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theory and average values, through to the collective phenomena of
waves in plasma. This provides students with a stronger understand-
ing of the topics covered, their interconnections, and when different
types of plasma models are applicable. Furthermore, mathematical
derivations are rigorous yet concise, so physical understanding is
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I have been teaching Introductory Plasma Physics to senior under-
graduates and beginning graduate students for many years, and I
find the level of the presentation of material, the order that the
topics are presented, and the overall length of the book to be an
excellent match for my needs in a textbook.
David Hammer, Cornell University

The authors have done an excellent job in introducing the vast scope
of plasma physics for basic plasma physics courses. The schematic
illustrations and flow charts used are especially helpful in under-
standing the complexities involved in the hierarchal nature of plas-
mas. Mathematics is kept at just the right level for the intended
readers and the descriptions of the physical processes are clear.
Although this book is targeted to advanced undergraduate or begin-
ning graduate students, it will be a good addition to the personal
library of every plasma physicist.
Gurudas Ganguli, Naval Research Laboratory

This new book provides an excellent summary of the basic processes
occurring in plasmas together with a comprehensive introduction to
the mathematical formulation of fluid (MHD) and kinetic theory. It
provides an excellent introduction to the subject suitable for senior
undergraduate students or entry-level graduate students.
Richard M. Thorne, University of California at Los Angeles
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Preface

This book is intended to provide a general introduction to plasma
phenomena at a level appropriate for advanced undergraduate stu-
dents or beginning graduate students. The reader is expected to
have had exposure to basic electromagnetic principles including
Maxwell’s equations and the propagation of plane waves in free
space. Despite its importance in both science and engineering the
body of literature on plasma physics is often not easily accessible to
the non-specialist, let alone the beginner. The diversity of topics and
applications in plasma physics has created a field that is fragmented
by topic-specific assumptions and rarely presented in a unified man-
ner with clarity. In this book we strive to provide a foundation for
understanding a wide range of plasma phenomena and applications.
The text organization is a successive progression through intercon-
nected physical models, allowing diverse topics to be presented in
the context of unifying principles. The presentation of material is
intended to be compact yet thorough, giving the reader the neces-
sary tools for further specialized study. We have sought a balance
between mathematical rigor championed by theorists and practical
considerations important to experimenters and engineers. Consider-
able effort has been made to provide explanations that yield physical
insight and illustrations of concepts through relevent examples from
science and technology.

The material presented in this book was initially put together
as class notes for the EE356 Elementary Plasma Physics course,
newly introduced and taught by one of us (USI) at Stanford Uni-
versity in the spring quarter of 1998. The course was then taught
regularly every other year, for graduate students from the depart-
ments of Electrical Engineering, Materials Science, Mechanical
Engineering, Applied Physics, and Physics. Over the years, several

xiii



xiv Preface

PhD students, including Nikolai Lehtinen, Georgios Veronis, Jacob
Bortnik, Michael Chevalier, Timothy Chevalier, and Prajwal
Kulkarni, contributed to the course in their work as teaching assis-
tants. The course was co-taught by Prajwal Kulkarni and one of us
(MG) in the Spring of 2008, and by Brant Carlson in the Spring
of 2010. We offer our thanks to each of these colleagues for their
enthusiastic help and contributions, as well as to the many students
enrolled in the course who helped improve its content with their
contributions.

More generally, we owe considerable gratitude to all the other
researchers and students of the Very Low Frequency Group at
Stanford University who have been a source of valuable feedback
and expertise, and to our administrative assistants, Shaolan Min
and Helen Wentong Niu, for their contributions. We would like
specifically to acknowledge Dr. Prajwal Kulkarni, for his pedagogi-
cal insights that have helped shape this text, and Dr. Brant Carlson,
for valuable help in editing the manuscript.



C H A P T E R

1 Introduction

This text concerns the basic elementary physics of plasmas, which
are a special class of gases made up of a large number of electrons
and ionized atoms and molecules, in addition to neutral atoms
and molecules as are present in a normal (non-ionized) gas. The
most important distinction between a plasma and a normal gas is
the fact that mutual Coulomb interactions between charged par-
ticles are important in the dynamics of a plasma and cannot be
disregarded. When a neutral gas is raised to a sufficiently high
temperature, or when it is subjected to electric fields of sufficient
intensity, the atoms and molecules of the gas may become ionized,
electrons being stripped off by collisions as a result of the heightened
thermal agitation of the particles. Ionization in gases can also be
produced as a result of illumination with ultraviolet light or X-rays,
by bombarding the substance with energetic electrons and ions, or in
other ways. When a gas is ionized, even to a rather small degree, its
dynamical behavior is typically dominated by the electromagnetic
forces acting on the free ions and electrons, and it begins to conduct
electricity. The charged particles in such an ionized gas interact with
electromagnetic fields, and the organized motions of these charge
carriers (e.g., electric currents, fluctuations in charge density) can in
turn produce electromagnetic fields. The ability of an ionized gas
to sustain electric current is particularly important in the presence
of a magnetic field. The presence of mobile charged particles in a
magnetic field yields a Lorentz force qv × B. When applied to a
collection of particles this force leads to an electromagnetic body
force J × B which can dominate the gas dynamics. As a result, the
most novel and spectacular behavior of plasmas is exhibited in the
context of their interaction with a magnetic field.

During the 1920s, I. Langmuir and colleagues first showed that
characteristic electrical oscillations of very high frequency can exist

1



2 Introduction

in an ionized gas that is neutral or quasi-neutral, and introduced
the terms plasma and plasma oscillations,1 in recognition of the fact
that these oscillations resembled those of jelly-like substances [1, 2].
When subjected to a static electric field, the charge carriers in an
ionized gas rapidly redistribute themselves in such a way that most
of the gas is shielded from the field, in a manner quite similar to the
redistribution of charge which occurs within a metallic conductor
placed in an electric field, resulting in zero electric field everywhere
inside. Langmuir gave the name “plasma” specifically to the rela-
tively field-free regions of the ionized gas, which are not influenced
by the boundaries. Near the boundaries, typically metallic surfaces
held at prescribed potentials, strong space-charge fields exist in a
transition region Langmuir termed the plasma sheath. The sheath
region has properties that differ from the plasma, since the motions
of charged particles within the sheath are predominantly influenced
by the potential of the boundary. The particles in the sheath form
an electrical screen between the plasma and the boundary. We will
find later that the screening distance is a function of the density of
charged particles and of their temperature.

The plasma medium is often referred to as the fourth state of
matter, since it has properties profoundly different from those of
the gaseous, liquid, and solid states. All states of matter represent
different degrees of organization, corresponding to certain values of
binding energy. In the solid state, the important quantity is the bind-
ing energy of molecules in a crystal. If the average kinetic energy of
a molecule exceeds the binding energy (typically a fraction of an
electron volt), the crystal structure breaks up, either into a liquid
or directly into a gas (e.g., iodine). Similarly, a certain minimum
kinetic energy is required in order to break the bonds of the van der
Waals forces in order for a liquid to change into a gas. In order
for matter to make the transition to its fourth state and exist as
a plasma, the kinetic energy per plasma particle must exceed the
ionizing potential of atoms (typically a few electron volts). Thus,
the state of matter is basically determined by the average kinetic
energy per particle. Using water as a convenient example, we note
that at low temperatures the bond between the H2O molecules holds
them tightly together against the low energy of molecular motion,
so that the matter is in the solid state (ice). At room temperature, the

1 The word “plasma” first appeared as a scientific term in 1839 when the Czech biologist
J. Purkynie coined the term “protoplasma” to describe the jelly-like medium containing a
large number of floating particles which make up the nuclei of the cells. The word
“plasma” thus means a mold or form, and is also used for the liquid part of blood in
which corpuscules are suspended.
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increased molecular energy permits more widespread movements
and currents of molecular motion, and we have the liquid state
(water). Since the particle motions are random, not all particles have
the same energy, with the more energetic ones escaping from the
liquid surface to form a vapor above it. As the temperature of the
water is further increased, a larger fraction of molecules escapes,
until the whole substance is in the gaseous phase (steam). If steam is
subjected to further thermal heating, illumination by UV or X-rays,
or bombardment by energetic particles, it becomes ionized (plasma).

Although by far most of the Universe is ionized and is therefore
in a plasma state, on our planet plasmas have to be generated by spe-
cial processes and under special conditions. While we live in a bubble
of essentially non-ionized gas in the midst of an otherwise ionized
environment, examples of partially ionized gases or plasmas, includ-
ing fire, lightning, and the aurora borealis have long been part of
our natural environment. It is in this connection that early natural
philosophers held that the material Universe is built of four “roots,”
earth, water, air, and fire, curiously resembling our modern termi-
nology of solid, liquid, gas, and plasma states of matter. A transient
plasma exists in the Earth’s atmosphere every time a lightning stroke
occurs, but is clearly not very much at home and is short-lived.
Early work on electrical discharges included generation of electric
sparks by rubbing a large rotating sphere of sulphur against a cloth
[3], production of sparks by harnessing atmospheric electricity in
rather hazardous experiments [4], and studies of dust patterns left
by a spark discharge passing through the surface of an insulator
[5]. However, it was only when electrical and vacuum techniques
were developed to the point where long-lived and relatively stable
electrical discharges were available that the physics of ionized gases
emerged as a field of study. In 1879, W. Crookes published the results
of his investigations of discharges at low pressure and remarked:
“The phenomena in these exhausted tubes reveal to physical science
a new world, a world where matter may exist in a fourth state . . .”
[6]. A rich period of discoveries followed, leading to Langmuir’s
coining of the word “plasma” in 1929, and continuing into the
present as a most fascinating branch of physics.

Although a plasma is often considered to be the fourth state
of matter, it has many properties in common with the gaseous
state. At the same time, the plasma is an ionized gas in which the
long range of Coulomb forces gives rise to collective interaction
effects, resembling a fluid with a density higher than that of a gas.
In its most general sense, a plasma is any state of matter which
contains enough free, charged particles for its dynamical behavior
to be dominated by electromagnetic forces. Plasma physics therefore
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encompasses the solid state, since electrons in metals and semi-
conductors fall into this category [7]. However, the redistribution
of charge and the screening of the inner regions of a metal occur
extremely quickly (typically ∼10−19 s) as a result of the very high
density of free charges. Most applications of plasma physics are
concerned with ionized gases. It turns out that a very low degree of
ionization is sufficient for a gas to exhibit electromagnetic properties
and behave as a plasma: a gas achieves an electrical conductivity of
about half its possible maximum at about 0.1% ionization and has a
conductivity nearly equal to that of a fully ionized gas at 1% ioniza-
tion. The degree of ionization can be defined as the ratio Ne/(Ne +
Nn), where Ne is the electron density and Nn is the density of neutral
molecules. (Since most plasmas are macroscopically neutral, as we
will see later, the density of positive ions is equal to the density of
electrons, i.e., Ni = Ne.) As an example, the degree of ionization in a
fluorescent tube is ∼10−5, with Nn � 1022 m−3 and Ne � 1017 m−3.
Typically, a gas is considered to be a weakly (strongly) ionized gas
if the degree of ionization is less than (greater than) 10−4.

The behavior of weakly ionized plasmas differs significantly from
that of strongly ionized plasmas. In a plasma with a low density of
charged particles (i.e., low value of Ne), the effect of the presence
of neutral particles overshadows the Coulomb interactions between
charged particles. The charged particles collide more often with
neutrals than they interact (via the Coulomb repulsion force) with
other charged particles, inhibiting collective plasma effects. As the
degree of ionization increases, collisions with neutrals become less
and less important and Coulomb interactions become increasingly
important. In a fully ionized plasma, all particles are subject to
Coulomb collisions.

The Sun and the stars are hot enough to be almost completely
ionized, with enormous densities (Ne � 1033 m−3), and the inter-
stellar gas is sparse enough to be almost completely ionized as a
result of stellar radiation. Starting at about 60 km altitude the Sun
bathes our atmosphere in a variety of radiations and the energy in the
ultraviolet part of the spectrum is absorbed by atmospheric gas. In
the process, significant numbers of air molecules and atoms receive
enough energy to become ionized. The resulting free electrons and
positive ions constitute the ionosphere. Maximum ionization density
occurs in the F-region of the ionosphere at about 350 km altitude,
where Ne � 1012 m−3. With atmospheric density at 350 km altitude
being Nn � 3.3 × 1014 m−3, the degree of ionization is ∼10−2. At
even higher altitudes, the air is thin enough so that it is almost
completely ionized, and the motion of charged particles is dominated
by the Earth’s magnetic field, in a region known as the magnetosphere.
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Plasmas have various uses in technology because of their unique
electrical properties and ability to influence chemical processes.
Artificial plasmas are generated by application of heat or strong
electric fields. Ultraviolet radiation from plasmas is used in light-
ing and plasma display panels. The plasma state opens a whole
new regime of chemistry not typically accessible to normal gases.
Plasmas play a key role in processing materials, including those
related to the production of integrated circuits. Plasmas can also
be used to process waste, selectively kill bacteria and viruses, and
weld materials. Achieving controlled thermonuclear fusion, which
holds promise as an abundant and clean energy source, is essentially
a plasma physics problem. Thus plasma physics is essential both to
understanding the basic processes of our planet and to advancing
important technological applications.

One of the most important properties of a plasma is its tendency
to remain electrically neutral, i.e., to balance positive and negative
free charge (Ne � Ni ) in any given macroscopic volume element.
A slight imbalance in local charge densities gives rise to strong
electrostatic forces that act in the direction of restoring neutrality.
This property arises from the large charge-to-mass ratio (qe/me) of
electrons, so that any significant imbalance of charge gives rise to an
electric field of sufficient magnitude to drag a neutralizing cloud of
electrons into the positively charged region. If a plasma is subjected
to an applied electric field, the free charges adjust so that the major
part of the plasma is shielded from the applied field. In order to be
considered a plasma, an ionized gas must have a sufficiently large
number of charged particles to shield itself electrostatically within a
distance smaller than other lengths of physical interest. The quan-
titative measure of this screening distance is the so-called Debye
length, discussed below. We will see that the screening distance is
proportional to N−1/2

e . A simple analogy can be made with a person
entering a forest. Beyond a certain distance within the forest there
are enough trees to screen the edge of the forest from view. However,
if the trees are too far apart and the forest is too small, the person
may never lose sight of the edge, in which case such a group of trees
would not be called a forest.

At first thought the fourth state of matter may appear to be
the simplest to study since the elementary fundamental laws of
charged-particle motion are perfectly known, i.e., classical elec-
tromagnetic theory (Maxwell’s equations) and the Lorentz force
equation.2 However, analyses of plasma effects are much more

2 Gravitational forces are much smaller than electromagnetic forces on earthly scales. The
momenta (p = mv) of free electrons and ions in typical plasmas are usually high and
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complicated, for a number of reasons: (i) Although the various
movements of individual particles are all governed by the electro-
magnetic fields in which they move, these fields are themselves often
greatly modified by the presence and motion of the particles. (ii)
Atomic processes such as ionization, excitation, recombination, and
charge exchange come into play and compete with one another in
a complicated manner, with complicated dependencies on particle
energies and densities. (iii) The fact that charged particles move
results in a variety of transport phenomena arising from both short-
and long-range Coulomb interactions between various particles. (iv)
The long-range Coulomb forces give rise to a number of collective
phenomena, including electrostatic oscillations and instabilities. (v)
Most plasmas, and in particular hot plasmas, are typically confined
in a magnetic field, with which they are strongly coupled. We may
think that in spite of these difficulties it should be possible to solve
the equation of motion for each and every particle. We could then
find the electric and magnetic fields as functions of space and time
by solving Maxwell’s equations with the source terms (charged
density ρ and current density J) specified using the position and
velocity vectors of all particles in the system. This type of approach
is the domain of the discipline known as computer simulation of
plasmas. However, noting that any natural plasma environment
(such as the Earth’s ionosphere) may contain >1025 particles, one
has a tremendous accounting problem, with too much information
to keep track of.

The fundamental equations governing the behavior of a plasma
with freely mobile, non-relativistic particles can be summarized as
follows:

⎡⎢⎢⎣
Initial
and
boundary
conditions

⎤⎥⎥⎦→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇ × H = J + ∂D
∂t

∇ × E = − ∂B
∂t

∇ · D = ρ

∇ · B = 0
B = μ H

D = εE

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
E, B−→
J, ρ←−

⎡⎢⎢⎢⎢⎢⎢⎣

dvi
dt = qi

mi
(E + vi × B)

ρ = 1
�V

∑
�V

qi

J = 1
�V

∑
�V

qi vi

⎤⎥⎥⎥⎥⎥⎥⎦ ←
[

Initial
conditions

]

For gaseous plasmas, the medium is essentially free space
(aside from freely mobile charged particles, which are separately

their densities relatively low, so that the de Broglie wavelengths (λe = h/p, where
h � 6.6 × 10−34 J s is Planck’s constant) are much smaller than the mean interparticle
distance, so that quantum effects are negligible, except for some types of collisions
between particles. As an example, electrons with 1 eV energy have λe � 1.2 nm, while the
interparticle distance even for an extremely high electron density of Ne � 1012 cm−3 is
∼10−4 cm = 105 nm 
1.2 nm.
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Plasma phenomena

Single-particle 
motion

 Distribution
 function

Moments of Boltzmann
equation

Single fluid
(MHD)

Multiple fluids

Boltzmann
equation

Figure 1.1 Hierarchy of
approaches to plasma
phenomena.

accounted for), so that we have μ = μ0 and ε = ε0. An equation
of motion such as the one above specifying the particle acceler-
ation dv/dt in terms of the fields E and B, exists for each and
every positively or negatively charged particle in the plasma. For
known fields E(r, t) and B(r, t) and specified initial conditions, these
motion equations can be uniquely solved to determine the positions
and velocities of every particle. However, the particle motions and
locations lead to charge accumulations and current densities, i.e., ρ

and J, which in turn modify the electric and magnetic fields. The
charge and current densities are obtained from discrete charges by
averaging over a macroscopically small volume �V, which never-
theless contains many individual particles, so that it makes sense
to talk about continuous distribution of “density” of current and
charge. Such averaging is appropriate, since the electric and mag-
netic fields in Maxwell’s equations are also macroscopic fields, suit-
ably averaged over both space and time.3

Given the complexity of plasma behavior, the field of plasma
physics is best described as a web of overlapping models, each
based on a set of assumptions and approximations that make a lim-
ited range of behavior analytically and computationally tractable.
A conceptual view of the hierarchy of plasma models/approaches
to plasma behavior that will be covered in this text is shown in
Figure 1.1. We will begin with the determination of individual
particle trajectories in the presence of electric and magnetic fields.
Subsequently, it will be shown that the large number of charged
particles in a plasma facilitates the use of statistical techniques

3 Such averaging is assumed to be done over spatial scales that are microscopically large
(i.e., contain many individual particles) but which are nevertheless much smaller than any
other relevant dimension in the context of a given application, or over time periods much
shorter than the resolution of any measuring instrument.
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such as plasma kinetic theory, where the plasma is described by a
velocity-space distribution function. Quite often, the kinetic-theory
approach retains more information than we really want about a
plasma and a fluid approach is better suited, in which only macro-
scopic variables (e.g., density, temperature, and pressure) are kept.
The combination of fluid theory with Maxwell’s equations forms
the basis of the field of magnetohydrodynamics (MHD), which is
often used to describe the bulk properties and collective behavior of
plasmas.

The remainder of this chapter reviews important physical con-
cepts and introduces basic properties of plasmas.

1.1 Speed, energy, and temperature

The kinetic energy of a particle of mass m moving with a speed u
is E = 1

2mu2. For an assembly of N particles with different kinetic
energies, the average energy Eav per particle is given as

Eav = 1
2N

N∑
i=1

mi u2
i .

However, there are other ways of measuring the average energy of
an assembly of particles. We will see later that for any gas in ther-
mal equilibrium at temperature T, the average energy per particle
is 3kBT/2, where kB = 1.38 × 10−23 J K−1 is Boltzmann’s constant
and T is the absolute temperature. A gas in thermal equilibrium has
particles with all speeds, and the most probable distribution of these
is the so-called Maxwellian (or Maxwell–Boltzmann) distribution,
which in a one-dimensional system is given by

f (u) = Ae
− 1

2
mu2
kBT ,

where f (u)du is the number of particles per unit volume with
velocity in the range u to u + du. The multiplier A can be deter-
mined by noting that the total density N of particles can be found
from f (u):

N =
∫ ∞

−∞
f (u)du → A = N

√
m

2πkBT
,

where we have used the fact that
∫ ∞
−∞ e−a2ζ 2

dζ = √
π/a. The

width of the velocity distribution is characterized by the constant
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temperature T. The average kinetic energy of the particles can be
calculated from f (u) as follows:

Eav =
∫ ∞
−∞

1
2mu2 f (u)du∫ ∞

−∞ f (u)du
. (1.1)

Upon integration of the numerator by parts, we have Eav = 1
2kBT.

Extending this result to three dimensions, we find that Eav = 3
2kBT,

or 1
2kBT per degree of freedom.

With Eav = 3
2kBT a gas at 1 K corresponds to an average energy

of 2.07 × 10−23 J per particle. Often it is more convenient to meas-
ure particle energy in terms of electron volts (eV). If a particle has
an electric charge equal in magnitude to the electronic charge qe =
−1.602 × 10−19 C, and is accelerated through a potential difference
of 1 V, it has an energy of 1.602 × 10−19 J. This unit of energy is
defined as an electron volt, commonly abbreviated as 1 eV. Thus, to
express energy in terms of eV, we must divide the kinetic energy in
J by |qe| = 1.602 × 10−19 C. Hence we have

E = mu2

2|qe| eV.

The unit of eV is particularly useful in dealing with charged par-
ticles, since it directly indicates the potential necessary to produce a
singly charged particle of some particular energy.

It is often convenient to express the temperature of a gas in
thermodynamic equilibrium in units of energy (eV). Typically,
the energy corresponding to kBT is used to denote the tempera-
ture. Using kBT = 1 eV = 1.6 × 10−19 J, the conversion factor is
1 eV = 11 600 K. Thus, when we refer to a 0.5 eV plasma we mean
that kBT = 0.5 eV, or a plasma temperature of T = 5800 K, or
an average energy (in three dimensions) of Eav = 3

2kBT = 0.75 eV.
Thus a plasma at a temperature of 300 K has an average energy of
0.0388 eV, and a plasma with 10 keV average energy is at a temper-
ature of T = 7.75 × 107 K. With reference to our earlier discussion
of the plasma state coming into being at sufficiently high temper-
ature for the material to be ionized, the temperature required to
form plasmas from pure substances in thermal equilibrium ranges
from ∼4000 K for cesium (initially used by Langmuir) to ∼20 000 K
for elements such as helium which are particularly difficult to
ionize.

It should be noted that temperature is an equilibrium concept,
and we may not always be faced with equilibrium situations. In such
cases, a true temperature cannot always be assigned, although we
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may still use the term in the sense of average energy. (Note that the
average energy can always be calculated for any given distribution
using a procedure similar to that given in (1.1).) It should also be
noted that by temperature we mean the quantity sometimes called
“kinetic temperature,” simply the state of energy of the particles.
A high value of T does not necessarily mean a lot of heat, since
the latter also depends on heat capacity, determined also by the
number of particles. As an example, the electron kinetic temperature
inside a fluorescent lamp is ∼11 000 K but it does not feel nearly as
“hot” when one holds the tube while it is lit. The reason is that the
free-electron density inside the tube is much less that the number of
particles in a gas at atmospheric pressure, so that the total amount
of heat transferred to the walls by the impact of electrons is low.

A plasma can have several temperatures at the same time, since
often the ions and electrons have separate Maxwellian distributions
(of different widths) corresponding to temperatures, respectively,
of Ti and Te. Such equilibria can arise because the collision rate
among ions or electrons themselves is larger than that between
ions and electrons. Although each species can thus have its own
thermal equilibrium, in time the tendency would be for the tem-
peratures to equalize. In a magnetized plasma (i.e., a plasma under
the influence of a strong magnetic field), even a single species can
have two different temperatures, since the Lorentz forces acting on
it along the magnetic field are different than those perpendicular
to the field. These different temperatures, typically denoted Te‖ and
Te⊥, respectively correspond to Maxwellian distributions of electron
velocities along and perpendicular to the magnetic field.

1.2 Quasi-neutrality and plasma oscillations

It was mentioned above that a most fundamental property of a
plasma is its tendency to remain electrically neutral and that any
small change in local neutrality resulting from charge separation
leads to large electric fields which pull electrons back to their origi-
nal positions. Because of their inertia, the electrons which are pulled
back typically oscillate about the initially charged region. However,
since this oscillation is typically at a rather high frequency, quasi-
neutrality is preserved on a time-average basis.

In this section, we briefly describe the dynamics of this oscilla-
tory behavior of a plasma, which will be studied in detail in later
chapters. Consider a steady initial state in which there is a uniform
number density Ne = N0 of electrons, neutralized by an equal
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number of ions, i.e., Ni = Ne = N0. We further assume that the
plasma is “cold,” meaning that the thermal motion of electrons
and ions can be neglected. We now perturb this system by trans-
ferring a group of electrons (assumed for simplicity to be in a
one-dimensional slab) from a given region of space to a nearby
region, leaving net positive charge behind (i.e., the ions), as shown
in Figure 1.2. This local charge separation gives rise to an electric
field E, which exerts a force on the electrons and ions. Since the
electrons are much lighter than the ions, we make the safe assump-
tion that the electrons move much faster and hence the motion
of the ions can be neglected. The electric field E acts to reduce
the charge separation by pulling the electrons back to their initial
locations. The electrons are thus accelerated back to their initial
positions. However, as they acquire kinetic energy in this process,
their inertia carries them past their neutral positions. The plasma
once again becomes non-neutral, and again an electric field is set up
(now pointing in a direction opposite to that shown in Figure 1.2)
to retard their motion. Now the electrons accelerate to the right and
go past their equilibrium positions as a result of their inertia, and
once again the charge displacement depicted in Figure 1.2 is set up.
In the absence of any damping (due, for example, to collisions of
the electrons with ions or other electrons), this oscillatory motion
would continue forever. In relatively tenuous (low-density) plasmas,
collisional damping can be neglected, so any slight disturbance of
the system leads to the oscillation process just described.

We now consider the frequency of this oscillation. Intuitively, we
expect that the restoring electric force depends on the amount of
charge displaced, i.e., the charge qe times the density or number
of electrons per volume. Since the inertia of a particle depends
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on its mass, the oscillation frequency should also depend on the
electron mass me. The equation of motion for a single electron in
the presence of only an electric field Ex is given by

me
d2x
dt2 = qe Ex, (1.2)

where x is the direction parallel to the electric field, as shown in
Figure 1.2. Consider Gauss’s law, applied to a closed, rectangular,
box-shaped surface as indicated in Figure 1.2, noting that only the
boundary of the surface in the x–y plane is shown:∮

S
E · ds = Q

ε0
,

where Q is the total charge contained within the closed surface S.
If the equilibrium density of the electrons is Ne, we must have
Q = AxNeqe, where A is the cross-sectional area, and x denotes the
displacement of the electrons. Assuming that a is the dimension of
the rectangular-box surface in the y direction and that the depth of
the box is �z, we have∮

S
E · ds = −a�Ex = Q

ε0
= ax�zNeqe

ε0
→ Ex = −xNeqe

ε0
.

Substituting back into Equation (1.2), we have

me
d2x
dt2 + Neq2

e

ε0me
x = 0 → d2x

dt2 + ω2
px = 0. (1.3)

The solution of this equation is time-harmonic at a frequency

ωp =
√

Neq2
e /(ε0me). In other words,

x = C1 cos
(
ωpt

) + C2 sin
(
ωpt

)
,

where C1 and C2 are constants to be determined by initial condi-
tions. Equation (1.3) describes the displacement for free oscillations
of the simple plasma slab of Figure 1.2. However, our simplified
analysis indicates that any disturbances from equilibrium oscillate
at an angular frequency ωp, which is called the plasma frequency or
specifically the electron plasma frequency:

Plasma frequency ωp =
√

Neq2
e

ε0me
. (1.4)

It is interesting to note that the plasma oscillations as derived above
appear to be entirely local, so that a disturbance does not propa-
gate away. In reality, plasma oscillations do propagate as a result
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of finite boundaries and thermal effects, as we will see later. One
way to think about this is to consider the fact that as thermally
agitated electrons stream into adjacent layers of the plasma they
carry information about the disturbance (not necessarily through
collisions like acoustic waves in a neutral gas but actually via
the electric field). The thermal effects can be accounted for by
adding an appropriate pressure-gradient term on the right-hand
side of (1.2).

In a partially ionized gas where collisions (of electrons and ions
with neutrals) is important, plasma oscillations can only develop if
the mean free time τn between collisions is long enough compared
to the oscillation period, or ωpτn > 1. This condition is sometimes
noted as a criterion for an ionized gas to be considered a plasma.
However, in some applications, for example at the lower altitudes
of the Earth’s ionosphere, it is precisely the collisions that lead to
some of the most interesting physical effects. Also, there are many
other electromagnetic and electrostatic wave modes that can exist in
a plasma over a very broad range of frequencies, so that one is not
always interested only in plasma oscillations. In general, whether a
plasma exhibits the collective wave effects in question depends on a
comparison between the frequency of interest (ω) and τn.

1.3 Debye shielding

Electron plasma oscillations as discussed above are excited as a
result of the effort of the plasma to assert its neutrality in response
to a macroscopic perturbation of its essentially neutral equilibrium
state. The macroscopic electrical neutrality of the plasma is thus
preserved on average over the short time period of these oscilla-
tions. Since there are no charge separations, the plasma cannot
sustain macroscopic electric fields. On the other hand, if a plasma
is deliberately subjected to an external electric field, its free charges
redistribute so that the major part of the plasma is shielded from the
field. Suppose that the equilibrium state of the plasma is disturbed
by the imposition of an electric field due to an external charged
particle +Q. This electric field may also be that of one of the plasma
particles isolated for observation. We now wish to examine the
mechanism by which the plasma strives to re-establish its macro-
scopic electrical neutrality in the presence of this disturbing electric
field.

Suppose that we immerse the test particle +Q within an initially
uniform plasma at time t = 0, such that Ni = Ne = N0. The initial
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net charge density is thus zero and the electric potential is that due
to a single test charge,

�(r) = 1
4πε0

Q
r

,

where we have assumed the test charge to be placed at the origin
of our spherical coordinate system. Since the ions in the plasma are
repelled by the test charge and the electrons are attracted to it, the
freely mobile electrons and ions in the plasma in time rearrange
themselves in a new equilibrium distribution which takes account of
the presence of the test charge. However, the ions move much more
slowly than the electrons, so we can assume that their motion on
the time scale of our experiment can be neglected. The ion density
thus remains the same as before, i.e., Ni = N0. However, the density
of electrons near the test charge increases (Ne > N0), so that the
new potential distribution �(r) must be evaluated using Poisson’s
equation:

∇2�(r) = − ρ

ε0
= −qe(Ne − Ni )

ε0
, (1.5)

where we have taken note of the fact that the excess free charge
density ρ = qe(Ne − Ni ). We will see later that under equilibrium
conditions in the presence of an electrostatic potential �(r) (due
to the action of an externally applied conservative electric field E),
a non-uniform distribution of particles is established in a plasma,
with the number density of the particles given by

N(r) = N0e−q�(r)/kBT.

According to this, the electron density distribution in our spheri-
cally symmetric system is given by

Ne(r) = N0e−qe�(r)/kBTe , (1.6)

so that, in thermal equilibrium, the electron density is greatest at
those locations where the electric potential �(r) is highest. Since
Te is the electron temperature, we note that the density variation is
greater when the electron gas is cold than when it is hot. Substituting
(1.6) into the spherical coordinate version of (1.5), we have

1
r2

d
dr

(
r2 d�

dr

)
= −qe N0

ε0

[
exp

(−qe�(r)

kBT

)
− 1

]
, r > 0. (1.7)

This equation is non-linear and must be integrated numerically.
However, an approximate solution can be obtained by assuming
that the perturbing electrostatic potential is weak, i.e., |qe�| � kBT,
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in which case we can express the exponential in (1.7) as a power
series and retain only the first two terms. We then have

1
r2

d
dr

(
r2 d�

dr

)
�

[
N0q2

e

ε0kBTe

]
�(r) = 1

λ2
D

�(r),

where λD, known as the Debye length or Debye shielding length,
is defined as

Debye length λD =
√

ε0kBTe

N0q2
e

. (1.8)

It is useful to note that λD = ω−1
p

√
kBTe/me.

The solution of the simplified form of (1.7) can be shown to be

�(r) =
[

1
4πε0

Q
r

]
e−r/λD . (1.9)

We note that as r → 0 the potential is essentially that of a free
charge in free space, whereas for r 
 λD the potential �(r) → 0
falls much faster than it does for a point charge in free space. While
the Coulomb force in vacuum is relatively long-range, in a plasma
this force extends only about a Debye length from the source, as a
result of the Debye shielding cloud. For a positive test charge, the
shielding cloud contains an excess of electrons. Using Gauss’s law,
it can be shown that the net charge within the shielding cloud is
equal and opposite to that of the test charge. The size of the shield-
ing cloud increases as the electron temperature increases, because
electrons with greater kinetic energy are better able to overcome
the Coulomb attraction associated with the potential. Also, λD is
smaller for a denser plasma because more electrons (per unit vol-
ume) are available to populate the shielding cloud.

Example 1-1 Debye length and plasma frequency
ComputetheDebyelengthfortheplasmafoundinatypicalplasma
television cell with the following parameters: Ne = 1019 m−3,
kBT = 1 eV. The cell dimensions are on the order of 100μm and
the plasma is excited using a 250 V signal at 100 kHz.

Solution: To determine the Debye length we need first to find the
temperature in Kelvin and then use (1.8). Using the conversion
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factor of 1 eV = 11 600 K we easily get the plasma temperature
and can apply Equation (1.8) as follows:

λD =
√

ε0kBTe

N0q2
e

=
√

(8.85 × 10−12 C2 m J−1
)(1.38 × 10−23 J K−1)(11 600 K)

(1019 m−3)(1.602 × 10−19 C)2

= 2.35 × 10−6 m = 2.35 μm.

Not surprisingly, the Debye length is much smaller than the phys-
ical dimensions of the system. To calculate the plasma frequency
we can use Equation (1.4):

ωp =
√

N0q2
e /(ε0me) (1.10)

=
√

(1019 m−3)(1.602 × 10−19 C)2

(8.85 × 10−12 C2 m J−1
)(9.1 × 10−31 kg)

= 179 GHz

(1.11)

Thus the plasma frequency is much higher than the driving fre-
quency of the electronics, which prevents the most basic plasma
instabilities from developing. The plasma in a plasma television
cell emits UV radiation which when incident on a phosphor
coating on the cell is converted to either red, blue, or green light
depending on the phosphor.

We can note from (1.9) that the potential very near the test charge
is very large (owing to the r−1 term) so that the condition |qe�| �
kBT is not likely to be valid. However, this is not a serious limitation
since the main purpose of our development is to find the order of
magnitude of the distance from the test particle where the potential
becomes vanishingly small. A useful numerical expression for λD is
λD � 69

√
Te/N0, with Te in units of K and N0 in units of m−3. In

the topside ionosphere of the Earth we have Te � 1000 K and N0 �
1011 m−3, so that λD � 0.007 m. Thus, the Debye length is much
smaller than the spatial scales relevant to the ionosphere, which is
of the order hundreds of kilometers. In the solar wind near 1 AU, we
have Te � 105 K and N0 � 107 m−3, so that λD � 7 m, again much
smaller than the physical dimensions of the system.

The values of Debye length are generally quite small. If the
dimension L of a physical system is much larger than λD, then local
concentrations of charge that arise for one reason or another, or
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external potentials introduced to the system (e.g., potentials applied
on walls), are shielded out in a distance short compared to L, leaving
the bulk of the plasma free of large electric potentials or fields.
Outside of the sheath on the wall or on an obstacle, ∇2� is small
and we have Ne � Ni , typically to a very high degree of accuracy.
The plasma is thus said to be quasi-neutral, so that N0 � Ne � Ni ,
and N0 is a common density that can be referred to as the plasma
density. An important criterion for an ionized gas to be a plasma is
that it be dense enough so that L 
 λD .

Each particle in a plasma can act as a test charge and carry its
own shielding cloud. The concept of Debye shielding developed
above requires the presence of a sufficiently large number of par-
ticles so that “density” can be defined in a statistically meaningful
way. A useful parameter in this connection is the number of particles
in a Debye sphere, given as

ND = N0

[
4πλ3

D

3

]
= 1.38 × 106 T3/2

e

N1/2
0

,

where Te is in K. Thus, a second criterion for an ionized gas to be
considered a plasma is that ND 
 1.

Figure 1.3 shows the ranges of temperature, electron density, and
Debye length for typical plasmas found in nature and in technologi-
cal applications. Also shown in Figure 1.3 is the separation between
the quantum and classical regimes. Quantum effects need to be
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taken into account when the uncertainty in an electron’s position
is comparable to the average distance to the nearest electron.4 All
plasma phenomena covered in this text are treated using approaches
from classical physics, and quantum effects can be neglected. This
is not the case for many solid electrical conductors such as metals,
where electron densities are too high for traditional plasma models
to be applicable.

1.4 Problems

1-1. ComputeλD and ND for the following cases: (a) a glow discharge,
Ne = 1016 m−3, kBTe = 2 eV; (b) the Earth’s ionosphere, Ne =
1012 m−3, kBTe = 0.1 eV; (c) a fusion machine, Ne = 1023 m−3,
kBTe = 9 keV.

1-2. Calculate the average velocity of nitrogen molecules at room
temperature assuming three degrees of freedom.

1-3. Calculate and plot the electrostatic potential and electric field
of a test particle of charge +Q in free space and in a plasma of
number density N0 and temperature T. Label the distance axis
of your plot in units of Debye length.

1-4. A metal sphere of radius r = a with charge Q is placed in a
neutral plasma with number density N0 and temperature T.
Calculate the effective capacitance of the system. Compare this
to the capacitance of the same sphere placed in free space.

1-5. Consider two infinite, parallel plates located at x = ±d, kept at
a potential of � = 0. The space between the plates is uniformly
filled with a gas at density N of particles of charge q. (a)
Using Poisson’s equation, show that the potential distribution
between the plates is �(x) = [Nq/(2ε0)](d2 − x2). (b) Show
that for d > λD the energy needed to transport a particle from
one of the plates to the midpoint (i.e., x = 0) is greater than the
average kinetic energy of the particles. (Assume a Maxwellian
distribution of particle speeds.)

4 The uncertainty in an electron’s position is given by the Heisenberg uncertainty principle,

�p�x ≥ h
4π

,

where �p and �x are the uncertainties in momentum and position, respectively, and h is
Planck’s constant, 6.626 × 10−34 J s.



References 19

References

[1] I. Langmuir, The interaction of electron and positive ion space charges
in cathode sheaths. Phys. Rev., 33 (1929), 954–89. DOI: 10.1103/
PhysRev.33.954.

[2] L. Tonks and I. Langmuir, Oscillations in ionized gases. Phys. Rev., 33
(1929), 195–210. DOI: 10.1103/PhysRev.33.195.

[3] O. von Guericke, Experimenta Nova (ut vocantur) Magdeburgica de
Vacuo Spatio (Amstelodami: Janssonium, 1672).

[4] B. Franklin, Experiments and Observations on Electricity (London,
1751).

[5] G. C. Lichtenberg, De nova methodo naturam ac motum fluidi electrici
investigandi. Novi Commentarii Societatis Regiae Scientiarum (1777).

[6] W. Crookes, On a fourth state of matter. Proc. R. Soc. London, 30
(1879), 469–72.

[7] R. Bowers, Plasma in solids. Sci. Am., 209 (1963), 46–53.



C H A P T E R

2 Single-particle motion
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Depending on the density of charged particles, a plasma behaves
either as a fluid, with collective effects being dominant, or as a
collection of individual particles. In dense plasmas, the electrical
forces between particles couple them to each other and to the
electromagnetic fields, which affects their motions. In rarefied plas-
mas, the charged particles do not interact with one another and
their motions do not constitute a large enough current to signifi-
cantly affect the electromagnetic fields; under these conditions, the
motion of each particle can be treated independently of any other,
by solving the Lorentz force equation for prescribed electric and
magnetic fields, a procedure known as the single-particle approach.
In magnetized plasmas under the influence of an external static or
slowly varying magnetic field the single-particle approach is only
applicable if the external magnetic field is quite strong compared
to the magnetic field produced by the electric current arising from
the particle motions. The single-particle approach is applicable to
investigating high-energy particles in the Earth’s radiation belts and
the solar corona, and also in practical devices such as cathode ray

20
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tubes and traveling-wave amplifiers. Although the single-particle
approach may only be valid in special circumstances, understanding
the individual particle motions is also an important first step in
understanding the collective behavior of plasmas. Accordingly, in
this chapter we will study single-particle motions, where the funda-
mental equation of motion for the particles under the influence of
the Lorentz force is given by

m
dv
dt

= q(E + v × B), (2.1)

where m is the particle mass and v is its velocity. While we only
consider non-relativistic motion (|v| � c),1 the above equation is
valid for the relativistic case if we simply replace m with m =
m0

(
1 − v2/c2

)−1/2
, where m0 is the rest mass and v = |v|. More

commonly, the relativistic version of Equation (2.1) is written in
terms of the particle momentum p = mv, rather than velocity v.

2.1 Motion in a uniform B field: gyration

We start by considering the simplest cases of motion in uniform
fields. When a particle is under the influence of a static electric field
that is uniform in space, the particle simply moves with a constant
acceleration along the direction of the field, and this case does not
warrant further study. On the other hand, the motion of a charged
particle under the influence of a static and uniform magnetic field is
of fundamental interest, and is studied in this section. With only a
static and uniform magnetic field present, Equation (2.1) reduces to

m
dv
dt

= qv × B. (2.2)

Taking the dot-product of (2.2) with v, we have

v · m
dv
dt

= v · q(v × B)

m
1
2

d(v · v)
dt

= q[v · (v × B)]

d
dt

(
mv2

2

)
= 0,

1 By the same token, we neglect any radiation produced by the acceleration of charged
particles. At non-relativistic velocities, such radiation is quite negligible; the radiated
electric field at a distance R from the particle is proportional to q2a2/(c2 R2), where q is
the charge of the particle, c is the speed of light in free space, and a is the acceleration.
For a discussion at an appropriate level, see Chapter 8 of [1].
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where v = |v| is the particle speed and where we have noted that
(v × B) is perpendicular to v so that the right-hand side is zero.
It is clear that a static magnetic field cannot change the kinetic
energy of the particle, since the force is always perpendicular to
the direction of motion. Note that this is true even for a spatially
non-uniform field, since the derivation above did not use the fact
that the field is uniform in space. We first consider the case of a
magnetic field configuration consisting of field lines that are straight
and parallel, with the magnetic field intensity constant in time and
space. Later on, we will allow the magnetic field intensity to vary
in the plane perpendicular to the field, while continuing to assume
that the field lines are straight and parallel. We can decompose the
particle velocity into its components parallel and perpendicular to
the magnetic field, i.e.,

v = v‖ + v⊥,

in which case we can rewrite (2.2) as

dv‖
dt

+ dv⊥
dt

= q
m

(v⊥ × B),

since v‖ × B = 0. This equation can be split into two equations in
terms of v‖ and v⊥, respectively:

dv‖
dt

= 0 → v‖ = constant

dv⊥
dt

= q
m

(v⊥ × B).

It is clear from the above that the magnetic field has no effect on
the motion of the particle in the direction along it, and that it only
affects the particle velocity in the direction perpendicular to it. To
examine the character of the perpendicular motion, consider a static
magnetic field oriented along the z axis, i.e., B = ẑB. We can write
(2.2) in component form as

m
dvx

dt
= q Bvy (2.3a)

m
dvy

dt
= −q Bvx (2.3b)

m
dvz

dt
= 0. (2.3c)

The component of the velocity parallel to the magnetic field is often
denoted as v‖ = vz and is constant since the Lorentz force q(v × B)

is perpendicular to ẑ. To determine the time variations of vx and vy,
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Figure 2.1 Motion of a particle
in a magnetic field. A particle
with positive charge q and
velocity v experiences a force
q v × B in the presence of a
magnetic field B.

we can take the second derivatives of (2.3a) and (2.3b) and substi-
tute to find

d2vx

dt2 + ω2
cvx = 0 (2.4a)

d2vy

dt2 + ω2
cvy = 0, (2.4b)

where ωc = −qB/m is the gyrofrequency or cyclotron frequency.

Cyclotron frequency ωc = −qB/m . (2.5)

Note that ωc is an angular frequency (units of rad m−1) and can
be positive or negative, depending on the sign of q. A positive
value of ωc in a right-handed coordinate system indicates that the
sense of rotation is along the direction of positive φ, where φ is the
cylindrical coordinate azimuthal angle, measured from the x axis
as shown in Figure 2.1. The solution of (2.4) is in the form of a
harmonic motion, given by

vx = v⊥ cos(ωct + ψ) (2.6a)

vy = v⊥ sin(ωct + ψ) (2.6b)

vz = v‖, (2.6c)

where ψ is some arbitrary phase angle which defines the orientation

of the particle velocity at t = 0, and v⊥ =
√

v2
x + v2

y is the constant

speed in the plane perpendicular to B. To appreciate the above
result physically, consider the coordinate system and the forces on
the particle (assumed to have a positive charge q) as shown in
Figure 2.1, at different points along its orbit. It is clear that the
particle experiences a v × B force directed inward at all times, which
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balances the centrifugal force, resulting in a circular motion. For a
z-directed magnetic field, electrons rotate in the right-hand sense,
i.e., have a positive value of ωc; in other words, if the thumb points in
the direction of the magnetic field, the fingers rotate in the direction
of the electron motion. The radius of the circular trajectory can be
determined by considering the fact that the v × B force is balanced
by the centripetal force, so that we have

−mv2⊥
r

= qv × B = qv⊥B → rc = −mv⊥
qB

= v⊥
ωc

,

where rc is called the gyroradius or Larmor radius.2 Note that the
magnitude of the particle velocity remains constant, since the mag-
netic field force is at all times perpendicular to the motion. The
magnetic field cannot change the kinetic energy of the particle; how-
ever, it does change the direction of its momentum. It is important
to note that the gyrofrequency ωc of the charged particle does not
depend on its velocity (or kinetic energy) and is only a function of
the intensity of the magnetic field. Particles with higher velocities
(and thus higher energies) orbit in circles with larger radii but com-
plete one revolution in the same time as particles with lower veloc-
ities which orbit in smaller circles. Particles with larger masses also
orbit in circles with larger radii, but they complete one revolution in
a longer time compared to those with smaller masses. A convenient
expression for the gyrofrequency fce (in Hz) for electrons is

fce = ωc

2π
� 2.8 × 106 B,

where B is in units of G (note that 104 G = 1 T or Wb m−2). As an
example, the Earth’s magnetic field at the surface is of the order of
∼0.5 G, corresponding to a gyrofrequency of fce � 1.4 MHz.

The particle position as a function of time can be found by inte-
grating (2.6):

x = rc sin(ωct + ψ) + (x0 − rc sin ψ) (2.7a)

y = −rc cos(ωct + ψ) + (y0 + rc cos ψ) (2.7b)

z = z0 + v‖t, (2.7c)

where x0, y0, and z0 are the coordinates of the location of the par-
ticle at t = 0 and ψ is simply the phase with respect to a particular

2 By the convention we have chosen, rc can take a negative value. This is a mathematical
formalism that allows for writing the expressions for particle trajectories for either
positive or negative charges in compact form. The gyroradius should always be
interpreted as a real physical distance.
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Figure 2.2 Electron
guiding-center motion in a
magnetic field B = ẑ B.

time of origin. Equations (2.7) show that the particle moves in a
circular orbit perpendicular to B with an angular frequency ωc
and radius rc about a guiding center rg = x̂x0 + ŷy0 + ẑ(z0 + v‖t).
The concept of a guiding center is useful in considering particle
motion in inhomogeneous fields, since the gyration is often much
more rapid than the motion of the guiding center. Note from (2.6)
that in the present case, the guiding center simply moves linearly
along z at a uniform speed v‖, although the particle motion itself
is helical, as shown in Figure 2.2. The pitch angle of the helix is
defined as

Pitch angle α = tan−1
(

v⊥
v‖

)
. (2.8)

It is interesting to note that for both positive and negative charges,
the particle gyration constitutes an electric current in the −φ direc-
tion (i.e., opposite to the direction of the fingers of the right hand
when the thumb points in the direction of the +z axis). The mag-
netic moment associated with such a current loop is given by μ =
current × area or

Magnetic moment μ =
(∣∣∣qωc

2π

∣∣∣)︸ ︷︷ ︸
current

(
πr2

c

)
︸ ︷︷ ︸

area

= mv2⊥
2B

. (2.9)

Note that the direction of the magnetic field generated by the gyra-
tion is opposite to that of the external field. Thus, freely mobile
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particles in a plasma respond to an external magnetic field with
a tendency to reduce the total magnetic field. In other words, a
plasma is a diamagnetic medium and has a tendency to exclude
magnetic fields, as we will see in further detail later, in the context
of discussions of magnetohydrodynamics and magnetic pressure in
Chapter 6.

2.2 E × B drift

When electric and magnetic fields are both present, the particle
motion is found to be a superposition of gyrating motion in the
plane perpendicular to the magnetic field and a drift of the guiding
center in the direction parallel to B. Assuming once again that the
magnetic field is in the z direction, i.e., B = ẑB, we decompose the
electric field E into its components parallel and perpendicular to B:

E = E⊥ + ẑE‖ = x̂E⊥ + ẑE‖,

where we have taken the electric field to be in the x direction,
with no loss of generality. Noting that we can also decompose the
particle velocity into its two components, i.e., v(t) = v⊥(t) + ẑvz(t),
the equation of motion can be written as

m
dv⊥
dt

= q(x̂E⊥ + v⊥ × ẑB) (2.10a)

m
dv‖
dt

= q E‖. (2.10b)

Equation (2.10b) simply indicates constant acceleration along B.
For the transverse component, we seek a solution of the form

v⊥(t) = vE + vac(t), (2.11)

where vE is a constant velocity and vac is the alternating component.
Using (2.11) in (2.10a) we have

m
dvac

dt
= q(x̂E⊥ + vE × ẑB + vac × ẑB). (2.12)

We know from the previous section that the left-hand side and the
last term on the right-hand side in (2.12) simply describe circular
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motion (gyration) at a rate ωc = −qB/m. Thus, if we choose vE such
that the first two terms on the right-hand side of (2.12) cancel, i.e.,

x̂E⊥ + vE × ẑB = 0 → vE = E × B
B2 , (2.13)

then (2.12) reduces to the form

m
dvac

dt
= qvac × ẑB, (2.14)

which, as mentioned, simply describes rotation at a frequency ωc =
−qB/m. Note that we can use E rather than E⊥ in (2.13) since
ẑE‖ × B ≡ 0. Thus, we see that the particle motion in the presence
of electric and magnetic fields is given by

v(t) = ẑv‖(t) + vE + vac(t), (2.15)

consisting of steady acceleration along B, uniform drift velocity
vE perpendicular to both B and E, and gyration. Taking the time
average of v(t) over one gyroperiod (Tc = 2π/ωc), we have

〈v〉 = 1
Tc

∫ Tc

0
v(t)dt = ẑv‖ + vE,

showing that vE = (E × B)/B2 is the average perpendicular velocity.
It is interesting to note that the drift velocity vE is independent of q,
m, and v⊥ = |v⊥|. The reason can be seen from a physical picture of
the drift, as shown in Figure 2.3. As the positively charged particle
moves downward (against the electric field) during the first half of
its cycle, it loses energy and its rc decreases. In the second half of its
cycle, it regains this energy as it now moves in the direction of the
electric field. The acceleration and deceleration of the particle cause

B

−

+

E

Figure 2.3 Particle drifts in
crossed E and B fields. The
negatively charged particle is
assumed to have the same
velocity (v⊥) as the positively
charged one but a smaller mass
and therefore a smaller
gyroradius. The E × B drift
speed |vE | for both particles is
the same.
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its instantaneous gyroradius to change. This difference in the radius
of curvature of its orbit between the top and the bottom of its orbit
is the reason for the drift vE. A negatively charged particle gyrates
in the opposite direction but also gains/loses energy in the opposite
direction as compared to the positively charged particle. Since we
have assumed the negatively charged particle to be lighter, it has a
smaller gyroradius rc. However, its gyrofrequency is larger and the
two effects cancel each other out, resulting in the same drift velocity.
Two particles of the same mass but different energy (i.e., different
1
2mv2⊥ or v⊥) have the same gyrofrequency ωc, and although the
one with the higher velocity has a higher rc and hence gains more
energy from E in a half-cycle, the fractional change in rc for a given
change in energy is smaller, so that the two effects cancel out and
vE is independent of v⊥. The basic source of the E × B drift derived
above is the component of electric field perpendicular to B. It is
clear from the above procedure that any other constant transverse
force F⊥ acting on a particle gyrating in a constant magnetic field
would produce a drift perpendicular to both F⊥ and B, with the
drift velocity given by

vF = (F⊥/q) × B
B2 . (2.16)

Example 2-1 Hall thruster
A Hall thruster is a spacecraft propulsion device that relies on
E × B drift to circulate energetic electrons in a chamber. The
electrons are used to ionize heavier atoms, typically Xe (atomic
mass = 2.2 × 10−25 kg), which are then accelerated by the electric
field and escape the engine, yielding thrust. The efficiency of
the Hall thruster relies on the fact that the electrons are largely
trapped in the E × B drift and are therefore not accelerated by
the electric field in the opposite direction of the ions. Consider a
simplified implementation of a Hall thruster with axial symmetry
and E along the axis and radial B, as shown in Figure 2.4.
The E field is maintained by a potential difference of 300 V
across the chamber. Assuming that the electrons in the chamber
have energies of 15 eV, calculate the amplitude of the minimum
magnetic field necessary so that the gyroradius is 10 times less
than the radial dimension of the chamber. Calculate the E × B
drift speed of the electrons for this magnetic field. Also calculate
the maximum exit speed and show that the Xe ions will not
experience E × B drift inside the chamber.
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Figure 2.4 Basic geometry of a Hall thruster. Electrons orbit the chamber in a E × B drift, ionizing
heavier ions which are expelled, yielding thrust.

Solution: The electron total velocity can be obtained directly
from the energy Ee:

v =
√

2Ee

me
=

√
2(15 eV)(1.6 × 10−19 J eV−1)

9.1 × 10−31 kg
= 2.3 × 106 m s−1.

The magnetic field necessary to make the gyroradius 0.5 cm is
then given by

B = mev⊥
qrc

= (9.1 × 10−31 kg)(2.6 × 106 m s−1)

(1.6 × 10−19 C)(0.005 m)
= 2.6 mT,

where we have assumed the upper limit of the perpendicular
velocity (v⊥ = v). The electric field in the chamber is given by
E = (300 V)/(0.15 m) = 2 kV m−1. We can now calculate the
E × B drift using Equation (2.13), taking note that the fields are
orthogonal everywhere in the chamber:

vE = E × B
B2 = E

B
= 7.7 × 105 m s−1.

The maximum kinetic energy of the Xe ions, assuming a +qe
charge is accelerated along the entire 300 V potential, is given
by EXe = (300 V)(qe) = 300 eV. The velocity is now obtained as
before:

v =
√

2EXe

mxe
=

√
2(300 eV)(1.6 × 10−19 J eV−1)

2.2 × 10−25 kg

= 2.1 × 104 m s−1.
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The gyroradius for the Xe ions is

rc = mXev⊥
qB

= (2.2 × 10−25 kg)(2.1 × 104 m s−1)

(1.6 × 10−19 C)(0.0026 T)
= 11 m 
 5 cm.

The electrons can execute a circular drift motion because their
gyroradius is much smaller than the dimensions of the chamber.
The ions also experience E × B drift but their gyroradius is so
large that before they are able to execute a single gyration their
trajectory takes them out of the chamber, where they no longer
experience the electric and magnetic fields. In effect, because of
their large mass and the small size of the chamber, the ions move
independently of the magnetic field.

2.3 Particle motion in non-uniform B fields

Both naturally occurring plasmas and those encountered in many
applications may exist in the presence of magnetic fields that do not
vary appreciably in time but which vary with one or more coordi-
nates of space, making such fields non-uniform or inhomogeneous.
An important example of a non-uniform magnetic field is the so-
called magnetic-mirror configuration which is commonly used to
confine plasmas, and is also the mechanism by which energetic
particles are trapped in the Earth’s radiation belts. Assuming the
absence of an electric field, and no temporal variations of the mag-
netic field,3 the kinetic energy of the particle must remain zero, since
the magnetic force is at all times perpendicular to the motion of
the particles, as discussed in Section 2.1. In general, exact analytical
solutions for charged-particle motions in a non-uniform magnetic
field cannot be found. However, one very important configuration
that can be studied analytically is the case in which the gyroradius rc
is much smaller than the spatial scales over which the magnetic field
varies. In such cases, the motion of the particle can be decomposed
into the fast gyromotion plus some type of relatively slow drift
motion. The slow drift is associated with the motion of the guiding
center, and the separation of its motion from the rapid gyration is
similar to the simplest case analyzed in Section 2.1, where we saw
that the guiding center simply moved linearly along the magnetic

3 Note that any time variation of the magnetic field would lead to an electric field via
Faraday’s law, i.e., ∇ × E = −∂B/∂t, which can in turn accelerate the particles.
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Figure 2.5 Particle drifts due to
a magnetic field gradient.

field as the particle executed its complicated gyromotion. We now
examine particle motion in different types of non-uniform magnetic
fields, assuming the presence of only one type of inhomogeneity in
each case.

