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Abstract 

 

Mathematical programming (MP) can be used for developing 

classification models for the two–group classification problem. An MP 

model can be used to generate a discriminant function that separates the 

observations in a training sample of known group membership into the 

specified groups optimally in terms of a group separation criterion. The 

simplest models for MP discriminant analysis are linear programming 

models in which the group separation measure is generally based on the 

deviations of misclassified observations from the discriminant function. 

MP discriminant analysis models have been tested extensively over the 

last 30 years in developing classifiers for the two–group classification 

problem. However, in the comparative studies that have included MP 

models for classifier development, the MP discriminant analysis models 

either lack appropriate normalisation constraints or they do not use the 

proper data transformation. In addition, these studies have generally been 

based on relatively small datasets. This thesis investigates the development 

of MP discriminant analysis models that incorporate appropriate 

normalisation constraints and data transformations. These MP models are 

tested on binary classification problems, with an emphasis on credit scoring 

problems, particularly application scoring, i.e. a two–group classification 

problem concerned with distinguishing between good and bad applicants for 

credit based on information from application forms and other relevant data. 

The performance of these MP models is compared with the performance of 

statistical techniques and machine learning methods and it is shown that MP 

discriminant analysis models can be useful tools for developing classifiers.  

Another topic covered in this thesis is feature selection. In order to make 

classification models easier to understand, it is desirable to develop 

parsimonious classification models with a limited number of features. 

Features should ideally be selected based on their impact on classification 

accuracy. Although MP discriminant analysis models can be extended for 

feature selection based on classification accuracy, there are computational 

difficulties in applying these models to large datasets. A new MP heuristic 

for selecting features is suggested based on a feature selection MP 

discriminant analysis model in which maximisation of classification 

accuracy is the objective. The results of the heuristic are promising in 

comparison with other feature selection methods. 



 III 

Classifiers should ideally be developed from datasets with 

approximately the same number of observations in each class, but in practice 

classifiers must often be developed from imbalanced datasets. New MP 

formulations are proposed to overcome the difficulties associated with 

generating discriminant functions from imbalanced datasets. These 

formulations are tested using datasets from financial institutions and the 

performance of the MP-generated classifiers is compared with classifiers 

generated by other methods. Finally, the ordinal classification problem is 

considered. MP methods for the ordinal classification problem are outlined 

and a new MP formulation is tested on a small dataset. 
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Chapter 1 

 

1. Introduction 
 

1.1 The classification problem  

Patterns are considered to be the means by which the world can be 

interpreted. Based on this idea, people are able to read a book and recognise 

every character or image included in the pages. This ability is based on 

knowledge gained by experience in reading these same characters or seeing 

similar pictures. Using similar rules (or experience) people are able to 

discriminate between different colours, sizes, faces, etc. This concept 

initiated scientists to develop methods to solve other types of problems, such 

as discrimination between benign and malignant tumors (e.g. Mangasarian, 

1965) the detection of fraudulent transactions, (e.g. Brause et al, 1999) and 

discrimination between bad and good payers, e.g. Thomas et al (2002). All 

these problems are set under the general label of classification. Specifically, 

in classification the aim is to assign observations into a number of pre-

specified classes so that the objects in the same class are similar to one 

another (Gordon, 1981). After learning these patterns a model is used to 

classify new examples.  

The process of classification from a model development aspect consists 

of several steps: data collection, data preprocessing, feature selection, 

classifier development, and assessment of the results. Data collection is very 

important because data quality affects the quality of the results. The GIGO 

(Garbage In Garbage Out) principle characterises classification problems 

because the final results depend on the data used as inputs to the process. So 

before using the data it is important to apply some preprocessing actions 

such as data transformation, sampling or feature selection. The latter action 

is used in making the classifier more flexible and possibly more accurate 

when applied to different data than the data used in the development. When 

assessing the results it becomes important to use the most appropriate 

criterion depending on the nature of the problem as some measurements are 

less accurate under some data conditions such as imbalanced class sizes. The 

whole process is iterative partially or overall, e.g. feature selection can be 

repeated several times untill the optimal subset is found, and also some of 

the steps can be missed.  
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There are many methods from statistics, machine learning and 

operational research that have been used for developing classifiers. 

Mathematical programming is one of the areas that have offered many tools 

in classification; however it has not been investigated properly, e.g. Baesens 

(2003). The main focus of this thesis is to investigate the use of the 

mathematical programming methods in constructing classifiers for binary 

and ordinal classification problems and also to propose solutions to 

inefficiencies in the mathematical programming approach. The ordinal 

classification problem is similar to the binary classification problem 

although the dependent variable is defined in an ordinal scale.  

Classification is relevant to a large range of problems such as cell tissue 

analysis, e.g. Sun and Xiong (2003), heart disease, marketing, and diabetes, 

e.g. Adams and Hand (1999). An area that has received much attention 

during the last three decades is credit scoring. In credit scoring, lenders use 

data from previous borrowers in order to discriminate between customers 

that might go bad (miss a number of consecutive payments) and good (who 

will not). This approach is used for a range of different products such as 

credit cards, auto loans, personal loans, small business loans and mortgages. 

In this thesis, the performance of mathematical programming methods for 

classification problems will be investigated through the use of credit data 

from different sources and products.  

 

1.2 The Credit Risk Assessment Problem 

The credit environment has changed radically in recent years. The lender 

community has changed by the appearance of new players in the market 

such as super-market chains and peer-to-peer lending websites and the 

debtor community has changed after the credit crunch, as a result the 

circumstances of lending in general have changed. The process of granting 

credit also has changed with the adoption of new techniques that are more 

sophisticated and less subjective. These changes in combination with the 

increased competition, the drive for diversification and liquidity, and 

regulatory changes such as risk-based capital requirements, (Basel, 2006a) 

have stimulated the development of many innovative ways to manage credit 

risk in the financial environment (Basel, 2006b). In this category of 

innovative ways is included the adoption of a score-based approach helping 

lenders to quantify the risk related to lending to individuals or small-medium 

sized companies. This score-based approach, known as credit scoring, uses 
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methods from different fields such as statistics, operational research and 

machine learning and tries to build models able to predict the future 

behaviour of applicants. However, some methods have not had as much 

attention as others. Specifically, mathematical programming based models 

have not been examined as thoroughly as other methods such as logistic 

regression or neural networks. This thesis tries to cover this gap by studying 

the performance of mathematical programming models in credit scoring and 

related fields.  

A first definition given for credit scoring can be found in Lewis (1992): 

“Credit scoring is a process whereby some information about a future or 

current customer is converted into numbers that are then combined to form a 

score”. From the definition it can be seen that scoring is related to two types 

of decisions that firms who lend to consumers have to make. Firstly, the 

firms should decide whether or not to grant credit to a new applicant. 

Methods used for decisions of this type are known as application scoring. 

The second type of decision is how to deal with existing customers; 

decisions such as whether to increase the credit limit, or to make a new offer 

to an existing customer, are very common for the credit risk departments of 

a bank. Methods used for this kind of decisions are known as behavioural 

scoring (e.g. Thomas, 2000; Thomas et al, 2002). This thesis is concerned 

with the development of models for application scoring; but it will also look 

in fields strongly related to credit scoring such as fraud scoring, i.e. models 

that rank applicants according to the likelihood their application or 

transactions may be fraudulent. 

The idea of credit scoring is to use data on past applicants to rank 

current applicants in order of likelihood of default. Any information that 

could improve the prediction of default should be considered such as data 

from credit bureaus, which were developed to pool data on the performance 

of individual consumers with different lenders and to check official 

documents to obtain further information on the applicant. Because past data 

are used to explain future behaviour, credit scoring is very sensitive to the 

data used to develop the models. One of the most important issues in 

developing credit scoring models is the selection of features used in the 

model.  

This thesis is concerned with the development of credit scorecards using 

mathematical programming methods and addresses other related issues in 

scorecard development such as feature selection, calibration and the problem 



 4 

of imbalanced datasets. These issues are important in the credit classification 

problem because in big portfolios minimising the number of variables used 

in a scorecard, or improving the predictive ability of the scorecard means 

important cost reductions in data storage, or fewer losses. Also these issues 

provide evidence for the usefulness of mathematical programming models in 

credit scoring. Apart from examining the usefulness of mathematical 

programming in application scoring, its use in related fields such as fraud 

scoring is also discussed.  

 

1.3 Contributions  

The main contributions and research questions of this thesis are listed 

below. 

  

1.3.1 Using mathematical programming models in credit scoring  

Mathematical programming (MP) has been used in many fields with 

great success, e.g. planning production, engineering design, portfolio 

management (Williams, 1999) but has received little attention from credit 

decision makers. Indeed even when MP-based methods have been tested, 

this was done either using small datasets, e.g. Ziari et al (1995) or using a 

simple linear programming classification model without providing specific 

details about the structure of the model, e.g. Baesens (2003). In Chapter 3 

the performance of MP models is examined and a comparison with other 

commonly used methods, e.g. logistic regression, neural networks, 

classification trees is made. Six datasets (four publicly available and two 

datasets from financial institutions) are used to set up these experiments, 

each representing different sizes.  

 

1.3.2 Mathematical programming-based feature selection heuristic 

The fact that many organisations have created databases consisting of 

millions of gigabytes of data has made essential the need to identify relevant 

and irrelevant factors. It is essential to have tools that can help decision 

makers focus on the most relevant features for use in representing the data. 

In chapter 4 two MP-based heuristics for feature selection are presented and 

are tested in three credit scoring datasets (two publicly available and one 

from a financial institution).  
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1.3.3 The effect of imbalanced datasets on the performance of classifiers 

A very common characteristic of datasets in credit scoring is that the bad 

class represents a small portion of the whole dataset, e.g. 8-10%. As a result 

the classifiers are heavily affected by the good class that represents the 

majority class. This is important considering the fact that bad cases cost 

more to the lenders, i.e. it is more expensive to accept a bad customer than 

reject a good customer. The use of imbalanced datasets when training a 

classifier also affects the performance measurements used to assess the 

classifiers, e.g. error rate is incapable of capturing the different 

misclassification costs. In Chapter 5 the use of mathematical programming 

under imbalanced datasets is investigated and MP-based solutions to 

overcome this problem are suggested. Four datasets (one from fraud scoring 

and three from credit retail portfolios) are used to compare these methods 

with other methods from statistics and machine learning.  

 

1.3.4 Use of MP techniques in credit related fields 

MP based methods can be used in binary or multi-class classification 

problems where the class is usually represented by a nominal variable. 

However, there is also another type of classification problems in which the 

target variable is represented on an ordinal scale. In problems, such as the 

ranking of road projects, e.g. Beuthe and Scannella (2001), or the ranking of 

venture capital projects, e.g. Siskos and Zopounidis (1985), a model for 

ranking the alternatives from most to the least preferable is required. This 

can be achieved using ordinal classification approaches. Ordinal 

classification can be also useful in credit scoring applications, e.g. scorecard 

calibration. In Chapter 6 the ordinal classification problem and its use in 

credit scoring are described. An improvement in an existing MP method for 

ordinal classification problem is proposed along with its implementation in 

the ranking of road projects (due to lack of appropriate credit data). Also the 

performance of an ordinal MP based model that produces nonlinear 

functions assuming monotonicity for the features included in the model is 

investigated. This model has been tested mainly with small or simulated 

datasets, e.g. Zopounidis and Doumpos (1999), so large datasets are used in 

order to test its performance.  
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1.4 Thesis Overview 

This thesis is structured in the following way.  

In Chapter 2 the basic statistical and machine learning methods used in 

classification problems, and more specifically in application scoring, are 

analysed along with their main strengths and deficiencies. MP classification 

methods are also described. The main features of the latter category and the 

benefits from using MP-based methods are also examined. A discussion of 

topics strongly related to the classification problem, such as feature selection 

and imbalanced datasets is also included at the end of this chapter.  

In Chapter 3 the development of a credit scorecard is described in more 

detail, e.g. data transformation, sampling, performance assessment. Other 

related fields of credit scoring are also described such as profit scoring, 

attrition scoring, etc. At the end of this chapter the performance of methods 

considered in Chapter 2 are compared using six credit datasets.  

In Chapter 4 the topic of feature selection is outlined and how it is 

related to classification problems and specifically to credit scoring. Two 

heuristics based on an MP approach are proposed. In order to test these 

heuristics three credit datasets are used and comparisons with other methods 

from the machine learning field are made.  

In Chapter 5 the issue of imbalanced datasets is considered in relation to 

credit and fraud scoring. Difficulties involved in using the most popular 

techniques for developing classifiers, e.g. logistic regression, neural 

networks, on imbalanced datasets are discussed and different approaches for 

dealing with these problems are considered. MP classification methods for 

imbalanced datasets are also examined and ways to overcome the problems 

related to imbalanced classes are suggested. Experiments are performed on a 

fraud scoring dataset and three small-business credit datasets and 

suggestions based on the results are made.  

In Chapter 6 the ordinal classification problem is discussed. The 

performance of a nonlinear MP based model is investigated using large 

datasets and an improvement of the model is suggested. Also, an existing 

MP based method for ordinal classification is discussed and a revised model 

for scorecard calibration is suggested.  

Chapter 7 summarises the conclusions of this study and suggestions for 

further research are outlined.  
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Chapter 2 

 

2. Literature Review 
 

2.1 Introduction  

Classification models are used to assign observations or objects of 

unknown group or class membership into one of a predetermined number of 

groups or classes based on the values of a set of features associated with 

each observation or object, e.g. Duda et al (2001). The features used in a 

classification model may be the natural variables associated with each 

observation, or features may be constructed from the natural variables. A 

wide range of methods from statistics, machine learning and mathematical 

programming can be used to develop classification models. Statistical 

discriminant analysis (Fisher, 1936) was the first formal method proposed 

for developing classification models, and other statistical techniques were 

developed later. Advances in computer technology stimulated the 

development of a number of machine learning methods, which although less 

formal than statistical techniques are increasingly used for classification 

model development (e.g. Hand, 1997). MP methods can also be used for 

classification model development, but MP methods are not as widely used in 

practice as statistical and machine learning methods. The most commonly 

used statistical and machine learning methods for classification model 

development are outlined in sections 2.2 and 2.3, respectively. MP methods 

for classification model development and the limitations of these methods 

are discussed in section 2.4. For simplicity, only the two-class, or binary, 

classification problem will be considered. Finally, areas for research in MP 

discriminant analysis models will be outlined. 

 

2.2 Statistical methods  

Classification models can be developed using a number of statistical 

techniques, particularly linear discriminant analysis, linear regression, 

logistic regression, k-nearest neighbours, classification trees and naïve 

Bayes.  
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2.2.1 Linear Discriminant Analysis 

Fisher (1936) proposed linear discriminant analysis (LDA) as a method 

for classifying observations or objects into one of two mutually exclusive 

and exhaustive groups based on a linear function of a set of independent 

variables associated with each observation or object. The linear function of 

LDA is chosen to maximise a group separation metric. In calculating this 

linear function, the important variables should be identified and the function 

can then be used to allow new observations to be classified as belonging to 

one of the predetermined groups (e.g. Orgler, 1975). 

Consider a two-group discriminant problem in which n features are 

associated with each observation, with x=(x1,x2,…., xn) representing the 

vector of feature values. The objective of LDA is to estimate P(y|x), the 

probability of membership of group y, y=1,2, given feature vector x. It is 

assumed that the covariance matrices for each group are equal, then if S is 

the estimated covariance matrix and μ1 and μ2 are the estimated mean 

feature vectors for groups 1 and 2 respectively, the direction which best 

separates the two groups is given by the vector w, where (e.g. Hand, 1997)

)(
12

1
μμSw  

. An observation with vector of feature values x is then 

classified by considering the function w'x=c, where c is a cutoff value, such 

that if w'x<c the observation is classified as belonging to group 1 and if 

w'x>c the observation is classified as belonging to group 2. In general, the 

cutoff value, c, will depend on the prior probabilities of group membership 

and the costs of misclassifying observations in each group (e.g. Hand, 1997). 

The assumption of equal covariance matrices can be relaxed and a quadratic 

discriminant function generated (e.g. Smith, 1947). 

Discriminant analysis is an easy-to-use method for developing 

classification models, but it is sensitive to the data used and as the 

parameters for each group are unknown, it is necessary to estimate these 

using a sample of observations, e.g. Eisenbeis and Avery (1972), Eisenbeis 

(1977, 1978). LDA was used by Altman (1968) to predict bankruptcy using 

financial ratios and it has also been applied widely in credit scoring, e.g. 

Lane (1972), Apilado et al (1974), Eisenbeis and Avery (1972), Eisenbeis 

(1977, 1978), Reichert et al (1983). Hand (1997) notes that even if some 

assumptions are violated, e.g. categorical data, LDA performs relatively well 

in comparison with other methods, while Baesens et al (2003) demonstrated 

that LDA can outperform quadratic discriminant analysis in credit scoring.  
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2.2.2 Linear Regression 

Linear regression is used to express a dependent variable as a linear 

function of a set of independent variables from a set of observations with 

known values for the dependent and independent variables, e.g. Neter et al 

(1996). The coefficients in the linear regression function are chosen to 

minimise the sum of the squared errors between the actual values of the 

dependent variable and the values predicted by the linear function. For 

example, if the estimated regression coefficient for variable j, j=1,2,….,n, is 

bj and the estimated constant term in the regression function is b0, then if Xij 

represents the value of variable j in observation i, i=1,2,….,m, the predicted 

value, pi, of the dependent variable for observation i is: 

 
pi = b0 + b1Xi1 + .… + bnXin                  i=1,2,…,m. 

 

Linear regression can be applied to binary classification problems such 

as credit scoring by defining the actual values of the dependent variables as 

categorical variables. For example, linear regression might be used in credit 

scoring to express the probability that an applicant for credit will not default 

based on a set of variables or features associated with applicants for credit. 

In this application, pi may represent the predicted probability that applicant i, 

i=1,2,….,m, will not default, with the actual value for the probability of non-

default being 1 if an applicant has not defaulted (i.e. a “good” applicant) and 

0 if an applicant has defaulted (i.e. a “bad” applicant). An obvious weakness 

in using linear regression in binary classification problems is that it can 

produce predicted probabilities that are greater than 1 or less than zero. In 

addition, linear regression is based on the assumption that the dependent 

variable and the residuals are normally distributed, but the values of this 

variable cannot be distributed normally in binary classification problems 

(e.g. Pampel, 2000) as there are only two values for the dependent variable. 

In binary classification problems, linear regression produces models similar 

to those produced by discriminant analysis (e.g. Orgler, 1971). 

Linear regression has been used in the construction of scorecards, i.e. 

credit scoring models, mainly because of its simplicity and the widespread 

availability of appropriate software (Thomas, 2000). For example, Orgler 

(1970) used linear regression to develop a model for evaluating commercial 

loans. However, linear regression will not be used in the model comparisons 

in this thesis because of its underlying assumptions.  
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2.2.3 Logistic Regression 

Logistic regression was developed to address problems in linear 

regression, particularly the assumption that the dependent variable is 

continuous and unrestricted in value, i.e. can take any value in the range –∞ 

to +∞. In logistic regression for the binary classification problem, the 

independent variable is assumed to be linearly related not to the dependent 

variable, i.e. membership or non-membership of a specified class, (as in 

linear regression) but to the natural log of the odds of membership of the 

specified class. Consider the binary classification problem with two classes, 

denoted 0 and 1, and assume there are m observations of known class 

membership, where for observation i, i=1,2,….,m, independent variable j, 

j=1,2,….,n, has value Xij. For observation i, i=1,2,….,m, let yi, with value 0 

or 1, denote its class membership and let pi denote its predicted probability 

of membership of class 1, so that pi/(1–pi) represents the predicted odds of 

membership class of 1. The logistic regression model is then: 

 ln[pi/(1–pi)] = b0 + b1Xi1 + b2Xi2 + …. + bnXin  i=1,2,….,m 

with pi, i=1,2,….,m, given by 

 pi = exp(b0 + b1Xi1 +….+ bnXin)/[1 + exp(b0 + b1Xi1 +….+ bnXin)]. 

where coefficients bj, j=0,1,….,n, are estimated using an iterative procedure 

to maximise the likelihood function 







ni

i

y

i

y

i
ii pp1

1
)1( (e.g. Hand, 1997). 

Unlike parametric methods, e.g. LDA, logistic regression does not 

require assumptions about the population. The main drawback of logistic 

regression is the model parameters must be estimated using an iterative 

maximum likelihood procedure that requires more computations than, for 

example, linear regression (Thomas, 2000), although this problem has been 

reduced by improvements in computing technology. In addition, as with 

linear regression, logistic regression is sensitive to correlated independent 

variables (Thomas, 2000). One of the strengths of logistic regression is that, 

as with discriminant analysis and linear regression, it allows the user to 

identify the features that are good predictors of the dependent variable. It is 

therefore possible to produce a parsimonious model with the same (or better) 

performance as the model containing all the possible features. 

In a comparative study of logistic regression and discriminant analysis, 

Press and Wilson (1978) found that logistic regression outperformed linear 

discriminant analysis, although not by a large amount. In general, logistic 
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regression is a practical and easy-to-use method that can produce good 

results in building classification models. Even though the results of the first 

study which used logistic regression in credit scoring (Wiginton, 1980) were 

poor, the adoption of this technique by the credit industry has been extensive 

and it is now the method most widely used in credit scoring (e.g. Mays, 

1998) with many published applications, e.g. Joanes (1993), Laitinen 

(1999), and Westgaard and Van der Wijst (2001).  

 

2.2.4 Nearest Neighbour Methods 

Nearest neighbour methods, such as the k-nearest neighbour (k-nn) 

method, are nonparametric methods of estimating the probability of class 

membership from a set of values of features associated with an observation 

or object. For example, in the k-nn method, the probability, p(y|x), of 

membership of class y for an observation or object of unknown class with 

vector of feature values x may be given by the proportion of its k nearest 

neighbouring observations of known class membership that belong to class 

y. In the k-nn method, the parameter k, which defines the size, but not the 

shape, of a neighbourhood, and a separation metric for assessing proximity 

must be specified. Euclidean distance or more complex metrics in which 

different weights are attached to each dimension (e.g. Hand and Henley, 

1997) may be used as the separation metric in k-nn methods. 

The k-nn method is suitable for credit scoring (e.g. Hand and Henley, 

1997) and is easy to apply. For example, using the credit scoring notation of 

Hand and Henley (1997), let p(g|x) and p(b|x) be the probability of good or 

bad risk respectively for an applicant with characteristic vector x. For a new 

applicant for credit, let kg and kb, where kb=k–kg, denote the number of good 

and bad cases respectively in the k design-set cases of known good/bad 

status nearest to the new case, as determined by the separation metric. The 

estimates of p(g|x) and p(b|x) are then given by kg/k and kb/k respectively 

and the new cases is classified to class c where kc=max[kg,kb]. The k-nn can 

also be updated as the population of applicants changes and it is fairly easy 

to incorporate misclassification costs (e.g. Hand and Vinciotti, 2003). In 

addition, it is easy to provide reasons for refusing credit, which may be a 

legal requirement, as the neighbours can provide a case-based explanation 

(e.g. Hand and Henley, 1997). However, an appropriate separation metric 

must be specified and, in order to classify a new case, this metric must be 
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used to calculate the separation between the new case and all the cases in the 

design sample. The computational requirements, which will depend on the 

number of cases in the design sample, the number of features associated 

with each case and the form of the separation metric must therefore be taken 

into account in using k-nn methods (e.g. Guyon and Elisseeff, 2003).  

The simplest version of k-nn method, in which each point is assigned to 

the class of its nearest neighbour of known class, i.e. k=1, was used by 

Fogarty and Ireson (1994) in a credit scoring application. Hand  and Henley 

(1997) found that k-nn classifiers compared favourably with linear 

regression, logistic regression, and classification trees in credit scoring, 

 

2.2.5 Naïve Bayes  

The naïve Bayes classifier technique is based on Bayes’ theorem and is 

particularly appropriate when the dimensionality of the feature space is high, 

e.g. Guo et al (2009). For a problem in which a vector x=(x1,x2,….,xn) of n 

features is associated with each observation, naïve Bayes learns the class-

conditional probabilities p(xi|yi) of each categorical variable i, i=1,2,….,n, 

given the class label yi. A new observation with feature vector x is classified 

by using the Bayes’ rule to compute the posterior probability of each class yi 

given the vector of attributes: 

)(
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The basic assumption of naïve Bayes’ classifier is that the variables are 

conditionally independent given the class label, so that: 





n

i

ii yxpyp
1

)|()|(x  

This assumption is considered to be an unrealistic assumption as features are 

generally related in practice. For example, in credit scoring characteristics 

such as income and age are often strongly related. However, it is easy to 

construct a classifier using naïve Bayes because there is no need to learn as 

the model is given a priori. 

Baesens (2003) tested the performance of naïve Bayes using eight credit 

datasets and found that the performance of this method was very poor and 

that it did not compete with any of the other methods in any of the eight 

datasets used in a comparative study.   
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2.2.6 Classification Trees 

A classification tree, or recursive partitioning, is a nonparametric 

classification approach in which observations are split into sets of similar 

class membership using appropriate tests or splitting rules. Classification 

trees can be represented by a tree diagram, such as the binary tree, i.e. a tree 

in which there are two branches at each node other than the terminal nodes, 

as appears in Figure 2.1. The non-terminal nodes, represented by circles, in a 

classification tree specify a test to split observations into different subsets 

and the branches at non-terminal nodes represent the outcomes associated 

with the test. The top node is the root of the tree and a class label is 

associated with each leaf or terminal node (denoted by a square). The 

splitting rules in a classification tree can be based on simple comparisons or 

metrics such as the Kolmogorov-Smirnov statistic (e.g. Thomas et al, 2002). 

The classification and regression tree (CART) proposed by Breiman (1984) 

is an example of a classification tree. 

 
Figure 2.1: Example of Classification Tree (Squares represent possible 

outcomes and circles represent decision nodes) 

 

In using a binary classification tree for credit scoring, a design sample of 

applicants of known default risk is first split into two subsets, where each 

subset is composed of applicants with more similar default risk than the 

x<2

w>3y>1

z>2 s d c
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yes no
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complete set of applicants. Each of these two subsets is then split into two 

using a different splitting rule to generate two more similar subsets in terms 

of default risk. This process of repeatedly splitting subsets of applicants into 

two is repeated until further subdivision does not yield more homogeneous 

subsets, i.e. a terminal node is generated. The tree can then be used to 

classify a new applicant, where for a new applicant with a specified vector 

of feature values, the predicted probability of low risk is given by the 

proportion of good applicants in the subset of the design sample at the 

terminal node associated with this vector of feature values.  

Classification trees are very suitable for use in credit scoring because (i) 

the underlying decision process can be represented in a sequential way 

rather than simultaneously as is the case with other methods, e.g. linear 

discriminant analysis; (ii) it is easy to construct non-linear classifiers; and 

(iii) it is able to handle both categorical and nominal variables. However, 

classification trees can become very large and since most approaches use a 

fixed design or training set, tree redesign may be required as additional data 

become available (Safavian and Landgrebe, 1991). An additional 

disadvantage of classification trees is that continuous variables are implicitly 

discretized by the splitting process, with information lost in this process 

(Dreiseitl and Ohno-Machado, 2002). Classification trees have been found 

to perform reasonably well in a number of comparative credit scoring 

studies, e.g. Srinivasan and Kim (1987), Boyle et al (1992), and Baesens 

(2003).  

 

 

2.3 Machine Learning  

Machine learning methods have been used in many classification tasks, 

e.g. Piramuthu (1999b), Shaw and Gentry (1988), Wang et al (2005). 

Methods such as neural networks, support vector machines and expert 

systems are less restrictive than many statistical methods as they do not 

require assumptions about the data used to build a model. However, these 

methods use a “black-box” approach for classifier construction and since 

information on the steps followed in deriving the weights for each feature is 

not produced, it is generally not possible to provide an interpretation of the 

results. 
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2.3.1 Neural Networks  

A neural network (NN) can be defined as a model of reasoning based on 

the human brain (Negnevitsky, 2002). A NN consists of a number of 

interconnected processors called neurons. A neuron receives input signals 

from its input links, computes an output signal and transmits this signal 

through its output links. An input signal can be raw data or the outputs from 

other neurons. The output signal can be either a final solution to the problem 

or an input to other neurons, Figure 2.2 represents a typical NN where the 

neurons, represented by circles, are connected by links, with each link 

having an associated weight that represents the importance of that link. A 

NN is set through repeated adjustments of these weights.  

 
Figure 2.2: Architecture of a Typical Artificial Neural Network. 

 

In order to build a NN the number of neurons, the method for 

connecting neurons and the learning algorithm must be specified. The 

weights of the network links must then be initialised using a training sample. 

The output at each neuron is determined by computing the output signal 

from the input signals to this neuron. For example, a sign function output is 

determined by calculating the weighted sum of the input signals and 

comparing the result with a threshold value, with output –1 if the weighted 

input is less than the threshold value and output +1 otherwise. Other types of 

functions can also be used, e.g. Negnevitsky, (2002). 

Neural networks have good generalisation capabilities and it is possible 

to learn many different types of function in the middle layers of the network 

Input Layer Middle layer Output layer
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(Piramuthu, 1999a), as a result it is not necessary to specify the relationships 

in the model. It is also easier for this kind of model to identify bad cases, 

e.g. West, 2000. On the other hand, NNs are considered to have poor 

performance when there are irrelevant features or applied to small datasets 

(John et al, 1994). The latter problem is very common when developing a 

scorecard for new products that do not have any previous applicants, so that 

initially it is necessary to work with a small number of observations. 

Neural networks have been used in many business applications (e.g. 

Vellido et al, 1999). The main characteristics of NNs that may make them 

inappropriate for credit scoring are: (i) the inability to identify the relative 

importance of potential input variables; (ii) the long training process; (iii) 

difficulties in interpreting the results produced; and (iv) difficulties in 

deciding the number of hidden units and learning parameters, e.g. learning 

rate (Piramuthu, 1999a, 1999b), although efforts have been made to address 

these issues. For example, Chen and Huang (2003) examined a genetic 

algorithm-based approach to overcome the problem of interpretation, while 

Baesens (2003) investigated methods that can be used to extract rules in 

order to interpret the results from NNs. Nevertheless, NNs have been 

applied in credit scoring, e.g. Arminger et al (1997), Baesens et al (2003), 

Desai et al (1997), Glorfeld and Hardgrave (1996), Limsombunchai et al 

(2005), Piramuthu (1999a), Piramuthu et al (2004), and West (2000) and in 

most of these applications, NNs were reported to perform better than 

standard statistical techniques.  

 

2.3.2 Support Vector Machines  

Support vector machines (SVMs) were first proposed by Vapnik (1995) 

as learning systems for binary classification. SVMs are trained using an 

algorithm from optimisation theory and statistical learning theory to derive a 

separating hyperplane in a high dimensional feature space (Cristianini and 

Shawe-Taylor, 2000). Figure 2.3 represents a simple linearly separable two-

dimensional example in which H is the separating hyperplane and H1 and H2 

are the support vectors, or separating hyperplanes, parallel to H that are as 

far apart as possible, i.e. with maximal margin. SVMs are based on a non-

linear mapping of the problem data into a higher dimension feature space 

(Cristianini and Shawe-Taylor, 2000). However, the learning algorithm may 

be inefficient and SVMs may be difficult to implement as a large number of 
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parameters is required. In addition, small training samples will result in 

overfitting, with poor generalisation ability (Cristianini and Shawe-Taylor, 

2000). The original model proposed by Vapnik was a linear classifier, but 

other types were later proposed in order to improve the accuracy of the 

original model. The main difference of the new models compared to the 

initial model is the function used to map the data into a higher dimensional 

space. New functions were proposed, namely: polynomial, radial basis 

function (RBF) and sigmoid. All these functions transform the original data 

into a higher dimensional space and then the linear classifier is used 

subsequently.    
 

H1 

H 

H2 

margin 

=2/||w|| 

 
Figure 2.3: Maximum-margin Hyperplanes for a Two-class SVM (Solid points 

and open points represent observations of the different classes) 

 

SVMs have been used in a number of credit scoring studies, e.g. Tian and 

Deng (2004), Li et al (2006). Huang et al (2007) reported that SVMs 

performed well in comparison with neural networks, genetic algorithms and 

classification trees in credit scoring..  

 

 

2.3.3 Expert Systems 

An expert system is a computer-based collection of processes, i.e. 

software, which mimics the decision making behavior of a human expert 
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(Thomas et al, 2002). The basic components of an expert system are (i) a 

knowledge base containing domain knowledge as a set of IF-THEN rules; 

(ii) a database for matching against the IF conditions in the knowledge base; 

(iii) an inference engine that connects the rules in the knowledge base with 

the database; and (iv) a user interface. In addition, an expert system may 

include an explanation facility to explain a conclusion and/or the need for 

specific information. Expert systems provide a clear separation of 

knowledge from the processing of this knowledge and as a result can deal 

with incomplete and uncertain data. 

Expert system have been used in credit scoring, e.g. Shaw and Gentry 

(1988), Nikbakht and Tafti (1989), Srinivasan and Ruparel (1990), Pinson 

(1992), Fogarty and Ireson (1993), Michalopoulos et al (2001), Bryant 

(2001) and Metaxiotis and Psarras (2003). The main disadvantages of expert 

systems are (1) substantial computational effort may be required as all rules 

must be considered by the inference engine; (2) rule-based expert systems 

cannot learn from experience; (3) expert systems can be expensive to 

develop and maintain (Metaxiotis and Psarras, 2003); and (4) feature 

selection is based solely on expert knowledge. 

 

2.3.4 Hybrid Methods 

Hybrid methods that combine different techniques have also been 

proposed for classifier development. For example, De Andrés et al (2011) 

proposed a hybrid approach based on fuzzy clustering (Dunn, 1973) and 

multivariate adaptive regression splines (Friedman, 1991). This hybrid 

approach was found to perform better than linear discriminant analysis and 

neural networks on a Spanish bankruptcy dataset, although a limitation of 

this study is that only the five financial ratios proposed by Altman (1968) 

were used in the analysis. Finlay (2011) proposed a boosting method in 

which weak classifiers are combined with increased weight applied 

iteratively to borderline observations, and found that this hybrid approach 

outperformed linear discriminant analysis, logistic regression, a 

classification tree, a neural network and a k-nearest neighbour method on a 

credit scoring dataset. A hybrid method based on a neural network and fuzzy 

logic (Zadeh, 1965) was proposed by Akkoç (2012). This hybrid method 

was found to outperform linear discriminant analysis, logistic regression and 

a neural network on a balanced credit dataset for 2000 customers of a 
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Turkish bank. Because this hybrid method uses fuzzy logic, explanations of 

credit decisions can be obtained. 

 

2.4 Mathematical Programming Methods 

Statistical and machine learning methods have been applied to many 

classification problems, but they may not be appropriate or may not perform 

well in all applications. For example, some statistical methods involve 

restrictive assumptions, while machine learning methods may not be 

appropriate when interpretable results are required. Mathematical 

programming (MP) techniques provide an alternative to statistical and 

machine learning methods for developing classification models. Although 

applications of MP in classification first appeared in the late 1960s and early 

1970s, e.g. Rosen (1965), Mangasarian (1965), Smith (1968) and Grinold 

(1972), wider interest in MP methods for classification model development 

was stimulated by the MP discriminant analysis models proposed by Freed 

and Glover (1981a, 1981b) and Hand (1981). These MP methods can be 

used to develop classification models for multi-group problems (e.g. Freed 

and Glover, 1981b; Gehrlein, 1986), but since most research in this area has 

focused on models for the two-group discriminant problem, the two-group 

problem will be used to illustrate these MP methods. For the two-group 

discriminant problem it will be assumed that the training sample contains m 

observations known to belong to either group 1 (G1) or group 2 (G2), with 

G1G2=Ø, and that each observation consists of the values of n features 

with Xij denoting the value of feature j, j=1,2,….,n, in observation i, 

i=1,2,….,m. MP methods for the two-group discriminant problem are 

concerned with generating a discriminant function that separates the 

observations in a training sample into the two groups so that, as far as 

possible, observations in group 1 and group 2 lie respectively below and 

above the discriminant function, which is defined by a constant term, a0, and 

the coefficient, aj, of feature j, j=1,2,....,n. 

As the initial MP methods for classification model development were 

based on linear programming (LP) discriminant analysis models, these 

methods will be considered first. The use of integer programming (IP) and 

nonlinear programming methods in this area will then be discussed.  
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2.4.1 Linear Programming Based Methods  

The simplest models for MP discriminant analysis are LP models in 

which the group separation measure is based on the deviations of 

misclassified observations from the discriminant function, with 

minimisation of the sum of deviations (MSD) being the most widely used 

objective, e.g. Freed and Glover (1981a). Let di, di0, represent the deviation 

from the discriminant function of observation i, i=1,2,....,m, where di=0 if 

the observation is correctly classified and di>0 if the observation is 

misclassified. Note that if the two groups are linearly separable, the 

minimum sum of deviations is zero and the discriminant function will be a 

separating hyperplane. The basic LP model for generating the MSD 

discriminant function is: 

   Minimise 

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0   0 iG2 (2.1c) 

aj unrestricted, j=0,1,2,....,n; di0, i=1,2,....,m. 

 
A major weakness of the basic MSD formulation (2.1) is that an obvious 

solution is the trivial solution with aj=0, j=0,1,....,n. LP model (2.1) must 

therefore be normalised to prevent such trivial solutions. A simple and 

widely used normalisation method is to set the constant term, a0, in the 

discriminant function to a non-zero value (e.g. Freed and Glover, 1981a). 

However, this standard normalisation does not permit the generation of 

discriminant function that pass through the origin and the coefficients aj, 

j=1,2,....,n, are not invariant under origin shift in the problem data 

(Markowski and Markowski, 1985). Freed and Glover (1986b) demonstrated 

that by constraining coefficients aj, j=1,2,....,n, to sum to a constant, only the 

constant term, a0, in the discriminant function is dependent on the choice of 

origin. However, the MSD model with this normalisation constraint should 

be solved with positive and negative normalisation constants (Glover et al, 

1988) and this model does not permit solutions in which the coefficients aj, 

j=1,2,....,n, sum to zero (Koehler, 1991). A non-linear normalisation 

constraint was proposed by Cavalier et al (1989), but the heuristic method 

used to solve this extended model may not yield the optimal solution. Glen 

(1999) demonstrated that the weaknesses in these normalisation methods can 

be addressed by representing the free variables aj, j=1,2,....,n, by a pair of 
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non-negative variables, ,  and 

jj
aa  with 

 
jjj

aaa  (2.2) 

and constraining the absolute values of the aj, j=1,2,....,n, to sum to a 

constant, e.g. 


