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Preface

Experimental evidence shows that molecules are not like ‘liquid droplets’
of electrons, but have a structure made of bonds and lone pairs directed
in space. Even at its most elementary level, any successful theory of
bonding in chemistry should explain why atoms are or are not bonded in
molecules, the structure and shape of molecules in space and how
molecules interact at long range. Even if modern molecular quantum
mechanics offers the natural basis for very elaborate numerical calcula-
tions, models of bonding avoiding the more mathematical aspects of the
subject in the spirit of Coulson’s Valence are still of conceptual interest
for providing an elementary description of valence and its implications
for the electronic structure of molecules. This is the aim of this concise
book, which grew from a series of lectures delivered by the author at the
University of Genoa, based on original research work by the author and
his group from the early 1990s to the present day. The book should serve
as a complement to a 20-hour university lecture course in Physical and
Quantum Chemistry.

The book consists of two parts, where essentially two models have been
proposed, mostly requiring the solution of quadratic equations with real
roots. Part 1 explains forces acting at short range, typical of localized or
delocalized chemical bonds in molecules or solids; Part 2 explains forces
acting at long range, between closed-shell atoms or molecules, resulting in
the so-called van der Waals (VdW) molecules. An electrostatic model is
further derived for H-bonded and VdW dimers, which explains in a simple
way the angular shape of the dimers in terms of the first two permanent
electric moments of the monomers.

The contents of the book is as follows. After a short self-contained
mathematical introduction, Chapter 1 presents the essential elements of
the variation approach to either total or second-order molecular energies,
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the system of atomic units (au) necessary to simplify all mathematical
expressions, and an introductory description of the electron distribution
in molecules, with particular emphasis on the nature of the quantum
mechanical exchange-overlap densities and their importance in determin-
ing the nature of chemical bonds and Pauli repulsions.

The contents of Part 1 is based on such premises. Using mostly 2 x 2
Huckel secular equations, Chapter 2 introduces a model of bonding in
homonuclear and heteronuclear diatomics, multiple and delocalized
bonds in hydrocarbons, and the stereochemistry of chemical bonds in
polyatomic molecules; in a word, a model of the strong first-order
interactions originating in the chemical bond. Hybridization effects
and their importance in determining shape and charge distribution in
first-row hydrides (CHy4, HF, H,O and NHj3) are examined in some detail
in Section 2.7.

In Chapter 3, the Hiickel model of linear and closed polyene chains is
used to explain the origin of band structure in the one-dimensional crystal,
outlining the importance of the nature of the electronic bands in deter-
mining the different properties of insulators, conductors, semiconductors
and superconductors.

Turning to Part 2, after a short introduction to stationary Rayleigh—
Schrodinger (RS) perturbation theory and its use for the classification of
long-range intermolecular forces, Chapter 4 deals with a simple two-
state model of weak interactions, introducing the reader to an easy way
of understanding second-order electric properties of molecules and
VdW bonding between closed shells. The chapter ends with a short
outline of the temperature-dependent Keesom interactions in polar
gases.

Finally, Chapter 5 studies the structure of H-bonded dimers and the
nature of the hydrogen bond, which has a strength intermediate between a
VdW bond and a weak chemical bond. Besides a qualitative MO approach
based on HOMO-LUMO charge transfer from an electron donor to an
electron acceptor molecule, a quantitative electrostatic approach is pre-
sented, suggesting an electrostatic model which works even at its simplest
pictorial level.

A list of alphabetically ordered references, and author and subject
indices complete the book.

The book is dedicated to the memory of my old friend and colleague
Deryk Wynn Davies, who died on 27 February 2008. I wish to thank my
colleagues Gian Franco Musso and Giuseppe Figari for useful discussions
on different topics of this subject, Paolo Lazzeretti and Stefano Pelloni for
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some calculations using the SYSMO programme at the University of
Modena and Reggio, and my son Mario who prepared the drawings on the
computer. Finally, I acknowledge the support of the Italian Ministry for
Education University and Research (MIUR) and the University of Genoa.

Valerio Magnasco
Genoa, 20 December 2009






1

Mathematical Foundations

1.1 Matrices and Systems of Linear Equations

1.2 Properties of Eigenvalues and Eigenvectors

1.3 Variational Approximations

1.4 Atomic Units

1.5 The Electron Distribution in Molecules

1.6 Exchange-overlap Densities and the Chemical Bond

In physics and chemistry it is not possible to develop any useful model of
matter without a basic knowledge of some elementary mathematics. This
involves use of some elements of linear algebra, such as the solution of
algebraic equations (at least quadratic), the solution of systems of linear
equations, and a few elements on matrices and determinants.

1.1 MATRICES AND SYSTEMS OF LINEAR
EQUATIONS

We start from matrices, limiting ourselves to the case of a square matrix of
order two, namely a matrix involving two rows and two columns. Let us
denote this matrix by the boldface capital letter A:

A A
A_ 11 A (1)
Ay Axp

Models for Bonding in Chemistry Valerio Magnasco
© 2010 John Wiley & Sons, Ltd




2 MATHEMATICAL FOUNDATIONS

where A;; is a number called the ijth element of matrix A. The elements
Aji (j =) are called diagonal elements. We are interested mostly in
symmetric matrices, for which Ay; = Aqp. If Ay = Ayx = 0, the matrix
is diagonal. Properties of a square matrix A are its trace(tr A = A1 + Az2),
the sum of its diagonal elements, and its determinant, denoted by
|A| = det A, a number that can be evaluated from its elements by the rule:

Al = A11An—A1Ax (1.2)
Two 2 x 2 matrices can be multiplied rows by columns by the rule:

AB=C (1.3)

Air A Bii B\ (Cu Cp (1.4)
Ay An By1 By Cu Cp '

the elements of the product matrix C being;:

Ci1t = AuB11 +A12By, Cia =AnBia+A1By, (1.5)
Cy1 = Ay1B11 +AnByi, Cup =AxBi+AnB)n. .
So, we are led to the matrix multiplication rule:
2
Cij = ZAiKBKf (16)
k=1

If matrix B is a simple number a, Equation (1.6) shows that all elements
of matrix A must be multiplied by this number. Instead, for alAl, we have
from Equation (1.2):

aAyr A
ahry An

aA11 aA12

alA| = a(A11Apn—AnAyn) =
Ay An

,  (1.7)

so that, multiplying a determinant by a number is equivalent to multi-
plying just one row (or one column) by that number.

We can have also rectangular matrices, where the number of rows is
different from the number of columns. Particularly important is the 2 x 1

column vector c:
c c
c=( "M)=" (1.8)
21 %)

or the 1 x 2 row vector ¢:



MATRICES AND SYSTEMS OF LINEAR EQUATIONS 3

5:(611 612):(61 Cz) (19)

where the tilde ~ means interchanging columns by rows or vice versa (the
transposed matrix).
The linear inhomogeneous system:

{A1161 +Apc =b

(1.10)
Axici +Anc =b,

can be easily rewritten in matrix form using matrix multiplication rule
(1.3) as:

Ac=b (1.11)

where ¢ and b are 2 x 1 column vectors.

Equation (1.10) is a system of two algebraic equations linear in the
unknowns c1 and ¢,, the elements of matrix A being the coefficients of the
linear combination. Particular importance has the case where b is pro-
portional to ¢ through a number A:

Ac = ic (1.12)

which is known as the eigenvalue equation for matrix A. A is called an
eigenvalue and c an eigenvector of the square matrix A. Equation (1.12) is
equally well written as the homogeneous system:

(A—i1)c =0 (1.13)

where 1 is the 2 x 2 diagonal matrix having 1 along the diagonal, called
the identity matrix, and 0 is the zero vector matrix, a 2 x 1 column of
zeros. Written explicitly, the homogeneous system (Equation 1.13) is:

{ (A11—/1)61 +A1c =0 (1.14>

Az + (Azz—l)(iz =0

Elementary algebra then says that the system of equations (1.14) has
acceptable solutions if and only if the determinant of the coefficients
vanishes, namely if:

An—4  An

=0 (1.15)

Equation (1.15) is known as the secular equation for matrix A. If we
expand the determinant according to the rule of Equation (1.2), we obtain
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for a symmetric matrix A:
(Aj1=2)(Ap—2)—Ap* =0 (1.16)
giving the quadratic equation in A:
P—(An+Ap)i+ AnAn—Ap* =0 (1.17)

which has the two real' solutions (the eigenvalues, the roots of the
equation):

_An+An A
S
(1.18)
_AutAn A
B 2 2
where A is the positive quantity:
1/2
A= [(AZZ—A11)2+4A122} >0 (1.19)

Inserting each root in turn in the homogeneous system (Equation 1.14),
we obtain the corresponding solutions (the eigenvectors, our unknowns):

1/2 1/2
B <A+(A22—A11)> _ (A—(AZZ—A11)>
cm=|—m-, cun=|—F"F—"7—"

2A 2A
(1.20)
12 12
_ [(A-(An—An) (A +(An—An)
=T ) e T

where the second index (a column index, shown in bold type in Equa-
tions 1.20) specifies the eigenvalue to which the eigenvector refers. All
such results can be collected in the 2 x 2 square matrices:

A O c c
A= 7) c=(a )= " " (1.21)
0 A4 €21 €22

the first being the diagonal matrix of the eigenvalues (the roots of our
secular equation 1.17), the second the row matrix of the eigenvectors (the
unknowns of the homogeneous system 1.14). Matrix multiplication rule
shows that:

CAC=A, CC=CC=1 (1.22)

This is a mathematical property of real symmetric matrices.
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We usually say that the first of Equations (1.22) expresses the diago-
nalization of the symmetric matrix A through a transformation with the
complete matrix of its eigenvectors, while the second equations express
the normalization of the coefficients (i.e., the resulting vectors are chosen
to have modulus 1).2

Equations (18-20) simplify noticeably in the case Ay, = A1 = a. Then,
putting A = Ay = B, we obtain:

M=a+B, lr=a-f
1/v2 ~1/V2 (1.23)
C1 = , CH =
' 1/V2 ? 1/V2
Occasionally, we shall need to solve the so called pseudosecular

equation for the symmetric matrix A arising from the pseudoeigenvalue
equation:

Ap—2 Ap—AS

Ac = Sc=|A—AS| =
Ay —AS Axp—2

=0 (1.24)

where S is the overlap mairix:

Siu S 1 S
R el (1.25)
S21 S S 1
Solution of Equation (1.24) then gives:

; _An+An-24nS A
b 2(1-82) 2(1-82)

P A1 +A»n—2A1,S8 n A
2 2(1-82) 2(1-$2)

(1.26)

1/2
A= [(AZZ—AM)Z +4(A12—A118)(A12—A228)} >0 (1.27)

The eigenvectors corresponding to the roots (Equations 1.26) are rather
complicated (Magnasco, 2007), so we shall content ourselves here by
giving only the results for Ay = Aj; = @ and Ay; = Ay = B:

>The length of the vectors. A matrix satisfying the second of Equations (1.22) is said to be an
orthogonal matrix.
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a+p “12 ~12
M 118’ C11 (2 + ZS) , €21 ( + S)
(1.28)

under these assumptions, these are the elements of the square matrices A
and C (Equations 1.21). Matrix multiplication shows that these matrices
satisfy the generalization of Equations (1.22):

CAC=A, CSC=CSC=1 (1.29)

so that matrices A and S are simultaneously diagonalized under the
transformation with the orthogonal matrix C.

All previous results can be extended to square symmetric matrices of
order N, in which case the solution of the corresponding secular equations
must be found by numerical methods, unless use can be made of symmetry
arguments.

1.2 PROPERTIES OF EIGENVALUES AND
EIGENVECTORS

It is of interest to stress some properties hidden in the eigenvalues
\ . c . .
(41 42) and eigenvectors <c1 ), (Equations 1.23), of the symmetric

2

matrix A of order 2 with Ay = Ajy =a and Ay; = Ap = B.
In fact, Equation (1.17) can be written:

(M=2)(Ja—=2) = Ada—(h1 +22)i+ 12 =0 (1.30)

so that:
Iy = A1Ap—Ap® = a?—p* = detA (1.31)
M+l =A11+A»n =2a=trA (1.32)

In Equation (1.17), therefore, the coefficient of 1°, the determinant of
matrix A, is expressible as the product of the two eigenvalues; the
coefficient of 2, the trace of matrix A, is expressible as the sum of the
two eigenvalues.

From the eigenvectors of Equations (1.23) we can construct the two
square symmetric matrices of order 2:



PROPERTIES OF EIGENVALUES AND EIGENVECTORS 7

S 11
V2 1 1 2 2
P =ci¢i = 1 (\/—Z \/_§> = 11 (133)
/2 2 2
1 1
V2 11 2 2
P2 =CC = 1 ( \/z \/Z) = B 1 1 (1.34)
N 2

The two matrices P; and P, do not admit inverse (the determinants of
both are zero) and have the properties:

1 1y /11 11
2 2112 2 2 2
P’ = = =P 1.35
R EUEE I FEEE il FUET I
2 2 2 2
1 1 1 1 1 1
2
P2 = = =P 1.36
2 1 1 1 1 1 1 > (1.36)
2 2
11 1 1
2 2 2 2 0 0
PP — - -0 1.37
L | I 7
2 2 2 2

P,P; = (1.38)

|
| —
| —
NS
N = N =
o =
Il
Y
o O
~
Il
(=)

N =
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o =
N =
o
[\

P, +P Oy (1.39)
+P, = + = = :
1 2 1 0 1

N =
—_
NSNS
—_

In mathematics, matrices having these properties (idempotency, mutual
exclusivity, completeness®) are called projectors. In fact, acting on matrix
C of Equation (1.21)

P;C=Pic1 +Picz = (140)
since:
Loy (L) 1L 11N /1
2 2 |(v2 2V2 22 V2
DO T B 11 11 1 ¢ (141)
2 2)\vz) \2vatavz] \v2
1 1 1 11 +1 1
22| 2 SRV I
Pic, = = = =0
1 1 1 11 +1 1 0
2 V2 22 22

(1.42)

so that, acting on the complete matrix C of the eigenvectors, P selects its
eigenvector ¢y, at the same time annihilating c,. In the same way:

P,C =Pyc1 +Prcp = (1.43)

This makes evident the projector properties of matrices Py and P,.
Furthermore, matrices P; and P, allow one to write matrix A in the so-
called canonical form:

A = ;\,1]_)1 —+ isz (144)

3Often referred to as resolution of the identity.
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Equation (1.44) is easily verified:

1 1 1 1

2 2 2 2
P+ ,P = (a —|—B) 11 + (OZ—B) 1 1

2 2 2 2

(1.45)
a+fB n a—pB a—l—B_a—B

2 2 2 2 a B
= at+p a—B a+B+a—B :<B a)ZA
2 2 2 2

The same holds true for any analytical function*F of matrix A:
F(A) = F(21)P1 + F(22)P> (1.46)

Therefore, it is easy to calculate, say, the inverse or the square root of
matrix A. For instance, we obtain for the inverse matrix (F="1):

1 1 1 B 1
2(a+B) 2(a+p) 2(a—B)  2(a—p)

TP AP = ) 1 + . .
2(a+pB) 2(a+p) " 2(a—B) 2(a-P)

1 ((a—ﬁ)+(a+ﬁ) (a—B)—(a+B)>: 1 (za —2/3)
2(a2=B*) \ (a—B)—(a+B) (a—B)+(a+B)) 2(a®-B)\-28 2a

o 1 a 7B a1
22 (B o ) =A

and we obtain the usual result for the inverse matrix (A"'A=AA"'=1).
In the same way, provided /7; and v/2; are positive, we can calculate the
square root of matrix A(F = \/)

VA = Ja+BP; +/a—BP,

(1.47)

A+B A-B

_1(vatB+va—B VatB—vap\_| 2 | (48
2\ VatB—a—B VatB+Ja-p A-B A+B
2

4 . . . . .
Any function expressible as a power series, e.g. inverse, square root, exponential.
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where we have put:

A=\/a+B, B= /a-P (1.49)

Then, we can easily check that:

\/K\/K:1<A+B A—B><A+B A—B)

4\ A-B A+B)\ A-B A+B
1 (A+B)*+(A-B)* 2(A2—B?)
_Z< 2(A2—B?) (A—B)2+(A+B)2>
1<Z(A2+BZ) 2(A2—B2)) 1 <4a 43) a
4\ 2(A>-B?) 2(A*+B?) 4\ 48 4a

(1.50)

as it must be. These examples show how far we can go when eigenvalues
and eigenvectors of a symmetric matrix are known.

1.3 VARIATIONAL APPROXIMATIONS

For our description of atoms and molecules, we rely on the orbital model,
where atoms or molecules are described by one or more point-like
positively charged nuclei surrounded by a cloud of negatively charged
electrons, whose density is distributed in space in terms of atomic orbitals
(one-centre, AOs) or molecular orbitals (multicentre, MOs) #(r), one-
electron wavefunctions, such that

|yp(r)[*dr (1.51)

gives the probability of finding at dr an electron in state ¢s(r), provided ¢(r)
satisfies the normalization condition:

Jdr|1//(r)|2 —1 (1.52)

the integration being extended over all space. The AOs are functions of the
space point r in the three spherical coordinates (7, 0, ¢) that depend on the
three quantum numbers 7, [, m and have radial and angular dependence.
As well known, they are classified as 1s, 2s, 2p, 3s, 3p, 3d, etc. and we shall
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I=2 I=3
Figure 1.1 Polar diagrams of the angular part of s, p, d, and f AOs with m=0.
Reprinted from Magnasco, V., Methods of Molecular Quatum Mechanics: An

Introduction to Electronic Molecular Structure. Copyright (2009) with permission
from John Wiley and Sons

S

Figure 1.2 Schematic drawing of the formation of an sp hybrid AO

assume that they are real regular’ functions showing an exponential
(Slater-type, STO) or gaussian (GTO) radial decay. Figure 1.1 shows
schematically the polar diagrams of the angular parts of s, p, d, and f AOs
with [ = 0,1, 2, 3, respectively, and m =0.

Hybrid orbitals are AOs mixed on the same centre (e.g. s and p).
Figure 1.2 sketches the formation of an sp hybrid directed along the z axis
(right of the figure) from the mixing of a spherical 2s orbital with a 2p.
orbital (left of the figure). Because its form is nonsymmetric with respect to
the nucleus on which it is centred, the hybrid AO acquires an intrinsic
dipole moment, called by Coulson (1961) the atomic dipole, which is very
important in the theoretical interpretation of the observed dipole moment
in the molecule (see the case of first-row hydrides in Chapter 2). We are not
interested in further details about AOs here, but more can be learned
elsewhere (Magnasco, 2007, 2009a).

The AOs are obtained by solving some kind of differential Schrodinger-
type eigenvalue equation, which for a single electron can be written:

Hy = sy (1.53)

3 A regular function is a mathematical function satisfying the three conditions of being: (i) single-
valued; (ii) continuous with its first derivatives; and (iii) quadratically integrable, i.e. vanishing at
infinity.



12 MATHEMATICAL FOUNDATIONS

where H = T + Vs the total (kinetic + potential) energy or Hamiltonian
operator®, i a wavefunction (the eigenfunction of Equation 1.53), and &
(the eigenvalue) an orbital energy. In our model, H will be replaced by a
symbol H, where we suppress the caret characterizing the operator.

Since equations as (1.53) are difficult to solve exactly, practically all
results in the applications of quantum mechanics to chemistry rely on a
general method of approximation due to Rayleigh and known as the
variational method (Magnasco, 2007, 2009a), which we summarize
briefly in the following.

Let ¢ be a normalized” regular trial (or variational) function. We define
the Rayleigh ratio as the functional:®

oo =[x @@ He(x) _ (e|Hlo)
Jdxe*(x)e(x)  (¢le)

where x are the electronic coordinates, ¢*(x) the function complex
conjugate to ¢(x), and H the Hamiltonian of the system. In the last term
on the right-hand side of the equation we have introduced the so-called
Dirac notation for the integrals. Then, the Rayleigh variational principle
states that, if E is the #rue energy of the ground state (the state of lowest

energy):

(1.54)

elg] > Eo (1.55)

In other words, any approximate energy must lie above the true energy
of the ground state, giving an upper bound to the electronic energy.
Variational approximations to energy and wavefunction can then be
simply worked out by introducing some variational parameters {c} in the
trial function ¢, then evaluating the integrals in the functional (1.54), in
order to obtain an ordinary function of the parameters {c} that can be
minimized against these parameters. Therefore, for a single parameter c:

“aetnae SO0

The necessary condition for the minimum of &(c) will be:

de
EZ 0= cmin (1.57)

ele]

®An operator is a rule changing a regular function into another one, and is denoted by the caret
sign M.

7A function satisfying Equation (1.52).

8A function of function ¢(x).
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an algebraic equation which must be solved for the best value of parameter
¢, giving in this way the best variational energy and wavefunction.

The most interesting application for our purposes is to construct MOs
by the linear combination of atomic orbitals (LCAO) method, where the
variable parameters are the coefficients of the linear combination of some
basic orbitals {y}’ (Ritz method). It can be shown that, in this case, the best
orbitals are obtained by solving the eigenvalue equation for matrix H:

Hc=ec= (H-¢1)c=0 (1.58)
where:
Hj = (xilHx;),  Si = (xilx;) = 8 (1.59)

For molecules, all elements of matrix H are negative numbers.
The homogeneous system (Equation 1.58) has nontrivial solutions if and
only if:

H-el| =0 (1.60)

The solution of the secular equation (1.60) for our simple case of a2 x 2
symmetric matrix H (a basis of two AOs) yields as best values for the
variational energy the fwo real roots (eigenvalues) ¢; and &, that are
usually written in ascending order, with the corresponding two eigen-
vectors ¢; and ¢, determining the #wo molecular orbitals ¢; and ¢,
(Equations 18-20 with 1 = &, or the simpler Equations 1.23 when the
diagonal elements are equal):

1< &
C1,C (1.61)
L1, P2

& < 0 means bonding, ¢ > 0 means antibonding, with a corresponding
notation for the resulting MOs.

The same procedure can be applied to find approximations to the
second-order energy E, of Section 4.2 of Chapter 4 in the context of the
Hylleraas variational method (Magnasco, 2007, 2009a), as we shall
illustrate in the simple case of two functions. We start from a convenient
set of basis functions y written as the (1 x 2) row vector:

x=0M x2) (1.62)

°Assumed normalized and orthogonal to each other, namely (xilx;) = 8ij, where & is the
Kronecker’ symbol (=1 for j = i,= 0 forj # i).
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possibly orthonormal in themselves but necessarily orthogonal to . We
shall assume that:

x'x=1, x'¢py=0 (1.63)

If the xs are not orthogonal they must first be orthogonalized by the
Schmidt method (Magnasco, 2007). Then, we construct the matrices:

M = x"(Ho—Eo)x (1.64)
the (2 x 2) Hermitian matrix of the excitation energies, and:
b= (o) (1.65)

the (2 x 1) column vector of the transition moments.
By expanding the first-order function ¢, in the finite set of the ys, we can
write:

2
g1 =xC=> x.Cu (1.66)
k=1
E; =C'MC+Clp+p'C (1.67)
which is minimum for:

SEZ -1
ﬁ:MC+u:0=>C(best) =-M'n (1.68)
giving as best variational approximation to the second-order energy E,:
E;(best) = —p'M (1.69)

The symmetric matrix M can be reduced to diagonal form by a unitary
transfomation'®U among its basis functions y:

y=xU, UMU=e U'p=y, (1.70)

where € is here the (2 x 2) diagonal matrix of the (positive) excitation

energies:
&1 O
€= (1.71)
0 &)

1A unitary matrix U satisfies U™! = U, where U™! is the inverse and UT = (U)" the adjoint
matrix (Magnasco, 2007). A matrix is said Hermitian if U = U". For real elements, unitary and
orthogonal matrices coincide, so that we can use either of them indistinctly.
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The s are called pseudostates, and give best E, in the form:

2 a 2
Ez(best) _ _p‘;};silp‘d/ _ Z |<¢’K|I_£1|¢’O>| (172)
k=1

K

which is known as sum-over-pseudostates expression. Equation (1.72)
has the same form as the analogous expression that would arise from the
discrete eigenstates of Hy, but with definitely better convergence prop-
erties, reducing the infinite summation to a sum of a finite number of
terms, and avoiding the need of considering the contribution from the
continuous part of the spectrum (Magnasco, 2007).

1.4 ATOMIC UNITS

To get rid of all fundamental physical constants in our mathematical

formulae we shall introduce consistently a system of atomic units (au), by
putting:

e=h=m=4ng) =1 (1.73)

The basic atomic units are obtained from the SI values of the

fundamental physical constants given in Table 1.1 (Mohr and Taylor,

2003).
The basic au of charge, length, energy and time are then expressed by:

Charge e=1.602176 x 107" C

hz
Length, Bohr  ag=4neg—— = 5291772 x 107" m
me

1 2 18 (1.74)
Energy, Hartree E, = —=4.359744 x107°°]
47180 ao
: h -17
Time r:E—:2.418 884 x 107" s
h

When the atomic unit of energy is referred to molar quantities, we have
the different SI equivalents:

NE), = 2625.499k] mol ' =27.21138 eV mol
=219.4746 x 10° cm~! mol ™' = 315.774 6 x 10° K mol !
(1.75)
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Table 1.1 Fundamental physical constants

Physical quantity Value in SI units
Elementary charge e=1.602176 x 107 C
Electron mass m=9.109382 x 103! kg
Reduced Planck’s constant h=1.054572x1073*]s
Vacuum permittivity 4meg =1.112650] 1 C* m™!
Light velocity in vacuum €=2.997925 x 108 ms~!
Avogadro number Ny = 6.022 142 x 10** mol '
Boltzmann constant k=1.380650x 1072 JK!

with the submultiples:

107°E;, = mE, [milliHartree] (1.76)

107°E;, = uE, [microHartree] (1.77)

etc. The milliHartree is the characteristic unit for the energy of the
chemical bond, the microHartree is that for the energy of the Van der
Waals bond. The hydrogen bond has an intermediate energy, correspond-
ing to that of a weak chemical bond.

The basic au for dipole, quadrupole and octupole electric moments are
given as:

Dipole moment, eag =8478x1073°C xm

=2.542 x 10 "® esu x cm = 2.542D
Quadrupole moment, eao? = 4.486 x 107*° C x m?

= 1.345 x 10 * esu x cm? = 1.345 B
Octupole moment, eap> = 2.374 x 107°°C x m?

= 7117 x 1073 esu x cm?

(1.78)

In the expressions above, D is the Debye unit of electric dipole moment,
and B the Buckingham unit for the electric quadrupole moment.

At the end of a calculation in atomic units, as we shall usually do,
the actual SI values can be obtained by taking into account the SI
equivalents (1.74) and (1.78). As an example, we give below the
calculation of the SI equivalent of the Hartree unit to seven significant
figures:
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1 &2 me*

- 4neo ag B (47180)2152

E),

9.109 382 x 103! x (1.602176 x 10~ %)* kg C*
(1.112 650 x 1071%)% x (1.054 571 x 1073*)* C* m~2 J* s2

= 4.359744 x 10718 .
(1.79)

1.5 THE ELECTRON DISTRIBUTION IN MOLECULES

The one-electron spatial function P(r) describing the distribution of the
electrons (the electron density) in the doubly occupied MO ¢(r):

(1) + Axp (1)
$(r) = xa(r)ea+ xp(r)cs = Xﬂﬂ—zﬁ (1.80)

where 4 = cp/ca denotes here the polarity parameter of the bond orbital
and § = (x4|xg) the overlap integral, is simply given by:

P(r) = p*(r) + () = 2 ()" (1) = 2| (x)[* (1.81)

the factor 2 comes from the equal contribution of electrons with either
spin (a = spin-up, 8 =spin-down).

The electron density can be further analysed in terms of elementary
contributions from the AOs, giving the so-called population analysis,!
which shows how the electrons are distributed between the different
atomic orbitals in the molecule. We obtain from Equation (1.81):

P(E) = qax, () + i (0) + qap ANy g XEXAT) - g5

(r)xp(r) and XB(")SXA(T) are

where x4(r) and x3(r) are atomic densities, X4
overlap densities, all normalized to 1, while the coefficients:

2 252

. 1.83
12+ PT1i2rms (1.83)

qa

" The extension to N-electron LCAO-MO wave functions is due to Mulliken (1955).
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are atomic charges, and:

228
= = - 1.84
9dAB = qBA 142128 ( )
overlap charges. The charges are normalized so that:
2+2)2+4I8
gt qap+qaa = = TSy 1.85
dA T4B T qAB T 4BA 142128 ( )
the total number of electrons in the bond orbital ¢(r).
For a homopolar bond, /. = 1:
1 S
— —_— p— = 1.
94 =98 =7 g 9B =9qBA =g (1.86)

so that for S > 0, in the bond, the charge on the atoms is decreased,
electrons being transferred to the region between nuclei to an extent
described by g4z and qpa. This reduces internuclear repulsion and means

bonding.
Forabheteropolarbond, . # 1,and we define gross chargeson A and B as:
24278
—quddap = 2T 1.87
Q4 =datdas = 7008 (1.87)
272 +218
gt qps = T 1.88
Qp =ds+q8a =77 7% (1.88)
and formal charges on A and B as:
Sa=1-04 = r-1 (1.89)
AT AT 2 ws '
22
At—1
op=1-Qp=—— "~ 1.90
p=10n =T s (1.90)

If 2>1,84=86>0, 6g=—-84= -6 <0, and we have the dipole
AT°B™® (e.g. the LiH molecule).

In our model, an essential role will be assigned to the exchange-overlap
densities (Magnasco and McWeeny, 1991; Magnasco, 2007,2008,2009a):

Xa(Oxp(r)=Sxa(r),  xp(r)xa(r)—Sxz(r) (1.91)

which have the properties:

jdrm<r>xB<r>—SXi<r>1 o0, jdrm<r>xA<r>—sX%<r>1 —0 (1.92)
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1.6 EXCHANGE-OVERLAP DENSITIES AND THE
CHEMICAL BOND

This section aims to illustrate the origin of the quantum mechanical
exchange-overlap densities and their different behaviour in the case of
the chemical bond in ground state H, and the Pauli repulsion in He,.
We choose as starting point for the 12; ground state of the systems
the normalized Heitler-London (HL) wave functions (Magnasco,
2008):

W(H,) = llabll+1bal| _ a(r1)b(rz) + b(ri)a(rz) a(s1)B(s2)—B(s1)ax(s2)

V24282 V24282 V2

(1.93)

V(He,) = ||aabb|| = |la(r)a(s1) a(r2)B(s2) b(rs)a(ss) b(ra)B(ss)]]
(1.94)

where r and s are space and spin variables, the bar denotes 8 spin,
a(r) = 1sa(r) and b(r) = 1sg(r) are AOs centred at A and B, the
double bar standing for a normalized Slater determinant (Magnasco,
2007, 2009a)'?.

If x = rs denotes the space-spin variable, we recall from first principles
(Magnasco,2007,2009a) that, for a normalized N-electron wavefunction
satisfying the Pauli antisymmetry principle, the one-electron density
function is defined as:

p(x;x) = NJddeX3 o dxnP(x, X2, L xXN)PT(X, X2, 0, XN)

(1.95)

where the first set of variables in p comes from P, the second from P*. The
physical meaning of p is:

p(x;x)dx = probability of finding an electron at dx (1.96)

where dx = drds is an elementary volume at a fixed point in space-spin
space. In this way, p determines the probability distribution in space of

21t should be remarked that, while the Heitler-London function (1.93) for H, is a two-
determinant wave function, the Heitler—London function (1.94) for He; is a single determinant
wave function, so that in this case HL and MO approaches coincide.
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electrons of either spin. If:
p“(r;)dr = probability of finding at dr an electron with spin &
{ PP (r;r)dr = probability of finding at dr an electron with spin 8
(1.97)
with p%(r;1) = p%(r) and pP(r;r) = pP(r) the (spatial) coefficients of

a(s)a*(s) and B(s)B*(s) in p, the (spatial) electron density, as observed
from experiment, is defined as:

P(r;r) = p*(r;1) +pP (1;1) (1.98)

The electron densities for the 12g+ states of H, and He; resulting from
these Heitler-London wave functions are then:

P(r;r) = p®(r;1) + pP(1;1)
_a(r)a*(r) + b(r)b*(r) + Sla(r)b*(r) + b(r)a*(r)]  (1.99)
- 1+§?

for the two-electron system H,, and:

P(r;r) = p®(r;1) + pP(r;1)
a(r)a*(r) + b(r)b* (r)—S[a(r)b*(r) + b(r)a*(r)] (1.100)

=2 1-§2

for the four-electron system He,.

We give in detail below the calculation of the electron density for the
Heitler-London wavefunction (1.93) of ground state H,, when a(r), b(r),
a(s), B(s) are all normalized to one:

a(r1)b(r2)+b(r1)a(r2)  a(s1)B(s2)—B(s1)a(s2)

2+282 V2
p(Xl;Xl):ZJdXZ
la(r1)b(r2) +b(r1)a(ra)]" [e(s1)B(s2)—B(s1)a(s2)]”
V24282 V2

la(r1)b(r2)+b(r1)a(r)] st [ae(s1)B(s2)—B(s1)e(s2)]
[a*(r1)b" (r2) +b*(r1)a* (r2)] 2[a*(sl)B*(SZ)*ﬁ*(Sl)a*(SZ)]

_a(ry)a’(ry) +b(r1)b*(rliiigzz(rl)b*(rl)—i—b(n)a* (r1)] (s )ar (51) 4808 ()]

:(2+2$2)_1Jdr2
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so that:

a(ry)a” (1) +b(r1)b" (r1) +S[a(r1)b" (r1) +b(r1)a" (r1)]
24282

p®(risry)=pP(rysry) =
(1.101)

and we obtain the result of Equation (1.99) if we leave out the now useless
suffix 1 on the space-spin variables.

(i) The 12g+ state of H, (two-electron interaction)
The spinless 1-electron density (Equation 1.99) satisfies the conserva-
tion relation:

JdrP(r; M) =2 (1.102)

the total number of electrons in Ho.
Using the identity:
(1+8) "' =1-82(1+8)"! (1.103)

we see that the electron density (real orbitals) can be partitioned into:

S

P(r;r) = [a2(r) + b2 (r)] + m{ [a(r)b(r)—Sa*(r)] + [b(r)a(r)—Sb*(r)] }

— Pcb (1‘;1‘) +Pexc/7—oz/(r;r)
(1.104)

where:

P (r;r) = a?(r) + b (r) = P9 (x;r) (1.105)
is the quasi-classical contribution to the molecular density, and:

?SSZ { [a(£)b(r)—Sa* ()] + [b(r)a(r) —Sb* (r)] } =P'(r;r)

(1.106)

Pexch—ov (I‘; 1‘) —

the quantum mechanical exchange-overlap (or interference) density.
Equations (1.105) and (1.106) satisfy the relations:

JdrPCl (r;1) = Jdr[az(r) B2 (r)] =2 (1.107)
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the number of electrons in the H, molecule, and:

Jdr PexP oY (r;r)

— s | ar{ b -2 O] + p0a-S22w]} (1 408
S

=52 (25-29)=0

in agreement with Equations (1.92). However, the energy changes asso-
ciated with the quantum mechanical exchange-overlap component
(Equation 1.106) of the interaction energy are the greatest contributors
to the energy of the chemical bond (see Table 1.2).

