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Preface

Experimental evidence shows thatmolecules are not like ‘liquid droplets’
of electrons, but have a structure made of bonds and lone pairs directed
in space. Even at its most elementary level, any successful theory of
bonding in chemistry should explainwhy atoms are or are not bonded in
molecules, the structure and shape of molecules in space and how
molecules interact at long range. Even if modern molecular quantum
mechanics offers the natural basis for very elaborate numerical calcula-
tions, models of bonding avoiding the more mathematical aspects of the
subject in the spirit of Coulson’s Valence are still of conceptual interest
for providing an elementary description of valence and its implications
for the electronic structure of molecules. This is the aim of this concise
book, which grew from a series of lectures delivered by the author at the
University of Genoa, based on original research work by the author and
his group from the early 1990s to the present day. The book should serve
as a complement to a 20-hour university lecture course in Physical and
Quantum Chemistry.
The book consists of two parts, where essentially twomodels have been

proposed, mostly requiring the solution of quadratic equations with real
roots. Part 1 explains forces acting at short range, typical of localized or
delocalized chemical bonds in molecules or solids; Part 2 explains forces
acting at long range, between closed-shell atoms ormolecules, resulting in
the so-called van der Waals (VdW) molecules. An electrostatic model is
further derived forH-bonded andVdWdimers,which explains in a simple
way the angular shape of the dimers in terms of the first two permanent
electric moments of the monomers.
The contents of the book is as follows. After a short self-contained

mathematical introduction, Chapter 1 presents the essential elements of
the variation approach to either total or second-order molecular energies,



the system of atomic units (au) necessary to simplify all mathematical
expressions, and an introductory description of the electron distribution
in molecules, with particular emphasis on the nature of the quantum
mechanical exchange-overlap densities and their importance in determin-
ing the nature of chemical bonds and Pauli repulsions.
The contents of Part 1 is based on such premises. Using mostly 2�2

H€uckel secular equations, Chapter 2 introduces a model of bonding in
homonuclear and heteronuclear diatomics, multiple and delocalized
bonds in hydrocarbons, and the stereochemistry of chemical bonds in
polyatomic molecules; in a word, a model of the strong first-order
interactions originating in the chemical bond. Hybridization effects
and their importance in determining shape and charge distribution in
first-row hydrides (CH4, HF, H2O andNH3) are examined in some detail
in Section 2.7.
In Chapter 3, the H€uckel model of linear and closed polyene chains is

used to explain the origin of band structure in the one-dimensional crystal,
outlining the importance of the nature of the electronic bands in deter-
mining the different properties of insulators, conductors, semiconductors
and superconductors.
Turning to Part 2, after a short introduction to stationary Rayleigh–

Schr€odinger (RS) perturbation theory and its use for the classification of
long-range intermolecular forces, Chapter 4 deals with a simple two-
state model of weak interactions, introducing the reader to an easy way
of understanding second-order electric properties of molecules and
VdW bonding between closed shells. The chapter ends with a short
outline of the temperature-dependent Keesom interactions in polar
gases.
Finally, Chapter 5 studies the structure of H-bonded dimers and the

nature of the hydrogen bond,which has a strength intermediate between a
VdWbondandaweak chemical bond. Besides a qualitativeMOapproach
based on HOMO-LUMO charge transfer from an electron donor to an
electron acceptor molecule, a quantitative electrostatic approach is pre-
sented, suggesting an electrostatic model which works even at its simplest
pictorial level.
A list of alphabetically ordered references, and author and subject

indices complete the book.
The book is dedicated to the memory of my old friend and colleague

Deryk Wynn Davies, who died on 27 February 2008. I wish to thank my
colleagues Gian FrancoMusso and Giuseppe Figari for useful discussions
on different topics of this subject, Paolo Lazzeretti and Stefano Pelloni for
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some calculations using the SYSMO programme at the University of
Modena andReggio, andmy sonMariowhoprepared the drawings on the
computer. Finally, I acknowledge the support of the Italian Ministry for
Education University and Research (MIUR) and the University of Genoa.

Valerio Magnasco
Genoa, 20 December 2009
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1
Mathematical Foundations

1.1 Matrices and Systems of Linear Equations
1.2 Properties of Eigenvalues and Eigenvectors
1.3 Variational Approximations
1.4 Atomic Units
1.5 The Electron Distribution in Molecules
1.6 Exchange-overlap Densities and the Chemical Bond

In physics and chemistry it is not possible to develop any useful model of
matter without a basic knowledge of some elementary mathematics. This
involves use of some elements of linear algebra, such as the solution of
algebraic equations (at least quadratic), the solution of systems of linear
equations, and a few elements on matrices and determinants.

1.1 MATRICES AND SYSTEMS OF LINEAR
EQUATIONS

We start frommatrices, limiting ourselves to the case of a squarematrix of
order two, namely a matrix involving two rows and two columns. Let us
denote this matrix by the boldface capital letter A:

A ¼ A11 A12

A21 A22

 !
ð1:1Þ

Models for Bonding in Chemistry Valerio Magnasco
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where Aij is a number called the ijth element of matrix A. The elements
Aii (j ¼ i) are called diagonal elements. We are interested mostly in
symmetric matrices, for which A21 ¼ A12. If A21 ¼ A12 ¼ 0, the matrix
is diagonal. Properties of a squarematrixA are its traceðtrA ¼A11þA22Þ;
the sum of its diagonal elements, and its determinant, denoted by
Aj j ¼ detA; a number that can be evaluated from its elements by the rule:

jAj ¼ A11A22�A12A21 ð1:2Þ
Two 2� 2 matrices can be multiplied rows by columns by the rule:

AB ¼ C ð1:3Þ

A11 A12

A21 A22

 !
B11 B12

B21 B22

 !
¼ C11 C12

C21 C22

 !
ð1:4Þ

the elements of the product matrix C being:

C11 ¼ A11B11 þA12B21; C12 ¼ A11B12 þA12B22;

C21 ¼ A21B11 þA22B21; C22 ¼ A21B12 þA22B22:

(
ð1:5Þ

So, we are led to the matrix multiplication rule:

Cij ¼
X2
k¼1

AikBkj ð1:6Þ

If matrixB is a simple number a, Equation (1.6) shows that all elements
of matrix Amust be multiplied by this number. Instead, for a|A|, we have
from Equation (1.2):

ajAj ¼ aðA11A22�A12A21Þ ¼
aA11 aA12

A21 A22

�����
����� ¼ aA11 A12

aA21 A22

�����
�����; ð1:7Þ

so that, multiplying a determinant by a number is equivalent to multi-
plying just one row (or one column) by that number.
We can have also rectangular matrices, where the number of rows is

different from the number of columns. Particularly important is the 2�1
column vector c:

c ¼ c11

c21

 !
¼ c1

c2

 !
ð1:8Þ

or the 1� 2 row vector ~c:
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~~c ¼ c11 c12ð Þ ¼ c1 c2ð Þ ð1:9Þ
where the tilde � means interchanging columns by rows or vice versa (the
transposed matrix).
The linear inhomogeneous system:

A11c1 þA12c2 ¼ b1

A21c1 þA22c2 ¼ b2

(
ð1:10Þ

can be easily rewritten in matrix form using matrix multiplication rule
(1.3) as:

Ac ¼ b ð1:11Þ
where c and b are 2� 1 column vectors.
Equation (1.10) is a system of two algebraic equations linear in the

unknowns c1 and c2, the elements of matrixA being the coefficients of the
linear combination. Particular importance has the case where b is pro-
portional to c through a number l:

Ac ¼ lc ð1:12Þ
which is known as the eigenvalue equation for matrix A. l is called an
eigenvalue and c an eigenvector of the squarematrixA. Equation (1.12) is
equally well written as the homogeneous system:

ðA�l1Þc ¼ 0 ð1:13Þ
where 1 is the 2� 2 diagonal matrix having 1 along the diagonal, called
the identity matrix, and 0 is the zero vector matrix, a 2� 1 column of
zeros. Written explicitly, the homogeneous system (Equation 1.13) is:

ðA11�lÞc1 þA12c2 ¼ 0

A21c1þðA22�lÞc2 ¼ 0

(
ð1:14Þ

Elementary algebra then says that the system of equations (1.14) has
acceptable solutions if and only if the determinant of the coefficients
vanishes, namely if:

jA�l1j ¼ A11�l A12

A21 A22�l

�����
����� ¼ 0 ð1:15Þ

Equation (1.15) is known as the secular equation for matrix A. If we
expand the determinant according to the rule of Equation (1.2), we obtain
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for a symmetric matrix A:

ðA11�lÞðA22�lÞ�A12
2 ¼ 0 ð1:16Þ

giving the quadratic equation in l:

l2�ðA11 þA22ÞlþA11A22�A12
2 ¼ 0 ð1:17Þ

which has the two real1 solutions (the eigenvalues, the roots of the
equation):

l1 ¼ A11 þA22

2
þ D

2

l2 ¼ A11 þA22

2
�D
2

8>>>><
>>>>:

ð1:18Þ

where D is the positive quantity:

D ¼ ðA22�A11Þ2 þ 4A12
2

h i1=2
> 0 ð1:19Þ

Inserting each root in turn in the homogeneous system (Equation 1.14),
we obtain the corresponding solutions (the eigenvectors, our unknowns):

c11 ¼ DþðA22�A11Þ
2D

 !1=2
; c21 ¼ D�ðA22�A11Þ

2D

 !1=2

c12 ¼ � D�ðA22�A11Þ
2D

 !1=2
; c22 ¼ DþðA22�A11Þ

2D

 !1=2

8>>>>>><
>>>>>>:

ð1:20Þ

where the second index (a column index, shown in bold type in Equa-
tions 1.20) specifies the eigenvalue to which the eigenvector refers. All
such results can be collected in the 2� 2 square matrices:

L ¼ l1 0

0 l2

 !
; C ¼ c1 c2ð Þ ¼ c11 c12

c21 c22

 !
ð1:21Þ

the first being the diagonal matrix of the eigenvalues (the roots of our
secular equation 1.17), the second the rowmatrix of the eigenvectors (the
unknowns of the homogeneous system 1.14). Matrix multiplication rule
shows that:

~CAC ¼ L; ~CC ¼ C~C ¼ 1 ð1:22Þ

1This is a mathematical property of real symmetric matrices.
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We usually say that the first of Equations (1.22) expresses the diago-
nalization of the symmetric matrix A through a transformation with the
complete matrix of its eigenvectors, while the second equations express
the normalization of the coefficients (i.e., the resulting vectors are chosen
to have modulus 1).2

Equations (18–20) simplify noticeably in the caseA22 ¼ A11 ¼ a. Then,
putting A12 ¼ A21 ¼ b, we obtain:

l1 ¼ aþb; l2 ¼ a�b

c1 ¼ 1=
ffiffiffi
2

p

1=
ffiffiffi
2

p
 !

; c2 ¼
�1=

ffiffiffi
2

p

1=
ffiffiffi
2

p
 !8><

>: ð1:23Þ

Occasionally, we shall need to solve the so called pseudosecular
equation for the symmetric matrix A arising from the pseudoeigenvalue
equation:

Ac ¼ lScY jA�lSj ¼ A11�l A12�lS

A21�lS A22�l

�����
����� ¼ 0 ð1:24Þ

where S is the overlap matrix:

S ¼ S11 S12

S21 S22

 !
¼ 1 S

S 1

 !
ð1:25Þ

Solution of Equation (1.24) then gives:

l1 ¼ A11 þA22�2A12S

2ð1�S2Þ � D
2ð1�S2Þ

l2 ¼ A11 þA22�2A12S

2ð1�S2Þ þ D
2ð1�S2Þ

8>>>><
>>>>:

ð1:26Þ

D ¼ ðA22�A11Þ2 þ 4ðA12�A11SÞðA12�A22SÞ
h i1=2

> 0 ð1:27Þ

The eigenvectors corresponding to the roots (Equations 1.26) are rather
complicated (Magnasco, 2007), so we shall content ourselves here by
giving only the results for A22 ¼ A11 ¼ a and A21 ¼ A12 ¼ b:

2The length of the vectors. A matrix satisfying the second of Equations (1.22) is said to be an

orthogonal matrix.
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l1 ¼ aþb

1þ S
; c11 ¼ ð2þ 2SÞ�1=2; c21 ¼ ð2þ 2SÞ�1=2

l2 ¼ a�b

1�S
; c12 ¼ �ð2�2SÞ�1=2; c22 ¼ ð2�2SÞ�1=2

8>>>><
>>>>:

ð1:28Þ

under these assumptions, these are the elements of the square matrices L
and C (Equations 1.21). Matrix multiplication shows that these matrices
satisfy the generalization of Equations (1.22):

~CAC ¼ L; ~CSC ¼ CS~C ¼ 1 ð1:29Þ
so that matrices A and S are simultaneously diagonalized under the
transformation with the orthogonal matrix C.
All previous results can be extended to square symmetric matrices of

orderN, inwhich case the solution of the corresponding secular equations
must be foundby numericalmethods, unless use can bemade of symmetry
arguments.

1.2 PROPERTIES OF EIGENVALUES AND
EIGENVECTORS

It is of interest to stress some properties hidden in the eigenvalues

l1 l2ð Þ and eigenvectors
c1
c2

� �
, (Equations 1.23), of the symmetric

matrix A of order 2 with A22 ¼ A11 ¼ a and A21 ¼ A12 ¼ b:
In fact, Equation (1.17) can be written:

ðl1�lÞðl2�lÞ ¼ l1l2�ðl1 þ l2Þlþ l2 ¼ 0 ð1:30Þ
so that:

l1l2 ¼ A11A22�A12
2 ¼ a2�b2 ¼ detA ð1:31Þ

l1þ l2 ¼ A11 þA22 ¼ 2a ¼ trA ð1:32Þ
In Equation (1.17), therefore, the coefficient of l0, the determinant of

matrix A, is expressible as the product of the two eigenvalues; the
coefficient of l, the trace of matrix A, is expressible as the sum of the
two eigenvalues.
From the eigenvectors of Equations (1.23) we can construct the two

square symmetric matrices of order 2:
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P1 ¼ c1~c1 ¼

1ffiffiffi
2

p

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA

1ffiffiffi
2

p 1ffiffiffi
2

p
 !

¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA ð1:33Þ

P2 ¼ c2~c2 ¼
� 1ffiffiffi

2
p

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA

� 1ffiffiffi
2

p 1ffiffiffi
2

p
 !

¼

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA ð1:34Þ

The two matrices P1 and P2 do not admit inverse (the determinants of
both are zero) and have the properties:

P1
2 ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA ¼ P1 ð1:35Þ

P2
2 ¼

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA ¼

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA ¼ P2 ð1:36Þ

P1P2 ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA ¼ 0 0

0 0

 !
¼ 0 ð1:37Þ

P2P1 ¼

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA ¼ 0 0

0 0

 !
¼ 0 ð1:38Þ
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P1þ P2 ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCAþ

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA ¼ 1 0

0 1

 !
¼ 1 ð1:39Þ

Inmathematics,matrices having these properties (idempotency,mutual
exclusivity, completeness3) are called projectors. In fact, acting onmatrix
C of Equation (1.21)

P1C ¼ P1c1 þ P1c2 ¼ c1 ð1:40Þ

since:

P1c1 ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA

1ffiffiffi
2

p

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA ¼

1

2

1ffiffiffi
2

p þ 1

2

1ffiffiffi
2

p

1

2

1ffiffiffi
2

p þ 1

2

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA ¼

1ffiffiffi
2

p

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA ¼ c1 ð1:41Þ

P1c2 ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA

� 1ffiffiffi
2

p

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA ¼

� 1

2

1ffiffiffi
2

p þ 1

2

1ffiffiffi
2

p

� 1

2

1ffiffiffi
2

p þ 1

2

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA ¼ 0

0

 !
¼ 0

ð1:42Þ

so that, acting on the complete matrix C of the eigenvectors, P1 selects its
eigenvector c1, at the same time annihilating c2. In the same way:

P2C ¼ P2c1 þ P2c2 ¼ c2 ð1:43Þ

This makes evident the projector properties of matrices P1 and P2.
Furthermore, matrices P1 and P2 allow one to write matrix A in the so-

called canonical form:

A ¼ l1P1 þ l2P2 ð1:44Þ

3Often referred to as resolution of the identity.
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Equation (1.44) is easily verified:

l1P1 þ l2P2 ¼ ðaþbÞ

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCAþða�bÞ

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA

¼

aþb

2
þ a�b

2

aþb

2
�a�b

2

aþb

2
�a�b

2

aþb

2
þ a�b

2

0
BBBB@

1
CCCCA ¼ a b

b a

 !
¼ A

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð1:45Þ

The same holds true for any analytical function4F of matrix A:

FðAÞ ¼ Fðl1ÞP1 þ Fðl2ÞP2 ð1:46Þ
Therefore, it is easy to calculate, say, the inverse or the square root of

matrix A. For instance, we obtain for the inverse matrix ðF¼�1Þ:

l1
�1P1þl2

�1P2 ¼

1

2ðaþbÞ
1

2ðaþbÞ
1

2ðaþbÞ
1

2ðaþbÞ

0
BBBB@

1
CCCCAþ

1

2ða�bÞ � 1

2ða�bÞ

� 1

2ða�bÞ
1

2ða�bÞ

0
BBBB@

1
CCCCA

¼ 1

2ða2�b2Þ
ða�bÞþðaþbÞ ða�bÞ�ðaþbÞ
ða�bÞ�ðaþbÞ ða�bÞþðaþbÞ

 !
¼ 1

2ða2�b2Þ
2a �2b

�2b 2a

 !

¼ 1

a2�b2

a �b

�b a

 !
¼A�1

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð1:47Þ
and we obtain the usual result for the inverse matrix ðA�1A¼AA�1 ¼1Þ:
In the same way, provided

ffiffiffiffiffi
l1

p
and

ffiffiffiffiffi
l2

p
are positive, we can calculate the

square root of matrix A F ¼ ffip� �
:ffiffiffiffi

A
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

aþb
p

P1 þ
ffiffiffiffiffiffiffiffiffiffi
a�b

p
P2

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
aþb

p þ ffiffiffiffiffiffiffiffiffiffi
a�b

p ffiffiffiffiffiffiffiffiffiffiffiffi
aþb

p � ffiffiffiffiffiffiffiffiffiffi
a�b

p
ffiffiffiffiffiffiffiffiffiffiffiffi
aþb

p � ffiffiffiffiffiffiffiffiffiffi
a�b

p ffiffiffiffiffiffiffiffiffiffiffiffi
aþb

p þ ffiffiffiffiffiffiffiffiffiffi
a�b

p
 !

¼

AþB

2

A�B

2

A�B

2

AþB

2

0
BBBB@

1
CCCCA

8>>>>>>><
>>>>>>>:

ð1:48Þ

4Any function expressible as a power series, e.g. inverse, square root, exponential.
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where we have put:

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
aþb

p
; B ¼

ffiffiffiffiffiffiffiffiffiffi
a�b

p
ð1:49Þ

Then, we can easily check that:

ffiffiffiffi
A

p ffiffiffiffi
A

p ¼ 1

4

AþB A�B

A�B AþB

 !
AþB A�B

A�B AþB

 !

¼ 1

4

ðAþBÞ2 þðA�BÞ2 2ðA2�B2Þ
2ðA2�B2Þ ðA�BÞ2 þðAþBÞ2

 !

¼ 1

4

2ðA2 þB2Þ 2ðA2�B2Þ
2ðA2�B2Þ 2ðA2 þB2Þ

 !
¼ 1

4

4a 4b

4b 4a

 !
¼ A

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1:50Þ

as it must be. These examples show how far we can go when eigenvalues
and eigenvectors of a symmetric matrix are known.

1.3 VARIATIONAL APPROXIMATIONS

For our description of atoms andmolecules, we rely on the orbital model,
where atoms or molecules are described by one or more point-like
positively charged nuclei surrounded by a cloud of negatively charged
electrons, whose density is distributed in space in terms of atomic orbitals
(one-centre, AOs) or molecular orbitals (multicentre, MOs) cðrÞ, one-
electron wavefunctions, such that

jcðrÞj2dr ð1:51Þ
gives the probability of finding at dr an electron in statecðrÞ, providedcðrÞ
satisfies the normalization condition:ð

drjcðrÞj2 ¼ 1 ð1:52Þ

the integrationbeing extended over all space. TheAOsare functions of the
space point r in the three spherical coordinates ðr; u;wÞ that depend on the
three quantum numbers n; l;m and have radial and angular dependence.
Aswell known, they are classified as 1s, 2s, 2p, 3s, 3p, 3d, etc. andwe shall
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assume that they are real regular5 functions showing an exponential
(Slater-type, STO) or gaussian (GTO) radial decay. Figure 1.1 shows
schematically the polar diagrams of the angular parts of s, p, d, and fAOs
with l ¼ 0; 1; 2; 3, respectively, and m¼ 0.
Hybrid orbitals are AOs mixed on the same centre (e.g. s and p).

Figure 1.2 sketches the formation of an sp hybrid directed along the z axis
(right of the figure) from the mixing of a spherical 2s orbital with a 2pz
orbital (left of the figure). Because its form is nonsymmetricwith respect to
the nucleus on which it is centred, the hybrid AO acquires an intrinsic
dipolemoment, called by Coulson (1961) the atomic dipole, which is very
important in the theoretical interpretation of the observed dipolemoment
in themolecule (see the case of first-rowhydrides inChapter 2).Weare not
interested in further details about AOs here, but more can be learned
elsewhere (Magnasco, 2007, 2009a).
The AOs are obtained by solving some kind of differential Schr€odinger-

type eigenvalue equation, which for a single electron can be written:

Ĥc ¼ «c ð1:53Þ

Figure 1.2 Schematic drawing of the formation of an sp hybrid AO

Figure 1.1 Polar diagrams of the angular part of s, p, d, and f AOs with m¼ 0.
Reprinted from Magnasco, V., Methods of Molecular Quatum Mechanics: An
Introduction to Electronic Molecular Structure. Copyright (2009) with permission
from John Wiley and Sons

5A regular function is a mathematical function satisfying the three conditions of being: (i) single-
valued; (ii) continuous with its first derivatives; and (iii) quadratically integrable, i.e. vanishing at

infinity.
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where Ĥ ¼ T̂þV is the total (kinetic þ potential) energy orHamiltonian
operator6, c a wavefunction (the eigenfunction of Equation 1.53), and «

(the eigenvalue) an orbital energy. In our model, Ĥ will be replaced by a
symbol H, where we suppress the caret characterizing the operator.
Since equations as (1.53) are difficult to solve exactly, practically all

results in the applications of quantum mechanics to chemistry rely on a
general method of approximation due to Rayleigh and known as the
variational method (Magnasco, 2007, 2009a), which we summarize
briefly in the following.
Let w be a normalized7 regular trial (or variational) function.We define

the Rayleigh ratio as the functional:8

« w½ � ¼
Ð
dx w�ðxÞHwðxÞÐ
dx w�ðxÞwðxÞ ¼ hwjHjwi

hwjwi ð1:54Þ

where x are the electronic coordinates, w�ðxÞ the function complex
conjugate to wðxÞ, andH the Hamiltonian of the system. In the last term
on the right-hand side of the equation we have introduced the so-called
Dirac notation for the integrals. Then, the Rayleigh variational principle
states that, if E0 is the true energy of the ground state (the state of lowest
energy):

«½w� � E0 ð1:55Þ
In other words, any approximate energy must lie above the true energy

of the ground state, giving an upper bound to the electronic energy.
Variational approximations to energy and wavefunction can then be
simply worked out by introducing some variational parameters {c} in the
trial function w, then evaluating the integrals in the functional (1.54), in
order to obtain an ordinary function of the parameters {c} that can be
minimized against these parameters. Therefore, for a single parameter c:

« w½ � ¼
Ð
dx w�ðx; cÞHwðx; cÞÐ
dx w�ðx; cÞwðx; cÞ ¼ «ðcÞYmin ð1:56Þ

The necessary condition for the minimum of «ðcÞ will be:

d«

dc
¼ 0Y cmin ð1:57Þ

6An operator is a rule changing a regular function into another one, and is denoted by the caret

sign ^.
7A function satisfying Equation (1.52).
8A function of function w(x).
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analgebraic equationwhichmust be solved for thebest value of parameter
c, giving in this way the best variational energy and wavefunction.
The most interesting application for our purposes is to construct MOs

by the linear combination of atomic orbitals (LCAO) method, where the
variable parameters are the coefficients of the linear combination of some
basic orbitals {x}9 (Ritzmethod). It can be shown that, in this case, the best
orbitals are obtained by solving the eigenvalue equation for matrix H:

Hc ¼ «cY ðH�«1Þc ¼ 0 ð1:58Þ
where:

Hij ¼ hxijHjxji; Sij ¼ hxijxji ¼ dij ð1:59Þ
For molecules, all elements of matrix H are negative numbers.

The homogeneous system (Equation 1.58) has nontrivial solutions if and
only if:

H�«1j j ¼ 0 ð1:60Þ
The solution of the secular equation (1.60) for our simple case of a 2� 2

symmetric matrix H (a basis of two AOs) yields as best values for the
variational energy the two real roots (eigenvalues) «1 and «2, that are
usually written in ascending order, with the corresponding two eigen-
vectors c1 and c2 determining the two molecular orbitals w1 and w2

(Equations 18–20 with l ¼ «; or the simpler Equations 1.23 when the
diagonal elements are equal):

«1 � «2

c1; c2

w1;w2

8><
>: ð1:61Þ

« < 0 means bonding, « > 0 means antibonding, with a corresponding
notation for the resulting MOs.
The same procedure can be applied to find approximations to the

second-order energy E2 of Section 4.2 of Chapter 4 in the context of the
Hylleraas variational method (Magnasco, 2007, 2009a), as we shall
illustrate in the simple case of two functions. We start from a convenient
set of basis functions x written as the (1�2) row vector:

x ¼ ðx1 x2Þ ð1:62Þ

9Assumed normalized and orthogonal to each other, namely hxijxji ¼ dij; where d is the

Kronecker’ symbol (¼1 for j ¼ i;¼ 0 for j= iÞ:
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possibly orthonormal in themselves but necessarily orthogonal to c0. We
shall assume that:

x�x ¼ 1; x�c0 ¼ 0 ð1:63Þ
If the xs are not orthogonal they must first be orthogonalized by the

Schmidt method (Magnasco, 2007). Then, we construct the matrices:

M ¼ x�ðĤ0�E0Þx ð1:64Þ
the (2�2) Hermitian matrix of the excitation energies, and:

m ¼ x�ðĤ1c0Þ ð1:65Þ
the (2�1) column vector of the transition moments.
By expanding the first-order functionc1 in thefinite set of thexs,we can

write:

c1 ¼ xC ¼
X2
k¼1

xkCk ð1:66Þ

E2 ¼ C�MCþC�mþm�C ð1:67Þ
which is minimum for:

dE2

dC� ¼ MCþm ¼ 0YCðbestÞ ¼ �M�1m ð1:68Þ

giving as best variational approximation to the second-order energy E2:

E2ðbestÞ ¼ �m�M�1m ð1:69Þ
The symmetric matrixM can be reduced to diagonal form by a unitary

transfomation10U among its basis functions x:

c ¼ xU; U�MU ¼ «; U�m ¼ mc ð1:70Þ
where « is here the (2� 2) diagonal matrix of the (positive) excitation
energies:

« ¼ «1 0

0 «2

 !
ð1:71Þ

10A unitary matrix U satisfies U�1 ¼ U�, where U�1 is the inverse and U� ¼ ð~UÞ� the adjoint
matrix (Magnasco, 2007). A matrix is said Hermitian if U ¼ U�: For real elements, unitary and

orthogonal matrices coincide, so that we can use either of them indistinctly.
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The cs are called pseudostates, and give best E2 in the form:

E2ðbestÞ ¼ �m
�
c«

�1mc ¼ �
X2
k¼1

jhckjĤ1jc0ij2
«k

ð1:72Þ

which is known as sum-over-pseudostates expression. Equation (1.72)
has the same form as the analogous expression that would arise from the
discrete eigenstates of Ĥ0, but with definitely better convergence prop-
erties, reducing the infinite summation to a sum of a finite number of
terms, and avoiding the need of considering the contribution from the
continuous part of the spectrum (Magnasco, 2007).

1.4 ATOMIC UNITS

To get rid of all fundamental physical constants in our mathematical
formulae we shall introduce consistently a system of atomic units (au), by
putting:

e ¼ �h ¼ m ¼ 4p«0 ¼ 1 ð1:73Þ
The basic atomic units are obtained from the SI values of the

fundamental physical constants given in Table 1.1 (Mohr and Taylor,
2003).
The basic au of charge, length, energy and time are then expressed by:

Charge e ¼ 1:602 176� 10�19 C

Length; Bohr a0 ¼ 4p«0
�h2

me2
¼ 5:291 772� 10�11 m

Energy; Hartree Eh ¼ 1

4p«0

e2

a0
¼ 4:359 744� 10�18 J

Time t ¼ �h

Eh
¼ 2:418 884� 10�17 s

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð1:74Þ

When the atomic unit of energy is referred to molar quantities, we have
the different SI equivalents:

NAEh ¼ 2625:499 kJ mol�1 ¼ 27:211 38 eVmol�1

¼ 219:474 6� 103 cm�1 mol�1 ¼ 315:774 6� 103 Kmol�1

(

ð1:75Þ
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with the submultiples:

10�3Eh ¼ mEh ½milliHartree� ð1:76Þ

10�6Eh ¼ mEh ½microHartree� ð1:77Þ
etc. The milliHartree is the characteristic unit for the energy of the
chemical bond, the microHartree is that for the energy of the Van der
Waals bond. The hydrogen bond has an intermediate energy, correspond-
ing to that of a weak chemical bond.
The basic au for dipole, quadrupole and octupole electric moments are

given as:

Dipole moment; ea0 ¼ 8:478� 10�30 C�m

¼ 2:542� 10�18 esu� cm ¼ 2:542D

Quadrupole moment; ea0
2 ¼ 4:486� 10�40 C�m2

¼ 1:345� 10�26 esu� cm2 ¼ 1:345 B

Octupole moment; ea0
3 ¼ 2:374� 10�50 C�m3

¼ 7:117� 10�35 esu� cm3

8>>>>>>>>>><
>>>>>>>>>>:

ð1:78Þ

In the expressions above, D is theDebye unit of electric dipolemoment,
and B the Buckingham unit for the electric quadrupole moment.
At the end of a calculation in atomic units, as we shall usually do,

the actual SI values can be obtained by taking into account the SI
equivalents (1.74) and (1.78). As an example, we give below the
calculation of the SI equivalent of the Hartree unit to seven significant
figures:

Table 1.1 Fundamental physical constants

Physical quantity Value in SI units

Elementary charge e ¼ 1:602 176� 10�19 C
Electron mass m ¼ 9:109 382� 10�31 kg
Reduced Planck’s constant �h ¼ 1:054 572� 10�34 J s
Vacuum permittivity 4p«0 ¼ 1:112 650 J�1 C2 m�1

Light velocity in vacuum c ¼ 2:997 925� 108 m s�1

Avogadro number NA ¼ 6:022 142� 1023 mol�1

Boltzmann constant k ¼ 1:380 650� 10�23 J K�1
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Eh ¼ 1

4p«0

e2

a0
¼ me4

ð4p«0Þ2�h2

¼ 9:109 382� 10�31 � ð1:602 176� 10�19Þ4
ð1:112 650� 10�10Þ2 � ð1:054 571� 10�34Þ2

kgC4

C4 m�2 J2 s2

¼ 4:359 744� 10�18 J:

8>>>>>>>><
>>>>>>>>:

ð1:79Þ

1.5 THE ELECTRON DISTRIBUTION IN MOLECULES

The one-electron spatial function P(r) describing the distribution of the
electrons (the electron density) in the doubly occupied MO f(r):

fðrÞ ¼ xAðrÞcA þ xBðrÞcB ¼ xAðrÞþ lxBðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2 þ2lS

p ð1:80Þ

where l ¼ cB=cA denotes here the polarity parameter of the bond orbital
and S ¼ hxAjxBi the overlap integral, is simply given by:

PðrÞ ¼ raðrÞþ rbðrÞ ¼ 2fðrÞf�ðrÞ ¼ 2jfðrÞj2 ð1:81Þ

the factor 2 comes from the equal contribution of electrons with either
spin (a¼ spin-up, b¼ spin-down).
The electron density can be further analysed in terms of elementary

contributions from the AOs, giving the so-called population analysis,11

which shows how the electrons are distributed between the different
atomic orbitals in the molecule. We obtain from Equation (1.81):

PðrÞ ¼ qAxA
2ðrÞþ qBxB

2ðrÞþqAB
xAðrÞxBðrÞ

S
þ qBA

xBðrÞxAðrÞ
S

ð1:82Þ

where x2
AðrÞ and x2

BðrÞ are atomic densities, xAðrÞxBðrÞ
S and xBðrÞxAðrÞ

S are
overlap densities, all normalized to 1, while the coefficients:

qA ¼ 2

1þ l2þ 2lS
; qB ¼ 2l2

1þ l2 þ2lS
ð1:83Þ

11The extension to N-electron LCAO-MO wave functions is due to Mulliken (1955).
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are atomic charges, and:

qAB ¼ qBA ¼ 2lS

1þ l2 þ2lS
ð1:84Þ

overlap charges. The charges are normalized so that:

qA þ qBþ qAB þ qBA ¼ 2þ 2l2þ 4lS

1þ l2þ 2lS
¼ 2 ð1:85Þ

the total number of electrons in the bond orbital fðrÞ.
For a homopolar bond, l ¼ 1:

qA ¼ qB ¼ 1

1þ S
qAB ¼ qBA ¼ S

1þ S
ð1:86Þ

so that for S > 0, in the bond, the charge on the atoms is decreased,
electrons being transferred to the region between nuclei to an extent
described by qAB and qBA. This reduces internuclear repulsion and means
bonding.
Foraheteropolarbond,l=1,andwedefinegrosschargesonAandBas:

QA ¼ qAþ qAB ¼ 2þ 2lS

1þ l2 þ 2lS
ð1:87Þ

QB ¼ qBþ qBA ¼ 2l2 þ2lS

1þ l2þ 2lS
ð1:88Þ

and formal charges on A and B as:

dA ¼ 1�QA ¼ l2�1

1þ l2 þ 2lS
ð1:89Þ

dB ¼ 1�QB ¼ � l2�1

1þ l2þ 2lS
ð1:90Þ

If l > 1, dA ¼ d > 0, dB ¼ �dA ¼ �d < 0, and we have the dipole
Aþ dB�d (e.g. the LiH molecule).
In our model, an essential role will be assigned to the exchange-overlap

densities (MagnascoandMcWeeny, 1991;Magnasco, 2007,2008,2009a):

xAðrÞxBðrÞ�Sx2
AðrÞ; xBðrÞxAðrÞ�Sx2

BðrÞ ð1:91Þ
which have the properties:ð

dr½xAðrÞxBðrÞ�Sx2
AðrÞ� ¼ 0;

ð
dr½xBðrÞxAðrÞ�Sx2

BðrÞ� ¼ 0 ð1:92Þ
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1.6 EXCHANGE-OVERLAP DENSITIES AND THE
CHEMICAL BOND

This section aims to illustrate the origin of the quantum mechanical
exchange-overlap densities and their different behaviour in the case of
the chemical bond in ground state H2 and the Pauli repulsion in He2.
We choose as starting point for the 1S þ

g ground state of the systems
the normalized Heitler–London (HL) wave functions (Magnasco,
2008):

CðH2Þ ¼ jja�bjj þ jjb�ajjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2S2

p ¼ aðr1Þbðr2Þþ bðr1Þaðr2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2S2

p aðs1Þbðs2Þ�bðs1Þaðs2Þffiffiffi
2

p

ð1:93Þ

CðHe2Þ ¼ jja�ab�bjj ¼ jjaðr1Þaðs1Þ aðr2Þbðs2Þ bðr3Þaðs3Þ bðr4Þbðs4Þjj
ð1:94Þ

where r and s are space and spin variables, the bar denotes b spin,
aðrÞ ¼ 1sAðrÞ and bðrÞ ¼ 1sBðrÞ are AOs centred at A and B, the
double bar standing for a normalized Slater determinant (Magnasco,
2007, 2009a)12.
If x ¼ rs denotes the space-spin variable, we recall from first principles

(Magnasco, 2007, 2009a) that, for a normalizedN-electronwavefunction
satisfying the Pauli antisymmetry principle, the one-electron density
function is defined as:

rðx; xÞ ¼ N

ð
dx2dx3 � � � dxNCðx; x2; � � � ;xNÞC�ðx; x2; � � � ;xNÞ

ð1:95Þ
where the first set of variables in r comes fromY, the second fromY�. The
physical meaning of r is:

rðx;xÞdx ¼ probability of finding an electron at dx ð1:96Þ
where dx ¼ drds is an elementary volume at a fixed point in space-spin
space. In this way, r determines the probability distribution in space of

12It should be remarked that, while the Heitler–London function (1.93) for H2 is a two-
determinant wave function, the Heitler–London function (1.94) for He2 is a single determinant

wave function, so that in this case HL and MO approaches coincide.
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electrons of either spin. If:

raðr; rÞdr ¼ probability of finding at dr an electron with spin a

rbðr; rÞdr ¼ probability of finding at dr an electron with spin b

(

ð1:97Þ
with raðr; rÞ ¼ raðrÞ and rbðr; rÞ ¼ rbðrÞ the (spatial) coefficients of
aðsÞa�ðsÞ and bðsÞb�ðsÞ in r, the (spatial) electron density, as observed
from experiment, is defined as:

Pðr; rÞ ¼ raðr; rÞþ rbðr; rÞ ð1:98Þ

The electron densities for the 1
S

þ
g states of H2 and He2 resulting from

these Heitler–London wave functions are then:

Pðr; rÞ ¼ raðr; rÞþ rbðr; rÞ

¼ aðrÞa�ðrÞþ bðrÞb�ðrÞþ S½aðrÞb�ðrÞþ bðrÞa�ðrÞ�
1þ S2

8><
>: ð1:99Þ

for the two-electron system H2, and:

Pðr; rÞ ¼ raðr; rÞ þ rbðr; rÞ

¼ 2
aðrÞa�ðrÞþ bðrÞb�ðrÞ�S½aðrÞb�ðrÞþ bðrÞa�ðrÞ�

1�S2

8><
>: ð1:100Þ

for the four-electron system He2.
We give in detail below the calculation of the electron density for the

Heitler–London wavefunction (1.93) of ground state H2, when a(r), b(r),
a(s), b(s) are all normalized to one:

rðx1;x1Þ¼2

ð
dx2

aðr1Þbðr2Þþbðr1Þaðr2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ2S2

p aðs1Þbðs2Þ�bðs1Þaðs2Þffiffiffi
2

p

½aðr1Þbðr2Þþbðr1Þaðr2Þ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ2S2

p ½aðs1Þbðs2Þ�bðs1Þaðs2Þ��ffiffiffi
2

p

¼ð2þ2S2Þ�1

ð
dr2

½aðr1Þbðr2Þþbðr1Þaðr2Þ�
½a�ðr1Þb�ðr2Þþb�ðr1Þa�ðr2Þ�

ð
ds2

½aðs1Þbðs2Þ�bðs1Þaðs2Þ�
½a�ðs1Þb�ðs2Þ�b�ðs1Þa�ðs2Þ�

¼aðr1Þa�ðr1Þþbðr1Þb�ðr1ÞþS½aðr1Þb�ðr1Þþbðr1Þa�ðr1Þ�
2þ2S2

aðs1Þa�ðs1Þþbðs1Þb�ðs1Þ½ �
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so that:

raðr1;r1Þ¼rbðr1;r1Þ¼aðr1Þa�ðr1Þþbðr1Þb�ðr1ÞþS½aðr1Þb�ðr1Þþbðr1Þa�ðr1Þ�
2þ2S2

ð1:101Þ
andwe obtain the result of Equation (1.99) if we leave out the now useless
suffix 1 on the space-spin variables.