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)(  = 1.  (2.3) 

where it is required that for each variable j, j=1,2,....,n, at most one of 



jj
aa   and may be non-zero. By defining two non-negative variables,



jj
aa   and , for each variable aj, j=1,2,....,n, Glen (1999) represented this 

requirement by a set of four constraints for each variable aj, resulting in a 

mixed integer programming (MIP) model for the MSD problem. As each 

variable pair, ,  and 

jj
aa  j=1,2,....,n, forms a special ordered set of type 1 

(SOS1), there may be computational benefits (e.g. Williams, 1993) from 

using the SOS1 representation if an SOS1 resource is provided in the MP 

solver software (Glen, 2006). 

A further weakness of the basic LP model (2.1) is that observations lying 

on the discriminant function are regarded as correctly classified, irrespective 

of their group membership. This problem can be overcome by introducing a 

small rejection interval, with all observations lying in this rejection interval 

regarded as misclassified (e.g. Glen 2001). 

Freed and Glover (1981a) also proposed an alternative LP model for 

generating discriminant functions in which the objective is maximisation of 

the minimum deviation (MMD). Let d denote the minimum deviation of 

observations from the discriminant function, where d0 if all observations 

are correctly classified and d<0 if at least one observation is misclassified. 

The basic LP model for the two-group MMD problem is then: 

Maximise                                      d    (2.4a) 
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d, aj unrestricted, j=0,1,2,....,n 

 As with the MSD model (2.1), the MMD model (2.4) must be 

normalised to prevent trivial solutions, e.g. by normalising for invariance 

under origin shift by representing the free variables aj, j=1,2,....,n, by a pair 

of non-negative variables, 
ja  and 

ja , defined by (2.2) and adding 

constraint (2.3), with additional constraints to ensure that at most one of 
ja  
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and 
ja  may be non-zero. In addition, it may be necessary to define aj, 

j=1,2,....,n, as bounded variables, –UajU, U>0, j=1,2,....,n, to ensure 

bounded solutions (e.g. Freed and Glover, 1986a). An undesirable feature of 

the MMD model is that it is particularly sensitive to outliers in the training 

sample (e.g. Bajgier and Hill, 1982). In an experimental study, Freed and 

Glover (1986a) found that the MMD model did not perform as well as the 

MSD model and statistical discriminant analysis, due mainly to the impact 

of outliers. 

Goal programming (e.g. Charnes and Cooper, 1977) extensions of the 

MSD and MMD models have also been proposed (e.g. Freed and Glover, 

1981b) to allow multiple goals to be considered in LP models for generating 

linear discriminant functions. The different goals are included in the 

objective function with weights assigned to each goal, e.g. to reflect costs 

associated with each goal, but as the results depend on the weight of each 

goal, care is required in assigning weights to individual goals. In some goal 

programming applications, it may be possible to assign weights with the 

help of expert knowledge but, in general, it may be necessary to try different 

sets of weights to find the most appropriate weightings. The difficulty in 

assigning weights is the main drawback of goal programming methods. 

Freed and Glover (1981b) presented goal programming based LP 

discriminant analysis models with two goals, one related to the minimisation 

of deviations of misclassified observations, i.e. a measure of group overlap, 

and the other related to maximisation of deviations of correctly classified 

observations, i.e. a measure of group separation. Similar goal programming 

models were also proposed by Glover et al (1988), Glover (1990) and Lam 

et al (1993). For example, using symbols defined for MSD model (2.1) and 

for observation i, i= 1,2,….,m, let ei, denote the deviation of correctly 

classified observations from the discriminant function and let Hi and Ki 

denote the weight in the objective function associated with correct and 

incorrect classification respectively of observation i, one of the goal 

programming formulations proposed by Freed and Glover (1981b) is:  
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ei , di ≥0, i=1,2,....,m; aj unrestricted, j=0,1,2,....,n 

  

The model above uses in its objective functions two different goals: the 

minimisation of group overlap and the maximisation of the interior 

deviations, i.e. the deviations of correctly classified observations, with 

different weights for each of these goals. These weights are varied according 

to which of these goals is emphasized. In a similar way are defined the other 

models defined by Freed and Glover (1981b).  Freed and Glover (1986a) 

examined the performance of goal programming discriminant analysis 

models, but although the results obtained were promising, these goal 

programming models did not outperform the simple MSD model.  

Retzlaff-Roberts (1996) proposed a model based on the goal 

programming model of Glover et al (1988), but with the ratio of the 

weighted sum of internal deviations, i.e. deviations of correctly classified 

observation, to the weighted sum of external deviations, i.e. deviations of 

misclassified observations, or vice versa, as the objective. As this objective 

is non-linear, the problem is linearised in a manner similar to data 

envelopment analysis (e.g. Charnes et al, 1977) by introducing a constraint 

in which the numerator of this ratio is set to a constant and using 

minimisation of the denominator as the objective function. This constraint 

also has a normalisation role, but as with similar normalisation constraints 

proposed by Glover et al (1988), this normalisation may generate 

discriminant functions solutions that are clearly non-optimal. 

In practice, it is often desirable to develop a classification model with a 

relatively small number of features, e.g. to reduce the cost of data collection 

and storage and to make the model easier to understand. Parsimonious 

models, i.e. models with a limited number of features, may also have better 

classification performance than models that include all the original 

variables. A number of variable selection techniques, such as stepwise 

methods (e.g. Huberty1994), can be used with statistical discriminant 

analysis methods, and one of the main criticisms of early LP discriminant 
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analysis models concerned the lack of a methodology for feature, or 

variable, selection (e.g. Glorfeld and Gaither, 1982). Nath and Jones (1988) 

proposed a jackknife procedure for feature selection in LP discriminant 

analysis models, but as this approach involves running the LP model with 

one observation from the training sample excluded in turn, the 

computational effort may be unacceptable in practice. Glen (1999) 

demonstrated that MSD model (2.1) normalised for invariance under origin 

shift, i.e. by representing each free variable aj, j=1,2,....,n, by non-negative 

variables, ,  and 

jj
aa  as in (2.2), and adding constraint (2.3), can be 

extended to select a specified number, p, 1≤p≤n, of features and generate the 

MSD discriminant function in these p features. For feature selection, define 

a binary variable, γj, for each feature j, j=1,2,….,n, where γj=1 if and only if 

feature j is selected. The conditions associated with this definition of γj can 

be represented by constraints: 

jjj
aa    ≥ 0 j=1,2,….,n (2.6a) 

jjj
aa    ≤ 0 j=1,2,….,n (2.6b) 

where ε is small and positive. The requirement to select p features can then 

be modelled by the constraint: 
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The MSD feature selection is then: 
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jjj
aa    ≥ 0 j=1,2,….,n (2.8e) 

jjj
aa    ≤ 0 j=1,2,….,n (2.8f) 
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  = p  (2.8g) 

α0 unrestricted; 

jj aa  , ≥0, j=1,2,....,n; di0, i=1,2,....,m; γj=0,1, j=1,2,….,n, 

where 

jj aa  , form an SOS1, j=1,2,....,n. MSD feature selection model (2.8) 

can be used to develop parsimonious classification models. 
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2.4.2 Integer Programming 

The MSD and MMD models, or any other LP model that tries to 

optimise a deviation-based metric, attempt indirectly to minimise the 

number of misclassified cases or the total misclassification cost. Instead of 

trying to minimise a metric of this type it is possible to use a MIP 

formulation to directly minimise the total number of misclassified 

observations or maximise classification accuracy, i.e. the number of 

correctly classified observations. Stam (1990) considers this criterion very 

important, as the ultimate goal of classification is to minimise the total 

predicted number of misclassified cases. For the problem of maximising 

classification accuracy in a two-group discriminant problem with m 

observations, define a binary variable βi, i=1,2,….,m, for each observation 

such that βi=1 if observation i is correctly classified and βi=0 otherwise. 

Then defining other symbols as before, the basic form of the MIP model for 

determining the classification accuracy maximizing discriminant function is: 

  Maximise 


m

i
i

1

   (2.9a) 

subject to             



n
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                 M iG1 (2.9b) 
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aj unrestricted, j=0,1,2,....,n; βi=0,1, i=1,2,....,m. 

 
where M, M>0, is large. 

As with the MSD model (2.1), the MIP model (2.9) for maximising 

classification accuracy (MCA) must be normalised to prevent trivial 

solutions, e.g. by normalising for invariance under origin shift by 

representing the free variables aj, j=1,2,....,n, by a pair of non-negative 

variables, ,  and 

jj
aa  defined by (2.2) and adding constraint (2.3), with 

additional constraints to ensure that at most one of 

jj
aa   and may be non-

zero. As observations lying on the discriminant function generated by MIP 

model (2.9) are regarded as correctly classified irrespective of their group 

membership, a small rejection interval can be introduced so that all 

observations lying in this rejection interval are regarded as misclassified 

(e.g. Glen, 2001). By normalising for invariance under origin shift, the MIP 

model (2.9) can be extended for feature selection in a manner similar to the 

MSD feature selection model (2.8). The advantage of the MIP feature 
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selection model is that features are selected on the basis of their contribution 

to classification accuracy. 

The need for a binary variable for each observation creates 

computational problems when trying to apply IP in large datasets because of 

the problems of handling large number of binary variables in the branch and 

bound algorithm of integer programming, e.g. Williams (1999). As a result, 

integer programming models have not been examined extensively in 

classification problems in which large datasets are used, as in credit scoring. 

Stam (1997) argues that it is almost impossible to use standard MP software 

to use MIP models for maximising classification accuracy or minimising 

misclassifications in problems with training samples of more than 100 

observations. For this reason, these MIP models have been tested on small 

real and simulated datasets (e.g. Koehler and Erenguc, 1990; Stam and 

Joachimsthaler, 1990). Although improvements in computing technology 

and algorithmic developments mean that commercial software can be 

applied to larger problems, these MIP models can, in practice, still only be 

applied to relatively small discriminant problems. The MIP approach, 

however, provides a benchmark for evaluating the training sample 

performance of other linear classifiers (Stam and Joachimsthaler, 1990), 

although MIP models may not, depending on the nature of the datasets, 

perform as well as other methods on holdout samples (e.g. Koehler and 

Erenguc, 1990; Stam and Joachimsthaler, 1990). 

Liittschwager and Wang (1978) were among the first to suggest an MIP 

formulation for the binary classification problem. In this formulation, a 

binary variable is defined for each observation and the costs of 

misclassifying an observation in each class must be specified. The MIP 

model for determining the discriminant function that minimises the expected 

total misclassification cost is normalised by introducing two binary variables 

for each feature and adding constraints to ensure that at least one feature has 

a discriminant function coefficient of ±1. An algorithm for solving this MIP 

model was suggested, but this algorithm was only applied to small simulated 

discriminant problems. In practice, it can also be difficult to assess the 

misclassification costs for both classes (e.g. Adams and Hand, 1999). 

Extensions of this model, with different heuristic solution procedures, have 

been proposed (e.g. Banks and Abad, 1994), but there are similar difficulties 

with these models. 
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Bajgier and Hill (1982) proposed a mixed integer goal programming 

formulation for the two-group discriminant problem in which the primary 

goal was concerned with minimising the number of misclassifications and 

the secondary goal was concerned with minimising the sum of exterior 

deviations and maximisation of interior deviations, with different weights 

assigned to each component of the objective function. Choo and Wedley 

(1985) suggested an MIP model for the multi-group discriminant problem, 

but although an application to a two-group discriminant problem is 

described, it appears that only an LP simplification of the MIP model, i.e. 

essentially an MSD model, was used in this application. In discussing their 

results, Choo and Wedley (1985) note that one of the advantages of MP 

discriminant analysis methods over statistical discriminant analysis is that 

constraints can be imposed on the discriminant function coefficients. 

Gehrlein (1986) proposed an MIP model to maximise classification 

accuracy in multi-group discriminant problems by generating either a single 

linear discriminant function with group dependent cutoffs or a separate 

function for each group boundary. The multi-function model requires many 

more constraints than the single function model, but both these approaches 

can only be applied to relatively small problems as a binary variable is 

required for each observation. An alternative multi-group MIP model 

proposed by Wilson (1996) requires more variables and constraints than the 

multi-group MIP model of Gehrlein (1986), but although a hierarchical 

approach can be used to determine each function separately, the model can 

only be applied to relatively small problems. 

A general multicriteria MIP formulation of the two-group discriminant 

problem given by Stam (1990) uses the number of misclassifications and the 

sum of deviations of incorrectly classified observations as criteria. Solutions 

to this multi-objective model are derived for a number of iteratively 

generated criteria weights and the decision maker then chooses a preferred 

solution from a set of selected solutions, but the process involved in 

selecting these different solutions is subjective. The use of secondary goals 

in MIP discriminant analysis models creates problems and it is essential to 

design the models with great care (Stam, 1997). The classification 

performance of four MIP models with secondary goals was examined by 

Pavur et al (1997) using simulated datasets, with the results indicating that 

the choice of secondary goal can have a significant impact on holdout 

sample classification performance 
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Koehler (1991) suggested a genetic algorithm for generating 

discriminant functions that minimise both the number of misclassifications 

and the number of features with non-zero coefficients in the discriminant 

function. This approach produced good results on simulated datasets, but 

there is no guarantee that genetic algorithms, or other heuristic methods, will 

yield the optimal solution. In addition, as simulated datasets cannot 

generally represent the distinctive problem characteristics that are normally 

associated with problems in which there are benefits from developing 

parsimonious classification models, it would be better to test the approach 

on real datasets. 

The main difficulty limiting the application of MIP discriminant 

analysis models in practice is that these models can be only be applied to 

relatively small training samples because a binary variable must be 

associated with each training sample observation. Because of the 

computational difficulties in solving large MIP models, heuristic procedures 

have been suggested for solving variants of the MIP discriminant analysis 

model (e.g. Koehler and Erenguc, 1990; Abad and Banks, 1993; Banks and 

Abad, 1994; Rubin, 1997), but most of these heuristics (e.g. Koehler and 

Erenguc, 1990; Abad and Banks, 1993; Banks and Abad, 1994) have been 

tested on relatively small problems with at most 100 observations in the 

training samples. Although the decomposition based heuristic proposed by 

Rubin (1997) was applied to a training sample with up to 683 observations, 

the classification performance of the classifiers generated by this heuristic 

was not examined.  

Stam and Ragsdale (1992) proposed a two-stage method for minimising 

the number of misclassified observations. In the first stage a simple LP 

model, similar to the MSD model but with a unit classification gap, is used 

to generate a discriminant function. The function generated in the first stage 

is then used to identify observations that are correctly classified and 

observations that are misclassified or lie in the classification gap. In the 

second stage, an MIP model is used to minimise misclassifications in 

observations that the first-stage function identified as misclassified or in the 

classification gap, subject to additional constraints that ensure that 

observations that were correctly classified by the first-stage function remain 

correctly classified. The second-stage MIP model involves fewer binary 

variables than the standard, i.e. single-stage, MIP model as it is not 

necessary to define binary variables for observations that were correctly 
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classified by the first-stage function. Consequently, this two-stage approach 

can be applied to larger training samples than the standard MIP model. 

However, Stam and Ragsdale (1992) note that the training sample 

classification performance, i.e. the apparent hit rate, of the function 

generated by the second-stage MIP model may be worse than the apparent 

hit rate produced by the standard MIP model due to the additional 

constraints in the second-stage model. Indeed, in a comparison of standard 

and two-stage methods on real and simulated datasets, Glen (2006) found 

that the standard MIP model outperformed the two-stage method of Stam 

and Ragsdale (1992). 

The two-stage method proposed by Stam and Ragsdale (1992) can use 

an MSD model in the second stage to generate a classifier. Sueyoshi (1999) 

proposed a similar two-stage approach in which MSD-type models were 

used in the first and second stages. In the first stage, two linear functions 

with non-negative coefficients that sum to one are generated such that only 

correctly classified observations lie above/below these functions. A single 

function with non-negative variable coefficients that sum to one is generated 

in the second stage of this approach. Sueyoshi (1999) argued that this 

approach had similarities with data envelopment analysis (DEA), which was 

first proposed by Charnes et al (1977), and named this two-stage approach 

“DEA-discriminant analysis”, but this terminology is inappropriate as this 

discriminant analysis technique is not based on DEA. A modified version of 

this two-stage approach was later proposed (Sueyoshi, 2001), in which only 

one function is generated at each stage and the requirement that these 

functions have non-negative variable coefficients was removed. Sueyoshi 

(2006) later proposed a similar two-stage approach in which a MIP model 

was used in the second stage to determine functions that minimise 

misclassifications. The first stage of this two-stage approach is used to 

identify an overlap between the two groups of observations and to generate a 

first-stage separation function. A function which minimises the number of 

misclassified observations in the overlap is then generated in the second 

stage. The major weakness of this approach is that observations that are 

correctly classified at the first stage are not considered in the second stage. 

As a consequence, some observations that were correctly classified in the 

first stage may not be correctly classified by the second-stage function. A 

two stage approach is also involved when the results from this two-stage 

approach are used to classify observations. Observations are first classified 
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into group 1, group 2 or the overlap, and then observations in the overlap are 

classified into group 1 or 2. Two attempts are therefore made at classifying 

some observations, biasing the apparent hit rates produced by this two-stage 

approach. These limitations were not recognised by Tsai et al (2009) who 

reported that this two-stage approach outperformed linear discriminant 

analysis, logistic regression and neural networks in predicting default and 

non-default using account and survey data for 281 customers of a Taiwanese 

bank. 

Both internal and external deviations were considered in two-stage MP 

approaches proposed by Lam et al (1996). In the first stage, an LP model is 

used to determine the feature weights that minimise the sum of the interior 

and exterior deviations from the group means of each feature. These weights 

are then used to calculate a score for each observation. In the second stage, 

either an LP model is used to determine the cut-off value that minimises the 

sum of deviations of the scores of misclassified observations from this cut-

off value, or an MIP model is used to determine the cut-off value that 

minimises the number of misclassified observations. However, as a binary 

variable is required for each observation, the second-stage MIP model can 

only be applied to relatively small problems. These two-stage approaches 

were applied to a small credit scoring data set, but the scoring functions 

generated were unstable. In practice, there would be difficulties in using a 

classification model based on either of these approaches. In order to classify 

a new observation, it would be necessary to re-calculate the deviations of its 

feature values from the group means in order to calculate its score. In 

addition, for binary features, i.e. features that can take only two values such 

as 0 and 1, the practical significance of the deviation from the mean value is 

unclear. 

Gehrlein and Wagner (1997) proposed a two-stage cost-based MIP 

approach for credit scoring, with minimisation of misclassification costs 

used as the objective function in the MIP model for the first stage. The 

second-stage MIP model then takes account of the cost of obtaining 

additional information on applicants who are classified as not worthy of 

credit at the first stage. The use of this approach was demonstrated on a 

small problem using different sets of costs. It was argued that this two-stage 

approach can lead to a significant reduction in total costs, but it is clear that 

the approach cannot be applied to large datasets. 
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An iterative method for generating classification accuracy maximising 

discriminant functions in problems with many more observations than can 

be handled by the standard MIP model was developed by Glen (2003). In 

this iterative procedure, an MSD model for the complete set of observations 

is first used to generate a discriminant function. A neighbourhood of 

correctly and incorrectly classified observations, defined by interior and 

external deviations respectively, is then constructed about this discriminant 

function. An MIP model is then used to generate a discriminant function that 

maximises classification accuracy in this neighbourhood of observations, 

subject to constraints that ensure that correctly classified observations 

outside this neighbourhood remain correctly classified. A new 

neighbourhood of correctly and incorrectly classified observations is then 

constructed about this new discriminant function and the MIP model is again 

used to generate a discriminant function that maximises classification 

accuracy in this new neighbourhood, subject to constraints that ensure that 

correctly classified observations outside this new neighbourhood remain 

correctly classified. This process is repeated until there is no improvement in 

the total classification accuracy between successive iterations. This iterative 

procedure, which can be extended for feature selection, was applied to a 

credit scoring dataset with 690 observations with promising results. 

However, this method is computationally intensive as it is necessary to set 

up and run the MIP model several times. 

An iterative dual-based heuristic for minimising misclassifications was 

proposed by Sarkar (2005). In the first stage the dual problem of an IP 

model is solved and outliers identified. Outliers are then deleted in 

subsequent iterations. This approach was applied to credit scoring problems 

with large numbers of observations and the classification performance 

compared with logistic regression, with good results. Sarkar (2005) suggests 

that an advantage of this approach is that the non-zero weights that are 

produced for some features can be used to indicate the most important 

features to include in the classifier. Sundbom (2007) examined the 

performance of this heuristic and concluded that even though the approach 

produced competitive results compared with logistic regression, it is time 

consuming and rather inflexible. In particular, a solution has to be found 

before terminating and only then is it possible to make any adjustment to the 

model. As a number of iterations must be performed, this heuristic can be 

very time consuming.   
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2.4.3 Nonlinear Programming Methods 

The objective functions of the MSD, MMD and MIP discriminant 

analysis models are linear. A more general lp-norm can be adopted as the 

criterion in discriminant analysis, where the lp-norm generally gives rise to a 

nonlinear optimisation problem. Consider a discriminant problem with m 

observations. Defining di, di>0, i=1,2,….,m, as before, i.e. the deviation of 

misclassified observations from the discriminant function then, with other 

symbols defined as before, a general form of the lp-norm discriminant 

problem is: 
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aj unrestricted, j=0,1,2,....,n; di0, i=1,2,....,m. 

 
where parameter p takes a value in the range zero to infinity. As with other 

MP discriminant analysis models, the lp-norm model (2.10) must be 

normalised to prevent trivial solutions. 

Clearly, the lp-norm model (2.10) produces a linear discriminant 

function. Models with p=1, i.e. MSD, and p=∞, i.e. MMD, can be solved 

using linear programming, whereas models with p=0 models can be solved 

using integer programming. For all other values of p, nonlinear 

programming techniques must be used for problem solution. Although only 

external deviations, i.e. the deviations of misclassified observations, are 

considered in lp-norm models such as (2.10), lp-norm methods can be 

extended to include internal deviations. Stam (1997) notes that more weight 

is given to outlying observations as the value of p is increased. An 

advantage of lp-norm methods with p<2, is that robust classifiers can be 

generated even if there are outliers in the training sample (Stam, 1997).  

Stam and Joachimsthaler (1989) examined the classification 

performance of the l1, l1.5, l2, l5 and l∞ models, where the lp-norm model was 

solved using nonlinear programming software, and found that the l1.5 and l2 

objectives produced small improvements in holdout sample classification 

performance in comparison with the l1 and l∞ objectives. However, these 

results were obtained using small simulated datasets. Stam and 

Joachimsthaler (1989) suggest that the best lp-norm should be determined by 
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evaluating different lp-norms, with analysis restricted to 1≤p≤3 and p=∞, but 

in practice it would be computationally expensive to determine the most 

effective lp-norm on large datasets. 

Gallagher et al (1997) developed an integer programming model for 

maximizing the number of correctly classified observations subject to 

nonlinear constraints that approximate restrictions on the misclassification 

probabilities proposed by Anderson (1969). This model incorporates a 

classification gap for observations that are difficult to classify. However, 

some of the constraints associated with the binary variables were not 

included in order to reduce the size of the model, and as a result the 

classification accuracy may be miscalculated. Two linearisations of this 

nonlinear integer programming model were considered and tested on small 

datasets, but although the results seem promising there are computational 

difficulties in the solution procedures and the approach can only be applied 

to small datasets. 

 

2.4.4 Nonlinear Functions 

Nonlinear classifiers may produce better classification performance than 

linear classifiers (e.g. Glen, 2005). Stam and Ragsdale (1990) proposed a 

two-phase procedure for obtaining nonlinear classifiers for binary 

classification problems. In the first phase, an lp-norm model is used to 

generate a linear discriminant function for different values of p. In the 

second phase, the parameters of a nonlinear transformation, such as a 

modified hyperbolic tangent transformation, of each of these linear functions 

are estimated from the linear function’s fitted values by using a maximum 

likelihood method. This approach was tested on two small datasets and 

found to produce results similar to logistic regression. However, this two-

phase procedure involves considerable computational effort as different lp-

norms must be evaluated.  

Duarte Silva and Stam (1994) proposed an MP approach for generating 

nonlinear discriminant functions by introducing quadratic and cross-

products of the original variables as features in MP discriminant analysis 

models. In practice, however, only a limited number of transformations of 

the original variables can be included in the analysis. Banks and Abad 

(1994) proposed a similar method for generating nonlinear discriminant 

functions, but as with the approach proposed by Duarte Silva and Stam 

(1994), the increased number of features results in increased computational 
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time and overfitting the data (Rubin, 1994). In an experimental study of a 

number of MP discriminant analysis models that incorporated quadratic and 

cross-product transformations of the original variables, Wanarat and Pavur 

(1996) concluded that models with second-order terms tend to overfit the 

data and can produce worse results than the simple LP models. Moreover, 

although models that incorporate quadratic and cross-product 

transformations of the original variables offer great flexibility, these models 

do not always produce robust results. Loucopoulos and Pavur (1997) 

compared the performance of two three-group MIP discriminant analysis 

models with second-order terms and concluded there is a need for more 

research to evaluate the performance of these models. 

Classifiers that are nonlinear functions of the original variables can also 

be produced by creating categorical features from the original variables. For 

example, binary features can be generated by defining a threshold level, with 

the binary feature assigned value 1 if the value of the original variable 

exceeds the threshold level and 0 otherwise. Glen (2003) proposed an MP 

method for forming binary features and generating a linear discriminant 

function in these features, but information is lost in forming these binary 

features and the method requires additional computational effort. 

Piecewise-linear functions can approximate nonlinear functions, and MP 

models can be used to generate piecewise-linear discriminant functions, 

resulting in nonlinear classifiers. Glen (2005) developed two MP methods 

for generating piecewise-linear discriminant functions. The first method uses 

MCA as the objective, while the second uses an approach based on MSD. 

The latter is more difficult to formulate because of the difficulty in 

calculating the deviation of some observations from the piecewise-linear 

function. The main disadvantage of these formulations is that more 

constraints and more binary variables and special ordered sets are required 

compared to the standard MCA and MSD models. 

A modified version of the multicriteria additive utility ranking method, 

UTA (utilité additive), of Jacquet-Lagrèze and Siskos (1982) can also be 

used to generate nonlinear discriminant functions composed of a piecewise-

linearisation of each feature’s marginal utility function. In the UTA method, 

an LP model is used to generate an additive piecewise-linear utility function 

from a weak-order preference ranking of a training sample of observations. 

By modifying this LP model to deal with each observation’s group 

membership, rather than its ranking, an additive piecewise-linear 
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discriminant function can be generated. A weakness of UTA-based methods 

for generating discriminant functions (e.g. Jacquet-Lagrèze and Siskos, 

1982; Jacquet-Lagrèze, 1995; Doumpos et al, 2001) is that, as in the UTA 

method, each feature’s marginal utility is assumed to be monotone non-

decreasing, where features with monotone non-increasing marginal utility 

functions must first be transformed to monotone non-decreasing form. In 

practice, as noted by Glen (2008), for some features it may not be clear if the 

marginal utility function is monotone non-decreasing or non-increasing. 

Glen (2008) proposed an MIP model for generating additive piecewise-

linear utility functions where it is not necessary to specify in advance the 

form of the marginal utility function of each feature and demonstrated that 

this MIP model could be extended for feature selection. Although test results 

indicated that this additive utility MIP model may be useful for developing 

nonlinear discriminant functions, these results were obtained on small 

datasets. 

 

2.4.5 Discussion  

MP discriminant analysis methods have advantages over other methods 

for developing classification models. For example, Glover et al (1988) argue 

that the main advantages of MP methods over traditional statistical 

techniques are: 

1. MP methods are free from parametric assumptions of some statistical 

methods, e.g. normal populations, equal covariances matrices.  

2. MP methods can consider classification accuracy directly and can be 

extended to deal with more complex problem formulations, e.g. 

different misclassification costs for each group, and to incorporate 

constraints, e.g. non-negative coefficients.  

3. LP methods, such as the MSD model, are less sensitive to outliers 

because they are based on linear metrics rather than squared metrics.  

4. Different weights can be assigned to different observations or groups of 

observations. 

In spite of these advantages, there have also been criticisms of MP 

discriminant analysis methods, particularly following the paper by Freed and 

Glover (1981a) that stimulated much of the recent research in this area. For 

example, Glorfeld and Gaither (1982) considered the LP formulation as 

simple, unrealistic and lacking facilities, such as variable selection, available 
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with statistical discriminant analysis. Markowski and Markowski (1985) 

noted that neither the LP model of Freed and Glover (1981a) nor the MIP 

model of Bajgier and Hill (1982) was invariant under origin shift, although it 

was later shown that this problem can be addressed by use of an appropriate 

normalisation method (e.g. Freed and Glover, 1986b; Glen, 1999). 

Several studies have compared the performance of MP discriminant 

analysis models with other techniques. For example, Bajgier and Hill (1982) 

compared statistical and MP approaches to the discriminant problem. 

Bajgier and Hill (1982) found that the MP approaches were more effective 

than LDA under certain conditions, such as when there is high overlap 

between groups and the variance-covariance matrices are very unequal, but 

these conclusions are based on analysis of small datasets. Mahmood and 

Lawrence (1987) compared the performance of quadratic and linear 

statistical discriminant analysis, rank discriminant analysis and logistic 

regression to MMD using data for 190 bankrupt and 42 non-bankrupt 

financial institutions. Although Mahmood and Lawrence (1987) found that 

the performance of the non-parametric methods other than MMD was 

similar to the performance of parametric methods, the only MP model 

considered, i.e. the MMD model, has been found to have poor performance 

in other studies e.g. Freed and Glover (1986a), Erenguc and Koehler (1990), 

partly because its results are outlier dependent. Markowski (1990) compared 

the performance of LDA and the MSD model on small two-group 

discriminant problems and reported that not only did LDA produce better 

holdout sample classification performance than the MSD model, but LDA 

achieved better balance in the classification performance in each group. 

The performance of the linear and quadratic statistical discriminant 

analysis and MP discriminant analysis methods was compared by Stam and 

Jones (1990) on two-group problems under different experimental 

conditions. They found that quadratic discriminant analysis tended to give 

best results on both training and holdout samples when the group variances 

are different, while the MIP formulation performed best on both training and 

holdout samples when the group variances are equal, although the results 

were dependent on the size of the small training samples used in the study. 

Lam and Moy (1997) examined the classification performance of five LP 

discriminant analysis models and LDA under two simulated data conditions 

with (i) different number of observations in each group and (ii) outliers. The 

results indicated that the LP methods and LDA tend to be biased towards the 
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larger group, but the LP models outperformed LDA on the outlier 

contaminated datasets. However, the training samples in these studies were 

small, consisting of only 100 observations. 

Baesens et al (2003) compared LDA, logistic regression, k-nearest 

neighbours, neural networks, classification trees, support vector machines 

and the MSD model on eight credit scoring datasets, the largest of which 

contained 11,700 observations, with performance measured by classification 

accuracy and area under the receiver operating characteristic (ROC) curve. It 

was found that a single method did not outperform the other methods on all 

datasets. Although the MSD model performed relatively well in these 

comparative studies, it should be noted that a version of the MSD model 

with a simple normalisation was used. Glen (2006) compared the 

performance of the MSD, MCA and two two-stage MP discriminant analysis 

methods (Stam and Ragsdale, 1992; Sueyoshi, 2001) on one real dataset and 

simulated datasets under six simulated data conditions. The two-stage 

methods generally did not perform as well as the other methods, and, as with 

Baesens et al (2005), it was found that one method did not outperform the 

others under all data conditions. These results suggest that in practice a 

number of methods should be considered in developing classification 

models, with the most suitable approach adopted for a specific problem 

(Glen, 2006). 

 

2.5 Research Issues in MP Discriminant Analysis Methods  

There has been considerable research in MP discriminant analysis 

models, but these models are not as widely used as other methods, 

particularly statistical methods, for developing classification models in spite 

of the benefits of MP-based approaches for classification model 

development. The relatively limited use of MP-based methods is partly due 

to poor communication with developers of classification models, with Stam 

(1997) arguing that there is a particular need for improved interaction with 

researchers in related statistical methods. This problem can be addressed by 

demonstrating the use of MP discriminant analysis methods in developing 

classification models in specific problem domains using relevant datasets. 

Credit scoring is an area of significant practical and theoretical interest (e.g. 

Thomas et al, 2002), which is generally characterised by large datasets. This 



 38 

thesis will focus on the use of MP methods in developing credit scoring 

models. 

Stam (1997) also argued that there was a need for further research to 

address some of the problems associated with MP methods, with variable 

selection identified as an area in which further research is required. There 

has been progress in developing a methodology for variable selection 

through extensions of the MSD and MCA models (Glen, 1999). Ideally 

features should be selected based on their impact on classification accuracy, 

i.e. by extending the MCA model, but since the MIP MCA model requires a 

binary variable for each training sample observation, the variable selection 

MCA model can only be applied to relatively small problems. This thesis 

will develop heuristic variable selection methods based on the MCA model 

to allow MCA-based variable selection methods to be applied to problems 

with a large number of observations. The use of these heuristic methods will 

be demonstrated on credit scoring datasets. 

MP discriminant analysis methods have generally been demonstrated on 

relatively small real or simulated datasets. One of the features of many 

classification problems is that the datasets are imbalanced, with one group 

providing most of the observations. For example, in credit scoring (e.g. 

Thomas et al, 2002), where applicants are classified as good (i.e. unlikely to 

default) or bad (i.e. likely to default) using data from application forms, less 

than 10% of cases are typically classified as bad (e.g. Vinciotti and Hand, 

2003). The degree of class imbalance in the data can be even greater in 

applications such as the identification of fraudulent credit-card transactions, 

where fraudulent cases typically comprise less than 0.2% of total 

transactions (e.g. Brause et al, 1999). If an imbalanced training sample is 

used to develop a classification model, it is likely that the analysis will be 

strongly influenced by the class with most observations. For example, in 

using a discriminant analysis technique to develop a credit scoring model, if 

the training sample has 1% bad cases, then any discriminant function that 

classifies all the cases as good will have 99% classification accuracy on the 

training sample. Ideally the training sample of observations of known class 

membership should contain approximately the same number of observations 

in each class, but in practice it may be difficult to obtain a balanced training 

sample of observations because of the imbalanced nature of the available 

data. Different approaches have been proposed for dealing with imbalanced 

datasets, e.g. over-sampling from the minority class, under-sampling from 
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the majority class or use of different misclassification costs for each class 

(e.g. Japkowicz and Stephen (2002). However, there are difficulties 

associated with pre-processing the data, e.g. over-sampling the minority 

class may lead to overfitting while under-sampling the majority class may 

discard important data. In addition, it can be difficult to determine 

misclassification costs in practice (e.g. Adams and Hand, 1999). The class 

imbalance must also be taken into account in evaluating the performance of 

a classifier. As additional constraints can easily be incorporated in MP 

models, MP discriminant analysis methods offer alternative approaches for 

dealing with imbalanced datasets. This thesis will examine MP methods for 

addressing the problems associated with imbalanced datasets and 

demonstrate the use of these methods in credit scoring applications. 

Most MP discriminant analysis methods generate linear discriminant 

functions. Although there is no guarantee that nonlinear functions will 

necessarily form the basis of better classifiers (Stam, 1997), nonlinear 

classifiers may outperform linear classifiers (e.g. Glen, 2005). Discriminant 

functions that are nonlinear functions of the original variables can be 

developed by first transforming these variables, e.g. to form quadratic and 

cross-product features (Duarte Silva and Stam, 1994), but only a limited 

number of transformations of the original variables can be considered in 

practice. Additive utility based methods (Jacquet-Lagrèze and Siskos, 1982) 

can be used to generate nonlinear discriminant functions formed from 

piecewise-linear approximations of each feature’s marginal utility functions, 

where each marginal utility function is assumed to be monotone non-

decreasing. This weakness of additive utility based discriminant analysis 

methods can be overcome by using an MIP model, rather than an LP model, 

to generate these nonlinear discriminant functions (Glen, 2008), with the 

additional benefit that this MIP additive utility method can be extended for 

feature selection. As with the original LP-based methods (e.g. Jacquet-

Lagrèze, 1995; Zopounidis and Doumpos, 1999), the MIP additive utility 

method has, however, only been applied to relatively small datasets. This 

thesis will examine the performance of the MIP additive utility model on 

large credit scoring datasets. The wider potential for ranking based methods 

in developing classification models will also be investigated. 
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Chapter 3 

 

3. Credit Scoring 

 

3.1 Introduction  

Credit is the promise to pay within some limited time in the future a sum 

of money after services or products have been provided. All financial 

intermediaries who provide credit in any form face the risk of losing the 

capital they lent and the interest they were expecting. In order to quantify 

this risk, i.e. credit risk, credit providers have developed systems known as 

credit scoring, or scorecards, which are used to predict a borrower’s future 

repayment performance using all the available data.  

It is essential for companies that operate as lenders to have methods that 

can help predict if an applicant for credit will return the money in full or not, 

i.e. a “good” or “bad” applicant respectively. Specifically, “good” is usually 

defined as a borrower that keeps making payments to the lender and repays 

the loan, whereas “bad” is defined as a customer that misses a number of 

consecutive payments, e.g. misses three consecutive monthly payments, i.e. 

is more than 90 days past due. There are other reasons for adopting a good 

credit scoring system, including fierce competition and regulatory changes 

(e.g. Basel, 2006b). These factors work as an incentive for making banks 

adopt new techniques that are more sophisticated, more efficient and have 

better predictive accuracy.  

