalists and numerical modelers.
However, the discussions of these issues are neither comprehensive nor complete.
Indeed, a book could be written on each of them.

I have tried to make the theoretical discussions as simple as possible and to
concentrate on physical insight rather than mathematical rigor. However, I recog-
nize that waves are fundamentally a mathematical concept and construct. Some
chapters are more mathematically concentrated than others. To ease the problem
inherent in mathematical developments, I have tried to include many intermedi-
ary steps, and have tried to avoid expressions such as “it can be shown. . .” or “it
follows that. . .,” etc. In some cases, the mathematical developments may not be
essential, and one could say that the means do not justify the ends. Because I come
from the old school of physics, I feel compelled to justify conclusions. One can

xvii



xviii Preface

consider these developments “cultural enhancements,” but what really matters are
the final results.

Chapter 1 presents a brief description of the types of gravity waves observed
in the atmosphere and their related sources. The basics of wave mechanics is
introduced. Topics include wavenumbers, wavelengths, wave vectors, angular
frequency, wave period, wave phase, wave fronts, wave dispersion, phase velocity,
wave packets, group velocity, buoyancy, static stability, slant-wise static stability,
and the Boussinesq approximation.

Chapter 2 introduces the basic mathematics and physics required for under-
standing gravity waves. The equation for linear gravity waves, the Taylor–
Goldstein equation, is developed from basic principles, and solutions are discussed
for idealized cases. Expressions are developed for wave dispersion and group
velocities. Propagating and evanescent waves are defined and discussed.

The important topic of terrain-generated gravity waves is introduced in
Chapter 3. Wave fields above two-dimensional surface corrugations and ridges,
and three-dimensional mountains are examined as well as wave stress and its
vertical variation.

Chapter 4 deals with wave ducting. We shall see that a gravity wave can become
trapped between the ground surface and some upper level where wave reflections
occur. Under these conditions, the waves can travel long distances with relatively
little attenuation.

Chapter 5, perhaps the most mathematical chapter in this book, deals with wave
energetics. We shall examine the vertical variations of wave energy and wave
stress, and introduce the concept of wave action. Wave encounter with critical
levels where the wave speed equals the local wind speed are treated in detail.

In Chapter 6, the important topic of wave-turbulence interactions is introduced.
Indeed, if it were not for the ability of gravity waves to generate turbulence and thus
modify the background flow, there would not be much interest in their study. Waves
and turbulence are often observed to exist simultaneously. Mechanisms leading
to wave instability, wave breaking, and the resulting generation of turbulence are
examined in this chapter.

In Chapter 7, much of what has been learned from the previous chapters is
used to develop parameterizations of wave stress for use in numerical models. The
subject of wave saturation that describes the process of wave breaking in terms of
wave amplitudes is introduced. Several parameterization schemes to account for
wave saturation in numerical models are described.

Chapter 8 reviews the many techniques for observing the meteorological per-
turbations produced by gravity waves. It is only through these observations that
the existence of gravity waves can be inferred.

Chapter 9 describes numerical techniques for analyzing data for wave con-
tent, i.e., phase speed, propagation direction, wavelengths, etc. These techniques
include correlations between pressure and wind speed perturbations, analysis of
phase lag between wave observation stations, wavelet analysis, and beamsteering.



Preface xix

Also included in Chapter 9, are discussions of numerical models for terrain-
generated and ducted gravity waves.

The CD accompanying this book contains FORTRAN 77 computer models for
terrain-generated gravity waves and ducted gravity waves. Also included on the
CD are computer codes for wavelet analysis, beamsteering, and a 24-hour record of
surface pressure perturbation data observed at six microbarograph stations. These
codes and data sets are provided as a learning tool and are described inAppendix B.
The reader is encouraged to “play” with these programs, and to modify or rewrite
them in more modern languages.

Many fine textbooks and monographs on gravity waves exist including, for
example:

Baines, P. G. Topographic Effects in Stratified Flows, 1995. New York:
Cambridge University Press.

Eckart, C. Hydrodynamics of Oceans and Atmospheres, 1960. New York:
Pergamon Press.

Gill, A. E. Atmosphere-Ocean Dynamics, 662 pp., 1982. San Diego: Academic
Press.

Gossard, E. E. and Hooke, W. H. Waves in the Atmosphere, 456 pp., 1975.
San Diego: Academic Press.

Hines, C. O. Atmospheric gravity waves: A new toy for the wave theorist.
Radio Sci. 69D:375–380.

Hines, C. O. The Upper Atmosphere in Motion, 1974. Washington, D.C.:
American Geophysical Union.

Lighthill, M. J. Waves in Fluids, 504 pp., 1978. New York: Cambridge
University Press.

Phillips, O. O. The Dynamics of the Upper Ocean, 336 pp., 1977. New York:
Cambridge University Press.

Smith, R. B. On severe downslope winds. J. Atmos. Sci. 42:2597–2603, 1985.
Tolstoy, I. The theory of waves in stratified fluids including the effects of gravity

wave rotation. Rev. Mod. Phys. 35(1):207–230, 1963.

These resources, and the references contained therein, should be consulted for
more detailed and comprehensive expositions than are given in this monograph.

Carmen J. Nappo
Oak Ridge, Tennessee
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1
Fundamentals

1.1 Introduction
1.2 Some Wave Mechanics

1.2.1 Frames of Reference
1.2.2 Wave Scales
1.2.3 Wave Phase and Wave Speed
1.2.4 Group Velocity
1.2.5 Wave Dispersion

1.3 The Buoyant Force
1.4 The Boussinesq Approximation

In this chapter, the stage is set for what is to follow. We first give a perspective of
the types of gravity waves we shall study and describe how these waves permeate
the atmosphere on almost all scales of motion. Next, we present fundamentals
of wave theory which are necessary for future discussions. This presentation is
not complete, but should be sufficient to give the reader a working knowledge of
the mechanics of waves. We shall try to look for physical meanings rather than
mathematical expressions. We shall also discuss the property of the atmosphere
necessary for gravity wave propagation, i.e., buoyancy.

1.1 INTRODUCTION

A stably stratified fluid is one in which the fluid density increases with depth.
A characteristic of a stably stratified fluid is the ability to support and propagate
wave motions. Except for a relatively thin layer in contact with the Earth’s surface,
i.e., the planetary boundary layer, the atmosphere is almost always stably stratified,
and it is reasonable to assume that it always contains gravity waves. If it were
possible to see these waves and to greatly speed up their motions, we would see
a wide variety of wave shapes moving in many directions. Hines (1974) presents
a “surrealistic” representation of these waves, which is reproduced in Fig. 1.1.
Most of the waves move diagonally upward or downward across our field of view,
but some move horizontally. Some waves extend through our whole field of view.

1



2 Fundamentals

FIGURE 1.1 A surrealistic representation of atmospheric gravity waves. (From The Upper
Atmosphere in Motion, C.O. Hines, Am. Geophys. Union, Washington, DC, 1974, p. 194.)

Some waves appear stationary as if frozen in space. We see waves moving upward,
much like writhing snakes with their “wiggles” rapidly increasing in frequency and
magnitude, and then suddenly being reflected downward. Some of these waves
are not reflected, but instead seem to break apart into countless smaller waves
which gradually fade from view. We also see waves that follow curved paths or
are partially reflected and partially transmitted. Indeed, it is a view of unending
variety and action, but also a view of immeasurable complexity and puzzlement.

We cannot see atmospheric gravity waves. We can only see the effects of the
waves on the atmosphere. Figure 1.2 is a “picture” of gravity waves in the plan-
etary boundary layer obtained by an upward-looking sodar. Sodar (see Chapter 8
for a description) is similar to radar except that sound is used instead of radio fre-
quencies. The upward-moving sound waves are partially reflected downward by
thin layers of atmospheric turbulence. These reflected waves are detected by the
sodar and are represented by the dark bands in Fig. 1.2. These layers of turbulence
are perturbed by gravity waves, thus revealing the wave’s presence. In some cases,
the waves break down and generate the turbulence. We see a wide range of wave
frequencies, and in many cases we see high-frequency waves superimposed on
lower frequency waves. Some waves last only a few minutes, while others persist
for hours. Some waves appear to ascend or descend with time, and some seem
to intermittently appear and disappear. Some waves have large amplitudes, while
others are barely noticeable. The complicated images depicted in Fig. 1.2 represent



FIGURE 1.2 Sodar images of gravity waves in the planetary boundary layer. (From Studies in Nocturnal
Stable Layers at BAO, R.L. Zamora, National Atmospheric and Oceanic Administration, NOAA/ERL, Boulder,
CO, 1983, p. 109.)



4 Fundamentals

some of the fundamental characteristics and physics of atmospheric gravity waves.
But however interesting the physics of these waves may be, unless the waves have
an effect on the atmosphere there is little reason for their study.

Although the characteristics of waves in stratified fluids had been known for
many years, they remained a somewhat esoteric subject until Hines (1960) used
gravity wave theory to explain the origins of turbulence observed in the iono-
sphere. Hines (1989a) gives a historical perspective of this work, and the reader is
encouraged to peruse this article. However, we must not overlook the early work
on gravity waves done, for example, by Queney (1948), Scorer (1949), Gossard
and Munk (1954), Palm (1955), and Sawyer (1959). The introduction of gravity
wave theory into the field of meteorology initiated an avalanche of interest in
the applications of the theory to atmospheric physics. Today, it is recognized that
gravity waves are essential parts of the dynamics of the atmosphere on all mete-
orological scales. On the largest atmospheric scale, the studies, for example, by
Lindzen (1981) and Holton (1982) examined the effects of gravity waves on the
upper atmosphere and the general circulation (see Fritts, 1984 for a review of these
and other studies). On the mesoscale, studies by Uccellini (1975), Stobie, Einaudi,
and Uccellini (1983), Uccellini and Kock (1987), and Chimonas and Nappo (1987)
examined the interactions between gravity waves and thunderstorms. Studies by
Lilly and Kennedy (1973), Clark and Peltier (1977), and Smith (1985) exam-
ined the generation of gravity waves by mountains and the severe downslope
winds these waves can produce. On the microscale, studies by Chimonas (1972),
Einaudi and Finnigan (1981), and Fua et al. (1982) examined the interactions
between gravity waves and turbulence in the stable planetary boundary layer; and
Hines (1988), Chimonas and Nappo (1989), and Nappo and Chimonas (1992)
examined the interactions of gravity waves generated by small-scale terrain fea-
tures with the mean boundary-layer flow to produce turbulence in the upper regions
of the stable planetary boundary layer. The study of gravity waves and their effects
on turbulence in the nighttime boundary layer was a primary goal of the CASES-
99 field campaign conducted in the planes of south-central Kansas (Poulos et al.,
2001) and the VTMX field campaign in the Salt Lake City basin in Utah (Doran,
Fast, and Horel, 2001). Figure 1.3 shows plots of vertical velocity observed by
aircraft flights on October 14, 1999, during the CASES-99 campaign. The wave-
like structures and turbulence seen between about 300 and 700 m AGL are typical.
Lee et al. (1997) examined gravity waves within and above a boreal forest canopy.
These types of waves, shown in Fig. 1.4, are a common feature of the nighttime
flow above forests.

Almost all of the theoretical studies of gravity waves to date have been done
using the linear theory. One reason for this is that a clear understanding of waves
is attainable under the simplifications of a linear theory. The linearization pro-
cess eliminates the interactions of waves with waves and the resultant transfers
of energy. The process partitions the meteorological variables into slowly varying
or stationary background parts and small first-order perturbations, which we take
to be due to waves. In the middle and upper atmospheres, the background flows
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FIGURE 1.3 Vertical velocity recorded by the University of Wyoming King-Air B200 research
aircraft on October 14, 1999, during the CASES-99 field campaign. The flights were in the east–west
direction at various heights. The arrows on the left indicate the flight direction, and the time marks
indicate the beginning and ending of data recording.

often approach these conditions, but in the troposphere and especially in the stable
planetary boundary layer these constraints may not be strictly applicable. In the
middle and upper atmospheres, gravity waves appear to be nearly monochromatic,
i.e., composed of a single frequency, and so wave–wave interactions there may
not be important. However, in the troposphere where many different wave fre-
quencies can exit, wave–wave interactions may be important. Yet in spite of these
limitations, the linear theory is still a useful tool for understanding and making
first-order analyses of observations.

An important property of waves is their ability to transport energy. Gravity
waves transport energy away from the disturbances that generate them (moun-
tains, hills, thunderstorms, velocity jets, large explosions, etc.) and act to distribute
this energy throughout the atmosphere. The distribution of energy is more rapidly
done by waves than by the mean flow. Wave transport and subsequent deposition
of energy are an important component of the atmospheric dynamics. It is now
recognized that turbulence in the nighttime atmospheric boundary layer and clear
air turbulence (CAT) is due to breaking gravity waves. The roles of gravity waves
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FIGURE 1.4 Ten-minute time series of temperatures (◦C) and wind speeds (m s−1) observed
on July 13, 1994, in a boreal aspen forest. Canopy height was 21 m. Measurement heights are listed:
u is the horizontal wind speed, and w is the vertical wind speed. (From “Observation of gravity waves
in a boreal forest,” X. Lee et al., Boundary-Layer Meteorol. 84: 388, 1997.)

in meteorology are continually being studied and expanded. Almost every issue
of the Journal of Atmospheric Science, Quarterly Journal of the Royal Meteo-
rological Society, Monthly Weather Review, Journal of Geophysical Research,
Tellus, Boundary-Layer Meteorology, etc. contain articles about gravity waves.
Considering the wide spectrum of the time and space scales of gravity waves and
the complex interactions of these waves with themselves and the mean flow, we
expect interest in gravity waves to increase in the future.

1.2 SOME WAVE MECHANICS

In this section, we define the space and time scales needed to describe waves.
But first, let us be clear about what we mean by “wave.” A wave is the result
of harmonic oscillations of fluid particles. The apparent movement of a wave is
due to the phase difference in these oscillations between adjacent particles. These
oscillations or orbits occur on planes which are perpendicular to the apparent
direction of the wave motion. We have all seen waves on water, but we will not
discuss waves we see during storms, such as those rendered in Fig. 1.5. Instead,
we limit our attention to waves which are similar to waves on a gentle sea or lake,
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FIGURE 1.5 “The Great Wave” by Hokusai (1760–1849) is an example of a nonlinear wave.
These types of waves will not be discussed in this book.

FIGURE 1.6 Two-dimensional waves on a calm sea.

as illustrated in Fig. 1.6. We must distinguish right off between wave and waves.
If we consider a sine wave or a breaking wave or a solitary wave, then we are
comfortable with the singular term, wave. We know what we are talking about.
However, we often hear and use the plural in phrases such as “gravity waves,”
“Kelvin–Helmholtz waves,” “unstable waves,” etc. Sometimes the meanings of
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FIGURE 1.7 A lenticular cloud produced by a three-dimensional wave over a mountain. (Photo
by Paul Field, Met Office, UK.)

these phrases are clear, but often they are rhetorical. Consider for a moment fish.
In English, “fish” is the proper plural when applied to several members of the same
species; however, “fishes” is the proper plural when applied to several species. In
an analogous way, we shall use wave to mean a singular event such as depicted
in Fig. 1.1 or a continuous wave such as a sine wave, and we shall use waves to
mean ensembles of singular waves or several sine waves with different periods.
We will also sometimes use the term “wave train” or “plane waves” (Hines, 19551)
to describe a series of repeating motions such as shown in Fig. 1.2. Continuing our
discussion, we see that the waves shown in Fig. 1.2 appear as long parallel lines with
peaks, which are called crests, and valleys, which are called troughs. These types
of waves are two-dimensional waves because the shapes of the waves change only
with height and width, but not with length. Waves at the beach are good examples
of two-dimensional waves. A two-dimensional wave is sometimes called a plane
wave. A three-dimensional wave changes shape in three dimensions. An example
of a three-dimensional wave is the linticular cloud shown in Fig. 1.7. These types
of clouds are often seen above mountains. Another example of a three-dimensional
wave is the ring wave on the surface of a calm pond after a stone is dropped into
it. In the atmosphere or the oceans, three-dimensional waves are spherical, not
unlike the layers of an onion. In this book, we shall study mostly two-dimensional
waves; however, in many cases what we learn from two-dimensional waves can
be easily extended to three dimensions.

The waves shown in Figs. 1.1 and 1.2 appear on the surface of the water;
however, the motions of the fluid particles which create the wave extend throughout

1 See also p. 233 of Hines (1974) for a precise definition of plane waves.
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the fluid. Thus, we can speak of a wave field which permeates the fluid much as an
electromagnetic field permeates space. In the absence of boundaries where wave
reflections occur, the wave field will exist everywhere; however, in some regions
wave amplitudes may be vanishingly small.

1.2.1 FRAMES OF REFERENCE

Because waves move in a medium which can also be moving, confusion can
arise if we are not clear as to the frame of reference of observations or theoret-
ical analysis. In a Lagrangian reference frame, fluid motions are observed in a
coordinate system moving with the flow. In this frame, some waves would be
moving faster than the observer and some waves would be moving slower. Thus,
waves would appear to be always moving horizontally away from the observer.
Most atmospheric observations, including waves, are made in a coordinate sys-
tem fixed to the Earth. A reference frame that is stationary realtive to the flow is
called an Eulerian reference frame. Observations in Lagrangian and Eulerian ref-
erence frames are related through appropriate mathematical transformations along
with the constraint that the physics in both frames must be identical. However,
it often happens that the descriptions of certain motions are more conceptual and
more easily described in one frame rather than another. In this book, we shall use
the Eulerian reference and thereby relate wave motions to a stationary observer.
Exceptions to this general rule will be noted.

1.2.2 WAVE SCALES

We shall use a Cartesian coordinate system (x, y, z) with x and y in the hor-
izontal plane and z in the vertical direction. The coordinates have unit vectors
(x̂, ŷ, ẑ). Unless otherwise noted, the horizontal directions of wave motion will be
along the x-axis. The wavelength � is the distance between successive crests of a
wave, as illustrated in Fig. 1.8. In this book, we shall consider only waves with
horizontal wavelengths less than 1000 km so that the effects of the effects of the
Earth’s curvature can be neglected (Hines, 1968). Accordingly, we can consider
horizontal planes as being flat. The mathematical description of a wave involves
trigonometric functions, for example, sin(2πx/�), etc., and it is convenient to
define the wavenumber as

κ = 2π

�
. (1.1)

We can think of the wavenumber as 2π times the number of wave oscillations
per unit length, or wavelength per unit radian. The wavenumber is a fundamental
property of a wave. We label the wavenumbers in the x-, y-, and z-directions as k,
l, and m, respectively. These wavenumbers are defined as

k = 2π

λx

l = 2π

λy

m = 2π

λz

, (1.2)
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c

a b

t = 0 t = τ
FIGURE 1.8 A wave with wavelength � moves to the right with speed c. The wave crest moves
from point a to b in time τ , which is the period of oscillation of the wave as seen by a stationary
observer.

where λx , λy , and λz are the wavelengths of the wave in the x-, y-, and z-directions,
respectively. The wave vector, �κ , defines the direction of wave propagation and is
given by

�κ = kx̂ + lŷ + mẑ . (1.3)

The wave period, τ , is the time required for the fluid particles to make one oscilla-
tion. If the wave is moving, then the wave period is the time required for successive
wave crests to pass a stationary observer, as illustrated in Fig. 1.8. For waves with
periods less than a few hours, the effects of the Earth’s rotation (the Coriolis force,
see Appendix A) can be ignored. The wave frequency, ω, is 2π times the number
of wave oscillations per unit time, i.e.,

ω = 2π

τ
. (1.4)

1.2.3 WAVE PHASE AND WAVE SPEED

Let A cos(kx − ωt) describe a wave with amplitude A, wavenumber k, and
frequency ω. As we shall see, the minus sign indicates a wave moving in the
positive x-direction. A single oscillation of the wave either in space or time is a
cycle of 2π radians or 360◦. Each point in the cycle is a phase point. If the wave
cycle is represented in polar coordinates, as illustrated in Fig. 1.9, then the wave
phase, φ, is represented by the positive angle between the radius vector and the
horizontal axis which corresponds to φ = 0. Thus, the wave phase is often referred
to as the phase angle, i.e., φ = kx − ωt . In the two-dimensional case,

φ = �κ · �r − ωt = kx + mz − ωt , (1.5)
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FIGURE 1.9 An illustration of phase angle in polar coordinates.

where �r is the radius vector defined by

�r = xx̂ + zẑ . (1.6)

Consider now a wave described by

f (x, z, t) = �Aeiφ = A cos(kx + mz − ωt) , (1.7)

where � indicates the real part of the complex number.2 From (1.7) we see that at
a fixed point in space, the function f oscillates with angular frequency ω, and at
any instant of time f will have a wave structure of the form cos(kx + mz). The
lines of constant φ determine the spatial orientation of the wave fronts or crests as
represented by the dashed lines in Fig. 1.10. The equation for the family of wave
fronts is

φ(x, z) = kx + mz = constant . (1.8)

If the z-component of the wave vector, m, goes to zero, then the vertical wave-
length, λz → ∞, and the wave fronts become parallel to the z-axis. Likewise, if
k → 0, then the horizontal wavelength, λx → ∞, and the wave fronts become
parallel to the x-axis. From (1.8), we can write

zφ = − k

m
x + constant , (1.9)

2 We shall use mostly exponential notation in describing waves. Since this results in complex
numbers, we must select at the very end of an analysis the real parts of the numbers in order to get
physically meaningful results.
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= 0N
N = −2B

k = k x + m z
¸
¸

m

k

x

z

R
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v v

FIGURE 1.10 An illustration of wave fronts and wave vectors for a two-dimensional wave. The
wave fronts are perpendicular to the wave vector. The negative values of phase angle φ indicate that
these wave fronts passed a stationary observer earlier than the following fronts.

where zφ is the height of a line of constant phase. We can define a phase vector as

�φ = xx̂ + zφẑ . (1.10)

Then, using (1.9) in (1.10) gives

�φ = x

(
x̂ − k

m
ẑ

)
. (1.11)

It follows that

�κ · �φ = (kx̂ + mẑ) · x

(
x̂ − k

m
ẑ

)
= 0 , (1.12)

and we see that the wave vector is perpendicular to the wave fronts, as illustrated
in Fig. 1.10. The magnitude of the wave vector is

|�κ|2 = k2 + m2 , (1.13)
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FIGURE 1.11 A wave moving in the x–z plane seen at times τ and τ + 	t .

FIGURE 1.12 A surfer riding a wave at a point of constant wave phase. The surfer is moving
at the phase speed of the wave.

where we have rotated the coordinate axis so that the x-axis is in the direction of
horizontal wave propagation. It follows from (1.13) that

(
1

�

)2

=
(

1

λx

)2

+
(

1

λz

)2

. (1.14)

It is clear from (1.14) that � must be less than either λx or λz.
To determine the wave speed, we pick a point on the wave, for example, a

wave crest, and follow it along the direction of wave propagation, as illustrated
in Fig. 1.11 which shows the wave at times τ and τ + 	t . The phase velocity, c,
of the wave is the speed at which a point of constant phase moves in the direction
of wave propagation. It is important to keep in mind that we are talking about the
speed of a disturbance (the wave) moving through a fluid, not the speed of the
fluid. Figure 1.12 shows a surfer riding a wave at a point of constant wave phase.
The surfer is moving at the wave phase speed. If we differentiate (1.5) holding φ

constant, we get

dφ

dt

∣∣∣∣
φ

= �κ · d�r
dt

− ω = 0 , (1.15)

and, consequently,

d|�r|
dt

= c = ω

κ
= ω√

k2 + m2
. (1.16)
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In Fig. 1.10, we see that the components of the wave vector along the horizontal
and vertical axes have wavenumbers less than κ and wavelengths greater than �.
The speed of the wave along the horizontal x-axis, cx , is obtained by differentiating
(1.5) with respect to t holding φ and z constant, i.e.,

dφ

dt

∣∣∣∣
φ,z

= k
dx

dt
− ω = 0, (1.17)

and then

cx = ω

k
. (1.18)

Likewise, the phase speed in the z-direction is

cz = ω

m
. (1.19)

Note also that if we multiply (1.14) by ω2 and use (1.16) we get

(
1

c

)2

=
(

1

cx

)2

+
(

1

cz

)2

, (1.20)

indicating that phase speed is not a vector.
In textbooks and the scientific literature, we will see references to either phase

speed or phase velocity. For example, Gossard and Hooke (1975), Booker and
Bretherton (1967), and Baines (1995) use “phase velocity,” while Hines (1960),
Lighthill (1978), and Gill (1982) use “phase speed.” The distinction between
the terms “speed” and “velocity” is trivial if we agree that in either case we are
describing the speed of a wave in the direction of wave propagation.

1.2.4 GROUP VELOCITY

One of the most important and perhaps least appreciated concepts in gravity
wave theory is group velocity. As we shall see, it is the group velocity that transports
wave energy through space. In the real world, all waves must have a source, a point
of creation. There are many sources of waves. These can be instantaneous at a point
in space, for example, a nuclear explosion, or they can be continuous in time over
extended space, for example, flow over a mountain range. However, in any and
every case, the energy created by these disturbances must move away from the
source. In the stably stratified atmosphere, gravity waves carry this energy away.
In many books on gravity waves, the wave characteristics, i.e., wavenumber, phase
velocity, frequency, etc., are treated as if they are independent of wave energy. We
have noted that expressions such as (1.7) imply a wave field everywhere in space,
but this is an idealization. It is only when the origin of the wave and the transport
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FIGURE 1.13 A ring wave on the surface of a calm pond moves with group velocity ug , but
the wavelets move with their individual phase speeds, c, which is a function of their wavenumbers,
i.e., kN , kN−1, kN−1, . . . .

of the wave energy is considered that the problem becomes realistic. Indeed, it is
the energy transport that creates the wave. The wave does not create the energy
transport. The speed and direction of energy transport is determined by the group
velocity.

Following Lighthill (1978), imagine a stone thrown into a pond of still water.
After the initial splash, we see a ring of water, a “ring wave,” moving away from
its center. If we could follow the wave and examine it closely, we would see that
the surface of the wave is continually disturbed by a series of smaller waves or
wavelets which propagate from the rear to the front of the larger wave. These
wavelets were created when the stone struck the water surface. The energy of that
initial disturbance was distributed over a wavenumber spectrum of waves. The
wavelets at the rear will have shorter wavelengths than the ones at the front, as
illustrated in Fig. 1.13. These wavelets act to manifest the larger wave, which in
effect is a bundle or packet of waves referred to as a wave packet. Each wavelet is
moving at phase c(k), which is a function of its wavenumber k. The wavelets at the
front have larger wavelengths than the waves at the rear and, therefore have greater
phase speeds. However, it is clear that the wavelets are moving faster than wave
packet which we observe to have speed ug . The wavelets appear neither ahead
nor behind the wave packet, and we conclude that they have no energy content. If
they did, then we would be able to observe them as they moved ahead of the wave
packet. Thus, the energy of the disturbance is contained in the wave packet which
we can observe on the water’s surface. But what is the speed of this packet?

To analyze this energy transport let us consider the simplest case: a wave packet
composed of only two waves traveling in the positive x-direction. Let the waves
have equal amplitudes, a, but slightly different frequencies, i.e., ω + δω, ω − δω,
and wavenumbers, i.e., k + δk and k − δk. The superposition of these waves is
given by

ζ = a cos[(k + δk)x − (ω + δω)t] + a cos[(k − δk)x − (ω − δω)t] . (1.21)

With some trigonometry, (1.21) can be written as

ζ = 2a cos(δkx − δωt) cos(kx − ωt) . (1.22)
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FIGURE 1.14 A modulated carrier wave at times 0, 30, and 60 s.

Figure 1.14 shows a graph of (1.22) at times t = 0, 30, and 60 s for the case k =
2π/60 m−1, δk = 2π/400 m−1, ω = 2π/10 s−1, and δω = 2π/400 s−1. The two
waves combine to form an amplitude-modulated carrier given by cos(kx−ωt). The
sloping lines in Fig. 1.14 connect the crests of the carrier wave and the node points
of the wave packet at various times. The slopes of these lines are proportional to the
speeds of the crests and the nodes, and it is clear that the carrier waves are moving
faster than the packet. The amplitude modulation is given by 2a cos(δkx − δωt).
The phase velocity of the carrier wave is ω/k = 6 m s−1. Note that wave energy
cannot pass through the node points of the carrier wave since the amplitude there
is zero. The wave energy is trapped in the wave packet and is thereby constrained
to move with the wave packet. The velocity of this packet is called the group
velocity. In the same way that we developed an expression for the phase speed, we
calculate the group velocity in the x-direction as

ug = δω

δk
. (1.23)
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FIGURE 1.15 A cross-section of a ring wave seen at early and late times.

In the limit of small values of δω and δk, (1.23) becomes

ug = ∂ω

∂k
. (1.24)

Likewise, the group velocity in the vertical direction is

wg = ∂ω

∂m
. (1.25)

The group velocity for the wave in Fig. 1.14 is ug = 1 m s−1.

1.2.5 WAVE DISPERSION

Phase speed is a function of wave frequency and wavenumber, i.e., c = ω/k =
λx/τ . For a given wave period, τ , long waves will travel faster than short waves,
and this leads to wave dispersion. Recalling the example of a surface ring wave
created by a stone thrown into a calm pond, we observe that initially the disturbance
is sharply peaked, as illustrated in Fig. 1.15. As the ring expands, the width of the
disturbance increases. This is because the waves that make up the disturbance
are moving at different phase speeds. Because the long waves move faster than
the short waves, the disturbance broadens. Note that the total energy of the wave
packet remains constant, but disperses horizontally. The relation between phase
speed and wavenumber is called the dispersion relation.

1.3 THE BUOYANT FORCE

The term gravity wave suggests that gravity is the restoring force acting on a
fluid parcel which has been displaced from its equilibrium position. However, it
is the fluid buoyancy rather than gravity that is acting. Consider an atmosphere at
rest and an air parcel of mass mp in equilibrium with its environment at height ze.
Let the parcel be displaced upward a small distance δz from ze. We assume that
during this displacement the air in the parcel does not mix with its surroundings
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and that the process is adiabatic, i.e., there is no net transfer of heat across the
surface of the air parcel. The buoyant force, �Fb, acting on the fluid parcel is

�Fb = −g(mp − ma) ẑ , (1.26)

where ma is the mass of air displaced by the fluid parcel and g is the acceleration
(positive upward) of gravity. From the second law of motion, we have

mp

d2(δz)

dt2
= −g(mp − ma) . (1.27)

The mass of each air parcel can be expressed as, for example,

mp = ρpvp , (1.28)

where ρp and vp are the density and volume of the air parcel, respectively. We
assume that the volumes of the air parcel and the displaced air are equal and that
the pressure in the air parcel is always equal to the environmental pressure. The
equation of state for dry air is represented by the ideal gas law, i.e.,

p = ρRT , (1.29)

where R is the universal gas constant. For dry air, R = 287 J kg−1 K−1. Using
(1.29), (1.27) becomes

d2(δz)

dt2
= −g

ρp − ρa

ρp

= −g
Ta − Tp

Ta

, (1.30)

where ρa is the environmental air density and Ta and Tp are the environmental and
parcel temperatures, respectively. We now expand Ta and Tp to first order, i.e.,

Ta(ze + δz) = T0 + ∂Ta

∂z

∣∣∣∣
ze

δz + · · · (1.31)

Tp(ze + δz) = T0 + ∂Tp

∂z

∣∣∣∣
ze

δz + · · · , (1.32)

where T0 is the temperature at equilibrium height ze. Using (1.31) and (1.32) in
(1.30) and noting that the change of environmental temperature due to the vertical
displacement is small, i.e.,

T0 � ∂Ta

∂z
δz, (1.33)
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(1.30) becomes

d2(δz)

dt2
= − g

Ta

(
∂Ta

∂z
− ∂Tp

∂z

)
δz . (1.34)

As shown in Appendix A, −∂Tp/∂z = g/cp = �, where cp is the specific heat
capacity at constant pressure and � is the adiabatic lapse rate. For dry air, cp =
1005 J kg−1 K−1 so that � ≈ −10 K km−1. We also set ∂Ta/∂z = γa , i.e., the
atmospheric temperature gradient. Equation (1.34) can now be written as

d2(δz)

dt2
= − g

Ta

(� − γa) δz . (1.35)

The potential temperature is discussed in Appendix A and is defined as

θ = Ta

(
1000

p

)R/cp

. (1.36)

The potential temperature is the temperature an air parcel would have if it were
brought down adiabatically from a height where the pressure is p to a height where
the pressure is 1000 mb, i.e., the ground surface. It is straightforward to show that
if the logarithmic derivative of (1.36) is taken and if use is made of (1.29) and the
hydrostatic approximation (see Appendix A), i.e.,

∂p

∂z
= −ρg, (1.37)

then

1

θ

∂θ

∂z
= 1

Ta

(
∂Ta

∂z
+ g

cp

)
= � − γa

Ta

. (1.38)

Using (1.38) in (1.35) gives the result

d2(δz)

dt2
= −g

θ

∂θ

∂z
δz . (1.39)

Equations (1.35) and (1.39) are examples of the equation for simple harmonic
motion in the vertical direction. If the air parcel is displaced vertically and released,
then its motion is described by

δz(t) = A eiNt + B e−iNt , (1.40)

where

N =
√

g

θ

∂θ

∂z
. (1.41)
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If N is real, then it is the frequency of oscillation of the air parcel and is sometimes
called the Brunt–Väisälä frequency. If N is imaginary, i.e., ∂θ/∂z < 0, then

δz = A e−Nit + B eNit , (1.42)

where N = iNi . Solution B in (1.42) represents unbounded growth of the displace-
ment, i.e., an instability. This type of instability is due to the thermal properties of
the atmosphere and is refereed to as convective instability. Thus, we see that wave
motion is possible only when the atmosphere is stably stratified, i.e., ∂θ/∂z > 0;
however, this does not mean that all gravity waves have frequency N . We shall
see that the Brunt–Väisälä frequency represents the maximum frequency for verti-
cally propagating gravity waves. In an isothermal atmosphere where ∂T /∂z = 0,
N ≈ 0.02 s−1, and the buoyancy period is about 5 min. Holton (1992) gives
N ≈ 0.012 s−1 for average tropospheric conditions, so that the buoyancy period
is about 8 min. In the nighttime PBL, N ≈ 0.2 s−1, and typical buoyancy periods
are on the order of a minute.

The buoyant force described by (1.26) is restricted to vertical displacements of
fluid parcels. Purely vertical displacements of air parcels due to waves occur only
when the wave train is moving horizontally, for example, surface waves on water.
However, gravity waves almost always propagate at an angle to the vertical, and
so the fluid parcels will be displaced at an angle to the vertical. To examine this
case, let δs be the displacement of a fluid parcel from its equilibrium position on
a surface inclined an angle β to the horizontal, as shown in Fig. 1.16. As we shall
see, air parcels displaced by a gravity wave oscillate along streamlines which are
perpendicular to the path of the wave, and so we can consider the inclined surface
to be a streamline. The buoyant force acting on the displaced air parcel is

�Fs = mp

d2(δs)

dt2
= −g sin β (mp − ma) , (1.43)

FIGURE 1.16 Air parcel displaced from equilibrium along an inclined plane.
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where −g sin β is the component of gravity along s. Continuing as above, (1.30)
takes the form

d2(δs)

dt2
= −g sin β

Ta − Tp

Ta

. (1.44)

Expanding Ta and Tp in Taylor series in the s-direction and using these in (1.44)
gives

d2(δs)

dt2
= −g sin β

Ta

(
∂Ta

∂s
− ∂Tp

∂s

)
δs. (1.45)

The air parcel will warm or cool at the adiabatic lapse rate projected onto the
streamline. Then (1.45) can be written as

d2(δs)

dt2
= −g sin β

Ta

(
∂Ta

∂s
+ g sin β

cp

)
δs. (1.46)

Taking the derivative of the potential temperature (1.36) in the s-direction and again
making use of the equation of state and the hydrostatic approximation, we get

1

θ

∂θ

∂s
= 1

Ta

(
∂Ta

∂s
+ g sin β

cp

)
. (1.47)

However, since ∂Ta/∂s = (∂Ta/∂z) sin β, (1.47) becomes

1

θ

∂θ

∂s
= 1

Ta

(
∂Ta

∂z
+ g

cp

)
sin β. (1.48)

But this is identical to (1/θ)(∂θ/∂z) sin β. Substituting this result into (1.46) gives

d2(δs)

dt2
= −g

θ

∂θ

∂z
sin2 β δs , (1.49)

and the motion of the parcel along the s-direction is

δs(t) = A eiN ′t + B e−iN ′t , (1.50)

where

N ′ =
[
g

θ

∂θ

∂z
sin2 β

]1/2

= N sin β. (1.51)

If β = 0◦, then the motion is horizontal but not oscillatory since then N ′ = 0. We
see that the range of buoyancy frequencies extends from 0 to N depending on the
angle of propagation relative to the horizontal plane, β.
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1.4 THE BOUSSINESQ APPROXIMATION

In the next chapter, we derive the equations for gravity waves from the Eulier
equations of motion for an irrotational, frictionless atmosphere, i.e.,

ρ
D �U
Dt

= −∇p + ρ �g . (1.52)

Dρ

Dt
+ ρ∇ · �U = 0 (1.53)

DP

Dt
− C2

s

Dρ

Dt
= 0, (1.54)

where CS = (cp/cv)(p/ρ) is the speed of sound, cv is the specific heat capacity
for dry air at constant volume, and

D

Dt
= ∂

∂t
+ �U · ∇ . (1.55)

Equations (1.52)–(1.54) represent the conservation of momentum, the conserva-
tion of mass, and the conservation of thermal energy. From the thermal energy
equation (1.54), we see that the density and pressure are related, and in general
ρ = f (p, T ). However, in such an atmosphere, acoustic waves will exist as well
as gravity waves, and this can lead to complications. It is through the Boussinesq
approximation (see, for example, Spiegel and Veronis, 1960) that we can eliminate
the acoustic waves.

Consider (1.52), and make the substitutions ρ = ρ0 + ρ1 and p = p0 + p1,
where subscript 0 indicates a mean or background value and subscript 1 indicates
a small departure from the mean state, i.e., a perturbation. Then (1.52) becomes

(ρ0 + ρ1)
D �U
Dt

= −∇p0 + ρ0 �g − ∇p1 + ρ1 �g . (1.56)

We assume the background state is in hydrostatic equilibrium (1.37), so that (1.56)
becomes

(
1 + ρ1

ρ0

)
D �U
Dt

= − 1

ρ0
∇p1 + ρ1

ρ0
�g . (1.57)

The Boussinesq approximation assumes that |ρ1/ρ0| � 1, and accordingly, fluc-
tuations in density affect the buoyancy term much more then the inertial term.
Thus, density fluctuations are considered only when they occur in combination
with g.
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The condition that |ρ1/ρ0| � 1 is satisfied when the vertical scale of the mean
motions, λz, is much less than the isothermal scale height of the atmosphere (see
Appendix A), i.e.,

λz � Hs = RT0/g, (1.58)

where Hs is the scale height of the isothermal atmosphere. To visualize this require-
ment, consider the vertical variation of density in an isothermal atmosphere, i.e.,

ρ = ρs e−z/Hs , (1.59)

where ρs is the density at the ground surface. Then

∂ρ

∂z
= − ρs

Hs

e−z/Hs = − ρ

Hs

. (1.60)

If we replace the derivative in (1.60) by differentials, we can write

δρ

ρ
= − δz

Hs

, (1.61)

where δρ is a small change in density due to a small vertical displacement δz. Now,
if we identify the small density change δρ with the density perturbation ρ1, and if
we identify the small vertical displacement δz with the scale of the wave motion
λz, then we can write ∣∣∣∣ρ1

ρ0

∣∣∣∣ = λz

Hs

. (1.62)

We see from (1.62) that if λz � Hs , then |ρ1/ρ0| � 1.
As demonstrated by Spiegel and Veronis (1960), a result of the Boussinesq

approximation is that the fluctuating changes in density due to local pressure
variations are negligible. In this case, we can treat the fluid as being incompressible,
and acoustic waves are eliminated. A consequence of the separation of the pressure
and density changes is that as cs → ∞, i.e., as the fluid becomes incompressible,
(1.54) can be broken into two terms. Then the Eulier equations take the form

D �U
Dt

= − 1

ρ0
∇p + ρ1

ρ0
�g. (1.63)

∇ · �U = 0 (1.64)

Dρ

Dt
= 0. (1.65)
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Other results following the Boussinesq approximation, which are derived in
Appendix A, are

1

θ0

∂θ0

∂z
= − 1

ρ0

∂ρ0

∂z
(1.66)

and

θ1

θ0
= −ρ1

ρ0
. (1.67)

Note that because of (1.66) the Brunt–Väisälä frequency (1.41) can be written as

N2 = − g

ρ0

∂ρ0

∂z
. (1.68)



2
The Linear Theory

2.1 The Taylor–Goldstein Equation
2.2 A Simple Solution

2.2.1 No Background Wind Speed
2.2.2 Constant Background Wind Speed

2.3 The WKB Method
2.4 Energetics

Almost all of what we know about the nature of atmospheric gravity waves is
derived from the linear theory. From a computational consideration, the simplified
equations describing linear systems are solved much more rapidly than nonlinear
ones.1 But perhaps more important is that linear systems are more comprehensible
and understandable than non-linear systems. The recipe for linearization is simple.
Some variable q is expanded into a background state q0 and a perturbation q1.
The background state is usually assumed to be steady or slowly varying. We will
also ignore the effects of the Earth’s rotation and air viscosity. The perturbations
are assumed much smaller than the background values, and it is assumed that the
perturbations do not affect the background state. However, if the perturbations
are small, then the products of the perturbations are also small and therefore
are neglected. The mathematics is simplified if we assume the background state
is steady and horizontally uniform. Thus, we can take the background flow to
be the mean flow, but still varying vertically. The perturbations can be caused
by several mechanisms including turbulence, density currents, thermal plumes,
etc.; however, here we shall only consider perturbations that are due to gravity
waves. Neglecting products of the wave perturbations negates the interactions
of waves. The waves can add and subtract to form, for example, wave packets,
but they cannot interact to form new waves or to destroy existing waves. Each
wave of the packet behaves as if it were the only wave present. The accuracy and
practical limitations of the linear theory were examined by Dörnbrack and Nappo
(1997) by comparing the results of a linear wave model with a nonlinear, time-
dependent, hydrodynamic numerical model (Dörnbrack, 1998). They concluded

1 However, with ever-increasing computer speeds, this advantage is becoming less significant.
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that essentially similar results are obtained from each model for the important
wave parameters and dynamic effects.

The simplicity of the linear theory is not without cost. In the real atmosphere,
waves interact with other waves as well as with turbulence which itself might have
been produced by interactions between waves and the mean flow. Observations
of gravity waves made, for example, by Gossard and Munk (1954); Caughey and
Readings (1975); Bedard, Canavero, and Einaudi (1986); Koch and Golus (1988);
Einaudi, Bedard, and Finnigan (1989); Hauf et al. (1996); and Lee and Barr
(1998) show complex wave structures, with time-varying amplitudes and usually
with several frequencies present. A single-frequency wave, i.e., a monochromatic
wave, with constant amplitude lasting more than several wave periods is essentially
never observed in the lower troposphere. Applying linear analyses to observations
of wave phenomena is often frustrating, as discussed by Hunt, Kaimal, and Gaynor
(1985) and Finnigan (1988). For example, wave amplitudes often change with
time; waves within the nighttime planetary boundary layer are often nonlinear
because of the presence of the ground surface; and it is generally difficult to
distinguish between gravity waves and turbulence (see, for example, Bretherton,
1969; Stewart, 1969). Yet in spite of these difficulties, the linear theory is still useful
and provides a first-order estimate of most wave phenomena. Also, the simplicity
of the linear theory gives an understandable picture of the wave processes and
observations. Relatively few people can think and work in a nonlinear world.

2.1 THE TAYLOR–GOLDSTEIN EQUATION

The Taylor–Goldstein equation is the wave equation for linear gravity waves.
We consider the two-dimensional Eulier equations for irrotational and inviscid
flow. Under the Boussinesq approximation we have

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρ

∂p

∂x
(2.1)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ρ

∂p

∂z
− g (2.2)

∂u

∂x
+ ∂w

∂z
= 0 (2.3)

∂ρ

∂t
+ u

∂ρ

∂x
+ w

∂ρ

∂z
= 0 . (2.4)

Equation (2.1) is the equation for momentum in the x-direction. Equation (2.2)
is the equation for momentum in the z-direction. Equation (2.3) is the mass con-
tinuity equation. From (1.54) we see that (2.4) represents the conservation of
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thermal energy. We linearize the above equations according to

q(x, z, t) = q0(z) + q1(x, z, t) , (2.5)

where q0(z) is a steady, horizontally uniform background value and q1(x, z, t) is a
first-order perturbation. We also assume that the background flow is in hydrostatic
balance, i.e., (1.37). Then (2.1)–(2.4) become

∂u1

∂t
+ u0

∂u1

∂x
+ w1

du0

dz
= − 1

ρ0

∂p1

∂x
(2.6)

∂w1

∂t
+ u0

∂w1

∂x
= − 1

ρ0

∂p1

∂z
− ρ1

ρ0
g (2.7)

∂u1

∂x
+ ∂w1

∂z
= 0 (2.8)

∂ρ1

∂t
+ u0

∂ρ1

∂x
+ w1

dρ0

dz
= 0 , (2.9)

where ρ0 is the background atmospheric density. At this point, we can either double
Fourier transform (2.6)–(2.9) in x and t or we can assume wave-like solutions of
the form

u1(x, z, t) = ũ(z)ei(kx−ωt) (2.10)

ρ1(x, z, t) = ρ̃(z)ei(kx−ωt) (2.11)

p1(x, z, t) = p̃(z)ei(kx−ωt) (2.12)

w1(x, z, t) = w̃(z)ei(kx−ωt) . (2.13)

In either case, (2.6)–(2.9) become

−iωũ + iu0kũ + w̃
du0

dz
= − i

ρ0
kp̃ (2.14)

−iωw̃ + iu0kw̃ = − 1

ρ0

dp̃

dz
− ρ̃

ρ0
g (2.15)

ikũ + dw̃

dz
= 0 (2.16)

−iωρ̃ + iu0kρ̃ + w̃
dρ0

dz
= 0. (2.17)

Note that because p̃1, w̃1, etc. are functions only of z, we can write the deriva-
tives as total rather than partial. We now define the intrinsic frequency, �, as the
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frequency of a wave relative to the flow, i.e., the frequency of a wave measured
by an observer drifting with the fluid at speed u0; therefore,

� = ω − u0k. (2.18)

Note that ω is the wave frequency observed in a fixed coordinate system, for
example, by a microbarograph or a sodar at the ground surface. Chimonas and
Hines (1986) refer to � as the Doppler-shifted intrinsic wave frequency. The wind
speed, u0, in (2.18) is the component of the background wind in the direction of
wave propagation. If we considered both horizontal directions, then

� = ω − u0k − v0l = ω − �vH · �κ, (2.19)

where �vH is the horizontal background wind vector. If we write (2.18) as

ω = � + u0k, (2.20)

then the apparent frequency, ω, of the wave is larger than � if the wave is moving
with the wind and smaller than � if the wave is moving against the wind. From
(2.20) the apparent horizontal phase speed is

cx = �

k
+ u0 = cI + u0 , (2.21)

where cI = �/k is the intrinsic phase speed in the x-direction. In Chapter 4, we
shall see that � plays an essential role in the trapping or ducting of gravity waves.
Using (1.68) and (2.18), (2.14)–(2.17) become

i�ũ − w̃
du0

dz
= i

ρ0
kp̃ (2.22)

i�w̃ = 1

ρ0

dp̃

dz
+ ρ̃

ρ0
g (2.23)

ikũ + dw̃

dz
= 0 (2.24)

i�ρ̃ + w̃
ρ0

g
N2 = 0 . (2.25)

Hines (1960) refers to (2.22)–(2.25) as the polarization equations because they
give the relative phases and amplitudes of various wave quantities. Solving (2.22)–
(2.25) for w̃ gives

d2w̃

dz2
+ 1

ρ0

dρ0

dz

dw̃

dz
+
[
k2N2

�2
+ k

�

d2u0

dz2
+ k

�

1

ρ0

dρ0

dz

du0

dz
− k2

]
w̃ = 0. (2.26)
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The second term in (2.26) represents the effects of changing atmospheric density on
wave amplitude. We can remove this height dependence of the base-state density
by assuming an exponentially decreasing atmospheric density of the form given
by (1.59). Then (2.26) becomes

d2w̃

dz2
− 1

Hs

dw̃

dz
+
[
k2N2

�2
+ k

�

d2u0

dz2
− k

�

1

Hs

du0

dz
− k2

]
w̃ = 0 . (2.27)

We can simplify this equation by defining a new variable, ŵ, by

w̃ = e
∫
(1/2Hs) dz ŵ = ez/2Hs ŵ . (2.28)

Substitution of (2.28) into (2.27) leads to the Taylor–Goldstein equation (Taylor,
1931; Goldstein, 1931)

d2ŵ

dz2
+
[
k2N2

�2
+ k

�

d2u0

dz2
− k2 − k

�

1

Hs

du0

dz
− 1

4H 2
s

]
ŵ = 0 . (2.29)

Note that if (1.60) and (2.28) are used in (2.22), one gets

i�ũe−z/2Hs − du0

dz
ŵ = ik

ρs

p̃ez/2Hs . (2.30)

To have a consistent notation, we must define new variables for ũ and p̃, i.e.,

ũ = ez/2Hs û (2.31)

p̃ = e−z/2Hs p̂ . (2.32)

Likewise, using (1.60) and (2.28) in (2.25) leads to

ρ̃ = e−z/2Hs ρ̂ . (2.33)

We can write (2.29) in a more compact form by representing the derivative by
primes and using (2.20). The Taylor–Goldstein equation then takes the form

d2ŵ

dz2
+
[

N2

(c − u0)2
+ u′′

0

(c − u0)
− 1

Hs

u′
0

(c − u0)
− 1

4H 2
s

− k2
]

ŵ = 0 , (2.34)

where, for simplicity, we have replaced the cx notation by c.2 The first term on
the left in the brackets is called the buoyancy term, the second term is called
the curvature term, and the third term is called the shear term. The fourth term

2 Note that in the future c will be used to mean cx unless otherwise stated.
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does not have a special name and is usually taken to be small below the tropopause.
The last term in the brackets can be called the nonhydrostatic term. If the vertical
perturbations are in hydrostatic balance, i.e.,

∂p1

∂z
= −ρ1g , (2.35)

then this term will not appear in (2.34).
Analytic series solutions of (2.34) are possible, and in some cases solutions in

terms of special functions (for example, Bessel functions) are known; however,
solutions in terms of plane waves require the bracketed term in (2.34) to be constant.
These plane wave solutions will have the form

w1(x, z, t) = ŵ(z) ez/2Hs ei(kx−ωt) . (2.36)

However, using (1.59), an alternate form is

w1(x, z, t) = ŵ(z)

(
ρs

ρ0(z)

)1/2

ei(kx−ωt) . (2.37)

From (2.37) we see that if the wave propagates upward, then the background
air density seen by the wave, ρ0, decreases. But from (2.37), this means that
the wave amplitude, w1, increases with height. It will be shown in Chapter 3 that
associated with a vertically propagating gravity wave is a vertical flux of horizontal
momentum or wave stress given by

τ(z) = − ρ0u1w1 , (2.38)

where the overline indicates a horizontal average which is usually over a wave-
length if the wave is nearly monochromatic. It will be shown in Chapter 5 that in the
absence of wave dissipation this momentum flux is constant. But if ρ0 decreases
with height, then the momentum being transported upward will also decrease. The
only way the momentum can be constant is for u1w1 to increase in such a way as
to balance the decrease in density. The factor (ρs/ρ0)

1/2 accounts for this increase.
An analogous effect causes the “crack” of a bullwhip. The thickness of a bullwhip
decreases from about 4 cm at the handle to about 0.1 cm at the end. The decrease
in linear density causes the amplitude of the wave initiated near the handle to grow
as the wave moves down the whip. By the time the impulse reaches the end of
the whip, the perturbation velocity of the whip end exceeds the speed of sound,
causing the loud crack sound.
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2.2 A SIMPLE SOLUTION

We begin our examination of the solutions of the Taylor–Goldstein equa-
tion (2.34) with the simple case of constant background stratification, N , and
wavelength much less than Hs .