(i) The 1S þ
g state of H2 (two-electron interaction)

The spinless 1-electron density (Equation 1.99) satisfies the conserva-
tion relation:

ð
drPðr; rÞ ¼ 2 ð1:102Þ

the total number of electrons in H2.
Using the identity:

ð1þ S2Þ�1 ¼ 1�S2ð1þ S2Þ�1 ð1:103Þ
we see that the electron density (real orbitals) can be partitioned into:

Pðr;rÞ¼ a2ðrÞþb2ðrÞ� �þ S

1þS2

n�
aðrÞbðrÞ�Sa2ðrÞ�þ�bðrÞaðrÞ�Sb2ðrÞ�o

¼Pcbðr;rÞþPexch�ovðr;rÞ

8><
>:

ð1:104Þ
where:

Pcbðr;rÞ¼ a2ðrÞþb2ðrÞ¼Pclðr;rÞ ð1:105Þ
is the quasi-classical contribution to the molecular density, and:

Pexch�ovðr;rÞ¼ S

1þS2

n�
aðrÞbðrÞ�Sa2ðrÞ�þ�bðrÞaðrÞ�Sb2ðrÞ�o¼PIðr;rÞ

ð1:106Þ
the quantum mechanical exchange-overlap (or interference) density.
Equations (1.105) and (1.106) satisfy the relations:ð

drPclðr;rÞ¼
ð
dr½a2ðrÞþb2ðrÞ� ¼ 2 ð1:107Þ
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the number of electrons in the H2 molecule, and:ð
drPexch�ovðr;rÞ

¼ S

1þS2

ð
dr
n�

aðrÞbðrÞ�Sa2ðrÞ�þ�bðrÞaðrÞ�Sb2ðrÞ�o

¼ S

1þS2
ð2S�2SÞ¼0

8>>>>>>>>><
>>>>>>>>>:

ð1:108Þ

in agreement with Equations (1.92). However, the energy changes asso-
ciated with the quantum mechanical exchange-overlap component
(Equation 1.106) of the interaction energy are the greatest contributors
to the energy of the chemical bond (see Table 1.2).
Equations (1.105) and (1.106) are the Heitler–London counterpart of

the corresponding quantities (Equations 3.4 and 3.5 on page 340 of
Ruedenberg’s paper (1962), which refers to a LCAO-MOwave function.
Ruedenberg calls Equation (1.106) ‘themodification of the quasi-classical
density due to the interference effect’, while we, more literally, speak of
exchange½aðrÞbðrÞ�, ½bðrÞaðrÞ� and overlap½�Sa2ðrÞ�, ½�Sb2ðrÞ� densities.
Finally, it is worth noting that, while:

qA
cl ¼ qb

cl ¼ 1 ð1:109Þ
is the classical electron charge on separateAandB (one electron on eachH
atom),

q exch�ov
AB ¼ q exch�ov

BA ¼ S

1þS2
> 0 ð1:110Þ

is the fractionof electronic charge transferred in thebond region, due towhat
Ruedenberg calls the ‘constructive interference’, and which means bonding.

Table 1.2 Optimized bond energies and their components ð10�3EhÞ for ground
state H2

R/a0 DEcb DEexch�ov DEð1S þ
g Þ

1 15.85 �104.43 �88.58
1.2 �9.93 �119.03 �128.96
1.4 �19.42 �119.63 �139.05
1.6 �21.83 �112.54 �134.37
1.8 �21.08 �101.60 �122.68
2 �18.99 �89.02 �108.01
4 �1.68 �9.68 �11.36
6 �0.06 �0.45 �0.51
8 �0.002 �0.015 �0.017
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So, a complete equivalence exists between our notation (Magnasco and
McWeeny, 1991; Magnasco, 2004a, 2007, 2008, 2009a) and that of
Ruedenberg (1962).

(ii) The 1
S

þ
g state of He2 (four-electron interaction)

The same argument can be applied to the electron density (Equa-
tion 1.100), which satisfies the conservation relation:ð

dr Pðr; rÞ ¼ 4 ð1:111Þ

the total number of electrons in He2.
Using the identity:

ð1�S2Þ�1 ¼ 1þ S2ð1�S2Þ�1 ð1:112Þ
the electron density (real orbitals) can be partitioned into:

Pðr;rÞ¼2 a2ðrÞþb2ðrÞ� �� 2S

1�S2

n�
aðrÞbðrÞ�Sa2ðrÞ�þ�bðrÞaðrÞ�Sb2ðrÞ�o

¼Pcbðr;rÞþPexch�ovðr;rÞ;

8><
>:

ð1:113Þ
where:

Pcbðr;rÞ¼2½a2ðrÞþb2ðrÞ�¼Pclðr;rÞ ð1:114Þ
is the quasi-classical contribution to the molecular density, and:

Pexch�ovðr;rÞ¼

¼� 2S

1�S2

n�
aðrÞbðrÞ�Sa2ðrÞ�þ�bðrÞaðrÞ�Sb2ðrÞ�o¼PIðr;rÞ

8><
>: ð1:115Þ

the quantummechanical exchange-overlap (or interference) density.Even
in this case it is evident that:ð

drPclðr;rÞ¼4 ð1:116Þ

ð
drPexch�ovðr;rÞ¼0 ð1:117Þ

While the ‘exchange-overlap’ (or ‘interference’) density still does not
give any contribution to the electron population, it is now at the origin of
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the strong repulsion occurring at short range between two neutral He
atoms (Pauli repulsion, see Table 1.3), since in this case:

qexch�ov
AB ¼qexch�ov

BA ¼� 2S

1�S2
<0 ð1:118Þ

so that, now, electrons escape from the region between the nuclei, giving
what Ruedenberg calls ‘a destructive interference’. The same behaviour
occurs for the triplet 3

S
þ
u excited state of H2.

Hence, we conclude, first, that there is a complete equivalence between
Ruedenberg’s (1962) and our formulation (Magnasco and McWeeny,
1991;Magnasco,2004a,2007,2008,2009a)intermsofquantumdensities,
and, next, that the different behaviour of the quantum ‘exchange-overlap’
(or ‘interference’) density for the 1

S
þ

g states ofH2 (chemical bonding) and
He2 (Pauli repulsion) is evident fromtheopposite signs of theqexch�ov

AB terms
occurring in H2 and He2. The latter originate the main contribution to the
respective DEexch�ov components of the bond energy in H2 (attractive
contribution) and of the Pauli repulsion in He2 (repulsive contribution).
Numerical values of the interaction energies for these Heitler–London

wavefunctions, taken from Magnasco (2008), are given in Tables 1.2
and 1.3. The energies are optimized variationally with respect to the
values of the orbital exponents c0 of the atomic 1s STOs on A and B.
It can be seen from Table 1.2 that the optimized value resulting for the

bond energy of H2 at the equilibrium bond length,
DEeð1S þ

g Þ ¼ �139:05� 10�3Eh at Re ¼ 1:40a0, is within 80% of the
theoretical value DEeð1S þ

g Þ ¼ �174:45� 10�3Eh given by Wolniewicz
(1993) in his accurate calculation using a 279-term expansion in sphe-
roidal coordinates for the two electrons, including powers of the inter-
electronic distance. It must be admitted that our results are particularly
satisfying for such a simple wavefunction!

Table 1.3 Optimized Pauli repulsions and their components ð10�3EhÞ for theHe–He
interaction in the medium range

R/a0 DEcb DEexch�ov DEð1S þ
g Þ

2 �27.28 163.90 136.62
2.5 �7.55 50.22 42.67
3 �1.93 14.89 12.96
3.5 �0.47 4.27 3.80
4 �0.11 1.18 1.07
4.5 �0.02 0.32 0.30
5 �0.005 0.08 0.075
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The He–He optimized Pauli repulsion at medium range resulting from
Table 1.3 atR ¼ 3a0,DEð1S þ

g Þ ¼ 12:96� 10�3Eh, turns out to bewithin
96% of the accurate result DEð1S þ

g Þ ¼ 13:52� 10�3Eh, obtained by Liu
andMcLean (1973) fromanaccurate SCFHartree–Fock calculationusing
a4s3p2d1fbasis of STOson each centre.AtR ¼ 4a0, the optimized result,
DEð1S þ

g Þ ¼ 1:07� 10�3Eh, is still within 80% of the accurate value
given by the same authors, DEð1S þ

g Þ ¼ 1:35� 10�3Eh. Apparently, our
results would be even better when compared with experiment13 (Feltgen
et al., 1982), but in this case we must expect that our SCF values,
underestimating the interaction, compensate in part for the effect of the
attractive London forces not considered in the calculation.
These numerical results confirm the validity of our simple analysis

based on the exchange-overlap densities either for the chemical bond (H2)
or the Pauli repulsion (He–He). Even at the simple MO level, which we
know to behave correctly in the bond region (Magnasco, 2007, 2009a), a
model representing at its best such quantumdensities in terms of the single
one-electronH€uckel parameter ½ðb�aSÞ=ð1þ SÞ� < 0 (Magnasco, 2004a)
is expected to give a qualitatively correct representation of the chemical
bond and its properties. This is what we want to present in the next
chapter.

13Our calculated value at R ¼ 3:5a0 would exceed by less than 2% the experimental value of

DE ¼ 3:74� 10�3Eh.
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2.9 Appendices
2.9.1 The Second Derivative of the H€uckel Energy
2.9.2 The Set of Three Coulson’s Orthogonal Hybrids
2.9.3 Calculation of Coefficients of Real MOs for Benzene

The multicentre one-electron space functions f(r) describing electron
distribution in molecules are called molecular orbitals (MOs). In the
independent-particle approximation convenient MOs are constructed
by the linear combination of atomic orbitals (LCAO) with coefficients
determined by the Ritz method of Chapter 1.

2.1 AN ELEMENTARY MOLECULAR
ORBITAL MODEL

Consider the formation of two two-centre MOs obtained from two
normalized nonorthogonal real AOs, x1 rð Þ on atom A and x2 rð Þ on
atom B:

f1ðrÞ ¼ x1ðrÞC11 þ x2ðrÞC21 ¼ C11ðx1 þ l1x2Þ ð2:1Þ
where:

l1 ¼ C21

C11
ð2:2Þ

is the polarity parameter of MO f1 with C11 a normalization factor,
and:

f2ðrÞ ¼ x2ðrÞC22 þ x1ðrÞC12 ¼ C22ðx2 þ l2x1Þ ð2:3Þ
with:

l2 ¼ C12

C22
ð2:4Þ

the polarity parameter of MO f2.
We now introduce a simple H€uckel theory including overlap

(Magnasco, 2002, 2004a, 2007, 2009a). The elements of the H€uckel
secular determinant are given in terms of just two negative unspecified
parameters, the diagonal element a (the Coulomb or atomic integral) and
the off-diagonal element b (the bond integral).
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Optimization of the linear coefficients in this simple H€uckel scheme
including overlap gives the 2� 2 pseudosecular equation:

a1�« b�«S

b�«S a2�«

�����
����� ¼ 0 ð2:5Þ

where a1 < 0;a2 < 0 are atomic integrals specifying the energy levels of
AOs x1 and x2; b< 0 the bond integral describing formation of a bond
between x1 and x2;

S ¼
ð
dr x1ðrÞx2ðrÞ ¼ hx1jx2i ð2:6Þ

the overlap integral giving the superposition between the normalized AOs
x1 and x2. S depends in an exponentially decreasing way on the internu-
clear distance R between atoms A and B. It is important to note that b
depends on S and that no bond can be formed between AOs for which
S ¼ 0 by symmetry.
According to Equations (1.26) and (1.27) with:

A11 ¼ a1; A22 ¼ a2; A12 ¼ A21 ¼ b; l1 ¼ «1; l2 ¼ «2 ð2:7Þ
solution of Equation (2.5) gives the real roots:

«1 ¼ a1 þa2�2bS�D
2ð1�S2Þ ð2:8Þ

«2 ¼ a1 þa2�2bSþD
2ð1�S2Þ ð2:9Þ

with:

D ¼ ½ða2�a1Þ2þ 4ðb�a1SÞðb�a2SÞ�1=2 > 0 ð2:10Þ
The roots «i of the pseudosecular equation are calledmolecular orbital

energies, while the differences D«i ¼ «i�ai are assumed to give the
contribution of the ithMO to the bond energy. The energy of the chemical
bond will, in general, depend on b; a1; a2, and S. The solutions become
particularly simple in the two cases schematically shown in Figure 2.1.
If a1 ¼ a2 ¼ a, we have degeneracy of the atomic levels, and we obtain

for orbital energies and MOs the following results:

«1 ¼ aþb

1þ S
¼ aþ b�aS

1þ S
ð2:11Þ
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is the orbital energy for the bonding MO f1;

D«1 ¼ «1�a ¼ b�aS

1þ S
< 0 ð2:12Þ

the attractive bonding orbital interaction;

f1 ¼
x1 þ x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ2S

p ; l1 ¼ 1 ð2:13Þ

the normalized bonding MO;

«2 ¼ a�b

1�S
¼ a�b�aS

1�S
ð2:14Þ

the orbital energy for the antibonding MO f2;

D«2 ¼ «2�a ¼ �b�aS

1�S
> 0 ð2:15Þ

the repulsive antibonding orbital interaction;

f2 ¼ x2�x1ffiffiffiffiffiffiffiffiffiffiffiffi
2�2S

p ; l2 ¼ �1 ð2:16Þ

the normalized antibonding MO.
We notice that the resulting MOs are normalized and orthogonal:

hf1jf1i ¼
x1þ x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2S

p
���� x1þ x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2S
p

* +
¼ 2þ 2S

2þ 2S
¼ 1

hf2jf2i ¼
x2�x1ffiffiffiffiffiffiffiffiffiffiffiffi
2�2S

p
���� x2�x1ffiffiffiffiffiffiffiffiffiffiffiffi

2�2S
p

* +
¼ 2�2S

2�2S
¼ 1

hf1jf2i / hx1þ x2jx2�x1i ¼ �1þ 1 ¼ 0

8>>>>>>>><
>>>>>>>>:

ð2:17Þ

Figure 2.1 Bonding and antibondingmolecular splittings for a first-order interaction
(b large)
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and that f2 has a nodal plane at the midpoint of the internuclear axis
whereas f1 has no nodes. For S=0 (right-hand side of Figure 2.1) the
molecular levels are asymmetric with respect to the atomic levels, the
bonding level being less bonding, the antibonding level is more antibond-
ing than the case S ¼ 0 (left-hand side of Figure 2.1) where splitting
is symmetric. Finally, we observe that the orbital interaction energy is
first order in b (strong interaction).
If jbj � ða2�a1Þ > 0 (Figure 2.2), the two atomic energy levels have

sensibly different energies, so that the interaction b is small.
If we assume a1 to be the deepest level, using a Taylor expansion for the

square root, we have:

D ¼ ða2�a1Þ 1þ 4ðb�a1SÞðb�a2SÞ
ða2�a1Þ2

2
4

3
5
1=2

� ða2�a1Þ 1þ 2ðb�a1SÞðb�a2SÞ
ða2�a1Þ2

2
4

3
5

¼ ða2�a1Þþ 2ðb�a1SÞðb�a2SÞ
a2�a1

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð2:18Þ

Figure 2.2 Bonding and antibonding molecular splittings for a second-order inter-
action (b small)
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so that, substituting in the previous equations, we obtain:

«1 � a1�ðb�a1SÞ2
a2�a1

ð2:19Þ

the orbital energy of the bonding MO;

D«1 � «1�a1 ¼ �ðb�a1SÞ2
a2�a1

< 0 ð2:20Þ

the attractive bonding orbital interaction;

f1 ¼
x1þ l1x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l1
2þ 2l1S

p ; l1 � �b�a1S

a2�a1
> 0 small ð2:21Þ

the normalized bonding MO, little different from x1;

«2 � a2þ ðb�a2SÞ2
a2�a1

ð2:22Þ

the orbital energy of the antibonding MO;

D«2 � «2�a2 ¼ þ ðb�a2SÞ2
a2�a1

> 0 ð2:23Þ

the repulsive antibonding orbital interaction;

f2 ¼
x2 þ l2x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l2
2 þ 2l2S

p ; l2 � b�a2S

a2�a1
< 0 small ð2:24Þ

the normalized antibonding MO, little different from x2. The greater
the difference Da ¼ a2�a1 the smaller the orbital interaction: this ex-
plains why the chemical bond always occurs at the valence level, where
energy differences between AOs are smaller. The interaction is now
second order in b.

2.2 BOND ENERGIES AND PAULI REPULSIONS
IN HOMONUCLEAR DIATOMICS

According to our simple model, in a homonuclear diatomic, the energy of
a chemical bond (in short, the bond energy) is obtained by adding at the
valence level the contributions from the different MOs that are occupied
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by electrons according to the aufbau principle (Walker and Straw, 1966).
In the absence of degeneracy, in eachmolecular level we put two electrons
with opposite spin so as to satisfy the Pauli exclusion principle. So, we
obtain for the bonds in the simplest molecules built from atoms having
one or two 1s electrons in their valence shell (H, He) the results shown
in Figure 2.3.

2.2.1 The Hydrogen Molecular Ion Hþ
2 (N ¼ 1)

DE ¼ b�aS

1þ S
< 0 ð2:25Þ

This is the energy of the one-electron bond in our model.

2.2.2 The Hydrogen Molecule H2 (N ¼ 2)

DE ¼ 2
b�aS

1þ S
< 0 ð2:26Þ

so that the energy of the two-electron bond in H2 should be twice that of
the one-electron bond in Hþ

2 .

2.2.3 The Helium Molecular Ion Heþ
2 (N ¼ 3)

DE ¼ 2
b�aS

1þ S
�b�aS

1�S
¼ 2ð1�SÞ�ð1þ SÞ

1�S2
b�aSð Þ ¼ 1�3S

1�S2
b�aSð Þ < 0

ð2:27Þ
For small S, the three-electron bond energy in Heþ

2 should be not far
from (better, a little less than) that of Hþ

2 .

Figure 2.3 Electron configurations in first-row homonuclear diatomics originating
one-electron (H2

þ ), two-electron (H2), three-electron (He2
þ ) chemical bonds

and Pauli repulsion in He2
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2.2.4 The Helium Molecule He2 (N ¼ 4)

DE¼ 2
b�aS

1þS
�2

b�aS

1�S
¼ 2ð1�SÞ�2ð1þSÞ

1�S2
b�aSð Þ ¼ � 4S

1�S2
b�aSð Þ> 0

ð2:28Þ

so that, for the interaction between two ground stateHe atoms, themodel
predicts repulsion between the atoms (the so-called Pauli repulsion), and
no chemical bond can be formed. So, the diatomic molecule He2 cannot
exist in the usual region of chemical bonds1.
This is exactly what is observed by experiment (Huber and Herzberg,

1979). In Table 2.1 we give the bond distances and the bond strengths
(in atomic units) measured for the ground states of H2

þ , H2, He2
þ , and

the accurate Pauli repulsion energy calculated at R ¼ 3a0 for He2 by Liu
and McLean (1973). The bond strengths D reported in the table are
obtained at the bottom of the potential energy curve, and correspond to
the negative of the bond energies DE of our model ðD ¼ �DEÞ
The results of our model are seen to agree well with experiment, and

were confirmed by ab initio calculations on the same systems (Magnasco,
2008). It was shown there that the single one-electron bond energy
parameter ðb�aSÞ occurring in Equations (25–28) is just the model
representation of the one-electron part of the exchange-overlap compo-
nent of the interaction due to the exchange-overlap densities ½aðrÞbðrÞ�
Sa2ðrÞ� on A and ½bðrÞaðrÞ�Sb2ðrÞ� on B.
The na€ıve extension of the model to the bonds of the second-row

homonuclear diatomics (Li2
þ , Li2, Be2

þ , Be2), mostly involving overlap

Table 2.1 Bond distances (a0) and bond strengths (Eh) observed in first-row homo-
nuclear diatomics

Molecule R/a0 D/10�3Eh Ratio Model

H2
þ 2.0 102.6 1 1

H2 1.4 174.4 1.7 2
He2

þ 2.04 90.8 0.9 1
He2 3.0 �13.5 – Repulsion

1At the rather large internuclear distance of 5.63a0, the potential energy curve of the He(1s2)-

He(1s2) interaction shows a shallow minimum of �33:4� 10�6Eh corresponding to the forma-
tion of a so-calledVanderWaals bond.This is possible since, at this large distance, the smallPauli
repulsion between closed shells is overbalanced by a small London attraction (see Chapter 4).
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between easily polarizable 2s AOs, is however not immediately possible,
because, at variance with Hþ

2 and H2, Li
þ
2 ðD ¼ 47:3� 10�3EhÞ is more

stable than Li2ðD ¼ 38:6� 10�3EhÞ as a result of the sensibly stronger
polarization effects of the valence 2s electrons compared with 1s ðaLi ¼
168a30; aH ¼ 4:5a30Þ (Kutzelnigg, 1991), not accounted for in our model.
However, themodel correctly predicts Be2 to be a vanderWaalsmolecule,
like its lighter homologue, He2.
What is rather surprising is that a similar trend for bond lengths and

bond strengths is observedwhen filling 1 through8 electrons in the doubly
degenerate valence p levels in the ground states of the series Cþ

2 ; C2;
Nþ

2 ; N2; O
þ
2 ; O2; F

þ
2 ; F2 (Magnasco, 2004a). The maximum bond

strength occurs for the triple bond in N2 ðNp ¼ 4;D ¼ 358:7�10�3EhÞ,
lying in between Nþ

2 ðNp ¼ 3; D ¼ 237:9� 10�3EhÞ and Oþ
2 ðNp ¼ 5;

D ¼ 242:4� 10�3EhÞ which have rather similar bond strengths, while
the p system of F2, containing a complete shell of 8 electrons, exhibits
a Pauli repulsion that reduces the strength of the underlying s bond
ðD ¼ 62:1� 10�3EhÞ.

2.3 MULTIPLE BONDS

In diatomicmolecules, it is customary to assume the z axis along the bond
direction connecting atom A (chosen at the origin of the interatomic
coordinate system) to atom B, a distance R apart, while axes x and y are
perpendicular to it. Bonds directed along the internuclear axis z are called
s bonds, bonds perpendicular to the z axis (hence having the two
equivalent orthogonal directions of axes x and y) are called p bonds.
Multiple bonds have either s and p bonds, the ordinary double bond (e.g.
in ethylene) having four electrons in the configuration s2p2, the ordinary
triple bond (e.g. in N2 and C2H2) six electrons in the configuration s2p4.
However, we have just seen that we can also have chemical bonds
involving either one electron (H2

þ ) or three electrons (He2
þ ), so devi-

ating from the classical Lewis bond that consists of an electron pair (H2).
So,we can also speak of three-electrons bonds (as inHe2

þ ), and of three-
electron p bonds (as for the triplet ground state of O2), as shown in
Figure 2.4.
It should be noted that, because of the invariance properties of the

density function with respect to a unitary transformation among its
orbitals, the s–p description of double or triple bonds in terms of
nonequivalent orbitals is not the only possible one; a description in terms
of two or three equivalent bent banana bonds is possible as well. It is
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important to stress that the two descriptions are physically equivalent.
We shall show this by an energy calculation for the simpleMOdescription
of the double bond.

2.3.1 s2p2 Description of the Double Bond

Let us consider the four basic AOs zA; zB; xA; xBð Þ or ðsA; sB; pxA; pxBÞ,
where 2pz ¼ z ¼ s are AOs directed along the internuclear axis, and
2px ¼ x ¼ px (¼ p for short) AOs perpendicular to it2. We choose two
coordinate systems, a right-handed one on A and a left-handed on B
(Figure 2.5), so that Sss elementary overlap is positive.

Figure 2.5 The four basic AOs needed for the s2p2 description of the double bond

Figure 2.4 Ground state electron configurations originating the three-electron
s bond in Heþ

2 ðS þ
u Þ, and the two three-electron p bonds in O2ðS �

g Þ

2A nomenclature borrowed from diatomic molecules.
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If we then construct H€uckel MOs using the LCAO method, assuming
for simplicity orthonormal3 basicAOs,wemust solve the secular equation
of Figure 2.6. After diagonalization of the H€uckel matrix, we get:

s ¼ 1ffiffiffi
2

p ðzAþ zBÞ; s� ¼ 1ffiffiffi
2

p ðzA�zBÞ

p ¼ 1ffiffiffi
2

p ðxAþ xBÞ; p� ¼ 1ffiffiffi
2

p ðxA�xBÞ

8>>>>><
>>>>>:

ð2:29Þ

the MOs in the first column being bonding, those in the second column
antibonding. We concentrate our attention only in bonding orbitals.
Let us examine the structure of the block-diagonal matrix describing

orbital interaction within the H€uckel scheme:

as bss

bss as

 !
;

S-matrix

ap bpp

bpp ap

 !

P-matrix

ð2:30Þ

where the as are Coulomb integrals and the bs bond (interaction)
integrals. As already said, in H€uckel-type theories (Magnasco, 2002,
Magnasco, 2004a) a is taken to be an atomic quantity (roughly the
negative of the ionization potential of an electron in the orbital), while
b is taken proportional to the overlap Smn between the two interacting
orbitals xm and xn via a constant b0:

bmn ¼ b0Smn; Smn ¼ hxmjxni ð2:31Þ

Figure 2.6 Factorization and diagonalization of the H€uckel secular equation for a
double bond

3Remember that orthogonal does not mean not interacting (Magnasco, 2004a).
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To get the MOs we solve the two quadratic equations:

ap�« bss

bss ap�«

�����
����� ¼ 0;

ap�« bpp

bpp ap�«

�����
����� ¼ 0 ð2:32Þ

having roots:

«s ¼ apþbss; «s� ¼ ap�bss

«p ¼ ap þbpp; «p� ¼ ap�bpp

(
ð2:33Þ

the first beingSmolecular orbital energies, the secondPmolecular orbital
energies. Then, when there is interaction between A and B, we get for the
orbital energies the diagram on the left-hand side of Figure 2.7.
We have the total H€uckel energy:

E ¼ 2«s þ 2«p ð2:34Þ
giving as bond energy for the s2p2double bond:

DE ¼ 2bss þ 2bpp ð2:35Þ

Since bpp < bss, the bond energy of the double bond is lower than the
bond energy corresponding to two separate singles bonds. This is the first
result obtained from MO theory.

2.3.2 B 2
1 B 2

2 Bent (or Banana) Description of the
Double Bond

Since the s and pMOs are mathematical functions obtained in principle
as solutions of a differential equation, describing the motion of a single
electron in the field provided by nuclei and all remaining electrons, we

Figure 2.7 Diagram of the MO orbital energies (S¼ 0) for the carbon-carbon
interaction in the s2p2 description of the double bond (left) and in the equivalent
B 2
1 B

2
2 bent bond description (right)
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can mix them through a linear combination without changing the
mathematical solutions themselves. In other words, the new MOs ob-
tained from linear combination of s and p will still be a solution of the
same differential equation, the electron density being invariant against
this transformation. The simplest combination is then:

B1 ¼ 1ffiffiffi
2

p ðsþpÞ ¼ 1ffiffiffi
2

p 1ffiffiffi
2

p ðzAþxAÞþ 1ffiffiffi
2

p ðzBþxBÞ
2
4

3
5¼ 1ffiffiffi

2
p ðpA1þpB1Þ

B2 ¼ 1ffiffiffi
2

p ðs�pÞ ¼ 1ffiffiffi
2

p 1ffiffiffi
2

p ðzA�xAÞþ 1ffiffiffi
2

p ðzB�xBÞ
2
4

3
5¼ 1ffiffiffi

2
p ðpA2þpB2Þ

8>>>>>>><
>>>>>>>:

ð2:36Þ

where pA1 is a 2p orbital on A making an angle of u¼ 45� with respect to
the internuclear z axis, pA2 a 2p orbital on Amaking an angle of u¼�45�

with respect to the internuclear z axis, etc. In matrix form:

ðB1B2Þ ¼ ðs pÞ

1ffiffiffi
2

p 1ffiffiffi
2

p

1ffiffiffi
2

p � 1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA¼ ðs pÞU ð2:37Þ

where

U ~U¼ ~UU¼ 1 ð2:38Þ

so that the transformation U connecting the two descriptions is given by
an orthogonal4 matrix.
The orbitalsB1 andB2 obtained in this way describe the double bond in

terms of two equivalent bent bondsmaking an angle of 2u ¼ 90� between
them (each bent bond makes an angle of u ¼ 45� with the internuclear
axis) as shown in Figure 2.8.
From a geometrical point of view, B1 and B2 are obtained by a rotation

of 180� around the z axis, but, although the individual form of the MOs
is changed, the physical situation is unchanged as we can easily see by
evaluating the molecular energy in the new basis. Since the two bond
orbitals are equivalent (under reflection across the yz plane) their asso-

4This transformation leaves the length of the vectors invariant.
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ciated energy levels are degenerate:

«1 ¼ hB1jHjB1i ¼ 1

2
hsþ pjHjsþ pi ¼ 1

2
ð«s þ «pÞ

«2 ¼ hB2jHjB2i ¼ 1

2
hs�pjHjs�pi ¼ 1

2
ð«s þ «pÞ ¼ «1

8>>>><
>>>>:

ð2:39Þ

Wehave two degenerate levels of energy «2 ¼ «1 equal to the arithmetic
mean of the previous s and p levels (right-hand side of Figure 2.7). We
finally obtain:

E ¼ 2«1þ 2«2 ¼ 4«1 ¼ 2«s þ2«p

DE ¼ 2bss þ 2bpp

(
ð2:40Þ

the same result as before. Molecular and bond energy are therefore
unchanged. The s–p and B1–B2 representation of the double bond
describe the same physical situation5. This is the second result obtained
from the quantummechanical description of the chemical bond.We have
no experimental way of distinguishing between the two.

2.3.3 Hybridization Effects

We now turn to examination of hybridization effects. We allow for sp2

hybridizationof the orbitals lying in the zxmolecular plane (e.g. ethylene).

Figure 2.8 Equivalent bent (or banana) bond description of the double bond

5This is true only for the MO approximation. Ab initio VB calculations by Palke (1986) on
ethylene show the equivalent banana bond description of the double bond in terms of equivalent

nonorthogonal hybrids to be more stable than the s–p description.
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Figure 2.9 tA is an sp2 hybrid directed along the z axis

Let:

t ¼ sþ ffiffiffi
2

p
zffiffiffi

3
p ð2:41Þ

be a normalized sp2 hybrid on the same atom. Then, tA is an sp2 hybrid on
A directed along the z axis (Figure 2.9).
In the s–p description of the double bond we must solve the secular

equation (2.5) in the basis tAtB xAxBð Þ, assuming S ¼ 0 as before, getting
after diagonalization the molecular orbitals:

s ¼ 1ffiffiffi
2

p ðtA þ tBÞ; s� ¼ 1ffiffiffi
2

p ðtA�tBÞ

p ¼ 1ffiffiffi
2

p ðxAþ xBÞ; p� ¼ 1ffiffiffi
2

p ðxA�xBÞ

8>>>>><
>>>>>:

ð2:42Þ

where only sMOs are changed by hybridization. We have now for the s
bonding orbital energy:

«s ¼ 1

2
htAþ tBjHjtAþ tBi ¼ at þbtt ð2:43Þ

where:

at ¼ htAjHjtAi ¼ 1

3
hsA þ

ffiffiffi
2

p
zAjHjsA þ

ffiffiffi
2

p
zAi ¼ 1

3
ðas þ2apÞ ð2:44Þ

btt ¼ htAjHjtBi ¼ 1

3
hsA þ

ffiffiffi
2

p
zAjHjsBþ

ffiffiffi
2

p
zBi

¼ 1

3
ðbss þ 2bss þ 2

ffiffiffi
2

p
bssÞ

8>>>>><
>>>>>:

ð2:45Þ
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whereas the p bonding energy is unchanged:

«p ¼ ap þbpp: ð2:46Þ

Hybridization introduces further Coulomb ðasÞ and bond ðbss and bssÞ
integrals. So, we have, for total and bond energy of the double bond
accounting for hybridization:

E ¼ 2«s þ 2«p ¼ 2ðat þbttÞþ 2ðap þbppÞ

¼ 2

3
as þ 10

3
ap

 !
þ 2

3
bss þ

4

3
bss þ

4
ffiffiffi
2

p

3
bss þ 2bpp

DE ¼ 2

3
bss þ

4

3
bss þ

4
ffiffiffi
2

p

3
bss þ 2bpp

8>>>>>>>><
>>>>>>>>:

ð2:47Þ

Bond energy increases with hybridization for two reasons: (i) since
bss > bss and (ii) because the additional term bss is quite large (Pople and
Santry, 1964, 1965).
A guess of the energy resulting for the double bond in ethylene

ðRCC ¼ 2:55a0Þ can be made assuming nodeless Slater-type orbitals
(STOs)withcs ¼ cp ¼ 1:625usingoverlapvalues takenfromthe literature
(Pople and Santry, 1965) and assumingb0 � �3 eV ¼ �69:1 kcal mol�1,
giving the numbers collected in Tables 2.2 and 2.3.
We then obtain the results (kcal mol�1):

DEp ¼ 2bpp ¼ �36:6

DEs ¼
2bss ¼ �45:0

2

3
bss þ

4

3
bss þ

4
ffiffiffi
2

p

3
bss þ 2bpp ¼ �106:0

8>><
>>:

8>>>>><
>>>>>:

ð2:48Þ

Table 2.3 Bond integrals between carbon STOs

Energy unit bss bss bss bpp

eV �1.29 �1.29 �0.98 �0.79
kcal mol�1 �29.8 �29.8 �22.5 �18.3

Table 2.2 Overlap integrals between carbon STOs

Sss Sss Sss Spp

0.431 0.430 0.326 0.265
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giving for the bond energy of theC¼Cdouble bond in ethylene the results
of Table 2.4.
There is a gain of 61.0 kcalmol�1 due to sp2 hybridization, since the

overlap between bonding hybrids is stronger than that pertaining to
the elementary overlaps (Magnasco, 2007, Magnasco, 2009a). Coulson
(1961) gives for the bond strengths:

C�C � 83 kcal mol�1

C¼C � 146 kcal mol�1

(
ð2:49Þ

in excellent agreement with our estimate here.
Table 2.5 collects some typical values of bond strengths in hydrocar-

bons taken from Coulson’s book (Coulson, 1961).
Turning to the bent bonds description, we have:

B1 ¼ 1ffiffiffi
2

p ðsþpÞ ¼ 1ffiffiffi
2

p 1ffiffiffi
2

p ðtAþxAÞþ 1ffiffiffi
2

p ðtBþxBÞ
2
4

3
5¼ 1ffiffiffi

2
p ðbA1þbB1Þ

B2 ¼ 1ffiffiffi
2

p ðs�pÞ ¼ 1ffiffiffi
2

p 1ffiffiffi
2

p ðtA�xAÞþ 1ffiffiffi
2

p ðtB�xBÞ
2
4

3
5¼ 1ffiffiffi

2
p ðbA2þbB2Þ

8>>>>>>>><
>>>>>>>>:

ð2:50Þ

Table 2.5 Bond strengths D (kcal mol�1) of some bonds in hydrocarbons

Bond Bond strength Hybridization

C�C single 83 sp3

C¼C double 146 sp2 þ p
C�C triple 201 spþ p2

C�H in CH4 103 sp3

C�H in C2H4 106 sp2

C�H in C2H2 121 sp

Table 2.4 Bond strength D (kcal mol�1) of the C ¼ C double bond in ethylene

No hybridization sp2 hybridization

81.6 142.6
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where:

bA1 ¼ 1ffiffiffi
2

p ðtAþxAÞ ¼ 1ffiffiffi
6

p sAþ
ffiffiffi
5

p
pA1

� �

pA1 ¼
ffiffiffi
2

5

s
zAþ

ffiffiffi
3

2

s
xA

0
@

1
A:

8>>>>>><
>>>>>>:

ð2:51Þ

bA1 is the hybrid orbital on A engaged in the B1 bond orbital, pA1
a normalized 2p orbital on A making an angle of u ¼ 50:8� with the
internuclear z axis. The interbond angle between the pair of bent bonds
amounts now to 2u ¼ 101:6� when sp2 hybridization is included. In fact:

tan u ¼ coefficient of xA
coefficient of zA

¼
ffiffiffi
3

2

s
¼ 1:2247

u ¼ 50:8�

8>><
>>: ð2:52Þ

Hence, hybridization increases the angle between the bent bonds. This
is the third result given by the quantum mechanical description of the
double bond, namely, hybridization increases the angle between the bent
bonds, increasing overlap and therefore increasing the bond strength.

2.3.4 Triple Bonds

The level occupancy of the bonding MOs originating the typical triple
bond in ground state N2 is shown in Figure 2.10. Six valence electrons fill
in the nondegenerate s level and the doubly degenerate p level, giving the
configuration s2p4. The same is true for the triple bond in ground state
acetylene C2H2.

Figure 2.10 Schematic s 2
g p 4

u ground state configuration of the valence electrons

originating the triple bond in N2 and C2H2
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The equivalent bent bonds description of the triple bond is obtained
using the same arguments used before for the double bond. Three equiv-
alentbondorbitalsB1;B2;B3 areobtainedby the linearmixingofs;px; py:

B1 ¼ 1ffiffiffi
3

p sþ
ffiffiffi
2

p
ffiffiffi
3

p px

B2 ¼ 1ffiffiffi
3

p s� 1ffiffiffi
6

p px þ 1ffiffiffi
2

p py

B3 ¼ 1ffiffiffi
3

p s� 1ffiffiffi
6

p px� 1ffiffiffi
2

p py

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2:53Þ

the transformation coefficients between the two sets being the elements
of an orthogonal matrix. Again, the two descriptions are physically
equivalent.
A schematic drawing of different sorts of triple bonds is shown in

Figure 2.11, centrosymmetric linear molecules (C2H2) and homonuclear
diatomics (O2, N2) being given on the left, noncentrosymmetric linear
molecules (HCN) and heteronuclear diatomics (NO, CO) on the right.
As already said, ground stateO2 has two three-electron p bonds (dotted

in the Figure), NOan ordinary two-electron p bond and a three-electron p
bond, while CO has an ionic triple bond (Magnasco, 2007, Magnasco,
2009a). UV photoelectron spectra (Murrell et al., 1985) show that the
correct electron configurations of the ground states are 2su

2 1pu4 3sg
2

for N2ð1Sþ
g Þ, 3s2

g1p
4
u1p

2
g for O2ð3S�

g Þ, and 5s2 1p42p for NOð2PÞ. The
order of electron levels in Figure 2.10 is therefore purely schematic.

2.4 THE THREE-CENTRE DOUBLE BOND
IN DIBORANE

Electron diffraction studies (Bartell and Carroll, 1965) show that dibor-
ane B2H6 has aD2h structure like that of ethylene C2H4 (Herzberg, 1945),

Figure 2.11 Schematic drawing of the triple bonds occurring in some diatomics
and in linear polyatomic molecules (s lone pairs are also sketched)
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in which two three-centre bent BHB bonds replace the double bond in
ethylene as shown in Figure 2.12. From a theoretical standpoint, uniform
localization (Magnasco and Perico, 1968) of the MO-SCF wavefunction
of Palke and Lipscomb (1966) also gives strong support to the similarity
between diborane and ethylene6.
With its 16 electrons B2H6 is an electron-deficient molecule having the

ground state MO electron configuration7:

B2H6 ð1AgÞ: 1a 2
u 1a 2

g 2a 2
g 2a 2

u 1b 2
2u 1b

2
3u 3a

2
g 1b 2

2g ð2:54Þ
which can be compared with that of the ground state of the isoelectronic
ethylene molecule:8

C2H4 ð1AgÞ : 1ag
2 1au

2 2ag
2 2au

2 1b3u
2 3ag

21b2g
2 1b22u ð2:55Þ

The first five ionization potentials observed from UV photoelectron
spectroscopy9 for the two molecules (B2H6: Lloyd and Lynaugh, 1970;
C2H4: Branton et al., 1970) are compared in Table 2.6 with the negative
of the orbital energies resulting from the theoreticalMO-SCF calculations

Figure 2.12 Structure of diborane B2H6. The two three-centre BHB bonds lie in
the yz plane

6It is found that the total 2p-character is 0.905 for the bond hybrids engaged in the three-centre

bonds and 0.777 for those forming the coplanar B�H bonds in diborane, the corresponding
values for ethylene being 0.911 for C�C and 0.787 for C�H (so giving a large deviation from the

ideal sp2 hybrids,whichhave a2p-content of
ffiffiffi
2

p
=
ffiffiffi
3

p ¼ 0:816Þ. The calculated interbondangle in
diborane is 92:6�.
7For the notation, see Magnasco (Magnasco, 2007, 2009a).
8 In the electron configuration of both molecules we have shown the p orbital in bold.
9The ‘fingerprints’ of the molecule.
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by Palke and Lipscomb (1966) assuming the validity of Koopmans’
theorem:

Ii � �«i ð2:56Þ
Even if the quantitative agreement between the two sets of data is rather

unsatisfactory,10 nonetheless both experiment and calculation show that
the p bonding level in both molecules is:

«ð1b2uÞ ¼ «p � �14:5 eV for diborane

«ð1b2uÞ ¼ «p � �11:0 eV for ethylene

(
ð2:57Þ

so that we can say that the two protons entering the three-centre double
bonds in diborane stabilize the double bond, the p energy level in diborane
now appearing as the fourth ionization potential instead of the first,
as observed in ethylene.