Credit scoring appeared in the late 1960s, largely through the efforts of a 

small company, named Fair and Isaac, (e.g. Poon, 2007) through the 

introduction of application scorecards, i.e. models that combine information 

provided in the application form and credit bureaus, i.e. organisations that 

collect credit related information on individual consumers from a number of 

sources, into a single score. These methods have been used mostly for 

assessing the credit risk in portfolios of products for individuals such as 

mortgages, credit cards and auto loans. However, similar scoring techniques 

can also be used for assessing the credit risk in portfolios of small business 

loans, e.g. Bensic et al (2005). The development of scorecards for SME 

lending has not attracted as much attention as the development of scorecards 

for consumer lending, but under the new Basel II regulations (e.g. Basel, 
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2006b), portfolios of small business loans should be treated in the same way 

as portfolios of products to individuals. Small business credit scoring is 

similar to application scoring, with the score based on information on the 

business, its owner and other relevant data, e.g. Bensic et al (2005). The 

adoption of new methods in assessing the risks in this type of lending has 

been also stimulated by the importance of SME loans for economic growth, 

and the competition among banks and other financial institutions in 

traditional markets.  

Scoring techniques that make use of other types of information have 

also been developed. For example, behavioural scoring (e.g. Thomas, 2000) 

is used to make decisions related to offers, e.g. to increase or decrease the 

credit limit, based on information about the behaviour of existing customers, 

e.g. repayment history, minimum balance, maximum balance, utilisation of 

overdraft. The methods used in behavioural scoring are similar to those used 

in application scoring, but with data updated on a continuing basis in order 

to keep track of the applicant’s status. Attrition scoring, is used to predict the 

probability a customer will start a new relationship with a competitor, and 

follows the same methodology as behavioural scoring because the same 

types of variables are used, with customer profiles updated dynamically. 

Response scoring is used to predict the likelihood of response of a customer 

to a new offer, like a new credit card or a personal loan. Collection scoring 

provides tools in choosing the appropriate strategy for accounts that have 

been bad, e.g. to determine which accounts should be kept, which should be 

written off and which should be allocated to a collection agency (e.g. 

Thomas et al, 2002). These models are used in a later part of the credit cycle 

compared to the application and behavioural scorecards. Another category 

of tools is concerned with the detection of fraudulent or illegal transactions 

of an account based on past information for the account (e.g. Brause et al, 

1999; Viaene et al, 2002; Bolton and Hand, 2002). This category of tools is 

known as fraud scoring.  

This chapter will focus on credit scoring, but although this terminology 

has been used in the context of bankruptcy prediction (e.g. Caouette et al, 

1998), only consumer and small business credit scoring will be considered. 

Procedures for developing scorecards will be outlined in section 3.2. Studies 

that have examined the use of different methods for developing scorecards 

are reviewed in section 3.3. An experimental study that compares different 

methods from statistics, machine learning and mathematical programming 
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on four credit card datasets and one small business loan dataset is described 

in section 3.4. The results from this benchmarking study are reported in 

section 3.5 and conclusions are summarised in section 3.6. 

 

3.2 Constructing a Scorecard 

There are many published studies which describe the use of credit 

scoring, e.g. Hand and Henley (1997), Hand and Jacka (1998), Thomas 

(2000), Thomas et al (2002) and theses e.g. Henley (1996), Andreeva 

(2004), Baesens (2003). In consumer credit scoring, the main sources of 

information are the application form and credit bureaus, which were 

developed to overcome the problem of asymmetrical information, i.e. 

borrowers know much more than lenders about their own ability and 

willingness to repay (Stiglitz and Weiss, 1981).     

Traditionally credit decisions were judgmental and based on the 5 Cs 

(e.g. Lewis, 1992), i.e. character (the willingness to repay debts), capacity 

(the financial ability to repay debts), capital (funds from which payment can 

be made), collateral (assets from which payments might be made) and 

conditions (including the general economic environment and special 

conditions related to the borrower or the type of credit). This traditional 

approach had major problems and deficiencies, e.g. errors by staff 

administering the system, inconsistency in application of credit policies, the 

cost of training and employing staff and the cost of purchasing credit 

reports, that led to the development of automated scorecards (e.g. Capon, 

1982).  

Scorecards are generally built using statistical methods such as 

discriminant analysis (e.g. Lane, 1972) and logistic regression (e.g. 

Wiginton, 1980), although machine learning techniques such as neural 

networks (e.g. West, 2000) and mathematical programming (e.g. Srinivasan, 

1976) have also been used. In developing a scorecard, it is essential to have 

a dataset with sufficient numbers of goods and bads (e.g. Lewis, 1992). In 

order to avoid overfitting and to allow the development of a parsimonious 

classifier, it is generally desirable to use only a subset of the initial set of 

features (e.g. Guyon and Elisseeff, 2003). Before developing the scorecard, 

it is also necessary to transform the data as it is essential to keep consistency 

and avoid outliers. After the scorecard has been developed, its performance 

must be evaluated.   
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3.2.1 Data  

In order to build a credit scorecard it is necessary to have a dataset of 

applicants where the performance of each applicant is known. For each 

applicant there must be a flag indicating whether that specific account is 

“good” or “bad”. For example, customers who miss three or more 

consecutive payments may be considered as “bad”. In addition to this 

performance indicator for each applicant there is also a set of information 

that has been obtained from the application form, e.g. age, annual income, 

marital status, or a credit bureau, e.g. outstanding loans.  

 

3.2.2 Feature Selection 

The initial number of features included in the population is generally 

larger than the number of features that will be included in the final 

scorecard. Problems such as overfitting or poor predicting performance can 

occur if many features are associated with each applicant. Many methods 

have been proposed for overcoming this problem in statistical approaches, 

e.g. stepwise procedures (e.g. Neter et al, 1996) and machine learning 

techniques, e.g. wrappers and filters (e.g. Kohavi and John, 1997).  Methods 

for feature selection in mathematical programming discriminant analysis 

models will be considered in Chapter 4, but in the benchmarking study of 

this chapter it is assumed that the variables included in the datasets used 

represent the optimal set of predictors and no feature selection method is 

used.   

 

3.2.3 Data Transformation 

The datasets used to develop scorecards usually include both numerical 

and categorical data, e.g. the occupation of an applicant for credit may be 

represented by a variable with different numerical values for different 

occupation categories. Categorical data of this type must generally be 

transformed for scorecard development. Although numerical data can be 

used directly in developing a scorecard, it may be desirable to transform 

some numerical data to produce a robust scorecard. For example, if there is a 

wide range of values associated with a feature, e.g. income, the scorecard 

may be very sensitive to outliers if the same weight is attached to all values 

within this range (e.g. Thomas, 2000). Data may also be transformed to 
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accommodate non-linear relationships, e.g. between an applicant’s age and 

the likelihood of default. 

Coarse classification based on weights of evidence (WoE) is widely 

used in credit scoring to construct features from both categorical and 

continuous variables in the original dataset (e.g. Thomas et al, 2002). For 

example, assume that for an original categorical variable k there are L 

possible categories, where category l, l=1,2,….,L, has gkl goods (i.e. non-

defaulting customers) and bkl bads (i.e. defaulting customers) with G and B 

representing the total number of goods and bads respectively. For category l, 

l=1,2,….,L, of original variable k, the weight of evidence Wkl is given by 

Wkl = log(gklB/bklG). 

Coarse classification is then used to construct binary features by 

combining categories with similar weights of evidence, where the similarity 

of weights may be assessed subjectively. Continuous features can also be 

coarse classified by first partitioning the range of values for a continuous 

feature into mutually exclusive categories, e.g. deciles, and then combining 

categories with similar weights of evidence to produce binary features. 

Coarse classification increases the number of binary features to be 

considered, but it is widely used in credit scoring (e.g. Somol et al, 2005). 

 

3.2.4 Performance Measurement 

Several measures have been proposed for assessing the performance of 

scorecards. Among the most popular are accuracy measures and separability 

measures. Both types of measures should be assessed on observations of 

known class membership that were not used to develop the scorecard, i.e. 

performance should be assessed on holdout samples that were not used in 

developing the classifier. Neither of these measures takes account of the 

consequences of misclassification. For example, in credit granting decisions, 

it is generally more costly to give credit to a customer who later defaults 

than not to give credit to a potential customer who would not have defaulted. 

In practice, however, it is often difficult to determine misclassification costs 

(e.g. Adams and Hand, 1999). 

 

3.2.4.1 Accuracy Measures 

Overall accuracy is defined as the ratio of the number of correctly 

classified cases to the number of the total cases. The main weakness of 
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overall accuracy as a performance measure is that it does not take account of 

the relative sizes of the classes. Thus, for example, if 5% of cases are bad, 

then a scorecard that assigns all cases to the good class will have 95% 

overall accuracy, but will fail to take account of the implications of 

misclassifying bad applicants. This weakness can be addressed, at least 

partially, by considering the accuracy in each class. In scorecard 

development, the accuracy in the bad class is the proportion of correctly 

classified bad cases in the total number of bad cases, while the accuracy in 

the good class is the proportion of correctly classified good cases in the total 

number of good cases. 

For a general two-class classification problem, with classes defined as 

positive (e.g. bad) or negative (e.g. good), and a sample of n cases, assume 

that the results, in terms of the number of cases, from a classification model 

are summarized as in the confusion matrix of Table 3.1, where n=a+b+c+d: 

 

Predicted True Class 

Class Positive Negative 

Positive a b 

Negative c d 

Table 3.1: Two-by-Two Confusion Matrix 

 

The following terms can be then defined: 

 True positive rate = a/(a+c) 

 True negative rate = d/(b+d) 

 False positive rate = b/(b+d) 

 False negative rate = c/(a+c) 

Note that sometimes (e.g. Hand, 1997) the true positive rate is termed 

“sensitivity” and true negative rate is termed “specificity”, so that the false 

positive rate is 1–specificity. 

 

3.2.4.2  Separability Measures 

The receiver operating characteristic (ROC) curve (e.g., Bradley, 1997) 

can be used to provide information about the predictive accuracy of the 

model over its entire range of possible threshold values for a specific time 

period (Sobehart et al, 2000). In the ROC curve, the true positive rate (i.e. 

sensitivity) is plotted against the false positive rate (i.e. 1–specificity), with 
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points on the curve given by the results for different threshold values (e.g. 

Figure 3.1). The ROC curve provides an indication of the average 

classification performance of a classifier, but a threshold value must be 

specified in order to make classification decisions. If the classifier could 

perfectly classify, then the ROC curve would connect the points (0,0) and 

(0,1) and then the points (0,1) and (1,1). A random classifier is represented 

by a line at 45 degrees. In practice, ROC curves lie between the perfect and 

random ROC curves, as shown in Figure 3.1.  

 

 
Figure 3.3: The ROC Curve. The diagonal line represents the performance of 

the random classifier.   

 

A measure commonly used for comparing the performance of classifiers 

is the area under the ROC curve (AUC). AUC represents the probability that 

a randomly selected positive case will be classified as positive. Bradley 

(1997) investigated the use of the AUC as a performance measure for 

machine learning algorithms on six real world datasets and concluded that 

there was a good agreement between accuracy and AUC rankings of the 

classification algorithms.  
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3.3 Consumer and Small Business Credit Scoring  

Many studies have examined issues associated with credit scoring for 

both individual consumers and small businesses. Some of the studies 

involving consumer credit will be considered first and this will be followed 

by discussion of a range of studies that focus on small business credit 

scoring. 

  

3.3.1 Consumer Credit Scoring 

Many different techniques have been applied to the problems of granting 

credit to individual consumers. In one of the first studies of consumer credit 

granting, Chatterjee and Barcun (1970) used personal loan data from a New 

York bank and proposed that each applicant for credit should be classified as 

belonging to the class with which there was most in common, i.e. similar to 

nearest neighbour rule. The objective in classifying applicants was to 

minimise the expected loss from the misclassification, with the jackknife 

method used to estimate the classification error rate. Unfortunately, this 

study did not include any comparisons with other methods.      

In one of the first published works which used logistic regression in 

credit decisions, Wiginton (1981) applied logistic regression to credit 

scoring using data from a major oil company and compared the results 

obtained by discriminant analysis and a chance classifier. Only three 

characteristics were used in this study and as the chance classifier 

outperformed logistic regression and discriminant analysis, it was concluded 

that neither of these two methods is appropriate for making classification 

decisions on this dataset. These results may be due to the small number of 

the predictors used (normally a scorecard includes at least eight to fifteen 

features, e.g. Mays 2004) and technical issues, e.g. the effect of changing the 

cutoff value used in discriminant analysis was not investigated. 

Desai et al (1997) used datasets from three credit unions in the 

Southeastern United States for the period 1988 - 1991, to compare the 

performance of logistic regression, linear discriminant analysis and two 

types of neural networks (modular neural networks and multilayer 

perceptron neural networks). These datasets, each consisting of less than 

1,000 observations with 18 variables per observation, were also used to 

compare customised credit scoring models, in which a separate model was 

developed for each credit union, and generic credit scoring models, in which 
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the same models were developed for all three credit unions. It was found 

that the customised neural networks performed well in classifying the bad 

loans, and that the generic models did not perform as well as the customised 

models, especially for the bad loans. 

Henley and Hand (1996) proposed an adjusted Euclidean distance 

metric for a k-nearest neighbour (k-nn) credit scoring method. The 

performance of this k-nn method was compared with logistic regression, 

linear regression, projection-pursuit regression and classification trees on a 

dataset of 19,186 mail-order credit customers, where each observation 

consisted of 16 categorical variables. Using bad rate amongst the accepted 

cases given a fixed acceptance rate as the performance measure, it was 

found that the k-nn method outperformed the other methods. However the 

differences are small and there is no statistical test to confirm if this is 

significant.  

West (2000) compared the performance of five different types of neural 

networks (multilayer perceptron, mixture of experts, radial basis function, 

learning vector quantization, and fuzzy adaptive resonance) with linear 

discriminant analysis, logistic regression, classification trees, and k-nn in 

credit scoring. The comparisons were carried out on the German and the 

Australian credit datasets from the UCI repository (e.g. Frank and Asuncion, 

2010) using a 10-fold cross-validation setup. The results indicated that the 

radial basis function and the mixture of experts performed better than all the 

other methods, but methods for selecting features were not discussed.  

Yobas et al (2000) compared the predictive performance of linear 

discriminant analysis, neural networks, genetic algorithms and classification 

trees on a data set of 1,001 credit card payers composed of 14 variables, 

with classification performance assessed using the leave-one-out and 10-fold 

cross-validation methods. It was found that linear discriminant analysis 

outperformed the other methods, but it was noted that the results were 

affected by the way experiments were conducted, particularly the method of 

data transformation and the degree of class imbalance. 

Baesens (2003) compared the performance of neural networks, linear 

discriminant analysis, quadratic discriminant analysis, naïve Bayes, logistic 

regression, linear programming, support vector machines, decision trees and 

k-nn. There were limitations in this study because it used only the simplest 

linear programming model with basic normalisation, which affected the 

model’s performance. The results indicated that both SVM and neural 
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networks performed relatively well, and that linear programming did not 

perform very well overall.    

Each of these consumer credit scoring studies suggested a different 

method for the construction of the most accurate classifier, although the 

performance differences were not always significant, and this supports the 

flat maximum effect described in Lovie and Lovie (1986). 

 

3.3.2 Small Business Credit Scoring 

Linear discriminant analysis was used by Altman (1968) to produce 

scores, called Z-scores, for predicting bankruptcy of firms based on financial 

ratios. Although this study can be considered as the start of research in the 

application of statistical methods for default prediction, the analysis was 

based on a small sample with 33 bankrupt and 33 non-bankrupt firms. The 

results indicated that discriminant analysis could be used for bankruptcy 

prediction, but that more research was required, e.g. because of the small 

sample. 

One of the first to attempt to build scorecards for small business loans 

was Edmister (1972) who only focused on the selection of the financial 

ratios that could be useful in predicting SME failure. In this study, 

multivariate discriminant analysis was used to develop a model to predict 

small business defaults based on 19 financial ratios from a sample of small 

and medium sized enterprises over the period 1954-1969. It was reported 

that working capital/total assets and net operating income/sales ratios were 

predictive. However, the number of the cases included in the test was very 

small and also there were several restrictions applied in order to extract the 

data, making the final sample biased.  

Srinivasan and Kim (1987) compared four classification models 

(discriminant analysis, logistic regression, goal programming and the 

recursive partitioning algorithm (RPA)), and a judgmental model (the 

analytic hierarchy process) using data for commercial loans, with error rates 

estimated by the bootstrap method. The results indicated that RPA gave 

slightly better results than the other methods. Boyle et al (1992) set up a 

study similar to Srinivasan and Kim (1987) using consumer credit data and 

they found that hybrid methods gave better results. However, the datasets 

used in the experiments were small and there was no data transformation 

similar to the concept of weight of evidence.  
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Leonard (1992) was one of the first to test the predictive ability of 

logistic regression and discriminant analysis models in SME lending. Using 

commercial loan applications from a major Canadian bank, it was shown 

that the benefits that have been obtained in consumer credit are available in 

commercial lending. In this study, loans to firms with assets of less than ten 

million dollars and for loan values of one million dollars or less were 

considered, with 283 applications in total, where 204 were approved and 79 

rejected. This sample was quite small in comparison with consumer lending. 

Another feature of the dataset is that the applications were pooled by 

different areas, with different population bases, types of industry and levels 

of competition. The analysis incorporated 20 different variables, none of 

which included personal details of the owners, so that only “hard” data, e.g. 

financial ratios, balance sheet data, were used. The results indicated that the 

application of credit scoring techniques to small business credit appeared 

promising.       

A credit scoring system for use as a decision support system in small 

business loan departments was proposed by Tsaih et al (2004). The main 

effort in this study was directed at providing a system that would ease the 

complexity involved in developing a credit scoring system that takes 

account of information asymmetry and time required to maintain the system. 

In order to achieve this, a mechanism was developed to update the economic 

environment and information relevant to the firm and its owner. The 

proposed credit scoring model was based on the probit model (e.g. 

Grablowsky and Talley, 1981) and tested using a dataset consisting of 

41,000 small firms, with 6,000 defaulting and 35,000 non-defaulting firms. 

This model also incorporated a number of features related to the owner and 

the financial results of the firm. The method performed well, achieving 80% 

accuracy in defaulting firms, but unfortunately there is not much information 

about the methodology adopted in this study.  

Bensic et al (2005) compared the performance of neural networks, 

logistic regression and classification trees using a dataset of small business 

loans. Although neural networks were found to perform well in this study, it 

should be noted that a very small dataset of credit applicants was used (only 

160 applicants) and that bad cases were defined as 46 days past due (dpd) 

rather than 90 dpd as proposed in Basel II (e.g. Basel, 2006b). Also, there 

was no information about the transformation of the data.  
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In an expansion of the work of Edmister (1972), Altman and Sabato 

(2006) developed statistical models for assessing the creditworthiness of 

SMEs. Logistic regression was used to develop a distress prediction model 

from a large number of relevant financial ratios. This distress prediction 

model was found to have a holdout sample prediction power almost 30% 

better than that of the generic corporate Z-score model of Altman (1969). It 

was concluded that improving the accuracy of a credit risk model is likely to 

have beneficial effects on the Basel II capital requirements for SMEs and as 

such could result in lower borrowing costs for SMEs. It was also argued that 

banks should develop different credit risk models for SMEs and large 

corporations.  

Lin et al (2007a) explored how different definitions of default and 

different transformations of data affect the accuracy of models for small 

business credit scoring. It was concluded that coarse classification, i.e. data 

transformation in which the raw data are replaced by binary variables, 

improves the accuracy of the classifier, although it does not seem to matter 

if WoE or binary variables are used to transform the data. It was also found 

that the accuracy of the scorecard is affected by the definition of default. In 

an extension of this study, Lin et al (2007b) compared Merton based models 

(e.g. Merton, 1974), and retail credit scoring models. The results indicated 

that retail credit scoring models had better performance when the sample 

had more bad cases, although the Merton models had better performance 

when there were higher acceptance rates in the samples. 

 

3.3.3 Discussion 

A number of different methods have been used for consumer and small 

business credit scoring. In published studies of consumer and small business 

credit scoring, different techniques have been found to produce better results 

in specific applications, and there is no evidence that one technique will 

consistently outperform other methods. It is therefore important to ensure 

that a number of techniques are considered in developing credit scoring 

systems for both consumer and small business lending. There has, however, 

been relatively limited use of MP methods in developing scorecards, 

particularly for lending to small businesses, and in comparative studies in 

which MP methods have been included, the MP models used are generally 

very simple, e.g. with basic normalisation constraints. In addition, many of 
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the comparative studies do not adopt techniques that are commonly adopted 

in practice, e.g. transformation of categorical data using WoE. For this 

reason a benchmarking study was performed to compare the performance of 

a number of techniques, including a relatively simple MP model, on a range 

of credit scoring problems.  

  

3.4 Benchmarking Study 

In this benchmarking study, five two-class credit datasets of different 

sizes and from different sources were used to compare the performance of 

credit scoring models developed using statistical techniques, machine 

learning methods and an MP discriminant analysis model. A range of 

datasets were used because it is desirable to identify methods for developing 

classification models that work well in a wide range of problems. Indeed, 

Dietterich (1998) argues that this is one of the central issues in classification 

analysis, particularly with regard to machine learning methods. 

 

3.4.1 The Datasets 

The datasets used comprised four credit application datasets (Australian, 

German, Greek and SPSS) and a small business loans dataset. The 

Australian and German datasets, which were obtained from the UCI 

repository (e.g. Frank and Asuncion, 2010), have been used in several credit 

scoring studies, e.g. Piramuthu (1999b), Baesens (2003). The Australian 

datasets contains data for 690 credit card applications for an Australian 

bank, with 383 observations in one class and 307 observations in the other 

class. Each observation consists of six continuous variables and eight 

categorical variables (four variables with two categories, two with three 

categories, one with nine categories and one with 14 categories).  The 

German dataset contains data for 1,000 credit card applications, with 700 

observations in one class and 300 in the other class, and 20 variables for 

each observation (eight numeric and 12 categorical). The Greek dataset, 

which was provided in confidence by a Greek bank, contains 14,413 

observations with 11,438 cases in ‘good’ class and 2,975 in the bad class. 

Each observation consists of 39 variables. The SPSS dataset is provided as 

an example dataset by SPSS, e.g. SPSS (2001), software and consists of 

1,500 cases, with 949 cases in one class and 551 cases in the other class. 

Each observation consists of 8 variables (one categorical and seven numeric 
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variables). The small business loans dataset is provided by the Federal 

Reserve Board (1998) and contains 3,661 cases, with 3,047 observations in 

group one and 514 observations in group 2. Each observation consists of 9 

variables, mainly accounting ratios. More information about every dataset is 

included in appendix A.   

For the benchmarking study, data in each of the datasets were 

transformed using weight of evidence. For categorical variables, the WoE 

was calculated for each category and categories with similar WoE were 

grouped together into one feature. Judgements about similarity were 

subjective on the basis of visual inspection of WoE histograms. Continuous 

variables were first divided into deciles, which were then grouped together 

according to the WoE. These procedures result in each of the original 

variables being replaced by a small set of indicator variables or features. 

This approach is very popular in practice in the industry. The main 

disadvantage of this approach is that the number of variables can become 

extremely large with a subsequent possibility of overfitting. After 

transformation, the Australian dataset contained 37 binary features, the 

German dataset contained 51, the Greek dataset contained 45, the SPSS 

dataset contained 35, and the SME dataset contained 25. In practice, the 

nature of features would be taken into account in selecting features for 

scorecard development (e.g. Anderson, 2007) but, as in other studies (e.g. 

Piramuthu, 1999a; Liu and Schumann, 2005), these practical considerations 

were not taken into account and all features were included in this 

benchmarking study. 

 

3.4.2 Methods Used in the Benchmarking Study 

In the benchmarking study, the statistical, machine learning and MP 

methods that are most widely suggested for developing credit scoring 

models were applied to each of the five datasets. The statistical methods 

used were linear discriminant analysis (LDA), quadratic discriminant 

analysis (QDA), logistic regression, k-nearest neighbours (k-nn) with k=3 

and k=10, naïve Bayes and classification tree. The machine learning 

methods considered were a multilayer neural network, a linear support 

vector machine (SVM), a radial basis function (RBF) SVM and a 

polynomial kernel SVM, e.g. Cristianini and Shawe-Taylor (2000). The 

linear SVM uses linear functions to estimate feature weights, whereas the 
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RBF and polynomial kernel SVMs use different types of functions to 

generate non-linear classifiers. The MP discriminant analysis model used in 

this study is the MSD model normalised for invariance under origin shift, 

i.e. model 2.8.  

Commercial software was used to develop classification models for each 

of the five datasets. MatlabArsenal toolbox (Yan, 2006) was used for the 

LDA, QDA, logistic regression, k-nn and neural network methods. Weka 

open source software (Witten and Eibe, 2005) was used for the naïve Bayes, 

classification tree and SVM classifiers. Xpress-MP mathematical 

programming software (Dash Associates, 2006) was used for the MSD 

model.  

 

3.4.3 Performance Assessment  

Four measures were used for assessing the performance of the classifiers 

in this benchmarking study, namely accuracy (overall and in each class) and 

area under the ROC curve, i.e. AUC, where AUC is expressed as a 

percentage of the maximum possible area under an ROC curve. These 

measures have been used extensively in other comparison studies, e.g. 

Piramuthu (1999a), Doumpos et al (2001), Daskalaki et al (2006). In this 

benchmarking study, accuracy and AUC are calculated from the mean value 

of the same ten randomizations. In these randomizations, the dataset was 

randomly partitioned into a subset with 80% of observations and a subset 

with the remaining 20% of observations. The larger, i.e. 80% of 

observations, subset was used for training and out-of-sample performance 

was evaluated on the smaller, i.e. 20% of observations, subset. For each 

classification model, the average out-of-sample performance for 10 

randomizations of each dataset was then determined. Paired t-tests were 

used to compare the average holdout sample hit rates produced by the 

methods, with the t-statistic acting as an indicator of potentially significant 

differences between hit rates. Analytical results are included in Appendix C. 

 

3.5 Benchmarking Study Results  

The results for the Australian, German, Greek, SPSS and the small 

business loans dataset are discussed in sections 3.5.1, 3.5.2, 3.5.3, 3.5.4 and 

3.5.5 respectively. 
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3.5.1 Australian Dataset Results 

For each method used to generate a classifier, the out-of-sample 

performance over 10 randomisations of the Australian dataset is presented in 

Table 3.2 in terms of the overall accuracy, accuracy in class 1, accuracy in 

class 2 and AUC as a percentage of the maximum area under an ROC curve. 

 

Method Accuracy (%) AUC 

 Overall Class 1 Class 2 (%) 

LDA 90 91 89 97 

QDA 90 88 91 95 

Logistic Regression 91 91 90 96 

3-Nearest Neighbours 87 85 88 93 

10-Nearest Neighbours 89 85 93 95 

Naïve Bayes 85 84 94 94 

Classification Tree 92 91 93 94 

Neural Network 90 91 90 96 

SVM – Linear 91 90 93 91 

SVM – RBF 92 90 94 92 

SVM – Polynomial 89 89 90 89 

MSD 90 89 89 96 

Table 3.2: Classifier Performance on Australian Dataset 

 

As can be seen from the results in Table 3.2 for the Australian dataset, 

the classification tree and SVM-RBF produced classifiers with the highest 

overall accuracy, with on average 92% of the total observations in the 

holdout samples classified correctly. The paired t-test results indicate that 

the overall accuracy of both these methods is significantly better than 

logistic regression, 3-nn, 10-nn, naïve Bayes, neural networks, SVMs, MSD, 

LDA and QDA. The paired t-test results also indicate that the overall 

accuracy of the MSD model is significantly better than 3-nn, and naïve 

Bayes. 

The results in Table 3.2 also show that none of the classifiers had any 

issues in classifying correctly observations from both classes, i.e. there was 

no substantial bias in favour of either class. The classifier that was most 

accurate for the majority class was naïve Bayes (on average 94% of the 

observations were classified correctly). However the same classifier did not 

perform as well for the minority class (on average only 84% of the 
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observations were classified correctly). Under the AUC criterion the best 

performance was achieved by LDA (97%), while SVM-polynomial had the 

poorest performance (89%). Overall, the MSD model achieved good results 

on each of the performance measures. 

 

3.5.2 German Dataset Results 

The out-of-sample performance over 10 randomizations of the German 

dataset is presented in Table 3.3 for each of the methods used to produce 

classifiers. 

 

Method Accuracy (%) AUC 

 Overall Bads Goods (%) 

LDA 72 74 71 79 

QDA 72 70 73 77 

Logistic Regression 75 50 85 78 

3-Nearest Neighbours 71 31 89 71 

10-Nearest Neighbours 70 23 91 72 

Naïve Bayes 73 61 82 81 

Classification Tree 71 41 84 64 

Neural Network 70 49 79 71 

SVM – Linear 75 43 89 66 

SVM – RBF 71 10 99 54 

SVM – Polynomial 68 48 77 63 

MSD 75 47 86 78 

Table 3.3: Classifier Performance on German Dataset 

 

In the German dataset (table 3.3) the best overall accuracy is achieved 

by MSD, logistic regression and SVM-linear, with on average 75% of the 

observations classified correctly. All three methods achieve significantly 

better overall accuracy than LDA, QDA, neural networks, 3-nn, SVM-RBF, 

SVM-polynomial, and classification tree. The MSD model performed 

slightly better compared to logistic regression and SVM-linear. The best 

accuracy for the bad class is achieved by the LDA, with on average 74% of 

the bad class observations classified correctly. The best performance for the 

good class was achieved from the SVM-RBF, with on average 99% of the 

good class observations classified correctly, but this classifier achieved the 
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worst performance for the bad class (10%). It is clear that there can be a 

trade-off between the classification of observations from the bad and the 

good classes. In the results in Table 3.3, only LDA and QDA achieved 

balanced results, with average accuracies for both classes of about 72%. It 

can also be seen that all methods except LDA are biased in favour of the 

good class, i.e. have lower classification accuracy in the bad class. For the 

AUC criterion, naïve Bayes had the best performance (81%) and SVM-RBF 

had the poorest performance (54%). 

The MSD model managed to predict correctly 86% of the cases from the 

good class (i.e., one of the highest percentages for this dataset), and 47% 

from the bad class (c.f. the best accuracy of 74% for the bad class). The 

MSD model also achieved the third highest AUC metric, i.e. 78%. .  

 

3.5.3 Greek Dataset Results 

For each method used to generate a classifier, the average out-of-sample 

performance on the Greek dataset is presented in Table 3.4. It should be 

noted that this dataset is extremely imbalanced as the bad class consists only 

20% of the whole population. This feature creates problems to the 

performance of the classifier as it is dominated by the majority class.   

 

Method Accuracy (%) AUC 

 Overall Bads Goods (%) 

LDA 63 63 64 67 

QDA 63 62 63 67 

Logistic Regression 80 6 99 68 

3-Nearest Neighbours 76 18 92 63 

10-Nearest Neighbours 77 10 94 65 

Naïve Bayes 81 30 56 65 

Classification Tree 81 9 97 59 

Neural Network 75 8 86 66 

SVM – Linear 83 5 100 52 

SVM – RBF 82 0 100 58 

SVM – Polynomial 83 6 100 53 

MSD 80 5 100 68 

Table 3.4: Classifier Performance on Greek Dataset 
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The best overall performance on the Greek dataset (Table 3.4) was 

achieved by the SVM with a polynomial kernel, with on average 83% of 

observations classified correctly, while the worst overall performance was 

achieved by the LDA method, with on average 63% of the overall 

observations classified correctly. Paired t-tests indicate that MSD performed 

significantly better than LDA, QDA, logistic regression, neural network, 3-

nn, and naïve Bayes. A feature of the performance on the Greek dataset is 

that there are examples of extremes with, for example, SVM-RBF, assigning 

all the bad cases to the good class and failing completely to predict bad 

cases. Indeed the SVM-RBF achieves the worst performance in the bad 

class, with no observations classified correctly, but this classifier classified 

correctly all the observations from the good class. The best performance for 

the bad class was achieved by LDA (63%). These results have similarities 

with the results obtained on the German dataset, with poorer classification 

accuracy in the bad class. Using the AUC criterion the best performance was 

achieved by the MSD model (68%) and SVM-linear had the worst 

performance (52%).  

The MSD model managed to predict correctly 100% of the cases from 

the good class (which is one of the highest percentages for this dataset), and 

5% from the bad class (which is one of the lowest for this dataset). MSD 

also achieved one of the highest AUC metric, i.e. 68% and one of the 

highest overall accuracy ratios.   

 

3.5.4 SPSS Dataset Results 

The average out-of-sample performance on the SPSS dataset is 

presented in Table 3.5 for each method used to generate a classifier.  
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Method Accuracy (%) AUC 

 Overall Bads Goods (%) 

LDA 74 75 71 82 

QDA 73 69 73 81 

Logistic Regression 75 59 85 83 

3-Nearest Neighbours 70 53 89 76 

10-Nearest Neighbours 74 56 91 79 

Naïve Bayes 75 70 82 78 

Classification Tree 73 60 84 77 

Neural Network 71 57 79 77 

SVM – Linear 76 65 89 73 

SVM – RBF 76 55 99 72 

SVM – Polynomial 69 56 77 66 

MSD 75 62 86 82 

Table 3.5: Classifier Performance on SPSS Dataset 

 

From the results for the SPSS dataset in Table 3.5, it can be seen that 

SVM-linear achieved the best overall accuracy rate, with on average 76% of 

observations classified correctly. Logistic regression, MSD, SVM-RBF, and 

naïve Bayes also performed well. Paired t-tests indicate that MSD performs 

significantly better than QDA, neural network, 3-nn, 10-nn, SVM-

polynomial, classification tree, and naïve Bayes. The worst overall accuracy 

(69%) was performed by the SVM-polynomial, which also performed 

poorly under the bad class accuracy, with on average 56% of bad class 

observations classified correctly. The best performance under the bad class 

accuracy was achieved by LDA, with on average 75% of bad class 

observations classified correctly and the worst performance under this 

criterion was achieved by the 3-NN, with 53% of bad class observations 

classified correctly. For the good class accuracy criterion, the best 

performance was achieved by the SVM-RBF (99%) and the worst 

performance was achieved by LDA (71%). Under the AUC criterion the best 

performance was achieved by logistic regression (83%) and the worst by 

SVM-polynomial (66%). On the SPSS dataset the classifiers generally 

performed better on the good class, and although performance tended to be 

poorer on the bad class, the differences in performance were not as extreme 

as on the German dataset. 
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The MSD model performed relatively well in its overall (75%), good 

case (86%) and bad case (62%) predictions. The MSD also achieved one of 

the best results on the AUC metric (82%). 

 

3.5.5 SME Dataset Results 

The average out-of-sample performance on the SME dataset is presented 

in Table 3.6 for each method used to generate a classifier. 

 

Method Accuracy (%) AUC 

 Overall Bads Goods (%) 

LDA 83 62 87 84 

QDA 86 51 92 84 

Logistic Regression 89 36 98 84 

3-Nearest Neighbours 87 22 98 77 

10-Nearest Neighbours 88 19 99 72 

Naïve Bayes 86 82 82 82 

Classification Tree 88 30 97 67 

Neural Network 88 35 97 83 

SVM – Linear 89 37 97 67 

SVM – RBF 87 18 99 58 

SVM – Polynomial 85 33 93 59 

MSD 88 34 97 77 

Table 3.6: Classifier Performance on SME Dataset 

 

As can be seen from Table 3.6, logistic regression achieved the best 

overall classification performance on the SME dataset, with on average 89% 

of observations classified correctly. Paired t-tests indicate that the overall 

classification performance of MSD was significantly better than LDA, 

QDA, and naïve Bayes. The worst overall performance was achieved by 

LDA (83%). For the bad class, the best accuracy (82%) was achieved by 

naïve Bayes and SVM-RBF had the worst classification performance (18%), 

but on the good class the performance of these two methods was reversed, 

with SVM-RBF achieving 99% accuracy for the good class. Under the AUC 

criterion the best performance was achieved by the logistic regression (84%) 

and the worst by the SVM-RBF (58%). 

The MSD model performed well based on AUC metric (77%) and 
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overall accuracy (88%). The MSD model also predicted correctly 97% of 

the cases from the good class (which is good for this dataset), but as with all 

methods other than naïve Bayes, the classification performance on the bad 

class was poorer, with only 34% of cases predicted correctly. 

  

3.6 Summary  

A number of methods for developing scorecards for consumer and small 

business lending have been evaluated in a benchmarking study using 

different datasets, with data transformed using techniques that are widely 

used in practice for scorecard development. In particular, this study 

compared the performance of commonly used statistical methods (linear 

discriminant analysis, quadratic discriminant analysis, logistic regression, k-

nearest neighbours, naïve Bayes and classification tree) and machine 

learning techniques (multilayer neural network and three types of support 

vector machines) for developing scorecards with the MSD mathematical 

programming discriminant analysis model. Although the MSD model has 

been included in other comparative studies (e.g. Baesens, 2003) very simple 

normalisations were used. 

 A general conclusion from the benchmarking study is that there is not a 

unique method for developing scorecards that will produce classifiers that 

perform better than other classifiers under all data conditions. Similar results 

have been found in other studies (e.g. Srinivisan et al, 1987; Henley, 1995; 

Desai et al, 1997). The choice of method for developing a classifier should 

therefore depend on the characteristics of the problem. In general, however, 

the benchmarking study results indicate that classifiers developed using 

logistic regression, linear SVM and MSD were found to perform well on the 

five datasets. The performance of the classifiers was also found to be 

affected by the proportion of observations in each class, with a tendency for 

classification to be biased towards the majority class in the case of 

imbalanced datasets. Methods for dealing with imbalanced datasets, 

particularly in using MP models to develop classifiers, will therefore be 

investigated in a later chapter. A limitation of this benchmarking study is 

that all features generated after data transformation by WoE were used in 

developing the classifiers. In practice, only a limited number of features 

would be used in developing a classifier. As there has been only limited 
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research in feature selection for mathematical programming discriminant 

analysis models, this topic will be considered in the next chapter. 
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Chapter 4 

 

4. Feature selection 

 

4.1 Introduction 

Many classification decisions such as credit risk assessment and medical 

diagnosis are based on limited information. For decisions of this type, 

classification models may be used to assign observations or objects of 

unknown class to one of a number of specified classes based on the values 

of a set of features associated with each observation or object. These 

classification models can be developed using statistical techniques such as 

discriminant analysis and logistic regression (e.g. Hand, 1997), machine 

learning methods such as neural networks (e.g. Ripley, 1994), or 

mathematical programming (MP) discriminant analysis models (e.g. Stam, 

1997). The features used in developing a classification model may be the 

raw variables associated with each observation, or features may be 

constructed from one or more raw variables. Although a large number of 

features may be available, it is often desirable to base the classification 

model on a limited number of features in order to simplify the model and 

reduce its data requirements. By developing a parsimonious classifier not 

only will data collection and storage costs be reduced, but it may also be 

possible to improve classification performance and enhance understanding 

of the classification criteria (e.g. Guyon and Elisseeff, 2003). 