2.3.1 Gradient drift

We first consider a magnetic field with intensity varying in a direc-
tion perpendicular to the magnetic field vector. Without loss of
generality, let B(y) = ẑBz(y), as depicted in Figure 2.5. Since the
field strength has a non-zero gradient ∇ Bz in the y direction, we
note that the local gyroradius rc (i.e., the radius of curvature of the
particle orbit) is large in regions where B is small, and vice versa.
Thus, on physical grounds alone, we expect a positive charge to
drift to the left and a negative charge to drift to the right. To find
an expression for the particle drift velocity, we take advantage of
expression (2.16), which gives the drift velocity for any force perpen-
dicular to the B field. For the field geometry depicted in Figure 2.5,
this means a force in either the x or the y direction. Since we started
with the premise that the gyration was much more rapid than the
relatively slow drift, it is appropriate to determine the net resultant
force averaged over one gyroperiod. The force perpendicular to B is
the Lorentz force given by

F = q(v × B) = x̂qvy Bz − ŷqvxBz

� x̂qvy

(
B0 + y

∂Bz

∂y

)
− ŷqvx

(
B0 + y

∂Bz

∂y

)
,
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where we have expanded Bz(y) into a Taylor series around the
guiding center of the particle (taken with no loss of generality to
be at xg = 0 and yg = 0),4 with B0 being the magnetic field intensity
at the guiding center and y the distance from the guiding center. In
other words, we have written

Bz(z) = B0 + y
∂Bz

∂y
+ · · ·

and neglected higher-order terms. We thus have the two transverse
components of the Lorentz force as

Fx = qvy

(
B0 + y

∂Bz

∂y

)
(2.17a)

Fy = −qvx

(
B0 + y

∂Bz

∂y

)
. (2.17b)

We wish to determine 〈Fx〉 and 〈Fy〉, where the brackets denote
averaging over one gyroperiod. To do this, we can assume that
the particles by and large follow the orbits for a uniform field, as
determined in Section 2.1 (see Equations (2.6) and (2.7)), i.e.,

xc = rc sin(ωct + ψ) (2.18a)

yc = −rc cos(ωct + ψ) (2.18b)

vx = v⊥ cos(ωct + ψ) (2.18c)

vy = v⊥ sin(ωct + ψ), (2.18d)

where ωc has the same sign as q (i.e., is negative for electrons).
Substituting in (2.17a) and (2.17b) we have

Fx = qv⊥ sin(ωct + ψ)

[
B0 − rc cos(ωct + ψ)

∂Bz

∂y

]
(2.19a)

Fy = −qv⊥ cos(ωct + ψ)

[
B0 − rc cos(ωct + ψ)

∂Bz

∂y

]
. (2.19b)

The average of Fx over one gyroperiod (2π/ωc) is zero, since it
contains the product of sine and cosine terms. The averaging of Fy

4 In the more general case this expansion can be written as

B = B0 + (r · ∇)B0 + · · ·,

where B0 is the field at the guiding center and r is the position vector, with the origin
chosen as the guiding center.
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has the product of a cosine with a cosine which results in a factor
of 1

2 . We thus have

〈Fy〉 = qv⊥rc

2
∂Bz

∂y
= −mv2⊥

2B
∂Bz

∂y
. (2.20)

Note that the direction of 〈Fy〉 does not depend on the charge of the
particle. The drift velocity is then, from Equation (2.16),

v∇ = (F⊥/q) × B
B2 = 〈Fy〉ŷ × ẑBz

qB2
z

= −mv2⊥
2qBz

∂Bz

∂y
x̂, (2.21)

where the subscript ∇ indicates that the drift velocity is due to the
gradient drift. The gradient drift is often written as ∇B to empha-
size that it arises from a gradient in the magnetic field. Since the
magnetic field direction was chosen arbitrarily, we can write (2.21)
more generally as

v∇ = mv2⊥
2q

B × ∇ B
B3 (2.22)

for any magnetic field B = B̂B. The corresponding, more general
expression for the perpendicular gradient force F∇ is

F∇ = −
1
2mv2⊥

B
∇ B = −W⊥

B
∇ B, (2.23)

where W⊥ is the perpendicular kinetic energy of the particle.
Equation (2.22) exhibits the dependencies that we expect on a
physical basis. Electrons and ions drift in opposite directions and
the drift velocity is proportional to the perpendicular energy of the
particle, W⊥ = 1

2mv2⊥. Faster particles drift faster, since they have
a larger gyroradius and their orbits span a larger range of the field
inhomogeneity.

2.3.2 Curvature drift

When particles gyrate rapidly while moving along a magnetic field
line which is curved, as depicted in Figure 2.6, they experience a cen-
trifugal force perpendicular to the magnetic field, which produces a
drift as defined by (2.16). Assuming once again that the spatial scale
of the curvature is much larger than the gyroradius, we can focus
our attention on the motion of the guiding center. The outward
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Figure 2.6 Curvature drift.
Particle drift in a curved
magnetic field.

centrifugal force in the frame of reference moving with the guiding
center at a velocity v‖ is given by

Fcf = mv2‖
Rc

R2
c
, (2.24)

where Rc is the vector pointing radially outward from the center of
the circle described by the local curvature of the field and Rc has a
magnitude equal to the radius of curvature. Using the force given in
(2.24) in (2.16) we find the curvature drift velocity to be

vR = (Fcf/q) × B
B2 = mv2‖

q
Rc × B
R2

c B2 . (2.25)

In vacuum, curvature drift cannot by itself be the only drift since
the curl of the magnetic field must be zero, i.e., ∇ × B = 0. In
other words, curvature in a magnetic field necessitates a gradient
in the magnetic field. Considering cylindrical coordinates with B =
Bφ(r)φ̂, we must then have

(∇ × B)z = 1
r

∂

∂r
(r Bφ) = 0 → Bφ = A

r
,

where A is a constant. The gradient of B is then ∂Bφ/∂r = −A/r2 =
−Bφ/r . More generally, we can write the resulting gradient as
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Figure 2.7 Longitudinal drift of
radiation belt electrons. Note
that the direction of the Earth’s
magnetic field B0 is from south
to north.

∇ = − (
B/R2

c
)

Rc. Thus, the total drift due to both gradient and
curvature effects can be written as

vtotal = vR + v∇ =
(

v2‖ + 1
2
v2⊥

)
B × ∇ B
wc B2 . (2.26)

An example of gradient plus curvature drift is the longitudinal drift
of radiation belt electrons around the Earth (see Figure 2.7). Note
that the direction of the Earth’s magnetic field is from south to
north.

It is interesting to note that gradient and curvature drift velocities
are both inversely proportional to the charge q, so that electrons and
ions drift in opposite directions. The oppositely directed drifts of
electrons and ions leads to a transverse current. The gradient-drift
current is given by

J∇ = N|qe|[(v∇)i − (v∇)e]

= N
B3 [(W⊥)i + (W⊥)e](B × ∇ B),

where N = Ni = Ne is the plasma density and W⊥ = 1
2mv2⊥ is the

perpendicular particle energy. Note that the gradient-drift current
J∇ flows in a direction perpendicular to both the magnetic field and
its gradient. Similarly, the different directional curvature drifts of
the electrons and ions lead to a curvature drift current given by

JR = N|qe|[(vR)i − (vR)e]

= 2N
R2

c B2 [(W‖)i + (W‖)e)](Rc × B),
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where W‖ = 1
2mv2‖ is the parallel particle energy. The curvature drift

current JR flows in a direction perpendicular to both the magnetic
field and its curvature. In the Earth’s magnetosphere, the gradient
and curvature drift currents described above create a large-scale
current called the ring current, the magnitude of which can exceed
several million amperes during moderately sized magnetic storms,
when the number of particles in the ring current region increases.
The ring current produces a magnetic field that decreases the Earth’s
field within the drift orbits of the particles. This effect is observed
as a major decrease in the geomagnetic field during magnetic
storms.

2.3.3 Other gradients of B

We have presented particle motion in non-uniform magnetic fields
with particular types of inhomogeneities. The various spatial gra-
dients of the magnetic field can be summarized in tensor or dyadic
notation as

∇B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂Bx

∂x
∂Bx
∂y

∂Bx

∂z
∂By

∂x
∂By

∂y
∂By

∂z
∂Bz

∂x
∂Bz

∂y
∂Bz

∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that only eight of the nine components of ∇B are independent,
since the condition ∇ · B = 0 allows us to determine one of the diag-
onal terms in terms of the other two. In regions where there are no
currents (J = 0), we must also have ∇ × B = 0, imposing additional
restrictions on the various components of ∇B. The diagonal terms
are sometimes referred to as the divergence terms and represent
gradients along the B direction, i.e., ∇‖B, one of which (∂Bz/∂z) is
responsible for the mirror effect discussed in the following section.
The terms ∂Bz/∂x and ∂Bz/∂y are known as the gradient terms and
represent transverse gradients (∇⊥B) responsible for the gradient
drift studied in Section 2.3.1. The terms ∂Bx/∂z and ∂By/∂z are
known as the curvature terms and represent change of direction of
B, i.e., curvature, and were studied in Section 2.3.2. The remaining
terms, ∂Bx/∂y and ∂By/∂x, are known as the shear terms and repre-
sent twisting of the magnetic field lines; these are not important in
particle motion.
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2.4 Adiabatic invariance of the magnetic moment

In Section 2.1, we recognized that a gyrating particle constitutes an
electric current loop with a magnetic dipole moment given by μ =
mv2⊥/(2B). In this section, we demonstrate that this quantity has a
remarkable tendency to be conserved (i.e., to be invariant), in spite
of spatial or temporal changes in the magnetic field intensity, as long
as the changes in B are small over a gyroradius or gyroperiod. This
kind of constancy of a variable is termed adiabatic invariance, to dis-
tinguish such quantities from those that may be absolute invariants,
such as total charge, energy, or momentum in a physical system.
Consider a particle gyrating in a magnetic field oriented primarily in
the z direction but varying in intensity as a function of z, as depicted
in Figure 2.8. Assume the field to be azimuthally symmetric, so that
there is no φ component (i.e., Bφ = 0) and no variation of any of
the quantities in φ (i.e., ∂(·)/∂φ = 0). As the particle gyrates around
B with a perpendicular velocity v⊥ while moving along it at v‖, we
are primarily concerned with the motion of its guiding center, which
moves along the z axis. The force acting on the particle during this
motion can be found from (2.23) by noting that the magnetic field
has a non-zero gradient in the z direction. We have

Fz = −
1
2mv2⊥

Bz

∂Bz

∂z
= −W⊥

Bz

∂B
∂z

= −μ
∂B
∂z

. (2.27)

Alternatively, the force Fz can be found directly from the Lorentz
force equation. The z component of the Lorentz force results from
qv⊥ × B or

Fz = qv⊥ × B = qv⊥Br , (2.28)

f

x

y

z

B

B

v

v

B

Bz

Br

Figure 2.8 Drift of a particle in
a magnetic mirror configuration.
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where Br can be found using the fact that we must have ∇ · B = 0,
so that

1
r

∂

∂r
(r Br ) + ∂Bz

∂z
= 0 → Br � −r

2
∂Bz

∂z
, (2.29)

assuming that ∂Bz/∂z does not vary significantly with r . In other
words, the total magnetic field in the case of the converging field-
line geometry of Figure 2.8 must be given by

B = Br r̂ + Bzẑ.

Evaluating Br as given in (2.29) at r = rc and substituting in (2.28)
we find the same expression for Fz as in (2.27). With Fz determined,
we can examine the variations of the parallel and perpendicular
energies of the particle as its guiding center moves along z. Consider
the total energy of the particle,

W = W⊥ + W‖,

which must remain constant in the absence of electric fields, so that
we have

dW⊥
dt

+ dW‖
dt

= 0. (2.30)

Noting that W⊥ = μB, the time rate of change of the transverse
energy can be written as

dW⊥
dt

= d(μB)

dt
= μ

dB
dt

+ B
dμ

dt
= μv‖

d B
dz

+ B
dμ

dt
, (2.31)

where we have noted that the dB/dt term is simply the variation
of the magnetic field as seen by the particle as its guiding cen-
ter moves to new locations, so that this term can be written as
dB/dt = (dz/dt)(∂B/∂z) = v‖(∂B/∂z). The rate of change of the
parallel energy W‖ is determined by the force Fz via the equation
of motion:

m
dv‖
dt

= Fz

m
dv‖
dt

= −μ
dB
dz

mv‖
dv‖
dt

= −v‖μ
dB
dz
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d
(

1
2mv2‖

)
dt

= −v‖μ
dB
dz

dW‖
dt

= −v‖μ
dB
dz

. (2.32)

Substituting (2.32) and (2.31) into (2.30) we find

μv‖
d B
dz

+ B
dμ

dt
− v‖μ

dB
dz

= 0 → dμ

dt
= 0,

which indicates that the magnetic moment μ is an invariant of
the particle motion. Note from (2.31) and (2.32) that the particle’s
perpendicular energy increases, while its parallel energy decreases,
as it moves toward regions of higher B, so that dB/dz > 0. As the
particle moves into regions of higher and higher B, its parallel veloc-
ity v‖ eventually reduces to zero, and it “reflects” back, moving in
the other direction. In an asymmetric magnetic field geometry, e.g.,
a dipole magnetic field like that of the Earth and other magnetized
planets, the particle would then encounter a similar convergence of
magnetic field lines at the other end of the system, from which it
would also reflect, thereby becoming forever trapped in a “magnetic
bottle.” Until now we have assumed that the magnetic field exhibits
no temporal changes, so that ∂B/∂t = 0 and there are no induced
electric fields. However, the magnetic moment μ is still conserved
when there are time variations, as long as those variations occur
slowly in comparison to the gyroperiod of the particles. Noting that
temporal variations of the magnetic field would create a spatially
varying electric field via Faraday’s law, −∂B/∂t = ∇ × E, let us
consider the change in perpendicular energy W⊥ due to an electric
field. Consider the equation of motion under the influence of the
Lorentz force,

m
d(v⊥ + v‖)

dt
= q[E + (v⊥ + v‖) × B],

and take the dot-product of this equation with v⊥ to find

dW⊥
dt

= q(E · v⊥),

where we have used the fact that W⊥ = 1
2mv2⊥. The increase in

particle energy over one gyration can be found by averaging over
a gyroperiod:

�W⊥ = q
∫ Tc

0
(E · v⊥)dt,
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where Tc = 2π/ωc. Assuming that the field changes slowly, the par-
ticle orbit is not perturbed significantly, and we can replace the
integration in time with a line integral over the unperturbed circular
orbit. In other words,

�W⊥ = q
∮

C
E · dl = q

∫
S
(∇ × E) · ds = −q

∫
S

∂B
∂t

· ds,

where dl is a line element along the closed gyro-orbit C, while
ds is a surface element over the surface S enclosed by the gyro-
orbit. For changes much slower than the gyroperiod, we can replace
∂B/∂t with ωc�B/(2π), �B being the average change during one
gyroperiod. We thus have

�W⊥ = 1
2

qωcr2
c �B = μ�B, (2.33)

using previously derived expressions for ωc, rc, and μ. However, we
know from (2.31) that

�W⊥ = μ�B + B�μ. (2.34)

Comparing (2.33) and (2.34) we find that �μ = 0, indicating that
the magnetic moment is invariant even when particles are acceler-
ated in the electric field induced by slow temporal variations in the
magnetic field.

Example 2-2 Plasma confinement using magnetic mirrors
Effective confinement of a high-energy plasma is a central issue in
achieving controlled thermonuclear fusion. One of the simplest
confinement schemes is that of a magnetic mirror. Consider the
magnetic mirror configuration shown in Figure 2.9, with axial
magnetic field given by

B(z) = B0
(
1 + δz2).

Calculate the mirror point (reflection point) for an electron with
velocity v located initially at z = 0 with an initial pitch angle α0.

Solution: The initial parallel and perpendicular components of
the velocity are accessible through the pitch angle:

v⊥0 = v sin(α0), v‖0 = v cos(α0).



2.4 Adiabatic invariance of the magnetic moment 41
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Figure 2.9 Dual magnetic mirror geometry for plasma confinement.

As the electron moves within the magnetic mirror configura-
tion, both the magnetic moment (μ) and total kinetic energy (W)
are conserved, making their initial values and their values at the
mirror point (zm) equal:

W0 = Wm, μ0 = μm.

Working first with the kinetic energy,

W0 = Wm

1
2

me

(
v2⊥0

+ v2‖m

)
= 1

2
me

(
v2⊥m

+ v2‖m

)
v2⊥0

+ v2‖0
= v2⊥m

+ v2‖m

v2⊥0
+ v2‖0

= v2⊥m
,

since v‖m = 0 at the mirror point. Turning now to the conserva-
tion of the magnetic moment, we have

μ0 = μm

mv2⊥0

2B0
= mv2⊥m

2B0
(
1 + δz2

m
)

mv2⊥0
=

m
(
v2⊥0

+ v2‖0

)
(
1 + δz2

m
)

v2⊥0

(
1 + δz2

m

)
= v2⊥0

+ v2‖0
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v2⊥0
δz2

m = v2‖0

zm = v‖0

v⊥0

√
δ

zm = 1

tan(α0)
√

δ
.

The mirror point is shown to depend only on the magnetic field
gradient δ and the initial pitch angle αθ. Plasma confinement will
be explored again in Chapter 6.

2.5 Particle motion in time-varying electric fields

We have seen the basic dynamics and drifts of particles in non-
uniform magnetic fields in the absence of electric fields. In Sec-
tion 2.2 we showed that particle motion in the presence of static and
uniform crossed electric and magnetic fields consists of a gyration
superimposed on a drift at velocity vE. In this section we con-
sider particle motion in a combination of static magnetic and time-
varying electric fields. We separately discuss the two limiting cases
of slow temporal variations and temporal variations at frequencies
comparable to the electron-cyclotron frequency ωc = −qe|B|/me.
In the former case, we find that the slow temporal variation of
E leads to an additional drift called the “polarization drift.” In
the latter case, we find that an alternating electric field generates
alternating currents not only in its own direction but also in other
directions, a fundamental anisotropy of a magnetized plasma.

2.5.1 Polarization drift: slowly varying E field

Consider the fundamental equation of motion (2.1), repeated here:

m
dv
dt

= q(E + v × B).

We can decompose this equation into its two components in terms
of v⊥ and v‖. We have

m
dv⊥
dt

= q(E⊥ + v⊥ × B) (2.35)

m
dv‖
dt

= qE‖. (2.36)
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Once again noting that (2.36) simply denotes acceleration along B,
we focus our attention on (2.35). Dividing both sides of (2.35) by q
and taking the cross-product of both sides with B/B2, we have

m
q

dv⊥
dt

× B
B2 = E⊥ × B

B2 + (v⊥ × B) × B
B2

m
q

dv⊥
dt

× B
B2 = E⊥ × B

B2 − v⊥(B · B)

B2 + B(v⊥ · B)

B2

m
q

dv⊥
dt

× B
B2 = E⊥ × B

B2 − v⊥(B · B)

B2 + B(v⊥ · B)

B2

m
q

dv⊥
dt

× B
B2 = E⊥ × B

B2 − v⊥ + 0, (2.37)

where we have used the vector identity

(F × G) × C ≡ −F(C · G) + G(C · F)

and noted that B · B = B2 and that v⊥ · B = 0.5 We now follow
a procedure similar to that in Section 2.2 (see Equation (2.11))
and decompose the perpendicular velocity v⊥ into its various
components:

v⊥ = vac + vE + vp, (2.38)

where vac is the component representing gyromotion, vE is the E × B
drift velocity found in Section 2.3, and vp is the additional drift that
results from the temporal variation of E considered here. Substitut-
ing (2.37) into (2.38) we find

m
qB2

[
dvac

dt
× B + dvE

dt
× B + dvp

dt
× B

]
= E⊥ × B

B2 − vac − vE − vp

(2.39a)

m
qB2

[
dvac

dt
× B + dvE

dt
× B + dvp

dt
× B

]
= −vac − vp, (2.39b)

where we have noted from Section 2.2 that vE = (E⊥ × B)/B2. The
first term on the left and the first term on the right simply represent
gyromotion, just as one would have in the absence of an electric

5 In fact, what we have found above is intuitively obvious (i.e., without using any vector
identity) when we are dealing with the cross-product of two vectors which are orthogonal
to one another. The resultant cross-product, which is necessarily orthogonal to both
vectors, can be crossed into any one of the original vectors to obtain the other one, with
the appropriate polarity (sign) and magnitudes accounted for. In the case in hand, we
have (v⊥ × B) × (B/B2) = −v⊥.
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field. The third term on the right is of second order, since it concerns
the variation with time of the polarization drift velocity which we
are to determine. Thus, we are left with

m
qB2

dvE

dt
× B � −vp

m
qB2

d(vE × B)

dt
= −vp

m
qB2

d(−E⊥)

dt
= −vp

m
qB2

dE⊥
dt

= vp, (2.40)

where we have used the fact that vE × B = [(E⊥ × B)/B2] × B =
−E⊥. Thus we see that a slow temporal variation of E⊥ leads to
an additional drift which is superimposed on the E × B drift. This
drift is called the polarization drift and is qualitatively different in
nature from the E × B drift. While the E × B drift velocity vE is
independent of the particle mass and charge, the polarization drift
velocity is larger for heavier particles, and is in opposite directions
for electrons and for ions. When the electric field intensity increases
in time (dE⊥/dt > 0), the ions drift in the direction of the electric
field and the electrons in the opposite direction, both picking up
energy during the process. (This energy is precisely what is needed
to account for the additional drift energy 1

2mv2
E due to the increased

value of the electric field.) Similarly, decreasing the electric field
results in an energy loss for the particles. Note that the E × B drift
velocity vE is perpendicular to E and hence does not lead to energy
exchange between the field and the particle (when averaged over a
gyroperiod). Since electrons and ions drift in opposite directions,
the polarization drift creates a polarization current in the plasma,
given by

Jp = N|qe|
[(

vp
)

i − (
vp

)
e

] = N(mi + me)

B2

dE⊥
dt

. (2.41)

Since mi 
 me, the polarization current is largely carried by
the ions.

2.5.2 Particle motion in static B and arbitrary E fields

We now consider particle motion in the presence of a static and
uniform magnetic field. Without loss of generality, we assume the
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time variation of the electric field to be harmonic with angular
frequency ω:

E(t) = Ee jωt, (2.42)

where E is a complex constant. Note that since the fundamental
equation of motion (2.1) is linear, any other arbitrary time vari-
ations of the electric field can be synthesized as a summation of
terms similar to (2.42), corresponding to all possible values of ω.
The equation of motion is simply given by (2.1) with the electric
field from (2.42):

m
dv
dt

= q
(
Ee jωt + v × B

)
. (2.43)

Encouraged by the success of the methodology used in Sections 2.2
and 2.5.1, we proceed by decomposing the velocity vector into two
parts:

v = vm + vee jωt, (2.44)

where vm contains no time variations with the angular frequency
ω and is in fact that part of the motion determined by the static
magnetic field B. In other words, vm is the same velocity component
that we denoted as vac in Sections 2.2 and 2.5.1. The second term
represents the velocity component that results from the electric
field, and is therefore in general a function of angular frequency
ω. Substituting (2.44) into (2.43) we have

dvm

dt
+ jωvee jωt = q

m

[
Ee jωt + vm × B + (vee jωt) × B

]
. (2.45)

This vector equation is in fact a superposition of two equations. The
terms that do not contain the periodicity ω are

dvm

dt
= q

m
vm × B

and simply define the gyration motion at the cyclotron frequency
ωc. The terms containing the forced oscillation at frequency ω are[

jωve + q
m

B × ve

]
= q

m
E[

jω + q
m

B×
]

ve = q
m

E. (2.46)

To solve for ve, we can operate on both sides by [ jω − (q/m)B×] to
obtain[

q2

m2 B2 − ω2

]
ve − q2

m2 (B · ve)B = q
m

[
jω − q

m
B×

]
E, (2.47)
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where we have once again used the vector identity cited in
Section 2.5.1:

B × (B × ve) ≡ B(B · ve) − ve(B · B) = B(B · ve) − ve B2. (2.48)

We can now decompose the vector ve into its components parallel
and perpendicular to B:

ve = ve⊥ + ve‖. (2.49)

Substituting (2.49) into (2.47) yields

ve‖ = − j
ω

q
m

E‖ (2.50a)

ve⊥ = q
m

[ jω − (q/m)B×] E⊥
ω2

c − ω2 , (2.50b)

where ωc = −q|B|/m is the cyclotron frequency. The cross-product
in (2.50b) indicates that the particle motion occurs in directions
other than E. For a Cartesian coordinate system with the static
magnetic field oriented in the z direction, i.e., B = ẑB, (2.50) can
be manipulated to express the three velocity components in terms
of the three components of the driving electric field. Expressed in
matrix form, we can write the result as

⎡⎢⎣vx

vy

vz

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

jω(q/m)

ω2
c − ω2 −ωc(q/m)

ω2
c − ω2 0

ωc(q/m)

ω2
c − ω2

jω(q/m)

ω2
c − ω2 0

0 0 − j (q/m)

ω

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣Ex

Ey

Ez

⎤⎥⎦ . (2.51)

We see that in the direction along the magnetic field, the particle
motion is 90◦ out of phase with the forcing electric field, as evi-
denced by the factor of j . In the plane perpendicular to B, vx and
vy are each influenced by both Ex and Ey. Likewise, an electric field
confined to either the x or y direction drives motion in both x and
y directions. This coupling of effects across orthogonal directions
is known as anisotropy, and in the context of plasmas is a direct
result of the Lorentz force (Equation (2.1)). As we proceed beyond
treatment of single particles to discuss collective effects such as
currents and waves in later chapters, we will see that anisotropy is a
fundamental feature of a magnetized plasma.

An interesting situation occurs when the driving frequency of the
electric field is equal to the cyclotron frequency (ω = ωc). For this
case, Equation (2.51) fails to provide a steady-state solution. This
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situation is known as cyclotron resonance, and it can be shown that
the solution for the perpendicular velocity, including the cyclotron
gyration, (see [2]) is

vres⊥ = vm + q
2m

(
E⊥ − j

ωc

|ωc| × E⊥
)

te jωct. (2.52)

Examination of Equation (2.52) shows that under conditions of
cyclotron resonance the particle velocity can increase indefinitely
with time t, as is illustrated in the example below.

Example 2-3 Cyclotron resonance
For a static magnetic field oriented in the z direction (B = B0ẑ),
find the perpendicular velocity of an electron and an ion under
the influence of an electric field E0 that is right-hand circularly
polarized in the x−y plane, with time variation at the cyclotron
frequency.

Solution: Since the electric field has time variation at the
cyclotron frequency, we need to use Equation (2.52). A right-
hand circularly polarized wave implies

E(t) = E0 cos(ωct)x̂ + E0 sin(ωct)ŷ,

which is written in phasor notation as

E(t) = (E0x̂ − j E0ŷ)e jwct = E⊥e jwct.

For the electron, ωc is positive so |ωc| = ω, and plugging this into
Equation (2.52) yields

vres⊥ = vm + q
2m

[E0x̂ − j E0ŷ − j ẑ × (E0x̂ − j E0ŷ)]te jωct

= vm + q
2m

[E0x̂ − j E0ŷ − ( j ẑ × E0x̂) + ( j ẑ × j E0ŷ)]te jωct

= vm + q
2m

[E0x̂ − j E0ŷ − j E0ŷ + E0x̂]te jωct

= vm + q
m

[E0x̂ − j E0ŷ]te jωct.

Taking the real part yields

vres⊥ = vm + E0

qm
t cos(ωct)x̂ + E0

qm
t sin(ωct)ŷ.
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We can further evaluate vm using Equation (2.6) with � = 0:

vres⊥ = vm +
(

v⊥ + E0

qm
t
)

cos(ωct)x̂ +
(

v⊥ + E0

qm
t
)

sin(ωct)ŷ,

which is seen to be circular motion at an increasing rate. This
phenomenon can be used to increase the speed and hence the
kinetic energy of the particles in a plasma. If the applied electric
field is that of an electromagnetic wave, the procedure is called
radio-frequency heating of a plasma by cyclotron resonance.

It should be noted that, even in the absence of the plasma, a
fluctuating electric field such as that given in (2.42) cannot exist
without its associated magnetic field, as given by ∇ × H = ε0∂E/∂t,
which we implicitly neglected in considering the particle motion. We
will see later that this is indeed an excellent assumption, since the
magnetic fields associated with electromagnetic waves are typically
much smaller than the static magnetic field B and thus produce only
a second-order perturbation of the particle motion.

2.6 Summary

In this chapter we examined the motion of individual charged
particles under the influence of electric and magnetic fields. The
fundamental equation that governs this behavior is that of the
Lorentz force, F = qE + qv × B. With only a magnetic field present
the movement of charged particles is restricted to circular motion
known as gyration in a direction perpendicular to the magnetic
field plus uninhibited motion along the magnetic field. The center
of the circular motion is known as the guiding center, and it is
often more convenient to describe the motion of the guiding center
than of the actual particle. The addition of a static electric field
causes particles with both positive and negative charges to drift in a
direction perpendicular to both the magnetic and the electric fields.
Similar drifts are created by any force perpendicular to the magnetic
field, or even by a gradient in the magnetic field. The fundamental
reason for the drifts is that the gyroradius changes over the course
of a particle gyration and thus slightly deforms the simple circular
motion in the plane perpendicular to the magnetic field.

Although examining the motion of individual charged parti-
cles does not fall within the strict definition of plasma physics,
such an undertaking is relevant to many applications, including
plasma propulsion devices and energetic particles trapped in the
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Earth’s radiation belts. Moreover, familiarity with the behavior of
single particles is a valuable source of intuition for more compli-
cated plasma behavior that will be explored in the remainder of
the text.

2.7 Problems

2-1. Compute the gyroradius and cyclotron frequency for the fol-
lowing plasma configurations: (a) A 100 keV electron with
pitch angle of 20◦ in the Earth’s radiation belts, which are
located at altitudes of 7000–24 000 km. The Earth’s magnetic
field at these altitudes is in the range of 1 μT. (b) A 2.5 MeV
He++ particle in a 7 T fusion reactor.

2-2. Consider a particle of mass m and charge q moving in the
presence of constant and uniform electromagnetic fields given
by E = E0ŷ and B = B0ẑ. Assume that the particle starts from
rest and at the origin. Find an expression for the trajectory,
x(t) and y(t), of the particle, and plot it.

2-3. A Bainbridge mass spectrometer separates ions according to
their mass-to-charge ratio. The ions first enter a velocity selec-
tor with perpendicular electric and magnetic fields in which
only ions with a particular velocity can pass through in a
straight line (not a complex drift). Find the magnitude of the
velocity that is “selected,” in terms of the applied E and B
fields. Note that this is a special case of the general E × B
drift.
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2-4. Consider a particle of charge q and mass m moving in the
neighborhood of an infinitely long straight filamentary wire
carrying a constant current I and extended along the z axis.
At time t = 0, the particle is at z = 0 and at a radial distance
from the wire of r = r0, and has a velocity v = v0 parallel to
the wire. (a) Determine and plot the trajectory (i.e., the spatial
path followed by the particle as time progresses) of the parti-
cle. (b) Assuming the magnitude of the current to be such that
qμ0 = m2π , r0 = 1 m, and v0 = 0.5 m s−1, find the location
of the particle (i.e., numerical values of its coordinates r and z)
at t = 2 s.

2-5. For a basic Hall thruster, as discussed in Example 2-1, but
with an electric field of 250 V and a magnetic field of 2.5
mT: (a) What is the exit velocity of the xenon ions and the
E × B drift velocity for the electrons? (b) If the ionization
efficiency of the xenon is 90%, what must the total mass
consumption rate from the thruster be in order to achieve a
thrust of 0.08 N? (c) What would the equivalent mass flow rate
be if a chemical rocket were used instead of the Hall thruster?
Assume that the maximum exit velocity for a chemical rocket
is 6 km s−1.

2-6. The Earth’s magnetic field can be accurately approximated
as that of a dipole. The strength of the magnetic field in
the equatorial plane is given by the formula (in cylindrical
coordinates)

B(r) = 3.1 × 10−5
(

RE

r

)3

φ̂ (in units of T),

where r is measured from the center of the Earth and RE is the
radius of the Earth. Consider a proton and an electron at the
equatorial plane at a distance of 4 Earth radii. The electron
and the proton each have total kinetic energy of 10 keV and
pitch angle of 90◦. (a) Find the drift velocity of the electron
and the proton. (b) What is the combined contribution to the
ring current of the electron and the proton?

2-7. Consider a magnetic-bottle geometry in a laboratory, with
magnetic field given by B = B0[1 + (z/a0)2], where B0 = 2.5 T
and a0 = 1.2 m, and z = 0 is taken to be at the center of
the device. The total length of the magnetic bottle is 5 m.
(a) Find the loss-cone pitch angle αlc for the magnetic bottle.
(b) Consider a proton with a kinetic energy of 1 eV and a pitch
angle of 15◦ at z = 0. Make plots of the following quantities
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versus z: (1) magnetic field versus distance, (2) perpendicular
(v⊥) and parallel (v‖) velocities, (3) instantaneous pitch angle
α(z), (4) kinetic energy, and (5) magnetic moment.

2-8. Consider a magnetic field primarily in the z direction,
expressed as Bz(z) = B0(1 − k0z). A particle with charge q
and kinetic energy 1

2mv2 is gyrating initially at the origin of
a cylindrical coordinate system with its guiding center on the
z axis and moving in the positive z direction. Find the initial
pitch angle (at z = 0) that the particle must have in order
to be detected by a ring-shaped particle detector located at
z = Z and r = R and centered on the z axis, as shown in the
diagram below. The magnetic field configuration is such that
|Zk| � 1. Express the answer in terms of Z, R, B0, k0, and the
fundamental properties of the particle.

z = 0 z = Z

z
R

B

r

Detector

2-9. An electron gyrates in a constant and uniform magnetic field
with B = 0.1ẑ T and v|| = 0. A uniform electric field is slowly
introduced into the system, with E1 = 0.1tŷ Vm−1. At t = 0,
the guiding center of the electron is located at the origin.
(a) Calculate the displacement of the guiding center of the
electron due only to polarization drift at t = 10 s. (b) What
is the displacement of the guiding center at t = 10 s due to
E × B drift? (c) At t = 10 s, the electric field switches to E2 =
E1(10) − 0.1tŷ Vm−1. Repeat parts (a) and (b) at t = 20 s. (d)
At t = 10 s, what is the work that has been done by the field
on each particle (i.e.,

∫
qE · dl), and what is the kinetic energy

of the E × B drift? This problem is intended to illustrate that
the slowly increasing electric field is the agent which imparts
energy to the particle, which is then stored as kinetic energy
in the E × B drift.

2-10. Given a spatially varying magnetic field of the form

B(x, z) = B0
[
αzx̂ + (1 + αx)ẑ

]
,
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where α is a positive constant: (a) Determine and make a plot
of the locus of points in the x–z plane where a charged particle
with v = v|| + v⊥ can exist without experiencing any drift. (b)
Given that the magnetic field lines will follow the equation
dx
dz = Bx

Bz
, plot the magnetic field lines and explain the result

of part (a).

2-11. Consider a rectangular coordinate system with z vertically
upward. A slab of charge-neutral plasma is infinite in the y
and z directions but is bounded in the x direction between
x = ±a. A gravitational field g = −gẑ and a magnetic field
B = ŷB are present. Assume that B is sufficiently strong that
all particle motion can be analyzed in terms of drift motions.
(a) Describe the motions of electrons and ions in the x direc-
tion. Determine the rate of accumulation of surface charge
(∂ρ/∂t) on the surfaces of the slab. (b) Determine the electric
field component Ex which develops as a result of the surface
charge, and find an expression for the time-dependent E × B
drift motion in the z direction. (c) Determine the polariza-
tion drift motion in the x direction. (d) What is the resultant
acceleration of the slab due to the presence of the gravitational
field?
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3 Kinetic theory of plasmas
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3.1 Introduction

Our examination of single-particle behavior in the previous chapter
provided our first insight into plasma behavior. We have seen that
particles execute gyrating motions along magnetic fields while drift-
ing across the magnetic field, owing to a variety of mechanisms.
In these analyses, we have implicitly assumed the electric and mag-
netic fields to be separately specified, without discussing the specific
sources for the fields. Such an assumption exemplifies the limitations
of the single-particle approach. While a static magnetic is typically
imposed for confinement or heating of plasmas, or is naturally
present as in a magnetized planetary body, an external electric field
in general cannot be sustained in a plasma, as a result of the Debye
shielding discussed in Chapter 1. Non-zero electric fields in a plasma
generally arise self-consistently as a result of the collective motion
of many plasma particles. Furthermore, the parameters modeled in
single-particle analyses (e.g., particle position and velocity) are in

53
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general not measurable and cannot be related to observations. The
measurable quantities, such as the bulk plasma velocity and particle
density, cannot easily be derived from the single-particle param-
eters, the dependencies on which are rather complicated. There is
thus a practical need to describe the behavior of large quantities of
particles.

Most plasma physics problems can be treated in a useful manner
using meaningful statistics and averages over a large number of
individual particles. The most common scheme for describing such
bulk or macroscopic behavior is the fluid approach, whereby the
the plasma is described in terms of fluid equations, appropriately
modified to account for electromagnetic forces. In using a fluid treat-
ment, one is not concerned with the motions of individual particles
but rather focuses on the collective properties (e.g., density, average
velocity) at fixed points in space. Two different fluid descriptions
of plasmas are discussed in Chapters 5 and 6. However, in order
to be able to make the jump from individual particle motions to
useful averages (as called for in a fluid approach), it is necessary to
first have a description of the particle population. Since, as has been
mentioned before, keeping track of the large numbers of individual
particles is not possible even with advanced supercomputers, an
effective alternative is to describe the positions and velocities of
plasma particles using a probability distribution function. Describ-
ing a plasma using a distribution function is known as plasma
kinetic theory and is the subject of this chapter. As is illustrated
in the hierarchical chart above, kinetic theory forms the foundation
of the majority of approaches to plasma phenomena.

Plasma kinetic theory is based on concepts originally developed
to describe the dynamical behavior of neutral gases, namely a veloc-
ity distribution function describing the number of particles in any
given point in space and having a particular set of component veloc-
ities, and an integro-differential equation, known as the Boltzmann
equation, which describes the time variation of this distribution
function. It is the most fundamental description of the plasma
state, and is in fact the only means at our disposal for analysis
of non-equilibrium plasmas. For the vast majority of applications
involving plasmas under quasi-equilibrium conditions, simplified
equations (i.e., fluid equations) derived from the Boltzmann equa-
tion can be used, and measurable quantities (e.g., density, velocity,
temperature) can be obtained as suitable averages of the velocity
distribution function. We start with a brief review of properties
of gases and continue by introducing the concept of the velocity
distribution function as a means for statistical characterization of
plasma dynamics. We then discuss methods by which average values
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of particle properties can be derived from this distribution function.
After deriving the Boltzmann equation from fundamental princi-
ples, we introduce the particular distribution function known as the
Maxwell–Boltzmann distribution, which any gas in thermal equilib-
rium attains given enough time, in the absence of external forces.

3.2 Comparison of properties of gases and plasmas

Kinetic theory of plasmas makes maximum use of the analogy
between a plasma and an ordinary neutral gas. The two parameters
which characterize the physical state of a gas are the density of
molecules N0 and the temperature T. The mean kinetic energy of the
particles depends only on the temperature (see Section 1.1), while
the pressure is proportional to both the density and the temperature.
For gases in thermal equilibrium, the pressure p is related to N0 and
T by

p = N0kBT, (3.1)

where kB is Boltzmann’s constant.1 When a gas is in thermal equi-
librium at a certain temperature T, the individual gas molecules
do not all have the same energy. On the contrary, it can be shown
theoretically, and measured experimentally, that the molecules have
widely different velocities, ranging from zero to very large values.
In the mid-1890s, J. C. Maxwell showed that the number of gas
molecules which have speeds lying in the range between v and
v + dv is given by

N(v) = Av2e−mv2/(2kBT)�v, (3.2)

where the coefficient A can be determined on the basis that the
number of molecules per unit volume is equal to the density N0.
Summing over all possible particle velocities, which is in effect an
integration, we find

N0 =
∫ ∞

0
Av2e−mv2/(2kBT)dv → A = N0

[
2
π

(
m

kBT

)3
]1/2

.

1 Equation (3.1) describes only one of many possible thermodynamic equations of state,
known in this case as the isothermal equation of state. We will see other types of state
equations in the following chapter.
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(b) (c)

v

(a)

N (v )

v= (2kBT/m)1/2

Figure 3.1 A gas in thermal
equilibrium. (a) Maxwellian
distribution of particle speeds
in a gas in thermal equilibrium.
(b) Random motion of a neutral
gas molecule under the
influence of elastic collisions. (c)
Trajectory of a charged particle
in a plasma under the influence
of Coulomb collisions.

This speed distribution function is shown in Figure 3.1a. The
maximum of this function occurs at v = √

kBT/m, indicating that
this is the most probable speed for any given molecule. Another
feature is the very rapid decrease in the number of molecules at low
velocities and very high velocities. Figure 3.1b shows the random
thermal motion of a particular gas molecule. Each break in this
curve is a result of an elastic collision of the molecule with some
other molecule of the gas. The duration of each collision is very
small compared to the time between collisions. The elementary
kinetic theory of gases is based on the assumption that after a
collision the particle can, with equal probability, continue in any
direction, regardless of its initial momentum. The mean (or average)
length of the straight-line sections making up the zig-zag path of the
molecules in a gas is known as the mean free path, generally denoted
by λ. The average time taken by a molecule to traverse a straight-
line section is known as the mean time between collisions and is
denoted by τ . The mean collision frequency, or the average number
of collisions experienced by the particle per second, is then ν = τ−1.

Since plasmas are basically ionized gases, we can expect many of
the concepts discussed above to apply when we consider a collection
of charged (rather than neutral) particles. This expectation is borne
out to some degree, but important differences exist, especially in
the nature of “collisions” between particles. In gases, the length
scales of the system are often much larger than the mean free path
and the time scales involved are much longer than the mean time
between collisions. Under such conditions, the gas attains thermal
equilibrium on a much finer scale of length and time than the spatial
and temporal variations of macroscopic variables (e.g., pressure,
temperature) so that these variables can be accurately described by
a fluid treatment. The fundamental reason for this is the very short
range of action of the forces between neutral molecules (i.e., the
particles have to essentially touch one another, at atomic distances
of ∼10−8 cm).
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In plasmas, the interaction between particles is via Coulomb
forces, which are long-range and relatively weak, compared to
direct-impact collisions. Therefore, the path of a charged particle
in a plasma is quite different from the zig-zag path of a neutral gas
molecule shown in Figure 3.1b. The path of the charged particles is
smoother and cannot readily be resolved into straight-line segments
which begin and end at points at which collisions take place. Each
individual particle moves under the influence of the average electric
field due to all of the other particles and its motion is subject to
continuous fluctuations in magnitude and direction. This average
field is generally weak, so that the particle motion resembles the ran-
dom walk of a person in a desert at night, as shown in Figure 3.1c.
Another way to look at the difference between the motions
described in Figures 3.1b and 3.1c is to note that the long-range
Coulomb forces actually allow the particles to avoid collisions.
A useful analogy can be made by observing large numbers of stu-
dents on bicycles rapidly streaming through a busy plaza, skillfully
avoiding collisions with all but an occasional few of the many other
cyclists. As a result of the reduced number of collisions, establish-
ment of thermal equilibrium is slower in plasmas than in neutral
gases, and many physical processes can occur over time scales which
are faster than the relaxation time to equilibrium. As a result, non-
equilibrium distributions are more often encountered in plasmas,
and must be analyzed with a kinetic treatment.

3.3 Velocity distribution function

We start by assuming that the location of each particle is docu-
mented by a position vector r drawn from the origin to the physical
point at which the particle resides. In other words, we have

r = x̂x + ŷy + ẑz. (3.3)

We consider a small elemental volume dr = dxdydz, also denoted
as d3r . Note that dr is not a vector, but simply represents a three-
dimensional volume element. Note that the volume element dr must
be large enough to contain a great number of particles, but small
enough so that macroscopic quantities such as pressure, temper-
ature, and velocity vary only slightly within this element. As an
example, a cube 0.01 mm on each side of a gas at standard tem-
perature and pressure contains ∼1010 molecules, and knowledge
of macroscopic quantities with a spatial resolution of 0.01 mm is
certainly sufficient in most applications. Let the linear velocity of
the particle be



58 Kinetic theory of plasmas

v = x̂vx + ŷvy + ẑvz (3.4)

so that the particle speed is |v| = v =
√

v2
x + v2

y + v2
z . In analogy

with configuration space, we think of the components vx, vy, and
vz as being coordinates in velocity space. Thus the velocity vector v
documents the location of the particle in this velocity space. For
the sake of compactness, it is often convenient to introduce the
concept of phase space, defined by the six coordinates x, y, z, vx, vy,
and vz. Thus, the position r and the velocity v of a particle at any
given time can be represented as a point in this six-dimensional
space. Now consider a time interval dt, centered around the time of
observation t, which is long enough compared to the mean time the
particle takes to traverse the volume element dr (if it is not scattered
by collisions) but short enough compared to the time scales of
variations of the macroscopic parameters. As an example, at a mean
molecular velocity of hundreds of m s−1 for a gas at standard tem-
perature and pressure, a particle travels 0.01 mm in less than 10−7 s,
and variations over such time scales are rarely of interest in gas
dynamics. The number of particles in the elemental volume dr, when
averaged over the time interval dt, is then simply given by N(r, t)dr,
where N(r, t) is the number density of the particles, regardless of the
shape of the volume element dr. To each of the N(r, t)dr particles
contained in the volume dr corresponds a point in velocity space,
which is denoted by the velocity point v and which represents the
velocity of this particle in the volume dr at the considered instant
of time (i.e., in the time interval dt centered around the observation
time t). The distribution of these velocity points varies with time as a
result of collisions and of the particle flux through dr (i.e., particles
entering or leaving the elemental volume dr). In the same manner
that we defined a particle density in configuration space, we may
statistically define a density of the Ndr points in velocity space. This
density, proportional to dr and a function of r and t as well as v,
is denoted f (r, v, t)dr. With this definition, the probable number
of particles found at time t in the element dr, possessing velocities
between v and v + dv, is f (r, v, t)drdv. The function f (r, v, t) is
called the velocity distribution function and is the probable density
of representative points in the six-dimensional phase space. Note
that if the number of velocity points f (r, v, t)drdv contained in the
elemental volume dv is summed up over all possible velocities, we
obtain the total number N(r, t)dr of velocity points in the entire
velocity space. Thus, it follows that

N(r, t) =
∫ ∞

−∞
f (r, v, t)dv =

∫∫∫ ∞

−∞
f (r, v, t)dvxdvydvz. (3.5)
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It is obvious that the distribution function f (r, v, t) must be finite,
continuous, and positive for all values of t and that it must approach
zero as the speed v tends to infinity. The velocity distribution
function representation of the plasma is quite general. Inhomo-
geneous plasmas, in which physical quantities depend on location,
are described by distribution functions f (r, v, t) which are explicit
functions of r, whereas distribution functions for homogeneous
plasmas do not depend on r and are only functions of v and t. In
anisotropic plasmas, f (r, v, t) is dependent on the orientation of
the velocity vector v, while in isotropic plasmas, f (r, v, t) is not
dependent on the direction of v. The velocity distribution func-
tion representation of a plasma retains the full statistical informa-
tion on all of the particles and hence is a microscopic description.
However, often the most important use of the velocity distribution
function f (r, v, t) is that macroscopic (i.e., ensemble average) values
of various plasma parameters (e.g., density, flux, current) can be
obtained from f (r, v, t). Consider any property g(r, v, t) of a par-
ticle. The value of this quantity averaged over all velocities is then
given by

gav(r, t) ≡ 〈g(r, v, t)〉 = 1
N(r, t)

∫
g(r, v, t) f (r, v, t) dv. (3.6)

Example 3-1 Phase-space distribution function
Consider a system of particles confined to a cube with side
length s0 centered at the origin. The particles are uniformly
distributed in the cube with velocities given by the distribution
function

f (r, v, t) = C2
0 − v2

i , |vi | < C0, |i | <
s0

2
(i = x, y, z)

= 0 otherwise.

Find the number density N0 of the particles and of the average
particle kinetic energy, and plot the distribution function in spa-
tial and velocity coordinates.

Solution: Using Equation (3.5) we can find the particle density as

N0(r, t) =
∫∫∫ ∞

−∞
f (r, v, t)dvxdvydvz

=
∫∫∫ C0

−C0

(
C2

0 − v2
x

) (
C2

0 − v2
y

) (
C2

0 − v2
z

)
dvxdvydvz
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Figure 3.2 Plots of distribution function discussed in Example 3-1.
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The kinetic energy of a single particle is 1
2mv2 = 1

2m
(
v2

x + v2
y + v2

z
)

and by applying Equation (3.6) we can find the average kinetic
energy of all the particles:〈

1
2

mv2
〉

= 1
N0

∫∫∫ C0

−C0

1
2

m
(
v2

x + v2
y + v2

z

) (
−v2

x + C2
0

)
×

(
−v2

y + C2
0

) (
−v2

z + C2
0

)
dvxdvydvz

= m
2N0

(
4C5

0

15

)3

= mC6
0

250
.

The distribution function is shown in the six plots in Figure 3.2,
corresponding to the six dimensions of phase space.

3.4 The Boltzmann equation

How the velocity distribution function f (r, v, t) evolves in time is
described by the Boltzmann equation. The positions of the particles
will vary in time because of their non-zero velocities. The velocities
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Figure 3.3 Phase space for a
one-dimensional velocity
distribution function. The
particles are shown as
negatively charged electrons as
an example; the same process is
valid for every distinct particle
population.

will in turn vary in the presence of acceleration which is the result
of any forces acting on the particles. In this straightforward man-
ner, the representative points in phase space move as a function
of time. We start by deducing the Boltzmann equation for a one-
dimensional velocity distribution function, which depends on the
position coordinate x, the velocity coordinate vx, and time t. The
corresponding two-dimensional phase space is shown in Figure 3.3.

Consider a time interval dt which is long compared to the average
time interval of interaction between any two particles, so that most
interactions which begin in the interval dt are completed in the same
interval. On the other hand, we must have dt short enough com-
pared to the average time between interactions so that each particle
interacts at most once with another particle in the interval dt. Under
these conditions, the trajectory of a particle may be composed of
segments where only the external forces act, joined by very short
trajectories during which there is interaction between particles. It is
only under these conditions that the Boltzmann equation is valid.

If the external force acting on a particle is F = x̂Fx, its accelera-
tion is a = x̂F/m. As particles drift in phase space under the action
of the macroscopic force Fx, they flow into and out of the fixed two-
dimensional “volume” dxdvx shown in Figure 3.3. The distribution
function can be derived on the basis of conservation of particles,
considering the net flow of particles into and out of the volume
through each of its four faces in a time interval dt:

• f (x, vx, t) dx ax(x, vx, t) dt particles flow in through side 1
(from the shaded region below).

These particles have been accelerated so that they have velocities
within the box.
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• f (x, vx + dvx, t) dx ax(x, vx + dvx, t) dt particles flow out
through side 2.

These particles have been accelerated to velocities greater than those
inside the box.

• f (x, vx, t) dvx vx dt particles flow in through side 3 (from the
shaded region on the left).

These particles have moved into the box from positions on the left.

• f (x + dx, vx, t) dvx vx dt particles flow out through side 4.

These particles have moved out of the box to positions on the right.

Note that ax ≡ dvx/dt and vx ≡ dx/dt.
So far we have accounted for changes in the distribution function

arising from intrinsic motion of the particles or from external forces.
In addition, in the time interval dt, the particles in the range dx
at x interact or collide at most once with other particles and have
their velocities changed. Velocities of some of the particles which
were in the range dvx at vx change to other values so they leave
the two-dimensional volume, while velocities of some other particles
outside the range dvx at vx now fall within the range. Note that
such collisions can nearly instantaneously change the velocity of
the particle, but not its position. Until we are ready to be specific
about the nature of the collisions and their effectiveness in moving
particles in phase space, we schematically represent the resultant
net gain or loss of particles due to this process by a collision term
given by

(
∂ f
∂t

)
coll

dxdvxdt particles flow in as a result of collisions.

The total number of particles in the velocity space volume element
dx dvx is given by f (x, vx, t) dx dvx. The time rate of change of
the number of particles is determined by the difference between the
number of particles flowing into and out of the two-dimensional
volume:

∂

∂t
[ f (x, vx, t) dx dvx]

= [ f(x, vx, t) ax(x, vx, t) − f(x, vx + dvx, t)ax(x, vx + dvx, t)] dx

+ [ f (x, vx, t) vx − f (x + dx, vx, t) vx] dvx +
(

∂ f
∂t

)
coll

dxdvx.
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Dividing by dx dvx we have

∂

∂t
f (x, vx, t) = − ∂

∂x
( f vx) − ∂

∂vx
( f ax) +

(
∂ f
∂t

)
coll

. (3.7)

Noting that vx and x are independent variables, and assuming that
the force Fx is independent of the velocity vx so that ax is indepen-
dent of vx, we can write

∂ f
∂t

+ vx
∂ f
∂x

+ Fx

m
∂ f
∂vx

=
(

∂ f
∂t

)
coll

, (3.8)

where we have substituted ax = Fx/m. Note that the assumption
of Fx being independent of vx is not restrictive, especially in view
of the fact that the external force in the case of plasmas is almost
always the Lorentz force, F = q[E + v × B], so that Fx is in fact
not dependent on vx (see Equation (3.12b)). It is clear from the
above discussion that the Boltzmann equation is a statement of the
conservation of the number of representative points in phase space.
By following the same procedure as above for an elemental volume
drdv = dxdydzdvxdvydvz in six-dimensional phase space, we can
derive the three-dimensional Boltzmann equation:

Boltzmann
equation

∂

∂t
f (r, v, t) + (v · ∇r) f (r, v, t) +

[(
F
m

)
· ∇v

]
f (r, v, t) =

(
∂ f
∂t

)
coll

,

(3.9)

where

∇r ≡ x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(3.10a)

∇v ≡ x̂
∂

∂vx
+ ŷ

∂

∂vy
+ ẑ

∂

∂vz
, (3.10b)

so that the second and third terms in (3.9) are

(v · ∇r) f (r, v, t) = vx
∂ f
∂x

+ vy
∂ f
∂y

+ vz
∂ f
∂z

(3.11a)

[(
F
m

)
· ∇v

]
f (r, v, t) = Fx

m
∂ f
∂vx

+ Fy

m
∂ f
∂vy

+ Fz

m
∂ f
∂vz

. (3.11b)
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Note that in the plasma context, the force acting on the particles is
the Lorentz force, given by

F = q[E + v × B] (3.12a)

Fx = qEx + q vy Bz − q vz By (3.12b)

Fy = qEy + q vz Bx − q vx Bz (3.12c)

Fz = qEz + q vx By − q vy Bx, (3.12d)

where the electric field E and the magnetic field B are continuous
macroscopic fields obtained by averaging over an elemental volume
whose dimensions are large enough to contain a large number of
particles but small enough compared to the spatial scale of vari-
ation of the physical quantities of interest. Note that since each
component of F is independent of the corresponding component of
particle velocity v, the transition we made from (3.7) to (3.8) is valid.
Although we still are far from having an explicit expression for the
collision term on the right-hand side, we can note that it is generally
possible to express (∂ f/∂t)coll as an appropriately weighted multiple
integral of f (r, v, t). Thus, the Boltzmann equation (3.9) is in gen-
eral an integro-differential equation. In a typical plasma there are
at least three different species of particles, for example, electrons,
ions, and neutrals. The Boltzmann equation (3.9) is separately valid
for each species, each being characterized by a different distribution
function fi (r, v, t). Since only electromagnetic forces are consid-
ered, the Boltzmann equation for the neutrals does not have the
force term. The three Boltzmann equations for electrons, ions, and
neutrals are coupled through the collision term. For example, the
collision term in the Boltzmann equation for electrons contains the
velocity distribution functions of the ions and neutrals as well as
that for electrons.

3.5 The Maxwell–Boltzmann distribution

In the previous sections we introduced the concepts of velocity
space, the six-dimensional phase space, and the distribution func-
tion as a means of specifying the probable locations and velocity
components of an assembly of particles. We have also derived the
Boltzmann equation as a mathematical statement of the conserva-
tion of particles. The Boltzmann equation is the very foundation of
kinetic theory. It is not specific to plasmas but is valid for any gas
under equilibrium or non-equilibrium conditions. The logical next
step is to investigate possible solutions to the Boltzmann equation.
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Given enough time, any collection of freely mobile charged or
neutral particles will reach an equilibrium state. Consider a gas
of particles suddenly introduced into a bounded volume (e.g., a
container with walls). Depending on how the particles were intro-
duced, they may initially be located in specific positions (e.g., the
corner from which they were introduced) and may have velocities
predominantly in one direction, so that the probability of finding
particles at other locations and with velocities in other directions is
low. In other words, the distribution function f is initially inhomo-
geneous (a function of r) and anisotropic (a function of the direction
of v). As time progresses, and as a result of collisional interactions
between particles and between particles and the walls, the particle
distribution function evolves toward a homogeneous one, so that
it is equally probable to find particles anywhere in the container.
Furthermore, the velocities of particles passing through any point
in the volume become uniformly distributed in all directions, so
that the distribution function f becomes isotropic. If the container
is maintained at a constant temperature, the gas eventually attains
thermal equilibrium with its temperature equal to that of the con-
tainer. Under thermal equilibrium conditions, a homogeneous gas
with no external forces attains a specific homogeneous and isotropic
distribution known as the Maxwell–Boltzmann distribution. An
example of a homogeneous but anisotropic distribution function
representing a gas of N0 electrons all moving in a given direction
with a speed v0 is the so-called beam-like distribution given by

fbeam (r, v, t) = fbeam (v) = N0 δ(vx − v0) δ(vy) δ(vz), (3.13)

where δ(x) is the Dirac delta function. It can easily be shown by
substitution that (3.13) is a solution of the Boltzmann equation.
However, although a distribution function f (r, v, t) = fbeam (v) sat-
isfies the Boltzmann equation at any given time, the distribution
f does not stay the same in time but instead evolves toward a
Maxwell–Boltzmann distribution. An example of a homogeneous
and isotropic distribution function which also cannot remain in
effect as a function of time is the so-called shell distribution, rep-
resenting a uniform gas of particles moving in all directions with
equal probability (i.e., isotropic) but all with the same speed v0, i.e.,

fshell (r, v, t) = fshell (v) = Aδ(v − v0), (3.14)

where v = |v| =
√

v2
x + v2

y + v2
z . Equation (3.14) is solution of the

Boltzmann equation at a given time, but if the distribution func-
tion of a gas f (r, v, t) is equal to fshell (v) at any given time,
it cannot remain equal to it and must evolve in time toward a
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Maxwell–Boltzmann distribution. We stated above that a homo-
geneous gas with no external forces attains the Maxwell–Boltzmann
distribution under thermal equilibrium (or steady-state) conditions.
Mathematically, these conditions can be represented by v · ∇r = 0
(homogeneous), (F/m) · ∇v = 0 (no external forces), and ∂ f/∂t = 0
(steady-state), reducing the Boltzmann equation (3.8) to

0 + 0 + 0 =
(

∂ f
∂t

)
coll

→
(

∂ f
∂t

)
coll

= 0. (3.15)

In words, (3.15) states that, under equilibrium conditions, in any
given time interval dt as many particles enter an elemental volume
in phase space as a result of collisions as leave. By considering
the mechanics of two-particle collisions in which total energy is
conserved under conditions specified by (3.15), it can be shown
[1, 2] that the particle distribution function must necessarily be the
Maxwell–Boltzmann distribution. The Maxwell–Boltzmann distri-
bution has the general form

f (r, v, t) = f (v) = Ce−av2
, (3.16)

where C and a are positive constants (independent of r and v) and

v =
√

v2
x + v2

y + v2
z is the particle speed. The physical parameters of

the gas, such as the particle number density N0 and temperature T,
can be derived from (3.16), as we show below. Note that both N0
and T are constants at all points in space (i.e., they are independent
of r).