2.5 THE HETEROPOLAR BOND

In the following, we extend our method to consideration of the hetero-
polar chemical bond. New aspects are now that: (i) both atomic energy
difference a2�a1 and bond integral b do contribute to the bond energy,
often being of the same order of magnitude; and (ii) the molecular charge
distribution is asymmetric so that it generates an electric dipole moment.
Assuming for simplicity orthogonal AOs (remember Footnote 3), the

Table 2.6 Comparison between vertical UV ionization potentials and theoretical
MO-SCF results (eV) for the Ag ground states of diborane and ethylene

MOs B2H6 MOs C2H4

Experimentala Theoreticalb Experimentalc Theoreticalb

1b2g 11.89 13.25 1b2u 10.51 10.09
3ag 13.30 14.56 1b2g 12.46 13.77
1b3u 13.91 15.24 3ag 14.46 15.28
1b2u 14.75 15.68 1b3u 15.78 17.52
2au 16.11 17.86 2au 18.87 21.29

a Lloyd and Lynaugh 1970.
b Palke and Lipscomb 1966.
c Branton et al. 1970.

10Not accounting for any correlation energy, theoretical MO calculations heavily overestimate

ionization potentials.
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fundamental quantities entering the model, the atomic energy difference
a2�a1 and the bond integralb, can be determined for eachmolecule using
the experimental values of its atomization energyD and its electric dipole
moment m. We shall shortly discuss below some results obtained for the
two-electron s bonds occurring in the ground states of the first-row series
of diatomic hydrides (Magnasco, 2003).
The linear combination of two normalized real nonorthogonal fixed

AOs, x1 rð Þ on atom A and x2 rð Þ on atom B, with coefficients determined
by the Ritz method, gives rise to two orthogonal two-centre MOs having
the normalized form:

f1 ¼ x1 þ lx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2 þ2lS

p bondingMO

f2 ¼ ð1þ lSÞx2�ðlþ SÞx1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�S2Þð1þ l2 þ 2lSÞ

q antibondingMO

8>>>>>><
>>>>>>:

ð2:58Þ

with orbital energies:

«1 ¼ a1 þa2�2bS�D
2ð1�S2Þ

«2 ¼ a1 þa2�2bSþD
2ð1�S2Þ

8>>>><
>>>>:

ð2:59Þ

where:

D ¼ ða2�a1Þ2 þ 4ðb�a1SÞðb�a2SÞ
h i1=2

> 0 ð2:60Þ

l is the unique11 polarity parameter, given by (see later Equation 2.106):

l ¼ D�ða2�a1Þ
2jb�a2Sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�ða2�a1Þ
Dþða2�a1Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jb�a1Sj
jb�a2Sj

s
ð2:61Þ

As before, according to this simple model, the bond energy in hetero-
nuclear diatomics is obtained by adding, at the valence level, the con-
tributions from the different MOs which are occupied by electrons
according to the aufbau principle.

11The orthogonality constraint between the resulting MOs gives l as the only independent

variational parameter.
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If ni is the number of electrons occupying the ithMOfi, n
0
i the number

of electrons in the ith AO xi in the separated atoms, we define the bond
energy as:

DE ¼
Xocc
i

ni«i�
Xocc
i

n 0
i ai ð2:62Þ

which, for homonuclear diatomics, reduces to the expression used in
Section 2.1:

DE ¼
Xocc
i

nið«i�aÞ ¼
Xocc
i

niD«i ð2:63Þ

The filling of electrons into the MO levels has now more possibilities
than in the previous homonuclear case. These cases are fully described
elsewhere (Magnasco, 2003).
Apart from their asymptotic form for 0 < jbj < a2�a1 (Equations 2.20

and 2.23 in Section 2.1), the general expressions for the orbital interaction
energies of the heteropolar MOs are rather complicated in the case of
nonorthogonal AOs. For the sake of simplicity, we shall content ourselves
with the simpler expressions occurring in the case of orthogonality
between the interacting AOs x1 and x2. Under this assumption, Equations
(2.58) simplify to:

f1 ¼
x1 þ lx2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l2
p bonding MO

f2 ¼
x2�lx1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

p antibonding MO

8>>>>>><
>>>>>>:

ð2:64Þ

with the orbital energies:

«1 ¼ a1 þa2

2
�D
2
; «2 ¼ a1 þa2

2
þ D

2
ð2:65Þ

where now:

D ¼ ½ða2�a1Þ2 þ4b2�1=2 > 0 ð2:66Þ
We observe that, in this case, the splitting of the molecular levels upon
interaction is symmetricwith respect to the arithmeticmean of the atomic
levels (Figure 2.13).
Table 2.7 collects the bond energies DE for the eight possible ways of

filling electrons into the MO levels resulting for a heteronuclear s system
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in the case of orthogonalAOs, starting from the lowest bondingMOup to
a maximum of four electrons, with a short comment on the nature of the
interaction. There are twice as many levels in the heteronuclear system
compared with the homonuclear system. Without any loss of generality
we have assumed a2�a1 > 0 (atom A having the deepest atomic energy
level). We see that the bond energy will depend in this case on just two
parameters, the atomic energy differencea2�a1 and the bond integral jbj.
The series of first-row diatomic hydrides having a two-electron s bond

(HeHþ , LiH, BH, CH, NH, OH, FH) will now be examined in some
detail in order to analyse the systematic behaviour of our model in a case
of physically occurring molecules. In the case of orthogonal AOs, as
already said, the two fundamental quantities of the model, the atomic
energy difference a2�a1 and the bond integral jbj, can be determined

Table 2.7 Model bond energies resulting for N-electron heteronuclear s–systems
assuming a2�a1 > 0 (orthogonal AOs)

N Case n0
1 n0

2 DE Nature of the interaction

1 (i) 1 0
a2�a1

2
�D
2

Little bonding

(ii) 0 1 �a2�a1

2
�D
2

Bonding

2 (iii) 1 1 �D Bonding
(iv) 2 0 ða2�a1Þ�D Little bonding CT (AþB�)

(v) 0 2 �ða2�a1Þ�D Bonding CT (A�Bþ )

3 (vi) 2 1
a2�a1

2
�D
2

Little bonding

(vii) 1 2 �a2�a1

2
�D
2

Bonding

4 (viii) 3 3 0 Non-bonding

Figure 2.13 For S¼ 0, the first-order splitting of the molecular energy levels in a
heteronuclear diatomic is symmetric with respect to the arithmetical mean of the
atomic levels (dashed line)
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using experimentally observed quantities for the ground states such as
the atomization energy jDej and the electric dipole moment m.
The polarity parameter is:

l ¼ D�ða2�a1Þ
2jbj ð2:67Þ

We now look at the distribution of the electronic charge, which, for
two electrons in the bonding MO of an XH system, gives the atomic
charges:

qX ¼ 2

l2 þ 1
; qH ¼ 2l2

l2þ 1
; qXþ qH ¼ 2 ð2:68Þ

The formal charges on the interacting atoms for l< 1 are:

onX: dX ¼ 1�qX ¼ l2�1

l2 þ 1
¼ �jdj ð2:69Þ

onH : dH ¼ 1�qH ¼ � l2�1

l2 þ 1
¼ þ jdj ð2:70Þ

For l < 1; dX < 0, and electronic charge will be transferred from H to
X, as expected on electronegativity grounds (Coulson, 1961) fromC to F.
The formal charge jdj is independently derived from the experimentally
observed values of the vibrationless electric dipole moment12 m, when its
entire value is attributed to the heteropolar dipole:

jmj ¼ jmHj ¼ jdjRe; ð2:71Þ
so that we obtain for the polarity parameter13 in the case l< 1:

l ¼ 1�jdj
1þ jdj
� �1=2

ð2:72Þ

We are now in a position to determine the values of our two unknown
parameters a2�a1 and jbj from observed experimental data. If D o

o

�� �� is
the dissociation energy (Huber and Herzberg, 1979; Feller and Dixon,
2001) and ve the vibrational frequency of the ground vibrational level,

12As usual, we assume m > 0 when the direction of the dipole is from �jdj to þ jdj. Calculated
Hartree–Fock values of m corrected for correlation effects generally agree with experimental
results (see text).
13For l > 1 the signs in the expression for l must be reversed.
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Dej j ¼ D o
o

�� ��þ 1
2ve is the experimental atomization energy of XH ob-

served from molecular spectra. Then:

a2�a1 ¼ �jDej l
2�1

l2 þ1
ð2:73Þ

is the atomic energy difference, obtained as the admissible solution of the
quadratic equation:

ðl2 þ 1Þða2�a1Þ2�2 Dej jða2�a1Þ�ðl2�1ÞD2
e ¼ 0 ð2:74Þ

The bond energy parameter is then given by:

jbj ¼ 1

2
½De

2�ða2�a1Þ2�1=2 ð2:75Þ

The formal charge jdj, the polarity parameter l, the atomic energy
difference a2�a1 and the bond energy parameter jbj resulting from the
experimental bond distances Re, the atomization energies Dej j, and the
SCF values for the electric dipole moments m of the ground states of first-
rowdiatomic hydrides, are given in atomic units in Table 2.8. In the series,
all molecules have at the valence level a two-electron heteropolar s bond
and a number ofs or p lone pairs and unpairedp electrons. Apart from the
first two terms in the series, the bond energy increases with decreasing
bond distance and the regular increase of the electronegativity difference
of atom X with respect to H. LiH has an unusually long bond distance,
with a rather large bond energy and a very large dipole moment.
While further details are left elsewhere (Magnasco, 2003), we shall

content ourselves here to remark that themodel atomic energy differences
a2�a1 are seen to follow the Mulliken electronegativity scale (Coulson,
1961; McWeeny, 1979), aH being the deepest atomic level for LiH,

Table 2.8 Two-electron s bonds occurring in the ground state of first-row diatomic
hydrides

Molecule Re=a0 Dej j=Eh mj j=ea0 jdj/e l a2�a1=Eh bj j=Eh

HeHþ 1.46 0.075 0.49 0.33 0.710 0.025 0.0353
LiH 3.015 0.092 2.36 0.78 2.844 �0.072 0.0288
BH 2.32 0.133 0.68 0.29 0.742 0.039 0.0636
CH 2.12 0.133 0.62 0.29 0.742 0.039 0.0650
NH 1.96 0.136 0.64 0.32 0.718 0.043 0.0696
OH 1.83 0.169 0.70 0.38 0.670 0.064 0.0782
FH 1.73 0.224 0.76 0.44 0.624 0.099 0.1005
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the reverse being true for the remaining hydrides ðaH�aX > 0Þ. It is
apparent that the model parameter aH�aX accounts in some way for
atom electronegativities within the bond. The bond energy parameter jbj
has the same order of magnitude of a2�a1 and, apart from LiH, regularly
increases from HeHþ to FH.

2.6 STEREOCHEMISTRY OF POLYATOMIC
MOLECULES

The structure in space of polyatomic molecules depends on the stereo-
chemistry of their chemical bonds through the principle of maximum
overlap (Magnasco, 2005).

2.6.1 The Molecular Orbital Model of Directed Valency

In the following, we shall use our model description of the chemical bond
to show that bonding is strongest for AOs maximizing the strength of the
exchange-overlap component of the bond energy. Making the usual
assumptions typical of elementary H€uckel theory including overlap, we
shall show that the H€uckel energy of the two-electron bond is minimized
for orbitals having maximum overlap.
Let bA be a directed orbital (atomic or hybrid) centred at the nucleus of

atomA andmaking an angle uwith the interbond axis A–B directed along
z from A to B, and xB a spherical orbital on atom B a distance R apart.
Then, overlap SAB and bond integral bAB can be written as:

SAB ¼ S cosu; bAB ¼ bcosu ð2:76Þ
where S and b are integrals characteristic of the bond A–B, which depend
on R, but are independent of the orientation u.
The pseudosecular equation for the corresponding bond orbital f in a

one-electron H€uckel-type approximation including overlap can then be
written as:

aA�« ðb�«SÞcosu
ðb�«SÞcosu aB�«

�����
����� ¼ 0 ð2:77Þ

which expands to the quadratic equation in «:

ð1�S2cos2uÞ«2�ðaA þaB�2bS cos2uÞ«þðaAaB�b2cos2uÞ ¼ 0 ð2:78Þ
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where aA, aB, and b are all negative energy quantities having the usual
meaning, the first two being interpreted as atomic integrals pertaining to
orbitals bA and xB, while b is the bond integral depending on the nature of
A and B.
The two real roots are:

«� ¼ aA þaB�2bS cos2u�D
2ð1�S2 cos2uÞ ð2:79Þ

the bonding root, and:

«þ ¼ aAþaB�2bS cos2uþD
2ð1�S2 cos2uÞ ð2:80Þ

the antibonding root, with:

D ¼ ½ðaB�aAÞ2þ 4ðb�aASÞðb�aBSÞcos2u�1=2 > 0 ð2:81Þ

To examine the dependence of the orbital energies « on u, it is
convenient to consider the determinantal Equation (2.77) as an implicit
function of the two variables u and «:

f ðu; «Þ ¼ ðaA�«ÞðaB�«Þ�ðb�«SÞ2cos2u ¼ 0 ð2:82Þ
From the derivation rules for implicit functions (Smirnov, 1993) it

follows:

df ¼ qf
qu

� �
«

duþ qf
q«

� �
u

d« ¼ 0 ð2:83Þ

d«

du
¼ �

qf
qu

� �
«

qf
q«

� �
u

¼ � fu
f«

ð2:84Þ

provided:

f« ¼ qf
q«

� �
u

=0 ð2:85Þ

and, using the Schwartz equality for the second partial derivatives:

d2«

du2
¼ � fuuðf«Þ2 þ f««ðfuÞ2�2fu«fuf«

ðf«Þ3
ð2:86Þ
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When the calculation of the second derivative involves a stationarity
point for «, which implies:

fu ¼ qf
qu

� �
«

¼ 0 ð2:87Þ

expression (2.86) simplifies to:

d2«

du2
¼ � fuu

f«
ð2:88Þ

provided both members are evaluated at the stationarity point for «.
From Equation (2.82), we easily obtain:

fu ¼ qf
qu

� �
«

¼ b�«Sð Þ2sin2u ð2:89Þ

fuu ¼ q2f

qu2

 !
«

¼ 2 b�«Sð Þ2cos2u ð2:90Þ

f« ¼ qf
q«

� �
u

¼ 2«ð1�S2 cos2uÞ�ðaAþaB�2bScos2uÞ ð2:91Þ

For the lowest root (Equation 2.79), « ¼ «�, we have:

ðfuÞ«� ¼ ðb�«�SÞ2sin2u ð2:92Þ

ðf«Þ«� ¼ �D; ð2:93Þ
so that Equations (2.84) and (2.86) become:

d«�
du

¼ ðb�«�SÞ2sin2u
D

ð2:94Þ

d2«�
du2

¼ 2ðb�«�SÞ2cos2u
D

ð2:95Þ

The stationarity condition of «� with respect to u says that:

d«�
du

¼ 0 ð2:96Þ

for u ¼ 0, so that:

d2«�
du2

 !
u¼0

¼ 2ðb�«�SÞ2
D

> 0 ð2:97Þ
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provided both numerator and denominator are evaluated at u ¼ 0. From
Equations (2.96) and (2.97) it follows that u ¼ 0 is a stationarity point
for which «� has a true minimum value.
Hence, the H€uckel energy for the two electrons in the bond orbital f:

E�ðu ¼ 0Þ ¼ 2«�ðu ¼ 0Þ

¼
aA þaB�2bS� ðaB�aAÞ2þ 4ðb�aASÞðb�aBSÞ

h i1=2
1�S2

8>>><
>>>:

ð2:98Þ
has a minimum for u ¼ 0, corresponding to a maximum strength for
the straight A�B bond. In the same way, it can be shown that u ¼ 0,
corresponds to a maximum for Eþ ¼ 2«þ .
For orthogonal AOs, such as those of the originalH€uckel theory, S ¼ 0,

and Equations (2.94) and (2.95) become:

d«�
du

¼ b2sin2u

D
;

d2«�
du2

¼ 2b2cos2u

D
ð2:99Þ

and the same conclusions still hold.

2.6.2 Analysis of the MO Bond Energy

In our MO model, the bond energy defined as:

DE� ¼ 2«��ðaA þaBÞ

¼ � S

1�S2 cos2u
ðb�aASÞþ ðb�aBSÞ½ �cos2u� �

� D
1�S2 cos2u

8>>>>>>>><
>>>>>>>>:

ð2:100Þ

consists of two terms, the last being the bonding term (< 0, attractive), the
first a repulsive term (> 0) correcting for nonorthogonality.
For u ¼ 0, if:

aA ¼ aB ¼ a ð2:101Þ

D ¼ 4ðb�aSÞ2
h i1=2

¼ 2jb�aSj > 0 ð2:102Þ

58 THE CHEMICAL BOND



the bond energy becomes:

DE�ðu ¼ 0Þ ¼ � 2S

1�S2
ðb�aSÞ� 2jb�aSj

1�S2

¼ � 2S

1�S2
ðb�aSÞþ 2ðb�aSÞ

1�S2

¼ 2
b�aS

1þ S

8>>>>>>>>>><
>>>>>>>>>>:

ð2:103Þ

as it must be for homonuclear bonding. Hence, the correction term in
Equation (2.100) is essential in order to avoid overestimation of the bond
energy. This is in agreement with the well- known asymmetric splitting
of the MO levels occurring in H€uckel theory for S=0, where nonortho-
gonality of the basic AOs yields a bonding level less bonding, and an
antibonding levelmore antibonding, than those of the symmetric splitting
occurring for S ¼ 0.
As far as the bonding term in Equation (2.100) is concerned,

Equation (2.81) shows that D, in turn, depends: (i) on the atomic energy
difference ðaB�aAÞ; and (ii) on the product of bond energy integrals,
ðb�aASÞðb�aBSÞ cos2u, arising from the exchange-overlap densities
[a(r)b(r)� Sa2(r)] on A and [b(r)a(r)� Sb2(r)] on B, respectively, and
which contains all dependence of D on the orientation u. So, it is apparent
that theMOdescription of bonding and of its directional properties in the
general case B=A involves a rather complicated dependence (through
the square root defining D) on such exchange-overlap densities. On the
other hand, both factors above contribute to the determination of the
polarity parameter l of the bonding MO f (Magnasco, 2003):

f ¼ bAþ lxBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2 þ 2lScosu

p ð2:104Þ

Rather than from the homogeneous system corresponding to the
pseudosecular equation (2.77), it is convenient to obtain l for the lowest
eigenvalue «� as the appropriate solution of the quadratic equation14:

ðb�aBSÞcosu l2�ðaB�aAÞl�ðb�aASÞcosu ¼ 0 ð2:105Þ

l ¼ ðaB�aAÞ�D
2ðb�aBSÞcosu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�ðaB�aAÞ
DþðaB�aAÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jb�aASj
jb�aBSj

s
ð2:106Þ

14Arising from the matrix formulation of the full 2� 2 non-orthogonal eigenvalue problem

(Magnasco, 2007).
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Equation (2.106) allows then for the MO description of the electric
dipole moment m of the bond.
As a matter of fact, H€uckel theory including overlap appropriately

describes the physically relevant part of the interaction in this region,
showing that the possibility of forming a chemical bond lies in the
attractive nature of the one-electron part of the exchange-overlap com-
ponent of the interaction energy (Magnasco and McWeeny, 1991). We
have already seen that these considerations correctly explain the nature of
the bonding in the series of homonuclear diatomics Hþ

2 ; H2; Heþ
2 ; He2,

with their further extension to the homonuclear diatomics of the first row
(Magnasco, 2004a), which involve p bonding as well, and to the hetero-
polar bond in the orthogonal approximation (Magnasco, 2003). All these
effects are the same in determining the straight bond when directed
orbitals overlap.

2.7 sp-HYBRIDIZATION EFFECTS IN
FIRST-ROW HYDRIDES

At the simplest physical level, not taking hybridization into account, we
need a 1� 2 row vector basis for describing formation of the F–H bond

in HF ðz hÞ, the O–H bond in H2O z hz ¼ 1ffiffiffi
2

p ðh1 þ h2Þ
� �

, and the N–H

bond in NH3 z hz ¼ 1ffiffiffi
3

p ðh1 þ h2 þ h3Þ
� �

, the first belonging to S sym-

metry, the last two to A1 symmetry. As a final step in our H€uckel
calculation, all cases involve diagonalization of a 2� 2 H€uckel matrix,
which is trivial.
Admitting sp hybridization, for S, C2v, and C3v molecular symmetries,

the s and z functions always belong to the same symmetry (Table 2.9), so
that the rowbasis vector is now1� 3 giving a 3� 3H€uckelmatrix, whose
diagonalization is not so easy.
For the higher Td symmetry of the methane molecule, CH4, s and z

belong to different symmetries (Table 2.9), so that the 1� 8 row basis
vector ðs hs z hz x hx y hyÞ generates an 8�8 H€uckel matrix which shows
complete factorization into four 2�2 orthogonal noninteracting blocks,
belonging toA1,T2z,T2x, andT2y symmetries, respectively. So, the higher
symmetry of CH4 much simplifies the problem, and will be treated first
(Magnasco, 2004a). For the remaining hydrides (HF, H2O, NH3) we are
facedwith the solution of a 3� 3H€uckel secular equation, whichwe shall
pursue numerically for HF (Magnasco, 2009d) and analytically for H2O
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(Magnasco, 2009b) and NH3 (Magnasco, 2009c). For all polyatomic
molecules, we shall show that sp hybridization opens the interbond angle
beyond 90� and that minimization of the valence H€uckel energy against
the hybridization parameter yields straight bonds satisfying the principle
of maximum overlap.

2.7.1 The Methane Molecule

We now apply our model to investigate the formation of four C–H bonds
in the methane molecule CH4 of symmetry Td (Magnasco, 2004a). For
this molecule, tetrahedral sp3 hybridization is completely determined by
molecular symmetry.We use the usual notation for the eight valenceAOs,
calling s, x, y, z the 2s and2porbitals onC, andh1; h2; h3; h4 the 1sorbitals
on theH atoms at the vertices of the tetrahedron (Figure 2.14).Molecular

Table 2.9 Symmetries of atomic bases involving sz-mixing in first-row hydrides

Molecule AO basis Symmetry

HF ðs z hÞ S

H2O s z hz ¼ 1ffiffiffi
2

p ðh1 þ h2Þ
� �

A1

NH3 s z hz ¼ 1ffiffiffi
3

p ðh1 þ h2 þ h3Þ
� �

A1

CH4 s hs ¼ 1

2
ðh1 þ h2 þ h3 þ h4Þ

� �
A1

z hz ¼ 1

2
ðh1�h2�h3 þ h4Þ

� �
T2z

Figure 2.14 The cube circumscribing the tetrahedral CH4 molecule
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symmetry suggests to use combinations ofHorbitals transforming as (s,x,
y, z), which we can write by inspection:

hs ¼ 1

2
ðh1 þ h2 þh3 þ h4Þ

hx ¼ 1

2
ðh1þ h2�h3�h4Þ

hy ¼ 1

2
ðh1�h2 þ h3�h4Þ

hz ¼ 1

2
ðh1�h2�h3þ h4Þ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð2:107Þ

The four (unnormalized) bonding MOs are then appropriately
written as:

a1 / sþ lhs

t2x / xþmhx

t2y / yþmhy

t2z / zþmhz

8>>>><
>>>>:

ð2:108Þ

where the coefficients (polarity parameters) are found by solving the four
2� 2 H€uckel secular equations:

Hss�« Hshs

Hshs Hhshs�«

�����
�����

SymmetryA1

¼ 0

Hzz�« Hzhz

Hzhz Hhzhz�«

�����
����� ¼ 0:

SymmetryT2 ðx; y; zÞ
ð2:109Þ

The calculation of the matrix elements follows as usual, giving:

Hss ¼ as Hshs ¼ 2bsh Hhshs ¼ ah þ 3bhh � ah

Hzz ¼ ap Hzhz ¼ 2bzh Hhzhz ¼ ah�bhh � ah

(
ð2:110Þ

with similar expressions for the remaining x,y components, andwherebhh

is neglected as usual in H€uckel theory.15 The b integrals involving (x, y, z)
AOs on carbon can be expressed in terms of the more convenient set
ðs;px; pyÞ, wheres is a p–orbital directed along theCH1 bond, and the p’s
are orbitals perpendicular to it:

15H atoms in CH4 are not adjacent atoms.
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x ¼ 1ffiffiffi
2

p sinu 	sþ 1ffiffiffi
2

p cosu 	 px� 1ffiffiffi
2

p py

y ¼ 1ffiffiffi
2

p sinu 	sþ 1ffiffiffi
2

p cosu 	 px þ 1ffiffiffi
2

p py

z ¼ cosu 	s�sinu 	 px

8>>>>>>><
>>>>>>>:

ð2:111Þ

2u being the interbond (valence) angle. Then:

bxh ¼ byh ¼ bph

1ffiffiffi
2

p sinu bzh ¼ bph cosu ð2:112Þ

where bph is a quantity characteristic of the bond.
The lowest roots of the secular equations will give the H€uckel energy

of the eight valence electrons as a function of angle u:

EðuÞ ¼ 2
Xocc
i

«i ¼ ðas þahÞþ 3ðap þahÞ

� ðas�ahÞ2þ 16b2
sh

h i1=2
� ðap�ahÞ2 þ 16b2

xh

h i1=2
� ðap�ahÞ2 þ 16b2

yh

h i1=2
� ðap�ahÞ2 þ 16b2

zh

h i1=2
¼ ðas þ3ap þ 4ahÞ

� ðas�ahÞ2þ 16b2
sh

h i1=2
�2 ðap�ahÞ2 þ 8b2

ph sin
2u

h i1=2
� ðap�ahÞ2 þ 16b2

ph cos
2u

h i1=2

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð2:113Þ

which has an absolute minimum
dE

du
¼ 0;

d2E

du2

 !
2u¼109:5o

> 0

 !
for:

cos2u ¼ 1

2
sin2u

cosu ¼ 1ffiffiffi
3

p ; sinu ¼
ffiffiffi
2

p
ffiffiffi
3

p Y2u ¼ 109:5�

8>>>>><
>>>>>:

ð2:114Þ

i.e. the tetrahedral angle.
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The resulting MOs are symmetry MOs, delocalized over the entire
molecule. As it will be shown for H2O, a descriptionmore adherent to the
chemical picture of four localizedC�Hbonds can be obtained in terms of
the orthogonal transformation16 connecting occupied MOs, the first
relation being:

B1 ¼ 1

2
ða1þ t2x þ t2y þ t2zÞ

¼ 1

2
sþðxþ yþ zÞþ lþ 3m

2
h1 þ l�m

2
ðh2 þ h3 þh4Þ

" #

¼ 1

2
sþ

ffiffiffi
3

p
p1þ lþ 3m

2
h1 þ l�m

2
ðh2 þ h3 þ h4Þ

" #

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2:115Þ

and so forth for B2;B3;B4. If l�m, we obtain:

B1 � sþ ffiffiffi
3

p
p1

2
þ lh1 ¼ t1 þ lh1 ð2:116Þ

a localizedCH1 bondorbital,wherep1 ¼ 1ffiffiffi
3

p ðxþ yþ zÞ is a 2p–orbital on
C pointing along the (111) diagonal of the cube, and:

t1 ¼ sþ ffiffiffi
3

p
p1

2
ð2:117Þ

a tetrahedral sp3 hybrid on C (25% s, 75% p). So, the usual chemical
picture of the CH4 molecule in terms of four equivalent C�H bonds
having tetrahedral symmetry is simply recovered from the requirement of
H€uckel’s lowest energy for the valence shell.

2.7.2 The Hydrogen Fluoride Molecule

2.7.2.1 MO Theory Without Hybridization

As usual, we choose the F atom at the origin of the coordinate systemwith
theH atomplaced on the positive z axis at the experimental bond distance
Re ¼ 1:73ao (Huber and Herzberg, 1979).

16Which leaves invariant the whole physical description. A general transformation from
canonical to localizedMOs was given time ago byMagnasco and Perico (Magnasco and Perico,

1967, 1968). See also Magnasco (2007).
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We start by considering that, in the first approximation, only the
appropriate 2p AO on fluorine (2pz, in short denoted by z) contributes
to the bondingwith the 1sAOof hydrogen (in short, h). Two electrons are
placed in the undistorteds F lone pair s2, and four electrons in the two p F
lone pairs x2y2. As usual in elementary H€uckel theory, for the sake of
simplicity, we do not consider explicitly the overlap between basic AOs
(which are hence assumed orthonormal), but still maintain their implicit
dependence on overlap in the bond integral17 jbj (Magnasco, 2004a). The
bonding MO is then given by the Ritz method as:

s ¼ zC1 þ hC2 ¼ zþ lhffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p ð2:118Þ

where

l ¼ C2

C1

� �
1

is the polarity parameter. The coefficients are obtained from the lowest
root of the 2� 2 H€uckel secular equation:

Hzz�« Hzh

Hzh Hhh�«

�����
����� ¼ 0 ð2:119Þ

H€uckel matrix elements are:

Hzz ¼ ap; Hhh ¼ ah; Hzh ¼ b ð2:120Þ
all elements being negative quantities. Roots are:

2« ¼ ðapþahÞ 
 D ð2:121Þ

D ¼ ½ðap�ahÞ2 þ4b2�1=2 > 0 ð2:122Þ
so that the H€uckel energy for the valence electron configuration s2s2x2y2

of ground state HF will be:

EðHF; 1Sþ Þ ¼ 2asþ 4ap þðap þahÞ�D ð2:123Þ
The bond energy is then (Magnasco, 2003):

DEðHF; 1Sþ Þ ¼ EðHF; 1Sþ Þ�2as�5ap�ah ¼ �D ¼ �jDj ð2:124Þ

17Orthogonal does notmean not interacting (Footnote 3). This is tantamount to keeping only the

exchange part of the exchange-overlap interaction (Magnasco, 2002, 2004a).
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where Dj j ¼ D o
o

�� ��þ 1
2ve is the experimental atomization energy of

HF(Sþ ) observed from molecular spectra (Huber and Herzberg,
1979), D o

o

�� �� ¼ 0:235Eh the dissociation energy and ve � 4138 cm�1 �
0:019Eh the vibrational frequency of the vibrational ground level v ¼ 0.
So, we shall use Dj j ¼ 0:245Eh.
The polarity parameter for ground state HF is then calculated to be:

l ¼ C2

C1

� �
1

¼ «1�ap

b
¼ ðap�ahÞþD

2jbj ð2:125Þ

We now look at the distribution of the two electrons in the s bonding
MO, which gives the atomic charges:

qF ¼ 2

l2 þ 1
; qH ¼ 2l2

l2þ 1
; qF þ qH ¼ 2 ð2:126Þ

The formal charges on the interacting atoms are:

on F : dF ¼ 1�qF ¼ l2�1

l2 þ 1
¼ �jdj ð2:127Þ

onH : dH ¼ 1�qH ¼ � l2�1

l2 þ 1
¼ þ jdj ð2:128Þ

For l< 1, dF< 0, and electronic charge will be transferred fromH to F,
as expected on electronegativity grounds. As we said before, the formal
charge jdj can be independently derived from the experimentally observed
value (Muenter and Klemperer, 1970; Sileo and Cool, 1976) of the
vibrationless electric dipole moment18 m ¼ 0:72 eaoð Þ, if we attribute the
entire value of the dipole to its heteropolar component jmHj (Magnasco,
2003):

jmj ¼ jmHj ¼ jdjRe; jdj ¼ 0:42 ð2:129Þ
so that we obtain for the polarity parameter in the case of simple p
bonding:

l ¼ 1�jdj
1þ jdj
� �1=2

¼ 0:64 ð2:130Þ

18As usual, we assume m > 0 when the direction of the dipole is from – jdj to þ jdj. Calculated
Hartree–Fock values of m (0.756eao) (Christiansen and McCullough, 1977; Sundholm et al.,
1985) corrected for correlation effects (�0.043eao) (Werner and Meyer, 1976; Amos, 1982)

agree with the experimental result.
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Aswe did before, we are now in the position to determine entirely from
observed experimental data the values of our two unknown parameters
jap�ahj and jbj. In fact, if we put:

ap�ah ¼ A; 2jbj ¼ B ð2:131Þ
we find that the values of A are the solutions of the quadratic Equation
(2.74). The roots are:

A ¼

�jDj

jDj l2�1

l2 þ 1

0
@

1
A ¼ �jdj 	 jDj

8>>><
>>>:

ð2:132Þ

Both roots are real and negative, as it should be. We must discard the
first root, which would give jbj ¼ 0. For the remaining root:

A ¼ ap�ah ¼ �0:42� 0:245 ¼ �0:1029Eh

B ¼ 2jbj ¼ 0:2214Eh

jbj ¼ 0:1107Eh ¼ 69:5 kcal mol�1

8>>><
>>>:

ð2:133Þ

Even if the resulting values of jap�ahj and jbj are of the same order of
magnitude, the contribution to the radicand from the bond integral is
about five times larger than that arising from the atomic energy difference.
It is interesting to notice that the case under consideration is not included
in the two extreme cases analysed by us previously (Magnasco, 2004a),
and that the value resulting for ap�ah lies roughly midway between the
one-term (�0.0264Eh) and the two-term (�0.2239Eh) SCF values for
STOs (Clementi and Roetti, 1974). This is fairly reasonable in view of the
simplicity of our assumptions.

2.7.2.2 Admitting Full Mixing Within S Symmetry

As a second step, we admit full mixing of s and zAOs on fluorine within S
symmetry. The H€uckel matrix will be:

H ¼
Hss 0 Hsh

0 Hzz Hzh

Hsh Hzh Hhh

0
BB@

1
CCA ð2:134Þ
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where:

Hss ¼ as; Hzz ¼ ap

Hsh ¼ bsh; Hzh ¼ bzh ¼ bsh

(
ð2:135Þ

giving the complete 3� 3 H€uckel secular equation:

as�« 0 bsh

0 ap�« bsh

bsh bsh ah�«

��������

��������
¼ 0 ð2:136Þ

Expanding the determinant gives the cubic equation:

ðas�«Þ½ðap�«Þðah�«Þ�b2
sh��ðap�«Þb2

sh ¼ 0 ð2:137Þ

«3 þ p«2 þ q«þ r ¼ 0 ð2:138Þ
where:

p ¼ �ðas þap þahÞ
q ¼ ðas þapÞahþasap�b2

sh�b2
sh

r ¼ asb
2
sh þapb

2
sh�asapah

8>><
>>: ð2:139Þ

It is well within the spirit of H€uckel theory to assume for the s AO the
same bond integral as that for the p AO, so that the properties of the F–H
bondwill depend just on a single parameterb andnot on the detailed form
of the fluorine AOs:

bsh ¼ bsh ¼ b ð2:140Þ
Then:

p ¼ �ðasþap þahÞ
q ¼ ðas þapÞah þasap�2b2

r ¼ ðasþapÞb2�asapah

8>><
>>: ð2:141Þ

Putting:

« ¼ x� p

3
ð2:142Þ
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(Abramowitz and Stegun, 1965) gives the cubic equation in x:

x3 þ axþ b ¼ 0

a ¼ 1

3
ð3q�p2Þ; b ¼ 1

27
ð2p3�9pqþ 27rÞ

8><
>: ð2:143Þ

Since H is Hermitian, we must have:

b2

4
þ a3

27

� �
< 0 ð2:144Þ

with three different real roots, which are easily expressed in terms of the
trigonometric relations:

x1 ¼ 2

ffiffiffiffiffiffiffiffi
� a

3

s
cos

f
3

x2 ¼ 2

ffiffiffiffiffiffiffiffi
� a

3

s
cos

f
3
þ 120�

 !

x3 ¼ 2

ffiffiffiffiffiffiffiffi
� a

3

s
cos

f
3
�120�

 !

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2:145Þ

with:

cos
f
3
¼ �b

2

ffiffiffiffiffiffiffiffiffiffi
� a3

27

r
ð2:146Þ

Using one-term SCF/STO values for the fluorine atom (Clementi and
Roetti, 1974):

«s � as ¼ �1:43Eh; «p � ap ¼ �0:53Eh; «h ¼ ah ¼ �0:5Eh

ð2:147Þ
the roots of the cubic secular equation will depend in a parametric way
on the values given to jbj. Assuming:19

jbj ¼ 0:114Eh ¼ 71:5 kcal mol�1 ð2:148Þ
gives, in atomic units:

«1 ¼ �0:3928Eh; «2 ¼ �1:4440Eh; «3 ¼ �0:6238Eh: ð2:149Þ

19This is roughly the value assumed by jbj in the bond-orbital approximation.
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The two lowest roots, as well as «p�ap are in unexpected fair agree-
ment with the negative of the ionization potentials observed from exper-
imental UV photoelectron spectra of ground state HF (Lempka et al.,
1968; Potts and Price, 1972; Price, 1974):

«2 ¼ «ð2sÞ ¼ �1:433Eh; «3 ¼ «ð3sÞ ¼ �0:702Eh;

«4 ¼ «ð1pÞ ¼ �0:588Eh:
ð2:150Þ

Therefore, the bond dissociation energy resulting from the solution
of the complete cubic H€uckel equation for one-term SCF/STOs and
jbj ¼ 0:114Eh will be:

DEðHF;1Sþ Þ ¼ EðHF;1Sþ Þ�2as�5ap�ah

¼ 2«ð2sÞþ 3«ð3sÞþ 4«ð1pÞ�2as�5ap�ah

¼ �0:245Eh

8><
>: ð2:151Þ

in complete agreement with the assumed spectroscopic value of
Dj j ¼ 0:245Eh (Huber and Herzberg, 1979).
However, if we attempt to extract, from the calculated MOs, informa-

tion on the resulting sp hybrids on F, we are faced with the problem that
such hybrids are not orthogonal and therefore not mutually exclusive,
as already observed long ago by us (Magnasco and Perico, 1967, 1968) in
obtaining localized MOs from ab initio results.