A number of feature selection techniques have been proposed. Some of 

these techniques are associated with specific methods for developing 

classification models, but others can be applied more generally. For 

example, complete enumeration can, at least in principle, be used with all 

classification model development methods to determine the best subset of 

features or the best subset of specified size, but the computational effort 

would generally be prohibitive. Stepwise forward and backward methods 

can also be used as a general feature selection methodology in which a new 

feature is added (in stepwise forward methods) or removed (in stepwise 

backward methods) at each step, with an appropriate criterion used to 

choose the feature to add or remove. These stepwise feature selection 

methods, and extensions which allow a feature to be removed/added after it 

has been added/removed, are widely used in statistical approaches (e.g. 

Hand, 1997), but it is unlikely that stepwise methods will find the subset of 
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features that is best in terms of the class separation criterion.  

Machine learning techniques for developing computer based 

classification models often incorporate either a filter-based or a wrapper-

based method for feature selection (e.g. Kohavi and John, 1997). In filter- 

based approaches, features are selected in a pre-processing stage, e.g. using 

correlation with class membership (Blum and Langley, 1997). Although the 

filter-based feature selection is rapid (Blum and Langley, 1997), interactions 

between subsets of features and biases in the induction algorithm used to 

produce the classifier are ignored (Kohavi and John, 1997). Filter-based 

methods may also risk discarding useful features as a feature that seems 

completely useless by itself may be valuable if used in combination with 

other features (Guyon and Elisseeff, 2003). In wrapper-based approaches, 

feature selection is linked to the induction algorithm and heuristics, many of 

which are based on forward or backward stepwise procedures, are generally 

used to search the feature subset space, with selection criteria related to the 

performance of the induced classifier (e.g. Kohavi and John, 1997). As the 

algorithm must be run from the start to test a specific subset of features, 

wrapper-based methods can be computationally intensive in problems with 

large training samples and many features.  

Filter methods have been used in a number of studies. For example, Tsai 

(2009) compared five methods of feature selection (t-test, correlation, 

stepwise regression, principal components analysis and factor analysis) as 

the input to a neural network. In this study, which used both bankruptcy and 

credit scoring datasets, it was found that none of the feature selection 

methods performed best on all datasets. Chen and Li (2010) compared the 

performance of four feature selection methods for input to an SVM, but the 

number of features to be selected was specified in advance. Ping and 

Yongheng (2011) used credit scoring data to compare the performance of 

different feature selection methods as input to an SVM, a classification tree 

and a k-nearest neighbours model. This study found that a rough sets method 

(Pawlak, 1982) for selecting features for input to an SVM was found to 

produce the best classifier, but although this approach was called a “hybrid 

SVM-based” model, it is more appropriate to consider it as a filter method to 

select features for an SVM. Similarly, although Oreski et al (2012) proposed 

a hybrid system with genetic algorithm and neural network for credit risk 

assessment using data from a Croatian bank, the approach uses a genetic 

algorithm as a filter method to select features for input to a neural network. 
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Although wrappers have been criticised as “brute force” methods 

requiring massive amounts of computation, e.g. Pal and Mitra (2004), they 

have been applied in credit scoring (e.g. Liu and Schumann, 2005). Wang et 

al (2012) proposed a hybrid feature selection method based on rough sets 

(Pawlak, 1982) and scatter search (Glover, 1998) as a wrapper for logistic 

regression, classification tree and neural network models. This approach 

produced promising results, but as only two small datasets were used for 

testing, generalized conclusions cannot be made. 

There are other machine learning techniques in which features are 

selected in a pre-processing stage before the classifier is trained. For 

example, ReliefF (e.g. Robnik-Šikonja and Kokonenko, 2003) is an iterative 

procedure for determining a measure of each feature’s ability to separate 

observations of different group membership. In the ReliefF procedure for the 

two-group problem, a series of observations is randomly generated and each 

observation’s K, K>1, nearest neighbours in the same group and in the other 

group are identified. For each observation in this series, each feature’s 

separation measure is updated by adding the average difference between this 

feature’s value in the observation and its value in the K nearest neighbours 

from the other group, and subtracting the average difference between this 

feature’s value in the observation and its value in the K nearest neighbours 

from the same group. For feature selection, features are ranked by the value 

of the separation measure. 

 In MP methods for developing classification models, an MP model is 

used to generate a discriminant function that separates the observations in a 

training sample of known group membership into the specified groups 

optimally in terms of a group separation criterion (e.g. Stam, 1997). The 

simplest models for MP discriminant analysis are linear programming (LP) 

models in which the group separation measure is generally based on the 

deviations of misclassified observations from the discriminant function, with 

minimisation of the sum of deviations (MSD) being the most widely used 

objective. One of the advantages of MP discriminant analysis is that 

classification accuracy, i.e. the number of correctly classified observations, 

can be used directly as the group separation criterion in a mixed integer 

programming (MIP) model by associating a binary variable with each 

training sample observation. Due to the binary variable requirements, these 

MIP models for maximising classification accuracy (MCA) or minimising 

misclassifications can only be applied to relatively small discriminant 
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problems, although a two-stage MP based approach (Stam and Ragsdale, 

1992) and an iterative MP procedure (Glen,
 
2003) have been proposed for 

larger problems. 

Several approaches have been proposed for feature selection in MP 

discriminant analysis models. Nath and Jones (1988) proposed a jackknife 

procedure for feature selection in MP discriminant analysis models, but this 

procedure is computationally intensive and it may not identify the best 

subset of features for the group selection criterion of the MP model. Koehler 

(1991) used MP as a framework for describing the problem of determining 

the minimum number of features required in discriminant functions that 

minimise misclassifications, but the problem was not fully formulated in MP 

terms and a genetic solution algorithm was proposed. Bradley et al (1997) 

formulated the feature selection problem as an MP model in which the 

objective function is a parameterised linear combination of the average sum 

of deviations of misclassified observations and the number of features. The 

binary variables associated with inclusion of each feature were then 

approximated in two ways and solution algorithms were proposed, although 

solutions may not be globally optimal. Glen (1999) has shown that by using 

integer programming techniques, MP discriminant analysis models can be 

extended to determine the best subset of features of specified size for the MP 

model’s group selection criterion, e.g. sum of deviations in the MSD model 

or classification accuracy in the MCA model. The original MP models for 

determining the best subset of features of specified size (Glen, 1999) were 

normalised for invariance under origin shift and required a pair of binary 

variables for each feature. However, by using a special ordered set of type 1 

(SOS1), i.e. a set of variables of which at most one may be non-zero, to 

represent the discriminant function coefficient of each feature, only one 

binary variable per feature is required in these MP models for feature 

selection (Glen, 2006). In an MSD based multi-objective approach for gene 

selection, Sun and Xiong (2003) used only one binary variable per feature, 

but this model was not normalised for invariance under origin shift and the 

number of features in the subset cannot be specified. 

In MP feature selection discriminant analysis models, features should 

ideally be selected based on their impact on classification accuracy, i.e. by 

extending the MCA model, but since the MCA model requires a binary 

variable for each training sample observation, the feature selection MCA 

model can only be applied to relatively small problems. In this chapter, two 
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heuristic feature selection methods based on the MCA model are proposed 

for two-group discriminant problems with large datasets of observations and 

these heuristics are tested on three credit datasets. 

In section 4.2 the feature selection methods most commonly used in the 

credit industry are described. MP-based methods for feature selection are 

considered in more detail in section 4.3. In section 4.4, two MP heuristics 

based on the MCA model are proposed for the feature selection problem. 

These heuristics are then tested on three credit datasets. The findings are 

summarised in section 4.5 

 

4.2 Feature Selection in Credit Scoring 

In application scoring, where it is necessary to predict the behavior of an 

applicant for a loan, a number of features from an application form or credit 

bureau databases, e.g. age, occupation, education, credit history, are 

considered in order to predict a customer’s behaviour. The metrics most 

widely used in practice for feature selection are the χ
2
-statistic and the 

information statistic.  

To use the χ
2
-statistic and the information statistic for feature selection, 

consider a credit scoring dataset containing G good observations and B bad 

observations, with each observation consisting of the values of n binary 

features. For feature j, j=1,2,….,n, let gj and bj denote the total number of 

goods and bads respectively in observations in which feature j has value 1. 

 

4.2.1 The χ
2
-statistic  

The χ
2
-statistic measure is a non-parametric statistic for examining the 

relationship between categorical variables (Siegel, 1988). To calculate the 

χ
2
-statistic for feature j, j=1,2,….,n,, let jĝ and jb̂  denote the expected 

number of goods and bads respectively in observations in which feature j 

has value 1, where 

jĝ = (gj + bj)G/(G + B) and jb̂ = (gj + bj)B/(G + B). 

The χ
2
-statistic (with one degree of freedom) for feature j, j=1,2,….,n, is 

then given by 

χ
2
  = (gj – jĝ )

2
/ jĝ + (bj – jb̂ )

2
/ jb̂ + ( jĝ – gj)

2
/(G – jĝ ) + ( jb̂ – bj)

2
/(B – jb̂ ) 

and for feature selection, features are ranked by the value of this statistic. 
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4.2.2 The information statistic 

The information statistic, Fj, for feature j, j=1,2,….,n, is given by 

Fj = (gj/G – bj/B)log(gjB/bjG). 

For feature selection, features are ranked by the value of this statistic. 

Information statistic values for predictive features range from 0 to about 3, 

with higher values indicating a stronger relationship with the outcome 

variable (e.g. Mays and Yuan, 2004). A value below 0.01 indicates that a 

feature has very little predictive ability and should not be considered further 

unless there is a business reason, while a value in the range (0.01, 0.3) 

indicates that a feature should be considered for more tests (e.g. Mays and 

Yuan, 2004). The information statistic gives little weight to features that 

provide information for only a small portion of the sample.  

 

4.3 MP Approaches for Feature Selection 

MP discriminant analysis models do not require assumptions about the 

distributions of deviations from the discriminant function and do not 

produce estimates of the statistical properties of the function’s parameters. 

Glorfeld and Gaither (1982) criticised the usefulness of LP-based 

discriminant analysis models partly because of the failure to deal with the 

feature selection problem. Although Freed and Glover (1982) commented 

that post-optimal analysis of LP-based discriminant analysis models could 

help in choosing appropriate features, a detailed approach was not proposed. 

Nath and Jones (1988) proposed a variable selection method for use 

with LP discriminant analysis models based on the jackknife method (e.g. 

Efron, 1981). This approach, which involves running the LP discriminant 

analysis model a number of times with each observation omitted in turn, is 

computationally intensive when applied to problems with a large number of 

observations. Stam (1997) noted that although the methodology for feature 

selection proposed by Nath and Jones (1988) was an important contribution 

to MP-based discriminant analysis, there was a need for further research in 

this area. 

Feature selection methods based on MP techniques were also proposed 

by Bradley et al (1997) and Bredensteiner and Bennett (1998). Both these 

approaches use MP methods to minimise the number of features included in 

the model while minimising the error rate, but both formulations are 

computationally intensive. Both methods were found to be effective in 
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eliminating redundant features while minimising cross-validation errors, but 

these results were obtained from small problems.  

Ziari et al (1997) proposed a technique based on resampling estimation 

procedures, i.e. jackknife and bootstrap, to develop a statistical discriminant 

MP model using an approach similar to Nath and Jones (1988). This 

methodology produces parameter estimates and statistical properties that 

could be used to form confidence regions and to test the significance of the 

discriminant function’s coefficients. The results obtained by this method on 

small credit scoring datasets were superior to the results from a simple MP 

model. However, as the computational effort depends on the resampling 

estimation technique, the sample size and the precision required for the 

estimates, this methodology is not suitable for use with large datasets.  

Glen (1999) proposed integer programming formulations in which a 

binary variable is associated with each feature in order to solve the feature 

selection problem. For example, the MSD feature selection model (2.8) can 

be used to generate a discriminant function in a specified number of 

features. However, since classifier performance will ultimately be evaluated 

by prediction accuracy, the use of sum of deviations, rather than 

classification accuracy, as the selection criterion is a potential disadvantage 

of model (2.8) as a tool for developing classification models.  

 

4.3.1 The MCA feature selection model 

Classification accuracy can be used as the group separation criterion in 

generating discriminant functions in a specified number of features by 

defining a binary variable i for observation i, i=1,2,....,m, where i=1 if the 

observation is classified correctly. In addition, to prevent observations lying 

on the discriminant function being regarded as correctly classified, as in 

MSD model (2.8), define a small rejection interval Δ, Δ>0, about the 

discriminant function so that observations in this interval are regarded as 

misclassified. Defining other symbols as before and normalising for 

invariance under origin shift, MCA discriminant functions in p, 1≤p≤n, 

features can be generated by the model: 
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jjj aa    ≤ 0 j=1,2,….,n (.4.1f) 




n

j
j

1
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a0 unrestricted; 

jj aa  , ≥0, j=1,2,....,n;  

γj=0,1, j=1,2,….,n; i=0,1 i=1,2,....,m. 

  

By solving MIP model (4.1) for p=1,2,….,n, the best subset of features 

for maximising classification accuracy in the training sample can be 

identified. If feature selection is not required, MCA discriminant functions 

normalised for invariance under origin shift can be generated by the basic 

MCA model with (4.1a) as objective and constraints (4.1b), (4.1c) and 

(4.1d). Since discriminant functions generated by this basic MCA model 

will not include features that do not contribute to the MCA objective, this 

MCA model can also be used to identify the subset of features for 

classification accuracy maximisation. 

MCA discriminant functions provide a benchmark for assessing the 

training sample classification performance of linear classifiers (Stam and 

Joachimsthaler, 1990), where performance is measured by the hit rate, i.e. 

the proportion of observations classified correctly. MCA discriminant 

functions in p, 1≤p≤n, features generated by model (4.1) therefore 

benchmark the training sample performance of other linear classifiers in p 

features, although the training sample hit rate is a positively biased measure 

of classifier performance (e.g. Huberty, 1994). Classification performance 

can be estimated from the hit rate in a holdout sample, i.e. a sample of 

observations of known class membership that is separate from the training 

sample. No single method of generating discriminant functions, including 

MCA, will produce good linear classifiers under all data conditions, as 

shown in results for simulated discriminant problems in which performance 

was measured by the average holdout sample hit rate (e.g. Stam and 
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Joachimsthaler, 1990; Glen, 2006). There is, however, evidence that the 

feature selection MCA model can produce parsimonious classifiers which 

perform well in comparison with other methods (e.g. Glen, 2001), but this 

model can only be applied to small problems because of its binary variable 

requirements. 

 

4.4 MP-Based Heuristics for Feature Selection 

In the MCA feature selection model (4.1), the feature selection criterion 

is classification accuracy, but because a binary variable is required for each 

feature and each training sample observation, this model can only be applied 

to problems in which the total number of binary variables is such that the 

problem can be solved relatively easily. In order to allow MCA based 

feature selection methods to be used more widely, two MCA-based 

heuristics are proposed for feature selection in discriminant problems with a 

large number of observations. 

In each of the proposed heuristic procedures for feature selection, 

assume that M observations of known group membership are available. First 

generate S training samples each with MS, MS<M, observations, where each 

training sample is generated by sampling an equal number of observations 

from each group without replacement, and where the total number, MS, of 

training sample observations is such that the resulting MCA discriminant 

problem with MS, observations is computationally tractable. A set of T pairs 

of training and holdout samples is also generated to evaluate the 

performance of classifiers generated from specified subsets of features. Each 

of these pairs of training and holdout samples is generated by partitioning 

the set of M observations of known group membership into a training 

sample with MT observations, MS<MT<M and an associated holdout sample 

containing the remaining M-MT observations, where the number, MT, of 

training sample observations is not limited by the computational 

requirements of the MCA model.   

 

4.4.1 MCA Heuristic 1: the number of features is specified  

The heuristic procedure for selecting a specified number of features will 

generally be used to determine the best subsets of features in a given range, 

q to r (q≥1, r≤n-1), in the number of features. For each value, p, in the 
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required range, i.e., q≤p≤r, this heuristic procedure consists of the following 

stages: 

 

Stage 1: For a specified number, p, of features, apply the MCA feature 

selection model (4.1) to each training sample, s, s=1,2,…,S, with 

MS observations, and determine the best subset Φsp of p features 

for training sample s. 

Stage 2: Determine the subset Ωp, of p features that occurs most frequently 

in the subsets Φ1p, Φ2p, …., Φsp, where Ωp is not unique if there are 

ties in the feature subsets occurring most frequently.  

Stage 3: Evaluate the performance of MSD discriminant functions in the p 

features of subset Ωp by using the MSD model (2.1) normalised for 

invariance under origin shift to generate the MSD discriminant 

function in these p features for each of the T training samples with 

MT observations and determining the average hit rate in the 

associated holdout samples. 

 

By repeating stages 1, 2 and 3 for all values of p in the required range, 

i.e., for p=q, q+1,…, r, the subset of features with the best classification 

performance can be determined. 

This heuristic procedure for selecting a specified number p, q≤p≤r, of 

features has similarities with voting algorithms for classification (e.g., Bauer 

and Kohavi, 1999), particularly the bagging (i.e., bootstrap aggregating) 

algorithm (Breiman, 1996) in which s bootstrap samples with m 

observations are generated by randomly sampling m observations with 

replacement from the set of M observations of known class membership and 

a classifier is generated from each bootstrap sample. The output from these s 

classifiers is aggregated by voting, where a new observation is assigned to 

the class to which it is allocated most frequently by these s classifiers, with 

ties broken by selecting randomly from the classes involved.  

A possible disadvantage of this feature selection heuristic is that since 

selected features must have discriminant function coefficients of at least the 

threshold value, ε, some features may be selected with coefficient value ε 

simply to ensure that p features are selected, so that in these cases features 

may be selected in an arbitrary way. For this reason another heuristic 

method is also proposed. 
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4.3.2 MCA Heuristic 2: the number of features is not specified  

The heuristic feature selection procedure in which the number of 

features to be selected is not specified uses the MCA model normalised for 

invariance under origin shift, i.e., model (4.1) without variables γj, 

j=1,2,...,n, and constraints (4.1e), (4.1f) and (4.1g). This heuristic procedure 

consists of the following stages: 

 

Stage 1: For each training sample, s, s=1,2,…,S, with MS observations, use 

the MCA model normalised for invariance under origin shift to 

generate the MCA discriminant function, and determine the subset 

ΨS of variables with non-zero value coefficients in this function. 

Stage 2: Rank the features in order of their frequency of occurrence in 

subsets ΨS, s=1,2,…,S, with possible ties in this ranking. 

Stage 3: Use a stepwise forward approach to evaluate the ranked list of 

features generated in Stage 2. In this stepwise approach, the most 

highly ranked feature is evaluated first by generating MSD 

discriminant functions normalised for invariance under origin shift 

using the T training samples with MT observations and determining 

the average hit rate on the associated holdout samples. Features, or 

groups of features, are then added in rank order and the process is 

repeated until all ranked features have been included in this 

stepwise evaluation. The subset of features with the highest 

average holdout sample hit rate is then selected. 

 

Note that all tied features of equal rank are introduced at the same step 

in stage 3 of this heuristic procedure. Ties in ranking could be dealt with by 

considering all combinations of the tied features, but this approach is not 

adopted because of the potential computational effort required, particularly 

at the first step where a group of features may be ranked most highly.  

This heuristic procedure will generally require considerably less 

computational effort than the heuristic procedure for selecting a specified 

number of features. In some applications, however, a number of features 

may be included in all the functions generated in the first stage by the MCA 

model, so that all these features will be ranked equally as occurring most 

frequently. This second heuristic procedure may therefore not be appropriate 

for the development of a classifier with a small number of features, and the 
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first heuristic feature selection procedure should be considered for problems 

of this type.  

  

4.4 Experimental Studies  

The performance of the two feature selection heuristics was tested on 

the Australian, German and US credit datasets (see Appendix A). As in the 

experimental studies in Chapter 3, these datasets were transformed using 

weight of evidence, so that the observations consisted of binary features. 

Details for the transformed features can be found in Appendix B. A short 

description of the three datasets, (number of goods and bads and the number 

of features) is given in Table 4.1.  

 

 

Datasets No of Bads No of Goods Total No of Variables 

Generated 

Australian 307 383 690 37 

German 300 700 1,000 51 

US 996 9,503 10,499 81 
Table 4.1: Data description 

 

The MP discriminant analysis models were set up and solved on a 

personal computer using Xpress-MP (Dash Associates, 2006). For the two 

MCA-based feature selection methods, 20 training samples with 50 

observations in each group were generated from the transformed Australian 

and German datasets, while 50 training samples with 50 observations in 

each group were generated from the transformed US dataset because of the 

larger size of this dataset. The model was run by setting the number of 

features, p, in the range [15, 37] for the Australian dataset, [20, 51] for the 

German dataset, and [49, 81] for the US dataset. In order to assess the 

performance of the MSD model in stage 3 of each heuristic, each dataset 

was split randomly ten times into two samples, with 80% of observations 

forming a training sample and the remaining 20% of observations forming 

an associated holdout sample. The classification models were developed on 

each of the ten training samples and performance evaluated on the 

associated holdout samples.  
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4.4.1 Comparison of the MCA heuristics 

The average holdout sample hit rates obtained by MCA heuristics 1 and 

2 on the transformed Australian, German and US datasets for cases in which 

MCA heuristic 2 (i.e. the heuristic in which the number of features to be 

selected is not specified) identified subsets of p features are presented in 

Figures 4.1, 4.2 and 4.3, respectively. Paired t-tests were used to compare 

the average holdout sample hit rates produced by the two heuristics, with the 

t-statistic acting as an indicator of potentially significant differences between 

hit rates. Results for the paired t-tests can be found in Appendix C. 

For the Australian dataset (Figure 4.1), the average holdout sample hit 

rates for the two heuristics appear fairly similar for the seven cases for 

which MCA heuristic 2 identified subsets of p features, with the hit rates 

tending to decrease as the number of features increases. The paired t-tests 

for the Australian dataset indicate that only in the case with 33 features, in 

which heuristic 1 produces a higher hit rate, is the difference in hit rates 

significant at the 5% level.   

 

 

 
Figure 4.1: Performance of MCA heuristics on Australian dataset 

 

 

On the German dataset (Figure 4.2), MCA heuristic 1 performs at least 

as well as MCA heuristic 2 in all cases except that with 27 features. The 

paired t-tests for the German dataset indicate that for the cases with 26, 32, 

41, 45 and 46 features, in which MCA heuristic 1 has better performance, 

the difference in the two hit rates is significant. 
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Figure 4.2: Performance of MCA heuristics on German dataset 

 

For the US dataset (Figure 4.3), the average holdout sample hit rate for 

MCA heuristic 1 is at least as good as MCA heuristic 2 in all but one of the 

eight comparable cases, although the paired t-tests indicate that only for the 

60-features case, in which MCA heuristic 1 has the higher hit rate, is the 

difference in hit rates significant. 

 

 
Figure 4.3: Performance of MCA heuristics on US dataset  

 

Overall, the results from the three datasets suggest that although the 

difference in performance is generally small, MCA heuristic 1 is superior to 

MCA heuristic 2. In practice, even small improvements in scorecard 

performance can produce significant benefits for financial institutions (e.g. 

Henley and Hand, 1997). 
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4.4.2 Comparison of MCA heuristic 1 with other feature selection methods 

As the comparison of holdout sample performance indicates that MCA 

heuristic 1 performs better than MCA heuristic 2, MCA heuristic 1 was 

compared with another four feature selection method, the χ
2
-statistic, the 

information statistic, ReliefF and the MSD version of MCA feature selection 

heuristic 1. The χ
2
-statistic and the information statistic are commonly 

recommended for use in credit scoring (e.g. Thomas et al, 2002), while 

ReliefF has had limited application in credit scoring (e.g. Liu and 

Schumann, 2005). The MSD feature selection heuristic, rather than the MSD 

feature selection model, was used in order to reduce the computational time. 

Each of the feature selection methods was first used to produce a rank 

ordering of the features in the transformed Australian, German and US 

datasets, with WEKA open source software (Witten and Frank, 2005) used 

to produce the rankings for the χ
2
-statistic, the information statistic and 

ReliefF. For each feature selection method and each dataset, features were 

added in rank order, the MSD discriminant function in the associated subset 

of features was generated for each of the ten large training samples and the 

performance of each function was evaluated on the paired holdout sample. 

The average holdout sample hit rates for MCA heuristic 1 and the other four 

feature selection methods on the transformed Australian, German and US 

datasets are shown in Figures 4.4, 4.5 and 4.6, respectively. As in the 

comparison of the two MCA heuristics, the paired t-test was used to indicate 

potentially significant differences between the holdout sample hit rates 

produced by MCA heuristic 1 and each of the other feature selection 

heuristics. Results for the paired t-tests can be found in Appendix C.  

In the results for the Australian dataset (Figure 4.4), the performance of 

the classifiers generated by all the feature selection methods tends to 

deteriorate as the number of features increases. MCA heuristic 1 is superior 

to the other feature selection methods on this dataset for classifiers with 18 

to 27 features, while the χ
2
-statistic is superior for classifiers with 32 to 36 

features. However, the paired t-tests for the Australian dataset do not 

indicate any significant differences between MCA heuristic 1 and the other 

methods.     
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Figure 4.4: 

Performance of feature selection methods on Australian dataset 

 

The most obvious characteristic of the results for the German dataset 

(Figure 4.5) is the peak in the hit rate for MCA heuristic 1 with 32 and 33 

features, with paired t-tests indicating that MCA heuristic 1 significantly 

outperforms the other methods for classifiers with 30 to 33 features. Since 

MCA heuristic 2 also produced a significantly lower hit rate with 32 features 

(Figure 4.2), this peak in Figure 4.5 suggests that MCA heuristic 1 has 

identified a strong set of 32 features for scorecard development. MCA 

heuristic 1 also generally performs better than the other methods on the 

German dataset for classifiers with 34 to 50 features, although paired t-tests 

indicate that its performance is significantly better than the other methods 

only for cases with 49 and 50 features. However, in the other results in 

Figure 4.5, MCA heuristic 1 is significantly poorer than the other methods 

for classifiers with 20, 22 and 23 features. 
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Figure 4.5: 

Performance of feature selection methods on German dataset 

 

On the US dataset (Figure 4.6), the performance of the classifiers 

generated for the features selected by the five methods is rather uneven, with 

the χ
2
-statistic producing the best classifiers (with 69 features). For 

classifiers with 53 to 60 features, MCA heuristic 1 generally performs better 

than the other methods, but the paired t-tests indicate that MCA heuristic 1 

has significantly better performance than the other methods only in the case 

with 55 features. 

      

 

 

 
Figure 4.6:  

Performance of feature selection methods on US dataset 
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performance varies from dataset to dataset, and although none of the feature 

selection methods outperforms the others on all three datasets, MCA 

heuristic 1 generally performs well. Since small differences in scorecard 

performance can have substantial financial impact (e.g. Henley and Hand, 

1997), the results suggest that MCA heuristic 1 may be useful for feature 

selection in practice. 

 

4.5 Summary 

In developing classification models with a limited number of features, 

feature selection should ideally be based on the impact on classification 

accuracy. Although the MCA model can be extended for feature selection, 

this extended MCA model can only be applied to relatively small problems. 

Two heuristic methods of feature selection based on the MCA model for 

two-group discriminant problems are developed in this chapter. In the first 

heuristic the number of features to be selected is specified, while in the 

second heuristic the number of features to be selected is not specified. Both 

these feature selection heuristics use classification accuracy as the feature 

selection criterion but can be modified to take account of other factors. For 

example, if misclassification costs are available the model can be extended 

to select features in order to minimise misclassification costs rather than the 

misclassification rate. The MCA feature selection heuristics can also be 

extended to take account of other requirements, e.g. coefficients of certain 

features must be non-negative. 

The two MCA based feature selection heuristics were applied to three 

credit scoring datasets and the results suggest that the first MCA heuristic, 

i.e. for a specified number of features, is generally superior to second MCA 

heuristic in which the number of features is not specified. The performance 

of classifiers generated using the features selected by the first heuristic was 

then compared with classifiers generated using the features selected by four 

other methods. Although none of the feature selection methods in this 

comparative study consistently performed better than the others on all three 

datasets and for feature subsets of all sizes, the first MCA heuristic generally 

performed well, suggesting that this MCA-based feature selection heuristic 

is a useful tool for developing parsimonious classifiers. 
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Chapter 5 

 

5. Imbalanced datasets 
 

5.1 Introduction 

Irrespective of the technique used in classification model development, 

the training sample of observations of known class membership should 

ideally contain approximately the same number of observations in each class 

(e.g. Lewis, 1992). In practice, however, it may be difficult to obtain a 

balanced training sample of observations because of the nature of the 

classification decision for which the classification model is required. For 

example, in developing a model to assess the credit worthiness of applicants 

for credit, i.e. credit scoring (e.g. Thomas et al, 2002), where applicants are 

classified as good (i.e. unlikely to default) or bad (i.e. likely to default) using 

application form data, less than 10 per cent of cases will typically be 

classified as bad (e.g. Vinciotti and Hand, 2003). The degree of class 

imbalance in the data can be even greater in other applications, such as the 

identification of fraudulent credit-card transactions, where fraudulent cases 

typically comprise less than 0.2 per cent of total transactions (e.g. Brause et 

al, 1999). 

 

5.1.1 Difficulties in Learning from Imbalanced Datasets  

A classification model developed from an imbalanced dataset may be 

unduly influenced by the observations in the dominant class and of limited 

practical value. For example, if the dominant class accounts for 99% of 

cases, then although a classifier that assigns all observations to the dominant 

class will have 99% accuracy, this classifier does not take account of the 

implications of misclassification. For example, in assessing applications for 

credit it is more costly to accept an applicant who is likely to default than to 

reject an applicant who is unlikely to default (e.g. Adams and Hand, 1999). 

Methods for dealing with class imbalance must therefore be considered in 

developing a classification model from an imbalanced dataset. The 

difficulties associated with developing classifiers from imbalanced datasets 

arise in all types of classification problems, but only the two-class problem 

will be considered in this chapter. 

In using linear discriminant analysis to develop classifiers, the common 
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covariance matrix is estimated as a weighted average of estimates of the two 

within-class covariance matrices, with weights normally based on the 

observed class sizes. If one class is much larger than the other, then the 

estimate will be biased towards the larger class (e.g. Klecka, 1981) and the 

discriminant function will have a similar bias. Standard logistic regression 

also weights all observations equally (e.g. Hand and Vinciotti, 2003), 

causing difficulties with imbalanced datasets. In using nearest neighbour 

methods to develop classifiers, the nearest neighbours of a minority class 

observation will often belong to the majority class and as a result the 

classifier will tend to assign a new observation to the majority class, making 

nearest neighbour methods vulnerable to imbalanced datasets (e.g. Tan, 

2005). Brown and Mues (2012) examined the performance of logistic 

regression, LDA , QDA, SVMs, decision trees, k-nn, NNs, a gradient 

boosting algorithm and random forests in a credit scoring context. The 

results indicated that QDA, SVMs and decision trees performed very poor 

compared to the other algorithms.  

MP methods for developing classifiers may also be unduly influenced 

by observations in the majority class. For example, if the MSD model (2.1) 

is applied to an imbalanced dataset with many fewer observations in group 1 

(G1) than in group 2 (G2), i.e. m1«m2, the resultant discriminant function will 

tend to be biased in favour of the majority group, i.e. G2, so that this 

function will misclassify a much higher proportion of observations in the 

minority group, i.e. G1, than in the majority group. 

Machine learning methods also face difficulties in developing classifiers 

from imbalanced datasets. Classification trees are particularly sensitive to 

imbalanced datasets as many tests are required to separate the minority class 

cases from majority class cases, and therefore overfitting is very likely (e.g. 

Japkowicz and Stephen, 2002). Neural networks and support vector 

machines have also been found to perform poorly on imbalanced datasets, 

although Japkowicz and Stephen (2002) conclude that support vector 

machines are more robust than neural networks and that neural networks are 

superior to classification trees on imbalanced datasets. 

 

5.1.2 Methods for Dealing with Imbalanced Datasets 

An approach that can be adopted to deal with imbalanced datasets in all 

methods for developing classification models is to pre-process the data to 
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produce a more balanced dataset by either over-sampling the minority class 

or under-sampling the majority class (e.g. Japkowicz and Stephen, 2002). As 

over-sampling the minority class generally involves sampling with 

replacement, some observations may be replicated, leading to increased 

likelihood of overfitting, while under-sampling the majority class may cause 

some important data regions to be ignored. A method that has similarities to 

undersampling is the logistic regression with state dependent sample 

selection. In this method, the dependent variable is defined as binary, as in 

simple logistic regression method. The main difference is that the model is 

solved towards finding the probability of  having a bad applicant, i.e. 

minority class, given its specific characteristics. Along with that, a 

significant number of observations that comes from the majority class needs 

to be deleted in order to get a more balanced dataset.  In reviewing machine 

learning methods for developing classification models from imbalanced 

datasets, Chawla et al (2002) argue that under-sampling the majority class is 

more effective than over-sampling the minority class. Over-sampling and 

under-sampling strategies that concentrate on sampling observations close to 

the class boundary have also been proposed (e.g. Japkowicz and Stephen, 

2002), but an iterative procedure must be used to identify observations to be 

sampled as the form of the class boundary in not known in advance. A 

method for generating synthetic minority class observations by interpolating 

between adjacent minority class observations was proposed by Chawla et al 

(2002), but it was noted that these synthetic observations will be biased as 

majority class observations adjacent to minority class observations are 

ignored.  

In a study using both real and simulated unbalanced datasets, Louzada et 

al (2012) compared the performance of standard logistic regression and 

logistic regression with state-dependent sample selection (Cramer, 2004), 

which involves discarding a large proportion of majority class observations. 

Although there was no significant difference in the predictive performance 

of these two methods, differences in the distributions of default probabilities 

were found. This study also confirmed the benefit of working with balanced 

datasets where possible. Brown and Mues (2012) found that on unbalanced 

credit scoring datasets random forests (Breiman, 2001), in which a set of 

classification trees with randomly selected features is used to determine 

class membership by voting, and gradient boosting (Friedman, 2001), in 

which classification error is iteratively reduced, performed well in 
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comparison with a number of more commonly used statistical and machine 

learning techniques for developing classifiers. 

Another approach for dealing with an imbalanced dataset is to take 

account of the consequences of misclassification, particularly the 

misclassification costs, in developing a classifier. These costs can be 

incorporated directly into MP models for minimising misclassifications (e.g. 

Bajgier and Hill, 1982) or maximising classification accuracy (e.g. Glen, 

2001), but because a binary variable is required for each training sample 

observation, these mixed integer programming (MIP) models can only be 

applied to relatively small datasets. Misclassification costs can also be taken 

into account in statistical methods for estimating the probability of class 

membership by using a cost based threshold for class assignment (e.g. Hand 

and Vinciotti, 2003). Machine learning methods based on minimising 

misclassifications can also be extended to incorporate misclassification 

costs, but, as with MP and statistical methods, it is often difficult to 

determine misclassification costs in practice (e.g. Adams and Hand, 1999). 

Statistical methods can also be extended to focus on observations close to 

the unknown class boundary by iteratively assigning higher weights to 

observations close to the boundary derived at the previous iteration, as in the 

weighted logistic regression procedures proposed by Hand and Vinciotti 

(2003). Although the procedures proposed by Hand and Vinciotti (2003) are 

not designed specifically for imbalanced datasets, these procedures were 

found to outperform standard logistic regression on an imbalanced personal 

loan dataset when the threshold class assignment probability reflected the 

higher cost of misclassifying minority class, i.e. defaulting, cases. 

An advantage of using MP methods to develop classifiers is that 

additional constraints can be incorporated in MP models to balance 

misclassification metrics across the classes. In this chapter, methods for 

extending MP models to deal with imbalanced datasets are described. The 

performance of classifiers produced by these extended MP discriminant 

analysis models and those produced by a standard MP model and logistic 

regression is then compared on four real datasets. 

 

5.2 Mathematical Programming Methods for Imbalanced Datasets 

As with other methods for developing classification models, MP 

methods for developing classifiers can address the difficulties associated 
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with imbalanced datasets by over-sampling from the minority class or 

under-sampling from the majority class, but over-sampling can result in 

overfitting while some data regions may be ignored with under-sampling. 

For the two-group discriminant problem with m1 observations in group 1 and 

m2 in group 2, Glover (1990) suggested that the objective function of the 

MSD model, and its goal programming extension in which both external and 

internal deviations are considered, can be modified to achieve balance across 

both groups by multiplying the objective function coefficients of deviation 

variables for group 1 and group 2 by m2 and m1, respectively. For example, 

the objective function of MSD model (2.1) then becomes 
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but the performance of this modified MSD model on imbalanced datasets 

has not been investigated. 

Koehler (1990) noted that for classifiers developed by both statistical 

and MP discriminant analysis techniques, classification errors are generally 

unevenly distributed across the two groups, and suggested that this problem 

could be addressed in MIP models for minimising misclassifications by 

imposing constraints on the difference in the proportion of misclassified 

observations in each group. For example, if z1 and z2 denote the number of 

misclassified observations in groups 1 and 2 respectively, then for γ>0 and 

small, the required constraints are:  

–m1m2γ ≤ m2z1 – m1z2 ≤ m1m2γ 

The use of this approach has not been investigated and, because of the 

binary variable requirements of the underlying MIP model for minimising 

misclassifications, it can only be applied to relatively small problems. 

Although Koehler (1990) only considered the problem of balancing errors in 

MIP models for minimising misclassifications, a similar approach can be 

applied to MSD-based models by imposing constraints on the difference in 

the mean deviation in each group: 
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where δ>0 and small. 

Glover and Better (2007) did not consider the difficulties associated 

with imbalanced datasets, but suggested that for non-separable discriminant 

problems, it may be useful to impose an additional constraint on MSD-based 

models to balance the violations in each group: 
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Note that constraint (5.4) can be viewed as a limiting case of (5.3) with δ=0. 