3.5.1 Number density

The total number of particles in the system can be obtained by
integrating (3.16) over the entire phase space. Since f does not
depend on r, this means simply that we integrate (3.16) over velocity
space. Using spherical coordinates as appropriate here, the elemen-
tal volume dv in velocity space is dv = v2 sin θdvdθdφ, and we have

N0 =
∫ 2π

0

∫ π

0

∫ ∞

0
Ce−av2

v2dv sin θdθdφ

=
∫ ∞

0
4πCv2e−av2

dv

N0 = C
(π

a

) 3
2 → C = N0

( a
π

) 3
2
,
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where we have used the fact that∫ ∞

0
ζ 2e−a ζ 2

dζ =
√

π

16a3 . (3.17)

Having determined C, we can rewrite (3.16) as

f (v) = N0

( a
π

) 3
2

e−a v2
.

Note that the constant a is yet to be determined. It represents the
width of the distribution function, and is thus related to the average
kinetic energy of particles, or temperature.

3.5.2 Temperature

The temperature of a gas in thermal equilibrium was defined in
Chapter 1 in terms of the average kinetic energy of the particles
constituting it. The distribution function representation of a plasma
allows us to readily calculate the average values of any physical
property of the individual particles. Let us first consider the average
value of the component of the particle kinetic energy due to its
motion in the x direction, i.e., 1

2mv2
x. The number of velocity points

in the elemental volume dv around the position vector v in velocity
space is f (r, v, t)drdv. Thus, the value of 1

2mv2
x summed over all the

velocity points in the volume element dv is 1
2mv2

x f (r, v, t)drdv. The
total value of this quantity summed over all velocity points in vel-
ocity space can be found by integrating over all possible velocities:

dr
∫ ∞

−∞
1
2

mv2
x f (r, v, t)dv.

To find the average value of the quantity 1
2mv2

x, we simply divide by
the total number of velocity points, N(r, t)dr, with N(r, t) related to
f (r, v, t) as in (3.5):〈

1
2

mv2
x

〉
= 1

N(r, t)

∫ ∞

−∞
1
2

mv2
x f (r, v, t)dv. (3.18)

For the specific distribution function (3.16) we have〈
1
2

mv2
x

〉
= 1

N0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
1
2

mv2
xN0

( a
π

) 3
2

× v2
xe−a

(
v2

x+v2
y+v2

z

)
dvxdvydvz
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= m
2

( a
π

) 3
2
∫ ∞

−∞
v2

xe−av2
xdvx

∫ ∞

−∞
e−av2

ydvy

∫ ∞

−∞
e−av2

z dvz

1
2

m
〈
v2

x

〉
= m

4a
,

where we have used (3.17) and the fact that∫ ∞

0
e−aζ 2

dζ =
( π

4a

) 1
2
. (3.19)

Since the distribution (3.16) is isotropic, we must have

1
2

m
〈
v2

x

〉
= 1

2
m

〈
v2

y

〉
= 1

2
m

〈
v2

z

〉
= m

4a
.

The average total kinetic energy of the particles is then given by

1
2

m
〈
v2

〉
= 1

2
m

〈
v2

x + v2
y + v2

z

〉
= 3m

4a
.

As mentioned in Chapter 1, the temperature T of a gas in thermal
equilibrium is defined by the relation

Average energy = 3
2

kBT → 1
2

m〈v2〉 = 3
2

kBT → a = m
2kBT

.

Substituting into (3.16) gives the Maxwell–Boltzmann distribution,
written in terms of the physical parameters N0 and T:

Maxwell–Boltzmann
distribution f (v) = N0

(
m

2πkBT

)3
2

e−mv2/(2kBT) . (3.20)

The distribution function described by (3.20) is the only steady-
state distribution possible for a homogeneous (constant density N0
everywhere) gas in thermal equilibrium (fixed temperature T) in
the absence of external forces. All other distributions approach that
given in (3.16) as time evolves. The distribution function (3.20) is
referred to either as the Maxwell–Boltzmann distribution or as the
Maxwellian distribution.

3.5.3 Velocity in one dimension and speed

Having defined the Maxwellian distribution in Equation (3.20),
we can find the distribution for one component of the velocity
by integrating over the remaining components. For example, the
distribution of velocities in the x direction is given by
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0

f (vx)

vxkBT
m

- kBT
m

2pkBT
mN0

Figure 3.4 Distribution of
velocity in one direction. The
distribution function for particle
velocity in one direction in a
Maxwell–Boltzmann distribution
is the well-known Gaussian
distribution, with a standard
deviation of

√
kBT/m.

f (vx) =
∫ ∞

−∞

∫ ∞

−∞
f (v)dvydvz

= N0

(
m

2πkBT

) 3
2

e−mv2
x/(2kBT)

∫ ∞

−∞
e−mv2

y/(2kBT)dvy

×
∫ ∞

−∞
e−mv2

z /(2kBT)dvz

= N0

(
m

2πkBT

) 1
2

e−mv2
x/(2kBT), (3.21)

where we have used the fact that each of the integrals is equal
to (2πkBT/m)1/2. By symmetry, the expression in Equation (3.21)
applies to any of the velocity components and can be readily iden-
tified as a Gaussian or normal distribution, with zero mean and
a standard deviation of

√
kBT/m. Equation (3.21) is plotted in

Figure 3.4 in units of
√

kBT/m. It is worth noting that the Gaussian
distribution is the most important distribution in statistics; accord-
ing to the central limit theorem the distribution of the sum of a large
number of random events will always approach such a distribution.
In this connection, it is to be expected that each of the velocity com-
ponents in a Maxwell–Boltzmann distribution will have a Gaussian
distribution since the average velocity of particles in a gas or plasma
is the sum of many random motions and interactions. It is this
statistical convergence that underpins the fact that the Maxwell–
Boltzmann distribution is the most probable distribution for a gas
at equilibrium.

We can also find useful expressions for the distribution of particle
speeds v = |v|. For this purpose it is useful to once again define
velocity space in polar coordinates (v, θ , φ) instead of Cartesian
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vx

vy

v

v + dv

f

vz, dq

Figure 3.5 Velocity space.
A two-dimensional view of
velocity space for Cartesian and
spherical coordinates. The
shaded area represents a
spherical shell containing
particles with velocities with
magnitudes between v and
v + dv.

coordinates (vx, vy, vz). A two-dimensional slice through velocity
space for both coordinate systems is shown in Figure 3.5. Com-
pleting the transformation requires replacing the differential volume
element dv = dvxdvydvz = v2 sin θdθdφdv and changing the limits
of integration. To access only the magnitude of velocity we need to
integrate over all θ and φ:

Nsp(v) =
∫ 2π

0

∫ π

0
f (v)v2 sin θdθdφ

= N04π

(
m

2kBTπ

) 3
2

v2e−mv2/(2kBT), (3.22)

which is identical to (3.2) and is plotted in Figure 3.1a. The
most probable speed of the particles is given by vmax = √

2kBT/m.
Although it was written specifically for the kinetic energy 1

2mv2
x,

Equation (3.18) also shows how we can find the average value of
any other physical quantity. For example, we can find the average
velocity 〈v〉 of particles by simply replacing 1

2mv2
x with v under the

integrand in (3.18):

〈v〉 =
(

m
2πkBT

) 3
2
∫ ∞

−∞
(x̂vx + ŷvy + ẑvz) e−mv2/(2kBT) dvxdvydvz = 0,

since the integrands are clearly odd functions. The fact that the
average value of velocities in a Maxwellian distribution is zero
simply indicates that there are no preferred directions for particle
motion. The average speed of the particles can be found using
the speed distribution (3.22) and determining an average similar to
that in (3.18):
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〈|v|〉 = 1
N0

∫ ∞

−∞
vNsp(v)dv

= 4π

(
m

2kBTπ

) 3
2
∫ ∞

−∞
vv2e−mv2/(2kBT)dv =

(
8kBT
πm

) 1
2

,

where we have used the fact that∫ ∞

0
ζ 3e−a ζ 2

dζ = 1
2a2 . (3.23)

Similarly, it can be shown that the root-mean-square (rms) velocity
of particles in a Maxwellian distribution is given by

vrms =
√

〈v2〉 =
(

3kBT
m

) 1
2

.

3.5.4 Degree of ionization: the Saha equation

Under the equilibrium conditions of the Maxwell–Boltzmann dis-
tribution it is also possible to estimate the degree of ionization of a
gas at a given average temperature. It was noted in Chapter 1 that
the ionization of individual atoms and molecules typically requires
thermal energies of greater than 20 000 K. However, when a gas
is in thermal equilibrium a considerable degree of ionization still
occurs, even if the mean temperature of the gas is far below the
ionization energy. This is because even a low-temperature gas at
equilibrium contains a small but finite number of particles with very
high velocities, in the “tail” of the Maxwellian distribution. The
degree of ionization is determined by the balance between ioniza-
tion by collision with high-energy particles and recombination. The
exact solution of the problem, which takes into account quantum
mechanical aspects, is known as the Saha equation:

Saha equation
Ni

Nn
= 2.405 × 1021 T3/2

Ni
e−U/(kBT) , (3.24)

where Ni is the density of ionized atoms, Nn is the density of neu-
trals, and U is the ionization energy. The action of recombination is
manifested in the presence of Ni in the denominator on the right-
hand side. An ion–electron pair quickly recombines when in close
proximity, and because of quasi-neutrality their densities can be
approximated as being equal (Ne � Ni ). Thus the higher the density
of ions, the smaller the equilibrium degree of ionization, making
it much easier to sustain a plasma state in gases at low densities.
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Nevertheless, gases in equilibrium at temperatures of only a few
thousand degrees can have a significant degree of ionization, as
illustrated in Example 3-2.

Example 3-2 Ionization fraction of air
Estimate the degree of ionization of air at 1 atm pressure and
room temperature (300 K). Repeat the calculation for a temper-
ature of 8000 K. The main component of air is nitrogen, with an
ionization potential of 14.5 eV.

Solution: We first find the total density of particles, Ntot, com-
prising neutral atoms Nn, ions Ni , and electrons Ne. Since the
number of ions and electrons will be equal, Ntot = 2Ni + Nn.
Given the pressure and temperature, the total density can be
found using the ideal gas law:

p = NtotkBT

Ntot = p
kBT

Ntot(T = 300 K)= (1 atm)(101 325 Pa/atm)

(1.38 × 10−23 J/K)(300 K)
= 2.4 × 1025 m−3

Ntot(T = 8000 K)= (1 atm)(101 325 Pa/atm)

(1.38 × 10−23 J/K)(8000 K)
= 9.2 × 1023 m−3.

We can now use the Saha equation, noting that Nn = Ntot − 2Ni :

Ni

Ntot − 2Ni
= 2.4 × 1021 T3/2

Ni
e−U/(kBT)

N2
i

Ntot − 2Ni
= 2.4 × 1021 T3/2 e−U/(kBT) = St

N2
i + 2St Ni − St Ntot = 0.

This is a simple quadratic in Ni , with positive solution given by

Ni = −St +
√

S2
t + St Ntot.

For T = 300 K we have

St = 2.4 × 1021 T3/2 e−U/(kBT)

= 2.4 × 1021 (300 K)3/2

× e−[(14.5 eV)(1.6×10−19 J/eV)]/[(1.38×10−23 J/K)(300 K)]

= 5.28 × 10−219,
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yielding

Ni

Ni + Nn
� 10−122,

which is a fraction so incredibly low as to be negligible, with no
observable plasma effects. The higher temperature case, on the
other hand, yields

St = 1.28 × 1018

Ni

Ni + Nn
= 0.0012,

which shows that a significant portion of the atoms are ionized
even though the average temperature is much less than 1 eV.

3.5.5 Shifted Maxwellian distribution

A simple generalization of the equilibrium distribution function
allows us to represent a plasma which is in thermal equilibrium but
which is streaming at a velocity v0 = x̂vx0 + ŷvy0 + ẑvz0. For such a
gas with a non-zero average velocity the distribution function is the
so-called shifted or drifting Maxwellian distribution, given by

f(vx, vy, vz) = N0

(
m

2πkBT

)3
2

e−(m/(2kBT)
[
(vx−vx0)

2+(vy−vy0)
2+(vz−vz0)

2]
.

It can be readily shown that the average values of the component
velocities are given by the components of v0. In other words, we
have

〈vx〉 = vx0 or, in general, 〈v〉 = v0.

3.6 The Vlasov equation

Now that we are more used to conversing about six-dimensional
phase space, it is useful to reconsider the derivation of the Boltz-
mann equation. In this connection, it is important to note that the
position and velocity variables are completely independent, i.e., the
instantaneous velocity of a particle is not a function of its position.
Thus, the set of six numbers x, y, z, vx, vy, vz merely represent a
six-dimensional coordinate space. For the sake of the following
discussion, let us consider an assembly of non-interacting particles
(i.e., no collisions). Consider a small volume element in phase space,
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written compactly as drdv. Assume that the surface area of this
volume in configuration space is dsr , whereas that in velocity space
is dsv. We now impose conservation of particles: the rate of change
of the number of particles in the volume element is equal to the net
flux of particles into the volume. In configuration space the flux is

f
dr
dt

· dsr = f v · dsr .

In velocity space the flux is

f
dv
dt

· dsv = f a · dsv.

Hence we have

∂

∂t
f drdv = − f v · dsr dv − f a · dsvdr.

Using the divergence theorem, (∇ · G)dv = G · ds, we can write

∂

∂t
f drdv = −∇r · ( f v)drdv − ∇v · ( f a)dvdr.

Further assuming that the acceleration a (and thus the force F = ma)
is not a function of v, we find the collisionless Boltzmann equation

∂

∂t
f + (v · ∇r) f +

(
F
m

· ∇v

)
f = 0. (3.25)

As written above in terms of a general force F, the Boltzmann equa-
tion is quite general and valid for both neutral gases and plasmas.
For plasmas, the operative force of interest is the Lorentz force,
which when substituted gives

Vlasov
equation

∂ f
∂t

+ (v · ∇r) f + q
m

[(E + v × B) · ∇v] f = 0 . (3.26)

Equation (3.26), the collisionless Boltzmann equation with F
replaced by the Lorentz force, is known as the Vlasov equation, and
is one of the most important equations of plasma physics. Maxwell’s
equations describing the fields E(r, t) and B(r, t) and the Vlasov
equation represent a complete set of self-consistent equations. In
this connection, it should be noted that from the point of view of
an individual particle, the fields B and E in (3.26) represent the
fields due to the rest of the plasma plus any externally applied fields.
The current and charge density terms in Maxwell’s equations can of
course be expressed in terms of the particle velocity as follows:
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J(r, t) =
∑

i

qi Ni (r, t)ui (r, t) (3.27a)

ρ(r, t) =
∑

i

qi Ni (r, t), (3.27b)

where ui = 〈vi 〉 is the fluid velocity and the summation is to be
carried over all particle species. In some specialized cases, e.g.,
in very-high-temperature plasmas, particle velocities may be high
enough that relativistic effects may need to be taken into account.
In such cases, (3.26) is valid if we replace the velocity v with the
momentum p. Note that the momentum p of a particle is given by

p = m v = m0 v√
1 − |v|2/c2

,

where m0 is the rest mass and c is the speed of light. The Vlasov
equation can then be written as

∂ f
∂t

+
( p

m
· ∇r

)
f + q

m

[(
E + p

m
× B

)
· ∇p

]
f = 0. (3.28)

3.6.1 The convective derivative in physical space and in phase space

A concept that sets the stage for describing a plasma as a fluid
(to be explored in later chapters) and also provides another angle
for analysis of the Vlasov equation is the convective derivative. The
equation of motion for a single particle is simply given by Newton’s
second law of motion,

m
dv
dt

= F, (3.29)

where F is any general force. In Equation (3.29) the derivative is
taken at the position of the particle, and changes are measured with
respect to a stationary reference frame. If we now want to consider
a collection of particles, under the assumptions that all particles are
the same and that the net effects of collisions are minimal, we can
simply multiply both sides of Equation (3.29) by the particle density,
yielding

Nm
du
dt

= NF, (3.30)

where u is the average velocity of the particles that make up a finite
fluid element. Equation (3.30) is still in the stationary reference
frame and must be evaluated at the position of the moving particles
(or fluid elements), which makes it inconvenient to use. It would be
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much more useful to have an expression in which the derivatives
could be evaluated at a fixed position but could apply directly to
all the particles within a larger volume of interest. This can be
accomplished by shifting to a reference frame that moves along
with the fluid elements. Since such a derivative expresses changes
as experienced within a moving coordinate system, it is known
as a convective derivative or total time derivative. The key to the
utility of the convective derivative is that representing a collection of
individual particles as a fluid element means that all the particles
previously defined only at single points are now represented by
a continuous function (extending in all spatial dimensions) at a
specific set of coordinates. From a reference frame moving with the
fluid, observation of a change in any property associated with the
mobile fluid element can result either from the property changing
in time or from the fluid element moving into a region where the
property is different. A useful analogy is to imagine an automobile
moving on a crowded motorway with the property of interest being
the density of traffic. The traffic density observed by the driver
can change either because of more cars entering or leaving the
motorway at his location or because the driver arrives at a more or
less crowded section of the motorway. Cars entering the motorway
represent a local change in traffic, while the driver driving into
traffic is change experienced by moving against a traffic gradient.
If we first consider movement in only one dimension and take A
to be any property of a fluid element (such as traffic density in the
example above) we can write the total change experienced by the
fluid element as

dA(x, t)
dt

= ∂A
∂t

+ ∂A
∂x

dx
dt

= ∂A
∂t

+ vx
∂A
∂x

,

where the last term on the right-hand side represents changes in A
experienced by the fluid element as a result of movement into spatial
regions where A is different. Generalizing the expression to three
dimensions, we can express the convective derivative as

Convective derivative
dA
dt

= ∂A
∂t

+ (v · ∇)A . (3.31)

The total time derivative of any physical property of a fluid in
motion can be decomposed into two such components. For exam-
ple, consider the time derivative of the number density N(x, t) in a
fluid flowing with velocity v:
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d N
dt

= ∂ N
∂t

+ ∂ N
∂x

∂x
∂t

+ ∂ N
∂y

∂y
∂t

+ ∂ N
∂z

∂z
∂t

d N
dt

= ∂ N
∂t

+ (v · ∇r)N. (3.32)

The first term, ∂ N/∂t, is the explicit variation of density with time,
while the second term, (v · ∇r)N, is the variation due to the motion
of the fluid. At a point moving with the fluid, the density can be
varying simply because of the existing spatial variation of density
as the fluid elements move into new regions of physical space. In
an analogous manner, we can interpret the collisionless Boltzmann
equation (3.25) as the total derivative of the distribution function
in phase space. In this connection, we should note that the phase
space is simply a six-dimensional coordinate system of independent
variables, so that we can write

d f
dt

= ∂ f
∂t

+ ∂ f
∂x

∂x
∂t

+ ∂ f
∂y

∂y
∂t

+ ∂ f
∂z

∂z
∂t

+ ∂ f
∂vx

∂vx

∂t
+ ∂ f

∂vy

∂vy

∂t
+ ∂ f

∂vz

∂vz

∂t

= ∂

∂t
f + (v · ∇r) f +

(
dv
dt

· ∇v

)
f.

Thus the collisionless Boltzmann equation (3.25) can be simply
stated as

d f
dt

= 0, (3.33)

i.e., the total derivative of the distribution function f is always zero
for a collisionless assembly of particles. In other words, as a particle
moves around in phase space, it sees a constant f in its local frame.
This fundamental result is known as Liouville’s theorem.

3.7 Equivalence of the particle equations of motion and the Vlasov equation

We noted above that the particle equation of motion and the Vlasov
equation are fundamentally equivalent. One result of this equiv-
alence is that any function of any physical quantity that remains
constant during the particle’s motion is a solution of the Vlasov
equation. This result is known as Jeans’s theorem, first stated by
Jeans in connection with stellar dynamics.2 We can demonstrate

2 See [3]. In this connection, note that the kinetic description of galaxies as a “gas”
consisting of stars instead of molecules has similarities with the kinetic theory of plasmas.
Since collisions between stars in galaxies are rather rare, the evolution of the distribution
function of stars in phase space can be described by a continuity equation similar to the
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this very general result by considering the Vlasov equation (3.26)
and its simple form given in (3.33). Suppose that the macroscopic
electromagnetic fields E and B are known. The position and velocity
of each particle in the system are then completely determined at all
times as a solution of (2.1) for a given initial position r0 = x̂ζ1 +
ŷζ2 + ẑζ3 and initial velocity v0 = x̂ζ3 + ŷζ4 + ẑζ6 of the particle,
where ζi are constants. Thus, the position r(t) and the velocity v(t)
of the particle can be written as functions of these six constants ζi :

r = r(ζ1, . . . , ζ6, t) (3.34a)

v = v(ζ1, . . . , ζ6, t). (3.34b)

Note that the actual functional forms of r and v depend on E(r, t)
and B(r, t), which in turn must be self-consistently determined via
a simultaneous solution of Maxwell’s equations (with the current
density and charge terms given by (3.27)) and the Vlasov equation.
Equation (3.34) represents a relationship between the six constants
ζi and six components of the combined vectors r and v at any
given t. In principle, we can invert this relationship and write the
six constants ζi as functions of r, v, and t:

ζ1 = ζ1(r, v, t) (3.35a)

ζ2 = ζ2(r, v, t) (3.35b)

· · · (...)

ζ6 = ζ6(r, v, t). (3.35f)

Note that as the values of r and v change with time during the
particle motion, the values of ζi remain constant. Now consider an
arbitrary distribution function which depends only on r, v, and t, in
terms of functional combinations specified in (3.35). In other words,
consider a distribution function of the form

f (r, v, t) = g (ζ1, . . . , ζ6), (3.36)

where g is an arbitrary function. Substituting (3.36) into (3.33) and
using the chain rule of differentiation, we have

dg
dt

=
6∑

i=1

∂g
∂ζi

dζi

dt
= 0, (3.37)

one we derive in this chapter as the zeroth-order moment of the Boltzmann equation (see
Chapter 4 for more on moments of the Boltzmann equation). Note that in the case of
stars, each star interacts with the rest of the stars in the galaxy via the local gravitational
potential established as a result of the collective gravitational effects of all the stars.
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showing that the Vlasov equation is satisfied for arbitrary g, since
the ζi are constants and their total derivative is by definition zero.
Thus, (3.36) is a solution of Vlasov’s equation regardless of the
nature of the ∂g/∂ζi terms. In other words, any function of the
constants of motion of a particle is a solution of the Vlasov equa-
tion, a result which is known as Jeans’s theorem. As an example,
consider a plasma in the absence of an electric field, i.e., E = 0.
In this case, there can be no acceleration of any particle and its
energy remains constant, so 1

2mv2 is a constant of motion. Thus,
any function of 1

2mv2 is a solution of the Vlasov equation, e.g., the

Maxwell–Boltzmann distribution, f (v) = e−mv2/(2kBT).
Expanding on this concept, we can find the equilibrium distribu-

tion function for a gas in the presence of an external conservative
force. A conservative force is one that can be written as a gradient
of a scalar potential. This is another way of saying that the action of
such a force is reversible and leads directly to a change in potential
energy. Gravity and the electric and magnetic forces of the Lorentz
force are conservative forces. Frictional and drag forces, on the other
hand, are not conservative since they lead to a loss of kinetic energy
that cannot be retrieved. Under the action of a conservative force,
the sum of the potential and kinetic energies of particles should
therefore be a constant of motion. If the force is specified in terms
of a potential energy U(r) by

F(r) = −∇U(r)

then the equilibrium distribution function of a gas in the presence
of this force is given by

f (v) = N0

(
m

2πkBT

) 3
2

e

(
− 1

2 mv2−U
)
/(kBT)

, (3.38)

which is the unperturbed Maxwell–Boltzmann distribution of
Equation (3.20), multiplied by a correction term e−U(r)/kBT known
as the Boltzmann factor. We can now consider the problem of a
plasma in the presence of an electrostatic field. If there is an electro-
static field E(r) present it can be specified by an electrostatic poten-
tial �(r). The Boltzmann factor in this case is simply e−q�(r)/kBT,
making the distribution function

f (v) = N0

(
m

2πkBT

) 3
2

e

(
− 1

2 mv2−q�
)
/(kBT)

.
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The number density for this situation, obtained by integrating over
velocity space, is

N(r) = N0e(−q�(r))/(kBT), (3.39)

which is the expression that was used in Chapter 1 (Equation (1.6))
to derive the Debye length.

3.8 Summary

In this chapter we introduced kinetic theory, the description of a
plasma using a probability distribution function f (r, v, t) describing
the likelihood of finding particles at a given position, at a given
velocity, and at a given time. Employing a probability distribution
function is a logical way to proceed from discussing single-particle
motions, as was done in Chapter 2, to the description of the col-
lective behavior of the particles that make up a plasma. In kinetic
theory a plasma is described in a six-dimensional phase-space coor-
dinate system with three spatial dimensions (x, y, z) and three
velocity dimensions (vx, vy, vz). The way a particle distribution
changes under the influence of external forces is described by the
Boltzmann equation. Derivation of the Boltzmann equation follows
from the fact that velocity changes will originate from the Lorentz
force and position changes can be derived from velocities. If we
neglect collisions, the Boltzmann equation reduces to the Vlasov
equation. In a limiting case, the Vlasov equation can be interpreted
as stating that, without external forces or collisions, the distribution
function (as measured by a total derivative) in fact does not change,
which is an intuitively pleasing result.

In the second half of the chapter we discussed the most probable
distribution function that a plasma will assume under equilibrium.
This is the Maxwell–Boltzmann distribution, which all plasmas and
gases will approach, given enough time, if there is no net energy
flow into or out of the system. The Maxwell–Boltzmann distribu-
tion is prevalent in many applications of plasma physics and has
remarkable properties. At the same time there are many applica-
tions where a Maxwell–Boltzmann distribution cannot be assumed
nor be observed. It is important to emphasize that kinetic theory,
including the Boltzmann and Vlasov equations, is general and can
be applied to all plasma distributions. Plasma fluid theories, dis-
cussed in the following chapters, follow directly from kinetic theory
but are not as general and are applicable only to situations where
equilibrium or quasi-equilibrium conditions can be assumed.
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3.9 Problems

3-1. Write down the distribution function for the following cases:
(a) two infinite particle beams each with density N0 moving
in opposite directions along the x axis at a speed of v; (b)
an infinite particle population with all speeds less than the
maximum speed vmax being equally probable.

3-2. Calculate the average number density N(x, t) and the average
kinetic energy

〈1
2mv2

〉
for the following distribution functions:

(a)f (r, v, t) = K0δ(vx)δ(vy − v0)δ(vz); (b)f (r, v, t) = (
A2

0 − v2
x
)(

A2
0 − v2

y
)(

A2
0 − v2

z
)

for |vi | < A0 (i = x, y, z).

3-3. The electrons inside a system of two coaxial magnetic mir-
rors can be described by the so-called loss-cone distribution
function,

f (�v) =
(

4
π

) 3
2 1

α2⊥α||

(
v2⊥
α2⊥

)
exp

[
− v2⊥

α2⊥
− v2||

α2||

]
,

where v⊥ and v|| denote the electron velocities in the direc-
tions perpendicular and parallel to the magnetic bottle axis,
respectively, and where α2⊥ = 2kBT⊥/me and α2|| = 2kBT||/me.
(a) Determine the number density of electrons N0 in the
magnetic bottle. (b) Determine the average perpendicular and
parallel energies.

3-4. Given a particle distribution function of the form

f (r, v) =

⎧⎪⎨⎪⎩ Ae−x/a

[
1 + cos

(
πv3

v3
0

)]
v ≤ v0

0 v ≥ v0

,

where v0 is a constant and v = |v|: (a) Determine the con-
stant A, given that the particle number density at x = 0 is N0.
(b) If an application requires that the spatial dependence
of f remain constant, how could the spatial distribution be
maintained? Give a quantitative description of the proposed
scheme.

3-5. Consider an equilibrium (Maxwellian) plasma with electron
temperature Te and electron density Ne immersed in a con-
stant uniform magnetic field B. (a) Find an expression for
〈μ〉, the average value of the magnetic moment of the elec-
tron due to its gyration around B, where μ = mev

2⊥
/
(2B).



82 Kinetic theory of plasmas

(b) For B = 5 × 10−5 T and Te = 300 K, compare the magni-
tude of 〈μ〉 to the spin magnetic moment μB of the electron,
which is called the Bohr magneton and is given by

μB = |qe|h
4πme

,

where h = 6.626 × 10−34 J s is Planck’s constant.

3-6. In some plasmas confined in tokamak machines, distinct pop-
ulations of energetic ions are created which do not have a
Maxwellian distribution function. An example is the so-called
“slowing-down” distribution, given by

fion =
⎧⎨⎩

A
v3 + a3 v ≤ v0

0 v > v0

,

where v0 is the velocity at which the energetic ions are created
(by fusion reactions) and a is a constant determined by the
rate of collisions. (a) Determine the constant A if the average
ion density is Ni . (b) Determine vmax, the most probable value
of v for this distribution.

3-7. Use direct substitution to show that a distribution function of
the form

f = f
(

mv2/2 + qφ
)

is a steady-state solution of the Boltzmann equation, where
φ is an electric potential. Assume only one dimension and
neglect collisions.

3-8. Use the Saha equation to show that the solar wind, which
is an electron and proton plasma, must be almost com-
pletely ionized. The electron density of the solar wind is
3.5 × 106 m−3 and the temperature is 105 K. The ionization
potential of hydrogen is 13.6 eV.

3-9. A candle flame has a maximum temperature of ∼1600 K.
Find the degree of ionization of the flame and discuss whether
any plasma properties can be observed. Also find the Debye
length.

3-10. A cylindrical hot-water heater, initally OFF, has a vertical
temperature gradient of 50◦C m−1 increasing from bottom to
top. The heat source surrounding the cylinder is turned ON,
increasing the temperature at a rate of 1◦C s−1. What will be
the temperature change experienced by a rock, dropped into



References 83

the water at the top of the cylinder, that falls to the bottom at
a speed of 0.5 m s−1? The rock is dropped in at the same time
the heater is turned ON.
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C H A P T E R

4 Moments of the Boltzmann
equation
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Moments of Boltzmann
equation
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(MHD)
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Boltzmann
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4.1 Introduction

In deriving the Boltzmann equation in Chapter 3, we did not use
any physical principle other than the equation of motion relating the
particle acceleration to the Lorentz force. The rest of the derivation
was simply a matter of keeping a tally of the number of particles
into and out of a volume element in phase space. We also saw how
useful macroscopic information could be obtained by integrating
over the distribution function in velocity space. For example, the
number density is

N(r, t) =
∫

f (r, v, t)dv. (4.1)

The mean plasma velocity or “fluid” velocity is

u(r, t) ≡ 〈v〉 = 1
N(r, t)

∫
v f (r, v, t)dv. (4.2)

84
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In general, the average value of any quantity Q(r, v, t) is given by

Q(r, t) ≡ 〈Q〉 = 1
N(r, t)

∫
Q f (r, v, t)dv. (4.3)

All integrals are to be taken over the entire velocity space. It is
clear that knowing the distribution function gives one access to
nearly all relevant information in a plasma, even though the exact
trajectories of the constituent particles are not known. Under long-
term equilibrium conditions, the distribution function will become
the Maxwell–Boltzmann distribution. In principle the distribution
for non-equilibrium situations can be obtained by solving the
Boltzmann equation directly. Unfortunately, solving the Boltzmann
equation is usually not straightforward. Fortunately, however, we
are often not interested in the details of the particle distribution
function but simply need to know the macroscopic quantities (e.g.,
number density of particles, mean velocity, etc.) in physical (or con-
figuration) space. In other words, we seek the distribution only in
order to integrate over it and obtain the desired macroscopic values.
In this chapter we will show that under certain assumptions it is
not necessary to obtain the actual distribution function if one is
only interested in the macroscopic values. Instead of first solving
the Boltzmann (or Vlasov) equation for the distribution function
and then integrating, it is possible to first take appropriate integrals
over the Boltzmann equation and then solve for the quantities of
interest. This approach is referred to as “taking the moments of
the Boltzmann equation.” The resulting equations are known as
the macroscopic transport equations, and form the foundation of
plasma fluid theory.

The basic procedure for deriving macroscopic equations from
the Boltzmann equation involves multiplying it by powers of the
velocity vector v and integrating over velocity space. It is important
to realize that in performing such an integration we intrinsically
lose information on the details of the velocity distribution. This
is a further simplification of the type we have been making since
considering single-particle motions. In Chapter 3 we gave up knowl-
edge of individual particle trajectories and contented ourselves with
a description of likely positions and velocities. Here we will cede
information on the velocity distribution in order to obtain single-
value macroscopic quantities.

To carry out the necessary integrations, we need to know some-
thing about the behavior of the distribution function at large values
of |v|. Since no particle can have infinite velocity, it is physically
reasonable to assume that f falls off rapidly as |v| → ∞. This
assumption ensures that the various surface integrals containing
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f in the integrand vanish when extended over a sphere of radius
|v| → ∞ in velocity space.

4.2 The zeroth-order moment: continuity equation

The first of these transport equations is the continuity equation,
which in fact is a statement of conservation of charge and mass.
To evaluate the zeroth-order moment, we multiply (3.9) by v0 = 1
and integrate to find∫

∂ f
∂t

dv +
∫

(v · ∇r) f dv

+ q
m

∫
[(E + v × B) · ∇v] f dv =

∫ (
∂ f
∂t

)
coll

dv, (4.4)

where we note that dv = dvxdvydvz. We separately examine below
each term of (4.4). Recalling (3.5), we can see that the first term is

∂

∂t

∫
f (r, v, t)dv = ∂

∂t
N(r, t), (4.5)

whereas the second term is∫
(v · ∇r) f dv =

∫
vx

∂

∂x
f dv +

∫
vy

∂

∂y
f dv +

∫
vz

∂

∂z
f dv

= ∂

∂x

∫
vx f dv + ∂

∂y

∫
vy f dv + ∂

∂z

∫
vz f dv

= ∇r · [N(r, t)〈v〉]
= ∇r · [N(r, t)u(r, t)], (4.6)

where u(r, t) is the average plasma velocity or “fluid” velocity, and
where we have used the fact that vx and x are independent variables.
Note that in deriving the above we have used the fact that v and r
are independent variables, so that the operator ∇r can be taken out
of the integral on the variables dv. For the third term in (4.4), let us
consider the E and B terms separately. We have∫

(E · ∇v) f dv =
∫

∇v · ( f E)dv =
∮

Sv

f E · dsv = 0, (4.7)

where we have used the divergence theorem in velocity space (i.e.,
Sv is the area enclosing the velocity space volume over which we
integrate). The surface integral in (4.7) vanishes because when we
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take the surface to infinity its area increases as v2, while any physical
distribution function approaches zero much more quickly (e.g., a
Maxwellian distribution goes as e−v2

). The B term is∫
[(v × B) · ∇v] f dv =

∫
∇v · [ f (v × B)] dv −

∫
f ∇v · (v × B) dv

=
∮

Sv

f (v × B) · dsv −
∫

f ∇v · (v × B) dv = 0,

(4.8)

where we have used the fact that

∇(aA) ≡ A · ∇a + a ∇ · A

for any scalar a and vector A. The first term in (4.8) vanishes for
the same reason as (4.7), while the second term vanishes because
(v × B) is always perpendicular to ∇v, i.e., any given component of
the magnetic force is independent of the velocity component in the
same direction. The collision term in (4.4) also vanishes, i.e.,∫ (

∂ f
∂t

)
coll

dv =
[

∂

∂t

∫
f dv

]
= 0 (4.9)

if we assume that the total number of particles of the species con-
sidered must remain constant as collisions proceed. In other words,
the coordinates of the particles in configuration space are unaltered
by collisions, or equivalently, the number density of particles in an
element of volume in configuration space cannot be changed by
collisions.1 Collisions displace particles in velocity space but do not
alter their density in configuration space. Combining our results in
(4.5)–(4.9), we arrive at the continuity equation,

Continuity equation for
mass or charge transport

∂

∂t
N(r, t) + ∇r · [N(r, t)u(r, t)] = 0 ,

(4.10)

which is simply a statement of the conservation of particles.
Equation (4.10) can be simply deduced from basic fluid-dynamical
principles by considering the average flow of particles in and out

1 We are for now implicitly neglecting recombination or ionization events, which can result
in the removal of particles from the distribution or the creation of new particles. For
example, electrons can recombine with ions, leading to the removal of one electron and
one ion from their respective distributions, while creating a new neutral molecule, thus
changing the distribution function of the neutrals. We will consider these processes in
Section 4.2.1.
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of an enclosed volume. In this context, the first term represents the
rate of change of particle concentration within the volume, while
the second term represents the divergence of particles or the flow of
particles out of the volume. The continuity equation simply states
that these two processes must balance under the stated assumption
that no new particles are created or destroyed. By multiplying (4.10)
by m or q, we can obtain the equations describing conservation
of mass or charge, respectively. The similarity of the continuity
equations for mass and charge so obtained implies that the quantity
�≡ mNu is analogous to electric current density J=q Nu. Indeed,
�=mNu is known as the particle current, more commonly referred
to as “flux.”

4.2.1 Closer consideration of collisions and conservation of particles

In the previous section it was assumed that the total number of
of particles of any type does not change. Under this assumption
collisions do not affect the continuity equation. It is important to
note, however, that the number of charged particles is not always
conserved in an ionized gas. In a partially ionized gas consisting of
electrons, ions, and neutrals, various mechanisms can lead to loss
or gain of particles. These processes are naturally described within
the paradigm of collisions since such particle–particle interactions
require a collision of some sort.

Collision phenomena can be broadly divided into two categories,
elastic and inelastic. In elastic collisions, mass, momentum, and
energy are conserved and there is neither creation nor annihilation
of particles. An elastic collision is one between hard spheres, anal-
ogous to that between two steel balls; they do not change shape or
gain mass, but simply exchange momentum and energy. This is the
type of collision that was considered in Equation (4.9).

In an inelastic collision between two particles, either or both
of the particles may have their internal states changed and the
total number of particles may increase or decrease. The collision
between a bullet and a wall into which it is embedded on impact
is an example of an inelastic collision. In inelastic collisions, an
electron may recombine with an ion to form a neutral atom, or it
may attach itself to a neutral particle to form a much heavier (than
an electron) negative ion. Collisions may also raise the energy state
of electrons in an atom so that new electrons are stripped off, in
a process referred to as ionization. If only one species of positive
ions is present in a plasma, then the rate of recombination is pro-
portional to numbers of both electrons and ions, which are equal
because of macroscopic neutrality of the plasma. Thus, the loss
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rate due to recombination processes is given by −αN2, where α is
the recombination rate, usually determined experimentally. The rate
of electron attachment is proportional to the number densities of
electrons and neutral particles. However, in a weakly ionized gas
the neutral density can be considered to be constant, so that the
loss rate due to attachment processes is given by −νa N, where νa
is the attachment rate. The rate at which electrons are added to
the system as a result of ionization is given by +νi N, where νi is
the ionization rate. Thus, a more general version of the continuity
equation (4.10) is

∂ N
∂t

+ ∇ · [Nu] = −α N2 − νa N + νi N. (4.11)

Example 4-1 Electron density in the ionosphere: day versus night
Above an altitude of about 80 km the upper atmosphere contains
significant numbers of free electrons and ions because of ioniza-
tion by the Sun and cosmic rays. This lowest region of ionization
is known as the ionospheric D-region, and its properties change
remarkably between day and night. At night the ionization rate,
which is due only to cosmic rays, is νicosmic = 0.007 s−1. During
the day the Sun’s rays are responsible for photoionization at a
rate of νi photo = 0.44 s−1. The electron–ion recombination rate is
α = 10−10 m3 s−1 and the attachment rate is νa = 0.0018 s−1 for
both day and night. Ignoring any flow, find the ambient (steady-
state) electron densities for night and day.

Solution: We can use the steady-state version of Equation (4.11)
with zero fluid velocity, in which all ∂

∂t = 0 and u = 0:

0 = −αN2
e − νa Ne + νi Ne = Ne(−αNe − νa + νi )

Ne = νi − νa

α
.

The ionization rate during the day is νiday = νi photo + νicosmic =
0.447 s−1 and during the night it is νinight = νicosmic = 0.007 s−1,
making the ambient electron densities

Ne(day) = (0.447 − 0.002) s−1

10−10 m3 s−1 = 4.45 × 109 m−3

Ne(night) = (0.007 − 0.002) s−1

10−10 m3 s−1 = 5.00 × 107 m−3.
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4.3 The first-order moment: momentum transport equation

The first-order moment of the Boltzmann equation is obtained by
multiplying (3.9) by m v and integrating to find

m
∫

v
∂ f
∂t

dv + m
∫

v (v · ∇r) f dv + q
∫

v [(E + v × B) · ∇v] f dv

=
∫

mv
(

∂ f
∂t

)
coll

dv. (4.12)

The first term gives

m
∂

∂t

∫
v f (r, v, t) dv = m

∂

∂t
[N(r, t) u(r, t)], (4.13)

where we have used (4.2). Next consider the third term, substituting
G = (E + v × B):

q
∫

v [G · ∇v] f dv = q
∫ [

vGx
∂

∂vx
f + vG y

∂

∂vy
f + vGz

∂

∂vz
f
]

dv.

(4.14)

We can examine each term of (4.14) separately; integrating by parts,
we find

q
∫

vGx
∂ f
∂vx

dv = q
∫

Gx dvy dvz

∫
v

∂ f
∂vx

dvx

= q
∫

Gx dvy dvz

[
v f

∣∣∣∣∞−∞
−

∫
f

∂

∂vx
v dvx

]

= −q
∫

Gx f
∂

∂vx
v dvx dvy dvz

= −q N(r, t)
〈

∂

∂vx
[Gxv]

〉
, (4.15)

where we have once again observed that the distribution f would
vanish much faster than |v| as vx → ∞. Noting that the other terms
of (4.14) will reduce to similar expressions, we can write

q
∫

v [G · ∇v] f dv = −q N(r, t) 〈∇v · (Gv)〉, (4.16)
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where the term (Gv) is a tensor product or dyad.2 Using the
property

∇ · (Gv) = v (∇ · G) + (G · ∇) v,

we have

∇v · (Gv) = v
[
∂Gx

∂vx
+ ∂G y

∂vy
+ ∂Gz

∂vz

]
︸ ︷︷ ︸

= 0 since Gi is independent of vi

+
[

Gx
∂

∂vx
+ G y

∂

∂vy
+ Gz

∂

∂vz

]
v

= x̂

⎡⎢⎢⎢⎢⎣Gx
∂vx

∂vx
+ G y

∂vx

∂vy
+ Gz

∂vx

∂vz︸ ︷︷ ︸
= 0 since vi is independent of v j

⎤⎥⎥⎥⎥⎦

+ ŷ

⎡⎢⎢⎢⎣Gx
∂vy

∂vx︸ ︷︷ ︸
= 0

+G y
∂vy

∂vy
+ Gz

∂vy

∂vz︸ ︷︷ ︸
= 0

⎤⎥⎥⎥⎦

2 The tensor product or dyad AB of two vectors is defined as

AB ≡
⎡⎢⎣Ax Bx Ax By Ax Bz

Ay Bx Ay By Ay Bz

Az Bx Az By Az Bz

⎤⎥⎦ .

The tensor dot-product is itself a vector, defined as

(AB) · C ≡

⎡⎢⎢⎣
Ax Bx Ax By Ax Bz

Ay Bx Ay By Ay Bz

Az Bx Az By Az Bz

⎤⎥⎥⎦
⎡⎢⎣Cx

Cy

Cz

⎤⎥⎦ ;

C · (AB) ≡ [
Cx Cy Cz

]⎡⎢⎣Ax Bx Ax By Ax Bz

Ay Bx Ay By Ay Bz

Az Bx Az By Az Bz

⎤⎥⎦ .

With these definitions, it can be shown that

(AB) · C = A(B · C) = (C · B)A

C · (AB) = (C · A)B

∇ · (AB) = B(∇ · A) + (A · ∇)B.
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+ ẑ

⎡⎢⎢⎢⎣Gx
∂vz

∂vx
+ G y

∂vz

∂vy︸ ︷︷ ︸
= 0

+Gz
∂vz

∂vz

⎤⎥⎥⎥⎦
= x̂ Gx

∂vx

∂vx
+ ŷ G y

∂vy

∂vy
+ ẑ Gz

∂vz

∂vz
= G, (4.17)

where the derivatives of the components of G are zero because Gi
is independent of Vi , and all cross-derivatives are zero because all
vi and vi are independent of v j for i �= j . We can therefore rewrite
(4.16) as

−q N(r, t)
〈∇v · (G v)

〉 = −q N(r, t) 〈G〉 = −q N(r, t) 〈(E + v × B)〉
= −q N(r, t) (E + u × B). (4.18)

This is the final form of the third term of (4.12). We are now ready
to consider the second term of (4.12). Noting that r and v are
independent variables, we have

m
∫

v (v · ∇r) f dv

= m
∫

∇r · ( f v v) dv = m ∇r ·
∫

f v v dv = m ∇ · [N〈v v〉],

where v v is once again a tensor product. At this point, it is useful
to separate the velocity v into an average (i.e., fluid) velocity u and a
random (thermal) velocity w, i.e., v = u + w. We then have

m ∇r · [N〈v v〉] = m ∇r · (Nuu) + m ∇r · [N〈w w〉]
+ m ∇r · N[u〈w〉 + 〈w〉u]. (4.19)

The final term on the right-hand side of (4.19) is zero, since 〈w〉 ≡ 0.
The first term in (4.19) can be written as

m ∇r · (Nuu) = m u∇r · [Nu] + m N[u · ∇r]u. (4.20)

The second term on the right-hand side of (4.19) contains the
quantity mN〈w w〉, which has dimensions of energy density (J m−3),
or force per unit area, or pressure. This quantity is defined as the
pressure tensor or dyad and is denoted by �:

� = m N 〈w w〉 =
⎡⎢⎣pxx pxy pxz

pyx pyy pyz

pzx pzy pzz

⎤⎥⎦s.
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Note that � is in fact a measure of the thermal motion in a fluid. If
all particles moved with the same steady velocity v, we would have
w = 0 and thus � = 0 (i.e., a “cold” plasma). The components of �

represent transport of momentum. For example, the top row of �,
namely pxx, pxy, and pxz, represents the three velocity components
of the x component of momentum. The three rows of � together
constitute a set of three flux vectors associated with momentum
transfer. Noting that pxy = mN〈wxwy〉 and pyx = mN〈wywx〉 =
pxy, it is clear that � is a symmetric tensor, with only six indepen-
dent components. The diagonal components of this tensor have the
meaning of normal pressure, e.g., pxx is the force per unit area in the
x direction exerted on a plane surface in the gas normal to the x axis.
The off-diagonal elements represent the shearing stresses, e.g., pyx is
the force per unit area in the x direction exerted on a plane surface
perpendicular to the y axis. In an ordinary fluid, the off-diagonal
elements are associated with viscosity arising from the interaction
of the fluid with the walls of pipes or other confining boundaries.
In plasmas similar effects can occur because of the gyrating motion
of the particles, transverse to the bulk fluid motion. To appreciate
the significance of the components of the pressure tensor, we can
consider the pressure across three orthogonal planes at some point
A in the gas, as shown in Figure 4.1a. In this context, it is useful
to remember that pressure is simply force per unit area, which is
also the rate of transfer of momentum. In other words, pressure in
a fundamental sense is momentum flux and can as such be defined
at any point without actually having a physical surface.

pxx
pxy

pxz

pyy

pyz

pyx

pzx
pzy

pzz

z

x
y

A
dx

dz

dy

x +
 dx

vx

(b)(a)

y

x

z

vy

Figure 4.1 Pressure tensor.
(a) Components of the pressure
tensor on three orthogonal
planes. (b) Differential element
of volume to illustrate
momentum flux.
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Collecting all the terms of (4.12) together (i.e., (4.13), (4.18), and
(4.20)) we have

m
∂

∂t
[N u] + m u∇r · [Nu]

+ m N[u · ∇r]u + ∇ · � − q N(E + u × B) =
∫

mv
(

∂ f
∂t

)
coll

dv︸ ︷︷ ︸
Si j

.

The collision term will be denoted by Si j and represents the rate
of change of momentum density due to collisions between different
plasma species i and j . Note that collisions between like particles
cannot produce a net momentum change of that species since the
total average momentum of the species will remain unchanged.
Upon further manipulation, and using (4.10), we can derive the final
version of the momentum transport equation:

m
∂

∂t
[N u] + m u∇r · [Nu] + m N[u · ∇r]u

= −∇ · � + q N(E + u × B) + Si j

mN
∂u
∂t

+ mu
∂ N
∂t

+ mu∇r · (Nu) + m N[u · ∇r]u

= −∇ · � + q N(E + u × B) + Si j

mN
∂u
∂t

+ m N[u · ∇r]u︸ ︷︷ ︸
mN du

dt

+u
[
∂ N
∂t

+ m∇r · (Nu)

]
︸ ︷︷ ︸
= 0 (continuity equation)

= −∇ · � + q N(E + u × B) + Si j

Momentum
transport
(force balance)

mNi
du
dt

= −∇ · �i + q Ni (E + u × B) + Si j .

(4.21)

Equation (4.21) is a statement of conservation of momentum and
represents the force balance in this component of the plasma. Note
that there is an equation like (4.21) for each of the plasma species as
represented by the subscript i . The left-hand side of Equation (4.21)
can be recognized as the familiar mass-times-acceleration term,
where the acceleration in question is that of a fluid element. The
terms on the right-hand side represent forces arising from pressure,
the Lorentz force, and collisions, respectively.
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4.3.1 The pressure and collision terms

Fundamentally, the momentum density (i.e., mu) of a fluid element
can change not only because of external forces acting on the par-
ticles that constitute the fluid but also because of motion in and
out of the element of particles which carry momentum with them.
Consider (with the help of Figure 4.1b) the flux in the x direction of
y-directed momentum. This flux is given by the number of particles
per unit area per second passing through the surface of constant x,
times the momentum in the y direction, mvy, carried by each par-
ticle. The differential number of particles in the phase space element
dvdr is simply f (r, v)dvdr. This element of phase space “empties
out” in the x direction in a time interval dt = dx/vx. The differential
number of particles carried per second across the surface of con-
stant x by this element of phase space is f dvdr/dt = vx f dvdydz.
These specific particles carry y-directed momentum mvy, so that
the differential amount of momentum flux in this direction carried
per second across a surface of constant x by this element of phase
space is mvyvx f dvdydz. To obtain the total momentum flux, i.e.,
the total quantity of y-directed momentum crossing a surface of
constant x per unit area per second, we divide out the differen-
tial area dydz and integrate over velocity space. The total flux of
y-directed momentum in the x direction becomes

∫
mvyvx f dv,

which is simply the ensemble average, mN〈vyvx〉. The rate of change
of y-directed momentum, averaged over all the particles, is then
given as the divergence of fluxes of momentum across the various
surfaces of the volume element. In other words,

∂(mNuy)

∂t
= − ∂

∂x

(
mN〈vyvx〉

)
− ∂

∂y

(
mN〈vyvy〉

) − ∂

∂z

(
mN〈vyvz〉

)
,

which is simply the y component of the −∇ · � term in (4.21).
In general, Equation (4.21) is only useful in those cases where the
distribution of random velocities is sufficiently well behaved that
the pressure tensor � can be represented in a relatively simple
way. In the simplest case, the distribution of random velocities
w is isotropic, so that the diagonal entries of � vanish, and the
three diagonal entries are all equal to one another. In such a case
we have

∇ · � = ∇ p,
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where p is the scalar pressure.3 In another simplification of the
pressure tensor, the off-diagonal entries vanish but the diagonal
entries are all different. This situation may arise in the absence of
collisions, when compression of the gas increases the root-mean-
square random velocity in that direction without affecting the mean
velocities in the other directions. Similar effects can also occur in
magnetized plasmas. Neglecting collisions and assuming isotropic
conditions, the momentum transport equation can be written in its
simplest form as

mN
[
∂u
∂t

+ (u · ∇r)u
]

= −∇ p + qN(E + u × B), (4.22)

which is reminiscent of the Navier–Stokes equation of ordinary fluid
mechanics,

ρm

[
∂u
∂t

+ (u · ∇r)u
]

= −∇ p + ρm νv ∇2u, (4.23)

where ρm is the mass density and νv is the kinematic viscosity
coefficient. The similarity of (4.22) and (4.23) is the basis for the
fluid treatments of plasmas, which we will study in the next few
chapters.

The collision term Si j represents the total momentum transferred
(gained) by species i via its collisions with species j . If there is
only one species this term will by definition be zero since, as stated
before, the total momentum change per unit volume for a given
particle species will not be changed by collisions between same-
species particles. However, a plasma contains ions and electrons
and can also contain large populations of neutral molecules. If we
consider only elastic collisions, we can approximate the collision

3 Note that the general form of ∇ · � is

∇ · � ≡
[

∂
∂x

∂
∂y

∂
∂z

]⎡⎢⎣pxx pxy pxz

pyx pyy pyz

pzx pzy pzz

⎤⎥⎦ =

⎡⎢⎢⎢⎣
∂pxx
∂x + ∂pyx

∂y + ∂pzx
∂z

∂pxy
∂x + ∂pyy

∂y + ∂pzy
∂z

∂pxz
∂x + ∂pyz

∂y + ∂pzz
∂z

⎤⎥⎥⎥⎦ .

Since p= pxx = pyy = pzz, the above expression reduces to

∇ · � =

⎡⎢⎢⎣
∂p
∂x
∂p
∂y
∂p
∂z

⎤⎥⎥⎦ =

⎡⎢⎢⎣
∂
∂x
∂
∂y
∂
∂z

⎤⎥⎥⎦ p = ∇ p.
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term as proportional to the difference between the particle species’
mean velocities:

Si j = −
∑

j

mNiνi j (ui − u j ). (4.24)

The νi j term is called the collision frequency between particles of
type i and j , and has units of s−1. Equation (4.24) can be used
when the difference in mean velocities is not too great and when
each particle species has a Maxwell–Boltzmann velocity distribu-
tion. A further simplification can be made if the dominant colli-
sion process is between electrons and neutral molecules. This is the
case in low-pressure gas discharges and in the lower heights of the
ionosphere. The neutral particles are assumed to be stationary on
average (u j = 0), and if we consider only one neutral species the
momentum transport equation can be reduced to

mN
du
dt

= q NE − ∇ p − mNν u, (4.25)

where the background magnetic field is assumed to be negligible, as
is the case in highly collisional plasmas (see Problem 4-3).

Example 4-2 Fluorescent lamp
Common fluorescent lamps contain a low-pressure plasma
called a glow discharge. As shown in Figure 4.2, the gas in the
tube is partially ionized by the application of a voltage across the
electrodes. The free electrons then impact a small population of
mercury atoms, causing ultraviolet (UV) radiation. When the UV

+
Positive column (low-pressure plasma)

Cathode Anode

1 mm 120 cm

Te ~ 11 000 K   Ne ~ 5 × 1017 m–3

120 V

0

Sheath

Figure 4.2 Simplified fluorescent lamp. A fluorescent lamp uses a low-pressure plasma to excite
UV radiation that illuminates a phosphorous coating on the glass tube. The electric field in the main
discharge is close to constant but has a sharp gradient near the cathode. Such lamps operate in the AC
mode so anode and cathode switch during each cycle.
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rays hit the phosphorous coating on the tube, white light is
emitted. The majority of gas molecules in the tube remain as
neutrals. Although the behavior of a glow discharge can be very
complex, the main features in a typical lamp include a small
plasma sheath around the cathode that is devoid of electrons, and
a larger region of constant electric field known as the positive
column that is responsible for most of the UV generation. The
sheath is formed because the electrons are more mobile and are
repelled from the cathode.4 Almost all of the current flowing
through the lamp is carried by electrons. Assuming the simpli-
fied model shown in Figure 4.2 and the following operational
parameters, find the electric field in the positive column and the
magnitude of the electron pressure term at the edge of the sheath
region under steady-state conditions: power = 40 W; voltage =
120 V; length = 120 cm; diameter = 3.6 cm; Ne = 5 × 1017 m−3;
Ngas (argon) = 1023 m−3; Te = 11 000 K. The collision frequency
between electrons and argon atoms can be estimated at ν =
NAr

(
2.58 × 10−12 T−0.96

e + 2.25 × 10−23 T2.29
e

)
Hz [3].

Solution: Since the neutral density is much greater than the elec-
tron density we can use Equation (4.25). Within the positive
column the electron temperature and density are constant so the
pressure term (∇ p) is zero, and for steady-state conditions there
are no changes in time. Equation (4.25) thus simplifies to

Epc = meνu
q

,

where Epc is the electric field in the positive column. The collision
frequency can be evaluated as

ν = 1023 [2.58 × 10−12 (11 000)−0.96

+ 2.25 × 10−23 (11 000)2.29] = 4 × 109 s−1.

The mean fluid velocity u will depend on the total current I
flowing through the tube:

I = P/V = (40 W)/(120 V) = 333 mA.

Assuming a uniform current density J = I/A, where A is
the area of the tube cross-section, we can evaluate u as
4 A more accurate description of a fluorescent lamp includes a total of six separate

regions: the cathode dark space (sheath), negative glow, Faraday dark space, positive
column, anode glow, and anode dark space [1, 2].
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u = J
qNe

= (0.333 A)

(0.001 m2)(1.6 × 10−19 C)(5 × 1017 m−3)

= 4163 m s−1.