2.7.2.3 Introducing Hybridization into S Symmetry

Wenowmake the orthogonal transformationOof the original basis to the
hybridized basis (Magnasco, 2009b; Magnasco, 2009c):

l b hð Þ ¼ s z hð Þ
cosv sinv 0

�sinv cosv 0

0 0 1

0
B@

1
CA ð2:152Þ

which corresponds to introducing the pair of orthogonal hybrids
(Figure 2.15):

l ¼ scosv�zsinv lone pair hybrid

b ¼ ssinvþ zcosv bond hybrid

(
ð2:153Þ

where v is the hybridization (mixing) parameter. Putting v ¼ 0 gives the
previous case of no hybridization.
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Elements of the transformed H€uckel matrix are:

al ¼ ascos
2vþapsin

2v

blb ¼
ðas�apÞ

2
sin2v

blh ¼ bðcosv�sinvÞ
ab ¼ assin

2vþapcos
2v

bbh ¼ bðcosvþ sinvÞ

8>>>>>>>>>><
>>>>>>>>>>:

ð2:154Þ

Since the AOs of the hybridized basis are now properly directed along
the z axis, we see that in the range 0 � v � 45� (namely, from pure p to
equivalent digonal hybrids)blh decreases andbbh increases from the value
assumed for v ¼ 0. The transformed H€uckel matrix:

~H ¼ ~OHO ¼
al blb blh

blb ab bbh

blh bbh ah

0
B@

1
CA ð2:155Þ

therefore assumes a nearly block-diagonal form. We notice that the full
cubic secular equation is invariant against the rotation yielding hybrid-
ization, so that the three roots are the same. If we put:

blb ¼ blh ¼ 0 ð2:156Þ
i.e. we neglect delocalization of the lone pair into the bond, this invariance
is lost, and the resulting approximation is tantamount to assuming a bond
orbital (BO) approach inside H€uckel theory. Delocalization of the hybrid
lone pair into the bond could eventually be treated as a small perturbative

Figure 2.15 Orthogonal sp lone pair l (left) and bond hybrid b (right) engaged in the
F�H bond20. Reprinted from Chemical Physics Letters, 477, Magnasco, V., Hückel
transformation theory of ground state HF. 397–401, Copyright (2009), with permis-
sion from Elsevier

20 The shaded area on the right sketches the overlap region in the F�H bond orbital.
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correction (Magnasco andMusso, 1981), as we did in the past in ab-initio
investigations on torsional barriers in molecules (Musso and Magnasco,
1982).
The 3� 3H€uckel secular equation in this approximation has the block-

diagonal form:

al 0 0

0 ab�« bbh

0 bbh ah�«

��������

��������
¼ 0 ð2:157Þ

giving the H€uckel energy for the valence l2s2x2y2 electron configuration
of ground state HF:

EðHF; Sþ Þ ¼ 2al þ 4ap þðab þah�DÞ ð2:158Þ
with:

D ¼ ½ðab�ahÞ2 þ 4b2ð1þ sin2vÞ�1=2 > 0 ð2:159Þ
The bond energy will now depend on v:

DEðHF;1Sþ Þ ¼ EðHF; 1Sþ Þ�2as�5ap�ah

¼ ðas�apÞðcos2v�1Þ�DðvÞ ¼ � Dj j

(
ð2:160Þ

The best value ofv can be determined by optimizingDE(v) with respect
to v, so that:

dDE
dv

¼ 0 ð2:161Þ

gives, as a necessary condition for stationarity of the energy against
variations in v, the complicated trigonometric equation:

2jbj
as�ap

cot 2v

� �2

þ 2
ab�ah

as�ap
cot 2v ¼ 1þ sin 2v ð2:162Þ

where:

ab�ah ¼ ðas�ahÞ�ðas�apÞcos2 v ð2:163Þ
still depends on v. Approximate solutions to this trigonometric equation
can be obtained by successive approximations until the difference be-
tween the left- and right-hand sides becomes less than a predetermined
threshold (say 10�3). Using one-term SCF/STO values (Clementi and
Roetti, 1974) foras,ap,ah and the experimental value for jDj, we find that
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v ¼ 7:55� does satisfy the stationarity equation with an accuracy better
than 1� 10�5. In the following, however, we shall content ourselves with
the rounded value v � 8�, which means 2% mixing of s into the bond
hybrid (98% p). In the range 7� � v � 8� jbj has the practically constant
value

jbj ¼ 0:1142Eh ¼ 71:7 kcal mol�1:

2.7.2.4 Charge Distribution in the Hybridized Basis

We now analyse the charge distribution in ground stateHF resulting from
the s bond orbitals in the hybridized basis (Figure 2.15):

2s � l ¼ scosv�zsinv ð2:164Þ

3s � bþ lhffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þ 1

p ¼ ssinvþ zcosvþ lhffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p ð2:165Þ

We have for the electron density (Magnasco, 2007, Magnasco, 2009a):

PðrÞ ¼ 2½2s rð Þ�2þ2½3s rð Þ�2

¼ 2½s2cos2 vþz2sin2 v�sz sin2v

þðl2þ1Þ�1ðs2sin2 vþ z2cos2 vþ szsin 2vþl2h2Þ�

¼ s2
�
2 cos2vþ 2sin2v

l2þ1

�
þ z2

�
2 sin2 vþ 2cos2v

l2þ1

�
þh2

�
2l2

l2þ1

�

þ sz

�
�2sin2v

l2

l2þ1

�

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð2:166Þ
where the first three terms contribute to the heteropolar dipole (mH), the
last term being the contribution from the so called atomic dipole mA

(Coulson, 1961). There is no contribution from the size effect (or homo-
polar) dipole moment, since we are neglecting explicit overlap between
our AOs. Of course, the conservation relation holds:

ð
drPðrÞ ¼ 4 ð2:167Þ
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We pass now to the calculation of the two components of the atomic
dipole:

hljzjli ¼ �sin2v ðszjzÞ ¼ �sin2v 	ma

hbjzjbi ¼ sin2v 	ma

(
ð2:168Þ

where:

ma ¼ ðszjzÞ ð2:169Þ
is the atomic dipole along z. Using normalized one-term SCF/STOs with
similar orbital exponents ðcs � cp ¼ c � 2:55Þ (Clementi and Roetti,
1974):

s ¼ c5

3p

� �1
2

expð�crÞr z ¼ c5

p

� �1
2

expð�crÞrcos u ð2:170Þ

we obtain:

ma ¼
5
ffiffiffi
3

p

6

1

c
¼ 0:57 ð2:171Þ

a value which, as expected, is practically independent of s
nonorthogonality21.
Therefore, the contribution resulting from the atomic dipole will be:

mA ¼ �2 sin 2v
l2

l2þ 1
ma ð2:172Þ

and we can express the experimental dipole moment m as the sum of the
two concurrent22 contributions:

jmj ¼ jdjRe þ jmAj ¼ � l2�1

l2 þ 1
Re þ 2 sin 2v

l2

l2þ 1
ma ð2:173Þ

We obtain for l2:

l2 ¼ Re�jmj
Re þ jmj�2 sin2v ma

¼ 0:47 ð2:174Þ

21Using ck ¼ 8:65, Schmidt orthogonalization of s against k with S ¼ 0:2326 gives ma¼ 0.566.
22The resulting atomic dipole mA is in the same sense as the heteropolar dipole mH(F�jdj Hþ jdj).
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for v ¼ 8�. Hence, l ¼ 0:685 and:

jdj ¼ l2�1

l2þ 1

����
���� ¼ 0:36 ð2:175Þ

In this way, we see that little hybridization on F originates an atomic
dipole ðjmAj ¼ 0:10ea0Þ which reduces the formal charge jdj by about
14%. This reduction is expected to be even larger with larger values of the
hybridization parameter.

2.7.3 The Water Molecule

2.7.3.1 MO Description Without Hybridization

First, we recast in our notation a calculation originally done by Coulson
(1961). With reference to Figures 2.16 and 2.17, we choose the molecule
to lie in the yz plane. Nuclear symmetry (Magnasco, 2007, 2009a) shows
thatH2OhasC2v symmetry, with two symmetry planes (yz and zx) whose
intersection determines a C2 binary axis directed along z. 2u is the
interbond (valence) angle.
In the simplest admissible physical description of H2O neglecting

hybridization, we concentrate attention on the four-electron valence
problem involving 2pz ¼ z; 2py ¼ y AOs on the oxygen atom,
1s1 ¼ h1; 1s2 ¼ h2 AOs on the two hydrogen atoms, while 2s ¼ s and
2px ¼ x are doubly occupiedAOs on oxygenmaking the two lone pairs. It

Figure 2.16 Reference coordinate system forH2O (C2V symmetry). Themolecule lies
in the yz plane with z the binary symmetry axis
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is immediately evident that symmetry AOs23 of C2v symmetry are
(Magnasco, 2009a):

A1 : z; hz ¼ 1ffiffiffi
2

p ðh1þ h2Þ

B2 : y; hy ¼ 1ffiffiffi
2

p ðh1�h2Þ

8>>>>><
>>>>>:

ð2:176Þ

so that the normalized MOs24 not interacting by symmetry are:

a1 ¼ zþ lhzffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

p ; b2 ¼ yþmhyffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p ð2:177Þ

The polarity parameters l, m and the orbital energies are found by
solving the secular equations:

Hzz�« Hzhz

Hzhz Hhzhz�«

�����
�����

Symmetry A1

¼ 0

Hyy�« Hyhy

Hyhy Hhyhy�«

�����
�����

Symmetry B2

¼ 0 ð2:178Þ

The matrix elements in the H€uckel approximation are:

Hzz ¼ ap

Hzhz ¼
ffiffiffi
2

p
bzh

Hhzhz ¼ ah þbhh ffi ah

8>><
>>: ð2:179Þ

Figure 2.17 The H2O molecule in the yz plane. 2u is the interbond (valence) angle

23The only AOs that can mix in the LCAO approximation.
24Neglecting overlap for brevity.
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Hyy ¼ ap

Hyhy ¼
ffiffiffi
2

p
byh

Hhyhy ¼ ah þbhh ffi ah

8>><
>>: ð2:180Þ

where bhh is neglected in Equations (2.179) and (2.180) in the spirit of
H€uckel’s assumptions.25 Hence, we get the two secular equations:

ap�«
ffiffiffi
2

p
bzhffiffiffi

2
p

bzh ah�«

�����
����� ¼ 0

ap�«
ffiffiffi
2

p
byhffiffiffi

2
p

byh ah�«

�����
����� ¼ 0 ð2:181Þ

with the lowest roots:

«ðA1Þ ¼ ap þah

2
� 1

2
½ðap�ahÞ2 þ 8bzh

2�1=2

«ðB2Þ ¼ apþah

2
� 1

2
½ðap�ahÞ2 þ 8byh

2�1=2

8>>>><
>>>>:

ð2:182Þ

In the ground state, these roots correspond to energy levels doubly
occupied by electrons, so we have the total H€uckel energy:

E ¼ 2
Xocc
i

«i

¼ 2ðap þahÞ�½ðap�ahÞ2 þ8bzh
2�1=2�½ðap�ahÞ2þ 8byh

2�1=2

8>><
>>:

ð2:183Þ
Now, let s be a 2p AO directed along the OH bond and p a 2p AO

perpendicular to the bond. If u is half the valence angle (Figure 2.17),
we have:

z ¼ scosuþ psinu; y ¼ ssinu�pcosu

bzh ¼ bshcosu; byh ¼ bshsinu

(
ð2:184Þ

wherebsh ¼ b is a quantity characteristic of theOHbond, independent of
the orientation. We then have for the bond energy:

DEðuÞ ¼ �½ðap�ahÞ2 þ 8b2cos2u�1=2�½ðap�ahÞ2 þ 8b2sin2u�1=2

¼ �D1�D2

(

ð2:185Þ
25H1 and H2 are nonadjacent atoms.
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where we have put:

D1 ¼ ½ðap�ahÞ2 þ 8b2cos2u�1=2 > 0

D2 ¼ ½ðap�ahÞ2 þ 8b2sin2u�1=2 > 0

(
ð2:186Þ

The necessary condition for the minimum of DE is then:

dDE
du

¼ � dD1

du
� dD2

du
¼ 4b2 1

D1
sin 2u�4b2 1

D2
sin2u ¼ 0 ð2:187Þ

giving, after squaring both members,

D2
1 ¼ D2

2Y cos2u ¼ sin2uY cosu ¼ sinuY2u ¼ 90� ð2:188Þ
By evaluating the second derivative at the point 2u ¼ 90�, we find:

d2DE
du2

0
@

1
A

2u¼90�

¼ 8b2cos2u
1

D1
� 1

D2

0
@

1
Aþ16b4ðsin2uÞ2 1

D1
3
þ 1

D2
3

0
@

1
A

2
4

3
5
2u¼90�

¼16b4½ðap�ahÞ2þ4b2��3=2>0;

8>>>><
>>>>:

ð2:189Þ
so that we conclude that the H€uckel bond energy in ground state H2O has
a true minimum26 for 2u¼90�.

2.7.3.2 Localized Description

The unnormalized bonding MOs (Equation 2.177) for H2O:

a1 � zþ lðh1 þ h2Þ
b2 � yþmðh1�h2Þ

(
ð2:190Þ

are delocalized three-centreMOswhich describe the twoOHbonds in the
molecule, but bear no resemblance to bond functions. As already seen for
the double bond, for the invarianceof theMOdescription,wemay replace
symmetryMOsby their sumand differencewithout changing the physical
description of the system. We have:

a1 þb2 / zþ yþðlþmÞh1 þðl�mÞh2
a1�b2 / z�yþðl�mÞh1þðlþmÞh2

(
ð2:191Þ

26Namely, a maximum of bond strength.
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namely:

B1 /
ffiffiffi
2

p
p1 þðlþmÞh1 þðl�mÞh2

B2 /
ffiffiffi
2

p
p2 þðl�mÞh1 þðlþmÞh2

(
ð2:192Þ

where:

p1 ¼ zþ yffiffiffi
2

p ; p2 ¼ z�yffiffiffi
2

p ð2:193Þ

Orbital p1 is a 2pAOon oxygenmaking an angle of 45� with the z axis,
p2 a 2pAOon oxygenmaking an angle of�45� with the z axis. Since now
the coefficient of h1 in B1 is large, while that of h2 is small,27 B1 describes
a bond orbital essentially localized in the region of the O�H1 bond
(Figure 2.18), and similarly B2, an equivalent bond orbital obtained from
B1 by rotation of 180o about the z symmetry axis.

2.7.3.3 Introducing Hybridization into A1 Symmetry

Neglecting hybridization, as we did so far, the angle between p1 and p2
is 2u ¼ 90�, so that the resulting O�H bonds will be bent outwards,
since the experimentally observed valence angle is about 2u ¼ 105�

(Herzberg, 1956). This is contrary to the principle of maximum overlap

Figure 2.18 B1 is a localized MO describing the OH1 bond

27 It would be zero for m ¼ l.
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(Magnasco, 2005). If we choose p1 and p2 along the bonds, theywill be no
longer orthogonal, since:

p1 ¼ z cos uþ y sin u

p2 ¼ z cosu�y sin u

hp1jp2i ¼ cos2 u�sin2u ¼ cos 2u

8>><
>>: ð2:194Þ

where cos2u ¼ �0:25882. However, we can restore orthogonality be-
tween the AOs on oxygen by mixing in a certain amount of 2sð¼ sÞ with
the two 2p AOs, obtaining in this way three sp2hybrids of C2v symmetry,
directed along two equivalentO�Hbonds and on the rear of themolecule
in a direction bisecting the valence angle. It is easily shown that these
hybrids are (Figure 2.19):

hy1 ¼ 0:4534sþ 0:5426zþ 0:7071y

hy2 ¼ 0:4534sþ 0:5426z�0:7071y

hy3 ¼ 0:7673s�0:6412z

8>><
>>: ð2:195Þ

The three hybrids (Equations (2.195) allow: (i) for an interbond angle
greater than 90�ðcos 2u < 0Þ, preserving orthogonality onto the same
atom; and (ii) for orbitals directed along the bonds, satisfying in this way
the principle of maximum overlap and giving stronger straight bonds.
Details of the calculation are given elsewhere (Magnasco, 2007).

Figure 2.19 The three sp2 hybrids in H2O equivalent under C2V symmetry
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The s and p contents in the hybrids are simply obtained from the square
of the respective coefficients in Equations (2.195), so that:

20:6% s 79:4% p for hybrids engaged in the O�Hbonds

58:8% s 41:2% p for the hybrid lone pair

(

ð2:196Þ
This picture is close to Klessinger (1965) result obtained from ab initio

SCF calculations using one-term STOs with orbital exponents
cs ¼ 2:2458, cp ¼ 2:2266, and ch ¼ 1:3 (case III in Klessinger, 1965).
We now extend Coulson’s calculation, introducing a H€uckel transfor-

mation theory which transforms the (s z) oxygen valence AOs belonging
to A1 symmetry to an v-hybridized (b l) set, where v is the hybridization
parameter, b the bond hybrid directed along the positive z axis, and l the
lone pair hybrid directed along the negative z axis (Magnasco, 2009b).
This will give an alternative derivation of hybrids (Equations (2.195).
If we allow for spmixing onto oxygen, theH€uckelmatrix for the (s z hz)

basis of A1 symmetry becomes:

H ¼
as 0

ffiffiffi
2

p
bsh

0 ap

ffiffiffi
2

p
bsh cosuffiffiffi

2
p

bsh

ffiffiffi
2

p
bsh cosu ah

0
BB@

1
CCA ð2:197Þ

givinga3� 3secular equationwhoseanalytic solutionisdifficultand,what
is worse, not suited for doing any useful approximation on its elements.
To proceed further, we make the orthogonal transformation O to the

hybridized basis:

l b hzð Þ ¼ s z hzð Þ
cosv sinv 0

�sinv cosv 0

0 0 1

0
B@

1
CA ð2:198Þ

which corresponds to introducing the orthonormal hybrids (Figure 2.20):

b ¼ s sinvþ z cos v bond hybrid

l ¼ s cosv�z sin v lone pair hybrid

(
ð2:199Þ

where v is the hybridization parameter. Putting v ¼ 0 gives the previous
case of no hybridization.
For the transformed H€uckel matrix:

H0 ¼ ~OHO ð2:200Þ
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Figure 2.20 sp hybrids on oxygen resulting from the orthogonal transformation O
of the original basis set of A1 symmetry. Left, bond hybrid; right, lone pair hybrid.
Reprinted from Chemical Physics Letters, 474, Magnasco, V., On the hybridization
problem in H2O by Hückel transformation theory. 212–216, Copyright (2009), with
permission from Elsevier

where ~O is the transpose of O, matrix elements are:

al ¼ as cos
2vþap sin

2v

blb ¼ ðas�apÞsinv cosv

blh ¼
ffiffiffi
2

p ðbsh cosv�bsh sinv cosuÞ
ab ¼ as sin

2vþap cos
2v

bbh ¼ ffiffiffi
2

p ðbsh sinvþbshcosv cosuÞ
ah

8>>>>>>>>>><
>>>>>>>>>>:

ð2:201Þ

giving the 3� 3 transformed secular equation:

al�« blb blh

blb ab�« bbh

blh bbh ah�«

�������
������� ¼ 0: ð2:202Þ

If we make again the reasonable assumption that blb and blh are small
compared with bbh (Figure 2.20), matrix H0 becomes nearly block-
diagonal and, putting:

blb ¼ blh ¼ 0 ð2:203Þ
is tantamount to assuming a bond orbital (BO) model within H€uckel
theory. We then get the approximate roots belonging to A1 symmetry:

«1 ¼ al «2 ¼ ab þah

2
�D2

2
«3 ¼ ab þah

2
þ D2

2

D2 ¼ ½ðab�ahÞ2 þ 8ðbsh sinvþbsh cosv cos uÞ2�1=2 > 0

8><
>:

ð2:204Þ

82 THE CHEMICAL BOND



So, the H€uckel energy for the valence configuration 2a1
23a1

21b2
21b1

2

of the 1A1 ground state H2O will be:

EðuÞ ¼ 2«1ðA1Þþ2«2ðA1Þþ 2«1ðB2Þþ 2«1ðB1Þ
¼ 2ðas cos

2vþap sin
2vÞþ ðas sin

2vþap cos
2vÞþ 3ap þ 2aH

�½ðab�ahÞ2þ 8ðbsh sinvþbsh cosv cosuÞ2�1=2

�½ðap�ahÞ2þ 8b2
sh sin

2u�1=2

¼ EvalðOÞþ 2EðHÞ�D2�D3

8>>>>>>>>>><
>>>>>>>>>>:

ð2:205Þ

The calculation of the first and second derivatives of E(u) vs u (v
considered as a parameter) gives:

dE

du
¼ � dD2

du
� dD3

du

¼ 4

D2
ðbshbsh sin 2v sinuþb2

sh cos
2v sin 2uÞ� 4

D3
b2
sh sin 2u

8>>>>><
>>>>>:

ð2:206Þ

d2E

du2
¼ � d2D2

du2
� d2D3

du2

¼ 4

D2
ðbshbsh sin 2v cosuþ 2b2

sh cos
2 v cos 2uÞ

þ 16

D2
3
ðbshbsh sin 2v sinuþb2

shcos
2v sin 2uÞ2

� 8

D3
b2
sh cos 2uþ

16

D3
3

b4
shðsin 2uÞ2

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð2:207Þ

The stationarity condition for E(u) with respect to u gives a quartic
equation in cos u ¼ x, whose coefficients depend in a rather complicated
way on the actual values assumed by bsh, bsh, ab�ah, ap�ah and v:

P4ðxÞ ¼ Ax4 þBx3 þCx2 þDxþE ¼ 0 ð2:208Þ
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with:

A ¼ 32 b4
sh cos

2v ðcos2vþ1Þ
B ¼ 32 bshb

3
sh sin2v ðcos2v þ 1Þ

C ¼ 4 b2
sh fðab�ahÞ2þ 2b2

sh½ðsin2vÞ2 þ 4sin2v�
�cos4v ½ðap�ahÞ2 þ8b2

sh�g
D¼ �4bshbsh sin2v cos2v ½ðap�ahÞ2 þ8b2

sh�
E ¼ �b2

shðsin2vÞ2 ½ðap�ahÞ2 þ8b2
sh�

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2:209Þ

Putting bsh ¼ bsh ¼ b in the spirit of H€uckel theory, the coefficients
become, after dividing by b2:

A ¼ 32 b2 cos2v ðcos2vþ 1Þ
B ¼ 32 b2 sin2v ðcos2vþ 1Þ
C ¼ 4 fðab�ahÞ2þ 2 b2½ðsin2vÞ2 þ 4sin2v��cos4v½ðap�ahÞ2 þ 8b2�g
D¼ �4 sin2v cos2v½ðap�ahÞ2 þ8b2�
E ¼ �ðsin2vÞ2½ðap�ahÞ2 þ 8b2�

8>>>>>>>><
>>>>>>>>:

ð2:210Þ
Two special cases can be immediately analysed.

(i) For v ¼ 0 (no hybridization), ab�ah ¼ ap�ah, coefficients B, D, E
vanish, A ¼ 64b2; C ¼ �32 b2, and Equation (2.208) gives:

2x2 ¼ 1; x ¼ cosu ¼ 1ffiffiffi
2

p Y u ¼ 45� ð2:211Þ

as it must be.
(ii) If we put:

ab�ah ¼ ap�ah ¼ 0; ð2:212Þ
(which is tantamount to assuming nonpolar bonds) dividing through-
out by 8b2, the coefficients will depend only on v:

A ¼ 4 cos2vðcos2vþ 1Þ
B ¼ 4 sin2vðcos2vþ 1Þ
C ¼ ðsin2vÞ2 þ 4 sin2v�4 cos4v

D ¼ �4 sin 2v cos2v

E ¼ �ðsin2vÞ2

8>>>>>>><
>>>>>>>:

ð2:213Þ
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A root of the quartic equation (2.208) is given in this case by the simple
trigonometric relation:

cot u ¼ cosv ð2:214Þ

provided u > 45�. This shows that forv=0 the interbond angle resulting
from energy optimization opens beyond 90o.
In fact, in this case, we have ðx ¼ cosuÞ:

cos2v ¼ x2

1�x2
; sin2v ¼ 1�2x2

1�x2
; sin2v ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�2x4

p

1�x2
ð2:215Þ

and the coefficients become:

A ¼ 4x2

ð1�x2Þ2

B ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�2x4

p

ð1�x2Þ2

C ¼ 4
1�2x2�x4

ð1�x2Þ2

D ¼ �8
x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�2x4

p

ð1�x2Þ2

E ¼ �4
x2�2x4

ð1�x2Þ2

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð2:216Þ

giving, upon substitution in Equation (2.208):

P4ðxÞ¼Ax4þBx3þCx2þDxþE

¼4x6þ8x3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�2x4

p
þ4x2�8x4�4x6�8x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�2x4

p
�4x2þ8x4

ð1�x2Þ2 ¼ 0

8>><
>>:

ð2:217Þ

so that cotu¼ cosv is a solution satisfying the quartic equation.
We now construct two sp2 hybrids b1 and b2 directed towards the H

atoms simply by doing the further orthogonal transformation of the
functionsb (belonging toA1 symmetry) and y (belonging toB2 symmetry):

sp-HYBRIDIZATION EFFECTS IN FIRST-ROW HYDRIDES 85



ðb1 b2Þ ¼ ðb yÞ

1ffiffiffi
2

p 1ffiffiffi
2

p

1ffiffiffi
2

p � 1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA ð2:218Þ

obtaining in this way the three orthonormal sp2 hybrids of C2v symmetry:

b1 ¼ bþ yffiffiffi
2

p ¼ 1ffiffiffi
2

p s sin vþ z cos vþ yð Þ

b2 ¼ b�yffiffiffi
2

p ¼ 1ffiffiffi
2

p s sinvþ z cosv�yð Þ

l ¼ s cosv�z sin v

8>>>>>>><
>>>>>>>:

ð2:219Þ

The hybridization parameter v, arbitrary so far, is best chosen so as the
bondhybridsb1 andb2 point in thedirectionof the twoO�Hbonds, giving
in thisway strongest bondingwithH1sorbitals and satisfying the principle
of maximum overlap. According to Equation (2.214), 2u ¼ 105� gives
v� 40�, and we obtain the set (Figure 2.21):

b1 ¼ 0:45 34 36 sþ 0:54 25 82 zþ 0:70 71 06 y ¼ hy1

b2 ¼ 0:45 34 36 sþ 0:54 25 82 z�0:70 71 06 y ¼ hy2

l ¼ 0:76 73 27 s�0:64 12 55 z ¼ hy3

8>><
>>: ð2:220Þ

Figure 2.21 Orthogonal sp2b1 bond hybrid of C2v symmetry on oxygen overlapping
(shaded area) the h1 orbital at u ¼ 52:5� to give a straight O�H bond in H2O

28.
Reprinted from Chemical Physics Letters, 474, Magnasco, V., On the hybridization
problem in H2O by Hückel transformation theory. 212–216, Copyright (2009), with
permission from Elsevier

28 The equivalent b2 bond hybrid is obtained by reflection of b1 across the zx plane.
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which coincideswith the set of the three orthogonal sp2 hybrids onoxygen,
equivalent under C2v symmetry, derived by McWeeny (1979) under the
requirement of equivalence, normality and orthogonality, and given in
Equations (2.195).
Consideration of the second derivative (Equation 2.207) for bsh ¼

bsh ¼ b shows that it is positive for v ¼ 40�; 2u ¼ 105� (Section 2.9.1),
so that we can conclude that, under our assumptions, sp hybridization
opens the interbond angle beyond 90�, giving hybrids which locally
minimize the H€uckel model energy for the valence electron configuration
of ground state H2O, and which can be chosen to give straight bonds
satisfying the principle of maximum overlap.
It can be further shown (Section 2.9.2) that the trigonometric relation

(Equation 2.214) is equivalent to Coulson’s hybridization condition
(Coulson, 1961; Magnasco, 2007) provided the lone pair hybrid
l ¼ hy3 is Schmidt-orthogonalized against the bond hybrids b1 ¼ hy1 and
b2 ¼ hy2 directed towards the hydrogen atoms H1 and H2.
Finally, we recall that the detailed calculations on ground state HF

(Part 4 of Section 2.7.2) show that hybridization acts in the sense of
reducing the main factor determining the polarity of the O�H bond. In
terms of the O�H bond moment mOH, we may say that hybridization
introduces a large atomicdipole (Coulson, 1961) reducing the heteropolar
O�dHþ d component, so justifying our assumption (2.212).
An equivalent description of H2O as a distorted tetrahedron of C2v

symmetry (two equivalent O�H bonds and two equivalent lone pairs
lying in orthogonal yz and zx planes) (Torkington, 1951) can be obtained
by doing a further orthogonal transformation of l and x lone pairs on
oxygen, without changing our description of bonding in the water
molecule.
This H€uckel transformationmethodwill now be applied in detail to the

ground state of the NH3 molecule (Magnasco, 2009c).

2.7.4 The Ammonia Molecule

2.7.4.1 MO Description Without Hybridization

The pyramidal ammonia molecule of C3v symmetry has an experimental
interbond angle of 2u � 107� (Herzberg, 1956). Its geometry is depicted
in Figure 2.22. It is convenient to work in terms of the angle g that each
NH bond makes with the z symmetry axis, whose value is related to half
the valence angle u by the relation:
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Figure 2.22 Geometry of the pyramidal NH3 molecule of C3v symmetry. Reprinted
from Chemical Physics Letters, 477, Magnasco, V.,Hückel transformation theory of
the hybridization problem inNH3. 392–396, Copyright (2009), with permission from
Elsevier

sing ¼ 2ffiffiffi
3

p sinu ð2:221Þ

Using the usual self-explanatory notation for the seven valenceAOs,we
call s, x, y, z the 2s and 2p orbitals on N, and h1, h2, h3 the 1s orbitals on
the H atoms (H1 on the positive x axis).
Leaving out s for the moment, the AOs belonging to C3v symmetry are

(Magnasco, 2009a):

A1 : z; hz ¼ 1ffiffiffi
3

p ðh1þ h2 þ h3Þ

Ex : x; hx ¼ 1ffiffiffi
6

p ð2h1�h2�h3Þ

Ey : y;hy ¼ 1ffiffiffi
2

p ðh2�h3Þ

8>>>>>>>>>><
>>>>>>>>>>:

ð2:222Þ

so that the 6� 6 H€uckel secular equation can be factorized into the three
2� 2 equations:

Hzz�« Hzhz

Hzhz Hhzhz�«

�����
�����

SymmetryA1

¼ 0

Hxx�« Hxhx

Hxhx Hhxhx�«

�����
�����

SymmetryEx

¼ 0

Hyy�« Hyhy

Hyhy Hhyhy�«

�����
�����¼ 0

SymmetryEy

ð2:223Þ
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The H€uckel matrix elements are:

Hzz ¼ ap

Hzhz ¼ � ffiffiffi
3

p
bshcos g

Hhzhz ¼ ah þ 2bhh � ah

8>>><
>>>:

ð2:224Þ

Hxx ¼ ap

Hyhy ¼
ffiffiffi
3

pffiffiffi
2

p bshsin g

Hhxhx ¼ ah�bhh � ah

8>>>>><
>>>>>:

ð2:225Þ

Hyy ¼ ap

Hyhy ¼
ffiffiffi
3

pffiffiffi
2

p bsh sin g

Hhyhy ¼ ah�bhh � ah

8>>>>><
>>>>>:

ð2:226Þ

where bhh is neglected as usual in H€uckel theory.29

The three lowest roots of the secular equations give the H€uckel energy
of the 3a211e

2
x1e

2
y valence electron configuration of NH3 as a function of

angle g:

EðgÞ ¼ 2«1ðA1Þþ2«1ðExÞþ 2«1ðEyÞ
¼ 3ap þ 3ah�D1�2D3

(
ð2:227Þ

where:

D1ðgÞ ¼ ½ðap�ahÞ2 þ 4H2
zhz

�1=2 ¼ ½ðap�ahÞ2 þ 12b2
sh cos

2 g �1=2 > 0

D3ðgÞ ¼ ½ðap�ahÞ2 þ 4H2
xhx

�1=2 ¼ ½ðap�ahÞ2 þ 6b2
sh sin

2 g �1=2 > 0

8<
:

ð2:228Þ
Taking the first g-derivatives of theDs, the stationarity condition for the

energy is:

dE

dg
¼ �dD1

dg
�2

dD3

dg
¼ 6b2

sh sin 2g
1

D1
� 1

D3

� �
¼ 0 ð2:229Þ

29 In the second of Equations (2.224) the minus sign accounts for the need of positive overlap

between the z AO of nitrogen and the symmetrical sum hz of hydrogen AOs.
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giving:

D3 ¼ D1 D2
3 ¼ D2

1

sin2 g ¼ 2cos2 g 3sin2 g ¼ 2 sin g ¼
ffiffiffi
2

p
ffiffiffi
3

p Y g ¼ 54:74�

sin u¼
ffiffiffi
3

p

2

ffiffiffi
2

p
ffiffiffi
3

p ¼ 1ffiffiffi
2

p Yu¼ 45�

8>>>>>>>>><
>>>>>>>>>:

ð2:230Þ

so thatweobtain a trueminimumfor 2u¼ 90�, since the secondderivative
is positive there:

d2E

dg2

 !
u¼45�

¼ 48b4
sh½ðap�ahÞ2þ4bsh

2��3=2 > 0 ð2:231Þ

This is what we expect in absence of hybridization, the resulting N�H
bonds being strongly bent outwards, and so very far from the principle of
maximum overlap.

2.7.4.2 Introducing Hybridization into A1 Symmetry

If we allow for sp mixing on nitrogen, the H€uckel matrix for the (s z hz)
basis of A1 symmetry becomes:

H ¼
as 0

ffiffiffi
3

p
bsh

0 ap � ffiffiffi
3

p
bsh cos gffiffiffi

3
p

bsh � ffiffiffi
3

p
bsh cos g ah

0
BBB@

1
CCCA ð2:232Þ

giving a 3� 3 secular equation whose solution is suitable only for
numerical calculations (compare the previous case of HF).
We nowmake the orthogonal transformationO of the original basis to

the hybridized basis:

l b hzð Þ ¼ s z hzð Þ
cosv sinv 0

sinv �cosv 0

0 0 1

0
BB@

1
CCA ð2:233Þ

90 THE CHEMICAL BOND



which corresponds to introducing the orthonormal hybrids (Figure 2.23):

l b hzð Þ ¼ s z hzð Þ
cosv sinv 0

sinv �cosv 0

0 0 1

0
B@

1
CA ð2:234Þ

where v is the hybridization parameter. Putting v ¼ 0 gives the previous
case of no hybridization.
The transformed H€uckel matrix has elements:

al ¼ ascos
2vþapsin

2v

blb ¼
as�ap

2
sin 2v

blh ¼
ffiffiffi
3

p ðbshcosv�bsh sinv cos gÞ
ab ¼ as sin

2vþap cos
2 v

bbh ¼
ffiffiffi
3

p ðbsh sinvþbsh cosv cos gÞ
ah

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð2:235Þ

giving the 3� 3 transformed secular equation:

al�« blb blh

blb ab�« bbh

blh bbh ah�«

�������
������� ¼ 0 ð2:236Þ

Figure 2.23 sp hybrids on nitrogen resulting from the orthogonal transformationO
of the original basis set of A1 symmetry. Left, lone pair hybrid l; right, bond hybrid b.
Reprinted fromChemical Physics Letters, 477,Magnasco, V.,Hückel transformation
theory of the hybridization problem in NH3. 392–396, Copyright (2009), with
permission from Elsevier
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Making the reasonable assumption that blb and blh are small compared
with bbh, the transformed matrix becomes nearly block-diagonal and,
putting:

blb ¼ blh ¼ 0 ð2:237Þ
we get the approximate roots belonging to A1 symmetry:

«1ðA1Þ ¼ al «2ðA1Þ ¼ ab þah

2
�D2

2
«3ðA1Þ ¼ ab þah

2
þ D2

2

D2ðA1Þ ¼ ½ðab�ahÞ2 þ12ðbshsin vþbsh cosv cos gÞ2�1=2

8>><
>>:

ð2:238Þ

So, the H€uckel energy for the valence configuration 2a213a
2
11e

2
x1e

2
y of

the A1 ground state of NH3 will be:

EðgÞ ¼ 2«1ðA1Þþ 2«2ðA1Þþ2«1ðExÞþ 2«1ðEyÞ

¼ 2ðascos
2vþapsin

2vÞþ ðassin
2vþapcos

2vÞþah þ 2ðap þahÞ
�D2ðA1Þ�D3ðExÞ�D3ðEyÞ
¼ EvalðNÞþ 3EðHÞ�D2�2D3

8>>>>>><
>>>>>>:

ð2:239Þ
where D2 is defined in Equation (2.238) and D3 in Equation (2.228).
The calculation of the first and second derivatives ofD2with respect to g

(v considered as a parameter) gives:

dD2

dg
¼ � 6

D2
ðbshbsh sin 2v sin g þb2

sh cos
2v sin 2 gÞ

d2D2

dg2
¼ � 6

D2
ðbshbsh sin 2v cos g þ 2 b2

sh cos
2v cos 2 gÞ

� 36

D2
ðbshbsh sin 2v sin g þb2

sh cos
2v sin 2 gÞ2

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2:240Þ

The stationarity condition for E(g) with respect to g now gives a quartic
equation in cos g ¼ x, with coefficients which depend on the actual values
assumed by bsh, bsh, ab�ah, ap�ah and v:

P4ðxÞ ¼ Ax4 þBx3þCx2 þDxþE ¼ 0 ð2:241Þ
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If, in the spirit of H€uckel theory, we put bsh ¼ bsh ¼ b, a parameter
characteristic of the N�H bond, the coefficients become after dividing
by b2:

A¼ 24b2 cos2v ðcos2vþ2Þ
B¼ 24b2 sin2v ðcos2vþ2Þ

C¼ 4 ðab�ahÞ2þ3b2

	
1

2
ðsin2vÞ2þ4sin2v



�cos4v ðap�ahÞ2þ6b2

h i8<
:

9=
;

D¼�4 sin2v cos2v ½ðap�ahÞ2þ6b2�

E¼�ðsin2vÞ2 ½ðap�ahÞ2þ6b2�:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð2:242Þ

As before, we now examine the following two particular cases.

