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Gravity and Strings

One appealing feature of string theory is that it provides a theory of quantum gravity. Gravity and Strings is a
self-contained, pedagogical exposition of this theory, its foundations, and its basic results.

In Part I, the foundations are traced back to the very early special-relativistic field theories of gravity, show-
ing how such theories, which are associated with the concept of the graviton, lead to general relativity. Gauge
theories of gravity are then discussed and used to introduce supergravity theories.

Part II covers some of the most interesting solutions of general relativity and its generalizations. These
include Schwarzschild and Reissner–Nordström black holes, the Taub–NUT solution, gravitational instantons,
and gravitational waves. Kaluza–Klein theories and the uses of residual supersymmetries are discussed in
detail.

Part III presents string theory from the effective-action point of view, using the results found earlier in
the book as background. The supergravity theories associated with superstrings and M theory are thoroughly
studied, and used to describe dualities and classical solutions related to non-pertubative states of these theories.
A brief account of extreme black-hole entropy calculations is also given.

This unique book will be useful as a reference for graduate students and researchers, as well as a comple-
mentary textbook for courses on gravity, supergravity, and string theory.
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by a Spanish Government grant. Between 1993 and 1995 he was EU Marie Curie postdoctoral fellow in the
String Theory Group of the Physics Department of Queen Mary College, University of London, and from 1995
to 1997, he was a Fellow in the Theory Division of CERN. He is currently a Staff Scientist at the Spanish
Research Council and a member of the Institute for Theoretical Physics of the Universidad Autónoma de
Madrid. Dr Ortı́n has taught several graduate courses on advanced general relativity, supergravity, and strings.
His research interests lie in string theory, gravity, quantum gravity, and black-hole physics.
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Preface

String theory has lived for the past few years during a golden era in which a tremendous
upsurge of new ideas, techniques, and results has proliferated. In what form they will con-
tribute to our collective enterprise (theoretical physics) only time can tell, but it is clear that
many of them have started to have an impact on closely related areas of physics and math-
ematics and, even if string theory does not reach its ultimate goal of becoming a theory of
everything, it will have played a crucial, inspiring role.

There are many interesting things that have been learned and achieved in this field that we
feel can (and perhaps should) be taught to graduate students. However, we have found that
this is impossible without the introduction of many ideas, techniques, and results that are
not normally taught together in standard courses on general relativity, field theory or string
theory, but which have become everyday tools for researchers in this field: black holes,
strings, membranes, solitons, instantons, unbroken supersymmetry, Hawking radiation . . . .
They can, of course, be found in various textbooks and research papers, presented from
various viewpoints, but not in a single reference with a consistent organization of the ideas
(not to mention a consistent notation).

These are the main reasons for the existence of this book, which tries to fill this gap
by covering a wide range of topics related, in one way or another, to what we may call
semiclassical string gravity. The selection of material is according to the author’s taste and
personal preferences with the aim of self-consistency and the ultimate goal of creating a
basic, pedagogical, reference work in which all the results are written in a consistent set of
notations and conventions. Some of the material is new and cannot be found elsewhere.

Precisely because of the blend of topics we have touched upon, although a great deal
of background material is (briefly) reviewed here, this cannot be considered a textbook on
general relativity, supergravity or string theory. Nevertheless, some chapters can be used in
graduate courses on these matters, either providing material for a few lectures on a selected
topic or combined (as the author has done with the first part, which is self-contained) into
an advanced (and a bit eclectic) course on gravity.

It has not been too difficult to order logically the broad range of topics that had to be
discussed, though. We can view string theory as the summit of a pyramid whose building
blocks are the theories, results, and data that become more and more fundamental and basic
the more we approach the base of the pyramid. At the very bottom (Part I) one can find tools

xix



xx Preface

such as differential geometry and the use of symmetry in physics and fundamental theories
of gravity such as general relativity and extensions to accommodate fermions such as the
CSK theory and supergravity. The rest of the book is supported by it. In particular, we can
see string theory as the culmination of long-term efforts to construct a theory of quantum
gravity for a spin-2 particle (the graviton) and our approach to general relativity as the only
self-consistent classical field theory of the graviton is intended to set the ground for this
view.

Part II investigates consequences, results, and extensions of general relativity through
some of its simplest and most remarkable solutions, which can be regarded as point-
particle-like: the Schwarzschild and Reissner–Nordström solutions, gravitational waves,
and the Taub-NUT solution. In the course of this study we introduce the reader to black
holes, “no-hair theorems,” black-hole thermodynamics, Hawking radiation, gravitational
instantons, charge quantization, electric–magnetic duality, the Witten effect etc. We will
also explain the essentials of dimensional reduction and will obtain black-hole solutions
of the dimensionally reduced theory. To finish Part II we introduce the reader to the idea
and implications of residual supersymmetry. We will review all our results on black-hole
thermodynamics and other black-hole properties in the light of unbroken supersymmetry.

Part III introduces strings and the string effective action as a particular extension of
general relativity and supergravity. String dualities and extended objects will be studied
from the string-effective-action (spacetime) point of view, making use of the results of
Parts I and II and paying special attention to the relation between worldvolume and space-
time phenomena. This part, and the book, closes with an introduction to the calculation of
black-hole entropies using string theory.

During these years, I have received the support of many people to whom this book, and
I personally, owe much: Enrique Álvarez, Luis Álvarez-Gaumé, and my long-time collab-
orators Eric Bergshoeff and Renata Kallosh encouraged me and gave me the opportunity
to learn from them. My students Natxo Alonso-Alberca, Ernesto Lozano-Tellechea, and
Patrick Meessen used and checked many versions of the manuscript they used to call the
PRC. Their help and friendship in these years has been invaluable. Roberto Emparan, José
Miguel Figueroa-O’Farrill, Yolanda Lozano, Javier Más, Alfonso Vázquez-Ramallo, and
Miguel Ángel Vázquez-Mozo read several versions of the manuscript and gave me many
valuable comments and advice, which contributed to improving it. I am indebted to Arthur
Greenspoon for making an extremely thorough final revision of the manuscript.

Nothing would have been possible without Marimar’s continuous and enduring support.
If, in spite of all this help, the book has any shortcomings, the responsibility is en-

tirely mine. Comments and notifications of misprints can be sent to the e-mail address
tomas.ortin@uam.es. The errata will be posted in http://gesalerico.ft.
uam.es/prc/misprints.html.

This book started as a written version of a review talk on string black holes prepared
for the first String Theory Meeting of the Benasque Center for Theoretical Physics, back
in 1996, parts of it made a first public appearance in a condensed form as lectures for the
charming Escuela de Relatividad, Campos y Cosmologı́a “La Hechicera” organized by the
Universidad de Los Andes (Mérida, Venezuela), and it was finished during a long-term visit
to the CERN Theory Division. I would like to thank the organizers and members of these
institutions for their invitations, hospitality, and economic support.



Part I

Introduction to gravity and supergravity

Let no one ignorant of Mathematics enter here.

Inscription above the doorway of Plato’s Academy





1
Differential geometry

The main purpose of this chapter is to fix our notation and to review the ideas and formulae
of differential geometry we will make heavy use of. There are many excellent physicist-
oriented references on differential geometry. Two that we particularly like are [347] and
[715]. Our approach here will be quite pragmatic, ignoring many mathematical details and
subtleties that can be found in the many excellent books on the subject.

1.1 World tensors

A manifold is a topological space that looks (i.e. it is homeomorphic to) locally (i.e. in a
patch) like a piece of R

d . d is the dimension of the manifold and the correspondence be-
tween the patch and the piece of R

n can be used to label the points in the patch by Cartesian
R

n coordinates xµ. In the overlap between different patches the different coordinates are
consistently related by a general coordinate transformation (GCT) x ′ µ(x). Only objects
with good transformation properties under GCTs can be defined globally on the manifold.
These objects are tensors.

A contravariant vector field (or (1, 0)-type tensor or just “vector”) ξ(x) = ξµ(x)∂µ is
defined at each point on a d-dimensional smooth manifold by its action on a function

ξ : f −→ ξ f = ξµ∂µ f, (1.1)

which defines another function. These objects span a d-dimensional linear vector space at
each point of the manifold called the tangent space T(1,0)

p . The d functions ξµ(x) are the
vector components with respect to the coordinate basis {∂µ}.

A covariant vector field (or (0, 1)-type tensor or differential 1-form) is an element of the
dual vector space (sometimes called the cotangent space) T(0,1)

p and therefore transforms
vectors into functions. The elements of the basis dual to the coordinate basis of contravari-
ant vectors are usually denoted by {dxµ} and, by definition,

〈dxµ|∂ν〉 ≡ δµ
ν, (1.2)

which implies that the action of a form ω = ωµdxµ on a vector ξ(x) = ξµ(x)∂µ gives the

3
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function1

〈ω|ξ〉 = ωµξµ. (1.3)

Under a GCT vectors and forms transform as functions, i.e. ξ ′(x ′) = ξ(x(x ′)) etc., which
means for their components in the associated coordinate basis

∂x ′ ρ

∂xµ
ξµ(x(x ′)) = ξ ′ ρ(x ′), ωµ(x(x ′))

∂xµ

∂x ′ ρ = ω′
ρ(x ′). (1.4)

More general tensors of type (q, r) can be defined as elements of the space T(q,r)
p which

is the tensor product of q copies of the tangent space and r copies of the cotangent space.
Their components Tµ1···µq

ν1···νr transform under GCTs in the obvious way.
It is also possible to define tensor densities of weight w whose components in a coordi-

nate basis change under a GCT with an extra factor of the Jacobian raised to the power w/2.
Thus, for weight w, the vector density components vµ and the form density components
wµ transform according to ∣∣∣∣∂x ′

∂x

∣∣∣∣
w/2

∂x ′ ρ

∂xµ
vµ(x(x ′)) = v′ ρ(x ′),

wµ(x(x ′))
∂xµ

∂x ′ ρ

∣∣∣∣∂x ′

∂x

∣∣∣∣
w/2

= w′
ρ(x ′),

(1.5)

where for the Jacobian we use the notation∣∣∣∣∂x ′

∂x

∣∣∣∣ ≡ det

(
∂x ′ ρ

∂xµ

)
. (1.6)

An infinitesimal GCT2 can be written as follows:

δxµ = x ′ µ − xµ = εµ(x). (1.7)

The corresponding infinitesimal transformations of scalars φ and contravariant and covari-
ant world vectors (an alternative name for components in the coordinate basis) are:3

δφ = −ελ∂λφ ≡ −Lεφ,

δξµ = −ελ∂λξ
µ + ∂νε

µξν ≡ −Lεξ
µ ≡ −[ε, ξ ]µ,

δωµ = −ελ∂λωµ − ∂µενων ≡ −Lεωµ,

(1.8)

1 Summation over repeated indices in any position will always be assumed, unless they are in parentheses.
2 This is an element of a one-parameter group of GCTs (the unit element corresponding to the value 0 of the

parameter) with a value of the parameter much smaller than 1.
3 We use the functional variations δφ ≡ φ′(x) − φ(x) which refer to the value of the field φ at two different

points whose coordinates are equal in the two different coordinate systems. They are denoted in [795] by
δ0. They should be distinguished from the total variations δ̃ = φ′(x ′) − φ(x) which refer to the values of
the field φ at the same point in two different coordinate systems. The relation between the two is δφ =
δ̃φ − εµ∂µφ. The piece −ελ∂λφ that appears in δ variations is the “transport term,” which is not present in
other kinds of infinitesimal variations. The transformations δ do enjoy a group property (their commutator
is another δ transformation), whereas the transformations δ̃ or the transport terms by themselves don’t.
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and, for weight-w scalar densities f, vector density components vµ and the form density
components wµ,

δf = −ελ∂λf − w∂λε
λf ≡ −Lεf,

δvµ = −ελ∂λv
µ + ∂νε

µvν − w∂λε
λvµ ≡ −Lεv

µ,

δwµ = −ελ∂λwµ − ∂µενwν − w∂λε
λwµ ≡ −Lεwµ,

(1.9)

where Lε is the Lie derivative with respect to the vector field ε and [ε, ξ ] is the Lie bracket
of the vectors ε and ξ . The definition of the Lie derivative can be extended to tensors or
weight-w tensor densities of any type:

LεT µ1···µp
ν1···νq = −δεT µ1···µp

ν1···νq

= ερ∂ρT µ1···µp
ν1···νq − ∂ρε

µ1 T ρµ2···µp
ν1···νq + · · ·

+ ∂ν1ε
ρT µ1···µp

ρν2···νq − w∂λε
λT µ1···µp

ν1···νq . (1.10)

In particular the metric (a symmetric (0, 2)-type tensor to be defined later) and r -form (a
fully antisymmetric type (0, r) tensor) transform as follows:

δgµν = −ελ∂λgµν − 2gλ(µ∂ν)ε
λ = −Lεgµν,

δBµ1···µr = −ελ∂λ Bµ1···µr − r(∂[µ1|ε
λ)Bλ|µ2···µr ] = −Lε Bµ1···µr .

(1.11)

The main properties of the Lie derivative are that it transforms tensors of a given type into
tensors of the same given type, it obeys the Leibniz rule Lε(T1T2) = (LεT1)T2 + T1LεT2,
it is connection-independent, and it is linear with respect to ε. Furthermore, it satisfies the
Jacobi identity

[Lξ1, [Lξ2,Lξ3 ]] + [Lξ2, [Lξ3,Lξ1 ]] + [Lξ3, [Lξ1,Lξ2 ]] = 0, (1.12)

where the brackets stand for commutators of differential operators. The relation between
the commutator [Lξ ,Lε] and the Lie bracket [ξ, ε] is

[Lξ ,Lε] = L[ξ,ε]. (1.13)

Thus, the Lie bracket is an antisymmetric, bilinear product in tangent space that also
satisfies the Jacobi identity

[ξ1, [ξ2, ξ3]] + [ξ2, [ξ3, ξ1]] + [ξ3, [ξ1, ξ2]] = 0, (1.14)

which one can use to give it the structure of Lie algebra.

1.2 Affinely connected spacetimes

The covariant derivative of world tensors is defined by

∇µφ = ∂µφ,

∇µξν = ∂µξν + 
µρ
νξρ,

∇µων = ∂µων − ωρ
µν
ρ,

(1.15)
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and on weight-w tensor densities by

∇µf = ∂µf − w
µρ
ρf,

∇µvν = ∂µvν + 
µρ
νvρ − w
µρ

ρvν,

∇µwν = ∂µwν − wρ
µν
ρ − w
µρ

ρwν,

(1.16)

where 
 is the affine connection, and is added to the partial derivative so that the covariant
derivative of a tensor transforms as a tensor in all indices. This requires the affine connec-
tion to transform under infinitesimal GCTs as follows:

δ
µν
ρ = −Lε
µν

ρ − ∂µ∂νε
ρ, (1.17)

and therefore it is not a tensor. In principle it can be any field with the above transformation
properties and should be understood as structure added to our manifold. A d-dimensional
manifold equipped with an affine connection is sometimes called an affinely connected
space and is denoted by Ld .

The definition of a covariant derivative can be extended to tensors of arbitrary type in
the standard fashion. Its main properties are that it is a linear differential operator that
transforms type-(p, q) tensors into (p, q + 1) tensors (hence the name covariant) and obeys
the Leibniz rule and the Jacobi identity.

Let us now decompose the connection into two pieces symmetric and antisymmetric
under the exchange of the covariant indices:


µν
ρ = 
(µν)

ρ + 
[µν]
ρ. (1.18)

The antisymmetric part is called the torsion and it is a tensor (which the connection is not)

Tµν
ρ = −2
[µν]

ρ. (1.19)

As we have said, the Lie derivative transforms tensors into tensors in spite of the fact
that it is expressed in terms of partial derivatives. We can rewrite it in terms of covariant
derivatives and torsion terms to make evident the fact that the result is indeed a tensor:

Lεφ = ελ∇λφ,

Lεξ
µ = ελ∇λξ

µ − ∇νε
µξν + ελTλρ

µξρ,

Lεωµ = ελ∇λωµ + ∇µενων − ελωρTλµ
ρ,

(1.20)

etc. It should be stressed that this is just a rewriting of the Lie derivative, which is indepen-
dent of any connection. There are other connection-independent derivatives. Particularly
important is the exterior derivative defined on differential forms (completely antisymmet-
ric tensors) which we will study later in Section 1.7.

The additional structure of an affine connection allows us to define parallel transport. In
a generic spacetime there is no natural notion of parallelism for two vectors defined at two
different points. We need to transport one of them keeping it “parallel to itself” to the point
at which the other is defined. Then we can compare the two vectors at the same point. Using
the affine connection, we can define an infinitesimal parallel displacement of a covariant
vector ωµ in the direction of εµ by

δPε
ωµ = εν
νµ

ρωρ. (1.21)
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If ωµ(x) is a vector field, we can compare its value at a given point xµ + εµ with the
value obtained by parallel displacement from xµ. The difference is precisely given by the
covariant derivative in the direction εµ:

ωµ(x ′) − (ωµ + δPε
ωµ)(x) = εν∇νωµ. (1.22)

A vector field whose value at every point coincides with the value one would obtain by
parallel transport from neighboring points is a covariantly constant vector field, ∇νωµ = 0.

If the vector tangential to a curve4 vµ = dxµ/dξ ≡ ẋµ is parallel to itself along the curve
(as a straight line in flat spacetime) then

vν∇νv
µ = ẍµ + ẋρ ẋσ
ρσ

µ = 0, (1.23)

which is the autoparallel equation. This is the equation satisfied by an autoparallel curve,
which is the generalization of a straight line to a general affinely connected spacetime.
There is a second possible generalization based on the property of straight lines of being
the shortest possible curves joining two given points (geodesics), but it requires the notion
of length and we will have to wait until the introduction of metrics.

We can understand the meaning of torsion using parallel transport: let us consider two
vectors ε

µ

1 and ε
µ

2 at a given point of coordinates xµ. Let us now consider at the point of
coordinates xµ + ε

µ

1 the vector ε
′ µ
2 obtained by parallel-transporting ε

µ

2 in the direction ε
µ

1
and, at the point of coordinates xµ + ε

µ

2 , the vector ε
′ µ
1 obtained by parallel-transporting

ε
µ

1 in the direction ε
µ

2 . In flat spacetime, the vectors ε1, ε2, ε
′
1, and ε′

2 form an infinitesi-
mal parallelogram since xµ + ε

µ

1 + ε
′ µ
2 = xµ + ε

µ

2 + ε
′ µ
1 . In a general affinely connected

spacetime, the infinitesimal parallelogram does not close and(
xµ + ε

µ

1 + ε
′ µ
2

) − (
xµ + ε

µ

2 + ε
′ µ
1

) = ε
ρ

1 εσ
2 Tρσ

µ. (1.24)

Finite parallel transport along a curve γ depends on the curve, not only on the initial and
final points, so, if the curve is closed, the original and the parallel-transported vectors do
not coincide. The difference is measured by the (Riemann) curvature tensor Rµνρ

σ : let us
consider two vectors ε

µ

1 and ε
µ

2 at a given point xµ and let us parallel-transport the vector
ωµ from xµ to xµ + ε

µ

1 and then to xµ + ε
µ

1 + ε
µ

2 . The result is

ωµ + (
εν

1 + εν
2

)

νµ

ρωρ + ελ
1 εν

2

(
∂λ
νµ

ρ + 
λδ
ρ
νµ

δ
)
ωρ + O(ε3). (1.25)

If we go to the same point along the route xµ to xµ + ε
µ

2 and then to xµ + ε
µ

1 + ε
µ

2 we
obtain a different value and the difference between the parallel-transported vectors is

�ωµ = ελ
1 εν

2 Rλνµ
ρωρ, (1.26)

where
Rµνρ

σ (
) = 2∂[µ
ν]ρ
σ + 2
[µ|λσ
ν]ρ

λ. (1.27)

4 Here we use the mathematical concept of a curve: a map from the real line R (or an interval) given as
a function of a real parameter xµ(ξ), rather than the image of the real line in the spacetime. Thus, after
a reparametrization ξ ′(ξ), we obtain a different curve, although the image is the same and physically we
would say that we have the same curve.
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We can also define the curvature tensor (and the torsion tensor) through the Ricci identi-
ties for a scalar φ, a vector ξµ, and a 1-form ωµ:[∇µ, ∇ν

]
φ = Tµν

σ∇σφ,[∇µ, ∇ν

]
ξρ = Rµνσ

ρξσ + Tµν
σ∇σ ξρ,[∇µ, ∇ν

]
ωρ = −ωσ Rµνρ

σ + Tµν
σ∇σωρ,

(1.28)

or, for a general tensor,[∇α, ∇β

]
ξµ1···

ν1··· = −Rαβµ1
γ ξγ ···ν1··· − · · · + Rαβγ

ν1ξµ1···
γ ··· + · · · + Tαβ

γ ∇γ ξµ1···
ν1···.
(1.29)

and, using the antisymmetry of the commutators of covariant derivatives and the fact that
the covariant derivative satisfies the Jacobi identity, one can derive the following Bianchi
identities:

R(αβ)γ
δ = 0,

R[αβγ ]
δ + ∇[αTβγ ]

δ + T[αβ
ρTγ ]ρ

δ = 0,

∇[α Rβγ ]ρ
σ + T[αβ

δ Rγ ]δρ
σ = 0.

(1.30)

(The last two identities are derived from the Jacobi identity of covariant derivatives acting
on a scalar and a vector, respectively.)

In general, if we modify the affine connection by adding an arbitrary tensor5 τµν
ρ ,


µν
ρ → 
̃µν

ρ = 
µν
ρ + τµν

ρ, (1.31)

the curvature is modified as follows:

Rµνρ
σ (
̃) = Rµνρ

σ (
) − Tµν
λτλρ

σ + 2∇[µτν]ρ
σ + 2τ[µ|λσ τ|ν]ρ

λ. (1.32)

The Ricci tensor is defined by

Rµν = Rµρν
ρ = ∂µ
ρν

ρ − ∂ρ
µν
ρ + 
µλ

ρ
ρν
λ − 
ρλ

ρ
µν
λ. (1.33)

In general it is not symmetric, but, according to the second Bianchi identity,

R[µν] = 1
2

∗
∇ρ

∗
T µν

ρ, (1.34)

where we have used the modified divergence
∗
∇µ and the modified torsion tensor

∗
T µν

ρ ,

∗
∇µ = ∇µ − Tµρ

ρ,
∗

T µν
ρ = Tµν

ρ − 2T[µ|σ σ δ|ν]
ρ. (1.35)

If we modify the connection as in Eq. (1.31), the Ricci tensor is also modified:

Rµρ(
̃) = Rµρ − Tµν
λτλρ

ν + 2∇[µτν]ρ
ν + 2τ[µ|λντ|ν]ρ

λ. (1.36)

Another useful formula is the Lie derivative of the torsion tensor which, using the first
two Bianchi identities, can be rewritten in the form

Lξ Tµν
ρ = ∇µ

(
ξλTλν

ρ
) + ∇ν

(
ξλTµλ

ρ
) − ∇λ

(
ερTµν

λ
) − 3ελ R[λµν]

ρ + ερ∇σ Tµν
σ . (1.37)

5 Only if τ transforms as a tensor can 
̃ transform as a connection.
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1.3 Metric spaces

To go further we need to add structure to a manifold: a metric in tangent space, i.e. an inner
product for tangent-space vectors (symmetric, bilinear) associating a function g(ξ, ε) with
any pair of vectors (ξ, ε). This corresponds to a symmetric (0, 2)-type tensor g symmetric
in its two covariant components gµν = g(µν):

ξ · ε ≡ g(ξ, ε) = ξµενgµν. (1.38)

The norm squared of a vector is just the product of the vector with itself, ξ 2 = ξ · ξ . The
metric will be required to be non-singular, i.e.

g ≡ det(gµν) �= 0, (1.39)

and locally diagonalizable into ηµν = diag(+ − · · · −) for physical and conventional rea-
sons. Thus, in d dimensions

sign g = g

|g| = (−1)d−1. (1.40)

As usual, a metric can be used to establish a correspondence between a vector space and
its dual, i.e. between vectors and 1-forms: with each vector ξµ we associate a 1-form ωµ

whose action on any other vector ηµ is the product of ξ and η, ω(η) = ξµηνgµν , which
means the relation between components ων = ξµgµν . It is customary to denote this 1-form
by ξµ and the transformation from vector to 1-form is represented by lowering the index.

The inverse metric can be used as a metric in cotangent space and its components are
those of the inverse matrix and are denoted with upper indices. The operation of raising
indices can be similarly defined and the consistency of all these operations is guaranteed
because the dual of the dual is the original vector space. The extension to tensors of higher
ranks is straightforward.

The determinant of the metric can also be used to relate tensors and weight w tensor
densities, since it transforms as a density of weight w = 2 and the product of a tensor and
g

w
2 transforms as a density of weight w.
Furthermore, with a metric we can define the Ricci scalar R and the Einstein tensor Gµν ,

R = Rµ
µ, Gµν = Rµν − 1

2 gµν R, (1.41)

which need not be symmetric (just like the Ricci tensor).
So far we have two independent fields defined on our manifold: the metric and the affine

connection. An Ld spacetime equipped with a metric is sometimes denoted by (Ld, g). The
affine connection and the metric are related by the non-metricity tensor Qµνρ ,

Qµνρ ≡ −∇µgνρ. (1.42)

If we take the combination ∇µgρσ + ∇ρgσµ − ∇σ gµρ and expand it, we find that the con-
nection can be written as follows:


µν
ρ =

{
ρ

µ ν

}
+ Kµν

ρ + Lµν
ρ, (1.43)
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where {
ρ

µ ν

}
= 1

2 gρσ
{
∂µgνσ + ∂νgµσ − ∂σ gµν

}
(1.44)

are the Christoffel symbols, which are completely determined by the metric, and K is called
the contorsion tensor and is given in terms of the torsion tensor by

Kµν
ρ = 1

2 gρσ
{
Tµσν + Tνσµ − Tµνσ

}
,

K[µν]
ρ = − 1

2 Tµν
ρ, Kµνρ = −Kµρν.

(1.45)

Finally
Lµν

ρ = 1
2

{
Qµν

ρ + Qνµ
ρ − Qρ

µν

}
. (1.46)

Observe that the contorsion tensor depends on the metric whereas the torsion tensor does
not. Furthermore, observe that, since the contorsion and non-metricity tensors transform as
tensors, the piece responsible for the non-homogeneous term in the transformation of the
affine connection is the Christoffel symbol.

With a metric it is also possible to define the length of a curve γ, xµ(ξ), by the integral

s =
∫

γ
dξ

√
gµν(x)ẋµ ẋν. (1.47)

If we consider the above expression as a functional in the space of all curves joining two
given points, we can ask which of those curves minimizes it. The answer is given by the
Euler–Lagrange equations, which take the simple form

ẍµ + ẋρ ẋσ

{
µ

ρ σ

}
= 0, (1.48)

if we parametrize the curve by its proper length s. This is the geodesic equation, and is
different from the autoparallel equation (1.23) whenever there is torsion and non-metricity.

In the standard theory of gravity metric and affine connection are not independent vari-
ables since we want to describe only the degrees of freedom corresponding to a massless
spin-2 particle. To relate these two fields one imposes the metric postulate

Qµρσ = −∇µgρσ = 0, (1.49)

which makes the operations of raising and lowering of indices commute with the covariant
derivative. A connection satisfying the above condition is said to be metric-compatible
and a spacetime (Ld, g) with a metric-compatible connection is called a Riemann–Cartan
spacetime and denoted by Ud .

Still, the metric postulate leaves the torsion undetermined. If we want to have a connec-
tion completely determined by the metric, left as the only independent field, one has to
impose the vanishing of the torsion tensor. The torsionless, metric-compatible connection
is called Levi-Cività connection and its components are given by the Christoffel symbols.6

A Riemann–Cartan spacetime Ud with vanishing torsion is a Riemann spacetime Vd .

6 Sometimes (specially in the supergravity context) the Levi-Cività connection is written 
(g) to stress the
fact that it is a function of the metric in order to distinguish it from arbitrary connections that are independent
of the metric. We will do so only when necessary.
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Affinely Connected  Metric Spacetime

Riemann–Cartan Spacetime

U d

Riemann Spacetime Weitzenbock Spacetime

Minkowski Spacetime

Vd Ad

dM

Q = 0

R = 0T = 0

T = 0R = 0

(L  ,g)d

Fig. 1.1. Particular structures in an affinely connected spacetime equipped with a metric
(Ld, g).

There is another way of reducing the number of independent fields: by imposing
the vanishing of the curvature tensor. In this case, both the metric and the connec-
tion are completely determined by the Vielbein (to be defined latter). The connection
is called Weitzenböck connection [944, 945] and has torsion (also determined by the
Vielbein). A Riemann–Cartan spacetime with Weitzenböck connection is a Weitzenböck
spacetime Ad .

If both torsion and curvature vanish, the space has to be Minkowski spacetime Md since
the Minkowski metric gµν = ηµν is the only one that makes the full Riemann tensor vanish
in the absence of torsion.

The diagram in Figure 1.1 summarizes the different particular structures that we can have
on an affinely connected manifold equipped with a metric [522, 523].

In the rest of this section we are going to study the particular properties of some of these
spacetimes. The Weitzenböck spacetime will be studied after the introduction of Vielbeins
in Section 1.4.

1.3.1 Riemann–Cartan spacetime Ud

As has been said, this is an affinely connected metric spacetime with a metric-compatible
connection, so the non-metricity tensor vanishes, Qµνρ = 0. According to the general result,
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a metric-compatible connection of a Riemann–Cartan spacetime always has the form


µν
ρ =

{
ρ

µ ν

}
+ Kµν

ρ. (1.50)

Observe that the symmetric part of the contorsion tension does not vanish, but

K(µν) ρ = 1
2

(
Tµρν + Tνρµ

) �= 0. (1.51)

This means that the presence of torsion implies not only that the connection has a non-
vanishing antisymmetric part, but also that the symmetric part is not fully determined by
the metric but


(µν)
ρ =

{
ρ

µ ν

}
+ K(µν)

ρ �=
{

ρ

µ ν

}
. (1.52)

The curvature, Ricci, and Einstein tensors of a metric-compatible connection satisfy fur-
ther identities. On contracting the γ and σ indices in the third Bianchi identity Eqs. (1.30)
and using the metric postulate, we find the so-called contracted Bianchi identity

∇αGµ
α + 2Tµαβ Rβα − Tαβγ Rµ

γαβ = 0. (1.53)

Furthermore, by applying the Ricci identity to the metric and using the metric postulate,
one can prove a fourth Bianchi identity:

Rαβ(γ δ) = 0. (1.54)

If we modify the connection according to Eq. (1.31) and 
 is metric-compatible, the
Ricci scalar is

R(
̃) = R(
) − Tµν
ρτρ

µν + 2∇µτν
µν + τµ

µλτν
ν
λ + τν

µρτµρ
ν. (1.55)

If 
̃ is not a metric-compatible connection, then τ contains all the contributions of
the non-metricity tensor and the above formula allows us to work in the framework of a
Riemann–Cartan spacetime with non-metric-compatible connections.

If both 
̃ and 
 are metric-compatible connections and 
̃ has torsion but 
 = 
(g), then
τ = K̃ , the contorsion tensor of 
̃, and the above formula takes a simpler form:

R(
̃) = R[
(g)] + 2∇µ K̃ν
µν + (K̃µ

µλ)2 + K̃ν
µρ K̃µρ

ν. (1.56)

Now, this formula allows us to work with torsion in a Riemann spacetime. Particularly
interesting is the case in which the contorsion K̃µνρ is a completely antisymmetric tensor
(proportional to the Kalb–Ramond field strength Hµνρ , for instance). Then we have, if

K̃µνρ = 1√
12

Hµνρ, (1.57)

∫
dd x

√
|g| R(
̃) =

∫
dd x

√
|g|

{
R[
(g)] + 1

2 · 3!
Hµνρ Hµνρ

}
. (1.58)
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1.3.2 Riemann spacetime Vd

It is defined by the conditions Q = T = 0 which determine the connection to be the Levi-
Cività connection 
(g) whose components in a coordinate basis are given by the Christoffel
symbols. In a Riemann spacetime one can construct infinitesimal parallelograms and au-
toparallel curves are also geodesics (as in flat spacetime). There are also additional interest-
ing properties. To start with, we can write the transformation of tensors under infinitesimal
GCTs (Lie derivatives) in terms of covariant derivatives alone (all torsion terms vanish). In
particular, for the metric and r -forms we can write

δξ gµν = −2∇(µξν),

δξ Bµ1···µr = −ξλ∇λ Bµ1···µr − r(∇[µ1|ξ
λ)Bλ|µ2···µr ].

(1.59)

Furthermore, we have the usual identity


ρµ
ρ = ∂µ ln

(√
|g|

)
, (1.60)

which allows us to write the Laplacian of a scalar function f in this way:

∇2 f = 1√|g|∂µ

(√
|g| ∂µ f

)
, (1.61)

and the divergence of a completely antisymmetric tensor (k-form) in this way:7

∇µ1 Fµ1µ2···µk = 1√|g|∂µ1

(√
|g| Fµ1µ2···µk

)
. (1.62)

The Bianchi identities take the form

R(αβ)γ
δ = 0, R[αβγ ]

δ = 0, ∇[α Rβγ ]ρ
σ = 0, Rαβ(γ δ) = 0. (1.63)

The first and fourth identities imply together

Rαβγ δ = Rγ δαβ, (1.64)

which in turn implies that the Ricci and Einstein tensors are symmetric. The contracted
Bianchi identity says now that the Einstein tensor is divergence-free:

∇µGµν = 0, (1.65)

which is a crucial identity in the development of general relativity.
The number of independent components of the curvature in d dimensions after taking

into account all these Bianchi identities is (1/12) d2(d2 − 1).
The four-dimensional curvature tensor can be split into different pieces which transform

irreducibly under the Lorentz group: a scalar piece D(0, 0), which is nothing but the Ricci

7 Observe that this implies that the second term on the r.h.s. of Eq. (1.56) times
√|g| is a total derivative.
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scalar R, a two-index symmetric, traceless piece Rµν − 1
4 gµν R (corresponding to the rep-

resentation D(1, 1)), and a four-index tensor with the same symmetries as the Riemann
tensor but traceless: the Weyl tensor Cµνρ

σ with Cµσρ
σ = 0:

Rµν
ρσ = Cµν

ρσ + 2
(
R[µ

[ρ − 1
4 Rg[µ

[ρ
)
gν]

σ ] + 1
6 Rg[µ

ρgν]
σ . (1.66)

The Weyl tensor can be decomposed into its self-dual and anti-self-dual parts (with re-
spect to the last two indices). These two complex tensors transform in the D(2, 0) and
D(0, 2) representations, respectively.

In d dimensions the Weyl tensor is defined by

Cµν
ρσ = Rµν

ρσ − 4

d − 2
R[µ

[ρgν]
σ ] + 2

(d − 1)(d − 2)
R g[µ

[ρgν]
σ ]. (1.67)

The main property of the Weyl tensor Cµνρ
σ with the indices in these positions is that

it is left invariant by Weyl rescalings of the metric (see Appendix E). Furthermore, just
as the Riemann curvature vanishes only for Minkowski spacetime, the Weyl tensor van-
ishes only for conformally flat (Minkowski) spacetimes, i.e. spacetimes that are related to
Minkowski’s by a given conformal transformation.

A final property of the Levi-Cività connection that is worth mentioning is the form of its
variation under an arbitrary variation of the metric:

δ
µν
ρ(g) = 1

2 gρσ
{∇µδgνσ + ∇νδgµσ − ∇σ δgµν

}
. (1.68)

Since δgµν is a tensor, δ
 is a tensor even though 
 is not.

1.4 Tangent space

So far we have considered, for a given coordinate system, only one basis in tangent space:
the coordinate basis. We are now going to consider an arbitrary basis in tangent space.
Such a basis is defined by a set of d contravariant vectors labeled by a tangent-space in-
dex a {ea = ea

µ∂µ} and is also referred to as a frame or, generically, Vielbein basis.8 The
coordinate basis is now a particular case in which ea

µ = δa
µ. Now we can express any

vector in this basis ξ = ξ aea and its components ξ a will be related to the coordinate basis
components by

ξµ = ξ aea
µ. (1.69)

We can immediately define the dual basis of 1-forms {ea = ea
µdxµ} defined by

〈ea|eb〉 = δa
b, (1.70)

which implies that the matrix of components ea
µ of the 1-forms in the coordinate basis is

the inverse, transposed, of that of the vectors:

ea
µeb

µ = δa
b, ⇒ ea

µea
ν = δµ

ν. (1.71)

8 Einbein for d = 1, Zweibein for d = 2, Dreibein for d = 3, Vierbein for d = 4, etc. In four dimensions it is
also called a tetrad.
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We can now relate frame and world indices of any tensor using these two matrices. In
particular, we can use the frame components gab of the metric,

gab = ea
µeb

νgµν, (1.72)

that can also be interpreted as the matrix of inner products of the Vielbein basis g(ea, eb) =
gab. An orthonormal Vielbein basis leads to gab = ηab. Frames are usually chosen in such a
way as to obtain a particular gab and orthonormal frames will be particularly important in
what follows.

It is easy to see that gab and its inverse gab can be consistently used to raise and lower
frame indices. In particular,

ea
µ = gµνeb

νgab, gµν = ea
µeb

νgab. (1.73)

A frame is invariant under GCTs (only the components in the coordinate basis change)
and, thus, frame components of any tensor are also invariant. However, we can make a
change of basis. Any two Vielbein bases are related by a GL(d, R) transformation �a

b in
tangent space at a given point of the manifold. This transformation can in fact be different
at each point and thus we have to consider local frame transformations �a

b(x). We write
their action on vectors and forms as follows:

e′
a = eb

(
�−1

)b
a, e′ a = �a

beb. (1.74)

The Ricci rotation coefficients (or anholonomy coefficients) �ab
c are the Lie brackets

[ea, eb] = −2�ab
cec, �ab

c = ea
µeb

ν∂[µec
ν]. (1.75)

A non-holonomic frame is one with non-vanishing �s. Observe that, given a basis of
vectors {ea}, we could try to find a new set of coordinates ya(xµ) such that

ea yb = ea
µ∂µyb = δa

b. (1.76)

The integrability condition for the system of partial differential equations [ec, ea]yb = 0
is precisely the vanishing of the anholonomy coefficients �ab

c. A non-holonomic basis
of vectors {ea} is one for which these coefficients vanish and then we can trivialize them
(ea

µ = δa
µ) by a change of coordinates.

Just as we defined a covariant derivative transforming world tensors into world tensors
we are now going to define a derivative that transforms tangent-space tensors into tangent-
space tensors transforming well under local GL(d, R) transformations associated with a
connection ω. Its action on scalars, vectors, and forms is9

Daφ = ∂aφ, (= ea
µ∂µφ),

Daξ
b = ∂aξ

b + ωac
bξ c, (= ea

µDµξ b),

Daεb = ∂aεb − εc ωab
c, (= ea

µDµεb).

(1.77)

9 Of course, the formalism we are developing is just that of a GL(d, R) gauge theory and our notation is
basically identical to that of Appendix A. Here we are dealing with vector representations of GL(d, R). The
d2 generators of its Lie algebra can be labeled by a pair of vector indices ab and they are given, for instance,
by (Tab)c

d = −ηadηb
c. Thus Aµ

I 
v(TI ) = ωµ
ab(Tab)c

d = −ωµ d
c. The subgroup SO(1, d − 1, R) will

be treated in more detail.
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Local GL(d, R) covariance implies the inhomogeneous transformation law for the con-
nection:

ω′
ab

c =
[
�c

dωe f
d
(
�−1

) f
b − (

�−1
)c

d∂e�
d

b

]
(�−1)e

a. (1.78)

The curvature of this connection can be defined through the Ricci identities in the stan-
dard fashion (observe that there are no torsion terms here):[

Dµ,Dν

]
φ = 0,[

Dµ,Dν

]
ξ a = Rµνb

aξ b,[
Dµ,Dν

]
εa = −εb Rµνa

b,

(1.79)

and then the curvature is given by10

Rµνa
b = 2∂[µ ων]a

b − 2ω[µ|ac ω|ν]c
b. (1.81)

At this point we have introduced a new connection ω that is independent of the metric.
In the previous section we managed to relate the connection 
 to the metric via the met-
ric postulate. Here we are going to generalize the metric postulate first to relate the two
connections (the first Vielbein postulate) and then to relate them to the metric (the second
Vielbein postulate). Before we enunciate these postulates we introduce the total covariant
derivative, covariant with respect to all the indices of the object it acts on. We denote it by
∇ again, and, for instance, acting on Vielbeins it is

∇µea
ν = ∂µea

ν + 
µρ
νea

ρ − eb
νωµa

b. (1.82)

We can motivate the first Vielbein postulate as follows: we would like to be able to
convert tangent into world indices and vice-versa inside the total covariant derivative, so
ea

ν∇µξν = Dµξ a and D is just the projection of ∇ onto the Vielbein basis. To have this
property we impose the first Vielbein postulate,

∇µea
ν = 0. (1.83)

It is worth stressing that this does not imply the covariant constancy of the metric ∇µgνρ =
0. The above postulate implies the following relation between the connections:

ωµa
b = 
µa

b − ea
ν∂b

µeν. (1.84)

Furthermore, the curvatures of the two connections are now related by

Rµνρ
σ (
) = ea

ρeb
σ Rµνa

b(ω). (1.85)

The first Vielbein postulate also gives an important relation between the torsion and the
Vielbein: on taking the antisymmetric part of ∇µea

ν = 0, we obtain

2D[µea
ν] = 2

(
∂[µea

ν] − ω[µ
a
ν]
) = −Tµν

a. (1.86)

10 Observe that, with all Latin indices, Rabc
d = ea

µeb
ν Rµνc

d and, therefore,

Rabc
d = 2∂[a ωb]c

d − 2ω[a|ce ω|b]e
d + 2�ab

eωec
d . (1.80)
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The significance of the torsion in this formalism, from the point of view of the gauge
theory of GL(d, R), is unclear. We can provide an interpretation in the framework of the
gauge theory of the affine group IGL(d, R) but we will do it in the more restricted context
of the Lorentz and Poincaré groups in Section 4.5.

The first Vielbein postulate has allowed us to recover the structure of affinely connected
spacetime (Ld, g) with only one (independent) connection, generalized to allow the use
of an arbitrary basis in tangent space. Furthermore, we can recover the different particular
structures that we defined in the previous section, also generalized to allow the use of
arbitrary basis in tangent space. First, if 
 is a completely general connection, it is given
by Eq. (1.43) and then ω (which is related to 
 by the first Vielbein postulate) is given by

ωab
c = ωab

c(e) + Kab
c + Lab

c, (1.87)

where ω(e) is the (Cartan or even Levi-Cività) connection related to the Levi-Cività con-
nection 
(g) by Eq. (1.84). It is completely determined by the Vielbeins:

ωab
c(e) =

{
c

a b

}
+ {−�ab

c + �b
c

a − �c
ab

}
, (1.88)

where {
c

a b

}
= 1

2 gcd{∂agbd + ∂bgad − ∂d gab}. (1.89)

Kab
c is nothing but the contorsion tensor expressed in a tangent-space basis, i.e. Kab

c =
ea

µeb
νec

ρ Kµν
ρ and, similarly, Lab

c = ea
µeb

νec
ρ Lµν

ρ .
Observe that

ωa(bc) = 1
2(Qabc + ∂agbc). (1.90)

We can impose the metric-compatibility condition Eq. (1.49), which in this context is
known as the second Vielbein postulate, and we have a Riemann–Cartan spacetime Ud .
The result is that 
 is again given by Eqs. (1.50), (1.44), and (1.45) and ω (which is related
to 
 by the first Vielbein postulate) is given by

ωab
c = ωab

c(e) + Kab
c. (1.91)

If we now impose the vanishing of torsion, we obtain the Levi-Cività and Cartan con-
nections 
(g) and ω(e) and we recover a Riemann spacetime Vd .

The two most important cases to which we can apply this general formalism are the
following.

1. The case in which we use a coordinate basis ea
µ = δa

µ, so gab = gµν , � = 0, and the
connections 
 and ω are identical.

2. The case in which we use an orthonormal basis gab = ηab in which

{
c

a b

}
= 0

and

ωabc = ωabc(e) + Kabc + Labc, ωabc(e) = −�abc + �bca − �cab. (1.92)
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In the second case we would like to restrict ourselves to those changes of frame that pre-
serve the form of the metric in tangent-space indices (here usually referred to as flat indices
because they are raised and lowered with the flat space metric). By definition, these are
transformations of the d-dimensional Lorentz group SO(1, d − 1) whose gauge theory we
are now led to consider. This gauge theory is developed in Section 2.3 of Appendix A and
the spinorial representations of the Lorentz group are studied in Appendix B. We are simply
going to rewrite here the main formulae we have obtained, adapted to the Lorentz subgroup
of GL(d, R).

The main justification for making this step is that the Lorentz group admits spinorial
representations, which are necessary in order to describe fermions, whereas the diffeomor-
phism group of a manifold does not. This is the only known method by which to describe
spinors in curved spacetime in arbitrary coordinates and, thus, the only method known to
couple fermions to gravity. This formalism was pioneered by Weyl [954].

First of all, the generators MI of the Lorentz subgroup of GL(d, R) are just the antisym-
metric combinations of those of GL(d, R) and can be labeled by two antisymmetric vector
indices, i.e. Mab. In this notation every generator appears twice and factors of 1

2 have to
be included in the right places. However, in general, the connection ωµ

ab is not antisym-
metric in the “gauge” indices ab unless it is also metric-compatible (Dηab = 0), according
to Eq. (1.90). We are going to consider only metric-compatible connections that are fully
antisymmetric in the gauge indices and we will call them spin connections.11

Using the explicit form of the infinitesimal Lorentz generators in the vector represen-
tation 
v(Mbc)

a
d given in Eq. (A.60) and in the spinorial representation 
s(Mab)

α
β (we

use temporarily the first few Greek letters α, β, . . . as spinorial indices) given in Eq. (B.3),
we find the following expressions for the (total) covariant derivatives of contravariant and
covariant vectors and spinors:

∇µξ a = ∂µξ a − 1
2ωµ

bc
v(Mbc)
a
dξ

d = ∂µξ a + ωµb
aξ b,

∇µεa = ∂µεa + εd
1
2ωµ

bc
v(Mbc)
d
a = ∂µεa − εb ωµa

b,

∇µψα = ∂µψα − 1
2ωµ

ab
s(Mab)
α

βψβ = ∂µψα − 1
4ωµ

ab(
ab)
α

βψβ,

∇µϕα = ∂µϕα + ϕβ
1
2ωµ

ab
s(Mab)
β

α = ∂µϕα + ϕβ
1
4ωµ

ab(
ab)
β

α.

(1.93)

These definitions, once we impose the Vielbein postulates, are consistent with the raising
and lowering of vector indices with the Minkowski metric and with Dirac conjugation of
the spinors. With the postulates, the spin connection is given by Eqs. (1.92).

The Ricci identities can now be written for the total covariant derivative in this form:[∇µ, ∇ν

]
φ = Tµν

ρ∇ρφ,[∇µ, ∇ν

]
ξ a = Rµνb

a(ω)ξ b + Tµν
ρ∇ρξ

a,[∇µ, ∇ν

]
εa = −εb Rµνa

b(ω) + Tµν
ρ∇ρεa,[∇µ, ∇ν

]
ψ = − 1

4 Rµν
ab(ω)
abψ + Tµν

ρ∇ρψ,[∇µ, ∇ν

]
ϕ = + 1

4ϕRµν
ab(ω)
ab + Tµν

ρ∇ρϕ.

(1.94)

11 If we wanted to have a non-metric-compatible spin connection, we would have to modify the first Vielbein
postulate.
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For more general tensors one has to add a curvature (ω) term for each flat index and a cur-
vature (
) term for each world index. The curvatures have the same form as in Eqs. (1.27)
and (1.81) but now Rµν

ab is antisymmetric in ab.
The following expression is sometimes used:

Rab = −∂aωc
c

b − ∂cωab
c + ωcdaω

dc
b + ωabdωc

cd . (1.95)

The Vielbein formalism allows us to study the Weitzenböck spacetime defined on
page 11.

1.4.1 Weitzenböck spacetime Ad

This spacetime is defined by a metric-compatible connection that we denote by Wµν
ρ and

call the Weitzenböck connection [944, 945] whose Riemann curvature is identically zero,
Rµνρ

σ (W ) = 0. Trying to solve this equation directly for W �= 0 is a very difficult task.
However, we can use the Vielbein formalism to find a solution. Let us denote by Ws µ

ab the
tangent-space connection associated with W via the first Vielbein postulate

∇µea
ν = ∂µea

ν − Wµν
a + Ws µν

a = 0. (1.96)

The curvature of Ws is obviously zero on account of Eq. (1.85). Now, however, we can
use the trivial solution to the equation Rµν

ab(Ws) = 0, namely Ws = 0, because, according
to the above relation, Ws = 0 does not imply W = 0 but

Wµν
ρ = ea

ρ∂µea
ν. (1.97)

This is the Weitzenböck connection whose curvature vanishes identically. It cannot be
rewritten in terms of the metric: it is necessary to use the Vielbein formalism. Observe
that, using this connection, we can write the relation between any two connections 
 and
ω satisfying the first Vielbein postulate in the form


µν
ρ = Wµν

ρ + ωµν
ρ. (1.98)

ωµν
ρ is a tensor, but 
µν

ρ is not (it is an affine connection), and responsible for this is
the Weitzenböck connection Wµν

ρ . We can also write

ωµ
ab = 
µ

ab − Wµ
ab, Wµ

ab = eaν∂µeb
ν. (1.99)

Now 
µ
ab is a GL(d, R) tensor in the upper two indices whereas ωµ

ab is not (because
it is a GL(d, R) connection). Again, the Weitzenböck connection Wµ

ab is responsible for
this.

Even though we have to search explicitly for a metric-compatible connection to find W ,
it is easy to check that it is indeed metric-compatible. Then, it can be decomposed into the
sum of the Levi-Cività connection and the contorsion tensor. The torsion tensor is

Tµν
ρ = −2�µν

ρ, (1.100)

and, therefore, the contorsion tensor is given by

Kµνρ(W ) = �µνρ − �νρµ + �ρµν = −ωµνρ(e), (1.101)
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where ω(e) is, as usual, the Cartan connection (which is associated via the first Vielbein
postulate with the Levi-Cività connection 
(g)).

Now, if we use Eqs. (1.31) and (1.32) for 
̃ = W, 
 = 
(g), and τ = K , we find an
expression for the Riemann curvature tensor of the Levi-Cività connection in terms of the
contorsion tensor of the Weitzenböck connection:

Rµνρ
σ [
(g)] = −2∇[µKν]ρ

σ − 2K[µ|λσ K|ν]ρ
λ. (1.102)

On contracting indices, and eliminating a total derivative, we find that∫
dd x

√
|g| R(g) = −

∫
dd x

√
|g| {

Kµ
µλKµ

µ
λ + Kν

µρ Kµρ
ν
}
, (1.103)

which can be expressed entirely in terms of the anholonomy coefficients �µνρ , providing
an alternative form of the Einstein–Hilbert action. This is, in fact, an alternative way of
deriving the Palatini identity Eq. (D.4).

It is worth stressing here that the building blocks of the Riemann curvature tensor of the
Levi-Cività connection in the above expression (the anholonomy coefficients/torsion and
contorsion) are tensors, whereas in the standard expression for the curvature the building
blocks are the Christoffel symbols, which are not tensors.

The main property of the Weitzenböck spacetime (the vanishing of the curvature) im-
plies that parallel transport is path-independent and it is possible to define parallelism of
vectors at different spacetime points:12 two vectors vµ(x1), w

µ(x2) are parallel if their com-
ponents in the Vielbein basis {ea

µ} are proportional. This is a consistent definition because
the components in the Vielbein basis are invariant under the parallel transport defined by
the W connection associated with that Vielbein basis. Indeed, the vector vµ(x), parallel-
transported to xµ + εµ is

vµ(x + ε) = vµ(x) − ενvρ(x)Wνρ
µ(x), (1.104)

and its tangent-space components can be found with the inverse Vielbein basis at xµ + εµ:

ea
µ(x + ε)vµ(x + ε) = [ea

µ(x) + εν∂νea
µ(x)][vµ(x) − ενvρ(x)Wνρ

µ(x)]

= ea
µ(x)vµ(x). (1.105)

Also, it can be shown that the vanishing of the curvature is equivalent to the existence of
d vector fields (the Vielbeins) covariantly constant with respect to the W connection,

W
∇µ ea

ν = ∂µea
ν − Wµν

ρea
ρ = 0. (1.106)

1.5 Killing vectors

If, given a metric gµν , there exists a vector field kµ such that the Lie derivative of gµν with
respect to it vanishes,

Lk gµν = −2∇(µkν) = 0, (1.107)

12 Also known as teleparallelism or absolute parallelism.
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we say that gµν admits the Killing vector kµ. The above equation is the Killing equation. It
means that the metric does not change along the integral curves of kµ and it is also said that
the metric possesses an isometry in the direction kµ. If the metric does not change along
the integral curves of a Killing vector, and we use as a coordinate the parameter of those
integral curves (adapted coordinates), then the metric does not depend on that coordinate.

The Ricci identity implies the following consistency condition:

∇α∇βkν = −Rλ
αβνkλ, ⇒ ∇2kµ = Rµ

νkν. (1.108)

A weaker but also interesting property that a metric can have is a conformal isometry.
This happens when there is a vector field cµ along whose integral curves the metric changes
only by a conformal factor,

Lcgµν = −2∇(µcν) = 2λgµν. (1.109)

On taking the trace of the above equation, we find in d dimensions

λ = − 1

d
∇µcµ, ⇒ ∇(µcν) − 1

d
gµν∇ρcρ = 0, (1.110)

called the conformal Killing equation. cµ is then known as a conformal Killing vector.

1.6 Duality operations

The antisymmetric Levi-Cività tensor is defined in d dimensions in tangent space by

ε01···(d−1) = +1, ⇒ ε01···(d−1) = (−1)d−1, (1.111)

and in curved indices by

εµ1···µd =
√

|g| eµ1
a1 · · · eµd

ad ε
a1···ad , (1.112)

so, with upper indices, it is independent of the metric and, in curved indices, which we we
underline to distinguish them from the tangent-space ones,

ε0···(d−1) = +1, ε0···(d−1) = g = (−1)d−1|g|. (1.113)

The contraction of n indices of two ε symbols gives

εµ1···µnρ1···ρ(d−n)εµ1···µnσ1···σ(d−n)
= n!(d − n)! g gρ1···ρ(d−n)

σ1···σ(d−n)
, (1.114)

where

gρ1···ρ(d−n)
σ1···σ(d−n)

= g[ρ1
σ1 · · · g[ρ(d−n)]

σ(d−n)

= 1

(d − n)!

∣∣∣∣∣∣∣
gρ1

σ1 · · · gρ1
σ(d−n)

...
...

...

gρ(d−n)

σ1 · · · gρ(d−n)

σ(d−n)

∣∣∣∣∣∣∣
(1.115)
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We define the dual (or the Hodge dual) of a completely antisymmetric tensor of rank k
(a differential form of rank k or k-form13) F(k) as the completely antisymmetric tensor of
rank d − k which we denote by �F(d−k) and whose components are given by

�F(k)
µ1···µ(d−k) = 1

k!
√|g|ε

µ1···µ(d−k)µ(d−k+1)···µd F(k)µ(d−k+1)···µd . (1.116)

The dual of the dual is the original tensor up to a sign that depends both on the dimension
and on the rank of the tensor,

��F(k) = (−1)(d−1)+k(d−k)F(k). (1.117)

An important case is when the spacetime dimension is even and k = d/2, so � (the Hodge
star) is an operator on the space of rank d/2 tensors. Then, we have

��F(d/2) = +F(d/2), d = 4n + 2,

��F(d/2) = −F(d/2), d = 4n,
(1.118)

for n an integer. In the former case � has eigenvalues +1 and − 1 and in the latter +i and −
i , and any rank d/2 tensor can be decomposed into the sum of its self-dual and anti-self-
dual parts F+ and F−. For d = 4n + 2

F±
(d/2) = 1

2

(
F(d/2) ± �F(d/2)

)
,

�F±
(d/2) = ±F±

(d/2),
(1.119)

and, for d = 4n,
F±

(d/2) = 1
2

(
F(d/2) ∓ i �F(d/2)

)
,

�F±
(d/2) = ±i F±

(d/2).
(1.120)

Real (as opposed to complex) (anti-)self-duality �F = (−)+F is therefore consistent
only in d = 4n + 2 dimensions.

Another important case is when k = p + 2 and F(k) is the field strength of the potential
A(p+1), so F(p+2)µ1···µ(p+2)

= (p + 2)∂[µ1 A(p+1)µ2···µ(p+2)
. The kinetic term of its action is

normalized as follows:

S(p)[A(p+1)] =
∫

dd x
√

|g|
[

(−1)p+1

2 · (p + 2)!
F2

(p+2)

]
, (1.121)

and its energy–momentum tensor is given by

T
A(p+1)

µν = −2√|g|
δS(p)

δgµν
= (−1)p

(p + 1)!

[
F(p+2)µ

ρ1···ρ(p+1) F(p+2)νρ1···ρ(p+1)
− 1

2(p + 2)
gµν F2

(p+2)

]
.

(1.122)

The rank of its dual tensor is p̃ + 2, where p̃ = d − p − 4, and we are interested in re-
writing the action and energy–momentum tensor in terms of the dual. We immediately find

Sp[A(p+1)] = −
∫

dd x
√

|g|
[

(−1) p̃+1

2 · ( p̃ + 2)!
F2

( p̃+2)

]
= −Sp̃[ Ã( p̃+1)], (1.123)

13 We will introduce the notation specific for differential forms in the next section.
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which would be the action of a dual vector field Ã( p̃+1) such that

�Fµ1···µ( p̃+2)
= (d̃ + 2)∂[µ1 Ã( p̃+1) µ2···µ( p̃+2)].

Using

�F( p̃+2)µ
ρ1···ρ( p̃+1) �F( p̃+2)νρ1···ρ( p̃+1)

= (−1)d−1( p̃ + 1)!

(p + 2)!
gµν F2

(p+2) + (−1)d( p̃ + 1)!

(p + 1)!
F(p+2)µ

σ1···σ(p+1) F(p+2)νσ1···σ(p+1)
,

(1.124)
we obtain

T
A(p+1)

µν = T
Ã( p̃+1)

µν . (1.125)

A useful expression for the energy–momentum tensor is

T
A(p+1)

µν = 1

2

{
(−1)p

(p + 1)!
F(p+2)µ

ρ1···ρ(p+1) F(p+2)νρ1···ρ(p+1)

+ (−1) p̃

( p̃ + 1)!
∗F( p̃+2)µ

ρ1···ρ( p̃+1) �F( p̃+2)νρ1···ρ( p̃+1)

}
. (1.126)

1.7 Differential forms and integration

As we have said before, a differential form of rank k, or k-form for short, is nothing but a
totally antisymmetric tensor field ωµ1···µk = ω[µ1···µk ]. We write all k-forms in this way:

ω = 1

k!
ωµ1···µk dxµ1 ∧ · · · ∧ dxµk , (1.127)

so the action of the exterior derivative d on the components is defined by

(dω)µ1···µk+1 = (k + 1)∂[µ1ωµ2···µk+1] = (k + 1)(∂ω)µ1···µk+1 . (1.128)

The Hodge dual is defined by14

(�ω)µ1···µn−k = 1

k!
√|g|εµ1···µn−kν1···νk ω

ν1···νk , (1.129)

and, as before,
(�)2 = (−1)k(d−k) sign g = (−1)k(d−k)+d−1. (1.130)

The adjoint of d with respect to the inner product of k-forms,

(αk |βk) =
∫
M

αk ∧ �βk, (1.131)

is defined by

(αk |dβk−1) = (δαk |βk−1), ⇒ δ = (−1)d(k−1)−1 sign g �d � (1.132)

14 Observe that we need a metric to do it and that the dual depends explicitly on that metric.
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Since (
�d �ω

)
ρ1···ρk−1

= (−1)k(d−k+1)−1 sign g ∇µωµ
ρ1···ρk−1

, (1.133)

we find that the relation between δ and the divergence is

(δω)ρ1···ρk−1 = (−1)d∇µωµ
ρ1···ρk−1 . (1.134)

Only k-forms can be integrated on k-dimensional manifolds. If ω is a (d − 1)-form de-
fined on a d-dimensional manifold M with boundary ∂M, then Stokes’ theorem states that∫

M
dω =

∫
∂M

ω. (1.135)

It is convenient to define volume forms for a manifold and its lower-dimensional sub-
manifolds. Their contraction with other tensors results in differential forms that can be
integrated. Thus, we define in a d-dimensional manifold, for (d − n)-dimensional subman-
ifolds Md−n , 0 ≤ n ≤ d, the volume forms

dd−n�µ1···µn ≡ dxν1 · · · dxνd−n
1

(d − n)!
√|g|εν1···νd−nµ1···µn . (1.136)

Observe that the standard invariant-volume form for the total manifold Md is just dd�

up to a sign (we now use the signature (+ − · · · −)):

dd� = (−1)d−1dx1 ∧ · · · ∧ dxd
√

|g| ≡ (−1)d−1dd x
√

|g|. (1.137)

Now, if we have a rank-n completely antisymmetric contravariant tensor T µ1···µn and
contract it with the volume element dd−n�µ1···µn , we have constructed a (d − n)-form that
can be integrated over a (d − n)-dimensional submanifold. Up to numerical factors, that
form is the Hodge dual of the n-form that one gets by lowering the indices of Tµ1···µn :

1

n!
dd−n�µ1···µn T µ1···µn = �T . (1.138)

We can also take the divergence of the tensor and contract it with the volume element
dd−n−1�µ1···µn−1 . The result is

(−1)d−n

(n − 1)!
dd−n+1�µ1···µn−1∇ρT ρµ1···µn−1 = d �T . (1.139)

Stokes’ theorem for the exterior derivative of form �T integrated over a (d − n + 1)-
dimensional submanifold Md−n+1 with (d − n)-dimensional boundary ∂Md−n+1 is now∫

Md−n+1
dd−n+1�µ1···µn−1∇ρT ρµ1···µn−1 = (−1)d−n

n

∫
∂Md−n+1

dd−n�µ1···µn T µ1···µn . (1.140)

The n = 1 case is the Gauss–Ostrogradski theorem,∫
Md

dd x
√

|g| ∇µvµ = (−1)d−1
∫

∂M
dd−1�µvµ. (1.141)
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The Vielbein and spin-connection 1-forms and the torsion 2-form are

ea = eµ
adxµ, ωab = ωµ

abdxµ, T a = 1
2 Tµν

adxµ ∧ dxν, (1.142)

These 1-forms are related by the structure equation

dea + ωb
a ∧ eb + T a = 0, (1.143)

which (in the absence of torsion) gives a convenient way of finding ω. The curvature 2-form
and the Ricci-tensor 1-form are given by

Rab = 1
2 Rab

µνdxµ ∧ dxν = dωab + ωc
a ∧ ωcb,

Ra = Rµ
adxµ = Rµλ

abeλ
bdxµ.

(1.144)

1.8 Extrinsic geometry

Let us consider a hypersurface � embedded in a d-dimensional spacetime with metric gµν

and with normal unit vector nµ:

nµnµ = ε,

{
ε = +1, � spacelike,

ε = −1, � timelike.
(1.145)

The metric induced on � by gµν is defined by

hµν = gµν − εnµnν. (1.146)

hµν has (d − 1)-dimensional character but it is written in d-dimensional form and it is
evidently singular and cannot be inverted. Its indices are raised and lowered with g. Observe
that hµνnν = 0 and thus h can be used to project tensors onto the hypersurface �.

A way to measure how � is curved inside the spacetime would be to measure the varia-
tion of the normal unit vector along it. Mathematically this would be expressed by

Kµν ≡ hµ
αhν

β∇(αnβ), (1.147)

where Kµν is the extrinsic curvature or second fundamental form.
We can consider a field of unit vectors nµ defined in the whole spacetime determining a

family of hypersurfaces. Then we can calculate the Lie derivative of the induced metrics in
the direction of the normal unit vectors. We find that this is twice the extrinsic curvature,

Kµν = 1
2Lnhµν. (1.148)

The trace of the extrinsic curvature is denoted by K, and given by

K = hµνKµν = hµν∇µnν. (1.149)



2
Noether’s theorems

In the next chapter, we are going to introduce general relativity as the result of the con-
struction of a self-consistent special-relativistic field theory (SRFT) of gravity. In this con-
struction, gauge symmetry and the energy–momentum tensor will play a key role. In this
chapter we want to review Noether’s theorems, the relation between global symmetries and
conserved charges, and the relation between local symmetries and gauge identities. We will
define the canonical energy–momentum tensor as the conserved Noether current associated
with the invariance under constant translations and we will review several ways of improv-
ing it that are associated with invariance under other spacetime transformations (Lorentz
rotations and rescalings). Finally, we will relate these improved energy–momentum tensors
to the energy–momentum tensor used in general relativity.

2.1 Equations of motion

Let us consider an action S[ϕ] for a generic field ϕ, which may have (spacetime or inter-
nal) indices that we do not exhibit for the sake of simplicity. Allowing for Lagrangians
containing higher derivatives of ϕ, we write the action as follows:

S[ϕ] =
∫

�

dd x L(ϕ, ∂ϕ, ∂2ϕ, . . .). (2.1)

In most cases, L is a scalar density under the relevant spacetime transformations (Poincaré
transformations in SRFTs and general coordinate transformations in general-covariant the-
ories). It is also possible to use a Lagrangian that is a scalar density up to a total derivative,1

and thus we will make absolutely no assumptions about the transformation properties of
the Lagrangian L.

Under arbitrary infinitesimal variations of the field variable δϕ

δS =
∫

�

dd x δL =
∫

�

dd x

{
∂L
∂ϕ

δϕ + ∂L
∂∂µϕ

δ∂µϕ + ∂L
∂∂µ∂νϕ

δ∂µ∂νϕ + · · ·
}
. (2.2)

1 For instance, in general relativity one may want to eliminate the piece of the Lagrangian with second deriva-
tives, which is a total derivative, but then the rest is not a scalar density.

26
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The variation of the coordinates is zero by hypothesis. Then the variation of the field
commutes with the derivatives. On integrating by parts to obtain an overall factor of δϕ, we
find

δS =
∫

�

dd x

{
δS

δϕ
δϕ + ∂µ

[(
∂L

∂∂µϕ
− ∂ν

∂L
∂∂µ∂νϕ

)
δϕ + ∂L

∂∂µ∂νϕ
∂νδϕ + · · ·

]}
, (2.3)

where we have defined the first variation of the action δS/δϕ,

δS

δϕ
≡ ∂L

∂ϕ
− ∂µ

∂L
∂∂µϕ

+ ∂µ∂ν

∂L
∂∂µ∂νϕ

+ · · · . (2.4)

We now use Stokes’ theorem Eq. (1.141) to reexpress the integral of the total derivative
as an integral over the boundary ∂�:

δS =
∫

�

dd x
δS

δϕ
δϕ + (−1)d−1

∫
∂�

dd−1�µ

{(
∂L

∂∂µϕ
− ∂ν

∂L
∂∂µ∂νϕ

)
δϕ

+ ∂L
∂∂µ∂νϕ

∂νδϕ + · · ·
}
. (2.5)

In theories without higher derivatives L(ϕ, ∂ϕ) it is enough to impose that the field vari-
ations vanish over the boundary δϕ|∂� = 0, to see that the boundary term vanishes. Then,
requiring that the action is stationary, δS = 0, under those variations we obtain the usual
Euler–Lagrange equations

δS

δϕ
= ∂L

∂ϕ
− ∂µ

(
∂L

∂∂µϕ

)
= 0. (2.6)

If the Lagrangian contains higher derivatives of the field, it is necessary either to impose
boundary conditions for derivatives of the variation of the field or to introduce (if possible)
into the action boundary terms that do not change the equations of motion but eliminate the
∂δϕ term in the total derivative. In any of these cases we obtain the equations of motion

δS

δϕ
= ∂L

∂ϕ
− ∂µ

(
∂L

∂∂µϕ

)
+ ∂ν∂µ

(
∂L

∂∂ν∂µϕ

)
− · · · = 0. (2.7)

As we can see, the equations of motion are of degree higher than two in derivatives of
the field. Thus, to solve them completely it is also necessary to give boundary conditions
for the field, and for its first and higher derivatives.

If we add a total derivative term ∂µkµ(ϕ) to the Lagrangian, it is clear that the equations
of motion will not be modified as long as the boundary conditions for δϕ and its derivatives
make kµ(ϕ) = 0 on the boundary.

2.2 Noether’s theorems

Let us now consider the infinitesimal transformations of the coordinates and fields
δ̃xµ and δ̃ϕ:

δ̃xµ = x ′ µ − xµ,

δ̃ϕ(x) ≡ ϕ′(x ′) − ϕ(x), (2.8)
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where x ′ and x stand for the coordinates of the same point in the two different coordinate
systems. The transformation of the fields may contain terms associated with the coordinate
transformations and also with other “internal” transformations (see footnote 3 in Chapter 1).

We want to find the consequences of the invariance, possibly up to a total derivative that
depends on the variations, of the action Eq. (2.1) under the above infinitesimal changes of
the field and the coordinates (which are, then, symmetry transformations). We express this
invariance as follows:

δ̃S =
∫

�

dd x ∂µsµ(δ̃). (2.9)

Let us now perform directly the variation of the action explicitly,2

δ̃S =
∫

�

[
δ̃dd x L + dd x δ̃L

]
. (2.10)

We have

δ̃dd x = dd x ∂µδ̃xµ,

δ̃L = δL + δ̃xµ∂µL, (2.11)

δL = ∂L
∂ϕ

δϕ + ∂L
∂∂µϕ

δ∂µϕ + ∂L
∂∂µ∂νϕ

δ∂µ∂νϕ + · · ·,

where δ stands for the variation of the field at two different points whose coordinates are
the same in the two different coordinate systems considered,

δϕ(x) ≡ ϕ′(x) − ϕ(x), (2.12)

and we have used the field-operator identity

δ̃ = δ + δ̃xµ∂µ. (2.13)

δ and ∂µ commute since δ does not involve any change of coordinates. Thus

δ̃S =
∫

�

dd x

{
∂µδ̃xµL + δ̃xµ∂µL + ∂L

∂ϕ
δϕ + ∂L

∂∂µϕ
∂µδϕ + ∂L

∂∂µ∂νϕ
∂µ∂νδϕ + · · ·

}
.

(2.14)

On integrating by parts as many times as necessary, we obtain

δ̃S =
∫

�

dd x

{
∂µ

[
Lδ̃xµ +

(
∂L

∂∂µϕ
− ∂ν

∂L
∂∂µ∂νϕ

)
δϕ + ∂L

∂∂µ∂νϕ
∂νδϕ + · · ·

]
+ δS

δϕ
δϕ

}
.

(2.15)

On reexpressing δϕ in terms of δ̃ϕ inside the total derivative, and equating the result with
Eq. (2.9), we arrive at ∫

�

dd x

{
∂µj

µ

N1(δ̃) + δS

δϕ
δϕ

}
= 0, (2.16)

2 We follow here [795].
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where

j
µ

N1(δ̃) = −sµ(δ̃) + Tcan
µ

νδ̃xν − ∂L
∂∂µ∂νϕ

∂ρϕ∂νδ̃xρ

+
[

∂L
∂∂µϕ

− ∂ν

(
∂L

∂∂µ∂νϕ

)]
δ̃ϕ + ∂L

∂∂µ∂νϕ
∂νδ̃ϕ + · · ·, (2.17)

where, in turn,

Tcan
µ

ν = ηµ
νL − ∂L

∂∂µϕ
∂νϕ − ∂L

∂∂µ∂ρϕ
∂ν∂ρϕ + ∂ρ

(
∂L

∂∂µ∂ρϕ

)
∂νϕ + · · ·. (2.18)

Tcan
µ

ν is the canonical energy–momentum tensor and is the only piece of j
µ

N1 that survives
(apart from sµ) when we consider constant δ̃xµs.

It is worth stressing that the total-derivative term will not vanish in general after use of
Stokes’ theorem because the variations δ̃xµ and δ̃ϕ do not vanish on the boundary.

Now we want to derive conservation laws from this identity. We see that, in the general
case, if the equations of motion δS/δϕ = 0 are satisfied, then we can conclude that j

µ

N1(δ̃)

is a conserved vector current (Noether current), i.e. satisfies the continuity equation

∂µj
µ

N1(δ̃) = 0. (2.19)

Thus, for a theory that is exactly invariant under constant translations, the canonical
energy–momentum tensor is the associated Noether conserved current.

Strictly speaking j
µ

N1(δ̃) is a vector density. In the presence of a metric, we can define a
vector current j

µ

N1(δ̃) = √|g| jµ

N1(δ̃) and write the continuity equation in general-covariant
form:

∇µ jµ

N1(δ̃) = 0. (2.20)

In Minkowski spacetime this distinction is unnecessary. Such terms are called “conserved”
because they are used to define quantities (charges) that are conserved in time, as we will
see next.

This is the best we can do if the transformations are global, i.e. when they take the form

δ̃xµ ≡ σ I δ̃I xµ, δ̃ϕ ≡ σ I δ̃I ϕ, (2.21)

where δ̃I xµ and δ̃I ϕ are given functions of the coordinates and ϕ and the σ I , I = 1, . . ., n,
are the constant transformation parameters. Then, we find n on-shell conserved currents
j
µ

N1 I independent of the parameters σ I and they are given by

j
µ

N1 I = −sµ(δ̃I ) + Tcan
µ

νδ̃I xν − ∂L
∂∂µ∂νϕ

∂ρϕ∂νδ̃I xρ

+
[

∂L
∂∂µϕ

− ∂ν

(
∂L

∂∂µ∂νϕ

)]
δ̃I ϕ + ∂L

∂∂µ∂νϕ
∂νδ̃I ϕ + · · ·. (2.22)

If the transformations are local, i.e. they depend on n local parameters σI (x), the generic
result of the on-shell conservation of the current j

µ

N1 is still true,3 but we can do more.

3 In principle there is one current for each value of the local parameters. This gives an infinite number of
on-shell conserved currents. However, only for a certain asymptotic behavior of the σI (x)s will the integrals
defining the conserved charges converge. These asymptotic behaviors are usually associated with the global
invariances of the vacuum configuration.
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First, observe that, in general, in the local case, the transformations contain derivatives of
the local parameters. We eliminate these derivatives of the transformation parameters by
integration by parts in Eq. (2.16). We obtain an identity of the form4

∫
�

dd x

{
∂µj

µ

N2(σ ) + σ I DI
δS

δϕ

}
, (2.23)

where DI are operators containing derivatives acting on the equations of motion. This iden-
tity is true for arbitrary parameters. We can choose parameters such that j

µ

N2(σ ) vanishes on
the boundary. Then, we obtain the off-shell identities that do not involve the transformation
parameters

DI
δS

δϕ
= 0, (2.24)

that relate the equations of motion, so not all of them are independent. These identities are
called gauge or Bianchi identities. Since they are identically true for arbitrary values of the
parameters, we obtain the off-shell “conservation law”5

∂µj
µ

N2(σ ) = 0. (2.25)

Since this is an identity that holds independently of the equations of motion, it follows
that the current density j

µ

N2(σ ) can always be written as the divergence of a two-index
antisymmetric tensor, usually called the superpotential, that is,

j
µ

N2(σ ) = ∂ν j
νµ

N2(σ ), j
νµ

N2(σ ) = −j
µν

N2(σ ). (2.26)

This identity for the vector densities is written in terms of the vectors j
µ

N2 = √|g| jµ

N2:

jµ

N2(σ ) = ∇ν jνµ

N2 (σ ), jνµ

N2 (σ ) = − jµν

N2 (σ ). (2.27)

Observe that the difference between j
µ

N1 and j
µ

N2 is always a term proportional to the
equations of motion, i.e. it vanishes on-shell. Thus, these two currents are identical on-
shell. In general we are free to add any term that vanishes on-shell to the current jµ

N1 since
it is conserved only on-shell. We have just seen that there is a specific on-shell vanishing
term that relates jµ

N1 to jµ

N2. jµ

N2 cannot be modified in this way because its defining property
is that it is conserved off-shell. However, we could add to both currents terms of the form
∂ν	

νµ, where 	µν = 	 [µν], which would change the superpotential. If 	νµ is of the form
∂ρU ρνµ, with U ρνµ = U [ρν]µ, then ∂ν	

νµ = 0 and the change in the superpotential will not
change the Noether current.

It is easy to see that Noether currents are sensitive to the addition of total derivatives
to the Lagrangian even if these do not modify the equations of motion: on adding to the
action (2.1)


S =
∫

�

dd x ∂µLµ, (2.28)

4 This expression is just symbolic. We need a more explicit form of the infinitesimal transformations in order
to obtain more explicit expressions. We will find several examples in the following chapters.

5 Strong conservation law in the language of [110].
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which is also invariant up to a total derivative

δ̃
S =
∫

�

dd x∂µ
sµ(δ̃), (2.29)

and repeating the same steps as those we followed to find the Noether currents, we find a
correction to the Noether current Eq. (2.17):


j
µ

N1(δ̃) = −
sµ(δ̃) + δ̃Lµ + ∂ρ	
ρµ

νδ̃xν,

	ρµ
ν = 2L[ρηµ]

ν. (2.30)

If we consider only constant spacetime translations and Lµ is a vector density, then δ̃Lµ =

sµ(δ̃) and we simply find a correction to the canonical energy–momentum tensor with
the form of a superpotential.

We end this section with an important remark: no change in the superpotential can be
related to the addition of a total derivative to the Lagrangian.

2.3 Conserved charges

Given a conserved current (density) jµ, by taking the integral of its time component j0 over
a piece Vt of a constant-time hypersurface we can define a quantity (charge) Q(Vt),

Q(Vt) =
∫

Vt

dd−1x j0. (2.31)

If we take the total time derivative of Q(Vt), since the volume of Vt does not depend on
time (the subindex t indicates only that it is in a given constant-t hypersurface, but it is the
same spatial volume for all t) the total time derivative “goes through the integral symbol”
and becomes a partial time derivative of j0 (c = 1):

d

dt
Q(Vt) =

∫
Vt

dd−1x ∂0j
0. (2.32)

The continuity equation for the current and Stokes’ theorem imply that

d

dt
Q(Vt) =

∫
Vt

dd−1x ∂i j
i =

∫
∂Vt

dd−2�i j i , (2.33)

which is interpreted as the flux of charge across the boundary of the volume of Vt . Observe
that the last integral is performed over j i rather than over ji .

This is a local charge-conservation law: the charge contained in the volume of Vt is only
lost (or gained) by the interchange of charge with the exterior; it does not disappear into
nothing and it is not created from nothing. This is what we mean by conserved charge.

If we take the boundary of the volume to spatial infinity, and we assume that the currents
go to zero at infinity (there are no sources at infinity for the charges), then the flux integral
over the boundary vanishes and we see that the total charge contained in space at a given
time is conserved in absolute terms. It is usually denoted by Q (all reference to time-
dependence has been eliminated).
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Sometimes it is convenient to use a more-covariant expression for the charge:

Q(Vt) =
∫

Vt

dd−1�µ jµ. (2.34)

If the current can be expressed as the divergence of an antisymmetric two-index tensor
jµ = ∇ν jνµ, jνµ = − jµν , then we can again use Stokes’ theorem to express the charge as
an integral over the boundary of Vt :

Q(Vt) = (−1)d−2

2

∫
∂Vt

dd−2�µν jµν. (2.35)

The total charge is found by integrating over the boundary of a constant-time slice, which
in general has the topology of an Sd−2 sphere and lies at spatial infinity. Then, the general
expression for the total conserved charge associated with a gauge symmetry is

Q = (−1)d−2

2

∫
Sd−2∞

dd−2�µν jµν. (2.36)

A change in the superpotential 	µν will also change the conserved charge unless the
change in the potential vanishes at infinity or unless the change in the superpotential is
also of the form ∂ρU [ρµ]ν because we can use again Stokes’ theorem and reduce the above
integral to an integral over the boundary of Vt , which is zero.

2.4 The special-relativistic energy–momentum tensor

In special-relativistic field theories the Lagrangian is, by hypothesis, a scalar under Poincaré
transformations, i.e. δ̃L = 0. These are translations aµ and Lorentz transformations �µ

ν ,

x ′ µ = �µ
νxν + aµ, �µ

ρηµν�
ν
σ = ηρσ , (2.37)

or, infinitesimally,
δ̃xµ = σµ

νxν + σµ, σµν = −σ νµ. (2.38)

The Minkowskian volume element dd x is also invariant under these transformations
δ̃dd x = 0 and so the action is also exactly invariant, δ̃S = 0 (sµ = 0).

Let us first consider infinitesimal translations. In SRFTs all fields are scalars under them,
i.e. δ̃ϕ = 0. Following the standard Noether procedure, we obtain d conserved Noether
currents (one for each independent translation) that can be labeled by a subindex (ν),

jµ

N1 (ν) = Tcan
µ

ρδ̃νxρ = Tcan
µ

ν, (2.39)

since δ̃νxρ = δν
ρ . The d conserved currents transform as a contravariant vector with respect

to the label (ν) and thus they are put together into the canonical energy–momentum tensor
given by Eq. (2.18) for higher-derivative theories.

Let us take for example a real scalar field ϕ. The Lagrangian and equation of motion are

L(ϕ) = 1
2(∂ϕ)2, ∂2ϕ = 0, (2.40)
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and the canonical energy–momentum tensor resulting from the use of the general formula
in this case is symmetric and conserved using the above equation of motion:

Tµν(ϕ) = −∂µϕ∂νϕ + 1
2ηµν(∂ϕ)2,

∂µTmatter µν(ϕ) = −∂νϕ∂2ϕ
∣∣
on-shell = 0.

(2.41)

If we add a total derivative ∂ρ(ϕ∂ρϕ) to the above Lagrangian, the equations of motion
do not change, as can be seen by using the Euler–Lagrange equations for higher-derivative
theories (2.7). According to Eq. (2.18), the energy–momentum tensor acquires the extra
term

+∂ρ	
ρµν, 	ρµν = 2ην[µϕ∂ρ]ϕ, (2.42)

which is also symmetric but contains second derivatives of the field.
Although the canonical energy–momentum tensor arises as the Noether current associ-

ated with invariance under constant translations, we are going to see that it is a much richer
object and contains information on the response of a theory to spacetime transformations.

Observe that the canonical energy–momentum tensor is not symmetric in general. In
fact, it is symmetric only for scalar fields. However, it can be symmetrized, as we are going
to explain when we study the conservation of angular momentum.

For each vector current, we can define the charge Q(ν),

Q(ν) =
∫

Vt

dd−1x j0
(ν) =

∫
Vt

dd−1x Tcan
0
ν. (2.43)

The d conserved charges associated with the energy–momentum tensor are the d compo-
nents of a contravariant Lorentz vector, which is nothing but the momentum vector and thus
we have derived the local conservation laws of energy and momentum. It is customary to
write Pν = Q(ν).

2.4.1 Conservation of angular momentum

Let us now consider the infinitesimal Lorentz transformations. The fields appearing in
SRFTs transform covariantly or contravariantly in definite representations of the Lorentz
group. Let us take, for instance, a field ϕα transforming contravariantly in the representation
r of the Lorentz group. The index α goes from 1 to dr , the dimension of the representation
r . If, in the representation r , the generators of the Lorentz group are the dr × dr matrices
r

(
Mµν

)α
β , then an infinitesimal Lorentz transformation of the field ϕ can be written in

the form

δ̃ϕα = 1
2σ

µνr
(
Mµν

)
α

βϕβ = 1
2σ

µνδ̃(µν)ϕ
α. (2.44)

Observe that we can write

δ̃(ρσ )x
µ = v

(
Mρσ

)
µ

νxν, (2.45)

where v is the vector representation given in Eq. (A.60).
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According to the general result Eq. (2.22), we find the following set of d(d − 1)/2 con-
served currents labeled by a pair of antisymmetric indices:6

jN1 (ρσ)
µ = Tcan

µ
λδ̃(ρσ)x

λ + ∂L
∂∂µϕα

δ̃(ρσ)ϕ
α = 2Tcan

µ
[ρxσ ] + ∂L

∂∂µϕα
r

(
Mρσ

)
α

βϕβ. (2.46)

The first contribution to this current is the orbital-angular-momentum tensor and the
second is the spin-angular-momentum tensor, Sµ

ρσ ,

Sµ
ρσ ≡ 1

2

∂L
∂∂µϕα

r
(
Mρσ

)
α

βϕβ. (2.47)

Only the total angular-momentum current is conserved.
The d(d − 1)/2 conserved charges are the components of a two-index antisymmetric

tensor: the angular-momentum tensor Mµν ,

Mµν = Q(µν) =
∫

Vt

dd−1x j0
N1 (µν). (2.48)

It is instructive to take the divergence of the above current. Since in the theories we are
dealing with we always have ∂µTcan

µ
ν = 0, one finds

∂µ jN1 (ρσ)
µ = −2Tcan [ρσ ] + ∂µ

(
∂L

∂∂µϕα
r

(
Mρσ

)
α

βϕβ

)
, (2.49)

which should vanish on-shell according to the general formalism. This means that, except
for scalars, Tcan µν is not symmetric and the antisymmetric part is given by

Tcan [ρσ ] = ∂µSµ
ρσ , (2.50)

up to terms vanishing on-shell. This formula suggests that we can symmetrize the canon-
ical energy–momentum tensor, exploiting the ambiguities of Noether currents mentioned
earlier, i.e. adding to it a term of the form

∂µ	µρ
σ , 	µρ

σ = −	ρµ
σ , (2.51)

whose divergence is automatically zero, which in this case would be given by the spin–
energy potential

	µρ
σ = −Sµρ

σ + Sρµ
σ + Sσ

µρ, (2.52)

and also removing all the antisymmetric terms that vanish on-shell. The resulting symmetric
energy–momentum tensor is usually considered as the energy–momentum tensor to which
gravity couples7 [939] and we will denote it simply by T µ

ν . It is also called the Belinfante
tensor [103]. Using it, the conserved current associated with Lorentz rotations is

jN1 (ρσ)
µ = 2T µ

[ρxσ ] + ∂λ

(
	λµ

[ρxσ ]
)
, (2.53)

6 Here we concentrate on theories without higher derivatives.
7 This can be justified in the framework of the Cartan–Sciama–Kibble (CSK) theory of gravity. As we will see

in Section 4.4, the Belinfante tensor has to coincide with the Rosenfeld energy–momentum tensor, whose
definition is based precisely on the coupling to gravity. It is also worth mentioning that, in the CSK theory,
the spin–energy potential also couples to gravity through the torsion (the energy–momentum tensor couples
through the metric).
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again, up to terms that vanish on-shell. The second term in this expression can be eliminated
by the usual procedure. The spin-angular-momentum tensor has been absorbed into the
new angular-momentum tensor. We are left with the following conserved on-shell currents
associated with translations and Lorentz rotations, both of them expressed in terms of the
same energy–momentum tensor (the Belinfante tensor):

jN1 (ν)
µ = T µ

ρδ̃(ν)xρ = T µ
ρ,

jN1 (ρσ)
µ = T µ

λδ̃(ρσ)xλ = 2T µ
[ρxσ ].

(2.54)

It is worth stressing that the existence of these conserved currents is primarily due to the
invariance of the Minkowski metric that enters into special-relativistic Lagrangians and of
the Minkowski volume element under the Poincaré group or, in other words, to the existence
of d(d + 1)/2 Killing vectors precisely of the form

δ̃(ν)x
µ∂µ = ∂ν, δ̃(ρσ)x

µ∂µ = −2x[ρ∂σ ]. (2.55)

A couple of simple examples of the symmetrization of the canonical energy–momentum
tensor are in order here.

The energy–momentum tensor of a vector field. The Lagrangian and canonical energy–
momentum tensor are given by

L = − 1
4 F2, Fµν = 2∂[µ Aν], Tcan

µ
ν = Fµρ∂ν Aρ − 1

4η
µ

ν F2. (2.56)

Under Lorentz rotations we have

δ̃Aµ = −Aνσ
ν
µ ⇒ Sµ

ρσ = Fµ
[ρ Aσ ] ⇒ 	ρµ

ν = Fρµ Aν, (2.57)

and, using the equations of motion ∂ρ Fρµ = 0,

T µ
ν = Tcan

µ
ν + ∂ρ	

ρµ
ν = Fµρ Fνρ − 1

4η
µ

ν F2, (2.58)

which is the standard, gauge-invariant, energy–momentum tensor of a vector field, coincid-
ing with the one derived via Rosenfeld’s prescription, which we are going to introduce in
Section 2.4.3, inspired by general relativity.

There is yet another way to obtain this energy–momentum tensor that is worth pointing
out: let us consider the transformations

δ̃xµ = εµ, δ̃Aµ = ελ∂λ Aµ − Lε Aµ = −∂µελ Aλ. (2.59)

Following the same steps as those we followed to prove the Noether theorem, we find
now

δ̃S =
∫

dd x∂µελT µ
ν, (2.60)

with T µ
ν as above (the Belinfante tensor). This variation vanishes if

∂(µελ) = 0, (2.61)
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which is the Killing equation in Minkowski spacetime. Then, there is invariance under
Poincaré transformations whose generators are δ̃xλ = δ̃(ν)xλ and δ̃xλ = δ̃(ρσ )xλ.

On integrating the above variation by parts, using the fact that it vanishes for Poincaré
transformations and using the equation of motion (which implies that ∂µT µ

λ = 0), we find∫
dd x ∂µ

(
δ̃xλT µ

ν

)
= 0, (2.62)

and we find automatically the above Noether currents.
This method is clearly inspired by general relativity. We will find more applications for

it soon.

The energy–momentum tensor of a Dirac spinor. The Lagrangian of a massive Dirac spinor
is8

L = 1
2(iψ̄ �∂ψ − iψ̄ �←∂ψ) − mψ̄ψ, ψ̄ �←∂ ≡ ∂µψ̄γ µ. (2.63)

It is customary to vary ψ and ψ̄ as if they were independent. This simplifies somewhat
the calculations but we have to bear in mind that they are not independent. The equations
of motion of ψ and ψ̄ are the Dirac conjugates of each other:

(i �∂ − m)ψ = 0, ψ̄
(

i �←∂ + m
)

= 0. (2.64)

Acting with �∂ on the first equation, we find that ψ satisfies the Klein–Gordon equation(
∂2 + m2

)
ψ = 0. (2.65)

The canonical energy–momentum tensor is

Tcan λ
µ = − ∂L

∂∂µψ
∂λψ − ∂λψ̄

∂L
∂∂µψ̄

+ ηλ
µL

= − i

2
ψ̄γ µ∂λψ + i

2
∂λψ̄γ µψ + ηλ

µ

[
1

2
(iψ̄ �∂ψ − iψ̄ �←∂ ψ) − 2mψ̄ψ

]
, (2.66)

and it is clearly not symmetric. The spin-angular-momentum tensor is

Sµ
ρσ = 1

2

∂L
∂∂µψ

s
(
Mρσ

)
ψ + 1

2
ψ̄s̄

(
Mρσ

) ∂L
∂∂µψ

= 1

2

i

2
ψ̄γ µ

(
1

2
γνρ

)
ψ + 1

2
ψ̄

(
−1

2
γνρ

)(
− i

2
γ µψ

)

= i

4
ψ̄γ µ

νρψ, (2.67)

and it is totally antisymmetric. The spin–energy potential is just

	µν
ρ = −Sµν

ρ, (2.68)

8 Our conventions for spinors and gamma matrices are explained in Appendix B.
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and, after use of the equations of motion, we find the Belinfante tensor

Tλ
µ = i

4
∂νψ̄ (γ µην

λ + γλη
νµ)ψ − i

4
ψ̄(γ µην

λ + γλη
νµ)∂νψ

+ ηλ
µ
[

1
2(iψ̄ �∂ψ − iψ̄ �←∂ ψ) − 2mψ̄ψ

]
. (2.69)

In the case of the vector field, we managed to find the Belinfante tensor by a method
based on the vector transformation law under GCTs. However, it is not clear how to use
this method in the present case. The spinorial character is associated only with Lorentz
transformations and it is not clear what the spinor transformation law should be for other
GCTs. In fact, the only consistent form of dealing with spinors on curved spacetime is to
treat them as scalars under GCTs and to associate the spinorial character with the Lorentz
group that acts on the tangent space at each given point. This is the formalism invented by
Weyl in [954] which we will study later on.

2.4.2 Dilatations

Let is consider now constant rescalings (dilatations) by a factor � = eσ :

x ′ µ = �xµ,

ϕ′(x ′) = �ωϕ(x),
⇒

{
δ̃xµ = σ xµ ≡ σ δ̃Dxµ,

δ̃ϕ = ωσϕ.
(2.70)

The associated conserved current is

jN1 D
µ = Tcan

µ
νxν + Jµ, Jµ ≡ ω

∂L
∂∂µϕ

ϕ. (2.71)

If we take the divergence of this current and set it equal to zero, we obtain the identity

Tcan
µ

µ + ∂µ Jµ = 0. (2.72)

It is always possible to find a redefinition of the canonical energy–momentum tensor that
is symmetric, divergenceless, and, furthermore, traceless if there is scale invariance (see
e.g. [204, 247, 491] and [781] and references therein). This redefined energy–momentum
tensor is called the improved energy–momentum tensor and can be constructed systemati-
cally: on rewriting the dilatation current in the form

jN1 D
µ =

[
Tcan

µ
ν + 2

d − 1
∂ρ

(
J [µηρ]

ν

)]
xν − 2

d − 1
∂ν

(
J [µxν]

)
, (2.73)

we observe that

T µν = Tcan
µν + 2

d − 1
∂ρ

(
J [µηρ]ν

)
, (2.74)

is on-shell traceless on account of the identity Eq. (2.72) and also on-shell divergence-
less since the piece that we add to the canonical energy–momentum tensor is of the form
∂ρ	

[ρµ]ν . Observe that this term can also be obtained directly from the action if we add to
it a total derivative term of the form


S = ω

d − 1

∫
dd x ∂ρ

(
∂L

∂∂ρϕ
ϕ

)
. (2.75)
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Furthermore, the second term in the dilatation current is also of the form ∂ρ	
[ρµ] and,

then, up to this term we can write, as in Eqs. (2.54),

jN1 D
µ = T µ

νδ̃Dxν = T µ
νxν. (2.76)

This result, and the analogous result for Lorentz rotations, suggest the following general
picture: for any given spacetime symmetry generated by δ̃xµ it always seems possible to find
a redefinition of the canonical energy–momentum tensor T µν such that it is symmetric and
on-shell divergenceless and such that the conserved current associated with the spacetime
symmetry is given, up to terms of the form ∂ρ	

[ρµ], by

jN1
µ = T µ

νδ̃xν. (2.77)

It is to this energy–momentum tensor that gravity (a gauge theory for all spacetime trans-
formations) couples. This immediately suggests Rosenfeld’s prescription for finding the
energy–momentum tensor. Before we study it, let us work out a couple of simple exam-
ples. First, let us consider a free scalar field ϕ in d dimensions with Lagrangian

L = 1
2(∂ϕ)2. (2.78)

The action is invariant if ω = −(d − 2)/2. The canonical energy–momentum tensor and
dilatation current are in this case

Tcan
µ

ν = −∂µϕ∂νϕ + 1
2η

µ
ν(∂ϕ)2,

jN1 D
µ = Tcan

µ
νxν + ω

2
∂µϕ2.

(2.79)

The improved energy–momentum tensor, is written in a form in which it is clear that we
are adding a total derivative:

T µν = Tcan
µν − ω

2(d − 1)
∂ρ

(
ηρ(µ∂ν)ϕ2 − ηµν∂ρϕ2

)
. (2.80)

Using the improved energy–momentum tensor, the dilatation current can be written as
expected:

jN1 D
µ = T µ

νxν + ω

2(d − 1)
∂ν

(
xν∂µϕ2 − xµ∂νϕ2

)
. (2.81)

Our second example is a d-dimensional vector field whose action is invariant for
the same value9 of ω. In and only in d = 4 is the Belinfante tensor traceless. By the
same procedure, we find the on-shell traceless, conserved energy–momentum tensor,

9 This is true for any free-field theory described by a Lagrangian quadratic in first derivatives of the field.
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in any dimension:

T µ
ν = d

2(d − 1)
Fµρ∂ν Aρ − 1

4(d − 1)
ηµ

ν F2 − d − 2

2(d − 1)
∂ν Fµσ Aσ . (2.82)

This energy–momentum tensor changes under gauge transformations of the vector
field.

2.4.3 Rosenfeld’s energy–momentum tensor

Rosenfeld’s prescription [813] is precisely based on the minimal coupling to gravity postu-
lated by general relativity that we will study later on: place the matter fields in a curved
background substituting everywhere the flat Minkowski metric ηµν by a general back-
ground metric γµν , partial derivatives by covariant derivatives compatible with the back-
ground metric, and the flat volume element dd x by dd x

√|γ |. Then the energy–momentum
tensor is given by

T µν
matter = 2

δSmatter

δγµν

∣∣∣∣
γµν=ηµν

. (2.83)

Of course, one has to define first which fields are independent of the metric. For instance,
if we have a vector field Aµ, we have to decide which of Aµ and Aµ is fundamental. The
other field then depends on the metric used to raise or lower the index. Furthermore, we
have to decide whether the fields are tensors or tensor densities, and, depending on our
choice, we may have to add factors proportional to the determinant of the auxiliary metric
or not and we may have to add additional connection terms in the covariant derivatives or
not.

This energy–momentum tensor is symmetric by construction and conserved on-shell
due to the Bianchi identity10 associated with the invariance under GCTs of the action
written in the background metric γµν . Furthermore, it can be shown to be always identi-
cal up to a term of the form ∂ρ	

[ρµ]ν to the canonical one under very general assump-
tions [63]. For a scalar and a vector field, the energy–momentum tensor found via Rosen-
feld’s prescription (the Rosenfeld or metric energy–momentum tensor) is identical to the
canonical tensor and the Belinfante energy–momentum tensor, respectively. We will see
in Chapter 3 that the same is true for a spin-2 field and later on we will see that the
same is true in a generalized sense for a Dirac spinor. This identity is not a mere coin-
cidence but it can be justified, as has already been pointed out, in the framework of the
Cartan–Sciama–Kibble theory of gravity that we will review in Section 4.4. In general, it
is easier to compute the energy–momentum tensor using Rosenfeld’s prescription than us-
ing the canonical one, especially if we are interested in a symmetric energy–momentum
tensor.

10 This will be explained and proven later on in Chapter 3.
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The Rosenfeld energy–momentum tensor has the required properties.11,12

To illustrate this point, let us go back to the massless vector field of the previous section.
Let us consider the effect of conformal transformations on its action. The conformal group
consists of transformations that leave the Minkowski metric invariant up to a global (pos-

sibly local) factor: (infinitesimal) constant translations δ̃xµ = ξµ, Lorentz rotations δ̃xµ =
σµ

νxν ≡ σµ (these two generate the Poincaré group), dilatations δ̃xµ = σ xµ ≡ wµ, and
special conformal transformations (or conformal boosts) δ̃xµ = 2(ζ · x)xµ − x2ζµ ≡ vµ.
The vector field transforms under these coordinate transformations according to the gen-
eral rule for (world) vectors (2.59) with εµ = ξµ + σµ + wµ + vµ. The variation of the
action is, again, given by Eq. (2.60). Conformal transformations are generated by confor-
mal Killing vectors of Minkowski spacetime that satisfy

∂(µελ) ∝ ηµλ. (2.87)

The proportionality factor is zero for Poincaré transformations but non-zero for dilatations
and conformal boosts. Then, the variation of the action will be zero only if the energy–
momentum tensor is traceless. This happens only in d = 4 dimensions. On integrating by
parts, etc., we find that the Noether current has the form Eq. (2.77), always with the same
(Rosenfeld’s) energy–momentum tensor.

11 However, this is still confusing because we have two different symmetric, on-shell divergenceless energy–
momentum tensors for a scalar field (the canonical and the improved, which is traceless) and Rosenfeld’s
procedure seems to give a unique energy–momentum tensor. This is not true, though: when we covariantize
a special-relativistic action introducing a metric the result is unique up to curvature terms that vanish in
Minkowski spacetime. In the case of the scalar, a covariantization that preserves the scaling invariance is

S[ϕ, γ ] =
∫

dd x
√

|γ |
[

1

2
(∂ϕ)2 + ω

4(d − 1)
ϕ2 R(γ )

]
, (2.84)

where R(γ ) is the Ricci scalar of the background metric. This action is invariant, in fact, under local Weyl
rescalings of the metric and local rescalings of the scalar, leaving the coordinates untouched:

ϕ′ = �(2−d)/2(x)ϕ, γ ′
µν = �2(x)γµν. (2.85)

Using the results of Section 4.2, we find

2
δS[ϕ, γ ]

δγµν
= Tcan

µν − ω

2(d − 1)

(
∇µ∂νϕ2 − γ µν∇2ϕ

)
+ ω

2(d − 1)
ϕGµν(γ ), (2.86)

where Gµν(γ ) is the Einstein tensor of the background metric. On setting γµν = ηµν , we find precisely the
improved energy–momentum tensor Eq. (2.80). Something similar can be said of the vector field in d �= 4.
If, in the presence of a curved metric, the vector field scales as in Minkowski spacetime, the vector field is
really a vector density and then its covariantization is different from the standard one and should lead to a
Rosenfeld energy–momentum tensor identical to the improved one.

12 When the field theory has a symmetry, it is desirable or necessary to have an energy–momentum tensor
that is also invariant under the same transformations. For instance, the Belinfante energy–momentum tensor
for the Maxwell field is gauge-invariant, as is the Maxwell action. It can be shown that, in general, sym-
metries of a theory are also symmetries of the Rosenfeld energy–momentum tensor if the symmetries are
also symmetries of the same theory covariantized with an arbitrary background metric. The Maxwell ac-
tion in a curved background is still gauge-invariant and the gauge-invariance of the Belinfante–Rosenfeld
energy–momentum tensor follows.
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We may expect that this is completely general. We need to know only how the fields
transform under general coordinate transformations,13 which determines completely the
coupling to gravity in general relativity.

Just as it is possible to give a prescription for how to find the energy–momentum tensor
on the basis of its coupling to gravity through the metric in general relativity, it is possible to
give a definition of the spin–energy potential 	µν

ρ based on its coupling to gravity (maybe
we should say geometry instead of gravity) through the torsion tensor in the framework of
the Cartan–Sciama–Kibble (CSK) theory:

	µν
ρ = − 2√|g|

δS

δTµν
ρ

∣∣∣∣
γ=T =0

. (2.88)

The equivalence of this definition and the definition we gave in terms of the spin-angular-
momentum tensor Sµ

ρσ can also be proven in the CSK theory. In fact, the above definition is
the main characteristic of that theory in which intrinsic (i.e. not orbital) angular momentum
is the source of another field that has a geometrical interpretation (torsion).

2.5 The Noether method

There is a useful recipe for how to find the Noether current associated with global sym-
metry transformations of the fields δϕ: if the action is invariant under transformations with
constant parameters, then, if we use local parameters, upon use of the equations of motion,
the variation of the action would be proportional to the derivative of the parameters:

δS = −
∫

dd x∂µσ I jµ

I , (2.89)

because, by hypothesis, it has to vanish for constant σ I . Up to a total derivative, this is

δS =
∫

dd xσ I ∂µ jµ

I , (2.90)

that vanishes for constant σ I only if ∂µ jµ

I = 0. Thus the currents jµ

I are the Noether currents
associated with the global symmetry.

The observation that the variation of the action must be of the above form is the basis
of the so-called Noether method which is used to couple fields in a symmetric way. The
simplest example of how this method works is the coupling of a complex scalar field �

to the electromagnetic field Aµ. The Lagrangian of the electromagnetic field Eq. (2.56) is
invariant under the transformations with local parameter �,

δAµ = ∂µ�, (2.91)

while the Lagrangian for the complex scalar,

L = 1
2∂µ�∂µ�̄, (2.92)

13 A conformal scalar of weight ω is nothing but a scalar density of weight ω/d.
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is invariant under phase transformations with a constant parameter σ and a constant g that
infinitesimally look like this:

δ� = igσ�. (2.93)

These transformations constitute a U(1) symmetry group. g labels the representation of
U(1) corresponding to �. If σ takes values in the interval [0, 2π ], then g can be any integer.

If the conserved current of the scalar Lagrangian is seen as an electric current, it is natural
to couple it to the electromagnetic vector field to obtain the Maxwell equation with sources:

∂ν Fνµ = g jµ

N . (2.94)

From a Lagrangian point of view, this equation can be obtained by adding to the free
Lagrangians of the vector and scalar a coupling of the form g Aµ jµ

N . However, this term
modifies the equation of motion of the scalar, so the electric current jµ

N is not conserved
on-shell. This renders the above equation inconsistent since the l.h.s. is automatically di-
vergenceless. Clearly, the addition of a new term to the Lagrangian modifies the Noether
current. The modified Noether current should be conserved on-shell upon use of the mod-
ified equations of motion. It is easy to see that the vector field contributes to it. This is the
Noether current that we should use in the Lagrangian now, and this induces new modifica-
tions. This may go on indefinitely until the new correction does not contribute to the new
Noether current. Observe that the modified Noether current is found using a local phase
transformation according to the above general observation. It should also be stressed that
the physical reason why there was inconsistency is that we did not take into account the
contribution of the vector field to the electric current. Only the total electric current should
be consistently conserved.

The Noether method is essentially a systematic way of performing these iterations em-
phasizing the role of symmetry. In the case at hand, the basic idea is that one has to identify
σ with � and one has to make the whole system invariant under transformations of the
same form with � local. We start by calling L0 the Lagrangian which is the sum of the free
electromagnetic and scalar Lagrangians and using the above general observation: under a
local � transformation (σ = �), and up to total derivatives,

δL0 = g�∂µ jµ

N , jµ

N = − i

2

(
�∂µ�̄ − �̄∂µ�

)
. (2.95)

jµ is the on-shell conserved current associated with the global invariance of the Lagrangian.
The Noether method consists in the addition to L0 of terms that will be of higher order

in the constant g to compensate for the above non-vanishing variation. Typically the first
correction will be of the form

L1 = L0 + g Aµ jµ

N . (2.96)

The additional term cancels out the variation of L0 but generates, due to the variation of the
Noether current itself, another term of order O(g2). Up to total derivatives

δL1 = −g2|�|2 Aµ∂µ�. (2.97)

This variation can be exactly canceled out by

L2 = L1 + 1
2 g2|�|2 A2, (2.98)
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which can be rewritten in the standard, manifestly gauge-invariant form

L2 = − 1
4 F2 + 1

2Dµ�Dµ�̄,

Dµ� = (∂µ − ig Aµ)�.
(2.99)

A more interesting example is provided by a set of r vector fields AI
µ with Lagrangian

L0 = + 1
4 gI J f I

µν f J µν, f I
µν = 2∂[µ AI

ν]. (2.100)

Here gI J is a negative-definite constant metric. This Lagrangian is evidently invariant under
r local gauge transformations,

δ� AI
µ = ∂µ�I , (2.101)

because the field strengths are. It is less evident, but equally true, that the above Lagrangian
is invariant under global transformations that form a group G of dimension d such that the
Killing metric of the associated Lie algebra14 is precisely gI J . Under these transformations,
the vector fields transform in the adjoint representation, that is, infinitesimally:

δσ AI
µ = gσ K Adj(TK )I

J AJ
µ, Adj(TK )I

J = fK J
I . (2.102)

These two symmetries form a closed symmetry algebra:

[δ�, δσ ] = δ�′, �I ′ = σ K Adj(TK )I
J �

J . (2.103)

There are d conserved Noether currents jµ

N I associated with the global invariance of G.
Following the general argument, they can be found by performing a local G transformation:

δσ(x)L0 = gσ K ∂µ jµ

N I ,

jµ

N I = f I J K fK µ
ν AJ

ν.
(2.104)

Let us now consider the coupling of d conserved currents jI
µ associated with some other

set of matter fields invariant under global G transformations to the vector fields. As in the
Maxwell case, we add to the action the terms g AI

µ jI
µ and find that the currents are no

longer conserved on-shell because the equations of motion of the fields have changed due
to the new coupling term. As in the Maxwell case, the problem is that we have not taken
into account all the sources of charge, since only the total charge associated with invariance
of G will be conserved once the coupling has been introduced. Thus, we should couple the
vector fields to their own Noether currents. We can forget about the matter fields now and
try to solve the self-consistency problem of the coupling of the vector fields to themselves
by use of the Noether method.

Since Noether currents our found via local G transformations, we look for invariance
under local G transformations of L0. To cancel out δσ(x)L0 we have to do two things: first,
we have to identify �I = σ I and then we have to introduce a correction that is of first order
in g into the Lagrangian that takes the characteristic form

L1 = L0 + g

2
AI

µ jµ

N I . (2.105)

14 See Appendix A for notation and conventions.
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In this way, by enforcing local symmetry we arrive at the same conclusion as before by
physical arguments: we have to add the self-coupling term. This makes sense if the algebra
of the new transformations,

δσ AI
µ = ∂µσ I + gσ K Adj(TK )I

J AJ
µ, (2.106)

closes, as is the case. The new term in the Lagrangian produces a new term of second order
in g in the transformation:

δσL1 = g2 f I J K fM L
K AI

µ AJ
ν AL ν∂µσ M , (2.107)

which can be exactly canceled out by the addition of an O(g2) term that finishes the iterative
procedure:

L2 = L1 − g2

4
f I J K fM L

K AI
µ AJ

ν AL ν AM µ. (2.108)

This Lagrangian can be written in the standard, manifestly gauge-invariant form

L2 = 1
4 gI J F I

µν F J µν,

F I
µν = f I

µν + g fJ K
I AJ

µ AK
ν.

(2.109)

It is customary to use dimensionless gauge parameters. On rescaling σ I → σ I /g we
recover the gauge transformations in the conventions of Appendix A.

In more complicated cases the Noether procedure will require the addition of more cor-
rections both to the Lagrangian and to the field-transformation rules (see e.g. [912]). The
procedure is simplified considerably by using first-order actions [299, 300]. Only in this
way is it possible to find all the corrections to the Fierz–Pauli Lagrangian. This is explained
in Section 3.2.7.



3
A perturbative introduction to general relativity

The standard approach to general relativity (GR) is purely geometrical: spacetime is
curved by its energy content according to Einstein’s equation and test particles move along
geodesics. This point of view is what makes GR a theory completely different from the the-
ories that describe all the other known interactions that are special-relativistic field theories
(SRFTs) that, after quantization, explain the interaction between two charged bodies as the
interchange of quanta of the field.

The enormous success of relativistic quantum field theories with a gauge principle made
it unavoidable to try to find a theory of that kind to describe gravitational interactions at a
classical and quantum level. This path was followed by many people and it was found that
such a theory, whose starting point is the linear perturbation theory of GR (the Fierz–Pauli
theory for a free, massless spin-2 particle), would be self-consistent only after the introduc-
tion of an infinite number of non-linear terms whose summation should be equivalent to the
full non-linear GR theory.1 Thus, this approach may lead to a different justification of Ein-
stein’s theory and provides an alternative interpretation of it that is worth studying.2 Some
of the predictions of GR can be obtained at leading or next to leading order in this approach.
Since this is not the standard approach, there are only a few complete treatments in the liter-
ature: the book [386], based on Feynman’s lectures on gravitation, that also contains many
references, some of which we will follow in Section 3.2; and also Deser’s lectures on the
gravitational field [300]. Reference [30] is also an excellent review with many references.

In this chapter, as a warm-up exercise, we are first going to study the construction of
SRFTs of gravity based on a scalar field. This is the simplest possibility in the search for
a SRFT of the gravitational interaction and it will offer us the possibility of studying, in a
simple setting, problems that we will find later on.

As is well known, scalar theories of gravity predict no global bending of light rays (in
contrast to observation) and a value for the precession of the perihelion of Mercury which

1 There are other alternative special-relativistic field theories for spin-2 particles. See, for example, [659] in
which gravity is based on a massive (with extremely small mass) spin-2 field.

2 Some string theories have a massless spin-2 particle in their spectra. If these string theories are consistent, the
argument we will develop will imply that they contain gravity, which, to the lowest order, will be described
by Einstein’s theory.

45
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is also wrong (in magnitude and sign) and thus we will have to consider the next logical
possibility: a spin-2 field. First, we will have to find a SRFT (the Fierz–Pauli theory) for
the free spin-2 field. Gauge invariance plays a crucial role in the construction of this theory
and we will emphasize it. We will then proceed to introduce the interaction with matter
fields and find the gravitational field produced by a massive point particle. We will imme-
diately show that the interacting theory will be consistent (at the classical level) only if the
gravitational field couples to itself in the same form as that in which it couples to matter:
through the energy–momentum tensor. Making this self-coupling consistent requires an in-
finite number of corrections to the Fierz–Pauli theory. We will try to find the first correction
via the Noether method, meeting the first difficulties in the definition of the gravitational
energy–momentum tensor, of which we will have more to say in Chapter 6. The choice
of energy–momentum tensor, which is usually defined up to the divergence of an antisym-
metric tensor or up to the addition of on-shell-vanishing terms, is crucial in this context,
because different choices lead to different theories with different predictions of the value
for the precession of the perihelion of Mercury [725].

These problems are avoided by the use of Deser’s argument that allows one to find in
just one step both the right energy–momentum tensor for the gravitational field at lowest
order and all the corrections to the Fierz–Pauli theory that convert it into a self-consistent
theory for a self-interacting massless spin-2 particle. This theory is just GR. We will discuss
whether this is the only possible solution to our problem, since Deser’s result shows the
existence of a solution but not its uniqueness.

In any case, this is how we are going to introduce the Einstein equations and the Einstein–
Hilbert action that will be studied in more detail in Chapter 4 and also the action for point-
particles moving in a curved background. We will conclude the chapter by studying the
perturbative expansion of GR (i.e. the interacting Fierz–Pauli theory consistent to a certain
order in the coupling constant) in flat and curved backgrounds for later use.

3.1 Scalar SRFTs of gravity

If we were particle physicists in the pre-Yang–Mills3 era wanting to describe gravity, we
would certainly try to do it (Feynman in [386] or Thirring in [888]) with a relativistic field
theory of a bosonic massless particle (to provide long-range interactions) propagating in
Minkowski spacetime whose interchange would be responsible for the gravitational inter-
action between massive bodies. Which particle? The simplest possibility is that of a scalar
particle (after all, in Newtonian physics, gravity is described by the Newtonian gravitostatic
potential φ alone and there was no hint of the existence of any gravitomagnetic field) and,
for this reason and considering the attractive nature of scalar-mediated interactions (see,
for instance, [867]), scalar SRFTs were the first candidates used to describe relativistic
gravitation.4

3 A different approach to gravity based on the gauge theory of the Poincaré and (anti-)de Sitter groups is also
possible and is described in Chapter 4.5.

4 Scalar theories of gravity were first proposed by Abraham [4–11], Nordström [729–34], and Einstein [352–
4]. (Some old reviews are [12, 635, 645], and a modern review is [736].) They played an important role in
the developments that led Einstein to GR. Our interest in them is purely pedagogical.



3.1 Scalar SRFTs of gravity 47

A free scalar propagating in Minkowski spacetime is described by the action

S =
∫

dd x 1
2(∂φ)2, (∂φ)2 ≡ ηµν∂µφ∂νφ, (3.1)

and has as equation of motion

∂2φ = 0, ∂2 ≡ ηµν∂µ∂ν. (3.2)

The source for the Newtonian gravitational field is the gravitational mass of matter which
is experimentally found to be proportional (equal in appropriate units) to the inertial mass
for all material bodies. In special relativity the inertial mass, the energy, and the momentum
of a physical system are combined into the energy–momentum tensor T µν and, therefore,
the source for the gravitational field will be the matter energy–momentum tensor. This is
an object of utmost importance and was studied in some detail in Chapter 2.

3.1.1 Scalar gravity coupled to matter

From our previous discussion, the source of the scalar gravitational field (the r.h.s. of
Eq. (3.2)) must be a scalar built out of the energy–momentum tensor of the matter fields.
The simplest scalar is the trace Tmatter ≡ Tmatter

µ
µ, and using it, and taking into account all

factors of c, we arrive at the action for matter coupled to scalar gravity

S = 1

c

∫
dd x

{
1

2Cc2
(∂φ)2 + φ

c2
Tmatter + Lmatter

}
, (3.3)

where C is a proportionality constant to be determined. From this action we can derive the
equation of motion for the scalar gravitational field,

∂2φ = CTmatter, (3.4)

and the equation of motion for matter in the gravitational field.
Observe that the conservation of the matter energy–momentum tensor plays no role what-

soever in the construction of this theory. In fact, if it was required in some sense for con-
sistency, we would be in trouble because, after the coupling to the gravitational field, the
matter energy–momentum tensor is no longer conserved: only the total energy–momentum
tensor of the above Lagrangian (the matter energy–momentum tensor, plus the gravitational
energy–momentum tensor, plus an interaction term) is conserved. However, the equation of
motion that we have obtained is perfectly consistent as it stands.

Observe also that nowhere is it required that the energy–momentum tensor is symmetric
(although only its symmetric part contributes to the trace). In fact, there are no conditions
that we can impose on the energy–momentum tensor to select only one out of the infinitely
many possible energy–momentum tensors that we can obtain by adding terms proportional
to the equations of motion or superpotential terms. We can view this as a weakness of
scalar SRFTs of gravity. In the cases that we are going to consider, we will simply take the
canonical energy–momentum tensor obtained from the matter action in its simplest form.

Now, to determine the constant C , we can require φ to be identical to the Newtonian
gravitational potential in the static, non-relativistic limit in which only the Tmatter00 = −ρc2
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component contributes to the trace, ρ being the mass density.5 In this case, the above equa-
tion becomes the Poisson equation,

∂i∂iφ = Cc2ρ, ⇒ C = (d − 3)8πG(d)
N

(d − 2)c2
, (3.5)

where G(d)
N is the d-dimensional Newton constant.6 For a point-particle of mass M at rest

at the origin
ρ = Mδ(d−1)(�xd−1), (3.6)

and

φ = − 16πG(d)
N M

2(d − 2)ω(d−2)

1

|�xd−1|d−3
. (3.7)

This identification will be completely justified if, in the limit considered, φ affects the
motion of matter just as the Newtonian gravitational potential does. Let us consider the mo-
tion of a massive particle in the gravitational field φ. The coupling is given by the above
action. All we need is the action for the free special-relativistic massive point-particle. Since
we are going to make extensive use of this action, we start by reviewing it.

3.1.2 The action for a relativistic massive point-particle

The special-relativistic action for a point-particle of mass M can be written as follows:

Spp[Xµ(ξ)] = −Mc
∫

dξ

√
ηµν Ẋµ Ẋ ν, Ẋµ ≡ d Xµ

dξ
, (3.8)

where ξ is a general parameter for the particle’s worldline. The reality of the action is
related to the fact that usual massive particles move along timelike curves, Ẋµ Ẋµ > 0.
The equations of motion that one derives from it simply express the conservation of the d
components of the linear momentum:

d Pµ

dξ
= 0, Pµ ≡ ∂L

∂ Ẋµ
= −Mc

ηµν Ẋ ν√
ηρσ Ẋρ Ẋσ

. (3.9)

The conservation of the d(d − 1)/2 components of the angular momentum,

Mµν = 2X [µ Pν], (3.10)

follows. The d(d + 1)/2 conserved quantities are, as is well known, associated with the
invariance of the action under global Poincaré transformations of the spacetime coordinates

x ′ µ = �µ
νxν + aµ, �µ

α�
ν
βηµν = ηαβ, (3.11)

5 Notice the minus sign in our conventions.
6 This is an unfortunate convention in the literature in which the factor 4π , which is appropriate for rational-

ized units in four dimensions, is indiscriminately used in all dimensions.
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via the Noether theorem for global transformations: using the infinitesimal form of the
Poincaré transformations,

δxµ = σµ
νxν + σµ, σµν = −σ νµ, (3.12)

we obtain the conservation law

d J (σ )

dξ
= 0, J (σ ) = PµδXµ. (3.13)

The conserved quantity associated with translations is the linear momentum J (σµ) ∼ Pµ

and the conserved quantity associated with Lorentz transformations is the angular momen-
tum J (σµν) ∼ Mµν .

Observe that the invariance of the action is due to the fact that it depends only on the
derivatives of the coordinates. In particular, the Minkowski metric does not depend on
the coordinates. A better way to express this fact is to say that the Minkowski metric has
d(d + 1)/2 independent isometries that generate the d-dimensional Poincaré group. This
association between spacetime isometries and conserved quantities will still hold in more
complicated spacetimes.

This action is also invariant under non-singular reparametrizations of the worldline ξ ′(ξ).
These are local (gauge) transformations that infinitesimally can be written δξ = ε(ξ). Tak-
ing into account that the Xµs are scalars with respect to these transformations, we find

δξ = ε(ξ), δdξ = ε̇dξ, δ̃Xµ = 0, δ Ẋµ = −ε̇ Ẋµ, (3.14)

and it is a simple exercise to check that δ̃S = 0 identically. If we now consider the variation
of the action under just

δXµ = −ε Ẋµ, (3.15)

we find that it is invariant only up to a total derivative

δS =
∫

dξ
d

dξ

(
Mcε

√
ηµν Ẋµ Ẋ ν

)
. (3.16)

On varying the action with respect to general variations of the coordinates first and inte-
grating by parts, we obtain

δS =
∫

dξ

{
ε

δS

δX ν
Ẋ ν + d

dξ

(
Mcε

√
ηµν Ẋµ Ẋ ν

)}
. (3.17)

By equating the two results and taking into account that the equation is valid for arbitrary
functions ε(ξ), we obtain the gauge identity

δS

δX ν
Ẋ ν = 0, ⇒ Ṗν Ẋ ν = 0, (3.18)

which is satisfied off-shell (trivially on-shell). Since Ẋ ν is proportional to the momentum,
this identity is proportional to

d(Pµ Pµ)

dξ
= 0. (3.19)
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Indeed, Pµ Pµ is a constant: using the definition of momentum, we find, without using the
equations of motion, the mass-shell condition

Pµ Pµ = M2c2, (3.20)

and we have just shown that this constraint can be understood as a consequence of repara-
metrization invariance.

There are two special parameters one can use.7 One is the particle’s proper time (or
length) ξ = s, defined by the property

ηµν Ẋµ Ẋ ν = 1. (3.21)

Owing to this definition, the action is usually written as

Spp[X (s)] = −Mc
∫

ds. (3.22)

Although this form is unsuitable for finding the equations of motion, it tells us that the
action of a massive point-particle is proportional to its worldline’s proper length, and the
minimal-action principle tells us that the particle moves along worldlines of minimal proper
length. Observe that, from the quantum mechanics point of view, since the measure in the
path integral is the exponential of

i

�
S = i

Mc

�

∫
ds = i

−λCompton

∫
ds, (3.23)

the proper length is measured in units of the particle’s reduced Compton wavelength.
The second special parameter that we can use is the coordinate time ξ = X0 = cT . This

choice of gauge fixes one of the particle’s coordinates X0(ξ) = ξ . In this gauge (The physi-
cal or static gauge) one can study the non-relativistic limit Ẋ i Ẋ i = (v/c)2 � 1. In this limit
the action (3.8) becomes, up to a total derivative, the non-relativistic action of a particle:

S[Xi (t)] =
∫

dt
[

1
2 Mv2 − Mc2

]
. (3.24)

3.1.3 The massive point-particle coupled to scalar gravity

The coupling to the scalar gravitational field is dictated by the action Eq. (3.3). We compute
the energy–momentum tensor using Rosenfeld’s prescription (Section 2.4.3):

T µν
pp (x) = −Mc2

∫
dξ

Ẋµ Ẋ ν√
ηρσ Ẋρ Ẋσ

δ(d)[X (ξ) − x], (3.25)

which is conserved, as one can prove by using the equations of motion. The trace is iden-
tical to the Lagrangian,8 and thus the action for the coupled particle-plus-gravity system

7 Purists call the same curve with two different parametrizations different curves, but from a physical point of
view they are clearly the same object.