Equations (1.105) and (1.106) are the Heitler—London counterpart of
the corresponding quantities (Equations 3.4 and 3.5 on page 340 of
Ruedenberg’s paper (1962), which refers to a LCAO-MO wave function.
Ruedenberg calls Equation (1.106) ‘the modification of the quasi-classical
density due to the interference effect’, while we, more literally, speak of
exchangela(r)b(r)], [b(r)a(r)] and overlap[—Sa*(r)], [-Sb*(r)] densities.

Finally, it is worth noting that, while:

qa’=q," =1 (1.109)

is the classical electron charge on separate A and B (one electron on each H
atom),

exch—ov __ S

1482
is the fraction of electronic charge transferred in the bond region, due to what
Ruedenberg calls the ‘constructive interference’, and which means bonding.

exch—ov __

>0 (1.110)

9aB 9Ba

Table 1.2 Optimized bond energies and their components (107°E,) for ground
state H,

R/ag AE AEexch—ov AE('S,)
1 15.85 —104.43 —88.58
1.2 -9.93 —119.03 —128.96
1.4 ~19.42 ~119.63 ~139.05
1.6 —21.83 —112.54 —134.37
1.8 ~21.08 ~101.60 ~122.68
2 ~18.99 ~89.02 ~108.01
4 ~1.68 ~9.68 ~11.36
6 —0.06 —-0.45 -0.51
8 ~0.00, ~0.01; ~0.01,
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So, a complete equivalence exists between our notation (Magnasco and
McWeeny, 1991; Magnasco, 2004a, 2007, 2008, 2009a) and that of
Ruedenberg (1962).

(i1) The 12; state of He, (four-electron interaction)
The same argument can be applied to the electron density (Equa-
tion 1.100), which satisfies the conservation relation:

JdrP(r;r):4 (1.111)
the total number of electrons in He,.
Using the identity:
(1-8) ' =1+4+8(1-8*)" (1.112)
the electron density (real orbitals) can be partitioned into:

Plrsx) = 2@ )+ b2(0)] | a(0)b(e)—Sa*()] + [b(r)ale) ~S*(r)] }

— peb (I‘;l‘) _'_Pexchfov (1‘;1‘),
(1.113)

where:
P (r;r) =2[a?(r) 4+ b*(r)] = P(r;r) (1.114)
is the quasi-classical contribution to the molecular density, and:

Ppexch—ov (I" I‘) —
Y

28

— _ﬁ{ [a(r)b(r)—Sa?(r)] + [b(r)a(r)—Sb*(r)] } _Pl(r:r) (1.115)

the quantum mechanical exchange-overlap (or interference) density.Even
in this case it is evident that:

JdrPd(r;r):4 (1.116)

JdrPebe_"”(r;r) =0 (1.117)

While the ‘exchange-overlap’ (or ‘interference’) density still does not
give any contribution to the electron population, it is now at the origin of
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Table1.3 Optimized Pauli repulsions and their components (10~>E,,) for the He-He
interaction in the medium range

Rla, AE® AEexch=ov AE('S,")
2 ~27.28 163.90 136.62
2.5 ~7.55 50.22 42.67
3 -1.93 14.89 12.96
3.5 ~0.47 4.27 3.80
4 ~0.11 1.18 1.07
4.5 ~0.02 0.32 0.30
5 ~0.005 0.08 0.075

the strong repulsion occurring at short range between two neutral He
atoms (Pauli repulsion, see Table 1.3), since in this case:

exch—ov __ _exch—ov _ 28

dap ~ =49pax = 1—S2<0 (1.118)

so that, now, electrons escape from the region between the nuclei, giving
what Ruedenberg calls ‘a destructive interference’. The same behaviour
occurs for the triplet °3," excited state of H,.

Hence, we conclude, first, that there is a complete equivalence between
Ruedenberg’s (1962) and our formulation (Magnasco and McWeeny,
1991; Magnasco,2004a,2007,2008,2009a) interms of quantum densities,
and, next, that the different behaviour of the quantum ‘exchange-overlap’
(or ‘interference’) density for the '3 g+ states of H, (chemical bonding) and
He, (Pauli repulsion) is evident from the opposite signs of the g5%#~°* terms
occurring in H, and He,. The latter originate the main contribution to the
respective AE®*=°” components of the bond energy in H, (attractive
contribution) and of the Pauli repulsion in He, (repulsive contribution).

Numerical values of the interaction energies for these Heitler—-London
wavefunctions, taken from Magnasco (2008), are given in Tables 1.2
and 1.3. The energies are optimized variationally with respect to the
values of the orbital exponents ¢ of the atomic 1s STOs on A and B.

It can be seen from Table 1.2 that the optimized value resulting for the
bond energy of H, at the equilibrium bond length,
AE,('3,") = —139.05 x 107°E,, at R, = 1.40a, is within 80% of the
theoretical value AE6(12g+) = —174.45 x 1073E,, given by Wolniewicz
(1993) in his accurate calculation using a 279-term expansion in sphe-
roidal coordinates for the two electrons, including powers of the inter-
electronic distance. It must be admitted that our results are particularly
satisfying for such a simple wavefunction!
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The He-He optimized Pauli repulsion at medium range resulting from
Table1.3atR = 3ao,AE(12 ) = 12.96 x 103E,, turns out to be within
96 % of the accurate result AE(IZ ) = 13.52 x 1072E,, obtained by Liu
and McLean (1973) from an accurate SCF Hartree—Fock calculation using
a 4s3p2d 1fbasis of STOs on each centre. At R = 44y, the optimized result,
AE(12 ) =1.07 x 1073E,,, is still within 80% of the accurate value
given by the same authors, AE(12 ) =1.35 x 1073E,,. Apparently, our
results would be even better when compared with experiment'® (Feltgen
et al., 1982), but in this case we must expect that our SCF values,
underestimating the interaction, compensate in part for the effect of the
attractive London forces not considered in the calculation.

These numerical results confirm the validity of our simple analysis
based on the exchange-overlap densities either for the chemical bond (H,)
or the Pauli repulsion (He-He). Even at the simple MO level, which we
know to behave correctly in the bond region (Magnasco, 2007, 2009a), a
model representing at its best such quantum densities in terms of the single
one-electron Hiickel parameter [(B—asS) /(1 + S)] < 0 (Magnasco, 2004a)
is expected to give a qualitatively correct representation of the chemical
bond and its properties. This is what we want to present in the next
chapter.

130ur calculated value at R = 3.5a9 would exceed by less than 2% the experimental value of
AE = 3.74 x 1073E,.
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2.9 Appendices
2.9.1 The Second Derivative of the Hiickel Energy
2.9.2 The Set of Three Coulson’s Orthogonal Hybrids
2.9.3 Calculation of Coefficients of Real MOs for Benzene

The multicentre one-electron space functions ¢(r) describing electron
distribution in molecules are called molecular orbitals (MOs). In the
independent-particle approximation convenient MOs are constructed
by the linear combination of atomic orbitals (LCAQO) with coefficients
determined by the Ritz method of Chapter 1.

2.1 AN ELEMENTARY MOLECULAR
ORBITAL MODEL

Consider the formation of two two-centre MOs obtained from two
normalized nonorthogonal real AOs, x;(r) on atom A and x,(r) on
atom B:

$1(r) = x1(r)Ci1 + x2(r)Ca1 = Cr1(xq + 41x2) (2.1)
where:
Gy
=g (2.2)

is the polarity parameter of MO ¢, with Cj; a normalization factor,
and:

$2(r) = x2(r)Caa + x1 (1) Cr2 = Coa(x2 + 22X1) (2.3)
with:
_Cp
h=5 (2.4)

the polarity parameter of MO ¢,.

We now introduce a simple Hiickel theory including overlap
(Magnasco, 2002, 2004a, 2007, 2009a). The elements of the Hiickel
secular determinant are given in terms of just two negative unspecified
parameters, the diagonal element « (the Coulomb or atomic integral) and
the off-diagonal element B (the bond integral).
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Optimization of the linear coefficients in this simple Hiickel scheme
including overlap gives the 2 x 2 pseudosecular equation:

arj—e B-&S
=0 (2.5)

B—&S ar—e¢

where a1 < 0,a, < 0 are atomic integrals specifying the energy levels of
AOs x; and x,; B <0 the bond integral describing formation of a bond
between yx; and x,;

5= Jdrxl Ox2®) = (i lxa) (2.6)

the overlap integral giving the superposition between the normalized AOs
X1 and x,. S depends in an exponentially decreasing way on the internu-
clear distance R between atoms A and B. It is important to note that 3
depends on S and that no bond can be formed between AOs for which
S = 0 by symmetry.

According to Equations (1.26) and (1.27) with:

A11 = a1, A22 =), A12 = A21 :B, }vl =&, )vz =& (27)

solution of Equation (2.5) gives the real roots:

—2BS—A
g = 2‘;;_85) (2.8)
gy = +20221—_%£.)9+A (2.9)

with:
A= [(az—0)* +4(B—a18)(B—a38)]"* > 0 (2.10)

The roots ¢; of the pseudosecular equation are called molecular orbital
energies, while the differences Ag; = ¢;—a; are assumed to give the
contribution of the ith MO to the bond energy. The energy of the chemical
bond will, in general, depend on 8, a1, @z, and S. The solutions become
particularly simple in the two cases schematically shown in Figure 2.1.

If @y = oy = @, we have degeneracy of the atomic levels, and we obtain
for orbital energies and MOs the following results:

_a+B_a+B—aS
R 1+S

&1 (2.11)
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£x

5=0 S#0

Figure2.1 Bondingand antibonding molecular splittings for a first-order interaction

(B large)

is the orbital energy for the bonding MO ¢;

Aey = &1—a = Bl_fSS <0 (2.12)
the attractive bonding orbital interaction;
X1tX2 )
e s N1 = 1 2.13
d)l m 1 ( )
the normalized bonding MO;
_a—B  B-aS
£2=y¢=a- (2.14)
the orbital energy for the antibonding MO ¢,;
Aer = &r—a = _31__“83 >0 (2.15)
the repulsive antibonding orbital interaction;
¢, =22XL = (2.16)

V2-28’

the normalized antibonding MO.
We notice that the resulting MOs are normalized and orthogonal:

(B1lbr) = <X1+X2 X1+Xz>_2+23_

V2+25|v2128) 2+28
(s ) = Xo=X1 | Xa=xi1 \ _ 2-28 . (2.17)
s V2-2S|v2-2§/ 2-2S

(D1ld2) < (X1 +x2lX2—Xx1) = —1+1=0
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Cy-0,>0
EZ
&
oy o,
o, o, jsl
Sl
S=0 S#0

Figure 2.2 Bonding and antibonding molecular splittings for a second-order inter-
action (B small)

and that ¢, has a nodal plane at the midpoint of the internuclear axis
whereas ¢, has no nodes. For S # 0 (right-hand side of Figure 2.1) the
molecular levels are asymmetric with respect to the atomic levels, the
bonding level being less bonding, the antibonding level is more antibond-
ing than the case S =0 (left-hand side of Figure 2.1) where splitting
is symmetric. Finally, we observe that the orbital interaction energy is
first order in B (strong interaction).

If |B| < (a2—a1) > 0 (Figure 2.2), the two atomic energy levels have
sensibly different energies, so that the interaction B is small.

If we assume a to be the deepest level, using a Taylor expansion for the
square root, we have:

i 11/2
A= (ex—aq) |1+ Hp—a1S)(B—asS)

(az—ay)

1+ 2(B—a15)(,3—2a25) (2.18)
(a2—ay)

N 2(B—a1S)(B—a2S)

ay—oq

~ (ax—aq)

= (a2—a)
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so that, substituting in the previous equations, we obtain:

2
S G LR (2.19)

a)—a
the orbital energy of the bonding MO;
(B—a15)

ay—oq

<0 (2.20)

Ag| ~ g1—a1 = —
the attractive bonding orbital interaction;

X1+ 41Xz N B—a1S

~ —

; ‘1
V142242148 ar—ay

the normalized bonding MO, little different from x;;

¢1 =

> 0 small (2.21)

2
o2~y 4 Pm2S) (2.22)

) —0aq
the orbital energy of the antibonding MO;

+ (B—a»S)?

a)—aq

Aery = ery—ay =

>0 (2.23)

the repulsive antibonding orbital interaction;

¢, = X2t 2X 7o 2 BT 6 gl (2.24)

) 2
V144274248 az—ay

the normalized antibonding MO, little different from y,. The greater
the difference Aa = ar—aq the smaller the orbital interaction: this ex-
plains why the chemical bond always occurs at the valence level, where
energy differences between AOs are smaller. The interaction is now
second order in B.

2.2 BOND ENERGIES AND PAULI REPULSIONS
IN HOMONUCLEAR DIATOMICS

According to our simple model, in a homonuclear diatomic, the energy of
a chemical bond (in short, the bond energy) is obtained by adding at the
valence level the contributions from the different MOs that are occupied
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$ 1l
Oy T 113

t 1] 1 1]
O 1 1 T

H, H He; He

2

Figure 2.3 Electron configurations in first-row homonuclear diatomics originating
one-electron (H, 1), two-electron (H,), three-electron (He, ") chemical bonds
and Pauli repulsion in He;

by electrons according to the aufbau principle (Walker and Straw, 1966).
In the absence of degeneracy, in each molecular level we put two electrons
with opposite spin so as to satisfy the Pauli exclusion principle. So, we
obtain for the bonds in the simplest molecules built from atoms having
one or two 1s electrons in their valence shell (H, He) the results shown
in Figure 2.3.

2.2.1 The Hydrogen Molecular ITon Hy" (N = 1)

B—asS

AE =
148

<0 (2.25)

This is the energy of the one-electron bond in our model.

2.2.2 The Hydrogen Molecule H, (N = 2)

B—asS

AE =2
1+S§

<0 (2.26)

so that the energy of the two-electron bond in H, should be twice that of
the one-electron bond in H' .

2.2.3 The Helium Molecular Ion He,” (N = 3)

B—aS B—aS 2(1-S)—(1+5) 1-38

AE=29—¢-"75~ 1-82 (B-aS) =1-g

(B—aS) <0
(2.27)

For small S, the three-electron bond energy in He," should be not far
from (better, a little less than) that of H;".
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Table 2.1 Bond distances (a¢) and bond strengths (E,) observed in first-row homo-
nuclear diatomics

Molecule Rlay D/1073E, Ratio Model
H,* 2.0 102.6 1 1

H, 1.4 174.4 1.7 2
He, " 2.04 90.8 0.9 1
He, 3.0 -13.5 - Repulsion

2.2.4 The Helium Molecule He; (N = 4)

B—aS 2(1-8)-2(1+S) (Bas) =4S
1-82

B—aS_Z

AE=205 295~ 1 ¢

(B—aS) >0
(2.28)

so that, for the interaction between two ground state He atoms, the model
predicts repulsion between the atoms (the so-called Pauli repulsion), and
no chemical bond can be formed. So, the diatomic molecule He;, cannot
exist in the usual region of chemical bonds’.

This is exactly what is observed by experiment (Huber and Herzberg,
1979). In Table 2.1 we give the bond distances and the bond strengths
(in atomic units) measured for the ground states of H, ", H,, He, ', and
the accurate Pauli repulsion energy calculated at R = 3ag for He, by Liu
and McLean (1973). The bond strengths D reported in the table are
obtained at the bottom of the potential energy curve, and correspond to
the negative of the bond energies AE of our model (D = —AE)

The results of our model are seen to agree well with experiment, and
were confirmed by ab initio calculations on the same systems (Magnasco,
2008). It was shown there that the single one-electron bond energy
parameter (B—aS) occurring in Equations (25-28) is just the model
representation of the one-electron part of the exchange-overlap compo-
nent of the interaction due to the exchange-overlap densities [a(r)b(r)—
Sa*(r)] on A and [b(r)a(r)—Sb*(r)] on B.

The naive extension of the model to the bonds of the second-row
homonuclear diatomics (Li, ¥, Li,, Be, ™, Be,), mostly involving overlap

! At the rather large internuclear distance of 5.63aq, the potential energy curve of the He(1s%)-
He(1s?) interaction shows a shallow minimum of —33.4 x 10~°E, corresponding to the forma-
tion of a so-called Van der Waals bond. This is possible since, at this large distance, the small Pauli
repulsion between closed shells is overbalanced by a small London attraction (see Chapter 4).
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between easily polarizable 2s AOs, is however not immediately possible,
because, at variance with H,” and Ha, Li,” (D = 47.3 x 107°E,,) is more
stable than Li,(D = 38.6 x 107°E,,) as a result of the sensibly stronger
polarization effects of the valence 2s electrons compared with 1s (ap; =
16843, ay = 4.5a3) (Kutzelnigg, 1991), not accounted for in our model.
However, the model correctly predicts Be, to be a van der Waals molecule,
like its lighter homologue, He,.

What is rather surprising is that a similar trend for bond lengths and
bond strengths is observed when filling 1 through 8 electrons in the doubly
degenerate valence n levels in the ground states of the series C;", C,,
N, Ny, O, , O, F,, F, (Magnasco, 2004a). The maximum bond
strength occurs for the triple bond in N, (N, = 4,D = 358.7x10°E},),
lying in between N5" (N, =3, D = 237.9 x 10°E;,) and O, (N, = 5,
D =242.4 x 107°E,)) which have rather similar bond strengths, while
the 7 system of F,, containing a complete shell of 8 electrons, exhibits
a Pauli repulsion that reduces the strength of the underlying o bond
(D =62.1 x 1073E),).

2.3 MULTIPLE BONDS

In diatomic molecules, it is customary to assume the z axis along the bond
direction connecting atom A (chosen at the origin of the interatomic
coordinate system) to atom B, a distance R apart, while axes x and y are
perpendicular to it. Bonds directed along the internuclear axis z are called
o bonds, bonds perpendicular to the z axis (hence having the two
equivalent orthogonal directions of axes x and y) are called = bonds.
Multiple bonds have either o and 7 bonds, the ordinary double bond (e.g.
in ethylene) having four electrons in the configuration o?n2, the ordinary
triple bond (e.g. in N, and C,H,) six electrons in the configuration o?n?.
However, we have just seen that we can also have chemical bonds
involving either one electron (H, ") or three electrons (He, "), so devi-
ating from the classical Lewis bond that consists of an electron pair (H,).
So, we can also speak of three-electron o bonds (asin He, *), and of three-
electron 7 bonds (as for the triplet ground state of O,), as shown in
Figure 2.4.

It should be noted that, because of the invariance properties of the
density function with respect to a unitary transformation among its
orbitals, the o—r description of double or triple bonds in terms of
nonequivalent orbitals is not the only possible one; a description in terms
of two or three equivalent bent banana bonds is possible as well. It is
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——o, —t— ——n
_H_ O + _H_ Ty

+
He, 0,
Figure 2.4 Ground state electron configurations originating the three-electron

o bond in He," (¥,"), and the two three-electron 7 bonds in O,(Z,")

Figure 2.5 The four basic AOs needed for the o2n? description of the double bond

important to stress that the two descriptions are physically equivalent.

We shall show this by an energy calculation for the simple MO description
of the double bond.

2.3.1 o&?n? Description of the Double Bond

Let us consider the four basic AOs (z4, 2p, x4, Xg) Or (04, OB, TxA, TxB)s
where 2p, = z = o are AOs directed along the internuclear axis, and
2py = x = 7, (= 7 for short) AOs perpendicular to it>. We choose two
coordinate systems, a right-handed one on A and a left-handed on B
(Figure 2.5), so that S, elementary overlap is positive.

2 A nomenclature borrowed from diatomic molecules.
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2x2 o
4x4 x 0 o 0
=] = =a
AO 2x2 ] T
0 Il 0 T
block-diagonal fully-diagonal

Figure 2.6 Factorization and diagonalization of the Hiickel secular equation for a

double bond

If we then construct Hiickel MOs using the LCAO method, assuming
for simplicity orthonormal® basic AOs, we must solve the secular equation
of Figure 2.6. After diagonalization of the Hiickel matrix, we get:

(g :%(ZA“FZB), o :%(ZA—Z@

(2.29)
_ R
= \/z(xA +x3), \/Z(xA Xp)

the MOs in the first column being bonding, those in the second column
antibonding. We concentrate our attention only in bonding orbitals.

Let us examine the structure of the block-diagonal matrix describing
orbital interaction within the Hiickel scheme:

a[T BU’O’ an BTET[
ﬁo’a’ aO’ 7 Bnn C(n (230)
Y-matrix IT-matrix

where the as are Coulomb integrals and the Bs bond (interaction)
integrals. As already said, in Hiickel-type theories (Magnasco, 2002,
Magnasco, 2004a) « is taken to be an atomic quantity (roughly the
negative of the ionization potential of an electron in the orbital), while
B is taken proportional to the overlap S,, between the two interacting
orbitals y, and x, via a constant B:

Bp,v = ﬁOS,UJM Sp,v = <X,u|XV> (231)

3Remember that orthogonal does not mean not interacting (Magnasco, 2004a).
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Figure 2.7 Diagram of the MO orbital energies (S=0) for the carbon-carbon
interaction in the 7% description of the double bond (left) and in the equivalent
BB, bent bond description (right)

To get the MOs we solve the two quadratic equations:

ap—& B(m’ ap—& Bnn
—0, —0 (2.32)
ﬁa’o’ ap—¢& er ap—&
having roots:
Eg = Qp +,800., Egr = ap*Bo-(r
(2.33)
En = Oy +:8nn7 Enr = aP_:Brm

the first being X molecular orbital energies, the second IT molecular orbital
energies. Then, when there is interaction between A and B, we get for the
orbital energies the diagram on the left-hand side of Figure 2.7.

We have the total Hiickel energy:

E =26, + 26, (2.34)
giving as bond energy for the o?n*double bond:
AE = 2180'0'+2ﬁ7m (235>

Since B,; < Byo the bond energy of the double bond is lower than the
bond energy corresponding to two separate single o bonds. This is the first
result obtained from MO theory.

2.3.2 BB} Bent (or Banana) Description of the
Double Bond

Since the o and © MOs are mathematical functions obtained in principle
as solutions of a differential equation, describing the motion of a single
electron in the field provided by nuclei and all remaining electrons, we
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can mix them through a linear combination without changing the
mathematical solutions themselves. In other words, the new MOs ob-
tained from linear combination of o and = will still be a solution of the
same differential equation, the electron density being invariant against
this transformation. The simplest combination is then:

B, —\}Z(G—HI) _\ji \}Z(ZA +xa)+ \}Z(zB +x3) _\}Z(PM +pp1)

Bz = (0‘—7[) =

N

s ) + s enn)| =~ (paa o)

i

1
V2 2

(2.36)

where p a1 is a 2p orbital on A making an angle of § = 45° with respect to
the internuclear z axis, p> a 2p orbital on A making an angle of § = —45°
with respect to the internuclear z axis, etc. In matrix form:

1 1
Vi V2
(B1By) = (o n) 1 L= (ocm)U (2.37)
Vi V2
where
UU=0U=1 (2.38)

so that the transformation U connecting the two descriptions is given by
an orthogonal® matrix.

The orbitals By and B, obtained in this way describe the double bond in
terms of two equivalent bent bonds making an angle of 20 = 90° between
them (each bent bond makes an angle of # = 45° with the internuclear
axis) as shown in Figure 2.8.

From a geometrical point of view, By and B, are obtained by a rotation
of 180° around the z axis, but, although the individual form of the MOs
is changed, the physical situation is unchanged as we can easily see by
evaluating the molecular energy in the new basis. Since the two bond
orbitals are equivalent (under reflection across the yz plane) their asso-

*This transformation leaves the length of the vectors invariant.
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B

PAl PB1

455,

Figure 2.8 Equivalent bent (or banana) bond description of the double bond

ciated energy levels are degenerate:

&1 = (B1|H|B1) =5z (0 + n|H|o + 1) = = (65 + &x)

1
2

N =

(2.39)

& = (B2|H|By) = = (o0—mn|H|o—7n) = = (&, + &) = &1

N =
N =

We have two degenerate levels of energy &, = &1 equal to the arithmetic
mean of the previous o and = levels (right-hand side of Figure 2.7). We
finally obtain:

E=2e1+2e) =41 =2&, + 2¢&,
(2.40)

AE:ZBUU+ZBHH

the same result as before. Molecular and bond energy are therefore
unchanged. The o—n and B;-B, representation of the double bond
describe the same physical situation’. This is the second result obtained
from the quantum mechanical description of the chemical bond. We have
no experimental way of distinguishing between the two.

2.3.3 Hybridization Effects

We now turn to examination of hybridization effects. We allow for sp?
hybridization of the orbitals lying in the zx molecular plane (e.g. ethylene).

3This is true only for the MO approximation. Ab initio VB calculations by Palke (1986) on
ethylene show the equivalent banana bond description of the double bond in terms of equivalent
nonorthogonal hybrids to be more stable than the o—= description.
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Pal

Ny

A
_/fA

Figure 2.9 t4 is an sp? hybrid directed along the z axis

Let:
;e s+ \/Zz
V3

be a normalized sp? hybrid on the same atom. Then, ¢, is an sp> hybrid on
A directed along the z axis (Figure 2.9).

In the o—n description of the double bond we must solve the secular
equation (2.5) in the basis (¢4t xaxp), assuming S = 0 as before, getting
after diagonalization the molecular orbitals:

(2.41)

1
o=—(ta+tp), 0" (ta—tB)

1
V2 2
(2.42)

n—\/iz(xA +xB), " —\/LZ(XA—XB)

where only o MOs are changed by hybridization. We have now for the o
bonding orbital energy:

1
er =5 {ta+1p|Hlta +15) = ar + By (2.43)
where:
1 1
oy = (talH|ta) = 3 {sa +V22alHlsa + V22a) = S (s +2e)  (244)
1
By = <tA|H|tB> = § <$A + \/EZA|H|SB + \/zz3>
. (2.45)
- g (Bss + Z'BO'(T + 2\/5350')
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whereas the © bonding energy is unchanged:
&n =y + B, (2.46)

Hybridization introduces further Coulomb (a;) and bond (B,, and B,,)
integrals. So, we have, for total and bond energy of the double bond
accounting for hybridization:

E =2e;+2e; = 2(a; +B,) + Z(ap +Brr)
2 10 4+/2
= (g s+ — 3 > + Bss + Bo’a \3/_350' + ZBnn

2 4 42
gﬁss + gBu’a' + Tﬁsu + ZBnn

(2.47)

Bond energy increases with hybridization for two reasons: (i) since
Bss > By and (ii) because the additional term B, is quite large (Pople and
Santry, 1964, 1965).

A guess of the energy resulting for the double bond in ethylene
(Rec = 2.55a0) can be made assuming nodeless Slater-type orbitals
(STOs) with¢; = ¢, = 1.625 using overlap values taken from the literature
(Pople and Santry, 1965) and assuming By ~ —3 eV = —69.1 kcal mol ™",
giving the numbers collected in Tables 2.2 and 2.3.

We then obtain the results (kcal mol™'):

AE, = 2B,, = —36.6

2B,, = —45.0
\/_ (2.48)
AE;, = ¢ 2 4 4

glgss+ ger — Bso + 2B, = —106.0
Table 2.2 Overlap integrals between carbon STOs
Sss Sso SUU’ STETL
0.431 0.430 0.326 0.265
Table 2.3 Bond integrals between carbon STOs
Energy unit Bss Bss Boo Brx
eV -1.29 -1.29 -0.98 -0.79

kcal mol™? -29.8 -29.8 -22.5 ~18.3
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Table 2.4 Bond strength D (kcal mol™!) of the C = C double bond in ethylene

No hybridization sp* hybridization
81.6 142.6

giving for the bond energy of the C=C double bond in ethylene the results
of Table 2.4.

There is a gain of 61.0kcal mol™! due to sp? hybridization, since the
overlap between bonding hybrids is stronger than that pertaining to
the elementary overlaps (Magnasco, 2007, Magnasco, 2009a). Coulson
(1961) gives for the bond strengths:

C—C ~ 83 kcal mol ™!
(2.49)

C=C ~ 146 kcal mol™!

in excellent agreement with our estimate here.

Table 2.5 collects some typical values of bond strengths in hydrocar-
bons taken from Coulson’s book (Coulson, 1961).

Turning to the bent bonds description, we have:

1 1 1 1 1
Blz\/—z(a'-f—n):ﬁ ﬁ(tA—f—xA)-Fﬁ(tB-i-xB) :_Z(bAl+bBl)
1 1 1 1 1
By=—(0c—n)=—7% |—=(ta—x4) + —=(tg—x =—(bax+b
2 \/f( ) 7 \/Z(A 4) \/Z(B B) \/Z( A2+bp)
(2.50)
Table 2.5 Bond strengths D (kcal mol ') of some bonds in hydrocarbons
Bond Bond strength Hybridization
C—C single 83 sp>
C=C double 146 sp?+m
C=Ctriple 201 sp +n?
C—H in CHy4 103 sp’
C—H in C,Hy4 106 sp?

C-H in G,H, 121 sp
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where:

1 1
bar = \/—z(tA +x4)= N (SA +\/§PA1)

.. F
pa1 = 5 ZA 2xA

bai is the bybrid orbital on A engaged in the By bond orbital, pa;
a normalized 2p orbital on A making an angle of 6 = 50.8° with the
internuclear z axis. The interbond angle between the pair of bent bonds
amounts now to 20 = 101.6° when sp? hybridization is included. In fact:

an g — coefficient of x4 \/g 12747

(2.51)

~ coefficient of z4 (2.52)

0 =50.8°

Hence, hybridization increases the angle between the bent bonds. This
is the third result given by the quantum mechanical description of the
double bond, namely, hybridization increases the angle between the bent
bonds, increasing overlap and therefore increasing the bond strength.

2.3.4 Triple Bonds

The level occupancy of the bonding MOs originating the typical triple
bond in ground state N, is shown in Figure 2.10. Six valence electrons fill
in the nondegenerate o level and the doubly degenerate n level, giving the
configuration o>n*. The same is true for the triple bond in ground state
acetylene C,H,.

Figure 2.10 Schematic o,?x,* ground state configuration of the valence electrons
originating the triple bond in N, and C,H,
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H—C=C—H H—C=N<}
C>o==0<)) C>Nz==0<)
C>N=N<D) C>Cc=0)

Figure 2.11 Schematic drawing of the triple bonds occurring in some diatomics
and in linear polyatomic molecules (o lone pairs are also sketched)

The equivalent bent bonds description of the triple bond is obtained
using the same arguments used before for the double bond. Three equiv-
alentbond orbitals By, B,, B3 are obtained by the linear mixing of o, 7y, 7y:

1 V2
Bi=—=0+ ~=m,
'3 T3
1 1 1
Bz:\/—ga—ﬁﬂx‘i‘ \/—zTEy (253)
Bt 1 1.
TV Ve V2

the transformation coefficients between the two sets being the elements
of an orthogonal matrix. Again, the two descriptions are physically
equivalent.

A schematic drawing of different sorts of triple bonds is shown in
Figure 2.11, centrosymmetric linear molecules (C,H,) and homonuclear
diatomics (O,, N,) being given on the left, noncentrosymmetric linear
molecules (HCN) and heteronuclear diatomics (NO, CO) on the right.

As already said, ground state O, has two three-electron n bonds (dotted
in the Figure), NO an ordinary two-electron = bond and a three-electronn
bond, while CO has an jonic triple bond (Magnasco, 2007, Magnasco,
2009a). UV photoelectron spectra (Murrell et al., 1985) show that the
correct electron configurations of the ground states are 20,* 17,* 305>
for Nz(lZ;), 30@171317‘5(% for 02(329, and 502 17n*2n for NO(*I1). The
order of electron levels in Figure 2.10 is therefore purely schematic.

2.4 THE THREE-CENTRE DOUBLE BOND
IN DIBORANE

Electron diffraction studies (Bartell and Carroll, 1965) show that dibor-
ane B,Hg has a D5y, structure like that of ethylene C,H,4 (Herzberg, 1945),
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Ay

—~ H

Figure 2.12 Structure of diborane B,Hg. The two three-centre BHB bonds lie in
the yz plane

in which two three-centre bent BHB bonds replace the double bond in
ethylene as shown in Figure 2.12. From a theoretical standpoint, uniform
localization (Magnasco and Perico, 1968) of the MO-SCF wavefunction
of Palke and Lipscomb (1966) also gives strong support to the similarity
between diborane and ethylene®.

With its 16 electrons B,Hg is an electron-deficient molecule having the
ground state MO electron configuration”:

B,Hg ('A,): 1a, 1a} 2a} 2a,} by, 1b3, 3a] 1b5, (2.54)

which can be compared with that of the ground state of the isoelectronic
ethylene molecule:®

CHy (Ay): 1a.% 1a,% 2a,* 2a,% 1b3,” 3a,.21by,” 1b3, (2.55)

The first five ionization potentials observed from UV photoelectron
spectroscopy’ for the two molecules (B,Hg: Lloyd and Lynaugh, 1970
C,Hy: Branton et al., 1970) are compared in Table 2.6 with the negative
of the orbital energies resulting from the theoretical MO-SCF calculations

®1t is found that the total 2p-character is 0.905 for the bond hybrids engaged in the three-centre
bonds and 0.777 for those forming the coplanar B—H bonds in diborane, the corresponding
values for ethylene being 0.911 for C—C and 0.787 for C—H (so giving a large deviation from the
ideal sp? hybrids, which have a 2p-content of v/2/1/3 = 0.816). The calculated interbond angle in
diborane is 92.6°.

7For the notation, see Magnasco (Magnasco, 2007, 2009a).

81In the electron configuration of both molecules we have shown the 7 orbital in bold.

?The “fingerprints’ of the molecule.
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Table 2.6 Comparison between vertical UV ionization potentials and theoretical
MO-SCF results (eV) for the A, ground states of diborane and ethylene

MOs B2H6 MOs C2H4
Experimental®  Theoretical® Experimental®  Theoretical®
1by, 11.89 13.25 1by, 10.51 10.09
3a, 13.30 14.56 1bsg 12.46 13.77
1bsy 13.91 15.24 3a, 14.46 15.28
1by, 14.75 15.68 1bs, 15.78 17.52
2a, 16.11 17.86 2a, 18.87 21.29

?Lloyd and Lynaugh 1970.
bPalke and Lipscomb 1966.
¢ Branton et al. 1970.

by Palke and Lipscomb (1966) assuming the validity of Koopmans’
theorem:

I,' ~ —&; (256)

Even if the quantitative agreement between the two sets of data is rather
unsatisfactory,'® nonetheless both experiment and calculation show that
the 7 bonding level in both molecules is:

e(1by,) = e, = —14.5eV  for diborane
(2.57)
e(1by,) = e, =~ —11.0eV for ethylene

so that we can say that the two protons entering the three-centre double
bonds in diborane stabilize the double bond, the 7 energy level in diborane
now appearing as the fourth ionization potential instead of the first,
as observed in ethylene.