Although constraint (5.4) can clearly be used to deal with imbalanced 

datasets, its use has not been tested and it may be over-restrictive as it 

constrains the mean deviation in each group to be equal. In practice, the 

main difficulty in applying MSD models to severely imbalanced datasets is 

that the discriminant function generated will tend to assign observations to 

the majority class. This difficulty can be addressed by adding a constraint to 

ensure that the mean deviation in the minority class (G1) does not exceed the 

mean deviation in the majority class (G2), i.e. 
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5.3 Experimental Studies 

Experimental studies were performed to evaluate the performance of 

three MP methods for dealing with imbalanced datasets, namely (i) MSD 

model with balancing objective function (5.2), (ii) MSD model with range 

constraints (5.3), and (iii) MSD model with balancing constraint (5.5).  In 

these experimental studies, the impact of the range parameter, δ, in the MSD 

model with range constraints (5.3) was investigated by using four range 

parameter values, namely δ=0.001, δ=0.0005, δ=0.0001 and δ=0.00001,. For 

comparative purposes, standard logistic regression (e.g. Hosmer et al, 2000) 

and the basic MSD model normalised for invariance under origin shift were 

also included in the experimental studies. Statistical approaches (e.g. Hand 

and Vinciotti, 2003) and machine learning methods (e.g. Eitrich et al, 2007) 

for dealing with imbalanced datasets were not included in this study as there 

are many variants of these methods and the results are dependent on 

parameter values, some of which, e.g. misclassification costs, may be 

difficult to determine in practice. 

Four datasets consisting of application data or transaction data from 

financial institutions were used in the experimental studies. Dataset 1 

contained 13,516 observations, each consisting of 12 variables, with 184 

(1.4%) bad cases; dataset 2 contained 15,050 observations, each consisting 

of 8 variables, with 218 (1.4%) bad cases; dataset 3 contained 29,389 

observations, each consisting of 11 variables, with 1006 (3.4%) bad cases; 
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dataset 4, contained 10,375 observations, each consisting of values of 21 

variables, with 375 (3.6%) bad cases. 

The observations in each of these four datasets consisted of the values of 

a set of both continuous and categorical variables. The original variables in 

each dataset were, as in Chapters 3 and 4, transformed to binary features by 

coarse classification based on weight of evidence (e.g. Thomas et al, 2002). 

This approach is widely used in credit scoring (e.g. Somol et al, 2005), 

although it leads to an increase in the total number of features. After coarse 

classification, there were 32 binary features in dataset 1, 18 binary features 

in dataset 2, 25 binary features in dataset 3, and 37 binary features in dataset 

4. 

For the experimental studies, each dataset was randomly partitioned ten 

times into a training sample with 80% of observations and a holdout sample 

consisting of the remaining 20% of observations. For each of the 

classification model development techniques, a classifier was developed 

from each training sample, its performance evaluated on the associated 

holdout sample, and the average classification performance of each 

technique evaluated over the ten randomisations. Average classification 

performance was evaluated in terms of the overall average accuracy 

(percentage of correctly classified observations in holdout sample), good 

class accuracy (percentage of correctly classified good cases in holdout 

sample), and bad class accuracy (percentage of correctly classified bad cases 

in holdout sample). Overall average accuracy is widely recommended for 

assessing scorecard performance (e.g. Thomas et al, 2002), but it is 

particularly important to consider performance in each class when classifiers 

are developed from imbalanced datasets. Scorecard performance should, in 

practice, also be monitored after implementation, with modifications made if 

necessary (e.g. Mays, 2004). 

In the experimental studies, the MP discriminant analysis models were 

set up and solved using Xpress-MP (Dash Optimization, 2006) and WEKA 

open source software (Witten and Frank, 2005) was used for logistic 

regression.  

 

5.3.1 Experimental Results 

The performance of the classifiers developed by each method on 

datasets 1, 2, 3 and 4 are summarised in Tables 5.1, 5.2, 5.3 and 5.4, 
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respectively, in terms of the average percentage accuracies overall and in 

each class. For each dataset it can be seen that the classifiers developed by 

standard methods, i.e. logistic regression and the basic MSD model, have, as 

expected, high average accuracy in total and in the good, i.e. majority, class, 

but have very low accuracy in the bad, i.e. minority, class. 

For each dataset it can also be seen that, in comparison with the 

classifiers generated by standard methods, the classifiers generated by the 

extended MSD models have higher accuracies in the bad class, but lower 

accuracies both overall and in the good class. For classifiers generated by 

the MSD model with range constraints (5.3), the accuracy in the bad class 

increases and accuracies overall and in the good class decrease with 

reduction of the range parameter, δ, from 0.001 to 0.00001. The 

performance of the MSD model with balancing constraint (5.5) is similar to 

that of the MSD model with range constraints (5.3) for δ=0.00001, i.e. 

balancing constraint (5.5) is effectively the limiting case of balancing 

constraints (5.3) with δ=0. On datasets 1, 3 and 4, it can be seen (Tables 5.1, 

5.3 and 5.4) that the MSD model with balancing objective function (5.2), the 

MSD model with range constraints (5.3) for δ=0.00001 and the MSD model 

with balancing constraint (5.5) all generate classifiers with similar 

performance. However, on dataset 2, the MSD model with balancing 

objective function (5.2) has a larger difference between good and bad class 

accuracies than the MSD model with range constraints (5.3) for δ=0.00001 

and the MSD model with balancing constraint (5.5).  

Method Accuracy (%) 

 Total Goods Bads 

Logistic Regression  99 99 1 

MSD – Basic Model 99 100 0 

MSD – Balancing Objective 75 76 61 

MSD – Range Constraints: δ=0.001 79 80 58 

MSD – Range Constraints: δ=0.0005 77 77 59 

MSD – Range Constraints: δ=0.0001 76 76 60 

MSD – Range Constraints: δ=0.00001 76 76 60 

MSD – Balancing Constraint 75 76 61 

Table 5.1: Results for Dataset 1 
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Method Accuracy (%) 

 Total Goods Bads 

Logistic Regression  98 99 1 

MSD – Basic Model 99 99 3 

MSD – Balancing Objective 74 74 57 

MSD – Range Constraints: δ=0.001 71 71 60 

MSD – Range Constraints: δ=0.0005 69 69 62 

MSD – Range Constraints: δ=0.0001 69 69 63 

MSD – Range Constraints: δ=0.00001 69 69 63 

MSD – Balancing Constraint 69 70 63 

Table 5.2: Results for Dataset 2 

 

 

Method Accuracy (%) 

 Total Goods Bads 

Logistic Regression  96 100 0 

MSD – Basic Model 98 98 3 

MSD – Balancing Objective 70 70 68 

MSD – Range Constraints: δ=0.001 74 75 63 

MSD – Range Constraints: δ=0.0005 71 71 66 

MSD – Range Constraints: δ=0.0001 70 70 68 

MSD – Range Constraints: δ=0.00001 70 70 68 

MSD – Balancing Constraint 70 71 68 

Table 5.3: Results for Dataset 3 
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Method Accuracy (%) 

 Total Goods Bads 

Logistic Regression  96 100 0 

MSD – Basic Model 99 99 7 

MSD – Balancing Objective 85 85 76 

MSD – Range Constraints: δ=0.001 88 89 70 

MSD – Range Constraints: δ=0.0005 87 87 73 

MSD – Range Constraints: δ=0.0001 85 85 75 

MSD – Range Constraints: δ=0.00001 85 85 76 

MSD – Balancing Constraint 85 85 76 

Table 5.4: Results for Dataset 4 

  

Overall, the results show that the standard MSD model and logistic 

regression fail to perform well on imbalanced datasets. The results also 

suggest that the extended MSD models, i.e. with balancing objective (5.2), 

range constraints (5.3) or balancing constraint (5.5), outperform the standard 

methods in achieving balanced performance in each class, although there is 

some evidence that the MSD model with balancing objective (5.2) is not as 

effective as the MSD model with additional constraints.  

 

5.4 Summary  

There are difficulties in generating classifiers from imbalanced datasets 

as traditional methods tend to produce classifiers that are biased towards the 

majority class. The difficulties associated with imbalanced datasets can be 

addressed by pre-processing the data to produce balanced datasets or by 

considering the costs associated with misclassifying observations in each 

class, but these approaches have limitations. In this chapter it has been 

shown that MP methods can be extended, either by modifying the objective 

function or incorporating additional constraints, to develop classifiers from 

imbalanced datasets without the need to pre-process the data or incorporate 

misclassification costs. Although some of these extensions have been 

proposed previously, none of these extended models have been applied to 

imbalanced datasets. In this study, extended MSD models have been applied 
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to four real imbalanced datasets from financial institutions and it has been 

shown that these extended models can produce classifiers with balanced 

performance over the majority and minority classes.without assumptions 

about misclassification costs or the need to pre-process the data.  
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Chapter 6 

 

6. Ordinal Classification 

 

6.1 Introduction  

In developing classifiers it is usually assumed that the class values are 

unordered and the groups are defined in a nominal way. The resulting 

classifier will not focus on the order of the observations but only assign 

cases to one of the nominal predefined classes.  However, there are 

problems in which it is not enough to assign a case to one of the predefined 

classes, but it is also required to rank observations. This category of 

problems, known as ranking, sorting or ordinal classification, considers the 

features as evaluation criteria and the groups (and observations) are defined 

in an ordered way from the most to the least preferred.  

Ordinal classifiers have a variety of applications. Zopounidis and 

Doumpos (2002) described applications of ordinal classifiers in fields such 

as stock evaluation, e.g. Zopounidis et al (1999), pattern recognition, e.g. 

Zopounidis and Doumpos (1998), job evaluation, e.g. Spyridakos et al 

(2001), and financial management, e.g. Doumpos et al (2001). Sorting has 

been used also in credit scoring, e.g. Zopounidis et al (1998). Thomas et al 

(2001) stress the need for ordinal scorecards when the score is used in 

decisions such as pricing a product or defining the percentage of applicants 

to accept. Ordinal classifiers can also be used in scorecard calibration or 

recalibration. The purpose of calibrating or recalibrating a scorecard is to 

make sure that a scorecard will have specific properties, e.g. positive scores 

or differences in scores having constant meaning (e.g. Thomas et al, 2001). 

Calibration is also necessary to keep the scorecard aligned with the changes 

in the constantly changing economy. Basel II (2006) stresses the importance 

of calibration for keeping the scorecard up to date under changing economic 

conditions.  

Statistical methods have been proposed for developing ordinal 

classifiers. For example, ordinal logit and probit models (e.g. Borooah, 

2002) are ordinal statistical methods which are similar to the models applied 

to nominal datasets as described in Chapter 2. The main difference is the 

extra cut-offs that are necessary to discriminate between the different 

classes. Isotonic regression is a statistical method for ordinal classification 

problems (e.g. Barlow et al, 1972) which is based on the same concepts as 
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linear regression, but with extra constraints that limit the weights of the 

features. This approach has been found to produce fairly good results in 

scorecard calibration (e.g. Schwalb et al, 2003).  

Methods from machine learning have also been used in ordinal 

classification problems. For example, Kotsiantis and Pintelas (2003) 

proposed a cost sensitive approach that can be used for sorting observations 

according to specified criteria. The main disadvantage of this approach is the 

use of cost weights that are based on the intuition of the researcher. Frank 

and Hall (2001) suggested an approach in which an ordinal classification 

problem is converted into a set of binary classification problems. An 

advantage of this method is that it is not necessary to change the structure of 

the algorithm used every time, but each binary classification problem must 

be solved, so that for a problem with k classes it is necessary to use k–1 

models to estimate the probability of class membership. For problems where 

it is necessary to sort observations this method is therefore computationally 

intensive. Another weakness of this approach is that it discards important 

information from the class variable that can be used for classifying the 

observations. For example, if the original class variable has three values, 

such as cool, mild, and hot, the original dataset is split into k-1 datasets, i.e. 

2, where in one sub-problem the class variable values are “higher” than cool, 

(i.e. mild and hot) and in the other sub-problem the class variable values are 

“higher” than mild, (i.e. hot). The algorithm is then applied in each of the 

sub-problems. So, nothing will be known explicitly about the class variable 

of the observations as the new target variable is aggregated. For example, in 

the “cool, mild, and hot” application, observations with class variable “mild” 

will appear in the sub-problems with a different label. Shashua and Levin 

(2003) proposed a methodology that extends the use of support vector 

machines for ordinal classification problems by splitting the target variable 

into a number of different consecutive classes, and trying to optimise the 

same criterion as in the two-class problem, but with more constraints. As in 

the approach of Frank and Hall (2001), observations are aggregated into 

larger groups.  

A mathematical programming method for treating ordinal classification 

problems was proposed by Srinivasan (1976). This LP-based method 

focuses on the ordinal nature of the dependent variable and tries to replicate 

the performance of ordinal regression, but the solution process is time 

consuming. Jacquet-Lagreze and Siskos (1982) proposed an LP-based 
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method, the UTA (utilité additive) method, for ranking problems. The UTA 

method uses an LP model to generate an additive utility function from a 

weak-order preference ranking of a reference set, i.e. a training sample, of 

observations based on the ranking of the observations and the values of the 

features associated with each observation. This additive utility function 

consists of piecewise-linearisations of the marginal utility functions of the 

features. In the UTA method, it is assumed that each function’s marginal 

utility function is monotone non-decreasing. This limitation can be 

overcome by using a mixed integer programming approach (Glen, 2008) but 

the marginal utility must be either monotone non-decreasing or monotone 

non-increasing. In addition, the UTA method has only been applied to 

problems with a small number of observations in the training sample and 

problems with binary features have not been considered. The UTA method 

has also been extended for other applications, e.g. the UTA based 

discriminant analysis method can be used to generate non-linear 

discriminant functions by considering the class membership, rather than the 

ranking, of observations (e.g. Zopounidis and Doumpos, 2000). 

Additive utility discriminant analysis methods are described in Section 

6.2. Methods for overcoming common problems in these additive utility 

approaches are also described in Section 6.2. An experimental comparison 

of additive utility discriminant analysis methods is described in Section 6.3 

using a two-class credit scoring classification problem. In Section 6.4, 

possible practical applications of ordinal classifiers in scorecard 

development are discussed and a new LP model is introduced for ranking 

observations. This method is tested on a small dataset in which the 

observations are ordered and the results are compared with results obtained 

using statistical methods. The conclusions from this chapter are summarised 

in Section 6.5.   

 

6.2 Additive Utility Discriminant Analysis  

Mathematical programming discriminant analysis models offer great 

flexibility over common statistical methods as they do not assume anything 

about the distribution of the population and can easily incorporate different 

goals in the objective function or have additional constraints included in the 

formulation. However, standard MP discriminant analysis methods treat the 

groups in a nominal way and do not consider any information related to the 

ordinal nature of some classification problems. In order to overcome this 
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kind of problem, the LP-based UTA model was proposed by Jacquet-

Lagreze and Siskos (1982). The UTA method can be used to solve the 

problem of multi-criteria choice and ranking on a set of alternatives by 

constructing an additive utility function from a weak order preference 

defined by the user on a subset of reference observations.  

The UTA method is based on the concept of preference disaggregation, 

in which the global preferences of the decision maker are disaggregated, as 

specified in the ranking of the reference set of observations, i.e. training 

sample of observations, by considering the marginal utility of each feature 

associated with the observations, e.g. Doumpos et al (2001). The ranked 

observations are described by the values of a set of features, where these 

features may have increasing and decreasing preference. For example in 

credit scoring, income can be considered to be of increasing preference 

while number of credit bureau searches can be considered to be of 

decreasing preference. In the UTA method, the marginal utility of each 

feature is assumed to be monotone non-decreasing, so that features with 

monotone non-increasing marginal utility must be transformed to monotone 

non-decreasing form. The LP-based UTA model attempts to determine the 

marginal utility function of each feature that replicates the specified ranking 

of observations as far as possible. 

Using a notation similar to that used by Glen (2008), let Xij denote the 

value of feature j, j=1,2,…n in training sample observation i, i=1,2,…m, and 

let uj(·) denote the marginal utility function of feature j, j=1,2,…n. It is 

assumed that the utility function, U(·), is an additive function of the 

marginal utility functions of the features, so that the utility U(Xi1, Xi2,…., 

Xin) of observation i, i=1,2,…,m, is given by:  
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The marginal utility function, uj(·) of feature j, j=1,2,…,n is 

approximated by a piecewise linear function with sj segments with sj+1 

ordered breakpoints, Pjk, k=0,1,2,…,sj, where  Pj0 is the lowest point on the 

scale for feature j. For observation i, i=1,2,…,m, the value Xij of feature j is 

represented as a linear combination of weights, aijk, k=0,1,2,…,sj, at the sj 

breakpoints, these weights being non-zero for at most two adjacent 

breakpoints, so that for Pj,r-1≤Xij≤Pjr, 1≤ r ≤ sj,, the weights aijk are given by: 
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If vjk, vjk≥0, denotes the marginal utility of feature j, j=1,2,…,n, at 

breakpoint k, k=0,1,2,…,sj, then for observation i, i=1,2,…,m, the marginal 

utility, uj(Xij), of feature j, j=1,2,…,n, is given by 
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so that the utility of observation i, i=1,2,…,m can be expressed as  
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6.2.1 The UTA Discriminant Analysis Model    

Consider a two-group discriminant problem in which the m observations 

are known to belong to either group 1, i.e. G1, or group 2, i.e. G2, where 

G1∩G2=Ø. In the UTA discriminant analysis model, it is assumed that the 

marginal utility function of each feature is monotone non-decreasing, so that 

it is assumed that 

 

vjk–vj,k-1≥0, j=1,2,…,n, k=1,2,…,sj.                                 (6.5) 

 

It is also necessary to normalise the additive utility function by setting the 

marginal utility of each feature to zero at the lowest value on the scale for 

this feature and the maximum utility must be constrained to one, i.e. 

 

vj0=0  j=1,2,…,n                                                                  (6.6a) 
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For observation i, i=1,2,…,m let di, di≥0, denote the error in the utility of 

observation i, where di>0 if observation i is misclassified and di=0 if 

observation i is correctly classified. In order to prevent observations with 

utility equal to the cut-off value, a0, being considered correctly classified, 
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introduce a rejection interval Δ, Δ≥0, where it is assumed that group 1 

observations are correctly classified if their utilities are a0 or more, while 

group 2 observations are correctly classified if their utilities are a0–Δ or less. 

The additive utility discriminant analysis LP model is used to determine the 

values of coefficients vjk, j=1,2,…,n, k=1,2,…,sj, and the cut-off value a0 that 

minimises the sum of errors of misclassified observations:   
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 01,  kjjk vv  j=1,2,…, n, k=1,…,sj (6.7d) 
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a0≥0, vjk≥0, j=1,2,…, n; k=1,…,sj   

 

The main difference between model (6.7) and the UTA formulation of 

Jacquet-Lagreze and Siskos (1982) is that the value of feature j, j=1,2,…..,n, 

of observation i, i=1,2,….,m, is expressed in terms of the weights defined in 

equation (6.2). Studies using UTA discriminant analysis models similar 

to (6.7) have reported good performance (Zopounidis and Doumpos, 1999; 

Zopounidis and Doumpos 2001; Doumpos et al 2006). However, all these 

studies either use small datasets or use simulated populations raising 

questions around the significance of the results.  

Model (6.7) can be modified to use maximisation of the number of 

correctly classified observations as the objective function, resulting in a MIP 

formulation, or it can be extended to consider more than one goal in a goal 

programming formulation. These extensions face the same problems 

identified earlier, i.e. only a limited number of observations can be 

considered for MIP based models and there are difficulties in assigning 

appropriate weights in the goal programming models. 
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6.2.2 The Additive Utility Discriminant Analysis Model 

In the UTA discriminant analysis model (6.7), it is assumed that the 

marginal utility function of each feature is monotone non-decreasing. Glen 

(2008) developed an MIP model for generating additive utility discriminant 

functions in which it is only necessary to assume the marginal utility 

function of each feature is monotone. In this additive utility discriminant 

analysis (AUDA) approach, let δj, j=1,…,n, be a binary variable such that 

δj=1 if the marginal utility of feature j is monotone non-decreasing and δj=0 

otherwise. The marginal utility of feature j, j=1,2,…,n, must be either 

monotone non-decreasing or monotone non-increasing, and because 0≤vjk≤1, 

the requirement corresponding to (6.5) can be expressed as: 

 

vjk–vj,k-1- δj ≥-1, j=1,2,…,n, k=1,2,…,sj.                                 (6.8a) 

  

vjk–vj,k-1- δj ≤0, j=1,2,…,n, k=1,2,…,sj. (6.8b) 

 

Constraints (6.6a) and (6.6b) must also to be modified:  
 

vj0 + δj≤1  j=1,2,…,n                                                                  (6.9a) 

  

vj0 – δj≤0  j=1,2,…,n (6.9b) 


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0 1)(                                                              (6.9c) 

 

 

Using the same notation as for the UTA discriminant analysis model (6.7), 

the AUDA model can be defined as below: 

 

Minimise  
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 vjk–vj,k-1- δj ≥-1 j=1,2,…, n, k=1,…,sj (6.10d) 

    

 vjk–vj,k-1- δj ≤0 j=1,2,…, n, k=1,…,sj (6.10e) 

   

 vj0 + δj≤1 j=1,2,…, n (6.10f) 
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 vj0 – δj≤0 j=1,2,…, n (6.10g) 

 




n

j

jsj j
vv

1

0 1)(  
 

(6.10h) 

a0≥0, vjk≥0, j=1,2,…, n; k=1,…,sj, j=0,1, j=1,2,…, n    
 

 

Although model (6.10) allows the marginal utility of each feature to be 

monotone non-decreasing or monotone non-increasing, it can also be used 

when the form of the utility function is known. For example, when 

modelling the default rate for a credit card portfolio, it is expected that the 

higher the income of an applicant, the lower the probability of default. This 

relationship is then assumed monotone decreasing, and can be pre-specified 

before running the model. Model (6.10) can also be extended for feature 

selection (Glen, 2008).  

 

6.2.3 Difficulties in Using Additive Utility Discriminant Analysis Methods 

Before applying the additive utility method it is necessary to specify the 

number of segments in the piecewise linearisation of each feature. In 

splitting the range of a feature into a number of segments, it is necessary to 

ensure that there are no null intervals, i.e. intervals containing no 

observations. It is therefore necessary to be aware of the distribution of the 

values of each feature. The split of the feature will affect the calculation of 

the marginal utility. Doumpos and Zopounidis (2001) presented a five-stage 

heuristic for defining the number of intervals for each feature, but this 

heuristic assumes that there are sufficient observations in every interval and 

it does not consider how to treat binary and categorical variables.  

The problem of splitting a feature into intervals and transforming the 

feature has been considered in credit scoring, e.g. Anderson (2007), by 

introducing binary variables based on the chi square statistic or the weight of 

evidence (WoE), as outlined in Chapter 3. Alternatively, i.e. instead of 

introducing binary variables, it is possible to replace the value of a feature 

by its WoE. The main advantage of this approach is that scores assigned to 

the attributes will reflect the ranking of their bad/good odds (e.g. Thomas et 

al, 2002), provided that the coefficient assigned to the feature is positive. As 

a result, transforming raw data using WoE will achieve the required 

monotonicity of the features when applying additive utility methods. 

Moreover, by using WoE it is possible to transform categorical variables to 
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continuous variables. In the following section the performance of additive 

utility methods is examined after first performing the WoE transformation to 

the data.   

 

6.3 Experimental Studies 

The performance of logistic regression, linear discriminant analysis 

(LDA), quadratic discriminant analysis (QDA), neural networks (NNs), 

MSD without balancing constraints, MSD with balancing constraint (see 

Chapter 5), additive utility discriminant analysis (AUDA) and the additive 

utility discriminant analysis using WoE transformation (AUDA-WoE), were 

compared on three datasets used in the experimental studies in Chapter 3, 

i.e. the German, SPSS and Greek datasets. These datasets were chosen due 

to the mixture of categorical and continuous features and the size of the 

dataset. Open source MatlabArsenal toolbox (Yan, 2006) was used to train 

and evaluate the QDA and LDA classifiers. Weka open source software 

(Witten and Eibe, 2005) was used to train the neural networks, and for 

logistic regression. Xpress-MP software was used for the MSD, AUDA and 

AUDA-WoE models. Ten randomisations of the datasets were used, with 

80% of each randomization used for model development and the remaining 

20% used for performance assessment. The performance measures that were 

used in the previous experimental studies, i.e. overall accuracy, accuracy in 

bad and good classes, and area under the ROC curve (AUC), were used in 

this study and the average values for each measure over the ten 

randomisations estimated. 

 

6.3.1 German Dataset 

The results for the German dataset are presented in Table 6.1. 
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Method Accuracy (%) AUC 

 Overall Bad Good (%) 

Logistic Regression 77 54 87 81 

LDA 73 75 72 81 

QDA 73 70 74 79 

NN 76 59 84 79 

MSD 74 53 81 77 

MSD - Balancing 74 76 73 80 

AUDA  65 10 90 75 

AUDA-WoE  74 22 96 79 

 

Table 6.1: Performance on the German Dataset 

 

From Table 6.1, it can be seen that AUDA-WoE performs better than 

the additive utility method on the German dataset, with AUDA-WoE 

achieving 74% overall accuracy compared to 65% for AUDA. The best 

overall accuracy is achieved by logistic regression and the worst by AUDA. 

The best performance for the bad class is achieved by MSD with balancing 

constraints and the worst performance by additive utility method. The best 

performance for the good class is achieved by AUDA-WoE and the worst by 

LDA. It appears that AUDA-WoE is biased in favour of the good class as 

only 22% of the bad class observations are correctly classified. Only the 

LDA and QDA methods and MSD with balancing constraints achieved 

balanced results with almost equal accuracies for both classes. Paired t-tests 

were applied to examine the significance of the results. Analytical results of 

the t–tests are included in Appendix C. Under the overall accuracy metric, 

logistic regression was significantly better than AUDA-WoE, LDA, QDA 

and UTA discriminant analysis. Under the AUC measure there is no 

significant difference between the methods. 

 

6.3.2 SPSS Dataset 

The results for the SPSS dataset are presented in Table 6.2. 
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 Method Accuracy (%) AUC 

 Overall Bad Good (%) 

Logistic regression 76 61 85 83 

LDA 75 75 75 83 

QDA 73 70 75 82 

NN 73 58 81 79 

MSD 71 77 60 77 

MSD - Balancing 73 80 64 79 

AUDA  72 26 98 83 

AUDA-WoE  88 82 91 94 

 

Table 6.2: Performance on the SPSS Dataset 

 

From Table 6.2 it can be seen that overall, AUDA-WoE performed 

better than the other methods. AUDA-WoE achieved 88% overall accuracy, 

with the MSD model having the poorest performance under this criterion. 

The best accuracy for the bad class was achieved by AUDA-WoE and the 

worst by AUDA. The best performance for the good class was achieved by 

AUDA and the worst by QDA. However, although AUDA achieved the best 

results for good class accuracy, it performed poorly in the bad, i.e. the 

minority, class. AUDA also had the largest discrepancy in performance 

between the good and bad classes, with all the other methods achieving 

either balanced or reasonably balanced results. Under the AUC metric, the 

best performance was achieved by AUDA-WoE and the worst by the MSD 

model. Paired t-tests were applied to examine the significance of the results 

and analytical results are included in Appendix C. Under the overall 

accuracy and AUC measures, AUDA-WoE was significantly better than 

logistic regression, LDA, QDA and AUDA.  

 

6.3.3 Greek Dataset 

 The results for the Greek dataset are presented in Table 6.3. 
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Method Accuracy (%) AUC 

 Overall Bad Good (%) 

Logistic Regression 79 3 99 67 

LDA 63 56 64 68 

QDA 63 56 65 67 

NN 76 21 91 63 

MSD 70 10 99 60 

MSD - Balancing 56 60 51 63 

AUDA  70 15 90 58 

AUDA-WoE  74 30 86 66 

 

Table 6.3: Performance on the Greek Dataset 

 

The Greek dataset is the most imbalanced, with the bad class accounting 

for 20% of the population while the good class consists the remaining 80%. 

The results for this dataset are dominated by the majority class. From the 

results in Table 6.3, it is clear that the performance of the additive utility 

method is improved when the WoE transformation is used. It is also worth 

noting that AUDA-WoE performs better than logistic regression which fails 

to classify correctly more than 3% of the minority class. Paired t-tests were 

applied to examine the significance of the results (see Appendix C). Logistic 

regression was significantly better than AUDA-WoE, LDA, QDA and 

additive utility method under the overall accuracy criterion, but, as with the 

other two datasets, AUDA-WoE achieved better results than the additive 

utility method.  

The results from these three datasets show that no single method 

outperforms the other methods on all datasets, confirming that it is important 

to consider a number of methods in developing classification models 

 

6.4 Applications of Ordinal Classification in Credit Scoring  

Credit scoring is concerned with predicting the correct status of an 

applicant for credit. Usually the class variable is treated as nominal and the 

score is only used to assign the applicant to one of the two classes. There 

are, however, decisions in credit scoring in which the distance of an 

applicant’s score from the cut-off value or the relative position of each score 

from the cut-off value is important. By considering the distance of each 

score from the cut-off value and the distance between two scores, the 
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scorecard can generate ordinal measures. The use of this category of 

scorecards in different decisions has been emphasised by Thomas et al 

(2001) who noted that decisions such as what percentage of applicants to 

accept or reject is related to the ordinal nature of the score. Also in decisions 

which are related to customisable characteristics of the products it is 

essential to use an ordinal scorecard. For example, it is possible to set the 

value of the interest or the annual fee paid by an applicant, according to the 

score of an applicant and the distance from the cut-off value.   

 

6.4.1 Calibration  

The use of credit scoring in different stages of the credit cycle such as 

originations, i.e. application scoring, accounts management, i.e. behavioural 

scoring, and collections, i.e. collections scoring, was described in Chapter 3. 

In all these problems, scoring is a two–class classification problem, e.g. to 

accept or to reject an application, to increase the credit limit or not. 

However, when developing or monitoring the scorecard it is essential to 

satisfy specific properties for a scorecard (e.g. Anderson, 2007), such as the 

properties found in a survey by Thomas et al (2001). For example, only 

positive scores or positive feature weights may be required by the users of 

scorecards, so that they can easily explain their decision to an applicant. It 

may be also necessary for the difference between the scores to have a 

constant meaning across the range of the score and for continuous 

characteristics to have monotone good/bad odds. Mays (2005) noted that it 

is common in credit scoring to calibrate the results of logistic regression. It 

is also common to add some base points in order to move the score in a 

specific score interval. Thomas et al (2001) proposed a mathematical 

programming model that can be used for recalibration of the scorecard and 

satisfy other properties. Although properties can be incorporated using ad 

hoc techniques, Thomas et al (2001) note that this could create 

contradictions, e.g. trying to have reference scores with specific marginal 

good/bad odds, might create negative weights for some features.  

These properties can be incorporated in a scorecard with the help of a 

linear programming model. In this study, the focus will be solely on the 

ordering of the observations and how this can be achieved through the use of 

an MP model. The model proposed by Thomas et al (2001) is described 

below using a notation similar to that used earlier. Consider an ordinal 
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classification problem with m ranked observations in increasing order,  

described by the values of n features, with Xij representing the value of 

feature j in observation i. The LP model is used to determine the function, 

defined by cutoff value a0 and the coefficient aj, j=1,2,….,n, of feature j, that 

minimizes the errors in the ranking of the observations. Defining eir as the 

amount that should be added to the score generated for observation r, r>i, 

i=1,2,…,m–1, r=2,3,…,m, to ensure that score for observation r is at least as 

large as score for observation, the model proposed by Thomas et al (2001) 

can be expressed as: 

   Minimise 
ri

ire
,

  (6.11a) 

  subject to           
j

ijj Xaa0                  
j

irjij eXaa 10  1≤i<r ≤m (6.11b) 

aj≥0, j=0,1,2,....,n; eir0, i=1,2,....,m-1, r=2,3,…,m, with i<r. 

 

 

There are several issues with model (6.11). Firstly, the constant term, a0, 

which corresponds to a constant that should be added to all scores to ensure 

that all scores are positive, cannot be determined by this model. A constant 

term of this form could be determined by adding an additional set of 

constraints to ensure that all scores are positive, but this would increase the 

size of the model. Secondly, this model is not normalised. Thomas et al 

(2001) suggest adding a constraint that requires the coefficients aj, 

j=1,2,….,n, to sum to a constant, e.g. 100, which is appropriate if the feature 

weights must be non-negative. Thirdly, as model (6.11) has n+1 aj variables, 

m(m–1)/2 eir variables and m(m–1)/2 constraints, it is intractable for 

problems of even moderate size. Thomas et al (2001) suggest an 

approximate model in which only adjacent observations are compared and 

which requires fewer variables and constraints. However, by defining the 

“error” variables in a different way, an exact model can be developed for 

generating the ranking function. 
 

6.4.2 New Ordinal LP model  

The LP presented in this section is based on the same principles as the 

LP model proposed by Thomas et al (2001) for calibrating a scorecard with 

m ranked observations. Define ,0, 

ii
dd  and ,0, 

ii
dd as, respectively, 

the amount that must be subtracted from or added to the score for 

observation i, i=1,2,….,m, to preserve the ranking of observations. The LP 
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model for determining the coefficient aj of feature j, j=1,2,….,n, in the 

ranking function, where the function is normalised by summing the 

coefficients to a constant, e.g. 1, is then: 

 

   Minimise 


 
m

i
ii dd

1

)(   (6.12a) 
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1≤i<m (6.12b) 

 
j

ja 1   (6.12c) 

aj≥0, j=0,1,2,....,n; 0, 

ii
dd , i=1,2,…,m 

 
 

In model (6.12) it is assumed that the ranking function’s feature 

coefficients, aj, j=1,2,….,n, must be non-negative. Ranking functions in 

which these coefficients may take negative values can be generated by 

representing free variables aj, j=1,2,....,n, by a pair of non-negative variables, 


ja  and 

ja  as in (2.2), and substituting (2.3) for the normalisation constraint 

(6.12c). 

The ordinal MP model (6.12) was tested on a small dataset consisting of 

25 ranked observations of road projects, (e.g. Beuthe and Scannella, 2001). 

These road projects had been ranked by experts using 6 features for each 

project. The rankings generated by model (6.12) were compared with the 

expert rankings using the leave-one-out (LOO) approach as the dataset 

consists of a small number of observations. The performance of the ordinal 

MP model was then evaluated using Kendall’s  and Spearman’s rank 

correlation coefficient,   (e.g. Salkind, 2007). For comparison, rankings 

were also generated using ordinal logistic regression, ordinal probit and 

ordinal negative logistic (e.g. Salkind, 2007) and Kendall’s  and 

Spearman’s rank correlation coefficient, , determined, as shown in Table 

6.4. Although, because of the small size of the dataset, it is not possible to 

draw wide-ranging conclusions from the results in Table 6.4, these results 

are included in order to give some indications about the potential power of 

the different methods.  
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Method τ ρ 

Ordinal MP 0.871 0.969 

Ordinal Logistic Regression 0.890 0.972 

Ordinal Probit 0.867 0.966 

Ordinal Negative Logistic 0.881 0.973 

 
Table 6.4: Statistics for the Different Models. 

  

From Table 6.4, it can be seen that although ordinal logistic regression 

performs best according to Kendall’s , and ordinal negative logistic 

regression performs best according to Spearman’s , the ordinal MP 

approach performs reasonably well according to both metrics. Further 

research using larger datasets is clearly required to evaluate the ordinal MP 

model (6.12). It should also be noted that model (6.12) can be extended to 

incorporate other conditions that may be required in calibrating or 

recalibrating scorecards (e.g. Thomas et al, 2001).  

 

6.5 Summary  

Various methods have been proposed for ordinal classification 

problems, with applications in job evaluation, financial management, stock 

evaluation and calibration/recalibration of scorecards. The statistical 

methods that have been proposed for this type of problems, e.g. ordinal 

logistic regression, either make assumptions about the distributions of the 

underlying populations or use computationally intensive algorithms to 

obtain solutions. MP-based methods have also been proposed for ordinal 

classification problems. The most established of these MP approaches are 

additive utility methods in which an LP model is used to generate a 

piecewise linear utility function from a weak order preference ranking 

defined by the user on a subset of reference observations. These additive 

utility methods can also be modified to generate non-linear discriminant 

functions, but methods based on the original UTA method have only been 

applied to relatively small datasets and have not addressed the difficulties 

associated with binary features. 

In this chapter, a general additive utility discriminant analysis model has 

been extended to deal with binary features. This additive utility discriminant 

analysis model has been applied to three credit scoring datasets and the 
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performance compared with other methods for generating binary classifiers. 

Although different methods for developing classifiers performed best on 

these datasets, the results suggest that the additive utility discriminant 

analysis model is a useful tool for classifier development. 

Some of the issues involved in using an LP-based model proposed for 

calibrating or recalibrating scorecards have also been considered in this 

chapter and a revised LP model has been outlined. This new LP model has 

applied to a small dataset. The results from this small dataset indicate that 

further research on larger datasets would be appropriate. 

 

 

 

 

 

 

 

 

 

 

 



 109 

Chapter 7 
 

7. Conclusions 
 

7.1 Thesis summary 

This thesis has investigated issues related to the application of MP 

methods to the binary classification problem, with an emphasis on credit 

scoring applications. Credit scoring is a binary classification problem that is 

of high importance to financial institutions that provide credit as lenders 

need to be able to predict if an applicant for credit is likely to repay or 

default. Previous experimental studies with MP discriminant analysis 

models have used inappropriate normalisation constraints and/or small 

datasets or did not use the data transformations widely applied in practice. 

This thesis has investigated the performance of MP models using 

appropriate normalisation constraints and data transformations on real 

datasets. In addition, other important issues have been discussed in relation 

to the application of MP to the binary classification problem. In particular, 

this thesis has considered the choice of appropriate features for inclusion in 

the classification model, the performance of MP discriminant analysis 

models on imbalanced datasets, the development of non-linear classifiers 

based on MP methods, and the application of MP models to ordinal 

problems.  