8 Observe that, in the static gauge, the 00 component of this tensor gives Eq. (3.6).
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Eq. (3.3) becomes

S[φ(x), Xµ(ξ)] = 1

Cc3

∫
dd x 1

2(∂φ)2 − Mc
∫

dξ

(
1 + φ(X)

c2

) √
ηµν Ẋµ Ẋ ν. (3.26)

For low speeds, in the static gauge, the second term is

∼
∫

dt { 1
2 Mv2 − Mφ − Mc2}, (3.27)

which confirms the consistency of our identification of φ with the Newtonian potential in
this limit. The complete relativistic action predicts corrections to the Newtonian theory. The
next two terms in the expansion of the relativistic action are∫

dt {− 1
4 Mv2(v/c)2 + 1

2 Mv2φ/c2}. (3.28)

The second term is there also for free particles, but the third represents a relativistic correc-
tion to the Newtonian coupling to the gravitational field. Owing to its sign, if the particle
that acts as source for the scalar gravitational field moves, the kinetic energy contributes to
Tpp with sign opposite to the rest mass and a particle in motion produces (and, therefore,
feels) a weaker gravitational field than when it is at rest. The gravitational field, in fact,
would vanish in the limit in which the particle moves at the speed of light. This also means
that the gravitational field will not affect the motion of particles moving at the speed of
light.

Let us now consider the motion of a second massive particle in the scalar gravitational
field produced by the first particle. Although φ is identical to the Newtonian potential, the
action (just the last term in Eq. (3.26) with φ given by Eq. (3.7)) also predicts corrections
to the Newtonian motion. We will not enter into details, but it can be shown [108] that the
lowest-order correction to the Newtonian orbits of planets is a precession of their perihelion
which is a factor − 1

6 of that predicted by GR (which is experimentally confirmed). This is
a clear drawback for the scalar SRFT of gravity.

With a SRFT of gravity we can also study the effect of gravity on massless particles or
the gravitational field produced by massless particles, which is impossible in Newtonian
gravity. Thus, there is no non-relativistic limit for this problem. First, we need to find an
action for a massless particle.

3.1.4 The action for a massless point-particle

Clearly, the action (3.8) (from now on referred to as a Nambu–Goto-type action9) is not
well suited to take the M → 0 limit. Furthermore, in spite of the straightforward physical
interpretation of the Nambu–Goto-type action, the square root makes it highly non-linear

9 The origin of this action can be traced back to Planck. However, the generalization of this action to one-
dimensional objects was proposed by Nambu and Goto in [714] and [463], respectively, and has inspired
further generalizations for higher-dimensional objects. Hence it has become customary to refer to these kinds
of actions as Nambu–Goto-type actions.
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and it would be desirable to have a different, more linear, action giving the same equations
of motion.

Thus, we are going to propose an equivalent action that we will call a Polyakov-type
action with a new, independent, dimensionless, auxiliary “field10” γ that can be interpreted
as a metric on the worldline. This action is

Spp[Xµ(ξ), γ (ξ)] = − 1
2 Mc

∫
dξ

√
γ

[
γ −1ηµν Ẋµ Ẋ ν + 1

]
. (3.29)

This action is, yet again, invariant under Poincaré transformations of the spacetime coor-
dinates and invariant under reparametrizations of the worldline ξ → ξ ′(ξ) under which γ

transforms as follows:

γ (ξ) = γ ′ [ξ ′(ξ)
](dξ ′

dξ

)2

. (3.30)

The equation of motion of γ is a constraint that simply tells us that γ is, on-shell, the
induced metric on the worldline,

γ = ηµν Ẋµ Ẋ ν. (3.31)

This equation is purely algebraic and can be substituted into the action to eliminate11 γ ,
resulting in the Nambu–Goto-type action Eq. (3.8).

Although equivalent, this action is, however, more versatile: we can obtain from it an
action for a massless particle. For this we first have to rescale γ to γ ′ = M−2c−2γ and then
we can take the limit M → 0. We rescale back to obtain a dimensionless worldline metric
γ ′ = p−2γ̃ (obviously γ̃ cannot be identified with the original γ ), giving

S[Xµ(ξ), γ̃ (ξ)] = − p

2

∫
dξ

√
γ̃ γ̃ −1ηµν Ẋµ Ẋ ν, (3.32)

where p is a constant with dimensions of momentum. In the path integral now the action
(which is no longer the proper length) is measured in de Broglie’s wavelength units p/� =
1/−λdeBroglie associated with the characteristic momentum p.

Now the equation of motion for γ̃ states that the particle’s worldline is light-like:

ηµν Ẋµ Ẋ ν = 0, (3.33)

but this equation cannot be used to eliminate γ̃ from the action as in the massive case.
By definition, the proper length of a massless particle’s worldline is always zero and

cannot be used to parametrize it, but the coordinate time can be used for that purpose.

10 Just a dynamical variable (not a field) of the worldline parameter in the zero-dimensional (point-like) case.
This was first done in [189, 316] for strings. Our discussion follows closely those of standard string-theory
references. See e.g. [39, 473, 609, 673, 779] and also Section 14.1.

11 It is guaranteed that, under these conditions, the equations of motion derived from the resulting action are the
same equations as those one would obtain from the elimination of γ from the original equations of motion.
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3.1.5 The massless point-particle coupled to scalar gravity

We can now try to couple this action to gravity, which is impossible in the Newtonian
theory. The energy–momentum tensor is

T µν
pp = −pc

∫
dξ

√
γ γ −1 Ẋµ Ẋ νδ(d)[X (ξ) − x]. (3.34)

On taking the trace and substituting into Eq. (3.3) we immediately realize that we can
make the coupling to gravity disappear by rescaling the worldline auxiliary metric γ with
a factor (1 + φ(X)/c2)− 1

2 . In other words: there is no coupling of a massless particle to
scalar gravity. This was to be expected: we have already mentioned the weakening of the
scalar gravitational interaction of a massive particle when we increase the speed. On the
other hand, the trace of the energy–momentum tensor of a massless particle above vanishes
on-shell.

We know, however, that the light of stars passing near the Sun is bent by its gravitational
field. This is the second drawback of this theory.

We could also have used the Maxwell action and the energy–momentum tensor

Smatter = 1

c

∫
dd x {− 1

4 F2}, Tmatter µν = Fµ
ρ Fνρ − 1

4ηµν F2, (3.35)

to study the coupling of the scalar gravitational field to massless particles (fields). On taking
the trace and substituting into Eq. (3.3) we find the action

S = 1

c

∫
dd x

{
1

2Cc2
(∂φ)2 − 1

4

[
1 + d − 4

4
φ/c2

]
F2

}
. (3.36)

In d = 4 (but only in d = 4!) the Maxwell energy–momentum tensor is traceless and
there is no coupling to the scalar gravitational field, as expected. In other dimensions,
though, there is interaction, in contradiction with the absence of gravitational interaction
for massless particles. This apparent paradox can be avoided by the use of the traceless
energy–momentum tensor Eq. (2.82). This energy–momentum tensor is not invariant under
gauge transformations of the vector field, but, since only its trace enters the Lagrangian, the
whole theory is gauge-invariant and, simply, there is no interaction.

3.1.6 Self-coupled scalar gravity

So far, we have found several serious problems hindering this theory from describing grav-
ity realistically and we could simply abandon scalar theories of gravity as hopeless and try
the next candidate for a SRFT of gravity. However, before we do, we want to introduce,
for illustrative purposes, a possible modification of this theory that cannot fix most of the
problems encountered, but is the answer to a legitimate question: does gravity couple to
all forms of matter/energy including gravitational energy or only to non-gravitational ener-
gies? In the theory we have constructed, gravity does not couple to itself. However, since
gravitational energy can be transformed into other forms of energy and vice-versa, it would
be reasonable to expect that gravity couples to all forms of energy equally. Can we modify
our theory so as to fulfill this expectation?
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We are looking for a theory with the equation of motion

∂2φ = CT, (3.37)

where T is the trace of the total energy–momentum tensor, which should include contribu-
tions from the scalar gravitational field, matter fields, and interaction terms. The energy–
momentum tensor of φ in the free theory is quadratic in ∂φ. To obtain it on the r.h.s. of the
equation of motion, we must add to the Lagrangian a term of the form φ(∂φ)2. However,
this term will also contribute to the new energy–momentum tensor, and, to produce it on
the r.h.s. of the new equation of motion, we need a term φ2(∂φ)2 in the Lagrangian, and so
on. Thus, we need to introduce an infinite number of corrections to the scalar Lagrangian.

As for the interaction terms, they contain the trace of the matter energy–momentum
tensor, and thus we need to make some assumption about the form of the matter Lagrangian
in order to make some progress: we will take it to be of the form

Lmatter = K − V, (3.38)

where K is quadratic in the first partial derivatives of the matter fields and V is just a
function of the fields. This implies that

Tmatter = (d − 2)K − dV, (3.39)

and the action Eq. (3.3), which we can consider the lowest order in an expansion in small
φ, takes the form

S = 1

c

∫
dd x

{
1

2Cc2
(∂φ)2 +

(
1 + d − 2

c2
φ

)
K −

(
1 + dφ

c2

)
V

}
. (3.40)

It is reasonable to expect that the full action, with all the φ corrections, takes the form

S = 1

c

∫
dd x

{
1

2Cc2
f (φ)(∂φ)2 + g(φ)K − h(φ)V

}
, (3.41)

where f, g, and h are functions of φ to be found by imposing the condition that the equation
of motion of φ can be written in the form Eq. (3.37), where T is the trace of the total
energy–momentum tensor of the above Lagrangian, which is easily found to be

T = (d − 2)
1

2Cc2
f (φ)(∂φ)2 + (d − 2)g(φ)K − dh(φ)V . (3.42)

The φ equation of motion coming from Eq. (3.41) is

∂2φ = − 1
2( f ′/ f )(∂φ)2 + Cg′/( f K ) − Ch′/( f V ), (3.43)

and, on comparing this with Eqs. (3.37) and (3.42), one finds

f = 1

a + [(d − 2)/c2]φ
, g = f/b, h = ( f/e)

d
d−2 , (3.44)
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where a, b, and e are integration constants. If we want to recover Eq. (3.40) in the weak-
field limit, we have to take a = b = e = 1. Then, we have succeeded and we have found the
action

S = 1

c

∫
dd x

{
1

2Cc2

(∂φ)2

1 + [(d − 2)/c2]φ
+

[
1 + d − 2

c2
φ

]
K −

[
1 + d − 2

c2
φ

] d
d−2

V

}
,

(3.45)

that gives rise to the equation of motion Eq. (3.37) with T , the trace of the total energy–
momentum tensor corresponding to the above action, given by

T = d − 2

2Cc2

(∂φ)2

1 + [(d − 2)/c2]φ
+ (d − 2)

[
1 + d − 2

c2
φ

]
K − d

[
1 + d − 2

c2
φ

] d
d−2

V .

(3.46)

This result was presented in [405] and [306], but the theory obtained is the one proposed
by Nordström back in 1913 in [730, 731] in terms of different variables: on introducing

� ≡ c2

[
1 + d − 2

c2
φ

] 1
2

, (3.47)

the action Eq. (3.45) takes the form

S = 1

c

∫
dd x

{
2

(d − 2)2Cc2
(∂�)2 + [�/c2]2 K − [�/c2]

2d
d−2 V

}
. (3.48)

In the case in which V = 0, taking into account Eq. (3.5), the equation of motion can be
written in the standard form

∂2� = (d − 3)4πG(d)
N

c2
� T (0)

matter, (3.49)

where T (0)
matter is the trace of the matter energy–momentum tensor obtained from the uncou-

pled Lmatter. In Nordström’s theory, this is the equation valid in all cases (V 	= 0).
In this form it is very difficult to see that the theory has the property we wanted (that the

source for the gravitational scalar field is the trace of the total energy–momentum tensor).
There is yet another way of rewriting this theory, which was found by Einstein and

Fokker [365]. This was one of Einstein’s first attempts at building a relativistic theory
of gravity in which the gravitational field is represented by a metric, as suggested by
Grossmann.

3.1.7 The geometrical Einstein–Fokker theory

The Einstein–Fokker theory is based on a conformally flat metric,

gµν ≡ [�/c2]
4

d−2 ηµν. (3.50)
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Only the conformal factor � is dynamical. The equation of motion for the metric (i.e. for
�) is

R(g) = (d − 1)(d − 3)

d − 2

16πG(d)
N

c2
Tmatter, (3.51)

where R(g) is the Ricci scalar for the metric gµν and Tmatter is calculated from the canonical,
special-relativistic fully covariant energy–momentum tensor Tmatter µν , by contracting both
indices with gµν .

Alternatively, the Einstein–Fokker theory can be formulated by giving the above equation
for an arbitrary metric, but adding another equation,

Cµν
ρσ (g) = 0, (3.52)

where Cµν
ρσ is the Weyl tensor. This equation implies that the metric is conformally flat

and can be written, in appropriate coordinates, in the form (3.50).
Using the formulae in Appendix E, we find

R(g) = 4(d − 1)

d − 2
[�/c2]−

d+2
d−2 ∂2[�/c2]. (3.53)

This, together with

Tmatter = [�/c2]−
4

d−2 T (0)
matter, (3.54)

gives Eq. (3.49).
Einstein and Fokker did not give a Lagrangian for gravity coupled to matter, and there-

fore they had to postulate how gravity affects the motion of matter. Here, the power of
the Einstein–Fokker formulation of Nordström’s theory becomes manifest: Einstein and
Fokker suggested replacing the flat spacetime metric ηµν by the conformally flat metric
gµν everywhere in the matter Lagrangian. This prescription can be used in most matter
Lagrangians (not involving spinors). For instance, for the massive particle, it leads to

Spp[Xµ(ξ)] = −Mc
∫

dξ

√
gµν(X)Ẋµ Ẋ ν

= −Mc
∫

dξ [�(X)/c2]
2

d−2

√
ηµν Ẋµ Ẋ ν (3.55)

∼ −Mc
∫

dξ [1 + φ(X)/c2 + · · ·]
√

ηµν Ẋµ Ẋ ν,

which is, to lowest order in φ, our old result. In general, the equation of motion simply tells
us that massive particles move along timelike geodesics with respect to the metric gµν . This
is a very powerful statement that goes far beyond Nordström’s original theory.

For the massless particle, we also find that the coupling can again be absorbed into the
worldline auxiliary metric. There is no bending of light in this theory. However, one can ar-
gue [349] that, although there is no global bending, there is local bending of light rays. As
explained in [349], local bending is a kinematical effect associated with accelerating refer-
ence frames and occurs, via Einstein’s equivalence principle of gravitation and inertia (to be
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discussed in Section 3.3), in any theory, independently of any equation of motion. Global
bending is an integral of local bending, depending on the conformal spacetime structure,
which depends on the specific equations of motion of each theory. The contribution of lo-
cal bending to global bending is just half the value predicted by GR and is experimentally
confirmed. In scalar gravity, this contribution is canceled out.

3.2 Gravity as a self-consistent massless spin-2 SRFT

In the previous section we have seen that the simplest possible SRFT of gravity, scalar
gravity, is not a good candidate since it does not pass two of the classical tests: bending
of light and precession of the perihelion of Mercury. Apart from this, the theory did not
have consistency problems regarding coupling to matter12 or to the gravity field itself but,
precisely because of this, there was a lot of freedom in choosing the energy–momentum
tensor which could be the matter energy–momentum tensor or the total energy–momentum
tensor. We argued that this could be considered a weakness of the theory.

Now we have to try the next simplest possibility. Excluding a vector field (a spin-1 par-
ticle) because it leads to repulsion between like charges, the next possibility is that gravity
is mediated by a massless spin-2 particle (the graviton).

The field that describes a spin-2 particle is a symmetric two-index Lorentz tensor hµν

whose indices are raised and lowered with the Minkowski metric ηµν (this is a SRFT). For
the free field hµν , one can try the equation of motion [151, 152] (see also [83, 84, 153, 711]

∂2hµν = 0. (3.56)

Things are, however, not that simple. On the one hand, this theory does not have positive-
definite energy unless one imposes a consistency condition:

∂µ
(
hµν − 1

2ηµνhρ
ρ

) = 0, (3.57)

as pointed out by Weyl in [951]. On the other hand, the field hµν describes many more
helicity states than those of a massless spin-2 particle (a symmetric hµν has d(d + 1)/2
independent components, some of which describe spin-1 and spin-0 helicity states) and
therefore the equations of motion of this field should be such that, on-shell, it describes
only the d(d − 3)/2 helicity states that a massless spin-2 particle has in d dimensions (two
in four dimensions: sz = −2, +2).

These two problems are related since the negative contribution to the energy comes pre-
cisely from some of the unwanted helicities which are eliminated when one imposes the
above condition (which we will later call the De Donder13 gauge condition [296]). To
eliminate all the helicities not corresponding to the spin-2 particle we want to describe, we
have to impose another condition,

hµ
µ = 0. (3.58)

12 We saw, however, that there was some disagreement between the effect of gravity on massless fields and the
effect on massless particles.

13 Also known in the literature as the harmonic or Hilbert [888], Hilbert–Lorentz [739], or Einstein gauge
condition.
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Actually, the correct way of arriving at these two conditions is to introduce into the theory
some kind of gauge freedom so that ∂µ

(
hµν − 1

2ηµνhρ
ρ

)
and hµ

µ can take arbitrary values,
in particular zero. However, let us accept for the moment the theory given by Eq. (3.56)
supplemented by the conditions Eqs. (3.57) and (3.58) and let us now consider the coupling
to matter. As in any SRFT of gravitation, matter must couple to gravity through the energy–
momentum tensor. The l.h.s. of the equation of motion has two free indices and, therefore,
it is natural to expect the matter energy–momentum tensor on the r.h.s., that is14

∂2hµν = χT µν
matter, (3.59)

where χ is a coupling constant whose dimensions and value we will discuss later. As op-
posed to the scalar case, this equation (which still has to be supplemented by Eqs. (3.57) and
(3.58)) does impose consistency conditions on the matter energy–momentum tensor. First,
it has to be symmetric because the l.h.s. is. Second, it has to be divergence-free (conserved),
because the l.h.s. is, as a result of the supplementary conditions imposed on hµν . Both con-
ditions are satisfied by the Belinfante or Rosenfeld energy–momentum tensors and by an
infinite number of tensors obtained from these by adding a superpotential correction that
does not modify their symmetry. Nevertheless, it is clear that this is a theory with a structure
tighter than the scalar one and it is encouraging to find that the consistency of the theory
imposes physically meaningful conditions on the energy–momentum tensor. All this makes
it worth studying.

Of course, we want to find the gauge-invariant equations of motion (or Lagrangian) and
the gauge transformations which allow us to impose the conditions Eqs. (3.57) and (3.58)
and arrive at Eq. (3.59). These equations of motion must necessarily be of the form

Dµν(h) = χT µν
matter, (3.60)

where, now, by consistency with the conservation of the matter energy–momentum tensor,
the wave operator Dµν(h) should also be divergenceless, viz.

∂µDµν(h) = 0, (3.61)

off-shell, i.e. independently of the equations of motion (which, in vacuum, should have the
form Dµν(h) = 0). In other words, the theory has to have the above property as a Bianchi or
gauge identity. This kind of identity can be derived from theories with a gauge symmetry
according to the general procedure outlined in Chapter 2 and, if we obtain a theory with
this property (which is easier to do), we will most surely have obtained a theory with the
gauge symmetry needed to remove the unwanted degrees of freedom.

The problem of finding a theory with these properties, a theory for a massless spin-2
particle, was solved by Fierz and Pauli in [388] and it was studied again by Ogievetsky and
Polubarinov in [739] in a more general setting, including possible self-interactions of the
gravitational field.

The matter energy–momentum tensor in Eq. (3.60) is calculated from the free mat-
ter field theory. When it is coupled to gravity, only the total (matter plus gravity)

14 Certainly, there are other possibilities: we can add to the r.h.s. terms like ηµνT ρ
matter ρ . However, these

possibilities are inconsistent with the supplementary conditions Eqs. (3.57) and (3.58).
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energy–momentum tensor is conserved. This is the inconsistency problem of this SRFT
of gravity (see, for instance, [707]). Then, we should add, at least, the gravitational energy–
momentum tensor calculated from the Lagrangian from which we derived Eq. (3.60) to
the r.h.s. of Eq. (3.60), for consistency. However, if we want to derive the new equation of
motion from a Lagrangian, we need to add to the old Lagrangian a cubic term, which, in
turn, will introduce a correction to the gravitational energy–momentum tensor. If we add
this correction to the r.h.s. of Eq. (3.60), we will have to add a further correction to the
Lagrangian, and so on. The coupling to matter requires an infinite number of corrections to
the free spin-2 (Fierz–Pauli) theory.

The problem of consistent self-interaction of the gravitational field is of great importance
and was studied in [488, 489, 638, 639], where Gupta and Kraichnan pointed it out for the
first time; in the classical works of Feynman and Thirring [386, 888] in which the first
correction to the free equation of motion was found and used to calculate the precession
of the perihelion of Mercury;15 in [965]; in the works of Weinberg [941, 942], in which it
was shown that a quantum theory of a massless spin-2 particle can have a Lorentz-invariant
quantum S matrix only if it couples to the total energy–momentum tensor; in Deser’s paper
[299], in which it was shown that GR can be seen as the result of adding this infinite number
of corrections;16 in Boulware and Deser’s paper [176], in which Weinberg’s result was
completed by a determination of the form of the gravitational energy–momentum tensor to
which gravity itself would couple in a consistent quantum theory, which was found to be,
in the long-wavelength limit, the one predicted by GR; in [270, 378, 525, 526, 933, 934],
in which general, consistent, non-linear theories of a spin-2 particle were investigated with
the conclusion that the only possible symmetries of these theories were “normal spin-2
gauge invariance” (to be defined later) and general covariance and, more recently, in [174],
in which an alternative theory for a d = 3 spin-2 particle was found.

In this section we are going to study the Fierz–Pauli theory and its gauge symmetry.
Then, we will couple it to matter and we will find the predictions for the bending of light
by gravity and the precession of the perihelion of Mercury. The latter will come out with
the wrong value and we will see the need to introduce corrections into the theory, as the
inconsistency problem suggests. We will try to envisage a systematic way of introducing
these corrections on the basis of the Noether method explained in the previous chapter.
Then, we will spend some time trying to find the first correction (i.e. the gravitational
energy–momentum tensor) for various methods and we will calculate the corresponding
correction to the precession of the perihelion of Mercury, discovering that the Belinfante–
Rosenfeld energy–momentum tensor (employed by Thirring in [888], does not give the
right result, whereas the one used in GR does. We will then use Deser’s procedure to find a
theory that is consistent to all orders. This theory that is will turn out to be GR, which we
will introduce in the following section.

Before proceeding to the construction of the Fierz–Pauli theory, it is worth studying a
simpler example of the relation among gauge symmetry, Bianchi (gauge) identities, and
conserved charges in the SRFT of a spin-1 particle.

15 Thirring’s result is actually wrong [725], as we will see.
16 This result was extended in [301] to general vacua.
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3.2.1 Gauge invariance, gauge identities, and charge conservation
in the SRFT of a spin-1 particle

A massive or massless spin-1 particle is described by a vector field Aµ. The simplest rela-
tivistic wave equation we could imagine for it would be(

∂2 + m2
)

Aµ = 0. (3.62)

However, the energy density of this theory is not positive-definite unless one imposes the
Lorentz or transversality condition

∂µ Aµ = 0. (3.63)

Furthermore, just as in the spin-2-particle case, the vector Aµ describes spin-1 helic-
ity states but also spin-0 helicity states. A d-dimensional vector field has d independent
components, but a massive spin-1 particle in d dimensions has d − 1 states (three in
d = 4: sz = −1, 0, 1) and a massless spin-1 particle has d − 2 helicity states (two in d = 4:
sz = −1, +1). It is precisely the unwanted spin-0 helicity states that contribute negatively
to the energy and the Lorentz condition projects them out.

If we couple the massless theory to charged matter, by Lorentz covariance, this has to be
described by a vector current jµ, so we have

∂2 Aµ = jµ (3.64)

and, by consistency with the Lorentz condition, the vector current has to be conserved,
∂µ jµ = 0, which is, again, a physically meaningful condition that coincides with our expe-
rience with electric charges and currents.

We would like to construct a theory in which the Lorentz condition arises as a conse-
quence of the equation of motion in the massive case and in which ∂µ Aµ is completely
arbitrary in the massless case. These conditions guarantee the removal of the unwanted
helicities. We expect the equation of motion to be of the form

Dµ(A) + m2 Aµ = jµ, (3.65)

where, now, by consistency, the massless wave operator Dµ(A) has to satisfy off-shell the
identity

∂µDµ(A) = 0, (3.66)

which should arise as the gauge identity associated with some gauge symmetry.
We could proceed as in [739], translating these conditions into a gauge identity for a

general Lagrangian and then trying to find, with as much generality as possible, a gauge
symmetry (forming a group) leading to that gauge identity. As is well known, the result is
the Proca Lagrangian and equation of motion,

S[A] =
∫

dd x

[
− 1

4 F2 + m2

2
A2

]
,

(3.67)

Dµ

(m)(A) = Dµ(A) + m2 Aµ = 0,

where
Dµ(A) ≡ ∂µFµν, Fµν = 2∂[µ Aν], (3.68)
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which, in the m = 0 limit, reduce to Maxwell’s Lagrangian and Maxwell’s equation. Owing
to the antisymmetry of Fµν , the massless wave operator does indeed have the off-shell
property Eq. (3.66), which implies, in turn, Eq. (3.63) in the massive case, as we needed in
order to obtain a positive-definite energy and to eliminate the spin-0 degree of freedom. In
turn, the massless theory is easily seen to be invariant under gauge transformations,

δAµ = ∂µ�(x). (3.69)

Given any Aµ, we can gauge-transform it into another A′ µ satisfying Lorentz’s condition:
it is enough to choose a gauge parameter � that is a solution of ∂2� = −∂µ Aµ. Lorentz’s
condition does not completely fix the gauge: there are many potentials Aµ that satisfy that
gauge condition and are related by non-trivial gauge transformations (those with parame-
ter satisfying ∂2� = 0). To fix the gauge invariance completely, it is necessary to impose
another gauge condition. This is why this gauge symmetry reduces to d − 2 the number
of degrees of freedom described by a massless vector field, just as we needed in order to
describe just the spin-1 case.

Furthermore, as we expected, the identity Eq. (3.66) is related to the above gauge sym-
metry via Noether’s theorems. Let us follow Chapter 2: we know that the Maxwell action

S[A] =
∫

dd x
{− 1

4 F2
}

(3.70)

is exactly invariant under gauge transformations because Fµν is. Thus,17

δS =
∫

dd x
{−Fµν∂µδAν

}
=

∫
dd x

{
Dµ(A)δAν − ∂µ(FµνδAν)

}
=

∫
dd x

{−∂µDµ(A)� − ∂µ(Fµν∂ν� − Dµ(A)�)
}
. (3.71)

Now we argue as follows: if the gauge parameter �(x) and its derivatives vanish on the
boundary, the integral of the total derivative term is zero. Since the variation is zero for any
�, then ∂µDµ(A) = 0. This is the gauge identity. Now that we know it always holds, we
can consider more general gauge parameters and the invariance of the action implies that

∂µ jµ

N2(�) = 0, jµ

N2(�) = jµ

N1(�) − Dµ(A)�, jµ

N1(�) = Fµν∂ν�. (3.72)

jµ

N1(�) and jµ

N2(�) are Noether currents associated with the gauge parameter �. jµ

N1(�)

is conserved only on-shell but jµ

N2(�) is automatically conserved (i.e. off-shell). On-shell
they are evidently identical. Furthermore, as can easily be checked in this case, the Noether
current jµ

N2(�) associated with a gauge symmetry enjoys another property [110]: it is al-
ways the divergence of an antisymmetric tensor. In this case

jµ

N2(�) = ∂ν jνµ

N2 (�), jνµ

N2 (�) = −Fνµ�. (3.73)

17 We write here δ instead of δ̃ because these transformations do not involve any coordinate transformation and
the two variations are identical.
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The conserved charge, which can be written covariantly, up to normalization, as

q(�) ∼
∫

Vt

dd−1�µ jµ

N2(�), (3.74)

where Vt is a spacelike hypersurface (a constant time slice for some time coordinate), can
be reexpressed as an integral over the boundary of Vt , i.e. a surface integral over an Sd−2

sphere at infinity in d-dimensional Minkowski spacetime:

q(�) ∼ 1

2

∫
Sd−2∞

dd−2�µν jνµ

N2 (�) = − 1
2

∫
Sd−2∞

dd−2�µν Fνµ�. (3.75)

For � = 1 or any �(x) that goes to 1 at spatial infinity, q(�) is just the electric charge. In
differential-form language

q =
∫

∂�

�F. (3.76)

For later use, it should be noted that, as a matter of fact, the massless theory could have
been found by this simple procedure: write the most general Lorentz-invariant Lagrangian
quadratic in derivatives of Aµ with arbitrary coefficients a and b:

S[A] =
∫

dd x {a∂µ Aν∂
µ Aν + b∂µ Aν∂

ν Aµ}, (3.77)

and impose on the equations of motion the gauge identity Eq. (3.66). This fixes a = −b
and, on choosing the overall normalization suitably, one obtains Maxwell’s Lagrangian.
Then we can immediately find the gauge symmetry that leaves it invariant.

How would the presence of sources modify these results? Essentially in no way, but we
have to be a bit more careful. First of all, under a gauge transformation, the first variation
of the action with sources

Sj [A] =
∫

dd x
{− 1

4 F2 − Aµ jµ
}

(3.78)

is

δSj =
∫

dd x
{
�∂µ jµ − ∂µ (� jµ)

}
, (3.79)

and we have invariance up to a total derivative only if the source current is conserved.
Conservation is also required by consistency of the equation of motion

Dµ(A) = jµ. (3.80)

On the other hand, we can vary the action as before: first under a general variation δAµ and
then using the form of the gauge transformation:

δSj =
∫

dd x
{−Fµν∂µδAν − δAν jν

}
=

∫
dd x

{[
Dµ(A) − jµ

]
δAν − ∂µ(FµνδAν)

}
(3.81)

=
∫

dd x
{−∂µ

[
Dµ(A) − jµ

]
� − ∂µ

{
Fµν∂ν� − [

Dµ(A) − jµ
]
�

}}
.
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The two forms of the variation of the action are identical. By identifying them we arrive
at the same results as in the sourceless case because the source terms cancel each other out.

3.2.2 Gauge invariance, gauge identities, and charge conservation
in the SRFT of a spin-2 particle

Inspired by the lessons learned in finding the SRFT of a spin-1 particle, we return to the
spin-2 theory. We could follow [739] and try to determine the most general theory with
the required properties, including non-linear couplings and transformations. Instead, since
we want to start with a linear theory (which will be adequate for a free spin-2 particle), we
are going to use the shortcut we used in the massless spin-1 case: construct the most general
(up to total derivatives) Lorentz-invariant action that is quadratic in ∂ρhµν and impose the
gauge identity Eq. (3.61). This should determine the action for the massless theory up to
total derivatives and overall normalization and we can then search for the gauge invariance
which the theory surely enjoys and prove that it is enough to eliminate the unwanted degrees
of freedom. Then we can add terms polynomial in hµν in order to find the action for the
massive theory.

There are only four different possible terms in the Lagrangian up to total derivatives. We
can write all of them with unknown coefficients,

S =
∫

dd x
{
a∂ρhµν∂ρhµν + b∂µhνρ∂νhµρ + c∂µh∂λhλµ + d∂µh∂µh

}
, (3.82)

where we use the standard notation h for the trace of hµν ,

h ≡ hµ
µ. (3.83)

We normalize the kinetic term canonically18 by setting a = + 1
4 , and then easily find that the

equations of motion will satisfy Eq. (3.61) if b = − 1
2 , c = 1

2 , and d = − 1
4 , so the action

we are looking for is the Fierz–Pauli action [388]

S =
∫

dd x
{

1
4∂

µhνρ∂µhνρ − 1
2∂

µhνρ∂νhµρ + 1
2∂

µh∂λhλµ − 1
4∂

µh∂µh
}
. (3.84)

We want the above action to be dimensionless in natural units � = c = 1. The field hµν has
to have the dimensions of L− d−2

2 . Then, since the energy–momentum tensor has the same
dimensions as the Lagrangian, Eq. (3.60) implies that χ has the inverse dimensions of hµν ,
so χhµν is dimensionless.

The corresponding divergenceless equations of motion are

δS

δhµν

≡ − 1
2Dµν(h),

Dµν(h) = ∂2hµν + ∂µ∂νh − 2∂λ∂(µhν)λ − ηµν

(
∂2h − ∂λ∂σ hλσ

) = 0.

(3.85)

18 That is, SFP = ∫
dd x

{
+ 1

4∂t hi j ∂t hi j + · · ·
}

.
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By subtracting the trace of this equation we can simplify it without any loss of information:

D̂µν(h) ≡ Dµν(h) − 1

d − 2
ηµνDρ

ρ(h) = ∂2hµν + ∂µ∂νh − 2∂λ∂(µhν)λ = 0. (3.86)

Sometimes the equation of motion (3.85) is written in terms of the convenient variable h̄µν :

Dµν(h̄) = ∂2h̄µν − 2∂λ∂(µh̄ν)λ + ηµν∂λ∂σ h̄λσ = 0, (3.87)

where
h̄µν ≡ hµν − 1

2ηµνh. (3.88)

Finally, we can write the Fierz–Pauli wave operator as the divergence of a tensor ηµνρ ,

Dνρ(h) = 2∂µηνρµ, (3.89)

but the tensor ηµνρ is not uniquely defined. Some possible candidates are

η
νρµ

T = η
(νρ)µ

T = −∂σ Hµσνρ,

η
νρµ

LL = η
ν[ρµ]
LL = −∂σ K νσρµ,

η
νρµ

AD = η
[ν|ρ|µ]
AD = −∂σ K νµρσ ,

(3.90)

where
K µνρσ = 1

2

[
ηµσ h̄νρ + ηνρ h̄µσ − ηµρ h̄νσ − ηνσ h̄µρ

]
,

Hµσνρ = 1
2

[
ησρ h̄µν + ησν h̄µρ − ηνρ h̄µσ − ηµσ h̄νρ

]
, (3.91)

H is symmetric in the last two indices and K is antisymmetric. In fact, K has exactly the
same symmetries as the Riemann tensor (in the Levi-Cività case).

On the other hand, η
µνρ

T has the defining property

∂LFP

∂∂µhνρ

= η
νρµ

T , (3.92)

for the Fierz–Pauli Lagrangian written in Eq. (3.84).
Using any of the last two ηνρµs, the fact that the Fierz–Pauli wave operator Dµν(h) is

divergenceless becomes manifest.
Let us now determine the gauge symmetry of the Fierz–Pauli Lagrangian. Under a gen-

eral variation of hµν , the variation of the action is, up to a total derivative,

δSFP = − 1
2

∫
dd x Dµνδhµν. (3.93)

If δhµν is a gauge transformation, we know that, up to total derivatives, the integrand of the
variation of the action has to be proportional to the gauge identity Eq. (3.61), i.e.∫

dd x Dµνδhµν ∼
∫

dd x ∂µDµνεν, (3.94)

(the gauge parameter εµ(x) has to be a local Lorentz vector). On integrating the r.h.s. by
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parts, and choosing a convenient normalization, we find the gauge transformation

δεhµν = −2∂(µεν). (3.95)

We can now check directly that the Fierz–Pauli Lagrangian is invariant under these trans-
formations:

δSFP =
∫

dd x
∂LFP

∂∂µhνρ

∂µδhνρ = −
∫

dd x∂σ Hµσνρ∂µδhνρ. (3.96)

Here we have used Eqs. (3.90) and (3.92). On integrating by parts and using the explicit
form of the variation, we have

δSFP =
∫

dd x
∂LFP

∂∂µhνρ

∂µδhνρ =
∫

dd x
{
∂σ [2Hµσνρ∂µ∂νερ] − 2Hµσνρ∂σ ∂µ∂νερ

}
. (3.97)

The second term vanishes identically and the action turns out to be invariant up to a total
derivative (the first term).

To complete our program for the massless spin-2 theory, it remains only to show that,
using this gauge symmetry, we can remove 2d of the d(d + 1)/2 independent components
of hµν to leave only the d(d − 3)/2 degrees of freedom of a massless spin-2 particle in d
dimensions. The counting of degrees of freedom in a gauge theory is not straightforward.
See e.g. [530] for simple rules, but one can show that, using the gauge transformations
(3.95), one can indeed eliminate 2d components (set them to a given value by fixing the
gauge).

There are two popular gauges: the transverse, traceless gauge

∂µhµν = h = 0, (3.98)

which automatically leads to the equation of motion

Dµν(h) = ∂2hµν = 0 (3.99)

typical of a massless field, and the De Donder or harmonic gauge

∂µh̄µν = 0, (3.100)

which leads to
Dµν(h) = ∂2h̄µν = 0. (3.101)

The traceless transverse gauge implies the De Donder gauge but not conversely. The
transverse, traceless condition does not completely fix the gauge, since it is preserved by
gauge transformations with εµ = ∂µε and ∂2ε = 0.

After the identification of the gauge symmetry of the massless theory, the next step in our
program is finding the massive theory. We need to modify the massless equation of motion
so that it gives the equation of motion(

∂2 + m2
)
hµν = 0, (3.102)

plus the De Donder and traceless conditions. These d + 1 constraints leave only the
(d − 2)(d + 1)/2 degrees of freedom of the massive spin-2 particle in d dimensions (five in
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d = 4: ss = −2, −1, 0, +1, +2). We know that the massless wave operator is transverse due
to a Bianchi identity. Thus, we know that we have to add a term −m2hµν to it. This is not
enough, though: if we take the trace we find

∂2h − m2

d − 2
h − ∂µ∂νhµν = 0. (3.103)

This equation would give h = 0 if, instead of having just transversality, we had ∂µhµν =
∂νh and then we would recover transversality. Thus, we add a term +m2(hµν − ηµνh) and
obtain the massive Fierz–Pauli action and equation [388]

S =
∫

dd x
{

1
4∂

ρhµν∂ρhµν − 1
2∂

ρhµν∂µhρν + 1
2∂

µh∂λhλµ − 1
4∂

µh∂µh

− 1
4 m2

(
hµνhµν − h2

)}
, (3.104)

Dµν

(m)(h) = Dµν(h) + m2
(
hµν − ηµνh

) = 0, (3.105)

from which we obtain, as expected,

h = 0, ∂µhµν = 0,
(
∂2 + m2

)
hµν = 0. (3.106)

To finalize our study of the free Fierz–Pauli theory, we can use the gauge symmetry to
derive conserved currents along the path set out in Chapter 2. We have already calculated
the direct variation of the Fierz–Pauli action under gauge transformations and have found
invariance up to a total derivative. We now calculate the variation of the Fierz–Pauli ac-
tion by performing first a general variation δhµν , obtaining (after integration by parts) a
total derivative term and the term proportional to δhµν whose coefficient is the equation of
motion:

δSFP =
∫

dd x

{
∂µ

[
∂LFP

∂∂µhνρ

δhνρ

]
− ∂µ

∂LFP

∂∂µhνρ

δhνρ

}

=
∫

dd x
{
∂µ

[
2∂σ Hµσνρ∂νερ

] − Dνρ(h)∂νερ

}
, (3.107)

where we have used the explicit form of the gauge transformation. On integrating again by
parts, we obtain the second form of the variation of the action,

δSFP =
∫

dd x
{
∂µ

[
2∂σ Hµσνρ∂νερ + Dµρ(h)ερ

] − ∂νDνρ(h)ερ

}
. (3.108)

By identifying the two forms of the variation of the action and reasoning as in the Maxwell
theory, we find the Bianchi identity (the terms proportional to the gauge-transformation
parameter) Eq. (3.61) and the conserved current:

jµ

N2(ε) = jµ

N1(ε) + Dµν(h)εν,

jµ

N1(ε) = 2∂σ Hµσνρ∂νερ − 2Hσµνρ∂σ ∂νερ.
(3.109)
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Using η
µνρ

AD in Eq. (3.90), we can write the Fierz–Pauli wave operator as

Dµν(h) = −2∂σ ∂λK µλρσ , (3.110)

and, on substituting this into jµ

N2(ε) above and making the obvious manipulations, it takes
the form

jµ

N2(ε) = ∂ν

{−2∂σ K µνρσ ερ + 2(Hµνσρ + K µσρν)∂σ ερ

}
− 2

{
K µνρδ + Hµδνρ + H δµνρ

}
∂δ∂νερ. (3.111)

The second term in brackets is antisymmetric in δν and vanishes. Then, we can write19

jµ

N2(ε) = ∂ν jνµ

N2 (ε),

jνµ

N2 (ε) = −2∂σ K µνρσ ερ + 2(Hµνσρ + K µσρν)∂σ ερ.
(3.112)

We can now use this expression to calculate conserved charges associated with the gauge
parameters εµ. Observe that the term proportional to H vanishes for ε that are Killing
vectors of the Minkowski spacetime. We will come back to this point in Chapter 6.

The interpretation of the corresponding conserved charges is more complicated. In the
cases in which ε is a Killing vector, a symmetry of Minkowski spacetime, we can associate
these charges with momenta in the directions associated with those Killing vectors (linear
or angular momenta). We will also discuss this point in Chapter 6.

3.2.3 Coupling to matter

As we discussed at the beginning of this section, the coupling of the Fierz–Pauli theory to
matter is described by Eq. (3.60). To obtain this equation of motion from a Lagrangian,
we will have to add to the Fierz–Pauli Lagrangian LFP(h) the matter Lagrangian Lmatter(ϕ)

and a coupling term weighted by the gravitational coupling constant χ combined into a
modified matter Lagrangian Lmatter(ϕ, h):

L = LFP(h) + Lmatter(ϕ, h),

Lmatter(ϕ, h) = Lmatter(ϕ) + 1
2χhµνT µν

matter(ϕ).
(3.113)

From this Lagrangian, Eq. (3.60) follows. We also obtain an equation of motion for ϕ mod-
ified by the coupling to hµν . The gauge identity implies that T µν

matter(ϕ) has to be conserved,
∂µT µν

matter(ϕ) = 0, for consistency. Furthermore, this Lagrangian is invariant (up to total
derivatives) under the gauge transformations δεhµν = −2∂(µεν) only if ∂µT µν

matter(ϕ) = 0.
Two questions now arise:

1. Which T µν
matter(ϕ) should we use?

2. Is the conservation of T µν
matter(ϕ) consistent with the modifications to the ϕ equations

of motion introduced by the coupling to hµν?

19 As was explained in Chapter 2, this rewriting is not unique.
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Let us first address the first question. The energy–momentum tensor on the r.h.s. of
Eq. (3.60) has to be symmetric and divergenceless. These two properties are enjoyed by
the Belinfante energy–momentum tensor of the free matter field theory, which, as explained
in Chapter 2, is a symmetrization of the canonical energy–momentum tensor obtained by
the addition of superpotential terms (which are identically divergenceless) and on-shell-
vanishing terms. The Belinfante energy–momentum tensor is generally considered the
energy–momentum tensor to which gravity couples minimally (see e.g. [939]).

There are many other symmetric energy–momentum tensors (in fact, an infinite num-
ber of them), such as the improved energy–momentum tensor associated with some scale-
invariant theories. It can be argued that the improved energy–momentum tensor is in general
associated with non-minimal couplings to gravity. The example discussed in Chapter 2
(a conformal scalar) should illuminate this point. In the simplest cases (scalar and vector
field) the canonical and the Belinfante tensor are just what we need.20 In Chapter 2 we
also discussed an alternative prescription for how to find a symmetric, conserved, energy–
momentum tensor that does not consist in finding some symmetric modification of the
canonical energy–momentum tensor, viz. Rosenfeld’s. In the scalar, vector, and symmetric-
tensor cases that we are going to consider, the Rosenfeld and Belinfante energy–momentum
tensors are going to be identical, and, therefore, this is the energy–momentum tensor that
we are going to use.

Although the ultimate justification for Rosenfeld’s prescription, whose logical connec-
tion to the physical concept of an energy–momentum tensor is obscure, relies on the final
formulation of GR we are tied to, we can already see that the inclusion of the coupling to
gravity in the matter action,

Smatter[ϕ, ηµν] +
∫

dd xχhµν

δSmatter[ϕ, γµν]

δγµν

∣∣∣∣
γµν=ηµν

, (3.114)

suggests that this is the beginning of a functional series expansion of the action functional
Smatter[ϕ, γµν] of a metric γµν = ηµν + χhµν around the vacuum metric ηµν ,

Smatter[ϕ, γµν] = Smatter[ϕ, ηµν] +
∫

dd xχhµν

δSmatter[ϕ, γµν]

δγµν

∣∣∣∣
γµν=ηµν

+
∫

dd xdd x ′χ2hµν(x)hρσ (x ′)
δ2Smatter[ϕ, γµν]

δγµνδγρσ

∣∣∣∣
γµν=ηµν

+ · · ·,

(3.115)

truncated at first order.
As to the answer to the second question, we postpone it until we work out a simple

example to show that the theory we have obtained indeed describes a SRFT of gravity that
is compatible with our experience.

The gravitational field of a massive point-particle. Just as we did to derive the simplest pre-
dictions of the scalar SRFT of gravity, we are going to find the gravitational field produced

20 A vector field in four dimensions is also invariant under dilatations and, in fact, under the whole conformal
group. The improved energy–momentum tensor is, however, nothing but the Belinfante tensor.
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by a massive point-particle of mass M placed at rest at the origin of coordinates in some
inertial frame. In this calculation we are going to write all the factors of c that we usually
omit in order to find the value of χ and have perhaps more-familiar expressions.

The action and energy–momentum tensor for a massive point-particle are given, respec-
tively, by Eqs. (3.8) and (3.25), and the modified action that includes the coupling to grav-
ity is, after the mutual elimination of the spacetime integral and the d-dimensional Dirac
δ-function,

Spp[Xµ] = −Mc
∫

dξ
1√

ηρσ Ẋρ Ẋσ

(ηµν + 1
2χhµν(X))Ẋµ Ẋ ν. (3.116)

Before solving any equations, we want to make the following two important observa-
tions [888]. First, as happens in general, this action is not invariant under the gauge trans-
formations unless ∂µT µν

matter(ϕ) = 0. However, it is invariant to lowest order in the coupling
constant χ without this assumption if we transform the particle coordinates according to

δε Xµ = χεµ(X), (3.117)

which is precisely the form of an infinitesimal GCT. This is the first sign of a relation
between the gauge symmetry of the Fierz–Pauli field and spacetime transformations.

Second, there are fields hµν that are gauge-equivalent to zero, for instance [888]

hµν = bµν + aµνρxρ, (3.118)

with bµν and aµνρ constants, can be canceled out by a gauge transformation,

εµ = 1
2

(
bµνxν + aµνρxνxρ

)
. (3.119)

Combined with the previous observation, this means that, by a change of coordinates, we
can remove certain gravitational fields. This fact is contained in the principle of equivalence
of gravitation and inertia that was one of the basic postulates on which Einstein founded
GR.

Now, let us consider the gravitational field equation21

Dµν(h) = (χ/c)T µν
pp . (3.120)

The energy–momentum tensor has to be calculated on a solution of the equations of motion
of a free particle Ṗµ = 0 plus Pµ Pµ = M2c2. A solution describing the particle at rest at
the origin of coordinates is given by Xi = 0 and ξ = X0 = cT . We can perform the integral
over ξ eliminating the δ(X0 − x0). The energy–momentum tensor becomes22

T µν
pp = −Mc2ηµ

0η
ν

0δ
(d−1)(�xd−1), �xd−1 = (x1, . . ., xd−1), (3.121)

and the gravitational field equations are

D00(h) = −χ Mcδ(d−1)(�xd−1), Di j (h) = 0. (3.122)

21 Let us recall that S = (1/c)
∫

dd x L. The Fierz–Pauli action does not acquire any factor of c; that is,

c−1LFP = 1
4∂µhνρ∂µhνρ − · · ·.

22 We stress again that, with our conventions, T 00 is negative-definite (it is minus the energy).
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It is convenient to use the variable h̄µν and the De Donder gauge23 ∂µh̄µν = 0. Then a
solution can be immediately obtained for d ≥ 4:

h̄µν = −ηµ0ην0
χ Mc

(d − 3)ω(d−2)

1

|�xd−1|d−3
, (3.123)

and the non-vanishing components of hµν are24

h00 ≡ 2

χc2
φ, hii = 2

(d − 3)χc2
φ, φ = − χ2 Mc3

2(d − 2)ω(d−2)

1

|�xd−1|d−3
. (3.124)

The notation we have chosen suggests, correctly, that φ can be identified with the New-
tonian potential as in the scalar SRFT of gravity (Eq. (3.7)). Also, as in the case of the
scalar SRFT of gravity, we have to see how it affects the motion of test particles in order to
confirm it.

The gravitational field of a massless point-particle. The action and energy–momentum ten-
sor for a free massless particle moving in Minkowski spacetime are given, respectively, by
Eqs. (3.32) and (3.34). After coupling to the gravitational field hµν , the modified action is

S[Xµ(ξ), γ (ξ)] = − p

2

∫
dξ

√
γ γ −1

[
ηµν + χhµν(X)

]
Ẋµ Ẋ ν. (3.125)

This time the gravitational field cannot be absorbed into a redefinition of the worldline
metric γ (unless hµν ∝ ηµν) and a massless particle interacts with the gravitational field.

Let us first find the gravitational field produced by a massless particle by solving the
equation Dµν(h) = (χ/c)T µν

pp , where the energy–momentum tensor has to be calculated
for a solution of the equations of motion of the free massless particle Ṗµ = Pµ Pµ = 0. It
is convenient to use light-cone coordinates u, v, and �xd−2 defined by

u = 1√
2
(t − z), v = 1√

2
(t + z), (�xd−2) = (x1, . . ., xd−2), (3.126)

where z ≡ xd−1, in which the Minkowski metric takes the form

(
ηµν

) =

0 1

1 0
−I(d−2)×(d−2)


. (3.127)

A solution describing the particle moving at the speed of light along the z axis toward +∞
is given by

U = �Xd−2 = 0, V = ξ, γ = 1. (3.128)

23 In this case we cannot impose a traceless gauge because the particle’s energy–momentum tensor itself is not
traceless.

24 To compare this with Thirring’s results [888] it has to be taken into account that Thirring’s energy–
momentum tensor is twice ours and that its coupling constant f = χ/2.



3.2 Gravity as a self-consistent massless spin-2 SRFT 71

For this solution, the energy–momentum tensor (3.34) takes, after integration of one of the
Dirac delta-function components, the form

T µν
pp = −pc�µ�ν

∫
dξδ(

√
2ξ − u)δ(u)δ(d−2)(xi ), �µ = δµ

v. (3.129)

On integrating over ξ and substituting this into the gravitational equation with hµν in the
transverse, traceless gauge, we arrive at the equation

∂2hµν = −
√

2pχ�µ�νδ(u)δ(d−2)(xi ). (3.130)

Only one component of hµν will be non-trivial. We define the function K (u, �xd−2) by

χhµν = 2K (u, �xd−2)�
µ�ν, (3.131)

which satisfies

�∂ 2
d−2 K (u, �xd−2) = pχ2

√
2

δ(u)δ(d−2)(�xd−2). (3.132)

A solution can immediately be found. For d ≥ 5 we have

K (u, �xd−2) = pχ2

√
2(d − 4)ω(d−3)

1

|�xd−2|d−4
δ(u), (3.133)

and, for d = 4,

K (u, �x2) = − pχ2

√
22π

ln |�x2|δ(u). (3.134)

This solution describes a sort of gravitational shock wave. We will see in Chapter 10 that
this result, which was found in a linear theory, is actually exact in GR and corresponds to
the Aichelburg–Sexl solution found in [24] by completely different means.

Motion of massive and massless test particles in a gravitational field. We can now plug
any of the two solutions we have found into the actions (3.116) and (3.125) to find the
dynamics of a second test particle of mass m or of a second test massless particle in the
gravitational field created by the first particle.25 Clearly, the most important case is the one
corresponding to motion in the field of a massive particle, whose mass we will denote by
M . We first study the massive case, since it is the one that has a non-relativistic limit. Using
the static gauge ξ = X0 = cT (we write t instead of T ), we find

Spp[X ] = −mc2
∫

dt

{√
1 − (v/c)2 + 1√

1 − (v/c)2

[
1 + 1

d − 3

(v

c

)2
]

φ

c2

}
, (3.135)

and, in the non-relativistic limit in which we ignore terms of order higher than O[(v/c)4]
and the constant term, we find

Spp[X ] =
∫

dt

{
1
2 mv2 − mφ − 1

4 mv2
(v

c

)2
+ d − 1

2(d − 3)
mv2 φ

c2

}
. (3.136)

25 Test particle meaning that the effect of its own gravitational field on the first particle (and, correspondingly,
on the gravitational field created by the first particle) can be ignored.
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The first term is the kinetic energy of a particle of inertial mass m and the second term is
(minus) the potential energy of a particle of gravitational mass m moving in a Newtonian
gravitational potential φ (confirming the definition of φ). In this scheme the gravitational
and inertial masses of a particle are identical. This is essentially the content of the principle
of equivalence of gravitation and inertia in its weak form, as we will see in Section 3.3.
This was also the case for the scalar SRFT of gravity and it is the consequence of taking
the energy–momentum tensor (or its trace) as the source for the gravitational field.

There are also two correction terms. One is the standard relativistic correction to the
kinetic energy of a free particle and the other correction represents the contribution of the
kinetic energy to the gravitational interaction. A similar term was present in the scalar SRFT
of gravity (compare with Eq. (3.28)), but with a coefficient that is different in absolute value
and sign. Thus, in this case, all gravitational effects will not vanish in the v → c limit. On
the contrary, we see that, due to the sign of the fourth term, the kinetic energy also feels
and is a source of gravity just like the (inertial/gravitational) rest mass.

We can now check that the value of φ that we have obtained from our relativistic gravita-
tional theory is correct (i.e. coincides with the Newtonian potential created by a mass M).
In d = 4

φ = −χ2c3

16π

M

|�x3| , ⇒ χ2 = 16πG(4)
N

c3
, (3.137)

where G(4)
N is the Newton constant. The force between the masses m and M is then

�F = −m �∇φ = −G(4)
N mM

�x3

|�x3|3 . (3.138)

For higher dimensions the functional form of φ is correct. It is (unfortunately) customary
in the literature to define in any dimension d

χ2 = 16πG(d)
N /c3, (3.139)

even though the rational definition would have been

χ2 = 2(d − 2)ω(d−2)G
(d)
N /c3.

With these conventions the force between the masses m and M is

�F = −m �∇φ = −8(d − 3)πG(d)
N mM

(d − 2)ω(d−2)

�xd−1

|�xd−1|d−1
. (3.140)

Before we use the fully relativistic action to find corrections to Keplerian orbits, etc.,
there is one more point worth discussing. We have learned how the Newtonian gravita-
tional field is encoded in the relativistic field hµν . Of course, the relativistic field has more
components and at least one more degree of freedom. We can compare this situation with
that of the electrostatic field: to build a relativistic theory of the electrostatic field we would
have had to use a vector field (with a scalar field we would never have been able to de-
scribe attraction between opposite charges and repulsion between like charges) that has
more components. Then we could have discovered the magnetic field as part of the electro-
magnetic field and we would have discovered electromagnetic radiation. Thus, just to see
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what other non-relativistic terms the full action for general hµν produces, let us go back to
the action Eq. (3.125), choose the static gauge again, and, instead of substituting the hµν we
obtained for a static point-like charge, let us consider a general background gravitational
field and let us make the definition

h0i = 1

χc2
Ai . (3.141)

Then, in the non-relativistic limit and ignoring O(hv2) terms, we have

Spp ∼
∫

dt
{

1
2 mv2 − mφ + m

c
�A · �v − mc2

}
. (3.142)

The new term is a non-Newtonian velocity-dependent interaction. The whole action is iden-
tical to the action of a charged particle in an electromagnetic field (8.55). Then, by analogy,
the last term describes the interaction of the particle with the gravitomagnetic field, whose
existence is one of the main predictions of any relativistic theory of gravitation (including
GR) but has not yet been detected (see e.g. [242]). The Newtonian term is also called, by
analogy, the gravitostatic potential.

We are now ready to calculate the corrections to Keplerian orbits of planets predicted
by this theory. The main effect will be the precession of the perihelion of planets, a sec-
ular, cumulative effect that was known before Einstein’s construction of GR and whose
explanation by this theory was one of its early successes.

Our starting point will be Eq. (3.116) (with M replaced by m). We consider only the
d = 4 case. First, we rewrite this action in terms of an action for a particle moving in the
background of an effective metric field gµν :

Spp[Xµ] = −mc
∫

dξ

√
gµν(X)Ẋρ Ẋσ , gµν ≡ ηµν + χhµν(X), (3.143)

which is equivalent to our original action Eq. (3.116). As we explained, this can always
be done and it is the basis of Rosenfeld’s prescription for calculating a symmetric energy–
momentum tensor. The Hamilton–Jacobi equation associated with this action is [644]

gµν(X)
∂Spp

∂ Xµ

∂Spp

∂ X ν
− m2c2 = 0, (3.144)

and, to first order in χ , it is valid also for our original action. Let us now consider a general
static, spherically symmetric metric written as follows:

ds2 = λ(r)c2dt2 − µ(r)dr2 − R2(r)d�2, d�2 = dθ2 + sin2 θ dϕ2, (3.145)

and, knowing that all the dynamics will take place in a plane, let us set θ = π/2 from now
on. The Hamilton–Jacobi equation takes the form

1

λc2

(
∂t Spp

)2 − 1

µ

(
∂r Spp

)2 − 1

µR2

(
∂ϕ Spp

)2 − m2c2 = 0. (3.146)

Spp has the form
Spp = −Et + lϕ + W, (3.147)
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where W is a function only of r . On substituting into the above equation, we find that W is
given by

W =
∫

dr

√
µλ−1

(
E

c

)2

− l2

R2
− m2c2µ. (3.148)

In the absence of the gravitational field λ = µ = 1, and R = r . On defining the non-
relativistic energy E ′ = E − mc2, assuming that E ′�mc2 so that(

E

c

)2

− m2c2 = m2c2

[(
E

mc2

)2

− 1

]
= m2c2

[(
E ′

mc2

)2

+ 2
E ′

mc2

]
∼ 2m E ′, (3.149)

and substituting in the integrand, we obtain W for a classical free particle of energy E ′. In
the presence of a spherically symmetric gravitational field, vanishing at infinity, on making
the same approximation E ′�mc2, expanding

λ ∼ 1 + λ1

r
+ λ2

r2
+ · · ·, µ ∼ 1 + µ1

r
+ µ2

r2
+ · · ·,

R2 ∼ r2

(
1 + R1

r
+ · · ·

)
, (3.150)

and expanding the expression under the square root to order O(1/r2), we find

W ∼
∫

dr

√
2m E ′ − λ1m2c2

r
− l2 − [λ1(λ1 − µ1) − λ2]m2c2

r2
. (3.151)

For the solution Eq. (3.124)

µ1 = −λ1 = RS ≡ 2MG(4)
N /c2, R1 = 0, (3.152)

where we have introduced RS, the Schwarzschild or gravitational radius of an object of
mass M , and we obtain from Eq. (3.151)

W ∼
∫

dr

√
2m E ′ + RSm2c2

r
− l2 − 2R2

Sm2c2

r2
. (3.153)

We should first compare this expression with the Newtonian expression26

WNewtonian =
∫

dr

√
2m E ′ + RSm2c2

r
− l2

r2
. (3.154)

The second term is the Newtonian potential energy. We see in Eq. (3.153) that there is
an O(1/r2) relativistic correction to the Newtonian potential. The main consequence will
be that the orbits will not be closed and the perihelions will shift. To evaluate the angular
difference between two consecutive perihelions we reason, following [644], as follows. The
equation for the orbit can be found from

ϕ = βϕ − ∂W

∂l
. (3.155)

26 We assume that M � m so that the reduced mass can be approximated by m.
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In a complete revolution

�ϕ = −∂

∂l
�W. (3.156)

By expanding W around the Newtonian WNewtonian as a power series in the relativistic cor-
rection δ = 2R2

Sm2c2 and observing that

∂W

∂δ

∣∣∣∣
δ=0

= −∂W

∂l2
, (3.157)

we obtain

W ∼ W |δ=0 + δ
∂W

∂δ

∣∣∣∣
δ=0

= WNewtonian − δ
1

2l

∂WNewtonian

∂l

= WNewtonian − R2
Sm2c2

l

∂WNewtonian

∂l
, (3.158)

and

�W = �WNewtonian − R2
Sm2c2

l

∂�WNewtonian

∂l (3.159)

= �WNewtonian + R2
Sm2c2

l
�ϕNewtonian,

where we have used Eq. (3.156) for WNewtonian. On substituting this into Eq. (3.156) we find

�ϕ = �ϕNewtonian + R2
Sm2c2

l2
�ϕNewtonian. (3.160)

Newtonian orbits are closed, so in one revolution �ϕNewtonian = 2π and the deviation from
the Newtonian value is, according to this theory

δϕ = 2π R2
Sm2c2

l2
. (3.161)

This result is 4
3 of the actual value; that is, it is close (better than the value given by the

scalar SRFT of gravity) but not quite right. We will have to find a correction to our theory
in order to obtain the right value.

The second effect that we want to calculate is the deflection of a light ray (or a massless
particle) by the central gravitational field of a massive body, given by Eq. (3.124). To first
order in χ we can simply take the Hamilton–Jacobi equation for a relativistic massive parti-
cle, Eq. (3.144), and set m = 0 [644]. The resulting equation can be solved as in the massive
case with the replacement of E = −∂t S by ω = −∂t S. For W we obtain the equation

W =
∫

dr

√
µλ−1

(ω

c

)2
− l2

R2
. (3.162)

On expanding µ and λ in powers of 1/r , we obtain, for the solution Eq. (3.124),

W ∼
∫

dr

√(ω

c

)2
+ 2RS

(ω

c

)2 1

r
− l2

r2
. (3.163)
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The 1/r term is not present27 in the Newtonian case28 and, as we did before, we expand W
around its Newtonian value,

W ∼
∫

dr

√(ω

c

)2
− l2

r2
+ 2RS

∂

∂x

∫
dr

√(ω

c

)2
+

(ω

c

)2 x

r
− l2

r2

∣∣∣∣∣
x=0

∼ WNewtonian + RSω

c

∫
dr

1√
r2 − ρ2

∼ WNewtonian + RSω

c
arccosh

(
r

ρ

)
, (3.164)

where ρ = cl/ω is clearly the minimal value of r in the path of the massless particle. Fol-
lowing [644], the variation of W when the particle starts from r = R�ρ, goes through
r = ρ, and again reaches r = R is

�W ∼ �WNewtonian + 2RSω

c
arccosh

(
R

ρ

)
, (3.165)

and, according to Eq. (3.156),

�ϕ ∼ ∂

∂l
�WNewtonian + 2R

ρ

1√
1 − ρ/R

R→∞−→ π + 2R

ρ
, (3.166)

and we find that the deviation from the Newtonian value �ϕ = π (which means simply
no bending of the light ray) is δϕ = 2R/ρ, in good agreement with observation. This is an
encouraging result, which indicates that we have found a reasonable relativistic theory of
gravitation worth studying in more detail.

At this point, we remember that we still have to answer the second question posed on
page 67. The answer will prompt us to seek and introduce into our theory corrections that
will make the prediction for the precession of the perihelion of Mercury agree completely
with observations.

3.2.4 The consistency problem

The answer to the second question formulated on page 67 is that, in general, the matter
energy–momentum tensor derived from the free-matter Lagrangian is no longer conserved.
As explained in Chapter 2, the divergence of the energy–momentum tensor is proportional
to the equations of motion derived from the same Lagrangian, but the coupling to gravity
changes these equations. This can be seen in the modified massive-particle action of the
above example but the real scalar field which we studied in Chapter 2 will, however, make
a better example.

27 There are also 1/r2 corrections, but we take only the most important one.
28 The Newtonian case corresponds to a free massive particle (i.e. vanishing gravitational potential energy)

moving at the speed of light with 2m E ′ = (ω/c)2.
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The modified matter Lagrangian and equation of motion are

Lmatter(ϕ, h) = 1
2(∂ϕ)2 + 1

2χhµνTmatter
µν(ϕ)

= 1
2

(
ηµν − χ h̄µν

)
∂µϕ∂νϕ,

0 = ∂µ

[(
ηµν − χ h̄µν

)
∂νϕ

]
.

(3.167)

Using the new equation of motion

∂µTmatter
µν(ϕ) = −∂µ

(
h̄µρ∂ρϕ

)
∂νϕ, (3.168)

which is not zero, implying that the first-order matter–gravity coupled system is inconsis-
tent. This is the essence of the consistency problem of the Fierz–Pauli theory.

How could we overcome this problem? One solution is to modify the equation of mo-
tion Eq. (3.60) by adding a term on the r.h.s. to make it divergenceless again, consistently
with the new equation of motion for matter.29 In fact, since we have modified the matter
Lagrangian to include the coupling, the energy–momentum tensor has also been modi-
fied and we should replace T µν

matter(ϕ) by T µν
matter(ϕ, h) calculated from Lmatter(ϕ, h). This,

however, does not work because, if we include the coupling term in the calculation of the
energy–momentum tensor, we should also include the Fierz–Pauli Lagrangian: only the to-
tal energy–momentum tensor (matter plus gravity plus interactions) is conserved. Clearly
this is the physical principle behind our problem.

The situation is not too different from the ones encountered in Section 2.5 in the coupling
of Abelian and non-Abelian vector fields to matter. There one also has to take into account
the contribution of the vector fields themselves to the full Noether currents, since only then
are these conserved.

It is reasonable to expect that full consistency can be achieved only if we can derive
the new equation of motion from a Lagrangian. However, to make the correction to the
energy–momentum tensor appear in the equation of motion, we have to add new terms
to the Lagrangian, which introduce new modifications into the energy–momentum tensor,
and so on. This problem is present in the pure-gravity system once we accept that it has to

29 There is another possibility, proposed and studied in [308], in which consistency without addition of extra
terms is recovered at the expense of locality: use on the r.h.s. of the gravitational equation a divergence-free
projection of the matter energy–momentum tensor Jµν obtained by applying the manifestly divergence-free
Lorentz-covariant projection operator

Pµν ≡ ηµν − ∂µ∂ν

∂2
. (3.169)

The most general divergence-free definition of Jµν is

Jµν = (
Pµα Pνβ + pPµνηαβ + q Pµν Pαβ

)
T αβ

matter. (3.170)

Thus, the gravitational field couples only to matter, but in this consistent way. The constants p and q are fixed
so as to obtain the right predictions for the classical tests of GR. Only two sets of values of p and q are admis-
sible (all the classical tests are passed by the theory) and for one of them, q = −p = 1, the theory can be writ-
ten in a local form with the introduction of auxiliary fields. In this form, it is shown that there are propagating
spin-0 degrees of freedom in the theory. Clearly, this theory cannot pass tests in which the self-coupling of
the gravitational field (the strong form of the principle of equivalence) is probed and it will predict, for
instance, a finite value for the Nordtvedt effect (see, for instance, Chapter 3 in [242] and references therein).
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couple to itself through its own energy–momentum tensor,30 customarily denoted by tµν ,
in the same form and with the same strength as it does to matter. This coupling encodes the
strong form of the principle of equivalence.

In conclusion, we can say that we have achieved consistency if the equations of motion

Dµν(h) = χ
[
T µν

matter(ϕ, h) + tµν
]

(3.171)

are consistent with the equations of motion for matter, i.e.

∂µ

[
T µν

matter(ϕ, h) + tµν
] = 0, (3.172)

on-shell. Equivalently, we can say that the corrected theory is consistent if we can derive
the above equation of motion from a Lagrangian and derive the total energy–momentum
tensor T µν

matter(ϕ, h) + tµν from the same Lagrangian.
It is interesting to try to find at least the first correction.31 We can follow an iterative

procedure that stresses the importance of symmetry: the Noether method, explained in Sec-
tion 2.5 and applied there to the problem of finding consistent coupling of Abelian and
non-Abelian vector fields to charged matter. This case will be much more complex but
what we will learn will be worth the effort. In the following section we will give a very
elegant and economic argument due to Deser [299] to prove that GR is a self-consistent
extension of the Fierz–Pauli theory. In this setup, only one iteration will be necessary.

When a solution to a problem is found, the problem of the uniqueness of that solution
arises. The results of Weinberg [941, 942] and Boulware and Deser [176], mentioned at
the beginning of this section, indicate that a quantum massless spin-2 theory can have a
Lorentz-invariant quantum S matrix only if it couples to the total energy–momentum tensor,
including the gravitational energy–momentum tensor whose form, in the long-wavelength
limit, is the one predicted by GR, Eq. (3.200). Thus, any interacting quantum theory of a
spin-2 particle coincides with GR in the infrared limit.32

The approach that we are going to follow stresses the importance of the conservation of
the total energy–momentum tensor and its relation to gauge symmetry and it is motivated by
the hypothesis of the coupling of the spin-2 field to the matter energy–momentum tensor.33

Other approaches have tried to determine the most general self-interacting classical SRFT
of a spin-2 particle, not using as input the coupling to matter and trying to derive the gauge
invariance from the requirement of self-consistency of the equations of motion. We will
discuss this approach and its results at the end.

3.2.5 The Noether method for gravity

We start with the Fierz–Pauli Lagrangian Eq. (3.84) plus the Lagrangian for a real scalar

L(0) = LFP + Lmatter(ϕ), Lmatter(ϕ) = 1
2(∂ϕ)2. (3.173)

30 It is a Lorentz tensor. In the full GR theory it will still be a Lorentz tensor but not a tensor under GCTs and
that is why it will be called in that context the gravity energy–momentum pseudotensor.

31 It is enough to obtain the correct value for the precession of the perihelion of Mercury. The derivation of all
the corrections is sometimes called Gupta’s program [378].

32 Actually, string theory contains corrections to GR in the ultraviolet limit.
33 The non-interacting theory is perfectly consistent as it stands.
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This Lagrangian is invariant under the local gauge transformations given in Eq. (3.95) with
parameter εµ(x) and global translations with constant parameter ξµ (just like any SRFT):

δ̃xµ = χξµ,

δhµν = −2∂(µεν) − χξλ∂λhµν,

δϕ = −χξλ∂λϕ.

(3.174)

Both symmetries are Abelian. The conserved current associated with the global symmetry
can be found by performing a local transformation of the same form in the Lagrangian, as
explained in Section 2.5. Up to total derivatives

δξ(x)Lmatter(ϕ) = −χξσ (x)∂µTcan
µ

σ (ϕ),

δξ(x)LFP = −χξσ (x)∂µ + t (0)
can

µ
σ (h),

Tcan
µ

σ (ϕ) = −∂µϕ∂σϕ + 1
2η

µ
σ (∂ϕ)2,

t (0)
can

µ
σ (h) = − 1

2∂
µhνρ∂σ hνρ + ∂νhµρ∂σ hνρ − 1

2∂λhλµ∂σ h

− 1
2∂σ hµρ∂ρh + 1

2∂
µh∂σ h + ηµ

σLFP.

(3.175)

Here Tcan
µ

σ (ϕ) is the canonical energy–momentum tensor of the real scalar field and
t (0)
can

µ
σ (h) that of the gravitational field. The latter is not symmetric. Both are separately

conserved on-shell. In particular

∂µt (0)
can

µ
σ (h) = − 1

2∂σ hνρDνρ(h). (3.176)

Our physical problem is to couple consistently these two fields, which requires the self-
coupling of the gravity field. From the symmetry point of view, following the Noether phi-
losophy, we will have a consistent theory if we manage to construct a theory that is invariant
under the local versions of these two symmetries. Since, under local transformations, the
Lagrangian transforms as above (up to total derivatives that we will systematically ignore
here) it is reasonable to expect that we will have invariance to first order in the coupling
constant χ if we introduce an interaction term of the typical form

L(1) = L(0) + 1
2χhµσ

[
Tcan µσ (ϕ) + t (0)

can µσ (h)
]

(3.177)

and we identify the two local parameters ξµ(x) = εµ(x). This identification is also sug-
gested by the observation that the point-particle action coupled to gravity is gauge-invariant
only if we complement the gauge transformation of hµν with a local transformation of the
particle’s coordinates. It is clear, however, that this is too naive: from the above Lagrangian
one cannot obtain the consistent equation of motion (3.171) because the variation of the in-
teraction term with respect to hµν does give χT (0)

can µσ (ϕ) on the r.h.s. but not the correspond-
ing term for the gravitational field (unless some miracle happens, which it does not). Thus,
we will have to look for a term quadratic in derivatives of h, symbolically L(1)

µν(∂h∂h),
and different from the energy–momentum tensor such that the Lagrangian

L(1) = L(0) + 1
2χhµσ [Tcan µσ (ϕ) + L(1)

µσ ] (3.178)
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produces the wanted equations of motion and is invariant up to O(χ2) under the corrected
transformations with local parameter εµ,

δ(1)
ε hµν = −2∂(µεν) − χελ∂λhµν,

δ(1)
ε ϕ = −χελ∂λϕ.

(3.179)

This is just the simplest possibility. Clearly there are infinitely many local transformations
that reduce to some given global transformations, all of them different by terms propor-
tional to the derivatives of the gauge parameters. We need additional criteria in order to
find the right ∂ε terms here. The main property that gauge transformations have to enjoy
is that they must generate one and the same algebra both on ϕ and on hµν . Then, given
two transformations δ(1) in Eqs. (3.179) with infinitesimal parameters ε1 and ε2, their com-
mutator, applied to ϕ and hµν , must give another transformation δ(1) with an infinitesimal
parameter ε3 that should be a function of ε1 and ε2; that is,

[δ(1)
ε1

, δ(1)
ε2

] = δ
(1)

ε3(ε1,ε2)
. (3.180)

The simple transformations Eqs. (3.179) do not have this property. The problem of finding
the most general gauge transformations which have this property, and reduce at order zero
in χ to the normal spin-2 gauge transformations of hµν , was considered by Ogievetsky and
Polubarinov in [739]. Their conclusion, which is similar (in spite of the different setup)
to Wald’s in [933], is that, apart from the χ = 0 Abelian transformations, the only gauge
transformations with the required properties are

δ(1)
ε hµν = −2∂(µεν) − χ

[
ελ∂λhµν + 2∂(µελhν)λ

] = −2∂(µεν) − χLεhµν,

δ(1)
ε ϕ = −χελ∂λϕ = −χLεϕ,

(3.181)

and similarly for matter tensor fields of other ranks. These transformations have the algebra
of infinitesimal GCTs

[δ(1)
ε1

, δ(1)
ε2

] = δ
(1)
[ε1,ε2], (3.182)

where [ε1, ε2] is the Lie bracket of the two vector fields.
For a scalar field, the Noether current associated with these transformations (which are

not symmetries of the action) is the canonical energy–momentum tensor, as in Eqs. (3.175).
However, for a vector field with action Eq. (2.56) the Noether current is not the canoni-
cal energy–momentum tensor, but the symmetric Belinfante–Rosenfeld energy–momentum
tensor Eq. (2.58),

δ(1)
ε Lmatter(A) = −χεσ ∂µT µ

σ (A). (3.183)

This sounds promising, because we need symmetric energy–momentum tensors. For the
gravitational field, we have (as usual, up to total derivatives)

δ(1)
ε LFP = −χεσ ∂µ

[
t (0) µ
can σ (h) + Dµ

ρ(h)hρ
σ

]
. (3.184)

The additional term that we obtain vanishes on-shell. In general it is possible to add to a
Noether current any term that vanishes on-shell and so we may understand the additional
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term as a redefinition of the canonical energy–momentum tensor. This redefinition is, how-
ever, important. On the one hand, the equations of motion are going to be corrected and
therefore the addition of terms vanishing on-shell to first order is going to become mean-
ingful at higher orders and should be considered with care. On the other hand, if we obtain
an action that is invariant under the above gauge symmetry, the equations of motion are
going to satisfy a gauge identity that is, at the same time, the condition for the invariance
of the action. By varying directly the Lagrangian Eq. (3.178) under δ(1)

ε , we find that it will
be invariant up to O(χ2) if the gravitational energy–momentum tensor that appears in the
equations of motion (3.171) satisfies, to first order in χ ,

∂µt (0) µ
σ (h) = ∂µ

[
t (0) µ
can σ (h) + Dµ

ρ(h)hρ
σ

]
. (3.185)

On taking explicitly the derivative on the r.h.s., we obtain the gauge identities34 associated
with invariance under δ(1)

ε :

∂µt (0)µ
σ (h) = γνρσDνρ(h), γνρσ = 1

2

{
∂νhρσ + ∂ρhνσ − ∂σ hνρ

}
, (3.186)

Thus, if we look for invariance under the gauge transformations δ(1)
ε , the gravitational

energy–momentum tensor that we will put on the r.h.s. of Eq. (3.171) has to be of the
form

t (0)
µσ (h) = t (0)

can µσ (h) + Dµ
ρ(h)hρ

σ + ∂ρ�
ρ

µσ , (3.187)

but we can no longer add on-shell-vanishing terms proportional to Dµ
ρ(h) because then

the above gauge identities would not be satisfied. Here we see how the requirement of
gauge symmetry constrains the possible energy–momentum tensors. Comparing this situa-
tion with our construction of the scalar theory of gravity in which the energy–momentum
tensor could be asymmetric and did not have to satisfy any kind of conditions, we are much
better off.

Still, the redefined canonical energy–momentum tensor

t (0)
can µσ (h) + Dµ

ρ(h)hρ
σ

is not symmetric as we had hoped and we have to find additional terms ∂ρ�
ρ

µσ that cancel
out exactly the antisymmetric part of our energy–momentum tensors. There is only one
systematic procedure for doing this and only for the canonical one: the Belinfante method
explained in Chapter 2 which, unfortunately, requires the addition of on-shell-vanishing
terms. Let us, nevertheless, see where we are taken by this method. It is straightforward
(but long and tedious) to find

�ρµ
σ = −2∂ [ρhµ]

βhβ
σ − 2∂βh[ρ

σ hµ]β + ∂ [ρhhµ]
σ + ησ

[ρ∂βhhµ]β. (3.188)

The antisymmetric part of the modified canonical tensor t (0)
can µσ + ∂ρ�

ρ
µσ is −Dρ[µhρ

σ ],

34 We are using the zeroth-order gauge identity ∂µDµν(h) = 0, which is, obviously, valid.
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and, therefore, on discarding it, we obtain the Belinfante tensor

t (0)

Bel µσ ≡ t (0)
can µσ + ∂ρ�

ρ
µσ + Dρ[µ(h)hρ

σ ]

= − 1
2∂µhνρ∂σ hνρ − ∂νhρµ∂νhρ

σ − ∂νhρµ∂ρhν
σ + 2∂(µ|hνρ∂

νhρ |σ)

+ ∂νhµσ ∂ρhρν − ∂νhν
(µ∂σ)h + 1

2∂
νhµσ ∂νh + 1

2∂µh∂σ h

+ 1
2ηµσ

[
1
2∂λhνρ∂

λhνρ − ∂λhνρ∂
νhλρ − 1

2(∂h)2
]

+ h(µ
ν∂σ)∂ρhρ

ν − hν
(µ|∂ν∂ρh|σ)

ρ − hν
(µ∂2hσ)ν

+ hλν∂λ∂νhµσ − 1
2ηµσ hλν∂λ∂νh + 1

2 hµσ ∂2h. (3.189)

As expected, this tensor does not satisfy the gauge identities required because of the
addition of on-shell-vanishing terms. However,

t (0)
can µσ + Dρµ(h)hρ

σ + ∂ρ�
ρ

µσ = t (0)

Bel µσ + Dρ(µ(h)hρ
σ) (3.190)

is symmetric and evidently satisfies the gauge identities associated with δ(1)
ε .

Thus, using (more or less) the Belinfante method, we have been able to symmetrize
the energy–momentum tensor associated with the gauge transformations δ(1)

ε . This is ba-
sically the energy–momentum tensor used by Thirring in [888], although he expressed it
in the harmonic gauge. As we are going to see, it is unacceptable from several points of
view.

We can now try to find the Lagrangian correction from which to derive the above energy–
momentum tensor as the r.h.s. of the gravitational equation of motion. It should be a term
linear in hµν and quadratic in ∂µhνρ . Unfortunately no such term can be found.35 This means
that further modifications ∂ρ�

ρ
µσ are required, but this time they have to be symmetric in

the two free indices and they have to lead to a term derivable from a Lagrangian, which is
a difficult problem with no guaranteed unique solution.

As an act of desperation we can try to see whether Rosenfeld’s energy–momentum tensor
has the properties that we are looking for (even if it is not evidently associated with any
Noether current). We first rewrite the Fierz–Pauli action in a background metric γµν :

S =
∫

dd x
√

|γ | {
1
4∇ρhµν∇ρhµν − 1

2∇ρhµν∇µhρν + 1
2∇µh∇λhλµ − 1

4∇µh∇µh
}
,

(3.191)
where γ = det (γµν) and ∇µ is the covariant derivative with respect to the Levi-Cività con-
nection Cµν

ρ(γ ) associated with γµν . Now we vary this with respect to the background
metric, taking into account that hµν is assumed to be metric-independent. By varying
separately the terms without and with partial derivatives of the background metric, we

35 It is easy to see that, to reproduce the term ηµσ (∂ρh∂ρh) in the energy–momentum tensor, we need a term
of the form h(∂ρh∂ρh) in the Lagrangian, but this term produces another term of the form ηµσ h(∂ρ∂ρh),
which is not present in the energy–momentum tensor.
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obtain

δS =
∫

dd x
√

|γ |δγαβ

{
− 1

4∇αhνρ∇βhνρ − 1
2∇νhρ

α∇νhρβ

+ ∇(α|hνρ∇νhρ|β) − 1
2∇νhνρ∇ρhαβ − 1

2∇(αhβ)ρ∇ρh

− 1
2∇νhν(α∇β)h + 1

2∇νhαβ∇νh + 1
4∇αh∇βh + 1

2γ
αβLFP + δCµν

λ

δγαβ

fλµν

}
,

fλ
µν = hλρ∇ρhµν − hλ

(µ∇σ hν)σ + 1
2 hλ

(µ∇ν)h − 1
2γ

µνhλρ∇ρh. (3.192)

Using now
δCµν

λ = 1
2γ

λτ {∇µδγντ + ∇νδγµτ − ∇τ δγµν} (3.193)

in the last term and integrating it by parts, it becomes∫
dd x

√
|γ | δγαβ

{− 1
2∇µ f (α|µ|β) − 1

2∇ν f (αβ)ν + 1
2∇τ f ταβ

}
. (3.194)

By expanding all the terms and setting γαβ = ηαβ , we obtain the Rosenfeld energy–
momentum tensor, which turns out to be identical to the symmetrized one in Eq. (3.190).

At this point it looks impossible, without any other guiding principle, to find the right
symmetric energy–momentum tensor satisfying the gauge identities and leading to an equa-
tion of motion derivable from a Lagrangian. However, we can try to solve our problem start-
ing from the end; that is, by writing down the most general L(1)

µσ quadratic in ∂αhβγ and
imposing gauge invariance of the total Lagrangian L(1) = LFP + 1

2χhµσL(1)
µσ to first order

in χ , or, equivalently, using the fact that the equation of motion derived from it satisfies the
gauge identities Eq. (3.186). Up to total derivatives, the most general L(1)

µσ is

L(1)
αβ = a∂αhλδ∂βhλδ + b∂(α|hλδ∂

λhδ |β) + c∂λhδα∂
λhδ

β

+ q∂λhλ
α∂δhδ

β + d∂λhδα∂
δhλ

β + e∂(αhβ)λ∂δhδλ

+ f ∂λhαβ∂δhδλ + g∂(αhβ)λ∂
λh + i∂λhαβ∂λh + j∂λhλ

(α∂β)h

+ m∂αh∂βh + ηαβ

[
k∂γ hδλ∂

γ hδλ + l∂γ hδλ∂
δhγ λ

+ r∂λhλδ∂γ hγ
δ + n∂γ hγ δ∂δh + p(∂h)2

]
. (3.195)

Now we substitute this expression into L(1), we find the equation of motion, identify the
gravitational energy–momentum tensor

t (0) αβ = L(1) αβ − ∂λ

(
hµσ ∂L(1)

µσ

∂∂λhαβ

)
, (3.196)

and substitute this into the gauge identity Eq. (3.186) to arrive at the condition

∂αL(1) αβ − ∂α∂λ

(
hµσ ∂L(1)

µσ

∂∂λhαβ

)
= γµσ

βDµσ (h). (3.197)
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This is an equation in the constant coefficients a, b, c, d, . . .. To solve it, we first observe
that all the terms with the structure h∂∂∂h on the l.h.s. must vanish because they do not
occur on the r.h.s. Then, we also impose the vanishing of all the terms with the structure
∂h(∂∂h)β on the l.h.s. for the same reason. Finally, we identify the terms with structures
∂βh(∂∂h) and ∂hβ(∂∂h) on both sides of the above equation. The result can be expressed
in terms of two parameters x and y, which are left undetermined:

a = − 1
2 , b = 2 − y, c = −1, d = 1 − y, e = y, f = −1,

g = −1 − x, i = 1, j = −1 + x, k = 1
4 , l = − 1

2 − x,

m = 1
2 , n = 1

2 , p = − 1
4 , q = y, r = x .

(3.198)

On substituting these into the general expression for L(1)
µσ and collecting all the terms

proportional to the two parameters x and y, we obtain

L(1)
µσ = L(1)

GR µσ + total derivatives,

L(1)

GR µσ = − 1
2∂µhνρ∂σ hνρ − ∂νhρ

µ∂νhρσ + ∂νhρ
(µ|∂ρhν|σ) (3.199)

+ 2∂νhρ
(µ∂σ)hνρ − ∂(µhσ)

ν∂νh − ∂νhµσ ∂ρhρ
ν

− ∂νhν
(µ∂σ)h + ∂νhµσ ∂νh + 1

2∂µh∂σ h + ηµσLFP,

an unambiguous, unique, answer (up to total derivatives), which leads to a Lagrangian
L(1) that is invariant to first order in χ under the gauge transformations Eq. (3.181). The
equations of motion are fully determined and the gravitational energy–momentum tensor
is the piece of these equations of motion that is proportional to χ , given by Eq. (3.196), or,
more explicitly, by

t (0)

GR
µσ = 1

2∂
µhλδ∂

σ hλδ + ∂λhδ
µ∂λhδσ − ∂λhδ

µ∂δhλσ + ∂λhµσ ∂δhδλ

− 2∂(µhσ)
δ∂λhλδ − 1

2∂λhµσ ∂λh + ∂(µhσ)λ∂λh

+ ηµσ
[− 3

4∂αhβγ ∂αhβγ + 1
2∂αhβγ ∂βhαγ + ∂λhλα∂δhδ

α

− ∂λhλα∂αh + 1
4∂λh∂λh

]
+ hαβ

[
∂α∂βhµσ − 2∂α∂

(µhσ)
β + ∂µ∂σ hαβ + 2η(σ

αD̂µ)
β(h)

− 1
2η

µ
αη

σ
βD̂ρ

ρ(h) − 1
2ηαβDµσ (h) − ηµσ D̂αβ(h)

]
. (3.200)

This is clearly the energy–momentum tensor we were looking for. It is related to the
Rosenfeld energy–momentum tensor Eq. (3.190) by

t (0)

GR
µσ − (t (0)

can
µσ + Dρµ(h)hρ

σ + ∂ρ�
ρµσ ) ≡ ∂ρ�

ρµσ

GR−Ros,

�
ρµσ

GR−Ros = ∂ν

[
ησ [ρηµ]νhλδhλδ + 2ην[ρhµ]

λhλσ − 2ησ [ρhµ]λhλ
ν

(3.201)

+ ησ [ρhµ]νh + ην[µhρ]σ h − 1
2η

ν[µηρ]σ h2
]
.

Summarizing: the Noether procedure allows us to find corrections to the free Fierz–Pauli
theory order by order in the parameter χ , making it self-consistent to that given order.
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The procedure seems to be unambiguous and not complicated but is tedious and time-
consuming since there is no systematic way of finding the next correction for the energy–
momentum tensor (the Belinfante and Rosenfeld prescriptions have proved to be inadequate
in this problem). For instance, at second order, we would have to find the second-order cor-
rections to the gauge-transformation rules Eq. (3.181) (quadratic in hµν , linear in the gauge
parameter εµ, with two partial derivatives and satisfying the group property), the second-
order gauge identities associated with the invariance of the Lagrangian under those gauge
transformations at the given order, and the second-order corrections to the Lagrangian
(these would be of the form hµνhρσL(2)

µνρσ (∂h∂h)) and then we would have to write the
most general L(2)

µνρσ (∂h∂h) symmetric in the pairs (µν) and (ρσ) and then impose on
the corresponding term in the Lagrangian the second-order gauge identity. A more efficient
way of finding these corrections, like Deser’s, is necessary but, before we study it, it is
worth checking that the correction to the equations of motion implied by this gravitational
energy–momentum tensor leads to the right value of the precession of the perihelion of
Mercury. We also study some other properties of t (0)

GR
µσ .

3.2.6 Properties of the gravitational energy–momentum tensor t (0)

GR
µσ

Our first observation concerns the gauge-transformation properties of t (0)

GR
µσ . The first-order

Lagrangian L(1) is invariant under the gauge transformations Eq. (3.181) to first order in χ .
This implies the invariance of the first-order equations of motion

Dµσ (h) = χ t (0)

GR
µσ (h). (3.202)

The l.h.s. is invariant under the zeroth-order gauge transformations and this implies that the
zeroth-order variation of the r.h.s. does not vanish and is identical to the first-order variation
of the l.h.s.

From the point of view of the linear (Fierz–Pauli) theory we can say that the
energy–momentum tensor t (0)

GR
µσ is not invariant under the same (zeroth-order) gauge

transformations as those that leave the Lagrangian invariant. Rosenfeld’s [46] and other
energy–momentum tensors defined in the literature also lack this invariance. In the case
of the Rosenfeld energy–momentum tensor, it can be shown that it is not gauge-invariant
because the Fierz–Pauli theory is not invariant under the zeroth-order gauge transforma-
tions (or their covariantization) when it is written in an arbitrary curved background as
in Eq. (3.191). This invariance cannot be recovered by adding terms proportional to the
Riemann tensor of the background metric [47].

This lack of gauge-invariance is in contrast to the invariance of the Rosenfeld energy–
momentum tensor of other gauge fields under the relevant gauge transformations. However,
while the lack of gauge-invariance of the energy–momentum tensors of other gauge theories
would be a serious problem in its coupling to gravity, it is not a problem for gravity itself
since, as we have seen, only in this way can the full equation of motion be gauge-invariant
under the full gauge transformations.

On the other hand, the situation is not too different from the one encountered in the
Noether procedure for n vector fields in which the Noether current associated with the
lowest-order gauge transformations is not invariant under them, and we have to add further
corrections.
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Once this point has been clarified, we proceed to evaluate the correction to the linear
solution for the gravitational field of a point-like massive particle Eq. (3.124) and the gravi-
tational field of a point-like massless particle Eqs. (3.131), (3.133), and (3.134). The general
setup used to calculate corrections is the following. From the first-order Lagrangian36

L(1) = LFP + Lmatter(ϕ) + 1
2(χ/c)hµν

[
L(1)

µν(h) + Tmatter µν(ϕ)
]

(3.203)

we obtain the equations of motion

Dµν(h) − (χ/c)
[
t (0)

µν(h) + Tmatter µν(ϕ)
] = 0,

D(0)(ϕ) + (χ/c)D(1)(ϕ, h) = 0.
(3.204)

To find solutions to these equations, we expand the gravitational and matter fields

hµν = h(0)
µν + χh(1)

µν + · · ·, ϕ = ϕ(0) + χϕ(1) + · · ·, (3.205)

around a solution (h(0), ϕ(0)) of the equations

Dµν(h(0)) − (χ/c)Tmatter µν(ϕ
(0)) = 0,

D(0)(ϕ(0)) = 0.
(3.206)

On substituting the expansion into the first-order equations of motion, taking into account
that t (0)

µν(h) is quadratic in h, D(0)(ϕ) is linear in ϕ, and D(1)(h, ϕ) is linear both in h and
in ϕ, and using the above zeroth-order equations, we find, to lowest order in χ ,

Dµν(h(1)) − 1

c
t (0)

µν(h(0)) = 0,

D(0)(ϕ(1)) + 1

c
D(1)(h(0), ϕ(0)) = 0.

(3.207)

We are interested in h(1) in d = 4 and we are going to calculate it by using the Rosenfeld
energy–momentum tensor Eq. (3.190) on the linear solution t (0)

Ros µν(h
(0)) and the energy–

momentum tensor Eq. (3.200) we found by imposing δ(1)
ε gauge invariance on the linear

solution t (0)

GR µν(h
(0)) .

In d = 4 the solution Eq. (3.124) for a massive particle can be written in the simple form

h(0)
µν = δµνk, k = −χ Mc

8π

1

|�x3| . (3.208)

On substituting this expression into the energy–momentum tensors, we find

1

c
t (0)
Ros µν(h

(0)) = −∂µk∂νk − (
3
2ηµν + 2δµν

)
(∂k)2 − (

ηµν + δµν

)
k∂2k,

1

c
t (0)

GR µν(h
(0)) = ∂µk∂νk − 3

2(∂k)2 + 2k∂µ∂νk − (
ηµν − δµν

)
k∂2k.

(3.209)

36 We again restore all factors of c.
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There are two types of terms: terms of the form ∂k∂k and of the form k∂µ∂νk, which
give finite contributions, and terms of the form k∂2k, which give singular contributions
(∂2k ∼ δ(3)(�x3)) but only at the origin �x3 = �0 and have to be absorbed into a renormalization
of the source. In the Rosenfeld case, it is just a renormalization of the mass, but in the
second case the mass is not renormalized and, instead, the source’s energy–momentum
tensor has singular terms Tsource i j ∼ δi jδ

(3)(�x3), which do not fit within the concept of a
point-particle. Since we are mainly interested in obtaining corrections to the gravitational
field of massive, finite-sized bodies of spherical symmetry (the Sun, for instance), we opt
for hiding this problem in the closet with the other skeletons for the moment and simply
ignore these terms.

By taking the derivatives on the r.h.s. of the above expressions, we find

1

c
t (0)

Ros 00(h
(0)) = 7

2

R2
S

χ2

1

|�x3|4 ,

1

c
t (0)
Ros i j (h

(0)) = − R2
S

χ2

(
xi x j

|�x3|6 − 1

2
δi j

1

|�x3|4
)

,

1

c
t (0)

GR 00(h
(0)) = 3

2

R2
S

χ2

1

|�x3|2 ,

1

c
t (0)

GR i j (h
(0)) = 7

R2
S

χ2

(
xi x j

|�x3|6 − 1

2
δi j

1

|�x3|4
)

.

(3.210)

To solve these equations, we could try to eliminate all the off-diagonal terms in the
energy–momentum tensor by a gauge transformation, as did Thirring in [888]. However, as
observed in [725], the gauge transformation that one has to use is εµ ∼ ∂µ ln r , which does
not go to zero at infinity and, furthermore, takes us out of the De Donder gauge in which
we want to solve the equation. This clearly invalidates Thirring’s results.

However, we can solve directly the first of Eqs. (3.207) in the De Donder gauge: observe
that the r.h.s. of this equation,

∂2h̄(1)
µν = 1

c
t (0)

µν(h
(0)), (3.211)

is divergence-free. For the Rosenfeld energy–momentum tensor we obtain [725]

h̄(1)
00 = −7

4

R2
S

χ2

1

|�x3|2 , h̄(1)
i j = −1

4

R2
S

χ2

xi x j

|�x3|4 , (3.212)

and, by combining this correction and the linear term into gµν = ηµν + χh(0)
µν + χ2h(1)

µν ,
we obtain the spherically symmetric metric

ds2
Ros =

(
1 − RS

r
− R2

S

r2

)
c2dt2 −

(
1 + RS

r
+ R2

S

r2

)
dr2−

(
1 + RS

r
+ 3

4

R2
S

r2

)
r2d�2

(2),

(3.213)
where we have defined r = |�x3| and used dr = xi dxi/|�x3|, dxi dxi = dr2 + r2d�2, etc.



88 A perturbative introduction to general relativity

For the GR energy–momentum tensor we obtain [725]

h̄(1)
00 = −3

4

R2
S

χ2

1

|�x3|2 , h̄(1)
i j = 7

4

R2
S

χ2

xi x j

|�x3|4 , (3.214)

and the metric

ds2
GR =

(
1 − RS

r
+ 1

2

R2
S

r2

)
c2dt2 −

(
1 + RS

r
− 1

2

R2
S

r2

)
dr2−

(
1 + RS

r
+ 5

4

R2
S

r2

)
r2d�2

(2).

(3.215)
It is, however, more convenient to perform a gauge transformation with parameter

εi = −RSxi/r2, (3.216)

which changes the gauge of h(1)
µν and leaves the metric in the form

ds2
GR =

(
1 − RS

r
+ 1

2

R2
S

r2

)
c2dt2 −

(
1 + RS

r
+ 1

2

R2
S

r2

)
dr2−

(
1 + RS

r
+ 1

4

R2
S

r2

)
r2d�2

(2),

(3.217)
which we will be able to compare later on with the expansion of an exact solution of general
relativity (hence the subscript “GR”), Eq. (7.31). In any case, this gauge transformation
does not change the coefficient λ2 in the expansion Eq. (3.150), which is all we need to
recalculate the precession of the perihelion of Mercury. Taking into account now the values
of λ2 obtained, and substituting into Eq. (3.151), we obtain

δϕRos = 3π R2
Sm2c2/ l2, δϕGR = 3

2π R2
Sm2c2/ l2. (3.218)

The second is in agreement with observations. This result gives us more confidence in
the self-consistent spin-2 theory that we are constructing and confirms the importance of
gauge symmetry, which is a property not enjoyed by the theory built on Rosenfeld’s energy–
momentum tensor.

Now we can do the same for the massless point-like-particle gravitational field given in
Eqs. (3.131), (3.133), and (3.134). We can write the solution in this form:

hµν = k�µ�ν, k = k(u, x). (3.219)

It is easy to see that all these terms vanish identically:

h = 0, hµρhµν = 0, ∂µhµν = 0, hµν∂νhαβ = 0, (3.220)

and all terms in t (0)

GR µν(h
(0)) identically vanish. There is neither renormalization of the

source nor corrections to the lowest-order solution. The same must also be true if we con-
sider higher-order corrections to the equations of motion and, therefore, we expect the so-
lution Eqs. (3.131), (3.133), and (3.134) to be an exact solution of the full theory, whatever
it is. Actually, we will study this solution in Chapter 10 and we can compare the present
solution with the one in Eqs. (10.23) and (10.26).

Now that we have convinced ourselves that the self-consistent spin-2 theory is a good
candidate for a theory of gravitation but is at the same time hard to obtain in a perturbative
series, we are prepared to use Deser’s argument, which shows that GR is precisely the
resummation of the perturbative series we were generating in such a painful way.
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3.2.7 Deser’s argument

In [299] Deser presented an argument that allows one to see GR as the self-consistent SRFT
of a spin-2 particle we were looking for in the sense that, in GR, the gravitational field
couples to its own energy–momentum tensor, at least for a certain choice of field variables,
Lagrangian, and energy–momentum tensor. The emphasis is on physical consistency rather
than on gauge-invariance, and, therefore, the choice of energy–momentum tensor is not
based on that criterion, as in our previous discussions about the Noether method. These
would be weak points if we wanted to take this work as proof of the uniqueness of GR as a
solution to our initial problem, but we should understand Deser’s work as a proof that GR
is a solution to our problem from the physical standpoint.

The starting point in Deser’s argument is a first-order version of the Fierz–Pauli action
that uses two (off-shell) independent fields ϕµν and �µν

ρ (see [841] for a construction of
this action),

S(1)
FP [ϕµν, �µν

ρ] = 1

χ2

∫
dd x

{−χϕµν2∂[µ�ρ]ν
ρ + ηµν2�λ[µ

ρ�ρ]ν
λ
}
, (3.221)

which are Lorentz tensors symmetric in the pair of indices µν. This action is invariant up
to a total derivative under the gauge transformations

δεϕµν = −2∂(µεν) + ηµν∂ρε
ρ, δε�µνρ = −χ∂µ∂νερ, (3.222)

and it is equivalent on-shell to the Fierz–Pauli action because it gives the same equations
of motion: the equations of motion of the fields ϕµν and �µν

ρ are

χ
δS(1)

δϕµν
= −∂(µ�ν)ρ

ρ + ∂ρ�µν
ρ = 0,

(3.223)

χ2 δS(1)

δ�µν
ρ

= 2�ρ
(µν) − ηµν�ρλ

λ − ητσ�τσ
(µην)

ρ − χ∂ρϕ
µν + χηρ

(µ∂σϕν)σ = 0.

The second equation is just a constraint for �µν
ρ . On contracting it with ηρσ , we obtain

ηρσ�ρσ
ν = χ∂λϕ

λν, (3.224)

and, on contracting instead with ηµν and using the last result, we find

�ρλ
λ = − 1

d − 2
χ∂ρϕ, ϕ = ϕµ

µ. (3.225)

Using now these two last equations in the equation for �µν
ρ , we obtain

�ρµν + �νρµ = χ∂ρhµν, hµν = ϕµν − 1

d − 2
ηµνϕ. (3.226)

In order to solve for �, we add to this equation (ρµν) the permutation µνρ and subtract
the permutation νρµ, obtaining, finally,

�ρµν = 1
2χ{∂ρhµν + ∂µhνρ − ∂νhρµ}. (3.227)



90 A perturbative introduction to general relativity

On substituting this into the equation of motion for ϕµν , we find that, in terms of the
variable hµν , it takes the form

δS(1)

δϕµν
= − 1

2

[
Dµν(h) − 1

d − 2
ηµνDρ

ρ(h)

]
= 0, (3.228)

which is equivalent to the Fierz–Pauli equation.
Now we want to find a correction S(2) such that the equation of motion becomes

Dµν(h) = χ tµν, (3.229)

for the total action S(1) + S(2), i.e. we have to obtain

δS(2)

δϕµν
= 1

2χ

(
tµν − 1

d − 2
ηµν tρ

ρ

)
≡ τµν, (3.230)

where tµν is the energy–momentum tensor of ϕµν in S(1). We first calculate tµν using Rosen-
feld’s prescription. In writing the action S(1) in the background metric γµν , we will assume
(and this is one of the key points of this argument) that ϕµν is a tensor density of weight
w = 1, i.e. it transforms as

√|γ | f µν , where f µν is an ordinary tensor. Thus, there is no
need to introduce a

√|γ | factor in front of ϕµν and, furthermore, ϕµν is independent of the
background metric. By expanding the covariant derivatives37 of �µν

ρ , we obtain

S(1)[ϕµν, �µν
ρ, γµν] = 1

χ2

∫
dd x

{−χϕµν
[
2∂[µ�ρ]ν

ρ − 2Cν[µ
σ�ρ]σ

ρ + 2Cσ [µ
ρ�ρ]ν

σ
]

+
√

|γ | γ µν2�λ[µ
ρ�ρ]ν

λ
}
. (3.231)

A long calculation gives

χ2tαβ = − 2χ2

√|γ |
δS(1)

δγ αβ

∣∣∣∣
γαβ=ηαβ

= − 4�λ[α
ρ�ρ]β

λ + 2ηαβηκδ�λ[κ
ρ�ρ]δ

λ

− χ∂τ

{
ηαβϕµν�µν

τ + 2ϕτ
(α�β)ρ

ρ + ϕαβ�τ
ρ

ρ

− 2ϕτµ�µ(αβ) − 2ϕ
µ

(α

[
�µ|β)

τ − �µ
τ |β)

]}
, (3.232)

and, thus,

ταβ = −2χ−1�λ[α
ρ�ρ]β

λ

+ 1
2∂τ

{
1

d − 2
ηαβ

(
ϕµν�µ

τ
ν − 1

2ϕ�τ
ρ

ρ
) − (

ϕτ
α�βρ

ρ + ϕτ
β�αρ

ρ − ϕαβ�τ
ρ

ρ
)

+ ϕτµ
(
�µαβ + �µβα

) + ϕµ
α

(
�µβ

τ − �µ
τ
β

) + ϕµ
β

(
�µα

τ − �µ
τ
α

) }
. (3.233)

37 In the end �µν
ρ will not be a general-covariant tensor. However, it is a Lorentz tensor and Rosenfeld’s

prescription tells us to replace its partial derivatives by covariant derivatives in order to find Lorentz energy–
momentum tensors.
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The correction to the action with the property (3.230) is precisely

S(2) = 1

χ2

∫
dd x

{−2χϕαβ�λ[α
ρ�ρ]β

λ
}
. (3.234)

One could naively think that, with this correction, we can obtain only the first term (that
quadratic in �µν

ρ) in ταβ . However, we have to take into account that the equation for �µν
ρ

changes and, hence, substituting its solution into the equation for ϕµν will give us all the
terms we need. Observe also that this correction is cubic in fields whereas the action we
started from is quadratic. Finally, observe that this term will not contribute to the energy–
momentum tensor: there are no Minkowski metrics here to be replaced by the background
metric and there is no need to introduce

√|γ | because ϕµν is, by hypothesis, a tensor
density. Thus, if this term really works, we will not need to introduce any more corrections.

For the total action

S(1) + S(2) = 1

χ2

∫
dd x

{−χϕµν2∂[µ�ρ]ν
ρ + (ηµν − χϕµν)2�λ[µ

ρ�ρ]ν
λ
}
, (3.235)

we find the following equations of motion:

χ
δ(S(1) + S(2))

δϕµν
= −Rµν(�) = 0,

χ2 (δS(1) + S(2))

δ�µν
ρ

= 2�ρ
(µν) − ηµν�ρλ

λ−ηλσ�λσ
(µην)

ρ − χ∂ρϕ
µν + χηρ

(µ∂σϕν)σ

− 2χϕδ(µ�ρδ
ν) + χϕµν�ρσ

σ + χϕλσ�λσ
(µην)

ρ = 0,

(3.236)

where Rµν(�) is nothing but the Ricci tensor associated with the connection �µν
ρ given in

Eq. (1.33). By defining
gµν = ηµν − χϕµν (3.237)

and its inverse gµρgρν = gµ
ν = δµ

ν , which we are going to use as a metric to raise and
lower indices, we can write

χ2 (δS(1) + S(2))

δ�µν
ρ

= 2gδ(µ�ρδ
ν) − gµν�ρδ

δ − gλσ�λσ
(µgν)

ρ + ∂ρg
µν − gρ

(µ∂σgν)σ = 0.

(3.238)
Now we proceed as before: we contract this equation of motion with gµ

ρ , giving

�λ
λν = −∂σgσν, (3.239)

and then contract with gµν , using the last equation, giving

�ρλ
λ = 1

d − 2
gµν∂ρg

µν = 1

d − 2
∂ρ ln |g|, |g| ≡ det gµν. (3.240)
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We already see here that the expression for �µν
ρ in terms of ϕµν involves an infinite

series of terms. This is the reason why one iteration will be enough even though we had
expected an infinite series of corrections.

On substituting the last two results into the equation for �µν
ρ , we find

�ρµ
σgσν |g| 1

d−2 + �ρν
σgσµ|g| 1

d−2 = ∂ρ

(
|g| 1

d−2 gµν

)
. (3.241)

We see that, again, it is convenient to make the following definition:

gµν ≡ |g| 1
d−2 gµν, ⇒ gµν =

√
|g| gµν. (3.242)

In terms of the variable gµν , the above equation can be solved using the same procedure
as before. The result is that �µν

ρ is given by the Christoffel symbols associated with the
metric gµν (1.44). The two equations of motion can now be combined into one:

Rµν(g) = 0, (3.243)

where Rµν(g) is the Ricci tensor associated with the Levi-Cività connection of the metric
gµν . This is the vacuum Einstein equation, the equation of motion of GR, as we will see.

So far we have not shown that the corrected action has the required self-consistency
property. We are now going to do this, and this will allow us to claim that the vacuum
Einstein equation is the self-consistent extension of the Fierz–Pauli theory we were looking
for, written in terms of the new variable gµν , which turns out to have a geometrical meaning
that is really unexpected, given our starting point of view.

We turn back to the equation for �µν
ρ and try to solve it without the use of gµν and its

inverse, by raising and lowering indices with the Minkowski metric again. First, we contract
it with ηµ

ρ , giving

(ηρσ − χϕρσ )�ρσ
ν = χ∂σϕσν. (3.244)

Contracting now with ηµν and substituting into it the last result, we obtain

�ρδ
δ = − 1

d − 2
χ

[−∂ρϕ + 2ϕδ
µ�ρδ

µ − ϕ�ρδ
δ
]
, (3.245)

and, on plugging these results into the full equation, we arrive at

�ρµν + �νρµ = χ∂ρhµν + fρµν,

fρµν = 2χϕδ
(µ|�ρδ|ν) − χϕµν�ρδ

δ − 1

d − 2
χηµν

[
2ϕδ

λ�ρδ
λ − ϕ�ρδ

δ
]
,

(3.246)

which can be “solved” in exactly the same way, giving

�ρµν = 1
2χ{∂ρhµν + ∂µhνρ − ∂νhρµ} + 1

2{ fρµν + fµνρ − fνρµ}. (3.247)

There are �s on the r.h.s. of this equation, but we do not need anything better (neither
can we obtain it without inverting the matrix ϕµν). On substituting into the equation for
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ϕµν , we find

− 1

χ
Rµν(�) = − 1

2

[
Dµν(h) − 1

d − 2
ηµνDρ

ρ(h)

]
− 2χ−1�λ[µ

ρ�ρ]ν
λ

+ 1

2χ
∂τ

{
fνµ

τ + fµτ
ν − f τ

νµ + 2χ

d − 2
ητ

(ν|
[
2ϕδ

λ�|µ)δ
λ − ϕ�|µ)δ

δ
]}

.

(3.248)
On expanding the last term we find agreement with Eqs. (3.228), (3.230), and (3.233).
Let us review this result: we have obtained a first-order action for ϕµν , which, to lowest

order in an expansion in the parameter χ , is equivalent to the free Fierz–Pauli action. The
full equation of motion is the equation of motion of GR in vacuum and we have shown
that it is equivalent to the Fierz–Pauli equation with a source that is precisely the conserved
energy–momentum tensor of the ϕµν field that one derives directly from the action using the
Rosenfeld prescription and without having to add any ∂ρ�

µνρ term. The action Eq. (3.235)
satisfies the physical criterion of self-consistency we asked for and is the action of GR.
We have, though, not checked that the Rosenfeld energy–momentum tensor is the Noether
current associated with the symmetry of the problem and we have not discussed the gauge
invariance of the result.

In this construction we have found that the objects that appear in the self-consistent
action have a simple geometrical interpretation: there is a non-linear function of the field
ϕµν , gµν(ϕ), that we can interpret as a metric tensor and the other field in the first-order
action �µν

ρ is the associated Levi-Cività connection on-shell. The equation of motion (the
vacuum Einstein equation) states that the metric is Ricci-flat. This equation is covariant
under GCTs.

This geometrical interpretation is very powerful because all the infinite non-linear terms
that the theory would have when written in terms of ϕµν are packaged into objects that
can be easily manipulated. However, this new interpretation also goes far beyond the orig-
inal theory, which was a SRFT in Minkowski spacetime (that is, R

d equipped with the
Minkowski metric). In the original SRFT of gravity, any gravitational field is always de-
fined on R

d and the Minkowski metric is always there. However, in GR, in many cases it
is not possible to find or define a Minkowski metric in the whole spacetime. Furthermore,
many metric fields that solve the equations of motion of GR cannot be interpreted as metric
fields defined on the whole R

d but demand spacetime manifolds with different topology.
This is particularly true when there are submanifolds on which the metric field is singular.
The geometrical theory is therefore much richer because non-trivial topology and causal
structures (as in black-hole spacetimes) will be the origin of very interesting phenomena
(such as Hawking radiation).

Another strong point of the geometrical interpretation is that it provides us with a simple
principle to couple matter to gravity: that of covariance under general coordinate trans-
formations (“general covariance”), which encodes the equivalence principle in its stronger
form. The matter action has to be a scalar under GCTs and this is achieved by introducing
the metric field in the right places (precisely as in Rosenfeld’s prescription for how to calcu-
late the energy–momentum tensor). A general-covariant matter energy–momentum tensor
arises from this formalism in a natural way. However, in the SRFT approach we would have
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to find, case by case, the corrections to the lowest-order coupled system, which we know
is inconsistent. A weakness of the geometrical point of view is that there is no general-
covariant energy–momentum tensor of the gravitational field itself. As we have seen, there
is a Lorentz-covariant energy–momentum tensor (or pseudotensor) of the gravitational field
embedded in the Ricci tensor together with the wave operator, but it cannot be promoted
to a general-covariant tensor, as can be understood from the equivalence principle. This
obscures the physical interpretation of vacuum solutions of the geometrical theory, which
are not strictly speaking vacuum solutions since the whole spacetime is filled by a non-
trivial gravitational field that acts as a source for itself. We will come back to this point in
Chapter 6.

Where does this principle of general covariance come from? We started from a theory
with an Abelian gauge symmetry38 δ(0)

ε hµν = −2∂(µεν). We argued that this symmetry was
necessary in order to have a consistent theory of free massless spin-2 particles. Then we
coupled this free theory to the conserved energy–momentum tensor of the matter fields,
saw the need to introduce a self-coupling of the spin-2 field, and argued that the form of
the coupling should be dictated by gauge invariance with respect to the corrected trans-
formations δ(1)

ε hµν = −2∂(µεν) − χLεhµν , which combined the Abelian gauge symmetry
we started from and “localized” translations in such a way that the commutator of two δ(1)

ε

infinitesimal transformations gives another δ(1)
ε transformation. This is the only possible

extension of the Abelian δ(0)
ε transformations [739, 933] and the algebra is the algebra of

infinitesimal GCTs.39 In fact, we can easily see how the full gauge transformation δ(1)
ε hµν

arises from the effect of a GCT on the metric gµν = ηµν + χhµν , just by substituting and

38 Any two of these gauge transformations commute because δ
(0)
ξ1

δξ2 hµν = δ
(0)
ξ1+ξ2

hµν .
39 As shown in [933], it is possible to have a self-coupled spin-2 theory with only “normal spin-2 gauge

symmetry” (δ(0)
ε ). For instance, we can add to the Fierz–Pauli Lagrangian a term proportional to some (for

instance, the third) power of the linearized Ricci scalar

∂2h − ∂µ∂νhµν, (3.249)

which is exactly invariant under δ
(0)
ε . Of course, the resulting higher-derivative theory cannot have the same

interpretation, since the r.h.s. of the equation of motion is not the gravitational energy–momentum tensor.

Also, we can couple the linear theory to matter and obtain an interacting theory that is invariant under δ
(0)
ε :

we just have to add to the free-matter Lagrangian and the Fierz–Pauli Lagrangian an interaction term of the
form ∫

dd x hµν Jµν(ϕ), (3.250)

where Jµν is any symmetric, identically conserved tensor built out of ϕ and its derivatives. This excludes
the matter energy–momentum tensor, which is conserved only on-shell. Since Jµν is identically conserved,
the modification introduced into the equations of motion for matter by the coupling to gravity is immaterial.
Local Jµνs can be constructed from local four-index tensors with the symmetries Jµρνσ = J[µρ][νσ ] =
Jνσµρ , defining

Jµν = ∂ρ∂σ Jµρνσ . (3.251)

These Jµνs are called Pauli terms in [943]. It is also possible to define identically conserved nonlocal Jµνs,
for instance the non-local projection of the energy–momentum tensor Eq. (3.170). In all these cases, we see
that the spin-2 field does not couple to the total energy–momentum tensor and the quantum theories are not
consistent, according to [942].
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expanding in powers of χ the infinitesimal GCT

δεgµν = −Lεgµν = −2∇(µεν).

We can consider, then, that the gauge transformations that we found in the Noether method
are just the perturbative expansion of GCTs. The self-consistent Fierz–Pauli theory can be
considered as a perturbative expansion of the geometrical theory (GR) either in powers of
a weak field ϕµν or in powers of the dimensional coupling constant χ , which we know
from experience is extremely small. From this point of view, the geometrical action is ex-
tremely non-perturbative. Thus, the free Fierz–Pauli theory has been the starting point of
any attempt to quantize the gravitational interaction in the standard sense (that is, in per-
turbation theory), as a special-relativistic quantum field theory (SRQFT).40 Although they
were unsuccessful,41 these attempts have rendered many benefits to the general theory of
covariant quantization of gauge field theories,42 leading, for instance, to Feynman’s discov-
ery of ghosts [387].

We know that the theory we have obtained is experimentally correct, although most ex-
periments probe the perturbative regime only to a very low order in χ . However, we have
two very different interpretations. Which is the right one? This is a very difficult question
which is still open. For many years, the geometrical form of the theory of general relativ-
ity, which was the first to be obtained (it is clearly easier to obtain) and was proposed by
Einstein himself, was accepted as the only possible one. On the other hand, the SRFT form
of the theory is necessary in order to study aspects such as the self-coupling of gravity and
gravitational waves. Also, any standard quantization of GR43 has to go through the identi-
fication of the particles which are going to be the gravitational-field quanta and this takes
us to the SRFT. However, the quantization of this theory has been unsuccessful.44 We are
tempted to say that any theory of gravity with the same weak-field limit that we could quan-
tize should be the true theory. Actually, this is the main argument in favor of string theory.

Meanwhile, it is probably healthy to use both aspects of the theory in the appropriate
realms. This is what we intend to do here.

There is a final detail we should comment upon: we have obtained geometrical equations
of motion, but the action Eq. (3.235) is not fully geometrical in the sense that it is not
invariant under GCTs. We need to add a total derivative term to it:

S(0) = 1

χ2

∫
dd x

{
2ηµν∂[µ�ρ]ν

ρ
}
. (3.252)

40 Classical references on this approach are [318, 319, 387, 922]. More can be found in [30, 386].
41 Pure gravity, perturbatively derived from GR, is one-loop convergent but it is divergent at the same order

when coupled to matter [311–4, 889, 891] and at two-loop order without coupling to matter [462, 911].
42 See e.g. [914].
43 Other proposals such as Euclidean quantum gravity and loop quantization, which we may consider less

standard, do not need the identification of gravitons.
44 In view of the fact that the self-consistency of the theory requires the inclusion of an infinite number of

higher-order terms, it is legitimate to wonder whether the lack of success is due to the theory itself, to the
method of quantization, or just to our inability to quantize in the standard manner a theory with an infinite
number of terms without making truncations that would render it inconsistent even if only to some order
in χ .
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Then, written in terms of gµν and �µν
ρ , the total action S(0) + S(1) + S(2) becomes the

first-order Einstein–Hilbert action

SEH[gµν, �µν
ρ] = 1

χ2

∫
dd x

√|g| gµν Rµν(�), (3.253)

which can be taken as the starting point of GR. Observe that the equation of motion of gµν ,
looks different from that of gµν , although it is completely equivalent. In Chapter 4 we will
see in detail that the equation of motion is

Gµν = 0, (3.254)

where Gµν = Rµν − 1
2 gµν R is the Einstein tensor.

To end this section, we would like to remark that the addition of the total derivative
changes the gravity energy–momentum tensor by a ∂ρ�

ρµν term. In any case, we are go-
ing to need to add total derivatives to this action for various reasons. The issue of the
gravitational-field energy–momentum tensor will be studied in Chapter 6.

3.3 General relativity

The search for self-consistency of the Fierz–Pauli theory has led us to the Einstein–Hilbert
action, Eq. (3.253), which has the property of invariance under GCTs (general covariance).
This property, elevated to the rank of the principle of general covariance of relativity (PGR)
is the basis of the theory of general relativity which we want to review here in a extremely
condensed way.

The PGR can be considered as the generalization of the principle of (special) relativ-
ity and states that all laws of physics should be form-invariant (or covariant) under arbi-
trary changes of reference frame. Since any SRFT requires the use of the standard constant
Minkowski metric (ηµν) = diag(+ − − · · · −) which is invariant only under transforma-
tions between inertial frames related by Poincaré transformations, general covariance re-
quires its substitution by a metric field gµν(x) behaving as a tensor under all GCTs and the
substitution of all partial derivatives by (general-)covariant derivatives. If the metric field
gµν is simply the Minkowski metric in a non-Cartesian, non-inertial reference frame, then it
will always be possible to perform a GCT to a Cartesian, inertial reference frame in which
the metric gµν takes the constant standard form ηµν . Later on we will extend this property
to more general metrics in a local form. Finally, if we do not want to introduce any new
fields in using covariant derivatives, we have to use the Levi-Cività connection �(g).

To see how far we are taken by this principle, we first apply it to point-particles.

Point-particle actions. Actions for free point-particles moving in spacetime that are con-
sistent with the PGR and reduce to the special-relativistic action can be readily written by
replacing ηµν by a general metric gµν in Eqs. (3.8), (3.29), and (3.32). In this way we obtain
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the Nambu–Goto-type action for a massive particle in a general background metric gµν(x),

S[Xµ(ξ)] = −Mc
∫

dξ

√
gµν(X)Ẋµ Ẋ ν, (3.255)

which is still proportional to the particle’s proper time s as in Eq. (3.22), where the proper
time is now defined by

ds

dξ
=

√
gµν(X)Ẋµ Ẋ ν. (3.256)

The Polyakov-type action for a massive particle is

S[Xµ(ξ), γ (ξ)] = − Mc

2

∫
dξ

√
γ

[
γ −1gµν(X)Ẋµ Ẋ ν + 1

]
, (3.257)

which is also equivalent to the Nambu–Goto-type action upon elimination of the world-
line metric γ (ξ) through its own equation of motion and the Polyakov-type action for a
massless particle:

S[Xµ(ξ), γ ′(ξ)] = − p

2

∫
dξ

√
γ ′ γ ′ −1gµν(X)Ẋµ Ẋ ν. (3.258)

These three actions are manifestly invariant under reparametrizations of the worldline as
in the Minkowski case. Thus, there is going to be a constraint associated with this invariance
and it is going to coincide with the mass-shell condition in each case:

Pµ Pµ = M2c2, Pµ ≡ ∂L
∂ Ẋµ

(3.259)

(evidently M = 0 in the massless case).
Furthermore, they all are invariant45 under spacetime GCTs Xµ → Xµ ′(X) under which

the metric transforms as follows:

gµν(X) = g′
ρσ

[
X ′(X)

] ∂ X ′ ρ

∂ Xµ

∂ X ′ σ

∂ X ν
, (3.260)

so the combination gµν(X)Ẋµ Ẋ ν is invariant.
Since the Polyakov-type action is equivalent to the Nambu–Goto-type one, let us find the

equations of motion derived from the Nambu–Goto-type action. These are

Ẍλ + �ρσ
λ Ẋρ Ẋσ − d

dξ

(
ln γ

1
2

)
Ẋλ = 0, (3.261)

45 By invariant we mean “form-invariant” or, as it is sometimes put, covariant. This is all that the PGR requires.
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where we have introduced the induced metric on the worldline γ

γ (ξ) ≡ gµν(X)Ẋµ Ẋ ν. (3.262)

We use for it the same symbol as for the auxiliary metric of the Polyakov-type action
because the equation of motion for γ says that γ is the induced worldline metric.