2.5 THE HETEROPOLAR BOND

In the following, we extend our method to consideration of the hetero-
polar chemical bond. New aspects are now that: (i) both atomic energy
difference ay —a and bond integral 8 do contribute to the bond energy,
often being of the same order of magnitude; and (ii) the molecular charge
distribution is asymmetric so that it generates an electric dipole moment.
Assuming for simplicity orthogonal AOs (remember Footnote 3), the

10Not accounting for any correlation energy, theoretical MO calculations heavily overestimate
ionization potentials.



50 THE CHEMICAL BOND

fundamental quantities entering the model, the atomic energy difference
as—aq and the bond integral B, can be determined for each molecule using
the experimental values of its atomization energy D and its electric dipole
moment u. We shall shortly discuss below some results obtained for the
two-electron o bonds occurring in the ground states of the first-row series
of diatomic hydrides (Magnasco, 2003).

The linear combination of two normalized real nonorthogonal fixed
AOQOs, x;(r) on atom A and y,(r) on atom B, with coefficients determined
by the Ritz method, gives rise to two orthogonal two-centre MOs having
the normalized form:

¢ = Xt bonding MO
V14724278
B (2.58)
¢, = (42— (4 S antibonding MO
V(1-82)(1 + 72 4 2:8)
with orbital energies:
o +ay—2BS—A
T
(2.59)
o +ar—2BS+A
2708
where:
5 1/2
A= [(az—oq) +4(B—a18)([3—a25)} >0 (2.60)

J.is the unique'" polarity parameter, given by (see later Equation 2.106):
A—(ar— A—(ar— -
;o A-(a—ar) (ar—a1) [|B=a1S]| (2.61)
2|ﬁ—a28| A+(a2—a1) |ﬁ—a2S|
As before, according to this simple model, the bond energy in hetero-
nuclear diatomics is obtained by adding, at the valence level, the con-

tributions from the different MOs which are occupied by electrons
according to the aufbau principle.

"The orthogonality constraint between the resulting MOs gives A as the only independent
variational parameter.
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If n; is the number of electrons occupying the ith MO ¢,, 72,° the number
of electrons in the ith AO y; in the separated atoms, we define the bond
energy as:

occ occ

AE = "mei—» na (2.62)
i i

which, for homonuclear diatomics, reduces to the expression used in
Section 2.1:

occ occ

AE = Zn,—(si—a) = Z?’l,‘AS,‘ (263)

The filling of electrons into the MO levels has now more possibilities
than in the previous homonuclear case. These cases are fully described
elsewhere (Magnasco, 2003).

Apart from their asymptotic form for 0 < |B| < a,—a1 (Equations 2.20
and 2.23 in Section 2.1), the general expressions for the orbital interaction
energies of the heteropolar MOs are rather complicated in the case of
nonorthogonal AOs. For the sake of simplicity, we shall content ourselves
with the simpler expressions occurring in the case of orthogonality
between the interacting AOs y; and y,. Under this assumption, Equations
(2.58) simplify to:

2 .
b, = X1t 72X bonding MO
V1472
(2.64)
—A . .
b, = X274 antibonding MO
V1422
with the orbital energies:
o +ay; A _ag +ay A
&1 = 2 o &) = 2 + 2 (2.65)
where now:
A= [(aa—ar)?+4p1"* >0 (2.66)

We observe that, in this case, the splitting of the molecular levels upon
interaction is symmetric with respect to the arithmetic mean of the atomic
levels (Figure 2.13).

Table 2.7 collects the bond energies AE for the eight possible ways of
filling electrons into the MO levels resulting for a heteronuclear o system
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a)

Figure 2.13 For S=0, the first-order splitting of the molecular energy levels in a
heteronuclear diatomic is symmetric with respect to the arithmetical mean of the
atomic levels (dashed line)

in the case of orthogonal AOs, starting from the lowest bonding MO up to
a maximum of four electrons, with a short comment on the nature of the
interaction. There are twice as many levels in the heteronuclear system
compared with the homonuclear system. Without any loss of generality
we have assumed a,—aq > 0 (atom A having the deepest atomic energy
level). We see that the bond energy will depend in this case on just two
parameters, the atomic energy difference ay —ay and the bond integral |B|.

The series of first-row diatomic hydrides having a two-electron o bond
(HeH ™", LiH, BH, CH, NH, OH, FH) will now be examined in some
detail in order to analyse the systematic behaviour of our model in a case
of physically occurring molecules. In the case of orthogonal AOs, as
already said, the two fundamental quantities of the model, the atomic
energy difference ay;—a; and the bond integral |B|, can be determined

Table 2.7 Model bond energies resulting for N-electron heteronuclear o—systems
assuming ay—a; > 0 (orthogonal AOs)

N Case nd n) AE Nature of the interaction
1 (i) 1 0 a—a A Little bonding
2 2
— A
(1) 0 1 — azzal ) Bonding
2 (iii) 1 1 —A Bonding
(iv) 2 0 (aa—a1)—A Little bonding CT (A" B")
(v) 0 2 —(ap—aq)—A Bonding CT (A"B™)
— A
3 (vi) 2 1 el Little bonding
2 2
(vii) 1 2 - a2;a1 f% Bonding

4 (viii) 3 3 0 Non-bonding
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using experimentally observed quantities for the ground states such as
the atomization energy |D,| and the electric dipole moment wu.
The polarity parameter is:

A—(ar—ay)
21p|
We now look at the distribution of the electronic charge, which, for

two electrons in the bonding MO of an XH system, gives the atomic
charges:

A= (2.67)

2 272

va qH=m7 ax+qu =2 (2.68)

ax

The formal charges on the interacting atoms for A <1 are:

. -1
onX: 6x = 1—qx = s — 18] (2.69)
H:8y=1 1 + 18] (2.70)
onH: =1- =———= .
==

For 4 < 1, 8x < 0, and electronic charge will be transferred from H to
X, as expected on electronegativity grounds (Coulson, 1961) from C to F.
The formal charge |8| is independently derived from the experimentally
observed values of the vibrationless electric dipole moment'? u, when its
entire value is attributed to the heteropolar dipole:

] = |pul = 13IR., (2.71)

so that we obtain for the polarity parameter'® in the case 1 < 1:

1_|5| 1/2
L=—— 2.72
<1+|6|> (2.72)

We are now in a position to determine the values of our two unknown
parameters a;—a and |B| from observed experimental data. If |D 2| is
the dissociation energy (Huber and Herzberg, 1979; Feller and Dixon,
2001) and w, the vibrational frequency of the ground vibrational level,

12 As usual, we assume g > 0 when the direction of the dipole is from —|8| to + |8]. Calculated
Hartree-Fock values of w corrected for correlation effects generally agree with experimental
results (see text).

3 For /. > 1 the signs in the expression for 2 must be reversed.



54 THE CHEMICAL BOND

ID.| = |[D°|+ 1w, is the experimental atomization energy of XH ob-
served from molecular spectra. Then:

)2
At—1
ar—a) = —|D,| 5—— 2.73
2-a1 = —[De| 3 1 (2.73)
is the atomic energy difference, obtained as the admissible solution of the
quadratic equation:

(22 +1)(@a—a1)*=2|D,|(ar—as)—(#*~1)D? = 0 (2.74)
The bond energy parameter is then given by:
1
B =5 (D ~(aa—en)*] (2.75)

The formal charge |8|, the polarity parameter A, the atomic energy
difference a; —a; and the bond energy parameter |B| resulting from the
experimental bond distances R,, the atomization energies |D,|, and the
SCF values for the electric dipole moments w of the ground states of first-
row diatomic hydrides, are given in atomic units in Table 2.8. In the series,
all molecules have at the valence level a two-electron heteropolar o bond
and a number of o or 7 lone pairs and unpaired = electrons. Apart from the
first two terms in the series, the bond energy increases with decreasing
bond distance and the regular increase of the electronegativity difference
of atom X with respect to H. LiH has an unusually long bond distance,
with a rather large bond energy and a very large dipole moment.

While further details are left elsewhere (Magnasco, 2003), we shall
content ourselves here to remark that the model atomic energy differences
az—aq are seen to follow the Mulliken electronegativity scale (Coulson,
1961; McWeeny, 1979), ay being the deepest atomic level for LiH,

Table 2.8 Two-electron o bonds occurring in the ground state of first-row diatomic
hydrides

Molecule Re/ao |De|/E;, |M|/ea0 \6|/e A azfal/E;, ‘B‘/Eh
HeH™ 1.46 0.075 0.49 0.33 0.710 0.025 0.0353
LiH 3.015 0.092 2.36 0.78 2.844 —0.072 0.0288
BH 2.32 0.133 0.68 0.29 0.742 0.039 0.0636
CH 2.12 0.133 0.62 0.29 0.742 0.039 0.0650
NH 1.96 0.136 0.64 0.32 0.718 0.043 0.0696
OH 1.83 0.169 0.70 0.38 0.670 0.064 0.0782

FH 1.73 0.224 0.76 0.44 0.624 0.099 0.1005
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the reverse being true for the remaining hydrides (ag—ax > 0). It is
apparent that the model parameter ay—ax accounts in some way for
atom electronegativities within the bond. The bond energy parameter |B|
has the same order of magnitude of @, —a; and, apart from LiH, regularly
increases from HeH ™ to FH.

2.6 STEREOCHEMISTRY OF POLYATOMIC
MOLECULES

The structure in space of polyatomic molecules depends on the stereo-
chemistry of their chemical bonds through the principle of maximum
overlap (Magnasco, 2005).

2.6.1 The Molecular Orbital Model of Directed Valency

In the following, we shall use our model description of the chemical bond
to show that bonding is strongest for AOs maximizing the strength of the
exchange-overlap component of the bond energy. Making the usual
assumptions typical of elementary Hiickel theory including overlap, we
shall show that the Hiickel energy of the two-electron bond is minimized
for orbitals having maximum overlap.

Let b be a directed orbital (atomic or hybrid) centred at the nucleus of
atom A and making an angle 6 with the interbond axis A-B directed along
z from A to B, and yp a spherical orbital on atom B a distance R apart.
Then, overlap Sag and bond integral Bap can be written as:

Sap = Scosf, Bup =PBcosb (2.76)

where S and B are integrals characteristic of the bond A-B, which depend
on R, but are independent of the orientation 6.

The pseudosecular equation for the corresponding bond orbital ¢ in a
one-electron Hiickel-type approximation including overlap can then be
written as:

ap—e& (B—&S)cosh
=0 (2.77)
(B—&S)cosb ag—e

which expands to the quadratic equation in &:

(1-S8%cos?6)&* —(ap + ap—2BS cos’0)e + (aaap—B>cos’h) = 0 (2.78)
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where a, ag, and B are all negative energy quantities having the usual
meaning, the first two being interpreted as atomic integrals pertaining to
orbitals by and yg, while 8 is the bond integral depending on the nature of
A and B.

The two real roots are:

_ap+ag—2BS cos20—A

_ 2.79
2(1—-S82cos26) (2.79)
the bonding root, and:
as+ag—2BS cos?f + A
e+ = 2(1—-S82cos26) (2.80)
the antibonding root, with:
A = [(ap—ap)* +4(B—aaS)(B—apS)cos?6]'/* > 0 (2.81)

To examine the dependence of the orbital energies & on 6, it is
convenient to consider the determinantal Equation (2.77) as an implicit
function of the two variables 6 and &:

£(6,8) = (apr—e)(ap—e)—(B—eS)*cos* = 0 (2.82)
From the derivation rules for implicit functions (Smirnov, 1993) it
follows:
_ (¥ AV
df = (@)gdﬂ <$>9d8 =0 (2.83)
(%)
dS o 00 P fg
GEYP
provided:
fo = <§> #0 (2.85)
0/,

and, using the Schwartz equality for the second partial derivatives:

e folfe) +fuslfe)2fuslol: 2.56)
do* (t.)’ '
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When the calculation of the second derivative involves a stationarity
point for &, which implies:

of
fo = <@> =0 (2.87)
expression (2.86) simplifies to:
d’e foo
- 2.88
do>  fe (2.88)

provided both members are evaluated at the stationarity point for &.
From Equation (2.82), we easily obtain:

fo= <g> — (B—&S)*sin26 (2.89)
3/,
o :
foo = ) = 2(B—&S)"cos26 (2.90)
of 2 .2 2
fo = (&> =2&(1-8"cos“0)—(as +ap—2BScos ) (2.91)
0
For the lowest root (Equation 2.79), ¢ = ¢_, we have:
(fo),. = (B—&_S)*sin26 (2.92)
(fe)o. = —A, (2.93)

so that Equations (2.84) and (2.86) become:
de_  (B—&_S)%sin26

7 7= 2.94
de A (2.94)
d*s_ 2(B—s_S)*cos26
7 A (2.95)
The stationarity condition of £ with respect to 6 says that:
de_
—=0 2.96
10 (2.96)

for 6 = 0, so that:

<d28> _2B-eS] (2.97)
6=0
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provided both numerator and denominator are evaluated at § = 0. From
Equations (2.96) and (2.97) it follows that § = 0 is a stationarity point
for which &_ has a true minimum value.

Hence, the Hiickel energy for the two electrons in the bond orbital ¢:

E_(0=0)=2e(0=0)

5 12
s +ap—2BS— [(aB—aA) +4(,8—aAS)(B—aBS)}
N 1-82

(2.98)

has a minimum for 6 = 0, corresponding to a maximum strength for
the straight A—B bond. In the same way, it can be shown that 6 = 0,
corresponds to a maximum for E, =2¢, .

For orthogonal AOs, such as those of the original Hiickel theory, S = 0,
and Equations (2.94) and (2.95) become:

de_ B%sin20  d’s_ B 23%cos26

0 A ¢ A (2.99)
and the same conclusions still hold.
2.6.2 Analysis of the MO Bond Energy
In our MO model, the bond energy defined as:
AE_ = 2e_—(as +ap)
S
= ————-{[(B—aaS) + (B—aBS)}cos20}
].—SZ COSZO (2100)
A
~ 1-S8%cos20

consists of two terms, the last being the bonding term (< 0, attractive), the
first a repulsive term (> 0) correcting for nonorthogonality.
For 6 = 0, if:

ap=ap=a (2.101)

A= [4(3—015)2]1/2 —2|B—aS| > 0 (2.102)
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the bond energy becomes:

28 2|B—as
AE_(9=0)= —1-% (ﬁ—aS)—%
28 2(B—al)
=g Bas)+ — o (2.103)
_ ,B—aS$
_21+S

as it must be for homonuclear bonding. Hence, the correction term in
Equation (2.100) is essential in order to avoid overestimation of the bond
energy. This is in agreement with the well- known asymmetric splitting
of the MO levels occurring in Hiickel theory for S # 0, where nonortho-
gonality of the basic AOs yields a bonding level less bonding, and an
antibonding level more antibonding, than those of the symmetric splitting
occurring for S = 0.

As far as the bonding term in Equation (2.100) is concerned,
Equation (2.81) shows that A, in turn, depends: (i) on the atomic energy
difference (ap—aa); and (ii) on the product of bond energy integrals,
(B—aaS)(B—apS) cos?d, arising from the exchange-overlap densities
[a(r)b(r) — Sa*(r)] on A and [b(r)a(r) — Sb*(r)] on B, respectively, and
which contains all dependence of A on the orientation 6. So, it is apparent
that the MO description of bonding and of its directional properties in the
general case B # A involves a rather complicated dependence (through
the square root defining A) on such exchange-overlap densities. On the
other hand, both factors above contribute to the determination of the
polarity parameter 4 of the bonding MO ¢ (Magnasco, 2003):

. ba+ixp
\/1 + 2 +2)8cosh

Rather than from the homogeneous system corresponding to the
pseudosecular equation (2.77), it is convenient to obtain A for the lowest

eigenvalue £_ as the appropriate solution of the quadratic equation'*:

(B—apS)cosf 1> —(ap—as)i—(B—aaS)cosd = 0 (2.105)

(2.104)

2

(ap—as)—A \/ A—(ap—as) [|B—aaS| (2.106)

~ 2(B—apS)cosd  \| A+ (ap—aq)\/ |B—azS|

4 Arising from the matrix formulation of the full 2 x 2 non-orthogonal eigenvalue problem
(Magnasco, 2007).
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Equation (2.106) allows then for the MO description of the electric
dipole moment u of the bond.

As a matter of fact, Hiickel theory including overlap appropriately
describes the physically relevant part of the interaction in this region,
showing that the possibility of forming a chemical bond lies in the
attractive nature of the one-electron part of the exchange-overlap com-
ponent of the interaction energy (Magnasco and McWeeny, 1991). We
have already seen that these considerations correctly explain the nature of
the bonding in the series of homonuclear diatomics Hy", H,, He,", Hes,
with their further extension to the homonuclear diatomics of the first row
(Magnasco, 2004a), which involve = bonding as well, and to the hetero-
polar bond in the orthogonal approximation (Magnasco, 2003). All these
effects are the same in determining the straight bond when directed
orbitals overlap.

2.7 sp-HYBRIDIZATION EFFECTS IN
FIRST-ROW HYDRIDES

At the simplest physical level, not taking hybridization into account, we
need a 1 x 2 row vector basis for describing formation of the F-H bond

in HF (2 b), the O-H bond in H,O <z b, = % (h1+ h2)> , and the N-H

! (h1+h2 +h3)>, the first belonging to X sym-

V3
metry, the last two to A; symmetry. As a final step in our Hiickel
calculation, all cases involve diagonalization of a 2 x 2 Hiickel matrix,
which is trivial.

Admitting sp hybridization, for £, C,,, and C3, molecular symmetries,
the s and z functions always belong to the same symmetry (Table 2.9), so
that the row basis vectorisnow 1 x 3 givinga 3 x 3 Hiickel matrix, whose
diagonalization is not so easy.

For the higher T,; symmetry of the methane molecule, CHy, s and z
belong to different symmetries (Table 2.9), so that the 1 x 8 row basis
vector (s hs 2 b, x by y by) generates an 8 x 8 Hiickel matrix which shows
complete factorization into four 2 x 2 orthogonal noninteracting blocks,
belonging to Ay, T>,, T, and T, symmetries, respectively. So, the higher
symmetry of CH4 much simplifies the problem, and will be treated first
(Magnasco, 2004a). For the remaining hydrides (HF, H,O, NH3) we are
faced with the solution of a 3 x 3 Hiickel secular equation, which we shall
pursue numerically for HF (Magnasco, 2009d) and analytically for H,O

bond in NHj3; <z b, =
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Table 2.9 Symmetries of atomic bases involving sz-mixing in first-row hydrides

Molecule AO basis Symmetry
HF (szh) )
1
H,O (szhz :72(/71 +h2)) Aq
1
NH; (szhz :7§(h1 ) +h3)> Ay
1
CH, <5hs:z(h1+h2 + b3 —|—h4)> Ay
1
(Z hy = 5 (h1—hy—bh3 + /94)> T,

(Magnasco, 2009b) and NH; (Magnasco, 2009¢). For all polyatomic
molecules, we shall show that sp hybridization opens the interbond angle
beyond 90° and that minimization of the valence Hiickel energy against
the hybridization parameter yields straight bonds satisfying the principle
of maximum overlap.

2.7.1 The Methane Molecule

We now apply our model to investigate the formation of four C-H bonds
in the methane molecule CHy of symmetry Ty (Magnasco, 2004a). For
this molecule, tetrahedral sp* hybridization is completely determined by
molecular symmetry. We use the usual notation for the eight valence AOs,
calling s, x, vy, zthe 2s and 2p orbitals on C,and b1, b3, b3, b4 the 1s orbitals
on the H atoms at the vertices of the tetrahedron (Figure 2.14). Molecular

*7
hgrg
+
k]
k 1
jo, s
“C +21 h3
2 sy

Figure 2.14 The cube circumscribing the tetrahedral CH4 molecule
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symmetry suggests to use combinations of H orbitals transforming as (s, x,
y, z), which we can write by inspection:

1

hs :z(hl +hy+h3+hy)

1
hy = 5 (b1 +ha—h3—hy)

1 (2.107)
hy = E (hl—hz + h3—l’)4)

1
h, = Z(hl—hz—hs +hs)

The four (unnormalized) bonding MOs are then appropriately
written as:

a1 < s+ b,
brx X X+ b
= H (2.108)
thy o<y + ub,
tr, X 2+ ub,
where the coefficients (polarity parameters) are found by solving the four
2 x 2 Hiickel secular equations:

HSS*{-) Hshs sz—é‘ Hth
Hshs H/?shg_g =0 thz thhz—é‘ B (2109)
Symmetry Ay Symmetry T, (x, v, 2)

The calculation of the matrix elements follows as usual, giving:
{ Ho=a;  Hy, =2By,  Hyp =ap+3By ~a

(2.110)
Hy =y Hep, = 2B, Hyp, = ap—PBpp = )

with similar expressions for the remaining x,y components, and where 8,
is neglected as usual in Hiickel theory."® The B integrals involving (x, y, z)
AOs on carbon can be expressed in terms of the more convenient set
(0, my, my), where o is a p—orbital directed along the CH; bond, and the n’s
are orbitals perpendicular to it:

1SH atoms in CHy are not adjacent atoms.
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x = ﬁsiHO o+ %cos@ . nx—ﬁny
1 1 1 (2.111)
y = ﬁsme-a'—k 7zcos0-nx + ﬁny
z=cosf-o—sinb - m,
26 being the interbond (valence) angle. Then:
B =By =B 50 By = Fyycosd (2.112)

where B, is a quantity characteristic of the bond.
The lowest roots of the secular equations will give the Hiickel energy
of the eight valence electrons as a function of angle 6:

occ

E0) = 228, = (as+ap) + 3(ap +ay)

- [(a;ah)z + 16,83,}} 2 {(ap*ah)z n 16,8@]} 1/2

- [(ap—ah)z + 16354 2_ [(ap—ah)z N 16354 12

= (as+ 3y, +4ay) (2.113)
12
- [(as—ah)z + 16th}

1/2

1/2

- [(azp—a;,)2 + 16[3[27,7 COSZQ}

2
which has an absolute minimum d—E =0, d—E > 0 | for:
do do?
20=109.5°

1
cos?0 = isinze

(2.114)

sing — Y2 29 — 109.5°

1
Vel V3

cosf =

i.e. the tetrahedral angle.
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The resulting MOs are symmetry MOs, delocalized over the entire
molecule. As it will be shown for H,O, a description more adherent to the
chemical picture of four localized C—H bonds can be obtained in terms of
the orthogonal transformation'® connecting occupied MOs, the first
relation being:

1
By = E(al + tox + tay + 122)

1 ,+3 J—
> |s+Gry+a)+ Ll SE b+ b3+ hy)

== 5 (2.115)
A+3 A—
= st V3 2 STy by )
2 2 2
and so forth for B;, B3, B4. If A~ u, we obtain:
B, ~ % 4 by =ty + b (2.116)
1
alocalized CH; bond orbital, where py = 7 (x+vy+z)isa2p-orbital on
C pointing along the (111) diagonal of the cube, and:
t— ”\f”‘ (2.117)

a tetrahedral sp® hybrid on C (25% s, 75% p). So, the usual chemical
picture of the CH4 molecule in terms of four equivalent C—H bonds
having tetrahedral symmetry is simply recovered from the requirement of
Hiuckel’s lowest energy for the valence shell.

2.7.2 The Hydrogen Fluoride Molecule
2.7.2.1 MO Theory Without Hybridization
As usual, we choose the F atom at the origin of the coordinate system with

the H atom placed on the positive z axis at the experimental bond distance
R, = 1.73a, (Huber and Herzberg, 1979).

'®Which leaves invariant the whole physical description. A general transformation from
canonical to localized MOs was given time ago by Magnasco and Perico (Magnasco and Perico,
1967, 1968). See also Magnasco (2007).
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We start by considering that, in the first approximation, only the
appropriate 2p AO on fluorine (2p., in short denoted by z) contributes
to the bonding with the 1s AO of hydrogen (in short, ). Two electrons are
placed in the undistorted o F lone pair s%, and four electrons in the two n F
lone pairs x*y*. As usual in elementary Hiickel theory, for the sake of
simplicity, we do not consider explicitly the overlap between basic AOs
(which are hence assumed orthonormal), but still maintain their implicit
dependence on overlap in the bond integral'” | 8| (Magnasco, 2004a). The
bonding MO is then given by the Ritz method as:

h
o= 2C1 +hCy = M (2.118)

2 +1

e
Ci/,

is the polarity parameter. The coefficients are obtained from the lowest
root of the 2 x 2 Hiickel secular equation:

where

|sz_8 Mo 1 _ g (2.119)
Hy  Hp,—¢
Hiickel matrix elements are:
He=ap, Hy =ay, Hy=p (2.120)
all elements being negative quantities. Roots are:
2e = (ap+ap) £ A (2.121)
A = [(ap—ap)* +48%"* >0 (2.122)

so that the Hiickel energy for the valence electron configuration s*o?x>y*
of ground state HF will be:

E(HF, 'S%) = 2a,+4a, + (ap +a;)—A (2.123)
The bond energy is then (Magnasco, 2003):
AE(HF, '$7) = E(HF, '27)—2a;—Say—a, = —~A = —|D| (2.124)

17 Orthogonal does not mean not interacting (Footnote 3). This is tantamount to keeping only the
exchange part of the exchange-overlap interaction (Magnasco, 2002, 2004a).



66 THE CHEMICAL BOND

where |D| = |D O"} + jw, is the experimental atomization energy of
HF(Z" ) observed from molecular spectra (Huber and Herzberg,
1979), ]DO°| = 0.235 E,, the dissociation energy and w, ~ 4138 cm™! ~
0.019E,, the vibrational frequency of the vibrational ground level v = 0.
So, we shall use |D| = 0.245E,,.

The polarity parameter for ground state HF is then calculated to be:

G e1—a, (ap—ay)+A
J=(==) = = 2125
<C1>1 B 2| ( )

We now look at the distribution of the two electrons in the o bonding
MO, which gives the atomic charges:

2 22
=—, =—, + =2 2.126
F =7 +1 ™= +1 ardn ( )
The formal charges on the interacting atoms are:

F:8p=1 £t 16| (2.127)

on N = — = = — .

F =70

H:8y=1 1 + 5] (2.128)

on N = — = - = .

H qH 22 T 1

For 1 <1, 85 <0, and electronic charge will be transferred from Hto F,
as expected on electronegativity grounds. As we said before, the formal
charge |8| can be independently derived from the experimentally observed
value (Muenter and Klemperer, 1970; Sileo and Cool, 1976) of the
vibrationless electric dipole moment'®(u = 0.72 ea,), if we attribute the
entire value of the dipole to its heteropolar component |uy| (Magnasco,

2003):
| = lup| = [8[R., [8] =0.42 (2.129)

so that we obtain for the polarity parameter in the case of simple p
bonding;:

18 As usual, we assume w > 0 when the direction of the dipole is from — |8] to + |8]. Calculated
Hartree-Fock values of u (0.756ea,) (Christiansen and McCullough, 1977; Sundholm ez al.,
1985) corrected for correlation effects (—0.043ea,) (Werner and Meyer, 1976; Amos, 1982)
agree with the experimental result.
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As we did before, we are now in the position to determine entirely from
observed experimental data the values of our two unknown parameters
|y —a,| and |B]. In fact, if we put:

ap,—a,=A, 2|B|=B (2.131)

we find that the values of A are the solutions of the quadratic Equation
(2.74). The roots are:

—ID|

A= 221 (2.132)
ID[| > = —8-|D|
AT+1

Both roots are real and negative, as it should be. We must discard the
first root, which would give |8| = 0. For the remaining root:

A= ap—ay, = —0.42 x 0.245 = —0.1029E,
B = 2|B| = 0.2214E,, (2.133)
18] = 0.1107E;, = 69.5 kcal mol

Even if the resulting values of |a,—a;| and |B]| are of the same order of
magnitude, the contribution to the radicand from the bond integral is
about five times larger than that arising from the atomic energy difference.
It is interesting to notice that the case under consideration is not included
in the two extreme cases analysed by us previously (Magnasco, 2004a),
and that the value resulting for a,—a), lies roughly midway between the
one-term (—0.0264E.) and the two-term (—0.2239E,;) SCF values for
STOs (Clementi and Roetti, 1974). This is fairly reasonable in view of the
simplicity of our assumptions.

2.7.2.2  Admitting Full Mixing Within ¥ Symmetry

As a second step, we admit full mixing of s and 2 AOs on fluorine within £
symmetry. The Hiickel matrix will be:

Hss 0 Hsh
H=| 0o H. H, (2.134)
Hg, Hy Hy,
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where:
{ Hy=a;, Hy=aq
(2.135)
Hy, = Bgy, Hzy = Buy = Bos
giving the complete 3 x 3 Hiickel secular equation:
as;—e 0 B
0 ay—& By |=0 (2.136)
Bs,  Boy ap—e
Expanding the determinant gives the cubic equation:
(as—¢)[(ap—e) (O‘b—é‘)—ﬁih]—(%_é‘)ﬁfh =0 (2.137)
g +pftqge+r=0 (2.138)
where:
p=—(ast+ap+ay)
q = (as +ap)a, + asa,—B3,—B, (2.139)

2 2
r= oy, + apBy,—asapay,

It is well within the spirit of Hiickel theory to assume for the s AO the
same bond integral as that for the p AO, so that the properties of the F-H
bond will depend just on a single parameter 8 and n0o¢ on the detailed form
of the fluorine AOs:

Bs» = Boh =B (2.140)
Then:
p=—(as+ap+ay)
q = (a5 +ap)ay, + asap—28° (2.141)
r = (as+ap)B*—aspay,
Putting:

g=x-L (2.142)
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(Abramowitz and Stegun, 1965) gives the cubic equation in x:

X 4ax+b=0
a=~(q—p). b==(2p'~9pq+271) (2143)
3 27
Since H is Hermitian, we must have:
2B
(Z + ﬁ) <0 (2.144)

with three different real roots, which are easily expressed in terms of the
trigonometric relations:

a (¢ o
xy =2 —3¢0s <§ +120 ) (2.145)
a ¢ °
x3 =2 —gcos <§—120 >
with:
¢ b a3
cos3=—5 77 (2.146)

Using one-term SCF/STO values for the fluorine atom (Clementi and
Roetti, 1974):

8S%a52—1.43Eh, &p N oy :—0.53Eh, & :ab:—O.SEh
(2.147)

the roots of the cubic secular equation will depend in a parametric way
on the values given to |8|. Assuming:'’

|8] = 0.114E;, = 71.5 kcal mol ™ (2.148)

gives, in atomic units:

e1=—03928E,, & =—1.4440E,, &3 =—0.6238E,. (2.149)

19This is roughly the value assumed by || in the bond-orbital approximation.
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The two lowest roots, as well as &, ~ a,, are in unexpected fair agree-
ment with the negative of the ionization potentials observed from exper-
imental UV photoelectron spectra of ground state HF (Lempka et al.,
1968; Potts and Price, 1972; Price, 1974):

&) =¢€(2s) = —-1433E,, &3 =¢&(3s)=-0.702E,,
(2.150)
g4 =¢&(1n) = —0.588 E,,.

Therefore, the bond dissociation energy resulting from the solution
of the complete cubic Hiickel equation for one-term SCF/STOs and
|B| = 0.114E,, will be:

AE(HF,'S") = E(HF,'S")-2a,—S5a,—a,
=2&(20)+ 3e(30) + 4e(1n)—2a—Sap—ay, (2.151)
= —-0.245E,

in complete agreement with the assumed spectroscopic value of
|D| = 0.245 E;, (Huber and Herzberg, 1979).

However, if we attempt to extract, from the calculated MOs, informa-
tion on the resulting sp hybrids on F, we are faced with the problem that
such hybrids are not orthogonal and therefore not mutually exclusive,
as already observed long ago by us (Magnasco and Perico, 1967, 1968) in
obtaining localized MOs from ab initio results.

2.7.2.3 Introducing Hybridization into £ Symmetry

We now make the orthogonal transformation O of the original basis to the
hybridized basis (Magnasco, 2009b; Magnasco, 2009c¢):

cosw sinw 0O
(Ibh)=(szh)| —sinw cosw 0 (2.152)
0 0 1

which corresponds to introducing the pair of orthogonal hybrids

(Figure 2.15):
| =scosw—zsinw lone pair hybrid
(2.153)

b =ssinw+zcosw bond hybrid

where w is the hybridization (mixing) parameter. Putting w = 0 gives the
previous case of no hybridization.
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b X rX

!
|ﬁ7> +\ +\
‘\ [-‘) H =z ‘ FE};

Figure 2.15 Orthogonal sp lone pair / (left) and bond hybrid b (right) engaged in the
F—H bond?°. Reprinted from Chemical Physics Letters, 477, Magnasco, V., Hiickel
transformation theory of ground state HF. 397-401, Copyright (2009), with permis-
sion from Elsevier

)\

Elements of the transformed Hiickel matrix are:
_ 2 )
o) = asCOS"w + apSIn”w

By = (‘)‘Sziaﬁsmzw

(2.154)
By, = B(cosw—sinw)
2

ap = agsin’w + a,Cos“w

By, = B(cosw + sinw)

Since the AOs of the hybridized basis are now properly directed along
the z axis, we see that in the range 0 < w < 45° (namely, from pure p to
equivalent digonal hybrids) B, decreases and By, increases from the value
assumed for w = 0. The transformed Hiickel matrix:

ar By B
I:I = OHO ES Blb ay Ebh (2155)

B Buy @b

therefore assumes a nearly block-diagonal form. We notice that the full
cubic secular equation is invariant against the rotation yielding hybrid-
ization, so that the three roots are the same. If we put:

B =B, =0 (2.156)

i.e. we neglect delocalization of the lone pair into the bond, this invariance
is lost, and the resulting approximation is tantamount to assuming a bond
orbital (BO) approach inside Hiickel theory. Delocalization of the hybrid
lone pair into the bond could eventually be treated as a small perturbative

2% The shaded area on the right sketches the overlap region in the F—H bond orbital.
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correction (Magnasco and Musso, 1981), as we did in the past in ab-initio
investigations on torsional barriers in molecules (Musso and Magnasco,
1982).