Plugging in to the expression for electric field above yields:
Epc = 93.84 V m−1.

At the positive column-sheath boundary there will be a density
gradient in the electron population since there are virtually no
electrons in the sheath region. The density gradient will create
a non-zero pressure term (∇ p) which will need to be balanced
by a stronger electric field in this region. We can obtain a crude
estimate of Es , the electric field in the sheath, by dividing the
remaining voltage drop (outside of the positive column) by the
width of the sheath (1 mm):

Es = 120 V − (0.9384 V/cm)(119.9 cm)

1 mm
= 7486 V m−1.

Using Equation (4.25) again we have

∇ p = q NeEs − me Neνu = (1.6 × 10−19)(5 × 1017)(6000)

− (9.1 × 10−31)(5 × 1017)(4 × 109)(4163) = 591.3 N m−3,

where variations in other parameters have been neglected for
simplicity.

4.4 The second-order moment: energy transport equation

The second-order moment of the Boltzmann equation, i.e., the
equation of energy conservation, is obtained by multiplying (3.9)
by 1

2mv2 and integrating over velocity space. For ease of discussion
we will not present the derivation here but will instead refer the
interested reader to Appendix A. The energy-conservation equation
can be written in several forms, one of which is

∂

∂t

[
N

1
2

mu2
]

+ ∇ ·
[

N
1
2

m〈u2u〉
]

− Nq〈E · u〉

= m
2

∫
u2

(
∂ f
∂t

)
coll

du︸ ︷︷ ︸
Scoll

, (4.26)
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which can be interpreted in a manner quite similar to (4.10) and
(4.21), i.e., the first term is the rate of change of energy density,
the second is the energy loss rate per volume element due to the
energy flux (or heat transfer), and the third is the power fed into the
system by the electric field (i.e., E · J), noting that no work is done
by the magnetic field. Note also that the collision term is non-zero
since energy transfer between species occurs in collisions, although
the total energy in the system is conserved. The energy-conservation
equation can be also written as

∂
[1

2 Nm〈w2〉]
∂t

+ ∇·
(

1
2

N m 〈w2〉 u
)

+ (� · ∇) · u + ∇ · q = Scoll.

For an isotropic plasma the pressure tensor � reduces to the scalar
pressure p; considering that the average energy of the plasma is
1
2m〈w · w〉= 3

2kBT and using p= NkBT, we find 3
2 p= 1

2 Nm〈w · w〉,
which is the energy density (in J m−3). The energy conservation
equation then reduces to

∂
(3

2 p
)

∂t
+ ∇·

(
3
2

p u
)

− p ∇ · u + ∇ · q = Scoll. (4.27)

The quantity 3
2 pu represents the flow of energy density at the

fluid velocity, or the macroscopic energy flux (in units of W m−2).
The third term, p∇ · u (in W m−3), represents the heating or cool-
ing of the fluid due to compression or expansion of its volume.
The new quantity q is the heat-flow (or heat-flux) vector (in
W m−2), which represents microscopic energy flux and is related
to the particle random velocity by q = (N/2)m〈w2w〉. For steady-
state, low-pressure discharges, the macroscopic energy flux is
balanced against the collisional processes, resulting in a simpler
equation,

∇·
(

3
2

p u
)

= Scoll. (4.28)

4.5 Systems of macroscopic equations: cold- and warm-plasma models

It is worthwhile to review the moments of the Boltzmann equation
that we have derived so far. Each of the moments is a transport
equation describing the dynamics of a quantity associated with a
given power of v:
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Continuity equation
mass or charge transport

∂ N
∂t

+ ∇ · [Nu] = 0 (4.29)

Momentum
transport mN

[
∂u
∂t

+ (u · ∇)u
]

= −∇ · � + q N(E + u × B) + Si j

(4.30)

Energy
transport

∂

∂t

[
N

1
2

mu2
]

+ ∇ ·
[
N

1
2

m〈u2u〉
]

− Nq〈E · u〉 = m
2

∫
u2

(
∂ f
∂t

)
coll

du︸ ︷︷ ︸
Scoll

.

(4.31)

We could in principle proceed by evaluating higher and higher-
order moments of the Boltzmann equation. However, moments
that involve the third or higher powers of the particle velocity v

lack simple physical meaning and are generally useful in only spe-
cialized cases. Accordingly, we will not evaluate or discuss higher-
order moments. The equations of conservation of particle number,
momentum, and energy are useful in making general statements
about plasmas, but they cannot be considered as a closed system of
plasma equations. It is worth remembering that our motivation in
finding the moments of the Boltzmann equation was to avoid having
to solve this equation directly for the velocity space distribution
function f (r, v, t). So instead of attempting to solve for f (r, v, t)
explicitly, we set out to determine its moments. In calculating each
moment of the Boltzmann equation, however, we always obtained
an equation that contained the next moment. In the zeroth-order
moment the change in particle density was expressed as a function
of the mean fluid velocity. In the first-order moment, the change
in mean fluid velocity was expressed as a function of the pressure
tensor. The second-order moment is an expression for the change
in the pressure tensor, but brings in a new heat-flow term. Every
time we obtain a new equation a new unknown appears, so that
the number of equations is never sufficient for the determination
of all the macroscopic quantities. The number of unknowns always
exceeds the number of equations. Because of this, it is necessary to
truncate the system of equations at some point in the hierarchy of
moments by making simplifying assumptions. Among the several
different sets of macroscopic equations used to describe plasma
dynamics, the two most commonly used are the so-called cold-
plasma and warm-plasma models, briefly described below.
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4.5.1 The cold-plasma model

The simplest set of macroscopic equations can be obtained by intro-
ducing the truncation at the momentum-transfer equation, (4.30).
The physical assumption adopted is to neglect the thermal motions
of the particles, which is achieved by setting the kinetic pres-
sure tensor to zero, i.e., � = 0. The only remaining macroscopic
variables are then the number density N and fluid velocity u, which
are described by the two equations

∂ N
∂t

+ ∇ · [Nu] = 0 (4.32a)

mN
[
∂u
∂t

+ (u · ∇)u
]

= q N(E + u × B) + Si j . (4.32b)

In general, a suitable method for evaluation of the collision term
Si j is needed in order for (4.32) to be useful in analysis of plasma
dynamics. One common method is to view the collisions as an
impediment to motion, causing a rate of decrease in momentum
as determined by an “effective” collision frequency, in which case
we use

Si j = −m N νeff u.

4.5.2 The warm-plasma model

An alternative set of macroscopic equations is obtained by intro-
ducing truncation at the energy-conservation equation. Thermal
motions are accounted for but it is assumed that the kinetic pressure
tensor is diagonal, with equal diagonal terms, so that ∇ · � = ∇ p.
Physically, this means that viscous forces are neglected. We then
have

∂ N
∂t

+ ∇ · [Nu] = 0 (4.33a)

mN
[
∂u
∂t

+ (u · ∇)u
]

= −∇ p + q N(E + u × B) + Si j . (4.33b)

The system (4.33) still does not form a closed set, since the
scalar pressure is now a third variable. In principle, the energy-
conservation equation (4.27) is needed to determine p, but it
contains a fourth unknown, q. However, it is often possible to
truncate the system of equations at this point by adopting simpli-
fying assumptions which either make the energy-transport equation
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unnecessary or reduce it to simpler forms expressed in terms of p.5

The simplest method of truncation is to assume a thermodynamic
equation of state in order to relate p to the number density N. The
actual form of the equation of state varies from case to case. The
two most common equations of state are the so-called isothermal
and adiabatic ones. The isothermal equation of state is

p = NkBT or ∇ p = kBT∇N, (4.34)

and holds for relatively slow time variations, allowing temperatures
to reach equilibrium. In this case, the plasma fluid can exchange
energy with its surroundings, and the simpler version of the energy-
conservation equation, (4.28), is also required. Alternatively, we can
use the adiabatic equation of state given by

pN−γ = C or
∇ p

p
= γ

∇N
N

, (4.35)

where C is a constant and γ is the ratio of specific heat at constant
pressure to that at constant volume. Typically, γ = 1 + 2/nd , where
nd is the number of degrees of freedom. The adiabatic relation
holds for fast time variations, as in the case of plasma waves, when
the plasma fluid does not exchange energy with its surroundings;
thus a separate energy-conservation equation is not needed, since
it leads to (4.34). The use of the adiabatic gas law to close the
system of equations is equivalent to assuming that there is no energy
interchange due to collisional interactions and that there is no heat
flow. In cases where the explicit use of the energy conservation
equation is required, the heat-flow (or heat-flux) vector q would be
the outstanding unknown, and we would need to adopt a physical
assumption in order to close the system of moment equations. For
electrons, the approximation most commonly used is one which is
derived from thermodynamics:

q = −K ∇T,

where K is the thermal conductivity.

4.6 Summary

In this chapter we set out to avoid solving the Boltzmann equa-
tion for the velocity distribution function since this is often not
straightforward and since the averages obtained by integrating over

5 For simplifications particularly suited to ionospheric and magnetospheric plasmas, see
Section 2.4.5 of [4].
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the distribution function are more useful in practical applications.
Instead, we set out to solve for the moments of the distribution,
which are averages of different powers of particle velocity. The
moments of the distribution function represent average quantities
such as particle density (zeroth-order moment) and mean veloc-
ity (first-order moment) and kinetic energy (third-order moment).
These average bulk quantities are the primary variables in modeling
a plasma as a fluid, which we will discuss in the next chapters.
Taking any moment of the Boltzmann equation yields an expression
that contains the next-highest moment. In principle, the velocity
distribution function is known once we know all of its moments.
However, finding a large number of successively higher moments is
not practical.

The power of the moment approach lies in truncating a finite
set of moment equations using an approximation for the highest
moment appearing in the system. Such a truncation yields a
closed set of equations that can be solved, and are known as a
plasma model. We presented two of the most commonly used
plasma models: the cold- and warm-plasma approximations. In the
cold-plasma model, thermal motions are assumed to be negligible,
which means that the pressure term in the moment equations is
equal to zero. In the warm-plasma model, thermal motions are
taken into account using either an isothermal or an adiabatic
approximation, and the heat-flow term is set to be zero. In the
warm-plasma model the pressure term is a scalar value like that
used to describe non-ionized gases. Although not covered in this
text, it is possible to develop more complicated plasma models
where truncation is done at higher-level moments.

4.7 Problems

4-1. Using the ionospheric parameters given in Example 4-1, use a
numerical technique to find how much time after sunrise it will
take the electron density to change from its nighttime ambient
value to its daytime value. Make a plot of the electron density
versus time. You may ignore any plasma flows.

4-2. In a laboratory plasma experiment a plasma density of 1019 m−3

is created by a rapid burst of ultraviolet radiation. The plasma
density is observed to decay to half of its original value in
10 ms. Find the value of the recombination coefficient να,
assuming that attachment is negligible.

4-3. The strength of the Earth’s magnetic field at the surface is
approximately 30μT. Show that this field has a negligible
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effect on the physics of the fluorescent lamp discussed in
Example 4.2.

4-4. For the fluorescent lamp discussed in Example 4.2, calculate
the Debye length for the electrons in the positive column region
and compare it to the dimensions of the lamp.

4-5. An engineer proposes to double the length of the 120 cm fluor-
escent lamp in Example 4-2. If making the tube longer causes
the electric field in the positive column to drop by a factor of
two, calculate the power the lamp will draw if the electron and
gas density, temperature, and voltage all remain the same.

4-6. Consider the one-dimensional plasma configuration shown
below, which is clearly not in equilibrium. Calculate an electric
field that could be used to maintain the density profile, assum-
ing mobile electrons and stationary ions.

1018 m–3

0 1 cm
Distance

Pl
as

m
a 

de
ns

ity

99 cm 100 cm

4-7. Consider a 200 V m−1 electric field applied to a partially
ionized plasma with an electron density of 1015 m−3. The
effective collision frequency for the electrons is 3.5 GHz. Using
the cold-plasma model and ignoring ion motion, (a) find the
steady-state electron fluid velocity; (b) use the energy trans-
port equation to find the energy dissipated, ignoring convective
terms and interactions with other species.
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5 Multiple-fluid theory of plasmas
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5.1 Introduction

In this chapter we begin the treatment of plasmas using fluid
theory. Practically speaking, a fluid approach is nothing more than
a description of the dynamics of bulk properties of a plasma, and
in this context can be characterized as a rather crude description
of a medium that is composed of very large numbers of individ-
ual particles. However, despite its inherent simplifications, the fluid
approach is remarkably successful in describing plasma behavior
and is perhaps the most widely used treatment of plasma phenom-
ena. Most of the remaining topics in this text, with the exception
of hot plasmas, are founded on a fluid description. Fluid theory
follows directly from the moments of the Boltzmann equation that
were derived in the previous chapter. We begin by presenting a
description of a plasma as two interpenetrating fluids of electrons
and ions. In Chapter 6 a single-fluid description will be introduced.
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5.2 Complete set of two-fluid equations

Using a truncated set of moment equations, we can write the com-
plete set of electrodynamic equations consisting of the continuity
and momentum equations (4.29) and (4.30) and Maxwell’s equa-
tions. For simplicity, we consider a fully ionized, isotropic (i.e.,
∇ · � = ∇ p), and collisionless (i.e., Sie or Sei = 0) plasma with only
two species: electrons and ions. We have

me Ne

[
∂ue

∂t
+ (ue · ∇)ue

]
= −∇ pe + qe Ne(E + ue × B) (5.1a)

mi Ni

[
∂ui

∂t
+ (ui · ∇)ui

]
= −∇ pi + qi Ni (E + ui × B) (5.1b)

∇ × E = −∂B
∂t

(5.1c)

ε0 ∇ · E = Ni qi + Neqe︸ ︷︷ ︸
ρ

(5.1d)

1
μ0

∇ × B = Ni qi ui + Neqeue︸ ︷︷ ︸
J

+ ε0
∂E
∂t

(5.1e)

∇ · B = 0 (5.1f)

∂ Ne

∂t
+ ∇ · [Ne ue] = 0 (5.1g)

∂ Ni

∂t
+ ∇ · [Ni ui ] = 0 (5.1h)

pe = kBTe Ne or pe = Ce Nγ
e (5.1i)

pi = kBTi Ni or pi = Ci Nγ

i . (5.1j)

Note that the velocities in question are those of fluid elements
expressed as u, as opposed to the velocities of individual particles
expressed as v in previous chapters. The system in (5.1) constitutes
four vector equations ((5.1)a, b, c, e) plus six scalar ones, amounting
to a total of 18 scalar equations. On the other hand, Equations
(5.1) contain four scalar unknowns (pe, pi , Ne, Ni ), and four vector
unknowns (ui , ue, E, B), amounting to a total of 16 unknowns.
However, one of the two continuity equations (5.1g) and (5.1h) is
redundant, since it can be derived by using the other and (5.1d),
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together with the divergence of (5.1e). Also, (5.1f) is redundant,
since it can be derived from (5.1c). Thus, we actually have 16 scalar
equations and 16 scalar unknowns, providing a self-consistent set
of equations that describe the dynamics of the electron and ion
fluids under the influence of electromagnetic fields in a fully ionized,
collisionless, isotropic, two-species plasma. The two-fluid model
described by these equations is applicable to the dynamics of the
plasma on all time scales, ranging from the rapid motions of elec-
trons

(
e.g., plasma oscillations at frequencies comparable to ωpe =√

Neq2
e /(ε0me)

)
, and the much slower motions of ions

(
occurring at

time scales comparable to 1/ωpi , where ωpi =
√

Ni q2
i /(ε0mi )

)
. We

will use Equations (5.1) in later chapters to derive the properties
of electromagnetic waves which exist in such plasmas over a wide
range of frequencies. Here, we will consider two interesting aspects
of fluid motions, namely fluid drifts perpendicular to B and parallel
pressure balance.

Example 5-1 Plasma discharge for IC manufacture
The manufacture of integrated circuits (IC) involves etching with
plasmas, typically produced between two electrodes, as shown
in Figure 5.1 [1]. The time-averaged electron and ion densi-
ties between the electrode plates are shown in the graph; we
approximate their distribution using the following polynomial
expressions:

Ni (x) = 1016
[(

−6.803 × 108
)

x4 +
(

1.361 × 107
)

x3

+
(
−9.809 × 104

)
x2 + 300.6x + 0.712

]
m−3

Ne(x) = 1016
[(

−17.69 × 108
)

x4 +
(

3.538 × 107
)

x3

+
(
−25.43 × 104

)
x2 + 774.0x + 0.207

]
m−3,

where x is in units of m. Calculate and plot the time-averaged
electric field and potential across the plasma, assuming both
electrode plates are at zero potential.

Solution: To find the electric field we need to use Equation (5.1d),
whose one-dimensional form is

ε0
d Ex

dx
= Ni (x)qi + Ne(x)qe.
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Figure 5.1 Basic setup for RF-induced plasma etching of integrated circuits. The bottom panel shows
time-averaged electron and ion densities.

Integrating and plugging in the polynomial expressions yields

Ex(x) = |qe|
ε0

∫ x

0

[
Ni (x′) − Ne(x′)

]
dx′

= 1.808 × 108
[
2.177 × 108x5 − 5.443 × 106x4 + 5.207

×104x3 − 236.7x2 + 0.503x
]

+ C0 V m−1.

We find the constant C0 by noting that the electric field in the cen-
ter of the discharge where the electron and ion densities are equal
must be zero Ex(0.5 cm) = 0. This yields C0 = −6.958 × 104.
The potential can be found in a straightforward manner using
d�
dx = −Ex and performing another integration. Plots of the elec-
tric field and potential are shown in Figure 5.2. The regions
near the electrodes where the ion and electron densities diverge
are known as the sheath regions and result from higher electron
mobility. See Chapters 1 and 4 for an introduction to the concept
of the plasma sheath, and Chapter 13 for a quantitative discus-
sion of the subject.
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Figure 5.2 Electric field and potential for plasma discharge shown in Figure 5.1 and discussed in
Example 5-1.

5.3 Fluid drifts perpendicular to B

In Chapter 2 we considered the various drift motions of the guid-
ing center of individual particles perpendicular to an applied mag-
netic field B. Since fluid elements contain many individual particles,
we would expect that they would exhibit the drifts perpendicular to
B whenever such drifts are experienced by the individual guiding
centers. This expectation is true for the E × B and curvature drifts,
but not for the gradient drift; furthermore, an additional type of
drift called diamagnetic drift occurs for fluid elements as a result of
the ∇ p term. Examining the drift motions using fluid theory is very
instructive for deeper understanding of the fluid approach. Consider
the momentum equation valid for each of the species:

mN
[
∂u
∂t

+ (u · ∇)u
]

= −∇ p + qN(E + u × B). (5.2)

Considering drifts which are slow compared to the time scale cor-
responding to the gyrofrequency ωc,1 and neglecting second-order
terms, (5.2) reduces to

0 � q N[E + u⊥ × B] − ∇ p, (5.3)

where we have noted that u × B = (u⊥ + u‖) × B = u⊥ × B. We
now take the cross-product of (5.3) with B to find

0 = q N [E × B + (u⊥ × B) × B] − ∇ p × B

1 If we consider variations of fluid velocity u at a frequency ω, the first term on the
left-hand side of (5.2) is of order mN|∂u/∂t| = mN( jωu) while the last term on the right
is of order |q Nu × B| = q NuB, so that the ratio of the two terms is (ω/ωc).
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Figure 5.3 Diamagnetic drift.
(a) Cylindrical plasma column.
(b) Gyromotion of ions in the
presence of a density gradient.

0 = q N [E × B + B (u⊥ · B) − u⊥ (B · B)] − ∇ p × B

→ u⊥ = E × B
B2 − ∇ p × B

q NB2 = uE + udia,

where we have used the usual identity (A × B) × C ≡ B(A · C) −
C (A · B). Thus we see that the fluid elements experience E × B drift
given by the same expression as was found for individual particles
in Chapter 2. Additionally, we see that there is a new drift, the
diamagnetic drift, given by

Diamagnetic drift udia = −∇ p × B
q NB2 . (5.4)

The diamagnetic drift is in opposite directions for electrons and
for ions, and in a cylindrical plasma (see Figure 5.3) gives rise to
currents that tend to reduce the magnetic field inside the plasma,
which is why this phenomenon is referred to as “diamagnetic.”

The physical interpretation of diamagnetic drift is shown in
Figure 5.3b. For this case we have assumed a constant-temperature
plasma so that the pressure gradient ∇ p manifests itself as a density
gradient ∇N. There are a larger number of particles at higher values
of y, as indicated by the larger number of gyrating particles per unit
area in Figure 5.3b. We note that, through any fixed volume element
such as the shaded region shown, there are more ions moving to the
left than to the right, amounting to a drift of the fluid element, even
though the guiding centers of individual particles are stationary.

The diamagnetic drifts of ions and electrons in opposite direc-
tions give rise to a diamagnetic current given by

Jdia = Ni qi udiai − Neqeudiae = B × ∇(pi + pe)

B2 . (5.5)

For an isothermal (p = kBTN) plasma with Ni = Ne = N, the dia-
magnetic current is given by

Jdia = (kBTi + kBTe)
B × ∇N

B2 . (5.6)
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Figure 5.4 ∇B drift in the fluid
model. The guiding centers drift
but the fluid elements do not.

The fluid treatment will also yield the curvature drift since the
centrifugal force will be felt by all the particles in a fluid element as
they move around a bend in the magnetic field. The curvature drift
can be obtained by adding a term

〈Fcf〉 =
〈
Nmv2‖

〉
/Rc = NkBT||/Rc,

which is the fluid analog to Equation (2.24). However, the gradient
drift (∇B) does not exist in the fluid picture. In a reversed symmetry
to diamagnetic drift, for gradient drift there is no fluid drift even
though there is a drift of individual guiding centers. The lack of
a fluid drift in the presence of a magnetic field gradient can most
easily be seen by considering the motion of the two particles in
Figure 5.4. Since there is no electric field the gyroradius changes
only because of the gradient of B. Since the magnetic field alone
cannot change the energy of the particle, the particle velocities in the
fluid element marked by the boxes in the figure will cancel exactly.
Since the fluid picture assumes an even distribution of particles in
each local element defined by N, all fluid elements at all positions
will have a net zero velocity if there is no density gradient.

The seeming contradiction between the fluid model and the
single-particle approach begs the question of which model is more
correct. It is important to realize that both the single-particle and
the fluid pictures are simplified models of complex interactions. The
single-particle approach tracks a single particle, in complete isola-
tion, which is not realistic. The fluid approach, on the other hand,
gives us net average values over a small but finite volume. Both
approaches are approximations to full knowledge of all parameters
and variables. In the physical sciences the highest measure of cor-
rectness is agreement with observations, and in this context the pre-
ferred model depends on the situation. There are situations where
particle densities are very small (e.g., in the high-energy particle
populations of the Earth’s radiation belts) and the single-particle
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approach is appropriate since collective effects are negligible. How-
ever, in most practical situations plasma densities are high enough
that the fluid approach exhibits better agreement with observations
over any reasonable volume of interest. For such cases a comparison
can be made to electrical current flowing in a simple wire or resistor.
An individual electron in such a wire or resistor could have an
extremely complicated trajectory, with multiple changes in direction
and velocity, yet the collective behavior of the current is accurately
described by Ohm’s law (V = IR). Therefore, outside specialized
situations the fluid approach is more reliable even though it yields
results that can seem counterintuitive at first.

5.4 Parallel pressure balance

We now consider the component of the momentum equation (5.2)
which is parallel to the magnetic field B = Bẑ. Neglecting the con-
vective term, we have

mN
∂u
∂t

� q NEz − ∂p
∂z

. (5.7)

This shows that the fluid element is accelerated along B under the
combined influence of electrostatic force and the pressure-gradient
force. When these two forces are balanced, the fluid experiences
no acceleration, i.e., ∂uz/∂t =0. Assuming a constant temperature
T along the field line, and expressing the parallel electric field as
the negative gradient of an electrostatic potential (Ez = −∂�/∂z),
we can write this pressure balance condition as

0 = −q N
∂�

∂z
− kBT

∂ N
∂z

. (5.8)

Integrating, we find

q� + kBT ln N = constant → N = N0 exp
[−q�

kBT

]
, (5.9)

which is the so-called Boltzmann factor for electrons that we saw
earlier in Equations (1.6) and (3.39), and which is the equilibrium
solution of the Boltzmann equation in the presence of an external
force. Physically this result reaffirms the strong tendency of the
plasma to remain electrically neutral as a result of the very small
charge-to-mass ratio of the electrons. Electrons have a tendency to
move rapidly in response to an external force (e.g., an electrostatic
potential gradient); however, once they begin to leave a region they
leave behind large ion charges, producing electric fields which pull
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them back, with the final distribution of electrons being determined
by the balance between electrostatic and pressure (or density)-
gradient forces.

5.5 Summary

In this chapter we introduced the two-fluid model of a plasma,
which consists of the truncated moment equations and Maxwell’s
equations. Application of the model to drift motions yielded similar
results to the single-particle approach described in Chapter 2 in
that E × B drift and curvature drift also exist in the fluid model.
The fluid description also yields a new drift motion, called diamag-
netic drift, which cannot be obtained in the single-particle approach
since it is based on a density gradient. At the same time the fluid
model does not yield a drift perpendicular to a static magnetic field
gradient. The next two chapters explore a single-fluid approach
to plasma, but we will return to the two-fluid model and use it
to describe plasma conductivity, diffusion, and wave behavior in
subsequent chapters.

5.6 Problems

5-1. An isothermal plasma is confined between the planes x=±a
in a magnetic field B = B0ẑ. The density distribution is N(x)=
N0(1 − x2/a2). (a) Derive an expression for the electron dia-
magnetic drift velocity udiae as a function of x. (b) Draw a
diagram showing the density profile and the direction of udiae

on both sides of the midplane if B points out of the paper.
(c) Evaluate udiae for x=a/2, B0 = 0.2 T, kBTe =2 eV, and
a =4 cm.

5-2. A cylindrically symmetric plasma column of radius r = a
extends along the z axis and is immersed in a uniform mag-
netic field B = ẑB0. The plasma is under the influence of an
electrostatic potential �(r) so that

Ne = N0e−qe�/(kBT ),

and the plasma density varies radially as

Ne(r) = N0e−r2/a2
.

Determine the E × B and diamagnetic drift velocities and com-
pare their relative magnitudes.
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5-3. Consider a partially ionized plasma with density N = 1012 m−3

through which a 100 V m−1 electric field is applied. Calcu-
late the total current density if the electron–neutral collision
frequency is 3 GHz and the ion–neutral collision frequency is
5 GHz.

5-4. Draw a diagram similar to Figure 5.4 but for the trajectory
of two ions experiencing an E × B drift. Explain why the two
trajectories will not cancel out for the E × B drift even though
they do so for the gradient drift.
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[1] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges
and Materials Processing (New York: John Wiley & Sons, 1994), 1–22.



C H A P T E R
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6.1 Introduction

In the previous chapter a multiple-fluid description of a plasma
was introduced, in which electrons and various species of ions were
governed by separate continuity and force equations. However,
under certain conditions it is appropriate to consider the entire
plasma population as a single fluid without differentiating between
ions or even between ions and electrons. This approach, known as
magnetohydrodynamics (abbreviated MHD), is in general a method
for modeling highly conductive fluids (of which salt water and
mercury are additional examples). As will be shown, the single-fluid
approach to plasmas is appropriate for dealing with slowly varying
conditions when the plasma is highly ionized (i.e., neutrals do not
play a role) and electrons and ions are forced to act in unison,
either because of frequent collisions or by the action of a strong
external magnetic field. The MHD description of a plasma is very

116
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useful for describing a wide range of plasma behavior and illustrates
important results not easily obtained from multiple-fluid models.
Certain plasma phenomena, notably in fusion and space physics, are
modeled exclusively using a single-fluid treatment, making MHD
one of the most important subfields in plasma physics.

6.2 Single-fluid equations for a fully ionized plasma

We begin by showing how the multiple-fluid equations presented in
Chapter 5 can be combined into a set of equations for a single meta-
fluid. Assuming for simplicity a two-species plasma of electrons and
a single type of ions, the corresponding electron and ion equations
are

∂ Ne

∂t
+ ∇ · [Ne ue] = 0 (6.1a)

me Ne

[
∂ue

∂t
+ (ue · ∇)ue

]
= −∇ · �e + qe Ne(E + ue × B) + Sei

(6.1b)

and
∂ Ni

∂t
+ ∇ · [Ni ui ] = 0 (6.2a)

mi Ni

[
∂ui

∂t
+ (ui · ∇)ui

]
= −∇ · �i + qi Ni (E + ui × B) + Sie,

(6.2b)

where the subscripts e and i indicate, respectively, the quantities
associated with electrons and with ions. The collision term Sei (Sie)
represents the total momentum transferred to the electrons (ions)
per unit volume per unit time by collisional interactions with the
ions (electrons). For a fully ionized two-species plasma with no
neutral gas, the total momentum must be conserved in collisional
interactions between the two species, i.e.,

Sei = −Sie. (6.3)

In view of the substantial difference between the electron and
ion masses, we expect that the characteristic time scales of the
phenomena described by (6.1) and (6.2) will be substantially
different. The characteristic frequencies of the plasma, such as
plasma frequency or cyclotron frequency, are much larger for
electrons than for ions. In general, the separate set of equations
(6.1) and (6.2) must be solved simultaneously in order to properly
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account for the coupling between ion and electron motions. Such
coupling often leads to non-linear effects, which we will discuss
briefly in later chapters.

When we deal with plasma phenomena that are large-scale (L 

λD) and have relatively low frequencies (ω � ωpe and ω � ωce),
the plasma is on the average electrically neutral (Ni � Ne) and the
movement of electrons independently of ions is not important. In
such cases, if is useful to treat the plasma as a single conduct-
ing fluid whose inertia is provided primarily by the mass of the
ions. In this regime, the dynamics of the plasma is no different
than any other conductive fluid, for example, liquid mercury. The
macroscopic variables of the electrons and the ions are lumped
together to obtain macroscopic parameters describing the ionized
gas as a whole, instead of two separate constituents. The govern-
ing equations for the new set of macroscopic parameters can be
obtained by combining the constituent equations (6.1) and (6.2).
We first define appropriate macroscopic parameters for the plasma
fluid:

Mass density ρm ≡ Neme + Ni mi (6.4a)

Electric current J ≡ Neqeue + Ni qi ui (6.4b)

Mass velocity um ≡ Nemeue + Ni mi ui

Neme + Ni mi
(6.4c)

Total pressure tensor � ≡ �e + �i . (6.4d)

Note that if the plasma were only partially ionized, (6.4a), (6.4c),
and (6.4d) should also contain terms corresponding to neutral par-
ticles. Also, in such a case (6.3) would no longer be true. Retain-
ing the assumption of full ionization, however, we now proceed to
obtain the macroscopic equations for the single-fluid plasma. This
exercise will be nothing more than making linear combinations of
(6.1) and (6.2). To make the analysis tractable we will first neglect
the (u · ∇)u term in (6.1b) and (6.2b). This can be justified on the
grounds that we are primarily dealing with small perturbations for
which the fluid velocity (u) multiplied by any gradients (the u · ∇
operator) is assumed to be negligible. Along the same lines, we also
distinguish between values that are perturbed and those that are
assumed to remain relatively constant, denoting the latter with an
additional “0” subscript. This simplification results in the following
momentum equations for electrons and ions:
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me Ne0
∂ue

∂t
� −∇ · �e + qe Ne0(E + ue × B) + Sei (6.5a)

mi Ni0
∂ui

∂t
� −∇ · �i + qi Ni0(E + ui × B) + Sie. (6.5b)

6.2.1 Equations of mass and charge conservation

To obtain the equation of continuity of electric current (i.e., the
equation of charge conservation), we multiply (6.1a) and (6.2a)
respectively by qe and qi , and add. We find

∂ρ

∂t
+ ∇ · J = 0 , (6.6)

where J is the electric current density, given by

J = Ne0qeue + Ni0qi ui , (6.7)

while ρ is the electric charge density,

ρ = Neqe + Ni qi . (6.8)

By multiplying (6.1a) and (6.2a) respectively by me and mi , we find
the equation of mass conservation, namely

∂ρm

∂t
+ ρm0∇ · um = 0 , (6.9)

where

ρm0 = Ne0me + Ni0mi (6.10)

is the single-fluid mass density and um is the linearized fluid mass
velocity

um = Nemeue + Ni mi ui

Ne0me + Ni0mi
. (6.11)

6.2.2 Equation of motion

The equation of motion for the bulk plasma gas can be obtained by
adding the individual momentum transport equations (6.1b) and
(6.2b). We find

(Ne0me + Ni0mi )
∂um

∂t

= −∇ · (�e + �i ) + (Ne0qe + Ni0qi ) E + J × B0. (6.12)



120 Single-fluid theory of plasmas: magnetohydrodynamics

Note that we have taken advantage (6.3). The second term on the
right is proportional to the ambient value of the electric charge
density, ρ0 = Ne0qe + Ni0qi , which is zero since the plasma is
macroscopically neutral. We thus arrive at the equation of motion

(Ne0me + Ni0mi︸ ︷︷ ︸
ρm0

)
∂um

∂t
= −∇ · (�e + �i ) + J × B0 , (6.13)

which is identical to the general equation of motion for an arbitrary
conducting fluid, such as mercury, if we substitute for the mass
density ρm = Ne0me + Ni0mi and the total pressure tensor � =
�e + �i . Note that for an isotropic plasma we have ∇ · � = ∇ p,
so that the first term on the right in (4.30) is the negative gradient of
the total pressure p = pe + pi .

6.2.3 Generalized Ohm’s law

The final single-fluid equation describes the variation of current
density J, and is obtained by multiplying Equations (6.1b) and
(6.2b) respectively by qe/me and qi/mi , and adding them together.
Since qe and qi are opposite in sign, this amounts to the difference
between the two momentum equations:

∂J
∂t

= − qe

me
∇ · �e − qi

mi
∇ · �i +

(
Ne0q2

e

me
+ Ni0q2

i

mi

)
E

+
(

Ne0q2
e

me
ue + Ni0q2

i

mi
ui

)
× B0 + qe

me
Sei + qi

mi
Sie. (6.14)

Noting that for an electrically neutral plasma we have |qe Ne0|�
|qi Ni0|, we can use (6.7) and (6.11) to rewrite (6.14):1

∂J
∂t

= − qe

me
∇ · �e − qi

mi
∇ · �i +

(
Ne0q2

e

me
+ Ni0q2

i

mi

)
(E + um × B0)

+
(

qe

me
+ qi

mi

)
(J × B0) +

(
qe

me
− qi

mi

)
Sei. (6.15)

1 Using ρm0 = Ne0me + Ni0mi and ρ0 = Ne0qe + Ni0qi , we can write

Ne0 = mi ρ0 − qi ρm0
qemi − qi me

and Ni0 = −meρ0 + qeρm0
qemi − qi me

,
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We now make further approximations, noting that the ion mass mi
is much larger than the electron mass me, so (qe/me) 
 (qi/mi ),
and that

(
Ne0q2

e /me
) 
 (

Ni0q2
i /mi

)
. We can also assume that the

plasma is near thermal equilibrium, so that the kinetic pressures
of electrons and of ions are of similar magnitude (i.e., �e ��i ),
so that (qe/me)�e 
 (qi/mi )�i . With these assumptions, (6.15)
reduces to

∂J
∂t

= − qe

me
∇ · �e + Ne0q2

e

me
(E + um × B0) + qe

me
(J × B0) + qe

me
Sei.

(6.16)

We are now forced to deal with the collision term Sei, which has
so far not been related to macroscopic parameters. Solely on phys-
ical grounds, it is reasonable to expect that the total momentum
transferred to the electrons per unit volume per unit time (as a
result of collisions with ions) is proportional to the relative average
velocity difference between the species (ui − ue). Since the collisions
in a fully ionized plasma are Coulomb collisions, we expect Sei
to be proportional to the Coulomb force or qeqi = q2, as well as
being proportional to the density of electrons Ne0 and the density
of scattering centers Ni0 = Ne0. Thus we can write

from which it follows that

Ne0q2
e

me
+ Ni0q2

i
mi

=
(

qe

me
+ qi

mi

)
ρ0 − qeqi

memi
ρm0,

which for a macroscopically neutral plasma (ρ0 �0) reduces to

Ne0q2
e

me
+ Ni0q2

i
mi

� − qeqi
memi

ρm0.

Using a similar procedure, the simultaneous solution of (6.4b) and (6.4c) for ue and ui
results in

ue = ρm0

memi Ne0

(
qe

me
− qi

mi

) [
mi
ρ0

J − qi um

]

ui = ρm0

memi Ne0

(
qe

me
− qi

mi

) [
− me

ρ0
J + qe um

]
.

Using the above equations, we can write

Ne0q2
e

me
ue + Ni0q2

i
mi

ui =
(

qe

me
+ qi

mi

)
J − qeqi

memi
ρm0 um.

Using these relationships in (6.14) leads to (6.15).
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Sei = ηq2 N2
e0(ui − ue), (6.17)

where η is a constant of proportionality known as the specific
resistivity of the plasma. It will become clear below that η has
dimensions of resistivity (i.e., � m or V m A−1). It is often useful
to express resistivity in terms of a collision frequency νei:

η = meνei

Ne0q2 ,

where νei is the so-called collision frequency for momentum transfer
from the ions to the electrons. Note that νei is not necessarily the
actual rate at which collisions between particles occur; its function
is in fact more as a “fudge factor,” accounting for those aspects
of the collision process that we do not explicitly account for, such
as collision cross-sections, effectiveness of momentum transfer, etc.
Noting that qi = −qe and Ne0 = Ni0, we can use (6.7) to rewrite
(6.17) as

J = Ne0qe(ue − ui ) → Sei = −Ne0qeηJ. (6.18)

More generally, as we will show later, a magnetized plasma is
anisotropic, so that the resistivity is a tensor

↔
η and we can write

Sei = −Ne0qe
↔
η · J. (6.19)

Substituting in (6.16), we arrive at the so-called generalized Ohm’s
law:

∂J
∂t

= − qe

me
∇ · �e + Ne0q2

e

me
(E + um × B0) + qe

me
(J × B0) − Ne0q2

e

me

↔
η · J .

(6.20)

For a steady current in a uniform plasma with no static magnetic
field, we have ∂J/∂t = 0, ∇ · � = 0, and B0 = 0, and the resistivity
tensor reduces to a scalar so that (6.19) becomes

E = η J → J = 1
η

E,

underscoring our use of “generalized Ohm’s law” for (6.20) and
“resistivity” for η. The electric field E can be found explicitly from
(6.20):

E = −um × B0︸ ︷︷ ︸
motional E

− J × B0

Ne0qe︸ ︷︷ ︸
Hall effect

+ ∇ · �e

Ne0qe︸ ︷︷ ︸
ambipolar

+ ↔
η · J︸︷︷︸

ohmic loss

+ me

Ne0qe

∂J
∂t︸ ︷︷ ︸

electron inertia

.

(6.21)
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On the right-hand side, the first term is the motional electric field
term, associated with the frame of reference of the fluid. In a frame
of reference moving with the fluid at the speed um, the electric field
does not include this term and is given by E′ = E + um × B0. The
second term is the so-called Hall effect term and is often neglected.
The third term is the so-called ambipolar polarization term and
describes the electric field that arises from gradients in plasma den-
sity along the magnetic field. The fourth term is the ohmic loss
(or Joule heating) term, and the last term can be interpreted as
the contribution of electron inertia to the current flow. Also note
from (6.20) that for a collisionless plasma the resistivity is zero and
the conductivity is infinite, and the plasma fluid behaves much like
mercury or other liquid metal. Equations (6.6), (6.9), (6.13), and
(6.20) are the fundamental equations for the treatment of a plasma
as a single conducting fluid. They form the basis of magnetohydro-
dynamics and the related concepts of “frozen-in” magnetic field
lines and magnetic pressure (see Sections 6.4 and 6.5).

6.3 Magnetohydrodynamics plasma model

Magnetohydrodynamics is a powerful tool for representating the
dynamics of many different types of plasma phenomena, ranging
from the generation and evolution of magnetic fields within stellar
interiors to the magnetic confinement of thermonuclear plasmas.
MHD is particularly useful in modeling large-scale, relatively low-
frequency plasma phenomena for which the plasma can be treated
as a single conducting fluid. At a more general level, MHD is a
framework for the description of the dynamics of an electrically
conducting fluid (e.g., mercury) in the presence of a magnetic field,
either externally applied or produced by a current flowing in the
fluid. As noted above, the fundamental equations of MHD are (6.6),
(6.9), (6.13), and (6.20), coupled with Maxwell’s equations.

A single-fluid description of a plasma is only valid if the plasma
is collision-dominated, since only then are the particles restricted
in their motions sticking together so that their motion may be
represented by that of the local center of mass, superimposed on
an isotropic distribution of velocities. If the plasma is not collision-
dominated, particles nearby in space at any given time may have
completely different velocity vectors and fly away in different direc-
tions to remote parts of the plasma, in which case the motion of the
local center of mass does not correspond to any real mass motion.
While this is generally the case, collisionless plasmas under the
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influence of a very strong magnetic field can also be described in
the context of a single-fluid model. This is because if the magnetic
field is sufficiently strong, and its variation in space and time is slow,
we know from Chapter 2 that the particles are forced into nearly
circular orbits around a drifting guiding center. The main motion
of the guiding center (due to electric-field-driven drift) is common
to all particles, and can be viewed as the local mass motion, while
the gyrating motion of particles is similar to an isotropic veloc-
ity distribution. In other words, the resultant effect of the strong
magnetic field is similar to that of collisions. Although we can thus
accept that there might be “thermal equilibrium” in the transverse
direction, the motions in the parallel direction remain far from equi-
librium, resulting in an anisotropic pressure tensor. At first we will
exclusively consider application of MHD to collision-dominated
plasmas. Many of the concepts to be developed can be extended
to collisionless plasmas with a strong magnetic field, as we will see
in the final sections of the chapter.

In a collision-dominated plasma, the particles species are in a
Maxwellian state. By adopting an MHD description, we are implic-
itly interested in slow variations, so that thermal equilibrium can
be established over time scales of interest. Furthermore, the spatial
scales of interest are assumed to be much larger than the Debye
length, so that the plasma can be assumed to be macroscopically
neutral.

6.4 Simplified MHD equations

The single-fluid equations derived above here are reproduced
(Equations (6.9), (6.13), (6.20)):

∂ρm

∂t
+ ρm0∇ · um = 0

ρm
∂um

∂t
= −∇ · � + J × B

∂J
∂t

= − qe

me
∇ · �e + Ne0q2

e

me
(E + um × B)

+ qe

me
(J × B) − Ne0q2

e

me

↔
η · J.

At this point, we make several simplifying approximations. First,
we consider only isotropic fluids, so that ∇ · � = ∇ p, where p is
the scalar pressure, and the plasma resistivity tensor

↔
η reduces

to the scalar resistivity η. Second, we neglect the Hall effect and



6.4 Simplified MHD equations 125

the ambipolar polarization terms in the generalized Ohm’s law,
since these are only important under special circumstances. We
also neglect the ∂J/∂t term in (6.20), since for low frequencies the
time variations are small (note, however, that we are retaining the
time-varying terms in other MHD equations). The generalized
Ohm’s law then reduces to

0 = Ne0q2
e

me
(E + um × B) − Ne0q2

e

me
ηJ → J = σ(E + um × B),

(6.22)

where σ = 1/η. Note that we can write (6.22) as J = σE′, where
E′ = (E + um × B) is the electric field felt by an observer (or a par-
ticle) moving with the fluid element. The simplified MHD equations
can thus be written as

Simplified
MHD equations

J = σ(E + um × B)

∂ρm

∂t
+ ρm0∇ · um = 0

ρm
∂um

∂t
= −∇ p + J × B

(6.23a)

(6.23b)

(6.23c)

We consider only highly conducting fluids, since most MHD plas-
mas resemble fluids with very large (nearly infinite) conductivity.
Equations (6.23) are complemented by Maxwell’s equations, gov-
erning the electromagnetic fields. Since we are considering fluids of
high conductivity, we neglect displacement currents (compared to
conduction currents) and also assume that there is no accumulation
of space charge inside the fluid (i.e., ρ = 0). Maxwell’s equations
then reduce to

Reduced Maxwell’s
equations

∇ × B = μ0J

∇ × E = −∂B
∂t

∇ · E = 0

∇ · B = 0.

(6.24a)

(6.24b)

(6.24c)

(6.24d)

The description of the fluid behavior is still not complete until we
specify the relationship between p and density N. This relationship
is the equation of state; we adopt the adiabatic assumption given in
(4.35), which can also be expressed as

d
dt

(
p ρ

−γ
m

)
= 0. (6.25)
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Equations (6.22) through (6.25) form a closed system which can be
solved for any of the fluid or electromagnetic variables. It is common
to eliminate the electric field and reduce the number of variables to
four, namely ρm, um, p, and B. Using (6.24a) together with (6.23c)
we can write

ρm
∂um

∂t
= −∇ p + 1

μ0
(∇ × B) × B = −∇

(
p + B2

2μ0

)
+ (B · ∇)B

μ0
,

(6.26)

where we have used the identity

(∇ × B) × B = −B × (∇ × B) ≡ −(B · B)∇ + (B · ∇)B.

Some further manipulation2 is needed to prove the equality

1
μ0

(∇ × B) × B = −∇
(

B2

2μ0

)
+ (B · ∇)B

μ0

or (∇ × B) × B = −1
2∇ B2 + (B · ∇)B.

2 We first note the component form of the second term on the right,

(B · ∇)B =
[

Bx
∂

∂x
+ By

∂

∂y
+ Bz

∂

∂z

]
B = x̂

[
Bx

∂ Bx

∂x
+ By

∂ Bx

∂y
+ Bz

∂ Bx

∂z

]
+ ŷ[· · · ] + ẑ[· · · ],

while the component form of the ∇ B2 term on the right is

∇ B2 = ∇
(

B2
x + B2

y + B2
z

)
= x̂

[
∂ B2

x
∂x

+ ∂ B2
y

∂x
+ ∂ B2

z
∂x

]
+ ŷ[· · · ] + ẑ[· · · ].

We now examine the component form of the left-hand side:

(∇ × B) × B =

∣∣∣∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ

∂ Bz

∂y
− ∂ By

∂z
∂ Bx

∂z
− ∂ Bz

∂x

∂ By

∂x
− ∂ Bx

∂y

Bx By Bz

∣∣∣∣∣∣∣∣∣∣∣∣

= x̂

⎡⎢⎢⎢⎣Bx
∂ Bx

∂x
+ By

∂ Bx

∂y
+ Bz

∂ Bx

∂z︸ ︷︷ ︸
[(B·∇)B]x

−Bx
∂ Bx

∂x
− By

∂ By

∂x
− Bz

∂ Bz

∂x

⎤⎥⎥⎥⎦ + · · ·

= x̂

{
[(B · ∇)B]x − 1

2
∂ B2

x
∂x

− 1
2

∂ B2
y

∂x
− 1

2

∂ B2
z

∂x

}
+ ŷ{· · · } + ẑ{· · · }

(∇ × B) × B = x̂
{
− 1

2

[
∇ B2

]
x

+ [(B · ∇)B]x

}
+ ŷ{· · · } + ẑ{· · · } Q.E.D.

.
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Substituting (6.22) in (6.24b) and using (6.24a) and (6.24d), we
find

∂B
∂t

= ∇ ×
(

um × B − J
σ

)
= ∇ × (um × B)︸ ︷︷ ︸

flow

+ ∇2B
μ0σ︸ ︷︷ ︸

diffusion

, (6.27)

where we have used

∇ × (∇ × B) ≡ ∇(∇ · B) − ∇2B,

with ∇ · B = 0 from (6.24d). Equations (6.23b), (6.24d), (6.26), and
(6.27) are sufficient to solve for the four variables ρm, um, p, and B.

Equation (6.27) expresses the sensitivity of the magnetic field to
plasma fluid motion (flow term) and plasma conductivity (diffu-
sion term). For a perfectly conducting fluid (σ = ∞) (6.27) can be
written as

∂B
∂t

= ∇ × (um × B). (6.28)

Note that for σ = ∞ (6.22) reduces to

E′ = E + um × B = 0, (6.29)

as expected since the electric field within a perfect conductor must
be zero. The validity of (6.28) is based on the fact that we can neglect
the second term in the parentheses in (6.27). This term is negligible if∣∣∣∣ J

σ

∣∣∣∣ � |um × B|.

With displacement currents neglected, (6.24a) is valid and we can
write

|B| � μ0L|J|,
where L is a characteristic dimension of the system. Thus, the
inequality above is equivalent to

RM = σ |um|μ0L 
 1,

where RM is a quantity often referred to as the magnetic Reynolds
number by analogy with the hydrodynamic Reynolds number, which
also scales with L and um. The Reynolds number is very useful
in determining whether a system is diffusion- or flow-dominated.
When RM 
 1, flow dominates and the magnetic field simply moves
with the flow, as shown in the next section.
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6.4.1 Frozen-in magnetic flux lines

An interesting application of MHD equations in general and of
(6.28) in particular is the demonstration that the lines of magnetic
flux are frozen into a perfectly conducting fluid and are thus trans-
ported with it. Note that Equation (6.28) describes the coupling
between the magnetic field and the fluid motion for a perfectly
conducting fluid. Consider an arbitrary surface S enclosed by a
contour C, as shown in Figure 6.1. We can write the integral of
(6.28) over this arbitrary surface as

∂

∂t

∫
S

B · ds =
∫

S
[∇ × (um × B)] · ds

∂

∂t

∫
S

B · ds =
∮

C
(um × B) · dl

∂

∂t

∫
S

B · ds −
∮

C
(um × B) · dl = 0, (6.30)

where we have used Stokes’s theorem. Equation (6.30) can be
written as

∂ψm

∂t
+

∮
C

B · (um × dl) = 0 (6.31a)

d
dt

(∫
S

B · ds
)

= 0, (6.31b)

B(t )

umdt

d l

ds = (um × d l)dt

C

Figure 6.1 Illustration of the
“frozen-in” concept. A highly
conducting fluid in motion acts
to transport magnetic field lines.
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B(t )P1

P2dr
um dt

(um + Dum)dt

Dum = (dr × Ñ)um

Figure 6.2 In a MHD plasma
with infinite conductivity, two
points on the same field line
remain on the same field line
even though they move with the
fluid.

where ψm is the magnetic flux.3 The first term in (6.31a) represents
the rate of change of flux through the fixed surface S, while the
second is the additional increment of flux swept out per unit time
by the movement of the periphery with the local fluid velocity um.
The left-hand side of (6.31a) is thus the total rate of change of flux
through a “material” surface fixed to and moving with the fluid, as
restated in (6.31b). Hence (6.31) is a statement of the constancy of
magnetic flux through any material surface in a perfectly conducting
fluid. Another way of stating this is to say that the field line is
attached to or “frozen in” the fluid and moves with it. We can also
arrive at the same result by considering two points P1 and P2 on a
field line and showing that they remain on the same field line as they
move with the fluid. Using the identity

∇ × (um × B) ≡ um(∇ · B) + (B · ∇)um − B(∇ · um) − (um · ∇)B,

taking advantage of our earlier definition of the convective deriva-
tive (3.31), and noting (6.24c), we can write (6.28) as

dB
dt

− (um · ∇)B︸ ︷︷ ︸
∂B/∂t

= 0 + (B · ∇)um − B (∇ · um) − (um · ∇)B

dB
dt

= (B · ∇)um − B (∇ · um). (6.32)

Let P1 and P2 be any two neighboring points on the same magnetic
field line, with the distance between them represented by the vector
dr, as shown in Figure 6.2. If the points are on the same magnetic
field line, then by definition dr × B = 0 since dr and B are parallel
vectors. So P1 and P2 remaining on the same magnetic field line even
as they move with the fluid is the equivalent of dr × B not changing

3 We have used the identity B · (um × dl) = −(um × B) · dl.
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and remaining equal to zero. In other words, d
dt [dr × B] must equal

zero. We can break down this derivative as follows:

d
dt

[dr × B] = d(dr)
dt

× B + dr × dB
dt

. (6.33)

If P1 and P2 move with the fluid velocity um(r, t), then the rate of
change of the vector dr is due to the non-uniformity of um and is
(dr · ∇)um. Thus we have

d(dr)
dt

= (dr · ∇)um. (6.34)

Using (6.34) and (6.32), Equation (6.33) becomes

d
dt

[dr × B] = (dr · ∇)um × B + dr × [(B · ∇)um − B (∇ · um)]

(6.35a)

= (dr · ∇)um × B + dr × (B · ∇)um − dr × B (∇ · um)

(6.35b)

= (B · ∇)um × dr + dr × (B · ∇)um (6.35c)

= 0, (6.35d)

where because the last term in (6.35b) is zero dr × B = 0. Likewise,
the fact that dr and B are parallel allows them to be interchanged in
the first term in (6.35b); the two terms in (6.35c) then cancel since
they are equal and opposite. Thus, if P1 and P2 were initially on the
same line of force, they will remain on it.

The concept of magnetic lines of force is an abstraction, and
in general no identity can be attached to these lines. However, we
can very conveniently regard the lines as attached to and convected
with the fluid. The “frozen-in” concept implies that all particles
and all magnetic flux contained in a certain flux tube at a certain
instant stay inside the flux tube at all instants, independent of any
motion of the flux tube or any change in the form of its bounding
surface. Additional insight into the concept of frozen-in field lines
can be found by seeing it as a manifestation of Lenz’s law for elec-
tromagnetic induction. Lenz’s law applies to the classic experiment
of electrodynamics in which a conductor is moved across a static
magnetic field. The law states that a current is induced in the moving
conductor so as to oppose the change in magnetic flux through the
conductor. In the limit where the conductor is a continuous plasma
with infinite conductivity, the induced currents prohibit any change
in magnetic flux, thus transporting the same constant magnetic field
lines with the plasma.
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Example 6-1 The solar wind
A prominent example of the frozen-in field concept occurs in the
interaction of the solar wind with the interplanetary magnetic
field (IMF). Both the IMF and the solar wind originate from the
Sun. The solar wind is a highly conducting plasma with density
∼107 m−3 and fluid speed of usw = 350 km s−1 in an outward
radial direction. The IMF is generally in the plane of the Earth’s
orbit and, because of the Sun’s rotation and the frozen-in field
concept as driven by the solar wind, its field lines take on a spiral
shape as shown in Figure 6.3. Given that the angular velocity
of the Sun’s rotation is ω = 2.7 × 10−6 radians s−1, calculate the
spiral angle � shown in Figure 6.3.

Solution: The spiral angle is given by

tan(�) = rω

usw
,

where r is the radial distance from the Sun, equal to 149.6 × 109 m.

tan(�) = (149.6 × 109 m)(2.7 × 10−6 rad s−1)

3.5 × 105 m s−1

� = 49◦.

Sun

Earth

Ψ

B

B

Figure 6.3 Interplanetary magnetic field lines frozen in the solar wind plasma result in a spiral shape.
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During periods of solar disturbance, the solar wind speed is
known to increase to 600−700 km s−1, which changes the spiral
angle sometimes called the “garden hose” angle).

6.4.2 Diffusion of magnetic field lines

When RM = σ |um|μ0L � 1, the diffusion term in Equation (6.27)
dominates and the expression reduces to

∂B
∂t

= ∇2B
μ0σ

. (6.36)

Equation (6.36) is an expression for a magnetic field in a stationary
but imperfect (σ < ∞) conductor, in which the magnetic field is
shown to decay with time. A characteristic decay time τD for the
magnetic field can be obtained by approximating the spatial and
time derivatives:

|∂B/∂t| ≈ B
τD∣∣∣∇2B

∣∣∣ ≈ B
L2 ,

where L is the characteristic length. Substituting the above expres-
sions in Equation (6.36) yields

τD = L2μ0σ.

For ordinary conductors the decay time is very small. For example,
for a copper sphere of radius 1 m, τD is less than 10 s. On the other
hand, for the Earth’s core, which is considered to be molten iron,
the decay time is around 10 000 years.

6.5 Force balance in MHD

In the previous sections we derived the fundamental MHD equa-
tions and applied them to the concepts of frozen-in magnetic flux
and diffusion of the magnetic field. In this section we apply the
MHD formulation to study the forces exerted by a magnetic field
in a fluid, and the related concept of magnetic pressure. Before we
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proceed, we list the MHD equations with the inclusion of collision
and gravitational terms of importance for space plasmas:

∂ρm

∂t
+ ρm∇ · um = 0 (6.37)

ρm
∂um

∂t
= −∇ · � + J × B + ρmg − ρmνeffum (6.38)

∂B
∂t

= ∇ × (um × B)︸ ︷︷ ︸
flow

+ ∇2B
μ0σ︸ ︷︷ ︸

diffusion

, (6.39)

where g is the gravitational acceleration vector and νeff is an effec-
tive collision frequency representing collisions of charged species
(electrons and ions, but mostly electrons) with neutrals, which are
assumed to be stationary. In our discussions below, we will neglect
the gravitational and collision terms and assume an isotropic fluid,
so that (6.38) becomes

ρm
∂um

∂t
= −∇ p + J × B, (6.40)

where p is the total pressure. Note that (6.39) was derived from the
simplified version of Ohm’s law, namely (Equation (6.22))

J = σ(E + um × B),

and Maxwell’s equation (6.24a). The approximations we made in
arriving at (6.22) were not fully justified, and in fact it is often
difficult to quantitatively justify neglecting the J × B and ∂J/∂t
terms and the isotropic pressure tensor (see [1]). However, consider
the comparison between the −∇ p and um × B terms in (6.20):∣∣∣∣qe∇ p

me

∣∣∣∣∣∣∣∣∣ Neq2
e

me
(um × B)

∣∣∣∣∣
�

qe

me

Ne

3
me

〈
v2

th

〉
Neq2

e

me
|um|B

� v2
th

3L|um|ωc
�

vth

|um|
L
rc

, (6.41)

where we have assumed ∇ p � pL−1, with L being the scale height
of the system, and used p = NekBT = Ne

1
3me

〈
v2

th

〉
, as well as rc =

mvth/(qe B). vth is the magnitude of the random thermal motion,
previously denoted as w, i.e., vth = |w|. Thus, the pressure term
is negligible in Ohm’s law when L 
 rc and vth � |um| or, more
precisely, when (L/rc) 
 (vth/|um|). This condition is well justified
in most cases for which an MHD treatment is used, when the
scale sizes are very large and the particle thermal motions can be
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neglected in comparison to the drift motions. For example, the solar
wind speed um is of order 300 to 1400 km s−1, while the electron
thermal velocity vth is comparable, and obviously L 
 rc. Note that
neglecting the −∇ p term in (6.20) does not mean that it is also
dropped in (6.40). In fact, as we will see in the following sections, the
−∇ p term in (6.40) is quite comparable to the J × B term, which it
balances under conditions of equilibrium.