We can easily recognize in Eq. (3.261) the geodesic equation written in terms of an
arbitrary parameter. Curves obeying that equation are called geodesics and are the curves
of minimal (occasionally maximal) proper length between two given points. When ξ = s,
the proper time, then γ = 1 and the third term in Eq. (3.261) vanishes and the standard
form of the geodesic equation is recovered:

Ẍλ + �ρσ
λ Ẋρ Ẋσ = 0. (3.263)

If the metric is ηµν , it is clear that we recover all the special-relativistic results. Further-
more, if the metric is related to ηµν through a GCT, it is clear that we will be describing the
same motion (straight lines in spacetime) in some system of curvilinear coordinates. Thus,
even though it is difficult to see, the dynamics of the particle will have the same d(d + 1)/2
conserved quantities associated with the invariances of the Minkowski metric in Cartesian
coordinates. Now that we are dealing with general curvilinear coordinates, it is good to
have a better characterization of the invariances of a metric and how they are associated
with conserved quantities in the dynamics of a particle.

Let us consider the effect of infinitesimal transformations of the form

δXµ = εµ(X),

δgµν = ελ∂λgµν.
(3.264)

It is worth stressing that these transformations are not GCTs in spacetime (the metric does
not transform in the required way). We know that the action (3.255) is invariant under
arbitrary GCTs. However, under the above transformations

δSpp = −Mc
∫

dξ
1

2
√

gµν Ẋµ Ẋ ν

Ẋρ ẊσLεgρσ , (3.265)

and is invariant only if εµ = εkµ, where ε is an infinitesimal constant parameter and kµ is
a Killing vector satisfying the Killing equation (1.107).

These transformations can be exponentiated, giving a one-dimensional group (for one
Killing vector) that leaves the action invariant. There is a conserved quantity associated
with it via the Noether theorem for global symmetries,46

P(k) = − Mc√
gµν Ẋµ Ẋ ν

kρ Ẋρ, (3.266)

46 The components of kµ are fixed functions of the spacetime coordinates and the parameters of the group
have to be constant over the worldline; they cannot be arbitrary functions of ξ . Thus, this is a group of
global transformations. These transformations can be gauged by the standard method of introducing a gauge
vector and a covariant derivative, as will be seen in due course.
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which can be interpreted as the components of the momentum vector in the direction of the
Killing vector.

This general framework can be applied to any metric in any coordinate system. We can
use it to recover the conserved quantities of a free particle moving in Minkowski spacetime.
First of all, observe that we can always use coordinates adapted to a given Killing vector
kµ: there is a coordinate z such that kµ∂µ = ∂z and ∂zgµν = 0. Then, there is always a
coordinate system in which the action does not depend on the variable Z(ξ) and hence
the momentum associated with it is conserved as usual. Thus, we are simply encoding
known facts in coordinate-independent form. Second, we can check that the above general
expression gives the usual linear- and angular-momentum components when we use the
Killing vectors of the Minkowski metric:

k(µ) ρ = ηµρ, k([µν]) ρ = 2ηρ[µxν], (3.267)

where (µ) and ([µν]) are labels for the d translational and d(d − 1)/2 rotational isometries.
To finish this digression, let us mention that the Polyakov-type actions (3.257) and

(3.258) are one-dimensional examples of what is called a non-linear σ -model.47 The non-
linearity is associated with the dependence of the metric on the coordinates, which are the
dynamical degrees of freedom.

The principle of equivalence. Accepting that, according to the PGR, the action (3.255)
gives the dynamics of a massive particle in the background given by the metric gµν , we
are led to the discovery of the principle of equivalence of gravitation and inertia (PEGI)
formulated by Einstein in [350, 351]: consider a near-Minkowskian metric gµν = ηµν +
χhµν with χhµν � 1. It is easy to see that, up to second-order terms, the action is precisely
the one given by Eq. (3.116). In particular, we studied the low-velocity (non-relativistic)
limit in order to show that the field hµν describes a gravitational special-relativistic field
and how in the non-relativistic limit that action can be interpreted as the non-relativistic
action of a particle with potential energy Mc2χh00/2 proportional to its inertial mass. This
potential energy can be interpreted as a gravitational potential energy, identifying in this
way inertial and gravitational masses and χh00 with 2φ/c2, where φ is the Newtonian
gravitational potential.

Thus, a GCT that, applied to an inertial frame, generates a non-trivial h00 can be seen
as generating a gravitational field. We are identifying the so-called inertial forces with a
gravitational field and we are saying that we cannot distinguish between them. Furthermore,
all the effects of the gravitational field can be eliminated by going to an inertial frame. This
is the essence of the PEGI which we will refine later. One can distinguish among weak (or
Galilean), medium-strong (or Einstein’s), and strong forms of the PEGI [242].

The weak form applies to the dynamics of one particle (precisely our case): one cannot
distinguish whether we are describing its motion in a non-inertial frame or whether there is
a gravitational field present. This implies that the inertial and gravitational masses of any
particle are always proportional, with a universal proportionality constant that, in carefully
chosen units, can be made 1. We have seen that, in the action Eq. (3.116), the inertial and

47 Two useful references on σ -models are [210, 576].
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gravitational masses of the particle are identical. We can certainly say that the PGR implies
the weak form of the PEGI.

The medium-strong form extends the rank of applicability from the dynamics of one par-
ticle to all non-gravitational laws of physics. The introduction of the curved metric gµν into
the actions of all known interactions guarantees that it is also a consequence of the PGR.

The strong form applies to all laws of physics, including gravity itself. There is noth-
ing we can say about this form of the PEGI for the moment, although we already men-
tioned in the previous section that GR satisfies it, but let us mention that it is not a direct
consequence of general covariance, for we can write SRFTs in Minkowski spacetime in
general-covariant form.

So far we have considered only gµνs that can be generated by GCTs from ηµν . Our
experience tells us that there are non-trivial gravitational fields in what we would previously
have called inertial frames. These gravitational fields must be described by the metric, too.
To incorporate them into the theory, we are forced to allow for all kinds of metrics gµν

that cannot be transformed into ηµν by a GCT. However, for any arbitrary spacetime metric
at a given point, there will always be coordinate systems defining local inertial frames in
which gµν is equal to ηµν at that given spacetime point P and in which the first derivatives
of gµν vanish at that given point48 and so all the components of the Levi-Cività connection
�µν

ρ(g) also vanish at P. One such system is provided by the Riemann normal coordinates
at the point P (see, for instance, [707]), which have the following properties:

gµν(P) = ηµν, ∂ρgµν(P) = 0,

∂ρ∂σ gµν(P) = 2
3 Rµ(ρσ)ν(P), Rµνρσ (P) = 2∂µ∂[ρgσ ]ν(P).

(3.268)

In this coordinate system, although the first derivatives vanish, the second derivatives
do not. In fact, in general, there is no coordinate system in which both first and second
derivatives at P vanish, because, otherwise, the Riemann tensor would vanish also at P,
which is possible only if it vanishes at P in any coordinate system. This reflects the fact that,
although the gravitational field is encoded in the metric tensor, it is actually characterized
by the Riemann curvature tensor. The two tensors play a role similar in this respect to those
of the vector potential and the field strength in Maxwell electrodynamics. Then, if there is
a non-trivial gravitational field at P, the curvature tensor will not vanish at that point and
the same will be true in any coordinates, including Riemann normal coordinates. Thus, to
what extent is it true that all gravitational effects can be eliminated in the neighborhood
of a point as the PEGI states? The point is that observable gravitational effects depend on
the product of Riemann tensor components and spacetime coordinate intervals that can be
made arbitrarily small and the upshot of this discussion is that the equivalence between
gravitation and inertia will work only locally and for observable effects. The PEGI is only

48 Any real non-singular metric can be diagonalized at a given point using the appropriate coordinate system,
the non-vanishing components being +1s and −1s. The number of −1s minus the number of +1s cannot be
changed by a further coordinate transformation and is an intrinsic property of the metric, an invariant called
the signature. Continuity of the metric implies that the signature is the same at all points of spacetime. We
consider only metrics of signature d − 2, the signature of ηµν in our conventions.
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local and we can say that observable effects of the gravitational field can be eliminated
locally in a small enough neighborhood of a given point. A longer discussion with examples
can be found in [242].

There is an ongoing debate on the validity and interpretation of the PEGI into which we
will not enter. Some interesting criticisms can be found in [659].

So far we have seen that the PGR forces us to use general spacetime metrics gµν and
that these encode gravitational and inertial forces on the same footing, implying the PEGI
in its medium-strong form. Any theory making use of a metric in this way would do the
same. Now we want to find an equation of motion for the metric field which determines the
dynamics of the gravitational field.

The PGR tells us that the equation of motion of the metric field must be a general
tensor equation, Aαβ = T αβ

matter. We have to find a suitable two-index, symmetric, tensor
Aαβ = A(αβ) that is a function only of the metric and its first and second derivatives,
Aαβ = Aαβ(gµν, ∂ρgµν, ∂σ ∂ρgµν). Now comes a very important point: in special relativity
the matter energy–momentum tensor is always conserved: ∂µT µν

matter = 0. Now we require
that the covariant generalization (as required by the PGR) of this equation

∇αT αβ
matter = 0 (3.269)

also holds. The connection is the Levi-Cività connection. It has to be stressed that this
equation is no longer a conservation equation, as we will explain in detail in Chapter 6.
However, it is the covariant generalization of the special-relativistic continuity equation
and reduces to it in locally inertial frames and it seems a plausible requirement. Thus, we
have to ask that Aαβ be covariantly divergence-free.

The problem of finding the most general tensor Aαβ satisfying these conditions was
solved by Lovelock in [662] and the solution is

Aα
β =

p=[ d+1
2 ]∑

p=1

cpgαγ1···γ2p
βδ1···δ2p Rγ1γ2

δ1δ2 · · · Rγ2p−1γ2p
δ2p−1δ2p + c0gα

β, (3.270)

where the cs are arbitrary constants and the Riemann tensor is the one associated with the
Levi-Cività connection. If we also want to recover the Fierz–Pauli equation in the linear
limit gµν = ηµν + χhµν , Aαβ has to be linear in second derivatives of the metric. In that
case, the only possibility is, as originally proven in [215, 924, 952],

Aαβ = aGαβ + bgαβ, (3.271)

where Gαβ is the Einstein tensor. This is also the only possibility in d = 4 even if we do not
impose the requirement of linearity in second derivatives of the metric. The vanishing of
its covariant divergence is due to the contracted Bianchi identity ∇µGµν = 0 when the con-
nection is the Levi-Cività connection as we have assumed and to the metric-compatibility
of the same connection.

In the Fierz–Pauli theory there is no room for the constant b. Thus, let us set it to zero for
the moment. Now we have only to fix the proportionality constant a, which can be inferred
from the linearized (Fierz–Pauli) theory. We obtain the Einstein equation

Gµν = 8πG(d)
N

c4
Tmatter µν. (3.272)
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As we will see in detail in Chapter 4, this equation can be derived from the following
action principle (up to boundary terms that we will find then):

S[gµν, ϕ] = c3

16πG(d)
N

∫
dd x

√|g| R(g) + Smatter[g, ϕ], (3.273)

where R(g) is the Ricci scalar for the Levi-Cività connection49 and the matter energy–
momentum tensor is defined by

T µν
matter = 2c√|g|

δSmatter

δgµν

, (3.274)

justifying Rosenfeld’s definition of the energy–momentum tensor.
We may wonder whether the contracted Bianchi identity that supports the above equa-

tions of motion50 is associated with some sort of gauge symmetry. Indeed, the group of
GCTs can be understood as an infinite-dimensional continuous group of local transforma-
tions and from the invariance of the action under this group we will derive a gauge identity
(the contracted Bianchi identity) and conserved currents in Chapter 6.

In this quick review we have seen how to use the PGR to construct the theory of GR. We
have introduced the minimal number of elements necessary for a general-covariant theory,
but there are additional objects that one can introduce. One of them is torsion. We will see
that it can be introduced consistently in the presence of fermions without adding further
degrees of freedom to the theory. Another object compatible with general covariance that
we can add to the theory is a cosmological constant, which is basically the constant b
that we discarded on the basis of its absence from the Fierz–Pauli theory. It occurs as the
constant � in the action51

S[gµν, ϕ] = c3

16πG(d)
N

∫
dd x

√|g| [R(g) − (d − 2)�] + Smatter[ϕ], (3.275)

leading to the cosmological Einstein equation

Gµν + d − 2

2
�gµν = 8πG(d)

N

c4
Tmatter µν. (3.276)

49 Thus, this is the second-order Einstein–Hilbert action that one obtains from the first-order action (3.253) by
eliminating �µν

ρ through its equation of motion. This action is quadratic in first-order derivatives of the
metric but contains second-order derivatives, which, however, appear in total derivatives.

50 Einstein himself proposed first Rµν = (8πG(d)
N /c4)Tmatter µν until he realized the inconsistency of this

equation with the covariant “conservation” of the energy–momentum tensor.
51 The dimension-dependent factor has been chosen in order to have the equation Rµν = �gµν in vacuum.
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This constant can be understood in various ways: first of all, one may think of some kind
of matter distributed in spacetime in such a way that its energy–momentum tensor is pre-
cisely Tµν = −[(d − 2)/16πG(d)

N ]�gµν . It is commonly accepted that the vacuum energy
of the quantum fields gives �. The value of � obtained according to this prescription is
many orders of magnitude bigger than the experimental upper bound. This huge disagree-
ment is known as the “cosmological-constant problem” (see e.g. [940]).

One can also understand � as a fundamental constant of Nature. Then, the question of
its smallness (if it is not zero) need not be such a big problem, at least not bigger than the
question of why the values of the other fundamental constants of Nature are what they are,
some of them being really small (such as the Planck length).

The main effect of the cosmological constant is to change the vacuum of the theory,
which in this context we can define as the maximally symmetric solution of the classical
equations of motion with all matter fields set to zero. In the presence of a cosmological
constant, Minkowski spacetime is no longer a vacuum solution and the new maximally
symmetric solutions are de Sitter (dSd) spacetime for positive � and anti-de Sitter (AdSd)
spacetime for negative �. Now, in the weak-field limit, we should be considering pertur-
bations around the new vacuum ḡµν as follows: gµν = ḡµν + χhµν . The theory that one
obtains by linearizing the cosmological Einstein theory is not the Fierz–Pauli theory in
Minkowski spacetime. This is why there was no room for the constant b in considering that
limit. In the next section we are precisely going to study the linearized theory one obtains
by expanding the cosmological Einstein equation around a general vacuum metric ḡµν that
can be curved or can even be the Minkowski metric in arbitrary coordinates.

3.4 The Fierz–Pauli theory in a curved background

In the previous sections we have constructed a theory of spin-2 particles moving in the
background of Minkowski spacetime in Cartesian coordinates (constant, diagonal ηµν). In
this section we want to try to extend this construction to other backgrounds. As we have
seen, the Fierz–Pauli theory can also be considered as the lowest-order perturbation theory
of GR over Minkowski spacetime. Here we will construct extensions of the Fierz–Pauli
theory by constructing the lowest-order perturbation theory of GR over a given background
spacetime metric that is a vacuum solution of the full GR theory.

We may wonder whether it is possible to write the Fierz–Pauli theory (or a generalization
thereof) in an arbitrary curved background metric. Such a construction would be necessary,
for instance, in order to couple a spin-2 particle to GR in the same way as we couple scalars
or vector fields. Such a theory would necessarily contain the same terms as the flat space-
time one but covariantized so that it has the right flat-spacetime limit but can also contain
additional terms proportional to the curvature of the background metric that vanish in that
limit. The guiding principle determining whether to introduce these terms is gauge invari-
ance: the theory should be invariant under the general-covariantized gauge transformations
δ(0)hµν = −2∇̄(µεν). However, it can be shown that it is not possible to write this gauge-
invariant theory, no matter what curvature terms one introduces [47]. This is one of the indi-
cations of the problems one encounters in trying to couple spin-2 particles to (GR) gravity.

While a Fierz–Pauli theory in a general curved background does not exist, such a the-
ory does exist in backgrounds that solve the vacuum (cosmological) Einstein equations and
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this is the theory we are going to obtain here. Its construction is useful for many purposes.
We will use it in constructing conserved quantities in spacetimes with arbitrary asymp-
totics and we can use it to work with the Minkowskian Fierz–Pauli theory in arbitrary
coordinates. However, apart from these prosaic applications it will also teach us interesting
things, e.g. how to define masslessness in curved backgrounds.

To be as general as possible we will include a cosmological-constant term from the
beginning as in Eq. (3.275).

3.4.1 Linearized gravity

Let us first describe the setup: we consider a spacetime metric gµν that solves the d-
dimensional cosmological Einstein equations for some matter energy–momentum tensor
T µν

matter (here we set c = 1, as usual),

Gc
µν = 8πG(d)

N T µν
matter, (3.277)

where Gc
µν is the cosmological Einstein tensor,

Gc
µν ≡ Gµν + d − 2

2
�gµν. (3.278)

The metric gµν must be such that we can consider it as produced by a small perturbation of
the background metric ḡµν , i.e. we can write

gµν = ḡµν + hµν, (3.279)

where the perturbation hµν goes to zero at infinity fast enough that the metric gµν is asymp-
totically ḡµν . Furthermore, hµν and its derivatives are assumed to be small enough that we
can ignore higher-order terms.52

Usually, the background metric ḡµν will be the vacuum metric, i.e. a maximally symmet-
ric solution of the vacuum Einstein equations

Ḡc
µν = 0. (3.280)

Therefore, the metrics gµν that we consider describe in the gravitational language isolated
systems. There are no matter sources of the gravitational field at infinity. In the absence of a
cosmological constant, the vacuum metric ḡµν = ηµν , the Minkowski metric, and the met-
rics gµν will be asymptotically flat. With positive (negative) cosmological constant, the
(maximally symmetric) vacuum solution is the (anti-)de Sitter ((A)dSd) spacetime and the
metrics gµν will be asymptotically (anti-)de Sitter. However, we will keep the background
metric completely general in order to cover other interesting cases in which a solution gµν

goes asymptotically to a ḡµν that is not the vacuum solution or even a solution of the vacuum
Einstein equations. Thus, we will use only Eqs. (3.277) and (3.279) to find the equation sat-
isfied by the perturbation hµν . Later on, we will impose the condition that the background
metric solves the Einstein equation (3.280).

52 Here we have absorbed the coupling constant χ =
√

16πG(d)
N into hµν .
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The first thing we have to do is to expand this equation in powers of the perturbation hµν .
The perturbation can be treated as a tensor on the background manifold. Then, it is natural
to lower and raise its indices (and those of all tensors) with the background metric ḡµν and
its inverse ḡµν . In particular, hµν = ḡµρ ḡνσ hρσ is not the inverse of hµν (which need not
exist) and we also define h = ḡµνhµν . All barred covariant derivatives are also taken with
respect to the background metric’s Levi-Cività connection �̄µν

ρ . We find

gµν = ḡµν − hµν + O(h2),

�µν
ρ = �̄µν

ρ + γµν
ρ + O(h2),

Rµνρ
σ = R̄µνρ

σ + 2∇̄[µγν]ρ
σ + O(h2),

(3.281)

with
γµν

ρ = 1
2 ḡρσ

{∇̄µhσν + ∇̄νhµσ − ∇̄σ hµν

}
. (3.282)

This equation is essentially the equation that gives the variation of the Levi-Cività con-
nection δ�µν

ρ (≡ γµν
ρ) under an arbitrary variation of the metric53 δgµν (≡ hµν),

δ�µν
ρ = 1

2 gρσ
{∇µδgσν + ∇νδgσρ − ∇σ δgµν

}
. (3.284)

Now we can find the expansion of Rµνρ
σ to first order in hµν using the so-called Palatini

identity that gives the variation of the curvature tensor under an arbitrary variation of the
connection

δRµνρ
σ = +2∇[µδ�ν]ρ

σ . (3.285)

The Palatini identity follows from Eqs. (1.31) and (1.36), on setting the torsion equal to
zero, identifying τµν

ρ with δ�µν
ρ , and keeping only the linear terms. We stress that, unlike

�µν
ρ , the variation δ�µν

ρ is a true tensor and its covariant derivative is well defined.54

For the variation of �µν
ρ that we have just found we obtain

Rµνρ
σ = R̄µνρ

σ + ḡσλ
{∇̄[µ∇̄ν]hλρ + ∇̄[µ|∇̄ρh|ν]λ − ∇̄[µ|∇̄λh|ν]ρ

} + O(h2), (3.287)

and, on contracting the indices σ and ν, we find55

Rµρ = R̄µρ + 1
2

{∇̄2hµρ − 2∇̄λ∇̄(µhρλ + ∇̄µ∇̄ρh
} + O(h2). (3.288)

53 For further use we quote here the generalization of this equation when there is torsion present:

δ�αβ
γ = 1

2 gγ δ
{∇αδgβδ + ∇βδgαδ − ∇δδgαβ

}
+ 1

2

{
gδγ gσβδTαδ

σ + gδγ gσαδTβδ
σ − δTαβ

γ
}

. (3.283)

54 Also for further use, here we quote the formula valid for a general connection:

δRµρ = ∇µδ�νρ
ν − ∇νδ�µρ

ν − Tµν
λδ�λρ

ν. (3.286)

55 Sometimes the subindex L is used to indicate that the object is the part linear in hµν of the corresponding
tensor with the indices in the same position. Observe that for any tensor TL

µ 	= ḡµνTL ν and for this reason
we try to avoid this notation.
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On contracting with gµρ = ḡµρ − hµρ , we find that the Ricci scalar is given by

R = R̄ − R̄λσ hλσ + ∇̄2h − ∇̄λ∇̄σ hλσ + O(h2). (3.289)

Now, to find the cosmological Einstein tensor we use

Gc
αβ = (

gαµgβρ − 1
2 gαβgµρ

)
Rµρ + d − 2

2
�gαβ, (3.290)

obtaining

Gc
αβ = Ḡc

αβ + GcL
αβ + O(h2),

GcL
αβ = GcL1

αβ + GcL2
αβ,

GcL1
αβ = 1

2

{∇̄2hαβ − 2∇̄λ∇̄(αhλ
β) + ∇̄α∇̄βh

} − 1
2 ḡαβ

{∇̄2h − ∇̄µ∇̄νhµν

}
,

GcL2
αβ = − {

hαµḡβρ + ḡαµhβρ − 1
2 hαβ ḡµρ − 1

2 ḡαβhµρ
}

R̄µρ − d − 2

2
�hαβ.

(3.291)

On substituting into the cosmological Einstein equation (3.277), we find

Ḡc
µν + GcL

µν = 8πG(d)
N

(
T µν

matter + tµν
)
, (3.292)

where the l.h.s. contains terms up to first order in hµν and 8πG(d)
N tµν stands for all the

second- and higher-order terms in hµν and is referred to as the gravitational energy–
momentum (pseudo-)tensor. This is the definition we will use in Section 6.1.2, and it is
clearly justified by our previous results.

Now we can particularize to the case in which the background metric satisfies the vacuum
cosmological Einstein equation (3.280), which, upon subtraction of the trace, implies

R̄µν = �ḡµν. (3.293)

We find the same expressions as before for Rµρ and GcL1
αβ but the expression for GcL2

αβ

is considerably simpler,
GcL2

αβ = −�
(
hαβ − 1

2 ḡαβh
)
, (3.294)

and the l.h.s. of the cosmological Einstein equation is purely linear in hµν ,

GcL
µν = 8πG(d)

N

(
T µν

matter + tµν
)
. (3.295)

This l.h.s. gives us the generalization of the Fierz–Pauli equations wave operator in
curved spacetime we were looking for:

D̄αβ(h) = 2GcL
αβ = ∇̄2hαβ − 2∇̄λ∇̄(αhλ

β) + ∇̄α∇̄βh

− ḡαβ
{∇̄2h − ∇̄µ∇̄νhµν

} − 2�
(
hαβ − 1

2 ḡαβh
)

= 16πG(d)
N

(
T αβ

matter + tαβ
)
, (3.296)

which justifies the present definition of tµν which coincides with the one we have used
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before. In fact, in the previous sections we have found the lowest-order term (quadratic in
h) of tµν in the case µ̄ν = ηµν (� = 0) which we denoted by t (0) µν

GR .
This equation, with the r.h.s. set to zero, is the equation of motion of a massless spin-2

field moving on a background spacetime ḡµν , which we are going to study in the next sec-
tion. We can already see that this equation does not look like the typical wave equation for
a massless field because it has mass-like terms proportional to the cosmological constant.
However, we are going to argue that precisely those terms are necessary in order to describe
massless fields in a spacetime with R̄µν = �ḡµν .

Observe that, since ζµν = hµν + O(h2) and hµν = ζµν + O(ζ 2), we could have arrived
at the same linear-order results by expanding around the inverse metric

gµν = ḡµν − ζµν. (3.297)

We would like to have an action from which to derive the above equation of motion with
vanishing r.h.s. Instead of guessing, we simply expand the integrand of the Einstein–Hilbert
action to second order in hµν . Using the matrix identity√

|M | = exp( 1
2 tr ln M), (3.298)

and the expansions

(1 + x)−1 = 1 − x + x2 − x3 + · · ·,
ln (1 + x) = x − 1

2 x2 + 1
3 x3 − 1

4 x4 + · · ·, (3.299)

exp y = 1 + y + 1

2!
y2 + 1

3!
y3 + · · ·,

we can easily calculate second- and higher-order terms:

gµν = ḡµν + hµν,

gµν = ḡµν − hµν + hµ
σ hσν − hµ

σ hσρhρ
ν + O(h4), (3.300)√

|g| =
√

|ḡ|
(

1 + 1

2
h + 1

8
h2 − 1

4
hµνhµν + 1

6
hµ

νhν
ρhρ

µ

− 1

8
hhµνhµν + 1

48
h3

)
+ O(h4).

For the Levi-Cività connection we can write the exact expression

�µν
ρ = �̄µν

ρ + gρσ γµνσ , γµνσ = 1
2

{∇̄µhνσ + ∇̄νhµσ − ∇̄σ hµν

}
, (3.301)

and just have to substitute the above expansion of gρσ to the desired order. For the Riemann
curvature tensor and the Ricci tensor we can write also write exact expressions,

Rµνρ
σ = R̄µνρ

σ + 2∇̄[µ
(
gσλγν]ρλ

) + 2gσδgλεγ[µ|λδγ|ν]ρε,

Rµρ = R̄µρ + ∇̄µ

(
gσλγσρλ

) − ∇̄σ

(
gσλγµρλ

) + gσδgλε
(
γµλδγσρε − γσλδγµρε

)
,

(3.302)

on which, again, we simply have to expand the inverse metric. A similar expression can
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immediately be found for the Ricci scalar R and for the scalar density
√|g| R. Then, up

to total derivatives and O(h3) terms, and using the equations of motion for the background
R̄µν = �ḡµν that we have not used so far, the Einstein–Hilbert action (3.275) becomes the
Fierz–Pauli action in a curved background

S = 1

χ2

∫
dd x

√|ḡ| {
1
4 ∇̄µhρλ∇̄µhρλ − 1

2 ∇̄µhρλ∇̄ρhµλ + 1
2 ∇̄µhµν∇̄νh

− 1
4 ∇̄µh∇̄µh + 1

2�
(
hµνhµν − 1

2 h2
)}

. (3.303)

In the Minkowski background ḡµν = ηµν (� = 0) it is easier to find higher corrections
both to the action and to the equations of motion. A long but straightforward calculation
gives as cubic term in the action (up to total derivatives)

S(3) = 1

χ2

∫
dd x 1

2 hµσL(1)
µσ , (3.304)

where L(1)
µσ is written in Eq. (3.199).56 The equation of motion that one obtains from the

variation of the vacuum Einstein–Hilbert action is

δS

δgµν

− 1

χ2

√
|g| Gµν = 0. (3.305)

Therefore, the linear equation of motion (the Fierz–Pauli equation) is (restoring everywhere
χ ) obtained from the quadratic term in the action and the quadratic energy–momentum
tensor from the cubic term in in the action:

δS(2)

δhµν

= −G(1) µν = − 1
2Dµν(h),

δS(3)

δhµν

= χ(G(2) µν + 1
2 hG(1) µν) = 1

2χ t (0) µν

GR (h).

(3.306)

This is the t (0) µν

GR (h) given in Eq. (3.200). The physical consistency of these results has been
discussed at length before.

3.4.2 Massless spin-2 particles in curved backgrounds

We have obtained a generalization of the Fierz–Pauli action for curved backgrounds that
are solutions of the vacuum Einstein equations and we want to see whether the theory can
describe massless spin-2 particles in those backgrounds.

We should start by saying that the concepts of mass and angular momentum (spin) are
in principle associated exclusively with the Poincaré group, which is the isometry group of
Minkowski spacetime. In more general spaces one has to study the representations of the

56 To recover the factors of χ we have to rescale hµν → χhµν .
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isometry group and, in general, there will be no obvious generalizations of these concepts
that work in all cases.

Instead of proceeding case by case trying to give definitions of the mass of a field, we
are going to adopt a general point of view and give a characterization of the masslessness
of a field. The main observation is that massless fields have, as a rule, fewer degrees of
freedom (DOF) than do massive fields, the extra DOF being removed by gauge symmetries
that appear when the mass parameters are set to zero. At the beginning of this chapter
we studied two cases in Minkowski spacetime: a massive vector field has d − 1 DOF and
no gauge symmetries. When we set the mass parameter to zero, the theory has a gauge
symmetry and we can remove one more DOF (a total of two) so there are only the d − 2
DOF of a massless vector. In the spin-2 case, in the presence of mass the field describes
(d − 2)(d + 1)/2 DOF. When we switch off the mass parameter, there appears a gauge
symmetry that allows us to remove d − 1 DOF more (a total of 2d) and we are left with the
d(d − 3)/2 DOF of a massless spin-2 particle.

In conclusion, we are going to characterize masslessness by the occurrence of new gauge
symmetries that appear when we switch off the mass parameter.

We have obtained a generalization of the Fierz–Pauli theory to curved backgrounds given
by the action Eq. (3.303) and equation of motion Eq. (3.296) (with vanishing r.h.s.). In this
theory there are terms proportional to the cosmological constant � that have the form of
mass terms. To see whether they really are mass terms according to our definition, we look
for gauge symmetries. The obvious candidate is the linearization of the invariance under
GCTs that generalizes Eq. (3.95) to curved backgrounds:

δεhµν = −2∇̄(µεν), (3.307)

Let us first check the invariance of the action under these transformations. First we vary
the action as usual. We obtain two types of terms: ∇̄h∇̄2ε and �h∇̄ε (these arise from
the variation of the “mass terms”). We want to move all the derivatives so they act over ε.
Thus, we integrate by parts all the terms of the first kind, obtaining h∇̄3ε-type terms and
a total derivative. These terms can be combined into terms of the forms h∇̄[∇̄, ∇̄]ε and
h[∇̄, ∇̄]∇̄ε. Then, the commutators of covariant derivatives can be replaced by curvature
terms using the Ricci identity and all these terms become terms of the type h R̄∇̄ε and
h∇̄ R̄ε. The first cancel out, upon use of the vacuum cosmological Einstein equation for the
background metric R̄µν = �ḡµν , the �h∇̄ε terms. The second cancel out upon use of the
background Bianchi identity ∇̄[µ R̄νρ]σ

λ = 0 and we are left with the total derivative:

δε S = 1

χ2

∫
dd x

√
|ḡ| ∇̄µ

{
1
2 hρσ

[
4∇̄ [µ∇̄ρ]εσ − 2∇̄ρ∇̄σ εµ

+ ḡρσ
(∇̄2εµ − ∇̄λ∇̄µελ

) + 2ḡµρ∇̄σ ∇̄λε
λ − 2ḡρσ ∇̄µ∇̄λε

λ
]}

≡
∫

dd x
√

|ḡ| ∇̄µsµ(ε). (3.308)

The Fierz–Pauli equation of motion Eq. (3.296) is, therefore, invariant for the back-
grounds considered. The proof makes crucial use of the Einstein equation satisfied by the
background metric. As we remarked in the introduction to this section, in general back-
grounds there is no way to construct a gauge-invariant theory by adding curvature terms
[47].
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Furthermore, in the proof of invariance of the action the presence of the cosmological
constant terms is also crucial. Had we tried to prove the invariance of the equation of motion
directly, we would have seen the necessity for these terms to cancel out curvature terms
coming from the commutators of covariant derivatives. We can conclude that the theory,
with those terms, is massless.

It is interesting to see what kind of gauge identity and conserved current we obtain from
this invariance. We proceed as usual. We first find the variation of the action under an
arbitrary infinitesimal transformation of δhµν :

δSFP = 1

χ2

∫
dd x

√|ḡ|
{

SFP

δhαβ

δhαβ + ∇̄µ

(
lµ(αβ)δhαβ

)}
,

SFP

δhαβ

= − 1
2D̄αβ(h),

lµαβ = 1
2 ∇̄µhαβ − ∇̄αhβµ + 1

2 ḡµα∇̄βh + 1
2 ḡαβ∇̄νhµν − 1

2 ḡαβ∇̄µh.

(3.309)

Using now the particular form of the gauge transformation δεhµν in the above equation and
integrating by parts, we obtain

δε S =
∫

dd x
√

|ḡ|
{
− 1

χ2
εβ∇̄αD̄αβ(h) + ∇̄µ

[
1

χ2
D̄µβεβ − 2

χ2
lµ(αβ)∇̄αεβ

]}
, (3.310)

and, on comparing this with the first form of the variation of the action that we found, we
arrive finally at the identity, which is valid for arbitrary εµs and without the use of any
equations of motion,

0 =
∫

dd x
√|ḡ|

{
− 1

χ2
εβ∇̄αD̄αβ(h) + ∇̄µ jµ

N2(ε)

}
,

jµ

N2(ε) = jµ

N1(ε) + 1

χ2
D̄µβ(h)εβ,

jµ

N1(ε) = − 2

χ2
lµ(αβ)∇̄αεβ − sµ(ε).

(3.311)

From this identity we derive the gauge identity,

∇̄αD̄αβ(h) = 0, (3.312)

and the off-shell covariant conservation of the above Noether current,

∇̄µ jµ

N2(ε) = 0
(
∂µj

µ

N2(ε) = 0
)
. (3.313)

We know that this Noether current can always be written as j
µ

N2(ε) = ∂ν j
νµ

N2(ε) with
j
νµ

N2(ε) = −j
µν

N2(ε). Finding this antisymmetric tensor in the general case is complicated and
we are going to do it only for the most interesting case, in which εµ is a Killing vector of
the background metric εµ ≡ ξ̄ µ with ∇̄(µξ̄ν) = 0. In this case, sµ(ξ) has to vanish identi-
cally, because the variations of hµν also vanish identically, and the first term of jµ

N1(ε) also
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vanishes because of the Killing equation. Then, only the second term in the expression for
jµ

N2(ξ̄ ) Eq. (3.311) survives and we are left with

jµ

N2(ξ̄ ) = 1

χ2
D̄µν(h)ξ̄ν. (3.314)

The conservation of this current is easy to check using the Bianchi identity and the
Killing equation. To find jµν

N2 (ξ̄ ) = (1/
√|g|)jµν

N2(ξ̄ ) we follow Abbott and Deser in [1]. First
we separate D̄µν into two pieces:

D̄µν(h) = curvature terms + [∇̄ν, ∇̄λ]hλµ (≡2Xµν)

the rest − [∇̄ν, ∇̄λ]hλµ (≡2Y µν).
(3.315)

Y µν can be written in this form,

Y µν = −∇̄α∇̄β K µανβ, (3.316)

where K µανβ is as defined in Eq. (3.91) but with a general background metric instead of the
Minkowski metric, i.e.

K µανβ = 1
2

{
ḡµβ h̄να + ḡνα h̄µβ − ḡµν h̄αβ − ḡαβ h̄µν

}
. (3.317)

This tensor has the same symmetries as the Riemann tensor and is sometimes called the
superpotential. Using R̄µν = �ḡµν , we find

Xµν = 1
2

[∇̄ν, ∇̄λ

]
h̄λµ − �h̄µν, (3.318)

and, using the Ricci identity, it can be rewritten as follows:

Xµν = 1
2

[
R̄µ

λσ
ν h̄λσ − �h̄µν

]
. (3.319)

Finally, we can also rewrite it as follows:

Xµν = 1
2 R̄ν

αβγ K µαβγ . (3.320)

Using the expression for Y in terms of the superpotential K ,

Y µνξ̄ν = −∇̄α

[(∇̄β K µανβ
)
ξ̄ν − K µβνα∇̄β ξ̄ν

] − K µβνα∇̄α∇̄β ξ̄ν. (3.321)

Using the Killing vector identity Eq. (1.108) for the background Killing vectors and the
definition of the superpotential K , we see that

Y µνξ̄ν = −∇̄α

[(∇̄β K µανβ
)
ξ̄ν − K µβνα∇̄β ξ̄ν

] − Xµνξ̄ν, (3.322)

and, therefore,

jαµ

N2 (ξ̄ ) = − 2

χ2

[(∇̄β K µανβ
)
ξ̄ν − K µβνα∇̄β ξ̄ν

]
. (3.323)
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3.4.3 Self-consistency

In this chapter we have seen how the consistency of the Fierz–Pauli theory in Minkowski
spacetime coupled to matter requires the introduction of an infinite series of higher-order
terms whose resummation leads to GR without a cosmological constant. This is evidently
consistent with the derivation of the Fierz–Pauli theory from GR as the linear perturbation
theory around Minkowski spacetime.

Now we have found a generalization of the Fierz–Pauli theory in an arbitrary background
satisfying the cosmological vacuum Einstein equation R̄µν = �ḡµν as the linear perturba-
tion theory around that background and it is natural to ask ourselves whether, by requiring
consistency in the coupling of this theory to matter, we are going to arrive at GR with a
cosmological constant. (The linear theory coupled to matter is inconsistent for exactly the
same reasons as in the Minkowski case.)

As shown by Deser in [301], the answer to this question is affirmative. We are not going
to give here all the details of the proof, which follows closely the proof in the Minkowski
case, but it is, however, interesting to see the first-order form of the Fierz–Pauli action in
curved background that constitutes its starting point:

S(1)
FP [ϕµν, �µν

ρ] = 1

χ2

∫
dd x

{
χ�µν

ρ
(
δρ

µ∇̄σϕσν − ∇̄ρϕ
µν

)
+ ḡµν2�λ[µ

ρ�ρ]ν
λ + 1

2�
(
hµνhµν − 1

2 h2
)}

. (3.324)

Here both ϕµν and gµν are tensor densities.

3.5 Final Comments

In this chapter we have found a SRFT of gravity (GR) that is very satisfactory from many
points of view. First of all, it describes extremely well what is observed. Second, it is a
theory with a high degree of internal self-consistency that can be obtained from very few
principles (either the principle of equivalence and general covariance or consistent interac-
tion of a massless spin-2 particle).

However, it also has some drawbacks: we wanted to follow the steps that led to the
development of the SRQFTs like quantum electrodynamics that we know so well, but we
found at the end that the quantum theory based on this consistent classical theory is not
consistent. Thus, at the microscopic level, the answer we have obtained is not satisfactory.
In fact, at the microscopic level there arise questions like that of the coupling of gravity to
fermions that have no answer in the formalism we have developed.

How should GR be modified in order to obtain a consistent quantum theory is a question
that has received many tentative answers, the latest being string theory. In string theory, as
in some of the alternative theories that have been proposed, there are additional fields, in
the presence of which the proofs of uniqueness and self-consistency of GR are no longer
valid. Furthermore, there is a prescription for the coupling of all those fields to fermions
and some of the additional gravitational fields can be interpreted as torsion. We want to
gain some understanding of all these elements that enter into the gravitational part of string
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theory as well as other alternative theories of gravity. Some of these elements are more
or less trivial extensions of GR (for instance, its reformulation in the Vielbein formalism
which allows the coupling to spinors) and, in fact, it is always (or usually) possible to see
the new theories as GR coupled to different fields. In the next few chapters we are going
to review these elements and theories that contain them: the Cartan–Sciama–Kibble theory,
non-symmetric theories of gravity, theories of teleparallelism, and supergravity theories.
The simplest way to introduce most of them is through a minimal action principle and the
formulation of the minimal action principle for GR will be the first step in this direction.



4
Action principles for gravity

A minimal action principle is a basic ingredient of any field theory. With it (with an ac-
tion) we can systematically find conserved currents and charges, canonically conjugate
momenta, and a Hamiltonian (which is necessary for canonical quantization), etc. On the
other hand, it is easier to deal with actions than with equations of motion; it is easier to
include new fields and couplings in the action respecting certain symmetries than to invent
new consistent equations of motion for them and modifications of the equations of motion
of the old fields.

In this chapter we are going to study in detail several action principles for GR and for
more general theories we will be concerned with later on. First, we will study the stan-
dard second-order Einstein–Hilbert action that we found as the result of imposing self-
consistency on the Fierz–Pauli theory coupled to matter. We will derive the Einstein equa-
tions from it and we will find the right boundary term that will allow us to impose boundary
conditions on the variations of the metric δgµν only, not on its derivatives. We will do the
same for theories including a scalar and in a conformal frame that is not Einstein’s. In these
theories, an extra scalar factor K (which could be e−2φ in the string effective action) ap-
pears multiplying the Ricci scalar and obtaining the gravitational equations becomes more
involved.

We are also going to study the behavior of the Einstein–Hilbert action under GCTs and
we will obtain the Bianchi (gauge) identity and Noether current associated with them and
see how they are modified by the addition of boundary terms to the action.

Then we will study the first-order formalism in which the metric gµν and the connection
�µν

ρ are considered as independent variables and the first-order formalism for the Vielbein
eµ

a and the spin connection ωµ
ab, with and without fermions, which will be seen to induce

torsion. There is also a purely affine formulation of GR in which the only variable is the
(symmetric) affine connection �µν

ρ and we will review it briefly.
The first-order formalism and the purely affine formulation are very useful for formu-

lating Einstein’s “unified theory,” which is based on a non-symmetric “metric” tensor. We
take the opportunity to revisit this and other non-symmetric gravity theories (NGTs).

Motivated by the success of the first-order formalism with Vielbein and spin connection,
we will review the MacDowell–Mansouri formulation of four-dimensional gravity as the

114
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gauge theory of the four-dimensional Poincaré group, which we will obtain by Wigner–
Inönü contraction from the AdS4 case.

Finally, we will briefly review teleparallel formulations and generalizations of GR.

4.1 The Einstein–Hilbert action

In d dimensions, the Einstein–Hilbert action [535] is

SEH[g] = c3

16πG(d)
N

∫
M

dd x
√|g| R(g), (4.1)

where R(g) is the Ricci scalar of the metric gµν , G(d)
N is the d-dimensional Newton constant

and M is the d-dimensional manifold we are integrating over. Since we have obtained this
action by imposing consistent coupling of the special-relativistic field theory, we know that
it is canonically normalized and we also know which expression for the force between two
particles it leads to (see Eq. (3.140)). We have introduced here the speed of light in order to
find the dimensions of G(d)

N in “unnatural units,”: M−1Ld−1T −2. Recall that the metric gµν

is dimensionless in our conventions. Recall also that the factor of 16π is associated with
rationalized units only in d = 4.

Observe that what will appear in the path integral

Z =
∫

Dg e+i SEH/� (4.2)

is the dimensionless combination

SEH

�
= 2π

�d−2
Planck

∫
dd x · · ·, (4.3)

where
�d−2

Planck

2π
= �G(d)

N

c3
, (4.4)

is the d-dimensional Planck length.1 In the absence of any other dimensional quantity this
is the only combination of the constants �, c, and G(d)

N with dimensions of length. However,
if there is an object of mass M , there are two more combinations with dimensions of length:
the Compton wavelength associated with the object,

−λCompton = �

Mc
, (4.6)

1 Sometimes the reduced Planck length

−�Planck = �Planck/(2π). (4.5)

We have also been using the constant χ defined by χ2 = 16πG(d)
N /c3.



116 Action principles for gravity

which is of purely quantum-mechanical nature, and the d-dimensional Schwarzschild
radius,

RS =
(

16π MG(d)
N c−2

(d − 2)ω(d−2)

) 1
d−3

, (4.7)

which is of purely classical, gravitational nature. It occurred naturally in the gravitational
field of a massive point-like particle, Eq. (3.124).

With the constants �, c, and G(d)
N one can also build a combination with units of mass:

the Planck mass,

MPlanck =
(

�
d−3

G(d)
N cd−5

) 1
d−2

, (4.8)

so the prefactor of the action in the path integral is

c3

G(d)
N �

=
(

MPlanckc

�

)d−2

. (4.9)

If we consider objects whose masses are of the order of the Planck mass, then it is imme-
diately seen that their Compton wavelengths become of the order of their Schwarzschild
radii, which are of the order of the Planck length:

M ∼ MPlanck ⇒ −λCompton ∼ RS ∼ �Planck. (4.10)

At that point quantum-mechanical effects will become important.
If we naively try to quantize by standard GR methods (starting from its perturbative

expansion), we find that the quantum gravitational coupling constant (Planck length) is di-
mensional and, by standard arguments, we expect to obtain a non-renormalizable theory.
This is indeed the case. As we will see, in string theory there is no unique constant that
plays the role of length scale and coupling constant as does the Planck length in GR: there
are two constants with dimensions of length: Planck’s constant and the string length �s.
The dimensionless quotient is essentially the string coupling constant gs. In that context
the Schwarzschild radius has to be compared with �s in order to see when (string) quan-
tum gravity effects become important. On the other hand, we can have better expectations
about the perturbative renormalizability of the theory since the expansion is made in the
dimensionless parameter gs, instead of �Planck or �s.

The Einstein–Hilbert action Eq. (4.1) contains second derivatives of the metric. However,
the terms with second derivatives take the form of a total derivative,2 symbolically

SEH[g] = c3

16πG(d)
N

∫
M

dd x
√

|g| (∂g)2 + c3

16πG(d)
N

∫
M

dd x ∂µωµ(∂g). (4.11)

This means that the original action Eq. (4.1) can in principle be be used to obtain equations
of motion that are of second order in derivatives of the metric. However, we would have to
impose conditions on the derivatives of the metric on the boundary. Furthermore, observe

2 See, for instance, [644] and Appendix D.
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that the “vector” ωµ(∂g) does not transform as such under GCTs. The solution to these
problems consists in adding a general-covariant boundary term to the original EH action.
We are going to see next how to find the equations of motion and the right boundary term.

4.1.1 Equations of motion

Let us vary the original Einstein–Hilbert action with respect to the metric. For simplicity we
temporarily set χ = 1. Bearing in mind that R(g) = gµν Rµν(�(g)) and Rµν(�(g)) depends
on g only through the Levi-Cività connection �(g) so we can use the Palatini identity
Eq. (3.285),

δRµν = ∇µδ�ρν
ρ − ∇ρδ�µν

ρ, (4.12)

and using the identities

δgµν = −gναgµβδgαβ, δg = g gαβδgαβ, (4.13)

we immediately find

δSEH =
∫

dd x
√

|g| {−Gµνδgµν + gµν
[∇µδ�ρν

ρ − ∇ρδ�µν
ρ
]}

. (4.14)

Since our covariant derivative is metric-compatible we can absorb the metric in the last
term and combine the two terms into a single total derivative,

δSEH = −
∫
M

dd x
√

|g| Gµνδgµν +
∫
M

dd x
√

|g| ∇ρv
ρ, (4.15)

where
vρ = gρµδ�µν

ν − gµνδ�µν
ρ. (4.16)

We now have to use the equation that expresses the variation of the Levi-Cività connec-
tion with respect to a variation of the metric in order to find the variation of the action as a
function of the variation of the metric. That expression was given in Eq. (3.282) and with
it we find

vρ = gρµgσν
(∇µδgσν − ∇σ δgµν

)
. (4.17)

Using now Stokes’ theorem Eq. (1.141), we reexpress the integral of the total derivative
terms as an integral over the boundary,∫

M
dd x

√
|g| ∇ρv

ρ = (−1)d−1
∫

∂M
dd−1�ρv

ρ = (−1)d−1
∫

∂M
dd−1� nρv

ρ, (4.18)

where dd−1�ρ is defined in Chapter 1,

dd−1� ≡ n2dd−1�ρnρ, (4.19)

and nµ is the unit vector normal to the boundary hypersurface ∂M (n2 = +1 for spacelike
hypersurfaces with timelike normal unit vector and n2 = −1 for timelike hypersurfaces
with spacelike normal unit vector). Finally, we expand the integrand

nρv
ρ = nµgσν

(∇µδgσν − ∇σ δgµν

) = nµhσν
(∇µδgσν − ∇σ δgµν

)
, (4.20)
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where hµν = gµν − n2nµnν is the induced metric on the hypersurface ∂M (see Section 1.8).
Thus, we arrive at

δSEH = −
∫
M

dd x
√

|g| Gµνδgµν + (−1)d−1
∫

∂M
dd−1� nµhσν∇µδgσν

− (−1)d−1
∫

∂M
dd−1� nµhσν∇σ δgµν. (4.21)

This is the final form of the variation of the action we were after. Now, we would like to be
able to obtain the Einstein equation by requiring the action to be stationary (so δSEH = 0)
under arbitrary variations of the metric vanishing on the boundary:

δgµν

∣∣
∂M = 0. (4.22)

If δgµν is constant on the boundary, then its covariant derivative projected onto the boundary
directions with hµν must vanish:

hσν∇σ δgµν = 0, (4.23)

and the second of the two boundary terms vanishes. However, the first does not vanish
unless we impose boundary conditions for the covariant derivative of the variation of the
metric. In order to obtain the Einstein equation we must cancel out that boundary term with
the variation of another boundary term added to the Einstein–Hilbert action. This boundary
term is nothing but the integral over the boundary of the trace of the extrinsic curvature of
the boundary given in Eq. (1.149). Observe that

δK = δhµ
ν∇µnν + hµ

νδ�µρ
νnρ. (4.24)

The first term vanishes on the boundary due to our boundary condition (4.22). Using
Eq. (3.282) for δ�, we find

δK|∂M = 1
2 nρhµσ∇ρδgµσ . (4.25)

In conclusion, the action that one should use is the following [436, 932]:

SEH[g] = 1

χ2

∫
M

dd x
√|g| R + (−1)d 2

χ2

∫
∂M

dd−1� K. (4.26)

Under otherwise arbitrary variations of the metric satisfying Eq. (4.22), we have shown
that the variation of the Einstein–Hilbert action with boundary term (4.26), is just

δSEH = − 1

χ2

∫
M

dd x
√

|g| Gµνδgµν, (4.27)

and then the vacuum Einstein equation follows, as we wanted.
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4.1.2 Gauge identity and Noether current

The Einstein–Hilbert action is invariant under GCTs and we can write δ̃ξ SEH = 0. For vari-
ations at the same point the action transforms into the integral of a total derivative (χ = 1
again):

δξ SEH =
∫
M

dd xδξ L̂ = −
∫
M

dd xLξ L̂ = −
∫
M

dd x∂µ(ξµL̂), (4.28)

because L̂ is a scalar density. This result will be valid for any general-covariant action.
To find the gauge identity associated with the invariance under GCTs we have to find

the variation of the action under variations of the metric and then use the explicit form of
the variation of the metric under GCTs. For simplicity we will use the original Einstein–
Hilbert action with no boundary terms and then we will discuss the effect of the addition of
boundary terms. The variation of the action is given by Eqs. (4.15) and (4.16):

δξ SEH =
∫
M

dd x
√

|g| {−Gµνδξ gµν + ∇ρ

(
2gµσ,ρν∇µδξ gσν

)}
, (4.29)

and, using the expression for δξ gµν in Eq. (1.59) and integrating once by parts, we obtain

δξ SEH =
∫
M

dd x
√

|g|{−2
(∇µGµν

)
ξν + ∇ρ2

(
Gρσ ξσ − 2gµσ,ρν∇µ∇(σ ξν)

)}
. (4.30)

On comparing this with the first form of the variation (4.28) with L̂ = √|g| R, we obtain
the identity∫

M
dd x

√
|g|{−2

(∇µGµν
)
ξν + ∇ρ

(
2Rρσ ξσ − 4gµσ,ρν∇µ∇(σ ξν)

)} = 0. (4.31)

This equation is true for arbitrary infinitesimal GCTs. If we take ξµs such that the total
derivative term vanishes on the boundary, then we obtain the contracted Bianchi identity
∇µGµν = 0 as associated gauge identity. We know that this identity is always true in this
context. This, in turn, implies that the total derivative term vanishes identically, i.e. the
Noether current

jρ

N(ξ) = 2Rρσ ξσ − 4gµσ,ρν∇µ∇(σ ξν), (4.32)

is covariantly conserved, ∇ρ jρ

N = 0. By massaging this expression a bit, we can rewrite it
in the form

jρ

N(ξ) = ∇µ jµρ

N (ξ), jµρ

N (ξ) = 2∇ [µξρ], (4.33)

as is always expected in gauge theories. In Chapter 6 we will study the use of this current
to define conserved quantities in GR.

Now we want to see the effect of additional total derivatives in the Einstein–Hilbert
action

�SEH =
∫
M

dd x
√

|g|∇µkµ. (4.34)

We just have to vary this additional piece in two different ways. One of the variations has
the general form of the variation of any general-covariant action (4.28), that is,

δξ�SEH =
∫
M

dd x
√

|g|∇µ

(−ξµ∇ρkρ
)
. (4.35)
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The variation through the equation of motion gives

δξ�SEH =
∫
M

dd x
√

|g|∇µ

[
kρ∇ρξ

µ − ∇ρ(ξ
ρkµ)

]
. (4.36)

On combining these two results we find the additional terms in the Noether current,

� jµ

N (ξ) = ∇ρ

(
2k[ρξµ]

)
, � jµρ

N (ξ) = 2k[ρξµ]. (4.37)

4.1.3 Coupling to matter

As required by the PEGI, to couple matter to the gravitational field we first rewrite the
Minkowskian matter action in the background of the metric that appears in the Einstein–
Hilbert action, replacing everywhere ηµν by gµν and the volume element dd x by the GCT-
invariant volume element dd x

√|g| and replacing, if necessary (in the most important cases
it is not), partial derivatives by covariant derivatives with the Levi-Cività connection. The
total action for the gravity–matter system is simply the sum of the Einstein–Hilbert action
and the rewritten matter action Eq. (3.273). It is clear that, in general, we will not have to
modify the boundary conditions for δgµν due to the addition of the matter action. Thus, the
same boundary term as in the vacuum case should work. By varying this with respect to
the metric, we obtain the Einstein equation (3.272), where the energy–momentum tensor is
defined in Eq. (3.274), which we rewrite here for convenience:

T µν
matter = 2c√|g|

δSmatter

δgµν

. (4.38)

First of all, we may ask ourselves about the consistency of Einstein’s equation: we know
that the (covariant) divergence of the l.h.s. (Einstein’s tensor) vanishes due to the con-
tracted Bianchi identity, which can be seen as a consequence of (or a condition for) the
invariance of the Einstein–Hilbert action under GCTs. The r.h.s. (the energy–momentum
tensor) should also be covariantly divergenceless. In fact, given any general-covariant ac-
tion S[φ, gµν], under a general variation of the fields, up to total derivatives,

δS =
∫

dd x

{
δS

δφ
δφ + δS

δgµν

δgµν

}
. (4.39)

If the field equations of motion are satisfied and the variations are infinitesimal GCTs, then,
on integrating by parts, we immediately realize that the gauge identity associated with the
invariance under GCTs is always

∇µ

(
1√|g|

δS

δgµν

)
= 0. (4.40)

If the action is the Einstein–Hilbert action, this is the contracted Bianchi identity. If it is a
matter action, this is the general covariantization of the Minkowskian energy–momentum
conservation law ∂µT µν

matter = 0, namely

∇µT µν
matter = 0. (4.41)

This equation ensures the consistency of the Einstein equations. However, it is not a
conservation law. We will explain and discuss this problem in Chapter 6.
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4.2 The Einstein–Hilbert action in different conformal frames

The simplest field that a matter Lagrangian added to the Einstein–Hilbert action can have
is a scalar. Matter Lagrangians containing scalars appear in many theories, particularly ex-
tended N > 2 supergravity theories, Kaluza–Klein theories, and string theory. The scalars’
kinetic term usually has the form of a non-linear σ -model in which the (real) scalars can
be understood as coordinates in some target space, which usually is a homogeneous space.
Hence, real scalars can take values in different ranges. If a particular scalar that we will de-
note by K takes values in R

+ then, we can always rescale the metric in the Einstein–Hilbert
action (which we will henceforth refer to as the Einstein metric) via a Weyl or conformal
transformation

gµν → K αgµν, (4.42)

where α is some number. Sometimes this transformation is called a change of conformal
frame. The Einstein–Hilbert action is written in the Einstein (conformal) frame. The new
metric has the same signature and its equation of motion can be derived from the rescaled
action (see Appendix E) that we will generically write in this form, ignoring the matter
Lagrangian:

S[g, K ] ∼
∫

dd x
√

|g| KR(g). (4.43)

In the context of string theory K = e−2φ , where φ is the dilaton field; then the metric is
called the string metric and it is usually said that the action is written in the string (confor-
mal) frame. In the context of Kaluza–Klein theory, if we reduce over a circle, and K = k,
where k is the Kaluza–Klein scalar and, in more general compactifications, K is a scalar
that measures the volume of the internal manifold, then the metric is called the Kaluza–
Klein metric and we say that the action is written in the Kaluza–Klein (conformal) frame.
We will define other conformal frames (p-brane frames, etc.) later on.

One important detail that has to be taken into account is the possibility that the vacuum
value of the scalar K is not just 1 but some number K0. In that case, the vacuum of the
metric gµν is rescaled by K α

0 , which is not permissible. We will discuss this important issue
at length in Section 11.2.2. In this section we are simply going to explain in detail how to
obtain the metric equation of motion by direct variation of the above action (it is obvious
that one can always perform the rescaling in the Einstein equation, but, as usual, we expect
to obtain more information from the variation of the action).

Using the Palatini identity Eq. (3.285) and Eqs. (4.13), we find

δS[g, K ] = −
∫
M

dd x
√

|g| {K [Gµνδgµν − ∇µvµ] − RδK
}
, (4.44)

where v is given by (4.16). We are going to ignore the piece proportional to δK because,
after all, in general, in the full action there will be more terms containing K . Integrating by
parts once gives

δS[g, K ] = −
∫
M

dd x
√

|g| {K [Gµνδgµν + vµ∇µ ln K ] − ∇ρ(Kvρ)
}
. (4.45)

Writing vµ as
vµ = 2gµν,ρσ∇ρδgσν (4.46)
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and integrating by parts again gives

δS[g, K ] = −
∫
M

dd x
√

|g|K{
Gµν−2

[∇ρ ln K∇σ ln K +∇ρ∇σ ln K
]
gσµ,ρν

}
δgµν

+
∫
M

dd x
√

|g| ∇λ

{
2
[
K gλν,ρσ∇ρδgσν − ∇ρ K gρν,λσ δgσν

]}
. (4.47)

If we add the boundary term

−2
∫

dd−1� KK (4.48)

to the action, it is clear that, on imposing the boundary condition Eq. (4.22), we will obtain
the following equation for the metric:

Gαβ + [
∂α ln K∂β ln K − gαβ(∂ ln K )2

] + [∇α∇β ln K − gαβ∇2 ln K
] = 0. (4.49)

Observe that one obtains a non-trivial equation of motion for the scalar K (or log K )
even though there is (apparently) no kinetic term for it in the action we have considered.
This is (

∇2 + d − 2

2(d − 1)
R

)
K = 0. (4.50)

Otherwise, by going to a conformal frame in which the kinetic term explicitly disappears,
one could eliminate a scalar degree of freedom that would be present in any other frame.

Observe also that this scalar K is not a conformal scalar. A conformal scalar Kc has the
equation of motion (

∇2 + d − 2

4(d − 1)
R

)
Kc = 0, (4.51)

which, under simultaneous Weyl rescalings of the metric and the scalar,

g̃µν = �2gµν, K̃c = �
2−d

2 Kc, (4.52)

also rescales (i.e. it is invariant),(
∇̃2 + 2 − d

4(1 − d)
R̃

)
K̃ = �− (2+d)

2

(
∇2 + (2 − d)

4(1 − d)
R

)
Kc = 0. (4.53)

To construct an action for a conformal scalar, we have to add to the above action a kinetic
term with the right coefficient:

Sc ∼
∫

dd x
√

|g|K
[

R − d − 1

d − 2
(∂ ln K )2

]
, (4.54)

and then we find that K = K 2
c , so the action written in terms of the conformal scalar is

S[Kc] ∼
∫

dd x
√

|g| K 2
c

[
R − 4(d − 1)

d − 2
(∂ ln Kc)

2

]
. (4.55)

Both the trace of the variation with respect to the metric and the variation with respect to
Kc lead to the above equation of motion.
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When we studied vector and tensor fields living on a general background, we adopted as
sign of their masslessness the existence of gauge transformations leaving their equations of
motion invariant. If we interpret the above equations as the equations of a scalar field living
on a background metric gµν , we may wonder how we can tell whether the scalar field is
massless. The only kind of local transformations that we can define for a scalar field are
the above Weyl transformations and we can define as a massless field one whose equation
of motion is invariant under them. Therefore we could consider the conformal scalar as a
massless scalar. This means, in particular, that the equation of motion of a massless scalar
in a spacetime satisfying Rµν = �gµν is(

∇2 + d(d − 2)

4(d − 1)
�

)
Kc = 0, (4.56)

and, as usual, the � term is not a mass term but, on the contrary, its presence ensures the
masslessness of the scalar field.

4.3 The first-order (Palatini) formalism

This formalism [752] consists in writing an action in which the metric and the connection
(which contains the dependence on the derivatives of the metric) are considered indepen-
dent variables. The connection is, therefore, not the Levi-Cività connection. It is assumed
to be torsion-free, i.e. �[µν]

ρ = 0, but no other properties (metric-compatibility, for exam-
ple) are assumed. The first-order action contains only derivatives of the connection and it
is linear in them. To obtain the equations of motion, one now has to vary the metric and the
connection independently. The connection equation of motion gives us the standard rela-
tion between the connection and the metric and the metric equation is, after substitution of
the solution to the other equation, nothing but the Einstein equation.

The first-order action turns out to be essentially the Einstein–Hilbert action:3

S[gµν, �µν
ρ] =

∫
dd x

√|g| gµν Rµν(�). (4.57)

All the dependence on the metric is concentrated in the factor
√|g| gµν since the Ricci

tensor depends only on the connection and its derivatives as shown in Eq. (1.33).
We stress that, since the connection is here a variable, and it is not the Levi-Cività con-

nection, one cannot use the standard property∫
dd x

√
|g| ∇µξµ =

∫
dd x ∂µ

(√
|g| ξµ

)
. (4.58)

The calculations are simpler using as a variable the density

gµν =
√

|g| gµν. (4.59)

3 We set χ = 1 throughout this section.
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Furthermore, we are not going to assume in our derivation of the equations of motion either
the symmetry of the connection or the symmetry of the “metric,” which we will impose
at the very end. In this way, we can obtain with a minimum extra work the equations of
the Einstein–Straus–Kaufman [358, 364, 367, 369] non-symmetric gravity theory (NGT)
which was (unsuccessfully) proposed as a unified relativistic theory of gravitation and elec-
tromagnetism in which the antisymmetric part of the “metric” g[µν] should be identified
with the electromagnetic field strength tensor4 Fµν .

In the NGT the inverse “metric” is also denoted by gµν and satisfies

gµνgνρ = δµ
ρ, gαβgβγ = δα

γ , (4.60)

but gµνgµρ �= δν
ρ . Also, we cannot use it to lower or raise indices.

Let us now vary the above action with respect to the metric and connection. By using
Palatini’s identity Eq. (3.286), we find

δS =
∫

dd x
{
δgαβ Rαβ(�) + gαβ

[∇αδ�ρβ
ρ − ∇ρδ�αβ

ρ − Tαρ
σ δ�σβ

ρ
]}

=
∫

dd x
{
δgαβ Rαβ(�) + ∇ρ

[(
gρβδσ

α − gαβδσ
ρ
)
δ�αβ

σ
]

+ [∇σgαβ − ∇ρg
ρβδσ

α − gλβTλσ
α
]
δ�αβ

σ
}
.

(4.61)

Using now the identity for vector densities

∇µvµ = ∂µvµ + vµTµρ
ρ, (4.62)

and integrating by parts, we obtain, up to a total derivative

δS =
∫

dd x
{
δgαβRαβ(�) + [

Tρδ
δ
(
gρβδσ

α − gαβδσ
ρ
)

+ ∇σgαβ − ∇ρg
ρβδσ

α − gλβTλσ
α
]
δ�αβ

σ
}
.

(4.63)

Since the metric and the connection are independent, we obtain two equations from the
minimal action principle:

δS

δgαβ
= Rαβ(�) = 0,

δS

δ�αβ
γ

= ∇γ gαβ − ∇ρg
ρβδγ

α − gλβTλγ
α + gρβδγ

αTρδ
δ − gαβTγ δ

δ = 0.

(4.64)

The first equation would be the Einstein equation if the connection were the Levi-Cività
connection. Observe that, if we couple bosonic (scalar or vector) matter minimally to this

4 See also [654, 837, 838, 895]. A more recent NGT that reinterprets Einstein’s theory was proposed in
[699]. In it the antisymmetric part of the metric is also considered as a sort of new gravitational interaction.
Clearly, the weak-field limit cannot be the Fierz–Pauli theory but contains another field corresponding to
the antisymmetric part of the metric. While this suggests a relation with string theory, which also contains
a rank-2 antisymmetric tensor (the Kalb–Ramond field), these two fields appear in quite different ways: the
Kalb–Ramond field has an extra gauge symmetry, which allows it to be consistently quantized, whereas the
antisymmetric part of the NGT “metric” transforms only under GCTs. See [253, 285, 286, 616].
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action, we do not have to introduce any term containing the connection. Thus, the equation
for the connection would not change and the equation for the metric, would become the
Einstein equation with non-vanishing energy–momentum tensor (again, if the connection
were the Levi-Cività connection).

To find the relation between the connection and the metric, we have to solve the second
equation. It is convenient to use a new connection �̃, defined by

�̃µν
ρ = �µν

ρ + 1

d − 1
Tµσ

σ δν
ρ. (4.65)

Observe that the new connection �̃ does not completely determine the old one, �. In fact,
if we shift � by an arbitrary vector fµ according to

�µν
ρ → �µν

ρ + fµδν
ρ, (4.66)

the connection �̃ is not modified. Thus, the expression for � in terms of �̃ is

�µν
ρ = �̃µν

ρ + fµδν
ρ, (4.67)

where fµ cannot be determined from �̃. The new connection allows us to rewrite the second
equation in the form

∂σgαβ + �̃δσ
αgδβ + gαδ�̃σδ

β − gαβ�̃σδ
δ = 0. (4.68)

On contracting in the above equation the indices σ with α and σ with β, taking the differ-
ence, and using the property

�̃µρ
ρ = �̃ρµ

ρ, (4.69)

we arrive at the Maxwell-like equation for the antisymmetric part of g

∂αg
[αβ] = 0. (4.70)

By contracting now Eq. (4.68) with gαβ/
√|g|, we obtain

∂σ ln
√

|g| = �̃σα
α, (4.71)

and, on plugging this back into Eq. (4.68), we obtain an equation for the inverse metric,

∂σ gαβ + �̃σδ
βgαδ + �̃δσ

αgδβ = 0. (4.72)

We now multiply by the inverse “metrics” gγα and gβϕ to obtain, at last,

∂σ gγ ϕ − �̃σγ
βgβϕ − �̃ϕσ

αgγα = 0. (4.73)

Although we have started with the connection �, the above equation allows us only to
solve for the connection �̃ in terms of the metric.

It is easy to particularize this general setup for the case that interests us: a symmetric met-
ric g[µν] = 0 and a torsion-free connection �[µν]

ρ = 0. In this case, Rµν(�) is automatically
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symmetric, � = �̃, and the above equation Eq. (4.73) is the metric-compatibility equation
∇σ gγ ϕ = 0 whose solution is (see Chapter 1) the Levi-Cività connection (Christoffel sym-
bols). Then we recover the vacuum Einstein equation.

In the presence of matter, this formalism leads to the standard Einstein equation if the
affine connection does not occur in the matter action, which is the case for scalars and gauge
fields. Otherwise, the equation for the equation is modified and, in general, the connection
has torsion. Actually, this can turn into an advantage of this formalism in certain cases
(e.g. supergravity theories), although we develop a formalism to couple fermions to gravity
in Section 4.4.

4.3.1 The purely affine theory

We have seen two action principles leading to the Einstein equations. In the first one, the
fundamental variables were the components of the metric tensor. In the second one, the
fundamental variables were both the components of the metric tensor and the components
of the affine connection. For completeness, we are going to see briefly that it is actually
possible to write an action leading to the vacuum Einstein equations in the presence of a
cosmological constant that is a functional of the components of the affine connection alone.

The simplest tensors that one can construct from the affine connection and its first deriva-
tives are the curvature and Ricci tensors. To write an action, we need to integrate a density.
The simplest density constructed from these two tensors alone we can think of is the square
root of the determinant of the Ricci tensor, so

S ∼
∫

dd x
√|Rµν(�)|, ⇒ δS =

∫
dd x

δS

δRµν

δRµν(�). (4.74)

The crucial point in this formalism is the definition

δS

δRµν

≡ α

2
gµν, (4.75)

where α is some constant and the metric density is
√|g|gµν , which does not need to be

symmetric. Actually, it has the same symmetry as the Ricci tensor. Thus, if we want to
have a symmetric metric, we have to take the determinant of the symmetric part of the
Ricci tensor in the action, but the connection is arbitrary. From the above equation we find
an equation with the structure of the cosmological Einstein equation:

Rµν(�) = �gµν, � = α
2

d−2 . (4.76)

On substituting this into the variation of the action, we obtain

δS = �
d−2

2

2

∫
dd x gµνδRµν(�), (4.77)

and, using the Palatini identity, we find the same equation of motion for the connection
(4.64) as in the NGT theory. If the metric is symmetric, this equation tells us that the
connection is the Levi-Cività connection.
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To obtain the Einstein equations in the presence of matter in this formalism, one has to
use more complicated techniques.5

4.4 The Cartan–Sciama–Kibble theory

The formalism developed so far can be used to couple matter fields that behave as tensors
under GCTs. In general, the tensorial character of the matter fields under GCTs is deter-
mined from their behavior under Poincaré transformations and the only possible ambiguity
is whether the field is just a tensor or a tensor density. However, this identification does not
work for spinor fields, because it is based on a relation that exists only between the ten-
sor representations of the Poincaré group and tensor representations of the diffeomorphism
group. Thus, to couple fermions to gravity, we must first find out how to define spinors in a
general curved spacetime.

In a classical paper,6 [954], Weyl proposed to define spinors in tangent space using an
orthonormal Vielbein basis {ea

µ} as fundamental fields instead of the metric and developed
a formalism that is invariant under Lorentz transformations of this Vielbein basis even
if we perform a different Lorentz transformation in (the tangent space associated with)
every spacetime point. Thus, in d spacetime dimensions, the d(d + 1)/2 off-shell degrees
of freedom of the metric (the number of independent components of a d × d symmetric
matrix) are replaced by the same number of off-shell degrees of freedom of the Vielbein
(the number of independent components of a generic d × d matrix minus the d(d − 1)/2
independent local Lorentz transformations). In modern language,7 this is a gauge theory
of the Lorentz group SO(1, d − 1) and requires the introduction of a Lorentz covariant
derivative Dµ and a Lorentz (spin) connection ωµ

ab. Otherwise, the Vielbeins will describe
more degrees of freedom than the metric.

However, if we want to recover GR, we do not want to introduce new fields apart from the
metric (Vielbeins) and thus we have to relate the spin connection to the Vielbeins, destroy-
ing the similarity with a standard Yang–Mills theory in which the connection is the dynam-
ical field. The natural way to relate connection and Vielbeins is through the first Vielbein
postulate Eqs. (1.83) which connects the spin and the affine connections by Eq. (1.84). This
does not seem to help much, because the affine connection is completely undetermined.
However, metric-compatibility is automatic for spin and affine connections satisfying the
first Vielbein postulate, because, by assumption, the spin connection ωµ

ab is antisymmetric
in the indices ab, which implies ∇µηab = 0, which, with the first Vielbein postulate, implies
∇µgρσ = 0. Therefore, the first Vielbein postulate determines the connection in terms of the
Vielbein up to the torsion term. Now if we want to have as fundamental fields the Vielbeins
alone, we need to impose the vanishing of torsion. In that case, the affine connection is the
Levi-Cività connection �(g) whose components are the Christoffel symbols Eq. (1.44) and

5 See e.g. [682] and references therein. Further generalizations of the Einstein–Hilbert action are also reviewed
there.

6 A guide to the old literature on this formalism and its generalizations to include torsion is [523]. A pedagog-
ical introduction to this formalism is [818] (see also [817]). A more recent reference is [851].

7 The basic formalism of Yang–Mills gauge theories is developed in Appendix A and, for the Lorentz group
in particular, for the present application, in Section 1.4.
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then the relation Eq. (1.84) implies that the spin connection is the Cartan spin connection
ω(e) given in Eq. (1.92). This case will be treated in the next section. The possibility of
including torsion will be studied in Section 4.4.2.

The first Vielbein postulate can be imposed from the beginning (the second-order for-
malism in which the only fundamental fields are the Vielbein components) or via the spin-
connection equation of motion (the first-order formalism in which both the Vielbein and
the spin-connection components are independent, fundamental fields). In the first-order
formalism the theory resembles more a standard Yang–Mills theory, as we will discuss in
Section 4.4.4.

4.4.1 The coupling of gravity to fermions

In this section, as a warm-up exercise, we want to study the coupling of fermions to gravity
using the torsionless Cartan (Levi-Cività) connection (see e.g. [187]).

Let us first summarize Weyl’s recipe: to couple spinors to gravity we now replace all par-
tial derivatives in the special-relativistic action for Lorentz (or total-)covariant derivatives
by the Cartan–Levi-Cività derivatives and the Minkowski metric ηµν by the general metric
gµν or by the Vielbeins ea

µ if necessary.8 Since the Cartan spin connection cannot be ex-
pressed in terms of the metric, it is clear that the fundamental variables in this formalism
will be the Vielbeins. This does not require any change in the Einstein–Hilbert action since
we simply have to use

δSEH[e]

δea
µ

= 2
δSEH[g]

δgρσ

ea (ρgρ)
µ = − 2

χ2
eGa

µ, (4.78)

and, correspondingly, redefine the matter energy–momentum tensor

Tmatter a
µ = c

e

δSmatter[ϕ, e]

δea
µ

, e = det(ea
µ) =

√
|g|. (4.79)

Observe that, with this new definition, the energy–momentum tensor (that we can call
the Vielbein energy–momentum tensor) does not have to be symmetric. However, we can
prove that it is symmetric when the matter equations of motion hold: let us consider the
variation of the matter action under a local Lorentz transformation with parameter σ ab(x),
which we know leaves the Lagrangian invariant. Up to a total derivative

δσ Smatter[ϕ, e] =
∫

dd x

{
δSmatter

δϕ
δσϕ + δSmatter

δea
µ

δσ ea
µ

}
. (4.80)

Using the definition of the energy–momentum tensor and the transformation rules (assum-
ing that ϕ transforms in the representation r of the Lorentz group)

δσϕα = 1
2σ

ab�r (Mab)
α

βϕβ, δσ ea
µ = 1

2σ
cd�v(Mcd)

a
beb

µ = σ a
µ, (4.81)

8 We could ask whether this formalism should also be applied to other fields: for instance, whether we should
consider the Maxwell field as a tangential vector field. The answer is that we can do it and the choice of
torsionless connection that we have made ensures that there is no difference, although we gain more insight
if we consider the Maxwell field as a tangential vector field. In the presence of torsion and in more general
contexts this will be impossible.
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we find the Bianchi identity

Tmatter [ab] = − 1

2e

δSmatter

δϕα
�r (Mab)

α
βϕβ, (4.82)

which vanishes on-shell.
We can also use the invariance under reparametrizations of the matter action to show that

the Vielbein energy–momentum tensor is covariantly conserved on-shell:

∇µTa
µ = 0. (4.83)

As for the Vielbein energy–momentum tensor, we can try to determine its form by assuming
the validity of a more or less standard matter Lagrangian, namely, a standard Lagrangian
whose dependence on the Vielbeins comes from two sources: the spin connection and the
rest. It is easy to convince oneself by looking at simple examples that “the rest,” which
depends only algebraically on the Vielbeins, gives e times the canonical energy–momentum
tensor when ea

µ = δa
µ:

eTcan a
µ = −∂Lmatter

∂∇µϕ
∇aϕ + ea

µLmatter. (4.84)

The dependence of the Lagrangian through the spin connection can be computed by ob-
serving that the matter Lagrangian depends on derivatives of the Vielbeins only through the
Cartan spin connection which appears in covariant derivatives of the field ϕα,

Dµϕα = ∂µϕα − 1
2ωµ

ab(e)�r (Mab)
α

βϕβ. (4.85)

The contribution of these terms to the energy–momentum tensor is given by

∂Lmatter

∂ωρbc

∂ωρbc

∂ea
µ

− ∂ν

(
∂Lmatter

∂ωρbc

∂ωρbc

∂∂νea
µ

)
. (4.86)

Using9

ωρbc = 2�ρbc
στd �στd, �ρbc

στd = 1
2

{
δρ

σ ec
τ δb

d + eb
σ ec

τ ed
ρ − δρ

σ eb
τ δc

d
}
,

(4.88)

we find that the contribution to the energy–momentum tensor of the spin connection is
given by

2
∂Lmatter

∂ωρbc

∂�ρbc
στd

∂ea
µ

�στd − 2∂ν

(
∂Lmatter

∂ωρbc
�ρbc

στd ∂�στd

∂∂νea
µ

)
. (4.89)

Since the spin connection occurs in the matter Lagrangian only via covariant derivatives
of the matter field ϕ, it is easy to see that

∂Lmatter

∂ωρbc
= −eSρbc, (4.90)

9 Two similar useful relations are

Kµab = �µab
στd Tστd ,

{
σ

µ ν

}
gσρ = −�νρµ

αβγ ∂αgβγ . (4.87)
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and, using
Sρbc�ρbc

στd = 1
2�

στd, (4.91)

we obtain

2
∂Lmatter

∂ωρbc

∂�ρbc
στd

∂ea
µ

�στd = −e�ρµ
bωρa

b,

−2∂ν

(
∂Lmatter

∂ωρbc
�ρbc

στd ∂�στd

∂∂νea
µ

)
= ∂ν(e�νµ

a),

(4.92)

which add up to
e∇ν�

νµ
a, (4.93)

and so we have (observe the order of indices)

Ta
µ = Tcan a

µ + ∇ν�
νµ

a, (4.94)

which is the relation between the Vielbein energy–momentum tensor and the canonical
one. If we substract the antisymmetric part of the Vielbein energy–momentum tensor, we
obtain a symmetric tensor that is conserved when the matter equations of motion hold.
When ea

µ = δa
µ, this symmetric tensor becomes the Belinfante tensor, proving the relation

between the Belinfante tensor and the metric (Rosenfeld) energy–momentum tensor that
we mentioned in Section 2.4.1.

Example: a Dirac spinor. Let us now apply this recipe to a Dirac spinor.10 A Dirac spinor
ψα has only a spinorial index (which we usually hide). Thus, we are going to assume that it
transforms as a spinor in tangent space and as a scalar under GCTs. Thus, the total covariant
derivative ∇µ coincides with the Lorentz-covariant derivative Dµ acting on it:

∇µψ = Dµψ = (
∂µ − 1

4ωµ
abγab

)
ψ. (4.95)

In the special-relativistic Lagrangian of the Dirac spinor Eq. (2.63) the partial derivative
appears contracted with a constant gamma matrix. Now we have to distinguish between the
derivative index, which is a world-tensor index, and the gamma matrix index, which is a
Lorentz (tangent-space) index and, to contract both indices, we have to use a Vielbein

�∇ψ = ea
µγ a∇µψ. (4.96)

Finally, we also need the covariant derivative on the Dirac conjugate. The Dirac conju-
gate ψ̄α transforms covariantly (as opposed to the spinor ψα, which transforms contravari-
antly). Then, applying the definitions in Section 1.4,

ψ̄
←
∇µ ≡ ∇µψ̄ = ∂µψ̄ + 1

4ωµ
abψ̄γab. (4.97)

With all these elements we can immediately write the action

Smatter =
∫

dd x e
{

1
2(iψ̄ �∇ψ − iψ̄ �←∇ψ) − mψ̄ψ

}
. (4.98)

10 The special-relativistic Dirac spinor was studied in Section 2.4.1.
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The equations of motion are the evident covariantization of the flat-space ones:

(i �∇ − m)ψ = 0, (4.99)

and the spin-angular-momentum tensor Sµ
ab and spin–energy potential �µν

a are identical
to the ones calculated in Section 2.4.1. By varying with respect to the Vielbeins, we find
the Vielbein energy–momentum tensor, which has the general form Eq. (4.94) with

Tcan a
µ = − i

2
ψ̄γ µ∇aψ + i

2
∇aψ̄γ µψ + ea

µLmatter, (4.100)

giving

Ta
µ = − i

2
ψ̄(γ µea

ν + γagµν)∇νψ + i

2
∇νψ̄(γ µea

ν + γagµν)ψ

+ ea
µLmatter − i

2
ψ̄γ µ

a �∇ψ + i

2
ψ̄ �←∇ γa

µψ, (4.101)

which is not symmetric because of the last two terms, which vanish on-shell, as expected.
This is what saves the consistency of the Einstein equation

Ga
µ = χ2

2
Ta

µ, (4.102)

whose l.h.s. is symmetric in the absence of torsion. This is not too different from the way in
which consistency is achieved in the standard GR theory in which the l.h.s. is divergenceless
(due to the contracted Bianchi identity) and the r.h.s. is divergenceless only when the matter
equations of motion are satisfied.

4.4.2 The coupling to torsion: the CSK theory

Perhaps the simplest generalization of GR one can think of is the use of a (still metric-
compatible) connection with non-vanishing torsion Tµν

ρ . Now, the torsion is a new field
whose value we have to determine. The simplest possibility is to consider it a fundamental
field and just include it in a generalized Einstein–Hilbert action and in the covariant deriva-
tives acting on matter fields (minimal coupling). Then its equation of motion is determined,
as usual, by varying the action with respect to it and imposing the vanishing of the variation.
As we are going to see, the resulting equation of motion is algebraic and simply gives the
torsion as a function of other fields. In fact, in the torsion equation of motion one can see
the matter spin–energy potential �µν

a as the source for torsion Tµν
a . This is essentially the

definition of the Cartan–Sciama–Kibble (CSK) theory (reviewed in [523]; and, in a more
pedagogical form, in [818]; and in the Newman–Penrose formalism in [768]).

Why should we couple intrinsic spin to torsion? The CSK theory is based on Weyl’s
Vielbein formalism in which there are two distinct gauge symmetries: reparametrizations
and local Lorentz transformations in tangent space. Reparametrization invariance leads to
the coupling of the energy–momentum tensor to the metric and, similarly, local Lorentz
invariance leads to the coupling of the spin–energy potential to torsion.

In the CSK theory, torsion is not a propagating new field. Furthermore, there is no way
to couple it to vector gauge potentials without breaking the gauge symmetry, which is
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inadmissible. However, it is possible to generalize the theory further in such a way as to
have propagating torsion. The most popular way of doing it, which occurs naturally in
supergravity and string theory [834], is to consider torsion as the 3-form field strength of a
2-form (Kalb–Ramond) field Bµν :

Tµνρ = 3∂[µ Bνρ] ≡ Hµνρ. (4.103)

This particular form of torsion can be consistently coupled to gauge vector fields through
the addition to the field strength of the gauge-field Chern–Simons 3-form ω3, Eq. (A.50),

Hµνρ = 3∂[µ Bνρ] + ω3 µνρ, (4.104)

and modifying the gauge-transformation rule for Bµν to make Hµνρ gauge-invariant. Since
we will encounter this propagating torsion later on, we postpone its discussion until then.
One of the reasons for why we are reviewing the CSK theory here is precisely that it con-
stitutes an important link in the evolutionary chain that goes from GR to supergravity and
superstring theories. The next link in the chain will be the gauge theories of the Poincaré
and (anti-)de Sitter groups that we will also study in this chapter.

Let us first consider the generalization of the Einstein–Hilbert action in the CSK theory,

SCSK[ea
µ, Tµν

a] = 1

χ2

∫
dd x eR(e, T ), (4.105)

where R(e, T ) is the Ricci scalar constructed from the curvature associated with the metric-
compatible torsionful spin connection Eq. (1.92) or its associated affine connection given
in Eq. (1.50) and is, therefore, a function of the Vielbeins and torsion. We have chosen the
Vielbeins instead of the metric as the fundamental fields since the CSK theory is relevant
only in the coupling of gravity to fermions because, as we have already said, the coupling
of torsion to vector fields by substitution of partial derivatives for covariant derivatives
necessarily breaks their gauge invariance.

We now vary the above action with respect to the Vielbeins and torsion. First, we vary
with respect to the metric and connection. Using Palatini’s identity Eq. (3.286), we find

δSCSK = 1

χ2

∫
dd x e

{−Gαβδgαβ + gαβ
[∇αδ�ρβ

ρ − ∇ρδ�αβ
ρ − Tαρ

σ δ�σβ
ρ
]}

. (4.106)

The covariant derivatives can be split into Levi-Cività covariant derivatives
{}
∇µ, which can

be integrated away, and contorsion pieces. After some calculations, we find

δSCSK = 1

χ2

∫
dd x e

{
−Gαβδgαβ + δ�αβ

γ gβδ
∗

T γ δ
α
}

, (4.107)

where
∗

T is the modified torsion tensor defined in Eq. (1.35). Using now Eq. (3.283), we
find, at last,

δSCSK = 1

χ2

∫
dd x e

{
−

[
Gαβ− ∗

∇µ

∗
T µαβ

]
δgαβ + 1

2

[ ∗
T γ

αβ− ∗
T γ

βα− ∗
T αβ

γ

]
δTαβ

γ
}

,

(4.108)

where we have also used the modified divergence
∗
∇µ defined in Eq. (1.35).
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Now we couple the pure gravity Lagrangian to the matter Lagrangian and use the defi-
nition of the Vielbein energy–momentum tensor Eq. (4.79) and the following definition of
the spin–energy potential, which generalizes Eq. (2.88),

�matter
µν

a = −2c

e

δSmatter

δTµν
a

, (4.109)

to obtain the equations of the CSK theory:

G(αβ)− ∗
∇µ

∗
T µ(αβ) = χ2

2
Tmatter

αβ,

1
2

[ ∗
T γ

αβ− ∗
T γ

βα− ∗
T αβ

γ

]
= χ2

2
�matter

αβ
γ .

(4.110)

We have taken into account in the l.h.s. of the first equation that only the symmetric part
contributes to it, even though the r.h.s. (the Vielbein energy–momentum tensor) is not sym-
metric in general (we have seen that the antisymmetric part vanishes on-shell).

These equations can be rewritten in a more suggestive form: taking the modified diver-
gence of the second equation, we find the equation

∗
∇µ

∗
T µ(αβ) − 1

2

∗
∇µ

∗
T αβµ = χ2

2

∗
∇µ�matter

µαβ, (4.111)

which, when subtracted from the first equation (4.110), gives a more elegant equation,

Gαβ = χ2

2
Tcan

αβ, (4.112)

where we have used Eq. (1.34) and have defined the canonical energy–momentum tensor
here by

Tcal
βα = Tmatter

αβ− ∗
∇µ �matter

µαβ. (4.113)

This identification is evidently based on the definition of the Belinfante tensor, but we will
prove that this tensor is indeed given by Eq. (4.84).

The second Eq. (4.110) can be simplified by raising the index γ and antisymmetrizing it
with β:

∗
T αβγ = χ2Sγβα. (4.114)

Now we can use this equation to rewrite the Vielbein equation (the first of Eqs. (4.110))
in a general-relativistic form. First, we take the symmetric part of the equation that relates
the Einstein tensor of the torsionful connection � to the Einstein tensor of the Levi-Cività
connection �, which is

Gαβ(�) = Gαβ[�(g)] − 1
2

∗
∇µ

[ ∗
T α

µ
β + ∗

T β
µ

α − ∗
T αβ

µ
]

− f (T 2), (4.115)

where f (T 2) is a complicated expression that is quadratic in the torsion whose explicit
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form we do not need.11 Then the Vielbein equation takes the form

Gαβ[�(g)] = χ2

2
Tmatter

αβ + f (T 2). (4.116)

Then, by substituting Eq. (4.114) into this, we obtain

Gαβ[�(g)] = χ2

2
Tmatter

αβ + O(χ4), (4.117)

which coincides with Einstein’s equation to order χ2. In fact, taking into account that the
order-χ4 correction is associated with the density of intrinsic spins, only under the most
extreme macroscopic conditions [523] can the CSK theory give predictions different from
Einstein’s, which is good. At the microscopic level, the CSK theory gives different pre-
dictions: for instance, it predicts contact interactions between fermions. These have two
origins: the term quadratic in the torsion in the CSK gravity action12 and the covariant
derivatives in the matter action. All of them are of higher order in χ .

Conceptually, the CSK theory offers clear advantages over Einstein’s. It allows the cou-
pling to fermions and the relation between the canonical and Vielbein energy–momentum
tensors is clarified. As we are going to see, the simplest supergravity theory (N = 1, d = 4)
has the structure of the CSK theory for a Rarita–Schwinger spinor coupled to gravity (and
torsion). Finally, we are going to see that the separation between GCTs (which can be
seen as the local generalization of translations) and local Lorentz transformations suggests
a reinterpretation of gravity as a gauge theory (in the Yang–Mills sense) of the Poincaré
group.

Before we move on to these developments, we want to derive the complete gauge iden-
tities and Noether currents for matter coupled to gravity in the CSK theory and study the
first-order formalism for it.

4.4.3 Gauge identities and Noether currents

Let us consider the action of matter minimally coupled to Vielbein and torsion ea
µ and

Tµν
a:

Smatter = 1

c

∫
dd x Lmatter(ϕ, ∇ϕ, e) = 1

c

∫
dd x Lmatter(ϕ, ∂ϕ, e, ∂e, T ). (4.119)

(According to the minimal coupling prescription, the dependence on torsion is only through
the covariant derivative.) We assume that our matter fields, generically denoted by ϕ, have
only Lorentz indices and that only their first derivatives occur in the action. Furthermore,
the fundamental fields are assumed to be ea

µ and Tµν
a (not Tµν

ρ).

11 Actually, the second term on the l.h.s. of this equation also contains terms quadratic in the torsion that we

can include in f (T 2) by replacing the modified divergence
∗
∇µ by the Levi-Cività covariant derivative

{}
∇µ.

12 Using Eq. (1.56), we can split the CSK action into a standard Einstein–Hilbert action and a piece quadratic
in the torsion plus a total derivative that we can ignore:

SCSK[ea
µ, Tµν

a] = 1

χ2

∫
dd x e

{
R(e) + Kµ

µλKν
ν
λ + Kνµρ K µρν

}
. (4.118)
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By construction, the action is exactly invariant under local Lorentz transformations and
GCTs. Let us now compute the variation of the action through the variation of the funda-
mental fields. Following the standard procedure developed in Chapter 2, we find13

δ̃Smatter = 1

c

∫
dd x

{
∂µ

[
εa

(
Lmatterea

µ − ∂Lmatter

∂∂µϕ
∂aϕ

)
+ ∂Lmatter

∂∂µϕ
δ̃ϕ

+ ∂Lmatter

∂∂µea
ν

δ̃ea
ν

]
+ c

δSmatter

δϕ
δϕ + c

δSmatter

δea
µ

δea
µ + c

δSmatter

δTµν
a

δTµν
a

}
. (4.120)

The variations of the matter action with respect to the matter fields are the matter equa-
tions of motion. The variations of the matter action with respect to the geometric fields
are source terms. Now, with our choice of fundamental fields, we define the spin-angular-
momentum tensor Sµ

ab, the spin–energy-potential tensor �µν
a and the Vielbein energy–

momentum tensor Ta
µ by

c

e

δSmatter

δKµ
ab

= −Sµ
ab,

c

e

δSmatter

δTµν
a

= − 1
2�

µν
a,

c

e

δSmatter

δea
µ

= Ta
µ. (4.121)

The canonical energy–momentum tensor Ta
µ has an extra term due to our choice of funda-

mental fields:

Tcan a
µ = Ta

µ− ∗
∇ρ �ρµ

a − 1
2�

νρ
aTνρ

µ. (4.122)

Now we substitute the explicit form of the variations of the fundamental fields under
GCTs and local Lorentz transformations rewritten in a convenient form,

δea
µ = −Dµεa + 2ενD[µea

ν] + σ ′ a
beb

µ,

δTµν
a = −∇µ

(
ελTλν

a
) − ∇ν

(
ελTµλ

a
) − ελ

[
3R[µνλ]

a + Tµν
ρTλρ

a
] + σ ′ a

bTµν
b,

δ̃ϕ = 1
2σ

′ ab�r (Mab) ϕ + 1
2ε

λωλ
ab�r (Mab) ϕ, (4.123)

where
σ ′ ab = σ ab − εµωµ

ab. (4.124)

After some massaging, using the Bianchi identities for the curvature, we arrive at

δ̃S = 1

c

∫ {
∂µ

{
εa

[(
Lmatterea

µ − ∂Lmatter

∂∇µϕ
∇aϕ

)
− e Tcan a

µ

]

− e

( {}
∇ρ ελ − εσ Kσρλ

)(
�µρλ − �µρλ

)}

+ eελ

[
∗
∇µ Tcan λ

µ + Tλµ
aTcan a

µ + Sµ
ab Rλµ

ab − δSmatter

δϕ
∇λϕ

]

+ eσ ′ ab

[
Tab − 1

2
�ρσ

aTρσb + 1

2

δSmatter

δϕ
�r (Mab) ϕ

]}
, (4.125)

13 Taking into account δ̃xµ = εµ and that local Lorentz transformations with parameter σ ab act only on fields.
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where we are using the notation

Sµ
ab = ∂Lmatter

∂∂µϕ
�r (Mab) ϕ, �µρ

a = −Sµρ
a + Sρµ

a + Sa
µρ. (4.126)

Since the above variation of the action vanishes identically for arbitrary GCTs and local
Lorentz transformations, we obtain four identities. The first identity just gives the expres-
sion for the canonical covariant energy–momentum tensor Eq. (4.84). The second gives the
expression for the spin–energy-potential tensor Eq. (2.52). The third is the Bianchi identity
associated with the invariance under GCTs,

∗
∇µ Tcan λ

µ + Tλµ
aTcan a

µ + Sµ
ab Rλµ

ab − δSmatter

δϕ
∇λϕ = 0, (4.127)

that in flat, torsionless spacetime is the on-shell conservation of the energy–momentum
tensor. The fourth is the Bianchi identity associated with the invariance under local Lorentz
transformations,

T[ab] − 1
2�

ρσ
[a|Tρσ |b] + 1

2

δSmatter

δϕ
�r (Mab) ϕ = 0, (4.128)

which tells us that the Vielbein energy–momentum tensor in flat, torsionless, spacetime is
symmetric on-shell.

As an example, we will study a Dirac spinor coupled to the Vielbein and torsion in the
CSK theory, but in first-order form (Section 4.4.4).

4.4.4 The first-order Vielbein formalism

As we have seen, the Einstein action written in terms of Vielbeins and the spin connection
with the spin connection considered as a function of the Vielbeins provides a second-order
action functional of the Vielbeins that is fully equivalent to the one written in terms of the
metric.

There is also a first-order action for Vielbeins and the spin connection considered as
independent variables. In differential-forms language it takes the form

S[ea, ωab] = (−1)d−1

(d − 2)!

∫
Ra1a2(ω) ∧ ea3 ∧ · · · ∧ ead εa1···ad , (4.129)

where Ra1a2 is the curvature 2-form associated with the spin connection ω defined in
Eqs. (1.81) and (1.144).

This action is equivalent14 to the first-order Einstein–Hilbert action for the metric and an
affine connection � related to this spin connection ω via the first Vielbein postulate. This
equivalence can be seen by expanding the curvature 2-form in a Vielbein 1-form basis,

Ra1a2 = 1
2 Rb1b2

a1a2eb1 ∧ eb2, (4.130)

14 In our conventions that action is exactly equivalent to + ∫
dd x

√|g| R.
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and using
eb1 ∧ · · · ∧ ebd = dd x

√
|g| εb1···bd (4.131)

and the relation between the curvatures of ω and � Eq. (1.85).
As mentioned before, this theory has some of the elements of a Yang–Mills gauge theory

of the Lorentz group SO(1, d − 1) introduced in Appendix A.2.3.

1. There is an independent gauge field (the spin connection).

2. The gauge field appears through its gauge field strength (the curvature).

However, there are also very important differences, which make it completely different
from a standard Yang–Mills theory.

1. The action is not quadratic in the field strength. Therefore, the equation of motion of
the gauge field will be a constraint, as we are going to see. This is necessary in order
to obtain Einstein’s gravity theory in which the connection is not dynamical and the
only degrees of freedom are those contained in the metric (or the Vielbein) which
describe a spin-2 particle.

2. It is not clear how the Vielbeins should be considered. They are in principle matter
in the vector representation but they do not have a standard kinetic term.

3. To recover the Einstein–Hilbert action, we have assumed the invertibility of the
Vielbeins. This geometrical property cannot be explained from the gauge-theory
point of view.

It is clear that gravity cannot be considered a pure gauge theory of the Lorentz group.
At most, it would be a gauge theory containing “matter,” which is conceptually hard to
understand. Later on we will see how to overcome some of these problems by considering
the gauge theory of the Poincaré group.

It is possible to find the equations of motion using differential-forms language (as in
[221]). However, we prefer to reexpress the above action in components

S[ea
µ, ωµ

ab] = (−1)d−1

2 · (d − 2)!

∫
dd x Rµ1µ2

a1a2(ω)ea3
µ3 · · · ead

µd εa1···ad ε
µ1···µd . (4.132)

On varying this action taking into account the analog of Palatini’s identity Eq. (3.285)
for the Lorentz covariant derivative Dµ,

δRµν
ab = 2D[µδων]

ab, Dµδων
ab = ∂µδων

ab − ωµ
a

cδων
cb − ωµ

b
cδων

ac, (4.133)

we find

δS = (−1)d−1

2 · (d − 2)!

∫
dd x

[
2Dµ1δωµ2

a1a2ea3
µ3

+ (d − 2)Rµ1µ2
a1a2δea3

µ3

]
ea4

µ4 · · · ead
µd εa1···ad ε

µ1···µd . (4.134)
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We first analyze the second term:

(d − 2)Rµ1µ2
a1a2δea3

µ3ea4
µ4 · · · ead

µd εa1···ad ε
µ1···µd

= (−1)d−13!(d − 2)!
√

|g| Rµ1µ2
a1a2δea3

µ3ea1a2a3
µ1µ2µ3

= (−1)d4 · (d − 2)!
√

|g| Ga
µδea

µ. (4.135)

Now we consider the second term. We have to integrate by parts without the use of any
special properties of the connection ω. We find

2Dµ1δωµ2
a1a2ea3···ad

µ3···µd εa1···ad ε
µ1···µd

= [
2(d − 2)δωµ1

a1a2∂µ2ea3
µ3 − 4δωµ1

a1cωµ2c
a2ea3

µ3

]
ea4···ad

µ4···µd εa1···ad ε
µ1···µd

+ ∂µ1

[
2δωµ2

a1a2ea3···ad
µ3···µd εa1···ad ε

µ1···µd
]

= (−1)d−112 · (d − 2)!
√

|g| ea1a2a3
µ1µ2µ3δωµ1

a1a2Dµ2ea3
µ3

+ ∂µ1

[
(−1)d−14(d − 2)!

√
|g| δωµ2

a1a2ea1a2
µ1µ2

]
, (4.136)

where we have used the identities

eµ3···µd
a3···ad εa1···ad ε

µ1···µd = (−1)d−12 · (d − 2)!
√

|g| ea1a2
µ1µ2,

eµ4···µd
a4···ad εa1···ad ε

µ1···µd = (−1)d−13!(d − 3)!
√

|g| ea1a2a3
µ1µ2µ3, (4.137)

2e[a3
µ3ea1]a2

µ1µ2 = 3ea1a2a3
µ1µ2µ3 − 2e[a2

µ3ea3]a1
µ1µ2 .

Assuming that the variations δea
µ and δωµ

ab vanish on the boundary, we obtain the
equations of motion

Ga
µ = 0, D[µea

ν] = 0. (4.138)

Now we introduce a connection �µν
ρ such that the total covariant derivative satisfies the

first Vielbein postulate Eq. (1.83). As we stressed before, the connection is automatically
metric-compatible and is the sum of a (Cartan) Levi-Cività part that depends only on the
Vielbeins and a contorsion part. On comparing this now with Eq. (1.86), we conclude that
the connection equation tells us that the torsion vanishes, which implies that the connec-
tion is just the (Cartan) Levi-Cività connection ωµ

ab(e) given by the standard expression
Eq. (1.92). On substituting this spin connection into the Einstein tensor, we obtain the stan-
dard Einstein equations.

An interesting thing happens in d = 4: if we replace the connection ω in the action by its
self-dual part, one still obtains Einstein’s equation. This observation allows one to find new
variables (Ashtekar variables), which are used in loop quantization of gravity [55, 414].

In coupling bosonic matter (including a cosmological constant) minimally to this action
one uses only Vielbeins, but it is usually not necessary to write any term containing spin
connections. Therefore, only the Einstein equation would be modified in the expected way.
However, if we coupled fermions, we would necessarily have to introduce terms contain-
ing the spin connection and its equation would be modified. On applying the definition of
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torsion, we would find that fermions generate torsion and the solution for the spin connec-
tion would be the standard spin connection plus the corresponding contorsion tensor that
would be a function of the fermions. This is exactly what happens in the CSK theory15

and in supergravity theories (see e.g. [912] and [221], where the so-called rheonomic ap-
proach for constructing supergravity theories which makes use of the first-order formalism
is explained), for which the first-order formalism seems especially well suited since it leads
to much simpler actions. Furthermore, in the first order formalism, there is an indepen-
dent connection and a relation of gravity with Yang–Mills theories and a relation of super-
gravity with gauge theories based on supergroups can be established (see Section 4.5 and
Chapter 5).

Now we will study a simple example: a Dirac spinor coupled to gravity in the first-order
formalism. We are going to see that the resulting equations of motion are the same as those
we would have obtained from the second order CSK theory.

Example: a Dirac spinor. The action for a Dirac spinor coupled to gravity in the first-order
formalism is the sum of Eq. (4.132) and Eq. (4.98),

S[e, ω, ψ] = (−1)d−1

2 · (d − 2)!χ2

∫
dd x Rµ1µ2

a1a2(ω)ea3
µ3 · · · ead

µd εa1···ad ε
µ1···µd

+
∫

dd x e
{

1
2(iψ̄ �Dψ − iψ̄ �←Dψ) − mψ̄ψ

}
, (4.139)

where D stands for the Lorentz covariant derivative.
By varying the Vierbein, spin connection, and spinor independently in the action we find,

after the use of our previous results, up to total derivatives,

δS = 2

χ2

∫
dd x e

{
−

[
Ga

µ − χ2

2
Tcan a

µ

]
δea

µ + 3eabc
µνρ

[
Dνec

ρ − χ2

2
Sc

νρ

]
δωµ

ab

+ χ2

2
δψ̄

[
i �∇ψ − i

2

(
�µν

µ −
{

µ

µ ν

})
γ νψ − mψ

]

+ χ2

2

[
−iψ̄ �←D + i

2
ψ̄γ ν

(
�µν

µ −
{

µ

µ ν

})
− mψ̄

]
δψ

}
,

(4.140)

where we have introduced an affine connection � such that the total covariant derivative
∇ satisfies the first Vielbein postulate, which means that it is also metric-compatible as we
have explained before. Then,

�µν
µ −

{
µ

µ ν

}
= Kµν

µ = Tνµ
µ. (4.141)

15 Observe that, in the first-order formalism, the Vielbein equation is the full Einstein tensor, whereas in the
second-order formalism, it is only the symmetric part of the Einstein tensor. The variation of the matter
action will give automatically the canonical energy–momentum tensor, since there will be no contributions
from the spin connection. Thus, the first-order formalism gives us the equation Ga

µ = (χ2/2)Tcan a
µ in

just one shot.
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Tcan a
µ is the Dirac-spinor covariant canonical energy–momentum tensor. It has the same

form as in Eq. (4.100) but now the total covariant derivative uses the general connections
considered here. As we have already pointed out, in the first-order formalism, the covari-
ant canonical energy–momentum tensor is obtained by direct variation with respect to the
Vielbeins:

δSmatter

δea
µ

= e Tcan a
µ. (4.142)

Finally, Sµ
ab is the spin-angular-momentum tensor, which is totally antisymmetric and

given by Eq. (2.67).
The equations of motion are

Ga
µ = χ2

2
Tcan a

µ, Dνeρ
c = χ2

2
Sc

νρ, i∇� ψ − mψ = i

2
Tνµ

µγ νψ. (4.143)

The second equation has the solution

Tµν
a = −χ2Sa

µν, (4.144)

as in the CSK theory. On account of the complete antisymmetry of S, this equation implies
that the r.h.s. of the third equation vanishes identically, so we are left with

i∇� ψ − mψ = 0. (4.145)

Finally, the first equation is just the Einstein equation one obtains in the CSK theory after
several manipulations. We can split it into a Riemannian part and the torsion contributions,
which we know are of quartic order in χ .

As we have stressed before, the simplicity of the first-order formalism is related to the
previously mentioned fact that this kind of action makes contact with the formulation of
gravity as the gauge theory of the Poincaré group which we are going to study next.

4.5 Gravity as a gauge theory

In [674] MacDowell and Mansouri formulated gravity as the gauge theory of the Poincaré
group and supergravity as the gauge theory of the super-Poincaré group.16 This approach
was later extended successfully to many other situations and it is interesting enough to
review it briefly here because the similarities with and differences of gravity from the gauge
theories of internal symmetries (some of which we have already mentioned) are manifest
in this formulation. Here we will loosely follow [404, 912].

One of the differences we observed in the previous section between the first-order for-
malism for gravity using Vielbeins and spin connection and a pure gauge theory is that we
did not have an interpretation of the Vielbeins as gauge fields. Furthermore, our intuition
tells us that, if gravity can be interpreted as a gauge theory at all, it cannot be a gauge the-
ory of the Lorentz group alone and at least gauge translations should be introduced into the
game. We should then consider the gauging of the Poincaré group. It is worth stressing here
that we are talking about the “Poincaré group of the tangent space.” That is, at each point

16 The earliest work on this subject is [918].
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in the base manifold, which may but need not be invariant under any translational isometry,
we consider inhomogeneous transformations of Lorentz vectors preserving the Minkowski
metric. The relation between these gauge transformations and GCTs is one of the subtle
points of this formulation of gravity.

To find the generators of the Poincaré group and their commutation relations, we can use
the representation in position space (as differential operators) or alternatively we can use
the following representation by (d + 1) × (d + 1) matrices of Poincaré transformations
composed of a translation aa and a Lorentz transformation �a

b:(
1

v′ a

)
=

(
1 0
aa �a

b

)(
1
vb

)
. (4.146)

This representation is suggestive because of its (d + 1)-dimensional homogeneous form.
We will later see that there is a reason for its existence.

We give here again the non-vanishing commutators of the generators {Mab, Pa}:

[Mab, Mcd] = −Meb�v(Mcd)
e

a − Mae�v(Mcd)
e

b,

[Pc, Mab] = −Pd�v(Mab)
d

c.
(4.147)

Here �v(Mab)
d

c is the matrix corresponding to the generator Mab in the vector represen-
tation of the Lorentz group. The last commutator says that the d generators of translations
Pa can be understood as the components of a Lorentz vector. Observe that Pa acts triv-
ially on objects with Lorentz indices. It would act non-trivially on objects with a non-trivial
“(d + 1)th” index in the above representation, but by construction they do not exist.

For each generator we would introduce a gauge field: the spin connection ωµ
ab for the

Lorentz subalgebra plus d new gauge fields for the translation subalgebra. Our theory has
d Vielbein fields with Lorentz-vector indices and it is natural to try to interpret them as the
gauge fields of translations and the gauge field of the Poincaré group would, tentatively, be,
in some representation �,

Aµ = 1
2ωµ

ab�(Mab) + eµ
a�(Pa) . (4.148)

Observe that, since Pa does not act on objects with Lorentz indices, the covariant derivative
contains in practice only the spin connection.

If we can reproduce Einstein’s theory with these elements, we could say that Einstein’s
theory is the pure gauge theory of the Poincaré group. We are going to see whether this
is possible. First we determine the effect of gauge transformations using the standard for-
malism of Appendix A. If σ ab and ξ a are the infinitesimal gauge parameters of Lorentz
rotations and translations, then

δωµ
ab = −Dµσ ab, δeµ

a = −Dµξ a + σ a
beµ

b. (4.149)

In both cases D stands for the gauge covariant derivative (no Levi-Cività connection is
contained in it because, for the moment, we have no metric but a gauge field eµ

a). It is
useful to compare the last expression with the effect of an infinitesimal GCT generated by
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the world vector ξµ (unrelated in principle to the Lorentz vector ξ a):

δξ xµ = ξµ,

δξ ea
µ = −ξν∂νea

µ − ∂µξνea
ν = −Dµ

(
ξνea

ν

) + 2ξνD[µea
ν] − (ξ νων

a
b)e

b
µ.

(4.150)

The covariant derivative is, again, the Poincaré (Lorentz) gauge one. The effect of an
infinitesimal reparametrization is identical to the effect of a Pa gauge transformation with
parameter ξ a = ξµea

µ plus a local Lorentz transformation with parameter σ ab = ξµωµ
ab if

D[µea
ν] vanishes.

We know that this condition is equivalent to the vanishing of torsion and we know that
this constraint allows us to express ωµ

ab in terms of ea
µ. If we implement this constraint

in our gauge theory, it will automatically become invariant under reparametrizations.17 It
is implemented in the first-order formalism of the previous section, where it appears as the
equation of motion of ωµ

ab.
The next step is to construct the gauge field strength:

Rµν = 1
2 Rµν

ab�(Mab) + Rµν
a�(Pa) ,

Rµν
ab = 2∂[µων]

ab − 2ω[µ
a

cων]
cb,

Rµν
a = 2D[µea

ν].

(4.151)

The last line is identically equal to −Tµν
a . Thus, we have just learned that torsion can be

interpreted in this formalism as the part of the gauge field strength that is associated with
translations.

Now the moment to construct the action arrives. As we mentioned, in order to recover
the constraint Rµν

a , the action has to be linear in the curvature components Rµν
ab. The

requirement of Lorentz invariance also makes it very difficult to build quadratic actions
(different from Tr(R ∧ � R), which is wrong for gravity) that are not trivial (i.e. they do not
correspond to topological invariants). We are then led to the action Eq. (4.129), which we
know is correct.

What have we learned by considering the gauge theory of the Poincaré group? Essentially
we have given a gauge-field interpretation to Vielbeins (although we have not justified why
they have to be invertible) and we have found that constraints are necessary in order to
relate Poincaré gauge invariance to reparametrization invariance. The construction of the
action is still rather ad hoc.

A slight improvement of the situation was achieved by MacDowell and Mansouri [674]
(see also [227, 231, 864]), who used it to construct supergravity actions [404]. Working
in four dimensions, they considered the anti-de Sitter group SO(2, 3). Upon performing
a Wigner–Inönü contraction [592] (which is essentially the zero-cosmological-constant
limit), this group becomes the Poincaré group ISO(1, 3) and one recovers our previous
results.

17 In supergravity formulated as the gauge theory of a supergroup the problem is how to relate supersymme-
try transformations (in general super-reparametrizations in superspace) to gauge transformations associated
with the supersymmetry and translation generators.
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More precisely, we introduce SO(2, 3) indices â, b̂, · · · = −1, 0, 1, 2, 3. The metric is
η̂âb̂ = diag(+ + − − −) and the algebra so(2, 3) can be written in the general form[

M̂âb̂, M̂ĉd̂

]
= −η̂âĉ M̂b̂d̂ − η̂b̂d̂ M̂âĉ + η̂âd̂ M̂b̂ĉ + η̂b̂ĉ M̂âd̂ . (4.152)

To perform the contraction, we need to introduce a dimensional parameter. This is, natu-
rally, g, the gauge coupling constant in gauged d = 4, N = 2 supergravity. g is related to
the AdS4 radius R and to the cosmological constant � by

R = 1/g =
√

−3/�. (4.153)

We can now perform a 1 + 4 splitting of the indices â = (−1, a), a = 0, 1, 2, 3, to inter-
pret this algebra from the point of view of the Lorentz subalgebra so(1, 3). On defining

M̂ab = Mab, M̂a−1 = −g−1 Pa, (4.154)

we can rewrite the AdS4 algebra as follows:

[Mab, Mcd] = −ηac Mbd − ηbd Mac + ηad Mbc + ηbc Mad,

[Pc, Mab] = −2P[aηb]c, [Pa, Pb] = −g2 Mab.
(4.155)

Taking now the limit g → 0, we recover the Poincaré algebra.
We could equally well have started with the four-dimensional de Sitter group SO(1, 4).

The difference is that, instead of having an extra timelike direction (which we have denoted
with a −1 index), we have an extra spacelike direction (which we would denote with a 4
index). The two spaces (and groups) are related by analytic continuation x−1 → x4 and,
in the contraction of the extra dimension, we would find that the sign of the cosmological
constant is reversed (g → ig). We will use a general notation and point out where differ-
ences between the two groups could arise. However, one should keep in mind that only the
anti-de Sitter space is a good background for QFT and only its group can consistently be
supersymmetrized.

The gauge theory of the AdS4 group is just a particular case of the general construction
in Appendix A.2.3. We can also perform the contraction in the gauge field and curvature.
First, we split the indices in the connection and then we rescale the gauge fields inversely
to the generators:

ω̂µ = 1
2 ω̂µ

âb̂�
(

M̂âb̂

)
= 1

2 ω̂µ
ab�

(
M̂ab

)
+ ω̂µ

a,−1�
(

M̂a,−1

)
= 1

2ωµ
ab�(Mab) + ea

µ�(Pa) , (4.156)

where
ω̂µ

ab = ωµ
ab, ω̂µ

a,−1 = −gea
µ. (4.157)

In this scheme, linear momentum and Vierbeins are on the same footing as the rest of
the generators and gauge fields. This is obviously due to the semisimple nature of the AdS4

group. There is some resemblance between this structure and the idea of grand unification
in particle physics, although there are also obvious differences.
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We can also split and rescale the curvature components, expressing everything in terms
of Lorentz tensors:

R̂µν
ab = Rµν

ab + 2g2e[a
µeb]

ν, R̂µν
a,−1 = 2gD[µea

ν]. (4.158)

Now we can address again the construction of a quadratic action for this group. To have
diffeomorphism invariance, the Lagrangian has to be a 4-form that we can integrate over
a four-dimensional manifold and, therefore, the exterior product of two curvature terms
R ∧ R. We now have to saturate the so(2, 3) indices. If we did it with the Killing metric, we
would have manifest SO(2, 3) invariance but the Lagrangian would be a total derivative, as
in any Yang–Mills theory. Thus, we have to give up explicit SO(2, 3) invariance. We have
to keep Lorentz invariance, though, and with the only two invariant tensors of the Lorentz
group (ηab, εabcd) we can build two terms:

R̂ab ∧ R̂cdεabcd, R̂a,−1 ∧ R̂b,−1ηab. (4.159)

The second term is not invariant under parity and for this reason it is discarded. The in-
clusion of this term would also introduce torsion and it would also lead to the existence of
non-invertible Vierbeins (see the discussion in [404]).

The first term can also be given an SO(2,3)-invariant origin [864]: by introducing a con-
stant vector V â = ηâ−1 it can be written using the invariant tensor ε̂ and we obtain the
action

S = α

∫
R̂âb̂ ∧ R̂ĉd̂ V êε̂âb̂ĉd̂ ê. (4.160)

This is only formally SO(2, 3)-invariant because the vector would change under AdS4 trans-
formations. Nevertheless, this form of the action is very suggestive.

On expanding this action in terms of Lorentz tensors, we have

S = α

∫
d4x Rµν

ab Rρσ
cdεabcdε

µνρσ − 16g2α

∫
d4x e

[
R(e, ω) + 6g2

]
. (4.161)

The first term is a total derivative (proportional to the Euler characteristic, a topologi-
cal invariant) that does not contribute to the equations of motion and the second term is
the first-order Einstein–Hilbert action with cosmological constant � = −3g2. In the g → 0
limit (provided that α ∼ g−2) we recover the usual Einstein–Hilbert action plus a topo-
logical term. Observe that the variation of the action under Pa gauge transformations is
proportional to torsion terms and, thus, vanishes on-shell.

This is a very attractive result, which, however, leaves some questions unanswered, such
as the reason for the invertibility of the Vierbein and the value of the vector V â . A possible
solution has recently been proposed by Wilczek in [955].

To finish this section, we should mention that the gauge approach has been extended to
larger groups such as the full d-dimensional affine group. A comprehensive review on these
developments is [524].

4.6 Teleparallelism

In this section we would like to give a short introduction to relativistic theories of grav-
ity based on teleparallelism, i.e. theories in which there is a well-defined notion of par-
allelism of vectors defined at different points. In GR and other generalizations based on
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the Riemannian or Riemann–Cartan geometry, gravity, described by the metric or Vielbein
fields, is characterized by a curvature and, therefore, parallel transport is path-dependent
and there is no such well-defined (path-independent) notion of parallelism. Teleparallelism
is based on the Weitzenböck geometry and the Weitzenböck connection Wµν

ρ described in
Section 1.4.1, which has identically vanishing curvature (but non-vanishing torsion18).

These theories are interesting for several reasons: first of all, GR can be viewed as a par-
ticular theory of teleparallelism and, thus, teleparallelism could be considered at the very
least as a different point of view that can lead to the same results. Of course, there are
teleparallel theories different from and even inconsistent with GR. Second, in this frame-
work, one can define an energy–momentum tensor for the gravitational field that is a true
tensor under all GCTs. This is the reason why teleparallelism was reconsidered19 by Møller
in 1961 [702] when he was studying the problem of defining an energy–momentum tensor
for the gravitational field [700, 701]. The idea was taken over by Pellegrini and Plebański in
[761] that constructed the general Lagrangian for these theories. The third reason why these
theories are interesting is that they can be seen as gauge theories of the translation group
[237, 521] (not the full Poincaré group) and, thus, they give an alternative interpretation of
GR.

The basic field in these theories is the Vielbein ea
µ. This field has d2 independent com-

ponents, while the metric has only d(d + 1)/2. The extra independent components that the
Vielbein field has are those of an antisymmetric d × d tensor, such as the electromagnetic-
field-strength tensor Fµν , and that is why Einstein thought that these theories could de-
scribe gravitation and electromagnetism in a unified way. In the standard Vielbein for-
malism (Weyl’s), the extra d(d − 1)/2 independent components of the Vielbein field are
removed by introducing local Lorentz invariance, with a Lorentz connection that is not an
independent field but is built out of the Vielbeins. Here, we are not interested a priori in
having this local invariance and, in principle, we will construct only theories that are invari-
ant under GCTs and global Lorentz transformations. Thus, as we will see, these theories
describe in general more degrees of freedom than just those of a graviton.

The construction of the Lagrangian of these theories is fairly simple: we look for terms
that have the required invariances and are, at most, quadratic in derivatives of the Vielbeins.
The elementary building blocks are the Ricci rotation coefficients �µν

a = ∂[µea
ν] that trans-

form as tensors (2-forms) under GCTs and as vectors under (global) Lorentz transforma-
tions. In the context of the Weitzenböck geometry, the −2�µν

as are the components of the
torsion of Weitzenböck connection and, since there is no curvature tensor available, it is
only natural to construct the Lagrangian using them.

In any dimension there are three terms with the required properties (they transform as
densities under GCTs and as scalars under Lorentz transformations, being quadratic in first
partial derivatives of the Vielbeins): the Weitzenböck invariants I1, . . ., I3,

I1 = e �µνρ�
µνρ, I2 = e �µνρ�

ρνµ, I3 = e �µρ
ρ�µ

σ
σ . (4.162)

18 It is possible to have a non-trivial theory with vanishing curvature and torsion if the non-metricity tensor
does not vanish. In [720] a theory equivalent to GR based on this geometry was constructed.

19 Teleparallelism had originally been considered by Einstein, who studied it as a unified theory of gravitation
and electromagnetism in [359–363] (see also [651]) until [368] showed that the particular theory considered
by him was inconsistent.
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There is another invariant I4, which is quadratic only in d = 4:

I4 = εµ1···µd−3ν1ν2ν3�µ1ρ1
ρ1�µ2ρ2

ρ2 · · · �µd−3ρd−3
ρd−3�ν1ν2ν3, (4.163)

but it is not invariant under parity transformations (a further requirement) and it is usually
not considered. Also, e by itself is another invariant (a cosmological-constant term) that we
will not consider. Observe that all the Weitzenböck invariants involve the inverse Vielbeins
ea

µ and are, therefore, highly non-linear in the Vielbeins.
The general teleparallel Lagrangian of Pellegrini and Plebański [761] is the integral of a

linear combination of the Weitzenböck invariants with arbitrary coefficients:

LT =
3∑

i=1

ci Ii . (4.164)

Only two of them are really independent since we can choose the overall normalization.
This general Lagrangian, written in differential-forms language to relate it to the Poincaré

gauge theory of gravity which is customarily written in it (see e.g. [524]), is known as the
Rumpf Lagrangian [815] (see also [482, 704]).

There are other ways to parametrize this Lagrangian, for instance, by splitting �abc into
several pieces (1)�, (2)�, and (3)� (tentor, trator, and axitor, respectively, [482]). First we
define

va ≡ �ab
b, (2)�abc = 2

1 − d
ηa[bvc],

(3)�abc = �[abc],
(1)�abc = �abc − (2)�abc − (3)�abc.

(4.165)

Then, a Lagrangian equivalent to Pellegrini and Plebański’s is [482]

LT = e �abc
3∑

i=1

ai
(i)�abc. (4.166)

The relation between these two parametrizations is

a1 = c1 + 1
2 c2, a2 = c1 + 1

2 c2 + d − 1

2
c3, a3 = c1 − c2. (4.167)

Another parametrization based on va , the tensors

aa1···ad−3 = 1

3!
εa1···ad−3b1b2b3�b1b2b3, tabc = �a(bc) − (2)�a(bc), (4.168)

and the invariants v2, t2, and a2 can be found in [522].

4.6.1 The linearized limit

Now, our goal is to try to understand which kind of theories are those defined by the
Lagrangian Eq. (4.164). First, we observe with Møller [702] that, for c1 = 1, c2 = 2,

and c4 = −4, this Lagrangian is identical (up to total derivatives) to the Einstein–Hilbert
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Lagrangian, and, therefore, gives the vacuum Einstein equations.20 The Lagrangian turns
out to be invariant under not just global but also local Lorentz transformations and the only
degrees of freedom left are (we know it) those of the graviton. For general values of the
parameters, the analysis is more complicated and it is convenient to start by studying the
linear limit. To this end, we split the Vielbeins into their vacuum (Minkowski) values plus
perturbations. Working in Cartesian coordinates for simplicity, we write

ea
µ = δa

µ + Aa
µ. (4.169)

For the inverse Vielbeins, we have

ea
µ = δa

µ − δb
µδa

ν Ab
ν + O(A2). (4.170)

To this order we can unambiguously trade curved and flat indices and the above formula
can be rewritten

ea
µ = δa

µ − Aµ
a + O(A2), Aµ

a ≡ δb
µδa

ν Ab
ν. (4.171)

The metric perturbation that we have called hµν in previous chapters is given by the sym-
metric part of A at lowest order:

gµν = ηµν + hµν + O(A2), hµν ≡ 2A(µν), bµν ≡ 2A[µν], Aµν ≡ δaµ Aa
µ.