The 3 x 3 Hiickel secular equation in this approximation has the block-
diagonal form:

(49] 0 0
O ap—& th = 0 (2157)

0 Bw ap—e

giving the Hiickel energy for the valence Po*x*y* electron configuration
of ground state HF:

E(HF, 2% ) = 2o+ 4ay + (ap + a)—A) (2.158)
with:

A = [(ap—a)? +4B*(1 +sin2w)]'* > 0 (2.159)
The bond energy will now depend on w:

AE(HF}Z*’) _ E(HF, 12+)_2a$_5ap_ah
(2.160)
= (as—a,)(cos’w—1)—A(w) = —|D|

The best value of w can be determined by optimizing AE(w) with respect
to w, so that:

dAE

do
gives, as a necessary condition for stationarity of the energy against
variations in w, the complicated trigonometric equation:

0 (2.161)

2
< 21| cotZw) 12207 ot 2 = 1+ sin 20 (2.162)
as—ay, as—ay
where:
ap—ay, = (as—ay)—(as—ay)cos® » (2.163)

still depends on w. Approximate solutions to this trigonometric equation
can be obtained by successive approximations until the difference be-
tween the left- and right-hand sides becomes less than a predetermined
threshold (say 107%). Using one-term SCF/STO values (Clementi and
Roetti, 1974) for a, a,, ap and the experimental value for [D|, we find that
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w = 7.55° does satisfy the stationarity equation with an accuracy better
than 1 x 1073, In the following, however, we shall content ourselves with
the rounded value w ~ 8°, which means 2% mixing of s into the bond
hybrid (98% p). In the range 7° < w < 8° |B| has the practically constant
value

18] = 0.1142 Ej, = 71.7 kcal mol .

2.7.2.4 Charge Distribution in the Hybridized Basis

We now analyse the charge distribution in ground state HF resulting from
the o bond orbitals in the hybridized basis (Figure 2.15):

20 ~ | = scos w—zsin (2.164)

b+2h  ssinw+zcosw+ b
ViZ+1 241

We have for the electron density (Magnasco, 2007, Magnasco, 2009a):

30~

(2.165)

P(r) = 220(x)* +2[30(r)]?
= 2[s2cos? @ +2%sin* w—szsin2w

+ (22 +1)" " (s2sin” @+ z%cos? w + szsin 2w + 12 h?)]

2sin® 2cos? 22
:52<2coszw—|— Szll’l w>+z2<25in2w+ CZOS “’)+h2< 2/1 )
A +1 Ac+1 A +1

AZ
+s2 <—Zsin2w > )
A +1

(2.166)

where the first three terms contribute to the heteropolar dipole (uy), the
last term being the contribution from the so called atomic dipole ua
(Coulson, 1961). There is no contribution from the size effect (or homo-
polar) dipole moment, since we are neglecting explicit overlap between
our AOs. Of course, the conservation relation holds:

JdrP(r) =4 (2.167)
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We pass now to the calculation of the two components of the atomic
dipole:

(l|z|l) = —sin2w (sz|z) = —sin2w -
(2.168)
(blz|b) = sin2w - u,
where:
w, = (szlz) (2.169)

is the atomic dipole along z. Using normalized one-term SCF/STOs with
similar orbital exponents (¢; =~ ¢, = ¢~ 2.55) (Clementi and Roetti,
1974);

% ey 2.170
s = (3_n> exp(—cr)r z= (;) exp(—cr)rcos®  (2.170)

we obtain:
", :%%:0.57 (2.171)

a value which, as expected, is practically independent of s
nonorthogonality®'.
Therefore, the contribution resulting from the atomic dipole will be:

2?*
Ma = —ZSiHZwm,u,a (2172)

and we can express the experimental dipole moment w as the sum of the
two concurrent® contributions:

2 12
| A
— 6|Ry + |pa] = — =" R, +2sin 20— 2.173
] = IR+ =~ S @173)
We obtain for A*:
Ro—
22 = 2 —0.47 (2.174)

R+ |p|—2sin2e u,

21 Using ¢ = 8.65, Schmidt orthogonalization of s against k with § = 0.2326 gives u, = 0.566.
22The resulting atomic dipole [ is in the same sense as the heteropolar dipole p(FPHH* 1),
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for w = 8°. Hence, /. = 0.685 and:

21
RN

18] =

‘ =0.36 (2.175)

In this way, we see that little hybridization on F originates an atomic
dipole (Jmus| = 0.10eap) which reduces the formal charge |§| by about
14%. This reduction is expected to be even larger with larger values of the
hybridization parameter.

2.7.3 The Water Molecule
2.7.3.1 MO Description Without Hybridization

First, we recast in our notation a calculation originally done by Coulson
(1961). With reference to Figures 2.16 and 2.17, we choose the molecule
to lie in the yz plane. Nuclear symmetry (Magnasco, 2007, 2009a) shows
that H, O has C,, symmetry, with two symmetry planes (yz and zx) whose
intersection determines a C, binary axis directed along z. 26 is the
interbond (valence) angle.

In the simplest admissible physical description of H,O neglecting
hybridization, we concentrate attention on the four-electron valence
problem involving 2p, =z, 2p, =y AOs on the oxygen atom,
1s1 = b1, 1sp = b, AOs on the two hydrogen atoms, while 2s = s and
2p, = x are doubly occupied AOs on oxygen making the two lone pairs. It

Figure2.16 Reference coordinate system for H, O (C,y symmetry). The molecule lies
in the yz plane with z the binary symmetry axis
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e

H, H,

Y 7

Figure 2.17 The H,O molecule in the yz plane. 20 is the interbond (valence) angle

is immediately evident that symmetry AOs>® of C,, symmetry are
(Magnasco, 2009a):

1
Az, h, = —2(h1+h2)

: (2.176)
By: y, by, = 72(/714?2)

so that the normalized MOs** not interacting by symmetry are:

2+ b, b y+ by
T 2 = T
V1422 VI+w?

The polarity parameters A, u and the orbital energies are found by
solving the secular equations:

ap = (2.177)

Hyp—&  Hy, Hyy—e  Hy,
H,, Hjj,—¢| =0 ‘ Hy,  Hpp—e| =0 (2.178)
Symmetry A4 Symmetry B,
The matrix elements in the Hiickel approximation are:
H, =«a,
Ha, = V2By (2.179)

Hy, . = ap+ By, = q

23The only AOs that can mix in the LCAO approximation.
24 Neglecting overlap for brevity.
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Hyy = oy
H,y, = V2B, (2.180)
Hy, py = o + By = oy

where B, is neglected in Equations (2.179) and (2.180) in the spirit of
Hiickel’s assumptions.?® Hence, we get the two secular equations:

a=e V| _ w=e V|, (2.181)
V2B, ap—e V2B, ay—e
with the lowest roots:
o(A) = T2 [y + 88,471
(2.182)
&(By) = w - % [(ap—ay)” + 8Byh2]1/2

In the ground state, these roots correspond to energy levels doubly
occupied by electrons, so we have the total Hiickel energy:

E = 2281’

= 2(ap +ap) = [(ep—a)” + 8B4 P~ [(ep—,)” + 88,7
(2.183)
Now, let o be a 2p AO directed along the OH bond and = a 2p AO

perpendicular to the bond. If 0 is half the valence angle (Figure 2.17),

we have:

z =0cosf+7sinf, y = osinf—mncosd

, (2.184)
Bzh = ﬂo.hCOSO, Byh = B(J’hSlne

where B,;, = B isa quantity characteristic of the OH bond, independent of
the orientation. We then have for the bond energy:

{ AE(0) = —[(ap—ay)* + 88%cos20]) " —[(ap—ay,)* + 88%sin?6] /2

= —A—A
(2.185)

25H, and H, are nonadjacent atoms.
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where we have put:

{Al = [(ap—ah) + 8B%cos? }1/2 >0 (2.186)

Ay = [(ap—ah) + 8B%sin” ]1/2 >0
The necessary condition for the minimum of AE is then:

dAE  dA, dA,

- d - 4/3 1n20 432 2sm209—0 (2.187)

giving, after squaring both members,
A2 = A3 = cos?0 = sin*0 => cosf = sinf => 260 = 90° (2.188)

By evaluating the second derivative at the point 26 = 90°, we find:

d*AE 5 11 (1 1
i = 20 ——— | +16B%(sin2 4
( T ) [8,8 cos26 (Al Az) +16B%(sin20) A13+A23
20=90° 20=90°

=168*[(ap—av)* +4B% /> >0,
(2.189)

so that we conclude that the Hiickel bond energy in ground state H, O has
a true minimum?® for 26 =90°.

2.7.3.2 Localized Description

The unnormalized bonding MOs (Equation 2.177) for H,O:

{(11 ~ Z“_;u(hl +]72)

(2.190)
by = y+u(h1—h2)

are delocalized three-centre MOs which describe the two OH bonds in the
molecule, but bear no resemblance to bond functions. As already seen for
the double bond, for the invariance of the MO description, we may replace
symmetry MOs by their sum and difference without changing the physical
description of the system. We have:

a1 +by xz+y+ (A+wp)hi+ (A—p)ha
(2.191)

a1—by x 2=y + (A—p)h1 + (A+u)hs

26Namely, a maximum of bond strength.
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Z

Figure 2.18 By is a localized MO describing the OH; bond

namely:
By o< V2p1 + (A+ b1 + (A—p)b
{ 1 p1+ (A + )by + (A—p)hy (2.192)
B; x \/fpz + (;»—/.L)}M + ()» +/.L)192
where:
_2ty Ty (2.193)

Pl*\/z; Pzzﬁ

Orbital py isa 2p AO on oxygen making an angle of 45° with the z axis,
P2 a2p AO on oxygen making an angle of —45° with the z axis. Since now
the coefficient of by in By is large, while that of b, is small,*” By describes
a bond orbital essentially localized in the region of the O—H; bond
(Figure 2.18), and similarly B;, an equivalent bond orbital obtained from
By by rotation of 180° about the z symmetry axis.

2.7.3.3 Introducing Hybridization into A; Symmetry

Neglecting hybridization, as we did so far, the angle between p; and p,
is 20 = 90°, so that the resulting O—H bonds will be bent outwards,
since the experimentally observed valence angle is about 20 = 105°
(Herzberg, 1956). This is contrary to the principle of maximum overlap

271t would be zero for u = A.
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(Magnasco, 2005). If we choose p1 and p, along the bonds, they will be no
longer orthogonal, since:

pP1=2cosf+ysinf
p2 = zcosf—ysin 6 (2.194)
(p1|p2) = cos® —sin*6 = cos 20

where cos26 = —0.25882. However, we can restore orthogonality be-
tween the AOs on oxygen by mixing in a certain amount of 2s(= s) with
the two 2p AQs, obtaining in this way three sp>bhybrids of Cy, symmetry,
directed along two equivalent O—H bonds and on the rear of the molecule
in a direction bisecting the valence angle. It is easily shown that these
hybrids are (Figure 2.19):

hy; = 0.4534s+0.5426z+0.7071y
hy, = 0.4534s +0.5426z—0.7071y (2.195)
hy; = 0.7673s—0.6412z
The three hybrids (Equations (2.195) allow: (i) for an interbond angle
greater than 90°(cos 20 < 0), preserving orthogonality onto the same
atom; and (ii) for orbitals directed along the bonds, satisfying in this way

the principle of maximum overlap and giving stronger siraight bonds.
Details of the calculation are given elsewhere (Magnasco, 2007).

hys

hya hyy

vz

Figure 2.19 The three sp? hybrids in H,O equivalent under C,y symmetry
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The s and p contents in the hybrids are simply obtained from the square
of the respective coefficients in Equations (2.195), so that:

20.6%s 79.4%p for hybrids engaged in the O — H bonds
58.8%s 41.2%p for the hybrid lone pair
(2.196)

This picture is close to Klessinger (19635) result obtained from ab initio
SCF calculations using one-term STOs with orbital exponents
¢s = 2.2458, ¢, = 2.2266, and ¢;, = 1.3 (case III in Klessinger, 1965).

We now extend Coulson’s calculation, introducing a Hiickel transfor-
mation theory which transforms the (s z) oxygen valence AOs belonging
to A{ symmetry to an w-hybridized (b I) set, where w is the hybridization
parameter, b the bond hybrid directed along the positive z axis, and [ the
lone pair hybrid directed along the negative z axis (Magnasco, 2009b).
This will give an alternative derivation of hybrids (Equations (2.195).

If we allow for sp mixing onto oxygen, the Hiickel matrix for the (s z ».,)
basis of A; symmetry becomes:

Qs 0 \/Zﬁslo
H-= 0 ap V2B, cosf (2.197)

V2B, V2B, cos0 @,

givinga 3 x 3 secular equation whose analytic solutionis difficultand, what
is worse, not suited for doing any useful approximation on its elements.

To proceed further, we make the orthogonal transformation O to the
hybridized basis:

cosw sinw 0
(Ibh,) = (szh;)| —sinw cosw 0 (2.198)
0 0 1
which corresponds to introducing the orthonormal hybrids (Figure 2.20):
{ b=ssinw+zcosw bond hybrid

) i ) (2.199)
I =scosw—zsinw lone pair hybrid

where w is the hybridization parameter. Putting @ = 0 gives the previous
case of no hybridization.
For the transformed Huickel matrix:

H' = OHO (2.200)
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S

N

.
H2 H] H2 I_Il

Yz vz

Figure 2.20 sp hybrids on oxygen resulting from the orthogonal transformation O
of the original basis set of A; symmetry. Left, bond hybrid; right, lone pair hybrid.
Reprinted from Chemical Physics Letters, 474, Magnasco, V., On the hybridization
problem in H,O by Hiickel transformation theory. 212-216, Copyright (2009), with
permission from Elsevier

where O is the transpose of O, matrix elements are:
@) = ascos’ow + a, sinw

B, = (as—ay)sinw cosw

B = V2(Bg, cosw—B,), sinw cosh)
ap = o, sinw + a, cos’w

Bun = V2(By, sinw + B,,cosw cosh)

ay

(2.201)

giving the 3 x 3 transformed secular equation:
a—& By Bn
By ap—& By | =0. (2.202)
Bwn  Boh an—e

If we make again the reasonable assumption that 8y, and 8, are small
compared with By, (Figure 2.20), matrix H' becomes nearly block-
diagonal and, putting:

B =B, =0 (2.203)

is tantamount to assuming a bond orbital (BO) model within Hiuckel
theory. We then get the approximate roots belonging to A; symmetry:

_O(b—FO(h_& _apta &
2 2 2 2

Ay = [(ap—ayp)* + 8(By, sinw + B, cos  cos 6)2]1/2 >0

g1 = qp &) &3

(2.204)
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So, the Hiickel energy for the valence configuration 2a,%3a,%1b,%1b,>
of the 'A; ground state H,O will be:

E(0) =2&1(A1) +2&2(A1) 4+ 2&1(B2) + 2&1(Bq)
= 2(ats cos?w + @ sin’w) + (s sin®o + @, cos?w) + 3a, + 2ay
—[(es—a)” + 8(By, 5ine + By, cosew cos) ]/
—[(ap—ay)” + 8B, sin’6] '/

= E¥(O) +2E(H)—Ay—As

(2.205)

The calculation of the first and second derivatives of E(6) vs 0 (w
considered as a parameter) gives:

dE dAz dA;

de ~ de  de

4 . . . 4 .
=% (BgsBo sin 2w sin + B2, cos®w sin 26)— A~ B2, sin 20
2 3

(2.206)
FE A &P
de* de*  de?
_ 4
(Bshﬁoh sin 2w cos® + 22, cos” w cos 26)
> (2.207)
+ A3 (B4,B. sin 2w sinf + B2, cos*w sin 26)*
2
8 16 , )
— A_3'Bih cos 20 + A—gﬁﬁh(sm 20)

The stationarity condition for E(f) with respect to 6 gives a quartic
equation in cos 6 = x, whose coefficients depend in a rather complicated
way on the actual values assumed by Bgh, Boh, ab— ath, @p— @ and w:

Py(x) = Ax* + Bx* + Cx* + Dx +E =0 (2.208)
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with:
A =32} cos’w (cos’w + 1)
B =328}, sin2w (cos’w + 1)
C =482, {(p—ay)* +2B3[(sin2w)* + 4sin’w)]
—cos*o [(ay—ay;)? + 8B%,]} (2207
D = —4B,B,, sin2w cos’e [(ay—ay)” + 8%

E = —th(siHZw)2 [(ap—ah)2 +8B2,]

Putting B, = B,, = B in the spirit of Hiickel theory, the coefficients
become, after dividing by p*:

A =32 B? cos’w (cos?w + 1)

B =32 B%sin2w (cos’w + 1)

C = 4 {(ap—ay)* +2 B2 [(sin2e)” + 4sine] —cos*w](ay—ay)” + 862}
D= —4sin2w cosza)[(a[,—oz;,)2 + 887

E = —(sin20)*[(ap—a)* + 867]

(2.210)

Two special cases can be immediately analysed.

(i) For w = 0 (no hybridization), a)—a), = a,—ay,, coefficients B, D, E
vanish, A = 64p8%, C = —32 2, and Equation (2.208) gives:

1
2x* =1 x=cosh = —==>0=45° (2.211)
9 \/Z

as it must be.
(ii) If we put:

ap—a, = ap,—aj; =0, (2.212)
(which is tantamount to assuming nonpolar bonds) dividing through-
out by 882, the coefficients will depend only on w:
A =4 cos’w(cos’w + 1)

B = 4 sin2e(cos’w + 1)

C = (sin2w)* + 4 sinfw—4 cos*w (2.213)
D = —4sin 2w cos’w
E = —(sin2w)*
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A root of the quartic equation (2.208) is given in this case by the simple
trigonometric relation:

cotf = cosw (2.214)

provided 6 > 45°. This shows that for w # 0 the interbond angle resulting
from energy optimization opens beyond 90°.
In fact, in this case, we have (x = cos#):

2 1-2x? 2vVx2—2x4
cos’w = ﬁ, sin‘o = ﬁ, sin2w = # (2.215)

and the coefficients become:

C=4—"— (2.216)

x2V/x2—2x4

D=-8
(1-x2)?

x2—2x*
(1-x2)*

giving, upon substitution in Equation (2.208):

P4(x)=Ax*+Bx*+ Cx*+Dx+E

4x® 4 83 Vx? —2xt + 4x? —8x* —4x® — 8P V2 —2x* —4x? 4 8xF

(1-x2)? ’

(2.217)

so that cotf = cosw is a solution satisfying the quartic equation.

We now construct two sp> hybrids b; and b, directed towards the H
atoms simply by doing the further orthogonal transformation of the
functions b (belonging to A; symmetry) and y (belonging to B, symmetry):
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Figure 2.21 Orthogonal sp*b; bond hybrid of C,, symmetry on oxygen overlappin
(shaded area) the by orbital at 6 = 52.5° to give a straight O—H bond in H,O®.
Reprinted from Chemical Physics Letters, 474, Magnasco, V., On the hybridization
problem in H,O by Hiickel transformation theory. 212-216, Copyright (2009), with
permission from Elsevier

N
V2 V2

(b1b2) = (by) 1 . (2.218)
V2 V2

obtaining in this way the three orthonormal sp? hybrids of C,, symmetry:

bty 1

b, = —(ssinw+zcosw+

by 1, . (2.219)
by =—= =—(ssinw-+3cosw—
| =scosw—zsinw

The hybridization parameter w, arbitrary so far, is best chosen so as the
bond hybrids b and b, pointin the direction of the two O—H bonds, giving
in this way strongest bonding with H 1s orbitals and satisfying the principle
of maximum overlap. According to Equation (2.214), 26 = 105° gives
»=~40°, and we obtain the set (Figure 2.21):

b1 =0.4534365+0.5425822+0.7071 06y = hy;
by, =0.4534365+0.5425822-0.707106y = hy, (2.220)
1=0.7673275s—0.64 1255z = hys

28 The equivalent b, bond hybrid is obtained by reflection of by across the zx plane.
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which coincides with the set of the three orthogonal sp* hybrids on oxygen,
equivalent under C,, symmetry, derived by McWeeny (1979) under the
requirement of equivalence, normality and orthogonality, and given in
Equations (2.193).

Consideration of the second derivative (Equation 2.207) for B, =
B, = B shows that it is positive for @ = 40°, 20 = 105° (Section 2.9.1),
so that we can conclude that, under our assumptions, sp hybridization
opens the interbond angle beyond 90°, giving hybrids which locally
minimize the Hiickel model energy for the valence electron configuration
of ground state H,O, and which can be chosen to give straight bonds
satisfying the principle of maximum overlap.

It can be further shown (Section 2.9.2) that the trigonometric relation
(Equation 2.214) is equivalent to Coulson’s hybridization condition
(Coulson, 1961; Magnasco, 2007) provided the lone pair hybrid
I = byj; is Schmidt-orthogonalized against the bond hybrids b; = by, and
b, = by, directed towards the hydrogen atoms H; and H,.

Finally, we recall that the detailed calculations on ground state HF
(Part 4 of Section 2.7.2) show that hybridization acts in the sense of
reducing the main factor determining the polarity of the O—H bond. In
terms of the O—H bond moment wnyy, we may say that hybridization
introduces a large atomic dipole (Coulson, 1961) reducing the heteropolar
O °H*? component, so justifying our assumption (2.212).

An equivalent description of H,O as a distorted tetrahedron of C,,
symmetry (two equivalent O—H bonds and two equivalent lone pairs
lying in orthogonal yz and zx planes) (Torkington, 1951) can be obtained
by doing a further orthogonal transformation of / and x lone pairs on
oxygen, without changing our description of bonding in the water
molecule.

This Hiickel transformation method will now be applied in detail to the
ground state of the NH3; molecule (Magnasco, 2009c¢).

2.7.4 The Ammonia Molecule
2.7.4.1 MO Description Without Hybridization

The pyramidal ammonia molecule of C3, symmetry has an experimental
interbond angle of 26 ~ 107° (Herzberg, 1956). Its geometry is depicted
in Figure 2.22. It is convenient to work in terms of the angle y that each
NH bond makes with the z symmetry axis, whose value is related to half
the valence angle 6 by the relation:
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Figure 2.22 Geometry of the pyramidal NH;3 molecule of C3, symmetry. Reprinted
from Chemical Physics Letters, 477, Magnasco, V., Hiickel transformation theory of
the hybridization problem in NH;3. 392-396, Copyright (2009), with permission from
Elsevier

2
siny = —=sinf 2.221
=53 (2.221)
Using the usual self-explanatory notation for the seven valence AOs, we
call s, x, v, z the 2s and 2p orbitals on N, and by, h,, b3 the 1s orbitals on
the H atoms (H; on the positive x axis).

Leaving out s for the moment, the AOs belonging to C3, symmetry are
(Magnasco, 2009a):

6

Az, b, Z%(h +hy+b3)

Ev: x,hy = —= (2b1—hr—h3) (2.222)
\/_
1

Ey:y,hy,= \—@(/72—1%)

so that the 6 x 6 Hiickel secular equation can be factorized into the three
2 x 2 equations:

H..—& Hy, Hyx—e Hy, Hy,—& Hy;,y o
thz thhz —&| =0 Hxhx Hhxhx —e| =0 Hy;,y thhy_g
Symmetry A4 Symmetry E, Symmetry E,

(2.223)
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The Hiickel matrix elements are:
H,, = ap
H,,. = —V/3B,c08Y (2.224)

Hy, ), = ap + 2By, = ap

Hxx = CYp
V3.
Hyy,, = ﬁﬁahsmv (2.225)

Hy, . = ap,—Bp, = ay,
Hyy = ay

V3 :
Hy,, = NG Bop siny (2.226)

Hyp, = ap=Bp, = a;

where By, is neglected as usual in Hiickel theory.’

The three lowest roots of the secular equations give the Hiickel energy
of the 3ajle}1e; valence electron configuration of NHj as a function of
angle y:

(2.227)

E(’Y) = 281 (Al) + 281 (Ex) + 281 (Ey)
30[[] + 3a,—A1—2A3

M(Y) = [(ap—ay)’ +4H2, |2 = [(@p—a,)* + 1282, cos?y]/* > 0

As(y) = [(ap—ap)* +4H2, ' = [(ap—ay)* + 682, sin*7]'/> > 0
(2.228)

Taking the first y-derivatives of the As, the stationarity condition for the
energy is:

dE dA;  dAs 1

1
&=y 2y~ OPawsin2y ( A A3) 0 (2.229)

2?In the second of Equations (2.224) the minus sign accounts for the need of positive overlap
between the z AO of nitrogen and the symmetrical sum 4, of hydrogen AOs.



90 THE CHEMICAL BOND
giving:
As=A;  A=AF

2
sin?y=2cos?y  3sin’y=2 siny:£=:>y:54.74°
V3 (2.230)

_V3V2 1

sin 6
23 V2

so that we obtain a true minimum for 20 = 90°, since the second derivative
is positive there:

d’E )
(d—yz> =482, [(ap—a,)* +4B,,2] 7 > 0 (2.231)
0=45°

This is what we expect in absence of hybridization, the resulting N—H
bonds being strongly bent outwards, and so very far from the principle of
maximum overlap.

2.7.4.2 Introducing Hybridization into A; Symmetry

If we allow for sp mixing on nitrogen, the Hiickel matrix for the (s z b,)
basis of A; symmetry becomes:

Qs 0 \/gﬁsh
H= 0 ap —V/3B,,, cosy (2.232)
\/gﬁsh _\/gﬁo'h cosy ap

giving a 3 x 3 secular equation whose solution is suitable only for
numerical calculations (compare the previous case of HF).

We now make the orthogonal transformation O of the original basis to
the hybridized basis:

cosw sinw O
(Ibh,) = (szh,) | sinoe —cosw 0 (2.233)
0 0 1
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z

Figure 2.23  sp hybrids on nitrogen resulting from the orthogonal transformation O
of the original basis set of A; symmetry. Left, lone pair hybrid /; right, bond hybrid b.
Reprinted from Chemical Physics Letters, 477, Magnasco, V., Hiickel transformation
theory of the bybridization problem in NH;3. 392-396, Copyright (2009), with
permission from Elsevier

which corresponds to introducing the orthonormal hybrids (Figure 2.23):

cosw sinw 0
(Ibh,)=(szh;) | sinw —cosw O (2.234)
0 0 1
where w is the hybridization parameter. Putting @ = 0 gives the previous
case of no hybridization.
The transformed Hiickel matrix has elements:
o) = a,cos’w + ozpsinzw

A—0yp
Blb: Sz pstw

Bu, = V/3(Byycos ©—B,, sin w cos y) (2.235)
ap = agsinfo + a, cos w

Bui = V3(Bgy sin @ + B, cos w cos y)

ay,

giving the 3 x 3 transformed secular equation:

a—& By B
By ap—& By, | =0 (2.236)
B  Bu ap—e
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Making the reasonable assumption that 8y, and By, are small compared
with Bpp, the transformed matrix becomes nearly block-diagonal and,
putting:

B =Bu =0 (2.237)

we get the approximate roots belonging to A; symmetry:

a, ta A ap +a A
e1(A1) =a; &A1) = b2 ’7_72 e3(A;) = bz b 72
Ao (A1) = [(ap—ap)* + 12(Bysin @ + B, cos  cos y)z}l/z
(2.238)

So, the Hiickel energy for the valence configuration 2a73atle;1e; of
the A, ground state of NH; will be:

E(Y) = 2&1(A1) +2&2(A1) + 21 (Ey) + 261 (Ey)
= 2(ascos’w + apsinzw) + (assin*w + a,cos’w) +ay, +2(a, + ay)
—A2(A1)—A3(Ex)—A3(Ey)

= E"(N) + 3E(H)—A,—2A;
(2.239)

where A, is defined in Equation (2.238) and A; in Equation (2.228).
The calculation of the first and second derivatives of A, with respecttoy
(w considered as a parameter) gives:

dA 6
TYZ = (BgpBop sin2 w siny + B2, cos’w sin 27)

2
d2A2 6 . 2 2
G -, (BspBop sin2 w cosy+2 B, cos“wcos2y) (2.240)

36 . . 2 2 - 2
. (BspBop sin2 wsiny + B2, cos“w sin2y)
2

The stationarity condition for E(y) with respect to y now gives a quartic
equation in cos Y = x, with coefficients which depend on the actual values
assumed by Bgn, Behs @b — by ap— ap and w:

P4(x) = Ax* +Bx* + Cx* + Dx+E =0 (2.241)
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If, in the spirit of Hiickel theory, we put By, = B,, = B, a parameter
characteristic of the N—H bond, the coefficients become after dividing

by B*:
A =24p%cos’w (cos’w+2)
B =24psin2w (cos’w+2)

C= 4{ (ap—a,)* +3 B2 %(sinl w) 44 sinzw} —costw [(ap—ab)z + 632} }

D = —4sin2 wcos’w [(ap—ah)z +6B%]

E=—(sin2w)* [(ap—a;)* +682].
(2.242)

As before, we now examine the following two particular cases.

(i) For w = 0 (no hybridization), a,—a), = ap—ay,, coefficients B, D, E
vanish, A = 72 8%, C = —24 g%, and Equation (2.241) gives:

1
3x2 =1, x=cosy=—==>7=54.74°

V3
s (2.243)
2 2 1
siny = ——=sinf = — =>sinf = — =260 = 90°
V3 V3 V2
as it must be.
(ii) If we put:
ap—ap, =ap,—a, =0 (2.244)

(which is tantamount to assuming nonpolar bonds) dividing through-
out by 682, the coefficients will depend only on w, becoming:

A =4 cos’w (cos’w +2)
B =4sin2 o (cos’® +2)
C = (sin2w)* + 8 sin*w—4 cos*w (2.245)

D = —4sin2 w cos*w

E = —(sin2 w)*
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A root of the quartic equation (2.241) is given in this case by the simple

trigonometric relation:
V2 coty = cosw (2.246)

provided 54.74° <y < 90°(45° < 0 < 60°). This shows that for o # 0
the interbond angle resulting from energy optimization opens beyond 90°.
The four p AOs directed according to Cs, symmetry:

p1 = —zcosy+xsiny

1 . 3 .
D2 = —zcosy—ixsmy—i- Tysmy

(2.247)
RS SOV NN
p3 = —zcosy szmy 2 ysimny
pa =z
are still normalized, but no longer orthogonal to each other:
1.
(p1lp2) = (P11p3) = (p2|p3) = cos? y—zsmzy
(2.248)

(P1lpa) = (P2Ip4) = (p3]p4) = —cosy

Orthogonality can be restored by mixing in a certain amount of s
(Magnasco, 2007; Torkington, 1951):

b1:as+b[)1z%(ssinw—zcosw)—l—%x:%va%x
bz:as—l-bpz:i(ssinw—zcosw)—ix—l—iy:ib—ix—l-iy
V3 Ve V2T V3 Ve V2
b3:as+bp3:i(ssinw—zcosw)——x—iy:ib—ix—iy
V3 Ve V2T V3 Ve V2
(2.249)
l=cs+dps=scosw+zsinw (2.250)
since:
2.\ 172

1 1—3coszy)1/2 V2 1 (1—3c0s Y
a=—72\—""> ) [9:—.—, = \/Z ty, d=|——
V3 < sin’y S3siny € oy sin’y

(2.251)
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Figure 2.24 sp>b; bond hybrid of Cs, symmetry on nitrogen overlapping (shaded
area) the hydrogen by orbital at # = 53.5° to give a straight N—H; bond in NHj.
Reprinted from Chemical Physics Letters, 477, Magnasco, V., Hiickel transformation
theory of the hybridization problem in NH;3. 392-396, Copyright (2009), with
permission from Elsevier

Hence, we can construct four sp® hybrids of Cs, symmetry, three
directed towards the H atoms and one making the axially symmetric
lone pair of Figure 2.23, simply by doing the further orthogonal trans-
formation U of the functions b (belonging to A; symmetry) and x,y
(belonging to E symmetry):

11 1
V3 V3 V3
v2. 1 1
(bibabsl)=(bxyl| V3 V6 V6 = (bxyU (2.252)
1 1
0 0 0 1

where UU = UU = 1. The hybridization parameter o, arbitrary so far,
is best chosen so that the bond hybrids b; point in the direction of
the three N—H; bonds, giving in this way strongest bonding with H; 1s
orbitals and satisfying the principle of maximum overlap. According to
Equation (2.246), 260 = 107°, y = 68.16° gives w ~ 55.47°, and we ob-
tain the set (Figure 2.24 shows the b; bond hybrid engaged in the N—H;
bond):°

30The equivalent hybrids b, and b5 are obtained, respectively, by the anticlockwise rotation of b,
by 120° and 240° around the z symmetry axis.
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by =0.4756385s—0.327264 2+ 0.816496 x

by =0.475638s—0.327264 z—0.408248 x +0.707107 y

b3 =0.475638 s—0.327264 2—0.408248 x—0.707107 y

| = 0.566848 s—0.823822
(2.253)

which coincides with the set of four orthogonal sp> hybrids on nitrogen,
equivalent under Cs3, symmetry, obtainable in the standard way
(Magnasco, 2007; Torkington, 1951) under the requirement of equiv-
alence, normality and orthogonality. We have roughly a content of
22.6% s and 77.4% p in the bond hybrids, 32.1% s and 67.9% p in the
lone pair.

Consideration of the second derivative of E(y) with respect to y for
Be, = By, = B shows that it is positive for w ~ 55.47°, 20 = 107°, so we
conclude that, under our assumptions, sp hybridization opens the inter-
bond angle beyond 90°, giving hybrids which locally minimize the Hiickel
model energy for the valence electron configuration of ground state NH3,
and which can be chosen to give straight bonds satisfying the principle of
maximum overlap.

2.8 DELOCALIZED BONDS

We have seen so far that MOs resulting from the LCAO approximation
are delocalized among the various nuclei in the polyatomic molecule
even for the so-called saturated o bonds. The effect of delocalization is
even more important when looking to the 7 electron systems of con-
jugated and aromatic hydrocarbons, the systems for which the theory
was originally developed by Hickel (1930, 1931, 1932). In the follow-
ing, we shall consider four typical systems with N = electrons, two linear
hydrocarbon chains, the allyl radical (N = 3) and the butadiene mol-
ecule (N =4), and two closed hydrocarbon chains (rings), cyclobuta-
diene (N =4) and the benzene molecule (N = 6). The case of the
ethylene molecule, considered as a two 7 electron system, will however
be considered first since it is the reference basis for the # bond in the
theory.
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The elements of the Hiickel matrix are given in terms of just two
. . 31 . .
negative unspecified parameters,”” the diagonal @ and the off-diagonal 8
for the nearest neighbours, introduced in a topological way as:

Hy,=a p=123,..N
H,, =B v=pwp=x1,0otherwise (2.254)
Sy = 8
Therefore, Hiickel theory of n electron systems distinguishes only
between linear chains and rings. It is useful to introduce the notation:
a—¢&

—— =X

B
(2.255)

e =a+xB, Ae = e—a = xf3, —=x

so that x measures the = bond energy in units of 8 (x > 0 means bonding,
x < 0 means antibonding).

The typical Hiickel secular equations for N 7 electrons are then written
in terms of determinants of order N, such as:

—x 1 o -~ 0 0 0
1 —x 1 - 0 0
Dy = (2.256)
O 0 O 1 —x 1
O 0 O 0 1 —x
for the linear chain, and:
—-x 1 0 0 0 1
1 —x 1 0O 0 0
D= - oo o (2.257)
o o o - 1 —x 1
1 0 o - 0 1 —x

for the closed chain (the ring). The general solution of these determinantal
equations is given in Chapter 3.