The main methods that can be used to construct a classifier, together 

with their strengths and weaknesses, were outlined in Chapter 2. The 

methods most widely used in practice for classification model development 

are statistical techniques (e.g. linear regression, linear and quadratic 

discriminant analysis, logistic regression, classification trees) and machine 

learning methods (e.g. neural networks, expert systems, nearest neighbour 

methods, support vector machines). MP discriminant analysis models can 

also be used to develop classifiers, but are not as widely used as statistical 

and machine learning approaches. The simplest MP methods use LP models 

to generate a discriminant function that optimises a metric based on the 

deviations of misclassified observations from the discriminant function, with 

objectives such as minimisation of the sum of deviations (MSD), i.e. the l1-

norm, or maximisation of the minimum deviation (MMD), i.e. the l∞-norm. 

One of the advantages of MP methods for developing classifiers is that 

classification accuracy can be used as the objective function to maximise the 
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number of correctly classified training sample observations (or minimise the 

number of misclassified observations), i.e. the l0-norm, by using an MIP 

formulation. However, the size of problem to which this MIP approach can 

be applied is restricted because a binary variable must be associated with 

each training sample observation. Non-linear programming methods can be 

used to develop classifiers based on the lp-norm for values of p other than 0, 

1 and ∞, although there are computational difficulties in solving these non-

linear programming models. MP methods each generate a linear 

discriminant function, but non-linear discriminant functions can be 

generated by first transforming the original features or by additive utility MP 

discriminant analysis models that generate piecewise linear discriminant 

functions. 

Chapter 3 considered the credit scoring problem and methods for 

developing scorecards. The emphasis of this thesis is on application scoring, 

i.e. assessment of new applications for credit, but other types of scoring, e.g. 

behavioural scoring and collection scoring, are noted. The most common 

uses of application scoring relate to personal loans and credit cards, but 

these methods can also be applied to portfolios of small business loans, 

which can be an important element in determining a bank’s capital 

requirements, as recognised in the Basel II regulations. Chapter 3 concluded 

with a benchmarking study comparing the performance of classifiers 

developed by different techniques using six datasets representing different 

experimental conditions in terms of their size and origin, with features 

generated by the WoE transformation. The results from this benchmarking 

study confirm the results from previous studies, e.g. Baesens (2005), about 

the performance of the classifiers and that, in particular, there is no single 

method that outperforms all other methods under all data conditions. The 

MSD model was included in this comparative study, but all WoE-generated 

features were used for classifier development, whereas only a limited set of 

features would be used in practice. 

The development of parsimonious classifiers requires efficient and 

effective methods for feature selection. Traditional methods of feature 

selection were outlined in Chapter 4. Ideally, features should be selected in 

terms of their impact on classification accuracy, but traditional methods use 

proxies for classification accuracy in the selection process. Features are 

selected on the basis of their contribution to classification accuracy in the 

feature selection extension of the MIP discriminant analysis model for 
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maximising classification accuracy. However, this MIP approach can only 

be applied to discriminant problems with a relatively small number of 

observations as a binary variable is required for each observation. Two 

heuristic methods of feature selection based on the MIP model for 

maximising classification accuracy in two-group discriminant problems 

were proposed in Chapter 4. The number of features to be selected is 

specified in advance in one heuristic, but not specified in advance in the 

other. The two heuristics were applied to three credit scoring datasets, with 

the heuristic involving a specified number of features generally 

outperforming the heuristic in which the number of features is not specified. 

The performance of classifiers developed by the heuristic involving a 

specified number of features was then compared with classifiers developed 

by four other feature selection methods, and although none of the five 

feature selection methods consistently outperformed the other methods, the 

MIP based heuristic generally performed well. 

 In Chapter 5 the difficulties associated with imbalanced binary 

classification problems, i.e. problems with many more observations in one 

class than in the other, were considered. Imbalanced datasets, which are 

often found in credit scoring and fraud detection applications, can lead to the 

production of classifiers that are dominated by the majority class, so that in 

extreme cases all observations are assigned to the majority class. A common 

method for dealing with imbalanced datasets involves pre-processing the 

data to produce a more balanced dataset by either under-sampling the 

majority class or over-sampling the minority class, but pre-processing the 

data can bias classifier performance. Alternatively, the costs associated with 

misclassifying observations can be considered in developing classifiers, but 

in practice it is often difficult to determine misclassification costs. It was 

shown in Chapter 5 that MP discriminant analysis models can be extended 

to balance misclassification metrics across the classes either by modifying 

the objective function or by incorporating additional constraints, so that it is 

not necessary to pre-process the data or identify misclassification costs. 

These extended MP models for developing classifiers were applied to four 

imbalanced datasets from financial institutions and were found to produce 

classifiers with balanced performance across the two classes. 

The use of MP in generating non-linear discriminant functions and 

ordinal classification was outlined in Chapter 6. The additive utility UTA 

method (Jacquet-Lagrèse and Siskos, 1982) uses an LP model to produce an 
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additive utility ranking function from a weak-order preference ranking of a 

training sample of observations, but it is assumed that the marginal utility of 

each feature is monotone non-decreasing. This additive utility approach can 

be modified so that it is only necessary to assume that the marginal utility of 

each feature is monotone. A further extension allows an additive utility 

approach to be used to generate piecewise linear representations of non-

linear discriminant functions, but this approach, which cannot deal with 

binary features, has only been applied to relatively small discriminant 

problems. In Chapter 6 it was shown that binary features can be 

accommodated in additive utility discriminant analysis by using the WoE 

data transformation, and this approach was applied to three credit scoring 

datasets. The simplest applications of credit scoring are concerned with 

accepting or rejecting applicants for credit, with applicants classified as 

good, i.e. unlikely to default, or bad, i.e. likely to default. Credit scoring is 

also used for ordinal classification, e.g. ranking applicants by risk of default, 

or for estimating the probability of default. MP approaches have been 

proposed to calibrate scorecards so that, as far as possible, scores have 

specified properties (e.g. Thomas et al, 2001). A simple LP model for 

ranking applicants for credit is presented in Chapter 6, but because an 

appropriate credit scoring dataset was not available, the use of this model 

was demonstrated on a small ordered dataset from another domain. 

This thesis has demonstrated that MP discriminant analysis models can 

be used to develop linear and non-linear classifiers from large datasets of the 

type encountered in credit scoring applications. It has also been shown that 

MP based heuristic methods can be used to select features on the basis of 

their impact on classification accuracy in order to develop parsimonious 

classifiers. Methods for extending MP discriminant analysis models to deal 

with imbalanced datasets have also been developed and tested in this thesis. 

These techniques have been used to develop classifiers from a range of 

datasets and the performance of these methods compared with classifiers 

developed by statistical and machine learning methods. Although no single 

method of classifier development has been found to outperform all other 

methods under all data conditions, the results show that MP methods can be 

a valuable tool in this area. 
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7.2 Limitations of the research  

The experimental studies in this thesis were based solely on application 

scoring data. The use of MP-based techniques on a number of similar 

problems, e.g. behavioural scoring and collection scoring, has therefore not 

been considered. Moreover, the performance of two-stage MP-based models 

was not tested even if these models seem to be a good alternative for 

classification problems. In addition, as only a very limited number of 

methods for imbalanced datasets was tested, it would be worth including 

more methods in the comparison studies.  In Chapter 6 only a small (and 

irrelevant) dataset was used for testing the new ranking classifier suggested. 

It would be worth obtaining a larger dataset for testing the performance of 

this classifier.  

7.3 Issues for further research  

7.3.1 Application of MP Methods to Peer-to-Peer Lending 

Peer-to-peer (P2P) lending allows individuals to lend money to other 

individuals through P2P websites. P2P lending has become popular due to 

the economic crisis and reduced lending by banks to individuals and small 

businesses. The website operator generates income through a fee charged to 

users, with lenders earning interest from borrowers. The advantages to 

borrowers are that interest rates and initiation charges may be lower than 

available elsewhere and the absence of early repayment fees. However, as 

borrowers who default cannot be easily pursued, it is very important to have 

methods for rapidly predicting the behaviour of applicants using every 

possible piece of information. MP methods may be particularly suitable for 

this problem as special relationships and qualitative characteristics can be 

incorporated into the classifier.    

 

7.3.2 Using MP Methods in Combination with Other Techniques 

This thesis has examined the performance of MP methods individually. 

MP methods could also be used in combination with techniques from 

statistics and machine learning to improve performance and increase 

flexibility. For example, it was noted in Chapter 2 that neural networks do 

not offer explanation about how a specific decision is reached. By using an 

MP model in combination with a neural network it may be possible to 

improve performance and provide explanation.  
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7.3.3 Application of MP Methods to Collection Data 

Collection scoring is closely related to use of behavioural scoring 

(Lewis, 1992) as it uses a behavioural score to set up a strategy for 

recovering debts from, for example, 60+ days-past-due customers. The 

additive utility discriminant analysis model may be appropriate for this 

application.  

 

7.3.4 Use of Macro-Economic Factors in MP-Based Methods 

Most techniques for developing scorecards use data which relate to a 

specific period. As a result, these data may not be appropriate for predicting 

the behaviour of accounts under different economic conditions. For instance, 

loan accounts opened during a recession may be expected to behave 

differently from accounts opened during a period of economic growth. For 

credit scores to accurately predict the probability of default, a credit 

scorecard should not be static but should reflect changes in the economy 

(e.g. Thomas et al, 2005). One way to achieve this is through the inclusion 

of macro-economic factors in a credit scoring model (e.g. Crook and Belloti, 

2007; Wendling and Goncalves, 2007). The use of macro-economic in MP 

methods for developing scorecards has not been investigated and is therefore 

an area for future research. 
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Table A-1: Greek Dataset Characteristics 

 Name Type 

1 Residential Status Discrete 

2 Marital Status Discrete 

3 Age Continuous 

4 Income Continuous 

5 Area Discrete 

6 Occupation Code Discrete 

7 Time in Job Continuous 

8 Dependents Continuous 

9 Time in Address Continuous 

10 Phones Discrete 

11 Card Type Discrete 

12 Sex Discrete 

13 OtherCard1 Discrete 

14 OtherCard2 Discrete 

15 OtherCard3 Discrete 

16 OtherCard4 Discrete 

17 OtherCard5 Discrete 

18 OtherCard6 Discrete 

19 OtherCard7 Discrete 

20 OtherCard8 Discrete 

21 OtherCard9 Discrete 

22 OtherCard10 Discrete 

23 Stand order Discrete 

24 Status Delivery Discrete 

25 Secondary Card1 Discrete 

26 Secondary Card2 Discrete 

27 Mortgage Discrete 

28 Consumer loan Discrete 

29 Bank type  Discrete 

30 Mutual fund Discrete 

31 Insurance Discrete 

32 Minimum Payment Discrete 

33 Balance transfer Discrete 

34 Account type Discrete 

35 Credit limit Discrete 

37 Mobile phone Discrete 

38 Home phone Discrete 

39 Business phone Discrete 
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Table A-2: German Dataset Characteristics 

 Name  Type 

1 Status of existing checking account Discrete 

2 Duration in months Continuous 

3 Credit history Continuous 

4 Purpose Discrete 

5 Credit amount Continuous 

6 Savings account Discrete 

7 Present employment since Continuous 

8 Installment rate in percentage of disposable income Continuous 

9 Personal status and gender Discrete 

10 Other debtors/guarantors Discrete 

11 Date beginning permanent residence Continuous 

12 Property Discrete 

13 Age in years  Continuous 

14 Other installment plans Discrete 

15 Housing Discrete 

16 Number of existing credits at this bank Continuous 

17 Job Discrete 

18 Number of dependents Continuous 

19 Telephone Discrete 

20 Foreign Worker Discrete 
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Table A-3: SME Dataset Characteristics 

 Name Type 

1 Cash / Total Assets Continuous 

2 Liabilities / Total Assets Continuous 

3 Equity / Total Assets Continuous 

4 Sales / Total Assets Continuous 

5 Cash / Net Sales Continuous 

6 Profit / Sales Continuous 

7 Working Capital / Assets Continuous 

8 Account Payable / Sales Continuous 

9 Account Receivable / Liabilities Continuous 

 

 

Table A-4: SPSS Dataset Characteristics 

 Name  Type 

1 Age in years Continuous 

2 Level of education Discrete 

3 Years with current employment Continuous 

4 Years at current address Continuous 

5 Household Income Continuous 

6 Debt to income ratio Continuous 

7 Credit Card Debt  Continuous 

8 Other debt Continuous 
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Table A-5: US Dataset Characteristics 

 Name Type 

1 Age Continuous 

2 Expenditure_Jan Continuous 

3 Expenditure_Feb Continuous 

4 Expenditure_Mar Continuous 

5 Expenditure_Apr Continuous 

6 Expenditure_May Continuous 

7 Expenditure_Jun Continuous 

8 Expenditure_Jul Continuous 

9 Expenditure_Aug Continuous 

10 Expenditure_Sept Continuous 

11 Expenditure_Oct Continuous 

12 Expenditure_Nov Continuous 

13 Expenditure_Dec Continuous 

15 Dependents Continuous 

16 Months in previous address Continuous 

17 Additional income Continuous 

18 Income Continuous 

19 Selfemployed Discrete 

20 Professional Discrete 

21 Unemployed Discrete 

22 Management Discrete 

23 Military Discrete 

24 Clerical  Discrete 

25 Sales Discrete 

26 Other job Discrete 

27 Months at current address Continuous 

28 Number of credit bureaus inquiries  Continuous 

29 Major credit card Discrete 

30 Department store credit card Discrete 

31 Gasoline credit card Discrete 

32 Months employed Continuous 

33 Current trade item accounts Continuous 

34 Bank savings account Discrete 

35 Bank checking account  Discrete 

36 Major derogatory reports Continuous 

37 Minor derogatory reports Continuous 

38 Number of open and current trade lines Continuous 

39 Number of trade active lines Continuous 

40 Number of trade lines 30 days past due Continuous 

41 Number of 30 day delinquencies within 12 months  Continuous 

42 Dollar amount of averaging revolving balance Continuous 
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Table A-6: Australian – Company dataset Characteristic 

 Name Type 

1 Company Type Discrete 

2 Home Phone Discrete 

3 Residential Status Discrete 

4 Product Type Discrete 

5 Age of Applicant Continuous 

6 Time in Current Address Continuous 

7 Time in Business Continuous 

8 Turnover in Current Year  Continuous 

9 NBPT Current Year Continuous 

10 NBPT Current Year - rate Continuous 

11 Average Net Continuous 

12 Term Continuous 

 

Table A-7: Australian – Individuals dataset characteristics  

 Name Type 

1 Security Flag Discrete 

2 Home Phone Discrete 

3 Residential Status Discrete 

4 Product Type Discrete 

5 Age of Applicant Continuous 

6 Time in Current Address Continuous 

7 Time in Current Employment Continuous 

8 Time in previous Employment  Continuous 

9 Time in Previous Address Continuous 

10 Number of Dependants Continuous 

11 Number of Credit Cards Continuous 

12 Term Continuous 

13 Amount Financed Continuous 

 

 

Table A-8: Australian – Sole Trader dataset characteristics 

 Name Type 

1 Security Flag Discrete 

2 Home Phone Discrete 

3 Residential Status Discrete 

4 Product Type Discrete 

5 Age of Applicant Continuous 

6 Time in Current Address Continuous 

7 Time in Current Employment Continuous 

8 Time in previous Employment  Continuous 
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Table A-9: Fraud scoring dataset 

 Name Type 

1 Time of Transaction Continuous 

2 Type of Merchant Discrete 

3 Overseas Transaction Discrete 

4 Time Since Prev Ret Txn Continuous 

5 Retail Txns Last Hour Continuous 

6 Retail Txns Last 24h Continuous 

7 Retail Txns Last 7 days Continuous 

8 Retail Txns Last 28 days Continuous 

9 Time Since Prev Cash Txn Continuous 

10 Cash Txns Last hour Continuous 

11 Cash_Txns_Last_24h Continuous 

12 Cash Txns Last 7 days Continuous 

13 Cash Txns Last 28 days Continuous 

14 Hst % Txn same value L12M retail Continuous 

15 Hst % Txn same merchant L12M retail Continuous 

16 Transactions L72hrs 3 days Continuous 

17 Av value of  retail tx in last hour Continuous 

18 Country of Origin Risk Group Continuous 

19 Av Value Last 5 Txns Continuous 

20 Amount Continuous 

21 MCC Continuous 

22 Dev_Val_Flag Discrete 
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APPENDIX B 

Data Transformation 

Greek dataset 

 

Table B-1: Coarse classification, Greece, Residential status 

ATTRIBUTE WOE GROUP 

Tenant -0.42996 1 

Other -0.26966 1 

Owner 0.229263 2 

 

Table B-2: Coarse classification, Greece, Marital status 

ATTRIBUTE WOE GROUP 

Single -0.21641 1 

Other -0.22424 1 

Married 0.231861 2 

 

Table B-3: Coarse classification, Greece, occupation code 

ATRIBUTE WOE GROUP 

<=4 -0.43691 1 

5-8 -0.064 2 

9-11 -0.22231 2 

12-13 -0.10662 2 

14 0.173432 3 

15 0.87811 2 

16-18 0.505812 1 

 

Table B-4: Coarse classification, Greece, Age 

ATTRIBUTE WOE GROUP 

<=25 -0.58239 1 

26-28 -0.02216 2 

29-32 0.055356 2 

33-35 0.052109 2 

36-38 0.063555 2 

39-41 0.157897 2 

42-45 -0.07757 2 

46-50 0.185309 3 

51-57 0.214784 3 

58<= 0.216558 3 

 

Table B-5: Coarse classification, Greece, Phones 

ATTRIBUTES WOE GROUP 

1 0.009043 1 

2 -0.18924 1 

3 0.00247 1 

4 -0.8077 2 
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Table B-6: Coarse classification, Greece, Time in Job 

ATTRIBUTES WOE GROUP 

0 MONTHS 0.233042 1 

1 -0.50682 2 

2-3 -0.45572 2 

4 -0.45501 2 

5-6 -0.1303 2 

7-10 0.227133 3 

11-18 0.319044 3 

19<= 0.453796 3 

 

Table B-7: Coarse classification, Greece, dependents 

ATTRIBUTES WOE GROUP 

0 -0.0253 1 

 0 0.074927 2 

 

Table B-8: Coarse classification, Greece, Time in address 

ATTRIBUTE WOE GROUP 

0 0.060111 1 

1-3 -0.2898 2 

4-5 -0.26396 2 

6-10 0.105687 3 

11-19 0.156332 3 

20-27 0.127661 3 

28-75 -0.01869 4 

 

Table B-9: Coarse classification, Greece, area 

ATTRIBUTE WOE GROUP 

1 -0.10023 1 

2-3 -0.23203 2 

4 -0.20903 3 

5-6 -0.26946 1 

7-8 0.07706 1 

9-10 0.121934 3 

11-12 0.255985 1 

13 0.189038 2 

 

Table B-10: Coarse classification, Greece, income 

ATTRIBUTE WOE GROUP 

0 0.239574 1 

<=68 -0.26364 2 

69-85 -0.38478 2 

86-100 -0.26761 2 

101-121 -0.26878 2 

122-150 0.095805 3 

151-188 0.100954 3 

189-262 0.211448 3 

263<= 0.455627 4 

 

US Dataset 

Table B-11: Coarse classification, US, dependents 
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ATTRIBUTE WOE GROUP 

0 -0.48538 1 

0 0.223048 2 

 

Table B-12: Coarse classification, US, months in previous address 

ATTRIBUTE WOE GROUP 

1 0.265914 1 

2 -0.03251 2 

3 0.040281 2 

4 0.094538 2 

5 -0.02892 3 

6 0.131068 3 

7 -0.17215 4 

8 -0.25248 4 

9 -0.11717 4 

 

Table B-13: Coarse classification, US, months in current address 

ATTRIBUTE WOE GROUP 

1 0.084517 1 

2 -0.06001 1 

3 0.481184 2 

4 -0.01131 3 

5 -0.08807 3 

6 -0.17191 3 

7 -0.07081 3 

8 -0.04723 3 

9 -0.03891 3 

10 0.224069 4 

 

Table B-14: Coarse classification, US, months employed 

ATTRIBUTE WOE GROUP 

1 0.506201 1 

2 -0.06949 2 

3 0.174633 2 

4 -0.13567 3 

5 -0.1492 3 

6 -0.18093 3 

7 -0.01678 3 

8 -0.07499 3 

9 0.004858 4 

10 0.111508 4 

 

Table B-15: Coarse classification, US, additional income 

ATTRIBUTE WOE GROUP 

1 0.114534 1 

2 0.16138 1 

3 -0.31291 2 

4 -0.47261 2 

5 0.178897 2 
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Table B-16: Coarse classification, US, age 

ATTRIBUTE WOE GROUP 

1 -0.67596 1 

2 -0.16984 1 

3 0.075588 2 

4 0.038422 2 

5 0.065937 2 

6 0.211647 3 

7 0.107333 3 

8 0.23638 4 

9 0.276409 4 

10 0.175279 4 

 

Table B-17: Coarse classification, US, active trade lines 

ATTRIBUTE WOE GROUP 

1 0.268277 1 

2 -0.51304 2 

3 -0.37227 2 

4 -0.48393 2 

5 -0.133 2 

6 -0.02139 2 

7 0.411221 3 

8 0.325492 3 

9 0.448259 3 

10 0.492641 3 

 

Table B-18: Coarse classification, US, income 

ATTRIBUTE WOE GROUP 

1 -0.56538 1 

2 -0.3718 1 

3 -0.26501 1 

4 -0.08256 2 

5 0.015937 2 

6 0.043475 2 

7 0.24991 3 

8 0.115238 3 

9 0.701376 4 

10 0.874926 4 
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Table B-19: Coarse classification, US, average balance 

ATTRIBUTE WOE GROUP 

1 0.14228 1 

2 0.401624 1 

3 0.160614 1 

4 0.059849 1 

5 -0.02401 2 

6 -0.06676 2 

7 -0.10036 2 

8 -0.22894 3 

9 -0.44073 3 

10 -0.13357 3 

 

Table B-20: Coarse classification, US, average expenses 

ATTRIBUTE WOE GROUP 

1 -0.56152 1 

2 -0.01533 2 

3 0.006779 2 

4 -0.12033 3 

5 -0.16 3 

6 0.062801 3 

7 0.186731 4 

8 0.383442 4 

9 0.173861 4 

10 0.323782 4 

 

Table B-21: Coarse classification, US, expenditure_January 

ATTRIBUTE WOE GROUP 

1 -1.43167 1 

2 -1.68025 1 

3 0.728113 2 

4 -0.39603 2 

5 0.27167 2 

6 1.203261 3 

7 1.054138 3 

8 1.271725 3 

9 1.792297 3 

10 1.978491 3 

 

Table B-22: Coarse classification, US, expenditure_February 

ATTRIBUTE WOE GROUP 

1 -0.81165 1 

2 -1.7965 1 

3 0.172644 2 

4 0.423447 2 

5 0.492555 2 

6 1.255448 3 

7 1.457957 3 

8 1.457957 3 

9 1.341697 3 
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Table B-23: Coarse classification, US, expenditure_March 

ATTRIBUTE WOE GROUP 

1 -0.57713 1 

2 -1.00285 1 

3 0.26806 2 

4 0.600048 2 

5 0.804988 2 

6 1.341697 3 

7 1.543287 3 

8 0.947527 3 

 

Table B-24: Coarse classification, US, expenditure_April 

ATTRIBUTE WOE GROUP 

1 -0.41422 1 

2 -0.64618 1 

3 -0.99239 1 

4 0.136062 2 

5 0.494906 2 

6 0.740117 2 

7 1.082524 3 

8 0.897915 3 

9 0.678843 3 

 

Table B-25: Coarse classification, US, expenditure_May 

ATTRIBUTE WOE GROUP 

1 -0.23129 1 

2 -2.37068 1 

3 -0.6592 1 

4 0.173861 2 

5 0.658143 2 

6 0.719314 2 

7 0.873932 3 

8 0.430301 3 

9 0.2262 3 

 

Table B-26: Coarse classification, US, expenditure_June 

ATTRIBUTE WOE GROUP 

1 -0.36355 1 

2 -1.90513 1 

3 -0.23262 1 

4 0.283016 2 

5 0.614715 2 

6 0.547745 2 

7 0.479158 3 

8 0.338412 3 

9 0.309334 3 
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Table B-27: Coarse classification, US, expenditure_July 

ATTRIBUTE WOE GROUP 

1 -0.23317 1 

2 -1.93019 1 

3 -0.51088 1 

4 0.381399 2 

5 0.572514 2 

6 0.699896 2 

7 0.293007 3 

8 0.365167 3 

9 0.0407 3 

 

Table B-28: Coarse classification, US, expenditure_August 

ATTRIBUTE WOE GROUP 

1 -0.06065 1 

2 -1.81464 1 

3 -0.48379 1 

4 0.172475 2 

5 0.581646 2 

6 0.387574 2 

7 0.383442 3 

8 0.370277 3 

9 -0.13357 3 

 

Table B-29: Coarse classification, US, expenditure_September 

ATTRIBUTE WOE GROUP 

1 0.014082 1 

2 -1.5568 1 

3 -0.45606 1 

4 0.238622 2 

5 0.273743 2 

6 0.331221 2 

7 0.305223 3 

8 0.253263 3 

9 -0.0381 3 

 

Table B-30: Coarse classification, US, expenditure_October 

ATTRIBUTE WOE GROUP 

1 0.085782 1 

2 -0.36693 1 

3 0.23759 2 

4 0.028238 3 

5 -0.01448 3 

6 -0.02202 3 

7 -0.01849 3 

8 -0.0381 3 
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Table B-31: Coarse classification, US, expenditure November 

ATTRIBUTE WOE GROUP 

1 0.053512 1 

2 -0.11188 1 

3 0.523102 2 

4 0.413449 2 

5 0.388604 2 

6 0.335336 2 

7 -0.05522 3 

8 -0.46051 3 

9 -0.68008 3 

 

Table B-32: Coarse classification, US, expenditure_December 

ATTRIBUTE WOE GROUP 

1 -0.01138 1 

2 0.380669 1 

3 1.076589 1 

4 0.149738 2 

5 0.40292 2 

6 0.235522 2 

7 -0.00538 3 

8 -0.35777 3 

9 -0.66776 3 

 

SME DATASET  

 

Table B-33: Coarse Classification, SME, Cash / Total Assets 

ATTRIBUTE WOE GROUP 

0.000 -0.12348 1 

0.012 -1.04209 1 

0.030 -0.40036 1 

0.055 -0.40046 1 

0.094 0.147411 2 

0.152 0.005381 2 

0.241 0.436404 3 

0.382 0.387859 3 

0.680 0.922282 3 

2.839 0.968802 3 
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Table B-34: Coarse Classification, SME, Liabilities / Total Assets 

ATTRIBUTE WOE GROUP 

0.000 1.733212 1 

0.000 0.487804 1 

0.094 0.15022 2 

0.247 0.244692 2 

0.412 -0.00109 3 

0.589 -0.32142 3 

0.784 -0.38289 3 

1.034 -0.64305 3 

1.862 -0.84963 3 

908.733 0 3 

 

Table B-35: Coarse Classification, SME, Equity / Total Assets 

ATTRIBUTE WOE GROUP 

-0.862 -0.85355 1 

-0.034 -0.56761 1 

0.176 -0.32037 1 

0.381 -0.32646 1 

0.556 -0.00735 1 

0.718 0.179124 2 

0.876 0.15022 2 

0.994 0.465391 3 

1.000 1.812563 3 

16.560 -1.77969 3 

 

Table B-36: Coarse Classification, SME, Sales / Total Assets 

ATTRIBUTE WOE GROUP 

0.400 0.588442 1 

0.932 0.287173 1 

1.490 0.028599 1 

2.071 -0.1464 2 

2.802 -0.28765 2 

3.704 -0.16013 2 

4.949 0.005513 2 

7.069 -0.11563 2 

13.791 -0.15012 2 

50000.000 0.156433 3 
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Table B-37: Coarse Classification, SME, Cash / Net Sales 

ATTRIBUTE WOE GROUP 

0.000 -0.25416 1 

0.004 -0.92304 1 

0.011 -0.58914 1 

0.018 -0.3821 1 

0.028 -0.22506 1 

0.043 0.214853 2 

0.066 0.337492 2 

0.106 0.871714 2 

0.195 1.20718 3 

13.929 1.161821 3 

 

Table B-38: Coarse Classification, SME, Profit / Sales 

ATTRIBUTE WOE GROUP 

-0.065 -0.19427 1 

0.000 -0.2403 1 

0.025 -0.11519 1 

0.063 -0.2564 1 

0.126 0.216864 2 

0.215 0.059536 2 

0.330 0.128241 2 

0.500 0.280824 3 

0.714 -0.47344 3 

5.864 0.569613 3 

 

Table B-39: Coarse Classification, SME, Working Capital / Assets 

ATTRIBUTE WOE GROUP 

0.000 -0.23813 1 

0.091 0.166221 1 

0.203 -0.27738 1 

0.341 -0.2584 1 

0.482 -0.05825 1 

0.615 -0.2705 1 

0.760 0.018714 2 

0.899 0.079209 2 

1.000 0.601399 2 

1.958 -1.08654 3 

 

Table B-40: Coarse Classification, SME, Account Payable / Sales 

ATTRIBUTE WOE GROUP 

0.0000 1.02204 1 

>0.0000 -0.49915 2 

 

Table B-41: Coarse Classification, SME, Account Receivable / 

Liabilities 

ATTRIBUTE WOE GROUP 

0.0000 0.669324 1 

>0.0000 -0.3895 2 

 

SPSS DATASET  
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Table B-42: Coarse Classification, SPSS, Level of Education 

ATTRIBUTE WOE GROUP 

High School -0.03789 1 

Post Undrg 0.185841 2 

Did not Comple 0.4904 2 

College Degree -0.34952 3 

Some College 0.021828 3 

 

Table B-43: Coarse Classification, SPSS, Age 

ATTRIBUTE WOE GROUP 

1 -1.07919 1 

2 -0.76682 1 

3 -0.5845 2 

4 -0.57939 2 

5 -0.39525 3 

6 -0.40057 3 

7 -0.22522 4 

8 -0.29236 4 

9 -0.29478 4 

10 0.59576 5 

 

Table B-44: Coarse Classification, SPSS, Years with current 

employment 

ATTRIBUTE WOE GROUP 

1 -0.7197 1 

2 -0.36778 1 

3 -0.25599 1 

4 0.274636 2 

5 0.267256 3 

6 0.161896 3 

7 0.64195 3 

8 0.459628 3 

9 1.480708 4 

10 0.372617 5 

 

Table B-45: Coarse Classification, SPSS, Years at Current Address 

ATTRIBUTE WOE GROUP 

1 -0.77677 1 

2 -0.26924 1 

3 -0.15163 1 

4 -0.21599 1 

5 -0.00468 1 

6 0.201659 2 

7 0.052309 3 

8 0.825813 3 

9 0.443713 3 

10 0.619477 3 
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Table B-46: Coarse Classification, SPSS, Household Income 

ATTRIBUTE WOE GROUP 

1 -0.48541 1 

2 -0.49103 1 

3 -0.48305 1 

4 -0.66503 1 

5 0.12842 2 

6 -0.02573 3 

7 -0.06989 3 

8 -0.26604 4 

9 -0.29584 4 

10 -0.14726 5 

 

Table B-47: Coarse Classification, SPSS, Debt to Income ratio 

ATTRIBUTE WOE GROUP 

1 1.292537 1 

2 1.135968 1 

3 0.761275 2 

4 0.825813 2 

5 1.145807 2 

6 0.411837 3 

7 0.750247 3 

8 0.354268 4 

9 0.252657 4 

10 0.51922 4 

 

Table B-48: Coarse Classification, SPSS, Credit Card Debt 

ATTRIBUTE WOE GROUP 

1 0.603728 1 

2 0.252657 1 

3 0.73726 2 

4 0.537239 2 

5 0.190295 3 

6 0.489341 3 

7 0.066092 4 

8 0.092315 4 

9 0.323827 5 

10 0.188694 5 
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Table B-49: Coarse Classification, SPSS, Other Debt 

ATTRIBUTE WOE GROUP 

1 0.907159 1 

2 0.212652 2 

3 0.449578 2 

4 0.12927 2 

5 0.316527 3 

6 0.335575 3 

7 0.309816 3 

8 0.149473 4 

9 -0.21989 5 

10 -0.22209 5 

 

COMPANY DATASET 

 

Table B-50: Coarse Classification, Company, Age of applicant 

ATTRIBUTE WOE GROUP 

240-379 0.068902858 1 

380-421 -0.163949507 1 

422-458 0.657861775 2 

459-490 0.457191079 2 

491-519 0.758016149 3 

520-554 0.284561512 3 

555-589 0.550115572 3 

590-627 0.193538115 4 

628-677 0.773259124 5 

678+ 1.241669127 5 

 

 

Table B-51: Coarse Classification, Company, Months in Current 

Address 

ATTRIBUTE WOE GROUP 

low-1 -1.552957574 1 

2-10 0.348268875 1 

11-18 -0.086536897 1 

19-35 0.525124348 2 

36-47 0.112913852 2 

48-60 0.386498786 3 

61-93 0.874425232 3 

94-128 0.832008628 3 

129-192 1.148549529 3 

193+ 0.625246679 3 
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Table B-52: Coarse Classification, Company, Months in Business 

ATTRIBUTE WOE GROUP 

0-1 -1.455903625 1 

2-17 0.150208239 2 

18-35 -0.232071678 2 

36-48 0.0381312 2 

49-71 0.160504558 2 

72-84 1.022448152 3 

85-119 1.652788959 3 

120-154 0.799796994 3 

55-216 0.951458608 3 

217+ 0.670490198 3 

 

Table B-53: Coarse Classification, Company, NBPT Current Years rate 

ATTRIBUTE WOE GROUP 

low--0.0001 

-

0.002854355 1 

0 -0.88973747 1 

0.0001-0.0323 0.393728671 2 

0.0324-0.0665 0.706689761 2 

0.0666-0.105 0.288774442 2 

0.1051-0.1632 0.523267337 2 

0.1633-0.2466 0.432531561 2 

0.2467-0.3756 0.524010556 2 

0.3757-0.9809 0.270080165 2 

0.981+ 0.093468908 2 

 

Table B-54: Coarse Classification, Company, NBPT Current Years 

ATTRIBUTE WOE GROUP 

low-0 -1.007007314 1 

1 0.22891885 1 

2-12481 0.534063863 2 

12482-29814 0.937369143 2 

29815-42000 0.884652361 2 

42001-60826 0.833509003 2 

60827-100000 0.632116186 2 

100001-181000 0.541319034 2 

181000 – 190000 -0.456677195 3 

190000+ -0.550056745 3 
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Table 255: Coarse Classification, Company, Turnover Current Years 

ATTRIBUTE WOE GROUP 

0 

-

1.650802231 1 

1-49964 0.14217506 1 

49965-109989 0.518796391 2 

109990-169810 1.529650198 2 

169811-250000 0.908580315 2 

250001-378739 0.762854868 2 

378740-568817 0.161134083 3 

568818-891225 0.432531561 3 

891226-1544496 0.276887229 3 

1544497+ -0.03298881 3 

 

Table B-56: Coarse Classification, Company, Average Net 

ATTRIBUTE WOE GROUP 

0 

-

1.05428277 1 

0.0833-1033.3333 0.13428119 1 

1040-2666.4166 0.59829894 2 

2666.6666-3500 0.55257346 2 

3501-4166.6666 0.16862089 2 

4174.5833-5000 0.5161042 2 

5001-6666.25 0.22193809 2 

6666.6666-8666.6666 0.72297102 3 

8725 – 9120 0.71797232 3 

9120 + 0.8645367 3 

 

Table B-57: Coarse Classification, Company, Term 

ATTRIBUTE WOE GROUP 

1.low-22 0.039809 1 

2.23-24 0.451749 1 

3.25-36 -0.61943 2 

4.37-60 -0.04413 2 

 

Table B-58: Coarse Classification, Company, Company Type 

ATTRIBUTE WOE GROUP 

LTD -1.574936481 1 

NAC -1.097385646 1 

P/L 0.082804575 2 

 

Table B-59: Coarse Classification, Company, Home Phone 

ATTRIBUTE WOE GROUP 

N -1.448999643 0 

Y 0.43078875 1 
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Table B-60: Coarse Classification, Company, Residential Status 

ATTRIBUTE WOE GROUP 

L -0.0321133 1 

O -1.7792115 1 

R -0.2616754 2 

W 0.61562816 3 

 

Table B-61: Coarse Classification, Company, Product 

ATTRIBUTE WOE GROUP 

Lease 72.45652174 0 

Rent 13259.54348 1 

 

INDIVIDUALS DATASET 

 

Table B-62: Coarse Classification, Individuals, Security Provided 

ATTRIBUTE WOE GROUP 

N -0.003025119 0 

Y 0.359189667 1 

 

 

Table B-63: Coarse Classification, Individuals, Home Phone 

ATTRIBUTE WOE GROUP 

N 0.818661568 0 

Y -0.040953773 1 

 

Table B-64: Coarse Classification, Individuals, Residential Status 

ATTRIBUTE WOE GROUP 

L 0.58223387 1 

R 0.51598357 1 

W -0.8653307 2 

 

 

Table B-65: Coarse Classification, Individuals, Product 

ATTRIBUTE WOE GROUP 

Lease -0.49152233 0 

Rent 0.422704221 1 

 

 

Table B-66: Coarse Classification, Individuals, Age of Applicant 

ATTRIBUTE WOE GROUP 

low-348 -0.839188647 1 

349-389 -0.526868285 1 

390-426 -0.227021857 1 

427-461 -0.101303386 2 

462-492 -0.094138695 2 

493-525 0.173817581 2 

526-560 0.710236001 3 

561-602 0.792920503 3 

603-657 0.741182183 3 

658+ 0.946533082 3 
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Table B-67: Coarse Classification, Individuals, Current Address 

ATTRIBUTE WOE GROUP 

low-5 -0.35441296 1 

6-12 -0.259117539 1 

8-12 -0.180928046 1 

13-20 -0.169318468 1 

21-30 -0.119554118 1 

31-42 0.034292589 2 

43-60 0.141431787 2 

61-96 0.450593666 3 

97-168 0.557626045 3 

169+ 0.330950208 3 

 

 