(4.172)

With these definitions is straightforward to obtain, up to total derivatives, the linear limit of
action for the Lagrangian density Eq. (4.164):

ST[h, b] =
∫

dd x

{
1

16
(2c1 + c2)∂µhνρ∂

µhνρ − 1

16
(2c1 + c2 − c3)∂µhνρ∂

νhµρ

− 1

8
c3∂µh∂νhνµ + 1

16
c3(∂h)2 − 1

16
[4c1 + 2(c2 + c3)]∂µhνρ∂

ρbνµ

+ 1

16
∂µbνρ∂

µbνρ − 1

16
(2c1 − 3c2 − c3)∂µbνρ∂

ρbνµ

}
. (4.173)

The first four terms are familiar to us: up to coefficients, they are the same terms as those
that appear in the Fierz–Pauli Lagrangian Eq. (3.84). The last two terms are also well
known: up to coefficients, they are exactly those that appear in the Lagrangian of the Kalb–
Ramond 2-form field, which we still have not seen. The terms in the third line represent a
coupling (already at the linear level) between these two fields.

Now, it is clear that it is not possible to recover solutions of the vacuum Fierz–Pauli
theory if the coupling terms have a non-zero coefficient: a non-vanishing h field is a source
for a non-vanishing b field and vice-versa. Thus, the only theories which we expect to be
phenomenologically viable are those in the family

2c1 + c2 + c3 = 0. (4.174)

20 In fact, this theory is sometimes referred to as the teleparallel equivalent of GR.
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Table 4.1. In this table we give the values of the parameters ci

in the general Lagrangian of Pellegrini and Plebański Eq. (4.164)
for several theories: GR, the viable models, the Yang–Mills-type
model (YM), and the von der Heyde model (vdH) [926] (which is
one of the viable ones with λ = 0).

GR Viable YM vdH

c1 1 2 − λ 2 2
c2 2 2λ 0 0
c3 4 −4 0 −4

Furthermore, both in the Kalb–Ramond and in the Fierz–Pauli cases, for certain choices
of the coefficients, the action has a gauge invariance,

δεhµν = −2∂(µεν), δηbµν = 2∂[µην], (4.175)

whose existence is crucial for its consistent quantization. We also expect that only when
these gauge invariances are present will the theory be consistent. It turns out that all these
conditions are simultaneously met: let us eliminate c3 using Eq. (4.174) and then, calling
c2 = 2λ, the action can be rewritten in the form

ST[h, b] = c1 + λ

2
SFP[h] + c1 − λ

2
SKR[b], (4.176)

where SFP[h] is the Fierz–Pauli action given in Eq. (3.84) and SKR[b] is the Kalb–Ramond
action

SKR[b] =
∫

dd x
1

12
H 2, Hµνρ ≡ 3∂[µbνρ], H 2 = Hµνρ Hµνρ. (4.177)

For c1 = λ (c2 = 2λ, c3 = −4λ), the Kalb–Ramond Lagrangian disappears. Up to an over-
all normalization constant and a total derivative, this teleparallel Lagrangian is completely
equivalent to the Einstein–Hilbert Lagrangian, as we mentioned before. For c1 = −λ the
Fierz–Pauli Lagrangian disappears and only the Kalb–Ramond Lagrangian remains. This
theory does not describe gravity. If we are always going to keep the Fierz–Pauli Lagrangian,
then it makes sense to set c1 = 2 − λ (c3 = −4, c2 = 2λ) and keep the one-parameter fam-
ily of actions

ST[h, b] = SFP[h] + (1 − λ)SKR[b], (4.178)

which represent viable models of gravity (in the sense that they fulfill the above require-
ments) based on teleparallelism (see Table. 4.1). The case λ = 0 is the model proposed in
[926].

Of course, we know that the full non-linear theory will be consistent only if additional
conditions are satisfied. In particular, we know from our results in Chapter 3 that the quan-
tization of the spin-2 field hµν will be consistent only if it couples to the total energy–
momentum tensor, the sum of the spin-2 energy–momentum tensor and the Kalb–Ramond
energy–momentum tensor, although the presence of the Kalb–Ramond field could modify
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this result. Checking that this is (or not) the case in the above family of theories requires an
expansion to order O(A3) that would be interesting to do.

It is amusing to compare these results with the linearized limit of the low-energy string
effective action (see Chapter 15). The linearized actions are identical, except for the pres-
ence of the dilaton in the string case. However, the non-linear actions are quite different: in
the string case, we simply have standard gravity coupled to matter (the Kalb–Ramond field)
that appears only quadratically (at least to lowest order in α′), whereas, in the teleparallel
case, the Kalb–Ramond field should also appear non-linearly in the full action.

It is possible to view the theories of teleparallelism as gauge theories of the group of
translations [237, 521] with the Vielbeins playing the role of gauge vectors, but we will not
enter into this interesting aspect.



5
N = 1, 2, d = 4 supergravities

In the previous chapter, we introduced increasingly complex theories of gravity, starting
from GR, to accommodate fermions and we saw that the generalizations of GR that we had
to use could be thought of as gauge theories of the symmetries of flat spacetime.

A very important development of the last few decades has been the discovery of su-
persymmetry and its application to the theory of fundamental particles and interactions.
This symmetry relating bosons and fermions can be understood as the generalization of
the Poincaré or AdS groups which are the symmetries of our background spacetime to the
super-Poincaré or super-AdS (super-)groups which are the symmetries of our background
superspacetime, a generalization of standard spacetime that has fermionic coordinates.

It is natural to construct generalizations of the standard gravity theories that can be under-
stood as gauge theories of the (super-)symmetries of the background (vacuum) superspace-
time. These generalizations are the supergravity (SUGRA) theories. Given that the kind
of fermions that one can have depends critically on the spacetime dimension, the SUGRA
theories that one can construct also depend critically on the spacetime dimension. Further-
more, one can extend the standard bosonic spacetime in different ways by including more
than one (N ) set of fermionic coordinates. This gives rise to additional supersymmetries
relating them and, therefore, to supersymmetric field theories and SUGRA theories with N
supersymmetries. The latter are also known as extended SUGRAs (SUEGRAs).

There is, thus, a large variety of supergravities, but not infinitely large, because the gaug-
ing of supersymmetries with N > 8 in d = 4 dimensions or N = 1 in d = 11 needs the
inclusion of more than one graviton and/or fields of spin higher than 2, which we do not
know how to couple consistently.

We are going to study SUGRA theories because they provide an interesting extension of
the ideas we have reviewed so far and because the effective-field theories that describe the
behavior of superstrings at low energies are SUGRA theories.

Supersymmetry and SUGRA have been developed over the last several years and are
currently the object of extensive work, so we cannot give here a complete review of any of
these subjects. There are excellent books and reviews that cover most of the basic aspects,
though, for instance [150, 404, 912, 915, 916, 946, 948]. Reference [828] contains reprints
of many of the original articles on SUGRA.
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Our goal in this chapter will be to introduce some of the concepts that we will use later
on, profiting from and extending the material we have studied so far. Our method will be to
construct the simplest four-dimensional SUGRA theories (N = 1, d = 4 Poincaré and AdS
supergravities) by gauging the corresponding supergroups and studying them separately.
We will then study the two simplest four-dimensional SUEGRA theories (N = 2, d = 4
Poincaré and AdS supergravities) since they illustrate important ideas we will make use of
later. Our conventions for tensors, gamma matrices, and spinors are explained in Chapter 1
and Appendix B, respectively.

5.1 Gauging N = 1, d = 4 superalgebras

Just as the d = 4 Poincaré group can be constructed by exponentiation of the Poincaré
algebra, the N = 1, d = 4 super-Poincaré group can be constructed by exponentiation of
the N = 1, d = 4 super-Poincaré superalgebra. This superalgebra is an extension of the
Poincaré algebra with (bosonic) generators Pa and Mab by one set of anti-Hermitian
fermionic generators Qα (the supersymmetry generators or supersymmetry charges) that
transform as Majorana1 spinors under Poincaré transformations, so they have four compo-
nents and

[Qα, Mab] = �s(Mab)
α

β Qβ, (5.1)

while the commutator with Pa vanishes. To complete all the relations of the superalgebra,
we need to give the commutator of two Qαs. Actually, in a superalgebra, one has to give
the anticommutator of fermionic generators (that is the difference from the bosonic ones)
and the (anti)commutation relations have to satisfy a super-Jacobi identity, which takes the
same form as the standard Jacobi identity but with commutators replaced by anticommuta-
tors whenever two fermionic generators are involved and with a relative sign between the
terms related to the permutation of fermionic generators. The anticommutation relation that
satisfies the super-Jacobi identities is2

{Qα, Qβ} = i
(
γ aC−1

)αβ
Pa. (5.2)

The non-vanishing commutation relations for the N = 1, d = 4 superalgebra are

[Mab, Mcd] = −Meb�v(Mcd)
e

a − Mae�v(Mcd)
e

b,

[Pa, Mbc] = −Pe�v(Mbc)
e

a,

[Qα, Mab] = �s(Mab)
α

β Qβ,

{Qα, Qβ} = i
(
γ aC−1

)αβ
Pa.

(5.3)

1 The need for Majorana representations is associated with the anti-Hermiticity of the generators. In d = 4
Majorana and Weyl spinors are equivalent and the superalgebra can be written in terms of Weyl spinors only
(see e.g. [946]).

2 Since our convention for Hermitian conjugation of fermionic objects is (ab)† = +b†a†, the structure con-
stants have to be purely imaginary here. We are using a purely imaginary representation of the gamma
matrices with a purely imaginary charge-conjugation matrix, hence the factor i .
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This is the superalgebra that one has to gauge in order to construct N = 1, d = 4 Poincaré
supergravity. However, to follow Section 4.5, we prefer to start from the supersymmetrized
version of the AdS4 algebra and then perform a Wigner–Inönü contraction. To supersym-
metrize it, we need to add consistently a set of fermionic supersymmetry generators to those
of the bosonic algebra M̂âb̂. To have consistency, the fermionic generators have to transform
as AdS4 Majorana spinors, which, as discussed in Appendix B, have four real (or purely
imaginary) components. Denoting them by Q̂α, we find the following (anti)commutation
relations for the AdS4 superalgebra:

[
M̂âb̂, M̂ĉd̂

]
= −M̂êb̂�v

(
M̂ĉd̂

)
ê

â − M̂âê�v

(
M̂ĉd̂

)
ê

b̂,[
Q̂α, M̂âb̂

]
= �s

(
M̂âb̂

)
α

β Q̂β,

{Qα, Qβ} =
[
�s

(
M̂âb̂

)
Ĉ−1

]αβ

M̂âb̂.

(5.4)

An infinitesimal transformation generated by this superalgebra is

�̂ ≡ 1
2 σ̂

âb̂ M̂âb̂ + ¯̂εα Q̂α, (5.5)

where σ̂ âb̂ = −σ̂ b̂â is the infinitesimal parameter of an SO(2, 3) transformation and ε̂α, an
anticommuting Majorana spinor, is the infinitesimal parameter of a supersymmetry trans-
formation. The bar indicates Dirac conjugation.

To construct theories that are invariant under local infinitesimal transformations (σ̂ âb̂ =
σ̂ âb̂(x), ¯̂εα = ¯̂εα(x)), we need to introduce a gauge field Âµ,

Âµ ≡ 1
2 ω̂µ

âb̂ M̂âb̂ + ¯̂
ψµ α Q̂α, (5.6)

whose components are the standard bosonic SO(2, 3) connection ω̂µ
âb̂ from which we will

obtain the Lorentz connection ωµ
ab and the Vierbein ea

µ that will describe the graviton. It
also contains a new fermionic field: the Rarita–Schwinger field ¯̂

ψµ α, which has a vector
index and a spinor index. This field describes a particle of spin 3

2 ; the gravitino, which is
the supersymmetric partner of the graviton, related to it by supersymmetry transformations,
and other excitations, which should be eliminated if there is enough gauge symmetry in its
action (as is the case).

By construction, the action of an infinitesimal transformation of the gauge field is the
supercovariant derivative of �̂(x),

δ Âµ = ∂µ�̂ + [�̂, Âµ]. (5.7)

On expanding the commutator (which should be understood as the anticommutator between
the fermionic generators), we find the following transformation laws for the component
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fields under local SO(2, 3) transformations and supersymmetry transformations:

δσ̂ ω̂µ
âb̂ = D̂µσ̂ âb̂, δσ̂

¯̂
ψµ = − ¯̂

ψµ

[
1
2 σ̂

âb̂�s

(
M̂âb̂

)]
,

δε̂ω̂µ
âb̂ = −2 ¯̂ε�s

(
M̂âb̂

)
ψ̂µ, δε̂

¯̂
ψµ = D̂µε̂,

(5.8)

where D is the Lorentz SO(1,3) covariant derivative defined in Chapter 1.
The supercurvature is defined by

R̂µν( Â) ≡ 2∂[µ Âν] − [ Âµ, Âν], (5.9)

and, by expanding it and decomposing it into bosonic and fermionic components, we find

R̂µν
âb̂( Â) = R̂µν

âb̂(ω̂) − 2 ¯̂
ψ [µ�s

(
M̂âb̂

)
ψ̂ν], R̂µν α( Â) = 2D̂[µ

¯̂
ψν] α. (5.10)

Having the supercurvature components, we can now proceed to construct an action that
has to be invariant under GCTs, local Lorentz transformations, parity transformations, and
local supersymmetry transformations without the use of any metric. The requirement of
invariance under local supersymmetry transformations is more difficult to impose and we
will have to check it explicitly afterwards. The other requirements imply that the action has
to be of the form

S[ Â] = α

∫
d4x

[
R̂µν

ab R̂ρσ
cdεabcd + β

¯̂Rµν α (γ5)
α

β R̂ρσ
β
]
εµνρσ . (5.11)

We now want to rewrite this action in terms of component Poincaré fields and in terms
of the parameter g whose zero limit gives the Wigner–Inönü contraction. First we study it
in the superalgebra. Defining

M̂ab ≡ Mab, M̂a,−1 ≡ −g−1 Pa, Q̂α ≡ g− 1
2 Qα, (5.12)

the AdS4 superalgebra takes the form

[Mab, Mcd] = −Meb�v(Mcd)
e

a − Mae�v(Mcd)
e

b,

[Pa, Mbc] = −Pe�v(Mbc)
e

a, [Pa, Pb] = −g2 Mab,

{Qα, Qβ} = −2
[
�s

(
M̂a,−1

)
Ĉ−1

]αβ

Pa + g
[
�s

(
M̂ab

)]αβ

Mab.

[Qα, Mab] = �s(Mab)
α

β Qβ, [Qα, Pa] = −g�s

(
M̂a,−1

)α

β Qβ.

(5.13)

In the g→0 limit we recover the N =1, d=4 Poincaré superalgebra using, for instance,
the representation of AdS4 gamma matrices

γ̂a = iγaγ5, γ̂−1 = γ5, Ĉ = C = iγ0. (5.14)

The infinitesimal transformation parameters and gauge fields are also split and rescaled
as follows:

ω̂µ
ab = ωµ

ab, ω̂µ
a,−1 = gea

µ, ψ̂µ = g
1
2 ψµ,

σ̂ ab = σ ab, σ̂ a,−1 = gσ a, ε̂ = g
1
2 ε.

(5.15)
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In terms of these variables, the SO(2, 3) and supersymmetry transformations take the
forms

δσ ea
µ = Dµσ a + σ a

beb
µ,

δσωµ
ab = Dµσ ab + 2g2e[a

µσ b],

δσ ψ̄µ = −ψ̄µ

(
1
4σ

abγab
) − ig

2
ψ̄µσ aγa,

δεea
µ = −i ε̄γ aψµ,

δεωµ
ab = −2gε̄γ abψµ,

δεψ̄µ = Dµε − ig

2
γµε,

(5.16)

and the components of the supercurvature are given by

R̂µν
ab = Rµν

ab(ω) + 2g2e[a
µeb]

ν + gψ̄[µγ abψν],

R̂a,−1
µν = −g

(
Tµν

a − iψ̄[µγ aψν]
)
,

R̂µν = 2g
1
2

(
D[µψν] − ig

2
γ[µψν]

)
.

(5.17)

On substituting these components into the action, we find that the right normalization
of the Einstein–Hilbert term in the action requires α = −1/(16g2χ2). Furthermore, the
explicit3 terms quartic in fermions drop out from the action (after Fierzing and massaging
of some terms) if β = −8i . This is the value that will also make the action supersymmetry-
invariant. The result is the action for N = 1, d = 4 AdS4 SUGRA,

S[ea
µ, ωµ

ab, ψµ] = 1

χ2

∫
d4x e

[
R(e, ω) + 6g2 + 2e−1εµνρσ ψ̄µγ5γνD̂ρψσ

]
, (5.18)

which, in the g→0 limit, gives the action for N =1, d=4 Poincaré SUGRA [315, 403]:

S[ea
µ, ωµ

ab, ψµ] = 1

χ2

∫
d4x e

[
R(e, ω) + 2e−1εµνρσ ψ̄µγ5γνDρψσ

]
. (5.19)

These are first-order actions in which, as indicated, the fundamental variables are the
Vielbein, spin connection, and gravitino field. Thanks to our experience with the CSK
theory,4 we know that, when we solve the spin connection equation of motion, which is

3 Later we will see that the on-shell spin connection contains terms quadratic in the fermions, so the action
contains implicitly terms quartic in fermions, just as in the CSK theory.

4 We can interpret these actions as the CSK theory coupled to gravitino fields. However, there is more to
it, because the consistency of the gravitino field theory requires its action to be invariant under the gauge
transformations (in flat spacetime) δψµ = ∂µε(x) in order to decouple unwanted spins. When we couple the
gravitino to gravity, consistency requires that the Vierbeins also transform under these fermionic transforma-
tions (otherwise, that gauge symmetry is broken), which become the local supersymmetry transformations.
In this way local supersymmetry does not reduce any further the number of degrees of freedom (graviton
plus gravitino). The non-trivial part is the transformation of the Vierbeins under supersymmetry. We could
have tried to arrive at the N = 1, d = 4 supergravity action from the linearized action which is just the sum
of the Fierz–Pauli action and the Rarita–Schwinger action, decoupled, by asking for consistent interaction
and following the Noether method as we did in Chapter 3. Then, the full supersymmetry transformations
should arise as the consistency requirement.
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purely algebraic, we are going to find that there is torsion proportional to some expression
quadratic in fermions, making the R̂µν

a,−1( Â) components of the supercurvature vanish.
Substituting the torsion into the action will give rise to terms that are quartic in fermions.

In what follows we are going to study these actions, their equations of motion, and their
symmetries separately. The most efficient way to do it is to treat them in the so-called
1.5-order formalism: we consider that we have solved the equation of motion of the spin
connection and we have substituted its solution back into the action, but we do not do it
explicitly, keeping the action in its first-order form. Then, in varying over the two remaining
fundamental fields (the Vierbein and gravitino), we use the chain rule, varying over the spin
connection first. That variation is its equation of motion, which has been solved, and simply
vanishes. In this way, many calculations are greatly simplified.

We are going to make this study as self-contained as possible and, thus, we will repeat
some of the general points explained in this introductory section.

5.2 N = 1, d = 4 (Poincaré) supergravity

The fields of N = 1, d = 4 supergravity are the Vierbein and the gravitino {ea
µ, ψµ}. The

gravitino is a vector of Majorana (real) spinors. The action is written in a first-order form,
in which the spin connection ωµ

ab is also considered as an independent field and the action
contains only first derivatives. We rewrite the action here for convenience, setting χ = 1:

S[ea
µ, ωµ

ab, ψµ] =
∫

d4x e
[
R(e, ω) + 2e−1εµνρσ ψ̄µγ5γνDρψσ

]
. (5.20)

Here Dµ is the Lorentz-covariant derivative (rather than the completely covariant derivative,
which we denote as usual by ∇µ),

Dµψν = ∂µψν − 1
4ωµ

abγabψν, ∇µψν = Dµψν − �µν
ρψρ, (5.21)

and
R(e, ω) = ea

µeb
ν Rµν

ab(ω), (5.22)

where Rµν
ab(ω) is the Lorentz curvature of the Lorentz connection ωµ

ab, Eq. (1.81).
As usual, to obtain the second-order action we solve the spin-connection equation of

motion and substitute the solution for ωµ
ab in terms of ea

µ and ψµ back into the first-order
action. The spin-connection equation of motion is

δS

δωµ
ab

= 3!eabc
µνρ

(
Dνec

ρ + i

2
ψ̄νγ

cψρ

)
= 0. (5.23)

This equation implies that the expression in brackets, antisymmetrized in ν and ρ, is zero.
Looking at Eq. (1.86), we see that there is torsion in this theory and it is given by5

Tµν
a = iψ̄µγ aψν. (5.24)

5 The bilinear ψ̄µγ aψν is automatically antisymmetric in µν.
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Furthermore, we see that the solution to the new equation is just that the Lorentz connection
consists of two pieces: the one that solves the standard equation D[µea

ν] = 0, which we
denote by ωµ

ab(e) because it is completely determined by the Vierbein, and the contorsion
tensor Kµ

ab, which depends on the gravitino through the torsion. It is convenient to write
the solution as follows:

ωabc = −�abc + �bca − �cab, �µν
a = �µν

a(e) + 1
2 Tµν

a, �µν
a(e) = ∂[µea

ν]. (5.25)

The other two equations of motion that the first-order action gives are

δS

δea
µ

= −2e
[
Ga

µ − 2Tcan a
µ(ψ)

] = 0,

Tcan a
µ(ψ) = 1

2e
ερµσνψ̄ργ5γaDσψν, (5.26)

δS

δψ̄µ

= 4εµνρσ
[
γ5γνDρψσ + 1

4 Tνρ
aγ5γaψσ

] = 0,

where we have used
D[µγν] = − 1

2 Tµν
aγa. (5.27)

The second-order equations of motion follow from the substitution of Eq. (5.25) into the
first-order ones.

The action Eq. (5.20) and equations of motion are manifestly invariant under

general coordinate transformations,

δξ xµ = ξµ, δξ ea
µ = −ξν∂νea

µ − ∂µξνea
ν, δξψµ = −ξν∂νψµ − ∂µξνψν,

(5.28)

and local Lorentz transformations,

δσ ea
µ = σ a

beb
µ, δσψµ = 1

2σ
abγabψµ, (5.29)

where σ ab = −σ ba . On top of this, if we eliminate the spin connection as an indepen-
dent field by substituting the solution of its equation of motion, there is invariance
under

local N = 1 supersymmetry transformations:

δεea
µ = −i ε̄γ aψµ, δεψµ = Dµε. (5.30)

This requires some explanation. The first-order action is also invariant under the same
transformations supplemented by the supersymmetry transformation of the spin connec-
tion. In the second-order formalism, the supersymmetry variation of the spin connection is
completely different and can be found by varying Eq. (5.25) with respect to the Vierbein
and gravitino:

δεωµ
ab = −i ε̄γµψab + i ε̄γ aψb

µ − i ε̄γ bψµ
a, ψµν ≡ D[µψν]. (5.31)
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One may think that the gauging of the supersymmetry algebra should give us the first-
order supersymmetry transformation rule for the spin connection, but it does not: it just
gives δεωµ

ab = 0. Nevertheless, to check the invariance of the action in the 1.5-order for-
malism we do not need this variation, as we are going to see.

Let us check the invariance of the action Eq. (5.20) under these transformations in the
1.5-order formalism. This is not a complicated calculation if we construct the right setup,
which is the general setup explained in Chapter 2 for theories that are invariant under local
symmetries. There we showed that a given theory would be invariant up to total derivatives
under a local transformation if a certain gauge identity was satisfied by its equations of
motion. Thus, all we have to do is to identify the gauge identity that has to be satisfied in
this case by the Vierbein and gravitino equations of motion.

Under a general variation of the fields, the N = 1, d = 4 SUGRA action Eq. (5.20) trans-
forms as follows:

δS =
∫

d4x

[
δS

δea
µ

δea
µ + δS

δωµ
ab

δωµ
ab + δψ̄µ

δS

δψ̄µ

]
. (5.32)

Here the variations are only with respect to explicit appearances of each field in the first-
order action. The variation of the second-order action would be obtained by applying the
chain rule to the variation with respect to the spin connection, using Eq. (5.25). However,
these additional terms are proportional to the equation of motion of the spin connection
δS/δωµ

ab, which we have assumed is satisfied (the 1.5-order formalism). Thus, the term
containing δωµ

ab will always vanish (for any kind of variation) because it is proportional
to that equation of motion and we need only vary explicit appearances of the Vierbein and
gravitino in the first-order action Eq. (5.20),

δS =
∫

d4x

[
δS

δea
µ

δea
µ + δψ̄µ

δS

δψ̄µ

]
. (5.33)

Consider now the local supersymmetry transformations Eqs. (5.30). On substituting into
the above the explicit form of these transformations and integrating by parts the partial
derivative in

Dµε̄ = Dµε = ∂µε̄ + 1
4 ε̄ωµ

abγab, (5.34)

we obtain, up to total derivatives,

δε S =
∫

d4x ε̄

[
−i

δS

δea
µ

γ aψµ − Dµ

δS

δψ̄µ

]
. (5.35)

The theory will be locally supersymmetric, then, if

Dµ

δS

δψ̄µ

= −i
δS

δea
µ

γ aψµ, (5.36)

which will be, at the same time, the supersymmetry gauge identity. Let us prove it:

Dµ

δS

δψ̄µ

= 4εµνρσ γ5(Dµγν)Dρψσ + 4εµνρσ γ5γνDµDρψσ

+ εµνρσ γ5γaDµTνρ
aψσ + εµνρσ γ5γaTνρ

aDµψσ , (5.37)
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where we have used Dµγa = 0. Using Eq. (5.27) in the first term on the r.h.s. of the above
equation, we obtain minus two times the last term. In the second term we first use the Ricci
identity for the anticommutator of Lorentz-covariant derivatives, then expand the product
of gammas in antisymmetrized products γ (3) and γ (1), reexpress the γ (3) in terms of γ (1)γ5

and the antisymmetric symbol, and, finally, use the identity

Ga
µ = − 3

2 gabc
µνρ Rνρ

bc. (5.38)

We keep the third term as it is and obtain the total result

Dµ

δS

δψ̄µ

= 2eiGa
µγ aψµ − εµνρσ γ5γaTµν

aDρψσ + εµνρσ
[
Rµνρ

a + DµTνρ
a
]
γ5γaψσ .

(5.39)
The first term is one of the two we want. The second term is equal to the other term we
want, due to the Fierz identity(

ψ̄νγ5γaDρψσ

)
(γ aψµ) = − 1

2(ψ̄νγ
aψµ)(γaγ5Dρψσ ). (5.40)

The expression in brackets vanishes due to the Bianchi identity6

R[µνρ]
a + D[µTνρ]

a = 0, (5.44)

and this proves the supersymmetry gauge identity.

5.2.1 Local supersymmetry algebra

An important check to be performed is the confirmation that we have on-shell closure of
the N = 1 supersymmetry algebra on the fields. Let us first consider the Vierbein. Using
the supersymmetry rules (Dµε = ∇µε), it is easy to obtain

[δε1, δε2 ]ea
µ = −∇µξ a, (5.45)

where ξ a is the bilinear
ξ a = −i ε̄1γ

aε2. (5.46)

The effect of the GCT generated by ξµ = ξ aea
µ can be rewritten in this form:

δξ ea
µ = −∇µξ a − ξνTµν

a − ξνων
a

beb
µ. (5.47)

6 This identity can be related to the standard Bianchi identity as follows. First,

DµTνρ
a = ∇µTνρ

a − �µν
λTρλ

a + �µρ
λTνλ

a . (5.41)

Antisymmetrizing and using the definition of torsion �[µν]
ρ = − 1

2 Tµν
ρ gives

DµTνρ
a = ∇[µTνρ]

a + T[µν
λTρ]λ

a . (5.42)

Finally,
R[µνρ]

a + D[µTνρ]
a = R[µνρ]

a + ∇[µTνρ]
a + T[µν

λTρ]λ
a, (5.43)

which vanishes on account of the usual Bianchi identity Eq. (1.30).
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Thus, using the value of the torsion field in this theory, we find

[δε1, δε2 ]ea
µ = (

δξ + δσ + δε

)
ea

µ, (5.48)

where
σ a

b = ξνων
a

b, ε = ξµψµ. (5.49)

The same algebra is realized on all the fields of the theory.

5.3 N = 1, d = 4 AdS supergravity

The simplest N = 1, d = 4 Poincaré supergravity theory that we have just described can
be generalized in essentially two ways: adding N = 1 supersymmetric matter or general-
izing the Lorentz connection. Adding certain matter supermultiplets sometimes produces
enhancement of supersymmetry and in this way one obtains extended supergravities. We
will review N = 2, d = 4 (gauged and ungauged) supergravity later.

The only generalizations of the four-dimensional Poincaré group which are usually stud-
ied are the four-dimensional (anti-)de Sitter groups dS4 = SO(1, 4) and AdS4 = SO(2, 3).
Of these, only AdS4 is compatible with consistent supergravity. We have obtained at the
beginning of this chapter the action for N = 1, d = 4 AdS supergravity in the first-order
form

S[ea
µ, ωµ

ab, ψµ] =
∫

d4x e
[

R(e, ω) + 6g2 + 2e−1εµνρσ ψ̄µγ5γνD̂ρψσ

]
, (5.50)

where

D̂µ = Dµ − ig

2
γµ (5.51)

is the AdS4-covariant derivative and Dµ is the Lorentz-covariant derivative in the spinor
representation.

This theory contains a negative cosmological constant proportional to the square of the
Wigner–Inönü parameter g, � = −3g2. The vacuum will be anti-de Sitter spacetime.

The equation of motion for ωµ
ab takes the same form as in the g = 0 (Poincaré) case

and therefore has the same solution, Eq. (5.25). The other two equations of motion suffer
g-dependent modifications:

δS

δea
µ

= −2e
[
Ga

µ − 3g2ea
µ − 2Tcan a

µ
] = 0,

Tcan a
µ = 1

2e
ερµσνψ̄ργ5γaD̂σψν − ig

2e
εµνρσ ψ̄νγ5γρaψσ ,

δS

δψ̄µ

= 4εµνρσ
[
γ5γνD̂ρψσ + 1

4 Tνρ
aγ5γaψσ

]
= 0.

(5.52)

The torsion term can be shown to vanish on-shell using Fierz identities.7

7 This is also true in the Poincaré case.
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This theory is invariant under local Lorentz transformations and GCTs. Furthermore, it
is invariant under local supersymmetry transformations,

δεea
µ = −i ε̄γ aψµ, δεψµ = D̂µε. (5.53)

To prove it, one has to prove the corresponding generalization of the Poincaré supersym-
metry gauge identity

D̂µ

δS

δψ̄µ

= −i
δS

δea
µ

γ aψµ. (5.54)

We find

D̂µ

δS

δψ̄µ

= Dµ

(
δS

δψ̄µ

)
g=0

− ig

2
γµ

(
δS

δψ̄µ

)
g=0

+Dµ

(−2igεµνρσ γ5γνρψσ

) − ig

2
γµ

(−2igεµνρσ γ5γνρψσ

)
, (5.55)

where we have simplified the gravitino equation of motion by using the fact that, on-shell
(Fierzing),

εµνρσ γ5γaTνρ
aψσ = 0. (5.56)

The g = 0 supersymmetry gauge identity can be used for the first term. The last term gives
the cosmological-constant term in the Einstein equation. Thus, we need only check that
the second and third terms (linear in g) give the two g-dependent pieces of the gravitino
energy–momentum tensor, which can be combined into a single term. By expanding the
third term we obtain a term that cancels out the second, a torsion term that vanishes due to
the above identity, and a term

igεµνρσ Tµν
aγ5γaγρψσ , (5.57)

which, upon Fierzing, gives the right result.

5.3.1 Local supersymmetry algebra

On-shell we find
[δε1, δε2 ] = δξ + δσ + δε, (5.58)

with

ξ a = −i ε̄1γ
aε2, σ a

b = ξνων
a

b + gε̄1γ
a

bε2, ε = ξµψµ. (5.59)

5.4 Extended supersymmetry algebras

As we said in the introduction, one can generalize spacetime by adding one or more sets of
fermionic coordinates. The corresponding supersymmetry algebras have one or more (N )
sets of supersymmetry generators that we denote by adding an index i = 1, . . ., N , Qi α.
For N > 1 they are called extended supersymmetry algebras. In this section we are going to
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introduce them in d = 4 and in the next two sections we will study two SUEGRA theories
based on the simplest extended superalgebras.

It is convenient for our purposes to start by generalizing the N = 1, d = 4 AdS superal-
gebra to N > 1. It turns out that to have a consistent superalgebra, one is forced to introduce
further bosonic generators T i j = −T ji , which generate SO(N ) rotations between the N su-
persymmetry charges Q̂i α. In fact, consistency requires these generators to appear in the
anticommutator of two supercharges. The complete superalgebra has the non-vanishing
(anti) commutation relations

[
T i j , T kl

] = �
(
T kl

)
i
m T mj + �

(
T kl

) j
m T im,[

Q̂k α, T i j
]

= �
(
T i j

)
k

m Q̂m α,[
M̂âb̂, M̂ĉd̂

]
= −M̂êb̂ �v

(
M̂ĉd̂

)ê

â
− M̂âê �v

(
M̂ĉd̂

)ê

b̂
,[

Q̂i α, M̂âb̂

]
= �s

(
M̂âb̂

)α

β
Q̂i β,{

Q̂i α, Q̂ j β
}

= δi j
[
�s

(
M̂âb̂

)
C−1

]αβ

M̂âb̂ − (
C−1

)
αβT i j .

(5.60)

The new SO(N ) generators T i j play a very interesting role. If we gauge the algebra to
obtain a supergravity theory based on this algebra, we first have to construct the supercon-
nection Âµ, which will have the form

Âµ = 1
2 ω̂µ

âb̂ M̂âb̂ + ¯̂
ψ i

µ Q̂i + 1
2 Ai j

µT i j . (5.61)

Thus, on general grounds, we expect the supergravity theory to have a Vierbein, N grav-
itinos, and an SO(N ) connection Ai j

µ, and the theory to be invariant under SO(N ) gauge
transformations. Moreover, since the T i j s rotate the supercharges, we expect the gravitinos
to transform under SO(N ) gauge transformations and be charged with respect to the SO(N )

gauge field. For this reason, these theories are also called gauged supergravities. Since they
are generalizations of the N = 1 case, they should also contain a negative cosmological con-
stant and the vacuum will be anti-de Sitter spacetime. For N > 1 the procedure of gauging
superalgebras is no longer straightforward and more fields usually occur in the theories, but
the general facts we have just discussed remain true.

To obtain N -extended Poincaré superalgebras, we simply have to perform the Wigner–
Inönü contraction Eq. (5.12) supplemented with

T i j = g−1 Zi j . (5.62)

The effect of this rescaling (which is the only one that leads to a consistent superalge-
bra) is that these Zi j s commute with every other generator in the superalgebra and become
in fact a set of N (N − 1)/2 SO(2) generators. Generators of this kind are called central
charges and we could forget about them if they did not occur in the anticommutator of the
supercharges. Before we write the resulting superalgebra, it is instructive to make some
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general considerations. Now we expect the theory to have N (N − 1)/2 SO(2) gauge fields
that we can still label Ai j

µ. Since the Zi j s are central, we do not expect the gravitinos to be
charged under the gauge fields, although they will be invariant under some sort of constant
SO(N ) rotations. One may want to make the theory invariant under the local version of
these SO(N ) rotations, gauging them, and then one would recover the gauged supergravi-
ties (hence the name) we obtained by gauging the N -extended AdS superalgebra.

Now, to perform the Wigner–Inönü contraction, we need to choose a spinor representa-
tion of SO(2, 3). There are two such representations, which are called electric and magnetic
representations, which are explicitly worked out in Appendix B.2.1. They are equivalent in
the sense that they are related by a similarity transformation and, obviously, they are just
two of an infinite family of equivalent representations. These two are, however, of special
interest. If we contract using the electric representation, we obtain, for the anticommutator
of two supercharges,

{Qα i , Qβ j } = iδi j
(
γ aC−1

)αβ
Pa − i

(
C−1

)αβ
Zi j , (5.63)

whereas, if we contract using the magnetic representation, we obtain

{Qα i , Qβ j } = iδi j
(
γ aC−1

)αβ
Pa − γ5

(
C−1

)αβ
Zi j . (5.64)

As we advanced, the first surprise is that the central charges occur in this anticommuta-
tor, but nowhere else. The second surprise is that the central charges occur in two different
ways. From the Poincaré point of view, in the electric case the Zi j s are scalars whereas in
the magnetic case they are pseudoscalars. How should we interpret these charges? If we
construct supergravity theories gauging the “electric” superalgebra, we will have to asso-
ciate gauge potentials with the Zi j s, which will be, then, interpreted as electric charges,
in agreement with their scalar nature. In the magnetic case, the Zi j s should be interpreted
as magnetic charges. The similarity transformation that relates the electric and magnetic
AdS4 representations becomes a chiral–dual transformation that rotates electric into mag-
netic charges and vice-versa. In fact, we can write the most general anticommutator of the
supercharges including both kinds of charges of the most general N -extended Poincaré
superalgebra,8

[Mab, Mcd] = −Meb�v(Mcd)
e

a − Mae�v(Mcd)
e

b,

[Pa, Mbc] = −Pe�v(Mbc)
e

a,[
Qα i , Mab

] = �s(Mab)
α

β Qβ i ,

{Qα i , Qβ j } = iδi j
(
γ aC−1

)αβ
Pa − i

(
C−1

)αβ
Qi j − γ5

(
C−1

)αβ
Pi j ,

(5.65)

and this anticommutator (and the full superalgebra) will be invariant under the chiral–dual
(electric–magnetic-duality) transformations which we expect to be symmetries of the N -
extended Poincaré supergravity theories, but not of the N -extended AdS supergravities.

8 In a Weyl basis, the electric and magnetic charges are combined into a single complex central charge matrix.
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The main reason for this is that we do not know how to generalize electric–magnetic-
duality transformations to the non-Abelian setting and also that, in the gauged supergravity
theories, the gravitinos are electrically charged with respect to the gauge vectors but there
are no additional fields magnetically charged with respect to them.

The above result opens up the possibility that there are more general central charges in
the anticommutator of two supercharges that we have not considered at the beginning. We
consider this interesting possibility in the next section.

5.4.1 Central extensions

According to the Haag–Lopuszański–Sohnius theorem, [496], the above anticommutator is
the most general allowed if we impose the condition that our theory is Poincaré-invariant.
Let us, therefore, not require Poincaré invariance. It turns out that any (Poincaré or AdS)
superalgebra can be extended by including “central charges” with n antisymmetric Lorentz
indices and two SO(N ) indices Zi j

a1···an [538]. Generically, they appear in the anticommuta-
tor of two supercharges in the form

1

n!

(
γ a1···anC−1

)αβ
Zi j

a1···an
, (5.66)

with the factor being necessary in order to have the right Hermiticity properties (which can
be a γ5 only in Poincaré superalgebras). These are not central charges in the strict sense
because they do not commute with the Lorentz generators. In fact, consistency implies[

Zkl
c1···cn

, Mab
] = −n�v(Mab)

e
[c1 Zkl

|e|c2···cn ]. (5.67)

The new central charge will be symmetric or antisymmetric in the SO(N ) indices de-
pending on whether

(
γ a1···anC−1

)αβ
is symmetric or antisymmetric in αβ since the full an-

ticommutator has to be symmetric under the simultaneous interchange of αβ and i j .
In four dimensions (and similarly in any dimensionality) it is easy to determine the sym-

metry of the possible terms:

C−1, γ5C−1, γ5γaC−1, γabcC−1, γabcdC−1, (5.68)

are antisymmetric. In fact the second and the fifth and the third and the fourth matrices are
related by Eq. (B.94). The symmetric matrices are

γaC−1, γabC−1, γ5γabC−1, γ5γabcC−1. (5.69)

The first and the fourth and the second and the third matrices are related by Eq. (B.94).
The most general anticommutator of the two central charges in d = 4 will, therefore, be

{Qα i , Qβ j } = iδi j
(
γ aC−1

)αβ
Pa + i

(
C−1

)αβ
Z [i j] + γ5

(
C−1

)αβ
Z̃ [i j]

+ (
γ aC−1

)αβ
Z (i j)

a + i
(
γ5γ

aC−1
)αβ

Z [i j]
a

+ i
(
γ abC−1

)αβ
Z (i j)

ab + (
γ5γ

abC−1
)αβ

Z̃ (i j)
ab . (5.70)

It is equally easy to determine the most general anticommutator of two supercharges in
the AdS case, but in this case the Jacobi identities do not allow for any central charge.

We are now going to study the two simplest examples of extended Poincaré and AdS
supergravity.
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5.5 N = 2, d = 4 (Poincaré) supergravity

As mentioned before, the N = 1, d = 4 Poincaré supergravity theory can also be general-
ized by adding supersymmetric matter, giving, in some cases, theories that are invariant
under more supersymmetry transformations.

The simplest case in which this happens is the addition of a supermultiplet containing a
second gravitino ψ2

µ and a vector field Aµ (the original gravitino in the N = 1 supergrav-
ity multiplet is now denoted by ψ1

µ) and was studied by Ferrara and van Nieuwenhuizen
in [380]. This theory is invariant under the original N = 1 local supersymmetry transfor-
mation with a parameter that we denote now by ε1 and under a new independent local
supersymmetry transformation with parameter ε2. This theory is called for obvious reasons
N = 2, d = 4 (Poincaré) supergravity and it is sometimes qualified as ungauged because it
does not contain matter charged under the vector field.

From a different point of view, this SUEGRA is based on the N = 2 Poincaré superal-
gebra which we have just studied and could be derived by a generalization of the gauging
of the algebraic procedure that worked for the N = 1 case (see [221]). Therefore, the fact
that it has an SO(2) gauge vector field under which the gravitinos are not charged fits in the
general scheme according to which we also expect the theory to be invariant under some
sort of chiral–dual (electric–magnetic-duality) symmetry.

Forgetting the historical way in which the theory was constructed, it can now be de-
scribed by treating on an equal footing both gravitinos and supersymmetries as follows: the
N = 2, d = 4 supergravity multiplet consists of the Vierbein, a couple of real gravitinos,
and a vector field {

ea
µ, ψµ =

(
ψ1

µ

ψ2
µ

)
, Aµ

}
, (5.71)

respectively. The SO(2) indices i = 1, 2 that the fermions (and Pauli matrices) have in this
theory will not be shown explicitly unless necessary and will be assumed to be contracted
in obvious ways.9

The action for N = 2, d = 4 Poincaré supergravity is, in the first-order formalism [380],

S =
∫

d4x e
{

R(e, ω) + 2e−1εµνρσ ψ̄µγ5γνDρψσ − F2

+J(m)
µν(J(e)µν + J(m)µν)

}
, (5.72)

where D is, as before, the Lorentz-covariant derivative, and

Fµν = F̃µν + J(m)µν, F̃µν = Fµν + J(e)µν, Fµν = 2∂[µ Aν], (5.73)

and

J(e)µν = iψ̄µσ 2ψν, J(m)µν = − 1

2e
εµνρσ ψ̄ργ5σ

2ψσ . (5.74)

F is the standard vector-field strength, F̃ is the supercovariant field strength10 and, in terms

9 It is possible to combine the two real gravitinos into a single complex gravitino. This has some advan-
tages: the theory looks simpler because there is no need to use Pauli matrices. However, the structure of the
supergravity theory is somewhat obscured and we choose the real form for pedagogical reasons.

10 Whose supersymmetry transformation rule does not contain any derivatives of the gauge parameters.
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of F , the (“Maxwell”) equation of the vector field is simply

δS

δAν

= 4e∇µ(e)Fµν = 0. (5.75)

The divergences of Je and Jm are two topologically conserved currents that appear as
electric-like and magnetic-like sources for the vector field:

∂µ(eFµν) = +∂µ

(
eJ νµ

e

) + ∂µ

(
eJ νµ

m

)
. (5.76)

They are naturally associated with the electric and magnetic central charges of the N = 2,

d = 4 Poincaré supersymmetry algebra.
The equation of motion for ωµ

ab is the same as in the N = 1 case (except for the SO(2)

indices, which we do not show explicitly) and, thus, the solution is the same and, in partic-
ular, the torsion is given in terms of the gravitinos by

Tµν
a = iψ̄µγ aψν (≡ iψ̄ j µγ aψ j

ν ). (5.77)

The remaining two equations of motion are

δS

δea
µ

= −2e
[
Ga

µ − 2T (ψ)a
µ − 2T̃ (A)a

µ
]
,

(5.78)
δS

δψ̄µ

= 4εµνρσ γ5γνD̂ρψσ − 4i
(

F̃µν + i� F̃µνγ5

)
σ 2ψν,

where the equation of motion for ωµ
ab has been used and

T (ψ)a
µ = − 1

2e
εµνρσ ψ̄νγ5γaDρψσ , T̃ (A)a

µ = F̃a
ρ F̃µ

ρ − 1
4 ea

µ F̃2. (5.79)

The action and equations of motion are invariant under

general coordinate transformations,

δξ xµ = ξµ, δξ ea
µ = −ξν∂νea

µ − ∂µξνea
ν,

δξψµ = −ξν∂νψµ − ∂µξνψν, δξ Aµ = −ξν∂ν Aµ − ∂µξν Aν,
(5.80)

local Lorentz transformations,

δσ ea
µ = σ a

beb
µ, δσψµ = 1

2σ
abγabψµ, (5.81)

U(1) gauge transformations,
δχ Aµ = ∂µχ, (5.82)

and internal SO(2) rotations of the gravitinos,

ψ ′
µ = eiϕσ 2

ψµ, (5.83)

where ϕ is a constant (not spacetime-dependent) parameter.

The equations of motion (but not the action) are invariant under



166 N = 1, 2, d = 4 supergravities

chiral–dual (electric–magnetic-duality) SO(2) transformations,

F̃ ′
µν = cos θ F̃µν + sin θ � F̃µν, ψ ′

µ = e
i
2 θγ5ψµ. (5.84)

These transformations rotate electric into magnetic components of the supercovariant field
strength and, at the same time, multiply by opposite phases the two chiral components of
spinors (hence the name):

ψ ′
µ =

[
1
2 e

i
2 θ (1 + γ5) + 1

2 e− i
2 θ (1 − γ5)

]
ψµ. (5.85)

These transformations also rotate the two topologically conserved currents,

J ′
(e) = cos θ J(e) − sin θ � J(m),

J ′
(m) = − sin θ � J(e) + cos θ J(m),

(5.86)

which helps to prove that these transformations also rotate the Maxwell equation into the
Bianchi identity

∂µ(e�Fµν) = 0, (5.87)

since they are equivalent to

F ′
µν = cos θ Fµν + sin θ �Fµν. (5.88)

This is, of course, the same rotation as that which takes place between the two central
charges in the N = 2, d = 4 Poincaré supersymmetry algebra.
Finally, the theory is invariant under

local N = 2, d = 4 supersymmetry transformations,

δεea
µ = −i ε̄γ aψµ, δε Aµ = −i ε̄σ 2ψµ, δεψµ = D̃µε, (5.89)

where
D̃µ = Dµ + 1

4 � F̃γµσ 2, (5.90)

is the supercovariant derivative acting on ε.

It is instructive to check the invariance of the action under the above transformations. On
varying the whole action, using the equation of motion of the spin connection, using the
specific form of the supersymmetry transformation rules, using then

D̃µε̄ = D̃µε = Dµε − 1
4 ε̄γµ � F̃σ 2, (5.91)

and integrating by parts the partial derivative, we find that the invariance of the action
depends on the N = 2, d = 4 Poincaré supersymmetry gauge identity

D̃µ

δS

δψ̄µ

= −i

(
δS

δea
µ

γ a + δS

δAµ

σ 2

)
ψµ, (5.92)
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where here the supercovariant derivative takes the form

D̃µ

δS

δψ̄µ

=
[
Dµ + 1

4γµ � F̃σ 2
] δS

δψ̄µ

. (5.93)

To prove this gauge identity, one needs to use some of the results we used to prove the
N = 1 gauge identity, the Bianchi identity for Fµν , and the N = 2 Fierz identities, with
which it is possible to prove two main identities (see Section 5.7):

e−1εµνρσ Tνρ
aγ5γaψσ = 2

(
�J µν

(e) γ5 + iJ µν

(m)

)
σ 2ψν (5.94)

and

−e−1εµνρσ Tνρ
aγ5γaDρψσ = 2iT (ψ)a

µγ aψµ − 2Dµ

(
�J µν

(e) γ5 + iJ µν

(m)

)
σ 2ψν

+ 2
(
�J µν

(e) γ5 + iJ µν

(m)

)
σ 2Dµψν. (5.95)

5.5.1 The local supersymmetry algebra

The commutator of two supersymmetry variations closes on shell with

[δε1, δε2 ] = δξ + δσ + δχ + δε, (5.96)

where

ξµ = −i ε̄1γ
µε2, σ ab = ξµωµ

ab − i ε̄2

(
F̃ab − iγ5

� F̃ab
)
σ 2ε1,

χ = −i ε̄2σ
2ε1 + ξν Aν, ε = ξµψµ. (5.97)

5.6 N = 2, d = 4 “gauged” (AdS) supergravity

There are two main ways to arrive at this theory, apart from the algebra-gauging procedure.
First, we could simply add supersymmetric matter to the N = 1, d = 4 AdS supergravity
theory. Consistency requires that the pair of gravitini are charged under the vector field
with a coupling constant that is equal to the Wigner–Inönü parameter g. For this reason,
the theory was first found from the N = 2, d = 4 Poincaré theory by a gauging procedure:
the internal SO(2) symmetry that rotates the two real gravitinos can be gauged [291, 399],
the gauge field being the vector field already present in the theory (the field content is,
therefore, the same). The pair of real gravitinos transforms as a complex, charged gravitino
with a gauge parameter ϕ and we have to relate this parameter to the gauge parameter of
U(1) transformations of the vector field according to

ϕ = −gχ, (5.98)

where g is the gauge coupling constant. The introduction of the minimal coupling between
gravitinos and vector field requires, in order to preserve supersymmetry, the introduction of
several other g-dependent terms, which can be absorbed into a change of connection from
the Lorentz one to the anti-de Sitter one. In the end, the result is obviously the same as that
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which one obtains by adding supersymmetric matter to the N = 1, d = 4 AdS supergravity
theory.

In any case, the two main characteristics of the theory are the presence of a negative
cosmological constant � = −3g2 and the fact that the gravitinos are minimally coupled to
the vector field with coupling constant g.

We anticipate that there is going to be a third source term in the Maxwell equation,
which is going to break the invariance under chiral–dual transformations of the “ungauged”
(Poincaré) theory.

The gauged N = 2, d = 4 “gauged” supergravity action for these fields in the first-order
formalism is, thus,

S =
∫

d4x e
{

R(e, ω) + 6g2 + 2e−1εµνρσ ψ̄µγ5γν

(
D̂ρ + ig Aρσ

2
)
ψσ

−F2 + J(m)
µν(J(e)µν + J(m)µν)

}
,

(5.99)

where again D̂ is the SO(2,3) (AdS) gauge covariant derivative
The symmetries of this action are essentially the same as in the ungauged case: GCTs,

local Lorentz transformations,11 U(1) gauge transformations, which now take the form

A′
µ = Aµ + ∂µχ, ψ ′

µ = e−igχσ 2
ψµ, (5.100)

and local supersymmetry transformations, which take the same form as in the Poincaré
case, but with the new supercovariant derivative

˜̂Dµ = D̂µ + ig Aµσ 2 + 1
4 � F̃γµσ 2. (5.101)

As mentioned before, the chiral–dual invariance of the ungauged theory is broken by the
minimal coupling between gravitinos and vector field, which results in the new Maxwell
equation with a new Noether current,

∂ν(eF νµ) − ig

2
εµνρσ ψ̄νγ5γρσ

2ψσ . (5.102)

For the sake of completeness, we give the remaining equations of motion

0 = Ga
µ − 3g2ea

µ − 2T (ψ)a
µ − 2T̃ (A)a

µ,

0 = e−1εµνρσ γ5γν

(
D̂ρ + ig Aρσ

2
)
ψσ − i

(
F̃µν + i� F̃µνγ5

)
σ 2ψν,

(5.103)

where the equation of motion for ωµ
ab has been used and where

T (ψ)a
µ = − 1

2e
εµνρσ ψ̄νγ5γa

(
D̂ρ + ig Aρσ

2
)
ψσ − ig

2e
εµνρσ ψ̄νγ5γρaψσ ,

T̃ (A)a
µ = F̃a

ρ F̃µ
ρ − 1

4 ea
µ F̃2.

(5.104)

11 There is no invariance under the full SO(2,3).



5.7 Proofs of some identities 169

To prove the invariance of the action under the local supersymmetry transformations, one
has to check the N = 2, d = 4 AdS gauge identity

˜̂Dµ

δS

δψ̄µ

= −i

(
δS

δea
µ

γ a + δS

δAµ

σ 2

)
ψµ, (5.105)

where, here,
˜̂Dµ

δS

δψ̄µ

=
[
D̂µ + 1

4γµ � F̃σ 2
] δS

δψ̄µ

. (5.106)

To prove this identity we need only check the g-dependent terms (the g-independent
ones work, as we checked in the previous section). To check the g-dependent terms, we
need only the additional identities (see Section 5.7)

(ψ̄[ν|γaψ|µ|)γ5γ
aσ 2ψ|ρ] = (ψ̄[ν|γaγ5ψ|µ|)γ aσ 2ψ|ρ] (5.107)

and

(ψ̄[ν|γaψ|µ)γ5γ
aγρψσ ] + (ψ̄[νσ

2ψµ)γ5γρσ
2ψσ ] − (ψ̄[ν|γ5σ

2ψ|µ)γρσ
2ψσ ]

= −2(ψ̄[ν|γ5γa|ρψµ)γ aψσ ] − 2(ψ̄[ν|γ5γ|ρσ 2ψµ)σ 2ψσ ]. (5.108)

5.6.1 The local supersymmetry algebra

The commutator of two supersymmetry variations closes on-shell with the same parameters
as in the ungauged case except for

σ ab = ξµωµ
ab − gε̄2γ

abε1 − i ε̄2

(
F̃ab − iγ5

� F̃ab
)
σ 2ε1. (5.109)

From the point of view of the supersymmetry algebra, we are going from Poincaré super-
symmetry to AdS supersymmetry in which the generator of SO(2) rotations has to appear
in the anticommutator of two supersymmetry charges, for consistency. Although it appears
in the same position as a central charge, it should be stressed that it is not a central charge
because it does not commute with the supercharges.

5.7 Proofs of some identities

Using the N = 2 Fierz identities Eq. (B.57) we immediately find, for any spinor λ, the
following two identities:

(ψ̄[ν|γ5γaλ)γ aψ|µ] = − 1
2(ψ̄[νγ5σ

2ψµ])σ
2λ − 1

4(ψ̄[ν|γaγ5σ
2ψ|µ])γ

aσ 2λ

+ 1
2(ψ̄[νσ

2ψµ])γ5σ
2λ

− 1
4(ψ̄[ν|γa


σ 0

σ 1

σ 3




T

ψ|µ])γ
aγ5


σ 0

σ 1

σ 3


λ (5.110)
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and

(ψ̄[ν|γaχ)γ5γ
aψ|µ] = 1

2(ψ̄[νγ5σ
2ψµ])σ

2χ − 1
4(ψ̄[ν|γaγ5σ

2ψ|µ])γ
aσ 2χ

− 1
2(ψ̄[νσ

2ψµ])γ5σ
2χ

− 1
4(ψ̄[ν|γa


σ 0

σ 1

σ 3




T

ψ|µ])γ
aγ5


σ 0

σ 1

σ 3


χ.

(5.111)

We can take λ = χ and subtract Eq. (5.111) from Eq. (5.110), giving

(ψ̄[ν|γ5γaλ)γ aψ|µ] − (ψ̄[ν|γaλ)γ5γ
aψ|µ]

= −(ψ̄[ν|γ5σ
2λ)σ 2ψ|µ]σ

2λ + (ψ̄[ν|σ 2λ)γ5σ
2ψ|µ]γ5σ

2λ. (5.112)

We can take λ = ψρ and antisymmetrize in νρµ, giving

(ψ̄[ν|γaψ|µ|)γ5γ
aψ|ρ] = −(ψ̄[ν|γ5σ

2ψ|µ)σ 2ψρ] + (ψ̄[νσ
2ψµ)γ5σ

2ψρ], (5.113)

from which Eq. (5.94) follows.
If we act with Dµ on Eq. (5.94) and use Eq. (5.112) to λ = Dµψρ to relate DµTνρ

a to
T (ψ)a

µ, we obtain Eq. (5.95).
On substituting λ = σ 2ψρ into Eq. (5.110) and multiplying the result by an overall σ 2

and adding to it Eq. (5.111) with χ = ψρ , we obtain Eq. (5.107).
By combining Eqs. (5.110) and (5.111) with λ = γρψσ and χ = σ 2γρψσ in several dif-

ferent ways, one obtains Eq. (5.108).



6
Conserved charges in general relativity

The definition of conserved charges in GR (and, in general, in non-Abelian gauge theo-
ries) is a very important and rather subtle subject, which is related to the definition of the
energy–momentum tensor of the gravitational field. As we saw in the construction of the
SRFT of gravity, perturbatively (that is, for asymptotically flat, well-behaved gravitational
fields), GR gives a unique energy–momentum (Poincaré) tensor. It is natural to ask whether
there is a fully general-covariant energy–momentum tensor for the gravitational field that
would reduce to this in the weak-field limit. Many people (starting from Einstein himself)
have unsuccessfully tried to find such a tensor, the current point of view being that it does
not exist and that we have to content ourselves with energy–momentum pseudotensors for
the gravitational field, which are covariant only under a restricted group of coordinate trans-
formations (in most cases, Poincaré’s). This, in fact, would be one of the characteristics of
the gravitational field tied to the PEGI (see e.g. the discussion in Section 2.7 of [242]) that
says that all the physical effects of the gravitational field (and one should include amongst
them its energy density) can be locally eliminated by choosing a locally inertial coordinate
system.1

The most important consequence of the absence of a fully general-covariant energy–
momentum tensor for the gravitational field is the non-localizability of the gravitational
energy: only the total energy of a spacetime is well defined (and conserved) because the
integral of the energy–momentum pseudotensor over a finite volume would be dependent
on the choice of coordinates. Some people find this unacceptable and, thus, the search for
the general-covariant tensor goes on.2

1 It must be mentioned that, in spite of all these considerations, the teleparallel approach to GR gives a local
expression for the energy. This is, in fact, the reason why Møller [702] was led to the study of this class of
theories.

2 For instance, one can argue that the gravity field is actually characterized by the curvature tensor, not by the
metric tensor. Even if we locally make the metric tensor flat by a coordinate transformation, we cannot do
the same with the Riemann tensor. Thus one could look for energy–momentum tensors for the gravitational
field constructed from the Riemann tensor. These are usually called “super-energy–momentum tensors” and
an example of them is the Bel–Robinson tensor.
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Apart from the problem of the gravitational energy–momentum tensor, the definition
of conserved quantities in GR has many interesting points. Several approaches have been
proposed and here we are going to study two: the construction of an energy–momentum
pseudotensor for the gravitational field and the Noether approach. In both approaches there
is a great deal of arbitrariness and in Section 6 we will study and compare several different
results given in the literature in the weak field limit, finding complete agreement and a deep
relation to the massless spin-2 relativistic field theory studied in Chapter 3.

6.1 The traditional approach

As we have stressed several times, the metric (or Rosenfeld) energy–momentum tensor of
any general-covariant Lagrangian always satisfies (on-shell) the equation

∇µTmatter
µν = 0, (6.1)

as a direct consequence of general covariance. This equation is crucial for the consistency of
the theory. Furthermore, it is the covariantization of the Minkowskian energy–momentum-
conservation equation

∂µTmatter
µν = 0, (6.2)

which is discussed at length in Chapter 2, and from which we can derive local conservation
laws of the mass, momentum, and angular momentum and, in general, of those charges
related to the invariance of a theory under certain coordinate transformations.

In curved spacetime, however, Eq. (6.1) is not equivalent to a continuity equation for the
tensor density

√|g| Tmatter
µν that holds in Minkowski spacetime. Actually, we can rewrite

Eq. (6.1) in the form

∂µ

(√
|g| Tmatter

µν
)

= −�ρσ
νTmatter

ρσ , (6.3)

and, in general, the r.h.s. of this equation does not vanish. From this equation we cannot
derive any local conservation law.

In a sense this was to be expected: only the total (matter plus gravity) energy and mo-
mentum should be conserved3 and, therefore, we can only hope to be able to find local
conservation laws for the total energy–momentum tensor. Now, how is the gravity energy–
momentum tensor defined in GR? This is an old problem of GR.4 It is clear that we cannot
use the same definition (Rosenfeld’s) as for the matter energy–momentum tensor because
that leads to a total energy–momentum tensor that vanishes identically on-shell. On the
other hand, if we found a covariantly divergenceless gravitational energy–momentum ten-
sor, the total energy–momentum tensor would have the same problem as the matter one.

In fact, it can be argued, on the basis of the PEGI, that it is impossible to define a fully
general-covariant gravitational energy–momentum tensor: according to the PEGI we can
remove all the physical effects of a gravitational field locally, at any given point, by using an
appropriate (free-falling) reference frame. This means that we could make the gravitational

3 Actually, the coupling of gravity to the total, conserved, energy–momentum tensor was the main principle
leading in Chapter 3 to GR.

4 Some early references on the energy–momentum tensor of the gravitational field are [90, 355–627, 660,
839].
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energy–momentum tensor vanish at any given point. However, that would mean that the
energy–momentum tensor vanishes at any given point in any reference frame and, therefore,
it is identically zero.5

Instead of being a problem, the lack of a gravitational energy–momentum (general-
covariant) tensor really tells us that we should not be looking for such a tensor: after
all, what we want is a total energy–momentum tensor satisfying the continuity equation
∂µTtotal

µν = 0, which is not a tensor equation. At most, it is a tensor equation w.r.t. the
Poincaré group, if Ttotal

µν behaves as a Lorentz tensor. Then we should simply be looking
for a gravitational energy–momentum pseudotensor tµν transforming as a Lorentz tensor
but not as a general-covariant tensor and such that

∂µ

√
|g| (Tmatter

µν + tµν) = 0. (6.4)

This should remind the reader of the self-consistency problem of the SRFT of gravitation
that we studied in Chapter 3 in which we wanted to find the energy–momentum tensor of
the gravitational field with respect to the vacuum which was Minkowski spacetime.

Another point to be stressed is that it looks as if we are forced to abandon general co-
variance to define conserved quantities. This is not so surprising: conserved quantities are
in general naturally associated with the symmetries of the vacuum, not with the full sym-
metry of the theory. The vacuum is generically invariant under a finite-dimensional global
symmetry group, in this case the Poincaré group. The conserved quantities we are after
(momentum and angular momentum) are associated with that group.6 In asymptotically flat
spacetimes, only the infinity will have the invariances of the energy–momentum pseudoten-
sor and, thus, only integrals over the boundary of (timelike hypersurfaces of) the whole
spacetime will give well-defined conserved quantities. This implies the non-localizability
of the energy mentioned in the introduction.

Our task now will be to find the gravitational energy–momentum pseudotensor and use
it to define conserved quantities. Many candidates for a gravitational energy–momentum
pseudotensor have been proposed in the literature. We are going to review just two of them
that are physically very appealing: the Landau–Lifshitz pseudotensor [644], for asymptot-
ically flat spacetimes, and the Abbott–Deser pseudotensor [1], for spacetimes with general
asymptotics.

5 This argument is not completely correct, though. In GR we can make the metric flat and its first derivatives
vanishing at any given point, but not the second derivatives of the metric (i.e. the curvature). Although one
can argue that, at one point (or any small enough neighborhood of a point), these non-vanishing derivatives
will produce no observable physical effect (for instance, we need spatially separated test particles in order to
measure tidal forces), this is not enough to say that the gravitational energy–momentum tensor will vanish
identically at that point. In fact, the Landau–Lifshitz energy–momentum pseudotensor that we are going to
study is precisely identified with the non-vanishing piece of the Einstein tensor at a point in a free-falling
reference frame in which the metric is Minkowski’s. The real problem, which is at the very foundations of
GR, is that we do not have a good description of gravity in free-falling reference frames. That description
could be covariantized (as happens with most other fields whose Lagrangians are well known in free-falling
frames) and an energy–momentum tensor of the gravitational field and its coupling to itself could be found.

6 We will later see what can be done for vacua different from Minkowski spacetime and for conserved quan-
tities that are not necessarily associated with symmetries of the vacuum.
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6.1.1 The Landau–Lifshitz pseudotensor

The main physical idea behind the definition of the Landau–Lifshitz energy–momentum
pseudotensor is precisely that gravity can be locally eliminated at the point P by using
a free-falling coordinate system at P. Then, the starting point is to choose, for instance,
Riemann normal coordinates Eq. (3.268) at the given point P where we want to define
the energy–momentum pseudotensor. In this coordinate system, at the point P the equation
satisfied by the matter energy–momentum tensor takes the form

∇µTmatter
µν = ∂µTmatter

µν = 0, (6.5)

and the matter energy–momentum tensor is conserved in the usual sense there because
we have eliminated the gravitational field, its interaction with matter, and its own energy–
momentum pseudotensor through the choice of coordinates. Thus, in this coordinate sys-
tem, the gravitational energy–momentum pseudotensor vanishes.

Technically, this equation is satisfied identically due to the Bianchi identity of the r.h.s. of
Einstein’s equation. This means that, in this coordinate system, at the point P in question,
Einstein’s equation must be of the form (taking into account that the determinant of the
metric can go through partial derivatives taken at P in this coordinate system)

1

|g|∂ρη
µνρ = Tmatter

µν, ηµνρ = −ηµρν. (6.6)

Actually, it can be checked that, in this coordinate system, at the point in question, Ein-
stein’s equations take precisely the above form with

ηµνρ = − 2

χ2
∂σgµσ,νρ, gµν =

√
|g|gµν, gµσ,νρ = 1

2(g
µνgσρ − gµρgσν). (6.7)

Now, in any coordinate system we can define the Landau–Lifshitz energy–momentum
pseudotensor by

tLL
µν = 1

|g|∂ρη
µνρ − Tmatter

µν, (6.8)

so, due to the symmetries of ηµνρ ,

∂µ{|g|(Tmatter
µν + tLL

µν)} = 0, (6.9)

which is essentially what we wanted.
To determine the explicit form of tLL

µν we use Einstein’s equation

tLL
µν = − 2

χ2

(
∂ρ∂σgµσ,νρ + Gµν

)
, (6.10)

and by expanding both terms one obtains a very complicated and not very illuminating
expression that is quadratic in the metric and quadratic in connections that can be found in
most standard gravity textbooks [242, 644, 707]. Since it depends on connections, it does
not transform as a world tensor, but it does transform as a Lorentz tensor (affine connections
transform as Lorentz tensors), just as expected.
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Having the total conserved energy–momentum pseudotensor obeying the local continuity
equation, we go on to define the conserved charges (momentum and angular momentum)
by the volume integrals7

Pµ =
∫

�

dd−1�ν

√|g|(Tmatter
µν + tLL

µν),

Mµα =
∫

�

dd−1�ν

√|g|[2x [α
(
Tmatter

µ]ν + tLL
µ]ν

)]
,

(6.11)

where it is assumed that one integrates over a timelike hypersurface �.
One of the shortcomings of this approach is that it is not clear why these are the (only)

conserved charges and how we can generalize it to other spacetimes in which these are not
necessarily the conserved charges. The Abbott–Deser approach will solve this problem.

A second shortcoming is the large number of terms that have to be calculated in order
to find the conserved quantities. In practice, though, one uses Eq. (6.8) to rewrite, using
Stokes’ theorem,

Pµ = 1
2

∫
∂�

dd−2�νρ

ηµνρ

√|g| , (6.12)

and similarly for Mµα. This is an interesting expression that has to be evaluated at the
boundary of the hypersurface �, which is, typically, for asymptotically flat spacetimes a
(d − 2)-sphere at spatial infinity Sd−2

∞ . We could integrate over the boundary of smaller
regions of the spacetime. However, the integrand is not a general-covariant tensor and the
result of the integral would be coordinate-dependent and the momentum would not be well
defined. Only when we integrate over Sd−2

∞ in asymptotically flat spacetimes does the inte-
gral transform as a Poincaré tensor. This is the common behavior of most superpotentials
used to defined conserved quantities in GR, except for Møller’s [702], which is a true tensor.

For asymptotically flat spaces, we can use the weak-field expansion8 gµν = ηµν + hµν .
In this limit, we see that

gµσ,νρ = K µσνρ + O(h2), (6.13)

and
ηµνρ = 2η

µνρ

LL + O(h2), 2∂ρη
µνρ

LL = Dµν(h), (6.14)

where η
µνρ

LL was defined in Eq. (3.90) and Dµν(h) is the Fierz–Pauli wave operator.
Thus, in practice, all we have to do is to integrate the Fierz–Pauli wave operator over

the volume � or ηLL over the boundary ∂�, if the asymptotic weak-field expansion of
the metric is well defined. Many different gravity energy–momentum pseudotensors have
been proposed in the literature but, in the end, one never uses them directly. Instead one
integrates over �, using the equations of motion, an expression that, in the weak-field
limit, is equivalent to the Fierz–Pauli wave operator. Usually this expression is rewritten as
an integral over the boundary using Stokes’ theorem. This can be done in many different
ways, as we discussed in Chapter 3, and here is where the differences arise.9

7 Observe the “extra” factors of
√|g|.

8 Observe that the hµν that we are using in this chapter is χhµν of Chapter 3.
9 Some expressions may be better suited for certain boundary conditions. When we compare the weak-field

limits of the various expressions proposed in the literature, we have to bear in mind that the expansions used
are valid only under certain asymptotic conditions.
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With the zeroth component of Eq. (6.12) in d = 4 for a stationary asymptotically flat met-
ric in Cartesian coordinates, we obtain the Arnowitt–Deser–Misner (ADM) mass formula
which was first derived by canonical methods in [54]:

MADM = 2

χ2

∫
S2∞

d2Sk(∂khll − ∂lhlk), (6.15)

where
d Sk ≡ 1

2εi jkdxi ∧ dx j . (6.16)

We can immediately apply this formula to the simplest spacetime: Schwarzschild’s
spacetime. The four-dimensional Schwarzschild solution in Schwarzschild coordinates is

ds2 =
(

1 − k

r

)
dt2 −

(
1 − k

r

)−1

dr2 − r2d�2
(2). (6.17)

k is the integration constant. To apply the ADM mass formula Eq. (6.15), we first rewrite
the metric in isotropic coordinates,

r = (ρ + k/4)2/ρ, (6.18)

obtaining

ds2 =
(

ρ − k/4

ρ + k/4

)2

dt2 −
(

1 + k/4

ρ

)4

d �x 2
3 , ρ = |�x3|. (6.19)

With χ2 = 16πG(4)
N , the ADM mass formula gives, in agreement with our results of

Chapter 3,
k = 2G(4)

N M. (6.20)

6.1.2 The Abbott–Deser approach

In [1] Abbott and Deser proposed a general definition for spacetimes of arbitrary asymptotic
behavior associating conserved charges with isometries of the asymptotic geometry which
is supposed to be the vacuum (so we are physically calculating the conserved charges of an
isolated system). This definition is very useful and can be extended to more complicated
cases in which some dimensions are compactified [309] (see also [164]), other contexts
such as supercharges in supersymmetric theories [1] (associated with Killing spinors of the
vacuum, that will be studied in Chapter 13), and charges in non-Abelian gauge theories
(associated with gauge Killing vectors) [2].

In this section we are essentially going to repeat and extend the calculations of Abbott
and Deser [1] in our conventions, comparing the result with the one in the previous section.
We will also use it to calculate the mass of a spacetime that is not asymptotically flat, as an
example of its usefulness.

The first step in this approach is the expansion of the gravitational field around an arbi-
trary background metric ḡµν that solves the vacuum cosmological Einstein equations, and
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the derivation of the linearized Einstein equations in that background. We already did this
in Section 3.4.1, where we also gave a definition of the gravitational energy–momentum
pseudotensor that was different from Landau and Lifshitz’s. Here we use the notation and
definitions of that section.

The second step consists in the construction of a conserved quantity. First, we observe
that the linearized cosmological Einstein tensor satisfies the Bianchi identity with respect
to the background metric:

∇̄µGc L
µν = 0. (6.21)

This can be proven either by direct calculation or by taking the divergence of the cosmo-
logical Einstein tensor:

∇µGc
µν = ∇̄µḠc

µν + γµρ
µḠc

ρν + γµρ
νḠc

µρ + ∇̄µGc L
µν + O(h2), (6.22)

and observing that, by hypothesis, Ḡc
µν = 0, and also that the Bianchi identity has to be

satisfied order by order in h.
Using now Eq. (3.292) and Eq. (6.21), we find

∇̄µT µν

total = 0, T µν

total = T µν
matter + tµν

AD. (6.23)

Finally, if ξ̄µ is a Killing vector field of the background metric, the above equation implies

∇̄µ

(
T µν

totalξ̄ν

)= 0, (6.24)

and, from this, we find that the quantity

E(ξ̄ ) ≡
∫

�

dd−1x
√

|ḡ| T 0ν
totalξ̄ν, (6.25)

where the integral is performed over a constant time slice �, is a conserved quantity, namely
the conserved quantity associated with the background Killing vector ξ̄ µ. If the Killing
vector generates translations in time in the background, the conserved quantity is the energy
(or mass). (In general, if ξ̄ is a timelike Killing vector, E(ξ̄ ) is called the Killing energy.)
For Killing vectors that generate rotations we obtain components of the angular momentum
etc.

The covariant form of the above expression is

E(ξ̄ ) ≡
∫

�

dd−1�µT µν

totalξ̄ν, (6.26)

where

dd−1�µ = 1

(d − 1)!
√|ḡ|εµρ1···ρd−1dxρ1 ∧ · · · ∧ dxρd−1 . (6.27)

This equation can be seen as a generalization of Landau and Lifshitz’s Eq. (6.11), which
is valid for any background metric ḡµν and any of its Killing vectors ξ̄µ, with a different def-
inition of the gravitational energy–momentum pseudotensor. Indeed, Landau and Lifshitz’s
Eq. (6.11) can be written in the form

E(ξ) =
∫

�

dd−1�µ

√
|g|(Tmatter

µν + tLL
µν)ξν, (6.28)
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where the Minkowski spacetime Killing vectors ξ (µ) ν = ηµν that generate constant trans-
lations are used to obtain the Pµs and those which generate Lorentz transformations
ξ (µα) ν = −2x [µηα]ν are used to obtain the Mµαs. The different definition of tµν is respon-
sible for the extra factor of

√|g| in this formula compared with Abbott and Deser’s. On the
other hand, in the Landau–Lifshitz approach we are forced not only to work with asymp-
totically flat spacetimes, but also to use Cartesian coordinates. The Abbott–Deser approach
can be used for any spacetime in any coordinate system.

The main problem with Eq. (6.26) is also that the expression for tµν is very complicated;
it is in fact, an infinite series in h. The solution is, again, to use the equation of motion
Eq. (3.292) to rewrite it. The new integrand is, as we argued it would in general be, just
the covariantized Fierz–Pauli wave operator D̄µν(h) contracted with a background Killing
vector, that is,

E(ξ̄ ) = 2

χ2

∫
�

dd−1�µD̄µν(h)ξ̄ν. (6.29)

At this point we notice that the integrand of this expression is nothing but the conserved
Noether current jµ

N (ξ̄ ) in Eq. (3.314) and we can use the results of Section 3.4.1 to rewrite it
as a total derivative and then use Stokes’ theorem to rewrite it as a (d − 2)-surface integral,

E(ξ̄ ) = − 2

χ2

∫
∂�=Sd−2∞

dd−2�µα

[(∇̄β K µανβ
)
ξ̄ν − K µβνα∇̄β ξ̄ν

]
, (6.30)

where

dd−2�µα = 1

(d − 2)!
√|ḡ|εµαρ1···ρd−2dxρ1 ∧ · · · ∧ dxρd−2 . (6.31)

This is essentially Abbott and Deser’s final result, although one can massage the above
expression further to make it useful in specific situations. For instance, the following alter-
native expression is noteworthy. We first observe the identity

∇̄β K µανβ = 3ḡλµα, ν
ρσ γλ

ρσ . (6.32)

We can replace γµν
ρ by ��µν

ρ = �µν
ρ − �̄µν

ρ because the difference is quadratic and
higher in hµν , which is assumed to go to zero at infinity fast enough. Then

E(ξ̄ ) = − 2

χ2

∫
Sd−2∞

dd−2�µα

[
3ḡλµα, ν

ρσ ��λ
ρσ ξ̄ν − K µβνα∇̄β ξ̄ν

]
. (6.33)

Furthermore, in Minkowski spacetime in Cartesian coordinates the generators of transla-
tions are covariantly constant and the second term can be dropped, so we obtain for any
component of the momentum (and, in particular, for the energy) of asymptotically flat
spacetimes the expression

E(ξ̄ ) = − 2

χ2

∫
∂�

dd−2�µα3ḡλµα, ν
ρσ ��λ

ρσ ξ̄ν, (6.34)
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which was first used in [719] and used afterwards in all proofs of the positivity of the mass
or Bogomol’nyi bounds based on Nester’s construction ([442, 596, 600] etc.).

It is also interesting to compare Eq. (6.30) with Landau and Lifshitz’s result. In flat
spacetime, with Cartesian coordinates, for translational Killing vectors (which are covari-
antly constant) Eq. (6.30) simplifies to

Pµ = E(ξ̄ (µ)) = − 2

χ2

∫
Sd−2∞

dd−2�να∂β K ναµβ, (6.35)

and we see that the integrand is nothing but η
νµα

AD defined in Eqs. (3.90). The difference
from η

νµα

LL is just
η

νµα

LL − η
νµα

AD = ∂β K νµαβ, (6.36)

so
∂α

(
η

νµα

LL − η
νµα

AD

)= 0, (6.37)

and the difference should not contribute to the conserved charges.
To end this section, let us apply these results to a simple example: the four-dimensional

Reissner–Nordström–de Sitter spacetime. First, for any static, spherically symmetric metric

ds2 = gtt(r)dt2 + grr (r)dr2 − r2d�2
(2) (6.38)

and backgrounds
ds̄2 = ḡt t(r)dt2 + ḡrr (r)dr2 − r2d�2

(2) (6.39)

and for the obvious timelike Killing vector ξ̄ν = δ0ν ḡt t we obtain the mass formula

M = − 1

2G(4)
N

|ḡt t | 1
2

|ḡrr | 3
2

r(grr − ḡrr ). (6.40)

This formula can be directly applied to the Schwarzschild metric given in Eq. (6.17) and it
gives the correct result. It can also be applied to asymptotically (anti-)de Sitter spacetimes.
We can apply it, for instance to the Reissner–Nordström–(anti-)de Sitter metric in static
coordinates

ds2 = V dt2 − V −1dr2 − r2d�2
(2),

V = 1 − k

r
+ Z2

4r2
− 1

3
�r2.

(6.41)

We obtain again M = k/(2G(4)
N ).

6.2 The Noether approach

The standard method used to obtain the conserved charge is through the Noether current.
We have seen that, in fact, the Abbott–Deser formula for conserved charges can be seen
from this point of view as the integral of the conserved Noether current associated with a
background Killing vector of linearized gravity. Here we are going to investigate this point
of view further, since there is a Noether current jµ

N2(ξ) associated with any vector field
ξµ, Killing or otherwise, as we proved in Section 3.4.1 and we could simply calculate the
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superpotential jµν

N2 (ξ) associated with an arbitrary vector field, by generalizing Abbott and
Deser’s result.10 We will, however, content ourselves with reviewing some known results.

For GR we found the Noether current jµ

N (ξ) for any vector ξµ in Section 4.1.2 and we
saw how it could be rewritten as the divergence of the antisymmetric superpotential tensor
jµν

N (ξ) = 2∇ [µξν]. Using it, we can define a conserved charge for each vector ξµ:

E(ξ) = − 2

χ2

∫
∂�

dd−2�µα∇µξα. (6.42)

If ξµ is timelike, then E(ξ) is the energy and the above formula is Komar’s formula [631].
This formula can also be obtained from physical principles as in section 11.2 of [932].

We can compare Komar’s formula with Abbott and Deser’s Eq. (6.30). On rewriting it as

E(ξ) = − 2

χ2

∫
∂�

dd−2�µαgµα,νβ∇νξβ (6.43)

and using the weak-field expansion gµν = ḡµν + hµν , we find that it reproduces exactly the
first term in Eq. (6.30) (after integrating by parts) but not the second one. This difference is
probably responsible for one of the known drawbacks of Komar’s formula: it gives a wrong
value for the angular momentum of the Kerr solution.

Komar’s formula can be modified by adding to the Einstein–Hilbert action total deriva-
tive terms that modify the Noether current as explained in Section 4.1.2. The problem now
is determining which total derivative should be added. In [770] some examples of total
derivative terms that have been added in the literature can be found and a new one is pro-
posed. Using it and using also, basically, Eq. (4.125) in the absence of torsion, the authors
propose a new superpotential whose integral (if it is convergent) gives a conserved charge
for any vector field ξ . In the weak-field limit, it can be written in the form

E(ξ̄ ) = − 2

χ2

∫
∂�

dd−2�µα

[(∇̄β K µανβ
)
ξν − h̄σ [µ∇̄σ ξα]

]
. (6.44)

The first term is identical to the first term in Eq. (6.30) and the second is identical to the
second if ξµ = ξ̄ µ, a background Killing vector, but the formula can be applied to more
general cases. In fact, the complete formula in [770] gives correct results in the presence of
radiation, whereas Abbott and Deser’s does not, probably because the weak-field expansion
is not consistent in those spacetimes.

6.3 The positive-energy theorem

Now that we know how to define conserved quantities in GR and, in particular, the mass
(total energy), we are going to prove that the mass of an asymptotically flat spacetime that
solves the Einstein equations

Gµν = χ2

2
Tmatter µν (6.45)

10 Of course, not for every vector will the integral defining the corresponding conserved charge converge, but
we will not deal with this problem here.
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with a matter energy–momentum tensor satisfying the dominant energy condition

Tmatter
µνkµnν ≥ 0, ∀ nµ, kµ non-spacelike, (6.46)

is always non-negative, vanishing only for flat spacetime. This result was first obtained
by Schoen and Yau in [830]. A new proof based on spinor techniques inspired by SUGRA
was afterwards presented by Witten in [958] and subsequently by Nester in [719] and Israel
and Nester in [596]. Previously, the positivity of mass in SUGRA and GR (as the bosonic
part of N = 1 SUGRA) had been established in [310, 480]. Here we are going to use this
Witten–Nester–Israel (WNI) technique because it can be generalized to more complicated
cases and because it has a strong relation to supergravity that we will also use later on in
Chapter 13.

The positive-energy theorem is a very important result associated with the cosmic-
censorship conjecture: in the gravitational collapse of a star, the gravitational binding
energy, which is negative, grows in absolute value. If the process continued indefinitely,
the total energy of the collapsing star would become negative. However, according to the
positive-mass theorem, this cannot happen and we expect a black-hole horizon to appear
before the mass becomes negative.

The WNI technique starts with the construction of the Nester 2-form Eµν . In this case
(pure d = 4 gravity; the extension to higher dimensions is straightforward) it is simply

Eµν(ε) = + i

2
ε̄γ µνρ∇ρε + c.c., (6.47)

where ε is a commuting Dirac spinor. The Nester form is manifestly real. Then, we define
the integral I ,

I (ε) =
∫

∂�

�E(ε), (6.48)

where � is a three-dimensional spacelike hypersurface (for instance, a constant time slice)
whose boundary ∂� is a 2-sphere at infinity S2

∞. Observe that the Nester form can be
rewritten in the form

Eµν(ε) = +i ε̄γ µνρ∇ρε + ∇ρ

(
− i

2
ε̄γ µνρε

)
, (6.49)

and only the first term contributes to I .
The proof has two parts.

1. Prove that, for suitably chosen spinors ε and Tmatter
µν satisfying the dominant energy

condition, I (ε) ≥ 0.

2. Relate I (ε) to conserved charges.

1. We use Stokes’ theorem

I (ε) =
∫

∂�

�E(ε) =
∫

�

d�E(ε) = − 1
2

∫
�

d3�ν

{−i∇µε̄γ µνρ∇ρε − i ε̄γ µνρ∇µ∇ρε
}
,

(6.50)
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where

d3�µ = 1

3!
√|g|dxρ ∧ dxσ ∧ dxλερσλµ. (6.51)

The second term in the integral is proportional to the Lorentz curvature tensor due to the
Ricci identities Eqs. (1.94). Expanding the product of the γ µνρ and the γab gives

−i ε̄γ µνρ∇µ∇ρε = i

2
ε̄Gµ

νγ µε, (6.52)

and, since the spacetime we are considering satisfies the Einstein equations,

−i ε̄γ µνρ∇µ∇ρε = χ2

4
Tmatter µ

νkµ, (6.53)

where we have defined the vector ka as the following real bilinear of the spinor ε:

ka = i ε̄γ aε. (6.54)

Now we want to show that kµ is a non-spacelike vector, by calculating k2 directly. Using
the d = 4 Fierz identities for commuting spinors, we obtain

k2 = 2(i ε̄ε)2 + 2(ε̄γ5ε)
2 + �2, (6.55)

where we have also defined the real pseudovector �a ,

�a = ε̄γ aγ5ε. (6.56)

Calculating now �2 using again the Fierz identities, we obtain

�2 = − 2
3(i ε̄ε)

2 + 1
3 k2 + 2

3(ε̄γ5ε)
2, (6.57)

from which we obtain
k2 = 2(i ε̄ε)2 + 4(ε̄γ5ε)

2, (6.58)

which is manifestly non-negative because the bilinears i ε̄ε and ε̄γ5ε are real.11

On collecting these results and writing d3�µ = d3�nµ, where nµ is the non-spacelike
unit vector normal to the hypersurface �, we find that the integral of the second term in
I (ε) is ∫

�

d3�ν

{−i ε̄γ µνρ∇µ∇ρε
} = χ2

4

∫
�

d3� Tmatter
µνkµnν. (6.59)

The dominant energy condition, Eq. (6.46), implies that the second term in I (ε) is non-
negative.

As for the second term, let us use a coordinate system in which nµ = δµ0 (µ = 0, i).
Then, it can be rewritten in the form∫

�

d3�(∇iε)
†
α(∇iε)

α −
∫

�

d3�
(
iγ i∇iε

)†
α

(
iγ j∇ jε

)α
. (6.60)

11 If ε were a Majorana spinor, we would have k2 = 0.
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These two terms are manifestly positive. The second one vanishes if we use spinors
satisfying the Witten condition

γ i ei
µ∇µε = 0. (6.61)

Thus, we have proven that, if the dominant energy condition is satisfied and we use
spinors satisfying the Witten condition, I (ε) is non-negative.
2. We rewrite I (ε) as follows:

I (ε) = 1
2

∫
∂�

d2�µνε
µνρσ ε̄γ5γσ∇ρε, (6.62)

and expand the integrand around the vacuum ḡµν (Minkowski spacetime) to which the
solution asymptotically tends. We also impose on the chosen spinors that they admit the
expansion

ε = ε0 + O
(

1

r

)
, (6.63)

where r → ∞ at spatial infinity and

∇̄µε0 = 0. (6.64)

A spinor satisfying this condition in N = 1 SUGRA is a Killing spinor of the solution ḡµν .
Since ∇µ = ∇̄µ − 1

4�ωµ
abγab and the integral is taken at spatial infinity,

I (ε) = − 1
8

∫
d2�µνε

µνρσ ε̄0γ5γσ∇ρε0 = 1
4

∫
d2�µν

[−3gρµν,γ
αβ�ωρ

αβk0 γ

]
= 1

4 E(k0), (6.65)

where we have used Eq. (6.34) and the fact that

ka
0 = i ε̄0γ

aε0 (6.66)

is, trivially, a Killing vector of the vacuum ḡµν . When it is timelike, k0 is the generator of
translations in time and E(k0) is just the mass.

This proves that M ≥ 0 and M = 0 for Minkowski spacetime.
The above relation between Killing spinors and Killing vectors is quite generic and, with

minor adaptations, is true in most SUGRAs. Just as the Killing vectors of a metric constitute
a Lie algebra that generates its isometry group, the Killing spinors and Killing vectors
of a solution of a SUGRA theory, which may involve other fields apart from the metric,
constitute a superalgebra that generates a supergroup that leaves the solution invariant. The
simplest case is Minkowski spacetime, whose invariance supergroup is the super-Poincaré
one.





Part II

Gravitating point-particles

[The Universe] cannot be read until we have learnt the language and become familiar with the
characters in which it is written. It is written in mathematical language, and the letters are triangles,
circles and other geometrical figures, without which means it is humanly impossible to comprehend a
single word.

Galileo Galilei





7
The Schwarzschild black hole

With this chapter we start the study of a number of important classical solutions of GR.1

There is no doubt that the most important solution is Schwarzschild’s, that describes the
static, spherically symmetric gravitational field in the absence of matter that one finds out-
side any static, spherically symmetric object (star, planet . . . ). It is this, the simplest non-
trivial solution that leads to the concept of a black hole (BH), which affords a privileged
theoretical laboratory for Gedankenexperimente in classical and quantum gravity.

It is, in fact, a firmly established belief in our scientific community that macroscopic BHs
(of the size studied by astrophysicists) are the endpoints of gravitational collapse of stars,
which, after a long time, gives rise to Schwarzschild BHs if the stars do not rotate. There
should be many macroscopic Schwarzschild BHs in our Universe, since many stars have
enough mass to undergo gravitational collapse and there is evidence of supermassive BHs
in the centers of galaxies.2 It has been suggested that smaller BHs could have been produced
in the Big Bang. Here we are going to be interested in BHs of all sizes, independently of
their origin (primordial, quantum-mechanical, astrophysical . . . ).

We begin by deriving the Schwarzschild solution and studying its classical properties
in order to find its physical interpretation. The physical interpretation of vacuum solutions
of the Einstein equations is a most important and complicated point (see [168, 169]) since
the source, located by definition in the region in which the vacuum Einstein equations are
not solved, is unknown. In the case of the Schwarzschild solution, we will be led to the
new concepts of the event horizon and BHs. Some of the classical properties of BHs can
be formulated as laws of thermodynamics but, classically, the analogy cannot be complete.
It is the existence of Hawking radiation, a quantum phenomenon, that makes the analogy
complete and allows us to take it seriously, raising at the same time the problem of the
statistical interpretation of the BH (Bekenstein–Hawking) entropy and the BH information
problem. Finally, we are going to rederive the expression for the BH entropy in the Eu-
clidean quantum-gravity approach and we are going to generalize our previous results and
Schwarzschild’s solution to higher dimensions.

1 Some of these solutions (the Schwarzschild, Reissner–Nordström, Taub–NUT, etc.) are also reviewed in
[149] from a different perspective and emphasizing different properties.

2 For general references on astrophysical evidence for the existence of BHs see, for instance, [214, 693, 801].
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There are many excellent books and reviews on these subjects. We would like to mention
Frolov and Novikov’s book [737], which is the most complete reference on BH physics,
Townsend’s lectures on BHs [903], the books on quantum-field theory (QFT) on curved
spacetimes [157, 936], and the review articles [431, 938].

7.1 Schwarzschild’s solution

To solve the vacuum Einstein equations

Rµν − 1
2 gµν R = 0, ⇒ Rµν = 0. (7.1)

is necessary to make a simplifying Ansatz for the metric. The Ansatz must, at the same
time, reflect the physical properties that we want the solution to enjoy. In this case we want
to obtain the metric in the spacetime outside a massive spherically symmetric body that is
at rest in a given coordinate system. The latter property is contained in the assumption of
staticity3 of the metric and the first in the assumption of spherical symmetry.4 Under these
assumptions, the most general metric can always be cast in the form

ds2 = W (r)(dct)2 − W −1(r)dr2 − R2(r)d�2
(2), (7.2)

where W (r) and R(r) are two undetermined functions of the coordinate r and d�2
(2) is

the metric on the unit 2-sphere S2 (see Appendix C). On substituting this Ansatz into the
equations of motion one finds (see for instance [932]) a general solution for W and R,

W = 1 + ω/r , R2 = r2, (7.3)

with one integration constant ω. We see that the solution is asymptotically flat; i.e. that, as
the coordinate r , approaches infinity, the metric approaches Minkowski’s. Physically, the
requirement of asymptotic flatness means that we are dealing with an isolated system, with
a source of gravitational field confined in a finite volume. The constant ω has dimensions
of length and we will study its meaning in a moment.

The result is Schwarzschild’s solution [840] in Schwarzschild coordinates {t, r, θ, ϕ}:

ds2 = W (dct)2 − W −1dr2 − r2d�2
(2), W = 1 + ω/r . (7.4)

Let us now review the properties of this solution.

3 That is, the metric admits a timelike Killing vector with the property of hypersurface-orthogonality: the
space can be foliated by a family of spacelike hypersurfaces that are orthogonal to the orbits of the timelike
Killing vector, and can be labeled by the parameter of these orbits, which takes the same value at any point of
each of these hypersurfaces. If the space does not have this property, the explicit dependence of the metric on
the associated time coordinate can always be avoided, but there will always be non-vanishing off-diagonal
terms in the metric mixing time components with space components, breaking at the same time spherical
symmetry: all stationary, spherically symmetric spacetimes are also static.

4 Invariance under the group SO(3) of spatial rotations in d = 4.
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7.1.1 General properties

1. Schwarzschild’s is the only spherically symmetric solution of Rµν = 0 (static or not).
This is Birkhoff’s theorem [155]. A simple proof can be found in [242, 707].

2. Schwarzschild’s solution is stable under small perturbations, gravitational or asso-
ciated with external fields [232]: the perturbations in the geometry grow small with
time, being carried by waves to either r → ∞ or r → 0.

3. The integration constant ω is, in principle, arbitrary. It has the following meaning:
for large values of r , where the gravitational field is weak, the trajectories of mas-
sive test particles (geodesics) approach the Keplerian orbits that they would describe
if they were subject to the Newtonian gravitational field produced by a spherically
symmetric object of total mass

M = − ωc2

2G(4)
N

, (7.5)

centered at r = 0. Then we can identify M with the mass of the object we are de-
scribing in GR and −ω is the Schwarzschild radius associated with such an object,
defined in Eq. (4.7)

ω = −RS. (7.6)

We can arrive at the same conclusion by using the ADM mass formula Eq. (6.15)
that we rewrite here for convenience,

M = c2

8πG(4)
N

∫
d2Si

(
∂ j hi j − ∂i h j j

)
. (7.7)

Therefore, M is the (ADM) mass of the Schwarzschild solution and it is taken to be
positive for two reasons: first, nobody has seen an object with negative gravitational
mass; and second, the Schwarzschild solution with negative mass has a naked sin-
gularity, as we will explain later, which is thought to be unacceptable on physical
grounds.

4. We conclude that, as we wanted, the Schwarzschild metric describes the gravitational
field created by a spherically symmetric, massive object as seen from far away (in the
vacuum region) by a static observer to whom the above (Schwarzschild) coordinates
{t, r, θ, ϕ} are adapted.5

5. Usually, the Schwarzschild solution is used from r = ∞ to some finite value r =
rE > RS (we will see why we have to have rE > RS) where it is glued to another

5 Actually, the coordinate r does not have, a priori, the meaning of a radius, even though we have been re-
ferring to it as the radial coordinate. There are smooth, topologically non-trivial solutions with spherical
symmetry but no center [643]. In the Schwarzschild solution r has the meaning of a radius only asymptoti-
cally, as we are going to see. Sometimes it is called the area radius because its meaning, anywhere, is that
surfaces of constant t and r are spheres with area 4πr2.



190 The Schwarzschild black hole

static, spherically symmetric metric that is a solution of the Einstein equations for
some matter energy–momentum tensor appropriate to describe a static, spherically
symmetric star6 or any other body whose surface is at r = rE. These metrics, called
Schwarzschild interior solutions,7 describe the spacetime in the interiors of stars and
Schwarzschild’s describes all their exteriors (by virtue of Birkhoff’s theorem).

6. The Schwarzschild metric is singular (i.e. det gµν = 0 or certain components of the
metric blow up) at r = 0, RS. We know that the Schwarzschild metric is physically
sensible for large values of r , but we cannot take it seriously for r ≤ RS because we
have to go through a singularity.

The singularity at r = RS can be physical or merely the result of a bad choice of
coordinates (just like the singularity at the origin in the Euclidean plane in polar co-
ordinates). If the singularity is physical, then the region r ≤ RS has nothing to do
with the region r > RS that describes the exterior of massive bodies. However, if the
singularity at r = RS is just a coordinate singularity, we can use another coordinate
system that is related to Schwarzschild’s in the region r > RS by a standard coordi-
nate change but such that the metric is regular at r = RS. The analytic extension of
the Schwarzschild metric obtained in this way will also cover the region r < RS.

To find the nature of the singularities it is necessary to perform an analysis of the
curvature invariants and of the geodesics.8

• Obviously R = 0 and Rµν Rµν = 0 because the Schwarzschild metric solves the
equations of motion Rµν = 0. However, other higher-order curvature invariants
do not vanish, for instance, the Kretschmann invariant

Rµνρσ Rµνρσ = 48M2 cos2 θ

r6
+ · · ·. (7.8)

By examining all of them, one concludes that there is a curvature singularity
at r = 0 but not at r = RS. This means that the singularity at r = RS could
be a coordinate singularity, but the singularity at r = 0 is certainly a physical
singularity that will be present in any coordinate system.

• If an observer9 with rest mass m moves in the Schwarzschild field, its equation
of motion obeys the general mass-shell constraint Eq. (3.259),

gαβ pα pβ = m2c2, (7.9)

6 It is possible to prove that all stellar models describing isolated stars in equilibrium have spherically sym-
metric metrics [94, 656].

7 For more details see, for instance, [932].
8 A general reference on the analysis of singularities is [243].
9 Traditionally, in this Gedankenexperiment the observer sent to probe the Schwarzschild gravitational field at

r = RS is a graduate student who periodically sends reports to his/her advisor, who sits comfortably away
from that point. If the gravitational field at the advisor’s position is weak enough, the proper time will be
well approximated by Schwarzschild’s time t . We will break this cruel custom by referring to the former as
a free-falling observer and to the latter as the Schwarzschild observer.
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where pα = −mdxα/dτ is the observer’s four-momentum, τ is the observer’s
proper time, and we have set ξ = cτ . On the other hand, since the Schwarz-
schild metric admits a timelike Killing vector kµ = δµ0, the observer’s motion
has an associated conserved momentum p(k) ≡ p0 given by Eq. (3.266) that
we can identify with the observer’s total energy

E = −p0c. (7.10)

To simplify the calculations, we assume that the observer has only radial motion
(i.e. zero angular momentum) so pθ = pϕ = 0. Then, using the conservation of
the energy, the mass-shell constraint becomes a simple equation for pr , which
is a differential equation for r ,(

dr

cdτ

)2

=
(

E

mc2

)2

− W, (7.11)

that can be integrated to give the total proper time:

τ = 1

c

∫ r2

r1

dr

(
RS

r
− RS

R0

)− 1
2

, (7.12)

where

R0 = RS

1 − [E/(mc2)]2
(7.13)

is the value of the radial coordinate r for which the speed of the observer is zero
and E = mc2.
We can use the above expression to calculate how long it takes for the free-
falling observer to go from r = R0 > RS to the curvature singularity at r = 0,
going through the surface r = RS. The answer is, surprisingly, finite:

�τ = π

2c
R0

(
R0

RS

)1
2

. (7.14)

This confirms that nothing unphysical happens at r = RS and that the singular-
ity is only a problem of Schwarzschild’s coordinates. It should, then, be possible
to find a coordinate system which is not singular there.10

This is essentially the idea on which the Eddington–Finkelstein coordinates
{v, r, θ, ϕ} are based [345, 394]. In these coordinates the Schwarzschild solu-
tion takes the form

ds2 = W dv2 − 2dvdr − r2d�2
(2), (7.15)

where the coordinate v is related to t and r in the region r > RS by

v = ct + r + RS ln |W |, (7.16)

10 There is, of course, another issue: whether the tidal forces at the horizon are big or small. For big enough
Schwarzschild BHs they are small, but this might not be a universal behavior of BHs [555, 556].
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Fig. 7.1. Kruskal coordinates for Schwarzschild’s solution. We have set c = G(4)
N = 1

and each point corresponds to a 2-sphere of radius r(T, X).

and is constant for light like radial geodesics (the worldlines of free-falling pho-
tons). This metric is regular everywhere except at r = 0, as expected, and ana-
lytically extends the original solution to the region r < RS, allowing its study.

Observe that, for the Schwarzschild observer, things look quite different,
though. The proper time of the Schwarzschild observer (equal to the Schwarz-
schild time t) is related to the proper time of the free-falling observer τ by

dt

dτ
= E/mc2

1 − RS/r
, (7.17)

and will approach infinity when r approaches r = RS. This infinite redshift fac-
tor is related to the singularity of the Schwarzschild metric in Schwarzschild co-
ordinates. This seemingly paradoxical disagreement between the two observers
is, however, not inconsistent, because, as we are going to see, the two observers
cannot compare their observations.

7. To study the region r < RS it is more convenient to use the Kruskal–Szekeres
[641, 876] coordinates {T, X, θ, ϕ} that provide the maximal analytic extension
of the Schwarzschild metric, describing regions not covered by the Eddington–
Finkelstein coordinates (see Figure 6). The region covered by the original Schwarz-
schild coordinates is just the first quadrant in the figure, whereas the Eddington–
Finkelstein coordinates cover the first two quadrants, separated by the r = RS line.
There are two additional regions in the quadrants III and IV. Of course, the curva-
ture singularity at r = 0 is also present in these new coordinates. The Schwarzschild
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metric in Kruskal–Szekeres coordinates takes the form

ds2 = 4R3
Se

−r
RS

r

[
(dcT )2 − d X2

] − r2d�2
(2), (7.18)

where r is a function of T and X that is implicitly given by the coordinate transfor-
mations between the pairs t and r and T and X :(

r

RS
− 1

)
e

r
RS = X2 − c2T 2,

(7.19)
ct

RS
= ln

(
X + cT

X − cT

)
= 2 arctanh(cT/X),

so the Schwarzschild time t is an angular coordinate and the constant-r lines are
similar to hyperbolas that asymptotically approach the X = ±cT lines.

A convenient feature of the Kruskal–Szekeres coordinates is that the T, X part is con-
formally flat and at each point in the T, X plane the light cones have the same form
as in Minkowski spacetime and no particle can have a worldline forming an angle
smaller than π/4 with the X axis. The r = RS lightlike hypersurface that separates
these two quadrants (I, the exterior, and II, the interior) is called the event horizon.
It is then clear that particles or signals can go from the exterior to the interior but
no signal or particle (including light signals) can go from the interior to the exterior.
For this reason, the object described by the full Schwarzschild metric (with no star at
rE > RS) is called a black hole (BH).

The existence of an event horizon has very important consequences. First, the free-
falling observer can never come back from the BH and cannot send any information
that contradicts the Schwarzschild observer’s experiences. In this way, the two dif-
ferent observations are made compatible, completely against our classical intuition.
Second, it is impossible for the Schwarzschild observer to have any experience of
the physical singularity at r = 0. This is pictorially expressed by saying that “the
singularity is covered by the event horizon.”

8. There is another kind of diagram that can be useful for studying the causal structure
of the spacetime: Penrose diagrams (see, for instance, [508]). They are obtained by
performing a conformal transformation of the metric (that preserves the light-cone
structure) such that the infinity is brought to a finite distance in the new metric. A
Penrose diagram of Schwarzschild’s spacetime is drawn in Figure 7.2.

Apart from the existence of an event horizon, we also see clearly in this diagram
that the fate of the free-falling observer will always be to reach the singularity r = 0,
which is now a spacelike hypersurface in which he/she will be crushed by infinite
tidal forces.

9. We know that there are many objects in the Universe whose gravitational fields are
very well described by a region r > rE > RS of the Schwarzschild spacetime, but
what kind of object gives rise to the r < RS region, that is, to the BH metric?
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Fig. 7.2. A Penrose diagram of Schwarzschild’s spacetime.

I

II

r = 2M

r = 0

Fig. 7.3. The spacetime corresponding to the gravitational collapse of a star.

This question can be answered only by inventing a new kind of object, the BH, which
is, by definition, an object giving rise to a spacetime with an event horizon.

How are BHs created in the Universe? In Thorne’s book [885] the story is told of
how, in a process that took almost 50 years, the scientific community arrived at the
conclusion that BHs could originate from the gravitational collapse of very massive
stars and, furthermore, that the gravitational collapse would be unavoidable if the star
had a mass a few times the Sun’s.

It is evident that the spacetime described by the maximally extended Schwarz-
schild solution cannot originate from a gravitational collapse (there is no star in the
past). Instead it describes an eternal BH. In Figure 9 the spacetime corresponding
to the spherically symmetric gravitational collapse of a star has been represented in
Kruskal–Szekeres-like coordinates. The dashed region represents the star’s interior
and the exterior is just Schwarzschild’s spacetime in Kruskal coordinates. The BH
appears when the collapsing star has a radius smaller than RS.
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-

+
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Fig. 7.4. The Penrose diagram of the typical spacetime of a naked singularity.

At this point it may seem exaggerated to assume that the collapse of any star, in
any initial state, is going to give rise to a Schwarzschild-like BH. We will elaborate
on this crucial point in a moment.

10. When M is negative, there is no horizon covering the singularity at r = 0 and it
could be “seen” by all observers (see the Penrose diagram in Figure 7.4) that could
be causally affected by it.

This can be the source of many problems and, to avoid them, one can then argue
that such a metric, with a singularity that can be seen from infinity, will never be the
endpoint of the gravitational collapse of an ordinary star (or any kind of matter with
a physically acceptable energy–momentum tensor). This is the essence of Penrose’s
cosmic-censorship hypothesis, which he first suggested in [762] (see also [765, 767]
and the reviews [244, 855, 931]), in its weak form.11 There is a strong relation be-
tween cosmic censorship and the positivity of energy. Since the gravitational binding
energy is negative, when a cloud of self-gravitating matter starts compressing itself,
the total energy diminishes more and more and eventually it would become negative.
Before that happens an event horizon should appear.

11. There must be other BHs apart from Schwarzschild’s: those corresponding to inter-
mediate states of the gravitational collapse of a star, those that result from perturbing
a Schwarzschild BH, or those that describe the gravitational collapse of an electri-
cally charged star. Furthermore, a star can be in many possible states and it is rea-
sonable to think that they will give rise to many different BHs (or to the same BH in
many different states).

On the contrary, the analysis of the perturbations of the Schwarzschild BH
[791, 792] shows that all perturbations decay and, after a time of the order of the
Schwarzschild radius, the perturbed BH will be Schwarzschild’s,12 determined solely

11 In its strong form, the cosmic-censorship hypothesis states that, in physically acceptable spacetimes, no
singularity, except for initial (Big-Bang) singularities is ever visible to any observer. Rigorous formulations
can be found in [932].

12 Or, in general, the Kerr–Newman BH, which is entirely determined by the mass M , the electric charge Q,
and the angular momentum J . For simplicity we are going to ignore angular momentum.
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by M , independently of the initial state of the gravitational collapse that originated
it and of how it was perturbed. All the higher multipole momenta of the gravita-
tional field (quadrupolar and higher13) and of the electromagnetic field (dipole and
higher14) [96, 880, 929] and all momenta of any scalar field are radiated away to in-
finity so the resulting BH is always a Schwarzschild BH (M �= 0, Q, J = 0), a Kerr
BH (M, J �= 0, Q = 0), a Reissner–Nordström BH (M, Q �= 0, J = 0), or a Kerr-
Newman BH (M, J, Q �= 0).

Nevertheless, it is conceivable that there might be BH solutions with higher mo-
menta of the gravitational and electromagnetic fields or with a non-trivial scalar
field that is not created by perturbations or by gravitational collapse. However, it
can be shown (uniqueness theorems15) that the only BH in the absence of angular
momentum and other fields is Schwarzschild’s [593], that with electric charge is
the Reissner–Nordström BH [594], and that with mass and angular momentum is
Kerr’s [216, 928]. Furthermore, there are no BHs with a non-constant scalar field16

[100, 234, 689, 872].

This does not mean that there are no solutions with the forbidden momenta: they
actually exist but they are not BHs, they do not have an event horizon, and they have
naked singularities. A simple example is the family of static, spherically symmetric
solutions with a non-trivial scalar field discussed in Section 8.1. A more complex
example is provided by Bonnor’s magnetic-dipole solution17 [166].

We conclude that there cannot be BHs with other characteristics (hairs) different
from M, J , and Q (and, in general, other locally conserved charges). Although this
has not been fully proven in all cases [101, 268, 532], this suggests that stationary
BHs “have no hair” [814] (the no-hair conjecture, which has a somewhat imprecise
formulation).

We would like to make two comments about this conjecture.

(a) Given that the presence of hair is associated with the absence of an event hori-
zon, the no-hair conjecture is intimately related to cosmic censorship: for an
event horizon to form in gravitational collapse, all the higher momenta of the
fields have to be radiated away. Cosmic censorship is related to the positivity
of energy18 and, thus, the no-hair conjecture also is. Non-stationary BHs with
scalar hair and positive energy are also known to exist [744], but the cosmic
censorship and “baldness” conjectures tell us that the hair must disappear in
the evolution of the BH toward a stationary state. This is possible because the
“scalar charge” is not a locally conserved charge.

13 The monopole momentum is the mass M and the dipole momentum is determined by the angular momen-
tum J .

14 The monopole momentum of the electromagnetic field is the electric charge.
15 Two reviews on uniqueness theorems containing many references are [531, 533].
16 This statement will be made more precise in coming chapters.
17 For a physical interpretation see [371] and, for generalizations, see [295].
18 If negative kinetic energies are allowed, BHs with non-trivial scalar fields are possible.
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(b) Since the gravitational collapse of many different systems always gives rise
to the same BHs, characterized by a very small number of parameters, it is
natural to wonder what has happened to all the information about the origi-
nal state. This is essentially the BH information problem, which can be stated
more precisely in quantum-mechanical language. Furthermore, it is also natu-
ral to attribute to the BHs a very big entropy that we should be able to compute
by standard statistical methods if we knew all the BH microstates that a BH
characterized by M, Q, and J can be in. This is the essence of the BH entropy
problem. To solve these two problems, we need a theory of quantum gravity.

12. The event horizons of stationary BHs are usually Killing horizons, hypersurfaces that
are invariant under one isometry wherein the modulus of the corresponding Killing
vector kµ of the metric vanishes, k2 = 0. In the Schwarzschild case, kµ = δµt and
generates translations in time: k2

∣∣
r=RS

= gtt |r=RS
= 0. Furthermore, the horizon hy-

persurface r = RS is, as a whole, time-translation-invariant.

Killing horizons (and, hence, event horizons) are null hypersurfaces.19 Furthermore,
for each value of t , the Killing horizon is a two-sphere of radius RS. This is the
only topology allowed according to the topological-censorship theorems [407, 507].
Like many other important results in GR, these theorems depend heavily on energy-
positivity conditions and, thus, it is not surprising that they break down in the pres-
ence of a negative cosmological constant and then it is possible to find topological
black holes [42, 156, 186, 202, 203, 572, 628, 629, 648, 649, 650, 683, 684, 859, 921]
whose event horizons can have the topology of any compact Riemann surface. In par-
ticular, generalizations of the asymptotically anti-de Sitter Schwarzschild BH with
horizons with the topology of Riemann surfaces of arbitrary genus were given in
[921].

13. The area of the event horizon is

A =
∫

r=RS

d�2 r2 = 4π R2
S. (7.20)

Hawking proved in [512] that the Einstein equations imply that the area A of the
event horizon of a BH never decreases with time. On top of this, if two BHs coalesce
to form a new BH, the area of the horizon of this final BH is larger than the sum of
the areas of the horizons of the initial BHs. (This result holds for more general kinds
of BHs having electric charge and angular momentum.)

There is a clear analogy between the area A of a BH event horizon and the entropy
of a thermodynamical system as never decreasing quantities [95, 97, 98, 241], which
deserves to be investigated further.

19 That is, the vector field normal to a Killing horizon is a null vector field. This vector field, due to the
Lorentzian signature, always belongs to the tangent space of the null hypersurface.
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14. For Killing horizons one can define, following Boyer [177], the quantity known as
surface gravity κ , given by the formula

κ2 = − 1
2(∇µkν)(∇µkν)

∣∣
horizon . (7.21)

If κ �= 0 the Killing horizon is part of a bifurcate horizon, whereas if κ = 0 it is a
degenerate Killing horizon.

In the particular case of static spherically symmetric metrics, which can always be
written like this,

ds2 = gtt(r)dt2 + grr (r)dr2 − r2d�2
(2), (7.22)

the Killing vector kµ is just δµt and the surface gravity takes the value

κ = 1
2

∂r gtt√−gtt grr
c, (7.23)

which for the Schwarzschild BH is the non-vanishing constant

κ = c4

4G(4)
N M

. (7.24)

It can be shown that the surface gravity is also constant over the horizon in more
general cases [85, 217, 509]. This is analogous to the fact that the temperature is the
same at any point of a system in thermodynamical equilibrium and it constitutes the
first analogy between the surface gravity and the BH temperature (and the second
between a BH and a thermodynamical system). Physically, the surface gravity is the
force that must be exerted at ∞ to hold a unit mass in place when r → RS and has
dimensions of acceleration, LT −2.

15. Another set of coordinates that is useful in some problems is isotropic coordinates
{t, 	x3} with 	x3 = (x1, x2, x3) in which the three-dimensional constant-time slices are
conformally flat and isotropic. The change of coordinates is given by

r =
(
ρ − ω

4

)2 /
ρ, (7.25)

and the metric takes the form

ds2 =
(

1 + ω/4

ρ

)2(
1 − ω/4

ρ

)−2

dt2 −
(

1 − ω/4

ρ

)4

d 	x 2
3 , (7.26)
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where dρ2 + ρ2d�2
(2) ≡ d 	x 2

3 and ρ = |	x3|.

16. Yet another system of coordinates: let us consider some arbitrary coordinate system
{yα} and let us take four scalar functions labeled by µ = 0, 1, 2, 3 of the coordinates
yα and Hµ(y), which we require to be harmonic

∇2 Hµ = 1√|g|∂α

(√
|g| gαβ∂β Hµ

)
= 0. (7.27)

Now we can define new coordinates xµ ≡ Hµ(y), which are called harmonic coor-
dinates. In the system of harmonic coordinates, the above equation takes the form of
a condition on the metric:

∂α

(√
|g| gαµ

)
= 0. (7.28)

If we expand the metric in a perturbation series around flat spacetime,

gµν = ηµν + χh(0)
µν + χ2h(1)

µν + · · ·,
gµν = ηµν − χh(0) µν + χ2

(
h(0) µρh(0)

ρ
ν − h(1) µν

)
,

g = 1 + χh(0) + χ2
[
h(1) + 1

2

(
h(0) 2 − h(0) µνh(0)

µν

)]
,√

|g| = 1 + 1
2χh(0) + 1

4χ
2
[
2h(1) + h(0) 2 − 2h(0) µνh(0)

µν

]
,√

|g| gµν = ηµν − χ h̄(0) µν + χ2
[−h(1)

µνh(0) µρh(0)
ρ

ν − h(0)h(0) µν

+ 1
4

(
2h(1) + h(0) 2 − 2h(0) αβh(0)

αβ

)
ηµν

]
,

(7.29)

where, as usual, h ≡ hρ
ρ and h̄(0)

µν ≡ h(0)
µν − 1

2ηµνh(0). On substituting these into
the above equation, we find that the linear perturbation h(0)

µν of the metric in
harmonic coordinates is in the harmonic gauge, Eq. (3.57), but the next order is
not.

To set the Schwarzschild solution in a harmonic coordinate system it turns out that
we just have to shift the Schwarzschild radial coordinate r ≡ rh − ω/2 to obtain

ds2 =
(

rh + ω/2

rh − ω/2

)
(dct)2 −

(
rh − ω/2

rh + ω/2

)
dr2

h + (rh − ω/2)2 d�2
(2), (7.30)

and reexpress the metric in terms of coordinates 	x3 (having nothing to do with the
isotropic coordinates introduced before) such that rh = |	x3| using rhdrh = 	x3 · d 	x3
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and d 	x 2
3 = dr2

h + r2
h d�2

(2):

ds2 =
(

rh + ω/2

rh − ω/2

)
(dct)2 −

(
1 − ω/2

rh

)2

d 	x 2
3

−
(

rh − ω/2

rh + ω/2

)
(ω/2)2

r4
h

(	x3 · d 	x3)
2. (7.31)

This is the metric whose first two non-trivial terms in a perturbative series expansion,
Eq. (3.217), we obtained in Chapter 3 by imposing self-consistency of the SRFT of
a spin-2 particle. Observe that the metric Eq. (3.217) has no event horizon. Only if
we calculated all the higher-order corrections and summed them to obtain an exact
solution of Einstein’s equations could we obtain an event horizon. In this sense, BHs
are a highly non-perturbative phenomenon.

The differences between GR and the SRFT of the spin-2 particle also become mani-
fest when one compares the causal structures and the asymptotic behaviors. It seems
that it is possible to make compatible either of them but not both for Schwarzschild’s
spacetime and the Minkowski spacetime in which the SRFT of gravity is defined
[766]. This may be a serious problem for any SRFT of gravity.

The fact that we obtained the first approximation to the Schwarzschild solution by solv-
ing the Fierz–Pauli equation in the presence of a massive point-like source may lead us to
think that the full solution also corresponds to a point-like source. This is an interesting
point that we are going to discuss in the next section.

7.2 Sources for Schwarzschild’s solution

We would like to identify the object which is the source of the full Schwarzschild gravita-
tional field (with no interior solution). Although we have found it by solving the vacuum
Einstein equations, it has a singularity (r = 0) where the sourceless Einstein equations are
not solved and we can proceed by analogy with the Maxwell case: if we solve Maxwell’s
equations in vacuum imposing spherical symmetry and staticity, we find the Coulomb so-
lution Aµ = δtµq/(4πr), which is singular at r = 0 and there the equations are not solved.
However, one can add at r = 0 a singular source corresponding to a point-like electric
charge. The Maxwell equations are then solved everywhere by the Coulomb solution and
one can say that the source of the Coulomb field is a point-like electric charge. The solution,
however, is not completely consistent since the equations of motion of the charged particle
in its own electric field are not solved because this diverges at the position of the particle.
This is a well-known problem of the classical model of the electron20 that the quantum
theory solves.

20 For a review see e.g. [884].
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There are several reasons why we can expect a negative result: first of all, if the source
for the Schwarzschild field were a massive point-particle, it would give rise to a timelike
singularity along its worldline, but we know that the Schwarzschild singularity is space-
like. Second, the source for the gravitational field is not just mass, but any kind of energy,
including the gravitational field itself. Thus, even if we have a mass distribution confined
to a finite region of space (in an idealized case, a point), the gravitational field that it gen-
erates will fill the whole space and the source (mass and field) will not be confined to that
region. In a sense this is already taken care of by Einstein’s equations: in our construction
of the self-consistent spin-2 theory we saw that the Einstein tensor contains the “gravita-
tional energy–momentum (pseudo)tensor” and only the matter sources are on the r.h.s. of
Einstein’s equations.

Anyway, we are going to check explicitly that the massive point-particle cannot be the
source for the Schwarzschild metric. This calculation will prepare us for future calculations
of the same kind, which, in contrast, will be successful and will help us to understand the
reason why.

We consider the action for a massive particle coupled to gravity (we ignore boundary
terms):

S[gµν, Xµ(ξ)] = c3

16πG(4)
N

∫
d4x

√
|g| R − Mc

∫
dξ

√
|gµν(X)Ẋµ Ẋ ν |. (7.32)

The equations of motion of gµν(x) and Xµ(ξ) are, respectively,

Gµν(x) + 8π MG(4)
N c−2

√|g|
∫

dξ
gµρ(X)gνσ (X)Ẋρ Ẋσ√

|gλτ (X)Ẋλ Ẋ τ |
δ(4)[X (ξ) − x] = 0, (7.33)

γ
1
2 M∇2(γ )Xλ + Mγ − 1

2 �ρσ
λ Ẋρ Ẋσ = 0, (7.34)

where
γ = gµν(X)Ẋµ Ẋ ν. (7.35)

In the physical system that we are considering, the Schwarzschild gravitational field is
produced by a point-particle that is at rest in the frame that we are going to use (Schwarz-
schild coordinates). Then, we expect the solution for Xµ(ξ) to be

Xµ(ξ) = δµ
0ξ. (7.36)

However, the Xµ equations of motion are not satisfied because the component �00
r does

not vanish at the origin. Actually, it diverges, and we face here the problem of the infinite
force that the gravitational field exerts over the source itself, which is similar to the infinite-
self-energy problem of the classical electron mentioned at the beginning of this section.
We will see that, in certain situations (in the presence of unbroken supersymmetry), this
problem does not occur because the divergent gravitational field is canceled out by another
divergent field (electromagnetic, scalar . . . ) and the equation of motion of the particle (or
brane) can be solved exactly.
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The above solution for Xµ(ξ) leads to an energy–momentum tensor whose only non-
vanishing component is T00 ∼ δ(3)(	x). However, on recalculating carefully21 the compo-
nents of the Einstein tensor for the Schwarzschild metric, we find that all the diagonal
components, not only G00, are different from zero at the origin:

G00 = − W

sin2 θ
4π RSδ

(3)(r), Grr = W −1

sin2 θ
4π RSδ

(3)(r),

Gθθ = − r2

sin2 θ
2π RSδ

(3)(r), Gϕϕ = sin2 θ Gθθ .

(7.40)

This is related to the spacelike nature of the Schwarzschild singularity, as expected. In
the cases in which we will be able to identify the source of a solution with a particle (or a
brane) the singularity of the metric will be non-spacelike.

7.3 Thermodynamics

We have seen in previous sections that, classically, according to the Einstein equations,
there are two magnitudes in a Schwarzschild BH, the area A and the surface gravity κ , that
behave in some respects like the entropy S and the temperature T of a thermodynamical
system. From this point of view the constancy of κ over the event horizon would be the
“zeroth law of BH thermodynamics” and the never-decreasing nature of A would be the
“second law of BH thermodynamics.” In a thermodynamical system S, T , and the energy
E are related by the first law of thermodynamics:

d E = T d S. (7.41)

To take the thermodynamical analogy any further, it is necessary to prove that κ and A
are also related to the analog of the energy E by a similar equation. The natural analog for
the energy is the BH mass M (times c2), and, thus, it is necessary to have (the factor of G(4)

N
appears for dimensional reasons)

d M ∼ 1

G(4)
N

κd A. (7.42)

21 In this calculation one has to be careful to keep singular (δ-like) contributions that are non-zero only at a
certain point. These contributions come in two forms. One is the standard four-dimensional identity

∂i ∂i
1

|	x | = −4πδ(3)(	x), i = 1, 2, 3, (7.37)

adapted to spherical coordinates

∂r

[
r2∂r

1

r

]
= − 4π

sin θ
δ(3)(r), (7.38)

and the other one is

∂r

(
r

1

r

)
= 4π

sin θ
δ(3)(r), (7.39)

both of which can be checked by partial integration. Here δ(3)(	x) �= δ(3)(r). The latter is defined by∫
drdϕdθδ(3)(r) = 1. The result obtained coincides with the one obtained by more rigorous methods in

[71, 72].
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This relation turns out to be true. The coefficient of proportionality can be determined
[95, 241, 857] and the first law of BH thermodynamics takes the form

d M = 1

8πG(4)
N

κd A. (7.43)

There is an integral version of this relation that can be checked immediately (the Smarr
formula [857]) by simple substitution of the values of κ and A for the Schwarzschild BH:

M = 1

4πG(4)
N

κ A. (7.44)

The above two relations (conveniently generalized to include other conserved quantities
such as the electric charge and the angular momentum) seem to hold under very general
conditions [85] (see also [446, 534, 935]).