31Equal for all cases, at variance with what we saw for saturated systems.
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2.8.1 The Ethylene Molecule

The Hiickel secular equation for the n electrons in ethylene (N = 2):

—x 1
D, = —0 (2.258)
1 —x
has the two roots (in ascending order):
xi=1, x=-1 (2.259)
with the corresponding MOs:
b= ntx). b= slex) (2260
1 /2 X1TX2) 2 /2 X2—X1 .

The MO diagram of the energy levels and a schematic drawing of the
molecular orbitals are sketched in Figure 2.25. The highest occupied

molecular orbital is called HOMO, the lowest unoccupied molecular
orbital is called LUMO.

2.8.2 The Allyl Radical

The allyl radical has an unpaired = electron in a doublet ground state.
For the allyl radical (linear chain with N = 3), expansion of the Hiickel

X

4 I

| SO OK*

'T _H_xl tpl

Figure 2.25 Energy levels (left) and Hiickel MOs (right) for ethylene ground state
(N=2)
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Figure 2.26  Energy levels (left) and Hiickel MOs (right) for the allyl radical ground
state (N = 3)

secular equation gives:

—-x 1
Di=|1 —x 1]|=-x(x*-2)=0 (2.261)
1 —x
with the ordered roots:
x1=V2, x=0 = x3=-V2 (2.262)
and the MOs:
X1+t V2x,+ X3
§ =MV
¢ _X17X3
2 =7 (2.263)
xi—V2atx;
gy =M

Figure 2.26 gives the diagram of the energy levels as occupied by
electrons for the ground state of the allyl radical and the related Hiickel
molecular orbitals ¢s (¢, = HOMO, ¢; = LUMO).*?

The electron distribution of the 7 electrons in the allyl radical ground
state is:

P(r) = contribution from « and B8 spin
= p*(r) + pP(r) (2.264)
= xi(r) + x3(r) + x3(r),

32This is true for the allyl radical (N = 3) and for the allyl anion (N = 4), but ¢, = HOMO,
¢, = LUMO for the allyl cation (N =2).
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and the spin density distribution of the unpaired « spin electron:

P(r) = contribution from « and B spin

= p*(r) +pP(r) (2.265)

= xi(r) +x3(r) + x5(r)
According to these equations, the Hickel distribution of the three =
electrons is uniform (one electron onto each carbon atom, alternant
hydrocarbon®?), while the unpaired electron of « spin is 1/2 on atom 1
and 1/2 on atom 3, with zero probability of being found at atom 2. This
spin distribution is however incorrect, since ESR experiments and theo-
retical VB calculations show that, if the unpaired electron has a spin, there

is a nonvanishing probability of finding some B spin at the central atom.
The bond energy (in units of B) of the allyl radical is:

AE"(allyl) = 2v/2 = 2.828 (2.266)
while that of an ethylenic double bond:
AE™ (ethylene) = 2 (2.267)

The difference 0.828 is an attractive stabilizing energy called the
delocalization energy of the double bond in the allyl radical.

2.8.3 The Butadiene Molecule

The Hiickel secular equation for the linear chain with N = 4 is:
-x 1 0 0
1 —x 1 0
Dy = =x"-3x*+1=0 (2.268)
0 1 —x 1
0 o 1 —x
where we have indicated in boldface the top right and the bottom left
elements that differ from those of the closed chain which will be examined

next. Equation (2.268) is a pseudoquartic equation that can be easily
reduced to a quadratic equation by the substitution:

2 =y=>y*-3y+1=0 (2.269)

33For the definition of alternant hydrocarbons, see Magnasco (Magnasco, 2007, 2009a).
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Figure 2.27 Energy levels (left) and Hiickel MOs (right) for butadiene ground state
(N=4)

having the roots:

y=> +2‘/§ — 2618
+
y_3EVS_ (2.270)
2 35
y, =——=0.382
2
So, we obtain the four roots (left-hand side of Figure 2.27):
X1 = /j7 = 1.618
x2 = /y2 =0.618
v (2.271)

x3=—/35 = —0.618
x4 = — /1 = —1.618

the first two being bonding levels, the last two antibonding.

The calculation of the MO coefficients (the eigenvectors corresponding
to the four roots above) proceeds through solution of the linear homo-
geneous system, giving the MOs (right-hand side of Figure 2.27):

¢y = 0.371 x; +0.601 (x, + x3) +0.371 x4
¢, = 0.601 x; +0.371 (x,—x3)—0.601 x4
¢5 = 0.601 x;—0.371 (x, +x3) +0.601 x4
¢4 = 0.371 x;—0.601 x, +0.601 x3—0.371 x4

(2.272)
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the first two being bonding (¢, = HOMO), the last two antibonding
(¢35 = LUMO) MOs.

Proceeding as we did for the allyl radical, it is easily seen that the
electron charge distribution is uniform (one 7 electron onto each carbon
atom, alternant hydrocarbon) and the spin density is zero, as expected for
a state with S = Mg = 0 since the two bonding MOs are fully occupied by
electrons with opposite spin. The delocalization (or conjugation) energy
for linear butadiene is:

AE™(butadiene)—2AE (ethylene) = 4.472—4 = 0.472  (2.273)

and is therefore sensibly less than the conjugation energy of the allyl
radical.

2.8.4 The Cyclobutadiene Molecule

The Huckel secular equation for the square ring with N=4 is:

—-x 1 0 1
1 —-x 1 0

Dy = =x'—4x? =x*(x*-4) =0  (2.274)
0 1 —x 1

1 0 1 —x

where the elements in boldface are the only ones differing from those of
the linear chain (1 and 4 are now adjacent atoms). The roots of this
equation are (left-hand side of Figure 2.28):

X1 = 2, X) = X3 = 0, X4 = -2 (2.275)
For the MOs this gives:

1
b1 :E(X1+X2+X3+X4)

1
$2 = 2 =5 (X1 —X2 X3 +xa) X X

: (2.276)
b3 =y = 5()(1 +X2—X3—X4) X Y

1
4= E(Xl_Xz +X3—X4)-
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-

2= ———
Xy
A r
0
Xa=X3

2 +
X

Figure 2.28 Coordinate system (top), energy levels (left) and real Hickel MOs
(right) for cyclobutadiene (ring with N = 4)

The coordinate system, energy levels and Hiickel MOs for cyclobuta-
diene are sketched in Figure 2.28. To simplify the drawing, the 2p7 AOs in
the MOs are viewed from above the zx molecular plane, so that only the
signs of the upper lobes are reported. We note that ¢, is a function having
the same transformation properties as the x coordinate, yz being a nodal
plane for this MO. ¢,, is a function having the same transformation
properties as the y coordinate, zx now being the #zodal plane for this MO.
$y,and ¢, are the pair of HOMO MOs belonging to the doubly
degenerate energy level &, = &3 which transform as the pair of basic
vectors ey and ey of the D,j, symmetry (Magnasco, 2009a) to which the o
skeleton of cyclobutadiene belongs. They are therefore orthogonal and
not interacting, as can be seen immediately:

(1-14+1-1) =0
(2.277)

A=

1
(P2xlay) = Z<X1—X2—X3 +XxalX1 tX2=X3—X4) =
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1
(Pa2x|H|hry) = Z<X1*X2*X3 + X4l HIX1 +X2—X3—Xa)
1
=glla+B=p)+(=p-a+p)+(-B+a+p)+(B-p-a)]=0
(2.278)
It is also seen that they belong to the same eigenvalue & = a:
1
£ =7 Xi—x2—x3 +xalHxi—x2—x3 + x4) = @ (2.279)
1
2y =7 1t X=X xalHx1 +x2-x3-x4) = @ (2.280)

¢4 1s sketched in the diagram of the upper row of Figure 2.28 and shows
the existence of two nodal planes orthogonal to each other.>* ¢, is the last
antibonding MO (LUMO).

The delocalization energy for cyclobutadiene is:
AE™(cyclobutadiene)—2AE" (ethylene) = 4—4 = 0 (2.281)

so that, according to Hiickel theory, the 7 electron system of cyclobuta-
diene has zero delocalization energy.

2.8.5 The Benzene Molecule

The Huckel secular equation for the closed chain (ring) with N = 6 is:

-~ 1 0 0 0 1

1 —x 1 0 0 0
0 1 -x 1 0 0
D¢ = ) (2.282)
0 0 1 —x 1 0
0 0 0 1 —x 1
1 0

0 0 1 —x

34 As a general rule, the number of nodal planes increases for the higher 7 orbitals, while the
deepest bonding MO has no nodal planes (except for the molecular plane, which is common to all
molecules considered here).
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where 1 and 6 are now adjacent atoms. By expanding the determinant we
obtain a sixth degree equation in x that can be easily factorized into the
three quadratic equations:

D¢ = x°—6x* + 9x*—4 = (x*—4)(x*~1)* = 0 (2.283)
with the roots, written in ascending order:
x=2, 1, 1, -1, -1, -2 (2.284)

Because of the high symmetry of the molecule, two levels are now
doubly degenerate. The calculation of the MO coefficients can be done
using elementary algebraic methods in solving the linear homogeneous
system corresponding to Equation (2.282). With reference to Fig-
ure 2.29, a rather lengthy calculation (Section 2.9.3) shows that the
real MOs are:

1
¢y = %()ﬁ + X2+ X3+ X4+ X5+ Xe6)
1
¢, = E(X1—X3—X4 +Xg) X x
1
¢s; = Nev) (X1 +2X2 + X3—X4—2X5—Xs) XY
: (2.285)
by = 75 (X1—2X2 + X3 + Xa—2X5 + Xg) < x> —y?
1
¢s = 3 (X1—X3 +Xa—Xes) < XY
1
be = 76()(1—)(2 +X3—X4 T X5~ Xe)-

The first degenerate MOs>> ¢, and ¢; transform like (x, y) and are
bonding MOs (HOMOs), the second degenerate MOs ¢4 and ¢ trans-
form like (x> —y?, xy) and are antibonding MOs (LUMOs).

35 Loosely speaking, we attribute to MOs a property (degeneracy) of energy levels.
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Figure 2.29 Numbering of carbon atoms and coordinate system (top), energy levels
(left) and real Hiickel MOs (right) for the = electrons in benzene (ring with N = 6)

The p* and p? components of the electron distribution function for
benzene are equal:

Pt =P =i+ 3+ 93
— 21+1+i +21+i +21+1+i
X\ TaT12) T2 e T2 T8 s T 12

+21+1+i+21+i+21+1+i
Xi\e T4 12) "X s T12) TXels T 12

(2.286)
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so that:

o B:

P =0 =S (T + x5+ X5 +HXE X5+ XE) (2.287)

o1 =

We then have for the electron density:
P(r) = p(r) + pP(1) = X1+ X3 + X5 + X5 + X5 + Xé (2.288)

and the charge distribution of the 7 electrons in benzene is uniform (one
electron onto each carbon atom), as expected for an alternant hydrocar-
bon; whereas the spin density is zero:

O(r) = p*(1)—pP() = 0 (2.289)

as it must be for a singlet state.
The 7 bond energy (units of B) for benzene is:

AEF =2x2+4x1=38 (2.290)
When the = bond energy of three ethylenes:
3AE™ (ethylene) =3 x2 =6 (2.291)

is subtracted from Equation (2.290) we obtain for the delocalization
energy of the three double bonds in benzene:

AE™(benzene)—3AE™ (ethylene) = 8—6 =2 (2.292)

the highest value obtained so far among the molecules studied. This energy
lowering is responsible for the great stability of the 7 electron system of the
benzene molecule, where the three aromatic m bonds are fully delocalized
and bear no resemblance at all to three ethylenic double bonds. Further
stability in benzene arises from the fact that, at variance with its homo-
logues cyclobutadiene®® (N = 4) and cyclooctatetraene®” (N = 8), its o
skeleton has no internal strain.

3¢In cyclobutadiene the ring bond angles are 30° less than the value expected for sp? hybrid-
ization, so that its ground state is a very unstable triplet.

37 Cyclooctatetraene is not aromatic, since it is not planar but has a ‘tube’ conformation
(Magnasco, 2007).
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2.9 APPENDICES

2.9.1 The Second Derivative of the Hiickel Energy

Putting B.,=Bo, =B the second derivative of the Hiickel energy,
Equation (2.207), becomes:

&’E 4 , . 20 1
T A_ZBZ sin 2 w cos 6 + 8 % cos 20 <cc§2w_A_3>
1 1
+ _f B*(sin 2 w sin 6 + cos’w sin 260)* + —63, B*(sin26)*
A5 Az
(2.293)
where:
Ay = [(ap—ayp)* + 8B*(sinw + cos w cos 0)2]1/2
(2.294)
Az = [(ap—ah)z + 832 sin2¢9}l/2
Since, for @ =40°, 26 =105°,
(ap—ap)* > (e —ay)?, (sin @+ cos w cos 6)* > sin6 (2.295)
surely:
Ay > A (2.296)
Therefore, a fortiori it is true that:
cos?w 1
A < A (2.297)

and all terms of Equation (2.293) are positive, so that:

2
E
(Cdl—2> >0 (2.298)
0 0=40°,20=105°

and we have a true minimum there.
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2.9.2 The Set of Three Coulson’s Orthogonal Hybrids

If ' is a hybridization parameter, Coulson’s hybrids can be written as:

b = ssinw' 4z cos ' cosf +y cosw' sinf
b, = ssinw' +zcosw' cosf—y cos ' sinf (2.299)
I'=scosw'—zsinw'.

Comparison with our set (Equations 2.219) shows that, if the two sets
have to be equivalent, we must have:

. . 1 .
sinw’ = —=sinw, cosw’' cosf = —=cosw, cosw’ sinfh =

7 7 (2.300)

Sl-

so establishing the relation between Coulson’s o’ and our (w) hybridiza-
tion parameters.

We notice, first, that hybrids (Equations 2.299) are correctly normal-
ized, and that:

S12 = (b|bh) = sin*w’ + cos® ' cos 26 = 0 (2.301)

provided Coulson’s relation is satisfied:

. N 2
c0s20 = —(Sm“’ ) <0 (2.302)

cos w’

but that the lone pair hybrid /' is not orthogonal to either &) or b:
S13 = $23 = sinw/cos w'(1—cosh) # 0 (2.303)

Schmidt orthogonalization of I to by or b, can be done using the explicit
formulae given elsewhere (Magnasco, 2007), so obtaining:

{b1 = by, by = b},

2.304
I = (1-282)"V/2(I'-Sb,—Sb)) ( )

It can be seen that, in doing the orthogonalization process, the coef-
ficient of y in (Equatrions 2.304) becomes identically zero, and we obtain
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the orthogonalized lone pair in the form:
I = (1-25%)""[s(cos ' =28 sin ') —z(sin &’ + 28 cos 'cos )] (2.305)

Using Equations (2.300) and (2.214) it is further easily verified that:

(1—282)_1/2 (cosw'—=28sinw’) = cosw
(2.306)

(1-282)"1% (sin ' + 28 cos w'cosf) = sinw

so that Coulson’s orthogonalized set (2.304) coincides with our set
(2.219). Hence we may say that our main result (2.214) is just another
way of expressing Coulson’s result (2.302), and that our Equations (2.219)
are the simplest way of expressing the set of three orthonormal sp* hybrids
equivalent under C,, symmetry.

2.9.3 Calculation of Coefficients of Real MOs for Benzene

We give in the following an elementary derivation of the coefficients
occurring in the real MOs for benzene, Equations (2.285), based on the
direct solution of the system of linear homogeneous equations giv-
ing (2.282). We start by considering each eigenvalue in turn, making
reference to numbering of carbon atoms and coordinate system of
Figure 2.29. We recall that each equation must be used once.

(a) xq1 =2 (first eigenvalue)

The homogeneous system corresponding to this eigenvalue is:
1.—2¢ci1+c2+cg=0
2. c1—2c+c¢c3=0
c2—2¢c3+¢c4 =0

(2.307)

c3—2¢c4+¢c5=0

c4—2¢c5+¢c6 =0

3
4.
S.
6. c1+cs—2c6=0

We express all ratios between the coefficients in terms of ¢s5/c{, assuming
c1 # 0.
1. and 6. in Equations (2.307) give:

(%) 1
_2-2__ (1
c1 1 2( + 1)
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so that:
@_, 1 <1+C_s> :1<3_C_5>
1 1 2 4]
2. gives:
_2——1_<&_J 1=2-2
1 1 1 1
4. gives:
ca_lfes es\ _1(, e es\_y
c ¢ 2 ¢
S. gives:
Cs

1/cs ©co 1 1 1 Cs
c1 2 (61 + C1> 2 4 < + 1> 4 ( + Cl)

and therefore:

So, we finally get:

Cos+n=12 ;
1

l\.>lH
[\JlH

C1 C1 c1 1

Cl = C) =C3 =C4 =C§5 =Cq

The additional constraint of coefficient normalization gives:

1
C]2+622+C32+C42+C52+662 - 1=>6C12 - 1=>C] :%

B-1)=13=21=1,%=1, 9=

111

1

thereby giving for the eigenvector ¢ corresponding to the first eigenvalue:

Cl =C) =C3 =C4 =C5 = C¢—

-

(2.308)
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(b) x, =1 (first degenerate eigenvalue)

The homogeneous system is:

1. —c1+c2+¢c6=0
c1—cp+c3=0
c—c3+c4 =0
(2.309)
c3—cCc4+c5=0

c4—c5+c =0

N o

c1+cs—cg =0

Again assume ¢ # 0. Then:
1. and 6. in Equations (2.309) give:

Cé %) Cs
~=1--==1 + =
1 1 1
so that:
%) cs
1 B 1
2. gives:
3 (%) 1 Cs
1 G c1
3. gives:
G_G_a_ 4 6 sy
1 1 A C1 C1
4. gives:
C_5—6_4_C_3—_1+1+C_5—C_5
1 [ 1 (4]

nothing new.
Hence cs/cq is arbitrary, and we choose to put it equal to zero.

C5/Cl =0
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gives:
S _ : C_ZZO; 6—3:—1; C—4:—1; C—SZO
1 1 1 1 1l
Therefore:
a2=c¢=0;c3=c4=—c1; ¢c6=c1

and the normalization condition gives:

1
ettt tcttcitcitel =124t =1=¢ =3

1

1
C1266=2,62=C5=O,C3=C4=—§ (2.310)

In this way, we obtain the first (normalized) eigenvector ¢, correspond-
ing to the first degenerate eigenvalue, and we see that it has the same
transformation properties of the coordinate x. Because of the necessary
orthogonality in the xy plane between the two basic vectors, the second
(normalized) eigenvector ¢ 3 belonging to the first degenerate eigenvalue
must therefore transform like y. Hence we must have:

Ce Cs (%) Cc3 C4
—=-1, ==-2;, ==2; ==1;, — = -1
1 1 C1 1 1
Hence, orthogonality gives:
c1; ¢ =2c1; €3 =C15 €4 = —C15 €5 = —2¢1; ¢ = —C1

and, normalizing to unity:

1
F1+4+14+1+4+1)=12¢t=1=¢) = ——

V12
so that we finally obtain for the eigenvector transforming like y:
€1 =0¢C3=—C4=—C _ L € =—c _ (2.311)
1=2¢3 4 6 T2 2 5= U0 .

(c) x4= —1(second degenerate eigenvalue)
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The homogeneous system is:

1. ci+cp+c=0
2. cq+cp+e3=0
3. co+c3+ces=0 (2312)
4. c3+ca+cs=0
S. ca+tcs+c=0
6. c1+cs+cg=0

Again assume ¢y # 0. Then:
1. and 6. in Equations (2.312) give:

Ce (%} Cs
I e N e
C1 1 C1
and therefore:
€ ¢
C1 C1
2. gives:
c3 () Cs
Do 1212
C1 1 C1
3. gives:
C4 c) C3 Cs Cs
—=——"——=—— 41+ —=—=1
c1 c1 (1 ] 1
4. gives:
Cs Cc3 Cq Cs Cs
1 . a 1 1

nothing new.
Hence cs/cq is arbitrary, and we choose to put it equal to —2. Then:

Do 142=1,2=-22=1; 3= 142=1,2=2

Ce Cc C4 Cc3 C
c1 C1 1 C1 C1
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Therefore:
= —2c1;5¢3 =¢1; €4 =C1; €5 = —2C1; C6 = €4

and the normalization condition gives:

1
512+622+c32+c42+652+662=1=>12612=1=>C1ZE
! 2 (2.313)
C1=CG=C4=C=—7=;C =C5§ = ———= .
1 3 4 6 \/ﬁ 2 N \/ﬁ

In this way, we obtain the first (normalized) eigenvector ¢4 correspond-
ing to the second degenerate eigenvalue, and we see that it has the same
transformation properties as (x> — ). Because of the necessary orthog-
onality in the xy plane between the two basic vectors, the second
(normalized) eigenvector ¢s belonging to the second degenerate eigen-
value must therefore transform like xy. Hence we must have:

Ce Cs Cq4 Cc3 (%}
—=-1—=0—=1,—=-1;,==0
1 1 1 1 C1

Hence, orthogonality gives:
a=c¢=0;c=—c;ca=c1;5¢c6=c1

and, normalizing to unity:
1
ettt teftettedited =124t =1=¢ =3

so that we finally obtain for the eigenvector transforming like xy:

1
C1 :—C3=C4=—66=§;62:C5=0 (2314)

d) x¢=—2 (last eigenvalue)
We proceed in the same way as we did for the first eigenvalue. The
homogeneous system corresponding to this eigenvalue is:
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2¢c1+c2+c6=0
c1+2c+c3=0
c+2c3+c4=0
c3+2c4+c¢5s=0
c4+2c5+¢c6=0
c1+c¢s+2¢c6=0

(2.315)

A o e

1. and 6. in Equations (2.315) now give:

C6_ 5, a_1 <_1_ﬁ>
C1 C1 2 c1

so that:
c) 1 Cs 1 Cs
=24 -(1+=)==|-3+—=
1 +2<+C1> 2( +C1)
2. gives:
S_ 1922 44 <3_C_5) —). 5
1 1 1 1
4. gives:
G _1f e e\ 10 , 6 o) _ |
C1 2 C1 C1 2 Cc1 C1
5. gives

Hence:
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So, we finally get:

C6 1 1 (%) 3 1 c3
- Y= — = — = —= _:_1,_:2’_1:17
c 2 2 c * 1
c4 ¢ 3 1
“_ 1.8 _2 40"
1 ,Cl 4+4
namely:
C) = —C1; €3 = C1; €4 = —C1, €5 = (C1;C6 — —C1

Normalizing to unity we obtain:

clHct et tcitci vl =1=6cf=1=¢ =

117

thereby giving for the eigenvector ¢4 corresponding to the last eigenvalue:

1
Cl = —C) =C3 = —C4 =C5§ = —C¢ = ——=

V6

(2.316)

Following what was said for cyclobutadiene, it is left as an easy exercise
for the reader to verify that all MOs, Equations (2.285), are normalized
and orthogonal and not interacting in pairs. Furthermore, even if their
form is different, each pair of MOs belonging to the respective degenerate

eigenvalue gives the same value for the corresponding orbital energy.
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An Introduction to Bonding
in Solids

3.1 The Linear Polyene Chain
3.1.1 Butadiene N=4
3.2 The Closed Polyene Chain
3.2.1 Benzene N=6
3.3 A Model for the One-dimensional Crystal
3.4 Electronic Bands in Crystals
3.5 Insulators, Conductors, Semiconductors and Superconductors
3.6 Appendix: the Trigonometric Identity

In the previous chapter, we saw that immediate solution of the N-
dimensional (Dy) Hiickel secular equation was possible for the first
members of the series, ethylene (N =2), allyl radical (N =3) and
butadiene (N = 4), but for higher values of N only symmetry can help
in finding the solutions, unless we have at our disposal the general solution
for the linear polyene chain of N atoms. The secular equations for linear
and closed polyene chains, even with different Bs for single and double
bonds, were first solved by Lennard-Jones (1937) and rederived by
Coulson (1938). In the following, we present a simple derivation of the
general solution for the N-atom linear and closed polyene chains (equal
Bs) which are useful for introducing the general theory of bonding in
solids. We follow here the lines sketched in McWeeny’s book on valence
theory (1979).

Models for Bonding in Chemistry Valerio Magnasco
© 2010 John Wiley & Sons, Ltd
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3.1 THE LINEAR POLYENE CHAIN

We want to find the general solution for the system of homogeneous linear
equations for the linear polyene chain with N atoms yielding the Nth

degree secular equation

The homogeneous system corresponding to Equation (3.1) is:

—xc1+c=0

Cm-1—XCm+Cmi1=0

cN_1—xcn =0

The general equation is:

Cm-1—XCm+ i1 =0 m=1,2,--- N
with the boundary conditions
co=cn+1=0
The general solution is the standing wave
cm = Aexp(im0)+ Bexp(—im0)

where i is the imaginary unit (7 = —1), provided

x =2cos6

(i) From the first boundary condition it is in fact obtained:

CO:A+B:O=>B:—A

cm = Alexp(im 0)—exp(—im 0)] = 2iA sin mf = C sin m6

(3.2)
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where C = 2iA is a normalization factor.The general equation then
gives:

A{exp[i(m—1)0]—x exp(im 0) + expli(m + 1)6]}

+ B{exp[—i(m—1)0]—xexp(—im ) + exp|—i(m + 1)6]}

= Aexp(im 0)[exp(—if)—x + exp(i6)]

+ Bexp(—im 0)[exp(if) —x + exp(—if)] (9)
= [Aexp(im 0) + B exp(—im 0)][exp(—i0)—x + exp(i6)]
= ¢u(2c0s6—x) =0
so that, for ¢,, # 0:
2cosf—x =0=>x=2cos0 (3.10)
as required.
(i) From the second boundary condition it is obtained:
eN+1=Csin(N+1)0 =0 (3.11)
therefore it must be:
(N+1)9=kn k=1,2,3,---,N (3.12)
with k a quantum number:
0, = Nkjl (3.13)

so that angle 6 is quantized.

In conclusion, we see that the general solution for the linear chain will

be:

xp = 2cos

N+1

km
N+1

(3.14)

Comk = Cp SINM

the first being the = bond energy of the kth level (in units of B8), the second
the coefficient of the mth AO in the kth MO. All previous results for
ethylene, allyl radical and butadiene given in Section 2.8 of Chapter 2 are
easily rederived from the general formula (Equation 3.14).

We give below the derivation of the detailed formulae for the open
linear chain with N = 4 (butadiene).
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3.1.1 Butadiene N=4

Hk:kg, xk:2cosk§7 k=1,2,3,4 (3.15)

The roots in ascending order are:

(i) Bonding levels

x1 = 2coss =2cos36° = 1.618

5
o (3.16)
X2 =2 cos? =2co0s72° =0.618
(ii) Antibonding levels
3n o
x3 =2 cos? =2c0s108° = —-0.618
(3.17)

X4 = 2cos4,5—7t = 2cos144° = —1.618

which coincide with those of Equations (2.272) of Chapter 2.

For the MOs, we have:
b, = E XonCmk = C g X sinm—kn (3.18)
’ ’ S

where C is a normalization factor.

Then:
4
. . .2 .3 . 4
b = CZ)(,,Z smmg = C<X151ﬂ§ —l—)(zsm?n —l—)@sm% —i—)@sm%)
m=1

= C(0.5878x; +0.9510x; +0.9510; + 0.5878x,) (3.19)

= 0.3718y, +0.6015x, +0.6015y; 4 0.3718,



THE CLOSED POLYENE CHAIN 123

the deepest bonding MO (no nodal planes);

2n 2n 4
d)z—CZXmsmm 5 C<X1 sin— 5 + X, sin— 5 +)(3sm65 +X4sm85n>

= C(0.9510y, +0.5878x,—0.5878y5—0.9510x,)

=0.6015y; +0.3718x,—0.3718x3—0.6015x, (3.20)

the second bonding MO (HOMO, one nodal plane);

5

3n 3n 6m 9In 127
bs = szmmnm——C(Xl sin— 5 + X sin—+ 3 sin— 5 + X4 SIn 5 )

= C(0.9510);—0.5878x,—0.5878x5+0.9510x,)

= 0.6015y,—0.3718y,—0.3718x;3+0.6015x, (3.21)

the first antibonding MO (LUMO, two nodal planes);

4
4 4n 8n 127 16n
¢4—C;Xmsinm;—C< X1Sin— 5 + X, SIn— 5 + x3sin— 5 + x4SIn—— 5 )

= C(0.5878x,—0.9510x, +0.9510x;—0.5878x4)

= 0.3718),—0.6015x, +0.6015x5—0.3718x, (3.22)

the last antibonding MO, highest in energy (three nodal planes). These
MOs coincide with those given in Equations (2.272) of Chapter 2, and
whose shapes are sketched in Figure 2.27.

3.2 THE CLOSED POLYENE CHAIN

Next, we want to find the general solution for the system of homogeneous
linear equations for the closed polyene chain with N atoms yielding the
Nth degree secular equation
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—x 1 0
1 —x 0
DN= | o cer e e e =0 (3.23)
0 0 o -~ 1 —x 1
o - 0 1 —x

The homogeneous system corresponding to Equation (3.23) is:

—xc1+c+ - +en=0

Cm-1—XCm+ Cmi1 =0 (3.24)

ci+ - +eno1—xeny =0

The general equation for the coefficients is the same as that for the linear
chain:

Cn1—XCm+Cmi1=0 m=1,2--- N (3.25)
but with the different boundary conditions:

€0 =CN; €1 =CN41=>Cm = CmiN (3.26)

the last being a periodic boundary condition.
The general solution is now the progressive wave in complex form:

cm = Aexp(im6) (3.27)
where i is the imaginary unit (7 = —1), and the general Equation (3.25)
gives:
A{expli(m—1)0]—x exp(im) + expli(m + 1)6] } = (3.28)
A exp(im 0)[exp(—i0)—x + exp(if)] = ¢;u(2cos—x) = .
namely, for ¢,, # 0:
x =2cosf (3.29)

as before.
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(i) The periodic boundary condition gives:

Aexp(im0) = Aexpli(m+ N)b] (3.30)
exp(IN6) = cos N6 +isin N§ = 1
(3.31)
N6 = k2
N
5 N = even
k=0,+1,+2, - N1 (3.32)
+—— N=odd

where k is the quantum number for the ring. In this case, all energy
levels are doubly degenerate except those for k = 0 and k = N/2 for
N = even.

Therefore, the general solution for the N-atom ring will be:

2
xp = 2cos0 :2coskﬁn

2nk . .
Co = Ag exp (zm%) anticlockwise (3.33)

2nk .
Cmk = Apexp (—im %) clockwise

If Ag is a normalization factor, the form of the general MO in
complex form will be:

bk = Ak D Xk (3.34)

with:

2 2
Cmk = A €xXp <im %), Crp = Ap €Xp <—im %) (3.35)

The coefficients can be expressed in real form, using Euler’s for-
mulae’, through the transformation:

1 . ..
exp(+iax) = cos ax =+ isin ax.
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Cok=Couke _ 4 i 2TR
F = A sinm N = Gk
o - (3.36)
Cmk T Emk 5 Coik _ Ay cosm% = by
giving the real MOs in the form:
d)i = ZXmam/ea (bz = Zmem/e (337>

The previous results for cyclobutadiene and benzene given in Section
2.8 of Chapter 2 can be rederived from the general formula
(Equation 3.37).

We give below the derivation of the detailed formulae for the closed
chain with N = 6 (benzene).

3.2.1 Benzene N=6

N =6, szk%n:kg, xk:2coskg, k=0,+1,42,3 (3.38)

The roots in ascending order are:

(i) Bonding levels

X0 = 2
x1:x_1:2cos§:1 (3.39)
(i1) Antibonding levels
X) =X_p) = 2cos2?n =-1
(3.40)
3n
x3=2 cos? =-2

which coincide with those of Equations (2.284) of Chapter 2.
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For the real coefficients, we have:
amk:Asinm%, bmk:Acosmé—n (3.41)

with A a normalization factor.
For the MOs in real form, we then have:

6
1
bo = ¢ = AZXm cos 6 Z\/—g()h X2 T X3t xatxs+xg) (3.42)
m=1

the deepest bonding MO (no nodal planes);

6
. n 1
é1 AZXm Sm””gzz(h +X2—X4—Xs)
m=1

(3.43)
1

6

s

P71 = AZXm Cosmng(X1*Xz*2X3*X4 + X5+ 2X6)
m=1

[\®)

the second bonding doubly degenerate MOs (HOMOs, one nodal plane);

6
. 2n 1
¢ = AZXm s1nm?:§(X1—X2+X4—X5)

m=1

6
2n 1

¢ =A m COSM— =——=(—X1—X2+2X3—X4— X5 +2

b5 m§:1x 3 \/ﬁ( X1—X2 +2X3—Xa—X5 +2X6)

(3.44)

the first antibonding doubly degenerate MOs (LUMOs, two nodal
planes);

6
B 3. 1

¢3 =5 = AZXm cos 3= = —6(—)(1 X2 X3+ Xa—X5+Xs) (3:45)

m=1

the last antibonding MO, highest in energy (three nodal planes). The MOs
obtained in this way differ by an orthogonal transformation from those
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given in Equations (2.285) of Chapter 2. This transformation was derived
elsewhere (Magnasco, 2007), and was shown to be given by the orthog-
onal matrix:

1 0 0 O 0 0
0 % g 0 0 0
0 \/7§ —% 0 0 0
= 4
0 0 0 O g % 0 o
0 0 O % —\/75 0
0 0 0 O 0 -1

the two sets of MOs being connected by the matrix transformation:

b=¢'U (3.47)

where the row vector:
¢ = (¢ b1 1 b5 b5 ¢5) (3.48)

is the actual set, and:
¢ = (1 D203 4 b5 d¢) (3.49)

is that resulting from Equations (285).

Since matrix (3.46) has a block-diagonal form, its larger blocks being
matrices of order 2, matrix multiplications in Equation (3.47) can be
easily done block-by-block involving matrices of order 2 at most.

So that, while it is immediately evident that:

¢1 = d5 (3.50)
b6 = P5 (3.51)
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we have for the first degenerate block (E; symmetry, bonding HOMOs):

1 V3
2 2
= (¢SS 3.52
($26h3) = ($169) A1 (3.52)
2 2

giving the second real MO as:

1 3
Ed’i + gﬁ =
X1(1+1) 4+ x,(1-1) + x5(0-2) +

1
A xa(—1-1) s (14 1) 4 xg(0+2) (3.53)

(Zx1—=2X3-2X4 + 2X6)

B

1
= 5()(1—)(3—)(4 +Xs) = ¢y x X

which coincides with the second MO of Equations (2.285), transforming
like x. It is seen that this transformed MO corresponds to an anticlockwise
rotation by 27/6 around an axis perpendicular to the molecular plane of
benzene of the second MO of Equations (3.43).