2.2.1 NO BACKGROUND WIND SPEED

In the case of no background wind speed, (2.34) becomes

d2ŵ

dz2
+
[
k2N2

ω2
− k2

]
ŵ = 0 . (2.39)

The general solution is

ŵ(z) = Aeimz + Be−imz , (2.40)

where the vertical wavenumber m is given by

m2 = k2
[
N2

ω2
− 1

]
. (2.41)

Solving (2.41) for ω gives the dispersion relation

ω = ± kN

(k2 + m2)1/2
. (2.42)

The dispersion relation is perhaps the most important element in the linear wave
theory because it relates the angular frequency of the wave to the wave structure
and the physical characteristics of the atmosphere. The dispersion relation fixes
all the variables of the wave field, i.e., k, m, and ω. We cannot arbitrarily assign
values to these variables. Each set of values is unique for a given atmospheric
condition, i.e., they are eigenvalues (see, for example, Bender and Orzag, 1999).
Consider the negative branch of (2.42), then

ω = ck = − kN

(k2 + m2)1/2
, (2.43)

which tells us that the horizontal phase velocity, c, is negative, and thus, the wave
must be traveling in the negative x-direction. But if the wave is traveling in the
negative x-direction, then k < 0 so that ω > 0. Thus, if we keep to this convention,
then ω > 0 for all conditions.
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The general solution of (2.39) in physical space is

w1(x, z, t) = A ez/2Hs ei(kx+mz−ωt) + B ez/2Hs ei(kx−mz−ωt) . (2.44)

The A solution represents the positive branch of (2.41), and the B solution repre-
sents the negative branch. Following the discussions in Chapter 1, Section 1.2, we
see that for the A solution the phase speed in the z-direction is

cz = ω

m
. (2.45)

The slope of lines of constant phase (1.8) in the x-z plane is

dz

dx
= − k

m
. (2.46)

For the B solution, these quantities are

cz = − ω

m
(2.47)

and

dz

dx
= k

m
. (2.48)

The wave vectors and wave fronts for these cases are illustrated in Fig. 2.1. From
the dispersion relation (2.42), we see that

ω = kN

(k2 + m2)1/2
= N cos β, (2.49)

where β is the angle the wave vector makes with the horizontal, as illustrated in
Fig. 2.1. Several important aspects of wave propagation are implied by this simple
result. For example, if N changes with height, then waves of constant frequency
propagate along curved paths.3 The wave frequency cannot be greater than N .
When ω = N , then β = 0, the wave propagates horizontally, and fluid particles
oscillate vertically. When ω/N is very small, corresponding to strong stratification
or low-frequency waves, β approaches π/2, the wave propagates almost vertically,
and the fluid particles oscillate almost horizontally. We see that the spectrum of
gravity wave frequencies is constrained between these two limits.

It is of interest to consider for a moment this upper limit of wave frequency.
What physical process limits ω to values less than N? As angle β approaches zero,
the wave fronts become increasingly vertical, and the fluid particles oscillate in

3 Strictly speaking, the general solution (2.40) holds only when N and u0 are constant, but we can
use these results to approximate the behavior of smoothly varying N .
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FIGURE 2.1 Wave vectors and wave fronts for an upward-propagating wave (a) and a
downward-propagating wave (b).

increasingly vertically oriented planes. In Chapter 1, we saw that the frequency
of oscillation of a vertically displaced parcel in a stably stratified fluid is N . This
is the resonant frequency of the fluid, and even though one could imagine some
process that would force a vertical vibration at a frequency greater than N , this
vibration would not be supported by the fluid buoyancy, and the amplitude of
the oscillation would decay rapidly with distance from the forcing point. Thus,
the maximum frequency for gravity waves is N ; however, a wide spectrum of
wave frequencies exists below this value. It is sometimes erroneously assumed
that gravity waves have frequency equal only to N . Clearly, this is not correct.

Let us now consider the group velocities for this case. Using (1.24) and (1.26),
we have

ug = Nm2

(k2 + m2)3/2
(2.50)

and

wg = − Nmk

(k2 + m2)3/2
. (2.51)

An interesting and paradoxical result is that the vertical phase velocity, cz, and the
vertical group velocity, wg , are always of opposite signs. To see this more clearly,
use (2.45) and (2.49) in (2.51) to get

wg = −cz sin2 β . (2.52)

Because sin2 β is always positive, cz and wg must be of opposite signs. Recall
that the group velocity represents the speed of wave energy propagation, and so
from (2.52) we see that if the wave fronts are propagating upward, then the wave
energy must be propagating downward. Hines (1989a) describes a film made with
Dave Fultz of the University of Chicago in 1967.
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This film exhibited a laboratory tank simulation in which water having a height-varying
salinity modeled the atmosphere’s height-varying density. A rocking paddle at the top of the
tank acted as the source of waves and so produced a downward energy flow. It was seen to
be producing ripples of phase that progressed downward—in complete accord with normal
experience but in complete contradiction of my accompanying patter on gravity waves! Or
so it seemed, until a burnt-out match appeared on the screen, collected smoke from thin
air, burst spontaneously into flame, and then was struck back into its pristine, virginal state.
This entropy experiment was then repeated, but with time now progressing and the phase
ripples ascending toward the source, as advertised.

In Chapter 5, we shall discuss the transports of energy by waves, and it is in
this context that the cz − wg paradox is resolved.

Consider now a downward-propagating wave, but with upward-propagating
wave energy. Then

�k = kx̂ − mẑ , (2.53)

and

�vg = Nm

(k2 + m2)1/2
(mx̂ + kẑ) . (2.54)

Then

�vg · �k = Nm

(k2 + m2)1/2
(km − mk) = 0 , (2.55)

and we see that the flux of wave energy is perpendicular to the wave vector and
parallel to the wave fronts, as illustrated in Fig. 2.2. From the continuity equation
(2.16), and using the B solution of (2.42), we have

u1 = m

k
w1 , (2.56)

FIGURE 2.2 Relationship between phase velocity and group velocity for an internally
propagating gravity wave. The flux of wave energy is in the direction of the group velocity vector.
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FIGURE 2.3 The motions of fluid particles are parallel to the wave fronts and perpendicular to
the wave vector.

or, equivalently,

dx

dz
= m

k
. (2.57)

Thus, fluid particles oscillate in planes parallel to the wave fronts and perpendicular
to the wave vector, as illustrated in Fig. 2.3.

It is of interest to consider the monochromatic gravity wave. Such a wave is
described by single horizontal and vertical wavenumbers, k and m, respectively.
For the case of constant flow and stratification, the solution to the Taylor–Goldstein
equation (2.39) has the form of (2.44). The dispersion relation can be used to fix
ω and, consequently, the phase speeds. But does a monochromatic wave have a
group velocity? From the definitions of group velocity, (1.24) and (1.26), it is
clear that a monochromatic wave cannot have a group velocity because k, m, and
ω are constants. However, one must wonder about the reality of a monochromatic
wave. A monochromatic wave will extend indefinitely in space and time. This
is the property of the Fourier transform or the wave-like solutions (2.10)–(2.13).
The energy associated with such a wave will also be spread throughout space and
time, and so the energy flux, which is proportional to the group velocity, will be
zero. However, all “real” waves have a beginning and an ending. Real waves can
neither extend nor persist indefinitely. To be generated, gravity waves require a
disturbance to the stratification, and it is extremely unlikely that only a single wave
will be excited. Indeed, a spectrum of waves will always be excited. The fact that
waves have a beginning tells us that a spectrum of waves is required a priori so
that at some point and at some time these waves can interact to cancel each other,
thus making an ending. To be accurate, we should say “nearly monochromatic”
rather than monochromatic.

From (2.41) we see that the vertical wavenumbers for the general solution to
(2.39) are

m = ± k

[
N2

ω2
− 1

]1/2

. (2.58)



36 The Linear Theory

FIGURE 2.4 Evanescent wave generated at height zL.

If ω < N , then m is real, and the wave is said to be propagating or internal. If
ω > N , then m is imaginary, and the wave is said to be evanescent or external.4

Consider the evanescent case ω > N . Then we can write

m = ± ik

[
1 − N2

ω2

]1/2

= ± iq . (2.59)

The general solution is then

w1 = A e−q(z−zL) ei(kx−ωt) for z > zL (2.60)

= B eq(z−zL) ei(kx−ωt) for z < zL, (2.61)

where zL is the height where the evanescent wave is created. Since we require the
solutions to be bounded, we use solution A or B, depending on the sign of z − zL.
The waves then look like those illustrated in Fig. 2.4. Wave amplitude decreases
exponentially with distance from the level of wave generation. Evanescent waves
propagate only horizontally. It is possible for a wave to switch from propagating to
evanescent if the stratification is changing with height. At the point where the wave
switches, wave reflection occurs. Wave reflection will be discussed in Chapter 4.

4 Gossard and Hooke (1975) in a section titled “Names and nonsense” express some well-established
opinions about the use and misuse of nomenclature that has grown with the development of gravity
wave theory. Accordingly, we shall refrain from using the terms “external” and “internal” in describing
gravity waves and instead shall use “propagating” and “evanescent,” which are more descriptive of
the wave characteristics.
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2.2.2 CONSTANT BACKGROUND WIND SPEED

We next consider the effect of a constant background wind on wave propagation.
We are reminded that the wind speed, u0, is the component of the background wind
velocity in the direction of wave propagation. The Taylor–Goldstein equation
is now

d2ŵ

dz2
+
[
k2N2

�2
− k2

]
ŵ = 0 . (2.62)

The phase angle (1.7) is now given by

φ = kx + mz − �t. (2.63)

The vertical wavenumber is

m = ±
[

k2N2

(ω − u0k)2
− k2

]1/2

, (2.64)

where we have used (2.18). Because of the background wind speed, we cannot
a priori assign a branch to (2.64), since this would eventually determine the sign
of the vertical group velocity. Indeed, we must not let the mathematics of the
problem determine the physics of the problem. Rather, we must select the physics,
and let the mathematics follow. Solving (2.64) for ω gives

ω = u0k ±
[

N2k2

m2 + k2

]1/2

. (2.65)

The phase velocities are obtained by using (2.65) in (1.18) and (1.19). This gives

c = u0 + N

k
cos β , (2.66)

cz = u0
k

m
+ N

m
cos β . (2.67)

Using (2.65) in (1.24) and (1.26) gives the group velocity components as

ug = u0 + m2

N2
(c − u0)

3 , (2.68)

wg = −km

N2
(c − u0)

3 . (2.69)

To illustrate how the appropriate wavenumbers are selected, consider the case
where ug and wg are both positive and c > u0. Then, since k is positive, we see
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FIGURE 2.5 Wave vectors and group velocity vectors for (a) upward-propagating energy and
wave speed less than background wind speed; (b) upward-propagating energy and wave speed greater
than background wind speed; (c) same as (a) but with downward-propagating energy; and (d) same as
(b) but with downward-propagating energy.

from (2.69) that m < 0. If c < u0, then we must choose m > 0 if wg is positive.
Consider now the case where ug > 0 and wg < 0, i.e., downward-propagating
energy. Now we must take m > 0 when c > 0 and m < 0 when c < 0. These
cases are illustrated in Fig. 2.5.

The background wind also affects the polarization equations. For example,
consider (2.22) which relates the horizontal wind perturbation, ũ1, to the pressure
perturbation, p̃1. For constant background wind, the equation is

ũ1 = p̃1

ρ0(c − u0)
. (2.70)

Thus, if c > u0, the pressure and wind speed perturbations are in phase, but if
c < u0, then the perturbations are 180◦ out of phase.
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2.3 THE WKB METHOD

We have seen that the Taylor–Goldstein equation (2.34) has plane wave solu-
tions only when the atmospheric variables are constant. However, one may ask if
an approximate solution is possible when u0 and N are slowly varying? Consider
the equation

d2ψ

dz2
+ Q2(z)ψ = 0 . (2.71)

The WKB method (see, for example, Pitteway and Hines, 1965; Einaudi and Hines,
1970; Laprise, 1993; Bender and Orzag, 1999) provides an approximate solution
to (2.71) when Q(z) is slowly changing. The WKB solution to (2.71) is

ψ(z) = ψ0 Q−1/2 e±i
∫ z

0 Q dz , (2.72)

where ψ0 is a constant. Equation (2.72) satisfies the equation

d2ψ

dz2
+ Q2(z)(1 + d)ψ = 0 , (2.73)

where

d = 1

2Q3

d2Q

dz2
− 3

4Q4

(
dQ

dz

)2

. (2.74)

If d � 1, then (2.73) approaches (2.71), i.e., the Taylor–Goldstein equation.
Obviously, Q cannot equal zero since then d → ∞. We shall see in Chapter 6 that
when Q = 0 wave reflection occurs, and thus, the WKB solution does not allow
wave reflection. If, however, Q becomes large and dQ/dz becomes small, then d

becomes small. If Q is a vertical wavenumber, then large Q implies small vertical
wavelength, and if dQ/dz is small, then the vertical scale of the background
variables is small. Thus, if the WKB method is to apply, then the wave must
appear to be propagating in a medium which is changing slowly relative to the
vertical wavelength of the wave.

The WKB method is commonly used in wave studies on almost all atmospheric
scales except the boundary layer and the lower troposphere where background
wind speed and stratification can change significantly over a vertical wavelength.
In many applications, the WKB approximation is combined with the assumption
that the wave perturbations are in hydrostatic equilibrium. When this assumption
is made, the Taylor–Goldstein equation takes the form

d2ŵ

dz2
+ N2

(c − u0)2
ŵ = 0. (2.75)
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2.4 ENERGETICS

A characteristic of all waves is the ability to transport energy. Indeed, if not
for this property the study of wave phenomena would be little more than a math-
ematical curiosity. However, on all atmospheric scales of motion waves exist and
transport energy. In this section, we introduce the concepts of wave kinetic and
potential energy. The subject of energy transport by waves will be taken up in
Chapter 5. We consider here the two-dimensional case with constant wind and
stratification.

We begin by multiplying (2.6) by u1 and (2.7) by w1 and adding the two
equations to get

D

Dt

[
1

2
ρ0
(
u2

1 + w2
1

)]+u1
∂p1

∂x
+w1

∂p1

∂z
+ρ1gw1 = −ρ0u1w1

du0

dz
, (2.76)

where the total derivative is

D

Dt
= ∂

∂t
+ u0

∂

∂x
. (2.77)

We can write

u1
∂p1

∂x
+ w1

∂p1

∂z
= ∂

∂x
(u1p1) + ∂

∂z
(w1p1) − p1

(
∂u1

∂x
+ ∂w1

∂z

)
, (2.78)

and using this and the continuity equation (2.8) in (2.76) gives, after some
rearrangement of terms, the equation for the total perturbation energy per unit
volume:

D

Dt

[
1

2
ρ0
(
u2

1 + w2
1

)]+ ρ1gw1 = − ∂

∂x
(u1p1) − ∂

∂z
(w1p1) − ρ0u1w1

du0

dz
.

(2.79)

If we define ζ1 as the vertical displacement of an air parcel from its equilibrium
position, then w1 = Dζ1/Dt , and from (2.9) the perturbation density, ρ1, is

ρ1 = −dρ0

dz
ζ1 . (2.80)

Note that because dρ0/dz < 0, an upward displacement of the air results in a
positive density perturbation, etc. Using (1.68) and (2.80) in (2.9) results in

ρ1gw1 = D

Dt

(
1

2
ρ0N

2ζ 2
1

)
, (2.81)
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where we have assumed that ρ0 and N are constants. Then (2.79) becomes

D

Dt

[
1

2
ρ0
(
u2

1 + w2
1

)+ 1

2
ρ0N

2ζ 2
1

]
= − ∂

∂x
(u1p1) − ∂

∂z
(w1p1) − ρ0u1w1

du0

dz
.

(2.82)

The first term in brackets on the left-hand side of (2.82) is the total rate of change
of the perturbation kinetic energy, and the second term is the total rate of change
of perturbation potential energy. To verify this latter statement, consider the
gravitational potential energy (PE) gained by a fluid parcel when it is displaced
vertically a distance ζ1 by the wave, i.e.,

PE = −
∫ ζ1

0
Fb dz , (2.83)

where Fb is the buoyant force per unit volume exerted on the air parcel. From
(1.39) and using (1.68), the buoyant force per unit volume is

Fb = g
dρ0

dz
z . (2.84)

Using (2.84) in (2.83) and integrating gives the desired result, i.e.,

PE = −1

2
g

dρ0

dz
ζ 2

1 = 1

2
ρ0N

2ζ 2
1 . (2.85)

The equation for the total perturbation energy per unit volume is

DE

Dt
+ ∂

∂x
(u1p1) + ∂

∂z
(w1p1) = −ρ0u1w1

du0

dz
, (2.86)

where

E = 1

2
ρ0
(
u2

1 + w2
1 + N2ζ 2

1

)
. (2.87)

The second and third terms on the left-hand side of (2.86) represent the divergences
of the fluxes of wave energy in the horizontal and vertical directions, respectively.
The right-hand side represents another flux term which we shall see involves the
wave stress and the background wind shear.

An examination of the units of the terms u1p1 and w1p1 in (2.86) shows that
these represent fluxes of wave energy in the x- and z-directions, respectively. To
see this, consider Fig. 2.6 which illustrates the horizontal displacement δx of a
surface of unit area A by the wave perturbation velocity u1 against a force f1 due
to the pressure perturbation. Then

u1p1 ≈ f1δx

Aδt
= δW

Aδt
, (2.88)
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FIGURE 2.6 Horizontal displacement δx of a unit surface area by the horizontal wave
perturbation velocity u1.

where δW is the differential work done by the wave, and u1p1 is the work done
per unit area per unit time, but this is the horizontal flux of wave energy in the
x-direction. The same analysis applies to the vertical term, w1p1.

In the absence of a background wind, (2.86) becomes

∂E

∂t
+ ∂

∂x
(u1p1) + ∂

∂z
(w1p1) = 0 , (2.89)

and we see that the wave energy per unit volume is a conserved quantity, i.e., the
total rate of change of E is equal to the local divergence of the energy flux.

Because the wave energy is periodic in space and time, it is more useful to
discuss spatially averaged values rather than local values. Because we are con-
sidering linear waves, an average over a large distance is essentially the same as
an average over a single wavelength. Then, considering for the moment all three
spatial dimensions, we can write

E = 1

2
ρ0

(
u2

1 + v2
1 + w2

1

)
+ 1

2
ρ0N

2ζ 2
1 , (2.90)

where the overbars indicate time averaging. Now let us assume that there is a
gravity wave with amplitude a1, i.e.,

w1 = a1 cos(φ) , (2.91)
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where φ = kx + ly + mz − ωt . The polarization equations for u1 and v1, are

u1 = − k

k2 + l2
ma1 cos φ (2.92)

v1 = − l

k2 + l2
ma1 cos φ, (2.93)

where l is the wavenumber in the y-direction. Averaging the wave kinetic energy
(KE) over 2π radians and using (2.91)–(2.93) gives

KE= 1

2
ρ0

(
u2

1+v2
1 +w2

1

)
= 1

4
ρ0

(
k2+l2+m2

k2+l2

)
a2

1 = 1

4
ρ0

a2
1

cos2 β
, (2.94)

where β is the angle the wave vector κ makes with the x–y plane, as illustrated in
Fig. 2.7. The vertical displacement, ζ1, appearing in the expression for the potential
energy in (2.85) is related to w1 by

ζ1 =
∫

w1 dt = a1

ω
sin φ . (2.95)

Then using (2.95) in (2.85) and averaging over 2π and using (2.49) gives

PE = 1

4
ρ0

a2
1

cos2 β
. (2.96)

We see that the average kinetic and potential energies are equal, but this should not
come as a surprise. As with all simple harmonic motions, for example, a pendulum

FIGURE 2.7 Projection of the three-dimensional wave vector onto the horizontal plane.
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or a weighted spring, the kinetic and potential energies are equal but of opposite
phases. When KE is at its maximum value, PE is at its minimum value, etc.
When we calculate the average energies over a cycle, the results must be equal.
Adding KE and PE gives the mean perturbation energy per unit volume as

E = 1

2
ρ0

a2
1

cos2 β
. (2.97)

The flux of wave energy across the surface bounding a volume of fluid is
obtained by averaging the flux terms in (2.86) over a wavelength to get the energy
flux density vector

�F = p1 �V1 = 1

2
�(p1 �V ∗

1

)
, (2.98)

where �V1 = u1x̂ + v1ẑ. Solving for p1 using polarization equations (2.22) and
(2.23) and using (2.91) and (2.92), the energy flux density vector is

�F = 1

2

ρ0ωm2a2
1

k3
x̂ − 1

2

ρ0ωma2
1

k2
ẑ . (2.99)

For the two-dimensional wave, k = κ cos β. Using this and (2.49) in (2.99) gives

�F = 1

2
ρ0

a2
1

cos2 β

[
Nm2

(k2 + m2)3/2
x̂ − Nkm

(k2 + m2)3/2
ẑ

]
. (2.100)

Using (2.50), (2.51), and (2.97) in (2.100) gives

�F = E(ugx̂ + wgẑ) = E�vg . (2.101)

Equation (2.101) is an important result; it tells us that the flux of wave energy is
in the direction of the group velocity. Using (2.101), we can write (2.89) as

∂E

∂t
+ ∇ · E �vg = 0 . (2.102)

In the absence of a background wind and assuming that uniform thermal
stratification k and m will be constants, we can write (2.102) as

∂E

∂t
+ �vg · ∇E = 0 . (2.103)

Thus, we see that wave perturbation energy is constant in the special case of calm
winds and constant Brunt–Väisälä frequency.
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In the general case, when the background flow is neither calm nor uniform, the
equation for the mean wave energy is, after time averaging (2.86),

DE

Dt
+ ∂

∂x
(u1p1) + ∂

∂z
(w1p1) = −ρ0u1w1

du0

d
. (2.104)

The term on the right-hand side of (2.104) is of interest. In the turbulence theory,
the term −ρ0u′w′du0/dz, where u′ and w′ are turbulence quantities, represents the
production of turbulence kinetic energy. This production is due to the work done
by the Reynolds stress (−ρ0u′w′) against the mean rate of strain (du0/dz). It is
always positive. However, such an interpretation of the right-hand side of (2.104)
is not apparent. Indeed, if the wave stress −ρ0u1w1 and the mean-wind shear
(du0/dz) are of the same sign, then it would appear that the wave energy will
increase; however, it is not clear where this increased energy originates. Since
we have assumed a priori that the background flow is steady, the energy cannot
originate there. If the wave stress and wind shear have opposite signs, then it would
appear that the wave energy will decrease. But then where does this energy go?
The problem is that our analysis of wave energy is only to first order. If we went
to second order, then terms such as u1(∂/∂z)(u0u1), w1(∂/∂z)(u0u1), etc. would
appear, and these would more clearly define the energy transfer process.
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3
Terrain-Generated

Gravity Waves

3.1 Introduction
3.2 Uniform Flow Over a Surface Corrugation

3.2.1 Phase Speed and Group Velocity Over a
Surface Corrugation

3.2.2 Energy Flux Over a Surface Corrugation
3.3 The Two-Dimensional Ridge
3.4 The Three-Dimensional Mountain
3.5 Gravity Wave Drag

3.5.1 Mathematical Derivation
3.5.2 The Variation of Wave Stress with Height
3.5.3 Wave Stress Over a Surface Corrugation
3.5.4 Wave Stress Over an Isolated Ridge
3.5.5 Secondary Effects of Terrain-Induced Wave Drag

3.6 Convectively Generated Gravity Waves

3.1 INTRODUCTION

The linearized equations of motion predict that the vertical displacement of
a stably stratified flow almost always leads to the generation of gravity waves.
This is especially true when the flow is over terrain obstacles such as ridges,
hills, and mountains; however, terrain depressions such as canyons, basins, and
valleys can also generate gravity waves. Terrain-generated gravity waves have
been studied and modeled more than any other kind of gravity wave. Several
reasons account for this interest. Large terrain features such as mountain ranges
create waves that transport energy and mean-flow horizontal momentum away
from the lower atmosphere toward the middle and upper atmosphere where the
energy and momentum are deposited. It is now recognized that this deposition of
energy and momentum is an essential component of the global circulation. Almost
all terrain features generate waves, and the spectrum of these waves is as wide as the

47



48 Terrain-Generated Gravity Waves

FIGURE 3.1 Waves and turbulence over the Continental Divide in Colorado on February 17,
1970: potential temperature (solid lines, K) and westerly wind component (dashed lines, m s−1).
∧ indicates light turbulence, and

∧∧ indicates severe turbulence. (From “Observations of mountain-
induced turbulence,” D.R. Lily, J. Geophys. Res. 76: 6587, 1971.)

spectrum of terrain widths. The amplitudes of terrain-generated gravity waves are
proportional to the amplitudes of the wave-generating terrain. This is a significant
point because the amplitudes of “ordinary” gravity waves are arbitrary constants.
Terrain-generated waves are stationary relative to the ground surface, and they do
not experience dispersion. All the waves have the same phase velocity, which is
zero. Thus, standing waves, resulting from the superposition of many waves of
relatively small amplitudes, can develop above the terrain obstacle, as shown in
Fig. 3.1. Under certain conditions, the amplitudes of terrain-generated waves can
grow as they move upward and eventually break much like waves at the beach.
These breakdowns result in outbreaks of turbulence, more commonly known as
clear air turbulence, as shown in Fig. 3.1.

To a stationary observer, terrain-generated gravity waves are fixed in space, i.e.,
they appear to be attached to the terrain feature generating the wave. However,
this is the picture in the Eulerian reference frame. Relative to the background
flow, the wave must be propagating upwind at the same speed as the wind,
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FIGURE 3.2 The intrinsic phase speed, cI , of a terrain-generated wave is equal to the
background wind speed, u0, but in the opposite direction. To a stationary observer, the wave is
stationary.

FIGURE 3.3 Gravity waves are generated only by the component of the background wind, u0,
directed perpendicular to the ridge line.

i.e., cI = −u0, where cI is the intrinsic phase speed. These velocities are illus-
trated in Fig. 3.2. Note that u0 is now the component of the background wind
directed over the surface obstacle. If the flow is over a two-dimensional object,
for example, a ridge or a series of parallel ridges, then u0 is the component of
the background wind perpendicular to the ridge line, as illustrated in Fig. 3.3. If
the background wind is parallel to the ridge line, then u0 = 0 and waves will not
be generated. In this chapter, we shall always take u0 to the component of the
background wind directed perpendicular to the obstacle.

Because the wave is stationary relative to the ground surface, ω = 0, and �

is then

� = ω − ku0 = −ku0 . (3.1)

The intrinsic phase speed is �/k, so

cI = �

k
= −ku0

k
= −u0 . (3.2)

Because the wave vector is in the direction of wave propagation, the sign of the
horizontal wavenumber must be given by

k = −|k|sgn (u0), (3.3)
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FIGURE 3.4 Illustrated are lee waves downwind of the Continental Divide determined by
constant volume balloon flights on January 19, 1967. Sometimes the crests of the waves are marked
by standing clouds. (Modified from “The dynamic structure of Lee wave flow as obtained from
balloon and air plane observations,” I. Vergeiner and D.K. Lilly, Mon. Weather Rev. 98: 220–238,
1970.)

where sgn(u0) is the sign of u0. If the wave appears stationary, then it must
be propagating against the wind and at the same speed of the wind. If the wind
speed changes with height, then the wave speed must also change. This opens the
question of what happens to the wave if u0 → 0? As we shall see in Chapter 5,
the wave is essentially absorbed into the mean flow.

Two types of terrain-generated gravity waves exist: lee waves and mountain
waves. The lee wave, as its name implies, extends downwind from the generating
obstacle. The wave is trapped between the ground surface and an upper level where
wave reflection occurs and is characterized by a single horizontal wavenumber.
Lee waves propagate only horizontally and can extend many wavelengths down-
wind from the obstacle that generates it, as illustrated in Fig. 3.4. Lee waves are,
at times, marked by somewhat evenly spaced bands of clouds extending down-
wind from mountains and ridges. Because lee waves are trapped in a layer in
contact with the ground surface, their influence on the atmosphere above this layer
is negligible. We will not treat lee waves in this book. Comprehensive discus-
sions can be found, for example, in Scorer (1949), Turner (1973), Beer (1974),
Gossard and Hooke (1975), Scorer (1978), Smith (1979), Gill (1982), and Baines
(1995).
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3.2 UNIFORM FLOW OVER A SURFACE
CORRUGATION

The simplest mountain wave problem is the case of uniform two-dimensional
flow with constant Brunt–Väisälä frequency over a surface corrugation. We have
seen that the mountain waves move against the background flow. Because the
waves are generated at the ground, the waves must carry energy upward. Thus, the
horizontal group velocity must be negative and the vertical group velocity must
be positive. The phase fronts are parallel to the group velocity vector, and so they
must tilt upstream, as illustrated in Fig. 3.5. Because the vertical group velocity
must be positive and k must be negative (because u0 > 0), we see from (2.69)
that the vertical wavenumber, m, must be negative, i.e., the wave fronts must be
moving downward. Let the surface height be given by

h(x) = H eiks x , (3.4)

where H is the amplitude of corrugation, and

ks = 2π

λs

, (3.5)

where λs is the wavelength of the corrugation. For constant background wind and
stratification, the Taylor–Goldstein equation (2.29) along with (3.1) takes the form

d2ŵ

dz2
+
[

N2

u2
0

− k2

]
ŵ = 0 , (3.6)

and we define the Fourier transform as

ŵ(k, z) =
∫ +∞

−∞
w1(x, z) e−ikx dx . (3.7)

FIGURE 3.5 Wave fronts, wave vector (κ), and group velocity vector (Vg) over a surface
corrugation. The transport of wave energy determines the tilt of the wave fronts.
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FIGURE 3.6 The flow component normal to a streamline must be zero. This condition provides
the boundary condition at the ground surface.

When N2/u2
0 > k2, the desired solution of (3.6) is

ŵ(k, z) = A e−imz , (3.8)

with

m2 = N2

u2
0

− k2 . (3.9)

We must now select the proper boundary conditions. At the upper boundary we use
the so-called radiation condition, i.e., only upward-propagating wave energy is
allowed. Thus, above the upper boundary wave reflections do not occur. Because
we have assumed upward-propagating wave energy and chosen m accordingly,
(3.8) satisfies the radiation condition. To evaluate A we use the bottom boundary
condition. Because the background flow is frictionless and irrotational, the ground
surface is a streamline, and the component of the flow normal to a streamline must
be zero, i.e.,

�V · �n = 0 , (3.10)

where �V is the flow velocity and �n is the unit normal to the streamline. Figure 3.6
illustrates these vectors. The equation for the surface streamline is

φ = z − h(x) . (3.11)

In the linear theory, it is assumed that h(x) is a first-order perturbation, i.e., is
small. If this is not the case, then h(x) would have to be written as h(x, z), and
the lower boundary condition would be nonlinear.1 The unit vector normal to the
streamline is

�n = ∇φ

|∇φ| = −(dh/dx)x̂ + ẑ

|∇φ| . (3.12)

1 Smith (1977) discusses the effects of nonlinear boundary conditions on the wave structure. One
effect of the nonlinearity is enhanced steeping of gravity waves with height, which can lead to wave
breakdown.
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Using (3.12) in (3.10) gives

�V · �n = [(u0 + u1)x̂ + w1ẑ] ·
(

−dh

dx
x̂ + ẑ

)
= 0 . (3.13)

Solving for w1 gives the linear boundary condition as

w1(x, 0) = u0
dh

dx
. (3.14)

Note that since both u1 and dh/dx are first-order terms, their products are dropped
in (3.14). In order to use the bottom boundary condition, (3.14) must be Fourier
transformed. We select the Fourier transform pair as

h(x) = 1

2π

∫ +∞

−∞
ĥ(k) eikx dk (3.15)

ĥ(k) =
∫ +∞

−∞
h(x) e−ikx dx . (3.16)

Using (3.4) in (3.14) and taking the Fourier transform gives

ŵ(k, 0) = iu0k

∫ +∞

−∞
He−i(k−ks)x dx (3.17)

for the bottom boundary condition. We now introduce the Dirac delta function
(see, for example, Bender and Orzag, 1999) defined as

δ(x) = 1

2π

∫ +∞

−∞
e−ixy dy , (3.18)

with the property that ∫ +∞

−∞
δ(x) dx = 1 . (3.19)

The delta function is sometimes called the sifting function because of its ability to
select a particular value from a continuous distribution of values, i.e.,

f (y) =
∫ +∞

−∞
f (x)δ(x − y) dx . (3.20)

Recognizing the delta function in (3.17), the value of A in (3.8) becomes

A = ŵ(k, 0) = i2πu0kHδ(k − ks) , (3.21)
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so that

ŵ(k, z) = i2πu0kH e−imzδ(k − ks) . (3.22)

To get the solution in physical space, we must take the inverse Fourier trans-
form, i.e.,

w1(x, z) = iu0H

∫ +∞

−∞
ke−imz eikx δ(k − ks) dk . (3.23)

The integration of (3.23) is straightforward. Using (3.20) and (3.3) and selecting
u0 > 0 gives

w1(x, z) = −iu0Hks e−i(ksx+msz) , (3.24)

where the vertical wavenumber is

ms =
(

N2

u2
0

− k2
s

)1/2

. (3.25)

The sifting property of the delta function selects only that wavenumber that is in
resonance with the forcing wavenumber at the ground surface, ks ; all other waves
have zero amplitude. Using (3.24) in polarization equations (2.22), (2.24), and
(2.25) plus (1.67) gives

p1(x, z) = iρ0u
2
0Hms e−i(ksx+msz) (3.26)

u1(x, z) = iu0Hms e−i(ksx+msz) (3.27)

θ1(x, z) = H
dθ0

dz
e−i(ksx+msz) . (3.28)

The real parts of (3.24) and (3.26)–(3.28) are

w1(x, z) = −u0Hks sin(ksx + msz) (3.29)

p1(x, z) = ρ0u
2
0Hms sin(ksx + msz) (3.30)

u1(x, z) = u0Hms sin(ksx + msz) (3.31)

θ1(x, z) = H
dθ0

dz
cos(ksx + msz) . (3.32)

Figure 3.7 illustrates the variations of wave perturbation pressure, wind speeds,
and potential temperature along the surface corrugation for positive background
wind. Along the windward side of the hill, the horizontal wind speed is reduced and
the pressure is increased. On the lee side of the hill, the reverse is true. The pressure



Uniform Flow over a Surface Corrugation 55

u0 − u1

p1 < 0

w1 = 0
u1 = 0

p1 > 0 u0 + u1

w1

w1

u1 u1

u0

FIGURE 3.7 Variations of wave perturbation quantities along a surface corrugation.

difference across the hill causes an acceleration of the downslope flow. As we shall
see in Chapter 4, mountain waves can sometimes produce extreme downslope
winds such as those recorded near Boulder, CO [see, for example, Lilly (1978),
Peltier and Calrk (1979), Durran (1986)].

The perturbation continuity equation (2.8) allows us to define a first-order
vertical streamline displacement, ζ1(x, z), of the flow streamlines, i.e.,

w1(x, z) = u0
∂ζ1(x, z)

∂x
. (3.33)

Comparing (3.33) with (3.14), we see that ζ1(x, 0) represents the surface topog-
raphy. Figure 3.8 shows the streamline displacements over two cycles of a surface
corrugation for the case where H = 50 m, λs = 2000 m, u0 = 4 m s−1, and
N = 0.023 s−1. For these values, the vertical wavelength is λz = 1320 m. We
see in Fig. 3.8 that the horizontal phase of the terrain shape is repeated at z = λz,
as indicated by the thick line at that height. The inverse of the terrain shape, i.e.,
where the wave is 180◦ out of phase with the surface terrain, is seen at z = λz/2.
The up wind tilt of the wave fronts is clearly seen in Fig. 3.8.

When

N

u0
< ks , (3.34)

the waves are evanescent and the solution is

w1(x, z) = −u0Hks e−qz sin(ksx) , (3.35)

where q is given by (2.59). Figure 3.9 illustrates the wave streamlines for the
evanescent case. Here u0, N , and H are as in Fig. 3.8, but now λs = 1000 m. Note
that now the wave amplitude decreases exponentially with height and the wave
fronts are vertical. The wave perturbation quantities are symmetrically distributed
with respect to the crests at the ground surface, and as we shall see in the next
section a net or average wave stress is not exerted on the terrain. Evanescent waves
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FIGURE 3.8 Streamline displacements over a surface corrugation with H = 50 m and
wavelength λs = 2000 m. N = 0.023 s−1 and u0 = 4 m s−1.

occur when u0 is large, or N is small, or when λs is small. If u0 is too large,
then the frequency of the forced vertical oscillations of the air parcels as they
pass over the surface corrugation will be greater than the resonant frequency of
the atmosphere, N . As we have seen in Chapter 2, when a stably stratified flow is
forced to oscillate at a frequency greater than its natural frequency, only evanescent
waves are produced.

3.2.1 PHASE SPEED AND GROUP VELOCITY OVER A
SURFACE CORRUGATION

We have seen that the physics of the problem has fixed the directions of the
wave vectors so that k < 0 and m < 0. Using (3.1), we can write (3.6) as

d2ŵ

dz2
+
[
k2N2

�2
− k2

]
ŵ = 0 . (3.36)

For constant N and u0, the dispersion relation is

� = ± kN

(k2 + m2)1/2
. (3.37)
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FIGURE 3.9 Evanescent mountain waves over a surface corrugation. The values are the same
as in Fig. 3.8, but now λs = 1000 m. Note that now the wave fronts are vertical.

To determine the proper branch for �, we calculate the horizontal phase speed in
the terrain-attached reference frame. Using (3.1) and (3.37), we get

c = ω

k
= u0 ± N

(k2 + m2)1/2
= u0 ± u0. (3.38)

Because we require c = 0, we must take the negative branch in (3.37). The vertical
phase speed is then

cz = ω

m
= u0

k

m
− N

(k2 + m2)1/2
= 0 , (3.39)

and we see that in the reference frame attached to the mountain, the wave fronts
appear stationary. However, relative to the flow the phase speeds are c = −u0 and
cz = −u0k/m, i.e., the wave fronts appear to be moving downward and upstream,
as shown in Fig. 3.5.
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The horizontal group velocity in the terrain-attached reference frame is,
using (3.1),

ug = ∂ω

∂k
= u0 + ∂�

∂k
. (3.40)

Using the negative branch of (3.37) and recalling that � = −u0k, we find

ug = u0
k2

k2 + m2
. (3.41)

In a similar way, the vertical group velocity is

wg = u0
km

k2 + m2
. (3.42)

We see that energy is being transported upward and downstream; however, relative
to the moving air,

ug = ∂�

∂k
= −u0

m2

k2 + m2
, (3.43)

but wg is unchanged. In this frame, wave energy is being transported upward and
upstream, as shown in Fig. 3.5.

3.2.2 ENERGY FLUX OVER A SURFACE CORRUGATION

We can calculate the vertical flux of energy density over the surface corrugation
using (3.24)–(3.26) in (2.98) to get

Fz = 0.5� (p1w
∗
1) = 0.5ρ0u

3
0H

2ksms . (3.44)

For the values of u0, N , H , and λs used for the case shown in Fig. 3.8,
Fz = 1.5 W m−2. For comparison, the solar irradiance, which is the flux of
solar radiation passing through a plane normal to the solar beam at the top of
the atmosphere, is approximately 1367 W m−2 (Garratt, 1992). We see that the
flux of energy density associated with terrain-generated waves is very small com-
pared with the solar irradiance; however, this terrain-generated energy flux can
have a large impact on the upper atmospheric. Hines (1960) proposed that gravity
waves observed at meteor heights above 80 km have energy fluxes on the order
of 10−3 W m−2. Gossard (1962) showed that a flux of 10−1 W m−2 out of the
troposphere is not uncommon. Hines (1963) concluded that the troposphere was
a major source of these waves. These gravity waves can be generated by storm
systems as well as by terrain.
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3.3 THE TWO-DIMENSIONAL RIDGE

We now consider the case of flow over an isolated two-dimensional ridge.
We use the word ridge instead of mountain because the former implies a large
cross-wind extent, i.e., two-dimensionality, while the latter implies a finite cross-
wind extend, i.e., three-dimensionality. The most often used ridge shapes are the
bell-shaped 2 ridge given by

h(x) = Hb2

x2 + b2
(3.45)

and the Gaussian-shaped ridge given by

h(x) = H e−x2/b2
, (3.46)

where H is the maximum ridge height. In (3.45) b is the half-width of the bell-
shaped ridge, and in (3.46) 0.83b is the half-width of the Gaussian ridge. The
bell-shaped ridge has been used, for example, by Queney (1948); Smith (1976);
and Grisogono, Pryor, and Keislar (1993). The Gaussian-shaped ridge has been
used, for example, by Hines (1989b), Nappo and Chimonas (1992), and Grisogono
(1994). Here we shall use the Gaussian ridge.

The solution to (3.6) requires the Fourier transform of the bottom boundary
condition (3.14), which is given by

ŵ(k, 0) = iu0kĥ(k) . (3.47)

Assuming a horizontally infinite domain, the Fourier transform of (3.46) is

ĥ(k) = Hb
√

π e−(kb/2)2
. (3.48)

Using (3.48) in (3.47) gives the linear lower boundary condition

ŵ(k, 0) = iku0Hb
√

π e−k2b2/4 . (3.49)

Note that when the background wind is not vertically uniform, then u0 in (3.49)
must be replaced by u0(z = 0). However, this can be problematic when modeling
real-flow situations, since then u0(0) = 0.

Unlike the waves over a surface corrugation which can be described by a single
horizontal wavenumber, the isolated ridge must be represented by a spectrum
of wavenumbers. The Taylor–Goldstein equation must be solved for each wave.
These waves will destructively interfere everywhere except above the ridge where
they combine to form a standing wave. These standing disturbances resemble those

2 Also known as the Witch-of-Agnesi.
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generated by water flowing over rocks in a briskly running stream. Unlike the
surface corrugation case, we can neither draw nor visualize the wave vectors and
the group velocity vectors. However, the fundamental physics remains unchanged.
With this in mind, we proceed with our analysis.

It is convenient to introduce a shape function, �(k, z), such that

ŵ = ŵ(k, 0)
�(k, z)

�(k, 0)
. (3.50)

The Taylor–Goldstein equation then has the form

d2�

dz2
+
[

N2

u2
0

− u′′
0

u0
− k2

]
� = 0 , (3.51)

where primes indicate vertical derivatives. For the case of constant flow and strat-
ification, and imposing the radiation condition at the upper boundary, the solution
of (3.6) for a particular wavenumber, k, is

ŵ(k, z) = ŵ(k, 0) e−imz , (3.52)

where

m =
[

N2

u2
0

− k2

]1/2

. (3.53)

The solution in physical space is obtained by summing the contributions of the
waves given by (3.52), and this is achieved by taking the inverse Fourier transform
of (3.52). Thus,

w1(x, z) = 1

2π

∫ +∞

−∞
[ŵ(k, 0)e−imz] eikxdk , (3.54)

which can be written as

w1(x, z) = 1

π
�
∫ +∞

0
ŵ(k, 0) ei(kx−mz) dk . (3.55)

If u0 > 0, we must use negative horizontal wavenumbers so that

w1(x, z) = 1

π
�
∫ +∞

0
ŵ(−k, 0) e−i(kx+mz) dk . (3.56)
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Distinguishing between propagating and evanescent waves, we can split the
integral in (3.56) into two parts, i.e.,

w1(x, z) = −u0Hb√
π

[∫ kc

0
e−(kb/2)2

k sin(kx + mz) dk

+
∫ +∞

kc

e−(kb/2)2
e−qzk sin(kx) dk

]
, (3.57)

where q is given by (2.59) and kc = N/u0 is the cut-off wavenumber for propagat-
ing waves. The first integral in (3.57) represents the contributions to the vertical
velocity by the propagating waves, and the second integral represents the contri-
butions by the evanescent waves. If we compare the first integral of (3.57) with
(3.29) and the second integral of (3.57) with (3.35), we can write

w1(x, z) = Hb√
π

[∫ kc

0
e−(kb/2)2

wP dk +
∫ ∞

kc

e−(kb/2)2
wE dk

]
, (3.58)

where wP is the vertical velocity due to propagating waves over a surface corruga-
tion (3.29) and wE is the vertical velocity due to evanescent waves over the same
surface. We see that the flow disturbance over an isolated Gaussian-shaped ridge
is the Gaussian-weighted sum of the disturbances due to a spectrum of corrugated
surfaces each with unit amplitude. This is the essence of the linear theory. Each
wave contributes independently to the perturbation variables.

From (3.57) we see that the structure of the mountain waves is strongly influ-
enced by the term kb exp[−(kb/2)2], which is plotted in Fig. 3.10. The maximum
value occurs when kb = √

2, i.e., when the length of the excited wave is λx ∼ 4b.
This wavelength corresponds to about 98% of the width of the Gaussian-shaped
ridge.3 Thus, the strongest or most excited wave scales with the width of the ridge.
From (3.51) we see that the wave is propagating if L2

s > k2, where Ls is the Scorer
parameter defined as

L2
s = N2

u2
0

− u′′
0

u0
. (3.59)

The wave structure over an isolated ridge is determined by the relative magni-
tudes of Ls and b. If Lsb ≤ 1, then the waves will be mostly evanescent with
amplitudes decreasing with horizontal and vertical distance from the ridge. This
case corresponds to combinations of narrow ridge width, weak stratification, and
strong winds.4 Figure 3.11 shows the wave field for the case Lsb ≈ 1, with
u0 = 10 m s−1, N = 0.01 s−1, and b = 1 km. The waves stream downwind
with amplitudes decreasing with distance from the ridge, but the rate of decrease

3 A similar result is obtained for the bell-shaped ridge.
4 In almost all cases, the curvature term in (3.59) is not significant.
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FIGURE 3.10 Response function, kb exp{−(kb/2)2}, plotted as a function of the dimensionless
wavenumber kb.

is not great. Energy transport is vertical and downwind. The crests downwind of
the ridge suggest the possibility of wave clouds often observed in mountainous
regions. Figure 3.12 shows the wave field when Lsb > 1, which corresponds to
combinations of wide ridge, strong stratification, and weak winds. In this case,
Ls is as in Fig. 3.11, but now b = 10 km. The waves are aligned directly above
the ridge, and the energy transport is vertical. The vertical wavelength is seen to
be a bit less than 650 m, which is the height where the ridge shape is reproduced.
If we set λz = 2πu0/N , then λz ≈ 630 km, and we see that that the vertical
wavenumber is essentially independent of the horizontal wavenumber since the
latter is very small. Indeed, this is also the reason for the vertical transport of wave
energy. These waves are said to be hydrostatic, since if we assume that the wave
perturbations are in hydrostatic balance, then it develops that m = Ls .

It is clear that as the width of the ridge increases, the wave field becomes
increasingly hydrostatic. The time required for the flow to traverse the ridge shown
in Fig. 3.12 is about 1 hour. Imagine now, instead of a single ridge, a mountain
range, say with b = 100 km, i.e., an effective width of about 400 km. An air
parcel traveling at 10 m s−1 will require about 11 hours to traverse the range. Even
if the winds are constant, on this time scale the Coriolis force due to the Earth’s
rotation will be effective. In the Northern Hemisphere, the Coriolis force will tend
to accelerate the flow toward the right if looking downwind. If the flow is initially to
the east, then while crossing the mountain range this component of the background
wind speed will decrease, while the wind component to the south will increase.
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FIGURE 3.11 Wave field over a two-dimensional narrow ridge; N = 0.01 s−1, u0 = 10 m s−1,
and b = 1 km.

The problem is now three dimensional. If we include the Coriolis force, f , in the
perturbation equations, then one gets (see, for example, Gill, 1982)

∂2

∂t2

(
∂2w1

∂z2
+ ∂2w1

∂x2
+ ∂2w1

∂y2

)
+f 2 ∂2w1

∂z2
+N2

(
∂2w1

∂x2
+ ∂2w1

∂y2

)
=0, (3.60)

where f is the Coriolis parameter equal to 2�E sin �L, where �E is the angular
frequency of the Earth (7.292 × 10−5 s−1) and �L is the latitude. The waves
described by (3.60) are called inertia-gravity waves because inertial forces have
an influence. For midlatitudes, f ≈ 10−4 s−1. If we assume wave solutions of
the form exp[i(kx + ly + mz − ωt)], then the dispersion relation for constant
Brunt–Väisälä frequency is

ω2 = f 2m2 + N2(k2 + l2)

k2 + l2 + m2
. (3.61)
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FIGURE 3.12 Same as Fig. 3.11, but now b = 10 km.

For constant wind and stratification, (3.51) becomes

d2�

dz2
+
[

k2
(
N2 − u2

0k
2
)

u2
0k

2 − f 2

]
� = 0 . (3.62)

Note that if f is small compared to u0k, then (3.62) reduces to (3.51). If b ≈
100 km, then the wavenumber of the most excited wave will be much less than
Ls , so that (3.62) becomes

d2�

dz2
+
[

k2N2

u2
0k

2 − f 2

]
� = 0 . (3.63)

Figure 3.13 shows the wave field over a ridge with b = 100 km and back-
ground flow as in Fig. 3.12. The wave disturbances extend downwind with slowly
changing amplitudes and increasing wavelengths. The vertical wavenumber is
m = kN(u2

0k
2 − f 2)−1/2, and the angle, β, of the wave vector relative to the
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FIGURE 3.13 Same as Fig. 3.11, but now b = 100 km.

horizontal is

β = tan−1

[
N(

u2
0k

2 − f 2
)1/2

]
. (3.64)

From (3.64), we see that if k is large, then β → 0◦, and as k decreases β → 90◦.
If k < u0/f , then m is imaginary, and the waves are evanescent. For the case
shown in Fig. 3.13, the critical horizontal wavelength is about 6.3 km. Thus, we
see in Fig. 3.13 that the vertical transport of energy directly above the mountain
range is accomplished by the short horizontal wavelengths, and the downwind
transport of energy is accomplished by the longer wavelengths. This explains
the observation in Fig. 3.13 that the horizontal wavelengths of the downwind
disturbances decrease with increasing altitude. Perhaps one of the first observations
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of a terrain-induced inertia-gravity wave,5 shown in Fig. 3.14, was presented by
Dörnbrack et al. (2001). The wave was observed on January 26, 2000, using
an aircraft-mounted lidar to measure cloud aerosols in the stratosphere over the
Scandinavian mountain range. The Scandinavian mountain ridge has sufficient
width (∼300 km) to excite inertia-gravity waves. Comparison of Fig. 3.13 with
Fig. 3.14 shows similar structures, and this illustrates the utility of the linear theory.

Figures similar to Figs. 3.11–3.13 appear in the classic paper by Queney (1948).
His results were made using the bell-shaped ridge in (3.46). Comparing his results
with Figs. 3.11 and 3.12 shows little difference, and this suggests that the linear
theory for terrain-generated waves is not overly sensitive to the shape geometry.

3.4 THE THREE-DIMENSIONAL MOUNTAIN

Mountain waves over isolated terrain features have been extensively studied
[see, for example, Blumen and McGregor, 1976; Smith, 1980; Hines, 1988; Kim
and Mahrt, 1992; Baines, 1995; and references therein]. Because we have intro-
duced the y-dimension into the problem, we must also include this dimension
in the Eulier equations, (2.1)–(2.4). The Taylor–Goldstein equation now takes
the form

d2ŵ

dz2
+
[

(k2 + l2)N2

(ku0 + lv0)2
− ku′′

0 + lv′′
0

ku0 + lv0
− (k2 + l2)

]
ŵ = 0 , (3.65)

where l and v0 are the wavenumber and background wind speed in the y-direction,
respectively. From the polarization equations, the horizontal perturbation veloci-
ties are

û1(k, l, z) = ik

k2 + l2

[
lŵ(lu′

0 − kv′
0)

k(ku0 + lv0)
+ dŵ

dz

]
(3.66)

v̂1(k, l, z) = −il

k2 + l2

[
kŵ(lu′

0 − kv′
0)

l(ku0 + lv0)
− dŵ

dz

]
. (3.67)

Note that by setting l = 0 in (3.66) and (3.67), the solutions for the two-dimensional
ridge are obtained. For a constant background wind, (3.65) reduces to

d2ŵ

dz2
+
[ (

κ2
H

)
N2

(ku0)2 − (lv0)2
− κ2

H

]
ŵ = 0 , (3.68)

5 Inertia-gravity waves in the lower stratosphere have been observed, for example, by Allen and
Vincent (1995); Vincent, Allen, and Eckermann (1997); and Guest et al. (2000).