This surprising set of analogies suggests the identification between the area of the BH
horizon A and the BH entropy and between the surface gravity κ and the BH temperature.
Stimulated by these ideas, the authors of [85] conjectured, giving some plausibility argu-
ments, a “third law of BH thermodynamics,” namely that “it is impossible by any procedure,
no matter how idealized, to reduce κ to zero by a finite sequence of operations.” Several
specific examples were studied by Wald in [930]. We will comment more on this in the case
of the Reissner–Nordström BH.

The analogy is, though, not sufficient to make a full identification. Indeed, as the authors
of [85] say,

It can be seen that κ/(8π) is analogous to the temperature in the same way that A is
analogous to the entropy. It should, however, be emphasized that κ/(8π) and A are
distinct from the temperature and entropy of the BH.

In fact the effective temperature of a BH is absolute zero. One way of seeing this is to
note that a BH cannot be in equilibrium with black-body radiation at any non-zero tem-
perature, because no radiation could be emitted from the hole whereas some radiation
would always cross the horizon into the BH.

On the other hand, in the identification A ∼ S, κ ∼ T it is not clear what the proportion-
ality constants should be (apart from what the dimensional analysis dictates).

Hawking’s discovery [510, 511] that, when the quantum effects produced by the exis-
tence of an event horizon are taken into account,22 BHs radiate as if they were black bodies

22 This was originally done in a semiclassical calculation in which the background geometry is classical and
fixed and there are quantum fields around the BH. The existence of an event horizon gives rise to the Hawk-
ing radiation but the effect of the Hawking radiation on the BH horizon (backreaction) is not taken into
account. A pedagogical review of this calculation can be found in [907].
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M

T

Fig. 7.5. The temperature T versus the mass M of a Schwarzschild black hole.

S

M

Fig. 7.6. The entropy S versus the mass M of a Schwarzschild black hole.

with temperature23

T = �κ

2πc
(7.45)

dramatically changed this situation. On the one hand, it removed the last obstruction to a
complete identification of BHs as thermodynamical systems. On the other, the coefficient
of proportionality between κ and T was completely determined, and determined, in turn,
that between A and S:

S = Ac3

4�G(4)
N

. (7.46)

Observe that this relation can be rewritten in this way:

S = 1

32π2

A

�2
Planck

, (7.47)

that is, essentially the area of the horizon measured in Planckian units, a huge number for
astrophysical-size BHs, in agreement with our discussions about the no-hair conjecture.
Observe also that the appearance of � in T makes manifest its quantum-mechanical origin.

In particular, for Schwarzschild’s BH we have (see Figures 7.5 and 7.6)

T = �c3

8πG(4)
N M

, S = 4πG(4)
N M2

�c
, (7.48)

23 In our units Boltzmann’s constant is 1 and dimensionless so T has dimensions of energy, M L2T −2 or L−1

in natural units, and the entropy is dimensionless.
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and so the first law of BH thermodynamics and Smarr’s formula take the forms

d Mc2 = T d S, Mc2 = 2T S. (7.49)

How can a BH from which nothing can ever escape (classically) radiate? The physical
mechanism behind the Hawking radiation seems to be the process of Schwinger-pair cre-
ation in strong background fields [195, 737], which was originally discovered for electric
fields [824], rather than quantum tunneling across the horizon, which would violate causal-
ity. In the electric-field case, the background field gives energy to the particles of a virtual
pair, separating them. In the BH case, one of the particles in the pair is produced inside the
event horizon and the other outside the event horizon. The net effect is a loss of BH mass
and the “emission” of radiation by the BH.

The same effect causes the spontaneous discharge of charged bodies (such as a positively
charged sphere, say) left in vacuum: if the electric field is strong enough, the electron
and positron of a virtual pair can be separated. The electron will move toward the sphere
being captured by it, while the positron will be accelerated to infinity. From far away, one
would observe a radiation of positrons coming from the charged sphere, whose charge
would diminish little by little. In fact, this process is believed to cause the discharge of
Reissner–Nordström BHs [218, 289, 429, 686, 716, 737, 750] and was discovered before
the publication of Hawking’s results.24 The energy spectrum of the charged pairs produced
in an electric field is also thermal [866], but only charged particles are produced and the
temperature is different depending on the kind of charged particles considered (electron–
positron, proton–antiproton, etc.), whereas in the gravitational case, due to the universal
coupling of gravity to all forms of energy, all kinds of particles are produced with thermal
spectra with a common Hawking temperature.

The thermodynamics of BHs has several problems or peculiarities.

1. The temperature of a Schwarzschild BH (and of all known BHs far from the extreme
limit which we will define and discuss later) decreases as the mass (the energy) in-
creases (see Figure 7.5) and therefore a Schwarzschild BH has a negative specific
heat (Figure 7.7)

C−1 = ∂T

∂ M
= − �c3

8πG(4)
N M2

< 0, (7.50)

and becomes colder when it absorbs matter instead of when it radiates (as ordinary
thermodynamical systems do). Thus, a BH cannot be put into equilibrium with an
infinite heat reservoir because it would absorb the energy and grow without bounds.

2. The temperature grows when the mass decreases (in the evaporation, for instance)
and diverges near zero mass.25 At the same time the specific heat becomes bigger

24 It should also be pointed out that the production of particles in the gravitational field of a rotating BH was
also discovered before [698, 861, 917, 968], but this is not a purely quantum-mechanical effect, but the
quantum translation of the well-known classical super-radiance effect.

25 Precisely when the metric becomes (apparently, smoothly) Minkowski’s. The temperature of the Minkowski
spacetime is zero, rather than being infinite like the M → 0 limit of the BH temperature. This result is, at first
sight, paradoxical, but similar results are, though, very frequent and we will soon meet another one (see the
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M

C

Fig. 7.7. The specific heat C versus the mass M of a Schwarzschild black hole.

in absolute value and stays negative. If these formulae remained valid all the way
to M = 0, the final stage of the Hawking evaporation of a BH would be a violent
explosion in which the BH would disappear. However, when RS becomes of the or-
der of the BH’s Compton wavelength (this happens when M ∼ MPlanck and implies
that RS ∼ �Planck), quantum-gravity effects should become important and should de-
termine (we do not know how) the BH’s fate.

3. If a BH can radiate, its entropy can diminish. This is against the second law of BH
thermodynamics (which is purely classical). However, the analogy with the second
law of thermodynamics can still be preserved because it can be proven that the total
entropy (BH plus radiation) never decreases. This is sometimes called the generalized
second law of BH thermodynamics [99].

4. Returning to the BH information problem, the Hawking radiation seems to carry no
more information about the BH than M, J , and Q (just like the metric itself, so it is
not so surprising), but we can ask ourselves whether, in the real world, beyond the
approximations made, it would carry more information and we may be able to see
it in a full quantum computation of the gravitational collapse of matter in a well-
defined quantum state and the subsequent evaporation of the resulting BH. For ’t
Hooft, Susskind, and many others the answer is a definite “yes,” namely a BH is
just another (peculiar) quantum system and all the information that comes in should
unitarily come out: the theory of quantum gravity is unitary. From this point of view,
the absorption and radiation of matter by a BH is similar to any standard scattering
experiment.

footnote on page 216 ). We will very often find that physical properties of a family of metrics parametrized by
a number of continuous parameters are not themselves continuous functions of those parameters. There is
no paradox, though, because metrics in that family given by infinitesimally different values of the parameters
are not always infinitely close in the space of metrics. Thus, the distance between the Minkowski metric and
the Schwarzschild metric with an infinitesimal mass is not infinitesimal. Physically, this is easy to see: no
matter how small the mass is, the Schwarzschild spacetime has an event horizon and does not look at all like
the Minkowski spacetime.
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If no information is carried by Hawking’s radiation and the BH evaporates indefi-
nitely, the information about the initial state from which the BH originated is com-
pletely lost forever and the theory of quantum gravity governing all these processes
is non-unitary, in contrast to all the other physical theories. This is, for instance,
Hawking’s own viewpoint.

There is a third group that proposes that the information is not carried out of the BH
by Hawking radiation but the evaporation process stops at some point, leaving a BH
remnant containing that information.

There is a little-explored fourth possibility, which is consistent with the classical
results on stability of BHs and the no-hair conjecture; namely that the information
never enters BHs.

There is, however, no conclusive solution for the BH information problem. In the
models based on string theory that we will explain here, BHs are standard quantum-
mechanical systems and information is always recovered (even if after a long time).

5. Concerning the BH entropy problem, the statistical-mechanical entropy of systems
of fixed energy E is given by

S(E) = ln ρ(E), (7.51)

where ρ(E) is the density of states of the system whose energy is E . If a BH is just
another quantum-mechanical system with E = M , a good theory of quantum gravity
should allow us to calculate the Bekenstein–Hawking entropy S from knowledge of
the density of BH microstates ρ(M). Also, if that theory exists and the above relation
is justified, our knowledge of the Bekenstein–Hawking entropy can be used to find
ρ(M) for large values of M (when the quantum corrections are small),

ρ(M) ∼ exp M2. (7.52)

We see that the number of BH states with a given mass must grow extremely fast if
it is to explain the BH’s huge entropy (for a solar-mass BH, ρ ∼ 101076

). The ther-
modynamical description of systems whose densities of states grow so fast with the
energy is, however, very complicated: the canonical partition function

Z(T ) ∼
∫

d Eρ(E)e− E
T (7.53)

diverges whenever ρ(E) grows like eE or faster. For instance, the density of states
of any string theory grows exponentially with the mass and the partition function
diverges above Hagedorn’s temperature (see e.g. [31]). For p-branes [38]

ρ(M) ∼ exp
(
λM

2p
p+1

)
, (7.54)

and for p > 1 the partition function diverges already at zero temperature. The density
of states of BHs must grow faster than that of any of these theories.
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As we are going to see, string theory allows us to calculate the entropy and temperature of
certain BHs for which this theory provides quantum-mechanical models, from the density
of the associated microstates. In this way string theory seems to solve (at least to some
extent) the BH entropy and information problems by treating BHs as ordinary quantum-
mechanical systems.

7.4 The Euclidean path-integral approach

It is desirable to have an independent and more direct calculation of the BH entropy and
temperature. This can be achieved by using the Euclidean path integral as suggested by
Gibbons and Hawking [436, 514].

The thermodynamical study of a statistical-mechanical system starts with the calculation
of a thermodynamical potential. If there are certain conserved charges Ci (their related
potentials being µi ), it is convenient to work in the grand canonical ensemble, where the
fundamental object is the grand partition function

Z = Tr e−β(H−µi Ci ), (7.55)

and the thermodynamic potential

W = E − T S − µi Ci (7.56)

is related to the grand partition function by

e− W
T = Z. (7.57)

All thermodynamic properties of the system can be obtained from knowledge of Z . In
particular, the entropy is given by

S = (E − µi Ci )/T + lnZ. (7.58)

The idea is to calculate the thermal grand partition function of quantum gravity through
the path integral of a Euclidean version of the Einstein–Hilbert action Eq. (4.26), S̃EH,

Z =
∫

Dg e− S̃EH
� , (7.59)

where one has to sum over all metrics with period26 β = �c/T . The only modification that
has to be made to the Einstein–Hilbert action is the addition of a surface term to normalize
the action so that the on-shell Euclidean action vanishes for flat Euclidean spacetime (the
vacuum). The Einstein–Hilbert action becomes [436]

SEH[g] = c3

16πG(4)
N

∫
M

d4x
√

|g| R + c3

8πG(4)
N

∫
∂M

d3� (K − K0), (7.60)

26 β has dimensions of length if T has dimensions of energy.
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where K0 is calculated by substituting the vacuum metric into the expression for K.
The path integral is now to be calculated in the (semiclassical) saddle-point approxima-

tion (from now on we set � = c = G(4)
N = 1 for simplicity)

Z = e−S̃EH(on-shell). (7.61)

The classical solution used to calculate the on-shell Euclidean action above is the Eu-
clidean Schwarzschild solution that we now discuss.

7.4.1 The Euclidean Schwarzschild solution

The Euclidean Schwarzschild solution solves the Einstein equations with Euclidean met-
ric (in our case (−, −, −, −)). It can be obtained by performing a Wick rotation τ = i t
of the Lorentzian Schwarzschild solution. If we use Kruskal–Szekeres (KS) coordinates
{T, X, θ, ϕ}, we have to define the Euclidean KS time T = iT . This Wick rotation has im-
portant effects. The relation between the Schwarzschild coordinate r and T, X coordinates
was

(r/RS − 1)e
r

RS = X2 − T 2. (7.62)

The l.h.s. is bigger than −1 and that is why the X, T coordinates also cover the BH
interior. However, in terms of T ,

(r/RS − 1)e
r

RS = X2 + T 2 > 0, (7.63)

and the interior r < RS of the BH is not covered by the Euclidean KS coordinates. On the
other hand, the relation between the Schwarzschild time t and X, T ,

X + T

X − T
= e

t
RS , (7.64)

becomes
X − iT
X + T = e−2i Arg(X+iT ) = e− iτ

RS . (7.65)

Since Arg(X + iT ) takes values between 0 and 2π (which should be identified), for
consistency (to avoid conical singularities) τ must take values in a circle of length 8π M
[436, 969]. The period of the Euclidean time can be interpreted as the inverse temperature
β which coincides with the known Hawking temperature. This is the reason why we can
use this metric to calculate the thermal partition function.

The result is a Euclidean metric with periodic time that covers only the exterior of the
BH (region I of the KS diagram). The X, T part of the metric describes a semi-infinite
“cigar” (times a 2-sphere) that goes from the horizon to infinity with topology R

2 × S2.
Knowing the result beforehand, we could just as well have used Schwarzschild coordi-

nates, which cover smoothly the BH exterior, and proceeded in this much more economical
way [546]: given a static, spherically symmetric BH with regular horizon at r = 0, the r–τ

part of its Euclidean metric can always be put in the form

−dσ 2 = f (r)dτ 2 + f −1(r)dr2 ∼ f ′(0)rdτ 2 + 1

f ′(0)r
dr2, (7.66)
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near the horizon. Defining another radial coordinate ρ such that gρρ = 1, we obtain

−dσ 2 ∼(
f ′(0)/2

)2
dτ 2 + dρ2 ≡ ρ2dτ 2 + dρ2. (7.67)

Now this metric is just the 2-plane metric in polar coordinates if τ ′ ∈ [0, 2π ]. Otherwise
it is the metric of a cone and has a conical singularity at ρ = 0 (the horizon). Then, τ ∈
[0, β = 4π/ f ′(0)].

In practice we do not even need the Euclidean Schwarzschild metric. We need only
the information about the period of the Euclidean time (temperature) and the fact that the
BH interior disappears (the integration region) and we can simply replace −S̃EH(on-shell)
by +i SEH(on-shell) because it gives the same result once we take into account the above
two points. Thus, in our calculation we will use the Lorentzian Schwarzschild metric in
Schwarzschild coordinates using these observations.

7.4.2 The boundary terms

The Euclidean Schwarzschild solution, being a solution of the vacuum Einstein equations,
has R = 0 everywhere (the singularity r = 0 together with the whole BH interior is not
included) and only the boundary term contributes to the on-shell action. We are going to
calculate its value in this section.

The only boundary of the Euclidean Schwarzschild metric, with the time compactified
on a circle of length β, is r → ∞. (If we gave the Euclidean time a different periodicity,
there would be another boundary at the horizon, but there is no reason to do this.) This
boundary is then the hypersurface r = rc when the constant rc goes to infinity. A vector
normal to the hypersurfaces r − rc = 0 is nµ ∼ ∂µ(r − rc) = δµr , and, normalized to unity
(nµnµ = −1 because it is spacelike) with the right sign to make it outward-pointing, is, for
a generic spherically symmetric metric Eq. (7.22),

nµ = − δµr√−n2
= −√−grr δµr . (7.68)

The four-dimensional metric gµν induces the following metric hµν on the hypersurface
r − rc = 0:

ds2
(3) = hµνdxµdxν = gtt dt2 − r2d�2

(2)

∣∣
r=rc

. (7.69)

The covariant derivative of nµ is

∇µnν = −√−grr
{
δµrδνr∂r ln

√−grr − �µν
r
}
, (7.70)

and the trace of the extrinsic curvature of the r − rc = 0 hypersurfaces is (the Christoffel
symbols can be found in Appendix F.1)

K = hµν∇µnν = 1√−grr

{
1
2∂r ln gtt + 2/r

}∣∣∣∣
r=rc

. (7.71)

The regulator K0 can be found form this expression to be

K0 = (2/r)|r=r0
. (7.72)
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On the other hand, for any static, spherically symmetric, asymptotically flat metric we
must have for large r

gtt ∼ 1 − 2M

r
, grr ∼ −

(
1 + 2M

r

)
, ⇒ (K − K0)|r=rc

∼ −M/r2
c . (7.73)

Finally, we have

i

8π

∫
r0→∞

d3x
√

|h| (K − K0) = lim
rc→∞

i

8π

∫ −iβ

0
dt

∫
S2

d�2r2
c

√
gtt(rc) (K − K0)

= lim
r0→∞

β

2
r2

c (K − K0) = −βM

2
. (7.74)

For Schwarzschild β = 8π M and Eqs. (7.58) and (7.61) lead to the expected result

S = βM + lnZ = βM/2 = 4π M2. (7.75)

7.5 Higher-dimensional Schwarzschild metrics

If we consider the d-dimensional vacuum Einstein equations, it is natural to look for the
generalization of Schwarzschild’s solution: static, spherically symmetric metrics. Here,
spherical symmetry means invariance under global SO(d − 1) transformations. The ap-
propriate Ansatz that generalizes Eq. (7.2) is

ds2 = W (r)(dct)2 − W −1(r)dr2 − R2(r)d�2
(d−2), (7.76)

where d�2
(d−2) is the metric element on the (d − 2)-sphere Sd−2(see Appendix C).

One finds the following generalization of Schwarzschild’s solution [706, 877]:

ds2 = W (dct)2 − W −1dr2 − r2d�2
(d−2), W = 1 + ω/rd−3, (7.77)

where d ≥ 4: there are no Schwarzschild BHs in fewer than four dimensions.27

The integration constant ω is related to the d-dimensional analog of the Schwarzschild
radius. To establish the above relation between the Schwarzschild radius and the mass, one
can use for instance Komar’s formula Eq. (6.42) correctly normalized [706]:

Mc2 = − 1

16πG(d)
N

d − 2

d − 3

∫
Sd−2∞

dd−2�µν∇µkν. (7.78)

The result of the integral is (d − 3)ω(d−2)ωc, with ω(d−2) given in Eq. (C.11), and, thus

ω = −Rd−3
S = −16πG(d)

N Mc−2

(d − 2)ω(d−2)

. (7.79)

27 In the presence of a negative cosmological constant there is, though, an asymptotically AdS3 three-
dimensional solution that can be identified with a BH: the BH of Bañados, Teitelboim, and Zanelli (“BTZ”)
[82].
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The solutions Eq. (7.77) are almost straightforward generalizations of the four-
dimensional Schwarzschild solution in every sense. Their most interesting property is the
existence of event horizons at r = RS in all of them, with properties that generalize those of
the d = 4 ones and lead us to the study of their thermodynamics. The uniqueness of these
(static BH) solutions was proved in [444, 589]. There is no uniqueness for stationary BHs
in higher dimensions, as the existence of the rotating black ring of [373] shows.

7.5.1 Thermodynamics

In d dimensions, the first law of BH thermodynamics and Smarr’s formula are [706]

d Mc2 = d − 2

2(d − 3)
T d S, Mc2 = d − 2

d − 3
T S, (7.80)

where the temperature T is now given in terms of the surface gravity κ by the same expres-
sion as in four dimensions Eq. (7.45) while κ is defined by the same formula Eq. (7.21)
in any dimension. The entropy is given in terms of the volume of the (d − 2)-dimensional
constant-time slices of the event horizon V (d−2) by

S = V (d)

4�G(d)
N

. (7.81)

The volume and surface gravity of the event horizon are

V (d−2) = Rd−2
S ω(d−2), κ = (d − 3)c2

2RS
, (7.82)

and, therefore

T = (d − 3)�c

4π RS
, S = Rd−2

S ω(d−2)c3

4�G(d)
N

. (7.83)

Smarr’s formula can be easily checked using these results.
The temperature of the higher d-dimensional BHs can also be calculated in the Euclidean

formalism with the criterion of avoiding conical singularities of the τ–r part of the metric
on the event horizon. A Euclidean calculation of the entropy may also be done.



8
The Reissner–Nordström black hole

In the previous chapter we obtained and studied the Schwarzschild solution of the vacuum
Einstein equations and arrived at the BH concept. However, many of the general features
of BHs that we discussed, such as the no-hair conjecture, make reference to BHs in the
presence of matter fields. In this chapter we are going to initiate the study and construction
of BH solutions of the Einstein equations in the presence of matter fields, starting with the
simplest ones: massless scalar and vector fields.

The (unsuccessful) search for BH solutions of gravity coupled to a scalar field will allow
us to deepen our understanding of the no-hair conjecture.

The (successful) search for BH solutions of gravity coupled to a vector field will allow us
to find the simplest BH solution different from Schwarzschild’s: the Reissner–Nordström
(RN) solution. Simple as it is, it has very interesting features, in particular, the existence
of an extreme limit with a regular horizon and zero Hawking temperature that will be
approached with positive specific heat, as in standard thermodynamical systems. Later on
we will relate some of these properties to the unbroken supersymmetry of the extreme RN
(ERN) solution, which will allow us to reinterpret it as a self-gravitating supersymmetric
soliton interpolating between two vacua of the theory.

The ERN BH is the archetype of the more complicated self-gravitating supersymmetric
solitons that we are going to encounter later on in the context of superstring low-energy ef-
fective actions (actually, one of our goals will be to recover it as a superstring solution) and
many of its properties will be shared by them. Furthermore, the four-dimensional Einstein–
Maxwell system exhibits electric–magnetic duality in its simplest form. Electric-magnetic
duality will play a crucial role in many of the subsequent developments either as a classical
solution-generating tool or as a tool that relates the weak- and strong-coupling regimes of
QFTs.

It is, therefore, very important to study all these properties in this simple system.
In this chapter we are first going to study the coupling of a free massless real scalar to

gravity, discussing the (non-)existence of BH solutions and its relation to the no-hair con-
jecture. Then, we will study the coupling of a massless vector field to gravity (the Einstein–
Maxwell system), its gauge symmetry, and the notion and definition of electric charge and
its conservation law. Immediately afterwards we will introduce and study the electrically
charged RN BH, and its sources, thermodynamics, and Euclidean action. Once we are done

213
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with the electrically charged RN BH, we will introduce electric–magnetic duality, the no-
tion and definition of magnetic charge, and the Dirac–Schwinger–Zwanziger quantization
condition. Using electric–magnetic duality, we will construct magnetically charged and dy-
onic RN BHs. Finally, we will consider higher-dimensional RN BH solutions.

8.1 Coupling a scalar field to gravity and no-hair theorems

The simplest field to which we can couple gravity is a free (vanishing potential) massless
real scalar field ϕ. The action of this system is (choosing the simplest normalization)

S[gµν, ϕ] = SEH + c3

8πG(4)
N

∫
d4x

√
|g| ∂µϕ∂µϕ. (8.1)

The equations of motion for the metric and the scalar are

Gµν + 2
[
∂µϕ∂νϕ − 1

2 gµν(∂ϕ)2
] = 0, ∇2ϕ = 0. (8.2)

If we take the divergence of the Einstein equation above and use the contracted Bianchi
identity ∇µGµν = 0, one obtains the equation

∇2ϕ∇νϕ = 0, (8.3)

which implies the equation of motion for the scalar field ϕ if ∇νϕ �= 0. If ∇νϕ = 0 the
scalar equation of motion is automatically solved and, thus, we can say that the Einstein
equations imply the scalar field equation of motion and we only have to solve the former.
If we subtract its trace, we are left with

Rµν + 2∂µϕ∂νϕ = 0 (8.4)

as the only set of equations that we really need to solve.
One can then proceed by trying to find a BH-type solution (i.e. one with a metric sim-

ilar to that of the Schwarzschild solution, possessing an event horizon) of the equation of
motion of this system. It is clear that any solution of the vacuum Einstein equations (in
particular, Schwarzschild’s) will be a solution of these equations with a constant scalar
ϕ = ϕ0, but we are really interested only in solutions with a non-trivial ϕ. How could we
characterize the non-triviality of ϕ? By analogy with other fields, we could consider mul-
tipole expansions of ϕ. The monopole momentum of ϕ (the coefficient of the 1/r term),
which is the only one that respects spherical symmetry, could be understood as the “scalar
charge” and we could characterize the simplest BH-type solutions (the static and spher-
ically symmetric ones) by the mass (the monopole momentum of the gravitational field)
and the “scalar charge.”

We would like to have, though, a more physical definition of the “scalar charge.” The first
definition of “scalar charge” one could try is suggested by the form of a possible source for
ϕ: it would have to be a scalar ρ satisfying ∇2ϕ = ρ, corresponding to a coupling of the
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form ϕρ in the action. Then, the integral over some spatial volume (let us say a constant-
time slice of the whole spacetime) of the source would give the charge, and, using the
equation of motion, one could define∫

�

d3�µnµ∇2ϕ, (8.5)

where nµ is the unit vector normal to the spacelike hypersurface �. This integral is indeed
proportional to the coefficient of 1/r in the multipole expansion of ϕ. However, there is no
way to show that this “charge’ is conserved using the scalar equation of motion. Nothing
prevents this kind of “charge” from disappearing and, in fact, according to the results on
gravitational collapse and perturbations1 of the Schwarzschild solution upon which the no-
hair conjecture is based, this is actually what happens in the gravitational collapse, although
no complete proof is available.

Still, one could conceive of a situation in which not all the “scalar charge” disappears
and after a long time the system settles into a static, spherically symmetric state with non-
vanishing scalar charge. The no-hair conjecture asserts that the solution describing this
state will not be a BH, which in general means that it will have naked singularities. The
cosmic-censorship conjecture then tells us that this state could not have been produced in
the gravitational collapse of well-behaved matter with physically admissible initial condi-
tions, in complete agreement with the no-hair conjecture.

Now we can put to the test the no-hair and cosmic-censorship conjectures either by trying
to find static, spherically symmetric solutions with non-trivial scalar fields or by evolving
initial data sets describing one or several regular BHs with mass and scalar charge that are
not in equilibrium, such as those in [744]. This has not yet been done and, therefore, we will
concentrate on finding scalar BH solutions. It is worth mentioning that some exceptions to
the cosmic-censorship conjecture are known, especially in Einstein–Yang–Mills systems,
and only by evolving the initial data can one really find out whether the same will happen
here.

To find static, spherically symmetric solutions we make the Ansatz (c = G(4)
N = 1)

ds2 = λ(r)dt2 − λ−1(r)dr2 − R2(r)d�2
(2), ϕ = ϕ(r), (8.6)

and, using the formulae in Appendix F.1.2, we find the Janis–Newman–Winicour (JNW)
solutions [18, 607]

ds2 = W
2M
ω

−1W dt2 − W 1− 2M
ω

[
W −1dr2 + r2d�2

(2)

]
,

ϕ = ϕ0 + �

ω
ln W,

W = 1 + ω
r , ω = ±2

√
M2 + �2.

(8.7)

1 See e.g. [249], in which the wave equation for a scalar field on a Schwarzschild BH background is analyzed
and it is shown that it has no physically acceptable solutions, the conclusion being that a BH cannot act as a
source for the scalar field and that there will be no BH solutions with non-trivial scalar hair.
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The three fully independent parameters that characterize each solution are the mass M ,
the “scalar charge” �, and the value of the scalar at infinity ϕ0. As expected, only when the
“scalar charge” vanishes (� = 0) does one have a regular solution (Schwarzschild’s).2 In
all other cases there is a singularity at r = r0, when r0 > 0, or at r = 0.3

Although a regular BH cannot act as a source for scalar charge, other fields can. This is
what happens in the “a-model” (also known as Einstein–Maxwell-dilaton (EMD) gravity,
see Section 12.1) in which the scalar (“dilaton”) equation of motion is roughly of the form

∇2ϕ = 1
8 ae−2aϕ F2. (8.11)

In this theory we can expect BHs with non-trivial scalar fields. However, the scalar charge
will be completely determined by the mass and electric and magnetic charges of the elec-
tromagnetic field, according to a certain formula. This kind of hair, which does depend on
the mass, angular momentum, and conserved charges is called secondary hair [249]. If the
scalar charge does not have the value dictated by the formula then there is another source
for the scalar field apart from the electromagnetic field as in the solutions of [19], so the
BH would also have primary hair. This is the only kind of hair that the solutions Eqs. (8.8)
have and is the kind forbidden by the no-hair conjecture.

At this point it is worth mentioning that there are other kinds of scalar charges that are
locally conserved. This discussion anticipates concepts that we will encounter in Part III.
First, the equation of motion ∇2ϕ = 0 can be rewritten in the form ∂µ

(√|g| Fµ
) = 0, where

2 This is another example (see footnote on page 205) of a family of metrics parametrized by a continuous
parameter whose physical properties are not continuous functions of those parameters.

3 Observe that the above family of solutions includes a non-trivial massless solution. On setting M = 0 above,
we find

ds2 = dt2 − dr2 − Wr2d�2
(2)

,

ϕ = ϕ0 + 1
2 ln W,

W = 1 + ω
r .

(8.8)

This solution is related to Schwarzschild’s (with positive or negative mass) by a Buscher “T-duality” (to be
explained later on) transformation on the time direction. It is still singular for any value of ω different from
zero. This is perhaps best seen after the coordinate change

r = 1

ρ

(
ρ − ω

4

)2
, (8.9)

which allows us to rewrite the metric in the isotropic form

ds2 = dt2 −
(

1 + ω/4

ρ

)2(
1 − ω/4

ρ

)2
d �x 2

3 ,
(8.10)

ϕ = ϕ0 − 1
2 ln

[(
1 − ω/4

ρ

)2(
1 + ω/4

ρ

)−2
]
, ρ = |�x3|.

The interpretation of these static, massless solutions is not easy. Since the mass of a spacetime is its total
energy and the scalar field must contribute a positive amount to the total energy, we have to admit that the
gravitational field contributes a negative amount to it. Here we see again the relation among the no-hair
conjecture, cosmic censorship, and positivity of the energy.



8.1 Coupling a scalar field to gravity and no-hair theorems 217

Fµ = ∇µϕ. As will be explained later for the electric charge, this is just the continuity
equation for the current Fµ and suggests the definition of scalar charge∫

V
d3�µ∇µϕ, (8.12)

which will be locally conserved. The conservation of this current is associated via Noether’s
theorem with the invariance of the action under constant shifts of the scalar.

Second, the Bianchi-type identity ∂[µ∂ν]ϕ = 0 can be rewritten in the form ∇µFµνρ = 0,
where we have defined the completely antisymmetric tensor Fµνρ = (1/

√|g|)εµνρσ ∂σϕ.
With this definition it is possible to show that the line integral

1

3!

∮
γ

d1�µνρ Fµνρ =
∮

γ
dϕ, (8.13)

along the curve γ is conserved. Observe that, if γ is closed, the integral will only be different
from zero if ϕ is multivalued, for instance if ϕ is an axion (a pseudoscalar) that takes values
in a circle.

How should we interpret these charges? We will see later in this chapter that the electro-
magnetic field Aµ has a natural coupling to the worldline of a particle with electric charge
q given by Eq. (8.53). The particle’s electric charge is given by the surface integral over a
sphere S2 of the Hodge dual of the electromagnetic-field-strength 2-form Fµν . The particle’s
magnetic charge is given by the surface integral over a sphere S2 of the electromagnetic-
field-strength 2-form. The electric charge is conserved due to the equation of motion and
the magnetic charge is conserved due to the Bianchi identity. A topologically nontrivial
configuration of the field is needed in order to have magnetic charge.

Potentials that are differential forms of higher rank couple to the worldvolumes of ex-
tended objects: a (p + 1)-form potential A(p+1) naturally couples to p-dimensional objects
with a (p + 1)-dimensional worldvolume (we will explain how this comes about in Chap-
ter 18). The electric charge is the integral over the sphere Sd−(p+2) transverse to the object’s
worldvolume of the Hodge dual of the (p + 2)-form field strength F(p+2) = d A(p+1). The
magnetic charge would be the electric charge of the dual (d − p − 4)-dimensional object,
charged under the dual potential whose field strength is the Hodge dual of F(p+2).

Looking now at the above charges, we immediately realize that the charge defined in
Eq. (8.13) is the charge of a one-dimensional object (string) and the former Eq. (8.12) is
the charge of a “−1-dimensional object.” Such an object would be an instanton, defined in
Euclidean space and with zero-dimensional worldvolume. Then “charge conservation” is
not a concept to be applied to it. In both cases ϕ has to be a pseudoscalar.

Observe that, indeed, a line integral as Eq. (8.13) cannot measure a point-like charge be-
cause we could continuously contract the loop γ to a point without meeting the singularity
at which the charge rests. The line integral has to have a non-vanishing linking number
with the one-dimensional object, which has to have either infinite length or the topology of
S1; otherwise the integral would be zero by the same argument. The behavior of the scalar
field has to be ϕ ∼ ln ρ, where ρ measures the distance to the one-dimensional object in the
two-dimensional plane orthogonal to it.

Similar arguments apply to the definition Eq. (8.12) and ϕ ∼ 1/ρ2, where now ρ mea-
sures the distance to the instanton in the four-dimensional Euclidean space.
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From this point of view, if BHs can be understood as particle-like objects, looking for
BHs with a well-defined scalar charge is utterly hopeless. One should look instead for
“black strings” and instantons and in due time we will do so and find them.4

There is another point of view concerning scalar fields: in some cases they should be
interpreted not as matter fields but as “local coupling constants” (as in the case of the string-
theory dilaton) or, more generally, as moduli fields, which we will define in Chapter 11, in
which case they should be treated as backgrounds and there would be no room for the
notion of scalar charge.

In conclusion, if we want to find new BH solutions, we need to couple the Einstein–
Hilbert action to matter fields that have associated conserved charges. The charges must be
those of point-particles or we will naturally obtain solutions describing extended objects
instead of black holes. Thus, we have to consider vector fields and the simplest one is an
Abelian vector field Aµ. We are going to study in some detail the resulting system because
later we will find generalizations of all the concepts and formulae developed here.

8.2 The Einstein–Maxwell system

The action for gravity coupled to an Abelian vector field Aµ is the so-called Einstein–
Maxwell action5 obtained by adding the Einstein–Hilbert and the Maxwell action with
ηµν, ∂µ, and d4x replaced by gµν, ∇µ, and d4x :

SEM[gµν, Aµ] = SEH[g] + 1

c

∫
d4x

√
|g| [− 1

4 F2
]
. (8.15)

Fµν is the field strength of the electromagnetic vector field Aµ and is again given by

Fµν = 2∂[µ Aν], F2 = Fµν Fµν, (8.16)

since, in the absence of torsion, ∇[µ Aν] = ∂[µ Aν]. The components of Aµ and Fµν in a given
coordinate system are customarily split in this way,

(Aµ) = (φ, − �A), (Fµν) =




0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0


, (8.17)

4 This argument really applies to pseudoscalar fields.
5 In this section we work in the Heaviside system of units, so the Coulomb force between two charges is

1

4π

q1q2

r2
12

. (8.14)

In the Gaussian system we should replace 1/(4c) by 1/(16πc) and the factor of 4π disappears from the
Coulomb force. The dimensions of the vector field Aµ are M1/2L1/2T −1 (that is, L−1 in natural units
� = c = 1) and the electric charge’s units are M1/2L3/2T −1, so it is dimensionless in natural units. At the
end we will introduce another system of units, which will be the one we more often will work with, taking

c = 1 and replacing the factor of 1/(4c) in front of F2 by 1/
(

64G(4)
N

)
.
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where �E = (E1, E2, E3) and �B = (B1, B2, B3) are the electric and magnetic 3-vector fields
in that coordinate system, and, thus, with �∇ = (∂1, ∂2, ∂3){

Ei = F0i ,

Bi = − 1
2εi jk Fkl,

⇔




�E = −�∇φ − 1

c

∂

∂t
�A,

�B = �∇ × �A.

(8.18)

The field strength (and the action) is invariant under the Abelian gauge transformations

A′
µ = Aµ + ∂µ� (8.19)

with smooth, gauge parameter �. Depending on which gauge group we consider (R or
U(1)), � must be a single-valued or multivalued function.6 In differential-forms language

A = Aµdxµ, A′ = A + d�, F = 1
2 Fµνdxµ ∧ dxν = d A, (8.20)

and the gauge invariance of F is a consequence of d 2 = 0. Using these differential forms,
the Maxwell action can be rewritten as follows:

SM[A] = 1

8c

∫
F ∧ �F. (8.21)

Observe that there is no matter charged with respect to Aµ in this system. This is anal-
ogous to the presence of no matter fields in the Einstein–Hilbert action. However, the
Einstein–Hilbert action contains the self-coupling of gravity and therefore the presence
of a coupling constant in it makes sense, whereas in the Maxwell theory there are no direct
interactions between photons and, in principle, there is neither an electromagnetic coupling
constant nor a unit of electric charge. We will see that things are a bit more complicated in
the presence of gravity, through which photons do interact.

The equations of motion of gµν and Aµ are

Gµν − 8πG(4)
N

c4
Tµν = 0, (8.22)

∇µFµν = 0 (Maxwell’s equation), (8.23)

where

Tµν = −2c√|g|
δSM[A]

δgµν
= Fµρ Fν

ρ − 1
4 gµν F2 (8.24)

is the energy–momentum tensor of the vector field, which is traceless7 in d = 4. The
tracelessness of the electromagnetic energy–momentum tensor implies that R = 0 and the

6 If the gauge group is R, the elements of the group will be e�/L , whereas, if it is U(1), they will be ei�/L ,
where L is a constant introduced to make the exponent dimensionless because � is dimensionful. In the
second case � will have to be identified with � + 2π L . When there is a unit of charge, L is related to it.

7 This property is associated with the invariance of the Maxwell Lagrangian in curved spacetime under Weyl
rescalings of the metric,

g′
µν = �2(x)gµν. (8.25)

In fact, if � = eσ , then for infinitesimal transformations δσ gµν = 2σ(x)gµν we have

δσ SM = δSM

δgµν
δσ gµν ∼ σ T µνgµν = 0. (8.26)
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Einstein equation takes the simpler form

Rµν = 8πG(4)
N

c4
Tµν. (8.27)

On taking the divergence of the Einstein equation and using the contracted Bianchi iden-
tity for the Einstein tensor ∇µGµν = 0, we find

Fνρ∇µFµρ − 3
2 Fµρ∇[µFρν] = 0. (8.28)

Since the Levi-Cività connection is symmetric,

∇[µFρν] = ∂[µFρν] = 0 (the Bianchi identity) (8.29)

identically, using the definition of Fµν , and then we see that the Einstein equation implies
generically the Maxwell equation. Using Eq. (1.62), the Maxwell equation can also be
written in a simpler, equivalent, form:

∂µ

(√
|g|Fµν

)
= 0. (8.30)

The equations are written in terms of the field strength F and usually they are solved
in terms of it. However, we are ultimately interested in the vector field A itself and we
have to make sure that the F we obtain is such that it is related to some vector field by
Eq. (8.16) or Eq. (8.20). It turns out that, locally, A exists if the electromagnetic Bianchi
identity Eq. (8.29) is satisfied.8

The Bianchi identity can also be written in this form (by contracting Eq. (8.29) with
εµνρσ , introducing it into the partial derivative (because it is constant), and using the

8 In fact, if we are given F and the Bianchi identity is satisfied, we can always find the corresponding vector
potential by using, e.g., the formula

Aµ(x) = −
∫ 1

0
dλλxν Fµν(λx). (8.31)

To check this formula it is necessary to use the Bianchi identity: taking the curl of the l.h.s.,

∂[ρ Aµ](x) = −
∫ 1

0
dλλ∂[ρ [xν Fµ]ν(λx)], (8.32)

and operating,
∂[ρ

(
Fµ]ν(λx)

) = λ∂[ρ Fµ]ν(λx) − 1
2λ

(
∂ν Fρµ

)
(λx), (8.33)

where the Bianchi identity Eq. (8.29) has been used in the last identity, one obtains

∂[ρ Aµ](x) = 1
2

∫ 1

0
dλ

{
λ2xν∂ν Fρµ(λx) − λFµρ(λx)

}
= 1

2

∫ 1

0
dλ

d

dλ

[
λ2 Fρµ(λx)

]

= 1

2
Fρµ(x). (8.34)
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definition of the Hodge dual and Eq. (8.30) for the divergence):

∇µ
�Fµσ = 0. (8.35)

In the language of differential forms, the Maxwell equation and Bianchi identity are

d�F = 0, (8.36)

d F = 0, (8.37)

and the Bianchi identity is just a consequence of the definition Eq. (8.20) and d2 = 0.
Then, if we work with the field strength, we find that there are two pairs of equations,

(8.23) and (8.35) and (8.36) and (8.23), which are (as pairs) invariant if one replaces F
by �F (by virtue of ��F = −F). This is an electric–magnetic-duality transformation. The
name is due to the fact that this transformation interchanges the electric and magnetic fields
in any given coordinate system according to

�E ′ = �B, �B ′ = − �E . (8.38)

Actually, this pair of homogeneous equations (the Maxwell equation and the Bianchi
identity) would be invariant under the (invertible) substitution for F of any linear combina-
tion of F and �F . We would have a symmetry of all the equations of motion if the Einstein
equation were also invariant under this replacement. We will later see in Section 8.7 that
this is the case and that the Einstein–Maxwell theory is invariant under electric–magnetic
duality.

The four Maxwell equations in Minkowski spacetime can be deduced from the Maxwell
equation and the Bianchi identity (two of them imply the existence of the potential Aµ and
are equivalent to the latter). We have

∂µFµν = 0 ⇔



�∇ · �E = 0,

�∇ × �B − 1

c

∂

∂t
�E = 0,

∂µ
�Fµν = 0 ⇔




�∇ · �B = 0,

�∇ × �E + 1

c

∂

∂t
�B = 0.

(8.39)

8.2.1 Electric charge

The electric charge can be defined in terms of a source coupled to the electromagnetic field
(this is analogous to the energy–momentum-pseudotensor approach for the gravitational
field) or in terms of the Noether current associated with the gauge invariance (the approach
that leads to Komar’s formula and its generalizations for the gravitational field). The two
definitions are equivalent and are very closely related to each other because the gauge
invariance of the free theory imposes strong constraints on the possible couplings.
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Let us first introduce the electric charge using sources. A source for the Maxwell field is
described by a current jµ, which naturally couples to the vector field through a term in the
action of the form

1

c2

∫
d4x

√
|g| [−Aµ jµ

]
. (8.40)

This additional interaction term spoils the action’s gauge invariance unless the source jµ

is divergence-free,

∇µ jµ = 0 ⇔ d � j = 0 ( j ≡ jµdxµ), (8.41)

which implies the continuity equation for the vector density jµ ≡ √|g| jµ,

∂µjµ = 0. (8.42)

The continuity equation can be used to establish the local conservation of the electric
charge, as explained in Section 2.3, if the electric charge contained in a three-dimensional
volume at a given time t , V3

t , is defined by9

q(t) = −1

c

∫
V3

t

d3x j0, (8.43)

or, in a more covariant form,

q(t) = 1

c

∫
V3

t

� j. (8.44)

As explained in Section 2.3, this quantity is not constant: its variation is related to the flux
of charge through the boundary of V3

t . If V3
t is a constant-time slice of the whole spacetime

with no boundary, then the above integrals give the total charge, which will be constant in
time. If we can foliate our spacetime with constant-time hypersurfaces, then we take the
four-dimensional spacetime V4 contained in between two constant-time slices V3

t1
and V3

t2
,

integrate the continuity equation over it, and use Stokes’ theorem. The boundary of the
four-dimensional region we have proposed is made up of the two constant-time slices with
opposite orientations, so

0 =
∫

V4
d � j =

∫
V3

t1

� j −
∫

V3
t2

� j, (8.45)

and the total electric charge is constant in time.
Thus, gauge invariance of the action implies that the source is divergence-free and from

this the local conservation of the electric charge (and the global conservation of the total
electric charge) follows.

On the other hand, in the presence of the source, the Maxwell equation is modified into

∇µFµν = 1

c
jν, (8.46)

or, equivalently,

d�F = 1

c
� j, (8.47)

9 The sign is conventional.
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and, using the antisymmetry of Fµν or d2 = 0, it is trivial to see that, since the l.h.s. of the
equation is divergence-free, the r.h.s. of the equation is also, for consistency, divergence-
free, as we knew it had to be in order to preserve the gauge invariance of the action. This is
no coincidence: the fact that the r.h.s. of the Maxwell equation is divergence-free is in fact
the gauge identity associated with the invariance under δAµ = ∂µ�, as we are going to see.

Finally, using the Maxwell equation (8.47), we can rewrite the definition of the total
electric charge Eq. (8.44) in terms of the field strength and again use Stokes’ theorem. If
the boundary of a constant-time slice has the topology of a S2 at infinity, we obtain

q =
∫

S2∞

�F. (8.48)

which is a useful definition of the total electric charge of a spacetime in terms of the field
strength (the electric flux) and which we will generalize further in Part III.

This is the kind of formula that we will use because in the Einstein–Maxwell system
there are no fields explicitly written that act as sources for Aµ. Just as in the case of the
Maxwell equations in vacuum, we can obtain solutions describing the field of charges.
These solutions are singular near the place where the charge ought to be and the solution is
not a solution there (there are no charges explicitly included in the system). However, the
above expression allows us to calculate the charge that ought to be placed there to produce
the flux of electromagnetic field that we observe.10 We have introduced sources as a device
for understanding the definition.

We could also have used the invariance of the Einstein–Maxwell action to find the con-
served Noether current and define the electric charge through it.

We studied the invariance of the Maxwell action and found the corresponding Noether
current in Minkowski spacetime in Section 3.2.1. The coupling to gravity introduces only
minor changes and the conclusion is, again, that the electric charge can be defined by
Eq. (8.48).

It is useful to consider a simple example of a source: the current associated with a particle
of electric charge q and worldline γ parametrized by Xµ(ξ). In a manifestly covariant form
it is given by

jµ(x) = qc
∫

γ
d Xµ 1√|g|δ

(4)[x − X (ξ)], (8.49)

where d Xµ = dξd Xµ/dξ . On making the choice ξ = X0 and integrating over X0, we
obtain

jµ(x0, �x) = qc
∫

d X0 d Xµ

d X0

1√|g|δ
(3)(�x − �X)δ(x0 − X0)

= −qc
d Xµ

dx0

δ(3)[�x − �X(x0)]√|g| . (8.50)

10 Of course, this is just a covariant generalization of the Gauss theorem that relates the flux of electric field
through a closed surface to the charge enclosed by it.
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If the particle is at rest at the origin in the chosen coordinate system, the current is

jµ(x0, �x) = −qcδµ0 δ(3)(�x)√|g| , (8.51)

and it is easy to see that q is indeed the electric charge according to the above definitions.
jµ is a conserved current:

∇µ jµ ∼ ∂

∂xµ

{√
|g(x)|

∫
dξ Ẋµ 1√|g(X)|δ

(4)[x − X (ξ)]

}

=
∫

dξ Ẋµ ∂

∂xµ
δ(4)[x − X (ξ)] = −

∫
dξ Ẋµ ∂

∂ Xµ
δ(4)[x − X (ξ)]

= −
∫

dξ
d

dξ
δ(4)[x − X (ξ)] = −δ(4)[x − X (ξ)]

∣∣ξ2

ξ1
= 0, (8.52)

generically, except for the initial and final positions of the particle Xµ(ξ1) and Xµ(ξ2),
which look like a 1-particle source and a sink and can be taken to infinity.

Observe that, for the current (8.49), the interaction term (8.40) becomes the integral of
the 1-form A over the worldline γ:

−q

c

∫
γ(ξ)

Aµ ẋµdξ = −q

c

∫
γ

A. (8.53)

This term has to be added to the action of the particle, Eq. (3.255), (3.257) or (3.258), in
order to obtain the worldline action of a massive electrically charged particle,

S[Xµ(ξ)] = −Mc
∫

dξ

√
gµν(X)Ẋµ Ẋ ν − q

c

∫
dξ Aµ Ẋµ, (8.54)

or that of a massless one. That kind of term is known as a Wess–Zumino (WZ) term. In
this form it is easy to see that, under a gauge transformation, the action changes by a total
derivative. The integral of the total derivative vanishes exactly only for special boundary
conditions, though.

This action can be used as a source, but it also describes the motion of a charged particle
in a gravitational/electromagnetic background. In the special-relativistic limit, taking ξ =
X0 = ct , the action takes the standard form

S ∼
∫

dt
{
−Mc2 + 1

2 Mv2 − qφ + q

c
�A · �v

}
. (8.55)

If there is a point-like charge q at rest at the origin the only non-vanishing components
of F are F0r and they should depend only on r because of the spherical symmetry of
the problem. Using the above definition of charge and working in general static spherical
coordinates Eq. (7.22), we find

q =
∫

S2∞

εµνρσ

4
√|g| Fρσ dxµ ∧ dxν =

∫
S2∞

d�2r2 F0r = ω(2) lim
r→∞

(
r2 F0r

)
, (8.56)
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where ω(2) is the volume of the 2-sphere 4π . Then, the electromagnetic field of a point-like
charge must behave for large r as follows:

Er = F0r ∼ + 1

4π

q

r2
, φ ∼ + 1

4π

q

r
. (8.57)

(Of course, this result is exact in the absence of gravity, in Minkowski spacetime.) On
plugging this result into Eq. (8.55), we find that the electrostatic force between two particles
is, in this unit system, q1q2/(4πr2), as we said.

In the units that we are using, M appears multiplied by G(4)
N in the metric (as in the

Schwarzschild solution) and q does not. Some simplification is achieved by using the fol-
lowing normalization and units that are standard in this field: we set c = 1 and rewrite the
Einstein–Maxwell action as follows:

SEM[g, A] = 1

16πG(4)
N

∫
d4x

√
|g| [

R − 1
4 F2

]
. (8.58)

In these units both Aµ and gµν are dimensionless. The factor 16πG(4)
N disappears from the

equations of motion. Furthermore, if we keep (by definition) the WZ term as in Eq. (8.54)
without any additional normalization factor, the electric charge is now

q = 1

16πG(4)
N

∫
S2∞

�F, (8.59)

and has dimensions of mass (energy). Finally, for a point-like charge we expect, for
large r ,

Er = F0r ∼ 4G(4)
N q

r2
, (8.60)

which implies that the force between two charges is

F12 = 4G(4)
N

q1q2

r2
12

. (8.61)

8.2.2 Massive electrodynamics

Before concluding this section it is worth considering which facts would be modified if the
vector field were massive. A massive vector field in Minkowski spacetime is described by
the Proca Lagrangian Eq. (3.67) and its generalization to curved spacetime is straightfor-
ward. The equation of motion is

∇ν Fνµ + m2 Aµ = 0. (8.62)

We immediately see that this equation is completely different from the Bianchi identity
Eq. (8.35), which is also valid in the massive case, which implies that massive electrody-
namics, apart from gauge invariance, has no electric–magnetic duality. This implies that,
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in principle, there will be no Dirac magnetic monopoles dual to the electric ones, which
explains the results of [591].

If we take the divergence of this equation, we find the integrability condition

∇ν Aν = 0, (8.63)

that removes one of the degrees of freedom described by the vector field, leaving only three
that correspond to the three possible helicities of a massive spin-1 particle (−1, 0, +1).

The quanta of the Proca field, being massive, will propagate at a speed smaller than 1
(c) and the interaction they mediate will be short-ranged. We can see this by finding the
static, spherically symmetric solution that describes the field of an electric monopole in
this theory in Minkowski spacetime. On substituting the Ansatz

Aµ = δµ0
f (r)

r
(8.64)

into the equation of motion, we obtain the differential equation

f ′′ − m2 f = 0, (8.65)

whose solution is (with the boundary condition Aµ → 0 when r → ∞)

Aµ = Qδµ0
e−mr

r
. (8.66)

Q is an integration constant that is somehow related to the “electric charge.” However, the
lack of gauge invariance suggests that the “electric charge” is not conserved in this system.
In fact, it is not easy to define what is meant by electric charge here. It is then useful to
consider a slightly more general system with the following classically equivalent action for
Aµ and a scalar auxiliary field φ:

S[Aµ, φ] =
∫

d4x
√

|g| [ − 1
4 F2 + 1

2(∂φ + m A)2
]
. (8.67)

This action is invariant under the following massive gauge transformations:

δAµ = ∂µ�, δφ = −m�. (8.68)

Observe that, for consistency, the scalar φ has to live in the gauge group manifold: either
R or S1 (if the gauge group is U(1)). On fixing the gauge φ = 0 we recover the Proca
Lagrangian and any solution of the equations of motion of the original system is also a
solution of this one in this gauge.

It is sometimes said that the scalar φ is “eaten” by the vector field, which acquires a
mass in the process. φ is then referred to as a Stückelberg field [871]. Observe that the
number of degrees of freedom before and after the gauge fixing are the same. Observe
also that this procedure for obtaining a massive vector field is different from the standard
spontaneous symmetry-breaking mechanism. There are two main differences: the scalar is
real and carries no charge with respect to the vector field and there is no potential for the
scalar. (Actually, there is no way to write a gauge-invariant potential with only one real
scalar.)
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The equations of motion corresponding to the new Lagrangian are

∇ν Fνµ + m
(∇µφ + m Aµ

) = 0, ∇2φ + m∂µ Aµ = 0. (8.69)

To define a conserved charge, we can either introduce a source jµ into the first equation or
use the conserved Noether current associated with constant11 shifts of φ:

jµ

N = ∂ν Fνµ + m
(
∂µφ + m Aµ

)
. (8.70)

The source jµ is conserved, but only on-shell (upon use of the φ equation of motion) and
the same applies to the Noether current, which is associated with a global symmetry. In
both cases we can define the electric charge in this system by

q =
∫

d3x
√

|g| j0
N =

∫
d3x

√
|g| [∇ν Fν0 + m

(∇0φ + m A0
)]

. (8.71)

On applying this definition to the electric monopole solution Eq. (8.66) and using

�∇ 2
(e−mr

r

)
= −4πδ(3)(�x) + m2e−mr

r
, (8.72)

we find q = 4π Q, as we naively expected. It should be stressed, though, that this charge is
of a nature completely different from the usual electric charge since it is associated with a
global symmetry of a different field. In principle, the no-hair conjecture should apply (neg-
atively) to charges of this kind associated with short-range interactions and global (rather
than local) symmetries.

Finally, let us notice that neither the original Proca action nor the new one with the
Stückelberg field φ has any duality symmetry. However, the new action can be dualized
(i.e. written in dual variables), as we will see later in Section 8.7.5.

8.3 The electric Reissner–Nordström solution

We are now ready to find BH-type solutions of the equations of motion derived from the
Einstein–Maxwell action normalized as in Eqs. (8.58). Since the Maxwell equation is sat-
isfied if the Einstein equation is, we only have to solve the latter with the trace subtracted,

Rµν = 1
2

[
Fµ

ρ Fνρ − 1
4 gµν F2

]
, (8.73)

plus the Bianchi identity. We are looking for a static, spherically symmetric solution and,
therefore, as usual, we make the Ansatz Eq. (7.2) for the metric. This time we also have to
make an Ansatz for the electromagnetic field. If we are looking for a point-like electrically
charged object at rest, taking into account Eq. (8.60), an appropriate Ansatz that is readily
seen to satisfy the Maxwell equation and Bianchi identity for the metric Eq. (7.2) is

Ftr ∼ ± 1

R2(r)
. (8.74)

11 If we use the full gauge invariance of the theory, we recover exactly the same Noether current and Bianchi
identity as in the massless case. The definition Eq. (8.59) then gives zero charge because F goes to zero too
fast at infinity.
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The ± corresponds to the two possible signs of the electric charge. The metric cannot
depend on this sign because the action is invariant under the (admittedly rather trivial)
duality symmetry F → −F , g → g. The solution one obtains in this way is the Reissner–
Nordström (RN) solution12 [735, 802] and can be conveniently written as follows:

ds2 = f (r)dt2 − f −1(r)dr2 − r2d�2
(2),

Ftr = 4G(4)
N q

r2
,

f (r) = (r − r+)(r − r−)

r2
,

r± = G(4)
N M ± r0, r0 = G(4)

N

(
M2 − 4q2

)1
2 ,

(8.75)

where q is the electric charge, normalized as in Eq. (8.59), and M is the ADM mass.
Some remarks are necessary.

1. This metric describes the gravitational and electromagnetic field created by a spheri-
cal (or point-like), electrically charged object of total mass M and electric charge q as
seen from far away by a static observer to which the coordinates {t, r, θ, ϕ} (that we
can keep calling “Schwarzschild coordinates”) are adapted. Schwarzschild’s solution
is contained as the special case q = 0.

Included in the (total) mass is the energy associated with the presence of an electro-
magnetic field. We cannot covariantly separate the energy associated with “matter”
from the energy associated with the electromagnetic field and the gravitational
field, but we must keep in mind that the mass of the spacetime contains all these
contributions.

2. The vector field that gives the above field strength and whose local existence is
guaranteed by the fact that F satisfies the Bianchi identity is

Aµ = δµt
4G(4)

N q

r
. (8.76)

3. There is a generalization of Birkhoff’s theorem for RN BHs (see exercise 32.1 of
[707]): RN is the only spherically symmetric family of solutions (that includes
Schwarzschild’s) of the Einstein–Maxwell system.

4. The metric above is a solution for any values of the parameters M and q and,
therefore, of r±, including complex ones.

5. The metric is singular at r = 0 and also at r− and r+, if r+ and r− are real. At r = r±
the signature changes and, in the region between r+ and r−, r is timelike and t is
spacelike and in that region the metric is not static as in Schwarzschild’s horizon

12 The Reissner–Nordström solution is also a particular case (the spherically symmetric case) of the general
static axisymmetric electrovacuum solutions discovered independently by Weyl in [949, 950] and should
also bear his name.
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Fig. 8.1. Part of the Penrose diagram of a Reissner–Nordström black hole M > 2|q|. Only
two “universes” are shown. The complete diagram repeats periodically the part shown.

interior. To find the nature of these singularities, we calculate curvature invariants
and study the geodesics. R = 0 due to T µ

µ = 0, but other curvature invariants (and
F2 as well) tell us that there is a curvature singularity at r = 0 but not at r = r±. In
fact, an analysis similar to the one made in the Schwarzschild case shows that, when
it is real and positive, r+ is an event horizon of area

A = 4πr2
+, (8.77)

surrounding the curvature singularity, in agreement with the weak form of the
cosmic censorship conjecture, whereas r− is a Cauchy horizon: in the RN spacetime
there is no Cauchy hypersurface on which we can give initial data for arbitrary fields
and predict their evolution in the whole spacetime. By definition, we can have a
Cauchy hypersurface only for the region outside the Cauchy horizon. This horizon
seems to be unstable under small perturbations [763] associated with the infinite
blueshift that incoming radiation suffers in its neighborhood (opposite to the infinite
redshift that incoming radiation suffers in the neighborhood of the event horizon),
and it is conjectured that a spacelike singularity should appear in its place [197, 737].

Both horizons exist when M > 2|q| and then the RN metric describes a BH. In
Figure 8.1 we have represented part of its Penrose diagram, based on the maximal
analytic extension of the RN metric Eq. (8.75) found in [465]. In this diagram there
are two “universes” (quadrants I and IV, that have asymptotically flat regions), as in
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Schwarzschild’s, but the complete diagram consists of an infinite number of pairs of
“universes” arranged periodically. The singularities are timelike, not spacelike like
Schwarzschild’s, and can be avoided by observers that enter the BH. In fact, there
are timelike geodesics that, starting in a certain “universe,” enter the BH crossing
the event horizon r+ and, after crossing two Cauchy horizons r−, emerge in a
different “universe.” Analogous effects take place in the gravitational collapse of
spherically symmetric shells of electrically charged matter [175]: depending on the
characteristics of the shell, the gravitational collapse can end in a singularity or the
shell can stop contracting, and start to expand in a different “universe.”

Observe that, although the cosmic censorship conjecture is obeyed by the RN
spacetime in its weak form, it is violated in its strong form: an observer that takes
the inter-“universe” trip will see the singularity.13 However, if the Cauchy horizon
indeed became a spacelike singularity, such a problem would not arise.

6. When M < −2|q| (negative) r± are real and negative and there is no horizon sur-
rounding the curvature singularity at r = 0. The Penrose diagram of this spacetime
again is the one in Figure 7.4. This case could be excluded by invoking cosmic
censorship, which is violated in its weak form by this metric. It is reasonable to
think (and the positive-energy theorem proves it) that, if we start with physically
reasonable initial conditions, we will not end up with a negative mass.

7. When −2|q| < M < 2|q|, the constants r± are complex and there are no horizons
and the only singularity left is the one at r = 0, and it is naked, the Penrose diagram
being Figure 7.4. Again, cosmic censorship should exclude this range of values of
M . This includes the special case M = 0. Observe that, otherwise, we would have
a massless, charged object at rest, which is a rather strange object. The mass is the
total energy of the spacetime. A non-trivial electromagnetic field such as the one
produced by a point-like charge is a source of (positive) energy. Thus, our physical
intuition tells us that, in order to have non-zero charge and at the same time zero
mass, there must be some “negative energy density” present. It is thought that the
same should happen in the other −2|q| < M < 2|q| cases.

Negative energies always seem to be at the heart of naked singularities and, in the
spirit of cosmic censorship, if negative energies are not allowed initially, no naked
singularities will appear in the evolution of the system.

Thus, cosmic censorship restricts the possible values of M to the range M ≥ 2|q|.
What happens if we now throw into a regular RN BH charged matter with mass
M ′ and charge q ′ such that M + M ′ < 2|q + q ′|? In [930] it was proven that, if
M = 2|q| (an extreme RN BH), particles whose absorption by the BH would take
it into the region of forbidden parameters are not captured by the BH. However,
it seems that it is possible to “overcharge” a non-extremal (M < 2|q|) RN BH by
sending into it a charged test particle (but not by using a charged collapsing shell of
charged matter) [573], although the effects of the absorption of the particle on the
BH geometry (which are assumed to be small) have not yet been worked out.

13 An observer falling into a Schwarzschild BH cannot see the singularity, which always lies in its future, until
he/she actually crashes onto it. This has to do with the spacelike nature of the Schwarzschild singularity.
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Fig. 8.2. Part of the Penrose diagram of an extreme Reissner–Nordström black hole. The
complete diagram has an infinite number of “universes.”

We see that the RN BH provides a very interesting playground on which to test
cosmic censorship. We will see that the relation between cosmic censorship and
positivity of the energy can be translated into supersymmetry (BPS) bounds.

8. The limiting case M = 2|q| between the naked singularity and the regular BH is
very special. When M = 2|q| the two horizons coincide, r+ = r− = G(4)

N M , and
there is no change of signature across the resulting horizon (which is a degenerate
Killing horizon), which still has a non-vanishing area

Aextreme = 4πr2
+ = 4π

(
G(4)

N M
)2

. (8.78)

This object is an extreme RN (ERN) BH and it will play a central role in much of
what follows. Some of the properties of ERN BHs are the following.

(a) The proper distance to the horizon along radial directions at constant time,

lim
r2→r+

∫ r2

r1

ds = lim
r2→r+

∫ r2

r1

dr
(

1 − r+
r

)−1
= ∞, (8.79)

diverges. This does not happen along timelike or null directions, though an
observer can cross it in a finite proper time.

(b) The Penrose diagram is drawn in Figure 8.2. As we see, the causal structure
is completely different from that of any regular RN BH no matter how close to
the extreme limit it is. Thus, we can expect physical properties of the family of
RN BHs to be discontinuous at the extreme limit.
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(c) The relative values of their charge and mass are such that, if we have two of
them, M1 = 2|q1| and M2 = 2|q2|, it will always happen that

G(4)
N M1 M2 = 4G(4)

N |q1q2|, (8.80)

and, if both charges have the same sign and we divide by the relative distance
between them, we obtain

F12 = −G(4)
N

M1 M2

r2
12

+ 4G(4)
N

q1q2

r2
12

= 0. (8.81)

This is nothing but the force between two point-like, massive, charged,
non-relativistic objects on account of Eqs. (3.140) and (8.61) and it vanishes,
so they will be in equilibrium. Then, this suggests that it should be possible to
find static solutions describing two (or many) ERN BHs in equilibrium.

(d) On shifting the radial coordinate r = ρ + G(4)
N M of the ERN metric, it becomes

ds2 =
(

1 + G(4)
N M

ρ

)−2

dt2 −
(

1 + G(4)
N M

ρ

)2 (
dρ2 + ρ2d�2

(2)

)
. (8.82)

On defining new Cartesian coordinates �x3 = (x1, x2, x3) such that |�x3| = ρ and
d �x 2

3 = dρ2 + ρ2d�2
(2), we obtain a new form of the ERN solution:

ds2 = H−2dt2 − H 2d �x 2
3 ,

Aµ = −2δµt sign(q)
(
H−1 − 1

)
,

H = 1 + 2G(4)
N |q|

|�x3| = 1 + G(4)
N M

|�x3| .

(8.83)

Observe that, in this case, due to the shift in the radial coordinate, the event
horizon is placed at �x3 = �0, which in flat Minkowski spacetime is just a point.
It is, though, easy to see that the surface labeled by �x3 = �0 is not just a point
but is a sphere of finite area because in the limit ρ → 0 one has to take into
account the ρ2 factor of d�2

(2) that cancels out the poles in H 2, so the induced
metric in the ρ = 0, t = constant hypersurface is, indeed,

ds2 = −(G(4)
N M)2d�2

(2). (8.84)

H is a harmonic function in the three-dimensional Euclidean space spanned
by the coordinates �x3, i.e. it satisfies

∂i∂i H = 0. (8.85)

This fact could just be a coincidence but, if we use Eq. (8.83) as an Ansatz
in the equations of motion without imposing any particular form for H , we
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find that they are solved for any harmonic function H , not just for the one
in Eq. (8.83). We have obtained in this way the Majumdar–Papapetrou (MP)
family of solutions [676, 754]:

ds2 = H−2dt2 − H 2d �x 2
3 ,

Aµ = δµtα
(
H−1 − 1

)
, α = ±2,

∂i∂i H = 0.

(8.86)

If we want to find solutions describing several ERN BHs in static equilibrium,
it is, therefore, natural to search amongst this class of solutions.14

Maxwell’s theory in Minkowski spacetime is a linear theory and obeys
the superposition principle. It is possible to find a solution describing an
arbitrary number of electric charges at rest in arbitrary positions by adding the
corresponding Coulomb solutions. With our normalizations we would have

Aµ = −δµt

N∑
i=1

2G(4)
N qi

|�x3 − �x3,i | , (8.88)

in a certain gauge. As we have stressed before, Maxwell’s theory in Minkowski
spacetime does not know about interactions and this is why we can have a
static solution, which we know would be possible in the real world only if there
were another force holding the charges in place. If we introduce source terms
for the charges (massive or massless point-like particles of electric charges
qi ) then we will have to solve a (non-linear) coupled system of equations: the
Maxwell field equations and the equations of motion for the particles. The
solutions will be in general time-dependent (and realistic).

Newtonian gravity is another linear theory and, thus, there are static solutions
corresponding to arbitrary mass distributions even if we know that external
forces are needed to hold the masses in place. Again, on introducing sources,
the solutions become realistic (and, in general, time-dependent).

Now, if we again introduce sources interacting both gravitationally and
electrostatically, we can have static solutions describing particles with masses
and charges Mi = 2|qi | in equilibrium. Newtonian gravity is insensitive to the
electrostatic interaction energy and to the gravitational interaction energy.

14 One can also try to look for solutions of this form in the scalar-coupled-to-gravity system. Since the force
between two objects with “scalar charge” is always attractive, we do not expect on physical grounds to
find any. In fact, it is possible to find such solutions if we pay the price of having purely imaginary “scalar
charges” (which repel each other). The solutions have the following form:{

ds2 = e2H dt2 − e−2H d �x 2
3 ,

ϕ = c ± i H,
(8.87)

where c is any constant and H is any harmonic function ∂i ∂i H = 0.
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In GR, a non-linear (non-Abelian, self-coupling) theory, things are quite
different. There is no need to introduce sources: the theory knows that two
Schwarzschild BHs, for instance, cannot be in static equilibrium and the corre-
sponding solution does not exist. The coupling to gravity makes the electromag-
netic interaction effectively non-Abelian, and it does not need the introduction
of sources to know that only ERN BHs can be in static equilibrium15 [185]. This
coupling gives rise to many other interesting phenomena in RN backgrounds,
such as the conversion of electromagnetic into gravitational waves [740].

Since the horizon of a single ERN BH looks like a point in isotropic coordi-
nates, we can try harmonic functions with several point-like singularities:

H(�x3) = 1 +
N∑

i=1

2G(4)
N |qi |

|�x3 − �x3,i | . (8.89)

The overall normalization is chosen so as to obtain an asymptotically flat
solution and the coefficients of each pole are taken positive so that H(�x3) is
nowhere vanishing and the metric is non-singular. Also this choice gives a
potential like the one in Eq. (8.88) for large values of |�x3|.

It can be seen [500] that each pole of H indeed corresponds to a BH horizon.
In fact, to see that there is a surface of finite area at �x3,i , one simply has to shift
the origin of coordinates to that point and then examine the ρ → 0 limit as
in the single-BH case. The charge of each BH can be calculated most simply
using Eq. (8.43), where the volume encloses only one singularity (the current
is nothing but a collection of Dirac-delta terms). The charges turn out to be
sign(−α)| qi |, i.e. all the charges have the same sign.

In GR it is, however, impossible to calculate the mass of each BH because
there is no local conservation law for the mass and there is no such concept
as the mass of some region of the spacetime. Only one mass can be defined,
which is the total mass of the spacetime and this is M = 2

∑N
i=1 |qi |. However,

the equilibrium of forces existing between the black holes suggests that the
electrostatic and gravitational interaction energies (to which GR gravity is sen-
sitive) cancel out everywhere. If that were true, the masses and charges would
be localized at the singularities and then we could assign a mass Mi = 2|qi | to
each black hole [185]. It is, perhaps, this localization of the mass of ERN BHs
which will allow us to find sources for them, something that turned out to be
impossible for Schwarzschild BHs. This is physically a very appealing idea,
but it is certainly not a rigorous proof.

If we do not care about singularities, we can also take some coefficients of
the poles of the harmonic function to be negative. In this way it is possible
to obtain solutions with vanishing total mass. Here, it is intuitively clear that

15 As a matter of fact, the identity M1 M2 = 4|q1q2| does not imply that both objects are ERN BHs. It can
be satisfied by a non-extremal RN BH with M1 > 2|q1| and a naked singularity with M2 < 2|q2|, but the
corresponding static solutions (if any) are not known.
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a negative coefficient is associated with some “negative mass density” and
cosmic censorship should eliminate these solutions.

(e) If we take the near-horizon limit ρ → 0 in the ERN metric Eqs. (8.83), the
constant 1 can be ignored and we find another MP solution with harmonic
function H = 2G(4)

N |q|/ρ:

ds2 =
(

ρ

2G(4)
N |q|

)2

dt2 −
(

ρ

2G(4)
N |q|

)−2

dρ2 − (
2G(4)

N |q|)2
d�2

(2),

At = − ρ

G(4)
N q

, Ftρ = 1

G(4)
N q

.

(8.90)

This exact solution is the Robinson–Bertotti (RB) solution [146, 812] and
describes the ERN metric near the horizon. It is the only solution of the
Einstein–Maxwell equations which is homogeneous and has a homogeneous
non-null electromagnetic field (Theorem 10.3 in [640]). It is the direct prod-
uct of two two-dimensional spaces of constant curvature: a two-dimensional
anti-de Sitter (AdS2) spacetime with “radius” RAdS = 2G(4)

N |q| and therefore
with two-dimensional scalar curvature R(2) = −1/[2(G(4)

N |q|)2], in the t − ρ

part of the metric and a 2-sphere S2 of radius RS = 2G(4)
N |q| and curvature

R(2) = +1/[2(G(4)
N |q|)2] in the θ−ϕ part of the metric. The sum of the two-

dimensional scalar curvatures vanishes, as it should, because all solutions of the
Einstein–Maxwell system have R = 0. Evidently, it is not asymptotically flat.

AdS2 is invariant under the isometry group SO(1, 2) (which is also called AdS2)
and S2 under SO(3). If we compare the RB isometry group with the ERN isom-
etry group (SO(1, 1) × SO(3) and SO(1, 1) ∼ R

+ × Z2 are shifts in time and
time inversions) we see that there is an enhancement of symmetry when we ap-
proach the horizon. As we will see in Chapter 13, there is also an enhancement
of unbroken supersymmetry, which is maximal in this limit. This is enough to
consider the RB solution as a vacuum of the theory alternative to Minkowski.

In turn, this allows us to view the ERN solution as interpolating between the
Minkowski vacuum (which is at infinity) and the RB solution (which is at the
horizon), and then we can interpret it as a gravitational soliton [433].

(f) There are many other solutions in the MP class. However, it has been argued in
[500] that the only BH solutions in this class (and in a bigger class that we will
study later, the IWP class) are the ones we have written above. One could look
for solutions describing extended objects by allowing the harmonic function
H to have one- or two-dimensional singularities. They are not asymptotically
flat and they are not natural, so we will not consider them.
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9. If we shift the radial coordinate by r = ρ + r± in the RN solution Eq. (8.75), it takes
the following form:

ds2 =
(

1 + r±
ρ

)−2(
1 + ±2r0

ρ

)
dt2

−
(

1 + r±
ρ

)2[(
1 + ±2r0

ρ

)−1

dρ2 + ρ2d�2
(2)

]
,

A′
µ = −δµt

4G(4)
N q

r±

[(
1 + r±

ρ

)−1

− 1

]
. (8.91)

The RN metric looks in this form (taking the minus sign) like a Schwarzschild
metric with mass r0/G(4)

N “dressed” with some factors related to the gauge potentials
or, alternatively, as the ERN solution dressed with some Schwarzschild-like factors.
The Schwarzschild component of this metric completely disappears in the extreme
limit, leaving an ERN isotropic metric. This form of charged BH metric is quite
common and occurs, as we will see, in various contexts, rewritten in this way:

ds2 = H−2W dt2 − H 2
[
W −1dρ2 + ρ2d�2

(2)

]
,

Aµ = δµtα
(
H−1 − 1

)
,

H = 1 + h
ρ
, W = 1 + ω

ρ
, ω = h

[
1 − (α/2)2

]
.

(8.92)

We will obtain many solutions in this form. Afterwards, we will identify the
integration constants that appear in them in terms of the physical constants:

α = −4G(4)
N q/r±, h = r±, ω = ±2r0. (8.93)

10. Another useful coordinate system for charged BHs [446], which covers the BH exte-
rior and in which the radial coordinate τ takes values between −∞ on the horizon and
0 at spatial infinity, can be obtained by the transformation of the coordinate ρ above,

ρ = − r0e−r0τ

sinh(r0τ)
, (8.94)

so the metric takes the form

ds2 = e2U dt2 − e−2U

[
r4

0

sinh4(r0τ)
dτ 2 + r2

0

sinh2(r0τ)
d�2

(2)

]
,

e2U =
(

1 + r−
2r0

− r−
2r0

e2r0τ

)−2

e2r0τ .

(8.95)



8.3 The electric Reissner–Nordström solution 237

11. Finally, BH solutions for an action containing several different vector fields AI
µ,

I = 1, . . ., N , can easily be found. Let us consider the action

S[gµν, AI
µ] = 1

16πG(4)
N

∫
d4x

√
|g|

[
R − 1

4

I=N∑
I=1

(
F I

)2]
. (8.96)

This action is invariant under global O(N ) rotations of the N vector field strengths.
This is a simple example of duality symmetry. Now, any solution of the Einstein–
Maxwell theory (one vector field) is a solution of this theory with the remaining
N − 1 vector fields equal to zero, and, by performing general O(N ) rotations, one
can generate new solutions in which the N vector fields are non-trivial. It is clear
that, if the original solution had the electric charge q1, the electric charges of the
new solution qi will satisfy

∑N
i=1 q ′ 2

i = q2
1 . This duality symmetry does not act on

the metric and, therefore, all one has to do is to replace q2
1 by

∑N
i=1 q ′ 2

i in it.

For example, had we started from the RN solution (8.92), we would have obtained
by this procedure a RN solution with many Abelian electric charges:

ds2 = H−2W dt2 − H 2
[
W −1dρ2 + ρ2d�2

(2)

]
,

AI
µ = δµtα

I
(
H−1 − 1

)
,

H = 1 + h/ρ, W = 1 + ω
ρ
,

ω = h

[
1 −

I=N∑
I=1

(
α I

2

)2
]
,

(8.97)

and
α I = −4G(4)

N q I /r±, h = r±, ω = ±2r0, (8.98)

where now

r± = G(4)
N M ± r0, r0 = G(4)

N

(
M2 − 4

I=N∑
I=1

q2
I

)1
2

. (8.99)

This is the first and simplest example of the use of duality symmetries as solution-
generating symmetries. We will find more-complex examples later on, but the main
ideas are the same.

Observe that, in this procedure of generating new solutions out of known ones, the
new solutions are expressed at the beginning in terms of the old physical parameters
and the parameters of the duality transformation (in this case, O(N ) and sines and
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cosines of angles). Then one has to identify those constants in terms of the physical
parameters of the new solution. This is usually quite a painful calculation (some-
times, in cases more complicated than this one, it is impossible to do) unless one uses
invariance properties such as the invariance of

∑i=N
i=1 q2

i under O(N ) transformations.

In the end, one should obtain a general duality-invariant family of solutions such
that a further duality transformation takes us to another member of the family but
the form of the general solution no longer changes. These families of solutions
reflect many of the symmetries of the theory and depend only on duality-invariant
combinations of charges and moduli.

The family we have obtained is duality-invariant: the effect of a further duality
transformation is just to replace all charges by primed charges, but the general form
of the solution does not change.

8.4 The Sources of the electric RN black hole

Just as we did with the Schwarzschild solution, we want to try to find a source for the
RN solution such that it becomes a solution everywhere, including at the singularity r = 0.
Our candidate source will be a point-like particle at rest at r = 0 whose mass and electric
charge match those of the RN BH. As in the Schwarzschild case, our expectations are not
good because most of the reasons why we were unsuccessful (delocalization of the gravi-
tational energy and the infinite self-force of the particle) are valid also in the general RN
case. The only change is the causal nature of the singularity: spacelike in the Schwarzschild
case, timelike in the RN case. However, one could argue that the gravitational and electro-
magnetic energy densities in the ERN BH cancel each other out everywhere so they are
somehow localized at the origin r = 0 and, thus, in this particular case we have some hope.

Our starting point is, therefore, the action of the Einstein–Maxwell system Eq. (8.58)
coupled to the action of a massive, charged particle (c = 1):

S = 1

16πG(4)
N

∫
d4x

√
|g| [

R − 1
4 F2

] − M
∫

dξ

√
gµν(X)Ẋµ Ẋ ν − q

∫
dξ Aµ Ẋµ. (8.100)

The equations of motion of the dynamical fields gµν, Aµ, and Xµ are, respectively,

Gµν − 8πG(4)
N T (A)

µν + 8πG(4)
N M√|g|

∫
dξ

gµρgνσ Ẋρ Ẋσ√
|gλτ Ẋλ Ẋ τ |

δ(4)[X (ξ) − x] = 0, (8.101)

∂µ

(√
|g|Fµν

)
− 16πG(4)

N q
∫

dξ Ẋ νδ(4)[X (ξ) − x] = 0, (8.102)

γ 1/2 M∇2(γ )Xλ + Mγ −1/2�ρσ
λ Ẋρ Ẋσ − q Fλ

ρ Ẋρ = 0, (8.103)

where
γ = gµν(X)Ẋµ Ẋ ν. (8.104)

Let us first consider the Einstein equation. We use the RN solution in the coordinates
Eqs. (8.92) with the upper sign and, following the same steps as in the Schwarzschild case,
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we obtain the following non-vanishing components of the Einstein tensor:16

G00 = g00 H−2
{−δ(W ) + 2(W H−1)δ(H) + (W H−1)′ H ′},

Gρρ = gρρ H−2
{−δ(W ) + (W H−1)′ H ′},

Gθθ = gθθ H−2
{

1
2δ(W ) − (W H−1)′ H ′},

Gϕϕ = sin2 θGθθ ,

(8.105)

where we are using the notation

δ(W ) = − 4π

sin θ
ωδ(3)(ρ), δ(H) = − 4π

sin θ
hδ(3)(ρ). (8.106)

The electromagnetic energy–momentum tensor does not need to be calculated explicitly.
It does not have any distributional term (δ function) and we know that it cancels out ex-
actly the finite terms of the Einstein tensor. Thus, in the Einstein equation, we need only
focus on the distributional terms coming from the Einstein tensor and the particle’s energy–
momentum tensor, which depends on our Ansatz for Xµ. For a particle at rest at �x3 = �0, we
must set17

Xµ = δµ0ξ, (8.107)

but with this choice only the 00 component of the particle’s energy–momentum tensor is
non-vanishing, as in the Schwarzschild case. However, in the extreme case ω = 0 only the
00 component of the Einstein has a distributional term that matches exactly the particle’s
energy–momentum tensor

8πG(4)
N M H−5δ(3)(�x3) (8.108)

(after integration over ξ ).
The Maxwell equation is also satisfied (even in the non-extreme case). Let us turn to

the particle’s equation of motion. The time component is just dg−1/2
00 /dξ = d H/dξ in the

extreme case. H diverges on the particle’s path and, even though it is independent of ξ , we
cannot say that this equation is truly solved. The radial component can be put in the form

−M∂r g
1
2
00 − q∂r A0 = 0, (8.109)

and it is satisfied identically by the ERN solution.18 If we considered the motion of any
other particle with M ′ = 2|q ′|, we would see that it can be at rest anywhere in the ERN
solution.

These kinds of cancelations are indications of supersymmetry, which, as we will see, is
present in the ERN solution.

16 Needless to say, the mathematical rigor in all these manipulations is scarce. For instance, we feel free to
multiply delta functions by functions that may diverge or be zero if we integrated the product. Some of
these manipulations could possibly be justified by working with tensor densities instead of tensors, etc.
The ultimate justification for presenting these calculations is the result, which allows us to match physical
parameters such as mass and electric charge with integration constants of solutions.

17 Observe that, in this coordinate system, �x3 = �0 is the event horizon! The δ functions that we obtain have
support only there and we are forced to make this Ansatz if we want the particle’s energy–momentum tensor
and electric current to reproduce the singularities of the Einstein tensor and the Maxwell equation.

18 Again, we manipulate g00 etc., not taking into account that they are zero or diverge along the particle’s path.
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8.5 Thermodynamics of RN black holes

As we said in the discussion of Schwarzschild BH thermodynamics, most of the results
can be generalized to BHs containing charges or angular momentum. In particular, the
zeroth and second laws of BH thermodynamics take exactly the same form and so do the
identifications between the surface gravity and temperature and horizon, Eq. (7.45), and
between area and entropy, Eq. (7.46). The first law requires the addition of a new term
that takes into account the possible changes in the BH mass due to changes in the charge
(� = c = 1),

d M = 1

8πG(4)
N

κd A + φhdq, (8.110)

where φh is the electrostatic potential on the horizon. In this case

T = r0

2πr2+
= 1

2πG(4)
N

√
M2 − 4q2(

M +
√

M2 − 4q2
)2 ,

S = πr2
+

G(4)
N

= πG(4)
N

(
M +

√
M2 − 4q2

)2
,

φh = φ(r+) = 4G(4)
N q

r+
.

(8.111)

and the Smarr formula takes the form

M = 2T S + qφh. (8.112)

It is worth stressing that the above formulae have been obtained using a generic RN
metric (i.e. non-extremal). However, we know that the limit in which we approach the ERN
solution with M = 2|q| is not continuous: the topology of the ERN, its causal structure, is
different from that of any non-extreme RN BH, no matter how close to the extreme limit
it is. Furthermore, it seems that the extreme limit cannot be approached by a finite series
of physical processes (the third law of BH thermodynamics) and it has also been argued
that the thermodynamical description of the RN BH breaks down when we approach the
extreme limit [790] (see also [653]): close enough to the extreme limit, the emission of
a single quantum with energy equal to the Hawking temperature would take the mass of
the RN BH beyond the extreme limit. Then, the change in the spacetime metric caused by
Hawking radiation would be very big and Hawking’s calculation in which backreaction of
the metric to the radiation is ignored becomes inconsistent.

For all these reasons we may expect surprises if we naively take the limit M → |q| in
the above formulae, but this seems not to happen: in that limit the temperature vanishes
and the entropy remains finite and, if we calculate both directly on the ERN solution, we
find the same result. In any case, this is a very important issue because essentially these are
the only BHs for which a statistical computation of the entropy based on string theory has
been performed, and we should try to compute both by other methods, for instance using
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Q M

T

Fig. 8.3. The temperature T versus the mass M of a Reissner–Nordström black hole of
charge Q = 2q .

C

MQ

Fig. 8.4. The specific heat at constant charge C versus the mass M of a Reissner–
Nordström black hole of charge Q = 2q .

the Euclidean path integral formalism. Before we do so, let us mention other remarkable
aspects of the RN BH thermodynamics.

We have drawn the behavior of the RN BH temperature for fixed charge in Figure 8.3.
In it we see that, for large values of the mass, the temperature diminishes when the mass
grows, just as in the Schwarzschild BH, but, for values of the mass comparable to the
charge, close to the extreme limit, the temperature grows with the mass, as in any ordi-
nary thermodynamical system. There is a maximum temperature for RN BHs (for constant
charge), which is reached for M� = 4|q|/√3. The maximum value for the temperature is
given by T �:

T � = T (M�, q) = 1

12
√

3πG(4)
N |q|

. (8.113)

In the plot of the specific heat at constant charge C of Figure 8.4 we clearly see the two
regions in which the thermodynamical behavior is “standard” (positive specific heat) and
“Schwarzschild-like” (negative specific heat). At the point M� at which the temperature
reaches its maximum value, ∂T/∂ M = 0 and the specific heat diverges. It is tempting to
associate that divergence with a phase transition between the two kinds of behavior. It is
also tempting to associate the success of the statistical calculation of the ERN BH entropy
with its standard thermodynamical behavior in its neighborhood.
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What would be the endpoint of the Hawking evaporation of a RN BH? As we men-
tioned before, the electric charge is lost faster than the mass and, before the extreme limit
is reached, we should have an uncharged Schwarzschild BH, whose fate we have already
discussed. We can, however, speculate what would happen if the charge of the RN were
of a kind not carried by any elementary particle19 so that it could not be lost by Hawking
radiation, or if the carriers of that kind of charge were extremely heavy particles20 (unlike
electrons) so that the BH would discharge much more slowly than it would lose mass. In
these cases, assuming that nothing special happens when the mass is such that ∂T/∂ M = 0,
one would expect the RN BH to approach the extreme limit in a very long-lasting (perhaps
eternal) process in which the BH losses mass and temperature at lower and lower rates. It
has been conjectured that the ERN BH could be a BH remnant storing all the information
contained in the original BH that is not radiated away.

8.6 The Euclidean electric RN solution and its action

The Euclidean (non-extreme) RN solution has a structure identical to that of the Euclidean
Schwarzschild solution and, in particular, it covers only the BH exterior and it also requires
the compactification of the Euclidean time in order to eliminate a conical singularity. This
allows us to calculate the temperature again by finding the period of the Euclidean time that
makes the metric on the horizon regular. If we use spherical coordinates with origin on the
horizon (like those of Eq. (8.92) with the upper sign) then we see that T = g′

ττ (0)/(4π) =
ω/(4πh2). With this period of the Euclidean time, the topology is R

2× S2.
Let us now study the Euclidean ERN solution directly. The interesting region is the

neighborhood of the horizon and to study it we expand as usual the metric components of
Eq. (8.92), (with ω = 0) in a power series in the inverse of the radial coordinate around the
origin and keep the lowest-order terms; instead of an approximate solution, we have the
Euclidean continuation of the RB metric Eq. (8.90). This metric is completely regular for
any periodicity of the Euclidean time. It is convenient to use the coordinate r = R ln(ρ/R)

with R = 2G(4)
N |q| in which the Lorentzian RB solution becomes

ds2 = e2r/Rdt2 − dr2 − R2d�2
(2),

At = −2er/R, Ftr = 2

R
e

r
R , R = 2G(4)

N |q|.
(8.114)

19 This BH could not have been created by standard gravitational collapse. Instead, a process like quantum pair
creation has to be invoked to justify its existence.

20 For instance, the carriers of Kaluza–Klein charges and the massive modes in string theory are usually as-
signed very large masses (of the order of the Planck mass) in order to explain why they have not yet been
observed.
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In these coordinates it is evident that the horizon r = −∞ is at an infinite distance in
the r direction and a constant-time slice of this spacetime looks like an infinite tube whose
r = constant sections are 2-spheres of constant radius R. It does not make much sense
to talk about the period of τ that makes the Wick-rotated metric on the horizon regular
because it is regular for any period. The same applies to flat Euclidean spacetime. The
temperature cannot be uniquely assigned in this formalism. The reason could be the fact
that both Minkowski spacetime and the RB solution can be considered vacua of the theory.

As a conclusion of this discussion, then, if we compactify the Euclidean time with some
arbitrary period β, the topology is not R

2 × S2 as in the non-extreme case, but R × S1 × S2.
The factor R × S1, with the topology of a cylinder, corresponds to R

2 − {0}, the τ−r plane
with the point at the origin (the event horizon, which is at an infinite distance) removed.
The Euclidean RN solution has, therefore, two boundaries: at infinity (as in the non-extreme
case) and at the horizon. One way to check this fact is to calculate the Euler characteristic
of the Euclidean ERN solution using the Gauss–Bonnet theorem adapted to manifolds with
boundaries. The Euler characteristic χ is a topological invariant whose value is an integer
and the Gauss–Bonnet theorem states that the integral of the 4-form

1

32π2
εabcd Rab ∧ Rcd (8.115)

over a four-dimensional compact manifold M is precisely χ . If the manifold has a boundary
∂M, then χ(M) is given by the integral over M of the above 4-form plus the integral over
the boundary of a 3-form [236, 347],

χ(M) = 1

32π2

∫
M
εabcd Rab ∧ Rcd − 1

32π2

∫
∂M

εabcd
[
2θab ∧ Rcd − 4

3θ
ab ∧ θ c

e ∧ θ ed
]
,

(8.116)
where θab is the second fundamental 1-form on ∂M, that can be constructed as explained
in [347]. The contribution of the boundary integral is crucial in order to have χ = 2 in the
non-extreme case, corresponding to the topology R

2 × S2. In the extreme case, only by
taking into account the boundary at the horizon does one obtain χ = 0, the correct value
for the topology R × S1 × S2 [445].

This is going to have important consequences in what follows.
Once we have determined the period, we are ready to calculate the partition function us-

ing the Euclidean path-integral formalism in the saddle-point approximation. We are going
to do it as in the Schwarzschild case, using the Lorentzian action and solution but taking
into account the periodicity of the Euclidean time and the fact that the Euclidean solution
covers only the exterior of the horizon.

In � = c = G(4)
N = 1 the Einstein–Maxwell system with boundary terms is

SEM[gµν, Aµ] = 1

16π

∫
d4x

√
|g|[R − 1

4 F2
] + 1

8π

∫
d3�(K − K0), (8.117)

and, using the definition of Fµν and integrating by parts, we rewrite it in the form

SEM[gµν, Aµ] = 1

16π

∫
d4x

√
|g|[R + 1

2 Aν∇µFµν]

+ 1

8π

∫
d3�[(K − K0) + 1

4 nµFµν Aν]. (8.118)
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Only the boundary term contributes to the action because the volume term vanishes on-
shell. Furthermore, for a generic non-extreme RN BH there is only one boundary at infinity.
The contribution of the extrinsic curvature terms for large values of rc is always given by
Eq. (7.73) for spherically symmetric, static, asymptotically flat metrics such as the RN
metric. The electromagnetic boundary term has to be computed in the gauge in which Aµ

vanishes on the horizon, i.e. using A′
µ ≡ Aµ − Aµ(r+), because the Killing vector ∂/∂τ is

singular on the event horizon (which is a Killing horizon). We find

1
4 nµF ′ µν A′

ν = − q

r2
√−grr gtt

(
4q

r
− 4q

r+

)∣∣∣∣
r=rc→∞

∼ 4q2

r2
c r+

+ O(r−3
c ). (8.119)

Finally, taking into account that

d3� = dtd�2r2√gtt

∣∣
r=rc→∞ ∼ dtd�2r2

c , (8.120)

we find in the limit rc → ∞ for the Euclidean action

−S̃EM = −β

2
[M − qφ(r+)] = −β

2
r0, (8.121)

where φ(r+) = At(r+) is the electrostatic potential on the horizon. The entropy is

S = β[M − qφ(r+)] + lnZ = +β

2
[M − qφ(r+)] = β

2
r0 = πr2

+, (8.122)

that is, one quarter of the area of the horizon.
This calculation is valid for generic non-extreme RN BHs. We should now repeat the

calculation directly for ERN BHs. There are two important differences.

1. The period β of the Euclidean time is not determined.

2. The Euclidean ERN solution has another boundary at the horizon, and the action
contains the contribution of the boundary at infinity, given in Eq. (8.121), and the
contribution from the new boundary that we can calculate straightaway:

− i

8π

∫ −iβ

0
dt

∫
S2

d�2r2√gtt

{
1√−grr

[
1
2∂r ln gtt + 2

r

]
− 2

r

− q

r2
√−grr gtt

(
4q

r
− 4q

r+

)}
, (8.123)

where we have to substitute r = r+. The result is −βr0/2 and, thus, we have

−S̃EM = −βr0, (8.124)

which gives21 identically [445, 516, 883]

S = β[M − qφ(r+)] + lnZ = 0. (8.125)

21 Of course, βr0 would be identically zero for ERN BHs (r0 = 0) if β were taken finite.
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It has been suggested that the same is true for any extreme charged BH, not just ERN
BHs, and also that the Bekenstein–Hawking entropy formula Eq. (7.46) should be [652]

S = χ Ac3

8G(4)
N �

. (8.126)

Since one of the main successes of string theory has been the calculation of the (finite!)
entropy of the ERN BH, this result is a bit disturbing. Actually it implies that string theory
and the Euclidean path-integral approach to quantum gravity give different predictions for
the entropy of the ERN BH. It has been argued in [547] that the near-horizon ERN ge-
ometry suffers important corrections in string theory. The reason would be that, although
the topology is that of a cylinder, the geometry is rather that of a pipette, with a radius
that tends to zero at infinity when we asymptotically approach the horizon. String theory
compactified on a circle undergoes a phase transition when the radius reaches the self-dual
value. Thus, beyond the point of the pipette at which the radius has that value, the geometry
may indeed change,22 although no precise calculations have been done so far.

8.7 Electric-magnetic duality

As we explained in Section 8.2, the full set of sourceless Maxwell equations (the Maxwell
equation plus the Bianchi identity) is invariant (up to signs) under the replacement of the
field strength F by its dual F̃ = �F

F → F̃ = �F. (8.127)

This is true in flat as well as in curved spacetime. In a given frame, this transformation
corresponds to the interchange of electric and magnetic fields according to Eq. (8.38), hence
the name electric–magnetic duality. This transformation squares to (minus) the identity
and, therefore, it generates a Z2 electric–magnetic-duality group.

The Z2 can easily be extended to a continuous symmetry group:23

F̃ = aF + b�F, ⇒ � F̃ = −bF + a�F, a2 + b2 �= 0, (8.128)

is an invertible transformation that leaves the set of the two equations invariant (up to fac-
tors). It is convenient to define the duality vector

�F ≡
(

F
�F

)
. (8.129)

It is subject to the constraint
� �F =

(
0 1

−1 0

)
�F, (8.130)

with which the Maxwell equations can be written as

∇µ
�Fµν = 0, (8.131)

22 See analogous discussions on page 577 about the correspondence principle.
23 For the moment, all these are classical considerations. We will see that quantum effects (in particular, charge

quantization) break the continuous symmetry to a discrete subgroup.
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and it transforms in the vector representation of the duality group, a subgroup of GL(2, R):

�̃F = M �F, M =
(

a b
−b a

)
= ±λ

(
cos ξ sin ξ

− sin ξ cos ξ

)
. (8.132)

In this form we see that the duality group consists of rescalings and O(2) rotations of �F .
Observe that, if we integrate the Hodge dual of the duality vector � �F over a 2-sphere at

infinity we obtain a charge vector whose first component is 16πG(4)
N q , in our conventions.

The second component will be, by definition, the magnetic charge p:

∫
S2∞

� �F =
(

16πG(4)
N q

p

)
≡ 16πG(4)

N �q, �q =
(

q

p/(16πG(4)
N )

)
. (8.133)

Although this transformation looks very simple written in terms of the electromagnetic
field strength Fµν , it is very non-local in terms of the true field variable Aµ. To see this, we
simply have to use Eq. (8.31) to obtain an explicit relation between Aµ and the dual vector
field Ãµ:

Ãµ(x) = −
∫ 1

0
dλλxν εµν

ρσ

√|g| ∂ρ Aσ (λx). (8.134)

This non-locality is, at the same time, what makes this duality transformation interesting
and the source of problems. To start with, the replacement of F by �F is not a symmetry
of the Maxwell action because (�F)2 = −F2. The reason for this is that the transformation
should be done on the right variable, namely the vector field, but this is difficult to do.
Another possibility is to write an action that really is a functional of the field strength.
On this action, the above replacement can be performed and gives the right results. This
procedure is called Poincaré duality and we explain it in detail in Section 8.7.1.

Let us now see what modifications the coupling to gravity Eq. (8.58) produces. The main
difference is that we now have one more equation (Einstein’s). For our purposes, it is useful
to rewrite it in this form (see Section 1.6 and Eq. (1.126)):

Gµν − (
Fµ

ρ Fνρ + �Fµ
ρ�Fνρ

) = 0, (8.135)

or, using the duality vector,

Gµν − ( �Fµ
ρ
)T �Fνρ = 0, (8.136)

which makes it clear that only the O(2) subgroup leaves the Einstein equation invariant.
Out of this O(2) group, the parity transformation clearly belongs to a different class (if we
had N vector fields, it would belong to the O(N ) group that rotates the vectors amongst
themselves). Thus, the classical electric–magnetic-duality group of the Einstein–Maxwell
theory is actually SO(2).

We are studying an Abelian theory without matter and therefore it has no coupling con-
stant. However, we could think of this U(1) gauge symmetry as part of a bigger, non-
Abelian, broken symmetry group and introduce a (dimensionless in natural units in d = 4)
coupling constant g that appears as a g−2 factor in front of F2 in the action and that we will
not reabsorb into a rescaling of the vector field. The appropriate duality vector the integral
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of whose dual over S2
∞ is 16πG(4)

N �q is now

�F ≡
(

g−2 F
�F

)
. (8.137)

In terms of this duality vector, the Einstein equation can be rewritten as follows:

Gµν +
(

�Fµ
ρ
)T

η � �Fνρ = 0, η ≡
(

0 1
−1 0

)
, (8.138)

and it is invariant under Sp(2, R) ∼ SL(2, R). Now, it can be checked that, out of the full
group, and allowing for transformations of g, only the following transformations (rescalings
and Z2 duality rotations and their products) are consistent with the duality-vector constraint:

M =
(

a 0
0 1/a

)
, g′ = a−1g,

M =
(

0 1
−1 0

)
, g′ = 1/g.

(8.139)

Now we see the main reason why this duality is interesting: if the coupling constant g of the
original theory is large so perturbation theory cannot be used and non-perturbative states
become light, then the coupling constant of the dual theory g′ = 1/g is small and can be
used to do perturbative expansions and the dual theory gives a better description of the same
phenomena and states. In particular, magnetic monopoles are typical non-perturbative states
of gauge theories with masses proportional to 1/g2 and become perturbative, electrically
charged states of the dual theory.

Although, originally, electric–magnetic duality arose as a symmetry of the theory, a bet-
ter point of view is that it is a relation, a mapping, between two theories that describe the
same degrees of freedom in different ways. One of them can describe better one region of
the moduli space24 than can the other. Dualities in which the coupling constant is inverted
and perturbative (weak-coupling) and non-perturbative (strong-coupling) regimes are re-
lated go by the name of S dualities. Electric–magnetic duality in the Maxwell theory is
the simplest example. Perturbative dualities such as the O(N ) rotation between the N vec-
tor fields that we considered in Section 8.3 go by the name of T dualities, at least in the
string-theory context. In some string theories (type II) the two kinds of dualities are part of
a bigger duality group (which is not just the direct product of the S and T duality groups)
which is called the U duality group [583].

A last comment on semantics: when talking about duality, there are always certain ambi-
guities in the use of the word “theory.” Two theories that are dual are two different descrip-
tions of the same physical system and many physicists would say that they are, therefore,
the same “theory” written in different variables. We would like to call them different “the-
ories” describing the same reality. Both points of view are legitimate and are similar to the
active and passive points of view in symmetry transformations.

24 The coupling constant g and other parameters necessary to describe completely a theory are usually called
moduli. The space in which they take values is the moduli space of the theory.
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8.7.1 Poincaré duality

One of the peculiarities of the electric–magnetic-duality transformation is that it does not
leave the Einstein–Maxwell action invariant: the direct replacement of F by its dual in the
action changes the sign of the kinetic terms F2. The reason is that the action Eq. (8.58)
is actually a functional of the vector potential. To be able to replace F by �F we need an
action that is a functional of F . The so-called Poincaré-dualization procedure provides a
systematic way of finding actions that are functionals of the field strengths and on which
we can perform electric-duality transformations, obtaining the correct dual action. Further-
more, this procedure can be generalized to other k-form potentials and dimensions.

Since the metric does not play a role, we consider only the vector-field kinetic term in
Eq. (8.58). From that action one obtains only half of the Maxwell equations: the Bianchi
identity has been solved and it is assumed that F = d A. Thus, if we want to have a func-
tional of F that produces all the Maxwell equations (sometimes called a first-order ac-
tion), it has to give also the Bianchi identity d F = 0. This action can be constructed simply
by adding to the standard Einstein–Maxwell action a Lagrange multiplier term enforcing
the Bianchi identity. d F is a 3-form and so the Lagrange multiplier has to be a 1-form
Ã = Ãµdxµ (which will become the dual potential) and then the term to be added to the
action is ∼∫

Ã ∧ d F . Integrating by parts, this term is rewritten as ∼∫
d Ã ∧ F . More ex-

plicitly, in component language, the action with the Lagrange-multiplier term is

S[Fµν, Ãµ] = 1

16πG(4)
N

∫
d4x

√
|g|[− 1

4 F2
] − 1

16πG(4)
N

∫
d4x 1

2ε
µνρσ ∂µ Ãν Fρσ .

(8.140)

This action gives rise to the same equations of motion as the original action S[A]: the
equation of motion of F is

F = � F̃, (8.141)

where we have defined
F̃ = d Ã. (8.142)

The Bianchi identity d F̃ = 0, a consequence of its definition, becomes the Maxwell equa-
tion d�F = 0 by virtue of the F equation of motion above. Furthermore, by construction,
the equation of motion of Ã is nothing but the Bianchi identity d F = 0 that implies the
existence of the original vector field Aµ.

Since the equation of motion of F is purely algebraic, we can use it in the above action
to eliminate it. The result is an action that is a functional of the dual potential Ã and is
identical to the original Einstein–Maxwell action (with the right sign):

S[ Ãµ] = 1

16πG(4)
N

∫
d4x

√
|g| [ − 1

4 F̃2
]
. (8.143)

8.7.2 Magnetic charge: the Dirac monopole and the Dirac quantization condition

The electric–magnetic-duality invariance of the vacuum Maxwell equations is automati-
cally broken when one adds sources jµ. This is not surprising since jµ describes static or
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dynamical electric (only) charges. It is necessary to introduce magnetic sources that can
be rotated into the electric ones in order to maintain duality invariance of the Maxwell
equations. We have already seen in Eq. (8.133) that electric–magnetic duality needs the
introduction of magnetic charges into which electric charges can transform. By definition,
then, the magnetic charge is given by25:

p ≡ q̃ =
∫

S2∞
d2 �S · �̃E =

∫
S2∞

d2 �S · �B = −
∫

S2∞
F. (8.144)

The simplest electric-charge distribution is a point-like electric charge and its dual is a
magnetic point-like charge, which should be given by a magnetic field obeying

�∇ · �B = p δ(3)(�x3), (8.145)

which is the Dirac monopole equation for the vector potential.
Introducing magnetic sources to preserve electric–magnetic duality is, however, a very

dangerous move: the Bianchi identity is not satisfied at the locations of the magnetic sources
and there the vector potential, the true dynamical field, cannot be defined or, more precisely,
it cannot be defined everywhere: it will have singularities. This may not be as bad as it looks
at first sight, because, after all, the electrostatic potential is not defined at the location of
an electric point-like charge, either. It depends on how bad the singularities of the vector
field are. In the electric case, it is quite benign, since the singularity affects only the particle
that gives rise to the field. Let us see what happens with the vector potential of a point-like
magnetic monopole. First, we have to find it.

Knowing that

∇2 1

|�x3| = −4πδ(3)(�x3), (8.146)

we find that the magnetic field is given by

�B = − p

4π
�∇ 1

|�x3| , (8.147)

which implies, due to �B = �∇ × �A, for the Dirac monopole equation

�∇ × �A = − p

4π
�∇ 1

|�x3| , (8.148)

or, defining, to simplify matters �f = −(4π/p) �A, the following, standard form:

∂m fn − ∂n fm = εmnp∂p
1

|�x3| . (8.149)

25 We work again in the standard units of the beginning of Section 8.2.1 and in flat spacetime. At the end of
this section we will say which changes have to be made when using our normalization Eq. (8.58).
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Fig. 8.5. Spherical versus Cartesian coordinates.

The integrability condition for this system of coupled partial differential equations is found
by rewriting it in the equivalent form

εmnp∂m fn = ∂p
1

|�x3| , (8.150)

and acting with ∂p,

∂p∂p
1

|�x3| = 0, (8.151)

which is true everywhere except at the origin. Instead of 1/|�x3| we could have used any
other harmonic function on the three-dimensional Euclidean space.

A solution of the Dirac monopole equation is provided by (see e.g. [246, 459, 715])

�f + = −(0, 0, 1) × (x, y, z)

|�x3|(|�x3| + z)
. (8.152)

This solution is singular at |�x3| = −z, i.e. the whole negative z axis, not just at the location
of the magnetic monopole.

In spherical coordinates (Figure 8.5)

x1 = x = r sin θ sin ϕ,

x2 = y = r sin θ cos ϕ,

x3 = z = r cos θ,

(8.153)

the above solution has as its only non-vanishing component

f +
ϕ = 1 − cos θ. (8.154)

In these coordinates the solution looks regular. However, one has to take into account
that the unit vector orthogonal to constant ϕ surfaces is singular over the z axis. Over the
positive z axis, �f + is regular because f +

ϕ vanishes.
Owing to this singularity, �f + is not a solution of the Dirac monopole equation (8.149)

everywhere. This can be seen just as one sees that ∇2|�x |−1 ∼ δ(3)(�x) by integrating and
applying Stokes’ theorem. Let us consider the integral of �∇ × �f + + �x/|�x |3 over a surface
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�. If �f + were a solution of Eq. (8.149) everywhere, this integral would be zero for any
surface �. Now let us apply Stokes’ theorem to the first term. We find

�� =
∫

�

d2 �S ·
(

�∇ × �f + + �x
|�x |3

)
=

∮
γ=∂�

d �x · �f + +
∫

�

d2 �S • �x
|�x |3 , (8.155)

where γ is the one-dimensional boundary of the two-dimensional surface �. Let us con-
sider the particular surface �+ (a sector of the unit sphere whose boundary is γ+ : θ = θ0

oriented in the sense of negative ϕ) shown in Figure 8.6. We find∫
�+

d2 �S · �x
|�x |3 = 2π(1 − cos θ0),

⇒ ��+ = 0.∫
γ +

d �x · �f + = −2π(1 − cos θ0),

(8.156)

Let us now consider a different surface �− (a sector of the unit sphere whose boundary
is γ− : θ = θ0 oriented in the sense of positive ϕ), shown in Figure 8.7:∫

�−
d2 �S · �x

|�x |3 = 2π(1 + cos θ0),

⇒ ��− = 4π.∫
γ−

d �x · �f + = 2π(1 − cos θ0),

(8.157)

The above results are valid for any value of θ0 and we conclude that �f + does in-
deed solve the Dirac-monopole equation only away from the negative z axis θ = π . More
precisely

�∇ × �f + = − �x3

|�x3|3 − 4πδ(x)δ(y)θ(−z)�uz, (8.158)

where �uz is a unit vector along the z axis.
The singularity along θ = π is known as the Dirac string. Physically, the Dirac string

can be visualized as the zero-section limit of a semi-infinite tube of magnetic flux. Thus,
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the flux of

�B + = �∇ × �A + = p

4π

�x3

|�x3|3 + pδ(x)δ(y)θ(−z)�uz (8.159)

across any closed 2-surface is zero. The Dirac string appears as a singularity of the magnetic
field and hence, in principle, it should be considered a physical singularity.

Thus, at first sight we have not succeeded in finding a solution of the Dirac monopole
equation. Still, we can ask ourselves whether the Dirac string is observable and has any
physical effect. First of all, observe that the Dirac string can be moved (but not removed)
by gauge transformations. For instance, the transformed gauge potential �A −,

A−
ϕ = A+

ϕ + ∂ϕ

( p

2π
ϕ
)

= p

4π
(1 + cos θ), (8.160)

is now singular over the positive z axis only. We have changed the position of the Dirac
string from the negative to the positive axis. From this one could naively conclude that the
Dirac string is just a gauge artifact and, as such, unphysical. This is not strictly correct,
though. First, �A + and �A − are related by a gauge transformation that is multivalued. Two
configurations related by a multivalued gauge transformation are definitely not physically
equivalent if the gauge group is R. Second, and more important, no matter what the gauge
group is, classically, �A + and �A − can be distinguished by a classical charged particle cross-
ing the string singularity ( �B + and �B − are indeed different).

However, quantum-mechanically they may be completely equivalent if the gauge group
is U(1), provided that the gauge function has the right periodicity. To analyze this problem
we have to consider the quantum-mechanical coupling of the U(1) vector field to charged
matter. Thus, let us consider the Schrödinger equation for a particle of mass M and electric
charge q in an electromagnetic field:

H� = i�
∂

∂t
�. (8.161)

To obtain the Hamiltonian H we start from the action for a massive relativistic particle
in an electromagnetic background field, Eq. (8.54), which in the non-relativistic limit gives
Eq. (8.55), from which, after subtracting the zero-point energy Mc2, we can identify the
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non-relativistic Lagrangian L and construct the classical Hamiltonian

H = �P · �̇X − L = 1

2M

[
�P − q

c
�A
]2

+ qφ, �P ≡ M �̇X + q

c
�A. (8.162)

In the quantization of this system the momentum �P is replaced by the operator −i� �∇. We
obtain the Hamiltonian

H = − �
2

2M
�D2 + qφ, (8.163)

where �D is the covariant derivative

�D = �∇ − ie �A, (8.164)

and the gauge coupling constant is

e = q

�c
. (8.165)

Under a gauge transformation of the vector field A′
µ = Aµ + ∂µ� the Hamiltonian

Eq. (8.163) is not invariant, but its transformation can be compensated by the following
gauge transformation of the wave function:

� ′ = e−ie��. (8.166)

So the Schrödinger equation is gauge-covariant (it changes by the above overall phase).
If the gauge group is R (i.e. � ∈ R), � has to be single-valued and the same must be true

for the wave function. If the gauge group is U(1), though, � lives in a circle, or equivalently
in a lattice, and we have to identify two different values of � differing by the period T ,

� ∼ � + T . (8.167)

In a topologically trivial spacetime any closed path is contractible to a point. This implies
that the wave function has to be single-valued around any closed path. This implies in turn
that only gauge transformations such that the gauge phase e−ie� is single-valued around
any closed path are allowed. Since we just admitted that � can be multivalued with period
T , we conclude that the only T s allowed are those satisfying

T e = 2πn, n ∈ Z. (8.168)

For application to the Dirac-monopole case in which the space is topologically non-trivial
(R3 minus the positive or negative z axis) but has no non-contractible closed paths, we
conclude that the gauge transformation that moves the Dirac string relates two quantum-
mechanically equivalent configurations in which the wave function is single-valued if the
gauge parameter has the right periodicity. If the two configurations are equivalent in spite
of the fact that they have Dirac strings in different places, then the Dirac strings have no
physical effect. Going around the z axis once gives

�(ϕ + 2π) = � + p, (8.169)
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so we find that we can do consistent quantum mechanics ignoring the Dirac string if the
magnetic charge is related to the electric charge by the Dirac quantization condition26

[323],

qp = n2π�c. (8.170)

It is worth remarking that this formula is invariant (up to a global sign) under electric–
magnetic-duality transformations q → p, p → −q.

Using the normalization of Eq. (8.58), the definitions of electric and magnetic charge
that satisfy the Dirac quantization condition in the above form (without any extra factors)
are

q ≡ 1

16πG(4)
N

∫
S2∞

�F, p ≡ −
∫

S2∞
F, pq = 2πn. (8.171)

In a non-simply connected spacetime there will be closed paths that are not contractible
to a point (that is, it will have a non-trivial π1). The wave function will not in general
be single-valued around those closed paths but will pick up a phase, the Aharonov–Bohm
phase [20, 21], which can be detected by interference experiments. The Dirac quantiza-
tion condition can be considered as the condition of cancelation of a would-be Aharonov–
Bohm phase around the Dirac string, which physically is unacceptable. The concept of the
Aharonov–Bohm phase is, however, much more general and deals with the non-triviality of
the topology of the gauge-field itself when it is seen as a section of a fiber bundle. To study
the Aharonov–Bohm phase, thus, we first reformulate the Dirac monopole in this language.

8.7.3 The Wu–Yang monopole

Wu and Yang [964] were the first to reformulate the Dirac monopole in the modern lan-
guage. The basic idea is to generalize the basic concepts of tensors in manifolds to gauge
fields:27 a manifold is a topological space that in general is not isomorphic to R

n . Thus it
needs to be covered by patches that are isomorphic to parts of R

n . Each patch provides a
local coordinate system. Neighboring patches must overlap and the two different coordi-
nates of points in the overlaps are related by diffeomorphisms. Now one can define tensor
fields on a manifold. A given well-defined tensor field will have different components in the
overlaps, corresponding to the different coordinate systems that are defined there, but they
will be related by the tensor-transformation laws corresponding to the diffeomorphisms that
relate the different coordinate systems.

26 There are other ways of finding this condition, such as studying the quantization of the angular momentum
of the electromagnetic field created by the electric and magnetic particles. See, for instance, [459].

27 For a less-pedestrian explanation, there are many reviews and textbooks that the interested reader can con-
sult: for instance [240, 347, 630, 715, 717].
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Now, a gauge field defined on a manifold is a 1-form field and its definitions in different
patches will be related by the standard transformation rules of 1-forms under diffeomor-
phisms. The new freedom that we have in fiber bundles is that these different definitions
can also be related by gauge transformations. The most basic example is precisely the Dirac
monopole. The space manifold is just R

3 and, in principle, we need only one patch to cover
it. However, we are going to use two, because the topology of the gauge-field configuration
requires it. The two patches will be the two halves of R

3 with z ≥ 0 and z ≤ 0, which over-
lap over the plane z = 0. The two coordinate systems that we are going to use are trivially
related and we will not distinguish them. The U(1) gauge field in the first patch z ≥ 0 will
be A+, which is completely regular there (except at the origin) because its Dirac string
lies in the second patch. In the second patch, z ≤ 0, the gauge field will be A−, which is
also regular there for analogous reasons. In the overlap z = 0, we have two different val-
ues of the gauge field, but they are related (by construction) by the gauge transformation
Eq. (8.160). The discussion of which gauge transformations are allowed is still valid here
and we arrive at the same Dirac quantization condition.

One of the advantages of this formulation is that, at the expense of introducing non-
trivial topology for the gauge field, we have eliminated completely the Dirac string and
have a completely regular gauge field (except at the origin). The magnetic field �B is only
singular at the origin, too. A calculation of the magnetic charge through the magnetic flux
should now give the right result. First we rewrite the flux in differential-forms language:∫

S2
d �S · �B =

∫
S2

d �S · �∇ × �A =
∫

S2
d A. (8.172)

We cannot use Stokes’ theorem here because A is multivalued. We divide the 2-sphere
into two halves �± overlapping at the equator z = 0. In each of these two halves, A is
single-valued and Stokes’ theorem can be applied:∫

S2
d �S · �B =

∫
S2

d A =
∫

�+
d A+ +

∫
�−

d A− =
∫

γ+
A+ +

∫
γ−

A−, (8.173)

where γ± are the boundaries of �±: equatorial circumferences are oriented in the negative
and positive ϕ directions, so γ+ = −γ−. Using the relation between A+ and A−, we find∫

S2
d �S · �B = −

∫
γ+

∂ϕ

( p

2π
ϕ
)

= p. (8.174)

The magnetic charge is given by the non-trivial monodromy of the gauge parameter.
The topology of gauge fields (fiber bundles) such as the monopole can be characterized

by the values of topological invariants. In the case of the Abelian monopole it is the first
Chern class,

c1 = − 1

2π

∫
S2

F, (8.175)

which is nothing but the magnetic charge p/(2π) and should be an integer n, according to
general arguments. This result is stated in units in which q = � = c = 1 and then we see
that this is nothing but the Dirac quantization condition.
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8.7.4 Dyons and the DSZ charge-quantization condition

If objects with electric charge and objects with magnetic charge exist, then objects with
both kinds of charges, called dyons, may exist. The electromagnetic field they produce is
just a linear superposition of those produced by electric and magnetic monopoles.

Considering the quantum evolution of one dyon in the field of another dyon, it is found
that consistency requires the four charges of these objects to obey the Dirac–Schwinger–
Zwanziger (DSZ) quantization condition [825, 826, 970, 971]

q1 p2 − q2 p1 = n2π�c. (8.176)

With the normalization and units of Eqs. (8.58) and (8.171) the condition takes the same
form but with no �c constants.

Now, this condition is completely invariant under Z2 electric–magnetic-duality transfor-
mations. This can be more easily seen if we rewrite it in this very suggestive form using the
charge vectors we introduced before:

�q T
1 η �q2 = n

8G(4)
N

, �q =
(

q

p/(16πG(4)
N )

)
. (8.177)

We saw that the Einstein equation could also be written using duality vectors and the ma-
trix η = iσ 2 (Eq. (8.138)). The presence of that matrix implied that the duality group was
a subgroup of SL(2, R) ∼ Sp(2, R). Now we obtain the same result from the DSZ quan-
tization condition. This condition does not take into account all the quantum effects, such
as the quantization of electric charge (independently of any magnetic-monopole charge).
These effects will break the classical duality group to some discrete subgroup, but will not
change the DSZ quantization condition.

Inclusion of a theta angle and the Witten effect. The Einstein–Maxwell action can be mod-
ified by the addition of a topological term of the form

− θ

8πc

∫
d4x

√
|g| F �F, (8.178)

or, in differential-forms language,

− θ

4πc

∫
F ∧ F, (8.179)

where we see that the metric does not appear in it, which is the reason why it is called
topological.

On the other hand, using the Bianchi identity, the integrand of this term can be shown to
be the total derivative of the Chern–Simons 3-form F ∧ A

F ∧ F = d(A ∧ F), (8.180)

and therefore it does not contribute to the classical equations of motion. However, a change
in the Lagrangian produces a change in the Noether current and in the definition of the
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corresponding conserved charge. To make this more concrete, let us consider the Einstein–
Maxwell Lagrangian Eq. (8.58) with θ -term and with coupling constant g with our conven-
tions and units:

S[gµν, Aµ] = 1

16πG(4)
N

∫
d4x

√
|g|

[
R − 1

4g2
F2 − θ

8π
F �F

]
. (8.181)

The Noether current associated with the gauge transformations of the vector field is now

jµ

N = 1

16πG(4)
N

∇ν

[
1

g2
Fνµ + θ

2π

�Fνµ

]
. (8.182)

In this simple Abelian case that we are considering the second term vanishes by virtue of
the Bianchi identity. Still we will keep it and, after using Stokes’ theorem in the definition
of electric charge, the second term gives a net contribution

q ≡ 1

16πG(4)
N

∫
S2∞

[
1

g2
�F − θ

2π
F

]
. (8.183)

The magnetic charge is still given by Eq. (8.171).
If we start with a magnetic monopole in a vacuum with θ = 0 and then “switch on”

θ , we see in the above formulae that the magnetic monopole acquires an electric charge
proportional to θ and becomes a dyon. This is the Witten effect [956].

We studied the classical duality group when we introduced the coupling constant g and
allowed it to transform under it. It is interesting to see what happens after we introduce θ

and we allow it to transform as well. This can be seen more easily if we redefine the duality
vector

�F ≡

 1

g2
F + θ

2π

�F

�F


, (8.184)

whose two components F1 and F2 are subject to the constraint

F1 = θ

2π
F2 − 1

g2
�F2, (8.185)

and define the complexified coupling constant

τ = θ

2π
+ i

g2
. (8.186)

In terms of the new duality vector, the Einstein equation still has the form (8.138) and
we see that any SL(2, R) transformation leaves it invariant. Furthermore, we can see that
the SL(2, R)-transformed duality vector has the same form as the original one but with τ

transformed as follows: if the SL(2, R) transformation is

�̃F =
(

α β

γ δ

)
�F, αδ − βγ = 1, (8.187)
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then the complexified coupling constant transforms simultaneously as follows:

τ̃ = ατ + β

γ τ + δ
. (8.188)

So, the full set of equations of motion is invariant under SL(2, R)-duality transforma-
tions.

Furthermore, in the presence of a θ -term, the electric and magnetic charges naturally fit
into a duality vector, which is the integral of the Hodge dual of the duality vector of the
2-form field strengths defined above, with a 1/(16πG(4)

N ) normalization factor. The DSZ
quantization condition still takes the form Eq. (8.177) (the θ -dependent terms drop out
from it) and we see that it is fully form-invariant under SL(2, R) transformations. If the
electric charge were quantized q ∈ Z, it is clear that only the discrete subgroup SL(2, Z)

would preserve its quantization and the spectrum of charged particles (generically dyons
characterized by their charge vectors). This is the general S duality group and will appear
in different forms in many places in what follows.