For the third real MO calculation gives:

V3
2

1 1 2
V3

(e ) e () en(0-2) 5.54)

V32 4 2 2 4 2
3X1T 3X2 T 3X3 73 X473 X5 3 X6

S 1 (=4
¢1_§¢1 =

4

1
= ﬁ(m +2x + X3 X4—2X5—Xg) = P53 X ¥

and we obtain the third MO of Equations (2.285), transforming like y.
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In a similar way, we obtain for the second degenerate block (symmetry
E,, antibonding LUMOs):

V3 o1
2 2
= (b5 0S (3.55)
(Paps) = (d203) R
22
giving first:
\/§ S 1 Cc
- bt b=

AN (1—%) +Xz<—1—%> +X3(0+ %)

i +X4<1—%> +x5<—1—%) +X6(0+§> (3.56)

Vi(2, 42242

- 4 3)(1 3)(2 3X3 3)(4 3X5 3X6

- L (X1=2X2 + X3+ Xa=2X5 + X¢) = g < x*—°
\/ﬁ 1 2 3 4 S 6

the first antibonding LUMO transforming like (x* —y?) and, next:

1, V3
5453*7‘155 =

X1(1+1) +x2(=1+1) + x3(0-2)

1 (3.57)
4| Fxa(141) 4+ xs5(=1+1) + x(0-2)

(X1=X3 F X4—Xs) = 5 < xy

N =

the second antibonding LUMO, transforming like xy. In this way, we
reobtain all results of Equations (2.285) of Chapter 2.
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3.3 A MODEL FOR THE ONE-DIMENSIONAL
CRYSTAL

Increasing the number of interacting AOs increases the number of result-
ing MOs (Figure 3.1). For the CyHy > polyene chain the molecular
orbital levels, which always range between a + 28 and a — 28, become
closer and closer, eventually transforming in bands (a continuous suc-
cession of molecular levels) which are characteristic of solids.

The first (bonding) and the last (antibonding) energy levels of the linear
polyene chainare reported with respectto Nin Table 3.1 in units of 8. In the
last column of the table is the difference in energy between two successive
levels. The asymptotic approach of x| towards 2 and of xx towards —2 is
apparent from the numbers given in the table, as well as is the decreasing
distance between two successive levels, which tends to zero for N — co.

These results can be easily established in general as follows. Using
formula (3.14) for the orbital energy of the kth MO of the N-atom linear
polyene chain:

T
sk—a+2,8cosN+1k (3.58)
we obtain the following results.
(i) First level (k = 1):
T .
£ :a—i—ZﬁcosN+1 N11_r>noo.91fa+2[3 (3.59)

MO levels of linear N-atom polyene chain
e~ 2]

_— — — — — — Antibonding
— —_— — levels

— — — Non Bonding
— —_ —  levels

Bonding
_ levels

Sk A A A s R ST e e LT O
2 3 4 5 6 7 8 9 10 11 12N

Figure 3.1 Showing the origin of electronic bands in solids as the limit for N — oo
of the linear N-atom polyene chain
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Table 3.1 Orbital energies (units of 8) of first and last level and energy difference
between two successive levels in a linear polyene chain as a function of the number of
carbon atoms N

XN XN+1 XN+1— XN

1 0 0

2 1 -1 1

3 1.414 —1.414 0.414
4 1.618 —-1.618 0.204
5 1.732 —1.732 0.114
6 1.802 —1.802 0.070
7 1.848 —1.848 0.046
8 1.879 —-1.879 0.031
9 1.902 —1.902 0.023
10 1.919 -1.919 0.017
11 1.932 -1.932 0.011
12 1.942 —1.942 0.010
13 1.950 —-1.950 0.008
14 1.956 —-1.956 0.006
o0 2 -2 0

(ii) Last level (k = N):

N .
3N=a+ZBcos£+1:a+ZBcoslz% Nl:rnoosN:a—ZB
(3.60)
(iii) Difference between two successive levels:
Ae = g1
2k+1 . = 1

Y T . T
- 2B<C°SN+1(’e“)_“’sNHk) B SNE RS N

(3.61)
where use was made of the trigonometric identity (see Section 3.6):

a—p
2

a+p

sin

cosa—cos B = —2sin (3.62)
Hence, for N — oo, Ae — 0, and we have formation of a continuous
band of molecular levels. The limiting values o + 28 and a—28 are
reached asymptotically when N — oo. This gives a generalization of
the results of Table 3.1 and of the plots of Figure 3.1.

(iv) For N — oo, therefore, the polyene chain becomes the model for the
one-dimensional crystal. We have a bonding band with energy
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o+2fi

Single g

Figure 3.2 Electronic bands in linear polyene chain (single 3)

ranging from a+ 2B to «, and an antibonding band with energy
ranging from « to a—28, which are separated by the so-called Fermi
level, the top of the bonding band occupied by electrons. It is
important to notice that using just one 3, equal for single and double
bonds as we have done, there is no band gap between bonding and
antibonding levels (Figure 3.2). If we admit |B,| > |B,|, as reasonable
and done by Lennard-Jones in his original work (1937), we have a
band gap A = 2(B,;—B,), which is of great importance in the prop-
erties of solids. Figure 3.3 shows the origin of this band gap. In the
figure, & is the Fermi level, that is the negative of minimum energy
required to ionize the system. Metals and covalent solids, conductors
and insulators, semiconductors, can all be traced back to the model of

the infinite polyene chain extended to three dimensions (McWeeny,
1979).

3.4 ELECTRONIC BANDS IN CRYSTALS

From Equation (3.61), we can define a density of energy levels or density of
states N(g) in the crystal as Ae~!. N(&) is a function giving the number or
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Figure 3.3 Electronic bands in linear polyene chain (double B)

levels (or states) in an infinitesimal range of £, and is quantitatively defined
as:

ok  (9e\! 1 N+1 nk
N(e) == <8_k) T cosec (3.63)
In fact, from Equation (3.14):
T
3:a+2,8cosN+1 (3.64)
Oe T
de\ " 1 N+1 nk
<%) = _ﬁTCOSECN—i— 1 (3.66)
or, by expressing k as f(&):
cos Tk i (3.67)
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nk L [e—a
= - 3.68
v () a8
where ~! denotes the inverse function.
Hence, remembering from elementary analysis that:

dcos™'u 2-1/2
we have:
_N—l—l _1f{e—a
k= ——cos <23) (3.70)
)7 -1/2
6_k__iN+1 1 (2@
de 2B =w 28
(3.71)
~1/2
_ 1 N+1 2 nk _ I N+1 nk
T \MMNF T8 1 N

the same result as before.

To introduce further details of the theory of solids in an elementary way,
we can resort to the results given in Section 3.2 for the closed chain with N
atoms. We have shown there that the general solution in complex form for
the N-atom closed chain with N = odd is:

2 N—1
xp = 2 cos 2F k:O,il,iZ,m,i(—)

N+1 2

p<2 Am/e)
Conp X €X i ——
N

where i is the imaginary unit. Apart from the ground state (k = 0),
roots (3.72) occur in pairs, each level being hence doubly degenerate.
Let consider as an example the cases N = 5 and N = 15. We have the
numerical results of Table 3.2 which are plotted in Figure 3.4.
For solids, the quantum number k is replaced by the wave vector k:

=2 k0oLt 0) e

(3.72)

N N

where a is the lattice spacing.
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Table 3.2 Roots of the closed chains for N = § and N =15

N=35 N=15
k xk:ZCOS% k xk=2cos%
0 2 0 2
+1 0.618 +1 1.827
+2 —-1.618 +2 1.338
+3 0.618
+4 —0.219
+5 -1
+6 —1.618
+7 —-1.956

For N — oo, we have the plots sketched in Figure 3.5, that on the left
giving x(k) versus k, that on the right the energy levels &(k) versus the
density of states N(&), and where the Fermi level ¢f is apparent.

In the crystal, the periodic potential of the nuclei will perturb the energy
levels, removing the double degeneracy of the two states corresponding to
+7/a, the splitting manifesting itself as a band gap in the energy spectrum.
For the values of k for which 4 = 2a this originates discontinuities in the
spectrum, giving gaps that divide the |k| space into zones called Brillouin
zones. The region from |k| = 0 is the first break, called the first Brillouin
zone, from there up to the second break is the second Brillouin zone, and
so on. These zones have the dimensions of reciprocal length, and are
schematically plotted in Figure 3.6.

2k a vk
== -2 - Seg 2 -
\n B ‘f’ ‘\\ B ”
\. "i ‘!‘ "f
3 Lo/ Y Lo ‘
*.l - r" .\\ B .r"
A] ’.‘f \“‘ ’.f
<l Te._ | .-e7
| | +2 I I A R T T N B +12 Lo
3 1 ® 1 32 76543210123456]7
k—» k—»

Figure 3.4 Plots of the roots for the closed chain with N = 5 (left) and N = 15
(right)
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Figure3.5 Energy levelsversus k (left), and energy levels versus density of states (right)
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Figure 3.6 One-dimensional Brillouin zones

Figure 3.7 gives a sketch of the N(g)-¢ curve for the d-band of the bec?
Fe(3d%4s%) crystal as calculated numerically via the APW? method by
Wood (1962).

2 Body-centred cubic.

3 The APW (augmented plane wave) method was devised by Slater (1937, 1965), and is based on
the solution of the Schrodinger equation for a spherical periodic potential using an expansion of
the wavefunction in terms of solutions of the atomic problem near the nucleus, and an expansion
in plane waves outside a predetermined sphere in the crystal.
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Figure 3.7 Sketch of the N(g)—¢ curve for the bec Fe(3d%4s?) crystal

Table 3.3 Electrical conductivity (obm™'cm™') of different materials

Conductivity 10712 1072 10° >10°
Material Insulator Semiconductor Conductor Superconductor
Substance Sior C Si or Ge Metals YBa,Cu309

3.5 INSULATORS, CONDUCTORS,
SEMICONDUCTORS AND SUPERCONDUCTORS

Insulators can be distinguished from conductors or semiconductors in
terms of their different conductivity at room temperature (T = 293 K) as
shown in Table 3.3.

To give a general description of covalent solids and metals, the band
theory arising from the infinite polyene chain must be extended to three
dimensions. The properties of solids depend largely on the way in which
electrons fill the different available bands.

Figure 3.8 shows the behaviour of the electronic bands in crystalline Be
as a function of the lattice spacing R. When the spacing in the (hcp)*
crystal lattice is very large, the energy bands will be very narrow and
centred on the atomic levels of energy &), and &y,. When spacing is
reduced, electronic bands enlarge until they begin to overlap. At the
equilibrium distance in the crystal lattice R.q, the electronic bands

* Hexagonal close-packed.
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Figure 3.8 Overlap of electronic bands in solid Be

originating from the 2s and 2p atomic levels will overlap, while the inner
1s band will still be very separated because of its large difference in energy.
Each Be (1s?2s%) atom will contribute four electrons to the solid. Two
electrons come from the inner shell and are sufficient to fill the 1s band
completely. The other two electrons come from the valence 2s orbital, and
suffice to fill the 2s band completely. At large lattice spacings, the ground
state of the solid will have a completely filled 1s band and a completely
filled 2s band, and there will be a gap between the 2s filled band and the 2p
empty band. At variance with what occurs in metals, a large amount of
energy, the Ay;_», band gap, will be needed to transfer electrons from filled
to empty orbitals, so that solid Be with a large value of R will be an
insulator. However, at R.q in solid Be, the two 2s and 2p bands partially
overlap and the crystal orbitals will have both s and p character, so that the
overlapping bands can now contain eight electrons from each atom. The
two electrons that each Be atom can contribute at the valence level will
only partially fill the combined bands, so that there will be no energy gap
among occupied and empty levels, and solid Be at its equilibrium lattice
distance R.q will be a typical metal.

The fact that a solid is a metal or a nonmetal will therefore depend on
three factors: (i) the separation of the orbital energies in the free atom;
(ii) the lattice spacing; and (iii) the number of electrons provided by each
atom. For a realistic description of the three-dimensional crystal, we must
therefore extend our simple Hiickel theory” in two respects. First, we must
consider more than a single type of AOs (e.g. 2s, 2p, 3d, - - - ), and, second,
we must consider more than an electron per atom. By increasing the

3 In solid state theory called the tight-binding approximation (TBA) (see Table 3.4).
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Figure 3.9 Band structure of covalent solids (insulators)

external pressure on a solid, namely by compressing it, will reduce the
lattice spacing, widening the bands, so that under sufficient pressure, all
solids will display metallic character (as first claimed by ]J.D. Bernal,
quoted in Wigner and Huntington, 1935; see also Yakovlev, 1976).

A covalent solid (insulator, such as diamond, pure state carbon) has
electronic bands which are either completely filled or completely empty,
with a large band gap A between the highest level occupied by electrons
and the lowest empty one (Figure 3.9). We have no band overlap at R,
the valence band being completely filled by electrons that cannot be
excited to the conduction band.

Metals (conductors), instead, have bands that are only partially occu-
pied by electrons (Figure 3.10), this being the reason that gives them their
typical properties of high electrical and thermal conductivity, and metallic
brightness. The energy needed to excite electrons from occupied to empty

—
Conduction Band
(empty)

E.’-'_rx Highest Valence Band
as 5 (partly filled)

Inner Valence Band
(filled)

Lattice Spacing R

Figure 3.10 Band structure of metals (conductors)
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Figure 3.11 Band structure of intrinsic and doped semiconductors

bands is extremely small, their energy being readily distributed over the
entire metal because of fully MO delocalization. Furthermore, a metal can
absorb light of any wavelength. The highest valence band is only partially
filled, and electrons may flow easily under the action of an external field,
except for the collisions with the positive ions of the lattice. Increasing
temperature increases lattice vibrations and electron collisions, so that
electrical conductivity decreases.

Semiconductors have a small band gap, 60-100k]Jmol™", namely
0.6-1¢V for Ge or Si (Figure 3.11). The electrons of the last valence
band are easily excited to the conduction band (empty) under the effect of
temperature (kT ~ ec—er) or light (hv &~ ec—ep), the latter effect being
known as photoconductivity. The electronic population in the conduction
band will increase with temperature according to the statistical equilib-
rium described by the Fermi-Dirac statistics, so that conductivity will
increase with temperature (the opposite of what was found for metals).

Besides conduction due to the electrons thermally excited to the
conduction band (n-type, negative charge), there may be conduction due
to vacancies occurring in the valence band (p-type, where p stands for a
positive hole). Germanium and silicon are typical intrinsic semiconduc-
tors (left-hand side of Figure 3.11), whose properties are due to the pure
elements. But also of great importance are the so-called impurity semi-
conductors, where small amounts of impurity in a perfect crystal lattice
can modify the structure of the Brillouin zones, giving products whose
properties may be of commercial interest. The *doping’ of silicon or
germanium can be done using elements with one more electron in their
valence shell, such as phosphorus or arsenic, or elements with one less
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Figure 3.12 Plot of resistance versus temperature for common metals

electron in their valence shell, such as gallium or indium®. Conduction
now arises from excitation of the electrons out of (n-type) or into (p-type)
the impurity levels (right-hand side of Figure 3.11). For more information
the reader is referred to elsewhere (see, for instance, Murrell et al., 1985).

As we have seen, at low temperatures, resistance to the current flow
decreases for all crystal conductors (metals) and, therefore, electric
conductivity increases. At a given critical temperature T, resistance
disappears completely and the metal becomes a superconductor, with an
infinitely large conductivity (Figure 3.12). For metals, this occurs at rather
low temperatures (<30 K), but Bednorz and Miiller (1986)” prepared new
substances exhibiting high-temperature superconductivity (above 77K,
the boiling temperature of liquid N3). These are alloys containing Cu, O,
La (where La may be replaced by Ba, Sr and Y) with a perovskite
(La,CuQy) lattice structure.

They are structurally homogeneous, perfectly diamagnetic, with a very
small band gap, A less than 0.1eV. These materials were prepared by
doping perovskites in two ways, either by introducing oxygen-deficient
compounds (such as La,CuQy4_,) or by replacing La by other atoms X
(such as Ba, Sr, Y). On the theoretical side, Mattheiss (1987) did ab initio
calculations of the electronic band structure of tetragonal La,CuQ,4 and of
superconductors derivatives of it, such as La;_, X, CuQOy, that throw some
light on the factors determining superconductivity at high temperature.
The electronic bands at the Fermi surface show a substantially p-char-
acter. These p AOs give strong o bonds with the 3d orbitals of Cu of

¢ Ground state valence electron configurations of the elements are: Si(35?3p?) and Ge(4s%4p?), P
(3s*3p>) and As(4s%4p°), Ga(4s>4p) and In(5s>5p).
71987 Nobel Prize for Physics.
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Table 3.4 Connection between molecular and solid state terminologies

Molecular theory Solid state theory
MO (molecular orbital) Bloch orbital (crystal orbital)
Energy levels Energy band

HOMO Valence band

LUMO Conduction band
HOMO/LUMO energy difference Band gap

Hiickel theory Tight-binding approximation (TBA)
MO models with electron repulsion Hiickel-Hubbard Hamiltonian
Resonance integral 8 Hopping integral ¢
Jahn-Teller distortion Peierls distortion

High spin Magnetic material

Low spin Nonmagnetic material

appropriate symmetry®. The breathing lattice vibrations of the four
coplanar O atoms are strongly coupled with the electron conduction
band at e, giving a high value for the coupling electron—phonon constant
J that occurs in the Bardeen—Cooper—Schrieffer (BCS) theory of super-
conductivity (Tinkham, 1975), with a band gap at &r (0.2—0.5¢V)
determining a large value of the deformation potential (1.6—3.9eV/A).
Because of the small mass of the oxygen atoms and the high-frequency w of
lattice vibrations, the pre-exponential factor in the BCS equation for T, is
magnified, thus generating the high T, values observed for these com-
pounds. The effect is magnified for X = Sr, Ba.

To end this section, it may be useful to the reader to give a table
collecting some analogies between molecular and solid state theory
(Table 3.4). The table is taken from Albright et al. (1985), and is useful
in connecting quantum theorist terminology to that of solid state
physicists.

3.6 APPENDIX: THE TRIGONOMETRIC IDENTITY

The trigonometric identity (Equation 3.62) can be easily derived as
follows. We start from the well-known trigonometric formulae:

cos(x—y) = cos x cos y + sin x sin y (3.74)

cos(x +y) = cos x cos y—sin x sin y (3.75)

8 The O}, octahedral symmetry of Cu is distorted to a D4y, tetragonal symmetry, with four stronger
planar dp—o bonds and two weaker apical dp—o bonds.
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sinx siny = 3 [cos(x—y)—cos(x + )]

(3.76)

Subtracting Equation (3.75) from (3.74), immediately gives (3.76). If

we put:
X—y=a
x+y=p
then:
v a+pB
2
a—p
Y s

and, substituting in Equation (3.76):

sin ;—B sin (— #) = % (cos a—cos B)

so that we obtain Equation (3.62):

a—p
2

sin

cosa—cos B = —2sin

a+p
2
since sin x is an odd function of x, namely:

sin(—x) = —sinx

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)
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4.1 INTRODUCTION

In the previous chapters we sketched an elementary model of the chemical
bond occurring between atoms in terms of a simple Hiickel theory mostly
involving solution of 2 x 2 secular equations. The theory, first concerned
with o-bonding in H;", Hy, He,”, He,, was next extended to o- and
n-bonding in first-row homonuclear diatomics and to the study of multiple
bonds, the fundamental quantity being a bond integral 8, whose form is

Models for Bonding in Chemistry Valerio Magnasco
© 2010 John Wiley & Sons, Ltd
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unspecified, but was assumed to depend on positive overlap between
AOs of like symmetry on the interacting atoms. Thereafter, the method
was extended to consideration of the heteropolar chemical bond with
introduction of a further parameter, the atomic energy difference ag—ay
between A and B, to the study of bond stereochemistry in first-row
hydrides (HF, H,O, NHj3, and CHy), and to the investigation of delo-
calization effects in the = electrons of a few conjugated and aromatic
hydrocarbons. After giving the general solution for linear and closed
N-atom polyene chains, in Chapter 3 the theory was extended to an
elementary theory of the electronic bands in solids.

It was shown there that a chemical bond can be established at short
range between overlapping atoms through the linear superposition of
their valence atomic orbitals of like symmetry, provided the number of
electrons in the resulting bonding MOs is greater than the number
of electrons in antibonding MOs. When this is not the case, as for the
dimers X, of rare gases, where the number of electrons in antibonding
(more repulsive) MOs equals the number of electrons in bonding (less
attractive) MOs, we have what is called a Pauli repulsion between
closed shells and the formation of any chemical bond is no longer
possible. This also happens for the interaction of closed-shell molecules
(e.g. Ha, N, HF, H,O) or for atoms in some excited states (e.g. two H or
Li atoms interacting with like spin).

On the other hand, Pauli repulsion decreases exponentially
(x exp(—aR) with a > 0) with the distance R between the centres of mass
of the interacting molecules and, at large distances, is sufficiently small to
be overbalanced by the effect of other attractive interactions which
decrease more slowly as R~ (n > 6 for neutral systems)’, and which we
call van der Waals (VdW) interactions (Magnasco and McWeeny, 1991;
Magnasco, 2007, 2009a). At variance with what observed before in the
case of the chemical bond, VAW interactions occur at long range and can
be described in terms of small interaction integrals Bs involving orthog-
onal states® having different symmetries and largely different energies. At
least in some simple cases, the form of these Bs can be derived in terms of
classical electrostatic concepts.

In Section 4.2, we introduce, first, a few elements of Rayleigh—
Schrodinger perturbation theory for stationary states (Magnasco, 2007,
2009a), the fundamental theory needed for studying in a quantitative
way the weak interactions occurring at long range between atoms and

1'% > 3 for the dipolar molecules generating the hydrogen bond described in Chapter 5.
2 Usually, the ground state and some excited states of higher energy.
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molecules, just to define unequivocally the physical meaning of the
different components of the interactions. An outline of these interactions
for molecules is presented in Section 4.3.

In Section 4.4, we introduce a simple two-state model of these weak
interactions (Magnasco, 2004b), which expresses the energy lowering in
terms of a long-range interaction parameter 3, with an application to the
case of the dipole polarizability of the H atom. The explicit form of these Bs
for atom—atom dispersion, atom-linear molecule dispersion, and atom-
linear molecule induction, is presented in Section 4.5, avoiding any calcu-
lation of matrix elements (Magnasco et al., 1990b) and giving a rather
detailed, yet simple, explanation of the nature of the VAW bond occurring
between closed-shell atoms and molecules. In this way, we derive the Cg
coefficients and their dependence on the relative molecular orientation for
these systems. A detailed calculation of the C¢ dispersion coefficient for the
H-H interaction is presented in Section 4.6, while Section 4.7 introduces
the reader to an understanding of the nature of the van der Waals bond.
A comparison between Cg dispersion and induction coefficients, and a
tabulation of VAW bond strengths and shapes in homodimers of atoms and
molecules using data from the literature is included to emphasize the
difference occurring between chemical and VAW bonds.

The chapter ends with a short outline of the theory of the temperature-
dependent Keesom interactions in polar gases.

4.2 ELEMENTS OF RAYLEIGH-SCHRODINGER (RS)
PERTURBATION THEORY

Since thisimportant method of approximation is fully described elsewhere
(Magnasco, 2007, 2009a), we limit ourselves here to the main elements of
the RS theory for stationary states.

We want to solve the Schroedinger eigenvalue equation:

(H-E)y =0 (4.1)
for a Hermitian decomposition of the Hamiltonian H into:
H = Ho+ 4H, (4.2)

where: (i) 4 is a parameter giving the orders in perturbation theory” ;
(ii) Ho the unperturbed Hamiltonian, namely the Hamiltonian of a

3 Orders are here indicated by the suffixes or their sum.
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previously solved problem (either physical or model); and (iii) H, the
small first-order difference between H and Hy, called the perturbation.

We now expand both eigenvalue E and eigenfunction ¢ into powers
of A:

E=Eo+/E; +*Ey +2’E3 + - (4.3)

Y=o+ + - (4.4)

where the coefficients of the different powers of 1 are, respectively, the
corrections of the various orders to energy and wavefunction (e.g., E, is
the second-order energy correction, ¢, the first-order correction to the
wavefunction, and so on). It is often useful to define corrections up to a
given order, which we write, for example:

E® =Ey+E; +E;+E; (4.5)

meaning that we add corrections up to the third order.
By substituting the expansions into the Schrodinger equation (4.1):
[(Ho—Eo) + A(H{—E{)—i2Ey—i3E3— -] (g + Jthy + 22+ ---) =0
(4.6)

separating the orders, we obtain a set of ordered equations:
2% (Ho—Eo)py =0
. (Ho—Eo)i + (H1—E1)ry = 0

o A (4.7)
A (Ho—E())lﬁz + (Hl—El)lpl—Ezlpo =0

which are known as Rayleigh-Schrodinger (RS) perturbation equations of
the various orders specified by the power of A.

Because of the Hermitian property of Hy, bracketing Equations (4.7) on
the left by (i, all the first terms in the RS equations are zero, and we are
left with:

20 (olHo—Eolthy) = 0
A (olHi—Eqlth) = 0

2 2 (4.8)
A7 (olHi—Ex[yn)—E2(olthy) = 0
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Taking g normalized to 1, we then obtain from Equations (4.8) the RS
energy corrections of the various orders as:

2% Eo = (| Holtpo)

A Eq = (ol Hltho)

A2 Ex = (olH1—Er|ih) = — (4| Ho—Eoly;) (4.9)
2> Es = (| Hi—Ex|¢h,)—Ea(oltr) = (91 |[Hi—Enlsy)

Eoand E; are nothing but the average value of Hy and Hy, respectively,
over the unperturbed function iy, while E, is given as a nondiagonal term,
often referred to as transition integral, connecting i to iy through the
operator Hj, the last expression in Equations (4.9), showing that E, is
always greater than zero for the ground state. The equations above show
that knowledge of iy (the solution of the first-order RS differential
equation) determines the energy corrections up to third order®. In solving
the first-order RS differential equation, we impose on i{ the orthogonality
condition:

{Wolgr) =0 (4.10)

which follows in first order from the normalization condition on the
total wavefunction and the fact that we assume a normalized . The
detailed explanation of the symmetric forms resulting for E; an E3 in
Equations (4.9) is given elsewhere (Magnasco, 2007, 2009a).

Variational approximations to the second-order energy E, are obtained
using the Hylleraas variational method outlined in Section 1.3 of Chapter 1.

It is important to stress that the leading term of the RS perturbation
Equations (4.7), the zeroth- order equation (H()—E())lpo = 0, must be
satisfied exactly, otherwise uncontrollable errors will affect the whole
chain of equations. Furthermore, it must be observed that only energy in
first order gives an upper bound to the true energy of the ground state, so
that the energy in second order, E*), may be below the true value.

4.3 MOLECULAR INTERACTIONS

We now apply our RS perturbation equations to the interaction between
two molecules A and B whose non-expanded intermolecular potential V

* Likely, ,, determines the energy corrections up to order 21 + 1. We recall that all ¢, (s # 0)
corrections are not normalized but are normalizable.
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Figure 4.1 Interparticle distances in the intermolecular potential. Reprinted from
Magnasco, V., Methods of Molecular Quantum Mechanics: An Introduction to Elec-
tronic Molecular Structure. Copyright (2009) with permission from John Wiley and Sons

arises from the Coulombic interactions between all pairs 7, j of charged
particles (electrons + nuclei) in the molecules (Figure 4.1):

V:ZZ‘I;—;”' (4.11)
i

where g; and g; are the charges of particles 7 (belonging to A) and j
(belonging to B) interacting at the distance 7;. In a previous book
(Magnasco, 2009a) a readable introduction was given to the interatomic
interactions occurring at long range between two ground state H atoms.

4.3.1 Non-expanded Energy Corrections up to Second Order

If Ag, Bg are the unperturbed wavefunctions of molecules A (N electrons)
and B (Np electrons), and A;, B; a pair of excited pseudostates describing
single excitations on A and B, all fully antisymmetrized within the space of
A and B, we have to second order of RS perturbation theory:

EP = (AgBo|V]|A¢Bo) = Ei(es) (4.12)

the semiclassical electrostatic energy arising in first order from the inter-
actions between undistorted A and B;

E
2 S

the polarization (distortion) of A by the static field of B, described by U®:
UB = (By|V|Bo) (4.14)

the molecular electrostatic potential (MEP) of B;

mdB Z| A()B |V|A()Bo Z| B()B |U (415)

E
2 P
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the polarization (distortion) of B by the static field of A, described by the
MEP U4,

AV 1AoBo) (At aumo)

~dzsp iDj _
pylenent_py (it
(4.16)

the dispersion interaction, a purely electronic term arising from the
density fluctuations of the electrons on A and B which are coupled
together through the intermolecular electron repulsion operator 77,
(1 on A, 2 on B).

eneralization of the H-H results to molecules is possible in terms of the
charge-density operator (Longuet-Higgins, 1956) and of static and tran-
sition electron densities, PA(00|ry;11) and PE(00|rz;r2), PA(0i|ry;r1) and
PB(0j|r2;12), respectively on A and B. The non-expanded dispersion energy
between molecules A and B then takes the simple integral form:

Ujdﬁdr A(Oilry:r0) PP (0l :62) |

~dzsp 12
__ZZ P (4.17)

4.3.2 Expanded Energy Corrections up to Second Order

In molecules, the interaction depends on the distance R between their
centres of mass (c.o.m.) as well as on the relative orientation of the
interacting partners, which can be specified in terms of the five indepen-
dent angles® (6.4, 05, @, x4, x) shown in Figure 4.2. The first three angles
describe the orientation of the principal symmetry axes of the two
molecules, the latter two the rotation about these axes.

Expansion at long range gives rise to the typical R™” dependence of the
intermolecular interactions. The first components of the long-range
intermolecular interaction were studied by the author and coworkers in
two papers (Magnasco et al., 1988, 1990b), where the first few coefficients
of the R™" expansion were determined explicitly for atom—atom, atom—
linear molecule, and linear molecule-linear molecule systems.

In the first order of perturbation theory, the expanded electrostatic
energy gives rise to what is known as the interaction between permanent

5 These angles are simply related to the Euler angles describing the rotation of a rigid body (Brink
and Satchler, 1993).
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& s

B

Figure 4.2 The five angles specifying in general the relative orientation of two
polyatomic molecules. Reprinted from Magnasco, V., Methods of Molecular Quan-
tum Mechanics: An Introduction to Electronic Molecular Structure. Copyright (2009)
with permission from John Wiley and Sons

multipoles®. Since atoms have no permanent electric moments, their elec-
trostatic interaction at long range is zero. The values of the first three electric
moments at their equilibrium distances for a few molecules are given in
Table 5.2 of the next chapter, while Section 5.2.1 gives the explicit expres-
sions of the angular dependence of the first three terms of the expanded
electrostatic interaction beteween two hydrogen fluoride molecules.

The two papers cited above also give explicit expressions for the
polarization (induction) energies between polar molecules. They are
expressed in terms of permanent moments and static polarizabilities of
the interacting molecules. Both are observable quantities that can be
measured by experiment.

In what follows, we shall limit ourselves mostly to consideration of the
long-range dispersion interaction between: (i) two atoms; (ii) two linear
molecules A and B; and (iii) an atom A, at the origin of the intermolecular
coordinate system, and a linear molecule B, whose orientation with
respect to the z axis is specified by the single angle 6 (Figure 5.3 in the
next chapter).

The expanded dispersion energy involves the interaction between
induced moments on two atoms, the leading term describing the inter-
action between induced dipoles on A and B being:

A B
disp o C67 g 8/ o 6
E(6) =~ Fo = o 42 ol =G (418)

® An electric multipole is specified by its value of [ as 2/—pole (I = 1 dipole, I = 2 quadrupole,
I = 3 octupole, etc.). Hence, the electrostatic interaction is between 2/—2" poles, the leading
term for two dipolar molecules (I = /' = 1) being the dipole-dipole interaction.
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where Cg is the London dispersion coefficient, and:

AB

C11—4ZZa = H (4.19)

is the dipole-dipole dispersion constant in London form. It involves
knowledge of the pseudostate components’ of the static dipole polariz-

abilities of A and B:
A=) ot (4.20)

=) o (4.21)

where:

2
ot =2 (4.22)

1 8;

is the ith pseudostate contribution to the static dipole polarizability of
atom A, and:
2
af = zﬁ (4.23)
&j
is the jth pseudostate contribution to the static dipole polarizability of
atom B. u; and ; are the transition dipole moments on A and B, &; > 0 and
g; > 0 are the excitation energies from the ground states to the excited
pseudostates i and j. We notice that the pseudostate components of
the polarizabilities are not observable quantities, so that they cannot
be measured.
An alternative, yet equivalent, expression for the dipole dispersion
constant is the Casimir—Polder formula (Casimir and Polder, 1948):

Ci = % J du o? (in) o® (in) (4.24)
0

which involves integration over the frequency # of the frequency-

dependent polarizabilities (FDPs) at imaginary frequencies of the two
8

atoms”®.

7 See Section 1.3 of Chapter 1
8 u is the real frequency and i the imaginary unit (Z = —1).
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While the polarizability of the atom is isotropic, the linear molecule has
two dipole polarizabilities, o, the parallel or longitudinal component
directed along the intermolecular axis, and «,, the perpendicular or
transverse component perpendicular to the intermolecular axis (McLean
and Yoshimine, 1967). The molecular isotropic polarizability can be
compared to that of atoms, and is defined as:

ol +2a,

@=——a (4.25)

while:

Aa = a)—a] (4.26)

is the polarizability anisotropy, which is zero for a; = «.

The composite system of two different linear molecules has hence four
independent elementary dipole dispersion constants, which in London
form can be written as:

_SilEn 1 Eil&iL
B== Oy
A= S 422
(4.27)

S e D=Ly e
= e ) Lo —————
4 5 HS,‘L-FS/H 4 €1 +¢€.

For two identical linear molecules, there are three independent disper-
sion constants since C = B.

It has been shown elsewhere (Wormer, 1975; Magnasco and Ottonelli,
1999) that the leading (dipole—dipole) term of the long-range dispersion
interaction between two linear molecules has the form:

~ disp

E;" = —R™°Cq(64,08,¢) (4.28)

Cs(04,0B,¢) being an angle-dependent dipole dispersion coefficient,
which can be expressed (Meyer, 1976) in terms of associated Legendre
polynomials on A and B as:

Co(0a.08,0) = Cs Y _ v6*"*MP} (cos 04) P} (cos ) (4.29)
LalgM

where Ly, Ly = 0,2 and M = [M| = 0, 1, 2. In Equation (4.29), Cg is the
isotropic coefficient and Y, is an anisotropy coefficient defined as:

LaLyM
Cs

Cs

v M = (4.30)
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The different components of the Cg dispersion coefficients in the
LALgM scheme for: (i) two different linear molecules, and (ii) an atom
and a linear molecule, are given in Table 11.2 of Magnasco and Ottonelli
(1999) in terms of the symmetry-adapted combinations of the elementary
dispersion constants (Equations (4.27). For identical molecules, C = B
in (4.27), and the (020) and (200) coefficients are equal.