6.5.1 Magnetic forces

We now consider the forces that a magnetic field exerts on a fluid
in which it is present. It is obvious that magnetic fields can carry
forces in a medium; for example, consider the force-density term
that appears in (6.40):

Fm = J × B.

Since current density and magnetic field are related through (6.24a),
knowledge of J is not necessary for determining the magnetic force
Fm at any given point, as long as we know the field at adjacent
points, so that we can determine its curl. Using (6.24a) and (6.26),
we can write

Fm = 1
μ0

(∇ × B) × B = 1
μ0

(B · ∇)B − ∇ B2

2μ0
, (6.42)

where we have used the same vector identity as we used in arriving
at (6.26). The magnetic force Fm is the fundamental force which
sets a conducting fluid in motion (by accelerating it, as described
by (6.40)) when it is in the presence of a magnetic field. This force,
acting via (6.40), and Equation (6.39), which describes how the
motion of the fluid in turn causes the field to evolve in time, describe
the manner in which most large-scale plasma dynamics occur. To
better understand the physical nature of the magnetic force Fm, it is
useful to expand it into its components parallel and perpendicular
to the magnetic field. Of particular interest is the term μ−1

0 (B · ∇)B,
associated with the rate of change observed in the magnetic field as
we move along it (note that B · ∇ simply selects the projection of the
∇ operator along B). Denoting by s the distance along the field line,
we can write

(B · ∇) = B
∂

∂s
,

where B is the local intensity of B, i.e., B = |B|. Note that the vector
B may change both in intensity and in direction. We can write B as
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B = Bb̂, where b̂ is the unit vector locally in the direction of the
magnetic field. We then have

1
μ0

(B · ∇)B = 1
μ0

B
∂

∂s
(Bb̂) = 1

μ0

[
B

∂ B
∂s

b̂ + B2 ∂ b̂
∂s

]

= b̂
∂

∂s

(
B2

2μ0

)
+ B2

μ0

∂ b̂
∂s

(6.43a)

= b̂
∂

∂s

(
B2

2μ0

)
+ B2

μ0

n̂
Rc

. (6.43b)

The second term on the right in (6.43) originates from the change
in the direction of the magnetic field as we move along it and must
thus be related to the local radius of curvature Rc of the field lines.
As shown in Figure 6.4, this term is a vector in the direction locally
normal to the field line and has a magnitude inversely proportional
to the radius of curvature, as given in (6.43b). The first term in
(6.43b) is equal in magnitude and opposite in sign to the component
along the field of the last term in (6.42). To better see this, it is
convenient to separate the ∇ operator into its components parallel
and perpendicular to the field line, i.e.,

∇ = ∇‖ + ∇⊥ = b̂
∂

∂s
+ ∇⊥,

where we have observed that ∇‖ = b̂(∂/∂s). We can then rewrite
(6.42) as

b

n

b/s
B

Rc

B

Figure 6.4 Forces in magnetic
fields.
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Fm = 1
μ0

(B · ∇)B − ∇ B2

2μ0

= b̂
∂

∂s

(
B2

2μ0

)
+ B2

μ0

n̂
Rc

− ∇⊥

(
B2

2μ0

)
− b̂

∂

∂s

(
B2

2μ0

)

Fm = B2

μ0

n̂
Rc

− ∇⊥

(
B2

2μ0

)
. (6.44)

Equation (6.44) indicates that the magnetic field exerts two types of
force on the fluid. First we observe that there is no component of
the force along B, as expected from the fact that the force is given
by J × B. In the plane normal to the field, there is a magnetic force:
a perpendicular magnetic pressure which acts to drive the fluid away
from regions of high magnetic field (just as the kinetic pressure term
−∇ p in (6.40) drives the fluid away from regions of high pressure).
The additional transverse force R−1

c (B2/μ0)n̂ points locally toward
the center of curvature of the field line (Figure 6.4). This force
pushes the fluid in the direction of the radius of curvature, acting
as a tension. Since the magnetic flux is frozen in (see Section 6.4.1),
the resulting fluid motion would pull the magnetic field line with it,
thus acting to straighten the line. This tension force works much as
if the field lines were elastic cords pulling against the fluid, having
a tendency to reduce their curvature. This rubber band or elastic
cord-like behavior of the magnetic field lines is precisely what leads
to hydromagnetic wave motion in a magnetized fluid, which we will
study in later chapters.

The magnetic body forces described above are not specific to
plasmas or fluids. Rather, the case considered here is a special case
of the more general and advanced topic of electromagnetic stresses
and strains exerted on any medium by electric and magnetic fields.4

In general, the body forces exerted on the medium are given by the

divergence of the stress tensor
↔
T, i.e., F = ∇ · ↔

T. The magnetic part
of the electromagnetic stress tensor is given by

↔
Tm = 1

μ0

⎡⎢⎢⎣
B2

x − B2/2 BxBy BxBz

By Bx B2
y − B2/2 By Bz

Bz Bx Bz By B2
z − B2/2

⎤⎥⎥⎦ , (6.45)

4 For a thorough discussion of this topic, see Chapter 2 of [2] or Chapters 6 and 10 of [3].
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sometimes written in terms of its entries as [↔Tm]i j = μ−1
0 [Bi Bj −

δi j B2/2], where δi j = 0 for i �= j and δi j = 1 for i = j . It is
useful to rewrite (6.40) at this point, in order to compare the
kinetic pressure gradient term and the magnetic force density term.
We have

ρm
∂um

∂t
= −∇ p + J × B

= −∇ · � + Fm

= −∇ · � + ∇ · ↔
Tm

= −∇ · � − ∇ · �m (6.46)

where we have introduced a magnetic pressure tensor �m, which
works in (6.40) in exactly the same manner as the kinetic pressure
tensor, and which is the negative of the magnetic part of the elec-

tromagnetic stress tensor, i.e., �m = −↔
Tm. For the special case of

a unidirectional static magnetic field B = ẑB, the magnetic pressure
tensor is diagonal and given by

�m = 1
μ0

⎡⎢⎣B2/2 0 0

0 B2/2 0

0 0 −B2/2

⎤⎥⎦ . (6.47)

In fact, (6.47) constitutes a general expression for the magnetic
pressure tensor in any local magnetic coordinate system, where the
first two coordinates are perpendicular to B and the third coordinate
is along B. We can interpret (6.47) as indicating that the stress
caused by the magnetic field is in the form of an isotropic (same
in all three directions) magnetic pressure B2/(2μ0) and a tension
of B2/μ0 along the magnetic field lines. Note that tension along
the magnetic field lines is consistent with the force acting along n̂
in Figure 6.4, tending to straighten the field lines. In general, the
magnetic force can be written as

Fm = −∇
(

B2

2μ0

)
+ 1

μ0
∇ · (BB), (6.48)

where BB is a tensor, defined in the usual manner (see footnote 2 in
Chapter 4).
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6.6 Magnetohydrostatics

An important class of problems involves cases when the plasma
fluid is stationary, or nearly stationary, so that um � 0, and static,
so that all time derivatives are zero. In this case Equation (6.40) can
be written as

0 = −∇ p + J × B. (6.49)

Our interest in this section is to comment on plasma confinement,
which is a central issue in controlled fusion experiments where
highly energetic charged particles are forced to collide and trigger
nuclear fusion reactions. In such experiments a hydrostatic equi-
librium is determined by the balance between kinetic and magnetic
pressure. In static equilibrium we thus have

J × B = ∇ p (6.50)

or, eliminating J using (6.24a),

1
μ0

(∇ × B) × B = ∇ p, (6.51)

which can further be written as

∇
(

p + B2

2μ0

)
= 1

μ0
(B · ∇)B, (6.52)

where we see once again that the magnetic pressure B2/(2μ0) plays
the same role as kinetic pressure p, while the term on the right-
hand side describes the forces caused by curvature of the field lines.
In general, we can show from (6.50) that

J · ∇ p = 0 and B · ∇ p = 0, (6.53)

which states that pressure gradients cannot exist in the direction
of magnetic fields or currents. In other words, the surfaces with
p = constant are both magnetic surfaces (i.e., they are made up
of magnetic field lines) and current surfaces (i.e., they are made of
current flow lines). Note that it follows from (6.24a) that

∇ · J = 0. (6.54)

Since both B and J are divergence-free, the magnetic field as well
as the current lines either extend to infinity or must close on
themselves. The magnetic and current surfaces with p = constant
take the form either of tubes extending to infinity or of toroids.
Equations (6.50), (6.54), and (6.24d) are the key magnetohydro-
static equations, constituting the solution of the more general
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magnetohydrodynamic (MHD) equations for the special case of
um = 0 and isotropic pressure. In the general case, the fluid plasma
current required for equilibrium can be found by multiplying (6.50)
by B:

∇ p = J × B

B × ∇ p = B × (J × B) ≡ (B · B)J − (J · B)B

B × ∇ p = B2(J⊥ + J‖b̂) − (J‖b̂ · Bb̂)Bb̂

B × ∇ p = B2J⊥ + J‖B2b̂ − J‖B2b̂

J⊥ = B × ∇ p
B2 ,

which is the “diamagnetic current” that we saw earlier, in Equation
(5.5). The parallel component of the current can be determined
using (6.54). We have

∇ · J = 0 → ∇ · (J⊥ + J‖ b̂) = 0

∇ · J⊥ + ∇ ·
[

J‖B

B

]
= 0

∇ · J⊥ + J‖
B

∇ · B︸ ︷︷ ︸
=0

+B · ∇
[

J‖
B

]
= 0

∇ · J⊥ + B · ∇
[

J‖
B

]
= 0.

In most cases, the perpendicular current is divergence-free
(no temporal variations of net charge density in the transverse
plane) so that J‖ can be zero. We now discuss some special equi-
librium configurations.

6.6.1 The θ -pinch

Consider a system of magnetic field lines which are straight and
parallel, for example, generated by an external solenoid of infinite
length. We have B = B(x, y)ẑ, i.e., the intensity of the magnetic field
does not vary in the direction of the field lines. This configuration,
shown in Figure 6.5, is called the θ -pinch configuration.

Noting that the right-hand side of (6.52) vanishes, we have

∇
(

p + B2

2μ0

)
= 0. (6.55)
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Bz

Jf

Ñp

Figure 6.5 The θ -pinch
configuration.

We also note that (6.24d) is automatically satisfied, i.e., ∇ · B = 0.
According to (6.55), the magnetic field is reduced in the region
occupied by the plasma, a particularly good example of the general
diamagnetism of a plasma.5 Assuming a bounded plasma column,
if the distribution of the fluid pressure p(x, y) is given, the magnetic
pressure can be determined from (6.55). If the intensity of the field
outside the fluid is B0, then the maximum pressure which can be
confined is pmax = B2

0/(2μ0). For the special case where a finite
region may be filled with plasma of uniform pressure pmax (with
no fluid anywhere else), a sharp boundary exists between a region
of no fluid with magnetic field strength B0 and a region in which the
magnetic field is zero.

The beta parameter
We see from the above that hydrodynamic equilibrium is determined
by the balance between kinetic and magnetic pressure. The ratio
of the plasma pressure to the magnetic field pressure (the latter
normally measured either outside the plasma or at its boundary)
is usually denoted by β and referred to as the beta parameter:

β = 2μ0 p
B2 . (6.56)

The quantity β is a measure of the degree to which a magnetic field
holds a plasma in equilibrium. In a low-β plasma, the force balance
is mainly between different magnetic forces. At β � 1, magnetic
and pressure forces are nearly in balance, whereas for β 
 1 the
magnetic field plays a minor role in the plasma dynamics. Mag-
netically confined laboratory plasmas tend to have beta values in
the range of a few percent, while astrophysical plasmas can have β

values approaching unity or even β 
 1. Examples of both low- and

5 The fundamental reason for the diamagnetism of a plasma is that the individual particle
motions give rise to currents which induce a magnetic flux in a direction opposite to the
applied magnetic field. The electric current depends on the number density of the
charged particles and on their velocities. The kinetic pressure also depends on these same
parameters. Thus, as the kinetic pressure increases; the electric current increases; so does
the induced magnetic flux, and thus the diamagnetic effect.
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Jz

Bf

Figure 6.6 The cylindrical
pinch configuration.

high-beta plasmas are encountered in the Earth’s magnetosphere
and ionosphere.

6.6.2 The cylindrical pinch

Another interesting configuration of hydrostatic equilibrium with a
structure of infinite extent is the so-called cylindrical pinch geom-
etry. For this configuration, the magnetic field is azimuthal (i.e., Bφ

only), while the plasma current is axial (i.e., Jz only) and is the
source of the magnetic field; see Figure 6.6. Since the magnetic
field is curved in this case, the pressure balance equation must
include the term on the right-hand side of (6.52), which describes
the tension of the field lines which confine the plasma. Using
(6.44), the radial component of the pressure balance equation (6.52)
becomes

∂

∂r

(
p + B2

2μ0

)
+ B2

μ0r
= 0, (6.57)

since (B · ∇)B simplifies to
(
Bφ

1
r

∂
∂φ

)
Bφφ̂ = −1

r B2
φ r̂.6 Integrating

(6.57) from 0 to r we find

p(r) = p0 − B2
φ(r)

2μ0
− 1

μ0

∫ r

0

B2
φ(ζ )

ζ
dζ. (6.58)

where p0 = p (r = 0) is the maximum pressure, located at the center
of the column. An infinite number of possible equilibria can satisfy
(6.58). As an example, consider the case of a plasma carrying a
uniform current, i.e.,

Jz(r) =
{

J0 r ≤ a

0 r > a
, (6.59)

6 The geometry of φ̂ and ∂φ̂ /∂φ is the same as that of b̂ and ∂ b̂/∂s as shown in Figure 6.4.
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constituting a total plasma current of I = πa2 J0. With the current
density defined, the magnetic field can simply be determined by
Ampère’s law:

Bφ(r) = B0r
a

, r ≤ a, (6.60)

where B0 = Bφ (r = a). Substituting in (6.58) and carrying out the
integral, we find that it is precisely equal to the second term in (6.58),
so the pressure within the plasma is given by

p(r) = p0 − B2
0r2

μ0a2 → p0 = B2
0

μ0
= μ0 I2

4π2a2 , (6.61)

since the pressure p(r) must vanish at the edge of the column, i.e.,
at r = a. The condition (6.61) is known as the pinch condition,
describing a magnetically self-confined, current-carrying plasma.
Note that in the case of the cylindrical pinch, the plasma current
provides the entire magnetic field, unlike the θ -pinch where the mag-
netic field is provided externally. Establishing a cylindrical pinch can
be accomplished by applying a very large voltage difference using
electrodes, and driving the current in the plasma. Both the pressure
gradient and the magnetic field are proportional to r . Although the
static configuration of the cylindrical pinch appears ideal for plasma
confinement, it can be shown both theoretically and experimentally
that this configuration is highly unstable to small perturbations. In
general, any departure from the delicate equilibrium of magneto-
hydrostatic confinement schemes leads to growth of the original
perturbations and disintegration of the plasma geometry. Although
discussion of stability is beyond the scope of this text, it is important
to note that the challenge in confining high-energy plasmas has been
one of the main obstacles to achieving controlled thermonuclear
fusion.7

Example 6-2 Tokamak
The Joint European Torus (JET) is a tokamak-style plasma-
confinement machine that has an axial magnetic field applied
externally by toroidal coils as well as an azimuthal field created
by the internal plasma current. The net result is a twisted field
geometry, shown in Figure 6.7, that increases plasma stability.
The tokamak can be modeled as an infinitely long cylinder.
The externally applied field in the JET achieves a maximum value

7 A discussion of confinement instability at an introductory level can be found in
Chapter 13 of [4].
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Bf

Bz
Bnet

Plasma

Figure 6.7 Tokamak plasma-confinement system, consisting of an externally applied field (Bz) and a
field resulting from the plasma current (Bφ ). The resulting field (Bnet) has a helical shape.

of 3.45 T at the plasma boundary at r = a = 1.2 m and is esti-
mated to be 20% lower at the center of the cylinder.8 If the
total axial plasma current is I = 3.2 MA and assumed to be
uniformly distributed, find the maximum plasma pressure at the
center (r = 0).

Solution: We start with Equation (6.52), which for the case of a
magnetic field with both Bz and Bφ components reduces to

∂

∂r

(
p + B2

φ + B2
z

2μ0

)
+ B2

φ

μ0r
= 0.

Integrating yields

p(r) = p(0) − B2
φ

2μ0
− B2

z

2μ0
+ B2

z (0)

2μ0
−

∫ r

0

B2
φ(ρ)

ρ
dρ.

For a uniform current Bφ(r) = B0r
a

, where B0 = μ0 I
2πa

,

p(r) = p(0) − 1
2μ0

(
μ0 Ir
2πa2

)2

− B2
z

2μ0
+ B2

z (0)

2μ0
− 1

2μ0

(
μ0 Ir
2πa2

)2

p(r) = p(0) − B2
z

2μ0
+ B2

z (0)

2μ0
− 1

μ0

(
μ0 Ir
2πa2

)2

.

8 Note that this is a diamagnetic effect in which the plasma acts to reduce the
externally applied field, as was seen with the θ -pinch.
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Evaluating at r = a and noting that p(a) = 0 and Bz(0) =
0.8Bz(a), we have

0 = p(0) − 0.36B2
z (0)

2μ0
− μ0 I2

4π2a2

p(0) = μ0 I2

4π2a2 + 0.36B2
z (0)

2μ0

p(0) = (4π × 10−7)(3.2 × 106)2

4π2(1.2)2 + 0.36(3.45)2

2(4π × 10−7)

p(0) = 1.824 × 106 Pa.

6.7 Collisionless plasmas with strong magnetic field

It was mentioned above that the MHD formulation is strictly appli-
cable only in collision-dominated plasmas, since the particles have
to stay together in order for us to reasonably assign a velocity
to their “center of mass.” It turns out, however, that the MHD
formulation can also be applied successfully to the dynamics of col-
lisionless plasmas under the influence of strong magnetic fields, in
which the gyrofrequency is much larger than the collision frequency.
In this case, the effect of the magnetic field replaces to a certain
extent the role of collisions in maintaining a local equilibrium, by
not allowing particles to “stray” significantly in phase space in the
transverse direction. An important distinction between collision-
driven and magnetic field-driven local equilibria is that the magnetic
field does not exert any force in the direction parallel to the field
lines. The magnetic field thus makes the pressure exerted by the
plasma anisotropic, i.e., different in directions parallel or perpen-
dicular to the magnetic field. In the previous sections we treated the
effect of the magnetic field as magnetic forces acting on a plasma
with isotropic pressure. In the case of the strong magnetic field it is
more appropriate to include the effect of the magnetic field directly
in the pressure term. The notion of combining kinetic and magnetic
pressure effects was alluded to in the discussion of Equation (6.46).
Here we present a more thorough treatment and include certain
approximations that must be made in order to have a closed set of
MHD equations.



6.7 Collisionless plasmas with strong magnetic field 145

We start by observing that in the regime of high gyrofrequency
(i.e., high magnetic field), particle kinetic energies are divided
equally between the two perpendicular directions, but not neces-
sarily along B. Thus we expect the kinetic pressure tensor to be
diagonal as expressed in a local coordinate system, with the third
coordinate along B:

� =
⎡⎢⎣p⊥ 0 0

0 p⊥ 0

0 0 p‖

⎤⎥⎦ = p⊥
↔
I + (p‖ − p⊥)

(BB)

B2 , (6.62)

where
↔
I is the identity matrix and BB represents a tensor product.

The momentum equation (4.30) can be reduced by using the tensor
identity given in footnote 2 of Chapter 4. We have

ρm
dum

dt
= −∇ · � + J × B

= −∇ ·
(

p⊥
↔
I
)

− ∇ ·
[
(p‖ − p⊥)

(BB)

B2

]
+ J × B

= − ∇ p⊥ − ∇ ·
{
(B · ∇)

[
(p‖ − p⊥)

B
B2

]

+
[
(p‖ − p⊥)

B
B2

]
(∇ · B)︸ ︷︷ ︸

= 0

}
︸ ︷︷ ︸

= 0

+ J × B

= −∇ p⊥ − ∇ ·
{
(B · ∇)

[
(p‖ − p⊥)

B
B2

]

+ 1
μ0

(∇ × B) × B︸ ︷︷ ︸
using (6.24a), i.e., ∇×B = μ0J

= −∇ p⊥ − ∇ ·
{
(B · ∇)

[
(p‖ − p⊥)

B
B2

]

+ 1
μ0

[(B · ∇)B − (B · B)∇]︸ ︷︷ ︸
using (∇×C)×D = −D×(∇×C)≡ (D·∇)C−(C·D)∇
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= −∇ p⊥ − ∇ ·
{
(B · ∇)

[
(p‖ − p⊥)

B
B2

]

+ 1
μ0

[
(B · ∇)B − ∇

(
1
2

B2
)]

ρm
dum

dt
= −∇

(
p⊥ + B2

2μ0

)
+ (B · ∇)

[
B
μ0

− (p‖ − p⊥)B
B2

]
.

(6.63)

Note that (6.63) can be rewritten in tensor form by simply combining
(6.62) and (6.47). Equations (6.37), (6.63), and Maxwell’s equations
(6.24) are an almost-complete system of equations for the unknowns
E, B, ρm, p‖, p⊥, and um, if we can express ρm in terms of p‖ and
p⊥. The two equations of state relating ρm to the parallel and
perpendicular scalar pressures are known as the double adiabatic
approximation or the Chew–Goldberger–Low (CGL) equations [5].
To zeroth order, the velocity distribution is isotropic in the per-
pendicular plane and in the longitudinal direction, so that we can
use the two- and one-dimensional versions of the adiabatic equa-
tion of state introduced in Section 4.6, provided there is no energy
transport from one region of the plasma to another. With this basic
assumption, which we make in truncating the series of moments of
the Boltzmann equation at the heat-flow equation, we have

p‖ p2⊥
ρ5

m
= constant (6.64)

which takes the place of the adiabatic energy conservation equation
for isotropic plasmas. The second equation of state can be obtained
by recognizing the connection between the magnetic field strength
and the perpendicular component of particle energy. Since the mag-
netic moment is conserved, we can write〈

mw2⊥
〉

B
= p⊥

ρm B
= constant. (6.65)

6.7.1 Mirror equilibrium

The possibility of an anisotropic plasma pressure allows for stable
confinement of plasmas in the so-called mirror configuration.
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Consider the component of the static equilibrium equation (6.50)
along the field vector:

b̂ · (J × B) = b̂ · ∇ p

0 = b̂ · ∇ p. (6.66)

Taking B = ẑB, we have

∂p
∂z

= 0,

indicating that the plasma pressure must be constant along the field
lines under equilibrium conditions. According to this, there cannot
be any gradient of plasma pressure (and thus density) along the field
lines, so magnetic field configurations with field lines that extend
outside the region of the plasma cannot confine a plasma with
isotropic pressure. On the other hand, based on our analyses of
particle motions in earlier sections, we know well that the particles
can be trapped quite effectively in a mirror geometry. This dilemma
is resolved by noting that the plasma pressure in such cases must be
anisotropic, with the pressure tensor given by (6.62):

� =
⎡⎢⎣p⊥ 0 0

0 p⊥ 0

0 0 p‖

⎤⎥⎦ = p⊥
↔
I + (p‖ − p⊥)

(BB)

B2 .

The more general form of the equilibrium equation (6.66) is

0 = b̂ · ∇�, (6.67)

which on manipulation (and using ∇ · B=0) reduces to

0 = b̂ · ∇ p‖ +
[

p⊥ − p‖
B

]
b̂ · ∇ B

0 = ∂p‖
∂z

+
[

p⊥ − p‖
B

]
∂ B
∂z

. (6.68)

Many different solutions of (6.68) are possible, as long as p⊥ > p‖.
Typically, both p⊥ and p‖ decrease with distance z away from the
central confinement region (at which B is a minimum).

It is worth mentioning that, in the mirror geometry above, the
magnetic field lines cannot be strictly parallel to the ẑ axis and
have a simultaneous parallel gradient

(
∂ B
∂z �= 0

)
. As can be seen

in Figure 6.8, the parallel gradient causes a finite curvature of the
field lines, requiring B to have components in the x̂ and ŷ directions,
as was shown in Figure 2.8 in Chapter 2. The fundamental force
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Plasma

B

z

B

Figure 6.8 Equilibrium in
magnetic “mirror” configuration.

at work in the mirror confinement is still the Lorentz force. The
strength of the MHD approach and anisotropic pressure formula-
tion is that the complex geometry and multiple particle trajectories
can be ignored. The field lines can be treated as approximately paral-
lel, and the problem reduces to a balance of macroscopic quantities
as shown in Equation (6.68).

6.8 Summary

Magnetohydrodynamics (MHD) is an important subfield of plasma
physics involving the treatment of a plasma as a single conducting
fluid. The MHD plasma model is appropriate for low-frequency
phenomena when the plasma is highly conductive and dense. The
principal applications of MHD are in astrophysics and laboratory
plasma confinement. A key requirement for applicability of the
single-fluid approach is that the various plasma species are forced
to act in unison under the influence of either frequent collisions or
a strong magnetic field. The fundamental equations of MHD are
derived by combining the individual fluid equations for each plasma
species into a single set. Along with Maxwell’s equations and an
appropriate equation of state, the MHD equations form a closed set
of expressions for the macroscopic parameters of total charge and
mass densities, the mean fluid velocity, and the magnetic field. The
MHD model is effective in describing complex phenomena that are
not easily accessible using other plasma models. A remarkable prop-
erty of an MHD plasma is the concept of frozen-in magnetic field
lines, in which magnetic field lines are forced to remain unchanged
in the highly conducting plasma and are therefore transported as
part of a mobile fluid. Likewise, the MHD formalism illustrates
the effects of magnetic forces exerted on a plasma. The action
of magnetic forces leads to the concept of a magnetic pressure.
Balance between magnetic and kinetic pressures allows for equi-
librium configurations of plasma confinement. MHD plasmas also
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host a variety of wave phenomena that will be explored in later
chapters.

6.9 Problems

6-1. Calculate the spiral angle (� in Figure 6.3) that the interplan-
etary magnetic field makes at the Earth for a solar wind speed
usw = 750 km s−1 occurring during a solar disturbance.

6-2. An axial magnetic field B = B0ẑ is applied externally to a
cylindrical plasma column of radius a in magnetohydrostatic
equilibrium and with a pressure profile given by

p(r) = p0

[
cos

(πr
2a

)]2
.

(a) What is the maximum value of p0 in terms of B0? (b)
Find an expression for B(r), the magnetic field magnitude as
a function of the radius. (c) Calculate J(r), the current density
in the plasma column.

6-3. Consider the cylindrical tokamak equilibrium described in
Example 6-2. Show that for low plasma pressures p(0) <

B2
φ/2μ0 the tokamak becomes paramagnetic, meaning that Bz

will be stronger at the center than at the edge of the plasma.

6-4. The Earth’s magnetic field in space exhibits a sharp boundary
known as the magnetopause, resulting from the solar wind
exerting pressure on the Earth’s magnetic field, distorting its
shape. Without the effect of the solar wind, the Earth’s unper-
turbed field is close to that of a dipole, and in the equatorial
plane can be approximated by

BE(r) = B0

(
RE

r

)3

ẑ

as a function of radial distance r from the Earth’s center,
where RE is the radius of the Earth. (a) Find an expression for
the magnetopause distance if the solar wind exerts a pressure
of ρswu2

sw, where ρsw and usw are the solar wind mass density
and speed, respectively. (b) At the magnetopause the solar
wind pressure equals the magnetic pressure of the perturbed
field. Repeat part (a) but with the inclusion of the additional
magnetic pressure exerted by the solar wind as a result of
the frozen-in field concept. The magnetic pressure of the solar
wind is expressed as B2

s
/
(2μ0).



150 Single-fluid theory of plasmas: magnetohydrodynamics

6-5. Consider a toroidal implementation of a θ -pinch with the mean
radius of the torus rm being much larger than the radius of
the cylindrical section a. The magnetic field applied by external
coils along the axis of the torus is given by the expression

B = φ̂
B0a
r

.

Examine the type of charge separation that occurs because of
the inhomogeneity of the Bφ field in the r direction. What is
the direction of the E × B drift, where E is the electric field
induced by the charge separation? Comment on whether the
resultant effects of the gradient, curvature, and E × B drifts
work to prevent confinement of a plasma in the magnetic field
of the toroid.

6-6. A cylindrical confined plasma column of radius a contains
a coaxial magnetic field B = ẑB0. The plasma has a pressure
profile of

p = p0 cos
(πr

2a

)
.

(a) Calculate the maximum value of p0. (b) Find an expression
for the diamagnetic current.

6-7. The minimum density N and confinement time τc of a plasma
necessary for achieving controlled thermonuclear fusion is
given by the Lawson criterion, Nτc ≤ 1020 m−3 s. For a plasma
confined in a θ -pinch configuration, with a maximum applied
magnetic field stength of 10 T, what is the minimum confine-
ment time that will satisfy the Lawson criterion?

6-8. The Yamato 1 is an MHD propulsion ship that uses an applied
magnetic field and direct electric current passed through sea-
water to propel the vessel. The applied magnetic field is 4 T.
The spacing between the electrodes that drive the DC current
is 175 mm and the total power dissipated is 3600 kW, yielding a
force of 16 kN. Calculate the voltage that is applied across the
electrodes.

References

[1] N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (San
Francisco: San Francisco Press, 1986), Section 3.6.

[2] J. A. Stratton, Electromagnetic Theory (New York: McGraw-Hill,
1941).



References 151

[3] W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism,
2nd edn (Reading: Addison-Wesley, 1962).

[4] J. A. Bittencourt, Fundamentals of Plasma Physics, 3rd edn (New York:
Springer-Verlag, 2004), 325–50.

[5] G. F. Chew, M. L. Goldberger, and F. E. Low, The Boltzmann equation
and the one-fluid hydromagnetic equations in the absence of particle
collisions. Proc. R. Soc. London A, 236 (1956), 112–18.



C H A P T E R

7 Collisions and plasma conductivity

Plasma phenomena

Single-particle
motion

Distribution
function

Moments of Boltzmann
equation

Single fluid
(MHD)

Multiple fluids

Boltzmann
equation

7.1 Introduction

Having outlined the different approaches to plasma phenomena,
in this chapter we present a closer examination of the effects of
particle collisions, which were mentioned only in passing in pre-
vious chapters. Although the physics of particle collisions occurs
on the scale of individual particles, the collective effects of such
collisions are manifested in the macroscopic parameters of plas-
mas, e.g., plasma conductivity. In general, plasmas can be clas-
sified into two types, collisional and collisionless. In collisionless
plasmas, the collisional encounters between the constituents of the
plasma gas are so infrequent that their effects on plasma dynamics
can be neglected. Most of the plasma in the Earth’s near-space

152
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environment, except at altitudes below ∼500 km above the surface,
can be treated as collisionless. In collisional plasmas, which are
common in many technological applications, collisions occur fre-
quently enough that the resultant momentum exchange between
the particles is significant and may even dominate the plasma
behavior.

Collisions facilitate various transport processes in a plasma. Con-
sider a plasma with a spatial inhomogeneity, for example with a
plasma density N that varies in space. As a result of their ther-
mal motions, electrons collide with other particles. Although each
electron individually moves at random, the collisions generate a ten-
dency for the population to drift away from the high-density regions.
Similar drift would occur if the spatial inhomogeneity involved
a variation of plasma temperature with space. This type of drift
of particles in inhomogeneous plasmas, facilitated by collisions, is
called diffusion. If the spatial inhomogeneity provides a pressure
or density gradient in a prescribed direction, the presence of such
a drift makes the velocity distribution function anisotropic. How-
ever, such a non-equilibrium state of affairs can only be temporary;
given enough time, an equilibrium should be reached, the average
drift velocity goes to zero, and the distribution function becomes
isotropic.

In the presence of an external force, such as an electric field, such
drift of electrons (and ions) can occur even if the plasma is homo-
geneous. This type of drift is exactly analogous to conduction in
an ordinary conductor. Individually the electrons move at random
because of their finite temperature but, on the average, they drift
in the direction opposite to the electric field. The parameter which
describes the drift of particles in a plasma under the influence of
an external electric field E is mobility, given by μ = |u|/E. Since
the electrons have mass and carry charge, their drift corresponds
to transport of mass and the conduction of electricity, i.e., electric
current.

In an inhomogeneous plasma under the influence of an external
field, particle transport is due to both diffusion and mobility. These
two transport processes can be separated only if the average velocity
due to the external electric field is small compared to the thermal
velocity. It should be noted that since the electrons have kinetic
energy, their drift also results in the transport of energy and con-
duction of heat; however, as before, we assume no significant energy
or heat transport within the plasma, amounting to truncation of
the moments of the Boltzmann equation, as discussed in previous
chapters.
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7.2 Collisions

Collisional plasmas can be further divided into two classes, partially
ionized plasmas and fully ionized plasmas. In partially or weakly
ionized plasmas, there exists a large background of relatively large
neutral constituents, while fully ionized plasmas consist of only elec-
trons and ions. In weakly ionized plasmas, the dominant collisional
process is between electrons and neutrals, involving essentially head-
on encounters, while in fully ionized plasmas the collisions are
encounters between charged particles, governed by the Coulomb
interaction force. In this section we briefly consider collisions with
neutrals and those between charged particles.

7.2.1 Weakly ionized plasmas

Neutral particles in a weakly ionized plasma impede the motion
of charged particles by their simple presence as heavy, compact
obstacles. When an electron (or an ion) collides with a neutral atom,
it may lose all of its momentum or only part of it, depending on the
angle at which it rebounds. The probability of momentum loss can
be expressed in terms of the equivalent molecular cross-section σn
of the neutral atom. The electron–neutral collision frequency νen
(the number of collisions per second) is then proportional to the
number density Nn of neutral particles, the average (over velocity
space) velocity 〈v〉, and σn. In other words,

νen = Nnσn〈v〉. (7.1)

The molecular cross-section can be approximated as σn = πa2,
with a being the radius of the nuclei, so that we can often take
σn � 10−19 m2. An average over velocity space is needed since par-
ticles with different velocities may have different individual collision
frequencies. In the most general cases, the cross-section σn may itself
be a function of the velocity of the incident particle. Although the
particle collision frequency ν is the only parameter that we will use
in our analysis of conductivity and diffusion processes, it is useful
to note some related quantities in passing. The so-called mean free
path λen, given by

λen = 1
Nnσn〈v〉 ,

is the average distance a particle travels before having a collision.
The mean time τ between collisions is given by τ = Nnσn〈v〉.
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7.2.2 Fully ionized plasmas: Coulomb collisions

In fully ionized plasmas, all collisions are between charged particles
which interact by means of their electric Coulomb fields. Because
of the long range of Coulomb forces, charged particles approaching
one another are deflected at interparticle distances much larger than
the atomic radius. In effect, the Coulomb interaction enhances the
cross-section of the colliding particles; however, it also means that
most particles will suffer only small-angle deflections. In a suffi-
ciently dense plasma, the Coulomb potential is screened and the
electric field is approximately confined to a Debye sphere, and we
might think that the effective cross-section is approximately equal
to πλ2

D. However, this is not accurate since particles with sufficient
energy can penetrate the Debye sphere. Since the potential increases
steeply with distance into the Debye sphere, most of the deflection
occurs inside the sphere, with small-angle deflections being much
more likely than large-angle ones. The Coulomb collision frequency
in a fully ionized plasma can be written in a form identical to (7.1).
The electron–ion collision frequency is given by

νei = Neσc〈ve〉, (7.2)

where we note that the total ion density Ni = Ne because of charge
neutrality. In order to estimate the numerical value of νei, we must
determine the Coulomb scattering cross-section σc on the basis of
the microphysics of the collision. In the following, we present a
simplified order-of-magnitude derivation of σc for the case of an
electron colliding with a positively charged ion. Consider the situ-
ation shown in Figure 7.1, with an electron approaching a single
heavy ion. To a first approximation, we can consider the ion to be at
rest, with the electron trajectory deflected as a result of its attraction
toward the ion. In a fully ionized plasma, the plasma temperature is
high enough that the ion cannot trap the electron, which will simply
move around the ion and escape, usually with a small deflection
angle χ . The electron orbit is in fact a hyperbola, which can be

+
Ion

cr0

Figure 7.1 Orbit of an electron
undergoing a Coulomb collision
with an ion.
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approximated as straight lines at large distances from the ion. The
distance of closest approach in the absence of Coulomb attraction,
denoted by r0, is known as the impact parameter. The Coulomb
force between the electron and the singly charged ion (qi = −qe) is

Fc = − q2
e

4πε0r2
0

. (7.3)

This force is felt by the electron only during an approximate average
time τc � r0/ve, when it passes near the ion. The Coulomb collision
cross-section σc is given by σc = πr2

0 . The change in momentum
experienced by the electron during this time is given by

�(meve) � |Fcτc| = q2
e

4πε0ver0
. (7.4)

From a detailed examination of the probability of large- versus
small-angle collisions, the change in momentum �(meve) can be
expressed as a fraction of the particle momentum meve, and it can
be shown (see [1]) that

νei �
√

2ω4
pe

64π Ne

(
kBTe

me

)− 3
2

ln �, (7.5)

where Te appears when we replace ve with 〈ve〉 and use 1
2me

〈
v2

e
〉 =

3
2kBTe, and where � = Neλ

3
D is the so-called plasma parameter. The

quantity ln � is sometimes referred to as the Coulomb logarithm;
in most plasmas, since � is a very large number the value of ln � is
in the range of 10 to 30. Using the definitions of various quantities,
equation (7.5) can be simplified as

νei � ωpe

64π

ln �

�
. (7.6)

The corresponding mean free path can be written as

λei = 〈ve〉
νei

� 64πλD
�

ln �
, (7.7)

from which we can see that the ratio of the mean free path to the
Debye length is a very large number in a typical plasma. Coulomb
collisions also occur between electrons and electrons and between
ions and ions. However, collisions between like particles (particles
with the same mass) do not lead to diffusion, since for each ion
which random-walks in one direction there is another ion which
moves in the opposite direction, so that the center of mass of the
two colliding ions does not move. Collisions between like particles
serve to equilibriate their velocities via momentum exchange, so
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that particles of the same species assume a well-defined average
temperature. The temperatures of particles of differing masses can
remain different for much longer times.

7.2.3 Specific resistivity

In Chapter 6, Equation (6.17) we expressed the electron–ion colli-
sion term in the generalized Ohm’s law as

Sei = ηq2
e N2

e (ui − ue)

and noted that the constant of proportionality η was known as the
specific resistivity of the plasma. Alternatively, the loss of momen-
tum due to collisions can be expressed in terms of the collision
frequency (i.e., the number of collisions per second) νei as

Sei = me Neνei(ui − ue), (7.8)

which implicitly assumes that the electrons lose all of their relative
momentum in collisions with the much heavier ions. Comparison of
(7.8) and (6.17) indicates that

Specific resistivity η = meν

Neq2
e

. (7.9)

The relation (7.9) is valid for weakly ionized or fully ionized plas-
mas, as long as we use the appropriate collision frequency. In
other words, for weakly ionized plasmas we can replace ν with
the electron–neutral collision frequency νen, while for fully ionized
plasmas ν is equal to the electron–ion collision frequency νei. For
a fully ionized plasma we can use (7.6) to write an expression for
the resistivity in terms only of the parameter � and the plasma
frequency ωpe:

η � 1
64πε0 ωpe

ln �

�
. (7.10)

This resistivity of an isotropic, fully ionized plasma is referred to
as the Spitzer resistivity. It is interesting to note that since ωpe is

directly proportional to N
1
2

e while � is proportional to N
− 1

2
e ,1 and

1 From Chapter 1 we have

ωpe =
√

Neq2
e

meε0
and λD =

√
ε0kBTe

Neq2
e

.

With � = Neλ
3
D, � is proportional to N

− 1
2

e .
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since ln � is roughly a constant, the Spitzer resistivity is independent
of plasma density. This can be understood as follows: if we increase
the plasma density by adding more charge carriers we do get an
increase in current, but we also increase the collision frequency and
the frictional drag, which decreases the drift velocity of the charge
carriers.

In a weakly ionized plasma, the collision term in the electron
momentum equation (4.30) can in general be written as

me Ne

[
∂ue

∂t
+ (ue · ∇)u

]
= −∇ · �e + qe Ne(E + ue × B)

+ −
∑

me Neνe j (ue − u j )︸ ︷︷ ︸
Sej

. (7.11)

The dominant collision process in weakly ionized plasmas is
between electrons and neutrals. To first order the rate of momentum
transfer to electrons as a result of collisions with neutrals can be
described as above, with the summation carried over all the neutral
species j . The key assumptions under which we write (7.11) are
that the number density of the neutral particles is much larger than
the electron density Ne and that the mass of a neutral particle is
essentially infinite (compared to me), so that the entire momentum
of an electron is lost in its collision with the neutral particle. If νe j
is the number per second (i.e., frequency) of such collisions, the
average (over the ensemble) rate of loss of momentum of a fluid
element containing Ne electrons is then νe j me Neue. If the plasma is
assumed to be isotropic, with the neutrals typically assumed to be
stationary (u j = 0), the momentum transport equation reduces to

me Ne

[
∂ue

∂t
+ (u · ∇)u

]
︸ ︷︷ ︸

du/dt

= qe Ne(E + ue × B) − ∇ p − me Neν ue,

(7.12)

where ν = νeff is an effective collision frequency that is the sum of
the different νe j , and is no longer necessarily the actual number of
collisions per second with any neutral constituent. We typically drop
the subscript “eff” for brevity, and will simply refer to this quantity
as ν in the rest of this chapter and later on when we discuss the role
of collisional processes in electromagnetic wave propagation in plas-
mas. Typically, the electron–neutral collision frequency in weakly
ionized plasmas is a function of the electron temperature and
the neutral density; application-specific examples of such functions
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are presented in Example 4-2 of Chapter 4 and Example 7-1 in
this chapter.

7.3 Plasma conductivity

With the collision frequency determined as given in (7.1) or (7.6),
the transport of each particle species is governed by the momentum
transport equation for that species, which for electrons is given by
(7.12). In this section we focus our attention on the phenomenon of
conduction in homogeneous plasmas (i.e., ∇ · � = 0). The pressure-
gradient term will be considered in the next chapter, when we study
diffusion processes. To determine expressions for the conductivity
of the plasma medium, we alternatively consider DC (∂/∂t = 0)
and AC cases (quantities varying harmonically as e jωt), and relate
the current density J and the electric field E, with J = qe Neue.
For convenience and brevity, we neglect the contribution of ion
motion to the electrical conductivity, essentially assuming the much
heavier ions to be immobile, i.e., ui = 0. Later we will see that the
inclusion of ion motions is actually quite straightforward. We start
by linearizing the momentum equation (7.12), by assuming that
the electric field E and fluid velocity ue are small-signal quantities,
while the magnetic field and electron density exhibit small-signal
variations around large steady values. In other words,

B = B0 + B1, Ne = Ne0 + Ne1,

where subscript “1” indicates small variations while subscript “0”
indicates background (ambient) values. Note that we have E0 = 0
and ue0 = 0, so that E = E1 and ue = ue1. The linearized version of
(7.12) is obtained by neglecting all terms involving products of any
two small-signal quantities. We find

me Ne0
∂ue

∂t
� qe Ne0(E + ue × B0) − me Ne0ν ue. (7.13)

In the following we will often denote Ne0 simply by Ne.

7.3.1 DC conductivity

We consider DC conductivity of the plasma under the influence
of an applied electric field which is constant in time and spatially
uniform. In such a case we have ∂/∂t = 0, so that (7.13) reduces to

0 � qe Ne(E + ue × B0) − me Neν ue. (7.14)
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In the case of an isotropic plasma with no magnetic field (B0 = 0),
we see that the electric field force is balanced by the collision term:

qe NeE � me Neν ue → ue = qeE
me ν

. (7.15)

The electric current density associated with this motion of the elec-
tron fluid is

J = qe Neue → J = Neq2
e

meν︸ ︷︷ ︸
σdc

E, (7.16)

so that the DC conductivity of an unmagnetized (isotropic)
plasma is

DC conductivity σdc = Neq2
e

meν
. (7.17)

The electron mobility μe is defined as the ratio of the fluid velocity
to the applied electric field:

μe ≡ |ue|
|E| = qe

meν
. (7.18)

As we saw in previous chapters, the presence of a static magnetic
field B0 makes the plasma anisotropic, with electric current flow in
directions other than that of the applied electric field, thus requiring
that the conductivity be expressed as a tensor. From (7.14) we have

qe Ne(E + ue × B0) � me Neν ue →

J ≡ qe Neue = Neq2
e

meν︸ ︷︷ ︸
σdc

(E + ue × B0) , (7.19)

which is a simplified form of the generalized Ohm’s law (6.20) that
we also encountered as Equation (6.22). We now seek to write J in
terms of E using a tensor conductivity

↔
σ :

J = ↔
σ · E. (7.20)

To determine
↔
σ , we align our coordinate system so that the z axis is

along the magnetic field, i.e., B0 = ẑB0. From (7.19) we have

J = σdcE + σdc B0

qe Ne
(J × ẑ) = σdcE + σdc B0

qe Ne

(
x̂Jy − ŷJx

)
, (7.21)
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which can be written in component form as

Jx = σdc Ex + ωce

ν
Jy (7.22a)

Jy = σdc Ey − ωce

ν
Jx (7.22b)

Jz = σdc Ez, (7.22c)

where ωce = qe B0/me. We can combine (7.22a) and (7.22b) to
rewrite (7.22) as

Jx = ν2

ω2
ce + ν2 σdc Ex + νωce

ω2
ce + ν2 σdc Ey (7.23a)

Jy = −νωce

ω2
ce + ν2 σdc Ex + ν2

ω2
ce + ν2 σdc Ey (7.23b)

Jz = σdc Ez, (7.23c)

which can be expressed in tensor form as

⎡⎢⎣Jx

Jy

Jz

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
σdcν

2

ω2
ce + ν2

σdcνωce

ω2
ce + ν2 0

−σdcνωce

ω2
ce + ν2

σdcν
2

ω2
ce + ν2 0

0 0 σdc

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

↔
σ

⎡⎢⎣Ex

Ey

Ez

⎤⎥⎦ =
⎡⎢⎣ σ⊥ σH 0

−σH σ⊥ 0

0 0 σ‖

⎤⎥⎦
︸ ︷︷ ︸

↔
σ

⎡⎢⎣Ex

Ey

Ez

⎤⎥⎦,

(7.24)

where σ‖ ≡ σdc. The various entries in
↔
σ represent the conductivity

of the magnetized plasma for current flow in various directions, as
shown in Figure 7.2. The parallel conductivity (also referred to as the
longitudinal conductivity) is equal to the DC conductivity and rep-
resents current flow in the direction parallel to B0. The conductivity
labeled σ⊥, the so-called Pedersen conductivity, represents current
flow along the component of the electric field which is normal to
the magnetic field, while the Hall conductivity σH represents current
flow in the direction perpendicular to both E and B0. Note that for
B0 = 0 we have ωce = 0, so that σ⊥ = σdc, and σH = 0, so that the
tensor conductivity

↔
σ reduces to the scalar σdc.
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E

E

E
B0

(s  )

(s )

(sH)
−E × B0

Figure 7.2 Current flows in an
anisotropic magnetoplasma. The
electric field is decomposed into
its components parallel and
perpendicular to B0.
Current-flow directions are
represented by the components
of

↔
σ .

Example 7-1 Ionospheric heating
The HAARP2 ionospheric heating facility in Gakona, Alaska,
can change the conductivity of the overhead plasma in the lower
ionospheric D-region (altitude 75–95 km) by heating the elec-
trons with high-power (3.6 MW) radio waves in the 2–9 MHz
band. The Earth’s magnetic field at an altitude of 85 km has an
intensity of 54 μT, the daytime electron density is 109 m−3, and
the electron–neutral collision frequency is a function of temper-
ature, given by

νen(Te) = 5278
√

Te + 2752Te − 0.31T2
e (units of Hz).

If HAARP can change the electron temperature from 200 K to
600 K, calculate the change in conductivity for all parts of the
DC conductivity tensor.

Solution: The DC conductivity tensor is given by Equation (7.24):

↔
σ =

⎡⎢⎢⎢⎢⎢⎢⎣
σdcν

2

ω2
ce + ν2

σdcνωce

ω2
ce + ν2 0

−σdcνωce

ω2
ce + ν2

σdcν
2

ω2
ce + ν2 0

0 0 σdc

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎣ σ⊥ σH 0

−σH σ⊥ 0

0 0 σ‖

⎤⎥⎦.

2 HAARP stands for High Frequency Active Auroral Research Program.



7.3 Plasma conductivity 163

The change in conductivity is given by �
↔
σ = ↔

σ (200 K) −
↔
σ (600 K). The collision frequency (ν = νen) and σdc both change
with temperature. Evaluating all parameters,

ωce = qe B/me =(1.6 × 10−19)(54 × 10−6)

9.1 × 10−31 = 9.57 × 106 rad s−1

νen(200 K) = 6.13 × 105 Hz

νen(600 K) = 1.67 × 106 Hz

σdc(200 K) = Neq2
e

meν
= (109)(1.6 × 10−19)2

(9.1 × 10−31)(6.13 × 105)

= 4.59 × 10−5 S m−1

σdc(600 K) = Neq2
e

meν
= (109)(1.6 × 10−19)2

(9.1 × 10−31)(1.67 × 106)

= 1.68 × 10−5 S m−1,

which allows evaluation of �
↔
σ :

�σ⊥ = (1.88 × 10−7) − (4.96 × 10−7) = −3.08 × 10−7 S m−1

�σH = (2.93 × 10−6) − (2.85 × 10−6) = 8.08 × 10−8 S m−1

�σ‖ = (4.59 × 10−5) − (1.68 × 10−5) = 2.91 × 10−5 S m−1.

7.3.2 AC conductivity

We now consider the conductivity of the magnetized plasma for an
applied electric field which is time-harmonic in nature, i.e., varying
as e jωt. The linearized momentum equation (7.13) can then be
written

jωmeue = qe(E + ue × B0) − meνue, (7.25)

which can be rewritten

0 � qe(E + ue × B) − me(ν + jω)ue. (7.26)
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This is identical to (7.14) if we make the substitution ν → (ν + jω).
Thus, the entries of the AC conductivity tensor can be obtained
directly by making this same substitution:

σ⊥ = (ν + jω)2 σdc

(ν + jω)2 + ω2
ce

(7.27a)

σH = (ν + jω)ωce σdc

(ν + jω)2 + ω2
ce

(7.27b)

σdc = σ‖ = Neq2
e (ν − jω)

m2
e(ν

2 + ω2)
. (7.27c)

7.3.3 Conductivity with ion motion

Although we have so far neglected ion motions for the sake of
simplicity, the inclusion of ion effects is quite straightforward. Basi-
cally, ion motions contribute to the current density in an additive
manner, i.e.,

J = Neqeue +
∑

k

Nkqkuk,

where the summation is over the different types of ions, each having
their own charge, density, and fluid velocity. Thus, for a plasma
composed of electrons and several species of ions, the components
of the conductivity tensor become

σ⊥ = ε0

[
ω2

pe(νe + jω)

(νe + jω)2 + ω2
ce

+
∑

k

ω2
pk(νk + jω)

(νk + jω)2 + ω2
ck

]
(7.28a)

σH = ε0

[
ω2

peωce

(νe + jω)2 + ω2
ce

+
∑

k

ω2
pkωck

(νk + jω)2 + ω2
ck

]
(7.28b)

σ‖ = ε0

[
ω2

pe

(νe + jω)
+

∑
k

ω2
pk

(νk + jω)

]
, (7.28c)

where ωpk and ωck are, respectively, the ion-plasma and ion-
cyclotron frequencies of the various ion species. Note that the DC
conductivity with ion motion included can be obtained by simply
setting ω = 0 in Equation (7.28).
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7.4 Summary

In this chapter we explored particle collisions in partially and fully
ionized plasmas. In weakly ionized plasmas the dominant collision
process is between electrons and neutral molecules, while in fully
ionized plasmas collisions are governed by Coulomb forces. In both
cases the collisions can be represented by an effective collision
frequency which is a function of average particle velocity and an
equivalent cross-section. Having an expression for plasma collisions
allows us to calculate plasma conductivity by finding the relation
between the current density (J) and the electric field (E), which can
be done for DC (∂/∂t = 0) and AC (quantities varying harmonically
as e jωt) cases. The presence of a static magnetic field introduces
anisotropy and requires that the conductivity be expressed as a
tensor.

7.5 Problems

7-1. Consider a toroidal plasma-confinement system in which a
current is driven in a fully ionized plasma by an electric field
applied along B, which is azimuthal – along the toroid. What is
the intensity of the electric field that must be applied in order to
drive a total current of 150 kA if the plasma has a temperature
of kB = 400 eV and a cross-sectional area of 85 cm2?

7-2. Estimate the mean free path of electrons in an atmospheric-
pressure glow discharge (weakly ionized plasma).

7-3. Calculate the specific resistivity of a fully ionized plasma of
density N = 1012 m−3 and temperature 1 keV.

7-4. Consider a fully ionized electron–proton plasma in a fusion
reactor with density N = 1021 m−3 and temperature of 10 keV.
(a) Find the electron–ion collision frequency. (b) Find the
impact parameter r0 and compare it to the radius of a proton,
which is approximately 10−15 m.

7-5. Evaluate the change in the AC conductivity tensor in the
ionosphere created by the HAARP HF heater described in
Example 7-1, if the frequency in question is 2 kHz.

7-6. Measurements using a rocket indicate that horizontal and ver-
tical electric fields (i.e., the x̂ and ẑ components) in the iono-
sphere at 130 km altitude are ∼0.5 mV m−1 and ∼10 mV m−1,
respectively, while the Pedersen and Hall conductivities at
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this altitude are measured as σ⊥ � 3 × 104 S m−1 and σH �
4 × 104, respectively. The Earth’s magnetic field at that alti-
tude is B0 = ẑ3 × 10−5 T. (a) Calculate the collision frequency
ν, electron-cyclotron frequency ωc and DC conductivity σdc.
(b) Estimate the magnitude of the three components of the
ionospheric current density J.

Reference

[1] J. A. Bittencourt, Fundamentals of Plasma Physics, 3rd edn (New York:
Springer-Verlag, 2004), 560–88.
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8.1 Introduction

Diffusion is the term used to describe plasma motion due to a
non-uniform distribution of charged particles or a non-uniform
distribution of temperature in a plasma. When a charged particle
collides with another particle (either charged or neutral), its velocity
vector undergoes an abrupt change, causing the particle to move
from one collisionless orbit to another. After many such collisions,
the particle would have wandered a significant distance away from
its original location. In a uniform plasma, this process would not
have caused net migration of particles since, on average, another
particle would have moved into the original location of the first
particle. In an inhomogeneous plasma, however, the result of the
collisional motion is a net migration of particles from high-density
regions to low-density regions, i.e., diffusion. Diffusion is a random-
walk process. The particles take one step at a time, each step being

167
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(on average) �x, and the time between steps being �t. Consider
very many similar particles all starting initially at position x = 0.
As time passes, the average position of the particles is not expected
to change, so that the quantity 〈x〉 remains zero. However, on prob-
abilistic grounds alone it can be shown that 〈x2〉, the variance of the
particle position, increases linearly with time:

d
[〈x2〉]
dt

= (�x)2

�t
→ 〈x2〉 =

[
(�x)2

�t

]
t, (8.1)

indicating that the root-mean-square spread in the positions of the
particles increases as

√
t.1 We will show below that (8.1) is the

natural solution of the diffusion equation for plasmas. The basic
cause of diffusion is the F =−∇ p force, which in diffusive motion is
balanced by the frictional drag force due to collisions. The amount
of diffusion that we have in a given case, or the diffusivity of a
plasma, is described by the so-called diffusion coefficient, D, which
is defined as the multiplier in front of the concentration gradient.
Consider the momentum equation at steady state, with the pressure-
gradient force balanced by the frictional drag:

0 � −∇ p − mNν u → � ≡ Nu = − kBT
mν︸︷︷︸

D

∇N, (8.2)

where we have introduced the quantity �, the flux of particles.2

Using the continuity equation (4.29) and (8.2) we obtain the so-
called diffusion equation, which governs the time evolution of parti-
cle density:

∂ N
∂t

+ ∇ · (Nu) = 0 → ∂ N
∂t

+ ∇ · � = 0. (8.3)

1 For this purpose, we can consider a total of n random steps, k of which are to the right
(i.e., involve increases in x) and n − k to the left. While the probability of each unique
sequence of n steps is 2−n , the total number of sequences which involve k steps to the
right is n!/[k!(n − k)!], meaning that the probability of having k steps (out of n) to the
right is Pn(k)=2−n n!/[k!(n − k)!]. After taking the n steps in a time t =n�t, the net
distance traveled by the particle is x=k�x − (n − k)�x = (2k − n)�x. The ensemble
average of the quantity x is then given as

〈x2〉 = (�x)2
n∑

k=0

(2k − n)2 2−n n!
k!(n − k)!︸ ︷︷ ︸

Pn (k)

= n (�x)2 =
[

(�x)2

�t

]
t,

where some degree of manipulation can be used to show that the summation is simply
equal to n.