FIGURE 3.14 Top: Inertia-gravity wave observed over the Scandinavian mountain range on January 26, 2001. Bottom: Smoothed terrain
profile beneath the flight track. (From “Evidence for inertia-gravity waves forming polar stratospheric clouds over Scandinavia,” A.Dörnbrack et al.,
J. Geophys. Res. submitted, 2001.)
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where κH is the projection of the wave vector onto the horizontal plane. For this
case, (3.66) and (3.67) reduce to

û1(k, l, z) = ik

κ2
H

dŵ

dz
(3.69)

v̂1(k, l, z) = − il

κ2
H

dŵ

dz
. (3.70)

The bottom boundary condition is

w1(x, y, 0) = u0
∂h(x, y)

∂x
+ v0

∂h(x, y)

∂y
, (3.71)

with Fourier transform

ŵ(k, l, 0) = i(ku0 + lv0) ĥ(k, l) . (3.72)

The most widely used mountain shapes are the three-dimensional, Gaussian-
shaped mountain,

h(x, y) = He[(x/a)2+(y/b)2] , (3.73)

where a and b are length scales in the x- and y-directions, respectively, and the
three-dimensional, bell-shaped mountain,

h(x, y) = H

((x2/b2) + (y2/b2) + 1)3/2
. (3.74)

If we assume horizontally symmetric hills, i.e., a = b, then the two-dimensional
Fourier transform of (3.73) is

ĥ(k, l) = Ha2πe−κ2
H a2/4 , (3.75)

and for (3.74) it is

ĥ(k, l) = 1

2π
ha2 e−aκH . (3.76)

Figure 3.15 shows plane views of flow displacements over a three-dimensional,
symmetric, bell-shaped mountain. Horizontal distances have been scaled by a,
and vertical distances have been scaled by N/u0, where N = 0.01 s−1 and u0 =
10 m s−1. Near the ground surface, the flow displacements are positive upwind of
the mountain and negative downwind. This pattern changes with increasing height,
so that eventually descending motion is upwind of the mountain and ascending
motion is downwind. We see also a broadening and weakening with height of the
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FIGURE 3.15 Streamline displacements over a three-dimensional, symmetric, bell-shaped
mountain. (From “Linear theory of stratified hydrostatic flow past an isolated mountain,” R.B. Smith,
Tellus, 32: 352, 1980.)
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downstream displacement pattern. The results shown in Fig. 3.15 were obtained
under the assumption that the wave perturbations were in hydrostatic equilibrium,
which is valid when Na/u0 � 1 (Smith, 1980). Under the hydrostatic assumption,
and taking the background wind to be in the x-direction, i.e., v0 = 0, (3.68) takes
the form

d2ŵ

dz2
+
(
κ2
H

)
N2

ku2
0

ŵ = 0 . (3.77)

Because the mountain is the source of the waves, wave energy and stress must
radiate horizontally and vertically away from the mountain. It is this radiation
of wave energy that results in the broadening of the displacement field shown in
Fig. 3.15. The transport of wave energy is done by the group velocities. Using the
definition of the intrinsic frequency, (3.1), the vertical wavenumber for the plane
wave solution to (3.77) is

m2 = N2κ2
H

�2
, (3.78)

and the dispersion relation is

� = ±NκH

m
. (3.79)

Using arguments identical to those leading to (3.40), choosing the negative branch
in (3.79), and noting that � = −ku0, the group velocity in the x-direction is

ug = u0
l2

κ2
H

. (3.80)

In a similar manner, we find that

vg = ∂�

∂l
= −u0

kl

κ2
H

(3.81)

and

wg = ∂�

∂m
= u2

0 k2

NκH

. (3.82)

Smith (1980) points out that in the terrain-attached reference frame, wave energy
moves away from the mountain along straight lines defined by

x

z
= ug

wg

(3.83)

y

z
= vg

wg

(3.84)

y

x
= vg

ug

(3.85)
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FIGURE 3.16 The parabola given by (3.87) along which the wave energy and stress above
a three-dimensional hill is concentrated. (From “Linear theory of stratified hydrostatic flow past an
isolated mountain,” R.B. Smith, Tellus, 32: 353, 1980.)

Using (3.85) with (3.80) and (3.81) gives

x

y
= −k

l
, (3.86)

which describes a family of straight lines (phase lines) along which energy propa-
gates horizontally away from the mountain which is the origin of the coordinates.
Using (3.84) and (3.85) gives

y2 = N

u0κH

zx , (3.87)

which describes a parabola along which the wave energy and stress are concen-
trated, as illustrated in Fig. 3.16. As z increases, the parabola widens. Figure 3.17
is similar to Fig. 3.16, but shows the direction and relative magnitude of the wave
stress over a three-dimensional mountain. We see that the direction of the wave
stress is always tangent to circles centered on the mountain.

3.5 GRAVITY WAVE DRAG

In the previous sections, we saw that gravity waves are stationary relative to
the obstacle that generates them. In a sense, the waves are attached to the obstacle.
However, if this is so, then the obstacle must in some way be exerting a force
against the flow so that the waves remain stationary. This force takes the form of a
drag or stress which must be exerted on the atmosphere by terrain obstacles. The
effects of wave drag on the atmosphere are profound and important on all scales
of flow. Indeed, Chapter 7 of this book is devoted to the parameterization of wave
stress effects in numerical atmospheric flow models.
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FIGURE 3.17 Direction and magnitude of wave stress above a three-dimensional mountain.
(From “Amodeling of atmospheric gravity waves and wave drag generated by isotropic and anisotropic
terrain,” C.O. Hines, J. Atmos. Sci., 45: 325, 1988.)

3.5.1 MATHEMATICAL DERIVATION

We begin by considering a steady, frictionless, nonrotating, and horizontally
homogeneous background flow over an isolated two-dimensional ridge of arbitrary
cross-section h(x). Under the Boussinesq approximation, the linearized horizontal
momentum equation is

u0
∂u1

∂x
+ w1

du0

dz
+ 1

ρ0

∂p1

∂x
= 0 . (3.88)

Because the terrain obstacle is isolated, h(x) → 0 as x → ±∞. Next, we multiply
(3.88) by h(x) and integrate over x to get

∫ +∞

−∞
u0h

∂u1

∂x
dx +

∫ +∞

−∞
w1h

du0

dz
dx +

∫ +∞

−∞
h

ρ0

∂p1

∂x
dx = 0 . (3.89)

Integrate the first integral by parts to get

I1 =
∫ +∞

−∞
u0h

∂u1

∂x
dx = −

∫ +∞

−∞
u1u0

∂h

∂x
dx . (3.90)

Using (3.14), (3.90) becomes

I1 = −
∫ +∞

−∞
u1w1 dx , (3.91)
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where w1 is the vertical perturbation velocity created by the obstacle. Using (3.14)
in the second integral in (3.89) and noting that h(x) → 0 as x → ±∞ gives

I2 = du0

dz

∫ +∞

−∞
u0h

dh

dx
dx = −1

4

du2
0

dz

∫ +∞

−∞
dh2

dx
dx = 0 . (3.92)

Integrating the third integral in (3.89) by parts gives

I3 =
∫ +∞

−∞
1

ρ0
h

dp1

dx
dx = −

∫ +∞

−∞
p1

ρ0

dh

dx
dx . (3.93)

Adding I1 + I2 + I3 gives

−
∫ +∞

−∞
ρ0u1w1 dx =

∫ +∞

−∞
p1

dh

dx
dx . (3.94)

The right-hand side of (3.94) is the form drag per unit length of ridge exerted on the
ridge by the flow, and the left-hand side is the drag per unit length of ridge exerted
on the flow by the ridge, but this is simply a statement of Newton’s third law. This
response to the drag on the obstacle is transported upward by the gravity waves
launched at the ground surface. If the ridge height and the pressure distribution
are symmetric in x so that h(x) = h(−x) and p1(x) = p1(−x), then the form
drag will be zero, and propagating gravity waves will not be launched; instead,
the waves will be evanescent. In this case, the flow uniformly follows the terrain.
If, however, h(x) and p1(x) are asymmetric, then the waves will be propagating.
If we divide (3.94) by some horizontal length scale, �, then the wave stress over
the length � is

τ(z) = − 1

�

∫ �/2

−�/2
ρ0u1w1 dx = − ρ0u1w1. (3.95)

However, for this stress to be physically meaningful, � must be defined in a mean-
ingful way. Over a corrugated surface, we can take � to be the wavelength of the
corrugation. Over an isolated ridge, we can take � as some scale of the ridge width.
Recall that “stress” represents a flux of momentum across some surface. It is some-
times stated that wave stress is a vertical flux of wave momentum, but as discussed
by McMintyre (1981) such a statement is not accurate. Gravity waves themselves
do not posses a momentum. Instead, the flow perturbations created by the waves
act to transport mean-flow horizontal momentum. From (3.29) and (3.31) we see
that the vertical and horizontal velocity perturbations are of opposite sign, so that
cross-correlation u1w1 is negative. This term may be interpreted as either the
downward propagation of mean-flow positive momentum or the upward propa-
gation of mean-flow negative momentum. Now consider for a moment a steady
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FIGURE 3.18 In the surface layer, a constant downward flux of momentum due to turbulence,
τ0, is required to balance the loss of momentum at the ground surface due to friction, τf .

surface-layer flow with u0(z) increasing with height above the ground surface.
According to (Garratt, 1992)

u0(z) = 1

k

τ0

ρ
ln(z − z0) , (3.96)

where k is the Von Karman constant, z0 is the aerodynamic surface roughness
(the effective height where u0 = 0), and τ0 = −ρu′w′ is the surface stress
due to turbulence. Then, as illustrated in Fig. 3.18, a constant downward flux
of momentum, τ0, is required to maintain the velocity profile and balance the
momentum lost to friction at the ground surface, τf .

3.5.2 THE VARIATION OF WAVE STRESS WITH HEIGHT

We now consider a single wave and examine the stress associated with it. The
vertical and horizontal velocity perturbations produced by the wave have constant
magnitudes w̃ and ũ, respectively, and using (2.44) we can write

w(x, z, t) = w̃ez/2Hs ei(kx+mz−ωt) . (3.97)

Similarly, we can write

u(x, z, t) = ũez/2Hs ei(kx+mz−ωt) . (3.98)
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From the continuity equation (2.8), we get

ikũ +
(

im + 1

2Hs

)
w̃ = 0 , (3.99)

and hence

ũ =
(

−m

k
+ i

2kHs

)
w̃ . (3.100)

Using (3.100) in (3.98) gives

u(x, z, t) =
(

−m

k
+ i

2kHs

)
w̃e(z/2Hs)ei(kx+mz−ωt) . (3.101)

If we average the product of the real parts of u and w over one horizontal
wavelength, λx , then the stress is given by

τ(z) = − 1

λx

∫ λx

0
ρ0�u �w dx = −0.5�(ρ0uw∗) . (3.102)

Using (3.97) and (3.101) in (3.102) gives

τ(z) = 0.5ρ0
m

k
w̃2e(z/Hs) . (3.103)

Using (1.59) to eliminate ρ0, (3.103) becomes

τ(z) = 0.5ρs

m

k
w̃2 , (3.104)

which is a constant. Hence, unless the wave breaks down or in some way dissipates,
the stress associated with that wave is constant with height. Note also that this
result does not require the background flow to be constant with height. Booker
and Bretherton (1967) consider the wave stress to be an appropriate measure of
wave magnitude. In Chapter 5, a more rigorous proof of the constancy of wave
stress will be given.
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FIGURE 3.19 Nondimensional wave stress as a function of nondimensional wind speed over
a surface corrugation. (From “Wave drag in the planetary boundary layer over complex terrain,”
G. Chimonas and C.J. Nappo, Boundary-Layer Meteorol., 47: 225, 1989.)

3.5.3 WAVE STRESS OVER A SURFACE CORRUGATION

Consider now the wave stress over a corrugated surface. Using (3.24) and (3.25)
in (3.102) gives

τ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.5ρ0(u0H)2ks

[
N2

u2
0

− k2
s

]1/2

if
N

u0
> ks

0 if
N

u0
≤ ks

(3.105)

Figure 3.19 shows a plot of dimensionless wave stress (τ/ρ0(NH)2) over a cor-
rugated surface as a function of nondimensional background wind speed u0ks/N .
The maximum wave stress occurs when u0ks/N = 1/

√
2. For small u0, (3.105)

takes the linear form

τ = 0.5ρ0H
2ksNu0 , (3.106)

which is also plotted in Fig. 3.19. We can compare the magnitude of the wave
stress with the friction stress at the ground surface if we let the friction stress, τf ,
be given by, for example, Gill (1982),

τf = 0.5ρ0CDu2
0 , (3.107)
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where CD is the drag coefficient. If we let τw be the wave stress, then

τw

τf

= 0.5ρ0ks(u0H)2
[
(N2/u2

0) − k2
s

]1/2

0.5ρ0CDu2
0

. (3.108)

For CD = 0.005, which corresponds to lawn grass up to 1 cm high (Sutton, 1953),
and H/λs = 0.01,

τw

τf

≈
[(

N

u0ks

)2

− 1

]1/2

. (3.109)

If u0 < N/
√

2ks , then for this particular case τw/τf > 1, i.e., the wave stress
is greater than the surface friction stress. If, for example, N = 0.03 s−1, λs =
1000 m, and H = 10 m, then for wind speeds less than 3 m s−1 the wave stress
will be greater than the friction stress. This is a significant effect in the nighttime
planetary boundary layer.

3.5.4 WAVE STRESS OVER AN ISOLATED RIDGE

We now consider the wave drag over an isolated two-dimensional ridge. The
drag per unit length of ridge D/l is

D

l
= −

∫ ∞

−∞
ρ0uw dx . (3.110)

Using the inverse Fourier transform, we write

w(x, z) = 1

2π

∫ ∞

−∞
ŵ(k, z)eikx dk (3.111)

and

u(x, z) = 1

2π

∫ ∞

−∞
û(k, z)eikx dk . (3.112)

Using the continuity equation (2.24) in (3.112) we get

u(x, z) = 1

2π

∫ ∞

−∞
i

k

dŵ

dz
eikx dk . (3.113)
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Then using (3.111) and (3.113) in (3.110) gives

D

l
= − ρ0

4π2

∫ ∞

−∞
dx

∫ ∞

−∞
ŵ(k, z)eikxdk

∫ ∞

−∞
i

k′
dŵ(k′, z)

dz
eik′x dk′

= −i
ρ0

4π2

∫ ∞

−∞
dk

∫ ∞

−∞
dk′ŵ(k, z)

dŵ(k′, z)
dz

1

k′

∫ ∞

−∞
ei(k+k′)x dx

= −i
ρ0

2π

∫ ∞

−∞
dk

∫ ∞

−∞
dk′ŵ(k, z)

dŵ(k′, z)
dz

1

k′ δ(k + k′) . (3.114)

Integration of (3.114) with respect to dk′ gives

D

l
= i

ρ0

2π

∫ ∞

−∞
ŵ(k, z)

dŵ(−k, z)

dz

1

k
dk . (3.115)

Since

dŵ(−k, z)

dz
= dŵ∗(k, z)

dz
, (3.116)

we can write

D

l
= ρ0

2π
�
∫ ∞

−∞
1

k
ŵ(k, z)

dŵ∗(k, z)

dz
dk , (3.117)

where � is the imaginary part of the integral. If the isolated ridge is Gaussian
shaped and if the background variables are constant, then we can use (3.49) and
(3.52) in (3.117) to get

D

l
= ρ0(u0H)2

∫ kc

0
[b2e−(kb)2/2] k

[
N2

u2
0

− k2

]1/2

dk . (3.118)

Figure 3.20 shows a plot of dimensionless wave stress per unit length of ridge
(D/l)/[ρ0b(HN)2] as a function of dimensionless wind speed u0/(Nb) for the
case of flow over a Gaussian-shaped ridge. The curve is similar to that shown
in Fig. 3.19; however, now the drag approaches zero asymptotically for large
values of u0/(Nb). Numerical evaluation of (3.118) gives 0.34 ρ0b(HN)2 for the
maximum wave drag, which occurs at a wind speed of 0.54 Nb.

When the wind speed is small and the ridge is wide such that Nb/u0 � 1, then
(3.118) reduces to

D/� = ρ0u0H
2b2N

∫ kc

0
ke−k2b2/2 dk . (3.119)
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FIGURE 3.20 Same as Fig. 3.15, but for flow over a Gaussian-shaped ridge.

The integration is elementary, giving

D/� = ρ0u0H
2N
[
1 − e−k2b2/2] . (3.120)

Then because kcb = Nb/u0 � 1, (3.120) reduces further to

D/� = ρ0u0H
2N . (3.121)

We see that for low wind speed over wide ridges, the wave drag is linear in u0 and
independent of ridge width.

When the wind speed is high and the ridge is narrow such that Nb/u0 � 1,
only the very long wave lengths contribute to the integral in (3.118). In this case,
the exponential term approaches unity and

D/� = ρ0(u0Hb)2 N

u0

∫ kc

0
k dk (3.122)

and

D/� = 0.5ρ0(HNb)2 N

u0
, (3.123)

where we have used kc = N/u0. Thus, for high winds, the wave drag decreases as
u−1

0 , as seen in Fig. 3.20. This behavior is the most significant difference between
wave drag over a corrugated surface and over an isolated ridge.
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If we divide both sides of (3.118) by 2b, the result will be a wave stress, i.e.,

τr = 0.5ρ0(u0H)2
∫ kc

0

[
kbe−(kb)2/2] [N2

u2
0

− k2

]1/2

dk . (3.124)

The relative contributions to τr by the dimensionless wavenumber kb are plotted
in Fig. 3.10. The maximum contribution occurs when kb = √

2. For scaling
purposes, it may be sufficient to estimate the wave stress maximum over a ridge
by setting k = 1/b in (3.124). Then integration gives

τr ≈ 0.5ρ0(u0H)2 1

b

[
N2

u2
0

− 1

b

2
]1/2

, (3.125)

which looks very much like the stress over a surface corrugation (3.105) if we
replace ks by 1/b. We see that a surface corrugation and a two-dimensional ridge
with approximately equal height and length scales will generate approximately
equal values of wave stress. This presents a computational simplification since we
can replace the integration over wavenumbers by a single term.

3.5.5 SECONDARY EFFECTS OF TERRAIN-INDUCED
WAVE DRAG

The main effect of terrain-induced wave drag on the atmosphere is to reduce
flow speeds. However, because the wave drag acts locally and in a given direction,
secondary flow effects can be created. As discussed by Chimonas and Nappo
(1989), one such effect created by the directional selectivity of wave drag is to
turn the flow over complex terrain in a direction parallel to the surface contours.
This process is illustrated in Fig. 3.21. The turbulent drag always acts against
the flow, i.e., opposite to the direction of the mean wind; however, the wave
drag acts against the component of the mean wind normal to the terrain contours.
This directional selectivity results in a tendency for the flow to follow the terrain
contours rather than to go over the terrain, an effect which is enhanced by a stable
stratification.

3.6 CONVECTIVELY GENERATED
GRAVITY WAVES

This chapter has focused on the generation of gravity waves by vertical displace-
ments of flow streamlines. We have seen that these types of waves can propagate
into the stratosphere and higher atmosphere. However, another source of strato-
spheric gravity waves that is currently under active research is convection in the
troposphere and the accompanying release of latent heat. Indeed, the field is so
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FIGURE 3.21 The directional preference introduced by wave drag. Conventional turbulent
drag acts along the wind direction, while the wave drag is always normal to the surface contours.

wide reaching as to include the study of convectively generated gravity waves in
the lower atmosphere of Venus [see, for example, Baker, Schuberrt, and Jones,
2000 and references therein]. We cannot treat here in any detail the subject of
convectively generated gravity waves; instead, we present a brief literature review.

Smith and Lin (1982) investigated the relative strengths of gravity waves gen-
erated by terrain and orographic rain. They included a diabatic heating rate due to
condensation, Ḣ , so that the energy equation takes the form

cv

DT

Dt
+ p

Dα

Dt
= Ḣ , (3.126)

where T is the sensible temperature and α is the specific volume 1/ρ. For constant
background wind, the equation for the vertical velocity perturbation becomes
(Smith and Lin, 1982)

d2w1

dx2
+ d2w1

dz2
+ N2(z)

u0
w1 = gḢ

cpT0(z)u
2
0

. (3.127)

Smith and Lin (1982) concluded that for typical wind speeds and rainfall rates
the amplitudes of thermally generated gravity waves will equal or exceed the
amplitudes of terrain-generated gravity waves. Lin and Chun (1991) examined the
effects of diabatic cooling due to evaporation of falling precipitation on a stably
stratified shear flow. The cooling was confined to a subcloud layer, and their analy-
sis included both a linear analytical model and a nonlinear numerical model. Their
results showed, in part, that nonlinearity acts to reduce the amplitudes of wave
disturbances above the cloud layer. The theoretical results of Smith and Lin (1982)
were supported by Fritts and Nastrom (1992), who examined representative case
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FIGURE 3.22 Isentropes (thin lines) at 4 h of a squall line numerical simulation. The thick line
shows the cloud outline and shading represents contours of vertical velocity. The vertical velocities
range from 20 to −5 m s−1. (From “The gravity wave response above deep convection in a squall line
simulation,” M.J. Alexander, J.R. Holton, and D.R. Durran, J. Atmos. Sci., 52: 2215, 1995.)

studies within the Global Atmospheric Sampling Program (GASP). Their results
suggest that convection as a source of gravity waves is at least as important as
topographic forcing and possibly the most important source of gravity waves in
the Tropics and the Southern Hemisphere.

Fovell, Durran, and Holton (1992) studied gravity waves generated by moving
two-dimensional mesoscale storms, i.e., squall lines using a nonlinear numerical
model. Their results show a preference for excited waves to propagate against the
direction of the storm’s motion. In the absence of a wind relative to the storm,
gravity waves in the stratosphere are excited by mechanical forcing due to oscilla-
tory updrafts, a result first proposed by Pierce and Coroniti (1960) and apparently
overlooked. Alexander, Holton, and Durran (1995) used a fully compressible, non-
linear, numerical, two-dimensional model of a midlatitude squall line to study the
link between vertically propagating gravity waves and the wave-forcing mecha-
nism. Figure 3.22 shows the results of their simulation. Gravity waves radiating
away from the storm’s center are most striking, and the induced vertical velocities
range from 20 to 5 m s−1. Alexander, Holton, and Durran (1995) related the peak
in the frequency and vertical wavelength of the gravity wave spectrum with the
updraft oscillation frequency and the vertical scale of the tropospheric heating,
respectively. Chun, Song, and Baik (1999) used linear theory and the Advanced
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FIGURE 3.23 Time-height cross-section of monthly averaged zonal wind departures from the
climatological average for that month at equatorial stations. The alternating downward-propagating
regimes of westerly (W) and easterly (E) winds (m s−1) form the quasi-biennial oscillation. (From An
Introduction to Dynamic Meterology, J.R. Holton, Academic Press, New York, 1992.)
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Regional Prediction System (ARPS) (Xue et al., 1995) to study gravity waves gen-
erated by a multicell convective system. Their results showed that updrafts, i.e.,
forced internal gravity waves, at the head of the storm’s outflow or density current
can generate consecutive convective cells that move downstream and develop as
a main convective cell. Thus, it appears that internal gravity waves play a major
role in the initiation and maintenance of multicell convective systems.

Piani et al. (2000) extended modeling of convective gravity waves to three
dimensions and examined the role of these waves in the dynamics of the quasi-
biennial oscillation (QBO). The QBO (see, for example, Lindzen and Holton,
1968; Holton and Lindzen, 1972; Holton, 1992) consists of zonally6 symmetric
easterly and westerly wind regimes which alternate regularly with a period varying
from about 24 to 30 months. These wind regimes first appear above 30 km, but
propagate downward at a rate of about 1 km/month. The downward propagation
occurs without loss of amplitude between 30 and about 23 km; however, there is
rapid attenuation of the wind regime below 23 km. The QBO is symmetric about
the equator with a maximum amplitude of about 20 m s−1 and a half-width of about
12◦ latitude. Figure 3.23 illustrates the oscillating wind regimes of the QBO. It
is now accepted that the QBO is a result of upward-propagating, convectively
generated gravity waves which interact with critical layers (see Chapter 5). At
a critical layer, the wave is dissipated (absorbed), resulting in a divergence of
wave stress and a deceleration or acceleration of the wind. Research into the links
between the QBO and convective gravity waves continues to be an active field of
research as typified, for example, by the papers of Alexander, Beres, and Pfister
(2000); Vincent and Alexander (2000); and Alexander and Vincent (2000).

6 In dynamic meteorology, the zonal wind is the east–ward component of the wind.
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Ducted Gravity Waves

4.1 Wave Reflection at an Elevated Layer
4.2 Wave Trapping, Energy Flux, and Wave Resonance

4.2.1 Reflection at the Ground Surface
4.3 Wave Ducts

4.3.1 The Temperature Duct
4.3.2 The Wind Duct
4.3.3 Wind Spirals and Ducts

Gravity waves are often observed as periodic oscillations of atmospheric pres-
sure and horizontal wind speed and direction (see, for example, the case studies
described by Gossard and Hooke, 1975). If such waves are observed over times
spans ranging from tens of minutes to a few hours, then it is reasonable to assume
that the waves must be propagating horizontally. Horizontal propagation can occur
only if the waves are trapped between the ground surface and some upper level.
These types of waves have been called cellular (Martyn, 1950; Hines, 1965) to
denote waves that propagate horizontally and present a standing pattern in the verti-
cal direction. Under ordinary conditions, an upward-propagating gravity wave may
encounter a level where the background flow characteristics such as N or u0 change
quickly with height. When this happens, wave reflection can occur (see, for exam-
ple, Pitteway and Hines, 1965). The reflection may be partial or complete. If partial,
then some of the wave is transmitted through the level, but with reduced ampli-
tude. The transmitted wave can be either propagating (vertical wavenumber real)
or evanescent (vertical wavenumber imaginary). The reflected wave propagates to
the ground surface where it is reflected upward. Depending on the height of the
reflecting level and the vertical wavelength of the wave, the upward and downward
waves will either constructively or destructively interfere. If the waves construc-
tively interfere, then the wave becomes trapped between the ground surface and
the reflecting level, as illustrated in Fig. 4.1. The trapped wave is said to be ducted
and is capable of horizontally transporting energy over long distances with little
attenuation. In effect, the wave duct is a wave guide. In Chapter 3, we mentioned
that lee waves can be generated when a mountain wave becomes trapped between
the ground surface and an elevated reflecting level, i.e., lee waves are ducted

85
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FIGURE 4.1 Illustration of wave reflection and transmission between the ground surface and
some upper level. If the incident and reflected waves are in phase, then wave ducting can occur.

waves. Because wave energy is being continuously generated by the mountain, a
resonance can develop when the upward and downward waves are in phase, and
this can lead to extreme downslope winds such as those observed near Boulder, CO
(see, for example, Lilly, 1978; Peltier and Calrk, 1979; Durran, 1986). Studies, for
example, Bosart and Cussen (1973); Uccellini (1975); Balachandran (1980); and
Stobie, Einaudi, and Uccellini (1983) show that thunderstorms often initiate ducted
gravity waves which can propagate long distances (∼1000 km) and can initiate new
thunderstorms along their paths. Chimonas and Nappo (1987) used gravity wave
theory to argue that a long-lived wind gust observed by Doviak and Ge (1984)
could be modeled as a ducted thunderstorm bow wave. Monserrat and Thorpe
(1996) used ducting theory to explain a long-lived gravity wave event observed
on Mallorca (Baleric islands), and Rees et al. (2000) suggested that most of the
high-frequency waves observed in the atmospheric boundary layer over the Brunt
Ice Shelf, Antarctica correspond to trapped gravity waves. These few examples
illustrate that gravity wave ducting is and continues to be a lively research topic.

4.1 WAVE REFLECTION AT AN
ELEVATED LAYER

From optics we know that a change in the index of refraction results in a partial
reflection and transmission of a light beam. In the atmosphere, a similar thing
happens where there is a change in the vertical wavenumber which can be con-
sidered as an index of refraction for gravity waves. In the general case, where the
Brunt–Väisälä frequency and background wind speed are changing continuously
with height, the wave field can be very complicated and not easily analyzed. We
consider here the much simpler case of a two-layer flow with constant but differ-
ent stratification in each layer, as illustrated in Fig. 4.2. The bottom layer, layer 1,
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FIGURE 4.2 Wave reflection at height Hr where a discontinuity exists in stratification. w1,u

upward-propagating incident wave: w1,d downward-propagating reflected wave: w2,u upward-
propagating transmitted wave.

extends from the ground surface (assumed flat and uniform) up to the height of
the reflection level, Hr . The upper layer, layer 2, is unbounded. Background con-
ditions in each layer are constant. At the interface, the Brunt–Väisälä frequency
changes discontinuously from N1 below to N2 above. In the bottom layer there is
an upward-propagating wave, w1,u, and a downward-propagating reflected wave,
w1,d . In the upper layer, we have only an upward-directed wave, w2,u. To simplify
the problem, we select the winds to be calm in each layer. Note that the group veloc-
ity of the upward-moving wave is downward and that of the downward-moving
wave is upward. From a physical point of view, it might be more meaningful to do
our analysis in terms of energy propagation rather than wavenumbers, but this can
lead to needless complications. However, in the next section, where we consider
wave reflection at the ground surface, we will use group velocity.

The linear analysis requires two conditions at the interface separating layers
1 and 2. The first condition, called the dynamic boundary condition, is that the
atmospheric pressure be continuous across the interface, i.e.,

p0,1(Hr) + p1,1(Hr) = p0,2(Hr) + p1,2(Hr), (4.1)

where p0,1 and p1,1 are the background and perturbation pressures in layer 1, etc.
If (4.1) is not met, then infinite vertical accelerations at the interface are possible.
The second condition, called the kinematic boundary condition, requires that the
two layers remain in contact with each other. If this condition is not satisfied, then
voids or cavitation regions at the interface are possible, as illustrated in Fig. 4.3.
The kinematic boundary condition is satisfied if the vertical mass fluxes in each
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FIGURE 4.3 Cavitation or void between two material surfaces. If the fluid is water, then the
circles represent bubbles. If the fluid is moist air, then the circles represent condensation droplets.

layer are equal at the interface, i.e.,

ρ0,1(Hr)w1(Hr) = ρ0,2(Hr)w2(Hr), (4.2)

where ρ0,1 is the background density in layer 1 and w1 is the perturbation vertical
velocity in layer 1, etc. To apply these boundary conditions, we need to know the
amplitudes of the waves in each layer; however, generally these are not known.
Gill (1982) defines the ratio

Z = p

ρ0w
(4.3)

as the impedance, which is defined in acoustics as the ratio of the force per unit area
to the volume displacement of a given surface across which sound is being trans-
mitted. Impedance can be thought of as the alternating-current analog of resistance
in direct current. Note that the impedance is independent of wave amplitude. The
dynamic and kinematic conditions require that Z1(Hr) = Z2(Hr).

We first examine the case when the transmitted wave is propagating, i.e., m

real, and we assume, a priori, that ω does not change in the reflection-transmission
process. From (2.49), we see then that

N1 cos β1 = N2 cos β2, (4.4)

which is similar to Snell’s law in optics. Note that β is the angle the wave vector
makes with the horizontal and not with the reflecting boundary. Thus, (4.4) would
hold even if the interface were sloping. We also see from (2.49) that the wave vector
of the reflected wave in layer 1 must also make an angle β with the horizontal.

In layer 2, we have only upward-propagating energy, and so the wave phase
fronts must be moving downward. Thus,

w2 = a2 e−im2(z−Hr) e−i(kx−ωt). (4.5)
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Using (2.14), (2.16), and (4.5), the pressure perturbation is

p2 = 1

k2
ρ0ωa2m2 e−im2(z−Hr) e−i(kx−ωt). (4.6)

The impedance in the upper layer is then

Z2 = ωm2

k2
. (4.7)

In the bottom layer, we have both upward and downward (reflected) energy
propagation, so that

w1 =
[
a1,u eim1(Hr−z) + a1,d e−im1(Hr−z)

]
e−i(kx−ωt), (4.8)

where subscripts u and d refer to the upward- and downward-moving waves,
respectively. We now define a reflection coefficient, r , as the ratio of the ampli-
tude of the reflected, downward-moving wave to the incident, upward-moving
wave, i.e.,

r = a1,d

a1,u

, (4.9)

so that

w1 = a1,u

[
eim1(Hr−z) + re−im1(Hr−z)

]
e−i(kx−ωt). (4.10)

The perturbation pressure in layer 1 is

p1 = ρ0ωa1,um1

k2

[
eim1(Hr−z) − re−im1(Hr−z)

]
e−i(kx−ωt). (4.11)

Using (4.10) and (4.11), the impedance in the bottom layer is

Z1 = ωm1

k2

[
eim1(Hr−z) − re−im1(Hr−z)

eim1(Hr−z) + re−im1(Hr−z)

]
. (4.12)

Setting Z1(Hr) = Z2(Hr) gives

m2

m1
= 1 − r

1 + r
. (4.13)

Solving (4.13) for r gives

r = m1 − m2

m1 + m2
. (4.14)
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Note that from (2.41) the vertical wavenumbers of the upward- and downward-
moving waves in layer 1 must be equal. Because k does not change in the reflection
process, the angle of the wave vector relative to the horizontal plane is the same
for both waves. However, because of (4.14) the amplitudes of the waves need not
be equal.

If r = 0, then there is no reflection, and the wave is upward propagating only.
If |r| = 1, then there is complete reflection, and the wave is trapped in the bottom
layer. If r = 1, m2 must be zero, and the transmitted wave does not propagate in
the upper layer. Then, in the lower layer, w1 ∝ cos[m1(Hr − z)], and the upward-
and downward-moving waves are in phase and have equal amplitudes. The waves
constructively interfere to form a standing wave much like sound waves in a open
pipe. If r = −1, then w1 ∝ i sin[m1(Hr − z)], i.e., w1 is purely imaginary, and
consequently, �w1 must be zero everywhere in the lower layer. This happens
because now the upward- and downward-moving waves are exactly out of phase,
but they have equal amplitudes. These waves destructively interfere. The effect is
the same as if m1 = 0, which is required from (4.14) when r = −1.

We consider now the case where N2 < ω < N1. The transmitted wave is
evanescent, and (4.5) and (4.6) become

w2 = a2 eq(z−Hr) ei(kx−ωt) (4.15)

and

p2 = i

k2
ρ0ωa2q e−q(z−Hr) ei(kx−ωt), (4.16)

respectively, where

q = k

[
1 − N2

2

ω2

]1/2

. (4.17)

The impedance in layer 2 is now

Z2 = iωq

k2
(4.18)

and

r = m1 − iq

m1 + iq
. (4.19)

The magnitude of r is unity, so the total reflection occurs at Hr , and the wave is
trapped in the bottom layer.

When N1 < ω < N2, the waves in the lower layer are evanescent and are
not reflected at Hr . However, the transmitted wave is propagating. The vertical
velocity in the lower layer is

w1 = a1e
−qz + b1e

qz, (4.20)
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where we have dropped the e−i(kx−ωt) for convenience. Note that the second term
in (4.20) is not the result of wave reflection, but is required for the solution of
the Taylor–Goldstein equation. At z = Hr , the dynamic and kinematic boundary
conditions require that

w1(Hr) = w2(Hr) (4.21)

dw1

dz
(Hr) = dw2

dz
(Hr). (4.22)

Using (4.20) and (4.5) in (4.21) and (4.22), we can solve for the constants a1 and
b1 in terms of a2. The vertical velocity in layer 1 is then

w1 = a2

2

[(
1 + i

m2

q

)
eq(Hr−z) +

(
1 − i

m2

q

)
eq(Hr+z)

]
. (4.23)

From the continuity equation (2.8), the horizontal velocity in layer 1 is

u1 = −i
qa2

2k

[(
1 + i

m2

q

)
eq(Hr−z) +

(
1 − i

m2

q

)
eq(Hr+z)

]
. (4.24)

Using (4.26) and (4.27) in (2.38), the wave stress in layer 1 is

τ = 1

2
ρ0

m2

k
a2

2 . (4.25)

It is often mistakenly assumed that evanescent waves do not vertically transport
energy or momentum; however, the above analysis clearly demonstrates that this
is not the case. Wave stress is transported vertically at a constant rate and is a
function of conditions in the upper propagating layer. Consider, for example, a
uniform flow over a surface corrugation as given by (3.35). Figure 4.4 shows
the streamline displacements calculated by a numerical model for this case when
u0 = 2 m s−1, N1 ≈ 0 s−1, N2 = 0.02 s−1, λs = 1000 m, and Hr = 200 m. Below
Hr the streamlines are almost vertically orientated above the terrain disturbance.
The slight upstream tilt of the streamlines represents the small yet finite wave stress
transport. Above Hr the wave fronts tilt as expected.

4.2 WAVE TRAPPING, ENERGY FLUX, AND
WAVE RESONANCE

In the proceeding section, we examined wave reflection due to a discontinuity
in either Brunt–Väisälä frequency or background wind speed at some height, Hr ,
above the ground surface. In this section, we will look more closely at how waves
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FIGURE 4.4 Leakage of wave energy through an evanescent region. An example of tunneling.

in the lower layer are affected when wave trapping occurs. It is useful to con-
sider a continuous source of wave energy caused by a steady flow over a terrain
disturbance h(x). Applying boundary condition (3.14), (4.10) becomes

w = u0
∂h

∂x

[[
eim1(Hr−z) + re−im1(Hr−z)

]
eim1Hr + re−im1Hr

e−i(kx)

]
, (4.26)

where

m1 = k

[
N2

1

�2
− 1

]1/2

. (4.27)

Note that if r = 0 in (4.26), then w becomes similar to the wave perturbation
velocity field above a terrain disturbance studied in Chapter 3. We see from (4.26)
that if r = −ei2m1Hr , then w → ∞. If m1Hr is an even multiple of π/2, then
r = −1, and as we have seen in the previous section w is purely imaginary. Hr is
a node, i.e., a place where w = 0, and the upward- and downward-moving waves
form a standing wave much as a vibrating string with both ends fixed, as illustrated
in Fig. 4.5. Because the source of energy is continuous and because there is no
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FIGURE 4.5 Standing waves or modes occur when a string is fixed at both ends: (a) fundamental
or gravest mode, (b) first harmonic, and (c) second harmonic.

loss of energy through the top of the layer, the wave amplitude in the bottom layer
can grow without bound, resulting in wave resonance. Using (4.19), we see that

r = −ei2m1Hr = m1 − iq

m1 + iq
. (4.28)

If we rationalize the denominator in (4.28) and then take the square root, we get

ieim1Hr = m1 − iq(
m2

1 + q2
)1/2

. (4.29)

Separating (4.29) into real and imaginary parts leads to

sin(m1Hr) = −m1(
m2

1 + q2
)1/2

cos(m1Hr) = −q(
m2

1 + q2
)1/2

,

and hence

tan(m1Hr) = m1

q
. (4.30)

Solutions to this transcendental equation will be discussed in Section 4.3.1. For
now, we note that (4.30) is an eigenvalue problem. For a given combination of
background variables u0, N , and Hr , there are unique pairs of values (c, k) which
are solutions to (4.30).

We can scale the problem by assuming constant flow over a sinusoidal surface
with amplitude H and horizontal wavenumber ks , i.e., (3.4). Comparing (3.24)
with (4.26) gives

w1 = −iu0Hks

[
eim1(Hr−z) + re−im1(Hr−z)

eim1Hr + re−im1Hr

]
e−iksx . (4.31)
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The perturbation pressure (3.26) becomes

p1 = −iu2
0Hm1

[
eim1(Hr−z) − re−im1(Hr−z)

eim1Hr + re−im1Hr

]
e−iksx . (4.32)

Following Gill (1982), we evaluate the vertical component of the energy flux,
(2.98), using (4.31), (4.32), and (4.13) to get

Fz = 0.5ρ0u
3
0H

2ksm2

1 + [(m2/m1)2 − 1] sin2(m1Hr)
. (4.33)

We see that the energy flux is a function not only of the conditions in the bottom
layer where the waves are generated, but also in the upper layer. The reflection coef-
ficient determines how much of the wave energy passes through the interface and
how much is reflected. The angle m1Hr determines the phase difference between
the upward- and downward-moving waves in the bottom layer. For example, when
m1Hr = nπ/2 and n is an even integer, sin(m1Hr) = 0, and (4.33) is

Fz = 0.5ρ0u
3
0H

2ksm2. (4.34)

As we have seen, in this case the upward- and downward-moving waves in the
bottom layer form a standing wave with no vertical energy transport. The energy
flux is determined only by the transmitted wave in the upper layer. When m1Hr is
an odd multiple of π/2, then sin(m1Hr) = 1, and

Fz = 0.5ρu3
0H

2ksm
2
1/m2. (4.35)

Now, the energy flux is a function of the conditions in both layers. As m2 decreases,
the energy increases as the resonance condition is approached. However, if m2
increases, for example, due to increasing stratification, N2, then the energy flux
decreases. If N2 becomes so large such that m2 � m1, then r ≈ −1, and the wave
energy would be trapped in the lower layer with no leakage into the upper layer.

4.2.1 REFLECTION AT THE GROUND SURFACE

Wave reflection at an upper level was considered in the previous section.
However, wave ducting also requires reflection at the ground surface, which is dis-
cussed in this section. This problem is simpler than reflection at an elevated level
because we do not consider a transmitted wave. The reflection will be complete in
the sense that the total energy of the incident and reflected wave is conserved.
In the linear theory it is often assumed that the ground surface is horizontal,
but in the real world horizontal surfaces of significant extent are seldom seen.
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FIGURE 4.6 Wave reflection at a sloping ground surface.

Gravity wave reflections from sloping surfaces are also important in oceanography
(see, for example, Wunsch, 1968; Phillips, 1977; Thorpe, 1987).

To examine the effects of surface slope on wave reflection, we let the two-
dimensional ground surface be inclined an angle γ to the horizontal, as illustrated in
Fig. 4.6. Because the reflected energy flux has the same value as the incident energy
flux, it is conceptually easier to do the analysis in terms of group velocity rather
than wavenumbers. Then, as shown in Fig. 4.6, the incident wave has downward-
directed group velocity �vg,i with upward-directed wave vector �κi , and the reflected
wave has upward-directed group velocity �vg,r and downward-directed wave vector
�κr . Let wi represent the vertical velocity perturbation with amplitude ai associated
with the incident wave, and let wr represent the vertical velocity perturbation with
amplitude ar associated with the reflected wave. We also assume the background
stratification and wind is constant, and accordingly, the frequencies of the incident
and reflected waves are equal. Then,

wi(x, z, t) = ai ei(kix+miz−ωt) (4.36)

and

wr(x, z, t) = ar ei(krx+mrz−ωt), (4.37)

where subscripts i and r refer to the incident and reflected waves, respectively.
The vertical wavenumber can be written as

m2 = k2	2, (4.38)
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where

	2 = N2

�2
− 1. (4.39)

Then the vertical wavenumbers for the incident and reflected waves are

m2
i = k2

i 	
2 (4.40)

and

m2
r = k2

r 	
2, (4.41)

respectively. Since 	 is a constant, |mi/ki | = |mr/kr |, and we see that the magni-
tudes of the angles the wave vectors make with the horizontal or vertical directions
are equal regardless of the inclination of the reflecting surface. This is a surpris-
ing result since intuition would suggest that the inclination of the surface would
have a strong effect as, for example, reflection of a beam of light from a mirror.
However, the propagation of gravity waves is determined by the environment; this
is a constraint. This is no less paradoxical than the fact that the speed of sound is
independent of the speed of the sound source. However, we note that the vertical
and horizontal wavenumbers of the incident and reflected waves are not equal, but
rather their ratios are equal. Thus, wave reflection from the sloping surface results
in change in wavelength and a corresponding transfer of wave energy from one
wavenumber to another.

As shown in Fig. 4.6, the angle the incident wave vector makes with the vertical
direction is

tan φi = ki

mi

= 1

	
. (4.42)

The process of reflection implicitly assumes a reversal of direction of some kind.
Either the horizontal or vertical wavenumber must change sign on reflection, but
unless we know the inclination angle of the reflecting surface, we cannot say which
wavenumber changes sign. Accordingly, we can write

tan φr = kr

mr

= − 1

	
. (4.43)

From the linearized continuity equation (2.8), we have

ku + mw = 0, (4.44)

so that

ui = −mi

ki

wi = −	wi (4.45)
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and

ur = −mr

kr

wr = 	wr. (4.46)

Using (4.36) and (4.37) along with (4.45) and (4.46), the perturbation velo-
cities are

�Vi = ai(−	x̂ + ẑ) ei(kix+miz−ωt) (4.47)

�Vr = ar(	x̂ + ẑ) ei(krx+mrz−ωt). (4.48)

The velocity perturbation is the sum of the incident and reflected velocity
perturbations, so that

�V = �Vi + �Vr (4.49)

= a1(−	x̂ + ẑ) ei(kix+miz−ωt) + ar(	x̂ + ẑ) ei(krx+mrz−ωt). (4.50)

Now let the elevation of the ground surface be given by zg = −αx, where
α = tan γ . At z = zg we require

�V · �n = 0, (4.51)

where �n is the outward drawn normal vector to the ground surface. For the con-
figuration shown in Fig. 4.6, zg = −αx, with x negative to the left of an arbitrary
origin. The equation for the surface elevation is then

φs = z + αx, (4.52)

and

�n = ∇φs

|∇φs | = αx̂ + ẑ

(α2 + 1)1/2
. (4.53)

Then at z = zg we have from (4.51)

[
a1(−	x̂ + ẑ) ei(kix−miαx−ωt) + ar(	x̂ + ẑ) ei(krx−mrαx−ωt)

]
· (αx̂ + ẑ) = 0.

(4.54)

Now if (4.54) is to hold for all times, we require

kix − miαx = krx − mrαx. (4.55)

Solving for kr and using (4.42) and (4.43) we get

kr = ki

(1 − α	)

(1 + α	)
, (4.56)
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and we see that when the ground surface is sloped, the horizontal wavenumbers
of the incident and reflected wave are not equal. Using (4.55) in (4.54) leads to

ar = −ai

(1 − α	)

(1 + α	)
. (4.57)

If α	 < 1, the reflection is forward, the vertical velocities wi and wr have opposite
phase, and the reflected wavelength �r is greater than the incident wavelength �i ,
as shown in Fig. 4.6. If α	 > 1, the reverse is true. If slope angle γ equals 0 or
π/2, corresponding to a horizontal or vertical surface, respectively, there is no
change in the wave on reflection. A critical slope angle exists where γ = −φi ,
i.e., where α	 = 1. In this case, the incident wave is reflected back on itself, and
the waves constructively interfere, resulting in a wave resonance.

4.3 WAVE DUCTS

We have seen that an internal gravity wave can be reflected at some level
where either the Brunt–Väisälä frequency or the background wind speed changes
abruptly. If the distance between the ground surface and the reflecting level is a
multiple of the vertical wavelength, then reflected and incident waves can con-
structively interfere, resulting in wave resonance. When this happens the wave is
trapped or ducted, and the ducting layer becomes a tuned wave guide.

4.3.1 THE TEMPERATURE DUCT

The simplest wave duct is the temperature duct caused by a discontinuity in
the temperature lapse rate. Figure 4.7 illustrates the problem. Below height Hd ,
N is constant and positive; above Hd , we set N equal to zero. We assume calm
background winds; however, the analysis is unchanged if we have a constant
background wind. We shall look for those waves that can exit in this duct. At the

FIGURE 4.7 Schematic of a temperature duct of depth Hd , and potential temperature
profile θ0(z).
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ground surface, ŵ(k, 0) = 0, and above Hd we require the wave amplitude to be
bounded. The wave solutions to (2.39) are then

ŵ(k, z) = A sin

[
k

(
N2

ω2
− 1

)1/2

z

]
0 ≤ z ≤ Hd (4.58)

ŵ(k, z) = Bek(z−Hd) + Ce−k(z−Hd) z > Hd. (4.59)

From (4.59), we see that for decreasing wave amplitudes above Hd we must find
those eigenvalues ω and k in (4.58) and (4.59) which result in B = 0. At the
interface z = Hd , the dynamic and kinematic boundary conditions require that p

and w be continuous. From the polarization equations (2.22) and (2.24), we see
that p̂ ∝ ∂ŵ/∂z, so that we require both ŵ and its derivative be continuous at
z = Hd . Thus,

A sin

[
Hdk

(
N2

ω2
− 1

)1/2]
= B + C (4.60)

Ak

(
N2

ω2
− 1

)1/2

cos

[
Hdk

(
N2

ω2
− 1

)1/2]
= kB − kC. (4.61)

Now multiply (4.60) by k and add to (4.61) to get

(
N2

ω2
− 1

)1/2

cos

[
Hdk

(
N2

ω2
− 1

)1/2]
+ sin

[
Hdk

(
N2

ω2
− 1

)1/2]
= 2B

A
.

(4.62)

Then B = 0 only when

(
N2

ω2
− 1

)1/2

cos

[
Hdk

(
N2

ω2
− 1

)1/2]
+ sin

[
Hdk

(
N2

ω2
− 1

)1/2]
= 0.

(4.63)

Now let k∗ = Hdk be a nondimensional wavenumber, and letω∗ = (N2/ω2−1)1/2

be a nondimensional frequency. Then (4.63) becomes

tan(k∗ω∗) = −ω∗. (4.64)

However, (4.64) is identical in form to (4.30). Indeed, if N2 = 0 in (4.18), then
(4.64) and (4.30) are identical.

The zeros of (4.64) are easily obtained numerically by iteration, and these
eigenvalues (k∗, ω∗) are plotted in Fig. 4.8, which shows the dimensionless dis-
persion relation for the temperature duct. The slope of the curve in Fig. 4.8 is the
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FIGURE 4.8 Dimensionless eigenvalues for the pure temperature duct with constant
stratification.

dimensionless horizontal group velocity, i.e.,

ug∗ = ∂ω∗
∂k∗

= N2 (N2/ω2 − 1)−1/2

ω3Hd

∂ω

∂k
, (4.65)

where we have used the definitions of ω∗ and k∗. If we let θ = k∗ω∗, we can
define the functions Y1 = −θ/k∗ and Y2 = tan(θ), and the solutions to (4.64)
occur where Y1 = Y2. Figure 4.9 shows plots of Y1 and Y2 as functions of θ

for the case k∗ = 0.5. The values of θ at the intersection of these curves are
the solutions to (4.64), and we see that there is a family of solutions because
Y2 is periodic with period π . Each solution corresponds to a vertical mode, i.e.,
Y2,0 is the fundamental mode and Y2,1 is the first harmonic, etc. If we choose
Hd = 300 m and N2 = 0.003 s−2, then k = 0.00167 m−1, ω0 = 0.0144 s−1,
and ω1 = 0.00566 s−1. The vertical velocities of the fundamental mode and
first harmonic for this case with A = 1 are plotted in Fig. 4.10. The funda-
mental mode does not change sign between the ground surface and Hd , and the
first harmonic changes sign once in this layer. Higher modes change sign accord-
ingly, i.e., two sign changes for the second harmonic, etc. Note also in Fig. 4.10
that the one-fourth of the vertical wavelength of the fundamental mode is less
than the depth of the temperature duct. Above the ducting region the amplitudes
of the modes decay exponentially, and there is no vertical transport of energy or
stress. Figure 4.11 plots the phase and group velocities and the frequency as func-
tions of wavenumber for the fundamental mode for this problem. These curves
were obtained by numerical solutions of the Taylor–Goldstein equation using
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FIGURE 4.9 Graphical solutions to the pure temperature duct. Hd = 300 m; N = 0.055 s−1.

techniques described in Chapter 9. Because N = 0 above the ducting region,
the limits on phase speed are 0 < c < N/k. If c is greater than N/k, the wave
becomes evanescent. For the above values of N and k, c must be less than about
32.8 m s−1. For k = 0.00167 m−1, the phase velocities of the fundamental mode
and first harmonic are calculated to be c0 = 8.6 m s−1 and c1 = 3.4 m s−1,
respectively. The group velocities are calculated to be ug,0 = 7.0 m s−1 and
ug,1 = 3.3 m s−1. The modes do not propagate along the duct with the same
speed, even though the modes have the same horizontal wavenumber. Thus, in
any real situation one seldom sees more than one mode, and that mode is usually
the fundamental or fastest traveling mode.