Therefore, the determination of the elementary dispersion constants (the
quantum mechanical relevant part of the calculation) allows for a detailed
analysis of the angle-dependent dispersion coefficients between molecules.

4.4 THE TWO-STATE MODEL OF LONG-RANGE
INTERACTIONS

We turn now to the more recently proposed two-state model of long-range
interactions (Magnasco, 2004b). It is of interest in so far as it avoids com-
pletely explicit calculation of the matrix elements (Equations 4.12-4.17)
occurring in RS perturbation theory, being based only on the fundamental
principles of variation theorem and on a classical electrostatic approach.

For the sake of simplicity, we mix in just two normalized states, an
initial state ¢, and a final (orthogonal) state s, the coefficients in the
resulting quantum state :

¥ =1yyCo+ ¢ Cq (4.31)

being determined by the Ritz method of Chapter 1, giving the 2 x 2 secular
equation:

Hyo—E H
o “ =0 (4.32)
Hoyt Hnp—E
which has the real roots:
_Hopo+Hip A
S )
(4.33)

A= [(Hll—HOO)Z + 4(H01)2} v

Since now 0 < |Hy1| < H11—Hoo, the Taylor expansion of A we did in
Chapter 2 gives for the lowest root the approximate form:

[Hoi|*

E~ Hpp— ——201
Hi1—Hy

(4.34)
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Hol* _ B

AE = E—Hop ~ — —-20U__ _
00 Hy1—Hoyo Ae

(4.35)
where the energy lowering AE is properly described as a small effect,
second order in |Ho1| = |B], which involves a transition from ¢y, to ¢; with
a (positive) excitation energy Hi1—Hgo = Ae.

As an example, explicit expressions of B8 can be given in the case of the
dipole polarizability of the H atom and for a few simple VdW interactions
which depend on the electrical properties of the molecules such as electric
dipole moments and polarizabilities (Stone, 1996). As we have already
said, these dipole moments, and the higher ones known generally as
multipole moments, can be permanent (when they persist in absence of
any external field) or induced (when due, temporarily, to the action of an
external field and disappear when the field is removed).

An atom or molecule distorts under the action of an external field, the
measure of distortion being expressed through a second-order electrical
quantity called the (dipole) polarizability a, which we define in terms of a
transition moment u; from state ¢ to ¢; and an excitation energy &; as:

2
o 2H (4.36)

&i

The interaction of the induced dipole u; with the external field F is:

B = —uF (4.37)

with a second-order energy lowering that, for a small field, is given by:
B* w F* 1/2u7\ L

AE=_FP W (Mg 4F 438

AE & 2 s 2 (*+38)

where a is the dipole polarizability of the atom. From this relation follows
that we can define « as the negative of the second derivative of the energy
with respect to the field F evaluated at F = 0:

d*AE
F=0

We have seen that polarizabilities are isotropic for atoms, but are
anisotropic for molecules, showing different response for different direc-
tions of the field. For linear molecules we have parallel or longitudinal,
a), and transverse or perpendicular, a, components in terms of which
the isotropic polarizability @ and the anisotropy factor Aa are defined
(Equations 4.25 and 4.26 of Section 4.3.2). For nonlinear molecules « is
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given by a polarizability tensor whose nonvanishing components depend
on molecular symmetry (Buckingham, 1967). The isotropic polarizability
of molecules can be directly compared with the polarizability of atoms.
The key role of atomic polarizabilities in assessing intermolecular poten-
tials in a variety of systems has been widely documented (Cambi et al.,
1991; Aquilanti et al., 1996).

We now turn to consideration of VAW interactions.

4.5 THE van der WAALS INTERACTIONS

As we have seen, the second-order VAW interactions are: (i) the distortion
(induction or polarization) interaction, where an atom or molecule is
distorted by the permanent electric field provided by a second molecule;
and (ii) the dispersion interaction, whose leading term arises from the
simultaneous coupling of the mutually induced dipoles on the two
molecules (Buckingham, 1967; Stone, 1996; Magnasco, 2007, 2009a).
The dispersion energy, whose name is derived from the fact that the
physical quantities involved are the same as those determining the
dispersion of the refractive index in media, is recognized as an interatomic
or intermolecular electron correlation (Magnasco and McWeeny, 1991),
and is called London attraction from the name of the scientist who first
explained why two ground state H atoms attract each other in long range
(London, 1930a, 1930b).

At the large distances at which they usually occur, VAW forces result
mostly from weak attractive interactions described by second-order
processes whose energy lowering is:

AE=-"_<0 (4.40)

as we have shown before. Here, Ae = ¢; or &; for induction (single exci-
tation on A or B), Ae = &; + &; for dispersion (double simultaneous excita-
tions on A and B), and, for the leading terms, 8% = u, (FB)Z, where u; is
the dipole on A induced by the field of B.

Let us consider in greater detail the long-range interaction of an atom A
(at the origin of the coordinate system) with an atom (or linear molecule) B,
whose centre of mass has coordinates R, 0, ¢. The problem has been fully
treated by Buckingham (1967) using Rayleigh—Schrédinger perturbation
theory in terms of cartesian tensors, and by Magnasco et al. (1988, 1990b)
in terms of spherical tensors. For the sake of simplicity, we shall give here an
elementary derivation in terms of classical electrostatics by considering the
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field at A due to a point-like dipole (permanent or induced) at B. The electric

potential at A due to the dipole u; at B (Coulson, 1958)

mi-R1
Vg = B R [sm (1 cOS @ + w;y sin @) + p,, cos 0} (4.41)
originates the electric field (a vector):
Fgp=—-VVp (4.42)
having spherical components:
A% 2
(Fp)g = — 6—RB 8 [sm (1 cOS @ + w;, sin @) + p,, cos 0} (4.43)
oV 1 .
(Fg)g=— R—GI; = 3 [cos 61 COS @ + ;y sin @) —pu,, sin 0} (4.44)
oVsp 1 .
(FB)¢ = —mz —ﬁ(—ﬂ,’x S ¢ + pjy, COS ®) (4.45)
The square of the electric field of B at A will be
(Fg)* = Fg - Fg = (Fp)g + (Fs); + (Fa);
1 | (3cos?d+ 1);1,72 + (4—3 cos? )(/.L/x cos? ¢+ p,/y sin’o)
~ R6
R®| 4 (K7 sin?@ + '“iy cos?p)
(4.46)

where only diagonal terms have been retained, since off-diagonal terms do

not contribute to the integral B.
Different local symmetries on B generate different fields

(i) Isotropic dipole: p;, = p;, = wy = y,
(ra)? = 242 (4.47)
(i1) Cylindrical dipole: Mip = Ky My = Hjy = M
(Fp)’ = =7 [(3 cos?6 + 1)pd + (53 cos’) 3 J (4.48)
(iii) Unidimensional dipole: w;, = pp, p; = pjy =0
(4.49)

2_M%; 2
(Fp) —ﬁ(3cos 6+1)



THE van der WAALS INTERACTIONS 161

We are now in a position to discuss, in a unified way, atom-atom
dispersion, atom-linear molecule dispersion, and atom-linear dipolar
molecule induction.

4.5.1 Atom-Atom Dispersion

In this case, u;, u; are both isotropic induced dipoles, and we have for the
energy lowering:

B 6w
AE = ——
Ase RS gitg
_ 61 (2} (28] e (4.50)
~ R%4 & & eiteg .
61 8,‘8]' C6
= ———aq,q; =——
R64 IS,‘—FS/ R6

which is the well-known London dispersion formula. Generally speaking,
we can have several simultaneous dipole excitations on A and B (the
corresponding final states are often referred to as dipole pseudostates), so
that we can write:

Ce=6x~ Z Z a oz,
where Cg is the London dispersion coefficient, and:
1 &Ei&j
—- i 4.52
Ci 4Zi:z,-:aa7'9i+8i ( )

is the dispersion constant in London form, while 6 is a geometrical factor.

The leading term of London attraction has an R~ dependence on R,
the Cs coefficient involving knowledge of the individual nonobservable
(i.e., nonmeasurable) contributions from each excited pseudostate to the
polarizabilities of A and B, as given by Equations (4.22) and (4.23).

Accurate values of Cg dispersion coefficients can be calculated
through a generalization of the London formula in terms of the so called
N-term dipole pseudospectra {«;, &}(i = 1,2, --- ,N) of the monomers
(Magnasco and Ottonelli, 1999). Less important higher terms, going as
R=3 R~19 ... arise from the coupling of higher induced moments on A
and B (Buckingham, 1967; Magnasco and McWeeny, 1991).

= 6Cn (4.51)




162 THE van der WAALS BOND
4.5.2 Atom-Linear Molecule Dispersion

Wi 1s now an isotropic induced dlpole onatom A, u; a cylindrically induced
dipole on the linear molecule B” with components s ki1 - We then have
for the energy lowering the sum of separate contributions from parallel
and perpendicular components:

Bl B2 T o
AE=——1 - ~L — _ — (3cos’0+1 7"‘4— 5—3cos?f) —
AEH Ae | RS ( )8,‘4—87‘“ ( )8i+3jL
1 |3cos?0+1 &i&j| 5—-3cos?0 £i&j1
=R aiaj) aicj|
R 4 gitég 4 gite&

(4.53)

Considering several dipole excitations, we can write for the two
dispersion constants in London form:

2 :2 : £i&j||
4 II|8'+87‘H
= e,
=— 0|

4 5 ! git¢&j1

so that the angle-dependent Cg dispersion coefficient for the atom-linear
molecule interaction will be:

(4.54)

Cs(0) = (3 cos*0+1)A + (53 cos*0)B (4.55)

This expression is usually written in terms of the Legendre polynomial
P>(cos 0) (Abramowitz and Stegun, 1965):

Cs(0) = Cs[1+v4P2(cosb)] (4.56)
where:
Cs = 2A +4B (4.57)
is the isotropic coefficient for dispersion, and:
A—-B

? Ais at the origin of the coordinate system, while molecule B is at an angle 8 with respect to the
intermolecular z axis.
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the anisotropy coefficient for dispersion. Cg can be obtained from the pre-

vious angle-dependent expression by averaging over angle 6, whereas y,

describes in a standard way the orientation dependence of the coefficient.
In fact, since (cos 6 = x):

1
[ dxx?

2, _ -1 _
(cos™0) = —; =

| dx
1

1
3 (4.59)

averaging Equation (4.55) over 6, we obtain for the isotropicCg disper-
sion coefficient:

(Ce) = <3 X % +1>A+ <5—3 x %)B —2A+4B=Cs  (4.60)

The same result is obtained from Equation (4.56), since the average of
P;(cos 6) over angle 6 is zero:

(P>(cos 0)) = ; (cos? B) —

X

=0 (4.61)

N =
\STNON}
Q| =
N =

4.5.3 Atom-Linear Dipolar Molecule'® Induction

; is now an isotropic induced dipole on atom A, p; = p;, = pg the
unidimensional permanent dipole of a noncentrosymmetric neutral
linear molecule B. We then have for the energy lowering (induction,
B polarizes A):

B? 3cos?0 + 1 u;? 3cos’ 0+ 1ajuf _ G(8)

= —-—— 2 = — —
AEps = c G p Mg ) R6 RS
(4.62)
where Cy(6) is the angle-dependent induction coefficient:
3cos?0+1
Col0) = i =25
(4.63)

= a;u3[1+ P>(cos 0)]
= Cg[1 +v4P2(cos 0)]

10 Namely, a molecule possessing a permanent dipole moment.
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Here:
Co = aju} (4.64)
is the isotropic coefficient, and:
Yo =1 (4.65)

the anisotropy coefficient for induction. Averaging over angle 6, we get for
the isotropic polarization of A by B (e; = aa):

2
a
AEpy = — =%t (4.66)

We have a similar result for a dipolar molecule A distorting B, so that on
average:

aapd + aBM,zq

AE = AEgs +AE p = — G (4.67)
and, for identical molecules:
2au? Cs

Even the leading term of the induction (polarization) energy has an R~°
dependence on R with an isotropic C¢ = 2au?, but the coefficient depends
now on observable quantities (a, ) that can be measured by experiment.
This makes an important difference from dispersion coefficients that
should be noted.

Isotropic Cg dispersion and induction coefficients (in atomic units) for
some homodimers of atoms and molecules taken from the literature are
compared in Table 4.1. We see from the table that the distortion energy is
zero for atoms, which do not have permanent moments, and is always
smaller than the dispersion energy for the molecules considered, with the
only exception of (LiH),. The dispersion energy (London attraction) is
therefore the dominant VAW interaction,'! the only one for atoms. The
large value for the distortion energy in (LiH), is due to the combined large
values of u and & for LiH, —2.29ea, and 28.5a}, respectively (Bendazzoli
et al., 2000).

1 Note, however, the importance of the temperature-dependent Keesom effect for dipolar
molecules in the gas phase.
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Table 4.1 Comparison between isotropic Cg dispersion and induction coefficients
(Epa§) for some homodimers of atoms and molecules

Atom—-atom Dispersion Induction Molecule-molecule Dispersion Induction

He, 1.46 0 (H,), 12.1 0
Nez 6.28 0 (Nz)z 73.4 0
H, 6.50 0 (CO), 81.4 0.05
Ar, 64.3 0 (CO,)2 159 0
Kr, 130 0 (CH4)» 130 0
Be, 213 0 (NH3)» 89.1 9.82
Xe; 286 0 (H20), 45.4 10.4
Mg, 686 0 (HF), 19.0 6.30
Li, 1450 0 (LiH), 125 299

4.6 THE C4 DISPERSION COEFFICIENT FOR THE H-H
INTERACTION

The excited pseudostates occurring in Equations (4.18) and (4.19) can be
obtained using the extension of the Ritz method to the calculation of
second-order energies introduced in Chapter 1.

The dipole pseudospectra of H(1s) for N = 1 through N = 4 are given
in Table 4.2. The two-term approximation gives the exact result for
the dipole polarizability @, the same being true for the three-term and
the higher N-term (N > 3) approximations. In all such cases, the dipole
polarizability of the atom is partitioned into an increasing number N of
contributions arising from the different pseudostates:

N
a= Za,- (4.69)
i=1

Table 4.2 Dipole pseudospectra of H(1s) for N = 1 through N = 4

] 0(,'/61(3) 8,'/Eh Zai
1 4.000 000 x 10° 5.000000 x 10~* 4.0
1 4.166 667 x 10° 4.000000 x 107!

2 3.333333x 107" 1.000 000 x 10° 4.5
1 3.488 744 x 10° 3.810911 x 10~

2 9.680101 x 107" 6.165762x 107!

3 4.324577 x 1072 1.702 333 x 10° 4.5
1 3.144 142 x 10° 3.764643 x 107!

2 1.091451 x 10° 5171051 x 107"

3 2.564244 x 107" 9.014629 x 107"

4 7.982236 x 1073 2.604 969 x 10° 4.5
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This increasingly fine subdivision of the exact polarizability value into
different pseudostate contributions is of fundamental importance for the
increasingly refined evaluation of the London dispersion coefficients for
two H atoms interacting at long range. It can only be said that, in general,
the N-term approximation will involve diagonalization of the (N x N)
matrix M generalizing Equation (1.64) of Chapter 1, its eigenvalues being
the excitation energies &; and its eigenvectors the corresponding N-term
pseudostates {#;}i = 1,2, --- , N. For a given atom (or molecule), knowl-
edge of the so-called N-term pseudospectrum {a;,&}i=1,2,--- N,
allows for the direct calculation of the dispersion coefficients of the
interacting atoms (or molecules).

In this way, for each H atom, the calculated dipole pseudospectra
aj,&)i=1,2, --- N of Table 4.2 can be used to obtain better and better
values for the Cs London dispersion coefficient for the H—H interaction: a
molecular (two-centre) quantity Cg can be evaluated in terms of atomic
(one-centre), nonobservable, quantities, a; (a alone is useless). The
coupling between the different components of the polarizabilities occurs
through the denominator in the London formula (4.19), so that we cannot
sum over i or j to get the full, observable,"*a* or o®.

Using the London formula and the pseudospectra derived previously,
we obtain for the leading term of the H-H interaction the results collected
in Table 4.3. The table shows that convergence is very rapid for the H-H
interaction.'® Unfortunately, the convergence rate for Cq (as well as that
for a) is not so good for other systems (Magnasco, 2009a).

We have already said that an alternative, yet equivalent, formula
for the dispersion constant is due to Casimir and Polder (1948) in terms
of the frequency-dependent polarizabilities (FDPs) at imaginary frequen-

Table 4.3 N-term results for the Cy; dipole dispersion constant and the C¢ London
dispersion coefficients for the H-H interaction

N C11/Ea}§ Cs/Epal Accuracy(%)
1 1 6 92.3

2 1.080357 6.4821 99.7

3 1.083067 6.4984 99.99

4 1.083167 6.49900 99.999

N 1.083170 6.49902 100

12 That is, measurable.

13 The first approximate value (6.47) of the Cy dispersion coefficient for the H-H interaction was
obtained by Eisenschitz and London (1930) from a perturbative calculation using the complete
set of H eigenstates following early work by Sugiura (1927).
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cies of A and B, Equation (4.24). In this case, we must know
the dependence of the FDPs on the real frequency #, and the coupling
occurs now via the integration over the frequencies. When the necessary
data are available, however, the London formula (4.19) is preferable
because use of the Casimir-Polder formula (4.24) presents some problems
in the accurate evaluation of the integral through numerical quadrature
techniques (Figari and Magnasco, 2003; Magnasco and Figari, 2009).
We give below the explicit London-type calculation for N = 2:

2
5 2 —x1
1(25\" 2 1/(2 1 25 2 9
Cn(two—term):g < x§+§ 73 X1+§X?XEX27
5

=
_5><5><25><2+ 4 +5><5><2><5
T 2x4x36x5 2x4x36 36 x5x7
125 1 50 1089 121
“4x36 T2x36  7x36 1008 112 08037

so that the two-term approximation gives the dispersion constant as the
ratio between two integers that are not divisible! However, this explicit
calculation is no longer possible for N > 2 so that we must resort to the
numerical method."*

4.7 THE van der WAALS BOND

On the basis of what we have said so far, we conclude that a van der Waals
bond between two closed-shell atoms can be formed, at the minimum
point of the potential energy surface, as a result of the overwhelming at
long range of a weak Pauli repulsion (xexp(—aR)) by a weak London
attraction (oc R~®). Figure 4.3 shows the formation of the VAW minimum
for two ground state He atoms as a result of the first-order Pauli repulsion
E, and the second-order London attraction E;. A small potential well with
D, = —33.4 x 107°E}, is then formed at the rather large interatomic
distance of R, = 5.64,. For neutral molecules, electrostatic interactions
are important as well, giving contributions going as R~3 for the leading
dipole—dipole interaction (non-centrosymmetric molecules), and R~ for

4 We must diagonalize the matrix representative of the excitation operator Hy—Eq over the
appropriate basis.
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Figure 4.3 Origin of the VAW bond in He, (1Zg+ )

the quadrupole—quadrupole interactions (centrosymmetric molecules).
The latter are responsible for the typical T-structure observed for the
dimers of H,, N, and F,, as will be seen in Section 5.3 of the next
chapter.

An approximate non-expanded potential energy curve of the (H,0),
dimer evaluated by Magnasco et al. (1985) is schematically shown in
Figure 4.4. We see that the first-order interaction E; already shows, in this
range of internuclear distances, a minimum, chiefly due to the first-order
electrostatic component, while second-order interactions (induction
plus dispersion) simply deepen such a minimum, strengthening the bond.
It is appropriate in this case to speak of formation of a hydrogen bond,
essentially electrostatic in origin. It is of interest to notice the change in
the scale factor for energy, from 10~ °E,, for He, (VAW bond) to 10°E,
for (H,0), (H-bond), even though roughly in the same region of

AEJI03E,

(10),

R/ ay

Figure 4.4 Origin of the hydrogen bond in (H,O), (1A1)
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Table4.4 Bond distances R, and bond strengths D, (atomic units) at the minimum of
the potential energy surface for some homodimers of atoms and molecules

Atom-atom  R./ag Dg/1076Eh Molecule-molecule  R./ag D€/10’3Eh

HCY,) 7.8 20.5 (H,), 6.5 0.12
He, 5.6 33.4 (N3), 8.0 0.39
Ne, 5.8 133 (CH,), 7.3 0.69
Ar 7.1 449 (NH;), 6.2 6.47
Kr, 7.6 633 (H,0), 5.4 10.3
Xe, 8.2 894 (HF), 5.1 11.4
Li*Y,") 8.0 1332 (BeH,), 52.2
Be, 4.7 2694 (LiH), 4.0 75.8

intermolecular distances (5.6a, for He,, 5.4a for the H,O dimer), just to
outline that the H-bond has an energy comparable to that of a weak
chemical bond. H-bonding will be treated in detail in the next chapter.

The structures of VAW dimers, considered as weakly bounded
complexes in which each monomer maintains its original structure
(Buckingham, 1982), are studied at low temperatures by sophisticated
experimental techniques, such as far infrared spectra, high-resolution
rotational spectroscopy in the microwave region, and molecular beams.
Distances R, between the centres of mass and bond strengths D, at the
VdW minimum for some homodimers of atoms and molecules taken from
Literature are collected in Table 4.4.

We notice from the table how large R. and how small D, values
characterize our VAW dimers with respect to the corresponding values of
the chemical bonds reported in Table 2.1 of Chapter 2. The sensibly larger
D. values observed for the dimers of first-row hydrides (NH3),, (H,O),,
(HF),, (BeH,),, (LiH), denote formation of a XH—X hydrogen bond,
particularly strong in (LiH),, where it is of the order of a chemical bond.

4.8 THE KEESOM INTERACTION

The electrostatic energy E;(es) is zero when averaged over the angles
describing the relative orientation of the two interacting molecules.
However, Keesom (1921) showed that if two dipolar molecules undergo
thermal motions, they attract each other according to:

Ce(T)
RE

E¢(Keesom) = — (4.70)
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Cs(T) being the temperature-dependent coefficient:

2p5 5

Ce(T) = LT (4.71)
where T is the absolute temperature and k the Boltzmann constant. The
corresponding attractive energies (4.70) are the isotropic electrostatic
contributions to the interaction energy and are temperature-dependent.
The Keesom formula (4.70) is easily derived (Magnasco, 2009a) by
taking the Boltzmann average of the dipolar interaction over the angles of
relative orientation of the two molecules for small values of the dimen-

sionless parameter:

_ Halp
=~ R3ET <0 (4.72)
It may be helpful for the reader to recall briefly the derivation of the
Keesom formula.
The interaction between point-like dipoles (Coulson, 1958) is:

_ FaAMB
V= RS
where ¢ = @5 — @p is the dihedral angle between the planes specified by

ma, ps and R.
We put:

(sin B4 sin O cos p—2cos 04 cos Op) (4.73)

Q =04, 03,
A (4.74)
F(£2) = sin 64 sin O cos ¢—2 cos H4 cos O

If all orientations were equally probable, the average potential energy
(V), and hence the first-order electrostatic C; coefficient (Magnasco 2007,
2009a; Magnasco et al., 1988), would be zero. In fact:

dQ F(0
(v, = M%’;B IQIO d(g ) -0

(4.75)

since, putting:
xa = cos By, xp = cosOp (4.76)
we have:

2n n T 1 1
Jd.() = Jdgo Jd@Asin 04 JdBB sinfp = 27 J dx, J dxg =8n (4.77)
0 0 21

0 0 -1
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Jdﬂ F2) = quo cosp [j dx(l—xz)l/z} —Zquo [j dxx} =0

(9] 0 -1
(4.78)

The vanishing of the average potential energy for free orientations is
true for all multipoles (dipoles, quadrupoles, octupoles, hexadecapoles,
etc.).

The Boltzmann probability for a dipole arrangement whose potential
energy is V is proportional to:

W o exp(—V/kT) (4.79)

We now average the quantity Vexp (—V/kT) over all possible orientations
Q assumed by the dipoles:

Jdn F(Q) explaF((2)]

(Vexp(~V/kT)), = HALEL (4.80)
R Jd.() explaF(Q)]
0

where the parameter a was introduced in Equation (4.72).
We then obtain:

d F(2) exp[aF(2)]
(V exp(=V/kT)), = £4524
(0]
- "“%‘;B d% In K(a)
where
K(a) _J dQexp [aF(2)] (4.82)
0

is called the Keesom integral.
We evaluate Equation (4.81) for a=small (high temperatures and
large distances between the dipoles), by expanding the exponential in



172 THE van der WAALS BOND

Equation (4.82):

J)d!) explaF(0)] ~ Jdﬂ {1 +aFQ)+ % F@)? + - } (4.83)

where we have just seen that, in the expansion, the second integral
vanishes, so that only the quadratic term can contribute to the Keesom
integral.

We have:

szn F)?

2n T n
= Jdgo JdGAsin 04 JdOB sin Op (sin2 64sin” Opcos’ @ + 4cos® O4cos’ 03)
0 0 0

= 871%
(4.84)
so that
a* 5 a?
Jd!) 0 = 8L (4.85)
2 3
0
Then:
Clz 2 Clz
Jd() {1 + jF(Q) } = 87r<1 + §> (4.86)
0
d a? 1 2 2
$1H|:87T<1+?>:| :@Xgawga (487)

for a = small. Hence, we obtain the final result for the average attraction
energy between the dipoles:

2 2 2.2

(Vexp(—V/ET)), ~ M%'L;Bga - —3/7[“?{?3 (4.88)
which is known as Keesom or dipole orientation energy, Equations (4.70)
and (4.71). Even this term depends on R, but is temperature-dependent

and decreases in importance with increasing T.
It is of interest to compare the relative importance of all attractive
contributions to the intermolecular energy in the VdW region. For atoms
and centrosymmetric molecules, induction is zero, so that the only
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Table 4.5 Comparison between isotropic Cg coefficients (E,a,°) for some homo-

dimers of atoms and molecules at T=293K

Atom-atom Dispersion Molecule-molecule Dispersion Induction Keesom

Hez 1.46 (Hz)z 12.1 0 0
Nez 6.35 (Nz)z 73.4 0 0

H, 6.50 (CO), 81.4 0.05 0.002
Ar, 64.9 (NO), 69.8 0.08 0.009
Kr, 129 (N,0O), 184.9 0.19 0.017
Be, 213 (NH3), 89.1 9.82 81.3
Xey 268 (H,0), 45.4 10.4 204
Mg, 686 (HF), 19.0 6.3 227

Li, 1450 (LiH), 125 299 8436

contribution comes from attractive dispersion. For dipolar molecules
induction is usually negligible with respect to dispersion except perhaps
for (LiH),. The electrostatic energy is not zero when its thermal average is
taken. The corresponding Keesom attractive energies (Equation 4.70) are
hence the isotropic electrostatic contributions to the interaction energy
and are temperature-dependent. A comparison between isotropic Cg
coefficients for some homodimers at T=293K is given in Table 4.5. It
is seen that Keesom Cg4(T) is negligible compared with dispersion and
induction coefficients for the homodimers of CO, NO, N,O, while for
(NH3),, (HF),, (H,O), Keesom dipole orientation forces become in-
creasingly dominant at room temperature, so they cannot be neglected in
assessing collective gas properties such as the equation of state for real
gases and virial coefficients.

Battezzati and Magnasco (2004) gave an asymptotic evaluation of the
Keesom integral (4.82) for a=large (low temperatures and small dis-
tances between the dipoles), obtaining the formula:

K(a) = 43—”6"1’27;2") (1_327;> (4.89)

Magnasco et al. (2006) recently extended Keesom’s calculations up to
the R~10 term, showing that deviations of the Keesom approximation'’
from the full series expansion are less important than consideration of the
higher-order terms in the R=>" expansion of the intermolecular potential.
The validity of the Keesom two-term approximation with respect to the
complete series expansion is thus very good, and is best studied by
comparing the respective logarithmic derivatives.

15 Expansion of the exponential stopped to the second power of Q=0,, 05, ¢.
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Table 4.6 Dimensionless Keesom parameters |ajy| and T-dependent Cy,(1,1")
Keesom coefficients

1 1' | Con(L1)

1 1 wipd 2(py ") ()
R3KT 3kT

1 2 3ufub () ()
2R4RT kT

2 1 3psut (1) (ub)*
2R4RT KT

1 3 piud 4(pf)* (ud)?
2RSKT 3kT

3 1 s ub 4(pd)* (ud)?
2RSKT 3kT

2 2 3ufub 14(3)* (u5)?
4RSET SET

Table 4.6 gives the dimensionless Keesom parameters |a;| and the
T-dependent Cy,, (I, ") Keesom coefficients for [, I' = 1,2, 3 calculated from
the electrostatic potentials given in Equations (5.3-5.8) of the next chapter,
using the same techniques as we did before for the dipole-dipole term.

The numerical values of the Keesom coefficients for some homodimers
in the gas phase at T=293K are collected in Table 4.7.

The long-range electrostatic Keesom attractive energies up to the R~1°
term (107°E,) for some homodimers in the gas phase at R = 10ag
and T = 293K are reported in Table 4.8, while the R~ electrostatic
contributions E¢(es) are compared in Table 4.9 with the corresponding
dispersion contributions E¢(disp). It must be noted that the R~1° contri-
bution is complete only for the homodimers of CO, HCI and HF, the

Table 4.7 Numerical values of Keesom coefficients (atomic units) for some homo-
dimers in the gas phase at T=293K

Molecule Cé(l, 1)/E17¢18 Cg(l,Z)/Ehag C10(1,3)/Eha(1)0 C10(2,2)/Eha(1)0

CO 2.693 x 1073 4.508 x 10° 3.330 x 10* 1.409 x 10*
HCI 2.300 x 10! 1.374 x 103 3.991 x 103 1.533 x 10°
NH; 8.074 x 10! 2.168 x 103 1.087 x 10°
HF 1.765 x 10? 1.562 x 103 4.451 x 103 2.580 x 10*
H,O 2.007 x 10? 5.695 x 10° 3.017x 107!
LiH 1.989 x 10* 5.439 x 10* 2.766 x 10°
H, 1.131 x 102
N, 3.530 x 10°
0, 2.444 x 101

CO, 3.085 x 10°
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Table 4.8 Long-range electrostatic Keesom attractive energies (107°E},) for some
homodimers in the gas phase at R = 10ap and T = 293K

Molecule —E¢ —Eg —Eqo —E(es)

CO 2.693 x 1073 9.016 x 1072 1.416 x 10° 1.509 x 10°
HCI 2.300 x 10* 2.748 x 10* 1.613 x 10" 6.661 x 10"
NH; 8.074 x 10! 4.336 x 10" 1.087 x 10! 1.350 x 10?
HF 1.765 x 10> 3.124 x 10! 3.470 x 10° 2.112 x 10?
H,0 2.007 x 10% 1.139x 107! 3.017 x 1073 2.008 x 10?
LiH 1.989 x 10* 1.088 x 10° 2.776 x 10* 2.101 x 10*
H, 1.131x 1072 1.131x 1072
N, 3.530 x 107! 3.530 x 107!
0, 2.444 x 1073 2.444 x 1073
CO, 3.085 x 10* 3.085 x 10!

remaining values giving only the quadrupole-quadrupole contribution. It
is well known (Magnasco, 2007, 2009a) that, except for LiH, induction
energies are always sensibly smaller than dispersion.

It is seen from the tables that the electrostatic contribution Eg(es) is
smaller than dispersion only for CO and HCI (|a;1| = 2.086 x 10~ and
0.1928, respectively), being of the same order of dispersion for NH;
(0.3612), and decidedly larger for HF, H,O (0.5341 and 0.5695) and
LiH (5.671). The Keesom series is apparently divergent for CO, practi-
cally a quadrupolar molecule, so that it might be not unexpected that the
largest contribution to the electrostatic energy comes from the quadru-
pole—quadrupole term. Convergence seems rather poor for HCI, all
higher-order terms being of the same order as the leading term, while it
is better for NH; and HF. HF is the only case where the dipole—quadrupole
contribution is one order less than the leading dipole—dipole term. The
dipole—octupole plus quadrupole—quadrupole contribution for HF is one

Table 4.9 Comparison between R~ attractive electrostatic and dispersion energies
(107°E,,) for some homodimers at R = 104y and T = 293 K

Molecule —Eg(es) —Eg4(disp)

CO 2.693 x 1073 8.140 x 10!
HCl 2.300 x 10° 1.304 x 102
NH; 8.074 x 10! 8.908 x 10!
HF 1.765 x 10? 1.900 x 10!
H,O 2.007 x 10% 4.537 x 10"
LiH 1.989 x 10* 1.250 x 102
H, 1.211 x 10!
N, 7.339 x 10!
0, 6.201 x 10*

CO, 1.587 x 102
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order less than the dipole—quadrupole, and two orders less than dipole—
dipole. So, the series expansion in R~ for HF-HF shows very good
convergence. Anyway, it must not be forgotten that the series in R~ has
asymptotic properties, though it may converge also for finite R, provided
that the charge distributions are sufficiently concentrated around their
centres. H,O is left with a large axial dipole—dipole contribution only,
since, as already said, its large dipole—transverse quadrupole contribution
cannot be accounted for at the present level of the theory.'®

As expected, Tables 4.8 and 4.9 show that for centrosymmetric mo-
lecules the electrostatic contribution (going as R~!°) is practically negli-
gible with respect to dispersion (going as R~°), being four orders smaller
for O,, three for H,, two for N, and only one for CO,.

The case of LiH is a very particular one, because of its very large value
of |aj1]. The corresponding Cs Keesom coefficient is hardly reliable,
the complete series expansion showing that a reduction of over 57%
is needed for C4 (8.475 x 10° Eja$ with n = 17) and about 5% for Cg
(5.169 x 10* Eja8 with n = 7). The two-term asymptotic formula (4.89)
given by Battezzati and Magnasco (2004) yields 8.436 x 10° Eja8,
which is within 0.5% of the complete series expansion result. So, the
simple two-term formula (4.89) is expected to work well for other
fluorides and chlorides of the alkaline metals (considered as gaseous
diatomic molecules), all of which have even larger values of the
dipole—dipole constant |ay1].

16 Only linear point-like multipoles directed along the main symmetry axis are considered.
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The Hydrogen Bond

5.1 A Molecular Orbital Model of the Hydrogen Bond
5.2 Electrostatic Interactions and the Hydrogen Bond
5.2.1 The Hydrogen Fluoride Dimer (HF),
5.2.2 The Water Dimer (H,0),
5.3 The Electrostatic Model of the Hydrogen Bond
5.4 The Rg-HF Heterodimers

In this chapter, we shall examine two different approaches to explain
the nature of the hydrogen bond and the structure of H-bonded dimers.
First, a qualitative MO model where H-bonding is assumed to stem
from electron transfer from an electron-rich donor MO on one partner
to an electron acceptor MO? centred at the H atom of the partner
molecule. Second, a quantitative electrostatic approach, where the H-
bond and the shape resulting therefrom for the dimers, can be under-
stood in terms of the long-range interactions between the first few
permanent multipole moments of the interacting molecules, yielding the
electrostatic model.