2 The equation � = −D∇N is known as Fick’s first law of organized motions, relating the
flux of a species of particles to the gradient of density.
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Substituting (8.2) in (8.3) we obtain the diffusion equation

Diffusion equation
∂ N
∂t

= D∇2 N , (8.4)

the one-dimensional version of which is

∂ N
∂t

= D
∂2 N
∂x2 . (8.5)

For the case when all of the particles start at x=0 at t =0, the exact
solution of this equation is

N(x, t) =
[

N2

4π Dt

]1/2

e−x2/(4Dt). (8.6)

The ensemble average of the square of the spread in particle posi-
tions is then

〈x2〉 = 1
N

∫
x2 N(x, t) dx = 2 D t. (8.7)

Comparing (8.7) and (8.1) we see that

D = (�x)2

2�t
. (8.8)

On a heuristic basis, we expect the diffusion coefficient to be related
to the time interval between collisions, τ =ν−1, and to �x, the
ensemble average distance traveled between collisions, often called
the mean free path, λ. Thus, it makes sense that D is proportional to
(�x)2/�t, or νλ2. Since the mean free path is obtained by dividing
the average velocity by the mean time between collisions, and since
the average velocity squared is related to temperature, we see that D
is also proportional to kBT�t/m. In magnetized plasmas, charged
particles move freely along the magnetic field, unimpeded except for
collisions. If there are density gradients along B, diffusion will occur
in the same manner as in an unmagnetized plasma, since B does not
affect the motion along B. Accordingly, we would expect the parallel
diffusion coefficient D‖ to be proportional to kBT/(mν).

Note that for diffusion along the magnetic field, as well as for
diffusion in an unmagnetized plasma, collisions impede transport.
On the other hand, for diffusion across the magnetic field, collisions
facilitate transport. If there were no collisions, particles would not
migrate across B and would simply continue to gyrate indefinitely
about the same field line. There may of course be drifts across
B due to gradients, curvature, or electric fields perpendicular to
B; however, in practice these are often arranged to form closed
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drift orbits within a bounded plasma. For example, in a cylindri-
cal plasma column the electric field and the gradients are in the
radial direction, so that the drifts are in the azimuthal (φ) direction
and do not carry the particles away from the plasma. When there
are collisions, on the other hand, particles migrate across B by a
random-walk process. Assuming that particles complete at least one
gyration before colliding, we will show later that the step size in
their random walk is no longer λ but rather the gyroradius rc, and
that the perpendicular diffusion coefficient D⊥ is proportional to
νr2

c . The role of the collision frequency ν is reversed between D‖
and D⊥, as expected on the basis that collisions are the only means
for perpendicular diffusion. In the following, we separately consider
diffusion in weakly and fully ionized plasmas.

8.2 Diffusion in weakly ionized plasmas

We first consider diffusion in the absence of a magnetic field, real-
izing that the same analysis is valid for diffusion along B in a
magnetized plasma. We then discuss diffusion across the B field.

8.2.1 Ambipolar diffusion in an unmagnetized plasma

The fluid equation of motion including collisions, valid for each
species, is

mN
du
dt

= mN
[
∂u
∂t

+ (u · ∇)u
]

= qE − ∇ p − mNνu. (8.9)

We assume that ν is a known constant. First consider steady-state
conditions such that ∂u/∂t = 0. If u is sufficiently small, or ν is
sufficiently large, we may assume that a fluid element will not move
into regions of different E or ∇ p within a time τ = ν−1, so that the
convective term in (8.9) can also be neglected. We can then write

u = 1
mNν

(qE − kBT∇N) = q
mν︸︷︷︸
μ

E − kBT
mν︸︷︷︸

D

∇N
N

, (8.10)

where we have also assumed an isothermal plasma (i.e., p= NkBT).
Note that we have identified the coefficients in front of the two
motion components respectively as the mobility μ and the diffu-
sion coefficient D. The relationship between mobility and diffusion
coefficient is known as the Einstein relation:

μ = q D
kBT

. (8.11)
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In diffusion processes we are typically concerned with the flux � of
particles given by

� = Nu = μNE − D∇N. (8.12)

It can be seen from (8.10) that the diffusion coefficient is inversely
proportional to the particle mass m. One might then think that the
electrons would diffuse much more quickly than the ions. However,
in a plasma, which must remain charge-neutral to a very high
degree of accuracy, net motion of electrons and ions at separate
rates cannot occur. If the plasma is to remain neutral, the fluxes
of electrons and ions will somehow adjust themselves so that the
two species diffuse at the same rate. The means of this adjustment
is the electric field which arises as soon as a slight charge imbalance
occurs. In unmagnetized plasmas, or for diffusion along the field in a
magnetized plasma, the electrons undergo faster diffusion and tend
to leave the ions behind, creating an electric field directed outward
from the plasma, of such a magnitude that the preferential loss of
electrons is impeded, although the loss of ions will necessarily be
enhanced by the same electric field. For diffusion across the B field,
we expect the ions to migrate more rapidly in view of their much
larger gyroradii. The resultant electric field should thus be inwardly
directed, i.e., toward the region of highest plasma density, to impede
the preferential loss of ions. The process which involves the simul-
taneous migration of electrons and ions in a plasma is referred
to as ambipolar diffusion. The electric field required for ambipolar
diffusion can be found by setting �e = �i , which in view of charge
neutrality in turn means ue = ui . We then have, from (8.12),

μi NE − Di∇N = −μe NE − De∇N → E = Di − De

μi + μe

∇N
N

.

(8.13)

The flux of particles is then given by (note that � = �i = �e)

� = μi
Di − De

μi + μe
∇N − Di∇N = − μi De + μe Di

μi + μe︸ ︷︷ ︸
Da

∇N, (8.14)

identifying Da as the ambipolar diffusion coefficient.

Ambipolar (unmagnetized)

diffusion coefficient
Da = μi De + μe Di

μi + μe
. (8.15)

In studying the diffusion of a plasma, for example to determine
how a plasma created in a container decays by diffusion to the
walls, the governing equations are the continuity equation and the
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equation of motion. Our neglect of the fluid velocity time derivative
in the equation of motion, but not in the continuity equation, is
the equivalent of assuming that diffusion is a slow process, which
is usually the case. Specifically, if the characteristic time scale of
diffusion τD 
 τ = ν−1 then the ∂u/∂t term can be neglected.

Noting that μe 
 μi (assuming that electron and ion tem-
peratures are equal, and noting that the thermal velocities are
proportional to m− 1

2 , we can see that ν is proportional to m− 1
2 , so

μ = q/(mν) is also proportional to m− 1
2 ), we can write Da as

Da � Di + μi

μe
De = Di + Te

Ti
Di � 2Di . (8.16)

Thus the effect of the ambipolar electric field is to enhance the
diffusion of ions by a factor of two.

8.2.2 Free diffusion across a magnetic field

We now consider the case of a weakly ionized plasma in a magnetic
field. Since the diffusion in the parallel direction is the same as
for an unmagnetized plasma, we only consider the perpendicular
component of motion. We have

mN
du⊥
dt

= qe N(E + u⊥ × B) − kBT∇N − mNνu⊥. (8.17)

Once again considering steady-state conditions (∂/∂t = 0), and
neglecting the convective term, and after separating u⊥ into its
components and some algebra (similar to that in Section 5.3), it can
be shown that

u⊥ = μ⊥E − D⊥
∇N
N

+ ω2
c

uE + uD

ω2
cν

2 , (8.18)

where uE ≡ (E × B)/B2 and uD ≡ −(∇ p × B)/(q NB2) are respec-
tively the E × B and diamagnetic drift velocities. The perpendicular
mobility and diffusion coefficient are given by

μ⊥ = (q/mν)

1 + ω2
cτ

2 and D⊥ = kBT/(mν)

1 + ω2
cτ

2 . (8.19)

Note that (8.18) applies separately for each species. Note that the
perpendicular motion of particles is composed of two parts: the
usual drifts, which are impeded by collisions, and the mobility
and diffusion drifts along the gradients in electric potential and
particle density. These drifts have the same form as in the case
for no magnetic field, but the coefficients μ and D are reduced by



8.2 Diffusion in weakly ionized plasmas 173

the factor 1 + ω2
cτ

2. When ω2
cτ

2 � 1 the magnetic field has little
effect on diffusion. On the other hand, when ω2

cτ
2 
 1 the magnetic

field significantly retards the rate of diffusion across B. In the limit
ω2

cτ
2 
 1 we have

D⊥ � kBTν

mω2
c

, (8.20)

confirming our heuristic expectation that the role of collision fre-
quency in the diffusion is reversed with respect to the case in an
unmagnetized plasma. In other words, D⊥ is proportional to ν,
since collisions are needed for migration. To first order, we can write
(8.20) as

D⊥ � kBTν

mω2
c

� v2
th

r2
c

v2
th

ν � r2
c ν,

indicating that diffusion across the magnetic field is a random walk
with a step length rc, rather than the mean free path λ.

Note that (8.17) can also be rewritten in tensor form for both
parallel and perpendicular components, as

� = −∇ ·
[↔

D N
]

, (8.21)

where

↔
D =

⎡⎢⎣ D⊥ DH 0

−DH D⊥ 0

0 0 D‖

⎤⎥⎦ (8.22)

is the tensor diffusion coefficient, analogous to the conductivity
tensor discussed in Chapter 7 (see Equation (7.24)). The additional
components are

D‖ = kBT
mν

, DH = ωckBT/(mν2)

1 + ω2
cτ

2 .

Just as in the case of the conductivity tensor, the DH components
of the diffusion tensor represent flow in directions perpendicular to
the magnetic field but also perpendicular to the direction of density
gradients.

Ambipolar diffusion across B
Since the diffusion and mobility coefficients are anisotropic, the
problem of ambipolar diffusion in a magnetic field is not straight-
forward. Consider, for example, particle fluxes across B. Since D⊥ is
larger for ions, a transverse electric field would be set up so as to aid
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electron diffusion and retard ion diffusion. However, this electric
field can be short-circuited by an imbalance of fluxes parallel to
B: the negative charge that stays behind because ions diffuse faster
in the transverse direction can be taken away by rapid diffusion of
electrons along B. In other words, although the total diffusion must
be ambipolar, the transverse portion does not need to be ambipolar.
Whether the diffusion across B or along B is dominant depends
on the particular configuration of the plasma and experimental
conditions. In plasmas trapped in a mirror geometry, the loss of
electrons along B is typically much faster than the loss of ions across
the field lines. In closed plasma configurations (e.g., a toroid) there
is no possibility of escape along the field lines and the cross-field loss
of ions is the dominant factor.

8.3 Diffusion in fully ionized plasmas

The case of diffusion in fully ionized plasmas can best be studied
by considering the plasma as a single conducting fluid. At steady
state, the magnetic and pressure-gradient forces are balanced so
that, from (6.23c), we have

0 � −∇ p + J × B. (8.23)

Also valid is (6.22):

J = σ(E + u × B).

Taking the cross-product of (6.22) with B gives

J × B = σ(E × B − B2u⊥) → u⊥ = E × B
B2︸ ︷︷ ︸
uE

− ∇ p
σ B2 , (8.24)

indicating that the plasma fluid drifts at a velocity (E × B)/B2 while
diffusing under the influence of the pressure gradient. The flux due
to diffusion is given as

�⊥ = Nu⊥ = − N∇ p
σ B2 . (8.25)

For a two-fluid plasma consisting of electrons and ions, we have

p = pe + pi = NkB(Te + Ti ),
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so that

�⊥ = − NkB(Te + Ti )

σB2︸ ︷︷ ︸
D⊥

∇N = −D⊥ ∇N, (8.26)

thus identifying the so-called classical diffusion coefficient for a fully
ionized plasma.

Classical diffusion
(magnetized, fully ionized plasma)

D⊥ = NkB(Te + Ti )

σ B2 . (8.27)

Note that this type of diffusion in a fully ionized plasma is inher-
ently ambipolar, since we have assumed the quasi-neutrality con-
dition (∇ · J = 0) so that the electrons and ions stay together and
diffuse together.

As can be seen, the classical diffusion coefficient has an inverse-
square dependence on the magnetic field B. However, in experi-
ments on plasma confinement D⊥ has been found to have a depen-
dence of 1/B, leading to much faster diffusion (decay) of plasma
densities than predicted by the the analysis above. This anomalous
diffusion was first noted by Bohm, who came up with the following
empirical formula:

Bohm (empirical) diffusion D⊥ = DB = kBTe

16qe B
. (8.28)

The Bohm diffusion coefficient is an experimental result. It is believed
that the disparity between the Bohm and classical coefficients is
caused by plasma turbulence, a subject that is beyond the scope of
this text.

8.4 Summary

In this chapter we investigated diffusion, the motion of plasmas
due to density and temperature gradients. We showed that such
motion is proportional to the density gradient, multiplied by an
appropriate diffusion coefficient derived from the fluid equation of
motion and continuity equation. For partially ionized plasmas a
diffusion coefficient can be calculated separately for each species,
but quasi-neutrality requires that oppositely charged particles move
at the same rate, yielding an effective of ambipolar diffusion rate.
Fully ionized plasmas are treated with a single-fluid model that is
inherently ambipolar. A key difference between diffusion in mag-
netized and unmagnetized plasmas is the role of collisions. In the
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absence of a magnetic field (or along magnetic field lines), collisions
generally impede movement. In movement across a magnetic field,
however, collisions facilitate transport by interrupting the indefinite
gyration that would otherwise occur.

8.5 Problems

8-1. A cylindrical, fully ionized plasma column has a density distri-
bution of

N = N0

(
1 − r2

a2

)
,

where a = 10 cm and N0 = 1019 m−3. If kBTe = 100 eV, kBTi = 0,
and the axial magnetic field B0 is 1 T: (a) What are the values
of the Bohm and classical diffusion coefficients? (b) What is
the ratio of the two diffusion coefficients? (c) What will be
the characteristic diffusion time and loss rate from the plasma
column?

8-2. At relatively high altitudes in the Earth’s ionosphere, electron
density varies with altitude as

Ne(z) � 105e−z/H cm−3,

where the scale height H � 300 km and the electron tem-
perature is approximately Te � 3.5 × 103 K. Estimate the
ambipolar electric field associated with this density profile,
and estimate the associated departure from charge neutrality
(i.e., find |Ni − Ne|/Ne, where Ni is the ion density). State all
assumptions.

8-3. The electron–neutral collision cross-section for 2 eV electrons
in He is σen = 6πa2

0, where a0 � 0.53 × 10−8 cm is the radius
of the first Bohr orbit of the hydrogen atom. The ion–neutral
collision cross-section can be assumed to be approximately the
same, i.e., σin � σen. A very long cylindrical plasma column of
radius r0 = 1 cm has He pressure of 1 Torr (at room temper-
ature), kBTe = 2 eV, and kBTi = 0.1 eV.3 A magnetic field of
magnitude B = 0.2 T is aligned along the column. The general
solution of the diffusion equation in cylindrical coordinates is
given by

3 1 Torr = 133.322 Pa.
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N(r, t) =
⎧⎨⎩ N0e−t/τd J0

[
r√
Dτd

]
r ≤ r0

0 r > r0

,

where τd is the diffusion time, D is the diffusion coefficient, and
J0(ζ ) is the Bessel function of the first kind and zeroth order,
which is known to have a first zero at ζ = 2.405 (J0(2.405) = 0).
(a) Considering only diffusion across the field lines, use
Equation (8.15) to define the perpendicular ambipolar diffu-
sion coefficient Da⊥ and determine its numerical value. Since
the column is very long you can assume that the normally
confounding effects of simultaneous parallel diffusion can be
neglected. (b) Show that Da⊥ can be approximated by the free-
electron diffusion coefficient De⊥.

8-4. Explain the different roles played by collisions in diffusion in
fully ionized plasmas across and along the magnetic field.

8-5. Estimate the ambipolar diffusion coefficient for a partially ion-
ized plasma with electron temperature of 1 eV, ion temperature
of 0.1 eV, and collision frequency with neutrals for both ions
and electrons of 3 GHz.
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9.1 Introduction

An ionized gas is capable of a wide variety of oscillatory motions,
which can in general be exceedingly complex. The subject of waves
in plasmas is important not only because the natural dynamical
motions of plasmas often lead to waves but also because waves
are often used to excite, perturb, or probe plasmas. Waves are
also important because they carry energy from the surface of a
plasma (where the waves may have been excited) into the bulk of
the plasma, where the waves may be absorbed and, for example,
heat the plasma. The study of the propagation, linear and non-
linear, of electrostatic and electromagnetic waves constitutes a large
portion of the discipline of plasma physics. In our presentation,
we will limit ourselves exclusively to purely sinusoidal phenomena
and relatively small oscillations so that the relevant fluid equa-
tions can be “linearized” by ignoring terms which are “second-
order” in the perturbed quantities. The waves we consider here are

178
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plane waves propagating in an unbounded, homogeneous, and time-
independent medium. Understanding these simple oscillations will
give us insight into the more complicated wave phenomena which
may occur. Also, in spite of the idealized nature of such plane waves,
they have been found extremely useful in interpreting experimental
observations. In fact, early observations of a rich variety of waves in
the Earth’s ionosphere provided the stimulus for the development
of many important aspects of plasma-wave theory. In this and the
following two chapters, we will discuss three different types of waves
in a plasma: electrostatic waves, electromagnetic waves, and hydro-
magnetic waves. The fundamental equations that we will solve for
all types of waves are Maxwell’s equations, from which the following
wave equation can be derived:

∇2E − με
∂2E

∂t2 = μ0
∂J
∂t

+ 1
ε0

∇ρ. (9.1)

To determine E, we must solve (9.1) together with the momentum
transport and continuity equations derived in Chapters 5 and 6,
which relate E and B to the fluid velocity u and the density N,
which in turn are related to the current density J and the charge
density ρ by

J(r, t) =
∑

i

qi Ni (r, t)ui (r, t) (9.2a)

ρ(r, t) =
∑

i

qi Ni (r, t), (9.2b)

where the summations are over distinct particle species. Waves
in plasmas are most often treated with the multiple-fluid plasma
model presented in Chapter 5. Notable exceptions are hydrodynamic
waves, which are based on a single-fluid treatment (see Chapter 11),
and waves in hot plasmas, which require working directly with the
distribution function (see Chapter 12).

The different types of waves are obtained by applying different
simplifying assumptions. If E and J are parallel to the direction
of wave propagation, electrostatic restoring forces are present, and
such longitudinal waves are called electrostatic waves. In electron
oscillations of this type the frequency is so large that the positive
ions are not affected (because of their inertia), while in positive-ion
oscillations the frequency is so low that the electrons can be assumed
to be in equilibrium at all times in accordance with the Maxwell–
Boltzmann distribution.
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When the electric field E is perpendicular to the wave propaga-
tion direction, we have transverse waves which are electromagnetic.
The electrons in the plasma interfere with the transverse electro-
magnetic waves, and increase their phase velocity. In the absence of
a static magnetic field, electromagnetic waves at a given frequency
can only propagate through a plasma if the electron density is
lower than a given value. The presence of an external magnetic field
removes this requirement as new, lower-frequency modes emerge, as
discussed in Chapter 10.

Hydromagnetic or MHD waves can occur only in the presence
of a magnetic field, and then only for frequencies small com-
pared to the cyclotron frequency of the ions. In a hydromag-
netic wave, the positive ions provide the inertia of the oscillation,
while the restoring forces are largely magnetic, resulting from
the J × B term in the momentum equation. These oscillations
may be regarded as waves in the lines of magnetic force, which
behave as stretched strings and which are “loaded” with charged
particles.

9.2 General properties of small-amplitude waves

Our purpose is to analyze the properties of waves of small amplitude
superimposed on a background uniform and unbounded plasma.
The background (or ambient) values of the quantities N, u, p, E,
and B will be denoted by subscript “0” (e.g., B0 or N0), while the
perturbation quantities will be denoted by subscript “1” (i.e., B1
or N1). However, we will exclusively consider the cases in which
there is no steady fluid motion and no imposed external electric
field, so that u0 = 0 and E0 = 0. It is clear from (9.2a) that we then
have J0 = 0. Thus we do not need the subscripts for u, E, and J, and
we have

N = N0 + N1 (9.3a)

p = p0 + p1 (9.3b)

B = B0 + B1, (9.3c)

where N0, p0, and B0 are constants which do not vary with space or
time. Neglecting collisions, and also assuming an adiabatic equation
of state (4.35), we can write the linearized versions of the fluid
equations (valid for each species separately, as discussed before) as
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∂N1

∂t
+ N0∇ · u = 0 (9.4a)

N0m
∂u
∂t

= qN0(E + u × B0) − ∇ p1 (9.4b)

p1

p1
= γ

N1

N0
→ p1 = γ kBTN1, (9.4c)

where we have assumed each species to be a perfect isothermal
gas at some temperature T (which could be different for electrons
and for ions), so that p0 = N0kBT. Characteristics of plasma waves
are determined by solving (9.4) and (9.2) together with Maxwell’s
equations, repeated here:

∇ × B1 = μ0J + ε0
∂E
∂t

(9.5a)

∇ × E = −∂B1

∂t
(9.5b)

∇ · E = ρ1

ε0
(9.5c)

∇ · B1 = 0, (9.5d)

where the ambient value of the charge density ρ is also zero as a
result of the macroscopic charge neutrality of the plasma. To study
plane waves in plasmas, we search for solutions of the linearized
fluid equations and Maxwell’s equations in which all perturbation
quantities vary proportional to

e j (ωt−k·r). (9.6)

More precisely, each physical quantity (e.g., the electric field or the
electron density perturbation) is represented by a complex phasor
(e.g., E(r) or ρ(r)) given by

E(r) = Ece− jk·r or N1(r) = Nce− jk·r, (9.7)

where Ec is a complex vector constant and Nc is a complex scalar
constant. The actual physical quantities (e.g., E(r, t) or Ñ1(r, t))
can be obtained from their associated phasors by the following
operation:

E(r, t) ≡ Re
{

E(r)e jωt
}

or Ñ1(r) ≡ Re
{

N1(r)e jωt
}
. (9.8)
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Under these conditions, Maxwell’s equations can be rewritten1 as

k × B1 = jμ0J − ωε0μ0E (9.9a)

k × E = ωB1 (9.9b)

k · E = jρ1

ε0
(9.9c)

k · B1 = 0, (9.9d)

while the fluid equations become

jωN1 − j N0 k · u = 0 (9.10a)

N0m jω u = q N0(E + u × B0) − ∇ p1 (9.10b)

p1 = γ kBTN1. (9.10c)

It should be noted that the equation of continuity of electric
current,

∇ · J + ∂ρ̃

∂t
= 0 or k · J = ωρ, (9.11)

is contained in Maxwell’s equations (9.9), and is also implied by
(9.4a). In studying plasma waves, we will usually not use (9.11)
or (9.9c), for reasons previously mentioned, namely that charge
neutrality is preserved to a very large degree. One exception to
this occurs when we study longitudinal waves, i.e., waves for which
E, B1, u, and J are all parallel to the wave propagation direction.
Since we then have k × E = 0, we must have B1 = 0, and (9.9d) is
redundant. With k × B1 = 0, (9.9a) becomes equivalent to (9.9c).
In such cases, it becomes more natural to use (9.9c) since this can be
interpreted as Maxwell’s equations having been reduced to Poisson’s
equation. Note that for transverse waves, the electric and magnetic
fields are both perpendicular to the propagation direction k̂ (B1 is

1 Note for example that

E = Ece− jk·r → ∇ × E(r) = ∇ × Ece− jk·r = −Ec × ∇e− jk·r

= −Ec ×
[

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

]
e− j (kxx+ky y+kzz)

= −Ec × [− j (x̂ kx + ŷ ky + ẑ kz)
]

e− j (kxx+ky y+kzz)

= −Ec × (− jk)e− jk·r = − j k × Ece− jk·r

∇ × E(r) = − j k × Ece− jk·r︸ ︷︷ ︸
E(r)

= − j k × E(r).

Similarly, it can be shown that ∇ · E = − jk · E.
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always perpendicular to k on account of (9.9d)). For such waves,
the charge density ρ must vanish according to (9.9c). Transverse
waves are similar in many ways to uniform plane electromagnetic
waves in free space, except for various cutoffs and resonances, as
we will see later. In general, our goal in plasma-wave analysis is to
obtain a relationship between the wave number k = |k| and the wave
frequency ω. This relationship is called the dispersion relation for the
particular wave under study. Under the assumption of sinusoidal
variation of quantities in time and space, the dispersion relation
becomes the last remaining unknown. It is easy to see that solutions
of the form (9.6) represent plane electromagnetic waves propagating
with a phase velocity

vp = ω

k
, (9.12)

while the group velocity, being the velocity with which energy or
information can travel, is given by

vg = dω

dk
. (9.13)

9.3 Waves in non-magnetized plasmas

We first investigate waves that can propagate in non-magnetized
plasmas, so that B0 = 0. These include plasma oscillations, which
are localized and can hardly be called “waves,” transverse electron
plasma waves which have an electromagnetic character, and longitu-
dinal electrostatic electron and ion waves which are similar to sound
waves in a gas.

9.3.1 Plasma oscillations

We have already seen (Chapter 1) how plasma oscillations arise from
the natural tendency of the plasma to maintain charge neutrality.
In the context of the formalism that we now have for the study of
plasma waves, we can arrive at the same conclusions as we did in
Chapter 1 by adopting the cold-plasma assumptions, so that T = 0,
and consider only the motion of the electrons, assuming the ions to
be stationary. Equation (9.10b) then reduces to

me jω ue = qeE. (9.14)
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Taking the divergence of (9.14) and using (9.4a) (after replacing
∂/∂t with jω) we find

N1 = N0qe

meω2 ∇ · E → ρ = N1qe = N0q2
e

meω2 ∇ · E. (9.15)

We now look for a longitudinal wave so that ∇ · E �= 0. Combining
(9.15) and (9.5c) we find that is necessary to have

ω2 = N0q2
e

meε0
≡ ω2

pe, (9.16)

where ωpe is the electron plasma frequency. This result indicates
that all quantities (E, n1, ρ, u) oscillate in time at a frequency ωpe.
The electron gas is compressed and rarefied in a manner similar to
compressional sound waves, but the restoring force is the electric
field E set up by charge separation, rather than pressure. In arriving
at (9.16), it was not necessary to assume a particular spatial form
of the disturbance, i.e., the wave number k did not appear in the
derivation, indicating that the plasma oscillates at the frequency ωpe
regardless of the size of the disturbed region. Since ω and k are not
related, the group velocity vg = 0. Thus, disturbances in the form of
plasma oscillations do not propagate away from the locale in which
they occur. Indeed, this phenomena is referred to as an “oscillation”
rather than a “wave.” We also note here that the assumption that the
ions are stationary is in no way a severe restriction on our solution
for plasma oscillations. In fact, as is shown in an exercise left to the
reader at the end of this chapter, inclusion of ion motions simply
brings in a slight correction to the oscillation frequency, namely

ω2 = ω2
p = ω2

pe + ω2
pi = ω2

pe

(
1 + me

mi

)
. (9.17)

9.3.2 Transverse electromagnetic waves

To search for transverse waves for which ∇ · E = 0, it is not possible
to use (9.15) or (9.5c). However, we can find wave solutions by fol-
lowing the usual procedure of working with the two curl equations
(9.9a) and (9.9b). The current density J needed in (9.9a) can be
written as

J = N0qeue = N0q2
e

me jω
E, (9.18)

where we have used (9.14). Since transverse waves are similar in
nature to uniform plane waves in ordinary dielectric media, it is
convenient to define an electric flux density vector D, so that the
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right-hand side of (9.9a) can be written as −μ0ωD, as in simple
dielectrics. We have

−ωμ0D = jμ0J − ωε0μ0E → D = εeffE, (9.19)

where the effective dielectric constant is

εeff = ε0

(
1 − N0q2

e

ε0meω2

)
= ε0

(
1 − ω2

pe

ω2

)
. (9.20)

With this definition the two Maxwell’s equations (9.5a) and (9.5b)
can be written as

∇ × B1 = jω μ0 εeff E (9.21a)

∇ × E = − jwB1. (9.21b)

Since these equations are identical to Maxwell’s equations for simple
dielectric media, transverse uniform plane-wave solutions for sim-
ple dielectric media must also be valid in a plasma as long as we
make the substitution ε → εeff. The refractive index of such waves is
simply given as

√
ε, so that we have2

μ ≡ kc
ω

=
(

1 − ω2
pe

ω2

) 1
2

. (9.22)

It can be noted from (9.22) that μ < 1, indicating that the phase
velocity of the transverse plasma waves is greater than the speed
of light in free space c. However, we can easily see that the group
velocity vg = c2/vp and is thus less than c. It can also be noted from
(9.22) that for ω < ωpe the refractive index is imaginary, as is the
wave number k, given by

k = ± j
c

√
ω2

pe − ω2. (9.23)

Thus, ω = ωpe is the cutoff frequency at which k = 0, vp is infinite,
and the group velocity vg = 0. Sinusoidal excitations at frequencies
below ωpe do not propagate in a plasma and are rapidly attenu-
ated. Such waves are called evanescent. The relationship between
ω and k is plotted in Figure 9.1 for real values of ω (i.e., prop-
agating waves). Also shown is the dispersion relation for waves
in free space, which follows a straight line, w = ck. Note that for

2 Short of symbols, we choose to use μ for refractive index, not to be confused with
magnetic moment, also denoted with μ in earlier chapters.



186 Introduction to waves in plasmas

m = 1, w = kc

wpe

w

k

Figure 9.1 Dispersion relation
for electromagnetic waves in
a non-magnetized plasma
(solid line) and in free space
(dashed line).

high frequencies (ω 
 ωpe) electromagnetic wave propagation in a
plasma approaches that in free space. The physical interpretation of
this convergence is that at such high frequencies the wave fields vary
too fast for the plasma electrons (let alone the ions) to respond to
the wave and affect its propagation. For a high-frequency wave, the
plasma becomes transparent.

Total reflection from free space–plasma interface
An interesting and important consequence of the fact that uniform
plane waves can only propagate in a plasma at frequencies ω > ωp is
the total reflection of a uniform plane wave at the interface between
a dielectric and a plasma medium or an ionized region. A natural
example of such an interface is that between free space and the
Earth’s ionosphere, although the electron density in the ionosphere
increases relatively gradually with height so that the interface is not
a single sharp interface between two media. It is this type of reflec-
tion that makes radio waves “bounce” off the ionosphere, making
long-range radio communication possible. Reflection occurs when
ω < ωp. For the ionosphere, the peak value of fp is approximately
10 MHz; thus, AM radio broadcast frequencies are reflected from
the ionospheric conducting layer. Microwave, television, and FM
radio signals are typically above 40 MHz, and are thus easily trans-
mitted through the conducting ionospheric layer with no reflection.
To illustrate the basic concept of total reflection at such an interface,
we consider a single sharp interface between free space and an ion-
ized region (characterized by plasma frequency ωp), as illustrated in
Figure 9.2.

Assuming that the incident wave in Figure 9.2 has a frequency
ω, and that the ionized region behaves as a dielectric with dielectric
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Figure 9.2 Reflection from free
space–plasma interface. Normal
incidence at a sharp interface
between free space and an
ionized medium (plasma)
characterized by a plasma
frequency of ωp.

constant εeff = ε

√
1 − ω2

p
/
ω2, the reflection and transmission coef-

ficients (� and τ , respectively) for the case of normal incidence are
given by expressions similar to those for reflection from the interface
between two ordinary dielectrics, namely

� =
√

ε1 − √
ε2√

ε1 + √
ε2

=
√

ε0 −
√

ε0

(
1 − ω2

p/ω
2
)

√
ε0 +

√
ε0

(
1 − ω2

p/ω
2
) =

ω −
√

ω2 − ω2
p

ω +
√

ω2 − ω2
p

(9.24a)

τ = 2
√

ε1√
ε1 + √

ε2
= 2ω

ω +
√

ω2 − ω2
p

. (9.24b)

For ω > ωp, we note from the above that both � and τ are real and
that portions of the incident wave energy are accordingly reflected
and transmitted. However, for ω < ωp, � becomes imaginary, in
which case we can write it as

� =
ω − j

√(
ω2

p − ω2
)

ω + j

√(
ω2

p − ω2
) = 1e jφ� . (9.25)

We note that (9.25) is similar in form to the reflection coefficients
�‖ and �⊥ for total internal reflection upon oblique incidence at a
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dielectric interface. This similarity indicates that an electromagnetic
wave passing from free space into a plasma with ω < ωp is thus
totally reflected, even at normal incidence. The amplitude of the
reflected wave is equal to that of the incident wave but the wave
acquires phase on reflection, so that the phase of the reflected wave
is different from that of the incident one by an amount φ� which
depends on frequency, as given in (9.25). Note that the transmission
coefficient τ also becomes complex, so that the transmitted wave
is also out of phase with the incident wave. More importantly, the
transmitted wave is evanescent and decays rapidly with distance in
the z direction, and carries no real power since for ω < ωp the intrin-
sic impedance ηp of the plasma is purely imaginary, ensuring that
the electric and magnetic fields of the wave in the ionized medium
are 90◦ out of phase.

Effect of collisions
Some electromagnetic power will always be lost in a plasma because
the electrons frequently collide with gas molecules, ions, and even
other electrons. These collisions cause electromagnetic power to be
transformed into heat. For ω > ωp, the collisions cause the wave to
be attenuated with distance as e−αeffz. For ω < ωp the losses due to
collisions cause total reflection (discussed above) to become partial
reflection. Collisional effects may be taken into account by including
the collisional friction term in the equation of motion (9.14):

qeE = jωmeue + meνue = jωme

(
1 − j

ν

ω

)
ue, (9.26)

where ν is the effective collision frequency of electrons with other
particles, in units of s−1. With the collision term included, we can
once again eliminate ue to obtain

∇ × H = jωε0E + Nq2
e E

jωme

(
1 − j

ν

ω

)
or

∇ × H = jωε0

(
1 − X

1 − j Z

)
E,

where X = ω2
p/ω

2 and Z = ν/ω. Note that X and Z are dimen-
sionless quantities. The effective permittivity of the plasma with
collisions is thus

εeff = ε0

(
1 − X

1 − j Z

)
= ε′

eff − jε′′
eff.
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As is the case for lossy dielectrics, the imaginary part ε′′
eff represents

power loss and attenuation of the wave. The expressions for uniform
plane waves in a collisional plasma can be obtained by using the
general form of uniform plane waves in a lossy medium represented
by σ , ε, and μ, by replacing ε with ε′

eff and σ with ωε′′
eff.

9.3.3 Electrostatic electron and ion waves

The presence of a pressure gradient causes the stationary plasma
oscillations to propagate away, as electrons streaming into adjacent
layers of the plasma carry information about the oscillations in the
disturbed region. The plasma oscillations then properly become a
plasma wave. In addition, the pressure gradient causes the ions to
communicate with one another (i.e., to transmit vibrations to one
another), not through collisions, as is the case for acoustic waves
in a gas, but through the electric field. This coordinated motion of
the ions leads to waves, which are necessarily low-frequency waves,
owing to the large mass of the ions. We can include the effects of
pressure by means of the ∇ p1 term in (9.10b). Using (9.10a) and
(9.10c) to eliminate p1 and N1 we have

u = q
mjω

E − γ kBT
mω2 ∇(− jk · u). (9.27)

This new version of (9.14) is valid for both electrons and ions, which
in general can have different temperatures Te and Ti . First we note
in passing that the new term in (9.27) has no effect on the transverse
waves (i.e., waves with k · E = 0) since for these E, J, and u are
perpendicular to k, so that, by definition, k · u = 0. On the other
hand, longitudinal waves are affected, since for them all of the vector
quantities are parallel to k. By the same token, we can reduce our
equations to their single-dimensional forms. Noting that for such
waves the magnetic field is identically zero, we can observe from
(9.9a) that E = −J/( jε0ω), and noting that J = Nqe(−ui + ue),
we can write

E = jqe

ε0ω
(−ui + ue). (9.28)

Using (9.28) in (9.27) we find

ui = −qe

mi jω
E + γ kBTi k2

miω2 ui (9.29a)

ui = qe

mi jω
E + γ kBTek2

meω2 ue. (9.29b)
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Eliminating E we can write

ui

(
ω2 − ω2

pi − c2
si k

2
)

+ ω2
pi ue = 0 (9.30a)

ue

(
ω2 − ω2

pe − c2
sek2

)
+ ω2

peui = 0, (9.30b)

where cs = γ kBT/m is the speed of sound waves in an adiabatic
gas at a temperature T. Eliminating ue/ui from the above equations
results in a dispersion relation which is quadratic in ω2 in terms of
k2. Although this equation can be solved exactly, results simplify if
we take advantage of the fact that mi 
 me and assume that the
electron and ion temperatures are comparable, so that csi and cse
are also of the same order. Under those conditions, one of the solu-
tions of (9.30), characterized by |ui | � |ue| and valid for relatively
small k, is

ω2 � ω2
pe + c2

sek2 = ω2
pe

(
1 + γ λ2

Dk2
)
, (9.31)

where λD =
√

ε0kBTe/
(
N0q2

e
)

is the Debye length. It is apparent
from (9.31) that it constitutes a modification of the plasma oscil-
lations in which electric-field and pressure-gradient restoring forces
work together, resulting in a plasma oscillation combined with an
acoustic wave. The second solution of (9.30), again assuming rela-
tively small k, is

vp = ω

k
�

√√√√ω2
pi c

2
se + ω2

pec2
si

ω2
pi + ω2

pe
�

√
γ kB(Te + Ti )

mi
, (9.32)

which is characterized by ui � ue so that E � 0. It appears that this
is simply an acoustic wave, with the speed determined by the total
pressure of the two species and the mass of the ions. It is interesting
to note that this ion acoustic wave exists even when the ion tem-
perature is zero, in which case the phase velocity is determined by
the electron temperature (which determines the electric field) and
ion mass. We will see later (Chapter 12) that when λDk is large a
new phenomenon, called Landau damping, appears and leads to
the dissipation of the electron plasma waves even in the absence of
collisions.

9.4 Problems

9-1. Derive the plasma frequency with ion motion included, as
shown in Equation (9.17).



9.4 Problems 191

9-2. A pulsar emits a broad spectrum of electromagnetic radiation,
which is detected with a receiver tuned to the vicinity of f = 75
MHz. Because of dispersion in group velocity caused by the
interstellar plasma, the observed frequency during each pulse
drifts at a rate given by d f/dt = −4.5 MHz s−1. (a) If the
interstellar magnetic field is negligible and ω2 
 ω2

p, show that
d f/dt � −(c/r)

(
f 3/ f 2

p
)
, where fp is the plasma frequency, r is

the distance to the pulsar, and c is the speed of light. (b) If the
average electron density in interstellar space is 2 × 105 m−3,
how far away is the pulsar? (1 parsec = 3 × 1016 m)

9-3. Calculate the additional phase acquired by a 1420 kHz AM
radio wave reflected from a free space–plasma interface if the
plasma density is 1011 m−3.

9-4. Find the reflection coefficient for reflection from a sharp
plasma boundary with a density of 1011 m−3 and an effective
electron collision frequency of 2 GHz.

9-5. Although during normal conditions waves with frequencies of
1 GHz can pass through the Earth’s ionosphere and are thus
suitable for communications with satellites, large solar flares
can greatly increase the ionospheric plasma density and disrupt
communications. Calculate the minumim ionospheric plasma
density that would lead to a communication blackout for an
Earth–satellite link operating at 1 GHz.

9-6. Calculate the phase velocity of electrostatic waves for a 10 eV
equilibrium plasma assuming three degrees of freedom and
relatively small k.

9-7. Find the phase and group velocities for electrostatic waves
propagating in a uniform plasma with density N0 = 1016 m−3

if the wavelength and frequency of the waves are observed to
be 1.2 GHz and 1.1 cm, respectively. The motion of ions can be
neglected.

9-8. Consider an over-the-horizon (OTH) radar that uses reflection
of waves from the ionosphere to achieve greater than line-of-
site range. The radar is intended to reflect waves from the
ionosheric F-region, which is at an altitude of ∼300 km and
has an electron density of around 1011 m−3. (a) Assuming a
spherical Earth with a radius of 6370 km, find the maximum
range of the radar using a single ionospheric reflection. (b)
What frequency should the radar operate at and what will be
the scale of target that it will be able to detect? You can ignore
the effects of ionization layers in the ionosphere at altitudes
below the F-region.
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Single-particle
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 Distribution
 function
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equation

Single fluid
(MHD)

Multiple fluids

Boltzmann
equation

10.1 Introduction

In this chapter we continue using the multiple-fluid model to investi-
gate wave phenomena, now examining the effect of a static magnetic
field on waves in cold plasmas. The basic principles and fundamen-
tal equations on which we base our study of waves in plasmas are
documented in Chapter 9. In particular, we saw that it is useful
to represent the presence of the plasma medium (i.e., the plasma
convection current J which results from the motion of the plasma
fluid driven by the E and B1 fields via the momentum transport
equation) in terms of an effective permittivity εeff, which for the case
of an isotropic (non-magnetized) plasma is given by

εeff = 1 + σ

jωε0
.

The conductivity σ is defined by the relationship between the
current density and the electric field, J = σE. In the more general

192
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case of the magnetized plasmas to be studied in this chapter, and
based on our previous findings of the effect of a magnetic field, we
expect the plasma conductivity to be a tensor, i.e.,

↔
σp, yielding an

effective permittivity for the plasma which also, in general, must be
a tensor,

↔
εp, related to the conductivity tensor by

↔
εp ≡ 1 +

↔
σp

jωε0
, (10.1)

where we now drop the use of the subscript “eff” and instead use
the subscript “p” to indicate that the permittivity and conductivity
tensors are properties of the “plasma” medium.

10.2 The dispersion relation

Using the equivalent permittivity concept, the initial aim of our
analysis of uniform plane plasma waves will be to reduce Maxwell’s
equations to

k × B1 = −ωμ0ε0
↔
εp · E (10.2a)

k × E = ωB1 (10.2b)

k · ↔
εp · E = 0 (10.2c)

k · B1 = 0, (10.2d)

where the tensor dot-product in (10.2c) is to be carried out as shown
in Chapter 4.1 From (10.2a) and (10.2b) we can obtain the wave
equation

k × (k × E) + ω2

c2
↔
εp · E = 0

k (k · E) − (k · k) E + ω2

c2
↔
εp · E = 0

k (k · E) − k2 E + ω2

c2
↔
εp · E = 0. (10.3)

1 In other words,

k · ↔
εp · E ≡ [

kx ky kz
]⎡⎢⎣ε11 ε12 ε31

ε21 ε22 ε23

ε31 ε32 ε33

⎤⎥⎦
⎡⎢⎣Ex

Ey

Ez

⎤⎥⎦ .
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It should be noted that a similar wave equation can be written for
the magnetic field perturbation B1; however, it is customary to work
with the electric field E since all plasma waves have an electric field
but some may have B1 = 0. The typical procedure is to expand
(10.3) in terms of all three orthogonal electric field components.
For a non-trivial wave solution, the determinant of the coefficients
of this equation must vanish. This condition leads to an algebraic
expression known as the dispersion relation:

D (k, ω) = 0. (10.4)

In unbounded plasmas, (10.4) permits a continuum of normal wave
modes. In bounded plasmas, only a discrete set of solutions may be
possible, analogous to a discrete set of normal-mode solutions in
metallic or dielectric waveguides. We will find it useful to study two
principal wave modes, transverse (k⊥E) and longitudinal (k ‖ E).
Transverse waves (k · E = 0) are described by

k2E − ω2

c2
↔
εp · E = 0, (10.5)

whereas longitudinal waves (k × E = 0) are described by
↔
εp · E = 0 or k · ↔

εp · k = 0, (10.6)

where the second term is effectively Poisson’s equation (to see this
note that E = jk�, where � is the electrostatic potential). At this
point it is useful to note that all of our analysis of waves in plasmas
involves examination of time-harmonic uniform plane waves with
all perturbation quantities varying as

e j (ωt−k·r). (10.7)

The dispersion relation (10.4) does not always give purely real time-
harmonic solutions and may instead indicate damping or instabil-
ity; the solution of (10.4) for a given real wave number k = kr + j0
may be a complex frequency, ωr + jωi , and the solution of (10.4)
for a given real frequency ωr + j0 may be a complex wave number,
kr + jki . Solutions with ωi < 0 grow exponentially at all points in
space, while those with ki < 0 may grow exponentially if there is
energy available for wave growth. Note that for evanescent waves
in passive systems such as metallic waveguides, cases with ki < 0
are automatically deemed physically unrealizable;2 however, in a

2 For example, for a rectangular waveguide the dispersion relation is

ω2
c + k2c2 = ω2,
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complicated plasma system with the possibility of free energy in
the system, growth can occur up to the limits of our linearization
approximations. In this and the following chapter we will concen-
trate on understanding the variety of possible wave modes in a
plasma and will not discuss instabilities.

10.3 Waves in magnetized plasmas

We start with Maxwell’s equations for time-harmonic uniform plane
waves as given in (9.9), repeated here,

k × B1 = jμ0J − ωε0μ0E

k × E = ωB1

k · E = jρ1

ε0

k · B1 = 0,

along with the momentum equation

m N0 jω u = q N0 (E + u × B0) (10.8)

and the definition of electric current

J(r, t) =
∑

i

qi Ni (r, t) ui (r, t). (10.9)

We begin by considering an infinite, cold, collisionless, and homo-
geneous plasma, although we will occasionally relax the first three
assumptions and examine the effects of boundaries, temperature,
and collisions. We will not consider inhomogeneous plasmas. In
this context, note that by a homogeneous plasma we mean that the
ambient density N0 and temperature T0 (and thus the pressure p0)
are constant as a function of space; the perturbation quantities N1,
T1, and p1 vary sinusoidally in the manner described by (10.7) as
do all the other quantities. We also initially consider only electron
motions, assuming the ions to be stationary; however, we will later
(in Chapter 11) relax this assumption and account for ion motions.
Our goal is to work with (9.9), (10.8), and (10.9) to write the wave
equation (10.3), thus identifying

↔
εp. By definition we have

where ωc is the cutoff frequency. At a frequency ω below the cutoff frequency we have

kr = 0 and ki ± jc−2
√

ω2
c − ω2,

and the solution corresponding to growth is dropped on physical grounds.
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↔
εp · E = J

jωε0
+ E. (10.10)

For future reference, it should be noted that if ion motions were
included, the J above would simply be a summation

∑
J over the

different species, as indicated in (10.9). Using (10.8), (10.9), and
(10.10) we have

J
jωε0

= N0qe

jωε0

(
qe

jωme

)
(E + ue × B0) =−

(
ω2

p

ω2

)
E +

(ωc

ω

) J × ẑ
ωε0

,

(10.11)

where we have assumed the static magnetic field to be in the z
direction. We can expand (10.11) into its components:

Jx

jωε0
= −

(
ω2

p

ω2

)
Ex +

(ωc

ω

) Jy

ωε0
(10.12a)

Jy

jωε0
= −

(
ω2

p

ω2

)
Ey −

(ωc

ω

) Jx

ωε0
(10.12b)

Jz

jωε0
= −

(
ω2

p

ω2

)
Ez. (10.12c)

Equation (10.12) can be solved to find

Jx

jωε0
= − ω2

p

ω2 − ω2
c

Ex − j
(ωc

ω

) ω2
p

ω2 − ω2
c

Ey (10.13a)

Jy

jωε0
= − ω2

p

ω2 − ω2
c

Ey + j
(ωc

ω

) ω2
p

ω2 − ω2
c

Ex (10.13b)

Jz

jωε0
= −ω2

p

ω2 Ez, (10.13c)

where the reader should recognize that the derivation is the same as
that for the AC conductivity tensor in Equation (7.27), albeit with
no collisions. Substitution in (10.10) gives

↔
εp · E ≡

⎡⎢⎣ ε⊥ − jε× 0

jε× ε⊥ 0

0 0 ε‖

⎤⎥⎦
⎡⎢⎣Ex

Ey

Ez

⎤⎥⎦, (10.14)
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where

ε⊥ = 1 − ω2
p

ω2 − ω2
c
, ε× =

(ωc

ω

) ω2
p

ω2 − ω2
c
, ε‖ = 1 − ω2

p

ω2 .

(10.15)

We see from (10.14) that Ex and Ey are coupled together through
the static magnetic field (ωc). Note that the Ez component is un-
affected by the magnetic field, and that as ωc → 0 we recover the
equivalent permittivity for an isotropic plasma, i.e., εp = ε‖. We
now need to use (10.14) and the wave equation (10.3) to obtain the
dispersion relation. As a first step, we write out the wave equation
(10.3) in terms of its x, y, and z components. We have

kx(kxEx + ky Ey + kz Ez)

−
(

k2
x + k2

y + k2
z

)
Ex + ω2

c2 (ε⊥Ex − jε×Ey) = 0 (10.16a)

ky(kxEx + ky Ey + kz Ez)

−
(

k2
x + k2

y + k2
z

)
Ey + ω2

c2 (ε⊥Ex + jε×Ey) = 0 (10.16b)

kz(kxEx + ky Ey + kz Ez)

−
(

k2
x + k2

y + k2
z

)
Ez + ω2

c2 ε‖ Ez = 0. (10.16c)

Without any loss of generality, we can orient our coordinate
system as shown in Figure 10.1 so that the propagation vector lies

x

y

z, B0
kx

kz k

q
Figure 10.1 Coordinate system
for propagation at an angle θ to
B0. We choose the z axis to be
aligned with B0 and rotate the
x and y axes so that k is in the
x–z plane, without any loss of
generality.
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in one of the principal planes, say the x–z plane, so that ky = 0.
Equation (10.16) then reduces to⎡⎢⎢⎢⎢⎢⎢⎣

ε⊥ − k2
z c2

ω2 − jε×
kxkzc2

ω2

jε× ε⊥ −
(

k2
x + k2

z

) c2

ω2 0

kxkzc2

ω2 0 ε‖ − k2
xc2

ω2

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣Ex

Ey

Ez

⎤⎦= 0. (10.17)

It is convenient to introduce the refractive index μ = kc/ω = v/vp
and rewrite (10.17) as⎡⎢⎢⎣

ε⊥ − μ2 cos2 θ − jε× μ2 sin θ cos θ

jε× ε⊥ − μ2 0

μ2 sin θ cos θ 0 ε‖ − μ2 sin2 θ

⎤⎥⎥⎦
⎡⎢⎣Ex

Ey

Ez

⎤⎥⎦= 0. (10.18)

For a non-trivial solution, i.e., Ex, Ey, Ez �= 0, the determinant of
the coefficient matrix must vanish. Setting determinant equal to
zero gives the dispersion relation we have been looking for, now
determined for propagation with refractive index μ, at an angle θ

to the static magnetic field B0. The determinant is a biquadratic in
μ and can be written in the following alternative forms:

tan2 θ = −ε‖
[
μ2 − (ε⊥ + ε×)

][
μ2 − (ε⊥ − ε×)

](
μ2 − ε‖

) [
ε⊥μ − (

ε2⊥ − ε2×
)] (10.19)

or

Appleton−
Hartree
equation

μ2 = k2c2

ω2 = 1 −
(
ω2

p/ω
2
)

1 − ω2
c sin2 θ

2
(
ω2 − ω2

p

) ±
⎡⎢⎣
⎛⎝ ω2

c sin2 θ

2
(
ω2 − ω2

p

)
⎞⎠2

+ ω2
c

ω2 cos2 θ

⎤⎥⎦
1/2

(10.20)

Equation (10.20) is the well-known Appleton–Hartree equation,
the fundamental equation of magnetoionic theory, which deals
with electromagnetic wave propagation in homogeneous magne-
tized plasmas.

10.3.1 Principal modes

Before considering propagation at arbitrary angles, it is use-
ful to examine the properties of the principal modes, i.e., those
propagating either parallel (θ = 0) or perpendicular (θ = π/2) to
the magnetic field B0.
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Parallel propagation (θ = 0)
From (10.18) we have⎡⎢⎣ε⊥ − μ2 − jε× 0

jε× ε⊥ − μ2 0
0 0 ε‖

⎤⎥⎦
⎡⎣Ex

Ey

Ez

⎤⎦= 0, (10.21)

and (10.19) directly indicates three solutions,

ε‖ = 0 (10.22a)

μ2 = ε⊥ + ε× (10.22b)

μ2 = ε⊥ − ε×, (10.22c)

each of which we will examine separately. The solution indicated
by (10.22a) is the plasma oscillations that we have seen before in
Chapter 9. We have

ε‖ Ez =
(

1 − ω2
p

ω2

)
Ez = 0, (10.23)

which represents longitudinal waves at a frequency ω and arbitrary
wave number k. Since the only electric field is Ez ‖ k, it follows
that k × E = 0, implying in turn that B1 = 0, and that E = −∇�,
i.e., the electric field is derivable from a scalar potential. Since
k · E = jρ/ε0 �= 0, there is space charge associated with these
oscillations. Note that the group velocity is zero, so that these
oscillations remain localized in space. The solutions indicated by
(10.22b) and (10.22c) are polarized waves. The origin of these
waves is immediately clear on examination of (10.21). The Ex and
Ey components are coupled together by the magnetic field. The
relation μ2 = ε⊥ ± ε× implies that

∓ε×Ex − jε×Ey = 0 → Ex

Ey
= ∓ j. (10.24)

These modes are consequently right- or left-hand circularly
polarized, depending on the sign. According to the usual IEEE
convention, defining polarization on the basis of the right-hand
rule, with the motion of the tip of the electric field vector being
counter-clockwise when viewed looking toward the −z direction,
the wave is said to be right-hand (RH) circularly polarized. An easy
way to remember this convention is to use your right hand with the
thumb pointing in the direction of propagation (in this case the +z
direction); if the electric field moves in the direction of your other
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RH

RH

LH

m = 1

m > 1

m < 1

wc

w L

wp

w R

w

k

P

Figure 10.2 Dispersion
diagram for parallel propagation
of electromagnetic waves in a
magnetized plasma. The branch
marked P corresponds to
plasma oscillations.

fingers, then the wave is polarized in the right-handed sense.3 The
dispersion relations for the polarized modes are

μ2 = k2c2

ω2 = 1 − ω2
p

ω2 − ω2
c

± ωc

ω

ω2
p

ω2 − ω2
c

= 1 − ω2
p

ω(ω ± ωc)
.

(10.25)

The corresponding w−k diagrams are sketched in Figure 10.2.
Note that the RH wave has two branches, the lower of which shows
an electron-cyclotron resonance for ω → ωc. This branch is often
termed the whistler mode, and is very important in the Earth’s iono-
sphere and radiation belts as well as in certain materials-processing
applications. It is also referred to as the electron-cyclotron mode.

Note that for both of the polarized waves we have E⊥k (k × E �= 0
and k · E = 0), so we can deduce that B1 �= 0, but ρ = 0. Thus, the
Poynting vector for these transverse waves is non-zero, and the wave
propagates without space charge. The plasma manifests itself via J,
which flows in planes normal to k and B0.

The two cutoff frequencies (i.e., the frequencies for which k = 0)
for the parallel propagation case indicated in Figure 10.2 can be
found from (10.25) by setting the left-hand side equal to zero, and
are given by

3 The right-hand rule described here is the IEEE convention. Amazingly enough, there is
considerable disagreement on how to define the sense of polarization of a wave. Most
physicists, as well as scientists and engineers specializing in optics, prefer to have the
thumb pointing to where the wave is coming from, exactly opposite to the IEEE
convention. A further source of confusion is the preference of physicists for using e− jωt

instead of e jωt , which of course reverses the sense of rotation. In view of these
ambiguities, it would be wise in any given case to carefully examine the actual sense of
rotation of the electric field E(r, t) by determining the field vector orientation in space at
two specific times, such as ωt = 0 and ωt = π/2.
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ωR =
(

ω2
p + ω2

c

4

)1/2

+ ωc

2
(10.26a)

ωL =
(

ω2
p + ω2

c

4

)1/2

− ωc

2
, (10.26b)

with the subscripts signifying the fact that ωL is the cutoff frequency
for the left-hand mode, and vice versa for ωR. It should be noted
that ωR − ωL = ωc, and that in Figure 10.2 we have chosen the
plasma parameters such that ωp > ωc.

Faraday rotation
The fact that the propagation constant and therefore the phase
velocity is different for the RH and LH circularly polarized waves
causes the plane of polarization of a linearly polarized wave to
rotate as the wave propagates through the medium.4 This result can
be easily seen by decomposing the linearly polarized wave into a
sum of LH and RH circularly polarized components and solving
separately for the propagation of each component. At z = 0, con-
sider the electric field of a linearly polarized wave propagating in
the z direction to be

E = x̂E1e jωt,

so that the plane of polarization includes the x axis. The complex
amplitude of this wave can be written as

E = E1

2
(x̂ − j ŷ) + E1

2
(x̂ + j ŷ),

where the first term is the RH circularly polarized component and
the second term is the LH circularly polarized component. After the
component waves propagate in the magnetoplasma for a distance d,
we have, at z = d,

E = E1

2
(x̂ − j ŷ)e− jkRHd + E1

2
(x̂ + j ŷ)e− jkLHd ,

4 This phenomenon is called Faraday rotation. It was Faraday who discovered in 1845 that
on passing a plane polarized ray of light through a piece of glass in the direction of the
lines of force of an imposed magnetic field, the plane of polarization was rotated by an
amount proportional to the thickness of the glass traversed and the strength of the
magnetic field [1]. The interaction between the wave and the bound electrons within the
glass material is more complex than the interaction with a free electron plasma
considered here; nevertheless, the presence of a static magnetic field imposes a
preferential direction for the electrons and makes the medium anisotropic.
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which can be rewritten as

E = E1e− j (kRH+kLH)d/2

×
{

x̂ cos
[
(kRH − kLH)d

2

]
− ŷ sin

[
(kRH − kLH)d

2

]}
. (10.27)

This is a linearly polarized wave, but with the plane of polarization
making an angle of θF with the x axis, where

θF = tan−1 Ey

Ex
= −tan−1

{
tan

[
(kRH − kLH)d

2

]}
= (kRH − kLH)d

2
. (10.28)

Thus, it appears that the plane of polarization rotates by an amount
θF = (kRH − kLH)/2 per unit distance. The wave propagates with
an effective propagation constant of (kRH + kLH)/2, as is apparent
from the e− j (kRH+kLH)d/2 term in Equation (10.27), and undergoes
rotation at the same time. Note that this phenomena would occur
only for frequencies where both the LH and RH components would
be propagating; from Figure 10.2 and the related discussion, this
would happen for ω > ωR. It is interesting to express the rotation
in terms of the physical parameters of the plasma. Using the defini-
tions of ωp and ωc we find

θF = |qe|3 B0

2m2
eε0ω

2c
Nd,

where c is the speed of light in free space. If the electron density
varies with distance and if B0 is approximately constant, the net
rotation is given by

θF = |qe|3 B0z

2m2
eε0ω

2c

∫
N(z)dz,

where the integration is along the entire propagation path. For
signals in the several hundred MHz range propagating in the
Earth’s ionosphere, most of the Faraday rotation occurs in the
90–1000 km altitude range. Measurements of the total electron con-
tent (in a 1 m2 column extending through the most highly ionized
part of the ionosphere) are made regularly using satellite-to-Earth
transmissions.5

5 For further information, see [2].
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Perpendicular propagation (θ = π/2)
For propagation perpendicular to the magnetic field we have, from
(10.18), ⎡⎢⎣ ε⊥ − jε× 0

jε× ε⊥ − μ2 0

0 0 ε‖ − μ2

⎤⎥⎦
⎡⎢⎣Ex

Ey

Ez

⎤⎥⎦= 0. (10.29)

From (10.19) we can directly see two solutions:

μ2 = ε‖ (10.30a)

μ2 = ε2⊥ − ε2×
ε⊥

. (10.30b)

The mode represented by (10.30a) is called the ordinary mode,
since its propagation is not affected by the magnetic field. Ez is
completely decoupled from Ex and Ey. This means that this wave
has the same properties as the transverse electromagnetic wave
in a non-magnetized plasma with u ‖ E. Since the Lorentz force
u × B0 = 0, the ordinary mode is uncoupled from the magnetic
field B0. Note that the transverse electromagnetic wave in a non-
magnetized plasma is purely transverse (i.e., k⊥E), while for the
ordinary wave which occurs for k⊥B0 we have E ‖ B0 and thus E⊥k.
Since k⊥E, we have k × E �= 0, and k · E = 0. Thus, there is a non-
zero Poynting vector, but zero space charge. The dispersion relation
is shown in Figure 10.3.