4.3.2 THE WIND DUCT

We now examine the wind duct which is created by a jet in the background
wind in the direction of wave propagation. This type of duct was first described by
Chimonas and Hines (1986). It is a very common type of wave duct throughout
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FIGURE 4.10 Fundamental mode and first harmonic for the solutions to the temperature duct
shown in Fig. 4.9.

the atmosphere. Consider the Taylor–Goldstein equation

∂2ŵ

∂z2
+ Q2ŵ = 0, (4.66)

where

Q2 = N2

(c − u0)2
+ u′′

0

(c − u0)
− k2. (4.67)

Figure 4.12 illustrates the wind duct. A jet with maximum speed, u0,max , defines
a ducting region where Q2 > 0. On either side of this region, Q2 < 0 and the
gravity waves are evanescent. Far from the jet, in the evanescent regions,

N2

(c − u0,min)2
< k2. (4.68)

Critical levels exist where c = u0, and these will be discussed in Chapter 5. We
shall see that at a critical level a gravity wave is absorbed if the Richardson number



Wave Ducts 103

FIGURE 4.11 Phase speed, horizontal group velocity, and frequency as a function of
wavenumber obtained from numerical solutions for the pure temperature duct. Hd = 300 m; N =
0.055 s−1.

is greater than 0.25, but becomes unstable if the Richardson number is less than
0.25. In either case, a ducted wave will not exist. To avoid critical levels in our
analysis, we consider only waves with phase speeds either less than u0,min or
greater than u0,max . Because the wind speed is not constant we must use numerical
techniques. Let us assume that above the top level of the numerical model, ztop,
N is constant and u0 = u0,min. In the evanescent region above ztop the wave
solutions are

ŵ = Aeq(z−ztop) + Be−q(z−ztop), (4.69)

where

q = k2 − N2

(u0,min)2
. (4.70)

The kinematic and dynamic boundary conditions must be satisfied at z = ztop,
and hence

ŵ(k, c, ztop) = A + B (4.71)



104 Ducted Gravity Waves

FIGURE 4.12 Schematic diagram of the wind duct.

and

∂ŵ(k, c, ztop)

∂z
= qA + qB. (4.72)

Solving for (4.71) and (4.72) for A gives

2A = ŵ(k, c, ztop) + 1

q

∂ŵ(k, c, ztop)

∂z
. (4.73)

The numerical technique uses the so-called shooting method. We start at the bottom
boundary where we assume ŵ(k, c, 0) = 0 with a given value of k and an initial
guess for the phase speed. We integrate (4.66) upward to ztop where we evaluate
A using (4.73) and check for for convergence, i.e., A < ε, where ε is a small
number. If convergence is not reached, then we repeat the calculations again
starting at the bottom boundary, but with an updated value of phase speed. The
process continues until A → ε. To determine all the characteristics of the duct,
i.e., phase and group velocities, the numerical procedure is again repeated, but
now with a new value of k.

As an example of the wind duct, consider the low-level jet shown in Fig. 4.13
along with the accompanying temperature profile. The analytical expressions for



Wave Ducts 105

FIGURE 4.13 Wind speed and temperature profiles for a low-level jet. Based on profiles from
Mastrantonio et al. (1979).

these curves are given by Mastrantonio, Einaudi and Fua (1976), i.e.,

u0(z) = us

1 + tanh(2)

[
sz/Hj

(s + 1) + (z/Hj )s
+ tanh

(
2z

Hj

)]
(4.74)

and

T (z) = n tanh(z/Hj ) + T0, (4.75)

where us is the maximum wind speed at the jet, Hj is the height of the jet above
the ground surface, s and n are shape parameters, and T0 is the temperature at the
ground surface. The maximum background wind speed is 5 m s−1 at 300 m above
the ground surface. To avoid critical levels, we look for waves with phase speeds
c > us . Note that at the speed jet we require

N2(Hs)

(c − us)2
> k2. (4.76)

Then the range of phase speeds for ducted waves is

N(ztop)

k
+ u0(ztop) ≤ c ≤ N(Hj )

k
+ us. (4.77)
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FIGURE 4.14 Phase speed, horizontal group velocity, and frequency as a function of wave-
number obtained from numerical solutions for a duct in a low-level jet defined by the profiles in
Fig. 4.13.

We use the FORTRAN codes described in Chapter 9 to calculate the phase speeds,
horizontal group velocities, and frequencies as functions of wavenumber. These
results for the fundamental mode are plotted in Fig. 4.14. These curves have a
markedly different appearance than those shown in Fig. 4.11. With decreasing
wavenumber, the horizontal group velocity, ∂ω/∂k, initially increases slowly, but
then rapidly decreases. The values plotted in Fig. 4.14 represent intrinsic values.
The actual wave characteristics, i.e., frequency, wavenumber, etc., that would be
observed by a stationary observer must be Doppler shifted. Figure 4.15 shows the
vertical variation of the perturbation velocities associated with the fundamental
mode of the wind duct. Because the wave velocities are known only to within
a undetermined constant, the values in Fig. 4.15 have been scaled so that the
maximum magnitude of the horizontal velocity is 2 m s−1, which is a reasonable
value in the boundary layer. The maximum value of u1 occurs at the nose of the
jet, and the secondary maximum at about 350 m occurs at the inflection point. The
background wind is almost constant above 600 m (see Fig. 4.13); from Fig. 4.15
we see that u1 and w1 begin to decay exponentially at about 450 m. This marks
the top of the ducting layer which extends to the ground surface.
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FIGURE 4.15 Profiles of wave perturbation velocities u1 (dashed line) and w1 (solid line)
for the fundamental mode of the low-level jet shown in Fig. 4.13. The values were obtained from a
numerical solution and were maximized so that the absolute magnitude of u1 is 2 m s−1.

4.3.3 WIND SPIRALS AND DUCTS

In the previous section, we said that the wind duct is very common. If there
is a jet in the background wind speed, then there exists a possibility for a wave
duct. Thus, the occurrence of wave ducts depends on the occurrence of speed
jets, and whenever there is a turning of the background wind direction with height
there is a possibility of a speed jet. The background wind speed seen by the
wave is the projection of the horizontal wind vector onto the horizontal wave
vector, i.e.,

u0(z) = �V (z) · �k
|k| . (4.78)

In the lower troposphere and especially in the nighttime planetary boundary
layer, there can be significant turning of the wind with height. To illustrate, we
consider the Ekman wind spiral which is derived in Appendix A. Briefly, above
the planetary boundary layer and away from the frictional force of the ground
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FIGURE 4.16 The Eckman spiral for the case Ug = 5 m s−1, f = 10−4 s−1, and EKF =
5 m s−2.

surface the wind tends to parallel the isobars or lines of constant atmospheric
pressure. This type of flow, called geostrophic wind, is the result of a balance
between the pressure gradient force which accelerates the fluid from high to low
pressure and the rotational or Coriolis force which, in the Northern Hemisphere,
accelerates the fluid to the right of its direction of motion with a force that is
proportional to flow speed. Thus, in the Northern Hemisphere the atmospheric
flow is clockwise around a high pressure area and counterclockwise around a low
pressure area. At lower elevations, ground friction acts to slow the flow speed, and
this decreases the magnitude of the Coriolis force. However, the pressure gradient
force is unchanged. As a result an imbalance of the forces occurs, and the winds
are directed across the isobars. The friction force grows as the ground surface is
approached, and as a result the turning of the wind toward lower pressure increases.
The result of this interplay of forces is a flow which increases in speed and rotates
to the right of its motion (in the Northern Hemisphere) with height forming a wind
spiral. Ekman (1904) observed that the current on the ocean’s surface was always
to the right of the current at greater depth, and his analysis was later applied to the
atmosphere. If our coordinate system is rotated so that the x-axis is in the direction
to the geostrophic wind, Ug , then the orthogonal components of the background
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FIGURE 4.17 Vertical profiles of wind speed along vertical planes passing through the Eckman
spiral shown in Fig. 4.16 at angles of 30◦ and 80◦ from north.

wind in the Ekman layer are

u0(z) = Ug

[
1 − e−z/zE cos(z/zE)

]
(4.79)

v0(z) = Uge
−z/zE sin(z/zE), (4.80)

where zE is the depth of the Ekman layer, i.e.,

zE =
√

K

f/2
, (4.81)

where K is the eddy coefficient of friction (m2 s−1) and f is the Coriolis param-
eter (s−1). For midlatitudes, f ≈ 10−4 s−1. Figure 4.16 shows the Ekman spiral
for the case Ug = 5 m s−1, f = 10−4 s−1, and EKF = 5 m s−2; the dots along
the curve mark the altitude. The vertical profiles along the vertical planes with
orientations of 30◦ and 80◦ from north (shown in Fig. 4.16) are plotted in Fig.
4.17. Along the 30◦ plane a significant jet exists close to the ground; however, for
the 80◦ plain only a weak jet is seen. Thus, we see that whenever there is a turning
of the wind with height, there is the possibility of a jet and ducted waves.
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5
Gravity Wave

Energetics

5.1 Variations of Wave Energy and Stress with Height
5.2 Wave Action
5.3 The Critical Level

In Chapter 2, we introduced the subject of wave energy and developed the
equation for the total wave energy (2.86). In this chapter we examine the wave
energy in more detail. We will also examine the transports of wave energy and
stress and look at wave behavior near a critical level.

5.1 VARIATIONS OF WAVE ENERGY AND
STRESS WITH HEIGHT

We consider the case when the wave is independent of time. As we have seen
in Chapter 3, these types of waves are mountain waves. Following Eliassen and
Palm (1960), we write the energy equation (2.86) as

∂

∂x
(u0E + u1p1) + ∂

∂z
(w1p1) = −ρ0u1w1

du0

dz
. (5.1)

The left-hand side of (5.1) represents the divergence of the wave-energy flux.
The term (u0E + u1p1) represents the horizontal flux of wave energy through a
unit vertical area, and the term w1p1 represents the vertical flux of wave energy
through a unit horizontal area. As we have seen in Chapter 2, the right-hand side
of (5.1) represents the transfer of kinetic energy between the wave and the mean
flow. We have also seen in Chapter 3 that the waves and wave energy generated
by an isolated terrain feature tend to remain above the feature, especially if the
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waves are hydrostatic. Then, the waves and wave energy vanish as x → ±∞, and
integration of (5.1) in the x-direction gives

d

dz

∫ +∞

−∞
w1p1 dx = −du0

dz

∫ +∞

−∞
ρ0u1w1 dx. (5.2)

If we now multiply the linearized horizontal momentum equation (3.88) by
(ρ0u0u1 +p1), and integrate the result with respect to x from −∞ to +∞, we get

∫ +∞

−∞
w1p1 dx = −u0

∫ +∞

−∞
ρ0u1w1 dx. (5.3)

If we define

∫ +∞

−∞
w1p1 dx ≡ w1p1 (5.4)

∫ +∞

−∞
u1w1 dx ≡ u1w1, (5.5)

then (5.2) and (5.3) become

d

dz
(w1p1) = −ρ0u1w1

du0

dz
(5.6)

w1p1 = −ρ0u0 u1w1, (5.7)

respectively. Comparison of (5.6) with (5.7) shows that

−ρ0u1w1 = constant when u0 �= 0, (5.8)

i.e., the wave stress is constant with height except where u0 = 0. This is a formal
proof of the conjecture made in Chapter 3, where it was shown that the stress
associated with an internal gravity wave is constant as shown by (3.104). We also
see from (5.7) that in a layer where u0 �= 0 the total vertical flux of wave energy
varies with height in proportion to u0.

5.2 WAVE ACTION

In the previous section, we saw that the total wave energy is conserved only
in the absence of a background wind. We now review the argument proposed by
Bretherton (1966) which demonstrates that a form of the wave energy is conserved
in the presence of a background wind.
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We begin by multiplying the linearized equation for horizontal momentum (2.6)
by the vertical velocity perturbation, w′. We assume wave-like perturbations of
the form w′ = w1 exp[i(kx − ωt)] and take the real parts of the terms to get

(ω − u0k) u1w1 = k

ρ0
w1p1. (5.9)

Integrating over (5.9) over a wave period, and making use of the definition of the
intrinsic frequency (2.18), we have

ρ0u1w1 = k

�
w1p1. (5.10)

From (2.98) and (2.101) we see that

w1p1 = wgE (5.11)

and

u1p1 = ugE, (5.12)

where wg and ug are the vertical and horizontal components, respectively, of the
group velocity. Then, using (5.11) in (5.10) gives

ρ0u1w1 = k

�
wgE. (5.13)

Using (5.13), the average of the energy transfer term in (5.1) can be written as

ρ0u1w1
du0

dz
= k

�

du0

dz
wgE = −E

�

Dg�

Dt
, (5.14)

where Dg/Dt is defined by (2.103). The equation for the mean wave energy density
(2.86) can now be written as

∂E

∂t
+ ∇ · �vgE − E

�

Dg�

Dt
= 0, (5.15)

or more simply as

∂

∂t

(
E

�

)
+ ∇ ·

(
�vg

E

�

)
= 0. (5.16)
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Bretherton (1966) refers to E/� as the wave action. Unlike wave energy, wave
action is a conserved quantity. To illustrate this, use (5.11) in (5.6) to get

d

dz

(
wgE

) = −ρ0u1w1
du0

dz
. (5.17)

If we assume that the wave stress and vertical group velocity are constants, and if
du0/dz > 0, then the change in wave energy 	E of an upward-propagating
wave over a vertical distance 	z is proportional to −(du0/dz)	z. From the
definition of the intrinsic frequency (2.18),

∂�

∂z
= −k

du0

dz
. (5.18)

If du0/dz > 0, then the change in � over the vertical distance 	z is also pro-
portional to −(du0/dz)	z. However, the ratio E/�, which is the wave action,
does not change.

5.3 THE CRITICAL LEVEL

In this section, we examine gravity wave behavior at a critical level, i.e., where
the wave phase speed equals the background wind speed. The analysis follows
that given by Booker and Bretherton (1967). If we ignore the terms involving the
isothermal scale height, Hs , the Taylor–Goldstein equation (2.34) is

d2w1

dz2
+
[

N2

(c − u0)2
+ u′′

0

(c − u0)
− k2

]
w1 = 0. (5.19)

Clearly, there is a singularity (a second-order pole) in (5.19) where c − u0 = 0,
and we must in some way account for this if we are to solve the equation over
a reasonable depth of the atmosphere. As we shall see, critical levels are quite
common in the atmosphere.

Let us assume that the wave is approaching the critical level, zc, from above,
as illustrated in Fig. 5.1. At a distance ζ above zc we expand the background wind
speed to second order to get

u0(ζ + zc) = c + du0

dz

∣∣∣∣
zc

ζ + 1

2

d2u0

dz2

∣∣∣∣
zc

ζ 2 + · · · (5.20)

It is easily shown that

1

c − u0(ζ + zc)
≈ −1 − (1/2)(a2/a1)ζ

a1ζ
(5.21)
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FIGURE 5.1 A gravity wave approaches a critical level from above.

where

a1 = du0

dz

∣∣∣∣
zc

(5.22)

and

a2 = d2u0

dz2

∣∣∣∣
zc

. (5.23)

Using (5.21)–(5.23) in (5.19) leads to

d2w1

dζ 2
+
[
Rc

ζ 2
− α

ζ
+ γ

]
w1 = 0, (5.24)

where

Rc = N2

a2
1

(5.25)

is the Richardson number at z = zc,

α = a2

a1
(Rc + 1), (5.26)

and

γ = 1

2

a2
2

a2
1

(
Rc

2
+ 1

)
− k2. (5.27)

We now introduce the Frobenius expansion (see, for example, Bender and Orzag,
1999), i.e.,

w1(k, ζ + zc) =
∑
n

Cnζ
n+λ. (5.28)
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Using (5.28) in (5.24), and ordering terms according to powers of ζ , gives

[λ(λ − 1) + Rc]C0 ζ λ−2 +
{[λ(λ + 1) + Rc]C1 − αC0} ζ λ−1 +
{[(λ + 1)(λ + 2) + Rc]C2 − αC1 + γC0} ζ λ + · · · = 0. (5.29)

For a nontrivial solution to (5.29), each coefficient of ζ must be zero. This leads
to the recursion relations

C1 = α

λ(λ + 1) + Rc

C0 (5.30)

and

C2 = α2[λ(λ + 1)]−1 − γ

(λ + 1)(λ + 2) + Rc

C0. (5.31)

The indicial equation is obtained from the first term in (5.29)

λ(λ − 1) + Rc = 0 (5.32)

with solution

λ = 1

2
± iμ (5.33)

where

μ = [Rc − 0.25]1/2. (5.34)

From (5.33) we see that the powers in the Frobenius expansion are complex
numbers. We now expand (5.28) to second order to get

w1(k, zc + ζ ) = C+
0 ζ λA(ζ ) + C−

0 ζ λ∗
A∗(ζ ) (5.35)

where

A(ζ ) = 1 + C1

C0
ζ + C2

C0
ζ 2. (5.36)

In the above equations, C+
0 refers to values using λ = 1/2 + iμ and C−

0 refers to
values using λ = 1/2 − iμ. At this point, we know the values of all the variables
except C+

0 and C−
0 . We can get another equation by taking the vertical derivative

of (5.35) to get

dw1

dz
= C+

0 ζ λB(ζ ) + C−
0 ζ λ∗

B∗(ζ ), (5.37)
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where

B(ζ ) = λζ−1 + C1

C0
(λ + 1) + C2

C0
(λ + 2)ζ. (5.38)

Using (5.35) and (5.37) to solve for C+
0 and C−

0 we get

C+
0 = A∗(dw1/dz) − B∗w1

D
(5.39)

C−
0 = A(dw1/dz) − Bw1

D∗ (5.40)

where

D = A∗B − AB∗. (5.41)

Now let us examine the wave below the critical level. At a distance ζ below zc

we have

w1(k, zc − ζ ) = C+
0 (−ζ )λA(−ζ ) + C−

0 (−ζ )λ
∗
A∗(−ζ ) (5.42)

dw1

dz
(k, zc − ζ ) = −C+

0 (−ζ )λB(−ζ ) − C−
0 (−ζ )λ

∗
B∗(−ζ ). (5.43)

We now have almost all we need to carry the wave solutions across the critical
level. What remains is how to describe (−ζ )λ and (−ζ )λ

∗
in (5.42) and (5.43). To

evaluate these functions, we introduce a small imaginary phase speed, i.e.,

c = cr + ici . (5.44)

Then (5.19) becomes

d2w1

dz2
+
[

N2

(cr + ici − u0)2
+ u′′

0

cr + ici − u0
− k2

]
w1 = 0. (5.45)

As the wave approaches the critical level from above, we expand the background
wind speed as

cr − u0 = − du0

dz

∣∣∣∣
zc

(z − zc) = a1(z − zc), (5.46)

where we have used (5.22). As z → zc, the buoyancy term in (5.45) dominates
so that

d2w1

dz2
+ Rc

(z − zc − ici/a1)2
w1 = 0. (5.47)
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FIGURE 5.2 The path over the singularity at z = zc in the complex plane determines whether
−1 equals exp(iπ) or exp(−iπ) when z � zc .

Now using (5.28) with ζ = z − zc − ici/a1, the solution to (5.47) takes the form

w1(k, z − zc) = A

(
z − zc − i

ci

a1

)1/2+iμ

+ B

(
z − zc − i

ci

a1

)1/2−iμ

. (5.48)

In polar form,

z − zc − i
ci

a1
= reiθ (5.49)

where

r =
[
(z − zc)

2 +
(

ci

a1

)2
]1/2

(5.50)

and

θ = tan−1
[
− ci

a1(z − zc)

]
. (5.51)

We now go to the complex plane illustrated in Fig. 5.2. For z � zc, θ → 0, but
for z � zc, θ goes to either π or −π depending on whether we go over or under
the singularity at z = zc. If a1 > 0, then θ → −π/2 at z = zc, and we must go
under the singularity. Then for z � zc and letting ci → 0, we have

−(z − zc) = (z − zc) e−iπ = ζ e−iπ . (5.52)

From (5.52) we see that

(−ζ )λ = ζ λe−iπλ. (5.53)
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Using the positive branch of (5.33) for λ in (5.53) gives

(−ζ )λ = ζ λ e−iπ(1/2+iμ)

= ζ λ e−iπ/2eπμ

= −iζ λ eπμ. (5.54)

If a1 < 0, then in a similar way we can show that

(−ζ )λ = i ζ λ e−πμ. (5.55)

It will be necessary to know what terms in (5.48) correspond to upward- and
downward-moving waves. This can be unambiguously determined by calculating
the wave stress. Considering ζ real and μ > 0, then (5.48) takes the form

w1 = Aζ 1/2ζ iμ + Aζ 1/2ζ−iμ. (5.56)

The factor ζ iμ can be expressed as eiμ ln(z−zc). Using this and the continuity
equation (2.16) gives

w1 = ζ 1/2
[
Aeiμζ + Be−iμζ

]
(5.57)

u1 = ζ−1/2
[(

i
1

2
− μ

)
A

k
eiμ ln ζ +

(
i
1

2
+ μ

)
B

k
e−iμ ln ζ

]
. (5.58)

Using (5.57) and (5.58) in (3.102), the wave stress is

τ = 0.5μ

k2
(A2 − B2). (5.59)

We see that the A term represents an upward-moving wave (positive wave stress),
and the B term represents a downward-moving wave.

Consider now the case when the wind shear at the critical level is positive, i.e.,
a1 > 0, then above the critical level we can write (5.48) as

w+
1 = A(z − zc)

(1/2)+iμ + B(z − zc)
(1/2)−iμ (5.60)

= |z − zc|1/2 (Aeiμ ln |z−zc| + Be−iμ ln |z−zc|), (5.61)

and below the critical level it can be

w−
1 = −ieπμ A(z − zc)

(1/2)+iμ − ie−πμB(z − zc)
(1/2)−iμ (5.62)

= −i|z − zc|1/2(Aeπμ eiμ ln |z−zc| + Be−πμ e−iμ ln |z−zc|). (5.63)
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For the upward-moving wave, the wave amplitude below zc is Aeπμ, and above
zc it is A. We see that there is an exponential decrease in wave amplitude across
the critical level. However, as Booker and Bretherton (1967) point out, the wave
stress is a truer measure of wave amplitude. Then, above the critical level and
using the continuity equation (2.8), we see that

u1 ∝ dw1

dz
∝ ζ λ−1, (5.64)

so that the wave stress τ+ ∝ ζ 2λ−1. Similarly, below the critical level the wave
stress is τ− ∝ e2πμ ζ 2λ−1. Thus, in passing through the critical wave level, the
wave stress is reduced an amount e−2π

√
Rc−0.25. This is a large reduction. For

example, if Rc = 0.5, the reduction is 0.04; if Rc = 1, the reduction is 0.004;
and if Rc = 10, the reduction is 3 × 10−9. Thus, for almost all cases the wave
is essentially dissipated on passing through a critical level. This is an extremely
important result. We have seen in Chapter 3 that terrain features can generate
gravity waves, which in turn vertically transport horizontal momentum. However,
unless the wave is dissipated, the momentum transport is constant. Critical levels
provide this dissipation. For terrain-generated gravity waves, critical levels exist
where u0 = 0.

Let us now take a more physical rather than mathematical look at what happens
when a wave approaches a critical level; however, we still remain within the linear
theory. Imagine now an upward-propagating wave approaching zc from below.
Then, using (2.8), (5.62), and (5.63) and taking real parts, we have

w1 ∝ |z − zc|1/2 sin(μ ln |z − zc|) (5.65)

u1 ∝ |z − zc|−1/2 sin(μ ln |z − zc|). (5.66)

The term sin(μ ln |z − zc|) behaves as if the local wavenumber is

m = μ

z − zc

. (5.67)

Then, as illustrated in Fig. 5.3, we see that as the wave approaches the critical level
w1 → 0, u1 → ∞, and the vertical wavelength λz → 0, resulting in increasingly
rapid oscillations. However, in reality the vertical shear in the horizontal wind
speed perturbation, which varies as |z − zc|−3/2, will become large and exceed
the shear of the background wind. When this happens, the Richardson number
near the critical level will become small, indicating the production of turbulence.
Thus, the wave field breaks down into turbulence before the wave reaches zc. This
important result will be discussed further in Chapter 7. Using (5.67) in (2.69),
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FIGURE 5.3 As a gravity wave approaches a critical level, w1 → 0, u1 → ∞, and λz → 0.

FIGURE 5.4 Schematic illustration of a wave packet approaching a critical level from below.
Because the vertical group velocity approaches zero near the critical level, the packet never reaches
the critical level.

we see that the vertical group velocity below the critical level (z < zc) is

wg = kμ

N2

(c − u0)
3

|z − zc| . (5.68)

As the wave approaches the critical level, (u0 − c)3 → 0 much more rapidly
than (zc − z) → 0 so that wg → 0. In effect, the wave packet never reaches the
critical level. Figure 5.4 illustrates the changes in a wave packet as it approaches
a critical level from below. Because the vertical wavelength (z − zc) decreases,
the vertical wavenumber increases as the wave packet approaches zc. We see also
that as the wave fronts become increasingly horizontally oriented, the vertical
group velocity becomes less.

However, as pointed out by Booker and Bretherton (1967), these infinities at the
critical level disappear if ci �= 0. These singularities are characteristic of standing
waves, i.e., mountain waves, that have persisted for a long time. The spectrum
of waves generated by a mountain have the same intrinsic frequency, and they
combine to form a standing disturbance of finite magnitude. Transient waves, each
with first-order (infinitesimal) amplitudes and dispersive wavenumbers, do not
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“build up,” and singularities in the total integrated disturbance may never appear.
These waves might pass through a critical level only lightly modified.

We can determine the changes in the characteristics of a transient wave when it
passes through a critical level by noting the changes in the wavenumbers. Consider
first the case where a1 > 0. Then (5.60) applies. Using (5.67) in (2.63), the phase
equations are

kx + μ

(z − zc)
z = cI t for the A solution (5.69)

and

kx − μ

(z − zc)
z = cI t for the B solution, (5.70)

where cI = c − u0 is the intrinsic phase speed, and we have taken phase angle φ

equal to zero. Below zc, i.e., z < zz, cI is positive since c > u0, and μ/|z − zc| is
negative for both the A and the B solutions. Then, k is positive for both solutions,
but from (5.69) and (5.70) we see that the vertical phase velocity is negative for
the A solution, i.e., m < 0, and positive for the B solution, i.e., m > 0. Above
zc, cI and k are both negative for both solutions; however, m is still negative for
the A solution and positive for the B solution. Thus, we see that the A solution
corresponds to a downward-moving wave and the B solution corresponds to an
upward-moving wave.

If a1 < 0, (5.60) takes the form

w1 = A(z − zc)
(1/2)−iμ + B(z − zc)

(1/2)+iμ. (5.71)

Applying the same arguments as above on (5.69) and (5.70), we see that now the A

solution corresponds to an upward-moving wave and the B solution corresponds
to a downward-moving wave. These results are summarized in Fig. 5.5, which
illustrates the orientation of the wave vector on either side of the critical level for
positive and negative wind shears.

The above results were developed for a frictionless adiabatic atmospheric flow.
If we included viscosity and heat conduction, then as shown by Hazel (1967)

FIGURE 5.5 Orientation of the wave vector as a transient wave passes through a critical level
for both positive and negative background wind shears.
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and Fritts and Geller (1976) the equation for the vertical velocity perturbation
would be[

ik(c − u0) + K

(
∂2

∂z2
− k2

)]{[
−ik(c − u0)ν

(
∂2

∂z2
− 2k2

)]
∂2

∂z2

− ik[u′′
0 − k2(c − u0)] − νk4

}
w − k2N2w = 0, (5.72)

where ν is the kinematic viscosity and K is the thermal conductivity. Equation
(5.72) is a sixth-order differential equation, which must be solved numerically.
We see that the singularity at the critical level has been removed. Now, instead of
w1 → 0 and u1 → ∞ as the critical level is approached, the flow variables vary
continuously at the critical level is approached. However, the reductions in wave
amplitude and wave stress predicted by the linear model still occur.
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6
Waves and Turbulence

6.1 Parcel Exchange Analysis of Flow Stability
6.2 Shear Instability and Unstable Modes

6.2.1 Kelvin–Helmholtz Instability
6.2.2 The Stability of Shear Flows

6.3 Wave-Modulated Richardson Number
6.4 Wave-Turbulence Coupling
6.5 Jefferys’ Roll-Wave Instability Mechanism

Gravity wave and turbulence are often observed to exit simultaneously in almost
all stably stratified flows (see, for example, Turner, 1973; Caughey and Readings,
1975; Hunt, Kaimal, and Gaynor, 1985; Finnigan, 1988; Nappo and Johansson,
1999). Indeed, gravity wave instability is the ultimate source of turbulence in the
stable atmosphere and oceans. For example, we have seen in the previous chapter
that turbulence may be observed near a critical level where wave breaking occurs.
There are other ways in which gravity waves can produce turbulence, and these
will be examined in this chapter.

6.1 PARCEL EXCHANGE ANALYSIS OF
FLOW STABILITY

We begin our study with a somewhat mechanistic examination of turbu-
lence production. The method is based on the stability analyses performed by
Chandrasekhar (1961) and Ludlum (1967) and generalized by Hines (1971) to
include the effects of stratification along slanting surfaces. The method looks at
the total energy of two fluid parcels before and after a virtual vertical exchange of
their positions. If the total energy of the system increases, then work has been done
on the system, and the system is stable. However, if the total energy decreases,
then work has been done by the system, and the system is unstable.

Figure 6.1 illustrates the flow under study. Fluid A has constant density ρA and
uniform speed uA. Fluid B has constant density ρB and uniform speed uB . Fluid
parcel A is at height zA above some arbitrary reference height, and fluid parcel B
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FIGURE 6.1 Fluid parcels in their initial configuration. After parcels A and B exchange posi-
tions, the new kinetic and potential energies will be evaluated. The stability of the system is determined
in change in the total energy of the system after parcel exchange.

is at height zB . The interface between the two fluids lies between zA and zB . The
initial potential energy, PI , and kinetic energy, KI , of the system are

PI = g(ρAzA + ρBzB) (6.1)

and

KI = 1

2

(
ρAu2

A + ρBu2
B

)
. (6.2)

We now exchange the parcel positions. The exchange process is adiabatic, and we
require conservation of mass and momentum. Conservation of mass requires

ρA + ρB = ρ′
A + ρ′

B, (6.3)

where the primes indicate values after parcel exchange. Conservation of momen-
tum gives

ρAuA + ρBuB = (
ρ′

A + ρ′
B

)
uf = (ρA + ρB)uf , (6.4)

where uf is an effective final speed. Solving (6.4) for uf gives

uf = ρAuA + ρBuB

ρA + ρB

. (6.5)

The final potential and kinetic energies are

PF = g
(
ρ′

AzB + ρ′
BzA

)
(6.6)
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and

KF = 1

2
(ρA + ρB)u2

f

= 1

2

(ρAuA + ρBuB)2

ρA + ρB

, (6.7)

respectively, and where we have used (6.5) in (6.7). The change in kinetic energy
as a result of the exchange is

KF − KI = − ρAρB

2(ρA + ρB)
(uA − uB)2 . (6.8)

If we assume that the density of the parcels is constant during the exchange, then
the change in potential energy is

PF − PI = g(ρA − ρB)(zB − zA). (6.9)

The work done on the system, W , is

W = (KF + PF ) − (KI + PI )

= (PF − PI ) + (KF − KI ). (6.10)

Using (6.8) and (6.9) in (6.10) gives

W = g(ρA − ρB)(zB − zA) − 1

2

ρAρB

(ρA + ρB)
(uA − uB)2. (6.11)

If W > 0, then work has been done on the system, and the total energy of the
system has increased. If W < 0, then work has been done by the system, and the
total energy has decreased. Expressed more simply,

W > 0 ⇒ stable flow

W < 0 ⇒ unstable flow.

The change in kinetic energy (6.8) is always negative and will always act to
decrease the total energy of the system. Thus, changes in kinetic energy act to
create turbulence; it is a production term. However, the change in potential energy
(6.9) can be either positive or negative. Consider the case when ρA = ρB = ρ and
uA �= uB . Then,

W = − 1
4ρ(uA − uB)2, (6.12)
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and we see that the system is always unstable. We refer to such a system as being
dynamically unstable. If ρA > ρB and uA = uB , then from (6.11) we see that
if zB > zA, the system is convectively stable, but if zB < zA, the system is
convectively unstable. In the latter case, fluid of greater density is forced to lie
over fluid of lesser density.

We consider next the case of height-varying density and speed. Instead of
exchanging two fluid parcels, we vertically move a fluid parcel from its initial
location at point A to a nearby location B. Expanding ρB and uB to first order
about the point A, we have

ρB = ρA + ∂ρ

∂z

∣∣∣∣
zA

(zB − zA) (6.13)

uB = uA + ∂u

∂z

∣∣∣∣
zA

(zB − zA). (6.14)

Substitution of (6.13) and (6.14) into (6.11) leads to

W = −g
∂ρ

∂z
(zB − zA)2 − 1

2

ρ2
A + ρA(∂ρ/∂z)(zb − zA)

2ρA + (∂ρ/∂z)(zB − zA)

[
∂u

∂z
(zb − zA)

]2

.

(6.15)

Note that

ρ2
A + ρA(∂ρ/∂z)(zb − zA)

2ρA + (∂ρ/∂z)(zB − zA)
≈ ρA

2
, (6.16)

so that (6.15) becomes

W = ρ0N
2(zB − zA)2 − ρ0

4

(
∂u

∂z

)2

(zB − zA)2, (6.17)

where we have set ρA = ρ0 and used (1.68). Equation (6.17) can be further
simplified, i.e.,

W = ρ0(zB − zA)2
(

∂u

∂z

)2

(Ri − 0.25), (6.18)

where

Ri = N2

(∂u/∂z)2
. (6.19)

Ri is called the Richardson number and is a fundamental parameter in turbulence
theory. The Richardson number will be discussed in Chapter 7. We see that the
criterion for stability is the value of Ri relative to one-fourth. If Ri > 1/4, the flow
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is stable, i.e., if the fluid is disturbed by a small vertical displacement, it will return
to its initial configuration or harmonically oscillate about that state. The Richardson
number is a fundamental turbulence parameter and represents the ratio of the
production of turbulence by buoyancy to the production of turbulence by velocity
shear. The condition for convective instability is Ri < 0. Dynamic instability
occurs over the range 0 ≤ Ri ≤ 0.25. A flow is said to be dynamically stable if
Ri > 0.25.

6.2 SHEAR INSTABILITY AND UNSTABLE
MODES

In this section, we examine the stability of stratified shear flows. The analysis is
straightforward. A small, linear, wave-like disturbance, usually a vertical displace-
ment of a streamline, is introduced into the flow, and we examine the temporal
evolution of the disturbance. If the amplitude of the disturbance remains bounded,
then we say that the flow is dynamically stable. However, if the amplitude grows
without limit, then we assume an instability results. Note that this linear stabil-
ity analysis can trace the evolution of a flow only to the onset of an instability.
Subsequent flow development is not accessible to the linear theory. Also note that
a stability analysis usually gives the conditions for the flow to be stable to small
disturbances. The fact that a certain flow condition may be unstable to small dis-
turbances is not a sufficient condition for instability. For example, in the linear
analysis we usually assume a frictionless flow; however, all real fluids have some
viscosity, and this can act to stabilize a flow (see, for example, Fritts and Geller,
1976; Thorpe, 1981). Baines (1995) points out that if a gravity wave approaches
a critical level slowly, the viscous dissipation in the critical layer may be large
enough to prevent explosive growth and overturning. In this case, the wave never
reaches the critical level. The linear theory also neglects surface tension effects,
and these may be strong enough to stabilize a shear flow between immiscible flu-
ids. It is also possible that the disturbance wavenumber or phase velocity required
for instability is not present. Thus, we see that there are many reasons why a flow
may be stable even though a linear stability analysis indicates it is unstable.

In the previous section we examined the stability of a stratified flow by evaluat-
ing the total energy of a two-particle system before and after an adiabatic exchange
of fluid parcel positions. The analysis was kinematic. We did not look at how the
instability developed. Indeed, the question of time dependence did not enter the
analysis. It would therefore seem that the results are perhaps not very helpful;
however, it did show that the source of flow instability is the velocity shear. We
saw that the Richardson number provides a means for estimating flow stability
and that there is a range of values of Ri between 0 and 0.25 where the flow can
be dynamically unstable. In this section we will examine the dynamic stability of
stratified flows and examine the effects of this shear instability on the generation
of gravity waves. We begin with the most simple flow situation and proceed to
more complicated flows.
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6.2.1 KELVIN–HELMHOLTZ INSTABILITY

The simplest model of a shear layer is the so-called Helmholtz profile illustrated
in Fig. 6.2. The flow is constant but different in each of two semi-infinite planes,
and the change in background speed occurs sharply across a thin interface. Thus,
the vertical shear can be considered large or infinite. We wish to examine the
stability of the interface to small wave perturbations. We assume that the flow in
each half-plane is inviscid, incompressible, and irrotational and that the Brunt–
Väisälä frequencyis zero. Further, we assume that the background pressures are in
hydrostatic balance. Because the Brunt–Väisälä frequencyis zero in each layer, we
can anticipate that waves in each layer will be evanescent. The linearized Eulier
equations are

∂u1

∂t
+ u0

∂u1

∂x
= − 1

ρ0

∂p1

∂x
(6.20)

∂w1

∂t
+ u0

∂w1

∂x
= − 1

ρ0

∂p1

∂z
(6.21)

∂u1

∂x
+ ∂w1

∂z
= 0. (6.22)

We assume that as z → ± ∞, the perturbations go to zero. At the interface
z = 0, we apply the dynamic and kinematic boundary conditions. We assume
wave solutions of the form

u1 = ũ(z) ei(kx−ωt) (6.23)

FIGURE 6.2 The Helmholtz profile. Similar to Fig. 6.1, but now the interface between the two
fluids is important.
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w1 = w̃(z) ei(kx−ωt) (6.24)

p1 = p̃(z) ei(kx−ωt), (6.25)

so that the polarization equations in the upper fluid are

�BũB = kp̃B

ρB

(6.26)

�Bw̃B = i

ρB

∂p̃B

∂z
(6.27)

ũB = i

k

∂w̃B

∂z
, (6.28)

where � is the intrinsic frequency and ρB is the density of fluid B. A similar set of
equations is written for the lower fluid. The dynamic boundary condition requires
that the pressure be continuous across the interface between two fluids. Thus, we
need to solve (6.26)–(6.28) in terms of p̃B . This leads to

∂2p̃B

∂z2
− k2p̃B = 0. (6.29)

Then, using (6.29), the equations for the vertical variations in the upper fluid
become

p̃B = p̃B(0) e−kz (6.30)

ũB = kp̃B(0)

�BρB

e−kz (6.31)

w̃B = ikp̃B(0)

�BρB

e−kz. (6.32)

In the lower fluid we have

p̃A = p̃A(0) ekz (6.33)

ũA = kp̃A(0)

�AρA

ekz (6.34)

w̃A = ikp̃A(0)

�AρA

ekz. (6.35)
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FIGURE 6.3 The disturbed interface between two different fluids.

The disturbed interface is illustrated in Fig. 6.3. The vertical displacements in the
upper and lower fluids are

ζB = ζ̃B e−kz+i(kx−ωt) (6.36)

ζA = ζ̃A ekz+i(kx−ωt). (6.37)

The interface displacements are related to the vertical velocity perturbations, i.e.,

DζB

Dt
= ∂ζB

∂t
+ uB

∂ζB

∂x
= w1,B (6.38)

DζA

Dt
= ∂ζA

∂t
+ uA

∂ζA

∂x
= w1,A. (6.39)

Using (6.24), (6.32), and (6.36) in (6.38) and solving for p̃B gives

p̃B = −�2
BρB

k
ζ̃B. (6.40)

Likewise, in the lower layer we have

p̃A = �2
AρA

k
ζ̃A. (6.41)

The dynamic boundary condition requires that the total pressure be continuous
across the interface, i.e.,

p0,B + p1,B = p0,A + p1,A, (6.42)

where p0,A and p0,B are the background pressures in lower and upper flu-
ids, respectively. The background pressures are given by the hydrostatic
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equation (1.37). Assuming that the mean interface height is zero and using (6.36)
and (6.37), we get

p0,B = −ρBgζB = −ρBgζ̃B ei(kx−ωt) (6.43)

p0,A = −ρAgζA = −ρAgζ̃A ei(kx−ωt). (6.44)

Note that the background pressures are neither steady nor horizontally uniform,
but vary with the height of the interface. This is a consequence of the hydrostatic
condition. Using (6.40) and (6.41), the perturbation pressures are

p1,B = −�2
BρB

k
ζ̃Bei(kx−ωt) (6.45)

p1,A = �2
AρA

k
ζ̃Aei(kx−ωt). (6.46)

Using (6.43)–(6.46) in (6.42) gives

−ρBgζ̃B − �2
BρBζ̃B

k
= −ρAgζ̃A + �2

AρAζ̃A

k
. (6.47)

The kinematic boundary condition requires that the two fluids remain in contact
at the interface; therefore, ζ̃B = ζ̃A, and (6.47) becomes

(ρA − ρB)gk = �2
AρA + �2

BρB. (6.48)

Using the definition of intrinsic frequency, �, (6.48) becomes

ω

k
= ρAuA + ρBuB

ρA + ρB

±
[
g

k

(ρA − ρB)

(ρA + ρB)
− ρAρB(uB − uA)2

(ρA + ρB)2

]1/2

, (6.49)

where uB and uA are the mean speeds in the upper and lower fluids, respectively.
Equation (6.49) is our final result; it represents the complex horizontal phase
velocity of interface disturbances. The first term on the right-hand side represents
the mean horizontal speed across the interface. The first term in braces is called
the buoyancy term. It represents the buoyant forces acting on the interface. If
ρA > ρB , then the stratification is stable, and the buoyant force acts to suppress
the growth of the disturbances. If ρA < ρB , then a convective instability results.
The second term in braces is called the production term. It is always positive. In
their effects, the the buoyancy and production terms are similar to the potential
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and kinetic energy terms appearing in (6.11). If the buoyancy term is greater than
the production term, ω is real and the interface displacements are given by

ζ = ζ(0) e−kz cos(kx − ωt) z > 0 (6.50)

ζ = ζ(0) ekz cos(kx − ωt) z < 0. (6.51)

Note that the size of the disturbances decrease exponentially away from the
interface. These are evanescent waves, as illustrated in Fig. 2.4.

Now consider the case when uA = uB = u0. Then, (6.49) becomes

ω

k
= u0 ±

[
g(ρA − ρB)

k(ρA + ρB)

]1/2

. (6.52)

We have already seen that if ρA > ρB , the interface is convectively stable, and if
ρA < ρB the interface is convectively unstable. If ρB � ρA and if u0 = 0, then
(6.57) reduces to

ω = √
kg, (6.53)

which is the dispersion relation for waves on deep water. When ρA = ρB and if
uA �= uB , then

ω

k
= 1

2
(uA + uB) ± i

1

2
|uA − uB |. (6.54)

In this case the interface is always unstable because it will grow as e0.5|uA−uB |t .
We have said that the Helmholtz profile is dynamically unstable, and this is

confirmed in (6.49) where we see that for wavenumbers greater than kcrit , where

kcrit = g

ρAρB

ρ2
A − ρ2

B

(uA − uB)2
, (6.55)

the production term will be greater than the buoyancy term, and ω will be complex,
i.e., ω = ωr + iωi . In the upper layer,

ζ = ζ(0) e−kz eωi t cos(kx − ωrt), (6.56)

with a similar result for the lower layer. Recall that in Section 6.1 we conjectured
that instability would somehow lead to turbulence. However, we see now that insta-
bilities of the Helmholtz profile take the form of exponential growth of the interface
displacements, as illustrated in Fig. 6.4. The flow in each layer pushes the crests
of the interface wave in the respective forward directions causing the wave to “roll
up” and limit vertical growth. In nature, Kelvin–Helmholtz instabilities manifest
themselves as Kelvin–Helmholtz waves that can also be observed with radars and
sonars as billow clouds, as shown in Figs. 6.5–6.7. These waves do not persist



Shear Instability and Unstable Modes 135

FIGURE 6.4 Rolling up of a vortex sheet as a function of dimensionless time and distance.
(From “The formation of vortices from a surface discontinuity,” L. Rosenhead, Proc. R. Soc. London
A, 143: 187, 1931.)

FIGURE 6.5 Billow clouds in Frösön, Sweden. Photo by Roger Gyllenhammar.

even if the flow is steady. This is because the growth of wave amplitude and the
effects of velocity shear cause the heavier (more dense) fluid in the lower layer to
be displaced above the lighter (less dense) fluid of the upper layer—a process not
unlike the parcel exchange discussed in Section 6.1. When this happens, a con-
vective instability develops, and the waves break down, resulting in turbulence.
We see that the wave-turbulence process begins with a dynamic instability which
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FIGURE 6.6 Kelvin–Helmholtz waves observed with frequency-modulated, continuous-wave
(FM/CW) radar on June 25, 1970, at the Navy Research Facility, San Diego, CA, by E.E. Gossard, J.R.
Richter, and D.R. Jensen. The horizontal axis is time (PST) and the vertical axis is height in meters.
(From “Steps, waves and turbulence in the stably stratified planetary boundary layer,” G. Chimonas,
Boundary-Layer Meterol., 90: 397, 1999.)

leads to a convective instability and then to turbulence. It is often assumed that
turbulence occurs when Ri < 0.25; however, this is not accurate. Indeed, as we
shall see in the next sections, a linear analysis of shear flows shows that a sufficient
condition for stability against infinitesimal disturbances is Ri > 0.25.

6.2.2 THE STABILITY OF SHEAR FLOWS

We have seen in the previous section that flow stability is controlled by the
imaginary component of the wave frequency or, equivalently, the imaginary com-
ponent of the phase velocity, ci . Linear stability analysis determines under what
flow conditions the phase velocity of small disturbances remains real. In the pre-
vious section we saw that for an infinite shear layer (Fig. 6.2) the phase velocity
of small disturbances remains real if the wavenumber of the disturbance is less
than some critical wavenumber. For wavenumbers greater than the critical value,
the flow can become unstable and break down into turbulence. In real flows, this
turbulence will vertically mix the two fluids, producing a third layer in which the
velocity shear is now finite. In this section we examine the stability of such a finite
shear layer.

6.2.2.1 Inflection Point Instability

The simplest problem involving instability of a shear flow is the case of a
bounded homogeneous flow. This type of flow was first analyzed by Rayleigh
(1945) and is sometimes called the Rayleigh instability problem. We consider a
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FIGURE 6.7 Kelvin–Helmholtz waves observed near Boulder, CO, with an acoustic sounder.
(From Studies of Nocturnal Stable Layers at BAO, R.L. Zamora, National Atmospheric and Oceanic
Administration, NOAA/ERL, Boulder, CO, 1983, p. 109.)

two-dimensional homogeneous flow with vertical boundaries at heights z1 and z2
such that w′ = 0 at these heights. One can imagine a flow in an enclosed tank or
channel. However, z1 and z2 can be infinitely large if the flow perturbations, i.e.,
the streamline displacements, vanish there. The Taylor–Goldstein equation (2.34)
takes the form

∂2ŵ

∂z2
+
[

u′′
0

(c − u0)
− k2

]
ŵ = 0, (6.57)

where primes denote differentiation with respect to z. We assume c is a complex
number, i.e., c = cr + ici . We now multiply (6.57) by ŵ∗, the complex conjugate
of ŵ, and integrate from z1 to z2 to get

−
∫ z2

z1

∣∣∣∣∂ŵ

∂z

∣∣∣∣
2

dz −
∫ z2

z1

k2|ŵ|2 dz =
∫ z2

z1

u′′
0

cr + ici − u0
|ŵ|2 dz, (6.58)
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where we have integrated the first term by parts, i.e.,

∫ z2

z1

ŵ∗ ∂2ŵ

∂z2
dz = −

∫ z2

z1

∣∣∣∣∂ŵ

∂z

∣∣∣∣
2

dz. (6.59)

The imaginary part of (6.58) is

ci

∫ z2

z1

u′′
0

|c − u0|2 |ŵ|2 dz = 0. (6.60)

For instability, ci �= 0, and if (6.60) is to hold and if |ŵ| �= 0, then u′′
0 = 0

somewhere between z1 and z2. If u′
0 is continuous, then for instability there must be

at least one inflection point between the two vertical boundaries. Inflection points
are often associated with velocity jets. At an inflection point, the velocity shear has
a maximum, and we can expect a high probability for shear instability. However,
the presence of a stable stratification, which is absent in the above analysis, can
suppress the destabilizing effect of the wind shear. This is why instabilities are not
always found near inflection points in stratified flows.

6.2.2.2 The Stability of Stratified Shear Flows

The introduction of a stable stratification into the shear flow problem results
in an immediate complication; however, the complication is more algebraic than
physical. The problem was solved in detail by Miles (1961) who developed 10
theorems relating to stratified shear flow. Theorem 10 states that sufficient condi-
tions for stability of a heterogeneous shear flow are the mean wind speed is nonzero
and the Richardson number is greater than 0.25. Howard (1961) analyzed this prob-
lem from a more simple perspective. Here, we shall follow Howard’s analysis, but
the interested reader should look at Miles’ paper for details and insights not con-
tained in Howard. We assume a two-dimensional, frictionless, irrotational flow
and make the Boussinesq approximation. The first-order vertical displacement,
ζ1, of a fluid particle from its equilibrium position is described by

ζ1(x, z, t) = F(z) eik(x−ct), (6.61)

where k is real and phase speed c can be a complex number. The boundary con-
ditions are that F(z) = 0 at z = z1 and z = z2 which can recede to ±∞. Then
noting that

Dζ1

Dt
= ∂ζ1

∂t
+ u0

∂ζ1

∂x
= w1, (6.62)

and using (6.62) in (2.6)–(2.8), we obtain

u1 = [(c − u0)ζ1]′ (6.63)
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w1 = −ik(c − u0)ζ1 (6.64)

p1 = ρ0(c − u0)
2ζ ′

1 + p0. (6.65)

Equations (6.63)–(6.65) can be combined along with the hydrostatic equation and
solved for ζ to give

[ρ0(c − u0)
2F ′]′ + ρ0[N2 − k2(c − u0)

2]F = 0. (6.66)

If we define a new variable as G = W 1/2 F , where W = u0 − c, then (6.66) can
be written as

(ρ0WG′)′ −
[

1

2
(ρ0u

′
0)

′ + k2ρ0W + ρ0w
−1
(

1

4
u′

0
2 − N2

)]
G = 0. (6.67)

If we now multiply (6.67) by G∗ and integrate from z1 to z2 just as we did in the
previous section, we get

∫
ρ0W [|G′|2 +k2|G|2]+

∫
1

2
(ρ0u

′
0)

′|G|2 +
∫

ρ0

[
1

4
u′

0
2 − N2

]
W ∗

∣∣∣∣GW
∣∣∣∣
2

= 0,

(6.68)

where it is understood that the limits on the integrals are still z1 and z2, and we
have dropped dz in the integrals. From (6.61) it is clear that for an instability to
occur the imaginary part of c must be positive, i.e., ci > 0. The imaginary part of
(6.68) is

∫
ρ0
[|G′|2 + k2|G|2]+

∫
ρ0

[
N2 − 1

4
u′

0
2
] ∣∣∣∣GW

∣∣∣∣
2

= 0, (6.69)

where we have divided (6.69) by W . The only way (6.69) can be true is if the
term N2 − 1

4u′
0

2 changes sign somewhere between z1 and z2. Thus, a necessary
condition for instability is that

N2

u′
0

2
= Ri <

1

4
. (6.70)

We have formally proved the conjecture in Section 6.1, i.e., for flow instability a
necessary condition is Ri < 1

4 .
When an instability develops in a stratified flow, a gravity wave is excited.

However, what is the phase speed of this wave? Howard (1961) elegantly answered
this question. The method is straightforward. We multiply (6.66) by F ∗ and
integrate over height to get∫

ρ0(u0 − c)2[|F ′|2 + k2|F |2]−
∫

ρ0N
2|F |2 = 0. (6.71)



140 Waves and Turbulence

Now separate (6.71) into real and imaginary parts to get

∫ [
(u0 − cr)

2 − c2
i

][|F ′|2 + k2|F |2]−
∫

N2|F |2 = 0 (6.72)

and

2ici

∫
(u0 − cr)

[|F ′|2 + k2|F |2] = 0. (6.73)

If (6.73) is to hold, then [u0(z) − cr ] must change sign at least once between the
limits z1 and z2. This means that cr must lie between the minimum and maximum
values of u0. Thus, the wave speed cannot be arbitrary. Now, let Q = |F ′|2 +
k2|F |2, and assuming ci > 0, (6.72) and (6.73) become

∫ (
u2

0 − 2u0cr + c2
R − c2

i

)
Q =

∫
N2|F |2 (6.74)

and ∫
u0Q = cr

∫
Q. (6.75)

Now if we multiply (6.75) by 2cr , and use this result in (6.74), the resulting
equations become

∫
u2

0Q = (
c2
r + c2

i

) ∫
Q +

∫
N2|F |2 (6.76)

and ∫
u0Q = cr

∫
Q, (6.77)

respectively. Now suppose that between z1 and z2, u0 lies between umin and umax .
Then using (6.76) and (6.77) and some algebra, we have

0≤
∫

(u0−umin)(u0−umax)

=
∫

u2
0Q−(umin+umax)

∫
u0Q+uminumax

∫
Q

=[c2
r +c2

i −(umin+umax)cr +uminumax

]∫
Q+

∫
N2|F |2

=
{[

cr − 1
2 (umin+umax)

]2+c2
i −
[

1
2 (umin−umax)

]2
}∫

Q+
∫

N2|F |2.
(6.78)
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FIGURE 6.8 Schematic illustration of Howard’s semi-circle theorem. If a gravity wave is
generated by wind shear, then the phase speed of the wave must lie between some minimum and
maximum wind speed.