8.7.5 Duality in massive electrodynamics

To acquire some training in the use of the Poincaré-duality procedure explained in Sec-
tion 8.7.1 in more general settings than that of Maxwell’s theory, it is interesting to consider
the dualization of the Proca Lagrangian rewritten using the Stückelberg scalar in Eq. (8.67),
which seems to have no electric–magnetic-duality symmetry. We first rewrite it in this form:

S[Aµ, φ] =
∫

d4x
√

|g|[ 1
2 G2 − 1

4 F2
]
, (8.189)

where G and F are the scalar and vector gauge-invariant field strengths

Gµ = ∂µφ + m Aµ, Fµν = 2∂[µ Aν]. (8.190)

To the equations of motion of this system one can now add a Bianchi identity for Gµ:

∂[µ
(
Gν] − m Aν]

) = 0. (8.191)

However, there is no duality symmetry because the dual of a 1-form field strength is a
3-form field strength. Nevertheless, we can perform a duality transformation to an equiva-
lent system with a 3-form field strength. In other words, we can apply the Poincaré-duality
procedure to the scalar (only its derivatives appear in the action), replacing it by a 2-form
potential. Following the general dualization procedure, we want to find an equivalent ac-
tion that is a functional of the field strength Gµ instead of the scalar φ. Thus, we add to the
above action a Lagrange-multiplier term enforcing the Bianchi identity for G,

1
2

∫
dx4εµνρσ ∂µ Bνρ(Gσ − m Aσ ), (8.192)

where we have already integrated by parts. The new action is a functional of Gµ, Aµ, and
Bµν . The equation of motion for Gµ is

G = � H, Hµνρ = 3∂[µ Bνρ], (8.193)
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where H is the field strength of the 2-form B, which is invariant under the gauge transfor-
mations δBµν = ∂[µ�ν]. On substituting this back into the action and integrating again by
parts, we obtain an action that is a functional of the fields Aν and Bµν :

S[Aµ, Bµν] =
∫

dx4
√

|g|
[

1

2 · 3!
H 2 − 1

4 F2 + m

4

ε√|g| F B

]
. (8.194)

We have completely dualized φ into Bµν . Now, Aµ does not occur explicitly any longer
in this action, but only through its field strength, and thus we can now Poincaré-dualize
with respect to it. By adding a term ∫

d4x 1
2ε ∂ ÃF, (8.195)

and eliminating F through its equation of motion

F = � F̃, F̃ = 2
(
∂ Ã + m

2
B

)
, (8.196)

we obtain the action dual to the original:

S[ Ãµ, Bµν] =
∫

d4x
√

|g|
[

1

2 · 3!
H 2 − 1

4 F̃2

]
. (8.197)

The dual vector-field strength is now invariant under dual massive gauge transformations

δBµν = ∂[µ�ν], δ Ãµ = −m

2
�µ, (8.198)

which allow us to eliminate Ã completely, leaving us with a massive 2-form. Ã now plays
the role of the Stückelberg field for B.

The relation between the dual and original variables is

H = −�G,

F̃ = − (�F + m B).
(8.199)

8.8 Magnetic and dyonic RN black holes

We have seen that the full set of equations of motion of the Einstein–Maxwell system
without a θ -term and without the introduction of any coupling constant is invariant under
the SO(2) group of electric–magnetic duality,

F̃ = cos(ξ)F + sin(ξ) �F, � F̃ = − sin(ξ)F + cos(ξ) �F. (8.200)

Duality symmetries can be used as solution-generating transformations. For instance, we
generated new solutions for a theory with N vector fields from the 1-vector RN solution
using the O(N ) duality symmetry that rotates the vector fields. We can now do the same and
generate new solutions with both electric and magnetic charges out of the purely electric
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RN or MP solutions. Let us take the single electric RN BH solution as given in Eq. (8.75).
Trivially we obtain a new solution with the same metric and with

F̃tr = 4G(4)
N cos(ξ)q

r2
, F̃θϕ = 4G(4)

N sin(ξ)q sin θ. (8.201)

After the new solution has been found, it has to be expressed in terms of the new physical
parameters q̃ and p̃, which turn out to be related to the old ones by

q̃ = cos(ξ)q, p̃ = −16πG(4)
N sin(ξ)q, ⇒ |�̃q|2 = q̃2 + p̃/

(
16πG(4)

N

) = q2. (8.202)

The last equation is due to the fact that SO(2) leaves the norm of the charge vector �q
invariant. In the metric, we need only replace q2 everywhere by | �̃q|2. In the vector-field
strength the other two equations have to be used to replace q and ξ by q̃ and p̃. The result
is (now suppressing tildes)

ds2 = f (r)dt2 − f −1(r)dr2 − r2d�2
(2),

Ftr = 4G(4)
N q

r2
, Fθϕ = − 1

4π
p sin θ,

f (r) = (r − r+)(r − r−)

r2
,

r± = G(4)
N M ± r0, r0 = G(4)

N

√
M2 − 4|�q|2.

(8.203)

This is a dyonic RN black hole. The metric is essentially the same as that of the purely
electric one with the replacement q2 → |�q|2 and most of its properties are also essentially
identical.

Starting with the MP solutions, we find the dyonic MP solutions

ds2 = H−2dt2 − H 2d �x 2
3 ,

Fti = −2 cos α ∂i H−1, Fi j = 2 sin α εi jk∂k H,

∂i∂i H = 0.

(8.204)

From the point of view of finding new solutions, the important lesson to be learned is that
we have generated a new solution with one more physical parameter (the magnetic charge)
using a one-parameter solution-generating transformation group. Observe that, in the MP
case, the family of solutions depends on only one arbitrary real harmonic function.

We could view these solutions and, in particular, the dyonic RN solution, as solutions of
the more general theory with g = 1 and θ = 0 and we can try to generate solutions of the
more general theory using general SL(2, R) transformations. These have three independent
parameters, but we have already used the one corresponding to SO(2). The other two pa-
rameters would precisely generate non-trivial values of g and θ . Let us obtain these RN
solutions.
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First we use on the dyonic RN solution Eq. (8.203) SL(2, R) rescalings, corresponding
to matrices of the form (

a 0
0 1/a

)
. (8.205)

They generate a nontrivial g̃ = a and rescale the electric and magnetic charges and field
strength. The transformed solution, written in terms of the transformed parameters q, p,
and g (without the tildes), takes the form

ds2 = f (r)dt2 − f −1(r)dr2 − r2d�2
(2),

Ftr = 4G(4)
N gq

r2
, Fθϕ = − 1

4πg
p sin θ,

f (r) = (r − r+)(r − r−)

r2
,

r± = G(4)
N M ± r0, r0 = G(4)

N

√
M2 − 4�q TM−1 �q,

(8.206)

where M is the matrix

M =
(

1/g2 0

0 g2

)
, M−1 =

(
g2 0

0 1/g2

)
. (8.207)

Now we use the SL(2, R) transformations that shift the θ -parameter from its zero value,
corresponding to matrices of the form (

1 b
0 1

)
. (8.208)

They generate a non-trivial θ/(2π) = b and mix different components of the field strength
and the electric and magnetic charges (the Witten effect). The transformed solution, written
in terms of the transformed parameters q, p, g and θ (without the tildes), takes the form28

ds2 = f (r)dt2 − f −1(r)dr2 − r2d�2
(2),

�Ftr = 4G(4)
N �q

gr2
,

f (r) = (r − r+)(r − r−)

r2
,

r± = G(4)
N M ± r0, r0 = G(4)

N

√
M2 − 4�q TM−1 �q,

(8.209)

where M is now the matrix

M = g2

( |τ |2 θ/(2π)

θ/(2π) 1

)
, M−1 = g2

(
1 −θ/(2π)

−θ/(2π) |τ |2

)
, (8.210)

28 Giving the tr components of the two components of the duality vector is equivalent to, but much simpler
than, giving the tr and θϕ components of F .
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which has interesting properties: it belongs to SL(2, R) but it is symmetric. It can be seen
that it parametrizes the SL(2, R)/SO(2) cosets. Furthermore, under an SL(2, R) transfor-
mation �, it transforms (due to the transformation of g and θ ) according to

M = �M�T, (8.211)

so �q TM−1 �q is form-invariant under SL(2, R) transformations. Thus, using SL(2, R) dual-
ity, we cannot generate any new solutions not yet contained in the above family.

The result is that we have generated a family of solutions that contains three parame-
ters more than the initial one by using a three-dimensional duality group. The solutions
are expressed in the simplest form when one uses objects that have good transformation
properties under the duality group: duality vectors and matrices. On the other hand, the
family covers the most general BH-type solution of the Einstein–Maxwell theory that one
can have according to the no-hair conjecture: the BH solution depends on only two con-
served charges (electric and magnetic) and two moduli parameters, which are not really
characteristic of the BH but rather of the vacuum of the theory.

This example may look quite simple, but it has the same features as some more compli-
cated and juicy cases.

To end this section, let us comment on a couple of subtle points.

• Electric–magnetic-duality rotations and the Wick rotation do not commute. Although
we did not stress it, the Euclidean electric RN solution has a purely imaginary
electromagnetic field. Electric–magnetic-duality rotations of the Euclidean purely
electric RN solution generate a Euclidean solution with imaginary magnetic charge
that remains imaginary when we Wick-rotate back to the Lorentzian signature. If
we Wick-rotate the dyonic RN solution, we obtain a Euclidean solution with real
magnetic charge. This gives rise to problems in the calculation of the entropy in
the Euclidean-path-integral formalism,29 but they can be dealt with, as shown in
[196, 302, 307, 520].

• In the extreme magnetic RN BH case, we could also try to look for a source. However,
the only thing that works is to view the magnetic charge as the electric charge of the
dual vector field.

8.9 Higher-dimensional RN solutions

Just as there are higher-dimensional analogs of the Schwarzschild BH, there are also higher-
dimensional analogs of the electric RN BH, which are solutions of the equations of motion
that one obtains from considering the Einstein–Maxwell action in d dimensions.

Let us first consider the higher-dimensional generalization of the Einstein-scalar system
that we considered at the beginning of this chapter:

S[gµν, ϕ] = c3

16πG(d)
N

∫
dd x

√
|g| [

R + 2∂µϕ∂µϕ
]
. (8.212)

29 The thermodynamical quantities that one derives from the Lorentzian metric of the dyonic RN solution are
clearly S-duality-invariant.
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It is natural to ask whether the no-hair conjecture that says that there are no regular BH-type
solutions of that system in four dimensions holds also in more than four dimensions. Thus,
we can try to find static, spherically symmetric BH solutions of this system. For the metric,
we will use the straightforward generalization of the Ansatz of the “dressed Schwarzschild
metric” form Eq. (8.91) that we found for the four-dimensional RN solution (and that is
also valid for the four-dimensional solutions of this system, Eqs. (8.7)):

ds2 = H 2x W dt2 − H−2y
[
W −1dr2 + r2d�2

(d−2)

]
, (8.213)

where W will be a function of the form

W = 1 + ω

rd−3
, (8.214)

and where H is related to the scalar by

ϕ = ϕ0 + z ln H, (8.215)

z being a constant, so, when the scalar becomes constant, the above metric is just the higher-
dimensional Schwarzschild metric. It is easy to see that we are forced to set H = W and y �=
0 in order to have a solution. This implies that the would-be “horizon” is always singular,
except when the scalar is constant. For the sake of completeness we give below the form of
these solutions, which generalize those obtained in [18, 607],

ds2 = W
M
ω

−1W dt2 − W
1

d−3

(
1− M

ω

)[
W −1dr2 + r2d�2

(d−2)

]
,

ϕ = ϕ0 ± �

ω
ln W,

W = 1 + ω

rd−3
, ω = ±2

√
M2 + 2

(
d − 3

d − 2

)
�2.

(8.216)

For � = 0 we recover the d-dimensional Schwarzschild solution. In all other cases we
have metrics with naked singularities at r = 0 or at rd−3 = −ω (if possible).

Now, let us return to the higher-dimensional Einstein–Maxwell system, normalized as in
Eq. (8.58) (c = 1),

S[gµν, Aµ] = 1

16πG(d)
N

∫
dd x

√
|g| [

R − 1
4 F2

]
. (8.217)

The Einstein and Maxwell equations are

Gµν − 1
2 Tµν = 0, ∇µFµν = 0, (8.218)

where the electromagnetic energy–momentum tensor Tµν is again given by Eq. (8.24).
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There are a few differences from the four-dimensional case. First we observe that, in
more than four dimensions, the energy–momentum tensor of the Maxwell field is no longer
traceless because the Maxwell action is not invariant under Weyl rescalings of the metric.
This implies that, in general, the curvature scalar is not zero on solutions, but, instead

R = d − 4

4(d − 2)
F2, (8.219)

and, thus, on subtracting the trace in the Einstein equation we are now left with the equation

Rµν − 1
2

[
Fµ

ρ Fνρ − 1

2(d − 2)
gµν F2

]
= 0 (8.220)

plus the Maxwell equation to solve.
The second difference is the definition of the electric charge (we treated the definition of

the mass in higher-dimensional spaces in the Schwarzschild case). If we follow exactly the
same steps as in the four-dimensional case, we arrive at

q = (−1)d 1

16πG(d)
N

∫
S(d−2)∞

�F, (8.221)

where �F is now a (d − 2)-form and S(d−2)
∞ is a (d − 2)-sphere at spatial infinity (constant

t , r → ∞). This means that, if there is a charge q at the origin in an asymptotically flat
spacetime, the asymptotic behavior of F and the vector A is

Ftr ∼ 16πG(d)
N q

ω(d−2)

1

rd−2
, Aµ ∼ −δµt

16πG(d)
N q

(d − 3)ω(d−2)

1

rd−3
, (8.222)

where ω(d−2) is the volume of the unit (d − 2)-sphere (see Appendix C). In d �= 4 one
can perform an electric–magnetic-duality transformation, replacing F by its Hodge dual
F̃ = �F , which is a (d − 2)-form field strength for a (d − 3)-form potential F̃ = d Ã. This
transformation is not a symmetry. Now, we can define the electric charge associated with the
dual (d − 3)-form potential, which is what we would define as magnetic charge, by anal-
ogy with the four-dimensional case. However, the carrier of the electric charge of the dual
(d − 3)-form potential cannot be a point-like particle, but has to be a (d − 4)-dimensional
extended object (brane). Thus, a standard BH of the kind we are interested in now cannot
carry that kind of charge and we will not consider it here, although we will in Part III.

Our immediate goal is, then, to find d-dimensional analogs of the RN BH. Again, we use
an Ansatz of the “dressed Schwarzschild metric” form:

ds2 = H 2aW dt2 − H−2b
[
W −1dr2 + r2d�2

(d−2)

]
,

Aµ = αδµt(H−1 − 1), H = 1 + h
rd−3 ,

(8.223)

where a, b, h, and α are constants to be found. The electric charge is proportional to h
and, thus, we expect that, when it vanishes, h becomes zero (H = 1) and we recover the
higher-dimensional Schwarzschild metric Eq. (7.77), so we can guess that

W = 1 + ω

rd−3
. (8.224)
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On the other hand, with this Ansatz, the metric will have two horizons at r = −h, −ω

when both h and ω are non-vanishing. When ω vanishes (W = 1) there is only one horizon
and this should correspond to the extreme limit. In this case, the above metric becomes
isotropic and we should be able to find whether H becomes a harmonic function and multi-
BH solutions exist.

On substituting into the equations of motion, we find the d-dimensional RN solutions

ds2 = H−2W dt2 − H
2

d−3

[
W −1dr2 + r2d�2

(d−2)

]
,

Aµ = δµtα(H−1 − 1),

H = 1 + h
rd−3 , W = 1 + ω

rd−3 ,

ω = h
[
1 − d−3

2(d−2)
α2

]
.

(8.225)

By examining the asymptotic behavior of the metric and vector field, we can relate the
integration constants h, ω and α to the mass M and the electric charge q as follows:

α = 16πG(d)
N

(d − 3)ω(d−2)

q

rd−3
±

, h = rd−3
± , ω = ±rd−3

0 , (8.226)

where now

rd−3
± = 8πG(d)

N

(d − 2)ω(d−2)

M ± rd−3
0 , rd−3

0 = 8πG(d)
N

(d − 2)ω(d−2)

√
M2 − 2(d − 2)

d − 3
q2.

(8.227)

If we take the lower signs, we obtain a BH solution very similar to the four-dimensional
RN solution: if rd−3

0 is real and finite (we take it positive) and M positive, there is an event
horizon at r = r0 and a Cauchy horizon at r = 0. The reality of rd−3

0 implies a lower bound
for the mass,

M ≥
√

2(d − 2)

d − 3
|q|. (8.228)

When this bound is saturated r0 = 0 (ω = 0) and there is only one horizon, which is regular,
and we are in the extreme limit. Furthermore, if we set W = 1 in the Ansatz, the equations
of motion are solved by any arbitrary harmonic function in (d − 1)-dimensional Euclidean
space H :

ds2 = H−2dt2 − H
2

d−3 d �x 2
d−1,

Aµ = δµtα(H−1 − 1), α = ±2,

∂i∂i H = 0.

(8.229)

These solutions are the generalization of the MP solutions [712]. The d-dimensional ERN
solution is a particular case of the d-dimensional MP family, which, evidently, contains also
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multi-BH solutions. If we take the near-horizon limit of the d-dimensional ERN solution,
we find, after the coordinate change rd−3 = (d − 3)hρ, t → t/h

1
d−3 , a generalization of

the RB solution,

ds2 =
( ρ

R

)2
dt2 −

(
R

ρ

)2

dρ2 − h
2

d−3 d�2
(d−2),

Aµ = δµtαρ,

(8.230)

where

R = h
1

d−3

d − 3
. (8.231)

The metric is that of the direct product AdS2 × Sd−2.



9
The Taub–NUT solution

The asymptotically flat, static, spherically symmetric Schwarzschild and RN BH solutions
that we have studied in the two previous chapters were the only solutions of the Einstein
and Einstein–Maxwell equations with those properties. To find more solutions, we have
to relax these conditions or couple to gravity more general types of matter, as we will do
later on. If we stay with the Einstein(–Maxwell) theory, one possibility is to look for static,
axially symmetric solutions and another possibility is to relax the condition of staticity and
only ask that the solution be stationary, which implies that we have to relax the condition
of spherical symmetry as well and look for stationary, axisymmetric spacetimes. In the first
case one finds solutions like those in Weyl’s family [949, 950] which can be interpreted
as describing the gravitational fields of axisymmetric sources with arbitrary multipole mo-
menta1 or Melvin’s solution [692] (which has cylindrical symmetry and was constructed
earlier by Bonnor [165] via a Harrison transformation [499] of the vacuum), among many
others. In the second case, we find the Kerr–Newman BHs [617, 723] with angular mo-
mentum and electric or magnetic charge and also the Taub–Newman–Unti–Tambourino
(Taub–NUT) solution [724, 879], which may but need not include charges. The Taub–NUT
metric does not describe a BH because it is not asymptotically flat. In fact, the only station-
ary axially symmetric BHs of the Einstein–Maxwell theory belong to the Kerr–Newman
family of solutions (see e.g. [532, 533]).

The Taub–NUT solution has a number of features that are particularly interesting for us,
which we are going to discuss in this chapter. In particular, it carries a new type of charge
(NUT charge), which is of topological nature and can be viewed as “gravitational magnetic
charge,” so the solution is a sort of gravitational dyon and its Euclidean continuation (for
certain values of the mass and NUT charge) is the solution known in other contexts as
a Kaluza–Klein monopole. This is a very important solution with interesting properties
such as the self-duality of its curvature and its relation to the Belavin–Polyakov–Schwarz–
Tyupkin (BPST) SU(2) instanton and the ’t Hooft–Polyakov monopole. In Chapter 11 we
will study how it arises in KK theory. Here we will describe it as a self-dual gravitational
instanton and we will take the opportunity to mention other gravitational instantons.

1 For a review see [793].

267



268 The Taub–NUT solution

The charged Taub–NUT solutions will help us to introduce a very large and interesting
family of solutions; the Israel–Wilson–Perjés (IWP) solutions, which have very important
properties from the point of view of supersymmetry and duality.

9.1 The Taub–NUT solution

General stationary, axially symmetric metrics have only two Killing vectors, k = ∂t and
m = ∂ϕ , that generate time translations and rotations around the symmetry axis (z). These
two Killing vectors are not mutually orthogonal, which implies that the off-diagonal com-
ponent of the metric gtϕ = kµmµ does not vanish (otherwise we would have a static space-
time). Furthermore, the components of the metric can depend on the other coordinates,
which we call r and θ in d = 4. A general Ansatz for these spacetimes has the form

ds2 = gtt dt2 + 2gtϕdtdϕ + grr dr2 + gθθdθ2 + gϕϕdϕ2, (9.1)

where all the components may depend on r and θ . The new interesting ingredient is the
component gtϕ(r, θ). If the metric is asymptotically flat for r → ∞ and gtϕ(r, θ) has the
asymptotic behavior

gtϕ ∼ 2J
sin2 θ

r
, (9.2)

then the solution describes a spacetime with angular momentum J in the direction of the
z axis. The only vacuum solution of this kind is Kerr’s [617], which in Boyer–Lindquist
coordinates takes the form

ds2 =
(

1 − 2Mr

�

)
dt2 + 2

2aMr sin2 θ

�
dtdϕ − �

�
dr2−�dθ2 − A

�
sin2 θ dϕ2,

A = �(r2 + a2) + 2Mra2 sin2 θ,

� = r2 + a2 cos2 θ, � = r2 − 2Mr + a2,

(9.3)

where a = J/M . If M2 ≥ a2 this solution describes rotating BHs with mass M and angular
momentum J = Ma. The event horizon is placed at r = r+ = M + √

M2 − a2 (the larger
value of r for which � = 0). When a = 0 we recover the Schwarzschild solution. Observe
that, if we take M → 0 keeping a finite, we also obtain Minkowski spacetime, as opposed
to the limit M → 0 with finite q in the RN case. If M2 < a2 the solution describes naked
singularities. This resembles what happens in the RN case. Here we can think that a star
with a large enough angular momentum cannot undergo spontaneous gravitational collapse
and so the Kerr solutions with M2 < a2 and naked singularities never arise, according to
the cosmic-censorship conjecture.

The Kerr solution for r > r+ is not the metric of any known rotating body: there is no
known “interior Kerr solution” as in the Schwarzschild case. Instead, such spacetimes are
produced by certain rotating-disk sources (see Section 6.2 of [149] for a short review with
references). However, the Kerr solution describes all isolated, rotating, uncharged BHs.
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More details on the Kerr solutions can be found in most standard textbooks on GR and
in the monograph [741]. Our subject now is the Taub–NUT solution.

If, asymptotically,
gtϕ ∼ 2N cos θ, (9.4)

the solution describes an object with NUT charge N . We will discuss soon the meaning of
this new charge, for which there is no Newtonian analog. The simplest vacuum solution
with this kind of charge is the Taub–NUT solution [724, 879]

ds2 = f (r)(dt + 2N cos θ dϕ)2 − f −1(r)dr2 − (
r2 + N 2

)
d�2

(2),

f (r) = (r − r+)(r − r−)

r2 + N 2
,

r± = M ± r0, r2
0 = M2 + N 2,

(9.5)

which is a generalization of the Schwarzschild solution with NUT charge, and reduces to it
when N = 0.

Let us list some immediate properties of this spacetime.

1. The solution is non-trivial in the M → 0 limit, in which it may be interpreted as the
gravitational field of a pure “spike” of spin [167, 329].

2. The mass of the solution can be found by standard methods and it is M . In particular,
we know that we can determine the mass by studying the weak-field expansion and
making contact with the Newtonian limit. The Newtonian gravitational potential is
given in this approximation by φ ∼ (gtt − 1)/2 = −M/r . The Taub–NUT solution
has other non-vanishing components of the metric. The diagonal components are still
related to the gravitostatic Newtonian potential φ, but the off-diagonal ones gti are
related to a gravitomagnetic potential �A according to Eq. (3.141). In the coordinates
that we are using, we see that the Taub–NUT gravitational field has, as non-vanishing
component of the gravitomagnetic potential,

Aϕ = gtϕ = 2N cos θ. (9.6)

This is essentially the electromagnetic field of a magnetic monopole of charge pro-
portional to N . Thus, the NUT charge N can be considered as a sort of “magnetic
mass” [297] and so the Taub–NUT solution can be interpreted as a gravitational dyon
[328].

3. This metric is not asymptotically flat but defines its own class of asymptotic behavior
(asymptotically Taub–NUT spacetimes) labeled by N , which is associated with the
non-vanishing at infinity of the off-diagonal gtϕ component of the metric and, as we
are going to see, with the periodicity of the time coordinate. The reason for this peri-
odicity is the desire to avoid certain singularities and to have a spherically symmetric
solution. Thus, let us first study the singularities.
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4. This metric does not have curvature singularities and is perfectly regular at r = 0.
However, it has the so-called “wire singularities” at θ = 0 and θ = π where the met-
ric fails to be invertible. These coordinate singularities cannot be cured simultane-
ously. Misner [697] found a way to make the metric regular everywhere by introduc-
ing two coordinate patches.

(a) One patch covers the region θ ≥ π/2 around the north pole. In this region we
change the time coordinate from t to t (+) defined by

t = t (+) − 2Nϕ, (9.7)

so

ds2
(+) = f (r)

[
dt (+) − 2N (1 − cos θ)dϕ

]2 − f −1(r)dr2 − (
r2 + N 2

)
d�2

(2).

(9.8)

(b) The second patch covers the region θ ≤ π/2 around the south pole. In this re-
gion we change the time coordinate from t to t (−) defined by

t = t (−) + 2Nϕ, (9.9)

so

ds2
(−) = f (r)

[
dt (−) + 2N (1 + cos θ)dϕ

]2 − f −1(r)dr2 − (
r2 + N 2

)
d�2

(2).

(9.10)

In the overlap region t (+) = t (−) + 4Nϕ and, since ϕ is compact with period 2π , then
both of t (±) have to be compact with period 8π N .

5. The metric admits three Killing vectors whose Lie brackets are those of the so (3)
Lie algebra. When the period of the time coordinates is precisely 8π N this local
symmetry can be integrated to give a global SO (3) symmetry and the metric is indeed
spherically symmetric [587]. Furthermore, the Taub–NUT spacetime now has a very
different topology: the hypersurfaces of constant r are 3-spheres S3 constructed as a
Hopf fibration of S2, the fiber being the time S1. Thus, Taub–NUT has the topology
of R

4.

6. This way of eliminating the wire singularities is identical to the way in which we
eliminated the string singularity in the vector field of the Dirac monopole because
the mathematical problem is identical. The Dirac quantization condition translates
into a relation between the periodicity of the time coordinate and the NUT charge.

This relation is more than just a coincidence: in Chapter 11 we will generate by
compactification of the Euclidean time of the Euclidean version of the Taub–NUT
solution a magnetically charged black hole. For this reason, the Euclidean Taub–NUT
solution, which we will study later, is also known as the Kaluza–Klein monopole.
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7. The metric function f (r) has two zeros at r = r± and the metric has coordinate singu-
larities there. For r > r+ and r < r− (where t is timelike and r spacelike) the metric
has closed timelike curves. Thus, although the form of the metric is similar to the
Reissner–Nordström metric, no black-hole interpretation is possible. Furthermore,
the “extremality parameter” r0 vanishes only for M = N = 0.

8. In the region r− < r < r+, the coordinate t is spacelike and r is timelike. This region
describes a non-singular, anisotropic, closed cosmological model. It can be thought
of as a closed universe containing gravitational radiation having the longest possible
wavelength [184].

9. There is no known generalization to higher dimensions. It can be embedded in
higher-dimensional spacetimes but always as a product metric. The NUT charge
seems to be an intrinsically four-dimensional charge (see, however, [578])

10. There are interior Taub–NUT solutions [178].

9.2 The Euclidean Taub–NUT solution

The Euclidean Taub–NUT metric is interesting in itself, as we are going to see. We obtain
it by Wick-rotating the time, which also has to be accompanied by a Wick rotation of the
NUT charge N in order to keep the metric real. We denote the Euclidean time by τ . The
result is (taking into account the two patches)

−dσ 2
± = f (r)

[
dτ (±) ∓ 2N (1 ∓ cos θ) dϕ

]2 + f −1(r)dr2 + (
r2 − N 2

)
d�2

(2),

f (r) = (r − r+)(r − r−)

r2 − N 2
,

r± = M ± r0, r2
0 = M2 − N 2.

(9.11)

We see that, in the Euclidean case, there is an extreme limit2 r0 = 0, which corresponds
to M = |N |. In this case, after shifting the radial coordinate by M , we find that the solution
can be written in isotropic coordinates in the following way (we suppress the ± and it is
understood that τ is a compact coordinate with period 8π N and the 1-form A is defined by
patches so it is regular everywhere):

−dσ 2 = H−1(dτ + A)2 + Hd �x 2
3 ,

H = 1 + 2|N |
|�x3| ,

A = Ai dxi , εi jk∂i A j = sign(N ) ∂k H.

(9.12)

2 In the literature it is the extreme limit that usually receives the name of Euclidean Taub–NUT solution.



272 The Taub–NUT solution

This solution is known as the (Sorkin–Gross–Perry) Kaluza–Klein (KK) monopole [483,
860]. The 1-form A satisfies the Dirac-monopole equation (8.149), which we know has to
be solved in two different patches.

9.2.1 Self-dual gravitational instantons

If we use the above form of the solution as an Ansatz in the vacuum Einstein equations,
we find that we have a solution for every function H that is harmonic in three-dimensional
space:

−dσ 2 = H−1(dτ + A)2 + Hd �x 2
3 ,

A = Ai dxi , εi jk∂i A j = ±∂k H,

∂i∂i H = 0.

(9.13)

In fact, we know that the Laplace equation is the integrability condition of the Dirac-
monopole equation, ensuring that it can be (locally) solved. Now it is possible to have
solutions with several KK monopoles in equilibrium by taking a harmonic function H with
several point-like singularities (Gibbons–Hawking multicenter metrics [437]):

H = ε +
k∑

I=1

2|NI |
|�x3 − �x3 I | . (9.14)

If we choose ε = 1, we have the multi-Taub–NUT metric. If all the NUT charges NI are
equal to N , then all the wire singularities associated with each pole can be removed simul-
taneously by taking the period of τ equal to 8π N . Asymptotically the topology is that of a
lens space: an S3 in which k points have been identified, and so they are not asymptotically
flat in general.

If we choose ε = 0, the wire singularities can be eliminated by the same procedure, but
the NI s can all be made equal by a rescaling of the coordinates. The topology is the same as
in the ε = 1 case, but the metrics are asymptotically locally Euclidean (ALE), i.e. they are
asymptotic to the quotient of Euclidean space by a discrete subgroup of SO(4). The k = 1
solution is just flat space. The k = 2 solution is equivalent [787] to the Eguchi–Hanson
solution [348], which is usually written in the form

−dσ 2 =
(

1 − a4

ρ4

)
ρ2

4
(dτ + cos θdϕ)2 +

(
1 − a4

ρ4

)−1

dρ2 + ρ2

4
d�2

(2). (9.15)

This solution has an apparent singularity at ρ = a that can be removed by identifying
τ ∼ τ + 2π . With this identification, all the ρ > a constant hypersurfaces are RP3 (S3 with
antipodal points identified).

All these solutions are gravitational instantons, the gravitational analog of the SU(2)

BPST Yang–Mills (YM) instantons discovered in [102], i.e. non-singular solutions of the
Euclidean Einstein equations with finite action, i.e. local minima of the Euclidean Einstein
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action that can be used to compute the partition function in the saddle-point approxima-
tion3 [513]. This definition also applies to the Euclidean Schwarzschild and RN solutions,
of course. It also applies to the general Euclidean Taub–NUT Eq. (9.11) which, for the
particular value M = 5

4 |N |, is known [347] as the Taub-bolt solution [751]. However, the
gravitational instantons with Gibbons–Hawking metric Eq. (9.13) have a very special prop-
erty that brings them closer to their YM counterparts: the SU(2) YM instantons have an
(anti-)self-dual field strength4

Fµν = �Fµν, (9.16)

and the above gravitational instantons have an (anti-)self-dual Lorentz (SO(4)) curvature

Rµν
ab(ω) = ±� Rµν

ab(ω). (9.17)

The (anti-)self-duality of the YM field strength implies, upon use of the Bianchi identity
Eq. (A.43), the YM equations of motion Eq. (A.45). The (anti-)self-duality of the Lorentz
curvature5 implies, via the Bianchi identity R[µνρ]

σ = 0, the vanishing of the Ricci tensor
and the Einstein equations. Both in the YM case and in the gravitational case, (anti-)self-
duality is also related to special supersymmetry properties (see Chapter 13).

Four-dimensional SU(2) YM instantons can be characterized by topological invariants
such as the second Chern class,

c2 = 1

16π2

∫
d4x Tr(F �F ). (9.18)

Then, the manifestly positive integrals∫
d4x

(
F ± �F

)2 = 2
∫

d4x
(
F2 ± F �F

) = 8SE YM ± 16π2c2 ≥ 0, (9.19)

can be used to obtain a bound for the Euclidean YM action SE YM:

SE YM ≥ 2π2|c2|. (9.20)

(Anti-)self-dual YM field configurations are the solutions that minimize the Euclidean ac-
tion in a sector characterized by the given topological number c2.

3 A table with the properties of these and other gravitational instantons can be found in Appendix D of [347].
A calculation of the Euclidean actions based on the isometries of the instantons was done in [438, 468] (for
more recent references see [515, 517–9, 584]).

4 (Anti-)self-duality can be consistently imposed only in even dimensions and depending on the signature:
with Lorentzian signature, only for d = 4n + 2; and with Euclidean signature, only in d = 4n.

5 Observe that, in Riemannian spaces, the symmetry property (Bianchi identity) Rµνρσ = Rρσµν implies that
the Lorentz curvature 2-form Rµν

abis also (anti-)self-dual in the Lorentz indices ab. Furthermore, if the
SO(4) curvature is (anti-)self-dual, there is always a gauge (a frame ea

µ) in which the connection ωµ
ab is

also (anti-)self-dual in the Lorentz indices ab [348]. The Gibbons–Hawking multicenter metric has an (anti-)
self-dual connection in the frame Eq. (9.43), but not in the frame Eq. (9.50). This property of (anti-)self-dual
curvatures is a particular case of a more general property: as we are going to see in the next section, an
object with (anti-)self-dual SO(4) indices is in fact an object with SU(2) indices embedded in SO(4) and
therefore (anti-)self-dual SO(4) curvatures are SU(2) curvatures or curvatures of special SU(2) holonomy.
The “reduction theorem” (Section II.7 of Vol. 1 of [630]) states that there is always a frame in which the
spin connection has the same holonomy as the curvature.
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Four-dimensional gravitational instantons are characterized by two topological invari-
ants: the Hirzebruch signature τ(M), which is a third of the integral of the first Pontrjagin
class p1,

τ(M) = 1
3

∫
M

p1 = − 1

24π2

∫
M

Trv(R ∧ R) = 1

96π2

∫
M

d4x
√

|g|εµνρσ Rµν
ab Rρσ ab, (9.21)

where Trv denotes the trace in the vector representation and χ(M) the Euler characteristic,
given in Eq. (8.116), but there is no obvious direct relation between these invariants and the
Einstein–Hilbert action (nevertheless, see the discussion in Section 8.6).

The relation between these YM and gravitational configurations is really worth investi-
gating a little bit further. Let us first review the BPST SU(2) instanton in the form known
as the ’t Hooft Ansatz [601].

9.2.2 The BPST instanton

The so called ‘t Hooft Ansatz [601] for the SU(2) instanton connection 1-form Am has the
form6

A(±)
m = −M∓

mnVn, (9.22)

where the 2 × 2 matrices M∓
mn are (anti-)self-dual generators of so(4) constructed from the

Pauli matrices, and Vn is a vector field to be determined by the requirement that the field
strength F (±) = dA(±) − A(±)A(±) be (anti-)self-dual,

�F (±)
mn = ±F (±)

mn . (9.23)

This condition is satisfied if

∂m Vm + Vm Vm = 0,
� fmn ± fmn = 0, fmn = 2∂[m Vn].

(9.24)

The second condition is usually satisfied by choosing a Vm that is the gradient of some
scalar function, Vm = ∂m ln V . Then, the first condition becomes the equation

V −1∂m∂m V = 0. (9.25)

We have an instanton solution for each harmonic function V on four-dimensional Euclidean
space. Not all of them have finite action, though. The most interesting choice is

V = ε +
k∑

I=1

λ2
I

|�x4 − �x4 I |2 , ε = 1, 0, (9.26)

for k instantons. For k = ε = 1 we recover the BPST instanton solution in the second gauge
[102], which can be written in a suggestive form that resembles the electromagnetic vector
field of the ERN BH,

A(+)
m = (V −1 − 1)g−1 ∂mg, A(−)

m = − (
V −1 − 1

)
∂mg g−1, (9.27)

6 Here we are in flat four-dimensional Euclidean space and we use non-underlined Latin indices m, n, p, q =
0, 1, 2, 3 for convenience and calligraphic A for the YM connection to distinguish it from the 1-form A
appearing in the Taub–NUT metric.
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where g(x) is the SU(2)-valued function

g = (x0 − i x iσ i )/|�x4|, (9.28)

and the σ i are the Pauli matrices Eq. (B.9).
The ’t Hooft Ansatz makes the embedding of the SU(2) gauge connection in SO(4) easy

(only the self-duality properties of the generators and their commutation relations play a
role): we simply have to take the generators of so(4) in the fundamental representation

(Mmn)
pq = −2δmn

pq, (9.29)

and then take their (anti-)self-dual part,7

(M(±)
mn )pq = 1

2

(
δmn

rs ± 1
2εmn

rs
)
(Mrs)

pq = − (
δmn

pq ± 1
2εmn

pq
)
. (9.30)

If we split the four dimensions into m = 0, i , with i = 1, 2, 3, the components are

A(±)

0 i0 = − 1
2∂i ln V, A(±)

i 0 j = − 1
2∂0 ln V δi j ± εi jk∂k ln V,

A(±)

0 i j = ∓εi jk∂k ln V, A(±)
i jk = +δi[ j∂k] ln V ± εi jk∂0 ln V .

(9.31)

For reasons that will become clear, we are also interested in a slightly different choice of
self-dual so(4) generators M̃±

ab defined as follows:

M̃±
i j = −M∓

i j , M̃±
0i = +M∓

0i , (9.32)

so the non-vanishing components of

Ã(±)
m = −M̃∓

mn ∂nV (9.33)

are
Ã(±)

0 i0 = − 1
2∂i ln V, Ã(±)

i 0 j = − 1
2∂0 ln V δi j ∓ εi jk∂k ln V,

Ã(±)

0 i j = ∓εi jk∂k ln V, Ã(±)
i jk = −δi[ j∂k] ln V ± εi jk∂0 ln V .

(9.34)

9.2.3 Instantons and monopoles

There is an interesting relation between instantons and certain monopoles in spite of their
different (Euclidean, Lorentzian) natures. Let us restrict ourselves to YM field configura-
tions that do not depend on the coordinate x0 = τ . The restricted theory is, thus, effectively
three-dimensional. The component A0 now has the interpretation of a three-dimensional
scalar in the adjoint representation that we denote by �, while the other three components

7 These matrices have the same duality properties in the Lie algebra indices ab and in the representation

indices cd because they have the interchange property (M(±)
mn )pq = (M(±)

pq )mn . This property implies that
the (SO(4)) connection is also (anti-)self-dual in the group indices and so will be the curvature. On the other
hand, observe that we are basically using the fact that the algebra so(4) = su(2) ⊕ su(2). The self-dual part
of the so(4) generators generates one of the su(2) subspaces and the anti-self-dual part generates the other.
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become the components of the three-dimensional YM vector field. The Fi0 components of
the field strength are

Fi0 = ∂i� − [Ai , �] = Di�, (9.35)

i.e. the three-dimensional YM covariant derivative of the scalar �. After integrating over
the redundant coordinate τ (which we take to be periodic with period 2π ), the Euclidean
YM action becomes

SE YM = 2π

∫
d3x Tr

[
1
4Fi jFi j + 1

2Di�Di�
]
, (9.36)

and the (anti-)self-duality equation for F becomes the Bogomol’nyi equation [163, 248]

Fi j = ∓εi jkDk�. (9.37)

Let us now consider the (four-dimensional, Lorentzian) Georgi–Glashow model [425]
which consists of an SU(2) gauge field A coupled to a triplet of Higgs fields � with a
potential V (�) = 1

2λ[Tr(�2) − 1]2

SGG =
∫

d4x
{− 1

4 TrF2 + 1
2 Tr(D�)2 − 1

2λ[Tr(�2) − 1]2
}
. (9.38)

’t Hooft [890] and Polyakov [783] found a magnetic-monopole solution of this model that
generalizes Dirac’s. In the λ = 0 limit (the Bogomol’nyi–Prasad–Sommerfield (BPS) limit),
the solution takes an especially simple form [788] and has special properties that can also
be related to supersymmetry (see Chapter 13).

Let us focus on purely magnetic (i.e. A0 = 0) and static (∂0Aµ = ∂0� = 0) field configu-
rations. Their energy (taking λ = 0) is given precisely by [1/(2π)]SE YM in Eq. (9.36). It is
not surprising that, therefore, the energy of these configurations is bounded: the manifestly
positive integral∫

d3x Tr
(
Fi j ± εi jkDk�

)2 = 8E ±
∫

d3xεi jkTr(Fi jDk�) ≥ 0. (9.39)

On integrating by parts and using the three-dimensional Bianchi identity, we find that∫
d3xεi jkTr(Fi jDk�) =

∫
d3x∂i (εi jk�Fi j ) = 4

∫
S2∞

Tr(�F) = −4p, (9.40)

where we have used Stokes’ theorem and where p is the SU(2) magnetic charge. Thus,

E ≥ 1
2 |p|, (9.41)

which is the Bogomol’nyi or BPS bound. We know that p is quantized (for g = 1), p = 2πn.
Using this fact and the relation E = [1/(2π)]SE YM, this relation is completely equivalent
to Eq. (9.20). On the other hand, the configurations that minimize the energy E = 1

2 |p|
(saturate the BPS bound) are those satisfying the first-order Bogomol’nyi equation and it is
easy to prove that these configurations also solve all the (second-order) equations of motion
of the λ = 0 Georgi–Glashow model.
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The immediate conclusion of this discussion is that, if we take SU(2) (anti-)self-dual
instantons that do not depend on the τ coordinate, we have automatically a magnetic
monopole solution of the Georgi–Glashow model with λ = 0 satisfying the Bogomol’nyi
bound. In particular, the BPS limit of the ’t Hooft–Polyakov SU(2) is obtained using the
’t Hooft Ansatz with the harmonic function

V = 1 + λ

|�x3| . (9.42)

9.2.4 The BPST instanton and the KK monopole

We are now ready to establish a relation between the Euclidean Taub–NUT solution (KK
monopole) and the BPST instanton. We are going to see that the spin-connection frame
components ωm np of the KK monopole are identical to the SO(4)-embedded components
of the BPST instanton connection Ãm np with the harmonic function V identical to the
harmonic function H of the KK monopole, depending on just three coordinates �x3.

In the simplest frame,

e0=H− 1
2 [dτ + Ai dxi ], e0=H

1
2 ∂τ ,

ei=H
1
2 dxi , ei=H− 1

2 [∂i − Ai∂τ ],
(9.43)

the frame components of the spin connection (which is just an SO(4) connection) are

ω0 i0(e)=− 1
2∂i ln H, ωi 0 j (e)=H−1∂[i A j],

ω0 i j (e)=H−1∂[i A j], ωi jk(e)=−δi[ j∂k] ln H.
(9.44)

Here it is important to observe that all partial derivatives in this expression have frame
indices. Using the Dirac-monopole equation for the 1-form A,

εi jk∂[i A j] = ±∂k H, (9.45)

the KK-monopole spin connection becomes

ω
(±)

0 i0(e)=− 1
2∂i ln H, ω

(±)

i 0 j (e)=±εi jk∂k ln H,

ω
(±)

0 i j (e)=±εi jk∂k ln H, ω
(±)
i jk(e)=−δi[ j∂k] ln H,

(9.46)

which is identical to the connection Ã in Eq. (9.34). It is, therefore, (anti-)self-dual and has
SU(2) holonomy.

9.2.5 Bianchi IX gravitational instantons

In [449] the class of gravitational instantons with an SU(2) or SO(3) isometry group acting
transitively (Bianchi IX metrics) was studied, with special emphasis on those with self-
dual curvature. This class includes some of the gravitational instantons that we have stud-
ied, namely Taub–NUT, Taub-bolt, and Eguchi–Hanson instantons, and its discussion will
provide us with some further interesting examples.
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All Ricci-flat (Rµν = 0) Bianchi IX metrics can locally be written in the form

dσ 2 = (a1a2a3)dη2 +
∑

i=1,2,3

(ai e
i )2, (9.47)

where the ai s depend only on η and the σ i s are the η-independent SU(2) Maurer–Cartan
1-forms denoted by ei in Appendix A.3.1.

A simple solution of the Einstein equations with a2
1 = a2

2 is given by the Euclidean Taub–
NUT solution (M �= N ),

a1
1 = a2

2 = 1
4q sinh[q(η − η2)] cosech2[q(η − η1)],

q(η − η2)a2
3 = cosech[q(η − η2)],

(9.48)

where q, η1, and η2 are integration constants. The relation to the standard integration con-
stants and coordinates is

N 2 = − 1
4q cosech[q(η2 − η1)],

M = N cosh[q(η2 − η1)],

r = q

4N
{coth[ 1

2q(η − η1)] − coth[q(η2 − η1)]},
τ = 4Nψ.

(9.49)

On taking the limit q → 0 we obtain the M = |N | Taub–NUT metric with self-dual cur-
vature. With the obvious frame choice

e0 = a1a2a3dη, ei = aiσ
i , (9.50)

its connection is not (anti-)self-dual. With η1 = η2 we obtain the Eguchi–Hanson metric
Eq. (9.15) with

M = N + a4

128N 3
, r = M + ρ2

8N
, (9.51)

after taking the N → ∞ limit. This metric has self-dual curvature and connection (using
the above frame). On setting M = 5

4 |N | we obtain the Taub-bolt metric.
If we impose the condition that the Lorentz curvature is self-dual in the above frame, one

obtains, after one integration, the equations

2
d

dη
ln a1 =

∑
i=1,2,3

a2
i − 2a2

1 − 2λ1a2a3,

λ1 = λ2λ3,

(9.52)

and the equations one obtains from these by cyclic permutations of the indices i = 1, 2, 3.
The algebraic equations for the constants λi admit three possible solutions:

(λ1, λ2, λ3) = (0, 0, 0), (1, 1, 1), (−1, −1, 1). (9.53)
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The first solution corresponds to metrics whose connection is self-dual and can be com-
pletely integrated. The general solution is [104]

dσ 2 = ( f1 f2 f3)
− 1

2 dη2 + ( f1 f2 f3)
1
2
ρ2

4

∑
i=1,2,3

( f
− 1

2
i σ i )2,

fi = 1 − b4
i

ρ4 .

(9.54)

b1 = b2 = a, b3 = 0 is the Eguchi–Hanson metric Eq. (9.15). Solutions of the second
class have not been obtained except for the special case a1 = a2, that gives the self-dual
Taub–NUT metric. The third case is not equivalent to the second and corresponds to the
Atiyah–Hitchin metric [56] which governs the interaction of two slowly moving BPS SU(2)
monopoles.

9.3 Charged Taub–NUT solutions and IWP solutions

Let us consider stationary, axially symmetric solutions of the Einstein–Maxwell system.
Some of them are the result of adding electric or magnetic charges to vacuum solutions.

The charged version of the Kerr solution was found in [723] and is known as the Kerr–
Newman solution, which takes the form

ds2 =
(

1 − 2Mr − 4q2

�

)
dt2 + 2

a(2Mr − 4q2) sin2 θ

�
dtdϕ

− �

�
dr2 − �dθ2 − A

�
sin2 θ dϕ2,

� = r2 + a2 cos2 θ, � = r2 − 2Mr + 4q2 + a2

A= �(r2 + a2) + (2Mr − 4q2)a2 sin2 θ,

Aµ = 4qr

�
[δµt − δµϕa sin2 θ ].

(9.55)

Again, if M2 ≥ 4q2 + a2, this solution describes BHs with mass M , angular momentum
J = Ma, and electric charge q, with the event horizon at r = r+ = M +

√
M2 − 4q2 − a2

(the larger value of r for which � = 0).
Observe that, although the solution is only electrically charged, the rotation induces a

magnetic dipole moment and the Aϕ component of the vector field is non-zero.
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The electrically charged Taub–NUT solution was found by Brill in [184] and is

ds2 = f (r)(dt + 2N cos θ dϕ)2 − f −1(r)dr2 − (
r2 + N 2

)
d�2

(2),

Ftr = 4q(r2 − N 2)

r2 + N 2
, (�F)tr = 8q Nr

(r2 + N 2)2
,

f (r) = (r − r+)(r − r−)

r2 + N 2
,

r± = M ± r0, r2
0 = M2 + N 2 − 4q2.

(9.56)

It reduces to the RN solution when we set the NUT charge to zero. It is trivial to generalize
these solutions to the magnetic and dyonic cases.

In contrast to the Taub–NUT solution, the charged Taub–NUT solution does have an
extremal limit M2 + N 2 = 4q2 in which the extremality parameter r0 vanishes and the two
zeros of the metric function f (r) coincide. In this case, by shifting the radial coordinate to
ρ = r − M and defining Cartesian coordinates such that ρ = |�x3|, we find a simple form of
the solution,8

ds2 = |H|−2 (dt + A)2 − |H|2d �x 2
3 ,

At = 2Re(eiαH), Ãt = 2Im(eiαH),

H = 1 + M + i N

|�x3| ,

A = Ai dxi , εi jk∂i A j = ±Im(H∂kH).

(9.57)

As in some of the other “extreme” solutions that we have found so far,9 it turns out that
we obtain a solution for any complex harmonic function H(�x3). By absorbing the complex
phase eiα into H, we can write the general solution in this form:

ds2 = |H|−2(dt + A)2 − |H|2d �x 2
3 ,

At = 2ReH, Ãt = −2Re(iH),

A = Ai dxi , εi jk∂i A j = ±Im(H∂kH),

∂i∂iH= 0.

(9.58)

Metrics of the above form are known as conformastationary metrics [640]. Observe that
the integrability condition of the equation for the 1-form A is the Laplace equation for H.

8 Here we are actually taking the extreme limit of the dyonic solution, which indeed has a simpler form. The
information on the electric and magnetic charges is contained in the SO(2) electric–magnetic-duality phase
eiα .

9 But not in all of them. In particular, not in the Kerr BH.
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This big family of solutions is known as the Israel–Wilson–Perjés (IWP) solutions [597,
769], although they were first discovered by Neugebauer [721]. This family contains all the
“extreme” solutions (RN, charged Taub–NUT, and their multicenter generalizations) that
we have found so far, plus many others that may have mass, electric and magnetic charges,
NUT charge, and also angular momentum. In particular, the M2 = 4q2 Kerr–Newman
solutions, for arbitrary angular momentum, belong to this family: their complex harmonic
function is

H = 1 + M√
x2 + y2 + (z − ia)2

. (9.59)

In terms of more suitable oblate spheroidal coordinates,

x + iy = [(r − M)2 + a2]
1
2 sin θ eiϕ,

z = (r − M) cos θ,
(9.60)

the function H takes the form

H = 1 + M

r − M − ia cos θ
, (9.61)

and the Euclidean three-dimensional metric becomes

d �x 2
3 = [

(r − M)2 + a2 cos2 θ
][ dr2

(r − M)2 + a2
+ dθ2

]
+ [

(r − M)2 + a2
]

sin2 θ dϕ2.

(9.62)
Furthermore, the 1-form A is given by

A = (2Mr − M2)a sin2 θ

(r − M)2 + a2 cos2 θ
dϕ, (9.63)

and

|H|2 = (r − m)2 − a2 cos2 θ

r2 + a2 cos2 θ
, (9.64)

and we recover the Kerr–Newman solutions with M2 = 4q2. These solutions are not BHs
because they violate the bound M2 − 4q2 − a2 ≥ 0. In fact, it has been argued by Hartle
and Hawking that the only BH-type solutions in the IWP family of metrics are the multi-
ERN solutions.

For us, one of the main interests of this family is that it is electric–magnetic-duality-
invariant and it is the most general family that we can have with the above charges always
satisfying the identity M2 = 4|�q|2. An electric–magnetic-duality transformation is nothing
but a change in the phase of H. Non-extreme solutions can be constructed from the IWP
class, by adding a “non-extremality function” W , as in the RN case [665]. We will study
them as a subfamily of the most general BH-type solutions of pure N = 4, d = 4 SUEGRA.
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Gravitational pp-waves

As we saw in Part I, the weak-field limit of GR is just a relativistic field theory of a massless
spin-2 particle propagating in Minkowski spacetime. In the absence of sources, by choosing
the De Donder gauge Eq. (3.100), it can be shown that the gravitational field hµν satisfies
the wave equation (3.101) and, correspondingly, there are wave-like solutions of the weak-
field equations like the one we found in Section 3.2.3 associated with a massless point-
particle moving at the speed of light.

GR is, however, a highly non-linear theory and it is natural to wonder whether there
are exact wave-like solutions of the full Einstein equations. The answer is definitely yes
and in this chapter we are going to study some of them, the so-called pp-waves, which
are especially interesting for us. In particular we are going to see that the linear solution
we found in Section 3.2.3 is an exact solution of the full Einstein equations that has the
same interpretation. We will use this solution many times in what follows to describe the
gravitational field of Kaluza–Klein momentum modes, for instance.

10.1 pp-Waves

pp-waves (shorthand for plane-fronted waves with parallel rays) are metrics that, by defi-
nition, admit a covariantly constant null Killing vector field �µ:

∇µ�ν = 0, �2 = �µ�µ = 0. (10.1)

The first spacetimes with this property were discovered by Brinkmann in [193]. To de-
scribe pp-wave metrics, we define light-cone coordinates u and v in terms of the usual
Cartesian coordinates

u = 1√
2
(t − z), v = 1√

2
(t + z), (10.2)

which are related to the null Killing vector by

�µ = ∂µu, �µ∂µv = 1, (10.3)

i.e. v is the coordinate we can make the metric independent of, the only non-vanishing
components of � are �u = �v = 1, and the metric describes a gravitational wave propagating

282



10.1 pp-Waves 283

in the positive direction of the z axis. The most general metric admitting a covariantly
constant null Killing vector in d dimensions [194] takes the form

ds2 = 2W u(dv + K du + Ai dxi ) + g̃i j dxi dx j , (10.4)

where i, j = 1, 2, . . ., d − 2 and the vector (Sagnac connection [440]) Ai and the metric g̃i j

in the transverse space do not depend on v. The connection and curvature for this metric
are given in Appendix F.2.5. It is possible to eliminate either K or the Ai s by performing a
GCT (u, v, xi ) → (u, v′, xi ′) that preserves the above form of the metric. Under

xi = xi (u, x ′), v = v′ + f (u, x ′), (10.5)

we obtain a metric of the same form but with

A′
i = A j M j

i + g̃k j∂u xk M j
i + ∂ f

∂xi ′ ,

K ′ = K + Ai∂u xi + 1
2 g̃i j∂u xi∂u x j + ∂u f,

g̃′
i j = g̃kl Mk

i Ml
j ,

Mi
j ≡ ∂x j

∂xi ′ .

(10.6)

It is now possible to solve the equation A′
i = 0 with f = 0 and the xi ′ given by the solutions

of the first-order differential equation

∂u xi = −g̃i j A j , g̃i j g̃ jk = δi
k, (10.7)

if the matrix Mi
j can be inverted. The equation K ′ = 0 can also be solved with

xi ′ = xi , ∂u f = −K . (10.8)

10.1.1 Hpp-waves

A family of pp-waves known as homogeneous pp-waves or Hpp-waves was constructed
by Cahen and Wallach as symmetric (not just homogeneous) Lorentzian spacetimes
[201]. Some of these spacetimes (in d = 4 [637], d = 6 [690], d = 10 [159], and d = 11
[392, 636]) are maximally supersymmetric, as we will explain in Chapter 13, and are,
therefore, vacua of the corresponding supersymmetric theory, just as the RB solution is
another vacuum of N = 2, d = 4 SUGRA. In fact, the maximally supersymmetric Hpp-
waves are the Penrose limits [495, 764] of RB-type (AdSn× Sd−n) vacua, which also occur
in d = 4, 6, 10, and 11 [158, 160]. This makes them particularly interesting. Here we re-
view their construction following [392] and using Appendix A.

First, we need some definitions: the Heisenberg algebra H(2n + 1) is the Lie algebra
generated by {qi , p j , V } i, j = 1, . . ., n with the only non-vanishing Lie brackets

[qi , pi ] = δi j V . (10.9)
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The Heisenberg algebra H(2n + 2) is the semidirect sum of H(2n + 1) and the Lie algebra
generated by the automorphism U whose action is determined by the new non-vanishing
Lie brackets

[U, qi ] = pi , [U, pi ] = −qi . (10.10)

In the complex basis

αi = 1√
2
(qi + i pi ), I = iV, N = −iU, (10.11)

the Lie brackets take the form

[αi , α
†
j ] = δi j I, [N , αi ] = −αi , [N , α

†
i ] = +α

†
i , (10.12)

in which we recognize N as the number operator.
All the Heisenberg algebras are solvable and have a singular Killing metric.1 V (I ) is

always central.
The Heisenberg algebras can be deformed as follows: let us denote by xr , r = 1, . . ., 2n

the column vector formed by the qi s and pi s. The Lie brackets can be written in this form:

[xr , xs] = ηrs V, [U, xr ] = ηrs xs, (ηrs) =
(

0 In×n

−In×n 0

)
. (10.13)

Now, we can define a new (solvable) Lie algebra with brackets

[xr , xs] = Mrs V, [U, xr ] = Nrs xs, M N T − N MT = 0. (10.14)

In some cases, but not always, this algebra is equivalent to the original Heisenberg algebra
up to a GL(2n) transformation.

The (n + 2)-dimensional Hpp-wave spacetimes are constructed starting from a (2n + 2)-
dimensional algebra of the above form with

(Mrs) =
(

0 −2A
2A 0

)
, (Nrs) =

(
0 In×n

2A 0

)
, Ai j = A ji , (10.15)

which is inequivalent to the original Heisenberg algebra H(2n + 2). In the coset construc-
tion h will be the Abelian subalgebra generated by the pi ≡ Mi s and its orthogonal com-
plement k is generated by qi ≡ Pi , V ≡ Pv, and U ≡ Pu . h and k are a symmetric pair.

Using the coset representative

u = evPv eu Pu exi Pi , (10.16)

we obtain the 1-forms

eu = −du, ei = −dxi ,

ev = −(dv + Ai j xi x j du), ϑ i = −xi du.
(10.17)

1 Actually the algebras H(2n + 1) are nilpotent, which implies an identically vanishing Killing metric.
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To construct an invariant Riemannian metric, we use the H -invariant metric2 Buv = +1,
Bi j = +δi j on k, and the result is a pp-wave of the form

ds2 = 2du(dv + Ai j x
i x j du) + d �x 2

n . (10.18)

These Hpp-waves are characterized by the eigenvalues of A. They are invariant under
the (2n + 2)-dimensional Heisenberg group but also under the rotations of the wavefront
coordinates that preserve the eigenspaces.

10.2 Four-dimensional pp-wave solutions

In four dimensions it is useful to define complex coordinates on the (plane) wavefront ξ, ξ ,

ξ = 1√
2
(x + iy), (10.19)

so, using the fact that any two-dimensional metric is conformally equivalent to flat space,
the four-dimensional metric can always be written in the form

ds2 = 2du[dv + K (u, ξ, ξ̄ )du] − 2P(u, ξ, ξ̄ )dξdξ . (10.20)

The Einstein vacuum equations are solved if K is a harmonic function on the wavefront,

∂ξ∂ξ̄ K = 0, (10.21)

and P is a function of u alone, and then we can absorb it into a redefinition of ξ that does
not change the form of the metric. The only non-trivial element of the metric in this adapted
coordinate system is, therefore, guu = K (u, ξ, ξ). Observe that this function K has exactly
the form of a perturbation of the gravitational field about the vacuum (flat Minkowski space
with metric ηµν) since

2dudv − 2dξdξ = ηµνdxµdxν, (10.22)

and the metric Eq. (10.20) can also be written in the form

ds2 = ηµνdxµdxν + 2K (u, ξ, ξ)du2, huu = 2K . (10.23)

The most general pp-wave solutions of the four-dimensional Einstein–Maxwell theory
Eq. (8.58) are also known (see [640]), and take the form

ds2 = 2du(dv + K du) − 2dξdξ,

Fξu = ∂ξC,

K = Re f + 1
4 |C |2, ∂ξ̄ f = ∂ξ̄C = 0.

(10.24)

2 This metric has mostly plus signature, because Buv = +1, Bi j = −δi j is not H -invariant. We have to per-
form Wick rotations to obtain a mostly minus metric.
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The specific properties of each pp-wave solution depend on the form of the function K .3

K has two different terms. The first is independent of the electromagnetic field; only the
second depends on it. The first term (the real part of the analytic f (u, ξ)) is just any har-
monic function H(u, �x2) in the wavefront Euclidean two-dimensional space and it provides
a purely gravitational solution. It represents a sort of perturbation of the electromagnetic
and gravitational background described by the second term of K .

A particularly interesting type of pp-waves is shock or impulse waves with the first term
of K given by

K (u, ξ, ξ̄ ) = δ(u)K (ξ, ξ̄ ). (10.25)

An example of a gravitational shock wave is provided by the purely gravitational
Aichelburg–Sexl solution [24]

K = H(u, �x2) = δ(u) ln |ξ |, (10.26)

which describes the gravitational field of a massive point-like particle boosted to the speed
of light. In [24] this metric was obtained by performing an infinite boost in the direction z
to a Schwarzschild black hole. This method for generating impulsive waves also works in
(anti-)de Sitter spacetimes [565] using the Schwarzschild–(anti-)de Sitter solution and has
also been applied to the Kerr–Newman solution [73, 74, 385, 661] and to Weyl’s axisym-
metric vacuum solutions.[775].4 However, in Section 10.3 we will identify d-dimensional
Aichelburg–Sexl-type (AS) shock waves as the gravitational field produced by a massless
particle moving at the speed of light, checking explicitly that (AS) shock waves satisfy the
equations of motion of Einstein’s action coupled to a massless particle.

This interpretation will later turn out to be very useful. In Chapter 11 we will be interested
in the gravitational field produced by massless particles moving at the speed of light in
compact dimensions. These particles appear as massive and charged in the non-compact
dimensions and their gravitational field (a charged extreme black hole) can be derived from
the massless-particle gravitational field. Then, we will simply have to adapt the AS shock-
wave solution to a spacetime with compact dimensions.

Another example, this time with the first term of K vanishing, is provided by a solution
with Hpp-wave-type metrics (10.18). A particular case is the four-dimensional Kowalski–
Glikman solution KG4 [637],

ds2 = 2du(dv + 1
8λ

2|�x2|2du) − d �x 2
2 ,

Fu1 = λ,
(10.27)

which is a maximally supersymmetric solution of the d = 4 Einstein–Maxwell theory that
is the Penrose limit of the RB solution. We will study the (super)symmetries of these vacua
in Chapter 13.

Before studying shock wave sources, we consider the higher-dimensional generalization
of the pp-wave solutions Eq. (10.24).

3 A detailed classification and description of metrics of this kind that are solutions of the Einstein–Maxwell
equations can be found in [640].

4 For further results and references on impulse waves see e.g. [774, 865].
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10.2.1 Higher-dimensional pp-waves

A general pp-wave solution of the d-dimensional Einstein–Maxwell theory Eq. (8.217) is
given by [664]

ds2 = 2du(dv + K du) − g̃i j (�xd−2)dxi dx j ,

Fui = Ci ,

∇̃2 K = 1
4 C̃i C̃ i , d̃C = d̃
C = 0, R̃i j = 0,

(10.28)

i.e. C(u, �xd−2)i dxi is a harmonic 1-form in the Ricci-flat wavefront space and K satisfies
the above differential equation that can be integrated if the Green function for the Laplacian
on the wavefront space is known. If the wavefront space is flat, g̃i j = −δi j , and we take the
�xd−2-independent harmonic 1-form Ci (u), K is given by

K = H(u, �xd−2) + 1
4Ci C

i (u)Mi j (u)xi x j , Tr(M) = 1, ∂i∂i H = 0. (10.29)

Again, K consists of two terms: the first is a harmonic function on the Euclidean wave-
front space H(u, �xd−2). This is the part of K that can be related to singular sources (mass-
less particles), as we are going to see in the next section. The second term in K describes
the gravitational and electromagnetic background. The solutions with H = 0 and Ci and
Mi j constant have, again, Hpp-wave metrics:

ds2 = 2du(dv + Ai j xi x j du) − d �x 2
d−2,

Fui = Ci , Tr(A) = 1
4Ci Ci .

(10.30)

One particular case is the KG4 solution Eq. (10.27). Another interesting case is the five-
dimensional Kowalski–Glikman solution KG5 [690], which is also maximally supersym-
metric in N = 1, d = 5 SUGRA [261]:

ds2 = 2du

[
dv + λ2

5

24
(4z2 + x2 + y2)du

]
− dx2 − dy2 − dz2,

F = λ5du ∧ dz.

(10.31)

10.3 Sources: the AS shock wave

We consider a massless particle moving in d-dimensional curved space coupled to the Ein-
stein action for the gravitational field. This coupled system is described by the following
action (see Section 7.2, where, in particular, the action for a massless particle Eq. (3.258)
was derived) with c = 1:

S = 1

16πG(d)
N

∫
dd x

√
|g| R − p

2

∫
dξ

√
γ γ −1gµν(X)Ẋµ Ẋ ν. (10.32)
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The equations of motion for gµν(x), Xµ(ξ), and γ (ξ) are, respectively,

16πG(d)
N√|g|

δS

δgµν
= Gµν + 8πG(d)

N p√|g|
∫

dξ
√

γ γ −1gµρgνσ Ẋρ Ẋσ δ(d)(x − X) = 0,

γ
1
2

p
gσρ

δS

δXρ
= Ẍσ + �ρν

σ Ẋρ Ẋ ν − d

dξ
(ln γ )

1
2 Ẋσ = 0,

4γ
3
2

p

δS

δγ
= gµν Ẋµ Ẋ ν = 0.

(10.33)

Since the particle is massless, it must move at the speed of light (this is the content of the
equation of motion of γ ). If it moves in the direction of the xd−1 ≡ z axis, one can use the
light-cone coordinates u and v defined above.

If it moves in the sense of increasing z at the speed of light, its equation of motion is
U (ξ) = 0. We can set V (ξ) = √

2 ξ . Thus, our Ansatz for the Xµ(ξ) is

U (ξ) = 0, V (ξ) =
√

2ξ, �X ≡ (X1, . . ., Xd−2) = �0. (10.34)

A gravitational wave moves at the speed of light, and thus our Ansatz for the spacetime
metric is that of a gravitational pp-wave moving in the same direction (i.e. with null Killing
vector �µ = δµu so, in particular, nothing depends on v):

ds2 = 2dudv + 2K (u, �xd−2)du2 − d �x 2
d−2, �xd−2 = (

x1, . . ., xd−2
)
. (10.35)

Now we plug our Ansatz into the equation of motion above. First, we immediately see that
the equation for γ is satisfied because Ẋµ = √

2δµ
v and gvv = 0. The equation of motion

for Xµ is also satisfied by taking a constant worldline metric γ = 1 because �vv
σ = 0.

Only one equation remains to be solved. On substituting our Ansatz for the coordinates
and γ plus |g| = 1 (which holds for the above pp-waves), we find

Gµν + 8πG(d)
N p

∫
dξδµuδνuδ(u)δ(v −

√
2ξ)δ(d−2)(�xd−2) = 0. (10.36)

For the pp-wave metric Eq. (10.35) we also have exactly (that is, without using any
property of the metric apart from the light-like character of �µ)

Gµν = −δµuδνu�∂ 2
d−2 K (u, �xd−2). (10.37)

Then, on integrating over ξ and substituting the above result, the Einstein equation reduces
to the following equation for K (u, �xd−2):

�∂ 2
d−2 K (u, �xd−2) = −

√
2 8πG(d)

N pδ(u)δ(d−2)(�xd−2). (10.38)
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In Chapter 3, Section 3.2.3, we found precisely the same equation and it has the same
solution, Eqs. (3.133) and (3.134). Thus, we have found the solution

ds2 = 2dudv + 2K (u, �xd−2)du2 − d �x 2
d−2,

K (u, �xd−2) =
√

2 p8πG(d)
N

(d − 4)ω(d−3)

1

|�xd−2|d−4
δ(u), d ≥ 5,

K (u, �x2) = −√
2 p4G(4)

N ln |�x2| δ(u), d = 4.

(10.39)

The d = 4 solution is the AS shock wave found in [24]. Observe that this solution is exactly
the same as that which we obtained in Section 3.2.3 by solving the linear-order theory.
There are no higher-order corrections to the first-order solution which is not renormal-
ized. This is due to the special structure of the linear solution and can be related to super-
symmetry as well.

There is another useful way to rewrite the pp-wave metrics that we have found. Defining
the function

H ≡ 1 − K , (10.40)

the solution takes the form

ds2 = H−1dt2 − H
[
dz − α(H−1 − 1)dt

]2 − d �x 2
d−2, α = ±1,

H = 1 −
√

2 p8πG(d)
N

(d − 4)ω(d−3)

1

|�xd−2|d−4
δ

[
1√
2
(t − αz)

]
, d ≥ 5,

H = 1 + √
2 p4G(4)

N ln |�x2| δ
[

1√
2
(t − αz)

]
, d = 4,

(10.41)

where we have introduced the constant α = ±1 to take care of the two possible directions
of propagation toward z = α∞.

Had we tried to solve the vacuum Einstein equations with the Ansatz Eq. (10.35), we
would have arrived at the conclusion that any function K (or H ) harmonic in (d − 2)-
dimensional Euclidean space transverse to z provides a solution. Thus, we obtain a family
of pp-wave solutions of the form

ds2 = H−1dt2 − H [dz − α(H−1 − 1)dt]2 − d �x 2
d−2,

�∂ 2
(d−2) H = 0, α = ±1.

(10.42)
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The Kaluza–Klein black hole

Kaluza [615] and Nordström’s [728] original idea/observation that electromagnetism could
be seen as part of five-dimensional gravity, combined with Klein’s curling up of the fifth di-
mension in a tiny circle [626], constitutes one of the most fascinating and recurring themes
of modern physics. Kaluza–Klein theories1 are interesting both in their own right (in spite
of their failure to produce realistic four-dimensional theories [960], at least when the in-
ternal space is a manifold) and because of the usefulness of the techniques of dimensional
reduction for treating problems in which the dynamics in one or several directions is irrel-
evant. We saw an example in Chapter 9, when we related four-dimensional instantons to
monopoles.

On the other hand, the effective-field theories of some superstring theories (which are
supergravity theories) can be obtained by dimensional reduction of 11-dimensional super-
gravity, which is the low-energy effective-field theory of (there is no real consensus on this
point) M theory or one of its dual versions. In turn, string theory needs to be “compactified”
to take a four-dimensional form and, to obtain the four-dimensional low-energy effective
actions, one can apply the dimensional-reduction techniques.

Here we want to give a simple overview of the physics of compact dimensions and the
techniques used to deal with them (dimensional reduction etc.) in a non-stringy context.
We will deal only with the compactification of pure gravity and vector fields, leaving aside
compactification in the presence of more general matter fields (including fermions) until
Part III. We will also leave aside many subjects such as spontaneous compactification and
the issue of constructing realistic Kaluza–Klein theories, which are covered elsewhere [342,
957]. In addition to establishing the basic results, we want to study classical solutions of
the original and dimensionally reduced theories and how Kaluza–Klein techniques can be
used to generate new solutions of both of them.

This chapter is organized as follows. We first study in Section 11.1 the classical and quan-
tum mechanics of a massless particle in flat spacetime with a compact spacelike dimension.

1 Reference [45] contains many reprints of the most influential papers on the subject. Two old textbooks that
describe the classical Kaluza–Klein theory are [109, 654]. More recent accounts can be found in [162, 799,
887]. Even more recent reviews are [331, 342]. A book that describes the geometrical foundations is [252].
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We find that the spectrum consists of an infinite tower of massive states and explain the full
spectrum of the compactified theory. Next, we perform the simplest dimensional reduction
of pure gravity in d̂ dimensions to d = d̂ − 1 dimensions using Scherk and Schwarz’s for-
malism in Section 11.2. We find the action, equations of motion, and symmetries for the
massless fields and study various choices of conformal frame. In Section 11.2.3 we study
the (“direct”) dimensional reduction of the effective action of a massless particle moving
in curved spacetime with one compact dimension using the Scherk–Schwarz formalism.
We recover the known results about the spectrum of the KK theory in the following form:
the massless d̂-dimensional particle effective action reduces to the action of a massive,
charged, particle moving in (d̂ − 1)-dimensional space, with mass and charge proportional
to the momentum in the compact direction. In Section 11.2.4 we obtain the S dual of the
reduced KK theory by the procedure of Poincaré duality explained in Section 8.7.1. In Sec-
tion 11.2.5 we reduce the d̂-dimensional Einstein–Maxwell action and in Section 11.2.5
the bosonic sector of the N = 1, d = 5 SUGRA action Eq. (11.98) (which is a modification
of the Einstein–Maxwell action). This will allow us to reduce the solutions of that theory
studied earlier.

Once the reduction of theories has been established, in Section 11.3 we study the reduc-
tion of particular solutions of the Einstein–Maxwell theory and the “oxidation” of particular
solutions of the dimensionally reduced Einstein–Maxwell theory. We will reduce ERN BHs
in Section 11.3.1 and the AS shock-wave solution (obtaining in this way the electrically
charged KK black hole) in Section 11.3.2, and study the possible reduction of Schwarz-
schild and non-extreme RN BHs in Section 11.3.3. Finally we will see some examples of
the use of KK reduction and oxidation combined with dualities to generate new solutions
in Section 11.3.4. In particular, exploiting the four-dimensional S-duality symmetry stud-
ied in Section 11.2.4, we will obtain the magnetically charged KK BH that becomes, after
oxidation to five dimensions, the (Sorkin–Gross–Perry) KK monopole [483, 860] studied
in Chapter 9.

In the remaining sections we give an overview of more general dimensional-reduction
techniques: toroidal in Section 11.4, the Scherk–Schwarz generalized dimensional reduc-
tion in Section 11.5, and orbifold compactification in Section 11.6.

11.1 Classical and quantum mechanics on R
1,3 × S1

The main idea of all KK theories can be stated as follows.

KK principle: our spacetime may have extra dimensions and spacetime symmetries in
those dimensions are seen as internal (gauge) symmetries from the four-dimensional
point of view. All symmetries could then be unified.

There are several versions of the extra dimensions (brane-worlds etc.) and here we will
consider only the “standard” extra dimensions which are curled up in a very small compact
manifold, the simplest case which we are going to study (and the one originally considered
by Kaluza and Klein) being a circle. The motion of particles in this dimension should not
be observable in the usual sense by (empirically well-established) assumption and that is
why it is considered compact and small.
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Spacetime symmetries are associated with the graviton. It is, thus, natural to start by
studying the classical and quantum kinematics of a free massless particle representing a
graviton in flat five-dimensional spacetime with a compact fifth dimension of length equal
to 2π Rz and parametrized by the periodic coordinate x4 = z which takes values in [0, 2π�],

z ∼ z + 2π�, (11.1)

that can be seen as the vacuum of the full KK theory just as Minkowski spacetime is the
vacuum of GR. � is some fundamental length unit (the Planck length �Planck, in string the-
ory the string length �s = √

α′ etc.) Rz is a fundamental datum defining our KK vacuum
spacetime and is the simplest example of a modulus. The choice of vacuum in KK theory
is, however, arbitrary and one of the main objections to KK theories is that no dynamical
mechanisms explaining why one dimension is compact and has the size indicated by the
modulus are provided. This is generically known as the moduli problem.

The five-dimensional metric of this spacetime is, then, in these coordinates2

dŝ2 = ηµνdxµdxν − (Rz/�)
2 dz2. (11.2)

We can already see that the assumption that the fifth dimension is compact has an imme-
diate and important consequence: five-dimensional Poincaré invariance of the KK vacuum
is spontaneously broken,

ISO(1, 4) → ISO(1, 3) × U(1).

The five-dimensional Lorentz transformations that mix the compact and non-compact
dimensions are not symmetries of the metric (they leave it formally invariant if we set
� = Rz but they change the periodicity properties of the coordinates). Amongst the five-
dimensional Poincaré transformations that do not mix compact and non-compact coordi-
nates, clearly Poincaré transformations in the four non-compact dimensions are a symmetry
of the theory and constant shifts in the internal coordinate z are also a U(1) symmetry of
the theory. These are the symmetries of the KK vacuum.

The rescalings of the compact coordinate rescale �, but not Rz , unless we choose to ig-
nore the rescaling of the period of z, which is the point of view that is usually adopted. In
this case, the rescalings are not a symmetry of the theory because they change the modulus
Rz which is part of our definition of the (vacuum of the) theory. This is a duality transfor-
mation that takes us from one theory to another one (albeit of the same class).

We assume that the kinematics in the fifth dimension are the most straightforward gen-
eralization of the four-dimensional ones.3 Thus, we assume that a free, massless particle

2 Usually in the literature � = Rz . We prefer this parametrization which emphasizes the distinction between
Rz , which is a physical parameter, and �, the range of z which is unphysical. One could also normalize
� = 1/(2π) but coordinates have dimensions of length and it is useful to keep their dependence on �. In
some cases it is easier to take � = Rz and we will do so by indicating it explicitly.

3 It is always implicitly assumed that fundamental constants such as the speed of light c and Planck constant h
have the same value in the five-dimensional world and the extra dimension is always taken to be space-like.
These assumptions are completely ad hoc and should be taken as minimal assumptions, although it is known
that extra timelike dimensions give fields with kinetic terms with the wrong sign in lower dimensions and
this justifies the assumption.



11.1 Classical and quantum mechanics on R
1,3 × S1 293

moving in a flat five-dimensional spacetime always satisfies4

p̂µ̂ p̂µ̂ = 0. (11.3)

If we separate the four- and five-dimensional pieces of the above equation, it takes the form
of a four-dimensional mass-shell condition:

pµ pµ = (
pz Rz/�

)2
, (11.4)

and we see that the momentum in the fifth dimension is “seen” as a four-dimensional mass,

M = | p̂z|Rz/�. (11.5)

We can now consider the quantum-mechanical side of the problem. A free-particle wave
function is a momentum eigenmode

P̂µ̂�̂ ≡ −i�∂µ̂�̂ = p̂µ̂�̂, ⇒ �̂ = e
i
�

p̂µ̂ x̂ µ̂

(11.6)

with p̂2 = 0. The wave function is supposed to be single-valued (periodic) in the compact
dimension. For the above wave function, however, we have

�̂(xµ, z + 2π�) = e
− i

�

(
Rz
�

)2
2π� p̂z

�̂(xµ, z), (11.7)

and therefore the momentum in the internal dimension can only take the values

p̂z = n��/R2
z , p̂z = n�/�, n ∈ Z, (11.8)

and, on account of Eq. (11.5), the spectrum of four-dimensional masses is given by

M = |n|�
Rz

, n ∈ Z (11.9)

This is the first prediction of the KK theory: the five-dimensional graviton momentum
modes give rise to a discrete spectrum of massive four-dimensional particles plus some
massless ones related to n = 0. The mass of these KK modes is inversely proportional to
the size of the internal dimension. If the size of the internal dimension is of the order of the
Planck length, these particles will have masses that are multiples of the Planck mass, which
would account for the fact that they are not observed.

Observe that M does not depend on �, but only on the modulus Rz .
Let us now move to field theory and consider a five-dimensional, massless, complex

scalar field ϕ̂ satisfying the five-dimensional sourceless Klein–Gordon equation

�̂ϕ̂ = 0. (11.10)

It is natural to Fourier-expand the field:

ϕ̂(x̂) =
∑
n∈Z

e
inz
� ϕ(n)(x). (11.11)

4 As we will always do in this and other chapters, we denote five- or, in general, higher-dimensional objects
and indices with a hat. Therefore ( p̂µ̂) = (pµ, p̂z) and (pµ) = (p0, p1, p2, p3).



294 The Kaluza–Klein black hole

Table 11.1. In this table the decomposition of the five-dimensional graviton in
four-dimensional fields and the physical spectrum are displayed. As explained
in the main text, the three four-dimensional fields g(n)

µν , A(n)
µ , and k(n) for each

n combine via the Higgs mechanism and represent a massive spin-2 particle
(massive graviton) with mass m = |n|/Rz which has five degrees of freedom
(DOF). There are no massive scalars or vectors in the spectrum.

n d̂ = 5 DOF d = 4 fields DOF Physical spectrum

0 ĝ(0)

µ̂ν̂
5 gµν 2 Graviton m = 0

Aµ 2 Vector m = 0
k 1 Scalar m = 0

n �= 0 ĝ(n)

µ̂ν̂
5 g(n)

µν 2

A(n)
µ 2 Graviton m = |n|/Rz

k(n) 1

On substituting into the above equation, we see that each Fourier mode satisfies the Klein–
Gordon equation for massive fields (� = 1),[

� − (n/Rz)
2
]
ϕ(n)(x) = 0, (11.12)

and, therefore, each Fourier mode corresponds to a scalar KK mode. Dimensional reduction
amounts to taking the zero mode alone. If ϕ̂ is to be interpreted as a “relativistic wave
function,” this is all we need to know. However, if we want to do field theory, we are
interested in the Green function for the Klein–Gordon equation. For instance, for time-
independent sources we are interested in the Laplace equation

	(4)ϕ̂ = δ(4)(	x4), 	x4 = (x1, . . ., x4), (11.13)

and we want to know which kind of equations it implies for each KK mode and what its
solution is. That is, we want to know the harmonic function HR×S1 in R

3 × S1 and its
relation to harmonic functions in R

3. We will deal with this problem in Appendix G.
The same analysis cannot be naively applied to the five-dimensional metric field ĝµ̂ν̂ .

The Fourier modes of a five-dimensional scalar field can be interpreted as scalar fields in
four dimensions, but the Fourier modes of the five-dimensional metric cannot be interpreted
as four-dimensional metrics because they are 5 × 5 matrices. The same applies to vector
or spinor fields. We have to decompose the fields with respect to the four-dimensional
Poincaré group.

For the graviton, the result is represented schematically in Table 11.1. Let us first focus on
the Fourier zero mode, which is a 5 × 5 symmetric matrix. It can be decomposed (in several
ways) into a 4 × 4 symmetric matrix that can be interpreted as the four-dimensional metric
(graviton), a four-dimensional vector, and a scalar. We will see in detail in Section 11.2
how this four-dimensional massless mode of the five-dimensional graviton ĝ(0)

µ̂ν̂
(five helicity

states) can be decomposed into one massless graviton gµν (two helicity states), one massless
vector Aµ (two helicity states), which we will call a KK vector, and one massless scalar k
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(one helicity state), which we will call a KK scalar. The number of helicity states (degrees
of freedom) is conserved in this decomposition. The massless spectrum is, thus,

{gµν, Aµ, k}, (11.14)

and its symmetries are the local version of symmetries of the KK vacuum determined by the
metric Eq. (11.2) plus a vanishing vacuum expectation value for the vector field 〈Aµ〉 = 0,
i.e. four-dimensional GCTs times local U(1) whose gauge field is Aµ.

The infinite tower of four-dimensional massive modes is constituted by spin-2 particles
(massive gravitons) [829]. They appear as interacting massless5 gravitons, vectors, and
scalars labeled by an integer:

{g(n)
µν , A(n)

µ , k(n)}. (11.15)

As for the n �= 0 modes, we will see that these fields are related by an infinite symmetry
group that contains the Virasoro group [324]. These symmetries are spontaneously broken
in the above KK vacuum, and the fields A(n)

µ and k(n) are the corresponding Goldstone
bosons. Owing to the Higgs mechanism, a massless vector and scalar are “eaten” by each
massless graviton, giving rise to the massive gravitons [238, 239, 324]. Observe that the
number of helicity states is also preserved.6

A brief and approximate description of how the Higgs mechanism works in this case
is worth giving. Some of the symmetries acting on the n �= 0 sector are massive gauge
transformations, which include shifts of the scalars k(n) by arbitrary functions that are also
standard gauge parameters for the vectors Aµ

(n) and shifts of the vectors Aµ
(n) by arbitrary

vectors that are standard gauge transformations for the g(n)
µν s. This means that the gauge-

invariant field strengths of the scalars and vectors have, very roughly, the structure

∂µk(n) + n A(n)
µ , ∂µ A(n)

ν + ng(n)
µν . (11.16)

5 Strictly speaking, one cannot speak about the mass of these fields since, due to the interactions, neither of
them is a mass eigenstate [238, 239]. By massless here we simply mean that they enjoy gauge invariances
analogous to those of the massless fields.

6 More generally, in d̂ dimensions the graviton (spin 2) has d̂(d̂ − 3)/2 helicity states and a massless
(p + 1)-form potential has (d̂ − 2)!/[(p + 1)!(d̂ − p − 3)!] helicity states. In particular, a spin-1
particle (vector, p = 0) has d̂ − 2 and a spin-0 particle (scalar p = −1) always has one. A massive
graviton (spin-2 particle) has d̂(d̂ − 1)/2 − 1 helicity states and a massive (p + 1)-form potential has
(d̂ − 1)!/[(p + 1)!(d̂ − p − 2)!] helicity states. In particular, a massive spin-1 particle (a massive vector,
p = 0) has d̂ − 1 helicity states and a massive spin-0 particle (a massive scalar, p = −1) has just one.
Thus, just on the basis of counting helicity states, the d̂-dimensional graviton can always be decomposed
into a (d̂ − 1)-dimensional massless graviton, vector, and scalar, and, if the interactions allow it, via the
Higgs mechanism, these massless particles can combine into a (d̂ − 1)-dimensional massive graviton,
which has the same number of helicity states as the massless d̂-dimensional one. Analogously, a massless
d̂-dimensional (p + 1)-form potential gives rise to massless (d̂ − 1)-dimensional (p + 1)- and p-form
potentials. If the interactions allow it, these two potentials can combine via the Higgs mechanism into a
(d̂ − 1)-dimensional massive (p + 1)-form potential that has the same number of helicity states as the
massless d̂-dimensional one. Since invariance under GCTs is (see Appendix 3.2) nothing but the gauge
symmetry of the massless spin-2 particle, the theory of the massive graviton cannot have it. However, in the
description of the massive graviton as a coupled system of massless graviton, vector, and scalar field, it is
possible to have invariance under GCTs that is spontaneously broken by the Higgs mechanism.
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These field strengths appear squared in the action. Using the massive gauge transforma-
tions, k(n) and Aµ

(n) can be gauged away, leaving mass terms for the g(n)
µν s. Thus, k(n) and

Aµ
(n) play the role of Stückelberg fields, like the scalar that one can introduce in massive

electrodynamics to preserve a (formal) gauge invariance (see Section 8.2.2). More exam-
ples of massive gauge transformations can be found in Section 11.5.

In the above vacuum, the masslessness of the KK scalar is associated with this being the
Goldstone boson of dilatations of the compact coordinate (under which it scales).

In the full KK theory (“compactification”) all modes should be taken into account. More
often, though, all massive modes (all KK modes) are ignored and only the massless spec-
trum is kept. This is equivalent to ignoring all dynamics in the internal dimensions and it
is called dimensional reduction. This is the only consistent truncation of the full theory. It
is, on the other hand, the effective theory which describes the low-energy behavior of the
full theory and contains a good deal of information about the full theory. In particular, the
massive modes reappear in it as solitonic solutions: extreme electrically charged KK BHs.
This non-trivial fact makes the truncated action even more interesting.

In the “decompactification” limit Rz → ∞ the difference between the masses of the nth
and (n + 1)th modes goes to zero and the spectrum becomes continuous, just like the usual
momentum spectrum in a non-compact direction.

To complete our description of the KK spectrum, we should mention that, as we will see
later, the KK modes also carry electric charge with respect to the massless KK vector field
Aµ. However (as with the details on the spectrum that we have just given), this cannot be
seen in flat spacetime. In fact, now we see only that they have a certain rest mass. We know
that the gravitational field will couple to it, and we know this even if we do not introduce
the gravitational field. However, we can see the electric charge only in the presence of an
electromagnetic field. Both the gravitational field and the electric field originate from the
five-dimensional gravitational field, which we have not included so far. We will show this
in Section 11.2 and we will show that KK modes carry electric charge with respect to this
field in Section 11.2.3.

To end this section, let us mention that it has been argued that the KK vacuum is
quantum-mechanically unstable [959].

11.2 KK dimensional reduction on a circle S1

In this section we are going to perform the dimensional reduction of d̂-dimensional gravity
to d ≡ d̂ − 1 dimensions in the formalism developed by Scherk and Schwarz in [836].
Thus, here we are going to consider only the massless modes of the graviton field, which
by definition do not depend on the compact (“internal”) spacelike coordinate x̂ d̂−1 which
we denote by z and which is periodically identified with period 2π�, where � is some
fundamental length in the theory, and we are going to see how the graviton field splits into
d-dimensional fields.

At this point we would like to stress that, in KK theory, the use of distinguished coor-
dinates is unavoidable: up to constant shifts, there is only one coordinate z that is periodic
with period 2π� and the Fourier mode expansion has to be done with respect to that coordi-
nate. The metric zero mode is defined by the fact that it does not depend on that coordinate.
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Furthermore, technically, the dimensional-reduction procedure requires that we use the
coordinate z.

Our starting point, therefore, is a d̂-dimensional7 metric ĝµ̂ν̂ independent of z.
It is sometimes convenient to give a coordinate-independent characterization of the met-

rics we are going to deal with. These are metrics admitting a spacelike Killing vector k̂µ̂. If
the metric admits the Killing vector k̂µ̂ then its Lie derivative with respect to it vanishes:

Lk̂ ĝµ̂ν̂ = 2∇̂(µ̂k̂ν̂) = 0 (11.17)

(this is just the Killing equation, see Section 1.5) and this is the condition we would impose
on other fields, if we had them.

To this local condition we have to add a global condition: that the integral curves of the
Killing vector are closed. z will be the coordinate parametrizing those integral curves (the
“adapted coordinate”) and it can be rescaled to make it have period 2π�. This global condi-
tion will not be explicitly used in most of what follows, but only it guarantees consistency.
In adapted coordinates k̂µ̂ = δz

µ̂.
It is reasonable to think of the hypersurfaces orthogonal to the Killing vector as the d-

dimensional spacetime of the lower-dimensional theory. Then, the first object of interest is
the metric induced on them. This is

�̂µ̂ν̂ ≡ ĝµ̂ν̂ + k−2k̂µ̂k̂ν̂ , k2 ≡ −k̂µ̂k̂µ̂. (11.18)

�̂µ̂
ν̂ = ĝµ̂ρ̂�̂ρ̂ν̂ can be used to project onto directions orthogonal to the Killing vector and

−k−2k̂µ̂k̂ν̂ to project onto directions parallel to it. In adapted coordinates, due to the orthog-
onality of �̂ and k̂, we have

k = |k̂µ̂k̂µ| 1
2 = |ĝzz|, �̂µ̂z = 0. (11.19)

The remaining components define the (d̂ − 1)-dimensional metric

gµν ≡ �̂µν. (11.20)

To understand why this is the right definition of the (d̂ − 1)-dimensional metric instead of
just ĝµν (apart from the reason to do with orthogonality to the Killing vector), we need
to examine the effect of d̂-dimensional GCTs on it. Under the infinitesimal GCTs δε̂ x̂ µ̂ =
ε̂µ̂(x̂), the d̂-dimensional metric transforms as follows:

δε̂ ĝµ̂ν̂ = −ε̂λ̂∂λ̂ĝµ̂ν̂ − 2ĝλ̂(µ̂∂ν̂)ε̂
λ̂. (11.21)

For the moment, we are interested only in d̂-dimensional GCTs that respect the KK
Ansatz, i.e. that do not introduce any dependence on the internal coordinate z. These fall
into two classes: those with infinitesimal generator ε̂µ̂ independent of z and those generated
by a z-dependent ε̂µ̂. The latter act only on z and they are found to be only

δz = az, a ∈ R, (11.22)

7 All d̂-dimensional objects carry a hat, whereas d = (d̂ − 1)-dimensional ones do not. The d̂-dimensional
indices split as follows: µ̂ = (µ, z) (curved) and â = (a, z) (tangent-space indices).
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which can be integrated to give global rescalings plus shifts of the coordinate z:

z′ = az + b, a, b ∈ R. (11.23)

The former can be projected onto the directions orthogonal or parallel to the Killing vector.
In orthogonal directions they are just (d̂ − 1)-dimensional GCTs,

δε xµ = εµ, εµ = �̂µ
ν̂ ε̂

ν̂ = ε̂µ. (11.24)

In parallel directions they act only on z,

δ�z = −�, � = k−2k̂ν̂ ε̂
ν̂ = ε̂z, (11.25)

which must correspond to some local internal symmetry of the lower-dimensional theory.
As we argued before, the d̂-dimensional metric is going to give rise to the massless (d̂ − 1)-
dimensional fields (11.14). These fields should have good transformation properties under
this internal symmetry. In particular, the metric must be invariant under it and the vector
must transform under it in the standard way (because it is massless):

δ� Aµ = ∂µ�. (11.26)

Observe that the periodicity of � has to be the same as the periodicity of z, in order for it
to be a well-defined coordinate transformation. We know that the period of the U(1) gauge
parameters is related to the unit of electric charge, and we will see that this is also the case
in KK theories.

Using the above transformation law for the various components of the d̂-dimensional
metric, we arrive at the conclusion that the lower-dimensional fields are the following nat-
ural combinations of them:

gµν = ĝµν − ĝzµĝzν/ĝzz, Aµ = ĝµz/ĝzz, k = |ĝzz| 1
2 = |k̂µ̂k̂µ̂| 1

2 . (11.27)

Equivalently, we can say that the higher-dimensional metric decomposes as follows:

ĝµν = gµν − k2 Aµ Aν, ĝµz = −k2 Aµ, ĝzz = −k2. (11.28)

Furthermore, under the global transformations of the internal space Eq. (11.23), the met-
ric is invariant and only Aµ and k transform. The shifts of z have no effect on them and we
are left with a multiplicative R duality group that can be split according to R = R

+ × Z2.
Only R

+ acts on k,

A′
µ = a Aµ, k ′ = a−1k, a ∈ R

+, (11.29)

and only Aµ transforms under the Z2 factor,

A′
µ = −Aµ. (11.30)

It is a general rule that, in dimensional reductions, global internal transformations give
rise to non-compact global symmetries of the lower-dimensional-theory action which
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generally rescale and/or rotate the fields among themselves. In particular, they act on
scalars, and thus scalars naturally parametrize a σ -model. In this case k parametrizes a
σ -model with target space R

+. As we explained before, these transformations should not
be understood as symmetries but as dualities relating different theories.8

Observe that, in Section 11.1, the radius of the compact dimension Rz appeared explicitly
in the metric. In curved spacetime and at each point of the lower-dimensional spacetime we
can define a local radius of the compact dimension Rz(x),

2π Rz(xµ) =
∫ 2π�

0
dz|ĝzz| 1

2 =
∫ 2π�

0
kdz. (11.31)

Thus, we see that the KK scalar measures the local size of the internal dimension. We
should require that, asymptotically, our five-dimensional metric approaches that of the vac-
uum Eq. (11.2). Then, we find the following relation among the modulus Rz , the funda-
mental scale length �, and the asymptotic value of the KK scalar k0:

Rz = �k0, k0 = lim
r→∞ k. (11.32)

Sometimes the word modulus is used for the full scalar k. However, only its value at
infinity, which we will see is not determined by the equations of motion and thus has to be
set by hand as a datum defining the theory, really deserves that name.

Since masses are measured at infinity and, in KK theory, we know that these depend on
the radius of the compact dimension through Eq. (11.9), we expect that the masses will
depend on the value at infinity of the radius of the compact dimension Rz (which is why
we have used the same symbol to denote them).

11.2.1 The Scherk–Schwarz formalism

Having determined the relations Eqs. (11.28) and (11.27) between the lower- and higher-
dimensional fields, one can simply plug them into the equations of motion of the higher-
dimensional fields (here just Einstein’s equations) and obtain equations for the lower-
dimensional ones. This procedure automatically ensures that any field configuration that
solves the lower-dimensional equations of motion also solves (when it is translated to
higher-dimensional fields) the higher-dimensional equations of motion.

In this way one can see that it is not correct to set the KK scalar to a constant as was usu-
ally done in the very early KK literature. As was first realized in [886], the KK scalar has
a non-trivial equation of motion, which we will find later, and, if one sets it to a constant,
this equation of motion transforms into a constraint for the vector-field strength. This con-
straint is not generically satisfied and, therefore, solutions with k = k0 that do not satisfy
this constraint are not solutions of the original theory.

8 Observe that � is fixed. Dualities change Rz only.
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As a general rule, one cannot naively truncate actions by setting some fields to specific
values. Doing this in the equations of motion (the correct procedure) would leave us with
constraints that must be satisfied and cannot be obtained from the truncated actions. In
other words, one cannot reproduce all the truncated equations of motion from a truncated
action.

When will a truncation in the action be consistent? Also as a general rule, if there is a
discrete symmetry in the action, eliminating only the fields which are not invariant under
it will always be consistent. From this point if view, since there is no discrete symmetry
acting on k, the inconsistency of its elimination is not surprising. On the other hand, there
is a Z2 symmetry that acts only on Aµ and it is easy to see that it is consistent to eliminate
only this field. For instance, this truncation is used to obtain N = 1, d = 10 supergravity
from N = 1, d̂ = 11 supergravity (or the heterotic string from M theory) and can be related
to dimensional reduction over the orbifold S1/Z2 (a segment of a line, with two boundaries)
instead of on the circle S1.

Performing the dimensional reduction on the equations of motion is in general a quite
lengthy calculation (which we will nevertheless perform in Section 11.5). Furthermore, the
above decomposition of higher-dimensional fields into lower-dimensional ones cannot be
used in the presence of fermions.

In [836] Scherk and Schwarz described a systematic procedure for performing the di-
mensional reduction in the action and using the Vielbein formalism so it can also be ap-
plied to fermions. Another advantage of using Vielbeins is that we can work with objects
that have only Lorentz indices and are, therefore, scalars under GCTs. Since some of the
GCTs become internal gauge transformations, those objects are automatically GCT-scalars
and gauge-invariant.

The first thing to do is to reexpress the relations Eqs. (11.27) and (11.28) in terms of Viel-
beins. Using local Lorentz rotations, one can always choose an upper-triangular Vielbein
basis of the form

(
êµ̂

â
)

=
(

eµ
a k Aµ

0 k

)
,

(
êâ

µ̂
)

=
(

ea
µ −Aa

0 k−1

)
, (11.33)

where Aa = ea
µ Aµ and we will assume that all d-dimensional fields with Lorentz indices

have been contracted with the d-dimensional Vielbeins.
This choice of Vielbein basis breaks the d̂-dimensional local Lorentz invariance to the

d = (d̂ − 1)-dimensional one, which is the subgroup that preserves our choice. If there were
other symmetries (such as supersymmetry) acting on the Vielbeins, we would have to add
to them compensating Lorentz transformations in order to preserve the choice of Vielbeins.

Next, we find the non-vanishing components of �̂âb̂ĉ,

�̂abc = �abc, �̂abz = − 1
2 k Fab, �̂azz = − 1

2∂a ln k, (11.34)

where
Fab = ea

µeb
ν Fµν, Fµν = 2∂[µ Aν], (11.35)

is the vector-field strength. With these we find the non-vanishing components of the spin
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connection ω̂âb̂ĉ:

ω̂abc = ωabc, ω̂abz = 1
2 k Fab,

ω̂zbc = − 1
2 k Fbc, ω̂zbz = −∂b ln k.

(11.36)

Now, instead of calculating the Ricci scalar, which involves derivatives of the spin con-
nection, we use the following simplifying trick: we first eliminate the derivatives of the spin
connection from the action by integration by parts. The result is known as the Palatini iden-
tity and it is derived in Appendix D for a more general case. On plugging then the above
results plus √

|ĝ| =
√

|g| k (11.37)

into the d̂-dimensional Palatini identity Eq. (D.4) with K = 1, we immediately find that
the d̂-dimensional Einstein–Hilbert action can be reexpressed, up to total derivatives, in
(d̂ − 1)-dimensional language as follows:

∫
dd̂ x̂

√
|ĝ| R̂ =

∫
dz

∫
dd̂−1x

√
|g| k

{−ωb
baωc

c
a − ωa

bcωbc
a

+ 2ωb
ba∂a ln k − 1

4 k2 F2
}
. (11.38)

Nothing depends on the internal coordinate z and we can integrate over it, obtaining a factor
of 2π�. Using now “backwards” the (d̂ − 1)-dimensional Palatini identity with K = k, we
find at last

Ŝ = 1

16πG(d̂)
N

∫
dd̂ x̂

√
|ĝ| R̂ = 2π�

16πG(d̂)
N

∫
dd̂−1x

√
|g| k

[
R − 1

4 k2 F2
]
. (11.39)

This result is correct up to total derivatives (the ones ignored in applying the Palatini iden-
tity). In particular, let us stress that there was not a scalar K̂ as in Eq. (4.43) in the original
action, because objects that were total derivatives in the previous case would not be so in
this case, and in the various integrations by parts factors of ∂ K̂ would be picked up. These
factors are taken into account in the generalized Palatini identity Eq. (D.4). We will often
deal with this kind of Lagrangian in Part III.

Another important point is to realize that this action rescales under the global rescalings
Eq. (11.29). This happens, though, only because we have chosen to ignore the effect of
the rescalings on the period of z. On taking that effect into account, the action would be a
scalar, as is the original action.

The KK scalar appears in a strange way because it does not seem to have a kinetic term,
so one would say that it has no dynamics. However, one has to remember that, in deriving
the Einstein equations of motion, one has to integrate several times by parts. In these in-
tegrations, derivatives of k are picked up and one can see that k has standard equations of
motion that are implicit in Einstein’s.
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The equations of motion are9

16πG(d̂)
N

2π�

1

k
√|g|

δS

δgαβ
= Gαβ + [

∂α ln k ∂β ln k − gαβ(∂ ln k)2
]

+ [∇α∂β ln k − gαβ∇2 ln k
] − 1

2 k2
[
Fα

µFβµ− 1
4 gαβ F2

] = 0,

(11.40)

16πG(d̂)
N

2π�

1√|g|
δS

δk
= R − 3

4 k2 F2 = 0, (11.41)

16πG(d̂)
N

2π�

1√|g|
δS

δAα

= ∇β

(
k3 Fβα

) = 0. (11.42)

On combining the KK scalar equation with the trace of the Einstein equation, we find a
standard equation of motion for k,

∇2k = − d̂ − 2

4
k3 F2. (11.43)

Setting k = k0 is consistent only if F2 = 0, which is not true in general. As we explained
before, the KK scalar cannot be simply ignored, as was first realized in [886]. The trunca-
tion Aµ = 0 is, nevertheless, consistent.

Another way to see that the KK scalar is dynamical is to rescale the metric to the so-
called Einstein conformal frame. By definition, this frame is the one in which the Einstein–
Hilbert action has the standard form (without the factor of k). The rescaled metric is the
Einstein metric gE µν . In the context of Jordan–Brans–Dicke theories, the metric gµν is
sometimes called the Jordan metric, but we will call it the KK metric and we will refer to
the corresponding conformal frame as the KK conformal frame.

Using the formulae of Appendix E, we find that the conformal factor is10 (for d̂ �= 3)

� = k
−1

d−2 , gµν = k
−2

d−2 gE µν, (11.44)

and with it we obtain

SE = 2π�

16πG(d+1)
N

∫
dd x

√
|gE|

[
RE + d − 1

d − 2
k−2(∂k)2 − 1

4 k2 d−1
d−2 F2

]
. (11.45)

This action is not invariant under the global rescalings Eq. (11.29) because the Einstein
metric also rescales under them. Rather, it rescales by a global factor that could be absorbed
into the rescaling of � (which we have chosen not to do).

However, we can combine these rescalings with a rescaling of the d̂-dimensional metric
that rescales the d̂- and d-dimensional actions in such a way that the Einstein metric is

9 See Section 4.2 for a detailed derivation of Einstein’s equations in the presence of an overall scalar factor.
10 We replace d̂ − 1 by d to avoid confusion, since we are going to use these actions very often.
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invariant and only the KK scalar and vector field rescale:

k ′ = ck, A′
µ = c− d−1

d−2 Aµ, c ∈ R
+. (11.46)

The KK action in the Einstein frame exhibits manifest invariance under these global
rescalings which are, together with the Z2 transformations, the duality group of the theory.
This is a standard feature of KK and supergravity theories in the Einstein frame: they are
manifestly invariant under duality symmetries. In particular, the scalars that appear in these
theories parametrize some σ -model. In this case, the kinetic term for k is the R

+ σ -model.
It is sometimes convenient to use a scalar with a standard kinetic term ϕ,

k = e±
√

2 d−2
d−1 ϕ

, (11.47)

in terms of which the action takes the form

SE = 2π�

16πG(d+1)
N

∫
dd x

√
|gE|

[
RE + 2(∂ϕ)2 − 1

4 e±2
√

2 d−1
d−2 ϕ F2

]
. (11.48)

ϕ transforms under the global rescalings Eq. (11.46) by constant shifts,

ϕ′ = ϕ ±
√

d − 1

2(d − 2)
ln c. (11.49)

The redefinition of the field above is just a change of variables. ϕ parametrizes R. The
two group manifolds are isomorphic, one as a multiplicative group and the other as an
additive group.

Owing to its behavior under dilatations, the KK scalar is sometimes called the dilaton.
We reserve this name for the string-theory dilaton. However, in Section 16.1 we will see
that the KK scalar one obtains in the reduction of d̂ = 11 supergravity to N = 2A, d = 10
supergravity can be interpreted as the type-IIA string-theory dilaton.

In fact, the action Eq. (11.48) is an example of the general class of actions described by
the “a-model” whose action Eq. (12.1) depends on a continuous parameter a. In this case

a = ±
√

2d − 1

d − 2
. (11.50)

In Chapter 12 we will find BH-type solutions of the a-model for any value a and here we
will simply use those results for the specific value of a given above.

11.2.2 Newton’s constant and masses

In the presence of gravity, masses are measured at infinity in asymptotically flat spacetimes.
When one dimension is compact, one can speak only about asymptotic flatness in the non-
compact directions.11 In particular, the diagonal component of the metric in the compact

11 The definition of mass in spacetimes with compact dimensions has also been discussed in [164, 309].
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dimension does not have to go to −1 at infinity but can be any real negative number. If the
metric is asymptotically flat in the non-compact directions then the dimensionally reduced
metric (assuming that the compact dimension is isometric) will be asymptotically flat in the
KK conformal frame and the value of k at infinity will be some positive real number k0.

When we rescale the metric to go to the Einstein conformal frame, the metric does not
look asymptotically flat any longer, but

lim
r→∞ gE µν = k

2
d−2
0 ηµν, (11.51)

and a change of coordinates is necessary:

xµ → x ′µ = k
1

d−2
0 xµ, ⇒ gE µν → g′

E µν = k
− 2

d−2
0 gE µν

r ′→∞−→ ηµν. (11.52)

Thus, if we start with d̂-dimensional metrics that are asymptotically flat in the non-
compact dimensions, we are forced to perform a rescaling of the coordinates, which is, at
the very least, quite unusual. Of course, this change of coordinates, does not modify the
action Eq. (11.45).

We could have decided to start with d̂-dimensional metrics, which naturally lead to
asymptotically flat Einstein metrics with no need for changes of coordinates, but this looks
rather artificial.

As we pointed out before, a very interesting aspect of the massless sector of the KK the-
ory is that the truncated massive modes reappear as solitonic solutions. A further problem
of the standard Einstein conformal frame is that the masses one finds for solitons are not
the ones expected in the spectrum of Kaluza–Klein theories. We are going to check this
explicitly in Section 11.2.3.

The prescription we have used to go to the Einstein frame is not canonical, though. We
just wanted to eliminate the unconventional (local) factor of k in front of the curvature
scalar and the conformal factor that does the job is unique only up to an overall constant
factor. In particular, we could have rescaled the KK metric by the factor �̃ = (k/k0)

− 1
d−2

which defines the modified Einstein conformal frame

gµν = (k/k0)
− 2

d−2 g̃E µν. (11.53)

One of the main characteristics of this metric is that it is invariant under the scale trans-
formations Eq. (11.29). It is appropriate to use with it fields that are also invariant under
those rescalings:

Ãµ = k0 Aµ, k̃ = k/k0. (11.54)

In terms of these scale-invariant fields, the action takes the form

S̃E = 2π�k0

16πG(d̂)
N

∫
dd x

√
|g̃E|

[
R̃E + d − 1

d − 2
k̃−2

(
∂ k̃

)2
− 1

4 k̃2 d−1
d−2 F̃2

]
, (11.55)

which is identical to the action in the original “Einstein frame” Eq. (11.45) except for the
overall factor.
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This is the frame that leads to correct results.12 The main difference is the overall factor
k0 which modifies the effective value of the d-dimensional Newton constant which is given
by (recall Eq. (11.32))

G(d)
N = G(d̂)

N

2π Rz
= G(d̂)

N

Vz
. (11.56)

Here Vz stands for the volume of the compact dimension.
Now, in d dimensions, in the Einstein frame, with the action normalized,

S = 1

16πG(d)
N

∫
dd x

√
|gE| RE, (11.57)

the mass ME of a given asymptotically flat solution can be read off from gE t t :

gE t t ∼ 1 − 16πG(d)
N ME

(d − 2)ω(d−2)

1

rd−3
. (11.58)

This definition can be used to find the mass in the modified Einstein frame, which we
denote by M , or in the Einstein frame (after rescaling the coordinates so the metric is
asymptotically flat), which we denote by ME. The relation between these two masses for
the same spacetime can easily be computed:

g′
E t ′t ′ ∼ 1 − 16πG(d̂)

N ME

2π�(d − 2)ω(d−2)

1

r ′ d−3
,

g̃E t t ∼ 1 − 16πG(d̂)
N M

2π�k0(d − 2)ω(d−2)

1

rd−3
,

(11.59)

and, using the relation between primed and unprimed coordinates, we find

ME = k
− 1

d−2
0 M. (11.60)

It is also handy to have the definition of the electric and magnetic charges q̃ and p̃
to which the scale-invariant KK vector Ãµ couples. To define the charge, we first find the
Noether current associated with U(1) gauge transformations in the modified Einstein-frame
action:

̃
µ

N = 1

16πG(d)
N

∇ν

[
k̃2 d−1

d−2 F̃νµ
]
. (11.61)

12 The names “Einstein frame” and “modified Einstein frame” are a bit confusing and we keep them just
because they are standard names in the literature. Both are Einstein frames in the sense that there is no
scalar factor in the action in front of the Ricci scalar. However, there is an infinite number of conformal
frames with that property, related by constant rescalings. Among that infinite number there is only one in
which we recover what we knew about the spectrum: the “modified Einstein frame” which is related to
the asymptotically flat d̂-dimensional metric by a conformal factor that goes to 1 at infinity. The “Einstein
frame” is just the simplest rescaling.
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We define

q̃ =
∫

B(d−1)

d�µ̃
µ

N , (11.62)

where Bd−1 is a (d − 1)-dimensional t = constant hypersurface with boundary ∂Bd−1 =
Sd−2 at infinity. Using Stokes’ theorem, we end up with the following definition of electric
charge, which we write together with the definition of magnetic charge:

q̃ = 1

16πG(d)
N

∫
Sd−2∞

k̃2 d−1
d−2 � F̃, p̃ = −

∫
S2∞

F̃ . (11.63)

These charges have the right normalization and so the Dirac quantization condition can
be written in terms of them:

q̃ p̃ = 2πn. (11.64)

Observe that the period of the gauge parameter of the rescaled vector field Ã,

δ�̃z = k−1
0 �̃, δ�̃ Ãµ = ∂µ�̃, (11.65)

has to be 2π Rz , in agreement with the unit of electric charge 1/Rz and Eqs. (8.167) and
(8.168).

11.2.3 KK reduction of sources: the massless particle

One of the most interesting things we have learned so far, in several different ways, is that
gravitons (or any other massless particles) traveling at the speed of light in the compact
dimension look like massive, electrically charged particles in one dimension fewer.

In this section we are going to recover this result in yet another, particularly useful,
way. We are going to see that the action for a massless particle moving in a d̂-dimensional
spacetime, given in Eq. (3.258), becomes that of a massive, charged “K particle” moving
in d = (d̂ − 1)-dimensional spacetime when the d̂-dimensional spacetime has an isometry.
Furthermore, the mass and electric charge are both proportional to the momentum in the
isometric direction and, if we assume that this dimension is compact, we recover exactly
the results about the KK spectrum of Section 11.1.

By a “K particle” we mean a slight generalization of the standard massive particle with
an extra coupling to a scalar, which we denote generically by K . The Nambu–Goto-type
action takes the form

S = −M K −1
0

∫
dξ K (X)

√∣∣gµν Ẋµ Ẋ ν
∣∣. (11.66)

The scalar cannot appear anywhere else. In particular it cannot appear in the Wess–
Zumino term which describes the coupling of the particle to an electromagnetic field,

W Z = −q
∫

dξ Aµ Ẋµ, (11.67)
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because that would spoil U(1) gauge invariance. The scalar acts as a sort of local coupling
constant. In particular, its presence modifies the mass of the particle, which is no longer the
coefficient in front of the action: if the metric is asymptotically flat and K0 is the constant
value at infinity of K , then the mass is the coefficient in front of the action times K0. We
have already taken this into account in writing Eq. (11.66).

KK modes and also string-theory objects called “winding modes” and “D0-branes” that
we will study are examples of “K particles.” The former couple to the inverse of the KK
scalar, i.e. K = k−1, as we are immediately going to see. Winding modes couple to k di-
rectly, K = k, and D0-branes couple to the dilaton e−φ in string theory.

Although we are going to explain this procedure (called direct dimensional reduction)
in full detail, it is worth stressing that we are not going to prove that the two actions are
completely equivalent. Rather, what we are going to prove is that all the solutions of the
first action are of the form of those of the second one for some value of the mass and charge.
If we take only one specific value of the mass and charge, we are reducing the system to
some sector with a given, fixed, momentum in the internal direction.

Our starting point is the action of a point-like massless particle given in Eq. (3.258),
which we rewrite here for convenience:

Ŝ[X̂ µ̂(ξ), γ (ξ)] = − p

2

∫
dξ γ − 1

2 ĝµ̂ν̂ (X̂)
˙̂X µ̂ ˙̂X ν̂ . (11.68)

This action is usually said to be invariant under GCTs. In fact it is just covariant, since
one goes from one metric to a different (even if physically equivalent) one. This happens
typically when the action depends on potentials instead of field strengths. The infinitesimal
transformations giving δ̃S = 0 are

δ̃ X̂ µ̂ = X̂ ′µ̂ − X̂ µ̂ = ε̂µ̂(X̂),

δ̃ĝµ̂ν̂ = ĝ′
µ̂ν̂

(X̂ ′) − ĝµ̂ν̂ (X̂) = −2ĝλ̂(µ̂∂ν̂)ε̂
λ̂.

(11.69)

Let us now consider infinitesimal displacements in the direction ε̂µ̂,

δε̂ X̂ µ̂ = ε̂µ̂,

δε̂ ĝµ̂ν̂ = ĝµ̂ν̂ (X̂ ′) − ĝµ̂ν̂ (X̂) = ε̂λ̂∂λ̂ĝµ̂ν̂ .
(11.70)

Using the formulae in Chapter 1, we find that the change of the action is now

δε̂ Ŝ = − p

2

∫
dξγ − 1

2
[
Lε̂ ĝµ̂ν̂

] ˙̂X µ̂ ˙̂X ν̂ . (11.71)

Thus, the action is invariant if and only if ε̂µ̂ = ε̂k̂µ̂, ε̂ being an infinitesimal constant
parameter and k̂µ̂ being a Killing vector. In other words, if the metric admits an isometry,
the above action is invariant under the above symmetry and there is a conserved quantity,
namely the momentum in the k̂µ̂ direction:

P̂ = −pγ − 1
2 k̂µ̂ X̂ µ̂,

˙̂P = 0. (11.72)
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What one would like to do now is to fix the value of this momentum, which completely
determines the dynamics in the isometry direction, and find the effective dynamics in the
remaining directions. Doing this in a general coordinate system is very complicated (if it is
possible at all) and hence we have to work in adapted coordinates as before. We will use,
then, all the machinery and notation developed in this section.

In adapted coordinates the fact that there is a conserved momentum becomes evident
since the action no longer depends on the isometric coordinate z.

To simplify the problem further, we split the d̂-dimensional fields and coordinates in
terms of the d-dimensional ones according to Eq. (11.28), obtaining

Ŝ[Xµ(ξ), Z(ξ), γ (ξ)] = − p

2

∫
dξ γ − 1

2
[
gµν Ẋµ Ẋ ν − k2 F2(Z)

]
, (11.73)

where the combination

F(Z) = Ż + Aµ Ẋµ (11.74)

that naturally appears in the action is the “field strength” of the extra worldline scalar Z ,
which now does not have a coordinate interpretation.

As we explained, the original action (11.68) above is covariant under target-space diffeo-
morphisms and so must the action (11.73) be, since it is a simple rewriting of the former. In
particular, it must be covariant under Xµ-dependent shifts of the redundant coordinate Z ,

δ�Z = −�(Xµ), (11.75)

which do not take us out of our choice of coordinates (i.e. coordinates adapted to the isom-
etry) either. As discussed before, these transformations generate gauge transformations of
the U(1) gauge potential,

δ� Aµ = ∂µ�. (11.76)

The field strength of Z is covariant under this transformation, which justifies its definition.
Related to the constant shifts of Z (which is an invariance) is the conservation of the

momentum conjugate to Z ,

Pz ≡ ∂L
∂ Ż

= pγ − 1
2 F(Z), Ṗz = 0. (11.77)

Now we want to eliminate Z from the action completely, using its equation of mo-
tion (Ṗz = 0), and thus obtain the action that governs the effective d-dimensional dynam-
ics. However, we cannot simply substitute into the action Eq. (11.73) Pz = pγ

1
2 F(Z) =

constant because from the resulting action one does not obtain the same equations of mo-
tion as one would from making the substitution into the equations of motion. The rea-
son for this is that the equation of motion of Z is not algebraic because Ż occurs in the
action.

A consistent procedure by which to eliminate Z is to perform first the Legendre trans-
formation of the Lagrangian with respect to the redundant coordinate Z , just as one would
do to find the Hamiltonian if the Lagrangian depended only on Z . We express Ż in terms
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of X, Ẋ , and Pz by using the definition of the latter and then define the Legendre transform

Hz(X, Ẋ , Pz) ≡ −Pz Ż(X, Ẋ , Pz) + L[X, Ẋ , Ż(X, Ẋ , Pz)]. (11.78)

After the Legendre transform has been performed, the action that gives the corresponding
equations of motion is

Ŝz[X, Ẋ , Z , Pz, γ ] =
∫

dξ
(−Ṗz Z + Hz

)
= − p

2

∫
dξγ − 1

2
[
gµν Ẋµ Ẋ ν + γ k−2(Pz/p)2

] +
∫

dξ Pz F(Z).

(11.79)

By explicit calculation one can now see that the equation for Z (which now appears
explicitly in the first term of the action) is just Ṗz = 0 and the equation for Pz is trivially
satisfied. Nothing wrong happens, then, on using the equation of motion of Z in the action
and replacing the variable Pz by the constant −pz , giving

S[X, γ ] = − p

2

∫
dξγ − 1

2
[
gµν Ẋµ Ẋ ν + γ k−2(pz/p)2

] − pz

∫
dξ

(
Ż + Aµ Ẋµ

)
. (11.80)

Here Ż still occurs, but in a total derivative term that we can eliminate. Otherwise, we can
keep it as an auxiliary scalar, which maintains explicit covariance under gauge transforma-
tions. Eliminating this term may give rise to boundary terms under gauge transformations,
and thus we prefer to keep it, although it is, admittedly, unusual.

For pz �= 0, this is the action of a massive charged “K particle” in (d̂ − 1)-dimensional
spacetime. For pz = 0 this is, again, the action of a massless particle moving in a (d̂ − 1)-
dimensional spacetime. To rewrite the pz �= 0 action in the usual Nambu–Goto form we
eliminate γ directly from the action (no derivatives of γ occur in it) by using its equation
of motion:

γ = (p/pz)
2 k2gµν Ẋµ Ẋ ν, (11.81)

obtaining

S = −|pz|
∫

dξk−1
√∣∣gµν Ẋµ Ẋ ν

∣∣ − pz

∫
dξ

(
Ż + Aµ Ẋµ

)
, (11.82)

or, ignoring the total derivative and using the scale-invariant (tilded) fields,

S = −|pz|k−1
0

∫
dξ k̃−1

√∣∣gµν Ẋµ Ẋ ν
∣∣ − pzk

−1
0

∫
dξ Ãµ Ẋµ. (11.83)

This is a remarkable result. For a given momentum in the internal dimension, the mass-
less particle looks like a “K particle” (in fact, a KK mode) with K = k−1, mass

M = |pz|k−1
0 , (11.84)
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and charge13

q̃ = pzk
−1
0 . (11.85)

The following identity, known as a Bogomol’nyi identity, is satisfied:14

M = |q̃|. (11.86)

This is similar to the identity satisfied by the electric charge and mass of an ERN BH,
between the mass and the NUT charge of an extreme Taub–NUT solution, or between the
action and the second Chern class of instantons. We will see that this is not a coincidence. In
Chapter 13 we will see that all of them are Bogomol’nyi identities (saturated Bogomol’nyi
bounds) signaling the presence of residual supersymmetries in the background.

If Z is a compact coordinate with period 2π� then the single-valuedness of the wave
function implies that the momentum pz would be quantized,

pz = n/� (11.87)

(in natural units), and so would the mass and charge of the corresponding KK mode be, as
we know. Actually, since k0 = Rz/�, we find

M = |n|/Rz, q̃ = n/Rz. (11.88)

To finish this section we can try to see how far one can go without assuming that there
is an isometry in the direction of the compact coordinate z. Using the split Eq. (11.28),
we can equally well arrive at the action (11.73) but now with the fields having periodic
dependences on z. Now we should proceed to Fourier-expand all of them. This is not trivial,
though, since we do not know how to expand Z because it is not a periodic function of Z
(although Ż is).

11.2.4 Electric–magnetic duality and the KK action

As in the case of the four-dimensional Einstein–Maxwell theory, the four-dimensional KK
theory has an electric–magnetic symmetry, but, instead of being a continuous symmetry
(at the classical level), it is a discrete Z2 symmetry. The duality transformation has to be
defined very carefully in order to give consistent results. When this is done, the duality can
be used to construct new solutions of the same theory. In general the duality transformation
is not a symmetry, but relates two different theories or different degrees of freedom of the
same theory.

We start by performing a Poincaré-duality transformation on the (modified-Einstein-
frame) KK action. We remind the reader that the replacement of F̃ by its dual in the action
leads in general to an action with the wrong sign for the kinetic term, which does not give
rise to the dual equations of motion. This is why one has to follow the Poincaré-duality pro-
cedure explained in Section 8.7.1. Only the term involving the vector field in Eq. (11.55)

13 q = pz for the untilded Aµ field.
14 M = |q|k−1

0 for the untilded Aµ field.
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is important here. We want to replace the vector (1-form) potential Ã by its dual (d − 3)-
form potential Ã(d−3) and for this we have to rewrite the action in terms of the 2-form field
strength F̃ . We need to add a Lagrange-multiplier term to enforce the Bianchi identity and
in order to be able to recover the equation F̃ = d Ã. The Lagrange multiplier is the dual
potential. The action is, therefore

S[F̃, Ã(d−3)] = 1

16πG(d)
N

∫
dd x

√
|g̃E|

[
− 1

4 k̃2 d−1
d−2 F̃2

]

− 1

16πG(d)
N

∫
dd x

1

2 · (d − 3)!
εµ1···µd−2ν1ν2∂µ1 Ã(d−3) µ2···µd−2 F̃ν1ν2 . (11.89)

This action gives rise to the same equations of motion as does the original action S[ Ã].
The equation of motion of F̃ is

F̃ = k̃−2 d−1
d−2 � F̃(d−2), F̃(d−2)µ1···µd−2 = (d − 2)∂[µ1 Ã(d−3) µ2···µd−2], (11.90)

and, on substituting this into the action, we obtain the dual action, which we rewrite here
in full:

S̃dualE = 1

16πG(d)
N

∫
dd x

√
|g̃E|

[
R̃E + d − 1

d − 2
k̃−2(∂ k̃)2 + (−1)d−3

2 · (d − 2)!
k̃−2 d−1

d−2 F̃2
(d−2)

]
.