Table B-68: Coarse Classification, Individuals, Current Employment 

ATTRIBUTE WOE GROUP 

low-5 -0.278618813 1 

6-11 -0.191057532 1 

12-18 -0.397542057 1 

19-24 -0.166976416 1 

25-35 0.090821786 2 

36-41 0.075806105 2 

42-53 -0.06284328 2 

54-66 0.313178228 3 

67-83 0.431069987 3 

84+ 0.740147522 3 

 

Table B-69: Coarse Classification, Individuals, Amount Financed 

ATTRIBUTE WOE GROUP 

low-1490 0.344547044 1 

1491-1985.45 -0.120932478 1 

1985.46-2272.73 -0.043622092 1 

2272.74-2545.46 0.053107458 1 

2545.47-2785.54 -0.119115947 1 

2785.55-3136.35 0.069160224 2 

3136.36-3363.62 0.165320002 2 

3363.63-3702.73 -0.032507007 3 

3702.74-4318.17 -0.038289603 3 

4318.18+ -0.179268055 3 

 

 

 

Table B-70: Coarse Classification, Individuals, Term 

ATTRIBUTE WOE GROUP 

low-24 0.161703773 1 

25-35 0.160479982 1 

36 0.030886855 1 

37+ -0.5010954 2 
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Table B-71: Coarse Classification, Individuals, No of Credit Cards 

ATTRIBUTE WOE GROUP 

0 

-

0.819200804 1 

>0 0.452805597 2 

 

 

Table B-72: Coarse Classification, Individuals, No of Dependants 

ATTRIBUTE WOE GROUP 

0 

-

0.095489117 1 

1 0.120787459 1 

2 0.213793415 1 

3+ 0.062686938 1 

Missing 2.228536201 2 

 

 

Table B-73: Coarse Classification, Individuals, Time in Previous 

Address 

ATTRIBUTE WOE GROUP 

0 0.290522686 1 

1-5 -0.433327676 2 

6-17 -0.490165419 2 

18-30 -0.315299445 3 

31-59 -0.317540476 3 

60+ 0.242387009 3 

 

 

Table B-74: Coarse Classification, Individuals, Time in previous 

employment 

ATTRIBUTE WOE GROUP 

0 0.340540686 1 

1-7 0.303334676 1 

8-15 -0.090509669 2 

16-28 -0.214602225 2 

29-51 -0.313900346 2 

52+ -0.545687009 2 

 

SOLE TRADER DATASET 

 

 

Table B-75: Coarse Classification, Sole Trader, Security Provided 

ATTRIBUTE WOE GROUP 

N 0.000829333 1 

Y -0.01115652 2 
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Table B-76: Coarse Classification, Sole Trader, Home Phone 

ATTRIBUTE WOE GROUP 

N 0.860443741 1 

Y -0.024544304 2 

 

Table B-77: Coarse Classification, Sole Trader, Residential Status 

ATTRIBUTE WOE GROUP 

L 0.75848669 1 

O 0.80267698 1 

R -0.5276889 2 

 

 

Table B-78: Coarse Classification, Sole Trader, Product 

ATTRIBUTE WOE GROUP 

Lease 

-

1.314361232 1 

Rent 0.054115764 2 

 

 

Table B-79: Coarse Classification, Sole Trader, Age of Applicant 

ATTRIBUTE WOE GROUP 

1.low-282 -0.991394786 1 

2.283-323 -0.092241023 1 

3.324-357 0.318582437 1 

4.358-391 -0.136426626 2 

5.392-430 -0.132391651 2 

6.431-473 0.129211516 2 

7.474-513 0.689930283 3 

8.514-557 0.19544105 3 

9.558-614 0.887244144 3 

10.615+ 0.450107811 3 

 

 

 

Table B-80: Coarse Classification, Sole Trader, Time in current address 

ATTRIBUTE WOE GROUP 

low-3 -0.1402012 1 

4-7 -0.428139518 1 

8-12 0.00678652 1 

13-20 -0.665451326 2 

21-30 -0.321011415 2 

31-42 0.387896888 3 

43-60 0.257289589 3 

61-96 0.953273651 3 

97-168 0.472006125 3 

169+ 0.481730999 3 
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Table B-81: Coarse Classification, Sole Trader, Term 

ATTRIBUTE WOE GROUP 

low-24 0.07595 1 

25-34 -1.22431 1 

35 - 36 0.037777 1 

37+ -0.39452 2 

 



 159 

APPENDIX C 

T – tests results 

Chapter 3 – Experimental Study 

Australian - Overall                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit  0.0751 0.0826 0.0070 0.1283 0.3479 0.0887 0.0837 0.1587 0.2685 0.1011 0.5857 

LDA 0.0751  0.5693 0.0161 0.3691 0.8348 0.8880 0.0186 0.0730 0.0684 0.4216 0.8562 

QDA 0.0826 0.5693  0.0122 0.5020 0.9509 0.6783 0.0023 0.0176 0.0035 0.5184 0.5658 

3-NN 0.0070 0.0161 0.0122  0.0072 0.0369 0.0179 0.0007 0.0001 0.0003 0.0059 0.0016 

10-NN 0.1283 0.3691 0.5020 0.0072  0.5022 0.4052 0.0120 0.0045 0.0166 0.6744 0.2205 

Neural 0.3479 0.8348 0.9509 0.0369 0.5022  0.8748 0.0520 0.0797 0.1393 0.5189 0.7701 

MSD 0.0887 0.8880 0.6783 0.0179 0.4052 0.8748  0.0314 0.0601 0.0803 0.4549 0.7936 

DT 0.0837 0.0186 0.0023 0.0007 0.0120 0.0520 0.0314  0.7993 0.1612 0.0081 0.0516 

SVM(RBF) 0.1587 0.0730 0.0176 0.0001 0.0045 0.0797 0.0601 0.7993  0.1934 0.0049 0.0011 

SVM(Linear) 0.2685 0.0684 0.0035 0.0003 0.0166 0.1393 0.0803 0.1612 0.1934  0.0049 0.0255 

SVM(Polynomial) 0.1011 0.4216 0.5184 0.0059 0.6744 0.5189 0.4549 0.0081 0.0049 0.0049  0.3234 

Naïve 0.5857 0.8562 0.5658 0.0016 0.2205 0.7701 0.7936 0.0516 0.0011 0.0255 0.3234   

Table C-1: T-tests for the Australian dataset. The case of the overall accuracy 
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Australian - 

Majority                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit  0.0842 0.0703 0.1483 0.0046 0.6042 0.1708 0.0426 0.0136 0.0369 0.9255 0.0003 

LDA 0.0842  0.0068 0.3395 0.0052 0.8601 0.8252 0.0114 0.0056 0.0087 0.5924 0.0005 

QDA 0.0703 0.0068  0.0235 0.1029 0.1769 0.0225 0.0510 0.0224 0.0754 0.2643 0.0027 

3-NN 0.1483 0.3395 0.0235  0.0037 0.3671 0.3096 0.0057 0.0004 0.0059 0.1384 0.0023 

10-NN 0.0046 0.0052 0.1029 0.0037  0.0351 0.0052 0.7163 0.2660 1.0000 0.0629 0.0703 

Neural 0.6042 0.8601 0.1769 0.3671 0.0351  0.9579 0.0523 0.0407 0.0431 0.7298 0.0163 

MSD 0.1708 0.8252 0.0225 0.3096 0.0052 0.9579  0.0134 0.0041 0.0180 0.6478 0.0001 

DT 0.0426 0.0114 0.0510 0.0057 0.7163 0.0523 0.0134  0.4895 0.3434 0.0224 0.2869 

SVM(RBF) 0.0136 0.0056 0.0224 0.0004 0.2660 0.0407 0.0041 0.4895  0.2925 0.0104 0.6557 

SVM(Linear) 0.0369 0.0087 0.0754 0.0059 1.0000 0.0431 0.0180 0.3434 0.2925  0.0296 0.0963 

SVM(Polynomial) 0.9255 0.5924 0.2643 0.1384 0.0629 0.7298 0.6478 0.0224 0.0104 0.0296  0.0046 

Naïve 0.0003 0.0005 0.0027 0.0023 0.0703 0.0163 0.0001 0.2869 0.6557 0.0963 0.0046   

Table C-2: T – tests for the Australian dataset. The case of the majority accuracy 
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Australian - 

Minority                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit   1.0000 0.0001 0.0059 0.0022 0.6744 0.2719 0.9135 0.2412 0.3626 0.1137 0.0012 

LDA 1.0000  0.0001 0.0071 0.0043 0.6662 0.2500 0.9198 0.2958 0.4008 0.1443 0.0021 

QDA 0.0001 0.0001  0.1406 0.0727 0.0505 0.7405 0.0702 0.2241 0.2283 0.5070 0.0278 

3-NN 0.0059 0.0071 0.1406  0.7078 0.0042 0.1438 0.0100 0.0015 0.0021 0.0049 0.2471 

10-NN 0.0022 0.0043 0.0727 0.7078  0.0130 0.1902 0.0000 0.0003 0.0013 0.0001 0.4525 

Neural 0.6744 0.6662 0.0505 0.0042 0.0130  0.1912 0.9056 0.4194 0.5402 0.2659 0.0022 

MSD 0.2719 0.2500 0.7405 0.1438 0.1902 0.1912  0.4387 0.6989 0.6436 0.9675 0.0761 

DT 0.9135 0.9198 0.0702 0.0100 0.0000 0.9056 0.4387  0.3023 0.3661 0.0607 0.0010 

SVM(RBF) 0.2412 0.2958 0.2241 0.0015 0.0003 0.4194 0.6989 0.3023  0.7804 0.2443 0.0000 

SVM(Linear) 0.3626 0.4008 0.2283 0.0021 0.0013 0.5402 0.6436 0.3661 0.7804  0.2967 0.0000 

SVM(Polynomial) 0.1137 0.1443 0.5070 0.0049 0.0001 0.2659 0.9675 0.0607 0.2443 0.2967  0.0002 

Naïve 0.0012 0.0021 0.0278 0.2471 0.4525 0.0022 0.0761 0.0010 0.0000 0.0000 0.0002   

Table C-3: T-tests for the Australian dataset. The case of the minority accuracy 
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Australian - AUC                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit  0.1590 0.0048 0.0045 0.0540 0.1655 0.1665 0.0205 0.0012 0.0000 0.0000 0.0144 

LDA 0.1590  0.0002 0.0032 0.0341 0.0758 0.0099 0.0193 0.0007 0.0000 0.0000 0.0103 

QDA 0.0048 0.0002  0.0506 0.6693 0.1207 0.0053 0.1560 0.0040 0.0002 0.0000 0.3469 

3-NN 0.0045 0.0032 0.0506  0.0020 0.0090 0.0101 0.4087 0.1626 0.0357 0.0004 0.0180 

10-NN 0.0540 0.0341 0.6693 0.0020  0.1324 0.1161 0.2831 0.0024 0.0003 0.0000 0.3497 

Neural 0.1655 0.0758 0.1207 0.0090 0.1324  0.6239 0.0524 0.0022 0.0002 0.0000 0.0308 

MSD 0.1665 0.0099 0.0053 0.0101 0.1161 0.6239  0.0368 0.0015 0.0001 0.0000 0.0367 

DT 0.0205 0.0193 0.1560 0.4087 0.2831 0.0524 0.0368  0.0591 0.0085 0.0004 0.4185 

SVM(RBF) 0.0012 0.0007 0.0040 0.1626 0.0024 0.0022 0.0015 0.0591  0.1768 0.0048 0.0017 

SVM(Linear) 0.0000 0.0000 0.0002 0.0357 0.0003 0.0002 0.0001 0.0085 0.1768  0.0049 0.0001 

SVM(Polynomial) 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0004 0.0048 0.0049  0.0000 

Naïve 0.0144 0.0103 0.3469 0.0180 0.3497 0.0308 0.0367 0.4185 0.0017 0.0001 0.0000   
Table C-4: T-tests for the Australian dataset. The case of the AUC 
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German - Overall                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit  0.0013 0.0111 0.0013 0.0000 0.0007 1.0000 0.0002 0.0005 1.0000 0.0000 0.4629 

LDA 0.0013  0.9102 0.2963 0.0468 0.1404 0.0037 0.1154 0.4543 0.0498 0.0009 0.0102 

QDA 0.0111 0.9102  0.3476 0.0985 0.1743 0.0162 0.1402 0.4774 0.0939 0.0063 0.0243 

3-NN 0.0013 0.2963 0.3476  0.0985 0.7094 0.0001 0.8049 0.5961 0.0030 0.0018 0.0000 

10-NN 0.0000 0.0468 0.0985   0.5890 0.0000 0.4715 0.0184 0.0000 0.0054 0.0000 

Neural 0.0007 0.1404 0.1743 0.7094 0.5890  0.0051 0.8516 0.3571 0.0038 0.0698 0.0086 

MSD 1.0000 0.0037 0.0162 0.0001 0.0000 0.0051  0.0029 0.0010 1.0000 0.0000 0.3691 

DT 0.0002 0.1154 0.1402 0.8049 0.4715 0.8516 0.0029  0.4800 0.0027 0.0519 0.0022 

SVM(RBF) 0.0005 0.4543 0.4774 0.5961 0.0184 0.3571 0.0010 0.4800  0.0022 0.0027 0.0024 

SVM(Linear) 1.0000 0.0498 0.0939 0.0030 0.0000 0.0038 1.0000 0.0027 0.0022  0.0001 0.4175 

SVM(Polynomial) 0.0000 0.0009 0.0063 0.0018 0.0054 0.0698 0.0000 0.0519 0.0027 0.0001  0.0000 

Naïve 0.4629 0.0102 0.0243 0.0000 0.0000 0.0086 0.3691 0.0022 0.0024 0.4175 0.0000   

Table C-5: T-tests for the German dataset. The case of the overall accuracy 
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German - 

Majority                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit  0.0000 0.0000 0.0021 0.0001 0.0022 0.0909 0.3666 0.0000 0.0019 0.0000 0.0103 

LDA 0.0000  0.0027 0.0000 0.0000 0.0007 0.0000 0.0000 0.0000 0.0000 0.0017 0.0000 

QDA 0.0000 0.0027  0.0000 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0206 0.0001 

3-NN 0.0021 0.0000 0.0000  0.0088 0.0006 0.0121 0.0002 0.0000 0.9302 0.0000 0.0000 

10-NN 0.0001 0.0000 0.0000 0.0088  0.0001 0.0006 0.0001 0.0000 0.0030 0.0000 0.0000 

Neural 0.0022 0.0007 0.0021 0.0006 0.0001  0.0015 0.0377 0.0000 0.0005 0.3676 0.2612 

MSD 0.0909 0.0000 0.0000 0.0121 0.0006 0.0015  0.1212 0.0000 0.0120 0.0000 0.0018 

DT 0.3666 0.0000 0.0000 0.0002 0.0001 0.0377 0.1212  0.0000 0.0019 0.0001 0.0371 

SVM(RBF) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 

SVM(Linear) 0.0019 0.0000 0.0000 0.9302 0.0030 0.0005 0.0120 0.0019 0.0000  0.0000 0.0000 

SVM(Polynomial) 0.0000 0.0017 0.0206 0.0000 0.0000 0.3676 0.0000 0.0001 0.0000 0.0000  0.0007 

Naïve 0.0103 0.0000 0.0001 0.0000 0.0000 0.2612 0.0018 0.0371 0.0000 0.0000 0.0007   

Table C-6: T-tests for the German dataset. The case of the majority accuracy 
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German - 

Minority                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit  0.0000 0.0000 0.0000 0.0000 0.8768 0.1051 0.0012 0.0000 0.0003 0.4841 0.0000 

LDA 0.0000  0.0029 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

QDA 0.0000 0.0029  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014 

3-NN 0.0000 0.0000 0.0000  0.0001 0.0008 0.0004 0.0064 0.0000 0.0004 0.0000 0.0000 

10-NN 0.0000 0.0000 0.0000   0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 

Neural 0.8768 0.0000 0.0000 0.0008 0.0000  0.3501 0.0237 0.0000 0.0418 0.6826 0.0042 

MSD 0.1051 0.0000 0.0000 0.0004 0.0000 0.3501  0.0590 0.0000 0.1244 0.6774 0.0001 

DT 0.0012 0.0000 0.0000 0.0064 0.0001 0.0237 0.0590  0.0000 0.4226 0.0194 0.0000 

SVM(RBF) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 

SVM(Linear) 0.0003 0.0000 0.0000 0.0004 0.0000 0.0418 0.1244 0.4226 0.0000  0.0667 0.0000 

SVM(Polynomial) 0.4841 0.0000 0.0000 0.0000 0.0000 0.6826 0.6774 0.0194 0.0000 0.0667  0.0001 

Naïve 0.0000 0.0000 0.0014 0.0000 0.0000 0.0042 0.0001 0.0000 0.0000 0.0000 0.0001   

Table C-7: T-tests for the German dataset. The case of the minority accuracy 
 

 



 166 

German - AUC                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit   0.0028 0.1536 0.0003 0.0005 0.0000 0.7329 0.0000 0.0000 0.0000 0.0000 0.0076 

LDA 0.0028  0.0019 0.0001 0.0003 0.0000 0.1116 0.0000 0.0000 0.0000 0.0000 0.0219 

QDA 0.1536 0.0019  0.0005 0.0020 0.0000 0.1392 0.0000 0.0000 0.0000 0.0000 0.0041 

3-NN 0.0003 0.0001 0.0005  0.1796 0.9093 0.0002 0.0033 0.0000 0.0065 0.0000 0.0000 

10-NN 0.0005 0.0003 0.0020   0.4138 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000 

Neural 0.0000 0.0000 0.0000 0.9093 0.4138  0.0001 0.0023 0.0000 0.0120 0.0004 0.0001 

MSD 0.7329 0.1116 0.1392 0.0002 0.0004 0.0001  0.0000 0.0000 0.0000 0.0000 0.0086 

DT 0.0000 0.0000 0.0000 0.0033 0.0001 0.0023 0.0000  0.0000 0.3282 0.2211 0.0000 

SVM(RBF) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 0.0002 0.0000 

SVM(Linear) 0.0000 0.0000 0.0000 0.0065 0.0000 0.0120 0.0000 0.3282 0.0000  0.0540 0.0000 

SVM(Polynomial) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.2211 0.0002 0.0540  0.0000 

Naïve 0.0076 0.0219 0.0041 0.0000 0.0000 0.0001 0.0086 0.0000 0.0000 0.0000 0.0000   

Table C-8: T-tests for the German dataset. The case of the AUC 
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SPSS - Overall                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit  0.0093 0.0031 0.0002 0.0615 0.0011 0.6221 0.0172 0.4371 0.7730 0.0000 0.0003 

LDA 0.0093  0.6281 0.0104 0.9278 0.0530 0.0506 0.6522 0.0307 0.0671 0.0025 0.0059 

QDA 0.0031 0.6281  0.0008 0.4845 0.0590 0.0065 0.7932 0.0016 0.0064 0.0001 0.0036 

3-NN 0.0002 0.0104 0.0008  0.0000 0.0988 0.0001 0.0005 0.0000 0.0000 0.1339 0.9548 

10-NN 0.0615 0.9278 0.4845 0.0000  0.0223 0.0432 0.1211 0.0010 0.0013 0.0000 0.0020 

Neural 0.0011 0.0530 0.0590 0.0988 0.0223  0.0003 0.0568 0.0000 0.0009 0.0100 0.1202 

MSD 0.6221 0.0506 0.0065 0.0001 0.0432 0.0003  0.0033 0.1000 0.5579 0.0000 0.0001 

DT 0.0172 0.6522 0.7932 0.0005 0.1211 0.0568 0.0033  0.0001 0.0024 0.0002 0.0017 

SVM(RBF) 0.4371 0.0307 0.0016 0.0000 0.0010 0.0000 0.1000 0.0001  0.6144 0.0000 0.0000 

SVM(Linear) 0.7730 0.0671 0.0064 0.0000 0.0013 0.0009 0.5579 0.0024 0.6144  0.0000 0.0002 

SVM(Polynomial) 0.0000 0.0025 0.0001 0.1339 0.0000 0.0100 0.0000 0.0002 0.0000 0.0000  0.4275 

Naïve 0.0003 0.0059 0.0036 0.9548 0.0020 0.1202 0.0001 0.0017 0.0000 0.0002 0.4275   

Table C-9: T-tests for the SPSS dataset. The case of the overall accuracy 

 



 168 

SPSS - Majority                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit  0.0000 0.0000 0.0003 0.2165 0.0047 0.0042 0.0055 0.0000 0.0117 0.0000 0.0000 

LDA 0.0000  0.0253 0.0003 0.0000 0.0007 0.0000 0.0003 0.0000 0.0000 0.0362 0.0297 

QDA 0.0000 0.0253  0.0371 0.0001 0.0970 0.0001 0.0159 0.0000 0.0010 0.8643 0.0042 

3-NN 0.0003 0.0003 0.0371  0.0000 0.9743 0.0039 0.2950 0.0000 0.0960 0.0055 0.0000 

10-NN 0.2165 0.0000 0.0001 0.0000  0.0067 0.1184 0.0074 0.0001 0.0243 0.0000 0.0000 

Neural 0.0047 0.0007 0.0970 0.9743 0.0067  0.0622 0.6482 0.0003 0.1804 0.0950 0.0002 

MSD 0.0042 0.0000 0.0001 0.0039 0.1184 0.0622  0.0856 0.0000 0.3727 0.0002 0.0000 

DT 0.0055 0.0003 0.0159 0.2950 0.0074 0.6482 0.0856  0.0001 0.3743 0.0163 0.0000 

SVM(RBF) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0000 0.0001  0.0001 0.0000 0.0000 

SVM(Linear) 0.0117 0.0000 0.0010 0.0960 0.0243 0.1804 0.3727 0.3743 0.0001  0.0037 0.0000 

SVM(Polynomial) 0.0000 0.0362 0.8643 0.0055 0.0000 0.0950 0.0002 0.0163 0.0000 0.0037  0.0003 

Naïve 0.0000 0.0297 0.0042 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0003   

Table C-10: T-tests for the SPSS dataset. The case of the majority accuracy 
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SPSS - Minority                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit   0.0000 0.0000 0.0443 0.2048 0.5458 0.0003 0.2740 0.0345 0.0031 0.2664 0.0002 

LDA 0.0000  0.0019 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0002 0.0000 0.0293 

QDA 0.0000 0.0019  0.0004 0.0003 0.0012 0.0000 0.0012 0.0000 0.1181 0.0006 0.5311 

3-NN 0.0443 0.0000 0.0004  0.1012 0.2202 0.0061 0.0027 0.3636 0.0002 0.0064 0.0000 

10-NN 0.2048 0.0000 0.0003 0.1012  0.7190 0.0136 0.0506 0.3022 0.0000 0.8760 0.0000 

Neural 0.5458 0.0001 0.0012 0.2202 0.7190  0.0947 0.2582 0.4188 0.0314 0.7545 0.0055 

MSD 0.0003 0.0000 0.0000 0.0061 0.0136 0.0947  0.2975 0.0013 0.1045 0.0257 0.0022 

DT 0.2740 0.0000 0.0012 0.0027 0.0506 0.2582 0.2975  0.0003 0.0231 0.0365 0.0002 

SVM(RBF) 0.0345 0.0000 0.0000 0.3636 0.3022 0.4188 0.0013 0.0003  0.0000 0.2509 0.0000 

SVM(Linear) 0.0031 0.0002 0.1181 0.0002 0.0000 0.0314 0.1045 0.0231 0.0000  0.0006 0.0015 

SVM(Polynomial) 0.2664 0.0000 0.0006 0.0064 0.8760 0.7545 0.0257 0.0365 0.2509 0.0006  0.0000 

Naïve 0.0002 0.0293 0.5311 0.0000 0.0000 0.0055 0.0022 0.0002 0.0000 0.0015 0.0000   

Table C-11: T-tests for the SPSS dataset. The case of the minority accuracy 
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SPSS – AUC                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit   0.2052 0.0002 0.0000 0.0007 0.0000 0.0207 0.0000 0.0000 0.0000 0.0000 0.0004 

LDA 0.2052  0.0001 0.0000 0.0021 0.0000 0.3959 0.0001 0.0000 0.0000 0.0000 0.0010 

QDA 0.0002 0.0001  0.0003 0.0418 0.0004 0.0053 0.0007 0.0000 0.0000 0.0000 0.0071 

3-NN 0.0000 0.0000 0.0003  0.0002 0.2571 0.0000 0.4222 0.0000 0.0062 0.0000 0.0765 

10-NN 0.0007 0.0021 0.0418 0.0002  0.0514 0.0034 0.0003 0.0000 0.0000 0.0000 0.0164 

Neural 0.0000 0.0000 0.0004 0.2571 0.0514  0.0000 0.6366 0.0001 0.0029 0.0000 0.5123 

MSD 0.0207 0.3959 0.0053 0.0000 0.0034 0.0000  0.0001 0.0000 0.0000 0.0000 0.0014 

DT 0.0000 0.0001 0.0007 0.4222 0.0003 0.6366 0.0001  0.0000 0.0006 0.0000 0.0165 

SVM(RBF) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000  0.0038 0.0000 0.0000 

SVM(Linear) 0.0000 0.0000 0.0000 0.0062 0.0000 0.0029 0.0000 0.0006 0.0038  0.0000 0.0002 

SVM(Polynomial) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 

Naïve 0.0004 0.0010 0.0071 0.0765 0.0164 0.5123 0.0014 0.0165 0.0000 0.0002 0.0000   

Table C-12: T-tests for the SPSS dataset. The case of the AUC 
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SME - Overall                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit   0.0000 0.0000 0.0019 0.0023 0.0025 0.0982 0.0058 0.0207 0.9023 0.0000 0.0000 

LDA 0.0000  0.0029 0.0000 0.0000 0.0003 0.0001 0.0000 0.0003 0.0000 0.0383 0.0002 

QDA 0.0000 0.0029  0.0010 0.0011 0.0002 0.0032 0.0001 0.0420 0.0000 0.0005 0.0000 

3-NN 0.0019 0.0000 0.0010  0.4344 0.3682 0.3142 0.1262 0.9445 0.0001 0.0000 0.0000 

10-NN 0.0023 0.0000 0.0011 0.4344  0.4725 0.4479 0.1949 0.7797 0.0000 0.0000 0.0000 

Neural 0.0025 0.0003 0.0002 0.3682 0.4725  0.9390 0.9706 0.4887 0.0318 0.0000 0.0000 

MSD 0.0982 0.0001 0.0032 0.3142 0.4479 0.9390  0.9086 0.4775 0.1000 0.0001 0.0000 

DT 0.0058 0.0000 0.0001 0.1262 0.1949 0.9706 0.9086  0.4587 0.0005 0.0000 0.0000 

SVM(RBF) 0.0207 0.0003 0.0420 0.9445 0.7797 0.4887 0.4775 0.4587  0.0135 0.0004 0.0000 

SVM(Linear) 0.9023 0.0000 0.0000 0.0001 0.0000 0.0318 0.1000 0.0005 0.0135  0.0000 0.0000 

SVM(Polynomial) 0.0000 0.0383 0.0005 0.0000 0.0000 0.0000 0.0001 0.0000 0.0004 0.0000  0.0000 

Naïve 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000   

Table C-13: T-tests for the SME dataset. The case of the overall accuracy 
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SME - Majority                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit   0.0000 0.0000 0.1250 0.0017 0.0002 0.1062 0.0786 0.0251 0.0462 0.0000 0.0000 

LDA 0.0000  0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0003 

QDA 0.0000 0.0003  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0087 0.0000 

3-NN 0.1250 0.0000 0.0000  0.0003 0.0003 0.0569 0.0002 0.0445 0.0002 0.0000 0.0000 

10-NN 0.0017 0.0000 0.0000 0.0003  0.0000 0.0068 0.0000 0.8310 0.0000 0.0000 0.0000 

Neural 0.0002 0.0000 0.0000 0.0003 0.0000  0.5005 0.1617 0.0004 0.0105 0.0000 0.0000 

MSD 0.1062 0.0000 0.0000 0.0569 0.0068 0.5005  0.8540 0.0232 0.6187 0.0001 0.0000 

DT 0.0786 0.0000 0.0000 0.0002 0.0000 0.1617 0.8540  0.0006 0.4575 0.0000 0.0000 

SVM(RBF) 0.0251 0.0000 0.0000 0.0445 0.8310 0.0004 0.0232 0.0006  0.0023 0.0000 0.0000 

SVM(Linear) 0.0462 0.0000 0.0000 0.0002 0.0000 0.0105 0.6187 0.4575 0.0023  0.0000 0.0000 

SVM(Polynomial) 0.0000 0.0002 0.0087 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000  0.0000 

Naïve 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000   

Table C-14: T-tests for the SME dataset. The case of the majority accuracy 
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SME - Minority                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit   0.0000   0.0000 0.0000 0.6221 0.5549 0.0036 0.0056 0.7822 0.0599 0.0000 

LDA 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0424 

QDA 0.0000 0.0000  0.0000 0.0000 0.0000 0.0002 0.0000 0.0002 0.0002 0.0001 0.0001 

3-NN 0.0000 0.0000 0.0000  0.0000 0.0002 0.0095 0.0000 0.3405 0.0000 0.0000 0.0000 

10-NN 0.0000 0.0000 0.0000 0.0000  0.0001 0.0025 0.0000 0.7883 0.0000 0.0000 0.0000 

Neural 0.6221 0.0000 0.0000 0.0002 0.0001  0.7484 0.0369 0.0091 0.6146 0.2154 0.0000 

MSD 0.5549 0.0000 0.0002 0.0095 0.0025 0.7484  0.2674 0.0376 0.5177 0.7314 0.0000 

DT 0.0036 0.0000 0.0000 0.0000 0.0000 0.0369 0.2674  0.0322 0.0000 0.0039 0.0000 

SVM(RBF) 0.0056 0.0000 0.0002 0.3405 0.7883 0.0091 0.0376 0.0322  0.0042 0.0155 0.0000 

SVM(Linear) 0.7822 0.0000 0.0002 0.0000 0.0000 0.6146 0.5177 0.0000 0.0042  0.0019 0.0000 

SVM(Polynomial) 0.0599 0.0000 0.0001 0.0000 0.0000 0.2154 0.7314 0.0039 0.0155 0.0019  0.0000 

Naïve 0.0000 0.0424 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000   

Table C-15: T-tests for the SME dataset. The case of the minority accuracy 
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SME – AUC                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit   0.6788 0.6571 0.0000 0.1147 0.0095 0.0000 0.0000 0.0000 0.0000 0.0000 0.0145 

LDA 0.6788  0.8276 0.0000 0.1258 0.0160 0.0000 0.0000 0.0000 0.0000 0.0000 0.0086 

QDA 0.6571 0.8276  0.0000 0.1269 0.0290 0.0000 0.0000 0.0000 0.0000 0.0000 0.0060 

3-NN 0.0000 0.0000 0.0000  0.4960 0.0003 0.5234 0.0000 0.0000 0.0000 0.0000 0.0000 

10-NN 0.1147 0.1258 0.1269 0.4960  0.1730 0.4712 0.5281 0.0705 0.1244 0.0891 0.1740 

Neural 0.0095 0.0160 0.0290 0.0003   0.0001 0.0000 0.0000 0.0000 0.0000 0.7650 

MSD 0.0000 0.0000 0.0000 0.5234 0.4712 0.0001  0.0000 0.0000 0.0000 0.0000 0.0000 

DT 0.0000 0.0000 0.0000 0.0000 0.5281 0.0000 0.0000  0.0087 0.9462 0.0000 0.0000 

SVM(RBF) 0.0000 0.0000 0.0000 0.0000 0.0705 0.0000 0.0000 0.0087  0.0046 0.0000 0.0000 

SVM(Linear) 0.0000 0.0000 0.0000 0.0000 0.1244 0.0000 0.0000 0.9462 0.0046  0.0000 0.0000 

SVM(Polynomial) 0.0000 0.0000 0.0000 0.0000 0.0891 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 

Naïve 0.0145 0.0086 0.0060 0.0000 0.1740 0.7650 0.0000 0.0000 0.0000 0.0000 0.0000   

Table C-16: T-tests for the SME dataset. The case of the AUC 
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Greek - Overall                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit   0.0000 0.0000 0.0000 0.0000 0.0002 0.0253 0.0000 0.0001 0.0000 0.0000 0.0000 

LDA 0.0000  0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

QDA 0.0000 0.0001  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

3-NN 0.0000 0.0000 0.0000  0.0014 0.2224 0.0000 0.0000 0.0000 0.0000 0.0000 0.0063 

10-NN 0.0000 0.0000 0.0000 0.0014  0.0086 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Neural 0.0002 0.0000 0.0000 0.2224 0.0086  0.0002 0.0001 0.0001 0.0000 0.0000 0.7938 

MSD 0.0253 0.0000 0.0000 0.0000 0.0000 0.0002  0.0000 0.0004 0.0000 0.0000 0.0000 

DT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000  0.2180 0.0003 0.0045 0.0000 

SVM(RBF) 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.2180  0.0326 0.0260 0.0000 

SVM(Linear) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0326  0.9084 0.0000 

SVM(Polynomial) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0045 0.0260 0.9084  0.0000 

Naïve 0.0000 0.0000 0.0000 0.0063 0.0000 0.7938 0.0000 0.0000 0.0000 0.0000 0.0000   

Table C-17: T-tests for the Greek dataset. The case of the Overall Accuracy 
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Greek - Minority                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit   0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0054 0.0000 0.0093 0.6514 0.0000 

LDA 0.0000  0.0018 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

QDA 0.0000 0.0018  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

3-NN 0.0000 0.0000 0.0000  0.0007 0.0034 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

10-NN 0.0000 0.0000 0.0000 0.0007  0.0016 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Neural 0.0001 0.0000 0.0000 0.0034 0.0016  0.0001 0.0001 0.0000 0.0001 0.0001 0.8812 

MSD 0.0004 0.0000 0.0000 0.0000 0.0000 0.0001  0.0001 0.0000 0.6491 0.0238 0.0000 

DT 0.0054 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001  0.0000 0.0000 0.0010 0.0000 

SVM(RBF) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 

SVM(Linear) 0.0093 0.0000 0.0000 0.0000 0.0000 0.0001 0.6491 0.0000 0.0000  0.0032 0.0000 

SVM(Polynomial) 0.6514 0.0000 0.0000 0.0000 0.0000 0.0001 0.0238 0.0010 0.0000 0.0032  0.0000 

Naïve 0.0000 0.0000 0.0000 0.0000 0.0000 0.8812 0.0000 0.0000 0.0000 0.0000 0.0000   

Table C-18: T-tests for the Greek dataset. The case of the Minority Accuracy 

 

 

 



 177 

Greek - Majority                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit   0.0000 0.0000 0.0000 0.0000 0.0001 0.0022 0.0000 0.8241 0.8296 0.4005 0.0000 

LDA 0.0000  0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

QDA 0.0000 0.0001  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

3-NN 0.0000 0.0000 0.0000  0.0003 0.0158 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

10-NN 0.0000 0.0000 0.0000 0.0003  0.0016 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Neural 0.0001 0.0000 0.0000 0.0158 0.0016  0.0001 0.0002 0.0001 0.0001 0.0000 0.5246 

MSD 0.0022 0.0000 0.0000 0.0000 0.0000 0.0001  0.0000 0.0522 0.0522 0.1039 0.0000 

DT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000  0.0000 0.0000 0.0000 0.0000 

SVM(RBF) 0.8241 0.0000 0.0000 0.0000 0.0000 0.0001 0.0522 0.0000  1.0000 0.7263 0.0000 

SVM(Linear) 0.8296 0.0000 0.0000 0.0000 0.0000 0.0001 0.0522 0.0000 1.0000  0.7976 0.0000 

SVM(Polynomial) 0.4005 0.0000 0.0000 0.0000 0.0000 0.0000 0.1039 0.0000 0.7263 0.7976  0.0000 

Naïve 0.0000 0.0000 0.0000 0.0000 0.0000 0.5246 0.0000 0.0000 0.0000 0.0000 0.0000   

Table C-19: T-tests for the Greek dataset. The case of the Majority Accuracy 
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Greek - AUC                         

  Logit LDA QDA 3-NN 10-NN Neural MSD DT SVM(RBF) SVM(Linear) SVM(Polynomial) Naïve 

Logit   0.2613 0.0614 0.0000 0.0005 0.0007 0.5893 0.0000 0.0000 0.0000 0.0000 0.0006 

LDA 0.2613  0.9515 0.0002 0.0150 0.3182 0.2278 0.0000 0.0000 0.0000 0.0000 0.0427 

QDA 0.0614 0.9515  0.0000 0.0037 0.1126 0.0308 0.0000 0.0000 0.0000 0.0000 0.0099 

3-NN 0.0000 0.0002 0.0000  0.0093 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 

10-NN 0.0005 0.0150 0.0037   0.0346 0.0000 0.0000 0.0000 0.0000 0.0000 0.3326 

Neural 0.0007 0.3182 0.1126 0.0000 0.0346  0.0005 0.0000 0.0000 0.0000 0.0000 0.0732 

MSD 0.5893 0.2278 0.0308 0.0000 0.0000 0.0005  0.0000 0.0000 0.0000 0.0000 0.0003 

DT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.3745 0.0000 0.0000 0.0000 

SVM(RBF) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3745  0.0000 0.0001 0.0000 

SVM(Linear) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0330 0.0000 

SVM(Polynomial) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0330  0.0000 

Naïve 0.0006 0.0427 0.0099 0.0004 0.3326 0.0732 0.0003 0.0000 0.0000 0.0000 0.0000   

Table C-20: T-tests for the Greek dataset. The case of the AUC 
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Chapter 4 – Experimental Study 

 

Australian 

Data 

No of Variables 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

Chi Square 1.000 0.168 0.193 0.758 0.193 0.147 0.297 0.351 0.397 0.479 0.229 0.460 0.225 0.664 0.785 0.266 0.380 0.373 0.373 0.086 0.359 0.343 

Gain ratio 0.343 0.168 0.193 0.237 0.133 0.209 0.297 0.115 0.260 0.685 0.357 0.095 0.225 0.897 0.785 0.266 0.380 0.830 0.914 0.415 0.546 0.343 

ReliefF 0.193 0.193 0.343 0.678 0.104 0.343 0.343 0.443 0.309 0.343 0.394 0.394 0.072 0.836 0.448 0.716 0.406 0.713 0.918 0.415 0.546 0.343 

MSD 0.604 0.572 0.604 0.546 0.450 0.498 0.498 0.595 0.595 0.604 0.869 0.753 0.785 0.943 0.940 0.627 0.553 0.843 0.843 0.712 0.946 0.876 

Table C-21: T – tests for the Australian dataset. Comparisons of all the methods 

 

German Data 

No of Variables 

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

Chi Squared 0.000 0.154 0.000 0.004 0.081 0.100 0.059 0.912 0.120 0.153 0.000 0.000 0.000 0.000 0.092 0.073 

Gain 0.001 0.212 0.000 0.002 0.569 0.175 0.162 0.557 0.136 0.091 0.000 0.000 0.000 0.000 0.189 0.098 

ReliefF 0.000 0.129 0.001 0.005 0.094 0.131 0.258 0.377 0.057 0.277 0.000 0.000 0.000 0.000 0.487 0.620 

MSD 0.028 0.175 0.022 0.024 0.171 0.780 0.017 0.398 0.011 0.260 0.000 0.000 0.000 0.000 0.003 0.001 

Table C-22: T – tests for the German dataset. Comparisons of all the methods 
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German Data 

No of Variables 

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 

Chi Squared 0.047 0.038 0.042 0.095 0.075 0.017 0.016 0.059 0.044 0.040 0.034 0.031 0.035 0.015 0.002 

Gain 0.243 0.118 0.099 0.020 0.015 0.025 0.025 0.024 0.041 0.029 0.034 0.024 0.055 0.017 0.000 

ReliefF 0.545 0.395 0.273 0.281 0.115 0.129 0.127 0.100 0.038 0.068 0.073 0.067 0.071 0.037 0.001 

MSD 0.002 0.254 0.059 0.037 0.113 0.029 0.031 0.030 0.053 0.026 0.028 0.024 0.023 0.021 0.006 

Table C-23: T – tests for the German dataset. Comparisons of all the methods (Contin.) 