Because Q > 0, the only way (6.78) can be true is if

[cr − 1
2 (umin + umax)]2 + c2

i ≤ [ 1
2 (umin − umax)]2. (6.79)

Equation (6.79) says that the complex phase velocity of any unstable mode must
lie inside a semi-circle of radius 1

2 (umax − umin) centered at the point ci = 0,
cr = 1

2 (umin + umax). This famous result is known as Howard’s semi-circle
theorem. Figure 6.8 illustrates the result. The semi-circle theorem tells us that if
a gravity wave is excited by wind shear, then there must be a critical level for
that wave since umin < c < umax . If, for example, one observes a wave with a
speed of, say, 100 m s−1, but the maximum wind speed is 30 m s−1, then we can
conclude that the wave was not generated by wind shear. However, if c lies within
the semi-circle as illustrated in Fig. 6.8, then the wave most likely was generated
at a critical level where Ri < 1

4 .

6.3 WAVE-MODULATED RICHARDSON
NUMBER

In the above analyses of shear instability, the Richardson number was defined
in terms of constant background quantities. From (2.37) we see that the ampli-
tudes of upward-propagating gravity waves grow exponentially with height due
to the decrease in atmospheric density. Hines (1960, 1963) proposed that grav-
ity waves propagating into the upper atmosphere can generate turbulence there.
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Hodges (1967) used this fact to demonstrate how gravity waves can modulate local
Richardson numbers with the possibility of generating turbulence. Consider now
the local Richardson number defined by the total temperature and velocity, i.e.,

Ri = g

θ

(∂θ/∂z)

(∂u/∂z)2
= g

θ0

(∂/∂z)[θ0 + θ1]
[(∂/∂z)(u0 + u1)]2

. (6.80)

If we assume a wave perturbation vertical velocity of the form w1 = A cos φ,
where φ = kx +mz−ωt , then using (2.24) and (2.25) along with (1.67), we have

u1 = −Am

k
cos φ (6.81)

and

θ1 = A

ω − u0k

∂θ0

∂z
sin φ. (6.82)

Using (6.81) and (6.82) in (6.80) gives

Ri = g

θ0

(∂/∂z)(θ0 + (A/(ω − u0k))(∂θ0/∂z) sin φ)

[(∂/∂z)(u0 − (Am/k) cos φ)]2
. (6.83)

Clearly, for certain values of the constants in (6.83) we can expect Ri < 0.25
over some range of φ. To illustrate this consider a constant flow over a corrugated
surface. Then using (3.31) and (3.32) in (6.80) and assuming that ∂2θ0/∂z2 � 1
gives

Ri = 1 − msH sin φ

[(u0ms/N)(msH cos φ)]2
, (6.84)

where φ = ksx + msz; ks is the wavenumber for the surface corrugation and H is
the corrugation amplitude. If the stratification is strong and the wavelength of the
corrugation is large, then

m2
s = N2

u2
0

− k2
s ≈ N2

u2
0

, (6.85)

so that (6.84) takes the simple form

Ri = 1 − msH sin φ

(msH cos φ)2
. (6.86)

If msH ≥ 1, the flow will be convectively unstable over some range of φ. The
quantity msH = NH/u0 = F−1, where F is similar to the internal Froude
number (Turner, 1973).
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The ordinary Froude number is defined as the ratio of a characteristic speed
to the speed of long waves on a free surface (6.58), i.e., V/

√
gλ, where V is a

velocity scale and λ is a wavelength. The Froude number can also be defined as the
square root of the inertia force to the gravity force. The internal Froude number,
Fi , is defined as

Fi = V√
((ρ2 − ρ1)/(ρ2 + ρ1)) λ

, (6.87)

where ρ1 and ρ2 are the densities in adjoining fluid layers. In the case of a con-
tinuous stratification, it is common to define V/NH as the Froude number. Thus,
we can write (6.86) as

Ri = F 2 − F sin φ

cos2 φ
. (6.88)

We see that convective instability over the surface corrugation occurs when F < 1.
Rottman and Smith (1989) showed experimentally that wave breaking occurs over
a two-dimensional ridge in a linearly stratified flow for F = 0.8, 0.9, and 1.0 for
steep (H/L = 0.56), intermediate (H/L = 0.34), and gentle (H/L = 0.16)
ridges, respectively. Here L is the half-width of the ridge and H/L is the aspect
ratio of the ridge. Figure 6.9 shows plots of (6.88) as functions of φ for F = 0.9
and 1.1. Ri is always greater than 0.25 for F = 0.9, but for F = 1.1 the ranges of φ

for dynamic and convective instability are evident. Figure 6.10 shows the regions
of convective instability (Ri ≤ 0) over a corrugated surface calculated using the
linear wave model described in Chapter 9. The calculation used u0 = 1 m s−1,
H = 60 m, λs = 500 m, and N = 0.022 s−1, and for this case, F = 0.8. The
unstable regions tilt upwind with an angle tan−1(ms/ks). For this case, the half-
width of corrugation is 250 m, so the aspect ratio is 0.24. This is gentle topography,
yet gravity waves can generate regions of clear air turbulence. Figure 6.11 plots
the convectively unstable regions over a two-dimensional Gaussian ridge with
H = 50 m, b = 1000 m, u0 = 1 m s−1, and N = 0.022 s−1. The unstable
patches remain directly above the ridge. The Froude number for this case is 0.9.
The half-width of the ridge is 0.83b, so the aspect ratio for this case is 0.06. This
is a very gentle topography, but even so turbulence can be generated by the ridge.

Chimonas (1972) used the concept of a wave-modulated Richardson number
in a quasi-linear theory of wave-generated breakdowns of a stratified flow. He
included terms in the linearized equations (2.6)–(2.9) to account for the fluxes
of heat and momentum due to wave-generated turbulence. These flux terms are
switched on whenever the Richardson number drops below 0.25. When this hap-
pens, the turbulence feeds momentum and energy from the background flow into
the wave, causing the wave amplitude to increase. This, in turn, increases the
intensity and spatial extent of the regions of turbulence. The result is a rapid rise
of turbulence and wave amplitude; however, the linear theory cannot follow this
process to a conclusion because the wave amplitudes become too large.
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FIGURE 6.9 Richard number (6.88) as a function of phase angle for Froude numbers of 0.9 and
1.1. Region of dynamic instability extends below Ri = 0.25 and between the dashed lines. Region of
convective instability is shaded.

6.4 WAVE-TURBULENCE COUPLING

In a series of articles including Einaudi and Finnigan (1981, 1993), Finnigan
and Einaudi (1981), Fua et al. (1982), Finnigan, Einaudi, and Fua (1984), and
Finnigan (1988), Finnigan and Einaudi examined the interactions of waves and
turbulence. The mechanism by which waves and turbulence interact and modify
the mean flow is commonly referred to as wave-turbulence coupling. Fua et al.
(1982) lists the four basic ideas underlying the process:

1. The occurrence of turbulence can be related to the local (wave-modified)
Richardson number.

2. Turbulence occurs with a mean and periodic component.
3. Turbulence extracts energy from the wave, limiting its growth, or feeds

energy into the wave.
4. Turbulence modifies the mean fields.

The analysis of wave-turbulence coupling is based on a triple decomposition
of the flow variables based on the work of Reynolds and Hussain (1972). The
decomposition separates the atmospheric variables into mean, a, turbulence, a′,
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FIGURE 6.10 Regions of convective instability (dark bands) above a corrugated surface. u0 =
1 m s−1, H = 60 m, N = 0.022 s−1, and λs = 500 m; Froude number, F = 0.8.

FIGURE 6.11 Regions of convective instability above a Gaussian-shaped ridge. u0 = 1 m s−1,
H = 50 m, b = 1000 m, and N = 0.022 s−1; Froude number, F = 0.9.

and wave, ã, components, i.e.,

a(xi, t) = a(xi) + a′(xi, t) + ã(xi, t), (6.89)

where xi represents the spatial coordinates. The triple decomposition puts require-
ments on the wave field. It must be linear, monochromatic, and have constant
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frequency and amplitude. The problem involves writing equations for turbulence
and wave variables and examining the terms that connect these equations. The
time average or background is defined in the usual way, i.e.,

a(xi) = lim
t→∞

{
1

2t

∫ +t

−t

a(xi, t
′) dt ′

}
. (6.90)

If the wave has period τ , then the phase average is defined as

〈a(xi, t)〉 = lim
N→∞

{
1

N

N∑
n=1

a(xi, t + nτ)

}
, (6.91)

where N now is the number of wave cycles, not the Brunt–Väisälä frequency.
Figure 6.12 illustrates the phase averaging process. A turbulence signal illustrated
in Fig. 6.12 has zero mean and standard deviation 0.6 m s−1 and is added to a sine
wave with period 157 s and amplitude 0.25 m s−1. The value of 〈a〉 at time t is the
average of N data points, with each point separated by time period τ . Because the
turbulence is random, it is removed by the ensemble averaging. The illustration in
Fig. 6.12 is conceptual; in order to reveal the actual wave signal from the raw data,
averaging over many cycles would be required. After phase averaging, the wave
average component and the turbulent component of the raw signal are calculated

FIGURE 6.12 An illustration of phase averaging. The heavy line represents an underlying wave
signal which would be revealed by phase averaging.
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using

ã(xi, t) = 〈a(xi, t)〉 − a(xi) (6.92)

a′(xi, t) = a(xi, t) − 〈a(xi, t)〉 . (6.93)

Using the triple decomposition defined by (6.89) in (2.1)–(2.4) along with (1.67)
gives equations for the wave field. However, several averaging identities are
required, specifically for variables a and b:

(i) 〈a′〉 = 0 (ii) ã = 0 (iii) a′ = 0
(iv) ab = ab (v) 〈ãb〉 = ã〈b〉 (vi) 〈ab〉 = a〈b〉

(vii) 〈a〉 = a (viii) 〈a〉 = a (ix) ãb′ = 〈ãb′〉 = 0.

Using these identities, and assuming that the density is constant over the small
vertical scales considered and that the flow is inviscid, the dynamical equations
for the wave and turbulence fields are (Reynolds and Hussain, 1972)

∂ũi

∂t
+ u0,j

∂ũi

∂xj

+ ũj

∂u0,i

∂xj

= − ∂p̃

∂xi

− ∂r̃ij

∂xj

− ∂

∂xj

(
ũi ũj − ũi ũj

)+ g

T0
θ̃ δi3 (6.94)

and

∂u′
i

∂t
+ u0,j

∂u′
i

∂xj

+ u′
j

∂u0,i

∂xj

= −∂p′

∂xi

+ ∂r̃ij

∂xj

+ g

T0
θ ′δi3, (6.95)

where

r̃ij = 〈u′
iu

′
j 〉 − u′

iu
′
j . (6.96)

Similar equations can be written for the temperature wave and turbulence fields.
The term (ũi ũj − ũi ũj ) in (6.94) represents the fluctuation part of the wave stress.
Note that except for r̃ij all the terms in the equation for the organized wave (6.94)
involve wave terms and all the terms in the turbulence equation (6.95) involve
turbulence terms. The term r̃ij represents the oscillating part of the Reynolds
stress due to the presence of the wave, i.e., the wave-modified turbulence. The
term appears with negative sign in (6.94) and with positive sign in (6.95). Thus,
if it is a sink term in the wave equation (6.94), then it is a source term in the
turbulence equation (6.95). We see that the wave-modified Reynolds stress is a
mechanism for transferring energy between the turbulence and the wave. The term
(ũi ũj − ũi ũj ) in the wave equation does not have a counterpart in the turbulence
equation. This term represents wave-like fluctuations in the wave stress; however,
similar organized motions do not appear in the turbulence field. Recall it is the
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integral of the wave stress, i.e., (5.8), that is constant with height. In (6.94) we see
that wave amplitude changes according to the variations of the wave stress from
its average value.

The equations for the wave and turbulence kinetic energies are

Dq̃2

Dt
= D

Dt

(
ũi ũi

2

)

= − ∂

∂xj

{
ũj

(
p̃ + ũi ũi

2

)}
− ũi ũj

∂u0,i

∂xj

+ r̃ij
∂ũi

∂xj

− ∂

∂xj

(
ũi r̃ij

)+ g

θ0
θ̃ ũi δi3 + viscous terms (6.97)

and

Dq ′2

Dt
= D

Dt

(
u′

iu
′
i

2

)

= − ∂

∂xj

{
u′

j

(
p′ + u′

iu
′
i

2

)}
− u′

iu
′
j

∂u0,i

∂xj

− r̃ij
∂ũi

∂xj

− ũj

∂

∂xj

(
r̃ii

2

)
+ g

θ0
θ ′u′

i δi3 + viscous terms. (6.98)

Equations (6.97) and (6.98) are similar to conventional turbulence budgets; how-
ever, the term r̃ij (∂ũi/∂xj ) is the direct result of the triple decomposition. This is a
production term and represents the rate of work of wave-modified Reynolds stress
against the wave rate of strain. It is this term that is responsible for the transfer of
energy between the wave and turbulence fields. Because r̃ij and ∂ũi/∂xj represent
linear wave fluctuations, their average product is zero if the two terms have a phase
difference of π/2. Then, there is little energy transfer between the wave and turbu-
lence fields. Finnigan (1988) reports the observations of four episodes observed at
the Boulder Atmospheric Observatory in Colorado with substantial gravity waves.
Phase differences of about π/4 between r̃ij and ∂ũi/∂xj were observed to occur
with significant transfer of energy from the wave to the turbulence.

In the wind tunnel experiments on wave turbulence–turbulence coupling
reported on by Hussain and Reynolds (1972), the turbulence component was very
weak, and so a large number of wave cycles (typically 105) was required in the
averaging process. In the atmosphere, the conditions required for phase averag-
ing, i.e., a linear, monochromatic wave with constant frequency and amplitude,
will hardly ever be observed in the atmospheric boundary layer (see, for exam-
ple, Finnigan, 1988). Thus, wave-turbulence coupling is perhaps more useful as a
theoretical rather than an observational tool.
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6.5 JEFFERYS’ ROLL-WAVE INSTABILITY
MECHANISM

Chimonas (1993, 1994) calls attention to a wave instability mechanism pro-
posed by Jefferys (1925) to explain progressive waves on the surface of water
flowing in a channel. As Jefferys (1925) describes “. . .in certain Alpine conduits,
with plane bottoms and rectangular sections, (water) does not flow in a steady
stream but in a series of waves.” Chimonas (1993) draws a parallel between pro-
gressive waves in conduits and the wave systems that appear on water-covered
slopes on a road during a heavy rainfall. He notes that the waves “. . .seem to be
in a continuous state of breaking, like rollers approaching a beach and somehow
achieve a lasting state of overturning.” These progressive waves are instabilities
that develop on the turbulent sheet of water as the water flows downslope. The
downslope acceleration of flow is balanced by the aerodynamic drag at the ground
surface, as illustrated in Fig. 6.13. The instabilities develop because variations in
the surface drag result in a readjustment of the downslope mass flow. An increase in
drag causes an upslope build up of water. This flow convergence can lead to wave
excitation. Once initiated, the wave produces periodic variations in surface drag,
and a resonance develops. Chimonas (1993) applied this mechanism in the atmo-
sphere, where the turbulent water is replaced by a turbulent planetary boundary
layer and the downslope acceleration is replaced by the atmospheric mean pres-
sure gradient. Figure 6.14 illustrates this case. The atmospheric waves illustrated in
Fig. 6.14 are different than the roll waves studied, for example, by Brown (1980),

Surface drag
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d

FIGURE 6.13 “Drag waves” on a downslope flow. The instabilities develop because variations
in the surface drag result in a readjustment of the downslope mass flow. (From “Surface drag instabilities
in the atmospheric boundary layer,” G. Chimonas, J. Atmos. Sci., 50: 1915, 1993.)
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FIGURE 6.14 Drag waves in the ageostrophic boundary-layer flow. This instability mechanism
is similar to that illustrated in Fig. 6.13 except now the gravity force is replaced by the pressure gradient
force (From “Surface drag instabilities in the atmospheric boundary layer,” G. Chimonas, J. Atmos.
Sci., 50: 1916, 1993.)

Mason and Sykes (1982), and Etling and Raasch (1987). Those roll waves are asso-
ciated with a critical level; however, the Jefferys waves have phase speeds consid-
erably greater than the flow speeds. An assumption of Jefferys mechanism is a fully
turbulent flow so that variations in surface drag are felt immediately through the
depth of the water layer. A similar assumption is required for the atmospheric case.

We now assume a steady, two-dimensional, hydrostatic, irrotational, atmo-
spheric background flow above a level ground surface. Figure 6.15 illustrates the
flow geometry. A three-layer model provides the possibility for a ducting region
with little change in the model physics. A turbulent surface layer of depth h and
mean depth h0 is in contact with the ground surface. In the two-layer model, a
capping inversion separates the surface layer from the free atmosphere which has
constant wind speed and stratification. In the case of three layers, the middle layer
has intermediate wind and stratification between the surface layer and the semi-
infinite layer. The middle layer allows for the ducting of gravity waves, but the
physics is the same as for the two-layer case. The balance of forces in the surface
layer is

∂p0

∂x
+ ρ0d0 = 0 (6.99)

where d0 is the force per unit mass due to the Reynolds stress. The turbulence in
the surface layer is the result of surface friction so that

∫ h0

0
ρ0d0 dz = 0.5ρ0CDU2 (6.100)

where CD is the surface drag coefficient and U is a velocity scale for the surface
layer. In the free atmosphere, the Taylor–Goldstein equation (2.34) applies, and at
any layer of discontinuity in wind speed or stratification, i.e., at z = h, we impose
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FIGURE 6.15 Schematic of the flow geometry. A fully turbulent surface has a mean depth h0.
In the two-layer case, the surface layer is capped by a semi-infinite layer with constant wind and stable
stratification. The optional middle layer allows for the ducting of gravity waves. (From “Surface drag
instabilities in the atmospheric boundary layer,” G. Chimonas, J. Atmos. Sci., 50: 1918, 1993.)

the kinematic and dynamic boundary conditions. The equation of continuity for
the surface layer is (Jefferys, 1925)

∂h

∂t
= −∂uh

∂x
. (6.101)

We assume that in the surface layer the horizontal velocity is vertically uniform
and the vertical acceleration is balanced by the hydrostatic force so that

p(z) = p(h0) + ρ0g(h0 − z). (6.102)

We integrate the horizontal momentum equation with height and linearize in terms
of a mean background and wave perturbation, for example, u0 and u1, to get

ikh0(c − u0)u1 = −h1
∂p0

∂x
+ ikh0p1 − ρ0CDu0u1, (6.103)
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where scale velocity U in (6.100) has been replaced by u0 and pressures p0 and
p1 are evaluated at z = h0. Combining (6.101)–(6.103) gives the relation between
p1(h0) and h1, i.e.,

[
kh0(c − u0)

2 + i0.5u2
0CD − iu0(c − u0)CD

] h1

h0
= 1

ρ0
kh0p0. (6.104)

The most simple model has two layers. In the upper layer, N = 0 and u0 =
u∞ = constant. Such a model approximates a shallow nocturnal boundary layer
beneath a residual convective layer (Stull, 1988) or a density current undercutting
well-mixed air. The solutions in the upper layer are

w1(z) = Ae−kz e−ik(x−ct) (6.105)

and

p1 = i(c − u∞)ρ0w1, (6.106)
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FIGURE 6.16 Dimensionless phase speeds versus dimensionless wavenumber for the two-layer
drag wave model with CD = 0.005. The dashed line indicates the threshold wave speed of 1.5 u0 for
wave growth. (A) g′ = 10, the waves are similar to shallow-waver surface waves. (B) g′ = 0.8, the
phase speed crosses the threshold value of 1.5. (C) g′ = 0.1, surface drag begins to have an effect.
(D) g′ = 0.01, the wave is dominated by the surface drag. (From “Surface drag instabilities in the
atmospheric boundary layer,” G. Chimonas, J. Atmos. Sci., 50: 1918, 1993.)
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where u∞x̂ is the constant undisturbed velocity in the upper layer. The vertical
displacement of the interface is

ζ1 = −i
wi

k(c − u∞)
. (6.107)

At the interface between the two layers we apply the dynamic and kinematic
boundary conditions, and with (6.104)–(6.107) we get the dispersion relation

(c − u0)
2 + i

CDu0

kh0

(
3

2
u0 − c

)
+ (c − u0)

2 kh0(1 − f ) − g′h0 = 0, (6.108)

where f is now the fractional decrease in density between the two layers and
g′ = fg is the reduced gravity.

The stability analysis of the interface displacements proceeds as before. We
divide the dispersion relation into real and imaginary parts and look for conditions
where ci > 0. The imaginary part of (6.108) with the assumption that kh0 < 1
(i.e., the horizontal wavelength is large compared to the fluid depth) is

ci = −CDu0
((3/2)u0 − cr)

2kh0(cr − u0)
. (6.109)
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FIGURE 6.17 Growth rates versus dimensionless wavenumber. Surface friction causes insta-
bilities in waves traveling slower than 1.5 u0, but dampens wave traveling faster. (From “Surface drag
instabilities in the atmospheric boundary layer,” G. Chimonas, J. Atmos. Sci., 50: 1918, 1993.)
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The phase speeds for the instabilities are bounded by the neutral modes where
ci = 0. Thus, instabilities occur within the region u0 ≤ c ≤ 1.5 u0. Figures 6.16
and 6.17 plot the normalized phase speed c/u0 and growth rates, respectively, as
functions of normalized wavenumber K = kh0 for various values of the dimen-
sionless group g′h0/u

2
0. For these results, the wind speed in the upper layer is

set equal to the mean speed of the surface layer. The dashed line in Fig. 6.16
marks the value c = 1.5 u0, and it is seen from Fig. 6.17 that this is indeed a
boundary between stable and unstable modes. It is seen that the Jefferys instabil-
ities favor high surface-layer speeds and weak capping inversions, i.e., small f .
Chimonas (1994) expands on the Jefferys mechanism and presents some examples
of observed wave events that resemble to a high degree this mechanism.



7
The Parameterization

of Wave Stress

7.1 Wave Saturation and Wave Breaking
7.2 Saturation Parameterization Schemes

7.2.1 Analytical Parameterization Schemes
7.2.2 Analog Parameterization Schemes

7.3 Saturation Limits and Other Problems

One of the most important effects of gravity waves on the atmosphere is the
ability to transport momentum and energy from one region of the atmosphere
to another. The momentum and energy transported by gravity waves reflects the
conditions where the waves were generated. Over terrain features, the stress is
produced as a response to the torque exerted on the terrain by the mean flow.
Accordingly, the gravity waves carry upward a stress which will act against the
mean flow. The upward transport of stress by waves generated by flow over moun-
tains and hills has, perhaps, more impact on atmospheric dynamics than any other
type of wave. Sawyer (1959) was one of the first to recognize the necessity of
accounting for the effects of mountain-generated gravity waves in numerical fore-
cast models. Bretherton (1969) computed the wave stress over the hilly terrain
in north Wales and showed that for a 19 m s−1 wind speed the wave stress can
reach 0.4 Pa,1 of which 0.3 Pa probably acted on the atmosphere above 20 km.
To scale the effect of this stress on the atmosphere, let us assume that the stress is
dissipated over a 5-km height range. Then, the atmospheric flow would be slowed
at a rate of 5 m s−1 day−1. Lilly (1972) measured the lee-wave drag over the Front
Range of the Colorado Rockies and reported values of between 0.5 and 1 Pa in
the troposphere averaged over a horizontal distance of 100–200 km. Blumen and
McGregor (1976) calculated a wave-drag coefficient of 0.21 × 10−2 over a two-
dimensional ridge and 0.11 × 10−2 over a three-dimensional hill. They calculated
a wave stress on the order of 1 Pa over a series of ridges situated 25 km apart.

1 A Pascal, Pa, is a stress or pressure of 1 N m−2.
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Terrain-generated waves carry upward a stress that acts against the mean flow;
however, gravity waves generated aloft can transport stress upward and downward
which can decelerate and accelerate the mean flow, respectively. For example,
Chun and Baik (1998) calculated the momentum transport by gravity waves gen-
erated by thermal forcing due to cumulus convection. Their simulations show that
in the region of diabatic heating (due to the release of latent heat within the cloud),
a maximum positive tendency (acceleration) of the zonal wind by the gravity
wave momentum flux is about 10 m s−1 day−1 at 3.4 km height, and a negative
tendency (deceleration) is about −24 m s−1 day−1 at 10 km height. The decelera-
tion in the upper troposphere is quite large compared with the mountain-induced
gravity wave drag.

When the effects of gravity waves on the atmospheric flow were first being
realized, forecast models of the period were based on the quasi-geostrophic approx-
imation which filters gravity waves (see, for example, Holton, 1992). Thus, these
gravity wave effects were eliminated from forecasts a priori. Over the last half
century, our ability to numerically model the atmosphere has advanced to the
point where it is limited mostly by computer capabilities. Models of the general
circulation, mesoscale air quality models, and atmospheric chemistry models are
computationally bound, i.e., they spend most of their time solving many equa-
tions in addition to the dynamical equations. In order to make model execution
time reasonable, the number of points where these equations are solved must not
be large. Accordingly, the spatial resolution of the model must be limited. The
smallest horizontal feature that can be resolved by a numerical model has size
4	x, where 	x is the horizontal length of a grid cell (see, for example, Pielke,
1984; Grasso, 2000). Global-scale models have horizontal resolutions on the order
10 × 10 degrees of latitude and longitude, and accordingly, only the largest ter-
rain features, for example, continents, will be resolved. Mesoscale models with
horizontal grid resolutions of 5 × 5 km are considered fine scale; however, topo-
graphic features less than 20 km will not be resolved. Cumulus convective cells
with horizontal scales of a few tens of kilometers will not be seen by these model
grid sizes; however, their dynamical effects may be significant (see, for example,
Chun, Song, and Baik, 1999). While research-grade models can achieve high hori-
zontal resolutions, operational models are still limited and will continue to be until
the next generation of supercomputers. Thus, for most numerical applications in
regions of mountainous terrain or active cumulus convection, there will be unre-
solved wave effects, and these subgrid-scale effects must be parameterized. In this
chapter we shall examine the basics of these wave stress parameterizations.

7.1 WAVE SATURATION AND WAVE BREAKING

We have seen in Chapter 3 that the terrain irregularities, i.e., mountains, hills,
ridges, valleys, etc., as well as areas of active convection can launch gravity waves
and vertically transport energy and mean-flow horizontal momentum. In Chapter 5
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we have seen that this vertical flux of horizontal momentum, ρ0u1w1, is constant
unless the wave breaks. We have also seen in Chapter 5 that in linear theory wave
breaking occurs at or near a critical level, and then the wave stress is reduced by a
factor of exp(−2π

√
Ri − 0.25), where Ri is the Richardson number at the critical

level. The deposition of this momentum onto the mean flow results in either an
acceleration or deceleration depending on where the wave stress was generated.
In either case,

∂u0

∂t
= − 1

ρ0

∂

∂z
(ρ0u1w1). (7.1)

Consider now that the wave stress is generated over a mountain, and note that
ρ0u1w1 is negative for linear gravity waves. However, because the wave stress
decreases with height during wave dissipation, the vertical derivative of the stress
will always be negative. From the third law we see that the stress exerted on
a mountain by the flow is balanced by an equal but opposite stress on the flow
where wave breaking occurs. However, there is something not quite right about
this picture. The linear theory tells us that the reduction of wave stress occurs
almost discontinuously across a very small distance. In this case, (7.1) would
predict extremely large decelerations, but these are not observed. Hazel (1967)
considered the effects of fluid viscosity and heat conduction near a critical level
and showed that near a critical level inertial effects are balanced by viscosity within
a viscous length scale, zν ,

zν =
(

ν

k(∂u0/∂z)

)1/3

, (7.2)

where ν is the atmospheric kinematic viscosity with units of m2 s−1 and k is the
horizontal wavenumber. The decrease in wave stress occurs across a distance of
several zν . Fritts and Geller (1976) also considered the effects of fluid velocity
and heat conduction near a critical level and showed that the maximum wave
instability, Ri < 1/4, occurs approximately 2.5 zν below a critical level for
upward-propagating waves.

An encounter with a critical level is not the only way a wave can become
unstable. From (3.97), repeated here,

w(x, z, t) = w̃ez/2Hs ei(kx+mz−ωt), (7.3)

we see that for an upward-propagating wave when z > Hs , wave amplitudes can
become large. If either ω or m in (7.3) become complex, then wave amplitude
can grow as either eωi t or emiz, where ωi and mi are the imaginary parts of the
complex frequency and vertical wavenumber, respectively.

We see that wave amplitudes can grow, but can they grow indefinitely? Within
the context of linear theory, the answer is yes. There are no factors such as viscosity
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or wave–wave interactions which could limit wave growth. There are no mecha-
nisms to tell the wave it is unstable and that it should break. However, the solutions
under these extreme conditions may not be physical, for example, negative pres-
sures or temperatures, etc. In the real world, we know that wave amplitudes must
be bounded. Waves or other disturbances with great amplitudes (∼∞) have never
been observed. The reason is simple. The waves eventually break. However, we
observe that the wave does not collapse. Instead, only the top parts of the wave
collapse. This dissipation process is known as wave saturation (see, for exam-
ple, Fritts, 1984; Baines, 1995). The term originally described the damping of
exponential growth of an instability as environmental conditions forced a return
to finite amplitude. Wave saturation limits wave growth. In the atmosphere, even
in the absence of an instability, unbounded wave growth is balanced by satura-
tion. Previously, we conjectured that unbounded wave growth would eventually
lead to dynamic instability and even convective instability. But this does not mean
complete wave breakdown. Indeed, we shall see that wave saturation is a process
where wave dissipation exactly balances wave growth. An analogous process is
the breaking of waves as they approach a beach. As these waves grow, they even-
tually break, but only at the top, as shown in Fig. 7.1. Wave saturation theory
assumes that wave breaking results in turbulence. However, linear theory does
not contain a wave saturation counterpart. Figure 7.2 shows isotherms above a
surface corrugation in the presence of a constant stratification, but a varying back-
ground wind. The wind profile used is a hyperbolic tangent, which is plotted in
Fig. 7.3. In Fig. 7.2, we see regions that should be convectively unstable, but
are not. It is clear that in these circumstances linear theory gives quite nonphys-
ical results; yet the simplicity and computational ease of the linear theory makes

FIGURE 7.1 Breaking waves at the shore. Only the top portion of the wave breaks and continues
to break as the wave continues to grow.
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FIGURE 7.2 Isotherms over one cycle of a corrugated surface of wavelength 1000 m and
amplitude 60 m. N = 0.022 s−1. The background wind speed profile is shown in Fig. 7.3. Regions
of convective instability are seen above a height of 400 m. In reality, these regions would be unstable
and collapse.

it very desirable. If we want to use linear theory, then we must find a way to
adjust it so that its results approach reality. This is the objective of wave saturation
parameterization.

One of the first things we must do is determine the conditions for wave breaking.
Consider a section of an isotherm such as that shown in Fig. 7.4 which could have
come from a wave field similar to that shown in Fig. 7.2. Along the isotherm,
which is also a streamline,

θ0(z) + θ1(x, zQ) = Q(x, zQ) = constant, (7.4)

where θ0(z) is the background potential temperature, θ1(x, z) is a perturbation
potential temperature, and zQ is the height of the streamline. The total differential
of Q is

∂Q

∂x
+ ∂Q

∂zQ

∂zQ

∂x
= 0. (7.5)

Using (7.4) in (7.5) gives

∂θ1

∂x
+ ∂zQ

∂x

∂

∂zQ

(θ0 + θ1) = 0. (7.6)
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FIGURE 7.3 Hyperbolic-tangent wind profile is used in the calculation of the wave field shown
in Fig. 7.2.

FIGURE 7.4 Section of an isotherm which is a streamline in the linear theory. When the slope
of the streamline becomes vertical, the flow becomes convectively unstable. This is also the condition
for flow blocking where u0 + u1 = 0.

The condition for convective stability is

∂

∂z
(θ0 + θ1) ≥ 0. (7.7)

Then because ∂θ1/∂x in (7.6) need not be zero,

lim
(∂/∂z)(θ0+θ1)→0

∂zQ

∂x
→ ∞. (7.8)
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Thus, the flow streamlines are vertical at the onset of convective instability, as
shown in Fig. 7.4. Using the continuity equation (2.8), we can define a stream
function ψ(x, zψ) where zψ is the height of the line along which ψ is constant.
Then,

w1 = ∂ψ

∂x
(7.9)

u0 + u1 = − ∂ψ

∂zQ

, (7.10)

where we have taken u0 to be horizontally uniform. Proceeding as above, if we
take the total differential of ψ and use (7.9) and (7.10), then we get

w1 − ∂zQ

∂x
(u0 + u1) = 0. (7.11)

Flow blocking occurs when u0 + u1 = 0, and if we assume that w1 �= 0, then

lim
(∂/∂z)(u0+u1)→0

∂zQ

∂x
→ ∞, (7.12)

and we see that convective instability and flow blocking occur simultaneously, as
illustrated in Fig. 7.4.

The convective stability limit (7.7) can be put into a more useful form by noting
that the vertical displacement, ζ , of a flow streamline is related to the vertical
velocity by

Dζ

Dt
= w. (7.13)

Linearizing (7.13) to first order gives

∂ζ1

∂t
+ u0

∂ζ1

∂x
= w1. (7.14)

If we now assume wave solutions of the form (2.13) for ζ1 and w1, (7.14) becomes

−i�ζ̃1 = w̃1. (7.15)

Using (1.67) in the polarization equation for ρ1, i.e., (2.25), gives

θ̃1 = i
w̃1

�

∂θ0

∂z
, (7.16)
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and combining (7.15) with (7.16) gives

θ1 = − ζ1
∂θ0

∂z
, (7.17)

where we have dropped the tildes. If we now use (7.17) in (7.7) and assume that
the background potential temperature gradient is slowly varying, the condition for
convective stability is

∂θ0

∂z

(
1 − ∂ζ1

∂z

)
≥ 0. (7.18)

The condition for convective stability is now

∂ζ1

∂z
≤ 1. (7.19)

7.2 SATURATION PARAMETERIZATION
SCHEMES

Parameterizations of wave saturation are of two types which can be referred to as
either analytical or analog. Analytical parameterization schemes use mathematical
expressions for wave stress and eddy diffusion directly in the model equations (see,
for example, Holton, 1982). Analog schemes adjust the flow fields according to
saturation theory. In this section we will discuss both types of schemes. Most of
these schemes are based on the WKB approximation, and the reader may wish to
refer to Section 2.3.

7.2.1 ANALYTICAL PARAMETERIZATION SCHEMES

One of the first analytical parameterizations was proposed by Sawyer (1959).
As previously mentioned, early numerical forecast models were based on the
quasi-geostrophic approximation, and because of this gravity waves could not
be simulated. Sawyer (1959) proposed the use of linear wave theory to evaluate
the wave drag over a bell-shaped ridge and assumed that this drag decreased
with height in a manner similar to the decrease in the amplitudes of streamline
displacements. Thus, he assumed that about half of the drag is exerted on the
lowest 3 km of the atmosphere, and the remainder is distributed over the upper
troposphere and stratosphere. He proposed the introduction of a force into the
equation of motion directed against the low-level wind and decreasing linearly
from a maximum near the ground surface to zero at the tropopause. We know
now that such a scheme would fail because the wave drag is constant with height,
unless wave breaking occurs.
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Wave saturation theory assumes that wave breaking results in turbulence.
However, turbulence is not passive; it is dispersive. The possibility of turbu-
lence production by breaking gravity waves was posed by Hines (1963), Hodges
(1967), and Lindzen (1967). Hodges (1969) suggested that this turbulence could
be represented by an eddy diffusivity. Thus, vertical diffusion is associated with
wave breaking, and we must add this effect to the dynamical equations. Following
Holton (1982), we can write

∂u0

∂t
= − 1

ρ0

∂

∂z
(ρ0u1w1) + ∂

∂z

(
D

∂u0

∂z

)
, (7.20)

where D is an eddy diffusivity produced by the wave breaking. The first term on
the right-hand side of (7.20) represents the effect of the wave stress, and the second
term represents the effect of the Reynolds stress, i.e., the turbulence stress. The
eddy diffusion also affects the background temperature, i.e.,

∂θ0

∂t
= ∂

∂z

(
D

∂θ0

∂z

)
. (7.21)

Lindzen (1981) and Holton (1982) investigated this problem and developed expres-
sions for the wave stress convergence and eddy diffusivity, D, in wave-breaking
regions. In the discussion here, we rely much on the review paper by Fritts (1984)
which presented Lindzen’s model in greater detail than the original. Also, note that
the notation in those papers has been changed to conform with that used in this
book. The zone of application is the middle and upper atmosphere where the WKB
approximation is most valid. We make the following assumptions: N2 is constant,
u′′

0 is small, Hs is large, and � = k(c − u0) � kN . Then, the Taylor–Goldstein
equation reduces to the hydrostatic form,

∂2ŵ1

∂z2
+ N2

(c − u0)2
ŵ1 = 0, (7.22)

with the WKB solution

ŵ1 = Am−1/2ei
∫ z

0 m dz, (7.23)

where A is an unknown amplitude, and

m = N

c − u0
(7.24)

is slowly varying with height. Note that (7.22) is the equation for freely propagat-
ing waves (c �= 0). In applications to the mountain wave problem, we must set
c = 0, etc. The complete solution is

w1(x, z, t) = Am−1/2ez/2Hs ei(kx+mz−ωt). (7.25)
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Using polarization equations (2.24) and (2.25) along with (1.67), we get

u1(x, z, t) = −m

k
w1(x, z, t) (7.26)

and

θ1(x, z, t) = − i

k(c − u0)

∂θ0

∂z
w1(x, z, t). (7.27)

Lindzen (1981) assumed that the vertical variation of θ1 is dominated by the
perturbations eimz in (7.25) so that

∂θ1

∂z
= m

k(c − u0)

∂θ0

∂z
w1. (7.28)

If we use (7.24) and (7.25) in (7.28), then the magnitude of ∂θ1/∂z is primarily∣∣∣∣∂θ1

∂z

∣∣∣∣ ∝ m3/2ez/2Hs . (7.29)

The condition for convective stability is given by (7.7), and we see that this condi-
tion will be governed by the change of ∂θ1/∂z with height, since we have assumed
that N is constant and by implication ∂θ0/∂z is either constant or changes very
slowly with height. From (7.24) we see that the factor m3/2 in (7.29) causes growth
if |c − u0| decreases and causes decay if |c − u0| increases. If we express m3/2 as
an exponential, say, eaz, then ∣∣∣∣∂θ1

∂z

∣∣∣∣ ∝ e(a+1/2Hs)
Z

. (7.30)

In the case |c−u0| → 0, which does not imply that a critical level is present, m3/2

adds to the 1/2Hs exponential growth rate an amount of

a = 1

m3/2

∂m3/2

∂z
= 3

2

1

(c − u0)

∂u0

∂z
, (7.31)

so that ∣∣∣∣∂θ1

∂z

∣∣∣∣ ∝ e((3/2) (1/(c−u0))(∂u0/∂z)+1/2Hs)
Z

. (7.32)

Therefore, the eddy diffusion created by wave breaking must be such as to cancel
the exponential growth with a rate equal to

1

2Hs

+ 3

2

1

(c − u0)

∂u0

∂z
. (7.33)
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Using (7.26) in (7.28) gives

∂θ1

∂z
= − u1

c − u0

∂θ0

∂z
, (7.34)

and using this in (7.7) gives the condition for convective stability,

∂

∂z
(θ0 + θ1) = ∂θ0

∂z

(
1 − u1

(c − u0)

)
≥ 0. (7.35)

Instability occurs when u1 > c − u0 or

u0 + u1 > c. (7.36)

Thus, wave breaking occurs when the total velocity exceeds the wave phase veloc-
ity. For the case of terrain-generated waves, c = 0, and we see that wave breaking
occurs with flow blocking as discussed in Section 7.1. Lindzen (1981) assumed
that convectively unstable regions in the wave field result in the production of tur-
bulence and just that level of eddy diffusion necessary to keep wave amplitudes to
values near neutral stability. This is the saturation hypothesis. Wave amplitudes are
constrained to values such that the slopes of the flow streamlines are not greater
than π/2 or, equivalently, there are no flow reversals of the type illustrated in
Fig. 7.4. It is also assumed that wave saturation does not otherwise affect wave
propagation or wave characteristics.

Let wave saturation begin at height zs . Following Holton (1982), we can use
(7.7), (7.25), and (7.28) to show that

zs = 2Hs ln

[
k(c − u0)

2

AN1/2

]
. (7.37)

As an example, for the case of constant flow over a surface corrugation of ampli-
tude H ,

zs = 2Hs ln
[ u0

NH

]
. (7.38)

For z > zs , the amplitude of the horizontal perturbation velocity is constrained by
(7.36) to be

|us | = |c − u0|, (7.39)

where us is the value of u1 in the saturation zone, say, between zs and a critical
level at height zc. From (7.26), the amplitude of the vertical velocity is

ws = − k

m
us = − k

N
(c − u0)

2 (7.40)
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where we have used (7.24). In the absence of wave saturation, wave amplitudes
grow in response to conservation of wave stress in regions of decreasing density,
as discussed following (2.38). Following Fritts (1984), we represent the departure
of the wave from conservative growth as

ws = w1 e−mi(z−zs ), (7.41)

where mi is the imaginary part of a complex vertical wavenumber and w1 is given
by (7.25). Because the difference between ws and w1 is not large, we can write

ln

(
ws

w1

)
≈ ws

w1
− 1. (7.42)

Using (7.41) in (7.42) gives

mi = 1

δz

[
1 − ws(zs + δz)

w1(zs + δz)

]
, (7.43)

where δz = z − zs . Expanding ws(z + δz) and w1(z + δz) to first order in δz

leads to

mi = 1

w1(zs)

[
∂w1

∂z

∣∣∣∣
zs

− ∂ws

∂z

∣∣∣∣
zs

]
. (7.44)

Using (7.25) and (7.40) in (7.44) gives

mi = 1

2Hs

+ 3

2

1

(c − u0)

∂u0

∂z
, (7.45)

and using (7.45), (7.41), and (7.25) gives

ws = A

√ |c − u0|
N

ez/2Hs e−3/2((z−zs )/(c−u0))u
′
0 ei(kx+mrz−ωt), (7.46)

where mr is the real part of m. Note that the term u′
0(z − zs)/(c − u0) is always

positive, and so the negative exponential in (7.46) leads to smaller values of ws as
the wave approaches the critical level.

Lindzen (1981) defined an eddy diffusivity for momentum as

D
∂2u0

∂z2
= −m2Du0 (7.47)

with a similar equation for θ0. Then, the linearized form of the horizontal
momentum equation is

ik(c − u0)u1 + w1
∂u0

∂z
= −m2Du1. (7.48)
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Now assume a complex phase velocity, and then the real part of (7.48) is

kci = −m2D. (7.49)

From (7.24) we have

mr + imi = N

c − u0
, (7.50)

and the imaginary part of (7.50) is

mi ≈ − Nci

(c − u0)2
. (7.51)

Using (7.45), (7.49), and (7.51), the eddy diffusivity is

D = k

N3
(c − u0)

4
[

1

2Hs

+ 3

2

1

(c − u0)

∂u0

∂z

]
. (7.52)

Note that because eddy dissipation must be positive, there exists the possibility
that (7.52) is nonphysical if (c − u0) and ∂u0/∂z are of opposite signs. However,
if a critical level is present, then from (7.56) we see that (c − u0) and ∂u0/∂z are
always of the same sign, and D → 0 as z → zc.

We now calculate the wave stress. Using (7.39) and (7.40), the wave stress in
the saturation zone is

−ρ0usws = 1

2
ρ0�usw

∗
s = −1

2
ρ0

k

N
(c − u0)

3. (7.53)

Using (7.53) in (7.1) and assuming that N is constant or slowly varying gives

∂u0

∂t
= − k

N
(c − u0)

3
[

1

2Hs

+ 3

2

1

(c − u0)

∂u0

∂z

]
. (7.54)

The first term in brackets comes about as a response to exponential growth, and
the second term balances the m3/2 growth term and is a function of whether the
mean wind shear is positive or negative. In a flow where c − u0 is constant or
varies little, the induced acceleration is constant,

∂u0

∂t
= − k

2NHs

(c − u0)
3. (7.55)
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In a sheared environment, the induced acceleration is not constant and is governed
by (c − u0). If a critical level exists, and if the wave is approaching it from
below, then

∂u0

∂z
≈ c − u0

zc − z
. (7.56)

Using this in (7.54) we see that as the critical level is approached the induced
acceleration is proportional to (c−u0)

2 and is always negative. Comparing (7.52)
with (7.54) we see that the induced flow acceleration due to wave stress is

∂u0

∂t
= − N2

c − u0
D. (7.57)

As pointed out by Fritts (1984), (7.57) would suggest that the induced acceleration
produced by saturation and the eddy diffusion responsible for wave dissipation are
related; however, Lindzen (1981) points out that these two effects addressed by
the simple linear model while related are separate manifestations of gravity wave
saturation.

To scale the induced acceleration, Fritts (1984) gives the following example.
We consider at mesospheric heights a uniform flow, with isothermal scale height
Hs = 6 km, Brunt–Väisälä frequency N = 0.02 s−1, intrinsic phase velocity
c − u0 = 30 m s−1, and horizontal wave length λx = 200 km. From (7.52), the
eddy diffusivity D = 265 m2 s−1. Using (7.57), the induced flow acceleration is

∂u0

∂t
= −305 m s−1 day−1. (7.58)

This is a substantial reduction in the zonal wind, and such a reduction in velocity
has not been observed. However, if the gravity waves were generated by terrain,
then this deceleration would be confined to regions directly above the mountain.
However, even if limited to a small region, it is reasonable that such a deceleration
would have some impact on the global scale. Therefore, it is reasonable to think that
this effect must be compensated by an acceleration of similar magnitude. A likely
possibility proposed by Lindzen (1981) is the Coriolis acceleration produced by
the meridional wind, v0, i.e.,

∂u0

∂t
= 2�E sin �v0 = −305 m s−1 day−1, (7.59)

where �E is the angular velocity of the Earth, � is the latitude, and v0 is the
meridional wind. Solving for v0 gives

v0 ≈ −24 m s−1

sin �
. (7.60)
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Nastrom, Balsley, and Carter (1982) showed observations of mean meridional
wind near the mesopause at Poker Flat, AK (65◦N) for the summer season. Values
of v0 ranged between approximately −10 and −30 m s−1. From (7.60), v0 at
65◦N is about −26.5 m s−1. This agreement between the theoretical estimates and
observations seems to support the validity of the wave saturation mechanism.

7.2.2 ANALOG PARAMETERIZATION SCHEMES

While the analytical parameterizations are both elegant and physically con-
sistent, they do not lend themselves easily to operational forecast models. These
types of models are limited by the number of grid cells and execution times. Many
models of the general circulation solve the primitive equations of motion in terms
of vorticity and divergence (see, for example, Holton, 1992; Pedlosky, 1979),
which do not lend themselves to analytical expressions for eddy dissipation and
wave drag. Thus, indirect techniques to account for wave saturation are required.
Wave stress must be calculated “off line” as illustrated in Fig. 7.5. At the end of a
computational time step and before the next time step, say, at time step t +1/2, the
vertical profiles of the newly calculated background wind speed and temperature
are put into a wave saturation model where they are used to calculate the wave
stress profile τ(z). The time step is completed by updating the wind speed, i.e.,

u0(z, t) = u0(z, t + 1/2) + 1

ρ0

∂τ

∂z
	t, (7.61)

FIGURE 7.5 Schematic diagram of an off-line wave saturation parameterization.



170 The Parameterization of Wave Stress

where	t is the size of the time step. If an eddy diffusivity, D, is calculated, then this
contribution can be included in the momentum and the temperature equations, i.e.,

u0(z, t) = u0(z, t + 1/2) +
[

1

ρ0

∂τ

∂z
+ ∂

∂z

(
D

∂u0

∂z

)]
	t (7.62)

and

θ0(z, t) = θ0(z, t + 1/2) + ∂

∂z

(
D

∂θ0

∂z

)
	t. (7.63)

7.2.2.1 The Palmer Method

In order to improve the performance of the Meteorological Office 15-layer
operational forecast model and 11-layer general circulation model, Palmer, Shutts,
and Swinbank (1986) accounted for subgrid-scale terrain effects by implementing
wave saturation theory. Using (3.33) and (7.34), the local Richardson number
(6.80) is

Ri = g

θ0

(∂θ0/∂z)(1 − ∂ζ1/∂z)

(∂u0/∂z)2 [1 + (∂u1/∂z)/(∂u0/∂z)]2
, (7.64)

where ζ1 is the vertical displacement of a flow streamline defined by (7.14).
Defining Ri,0 as the background Richardson number, we can write (7.64) as

Ri = Ri,0
(1 − ∂ζ1/∂z)

(1 + (R
1/2
i,0 /N)(∂u1/∂z))2

. (7.65)

Using (7.28) and (3.33) it is easily shown that

u1 = −u0
∂ζ1

∂z
= −iu0mζ1. (7.66)

From (6.83) we see that the local or wave-modulated Ri is a nonlinear function
of wave phase, and from Fig. 6.10 we see that instability occurs over only a
limited range of the wave field. Palmer, Shutts, and Swinback (1986) argued that
ultimately the parameterization seeks to account for the ensemble subgrid-scale
effects of terrain features on various space scales. The effects of these “phase-
incoherent subgrid-scale gravity waves” are parameterized by ignoring the phase
differences in (6.83). Then, using (7.66) in (7.65) gives

Ri,min = Ri,0
1 − N |ζ1|/u0[

1 + R
1/2
0 (N |ζ1|/u0)

]2
, (7.67)

where Ri,min represents the smallest value of the Richardson number that can be
realized under the action of gravity waves. The free parameter in (7.67) is the wave
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displacement |ζ1|. Thus, (7.67) provides the mechanism for parameterizing wave
saturation. This is done by controlling the value of |ζ1| so the Ri,min ≥ 1/4. For
example, if an upward-propagating gravity wave enters a region of decreasing wind
speed and/or increasing stratification, then the quantity N |ζ1|/u0 will increase
and Ri,min will decrease. Decreasing |ζ1| will balance the increase in N/u0 so
that Ri,min ≥ 1/4, but this adjustment also leads to a decrease in wave stress.
Thus, the effects of wave saturation are parameterized. Note that Palmer, Shutts,
and Swinbank (1986) used the dynamic stability condition Ri,min ≥ 1/4 for the
wave saturation criterion. This limit was chosen to account for large isotropic
displacements which could induce Kelvin–Helmholtz instability.

Under the WKB approximation, the wave stress over sinusoidal topography is
given by (3.106). Palmer, Shutts, and Swinbank (1986) assumed that the stress in
the surface layer of the model, τs , is directed against the surface-layer wind and is
given by

τs = ρ0κNu0σ
2
H , (7.68)

where σH is the root mean square value of the subgrid-scale topography and κ is
a “tunable” parameter which accounts for the fact that subgrid-scale topography
is not represented by a single wavenumber. They use κ = 2.5 × 10−5 m−1, which
corresponds to a wavelength of 250 km if the topography is sinusoidal. In the
absence of wave dissipation, τ(z) = τs . In the case of wave dissipation, it is
assumed that the direction of the wave stress will still be against the surface-layer
wind. The wave stress at any level above the surface layer is given by

τ(z) = ρ0κNU0|ζ1|2, (7.69)

where U0 is the component of the background wind parallel to the surface-
layer wind.