(11.91)

This transformation has a chance of being a symmetry of the same theory only in four
dimensions. However, even in four dimensions it is not a symmetry because the prefactor
of the F̃2 term was inverted in the transformation.15 If we interpret the KK scalar as a sort
of local coupling constant then we can say that the electric–magnetic-duality transforma-
tion relates two different regimes (strong and weak coupling) of the same theory. This can
be made explicit by supplementing the electric–magnetic-duality transformation with an
inversion of the “coupling constant.” This does give us a transformation that leaves invari-
ant the action (via the Poincaré-duality procedure) and the full set of equations of motion
(including Bianchi identities),

F̃ ′ = k̃+2 d−1
d−2 � F̃, k̃ ′ = k̃−1. (11.93)

Observe that this transformation does not involve any transformation of the modulus k0

which defines our theory. (We have stressed several times that a theory is defined also by
the expectation values of the moduli, in this asymptotically flat gravitational context by

15 This is another particular example of the “a-model” action Eq. (12.1) with the opposite value of a,

a = ∓
√

2(d − 1)

d − 2
. (11.92)
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their constant values at infinity). Thus, we can truly say that the above transformation is a
symmetry of the theory.

We could have considered similar transformations for the untilded fields. For instance,
the following transformation leaves the equations of motion invariant:

F ′ = k−2
0 (k/k0)

+2 d−1
d−2 �F, k ′ = k−1. (11.94)

However, this is not a symmetry of the theory. The above transformation inverts k0. If
we went back to the d̂ theory, we would find that the radius of the compact dimension is
inverted and that the d̂-dimensional Newton constant does not have the same value.

The transformation Eqs. (11.93) is going to relate electric and magnetic objects in the
same theory. If a quantum theory with electrically and magnetically charged states is going
to make sense, all the possible pairs of electric and magnetic charges must satisfy the Dirac
quantization condition Eq. (8.170). The electric–magnetic-duality symmetry allows us to
generate magnetic charges from electric charges and we want the magnetic charges created
to be compatible with the original electric charges that we have shown the KK theory to
have. We defined the electric and magnetic charges of a solution in Eq. (11.63).

If we start with a field F̃ with electric charge q̃ and perform the electric–magnetic-duality
transformation above, we generate the following magnetic charge:

p̃′ = −
∫

S2∞
F̃ ′ = −

∫
S2∞

k̃−2 d−1
d−2 � F̃ = −16πG(4)

N q̃, (11.95)

where we have used the definition of q̃ in Eqs. (11.63). Then (ignoring the sign)

p̃′q̃ = 16πG(4)
N q̃2 = 16πG(4)

N n2/R2
z , (11.96)

on account of Eqs. (11.88) and (11.32). This quantity will be an integer multiple of 2π if

Rz =
√

8G(4)
N /|m|, m ∈ Z. (11.97)

The existence of electric–magnetic-duality symmetry (so that each object and its dual
can coexist) requires the radius of the internal dimension to be of the order of the Planck
length.

Similar constraints on the sizes of the internal dimensions or the values of other mod-
uli can be found in string theory, requiring that each object and its U dual can coexist.
A non-trivial check of U duality is that the constraints on moduli obtained from different
dual object-pairs are consistent. We will see in Section 19.3, for instance, that the coexis-
tence of all ten-dimensional D-p-branes and their electric–magnetic duals implies the same
condition on the value of the ten-dimensional Newton constant.

We can say that, for values of the compactification radius, the theory can undergo a
duality transformation into another theory, but, for the “self-dual compactification radius,”
the theory enjoys an additional symmetry. U duality will become a symmetry for the “self-
dual values of the moduli.” In this language, there is an enhancement of symmetry at the
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self-dual point in moduli space, a well-known phenomenon in the context of T duality, in
which there is an enhancement of gauge symmetry at the self-dual points.

We should also stress that the electric–magnetic-duality transformation acts on the KK
frame and d̂ metric in a highly non-trivial way. Also, since it is only a discrete Z2 transfor-
mation even at the classical level, we cannot use it to construct dyonic solutions, although
some dyonic solutions can be found.

A final remark: the dual KK action Eq. (11.91) in d = 5 is identical to the five-
dimensional string effective action up to k0 factors, Eq. (15.13), with the identification
k̃ = eφ . Evidently, in the Einstein frame the two actions would be absolutely identical with
the identification k = eφ . Then, if we are careful enough with factors of k0, we can iden-
tify any solution of the five-dimensional string effective action involving only the dilaton,
the Kalb–Ramond 2-form (these fields are introduced in Part III), and the metric in six-
dimensional pure gravity.

11.2.5 Reduction of the Einstein–Maxwell action and N = 1, d = 5 SUGRA

Although the beauty of Kaluza–Klein theories is that they geometrize other interactions,
unifying all of them in gravity, it is possible, and sometimes necessary, to introduce other
fields in d̂ dimensions. For instance, in the compactification of supergravity theories we
have to include at the very least all the fields that enter into the supermultiplet in which
the graviton lies. In higher dimensions, apart from gravitinos, the minimal supergravity
multiplet necessarily contains other fermions plus scalars and k-form fields. In Part III we
are going to reduce several of these supergravity theories but now we want to see in a
simple example (N = 1, d = 5 SUGRA) how the Scherk–Schwarz formalism works in the
presence of matter fields.

In d̂ = 5 the minimal SUGRA [261] has a metric, a vector field, and a pair of symplectic
Majorana gravitinos that are associated with eight real supercharges. The action of the
bosonic sector is essentially the Einstein–Maxwell action with an extra topological (in the
sense of metric-independent) cubic Chern–Simons term:

Ŝ =
∫

d5 x̂
√

|ĝ|
[

R̂ − 1
4 Ĝ2 + 1

12
√

3

ε̂√
|ĝ| ĜĜV̂

]
, (11.98)

where Ĝ = 2∂ V̂ is the 2-form field strength of the vector V̂ . The field strength and the
action (up to a total derivative) are invariant under the gauge transformations δχ̂ V̂ = ∂χ̂ .

We want to reduce this theory on a circle, but with the same effort we can first perform
the reduction of the d̂-dimensional Einstein–Maxwell theory (without any topological term)
on a circle and then apply the results to our case.

Before we dimensionally reduce the action of the d̂-dimensional Einstein–Maxwell the-
ory, it is convenient to know the spectrum of new states that appear when we consider a
massless spin-1 particle on a circle. According to general arguments, we expect an infinite
tower of states with masses proportional to the inverse of the compactification radius. Fur-
thermore, we know that these massive states will be electrically charged under the massless
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KK vector that arises from the metric. On the other hand, we have to take into account that
the d̂-dimensional vector representation of SO(1, d̂ − 1) gives rise to a vector and a scalar
of SO(1, d − 1) at each mass level:

V̂ (n)

µ̂
→ V (n)

µ , l(n). (11.99)

Our previous experience tells us that, in the n �= 0 levels, the scalars l(n) will act as
Stückelberg fields for the vectors V (n)

µ , giving rise to the mass terms for them that we
expect according to the general KK arguments. For n = 0 we obtain a massless vector and
a massless scalar, Vµ and l. These are the only ones we keep in the dimensional reduction
of the theory. The massless scalar is associated with the spontaneous breaking of the d̂-
dimensional gauge transformations δχ̂ V̂µ̂ = ∂µ̂χ̂ that depend on the coordinate z. In fact,
the only z-dependent gauge transformations that preserve the KK Ansatz are those linear
in z that shift the component V̂z and they give rise to a global, non-compact symmetry
(duality) of the reduced theory.

Of course, we need to identify the lower-dimensional fields that transform correctly un-
der all the gauge symmetries in order to see all these arguments working. The action is

Ŝ[ĝµ̂ν̂ , V̂µ̂] = 1

16πG(d̂)
N

∫
dd̂ x̂

√
|ĝ|

[
R̂ − 1

4 Ĝ2
]
, (11.100)

The reduction of the Einstein–Hilbert term goes exactly as before. We need only take care
of the Maxwell term. In accord with the Scherk–Schwarz formalism, we use flat indices
to identify fields that are invariant under the KK U(1) gauge transformations. Thus, the
massless d-dimensional vector field Vµ is, using the Vielbein Ansatz Eq. (11.33),

ea
µVµ ≡ êa

µ̂V̂µ̂ = (
V̂µ − V̂z Aµ

)
ea

µ ⇒ Vµ = V̂µ − V̂z Aµ. (11.101)

The V̂z component becomes automatically the d-dimensional massless scalar l, and, thus,
we have the decomposition

V̂z = l,

V̂µ = Vµ + l Aµ.

l = V̂z,

Vµ = V̂µ − V̂z ĝµz/ĝzz.
(11.102)

It is easy to check that the d-dimensional scalar and vector fields obtained in this way are
invariant under the KK U(1) δ� transformations. Under the z-independent d̂-dimensional
transformations, only Vµ transforms,

δχ Vµ = ∂µχ, χ = χ̂(x), (11.103)

and, under the linear gauge transformations χ̂ = mz,

δml = m, δm Vµ = −m Aµ. (11.104)

Finally, under the rescalings of the z coordinate that rescale k and Aµ, only l transforms:

l ′ = a−1l. (11.105)
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Now we need to identify the d-dimensional field strength. This is going to be related to
Ĝab, which is invariant under δ� and δχ̂ transformations (including the linear ones δm):

Ĝab = ea
µeb

ν(2∂[µVν] + 2V ∂[µ Aν]), (11.106)

and we define the gauge-invariant Gµν and the gauge-plus-global-invariant Gab = Ĝab:

Gµν = 2∂[µVν], G = G + l F. (11.107)

On the other hand,
Ĝaz = k−1∂al (11.108)

is also invariant under δm , and, therefore,

Ĝ2 = ĜabĜab − 2ĜazĜa
z = G 2 − 2k−2(∂l)2, (11.109)

and the full dimensionally reduced Einstein–Maxwell action is

Ŝ = 2π�

16πG(d̂)
N

∫
dd̂−1x

√
|g| k

[
R + 1

2 k−2(∂l)2 − 1
4 k2 F2 − 1

4G
2

]
. (11.110)

Let us now go back to the d̂ = 5 and let us reduce the Chern–Simons term. First, we
convert the Chern–Simons term into an expression with only Lorentz indices,

ε̂µ̂1···µ̂5 Ĝµ̂1µ̂2 Ĝµ̂3µ̂4V̂µ̂5 =
√

|ĝ|ε̂ â1···â5 Ĝâ1â2 Ĝâ3â4V̂â5, (11.111)

and then we use the relation
ε̂abcdz = εabcd (11.112)

between the five- and four-dimensional Levi-Cività symbols:

√
|ĝ|ε̂ĜĜ ˆ̂V = k

√
|g|ε(ĜĜV̂z − 4ĜĜzV̂) =

√
|g|ε(GGl − 4G∂lV ). (11.113)

On turning back to curved indices and integrating by parts, the action takes the form

S = 2π�

16πG(d̂)
N

∫
d4x

√
|g| k

{
R + 1

2 k−2(∂l)2 − 1
4 k2 F2(A) − 1

4G
2

+ k−1l

4
√

3
√|g|ε[G − 2A∂l]2

}
.

(11.114)

This theory is a four-dimensional SUGRA theory that is invariant under eight inde-
pendent local z-independent supersymmetry transformations. Thus, it is an N = 2, d = 4
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SUGRA theory. Pure N = 2, d = 4 SUGRA was described in Section 5.5 and its only
bosonic fields are the metric and a vector. Therefore, the extra vector and two scalars that
we obtain must be matter fields, actually the bosonic fields of an N = 2, d = 4 vector super-
multiplet [230]. This reducibility of the gravity supermultiplet after dimensional reduction
is a general characteristic of non-maximal SUGRAs. The matter and supergravity vector
fields are combinations of the two vectors A and V . To identify them, we can use the fact
that eliminating a matter supermultiplet is always a consistent truncation of the theory. The
equations of motion of k and l after setting k = 1 and l = 0 (their truncation values) give
the constraints

3F2(A) + F2(V ) = 0,
√

3F(A) − �F(V ) = 0.
(11.115)

The second constraint implies the first and tells us that, with k = 1 and l = 0, the matter
vector’s field strength is, precisely, the combination16 (

√
3/2)F(A) − 1

2
�F(V ) that has to

be set to zero for the truncation of the (matter) scalars to be consistent. The orthogonal
combination 1

2
�F(A) − (

√
3/2)F(V ) is the supergravity vector field. On setting the mat-

ter scalars and vector field to zero, we obtain the action of pure N = 2, d = 4 SUGRA
(Einstein–Maxwell) with the normalization of Eq. (11.100).

We find the following relations between four-dimensional Einstein–Maxwell fields gµν

and Aµ and five-dimensional fields satisfying the truncation condition:

ĝzz = −1, V̂z = 0,

2∂[µĝν]z = − 1

4
√|g|εµνρσ Fρσ (A), V̂µ = −

√
3

2
Aµ,

ĝµν = gµν − ĝµz ĝνz,

(11.116)

which can be used to uplift any N = 2, d = 4 SUGRA (Einstein–Maxwell) solution to a
N = 1, d = 5 SUGRA solution preserving the supersymmetry properties. Similar results
can be found in the reduction of the minimal N = (1, 0), d = 6 SUGRA (which also has
eight supercharges) to d = 5 [664] and we will make use of them in Section 13.4 to relate
maximally supersymmetric solutions of these three theories by dimensional reduction.

11.3 KK reduction and oxidation of solutions

We have learned how to perform dimensional reduction for the action of pure gravity and
the Einstein–Maxwell theory. In particular, we have learned to relate the fields in lower
and higher dimensions and the main property of these reductions is that any solution of
the lower-dimensional theory is automatically a solution of the higher-dimensional theory
that does not depend on one coordinate and the other way around: any solution of the
higher-dimensional theory that does not depend on a certain coordinate is a solution of the
dimensionally reduced theory, even if the coordinate is not periodic.

16 Actually, its Hodge dual. The supersymmetry transformation rules have to be examined in order to determine
these ambiguities [664].
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This puts in our hands an incredibly powerful tool for generating new solutions both of
the higher- and of the lower-dimensional theories.

The simplest use consists in taking a solution of the higher-dimensional theory that does
not depend on one coordinate, which we identify as the compact one, and reducing it us-
ing the relations between higher- and lower-dimensional fields; or taking a solution of the
lower-dimensional theory and uplifting (oxidizing) it to a solution of the higher-dimensional
theory.

A more sophisticated use combines reduction and oxidation with a duality transformation
of the lower-dimensional solution or a GCT of the higher-dimensional solution.

In this section we are going to see the most important examples of these techniques.

11.3.1 ERN black holes

Periodic arrays and reduction. Let us consider the Einstein–Maxwell theory in R
d × S1.

The action is given in Eq. (11.100) and is no different from the action in R
d+1 and, thus,

the equations of motion admit the same solutions, but now we have to impose different
boundary conditions, namely periodicity in the coordinate z. Obviously, solutions that do
not depend on the coordinate z are trivially periodic, but we are interested primarily in
solutions that do depend on z.

The Einstein–Maxwell theory has MP-type solutions, Eq. (8.229), in any dimension,
which depend on a completely arbitrary harmonic function H . Harmonic functions with a
point-like singularity that tend to 1 at infinity give asymptotically flat ERN BHs. We can
also require the harmonic function to be periodic in the coordinate z in order to obtain
an ERN solution in R

d × S1. There is a systematic way to construct a harmonic function
periodic in z with a point-like singularity [712] that makes use of the fact that we can
construct solutions with an arbitrary number of ERN BHs by taking harmonic functions
with that many point-like singularities. The idea is to place an infinite number of ERN
BHs with identical masses at regular intervals along the z axis. The corresponding solution
is physically equivalent to one with a single ERN BH and a periodic z coordinate. The
harmonic function is given by the series

H = 1 + h
n=+∞∑
n=−∞

1

(|	xd̂−2|2 + (z + 2πn Rz)2|) d̂−3
2

, (11.117)

where we have assumed for simplicity that z ∈ [0, 2π Rz] and it is (if it converges17) a
periodic function of z with a pole in 	xd̂−2 = z = 0 in the interval [0, 2π Rz], as we wanted.

Now that we have a solution of the Einstein–Maxwell theory in R
d × S1, we can follow

the standard procedure: expand in Fourier series, take the z-independent zero mode, and
use the relation between higher- and lower-dimensional fields to obtain a d-dimensional
solution of the action Eq. (11.110). For d̂ = 5, this is done in Appendix G, but for general

17 It certainly does converge for d̂ = 5. In fact, this procedure was first developed in [498] in order to obtain
harmonic functions on R

3 × S1 and periodic SU(2) instanton solutions using the ’t Hooft Ansatz Eq. (9.22).
Some related calculations can be found in Appendix G.
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d̂ it is unnecessary to sum the infinite series and then calculate the zero mode [712]: it is
possible to approximate the infinite sum by an integral. First we change variables,

un = z − 2πn Rz

|	xd̂−2|
, un ∈

[
2πn Rz

|	xd̂−2|
,

2π(n + 1)Rz

|	xd̂−2|
]
, (11.118)

and we have

H = 1 + h

|	xd̂−2|d̂−3

n=+∞∑
n=−∞

1

(1 + u2
n)

d̂−3
2

∼ 1 + h

|	xd̂−2|d̂−3

1
2π Rz

|	xd̂−2|

∫ +∞

−∞

du

(1 + u2)
d̂−3

2

= 1 + h′

|	xd̂−2|d̂−4
, (11.119)

with

h′ = hω(d̂−4)

2π Rzω( ˆd−5)

. (11.120)

It is clear that this approximation is valid if |	x ˆd−2| >> Rz and for d̂ ≥ 5. For d̂ = 4 the
series does not converge. In fact, defining now

un = (z − 2πn Rz) ∈ [2πn Rz, 2π(n + 1)Rz], (11.121)

we have

H = 1 + h

|	x2|
n=+∞∑
n=−∞

1

(|	x2|2 + u2
n)

1
2

∼ 1 + h

2π Rz

∫ +∞

−∞

du

(|	x2|2 + u2)
1
2

= 1 + lim
v→+∞

h

π Rz
ln


 v

|	x2| +
√

1 +
(

v

|	x2|
)2




∼ − h

π Rz
ln |	x2| + D, (11.122)

where D is a divergent constant. The solution to this problem [712] is to redefine each term
in the H series with a constant chosen so as to cancel D out:

H = h
n=+∞∑
n=−∞

1

(|	x2|2 + (z + 2πn Rz)2|) 1
2

− 2h
n=+∞∑

n=1

1

2πn Rz
. (11.123)

The solution is not asymptotically flat, but this is to be expected on physical grounds.
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These are very useful formulae that we are going to use many times and they deserve to
be rewritten and framed. For n > 1 and n = 1, respectively,

H = 1 + h
m=+∞∑
m=−∞

1

[|	xn+1|2 + (z + 2πm Rz)2]
n
2

∼ 1 + hω(n−1)

2π Rzω(n−2)

1

|	xn+1|n−1
,

H = h
m=+∞∑
m=−∞

1

[|	x2|2 + (z + 2πm Rz)2]
1
2

− 2h
m=+∞∑

m=1

1

2πm Rz

∼ − h

π Rz
ln |	x2|.

(11.124)

Using this approximated H (the zero mode of the periodic one) in the d̂-dimensional MP
solution, we obtain a solution that does not depend on the periodic coordinate z and now
we can rewrite the solution in terms of the d = (d̂ − 1)-dimensional fields:18

ds2
KK = H−2dt2 − H

2
d−2 d 	x 2

d−1,

ds2
E = H− 5

2 dt2 − H− d−6
d−2 d 	x 2

d−1,

Vµ = δµtα(H−1 − 1), α = ±2,

k = H
1

d−2 , V = V0. ∂i∂i H = 0,

(11.125)

where we have included a possible constant value for V̂z . This form is valid for any
d̂-dimensional MP solution with a z-independent harmonic function, and, in particular,
for the above H that corresponds to the zero mode of the d̂-dimensional periodic ERN BH.

Why have we gone through the long procedure of finding periodic ERN BH solutions
and finding their zero modes when we could simply reduce the whole MP family assuming
independence of z? The reason is that, in the cases that will interest us, we will have a well-
defined d̂-dimensional source that will determine the coefficient h of the d̂-dimensional
harmonic function and only by going through all this procedure can we relate it to the
coefficient of the d-dimensional harmonic function.

The dimensionally reduced ERN solution does not have a regular horizon: near the origin
(the only place where the horizon could be placed), using spherical coordinates r = |	xd−1|,(

1 + h′/rd−3
)− d−6

d−2
r2d�2

(d−2) ∼ h′r
(d−3)(d−6)

d−2 d�2
(d−2), (11.126)

18 Since we have absorbed the asymptotic value of the KK scalar into the period of the coordinate z, k = k̃ and
there is no difference between the Einstein and modified Einstein frames.
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which never goes to a (d − 2)-sphere with finite radius. However, we know that this solution
corresponds to a solution with a regular horizon in d + 1 dimensions! One possible way to
explain what is happening here is the following: the results of the dimensional–reduction
procedure are meaningful within certain approximations. In particular, we assume that the
massive modes can be ignored because their masses are very large, which means that the
compactification radius is small. In this geometry, the compactification radius, measured
by the modulus k, is not constant over the space but depends on r , blowing up when r → 0
(the locus of the putative horizon). Thus, near this point, there are KK modes whose masses
become small enough to be taken into account, but we have not done this and the solution
cannot be considered valid near r = 0. Near r = 0 the solution is indeed d̂-dimensional and
regular. Similar mechanisms have been proposed in other cases and in the context of string
theory to show how some singularities disappear when we take into account the higher-
dimensional origin of the solution [441].

Oxidation. Dimensional oxidation is in general a much simpler operation than reduction:
we simply take a solution of the lower-dimensional theory and rewrite it in terms of the
d̂-dimensional fields, obtaining a solution of the higher-dimensional theory that does not
depend on the compact coordinate. However, this solution may (but need not) be the zero
mode of a solution that does depend periodically on the compact coordinate and in general
we cannot know which of these possibilities is true.

In any case, the first step consists in having a solution of the lower-dimensional theory
and our problem is that the d-dimensional ERN solution (in general, the MP solutions)
is not a solution of the dimensionally reduced d̂ = (d + 1)-dimensional Einstein–Maxwell
theory. Let us examine the KK scalar equation of motion in the Einstein frame. It takes the
form

∇2 ln k ∼ c1ka1 F2 + c2ka2G2, (11.127)

and requires a non-trivial k if F2 �= 0 or G �= 0, as is the case here. Thus, the MP solutions
cannot, in general, be considered solutions of the reduced Einstein–Maxwell equations and,
thus, cannot be dimensionally oxidized.

There are, however, exceptions. For instance

1. Solutions with F2 = 0 satisfy the KK scalar equation of motion and thus can be
oxidized to a purely gravitational solution. One example is the dyonic ERN BH with
electric and magnetic charges related by p = ±16πG(4)

N q (see page 330). Another
example is provided by electromagnetic pp-waves.

2. We have seen in Section 11.2.5 that any solution of the four-dimensional Einstein–
Maxwell theory (N = 2, d = 4 SUGRA) can be oxidized to a solution of N = 2, d =
5 SUGRA using Eqs. (11.116) and we have mentioned that solutions of the latter can
be further oxidized to N = (1, 0), d = 6 SUGRA.

Observe that we can oxidize the four-dimensional Einstein–Maxwell solutions with
F2 = 0 in two different ways to d = 5. The second form makes use of the supersymmetric
structure of the theory and ensures that the supersymmetry properties will be preserved in
the oxidation, whereas in the first case they will not.
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11.3.2 Dimensional reduction of the AS shock wave: the extreme electric KK black hole

Now we are going to consider the dimensional reduction of the AS shock-wave solution
Eq. (10.41). We must distinguish between two cases: when the wave propagates in the
compact coordinate and when it propagates in an orthogonal direction. The second case is
simpler, and we study it first.

To avoid confusion, we are going to call y the direction in which the wave propagates and
z the compact direction. The AS solution depends on a harmonic function of the transverse
coordinates H(	xd̂−2) and on a delta function δ[(1/

√
2)(t − αy)]. If the compact coordinate

is xd̂−2 ≡ z, we split the transverse-coordinates vector into 	xd̂−2 = (	xd−2, z). We know that
any harmonic function H provides a solution and hence we can repeat the construction
of a harmonic function of (	xd−2, z) that has a single point-like pole and is periodic in the
coordinate z by constructing a periodic array and taking the average. For d̂ ≥ 5 the reduced
solution is another AS shock wave with the same metric in one dimension fewer and with
the coefficients of the harmonic functions related as above.

The case in which the wave propagates in the compact direction is far more interesting.
We should be able to guess the result, since we have reduced the source of the AS shock
wave (the massless point-particle action) in Section 11.2.3 and found the action of a massive
KK mode that is electrically charged with respect to the KK vector field and with charge and
mass equal to the momentum in the compact direction. We expect, then, that the reduction
in the direction in which the wave propagates should give a metric describing a massive,
electrically charged object which will be “extreme” in some sense, corresponding to the
special relation between its mass and charge.

First, we adapt the solution Eq. (10.41) to the compactness of z, rescaling it to k0z, and at
the same time rescaling � so the periodicity of z is always 2π�. These rescalings introduce
k0 factors in several places. The solution we are going to start with is

dŝ2 = H−1dt2 − H
[
k0dz − α(H−1 − 1)dt

]2 − d 	x 2
d̂−2

, α = ±1,

H = 1 −
√

2 p8πG(d̂)
N

(d̂ − 4)ω(d̂−3)

1

|	xd̂−2|d̂−4
δ

[
1√
2
(t − αk0z)

]
, d̂ ≥ 5,

H = 1 + √
2 p4G(4)

N ln |	x2| δ
[

1√
2
(t − αk0z)

]
, d̂ = 4.

(11.128)

Before we proceed, it is necessary to identify the constant p. In asymptotically flat cases,
p is just the absolute value of the momentum carried by the massless particle. In the present
case, the momentum of the massless particle in the z direction is given by (just take the KK
vacuum spacetime limit)

pz = αpk0, (11.129)

and we should replace p by |pz|/k0 accordingly in the above harmonic functions.
Now, we should Fourier-expand all the components of the metric, but we are going to

content ourselves with taking the zero mode, which will be a solution of the KK-theory
action Eq. (11.39). We expand

δ

[
1√
2
(t − αk0z)

]
= −

√
2

k0

∑
n

1

2π�
ein

(
z− t

k0

)/
�
, (11.130)
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and keep only the zero mode −1/(
√

2π�k0). The replacement of the δ function by its
constant zero mode gives us the z-independent harmonic functions and metric, which can
be immediately rewritten in terms of d-dimensional fields that we express both in the KK
frame and in the modified Einstein frame for the interesting, asymptotically flat d > 4
cases:

ds2
KK = H−1dt2 − d 	x 2

d−1,

ds̃2
E = H− d−3

d−2 dt2 − H
1

d−2 d 	x 2
d−1,

Ãt = α(H−1 − 1), k̃ = H
1
2 , α = ±1,

H = 1 + h

|	xd−1|d−3
, h = 16πG(d̂)

N pz

2π�k2
0(d − 3)ω(d−2)

.

(11.131)

This is the d-dimensional extreme electric KK BH solution. As expected, it describes a
massive, electrically charged object that should be a KK mode. It does not have a regu-
lar horizon. It is clear that, had we started from the general family of pp-wave solutions
Eqs. (10.42), we would have obtained a family of solutions of the same form but with ar-
bitrary harmonic functions. Thus, we can construct solutions of the KK action Eq. (11.39)
with several of these objects with charges of the same sign in static equilibrium by the
standard procedure. Now, the equilibrium is more difficult to describe because a third inter-
action, mediated by the KK scalar k, comes into play. On the other hand, in the reduction of
the ERN solution we also found a solution describing a massive object charged with respect
to a vector field and with a non-trivial scalar, but different from this one. The reason is that
they obey different equations of motion, the difference being the strength with which the
KK scalar couples to the vector field. We will study these dilaton “BHs” in more detail in
Section 12.1.

We can calculate the mass and charge of the above solutions to check that they do indeed
correspond to those of a KK mode. From

g̃E t t = H− d−3
d−2 ∼ 1 − d − 3

d − 2

h

|	xd−1|d−3
, (11.132)

and the definition of the mass M ,

g̃E t t ∼ 1 − 16πG(d)
N M

(d − 2)ω(d−2)

1

|	xd−1|d−3
, (11.133)

we find M = pzk
−1
0 , as expected.

The electric charge can be calculated using the definition in Eqs. (11.63), finding first

k̃2 d−1
d−2 � F̃ = ±(d − 3)h d�d−2, (11.134)

where d�d−2 is the unit (d − 2)-sphere volume form, whose integral over the sphere just
gives ω(d−2) (see Appendix C). The final result is q̃ = ±pzk

−1
0 (pz was taken to be positive),

also as expected.



11.3 KK reduction and oxidation of solutions 323

We conclude that the extreme electric KK BH solution does indeed describe the long-
range fields of a KK mode.

The name “extreme BH” for a solution that does not have a regular event horizon needs
some justification: the reason is that this solution belongs to a larger family of BH solutions
with regular event horizons and also with Cauchy horizons, which we will construct in
Section 11.3.4. When the mass and electric charge are equal (the “extreme limit”), the event
and Cauchy horizons coincide and become singular. The general families of non-extreme
dilaton BHs will be studied in Section 12.1. Those with the right dilaton coupling can be
oxidized to one dimension more.

Finally, observe that purely gravitational pp-waves can always be oxidized to one dimen-
sion more by taking the product with the metric of a flat line. We know that the dependence
of the harmonic functions can be extended to that coordinate. The first observation is also
true for any purely gravitational solution, which is always a solution of the KK action
Eq. (11.39). However, the dependences of the functions in the metric cannot always be ex-
tended to the new compact coordinate. This is the case for the Schwarzschild BH solution,
as we are going to see.

11.3.3 Non-extreme Schwarzschild and RN black holes

Dimensional reduction. Paradoxically, the simplest and most fundamental BH solutions
are also the most difficult to reduce because it is also more difficult to generalize them to
the case in which one coordinate is compact. We certainly cannot construct, in a simple and
naive way, infinite periodic arrays of Schwarzschild and non-extreme RN BHs because it
is not at all clear how to construct solutions for more than one non-extreme BH, and, on
physical grounds, one does not expect them even to exist because the interaction between
non-extreme BHs is not balanced and they cannot be in static equilibrium.

Nevertheless, there are solutions describing an arbitrary number of aligned Schwarz-
schild BHs: the Israel–Khan solutions [595]. They belong to Weyl’s family of axisymmet-
ric vacuum solutions [640, 949, 950] and, thus, they have a metric that, in Weyl’s canonical
coordinates {t, ρ, z, ϕ}, takes the form

ds2 = e2U dt2 − e−2U
[
e2k(dρ2 + dz2) + ρ2dϕ2

]
, (11.135)

where U is a harmonic function in three-dimensional Euclidean space that is independent
of ϕ (because of axisymmetry) and k depends on U through two first-order differential
equations that can be integrated straightaway:

∂i∂iU = 0,

∂ρk = ρ[(∂ρU )2 − (∂zU )2],

∂zk = 2ρ∂ρU∂zU.

(11.136)

The simplest choice of U is, in spherical coordinates r2 = ρ2 + z2,

U = −G(4)
N M

r
, k = −(G(4)

N M)2 sin2 θ

2r2
, (11.137)
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and gives the Chazy–Curzon solution [235, 269]. In spite of the spherically symmetric U ,
the solution is only axisymmetric. The Schwarzschild solution corresponds to a U equal to
the Newtonian gravitational potential for an ideal homogeneous rod of finite length 2G(4)

N M
and total mass M ,

U = 1
2 ln

(
r+ + z+
r− + z−

)
= 1

2 ln

(
r+ + r− + (z+ − z−)

r+ + r− − (z+ − z−)

)
,

k = 1
2 ln

(
r+r− + z+z− + ρ2

2r+r−

)
,

(11.138)

where

r± ≡
√

ρ2 + z2±, z± ≡ z − (
z0 ± G(4)

N M
)
, (11.139)

and z0 is the value of z at the center of the rod. The two very different-looking forms of the
function U are completely equivalent. The coordinate transformation

ρ =
√

r
(
r − 2G(4)

N M
)
, z − z0 = (

r − 2G(4)
N M

)
cos θ, (11.140)

gives back the Schwarzschild metric in Schwarzschild coordinates.
This metric is singular at the position of the rod over the z axis (M > 0): ρ = 0, z0 −

G(4)
N M < z < z0 + G(4)

N M , where U diverges, but the singularity can be removed by a co-
ordinate transformation and indicates only the presence of the event horizon [595]. On the
other hand, k = 0 on the axis, so there are no conical singularities there, as we are going to
explain.

Since U satisfies a linear equation, we can linearly superpose the potentials of N sep-
arated rods with masses Mi and lengths 2G(4)

N Mi to give a solution that, in principle, can
describe several Schwarzschild BHs in static equilibrium. We just have to calculate k:

U =
N∑

i=1

Ui , Ui = 1
2 ln

(
r+ i + r− i + (z+ i − z− i )

r+ i + r− i − (z+ i − z− i )

)
,

k =
N∑

i, j=1

ki j , ki j = 1
4 ln

(
r+ i r− j + z+ i z− j + ρ2

r+ i r+ j + z+ i z+ j + ρ2
+ (+ ↔ −)

)
, (11.141)

where now
r± i ≡

√
ρ2 + z2

± i , z± i ≡ z − (z0 i ± G(4)
N Mi ), (11.142)

and the centers of the rods are at z0 i . These are Israel–Khan solutions [595]. Since, phys-
ically, we did not expect these solutions to exist, where is the catch? These solutions have
additional conical singularities over the z in between the rods (BHs): e±2U is completely
regular in between the axes because the Ui s are. The ki j s vanish when z is not in between
the rods i and j , and, in between the rods i and j (that is, assuming that z0 i < z0 j , z± i > 0
and z± j < 0), on taking the ρ → 0 limit carefully, we obtain

k0
i j ≡ lim

ρ→0
ki j = 1

2 ln

∣∣∣∣ (z+ i − z− j )((z− i − z+ j )

((z+ i − z+ j )((z− i − z− j )

∣∣∣∣, (11.143)
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which is constant and proportional to the Newtonian gravitational force between the rods
i and j . Thus, in general k will be a constant k0 = ∑

i. j k0
i j that differs from zero over the

z axis. This implies the existence of conical singularities over the axis: when ρ → 0 the
spatial part of the metric Eq. (11.135) takes the form

−ds2
(3) ∼ e−2(U−k)

[
dρ2 + dz2 + ρ2e−2k0

dϕ2
]
. (11.144)

The metric in brackets is the Euclidean metric in cylindrical coordinates if e−k0
ϕ has

period 	e−k0
ϕ = 2π ; otherwise, there is a conical singularity with a deficit angle δ =

2π − 	e−k0
ϕ. However, for analogous reasons, the period of ϕ has to be 2π if the metric is

to be asymptotically flat rather than asymptotically conical and, in general, there is a defect
angle δ = 2π(1 − e−k0

). For instance, for two rods separated by a coordinate distance 	z
(so, z0 1 − z0 2 = 	z + G(4)

N (M1 + M2)) the deficit angle is (see e.g. [257])

δ = −2π
4G(4) 2

N M1 M2

	z[	z + 2G(4)
N (M1 + M2)]

. (11.145)

This conical singularity can be considered as a strut that holds the two BHs in place
in spite of their gravitational attraction. The BH horizons are deformed by all these in-
teractions [257]. The conical singularities are unavoidable: it can be shown that the only
non-singular solution is the one with a single BH [428, 705]. In fact, in [430] it is shown
that the only static, axisymmetric, asymptotically flat solutions with many BHs are the MP
solutions. Nevertheless, the Euclidean action is well defined even in the presence of conical
singularities [448].

It is clear that the Israel–Khan solution can be used to construct an infinite periodic array
of identical Schwarzschild BHs of mass M whose rod centers are separated by a coordinate
distance 2π Rz . This construction was made in [712]. The series U = ∑n=∞

n=−∞ Un diverges
(asymptotically, it is similar to the second series H in Eq. (11.124)) and we need to redefine
it:

U =
n=∞∑

n=−∞
Un −

+∞∑
n=1

ln

(
1 − G(4)

N M/(n2π Rz)

1 + G(4)
N M/(n2π Rz)

)
. (11.146)

The same is true for the knms:

k =
n,m=+∞∑
n,m=−∞

knm −
n,m=+∞∑

n,m=0

ln

[
1 − 4G(4) 2

N M2

(n + m + 1)2(2π Rz)2

]
. (11.147)

When the number of BHs is infinite, we expect the total force exerted on each BH by all
the others (an infinite number to its left and to its right) to vanish and, indeed, one finds
k0 = 0, a total absence of conical singularities in between the BHs.

This solution can now be considered as a Schwarzschild BH with a compact dimension,
asymptotically R

3 × S1. We could extract its Fourier zero mode and then dimensionally re-
duce it to three dimensions using the standard procedure. This construction can be general-
ized to other non-extreme BHs such as the RN BH with like [257] or opposite charges [374],
and the generalization to d = 5 dimensions can be performed using the higher-dimensional
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generalization of the Weyl class recently found in [372], although for higher dimensions
there are still problems.

Oxidation: black branes. We have already mentioned that any purely gravitational solution
is automatically a solution of the KK action given in Eq. (11.39) with constant KK scalar
k = k0 and, therefore, it is also a solution of the higher-dimensional purely gravitational
theory. The procedure can be repeated as many times as we want (p, say) and the result is
a purely gravitational solution with a metric that is the direct product of the original metric
and the metric of p circles (a p-torus Tp).

This remark applies in particular to d = (d̂ − p)-dimensional Schwarzschild BHs. On
oxidizing them to d̂ dimensions and adding p coordinates 	yp = (y1, y2, . . ., y p) with yi ∈
[0, 2π Ri ], we obtain the following metric [557]:

dŝ2 = W dt2 − d 	y 2
p − W −1dr2 − r2d�2

[d̂−(p+2)]
,

W = 1 − 16πG(d̂−p)

N M

[d̂ − (p + 2)]ω[d̂−(p+2)]

1

r d̂−p−3
.

(11.148)

These solutions are known as (Schwarzschild) black p-brane solutions and represent
the gravitational field of massive, extended objects of p spatial dimensions (p-branes),
which are parametrized by the coordinates 	yp. They are asymptotically flat only in the
directions orthogonal (or transverse) to the worldvolume directions t and 	yp (even in the
Ri → ∞ limit). Since the mass is the same even for infinite compactification radii, it is
clear that these objects are really characterized by a mass density per unit p-volume (in the
	yp directions), which is called the brane tension T(p), rather than by M , which is the mass of
the point-like object they give rise to after compactification on Tp. To calculate the tension
T(p) we use p times the relation between the Newton constants in different dimensions,

G(d̂−p)

N = G(d̂)
N /Vp, Vp = (2π)p R1 · · · Rp, (11.149)

and define
G(d̂−p)

N M = G(d̂)
N T(p), ⇒ M = VpT(p). (11.150)

Solutions like this are going to be studied in detail in Part III.
It is also possible to oxidize to purely gravitational solutions the solutions Eqs. (8.216) of

the Einstein-scalar theory, but the resulting solutions, a sort of generalized black p-branes,
do not have a clear interpretation.

11.3.4 Simple KK solution-generating techniques

KK oxidation and reduction can be used to generate new solutions. In general, the proce-
dure consists in using a well-defined symmetry of the higher- or lower-dimensional theory
as an intermediate step between oxidation and reduction or reduction and oxidation. Let us
study some examples.
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Generation of charged solutions by higher-dimensional boosts. The first example consists
of three steps.

1. Oxidation of the Schwarzschild solution to d̂ = d + 1 dimensions.

2. Lorentz-boosting the Schwarzschild black 1-brane solution in the compact direction.

3. Reduction in the same direction.

We have already performed the first operation in the previous section. The d̂-dimensional
solution is

dŝ2 = W dt2 − dz2 − W −1dr2 − r2d�2
[d̂−3]

, W = 1 + ω

r d̂−4
, (11.151)

and we are ready to perform a Lorentz boost in the positive- or negative-z direction, which
evidently transforms a solution of the d̂-dimensional Einstein equations into another one:(

t
z

)
→

(
cosh γ ± sinh γ

± sinh γ cosh γ

)(
t
z

)
, γ > 0. (11.152)

The new solution can be rewritten in the form

dŝ2 = H−1W dt2 − H
[
dz − α(H−1 − 1)dt

]2 − W −1dr2 − r2d�2
[d̂−3]

,

W = 1 + ω

r d̂−4
, H = 1 + h

r d̂−4
, ω = h(1 − α2),

(11.153)

if we parametrize α = ±coth γ , which is a sort of “black pp-wave” metric. The non-
extremality function W disappears when we boost at the speed of light α = ±1 and then
we recover exactly the pp-wave solutions Eq. (10.42), for which H can be any general
harmonic function in (d̂ − 2)-dimensional Euclidean space.

Now, the third step gives a new d-dimensional class of solutions whose existence we
announced:

ds2
KK = H−1W dt2 − W −1dr2 − r2d�2

(d−2),

ds̃2
E = H− d−3

d−2 W dt2 − H
1

(d−2)

(
W −1dr2 − r2d�2

(d−2)

)
,

Ãt = α(H−1 − 1), k̃ = H
1
2 ,

W = 1 + ω
rd−3 , H = 1 + h

rd−3 , ω = h(1 − α2).

(11.154)

These are the non-extreme electric KK BHs. They have regular event horizons and
Cauchy horizons (for negative ω) and, in the extreme limit ω = 0, they become the extreme
electric KK BHs, Eq. (11.131).

The same procedure can be used with higher-p branes and also with “charged p-branes.”
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Lower-dimensional S dualities and generation of KK branes. In this example, we are
also going to study a three-step mechanism for generating new solutions that exploits the
existence of an S-duality symmetry in the four-dimensional KK theory, as discussed in
Section 11.2.4.

1. Reduction of a purely gravitational five-dimensional solution to a four-dimensional
KK-theory solution.

2. S dualization of the four-dimensional KK-theory solution.

3. Oxidation of the S-dualized KK-theory solution to a new purely gravitational five-
dimensional solution.

In particular, we are going to apply this recipe to the “black pp-wave” solutions given
in Eqs. (11.153). Using the transformation Eq. (11.93) on the four-dimensional solution
Eq. (11.154), we immediately obtain

ds2
KK = W dt2 − H

[
W −1dr2 + r2d�2

(2)

]
,

ds̃2
E = H− 1

2 W dt2 − H
1
2

[
W −1dr2 + r2d�2

(2)

]
,

F̃ = αhd�2, k̃ = H− 1
2 ,

H = 1 + h
r , W = 1 + ω

r , ω = h(1 − α2).

(11.155)

The solution is naturally given in terms of the field strength F̃ . Finding the potential
is equivalent to solving the Dirac-monopole problem, which we already solved in Sec-
tion 8.7.2. Here we simply quote the result: in spherical coordinates the non-vanishing
components of F̃ are

F̃θϕ = αh sin θ = ∂θ Ãϕ, ⇒ Ãϕ = −αh cos θ, (11.156)

up to gauge transformations. This potential is singular at θ = 0 and θ = π and the solution
to this problem is to define the potential in two different patches Ã(±)

ϕ related by a gauge
transformation:

Ã(±)
ϕ = ±αh(1 ∓ cos θ). (11.157)

It is useful to rewrite the equation that the untilded A has to satisfy (the Dirac-monopole
equation) in a coordinate-independent way that will allow us to generalize the solutions,

∂[i A j] = αk−1
0

1
2εi jk∂k H. (11.158)

All the properties that depend only on the modified Einstein-frame metric (singularities,
horizons, causality, extremality, thermodynamics etc.) are the same as in the electric case.
The characteristic features of the magnetic BH appear in the KK frame and in d̂ dimensions.
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Using the relations Eqs. (11.28), we can immediately find the d̂-dimensional metric
which gives rise to the fields of the magnetic solution given in Eqs. (11.155):

dŝ2 = W dt2 − H
[
W −1dr2 + r2d�2

(2)

]
− k2

0 H−1W −1[dz + A]2,

A = Ai dxi , ∂[i A j] = αk−1
0

1
2εi jk∂k H,

H = 1 + h
r , W = 1 + ω

r , ω = h(1 − α2).

(11.159)

This solution has no simple interpretation. The extreme ω = 0 case is particularly in-
teresting because the metric becomes a product of time and a non-trivial four-dimensional
Euclidean manifold:

dŝ2 = dt2 − Hd 	x 2
3 − k2

0 H−1[dz + A]2,

A = Ai dxi , ∂[i A j] = αk−1
0

1
2εi jk∂k H,

H = 1 + | p̃|
4π

1

|	x3| , α = ±1,

(11.160)

where we have identified the constant h in H in terms of the four-dimensional magnetic
charge p̃. As usual, in the extreme case the function H can be any harmonic function in
flat three-dimensional space. The non-trivial four-dimensional manifold is nothing but the
Euclidean Taub–NUT solution19 Eq. (9.12) up to a rescaling

z = k−1
0 τ, AKK = k−1

0 ATN. (11.161)

This is the reason why the latter is called the (Sorkin–Gross–Perry) Kaluza–Klein monopole
[483, 860]. We have to identify the magnetic charge and the Taub–NUT charge,

| p̃|/(4π) = 2|N |. (11.162)

N is related to the period of τ , 8π |N |, which, upon making the identification τ = k0z,
implies 4|N | = Rz and | p̃| = 2π Rz , which is consistent with the known quantization of the
KK modes’ electric charge q̃ = n/Rz and the Dirac quantization condition Eq. (11.64).

Summarizing, we have performed a purely gravitational five-dimensional duality trans-
formation that interchanges momentum in the direction z with (Euclidean) NUT charge.
These two purely gravitational charges are seen in four dimensions as electric and mag-
netic U(1) charges.20 This mechanism can be used in more general contexts, whenever the
dimensionally reduced theory has an S-duality symmetry (see, for instance, [666]).

The KK S-duality symmetry is just a discrete Z2 transformation and it is natural to won-
der whether there are dyonic solutions, even if they cannot be generated by continuous
S-duality transformations. There is, to the best of our knowledge, only one dyonic KK BH
solution that is also a dyonic ERN BH.

19 But the solution Eq. (11.159) is not the Euclidean continuation of the non-extreme Taub–NUT solution,
which is four-dimensional.

20 For a discussion of the geometrical NUT charge and its representation as a (d − 3)-form potential in d
dimensions see [578].
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The RN–KK dyon. Let us consider the dyonic MP solutions Eqs. (8.204). A quick calcula-
tion gives

F2 = 8(cos2 α − sin2 α)∂i H−1∂i H−1, (11.163)

which vanishes for α = ±π/4. For this value of the charges (whose signs we can still
change, preserving F2 = 0) the dyonic MP solutions are also solutions of the KK action
with constant KK scalar k = k0 (=1 for simplicity) and can be uplifted to a purely gravita-
tional five-dimensional solution [621]:

dŝ2 = H−2dt2 − H 2d 	x2
3 − [

dz + √
2
(
αq H−1dt + αp Ai dxi

)]2
,

∂[i A j] = αp
1
2εi jk∂k H, ∂k∂k H = 0, α2

q = α2
p = 1,

(11.164)

where αq and αp are the possible signs of the electric and magnetic charges.

Skew KK reduction and generation of fluxbranes. Our last example, “skew KK reduction”
[326, 327] shows the power of the KK techniques to generate new solutions from “almost
nothing.” The general setup is the following.21 Let us consider a metric that admits two
isometries, one compact (a U(1)), associated with the coordinate θ , and one non-compact
(an R), associated with the coordinate z with a metric of the product form

dŝ2 = −dz2 − f 2
[
dθ + fmdxm

]2 + fmndxmdxn, (11.165)

where we have normalized the period of θ ∈ [0, 2π ]. We want now to construct a new
spacetime by identifying points in the above spacetime according to(

z + 2π Rz

θ

)
∼

(
z

θ − 2π B

)
. (11.166)

To apply the standard Scherk–Schwarz formalism, we need to use a coordinate independent
of z and thus we define a new coordinate θ ′ adapted to the above identifications,

θ ′ = θ − B

Rz
z, (11.167)

adapted to the Killing vector Rz∂z − B∂θ and rewrite the metric, adapting it to KK reduction
in the direction z. The lower-dimensional fields are

ds2
KK = − Rz

B
k−2

(
dθ ′ + fmdxm

)2 + fmndxmdxn,

Aθ ′ = B

Rz
k−2, Am = B

Rz
k−2 fm,

k2 = 1 + B2

R2
z

f 2.

(11.168)

21 Here we follow [325], where more uses of this technique to construct new solutions can be found.
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If we start from flat spacetime in polar coordinates [325],

dŝ2 = −dz2 − (dρ2 + ρ2dθ2) + dt2 − d 	y 2
(d̂−4)

, (11.169)

f = ρ, fm = 0, and we obtain

ds2
KK = dt2 − d 	y 2

(d−3) − Rz

B
k−2dθ ′ 2,

Aθ ′ = B

Rz
k−2, k2 = 1 + B2

R2
z

ρ2.

(11.170)

This is the Kaluza–Klein Melvin solution [325]. It generalizes the original Melvin solu-
tion that describes a parallel bundle of magnetic flux held together by its own gravitational
pull [692]. These solutions are also known as (d − 3)-fluxbranes since they have a mag-
netic flux orthogonal to a (d − 3)-dimensional spacelike submanifold that is invariant under
all possible translations, just like the Schwarzschild black p-branes which we saw have a
p-dimensional spacelike translation-invariant submanifold.

11.4 Toroidal (Abelian) dimensional reduction

The next simplest case we can consider is a d̂-dimensional spacetime that locally (and
asymptotically) is the product of d-dimensional Minkowski spacetime and n circles (d̂ =
d + n). The product of n circles is topologically an n-torus Tn and this case, which is a triv-
ial generalization of the single-circle case, is called toroidal compactification. Metrically,
the relative sizes and angles of the circles define the torus.

A useful way to characterize tori is the following: a circle of length 2π R can be consid-
ered as a coset manifold, namely the quotient of the group of continuous translations R by
the subgroup of discrete translations of size 2π R, which we can denote by 2π RZ. Thus,
S1 = R/(2π RZ).

A torus Tn can be similarly considered as the quotient of the group of n-dimensional
translations R

n by a discrete n-dimensional subgroup called an n-dimensional lattice22 �n ,
Tn = R

n/�n . The information about sizes and angles is evidently contained in �n .
The quotient affects only the global properties of the torus, which locally is just R

n , and
therefore it has n independent translational isometries. We can choose n independent mu-
tually commuting Killing vectors in the directions of the lattice generators. The n adapted
coordinates zm that parametrize their integral curves will then be periodic coordinates that
can be used simultaneously.

The analysis of the theory in these spaces proceeds along the same lines as in the case
of a single compact dimension. First, to find the spectrum, one performs an n-dimensional
Fourier-mode expansion in the vacuum. The single zero mode will be the only massless
mode and all the other modes will be massive. The massless d̂-dimensional graviton mode

22 A lattice �n is generated by linear combinations with integer coefficients of n linearly independent vectors
of R

n , {	ui }, i = 1, . . ., n. Thus, a generic element 	u ∈ �n can be written as 	u = ni 	ui , ni ∈ Z.



332 The Kaluza–Klein black hole

has to be decomposed into d-dimensional fields. It takes little effort to see that one obtains
a d-dimensional graviton, n d-dimensional vectors, and (n + 1)n/2 scalars. The graviton
and the n vectors gauge the unbroken symmetries of the vacuum: ISO(1, d − 1) × U(1)n

(d-dimensional Poincaré times the n periodic isometries of the torus Tn). The (asymptotic
values of the) scalars are moduli: they appear naturally arranged in an n-dimensional metric,
which is the metric of the internal space Tn and they carry the information about circle sizes
and relative angles. Evidently they generalize k, which contains only information about the
size of the single internal circle.

On the moduli will act the global symmetries of the torus: the affine group IGL(n, R),

zm ′ = (R−1 T)m
nzn + am, R ∈ GL(n, R), am ∈ R

n, (11.171)

which will give rise to the duality symmetries of the lower-dimensional theory.
It makes sense again to perform dimensional reduction of the theory, keeping only the

massless mode. Our goal in this section will therefore be to perform the dimensional reduc-
tion of the d̃-dimensional Einstein–Hilbert action to d = d̂ − n dimensions.

The setup is the following: since we keep only the zero mode of the d̂-dimensional
metric, in practice we will be considering a metric that does not depend on the n coordinates
zm which parametrize the torus.23 This is equivalent to saying that our metric does admit n
mutually commuting, translational, and periodic spacelike Killing vectors k̂µ̂

(m), which we
identify with those of the internal torus. We assume that all the internal coordinates have
the same period 2π�.

We can find the right definitions of the d-dimensional fields as in the n = 1 case. There is
not much new to be learned there, so we start by performing the following decomposition
of the d̂-dimensional Vielbeins êµ̂

â (KK Ansatz) into d-dimensional Vielbeins eµ
a , vector

fields Am
µ, and the n-dimensional internal metric Vielbeins em

i , which become scalars of
the (d̂ − n)-dimensional theory:

(
êµ̂

â
)

=

 eµ

a Am
µem

i

0 em
i


,

(
êâ

µ̂
)

=

 ea

µ −Am
a

0 ei
m


. (11.172)

This Ansatz is always possible because there always is a Lorentz rotation of the Vielbeins
that brings them into this upper-triangular form. As usual, the d-dimensional metric is built
out of the Vielbeins in this way,

gµν = eµ
aeν

bηab, (11.173)

and we use them to trade curved and flat lower-dimensional indices, so, for instance,

Am
a = Am

µea
µ. (11.174)

We also have for the internal metric scalars (recall our mostly minus signature)

Gmn = −em
i en

jδi j . (11.175)

23 We split coordinates and indices as follows: (x̂ µ̂) = (xµ, zm) and, for Lorentz indices, (â) = (a, i).
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The relation between d̂- and d-dimensional fields is

ĝµν = gµν + Am
µ An

νGmn,

ĝµn = Am
µGmn = k̂(n) µ,

ĝmn = Gmn = k̂(m)
µ̂k̂(n) µ̂.

(11.176)

These fields transform correctly as tensors, vectors, and scalars under d̂-dimensional
GCTs in the non-compact dimensions (ε̂µ ≡ εµ). Furthermore, under d̂-dimensional GCTs
in the internal dimensions (ε̂m ≡ −�m), the vectors undergo standard U(1) transformations,

δ�m An
µ = δm

n∂µ�m . (11.177)

The constant shifts of the internal coordinates have no effect whatsoever on the
d-dimensional fields. Furthermore, under the GL(n, R) transformations only objects with
internal indices transform. Thus, the d-dimensional metric is invariant and, in matrix nota-
tion, the internal metric and vectors transform according to

G ′ = R G RT, 	A′
µ = R−1 T 	Aµ. (11.178)

The group GL(n, R) can be decomposed into SL(n, R) × R
+ × Z2, the R

+ factor cor-
responding to rescalings analogous to those of the n = 1 case, that change the determinant
of the internal metric, and later we will want to redefine the fields so they transform well
under those factors.

To calculate now the components of the spin connection in the above Vielbein basis, we
first calculate the Ricci rotation coefficients �̂âb̂ĉ and the non-vanishing ones are

�̂abc = �abc, �̂abi = 1
2 emi Fm

ab, �̂ibj = − 1
2 ei

m∂bemj . (11.179)

They give
ω̂abc = ωabc, ω̂abi = − 1

2 eim Fm
ab,

ω̂ibc = −ω̂bci , ω̂ai j = −e[i |m∂aem| j],

ω̂ibj = 1
2 ei

me j
n∂bGmn,

(11.180)

where we have used
e(i |m∂ae|m| j) = 1

2 ei
me j

n∂aGmn, (11.181)

and we have defined

Fm
µν ≡ 2∂[µ Am

ν], Fm
ab = ea

µeb
ν Fm

µν. (11.182)

Next, we plug this result into the Ricci scalar term in the action expressed in terms of the
spin-connection coefficients with the help of Palatini’s identity Eq. (D.4) and obtain∫

dd̂ x̂
√

|ĝ| R̂ =
∫

dnz
∫

dd x
√

|g| K
{−ωb

baωc
c

a − ωa
bcωbc

a + 2ωb
ba∂a ln K

− (∂ ln K )2 + 1
4 F2 − 1

4∂aGmn∂
aGmn

}
, (11.183)
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where
K 2 ≡ |det Gmn|, F2 ≡ Fm µν Fn

µνGmn, (11.184)

so
Gmn∂Gmn = 2∂ ln K ,

√
|ĝ| =

√
|g| K . (11.185)

The sign of F2 looks wrong, but one has to take into account the internal metric Gmn which
is negative-definite.

Using again the Palatini identity but now in d dimensions and integrating over the inter-
nal coordinates, we find

S = (2π�)n

16πG
ˆ(d)

N

∫
dd x

√
|g| K

{
R − (∂ ln K )2 + 1

4 F2 − 1
4∂aGmn∂

aGmn
}
. (11.186)

We now want to use variables that are invariant under the R
+ subgroup of rescalings,

just as in the n = 1 case (the tilded variables). First, we observe that any transformation
R ∈ GL(n, R) can be written as follows:

R = a
1
n SX, a = |det R| ∈ R

+, S ∈ SL(n, R), X2 = In×n. (11.187)

Second, we define the modulus K0 as the value of the scalar K at infinity. According to its
definition, K is nothing but the volume element of the internal torus and it generalizes the
scalar k of the n = 1 case. The volume of the internal torus at a point x of the d-dimensional
space is

Vn(x) =
∫

Tn
dnz

√
|det Gmn(x)| = K (x)

∫
Tn

dnz = (2π�)n K (x), (11.188)

and its value at infinity Vn is measured in terms of the modulus K0:

Vn = lim
r→∞ Vn(x) = (2π�)n K0. (11.189)

If the torus were made up of orthogonal circles of local radii Rm(x), then the internal
metric would be diagonal

Gmn = −δ(m)n K(m), Km = (Rm(x)/�) , (11.190)

and the volume would factorize into the product of the volumes of the circles. We would
have

Vn =
m=n∏
m=1

(2π�Km 0) =
m=n∏
m=1

(2π Rm), (11.191)

but it is worth stressing that this is not the case in general.
Under the transformation R ∈ GL(n, R) decomposed as above, the scalar K and the

modulus K0 transform only under the R
+ factor,

K ′ = a−1 K , K ′
0 = a−1 K0, (11.192)
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and thus we can use them to define fields that are invariant under this factor:

K̃ = K/K0, g̃E µν = K̃
2

d−2 gµν,

Ãm
µ = K

1
n

0 Am
µ, Mmn = −K − 2

n Gmn.

(11.193)

M and Ãµ transform only under the SX ∈ SL(n, R) × Z2 factor as expected:

M′ = SMST, 	̃A′
µ = S−1 T 	̃Aµ. (11.194)

The metric is the “modified Einstein-frame metric” and the action takes the form

S = Vn

16πGd̂
N

∫
dd x

√
|g̃E|

{
R̃E + d̂ − 2

n(d − 2)
(∂ ln K̃ )2 − 1

4∂µMmn∂
µMmn

− 1
4 K̃ 2 d̂−2

n(d−2)Mmn F̃m µν F̃n
µν

}
.

(11.195)

In this action, K̃ parametrizes an R
+ σ -model, but what about Mmn? This is a unimod-

ular n × n matrix and, therefore, it belongs to SL(n, R) itself. Furthermore, it is symmet-
ric and, therefore, it is not the most general SL(n, R) matrix we can find and it does not
parametrize SL(n, R). In fact, with its n(n + 1)/2 − 1 degrees of freedom, it parametrizes
the coset space SL(n, R)/SO(n, R). This can be seen as follows: we can view M as the
product of two unimodular n-beins Vm

i ,

Mmn = Vm
iVn

jδi j , Vm
i = K − 1

n êm
i . (11.196)

These unimodular n-beins transform under global S ∈ SL(n, R) transformations and lo-
cal �(x) ∈ SO(n, R) transformations according to

V ′ = SV�T(x). (11.197)

We can now choose V to be upper triangular. This can always be achieved by a suit-
able local SO(n, R) rotation. That matrix contains n(n + 1)/2 − 1 degrees of freedom and
parametrizes the coset space SL(n, R)/SO(n, R) because it is an SL(n, R) matrix gen-
erated by the exponentiation of all the generators of that group except for those of the
SO(n, R) subgroup which necessarily generate non-upper-triangular matrices.24 We can
see our choice of upper-triangular matrices as a coset-representative or gauge choice. S
transformations take us out of our gauge choice but we can implement an S-dependent
compensating � transformation to restore the upper-triangular form.

The constant value of M at infinity, M0, contains the modular parameters of the torus
(relative sizes and angles of the circles).

24 The transpose of an upper-triangular matrix with all terms above and on the diagonal non-vanishing can
never be the inverse of that matrix.
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Fig. 11.1. The lattice generated in the ω plane by ω1 and ω2.

11.4.1 The 2-torus and the modular group

In our study of the global transformations of the internal torus we have not yet taken into
account the periodic boundary conditions of the coordinates, which have to be preserved
by the diffeomorphisms in the KK setting. Clearly the rescalings R do not respect the torus
boundary conditions, but they rescale �. The rotations S respect the boundary conditions
only if S−1	n ∈ Z

n; the matrix entries are integers, i.e. S ∈ SL(n, Z).
The case n = 2 is particularly interesting because it occurs in many instances,25 some

(but not all of them) associated with S dualities. In the case n = 2, up to a reflection
S = −I2×2, these diffeomorphisms are known as Dehn twists and are not connected to the
identity (in fact, they constitute the mapping class group of torus diffeomorphisms) and
they constitute the modular group PSL(2, Z) = SL(2, Z)/{±I2×2}. This is the group that
acts on M.

It is convenient to relate M to the complex modular parameter τ of the torus. We start
by defining a complex modular-invariant coordinate ω on T2 by

ω = 1

2π�
	ωT · 	z, 	ω = C

2, (11.198)

where, under PSL(2, Z) modular transformations, we assume that the complex vector 	ω
transforms according to

	ω′ = S 	ω. (11.199)

The periodicity of ω is
ω ∼ ω + 	ω T · 	n, 	n ∈ Z

2. (11.200)

The lattice generated in the ω plane by 	ω is represented in Figure 11.1. In terms of the
modular-invariant complex coordinate, the torus metric element

ds2
Int = d	z TGd	z (11.201)

takes the form

ds2
Int = K

1
2

1

Im(ω1ω̄2)
dωdω̄. (11.202)

(Observe that Im(ω1ω̄2) is a modular-invariant term, and a quite important one.)

25 Owing to the isomorphisms SL(2, R) ∼ Sp(2, R) ∼ SU(1, 1) it takes several different, but equivalent, forms.
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What we have just done is to transfer the information contained in the metric (more
precisely, in M) into the complex periods 	ω. The relation between these two is

M = 1

Im(ω1ω̄2)


 |ω1|2 Re(ω1ω̄2)

Re(ω1ω̄2) |ω2|2


. (11.203)

We can check that the transformation rules for the complex periods Eq. (11.199) and for
the matrix M Eq. (11.194) are perfectly compatible.

It should be clear that not all pairs of complex periods characterize different tori. Recall
that M has only two independent entries whereas 	ω contains four real independent quanti-
ties. In particular, we can see that multiplying 	ω by any complex number leaves the matrix
M invariant. It is customary to define the complex modulus parameter τ ,

τ = ω1/ω2, (11.204)

that can always be chosen to belong to the upper half of the complex plane H, Im(τ ) ≥ 0
(−ω1 defines the same torus as ω1).

Under a modular transformation with S parametrized by

S =
(

α β

γ δ

)
, (11.205)

with αδ − βγ = 1, the modular parameter τ undergoes a fractional-linear transformation:

τ ′ = ατ + β

γ τ + δ
. (11.206)

Finally, in terms of τ , the matrix M reads

M = 1

Im(τ )


 |τ |2 Re(τ )

Re(τ ) 1


. (11.207)

The linear transformation of the matrix M Eq. (11.194) and the (non-linear) fractional-
linear transformation Eq. (11.206) are completely equivalent.

The parametrization of the unimodular V , in terms of τ , is

V =

 [Im(τ )]

1
2 [Im(τ )]−

1
2 Re(τ )

0 [Im(τ )]−
1
2


, (11.208)

and the SL(2, R)/SO(2) σ -model action takes the form∫
dd x

√
|g̃E|

[
− 1

4∂µMmn∂
µMmn

]
=

∫
dd x

√
|g̃E|

[
1
2

∂µτ∂µτ̄

(Im(τ ))2

]
. (11.209)

As said, this σ -model and the global symmetry group SL(2, R) (broken by bound-
ary conditions or quantum effects to SL(2, Z)) appear in many instances, apart from T2
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compactifications. To start with, SL(2, Z) is the S-duality group and, under it, the com-
plexified coupling constant that we also called τ transforms in the same way as the modular
parameter of a torus (see Eq. (8.188)), but not every SL(2, Z) is an S duality.

Another important example is provided by N = 2B, d = 10 SUGRA (the effective-field
theory of the type IIB superstring), which we will review in Chapter 17, in which there is an
SL(2, R)/SO(2) σ -model26 with Re(τ ) = Ĉ (0), the RR (pseudo)scalar, and Im(τ ) = e−ϕ̂ ,
ϕ̂ being the dilaton, and invariance under global SL(2, R) duality transformations that are
interpreted as an S duality that rotates perturbative into non-perturbative states of the theory.
In this case, the scalar σ -model does not arise from compactification. However, as we will
explain in detail there, in d = 9 dimensions it can be identified with the σ -model that arises
in the compactification of N = 1, d = 11 supergravity to d = 9 on T2.

In the compactification of N = 1, d = 11 supergravity to d = 8 dimensions on T3 there is
an SL(3, R)/SO(3) σ -model that naturally contains the SL(2, R)/SO(2) σ -model we just
mentioned, but there is another SL(2, R)/SO(2) σ -model that arises because the eleven-
dimensional 3-form gives rise to an eight-dimensional pseudoscalar [28]. Similar effects
give rise to many SL(2, R) subgroups of the total (U) duality group in various compactifi-
cations of eleven- and ten-dimensional SUGRAs [666].

In N = 4, d = 4 SUGRA (the theory which results from the compactification on T6 of
N = 1, d = 10 supergravity, the effective field theory of the heterotic and type-I strings),
which we will review in Section 12.2, Re(τ ) = a is a pseudoscalar that is the Hodge dual of
the dimensionally reduced Neveu–Schwarz–Neveu–Schwarz (for the heterotic) Ramond–
Ramond (for the type-I) 2-form and Im(τ ) = e−2φ , where φ is the four-dimensional dila-
ton.27 In this case, the scalar SL(2, R)/SO(2) σ -model does not arise from compactification
on T2 either.

11.4.2 Masses, charges and Newton’s constant

In the tilded, scale-invariant variables that we have defined we can immediately see that the
d-dimensional Newton constant is given by

G(d)
N = G(d̂)

N /Vn. (11.210)

26 In [820] this coset was described in the form SU(1,1)/U(1). This is natural if one wants to construct the
supergravity theory from scratch, using complex fields, but, from the point of view of string theory, the
natural parametrization is the real one SL(2, R)/SO(2). The relation between the SU(1,1)/U(1) variable S
and the SL(2, R) parameter τ is

τ = i
1 − S

1 + S
,

and the relation between the kinetic terms is

1
2

∂µτ∂µτ

(Im(τ ))2
= 2

∂µS∂µS

(1 − SS)2
.

27 In [266] this coset space was also described in the form SU(1,1)/U(1).
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To find the right definitions for the n electric charges, we need the Noether currents.
These are

jν
n = 1

16πG(d)
N

∇̃µ

(
K̃ 2 d̂−2

n(d−2)Mnm F̃m µν

)
, (11.211)

and then the electric and magnetic charges of the vector fields are defined by

q̃n = 1

16πG(d)
N

∫
Sd−2∞

K̃ 2 (d̂−2)
n(d−2)Mnm

� F̃m µν, p̃n = −
∫

S2∞
F̃n. (11.212)

With these definitions, the electric and magnetic charges of the vector field Ãn
µ satisfy the

Dirac quantization condition

q̃n p̃n = 2πm, m ∈ Z. (11.213)

11.5 Generalized dimensional reduction

In [835, 836] Scherk and Schwarz introduced the idea of generalized dimensional reduc-
tion (GDR) and developed a general formalism. Here we want to explain the principle
underlying the idea of GDR.

We can understand GDR28 as the answer to the question “How do we dimensionally
reduce multivalued fields?” There at least two types of multivalued fields: fields that take
values in some topologically non-trivial space (e.g. a circle) and fields that are defined up
to some kind of local transformation (e.g. gauge vector fields, spinors (defined up to local
Lorentz transformations) etc.). Let us take the simplest: a real scalar field ϕ̂ taking values
on a circle of radius m (like an axion, which is, as a matter of fact, a pseudoscalar). In
practice, to represent a multivalued field one takes a field living on the real line and then
identifies

ϕ̂ ∼ ϕ̂ + 2πm. (11.214)

A single-valued field has to be a strictly periodic function of the compact coordinate: on
going once around the compact dimension, we return to the same point and there the field
has to have the same value. However, a multivalued field such as ϕ̂ is allowed to take a
different value as long as it is a multiple of 2πm because the two values of the field are
assumed to be physically equivalent. Thus, in general, we can have

ϕ̂(x, z + 2π�) = ϕ̂(x, z) + 2π Nm ∼ ϕ̂(x, z). (11.215)

The Fourier expansion of such a multivalued field in z is now

ϕ̂(N )(x, z) = m N

�
z +

∑
n∈Z

e
2π inz

� ϕ̂(n)(x). (11.216)

28 Originally, GDR was introduced as just a generalized KK Ansatz in which the d̂-dimensional fields were
allowed to depend on the internal coordinates zm in such a way that the lower-dimensional fields did not
depend on them and, at the same time, some symmetries were broken. Here, we prefer to take the view that
GDR is the KK Ansatz for multivalued fields and it is not an option or just a clever trick.



340 The Kaluza–Klein black hole

The extra term linear in z is responsible for the multivaluedness. This term is clearly non-
dynamical, unlike the KK modes ϕ̂(n)(x) which are dynamical, which means that the value
of N cannot change (at least, classically). N is chosen once and for all and its value defines
the vacuum. Therefore, it is a (discrete) modulus of the theory.

It should be obvious that the above field configurations are topologically non-trivial:
the field is “wound” N times around the compact dimension. The topological number that
characterizes these configurations is the winding number N ,

N = 1

2π�m

∮
ϕ̂. (11.217)

The choice of vacuum is also a choice of topological sector in the space of configurations.
It should be stressed that all this makes sense if there are solutions of the form

ϕ̂ = m N

�
z (11.218)

compatible with the vacuum configurations of the other fields. Otherwise, one cannot talk
about those new vacua labeled by N .

How do we perform the dimensional reduction of this field in the vacuum N? The logic
is always the same: we simply ignore the massive modes and keep the massless ones. This
means that, to carry out dimensional reduction of the above field, we should consider the
KK Ansatz

ϕ̂ = m N

�
z + ϕ̂(0)(x) = m N

�
z + ϕ(x). (11.219)

Now the question of how we are supposed to obtain a truly d = (d̂ − 1)-dimensional theory
if we start with a field that depends on the internal coordinate z arises. We can argue that
the dependence on z will always disappear in the lower-dimensional theory: a field that
lives on a circle necessarily appears in the action in a form that is invariant under arbitrary
constant shifts. This means that the action can always be rewritten in terms of derivatives of
ϕ̂. Then, the linear term will either completely disappear (if it is hit by the derivative with
respect to xµ) or remain without the z (if it is hit by the derivative with respect to z). The
surviving term will play the role of a mass term in general, as we will see.

This argument leads us to three observations.

1. The rule of thumb for how to perform GDR in this context is to implement a z-
dependent shift in the scalar field’s standard KK Ansatz. If we consider more general
multivalued fields �, which are identified by

�̂ ∼ eiωQ�̂, (11.220)

where Q is some symmetry of the theory, then the generalized KK Ansatz is, ignoring
higher KK modes,

�̂(x̂) ∼ e
iωQz
2π� �(x). (11.221)

The symmetry generated by Q is generically broken.
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2. The converse is not true: the invariance of the action under constant shifts of ϕ̂ does
not mean that the field lives on a circle and GDR makes sense. Formally, the GDR
procedure can be performed, but the result could be meaningless since no vacuum
solution associated with the GDR Ansatz is guaranteed to exist. We are going to see
an example of this fact in Section 11.5.1.

3. Under U(1) gauge transformations

δ�z = −�(x), δ� Aµ = ∂µ�(x), δ�ϕ = m N

�
�(x), (11.222)

i.e. the lower-dimensional scalar field transforms by shifts of the gauge parameter!
This kind of gauge transformation is called a massive gauge transformation and al-
lows us to eliminate ϕ completely by fixing the gauge. ϕ plays the role of Stückelberg
field for Aµ [871]. KK gauge invariance is broken after this gauge fixing and this is
reflected, as we will see, in a new mass term for the vector field. It is usually said
that the vector has “eaten” the scalar, becoming massive. This is a sort of Higgs phe-
nomenon, the difference being that there is no scalar potential. Observe that ϕ can be
removed consistently by a gauge transformation if both � and ϕ live in circles, as we
have assumed.

In the next sections we are going to see some examples of GDR that illustrate these
ideas. In the first example we perform the complete GDR of the real scalar field that we
have discussed above and give an alternative interpretation.

11.5.1 Example 1: a real scalar

Let us consider the simple model

Ŝ =
∫

dd̂ x̂
√

|ĝ|
[

R̂ + 1
2(∂ϕ̂)2

]
, (11.223)

where ϕ̂ is a real scalar field. This action is invariant under constant shifts of the scalar and
therefore it is possible to use the standard recipe for GDR: we perform now a z-dependent
shift of the usual z-independent Ansatz ϕ̂(x, z) = ϕ(x) + m N z/�, which will lead us to a
d-dimensional theory with no dependence on z.

However, as we have stressed repeatedly, this recipe makes real sense only if the scalar
field lives in a circle and is identified periodically, ϕ̂ ∼ ϕ̂ + 2πm. Although it looks as if we
can simply decree that identification, the above action does not contain enough structure
to enforce it and we will see that, in particular, there is no vacuum solution with ϕ̂(x, z) =
m N z/�. This example is therefore just an academic exercise.

Using the standard Ansatz for the Vielbein Eq. (11.33) but adding a subscript (1) to the
KK scalar field, we find

S =
∫

dd x
√

|g| k

[
R − 1

4 k2 F2
(2) + 1

2(Dφ)2 − 1
2

(
m N

�

)2

k−2

]
, (11.224)
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where the field strengths are defined by

F(2) µν = 2∂[µ A(1) ν], Dµϕ = ∂µϕ − m N

�
A(1) µ. (11.225)

and are invariant under the massive gauge transformations

δ�z = −�, δ�ϕ = m N

�
�, δA(1) µ = ∂µ�. (11.226)

As we expected from our general discussion, ϕ is a Stückelberg field for A(1) µ, which
becomes massive by “eating” it, and the KK U(1) symmetry is broken by our choice of
vacuum if N �= 0.

Now, let us try to find a vacuum solution of the reduced theory. It will correspond to
the gauge-breaking vacuum of the d̂-dimensional theory. We can assume that the vacuum
solutions will have Aµ = 0 and ϕ = ϕ0, a constant. Solutions of this kind can be derived
consistently from the above action by setting those fields to zero. On going to the Einstein
frame and redefining k as in Eq. (11.47) but now calling χ the new scalar, we find the action
of a real scalar with an unbounded potential coupled to gravity:

S =
∫

dd x
√

|g|
[

R + 2(∂χ)2 − 1
2

(
m N

�

)2

e−2
√

2 d−1
d−2 χ

]
. (11.227)

Since the potential has no minima, there are no vacuum solutions with constant χ equal
to some minimum of the potential and a Minkowski metric. The vacuum has to have a
non-trivial metric.

Typical solutions of actions of this kind, with generic potentials, are domain-wall solu-
tions that interpolate between two asymptotic regions in which the scalar field takes the
value of a different minimum of the potential, i.e. two vacua in which the scalar has a con-
stant value equal to the minimum of the potential.29 The region in which the value of the
scalar switches from one vacuum value to another one is the domain wall. It is a (d − 2)-
dimensional region (plus the time) that is orthogonal to the coordinate on which the scalar
typically depends. In fact, it can have zero thickness or some finite thickness in the direction
of the transverse coordinate.

Although this potential has no minima, there might be some domain-wall-type solution
since potentials like this one admit them: (d − 2)-branes. However, precisely for the above
potential, the generic solution given in [668] breaks down. Although this is far from a proof,
it seems plausible that no such solution exists, confirming our suspicion that the GDR that
we have performed is not consistent because it is based on a non-existent vacuum.

GDR and (d̂ − 3)-branes. We have mentioned that actions such as Eq. (11.224) generically
admit (d − 2)-brane solutions. However, we have said that p-branes couple to a (p + 1)-
form potential with a (p + 2)-form field strength and there is no d-form field strength in that
action but only a potential proportional to the square of the mass parameter. However, terms
of this kind, which are typical of massive supergravities, should not naively be interpreted

29 A general reference for domain-wall solutions in d = 4 dimensions is [273].
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as potentials. Instead, we should compare such a term with the kinetic term for the 1-form,
which is also multiplied by a power of k. The analogy (and the fact that the sign is the
correct one) suggests that we should interpret that term as a sort of “kinetic” term for a
0-form field strength (the mass constant), which happens to be the Hodge dual of the d-
form field strength associated with the (d − 2)-brane solutions.

There is another way, different from GDR, to see how the (d − 2)-brane solutions
arise: before performing the reduction of the scalar, we could have Hodge-dualized the
d̂-dimensional scalar into a (d̂ − 2)-form potential by the Poincaré-duality procedure ex-
plained in Section 8.7.1,

�dϕ̂ = d Â(d̂−2) ≡ F2
(d̂−1)

, (11.228)

obtaining the (on-shell) equivalent model

˜̂S =
∫

dd̂ x̂
√

|ĝ|
[

R̂ + (−1)d̂−2

2 · (d̂ − 1)!
F̂2

(d̂−1)

]
. (11.229)

The KK dimensional reduction of p-forms follows the pattern of the reduction of the
Maxwell vector field performed in Section 11.2.5: a p-form in d̂ dimensions gives rise
to a p-form and a (p − 1)-form in d dimensions. The potentials and gauge-invariant field
strengths are identified using tangent-space indices. In this case, we obtain a (d − 2)-form
potential and a (d − 1)-form potential and the action

S̃ =
∫

dd̂−1x
√

|g| k

[
R − 1

4 k2 F2
(2) + (−1)d−1

2 · d!
F2

(d) + (−1)d−2

2 · (d − 1)!
k−2 F2

(d−1)

]
, (11.230)

where30

F(d) = d∂ A(d−1) + (−1)d A(1)F(d−1), F(d−1) = (d − 1)∂ A(d−2), (11.231)

are the field strengths. We can now dualize the potentials. A (d − 1)-form potential in d
dimensions has a d-form field strength whose Hodge dual is some function f = �F(d). The
equation of motion of the (d − 1)-form potential d�F(d) = 0 becomes the Bianchi identity
for the dual d f = 0, which implies that f is a constant that we call Nm/�. On adding the
term

− 1

d!

∫
dd x

m N

�
ε
[

F(d) + (−1)d+1d A(1)F(d−1)

]
, (11.232)

to the action and eliminating F(d) using its equation of motion,

m N/� = k�F(d), (11.233)

in the action, we obtain

S̃ =
∫

dd x
√|g|

{
k

[
R − 1

4 k2 F2
(2) + (−1)d−2

2 · (d − 1)!
k−2 F2

(d−1) − 1
2

(
m N

�

)2

k−2

]

− 1

(d − 1)!

(
m N

�

)
ε√|g| F(d−1) A(1)

}
.

(11.234)

30 When indices are not explicitly shown, we assume all indices to be antisymmetrized with weight unity.
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φ A (d−2)

A A(d−3) (d−2)
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m φ

Fig. 11.2. This diagram represents two different ways of obtaining the same result: generalized dimensional

reduction and “dual” standard dimensional reduction.

Now we dualize into a scalar field the (d − 2)-form potential: we add the term

1

(d − 1)(d − 1)!

∫
dd x εF(d−1)∂ϕ, (11.235)

and eliminate F(d−1) by substituting into the action its equation of motion

F(d−1) = (−1)(d−1)k �Dϕ, (11.236)

obtaining the same result as with GDR. The two possible routes by which to arrive at the
same d-dimensional theory are represented in Figure 11.2.

Thus, the standard recipe for GDR is just a way to take into account all the fields
and degrees of freedom that can arise in the dimensional reduction. The new degrees of
freedom are discrete degrees of freedom described by a (d − 1)-form potential or by the
dual variable that can take the values Nm/�, N ∈ Z and are associated with a choice of
vacuum.

Now, with the form Â(d̂−2) we can associate a (d̂ − 3)-brane. If one dimension is com-
pact, there are two possibilities: either one of the dimensions of the brane is wrapped around
the compact dimension or none is. From the d-dimensional point of view, the first configu-
ration looks like a (d̂ − 4) = (d − 3)-brane and the second like a (d̂ − 3) = (d − 2)-brane.
The (d̂ − 3) = (d − 2)-brane has no dynamics and has only one degree of freedom: its
charge (or mass, which is usually proportional), which is the mass parameter that appears
in the d-dimensional action. The mass parameters are to be considered fields, although one
can equally consider them as expectation values of those fields. In this language we can say
that our vacuum contains a (d − 2)-brane.31

The charge of the (d̂ − 3)-brane can be associated with the monodromy of ϕ̂:

q ∼
∮

� F̂(d̂−1) ∼
∮

dϕ̂ ∼ m N . (11.237)

31 We have said that it actually does not in this academic example, although it will in more general cases.
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11.5.2 Example 2: a complex scalar

The simplest example just considered failed GDR because we did not really have a multi-
valued scalar field. Let us consider a more interesting model with a complex scalar �̂:

Ŝ =
∫

dd̂ x̂
√

|ĝ|
[

R̂ + 1
2∂�̂∂�̂∗

]
. (11.238)

It is invariant under phase shifts of the scalar. Actually, we must consider as equivalent �̂

and e2π i�̂. If we split it into its modulus ρ̂ and phase σ̂ , �̂ = ρ̂e
i σ̂
m , σ̂ must be identified

with σ̂ + 2πm and we can say that it lives in a circle of radius m. Following the rule of
thumb of GDR, our Ansatz now has to be

σ̂ (x, z) = σ̂ (x) + Nm

�
z, ⇒ �̂(x̂) = e

i N z
� �(x). (11.239)

We obtain the action

S =
∫

dd x
√

|g| k

[
R − 1

4 k2 F2 + 1
2D�D�∗ − 1

2

(
N

�

)2

k−2|�|2
]
, (11.240)

where the field strengths are now given by

F(2) µν = 2∂[µ Aν], Dµ� = ∂µ� + i
N

�
Aµ�, (11.241)

and are invariant under the massive U(1) gauge transformations

δ� Aµ = ∂µ�, δ�� = e
i N�

� �. (11.242)

This is (ignoring k) the Lagrangian for a complex massive scalar field with U(1) charge
N/�. In this case, the massive gauge transformations are simply the standard gauge trans-
formations for a charged scalar field.

In terms of the real fields � = ρe
iσ
m we find

D�D�∗ = (∂ρ)2 + 1

m2
ρ2(Dσ)2, Dµσ = ∂µσ + m N

�
Aµ. (11.243)

ρ is invariant, but σ transforms under massive gauge transformations,

δ�σ = m N

�
�, (11.244)

and is a Stückelberg field for Aµ and can be gauged away, leaving a mass term for Aµ. U(1)
can be spontaneously broken. A |�̂|4 potential would produce a gravity-coupled version of
the Ginzburg–Landau Lagrangian.

This model has an obvious solution ρ = Aµ = 0 with the Minkowski metric. For ρ = 0
the σ -model defined by the scalars’ kinetic terms is singular and we cannot distinguish
between the different vacua labeled by N . Thus, this is also a failed example of GDR.
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11.5.3 Example 3: an SL(2, R)/SO(2) σ-model

It is given by the action

Ŝ =
∫

dd̂ x̂
√

|ĝ|
[

R̂ + 1
2

∂τ̂ ∂τ̂ ∗

(Im(τ ))2

]
. (11.245)

This action is invariant under global SL(2, R) fractional-linear transformations of τ̂ = â +
ie−ϕ̂ and, in particular, under constant shifts τ̂ → τ̂ + b, which act only on the real part.
Furthermore, we have argued that, in many cases, we should consider as equivalent two
values of τ related by SL(2, Z) transformations, which in particular means that a lives in a
circle of unit length. In this case, the σ -model metric is regular for finite values of ϕ̂.

The general recipe of GDR tells us to use the Ansatz

τ̂ (x̂) = τ(x) + N

2π�
z, (11.246)

and we obtain the action

S =
∫

dd x
√

|g| k

[
R − 1

4 k2 F2 + 1
2(∂ϕ)2 + 1

2(Da)2 − 1
2

(
N

2π�

)2

k−2e−2ϕ

]
,

(11.247)

where

Dµa = ∂µa + N

2π�
Aµ, (11.248)

and there is invariance under the massive U(1) gauge transformations

δ� Aµ = ∂µ�, δ�a = N

2π�
�. (11.249)

Global SL(2, R) invariance is now clearly broken and the KK U(1) gauge invariance is
also broken by the standard Stückelberg mechanism.

Let us look for a vacuum solution that will have Aµ = 0 and a = a0, a constant. The
action for the remaining fields, in the Einstein frame, is

S =
∫

dd x
√

|g|
[

R + 2(∂χ)2 + 1
2(∂ϕ)2 − 1

2

(
N

2π�

)2

e−2
√

2 d−1
d−2 χ−2ϕ

]
. (11.250)

The potential for the remaining scalars has no lower bound, but we can still look for
(d − 2)-brane solutions. First, we diagonalize the potential by redefining the scalars:

χ ′ =
√

d − 1

3d − 5
χ + 2√

2(3d − 5)

d − 2

ϕ

2
,

ϕ′

2
= − 2√

2(3d − 5)

d − 2

χ +
√

d − 1

3d − 5

ϕ

2
,

(11.251)
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leaving the action in the form

S =
∫

dd x
√

|g|
[

R + 2(∂χ ′)2 + 1
2(∂ϕ′)2 − 1

2

(
N

2π�

)2

e−2
√

2(3d−5)
d−2 χ ′

]
. (11.252)

There are (d − 2)-brane solutions with ϕ′ = 0 in any dimension d > 2 [668]. These so-
lutions are associated with (d̂ − 3)-brane solutions in d̂ dimensions of the SL(2, R) σ-
model that, in the context of the ten-dimensional type-IIB superstring theory, are known as
D-7-branes [118, 435]. We can say that the above action is the result of compactifying in a
vacuum that contains N (d̂ − 3)-branes.

At last we have a successful realization of GDR and its relation to (d̂ − 3)-branes.

11.5.4 Example 4: Wilson lines and GDR

Another simple and interesting example is provided by a Dirac spinor ψ̂ coupled to a U(1)
gauge field Âµ̂ in flat (for simplicity) d̂ = 5 spacetime,

Ŝ =
∫

d5 x̂

{
i

2
¯̂
ψ

(
�∂ − ig �Â

)
ψ̂ + c.c.

}
. (11.253)

This action is invariant under local U(1) transformations,

Â′
µ̂ = Âµ̂ + ∂µ̂χ̂ , ψ̂ ′ = eigχ̂ ψ̂, (11.254)

where the period of χ̂ has to be 2π/g, and also under global phase shifts of the Dirac spinor
(gauge transformations with constant χ̂). Thus, we can use the GDR Ansatz

ψ̂(x̂) = e
i Ngz
2π� ψ(x). (11.255)

The dependence on the coordinate z can be eliminated by a gauge transformation32 with
χ̂ = N z/(2π�), but then the z component of the gauge vector acquires a constant value (a
non-vanishing vacuum expectation value (VEV)

Â′
µ̂ = Âµ̂ + N

2π�
δµ̂z. (11.256)

The line integral of the vector field Âµ̂ around the compact dimension is finite:∮
γ

Â = N . (11.257)

This configuration is said to have a U(1) Wilson line. The effect of the Wilson line (or the
non-trivial dependence of the spinor on z) is to give a mass to the Dirac fermion. This
is known as the Hosotani or Wilson-line mechanism [562–4] and we see that it can be
transformed into Scherk–Schwarz GDR.

32 Observe that the gauge parameter does not have the right periodicity.
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11.6 Orbifold compactification

Sometimes it is possible to compactify on spaces that are not manifolds. The prototypes
of these spaces are orbifolds. These can be constructed as the quotients of manifolds by
discrete symmetries. The simplest case is the segment, which can be constructed as the
quotient S1/Z2. To describe the quotient we need to define the action of Z2, and for this it
is convenient to describe the circle itself as the quotient of the real line parametrized by z
by the group Z of discrete translations z → z + 2πn�. There are no fixed points of the real
line under this group and, therefore, we obtain a non-singular manifold.

Now, in terms of this coordinate z, Z2 acts by z → −z. The result is the segment of
line that goes from z = 0 to z = 2π . There are two fixed points under this group z = 0,
for obvious reasons, and z = π�, since −π� ∼ −π� + 2π� = π�, and they are the singular
endpoints of the segment, which is not a manifold.33

The description of orbifolds as quotients is very convenient because in general the dis-
crete symmetries have a well-defined action on the fields of the theory. In standard KK
theory there are only tensor fields and their behavior under z reflections depends on the
number of z indices they have: they acquire a minus sign for each index z. Only the KK
vector has an odd number of z indices, Aµ = ĝµz/ĝzz , and thus it reverses its sign while the
metric and KK scalar remain invariant.

The rule is that the spectrum of the KK theory on an orbifold can contain only fields
that are invariant under the discrete symmetry. The reason is that odd fields will be given
in solutions by odd functions of z on the circle and they would be double-valued (i.e. not
well defined) on the orbifold. Thus, in the standard KK theory the KK vector is projected
out of it. It is precisely this mechanism that was used by Hořava and Witten in [543, 544]
to eliminate the RR 1-form Ĉ (1) in the reduction of 1one-dimensional supergravity (the
effective-field theory of “M theory” in some corner of moduli space) to obtain chiral N =
1, d = 10 supergravity (the effective-field theory of the heterotic string) instead of unchiral
N = 2A, d = 10 supergravity (see Section 16.4).

In supersymmetric KK theory one has to define the action of the Z2 group on fermions.
In odd dimensions one typically defines

ψ̂ ′ = ±�̂zψ̂, (11.258)

where �z is the gamma matrix associated with the direction z and is proportional to the
chirality matrix in one dimension fewer. Then, in the orbifold compactification only one
chiral half of the spinors survives the projection.

33 The corresponding spacetime, taking into account the metric would have a size of π Rz .
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Dilaton and dilaton/axion black holes

In the previous chapter we have seen how scalar fields coupled to gravity arise naturally in
KK compactification. In Part III we are also going to see that scalar fields are also present,
even before compactification, in some higher-dimensional supergravity theories that are the
low-energy effective-field theories of certain superstring theories. In all these examples the
scalar fields couple in a characteristic way to vector (or p-form in higher dimensions) field
strengths. In this chapter we are going to study first, in Section 12.1, a simple model that
synthesizes the main features of those theories.

The a-model describes a real scalar coupled to gravity and to a vector-field strength.
The coupling is exponential and depends on a parameter a (hence the name “a-model”
that we are giving it here). Since the scalar can be identified in some cases with the string
dilaton (or with the KK scalar, which is called also the dilaton sometimes), these models are
also generically referred to as dilaton gravity. We will be able to obtain BH-type solutions
for general values of a and in any dimension d ≥ 4; however, only a handful of values of
a actually occur in the theories of interest, although they occur in many different ways
(embeddings [620]).

After studying the main properties of these dilaton BHs, we are going to study in Sec-
tion 20.1 a more complex (four-dimensional) model that involves several scalar and vector
fields. We are going to obtain extreme BH solutions that can be understood as composite
BHs. This interpretation will open the door to the construction of four-dimensional extreme
BH solutions in string theory as composite objects, the building blocks being p-branes and
other extended objects that we will study in Chapter 20.

In Section 12.2 we add to the a-model with a = 1 and d = 4 a second scalar that cou-
ples not to the vector-field kinetic term F2 but to F�F and also couples to the dilaton.
This kind of scalar (actually, a pseudoscalar, to preserve invariance of the action under
parity) is called an axion. The model obtained has equations of motion that are invariant
under global SL(2, R) (S) duality transformations (the dilaton and the axion parametrize
an SL(2,R)/SO(2) coset space) and it is sometimes called axion–dilaton gravity. The S-
duality transformations can be used to obtain new solutions from known solutions.

As a matter of fact, the axion–dilaton-gravity model is a truncation of the bosonic sec-
tor of pure, ungauged, N = 4, d = 4 SUGRA which has five additional vector fields. This
theory is a consistent truncation of the effective-field theory of the heterotic superstring

349
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compactified on T6, as we will see in Chapter 16, and we will therefore study its BH solu-
tions. The most general solution (compatible with the no-hair conjecture) takes a very in-
teresting duality-invariant form. The most general BH solution of the heterotic superstring
compactified on T6 should have a similarly duality-invariant form but it is, unfortunately,
unknown.

12.1 Dilaton black holes: the a-model

The d-dimensional “a-model” action is1

S = 1

16πG(d)
N

∫
dd x

√
|g| [R + 2(∂ϕ)2 − 1

4 e−2aϕ F2
]
, (12.1)

where, as usual Fµν = 2∂[µ Aν] (or the equations of motion have to be supplemented by the
Bianchi identity for F).

Our goal in this section is to find and study BH-type solutions of this model. Since there
is a scalar, we might think that the only BH solutions are those with a trivial (constant)
scalar field, because those are the only ones with no scalar hair. However, as we discussed
in Section 8.1, we should distinguish between primary and secondary scalar hair. Secondary
scalar hair is related to other conserved charges by a certain, fixed, formula, and is com-
patible with the existence of event horizons. We have already met in the previous chapter
some examples of dilaton BHs with non-trivial scalar fields and regular horizons. We do not
know a priori the formula that relates the allowed, secondary, scalar “charge” to the con-
served charges (mass and electric or magnetic charges), but we can deduce it from explicit
BH solutions, if we find them.

The equations of motion are

Gµν + 2T ϕ
µν − 1

2 e−2aϕT A
µν = 0, ∇2ϕ − 1

8 ae−2aϕ F2 = 0, ∇µ

(
e−2aϕ Fµν

) = 0,

(12.2)

where
T ϕ

µν = ∂µϕ∂νϕ − 1
2 gµν(∂ϕ)2, T A

µν = Fµ
ρ Fνρ − 1

4 gµν F2. (12.3)

Observe that, when a = 0, this is the Einstein–Maxwell system with an uncoupled scalar,
which we can take to be constant. For a �= 0 the only solutions that have a trivial dilaton
(and are, therefore, solutions of the Einstein–Maxwell system) are those with F2 = 0. We
have already made use of this observation to embed solutions of the Einstein–Maxwell
theory (dyonic RN BHs) into the KK theory (page 330) to obtain the RN–KK dyon.

In Section 11.2 we showed that, in the KK reduction of pure (d + 1)-dimensional gravity
on a circle, we always obtain an a-model with a given by

aKK = ±
√

2(d − 1)

d − 2
. (12.4)

1 Generalizations with a massive dilaton have been studied in [475, 545].
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(The two signs are related by the transformation ϕ → −ϕ.) We will see that, in the reduction
of the heterotic string on T6, we naturally obtain a = 1.

If we take the divergence of the Einstein equation above and use both the Bianchi identity
for the metric and the Bianchi identity for F , we obtain

[∇2ϕ − 1
8 ae−2aϕ F2

]
∂νϕ = 0, (12.5)

which implies the scalar equation of motion provided that the scalar is not constant. For a
non-constant scalar the only equations that we have to solve are, then, the Maxwell equation
and the Einstein equation (with the trace subtracted for convenience):

Rµν + 2∂µϕ∂νϕ − 1
2 e−2aϕ

[
Fµ

ρ Fνρ − 1

2(d − 2)
gµν F2

]
= 0,

∇µ

(
e−2aϕ Fµν

) = 0.

(12.6)

We want to find solutions of these equations describing electrically charged BHs that
have to have a non-trivial scalar field. The solutions will reduce to the RN BH when a = 0,
and when F = 0 we expect to recover the solutions of [18, 607] and the higher-dimensional
analogs presented in Eq. (8.216). On the basis of our previous experience and discussions, it
is natural to make an Ansatz for the (static, spherically symmetric) metric that generalizes
the “dressed Schwarzschild” metric in such a way that we can call it the “dressed RN”
metric:

ds2 = f 2x H−2W dt2 − f −2y H
2

d−3
[
W −1dr2 + r2d�2

(d−2)

]
,

Aµ = αδµt(H−1 − 1), e−2aϕ = f z,
(12.7)

where f = H W b and

H = 1 + h

rd−3
, W = 1 + ω

rd−3
, (12.8)

and x, y, z, b, h, ω, and α are constants to be found. Observe that the action is invariant
under constant shifts of ϕ accompanied by rescalings of the vector field. We can use this
symmetry later to add a constant value at infinity to ϕ and have

Aµ = eaϕ0αδµt(H−1 − 1), e−2aϕ = e−2aϕ0 f z, (12.9)

On substituting into the above equations of motion, one finds that there are two families
of solutions, one with b = 0 and another one with b = −1. All the constants are identical
in the two families, so all the fields (except for the metric) are identical. The first family
contains regular BHs, but the second doesn’t. The difference between the two families is
the relation between the scalar charge and the mass and electric charge. We can view this
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difference as the presence of secondary scalar hair in the b = 0 family and of primary
scalar hair in the b = −1 family. We are primarily interested in regular BHs and, therefore,
we only write the b = 0 family of dilaton-BH solutions in its final form:

ds2 = e−2a(ϕ−ϕ0) H−2W dt2 − (
e−2a(ϕ−ϕ0) H−2

)− 1
d−3

[
W −1dr2 + r2d�2

(d−2)

]
,

Aµ = αeaϕ0δµt(H−1 − 1), e−2aϕ = e−2aϕ0 H 2x ,

H = 1 + h

rd−3
, W = 1 + ω

rd−3
, ω = h

[
1 − a2

4x
α2

]
,

x = (a2/2)c

1 + (a2/2)c
, c = d − 2

d − 3
.

(12.10)

On adding the corresponding factors of W to this solution, one obtains the b = −1 family.
Here a and d are given parameters that determine our theory and α, ϕ0 (the value of the dila-
ton at infinity), and h (the coefficient of r−(d−3) in H ) are the independent parameters. The
relation between ω and h is valid only for h �= 0. If h = 0, then ω is an arbitrary constant,
there is no electromagnetic field, and we recover the solutions (8.216) which have primary
scalar hair (the scalar charge is unrelated to the conserved charges) and are singular except
for b = 0 or for a = 0 (which implies that x = 0), which is the Schwarzschild solution. For
a = 0 we recover the RN solution, as we wanted.

Furthermore, for all values of d, a, and b, when ω = 0 (extreme dilaton BHs) H can
be any arbitrary harmonic function in the transverse (d − 2)-dimensional Euclidean space.
This allows us to construct multi-BH (in general multicenter) solutions, as in the MP family
(which is included in this one with a = 0).

The b = 0 solutions were first obtained and studied in [432, 447]. The d = 4 solutions
were rediscovered from a string-theory point of view in [416] and those with arbitrary a
were also studied in [539]. The multicenter solutions were found in [853] (see also [743])
and the solutions with b = −1 are presented for the first time here.

Let us now study the properties and the geometry of the b = 0 family. First, we want
to relate the integration constants to the physical parameters: mass, electric charge, and
“scalar charge.” Only the first two are independent. For the sake of clarity we omit most
numerical factors and define these charges by the asymptotic expansions of the fields:

gtt ∼ 1 − M
rd−3

, At ∼ − Q
rd−3

, ϕ ∼ ϕ0 − S
rd−3

. (12.11)

These charges are related to the integration constants by

M = 2(1 − x)h − ω, Q = αeaϕ0h, S = xh. (12.12)
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The inverse relations are, for x �= 1
2 ,

h =
M ±

√
M2 − 1 − 2x

x
a2e−2aϕ0Q2

2(1 − 2x)
,

α = 2(1 − 2x)e−aϕ0Q

M ±
√
M2 − 1 − 2x

x
a2e−2aϕ0Q2

,

ω = x

1 − 2x
M ± 1 − x

1 − 2x

√
M2 − 1 − 2x

x
a2e−2aϕ0Q2,

(12.13)

and they give us the expression of the “scalar charge” S in terms of M and Q:

S = a2e−2aϕ0Q2

2

(
M ∓

√
M2 − 1 − 2x

x
a2e−2aϕ0Q2

) . (12.14)

We see that it vanishes for vanishing a (the RN solution) or vanishing Q. This does not
happen in the b = −1 family. If S has a different value (as in the b = −1 family) then there
is primary scalar hair and we have solutions without regular event horizons.

The integration constants h, ω, and α are real only when

M2 ≥ 1 − 2x

x
a2e−2aϕ0Q2. (12.15)

This is a constraint on M and Q only for x < 1
2 , that is, for (a2/2)c < 1. This includes,

as we know, the RN case.
When x = 1

2 , that is, a = ±√
2(d − 3)/(d − 2) we find

h = d − 3

d − 2

e−2aϕ0Q2

M , α = d − 2

d − 3

eaϕ0M
Q , ω = −

M2 − d − 3

d − 2
e−2aϕ0Q2

M ,

(12.16)

and the “scalar charge” is given by

S = ± d − 3

2(d − 2)

e−2aϕ0Q2

M . (12.17)

These metrics are a generalization of the RN metric and they have two horizons, at r = 0
and r = −ω. If we take the lower sign, r = −ω is the (regular in all cases with ω �= 0) event
horizon but the “horizon” at r = 0 is generically singular, except for a = 0. When ω = 0
(the extremal limit) the two horizons coincide. This happens when

M = 2(1 − x)

x
S = 1 − x√

x
ae−aϕ0 |Q|. (12.18)
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However, in this limit we have a regular BH only for a = 0 (the ERN BH). All the other
extreme dilaton BHs have a singular “horizon,” i.e. a naked singularity.

There is a better way to express the extremality condition, using the scalar charge:

ω2 = M2 + 4

(
1

x
− 1

)
S2 − a2

(
1

x
− 1

)
e−2aϕ0Q2 = 0. (12.19)

This form suggests that, as in the ERN case, the extremality condition can be viewed
as a no-force condition. The difference here is that the dilaton field carries an additional
interaction proportional to the “scalar charge” S. This gives a physical explanation for
the existence of regular multi-dilaton BH solutions. A pair of dilaton BHs with charges
(Mi ,Qi ), satisfying separately the extremality condition, will also satisfy the no-force
condition,

M1M2 + 4

(
1

x
− 1

)
S1S2 − a2

(
1

x
− 1

)
e−2aϕ0Q1Q2 = 0. (12.20)

12.1.1 The a-model solutions in four dimensions

The general solution for the four-dimensional a-model is

ds2 = H
− 2

1+a2 W dt2 − H
− 2

1+a2
[
W −1dr2 + r2d�2

(2)

]
,

Aµ = αeaϕ0δµt(H−1 − 1), e−2ϕ = e−2ϕ0 H
2a

1+a2 ,

H = 1 + h

r
, W = 1 + ω

r
, ω = h

[
1 − (1 + a2)(α/2)2

]
.

(12.21)

Among all the possible values of a, only a few are relevant, at least in SUGRA theories
(and hence for string theory). The most important value is a = √

3. This is the value that
we obtain in KK compactification from five to four dimensions, but it also appears in many
other ways. The metric and dilaton field are2

ds2 = H− 1
2 W dt2 − H

1
2
[
W −1dr2 + r2d�2

(2)

]
,

e−2ϕ = e−2ϕ0 H
√

3
2 , ω = h

[
1 − α2

]
.

(12.22)

All the extended objects of type-II string theory compactified on tori give rise precisely to
this Einstein metric (see, for instance, Eqs. (20.8) and (20.10)). This illustrates the comment
we made in the introduction about the many possible embeddings of the a-model solutions
into SUGRA theories.3

2 The vector field and the functions H and W always have the same form as in Eqs. (12.21).
3 A systematic study of embeddings of these four-dimensional dilaton BHs in the effective-field theory of the

heterotic string (N = 1, d = 10 SUGRA plus 16 vector multiplets) and their unbroken supersymmetries was
presented in [620].
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The next values of interest from the string-theory-supergravity point of view are a = 1;

ds2 = H−1W dt2 − H
[
W −1dr2 + r2d�2

(2)

]
,

e−2ϕ = e−2ϕ0 H, ω = h
[
1 − (α/

√
2)2

]
,

(12.23)

and a = 1/
√

3;

ds2 = H− 3
2 W dt2 − H

3
2
[
W −1dr2 + r2d�2

(2)

]
,

e−2ϕ = e−2ϕ0 H
√

3
2 , ω = h

[
1 − α2/3

]
.

(12.24)

d = 4 stringy solutions with these metrics will appear in the compactification of solutions
that describe the intersection of two and three extended objects, respectively, instead of just
one as in the previous case. We are going to see how this comes about in Section 20.1.

Finally, we have a = 0, the RN BH:

ds2 = H−2W dt2 − H 2
[
W −1dr2 + r2d�2

(2)

]
,

e−2ϕ = e−2ϕ0, ω = h
[
1 − (α/2)2

]
.

(12.25)

This case will be seen to arise from the intersection of four extended objects in higher
dimensions.

In four dimensions, we can define the mass M , electric charge q, and “scalar charge” �

more precisely by the asymptotic expansions

gtt ∼ 1 − 2G(4)
N M

r
, At ∼ 4G(4)

N e2aϕ0q

r
, ϕ ∼ ϕ0 + G(4)

N �

r
. (12.26)

The dilaton-dependent factor e2aϕ0 in the definition of the electric charge is related to the
integral definition

q = 1

16πG(4)
N

∫
S2∞

e−2aϕ�F, (12.27)

which is in turn related to the modification of the Gauss law introduced by the dilaton.
For a �= 1 the integration constants in the solutions are given by

h = 1 + a2

1 − a2
G(4)

N

(
M ±

√
M2 − 4(1 − a2)e2aϕ0q2

)
,

α = 1 − a2

1 + a2

4eaϕ0q

M ±
√

M2 − 4(1 − a2)e2aϕ0q2
,

ω = 2a2

1 − a2
G(4)

N M ± 2

1 − a2
G(4)

N

√
M2 − 4(1 − a2)e2aϕ0q2,

(12.28)
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and � is related to the conserved charges by

� = 4a2e2aϕ0q2

M ±
√

M2 − 4(1 − a2)e2aϕ0q2
. (12.29)

For a = 1

h = 4G(4)
N e2ϕ0q2

M
, α = − M

eϕ0q
, ω = −2G(4)

N

M2 − 2e2ϕ0q2

M
, (12.30)

and � is related to the conserved charges by

� = −2G(4)
N e2ϕ0q2

M
. (12.31)

The extremality condition always takes the form(
ω

2G(4)
N

)2

= M2 + 1

a2
�2 − 4e2ϕ0q2 = 0. (12.32)

Thermodynamics of four-dimensional dilaton BHs. The coupling to scalar fields requires a
modification of the first law of BH thermodynamics, which has to include a new term [259,
260, 446] in order to take into account possible variations of the energy due to variations
of the scalar fields. This term is proportional to the “scalar charges” and to the variations of
the values of the scalar fields at infinity (moduli) that characterize the vacuum of the theory,

�adϕa. (12.33)

Apart from this new term, the temperature and the entropy of dilaton BHs are related to
the area and surface gravity of the event horizon by the standard formulae. When ω ≤ 0 (as
we will assume) the event horizon is placed at r = −ω. Its area is given by

A = 4π H
2

1+a2 r2
∣∣∣
r=−ω

, (12.34)

and so the entropy is given by

S = π(h + |ω|) 2
1+a2 |ω| 2a2

1+a2 . (12.35)

The temperature is given by

T = 1

4π
(h + |ω|)− 2

1+a2 |ω| 1−a2

1+a2 . (12.36)

These expressions can be compared with those in [539], where the thermodynamics of
four-dimensional dilaton BHs was studied, with |ω| = r+ − r− and h + |ω| = r+.

The behavior of T and S in the extreme limit depends on the value of the parameter a:

lim
ω→0




T → 0, S → πh
2

1+a2 , 0 ≤ a < 1,

T → h, S → 0, a = 1,

T → ∞, S → 0, a > 1,

(12.37)

Below a = 1 the behavior is similar to that of the RN BH, which also means that near
the extreme limit the specific heat is positive. Above a = 1 the behavior is similar to that of
the Schwarzschild BH in the zero-mass limit and the specific heat is negative.
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Electric–magnetic duality in the four-dimensional a-model. In four dimensions the a-
model has electric–magnetic duality: the equations of motion are invariant under the dis-
crete transformation

F ′ = F̃ ≡ e−2aϕ�F, ϕ′ = ϕ̃ ≡ −ϕ. (12.38)

Tilded fields are, by definition, the S-dual fields. This symmetry allows us to trans-
form the above electrically charged solutions into magnetic solutions that have the same
(Einstein-frame) metric. All the properties that depend on the Einstein metric (for instance,
thermodynamical properties) are not affected by this transformation. However, in some
cases we are interested in properties that depend on the metric given in a different frame
(such as the string frame, that we will study, or the KK frame that we studied in Chapter 11)
that is related to Einstein’s by a conformal rescaling by a function of the dilaton. Since the
dilaton changes in this electric–magnetic transformation, so does the (KK or stringy) met-
ric. A good example is provided by the electric–magnetic-duality rotation of the electrically
charged KK BH studied on page 328.

For special values of the parameter a there are also dyonic dilaton BH solutions, carrying
both electric and magnetic charges.4 This trivially happens for a = 0, the Einstein–Maxwell
plus uncoupled scalar case, because in this case (as we have already seen) the electric–
magnetic-duality symmetry is a continuous symmetry and one can continuously rotate the
purely electric solution into the purely magnetic one. In the case a = 1 there is no obvious
reason for this to happen. However, the a = 1 model is a truncation of the N = 4, d = 4
SUEGRA action that we are going to see next, which does have a continuous electric–
magnetic-duality symmetry.

The dyonic solutions take the form5 [432, 447, 612]

ds2 = (H1 H2)
−1W dt2 − H1 H2

[
W −1dr2 + r2d�2

(2)

]
,

At = −4G(4)
N eϕ0q

r− − G(4)
N �

(H−1
1 − 1), Ãt = 1

4π

e−ϕ0 p

r− + G(4)
N �

(H−1
2 − 1),

e−2ϕ = e−2ϕ0 H1/H2,

H1 = 1 + r− − G(4)
N �

r
, H2 = 1 + r− + G(4)

N �

r
,

W = 1 − 2r0

r
, r± = M ± r0,

r2
0 = M2 + �2 − 4


e2ϕ0q2 + e−2ϕ0

(
p

16πG(4)
N

)2

,

� = 2

M


e2ϕ0q2 − e−2ϕ0

(
p

16πG(4)
N

)2

.

(12.39)

4 There is no theorem ensuring this, but all attempts to build dyonic solutions for other values of a have been
unsuccessful.

5 Solutions with additional scalar hair are also possible, but we will not deal with them any further.
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Here we have used the S-dual potential Ãµ which is the potential related to the S-dual
field strength,

F̃µν = 2∂[µ Ãν], (12.40)

whose existence is ensured by the equation of motion of Aµ, which is just the Bianchi iden-
tity for F̃µν . Knowledge of the electric components Ftr and F̃tr and of the metric and dilaton
is enough to find all the components Fµν , but this form of presenting the result is more el-
egant and convenient since it exhibits the symmetries of the theory acting on the solution.
In particular, we see that S duality interchanges Aµ and Ãµ and q and p/(16πG N

(4)), and
takes ϕ0 to −ϕ0, which also takes � to −�.

The purely electric dilaton BH solutions with a = 1 are recovered when H2 = 1 and the
purely magnetic ones when H1 = 1. When H1 = H2 = H the scalar becomes trivial and we
recover the RN solutions. Thus, these solutions are the most general from the point of view
of electric–magnetic duality.

As usual, when W = 1, H1 and H2 can be arbitrary harmonic functions in three-
dimensional Euclidean space. They may but need not have coincident poles and, thus, the
solutions describe electric and magnetic monopoles and dyons in static equilibrium.

Solutions of the four-dimensional (a = 1)-model with primary scalar hair and electric
charge have been presented in [19] and probably can be generalized to all values of a and
to higher dimensions. We will not pursue this issue any further.

12.2 Dilaton/axion black holes

The a-model is a good starting point from which to study BH solutions of supergrav-
ity/superstring theories, but it is clearly too simple. It is natural to introduce successive
generalizations to this model that make it closer to the real thing. In higher dimensions we
can introduce differential-form potentials of higher rank, but these are associated with ex-
tended objects. In four dimensions we can introduce, as a first step, additional vector fields,
all of them coupled in the same way to the scalar field. Then, we can introduce new scalars
or different couplings of the scalar(s) to the vector fields. We would have an action of the
form

S = 1

16πG(4)
N

∫
d4x

√
|g| [R + 1

2 gi j∂µϕi∂µϕ j − 1
4 Mi j Fi

µν F j µν
]
, (12.41)

where gi j (ϕ) and Mi j (ϕ) are some square matrices depending on the scalars. gi j can be
interpreted as the inverse metric of some space of which the scalars ϕi are the coordinates.
The scalar kinetic term is a σ -model.

A good example of an action of this kind is provided by the four-dimensional KK action
that one obtains from d̂ = 4 + N dimensions by compactification on TN , Eq. (11.195). The
scalars parametrize an R

+× SL(N , R)/SO(2) coset space.
There is another kind of couplings of scalars to vectors that we can introduce in four

dimensions: couplings of the form

− 1
4 Ni j (ϕ)Fi

µν
�F j µν. (12.42)
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As a matter of fact, the bosonic sectors of all four-dimensional SUEGRAs can be written
in this form. Each of them is characterized by the number of vectors and scalars, by the
σ -model metric gi j (ϕ), and by the matrices of couplings Mi j (ϕ) and Ni j (ϕ). The general
case is studied in [445].

The simplest model with a coupling of the above kind is the so-called axion/dilaton-
gravity model

S = 1

16πG(4)
N

∫
d4x

√|g| [R + 2(∂ϕ)2 + 1
2 e4ϕ(∂a)2 − e−2ϕ F2 + aF�F

]
. (12.43)

The scalar field that couples to F�F is called the axion and should be a pseudoscalar
for the above action to be parity-invariant. It plays the role of a local θ -parameter (see
Eq. (8.178)) just as the dilaton plays the role of local coupling constant. In fact, this model
is a version of the one studied in Section 8.7.4 with local coupling constants (moduli) and,
as we are going to see, it exhibits the same S-duality symmetry [821].

1. The factor e4ϕ of the axion kinetic term allows us to combine the axion and the
dilaton into a complex scalar field, the axidilaton τ ;

τ = a + ie−2ϕ, (12.44)

and its kinetic term takes the form of an SL(2, R)/SO(2) σ -model, Eq. (11.209). We
can also use the symmetric SL(2, R) matrix M defined in Eq. (11.207). As discussed
in Sections 11.4.1, the σ -model is invariant under global SL(2, R) transformations
that are fractional-linear transformations of τ given by Eqs. (11.205) and (11.206).
This group contains three different kinds of transformations.

(a) Rescalings of τ :

S =
(

α 0
0 α−1

)
, τ ′ = α2τ. (12.45)

These transformations rescale the axion and shift the value of the dilaton at
infinity, ϕ′

0 = ϕ0 − ln α.

(b) Constant shifts:

S =
(

1 β

0 1

)
, τ ′ = τ + β. (12.46)

These transformations only shift the value of the axion at infinity, a′
0 = a0 + β.

(c) SO(2) rotations:

S =
(

cos θ sin θ

− sin θ cos θ

)
, τ ′ = cos θ τ + sin θ

− sin θ τ + cos θ
. (12.47)

The rotation with θ = π/2 inverts τ :

S =
(

0 1
−1 0

)
, τ ′ = −1/τ. (12.48)
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When a = 0 this transformation is just the electric–magnetic-duality transfor-
mation of the dilaton model ϕ′ = −ϕ.

2. The action is invariant under the first two kinds of transformations: the rescalings of
τ can be compensated by opposite rescalings of F :

F ′ = 1

α
F, (12.49)

and the shifts of a simply change the action by a total derivative β
√|g|F �F . This is

just an Abelian version of the Peccei–Quinn symmetry. In the Euclidean non-Abelian
SU(2) case the total derivative is proportional to a topological invariant; namely the
second Chern class defined in Eq. (9.18) that takes integer values. If the Euclidean
action is properly normalized, the Peccei–Quinn transformation simply shifts it by β

times an integer, which results in a phase change in the integrand of the path integral.
Thus, the classical continuous Peccei–Quinn symmetry is broken to Z since the only
transformations that leave the path integral invariant are those with β = 2πn, n ∈ Z.
This is one of the quantum effects6 that breaks SL(2, R) to SL(2, Z), the group of
S duality.

3. The equations of motion (but not the action) of the whole theory are also invariant
under SO(2) rotations. To see this (to check invariance under the whole SL(2, R)), it
is convenient to define the SL(2, R)-dual F̃ of the vector-field strength F :

F̃µν ≡ e−2ϕ �Fµν + aFµν. (12.50)

The Maxwell equation is now the Bianchi identity of the S-dual field strength:

∇µ
� F̃µν = 0. (12.51)

It is convenient to define two S-duality vectors F and F ,

F ≡
(

�F
F

)
, F ≡ e−ϕV F =

(
F̃
F

)
, (12.52)

where V is the upper-triangular unimodular matrix that we defined in Eq. (11.208)
that satisfies VVT = M. F transforms covariantly under S ∈ SL(2, R):

F ′ = S F . (12.53)

The two components of this vector are not independent, but are related by a constraint
that involves τ . This constraint must be preserved by S and one can check that this
happens if, and only if, τ transforms according to Eqs. (11.205) and (11.206). The
transformation τ ′ = −1/τ interchanges the two components of the duality vector. For
a vanishing axion field, this is the discrete electric–magnetic-duality transformation
of the dilaton-gravity model.

6 The other one is charge quantization.
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In terms of the duality vector F the Maxwell equation and the Bianchi identity take
the SL(2, R)-invariant form

∇µ
F µν = 0, (12.54)

and the Einstein equation can also be written in invariant form (see Eq. (8.138)):

Rµν + ∂µτ∂ντ̄

(Im(τ ))2
+ FTη� F = 0, (12.55)

with η = iσ 2, due to the property SηST = η of Sp(2) ∼ SL(2, R) matrices S. The
remaining two equations of motion,

∇2ϕ − 1
2 e4ϕ(∂a)2 − 1

2 e−2ϕ F2 = 0,

∇2a + 4∂µϕ ∂µa − e−4ϕ F �F = 0,
(12.56)

can also be rewritten in a manifestly duality-invariant form:

∇µ

(
∂µMM−1

) + F FTη = 0. (12.57)

The action Eq. (12.43) is a truncation of the bosonic sector of ungauged N = 4, d = 4
SUEGRA [266], that contains the metric gµν , complex scalar τ , and six Abelian vector
fields A(n)

µ, n = 1, . . . , 6. On setting G(4)
N = 1, it takes the form

S = 1

16π

∫
d4x

√|g| [R + 2(∂ϕ)2 + 1
2 e4ϕ(∂a)2 − e−2ϕ F (n)F (n) + aF (n) �F (n)

]
.

(12.58)

This theory, in turn, can be obtained by dimensional reduction and consistent truncation
from N = 1, d = 10 SUGRA, the effective theory of the heterotic string, as we will see in
Chapter 16. In this context ϕ coincides with the four-dimensional string dilaton and there
are many things about the general stringy case that we can learn by studying this simpler
case.

Apart from S duality, this action has a trivial invariance under SO(6) (T-duality) rotations
of the vector fields. This may seem to suggest that considering just one vector field would
be enough to obtain the most general BH solution (up to SO(6) rotations), but we are going
to see that this is not the case: at least two vectors are needed if one wants to obtain a BH
solution from which we can generate the most general one7 by more or less trivial SO(6)

rotations (a generating solution). To explain why this is the case, we need to discuss how
the conserved charges enter in the metric and scalar fields.

First we use Eq. (12.54) to define the conserved electric and magnetic charges of the six
Abelian vector fields q(n),

q(n) ≡ 1

4π

∫
S2∞

F (n), q(n) =
(

q(n)

p(n)

)
, (12.59)

7 By definition, the one with the highest possible number of charges (mass, angular momentum, and electric
and magnetic charges) and moduli (the asymptotic value of τ ) allowed by the no-hair conjecture.
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that we can arrange into a twelve-dimensional vector q . q transforms linearly under S and
T-duality transformations S and R:

q′ = S ⊗ Rq. (12.60)

The charges8 must enter into the metric in duality-invariant combinations because the
metric is duality-invariant. There are only two such invariants that are quadratic and quartic
in the charges:

I2 ≡ qTM−1
0 ⊗ I6×6q, I4 ≡ det

[
n=6∑
n=1

q(n)q(n) T

]
. (12.62)

Here M0 is the asymptotic value of the scalar matrix M. Thus, I2 is moduli-dependent
and I4 is moduli-independent. On the other hand, I4 vanishes when only one vector field
is non-trivial and, therefore, starting from the most general charge configuration with only
one vector field and I4 = 0, we cannot generate the most general charge configuration with
I4 �= 0 by S- and T-duality transformations. The generating solution has to have both I2 and
I4 generically non-vanishing.

To attain a better understanding, we can try to construct the most general solution starting
from the d = 4, a = 1 dilaton BH solutions we studied in the previous section. We simply
have to observe that the equations of motion of the axion/dilaton model coincide9 with those
of the four-dimensional a = 1 model if the axion a = 0 and F�F = 0. Then, the purely elec-
tric BH Eq. (12.23) provides a solution of the axion/dilaton model with one independent
charge and one non-trivial modulus (ϕ0). By performing one SO(2) S-duality transforma-
tions Eq. (12.47), we can generate a solution that has electric and magnetic charge. As
in the Einstein–Maxwell case, the SO(2) parameter becomes a new independent charge.
A non-trivial axion is generated. Further SL(2, R) transformations only shift ϕ0 and add
an asymptotic value to the axion a0. In this way we have obtained the most general ax-
ion/dilaton BH solution with one vector field [850], but it has the same metric as the purely
dilatonic BH.

This solution is also a solution of N = 4, d = 4 SUEGRA with five vanishing vector
fields. We could excite them by performing SO(6)/SO(5) T-duality rotations that do not
leave the charge vector invariant. However, in this way we can obtain only solutions in
which all the magnetic charges are proportional to all the electric charges with the same
proportionality factor. We would have added only five new independent parameters to the
solution and the metric would still be the same (because I4 = 0).