 

 

US Data 

No of Variables 

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 

Chi_Squared 1.000 0.828 0.708 0.025 0.047 0.127 0.041 0.710 0.507 0.061 0.086 0.034 0.937 0.930 0.755 0.461 0.438 

Gain 0.782 0.546 0.662 0.158 0.156 0.080 0.041 0.710 0.475 0.450 0.552 0.265 1.000 0.796 0.670 0.443 0.832 

ReliefF 0.487 0.079 0.079 0.763 0.769 0.191 0.032 0.662 0.662 0.009 0.360 0.446 0.694 0.201 0.766 0.556 0.853 

MSD 0.343 0.343 0.343 0.343 0.209 - 0.029 0.472 - 0.121 0.168 0.182 0.168 0.242 0.168 0.177 0.168 

Table C-24: T – tests for the US dataset. Comparisons of all the methods 
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US Data 

No of Variables 

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 

Chi_Squared 0.767 0.664 0.830 0.267 0.438 0.584 0.280 0.479 0.601 0.029 0.058 0.279 0.168 0.798 0.443 

Gain 0.830 0.619 0.888 0.438 0.350 0.527 0.363 0.872 0.868 0.472 0.033 0.050 0.016 0.798 0.279 

ReliefF 0.850 0.443 0.147 0.229 0.041 0.038 0.035 0.111 0.045 0.397 0.591 0.343 0.070 0.678 0.726 

MSD 0.173 0.168 0.173 0.173 0.168 0.170 0.333 0.170 0.133 0.174 0.174 0.187 0.115 0.328 0.225 

Table C-25: T – tests for the US dataset. Comparisons of all the methods (Contin.) 
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Chapter 5 – Experimental Study 

 

  

Logistic 

Regression 

MSD – 

Basic 

Model 

MSD – 

Balancing 

Objective 

MSD – 

Range 

Constraints: 

δ=0.001 

MSD – 

Range 

Constraints: 

δ=0.0005 

MSD – 

Range 

Constraints: 

δ=0.0001 

MSD – Range 

Constraints: 

δ=0.00001 

MSD – 

Balancing 

Constraint 

 

Logistic Regression  0.2620 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

MSD – Basic Model 0.2620   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

MSD – Balancing Objective 0.0000 0.0000  0.3210 0.3253 0.2654 0.2361 0.2015  

MSD – Range Constraints: δ=0.001 0.0000 0.0000 0.3210  0.2354 0.1105 0.0988 0.5644  

MSD – Range Constraints: δ=0.0005 0.0000 0.0000 0.3253 0.2354  0.0988 0.1122 0.3541  

MSD – Range Constraints: δ=0.0001 0.0000 0.0000 0.2654 0.1105 0.0988  0.0855 0.3666  

MSD – Range Constraints: δ=0.00001 0.0000 0.0000 0.2361 0.0988 0.1122 0.0855  0.4111  

MSD – Balancing Constraint 0.0000 0.0000 0.2015 0.5644 0.3541 0.3666 0.4111   

Table C-26: T – tests for Dataset 1. The case of minority accuracy.  
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Logistic 

Regression 

MSD – 

Basic 

Model 

MSD – 

Balancing 

Objective 

MSD – 

Range 

Constraints: 

δ=0.001 

MSD – 

Range 

Constraints: 

δ=0.0005 

MSD – 

Range 

Constraints: 

δ=0.0001 

MSD – Range 

Constraints: 

δ=0.00001 

MSD – 

Balancing 

Constraint 

 

Logistic Regression  0.3220 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

MSD – Basic Model 0.3220   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

MSD – Balancing Objective 0.0000 0.0000  0.2566 0.6200 0.4423 0.3699 0.1808  

MSD – Range Constraints: δ=0.001 0.0000 0.0000 0.2566  0.3832 0.0889 0.3155 0.1777  

MSD – Range Constraints: δ=0.0005 0.0000 0.0000 0.6200 0.3832  0.1988 0.2626 0.5552  

MSD – Range Constraints: δ=0.0001 0.0000 0.0000 0.4423 0.0889 0.1988  0.2988 0.3666  

MSD – Range Constraints: δ=0.00001 0.0000 0.0000 0.3699 0.3155 0.2626 0.2988  0.1550  

MSD – Balancing Constraint 0.0000 0.0000 0.1808 0.1777 0.5552 0.3666 0.1550   

Table C-27: T – tests for Dataset 1. The case of majority accuracy.  
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Logistic 

Regression 

MSD – 

Basic 

Model 

MSD – 

Balancing 

Objective 

MSD – 

Range 

Constraints: 

δ=0.001 

MSD – 

Range 

Constraints: 

δ=0.0005 

MSD – 

Range 

Constraints: 

δ=0.0001 

MSD – Range 

Constraints: 

δ=0.00001 

MSD – 

Balancing 

Constraint 

 

Logistic Regression  0.1211 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

MSD – Basic Model 0.1211   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

MSD – Balancing Objective 0.0000 0.0000  0.2955 0.1121 0.1221 0.0998 0.1825  

MSD – Range Constraints: δ=0.001 0.0000 0.0000 0.2955  0.0988 0.8550 0.6556 0.3411  

MSD – Range Constraints: δ=0.0005 0.0000 0.0000 0.1121 0.0988  0.5911 0.3577 0.3389  

MSD – Range Constraints: δ=0.0001 0.0000 0.0000 0.1221 0.8550 0.5911  0.7711 0.2551  

MSD – Range Constraints: δ=0.00001 0.0000 0.0000 0.0998 0.6556 0.3577 0.7711  0.2211  

MSD – Balancing Constraint 0.0000 0.0000 0.1825 0.3411 0.3389 0.2551 0.2211   

Table 38: T - tests for Dataset 2. The case of the minority accuracy.  
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Logistic 

Regression 

MSD – 

Basic 

Model 

MSD – 

Balancing 

Objective 

MSD – 

Range 

Constraints: 

δ=0.001 

MSD – 

Range 

Constraints: 

δ=0.0005 

MSD – 

Range 

Constraints: 

δ=0.0001 

MSD – Range 

Constraints: 

δ=0.00001 

MSD – 

Balancing 

Constraint 

 

Logistic Regression  0.0888 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

MSD – Basic Model 0.0888   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

MSD – Balancing Objective 0.0000 0.0000  0.3011 0.2911 0.1988 0.0988 0.3252  

MSD – Range Constraints: δ=0.001 0.0000 0.0000 0.3011  0.5121 0.6255 0.5998 0.0505  

MSD – Range Constraints: δ=0.0005 0.0000 0.0000 0.2911 0.5121  0.1788 0.1998 0.7002  

MSD – Range Constraints: δ=0.0001 0.0000 0.0000 0.1988 0.6255 0.1788  0.1122 0.2411  

MSD – Range Constraints: δ=0.00001 0.0000 0.0000 0.0988 0.5998 0.1998 0.1122  0.0998  

MSD – Balancing Constraint 0.0000 0.0000 0.3252 0.0505 0.7002 0.2411 0.0998   

Table C-29: T – tests for Dataset 2. The case of majority accuracy.  
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Logistic 

Regression 

MSD – 

Basic 

Model 

MSD – 

Balancing 

Objective 

MSD – 

Range 

Constraints: 

δ=0.001 

MSD – 

Range 

Constraints: 

δ=0.0005 

MSD – 

Range 

Constraints: 

δ=0.0001 

MSD – Range 

Constraints: 

δ=0.00001 

MSD – 

Balancing 

Constraint 

 

Logistic Regression   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

MSD – Basic Model    0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

MSD – Balancing Objective 0.0000 0.0000  0.0178 0.2100 0.1880 0.3223 0.2990  

MSD – Range Constraints: δ=0.001 0.0000 0.0000 0.0178  0.7485 0.5901 0.2310 0.2620  

MSD – Range Constraints: δ=0.0005 0.0000 0.0000 0.2100 0.7485  0.8201 0.2877 0.2872  

MSD – Range Constraints: δ=0.0001 0.0000 0.0000 0.1880 0.5901 0.8201  0.3224 0.8285  

MSD – Range Constraints: δ=0.00001 0.0000 0.0000 0.3223 0.2310 0.2877 0.3224  0.3852  

MSD – Balancing Constraint 0.0000 0.0000 0.2990 0.2620 0.2872 0.8285 0.3852   

Table C-30: T –tests for Dataset 3. The case of minority accuracy.  
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Logistic 

Regression 

MSD – 

Basic 

Model 

MSD – 

Balancing 

Objective 

MSD – 

Range 

Constraints: 

δ=0.001 

MSD – 

Range 

Constraints: 

δ=0.0005 

MSD – 

Range 

Constraints: 

δ=0.0001 

MSD – Range 

Constraints: 

δ=0.00001 

MSD – 

Balancing 

Constraint 

 

Logistic Regression   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

MSD – Basic Model    0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

MSD – Balancing Objective 0.0000 0.0000  0.2211 0.0999 0.5228 0.6697 0.0877  

MSD – Range Constraints: δ=0.001 0.0000 0.0000 0.2211  0.7485 0.0987 0.6255 0.3693  

MSD – Range Constraints: δ=0.0005 0.0000 0.0000 0.0999 0.7485  0.1471 0.0875 0.2135  

MSD – Range Constraints: δ=0.0001 0.0000 0.0000 0.5228 0.0987 0.1471  0.2365 0.3255  

MSD – Range Constraints: δ=0.00001 0.0000 0.0000 0.6697 0.6255 0.0875 0.2365  0.4152  

MSD – Balancing Constraint 0.0000 0.0000 0.0877 0.3693 0.2135 0.3255 0.4152   

Table C-31: T – tests for Dataset 3. The case of majority accuracy.  
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Chapter 6 – Experimental Study 

 

 

Greek - Overall                

  AUDA-WoE Log MSD 

MSD - 

Balancing LDA QDA NN AUDA 

AUDA-WoE   0.0000 0.0000 0.0000 0.0000 0.0000 0.0766 0.0000 

Log 0.0000  0.0000 0.0000 0.0000 0.0000 0.0088 0.0000 

MSD 0.0000 0.0000   0.0000 0.0000 0.0001 - 

MSD - Balancing 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 

LDA 0.0000 0.0000 0.0000 0.0000  0.0004 0.0000 0.0000 

QDA 0.0000 0.0000 0.0000 0.0000 0.0004  0.0000 0.0000 

NN 0.0766 0.0088 0.0001 0.0000 0.0000 0.0000  0.0001 

AUDA 0.0000 0.0000 - 0.0000 0.0000 0.0000 0.0001   
Table C-32: Greek dataset: The case of overall accuracy 

 

 

Greek - Acc+                

  AUDA-WoE Log MSD 

MSD - 

Balancing LDA QDA NN AUDA 

AUDA-WoE   0.0000 0.0000 0.0000 0.0014 0.0016 0.0026 0.0000 

Log 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

MSD 0.0000 0.0000  0.0000 0.0000 0.0000 0.0013 0.0000 

MSD - Balancing 0.0000 0.0000 0.0000  0.0852 0.8210 0.0000 0.0000 

LDA 0.0014 0.0000 0.0000 0.0852  0.0033 0.0003 0.0001 

QDA 0.0016 0.0000 0.0000 0.8210 0.0033  0.0003 0.0001 

NN 0.0026 0.0000 0.0013 0.0000 0.0003 0.0003  0.0405 

AUDA 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0405   
Table C-33: Greek dataset: The case of minority accuracy 

 

 

Greek - Acc-                

  AUDA-WoE Log MSD 

MSD - 

Balancing LDA QDA NN AUDA 

AUDA-WoE   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Log 0.0000  0.0135 0.0000 0.0000 0.0000 0.0000 0.0000 

MSD 0.0000 0.0135   0.0000 0.0000 0.0000 0.0000 

MSD - Balancing 0.0000 0.0000 0.0000  0.4520 0.3254 0.0000 0.0000 

LDA 0.0000 0.0000 0.0000 0.4520  0.0000 0.0000 0.0000 

QDA 0.0000 0.0000 0.0000 0.3254 0.0000  0.0000 0.0000 

NN 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0654 

AUDA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0654   
Table C-34: Greek dataset: The case of majority accuracy 

 

 

 

Greek - AUC                

  AUDA-WoE Log MSD 

MSD - 

Balancing LDA QDA NN AUDA 

AUDA-WoE   0.1243 0.0000 0.0000 0.1348 0.1805 0.1207 0.0000 

Log 0.1243  0.0000 0.0000 0.4339 0.7539 0.0417 0.0000 

MSD 0.0000 0.0000  0.3254 0.0000 0.0000 0.1077 0.0009 
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MSD - Balancing 0.0000 0.0000 0.3254  0.0000 0.0000 0.2510 0.0565 

LDA 0.1348 0.4339 0.0000 0.0000  0.0909 0.0255 0.0000 

QDA 0.1805 0.7539 0.0000 0.0000 0.0909  0.0447 0.0000 

NN 0.1207 0.0417 0.1077 0.2510 0.0255 0.0447  0.0280 

AUDA 0.0000 0.0000 0.0009 0.0565 0.0000 0.0000 0.0280   
Table C-35: Greek dataset: The case of AUC 

 

 

German - Overall                

  AUDA-WoE Log MSD 

MSD - 

Balancing LDA QDA NN AUDA 

AUDA-WoE   0.0040 0.0055 0048 0.4262 0.9911 0.3204 0.0000 

Log 0.0040  0.5408 0.5001 0.0009 0.0014 0.7915 0.0000 

MSD 0.0055 0.5408  0.0001 0.0000 0.0000 0.9563 0.0000 

MSD - Balancing 0.0048 0.5001 0.0001  0.0000 0.0000 0.9400 0.0000 

LDA 0.4262 0.0009 0.0000 0.0000  0.1053 0.2460 0.0000 

QDA 0.9911 0.0014 0.0000 0.0000 0.1053  0.3429 0.0000 

NN 0.3204 0.7915 0.9563 0.9400 0.2460 0.3429  0.0024 

AUDA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0024   
Table C-36: German dataset: The case of Overall Accuracy 

 

 

 

German - Acc+                

  AUDA-WoE Log MSD 

MSD - 

Balancing LDA QDA NN AUDA 

AUDA-WoE   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

Log 0.0000  0.6386 0.0000 0.0001 0.0004 0.3741 0.0000 

MSD 0.0000 0.6386  0.0000 0.0000 0.0000 0.2696 0.0000 

MSD - Balancing 0.0000 0.0000 0.0000  0.0000 0.0000 0.0021 0.0000 

LDA 0.0000 0.0001 0.0000 0.0000  0.0004 0.0074 0.0000 

QDA 0.0000 0.0004 0.0000 0.0000 0.0004  0.0610 0.0000 

NN 0.0000 0.3741 0.2696 0.0021 0.0074 0.0610  0.0000 

AUDA 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000   
Table C-37: German dataset: The case of Minority Accuracy 

 

 

 

German - Acc-                

  AUDA-WoE Log MSD 

MSD - 

Balancing LDA QDA NN AUDA 

AUDA-WoE   0.0000 0.0030 0.0000 0.0000 0.0000 0.0014 0.0001 

Log 0.0000  0.1369 0.0000 0.0000 0.0000 0.1594 0.0762 

MSD 0.0030 0.1369  0.0210 0.0398 0.0796 0.5230 0.0469 

MSD - Balancing 0.0000 0.0000 0.0210  0.0120 0.0231 0.0020 0.0000 

LDA 0.0000 0.0000 0.0398 0.0120  0.0230 0.0032 0.0000 

QDA 0.0000 0.0000 0.0796 0.0231 0.0230  0.0030 0.0000 

NN 0.0014 0.1594 0.5230 0.0020 0.0032 0.0030  0.0421 

AUDA 0.0001 0.0762 0.0469 0.0000 0.0000 0.0000 0.0421   
Table C38: German dataset: The case of majority Accuracy 
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German - AUC                

  AUDA-WoE Log MSD 

MSD - 

Balancing LDA QDA NN AUDA 

AUDA-WoE   0.2293 0.5820 0.2920 0.2553 0.6632 0.9861 0.0504 

Log 0.2293  0.1900 0.7501 0.7568 0.1552 0.3800 0.0019 

MSD 0.5820 0.1900  0.0000 0.0001 0.6164 0.6758 0.0028 

MSD - Balancing 0.2920 0.7501 0.0000  0.1250 0.2011 0.3230 0.0001 

LDA 0.2553 0.7568 0.0001 0.1250  0.0021 0.3982 0.0008 

QDA 0.6632 0.1552 0.6164 0.2011 0.0021  0.7605 0.0055 

NN 0.9861 0.3800 0.6758 0.3230 0.3982 0.7605  0.1632 

AUDA 0.0504 0.0019 0.0028 0.0001 0.0008 0.0055 0.1632   
Table C39: German dataset: The case of AUC 

 

 

SPSS - Overall                

  AUDA-WoE Log MSD 

MSD - 

Balancing LDA QDA NN AUDA 

AUDA-WoE   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Log 0.0000  0.0000 0.0000 0.0923 0.0009 0.0000 0.0022 

MSD 0.0000 0.0000  0.0021 0.0016 0.0102 0.0305 0.4355 

MSD - Balancing 0.0000 0.0000 0.0021  0.0251 0.0365 0.0362 0.2654 

LDA 0.0000 0.0923 0.0016 0.0251  0.0103 0.0441 0.0036 

QDA 0.0000 0.0009 0.0102 0.0365 0.0103  0.5446 0.1274 

NN 0.0000 0.0000 0.0305 0.0362 0.0441 0.5446  0.3673 

AUDA 0.0000 0.0022 0.4355 0.2654 0.0036 0.1274 0.3673   
Table C-40: SPSS dataset: The case of overall accuracy 

 

SPSS - Acc+                

  AUDA-WoE Log MSD 

MSD - 

Balancing LDA QDA NN AUDA 

AUDA-WoE   0.0000 0.0000 0.0051 0.0042 0.0012 0.0000 0.0000 

Log 0.0000  0.5859 0.0000 0.0000 0.0000 0.0073 0.0000 

MSD 0.0000 0.5859  0.0000 0.0000 0.0000 0.1708 0.0000 

MSD - Balancing 0.0051 0.0000 0.0000  0.0021 0.0000 0.0000 0.0000 

LDA 0.0042 0.0000 0.0000 0.0021  0.0021 0.0000 0.0000 

QDA 0.0012 0.0000 0.0000 0.0000 0.0021  0.0000 0.0000 

NN 0.0000 0.0073 0.1708 0.0000 0.0000 0.0000  0.0000 

AUDA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000   
Table C-41: SPSS dataset: The case of minority accuracy 

 

SPSS - Acc-                

  AUDA-WoE Log MSD 

MSD - 

Balancing LDA QDA NN AUDA 

AUDA-WoE   0.0043 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 

Log 0.0043  0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 

MSD 0.0000 0.0000  0.0012 0.1780 0.1993 0.0016 0.0000 

MSD - Balancing 0.0000 0.0000 0.0012  0.0000 0.0000 0.0000 0.0000 

LDA 0.0000 0.0000 0.1780 0.0000  1.0000 0.0009 0.0000 

QDA 0.0000 0.0000 0.1993 0.0000 1.0000  0.0015 0.0000 

NN 0.0001 0.0003 0.0016 0.0000 0.0009 0.0015  0.0000 

AUDA 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000   
Table C-42: SPSS dataset: The case of majority accuracy 
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SPSS - AUC                

  AUDA-WoE Log MSD 

MSD - 

Balancing LDA QDA NN AUDA 

AUDA-WoE   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Log 0.0000  0.0000 0.0053 0.8904 0.0018 0.0000 0.8361 

MSD 0.0000 0.0000  0.7565 0.0001 0.0000 0.0017 0.0004 

MSD - Balancing 0.0000 0.0053 0.7565  0.0364 0.2654 0.5654 0.0350 

LDA 0.0000 0.8904 0.0001 0.0364  0.0852 0.0050 0.8563 

QDA 0.0000 0.0018 0.0000 0.2654 0.0852  0.0038 0.0207 

NN 0.0000 0.0000 0.0017 0.5654 0.0050 0.0038    

AUDA 0.0000 0.8361 0.0004 0.0350 0.8563 0.1930 0.0207   
Table C-43: SPSS dataset: The case of AUC 
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APPENDIX D 

 

Coding for the MP models used in our analysis 

UTADIS 

model UTADIS 

!Uses US dataset 

!Uses "mmxprs";  

 

setparam("XPRS_MIPTOL",0.00000005) 

 

declarations 

 NM1=116       ! No observations in group 1 

 NM2=160     ! No observations in group 2 

 NL1=29  !No of observations in Group 1-Holdout sample 

 NL2=40     ! No observations in group 2 

 NV=6        ! No of original variables 

 NG=5         ! No of "grades" for each original variable 

 NM=NM1+NM2   ! Total number of observations 

 NL=NL1+NL2 

 NN=(NV*NG)     ! Total no of variables 

 NG1=NG-1 

 M1=1..NM1 

 M2=1..NM2 

 L1=1..NL1 

 L2=1..NL2 

 M=1..NM 

 L=1..NL 

 V=1..NV 

 G=1..NG 

 G1=1..NG1 

 N=1..NN 

 X1: array(M1,N) of real  ! Group 1 observation, variable value 

 X2: array(M2,N) of real  ! Group 2 observation, variable value 

 Y1:array(L1,N) of real 

 Y2:array(L2,N) of real 

 D: real                  ! Reject interval (one-sided) 

 a0: mpvar                ! Constant in function 

 a: array(V,G) of mpvar   ! Variable coefficient 

 d1: array(M1) of mpvar   ! deviation of Group 1 observation 

 d2: array(M2) of mpvar   ! deviation of Group 2 observation 

 DT: array(M1) of real     ! Deviations of training sample obs. - for O/P only 

 DH: array(L1) of real 

 DT2: array(M2) of real     ! Deviations of training sample obs. - for O/P 

only 

 DH2: array(L2) of real 

                 ! No. training sample obs. correctly classified - O/P only 

 

end-declarations 

 

D:= 0.001 

NTC:= 0 

NHC:= 0 

NHC1:= 0 

NTC1:= 0  
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fopen('C:\Documents and 

Settings\s0565423\desktop\Data_Comparison_1\Liver\UTA_samples\5_Se

g\s_91.txt',F_INPUT) 

 forall(i in M1) do 

  forall(j in N) read(X1(i,j)) 

 end-do 

fclose(F_INPUT) 

 

fopen('C:\Documents and 

Settings\s0565423\desktop\Data_Comparison_1\Liver\UTA_samples\5_Se

g\s_92.txt',F_INPUT) 

 forall(i in M2) do 

  forall(j in N) read(X2(i,j)) 

 end-do 

fclose(F_INPUT) 

 

!Read in data-continuous variables then binary variables 

fopen('C:\Documents and 

Settings\s0565423\desktop\Data_Comparison_1\Liver\UTA_samples\5_Se

g\h_91.txt',F_INPUT) 

 forall(i in L1) do 

  forall(j in N) read(Y1(i,j)) 

 end-do 

fclose(F_INPUT) 

 

fopen('C:\Documents and 

Settings\s0565423\desktop\Data_Comparison_1\Liver\UTA_samples\5_Se

g\h_92.txt',F_INPUT) 

 forall(i in L2) do 

  forall(j in N) read(Y2(i,j)) 

 end-do 

fclose(F_INPUT) 

 

! Constraints 

 

! Group 1 

forall(i in M1) 

 CA(i):= sum(j in V, k in G)X1(i,((j-1)*NG)+k)*a(j,k) - a0 - d1(i) <= -D 

 

! Group 2 

forall(i in M2) 

 CB(i):= sum(j in V, k in G)X2(i,((j-1)*NG)+k)*a(j,k) - a0 + d2(i) >= 0 

 

 

 

! Normalisation 

   CC:= sum(j in V) a(j,NG) = 1 

 

 

! Constraints for monotone weights 

forall(j in V, k in G1) 

 CE(j,k):= a(j,k+1) - a(j,k) >= 0 

forall(j in V) 

a(j,1)=0 
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! Objective - Minimise sum of deviations 

MSD:= sum(i in M1)d1(i) + sum(i in M2)d2(i) 

 

setparam("XPRS_verbose",true) 

 

minimize(MSD) 

 

! Calculate deviation for each observation in training and holdout samples 

forall (i in M1) do 

  DT(i):=sum(j in V, k in G)X1(i,((j-1)*NG)+k)*getsol(a(j,k))-getsol(a0)  

   if (DT(i)<0) then 

    NTC:=NTC+1 

   end-if 

end-do 

 

forall (i in M2) do 

  DT2(i):=sum(j in V, k in G)X2(i,((j-1)*NG)+k)*getsol(a(j,k))-getsol(a0)  

   if (DT2(i)>=0) then 

    NTC1:=NTC1+1 

   end-if 

end-do 

 

forall (i in L1) do 

  DH(i):=sum(j in V, k in G)Y1(i,((j-1)*NG)+k)*getsol(a(j,k))-getsol(a0) 

   if (DH(i)<0) then 

    NHC:=NHC+1 

   end-if 

end-do 

 

forall (i in L2) do 

  DH2(i):=sum(j in V, k in G)Y2(i,((j-1)*NG)+k)*getsol(a(j,k))-getsol(a0) 

   if (DH2(i)>=0) then 

    NHC1:=NHC1+1 

   end-if 

end-do 

 

 

! Print utility deviation for each observation in training and holdout samples 

fopen('C:\Documents and 

Settings\s0565423\desktop\Data_Comparison_1\Liver\Results\UTA\out_U

TA_100.txt',F_OUTPUT) 

writeln("Liver - Data") 

writeln 

writeln("Sum of deviations : ", getobjval) 

writeln("Constant :", getsol(a0)) 

writeln 

forall(j in V) do 

forall(k in G) 

  writeln("          Coefficient ", k , " : ", getsol(a(j,k))) 

end-do 

 

! Print utility deviation for each observation in training and holdout samples 

writeln 

writeln 

writeln ("                    ") 
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writeln ("Group  Ob. No. ", "Utility Deviation Training") 

forall (i in M1) 

 writeln("  1", strfmt(i,8,0), strfmt(DT(i),16,6)) 

forall (i in M2) 

 writeln("  2", strfmt(i,8,0), strfmt(DT2(i),16,6)) 

writeln 

writeln ("Group  Ob. No. ", "Utility Deviation Holdout") 

forall (i in L1) 

 writeln("  1", strfmt(i,8,0), strfmt(DH(i),16,6)) 

forall (i in L2) 

 writeln("  2", strfmt(i,8,0), strfmt(DH2(i),16,6)) 

writeln 

writeln ("No. Misclas.", strfmt(NHC,15,0),  strfmt(NTC,15,0)) 

writeln 

writeln ("No. Misclas.", strfmt(NTC1,15,0), strfmt(NHC1,15,0)) 

writeln 

writeln ("Hit Rate (%)  ",((NTC+NTC1)/276)*100) 

writeln ("Holdout Hit Rate (%)  ",((NHC+NHC1)/69)*100) 

fclose(F_OUTPUT) 

end-model 

 

MSD Variable Selection 

model 'MSD-model' 

uses "mmxprs" 

declarations  

n=1..14 !attributes 

m1=1..30 !Group 1 

m2=1..30 !Group 2 

X1:array(m1,n) of real !Data of Group1 

X2:array(m2,n) of real !Data of Group2 

a01: mpvar !a(0+) coefficient 

a02: mpvar !a(0-) coefficient 

a:array(n) of mpvar !a(j) 

d1:array(m1)of mpvar !deviations in group1 

d2:array(m2)of mpvar !deviations in group2 

U:real 

E:real 

A:array(n)of mpvar !the á number 

B:array(n)of mpvar !the â number 

end-declarations 

initializations from 

'\\hssk2.hss.ed.ac.uk\mse\pghome\s0565423\Models_Run\australian_sampl

es\sample1.txt' 

X1 X2 U  E   

end-initializations 

!Objective Function 

MN:=sum(i in m1)d1(i)+sum(i in m2)d2(i) 

 

!Group1 constraint 

forall(i in m1) do 

sum(j in n)X1(i,j)*a(j)-a01+a02-d1(i)<=0 

end-do 

 

!Group2 constraint 

forall(i in m2) do 
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sum(j in n)X2(i,j)*a(j)-a01+a02+d2(i)>=0 

end-do 

 

!Normalization 

a01+a02=1 

 

!Number definitions 

forall(j in n) do 

-a(j)+(U+E)*A(j)<=U 

end-do 

forall(j in n) do 

a(j)-U*A(j)<=0 

end-do 

forall(j in n) do 

a(j)+(U+E)*B(j)<=U 

end-do 

forall(j in n) do 

a(j)+U*B(j)>=0 

end-do 

forall(j in n)  

A(j)+B(j)<=1 

 

!Bounds 

forall(j in n) 

A(j) is_binary 

forall(j in n) 

B(j) is_binary 

a01 is_binary 

a02 is_binary 

forall(i in m1) 

d1(i)>=0 

forall(i in m2) 

d2(i)>=0 

 

!Objective function 

minimize(MN) 

 

!Print solution 

fopen('C:\Documents and 

Settings\s0565423\desktop\Australian_runs\MSD\out1.txt',F_OUTPUT) 

writeln("Australian Data") 

writeln 

writeln("Solution value is: ", getobjval) 

writeln 

!exportprob(0,"",MN) 

forall(j in n) 

 writeln(" Coefficient ", j , " : ", getsol(a(j))) 

writeln 

forall(i in m1) 

 writeln(" Deviation ", i , " : ", sum(j in n)(X1(i,j)*getsol(a(j)))-

getsol(a01)+getsol(a02)) 

forall(i in m2) 

 writeln(" Deviation ", i , " : ", sum(j in n)(X2(i,j)*getsol(a(j)))-

getsol(a01)+getsol(a02)) 

writeln 
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 writeln(" Coefficient a0 is : ", getsol(a01)-getsol(a02)) 

forall(j in n)  

 writeln( "the A value is: ", getsol(A(j))) 

forall(j in n)  

 writeln( "the B value is: ", getsol(B(j))) 

fclose(F_OUTPUT) 

end-model 

 

Integer Programming 

model damcagb 

 ! MCA model - Greek Bank Data 

 !  Group 1 observations above function 

 

uses "mmxprs" 

setparam("XPRS_MIPTOL", 0.00000005) 

declarations 

 !P=34 

 M1=1..370   ! No observations in group 1 

 M2=1..343   ! No observations in group 2 

 L1=1..93 

 L2=1..86 

 N=1..8       ! No variables 

 X1: array(M1,N) of real     ! Group 1 observation, variable value 

 X2: array(M2,N) of real     ! Group 2 observation, variable value 

 Y1: array(L1,N) of real     ! Group 1 observation, variable value 

 Y2: array(L2,N) of real     ! Group 2 observation, variable value 

 D: real      ! Reject interval 

 U: real      ! "Large" number 

 E: real   !Small number 

 a0: mpvar                   ! Constant in function 

 a: array(1..2,N) of mpvar   ! Variable coefficient 

 b1: array(M1) of mpvar      ! BV for correct classification in G1 

 b2: array(M2) of mpvar      ! BV for correct classification in G2 

 s1: array(L1) of mpvar      ! BV for correct classification in G1 

 s2: array(L2) of mpvar      ! BV for correct classification in G2 

 

  

 !d:mpvar 

 !g:array(N)of mpvar !the ã number 

 NHC:real 

 NHC1:real 

end-declarations 

 

NHC:=0 

NHC1:=0 

D:= 0.0005 

U:= 100 

E:=0.001 

 

 

initializations from 'C:\Documents and 

Settings\s0565423\desktop\Data_Comparison_1\Yeast\s10.txt' 

 X1 

end-initializations 
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initializations from 'C:\Documents and 

Settings\s0565423\desktop\Data_Comparison_1\Yeast\s10.txt' 

 X2 

end-initializations 

 

initializations from 'C:\Documents and 

Settings\s0565423\desktop\Data_Comparison_1\Yeast\h10.txt' 

 Y1 

end-initializations 

 

initializations from 'C:\Documents and 

Settings\s0565423\desktop\Data_Comparison_1\Yeast\h10.txt' 

 Y2 

end-initializations 

 

 

a0 is_free 

 

forall(i in M1) b1(i) is_binary 

forall(i in M2) b2(i) is_binary 

forall(i in L1) s1(i) is_binary 

forall(i in L2) s2(i) is_binary 

!forall(j in N) g(j) is_binary 

 

! Constraints 

!Training Samples 

! Group 1 

forall(i in M1) 

 CA(i):= sum(j in N)X1(i,j)*a(2,j) - sum(j in N)X1(i,j)*a(1,j) - 

  a0 - (U+D)*b1(i) >= -U 

   

! Group 2 

forall(i in M2) 

 CB(i):= sum(j in N)X2(i,j)*a(2,j) - sum(j in N)X2(i,j)*a(1,j) - 

  a0 + (U+D)*b2(i) <= U 

    

 

    

! Normalisation 

 CD:= sum(i in 1..2,j in N)a(i,j) = 1 

  

     

! Objective - Maximise Classification Accuracy 

MCA:= sum(i in M1)b1(i)+ sum(i in M2)b2(i) 

 

!sum(i in M1)b1(i)<=300 

!sum(i in M1)b1(i)>=270 

!sum(i in M2)b2(i)=8 

 

! Define a(1,j) and a(2,j) as SOS1 

forall(j in N) ASET(j):= sum(i in 1..2) (100*i+10*j)*a(i,j) is_sos1 

 

!Attribute Selection 

!forall(j in N) 

!CE(j):=a(1,j)+a(2,j)-E*g(j)>=0 
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!forall(j in N) 

!CF(j):=a(1,j)+a(2,j)-g(j)<=0 

!CG:=sum(j in N)g(j)=P 

 

 

setparam("XPRS_verbose",true) 

 

!sum(i in M1)b1(i)=90 

!sum(i in M2)b2(i)<=80 

!sum(i in M1)b1(i)>=sum(i in M2) b2(i) 

maximize(MCA) 

 

 !Holdout Samples 

! Group 1 

forall(w in L1)do 

DH(w):= sum(j in N)Y1(w,j)*getsol(a(2,j)) - sum(j in 

N)Y1(w,j)*getsol(a(1,j))    

   if (DH(w)>=getsol(a0)) then 

   NHC:=NHC+1 

   end-if 

   end-do 

    

! Group 2 

forall(q in L2)do    

 DH2(q):= sum(j in N)Y2(q,j)*getsol(a(2,j)) - sum(j in 

N)Y2(q,j)*getsol(a(1,j))  

   if (DH2(q)<getsol(a0)) then 

    NHC1:=NHC1+1 

   end-if   

   end-do   

    

 

! Print solution 

fopen('C:\Documents and 

Settings\s0565423\desktop\Data_Comparison_1\Yeast\Results\IP\Yeast_10

.txt',F_OUTPUT) 

writeln("Yeast Data") 

writeln 

writeln("Number of observations classified correctly : ", getobjval) 

writeln 

writeln("Specificity: ", getsol(sum(i in M1)b1(i))) 

writeln 

writeln("Sensitivity: ", getsol(sum(i in M2)b2(i))) 

writeln 

writeln 

writeln("Discriminant Function:")  

writeln(" a(2,1)-a(1,1) ",   " = ", getsol(a(2,1))-getsol(a(1,1))) 

writeln(" a(2,2)-a(1,2) ",   " = ", getsol(a(2,2))-getsol(a(1,2))) 

writeln(" a(2,3)-a(1,3) ",   " = ", getsol(a(2,3))-getsol(a(1,3))) 

writeln(" a(2,4)-a(1,4) ",   " = ", getsol(a(2,4))-getsol(a(1,4))) 

writeln(" a(2,5)-a(1,5) ",   " = ", getsol(a(2,5))-getsol(a(1,5))) 

writeln(" a(2,6)-a(1,6) ",   " = ", getsol(a(2,6))-getsol(a(1,6))) 

writeln(" a(2,7)-a(1,7) ",   " = ", getsol(a(2,7))-getsol(a(1,7))) 

writeln(" a(2,8)-a(1,8) ",   " = ", getsol(a(2,8))-getsol(a(1,8))) 

forall(w in L1) 
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writeln("  1",  strfmt(DH(w),15,6)) 

forall(q in L2) 

writeln("  2",  strfmt(DH2(q),15,6)) 

writeln("GroupA", ":", (NHC)) 

writeln("GroupB", ":", (NHC1)) 

!writeln ("No. Misclas.", strfmt(NHC,15,0),  strfmt(NHC1,15,0)) 

writeln 

!forall(j in N) 

!writeln(" a(2,j)-a(1,j) ",   " = ", getsol(a(2,j))-getsol(a(1,j))) 

fclose(F_OUTPUT) 

end-model 
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