(i) For v ¼ 0 (no hybridization), ab�ah ¼ ap�ah, coefficients B, D, E
vanish, A ¼ 72 b2; C ¼ �24 b2, and Equation (2.241) gives:

3x2 ¼ 1; x ¼ cos g ¼ 1ffiffiffi
3

p Y g ¼ 54:74�

sin g ¼ 2ffiffiffi
3

p sinu ¼
ffiffiffi
2

p
ffiffiffi
3

p Y sinu ¼ 1ffiffiffi
2

p Y2u ¼ 90�

8>>>>><
>>>>>:

ð2:243Þ

as it must be.
(ii) If we put:

ab�ah ¼ ap�ah ¼ 0 ð2:244Þ
(which is tantamount to assuming nonpolar bonds) dividing through-
out by 6b2, the coefficients will depend only on v, becoming:

A ¼ 4 cos2v ðcos2vþ 2Þ
B ¼ 4 sin 2v ðcos2vþ 2Þ
C ¼ ðsin 2vÞ2 þ 8 sin2v�4 cos4v

D ¼ �4 sin 2v cos2v

E ¼ �ðsin 2vÞ2

8>>>>>>>>><
>>>>>>>>>:

ð2:245Þ
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A root of the quartic equation (2.241) is given in this case by the simple
trigonometric relation: ffiffiffi

2
p

cot g ¼ cosv ð2:246Þ
provided 54:74� � g � 90�ð45� � u � 60�Þ. This shows that for v=0
the interbond angle resulting fromenergy optimization opens beyond 90�.
The four p AOs directed according to C3v symmetry:

p1 ¼ �z cos g þ x sin g

p2 ¼ �z cos g� 1

2
x sin g þ

ffiffiffi
3

p

2
y sin g

p3 ¼ �z cos g� 1

2
x sin g�

ffiffiffi
3

p

2
y sin g

p4 ¼ z

8>>>>>>>>>><
>>>>>>>>>>:

ð2:247Þ

are still normalized, but no longer orthogonal to each other:

hp1jp2i ¼ hp1jp3i ¼ hp2jp3i ¼ cos2 g� 1

2
sin2 g

hp1jp4i ¼ hp2jp4i ¼ hp3jp4i ¼ �cos g

8><
>: ð2:248Þ

Orthogonality can be restored by mixing in a certain amount of s
(Magnasco, 2007; Torkington, 1951):

b1 ¼ asþbp1 ¼ 1ffiffiffi
3

p ðs sinv�zcosvÞþ
ffiffiffi
2

p
ffiffiffi
3

p x¼ 1ffiffiffi
3

p bþ
ffiffiffi
2

p
ffiffiffi
3

p x

b2 ¼ asþbp2 ¼ 1ffiffiffi
3

p ðs sinv�zcosvÞ� 1ffiffiffi
6

p xþ 1ffiffiffi
2

p y¼ 1ffiffiffi
3

p b� 1ffiffiffi
6

p xþ 1ffiffiffi
2

p y

b3 ¼ asþbp3 ¼ 1ffiffiffi
3

p ðs sinv�zcosvÞ� 1ffiffiffi
6

p x� 1ffiffiffi
2

p y¼ 1ffiffiffi
3

p b� 1ffiffiffi
6

p x� 1ffiffiffi
2

p y

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2:249Þ
l¼ c sþdp4 ¼ scosvþzsinv ð2:250Þ

since:

a¼ 1ffiffiffi
3

p 1�3cos2 g
sin2 g

� �1=2

; b¼
ffiffiffi
2

p
ffiffiffi
3

p 1

sing
; c¼

ffiffiffi
2

p
cotg ; d¼ 1�3cos2 g

sin2 g

� �1=2

ð2:251Þ
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Hence, we can construct four sp3 hybrids of C3v symmetry, three
directed towards the H atoms and one making the axially symmetric
lone pair of Figure 2.23, simply by doing the further orthogonal trans-
formation U of the functions b (belonging to A1 symmetry) and x,y
(belonging to E symmetry):

ðb1 b2 b3 lÞ ¼ ðb x y lÞ

1ffiffiffi
3

p 1ffiffiffi
3

p 1ffiffiffi
3

p 0

ffiffiffi
2

p
ffiffiffi
3

p � 1ffiffiffi
6

p � 1ffiffiffi
6

p 0

0
1ffiffiffi
2

p � 1ffiffiffi
2

p 0

0 0 0 1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

¼ ðb x y lÞU ð2:252Þ

where U~U ¼ ~UU ¼ 1. The hybridization parameter v, arbitrary so far,
is best chosen so that the bond hybrids bi point in the direction of
the three N�Hi bonds, giving in this way strongest bonding with Hi 1s
orbitals and satisfying the principle of maximum overlap. According to
Equation (2.246), 2u ¼ 107�; g ¼ 68:16� gives v � 55:47�, and we ob-
tain the set (Figure 2.24 shows the b1 bond hybrid engaged in the N�H1

bond):30

Figure 2.24 sp3b1 bond hybrid of C3v symmetry on nitrogen overlapping (shaded
area) the hydrogen h1 orbital at u ¼ 53:5� to give a straight N�H1 bond in NH3.
Reprinted fromChemical Physics Letters, 477,Magnasco, V.,Hückel transformation
theory of the hybridization problem in NH3. 392–396, Copyright (2009), with
permission from Elsevier

30The equivalent hybrids b2 and b3 are obtained, respectively, by the anticlockwise rotation of b1
by 120o and 240o around the z symmetry axis.

sp-HYBRIDIZATION EFFECTS IN FIRST-ROW HYDRIDES 95



b1 ¼ 0:475638 s�0:327264 zþ 0:816496 x

b2 ¼ 0:475638 s�0:327264 z�0:408248 xþ 0:707107 y

b3 ¼ 0:475638 s�0:327264 z�0:408248 x�0:707107 y

l ¼ 0:566848 s�0:823822 z

8>>>>>>><
>>>>>>>:

ð2:253Þ

which coincides with the set of four orthogonal sp3 hybrids on nitrogen,
equivalent under C3v symmetry, obtainable in the standard way
(Magnasco, 2007; Torkington, 1951) under the requirement of equiv-
alence, normality and orthogonality. We have roughly a content of
22.6% s and 77.4% p in the bond hybrids, 32.1% s and 67.9% p in the
lone pair.
Consideration of the second derivative of EðgÞ with respect to g for

bsh ¼ bsh ¼ b shows that it is positive for v � 55:47�; 2u ¼ 107�, so we
conclude that, under our assumptions, sp hybridization opens the inter-
bond angle beyond 90o, giving hybridswhich locallyminimize theH€uckel
model energy for the valence electron configuration of ground state NH3,
and which can be chosen to give straight bonds satisfying the principle of
maximum overlap.

2.8 DELOCALIZED BONDS

We have seen so far that MOs resulting from the LCAO approximation
are delocalized among the various nuclei in the polyatomic molecule
even for the so-called saturated s bonds. The effect of delocalization is
even more important when looking to the p electron systems of con-
jugated and aromatic hydrocarbons, the systems for which the theory
was originally developed by H€uckel (1930, 1931, 1932). In the follow-
ing, we shall consider four typical systems withN p electrons, two linear
hydrocarbon chains, the allyl radical ðN ¼ 3Þ and the butadiene mol-
ecule ðN ¼ 4Þ, and two closed hydrocarbon chains (rings), cyclobuta-
diene ðN ¼ 4Þ and the benzene molecule ðN ¼ 6Þ. The case of the
ethylene molecule, considered as a two p electron system, will however
be considered first since it is the reference basis for the p bond in the
theory.
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The elements of the H€uckel matrix are given in terms of just two
negative unspecified parameters,31 the diagonal a and the off-diagonal b
for the nearest neighbours, introduced in a topological way as:

Hmm ¼ a m ¼ 1; 2;3; . . . ;N

Hmn ¼ b n ¼ m
 1; 0 otherwise

Smn ¼ dmn

8><
>: ð2:254Þ

Therefore, H€uckel theory of p electron systems distinguishes only
between linear chains and rings. It is useful to introduce the notation:

a�«

b
¼ �x

« ¼ aþ xb; D« ¼ «�a ¼ xb;
D«
b

¼ x

8>>>><
>>>>:

ð2:255Þ

so that xmeasures the p bond energy in units of b (x > 0 means bonding,
x < 0 means antibonding).
The typical H€uckel secular equations forN p electrons are then written

in terms of determinants of order N, such as:

DN ¼

�x 1 0 	 	 	 0 0 0

1 �x 1 	 	 	 0 0 0

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
0 0 0 	 	 	 1 �x 1

0 0 0 	 	 	 0 1 �x

�������������

�������������
ð2:256Þ

for the linear chain, and:

DN ¼

�x 1 0 	 	 	 0 0 1

1 �x 1 	 	 	 0 0 0

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
0 0 0 	 	 	 1 �x 1

1 0 0 	 	 	 0 1 �x

��������������

��������������
ð2:257Þ

for the closed chain (the ring). The general solution of these determinantal
equations is given in Chapter 3.

31Equal for all cases, at variance with what we saw for saturated systems.
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2.8.1 The Ethylene Molecule

The H€uckel secular equation for the p electrons in ethylene ðN ¼ 2Þ:

D2 ¼ �x 1

1 �x

�����
����� ¼ 0 ð2:258Þ

has the two roots (in ascending order):

x1 ¼ 1; x2 ¼ �1 ð2:259Þ

with the corresponding MOs:

f1 ¼
1ffiffiffi
2

p ðx1 þ x2Þ; f2 ¼
1ffiffiffi
2

p ðx2�x1Þ ð2:260Þ

The MO diagram of the energy levels and a schematic drawing of the
molecular orbitals are sketched in Figure 2.25. The highest occupied
molecular orbital is called HOMO, the lowest unoccupied molecular
orbital is called LUMO.

2.8.2 The Allyl Radical

The allyl radical has an unpaired p electron in a doublet ground state.
For the allyl radical (linear chain with N ¼ 3), expansion of the H€uckel

Figure 2.25 Energy levels (left) and H€uckel MOs (right) for ethylene ground state
ðN ¼ 2Þ
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secular equation gives:

D3 ¼
�x 1 0

1 �x 1

0 1 �x

������
������ ¼ �xðx2�2Þ ¼ 0 ð2:261Þ

with the ordered roots:

x1 ¼
ffiffiffi
2

p
; x2 ¼ 0; x3 ¼ �

ffiffiffi
2

p
ð2:262Þ

and the MOs:

f1 ¼
x1 þ

ffiffiffi
2

p
x2þ x3

2

f2 ¼
x1�x3ffiffiffi

2
p

f3 ¼
x1�

ffiffiffi
2

p
x2 þ x3

2

8>>>>>>>><
>>>>>>>>:

ð2:263Þ

Figure 2.26 gives the diagram of the energy levels as occupied by
electrons for the ground state of the allyl radical and the related H€uckel
molecular orbitals fs ðf2 ¼ HOMO; f3 ¼ LUMOÞ.32
The electron distribution of the p electrons in the allyl radical ground

state is:

PðrÞ ¼ contribution froma andb spin

¼ raðrÞ þ rbðrÞ
¼ x2

1ðrÞ þ x2
2ðrÞ þ x2

3ðrÞ;

8><
>: ð2:264Þ

Figure 2.26 Energy levels (left) and H€uckel MOs (right) for the allyl radical ground
state ðN ¼ 3Þ

32This is true for the allyl radical ðN ¼ 3Þ and for the allyl anion ðN ¼ 4Þ, but f1 ¼ HOMO;

f2 ¼ LUMO for the allyl cation (N¼2).

DELOCALIZED BONDS 99



and the spin density distribution of the unpaired a spin electron:

PðrÞ ¼ contribution from a and b spin

¼ raðrÞþ rbðrÞ
¼ x2

1ðrÞþ x2
2ðrÞþ x2

3ðrÞ

8><
>: ð2:265Þ

According to these equations, the H€uckel distribution of the three p
electrons is uniform (one electron onto each carbon atom, alternant
hydrocarbon33), while the unpaired electron of a spin is 1/2 on atom 1
and 1/2 on atom 3, with zero probability of being found at atom 2. This
spin distribution is however incorrect, since ESR experiments and theo-
retical VB calculations show that, if the unpaired electron hasa spin, there
is a nonvanishing probability of finding some b spin at the central atom.
The bond energy (in units of b) of the allyl radical is:

DEpðallylÞ ¼ 2
ffiffiffi
2

p
¼ 2:828 ð2:266Þ

while that of an ethylenic double bond:

DEpðethyleneÞ ¼ 2 ð2:267Þ
The difference 0.828 is an attractive stabilizing energy called the

delocalization energy of the double bond in the allyl radical.

2.8.3 The Butadiene Molecule

The H€uckel secular equation for the linear chain with N ¼ 4 is:

D4 ¼

�x 1 0 0

1 �x 1 0

0 1 �x 1

0 0 1 �x

����������

����������
¼ x4�3x2 þ1 ¼ 0 ð2:268Þ

where we have indicated in boldface the top right and the bottom left
elements that differ from those of the closed chainwhichwill be examined
next. Equation (2.268) is a pseudoquartic equation that can be easily
reduced to a quadratic equation by the substitution:

x2 ¼ yY y2�3yþ 1 ¼ 0 ð2:269Þ

33For the definition of alternant hydrocarbons, see Magnasco (Magnasco, 2007, 2009a).

100 THE CHEMICAL BOND



having the roots:

y ¼ 3
 ffiffiffi
5

p

2
¼

y1 ¼ 3þ ffiffiffi
5

p

2
¼ 2:618

y2 ¼ 3� ffiffiffi
5

p

2
¼ 0:382

8>>>>><
>>>>>:

ð2:270Þ

So, we obtain the four roots (left-hand side of Figure 2.27):

x1 ¼ ffiffiffiffiffi
y1

p ¼ 1:618

x2 ¼ ffiffiffiffiffi
y2

p ¼ 0:618

x3 ¼ � ffiffiffiffiffi
y2

p ¼ �0:618

x4 ¼ � ffiffiffiffiffi
y1

p ¼ �1:618

8>>>>><
>>>>>:

ð2:271Þ

the first two being bonding levels, the last two antibonding.
The calculation of theMO coefficients (the eigenvectors corresponding

to the four roots above) proceeds through solution of the linear homo-
geneous system, giving the MOs (right-hand side of Figure 2.27):

f1 ¼ 0:371 x1 þ 0:601 ðx2 þ x3Þþ 0:371 x4

f2 ¼ 0:601 x1 þ 0:371 ðx2�x3Þ�0:601 x4

f3 ¼ 0:601 x1�0:371 ðx2 þx3Þþ 0:601 x4

f4 ¼ 0:371 x1�0:601 x2 þ0:601 x3�0:371 x4

8>>>>><
>>>>>:

ð2:272Þ

Figure 2.27 Energy levels (left) and H€uckel MOs (right) for butadiene ground state
ðN ¼ 4Þ
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the first two being bonding (f2 ¼ HOMO), the last two antibonding
(f3 ¼ LUMO) MOs.
Proceeding as we did for the allyl radical, it is easily seen that the

electron charge distribution is uniform (one p electron onto each carbon
atom, alternant hydrocarbon) and the spin density is zero, as expected for
a state with S ¼ MS ¼ 0 since the two bondingMOs are fully occupied by
electrons with opposite spin. The delocalization (or conjugation) energy
for linear butadiene is:

DEpðbutadieneÞ�2DEpðethyleneÞ ¼ 4:472�4 ¼ 0:472 ð2:273Þ
and is therefore sensibly less than the conjugation energy of the allyl
radical.

2.8.4 The Cyclobutadiene Molecule

The H€uckel secular equation for the square ring with N¼ 4 is:

D4 ¼

�x 1 0 1

1 �x 1 0

0 1 �x 1

1 0 1 �x

����������

����������
¼ x4�4x2 ¼ x2ðx2�4Þ ¼ 0 ð2:274Þ

where the elements in boldface are the only ones differing from those of
the linear chain (1 and 4 are now adjacent atoms). The roots of this
equation are (left-hand side of Figure 2.28):

x1 ¼ 2; x2 ¼ x3 ¼ 0; x4 ¼ �2 ð2:275Þ
For the MOs this gives:

f1 ¼
1

2
ðx1þ x2þ x3 þx4Þ

f2 ¼ f2x ¼
1

2
ðx1�x2�x3 þ x4Þ / x

f3 ¼ f2y ¼
1

2
ðx1þ x2�x3�x4Þ / y

f4 ¼
1

2
ðx1�x2 þ x3�x4Þ:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð2:276Þ
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The coordinate system, energy levels and H€uckel MOs for cyclobuta-
diene are sketched in Figure 2.28. To simplify the drawing, the 2ppAOs in
the MOs are viewed from above the zxmolecular plane, so that only the
signs of the upper lobes are reported.Wenote thatf2x is a function having
the same transformation properties as the x coordinate, yz being a nodal
plane for this MO. f2y is a function having the same transformation
properties as the y coordinate, zx now being the nodal plane for thisMO.
f2xand f2y are the pair of HOMO MOs belonging to the doubly
degenerate energy level «2 ¼ «3 which transform as the pair of basic
vectors ex and ey of the D2h symmetry (Magnasco, 2009a) to which the s
skeleton of cyclobutadiene belongs. They are therefore orthogonal and
not interacting, as can be seen immediately:

hf2xjf2yi ¼
1

4
x1�x2�x3 þx4jx1 þ x2�x3�x4h i ¼ 1

4
ð1�1þ 1�1Þ ¼ 0

ð2:277Þ

Figure 2.28 Coordinate system (top), energy levels (left) and real H€uckel MOs
(right) for cyclobutadiene (ring with N ¼ 4)

DELOCALIZED BONDS 103



hf2xjHjf2yi ¼
1

4
x1�x2�x3þx4jHjx1þx2�x3�x4h i

¼ 1

4
ðaþb�bÞþð�b�aþbÞþð�bþaþbÞþðb�b�aÞ½ � ¼ 0

8>>>>><
>>>>>:

ð2:278Þ
It is also seen that they belong to the same eigenvalue « ¼ a:

«2x ¼ 1

4
x1�x2�x3 þ x4jHjx1�x2�x3 þ x4h i ¼ a ð2:279Þ

«2y ¼ 1

4
x1 þx2�x3�x4jHjx1 þx2�x3�x4h i ¼ a ð2:280Þ

f4 is sketched in the diagram of the upper row of Figure 2.28 and shows
the existence of two nodal planes orthogonal to each other.34f4 is the last
antibonding MO (LUMO).
The delocalization energy for cyclobutadiene is:

DEpðcyclobutadieneÞ�2DEpðethyleneÞ ¼ 4�4 ¼ 0 ð2:281Þ
so that, according to H€uckel theory, the p electron system of cyclobuta-
diene has zero delocalization energy.

2.8.5 The Benzene Molecule

The H€uckel secular equation for the closed chain (ring) with N ¼ 6 is:

D6 ¼

�x 1 0 0 0 1

1 �x 1 0 0 0

0 1 �x 1 0 0

0 0 1 �x 1 0

0 0 0 1 �x 1

1 0 0 0 1 �x

�����������������

�����������������

¼ 0 ð2:282Þ

34As a general rule, the number of nodal planes increases for the higher p orbitals, while the
deepest bondingMOhas no nodal planes (except for themolecular plane,which is common to all

molecules considered here).
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where 1 and 6 are now adjacent atoms. By expanding the determinant we
obtain a sixth degree equation in x that can be easily factorized into the
three quadratic equations:

D6 ¼ x6�6x4 þ 9x2�4 ¼ ðx2�4Þðx2�1Þ2 ¼ 0 ð2:283Þ
with the roots, written in ascending order:

x ¼ 2; 1; 1; �1; �1; �2 ð2:284Þ

Because of the high symmetry of the molecule, two levels are now
doubly degenerate. The calculation of the MO coefficients can be done
using elementary algebraic methods in solving the linear homogeneous
system corresponding to Equation (2.282). With reference to Fig-
ure 2.29, a rather lengthy calculation (Section 2.9.3) shows that the
real MOs are:

f1 ¼ 1ffiffiffi
6

p ðx1 þx2 þx3 þ x4 þ x5 þ x6Þ

f2 ¼ 1

2
ðx1�x3�x4 þ x6Þ / x

f3 ¼ 1ffiffiffiffiffiffi
12

p ðx1 þ 2x2 þ x3�x4�2x5�x6Þ / y

f4 ¼ 1ffiffiffiffiffiffi
12

p ðx1�2x2þ x3 þx4�2x5 þ x6Þ / x2�y2

f5 ¼ 1

2
ðx1�x3þ x4�x6Þ / xy

f6 ¼ 1ffiffiffi
6

p ðx1�x2 þ x3�x4 þ x5�x6Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð2:285Þ

The first degenerate MOs35 f2 and f3 transform like (x, y) and are
bonding MOs (HOMOs), the second degenerate MOs f4 and f5 trans-
form like (x2� y2, xy) and are antibonding MOs (LUMOs).

35Loosely speaking, we attribute to MOs a property (degeneracy) of energy levels.
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Figure 2.29 Numbering of carbon atoms and coordinate system (top), energy levels
(left) and real H€uckel MOs (right) for the p electrons in benzene (ring with N ¼ 6)

The ra and rb components of the electron distribution function for
benzene are equal:

ra ¼ rb ¼ f2
1 þf2

2 þf2
3

¼ x2
1

1

6
þ 1

4
þ 1

12

 !
þ x2

2

1

6
þ 4

12

 !
þ x2

3

1

6
þ 1

4
þ 1

12

 !

þ x2
4

1

6
þ 1

4
þ 1

12

 !
þ x2

5

1

6
þ 4

12

 !
þ x2

6

1

6
þ 1

4
þ 1

12

 !

8>>>>>>>><
>>>>>>>>:

ð2:286Þ
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so that:

ra ¼ rb ¼ 1

2
x2
1 þ x2

2 þ x2
3 þ x2

4þ x2
5þ x2

6

� � ð2:287Þ

We then have for the electron density:

PðrÞ ¼ raðrÞþ rbðrÞ ¼ x2
1 þ x2

2 þ x2
3 þ x2

4 þ x2
5 þ x2

6 ð2:288Þ

and the charge distribution of the p electrons in benzene is uniform (one
electron onto each carbon atom), as expected for an alternant hydrocar-
bon; whereas the spin density is zero:

QðrÞ ¼ raðrÞ�rbðrÞ ¼ 0 ð2:289Þ

as it must be for a singlet state.
The p bond energy (units of b) for benzene is:

DEp ¼ 2� 2þ 4� 1 ¼ 8 ð2:290Þ

When the p bond energy of three ethylenes:

3DEp ðethyleneÞ ¼ 3� 2 ¼ 6 ð2:291Þ

is subtracted from Equation (2.290) we obtain for the delocalization
energy of the three double bonds in benzene:

DEpðbenzeneÞ�3DEpðethyleneÞ ¼ 8�6 ¼ 2 ð2:292Þ

the highest value obtained so far among themolecules studied.This energy
lowering is responsible for the great stability of thep electron systemof the
benzene molecule, where the three aromatic p bonds are fully delocalized
and bear no resemblance at all to three ethylenic double bonds. Further
stability in benzene arises from the fact that, at variance with its homo-
logues cyclobutadiene36 ðN ¼ 4Þ and cyclooctatetraene37 ðN ¼ 8Þ, its s
skeleton has no internal strain.

36 In cyclobutadiene the ring bond angles are 30o less than the value expected for sp2 hybrid-

ization, so that its ground state is a very unstable triplet.
37Cyclooctatetraene is not aromatic, since it is not planar but has a ‘tube’ conformation

(Magnasco, 2007).
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2.9 APPENDICES

2.9.1 The Second Derivative of the H€uckel Energy

Putting bsh¼boh¼b the second derivative of the H€uckel energy,
Equation (2.207), becomes:

d2E

du2
¼ 4

D2
b2 sin 2v cos uþ 8 b2 cos 2u

cos2v

D2
� 1

D3

 !

þ 16

D3
2

b4ðsin 2v sin uþ cos2v sin 2uÞ2þ 16

D3
3
b4ðsin2uÞ2

8>>>>><
>>>>>:

ð2:293Þ

where:

D2 ¼ ½ðab�ahÞ2þ 8b2ðsinvþ cosv cosuÞ2�1=2

D3 ¼ ½ðap�ahÞ2þ 8b2 sin2u�1=2

8<
: ð2:294Þ

Since, for v¼ 40�, 2u¼105�,

ðab�ahÞ2 > ðap�ahÞ2; ðsinvþ cosv cos uÞ2 > sin2u ð2:295Þ

surely:

D2 > D3 ð2:296Þ

Therefore, a fortiori it is true that:

cos2v

D2
<

1

D3
ð2:297Þ

and all terms of Equation (2.293) are positive, so that:

d2E

du2

 !
v¼40�;2u¼105�

> 0 ð2:298Þ

and we have a true minimum there.
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2.9.2 The Set of Three Coulson’s Orthogonal Hybrids

If v0 is a hybridization parameter, Coulson’s hybrids can be written as:

b01 ¼ s sinv0 þ z cosv0 cosuþ y cosv0 sinu

b02 ¼ s sinv0 þ z cosv0 cosu�y cosv0 sinu

l0 ¼ s cosv0�z sinv0:

8><
>: ð2:299Þ

Comparison with our set (Equations 2.219) shows that, if the two sets
have to be equivalent, we must have:

sinv0 ¼ 1ffiffiffi
2

p sinv; cosv0 cosu ¼ 1ffiffiffi
2

p cosv; cosv0 sinu ¼ 1ffiffiffi
2

p ð2:300Þ

so establishing the relation between Coulson’s v0 and our (v) hybridiza-
tion parameters.
We notice, first, that hybrids (Equations 2.299) are correctly normal-

ized, and that:

S12 ¼ hb01jb02i ¼ sin2v0 þ cos2 v0 cos 2 u ¼ 0 ð2:301Þ

provided Coulson’s relation is satisfied:

cos 2 u ¼ � sinv0

cosv0

� �2

< 0 ð2:302Þ

but that the lone pair hybrid l0 is not orthogonal to either b01 or b02:

S13 ¼ S23 ¼ sinv0cosv0ð1�cosuÞ=0 ð2:303Þ

Schmidt orthogonalization of l0 to b1 orb2 canbe done using the explicit
formulae given elsewhere (Magnasco, 2007), so obtaining:

b1 ¼ b01; b2 ¼ b02;

l ¼ ð1�2S2Þ�1=2ðl0�Sb02�Sb01Þ

(
ð2:304Þ

It can be seen that, in doing the orthogonalization process, the coef-
ficient of y in (Equatrions 2.304) becomes identically zero, and we obtain

APPENDICES 109



the orthogonalized lone pair in the form:

l ¼ ð1�2S2Þ�1=2½sðcosv0�2S sinv0Þ�zðsinv0 þ 2S cosv0cosuÞ� ð2:305Þ
Using Equations (2.300) and (2.214) it is further easily verified that:

ð1�2S2Þ�1=2 ðcosv0�2S sinv0Þ ¼ cosv

ð1�2S2Þ�1=2 ðsinv0 þ2S cosv0cosuÞ ¼ sinv

(
ð2:306Þ

so that Coulson’s orthogonalized set (2.304) coincides with our set
(2.219). Hence we may say that our main result (2.214) is just another
wayof expressingCoulson’s result (2.302), and thatourEquations (2.219)
are the simplestway of expressing the set of three orthonormal sp2 hybrids
equivalent under C2v symmetry.

2.9.3 Calculation of Coefficients of Real MOs for Benzene

We give in the following an elementary derivation of the coefficients
occurring in the real MOs for benzene, Equations (2.285), based on the
direct solution of the system of linear homogeneous equations giv-
ing (2.282). We start by considering each eigenvalue in turn, making
reference to numbering of carbon atoms and coordinate system of
Figure 2.29. We recall that each equation must be used once.
(a) x1¼ 2 (first eigenvalue)
The homogeneous system corresponding to this eigenvalue is:

1:�2c1þ c2 þ c6 ¼ 0

2: c1�2c2þ c3 ¼ 0

3: c2�2c3þ c4 ¼ 0

4: c3�2c4þ c5 ¼ 0

5: c4�2c5þ c6 ¼ 0

6: c1 þ c5�2c6 ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

ð2:307Þ

Weexpress all ratios between the coefficients in termsof c5/c1, assuming
c1=0.
1. and 6. in Equations (2.307) give:

c6
c1

¼ 2� c2
c1

¼ 1

2
1þ c5

c1

� �
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so that:

c2
c1

¼ 2� 1

2
1þ c5

c1

� �
¼ 1

2
3� c5

c1

� �

2. gives:

c3
c1

¼ 2
c2
c1

�1 ¼ 3� c5
c1

� �
�1 ¼ 2� c5

c1

4. gives:

c4
c1

¼ 1

2

c3
c1

þ c5
c1

� �
¼ 1

2
2� c5

c1
þ c5

c1

� �
¼ 1

5. gives:

c5
c1

¼¼ 1

2

c4
c1

þ c6
c1

� �
¼ 1

2
þ 1

4
1þ c5

c1

� �
¼ 1

4
3þ c5

c1

� �

and therefore:

c5=c1 ¼ 1

So, we finally get:

c6
c1

¼ 1

2
ð1þ 1Þ ¼ 1;

c2
c1

¼ 1

2
ð3�1Þ ¼ 1;

c3
c1

¼ 2�1 ¼ 1;
c4
c1

¼ 1;
c5
c1

¼ 1

c1 ¼ c2 ¼ c3 ¼ c4 ¼ c5 ¼ c6

The additional constraint of coefficient normalization gives:

c 2
1 þ c 2

2 þ c 2
3 þ c 2

4 þ c 2
5 þ c 2

6 ¼ 1Y6c 2
1 ¼ 1Y c1 ¼ 1ffiffiffi

6
p

thereby giving for the eigenvectorf1 corresponding to the first eigenvalue:

c1 ¼ c2 ¼ c3 ¼ c4 ¼ c5 ¼ c6 ¼ 1ffiffiffi
6

p : ð2:308Þ
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(b) x2¼1 (first degenerate eigenvalue)
The homogeneous system is:

1: �c1þ c2 þ c6 ¼ 0

2: c1�c2 þ c3 ¼ 0

3: c2�c3 þ c4 ¼ 0

4: c3�c4 þ c5 ¼ 0

5: c4�c5 þ c6 ¼ 0

6: c1þ c5�c6 ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

ð2:309Þ

Again assume c1=0. Then:
1. and 6. in Equations (2.309) give:

c6
c1

¼ 1� c2
c1

¼ 1þ c5
c1

so that:

c2
c1

¼ � c5
c1

2. gives:

c3
c1

¼ c2
c1

�1 ¼ �1� c5
c1

3. gives:

c4
c1

¼ c3
c1

� c2
c1

¼ �1� c5
c1

þ c5
c1

¼ �1

4. gives:

c5
c1

¼ c4
c1

� c3
c1

¼ �1þ1þ c5
c1

¼ c5
c1

nothing new.
Hence c5/c1 is arbitrary, and we choose to put it equal to zero.

c5=c1 ¼ 0

112 THE CHEMICAL BOND



gives:

c6
c1

¼ 1;
c2
c1

¼ 0;
c3
c1

¼ �1;
c4
c1

¼ �1;
c5
c1

¼ 0

Therefore:

c2 ¼ c5 ¼ 0; c3 ¼ c4 ¼ �c1; c6 ¼ c1

and the normalization condition gives:

c 2
1 þ c 2

2 þ c 2
3 þ c 2

4 þ c 2
5 þ c 2

6 ¼ 1Y4c 2
1 ¼ 1Y c1 ¼ 1

2

c1 ¼ c6 ¼ 1

2
; c2 ¼ c5 ¼ 0; c3 ¼ c4 ¼ � 1

2
ð2:310Þ

In this way,we obtain the first (normalized) eigenvectorf2 correspond-
ing to the first degenerate eigenvalue, and we see that it has the same
transformation properties of the coordinate x. Because of the necessary
orthogonality in the xy plane between the two basic vectors, the second
(normalized) eigenvector f3 belonging to the first degenerate eigenvalue
must therefore transform like y. Hence we must have:

c6
c1

¼ �1;
c5
c1

¼ �2;
c2
c1

¼ 2;
c3
c1

¼ 1;
c4
c1

¼ �1

Hence, orthogonality gives:

c1; c2 ¼ 2c1; c3 ¼ c1; c4 ¼ �c1; c5 ¼ �2c1; c6 ¼ �c1

and, normalizing to unity:

c 2
1 ð1þ 4þ 1þ 1þ 4þ 1Þ ¼ 12c 2

1 ¼ 1Y c1 ¼ 1ffiffiffiffiffiffi
12

p

so that we finally obtain for the eigenvector transforming like y:

c1 ¼ c3 ¼ �c4 ¼ �c6 ¼ 1ffiffiffiffiffiffi
12

p ; c2 ¼ �c5 ¼ 2ffiffiffiffiffiffi
12

p ð2:311Þ

(c) x4¼�1(second degenerate eigenvalue)
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The homogeneous system is:

1: c1 þ c2 þ c6 ¼ 0

2: c1 þ c2 þ c3 ¼ 0

3: c2 þ c3 þ c4 ¼ 0

4: c3 þ c4 þ c5 ¼ 0

5: c4 þ c5 þ c6 ¼ 0

6: c1 þ c5 þ c6 ¼ 0

8>>>>>>>>><
>>>>>>>>>:

ð2:312Þ

Again assume c1=0. Then:
1. and 6. in Equations (2.312) give:

c6
c1

¼ �1� c2
c1

¼ �1� c5
c1

and therefore:

c2
c1

¼ c5
c1

:

2. gives:

c3
c1

¼ �1� c2
c1

¼ �1� c5
c1

3. gives:

c4
c1

¼ � c2
c1

� c3
c1

¼ � c5
c1

þ1þ c5
c1

¼ 1

4. gives:

c5
c1

¼ � c3
c1

� c4
c1

¼ 1þ c5
c1

�1 ¼ c5
c1

nothing new.
Hence c5/c1 is arbitrary, and we choose to put it equal to �2. Then:

c6
c1

¼ �1þ 2 ¼ 1;
c5
c1

¼ �2;
c4
c1

¼ 1;
c3
c1

¼ �1þ 2 ¼ 1;
c2
c1

¼ �2
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Therefore:

c2 ¼ �2c1; c3 ¼ c1; c4 ¼ c1; c5 ¼ �2c1; c6 ¼ c1

and the normalization condition gives:

c 2
1 þ c 2

2 þ c 2
3 þ c 2

4 þ c 2
5 þ c 2

6 ¼ 1Y12c 2
1 ¼ 1Y c1 ¼ 1ffiffiffiffiffiffi

12
p

c1 ¼ c3 ¼ c4 ¼ c6 ¼ 1ffiffiffiffiffiffi
12

p ; c2 ¼ c5 ¼ � 2ffiffiffiffiffiffi
12

p ð2:313Þ

In this way,we obtain the first (normalized) eigenvectorf4 correspond-
ing to the second degenerate eigenvalue, and we see that it has the same
transformation properties as (x2� y2). Because of the necessary orthog-
onality in the xy plane between the two basic vectors, the second
(normalized) eigenvector f5 belonging to the second degenerate eigen-
value must therefore transform like xy. Hence we must have:

c6
c1

¼ �1;
c5
c1

¼ 0;
c4
c1

¼ 1;
c3
c1

¼ �1;
c2
c1

¼ 0

Hence, orthogonality gives:

c2 ¼ c5 ¼ 0; c3 ¼ �c1; c4 ¼ c1; c6 ¼ c1

and, normalizing to unity:

c 2
1 þ c 2

2 þ c 2
3 þ c 2

4 þ c 2
5 þ c 2

6 ¼ 1Y4c 2
1 ¼ 1Y c1 ¼ 1

2

so that we finally obtain for the eigenvector transforming like xy:

c1 ¼ �c3 ¼ c4 ¼ �c6 ¼ 1

2
; c2 ¼ c5 ¼ 0 ð2:314Þ

d) x6¼�2 (last eigenvalue)
We proceed in the same way as we did for the first eigenvalue. The

homogeneous system corresponding to this eigenvalue is:
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1: 2c1 þ c2 þ c6 ¼ 0

2: c1 þ 2c2 þ c3 ¼ 0

3: c2 þ 2c3 þ c4 ¼ 0

4: c3 þ 2c4 þ c5 ¼ 0

5: c4 þ 2c5 þ c6 ¼ 0

6: c1 þ c5 þ 2c6 ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

ð2:315Þ

1. and 6. in Equations (2.315) now give:

c6
c1

¼ �2� c2
c1

¼ 1

2
�1� c5

c1

� �

so that:

c2
c1

¼ �2þ 1

2
1þ c5

c1

� �
¼ 1

2
�3þ c5

c1

� �

2. gives:

c3
c1

¼ �1�2
c2
c1

¼ �1þ 3� c5
c1

� �
¼ 2� c5

c1

4. gives:

c4
c1

¼ 1

2
� c3
c1

� c5
c1

� �
¼ 1

2
�2þ c5

c1
� c5
c1

� �
¼ �1

5. gives:

c5
c1

¼ 1

2
� c4
c1

� c6
c1

� �
¼ 1

2
þ 1

4
1þ c5

c1

� �
¼ 1

4
3þ c5

c1

 !

Hence:

4
c5
c1

¼ 3þ c5
c1

Y
c5
c1

¼ 1
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So, we finally get:

c6
c1

¼ � 1

2
� 1

2
¼ �1;

c2
c1

¼ � 3

2
þ 1

2
¼ �1;

c3
c1

¼ 2�1 ¼ 1;

c4
c1

¼ �1;
c5
c1

¼ 3

4
þ 1

4
¼ 1

namely:

c2 ¼ �c1; c3 ¼ c1; c4 ¼ �c1; c5 ¼ c1; c6 ¼ �c1

Normalizing to unity we obtain:

c 2
1 þ c 2

2 þ c 2
3 þ c 2

4 þ c 2
5 þ c 2

6 ¼ 1Y6c 2
1 ¼ 1Y c1 ¼ 1ffiffiffi

6
p

thereby giving for the eigenvectorf6 corresponding to the last eigenvalue:

c1 ¼ �c2 ¼ c3 ¼ �c4 ¼ c5 ¼ �c6 ¼ 1ffiffiffi
6

p ð2:316Þ

Followingwhatwas said for cyclobutadiene, it is left as an easy exercise
for the reader to verify that all MOs, Equations (2.285), are normalized
and orthogonal and not interacting in pairs. Furthermore, even if their
form is different, each pair ofMOs belonging to the respective degenerate
eigenvalue gives the same value for the corresponding orbital energy.
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3
An Introduction to Bonding

in Solids

3.1 The Linear Polyene Chain
3.1.1 Butadiene N¼4

3.2 The Closed Polyene Chain
3.2.1 Benzene N¼6

3.3 A Model for the One-dimensional Crystal
3.4 Electronic Bands in Crystals
3.5 Insulators, Conductors, Semiconductors and Superconductors
3.6 Appendix: the Trigonometric Identity

In the previous chapter, we saw that immediate solution of the N-
dimensional (DN) H€uckel secular equation was possible for the first
members of the series, ethylene ðN ¼ 2Þ, allyl radical ðN ¼ 3Þ and
butadiene ðN ¼ 4Þ, but for higher values of N only symmetry can help
in finding the solutions, unlesswe have at our disposal the general solution
for the linear polyene chain of N atoms. The secular equations for linear
and closed polyene chains, even with different bs for single and double
bonds, were first solved by Lennard-Jones (1937) and rederived by
Coulson (1938). In the following, we present a simple derivation of the
general solution for the N-atom linear and closed polyene chains (equal
bs) which are useful for introducing the general theory of bonding in
solids. We follow here the lines sketched in McWeeny’s book on valence
theory (1979).

Models for Bonding in Chemistry Valerio Magnasco

� 2010 John Wiley & Sons, Ltd



3.1 THE LINEAR POLYENE CHAIN

Wewant to find the general solution for the systemof homogeneous linear
equations for the linear polyene chain with N atoms yielding the Nth
degree secular equation

DN ¼

�x 1 0 � � � 0 0 0

1 �x 1 � � � 0 0 0

� � � � � � � � � � � � � � � � � � � � �
0 0 0 � � � 1 �x 1

0 0 0 � � � 0 1 �x

�������������

�������������
¼ 0 ð3:1Þ

The homogeneous system corresponding to Equation (3.1) is:

�xc1 þ c2 ¼ 0

� � �
cm�1�xcm þ cmþ 1 ¼ 0

� � �
cN�1�xcN ¼ 0

8>>>>>>><
>>>>>>>:

ð3:2Þ

The general equation is:

cm�1�xcm þ cmþ 1 ¼ 0 m ¼ 1; 2; � � � ;N ð3:3Þ
with the boundary conditions

c0 ¼ cNþ 1 ¼ 0 ð3:4Þ
The general solution is the standing wave

cm ¼ A expðim uÞþB expð�im uÞ ð3:5Þ

where i is the imaginary unit ði2 ¼ �1Þ, provided
x ¼ 2 cos u ð3:6Þ

(i) From the first boundary condition it is in fact obtained:

c0 ¼ AþB ¼ 0YB ¼ �A ð3:7Þ

cm ¼ A expðim uÞ�expð�im uÞ½ � ¼ 2iA sinmu ¼ C sinmu ð3:8Þ
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where C ¼ 2iA is a normalization factor.The general equation then
gives:

A exp iðm�1Þu½ ��x expðim uÞþ exp iðmþ1Þu½ �f g
þB exp �iðm�1Þu½ ��xexpð�im uÞþ exp �iðmþ 1Þu½ �f g
¼ Aexpðim uÞ expð�iuÞ�xþ expðiuÞ½ �
þBexpð�im uÞ expðiuÞ�xþ expð�iuÞ½ �
¼ Aexpðim uÞþB expð�im uÞ½ � expð�iuÞ�xþ expðiuÞ½ �
¼ cmð2cosu�xÞ ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

ð3:9Þ

so that, for cm =0:

2 cos u�x ¼ 0Yx ¼ 2 cos u ð3:10Þ
as required.

(ii) From the second boundary condition it is obtained:

cNþ 1 ¼ C sinðNþ 1Þu ¼ 0 ð3:11Þ
therefore it must be:

ðNþ 1Þu ¼ kp k ¼ 1;2; 3; � � � ;N ð3:12Þ
with k a quantum number:

uk ¼
kp

Nþ 1
ð3:13Þ

so that angle u is quantized.