The mode represented by (10.30b) has some extraordinary prop-
erties, and is thus called the extraordinary mode. The electric field
for this mode is perpendicular to B0, with Ex and Ey coupled
together. Since one component (Ex) is in the direction of propa-
gation (note that k is perpendicular to B0, so k = x̂kx), we have

E

EO

m = 1

m > 1

m < 1

w L

wp

w R

w

k

w H

Figure 10.3 Dispersion diagram
for perpendicular propagation.
The ordinary (O) and
extraordinary (E) branches are
marked.
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k · E �= 0, so that there is space charge associated with this wave.
From (10.29) we can write

Ex

Ey
= j

ε×
ε⊥

= j
ωcω

2
p

ω
(
ω2 − ω2

H

) , (10.31)

where ωH =
√

ω2
p + ω2

c is the upper hybrid frequency. It is clear

from (10.31) that the extraordinary wave is in general elliptically
polarized in the plane of propagation.6 At ω = ωH we have a reso-
nance, with the wave number k approaching infinity and hence the
wavelength approaching zero. The physical meaning of a resonance
is discussed below. The extraordinary wave has both transverse (i.e.,
Ey) and longitudinal (i.e., Ex) components, the relative magnitudes
of which depend on frequency, as is clear from (10.31). When ω is
very close to ωH, we can see from (10.31) that Ex 
 Ey, so that the
wave is longitudinal (k ‖ E) and electrostatic. For other frequencies,
the magnitudes of the two components are comparable so that
the wave is a mixed longitudinal–transverse mode, tending to be
transverse electromagnetic for μ < 1 and longitudinal electrostatic
for μ > 1. In this connection, it is useful to write (10.30b) for the
extraordinary mode as

μ2 = k2c2

ω2 = 1 − ω2
p

ω2

⎡⎣ ω2 − ω2
p

ω2 −
(
ω2

p + ω2
c

)
⎤⎦. (10.32)

It is clear from (10.32) that μ = 1 when ω = ωp, regardless of the
value of ωc, as long as ωc �= 0.

A few words on the nature of cutoffs and resonances are in order
here. Cutoffs and resonances are important because they define
the passbands and stopbands for wave propagation in a plasma.
As an example, consider the extraordinary wave branches shown
in Figure 10.3. With the plasma parameters chosen for this case,
ωH > ωp, waves can propagate in the frequency ranges ωL < ω < ωH
and ω > ωR, but a stopband exists in the range ωH < ω < ωR. The
cutoffs are at the frequencies where the dispersion relation reduces
to k = 0; as we saw for the case of propagation in an isotropic
plasma (Chapter 9), generally wave energy approaching a plasma
region in which the wave frequency is in a stopband is fully reflected
or refracted depending on the geometry and the inhomogeneities
involved.

6 Note that this is different from the wave polarization for transverse electromagnetic
waves in simple dielectric media, where we are more used to looking at polarization as
the temporal behavior of the electric field in the direction transverse to k.
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Resonances are quite different than cutoffs. At a resonance, the
dispersion relation reduces to k → ∞, meaning that the wave-
length goes to zero. When k → ∞, the wave phase velocity goes to
zero, and the wavefronts “pile up.” Generally waves become non-
propagating and purely electrostatic near resonances. We can see
graphically from Figure 10.3 that as ω → ωH, the group velocity
(vg = dω/dk, i.e., the slope of the dispersion curve) also goes to
zero. Consider a generator sending waves into a plasma, for exam-
ple by propagating down a density or magnetic field gradient so

that ω < ωH =
√

ω2
p + ω2

c in the propagation region but ω = ωH

in the resonance region. The energy sent by the generator would
continue to pile up in the region of resonance and build up wave
energy density, until some process beyond the applicability of our
linearized cold-plasma theory takes over. Resonances are in fact
more complicated; depending on the particle distribution function,
the wave can either give energy to the particles and become damped,
or extract energy and momentum from the particles and grow. The
fundamental point here is that, with the wavelength being nearly
zero, the wave spatial scales become comparable to the spatial scales
of the particles (e.g., gyroradii) so that the wave can drastically affect
the orbits of individual particles.

10.3.2 Oblique propagation at an arbitrary angle θ

The case of propagation at an arbitrary angle θ is best studied
using (10.20). We see that there are always two values of μ2 for
any given frequency, i.e., just two modes. In general these modes
are elliptically polarized, and have strong space charge only when
μ > 1 and k × E � 0, i.e., when the modes are slow compared to
the velocity of light and are approximately longitudinal waves.

It can be seen easily from Figure 10.4 that the principal modes
for θ = 0 and θ = π/2 are the limiting cases of general propagation
at an arbitrary angle θ . Using (10.20), it can be seen that the cutoff
frequencies ωR, ωL, and ωp are independent of θ . The cutoffs are
determined by

0 = 1 −
(
ω2

p/ω
2
)

1 − ω2
c sin2 θ

2
(
ω2 − ω2

p

) ±
⎡⎢⎣
⎛⎝ ω2

c sin2 θ

2
(
ω2 − ω2

p

)
⎞⎠2

+ ω2
c

ω2 cos2 θ

⎤⎥⎦
1/2 .
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Figure 10.4 Dispersion diagram
for oblique propagation. The
principal mode branches
corresponding to θ = 0 (solid
lines) and θ = π/2 (dashed
lines) are indicated. For any
arbitrary angle θ , the dispersion
curve lies between these two
principal branches.

The resonances, on the other hand, are found from

0 = 1 − ω2
c sin2 θ

2
(
ω2 − ω2

p

) ±
⎡⎢⎣
⎛⎝ ω2

c sin2 θ

2
(
ω2 − ω2

p

)
⎞⎠2

+ ω2
c

ω2 cos2 θ

⎤⎥⎦
1/2

(10.33)

and are clearly functions of θ . We can see from Figure 10.4 and
from (10.33) that the resonance frequency of the whistler mode
changes from ω = ωc for θ = 0 to zero (actually the mode ceases
to exist) for θ = π/2. At any arbitrary propagation angle θ , the
resonance frequency for the whistler mode is given by ωres =
ωc cos θ . Alternatively, for any given wave frequency ω, the so-called
resonance-cone angle is given by cos(θres) = ω/ωc. For the dense-
plasma (i.e., ωp > ωc) case illustrated in Figure 10.4, the resonance
of the extraordinary wave moves from the upper hybrid resonance
frequency for perpendicular propagation (θ = π/2) to the plasma
frequency for parallel propagation. It should be noted that, for all
angles θ , we have μ = 1 at ω = ωp. In studying oblique propaga-
tion, it is sometimes convenient to simplify the Appleton–Hartree
equation (10.20) by making the so-called quasi-parallel assumption,
which is applicable in cases for which the angle θ is relatively small.
For this case, (10.20) reduces to

μ2 � 1 − ω2
p

ω(ω ± ωc cos θ)
for

ω2
c sin2 θ

2
(
ω2 − ω2

p

) � ωc

ω
cos θ,

(10.34)

which can be compared directly to (10.25). Alternatively, for propa-
gation at relatively high angles it may be useful to adopt the quasi-
perpendicular approximation, in which case (10.20) reduces to
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μ2 � 1 − ω2
p

ω2

⎡⎣ ω2 − ω2
p

ω2 −
(
ω2

p + ω2
c sin2 θ

)
⎤⎦ for

ω2
c sin2 θ

2
(
ω2 − ω2

p

) 
 ωc

ω
cos θ, (10.35)

which can be directly compared to (10.30a) and (10.32). We can
note that the refractive indices for the quasi-parallel and quasi-
perpendicular approximations are simply the principal modes, with
B0 replaced by its component along the wave vector k, respectively
B0 cos θ or B0 sin θ .

10.4 Summary

The presence of a static magnetic field was shown to have a pro-
found effect on the propagation of electromagnetic waves in a
plasma. The primary effect of the magnetic field is to couple the
orthogonal components of the wave electric field to one another.
With the exception of the ordinary mode, all electromagnetic waves
in a magnetized plasma have coupled transverse electric field com-
ponents, which gives rise to circular or elliptical polarization of the
wave. In contrast to the single branch of the dispersion relation
for non-magnetized plasmas, waves in a magnetized plasma exhibit
multiple modes of propagation that depend on the direction of
propagation with respect to the magnetic field and the wave polar-
ization. The existence of multiple propagation modes for a single
frequency leads to observable and scientifically useful effects such
as Faraday rotation.

10.5 Problems

10-1. A transmitter satellite (Tx) and a receiver satellite (Rx) are on
opposite ends of a large volume of cold plasma of unknown
dimension and density. A static uniform magnetic field is
as shown in the diagram overleaf. The strength of the mag-
netic field is such that the electron-cyclotron frequency is
observed to be 6 kHz. The transmitter sends two linearly
polarized EM signals at two frequencies, 68 kHz and 58 kHz.
The 68 kHz signal arrives at the receiver linearly polarized but
with a Faraday rotation of 5◦. The 58 kHz signal arrives LH
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circularly polarized. Assuming that the plasma density is
uniform across the volume, determine the upper and lower
bounds of the plasma’s lateral dimension d and density N.
Justify your answer using an appropriate dispersion (ω−k)
diagram.

Tx Rx

B0

58 kHz

68 kHz

d

N

Plasma

10-2. Consider wave propagation parallel to the static magnetic
field in a plasma with the following parameters: fp = 1 MHz,
fce = 100 kHz. Determine the distance which a 10 MHz wave
needs to travel in order for the electric field to rotate by π/6
radians.

10-3. Find the group velocity for a 3 kHz whistler-mode wave prop-
agating parallel to the magnetic field with cyclotron frequency
of 7 kHz and plasma density of 4 × 108 m−3.

10-4. Find an expression for the group velocity of the whistler mode
and make a plot of group velocity versus frequency. Normal-
ize the frequency axis of your plot in units of the electron-
cyclotron frequnecy wce, and the velocity axis in units of the
speed of light c.

10-5. Find an analytic expression for the frequency at which the
group velocity whistler mode is maximum. This is the so-
called “nose frequency” of a whistler.

10-6. Microwaves of frequency 30 GHz propagating in the z direc-
tion are sent through a plasma slab that is infinite in the
x−y plane and 10 cm thick in the z direction. The plasma
density in the slab is N0 = 3.0 × 1018 m−3. The slab also has a
magnetic field of 1.05 T oriented in the x direction. Calculate
the number of wavelengths in the slab if the impinging waves
have electric fields oriented in (a) the x direction and (b) the y
direction.
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10-7. LH circularly polarized waves are propagating along a uni-
form magnetic field into a plasma with steadily increasing
density. The magnitude of the magnetic field is 0.2 T. At what
density will the waves reach a cutoff if their frequency is
2.8 GHz?

References

[1] M. Faraday, On the magnetization of light and the illumination of
magnetic lines of force. Phil. Trans. R. Soc. London, 136 (1846), 1.

[2] K. Davies, Ionospheric Radio (London: Peter Peregrinus, 1990).



C H A P T E R

11 Effects of collisions, ions, and
finite temperature on waves in
magnetized plasmas

11.1 Introduction

The fundamental wave modes for a magnetized cold plasma were
outlined in Chapter 10. In the application of the cold-plasma, two-
fluid model, ions were assumed to be stationary and collisions and
electron thermal motions were neglected. In this chapter we inves-
tigate expected wave behavior when these simplifying assumptions
are relaxed: we will examine the effects of collisions, ion motion,
and finite temperature, and how the previously derived modes are
modified. We will show that collisions can be treated as a relatively
straightforward correction factor to cold-plasma wave modes. On
the other hand, for low-frequency phenomena where ion motions
are included, the plasma behavior approaches that of a single fluid
and new wave types are possible, appropriately called hydromag-
netic or MHD waves. Likewise, it will be shown that finite temper-
ature changes the fundamental stationary plasma oscillations into
propagating waves.

11.2 Effects of collisions

We mentioned in Chapter 9 that collisions can be taken into account
in a straightforward manner, simply by including the frictional
damping term in the momentum equation. While the analysis in
Chapter 9 was for non-magnetized plasmas, the same procedure can
be used for magnetized plasmas. The time-harmonic momentum
equation (9.10b) becomes

jωmN0u = q N0(E + u × B0) − mN0νu

jwm (1 − jν/ω) u = q(E + u × B0), (11.1)

210
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where ν is the collision frequency. The effect of the collisional drag
term is thus to replace the particle mass m by meff = m(1 − jν/ω).
If the simple substitution of m → m(1 − jν/ω) is made in any of
the equations derived so far, the appropriate collisional form is
obtained. In general, this substitution will make all of the refractive
indices complex, leading to complex values of the wave number
k = kr − jki and to corresponding wave solutions of the type

e j (ωt−kr r+ jki r) = e−ki r e j (ωt−kr r), (11.2)

that is, exponential decay with distance, as one would expect as a
consequence of collisional losses. As an example, consider the RH
mode for parallel propagation in the absence of ion motion. Making
the substitution me → me(1 − jν/ω) in (10.25) we find

μ2 = k2c2

ω2 = 1 −
ω2

p

1 − jν/c

ω

(
ω − ωc

1 − jν/c

) = 1 − ω2
p

ω(ω − ωc − jν)
.

(11.3)

We note that collisions are most effective near cyclotron resonance
(i.e., when ω � ωc, so that the jν term in the denominator is dom-
inant). They are also effective near the cutoff region (i.e., ω � ωR);
in fact, it can be shown that collisional damping is always strong
when the group velocity is low. In general, the Appleton–Hartree
refractive index expression, including the effect of collisions, is
given by

μ2 = 1 −
(
ω2

p/ω
2
)

1 − j
ν

ω
+ ω2

c sin2 θ

2
(
ω2 − ω2

p − jwν
) ±

⎧⎨⎩
[

ω2
c sin2 θ

2
(
ω2 − ω2

p − jων
)]2

+ ω2
c

ω2 cos2 θ

⎫⎬⎭
1/2

.

(11.4)

11.3 Effects of positive ions

To include the effects of positive ions, we follow the same procedure
that we followed in deriving (10.14), (10.17), and (10.18), except that
the current J is now a summation of the currents of electrons and
of ions. For simplicity, we consider a two-fluid plasma, consisting
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of electrons and protons (i.e., qi = −qe). The definitions of the
component permittivities given in (10.15) are modified additively,
so that we have

ε⊥ = 1 −
[

ω2
pe

ω2 − ω2
ce

+ ω2
pi

ω2 − ω2
ci

]
(11.5a)

ε× =
(ωce

ω

) ω2
pe

ω2 − ω2
ce

−
(ωci

ω

) ω2
pi

ω2 − ω2
ci

(11.5b)

ε‖ = 1 −
[

ω2
pe

ω2 − ω2
pi

ω2

]
. (11.5c)

We now investigate how these modifications will affect the principal
modes.

11.3.1 Parallel propagation (θ = 0)

We examine the three modes analogous to (10.22):

(a) The plasma oscillations (ε‖ = 0) are not affected significantly,
since ω2

pi/ω
2
pe = me/mi � 1.

(b) Concerning the RH polarized wave, we now have

μ2
RH = 1 − ω2

pe

(ω + ωci )(ω − ωce)
. (11.6)

It is clear that the RH mode will only be modified for frequen-
cies low enough to be comparable to ωci . The upper branch
of the RH mode is thus unaffected, while the lower branch is
modified. For ω � ωci , the refractive index tends to the value

μ2
RH � 1 + ω2

pe

ωceωci
� c2

vA
, (11.7)

where vA is the Alfvén speed, defined by

vA ≡ c

(
ωceωci

ω2
pe

)1/2

=
( |qe|B0

me

|qe|B0

mi

ε0 me

N0q2
e

1
μ0ε0

)1/2

= c
ωce

ωpe

(
me

mi

)1/2

= c
ωci

ωpi
or

B0√
μ0 N0mi

, (11.8)

where we have assumed the typical situation with vA � c. This
wave mode is called the RH polarized shear Alfvén wave. Note
from (11.7) that in this low-frequency range neither the numer-
ator nor the denominator of the expression for μ2 can go to
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Figure 11.1 Effect of positive
ions on wave propagation in a
cold magnetoplasma: parallel
propagation. The low-frequency
end of the RH whistler mode is
modified and a completely new
LH ion-cyclotron wave branch
appears.

zero, meaning that there are no cutoffs or resonances. This is
not surprising, since the ions are left-handed, while the wave is
right-handed. As we increase the frequency, the RH polarized
shear Alfvén wave changes smoothly into a whistler-mode wave,
with its resonance at ω = ωce. At the low-frequency end, the
RH polarized shear Alfvén wave combines with the new LH
polarized shear Alfvén mode described below and becomes
equivalent to a simple transverse wave propagating in a medium
with a large scalar dielectric constant or very low phase vel-
ocity vp � vA. The new low-frequency RH branch is shown in
Figure 11.1.

(c) The LH branch that we found by neglecting the effects of ions is
almost unchanged since it lies above ω = ωL, which is typically
much larger than ωci . However, there is now a new branch of
propagation for ω < ωci which is called the ion-cyclotron wave or
LH polarized shear Alfvén wave. The general dispersion relation
for the LH wave is

μ2
LH = 1 − ω2

pe

(ω − ωci )(ω + ωce)
. (11.9)

The low-frequency behavior is identical to that of the RH wave,
as given in (11.7). The fact that the RH and LH shear Alfvén
waves have the same dispersion relation means that, at these
low frequencies, linearly polarized Alfvén waves can exist, and
propagate, without Faraday rotation (see Figure 11.2). It should
be noted, however, that the LH mode clearly has a resonance
at ω = ωci , associated with LH ion-cyclotron motion. The new
low-frequency LH branch is shown in Figure 11.1.

The physical nature of the shear Alfvén waves described above
can be understood as follows. At the lowest frequencies (ω � ωci )
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Figure 11.2 Qualitative
representation of sound and
MHD waves. Shading represents
areas of density concentration
and rarefaction. In accordance
with the highly conducting fluid
assumption of MHD, these
waves do not have an electric
field.

both the electrons and the ions execute E × B0 drift motion. The
magnetic field lines themselves are frozen into the plasma and move
with it at the same drift speed, vE = E × B0/B2

0 . The circular polar-
ization of the wave electric field means that the field lines twist
like a helix around the z axis, which is why this mode is called
the shear Alfvén wave (or sometimes the torsional wave). The ions
provide the inertia for this wave, causing the field lines to continue to
move circularly, rather than come to rest. One characteristic of such
twisting motion is that ∇ · u = 0, so that there is no compression
nor any pressure perturbations (p1); thus this wave is not affected by
the finite-temperature (or pressure-gradient) term in the momentum
equation.

At frequencies below ωci the traverse shear Alfvén wave is in
fact an MHD wave, where the magnetic field lines behave as elastic
cords under tension. In Section 11.3.4 it will be shown that this
wave behavior can be obtained directly from the MHD single-
fluid equations derived in Chapter 6. The wave motion is a fluc-
tuation between plasma density changes perpendicular to the
magnetic field and magnetic field line tension B2

0/μ0. This wave
behavior is often compared to traverse vibrations of an elastic
string, and is illustrated in Figure 11.2b. Under the frozen-in field
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concept described in Chapter 6, the magnetic field lines act as
mass-loaded springs under tension, vibrating when the conducting
fluid is perturbed.

11.3.2 Perpendicular propagation (θ = π/2)

As in the absence of ions, we have ordinary and extraordinary
modes, as described by (10.30), with permittivities as given by (9.8).
We can make the following observations:

(a) The ordinary mode is hardly modified, since ε‖ is not signifi-
cantly different. This mode has a cutoff frequency of ω = ωpe,
and is characterized by a wave electric field parallel to B0, i.e.,
E × B0 �= 0. With the electric field only moving the ions along
B0, the ion dynamics cannot produce any low-frequency effects.
Thus, the ordinary branch shown in Figure 10.3 is unchanged.

(b) For the extraordinary branch, propagation near the upper
hybrid frequency is not significantly affected. However, a new
branch emerges, which has a resonance (ε⊥ = 0) at the lower
hybrid frequency ωh, given by

1

ω2
h

= 1

ω2
pi + ω2

ci

+ 1
ωceωci

→ ω2
h =

ωceωci

(
ω2

pi + ω2
ci

)
ω2

pi + ω2
ci + ωciωce

�
ωceωci

(
ω2

pi + ω2
ci

)
ω2

pi + ωciωce
.

(11.10)

For ω � ωci , this mode has a phase velocity given by the
Alfvén speed. It has associated space charge, and finite k · u, so
that it compresses the plasma, which is why it is often called
a compressional Alfvén wave. Once again, since the plasma is
frozen into the field lines at the low hydromagnetic frequencies
considered here, the magnetic field is also compressed. The wave
propagates across the magnetic field, alternately compressing
and expanding it like the pressure in a sound wave, which is
why this mode is also often called the magnetosonic mode. For
the same reason, we expect this wave to be affected by finite
temperature effects, which we will study in the next section. The
new extraordinary wave branch corresponding to this mode is
shown in Figure 11.3. The basic propagation characteristics of
this MHD wave are shown in Figure 11.2d.
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Figure 11.3 Effect of positive
ions on wave propagation in a
cold magnetoplasma:
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ordinary mode is not affected
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wave (or compressional Alfvén
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Figure 11.4 Effect of positive
ions on wave propagation in a
cold magnetoplasma: oblique
propagation.

11.3.3 Oblique propagation (arbitrary θ )

The precise nature of the dispersion diagrams for oblique propa-
gation depends on the magnitude of ωpe/ωce; however, the general
behavior is as shown in Figure 11.4. In the low-frequency limit, i.e.,
ω � ωci , one branch has phase velocity vA at all angles, while the
other, the ion-cyclotron branch, has vp = vA cos θ .

11.3.4 Hydromagnetic (MHD) waves

The Alfvén waves that we encountered with the inclusion of ion
motions are in fact natural solutions of the magnetohydrodynamic
equations (6.39) and (6.40). Such waves are physically caused by the
magnetic forces discussed in Chapter 6, including the component
of the magnetic force that tends to straighten out curved magnetic
field lines. To the degree that the MHD fluid is perfectly conducting,
the electric field within it is zero, so that the wave action (i.e., the
generation of one quantity by the other and vice versa) in such waves
is between the fluid velocity um and the magnetic field B1 rather than
between electric field E and B1. Consider an unbounded conductive
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fluid embedded in a homogeneous magnetic field of magnitude B0.
If we disturb this fluid by moving a column in a given direction with
velocity u, currents arise in order to set up the charge distribution
necessary to maintain a zero electric field. These currents interact
with the magnetic field and produce forces which impede the motion
of the column but also move adjacent layers, thus leading to wave
motion. We now show that these waves can be directly obtained
from the MHD equations (6.39) and (6.40).

Using (6.42) in (6.40) we have

ρm
∂um

∂t
= −∇

[
p + B2

2μ0

]
+ 1

μ0
(B · ∇)B

= −∇
[

p + (B0 + B1)
2

2μ0

]
+ 1

μ0
(B0 · ∇)B1︸ ︷︷ ︸

linearized form

, (11.11)

while from (6.39), for the case when flow dominates (nearly infinite
conductivity), we have

∂B
∂t

= ∇ × (um × B) → ∂B1

∂t
= ∇ × (um × B0)︸ ︷︷ ︸
linearized form

. (11.12)

For simplicity, we will consider incompressible fluids,1 with

∇ · um = 0 → dρm

dt
= 0 → ρm = ρm0 = constant. (11.13)

We can now expand (11.12) using a vector identity:

∇ × (um × B) ≡ (B0 · ∇)um

− (um · ∇)B0︸ ︷︷ ︸
= 0 (B0 = constant)

+ um (∇ · B0)︸ ︷︷ ︸
= 0

−B0 (∇ · um)︸ ︷︷ ︸
= 0 from (11.13)

(11.14)

We thus have
∂B1

∂t
= (B0 · ∇)um. (11.15)

Without further discussion, the potential for hydromagnetic wave
action can be seen by inspection of (11.11) and (11.15), where we see

1 Inclusion of compressibility complicates matters only slightly, since it can be shown that
hydromagnetic plane-wave equations for compressible fluids conveniently split into parts
that are parallel and perpendicular to B, the latter representing transverse Alfvén waves
while the former represents ordinary sound waves.



218 Effects of collisions, ions, and finite temperature

that the time derivatives of the two quantities B1 and um are related
to spatial derivatives of one another, very similar to (for example)
Maxwell’s equations, in which the time derivatives of electric and
magnetic fields are related to the spatial derivatives (in that case
curls) of one another. To proceed further, we select our coordinate
system so that (as before) B0 = ẑ B0, and seek uniform plane waves
propagating along B0, i.e.,

e j (ωt−k·r) = e j (ωt−kz), (11.16)

where k = |k|. Note that by definition (i.e., for a uniform plane
wave) we have ∂/∂x = 0 and ∂/∂y = 0, so that (11.11) and (11.15)
reduce to

ρm0
∂um

∂t
= −ẑ

∂

∂z

[
p + (B0 + B1)

2

2μ0

]
+ 1

μ0
B0

∂B1

∂z
(11.17)

∂B1

∂t
= B0

∂um

∂z
. (11.18)

Noting the divergence-free nature of both the magnetic field and
the fluid velocity (11.13), we must have

∂umz

∂z
= 0 and

∂B1z

∂z
= 0, (11.19)

indicating that both of these quantities are uniform in space. Since
we are looking for wave-like solutions, we can take both of these
to be zero, i.e., umz = 0 and B1z = 0. Re-examination of (11.17)
indicates that the left-hand term and the second term on the right-
hand side do not have any components in the z direction, so that we
must have

− ∂

∂z

[
p + (B0 + B1)

2

2μ0

]
= 0.

Our linearized equations (11.17) and (11.18) can now be written as

∂um

∂t
= B0

ρm0μ0

∂B1

∂z
(11.20)

∂B1

∂t
= B0

∂um

∂z
. (11.21)

Combining after differentiation, we obtain wave equations which
can be contrasted with similar equations for uniform plane electro-
magnetic waves propagating in the z direction:
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∂2E
∂t2 = 1

με

∂2E
∂z2

∂2um

∂t2 = B2
0

ρm0μ0

∂2um

∂z2 (11.22)

∂2H
∂t2 = 1

με

∂2H
∂z2

∂2B1

∂t2 = B2
0

ρm0μ0

∂2B1

∂z2 (11.23)

vp = 1√
με

, k=ω
√

με vA = B0√
μ0ρm0

, kA = ω
√

μ0ρm0

B0
,

(11.24)

where E and H are respectively the total electric and total magnetic
fields. We see that hydromagnetic waves propagating along B0 are
very similar to uniform plane electromagnetic waves (also known
as transverse electromagnetic or TEM waves), with a phase velocity
independent of frequency and given by

Alfvén speed vA = B0√
μ0ρm0

, (11.25)

which, of course, is identical to the Alfvén speed for shear Alfvén
waves as given in (11.8). These hydromagnetic waves are indeed
one and the same with the shear Alfvén waves that we found in
Section 11.3 by taking the limit of the more general refractive index
for ω � ωi . Note that there is no electric field for these waves, since
the electric field within the highly conducting fluid is nearly zero.
The wave action arises from a give-and-take between B1 and um,
rather than that between E and H for an electromagnetic wave
(see Figure 11.2). Note that these waves are transverse, just like
TEM waves, since B1 and um do not have z components (see
(11.19)). However, it is clear from (11.20) (or (11.21)) that B1 and
um are polarized in the same direction, as opposed to E and H
for TEM waves, which are perpendicular to one another. Note,
however, that the current J is perpendicular to both B1 and k, since
we have

∇ × B1 = 1
μ0

J → k × B1 = j
μ0

J. (11.26)

Noting that both B1 and k have the form given in (11.16), we can
rewrite (11.20) as

ωB1 = B0 k um → B1 = √
μ0ρm0 um, (11.27)

which is indeed similar to |H| = [√
μ/ε

] |E |, so that the quantity√
μ0ρm0 may be loosely viewed as the intrinsic “impedance” of the

hydromagnetic fluid for shear (longitudinal) Alfvén waves.
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The above analysis assumes that the conductivity of the plasma
fluid is infinite, so that the (μ0σ)−1∇2B term in (6.39) can be left out
of (11.12). The inclusion of finite but very large conductivity leads to
damping of the Alfvén waves, as would be expected. One interesting
difference between TEM waves and hydromagnetic waves is that
higher conductivity means less damping for the latter, while TEM
waves in a good conductor attenuate exponentially with distance in
accordance with a skin depth of δ = (μ0σω)−1/2.

11.4 Effects of temperature

Following up on our general discussions in Chapter 9, finite tem-
perature effects can be included by using the pressure-gradient term
in the momentum equation. The relevant time-harmonic equations
are (9.10b) and (9.10c), repeated here:

N0m jω u = q N0(E + u × B0) − ∇ p1 (11.28a)

p1 = γ kBTN1; (11.28b)

substituting (11.28b) in (11.28a) and rearranging gives

jωu + γ kBT0

N0m
∇N1 = q

m
(E + u × B0), (11.29)

valid, as before, for each plasma species. We do not expect cold-
plasma modes with zero space charge (N1 = 0) to be greatly affected
by the inclusion of temperature and shall therefore concentrate on
the modes that are effectively longitudinal (i.e., k‖E). We consider
only the principal modes, to determine how they are modified and
whether there are any new branches of propagation.

11.4.1 Parallel propagation (θ = 0)

The only longitudinal mode is plasma oscillations with E ‖ B0,
given by ε‖ = 0. We see from (11.29) that the equation of motion
does not couple motions perpendicular to B0. The z component for
electrons is given by

jωuz + c2
se

N0
(− jkN1) = qe

me
Ez, cs =

√
γekBTe

me
, (11.30)

where cs is the speed of sound waves in the electron gas at tem-
perature Te. This is identical to the equation of motion (9.14)
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(a) (b)

ω /k = cse

q = π/2

wH

w /k = c

w

k

q = 0

k

wpe

wpi

w

w /k = [g kB(Te + Ti)/mi]
1/2

w/k = [g kBTe /me]
1/2

Figure 11.5 Effects of
temperature. (a) Parallel
propagation. (b) Perpendicular
propagation. Both diagrams are
for longitudinal waves (k ‖ E)
and should not be confused with
the dispersion diagrams for
transverse waves (k⊥E).

for plasma oscillations in a cold plasma if we make the substi-
tution me → me

(
1 − k2c2

se/ω
2
)
. Thus, the modified expression for

ε‖ = 0 is

ε‖ = 1 − ω2
pe

ω2 − k2c2
se

= 0, (11.31)

which can be rearranged to give the dispersion relation

ω2 = ω2
pe + k2c2

se = ω2
pe

(
1 + γek2λ2

D

)
. (11.32)

This is identical to (9.31) from Chapter 9, with λD being the Debye
length. We thus see that the solutions for a non-magnetized plasma
obtained in Chapter 9 are simply special cases of the more gen-
eral magnetized-plasma case. This dispersion relation is plotted in
Figure 11.5a, showing how the plasma oscillations branch is modi-
fied for finite temperature. Note that the asymptotic phase velocity
at ω → ∞ is vp = ω/k = cse. Also note that the inclusion of finite
temperature effects makes the propagation k-dependent, and that
the group velocity is no longer zero. For a cold plasma, it was men-
tioned in Section 11.3 that inclusion of positive-ion motions had no
significant effect on the plasma oscillations. However, we know from
our discussions that finite temperature allows ions to communicate
with one another, leading to low-frequency ion acoustic waves. This
wave mode is a new branch that is brought about by finite temper-
ature. As before, the dispersion relation for the case which includes
ion motions can be obtained by simple additive modification of that
for the electron-only case. We thus have

ε‖ = 1 −
[

ω2
pe

ω2 − k2c2
se

+ ω2
pi

ω2 − k2c2
si

]
. (11.33)
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Setting the above equal to zero gives two solutions, the first of which
is (11.32), slightly modified because of the ions. The second solution,
valid for c2

se 
 c2
si and at much lower frequencies, is

1 + ω2
pe

k2c2
se

− ω2
pi

ω2 − k2c2
si

= 0 or ω2 = ω2
pi k

2c2
se + ω2

pek2c2
si

ω2
pe

.

(11.34)

This branch is plotted in Figure 11.5a. We note that there is a reso-
nance at ω = ωpi , and a constant phase velocity, at low frequencies
(or small k), of

vs = ω

k
�

√√√√ω2
pi c

2
se + ω2

pec2
si

ω2
pe

�
√

γ kB(Te + Ti )

mi
, (11.35)

which is identical to (9.32). Since this behavior is qualitatively simi-
lar to sound waves in an isothermal gas, these waves are referred to
as ion sound waves or ion acoustic waves (see Figure 11.2a).

11.4.2 Perpendicular propagation (θ = π/2)

The only branch that exhibits space-charge effects is the extra-
ordinary branch near the upper hybrid frequency. The version of
ε⊥ modified as a result of finite temperature is

ε⊥ = 1 − ω2
pe

ω2 − k2c2
se −

(
ω2

ce + ω2
pe

) = 0, (11.36)

so that the dispersion relation for this branch becomes

ω2 =
(
ω2

pe + ω2
ce

)
+ k2c2

se; (11.37)

this is sketched in Figure 11.5b. Inclusion of ion motions for perpen-
dicular propagation becomes complicated and needs to be studied
separately for different plasma regimes. One important result is that
the compressional Alfvén wave (i.e., the magnetosonic wave), which
has space charge associated with it, has its phase velocity modified

from vA to
√

v2
A + v2

s , where vs is given by (11.35):

Finite-temperature
magnetosonic speed vm =

√
v2

A + v2
s . (11.38)
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11.5 Summary

In this chapter we examined the effects of collisions, positive ions,
and finite temperature on waves in magnetized plasmas. The effect
of collisions can be handled in a straightforward way by defining
an effective particle mass meff = m(1 − jν/ω) that can be directly
substituted into previously derived equations for collisionless cold-
plasma wave modes. The inclusion of ions leads to new wave modes
at low frequencies near and below the ion-cyclotron frequency.
In the low-frequency limit, ω � ωci , the two-fluid plasma treatment
with ion motion yields the same results as that derived from the
single-fluid MHD equations. In such MHD waves the wave action
is a give-and-take between the background magnetic field and the
conducting fluid motion, instead of between electric and magnetic
fields as in electromagnetic waves.

11.6 Problems

11-1. It has been proposed that a solar power station be built in
space with huge panels of solar cells collecting sunlight con-
tinuously and transmitting the power to Earth in a microwave
beam at 30 cm wavelength. However, losses in the microwave
beam as it passes through the ionosphere are likely to be
problematic. Treating the ionosphere as a weakly ionized gas
with constant electron–neutral collision frequency, what frac-
tion of the beam power would be lost in traversing 100 km
of plasma with Ne = 1011 m−3 and Nn = 1016 m−3? Assume
the Earth’s magnetic field intensity at the altitudes of interest
to be ∼50 μT. Also assume an electron temperature of Te �
3.5 × 103 K and an electron–neutral collision cross-section of
σen � 10−19 m2. State all other assumptions.

11-2. Derive an expression for Faraday rotation for electromagnetic
waves propagating parallel to the static magnetic field at fre-
quencies below the ion-cyclotron frequency. Use the derived
expression to determine the distance which a 1 Hz wave needs
to travel in order for the electric field to rotate by π/6 radians
if the plasma parameters are fp = 1 MHz and fce = 100 kHz.

11-3. Calculate the attenuation in dB km−1 of a RH circularly
polarized “whistler-mode” wave at high latitudes in the
Earth’s ionosphere. Assume that the wave propagates parallel
to the Earth’s magnetic field, which is here close to vertical.
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The strength of the geomagnetic field at this altitude is 50μT,
the electron density is 109 m−3, and the electron–neutral
collision frequency is 10 MHz.

11-4. Calculate the speed of a shear Alfvén wave for interstellar
space, where the electron density is Ne = 107 m−3, and for
a magnetic field of B = 10−7 T.

11-5. Acoustic sound waves like those shown in Figure 11.2a obey
the adiabatic equation of state between pressure and density,
such that

∇ p = γ kBT∇N = v2
s m∇N,

where p, m, and T are assumed to be bulk “total” quanti-
ties. For magnetosonic waves the total pressure is given by
p + B2

0/(2μ0). Use the adiabatic relationship between total
pressure and density to show that the propagation speed for

magnetosonic waves at finite temperature is vm =
√

v2
A + v2

s ,
as given in Equation (11.38).

11-6. An ambitious but naive student claims to be be able to con-
struct a simple communication system that can transfer infor-
mation faster than the speed of light. The student proposes
extending a tight rope (or solid bar) over many hundreds of
miles. When a person at one end tugs the bar or rope, the
receiver on the other end will instantaneously feel the tug
and register the communication signal with no delay. Explain
why the student’s logic is flawed and find the actual speed of
communication for such a system as a fraction of the speed of
light. Make reasonable assumptions about the material used
for the rope or bar.
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12 Waves in hot plasmas
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Single-particle
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(MHD)

Multiple fluids

Boltzmann
equation

12.1 Introduction

Up to now, we have primarily been working with fluid equations,
derived by taking the first two moments of the Boltzmann equation.
All of our analysis of plasma wave phenomena in Chapters 9–11
was based on either the cold- or the warm-plasma approxima-
tions, sometimes with collisions also included. However, in the most
general cases when the plasmas cannot be adequately described by
moments and equations of state, it is necessary to solve Maxwell’s
equations simultaneously with the Boltzmann equation. Plasmas
that are far from an equilibrium state are called “hot” plasmas, the
simplest examples of which are beams. While there is some disagree-
ment among plasma researchers about which specific conditions
deserve to be denoted as “hot,” the preceding definition is the sim-
plest and most fundamental. In this context, we reiterate that in this
text we consider cold plasmas to be those for which the temperature
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is strictly zero, and warm plasmas to have non-zero temperatures
but still be treatable with a finite number of moment equations.

In this chapter we provide a preliminary discussion of waves
in collisionless hot plasmas, which means that we can replace the
equation of motion (which was used in previous chapters to relate
the E field to the fluid velocity u) by the Vlasov equation. This type
of analysis is sometimes called the Vlasov theory of plasma waves
and involves working directly with the velocity distribution function
and the Boltzmann equation.

12.2 Waves in a hot isotropic plasma

We consider an unbounded homogeneous plasma and ignore the
motions of the ions (i.e., we focus our attention on reasonably high-
frequency phenomena), although the ions do provide necessary pos-
itive neutralizing background. With N0 being the ambient density
of the ions, and with an equilibrium density of electrons, we start by
noting that the electrons are characterized by an initial equilibrium
velocity distribution function f0(v), which is not dependent on time
(equilibrium) nor on position (homogeneous). Initially, the electric
charge and current densities, and thus the macroscopic electric field,
are assumed to be zero. We first consider an isotropic plasma, with
no external magnetostatic field (i.e., B0 = 0). At time t = 0, we
assume that the plasma is slightly perturbed from its equilibrium
state so that at later times t > 0 the electrons are characterized by a
modified distribution function f (r, v, t) given by

f (r, v, t) = f0(v) + f1(r, v, t), (12.1)

where f1 is always small compared to f0 (i.e., | f1| � f0) and
f1(r, v, t) = 0 for t < 0. Because of this perturbation, non-zero
electric charge and current densities arise which in turn give
rise to macroscopic electric and magnetic fields. The perturbation
f1(r, v, t) and the associated electromagnetic fields may decay in
time (with characteristic decay times and natural frequencies), in
which case the original state of the equilibrium is said to be stable.
Alternatively, it is possible that the perturbation and the associated
fields may increase in time, with characteristic growth rates, until
a new state of equilibrium is reached, or even indefinitely in time,
in which case the plasma is said to be unstable. As before, we will
seek time-harmonic plane-wave solutions for which the perturba-
tion quantities can vary as

e j (ωt−k·r) (12.2)
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but we will allow the frequency ω to be complex, to represent the
decay of perturbations (ω has a small negative imaginary part) or
growth of the wave in time (ω has small positive imaginary part). To
start with, we note that the velocity distribution function f (r, v, t)
must satisfy the Vlasov equation:

∂ f
∂t

+ (v · ∇) f + qe

me
[E + v × B] · ∇v f = 0. (12.3)

Note that E, B, and f1 are perturbation quantities, and neglecting
second-order terms we have the linearized Vlasov equation:

∂ f1

∂t
+ (v · ∇) f1 + qe

me
(E + v × B) · ∇v f0 = 0. (12.4)

Assuming that the equilibrium distribution function f0 is isotropic,
its velocity-space gradient (i.e., ∇v f0) is in the direction of velocity
v,1 i.e.,

∇v f0(v) = v
v

d f0(v)
dv

, (12.5)

so that we have

[v × B] · ∇v f0 = 0, (12.6)

indicating that, in the linear regime, the wave magnetic field has no
effect on the particle distribution. The final form of the linearized
Vlasov equation is thus

∂ f1

∂t
+ (v · ∇) f1 + qe

me
E · ∇v f0 = 0. (12.7)

Note that the electric field E is a first-order perturbation quantity
and can be calculated from f1 with the help of Poisson’s equation:

∇ · E = ρ

ε0
= 1

ε0
qe

∫
v

f1d3v, (12.8)

1 To see this, consider each component, e.g.,

∂ f0(v)
∂vx

= ∂ f0(v)
dv

∂v

∂vx︸ ︷︷ ︸
chain rule

= vx

v

d f0(v)
dv

,

noting that v =
(
v2

x + v2
y + v2

z

) 1
2 , so that

∂v

∂vx
= 1

2

(
v2

x + v2
y + v2

z

)− 1
2

(2vx) = vx

v
,

the same being true for the other velocity components. Note that (12.5) is only valid for
an isotropic distribution.
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where we have noted that the perturbation charge density is
given by

ρ(r, t) = qe N0 + qe

∫
v

f (r, v, t)d3v = qe

∫
v

f1(r, v, t)d3v. (12.9)

Similarly the perturbation current density is given by

J(r, t) = qe

∫
v

v f1(r, v, t) d3v. (12.10)

Note that, since the equilibrium distribution function f0 is known
(in most cases it is a Maxwellian distribution for a given tempera-
ture), Equations (12.7) and (12.8) are fully sufficient to determine
the two unknowns E and f1. We now look for perturbation solu-
tions of the form (12.2) so that all quantities (E, f1, etc.) vary in this
manner. The linearized Vlasov equation then becomes

jω f1(v) − jk · v f1(v) + qe

me
E · ∇v f0(v) = 0, (12.11)

from which we can write the perturbed distribution function as

f1 = j
ω − k · v

qe

me
E · ∇v f0, (12.12)

which describes the dependence of f1 on the electric field E. The
notable aspects of this dependence are the critical role played by the
velocity-space gradients of the unperturbed distribution function
f0 and the denominator, which shows the potential for resonance
effects, to be discussed later. We also note that Poisson’s equation
(12.8) can be rewritten using (12.2) as

jk · E = qe

ε0

∫
v

f1 d3v. (12.13)

12.2.1 Longitudinal waves (k ‖ E)

We now exclusively consider longitudinal plasma waves with k ‖ E,
so that k × E = 0, indicating that B = 0, so that the waves consid-
ered are electrostatic. Integrating (12.12) over velocity space and
noting that E = (k/k)E, we have∫

v

f1d3v = j
qe

me

E
k

k·
∫

v

∇v f0

ω − k·v d3v. (12.14)
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Using (12.13) in (12.14) we have

Longitudinal
wave dispersion
relation

1 + q2
e

meε0

1
k2 k·

∫
v

∇v f0

ω − k·v d3v = 0 . (12.15)

For a given f0(v), Equation (12.15) is a function of k and ω, i.e., a
dispersion relation relating the wave number to the wave frequency.
Unfortunately, the denominator of the integrand appears to vanish
for certain values of v, so that the integral is not well defined. Choos-
ing, for example, a real value of k, this equation may yield different
values of ω, unless a prescription is given as to how to integrate
around the pole. Note that, physically, this difficulty is caused by
electrons moving with exactly the phase velocity of the wave, since
for those electrons we have k·v = ω. In general, it is necessary to
reformulate our approach from a search for normal-mode solutions
of the type given in (12.2) to an initial-value problem which might
be solved using Laplace transform methods and contour integration
in the complex plane. In this text, we will be largely content with dis-
cussing the results of such an analysis, which indicates that plasma
oscillations in a Maxwellian plasma are damped.

Cold-plasma model
We can first examine the dispersion relation (12.15) to see whether
the results we obtained in previous chapters are borne out by this
more general solution. For this purpose, it is useful to rewrite (12.15)
by choosing our coordinate system so that the z axis is aligned with
the electric field E (which is aligned with k and J). Thus, for a non-
trivial solution we must have

1 + q2
e

ε0mek

∫
v

∂ f0/∂vz

ω − kz vz
dvzdvydvx = 0. (12.16)

Consider, for example, a cold plasma, for which we have

f0(v) = N0δ(v) = N0δ(vx)δ(vy)δ(vz). (12.17)

At this point, it is useful to note that

∂

∂vz

(
f0

ω − k·v
)

= ∂ f0/∂vz

ω − k·v + kz f0

(ω − k·v)2︸ ︷︷ ︸
derivative of f0 times (w−k·v)−1

, (12.18)

where we have simply applied the rule of differentiation for the
product of two functions, noting that k·v = kxvx + kyvy + kzvz so
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that ∂(k·v)/∂vz = kz. If we now integrate (12.18) with respect to vz
from −∞ to +∞, we have∫ ∞

−∞
∂

∂vz

(
f0

ω − k·v
)

dvz =
∫ ∞

∞

[
∂ f0/∂vz

ω − k·v + kz f0

(ω − k·v)2

]
dvz[

∂

∂vz

(
f0

ω − k·v
)]∞

vz=−∞
=

∫ ∞

−∞

[
∂ f0/∂vz

ω − k·v + kz f0

(ω − k·v)2

]
dvz

0 =
∫ ∞

−∞
∂ f0/∂vz

ω − k·v dvz +
∫ ∞

−∞
kz f0

(ω − k·v)2 dvz

=
∫ ∞

−∞
∂ f0/∂vz

ω − k·v dvz

+
∫ ∞

−∞
kz f0

(ω − k·v)2 dvz,

where the left-hand side evaluates out to zero, both because f0 tends
to zero (e.g., a Maxwellian distribution) and because kvz tends to
±∞ at vz = ±∞. We thus have∫ ∞

−∞
∂ f0/∂vz

ω − k·v dvz = −
∫ ∞

−∞
kz f0

(ω − k·v)2 dvz

and can rewrite (12.16) as

1 − q2
e

ε0me

∫
v

f0(v)
(ω − k·v)2 dvzdvydvx. (12.19)

Substituting (12.17) for f0, and noting that
∫ ∞
−∞ δ(ζ )dζ = 1, we

then have

1 − N0q2
e

ε0meω2 = 0 → ω = ωpe, (12.20)

showing that the Vlasov theory fully reproduces the result we previ-
ously obtained using cold-plasma theory.

Warm-plasma model
As the next step, we introduce an electron temperature low enough
so that no electrons can be found to travel above a certain speed. In
other words, a cutoff is introduced in the function f0(v) at a max-
imum speed vmax. In this case, for sufficiently small wave numbers
such that ω/k > vmax, the integrand in the dispersion relation is well
behaved. Once again we find it convenient to use (12.19) and expand
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it in (k·v)/w (appropriate since we want an approximation valid for
small values of k) to find

1 = q2
e

meε0ω
2

∫
v

[
1 + 2

(
k·v
ω

)
+ 3

(
k·v
ω

)2

+ · · ·
]

f0(v) d3v.

(12.21)

Each of the terms on the right can be evaluated for a given
distribution function. The first term yields N0, so that the result in
(12.20) is recovered. For an isotropic distribution, the integral with
the second term vanishes. Assuming an isotropic distribution and
retaining only the first three terms of (12.21) we find

1 = ω2
p

ω2

[
1 + 3

(〈k·v〉)2

ω2

]

= ω2
p

ω2

[
1 + k2〈v2〉

ω2

]
→ [ω2]2 − ω2

p ω2 − ω2
pk2〈v2〉 = 0.

(12.22)

This is a quadratic equation in ω2, the solution of which is

ω2 =
ω2

p ±
[
ω4

p + 4ω2
pk2〈v2〉

]1/2

2

= ω2
p

2
± ω2

p

2

[
1 + 4k2〈v2〉

ω2
p

]1/2

︸ ︷︷ ︸
1+2 k2〈v2〉

ω2
p

− 1
2

[
k2〈v2〉

ω2
p

]2

+···︸ ︷︷ ︸
� 0

� ω2
p + 〈v2〉 k2, (12.23)

where we have assumed that k2〈v2〉 � ω2
p and used the “+” in the

“±” to find the solution corresponding to electron plasma waves.
Note that the choice of the “−” solution will give the dispersion
relation valid for frequencies in the vicinity of ωpi . For a Maxwellian
plasma with an electron temperature Te we have

ω2 = ω2
p + γ kBTe

me
k2 = ω2

p + c2
se k2, (12.24)

which is identical to (11.32) and (9.31), obtained earlier for warm-
plasma electron acoustic waves. Thus, we see once again that the
Vlasov formulation fully entails what we previously found with our
cold- and warm-plasma approximations. The phase velocity of these
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waves is very large, since we obtained the result by restricting to
small values of k. This is necessary so that there are no particles
in the perturbed distribution which travel with speeds close to the
wave phase velocity, thus ensuring that the integrand in (12.15) is
well behaved. Note, however, that the group velocity for these waves,
given by

vg = dω

dk
= γ kBTe

me

k
ω

= v2
th

vp
, (12.25)

is much smaller than the thermal speed. Thus, the velocity with
which perturbations propagate (i.e., vg) is quite small.

Relative permittivity
As before, it is useful to express the effects of the plasma as an effec-
tive permittivity for the plasma medium. For this purpose, we note
that the electric displacement D, the volume polarization density P,
and the relative dielectric permittivity are related by

D = ε0E + P = εeffε0E. (12.26)

Taking the divergence of (12.26) we find

εeff = 1 + ∇ · P
ε0 ∇ · E

. (12.27)

The polarization density P is produced as the response of the plasma
to the applied field. It is related to volume polarization charge
density by

∇ · P = −ρp.

However, since the plasma has no net free charge under equilibrium
conditions, the polarization charge density is simply the local charge
density associated with the waves, i.e., ρ in (12.8). Using (12.8) and
(12.12) we can write

ρ = ρp = qe

∫
v

f1d3v = jq2
e

me
E

∫
v

∂ f0/∂vz

ω − kvz
dvzdvydvx. (12.28)

Substituting this expression for ρp in (12.27) and noting that
∇ · E = − jk · E we find

εeff(ω, k) = 1 + q2
e

ε0mek

∫
v

∂ f0/∂vz

ω − kvz
dvzdvydvx (12.29)

as the basic kinetic expression for the relative dielectric permittivity
of a plasma, for an electrostatic wave with frequency ω and wave
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number k. Comparing (12.29) and (12.16), we see that electrostatic
normal modes satisfy the equation

εeff(ω, k) = 0. (12.30)

The physical interpretation of (12.30) and (12.26) is that although
the normal modes involve non-zero electric field E they produce
no overall electric displacement D in the plasma. This very general
result is entirely equivalent to our earliest result concerning elec-
trostatic plasma oscillations, namely that they were defined by the
relation ε‖ = 0. Thus, the kinetic approach is a powerful extension
of our previous analyses, providing results fully consistent with our
earlier ones. The most striking aspect of kinetic theory, however,
is the fact that it predicts and entails plasma behavior that is not
brought out by the fluid formulations. One of the most important
results is the so-called Landau damping, which is investigated in the
next section.

Landau damping
Consider the effective permittivity derived above (Equation (12.29)):

εeff(ω, k) = 1 + q2
e

ε0mek

∫
v

∂ f0/∂vz

ω − kvz
dvzdvydvx. (12.29)

We know that electrostatic normal modes satisfy the relationship

εeff(ω, k) = 0,

which is what we evaluated for the cold- and warm-plasma cases
treated in previous sections. In the general case, when the plasma
may have a non-trivial zeroth-order equilibrium distribution which
may contain particles with velocities close to the wave phase veloc-
ity, the integral in (12.29) must be evaluated using complex analysis,
i.e., contour integration in the complex plane. The additional con-
tribution to εeff due to the pole at vz = ω/k is an imaginary term,2

jεi
eff(ω, k) = − jπq2

e

ε0mek2

∫ (
∂ f0

∂vz

)
vz=ω/k

dvx dvy, (12.31)

which is in addition to the real part εr (ω, k), which corresponds
to expressions such as (12.21). In general, the normal modes are
described by

εeff = εr (ω, k) + jεi
eff(ω, k) = 0. (12.32)

2 The complex integration analysis required to obtain this expression involves application
of the residue theorem and an appropriate choice of integration contour, which is beyond
the scope of this text. Interested readers are pointed to discussions by other authors [1, 2].
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Typically, we can assume that
∣∣εi

eff

∣∣ � |εr |, so that the wave charac-
teristics are predominantly determined by εr (ω, k). Our goal is to
solve (12.32) for ω, given the wave number k. we expect that ω will
have a real part and a small imaginary part. We can write

ω = ωr + jγ, |γ | � ωr . (12.33)

The time dependence of our field solutions then becomes

e jωt = e jωr te−γ t, (12.34)

so that a positive value of γ would correspond to damping (atten-
uation in time) of the wave that is at frequency ωr . We now expand
(12.32) in a Taylor series around ω � ωr , noting that

∣∣εi
eff

∣∣ � |εr |:

εeff(ω, k) = εr
eff(ωr , k) + jεi

eff − jγ
[
∂εr

eff(ω, k)

∂ω

]
ω=ωr

+ · · · = 0.

(12.35)

Separating the real and imaginary parts of (12.35) we find

εr
eff(ωr , k) = 0, (12.36)

which gives solutions of the type obtained previously for propaga-
tion in a warm plasma, and

γ = εi
eff(ωr , k)[

∂εr
eff(ω, k)

∂ω

]
ω=ωr

. (12.37)

Substituting the particular expression for εi
eff for longitudinal waves

in an isotropic plasma, i.e., (12.31), we find

γ = −πq2
e

ε0mek2
[
∂εr

eff(ω, k)

∂ω

]
ω=ωr

∫ (
∂ f0

∂vz

)
vz=ω/k

dvx dvy. (12.38)

We note that the sign and magnitude of γ are determined by
the velocity-space gradient of f0 at vz = ωr/k. For a Maxwellian
distribution, the slope of the distribution is always negative, so that
γ is positive and longitudinal oscillations are necessarily damped.
This phenomenon is known as Landau damping, since it was first
shown by Landau in 1946. Note that this damping is not due to
collisions, but originates physically from the wave–particle inter-
action energy exchange between a wave propagating at a velocity
ωr/k and particles traveling at speeds vz � ωr/k. Since the particles
and wave move together, there is an opportunity for significant
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energy exchange. Particles moving slightly slower than the wave gain
energy and accelerate, while particles moving slightly faster than the
wave lose energy and give it up to the wave. Whether the wave is
damped or amplified will depend on the relative number of slower
and faster particles near the phase velocity, which is described by
the slope of the distribution function at this velocity vz = ωr/k,
as mentioned above. For a Maxwellian plasma, with f0(v) as
given in (4.4), the damping rate can be shown (by substitution in
(12.38)) to be

γMaxwellian =
(π

8

) 1
2

e−3/2 ωp

(kλD)3 exp
[
− 1

2(kλD)2

]
, (12.39)

where λD is the Debye length.
A common analogy with the Landau effect is the interaction of a

surfer riding an ocean wave. To harness wave energy a surfer must
first achieve a velocity close to that of the wave. This “resonance”
or “catching the wave” requirement is the reason surfers begin by
paddling with their hands while laying flat on the board. Once the
surfer and the wave are moving together, the surfer is carried and
accelerated by the wave. The acceleration (and also gravity) make
the surfer actually move ahead of the wave, and surfers can be seen
to make sharp turns to travel across the wave in order to remain
in resonance. In making such a maneuver the surfer actually gives
some kinetic energy back to the water, thus exhibiting both the
damping and amplification aspects of the resonant interaction. Fur-
ther discussion of Landau damping, and its physical interpretation,
are to be found in texts by Schmidt [3] and Stix [1].

12.2.2 Transverse waves

Up to now we have considered kinetic theory (or the Vlasov theory)
of plasma waves applicable to small perturbations of the equilib-
rium distribution of a “hot” plasma. Our starting point was to seek
time-harmonic plane-wave solutions of the form (Equation (12.2))

e j (ωt−k·r),

allowing the possibility that the frequency ω may be complex, to
represent the decay of perturbations (ω has a small negative imag-
inary part) or growth of the wave in time (ω has a small positive
imaginary part). We then wrote down the linearized version of the
Vlasov equation (Equation (12.3)):

∂ f1

∂t
+ (v · ∇) f1 + qe

me
(E + v × B) · ∇v f0 = 0,
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which was solved simultaneously with Poisson’s equation in order
to determine the relationship between ω and k, i.e., the disper-
sion relation. This was appropriate since we confined our attention
exclusively to longitudinal waves with k ‖ E, so that k × E = 0, but
k · E �= 0, making Poisson’s equation the appropriate relationship
with which to relate the electric field and the perturbed distribution
f1. In this section, we consider transverse waves with k⊥E so that
k · E = 0, but k × E �= 0. As we know from Chapter 9 (Section
9.3.2), in a cold plasma, transverse electromagnetic waves propagate
as long as the wave frequency is above ωp, and the dispersion rela-
tion is (Equation (9.22))

μ2 ≡ k2c2

ω2 =
(

1 − ω2
pe

ω2

)
.