The analog parameterization begins with the calculations of surface-layer stress
(7.68) in each model grid cell. At the next layer, Ri,0 is calculated using the values
of N , u0, and v0 at adjacent vertical levels. Then assuming that τ = τs , |ζ1| is
calculated using (7.69). This value is then used in (7.67) to evaluate Ri,min. If
Ri,min ≥ 1/4, then τ is unchanged, and we proceed to the next upper layer. The
preceding steps are repeated layer by layer, always initially setting the stress equal
to the stress in the adjacent lower layer. If Ri,min remains about one-fourth, then
the wave stress remains constant and at its surface value. However, if this criterion
is not met at a certain layer, then Ri,min is set equal to one-fourth, and (7.67) is
used to calculate a new displacement, which we call |ζ1|sat . The wave stress for
the layer is then calculated using (7.69), but now with |ζ1|sat used in place of |ζ1|.
This new value of stress is called τsat . We now go to the next upper layer and
proceed as before, with the initial estimate of displacement calculated using (7.69)
but now using τsat calculated for the adjacent lower layer. When the top model
layer has been reached, we have a vertical profile of wave stress which can then
be used to update the velocity fields in each grid cell.
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7.2.2.2 The Schoeberl Method

The parameterization schemes discussed thus far assume that wave growth
stops when the saturation condition is satisfied. However, Schoeberl (1988), cit-
ing the work of Fritts and Dunkerton (1984), argues that wave growth does not
immediately stop with the onset of wave breaking. As we discussed with regards
to Fig. 6.10, dynamic and convective instability first occur over a limited range
of the wave field. Thus, the Reynolds stress produced by breaking waves may
be different than that calculated with the assumption of constant wave amplitude.
As an alternative procedure, Schoeberl (1988) presented a scheme where the flow
streamlines are adjusted locally rather than globally, i.e., over the whole wave.
The WKB solution to the Taylor–Goldstein equation along with (3.33) is

ζ̂1(z, k) = ζ̂1(0)

(
m(0)

m(z)

)1/2

ei
∫

m dz, (7.70)

where ζ̂1(0) is the Fourier-transformed streamline displacement at the ground
surface and m(0) = N(0)/u0(0) is the vertical wavenumber at the ground
surface. The saturation parameterization scheme consists of evaluating (7.70)
upward layer-by-layer with the constraint that the flow be convectively stable.
The WKB solution is constructed at each model level according to

ζ̂1(z + 	z, k) = ζ̂1(z, k)

(
m(z)

m(z + 	z)

)1/2

ei
∫ z+	z
z m dz. (7.71)

This so-called streamline adjustment algorithm begins at the ground surface or,
equivalently, at the model surface layer where ζ̂1(0) is evaluated. Then (7.71)
is used to carry the solution to the next upper level, z1, where ζ̂1(z1) = ζ̂1(0).
Next, the inverse Fourier transform of ζ̂1(k, z) gives the streamline displacement
in physical2 space, ζ1(x, z). This value is used in (7.19) to test the stability in the
subgrid domain. If the layer is stable, then the solution is carried to the next layer.
If the layer is unstable, then ∂ζ1/∂z is set to unity, and the new displacement is
given by

ζ1(x, z + 	z) = ζ1(x, z) + 	z. (7.72)

When all of the points in the wave field have been adjusted, the displacement is
Fourier transformed into wave space, and (7.71) is used to carry the solution to the
next layer. Figure 7.6 illustrates the adjustment process, and we see that convective
adjustment is done only to part of the wave field and does not initially limit wave
growth, as shown in Fig. 7.7 which displays potential temperature isotherms as
function of altitude. In Fig. 7.7 we see that in regions of convective adjustment, the

2 Note that the streamline displacement in physical space, ζ1(x, z), is a function of along-wind
distance, x. Obviously, since we are working toward a subgrid-scale parameterization, this distance
must also be on the subgrid scale, a point not discussed in Schoeberl (1988).
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FIGURE 7.6 Schematic illustration of the convective adjustment process. Only a part of the
wave is adjusted so that (∂η1/∂z) ≤ 1. (From “A model of stationary gravity wave breakdown with
convective adjustment,” M.R. Schoeberl, J. Atmos. Sci., 45: 987, 1988.)

FIGURE 7.7 Potential temperature isotherms with convective adjustment over a surface corru-
gation. Wave breaking begins at about 14 km. (From “A model of stationary gravity wave breakdown
with convective adjustment,” M.R. Schoeberl, J. Atmos. Sci., 45: 985, 1988.)

slopes of the isotherms become vertical as indicated by (7.8). We also see that wave
amplitude continues to grow even when convective adjustment is occurring. If the
wave encounters a region of the atmosphere where saturation does not occur, then
wave amplitude growth ends; however, the vertically oriented slopes of the wave
remain unchanged. Figure 7.8 plots the variation of displacement amplitude with
height for the case shown in Fig. 7.7. For conventional saturation theory (Hodges,
1967), displacement amplitude is constant after the start of wave breaking; how-
ever, convective adjustment results in displacements which continue to grow after
wave breaking, but at a decreasing rate. The dashed line in Fig. 7.8 shows the
result without wave saturation. The continued growth of wave amplitudes after
wave breaking is referred to as supersaturation (Lindzen, 1987).
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FIGURE 7.8 Displacement amplitude as a function of height for the experiment shown in
Fig. 7.7. The dotted line shows results using saturation theory, the solid line shows the results using
streamline adjustment saturation parameterization, and the dashed line shows result of no adjustments.
(From “A model of stationary gravity wave breakdown with convective adjustment,” M.R. Schoeberl,
J. Atmos. Sci., 45: 986, 1988.)

7.2.2.3 The Terrain Height Adjustment Scheme

The preceding wave saturation parameterization schemes made use of the WKB
approximation which is applicable to the middle and upper atmosphere. However,
in the lower troposphere and especially in the planetary boundary layer, vertical
wavelengths are not necessarily small compared to background variations. For
example, consider the vertical wavelength of a terrain-generated wave when the
background wind and stratification are constant,

λz = 2π

m
= 2π

(
N2

u2
0

− k2

)−1/2

. (7.73)

While (7.73) applies only for the case where N and u0 are constants, we can
still use it for scaling. Let the terrain feature have a horizontal scale b such that
k = 1/b. Then, with u0 = 5 m s−1, N = 0.03 s−1, and b = 1000 m, λz ≈ 1050 m.
A scale for the vertical variation boundary-layer flow is the Ekman layer depth,
zE , given by (4.81). Using the typical boundary-layer values of 5 m s−2 for the
eddy coefficient of friction (EKF) and f = 10−4 s−1, zE ≈ 1000 m, which is
on the same order as vertical wavelength of the terrain-generated wave. We also



Saturation Parameterization Schemes 175

note that within the stable boundary layer the vertical gradient of potential tem-
perature changes with height, especially near the ground surface. Thus, gravity
waves generated in the boundary layer and lower troposphere can be expected
to have reflection levels. Because the background winds turn with height in the
boundary layer, we can anticipate that there will be critical levels in the boundary
layer (Nappo and Chimonas, 1992). Critical levels can also be the result of frontal
systems, density currents, thunderstorm gust fronts, etc. For example, Fig. 7.9
shows the wind and temperature fields in the nighttime planetary boundary layer
constructed from instrumented aircraft flights over moderately complex topogra-
phy in central Oklahoma. During these flights, a northerly surface flow undercut
a less stable southerly flow. In Fig. 7.9 we see regions of high turbulence (regions
of vertical velocity variance greater than 0.01 m2 s−2) centered in regions of wind
reversals. For terrain-generated flows, critical levels occur at wind reversals, i.e.,
where u0 = 0. However, strictly speaking, the WKB is not applicable near a criti-
cal level. Thus, streamline adjustment parameterization schemes are not expected
to work well, if at all, in the lower troposphere.

In an effort to account for wave saturation effects in the nighttime planetary
boundary layer over complex terrain, Nappo and Physick (2000) proposed an
alternative to streamline adjustment. For simplicity and reduced computer time,
subgrid-scale terrain features are represented by one cycle of a surface corruga-
tion. In physical space, this cycle ranges over a series of subgrid “grid points.” The
amplitude and horizontal wavelength of the corrugation is chosen to best represent
the wave stress over the real terrain feature in the presence of constant wind and
stratification. At each model level, wave breaking is determined by the flow block-
ing criterion (7.12) rather than (7.7). This saves computer time because vertical
derivatives of ζ1(x, z) need not be calculated at every subgrid point; also, (7.20)
is more accurate because finite differencing of the vertical derivative of ζ1 is not
done. At the end of each model time step, the blocking condition is tested level by
level at each subgrid point according to

∣∣∣∣u1(x, z)

u0(z)

∣∣∣∣ ≤ 1. (7.74)

From (3.31) we see that u1 is proportional to H , the amplitude of the surface
corrugation, and from (3.105) we see that the wave stress is proportional to H 2. If
(7.74) is not satisfied, then H is incrementally reduced until it is. The reevaluation
of u1 is trivial since the computer solution of the Taylor–Goldstein equation (see
Chapter 9) is based on a nondimensional vertical velocity shape function. Thus, the
shape function needs only to be multiplied by H to evaluate u1. This flow blocking
adjustment proceeds upward level by level. With each adjustment, the terrain
height is reduced, and this also causes the wave stress, τ(z), to be reduced. If flow
blocking does not occur, then H is not reduced, and the wave stress is unchanged
from its value calculated at the adjacent lower level. If there is continued wave
breaking with height, then H will eventually be reduced to zero. In this case, the
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FIGURE 7.9 Two cross-sections of low-level airflow constructed from aircraft data taken with
two similar undulating flight tracks. The lower solid line in each figure marks the terrain surface. Solid
lines are isotherms of potential temperature (◦C), and dotted lines enclose regions of vertical velocity
variance greater than 0.01 m2 s−2. (From “Vertical structure and turbulence in the very stable boundary
layer,” L. Mahrt, J. Atmos. Sci., 42: 2337, 1985.)

wave has been completely dissipated, and the wave stress is zero for all the upper
levels. When the flow adjustment has been completed, the wave stress profile is
used to update the background wind fields according to (7.61). If a critical level
exists, then it is assumed that the wave will be completely absorbed in the layer
containing the critical level. Then, the wave stress is decreased linearly from its
value where wave breaking first occurs to zero at the model level just above the
critical level. Figure 7.10 shows the effect of this saturation algorithm for the
same experiment shown in Fig. 7.2. The convectively unstable regions seen in
Fig. 7.2 do not appear in Fig. 7.10. Figure 7.11 shows the vertical profiles of wave
stress and the changes in the amplitude of the surface corrugation made during the
saturation adjustment for the experiment shown in Fig. 7.10. The wave-breaking
region seen in Fig. 7.11 is between about 350 and 500 m. From Fig. 7.3, we see that
this is a region of strong shear and curvature in the wind speed profile. Because the
background wind speed is constant above the breaking level, the displacements of
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FIGURE 7.10 The same experiment as shown in Fig. 7.2, but now with terrain-height adjustment
saturation parameterization.

the streamlines at higher elevations remain at the adjusted values. If the wind speed
continued to change, then additional saturation adjustments to the streamlines
would be required. The results shown in Fig. 7.10 appear more physically realistic
than those shown in Fig. 7.2.

7.3 SATURATION LIMITS AND OTHER
PROBLEMS

Linear saturation theory and the parameterization schemes discussed in this
chapter have limitations and omissions. Fritts (1984) listed several shortcom-
ings, for example, neglect of wave superposition and interaction, wave transience
and horizontal localization, quasi-linear mean-flow accelerations, and the detailed
nature of the saturation process, that may not be justified in general. McFarlane
(1987) noted several deficiencies in parameterization schemes, including the fail-
ure to account for the orientation of the surface-layer winds relative to the terrain
and the neglect of nonlinearity. Miller, Palmer, and Swinbank (1989) enhanced
the Palmer, Shutts, and Swinbank (1986) scheme by introducing directionally
dependent subgrid-scale orographic variance, and this led to significant improve-
ments in forecast skill and reduction in model systematic errors. As shown by
Smith (1977), nonlinearity and nonlinearity in the bottom boundary condition
can lead to enhanced wave steeping in some vertical regions while suppressing
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FIGURE 7.11 Vertical profile of wave stress and variation of surface amplitude resulting from
the terrain-height adjustment wave saturation parameterization scheme used in the experiment shown
in Fig. 7.10.

steepening in others. This can have a pronounced effect on wave saturation which
would be missed in linear theory. McFarlane (1987) also pointed out that the
failure to account for wave reflection because of the use of the WKB approxima-
tion negates the possibility of simulating wave resonance and wave amplification
effects observed by Lilly and Zipser (1972) and Lilly (1978) and numerically
studied by Peltier and Calrk (1979). Schoeberl (1988) noted that the schemes
developed for general circulation models by Palmer, Shutts, and Swinbank (1986)
and McFarlane (1987) should not be used to discriminate between various subgrid-
scale processes because of the parameterization’s crude estimates of breaking
heights and induced acceleration. He pointed out that these schemes are not accu-
rate enough representations for even idealized definitive conclusions about the
influence of topography on the general circulation.

Saturation parameterization schemes developed for general circulation and
forecast models usually represent subgrid orography in terms of a sinusoidal
function. However, stratified flows over real ridges and mountains are much
more complex (Baines, 1995). Kim and Mahrt (1992) compared calculated with
observed wave stress over a coastal mountain range in Croatia. They pointed out
that stable flows over two-dimensional ridges are influenced by terrain-induced
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disturbances such as the blocking of low-level flow, the development of turbu-
lent boundary layers, and the formation of stagnant cold air pools in topographic
depressions. These effects act to limit the vertical displacements of streamlines near
the ground surface so that the effective height of the obstacle is less than its real
height. Stern and Pierrehumbert (1988) proposed that the effective height, He, is

He = min

[
H, c

u0(0)

N(0)

]
, (7.75)

where H is the real terrain height, u0(0) and N(0) are surface-layer values of wind
speed and Brunt–Väisälä frequency, and c is a constant estimated to be between 0.4
and 0.8. Lott and Miller (1997) developed an orographic drag parameterization for
subgrid-scale, three-dimensional objects based on the ideas presented by Baines
and Palmer (1990). Figure 7.12 illustrates the low-level flow behavior over an
elliptically shaped mountain. The non-dimensional height of the mountain, Hn, is
taken to be

Hn = HN

|U | , (7.76)

where U is the scale speed of the incident flow. Hn corresponds to an inverse
internal Froude number. For small Hn, all the flow goes over the mountain, and
the effective height for gravity wave generation is H . However, for large Hn there
is insufficient energy of the incident flow to overcome the buoyancy, and part
of the low-level flow goes around the mountain. Then, as shown in Fig. 7.12,
the effective height of the mountain is H −zb, where zb is the depth of the blocked
layer. For constant U and N ,

zb = H max

(
0,

Hn − Hnc

Hn

)
, (7.77)

where Hnc is a critical nondimensional height of order unity.
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FIGURE 7.12 Schematic representation of the low-level flow behavior over a three-dimensional
obstacle. (From “A new subgrid-scale orographic drag parameterization: its formulation and testing,”
F. Lott and M.J. Miller, Q. J. R. Meteorol. Soc., 123: 103, 1997.)
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A current important problem is the parameterization of stress carried by con-
vectively generated gravity waves in general circulation models (see, for example,
Chun et al., 2001 and references therein). The problem is complicated because it
requires a cumulus cloud parameterization, and these schemes require the model
atmosphere to be conditionally unstable. Thus, a difficulty arises in attempting
to account for internal gravity waves in an unstable flow. Chun and Baik (1998)
pointed out that above the cloud top height internal gravity waves can propagate
and affect the larger scale flow. They proposed that convection-induced gravity
wave momentum flux be considered in the region above the cloud top height, but
not considered inside the cloud region.
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Thus far, this book has dealt mostly with theoretical issues. However, this
information is meaningful only if it can be used in some real sense. The first
step in this process is the ability to observe gravity waves. However, from the
start we have a problem because we cannot observe gravity waves. We can only
observe the effects of these waves. It is only through an analysis of these observed
effects that we can begin to perceive waves. These data analyses are based on what
we know about wave behavior, and for the most part this is limited to the linear
theory. It often happens that the waves detected through these analyses do not agree
with linear theory. In these cases, we often assume that the waves are nonlinear.
However, it may be that the apparent nonlinearity is, in fact, due to errors in the
observations. Thus, the study of real waves in the atmosphere is a daunting task,
and this may explain why the majority of published studies of gravity waves are
of a theoretical nature.

In Chapter 2, we saw that a linear wave field is specified to within an unde-
termined wave amplitude when we know the dispersion relation, ω(�κ). Thus,
the objectives of all gravity wave observations are the estimations of wave fre-
quency and wavenumber or, equivalently, phase speed and wavelength. While this
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specification seems at first glance straightforward, in practice it is not. The prob-
lem lies in the fact that we can observe only perturbations of wind speed and
direction, temperature, density, pressure, trace gas and aerosol concentrations,
and streamline displacements. The observations that can be made are determined
by the characteristics of the instrument and its platform. The instrument may
measure in situ or remotely, and the platform may be stationary or moving. The
analyses of these data are limited by how the measurements were made. For
example, a radiosonde or an upward-looking radar can be used to estimate the
vertical structure of a wave field, but the horizontal characteristics of the wave,
i.e., wavelength and phase velocity, can be estimated only by indirect means.
A horizontal array of sensors can be used to estimate horizontal phase speed and
wavenumber directly, but the vertical structure of the wave cannot be determined.
Generally, obtaining the entire wave field from a single measuring technique is
not possible.

Gravity wave characteristics must be estimated by measuring perturbations to
the mean atmospheric flow. Measurements include (1) ground-based meteorolog-
ical observations of wind speed, wind direction, temperature, and pressure; (2)
vertical profiles of wind speed and temperature derived from tall towers, captured
balloons, kites, sounding balloons, rocket sondes, and remote sensors; (3) horizon-
tal fields of vertical velocity and temperatures derived from instrumented aircraft,
constant volume balloons, and remote sensors; (4) images of clouds captured by
high-altitude aircraft flights and satellites; and (5) images of wave perturbations
of the nighttime sky glow. All of these types of measurements have been used to
some degree in analyses of gravity waves.

8.1 SINGLE-STATION OBSERVATIONS

Observations made at a geographical point or within a vertical column above a
fixed point will be considered as single-station observations. Examples of single-
station observations include in situ time-continuous meteorological measurements
made near the ground surface and above the ground surface using masts, tall towers,
kites, and captured balloons; time-discrete measurements made by radiosondes,
rawinsonde, and tethersondes; and time-continuous measurements of vertical and
horizontal velocity made by upward-directed remote sensors.

8.1.1 GROUND-BASED METEOROLOGICAL
MEASUREMENTS

Operational, ground-based meteorological measurements are generally made
in support of weather forecasting, airport operations, fire hazard, etc. These
observations usually include horizontal wind speed and direction, temperature,
relative humidity, surface pressure, precipitation, visibility, etc. Except for
large-amplitude, solitary-wave disturbances of the type described, for example,
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by Rottman and Einaudi (1993), gravity wave perturbations are generally not
detected by these types of measurements because the instrument sensitivities and
reporting frequency are too low. For example, from the Federal Meteorological
Handbook No. 1, we see that the wind direction is determined by averaging the
direction over a 2-min period, and the direction is reported in tens of degrees with
reference to true north. Also from the handbook we note that, “When the wind
direction sensor(s) is out of service, at designated stations, the direction may be
estimated by observing the wind cone or tee, movement of twigs, leaves, smoke,
etc., or by facing into the wind in an unsheltered area.” We also see from that
handbook that the wind speed shall be determined by averaging the speed over a
2-min period, and at designated stations, a table shall be used to estimate wind
speeds when instruments are out of service or the wind speed is below the starting
speed of the anemometer in use. This table relates wind speed ranges to events,
for example, such as “smoke rises vertically” = calm wind; “wind felt on face,
leaves rustle” = 4–6 knots (kn); “wind raises dust and loose paper, small branches
moved” = 11–16 kn, etc. These observations are generally reported every 3 hours.
It is clear that these data would not be helpful in gravity wave analyses.

Gravity wave analyses using ground-based observations require research-grade
instrumentation, and the sampling rates of the data should scale with the frequency
of the waves under consideration. For high-frequency waves in the atmospheric
boundary layer, sampling rates of at least 0.1 Hz should be used. For lower fre-
quency mesoscale gravity waves, the sampling rates can be much lower. These data
should include static pressure with a precision of at least 0.1 mb and wind speeds
with a precision of 0.1 m s−1. Sonic anemometers should be used when possi-
ble. Examples of ground-based meteorological observations of gravity waves can
be found, for example, in Gossard and Munk (1954), Bosart and Cussen (1973),
Gossard and Sweezy (1974), Gossard and Hooke (1975), Bosart and Sanders
(1983), and Koch and Golus (1988). Observations made on tall towers can be used
to determine the vertical structure of the wave field (see, for example, Caughey
and Readings, 1975; Finnigan and Einaudi, 1981; De Baas and Driedonks, 1985).
In Chapter 9 we shall discuss how these observations can be used to estimate wave
parameters.

8.1.2 FREE-BALLOON SOUNDINGS

Free-balloon soundings include radiosondes and rawinsondes. A radiosonde is
a balloon-borne instrument for the simultaneous measurement and transmission
of pressure, temperature, and humidity. A rawinsonde is a method of upper air
observation consisting of an evaluation of the wind speed and direction, tempera-
ture, pressure, and relative humidity aloft by means of a balloon-borne radiosonde
tracked by a radar or radio direction finder. Today, some rawinsondes use global
positioning systems instead of being tracked by radar. Corby (1957) suggested that
observed periodic variations of a few meters per second of the vertical velocities of
ascending radiosondes could be related to atmospheric gravity waves. Reid (1972)
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improved Corby’s analysis method by relating departures of the vertical velocity
of the airsonde from a mean value to changes in the gradient of the pressure trace
which were automatically recorded on a paper chart. Typical changes in the vertical
velocities were about 1 m s−1. Lalas and Einaudi (1980) tested the ability of oper-
ational rawinsonde data to observe gravity waves in the troposphere. To couple
the observed motion of the balloon with the gravity wave (observed by Doppler
radar and a microbarograph array), the vertical position of the balloon, z(t), was
obtained by interpolation of its reported height, which was once per minute, and the
horizontal position was obtained by integrating the kinematic equation of motion,

dx

dt
= u(z, t) = u0[z(t)] + u1[x(t), z(t), t : φ0] , (8.1)

where φ0 is the initial phase of the wave. The motivation for this study was, in
part, to devise a method for determining the climatology of tropospheric grav-
ity waves. Shutts, Kitchen, and Hoare (1988) analyzed a large-amplitude gravity
wave in the lower stratosphere detected by a radiosonde launched from Shanwell,
UK. Figure 8.1 shows the ascent profiles where we can clearly see pronounced

FIGURE 8.1 Radiosonde ascent profiles at Shanwell, 2318 GMT December 12, 1986: (a)
temperature and potential temperature; (b) wind speed; (c) wind direction; (d) ascent rate, computed
from the geopotential (solid line) and radar data (dashed line) and offset by −4 m s−1. (From “A large
amplitude gravity wave in the lower stratosphere detected by radiosonde,” G.J. Shutts, M. Kitchen,
and P.H. Hoare, Q. J. R. Meteorol. Soc., 114: 580, 1988.)
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wave activity between 15 and 22 km. Shutts, Kitchen, and Hoare (1988) used lin-
ear wave saturation theory to argue that the disturbance was a quasi-stationary,
terrain-generated gravity wave with a horizontal wavelength of about 16 km
and a vertical wavelength of about 6 km. The wave temperature-perturbation
amplitude was about 8 K, which is shown as only slightly smaller than the crit-
ical amplitude for wave saturation. Shutts, Healey, and Mobbs (1994) described
a pilot study to assess the potential of rapidly released radiosondes for studying
terrain-generated gravity waves. The idea is that each sonde will be nearly simul-
taneously responding to a different part of the wave field. As Shutts, Healey, and
Mobbs (1994) pointed out, sondes that are too close together in space and time
provide no new information on the wave, since they are all experiencing the same
part of the wave. Sondes which are separated over space scales greater than the
wave scales are impossible to correlate. However, if the spacings of the sondes are
between these limits, then this technique offers the possibility of determining not
only the horizontal wavelengths, but also the slopes of the constant phase lines.
These values can then be used to infer wave drag. Gardner and Gardner (1993)
and de la Torre and Alexander (1995) investigated the distortions to density and
temperature spectra introduced by the characteristics of balloon motion and wave
propagation. These studies sought methods to infer the “real” wavelengths and fre-
quencies from the “apparent” ones measured during soundings. Balloon soundings
have been extensively used to study gravity waves in the troposphere and lower
stratosphere.

8.1.3 REMOTE SENSORS

Remote sensing can be defined as measuring the characteristics and properties
of the atmosphere in a region far removed from the sensing instrument. Examples
of remote sensors include radar, lidar, and sodar.

8.1.3.1 Radar

Radar has been extensively used to study gravity waves throughout the atmo-
sphere. For example, using radar Ottersten, Hardy, and Little (1973) described
gravity wave observations in the planetary boundary layer; Gauge and Balsley
(1978) described probings of the troposphere and stratosphere; Manson (1990) pre-
sented a climatology wave structure in the mesosphere; and Fritts and Isler (1994)
described wave motions in the mesosphere and lower thermosphere. Perhaps one
of the first reported radar observations of a gravity wave was made by Hicks
and Angell (1968) who described “. . .a hitherto undetected phenomenon observed
on several occasions. . .” which “. . .is an apparent horizontally twisted, braided,
or helical-appearing atmospheric structure. . ..” They concluded that the object
in question is a breaking Kelvin–Helmholtz gravity wave. Since then, numer-
ous studies of gravity waves have been performed using radar. A discussion
of the basic concepts of radar can be found in Chadwick and Gossard (1986).
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Two types of radar are commonly used in atmospheric research: Doppler radar
and frequency-modulated continuous-wave (FM-CW) radar.

8.1.3.2 Doppler Radar

The principles of Doppler radar as used in atmospheric studies can be found,
for example, in Gauge and Balsley (1978) and Kropfli (1986). Basically, pulses
of radiofrequency energy are transmitted via a directional antenna. These pulses
are scattered by refractive inhomogeneities caused by temperature and humidity
fluctuations on scales of half a wavelength of the pulse. These fluctuations are gen-
erally caused by turbulence or large gradients of temperature or humidity along
the radar beam. Ultra high frequency (UHF) radars operate over frequency ranges
from 300–3000 MHz, with wavelengths ranging from 1–0.1 m. Sensitive Doppler
radars operate in the very high frequency (VHF) range from 30–300 MHz, with
wavelengths ranging from 10–1 m. The component of the scattered beam parallel
to the incident beam is received by the antenna, and the time delay between trans-
mitted and received pulses is a function of the distance to the scattering region.
If the scattering region is moving, then the frequency of the returned pulse is
Doppler shifted by an amount that is proportional to the velocity component in
the direction of the radar beam. If the radar is directed vertically, then only the
vertical velocity of the scattering region is observed. If, however, the beam is
inclined to the vertical by angle θ , then the instantaneous Doppler velocity, v, at
range R is

v(θ, R, t) = w(θ, R, t) cos θ + uh(θ, R, t) sin θ , (8.2)

where w and uh are the instantaneous vertical and horizontal velocities, respec-
tively. If the tilted beam is aimed along orthogonal azimuth angles, and if it
is assumed that the horizontal wind speed is much greater than the vertical
wind speed, then as demonstrated by Farley et al. (1979) the instantaneous
horizontal winds speeds u and v can be resolved. By making similar measure-
ments at various range distances, the wind profile can be resolved. Figure 8.2
shows plots of radar-derived wind profiles observed with the Arecibo radar in
Puerto Rico compared with rawinsonde wind profiles. The agreement between
radar winds and airsonde winds seen in Fig. 8.2 is very good. The radiosonde
was launched from San Juan, Puerto Rico, about 70 km east of Arecibo,
and Farley et al. (1979) attributed the differences between the profiles to the
physical separation between the observing points rather than to experimental
uncertainties. Vincent and Reid (1983) used these techniques to measure grav-
ity wave momentum fluxes in the mesosphere. At a height range of 80–90 km,
they calculated a westerly acceleration due to momentum flux convergence of
about 20 m s−1 day−1 due to waves with a dominant wavelength of about
50 km and a phase speed of about 50 m s−1. While this induced acceler-
ation is almost an order of magnitude smaller than that predicted by Fritts
(1984) using saturation theory (see Section 7.2.1), it may well be correct since
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FIGURE 8.2 Comparison of vertical profiles of wind speed and wind direction observed by
the Arecibo radar with nearly simultaneous rawinsonde observations from San Juan, Puerto Rico.
(From “Tropical winds measured by the Arecibo radar,” D.T. Farley et al., J. Appl. Meteorol., 18: 229,
1979.)

Vincent and Reid (1983) estimated the average wave stress over 3 days of
observations.

8.1.3.3 Frequency-Modulated Continuous-Wave Radar

Generally, Doppler radar returns are limited to temperature and humidity
inhomogeneities on the scale of meters and to ranges greater than several hun-
dreds of meters above the ground surface. The first restriction is imposed by the
radar frequency, and the latter restriction is imposed by the fact that during the
transmission of the radar pulse no signal can be received. However, to better
understand the dynamics of the planetary boundary layer it is necessary to know
the true thickness of thin radar backscatter layers and the processes generating
these fine-scale refractive index inhomogeneities. The FM-CW radar developed
by Richter (1969) makes these observations possible. To eliminate the need for
radar pulses which limit the range, a continuous microwave frequency is trans-
mitted and simultaneously received by an identical antenna closeby. In itself, this
mode of operation would provide high spatial resolution, but no range informa-
tion. To get range information, the transmitted frequency is linearly modulated
between two frequencies over a time TM . The received signal will be Doppler
shifted by moving scatters, and when the transmitted and received signals are
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combined in real time, a sinusoidal beat frequency, fb, is generated. The time
delay, 	t , of the appearance of reflected signal is related to the distance of the
scatter by

fb = F

TM

	t = 2F

c TM

H , (8.3)

where F is the frequency excursion, c is the speed of propagation, and H is
the height of the scatter (assuming the instrument is pointed upward). In the
case of multiple returns, a spectrum analysis of the beat frequency allows the
different targets to be resolved according to their range, and the amplitudes of
the beat frequencies are measures of the reflection coefficients of the targets.
Figure 8.3 taken during the CASES-99 field program (Poulos et al., 2001) illus-
trates the fine wave-like structures that can be revealed by FM-CW radar. The
capability of FM-CW radar was enhanced in 1976 when Doppler capability was
added (Chadwick et al., 1976; Strauch et al., 1976). This was accomplished
by using a digital Fourier transform that preserved the phase and amplitude of
spectral density of the radar signal obtained during each sweep. Monitoring the
change in phase from sweep to sweep provides the Doppler information needed
to estimate radial velocities. Figure 8.4 compares FM-CW Doppler winds with
winds observed using a tethered balloon and a rawinsonde. The FM-CW radar
is becoming a standard instrument for boundary-layer studies and has proved
especially useful in the studies of wave and turbulence in the stable boundary

FIGURE 8.3 FM-CW radar images recorded on October 14, 1999. Record begins at 07:40:20
GMT. Kelvin–Helmholtz waves are between 1500 and 1800 m and between 500 and 600 m. (Courtesy
of Stephen Frasier, Univ. of Massachusetts, Amherst.)
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FIGURE 8.4 FM-CW Doppler radar wind speed profile (dashed line) compared with tethered
balloon wind profiles (solid lines) and rawinsonde profile (circles). (From “A new radar for measuring
winds,” R.B. Chadwick et al., Bull. Am. Meteorol. Soc., 57: 1123, 1976.)

layer (see, for example, Eaton, McLaughlin, and Hines, 1995; De Silva et al.,
1996).

8.1.3.4 Sodar

Sodar, which stands for sound detection and ranging, was first described as a
research tool for probing the lower atmosphere by Little (1969) and McAllister
et al. (1969). The historical development of sodar and its principles of operation
can be found in Beran, Hooke, and Clifford (1973) and in the reviews by Brown and
Hall (1978) and Neff and Coulter (1986). Basically, sodars are like radars, but with
sound energy replacing radiofrequency (RF) energy. Little (1969) pointed out that
the interactions of sound waves with the lower atmosphere are much stronger than
interactions of electromagnetic waves. For example, the change in sonic refractive
index for a 1 K fluctuation in temperature is about 1700 N -units, where 1 N -unit
equals 1 part in 106. For RF wavelengths, the corresponding change in refractive
index is about 1 N -unit. For fluctuations in wind speed, the difference is greater; for
a 1 m s−1 variation in wind speed the change in the sonic refractive index is about
3000 N -units, whereas RF waves are essentially unaffected. Thus, sodar offers a
much more sensitive means of observing fine structure and turbulence in the atmo-
spheric boundary layer than radar. An example of this ability is shown in Fig. 1.2.
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The dark bands represent sound returns from regions of turbulence and stable
stratification. The light regions between the bands are either quiescent or neutrally
stratified, i.e., ∂θ0/∂z = 0. The small-scale structures of the type shown in Fig. 1.2
have been discussed by Chimonas (1999); they represent complex interaction
between waves and turbulence in the stable boundary layer. Emmanuel et al.
(1972); Hooke, Hall, and Gossard (1973); and Emmanuel (1973) were among the
first to use sodar as a means of identifying regions of shear instability in the noc-
turnal inversion. Merrill (1977) made use of sodar to identify wave instabilities in
one of the first comprehensive field studies of waves and turbulence. Since then,
sodar has been an integral part of most studies of the boundary layer. Neff and
Coulter (1986) presented several examples of these types of studies. The first
reported application of Doppler technology to sodar was made by Beran, Little,
and Willmarth (1971) who used it to measure vertical velocities in the convective
boundary layer. Descriptions of Doppler sodar systems are given by Beran, Hooke,
and Clifford (1973) and by Brown and Hall (1978). A discussion of early studies
of gravity waves and sodar is given by Beran, Hooke, and Clifford (1973). Since
then, the Doppler capabilities have been greatly extended so that routine profiles
of the three-dimensional wind field and its accompanying turbulence structure are
possible.

8.1.3.5 Lidar

Light detecting and ranging or lidar is the optical counterpart of radar. Lidar
is the most recent of the remote-sensing techniques, and some aspects of the
technology are still under development. Instead of RF pulses, lidars transmit
pulses of light and measure its backscatter as a function of time. A discussion
of the basics of lidar can be found in Schwiesow (1986). The transmitted light
is backscattered by aerosols and molecules depending on the frequency of the
light. A lidar system consists basically of a laser; a telescope for transmission
and reception; a detector; and, of course, a computer for signal control, signal
processing, and data analysis. Because the absorption and scattering of the laser
beam is proportional to the density of the absorbers and scatterers, lidars have been
often used to remotely measure concentrations of aerosols, trace gases, and atmo-
spheric pollutants. The first reported use of a lidar for observing gravity waves was
made by Collis, Fernald, and Alder (1968). They used two pulsed ruby lidars to
observe the structure of wave clouds in the lee of the Sierra Nevada mountains in
California. Gardner and Shelton (1985) and Gardner and Voelz (1987) developed
equations which relate variations of mesospheric sodium (Na) concentrations to
gravity waves and used lidar measurements of Na to estimate wave characteristics
in the mesosphere. Kwon and Gardner (1990) used airborne lidar measurements of
mesospheric Na to estimate not only vertical and horizontal wavelengths, but also
intrinsic frequency, phase speed, and propagation direction. Gardner and Taylor
(1998) discuss the limits of remotely measuring middle atmosphere gravity wave
parameters.
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Because the light scatterers move with the mean flow, Doppler techniques
can be used to remotely measure wind speeds. However, Eloranta, King, and
Weinman (1975) and Sroga, Eloranta, and Barber (1980) demonstrated that
three-dimensional boundary-layer flow fields could be measured without the
Doppler technique by following the motions of naturally occurring aerosol density
inhomogeneities. Examples of the early uses of Doppler lidar for studying winds
in the boundary layer can be found in DiMarzio et al. (1979), Bilbro et al. (1984),
and Köpp, Schwiesow, and Werner (1984). One of the first observations of gravity
waves with a Doppler lidar was reported by Blumen and Hart (1988). They used
an airborne Doppler lidar to study the flow fields in the wake of Mount Shasta
in California. Ralph et al. (1997) reported on the use of Doppler lidar and other
instruments in two studies of trapped gravity waves in the lee of the Rocky Moun-
tains near Boulder, CO. The most recent use of Doppler lidar for gravity wave
observations occurred during the CASES-99 field program (Poulos et al., 2001)
and is described by Newsom et al. (2000). These observations were made with the
NOAA/ETL High-Resolution Doppler Lidar (HRDL) which is described in Grund
et al. (2001). The lidar can achieve 30-m range resolution, a working range of
between 2 and 3 km, and a velocity precision of about 0.1 m s−1. Figure 8.5 shows
contours of stream-wise velocity as a function or height and horizontal range.

FIGURE 8.5 Sample vertical cross-section wind speed scan taken by the HRDL radar during
the CASES-99 field program. Positive wind speeds are away from the radar. (From 14th Symposium on
Boundary Layer and Turbulence, August 7–11, 2000, Aspen, CO, R.K. Newsom et al., Am. Meteorol.
Soc., Boston, MA, 2000, p. 363.)
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A well-defined wave is seen between 40 and 70 m, and a low-level jet with a
maximum velocity of 10 m s−1 is seen at a height of about 120 m. Eichinger
et al. (1999) reported on the development of a scanning Raman water vapor
lidar designed for boundary-layer and tropospheric observations. The horizon-
tal range while scanning is about 700 m, and the vertical range can be up to 12 km.
Spatial resolutions range from 1.5 m in the near field to 75 m in the far field.
Figure 8.6 shows wave activity during the night of October 13–14, 1999, during
the CASES-99 field program. While these types of lidars do not give wind speed
data directly, their fine spatial resolution is especially useful in estimating wave-
lengths and regions of wave activity. Also, by observing a wave over successive
scans, it is possible to estimate wave speed.

8.2 MULTIPLE STATION OBSERVATIONS

Single-station techniques are generally limited to observations of wave-induced
perturbations and their vertical structures. In some cases and with linear theory,
wave parameters such as wavelength and phase velocity can be estimated if the
waves persists over several cycles with relatively constant amplitude. Also, scan-
ning Doppler lidars may be able to resolve horizontal wavelengths and phase
velocities, but this has yet to be demonstrated. For reliable estimates of phase
speeds and wavelengths, the disturbance must be detected as it passes over several
observing stations. The arrival times of the crests of the disturbance at the stations
can be used to estimate phase speeds. If there is a periodicity associated with the
disturbance, then wavenumbers and wavelengths can be calculated.

Surface pressure perturbation is the most often used atmospheric variable for
tracking gravity waves (see, for example, Herron and Tolstoy, 1969; Stobie,
Einaudi, and Uccellini, 1983; Bedard, Canavero, and Einaudi, 1986; Einaudi,
Bedard, and Finnigan, 1989; Hauf et al., 1996; Rees et al., 2000). Other atmo-
spheric variables have been used. For example, Kjelaas et al. (1974) used a
triangular array of sodars to estimate gravity waves characteristics. Observa-
tions taken with the sodar array were compared with those obtained with an
array of microbarographs. The results from both measurement techniques were
comparable when waves were observed by both methods. However, the sodar
array was able to detect waves propagating in an elevated inversion above the
convective boundary layer, but these waves were not detected by the microbaro-
graphs. A similar instance was reported by Nappo, Eckman, and Coulter (1992)
who observed a Kelvin–Helmholtz wave at about 300 m AGL in the nighttime
boundary layer, but the wave was not seen by a surface array of microbaro-
graphs. Eymard and Weill (1979) used a triangular array of Doppler sodars to
study gravity waves at two locations in France. Xing-sheng et al. (1983) used an
optical triangle to calculate wave speeds and directions. The optical anemometers
sense path-averaged instantaneous wind speeds, which is perhaps a more robust
measure of wave perturbation velocity than observations made at three points.



FIGURE 8.6 Boundary layer waves observed by vertically pointed Ramon lidar during the night of October 13–14, 1999, during the CASES-
99 field program. Time is CDT. (From “High altitude activity associated with intermittent turbulence in a stable atmosphere,” W.E. Eichinger et al.,
Boundary-Layer Meteorol., submitted, 2001.)



194 Observational Techniques

Rees and Mobbs (1988) used time series of wind speed and direction measured
at an 8-m height on three meteorological masts at Halley Base, Antarctica. Carter
et al. (1989) used three vertically directed 50-MHz radar wind profilers spaced
between about 5 and 6 km to detect vertical velocities associated with gravity
waves during the ALPEX experiment in southern France. They concluded that
“. . .monochromatic wave activity is a relatively rare occurrence and that most of
the time a wide spectrum of waves influences the vertical velocities in an incoher-
ent fashion.” However, the somewhat large horizontal scale of the array may be
partly responsible for these incoherent disturbances. As we shall see, if the average
separation between stations in the array is large relative to a horizontal wavelength,
then aliasing of the wave signal can occur. This can result in an incoherent wave
signal.

8.2.1 PRESSURE PERTURBATION MEASUREMENTS

Although several techniques for detecting gravity waves have been tried, mon-
itoring surface pressure is the one most commonly used. Reasons for this are that
there are no moving parts, they are relatively cheap to make, and they require little
care once in operation. The pressure perturbations associated with most waves
will be maximum at the ground surface, and because the background wind speed
is generally small at the ground surface, there will be little Doppler shifting of
the wave.

Surface pressure perturbations by gravity waves of large amplitude are seldom
greater than 1 mb. More typical values range from ∼10 to ∼100 μb. Because abso-
lute surface pressures are on the order of ∼1000 mb, a barograph would require
a sensitivity of 1 in 104 to detect a 100-μb signal. This sensitivity is beyond most
commercial barographs. However, because it is the perturbations and not the abso-
lute values of pressure that are important, one can use an electronic manometer to
measure the perturbations. Recall that a manometer measures pressure difference.
In applications, one measures the pressure difference between a static or slowly
varying pressure in a reference chamber and the rapidly varying atmospheric
pressure. This will allow the separation of the low-frequency, large-amplitude
mean pressure changes from the high-frequency, low-amplitude perturbations.
Figure 8.7 illustrates the filtering setup. The differential pressure gauge (the
manometer) contains a piezoelectric diaphragm which responds electronically to
the strains produced by pressure differences between the reference chamber and
the atmosphere. If the reference chamber has a slow leak, then the chamber pres-
sure will slowly adjust to low-frequency atmospheric pressure changes, and the
signals of the high-frequency pressure changes will be enhanced. This is a high-
pass filter, and the frequencies that are passed are controlled by the size of the
leak. We can refer to this type of filter as mechanical. However, if the reference
chamber is sealed, then all frequencies will be recorded. In this case, the low
frequencies must be filtered numerically. We can refer to this type of filter as
digital.
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FIGURE 8.7 Schematic of an electronic mechanical filter microbarograph. When the slow leak
is sealed, the instrument becomes a digital filter microbarograph.

8.2.1.1 Mechanical Filter Instruments

If there is a leak in the reference chamber, then the pressure, pc, in the chamber
changes according to

dpc

dt
= −α [(pc(t) − pa(t))] , (8.4)

where pa is the atmospheric pressure and α−1 is a time constant which is deter-
mined by the leak rate. The integration of (8.4) is straightforward if we multiply
it by the integrating factor eαt and note that eαt dpc + αpc eαtdt is an exact
differential. We can then write (8.4) as

d
[
pc eαt

] = αpa eαtdt . (8.5)

Integration of (8.5) gives the result

pc(t) = α

∫ t

0
pa(t

′)e−α(t−t ′) dt ′ . (8.6)

The differential pressure, 	p, at time t is

	p(t) = pa(t) − pc(t) . (8.7)

Using (8.6) in (8.7) gives

	p(t) = pa(t) − α

∫ t

0
pa(t

′) e−α(t−t ′) dt ′ . (8.8)
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Following, for example, Bendat and Piersol (1971), a linear system which is stable
and physically realizable can be represented by

y(t) =
∫ ∞

0
h(τ) x(t − τ) dτ , (8.9)

where h(τ) is a weighting function which relates the system output, y(t), to the
system input, x(t). Equating (8.9) with (8.8), we see that

h(τ) = δ(τ ) − αH(τ) e−ατ , (8.10)

where δ(τ ) is the Dirac delta function and H(τ) is the Heaviside function
defined by

H(t − τ) = 1 t ≥ τ

= 0 t < τ . (8.11)

The dynamic characteristics of the system are given by the frequency response
function, ĥ(ν), which is the Fourier transform of the weighting function. The
Fourier transform of (8.10) is

ĥ(ν) = ν2 + iαν

α2 + ν2
, (8.12)

where ν is the frequency. It is customary to express the frequency response in polar
notation, i.e.,

ĥ(ν) = G(ν) e−i�(ν) , (8.13)

where G(ν) is the gain factor of the system and �(ν) is the phase factor of the
system. From (8.12) we see that

G(ν) =
(

ν2

α2 + ν2

)1/2

(8.14)

and

�(ν) = tan−1
(α

ν

)
. (8.15)

From (8.14) we see that frequencies less than α are attenuated, while frequencies
greater than α are less attenuated. Thus, the leak creates, in effect, a high-pass filter.
The amplitude of a gravity wave with angular frequency a is reduced by a factor
of 0.707, and the phase angle is shifted forward π/4 degrees. If the period of the
wave is 15 min, then the wave phase is shifted forward about 112 s. These changes
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in wave amplitude and phase will affect statistics such as cross-correlations as
well as the comparisons of pressure measurements with other measurements such
a velocity or temperature. Thus, it is necessary that the characteristics of the
low-pass filter be known so that the pressure data can be corrected before analysis.

As mentioned above, 1/α is a time constant for the reference chamber pres-
sure. This value depends on the frequencies of the wave of interest. For example,
Jordan (1972) investigated atmospheric gravity waves generated by several
mechanisms such as upper tropospheric winds, jet streams, weather fronts, thun-
derstorms, etc. He selected leak time constants which ranged from 50 to 100 s.
Einaudi, Bedard, and Finnigan (1989) examined gravity waves in the planetary
boundary layer and used a time constant of 7.5 s. Hauf et al. (1996) examined
gravity waves on the mesoscale and used a time constant of about 300 s.

8.2.1.2 Digital Filter Instruments

If the pressure reference chamber is sealed, then the differential pressure given
by (8.7) is

	p(t) = pa(t) − pc , (8.16)

where pc is now a constant pressure. Such a system does not suffer degradation
introduced by a high-pass filter. Indeed, pressure variations on all time scales can
be detected if the instrument is operated long enough. Because all frequencies are
present in the recorded data, digital filters must be used to isolate and separate
desired frequency ranges. However, this enhanced frequency response comes at a
cost. One of the most challenging problems is maintaining constant pressure in the
reference chamber over the measuring time, which could range from minutes to
days. Because the chamber is sealed and has constant volume (neglecting thermal
expansion), the gas density is constant at least to first order. Then, from Boyle’s law,

δpc

pc

= δTc

Tc

, (8.17)

where δpc is the change in pc due to a change δTc in the reference chamber tem-
perature, Tc. For typical values of surface pressure (∼1000 mb) and temperature
(∼300 K), a temperature change of 0.01 K results in δpc = 33 μb. This is a sub-
stantial pressure change and is comparable to the amplitudes of high-frequency
gravity waves in the planetary boundary layer. If Tc increases, then pc increases,
and from (8.16) it will appear as if 	p decreases if pa(t) > pc. But this will be
incorrectly interpreted as a decrease in atmospheric pressure. The reverse effect
will occur if Tc decreases. If Tc is measured, then it would be possible to correct
the data post facto. However, at this time it is not possible to measure temperature
differences of 0.01 K or smaller. Thus, special care must be given to minimizing
reference chamber temperature variations. This can be done by insulating the ref-
erence chamber, increasing its thermal inertia, or keeping the reference chamber at
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a near-constant temperature. Nappo et al. (1991) described a microbarograph sys-
tem which insulated the reference chamber and used aluminum pellets, which have
a high specific heat capacity, to increase thermal inertia in the chamber. Anderson
et al. (1992) described a microbarograph system which used all three remedies
to approach thermal stability. Note that these temperature affects will also affect
the mechanical type of microbarograph, but not greatly if the temperature changes
are slow. To alleviate these temperature problems, Hauf et al. (1996) installed their
sensors in a plastic container placed 1.5 m below the ground surface.

Another difficulty with the digital instrument is saturation of the differential
pressure gauge. The differential pressure gauge has a limited operating range, say,
on the order of a few millibars (Nappo et al., 1991; Anderson et al., 1992). The
diurnal changes in atmospheric pressure, moving frontal systems, gust fronts, etc.
can cause pressure changes of more than a few millibars, and these changes can
lead to instrument nonlinearity, saturation, and possible damage. To overcome
these possibilities, the reference chamber pressure can be set to ambient pressure
by briefly opening the reference chamber to the outside pressure using a solenoid
valve. For the Nappo et al. (1991) instrument, the “reset” valve is periodically
opened; for the Anderson et al. (1992) instrument, the valve is opened whenever
the differential pressure reaches a predetermined value. Opening the valve sets
pc = pa(t0), where t0 is the time of pressure reset. Thus, (8.16) becomes

	p(t) = pa(t − t0) − pa(t0) , (8.18)

and the time series 	p(t) takes the form of a series of ramp-like structures, as
shown in Fig. 8.8. The data shown in Fig. 8.8 were taken on September 1, 2000, at

FIGURE 8.8 Time series of raw and postprocessed pressure data observed at Oak Ridge, TN
on September 1, 2000.
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FIGURE 8.9 Pressure perturbations between 18:00 and 21:00 EST observed at Oak Ridge, TN
on September 1, 2000. Note the high-frequency activity between 18:00 and 18:45 and again around
19:00. These could be gravity waves or large-scale turbulence eddies from the previous convective
period.

Oak Ridge, TN. The reference chamber was set to ambient pressure every 15 min.
The differential pressure signal was sampled at 10 Hz, from which 10-s averages
were formed and recorded. Postprocessing of the data requires the smooth joining
of these ramps to form a continuous time series of differential pressure, also shown
in Fig. 8.8. Figure 8.9 shows the pressure perturbations observed between 18:00
and 21:00 EST for the case shown in Fig. 8.8. These data were obtained by bandpass
filtering the postprocessed data shown in Fig. 8.8. The filter passed signals with
periods between 1 and 30 min.

8.2.1.3 Sampling Arrays

Gravity waves produce coherent periodic disturbances which propagate with
a horizontal component of velocity. If the pressure perturbations associated with
these waves are observed only at a single point, then all we can learn about the
wave is its amplitude and frequency. If we have time series of pressures at two
points, then we can estimate the component of the wave vector parallel to the line
joining the two locations.1 However, as illustrated in Fig. 8.10, there is an infinite
number of possible wave vectors with components parallel to a line joining two
points. For example, let vector AB in Fig. 8.10 be the true wave vector which is
directed from station A to station B. However, wave vector AC, with wave fronts
indicated by the dashed lines, and wave vector AD, with wave fronts indicated
by the solid lines, also have components parallel to wave vector AB. Either of

1 How these estimates are made will be discussed in the Chapter 9.
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FIGURE 8.10 The apparent wave vector between points A and B is a component of an infinite
number of possible wave vectors. Shown in the figure are two possible wave vectors that could have
a component along the line joining stations A and B.

these wave vectors could be considered as the true wave vector. Thus, the true
wave vector cannot be determined, and consequently, we cannot estimate the true
phase speed and wavelength. As we shall see, at least three sensors are necessary to
estimate wave characteristics; more sensors increase the accuracy of the estimates.
The spatial distribution of the sensors describes an array which, in effect, acts like
an RF antenna. The response characteristics of an antenna determine the range
of frequencies and wavelengths of radio waves that can be received. Likewise, the
response characteristics of the pressure sampling array determine the range of
gravity waves that can be detected.

Figure 8.11 is a schematic of an idealized five-sensor array. Four sensors are
placed on the corners of a square with sides 1 km, and one sensor is placed in
the center. If the sampling period, i.e., the time between observations, is 	t , and
if the greatest distance between the stations is D, then the maximum speed of a
disturbance crossing the array that can be detected is

cmax = D

2	t
. (8.19)

The factor 2	t in (8.19) is the Nyquist period. It is the reciprocal of the Nyquist
frequency, which is the highest frequency content of a time series. Disturbances
with periods less than 2	t will not be detected by the array as a coherent signal.
For the idealized array in Fig. 8.11, D = 1000 m. If 	t = 10 s, then cmax =
50 m s−1. A wave with phase speed greater than cmax will be incoherent in the
sense that the wave shape observed at each sensor will be different. In this case,
the wave energy will appear in waves of lower frequency, a processes known as
aliasing. The minimum wavelength, λmin, that can be resolved by the array is
comparable to the minimum spacing of the sensors. Waves with wavelengths less
than the average spacing between station pairs will also suffer an aliasing error,
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FIGURE 8.11 Idealized five-sensor array for detecting gravity waves.

and their energy will appear in waves with greater wavelengths. For the array
illustrated in Fig. 8.11, λmin ≈ 700 m. The maximum resolvable wavenumber
is kmax = 2π/λmin, and for the array in Fig. 8.12 this is about 0.009 m−1. The
maximum detectable wavelength is given by

λmax = cmaxTmax = D

2

Tmax

	t
, (8.20)

where we have used (8.19), and Tmax is the maximum disturbance period that
can be detected by the sensors. For the mechanical-filter microbarograph, Tmax

is determined by the filter time constant 1/α. From (8.14) we see that if the
frequency of the wave is equal to α, then the amplitude of the wave is reduced by a
factor of 0.707. We can take Tmax = 2π/α. If 1/α = 300 s and cmax = 50 m s−1,
then λmax ≈ 90 km. For the digital-filter microbarograph, λmax is determined
by the lowest frequency retained after filtering. If that frequency has a period of
30 min, and if cmax = 50 m s−1, then λmax is also 90 km.