In conclusion, we see that the general solution for the linear chain will
be:

xk ¼ 2 cos
kp

Nþ 1
k ¼ 1; 2; � � � ;N

cmk ¼ ck sinm
kp

Nþ 1

8>>>><
>>>>:

ð3:14Þ

the first being the p bond energy of the kth level (in units of b), the second
the coefficient of the mth AO in the kth MO. All previous results for
ethylene, allyl radical and butadiene given in Section 2.8 of Chapter 2 are
easily rederived from the general formula (Equation 3.14).
We give below the derivation of the detailed formulae for the open

linear chain with N ¼ 4 (butadiene).
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3.1.1 Butadiene N ¼ 4

uk ¼ k
p
5
; xk ¼ 2 cos k

p
5
; k ¼ 1; 2; 3;4 ð3:15Þ

The roots in ascending order are:

(i) Bonding levels

x1 ¼ 2 cos
p
5
¼ 2 cos36� ¼ 1:618

x2 ¼ 2 cos
2p
5

¼ 2 cos72� ¼ 0:618

8>>>><
>>>>:

ð3:16Þ

(ii) Antibonding levels

x3 ¼ 2 cos
3p
5

¼ 2 cos108� ¼ �0:618

x4 ¼ 2 cos
4p
5

¼ 2 cos144� ¼ �1:618

8>>>><
>>>>:

ð3:17Þ

which coincide with those of Equations (2.272) of Chapter 2.

For the MOs, we have:

fk ¼
X
m

xmcmk ¼ C
X
m

xmsinm
kp
5

ð3:18Þ

where C is a normalization factor.
Then:

f1 ¼ C
X4
m¼1

xm sinm
p
5
¼ C x1sin

p
5
þx2sin

2p
5

þx3sin
3p
5

þx4sin
4p
5

 !

¼ C 0:5878x1þ0:9510x2þ0:9510x3þ0:5878x4ð Þ

¼ 0:3718x1þ0:6015x2þ0:6015x3þ0:3718x4

ð3:19Þ

8>>>>>>><
>>>>>>>:
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the deepest bonding MO (no nodal planes);

f2 ¼C
X4
m¼1

xm sinm
2p
5

¼C x1 sin
2p
5

þx2 sin
4p
5

þx3 sin
6p
5

þx4 sin
8p
5

 !

¼C 0:9510x1þ0:5878x2�0:5878x3�0:9510x4ð Þ

¼ 0:6015x1þ0:3718x2�0:3718x3�0:6015x4 ð3:20Þ

8>>>>>>><
>>>>>>>:
the second bonding MO (HOMO, one nodal plane);

f3 ¼C
X4
m¼1

xm sinm
3p
5
¼C x1 sin

3p
5
þx2 sin

6p
5
þx3 sin

9p
5
þx4 sin

12p
5

 !

¼C 0:9510x1�0:5878x2�0:5878x3þ0:9510x4ð Þ

¼ 0:6015x1�0:3718x2�0:3718x3þ0:6015x4 ð3:21Þ

8>>>>>>><
>>>>>>>:
the first antibonding MO (LUMO, two nodal planes);

f4 ¼ C
X4
m¼1

xm sinm
4p
5
¼C x1 sin

4p
5
þx2 sin

8p
5
þx3 sin

12p
5

þx4sin
16p
5

0
@

1
A

¼ C 0:5878x1�0:9510x2þ0:9510x3�0:5878x4ð Þ

¼ 0:3718x1�0:6015x2þ0:6015x3�0:3718x4 ð3:22Þ

8>>>>>>><
>>>>>>>:

the last antibonding MO, highest in energy (three nodal planes). These
MOs coincide with those given in Equations (2.272) of Chapter 2, and
whose shapes are sketched in Figure 2.27.

3.2 THE CLOSED POLYENE CHAIN

Next, wewant to find the general solution for the system of homogeneous
linear equations for the closed polyene chain with N atoms yielding the
Nth degree secular equation
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DN ¼

�x 1 0 � � � 0 0 1

1 �x 1 � � � 0 0 0

� � � � � � � � � � � � � � � � � � � � �
0 0 0 � � � 1 �x 1

1 0 0 � � � 0 1 �x

�������������

�������������
¼ 0 ð3:23Þ

The homogeneous system corresponding to Equation (3.23) is:

�xc1 þ c2þ � � � þ cN ¼ 0

� � �
cm�1�xcm þ cmþ 1 ¼ 0

� � �
c1þ � � � þ cN�1 � xcN ¼ 0

8>>>>>>><
>>>>>>>:

ð3:24Þ

The general equation for the coefficients is the same as that for the linear
chain:

cm�1�xcm þ cmþ 1 ¼ 0 m ¼ 1;2; � � � ;N ð3:25Þ
but with the different boundary conditions:

c0 ¼ cN; c1 ¼ cNþ 1Y cm ¼ cmþN ð3:26Þ

the last being a periodic boundary condition.
The general solution is now the progressive wave in complex form:

cm ¼ A expðim uÞ ð3:27Þ

where i is the imaginary unit ði2 ¼ �1Þ, and the general Equation (3.25)
gives:

A exp iðm�1Þu½ ��x expðimuÞþ exp iðmþ 1Þu½ �f g ¼ 0

A expðim uÞ expð�iuÞ�xþ expðiuÞ½ � ¼ cmð2 cos u�xÞ ¼ 0

(
ð3:28Þ

namely, for cm =0:

x ¼ 2 cos u ð3:29Þ

as before.
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(i) The periodic boundary condition gives:

A expðim uÞ ¼ A exp½iðmþNÞu� ð3:30Þ

expðiNuÞ ¼ cosNuþ i sinNu ¼ 1

Nu ¼ k2p

(
ð3:31Þ

k ¼ 0;�1;�2; � � �

N

2
N ¼ even

�N�1

2
N ¼ odd

8>>>><
>>>>:

ð3:32Þ

where k is the quantum number for the ring. In this case, all energy
levels are doubly degenerate except those for k ¼ 0 and k ¼ N=2 for
N ¼ even.

Therefore, the general solution for the N-atom ring will be:

xk ¼ 2 cos uk ¼ 2 cos k
2p
N

cmk ¼ Ak exp im
2pk
N

 !
anticlockwise

cmk ¼ Ak exp �im
2pk
N

 !
clockwise

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3:33Þ

If Ak is a normalization factor, the form of the general MO in
complex form will be:

fk ¼ Ak

X
m

xmcmk ð3:34Þ

with:

cmk ¼ Ak exp im
2pk
N

� �
; c�mk ¼ Ak exp �im

2pk
N

� �
ð3:35Þ

The coefficients can be expressed in real form, using Euler’s for-
mulae1, through the transformation:

1 expð�iaxÞ ¼ cosax� i sinax.
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cmk�c�mk

2i
¼ Ak sinm

2pk
N

¼ amk

cmkþ c�mk

2
¼ Ak cosm

2pk
N

¼ bmk

8>>>><
>>>>:

ð3:36Þ

giving the real MOs in the form:

fs
k ¼

X
m

xmamk; fc
k ¼

X
m

xmbmk ð3:37Þ

The previous results for cyclobutadiene and benzene given in Section
2.8 of Chapter 2 can be rederived from the general formula
(Equation 3.37).
We give below the derivation of the detailed formulae for the closed

chain with N ¼ 6 (benzene).

3.2.1 Benzene N ¼ 6

N ¼ 6; uk ¼ k
2p
6

¼ k
p
3
; xk ¼ 2 cos k

p
3
; k ¼ 0;�1;�2; 3 ð3:38Þ

The roots in ascending order are:

(i) Bonding levels

x0 ¼ 2

x1 ¼ x�1 ¼ 2 cos
p
3
¼ 1

8><
>: ð3:39Þ

(ii) Antibonding levels

x2 ¼ x�2 ¼ 2 cos
2p
3

¼ �1

x3 ¼ 2 cos
3p
3

¼ �2

8>>>><
>>>>:

ð3:40Þ

which coincide with those of Equations (2.284) of Chapter 2.
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For the real coefficients, we have:

amk ¼ A sinm
kp
3
; bmk ¼ A cosm

kp
3

ð3:41Þ

with A a normalization factor.
For the MOs in real form, we then have:

f0 ¼ fc
0 ¼ A

X6
m¼1

xm cos u ¼ 1ffiffiffi
6

p ðx1þ x2 þx3 þx4 þ x5 þ x6Þ ð3:42Þ

the deepest bonding MO (no nodal planes);

fs
1 ¼ A

X6
m¼1

xm sinm
p
3
¼ 1

2
x1 þ x2�x4�x5ð Þ

fc
1 ¼ A

X6
m¼1

xm cosm
p
3
¼ 1ffiffiffiffiffiffi

12
p x1�x2�2x3�x4 þx5 þ 2x6ð Þ

8>>>>><
>>>>>:

ð3:43Þ

the second bonding doubly degenerateMOs (HOMOs, one nodal plane);

fs
2 ¼ A

X6
m¼1

xm sinm
2p
3

¼ 1

2
x1�x2 þx4�x5ð Þ

fc
2 ¼ A

X6
m¼1

xm cosm
2p
3

¼ 1ffiffiffiffiffiffi
12

p �x1�x2 þ 2x3�x4�x5 þ 2x6ð Þ

8>>>>><
>>>>>:

ð3:44Þ

the first antibonding doubly degenerate MOs (LUMOs, two nodal
planes);

f3 ¼ fc
3 ¼ A

X6
m¼1

xm cos
3p
3

¼ 1ffiffiffi
6

p ð�x1þx2�x3þx4�x5þx6Þ ð3:45Þ

the last antibondingMO, highest in energy (three nodal planes). TheMOs
obtained in this way differ by an orthogonal transformation from those
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given in Equations (2.285) of Chapter 2. This transformationwas derived
elsewhere (Magnasco, 2007), and was shown to be given by the orthog-
onal matrix:

U ¼

1 0 0 0 0 0

0
1

2

ffiffiffi
3

p

2
0 0 0

0

ffiffiffi
3

p

2
�1

2
0 0 0

0 0 0

ffiffiffi
3

p

2

1

2
0

0 0 0
1

2
�

ffiffiffi
3

p

2
0

0 0 0 0 0 �1

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

ð3:46Þ

the two sets of MOs being connected by the matrix transformation:

f ¼ f0U ð3:47Þ

where the row vector:

f0 ¼ ðfc
0 f

s
1 f

c
1 f

s
2 f

c
2 f

c
3Þ ð3:48Þ

is the actual set, and:

f ¼ ðf1 f2f3 f4 f5 f6Þ ð3:49Þ

is that resulting from Equations (285).
Since matrix (3.46) has a block-diagonal form, its larger blocks being

matrices of order 2, matrix multiplications in Equation (3.47) can be
easily done block-by-block involving matrices of order 2 at most.
So that, while it is immediately evident that:

f1 ¼ fc
0 ð3:50Þ

f6 ¼ fc
3 ð3:51Þ
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we have for the first degenerate block (E1 symmetry, bonding HOMOs):

ðf2f3Þ ¼ ðfs
1f

c
1Þ

1

2

ffiffiffi
3

p

2ffiffiffi
3

p

2
�1

2

0
BBBBB@

1
CCCCCA ð3:52Þ

giving the second real MO as:

1

2
fs
1 þ

ffiffiffi
3

p

2
fc
1 ¼

¼ 1

4

x1 1þ 1ð Þþx2 1�1ð Þþ x3 0�2ð Þþ
þ x4 �1�1ð Þþ x5 �1þ1ð Þþx6 0þ2ð Þ

" #

¼ 1

4
2x1�2x3�2x4 þ 2x6ð Þ

¼ 1

2
ðx1�x3�x4 þx6Þ ¼ f2 / x

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð3:53Þ

which coincides with the secondMO of Equations (2.285), transforming
likex. It is seen that this transformedMOcorresponds to an anticlockwise
rotation by 2p/6 around an axis perpendicular to the molecular plane of
benzene of the second MO of Equations (3.43).
For the third real MO calculation gives:

ffiffiffi
3

p

2
fs
1�

1

2
fc
1 ¼

¼
ffiffiffi
3

p

4

x1

�
1�1

3

�
þx2

�
1þ 1

3

�
þx3

�
0þ 2

3

�
þ

þ x4

�
�1þ 1

3

�
þ x5

�
�1� 1

3

�
þ x6

�
0�2

3

�
2
666664

3
777775

¼
ffiffiffi
3

p

4

�
2

3
x1 þ

4

3
x2 þ

2

3
x3�
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and we obtain the third MO of Equations (2.285), transforming like y.
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In a similar way, we obtain for the second degenerate block (symmetry
E2, antibonding LUMOs):
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the first antibonding LUMO transforming like (x2� y2) and, next:
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x1�x3 þ x4�x6ð Þ ¼ f5 / xy
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ð3:57Þ

the second antibonding LUMO, transforming like xy. In this way, we
reobtain all results of Equations (2.285) of Chapter 2.
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3.3 A MODEL FOR THE ONE-DIMENSIONAL
CRYSTAL

Increasing the number of interacting AOs increases the number of result-
ing MOs (Figure 3.1). For the CNHNþ 2 polyene chain the molecular
orbital levels, which always range between a þ 2b and a� 2b, become
closer and closer, eventually transforming in bands (a continuous suc-
cession of molecular levels) which are characteristic of solids.
The first (bonding) and the last (antibonding) energy levels of the linear

polyenechainarereportedwithrespect toN inTable3.1 inunitsofb. In the
last column of the table is the difference in energy between two successive
levels. The asymptotic approach of x1 towards 2 and of xN towards�2 is
apparent from the numbers given in the table, as well as is the decreasing
distance between two successive levels, which tends to zero for N!1.
These results can be easily established in general as follows. Using

formula (3.14) for the orbital energy of the kth MO of theN-atom linear
polyene chain:

«k ¼ aþ 2b cos
p

Nþ 1
k ð3:58Þ

we obtain the following results.

(i) First level (k ¼ 1):

«1 ¼ aþ 2b cos
p

Nþ 1
lim

N!1
«1 ¼ aþ 2b ð3:59Þ

Figure 3.1 Showing the origin of electronic bands in solids as the limit for N ! 1
of the linear N–atom polyene chain
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(ii) Last level (k ¼ N):

«N ¼ aþ 2b cos
pN

Nþ 1
¼ aþ 2b cos

p
1þ 1

N

lim
N!1

«N ¼ a�2b

ð3:60Þ
(iii) Difference between two successive levels:

D« ¼ «kþ1�«k

¼ 2b

�
cos

p
Nþ 1

ðkþ1Þ�cos
p

Nþ 1
k

�
¼ �4b sin

p
2

2kþ1

Nþ 1
sin

p
2

1

Nþ1

8><
>:

ð3:61Þ
where use was made of the trigonometric identity (see Section 3.6):

cos a�cos b ¼ �2 sin
aþb

2
sin

a�b

2
ð3:62Þ

Hence, forN!1; D«!0, and we have formation of a continuous
band of molecular levels. The limiting values aþ 2b and a�2b are
reached asymptotically whenN!1. This gives a generalization of
the results of Table 3.1 and of the plots of Figure 3.1.

(iv) For N!1, therefore, the polyene chain becomes the model for the
one-dimensional crystal. We have a bonding band with energy

Table 3.1 Orbital energies (units of b) of first and last level and energy difference
between two successive levels in a linear polyene chain as a function of the number of
carbon atoms N

N xN xNþ 1 xNþ 1� xN

1 0 0
2 1 �1 1
3 1.414 �1.414 0.414
4 1.618 �1.618 0.204
5 1.732 �1.732 0.114
6 1.802 �1.802 0.070
7 1.848 �1.848 0.046
8 1.879 �1.879 0.031
9 1.902 �1.902 0.023
10 1.919 �1.919 0.017
11 1.932 �1.932 0.011
12 1.942 �1.942 0.010
13 1.950 �1.950 0.008
14 1.956 �1.956 0.006
1 2 �2 0
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ranging from aþ 2b to a, and an antibonding band with energy
ranging from a to a�2b, which are separated by the so-called Fermi
level, the top of the bonding band occupied by electrons. It is
important to notice that using just one b, equal for single and double
bonds as we have done, there is no band gap between bonding and
antibonding levels (Figure 3.2). If we admit jbdj > jbsj, as reasonable
and done by Lennard-Jones in his original work (1937), we have a
band gap D ¼ 2ðbd�bsÞ, which is of great importance in the prop-
erties of solids. Figure 3.3 shows the origin of this band gap. In the
figure, «F is the Fermi level, that is the negative of minimum energy
required to ionize the system.Metals and covalent solids, conductors
and insulators, semiconductors, can all be traced back to themodel of
the infinite polyene chain extended to three dimensions (McWeeny,
1979).

3.4 ELECTRONIC BANDS IN CRYSTALS

FromEquation (3.61),we candefine adensity of energy levels ordensity of
states N(«) in the crystal as D«�1.N(«) is a function giving the number or

Figure 3.2 Electronic bands in linear polyene chain (single b)
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levels (or states) in an infinitesimal range of «, and is quantitatively defined
as:

Nð«Þ ¼ @k

@«
¼ @«

@k

� ��1

¼ � 1

2b

Nþ1

p
cosec

pk
Nþ 1

ð3:63Þ

In fact, from Equation (3.14):

« ¼ aþ 2b cos
pk

Nþ 1
ð3:64Þ

@«

@k
¼ �2b

p
Nþ 1

sin
pk

Nþ 1
ð3:65Þ

@«

@k

� ��1

¼ � 1

2b

Nþ 1

p
cosec

pk
Nþ 1

ð3:66Þ

or, by expressing k as f(«):

cos
pk

Nþ 1
¼ «�a

2b
ð3:67Þ

Figure 3.3 Electronic bands in linear polyene chain (double b)
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pk
Nþ 1

¼ cos�1 «�a

2b

� �
ð3:68Þ

where �1 denotes the inverse function.
Hence, remembering from elementary analysis that:

d cos�1u

d u
¼ �ð1�u2Þ�1=2 ð3:69Þ

we have:

k ¼ Nþ 1

p
cos�1 «�a

2b

� �
ð3:70Þ
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 !2
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¼ � 1
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pk
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8>>>>>>><
>>>>>>>:

ð3:71Þ

the same result as before.
To introduce further details of the theoryof solids in an elementaryway,

we can resort to the results given in Section 3.2 for the closed chainwithN
atoms.Wehave shown there that the general solution in complex form for
the N-atom closed chain with N ¼ odd is:

xk ¼ 2 cos
2pk
Nþ1

k ¼ 0;�1;�2; � � � ;� N�1

2

 !

cmk / exp 2pi
mk

N

 !
8>>>>><
>>>>>:

ð3:72Þ

where i is the imaginary unit. Apart from the ground state ðk ¼ 0Þ,
roots (3.72) occur in pairs, each level being hence doubly degenerate.
Let consider as an example the cases N ¼ 5 and N ¼ 15. We have the

numerical results of Table 3.2 which are plotted in Figure 3.4.
For solids, the quantum number k is replaced by the wave vector k:

ka ¼ 2pk
N

; k ¼ 0;� p
a

2

N
; � � � ;� p

a
1� 1

N

� �
ð3:73Þ

where a is the lattice spacing.
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For N!1, we have the plots sketched in Figure 3.5, that on the left
giving x(k) versus k, that on the right the energy levels «ðkÞ versus the
density of states N(«), and where the Fermi level «F is apparent.
In the crystal, the periodic potential of the nuclei will perturb the energy

levels, removing the double degeneracy of the two states corresponding to
�p=a, the splittingmanifesting itself as a band gap in the energy spectrum.
For the values of k for which l ¼ 2a this originates discontinuities in the
spectrum, giving gaps that divide the jkj space into zones called Brillouin
zones. The region from jkj ¼ 0 is the first break, called the first Brillouin
zone, from there up to the second break is the second Brillouin zone, and
so on. These zones have the dimensions of reciprocal length, and are
schematically plotted in Figure 3.6.

Table 3.2 Roots of the closed chains for N ¼ 5 and N ¼ 15

N ¼ 5 N ¼ 15

k xk ¼ 2 cos 2pk5 k xk ¼ 2 cos 2pk15

0 2 0 2
�1 0.618 �1 1.827
�2 �1.618 �2 1.338

�3 0.618
�4 �0.219
�5 �1
�6 �1.618
�7 �1.956

Figure 3.4 Plots of the roots for the closed chain withN ¼ 5 (left) and N ¼ 15
(right)
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Figure 3.7 gives a sketch of theN(«)–« curve for the d-band of the bcc2

Fe(3d64s2) crystal as calculated numerically via the APW3 method by
Wood (1962).

Figure 3.5 Energy levels versusk (left), andenergy levels versusdensityof states (right)

2 Body-centred cubic.
3 The APW (augmented planewave) methodwas devised by Slater (1937, 1965), and is based on

the solution of the Schr€odinger equation for a spherical periodic potential using an expansion of
the wavefunction in terms of solutions of the atomic problem near the nucleus, and an expansion
in plane waves outside a predetermined sphere in the crystal.

Figure 3.6 One-dimensional Brillouin zones
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3.5 INSULATORS, CONDUCTORS,
SEMICONDUCTORS AND SUPERCONDUCTORS

Insulators can be distinguished from conductors or semiconductors in
terms of their different conductivity at room temperature ðT ¼ 293 KÞ as
shown in Table 3.3.
To give a general description of covalent solids and metals, the band

theory arising from the infinite polyene chain must be extended to three
dimensions. The properties of solids depend largely on the way in which
electrons fill the different available bands.
Figure 3.8 shows the behaviour of the electronic bands in crystalline Be

as a function of the lattice spacing R. When the spacing in the (hcp)4

crystal lattice is very large, the energy bands will be very narrow and
centred on the atomic levels of energy «2s and «2p. When spacing is
reduced, electronic bands enlarge until they begin to overlap. At the
equilibrium distance in the crystal lattice Req, the electronic bands

Figure 3.7 Sketch of the N(«)–« curve for the bcc Fe(3d64s2) crystal

Table 3.3 Electrical conductivity ðohm�1cm�1Þ of different materials

Conductivity 10�12 10�2 105 �105

Material Insulator Semiconductor Conductor Superconductor
Substance Si or C Si or Ge Metals YBa2Cu3O9

4 Hexagonal close-packed.
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originating from the 2s and 2p atomic levels will overlap, while the inner
1sbandwill still be very separated because of its large difference in energy.
Each Be ð1s22s2Þ atom will contribute four electrons to the solid. Two
electrons come from the inner shell and are sufficient to fill the 1s band
completely. The other two electrons come from the valence 2s orbital, and
suffice to fill the 2s band completely. At large lattice spacings, the ground
state of the solid will have a completely filled 1s band and a completely
filled 2s band, and therewill be a gap between the 2s filled band and the 2p
empty band. At variance with what occurs in metals, a large amount of
energy, theD2s�2p band gap,will be needed to transfer electrons fromfilled
to empty orbitals, so that solid Be with a large value of R will be an
insulator. However, at Req in solid Be, the two 2s and 2p bands partially
overlap and the crystal orbitalswill have both s andp character, so that the
overlapping bands can now contain eight electrons from each atom. The
two electrons that each Be atom can contribute at the valence level will
only partially fill the combined bands, so that there will be no energy gap
among occupied and empty levels, and solid Be at its equilibrium lattice
distance Req will be a typical metal.
The fact that a solid is a metal or a nonmetal will therefore depend on

three factors: (i) the separation of the orbital energies in the free atom;
(ii) the lattice spacing; and (iii) the number of electrons provided by each
atom. For a realistic description of the three-dimensional crystal, wemust
therefore extend our simpleH€uckel theory5 in two respects. First, wemust
considermore than a single type of AOs (e.g. 2s, 2p, 3d, � � � ), and, second,
we must consider more than an electron per atom. By increasing the

Figure 3.8 Overlap of electronic bands in solid Be

5 In solid state theory called the tight-binding approximation (TBA) (see Table 3.4).
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external pressure on a solid, namely by compressing it, will reduce the
lattice spacing, widening the bands, so that under sufficient pressure, all
solids will display metallic character (as first claimed by J.D. Bernal,
quoted in Wigner and Huntington, 1935; see also Yakovlev, 1976).
A covalent solid (insulator, such as diamond, pure state carbon) has

electronic bands which are either completely filled or completely empty,
with a large band gap D between the highest level occupied by electrons
and the lowest empty one (Figure 3.9). We have no band overlap at Req,
the valence band being completely filled by electrons that cannot be
excited to the conduction band.
Metals (conductors), instead, have bands that are only partially occu-

pied by electrons (Figure 3.10), this being the reason that gives them their
typical properties of high electrical and thermal conductivity, andmetallic
brightness. The energy needed to excite electrons from occupied to empty

Figure 3.9 Band structure of covalent solids (insulators)

Figure 3.10 Band structure of metals (conductors)
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bands is extremely small, their energy being readily distributed over the
entiremetal because of fullyMOdelocalization. Furthermore, ametal can
absorb light of any wavelength. The highest valence band is only partially
filled, and electrons may flow easily under the action of an external field,
except for the collisions with the positive ions of the lattice. Increasing
temperature increases lattice vibrations and electron collisions, so that
electrical conductivity decreases.
Semiconductors have a small band gap, 60–100kJmol�1, namely

0.6–1 eV for Ge or Si (Figure 3.11). The electrons of the last valence
band are easily excited to the conduction band (empty) under the effect of
temperature ðkT � «C�«FÞ or light ðhn � «C�«FÞ, the latter effect being
knownas photoconductivity. The electronic population in the conduction
band will increase with temperature according to the statistical equilib-
rium described by the Fermi–Dirac statistics, so that conductivity will
increase with temperature (the opposite of what was found for metals).
Besides conduction due to the electrons thermally excited to the

conduction band (n-type, negative charge), there may be conduction due
to vacancies occurring in the valence band (p-type, where p stands for a
positive hole). Germanium and silicon are typical intrinsic semiconduc-
tors (left-hand side of Figure 3.11), whose properties are due to the pure
elements. But also of great importance are the so-called impurity semi-
conductors, where small amounts of impurity in a perfect crystal lattice
can modify the structure of the Brillouin zones, giving products whose
properties may be of commercial interest. The ’doping’ of silicon or
germanium can be done using elements with one more electron in their
valence shell, such as phosphorus or arsenic, or elements with one less

Figure 3.11 Band structure of intrinsic and doped semiconductors
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electron in their valence shell, such as gallium or indium6. Conduction
now arises from excitation of the electrons out of (n-type) or into (p-type)
the impurity levels (right-hand side of Figure 3.11). Formore information
the reader is referred to elsewhere (see, for instance,Murrell et al., 1985).
As we have seen, at low temperatures, resistance to the current flow

decreases for all crystal conductors (metals) and, therefore, electric
conductivity increases. At a given critical temperature Tc, resistance
disappears completely and the metal becomes a superconductor, with an
infinitely large conductivity (Figure 3.12). Formetals, this occurs at rather
low temperatures (<30K), but Bednorz andM€uller (1986)7 prepared new
substances exhibiting high-temperature superconductivity (above 77K,
the boiling temperature of liquid N2). These are alloys containing Cu, O,
La (where La may be replaced by Ba, Sr and Y) with a perovskite
(La2CuO4) lattice structure.
They are structurally homogeneous, perfectly diamagnetic, with a very

small band gap, D less than 0.1 eV. These materials were prepared by
doping perovskites in two ways, either by introducing oxygen-deficient
compounds (such as La2CuO4�x) or by replacing La by other atoms X
(such as Ba, Sr, Y). On the theoretical side, Mattheiss (1987) did ab initio
calculations of the electronic band structure of tetragonal La2CuO4 andof
superconductors derivatives of it, such as La2�yXyCuO4, that throw some
light on the factors determining superconductivity at high temperature.
The electronic bands at the Fermi surface show a substantially p-char-
acter. These p AOs give strong s bonds with the 3d orbitals of Cu of

Figure 3.12 Plot of resistance versus temperature for common metals

6 Ground state valence electron configurations of the elements are: Si(3s23p2) and Ge(4s24p2), P
(3s23p3) and As(4s24p3), Ga(4s24p) and In(5s25p).
7 1987 Nobel Prize for Physics.
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appropriate symmetry8. The breathing lattice vibrations of the four
coplanar O atoms are strongly coupled with the electron conduction
band at «F, giving a high value for the coupling electron–phonon constant
l that occurs in the Bardeen–Cooper–Schrieffer (BCS) theory of super-
conductivity (Tinkham, 1975), with a band gap at «F ð0:2�0:5 eVÞ
determining a large value of the deformation potential ð1:6�3:9 eV=A

� Þ.
Because of the small mass of the oxygen atoms and the high-frequencyv of
lattice vibrations, the pre-exponential factor in the BCS equation for Tc is
magnified, thus generating the high Tc values observed for these com-
pounds. The effect is magnified for X ¼ Sr;Ba.
To end this section, it may be useful to the reader to give a table

collecting some analogies between molecular and solid state theory
(Table 3.4). The table is taken from Albright et al. (1985), and is useful
in connecting quantum theorist terminology to that of solid state
physicists.

3.6 APPENDIX: THE TRIGONOMETRIC IDENTITY

The trigonometric identity (Equation 3.62) can be easily derived as
follows. We start from the well-known trigonometric formulae:

cosðx�yÞ ¼ cos x cos yþ sin x sin y ð3:74Þ

cosðxþ yÞ ¼ cos x cos y�sin x sin y ð3:75Þ

Table 3.4 Connection between molecular and solid state terminologies

Molecular theory Solid state theory

MO (molecular orbital) Bloch orbital (crystal orbital)
Energy levels Energy band
HOMO Valence band
LUMO Conduction band
HOMO/LUMO energy difference Band gap
H€uckel theory Tight-binding approximation (TBA)
MO models with electron repulsion H€uckel–Hubbard Hamiltonian
Resonance integral b Hopping integral t
Jahn–Teller distortion Peierls distortion
High spin Magnetic material
Low spin Nonmagnetic material

8 TheOhoctahedral symmetryofCu is distorted to aD4h tetragonal symmetry,with four stronger

planar dp–s bonds and two weaker apical dp–s bonds.
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sinx siny ¼ 1

2
cosðx�yÞ�cosðxþ yÞ½ � ð3:76Þ

Subtracting Equation (3.75) from (3.74), immediately gives (3.76). If
we put:

x�y ¼ a

xþ y ¼ b

(
ð3:77Þ

then:

x ¼ aþb

2

y ¼ �a�b

2

8>>>><
>>>>:

ð3:78Þ

and, substituting in Equation (3.76):

sin
aþb

2
sin �a�b

2

� �
¼ 1

2
ðcos a�cos bÞ ð3:79Þ

so that we obtain Equation (3.62):

cos a�cos b ¼ �2 sin
aþb

2
sin

a�b

2
ð3:80Þ

since sin x is an odd function of x, namely:

sinð�xÞ ¼ �sinx ð3:81Þ
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The van der Waals Bond

4.1 Introduction
4.2 Elements of Rayleigh–Schr€odinger (RS) Perturbation Theory
4.3 Molecular Interactions

4.3.1 Non-expanded Energy Corrections up to Second Order
4.3.2 Expanded Energy Corrections up to Second Order

4.4 The Two-state Model of Long-range Interactions
4.5 The van der Waals Interactions

4.5.1 Atom–Atom Dispersion
4.5.2 Atom–Linear Molecule Dispersion
4.5.3 Atom–Linear Dipolar Molecule10 Induction

4.6 The C6 Dispersion Coefficient for the H–H Interaction
4.7 The van der Waals Bond
4.8 The Keesom Interaction

4.1 INTRODUCTION

In the previous chapters we sketched an elementarymodel of the chemical
bond occurring between atoms in terms of a simple H€uckel theory mostly
involving solution of 2� 2 secular equations. The theory, first concerned
with s-bonding in Hþ

2 ; H2; Heþ
2 ; He2, was next extended to s- and

p-bonding infirst-rowhomonuclear diatomics and to the studyofmultiple
bonds, the fundamental quantity being a bond integral b, whose form is
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unspecified, but was assumed to depend on positive overlap between
AOs of like symmetry on the interacting atoms. Thereafter, the method
was extended to consideration of the heteropolar chemical bond with
introduction of a further parameter, the atomic energy difference aB�aA

between A and B, to the study of bond stereochemistry in first-row
hydrides (HF, H2O, NH3, and CH4), and to the investigation of delo-
calization effects in the p electrons of a few conjugated and aromatic
hydrocarbons. After giving the general solution for linear and closed
N-atom polyene chains, in Chapter 3 the theory was extended to an
elementary theory of the electronic bands in solids.
It was shown there that a chemical bond can be established at short

range between overlapping atoms through the linear superposition of
their valence atomic orbitals of like symmetry, provided the number of
electrons in the resulting bonding MOs is greater than the number
of electrons in antibonding MOs. When this is not the case, as for the
dimers X2 of rare gases, where the number of electrons in antibonding
(more repulsive) MOs equals the number of electrons in bonding (less
attractive) MOs, we have what is called a Pauli repulsion between
closed shells and the formation of any chemical bond is no longer
possible. This also happens for the interaction of closed-shell molecules
ðe:g:H2; N2; HF; H2OÞ or for atoms in some excited states (e.g. twoHor
Li atoms interacting with like spin).
On the other hand, Pauli repulsion decreases exponentially

(/ expð�aRÞwith a > 0) with the distanceR between the centres of mass
of the interacting molecules and, at large distances, is sufficiently small to
be overbalanced by the effect of other attractive interactions which
decrease more slowly as R�n (n� 6 for neutral systems)1, and which we
call van der Waals (VdW) interactions (Magnasco and McWeeny, 1991;
Magnasco, 2007, 2009a). At variance with what observed before in the
case of the chemical bond, VdW interactions occur at long range and can
be described in terms of small interaction integrals bs involving orthog-
onal states2 having different symmetries and largely different energies. At
least in some simple cases, the form of these bs can be derived in terms of
classical electrostatic concepts.
In Section 4.2, we introduce, first, a few elements of Rayleigh–

Schr€odinger perturbation theory for stationary states (Magnasco, 2007,
2009a), the fundamental theory needed for studying in a quantitative
way the weak interactions occurring at long range between atoms and

1 n � 3 for the dipolar molecules generating the hydrogen bond described in Chapter 5.
2 Usually, the ground state and some excited states of higher energy.
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molecules, just to define unequivocally the physical meaning of the
different components of the interactions. An outline of these interactions
for molecules is presented in Section 4.3.
In Section 4.4, we introduce a simple two-state model of these weak

interactions (Magnasco, 2004b), which expresses the energy lowering in
terms of a long-range interaction parameter b, with an application to the
case of the dipole polarizability of theHatom.The explicit formof thesebs
for atom–atom dispersion, atom–linear molecule dispersion, and atom–
linear molecule induction, is presented in Section 4.5, avoiding any calcu-
lation of matrix elements (Magnasco et al., 1990b) and giving a rather
detailed, yet simple, explanation of the nature of the VdW bond occurring
between closed-shell atoms and molecules. In this way, we derive the C6

coefficients and their dependence on the relative molecular orientation for
these systems. A detailed calculation of theC6 dispersion coefficient for the
H–H interaction is presented in Section 4.6, while Section 4.7 introduces
the reader to an understanding of the nature of the van der Waals bond.
A comparison between C6 dispersion and induction coefficients, and a
tabulation ofVdWbond strengths and shapes in homodimers of atoms and
molecules using data from the literature is included to emphasize the
difference occurring between chemical and VdW bonds.
The chapter ends with a short outline of the theory of the temperature-

dependent Keesom interactions in polar gases.

4.2 ELEMENTS OF RAYLEIGH–SCHRÖDINGER (RS)
PERTURBATION THEORY

Since this importantmethodof approximation is fully described elsewhere
(Magnasco, 2007, 2009a), we limit ourselves here to themain elements of
the RS theory for stationary states.
We want to solve the Schroedinger eigenvalue equation:

ðĤ�EÞc ¼ 0 ð4:1Þ
for a Hermitian decomposition of the Hamiltonian Ĥ into:

Ĥ ¼ Ĥ0 þ lĤ1 ð4:2Þ
where: (i) l is a parameter giving the orders in perturbation theory3 ;
(ii) Ĥ0 the unperturbed Hamiltonian, namely the Hamiltonian of a

3 Orders are here indicated by the suffixes or their sum.
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previously solved problem (either physical or model); and (iii) Ĥ1 the
small first-order difference between Ĥ and Ĥ0, called the perturbation.
We now expand both eigenvalue E and eigenfunction c into powers

of l:

E ¼ E0 þ lE1þ l2E2 þ l3E3 þ � � � ð4:3Þ

c ¼ c0 þ lc1 þ � � � ð4:4Þ

where the coefficients of the different powers of l are, respectively, the
corrections of the various orders to energy and wavefunction (e.g., E2 is
the second-order energy correction, c1 the first-order correction to the
wavefunction, and so on). It is often useful to define corrections up to a
given order, which we write, for example:

Eð3Þ ¼ E0þE1 þE2 þE3 ð4:5Þ
meaning that we add corrections up to the third order.
By substituting the expansions into the Schr€odinger equation (4.1):

½ðĤ0�E0Þþ lðĤ1�E1Þ�l2E2�l3E3� � � � � ðc0 þ lc1 þ l2c2 þ � � � Þ ¼ 0

ð4:6Þ
separating the orders, we obtain a set of ordered equations:

l0 ðĤ0�E0Þc0 ¼ 0

l ðĤ0�E0Þc1 þðĤ1�E1Þc0 ¼ 0

l2 ðĤ0�E0Þc2þðĤ1�E1Þc1�E2c0 ¼ 0

� � �

8>>>>><
>>>>>:

ð4:7Þ

which are knownasRayleigh–Schr€odinger (RS) perturbation equations of
the various orders specified by the power of l.
Because of theHermitian property of Ĥ0, bracketingEquations (4.7) on

the left by hc0j, all the first terms in the RS equations are zero, and we are
left with:

l0 hc0jĤ0�E0jc0i ¼ 0

l hc0jĤ1�E1jc0i ¼ 0

l2 hc0jĤ1�E1jc1i�E2hc0jc0i ¼ 0

� � �

8>>>><
>>>>:

ð4:8Þ
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Taking c0 normalized to 1, we then obtain fromEquations (4.8) the RS
energy corrections of the various orders as:

l0 E0 ¼ hc0jĤ0jc0i
l E1 ¼ hc0jĤ1jc0i
l2 E2 ¼ hc0jĤ1�E1jc1i ¼ �hc1jĤ0�E0jc1i
l3 E3 ¼ hc0jĤ1�E1jc2i�E2hc0jc1i ¼ hc1jĤ1�E1jc1i

� � �

8>>>>>>><
>>>>>>>:

ð4:9Þ

E0 andE1 are nothing but the average value of Ĥ0 and Ĥ1, respectively,
over the unperturbed functionc0,whileE2 is given as a nondiagonal term,
often referred to as transition integral, connecting c0 to c1 through the
operator Ĥ1, the last expression in Equations (4.9), showing that E2 is
always greater than zero for the ground state. The equations above show
that knowledge of c1 (the solution of the first-order RS differential
equation) determines the energy corrections up to third order4. In solving
the first-orderRS differential equation,we impose onc1 theorthogonality
condition:

hc0jc1i ¼ 0 ð4:10Þ
which follows in first order from the normalization condition on the
total wavefunction and the fact that we assume a normalized c0. The
detailed explanation of the symmetric forms resulting for E2 an E3 in
Equations (4.9) is given elsewhere (Magnasco, 2007, 2009a).
Variational approximations to the second-order energy E2 are obtained

using theHylleraas variationalmethodoutlined inSection1.3ofChapter1.
It is important to stress that the leading term of the RS perturbation

Equations (4.7), the zeroth- order equation ðĤ0�E0Þc0 ¼ 0, must be
satisfied exactly, otherwise uncontrollable errors will affect the whole
chain of equations. Furthermore, it must be observed that only energy in
first order gives an upper bound to the true energy of the ground state, so
that the energy in second order, E(2), may be below the true value.

4.3 MOLECULAR INTERACTIONS

We now apply our RS perturbation equations to the interaction between
two molecules A and B whose non-expanded intermolecular potential V

4 Likely, cn determines the energy corrections up to order 2n þ 1. We recall that all cnðn=0Þ
corrections are not normalized but are normalizable.
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arises from the Coulombic interactions between all pairs i, j of charged
particles (electrons þ nuclei) in the molecules (Figure 4.1):

V ¼
X
i

X
j

qiqj
rij

ð4:11Þ

where qi and qj are the charges of particles i (belonging to A) and j
(belonging to B) interacting at the distance rij. In a previous book
(Magnasco, 2009a) a readable introduction was given to the interatomic
interactions occurring at long range between two ground state H atoms.