Our starting point in considering transverse waves is the linearized
Vlasov equation (12.3). We retain the magnetic field term in order
to allow for equilibrium distributions f0 which may be anisotropic.
In this connection, note once again that (12.5) is only valid for
isotropic distributions. For transverse waves, it is not possible to
use Poisson’s equation as a second equation relating the electric
and magnetic fields to f1, since k · E = 0. Instead, we work with
Maxwell’s equations,

∇ × B = μ0J + μ0ε0
∂E
∂t

(12.40)

∇ × E = −∂B
∂t

. (12.41)

Taking the time derivative of (12.40) we have

∇ × ∂B
∂t

= μ0
∂J
∂t

+ μ0ε0μ0
∂2E

∂t2 . (12.42)

Substituting from (12.41) we find

∇ × (∇ × E) = ∇(∇ · E) − ∇2E = −μ0
∂J
∂t

− ε0μ0
∂2E

∂t2 . (12.43)

Using the assumed time and space dependence of the wave quanti-
ties as given in (12.2), we can split (12.43) into two equations,

−k k E‖ + k k E‖ = 0 = −μ0
∂J‖
∂t

− ε0μ0
∂2E‖
∂t2 (12.44)

k2E⊥ = −μ0
∂J⊥
∂t

− ε0μ0
∂2E⊥
∂t2 , (12.45)



12.2 Waves in a hot isotropic plasma 237

where we note that we are considering an isotropic plasma with
no static magnetic field, so that the ‖ and ⊥ designations refer
simply to the direction of the wave vector k. Equation (12.44) clearly
describes the longitudinal electrostatic oscillations considered in the
previous section, whereas (12.45) describes the transverse waves.
We can select k to be in the z direction (i.e., k = ẑk) and take the
perpendicular electric field to be in the x direction, i.e., E⊥ = x̂E.
Noting that the current J⊥ is then given by

J⊥ = qe

∫
vx f1d3v, (12.46)

and replacing time derivatives with jω, we find(
k2c2 − ω2) E = − j

qeω

ε0

∫
vx f1d3v, (12.47)

where we have dropped the subscript ⊥, so that the electric field
is understood to be the transverse field. Equation (12.47) relates
the electric field to the perturbed distribution function f1. We can
now write the linearized Vlasov equation (12.3) by imposing the
particular solution type we seek, as given by (12.2). We find

j (ω − k · v) f1 + qe

me
(E + v × B) · ∇v f0 = 0. (12.48)

We can also write (12.41) as

k × E = ωB. (12.49)

Substituting (12.49) into (12.48) and expressing the vectors in their
component form (noting that E = x̂E and that k = ẑk) we find

f1 = j
qe

me

[
E + ω−1v × (k × E)

] · ∇v f0

ω − k · v

= j
qe

me

E∂ f0/∂vx + (kE/ω) [vx∂ f0/∂vz − vz∂ f0/∂vx]
ω − kvz

. (12.50)

Equation (12.50) describes the dependence of the perturbed particle
distribution on the wave electric field, and is equivalent to (12.12)
for longitudinal waves. Inserting (12.50) into (12.47) eliminates f1
and E and reveals the dispersion relation:

Transverse wave
dispersion
relation

k2c2 = ω2 − q2
e

meε0

∫ [
(ω − kvz)vx∂ f0/∂vx

ω − kvz
+ kv2

x∂ f0/∂vz

ω − kvz

]
d3v .

(12.51)

If the equilibrium distribution does not have particles traveling at
speeds close to the phase velocity of the wave, (12.51) provides real
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solutions (real values of ω) for any given real k, as long as ω > ωp. In
fact, the cold-plasma dispersion relation of (9.22) can be obtained
from (12.51) by simply adopting a cold-plasma distribution as given
by (12.17). For this purpose, we can follow the same procedure that
we did for longitudinal waves, i.e., first integrate (12.51) by parts
and then substitute f0(v) = N0δ(v) = N0δ(vx)δ(vy)δ(vz). If f0(v)
contains particles traveling with velocity vz = ω/k, the integrand
diverges and we have the same type of problem as we had for
longitudinal waves. In principle, a solution along the same lines
can be sought, and we might expect Landau damping of the waves.
However, this problem is much less serious for the transverse wave
than for the longitudinal wave. From our cold-plasma analysis
of the transverse mode, and directly from (9.22), we know that
the phase velocity for the transverse mode is vp = ω/k > c. Most
typical plasmas will not have an appreciable number of particles at
velocities near c, and in fact the theory of relativity bounds vz by c.
However, resonant particles propagating near the phase velocity
of the wave are not the only possible source of wave growth or
damping, i.e., of complex frequency ω with a small imaginary part.
Instabilities of the transverse mode can be caused by a large class of
non-thermal distribution functions. To study such instabilities, we
need to solve for ω from (12.51) for given real k. For this purpose,
and as was done for the longitudinal wave (see (12.18)), it is useful
to integrate (12.51) by parts to find

k2c2 = ω2 − ω2
p − q2

e k2

meε0

∫
v2

x f0d3v

(ω − kvz)2 . (12.52)

Consider, for example, an anisotropic distribution function

f0(v) = δ(vz)ϕ(x, y), (12.53)

where ϕ(x, y) is an arbitrary function. Substituting (12.53) in
(12.52) gives the dispersion relation:

ω2 − ω2
p

[
1 + k2

〈
v2

x
〉

ω2

]
= k2c2

ω4 −
(

k2c2 + ω2
p

)
ω2 − k2ω2

〈
v2

x

〉
= 0

→ ω2 = 1
2

{
k2c2 + ω2

p ±
[(

k2c2 + ω2
p

)2 + 4k2ω2
p

〈
v2

x

〉]1/2
}

.

(12.54)

We see that one of the roots is always negative for all values of
k, so that the corresponding values of ω represent exponentially
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growing solutions. In general, these unstable transverse waves occur
when the velocity distribution f0 is anisotropic. If the distribution
is smeared out in vz, only a limited set of k values leads to growing
waves. When the square average of the velocity vz approaches the
square average of the velocity vx, the instability disappears, as the
plasma becomes isotropic.

12.2.3 The two-stream instability

A particularly good example of wave growth (instability) which
occurs for non-Maxwellian equilibrium velocity distributions is the
case of two interpenetrating particle streams, either two oppositely
directed electron beams or an electron beam moving through a
stationary background of ions. To illustrate this instability, consider
the dispersion relation for longitudinal modes in a non-magnetized
plasma, i.e., Equation (12.16), repeated here:

1 + q2
e

ε0mek

∫
v

∂ f0/∂vz

ω − kvz
dvzdvydvx = 0, (12.55)

or its alternative form,

1 − q2
e

ε0me

∫ ∞

−∞
f0(v)

(ω − kvz)2 dvzdvydvx = 0. (12.56)

For simplicity, let us assume two identical but oppositely directed
cold electron streams with velocities ±v0. We can express such a
distribution as

f0(v) = f0(vx, vy, vz) = 1
2 N0[δ(vz − v0) + δ(vz + v0)]δ(vx)δ(vy).

(12.57)

Substituting (12.57) in (12.56) we find

D(ω, k) = 1 − 1
2

[
ω2

p

(ω − kv0)
2 + ω2

p

(ω + kv0)
2

]
= 0. (12.58)

The function D(ω, k) is plotted versus ω in Figure 12.1. In gen-
eral, the function is a quartic and always has four roots in ω

(for given k). For short waves, |k| >
√

2(ωp/v0), illustrated in
Figure 12.1 as Case A, there are four real roots (ω1, ω2, ω3, ω4)
so that the solutions are purely oscillatory. For long waves, |k| <√

2(ωp/v0), illustrated as Case B in Figure 12.1, there are only
two real roots (ω1, ω4) and two complex conjugate roots (ω2, ω3)
one of which must have a negative imaginary part and must thus
lead to wave growth or instability. The condition for instability
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D (w ,   k)

w

Case A

Case B

w = kv0
w = −kv0

w1 w 2 w 3 w4

Figure 12.1 The roots of the
dispersion relation for the
two-stream instability.

is |k| <
√

2(ωp/v0). It can be shown that the maximum growth
rate is ωp/2 (see Problem 12-1 at the end of this chapter). The
phenomenon of exponentially growing oscillations in two streams
in relative motion is known as the two-stream instability. This insta-
bility prevents two oppositely directed uniform beams of electrons
from passing through each other, even if the electrons are neutral-
ized by a background of ions. The instability produces strong spatial
inhomogeneities, in which electrons are “bunched” together, ulti-
mately causing the energy of the electron beams to be significantly
dissipated into plasma waves.

12.3 Waves in a hot magnetized plasma

In the previous sections of this chapter, we derived the dispersion
relation for non-magnetized hot plasmas by simultaneous solution
of the linearized Vlasov equation and Maxwell’s equations (either
the k · E equation for longitudinal waves or the k × E equation
for transverse waves). For magnetized plasmas, we can basically
follow the same procedure, except that the relationship between
the current density J and the electric field E is now anisotropic.
The equivalent dielectric tensor that was obtained in magnetoionic
theory (i.e., the cold-plasma model) must now be determined from
the Vlasov equation instead of the simple Lorentz force equation
of motion. The solution of the general problem is a difficult task
indeed; accordingly, we restrict our attention to waves propagating
parallel to the static magnetic field, i.e., the case of θ = 0. Our
starting point is the Vlasov equation. First, we realize that in the
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absence of any perturbations we have an equilibrium distribution
f0(v) which must satisfy the zeroth-order Vlasov equation,

∂ f0

∂t
+ (v · ∇r) f0 + qe

me
[0 + v × B0] · ∇v f0 = 0

0 + 0 + (v × B0) · ∇v f0 = 0. (12.59)

Equation (12.59) indicates that the velocity-space gradient of f0
contains no components in the v × B0 direction. Since this is true for
any velocity vector v, the equilibrium distribution must be constant
on circles defined by v⊥ = constant, so that its dependence on the
two transverse coordinates vx and vy (assuming B = ẑB0) can be
accounted for by its dependence on the single scalar quantity v⊥ =√

v2
x + v2

y. Thus, we have

f0(v) = f0(vx, vy, vz) = f0(v⊥, v‖). (12.60)

The fact that the equilibrium distribution is only a function of v‖
and v⊥ can also be deduced from the facts that these quantities
are constants of particle motion in a uniform magnetic field, and
that, from Section 3.7, any function of the constants of motion is a
solution of the Vlasov equation. With (12.59) in mind, the linearized
Vlasov equation for a magnetized plasma can be written as

∂ f1

∂t
+ (v · ∇r) f1 + qe

me
[E + v × B] · ∇v f0 + qe

me
(v × B) · ∇v f1 = 0.

(12.61)

Imposing the time-harmonic uniform plane-wave dependence of the
quantities (12.61) reduces this to

− j (k · v − ω) f1 + qe

me
[E + v × B] · ∇v f0 + qe

me
(v × B) · ∇v f1 = 0.

(12.62)

Solving (12.62) together with Maxwell’s equations

k × E = ωB

− jk × B = μ0J + jωμ0ε0E,

while also noting that

J = qe

∫
v f1d3v,
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yields the following dispersion relation for parallel propagating
transverse waves (k ‖ B0 and k⊥E):

k2c2 = ω2 + q2
e π

meε0

∫ ∞

−∞

∫ ∞

0

(ω − kv‖)∂ f0/∂v⊥ + kv⊥∂ f0/∂v‖
(ω − kv‖) ± ωc

v2⊥dv⊥ dv‖ ,

(12.63)

where the upper and lower signs correspond respectively to the
right- and left-hand modes. Integrating the right-hand side by parts
yields the following alternative form:

k2c2 = ω2 − q2
e

meε0

∫ [
(ω − kv‖)

ω − kv‖ ± ωc
+

1
2k2v2⊥

(ω − kv‖ ± ωc)2

]
f0d3v.

(12.64)

Note that, for a magnetized plasma, the denominator of the dis-
persion relation diverges if there are resonant particles which feel
the Doppler-shifted wave frequency as the cyclotron frequency in
their coordinate system. In such a case, the integration should be
carried out in the complex plane to bring out the contribution to
the integral from the vicinity of the pole.

As in previous cases, any given equilibrium distribution function
can be substituted into (12.63) or (12.64), to obtain the dispersion
relation between wave number k and frequency ω. For isotropic
distributions f0(v), we know that (v × B) · ∇v f0 = 0, so that the
magnetic field of the wave has no influence on the particle motions
in the linear approximation. In such a case, it can be shown that
all terms in the numerators of (12.63) and (12.64) that contain k
disappear, so that

k2c2 = ω2 − q2
e

meε0

∫
ω

ω − kv‖ ± ωc
f0d3v. (12.65)

In the absence of resonant particles, (12.65) yields a real value of
ω for a given value of k. The presence of resonant particles, on the
other hand, leads to damping in a manner quite similar to Landau
damping. Instabilities (i.e., wave growth) in a hot magnetoplasma
can occur as a result of anisotropic particle distributions. To see
this, consider an equilibrium distribution given by

f0(v) = δ(v‖)ϕ(v⊥), (12.66)

where ϕ is any arbitrary function. Substituting (12.66) into (12.64)
we find
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k2c2 = ω2 − ω2
p

ω

ω ± ωc
+ ω2

p

1
2k2

〈
v2⊥

〉
(ω ± ωc)2 . (12.67)

Solving for k2 from (12.67) we find

k2 = ω2(ω ± ωc)
2 − ω2

pω(ω ± ωc)

c2(ω ± ωc)2 + 1
2ω2

p
〈
v2⊥

〉 . (12.68)

For k2 → ∞ (i.e., in the vicinity of the resonance at ω � ωc) we have

ω2 ± 2ωωc + ω2
c + ω2

p
〈
v2⊥

〉
2c2 = 0

or

RH : ω = −ωc ±
[
ω2

c −
(

ω2
c + ω2

p
〈
v2⊥

〉
2c2

)]1/2

= −ωc ± j
ωp

√〈
v2⊥

〉
c
√

2

LH : ω = +ωc ±
[
ω2

c −
(

ω2
c + ω2

p
〈
v2⊥

〉
2c2

)]1/2

= +ωc ± j
ωp

√〈
v2⊥

〉
c
√

2
.

We find that the wave frequencies for both of the modes have
imaginary parts of both signs, the negative of which leads to wave
growth and instability. We note that growth and instability occur
when the real part of the wave frequency is near ωc, i.e., resonance,
as expected based on earlier discussions (e.g., see the discussion at
the end of Section 10.3.1). Note that the presence of such effects
(e.g., damping or growth) was not visible to us within the context
of the cold- and warm-plasma models. We thus see once again the
generality of the Vlasov theory of plasma waves.

Two-stream instability for magnetized plasma
The parallel propagating mode in a magnetized plasma is also
unstable in the presence of currents through the plasma along the
magnetic field, for example in the form of particle beams. Consider
two counterstreaming beams containing particles with charges of
opposite polarity, moving with velocity vz = ±v0. Neglecting the
thermal speeds and thus taking the particle distributions to be
delta functions as given in (12.57), and also making the simplifying
assumption that the masses of the positively and negatively charged
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particles are the same (i.e., ω+
p = ω−

p and ω+
c = −ω−

c ), we can show
from (12.64) that

D(ω, k) = k2c2 − ω2 + ω2
p

[
ω + kv0

ω + kv0 − ωc
+ ω − kv0

ω − kv0 − ωc

]
= 0.

(12.69)

As in the case of the two-stream instability for non-magnetized
plasma, D(ω, k) in general has four roots, two of which are always
real, while the other two can be complex, if

k2 <
ω2

p

c2

2kv0

ωc − kv0
; (12.70)

thus (12.70) is the condition for stability. It can be shown that the
system is always stable if k > ωc/v0.

12.4 More on collisions in plasmas

Up to now, we have not discussed the effects of collisions on
plasma dynamics in any great detail, although it was under-
stood (Chapter 3) that collisions are the means by which thermal
equilibrium distributions (e.g., Maxwellian) are established and
maintained. We also noted in Chapter 6 that the magnetohydrody-
namic treatment of plasmas implicitly assumes collision-dominated
conditions, and in Chapters 7 and 8 that collisions are the under-
lying facilitating physical process for transport effects in plasmas,
whether that be via resistivity or diffusion.

In studying waves in cold and warm plasmas using fluid theory
(Chapters 9–11), we accounted for collisions in a phenomenological
manner, using a friction term in the momentum equations, with
an effective collision frequency. To include collisional effects in hot
plasmas, we would need to use the Boltzmann equation as our
starting point:

∂ f
∂t

+ (v · ∇r) f + qe

me
[E + v × B] · ∇v f =

(
∂ f
∂t

)
coll

, (12.71)

where the term (∂ f/∂t)coll represents the resultant gain or loss of
particles due to interactions between particles. Since collisions occur
between particles that are close to one another, their dynamics is
not likely to be accurately represented by the macroscopic aver-
aged self-consistent fields E and B. In fact, the actual constitution
of the (∂ f/∂t)coll term can be quite involved, and is substantially
different for various types of collisions, such as electron–electron,
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electron–ion, electron–neutral, etc. Most expressions for (∂ f/∂t)coll
involve integral functionals of f itself, so that (12.71) is actually
an integro-differential equation. Furthermore, the collision term
in the Boltzmann equation for one-plasma species, e.g., electrons,
includes the distribution functions of other species, thus coupling
the Boltzmann equations for different plasma species. Note that
this coupling is in addition to the coupling of the dynamics of
the different charged species via Maxwell’s equations and the
macroscopic fields E and B, the result of collective effects due to
all species.

If the form of (∂ f/∂t)coll is known, the procedure one would
follow in analyzing the plasma dynamics (e.g., waves) is similar to
what we have used up to now. We assume a small perturbation to
be superimposed on an equilibrium distribution, i.e., f = f0 + f1,
where f0 satisfies the zeroth-order equation in the absence of any
fields. (Note that this in fact dictates that the f0 be a uniform
Maxwellian distribution.) We then consider time-harmonic pertur-
bations for f1, E, and B, and solve for a dispersion relation in
the same manner. Unfortunately, such a solution is prohibitively
complicated for any properly derived form of (∂ f/∂t)coll.

Fortunately, though, solution of (12.71) with the collision term
is only warranted under rather unusual circumstances. In studying
high-frequency electromagnetic wave propagation in both natural
and laboratory plasmas, the thermal speed is usually unimportant
since the wave speed is high enough so that the magnetoionic theory,
with the collisions included via the momentum transport equation,
is sufficient. Note that the use of magnetoionic theory amounts to
neglecting the (v · ∇r) f term in (12.71). For low-frequency, large-
spatial-scale phenomena, collisions may well be dominant so that
a hydrodynamic treatment applies, in which case the left-hand side
of (12.71) is a small perturbation. For rarefied plasmas, collisions
occur seldom enough that the right-hand side is negligible, reducing
(12.71) to the Vlasov equation, so that all of our analyses in previous
sections of this chapter are valid, with the primary features being
Landau damping and cyclotron resonance effects. Circumstances in
which all of the terms in (12.71) are of comparable order arise very
seldom and, when they do, they often do not require results of great
accuracy. In most cases, all that is needed is to interpolate roughly
between hydrodynamic and collisionless regimes to see how features
of one give way to those of another as the collision frequency
is changed. Such analyses are usually facilitated by using simpler
formulas for (∂ f/∂t)coll, arranged to have a similar mathematical
form (and order of magnitude) as the real Boltzmann collision
integral. We now discuss one such “model” for the collision term.
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12.4.1 The Krook collision model

The simplest model for the collision term, referred to as the Krook
collision term or the BGK model [4, 5], is(

∂ f
∂t

)
coll

= −νeff( f − fm), (12.72)

where fm is a suitable Maxwellian distribution and νeff is an empir-
ical effective collision frequency which can in general be velocity-
dependent but is usually taken to be a constant. The idea behind
(12.72) is that −νeff f represents the rate of loss of particles, due
to collisions, from a differential element of phase space, while
+νeff fm represents the corresponding rate of gain of particles as
the end product of collisions. The main approximation involved
in writing (12.72), especially when νeff is held constant, is that the
detailed statistics and dynamics of collisions are disregarded. Also
disregarded is the fact that the particle velocity after a collision is
correlated with that before.

The Maxwellian distribution fm is specified by fixing the density,
mean velocity, and temperature, which depend in some way on f
itself as evaluated at the same point of physical space and at the
same time. Thus, (12.72) represents a purely local effect in which
particles are transferred abruptly across velocity space only, at a rate
νeff. The Krook collision model thus simulates the effect of close
binary collisions in which there is a substantial change in veloc-
ity, particularly applicable for electron–neutral collisions in weakly
ionized plasmas. Thinking of the collisions as a Poisson process,
occurring with probability νeffdt in the time interval between t and
t + dt, (12.72) tends to establish a Maxwellian distribution in a time
on the order of a few multiples of ν−1

eff . When several species are
involved, we can extend (12.72) as follows:(

∂ f i

∂t

)
coll

= −
∑

i

ν
i j
eff

(
f i − f i j

m

)
, (12.73)

where f i is the distribution function for the i th species, ν
i j
eff is the

effective collision rate between particles of the i th and j th type, and
f i j
m is a Maxwellian distribution of the i th species, the parameters

of which are determined by the local values of f i and f j . Note that
f i j
m is known once its density, drift velocity, and temperature, i.e.,

Ni j , ui j , and Ti j , are specified.
To analyze plasma dynamics in the presence of collisions, we need

to use the Krook collision model in the Boltzmann equation which
is to be solved simultaneously with Maxwell’s equations. As before,
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we will look for time-harmonic perturbations. In principle, we must
carry out such an analysis for every species, charged or neutral, with
the equations being coupled through the collision terms. As a simple
illustrative example, we consider the solution of (12.71) only for
electrons, with the positive ions forming a fixed background, and
with the only collisions being those between electrons and neutral
species. For simplicity, we take ( f − fm) in (12.72) to have the same
density as f , zero mean velocity, and temperature equal to the ambi-
ent temperature. Taking f = f0 + f1, where f0 is the unperturbed
Maxwellian distribution, we have

fm(r, v, t) = N(r, t) f0(v)
N0

, (12.74)

where N = N0 + N1 as before. The net effect of (12.74) is that
electrons lose momentum at a rate Nmeνeffu per unit volume,
exactly as assumed in cold magnetoionic theory. After linearization
we have (

∂ f
∂t

)
coll

= −ν

[
f1(r.v, t) − N1(r, t) f0(v)

N0

]
, (12.75)

where, for convenience, we have dropped the subscript “eff” from ν.
The first term on the right-hand side of (12.75) is very easy to

incorporate into our earlier analysis of waves in hot plasmas since
it only involves the replacement of angular frequency ω by ω − jν.
However, it is necessary to solve the full equation since, without the
last term, (12.75) does not conserve particles locally. Solving the full
equation (12.71), with (12.75) as the collision term and for time-
harmonic plane waves, we have

j (ω − jν − k · v) f1 + qe

me
(v × B0) · ∇v f1 + qe

me
E · ∇v f0

+ qe

me
(v × B) · ∇v f0︸ ︷︷ ︸

= 0

= ν
N1

N0
f0

j (ω − jν − k · v) f1 + qe

me
(v × B0) · ∇v f1 + qe

me
E · ∇v f0 +

= ν
N1

N0
f0, (12.76)

where the wave magnetic field term reduces to zero since the distri-
bution f0 is necessarily isotropic, and the velocity-space gradient of
an isotropic distribution is in the direction of v, as shown previously.
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Considering for simplicity a non-magnetized plasma (i.e., B0 = 0),
we can solve for f1 as

f1 =
− qe

me
E · ∇v f0 + ν

N1

N0
f0

j (ω − jν − k · v)
,

which can then be solved simultaneously with Maxwell’s equations
(i.e., either the jk · E = ρ/ε0 or the k × E = ωB equations) in order
to obtain the dispersion relation between k and ω. The net effect of
collisions with a stationary background is to introduce collisional
damping, in addition to Landau damping. For longitudinal waves,
plasma oscillations are heavily damped if ν is comparable to ωp;
for transverse waves, the cyclotron resonance effect is lost if ν is
comparable to ωc.

12.5 Summary

In this chapter we presented the basic methodology for describing
wave phenomena in hot or non-equilibrium plasmas. It is impor-
tant to note that this is a different approach than that in previous
chapters (9–11), which was built upon the fluid equations (single-
or multiple-fluid versions) as derived from the moments of the
Boltzmann equation and including a truncating equation of state.
Unfortunately, plasmas far from equilibrium are not accurately
described by such bulk averages over the distribution function, and
it becomes necessary to work directly with the unintegrated Boltz-
mann equation and Maxwell’s equations. This approach, called the
Vlasov theory of plasmas, is general and powerful. Wave behavior
is still described by a dispersion relation as before, but this expres-
sion includes an appropriate integral over the distribution function
which can be specified. All the results from previous chapters can be
reproduced by plugging in the appropriate distribution function, as
was shown for the cases of a simple cold or warm plasma.

The power of the Vlasov approach is that for more complicated
distributions it exposes new physical effects that result chiefly from
particles being in resonance with the wave, for example moving at
the wave phase velocity. Wave growth and damping can be accu-
rately described, as integration over the poles of the distribution
leads to complex values of frequency. One of the many remarkable
results is Landau damping, a non-collisional wave attenuation. It
is worth mentioning that, in contrast to many other discoveries
in plasmas (and other fields), Landau damping was first described
theoretically and only later verified by experiment. This triumph of
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applied mathematics is a testament to the versatility of the Vlasov
theory of plasmas.

12.6 Problems

12-1. Solve the dispersion relation for electrostatic oscillations for
two interpenetrating cold electron streams and show that the
roots of ω are either real or imaginary, both coming in ± pairs.
At which value of the wave number does the electrostatic two-
stream instability grow fastest? Prove that the growth rate of
the fastest instability is ωp/2.

12-2. Consider an unmagnetized plasma with a fixed neutralizing
ion background. The one-dimensional electron distribution is
given by

f0(v) = Np
a
π

1
v2 + a2 + Nbδ(v − v0),

where N0 = Np + Nb and Nb � Np. (a) Derive the dispersion
relation for high-frequency longitudinal perturbations. (b) In
the limit a 
 ω/k, show that a solution exists in which the
imaginary part of ω is positive, i.e., growing oscillations.

12-3. A “bump-on-tail” instability occurs when a Maxwellian
plasma distribution is modified as shown below. Discuss the
implications for wave growth and damping for longitudinal
waves with phase velocities near vbump.

0

f (vz)

vbump

12-4. Explain why Landau resonance for longitudinal waves prop-
agating in a Maxwellian plasma always leads to damping and
not to wave growth.

12-5. A longitudinal wave is excited in a 10 eV plasma with density
N0 = 2 × 1015 m−3. After the excitation is removed the wave
motion is observed to attenuate rapidly by Landau damping.
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Calculate how long it will take the amplitude to fall by a
factor of e.

12-6. Estimate the cyclotron damping that will occur for a RH
polarized 2 kHz wave with frequency in the vicinity of the
cyclotron frequency if the plasma has a temperature of 1 keV
and a density of 10−6 m−3.
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C H A P T E R

13 The plasma sheath and the
Langmuir probe

13.1 Introduction

Practical plasmas are typically contained in a vacuum chamber of
finite size. When ions and electrons hit the walls, they recombine
and are lost. Since electrons have much higher thermal velocities
than the ions, one may at first expect that they would be lost faster,
leaving the otherwise neutral plasma with a net positive charge.
However, because of this tendency, the plasma develops a positive
potential with respect to the wall, which prevents most of the elec-
trons from reaching the wall. In equilibrium, a potential gradient
arises near the wall so that most of the electrons are reflected back
into the plasma, with the number reaching the wall being equal to
the corresponding number of positive ions reaching the wall. This
potential gradient cannot extend over large sections of the plasma,
since Debye shielding (Chapter 1) confines potential variations in a
plasma to a layer of the order of several Debye lengths in thickness.
This layer of potential gradient, which must exist on all walls with
which the plasma is in contact, is called the sheath. Within the
sheath, charge neutrality is not preserved, not even approximately,
since q� changes through the sheath by an amount comparable to
kBT. In this chapter, we provide a simple treatment of the formation
and structure of the plasma sheath and discuss a simple but very
useful device, called the Langmuir probe, which is commonly used
to measure electron density and temperature.

13.2 Particle flux

In applications involving a material body immersed in a plasma, or
in studying the interaction between the walls of a container and a
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plasma, it is desirable to know the flux of particles arising from their
random motions. The particle flux is defined as the number of par-
ticles impinging on unit area of the body per unit time. If the velocity
distribution function is isotropic, the particle flux is independent
of the orientation of the area. We can thus find an expression for
the directed flux in any direction and know that it is the same in
any other direction. Consider, for example, the directed flux in the
+z direction, given by � = N〈vz〉, where the average is taken over
vz > 0 only. Noting that in spherical coordinates vz = v cos θ , where
v is the particle speed, and recalling the expression (4.4) for the
distribution function for a Maxwellian plasma, we have

�z = N
(

m
2πkBT

) 3
2
∫ 2π

0

∫ π
2

0

∫ ∞

0
v

× cos θ e−mv2/(2kBT) v2 sin θdvdθdφ︸ ︷︷ ︸
dvxdvydvz

= 1
4

N〈v〉 = 1
4

N
(

8kBT
πm

) 1
2

, (13.1)

where we have noted from Chapter 3 that the average speed for a
Maxwellian distribution is 〈v〉 = √

8kBT/πm.

13.3 Sheath characteristics

We begin with a qualitative discussion of the physical mechanism of
the formation of the plasma sheath. If the average energies of the
electrons and ions were equal, i.e., if

1
2

me

〈
v2

e

〉
= 1

2
mi

〈
v2

i

〉
, (13.2)

then the average thermal speed of the electrons would be much
greater, by at least a factor of ∼1800. However, in general, the
average thermal energy of the electrons is much larger than that for
the positive ions. The reason for this is that whenever there is an
electric field in the plasma, the electrons are rapidly accelerated and
lose a very small fraction (typically about 2me/mi ) of their energy in
collisions with ions or neutrals. When the electric field is removed,
the electrons and ions should eventually relax to an equilibrium
state in which the electron and ion temperatures (and hence the
average energies) are equal. However, the relaxation time is typically
very long so that the ions are almost never in thermal equilibrium.
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In practical laboratory plasmas, the energy to sustain the plasma is
generally the heating of the electrons by the plasma source, while
the ions are in thermal equilibrium with the background gas. The
electron temperature is then typically a few electron volts, while
the ions can be considered cold. In summary, the thermal speed
of electrons is typically larger than that of the ions, by a factor
much greater than ∼√

1800. The particle fluxes impinging on the
container walls are given, from (13.1), by

�e = 1
4

Ne〈ve〉, �i = 1
4

Ni 〈vi 〉. (13.3)

It is apparent that, initially, the particle flux toward the wall
contributed by the electrons is much greater than that due to the
ions. As this large number of electrons impinges on the wall and
is lost from the plasma, the wall acquires a negative potential with
respect to the plasma. The negative potential works to stop the large
electron current: it repels the electrons while attracting the ions.
Eventually the wall potential acquires a value such that the electron
and ion fluxes are equalized, so that the net current is zero and
the walls, now charged to a floating negative potential, reach a
dynamical equilibrium with the plasma.

We now examine the sheath problem quantitatively by determin-
ing the wall potential �wall. For simplicity, we assume a planar or
one-dimensional sheath, assuming the wall to be on the z–y (i.e.,
x = 0) plane, bounding the plasma in the region x > 0. Let the
potential distribution near the wall be �(x), such that

�(0) = �wall and �(∞) = 0. (13.4)

Assuming that the electrons and ions are in thermal equilibrium
under the action of a conservative electric field E = −∇�, and
assuming (for simplicity) that Te � Ti , the electron and ion number
densities are given by (1.6), i.e.,

Ne(x) = N0e−qe�(x)/(kBT) (13.5a)

Ni (x) = N0e−qi �(x)/(kBT). (13.5b)

Note that these equations were also discussed in Chapter 3 and
represent unperturbed quantities (N0) multiplied by a Boltzmann
factor resulting from the potential. Also note that, far away from
the wall (x → ∞), (13.5) gives Ne = Ni = N0, consistent with a
charge-neutral equilibrium plasma. One word of caution is in order
with respect to (13.5a) and (13.5b). The average velocity associated
with the Maxwell–Boltzmann distribution on which these equa-
tions are based is zero, yet in view of the negative wall potential,
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there must be a steady stream of particles toward the wall. Thus
Equations (13.5) do not take into account the drift velocity of the
particles. To properly solve the sheath problem, the particles can
be taken to have shifted Maxwellian distributions with uy, uz = 0,
as defined in Chapter 3. However, the resulting expressions become
so complicated that only numerical solutions are possible. On the
other hand, results which hold remarkably well can be obtained via
an approximate analysis. To begin with, we note that the thermal
energy of the electrons is much larger than the energy associated
with the electron drift motion in the x direction, so that (13.5a) is
well justified. Equation (13.5b) does not hold, since the ions can be
assumed to be cold (Ti = 0) and simply drifting (as a monoenergetic
beam) with a velocity u0, so that their motion is more suitably
treated using fluid equations. In view of the qualifications men-
tioned above, we will use two different approaches to analyze the
sheath potential: (i) taking (13.5b) to be true, and (ii) using fluid
equations to model the ion number density.

Taking (13.5a) and (13.5b) to be true, we can proceed to evaluate
�wall. Under equilibrium conditions, we have �e = �i at the wall
(i.e., at x = 0), so that using (13.3), (13.4), (13.5a), (13.5b), and
(13.1), and noting that qi = −qe, we find

e−qe�wall/(kBT)

m1/2
e

= eqe�wall/(kBT)

m1/2
i

→ e2qe�wall/(kBT) =
(

mi

me

) 1
2

(13.6)

→ �wall = kBT
4qe

ln
(

mi

me

)
. (13.7)

Near the wall the ratio of the magnitude of the potential energy
|qe�wall| to the thermal energy kBT of a particle is given by

|qe�wall|
kBT

= 1
4

ln
(

mi

me

)
. (13.8)

For a hydrogen ion (proton), this quantity is approximately 2, so
that the wall potential is of the same order of magnitude as the
average thermal energy of the plasma particles in electron volts.

As noted above, an improved estimate of the ion density can
be obtained by replacing (13.5b) with appropriate fluid equations,
noting that the ions move in the form of a monoenergetic beam
with a velocity ux. Under steady-state conditions, the continuity
equation reduces to
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d
dx

(Ni ux) = Ni
dux

dx
+ ux

d Ni

dx
. (13.9)

In writing down the momentum transport equation, we neglect
viscosity effects (i.e., ∇ · � = ∇ p), magnetic field effects, and colli-
sions, and assume an isothermal plasma. Collisions can be neglected
since the plasma sheath thickness is much less than the mean free
path, and magnetic field can be neglected since the sheath thickness
is typically much smaller than the gyroradii. We then have

mi ux
dux

dx
= −kBTi

Ni

d Ni

dx
+ qe

d�(x)

dx
, (13.10)

where Ti is the ion temperature. We can further assume that the ions
are cold, so that Ti � 0; thus the first term on the right-hand side
of (13.10) can be neglected. More generally, using (13.9), we can
compare the magnitudes of the two terms on the right to conclude
that this ratio is (kBT/

(
mi u2

x
) � 1, indicating that the first term is

negligible. We thus have

mi ux
dux

dx
= qe

d�(x)

dx
. (13.11)

Integrating (13.9) and (13.11) we find

1
2

mi u2
x − qe�(x) = C1 and Ni ux = C2, (13.12)

where C1 and C2 are constants. We also note the boundary con-
ditions, namely that at x = ∞ we have �(∞) = 0, Ni = N0, and
ux = u0. With these we can find C1 and C2 and eliminate ux in
(13.12) to relate Ni to �(x):

Ni (x) = N0

(
1 + 2qe�(x)

mi u2
0

)− 1
2

. (13.13)

Using (13.5a) and (13.13), we can write Poisson’s equation within
the sheath

∇2� = − ρ

ε0
= −qe(Ne − Ni )

ε0

d2�(x)

dx2 = − N0qe

ε0

[
e−qe�/(kBT)︸ ︷︷ ︸
Ne(x) term

−
(

1 + 2qe�(x)

mi u2
0

)− 1
2
⎤⎦

︸ ︷︷ ︸
Ni (x) term

,

(13.14)
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where the ion drift velocity far away from the sheath (i.e., u0) is
yet to be determined. Equation (13.14) is non-linear and in general
has to be solved numerically. However, based on the approximate
treatment in (13.8) we know that the potential energy |qe�(x)|
ranges from zero in the plasma to a value of order kBT on the wall.
Thus, near the outer edge of the sheath (i.e., the edge close to the
plasma), we must have a region in which |qe�(x)| � kBT, as well as
|qe�(x)| � mi u2

x. In this case, using a first-order Taylor expansion,
the sheath equation (13.14) reduces to

d2�(x)

dx2 = �(x)

h
, h = λD

(
1 − kBT

mi u2
0

)− 1
2

, (13.15)

where λD is the Debye length. The solution of (13.15) consistent
with the boundary conditions (13.4) is

�(x) = �walle
−x/h, (13.16)

where it is implied that the solution which is strictly valid near the
edge of the plasma sheath applies throughout the sheath. However,
as we will see below, the nature of the sheath potential near the wall
is quite different. Nevertheless, it is apparent from (13.15) that we
must have

kBT
〈
mi u2

0, or u0
〉√kBTe

mi
(13.17)

in order for h to be real so that the potential increases monotonically
toward the wall. This condition is known as the Bohm sheath crite-
rion. In words, it states that the ions must enter the sheath region
with a minimum directed velocity, sometimes referred to as the
critical drift velocity. To give this directed velocity to the ions, there
must be a non-zero electric field in the plasma. Since the electron
density falls off exponentially with qe�/(kBT) (i.e., (13.5a)), the
electron density can be neglected in the region of large potential
near the wall, in which case (13.14) can be written without the
electron density term:

d2�(x)

dx2 � − N0qe

ε0

(
1 + 2qe�(x)

mi u2
0

)− 1
2

. (13.18)

Upon manipulation it can be shown that

u0 � kBTe

mi

4
√

2
9

(qe�wall)
3
2

(kBTe)
3
2 d2

λ2
D, (13.19)
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where d is the approximate extent of the electron-free region. Upon
substitution we can write the ion current Ji = −qe N0u0 into the
wall as

Ji � 4
9

(
2|qe|
mi

) 1
2 ε0|�wall| 3

2

d2 , (13.20)

which is the well-known Child–Langmuir law for a space-charge-
limited current in a planar diode. We thus see that the potential
variation in a plasma–wall system can be divided into three parts.
Nearest the wall, there is an electron-free region whose thickness d
is determined by (13.20). In (13.20) the ion current J is typically
determined by the ion production rate and �wall is determined by
the equality of electron and ion fluxes. Next is a region with scale
length of about a Debye length, in which the electron density is
appreciable. Finally there is a region, typically with much larger
scale, which is known as the pre-sheath region, in which the ions
are accelerated to the required velocity u0 by a potential drop of
1
2 |qe|−1kBTe. Depending on the application, the scale length of the
pre-sheath region may be set by the size of the plasma, the mean
free path, or ionization (plasma production) mechanisms.

13.4 The Langmuir probe

The Langmuir or plasma probe is a practical instrument that has
been widely used to investigate plasmas in the laboratory and in
the space environment. This electrostatic device, first developed by
Langmuir and Mott-Smith, gives a measure of the temperature and
density of a plasma. A conducting probe, or electrode, is inserted
into the plasma and the current that flows through it is measured
for various potentials applied to the probe. When the surface of the
probe is a plane, the current as a function of potential yields a curve
like that shown in Figure 13.1.

When the probe is placed in the plasma, the plasma reacts by
shielding the probe potential, thus forming a sheath with thickness
on the order of a Debye length. When no current flows through
the probe, it stays at the negative floating potential �w, which
is the wall potential (�wall) discussed above. Under these equilib-
rium conditions, the number of electrons reaching the probe per
unit time is equal to the number of ions reaching the probe per
unit time, yielding no net current. If the probe potential is made
more negative than �w, electrons will be repelled and ions will be
attracted to the probe. Under the convention that current flowing
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Φ

Electron saturation

Electrons collected

Φw

Jp

Ji

Je0

Ions collected

Figure 13.1 Characteristic
current–potential curve for a
Langmuir probe.

away from the probe is positive, an applied potential less than �w

leads to a negative current Ji that is carried only by ions. The
ions that make up Ji are those that find themselves at the sheath
boundary and their number remains constant even if the poten-
tial is made even more negative, since the Debye length remains
unchanged.

If the applied potential is increased from the negative value of �w,
the repulsion force on the electrons is decreased and the number
of electrons reaching the probe becomes greater than the number
of ions. When the probe potential is zero, meaning that there is no
electric field between the probe and the plasma, there is a net pos-
itive current Je0 made up primarily of electrons, which have much
higher thermal velocities than the ions. As the potential is increased
further, the electron current eventually saturates in a reverse of the
previous situation, in that all of the electrons at the sheath boundary
are collected by the probe. This region is known as the saturation
region.

Away from the saturation region the current due to electrons can
be expressed as

Je = Je0e−qe�/(kBT), (13.21)

using Equation (13.5a); Je0 is the electron current for � = 0. Using
(13.1) we can express Je0 as

Je0 = −qe N
(

kBT
2πm

) 1
2

. (13.22)

When � < 0 the ions continue to fall into the negative potential of
the probe, making the ion current density Ji constant in the negative
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potential region. Therefore, the probe current density in this region
can be expressed as

Jp = Je0e−qe�/(kBT) − Ji for � < 0, (13.23)

which yields

T = −qe

kB

[
d

d�

[
ln(Jp + Ji )

]]−1

. (13.24)

Equation (13.24) permits the following procedure for determining
the electron temperature. First, a sufficiently large negative potential
is applied to the probe that Ji can be determined directly.1 Sec-
ond, the current–potential characteristic of the probe is obtained
and a plot is made of ln(Jp + Ji ) as a function of �. This curve
has a straight-line portion that can be used to obtain the value
of d

d�

[
ln(Jp + Ji )

]
, and the temperature can be calculated from

Equation (13.24). The value of Je0 is then determined by observing
the current at � = 0, or at slightly higher potentials since the current
in the saturation region is fairly constant. With the temperature
and Je0 determined, Equation (13.22) can be rearranged to give the
density:

N = −Je0

qe

(
2πm
kBT

) 1
2

. (13.25)

13.5 Problems

13-1. Show how Equation (13.15) is obtained from (13.14).

13-2. Estimate the ion current for a 0.1 mm sheath in a 1.2 eV
electron and ion plasma.

13-3. Estimate the sheath distance for a 40 W fluorescent lamp
operated at 120 V with a plasma density of 5 × 1017 m−3 and
a temperature of 1 eV. Assume that 99% of the current in the
lamp is carried by electrons.

13-4. The current–voltage characteristics of a plasma probe
inserted into a plasma contained by a magnetic mirror
machine are given below. The collecting area of the probe
is 0.644 cm2. All voltages are measured with respect to a
fixed reference potential. Determine the electron temperature

1 The observed total current in the probe is Ip = Jp Ap , where Ap is the probe area.
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in the plasma, the electron number density, and the floating
potential of the probe.

I–V characteristics

Voltage Current

−30.0 −0.9
−18.5 −0.8
−8.0 −0.6
−3.0 −0.4
−0.5 −0.2

0.5 0.0
1.0 0.1
1.8 0.5
3.0 0.8
5.5 1.2

32.0 2.3
72.0 2.5

13-5. A plasma probe is connected to a circuit that can measure
the first and second derivatives of total current Ip = Jp A with
respect to potential φ, where A is the probe area. Show how
these two measurements can be used to estimate the electron
temperature directly.

13-6. Explain why a plasma probe with no voltage applied will
acquire a negative potential.

13-7. A satellite with very large solar collectors of area 1 km2 is
in geostationary orbit in a 1 eV hydrogen plasma of density
106 m−3. During a solar event the satellite is bombarded by
energetic electrons which charge it to a potential of −2 kV.
Find the resulting damaging flux of ions on the solar collector.



Appendix A Derivation of the second moment
of the Boltzmann equation

The second moment is obtained by multiplying the Boltzmann
equation (3.9) by 1

2mv2 and integrating over velocity space:

m
2

∫
v2 ∂ f

∂t
dv + m

2

∫
v2 (v · ∇r) f dv + q

2

∫
v2 [(E + v × B) · ∇v] f dv

=
∫

m
2

v2
(

∂ f
∂t

)
coll

dv. (A.1)

The first term is

m
2

∫
v2 ∂ f

∂t
dv

= m
2

[
∂

∂t

∫
v2 f dv −

∫
f

∂
(
v2

)
∂t

dv

]
(A.2a)

= ∂

∂t

[
N

1
2

m
〈
v2〉] (A.2b)

= ∂

∂t

[
N

1
2

mu2
]

, (A.2c)

where the last term in (A.2a) is zero since v2 is independent of t. The
second term is

m
2

[∫
v2v · ∇ f dv

]

= m
2

[
∇ ·

(∫
vv2 f dv

)
−

∫
f v · ∇v2dv −

∫
f v2∇ · vdv

]
(A.3a)
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= ∇ ·
(

N
1
2

m
〈
v2v

〉)
(A.3b)

= ∇ ·
(

N
1
2

m
〈
u2u

〉)
, (A.3c)

where we have used the fact that the ∇ · v and ∇v2 terms are
zero since velocity and spatial variables are independent. The third
term is
q
2

∫
v2 [(E + v × B) · ∇v] f dv

=q
2

[∫
∇v ·

[
(E + v × B)v2 f

]
dv −

∫
f (E + v × B) · ∇vv

2dv

−
∫

f v2∇v · (E + v × B)dv
]

(A.4a)

= − q
2

∫
f (E + v × B) · ∇vv

2dv (A.4b)

= − q
2

N
〈
(E + v × B) · ∇vv

2
〉

(A.4c)

= − q
2

N 〈(E + v × B) · ∇v(v · v)〉 (A.4d)

= −qN 〈(E + v × B) · (v · ∇v)v〉 (A.4e)

= −qN 〈(E + v × B) · v〉 (A.4f)

= −qN 〈E · v〉 (A.4g)

= −qN 〈E · u〉, (A.4h)

where the last integral in (A.4a) is zero since any Lorentz force com-
ponent Fi is independent of the corresponding velocity component
vi . The first integral in (A.4a) is also zero since the distribution
function is zero at infinite velocity (see discussion of Equation (4.7)).

Combining all terms leads to (4.26):
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Appendix B Useful vector relations

B.1 Definitions and identities

For vectors A, B, C, and D:

A · B = B · A = AxBx + Ay By + Az Bz

A × B = −B × A =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣
= (Ay Bz − Az By)x̂ + (AxBz − Az Bx)ŷ + (Ay Bx − AxBy)ẑ

A · (B × C) = (A × B) · C = (C × A) · B

A × (B × C) = (A · C)B − (A · B)C

(A × B) × C) = (A · C)B − (B · C)A

∇ · (A × B) = B · (∇ × A) − A · (∇ × B)

∇(A · B) = (A · ∇)B + (B · ∇)A + A × (∇ × B) + B × (∇ × A)

∇ × (A × B) = A(∇ · B) + (B · ∇)A − B(∇ · A) − (A · ∇)B

∇ × (∇ × A) = ∇(∇ · A) − (∇ · ∇)A

∇ · (∇ · A) = 0
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B.2 Relations in Cartesian coordinates

Orthogonal unit vectors:

x̂, ŷ, ẑ

Orthogonal line elements:

dx, dy, dz

Components of gradient of a scalar function ψ :

(∇ψ)x = ∂ψ

∂x

(∇ψ)y = ∂ψ

∂y

(∇ψ)z = ∂ψ

∂z

Divergence of a vector function A:

∇ · A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

Components of curl of a vector function A:

(∇ × A)x = ∂Az

∂y
− ∂Ay

∂z

(∇ × A)y = ∂Ax

∂z
− ∂Az

∂x

(∇ × A)z = ∂Ay

∂x
− ∂Ax

∂y

Laplacian of a scalar function ψ :

∇2ψ = ∂2ψ

∂x2 + ∂2ψ

∂y2 + ∂2ψ

∂z2

B.3 Relations in cylindrical coordinates

Orthogonal unit vectors:

r̂, φ̂, ẑ

Orthogonal line elements:

dr, rdφ, dz
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Components of gradient of a scalar function ψ :

(∇ψ)r = ∂ψ

∂r

(∇ψ)φ = 1
r

∂ψ

∂φ

(∇ψ)z = ∂ψ

∂z

Divergence of a vector function A:

∇ · A = 1
r

∂(r Ar )

∂r
+ 1

r
∂Aφ

∂φ
+ ∂Az

∂z

Components of curl of a vector function A:

(∇ × A)r = 1
r

∂Az

∂φ
− ∂Aφ

∂z

(∇ × A)φ = ∂Ar

∂z
− ∂Az

∂r

(∇ × A)z = 1
r

∂(r Aφ)

∂r
− 1

r
∂Ar

∂φ

Laplacian of a scalar function ψ :

∇2ψ = 1
r

∂

∂r

(
r
∂ψ

∂r

)
+ 1

r2

∂2ψ

∂φ2 + ∂2ψ

∂z2

B.4 Relations in spherical coordinates

Orthogonal unit vectors:

r̂, θ̂ , φ̂

Orthogonal line elements:

dr, rdθ, r sin θdφ
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Components of gradient of a scalar function ψ :

(∇ψ)r = ∂ψ

∂r

(∇ψ)θ = 1
r

∂ψ

∂θ

(∇ψ)φ = 1
r sin θ

∂ψ

∂φ

Divergence of a vector function A:

∇ · A = 1
r2

∂r2 Ar

∂r
+ 1

r sin θ

∂(sin θ Aθ )

∂θ
+ 1

r sin θ

∂Aφ

∂φ

Components of curl of a vector function A:

(∇ × A)r = 1
r sin θ

∂(sin θ Aφ)

∂θ
− 1

r sin θ

∂Aθ

∂φ

(∇ × A)θ = 1
r sin θ

∂Ar

∂φ
− 1

r
∂(r Aφ)

∂r

(∇ × A)φ = 1
r

∂r Aθ

∂r
− 1

r
∂Ar

∂θ

Laplacian of a scalar function ψ :

∇2ψ = 1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

r2 sin2 θ

∂2ψ

∂φ2



Index

acoustic waves, 189, 190, 214, 222
adiabatic equation of state, 103
adiabatic invariance, 37
Alfvén speed, 212, 219
Alfvén waves, see MHD waves
ambipolar diffusion, 170–4
ambipolar polarization term, 123, 125
Appleton–Hartree equation, 198, 211
attachment, 88

beam distribution, 65
hot plasmas, 225, 239, 243

beta parameter, 140
BGK model, see Krook collision

model
Bohm diffusion, 175
Bohm sheath criterion, 256
Boltzmann equation, 60–4, 85

collisionless, 77
Boltzmann factor, 79, 113, 253
Boltzmann’s constant, 8
bump-on-tail instability, 249

Child–Langmuir law, 257
circular polarization, 199
classical diffusion coefficient, 175
cold-plasma model, 102, 229
collisionless damping, see Landau

damping
collisions, 62, 122, 154

collision frequency, 157, 158
Coulomb, 4, 121, 155
effect on Appleton–Hartree

equation, 211

effects on waves, 188, 210, 211
elastic, 88
electron–neutral, 98, 154, 158, 162
fully ionized plasmas, 155
in hot plasmas, 244–8
inelastic, 88
Krook collision model, 246
weakly ionized plasmas, 154, 158

conductivity, 159
AC, 163
DC, 159
Hall, 161
Pedersen, 161
with ion motion, 164

conservation of charge (MHD), 119
conservation of energy, 99
conservation of mass (MHD), 119
conservation of momentum, 94
conservation of particles, 87
conservative force, 79
continuity equation, 86, 87
convective derivative, 76
cross-section, 154, 155
curvature drift, 33

in fluid model, 112
cutoff, 185, 200, 204
cycloid trajectory, 27
cyclotron frequency, see gyrofrequency
cyclotron resonance, 46–8
cylindrical pinch, 141

Debye length, 5, 13–15, 80
diamagnetic drift, 111, 139
diamagnetism, 26, 139, 140

267



268 Index

dielectric media, 185
diffusion, 153, 167–76

ambipolar, 170–4
Bohm diffusion, 175
classical (fully ionized), 175
Fick’s law, 168
fully ionized plasmas, 174–5
role of collisions, 169–70
weakly ionized plasmas, 170–4

diffusion coefficient, 168
tensor, 173

diffusion equation, 168
diffusion of magnetic field, 132
dispersion relation, 183, 193, 194

solving for, 198
distribution of speeds, 55

E × B drift, 26–30
in fluid model, 111

effective permittivity, 188, 192, 193,
232, 233

Einstein relation, 170
electromagnetic waves, 180

in hot isotropic plasmas, 235–9
in hot magnetized plasmas, 240–3
in non-magnetized plasma, 185, 186
propagation oblique to B, 205–7, 216
propagation parallel to B, 199–202,

212–15
propagation perpendicular to B,

203–4, 215
electron volt, 9
electrostatic potential, 14, 79, 113, 194
electrostatic waves, 179, 189
energy

average, 8, 55
kinetic, 8

energy conservation equation, 100
energy-transport equation, 99
evanescent waves, 185, 188, 194
extraordinary mode, 203, 222
extraordinary wave, 203, 215

Faraday rotation, 201–2
Fick’s law, 168
first-order moment of Boltzmann

equation, 90
fluid velocity, 75, 86
fluorescent lamp, 10, 97

fourth state of matter, 2, 3, 5
frozen-in field lines, 128–32, 214, 215

“garden hose” angle, 132
gradient drift

in fluid model, 112
single-particle motion, 31–3, 35

group velocity, 183
guiding center, 25
gyrofrequency, 23
gyroradius, 24

HAARP facility, 162
Hall conductivity, 161
Hall effect term, 123, 124
Hall thruster, 28–30
heat-flow vector, 100, 103
heat-flux vector, see heat-flow vector
helical motion, 25
hybrid frequency, 204, 215, 222

impact parameter, 156
index of refraction, 185
interplanetary magnetic field, 131
ion acoustic waves, 221, 222
ionization, 2
ionosphere, 4, 89, 162, 176, 186, 200
ions, effects on waves, 211
isothermal plasma approximation,

103

JET (Joint European Torus), 142

kinetic energy, 8, 60
average, 9
conservation, 100

Krook collision model, 246

Landau damping, 233–5
Langmuir probe, 257
Larmor radius, see gyroradius
Lawson criterion, 150
linear theory for small perturbations,

180
Liouville’s theorem, 77
longitudinal waves, 179, 221

in hot plasmas, 229
in warm plasmas, 189, 220

Lorentz force, 21, 94
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lossy dielectrics, 189
low-pressure discharges, 3, 89, 97, 100
lower hybrid frequency, 215

macroscopic equations,
derivation of, 85

magnetic bottle, 39
magnetic forces, 134
magnetic mirror, 30, 40, 41
magnetic moment, 25, 37–42
magnetic storms, 36, 132
magnetic tension, 136
magnetohydrodynamics (MHD), 8,

116–50
conservation of charge, 119
conservation of mass, 119
diffusion of magnetic field, 132
equation of motion, 120
frozen-in field lines, 128–32, 214
generalized Ohm’s law, 122
simplified equations, 125
waves, see MHD waves

magnetohydrostatics, 138–44
magnetoionic theory, 198
magnetosonic waves, see MHD waves
magnetosphere, 4, 36, 141
materials processing, 5, 108–9
Maxwell–Boltzmann distribution, 8

shifted, 73
Maxwellian distribution, see

Maxwell–Boltzmann distribution
mean free path, 56, 154, 156
MHD waves, 180, 213–20

Alfvén waves, 212–15
magnetosonic waves, 214, 215

momentum transport equation, 90

Navier–Stokes equation, 96
number density, 66

Ohm’s law, generalized, 122
Ohm’s law, simplified, 133
ohmic loss, 123
ordinary mode, 203
ordinary wave, 215
over-the-horizon radar, 191

particle flux, 95, 168, 252
Pedersen conductivity, 161

permittivity, effective, 188, 192, 193,
232, 233

phase space, 58, 59, 73
phase velocity, 183, 185
phasor notation, 181
photoionization, 89
pinch effect, 141, 142
pitch angle, 25
plasma confinement, 139–44
plasma frequency, 10–13

propagating oscillations, 189, 221
plasma oscillations, see plasma

frequency
plasma parameter, 156, 157
plasma probe, see Langmuir probe
plasma propulsion, 28
plasma sheath, 109, 251
Poisson’s equation, 14, 194, 227, 228,

236, 255
polarization drift, 42–4
pressure, 8, 13, 55, 57, 93, 114, 147

parallel, 113
pressure tensor, 92, 93, 95, 96, 100,

133
total pressure in MHD, 118

quasi-neutrality, 5, 10, 181

radiation belts, 20, 30, 112, 200
random walk, 57, 156, 167, 170
recombination, 88, 89
reflection coefficient, 187
refractive index, 185
resonances, 204
Reynolds number, 127
ring current, 36

Saha equation, 71–3
scalar pressure, 100, 102
second-order moment of Boltzmann

equation, 99
solar wind, 131, 132, 134
sound waves, see acoustic waves
specific resistivity, 122, 157
Spitzer resistivity, 157

temperature, 8–10, 55, 57, 67–8
conversion to eV, 9
effect on waves, 220
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thermal conductivity, 103
thermonuclear fusion, 5, 123
theta (θ ) pinch, 139
time-harmonic uniform plane waves,

181, 194
tokamak, 142
transmission coefficient, 187, 188
two-stream instability, 239, 243

ultraviolet (UV) radiation, 97
upper hybrid frequency, 204, 215, 222

Van Allen belts, see radiation belts
vector identities, 263
Vlasov equation, 73–4
Vlasov theory of plasmas, 226

warm-plasma model, 102, 230
whistler mode, 200, 208

nose frequency, 208

zeroth-order moment of Boltzmann
equation, 86, 87
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