From the above, we see that the range of gravity waves that can be detected by a
sampling array is a function of instrument spacing and sampling frequency. Studies
of array design have been made, for example, by Barber (1959), Haubrich (1968),
and Asten and Henstridge (1984). As Haubrich (1968) points out, the problem of
array design is (1) given N sensors, where should they be placed, and (2) what
processing scheme should be applied to the array output. He also states that the
solution of a design depends on the intended use of the array. Koch and Golus
(1988) used a nested array of measurement systems to observe mesoscale gravity
waves. They used an inner array of stations with an average spacing of 7 km and
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FIGURE 8.12 Microbarograph arrays used by (a) Balachandran (1980), (b) Hauf et al. (1996),
(c) Rees et al. (2000), and (d) Nappo et al. (2000).

a courser, regularly spaced array with an average spacing of 20 km. Figure 8.12a
shows the array used by Balachandran (1980) to observe thunderstorm-generated
gravity waves. Figure 8.12b shows the array used by Hauf et al. (1996) to observe
gravity waves on the mesoscale. Figure 8.12c shows the array used by Rees et al.
(2000) to study gravity waves in the stable planetary boundary layer. Figure 8.12d
shows the array used by Nappo et al. (2000) to study gravity waves in south–
central Kansas during the CASES-99 field campaign. It is apparent from Fig. 8.12
that an overall “best” array design may not exist.
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8.3 BALLOONS, AIRCRAFT, AIRGLOW, AND
SATELLITES

The observation methods described thus far were based on the temporal varia-
tions of wave perturbations measured at a fixed location. However, these methods
fail when terrain-generated waves are considered. This is because these waves are
stationary with respect to the ground. If we wish to study these waves, then we
must be able to resolve their spatial structure. We have seen that such a resolution
is possible with scanning lidars, but more direct methods are available. In this sec-
tion, we briefly review these techniques. Nicholls (1973) reviews observational
techniques including balloon, aircraft, and satellites used from 1958–1972 to study
air flow over mountains.

8.3.1 BALLOONS

If a balloon with neutral lift is released into the atmospheric flow, then it will
drift along a line of constant buoyancy. If we track the balloon’s motions, then we
can estimate the air motion. However, if the balloon volume changes due to heating
or cooling, then its buoyancy will change, and it will not be clear what air motions
are being followed. If the balloon volume is constant, then the balloon’s density
is also constant, and the balloon will drift along a surface of constant atmospheric
density. The concept of using constant-volume or superpressure balloons was intro-
duced by Angell and Pack (1960). They described the construction of balloons
using Mylar film which could withstand superpressures as great as 150 mb. The
construction of the balloons required a special heat sealing, and for purposes of
economy and reliability, it was desirable that these seals be straight lines. This
requirement lead to a tetrahedron shape, and the balloons were called tetroons.
Because the Mylar film stretches very slightly, the tetroon’s volume is nearly con-
stant and, consequently, so is its density. Ideally, once released the tetroon will
drift with the wind along a surface of constant atmospheric density. By tracking
the tetroon with radar or global positioning system, the wind field along the path
of the tetroon can be resolved. However, as discussed by Angell and Pack (1960),
there are slight variations in tetroon volume as a function of superpressure, and
they give procedures for inflation that account for these variations. These volume
variations as well as the finite mass of the tetroon introduce uncertainty in how well
the tetroon motion represents the air motion. These issues have been investigated
by Angell and Pack (1960, 1962). Booker and Cooper (1965) also investigated
superpressure balloons for wind measurements and described balloon shapes other
than tetrahedron. Their studies conclude that constant-volume balloons can give
accurate information about the movement of air if proper consideration is given
to the balloon response to air motion. Vergeiner and Lilly (1970) used constant-
volume balloons in their study of lee waves in the Front Range of the Colorado
Rocky Mountains. Reynolds (1973) used spherical-shaped, constant-volume bal-
loons to study mountain waves at the White Sands Missile Range. Their results
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showed that in wave conditions, the balloons overestimated the wave crests and
troughs with an average error of 6%. Nastrom (1989) analyzed the response of
superpressure balloons to gravity waves and showed that the response depends
on wave period, density and wind amplitudes, and static stability. More recently,
Koffi et al. (2000) used constant-volume balloons to study mountain lee waves
in the Pyrénées Mountains and compared these observations with a mesoscale
model. Constant-volume balloons have become an accepted observational tool for
mountain waves.

8.3.2 AIRCRAFT

Aircraft have been used as moving platforms for remote sensors (see, for exam-
ple, Blumen and Hart, 1988; Kwon and Gardner, 1990); however, aircraft have
also been used to make in situ measurements from which wave parameters can be
calculated. The majority of observations have been made over mountains. There
are several reasons for this: mountain waves have large amplitudes and can be
easily detected; because the waves are stationary, repeated observations of the
same wave field are possible; and because the wave fronts tend to be located
downwind of the obstacles that generate them, the lee waves are easy to locate.
Perhaps the first observations of mountain waves using an aircraft were made by
Radok (1954). He proposed repeated flights up- and downwind along a number
of tracks. During each flight, the air speed and throttle settings are held constant,
corresponding to level flight. Changes in the recorded elevation of the aircraft
as well as changes in temperature and pressure are related to vertical velocities
associated with the standing waves. Vergeiner and Lilly (1970) used a Beech
Queen Air 80 in their study of lee waves off the Colorado Rocky Mountains. The
aircraft was equipped with sensors and digital conversion equipment to measure
and record temperature, static pressure, air speed, heading, and ground speed
using a Doppler navigation system. Most flights were made at constant power
settings and pitch angle, and they assumed that the aircraft’s vertical velocity
was equal to the atmospheric vertical velocity. They estimated the accuracy of
this assumption to be about 1 m s−1. Another source of error was uncertainty in
the x,y-position of the aircraft, which they estimated to be about ±2 km. The
Colorado Lee Wave Program (Lilly et al., 1971; Lilly and Kennedy, 1973) was an
ambitious flight program involving four aircraft: the NCAR DeHavilland Buffalo
(turboprop) and three jets, the NCAR Sabreliner, the NOAA B-57B, and an Air
Force B-57F stratospheric jet. A primary goal of that program was the evaluation
of terrain-induced momentum flux and turbulence generated by breaking gravity
waves as described by Lilly (1972). An interesting side result reported by Lilly
and Kennedy (1973) was that gustprobe equipment is apparently not necessary
for the direct aircraft measurement of wave momentum flux, but an inertial plat-
form or similar stable attitude reference is essential. Smith (1976) used a much
less ambitious program, i.e., a lightweight aircraft (Bonanza F33A), to study
lee waves generated by the Blue Ridge Mountains in the central Appalachians.
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The aircraft had no special meteorological instrumentation other than a laboratory
thermometer located outside the cockpit window. Simple as it was, the aircraft
had no difficulty in responding to the wave-induced vertical motions of the flow.
Comparison of the observations with linear theory and laboratory experiments
showed that the linear theory correctly predicted the wavelength, but seriously
underpredicted the wave amplitude. Turbulence kinetic energy and waves were
measured by Karacostas and Marwitz (1980) using the NCAR Queen Air 304D
over Elk Mountain in Wyoming. Brown (1983) used the Hercules and Canberra
aircraft of the UK Meteorological Research Flight to investigate mountain waves
over the British Isles. As with the previous studies mentioned, Brown (1983) used
linear wave theory to calculate wave parameters and momentum fluxes. Gravity
waves in the upper atmosphere, between 60 and 140 km, have been analyzed
by Fritts, Blanchard, and Cox (1989) and Fritts, Wang, and Blanchard (1993)
using density fluctuations measured by high-resolution accelerometers on board
the space shuttle during reentries. Aircraft continue to be a primary tool for grav-
ity wave research; recent examples include Moustaoui et al. (1999), Leutbecher
and Volkert (2000), Lane et al. (2000), Poulos et al. (2001), and Dörnbrack et al.
(2001).

8.3.3 AIRGLOW

Airglow is a quasi-steady faint photochemical luminescence occurring in the
upper atmosphere between about 80 and 120 km over middle and low latitudes.
The near steadiness of airglow distinguishes it from the sporadic aurorae which
occur over higher latitudes and at higher elevations. Although the emitted elec-
tromagnetic radiation results from photochemical reactions of many atmospheric
trace gases, several sources of airglow radiation occur at specific wavelengths,
i.e., atomic oxygen at 558 nm (10−9 m), sodium at 589 nm, and the hydroxyl
radical OH at 600–2000 nm. As examples, the excited OH arises from the reaction
(Gardner and Taylor, 1998)

H + O3 → OH∗ + O2 , (8.21)

and the sodium emission is based on the Chapman mechanism (Molina, 1983), i.e.,

Na + O3 → NaO + O2 (8.22)

NaO + O → Na∗ + O2 (8.23)

Na∗ → Na + hν (589.3 nm) . (8.24)

Each of these emissions occurs at a particular height over a distance of 10–20 km
(see, for example, Swenson and Gardner, 1998). Although not visible to the naked
eye, the airglow can be photographed under dark skies using high-speed films
or charged-coupled device (CCD) imagers. Peterson and Keiffaber (1973) used
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FIGURE 8.13 OH and OI airglow all-sky images from Haleakala, Hawaii on October 10, 1993,
1057 UTC. (From “Spectrometric and imaging measurements of a spectacular gravity wave event
observed during the ALOHA-93 campaign,” M.J. Taylor, D.N. Turnbull, and R.P. Lowe, Geophys.
Res. Lett., 22: 2850, 1995.)

infrared film and a fast 35-mm camera to make a series of 15-min time exposures
of the moonless night sky in New Mexico. The photographs all showed bright
cloud-like structures which moved across the sky and varied in brightness. They
concluded that the bands were due to varying airglow emission intensity and not
intervening atmospheric clouds moving against an otherwise uniform emission
background. Assuming a height of 100 km, they calculated speeds of the struc-
tures at 20 and 43 m s−1. Because the intensity of the photochemical emission
is proportional to the local density and the temperature, variations in intensity
can be related to variations in density and temperature. It is now widely accepted
that these variations are due to gravity waves (see, for example, Molina, 1983;
Hecht et al., 1997; Fritts et al., 1997; and references contained therein). Figure
8.13 shows a striking example of these traveling waves. Indeed, a whole literature
exists devoted to gravity waves in the upper atmosphere as revealed by airglow
signatures and lidar sensing (see, for example, Swenson and Gardner, 1998). Of
particular interest is the number of waves observed to be nearly monochromatic.
Gravity waves launched in the troposphere propagate upward in the form of wave
packets. Critical levels and wave reflections encountered as the packet moves
upward erode the packet until only a small portion of the original wave spectrum
exists. The result is a nearly monochromatic wave. Current thinking suggests that
some of these waves are ducted modes in upper atmospheric wave guides (see, for
example, Munasinghe et al., 1998).

8.3.4 SATELLITES

Almost all analyses of gravity waves using satellite images are limited to wave
clouds in the lee of mountains. Some of the first analyses were made, for example,
by Döös (1962), Conover (1964), Fritz (1965), and Cohen and Doron (1967).
Ernst (1976) analyzed infrared images of low-level mountain waves taken by a
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geostationary satellite. He suggested that these data could be used for the early
detection and identification of mountain waves and possible episodes of clear air
turbulence. Satellite imagery continues to be used in mountain wave research (see,
for example, Ralph et al., 1997; Lane et al., 2000; and Leutbecher and Volkert,
2000).
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9.1 Data Analysis
9.1.1 Pressure–Wind Correlation
9.1.2 Lag Analysis
9.1.3 Beamsteering
9.1.4 Wavelet Analysis

9.2 Numerical Models
9.2.1 Terrain-Generated Gravity Wave
9.2.2 Ducted Gravity Waves

In the previous chapter we examined some of the tools used to observe gravity
waves. In this chapter we examine some of the techniques used to analyze these data
and describe a few computer programs for these analyses. We also will describe
numerical models of terrain-generated waves and ducted waves. However, before
we proceed, we must keep in mind that waves or more accurately “wave-like”
disturbances observed in the real atmosphere seldom resemble the waves imagined
in the linear theory. This is especially true of waves in the planetary boundary
layer where most observations of gravity waves are made. Figure 9.1 shows plots
of vertical velocity observed with the University of Wyoming’s King-Air B200
research aircraft during the CASES-99 field campaign (Poulos et al., 2001). The
wave-like structures and patches of what appears to be turbulence seen in the
graphs are often observed in the stable boundary layer. The spatial series shown
in Fig. 9.1 extend vertically from about 160 to about 1000 m above the ground
surface and cover about a 90-min period. Between about 600 and 800 m we see
waves and turbulence, but below 600 m we see mostly waves. The wave field
is highly irregular, suggesting the existence of many waves. As pointed out by
Finnigan (1988), gravity waves in the boundary layer are mostly nonlinear with
time-changing amplitudes and frequencies. It is only when we go far from the
disturbing effects of the ground surface that gravity waves take on a more ideal,
i.e., linear, structure.

209



210 Data Analyses and Numerical Methods

FIGURE 9.1 Vertical velocity recorded by the University of Wyoming King-Air B200 research
aircraft on October 14, 1999, during the CASES-99 field campaign. The flights were in the east–west
direction at various heights. The arrows on the left indicate the flight direction; the recording times are
in universal time.

9.1 DATA ANALYSIS

Waves and turbulence are often observed to exist together, and separating their
signals is both necessary and difficult. Classical turbulence theory is based on the
simple notion that the flow field can be partitioned into a mean value, u0, and a
turbulence perturbation, u′, where

u0 = 1

2τ

∫ t+τ

t−τ

u(t ′) dt ′ (9.1)

and

u′(t) = u(t) − u0. (9.2)

If waves are present in the flow, then depending on the averaging time τ and the
frequencies of the waves, the partitioning will put low-frequency wave energy into
the mean wind component and high-frequency wave energy into the turbulence.
In a sense, the turbulence energy will be inflated. One of the important qualities of
turbulence is its ability to disperse things such as pollutants, heat, momentum, etc.
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Atmospheric air quality models rely on turbulence estimates, either measured
or parameterized, to calculate the dispersion of atmospheric pollutants. If the
turbulence is inflated by waves, then the diffusion will be overestimated, and the air
concentrations will be underpredicted by the model. If the waves are not breaking,
then the waves will not diffuse material. The waves can move material vertically
or horizontally, but this is not a mixing process. Thus, putting wave energy into
the turbulence cannot account for greater diffusion. However, as we shall see in
this section, separating or isolating waves from observations is not simple, and
this implies uncertainty in almost all gravity wave analyses in the boundary layer.

Before data can be analyzed for wave content, we must put the data in a form
which approximates the linear theory. This usually requires removing linear trends
and mean values and accounting for filtering effects such as attenuations and phase
shifts. However, before this is done the data should be broken into blocks or seg-
ments of lengths comparable to the frequencies of the waves under consideration.
For example, for waves with periods of several minutes, one may wish to break
the data into blocks of 1-h lengths, but for waves with periods of hours, one may
wish to have blocks with lengths of a day.

9.1.1 PRESSURE–WIND CORRELATION

The polarization equations (2.22)–(2.25) contain the correlations between the
wave perturbation quantities. Gossard and Munk (1954) showed how these corre-
lations can be used to determine wave characteristics. In particular, the correlation
between pressure and wind perturbations can be used, since these are usually
maximum near the ground surface, and can be measured with high precision. This
pressure–wind correlation is demonstrated in Figs. 9.2 and 9.3. Figure 9.2 shows
raw data traces recorded on October 14, 1999 during the CASES-99 field campaign
in south-central Kansas (Poulas et al., 2001). The data have been band-passed fil-
tered over a 2–6 minute window. The correlation between the pressure, speed,
and direction perturbations is obvious. Figure 9.3 shows the absolute surface pres-
sure, the pressure perturbation, and the perturbation velocity associated with a
mesoscale gravity wave event that occurred over the north–central United States
on July 11–12, 1981. The wave episode lasted about 8 hours. The wave period had
a mean value of 2.5 hours, the wavelength was about 160 km. The phase speed
was about 19 m s−1. The coefficient of correlation between p1 and u1 in Fig. 9.3 is
about 0.95. This is a good illustration of utility and applicability of the linear theory.
Gossard and Sweezy (1974) showed that the pressure–wind correlation is a direct
measure of the wave signal-to-noise ratio. A strong pressure–wind correlation has
been used as supporting evidence for gravity waves, for example, by Bosart and
Cussen (1973), Bosart and Sanders (1983), and Koch and Golus (1988).

Gossard and Munk (1954) assumed constant wind speed and Brunt–Väisälä
frequency and used (2.22) to get

u1 = p1

ρ0(c − u0)
. (9.3)
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FIGURE 9.2 Band-passed (2–6 minute window) pressure, wind speed, and wind direction
observed on October 14, 1999 during the CASES-99 field campaign.

They used (9.3) to define an impedance relationship,

cI = c − u0 = p1

ρ0u1
, (9.4)

which could be used to estimate wave characteristics using standard wind and
pressure observations if the background wind was assumed constant. In (9.4), cI

is the intrinsic phase speed, and we note that because u0 is assumed constant, cI

could be evaluated at any elevation. Before we can use (9.4), we must know the
direction of wave propagation, and this is generally not known a priori. Figure
9.4 illustrates how the wave perturbations to the background horizontal wind can
be used to determine the direction of the wave vector. Horizontal wind vectors
over several wave cycles are calculated and plotted as shown in Fig. 9.4. The line
connecting the extreme wind vectors lies in the direction of the wave vector. The
midpoint of this line marks the magnitude and direction of the mean wind vector,
and the magnitude of u1 is equal to one-half of this line. The direction of the wave
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FIGURE 9.3 Time series of pressure (top), perturbation pressure (middle), and perturbation
wind speed in the direction of wave propagation (From “A mesoscale gravity wave event observed dur-
ing CCOPE. Part I: Multiscale statistical analysis of wave characteristics,” S.E. Koch and R.E. Golus,
Mon. Weather Rev., 116: 2532, 1988.)

along this line is determined by the location of maximum of p1, as shown in Fig.
9.4. From the definition of phase velocity (1.18) we see that

cI = c − u0 = �

k
= λx

τ
, (9.5)

where λx is the wavelength of the wave and τ is the wave period. Equation (9.5)
can be used to estimate λx .

Although the pressure–wind correlation technique is straightforward to apply,
it has several shortcomings. Turbulence in the surface layer can obscure wave
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FIGURE 9.4 Mean-wind vector and wave perturbation velocity vector. Total velocity vectors at
the extreme points are shown by the dashed vectors. The phase velocity is in the direction of maximum
pressure perturbation.

perturbations, and if the background wind speeds are too low there will be uncer-
tainty in the mean wind vectors. It has been assumed that linear wave theory is
applicable near the ground surface; however, as discussed by Finnigan (1988),
gravity waves in the planetary boundary layer are seldom linear. We have also
assumed that the background wind and stratification are constant, but this is also
not often the case. Indeed, strong wind shears and vertically changing temperature
gradients are often seen near the ground surface. These deviations from ideal flow
conditions can result in weak pressure–wind correlations.

9.1.2 LAG ANALYSIS

If a wave moves across an array of meteorological sensors with little change in
frequency or wavenumber, then the arrival times of the disturbance at each station
can be used to calculate wave characteristics. Consider a wave perturbation of
some variable, q, observed at the ground surface or at the same altitude at each
station so that we do not consider vertical variations of wave phase. Imagine a
wave with constant amplitude and horizontal wave vector, �κh, observed at stations
a and b whose separation is described by the vector �dab, as illustrated in Fig. 9.5.
Let the horizontal wavelength of the wave be �, and let the crests, or any other
phase point, of the wave be observed at station a at time t and at station b at time
t + τab so that

qa(kxa + lya − ωt) = qb[kxb + lyb − ω(t + τab)], (9.6)
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FIGURE 9.5 Wave front observed as it passes from station a to station b in time τab . The
wavelength of the wave is �.

where k and l are the wavenumbers in thex- andy-directions, respectively. Because
the wave does not change shape in moving from a to b, we can write

kxa + lya − ωt = kxb + lyb − ω(t + τab), (9.7)

which reduces to

k(xa − xb) + l(ya − yb) = ωτab. (9.8)

The left-hand side of (9.8) is recognized as �κh · �dab, where �κh is the horizontal
component of the wave vector and �dab is the distance vector between stations a

and b. We can write (9.8) as

�κh

ω
· �dab = τab. (9.9)

From the definitions of phase velocity we see that

�κh

ω
=
(

1

cx

)
x̂ +

(
1

cy

)
ŷ = �S. (9.10)

The vector �S is called the slowness and has components Sx and Sy . The slowness
vector is parallel to the wave vector and has a magnitude of 1/c. Equation (9.9)
now takes the form

�S · �dab = |dab|
c

cos θ = �

c
= τab. (9.11)
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If there is another station, say d , with time lag τad between stations a and d , then
we have the simultaneous equations

Sx(xa − xb) + Sy(ya − yb) = τab (9.12)

Sx(xa − xd) + Sy(ya − yd) = τad (9.13)

which can be used to solve for Sx and Sy . Once known, the slowness components
can be used to estimate the wave speed, c, and direction, φ, from which the wave
is coming using

c = 1(
S2

x + S2
y

)1/2
(9.14)

φ = tan−1
(

Sx

Sy

)
. (9.15)

The wave propagation angle is φ + 180. If the wave frequency is known, then the
horizontal wavenumber can also be estimated since k = ω/c.

The use of lags between pairs of stations to estimate wave characteristics
requires plotting the wave perturbations at each station and noting the times of pas-
sage of a particular crest or trough at each station, as illustrated in Fig. 9.6. This is
a time-consuming procedure. An alternative approach to estimating lags was used
by Rees and Mobbs (1988). Instead of using graphical data to estimate lag times,
they calculated the cross-correlations as functions of lag time using wind speed
data between pairs of wind stations in a three-station array. The cross-correlation

FIGURE 9.6 Pressure perturbations observed on October 18, 1999, during the CASES-99 field
study. The crosses mark the times used to calculate wave speed and directions using time-leg analysis.
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coefficient is defined as

rij (τij ) = 1

t2 − t1

1

σiσj

∫ t2−τij

t1

qi(t)qj (t + τij ) dt, (9.16)

where σi and σj are the standard deviations of qi and qj , respectively. Rees and
Mobbs (1988) assumed that the time lag between stations i and j is that value of
τij which gives maximum cross-correlation. With three stations, three maximum
lags can be estimated, and these can be used to obtain three estimates Sx and Sy .
However, they caution that this method is sensitive to changes in wind speed, wave
frequency, and wave amplitudes between stations. To check the accuracy of these
lag estimates, Rees and Mobbs required that the sum of the two shorter lags equal
the longest lag, i.e.,

|τij + τjk − τik| < ε, (9.17)

where ε is a convergence factor which they take to be 15 s. This consistency check
requires that the wave speed be constant along the array.

To illustrate the lag analysis method, consider the pressure perturbations shown
in Fig. 9.6. These data were taken on October 18, 1999, during the CASES-99 field
campaign. During the night, several short-duration, high-frequency disturbance
events were observed to move over the sampling site. The locations of the digital-
filter microbarographs operated during the experiment are shown in Fig. 8.12d.
Figure 9.6 shows the pressure perturbations observed at the three outer micro-
barographs during the period 01:00 to 02:00 UTC. These data have been bandpass
filtered and represent disturbances with periods between 5 and 25 min. The crosses
mark the points which were used to identify the passing of the event at the three
stations. The event was observed at Station 7 at 01:27.4, at Station 8 at 01:32.6,
and at Station 9 at 01:34.3 (all times are UTC). The lags between the stations were
τ79 = 416 s, τ78 = 317 s, and τ89 = 99 s. We see that |τ78 + τ89 − τ79| = 0;
the lags check for consistency. Using (9.12) and (9.13) gives Sx = −0.219 s m−1

and Sy = 0.172 s m−1, and we estimate that the disturbance was moving to 231◦
with a speed of 3.6 m s−1. If we use the time for maximum cross-correlation of
pressure for estimating the lags, we get τ79 = 400 s, τ78 = 340 s, and τ89 = 70 s.
These values are close to the lags determined graphically, and the resultant speed
and direction of the disturbance is estimated to be 3.6 m s−1and 236◦, respec-
tively. The two methods give essentially the same results, and this suggests that
the disturbance changed little as it crossed the array.

9.1.3 BEAMSTEERING

Rees et al. (2000) defined beamsteering as “any process that uses data from
a spatial array of sensors to determine the direction from which a disturbance
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is propagating.” The method has been used by Young and Hoyle (1975); Einaudi,
Bedard, and Finnigan (1989); Hauf et al. (1996); and Rees et al. (2000) to deter-
mine horizontal wave speeds and directions from surface pressures observed over a
sampling array. Discussions of beamsteering techniques are found, for example, in
Young and Hoyle (1975), Gossard and Hooke (1975), Asten and Henstridge (1984),
and Denholm-Price and Rees (1999). To grasp the technique, imagine a plane wave
with constant amplitude traveling horizontally over a sampling array. If it were
possible to rotate the sampling array in the horizontal plane until maximum cross-
correlation was obtained between all pairs of stations, then that direction would
be the direction from which the wave was coming. The phase differences or time
lags of the wave at the various sampling stations could then be used to estimate
phase speeds. In reality, the “beam” of the array can be steered either through the
time, i.e., slowness domain where we seek maximum cross-correlation between
pairs of stations, or through the frequency, i.e., wavenumber domain where we
seek maximum cross-power spectral density between pairs of stations.

9.1.3.1 Beamsteering in the Slowness Domain

Beamsteering in the slowness domain makes use of the cross-correlation of
signals between station pairs. However, now the phase lags between station pairs
are varied until maximum cross-correlation is achieved. Consider (9.11) in the form

�S · �dij = τij

(�S). (9.18)

With the phase lag now a function of the slowness, and using (9.16), we can write

rij (τij ) = 1

t2 − t1

1

σaσb

∫ t2−τij

t1

qi(t)qj

(
t + �S · �dij

)
dt, (9.19)

i.e., the cross-correlation is also a function of the slowness vector. Imagine now
a slowness plane with a horizontal axis Sx and a vertical axis Sy . Each point in
this plane defines a slowness vector, and the scalar product of this vector with �dij

defines a lag, τij , which can be used in (9.19) to calculate the cross-correlations
between station pairs. Let these cross-correlations be defined as

Rij

(�S) = rij
[
τij

(�S)]. (9.20)

If there are M stations, then at each point in the slowness plane the average
cross-correlation among nonrepeated pairs of stations in the array is

R(Sx, Sy) = 2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

Rij

(�S). (9.21)
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In practice, (9.21) is evaluated at each point in the slowness plane, and the location
of the maximum value of R is taken to be the true slowness vector. Estimates of
phase speed and direction are obtained using (9.14) and (9.15), respectively. Note
that beamsteering in the slowness plane does not require information regarding the
angular frequency of the disturbance being tracked. By implication, we know ω

a priori. How this frequency is determined is discussed in Section 9.1.4. Because
we know ω and the phase speed, the horizontal wavenumber of the disturbance
can be obtained from k = c/ω.

The FORTRAN computer program BEAMSTEER.FOR contained in the CD-
ROM accompanying this book performs beamsteering in the slowness plane.

9.1.3.2 Beamsteering in the Frequency Domain

When beamsteering in the slowness domain, we know the wave frequency,
and we search for the phase speed that leads to maximum cross-correlation. In the
frequency domain, beamsteering searches for the horizontal wave vector and wave
frequency that lead to maximum cross-power spectral density between station
pairs. The cross-power spectral density function between stations i and j , Gij (ω),
is obtained by taking the Fourier transform of the cross-correlation function (9.16).
Gij (ω) consists of a real part, C(ω), called the co-spectrum and an imaginary part,
Q(ω), called the quadrature spectrum, i.e., Gij = C + iQ. The phase relation
between the frequencies being analyzed is

tan(ωτ) = Q(ω)

C(ω)
, (9.22)

where τ is the time lag between the signals. The cross-spectral magnitude is

|Gij (ω)| =
√

C2(ω) + Q2(ω). (9.23)

Using (9.22) and (9.23) we can write

C(ω) = |Gij | cos(ωτ) (9.24)

Q(ω) = |Gij | sin(ωτ). (9.25)

We can replace τ in (9.24) and (9.25) using (9.9) to get

Gij (ω, �κ) = C + iQ = |Gij (ω)| ei�κ · �dij . (9.26)

Following Gossard and Hooke (1975), we define an array power spectrum as
the sum of (9.26) over all the combinations of pairs of sensors in an array of M

sensors, i.e.,

Ĝ(ω, �κ) =
M∑
i=1

M∑
j=1

Gij (ω) ei�κ · �dij . (9.27)
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Equation (9.27) is the wavenumber domain counterpart to beamsteering in the
slowness domain. Now, one beamsteers in the wavenumber plane over various
frequencies to search for that particular pair, ω and �dij , that gives the maximum
value of Ĝ. Because we now know ω and �κH , we can calculate the slowness
components using Sx = k/ω and Sy = l/ω. Then using (9.14) we can calculate
the phase speed.

9.1.3.3 Array Response and Examples

Capon (1969) pointed out that a single monochromatic plane wave of frequency
ω0 and wavenumber �κ0 differs only in phase at each station and, therefore, has a
cross-power spectral density of the form

Gij (ω) = δ(ω − ω0) e−iκ0 · �dij . (9.28)

Using (9.28) in (9.27) gives

Ĝij (ω, �κ) = δ(ω − ω0)

∣∣∣∣∣∣
M∑

j=1

ei(�κ−�κ0) · �dj

∣∣∣∣∣∣
2

. (9.29)

The function

H
(
ω, �S) =

∣∣∣∣∣∣
1

M

M∑
j=1

e−i�κ · �dj

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣

1

M

M∑
j=1

e−ω �S · �dj

∣∣∣∣∣∣
2

(9.30)

is called the array response function (also called the array transfer function).
The array response function is an important parameter when considering array
design. H has a peak value of unity at the origin in either the wavenumber plane,
(k, �) = (0, 0), or the slowness plane, (Sx, Sy) = (0, 0). The response function is
symmetric with respect to reflection through the origin, and it reveals side lobes
which are caused by aliasing of wavelengths which are too small to be resolved
by the sampling array. Figure 9.7 shows a plot of the response function for the
ideal array shown in Fig. 8.11, and Fig. 9.8 shows a plot of the response for
the six-station array shown in Fig. 8.12d. In both cases, ω = 0.03 s−1. Side
lobes are present, and these indicate the wavenumber or phase speed limits to the
beamsteering. The response function plots the sensitivity of the array to a stationary
wave. If the wave is moving across the array, then the peak of the response function
is moved in the direction from which the wave is coming. This is illustrated in
Fig. 9.9, which shows the contours of R(Sx, Sy) resulting from a wave with a
wavelength of 10 km coming from 45◦ with a speed of 20 m s−1across the array
shown in Fig. 8.12d. Figure 9.10 shows the R(Sx, Sy) contours for a wave with
a 1-km wavelength coming from 45◦ with a speed of 5 m s−1across the same
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FIGURE 9.7 Array response for the ideal five-sensor array shown in Fig. 8.11.

array as in Fig. 9.9. In this case, the side lobes are quite pronounced. Note that
the ranges of the slowness axes in Fig. 9.10 have been doubled relative to those
in Fig. 9.9 in order to “see” the maximum cross-correlation. This illustrates one
of the fundamental difficulties in beamsteering. In any real application, we will
not know a priori the wave characteristics, and so we will not be able to adjust
the beamsteering parameters in order to achieve maximum sensitivity. In general,
one can expect a trial-and-error approach to the problem. Further complications
arise when the waves are nonlinear or changing in frequency or amplitude as they
move across the sampling array. In these not unusual circumstances one must be
prepared to accept a degree of uncertainty in the estimated wave characteristics.

9.1.4 WAVELET ANALYSIS

A time series of a perturbation, say, surface pressure, may consist of several
noninteracting waves and turbulence. These waves may be quite different in fre-
quency and wavelength and may be moving in different directions. Only on rare
occasions will a single frequency or, more accurately a narrow frequency band, be
detected from visual examination of the data. Indeed, in many cases we may not
be certain that a wave is present in the data. Beamsteering in the slowness plane
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FIGURE 9.8 Array response for the six-sensor array shown in Fig. 8.12d.

requires information on the frequency of the disturbance. Thus, a necessary com-
ponent of analysis is a means to identify waves and to estimate their frequencies.
Spectral techniques have often been used to detect gravity waves in data records
(see, for example, Caughey and Readings, 1975; De Baas and Driedonks, 1985;
Hunt, Kaimal, and Gaynor, 1985). Spectral methods generally work well when
wave amplitude is large and when the wave persists for many cycles. However,
small-amplitude waves and waves of short duration can be overlooked by spectral
calculations. For example, if a wave persists for 15 min, and if the spectrum is
calculated over an hour, then the wave may not be detected. Sometimes two or
three waves can exist, each with different but not greatly different frequencies. A
spectrum calculation may merge these frequencies into a single broad frequency
band, which may have relatively little physical meaning. A short-period wave
may sporadically appear for short durations over a few hour’s time; however, in a
spectrum analysis the wave may appear to have a much longer period. It is clear
that spectral techniques may not always be useful in analyzing gravity waves.
However, the difficulties just described do not greatly affect the wavelet analysis
method.

Wavelet transforms which are the bases of the wavelet analysis were formally
introduced in the early 1980s. Historical backgrounds and introductions to the
formalism can be found, for example, in Combes, Grossman, and Tchamitchian,
(1989); Chui (1992); Foufoula-Georgiou and Kumar (1994); Treviño and Andreas
(1996); and Torrence and Compo (1998). Examples of wavelet analysis used in
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FIGURE 9.9 Contours of cross-correlation in the slowness plane for a wave with a wavelength
of 10 km moving at 20 m s−1 from 45◦.

gravity wave studies are found in Hauf et al. (1996); Rees, Staszewski, and Winkler
(2001); and Zink and Vincent (2001). Perhaps unwittingly, Herron, Tolstoy, and
Kraft (1969) were one of the first to use a wavelet-type approach to data analy-
sis. A description of their technique may be helpful in understanding the nature
of the transforms. In an investigation of mesoscale pressure fluctuations, Herron,
Tolstoy, and Kraft observed a strong correlation in velocity and direction between
gravity waves and the jet stream. Cross-spectral analyses were performed on pairs
of microbarograph signals to estimate phase angles and coherences between sta-
tion pairs. To search the records for intervals of high coherence and to measure
motions of the pressure fluctuations, a “moving” cross-spectrum analysis computer
program was developed in which a “time window” was moved sequentially across
a set of values in overlapping steps. Within each time window, the cross-spectra
were calculated between various pairs of signals in the set. The time at the center
of the window was assigned to each coherence and phase angle estimate. It is this
windowing process that is the basis of the wavelet transformation. By varying the
width of the time window, lower frequencies are introduced into the spectrum.
Repeated passes through the time series with increasing window size results in
a decomposition of the series into time-frequency space. This results in a local-
ization in time of the statistics, for example, cross-spectrum or power spectrum.
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FIGURE 9.10 Contours of cross-correlation in the slowness plane for a wave with a wavelength
of 1 km moving at 5 m s−1 from 45◦.

This contrasts with the global view generated by the one-dimensional Fourier
transform approach. In the Fourier transform approach, we calculate the total
cross-spectrum or power spectrum over the whole time series, but we have no idea
how the spectrum varies with time. We can integrate the wavelet energy density
over frequency and time to recover the total variance of a time series, but we cannot
differentiate a power spectrum with respect to time to see how the spectrum varies
with time. This is an example of the utility of the wavelet transform.

We cannot provide here a formal discussion of wavelet analysis. Instead, we
present a brief discussion of the technique and present some examples of its use. We
also note that computer libraries of mathematical functions such as IDL and MAT-
LAB provide wavelet analysis packages in the same way they provide Fast Fourier
Transform packages. Thus, except for special circumstances, it is unnecessary to
write wavelet analysis codes. However, as an instruction tool, the FORTRAN
program WAVELET.FOR is included in the CD-ROM accompanying this book.

The wavelet coefficients, y(t, a), are defined by the continuous wavelet
transform of a time series, x(t), as (see, for example, Meneveau, 1991; Farge,
1992)

y(t, a) =
∫ ∞

−∞
ga(t − t ′)x

(
t ′
)
dt ′, (9.31)
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where

ga(t) = 1

a
g

(
t

a

)
. (9.32)

The basis of the transform is the mother wavelet g(t/a), and a is a dilation time
scale. The function ga in (9.31) represents a time window of varying width, and
the coefficients y(t, a) represent the amplitude of x(t) at dilation a and time t . The
Fourier transform of the mother wavelet replaces the time window by a frequency
window, i.e.,

ĝ(ω) =
∫ ∞

−∞
g(t) e−iωt dt. (9.33)

The windowing properties are determined by the mother wavelet. We want the
window to decay quickly for large time and frequency. The Fourier-transformed
window function will have a central frequency ωc and an effective width σ . Thus,
ĝa(ω) = ĝ(aω), with central frequency ωc/a and effective width σ/a.

We want a window that will give the best resolution of wave-like signals. The
window most frequently used is the complex-valued Morlet wavelet

g(t) = ei2πt e−t2/2, (9.34)

which represents a sine wave with a Gaussian amplitude. The family of dilated
wavelets (9.32) is then

ga(t) = 1

a
exp

(
i2π

t

a
− t2

2a2

)
. (9.35)

Figure 9.11 plots the real, i.e., symmetric, part of the Morlet wavelet (9.35) in
physical space for dilation values of 1, 2, and 3 s. We see that the amplitude of the
window, ga , decreases with increasing dilation, a, but the window width increases
with increasing dilation. The Fourier transform of (9.35) is the window function
in frequency space and is given by

ĝa(ω) = 1

(2π)2
exp

[
−ω − 2π/a

2/a2

]
. (9.36)

The center frequency of the window is ωc = 2π/a, and the window width is
σ = 1/a. The oscillation period of the center frequency is Ta = 2π/ωc = a. Note
that because the real part of ga is symmetric, its Fourier transform is real. Figure
9.12 shows plots of ĝa(ω) for a = 1, 2, and 3 s. The functions ga behave much
like a filtering function in a bandpass filter.

The wavelet energy density is defined as

W(t, a) = 1

a2
y(t, a)y∗(t, a), (9.37)
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FIGURE 9.11 The Morlet wavelet for various values of the time dilation parameter a.

where ∗ indicates the complex conjugate. A wavelet analysis diagram (Hauf
et al., 1996) is created by contouring W in either time-frequency space (t, 1/a)

or time-period space (t, a). Figure 9.13 shows contours of wavelet energy den-
sity calculated from surface pressure data taken on October 14, 1999, during
the CASES-99 field campaign (Poulos et al., 2001). Throughout the night of
October 14, what appears to have been a ducted gravity wave with period of
about 4 min sporadically appeared. Waves with periods centered at about 10
min also appeared. Figure 9.14 plots the filtered pressure data for the period
05:00 to 06:30 UTC. The two frequencies shown in the wavelet analysis dia-
gram between about 05:20 and 05:40 are clearly seen in Fig. 9.14. Similar results
can be found in Hauf et al. (1996). Recently, Rees, Staszewski, and Winkler
(2001) used wavelet transforms to identify periods of wave activity and turbu-
lence. It is expected that the applications of wavelet analysis will continue to
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FIGURE 9.12 The Fourier-transformed Morlet wavelet for various values of the time dilation
parameter a.
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FIGURE 9.13 Wavelet analysis diagram derived from data observed on October 14, 1999,
during the CASES-99 field campaign. The contour scale is in μb2 s−1.

expand, especially in the study of waves and turbulence in the stable boundary
layer.

9.2 NUMERICAL MODELS

In this section, we describe the linear wave computer models contained in
the CD-ROM that accompanies this book. Two problems are considered: terrain-
generated gravity waves over a surface corrugation and over an isolated Gaussian
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FIGURE 9.14 A sample of the bandpass filtered data used to construct the wavelet analysis
diagram shown in Fig. 9.13.

ridge; and wave ducting in a temperature duct and a pure wind duct. In all cases, the
computer codes solve the Taylor–Goldstein equation. Recall that if the background
wind and temperature fields are constant, then the terrain-generated case can be
solved by inspection. However, in such a flow ducting will not occur because wave
reflection does not occur. In general, however, we wish to apply the linear theory
to real situations, and this requires numerical solutions.

These numerical codes are intended for illustration and should be used as a guide
for model development. The programming language is FORTRAN. We realize that
more advanced languages exist; however, FORTRAN is a rather transparent code
and provides a good basis for advanced model development using higher order
languages. Note that in-line graphics are not included in the codes. Many software
graphics packages exist, and rather than try to address these it was decided to
provide output files which could then be used in graphics packages. Of course, the
readers are free and encouraged to modify the codes in any way they wish.

As previously mentioned, the ultimate goal of these codes is to solve the Taylor–
Goldstein equation. This is a homogeneous, second-order, partial differential
equation with nonconstant coefficients. We use the so-called extrapolation method
based on the IMSL subroutine DREBS which is a modification of the Bulirsch-
Stoer ALGOL procedure DESUB (Bulirsch and Stoer, 1966; Gragg, 1965). While
this method is old by today’s standards, it is retained in these codes for the simple
reason that it works. However, more powerful differential equation solvers are
available, and these should be used, especially if computational speed is required.
Consider now the differential equation

�′′ + Q2(z)� = 0, (9.38)
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where primes denote vertical derivatives. DREBS solves the system of equations
defined by

y = �′ (9.39)

dy

dz
= −Q2(z)�. (9.40)

Beginning at a boundary point with given values of � and �′, (9.39) and (9.40) are
extrapolated vertically (either upward or downward as required) to a prescribed
point, say, z = ztop. The extrapolation proceeds in vertical steeps of size H . At
each step, Q2(Z) must be evaluated. In the case of the Taylor–Goldstein equation,
u0 and θ0 must be expressed as continuous differentiable functions of z. The initial
step size of the extrapolation is ztop. If the equations do not converge at ztop to
within a prescribed tolerance, then DREBS halves the step size and repeats the
calculation. The process continues until either convergence is reached at z = ztop

or the step size becomes less than some prescribed step size. The coefficient Q2(z)

is evaluated in the user-supplied subroutine FCN. We shall look at two forms of the
background wind and temperature profiles, i.e., analytical expressions and discrete
values specified at a finite number of vertical levels. These latter values could be
the output values of wind speed and temperature from a forecast model.

9.2.1 TERRAIN-GENERATED GRAVITY WAVE

Regardless of the terrain feature, for example, a two-dimensional surface cor-
rugation, a two-dimensional ridge, or a three-dimensional mountain, the top and
bottom boundary conditions are of the same form, i.e., radiation condition at the
top of the model and kinematic condition (3.14) at the ground surface. The models
differ only in their spatial dimensionality and the Fourier transforms of the surface
height. This simplifies the problem. For example, the two-dimensional surface
corrugation and the two-dimensional ridge use essentially the same code. In the
first case we solve for a single wavenumber, while in the second case we must solve
for a series of wavenumbers and then take the inverse Fourier transform to get the
perturbation wave field in physical space. For the terrain-generated wave we calcu-
late the perturbation velocities, potential temperature, pressure, and wave stress.
As a check, we examine the constancy of the wave stress when wave breaking
does not occur. We also consider wave breaking at a critical level. The codes also
contain the terrain-height adjustment parameterization discussed in Section 7.2.2.

The Taylor–Goldstein equation (2.29) along with (3.1) takes the form

d2ŵn

dz2
+
[

N2

u2
0

− u′′
0

u0
− k2

n

]
ŵn = 0, (9.41)
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where we have assumed that the vertical wavelengths are small compared to the
adiabatic scale height, Hs , and the subscript n refers to the nth component of the
Fourier transform of w1. We set the top of the model domain at height z = ZTOP
and assume that above this height the background wind speed and stratification
are constant. This allows us to use the radiation boundary condition at ZTOP. The
general solution for z ≥ ZTOP takes the form

ŵn(kn, z) = An eimn(z−ZTOP) + Bn e−imn(z−ZTOP). (9.42)

where mn is the constant vertical wavenumber given by

mn =
[

N2(ZTOP)

u2
0(ZTOP)

− k2
n

]1/2

. (9.43)

If mn is not real at ZTOP, then there is no wave stress associated with that Fourier
component. We have seen in Chapter 3 that the An solutions in (9.42) corre-
spond to upward-moving wave fronts and downward-moving energy and that the
Bn solutions correspond to downward-moving wave fronts and upward-moving
energy. Thus, in order to satisfy the radiation boundary condition at z = ZTOP,
the solution of (9.42) is

ŵn(kn, ZTOP) = Bn(kn), (9.44)

and the vertical derivative at ZTOP is

dŵn

dz
= −imn Bn(kn). (9.45)

From (3.47), the bottom boundary condition is

ŵn(kn, 0) = iknu0(0)ĥ(kn), (9.46)

where ĥ is the Fourier transform of the terrain height. If we introduce the shape
factor �(kn, z) defined by (3.50), i.e.,

ŵn = ŵn(kn, 0)
�(kn, z)

�(kn, 0)
, (9.47)

then below ZTOP the Taylor–Goldstein equation has the form

d2�

dz2
+
[

N2

u2
0

− u′′
0

u0
− k2

n

]
� = 0, (9.48)
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with the upper boundary condition �(kn, ZTOP) = 1. We also see that Bn(kn) =
ŵn(kn, 0)/�(kn, 0).

Below ZTOP, we must account for upward and downward (reflected) waves,
and this is done by choosing the � complex, i.e., � = �r + i�i . We must
solve (9.48) for the real and imaginary parts of �. We begin the integrations at
z = ZTOP, where

�R + i�I = 1 (9.49)

�′
R + i�′

I = −imn, (9.50)

and hence

�R = 1 (9.51)

�I = 0 (9.52)

�′
R = 0 (9.53)

�′
I = −mn. (9.54)

The vertical structure of the mountain wave field is obtained by solving (9.48)
at a number of vertical levels. We simplify the model by using equal spacing
between the model levels; however, the spacings do not have to be equal. Before
the integrations begin, the background wind is checked for critical levels, i.e.,
where u0 = 0. The models assume complete wave absorption at a critical level,
and so only the lowest critical level is considered. Subroutine CRLEV carries the
solutions over the critical level, as discussed in Chapter 5. Subroutine WINDXZ
calculates the wave perturbation quantities in physical space, checks for wave
breaking, and accounts for wave saturation using the terrain-height adjustment
scheme. If a critical level exists, then the wave stress is decreased linearly from
the first wave-breaking level to the critical level.

As previously mentioned, two types of background wind and tempera-
ture profiles are possible: continuous analytical expressions and discrete val-
ues defined at the model levels. Because subroutine DREBS must evaluate
Q2 = (N2/u2

0) − (u′′
0/u0) − k2

n at any height, analytical expressions for wind
speed and temperature are desirable. However, in many applications we know the
background wind speeds and temperatures only at discrete points. An example
is the output from a weather forecast model. It may be possible to make these
data continuous by either fitting the points to a polynomial expression or using
splines. A simple approach is to join these points with straight lines so that within
each model layer u0 varies linearly with z and N is constant. However, this pro-
cedure will result in discontinuities in u′

0 at the model levels, and this can lead
to discontinuities in pressure across the model levels. At each model level, the
dynamic and kinematic boundary conditions must hold. Recall from Section 4.1,
that the dynamic boundary condition requires continuity in pressure across the
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boundary, and the kinematic boundary condition requires continuity in vertical
velocity across the boundary. Using (2.22), (2.24), and (3.50) and noting that for
mountain waves � = −u0kn, we write for �r

u0
d�r

dz
− �r

du0

dz
= ik

p̃

ρ0
. (9.55)

At each model level J , we apply (9.55) above and below J and require that
p̃J+1 = p̃J−1 and �J+1 = �J−1. Noting that u0 is continuous at J , we get

�′
r,J = �′

r,J+1 − u′
0,J+1 − u′

0,J−1

u0,J

�r,J+1, (9.56)

where u′
0,J+1 and u′

0,J−1 are the background wind shears in the upper and
lower layers, respectively, and �′

r,J+1 and �r,J+1 are calculated by DREBS
extrapolation in the upper layer to level J . A similar calculation is made for �I .

Computer codes are given for four cases: a surface corrugation and a Gaussian-
shaped ridge each with continuous or discrete background wind speed profiles.
For all cases, the wind profile is described by the hyperbolic-tangent function,

u0(z) = −0.5(UB + UT) + 0.5(UB − UT) tanh

(
z − ZI

ZS

)
, (9.57)

where UB is the wind speed at the bottom of the model, UT is the wind speed at
the top of the model, ZI is the height of the inflection point of the profile, and ZS

is a vertical scale height. The speed changes from UB to UT in a vertical distance
of about 4ZS. For simplicity, the thermal stratification in each model is constant
so that the Brunt–Väisälä frequency is constant; however, provision is made in the
codes for nonconstant temperature gradients, i.e., height-varying Brunt–Väisälä
frequency. The codes CORRUGATION_C.FOR and RIDGE_C.FOR simulate the
surface corrugation and surface ridge, respectively, with continuous background
wind profiles. CORRUGATION_D.FOR and RIDGE_D.FOR consider the case
of discrete background wind profiles. The input data are contained in the files
CORRUGATION_INPUT.DAT and RIDGE_INPUT.DAT. Output files, for exam-
ple, CORRUGATION_C_UWTP.DAT, contain the wave perturbation fields in
physical space. These data can be used to generate isopleths, calculate energy
flux, etc. Output files, for example, CORRUGATION_C_OUTPUT.DAT, contain
the vertical profiles of background wind speed and wave stress. Of course, these
output quantities can be modified as the reader wishes.
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9.2.2 DUCTED GRAVITY WAVES

We have seen in Chapter 4 that wave ducting is an eigenvalue problem. For a
given flow, only those waves associated with a family of wavenumbers and associ-
ated frequencies will be ducted. This is because ducting requires wave reflections
from vertical boundaries, and wave reflection is a function of stratification, wind
speed, phase speed, and wavenumber. Most commonly, one of the boundaries is
the ground surface, and the other is an elevated layer of sharp change in stratifi-
cation or wind speed or even both. However, elevated ducting regions above the
ground surface are also possible when there are velocity jets.