4.3.1 Non-expanded Energy Corrections up to Second Order

IfA0,B0 are the unperturbedwavefunctions ofmoleculesA (NA electrons)
and B (NB electrons), and Ai, Bj a pair of excited pseudostates describing
single excitations onAandB, all fully antisymmetrizedwithin the space of
A and B, we have to second order of RS perturbation theory:

Ecb
1 ¼ hA0B0jVjA0B0i ¼ E1ðesÞ ð4:12Þ

the semiclassical electrostatic energy arising in first order from the inter-
actions between undistorted A and B;

~E
ind;A

2 ¼ �
X
i

jhAiB0jVjA0B0ij2
«i

¼ �
X
i

jðA0AijUBÞj2
«i

ð4:13Þ

the polarization (distortion) of A by the static field of B, described byUB:

UB ¼ hB0jVjB0i ð4:14Þ
the molecular electrostatic potential (MEP) of B;

~E
ind;B

2 ¼ �
X
j

jhA0BjjVjA0B0ij2
«j

¼ �
X
j

jðB0BjjUAÞj2
«j

ð4:15Þ

Figure 4.1 Interparticle distances in the intermolecular potential. Reprinted from
Magnasco, V., Methods of Molecular Quantum Mechanics: An Introduction to Elec-
tronicMolecular Structure.Copyright (2009)withpermission fromJohnWileyandSons
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the polarization (distortion) of B by the static field of A, described by the
MEP UA;

~E
disp

2 ¼�
X
i

X
j

AiBj Vj jA0B0

� ��� ��2
«iþ«j

¼�
X
i

X
j

AiBj

P
i-<j- ri0j0

�1
��� ���A0B0

D E��� ���2
«iþ«j

ð4:16Þ
the dispersion interaction, a purely electronic term arising from the
density fluctuations of the electrons on A and B which are coupled
together through the intermolecular electron repulsion operator r�1

12

(1 on A, 2 on B).
eneralization of the H–H results to molecules is possible in terms of the

charge-density operator (Longuet-Higgins, 1956) and of static and tran-
sition electron densities, PAð00jr1; r1Þ and PBð00jr2; r2Þ, PAð0ijr1; r1Þ and
PBð0jjr2; r2Þ, respectively onA andB. The non-expanded dispersion energy
between molecules A and B then takes the simple integral form:

~E
disp

2 ¼ �
X
i

X
j

Ð Ð
dr1dr2

PAð0ijr1;r1ÞPBð0jjr2;r2Þ
r12

��� ���2
«i þ «j

ð4:17Þ

4.3.2 Expanded Energy Corrections up to Second Order

In molecules, the interaction depends on the distance R between their
centres of mass (c.o.m.) as well as on the relative orientation of the
interacting partners, which can be specified in terms of the five indepen-
dent angles5 (uA, uB, w, xA, xB) shown in Figure 4.2. The first three angles
describe the orientation of the principal symmetry axes of the two
molecules, the latter two the rotation about these axes.
Expansion at long range gives rise to the typical R�n dependence of the

intermolecular interactions. The first components of the long-range
intermolecular interaction were studied by the author and coworkers in
twopapers (Magnasco et al., 1988, 1990b),where the first fewcoefficients
of the R�n expansion were determined explicitly for atom–atom, atom–
linear molecule, and linear molecule–linear molecule systems.
In the first order of perturbation theory, the expanded electrostatic

energy gives rise to what is known as the interaction between permanent

5 These angles are simply related to the Euler angles describing the rotation of a rigid body (Brink

and Satchler, 1993).
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multipoles6. Since atoms have no permanent electric moments, their elec-
trostatic interactionat longrange is zero.Thevaluesof thefirst three electric
moments at their equilibrium distances for a few molecules are given in
Table 5.2 of the next chapter, while Section 5.2.1 gives the explicit expres-
sions of the angular dependence of the first three terms of the expanded
electrostatic interaction beteween two hydrogen fluoride molecules.
The two papers cited above also give explicit expressions for the

polarization (induction) energies between polar molecules. They are
expressed in terms of permanent moments and static polarizabilities of
the interacting molecules. Both are observable quantities that can be
measured by experiment.
In what follows, we shall limit ourselves mostly to consideration of the

long-range dispersion interaction between: (i) two atoms; (ii) two linear
molecules A and B; and (iii) an atomA, at the origin of the intermolecular
coordinate system, and a linear molecule B, whose orientation with
respect to the z axis is specified by the single angle u (Figure 5.3 in the
next chapter).
The expanded dispersion energy involves the interaction between

induced moments on two atoms, the leading term describing the inter-
action between induced dipoles on A and B being:

Edisp
2 ð6Þ ¼ �C6

R6
¼ � 6

R6
� 1

4

X
i

X
j

aA
i a

B
j

«Ai «
B
j

«Ai þ «Bj
¼ � 6

R6
C11 ð4:18Þ

Figure 4.2 The five angles specifying in general the relative orientation of two
polyatomic molecules. Reprinted from Magnasco, V., Methods of Molecular Quan-
tumMechanics: An Introduction to ElectronicMolecular Structure. Copyright (2009)
with permission from John Wiley and Sons

6 An electric multipole is specified by its value of l as 2l�pole ðl ¼ 1 dipole, l ¼ 2 quadrupole,
l ¼ 3 octupole; etc:Þ. Hence, the electrostatic interaction is between 2l�2l

0
poles, the leading

term for two dipolar molecules ðl ¼ l0 ¼ 1Þ being the dipole–dipole interaction.
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where C6 is the London dispersion coefficient, and:

C11 ¼ 1

4

X
i

X
j

aA
i a

B
j

«Ai «
B
j

«Ai þ «Bj
ð4:19Þ

is the dipole–dipole dispersion constant in London form. It involves
knowledge of the pseudostate components7 of the static dipole polariz-
abilities of A and B:

aA ¼
X
i

ai
A ð4:20Þ

aB ¼
X
j

aj
B ð4:21Þ

where:

aA
i ¼ 2m2

i

«i
ð4:22Þ

is the ith pseudostate contribution to the static dipole polarizability of
atom A, and:

aB
j ¼ 2m2

j

«j
ð4:23Þ

is the jth pseudostate contribution to the static dipole polarizability of
atomB.mi andmj are the transitiondipolemoments onAandB, «i > 0 and
«j > 0 are the excitation energies from the ground states to the excited
pseudostates i and j. We notice that the pseudostate components of
the polarizabilities are not observable quantities, so that they cannot
be measured.
An alternative, yet equivalent, expression for the dipole dispersion

constant is the Casimir–Polder formula (Casimir and Polder, 1948):

C11 ¼ 1

2p

ð¥
0

du aAðiuÞ aBðiuÞ ð4:24Þ

which involves integration over the frequency u of the frequency-
dependent polarizabilities (FDPs) at imaginary frequencies of the two
atoms8.

7 See Section 1.3 of Chapter 1
8 u is the real frequency and i the imaginary unit ði2 ¼ �1Þ.
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While the polarizability of the atom is isotropic, the linearmolecule has
two dipole polarizabilities, ajj, the parallel or longitudinal component
directed along the intermolecular axis, and a?, the perpendicular or
transverse component perpendicular to the intermolecular axis (McLean
and Yoshimine, 1967). The molecular isotropic polarizability can be
compared to that of atoms, and is defined as:

a ¼ ajj þ2a?
3

ð4:25Þ

while:

Da ¼ ajj�a? ð4:26Þ
is the polarizability anisotropy, which is zero for a? ¼ ajj.
The composite system of two different linear molecules has hence four

independent elementary dipole dispersion constants, which in London
form can be written as:

A ¼ 1

4

X
i

X
j

aijjajjj
eijjejjj

eijj þ ejjj
; B ¼ 1

4

X
i

X
j

aijjaj?
eijjej?

eijj þ ej?
;

C ¼ 1

4

X
i

X
j

ai?ajjj
ei?ejjj

ei? þ ejjj
; D ¼ 1

4

X
i

X
j

ai?aj?
ei?ej?

ei? þ ej?

8>>>><
>>>>:

ð4:27Þ

For two identical linear molecules, there are three independent disper-
sion constants since C ¼ B.
It has been shown elsewhere (Wormer, 1975;Magnasco andOttonelli,

1999) that the leading (dipole–dipole) term of the long-range dispersion
interaction between two linear molecules has the form:

~E
disp

2 ¼ �R�6C6ðuA; uB;wÞ ð4:28Þ
C6ðuA; uB;wÞ being an angle-dependent dipole dispersion coefficient,
which can be expressed (Meyer, 1976) in terms of associated Legendre
polynomials on A and B as:

C6ðuA; uB;wÞ ¼ C6

X
LALBM

gLALBM
6 PM

LA
ðcos uAÞPM

LB
ðcos uBÞ ð4:29Þ

where LA; LB ¼ 0;2 andM ¼ jMj ¼ 0; 1; 2. In Equation (4.29), C6 is the
isotropic coefficient and g6 is an anisotropy coefficient defined as:

gLALBM
6 ¼ CLALBM

6

C6
ð4:30Þ
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The different components of the C6 dispersion coefficients in the
LALBM scheme for: (i) two different linear molecules, and (ii) an atom
and a linear molecule, are given in Table 11.2 ofMagnasco and Ottonelli
(1999) in terms of the symmetry-adapted combinations of the elementary
dispersion constants (Equations (4.27). For identical molecules, C ¼ B
in (4.27), and the (020) and (200) coefficients are equal.
Therefore, the determination of the elementary dispersion constants (the

quantummechanical relevant part of the calculation) allows for a detailed
analysis of the angle-dependent dispersion coefficients between molecules.

4.4 THE TWO-STATE MODEL OF LONG-RANGE
INTERACTIONS

We turn now to the more recently proposed two-state model of long-range
interactions (Magnasco, 2004b). It is of interest in so far as it avoids com-
pletely explicit calculation of the matrix elements (Equations 4.12–4.17)
occurring in RS perturbation theory, being based only on the fundamental
principles of variation theorem and on a classical electrostatic approach.
For the sake of simplicity, we mix in just two normalized states, an

initial state c0 and a final (orthogonal) state c1, the coefficients in the
resulting quantum state c:

c ¼ c0C0 þc1C1 ð4:31Þ
being determinedby theRitzmethodofChapter 1, giving the 2�2 secular
equation:

H00�E H01

H01 H11�E

�����
����� ¼ 0 ð4:32Þ

which has the real roots:

E� ¼ H00 þH11

2
� D

2

D ¼ ðH11�H00Þ2 þ 4ðH01Þ2
h i1=2

8>>><
>>>:

ð4:33Þ

Since now 0 < H01j j � H11�H00, the Taylor expansion of D we did in
Chapter 2 gives for the lowest root the approximate form:

E � H00� jH01j2
H11�H00

ð4:34Þ
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DE ¼ E�H00 � � jH01j2
H11�H00

¼ � b2

D«
ð4:35Þ

where the energy lowering DE is properly described as a small effect,
second order in H01j j ¼ jbj, which involves a transition fromc0 toc1 with
a (positive) excitation energy H11�H00 ¼ D«.
As an example, explicit expressions of b can be given in the case of the

dipole polarizability of theH atom and for a few simple VdW interactions
which depend on the electrical properties of the molecules such as electric
dipole moments and polarizabilities (Stone, 1996). As we have already
said, these dipole moments, and the higher ones known generally as
multipole moments, can be permanent (when they persist in absence of
any external field) or induced (when due, temporarily, to the action of an
external field and disappear when the field is removed).
An atom or molecule distorts under the action of an external field, the

measure of distortion being expressed through a second-order electrical
quantity called the (dipole) polarizability a, which we define in terms of a
transition moment mi from state c0 to c1 and an excitation energy «i as:

a ¼ 2m2
i

«i
ð4:36Þ

The interaction of the induced dipole mi with the external field F is:

b ¼ �miF ð4:37Þ
with a second-order energy lowering that, for a small field, is given by:

DE ¼ � b2

DE
¼ �m2

i F
2

«i
¼ � 1

2

2m2
i

«i

� �
F2 ¼ � 1

2
aF2 ð4:38Þ

wherea is the dipole polarizability of the atom. From this relation follows
that we can define a as the negative of the second derivative of the energy
with respect to the field F evaluated at F ¼ 0:

a ¼ � d2DE
dF2

 !
F¼0

ð4:39Þ

We have seen that polarizabilities are isotropic for atoms, but are
anisotropic for molecules, showing different response for different direc-
tions of the field. For linear molecules we have parallel or longitudinal,
ajj, and transverse or perpendicular, a?, components in terms of which
the isotropic polarizability a and the anisotropy factor Da are defined
(Equations 4.25 and 4.26 of Section 4.3.2). For nonlinear molecules a is
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given by a polarizability tensor whose nonvanishing components depend
onmolecular symmetry (Buckingham, 1967). The isotropic polarizability
of molecules can be directly compared with the polarizability of atoms.
The key role of atomic polarizabilities in assessing intermolecular poten-
tials in a variety of systems has been widely documented (Cambi et al.,
1991; Aquilanti et al., 1996).
We now turn to consideration of VdW interactions.

4.5 THE van der WAALS INTERACTIONS

Aswe have seen, the second-order VdW interactions are: (i) the distortion
(induction or polarization) interaction, where an atom or molecule is
distorted by the permanent electric field provided by a second molecule;
and (ii) the dispersion interaction, whose leading term arises from the
simultaneous coupling of the mutually induced dipoles on the two
molecules (Buckingham, 1967; Stone, 1996; Magnasco, 2007, 2009a).
The dispersion energy, whose name is derived from the fact that the
physical quantities involved are the same as those determining the
dispersion of the refractive index inmedia, is recognized as an interatomic
or intermolecular electron correlation (Magnasco andMcWeeny, 1991),
and is called London attraction from the name of the scientist who first
explained why two ground state H atoms attract each other in long range
(London, 1930a, 1930b).
At the large distances at which they usually occur, VdW forces result

mostly from weak attractive interactions described by second-order
processes whose energy lowering is:

DE ¼ � b2

D«
< 0 ð4:40Þ

as we have shown before. Here, D« ¼ «i or «j for induction (single exci-
tation onA or B), D« ¼ «i þ «j for dispersion (double simultaneous excita-
tions on A and B), and, for the leading terms, b2 ¼ mi

2ðFBÞ2, where mi is
the dipole on A induced by the field of B.
Let us consider in greater detail the long-range interaction of an atom A

(at the origin of the coordinate system)with an atom (or linearmolecule) B,
whose centre of mass has coordinates R, u, w. The problem has been fully
treated by Buckingham (1967) using Rayleigh–Schr€odinger perturbation
theory in terms of cartesian tensors, and byMagnasco et al. (1988, 1990b)
in termsof spherical tensors. For the sakeof simplicity,we shall give here an
elementary derivation in terms of classical electrostatics by considering the
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fieldatAdue to apoint-like dipole (permanent or induced) at B.The electric
potential at A due to the dipole mi at B (Coulson, 1958):

VB ¼ mj �R
R3

¼ 1

R2
sin uðmjx cos wþmjy sin wÞþmjz cos u
h i

ð4:41Þ

originates the electric field (a vector):

FB ¼ �rVB ð4:42Þ
having spherical components:

ðFBÞR ¼ � qVB

qR
¼ 2

R3
sin uðmjx cos wþmjy sin wÞþmjz cos u
h i

ð4:43Þ

ðFBÞu ¼ � qVB

R qu
¼ � 1

R3
cos uðmjx cos wþmjy sin wÞ�mjz sin u
h i

ð4:44Þ

ðFBÞw ¼ � qVB

R sin u qw
¼ � 1

R3
ð�mjx sin wþmjy cos wÞ ð4:45Þ

The square of the electric field of B at A will be:

ðFBÞ2 ¼ FB � FB ¼ ðFBÞ2RþðFBÞ2u þðFBÞ2w

¼ 1

R6

ð3 cos2uþ 1Þm2
jz þð4�3 cos2uÞðm2

jx cos
2wþm2

jy sin
2wÞ

þ ðm2
jx sin

2wþm2
jy cos

2wÞ

2
4

3
5

8>>><
>>>:

ð4:46Þ
where only diagonal terms have been retained, since off-diagonal terms do
not contribute to the integral b.
Different local symmetries on B generate different fields.

(i) Isotropic dipole: mjz ¼ mjx ¼ mjy ¼ mj

ðFBÞ2 ¼ 6m2
j

R6
ð4:47Þ

(ii) Cylindrical dipole: mjz ¼ mj ; mjx ¼ mjy ¼ mj?

ðFBÞ2 ¼ 1

R6
ð3 cos2uþ1Þm2

jjj þ ð5�3 cos2uÞm2
j ?

h i
ð4:48Þ

(iii) Unidimensional dipole: mjz ¼ mB; mjx ¼ mjy ¼ 0

ðFBÞ2 ¼ m2
B

R6
ð3 cos2uþ1Þ ð4:49Þ
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We are now in a position to discuss, in a unified way, atom–atom
dispersion, atom–linear molecule dispersion, and atom–linear dipolar
molecule induction.

4.5.1 Atom–Atom Dispersion

In this case, mi; mj are both isotropic induced dipoles, and we have for the
energy lowering:

DE ¼ � b2

D«
¼ � 6

R6

m2
i m

2
j

«i þ «j

¼ � 6

R6

1

4

2m2
i

«i

 !
2m2

j

«j

 !
«i«j

«i þ «j

¼ � 6

R6

1

4
aiaj

«i«j

«i þ «j
¼ �C6

R6

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4:50Þ

which is the well-knownLondon dispersion formula. Generally speaking,
we can have several simultaneous dipole excitations on A and B (the
corresponding final states are often referred to as dipole pseudostates), so
that we can write:

C6 ¼ 6� 1

4

X
i

X
j

aiaj
«i«j

«i þ «j
¼ 6C11 ð4:51Þ

where C6 is the London dispersion coefficient, and:

C11 ¼ 1

4

X
i

X
j

aiaj
«i«j

«i þ «j
ð4:52Þ

is the dispersion constant in London form, while 6 is a geometrical factor.
The leading term of London attraction has an R�6 dependence on R,

the C6 coefficient involving knowledge of the individual nonobservable
(i.e., nonmeasurable) contributions from each excited pseudostate to the
polarizabilities of A and B, as given by Equations (4.22) and (4.23).
Accurate values of C6 dispersion coefficients can be calculated

through a generalization of the London formula in terms of the so called
N-term dipole pseudospectra fai; «ig i ¼ 1; 2; � � � ;Nð Þ of the monomers
(Magnasco and Ottonelli, 1999). Less important higher terms, going as
R�8;R�10; � � � arise from the coupling of higher induced moments on A
and B (Buckingham, 1967; Magnasco and McWeeny, 1991).
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4.5.2 Atom–Linear Molecule Dispersion

mi is nowan isotropic induceddipole on atomA,mj a cylindrically induced
dipole on the linear molecule B9 with components mjjj; mj?. We then have
for the energy lowering the sum of separate contributions from parallel
and perpendicular components:

DE¼ � b2
jj

D«jj
� b2

?
D«?

¼ � 1

R6
ð3 cos2uþ1Þ

m2
i m

2
jjj

«iþ «jjj
þ ð5�3 cos2uÞ m2

i m
2
j?

«iþ «j?

" #

¼ � 1

R6

3 cos2uþ1

4
aiajjj

«i«jjj
«iþ «jjj

þ 5�3 cos2u

4
aiaj?

«i«j?
«iþ «j?

" #
8>>>>><
>>>>>:

ð4:53Þ
Considering several dipole excitations, we can write for the two

dispersion constants in London form:

A ¼ 1

4

X
i

X
j

aiajjj
«i«jjj

«iþ «jjj

B ¼ 1

4

X
i

X
j

aiaj?
«i«j?

«i þ «j?

8>>>><
>>>>:

ð4:54Þ

so that the angle-dependent C6 dispersion coefficient for the atom-linear
molecule interaction will be:

C6ðuÞ ¼ ð3 cos2uþ1ÞAþð5�3 cos2uÞB ð4:55Þ
This expression is usually written in terms of the Legendre polynomial

P2(cos u) (Abramowitz and Stegun, 1965):

C6ðuÞ ¼ C6½1þ g6P2ðcosuÞ� ð4:56Þ
where:

C6 ¼ 2Aþ4B ð4:57Þ
is the isotropic coefficient for dispersion, and:

g6 ¼
A�B

Aþ2B
ð4:58Þ

9 A is at the origin of the coordinate system, while molecule B is at an angle uwith respect to the

intermolecular z axis.
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the anisotropy coefficient for dispersion. C6 can be obtained from the pre-
vious angle-dependent expression by averaging over angle u, whereas g6
describes in a standard way the orientation dependence of the coefficient.
In fact, since ðcos u ¼ xÞ:

hcos2 ui ¼

Ð1
�1

dxx2

Ð1
�1

dx

¼ 1

3
ð4:59Þ

averaging Equation (4.55) over u, we obtain for the isotropicC6 disper-
sion coefficient:

C6h i ¼ 3� 1

3
þ 1

� �
Aþ 5�3� 1

3

� �
B ¼ 2Aþ 4B ¼ C6 ð4:60Þ

The same result is obtained from Equation (4.56), since the average of
P2ðcos uÞ over angle u is zero:

hP2ðcos uÞi ¼ 3

2
hcos2 ui� 1

2
¼ 3

2
� 1

3
� 1

2
¼ 0 ð4:61Þ

4.5.3 Atom–Linear Dipolar Molecule10 Induction

mi is now an isotropic induced dipole on atom A, mj ¼ mjz ¼ mB the
unidimensional permanent dipole of a noncentrosymmetric neutral
linear molecule B. We then have for the energy lowering (induction,
B polarizes A):

DEBA ¼ �b2

«i
¼ � 3 cos2uþ 1

R6

mi
2

«i
m2
B ¼ � 3 cos2uþ1

2

aim
2
B

R6
¼ �C6ðuÞ

R6

ð4:62Þ
where C6ðuÞ is the angle-dependent induction coefficient:

C6ðuÞ ¼ aim
2
B

3 cos2uþ 1

2

¼ aim
2
B½1þP2ðcos uÞ�

¼ C6½1þ g6P2ðcos uÞ�

8>>><
>>>:

ð4:63Þ

10 Namely, a molecule possessing a permanent dipole moment.
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Here:

C6 ¼ aim
2
B ð4:64Þ

is the isotropic coefficient, and:

g6 ¼ 1 ð4:65Þ

the anisotropy coefficient for induction.Averaging over angle u, we get for
the isotropic polarization of A by B ðai ¼ aAÞ:

DEBA ¼ �aAm
2
B

R6
ð4:66Þ

Wehave a similar result for a dipolarmoleculeA distorting B, so that on
average:

DE ¼ DEBA þDEAB ¼ �aAm
2
B þaBm

2
A

R6
ð4:67Þ

and, for identical molecules:

DE ¼ � 2am2

R6
¼ �C6

R6
ð4:68Þ

Even the leading term of the induction (polarization) energy has anR�6

dependence onRwith an isotropicC6 ¼ 2am2, but the coefficient depends
now on observable quantities ða;mÞ that can be measured by experiment.
This makes an important difference from dispersion coefficients that
should be noted.
Isotropic C6 dispersion and induction coefficients (in atomic units) for

some homodimers of atoms and molecules taken from the literature are
compared in Table 4.1.We see from the table that the distortion energy is
zero for atoms, which do not have permanent moments, and is always
smaller than the dispersion energy for the molecules considered, with the
only exception of (LiH)2. The dispersion energy (London attraction) is
therefore the dominant VdW interaction,11 the only one for atoms. The
large value for the distortion energy in (LiH)2 is due to the combined large
values of m and a for LiH,�2:29ea0 and 28:5a30, respectively (Bendazzoli
et al., 2000).

11 Note, however, the importance of the temperature-dependent Keesom effect for dipolar

molecules in the gas phase.
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4.6 THEC6DISPERSIONCOEFFICIENT FORTHEH–H
INTERACTION

The excited pseudostates occurring in Equations (4.18) and (4.19) can be
obtained using the extension of the Ritz method to the calculation of
second-order energies introduced in Chapter 1.
The dipole pseudospectra of H(1s) forN ¼ 1 throughN ¼ 4 are given

in Table 4.2. The two-term approximation gives the exact result for
the dipole polarizability a, the same being true for the three-term and
the higher N-term (N > 3) approximations. In all such cases, the dipole
polarizability of the atom is partitioned into an increasing number N of
contributions arising from the different pseudostates:

a ¼
XN
i¼1

ai ð4:69Þ

Table 4.1 Comparison between isotropic C6 dispersion and induction coefficients
Eha

6
0

� �
for some homodimers of atoms and molecules

Atom–atom Dispersion Induction Molecule–molecule Dispersion Induction

He2 1.46 0 (H2)2 12.1 0
Ne2 6.28 0 (N2)2 73.4 0
H2 6.50 0 (CO)2 81.4 0.05
Ar2 64.3 0 (CO2)2 159 0
Kr2 130 0 (CH4)2 130 0
Be2 213 0 (NH3)2 89.1 9.82
Xe2 286 0 (H2O)2 45.4 10.4
Mg2 686 0 (HF)2 19.0 6.30
Li2 1450 0 (LiH)2 125 299

Table 4.2 Dipole pseudospectra of H(1s) for N ¼ 1 through N ¼ 4

i ai=a
3
0 «i=Eh

P
ai

1 4.000 000� 100 5.000 000� 10�1 4.0
1 4.166 667� 100 4.000 000� 10�1

2 3.333 333� 10�1 1.000 000� 100 4.5
1 3.488 744� 100 3.810 911� 10�1

2 9.680 101� 10�1 6.165 762� 10�1

3 4.324 577� 10�2 1.702 333� 100 4.5
1 3.144 142� 100 3.764 643� 10�1

2 1.091 451� 100 5.171 051� 10�1

3 2.564 244� 10�1 9.014 629� 10�1

4 7.982 236� 10�3 2.604 969� 100 4.5
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This increasingly fine subdivision of the exact polarizability value into
different pseudostate contributions is of fundamental importance for the
increasingly refined evaluation of the London dispersion coefficients for
twoH atoms interacting at long range. It can only be said that, in general,
the N-term approximation will involve diagonalization of the (N�N)
matrixM generalizing Equation (1.64) of Chapter 1, its eigenvalues being
the excitation energies «i and its eigenvectors the corresponding N-term
pseudostates fcigi ¼ 1;2; � � � ;N. For a given atom (ormolecule), knowl-
edge of the so-called N-term pseudospectrum fai; «igi ¼ 1;2; � � � ;N,
allows for the direct calculation of the dispersion coefficients of the
interacting atoms (or molecules).
In this way, for each H atom, the calculated dipole pseudospectra

{ai, «i} i ¼ 1; 2; � � � ;N of Table 4.2 can be used to obtain better and better
values for theC6 Londondispersion coefficient for theH�H interaction: a
molecular (two-centre) quantity C6 can be evaluated in terms of atomic
(one-centre), nonobservable, quantities, ai (a alone is useless). The
coupling between the different components of the polarizabilities occurs
through the denominator in the London formula (4.19), so thatwe cannot
sum over i or j to get the full, observable,12aA or aB.
Using the London formula and the pseudospectra derived previously,

we obtain for the leading term of theH–H interaction the results collected
in Table 4.3. The table shows that convergence is very rapid for the H–H
interaction.13 Unfortunately, the convergence rate for C6 (as well as that
for a) is not so good for other systems (Magnasco, 2009a).
We have already said that an alternative, yet equivalent, formula

for the dispersion constant is due to Casimir and Polder (1948) in terms
of the frequency-dependent polarizabilities (FDPs) at imaginary frequen-

12 That is, measurable.
13 The first approximate value (6.47) of theC6 dispersion coefficient for theH–H interactionwas
obtained by Eisenschitz and London (1930) from a perturbative calculation using the complete
set of H eigenstates following early work by Sugiura (1927).

Table 4.3 N-term results for the C11 dipole dispersion constant and the C6 London
dispersion coefficients for the H–H interaction

N C11=Eha
6
0 C6=Eha

6
0 Accuracy(%)

1 1 6 92.3
2 1.080 357 6.4821 99.7
3 1.083 067 6.4984 99.99
4 1.083 167 6.499 00 99.999
5 1.083 170 6.499 02 100
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cies of A and B, Equation (4.24). In this case, we must know
the dependence of the FDPs on the real frequency u, and the coupling
occurs now via the integration over the frequencies. When the necessary
data are available, however, the London formula (4.19) is preferable
because use of theCasimir–Polder formula (4.24) presents some problems
in the accurate evaluation of the integral through numerical quadrature
techniques (Figari and Magnasco, 2003; Magnasco and Figari, 2009).
We give below the explicit London-type calculation for N ¼ 2:

C11ðtwo-termÞ ¼ 1

8

25

6

 !2

� 2

5
þ 1

8

2

6

 !2

� 1þ 1

2
� 25

6
� 2

6
�

2

5
� 1

2

5
þ1

¼ 5� 5� 25� 2

2� 4� 36� 5
þ 4

2� 4� 36
þ 5� 5� 2� 5

36� 5� 7

¼ 125

4� 36
þ 1

2� 36
þ 50

7� 36
¼ 1089

1008
¼ 121

112
¼ 1:080 357

so that the two-term approximation gives the dispersion constant as the
ratio between two integers that are not divisible! However, this explicit
calculation is no longer possible for N > 2 so that we must resort to the
numerical method.14

4.7 THE van der WAALS BOND

On the basis ofwhatwe have said so far, we conclude that a van derWaals
bond between two closed-shell atoms can be formed, at the minimum
point of the potential energy surface, as a result of the overwhelming at
long range of a weak Pauli repulsion (/exp(�aR)) by a weak London
attraction ð/ R�6Þ. Figure 4.3 shows the formation of the VdWminimum
for two ground state He atoms as a result of the first-order Pauli repulsion
E1 and the second-orderLondonattractionE2.A small potentialwellwith
De ¼ �33:4� 10�6Eh is then formed at the rather large interatomic
distance of Re ¼ 5:6ao. For neutral molecules, electrostatic interactions
are important as well, giving contributions going as R�3 for the leading
dipole–dipole interaction (non-centrosymmetric molecules), and R�4 for

14 We must diagonalize the matrix representative of the excitation operator H0�E0 over the

appropriate basis.
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the quadrupole–quadrupole interactions (centrosymmetric molecules).
The latter are responsible for the typical T-structure observed for the
dimers of H2, N2 and F2, as will be seen in Section 5.3 of the next
chapter.
An approximate non-expanded potential energy curve of the (H2O)2

dimer evaluated by Magnasco et al. (1985) is schematically shown in
Figure 4.4.We see that the first-order interactionE1 already shows, in this
range of internuclear distances, a minimum, chiefly due to the first-order
electrostatic component, while second-order interactions (induction
plus dispersion) simply deepen such a minimum, strengthening the bond.
It is appropriate in this case to speak of formation of a hydrogen bond,
essentially electrostatic in origin. It is of interest to notice the change in
the scale factor for energy, from 10�6Eh for He2 (VdW bond) to 10�3Eh

for (H2O)2 (H-bond), even though roughly in the same region of

Figure 4.3 Origin of the VdW bond in He2 (
1P þ

g )

Figure 4.4 Origin of the hydrogen bond in (H2O)2 (
1A1)
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intermolecular distances (5.6a0 for He2, 5.4a0 for the H2O dimer), just to
outline that the H-bond has an energy comparable to that of a weak
chemical bond. H-bonding will be treated in detail in the next chapter.
The structures of VdW dimers, considered as weakly bounded

complexes in which each monomer maintains its original structure
(Buckingham, 1982), are studied at low temperatures by sophisticated
experimental techniques, such as far infrared spectra, high-resolution
rotational spectroscopy in the microwave region, and molecular beams.
Distances Re between the centres of mass and bond strengths De at the
VdWminimum for some homodimers of atoms andmolecules taken from
Literature are collected in Table 4.4.
We notice from the table how large Re and how small De values

characterize our VdW dimers with respect to the corresponding values of
the chemical bonds reported in Table 2.1 of Chapter 2. The sensibly larger
De values observed for the dimers of first-row hydrides (NH3)2, (H2O)2,
(HF)2, (BeH2)2, (LiH)2 denote formation of a XH�X hydrogen bond,
particularly strong in (LiH)2, where it is of the order of a chemical bond.

4.8 THE KEESOM INTERACTION

The electrostatic energy E1ðesÞ is zero when averaged over the angles
describing the relative orientation of the two interacting molecules.
However, Keesom (1921) showed that if two dipolar molecules undergo
thermal motions, they attract each other according to:

E6ðKeesomÞ ¼ �C6ðTÞ
R6

ð4:70Þ

Table 4.4 BonddistancesRe andbond strengthsDe (atomic units) at theminimumof
the potential energy surface for some homodimers of atoms and molecules

Atom–atom Re=a0 De=10
�6Eh Molecule–molecule Re=a0 De=10

�3Eh

H2(
3P þ

u ) 7.8 20.5 (H2)2 6.5 0.12
He2 5.6 33.4 (N2)2 8.0 0.39
Ne2 5.8 133 (CH4)2 7.3 0.69
Ar2 7.1 449 (NH3)2 6.2 6.47
Kr2 7.6 633 (H2O)2 5.4 10.3
Xe2 8.2 894 (HF)2 5.1 11.4
Li2(

3P þ
u ) 8.0 1332 (BeH2)2 52.2

Be2 4.7 2694 (LiH)2 4.0 75.8
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C6(T) being the temperature-dependent coefficient:

C6ðTÞ ¼ 2m2
Am

2
B

3kT
ð4:71Þ

where T is the absolute temperature and k the Boltzmann constant. The
corresponding attractive energies (4.70) are the isotropic electrostatic
contributions to the interaction energy and are temperature-dependent.
The Keesom formula (4.70) is easily derived (Magnasco, 2009a) by

taking the Boltzmann average of the dipolar interaction over the angles of
relative orientation of the two molecules for small values of the dimen-
sionless parameter:

a ¼ �mAmB

R3kT
< 0 ð4:72Þ

It may be helpful for the reader to recall briefly the derivation of the
Keesom formula.
The interaction between point-like dipoles (Coulson, 1958) is:

V ¼ mAmB

R3
sin uA sin uB cos w�2cos uA cos uBð Þ ð4:73Þ

where w¼wA�wB is the dihedral angle between the planes specified by
mA, mB and R.
We put:

V ¼ uA; uB;w

FðVÞ ¼ sin uA sin uB cos w�2 cos uA cos uB

(
ð4:74Þ

If all orientations were equally probable, the average potential energy
hVi, andhence the first-order electrostaticC3 coefficient (Magnasco2007,
2009a; Magnasco et al., 1988), would be zero. In fact:

hViV ¼ mAmB

R3

Ð
V dV FðVÞÐ

V dV
¼ 0 ð4:75Þ

since, putting:

xA ¼ cos uA; xB ¼ cos uB ð4:76Þ
we have:

ð
V

dV ¼
ð2p
0

dw

ðp
0

duAsin uA

ðp
0

duB sin uB ¼ 2p
ð1
�1

dxA

ð1
�1

dxB ¼ 8p ð4:77Þ
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ð
V

dV FðVÞ ¼
ð2p
0

dw cosw

ð1
�1

dx 1�x2
� �1=22

4
3
5
2

�2

ð2p
0

dw

ð1
�1

dx x

2
4

3
5
2

¼ 0

ð4:78Þ
The vanishing of the average potential energy for free orientations is

true for all multipoles (dipoles, quadrupoles, octupoles, hexadecapoles,
etc.).
The Boltzmann probability for a dipole arrangement whose potential

energy is V is proportional to:

W / expð�V=kTÞ ð4:79Þ

Wenowaverage the quantityV exp (�V/kT) over all possible orientations
W assumed by the dipoles:

Vexpð�V=kTÞh iV ¼ mAmB

R3

ð
V

dV FðVÞ exp½aFðVÞ�
ð
V

dV exp½aFðVÞ�
ð4:80Þ

where the parameter a was introduced in Equation (4.72).
We then obtain:

V expð�V=kTÞh iV ¼ mAmB

R3

ð
V

dV FðVÞ exp½aFðVÞ�
ð
V

dV exp½aFðVÞ�

¼ mAmB

R3

d

da
lnKðaÞ

8>>>>>>>>>><
>>>>>>>>>>:

ð4:81Þ

where

KðaÞ ¼
ð
V

dVexp ½aFðVÞ� ð4:82Þ

is called the Keesom integral.
We evaluate Equation (4.81) for a¼ small (high temperatures and

large distances between the dipoles), by expanding the exponential in
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Equation (4.82):ð
V

dV exp½aFðVÞ� �
ð
V

dV 1þ a FðVÞþ a2

2
FðVÞ2 þ � � �

� 	
ð4:83Þ

where we have just seen that, in the expansion, the second integral
vanishes, so that only the quadratic term can contribute to the Keesom
integral.
We have:ð
V

dV FðVÞ2

¼
ð2p
0

dw

ðp
0

duAsin uA

ðp
0

duB sin uB sin2 uAsin
2 uBcos

2 wþ 4cos2 uAcos
2 uB

� �

¼ 8p
2

3

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4:84Þ
so that ð

V

dV
a2

2
FðVÞ2 ¼ 8p

a2

3
ð4:85Þ

Then: ð
V

dV 1þ a2

2
FðVÞ2


 �
¼ 8p 1þ a2

3

� �
ð4:86Þ

d

da
ln 8p 1þ a2

3

� �
 �
¼ 1

1þ a2

3

� 2

3
a � 2

3
a ð4:87Þ

for a ¼ small. Hence, we obtain the final result for the average attraction
energy between the dipoles:

Vexpð�V=kTÞh iV � mAmB

R3

2

3
a ¼ � 2

3kT

m2
Am

2
B

R6
ð4:88Þ

which is known as Keesom or dipole orientation energy, Equations (4.70)
and (4.71). Even this term depends onR�6, but is temperature-dependent
and decreases in importance with increasing T.
It is of interest to compare the relative importance of all attractive

contributions to the intermolecular energy in the VdW region. For atoms
and centrosymmetric molecules, induction is zero, so that the only
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contribution comes from attractive dispersion. For dipolar molecules
induction is usually negligible with respect to dispersion except perhaps
for ðLiHÞ2. The electrostatic energy is not zerowhen its thermal average is
taken. The corresponding Keesom attractive energies (Equation 4.70) are
hence the isotropic electrostatic contributions to the interaction energy
and are temperature-dependent. A comparison between isotropic C6

coefficients for some homodimers at T¼293K is given in Table 4.5. It
is seen that Keesom C6(T) is negligible compared with dispersion and
induction coefficients for the homodimers of CO, NO, N2O, while for
ðNH3Þ2; ðHFÞ2; ðH2OÞ2 Keesom dipole orientation forces become in-
creasingly dominant at room temperature, so they cannot be neglected in
assessing collective gas properties such as the equation of state for real
gases and virial coefficients.
Battezzati and Magnasco (2004) gave an asymptotic evaluation of the

Keesom integral (4.82) for a¼ large (low temperatures and small dis-
tances between the dipoles), obtaining the formula:

KðaÞ ffi 4p
3

expð�2aÞ
a2

1� 2

3a

� �
ð4:89Þ

Magnasco et al. (2006) recently extended Keesom’s calculations up to
the R�10 term, showing that deviations of the Keesom approximation15

from the full series expansion are less important than consideration of the
higher-order terms in theR�2n expansion of the intermolecular potential.
The validity of the Keesom two-term approximation with respect to the
complete series expansion is thus very good, and is best studied by
comparing the respective logarithmic derivatives.