! HOMO, mostly a lone pair or a multiple bond.
2 An empty MO (LUMO).

Models for Bonding in Chemistry Valerio Magnasco
© 2010 John Wiley & Sons, Ltd
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5.1 A MOLECULAR ORBITAL MODEL OF THE
HYDROGEN BOND

The possibility of electron transfer from a donor to an acceptor molecule is
shown schematically for some homo- and heterodimers in the drawings of
Figure 5.1. Figures 5.1(a,b) on (HF), show the possibility of favourable
electron transfer from F lone pairs (doubly occupied HOMOs) to a vacant
(empty LUMO) orbital on H, (a) suggesting o charge transfer from F to H,
(b) 7 charge transfer from F to H (doubled because of the degeneracy of the
7 level). As a result, the dimer would acquire the non-collinear C;
geometric structure depicted in Figure 5.5 and observed by experiment
(0 = 60°). The same can be said for Figures 5.1(c,d) which suggest a
possible explanation for the observed C; structure of Figure 5.6 for the
(H,0), dimer (a = 60°). Figure 5.1(e) shows the possible formation of a
T-shaped C,y structure of the dimer C;H, —HF, where the triple bond of
acetylene acts as electron donor to H, as suggested by ab initio calculations
by Pople (1982). Finally, Figures 5.1(f,g) show the possibility of H-
bonding of NH; and CO, with HF, where ¢ HOMO lone pairs on N
and O act as electron donors to the empty LUMO of HF.

To get an idea of the energy lowering involved in the formation of the
hydrogen bond in some typical dimers, we use the model long-range
formula:

H
(2

H—F<3C>H—F  (F()C>H—F
a b
/ /
HH/\0<B C_‘>H—0/ ()o(:) C>H—0
c o “ d
& H
(|||=) C>H—F \/«CB C>H—F
C”e H

I f
H H

O0=(C=0<3 C=H—F

g

Figure 5.1 Possible HOMO-LUMO electron donation for some H-bonded dimers
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B _
v
where, as usual, the as replace the appropriate molecular orbital energies
&, Aa = aryMmo—agoMO & ELumMo —€HOMO, and the bond strength D, is
taken as the negative of the intermolecular energy at the minimum of the
potential energy curve. From Equation (5.1), an estimate of the intermo-
lecular interaction integral |8l is obtained if we use the data from the last
column of Table 4.4 of the previous chapter in conjunction with calcu-

lated values of Aa:
D, Aax 1/2
Bl = (25) (52)

AE = -2 -D, (5.1)

Table 5.1 gives for four simple molecules the values of HOMO/LUMO
orbital energies calculated with accurate augccpVITZ-GTO? basis sets at
the University of Modena and the values of the intermolecular IBls
resulting from Equation (5.2).

In the table, R is the distance between the centres of mass of the
interacting molecules, roughly corresponding to the sum of the van der
Waals radii of each monomer. It is seen that the estimated values of |8l for
the H-bonded dimers between the two dipolar molecules, (HF), and
(H,0),, are 5-10 times larger than the values resulting for the VdW
dimers of the centrosymmetric molecules H, and N,, whose first non-
vanishing electric moment is the quadrupole. This suggests the electro-
static interaction as a possible source of H-bonding, as we shall see in the
next section. These values of |8 have nearly the same order of magnitude
as those occurring for the corresponding monomers (see Table 2.8 of
Chapter 2), suggesting that the H-bond has a strength not far from that of
a weak chemical bond.

5.2 ELECTROSTATIC INTERACTIONS AND THE
HYDROGEN BOND

The Rayleigh-Schrédinger perturbation theory of the previous chapter
(see Magnasco, 2007, 2009a) suggests that, in the VdW region, two
typical factors can originate a hydrogen bond in a dimer: (1) the first-
order electrostatic interaction in the case of homo- and heterodimers of

3 Augmented-correlation-consistent polarized-valence triple zeta GTOs (Magnasco, 2009a).
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Table 5.1 Best values of HOMO/LUMO orbital energies from accurate
augccpVTZ-MO calculations® and estimated intermolecular interaction integral

B(Ep)

Molecule R/ay QHOMO aLUMO Aa 18] = (%)1/2
H, 6.50 —0.59 (1og) 0.049 (10,,) 0.639 6.19x 1073
N, 8.00 -0.61 (1x,) 0.081 (40y) 0.691 11.61 x 1073
HF 5.09 —0.65 (1n) 0.030 (40) 0.680 62.26 x 1073
H,0 5.40 —0.51(1by) 0.029 (4ay) 0.539 52,69 x 1073

?Pelloni (2008) private communication to V.Magnasco.

the first-row hydrides XH,; and (2) the second-order interactions for the
dimers between a rare gas atom and HX, which will be examined later in
Section 5.4.

In the first case, the hydrogen bond and the shape resulting therefrom
for these dimers can be understood in terms of the long-range interactions
between the first few permanent multipole moments of the interacting
molecules (Magnasco et al., 1989b).

Equilibrium bond distances and electric properties (permanent mo-
ments* up to [ = 3 and isotropic dipole polarizabilities) of a few polar
molecules are collected in Table 5.2 (Magnasco et al., 2006). Data for
H,O are taken from recent accurate work by Torheyden and
Jansen (2006).

A few comments on Table 5.2 seem appropriate at this point. CO has
such a small dipole moment C" O™ that can be considered a ‘quasi-
quadrupolar’ molecule. NHj3 has large axial quadrupole and octupole
moments directed along the z symmetry axis. Besides by its dipole
moment, H,O is characterized by a rather small (0.06ea¢?) axial quad-
rupole moment and by a large transverse quadrupole moment (2.19ea(?)
perpendicular to the z symmetry axis, mostly due to the couple of lone pair
electrons. LiH has the largest dipole moment and dipole polarizability.

Figure 5.2 sketches a comparison between HOMO/LUMO and elec-
trostatic descriptions of the H-bonded structure observed for (HF),. The
correspondence between the two descriptions is evident from the figure.

* The dipole moment ., is a vector always directed along the main symmetry axis z, being positive
for A°B° with the heaviest atom A taken at the origin of the coordinate system.
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Table 5.2 Equilibrium bond distances and electric properties (au) of a few polar

molecules

Molecule R./ay w,/ea W, /edo? wy/eap’ a/ag’
OC 2.132 —-0.044 —1.47 —-3.46 13.08
NH; 1.913 —-0.579 —2.45 2.462 14.56
H,O 1.836 ~0.726 0.06(2.19)  1.98(—425)  9.51
FH 1.733 0.704 1.71 2.50 5.60
CIH 2.409 0.4 2.8 17.75
LiH 3.015 —2.294 —-3.097 —6.326 28.31
H, 1.40 0.44 5.43
N, 2.074 —1.04 11.74
O, 2.282 -0.30 10.59
F, 2.71 0.536 9.31
CO, 2.192 -3.18 17.51
C,H, 6.213 4.03 21.21

H—F H—F
N colce

H
6&@ C>H—F

dipole

H
|

F

F

+

quadrupole

a7
.9

quadrupole

dipole
H—F

dipole

H—F
59

quadrupole

Figure 5.2 HOMO/LUMO (left) and electrostatic (right) descriptions of the origin of
the H-bonded structure of (HF),

The shapes of some H-bonded dimers resulting from electrostatic
calculations involving permanent multipole moments® up to R~¢ are
shown in Table 5.3, where angles refer to the coordinate system of
Figure 5.3. Apart from the (NHj3), dimer, a substantial agreement is
found between theoretical predictions and experiment.

3> The R~ term of the expanded electrostatic energy involves interaction between dipole-hex-

adecapole

(I=1, I'=4), hexadecapole-dipole(/ =4,
(I=2, [I'=3) and octupole-quadrupole (I = 3,

=1,
' = 2) moments.

quadrupole-octupole
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Table 5.3 Theoretical angular shapes from calculated electrostatic interaction
expanded to R~ versus experimental results for some H-bonded VdW dimers

Theoretical Experimental
Dimer R/élo GA/O 03/0 HA/O 93/0
(HF), 5.09 104 194 117 190
(H,0), 5.40 118 117 128 120
(NH3), 6.31 11 75 49 115
(LiH), 3.98 51 126 50 130
H, O—HF 5.03 52 185 46 180
H;N-HF 5.38 0 180 0 180
C,H, — HF 5.81 90 180 90 180
CO,—HF 7.47 0 180 0 180
H,0-CH, 7.48 0 0 0 0

tigp

s lp /
: : g 7

B

Figure 5.3 The three angles specifying the relative orientation of two linear mole-
cules (left), and the system atom A-linear molecule B (right)

In the following, we shall consider in little more detail, first, quanti-
tative calculations on the hydrogen bond occurring in the homodimers
(HF), and (H,0),, next, the electrostatic model we proposed some time
ago (Magnasco et al., 1990a) for the hydrogen bond, and, finally, a
discussion of the hydrogen bond occurring between rare gases and HF,
Rg—HF (Rg = He, Ne, Ar, Kr, Xe), where the structure of the dimer is
seen to depend mostly on second-order induction.

5.2.1 The Hydrogen Fluoride Dimer (HF),

Asa typical quantitative example of formation of a H-bonded structure as
a consequence of the electrostatic interactions between the individual
molecules, we choose the (HF), homodimer. To give the best description
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of the shape of (HF), we must take into account the long-range interaction
of at least the first three permanent moments of HF. The first-order
electrostatic interaction goes as R™" (Magnasco, 2007, 2009a) with
n=I1+10+1,and !, I' =1, 2, 3 for the dipole, quadrupole and octupole
moments, respectively. The first three terms of the expanded electrostatic
interaction showing explicitly their angular dependence for the two linear

molecules depicted in the left part of Figure 5.3 are® (Magnasco et al.,
1990Db):
py
EiM(es) = % (sinf4 sinfp cosp—2cosf4 cosOp) (5.3)
12 ppy” 3 2 : :
Eq1 “(es) = RS 3 [cosf4(3cos”05—1)—sinf4 sin26 cose)|  (5.4)
Ei*!(es) i 3 [(1-3c0s?04)cosfp + sin26, sinfg cosp|  (5.5)
=T Rt 2 A B A sInfp cose :
AL B 1|4 cosfs(3—5cos?05)cosh
Ey(es) =1L ES al 8)cosdy (5.6)
R 2| 4 35inf, sindp (Scos*0p—1)cose)
Ay B 1 |4coss(3—5cos?0,4)cosd
E13l(es) _ M3 /;Ll + .A( A) .B (57)
R 2| + 35inf4(5cos204—1)sindp cose)
E 22(65) wy MzB 3 1—5(c0320A+C05203)+17c0520A cos20p
| — e
R’ 4| + 25in20A sinZOB cos?p—4 sin26,4 sin263p cose)

(5.8)

where spherical tensor notation (Magnasco, 2007) is used for the mul-
tipole moments of the linear molecules.
Choosing 05 = 180°, for (HF),, the above formulae simplify to:

(MHF)Z
R3

Ei'(es) =2 cosf4 (5.9)

HF,, HF
My My

% R [2cosf4 + (3cos*04—1)]  (5.10)

¢ Point-like linear multipoles are assumed to be placed in the centre of mass of the molecule.
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Figure 5.4 Angular dependence on 6,4 of the first three terms of the expanded
electrostatic interaction in linear (HF),

E1B(es) 4+ Ei* (es) + E1*%(es)

1
R

The angular dependence on 64 of the first three terms (7 = 3, 4, 5) of
the expanded electrostatic interaction in linear (HF), is sketched in the
drawings of Figure 5.4. In all the plots there, molecule B is kept fixed at
0p = 180°. It is seen that, while the dipole—dipole term would favour the
head-to-tail shape of the dimer with a collinear H-bond (H-F...H-F,
Figure 5.4(a) with04 = 65 = 180°), the higher multipole interactions lead
to the final L-shape of the dimer depicted in Figure 5.4(d), in agreement
with the structure of the dimer observed by molecular beams techniques
(Howard et al., 1984) and reported in Figure 5.5. Figure 5.4(a) gives the

(5.11)
[8 i s cosf + 3(/.L2HF)2(3C0829A—1)}
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H
DN
I:...........I{

Figure 5.5 Experimental structure” (8~ 60°) of the (HF), linear dimer. Reprinted
from Magnasco, V., Methods of Molecular Quantum Mechanics: An Introduction to
Electronic Molecular Structure. Copyright (2009) with permission from John Wiley
and Sons

F

behaviour with respect to 64 of the 11 dipole-dipole contribution
(I=1'=1) going as R~3; Figure 5.4(b) the 12 dipole-quadrupole
(I =1, I' =2) plus the 21 quadrupole-dipole (/ = 2, I' = 1) contribution
going as R~*; Figure 5.4(c) the 13 dipole-octupole (I = 1, I = 3) plus the
31 octupole—dipole (I = 3, /' =1) plus the 22 quadrupole-quadrupole
(I= 2, I' =2) contribution going as R~>; Figure 5.4(d) the resultant of
adding all contributions up to R=5. It is apparent that the collinear H-
bonded structure (a) would be the more stable considering just the
dipole-dipole interaction, while adding higher multipole contributions
the dimer acquires the characteristic L-shaped structure that agrees with
experiment (Figure 5.5).

5.2.2 The Water Dimer (H,0),

With reference to the coordinate system of Figure 5.6, the leading
dipole-dipole term of the expanded first-order electrostatic interaction
between the two H,O molecules is given by (Magnasco et al., 1988):

H,0)\2

Ei(es) = — (,MRT)
where 26 is the valence angle. Molecule A is taken to lie in the zx plane,
while « is the inclination of the molecular plane of B with respect to the yz
plane (for @« = 0° molecule B lies in the yz plane). Experimentally (Dyke
and Muenter, 1974) it is found a = 60°. For 260 = 105°, R = 5.4ay,
,u,?zo = 0.73eay, Equation (5.12) has a minimum of about —4.9 x 10°E,
ata = 30°, so indicating that, as in the case of (HF),, interaction between
higher multipoles is important. Inclusion of such higher terms gives the

results reported in Table 5.3.

(sinf sina 4 2cosb cosa) (5.12)

7 Angle 6 in this figure is the supplement of angle 64 of Figure 5.3d.
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Figure 5.6 Geometry® of the (H,O), linear water dimer

5.3 THE ELECTROSTATIC MODEL OF THE
HYDROGEN BOND

Buckingham and Fowler (1983) asked whether electrostatic interactions
could predict structures of van der Waals molecules. The answer is ’yes
they can’, not only for hydrogen-bonded systems but generally for VAW
complexes. All considerations we made before, in fact, led us to propose
a simple electrostatic model for the elementary prediction of the angular
geometries of VAW dimers based on the characterization of a molecule by
just its first two observable electric moments (Magnasco et al., 1990a).
The relative stability of different angular geometries of 35 VAW dimers
was correctly predicted just from the pictorial analysis of the electrostatic
interactions between these moments. We enter in some detail in the
following.

For small molecules (such as HF, H,O, NH3, CO, H, and N,) the
electrostatic model is based on the following rules. It is assumed that
molecules in the dimer be kept a distance R apart not less than the sum of
their Van der Waals radii.

1. Each molecule is characterized by its first two observable electric
moments (quadrupole alone for centrosymmetric molecules, terms
higher than R=> not being considered in the formulation of the
model).

2. Qualitative evaluation (attractive or repulsive) is made of the
dipole—dipole (R~3), dipole-quadrupole plus quadrupole-dipole
(R~*), and quadrupole—quadrupole (R~?) electrostatic interactions
for the different angular geometries of the dimer.

8 Angle « in this figure is the supplement of angle 65 of Table 5.3d.
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3. A scale is given of the relative importance of such electrostatic
interactions in the order oo > on > nn, where o is a multipole
moment directed along the intermolecular axis and 7 a moment
perpendicular to it.”

4. Highest stability (vs, very stable) is obtained for the angular con-
figuration of the dimer when all three contributions are favourable.

5. Secondary stability (s, stable) is obtained when terms beyond the
first are repulsive, opposing the largest attractive contribution of the
leading term.

6. Unstable (ns, not stable) angular configurations are obtained when
all three terms (or the leading term, at least) are repulsive.

For elongated molecules (such as CO,, C,H, and HCN) below
the sum of their VAW radii a further rule is introduced.

7. Of two angular configurations possible on the basis of the previous
rules, the configuration having smaller Pauli steric repulsions will be
more stable.

These rules are simple and immediately intuitive, once the electrical
characterization of a molecule in terms of its point-like multipoles is
accepted. The underlying physical assumption is that the electrostatic
interaction is the dominant attractive component of the intermolecular
potential determining the angular shape of the dimer, while short-range
forces are assumed to provide a repulsive uniform background balancing
attraction at the VAW minimum. Monomer size enters the model through
rule 7, which corrects for deviation from uniform repulsion when steric
interactions occur below the sum of the respective VAW radii.'”

Figures 5.7 and 5.8 sketch a picture of the first two permanent electric
moments (au) for a selection of noncentrosymmetric and centrosymmetric
molecules, respectively. The notation is the same as that given in Mag-
nasco et al. (1988). It is understood that the point-like multipoles are
placed at the centre of mass of the molecule, their sign in relation to the
molecular structure of the monomer being of fundamental importance in
determining the nature of the electrostatic interaction (attractive or
repulsive). The numbers shown in each figure are from SCF calculations
and so are little larger than those given in Table 5.2.

? This o, © definition, strictly correct for dipoles, is here loosely extended to higher multipoles
with m = 0.

19 provided this situation is avoided, the exact value of the intermolecular distance R is not
particularly relevant for the qualitative prediction of the angular shapes of the dimers.
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Figure 5.7 The first two permanent electric moments of some noncentrosymmetric
molecules

In the figures, a pictorial representation is given of the angular shape of the
molecular multipoles in terms of a polar diagram schematically close to that
of the corresponding atomic orbitals of quantum number [ (white for the
positive lobe, dashed for the negative lobe) given in Figure 1.1 of Chapter 1.

For H,O and C,H, both nonvanishing quadrupole moments are given in
the figures, to outline the greater importance of sy, ~ .2 for H,O, and the
similar importance, and the different sign, of w,y(= u,,) and w,, for C;H,.

As an example of the operative use of the model, a classification of the
first few multipole interactions with their relative stability for some
selected shapes of VAW dimers is given in Figure 5.9. The interactions
are classified according to rule 2 into attractive (a) or repulsive (r), (0)
denoting the case when the interaction vanishes by symmetry. Stability is
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Molecule ,uz[ea%

Hz: P2 —{ M)
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24

Figure 5.8 The first permanent electric moments of some centrosymmetric molecules

classified according to rules 3—-7. It should be clear that the model can be
used only to predict stability of sufficiently symmetric configurations.

A total of 69 angular geometries of 35 VAW dimers, classified according
to a tabulation like that illustrated in Figure 5.9, are collected in Table 5.4
and compared, when possible, with geometries resulting from
experiment, mostly by IR or microwave rotational spectra, or molecular
beam electric resonance spectra.

In the table, and also elsewhere in the present chapter, we use the
notation H-bonded to specify a structure bound by a hydrogen bond, and
anti-H-bonded to specify a structure where VAW binding is opposite to
that of a hydrogen bond.

We see from the table that the most stable angular geometries predicted
by the model agree almost perfectly with experiment. In a few cases, as for
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Dimer | Geometry | 11 12 2 22 |Stability| Experiment

® HaN - HF %__, 0o.a | 00.a | 00,a | 00.a vs .;—
OHF -HF | — | 00,a | 00,a | 00,1 | 0O, ¢ s :
J,_. o, 0 | mo,0 |mo,a | 7o, a s
® Hy O - HF no,0 | mo,0 |mo,a | mo,a s
1 2 /? *
%___.. oo,a |(oo,a |mo,0 | @O0 s
oCsz ‘HF |— oo,a | 00, T s
—'—‘ mo,a | mo,a vs 4'—__._
®Ng - HF — oo,a | 00,a vs —_—
®Nj - FZ 00, a vs
®No-Np | — oa, r ns

nm T ns

pul

o, a vs

:

Figure 5.9 Classification of the first few multipole interactions and stability of the
resultant angular geometries of some dimers. Reprinted from Journal of Molecular
Structure: THEOCHEM, 204, Magnasco, V. et al., A model for the elementary
prediction of the angular shape of Van der Waals dimers. 229-246, Copyright (1990),
with permission from Elsevier

the linear dimers (HF),, (H,O), and H,O—HEF, the experimentally
observed geometries are somewhat intermediate between the two specific
(symmetrical) structures given in the table.

It is of some interest to compare the different structures resulting from
linear monomers: (HF), (bent) and (HCN), (collinear). In both dimers,
the observed intermolecular separations'" are such that rule 7 is ineffec-
tive, even for the collinear structure of (HCN),, where steric effects might
be expected to be important. As already seen in Section 5.2.1 and

11'5.09a, for (HF), (Howard et al., 1984) and 8.29a, for (HCN), (Legon et al., 1977).
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Table 5.4 Comparison of the model structural predictions with experiment. Rep-
rinted from Journal of Molecular Structure: THEOCHEM, 204, Magnasco, V. et al.,
A model for the elementary prediction of the angular shape of Van der Waals dimers.
229-246, Copyright (1990), with permission from Elsevier

Dimer Structure Electrostatic model Stability  Experiment

{”l:)f Linear, C,.,‘. ——— e s E
Bent, Cg J__F S

(I'I(‘N)_._h Bent, Cg S

Linear, C_, V§ ~——O—e ——0—¢—

(H,0)¢ Bifurcated, C,

Bifurcated
crossed, C,

Linear
6=90", C,
\\
Linear i
0=180°, C, S
H,0- HFd Bent, Cg S

Coplanar, C5,

T TV

3 Howard et al. (1984); ® Legon et al. (1977); € Dyke and Muenter (1974);" Kisiel et al. (1982).
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Table 5.4 (Continued)

THE HYDROGEN BOND

Dimer Structure Electrostatic model Stability  Experiment
(CO), Linear, C_,, & © o ° ns
Linear, C., —o— ¢——0— ns
T-shape, C; Al—o—o— ns
T-shape, C —Iio——o— s
OC-HXe Linear, C_,
. B ——0 — — o @ o =
X=F,Cl,CN  H-bonded v
0OC-F, T-shape, C, —-——o | — ns
T-shape, C; e— — 1 ns
Linear, C_, ° o 5
HX-HCN Linear, C_, - 6 e s
X=F.Cl H-bonded
HCN-HX' Linear, C,_,
s Com S ; ——— &
H-bonded Vs
NCH-F, Linear,C...,
H-bonded 13
HCN-F, T-shape, Cs, —a—o—ll» ns
Linear, C_, s
Anti-H ’
F;-HCN T-shape, C,, l Vs

¢ Legon et al. (1981); Legon, Soper et al. (1980, 1981); Soper et al. (1981); Goodwin and Legon

(1984); fLegon, Millen et al. (1980); Legon et al. (1982).
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Table 5.4 (Continued)

Dimer Structure Electrostatic model Stability  Experiment

H;N-HXs Pyramidal, Cs, -
X=F, CI,CN H-bonded 2 7
s, s
H3N-F, Symmetry Cs ns
—"
Pyramidal, C5, ?‘vi vs
4,
H;3N-N, Pyramidal, Cs, ?—_ ns
Symmetry Cs s
CyH, HF Linear, C_,, _
Anti-H, Cy, =
C5H,-FH Linear, C..,, = s
C,Hy HFD T-shape, Gy, I ‘ vs
CoH,y-OHy! Coplanar, C,, ——-——c—.% s < ,;;;

OyHy NHy Pyramidal, Cs, - < vs « /

& Howard, unpublished; h Read and Flygare (1982); ! Peterson and Klemperer (1984a); I Fraser
et al. (1984a).
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Table 5.4 (Continued)

Dimer Structure Electrostatic model Stability  Experiment
CO,FHk T-shape, Cs, i
Anti-H
Linear, C_,, . N
H-bonded bt =
CO,NCH! T-shape. C5, ]
Anti-H 3
CO5-OH,™ Coplanar, Cs, i /
Anti-H B \

Coplanar, C;

H-bonded L

CO,-NH5? H-bonded, C

Anti-H, C,

(H,)," (N2),p Linear, D, ns

Parallel, D5, ns

s H o
(Fa)z

V8 —

Canted Parallel,
Cyy

T-shape, C;,

RIlIALIT

(Ha)2, (No)o

K Baiocchi et al. (1981);' Leopold et al. (1984); ™ Peterson and Klemperer (1984b); " Fraser et al.
(1984b); © Gegenbach et al. (1974); P Long et al. (1973).
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Table 5.4 (Continued)

plane, Cg\.

Dimer Structure Electrostatic model Stability Experiment
N,F, Linear, C_., Vs
N,-HXd Linear, C,, -
X=F Cl H-bonded ’ : *
N,-HONT Linear, C__,
H-bonded o B
FyHF Linear, C.., '
H-bonded ~ ——————*°" o
F,-FH Linear, C.., §
Anti-H °
Fy-HF T-shape, C,, —’——« B
FyH, g_z‘mled Parallel. /£ A 3
T-shape, C5, —“— s
P x t
L [
1 /
C,H - HXs HX perpendicular | / I f'
X=F Cl,CN to molecular \ / Vs \ Z —
/ N Ealb Y

9 Soper et al. (1982); Altman et al. (1983); * Goodwin and Legon (1985); ® Shea and Flygare
(1982); Aldrich et al. (1981); Kukolich et al. (1983).
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Figure 5.4(a), strong oo dipole—dipole attraction (R~3) would favour the
collinear H-bonded structure HF—HF, which is however destabilized by
the quadrupole-quadrupole repulsion (R™, Figure §.4c). In the collinear
configuration, the mixed dipole-quadrupole attraction (R™*) exactly
compensates the quadrupole—dipole repulsion (R™, Figure 5.4b). The
L-shaped bent configuration is favoured by o quadrupole-dipole (R~*)
and quadrupole-quadrupole (R™®) attractions, with the other compo-
nents vanishing by symmetry. As a result of these competing effects, the
bent structure of Figure 5.4(d) is observed, in qualitative agreement with
experiment (Howard et al., 1984).

On the other hand, the collinear H-bonded structure is the more stable
for (HCN), (Legon et al., 1977). This is due, first, to the larger value of the
dipole moment for HCN, about twice that of HF, increasing dipole-dipole
attraction, and, second, to the larger intermolecular separation, due to the
large size of the monomers, which results in a faster decay with R of the
quadrupole—quadrupole interaction (repulsive in the linear case, attrac-
tive in the bent form). These examples show that the model must always be
handled with care before sound theoretical predictions can be made.

NH; gives complexes with a C;, pyramidal structure with HF
(Figure 5.1f), HCl and HCN, all bound by a H-bond to the nitrogen atom,
complexes of C3, symmetry with F, and of C, symmetry with N,. The latter
behaviour depends on F, being a positive and N, a negative quadrupole.

For complexes between C,H, and HF, the model correctly predicts the
T-shaped C, structure of the dimer (Figure 5.1¢), having the proton of the
proton-donor HF molecule directly H-bonded to the 7 bond of acetylene,
be more stable than the linear C.., structure, where acetylene would act as
proton donor in forming a H-bonded structure with the o lone pair of
fluorine. In the first case, in fact, both quadrupole-dipole (R™*) and
quadrupole-quadrupole (R~%)no interactions are attractive.

The anti-H-bonded structure of the complexes
CO,—XH,(X =NC, O, N) (Baiocchi et al., 1981; Leopold et al.,
1984; Peterson and Klemperer, 1984b; Fraser et al., 1984b) follows
directly from postulate 7. The corresponding electrostatically possible
H-bonded structures are highly destabilized by the strong steric repulsions
occurring when the intermolecular separation decreases below the sum of
the VAW radii of the monomers. On the contrary, in CO,—HF the
intermolecular separation (7.47 ay) is large enough to avoid severe steric
repulsions, thereby allowing the linear H-bonded structure of Figure 5.1g
to be the most stable.

Finally, we observe that the electrostatic model, characterizing
centrosymmetric molecules by their (first) quadrupole moment alone,
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necessarily predicts for the corresponding homodimers that stability
increases in the order linear (L) < parallel (P) < canted parallel (CP) <
T-shaped configurations. This order directly follows from the
quadrupole—quadrupole interaction in its various form. While this is
true for (H,), (Gegenbach et al., 1974; Long et al., 1973) and (N,),, the
inversion in stability between the last two structures, expected for (F,),
and its higher homologues (Buckingham and Fowler, 1983), but not
experimentally observed as yet, would only be possible by taking the
next moment (the hexadecapole, large for F,) into account. A CP con-
figuration was in fact found to be stable for (C,H,), in terms of a
spheroidal quadrupole interaction mimicking quicker convergence of the
multipole expansion (Aubert-Frécon, 1978a, 1978b). While the linear (L)
structure is always unstable for homodimers of quadrupolar molecules, in
the N, —F, heterodimer this structure is expected to be stabilized by the
opposite sign of the quadrupole moments of the two molecules.

The formation of T-shaped complexes between C,H4 and HX mole-
cules (Shea and Flygare, 1982; Aldrich et al., 1981; Kukolich et al., 1983),
where HX is bound by a H-bond perpendicular to the molecular plane of
ethylene having the = bond of the olefin as proton acceptor, is favoured by
attractive quadrupole-dipole (R™*) and quadrupole—quadrupole (R™)
interactions, those involving the out-of-plane quadrupole moment of
ethylene (u,2_,2) being particularly large (Figure 5.8). For the ethylene
homodimer, a similar T-shaped structure, with one of the ethylene units
twisted by 90° out of the molecular plane, is predicted by the model, in
agreement with the results of ab initio calculations (Alberts et al., 1988).
This is what we expect from our model in view of the prevalent favourable
attraction between the large out-of-plane quadrupole moments of the two
ethylene molecules. A similar structure is expected for the benzene dimer
(Janda et al., 1975; Pawliszyn et al., 1984).

So, we conclude that our electrostatic model, although simple, is capable
of reasonably accurate qualitative predictions which may be confidently
used, even for cases not yet theoretically or experimentally studied.

5.4 THE Rg-HF HETERODIMERS

Lastly, we turn to consideration of the Rg—HF heterodimers (the
atom—diatomic molecule system of the right-hand side of Figure 5.2),
where a crucial role is played by the induction interaction occurring
between the higher multipole moments of HF and the induced dipoles
originating the polarizability of the rare gas (Magnasco et al., 1989a).
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Since atom A (Rg) has no permanent electric moments, the expanded
electrostatic interaction energy and the polarization of HF by Rg are both
zZero:

Ei(es) = E?¥(Rg polarizes HF) = 0 (5.13)

In this case, the possibility of forming a hydrogen bond comes from
second-order induction (polarization of the Rg atom by the permanent
electric moments of HF) and dispersion (the mutual interaction between
fluctuating induced moments on both partners).

As far as induction is concerned, the leading R~® term describing
polarization of a Rg atom by the dipolar HF molecule as given by Equation
(4.63) of Chapter 4:

aR8 (1, HF)? 3cos20 + 1

Ezind(6) _ Ré 5

(5.14)

cannot discriminate between H-bonded (6 = 180°) and anti-H-bonded
(6 = 0°) structures, giving in both cases:

2
o ()

Ezind(6) ) R

(5.15)
The next term in R/, implying further polarization of the Rg atom by
the mixed dipole—quadrupole moments of HF, contains a cos>6 term:

3 a8 g HF, HF

Ezind(7) R

cos>6 (5.16)
which stabilizes the H-bonded structure Rg—HF(6 = 180°), so that we
can properly speak of formation of a H-bond between Rg and HF.

The same is true for dispersion, whose first two terms in Casimir—Polder
form (Magnasco, 2007, 2009a) are:

Ed(6)= _anRé Jdu[6aRg(iu) o (iu) + (3cos*6—1) a8 (in) Aa™ (iu)]
0

(5.17)

_ 1 7
Egzsp (7)= IR Jdu a8 (iu) lcos%a?l% (iu)+ ? (3—2cos*0)cosf ' (i)
0

(5.18)
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Table 5.5 Dipole polarizabilities @ and relative stabilities A of H-bonded with
respect to anti-H bonded structures in Rg-HF interactions (atomic units)

Rg a/a} R/ag A/10™°E,
He 1.38 7.00 46.8
Ne 2.67 7.25 60.8
Ar 11.08 6.41 396.7
Kr 16.71 6.65 456.3
Xe 27.16 7.01 515.8

with Equation (5.17) unable to distinguish between the two structures and
Equation (5.18) stabilizing the H-bonded form (6=180°). In Equation
(5.18), allli (i) and b’ (iu) are the nonvanishing mixed quadrupole-
dipole frequency-dependent polarizabilities (FDPs) of HF. A more de-
tailed analysis in Magnasco et al. (1989a) shows further that, even if
smaller in absolute value than dispersion, induction has a larger angular
change than dispersion, being therefore the main contributor to the shape
of such H-bonded dimers.

From the data reported in this work, we obtain Table 5.5, which gives
the relative stability A of H-bonded with respect to anti-H-bonded
structures in the whole series of heterodimers. The distances for the heavier
rare gases (Ar, Kr, Xe) are those given by Hutson and Howard (1982) for
the well depths of the potentials at the absolute minima of the H-bonded
structures. The experimental values of the dipole polarizabilities «a of the
Rg gases taken from Solddn ez al. (2001) are given in the second column of
the table. It is seen that the stability of the H-bonded structures increases
with the dipole polarizability of the heavier rare gases.
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elements of, 149-151

first-order energy, 151, 152

second-order energy, 151-153
rules for bonding,

chemical, 148

van der Waals (VAW), 148

Schmidt orthogonalization, 14, 74,
109
Schroedinger equation, 11
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secular equation, 3,13,39,62,65,68,
72,76, 77, 82, 88, 91, 98, 99, 100,
102, 104

semiconductors, 141

Slater orbitals (STOs), 11, 19, 24,
44,72, 74

solids,
band gap, 133, 136, 139, 140, 141,

142, 143
band theory, 131-133
Brillouin zones, 136, 137
conductors (metals), 139, 140
covalent (insulators), 139, 140
d-band in bcc iron, 137, 138
density of states, 133-135,137,138
Fermi level, 133, 136, 137, 140,
141, 143

semiconductors, 141
superconductors, 142

spin, 17, 19, 20, 100, 102, 106, 107

sum-over-pseudostates, 15

superconductors, 142
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systems of linear equations,
homogeneous, 3, 4, 101, 105,
110-117
inhomogeneous, 3

trigonometric relations, 63, 85, 94,
109-110
two-state model, 157-159
integral, 151
moments, 14, 155, 158
transition,
densities, 153
dipoles, 155

unitary transformation, 14

uv,
ionization potentials, 49, 70
photoelectron spectra, 48, 49, 70

van der Waals (VdW) interactions, 36,
148, 159, 167
variational principles, 12-15
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