The numerical solution of the ducting problem involves the search for waves
with eigenvalues (k, c), which are solutions to the Taylor–Goldstein equation
and which satisfy the boundary conditions. At the ground surface, we require
ŵ = 0. At the top boundary of the model, the ducted wave must be evanescent
because the wave must not transport energy out of the model domain. In this
case, the wave energy is confined below the top boundary. Unlike the terrain-
generated wave, we do not consider upward- and downward-propagating waves.
Instead, we seek a horizontally propagating wave with node points at the ground
surface and some upper reflecting height. Thus, we take � to be real. We do not
consider critical levels. If a critical level exists, and if the Richardson number
is greater than 0.25, then the wave will be absorbed. If instead the Richardson
number is less than 0.25, then unstable modes will develop, and these codes are
not designed to search for unstable modes. In either case, a critical level will result
in no ducting. The modes we consider are stable. As in the previous section, the
Taylor–Goldstein equation is solved using the DREBS extrapolation technique.
However, because we cannot determine wave amplitudes and because there is
neither stress nor upward-propagating energy associated with ducted waves, we
need not calculate the wave field at various vertical levels. This greatly simplifies
the problem, especially if we have analytical expressions for the background wind
and temperature profiles. Above z = ZTOP, the background wind and stratification
is assumed constant so that

� = A eq(z−ZTOP) + B e−q(z−ZTOP), (9.58)

where

q2 = k2 − N2(ZTOP)

(c − u0(ZTOP))2
. (9.59)

The solution is obtained by finding the eigenvalues k and c that result in A → 0
at ZTOP. At the top boundary, (9.58) and its first derivative take the form

� = A + B (9.60)

d�

dz
= qA − qB. (9.61)
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Solving (9.60) and (9.61) for A and setting this result to zero gives

GROW = � + 1

q

d�

dz
= 0. (9.62)

We begin with a relatively large wavenumber and an initial phase speed. Because
we do not consider critical levels, the minimum phase speed must be greater than
the maximum background wind speed, i.e., cmin > u0,max . At ZTOP from (9.59)
we require k > N(ZTOP)/(c − u0(ZTOP)) so that the maximum phase velocity
is cmax = N(ZTOP)/k + u0(ZTOP). The phase speeds of the ducted waves must
lie between cmin and cmax . The extrapolation solution of the Taylor–Goldstein
equation begins at the ground surface where � = 0; and d�/dz is set to one, and
c = cmin. At ZTOP, the value of GROW is calculated using (9.62), and the values of
c and GROW are stored in a file. The calculation is repeated, but now with a slightly
greater phase speed, cmin + 	c. Again c and GROW are stored. The procedure
continues until we have run through the range of phase speeds. Examination of
the stored output values shows that every so often GROW changes sign between
adjacent values of c. This indicates a passage of GROW through zero and the
presence of a ducted mode. We assume that the first zero crossing corresponds to
the fundamental mode, c0. The second crossing corresponds to the first harmonic
mode, c1, etc. However, we will need to refine these estimates of phase speed if we

TABLE 9.1 Mode Scans for a Pure Temperature Duct

First scan Second scan

Fundamental mode c = 4.272 GROW = 9.362 c = 4.2386 GROW = 0.050
c = 4.250 GROW = 3.281 c = 4.2385 GROW = 0.020
c = 4.228 GROW = −2.715 c = 4.2383 GROW = −0.010
c = 4.207 GROW = −8.622 c = 4.2382 GROW = −0.040

First harmonic c = 2.761 GROW = −11.503 c = 2.7243 GROW = −0.039
c = 2.739 GROW = −4.599 c = 2.7241 GROW = −0.004
c = 2.717 GROW = 2.369 c = 2.7240 GROW = 0.031
c = 2.695 GROW = 9.378 c = 2.7239 GROW = 0.066

Second harmonic c = 1.906 GROW = 13.571 c = 1.8811 GROW = 0.100
c = 1.884 GROW = 1.754 c = 1.8810 GROW = 0.040
c = 1.862 GROW = −10.295 c = 1.8809 GROW = −0.020
c = 1.840 GROW = −22.427 c = 1.8808 GROW = −0.080

Third harmonic c = 1.446 GROW = −30.862 c = 1.4107 GROW = −0.109
c = 1.424 GROW = −12.085 c = 1.4106 GROW = −0.010
c = 1.402 GROW = 7.626 c = 1.4105 GROW = 0.090
c = 1.380 GROW = 27.587 c = 1.4104 GROW = 0.189

Note: c = phase speed; grow = amplitude of exponentially growing wave component at top of
model.
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are to locate the true eigenvalue of c. To do this, we repeat the mode scan, but now
with cmin and cmax set equal to the phase speeds on either side of the sign change
of GROW. This second scan is usually sufficient to find the value of c that results in
an acceptably small absolute value of GROW. Table 9.1 lists the results for the first
and second scans for modes in a pure temperature duct calculated with program
TEMP_DUCT_SCAN.FOR. For this case, the ducting region extends from the
ground surface to 300 m. The Brunt–Väisälä frequency is 0.055 s−1 below 300 m
and zero above. There is no background wind. At this point, we know only pairs of
eigenvalues corresponding to the ducting modes. However, each mode has a family
of eigenvalues such as those plotted in Fig. 4.11. To generate these curves we must
increment the wavenumber value and scan the phase speeds for wave ducting,
i.e., where GROW → 0. The program TEMP_DUCT_MODES.FOR performs
these calculations for the pure temperature duct. These calculations begin with the
first eigenvalues for a given mode, and the computer program must be executed
for each mode. However, the interested reader could construct a code to do all
these calculations in one run. TEMP_DUCT_MODES.FOR also calculates the
horizontal group velocity and the frequency associated with each wavenumber.

The wind duct is treated in the programs WIND_DUCT_SCAN.FOR, which
scans for the neutral modes, and WIND_DUCT_MODES.FOR, which calculates
the wavenumber and phase speed eigenvalues, the group velocities, and the wave
frequencies. These codes use the background wind and temperature profiles given
in (4.74) and (4.75), and Fig. 4.14 shows an example result. These codes are
essentially the same as the temperature duct codes, except that now there is a wind
component.
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Appendix A

The Hydrostatic

Atmosphere

A.1 The Hydrostatic Approximation
A.2 The Scale Height of the Isothermal Atmosphere
A.3 Adiabatic Lapse Rate
A.4 Potential Temperature
A.5 Boussinesq Relations
A.6 The Geostrophic Wind
A.7 The Eckman Wind Spiral

A.1 THE HYDROSTATIC APPROXIMATION

Vertical motions of the atmosphere tend to be small except within relatively
small horizontal regions of convection, for example, thermal plumes, cumu-
lus clouds, thunderstorms, hurricanes, etc. This suggests that there is a balance
between the upward-directed pressure force and the weight of the atmosphere.
Consider an elemental volume of atmosphere with unit cross-section, height δz,
and density ρ. The weight of the volume is gρδz, and this force is directed down-
ward. The net pressure force acting on the volume is the difference between the
pressures at the top and the bottom of the volume. Let this difference be δp. The
balance between the pressure and gravity forces gives

δp = −ρgδz. (A.1)

In the limit of small δz, (A.1) becomes

∂p

∂z
= −ρg, (A.2)

which is generally referred to as the hydrostatic equation.
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A.2 THE SCALE HEIGHT OF THE
ISOTHERMAL ATMOSPHERE

Using the equation of state for an ideal gas in (A.2) leads to

1

ρ

∂ρ

∂z
+ 1

T

∂T

∂z
= − g

RT
, (A.3)

where R is the universal gas constant for dry air and T is the temperature. For
many applications, we can replace the atmospheric temperature by an average
value, TA. Then integrating (A.3) gives

ρ(z) = ρse
−gz/RTA, (A.4)

where ρs is the atmospheric density at the ground surface. We define the isothermal
scale height of the atmosphere as Hs = RTA/g. For the standard atmosphere,
Hs = 8 km.

A.3 ADIABATIC LAPSE RATE

An adiabatic process within a system is one in which there is neither loss nor
gain of heat within the system. Then the first law of thermodynamics becomes

dq = cp dT − α dp = 0, (A.5)

where cp is the specific heat capacity at constant pressure and α = 1/ρ = RT/P

is the specific volume. Using the hydrostatic equation (A.2) in (A.5) leads to

cp dT + g dz = 0. (A.6)

We define the adiabatic lapse rate, �, as

� = −dT

dz
= g

cp

≈ 0.0098 K m−1. (A.7)

A.4 POTENTIAL TEMPERATURE

The potential temperature is defined as the temperature an air parcel would
have if it were expanded or compressed adiabatically from its existing pressure
to a pressure of 1000 mb or 100 hPa. From (A.5), using the definition of specific
volume, we get

cp

R

dT

T
= dP

P
. (A.8)
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Integration of (A.8) from P = 1000 mb where the temperature is θ to pressure P

where the temperature is T gives

cp

R
ln

(
T

θ

)
= ln

(
P

1000

)
. (A.9)

Then the potential temperature is

θ = T

(
1000

P

)R/cp

, (A.10)

where (R/cp) = 0.286.

A.5 BOUSSINESQ RELATIONS

We can develop (1.66) by first taking the logarithmic differential of the potential
temperature (A.10) with respect to z to get

1

θ

dθ

dz
= 1

T

dT

dz
− R

pcp

dp

dz
. (A.11)

The equation of state for the atmosphere is well approximated by the ideal gas law,

p = ρRT . (A.12)

Taking the vertical derivative of (A.12) with respect to z and dividing this result
by p, one gets

1

T

dT

dz
= 1

p

dp

dz
− 1

ρ

dρ

dz
. (A.13)

Substitution of (A.13) into (A.11) leads to

1

θ
= 1

ρ

[(
ρ

p

cv

cp

)
dp

dz
− Tρ

dz

]
. (A.14)

The speed of sound is c2
s = (cp/cv)(p/ρ). Thus, we can write (A.14) as

1

θ

dθ

dz
= 1

ρ

[
1

c2
s

dp

dz
− dρ

dz

]
. (A.15)
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Because rates of motion of the atmosphere and gravity waves are generally much
less than the speed of sound, (A.15) reduces to

1

θ

dθ

dz
= − 1

ρ

dρ

dz
. (A.16)

Equation (1.67) follows from (A.16) if we identify dθ with perturbation θ1 and dρ

with perturbation ρ1.

A.6 THE GEOSTROPHIC WIND

The equations of motion on a rotating Earth are (Holton, 1992)

du

dt
− uv tan �

a
+ uw

a
= − 1

ρ

∂p

∂x
+ 2�Ev sin � − 2�E cos � + Fx (A.17)

dv

dt
+ u2 tan �

a
+ vw

a
= − 1

ρ

∂p

∂y
− 2�E sin � + Fy (A.18)

dw

dt
− u2 + v2

a
= − 1

ρ

∂p

∂z
− g + 2�Eu cos � + Fz, (A.19)

where

+ d

dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(A.20)

is the total derivative; a is the mean radius of the Earth; �E is the angular velocity
of the Earth; and Fx , Fy , and Fz are friction forces in the x-, y-, and z-directions,
respectively. The terms involving 1/a are due to the effects of the Earth’s curvature.
The terms involving �E represent the apparent forces due to the Earth’s rotation.
These are the Coriolis forces. The Coriolis force acts perpendicular to the velocity
vector; thus, it can change the direction of motion, but not the magnitude. In the
Northern Hemisphere, bodies moving horizontally are deflected to the right. In the
Southern Hemisphere (where the angular velocity vector is negative), the motion
is directed to the left. Holton (1992) scales (A.17)–(A.19) using

1. U ∼ 10 m s−1: horizontal velocity scale
2. W ∼ 1 cm s−1: vertical velocity scale
3. L ∼ 106 m: length scale
4. D ∼ 104 m: depth scale
5. 	P/ρ ∼ 103 m2 s−2: horizontal pressure fluctuation scale
6. L/U ∼ 105 s: time scale



The Eckman Wind Spiral 241

TABLE A.1 Scale Analysis of the Horizontal Momentum Equations

A B C D E F

x-component
du

dt
−2�v sin φ +2�w cos φ +uw

a
−uv tan φ

a
= − 1

ρ

∂p

∂x
momentum equation

y-component
dv

dt
+2�u sin φ + vw

a
+u2 tan φ

a
= − 1

ρ

∂p

∂y
momentum equation

Scales of
U2

L
f0U f0W

UW

a

U2

a

	P

ρL
individual terms

Magnitudes of 10−4 10−3 10−6 10−8 10−5 10−3

the terms (m s−2)

Table A.1 taken from Holton (1992) shows the scaled magnitudes of the terms in
(A.17)–(A.19), where

f0 = 2�E sin 45◦ = 2�E cos 45◦. (A.21)

Retaining only the greatest terms in Table A.1 gives

f u = − 1

ρ

∂p

∂x
(A.22)

f v = 1

ρ

∂p

∂y
. (A.23)

The horizontal components of the geostrophic wind are defined as

ug = − 1

fρ

∂p

∂x
(A.24)

vg = 1

fρ

∂p

∂y
. (A.25)

The geostrophic wind represents the balance between the pressure gradient force
and the Coriolis force. In the Northern Hemisphere, this balance results in a wind
blowing parallel to lines of constant pressure with low pressure to the left.

A.7 THE ECKMAN WIND SPIRAL

In the planetary boundary layer, time scales for variations of the wind range
from several minutes to an hour or so. Thus, to first order, and using Table A.1,
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the mean winds in the boundary layer can be represented by

−f v = − 1

ρ

∂p

∂x
+ ∂

∂z

(
τx

ρ

)
(A.26)

f u = − 1

ρ

∂p

∂y
+ ∂

∂z

(
τy

ρ

)
, (A.27)

where τx and τy are the turbulence stress terms in the x- and y-directions, respec-
tively. Representing the turbulence stresses with a constant eddy diffusivity K

gives, for example, τx = ρK∂u/∂z. Using this in (A.26) and (A.27) along with
the definitions of ug and vg gives

K
∂2u

∂z2
+ f (v − vg) = 0 (A.28)

K
∂2v

∂z2
− f (u − ug) = 0. (A.29)

Equations (A.28) and (A.29) show that the height-varying departure of the local
wind from its geostrophic value is due to the turbulence stress. Physically, the stress
reduces the wind speed, and this reduces the Coriolis force. However, the pressure
gradient force is unchanged, and an imbalance between the forces results. Now,
because the pressure gradient force is greater than the Coriolis force, the wind
takes on a component directed down the pressure gradient. Now let us assume that
at z = 0, u = 0 and v = 0, and at some upper boundary u → ug and v → vg . For
simplicity, we assume that vg = 0. We can then write

K
∂2

∂z2
(u − ug) + f v = 0 (A.30)

K
∂2

∂z2
v − f (u − ug) = 0. (A.31)

If we now multiply (A.31) by i = √−1 and add this result to (A.30), we get

∂2

∂z2
[(u − ug) + iv] − if

K
[(u − ug) + iv] = 0. (A.32)

The general solution of (A.32) is

(u − ug) + iv = Ae
√

if/Kz + Be−√
if/Kz. (A.33)
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For bounded solutions we take A = 0, and to satisfy the boundary condition at
z = 0 we set B = −ug . Using the identity i = eiπ/2, it follows that

√
i =

(1 + i)/
√

2. Thus, we can write (A.33) as

u + iv = ug

(
1 − e−γ (1+i)z

)
, (A.34)

where γ = √
f/2K . Separating (A.34) into real and imaginary parts gives the

equations of the Ekman spiral:

u = ug(1 − e−γ z) cos(γ z) (A.35)

v = uge
−γ z sin(γ z). (A.36)

When z = π/γ , the wind becomes parallel to the isobars. The depth of the Ekman,
π/γ , is usually associated with the depth of the planetary boundary layer.



This Page Intentionally Left Blank



Appendix B

Computer Codes and

Data on CD-ROM

B.1 Introduction
B.2 FORTRAN Codes

B.2.1 BEAMSTEER.FOR
B.2.2 CORRUGATION_C.FOR and

CORRUGATION_D.FOR
B.2.3 RIDGE_C.FOR and RIDGE_D.FOR
B.2.4 TEMP_DUCT_SCAN.FOR and

TEMP_DUCT_MODES.FOR
B.2.5 WIND_DUCT_SCAN.FOR and

WIND_DUCT_MODES.FOR
B.2.6 WAVELET.FOR

B.3 Synthetic Wave Data
B.4 Sample Pressure Data
B.5 Contact

B.1 INTRODUCTION

There are ten FORTRAN 77 computer codes and six ASCII data files contained
in the CD-ROM accompanying this book. These codes and data are included as
learning aides rather than operational software. The reader is encouraged to exper-
iment with these codes, and use them as a guide to further model development.
For example, the linear wave models are two-dimensional; expanding them to the
three-dimensional case is straightforward but not necessarily easy. It is recognized
that FORTRAN 77 is, perhaps, an arcane language; readers may wish to rewrite
these codes in more modern languages such as FORTRAN 90/95, C, C++, Visual
Basic, etc. The numerical techniques used in these codes are described in Chapter
9. In this appendix, these codes and data sets are briefly described for quick ref-
erence. The codes themselves are also documented. The FORTRAN codes have
been successfully compiled on several PC and workstation compilers. The user of
these codes should make sure that the Read Only property of the files is negated.
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B.2 FORTRAN CODES

B.2.1 BEAMSTEER.FOR

Beamsteering and slowness are described in Chapter 9. Beamsteering is an
analysis technique used to estimate the horizontal phase velocity and wavelength
of a gravity wave. The method uses time series of observations taken from a
horizontal array of sensors. Although surface pressure perturbations are often
used in analysis of gravity wave characteristics, any wave-perturbation quantity
such as horizontal wind speed, vertical wind speed, or temperature can be used.
Beamsteering in the slowness domain makes use of the cross-correlation of signals
between station pairs in an array of at least three measuring stations. The phase
lag between a pair of stations is the scalar product of the slowness vector and
the radius vector between the stations. Although the radius vectors are fixed, the
components of the slowness vectors can be varied in the slowness plane, and this
causes changes in the phase lags between pairs of stations. The phase lags between
all pairs of stations are systematically varied until maximum cross-correlation is
achieved over the whole sampling array. In BEAMSTEER.FOR, the specified
horizontal coordinates used are for the six-station surface pressure sampling array
used in the CASES-99 field campaign. These coordinates are relative to the 55 m
CASES-99 tower which was in the middle of the array. If this code is used for
another application, then these coordinates and the number of stations must be
changed accordingly.

Two “synthetic” data files are provided for executing BEAMSTEER.FOR, and
these are described in Section B.3. The sampling rate of these data is 1 s. The
beamsteering calculations extend over some time interval. In the current code,
ISTART and ISTOP are set at 100 s and 1000 s respectively. Different start and
stop values should be tried, and the results examined. The wave amplitudes in
these synthetic data are constant. In reality, this seldom happens.

B.2.2 CORRUGATION_C.FOR AND
CORRUGATION_D.FOR

These codes calculate the two-dimensional wave field and wave stress over
one cycle of a surface corrugation with amplitude HEIGHT and horizontal wave-
length LX. This is done by solving the Taylor–Goldstein equation for the single
wavenumber that defines the corrugation. Both codes use a hyperbolic-tangent
wind speed profile and a constant thermal stratification; however, other wind
speed and temperature profiles can be used with only slight code modifications.
CORRUGATION_C.FOR uses a continuous wind speed profile given by an ana-
lytical expression. CORRUGATION_D.FOR uses discrete values of wind speed
and temperature specified at each vertical level of the model. Both codes allow
for critical levels. A critical level can be created by giving the variables UB and
UT opposite signs in the input file. For example, if UB > 0 and UT < 0, then a
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critical level will exist. Care must be given in assigning these values so that a crit-
ical level does not lie on a computational level. If this happens, then DREBS will
not converge. Note also, that these mountain wave codes will have computational
“problems” is the Richardson number at the critical level is less than or equal to 1/4.
CORRUGATION_D.FOR can be used for discrete wind speed and temperature
observations, say from a sounding or the output of an atmospheric flow model.
Input data for these codes are given in the file CORRUGATION_INPUT.DAT.
Model outputs are written to files CORRUGATION_C(or D)_OUTPUT.DAT and
CORRUGATION_C(or D)_UWTP.DAT. The first output file contains informa-
tion about the model run and vertical profiles of background wind speed and wave
stress. The second output file contains the two-dimensional (vertical and horizon-
tal) wave field perturbations of horizontal and vertical wind speed, temperature
and pressure.

B.2.3 RIDGE_C.FOR AND RIDGE_D.FOR

RIDGE_C.FOR and RIDGE_D.FOR are similar to CORRUGATION_C.FOR
and CORRUGATION_D.FOR except that instead of a surface corrugation there
is now an isolated ridge. Because of this, the Taylor–Goldstein equation must
be solved for a spectrum of wavenumbers rather than a single wavenumber. The
ridge shape is Gaussian with a maximum height labeled HEIGHT and width-scale
XSIG. The horizontal domain size is given by XSCALE, which should be large
compared to the width scale of the ridge, XSIG. If this is not the case, then errors
will be introduced in the inverse Fourier transform. These and other values are
contained in the file RIDGE_INPUT.DAT. The output files are identical to those
for the surface corrugation codes.

B.2.4 TEMP_DUCT_SCAN.FOR AND
TEMP_DUCT_MODES.FOR

The code TEMP_DUCT_SCAN.FOR searches for trapped or ducted gravity
waves in a temperature duct, i.e., calm background winds. The temperature ducting
region extends from the ground surface to 300 m, and is characterized by a constant
thermal stratification. Above the ducting region the stratification is neutral, i.e.,
the Brunt–Väisälä frequency is zero. Beginning with a fixed wavenumber and
an initial guess for the phase speed, the Taylor–Goldstein equation is solved for
waves that have zero vertical velocity at the ground surface and exponentially
decreasing wave amplitude above the ducting region. The phase speeds range
between CMIN and CMAX which are determined by the requirement that the
gravity wave must be internal in the ducting region. The upper boundary condition
requires that the amplitude of the exponentially growing wave be zero or very small
at the top boundary which is taken to be the top of the ducting region. A shooting
technique is used to find the resonant wave. Starting with the initial phase speed,
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the Taylor–Goldstein equation is integrated from the ground surface upward. If
the upper boundary condition is not satisfied, then the phase speed is slightly
increased, and the calculation is repeated. The process continues until the sign
of the amplitude of the growing wave at the top boundary changes between two
successive trial phase speeds. These successive speeds become the new values for
CMAX and CMIN, and the above procedure is repeated. With each new pair of
CMAX and CMIN values, the amplitude of the growing wave decreases. Usually,
by the third iteration the amplitude is sufficiently small. In the first iteration,
several zero-crossings of the amplitude of the growing wave will be seen. If the
wavenumber is sufficiently large, the first zero corresponds to the fundamental
mode; the second zero corresponds to the first harmonic, etc.

Each wave mode possesses a series of eigenvalues corresponding to dis-
crete pairs of wavenumber and phase speed values which are solutions to the
Taylor–Goldstein equation. These eigenvalues are calculated in the program
TEMP_DUCT_MODES.FOR. The calculations begin with the first eigenvalue
pair. The wavenumber is incrementally decreased, and a series of phase speeds
are tried until the upper boundary condition is satisfied. The wavenumber is again
decreased, and the above process is repeated. The output from this code is written
to file TP_MODES.DAT, and contains the values of wavenumber, phase speed,
group velocity, and wave frequency.

B.2.5 WIND_DUCT_SCAN.FOR AND
WIND_DUCT_MODES.FOR

These codes are similar to those described in Section B.2.4, but now a back-
ground wind with a velocity jet is present. In these codes, analytical expressions for
a low level jet and an accompanying temperature profile are used. However, aside
from this the wind duct codes operate the same way as the temperature duct codes.
Care must be taken so that the minimum phase speed is greater than the maximum
background wind speed. If the condition is not met, then a critical level will be
introduced, and the calculation will fail.

B.2.6 WAVELET.FOR

The program WAVELET.FOR performs a wavelet analysis on a time series of
data. The wavelet function is the Morlet wavelet which is a Gaussian-damped sine
wave. The analysis is based on the Fast Fourier Transform (FFT), and so the input
data must be 2n or greater in size where n is an integer. The input data are contained
in the file P-291.DAT, which is described in Section B.3. The output is written to
file WAVELET_OUTPUT.DAT. Each line of the output file contains time (fraction
of dat UTC), wavelet period (minutes), and wavelet energy density. These data
must be contoured in order to see the time-wavelet-window distribution of wavelet
energy density.
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B.3 SYNTHETIC WAVE DATA

Two synthetic wave data sets are provided for testing the beamsteering code.
These data simulate the pressure perturbations observed by a six-sensor array of
microbarographs. The presumed sampling rate is 1 Hz, and the sampling time is
1 hour. The wavelength is 1000 m, and the wave is coming from 45E. In one case
the speed is 5 m s−1, and in the other it is 20 m s−1.

B.4 SAMPLE PRESSURE DATA

The ASCII file T-291.DAT contains the raw pressure perturbation data recorded
from 6 microbarographs on October 19, 1999 during the CASES-99 field cam-
paign in south central Kansas. The pressure data consists of 1-s averages formed
from 10 Hz samples. The times are in fractions of a day UTC. Thus, a time of
0.250 corresponds to 06:00, etc. The microbarographs were of the differential type,
and every 15 min the reference chamber was opened for 5 s to allow the pressure
difference to go to zero. This zero setting procedure results in a series of ramps,
each ramp being 15 min long. In order to get a useful data set, these ramps have to
be connected to form a continuous time series. This has been done, and these data
appear in the file P-291.DAT. These data, however, contain all the pressure varia-
tions over the day including the diurnal changes and slowly-varying temperature
effects. Thus, it is necessary to filter these data over some frequency range in order
to derive a useful data set. The (x, y) locations of the pressure sensors relative to
the CASES tower are, in meters, Station 1 (90.6, 42.3); Station 4 (−229.4, 160.6);
Station 5 (−26.1, −298.8); Station 7 (815.7, 380.4); Station 8 (−737.2, 516.2);
Station 9 (−78.4, −896.6).

B.5 CONTACT

The reader can contact the author at:

nappo@atdd.noaa.gov
or

cjnappo1@comcast.net
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F
Fast Fourier transform, WAVELET.FOR, 248
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Flow stability

fluid parcel height-varying density and
speed, 128

fluid parcel Richardson number, 128–129
fluid system, 125–126
potential and kinetic energies, 126–127

Flow types
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background flow, 27
frictionless adiabatic atmospheric flow, 122
inviscid flow, 26
irrotational flow, 26
mean atmospheric flow, 182
shear flows, 136–138
stratified shear flow stability, 138–141
stratified shear flow unstable modes, 129–136
uniform flow, surface corrugation, 51–53,

55–58
Fluid parcel

buoyancy, 17
buoyant force actions, 18
frames of reference, 9
gravitational potential energy, 41

Fluid parcel exchange analysis
fluid system, 125–126
height-varying density and speed, 128
potential and kinetic energies, 126–127
Richardson number, 128–129

Fluid particles, harmonic oscillations, 6
FM-CW radar, see Frequency-modulated

continuous-wave radar
Forecast models, saturation parameterization

schemes, 178–179
Form drag, mathematical derivation, 73
FORTRAN codes

BEEMSTEER.FOR, 219, 246
CORRUGATION_C.FOR, 232, 246
CORRUGATION_C_OUTPUT.DAT, 232,

246
CORRUGATION_C_UWTP.DAT, 232, 246
CORRUGATION_D.FOR, 232, 246
CORRUGATION_D_OUTPUT.DAT, 246
CORRUGATION_D_UWTP.DAT, 246
CORRUGATION_INPUT.DAT, 232, 246
numerical models, 228
overview, 245
phase speed calculations, 106
RIDGE_C.FOR, 232, 247
RIDGE_D.FOR, 232, 247
RIDGE_INPUT.DAT, 232
TEMP_DUCT_MODES.FOR, 235, 247–248
TEMP_DUCT_SCAN.FOR, 235, 247–248
WAVELET.FOR, 224, 248
WAVELET_OUTPUT.DAT, 248
WIND_DUCT_MODES.FOR, 235, 248
WIND_DUCT_SCAN.FOR, 235, 248

Fourier transform
beemsteering, 219
mechanical filter instruments, 195–197
mountain wave problem, 51

terrain-generated gravity waves, 229–230
three-dimensional mountain, 68
two-dimensional ridge, 59
wavelet analysis, 224

Free-balloon soundings, gravity wave
perturbations, 183–185

Frequency
apparent frequency, 28
beemsteering, 219–220
Brunt–Väisälä; frequency, see Brunt–Väisälä;

frequency
Doppler-shifted intrinsic waves, 28
intrinsic frequency, 27–28
Kelvin–Helmholtz instability, 131, 133
Nyquist frequency, 200
radiofrequency, 189
sodar and gravity waves, 2
ultra high frequency, 186
very high frequency, 186
wave action, 113
wave scales, 10

Frequency-modulated continuous-wave radar,
187–188

Frequency response function, mechanical filter
instruments, 195–197

Frictionless adiabatic atmospheric flow,
transient waves, 122

Frictionless atmosphere, Eulier equations of
motion, 22

Friction stress, surface corrugation, 76
Frobenius expansion, wave behavior at critical

level, 115–116
Froude number, wave saturation

parameterization schemes, 179
Fundamental mode, temperature duct, 100

G
Gain factor, mechanical filter instruments,

196–197
Gas constant, equation of state for dry air, 18
Gaussian ridge

flow, 59
stress, 78
terrain-generated gravity waves, 227–229
two-dimensional ridge, 61

General circulation
gravity wave effects, 4
saturation parameterization schemes,

178–179
Geostrophic wind

hydrostatic atmosphere, 240–241
wind spirals, 108
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Gravitational potential energy, fluid parcel, 41
Gravity wave theory overview

group velocity definition, 14
meteorology, 4

Ground-based meteorological measurements,
182–183

Ground surface, wave reflection
overview, 94–95
slope, 95–96

Group velocity
definition, 14
energetics, 44
mountain wave problem, 51
surface corrugation, 56–58
Taylor–Goldstein equation, 33
wave action, 114
wave packet, 16–17

GROW, ducted gravity waves, 234–235

H
Harmonic oscillations, fluid particles, 6
Heat capacity

definition, 19
dry air, 22

Heat conduction, wave behavior at critical level,
122–123

Heat transfer, air parcel, 18
Heaviside function, mechanical filter

instruments, 196
High-pass filter, mechanical filter instruments,

196
Horizontal wind perturbation, 38
Howard’s semi-circle theorem, 141
Hydrostatic approximation

equations, 19
hydrostatic atmosphere, 237

Hydrostatic atmosphere
adiabatic lapse rate, 238
Boussinesq approximation, 239–240
Ekman wind spiral, 241–243
geostrophic wind, 240–241
hydrostatic approximation, 237
isothermal atmosphere, 238
potential temperature, 238–239

Hydrostatic balance, background flow, 27
Hydrostatic equation

adiabatic lapse rate, 238
hydrostatic approximation, 237
stratified shear flow stability, 139

Hydrostatic equilibrium, three-dimensional
mountain, 70

Hydrostatic force, Jefferys’ roll-wave instability
mechanism, 151

Hydrostatic waves, two-dimensional ridge, 62
Hydroxyl radical, airglow, 205–206

I
Ideal gas law

Boussinesq approximation, 239
isothermal atmosphere, 238

Imaginary phase speed, 117
Impedance

pressure–wind correlation, 212
wave reflection at elevated layer, 88–89

Index of refraction, wave reflection at elevated
layer, 86

Indicial equation, 116
Inflection point instability, shear flows, 136–138
Instability

convective instability, 20, 161
definition, 20
inflection point instability, 136–138
Jefferys’ roll-wave mechanism, 149–151,

153–154
Kelvin–Helmholtz instability, 130–131, 171
Rayleigh instability, 136

Internal Froude number, 142–143
Internal wave, 36
Intrinsic frequency

definition, 27–28
Kelvin–Helmholtz instability, 131, 133
wave action, 113

Intrinsic phase speed
terrain-generated gravity waves, 49–50
transient waves, 122

Inviscid flow, two-dimensional Eulier
equations, 26

Irrotational flow, two-dimensional Eulier
equations, 26

Isobars, wind spirals, 108
Isothermal atmosphere

buoyant force, 20
scale height, 23, 238

J
Jefferys’ roll-wave instability mechanism

hydrostatic force, 151
progressive waves, 149
Reynolds stress, 150
stability analysis, 153–154
Taylor–Goldstein equation, 150–151
three-layer model, 150

K
Kelvin–Helmholtz instability
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stratified shear flows, 130–131
wave saturation, 171

Kinematic boundary conditions
Kelvin–Helmholtz instability, 130, 133
terrain-generated gravity waves, 232
wave reflection at elevated layer, 87–88

Kinematic viscosity
wave behavior at critical level, 123
wave stress, 157

Kinetic energy
background wind, 43
energetics, 41
fluid parcels, 126–127
wave–turbulence coupling, 148

King-Air B200, 209

L
Lag analysis, 214–217
Lagrangian reference frame, fluid motion, 9
Lee waves

definition, 50
generation, 85–86

Lidar, see Light detecting and ranging
Light detecting and ranging, 190–192
Linear analysis, wave reflection at elevated

layer, 87–88
Linear boundary condition, mountain wave

problem, 53
Linear gravity waves, wave equation, 26
Linear stability analysis

shear flows, 136
stratified shear flows, 129

Linear theory
gravity wave theoretical studies, 4–5
monochromatic waves, 26
non-linear system comparison, 25

M
Manometer, 194
Mass continuity equation, 26
Mean atmospheric flow, 182
Mechanical filter instruments, 195–197
Meridional wind

Coriolis acceleration, 168–169
mesopause, 169

Mesopause, meridional wind, 169
Meteorology

gravity wave role, 6
gravity wave theory, 4

Microbarograph, 28
Middle atmosphere, linear theory, 4–5
Models

atmospheric air quality, 211
bow wave, 86
ducted gravity waves, 233–235
forecast models, 178–179
Jefferys’ roll-wave instability

mechanism, 150
terrain-generated gravity waves, 47–48,

227–232
Momentum, eddy diffusivity, 166–167
Momentum equation, 26
Monochromatic waves

linear theory, 26
Taylor–Goldstein equation, 35

Morlet wavelet, 225
Mother wavelet, 225
Mountain wave problem

analytical parameterization schemes,
163–164

Dirac delta function, 53
gravity wave interactions, 4
linear boundary condition, 53
mountain wave definition, 50
radiation condition, 52
sifting function, 53
singularities, 121
streamline displacement, 55–56
surface corrugation

basic equations, 51–52
energy flux, 58
phase speed and group velocity, 56–58

wave source, 14
Multiple-station observations

digital filter instruments, 197–199
mechanical filter instruments, 195–197
overview, 192–194
pressure perturbation measurements, 194
sampling arrays, 199–202

N
NCAR DeHavilland Buffalo, 204
NCAR Queen Air 304D, 205
NCAR Sabreliner, 204
Neutral modes, Jefferys’ roll-wave instability

mechanism, 154
Nighttime atmospheric boundary layer

gravity wave role, 5
turbulence, 4

NOAA B-57B, 204
Nodes, wave energy, 16
Nonhydrostatic term, Taylor–Goldstein

equation, 30
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Non-linear systems, linear theory
comparison, 25

Nuclear explosion, wave source, 14
Numerical models

ducted gravity waves, 233–235
terrain-generated gravity waves, 227–230

Nyquist frequency, 200
Nyquist period, 200

O
Observations

multiple-stations
digital filter instruments, 197–199
mechanical filter instruments, 195–197
overview, 192–194
pressure perturbation measurements,

194–195
sampling arrays, 199–202

single-station
Doppler radar, 186
free-balloon soundings, 183–185
frequency-modulated continuous-wave

radar, 187–188
ground-based meteorological

measurements, 182–183
lidar, 190–192
radar, 185
sodar, 189–190

Orographic rain, convectively generated gravity
waves, 81

P
Palmer method, 170–171
Perturbation density energetics, 40–41
Phase average, wave–turbulence coupling, 146
Phase factor, mechanical filter

instruments, 197
Phase point, wave cycle, 10
Phase velocity

definition, 13
lag analysis, 215
Taylor–Goldstein equation, 33
wave definition, 12–13
wave energy, 16
wavenumber relationship, 17

Planetary boundary layer, atmospheric
contact, 1

Plane waves
definition, 8
Taylor–Goldstein equation, 30

Polar coordinates, wave cycle, 10
Polarization equations

analytical parameterization schemes, 164
background wind, 43
Kelvin–Helmholtz instability, 131
mountain wave problem, 54
pressure–wind correlation, 211
Taylor–Goldstein equation, 28–29, 38
three-dimensional mountain, 66
wave breaking, 161–162

Potential energy
energetics, 41
fluid parcels, 41, 126–127

Potential temperature
definition, 19
hydrostatic atmosphere, 238–239

Pressure data, computer code, 248–249
Pressure perturbations

digital filter instruments, 197–199
measurements, 194–195
mechanical filter instruments, 195–197
multiple station observations, 192–194
sampling arrays, 199–202
surface pressure perturbations, 194–195
Taylor–Goldstein equation, 38

Pressure–wind correlation, data analysis
original demonstration, 211–212
polarization equations, 211
shortcomings, 213–214

Production term
Kelvin–Helmholtz instability, 133
parcel exchange analysis, 127

Progressive waves, Jefferys’ roll-wave
instability mechanism, 149

Propagating waves
Taylor–Goldstein equation, 36
two-dimensional ridge, 61

Q
QBO, see Quasi-biennial oscillation
Quadrature spectrum, beemsteering, 219
Quasi-biennial oscillation, convectively

generated gravity waves, 84
Quasi-geostrophic approximation, wave

stress, 156

R
Radar

gravity wave perturbations, 185
Kelvin–Helmholtz instability, 134–135

Radiation condition, mountain wave problem, 52
Radiofrequency, gravity wave perturbations, 189
Radiosondes, free-balloon soundings, 183–185
Rain, orographic, 81
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Rawinsondes, free-balloon soundings, 183–185
Rayleigh instability, shear flows, 136
Reference frames

Eulerian type, 9, 48–49
Lagrangian type, 9

Reflection coefficient, wave at elevated layer, 89
Remote sensors

Doppler radar, 186
frequency-modulated continuous-wave radar,

187–188
lidar, 190–192
radar, 185
sodar, 189–190

Resonance
ducted gravity wave, 93
lee waves, 86

Reynolds stress
analytical parameterization schemes, 163
Jefferys’ roll-wave instability

mechanism, 150
wave–turbulence coupling, 147–148

Richardson number
fluid parcel exchange analysis, 128–129
Palmer method, 170
stratified shear flows, 129, 138
wave behavior at critical level, 115, 120
wave-modulated, turbulence, 141–143
wave stress, 157
wind duct, 102–103

RIDGE_C.FOR, 232, 247
RIDGE_D.FOR, 232, 247
RIDGE_INPUT.DAT, 232
Ridges

bell-shaped ridge, 59
Gaussian ridge, 59, 61, 78, 227–229
two-dimensional ridge, 59, 61–63, 66, 77–80

Ring waves
definition, 15
wave dispersion, 17

Roll wave, atmospheric wave comparison,
149–150

Rotation, earth, geostrophic wind, 240

S
Satellites, terrain-generated waves, 206–207
Scandinavian mountain range waves, 66
Schoeberl method, wave saturation, 172–173
Scorer parameter, 61
Shape function, two-dimensional ridge, 60
Shear flows, inflection point instability, 136–138
Shear term, final form, 29
Shooting method, wind duct, 104

Sifting function, mountain wave problem, 53
Single-station observations

Doppler radar, 186
free-balloon soundings, 183–185
frequency-modulated continuous-wave radar,

187–188
ground-based meteorological measurements,

182–183
lidar, 190–192
radar, 185
sodar, 189–190

Slowness
beemsteering, 218–219
lag analysis, 215–216

Sodar
gravity wave detection, 2
gravity wave perturbations, 189–190
Taylor–Goldstein equation, 28

Sodium, lidar, 190–191
Solar irradiance, surface corrugation, 58
Sonar, Kelvin–Helmholtz instability, 134–135
Specific heat capacity

definition, 19
dry air, 22

Spectrum
beemsteering, 219
wavenumber, 15

Speed
background wind, 42, 114, 117
constant background wind, 37–38
constant wind, 40–41
critical level, 114
determination, 12
height-varying, fluid parcel, 128
mountain wave problem, 51
no background wind, 31–36
stress over isolated ridge, 79
surface corrugation, 56–58
terrain-generated gravity waves, 49–50, 232
three-dimensional mountain, 66–68
transient waves, 122
wave behavior at critical level, 117

Speed jets, wind ducts, 104–105, 107
Squall lines, convectively generated gravity

waves, 82–84
Stability analysis

convective stability, 160, 162, 164–165
flow stability, 125–129
Jefferys’ roll-wave instability mechanism,

153–154
shear flows, 129, 136

Stable planetary boundary layer, turbulence, 4
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Stably stratified atmosphere
wave motion, 20
wave source, 14

Stably stratified fluid, definition, 1
Standing wave

ducted gravity wave, 92
wave reflection at elevated layer, 90

Storms, convectively generated gravity waves,
82–84

Stratification
energetics, 40–41
mountain wave problem, 51

Stratified fluids
definition, 1
waves, 4

Stratified shear flows
Kelvin–Helmholtz instability, 130–136
stability, 138–141
unstable mode overview, 129

Streamline adjustment algorithm, 172
Streamline displacement, mountain wave

problem, 55–56
Stress

calculations, 167–168
critical level, 157
Doppler radar, 186
friction, surface corrugation, 76
isolated two-dimensional ridge, 77–80
kinematic viscosity, 157
quasi-geostrophic approximation, 156
Reynolds stress, 147–148, 150, 163
Richardson number, 157
subgrid-scale effects, 156
surface corrugation, 76–77
surface-layer stress, 171
Taylor–Goldstein equation, 30
terrain-generated waves, 156
turbulence stress, 242
upward transport, 155
variation with height, 74–75, 111–112
viscous length scale, 157
wave action, 114
wave behavior at critical level, 119–120
wave dissipation, 157
wave-modified Reynolds stress, 147–148
WKB approximation, 171
zonal wind, 156

Subgrid-scale effects, wave stress, 156, 171
Supersaturation, definition, 173
Surface corrugation

stress, 76–77
terrain-generated gravity waves, 227–229

uniform flow
basic equations, 51–52
Dirac delta function, 53
energy flux, 58
group velocity, 56–58
linear boundary condition, 53
phase speeds, 56–58
radiation condition, 52
sifting function, 53
streamline displacement, 55–56

Surface-layer stress, wave saturation, 171
Surface pressure

multiple station observations, 192–194
pressure perturbation measurements, 194

T
T-291.DAT, sample pressure data, 248
Taylor–Goldstein equation

analytical parameterization schemes, 163
background atmospheric density, 27
Boussinesq approximation, 26
constant background wind speed, 37–38
CORRUGATION_C.FOR and

CORRUGATION_D.FOR, 246
Doppler-shifted intrinsic wave frequency, 28
ducted gravity waves, 233
final form, 29–30
intrinsic frequency, 27–28
Jefferys’ roll-wave instability mechanism,

150–151
mountain wave problem, 51
no background wind speed, 31–36
RIDGE_C.FOR and RIDGE_D.FOR, 247
Schoeberl method, 172
shear flow inflection point instability, 137
TEMP_DUCT_SCAN.FOR and

TEMP_DUCT_MODES.FOR, 247
temperature duct, 100–101
terrain-generated gravity waves, 228–230
three-dimensional mountain, 66
two-dimensional ridge, 59–60
wave at critical level, 114
wave reflection at elevated layer, 91
wave saturation, 175
wind duct, 102
WKB method, 39

TEMP_DUCT_MODES.FOR
characteristics, 247–248
ducted gravity waves, 235

TEMP_DUCT_SCAN.FOR
characteristics, 247–248
ducted gravity waves, 235
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Temperature
dry air, 19
environmental, buoyant force, 18
potential temperature, 19, 238–239
wave breaking, 159, 162
wave–turbulence coupling equations, 147

Temperature duct
wave solution modes, 100
wave solutions, 98–99

Terrain-generated gravity waves
aircraft, 204–205
airglow, 205–206
amplitudes, 48
balloons, 203–204
clear air turbulence, 48
convection, 80–84
drag, mathematical derivation, 72–74
Eulerian reference frame, 48–49
free-balloon soundings, 184–185
intrinsic phase speed, 49–50
mountain wave definition, 50
numerical model overview, 227–229
numerical models, 229–230
satellites, 206–207
secondary effects of drag, 80
stress, 156
stress over isolated ridge, 77–80
stress over surface corrugation, 76–77
stress variation, 74–75
studies and models, 47–48
surface corrugation

basic equations, 51–52
Dirac delta function, 53
energy flux, 58
linear boundary condition, 53
phase speed and group velocity, 56–58
radiation condition, 52
sifting function, 53
streamline displacement, 55–56

three-dimensional mountain
bell-shaped mountain, 68–70
hydrostatic equilibrium, 70
Taylor–Goldstein equation, 66
wave energy, 70–71

two-dimensional ridge
Coriolis force, 62–63
propagating vs. evanescent waves, 61
Scandinavian mountain range, 66
types, 59
wave structure, 61–62

types, 50
wave behavior at critical level, 120

wave generation, 4
wave stress, 156

Terrain height adjustment scheme, wave
saturation, 174–177

Tetroons, terrain-generated waves, 203
Thermal conductivity, wave behavior at critical

level, 123
Thermal energy conservation, 26–27
Thermal energy equation, 22
Three-dimensional mountain

bell-shaped mountain, 68–70
hydrostatic equilibrium, 70
Taylor–Goldstein equation, 66
wave energy, 70–71

Three-dimensional waves, definition, 8
Thunderstorms, gravity wave interactions, 4
Transient wave disturbances, 121–122
Transport, energy

three-dimensional mountain, 70–71
two-dimensional ridge waves, 62
wave packet, 15–17
waves, 5, 14

Tropopause, Taylor–Goldstein equation, 30
Troposphere, gravity wave composition, 5
Troughs, definition, 8
Turbulence

analytical parameterization schemes, 163
clear air

gravity wave role, 5
terrain-generated gravity waves, 48
wave-modulated Richardson number, 143

data analysis overview, 210–211
fluid parcel exchange analysis, 125–126
gravity wave role, 5
lag analysis, 214–217
nighttime boundary layer, 4
pressure–wind correlation, 211–214
sodar, 2
stable planetary boundary layer, 4
wave coupling

analysis, 144–146
basic process, 144
dynamic equations for fields, 147
kinetic energies, 148
phase average, 146
temperature field, 147
turbulence–turbulence coupling, 148
wave average, 146–147
wave-modified Reynolds stress, 147–148

wave-modulated Richardson number,
141–143

Turbulence stress, Ekman wind spiral, 242
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Turbulence theory, energetics, 45
Turbulence–turbulence coupling, 148
Two-dimensional Eulier equations, 26
Two-dimensional ridge

Coriolis force, 62–63
propagating vs. evanescent waves, 61
Scandinavian mountain range, 66
stress, 77–80
types, 59
wave structure, 61–62

Two-dimensional waves, definition, 8

U
UHF, see Ultra high frequency
Ultra high frequency, gravity wave

perturbations, 186
Uniform flow, surface corrugation

basic equations, 51–52
Dirac delta function, 53
energy flux, 58
group velocity, 56–58
linear boundary condition, 53
phase speeds, 56–58
radiation condition, 52
sifting function, 53
streamline displacement, 55–56

Unstable modes
shear flow inflection point instability,

136–138
stratified shear flow, 130–136
stratified shear flow overview, 129

Upper atmosphere
gravity wave effects, 4
linear theory, 4–5

V
Velocity

group velocity
definition, 14
energetics, 44
mountain wave problem, 51
surface corrugation, 56–58
Taylor–Goldstein equation, 33
wave action, 114
wave packet, 16–17

phase velocity
definition, 12–13
lag analysis, 215
Taylor–Goldstein equation, 33
wave, definition, 12–13
wave energy, 16
wavenumber relationship, 17

Very high frequency, gravity wave
perturbations, 186

VHF, see Very high frequency
Viscosity

wave behavior at critical level, 122–123
wave stress, 157

Viscous length scale, wave stress, 157
Vorticity, wave saturation, 169

W
Wave

definition, 6
waves definition comparison, 7–8

Wave action, background wind, 112–114
Wave amplitude

atmospheric density effect, 29
Taylor–Goldstein equation, 36
wave behavior at critical level, 120

Wave average, wave–turbulence coupling,
146–147

Wave behavior, critical level
background wind speed, 114–115
buoyancy term, 117–118
complex plane, 118–119
Frobenius expansion, 115–116
heat conduction, 122–123
imaginary phase speed, 117
indicial equation, 116
Richardson number, 115
terrain-generated waves, 120
transient waves, 121–122
wave approach, 120–121
wind shear, 119–120
wind stress, 119–120

Wave breaking
conditions, 159–160
convective instability, 161
convective stability, 160, 162
occurrence, 165
polarization equation, 161–162
supersaturation definition, 173
temperature, 162

Wave cycle, definition, 10
Wave data, artificial, beemsteering code, 248
Wave dispersion, 17
Wave dissipation, wave stress, 157
Wave ducts

temperature duct, 98–101
wind duct, 101–106
wind spirals and ducts, 107–109

Wave energy, variation with height, 111–112
Wave energy density, wave action, 113–114
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Wave equation, linear gravity waves, 26
Wave field, definition, 9
Wave fronts

mountain wave problem, 51
spatial orientation, 11–12
Taylor–Goldstein equation, 32–33

Wave guide, definition, 85
Wavelength, wave scales, 9
Wavelet analysis

Fourier transform approach, 224
Morlet wavelet, 225
mother wavelet, 225
overview, 221–222
time localization, 223–224
wavelet analysis diagram, 226–227
wavelet coefficients, 224–225
wavelet energy density, 225–226
wavelet transforms, 222–223

Wavelet analysis diagram, 226–227
Wavelet coefficients, 224–225
Wavelet energy density, 225–226
WAVELET.FOR, 224, 248
WAVELET_OUTPUT.DAT, 248
Wavelet propagation, 15
Wavelet transforms, 222–223
Wave-modified Reynolds stress, 147–148
Wave-modulated Richardson number, 141–143
Wave motion, stably stratified atmosphere, 20
Wave packet

definition, 15
energy transport, 15–17
group velocity, 16–17

Wave period, wave scales, 10
Wave phase, equations, 10–11
Wave phase angle, definition, 10–11
Wave phase vector, definition, 12
Wave reflection

definition, 85
elevated layer

Brunt–Väisälä frequency, 86–87
evanescent waves, 90–91
impedance, 88–89
linear analysis, 87–88
reflection coefficient, 89
Taylor–Goldstein equation, 91

ground surface
elevation equations, 97–98
overview, 94–95
slope, 95–96

Wave resonance, ducted gravity wave, 93
Waves

energy transport, 5, 14

stratified fluids, 4
wave definition comparison, 7–8

Wave saturation
analog parameterization schemes

overview, 169–170
Palmer method, 170–171
Schoeberl method, 172–173
terrain height adjustment scheme, 174–177

analytical parameterization schemes
Coriolis acceleration, 168–169
early proposal, 162
eddy diffusivity, 163–167
mountain wave problem, 163–164
turbulence, 163
wave amplitude growth, 166–167
wave stress calculations, 167–168

definition, 158–159
limits and problems, 177–180

Wave scales, definitions, 9–10
Wave source

mountain range, 14
nuclear explosion, 14
stably stratified atmosphere, 14

Wave speed
critical level, 114
determination, 12
FORTRAN codes, 106
surface corrugation, 56–58
terrain-generated gravity waves, 49–50
transient waves, 122
wave behavior at critical level, 117

Wave stress
calculations, 167–168
critical level, 157
Doppler radar, 186
isolated two-dimensional ridge, 77–80
kinematic viscosity, 157
quasi-geostrophic approximation, 156
Richardson number, 157
subgrid-scale effects, 156
surface corrugation, 76–77
Taylor–Goldstein equation, 30
terrain-generated waves, 156
upward transport, 155
variation with height, 74–75, 111–112
viscous length scale, 157
wave action, 114
wave behavior at critical level, 119–120
wave dissipation, 157
WKB approximation, 171
zonal wind, 156

Wave train, definition, 8
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Wave trapping, ducted gravity wave, 92
Wave–turbulence coupling

analysis, 144–146
basic process, 144
dynamic equations for fields, 147
kinetic energies, 148
phase average, 146
temperature field, 147
turbulence–turbulence coupling, 148
wave average, 146–147
wave-modified Reynolds stress, 147–148

Wave vectors
Taylor–Goldstein equation, 32–33
wave scales, 10

Weighting function, mechanical filter
instruments, 196

Wind
geostrophic wind, 108, 240–241
horizontal wind perturbation, 38
meridional wind, 168–169
pressure correlation, 211–214
wave action, 112–114
wave behavior at critical level, 120
zonal, wave stress, 156

Wind duct
first description, 101–102
low-level jet, 104–105
perturbation velocities, 106
Richardson number, 102–103
shooting method, 104
Taylor–Goldstein equation, 102
ztop, 103–104

WIND_DUCT_MODES.FOR
characteristics, 248

ducted gravity waves, 235
WIND_DUCT_SCAN.FOR

characteristics, 248
ducted gravity waves, 235

Wind kinetic energy, background wind, 43
Wind shear, wave behavior at critical level,

119–120
Wind speed

background wind, 42, 114, 117
constant background wind, 37–38
constant wind, 40–41
mountain wave problem, 51
no background wind, 31–36
stress over isolated ridge, 79
terrain-generated gravity waves, 232
three-dimensional mountain, 66–68

Wind spirals
hydrostatic atmosphere, 241–243
wind ducts, 107–109

Wind stations, lag analysis, 216
WKB method

analytical parameterization schemes, 163
equations and use, 39
Schoeberl method, 172
wave saturation, 174–175
wave saturation parameterization schemes,

178
wave stress, 171

Z
Zonal wind, wave stress, 156

ducted gravity waves, 233–234
terrain-generated gravity waves, 230–231
wind duct, 103–104
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