Table 4.5 Comparison between isotropic C6 coefficients (Eha0
6) for some homo-

dimers of atoms and molecules at T¼ 293K

Atom–atom Dispersion Molecule–molecule Dispersion Induction Keesom

He2 1.46 (H2)2 12.1 0 0
Ne2 6.35 (N2)2 73.4 0 0
H2 6.50 (CO)2 81.4 0.05 0.002
Ar2 64.9 (NO)2 69.8 0.08 0.009
Kr2 129 (N2O)2 184.9 0.19 0.017
Be2 213 (NH3)2 89.1 9.82 81.3
Xe2 268 (H2O)2 45.4 10.4 204
Mg2 686 (HF)2 19.0 6.3 227
Li2 1450 (LiH)2 125 299 8436

15 Expansion of the exponential stopped to the second power of W¼ uA, uB, w.
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Table 4.6 gives the dimensionless Keesom parameters jall0 j and the
T-dependentC2nðl; l0ÞKeesomcoefficients for l; l0 ¼ 1; 2; 3 calculated from
the electrostatic potentials given inEquations (5.3–5.8)of thenext chapter,
using the same techniques as we did before for the dipole–dipole term.
The numerical values of the Keesom coefficients for some homodimers

in the gas phase at T¼ 293K are collected in Table 4.7.
The long-range electrostatic Keesom attractive energies up to the R�10

term ð10�6EhÞ for some homodimers in the gas phase at R ¼ 10a0
and T ¼ 293 K are reported in Table 4.8, while the R�6 electrostatic
contributions E6ðesÞ are compared in Table 4.9 with the corresponding
dispersion contributions E6(disp). It must be noted that the R�10 contri-
bution is complete only for the homodimers of CO, HCl and HF, the

Table 4.6 Dimensionless Keesom parameters jall0 j and T-dependent C2nðl; l0Þ
Keesom coefficients

l l0 jall0 j C2nðl; l0Þ
1 1 mA

1m
B
1

R3kT
2ðm1

AÞ2ðm1
BÞ2

3kT
1 2 3mA

1m
B
2

2R4kT
ðmA

1 Þ2ðmB
2 Þ2

kT
2 1 3mA

2m
B
1

2R4kT
ðmA

2 Þ2ðmB
1 Þ2

kT
1 3 mA

1m
B
3

2R5kT

4ðmA
1 Þ2ðmB

3 Þ2
3kT

3 1 mA
3m

B
1

2R5kT

4ðmA
3 Þ2ðmB

1 Þ2
3kT

2 2 3mA
2m

B
2

4R5kT
14ðmA

2 Þ2ðmB
2 Þ2

5kT

Table 4.7 Numerical values of Keesom coefficients (atomic units) for some homo-
dimers in the gas phase at T¼ 293K

Molecule C6ð1; 1Þ=Eha
6
0 C8ð1; 2Þ=Eha

8
0 C10ð1; 3Þ=Eha

10
0 C10ð2; 2Þ=Eha

10
0

CO 2.693� 10�3 4.508� 100 3.330� 101 1.409� 104

HCl 2.300� 101 1.374� 103 3.991� 103 1.533� 105

NH3 8.074� 101 2.168� 103 1.087� 105

HF 1.765� 102 1.562� 103 4.451� 103 2.580� 104

H2O 2.007� 102 5.695� 100 3.017� 10�1

LiH 1.989� 104 5.439� 104 2.766� 105

H2 1.131� 102

N2 3.530� 103

O2 2.444� 101

CO2 3.085� 105
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remaining values giving only the quadrupole–quadrupole contribution. It
is well known (Magnasco, 2007, 2009a) that, except for LiH, induction
energies are always sensibly smaller than dispersion.
It is seen from the tables that the electrostatic contribution E6(es) is

smaller than dispersion only for CO and HCl ( a11j j ¼ 2:086� 10�3 and
0.1928, respectively), being of the same order of dispersion for NH3

(0.3612), and decidedly larger for HF, H2O (0.5341 and 0.5695) and
LiH (5.671). The Keesom series is apparently divergent for CO, practi-
cally a quadrupolar molecule, so that it might be not unexpected that the
largest contribution to the electrostatic energy comes from the quadru-
pole–quadrupole term. Convergence seems rather poor for HCl, all
higher-order terms being of the same order as the leading term, while it
is better forNH3andHF.HF is the only casewhere the dipole–quadrupole
contribution is one order less than the leading dipole–dipole term. The
dipole–octupole plus quadrupole–quadrupole contribution for HF is one

Table 4.8 Long-range electrostatic Keesom attractive energies ð10�6EhÞ for some
homodimers in the gas phase at R ¼ 10a0 and T ¼ 293 K

Molecule �E6 �E8 �E10 �E(es)

CO 2.693� 10�3 9.016� 10�2 1.416� 100 1.509� 100

HCl 2.300� 101 2.748� 101 1.613� 101 6.661� 101

NH3 8.074� 101 4.336� 101 1.087� 101 1.350� 102

HF 1.765� 102 3.124� 101 3.470� 100 2.112� 102

H2O 2.007� 102 1.139� 10�1 3.017� 10�5 2.008� 102

LiH 1.989� 104 1.088� 103 2.776� 101 2.101� 104

H2 1.131� 10�2 1.131� 10�2

N2 3.530� 10�1 3.530� 10�1

O2 2.444� 10�3 2.444� 10�3

CO2 3.085� 101 3.085� 101

Table 4.9 Comparison between R�6 attractive electrostatic and dispersion energies
ð10�6EhÞ for some homodimers at R ¼ 10a0 and T ¼ 293 K

Molecule �E6(es) �E6(disp)

CO 2.693� 10�3 8.140� 101

HCl 2.300� 101 1.304� 102

NH3 8.074� 101 8.908� 101

HF 1.765� 102 1.900� 101

H2O 2.007� 102 4.537� 101

LiH 1.989� 104 1.250� 102

H2 1.211� 101

N2 7.339� 101

O2 6.201� 101

CO2 1.587� 102
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order less than the dipole–quadrupole, and two orders less than dipole–
dipole. So, the series expansion in R�n for HF–HF shows very good
convergence. Anyway, it must not be forgotten that the series in R�n has
asymptotic properties, though it may converge also for finite R, provided
that the charge distributions are sufficiently concentrated around their
centres. H2O is left with a large axial dipole–dipole contribution only,
since, as already said, its large dipole–transverse quadrupole contribution
cannot be accounted for at the present level of the theory.16

As expected, Tables 4.8 and 4.9 show that for centrosymmetric mo-
lecules the electrostatic contribution (going as R�10) is practically negli-
gible with respect to dispersion (going as R�6), being four orders smaller
for O2, three for H2, two for N2, and only one for CO2.
The case of LiH is a very particular one, because of its very large value

of ja11j. The corresponding C6 Keesom coefficient is hardly reliable,
the complete series expansion showing that a reduction of over 57%
is needed for C6 (8:475� 103 Eha

6
0 with n ¼ 17) and about 5% for C8

(5:169� 104 Eha
8
0 with n ¼ 7). The two-term asymptotic formula (4.89)

given by Battezzati and Magnasco (2004) yields 8:436� 103 Eha
6
0,

which is within 0.5% of the complete series expansion result. So, the
simple two-term formula (4.89) is expected to work well for other
fluorides and chlorides of the alkaline metals (considered as gaseous
diatomic molecules), all of which have even larger values of the
dipole–dipole constant ja11j.

16 Only linear point-like multipoles directed along the main symmetry axis are considered.
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5
The Hydrogen Bond

5.1 A Molecular Orbital Model of the Hydrogen Bond
5.2 Electrostatic Interactions and the Hydrogen Bond

5.2.1 The Hydrogen Fluoride Dimer (HF)2
5.2.2 The Water Dimer (H2O)2

5.3 The Electrostatic Model of the Hydrogen Bond
5.4 The Rg–HF Heterodimers

In this chapter, we shall examine two different approaches to explain
the nature of the hydrogen bond and the structure of H-bonded dimers.
First, a qualitative MO model where H-bonding is assumed to stem
from electron transfer from an electron-rich donor MO1 on one partner
to an electron acceptor MO2 centred at the H atom of the partner
molecule. Second, a quantitative electrostatic approach, where the H-
bond and the shape resulting therefrom for the dimers, can be under-
stood in terms of the long-range interactions between the first few
permanent multipole moments of the interacting molecules, yielding the
electrostatic model.

1 HOMO, mostly a lone pair or a multiple bond.
2 An empty MO (LUMO).

Models for Bonding in Chemistry Valerio Magnasco

� 2010 John Wiley & Sons, Ltd



5.1 A MOLECULAR ORBITAL MODEL OF THE
HYDROGEN BOND

Thepossibility of electron transfer fromadonor to an acceptormolecule is
shown schematically for some homo- and heterodimers in the drawings of
Figure 5.1. Figures 5.1(a,b) on ðHFÞ2 show the possibility of favourable
electron transfer fromF lone pairs (doubly occupiedHOMOs) to a vacant
(empty LUMO) orbital onH, (a) suggestings charge transfer fromF toH,
(b)p charge transfer fromF toH (doubled because of the degeneracy of the
p level). As a result, the dimer would acquire the non-collinear Cs

geometric structure depicted in Figure 5.5 and observed by experiment
ðu ¼ 60�Þ. The same can be said for Figures 5.1(c,d) which suggest a
possible explanation for the observed Cs structure of Figure 5.6 for the
ðH2OÞ2 dimer ða ¼ 60�Þ. Figure 5.1(e) shows the possible formation of a
T-shaped C2v structure of the dimer C2H2�HF, where the triple bond of
acetylene acts as electrondonor toH, as suggestedbyab initio calculations
by Pople (1982). Finally, Figures 5.1(f,g) show the possibility of H-
bonding of NH3 and CO2 with HF, where s HOMO lone pairs on N
and O act as electron donors to the empty LUMO of HF.
To get an idea of the energy lowering involved in the formation of the

hydrogen bond in some typical dimers, we use the model long-range
formula:

Figure 5.1 Possible HOMO-LUMO electron donation for some H-bonded dimers
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DE ¼ �2
b2

Da
¼ �De ð5:1Þ

where, as usual, the as replace the appropriate molecular orbital energies
«, Da ¼ aLUMO�aHOMO � «LUMO�«HOMO, and the bond strength De is
taken as the negative of the intermolecular energy at the minimum of the
potential energy curve. From Equation (5.1), an estimate of the intermo-
lecular interaction integral |b| is obtained if we use the data from the last
column of Table 4.4 of the previous chapter in conjunction with calcu-
lated values of Da:

jbj ¼ De �Da
2

� �1=2
ð5:2Þ

Table 5.1 gives for four simple molecules the values of HOMO/LUMO
orbital energies calculated with accurate augccpVTZ-GTO3 basis sets at
the University of Modena and the values of the intermolecular |b|s
resulting from Equation (5.2).
In the table, R is the distance between the centres of mass of the

interacting molecules, roughly corresponding to the sum of the van der
Waals radii of eachmonomer. It is seen that the estimated values of |b| for
the H-bonded dimers between the two dipolar molecules, (HF)2 and
(H2O)2, are 5–10 times larger than the values resulting for the VdW
dimers of the centrosymmetric molecules H2 and N2, whose first non-
vanishing electric moment is the quadrupole. This suggests the electro-
static interaction as a possible source of H-bonding, as we shall see in the
next section. These values of |b| have nearly the same order of magnitude
as those occurring for the corresponding monomers (see Table 2.8 of
Chapter 2), suggesting that the H-bond has a strength not far from that of
a weak chemical bond.

5.2 ELECTROSTATIC INTERACTIONS AND THE
HYDROGEN BOND

The Rayleigh–Schr€odinger perturbation theory of the previous chapter
(see Magnasco, 2007, 2009a) suggests that, in the VdW region, two
typical factors can originate a hydrogen bond in a dimer: (1) the first-
order electrostatic interaction in the case of homo- and heterodimers of

3 Augmented-correlation-consistent polarized-valence triple zeta GTOs (Magnasco, 2009a).
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the first-row hydrides XHn; and (2) the second-order interactions for the
dimers between a rare gas atom and HX, which will be examined later in
Section 5.4.
In the first case, the hydrogen bond and the shape resulting therefrom

for these dimers can be understood in terms of the long-range interactions
between the first few permanent multipole moments of the interacting
molecules (Magnasco et al., 1989b).
Equilibrium bond distances and electric properties (permanent mo-

ments4 up to l ¼ 3 and isotropic dipole polarizabilities) of a few polar
molecules are collected in Table 5.2 (Magnasco et al., 2006). Data for
H2O are taken from recent accurate work by Torheyden and
Jansen (2006).
A few comments on Table 5.2 seem appropriate at this point. CO has

such a small dipole moment C�Oþ that can be considered a ‘quasi-
quadrupolar’ molecule. NH3 has large axial quadrupole and octupole
moments directed along the z symmetry axis. Besides by its dipole
moment, H2O is characterized by a rather small ð0:06ea02Þ axial quad-
rupole moment and by a large transverse quadrupole moment ð2:19ea02Þ
perpendicular to the z symmetry axis,mostly due to the couple of lone pair
electrons. LiH has the largest dipole moment and dipole polarizability.
Figure 5.2 sketches a comparison between HOMO/LUMO and elec-

trostatic descriptions of the H-bonded structure observed for ðHFÞ2. The
correspondence between the two descriptions is evident from the figure.

Table 5.1 Best values of HOMO/LUMO orbital energies from accurate
augccpVTZ-MO calculationsa and estimated intermolecular interaction integral
b(Eh)

Molecule R=a0 aHOMO aLUMO Da jbj ¼ De �Da
2

� �1=2

H2 6.50 �0:59 ð1sgÞ 0:049 ð1suÞ 0.639 6.19� 10�3

N2 8.00 �0:61 ð1puÞ 0:081 ð4sgÞ 0.691 11.61� 10�3

HF 5.09 �0:65 ð1pÞ 0:030 ð4sÞ 0.680 62.26� 10�3

H2O 5.40 �0:51 ð1b1Þ 0:029 ð4a1Þ 0.539 52.69� 10�3

a Pelloni (2008) private communication to V.Magnasco.

4 Thedipolemomentm1 is a vector alwaysdirected along themain symmetryaxis z, beingpositive
for A�dBþ d with the heaviest atom A taken at the origin of the coordinate system.
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The shapes of some H-bonded dimers resulting from electrostatic
calculations involving permanent multipole moments5 up to R�6 are
shown in Table 5.3, where angles refer to the coordinate system of
Figure 5.3. Apart from the ðNH3Þ2 dimer, a substantial agreement is
found between theoretical predictions and experiment.

Figure 5.2 HOMO/LUMO(left) and electrostatic (right) descriptions of the origin of
the H-bonded structure of ðHFÞ2

Table 5.2 Equilibrium bond distances and electric properties (au) of a few polar
molecules

Molecule Re=a0 m1=ea m2=ea0
2 m3=ea0

3 a=a0
3

OC 2.132 �0.044 �1.47 �3.46 13.08
NH3 1.913 �0.579 �2.45 2.462 14.56
H2O 1.836 �0:726 0:06ð2:19Þ 1:98ð�4:25Þ 9.51
FH 1.733 0.704 1.71 2.50 5.60
ClH 2.409 0.4 2.8 17.75
LiH 3.015 �2:294 �3:097 �6:326 28.31
H2 1.40 0.44 5.43
N2 2.074 �1.04 11.74
O2 2.282 �0:30 10.59
F2 2.71 0.536 9.31
CO2 2.192 �3.18 17.51
C2H2 6.213 4.03 21.21

5 The R�6 term of the expanded electrostatic energy involves interaction between dipole–hex-
adecapole ðl ¼ 1; l0 ¼ 4Þ, hexadecapole-dipoleðl ¼ 4; l0 ¼ 1Þ, quadrupole-octupole

ðl ¼ 2; l0 ¼ 3Þ and octupole–quadrupole ðl ¼ 3; l0 ¼ 2Þ moments.
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In the following, we shall consider in little more detail, first, quanti-
tative calculations on the hydrogen bond occurring in the homodimers
ðHFÞ2 and ðH2OÞ2, next, the electrostatic model we proposed some time
ago (Magnasco et al., 1990a) for the hydrogen bond, and, finally, a
discussion of the hydrogen bond occurring between rare gases and HF,
Rg�HF ðRg ¼ He; Ne; Ar; Kr; XeÞ, where the structure of the dimer is
seen to depend mostly on second-order induction.

5.2.1 The Hydrogen Fluoride Dimer ðHFÞ2

As a typical quantitative example of formation of aH-bonded structure as
a consequence of the electrostatic interactions between the individual
molecules, we choose the ðHFÞ2 homodimer. To give the best description

Table 5.3 Theoretical angular shapes from calculated electrostatic interaction
expanded to R�6 versus experimental results for some H-bonded VdW dimers

Theoretical Experimental

Dimer R=a0 uA=
o uB=

o uA=
o uB=

o

ðHFÞ2 5.09 104 194 117 190

ðH2OÞ2 5.40 118 117 128 120

ðNH3Þ2 6.31 11 75 49 115

ðLiHÞ2 3.98 51 126 50 130

H2O�HF 5.03 52 185 46 180
H3N�HF 5.38 0 180 0 180
C2H2 �HF 5.81 90 180 90 180
CO2�HF 7.47 0 180 0 180
H2O�C2H2 7.48 0 0 0 0

Figure 5.3 The three angles specifying the relative orientation of two linear mole-
cules (left), and the system atom A–linear molecule B (right)
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of the shapeof ðHFÞ2 wemust take into account the long-range interaction
of at least the first three permanent moments of HF. The first-order
electrostatic interaction goes as R�n (Magnasco, 2007, 2009a) with
n ¼ lþ l0 þ 1, and l; l0 ¼ 1; 2; 3 for the dipole, quadrupole and octupole
moments, respectively. The first three terms of the expanded electrostatic
interaction showing explicitly their angular dependence for the two linear
molecules depicted in the left part of Figure 5.3 are6 (Magnasco et al.,
1990b):

E1
11ðesÞ ¼ m1

Am1
B

R3
ðsinuA sinuB cosw�2cosuA cosuBÞ ð5:3Þ

E1
12ðesÞ ¼ m1

Am2
B

R4

3

2
cosuAð3cos2uB�1Þ�sinuA sin2uB coswÞ
� � ð5:4Þ

E1
21ðesÞ ¼ m2

Am1
B

R4

3

2
ð1�3cos2uAÞcosuB þ sin2uA sinuB cosw
� � ð5:5Þ

E1
13ðesÞ ¼ m1

Am3
B

R5

1

2

4 cosuAð3�5cos2uBÞcosuB
þ 3 sinuA sinuB ð5cos2uB�1ÞcoswÞ

" #
ð5:6Þ

E1
31ðesÞ ¼ m3

Am1
B

R5

1

2

4 cosuAð3�5cos2uAÞcosuB
þ 3 sinuAð5cos2uA�1ÞsinuB coswÞ

" #
ð5:7Þ

E1
22ðesÞ ¼ m2

Am2
B

R5

3

4

1�5ðcos2uA þ cos2uBÞþ17cos2uA cos2uB

þ 2sin2uA sin2uB cos
2w�4 sin2uA sin2uB coswÞ

" #

ð5:8Þ
where spherical tensor notation (Magnasco, 2007) is used for the mul-
tipole moments of the linear molecules.
Choosing uB ¼ 180�, for ðHFÞ2, the above formulae simplify to:

E1
11ðesÞ ¼ 2

ðm1
HFÞ2
R3

cosuA ð5:9Þ

E1
12ðesÞþE1

21ðesÞ ¼ 3

2

m1
HFm2

HF

R4
2cosuAþð3cos2uA�1Þ� � ð5:10Þ

6 Point-like linear multipoles are assumed to be placed in the centre of mass of the molecule.
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E1
13ðesÞþE1

31ðesÞþE1
22ðesÞ

¼ 1

R5
8m1

HFm3
HFcosuA þ 3ðm2

HFÞ2ð3cos2uA�1Þ
h i ð5:11Þ

The angular dependence on uA of the first three terms ðn ¼ 3; 4; 5Þ of
the expanded electrostatic interaction in linear ðHFÞ2 is sketched in the
drawings of Figure 5.4. In all the plots there, molecule B is kept fixed at
uB ¼ 180�. It is seen that, while the dipole–dipole term would favour the
head-to-tail shape of the dimer with a collinear H-bond (H–F. . .H–F,
Figure 5.4(a)with uA ¼ uB ¼ 180�), the highermultipole interactions lead
to the final L-shape of the dimer depicted in Figure 5.4(d), in agreement
with the structure of the dimer observed by molecular beams techniques
(Howard et al., 1984) and reported in Figure 5.5. Figure 5.4(a) gives the

Figure 5.4 Angular dependence on uA of the first three terms of the expanded
electrostatic interaction in linear (HF)2
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behaviour with respect to uA of the 11 dipole–dipole contribution
ðl ¼ l0 ¼ 1Þ going as R�3; Figure 5.4(b) the 12 dipole–quadrupole
ðl ¼ 1; l0 ¼ 2Þ plus the 21 quadrupole–dipole ðl ¼ 2; l0 ¼ 1Þ contribution
going asR�4; Figure 5.4(c) the 13 dipole–octupole ðl ¼ 1; l0 ¼ 3Þ plus the
31 octupole–dipole ðl ¼ 3; l0 ¼ 1Þ plus the 22 quadrupole–quadrupole
ðl ¼ 2; l0 ¼ 2Þ contribution going as R�5; Figure 5.4(d) the resultant of
adding all contributions up to R�5. It is apparent that the collinear H-
bonded structure (a) would be the more stable considering just the
dipole–dipole interaction, while adding higher multipole contributions
the dimer acquires the characteristic L-shaped structure that agrees with
experiment (Figure 5.5).

5.2.2 The Water Dimer ðH2OÞ2

With reference to the coordinate system of Figure 5.6, the leading
dipole–dipole term of the expanded first-order electrostatic interaction
between the two H2O molecules is given by (Magnasco et al., 1988):

E1ðesÞ ¼ � ðm1
H2OÞ2
R3

ðsinu sinaþ 2cosu cosaÞ ð5:12Þ

where 2u is the valence angle. Molecule A is taken to lie in the zx plane,
while a is the inclination of themolecular plane of Bwith respect to the yz
plane (for a ¼ 0� molecule B lies in the yz plane). Experimentally (Dyke
and Muenter, 1974) it is found a ¼ 60�. For 2u ¼ 105�, R ¼ 5:4a0,
mH2O
1 ¼ 0:73ea0, Equation (5.12) has aminimumof about�4.9� 10�3Eh

at a ¼ 30�, so indicating that, as in the case of ðHFÞ2, interaction between
higher multipoles is important. Inclusion of such higher terms gives the
results reported in Table 5.3.

Figure 5.5 Experimental structure7 (u� 60�) of the (HF)2 linear dimer. Reprinted
fromMagnasco, V., Methods of Molecular QuantumMechanics: An Introduction to
Electronic Molecular Structure. Copyright (2009) with permission from John Wiley
and Sons

7 Angle u in this figure is the supplement of angle uA of Figure 5.3d.
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5.3 THE ELECTROSTATIC MODEL OF THE
HYDROGEN BOND

Buckingham and Fowler (1983) asked whether electrostatic interactions
could predict structures of van der Waals molecules. The answer is ’yes
they can’, not only for hydrogen-bonded systems but generally for VdW
complexes. All considerations we made before, in fact, led us to propose
a simple electrostatic model for the elementary prediction of the angular
geometries of VdWdimers based on the characterization of amolecule by
just its first two observable electric moments (Magnasco et al., 1990a).
The relative stability of different angular geometries of 35 VdW dimers
was correctly predicted just from the pictorial analysis of the electrostatic
interactions between these moments. We enter in some detail in the
following.
For small molecules (such as HF, H2O, NH3, CO, H2 and N2) the

electrostatic model is based on the following rules. It is assumed that
molecules in the dimer be kept a distanceR apart not less than the sum of
their Van der Waals radii.

1. Each molecule is characterized by its first two observable electric
moments (quadrupole alone for centrosymmetric molecules, terms
higher than R�5 not being considered in the formulation of the
model).

2. Qualitative evaluation (attractive or repulsive) is made of the
dipole–dipole ðR�3Þ, dipole–quadrupole plus quadrupole–dipole
ðR�4Þ, and quadrupole–quadrupole ðR�5Þ electrostatic interactions
for the different angular geometries of the dimer.

Figure 5.6 Geometry8 of the ðH2OÞ2 linear water dimer

8 Angle a in this figure is the supplement of angle uB of Table 5.3d.
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3. A scale is given of the relative importance of such electrostatic
interactions in the order ss > sp > pp, where s is a multipole
moment directed along the intermolecular axis and p a moment
perpendicular to it.9

4. Highest stability (vs, very stable) is obtained for the angular con-
figuration of the dimer when all three contributions are favourable.

5. Secondary stability (s, stable) is obtained when terms beyond the
first are repulsive, opposing the largest attractive contribution of the
leading term.

6. Unstable (ns, not stable) angular configurations are obtained when
all three terms (or the leading term, at least) are repulsive.

For elongated molecules (such as CO2, C2H2 and HCN) below
the sum of their VdW radii a further rule is introduced.

7. Of two angular configurations possible on the basis of the previous
rules, the configuration having smaller Pauli steric repulsionswill be
more stable.

These rules are simple and immediately intuitive, once the electrical
characterization of a molecule in terms of its point-like multipoles is
accepted. The underlying physical assumption is that the electrostatic
interaction is the dominant attractive component of the intermolecular
potential determining the angular shape of the dimer, while short-range
forces are assumed to provide a repulsive uniform background balancing
attraction at the VdWminimum.Monomer size enters themodel through
rule 7, which corrects for deviation from uniform repulsion when steric
interactions occur below the sum of the respective VdW radii.10

Figures 5.7 and 5.8 sketch a picture of the first two permanent electric
moments (au) for a selectionof noncentrosymmetric and centrosymmetric
molecules, respectively. The notation is the same as that given in Mag-
nasco et al. (1988). It is understood that the point-like multipoles are
placed at the centre of mass of the molecule, their sign in relation to the
molecular structure of the monomer being of fundamental importance in
determining the nature of the electrostatic interaction (attractive or
repulsive). The numbers shown in each figure are from SCF calculations
and so are little larger than those given in Table 5.2.

9 This s, p definition, strictly correct for dipoles, is here loosely extended to higher multipoles

with m ¼ 0.
10 Provided this situation is avoided, the exact value of the intermolecular distance R is not

particularly relevant for the qualitative prediction of the angular shapes of the dimers.
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In the figures, a pictorial representation is given of the angular shape of the
molecular multipoles in terms of a polar diagram schematically close to that
of the corresponding atomic orbitals of quantum number l (white for the
positive lobe, dashed for the negative lobe) given in Figure 1.1 of Chapter 1.
For H2O and C2H4 both nonvanishing quadrupole moments are given in

thefigures, tooutline thegreater importanceofm22 � mx2�y2 forH2O,and the
similar importance, and the different sign, of m20ð¼ mzzÞ and m22 for C2H4.
As an example of the operative use of the model, a classification of the

first few multipole interactions with their relative stability for some
selected shapes of VdW dimers is given in Figure 5.9. The interactions
are classified according to rule 2 into attractive (a) or repulsive (r), (0)
denoting the case when the interaction vanishes by symmetry. Stability is

Figure 5.7 The first two permanent electric moments of some noncentrosymmetric
molecules
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classified according to rules 3–7. It should be clear that the model can be
used only to predict stability of sufficiently symmetric configurations.
A total of 69 angular geometries of 35VdWdimers, classified according

to a tabulation like that illustrated in Figure 5.9, are collected in Table 5.4
and compared, when possible, with geometries resulting from
experiment, mostly by IR or microwave rotational spectra, or molecular
beam electric resonance spectra.
In the table, and also elsewhere in the present chapter, we use the

notation H-bonded to specify a structure bound by a hydrogen bond, and
anti-H-bonded to specify a structure where VdW binding is opposite to
that of a hydrogen bond.
We see from the table that themost stable angular geometries predicted

by themodel agree almost perfectlywith experiment. In a few cases, as for

Figure 5.8 Thefirst permanent electricmoments of some centrosymmetricmolecules
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the linear dimers (HF)2, (H2O)2 and H2O�HF; the experimentally
observed geometries are somewhat intermediate between the two specific
(symmetrical) structures given in the table.
It is of some interest to compare the different structures resulting from

linear monomers: (HF)2 (bent) and (HCN)2 (collinear). In both dimers,
the observed intermolecular separations11 are such that rule 7 is ineffec-
tive, even for the collinear structure of (HCN)2, where steric effects might
be expected to be important. As already seen in Section 5.2.1 and

Figure 5.9 Classification of the first few multipole interactions and stability of the
resultant angular geometries of some dimers. Reprinted from Journal of Molecular
Structure: THEOCHEM, 204, Magnasco, V. et al., A model for the elementary
prediction of the angular shape of Van derWaals dimers. 229–246, Copyright (1990),
with permission from Elsevier

11 5.09a0 for (HF)2 (Howard et al., 1984) and 8.29a0 for (HCN)2 (Legon et al., 1977).
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Table 5.4 Comparison of the model structural predictions with experiment. Rep-
rinted from Journal of Molecular Structure: THEOCHEM, 204, Magnasco, V. et al.,
Amodel for the elementary prediction of the angular shape of Van der Waals dimers.
229–246, Copyright (1990), with permission from Elsevier

a Howard et al. (1984); b Legon et al. (1977); c Dyke and Muenter (1974);d Kisiel et al. (1982).
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Table 5.4 (Continued)

e Legon et al. (1981); Legon, Soper et al. (1980, 1981); Soper et al. (1981); Goodwin and Legon

(1984); f Legon, Millen et al. (1980); Legon et al. (1982).
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Table 5.4 (Continued)

g Howard, unpublished; h Read and Flygare (1982); i Peterson and Klemperer (1984a); j Fraser
et al. (1984a).
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Table 5.4 (Continued)

k Baiocchi et al. (1981); l Leopold et al. (1984); m Peterson and Klemperer (1984b); n Fraser et al.
(1984b); o Gegenbach et al. (1974); p Long et al. (1973).
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Table 5.4 (Continued)

q Soper et al. (1982); Altman et al. (1983); r Goodwin and Legon (1985); s Shea and Flygare

(1982); Aldrich et al. (1981); Kukolich et al. (1983).
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Figure 5.4(a), strong ss dipole–dipole attraction ðR�3Þwould favour the
collinear H-bonded structure HF�HF, which is however destabilized by
the quadrupole–quadrupole repulsion (R–5, Figure 5.4c). In the collinear
configuration, the mixed dipole–quadrupole attraction ðR�4Þ exactly
compensates the quadrupole–dipole repulsion (R–4, Figure 5.4b). The
L-shaped bent configuration is favoured by ps quadrupole-dipole ðR�4Þ
and quadrupole–quadrupole ðR�5Þ attractions, with the other compo-
nents vanishing by symmetry. As a result of these competing effects, the
bent structure of Figure 5.4(d) is observed, in qualitative agreement with
experiment (Howard et al., 1984).
On the other hand, the collinear H-bonded structure is the more stable

for (HCN)2 (Legon et al., 1977). This is due, first, to the larger value of the
dipolemoment forHCN,about twice that ofHF, increasingdipole–dipole
attraction, and, second, to the larger intermolecular separation, due to the
large size of the monomers, which results in a faster decay with R of the
quadrupole–quadrupole interaction (repulsive in the linear case, attrac-
tive in the bent form).These examples show that themodelmust always be
handled with care before sound theoretical predictions can be made.
NH3 gives complexes with a C3v pyramidal structure with HF

(Figure 5.1f), HCl andHCN, all bound by aH-bond to the nitrogen atom,
complexes ofC3v symmetrywithF2 andofCs symmetrywithN2.The latter
behaviour depends on F2 being a positive and N2 a negative quadrupole.
For complexes between C2H2 and HF, the model correctly predicts the

T-shaped C2 structure of the dimer (Figure 5.1e), having the proton of the
proton-donor HFmolecule directly H-bonded to the p bond of acetylene,
bemore stable than the linear C¥v structure, where acetylene would act as
proton donor in forming a H-bonded structure with the s lone pair of
fluorine. In the first case, in fact, both quadrupole-dipole ðR�4Þ and
quadrupole-quadrupole ðR�5Þps interactions are attractive.
The anti-H-bonded structure of the complexes

CO2�XHnðX ¼ NC; O; NÞ (Baiocchi et al., 1981; Leopold et al.,
1984; Peterson and Klemperer, 1984b; Fraser et al., 1984b) follows
directly from postulate 7. The corresponding electrostatically possible
H-bonded structures are highly destabilized by the strong steric repulsions
occurring when the intermolecular separation decreases below the sum of
the VdW radii of the monomers. On the contrary, in CO2�HF the
intermolecular separation ð7:47 a0Þ is large enough to avoid severe steric
repulsions, thereby allowing the linear H-bonded structure of Figure 5.1g
to be the most stable.
Finally, we observe that the electrostatic model, characterizing

centrosymmetric molecules by their (first) quadrupole moment alone,
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necessarily predicts for the corresponding homodimers that stability
increases in the order linear (L) <parallel (P)< canted parallel (CP)<
T-shaped configurations. This order directly follows from the
quadrupole–quadrupole interaction in its various form. While this is
true for (H2)2 (Gegenbach et al., 1974; Long et al., 1973) and (N2)2, the
inversion in stability between the last two structures, expected for (F2)2
and its higher homologues (Buckingham and Fowler, 1983), but not
experimentally observed as yet, would only be possible by taking the
next moment (the hexadecapole, large for F2) into account. A CP con-
figuration was in fact found to be stable for (C2H2)2 in terms of a
spheroidal quadrupole interaction mimicking quicker convergence of the
multipole expansion (Aubert-Fr�econ, 1978a, 1978b).While the linear (L)
structure is always unstable for homodimers of quadrupolarmolecules, in
the N2�F2 heterodimer this structure is expected to be stabilized by the
opposite sign of the quadrupole moments of the two molecules.
The formation of T-shaped complexes between C2H4 and HX mole-

cules (Shea and Flygare, 1982; Aldrich et al., 1981; Kukolich et al., 1983),
where HX is bound by a H-bond perpendicular to the molecular plane of
ethylene having the p bond of the olefin as proton acceptor, is favoured by
attractive quadrupole-dipole ðR�4Þ and quadrupole–quadrupole ðR�5Þ
interactions, those involving the out-of-plane quadrupole moment of
ethylene ðmx2�y2Þ being particularly large (Figure 5.8). For the ethylene
homodimer, a similar T-shaped structure, with one of the ethylene units
twisted by 90� out of the molecular plane, is predicted by the model, in
agreement with the results of ab initio calculations (Alberts et al., 1988).
This is whatwe expect fromourmodel in viewof the prevalent favourable
attraction between the large out-of-plane quadrupolemoments of the two
ethylene molecules. A similar structure is expected for the benzene dimer
(Janda et al., 1975; Pawliszyn et al., 1984).
So,weconclude thatourelectrostaticmodel, althoughsimple, is capable

of reasonably accurate qualitative predictions which may be confidently
used, even for cases not yet theoretically or experimentally studied.

5.4 THE Rg–HF HETERODIMERS

Lastly, we turn to consideration of the Rg�HF heterodimers (the
atom�diatomic molecule system of the right-hand side of Figure 5.2),
where a crucial role is played by the induction interaction occurring
between the higher multipole moments of HF and the induced dipoles
originating the polarizability of the rare gas (Magnasco et al., 1989a).
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Since atom A (Rg) has no permanent electric moments, the expanded
electrostatic interaction energy and the polarization of HF by Rg are both
zero:

E1ðesÞ ¼ Eind
2 ðRg polarizes HFÞ ¼ 0 ð5:13Þ

In this case, the possibility of forming a hydrogen bond comes from
second-order induction (polarization of the Rg atom by the permanent
electric moments of HF) and dispersion (the mutual interaction between
fluctuating induced moments on both partners).
As far as induction is concerned, the leading R�6 term describing

polarizationof aRgatomby thedipolarHFmolecule as givenbyEquation
(4.63) of Chapter 4:

E2
indð6Þ ¼ �aRgðm1

HFÞ2
R6

3cos2uþ 1

2
ð5:14Þ

cannot discriminate between H-bonded ðu ¼ 180�Þ and anti-H-bonded
ðu ¼ 0�Þ structures, giving in both cases:

E2
indð6Þ ¼ �2

aRgðm1
HFÞ2

R6
ð5:15Þ

The next term in R�7, implying further polarization of the Rg atom by
the mixed dipole–quadrupole moments of HF, contains a cos3u term:

E2
indð7Þ ¼ 3 aRg m1

HFm2
HF

R7
cos3u ð5:16Þ

which stabilizes the H-bonded structure Rg�HFðu ¼ 180�Þ, so that we
can properly speak of formation of a H-bond between Rg and HF.
The same is true for dispersion,whose first two terms inCasimir–Polder

form (Magnasco, 2007, 2009a) are:

Edisp
2 ð6Þ¼� 1

2pR6

ð¥
0

du½6aRgðiuÞaHFðiuÞþð3cos2u�1ÞaRgðiuÞDaHFðiuÞ�

ð5:17Þ

Edisp
2 ð7Þ¼ 1

2pR7

ð¥
0

duaRgðiuÞ cos3uaHF
210ðiuÞþ

ffiffiffi
3

p

3
ð3�2cos2uÞcosuaHF

211ðiuÞ
" #

ð5:18Þ
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withEquation (5.17) unable to distinguish between the two structures and
Equation (5.18) stabilizing the H-bonded form ðu¼180�Þ. In Equation
(5.18), aHF

210ðiuÞ and aHF
211ðiuÞ are the nonvanishing mixed quadrupole–

dipole frequency-dependent polarizabilities (FDPs) of HF. A more de-
tailed analysis in Magnasco et al. (1989a) shows further that, even if
smaller in absolute value than dispersion, induction has a larger angular
change than dispersion, being therefore the main contributor to the shape
of such H-bonded dimers.
From the data reported in this work, we obtain Table 5.5, which gives

the relative stability D of H-bonded with respect to anti-H-bonded
structures in thewhole series of heterodimers.Thedistances for the heavier
rare gases (Ar, Kr, Xe) are those given by Hutson and Howard (1982) for
the well depths of the potentials at the absolute minima of the H-bonded
structures. The experimental values of the dipole polarizabilities a of the
Rg gases taken from Sold�an et al. (2001) are given in the second column of
the table. It is seen that the stability of the H-bonded structures increases
with the dipole polarizability of the heavier rare gases.

Table 5.5 Dipole polarizabilities a and relative stabilities D of H-bonded with
respect to anti-H bonded structures in Rg-HF interactions (atomic units)

Rg a=a30 R/a0 D/10�6Eh

He 1.38 7.00 46.8
Ne 2.67 7.25 60.8
Ar 11.08 6.41 396.7
Kr 16.71 6.65 456.3
Xe 27.16 7.01 515.8
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dynamic (frequency-dependent

FDPs), 155, 166, 198, 199

static, 155, 156, 158, 165, 166,

181, 199

polyene chain,

closed, 123–126, 135

linear (open), 120–121, 131–133

population analysis, 17

projectors, 7, 8

pseudoeigenvalue equation, 5

pseudosecular equation, 5, 31, 55

pseudospectra, 165, 166

pseudostates, 15, 152, 155, 161,

165, 166

Rayleigh,

functional, 12

ratio, 12

variational principle, 12

Rg-HF heterodimers, 197–199

RS perturbation theory,

elements of, 149–151

first-order energy, 151, 152

second-order energy, 151–153

rules for bonding,

chemical, 148

van der Waals (VdW), 148

Schmidt orthogonalization, 14, 74,

109

Schroedinger equation, 11
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secular equation, 3, 13, 39, 62, 65, 68,

72, 76, 77, 82, 88, 91, 98, 99, 100,

102, 104

semiconductors, 141

Slater orbitals (STOs), 11, 19, 24,

44, 72, 74

solids,

band gap, 133, 136, 139, 140, 141,

142, 143

band theory, 131–133

Brillouin zones, 136, 137

conductors (metals), 139, 140

covalent (insulators), 139, 140

d-band in bcc iron, 137, 138

density of states, 133–135, 137, 138

Fermi level, 133, 136, 137, 140,

141, 143

semiconductors, 141

superconductors, 142

spin, 17, 19, 20, 100, 102, 106, 107

sum-over-pseudostates, 15

superconductors, 142

systems of linear equations,

homogeneous, 3, 4, 101, 105,

110–117

inhomogeneous, 3

trigonometric relations, 63, 85, 94,

109–110

two-state model, 157–159

integral, 151

moments, 14, 155, 158

transition,

densities, 153

dipoles, 155

unitary transformation, 14

UV,

ionization potentials, 49, 70

photoelectron spectra, 48, 49, 70

van derWaals (VdW) interactions, 36,

148, 159, 167

variational principles, 12–15
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