A more general solution with two non-vanishing charges in different vectors q(1) and
p(2) was found in [432] and, later on, studied in [612]. It has a different metric (and

8 Observe that, the axion being a local θ -parameter, it induces a Witten effect on the charges, as explained in
Section 8.7.4. Furthermore, the DSZ quantization condition takes the manifestly SL(2, R)-invariant form

q(n) T
1 η q(n)

2 = m/2, m ∈ Z. (12.61)

(q(n) is canonically normalized, but p(n) is 1/(4π) times the canonical magnetic charge. The product of the
canonical charges is quantized in integer multiples of 2π .)

9 The vector fields have a different normalization.
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non-vanishing I4). It has a non-vanishing dilaton, a vanishing axion, and trivial moduli,
which, however, could be generated by S-duality transformations. In fact, it is clear that
S and T dualities suffice to generate the four possible independent charges of the two vector
fields and, actually, the 2N independent charges of N vector fields and, thus, it is the (static)
generating solution of this theory.

This static generating solution is essentially the d = 4, a = 1 dyonic dilaton BH solution
given in Eq. (12.39) but where the electric and magnetic components of the vector field
belong to two different vector fields.10 In the conventions that we are using in this section,
it takes the form

ds2 = (H1 H2)
−1W dt2 − H1 H2

[
W −1dr2 + r2d�2

(2)

]
,

A(1)
t = −q

r− − �
(H−1

1 − 1), Ã(2)
t = p

r− + �
(H−1

2 − 1),

e−2ϕ = H1/H2,

H1 = 1 + r− − �

r
, H2 = 1 + r− + �

r
, W = 1 − 2r0

r
,

r± = M ± r0, r2
0 = M2 + �2 − (q2 + p2), � = 2(q2 − p2)/M .

(12.63)

It is, however, very convenient to have the most general solution written explicitly in
terms of the physical charges. Moreover, the most general static solution can be immedi-
ately generalized in a natural way by adding angular momentum and NUT charge, becom-
ing the truly most general stationary BH-type solution that we will call the SWIP solution11

[665]. It will be S- and T-duality-invariant by definition, and its physical properties will
be given in terms of duality-invariant combinations of charges. Ungauged N = 4, d = 4
SUEGRA is the most complicated case in which the most general solution is explicitly
known and the attempts to write the most general solution of more complicated theories are
inspired by it. For these reasons, it is worth studying.

12.2.1 The general SWIP solution

The general solution is determined by two complex harmonic functions, H1,2, the non-
extremality function, W , the spatial background metric, (3)γi j , and N complex constants

10 Sometimes these solutions are called U(1)2 BHs.
11 The construction of the most general BH-type solution was initiated in [743] and the most general static

solution was obtained in [613]. There, the solution was written in terms of two complex functions H1,2
(harmonic in the extreme limit) that obeyed a constraint. It was realized in [132] that removing the constraint
in the extreme case immediately resulted in the natural inclusion of NUT charge and angular momentum.
The new solutions had been obtained independently in [894]. Finally, the general, non-extreme solution was
constructed in [665]. Related work was done in [67, 245, 409–13, 415, 610, 806–9].
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k(n):

ds2 = e2U W
(
dt + Aϕdϕ

)2 − e−2U W −1 (3)γi j dxi dx j ,

A(n)
t = 2e2U Re

(
k(n)H2

)
, Ã(n)

t = 2e2U Re
(
k(n)H1

)
, τ = H1/H2.

(12.64)

where
e−2U = 2 Im

(
H1H̄2

)
,

Aϕ = 2N cos θ + α sin2 θ
(
e−2U W −1 − 1

)
.

(12.65)

The functions H1,2 take the form

H1 = 1√
2

eϕ0eiβ

(
τ0 + τ0M + τ̄0ϒ

r + iα cos θ

)
, H2 = 1√

2
eϕ0eiβ

(
1 + M + ϒ

r + iα cos θ

)
,

(12.66)

and W and the background metric (3)γi j take the forms

W = 1 − r 2
0

r2 + α2 cos2 θ
,

(3)γi j dxi dx j = r2 + α2 cos2 θ − r2
0

r2 + α2 − r2
0

dr2 + (
r2 + α2 cos2 θ − r 2

0

)
dθ2

+ (
r2 + α2 − r 2

0

)
sin2 θ dϕ2.

(12.67)

The complex constants are given by

k(n) = − 1√
2

e−iβ M�(n) + ϒ�(n)

|M|2 − |ϒ |2 . (12.68)

The metric can also be written in a more standard form:

ds2 = � − α2 sin2 θ

�
dt2 + 2α sin2 θ

� + α2 sin2 θ − �

�
dtdϕ

− �

�
dr2 − � dθ2 −

(
� + α2 sin2 θ

)2 − �α2 sin2 θ

�
sin2 θ dϕ2,

(12.69)

� = r2 − R0
2 = r2 + α2 − r0

2,

� = (r + M)2 + (n + α cos θ)2 − |ϒ |2.
We have expressed the functions that enter the solution in terms of physical constants

(charges and moduli). α = J/M is the angular momentum (J ) per unit mass (M), and we
have combined the mass and NUT charge (N ) into the complex “mass”

M ≡ M + i N , (12.70)

and the electric and magnetic charges into

�(n) ≡ Q(n) + i P (n), Q(n) ≡ V−1
0 q(n). (12.71)
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ϒ , the (complex) axion/dilaton charge, and τ0, its asymptotic value, are defined by

τ ∼ τ0 − ie−2ϕ0
2ϒ

r
. (12.72)

In these solutions ϒ depends on the conserved charges in this fixed way:

ϒ = − 1
2

∑
n

(�̄(n))2

M
. (12.73)

Finally, the “non-extremality” parameter r0 is given by

r 2
0 = |M|2 + |ϒ |2 −

∑
n

|�(n)|2. (12.74)

In non-static cases when r0 = 0 the solution is supersymmetric, but for α �= 0 it is not an ex-
treme BH. A more appropriate name is supersymmetry parameter. The extremality parame-
ter will be R2

0 = r2
0 − α2. When it is positive, we have two horizons placed at r± = M ± R0.

The area of the event horizon (the one at r+) is given, for BH solutions with zero NUT
charge, by

A = 4π
(
r 2
+ + α2 − |ϒ |2). (12.75)

12.2.2 Supersymmetric SWIP solutions

When r0 = 0 W = 1 the general SWIP solution has special properties. First, the back-
ground metric (3)γi j is nothing but the metric of Euclidean three-dimensional space in oblate
spheroidal coordinates, which are related to the ordinary Cartesian ones by

x = √
r2 + α2 sin θ cos ϕ,

y = √
r2 + α2 sin θ sin ϕ,

z = r cos θ.

(12.76)

On rewriting the solution Eqs. (12.64) in Cartesian coordinates, we find the solutions

ds2 = 2 Im(H1H̄2) (dt + A)2 − [2 Im(H1H̄2)]−1d x 2
3 ,

A(n)
t = 2e2U Re

(
k(n)H2

)
, Ã(n)

t = 2e2U Re
(
k(n)H1

)
, τ = H1/H2 .

A = Ai dxi, εi jk∂i A j = ±Re
(
H1∂kH̄2 − H̄2∂kH1

)
,

∂i∂iH1,2 = 0,

N∑
n=1

(k(n))2 = 0,

N∑
n=1

|k(n)|2 = 1

2
.

(12.77)

That is, for any arbitrary pair of complex harmonic functions H1,2(x3) in the three-
dimensional Euclidean space, it is clear that we can construct multi-BH solutions and that
r0 = 0 can be reinterpreted as a no-force condition between the BHs.
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These solutions include the IWP metrics Eqs. (9.58) when

H1 = iH2 = 1√
2
H (12.78)

(which trivializes the axidilaton τ ) that in turn include the MP solutions Eqs. (8.86). These
are the only BH-type solutions in the IWP family: the addition of angular momentum elim-
inates the event horizon and the addition of NUT charge eliminates the asymptotic flat-
ness. Something similar is true for the supersymmetric SWIP solutions above: the only
supersymmetric BHs in this family are the static ones with Ai = 0, which imposes a very
non-trivial constraint on the harmonic functions, which was implicit in [613].

The general solutions include, for vanishing axidilaton charge ϒ = 0 (which corresponds
to special choices of the electric and magnetic charges), the Kerr–Newman solution in
Boyer–Lindquist coordinates Eq. (9.55).

12.2.3 Duality properties of the SWIP solutions

Solutions of the general and supersymmetric SWIP families are the most general BH-type
solutions of N = 4, d = 4 SUEGRA and, therefore, an S- or T-duality transformation takes
one member of the family into another member of the family. Thus, the effect of duality
transformations is just to replace all the constants and functions that enter the solutions with
primed constants and functions. The structure of the solutions thus reflects the SL(2, R)×
SO(6) duality invariance of the equations of motion.

Let us see in a bit more detail how the charges and functions transform under duality. M

is obviously invariant. The complex combinations of electric and magnetic charges �(n) are
SO(6) vectors and change by a phase under SL(2, R),

�(n) ′ = ei arg(γ τ0+δ)�(n), (12.79)

while the axidilaton charge also changes by a phase but is an SO(6) scalar,

ϒ ′ = e−2i arg(γ τ0+δ)ϒ, (12.80)

and, therefore, its absolute value is duality-invariant and can be expressed in terms of the
two invariants I2 and I4:

|ϒ |2 = 1

4|M|2 (I 2
2 − 4I4). (12.81)

It is also easy to show that ∑
n

|�(n)|2 = I2. (12.82)

Since M is trivially duality-invariant, the last two equations imply the duality invariance
of the supersymmetry parameter r0, given in Eq. (12.74), and of the supersymmetry bound
(to be defined in Chapter 13) r2

0 ≥ 0.
It is useful to define the two combinations of charges [130]

|Z1,2|2 ≡ 1
2 I2 ± I

1
2

4 , (12.83)
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which are at most interchanged by duality transformations. In terms of them, the supersym-
metry parameter and the BH entropy take the suggestive forms

r2
0 = 1

|M|2
(|M|2 − |Z1|2

)(|M|2 − |Z2|2
)
.

S = π
{
(M2 − |Z1|2) + (M2 − |Z2|2) + 2

√
(M2 − |Z1|2)(M2 − |Z2|2) − J 2

}
,

(12.84)
which we will discuss in Chapter 13. Observe that |ϒ | is given in general by |Z1 Z2|2M−2.

The functions H1,2 transform as a doublet under SL(2, R), whereas the k(n)s are invariant
because, although they transform with the same phase as �(n), they can be absorbed into
the arbitrary phase β that appears in the solution. The k(n)s are clearly SO(6) vectors, as
are the corresponding vector potentials.

12.2.4 N = 2, d = 4 SUGRA solutions

The form of the supersymmetric SWIP solutions strongly reflects the structure of the dual-
ities of the theory and suggested to the authors of [382] a relation to the special-geometry
formalism of N = 2, d = 4 SUGRA theories12 [222, 225, 265, 317, 868] that describes the
geometry of the scalar manifold (the space in which the scalars ϕi of the theory take val-
ues and, hence, the σ -model metric gi j (ϕ) in the action Eq. (12.41)), the couplings of the
scalars to the vector fields (the functions Mi j (ϕ) and Ni j (ϕ)), and, for gauged SUGRAS,
the gauge groups and the scalar potential. Pure N = 4, d = 4 SUGRA with only two vector
fields (which still supports the most general SWIP solution) can be seen as N = 2, d = 4
SUGRA coupled to an N = 2 vector multiplet with two new “accidental” supersymmetries
just as pure N = 2 SUGRA (Section 5.5) can be seen as N = 1 coupled to a vector multiplet
[380] with one “accidental” supersymmetry and, therefore, that formalism can be applied
to it. There are many other theories arising from compactifications of ten-dimensional su-
perstring effective actions that can be described with this formalism.

The coupling of n N = 2 vector multiplets to N = 2 SUGRA can, in some cases, be com-
pletely described by a prepotential function F of the complex projective coordinates X�,
� = 0, 1, . . ., n, that parametrize the scalar manifold. From F one can derive the Kähler
potential K ,

K = − ln
(
N�� X� X�

)
, N�� = 1

2 Re(∂�∂� F), (12.85)

from which the Kähler metric of the scalar σ -model,

gi ̄ = ∂2 K

∂ϕi∂ϕ̄ j
, ϕi ≡ Xi/X0, i = 1, . . ., n, (12.86)

the chiral connection Aµ,

Aµ = i

2
N��

[
X

�
∂µ X� − (∂µ X

�
)X�

]
, (12.87)

and also the couplings of the scalars to the vector fields can be derived.

12 For an introduction to the special-geometry formalism of N = 2 supergravity, see e.g. [400, 402].
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The most general BH-type solution of an N = 2 theory has to be duality-invariant and
thus has to be built out of the only invariants that the special-geometry formalism contains:
the Kähler potential and the chiral connection. In [382] it was realized that the metric for
extreme BHs in N = 2 theories can always be written in the form

ds2 = eK dt2 − e−K d x 2, (12.88)

where the projective coordinates X� are identified with real harmonic functions H� that
are also related to the n + 1 U(1) vector potentials of the theory. In [132] it was realized
that one could also use complex harmonic functions, and then the 1-form Ai that appears
in non-static SWIP BH-solutions

ds2 = eK(dt2 + Ai dxi )2 − e−K d x 2, (12.89)

is related to the chiral 1-form of the N = 2 SUGRA theory by

εi jk∂ j Ak = Ai . (12.90)

More precisely, N = 4, d = 4 SUGRA with only two vector fields corresponds to an
N = 2, d = 4 SUGRA with prepotential F = 2X0 X1. The axidilaton is just τ = X1/X0. It
is a simple exercise to check that the above recipe, with

X0 = iH2, X1 = H1, (12.91)

gives the SWIP solutions.
It is natural to conjecture that the same (or a similar) recipe should work in more general

cases since the basic principle of correspondence between components of the metric and
special-geometry invariants should be valid.13 However, in practice, the SWIP solutions re-
main the only solutions whose complete explicit form is known. Also, from our experience
with the general (non-supersymmetric) SWIP solutions, it is to be expected that general
(non-supersymmetric) BH-type solutions of N = 2 SUEGRA can also be constructed by
introducing non-extremality functions and a background metric.

13 The construction of extreme BH solutions of N = 2 SUEGRAs is reviewed in [43, 57, 708, 709].



13
Unbroken supersymmetry

In our study of several solutions in the previous chapters we have mentioned that some
special properties that arise for special values of the parameters (mass, charges) are related
to supersymmetry; more precisely, to the existence of (unbroken) supersymmetry. Those
statements were a bit surprising because we were dealing with solutions of purely bosonic
theories (Einstein–Maxwell, Kaluza–Klein . . . ).

The goal of this chapter is to explain the concept and implications of unbroken supersym-
metry and how it can be applied in purely bosonic contexts, including pure GR. Supersym-
metry will be shown to have a very deep meaning, underlying more familiar symmetries
that can be constructed as squares of supersymmetries. At the very least, supersymme-
try can be considered as an extremely useful tool that simplifies many calculations and
demonstrations of very important results in GR that are related directly or indirectly to the
positivity of energy (a manifest property of supersymmetric theories).

As a further reason to devote a full chapter to this topic, unbroken supersymmetry is
a crucial ingredient in the stringy calculation of the BH entropy by the counting of mi-
crostates. It ensures the stability of the solution and the calculation under classical and
quantum perturbations.

To place this subject in a wider context, we will start by giving in Section 13.1 a general
definition of residual (unbroken) symmetry and we will relate it to the definition of a vac-
uum. Vacua are characterized by their symmetries, which determine the conserved charges
of point-particles moving in them and, ultimately, the spectra of quantum-field theories
(QFTs) defined on them. These definitions will be applied in Section 13.2 to supersymme-
try as a particular case. In this section we will have to develop a new tool, the covariant Lie
derivative, which will be used to find the unbroken-supersymmetry algebra of any given
solution according to Figueroa-O’Farrill’s prescription in [390]. In Section 13.3 we will
apply this prescription and the geometrical methods of [25] to the vacua of the simplest
four-dimensional supergravity theories and we will try to recover the supersymmetry alge-
bras that we gauged to construct them in Chapter 5. These vacuum superalgebras will then
be used in Section 13.5 to understand the properties of other solutions (with or without
unbroken supersymmetry) with the same asymptotic behavior. In particular, they can be
used to derive supersymmetry or BPS bounds. We will also discuss the results known for
minimal d = 5, 6 supergravities, but we will leave higher-dimensional supergravities and

369
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theories with more supercharges for Part III because these theories can be derived from
ten-dimensional superstring effective theories, but we will say what can be expected from
general arguments based on the structures of the respective superalgebras.

In Section 13.5 we will study the properties of solutions with partially broken supersym-
metry that cannot be considered vacua but instead can be considered as excitations of some
vacuum to which they tend asymptotically. By associating states in a quantum theory with
these solutions and using the vacuum superalgebra, general supersymmetry bounds for the
mass can be derived. These bounds are saturated by (supersymmetric or “BPS”) states with
partially unbroken supersymmetry. The bounds can be extended to solutions of the theory,
even in the absence of supersymmetry, if certain conditions on the energy–momentum ten-
sor are imposed. These are very powerful techniques.

In Section 13.5.2 we will review important examples of solutions with unbroken su-
persymmetries in N = 1, 2, 4, d = 4 Poincaré supergravity, including the general families
of supersymmetric solutions which are known only for these cases. In particular, we will
discuss the relations among BH thermodynamics, cosmic censorship, and unbroken super-
symmetry in these theories.

13.1 Vacuum and residual symmetries

The solutions of the equations of motion of a given theory usually break most (or all) of its
symmetries. Sometimes a solution has (preserves) some of them, which receive the name
of residual (or unbroken) symmetries, and, being symmetries, they form a symmetry group.
The solution is said to be symmetric. The symmetries of the theory which are broken by
the symmetric solution can be used to generate new solutions of the theory. Let us see two
examples.

Classical mechanics. The Lagrangian of a free relativistic particle moving in Minkowski
spacetime is invariant under the whole Poincaré group ISO(1,3). However, every
solution is a straight line, invariant only under translations parallel to it and rotations
with it as the axis. These are the residual symmetries of every solution and form a
two-dimensional group R × SO(2). The remaining Poincaré transformations move
the line and generate other solutions.

Field theory. Einstein’s equations are invariant under the infinite-dimensional group of
GCTs. However, a given solution (metric) is invariant only under a finite-dimensional
group of isometries. By definition, an infinitesimal isometry is an infinitesimal GCT
that leaves the metric invariant, that is

δξ gµν = −Lξ gµν = −2∇(µξν) = 0, (13.1)

which is known as the Killing equation. The solutions ξµ = ξkµ are each the product
of an infinitesimal constant ξ times a Killing vector kµ, the generator of the isometry.

The isometries of a metric form an isometry group. This is a finite-dimensional Lie
group, whose generators are Killing vectors. The finite-dimensional Lie algebra of
isometries coincides with the Lie algebra of the Killing vectors with the Killing
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bracket by virtue of the property of the Lie derivative

[Lk1,Lk2 ] = L[k1,k2]. (13.2)

(This structure is induced from the infinite-dimensional group of all GCTs, of which
the isometry group is a subgroup.)

Formally we can associate a generator of the abstract symmetry algebra of the solu-
tion P(I ) with each of its Killing vectors k(I ). This abstract generator is represented
on the metric by an operator, which is just minus the Lie derivative with respect to the
corresponding Killing vector P(I ) ∼ −Lk(I ) . Then, if the Lie algebra of the isometries
is [k(I ), k(J )] = − f I J

K k(K ), the abstract symmetry algebra takes the form

[P(I ), P(J )] = f I J
K P(K ). (13.3)

What happens if there are matter fields in the theory? If they are standard tensor
fields1 T , infinitesimal GCTs act on them through (minus) the Lie derivative:

δξ T = −Lξ T . (13.4)

Only those GCTs that leave invariant all fields of a solution will be (unbroken) sym-
metries of that solution. Thus, only those isometries that leave invariant the matter
fields,

−Lk(I ) T = 0, (13.5)

generate the symmetry algebra of the solution.

Finally, GCTs that are not symmetries transform the solution into another solution,
which may be physically equivalent if the boundary conditions are invariant, but will
be inequivalent otherwise.

The second example is evidently richer and more interesting. In it the presence of residual
symmetries has far-reaching consequences. For instance, we have proven in Section 3.3 that
point-particles moving in a curved spacetime with isometries have a conserved quantity
associated with every isometry. If we construct QFTs in such a spacetime, the quanta of the
fields will appear in unitary representations of the symmetry (isometry) group, according
to Wigner’s theorem. The spectrum and the kinematics of the QFT are thus determined by
the symmetry group.

The simplest and best-known example is Minkowski spacetime, whose isometry group
is Poincaré’s ISO(1, d − 1): a particle moving in Minkowski spacetime has d(d + 1)/2

1 If the matter fields are not standard tensor fields, i.e. if they are spinors or fields transforming covariantly
under some other local symmetry of the theory (local Lorentz transformations for spinors and Vielbeins,
gauge transformations for charged fields . . . ), then the standard Lie derivative does not give a good repre-
sentation of the infinitesimal GCTs because it is not covariant under those local symmetries and the results
would depend on the frame or gauge chosen. Instead we have to use a generalized covariant Lie derivative,
as we will see in the next section, since this problem is relevant in supergravity theories.
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conserved quantities (the d components of the momentum and the d(d − 1)/2 compo-
nents of the angular momentum). QFTs in Minkowski spacetime are constructed pre-
serving Poincaré symmetry and the quanta of the fields will be particles defined by the
values of the invariants that can be constructed with the conserved quantities (mass and
spin).

It is natural to associate solutions with a maximal number of unbroken symmetries with
possible vacuum states of the QFT. These states will be annihilated by the operators associ-
ated with these symmetries in the quantum theory. In GR with no cosmological constant, the
only maximally symmetric solution is the Minkowski spacetime (ten isometries in d = 4
dimensions). With a (negative) positive cosmological constant, the Minkowski metric is
not a solution and the only maximally symmetric solutions are the (anti-)de Sitter space-
times whose isometry group (SO(2,3)) SO(1,4) is also ten-dimensional. These are the only
maximally symmetric solutions of GR.

It is possible to define field theories in (anti-)de Sitter spacetime, but it is also possible
(albeit unusual) to do it in spacetimes with fewer isometries, except in higher dimensions:
for instance, we have studied in Chapter 11 Kaluza–Klein vacua that are the products of
d-dimensional Minkowski spacetime and a circle whose isometry group is considerably
smaller than that of (d + 1)-dimensional Minkowski spacetime, which is spontaneously
broken by the choice of vacuum. The spectrum of the KK theory is determined by the
unbroken symmetry group, and it is the spectrum of a d-dimensional theory with gravity.
The name spontaneous compactification could be applied to this and other cases in which
there is a classical solution that we associated with a vacuum in which the spacetime is a
product of a lower-dimensional spacetime and a compact space.

We can also consider other solutions of GR that asymptotically approach one of the three
vacua we just mentioned. As we have stressed repeatedly, solutions of this kind represent
isolated systems in GR. We can use the Abbott–Deser formalism of Section 6.1.2 to find
the values of the d(d + 1)/2 conserved quantities of those spacetimes which are associated
with the isometries of the vacuum (even if the solutions themselves do not have any isom-
etry). If we associate with the systems described by the asymptotically vacuum solutions
states of a QFT built over the associated vacuum state, then the generators of the symme-
try algebra have a well-defined action on them.2 On the other hand, only the vacuum state
is annihilated by all those generators, corresponding to its invariance under all the isome-
tries. In particular, the vacuum state will be annihilated by the energy operator, and thus
(if we restrict ourselves to states with non-negative energy) it will be the state with min-
imal energy. This point is problematic in de Sitter spacetimes, which compromises their
stability.

This association of solutions that approach asymptotically a vacuum and states of a quan-
tum theory on which the generators of the vacuum isometries act is a very fruitful point of
view that we will use extensively. It can be extended to less-symmetric vacua, defining its
own class of asymptotic behavior.

We are now ready to extend this concept to the supersymmetry context.

2 It should be stressed that this can be done for all the states corresponding to spacetimes with the same
asymptotic behavior. We cannot compare the energies of, say, asymptotically flat and asymptotically anti-de
Sitter spacetimes.
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13.2 Supersymmetric vacua and residual (unbroken) supersymmetries

In general, the solutions of a supergravity theory are not invariant under any of the (infinite)
supersymmetry transformations that leave the theory invariant. Those which are invariant
under some (always a finite number of residual or unbroken supersymmetries) are said to
be supersymmetric, BPS, or BPS-saturated.3

Schematically, the local supersymmetry transformations take the form

δε B ∼ εF,

δε F ∼ ∂ε + Bε,
(13.6)

for boson (B) and fermion (F) fields. We are interested in purely bosonic solutions since
these are the ones that correspond to classical solutions.4 They are also solutions of the
bosonic action that one obtains by setting to zero all the fermion fields of the supergravity
theory, because this is always a consistent truncation. These bosonic actions are just well-
known actions of GR coupled to matter fields (for instance, the Einstein–Maxwell theory
in the N = 2, d = 4 supergravity case).

According to the general definition, a bosonic solution will be supersymmetric if the
above transformations vanish for some infinitesimal supersymmetry parameter ε(x). In the
absence of fermion fields, the bosonic fields are always invariant, and it is necessary only
that the supersymmetry transformations of the fermion fields vanish:

δκ F ∼ ∂ε + Bε = 0. (13.7)

From the superspace point of view, this can be seen as invariance under an infinitesimal
super-reparametrization. Thus, by analogy with GR, this is called the Killing spinor equa-
tion and its solutions can be seen as the product of an infinitesimal anticommuting number
ε and a finite commuting spinor κ called a Killing spinor that also satisfies the above equa-
tion. There is a different Killing spinor equation for each supergravity theory but, since we
have defined it for purely bosonic configurations, it can be used without any reference to
supergravity or fermion fields.

What is the symmetry group generated by the Killing spinors? Clearly, it has to be
a finite-dimensional supergroup of which the Killing spinors are the fermionic genera-
tors. The supergroup is part of the infinite-dimensional supergroup of superspace super-
reparametrizations that includes all the local supersymmetry transformations, GCTs, etc.
However, where are the bosonic generators?

In the case of the isometry group of a metric, the structures of the finite-
dimensional group and of the algebra of its generators are inherited from those of the

3 We focus on local supersymmetries, although it is evidently possible to define unbroken supersymmetry in
theories that are invariant only under global supersymmetry. For instance, in the context of super-Yang–Mills
theory, the Bogomol’nyi–Prasad–Sommerfield (BPS) limit of the ’t Hooft–Polyakov monopole discussed in
Section 9.2.3 has some unbroken supersymmetries. This is why supersymmetric solutions are sometimes
called BPS solutions. The reason why they are called BPS-saturated will be explained when we discuss
supersymmetry, Bogomol’nyi, or BPS bounds.

4 We observe only macroscopic bosonic fields in nature. However, technically, we could equally well con-
sider non-vanishing fermionic fields. Also, we can generate fermionic fields by performing supersymmetry
transformations on purely bosonic solutions.
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infinite-dimensional group of all GCTs. In this case, the structure of the finite-dimensional
supersymmetry group of a solution is inherited from that of the infinite-dimensional super-
group of all local supersymmetry transformations, GCTs, etc. of the supergravity theory.
The commutator of two local supersymmetry transformations is a combination of all the
symmetries of the theory: for instance, in N = 2, d = 4 Poincaré supergravity, given by
Eq. (5.96), a GCT, a local Lorentz rotation, a U(1) gauge transformation, and a local super-
symmetry transformation with parameters that depend on ε1,2 and the fields of the theory.
Now, if κ1,2 are Killing spinors of a bosonic solution, the commutator will give bosonic
symmetries of the same solution. In particular, we find that the solution will be invariant5

under GCTs generated by bilinears of the form6

kµ = −i κ̄1γ
µκ2. (13.8)

Other Killing spinor bilinears will be associated with generators of other (non-geometrical)
symmetries of the solution. This is how the bosonic generators of the supersymmetry group
of a bosonic solution arise.

Following our previous discussion of isometries in general-covariant theories, we can
associate solutions admitting a maximal number of Killing spinors (maximally supersym-
metric solutions) with vacua of the supergravity theory. Now, a given supergravity can have
more than one maximally supersymmetric solution (vacuum). Usually, one of the vacua
is also a maximally symmetric solution (Minkowski or AdS), but the other vacua are not
and have non-vanishing matter fields. Each of these vacua defines a class of solutions with
the same asymptotic behavior, which can be associated with states of the QFT that one
would construct on the corresponding vacuum. The vacuum supersymmetry algebras can
be used to define conserved quantities for those spacetimes/states. Thus, we can study the
supersymmetries of these spacetimes using knowledge of their conserved charges and the
superalgebra of the asymptotic vacuum spacetime or by solving the Killing spinor equation
directly. We will do this in Section 13.5.

Our immediate task is to develop a method by which to find the supersymmetry al-
gebras of the vacuum (or any other) solutions. Let us proceed by analogy with the non-
supersymmetric-gravity case discussed in the previous section. There will be a bosonic
generator P(I ) of the abstract supersymmetry algebra for each Killing vector k(I )

µ that gen-
erates a GCT that leaves invariant all the fields of the solution, there will be other “internal”
bosonic generators B(M) associated with each invariance of the matter fields, and there
will be a fermionic generator Q(A) of the abstract supersymmetry algebra for each Killing
spinor κα

(A).
Now, we have to identify all the generators of the abstract supersymmetry algebra with

operators acting on the supergravity fields. The (anti)commutators of these operators will
give the corresponding (anti)commutators of the superalgebra generators.

Let us start with the bosonic generators P(I ). On world tensors, each P(I ) is represented
by (minus) the standard Lie derivative with respect to the corresponding Killing vector k(I ),
which transforms world tensors into world tensors of the same rank. However, most of the

5 This statement will be made more precise shortly.
6 If κ1 and κ2 are identical commuting Killing spinors, the bilinear does not vanish. Furthermore, it can be

shown that kµ = −i κ̄γ µκ is always timelike or null in d = 4, null in N = 1, d = 10 supergravity, etc.
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fields in supergravity theories are Lorentz tensors (with vector or spinor indices) and the
standard Lie derivative is not covariant under local Lorentz transformations and its action
on Lorentz tensors is frame-dependent.

This has annoying consequences: for instance the Lie derivatives of Vielbeins with re-
spect to a Killing vector will not be zero in general, even though the same Lie derivative of
the metric always will.

On the other hand, Lorentz tensors (and, in particular, spinors) in curved spaces are
treated as scalars under GCTs in (Weyl’s) standard formalism explained in Section 1.4.
Then, if we work in Minkowski spacetime in curvilinear coordinates using Weyl’s formal-
ism and perform a Lorentz transformation, all Lorentz tensors and spinors will be invariant.
This looks strange, but is not unphysical: in practice one always makes a choice of frame
based on some simplicity criterion. For instance, we could always set the Vielbein matrix
in an upper-triangular form using local Lorentz transformations. This choice can be seen as
a gauge-fixing condition that uses up all the Lorentz gauge symmetry. If we now perform
a GCT (for instance, the Lorentz transformation we were discussing), it will be necessary
to implement a compensating local Lorentz transformation in order to keep the Vielbein
matrix upper-triangular. This local Lorentz transformation will act on all Lorentz tensors
and can be understood as the effect of the GCT on them.

It is necessary for our purposes to find an operator acting on Lorentz tensors that imple-
ments the adequate compensating local Lorentz transformation for each GCT. This operator
is the Lie–Lorentz derivative [748], which was first introduced for spinors by Lichnerowicz
and Kosmann in [632, 633, 655] and used in supergravity by Figueroa-O’Farrill in [390]
(see also [586, 919, 920]). In simple terms, it is just a Lorentz-covariant Lie derivative.

Analogous problems arise whenever there are additional local symmetries. For instance,
in N = 2, d = 4 supergravity there is a local U(1) symmetry. In the Poincaré case only the
gauge potential Aµ transforms under it, but in the AdS case (“gauged N = 2, d = 4 super-
gravity”) the gravitinos and infinitesimal supersymmetry parameters transform as doublets
(they are charged). A U(1)-covariant derivative (Lie–Maxwell derivative) is needed in order
to represent infinitesimal GCTs on these fields.

Covariant Lie derivatives can be found also in the context of the geometry of reductive
coset spaces G/H (see Appendix A.4) on which there is a well-defined action of H . In fact,
the Lie–Lorentz derivative coincides with it in coset spaces in which spinors can be defined
and H is a subgroup of the Lorentz group [25].

More generally, they can be defined in principal bundles with a reductive G-structure7

[460], but here we will not make use of this formalism.

13.2.1 Covariant Lie derivatives

The Lie–Lorentz derivative The spinorial Lie–Lorentz derivative with respect to any vector
v of a Lorentz tensor T transforming in the representation r is given by

LvT ≡ vρ∇ρT + 1
2∇[avb] 
r (Mab)T, (13.9)

7 Recall that G/H is a principal bundle over G/H with structure group H , so this is a special case.
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and, on mixed world–Lorentz tensors Tµ1···µm
ν1···νn ,

LvTµ1···µm
ν1···νn ≡ vρ∇ρTµ1···µm

ν1···νn − ∇ρv
ν1 Tµ1···µm

ρν2···νn − · · ·
+ ∇µ1v

ρTρµ2···µm
ν1···νn + · · · + 1

2∇[avb] 
r (Mab)Tµ1···µm
ν1···νn ,

(13.10)

where ∇µ is the full (affine plus Lorentz) torsionless covariant derivative satisfying the first
Vielbein postulate and 
r (Mab) are the generators of the Lorentz algebra in the representa-
tion r . ∇[avb] is the parameter of the compensating Lorentz transformation.

This derivative enjoys certain properties only when it is taken with respect to a Killing
vector or a conformal Killing vector. In particular, the property Eq. (13.12) which allows us
to define a Lie algebra structure holds only for conformal Killing vectors and we are going
to restrict our study to that case.

For any two mixed tensors T1 and T2 and any two conformal Killing vectors k1 and k2

and constants a1 and a2 we have the following.

1. Lk satisfies the Leibniz rule:

Lk(T1T2) = Lk(T1)T2 + T1Lk T2. (13.11)

2. The commutator of two Lie–Lorentz derivatives

[Lk1, Lk2 ] T = L[k1,k2] T, (13.12)

where [k1, k2] is the Lie bracket.

3. Lk is linear in the vector fields

La1k1+a2k2
T = a1

Lk1 T + a2
Lk2 T . (13.13)

Thus, Lk is a derivative and provides a representation of the Lie algebra of conformal
isometries of the manifold.

Some further properties are the following.

1. The Lie–Lorentz derivative of the Vielbein is

Lkea
µ = 1

d
∇ρkρea

µ, (13.14)

and vanishes when k is a Killing vector (not just conformal). In this case, we have

Lkξ
a = ea

µLkξ
µ. (13.15)

2. If kµ = σµ
νxν with σµν = −σ νµ and constant is an infinitesimal global Lorentz

transformation in Minkowski spacetime with Cartesian coordinates, then, on a spinor
ψ , as we wanted

Lk = kµDµψ + 1
4D[akb]γ

abψ = kµ∂µψ + 1
4σabγ

abψ. (13.16)
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3.
Lkγ

a = 0. (13.17)

4. Owing to Eqs. (13.11), (13.14), and (13.17), the Lie–Lorentz derivative with respect
to Killing vectors preserves the Clifford action of vectors v on spinors ψ , v · ψ ≡
va


aψ =�vψ :
[Lk, �v] ψ = [k, v] · ψ. (13.18)

5. Also, for Killing vectors k only, it preserves the covariant derivative

[Lk, ∇v] T = ∇[k,v] T . (13.19)

6. All this implies that the Lie–Lorentz derivative with respect to Killing vectors pre-
serves the supercovariant derivative of N = 1, 2, d = 4 Poincaré and N = 1, d = 4
AdS supergravity theories,

[Lk, D̃v] ψ = D̃[k,v] ψ, (13.20)

if
Lk Fµν = 0. (13.21)

It should be clear that (minus) the Lie–Lorentz derivative with respect to the Killing vec-
tors of the theory −Lk(I ) should be the operator that represents the bosonic generators P(I )

on the Vielbein ea
µ and on the infinitesimal supersymmetry parameters ε in N = 1, 2, d = 4

Poincaré and N = 1, d = 4 AdS theories.

The Lie–Maxwell derivative. How are the P(I )s represented on the other fields Aµ and
ψµ? Aµ is defined in any solution up to U(1) gauge transformations8 and, even though it
transforms under GCTs as a vector field, the action of the standard Lie derivative is also
gauge-dependent. This is similar to our problem with Lorentz tensors, but not quite the
same, because Aµ is a connection and does not transform as a U(1) tensor. Thus, we do not
expect to find a U(1)-covariant non-trivial generalization of the Lie derivative for it. It is
easy to construct a gauge-invariant generalization of the Lie derivative by adding a com-
pensating U(1) gauge transformation:

Lk Aµ − ∂µ(kν Aν), (13.22)

but it does not have the crucial Lie-algebra property. We could try to add another gauge
transformation with parameter ,

Lk Aµ − ∂µ(kν Aν + ), (13.23)

but it works only if
∂µ = kλFµλ, (13.24)

and then Eq. (13.23) vanishes for any Aµ. This is in fact how the P(I )s are represented on
Aµ: on looking into the commutator Eq. (5.96), we find on the r.h.s. a GCT and a gauge

8 Of course, the P(I )s are represented on the field strength Fµν by the standard Lie derivative. The condition
Eq. (13.21) is a necessary condition for the corresponding P(I ) to be a symmetry of the complete solution.
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transformation with parameter χ = kν Aν +  with  = −i ε̄2σ
2ε1 and it can be checked

that, for Killing spinors, we have, precisely,

∂µ

(−i κ̄(B)σ
2κ(A)

) = k(I )
λFµλ k(I )

µ ≡ −i κ̄(A)γ
µκ(B). (13.25)

This exercise is useful because there can be other gauge-dependent fields in the super-
gravity theory: in N = 2, d = 4 AdS (gauged) supergravity the gravitinos ψµ and the super-
symmetry parameters ε (and, therefore, the Killing spinors, if any) are electrically charged
and transform according to

A′
µ = Aµ + ∂µχ, ψ ′

µ = e−igχσ 2
ψµ, ε′ = e−igχσ 2

ε, (13.26)

and we need to define a U(1) and Lorentz-covariant Lie derivative for them. For the super-
symmetry parameters ε and Killing vectors k, we define

Lkε ≡ Lkε + ig(kµ Aµ + )σ 2ε, (13.27)

where  has been defined above and exists if k is Killing and Eq. (13.21) is satisfied. This
derivative has the Lie algebra property and also preserves the N = 2, d = 4 AdS superco-
variant derivative

[Lk,
ˆ̃Dv] ε = ˆ̃D[k,v] ε, (13.28)

under the condition Eq. (13.21), which is necessary anyway in order for the associated P(I )

to be a symmetry of the whole solution.
A non-Abelian generalization of all these formulae can be found in Appendix A.4.1.
For the gravitinos ψµ we expect problems similar to those we found for Aµ since they can

be considered (super) gauge fields and transform inhomogeneously under supersymmetry.
The role of the supersymmetry transformation that appears in the commutators Eqs. (5.45),
(5.58) and (5.96) will clearly be that of compensating the effect of the GCT.

13.2.2 Calculation of supersymmetry algebras

We have developed all the tools we need to calculate the symmetry superalgebra of any
supergravity solution. Now we just have to follow this six-step recipe [390].

1. First we have to solve the Killing and Killing-spinor equations. We keep only the
Killing vectors that leave invariant all the fields of the solution. Furthermore, we have
to find any other “internal” invariance of the fields.

2. With each Killing vector k(I )
µ we associate a bosonic generator of the superalgebra

P(I ), with any internal symmetry of the fields another bosonic generator B(M), and
with each Killing spinor κ(A)

α we associate a fermionic generator (supercharge) Q(A).

The bosonic subalgebra is in general the sum of two subalgebras generated by the
P(I )s and the B(M)s with structure constants f I J

K and fM N
P . The fermionic gener-

ators are in representations of these bosonic subalgebras. These representations are
determined by the structure constants f AI

B and f AM
B that appear in

[Q(A), P(I )] = f AI
B Q(B), [Q(A), B(M)] = f AM

B Q(B). (13.29)
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The superalgebra is determined by these four sets of structure constants plus the
structure constants f AB

I that appear in the anticommutators

{Q(A), Q(B)} = f AB
I P(I ). (13.30)

3. The structure constants f I J
K of the bosonic subalgebra are simply those of the isom-

etry Lie algebra
[k(I ), k(J )] = − f I J

K k(K ). (13.31)

4. The commutators [Q(A), P(I )] can be interpreted as the action of the bosonic genera-
tors on the fermionic generators, which transform under some (spinorial) representa-
tion of the bosonic subalgebra with matrices 
s(P(I ))

B
A = f AI

B . Since the covariant
Lie derivative has been defined to represent the action of infinitesimal GCTs on any
kind of Lorentz tensors or spinors, and, according to Eqs. (13.19) and (13.20), trans-
forms Killing spinors into Killing spinors, which, therefore, furnish a representation
of the bosonic subalgebra, it is natural to expect that the structure constants f AI

B are
given by the covariant Lie derivatives

Lk(I )κ(A) ≡ f AI
Bκ(B). (13.32)

5. We have mentioned that the bilinears of Killing spinors −i κ̄(A)γ
µκ(B) are Killing vec-

tors. In fact, in the commutator of two local N = 1, 2, d = 4 supersymmetry trans-
formations with parameters ε1,2 given in Eqs. (5.45), (5.58), and (5.96) we found a
GCT (more precisely, (minus) a standard Lie derivative) with parameter −i ε̄1γ

µε2, a
local Lorentz transformation, and a gauge transformation. When we use two Killing
spinors κ(A),(B) instead, on the r.h.s. we always find −Lk , where kµ is the Killing
vector −i κ̄(A)γ

µκ(B), which must be a linear combination of the Killing vectors k(I ).
The structure constants f AB

I are thus given by the decomposition of the bilinears

−i κ̄(A)γ
µκ(B) ≡ f AB

I k(I )
µ. (13.33)

6. The structure constants involving the internal generators B(M) have to be determined
case by case. They appear in extended supergravities and in general they are constant
gauge transformations of vector fields that also act on the spinors.

We are now ready to apply these prescriptions to some basic examples, but it is useful to
present some general considerations first.

13.3 N = 1, 2, d = 4 vacuum supersymmetry algebras

We have defined supergravity vacua as the classical solutions that admit a maximal number
of Killing spinors, i.e. four in N = 1, d = 4 theories and eight in N = 2, d = 4 theories. A
necessary (and locally sufficient) condition for a solution to be maximally supersymmetric
is that the integrability condition of the Killing spinor equation admit the maximal number
of possible solutions.



380 Unbroken supersymmetry

The Killing spinor equation takes the generic form D̃µκ = 0, where D̃µ = ∂µ − µ (the
supercovariant derivative) can be understood as a standard covariant derivative with a con-
nection µ that is the combination of the spin connection and other supergravity fields
contracted with gamma matrices:

µ = µ
I 
s(TI ), (13.34)

where 
s(TI ) stands for different antisymmetrized products of gamma matrices that consti-
tute a (spinorial) representation of some of the generators of some algebra. Thus, the Killing
spinor equation can be understood as an equation of parallelism. This is why Killing spinors
are sometimes called parallel spinors.

The integrability condition says that the commutator of the supercovariant derivative on
the Killing spinor has to be zero, that is

[D̃µ, D̃ν]κ = 0, ⇒ Rµν()κ = 0, (13.35)

where Rµν() is the curvature associated with the connection . This is a homogeneous
equation. The space of non-trivial solutions is determined by the rank of the matrix Rµν(),
which is a linear combination of 
s(TI )s with coefficients that depend on the values of the
supergravity fields in the solution. In particular, we can have maximal supersymmetry only
if Rµν() = 0 identically (the connection is flat), which means that all the coefficients in
the linear combination have to vanish.

All the maximally supersymmetric solutions known have homogeneous reductive space-
times with invariant metrics and the connection 1-form  turns out to be the Maurer–Cartan
1-form V defined in Eq. (A.106) in a spinorial representation [25, 26]. In symmetric spaces,
the spin connection contributes with the vertical components of V :

− 1
4ωabγ

ab = −ϑ i
s(Mi ), 
s(Mi ) ≡ 1
4 fia

bγb
a, (13.36)

due to Eq. (A.117) and the fact that the structure constants fia
b are a representation of h on

k, which makes the above 
s(Mi ) a spinorial representation of h.
All the horizontal components of V must come from the contribution of the supergravity

fields. In the non-symmetric case [26] a combination of the two contributions gives V .
The curvature of the 1-form V is identically zero: in the language of differential forms

D̃ = d − V, ⇒ R(V ) = dV − V ∧ V = 0, (13.37)

which are precisely the Maurer–Cartan equations. The Killing spinor equations admit a
maximal number of solutions and, actually, since V = −
s(u−1)d
s(u) where 
s(u) is
the coset representative defined in Eq. (A.104) using the spinorial representation 
s(P(a))

dictated by the supergravity theory, the Killing spinors take the form

κ = 
s(u
−1)κ0, (13.38)

where κ0 is any constant spinor. Choosing independent constant spinors we find the follow-
ing basis of Killing spinors:

κ(α)
β = 
s(u

−1)β
α. (13.39)
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This result reproduces the construction of Killing spinors on spheres and AdS space
made in [667] but the calculations are dramatically simplified and the geometrical meaning
of the construction is clearer.

On the other hand, this form of the Killing spinors is extremely useful for computing
the supersymmetry algebra. First, it can be shown [25] that the Lie–Lorentz derivatives
associated with the Killing vectors coincide with the H -covariant Lie derivatives defined in
Eq. (A.4.1). Then, using the property Eq. (A.128), we immediately find

Lk(I )κ(α)
β = −κ

β

(γ )
s(TI )
γ

α, ⇒ fα I
γ = −
s(TI )

γ
α. (13.40)

Let us now consider the Killing-spinor bilinears. We consider only Majorana spinors.
Then the bilinears take the form

−i κ̄(α)γ
µκ(β)∂µ = −i
s(u

−1)α
γCγ δ(γ

a)δ
ε
s(u

−1)ε
β, (13.41)

where C is the charge-conjugation matrix.
Usually, one finds that the spinorial representation is proportional to the gamma matrices,


s(Pa) = Sγa. (13.42)

When S is invertible and the Killing metric is also invertible9 we can write

γ a = S
s(Pa), (13.43)

where 
s(Pa) is a dual representation. The combination C̃ ≡ CS acts as a charge-
conjugation matrix in the subspace spanned by the horizontal generators in the spinorial
representation

C̃−1
s(Pa)TC̃ = −
s(Pa), (13.44)

so

s(u

−1)TCγ a = 
s(u
−1)TC̃
s(Pa) = C̃
s(u)
s(Pa). (13.45)

and, thus,
−i κ̄(α)γ

µκ(β)∂µ = −i C̃αγ 
s(u)γ
δ
s(Pa)δ

ε
s(u
−1)ε

βea. (13.46)

In this expression we can recognize u Pau−1 in the spinorial representation, which is the
coadjoint action of the coset element u on Pa ,

−i κ̄(α)γ
µκ(β)∂µ = −i C̃αγ 
s(T I )γ

β
Adj(u−1)a
I ea = −i C̃αγ 
s(T I )γ

βk(I ),

⇒ fαβ
I = −i C̃αγ 
s(T I )γ

β,
(13.47)

where we have used Eq. (A.114).
In extended supergravities, one may also have to compute other Killing-spinor bilinears

−i κ̄(α)�
(M)κ(β), where �(M) acts on internal spinor indices that we are not showing. In

some cases, the internal symmetries are related to the vertical generators Mi ,

�(i) = S
s(Mi ), (13.48)

9 This is usually the case. The exceptions are the Kowalski–Glikman Hpp-waves and the five-dimensional
Gödel-like solution of [420].
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and, using the property of the matrix S, one finds

−i κ̄(α)�
(i)κ(β) = −i C̃αγ 
s(T I )γ

β
Adj(u
−1)i

I = i C̃αγ 
s(T I )γ
β(kµ

(I )ϑ
i
µ + W i

I ). (13.49)

In the light of Appendix A.4.1 this means that −i κ̄(α)�
(i)κ(β) gives the infinitesimal

parameter of the gauge transformation of the vertical Maurer–Cartan 1-forms ϑ i that can
be compensated by a diffeomorphism.

This result can be understood only after the realization that, in all these cases, the vertical
Maurer–Cartan 1-forms ϑ i enter the solution in a non-trivial form. The simplest example
is the Robinson–Bertotti solution of N = 2, d = 4 Poincaré supergravity, with AdS2 × S2

geometry in which the Maxwell vector field is identical to a linear combination of the
two vertical Maurer–Cartan 1-forms. The same is true for the KG4 solution. In the higher-
dimensional cases that we will study in Part III (Section 19.5.1), the matter fields (differen-
tial forms of higher rank) are also given in terms of the ϑ i s, which are non-Abelian.

We are now going to focus again on the simplest N = 1, 2, d = 4 cases. First, we are
going to derive the Killing-spinor integrability condition for N = 2, d = 4 gauged super-
gravity because, in the g → 0 limit, we can recover the integrability condition for the un-
gauged case, and, on setting Aµ = 0 and ignoring one fermion, we obtain the N = 1 cases.

13.3.1 The Killing-spinor integrability condition

The integrability condition in N = 2, d = 4 gauged supergravity is

[ ˜̂Dµ,
˜̂Dν]κ = 0. (13.50)

The supercovariant derivative ˜̂Dµ is given in Eq. (5.101). We immediately find

[ ˜̂Dµ,
˜̂Dν] = [D̂µ, D̂ν] + gFµνiσ 2 − i

2
∇̂[µ �Fγν]iσ

2 + 1

8
�Fγ[µ �Fγν]. (13.51)

The first term gives the SO(2,3) curvature that can be put into the form

[D̂µ, D̂ν] = − 1
4

(
Rµν

ab + 2g2eµ
[aeν

b]
)
γab. (13.52)

The third term can also be put into the form

− i

2
D̂[µ �Fγν]iσ

2 = − i

2
∇[µ �Fγν]iσ

2 − g

4

(
γ[µ �Fγν] + �Fγµν

)
iσ 2. (13.53)

The g-dependent terms together with the second term in Eq. (13.51) combine into

−g

8
Fab

(
3γ abγµν + γµνγ

ab
)
iσ 2, (13.54)

and, with some gamma gymnastics, it is possible to rewrite it in the form

− i

2
∇[µ �Fγν]iσ

2 = − i

2
�∇(

Fµν + i�Fµνγ5
)
iσ 2 + i

2
γµνρ∇σ

(
Fσρ + i�Fσργ5

)
iσ 2. (13.55)
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This term is manifestly electric–magnetic-duality invariant. Since it is not proportional
to g, this agrees with the chiral–dual invariance of the ungauged theory. Now

�Fγ[µ �Fγν] = 8i F[µ
ρ �Fν]ργ5 + 8T (A)[µ|ργ ρ |ν]. (13.56)

The first term here can be shown to be identically zero10 and T (A)µν is the bosonic part
of the vector-field energy–momentum tensor Eq. (5.79). These two terms are also electric–
magnetic-duality invariant and independent of g.

Putting everything together, we find

[ ˜̂Dµ,
˜̂Dν] = − 1

4 Rµν
abγab − 1

2 g2γµν + T (A)[µ|αγ α |ν] − i

2
�∇(

Fµν + i�Fµνγ5
)
iσ 2

+ i

2
γµνρ∇σ(Fσρ + i�Fσργ5)iσ 2 − g

8
Fab

(
3γ abγµν + γµνγ

ab
)
iσ 2.

(13.57)

We can now use the bosonic part of the Einstein equation rewritten in this form (substi-
tuting the value of R = −12g2)

T (A)µν = 1
2 Rµν + 3

2 g2gµν, (13.58)

plus the bosonic part of the Maxwell equation and the Bianchi identity. We obtain

− 1
4

{
Cµν

abγab + 2i �∇(
Fµν + i�Fµνγ5

)
iσ 2 + g

2
Fab

(
3γ abγµν + γµνγ

ab
)
iσ 2

}
κ = 0.

(13.59)
This is a homogeneous linear equation for κ . The 8 × 8 matrix is a linear combination

of tensor products of gamma matrices and Pauli matrices, all of them linearly independent.
There are terms with two gammas (and ⊗I2×2), whose coefficients are the components of
the Weyl tensor, there are terms proportional to one gamma and γ5 (⊗σ 2), whose coeffi-
cients are the components of the covariant derivative of the electromagnetic tensor and its
dual, and, finally, there are terms with zero, two, and four gammas (⊗σ 2), whose coeffi-
cients are the components of the electromagnetic tensor. In order to have maximally su-
persymmetric solutions, each of these terms has to vanish. This imposes severe constraints
on the vacuum candidates. Let us now study each case separately, and let us calculate the
symmetry superalgebra using the recipe of Section 13.2.2.

13.3.2 The vacua of N = 1, d = 4 Poincaré supergravity

On setting g = Fµν = 0 in Eq. (13.59), we find the integrability condition for the Killing
spinors of N = 1, d = 4 Poincaré supergravity. The maximally supersymmetric solutions
are those with vanishing Weyl tensor, which (since the equations of motion are Rµν = 0)
implies a vanishing Riemann curvature tensor. Thus, Minkowski spacetime is the only max-
imally supersymmetric vacuum of N = 1, d = 4 Poincaré supergravity.

10 One has to use the self-evident four-dimensional identity

ηa[bεa1...a4] Fa1a2 Fa3a4 = 0.
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In this simple case it is unnecessary to use the coset description of Minkowski spacetime.
We can compute Killing spinors and vectors directly. In Cartesian coordinates and with the
trivial frame ea

µ = δa
µ the spin and Levi-Cività connections vanish, the Killing spinors are

just constant, and the Killing vectors are the ten known generators of the Poincaré group.

Solution:
ds2 = ηµνdxµdxν, ea

µ = δa
µ, ea

µ = δa
µ. (13.60)

Killing spinors:
{κ(A)

β} = {κ(α)
β = δ(α)

β}. (13.61)

Killing vectors:
{k(I )

µ} = {k(a)
µ = ea

µ, k(ab)
µ = 2e[a

µeb]σ xσ }. (13.62)

The commutators of the bosonic generators are given by the Lie algebra of the Killing
vectors which gives the Poincaré algebra, that we do not need to write explicitly. To
find the anticommutator of two supercharges, we need to decompose the Killing vectors
−i κ̄(α)γ

µκ(β) as a combination of the k(I )
µs for each pair of indices (α) and (β). This is

easy:

−i κ̄(α)γ
µκ(β) = −i(Cγ a)(α)(β)k(a)

µ, ⇒ {Q(α), Q(β)} = −i(Cγ a)(α)(β) P(a), (13.63)

which we can convert into the standard form by raising the indices (α) and (β) with C−1.
The fact that only the translational symmetries occur could have been predicted since all
the N = 1, d = 4 Killing vectors −i κ̄(α)γ

µκ(β) are covariantly constant. These are also the
ones with vanishing compensating Lorentz transformation in the Lie–Lorentz derivative.
Since the Killing spinors are constant, we find that only Lk(ab)

κ(α)
β is different from zero

and, using ∇[a|k(bc)|d] = −2ηad,bc, we find, as expected,

[Q(α), P(ab)] = −Q(β)
1
2(γab)

β
α. (13.64)

13.3.3 The vacua of N = 1, d = 4 AdS4 supergravity

The integrability condition in N = 1, d = 4 AdS supergravity again implies the vanishing
of the Weyl tensor, but now this implies

Rµν
ab + 2g2e[µ

aeν]
b = 0, (13.65)

i.e. the space is a maximally symmetric space of constant curvature −2g2, so it is locally
AdS4 with AdS radius R = 1/g.

To construct the Killing spinors and find the symmetry superalgebra using the coset
method, we have to construct the metric and Vierbeins using the method explained in
Appendix A.4.11

11 Actually, we do not even need to implement this construction explicitly. It is enough to assume that the
Vierbeins and metric (and hence the spin connection) have been constructed by that procedure. We are
going to construct the AdS4-invariant metric just to illustrate the procedure and fix the notation.
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AdS4 can be identified with the coset space SO(2, 3)/SO(1, 3). We use the index conven-
tions of Section 4.5. g = so(2, 3), the Lie algebra of G = SO(2, 3), is written in Eq. (4.152).
It is convenient to rescale and rename the generators as in Eq. (4.154), and the commutation
relations take the form Eqs. (4.155).

The Mabs generate the subalgebra h = so(1, 3) of the Lorentz subgroup. The orthogo-
nal complement k is generated by the Pas and, on looking at the commutation relations
Eqs. (4.155), we see that we have a symmetric pair.

Now we construct the coset representative u,

u(x) = ex3 P3ex2 P2ex1 P1ex0 P0, (13.66)

and the Maurer–Cartan 1-form V ,

V = −u−1du

= −P0dx0 − e−x0 P0 P1ex0 P0dx1 − e−x1 P1e−x0 P0 P2ex0 P0ex1 P1dx2

− e−x2 P2e−x1 P1e−x0 P0 P3ex0 P0ex1 P1ex2 P2dx3. (13.67)

Using the definition of the adjoint action of the group on the algebra, we see that

e−x0 P0 P1ex0 P0 = TI 
Adj(e
−x0 P0)I

1, (13.68)

etc. and, by projecting onto the horizontal subspace, we find the Vierbeins,

e0 = −dx0, e1 = − cos x0 dx1, e2 = − cos x0 cosh x1 dx2,

e3 = − cos x0 cosh x1 cosh x2 dx2, (13.69)

which,with the Killing metric (+ − −−), give the following form of the AdS4 metric:

ds2 = (dx0)2 − cos2 x0 {(dx1)2 + cosh2 x1 [(dx2)2 + cosh2 x2 (dx3)2]}. (13.70)

The explicit form of the vertical 1-forms ϑab is not necessary, but we need to know how
they enter the spin connection. According to Eq. (A.117)

ωa
b = 1

2ϑ
cd fcd −1b

−1a = ϑacηcb. (13.71)

The Killing spinor equation is

dxµD̂µκ =
(

d − 1
4ωabγ

ab − ig

2
γaea

)
κ = 0, (13.72)

and can be written in the form (d − V )κ = 0 with12


s(Pa) = ig

2
γa, 
s(Mab) = 1

2γab. (13.73)

The Killing spinors are thus of the form Eqs. (13.38) and (13.39).

12 Compare this with Eq. (B.132).
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The dual generators 
s(Pa) can be defined by

Tr [
s(Pa)
s(Pb)] = δa
b, ⇒ 
s(Pa) = − i

2g
γ a,

Tr [
s(Mab)
s(Pcd)] = δab
cd, ⇒ 
s(Mab) = − 1

2γ
ab.

(13.74)

We see that the matrix S is just the identity in this case. The bilinears give

−i κ̄γ aκea = 2g
s(u−1)TC
s(Pa)
s(u−1)ea

= gC
s(M̂b̂ĉ)
Adj(u−1)a
b̂ĉea

= gC
s(M̂b̂ĉ)k(b̂ĉ),

(13.75)

and we recover the standard anticommutator of the supercharges,

{Q(α), Q(β)} = g[C
s(M̂âb̂)]αβ M̂âb̂ = −i(Cγ a)αβ Pa − g

2
(Cγ ab)αβ Mab. (13.76)

The commutators [Q(α), M̂âb̂] are found using Eq. (13.40):

[Q(α), M̂âb̂] = −Q(β)
s(M̂âb̂)
β

α. (13.77)

13.3.4 The vacua of N = 2, d = 4 Poincaré supergravity

The integrability condition Eq. (13.59) now gives two independent conditions for maximal
supersymmetry: a vanishing Weyl tensor and a covariantly constant Maxwell field strength.
Only three solutions satisfy them: Minkowski spacetime, the Robinson–Bertotti (RB) so-
lution [146, 812] given in Eq. (8.90), whose metric is that of the AdS2 × S2 symmetric
space, and the d = 4 Kowalski–Glikman solution (KG4) [637] given in Eq. (10.27) with
a Hpp-wave metric (again, a symmetric space, that we have constructed as a coset space
in Section 10.1.1). The symmetry superalgebra of the Minkowski spacetime is identical to
that of the N = 1 case, with additional indices i, j = 1, 2 and, thus, we will focus on the RB
and KG4 solutions since they are the simplest of a series of maximally supersymmetric so-
lutions with metrics of the same form: AdSm × Sn and Hpp whose symmetry superalgebras
can be calculated in a very similar fashion [25]. The five- and six-dimensional cases will be
discussed in Section 13.4 and the ten- and eleven-dimensional cases in Section 19.5.1, but
these four-dimensional examples already exhibit all the interesting features.

The Robinson–Bertotti superalgebra. The solution is given in Eq. (8.90), but we rewrite it
in a more convenient form, adapted to the normalization we used for the Maxwell field of
N = 2, d = 4 supergravity (a factor of two difference):

ds2 = R2
2 d�2

(2) − R2
2 d2

(2), F = −R2 ωAdS2 . (13.78)

Here d�2
(2) is the metric of the AdS2 spacetime of unit radius, d2

(2) the metric of the
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2-sphere of unit radius. That is why there are factors of R2
2 in the metric. On the other hand,

ωAdS2 is the volume 2-form of the AdS2 spacetime of unit radius.
Both AdS2 and S2 are symmetric spacetimes, SO(2, 1)/SO(2) and SO(3)/SO(2), and

their product is a symmetric space as well. We call the SO(2, 1) generators {TI }, I = 1, 2, 3,
with commutators given by Eq. (A.84) with Q = diag(+ + −), and the SO(3) generators
{T̃I }, I = 1, 2, 3, with commutators given by Eq. (A.84) with Q = diag(+ + +).

The subalgebra h is generated by T1 and T̃3 and k is generated by T2, T3, T̃1, and T̃2. We
perform the following redefinitions:

T1 = M1, T2 = R2 P1, T3 = R2 P0, T̃1 = R2 P3, T̃2 = R2 P2, T̃3 = M2. (13.79)

The coset representative is the product of the coset representatives u and ũ,

u = eR2φP0eR2χ P1, ũ = eR2ϕP3eR2(θ− π
2 )P2 . (13.80)

We obtain the Maurer–Cartan 1-forms

e0 = −R2 cosh χ dφ, e2 = −R2dθ, ϑ1 = −sinh χ dφ,

e1 = −R2 dχ, e3 = −R2 sin θdϕ, ϑ2 = − cos θ dϕ,

(13.81)

and, with the Minkowski metric, we obtain the metric of Eq. (13.78) with

d�2
(2) ≡ cosh2 χ dφ2 − dχ2, d2

(2) ≡ dθ2 + sin2 θ dϕ2. (13.82)

Observe that we can construct not just the metric, but also the vector field of the solution,
using the geometry. The RB solution Eq. (13.78) is purely electric. The gauge field is just

A = R2ϑ
1. (13.83)

We could also use the magnetic RB solution. The gauge field of that solution is

A = R2ϑ
2. (13.84)

We will work with the electric RB solution. The N = 2, d = 4 Killing-spinor equation
takes the form

dxµD̃µκ = (d − 1
4ωabγ

ab + 1
4σ

2 �Fγaea)κ = 0. (13.85)

Equation (13.36) identifies the spin-connection term with the vertical components of the
Maurer–Cartan 1-form V . The coefficients of the Vierbeins ea are the horizontal generators


s(Pa) = − 1
4σ

2 �Fγa. (13.86)

It can be checked that the representation, which is explicitly given by


s(P0) = 1

2R2
γ 1σ 2, 
s(P2) = 1

2R2
γ 0γ 1γ 3σ 2, 
s(M1) = 1

2γ
0γ 1,


s(P1) = − 1

2R2
γ 0σ 2, 
s(P3) = 1

2R2
γ 0γ 1γ 2σ 2, 
s(M2) = 1

2γ
2γ 3, (13.87)

satisfies the algebra and thus the Killing-spinor equation takes the form (d − V )κ = 0 and
the Killing spinors have the standard form (here κ = 
s(u−1ũ−1)κ0).
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To calculate the bilinears −i κ̄γ µκ we need the duals 
s(Pa):

γ a = − 4

R2
S
s(Pa), S = γ 0γ 1σ 2, Tr[
s(Pa)
s(Pb)] = δa

b. (13.88)

The modified charge-conjugation matrix C̃ = CS has the required property

C̃−1
s(Pa)TC̃ = −
s(Pa), ⇒ (uũ)−1 TC̃ = C̃uũ, (13.89)

that allows us to express the bilinears in the form

−i κ̄(αi)γ
aκ(β j)ea = 4i

R2

{
C̃[
s(T I )k(I ) + 
s(T̃ I )k̃(I )]

}
(αi β j)

, (13.90)

where the k(I )s are the Killing vectors of AdS2 and the k̃(I )s are those of S2. This translates
into the anticommutator

{Q(αi), Q(β j)} = −iδi j (Cγ a)αβ Pa + i

R2
Cαβεi j M1 + 1

R2
(Cγ5)αβεi j M2, (13.91)

that looks exactly like the N = 2, d = 4 Poincaré anticommutator with the two possible
central charges. The difference is that now the Pas commute neither with each other nor
with the Mi s, which are no longer central.

The appearance of the two “central-charge” terms is a bit surprising. Actually, they are
related to the invariance of the solution under the combined action of a gauge transforma-
tion with parameter WI

i and a reparametrization generated by k(I ), due to the identification
of the gauge field and the vertical 1-forms ϑ i (see the discussion in Appendix A.4.1). This
invariance does not commute with other reparametrizations and thus they no longer lead to
central charges.

The “central-charge” terms can also be found by calculating the bilinears −i κ̄(αi)σ
2κ(β j)

and −i κ̄(αi)σ
2γ5κ(β j), using

σ 2 = S
s(M1), σ 2γ5 = S
s(M2), (13.92)

the definition of the adjoint action, and the expression of WI
i , Eq. (A.114).

The commutators of the fermionic and bosonic generators are given by Eq. (13.40).
The RB solution induces spontaneous compactification on S2. The bosonic generators of

the so(2, 1) subalgebra will have a spacetime interpretation, and the so(3) ones will have
the interpretation of internal symmetries, which is typical of extended AdS superalgebras.
Since these act non-trivially on the supercharges, we would obtain a gauged supergravity
with so(3)-charged gravitinos.

Let us consider now the contraction limit R2 → ∞. This contraction takes AdS2 into the
two-dimensional Poincaré algebra ISO(1, 1) (M1 being the single Lorentz generator) and
SO(3) into ISO(2) (M2 being the generator of SO(2) rotations of P2 and P3, which now
have the interpretation of two-dimensional central charges).

There is another contraction limit one can take: R2 → ∞ after redefining M1 ≡ R2 Q
and M2 ≡ R2 P . In this limit, all the bosonic generators again commute with each other
and one recovers exactly the N = 2, d = 4 Poincaré superalgebra (without Lorentz gener-
ators, which can be understood here as R-parity generators) with Q and P as electric and
magnetic central charges.

Generalizations of these facts will take place in other AdSn × Sm solutions.
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The KG4 superalgebra The solution is given in Eq. (10.27), but we have to take into ac-
count the factor of two due to the normalizations being different, which changes Fu1 = 1

2λ.
The metric is that of a Cahen–Wallach symmetric space, whose coset construction is re-
viewed in Section 10.1.1, with Ai j = 1

8λ
2δi j . There is one subtlety: in order to use the coset

method, we are forced to use mostly plus signature, in which the Killing-spinor equation
takes the form (

d − 1
4ω

a
bγa

b + i

4
σ 2 �Fγaea

)
κ = 0. (13.93)

As in the RB case, not just the metric, but also the Maxwell field, can be constructed
using the vertical Maurer–Cartan 1-forms. In fact

A = 1
2λϑ1. (13.94)

An electric–magnetic-duality rotation is equivalent, in this solution, to a rotation in the
wavefront plane. The new Maxwell field would be

A = 1
2λϑ2. (13.95)

On substituting the background fields into the above Killing-spinor equation, we find that
it takes the form (d − V )κ = 0, with the spinorial representation of the Heisenberg algebra:


s(Pa) = − i

4
σ 2γ uγ 1γa, 
s(Mi ) = − 1

8λ
2γ uγ i , 
s(V ) = 0. (13.96)

The Killing spinors can be constructed immediately and the action of the Heisenberg-
algebra generators on them is trivial to find, using Eq. (13.40). However, note the following.

1. H(6) is not the whole isometry algebra of the KG4 metric: SO(2) rotations in the
wavefront plane leave the metric invariant and the full isometry group is their semidi-
rect product SO(2) � H(6) (because SO(2) acts on the H(6) generators). We would
have to include SO(2) in the coset construction in order to obtain the commutator
between the generator of SO(2) and the supercharges. However, SO(2) is not a sym-
metry of the full solution because it does not leave the field strength invariant.

2. Owing to the non-semisimplicity of the Heisenberg algebra, it is not possible to find
a relation between γ a and the dual representation 
s(Pa). Thus, the Killing-spinor
bilinears have to be calculated by brute force, but we will not do it here.

13.3.5 The vacua of N = 2, d = 4 Ad S supergravity

The integrability condition now imposes a third constraint in order for the terms with zero,
two, and four gammas to vanish: the Maxwell field-strength tensor has to vanish. Then,
the only maximally supersymmetric solutions are those of N = 1, d = 4 AdS supergravity,
i.e. AdS4 spacetime, and a basis of Killing spinors will be provided by

κ(αi)
β j = 
s(u

−1)β
αδ

j
j . (13.97)
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The superalgebra will now include a bosonic generator associated with the constant-
gauge transformations that rotate the spinor doublets and leave the vector field invariant.
This generator must appear in the anticommutator of two supercharges and the correspond-
ing structure constants are given by the bilinears −i κ̄(αi)σ

2κ(β j) = Cαβεi j .

13.4 The vacua of d = 5, 6 supergravities with eight supercharges

To complete our overview of supergravity vacua in lower dimensions, we are going to
study the vacua of the minimal supergravities in d = 5 and 6 dimensions that are related by
dimensional reduction with N = 2, d = 4 Poincaré supergravity and have the same number
of supercharges. Almost all the maximally supersymmetric vacua of these theories also
happen to be related by dimensional reduction [664].

13.4.1 N = (1, 0), d = 6 supergravity

The fields of this theory are the metric ˆ̂e ˆ̂a ˆ̂µ, 2-form field ˆ̂B−
ˆ̂µ ˆ̂ν with anti-self-dual field

strength ˆ̂H− = 3∂
ˆ̂B− and positive-chirality symplectic Majorana–Weyl gravitino ˆ̂

ψ+
ˆ̂µ [727]

(we use the gamma matrices of Appendix B).
To write an action for an anti-self-dual 3-form, one has to introduce auxiliary fields.

Alternatively, one can write an action for a generic 3-form,

ˆ̂S =
∫

d6 ˆ̂x
√

| ˆ̂g|
[

ˆ̂R + 1

12
ˆ̂H 2

]
, (13.98)

and impose the anti-self-duality constraint � Ĥ− = −Ĥ− on the equations of motion. The
Killing-spinor equation is (

ˆ̂∇ ˆ̂a − 1

48
� ˆ̂H− ˆ̂γ ˆ̂a

)
ˆ̂κ+ = 0, (13.99)

where ˆ̂κ+ is a spinor of positive chirality.
Three maximally supersymmetric vacua of this theory are known:13 Minkowski space-

time, the near-horizon limit of the extreme anti-self-dual string solution [441] that has an
AdS3 × S3 geometry, and the KG6 Hpp-wave solution [690]. The latter can be obtained by
taking the Penrose limit of the former [158, 495, 764].

The AdS3 × S3 solution can be written as follows:

d ˆ̂s2 = R2
3 d�2

(3) − R2
3 d2

(3),
ˆ̂H− = 4R3(ωAdS3 + ωS3), (13.100)

13 Actually, it has been shown in [229] that the maximally supersymmetric vacua of this theory and of N =
(2, 0), d = 6 supergravity are in one-to-one correspondence, and their metrics are locally isometric to bi-
invariant Lorentzian metrics of six-dimensional Lie groups with anti-self-dual parallelizing torsion. The
three solutions that we present have this property and exhaust all the possibilities.
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where d�2
(3) is the metric of an AdS3 spacetime of unit radius and ωAdS3 is its volume

3-form. Remarkably, the electric and magnetic components of the 2-form potential can be
written in terms of the vertical Maurer–Cartan 1-forms in AdS3 and S3, which are SO(2, 1)

and SO(3) Yang–Mills solutions (the ca are constants):

ˆ̂B− a = c(a)ε
(a)bcϑ i fibc. (13.101)

The KG6 solution can be written as follows:

dŝ2 = 2du

[
dv + λ2

6

8
�x 2
(4)du

]
− d �x2

(4),

B̂− = −λ6du ∧ (x1dx2 − x3dx4).

(13.102)

The potential can be also written as a Yang–Mills field:

ˆ̂B− i ∼ ϑ j f j
iu. (13.103)

The calculation of the Killing spinors and superalgebras can be done following the gen-
eral method. It is, however, more interesting to see how the dimensional reduction of these
solutions gives all the maximally supersymmetric vacua of N = 1, d = 5 supergravity.

13.4.2 N = 1, d = 5 supergravity

The dimensional reduction of N = (1, 0), d = 6 supergravity gives N = 1, d = 5 super-
gravity (Section 11.2.5) coupled to a vector multiplet. We are interested in reducing max-
imally supersymmetric six-dimensional solutions preserving all their unbroken supersym-
metries. When is this possible?

Let us consider the component of the gravitino in the compact direction w (which gives
rise to a five-dimensional spin − 1

2 “gaugino”) and its supersymmetry variation,

δ ˆ̂ε
ˆ̂
ψ+

w ∼ (∂w + M) ˆ̂ε+, (13.104)

where M is a combination of gamma matrices (different from the unit matrix). This equa-
tion has to vanish identically for a w-independent Killing spinor ˆ̂κ+ in order to have five-
dimensional unbroken supersymmetry, which implies that M has to vanish identically. If
we reduce a maximally supersymmetric six-dimensional solution and M does not vanish
identically, then, since the above equation vanishes for some Killing vectors, they must
depend on w and five-dimensional supersymmetry is broken. The amount of supersymme-
try broken depends on the rank of M , which tells us how many non-trivial solutions of
M ˆ̂κ+ = 0 exist, and how many six-dimensional Killing spinors are independent of w.

Up to this point, this discussion carries over to any other case without modification. How-
ever, there are two different possibilities concerning the vanishing of M : in the present case,
we obtain a five-dimensional reducible theory of which we can always truncate consistently
the matter multiplet. Matter fields in a given multiplet are identified in the supersymmetry
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transformation rules because they transform among themselves. Now, ˆ̂
ψ+

w corresponds to
a matter spinor and therefore M consists basically of matter fields whose truncation sets
M = 0. This is indeed possible because all the terms in M contain two gammas and a com-
bination of them can always be set to zero. This truncation gives the pure N = 1, d = 5
supergravity action Eq. (11.98) and the supersymmetry transformation rule of the five-
dimensional gravitino [664]:

δε̂ψ̂â =
{
∇̂â − 1

8
√

3
(γ̂ b̂ĉγ̂â + 2γ̂ b̂ ĝĉ

â)Ĝb̂ĉ

}
ε̂. (13.105)

The relation between the six- and five-dimensional fields is

ˆ̂gww = −1,
ˆ̂B−
µ̂w

= 1√
3

V̂µ̂, ˆ̂gµ̂w = 1√
3

V̂µ̂, ˆ̂gµ̂ν̂ = ĝµ̂ν̂ − 1
3 V̂µ̂V̂ν̂ , (13.106)

with the B̂−
µν components determined by anti-self-duality.

The AdS3 × S3 solution can be reduced preserving all the supersymmetry in two direc-
tions: the direction of the Hopf fiber of the S3 when we see it as a fibration over S2 (i.e. the
coordinate ψ in the Euler-angle parametrization Eq. (A.97)) and the analog in AdS3 when
we see it as a fibration over AdS2, i.e. the coordinate η in

d�2
(3) ≡ 1

4

[
d�2

(2) − (dη + sinh(χ/2)dφ)2
]
. (13.107)

Actually it is also possible to perform a dimensional reduction in a combination of the two
directions: on rotating by an angle ξ ,

w = R3

2
(cos ξ η + sin ξ ψ), y = − sin ξ η + cos ξ ψ, (13.108)

and reducing in the direction w, we obtain the two-parameter family [272]

dŝ2 = R2
2d�2

(2) − R2
2d2

(2) − R2
2(dy + cos ξ cos θ dϕ − sin ξ sinh χ dφ)2,

Ĝ = √
3R2(cos ξ ωAdS2 − sin ξ ωS2), R2 = R3/2. (13.109)

It is maximally supersymmetric for any ξ and can be obtained as the near-horizon limit
of the d = 5 rotating extreme BH [422] which, as usual, has only half of the maximal
supersymmetry [614]. sin ξ plays the role of the rotation parameter  < 1 of [906] and it is
no surprise that, when ξ = 0, we recover the near-horizon limit of the static d = 5 extreme
BH, which has the geometry of AdS2 × S3 (y = ψ) [228]. It is a bit more surprising that
for ξ = π/2, we recover the near-horizon limit of the d = 5 extreme string solution [441].
Although many computations can be performed for arbitrary ξ and then we can take the
limits ξ → 0, π/2, it is clear that this is yet another example of a family of solutions that
seems to depend continuously on a parameter, while the physical properties (the symmetry
superalgebras, for instance) do not.
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The above solution admits a description as a homogeneous, reductive but non-symmetric
spacetime that can be used to compute its symmetry superalgebra [26].

Before the KG6 solution can be reduced, preserving all its supersymmetries, we need
to identify isometric directions satisfying the truncation condition. One of the directions is
found after performing a u-dependent rotation,

x3 = cos

(
λ6

2
u

)
x3 ′ + sin

(
λ6

2
u

)
x4 ′, x4 = − sin

(
λ6

2
u

)
x3 ′ + cos

(
λ6

2
u

)
x4 ′,

v = v′ + λ6

2
x3 ′x4 ′,

that leaves the solution in the form

d ˆ̂s2 = 2du

[
dv′ + λ2

6

8
(x2 + y2)du + λ6x3 ′dx4 ′

]
− d �x ′ 2

(4),

ˆ̂B− = −λ6du ∧ (x1dx2 − x3 ′dx4 ′).

(13.110)

On reducing now in the isometric coordinate w ≡ x4 ′, we obtain the KG5 solution
Eq. (10.31) with λ5 = −√

3λ6. A similar rotation in x1 and x2 produces the same result. The
isometric direction w = (1/

√
2)(u + v) can also be used. If we perform the two rotations

and reduce in the direction w, we obtain a d = 5 maximally supersymmetric Gödel-like
solution [420]:

dŝ2 = (dt + ω)2 − d �x 2
(4), V̂ = √

3 ω, ω = λ6(x1dx2 − x3dx4). (13.111)

It is not known whether there are more maximally supersymmetric solutions in N = 1,

d = 5 supergravity, although in principle it is known how to construct all the solutions of
this theory that preserve some supersymmetry [420]. The relations among all the known
vacua are represented in Figure 13.1.

13.4.3 Relation to the N = 2, d = 4 vacua

The dimensional reduction of N = 1, d = 5 supergravity gives N = 2, d = 4 supergravity
coupled to a vector multiplet that can be consistently truncated as shown in Section 11.2.5.
The discussion at the beginning of the previous section applies to this situation: maximal
supersymmetry survives the dimensional reduction only if no matter fields are generated.
This condition cannot be satisfied for the Gödel-like solution Eq. (13.111) and only the
KG5 Eq. (10.31) and the near-horizon limit of the rotating BH Eq. (13.109) and string give
maximally supersymmetric four-dimensional solutions: the KG4 solution Eq. (10.27) with
λ4 = (2/

√
3)λ5 and the dyonic RB solution in which the rotation parameter sin ξ now plays
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AdS3 ¥ S3

Penrose limit

KG5

KG4

KG6

G5AdS3 ¥ S2AdS2 ¥ S3

AdS2 ¥ S2

Fig. 13.1. Relations between the non-trivial d = 4, 5, 6 vacua with eight supercharges.

the role of the electric–magnetic-duality rotation parameter:

ds2 = R2
2 d�2

(2) − R2
2 d2

(2), F = −R2
(
cos ξ ωAdS2 − sin ξ ωS2

)
. (13.112)

It is amusing to observe that a spatial rotation in d = 6 has become an electric–magnetic-
duality rotation in d = 4 [338]. This is one of the phenomena we will study in Part III.

13.5 Partially supersymmetric solutions

Now that we have studied maximally supersymmetric vacua, we are ready to study solu-
tions with less unbroken supersymmetry that tend asymptotically to one of them.

As explained in Section 6.1.2, spacetimes (supersymmetric or not) with these asymp-
totics have well-defined conserved bosonic charges associated with the isometries of the
vacua they approach asymptotically, but it is also possible to assign to them supercharges
using the same formalism [1]. Then, it is possible (at least formally) to associate with these
solutions states in the quantum theory transforming under the vacuum supersymmetry alge-
bra, with well-defined quantum numbers associated with all the generators. If the solution
is invariant under the supersymmetry transformation generated by a spinor εα that asymp-
totically approaches a combination of vacuum Killing spinors εα → εAκ(A)

α, where the
εA are (commuting) constants, then the (BPS) state will be annihilated by the supercharge
ε̄A Q(A):

δε|s〉 ∼ εA Q(A)|s〉 = 0. (13.113)

The game now will be to use results about the states obtained through the study of the
superalgebra to predict properties of the associated solutions.

The superalgebra is a very powerful tool. It is a fact that, in all cases, one can construct
a manifestly positive quadratic combination of the supercharges that equals a combination
of the bosonic charges including the energy,14 which turns out to bound it below.

14 This has been studied mostly in Poincaré superalgebras that can be applied to asymptotically flat spacetimes.
There are less general results for AdS superalgebras and none for KG Hpp-wave superalgebras.
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These supersymmetry or Bogomol’nyi (B) bounds15 have very important consequences,
for instance the positivity of the energy itself and the stability of the theory and the BPS
states that saturate the bound. When the bound is saturated, the state is annihilated by some
combination of supercharges and it is supersymmetric. In the supergravity theory general
bounds on the energy and other charges of solutions can be established under mild assump-
tions using Witten–Nester–Israel constructions [442, 596, 719, 937] (see also [600]), the
simplest of which was used in Section 6.3 to prove the positive-energy theorem. The solu-
tions associated with supersymmetric states (with the same charges/quantum numbers) are
also supersymmetric (they admit Killing spinors) and also have special stability properties.

Our goal in this section is to study these B bounds in Minkowski spacetimes and their
consequences for supergravity solutions.

13.5.1 Partially unbroken supersymmetry, supersymmetry bounds, and the superalgebra

Let us consider a supersymmetric state |s〉 in the quantum theory associated with the N -
extended d = 4 Poincaré superalgebra, including central charges. The state describes a
quantum object in Minkowski spacetime and will be annihilated by a combination of the
Minkowski (Poincaré) supercharges (the Minkowski vacuum is annihilated by all of them):

δε|s〉 ∼ ε̄i
α Qi α|s〉 = 0. (13.114)

The anticommutator of this supercharge with itself gives (assuming that |s〉 is normaliz-
able)

ε̄Mε = 0, (13.115)

where, using Eq. (5.70), the matrix M is given by the expressionc

M ≡ iδi jγ a Pa + i Z [i j] + γ5 Z̃ [i j] + γ a Z (i j)
a + iγ5γ

a Z [i j]
a + iγ ab Z (i j)

ab + γ5γ
ab Z̃ (i j)

ab ,

(13.116)

in which we have replaced the operators by their values on |s〉. This equation has 4N −
rank(M) independent solutions (preserved supersymmetries) if det M = 0. Finding all the
values of Pa, Zi j , Z̃ i j , . . . for which M is singular would be exceedingly difficult. However,
there are simple solutions with a simple physical interpretation.

Let us consider first a state describing a point-like, massless, uncharged (all Z = 0) par-
ticle. In the reference system in which it moves in direction 1 its null momentum takes the
form (Pµ) = (p, ±p, 0, . . ., 0) and M is

M = i pδi jγ 0
(
1 ± γ 0γ 1

)
. (13.117)

M is singular: (γ 0γ 1)2 = 1 and Tr(γ 0γ 1) = 0 imply that 1
2(1 ± γ 0γ 1) is idempotent (and,

therefore, a projector) with trace equal to 2, and, thus, with eigenvalues +1 with multiplicity
2 and 0 with multiplicity 2. Half of the supersymmetries of this state will be preserved,

15 These bounds were first discovered by Bogomol’nyi [163] in a purely bosonic context and then by Witten
and Olive [963] as a consequence of supersymmetry.
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precisely those generated by ε̄i
α Qi α, where γ ±ε = 1

2(γ
0 ± γ 1)ε = 0. This is precisely the

constraint satisfied by the Killing spinors of generic pp-wave solutions, some of which can
be associated with the gravitational field of massless point-particles (see Section 10.3). All
supergravity theories admit these supersymmetric states and solutions.

The next simplest case is that of a massive point-particle with mass M and electric charge
Q (massive neutral particle states cannot be supersymmetric) in N = 2, d = 4 Poincaré
SUEGRA (Z [i j] = Qεi j ). In the particle’s rest frame (Pµ) = (M, 0, . . ., 0) and

M = iγ 0 M
[
δi j + Q/

(
Mγ 0εi j

)]
. (13.118)

The 8 × 8 matrix M is singular if and only if Q = ±M , in which case it is proportional
to another projector: 1

2(δ
i j ± γ 0εi j ). The unbroken supersymmetries are generated by the

supercharges ε̄i Qi , where εi satisfies the constraint

1
2(δ

i j ± γ 0εi j )ε j = 0. (13.119)

The rank of this projector (and M) is 4: half of the supersymmetries are unbroken.
Which solution of N = 2, d = 4 SUEGRA could we associate this supersymmetric state

with? It should be a static, spherically symmetric solution (the closest to a point-like object
we can have) with charge M = |Q| = 2|q| with the conventions of Chapter 8: an extreme,
electrically charged Reissner–Nordström BH.16 We will see that indeed the ERN BH admits
Killing spinors that satisfy the above constraint.

What happens in the general case? Let us focus first on the d = 4 N -extended case
with strictly central charges. Following [384], to study this case, it is convenient to use
a (complex) Weyl representation in which the electric and magnetic central-charge matri-
ces are combined into a single, complex, antisymmetric matrix Zi j , which has [N/2] skew
eigenvalues Zi . For massive states, in the rest frame, M is singular whenever the absolute
value of one of these skew eigenvalues is equal to the mass, |Zi | = M . The amount of su-
persymmetry preserved depends on the number of skew eigenvalues whose absolute values
are equal to M . When all of them are equal to M �= 0, half of the supersymmetries will be
unbroken. Let us see what happens in the most interesting cases N = 1, 2, 4, 8, d = 4.

N = 1 There are no massive supersymmetric states.

N = 2 Half of the supersymmetries are unbroken when17

M = |Z |.

N = 4 Half of the supersymmetries are preserved when

M = |Z1| = |Z2|,
and a quarter when

M = |Z1| �= |Z2|.

16 With magnetic charge Z̃ [i j] = Pεi j and P = ±M , the projector would be 1
2 (δi j ± γ5γ 0εi j ) and, in the

dyonic case P2 + Q2 = M2, the projector would be [δi j ± (cos ξ + i sin ξ γ5)γ 0εi j ] = [δi j ± eiγ5γ 0εi j ].
17 In N = 2, Zi j = Zεi j and Z = Q + i P is the only skew eigenvalue.
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N = 8 Half of the supersymmetries are unbroken when

M = |Z1| = |Z2| = |Z3| = |Z4|,
a quarter when

M = |Z1| = |Z2| �= |Z3,4|,
and an eighth when

M = |Z1| �= |Z2,3,4|.
In all cases, the projectors on the spinors are of the form δi j + γ 0αi j , where αi j depends

on the SUEGRA theory and the specific solution we are considering: different combinations
of charges can lead to the same |Zi |s. These combinations are usually related by dualities of
the theory (e.g. electric–magnetic duality in N = 2, d = 4 SUEGRA, which multiplies Z by
a complex phase). There is one projector for each 1

2 factor of broken supersymmetry and all
the projectors must commute among themselves in order for them to be compatible. In all
cases, the associated solutions are generalizations of the ERN BH like those of Section 12.2.

Let us now consider the case in which there is one (real) quasi-central charge Z (p)
a1···ap . In

the appropriate reference frame it is always possible to write

M = iγ 0 M
(
δi j + (Z (p)/M)γ 0γ 1 · · · γ pαi j

)
, (13.120)

which is singular when M = Z (p). The projector is not one of those associated with point-
particles. Actually, quasi-central charges with p Lorentz indices are associated in the cor-
responding SUEGRA theory with (p + 1)-form potentials18 A(p+1)

µ1···µp+1 . As we will see
in Chapter 18, these potentials couple naturally to the (p + 1)-dimensional worldvolumes
of p-dimensional extended objects (p-branes) just as vector fields couple to the world-
lines of point-particles. Thus, the projector and the supersymmetric state correspond to a
half-supersymmetric p-brane. We will study the SUEGRA solutions in Chapter 19.

In a more general case, there can be several non-vanishing quasi-central charges. The cor-
responding state is then interpreted as composed of several supersymmetric p-branes that
intersect (see Section 19.6), generically one for each projector. This interpretation, which
can also be applied to supersymmetric point-particle states (Chapter 20), is based on the
observed property that supersymmetric objects can be in equilibrium: there is a cancelation
between gravitational attraction and other interactions and this allows the existence of so-
lutions that describe several of these supersymmetric objects in equilibrium. The simplest
example is provided by the Majumdar–Papapetrou solutions that describe several ERN BHs
in equilibrium.

M has another important property: it is roughly the square of the supercharges and, thus,
we can expect its eigenvalues to have some positivity properties. Indeed, it can be shown
that the Hamiltonian of supersymmetric QFTs is non-negative [310] or, equivalently, that
M ≥ 0. In four-dimensional theories with extended supersymmetry one can go even further

18 One can view them as the components of the gauge superpotential associated with the quasi-central charges:

A(p+1))
µ

a1···ap Z (p)
a1···ap if we think of SUGRA theories as gauge theories of given superalgebras, as we did

in Chapter 5.
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and prove that the mass is bounded from below by the skew eigenvalues of the central
charges matrix Zi j [384, 963],

M ≥ |Zi |, ∀i = 1, . . ., [N/2], (13.121)

and the results can be generalized to other dimensions. These bounds are known as
Bogomol’nyi, BPS, or supersymmetry bounds and play a crucial role in the stability of states
and theories. Broken supersymmetry is restored when one of these bounds is saturated, as
we have seen. Supersymmetric (“BPS”) states then have the minimal masses allowed for
given values of the central charges. The central charges cannot change, because there are
no (perturbative) states in the theory that carry them and, then, the masses of BPS states
cannot diminish and the states cannot decay and are stable.

As for the associated BPS solutions and SUEGRA theories, some stability properties
can also be proven, such as the positive-energy theorem of GR whose proof, inspired by
N = 1, d = 4 SUGRA, we gave in Section 6.3. The relation between positivity of the en-
ergy and the supersymmetry algebra was studied in [575]. There are generalizations based
on the WNI construction (see e.g. [442] for N = 2, d = 4). As for the stability of solu-
tions, it manifests itself, most remarkably, in the absence of Hawking radiation (T = 0)
from ERN and other supersymmetric BHs. This establishes an interesting link between BH
thermodynamics and supersymmetry (see e.g. [745]), which we will use in Chapter 20.

In the next section we are going to review the (not maximally) supersymmetric solutions
of the simplest theories, N = 1, 2, 4, d = 4 SUGRA, and their relation to the supersymme-
try bounds one can derive from the superalgebras.

13.5.2 Examples

N = 1, d = 4 Poincaré supergravity. The only solutions with partially unbroken super-
symmetry in this theory are the purely gravitational pp-waves given by Eqs. (10.24) with
C = 0. The Killing-spinor equation ∇µκ = 0 is solved for any constant spinor κ satisfy-
ing the constraint γ uκ = 0, which is precisely what we expected from the superalgebra.
The absence of massive supersymmetric solutions can be understood as a consequence of
the N = 1 supersymmetry bound M ≥ 0. This is in agreement with the finite temperature
and entropy of all Schwarzschild BHs. The bound is also in agreement with the cosmic-
censorship conjecture.

Things are different in Euclidean N = 1, d = 4 supergravity: the integrability condition
of the Killing-spinor equation,

Rµν
abγabκ = 0, (13.122)

also admits solutions when the curvature is (anti-)self-dual because then it is proportional
to a projector 1

2(1 ± γ 1γ 2γ 3γ 4),

Rµν
abγab = Rµν

abγab
1
2(1 ± γ 1γ 2γ 3γ 4)κ, (13.123)

and half of the supersymmetries are preserved. Then all metrics (in any dimension!) with
(anti-)self-dual curvature (special SU(2) holonomy, see footnote 5) preserve half of the
supersymmetries. These are the metrics of (anti-)self-dual gravitational instantons, which
will be discussed in Section 9.2.1. In the frame in which the spin connection is also
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(anti-)self-dual, the Killing-spinor equation takes the form

∇µκ = [
∂µ − 1

4ωµ
abγab

1
2(1 ± γ 1γ 2γ 3γ 4)

]
κ = ∂µκ = 0, (13.124)

where we have used 1
2(1 ± γ 1γ 2γ 3γ 4)κ = 0. Then, in this frame, the Killing spinors are

the constant spinors that satisfy that constraint.
It is, actually, possible to reformulate the Killing-spinor-equation problem in terms of

holonomy, which turns out to be an extremely powerful tool. See, for instance, [484].
An interesting case of a metric of special SU(2) holonomy is the Euclidean Taub–

NUT solution because its supersymmetry can be understood from the point of view of
BPS saturation: it is in principle possible to include the NUT charge in the BPS bound in
asymptotically Taub–NUT Lorentzian spaces: M + |N | ≥ 0. This explains why the mass-
less Lorentzian Taub–NUT solution is not supersymmetric. In the rotation to Euclidean
time, the bound becomes M − |N | ≥ 0, although M no longer has the interpretation of
mass,19 and can be saturated for M = |N |, which corresponds to the self-dual Euclidean
Taub–NUT solution Eq. (9.12).

N = 2, d = 4 Poincaré supergravity. All the field configurations (metric and U(1) vec-
tor field) admitting Killing spinors in N = 2, d = 4 SUEGRA were constructed by Tod
in [893]. His construction includes field configurations that do not solve the (Einstein–
Maxwell) equations of motion. The supersymmetric solutions fall into two classes:
pp-waves such as those of Eqs. (10.24) (including the maximally supersymmetric KG4
solution Eq. (10.27)) and the IWP solutions of Eqs. (9.58) (including the maximally super-
symmetric RB solution Eq. (8.90)). Generically, the solutions of both families preserve half
of the supersymmetries.

The IWP family contains many different solutions. We can use the superalgebra to study
the asymptotically flat ones which are the (multi-)Kerr–Newman solutions Eq. (9.55) with
the saturated BPS bound M = |Q + i P| = |Z | for any value of the angular momentum,
which does not appear in the bound, basically because the Lorentz generators do not ap-
pear in the supercharge anticommutator. All these solutions are singular for non-vanishing
angular momentum. The only regular ones are the ERN solutions. These can be seen as
interpolating between the Minkowski vacuum at asymptotic infinity and the RB vacuum at
the near-horizon limit, which supports their interpretation as solitons [433]. This vacuum
interpolation, which takes place in more general cases [334, 452], plays a very important
role in many instances, such as the AdS/CFT correspondence [679] (for a review see [23])
and non-conformal generalizations [170].

Let us now consider the thermodynamics of generic dyonic RN BHs. Their temperature
and entropy are given by

T = 1

2π

√
M2 − |Q + i P|2

M +
√

M +
√

M2 − |Q + i P|2
M → |Q + i P|−→ 0, (13.125)

S = π
[

M +
√

M2 − |Q + i P|2
]2 M → |Q + i P|−→ π M2. (13.126)

19 Compare this bound with Eq. (9.41).
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Observe that, like any other physical quantity that depends only on the metric, which
is invariant under the electric–magnetic duality of the theory, both T and S are also
duality-invariant: they can be written in terms of the single mass matrix skew eigenvalue
Z = |Q + i P|. On the other hand, in the extreme limit, which is also here (in the absence
of angular momentum) the supersymmetric limit, T → 0 and there is no Hawking radia-
tion, in agreement with our previous arguments about stability, while S → π M2 = π |Z |2
is completely determined by the central charges. We discussed at length the arguments in
favor of and against there being a finite value of the entropy for ERN BHs in Section 8.6.
In any case, we can always say that the area of the ERN BH is finite and given by a duality-
invariant combination of the central charges. This observation is relevant because we will
find that, in general, charged supersymmetric spherically symmetric solutions have a regu-
lar horizon with finite area only when they preserve the same amount of supersymmetry as
the ERN BH (i.e. four supersymmetries).

If we consider asymptotically Taub–NUT IWP solutions, we find that all of them satisfy
the saturated bound M + |N | = |Q + i P| = |Z | (with or without angular momentum).

The supersymmetry of some solutions of N = 2, d = 4 AdS supergravity have also been
studied in [203, 634, 811]. The supersymmetry of the largest class of solutions, given by
Plebański and Demiański in [772, 773], was studied in [27].

N = 4, d = 4 supergravity. The bosonic part of this theory is described by the action
Eq. (12.58). All the field configurations admitting Killing spinors were found by Tod
in [894] and they include pp-waves and the SWIP solutions of [130, 613] described in
Section 12.2.1. These have been studied more thoroughly. There are SWIP solutions that
preserve half of the supersymmetries (i.e. eight) and SWIP solutions that preserve a quarter
(i.e. four) (these include the IWP solutions).

Actually, to study them, it is convenient to focus on the asymptotically flat ones and use
the supersymmetry bounds of the theory. There are two BPS bounds: M2 − |Z1,2|2 ≥ 0,
neither of which is invariant under the dualities of the theory. However, we can construct a
duality-invariant generalized BPS bound by taking their product and dividing by M2:

M2 + |Z1 Z2|2
M2

− |Z1|2 − |Z2|2 ≥ 0. (13.127)

This bound is satisfied by all the regular static non-extreme SWIP solutions of [665] and
it is saturated by all the supersymmetric SWIP solutions of [130]: the skew eigenvalues of
the central-charge matrix correspond precisely to the combinations of electric and magnetic
charges of Eq. (12.83) and the product of the two supersymmetry bounds gives precisely
the supersymmetry parameter r2

0 of the SWIP solutions, Eq. (12.84).
The bound can be saturated in two different ways: when M = |Z1,2| �= |Z2,1|, a quarter of

the supersymmetries are unbroken, and when M = |Z1| = |Z2|, half of the supersymmetries
are unbroken. The only supersymmetric solutions with regular horizons are the static ones
with only a quarter of the supersymmetries preserved. All the supersymmetric solutions
have zero temperature.

The entropy (see the second of Eqs. (12.84)) and the temperature of the BHs of
N = 4, d = 4 can be expressed in a form that is manifestly invariant under the two du-
ality groups of the theory: SL(2, R) (S duality) and SO(6) (T duality). The entropy of the
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static supersymmetric BHs that preserve a quarter of ths supersymmetries is given by

S = 4π ||Z1|2 − |Z2|2| = 4π
√

I4, (13.128)

where I4 is the quartic invariant defined in Eq. (12.62), which depends on the charges
but not on the asymptotic value of the axidilaton. In the extreme limit, thus, when the
entropy is finite, its expression in terms of the central charges is not only duality-invariant
but also moduli-independent. This is a very important property that suggests that the BH
entropy does indeed count microstates, since this counting would not be changed by small
variations of the moduli.

We will find generalizations of these facts when we study BH solutions of N = 8, d = 4
SUEGRA in Chapter 20.





Part III

Gravitating extended objects of string theory

There is geometry in the humming of the strings.

Pythagoras
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String theory

In this chapter we start the study of the extended objects that appear in the non-perturbative
spectrum of string theory, the subject of the third part of this book. In this part we will make
use of all the techniques we have developed in the first and second parts, whose main goal
was to serve as a preparation for the third.

In a certain sense, this third part also presents the synthesis and (it is hoped) culmina-
tion of the ideas presented in the previous two in the framework of string theory: on the
one hand, string theory includes a presumably consistent theory of quantum gravity that
contains the gravitons described at lowest order by the Fierz–Pauli theory we studied in
Chapter 3 [833, 834]. There are two main differences from the non-renormalizable theory
of GR: the presence of a dimensionless coupling constant different from the Planck length
and the presence of terms of higher order in derivatives. Furthermore, consistent string
theories have spacetime supersymmetry and, therefore, supergravity, which we studied in
Chapters 5 and 13. On the other hand, string theory incorporates naturally extra dimensions
that have to be compactified. Thus, the ideas of Kaluza and Klein studied in Chapter 11 are
also integrated into the picture.

Finally, the Schwarzschild, Reissner–Nordström, pp-wave, etc. solutions studied in other
chapters are also solutions of string theory and it is natural to try to use them to solve the
puzzles that arise when one tries to do quantum mechanics in those backgrounds: the infor-
mation and entropy problems. If string theory is really a good theory of quantum gravity,
then it should help us to solve them and we will see to what extent it succeeds in the last
chapter (Chapter 20) of this part.

The attempts to solve these long-standing problems have been made possible by recent
developments in string theory (essentially dualities and D-branes) and also by a change of
perspective that we could call the “spacetime approach,” which is based on the effective-
field theories, when further advance with the “worldsheet approach” was becoming increas-
ingly difficult and slow. Of course, the two approaches are complementary and there has
been a considerable amount of feedback between them. In fact, some of the most interesting
things that we have learned in this period are the relations between the two of them. The
logic of these relations is represented schematically in Figure 14.1 and it is worth pausing
for a moment to describe it in detail.
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Fig. 14.1. Most of the recent progress in string theory has been based on the relations
represented in this diagram between different aspects of the theory. The implications of
duality symmetries in each box must be related to similar implications in other boxes.

The box in the center represents the worldvolume theories of all the extended objects of
string theory, including fundamental strings. They give, to start with, the perturbative defini-
tion of string theory (the worldsheet formulation), represented by the box in the upper-left-
hand corner. This worldsheet formulation allows us to calculate the perturbative spectrum
and also find some non-perturbative states (the D-branes), which are represented by the
lower-left-hand corner of the diagram (their worldvolume actions are also represented by
the box in the center). The low-energy effective-field theories that describe the dynamics
of the massless states of the perturbative spectrum are represented in the upper-right-hand
corner. These theories are usually supergravity theories that have certain (on-shell) global
symmetries that transform and mix the fields that represent the string massless modes. The
equations of motion of these effective-field theories can be derived (a most important point)
from consistency conditions (conformal invariance or κ-symmetry) of worldvolume theo-
ries (the box in the center) in general backgrounds. The effective field theories also admit
solitonic solutions, which are represented in the lower-right-hand corner. The solitonic so-
lutions can be excited and deformed and their effective dynamics is, yet again, given by
worldvolume actions.

The meaning of the ↓, →, and ↓ arrows and the arrows that come from the box in the
center of this diagram is clear. The progress made in this field comes from the realization
of the existence and use of the remaining arrows of the figure.

The main idea is that, generically, the global symmetries of the effective-field theories
correspond to dualities of the string theories.1

Some of these dualities are essentially perturbative (in the string coupling constant, that
we will define later) and can be found and studied using the worldsheet approach. They are

1 This is the point of view proposed in [583], but a more precise statement that includes more cases would
be that the relations between different effective field theories correspond to dualities of the corresponding
string theories. Some of the relations can be described as global symmetries of a single effective action, but
in other cases there are relations between very different effective actions.
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generically called T dualities, and the archetype of them (known long before as T duality,
T from “target space,” see e.g. [456]) relates string theories compactified on circles of dual
radii. This is an exact symmetry at all orders in string perturbation theory [33].

On top of these, there are the so-called S dualities which are non-perturbative in the string
coupling constant and cannot be studied using the standard worldsheet approach. In fact,
their existence in four-dimensional heterotic string theory was suggested by the existence
of the corresponding global symmetry in the effective action [397, 803, 842] which is noth-
ing but that of N = 4, d = 4 SUGRA. As we saw in Section 12.2, the equations of motion
of this theory are invariant under global SL(2, R) transformations, some of which invert
the dilaton field which can be interpreted as the string coupling constant. In general S du-
alities are associated with this group2 [583] and involve the inversion of the dilaton (string
coupling constant) and the interchange or electric and magnetic fields. Another interesting
example that we will study in Chapter 17 is N = 2B, d = 10 SUGRA, the effective-field
theory of the type-IIB superstring: the equations of motion of the supergravity theory are in-
variant under global SL(2, R) rotations that invert the dilaton, which suggests the existence
of an S duality between type-IIB superstring theories.

The T- and S-duality groups are sometimes (in type-II theories) part of a bigger duality
group called in [583] the U duality group.

The interpretation as string dualities of the supergravity symmetries (the upper ← arrow)
is possible if the string spectra reflect the same duality properties. For T dualities, this is
easy to see in the perturbative spectrum, but S dualities necessarily imply the existence
of new non-perturbative states. Thus, using the upper ← relation, we start learning new
things about string theory and its spectrum. Needless to say, the worldvolume actions for
the corresponding states must also be related by the same dualities.

The symmetries of the supergravity theories also relate different solitonic solutions. In
some cases this has been used to generate new solitonic solutions out of old ones. In the
end one should be able to obtain complete duality-invariant families of solutions. Now,
the relation between effective-field theories and string theories can be used to relate soli-
tonic supergravity solutions to perturbative and non-perturbative string states (the lower ←
arrow). Whereas in the supergravity theories the duality groups are continuous, in string
theory quantum effects generically break them to the discrete subgroups that result from
the restriction from real numbers to integers. In particular, the S-duality group is broken
by charge quantization of the string states to SL(2, Z) [843]. The full spectrum is invariant
under that group [844].

To develop these relations, we must find a dictionary to interpret, in terms of string the-
ory, supergravity field configurations and symmetries, because only the fields associated
with massless string-theory modes appear in the effective field theories, but string dualities
often involve massive modes. However, these massive modes are usually charged and cou-
ple to the massless long-range potentials that appear in supergravity,3 and we know their
transformations under dualities, which help us to know how the massive and charged string

2 But not the other way around: the T-duality group can contain SL(2, R) subgroups.
3 The only bosonic fields apart from the potentials and the metric are the scalars, whose interpretation is

different: they represent coupling constants or geometrical data of the compactification space, moduli.
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modes behave under those dualities. These couplings can be read off from the worldvolume
actions of those states.

We encountered a similar phenomenon in KK theories in Chapter 11: the massive KK
modes of the spectrum are charged with respect to the massless KK vector field that appears
in the KK (effective) action. The massive KK modes reappear in the theory as massive,
electrically charged solitonic solutions (extreme, electrically charged BHs). The S duality
of the four-dimensional KK theory (in this case, just a Z2 group) could be used to generate
extreme, magnetic BH solutions, which should represent non-perturbative states of the KK
theory.

A final ingredient in all these relations is supersymmetry and supersymmetric (“BPS”)
states, which are associated with supersymmetric supergravity solutions. BPS states enter
into shortened supermultiplets, which have fewer states. This and other properties (the sat-
uration of the Bogomol’nyi bounds, which are duality-invariant [743, 844]) do not depend
on any continuous parameters and remain valid in the limits of strong and weak coupling.
Therefore, these states are particularly well suited for studying, for instance, S dualities.

In this part we are going to investigate all these relations using as our main tool the
effective actions, supergravity actions, in order finally to apply them to the calculation of
entropies of extreme BHs. This chapter is devoted to a very brief introduction to string
theory.4 We will study in it, from the worldsheet point of view, the simplest, and most
characteristic, string duality: T duality.

In Chapter 15 we study the origin and meaning of the string effective field theories which
we will use to investigate string dualities in the following chapters. In this chapter we will
start studying T duality in curved spaces from the effective-action point of view.

The ten-dimensional supergravities which are effective field theories of ten-dimensional
superstring theories will be studied in the next two chapters (Chapters 16 and 17). We will
be able to interpret some of their symmetries in stringy terms, but many results will have to
wait until Chapter 18, in which we will introduce extended objects and we will realize that
the (p + 1)-form potentials that appear in the supergravities are naturally the fields to which
extended, charged p-dimensional objects (p-branes) couple. Then we will see the implica-
tions of the supergravity symmetries for the non-perturbative spectrum of string theory.

In Chapter 18 we are going to study generically extended objects and in Chapter 19 we
will focus on the extended objects of string theory. We will first find which these extended
objects, implied by duality, are. Then, we will identify the corresponding classical solutions
and, to strengthen the connection between classical solutions and string states, we will cal-
culate the masses that duality predicts and we will use the results to identify the integration
constants of the classical solutions. Here we can interpret these solutions as the long-range
fields produced by one of these extended objects. We will check that they preserve the right
amount of unbroken supersymmetry according to the supersymmetry algebra. Next, we
will study the worldvolume effective actions of these objects. Finally, we will see solutions
that describe several of these objects intersecting each other, still preserving some amount
of supersymmetry. Related states must exist in string theory.

4 This chapter is no substitute for the study of the many reviews and books on string theory: [37, 39, 468, 473,
609, 624, 625, 673, 749, 779, 831, 832] and D-branes [604, 605, 780]. We will simply present the concepts
and results that we will use, establishing the notation and conventions.
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As advertised, in Chapter 20 we will use many of these results to perform a microscopical
computation of the entropies of some four- and five-dimensional BHs (generalizations of
the extreme Reissner–Nordström BH). This is one of the main successes of string theory
and has stimulated the research in this field from many different points of view.

14.1 Strings

Even though duality relates all the extended objects that appear in string theory, leading
to the idea of p-brane democracy [898], we know how to quantize only particles and
strings, zero- and one-dimensional objects that have one-dimensional worldlines and two-
dimensional worldsheets, respectively. The latter are the fundamental objects of all string
theories, although some of them contain also particles (D0-branes). For the moment, there
is no fully satisfactory formulation of a string field theory, so we must content ourselves
with a “first quantization” and with a recipe for how to compute Feynman diagrams.

The action for a single string is the generalization, invariant under general worldsheet and
target-space coordinate transformations, of the action for a point-particle Eq. (3.8) proposed
by Nambu [714] and Goto [463], and measures essentially the area of the worldsheet swept
out by the string when it moves in a d-dimensional ambient (target) space with a metric
gµν :

SNG[Xµ(ξ)] = −T
∫

�

d2ξ
√|gi j |. (14.1)

Here ξ i , i = 0, 1, are coordinates on the two-dimensional worldvolume, Xµ(ξ), µ =
0, . . ., d − 1 are the spacetime coordinates of the string, which give the embedding of the
worldvolume into the d-dimensional spacetime, and |gi j | stands for the determinant of the
induced metric gi j on the worldvolume (the pull-back of the spacetime metric gµν),

gi j ≡ ∂i Xµ∂ j X νgµν(X). (14.2)

T is the string tension, a positive constant with (natural) dimensions of L−2 or M2, which
is equivalent to mass per unit length: when the string is wrapped on a compact dimension
of radius R, it is seen from the uncompactified dimensions as a particle with mass 2π RT .
It is related to the Regge slope α′ by

T = 1/(2πα′). (14.3)

The Regge slope sets the fundamental length and mass of the theory, the string length �s

and the string mass ms:
�s =

√
α′, ms = 1/

√
α′. (14.4)

The Nambu–Goto action is highly non-linear and very difficult to quantize [832], even
if we do it in Minkowski spacetime gµν = ηµν , avoiding the non-linearities associated with
the X -dependence of the spacetime metric. An action that is quadratic in derivatives of the
worldsheet fields Xµ(ξ) can be constructed by introducing an auxiliary worldsheet metric
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γi j . The so-called Polyakov action5 reads

SP[Xµ(ξ), γi j (ξ)] = −T

2

∫
�

d2ξ
√|γ | γ i j∂i Xµ∂ j X νgµν(X). (14.5)

The general variation of this action is given by

δSP = T
∫

�

d2ξ
√|γ | δXµgµν

[∇2 X ν + γ i j∂i Xρ∂ j Xσ�ρσ
ν(g)

]
− T

2

∫
�

d2ξ
√|γ | δγ i j

[
∂i Xµ∂ j X ν − 1

2γi jγ
kl∂k Xµ∂l X ν

]
gµν

− T
∫

∂�

d�iδXµ∂i X νgµν.

(14.6)

Since there is no kinetic term for the worldsheet metric, its equation of motion just gives
the Rosenfeld energy–momentum tensor of the worldsheet fields Xµ and tells us that it
must be zero. This equation is just a primary constraint that we can use to eliminate γi j in
the Polyakov action: on writing it in the form

γkl = 2gkl/gi
i , (14.7)

and substituting this into the Polyakov action we recover the Nambu–Goto action. Observe
that the equation of motion of the worldsheet metric γi j tells us only that it is proportional
to the induced metric gi j , but, in just two worldsheet dimensions, it is impossible to de-
termine the proportionality coefficient gi

i = γ i j gi j because this equation of motion (and,
hence, the energy–momentum tensor) is (off-shell) traceless. This property is related to an
additional symmetry of the Polyakov action for strings: invariance under Weyl rescalings
of the worldsheet metric,

γi j → �2(ξ)γi j . (14.8)

This symmetry plays a crucial role in the quantization of the Polyakov action, allow-
ing one to gauge away the worldsheet metric completely and consistently: in two dimen-
sions it is always possible to put the metric in the conformal gauge γi j ∝ ηi j by using
reparametrizations. Then, with a Weyl rescaling, we can always obtain γi j = ηi j . This
symmetry is, however, potentially broken by anomalies that impose further restrictions
on the spacetime dimensions, metric, etc., in order to have consistent string theories (see
e.g. [832]).

Let us now consider the equation of motion of the Xµs. The boundary term can be non-
vanishing if we consider the propagation of open strings, with free endpoints and the topol-
ogy of a line segment (the alternative is to consider closed strings, with the topology of a
circle). In order to eliminate it, we have to impose special boundary conditions (BCs) for
open strings. There are two main possibilities (for each disconnected piece of the boundary
∂�(n) and for each embedding coordinate Xµ)

5 It was Polyakov who first quantized it and its supersymmetric version (Eq. 14.23) using the path-integral
formalism in [784, 785].
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Neumann (N) boundary conditions:

ni∂i Xµ
∣∣
∂�(n) = 0, (14.9)

where ni is a unit vector normal to the boundary. These conditions respect target-
space Poincaré invariance when gµν = ηµν . In the simplest situation, the propagation
of a free open string, in which the worldsheet is a strip swept out with length and
width parametrized by ξ 0 and ξ 1, the N boundary conditions are

∂1 Xµ
∣∣
∂�(n) = 0. (14.10)

Dirichlet (D) boundary conditions:

t i∂i Xµ
∣∣
∂�(n) = 0, (14.11)

where t i is a unit vector tangential to the boundary. For the free open string it is just

∂0 Xµ
∣∣
∂�(n) = 0. (14.12)

This condition is equivalent to requiring that

Xµ|∂�(n) = c(n) µ, (14.13)

where the c(n) µs are constants, which restrict the endpoints of the open strings (one
or both, depending on how many pieces of the boundary we impose this kind of con-
dition on) to moving on (p + 1)-dimensional hypersurfaces if these conditions are
imposed on (d − p − 1) embedding coordinates. This explicitly breaks translation
invariance in those (d − p − 1) coordinates. The hypersurfaces will later be inter-
preted as the worldvolumes of dynamical p-dimensional objects: Dp-branes [777].

In Minkowski spacetime and in the conformal gauge the equation of motion of the Xµs is
just the two-dimensional wave equation for free bosonic fields ∂i∂

i Xµ = 0, whose solutions
are the sum of a function Xµ

+(ξ+) of ξ+ = ξ 1 + ξ 0 (a left-moving wave) and a function
Xµ

−(ξ−) of ξ− = ξ 1 − ξ 0 (a right-moving wave). In open-string worldsheets, left- and right-
moving waves are related by the boundary conditions ∂+ X+ = −∂− X− for N boundary
conditions and ∂+ X+ = ∂− X− for D boundary conditions.

On the other hand, even if we eliminate the worldsheet metric by gauge transformations,
we still have to take into account its equation of motion (the vanishing of the worldsheet
energy–momentum tensor).

Apart from being open or closed, strings can be oriented or unoriented, and in each case
only oriented or unoriented worldsheet surfaces are considered.

It is possible to add another Weyl-invariant term to the Polyakov action without any
additional background field: a worldsheet Einstein–Hilbert term6

− φ0

4π

∫
d2ξ

√
|γ | R(γ ). (14.14)

6 In the presence of boundaries, it must be supplemented by a boundary term as in Eq. (4.26).
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This term does not change the classical equations of motion because the two-dimensional
Einstein–Hilbert Lagrangian density is just the curvature 2-form, which is locally a total
derivative: the spin-connection 1-form is ωab = εabω and Rab = εabdω. Actually, this term
is the constant φ0 times a topological invariant: the Euler characteristic χ=2−2g−b−c,
where g is the genus (number of handles) of the two-dimensional worldsheet, b the number
of boundaries, and c the number of crosscaps (which are present only when the worldsheet
is non-orientable). As we are going to see, φ0 is the vacuum expectation value of the dilaton,
a massless scalar field present in all string theories, and g = eφ0 can be interpreted as the
string coupling constant that counts loops in string amplitudes.

14.1.1 Superstrings

The string theories we have studied so far are called bosonic because they include only
bosonic worldsheet fields and, furthermore, their spectra only contain spacetime bosons, as
we will see. To construct a string theory whose spectrum includes fermions, we can gen-
eralize the action of a spinning point-particle (although the historical order did not follow
this logic). The action for a spinning particle contains, in addition to the commuting vari-
ables Xµ(ξ) that describe the position of the particle, anticommuting variables ψµ(ξ) that
describe the spin degrees of freedom and were first proposed in [105, 219] and studied and
generalized in [70, 86–8, 106, 188, 190, 251]. The simplest action one can write has global
worldline supersymmetry transformations that relate Xµ and ψµ, which form a scalar su-
permultiplet [188, 190], and the natural generalization, which is invariant under worldline
reparametrizations, is also naturally invariant under local worldline supersymmetry trans-
formations. This generalization requires the introduction of auxiliary fields: an Einbein
e(ξ), as in the bosonic case (e2 = γ ), and a gravitino χ , which form a one-dimensional
supergravity multiplet that has no dynamics. The action for the massless case is

S = − 1
2

∫
dξe

[
e−2 Ẋµ Ẋµ + e−1ψµψ̇µ − e−2χψµ Ẋµ

]
. (14.15)

and the supersymmetry transformations that leave it invariant are

δε Xµ = εψµ, δεe = εχ,

δεψ
µ = −ε(Ẋµ − 1

2χψµ)e−1, δεχ = 2ε̇. (14.16)

Invariance under worldline reparametrizations and supersymmetry transformations leads
to constraints (gauge identities) that are necessary for consistency. Furthermore, it can be
shown that the quantization of this model leads to the Dirac equation for spin- 1

2 particles
[86, 106, 190] (for more recent references, see [424, 529]) and this action can be used to
obtain path-integral representations of propagators and Feynman diagrams (see e.g. [537]
and references therein) for spin- 1

2 particles. It is also remarkable that, when it is coupled to
gravity [87], the action leads to the Dirac equation in curved spacetime as given in [187]
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and the equations of motion for a pole–dipole singularity derived by Papapetrou in [755]
using the method of Einstein, Infeld, and Hoffmann [366].7

The action for the spinning particle can be generalized to include other couplings to
vector fields and odd-rank forms preserving worldline local supersymmetry, which can
be made manifest by using superworldsheet coordinates and geometry (see, for instance,
[536] and references therein). In particular, the coupling to a 3-form can be understood as
the coupling to a completely antisymmetric torsion field, and leads to the Dirac equation of
the CSK theory and a modification of the Papapetrou equations [816].

On the other hand, the spectrum also contains spin-0 and-1 particles and, thus, in spite
of the worldline supersymmetry, there is no spacetime supersymmetry.

The action for a massive Dirac particle can be obtained by adding the term8

− 1
2

∫
dξe[m2 + e−1ψ5ψ̇5 + me−1χψ5], (14.17)

where ψ5 is another anticommuting variable that transforms as follows:

δεψ5 = mε + ε

me
ψ5(ψ̇5 − 1

2χ). (14.18)

By analogy, the worldsheet action for a fermionic string that can describe spacetime
fermions (but, also, as we will see, spacetime bosons, depending on boundary conditions)
must incorporate two-dimensional spinors. Worldsheet supersymmetry can be used as a
guiding principle to introduce worldsheet fermions. Then, the theory that generalizes the
Polyakov action in Minkowski spacetime is the theory of d two-dimensional scalar super-
fields (Xµ, ψµ) coupled to the two-dimensional supergravity multiplet (ea

i , χi ) with the
action [189, 316]

S = −T

2

∫
�

d2ξe
[
γ i j∂i Xµ∂ j Xµ − iψ̄µ 	Dψµ

+ 2χ̄iρ
jρiψµ∂ j Xµ + 1

2(χ̄iρ
jρiχ j )(ψ̄

µψµ)
]
. (14.19)

Both ψµ and χi are real two-dimensional spinors with hidden spinorial indices and
ρi = ρaea

i , where ρa are the two-dimensional gamma matrices (see Appendix B.1.7). This
action is invariant under worldsheet reparametrizations and local Lorentz transformations,
as usual in supergravity (see Chapter 5), and also under global Poincaré transformations of
the embedding coordinates Xµ ′ = �µ

ν X ν + aµ. It is also invariant under local worldsheet
supersymmetry transformations:

δε Xµ = ε̄ψµ, δεea
i = −2i ε̄ρaχi ,

δεψ
µ = i(∂i Xµ + 1

4 χ̄iψ
µ)ρiε, δεχi = D̃iε,

(14.20)

7 This method was used in [396] to re-obtain the equations of motion of a point-particle and in [490] to recover
the equations of motion of the Nambu–Goto string.

8 This action can be derived by dimensional reduction of the action of the massless spinning particle.
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where
D̃iε = (∂i + ω̃iρ3)ε, ω̃i = ωi + i χ̄iρ3ρ

jχ j . (14.21)

Furthermore, and most importantly, it is also invariant under super-Weyl transformations:

Xµ ′ = Xµ, ea ′
i = �ea

i ,

ψµ ′ = �− 1
2 ψµ χ ′

i = �
1
2 χi + iρiλ,

(14.22)

where λ is any real spinor. This symmetry allows the complete decoupling of the Zweibein
ea and the worldsheet gravitino χi , whose elimination gives the so-called Ramond–Neveu–
Schwarz (RNS) model [722, 796]

S = −T

2

∫
�

d2ξ [ηi j∂i Xµ∂ j Xµ − iψ̄µ	∂ψµ]. (14.23)

This model is only globally supersymmetric and has to be supplemented with the equa-
tions of motion of the worldsheet metric and gravitino (even after we have eliminated them).

One can consider open, closed, oriented and unoriented superstrings. In the open-string
case, at the endpoints ξ 1 = 0, 2π� N and D boundary conditions can be chosen for the Xµs,
and for the ψµs one can choose between

Ramond (R) boundary conditions,

ψ
µ
+(ξ 1 = 0) = ψ

µ
−(ξ 1 = 0), ψ

µ
+(ξ 1 = 2π�) = ψ

µ
−(ξ 1 = 2π�), (14.24)

and Neveu–Schwarz (NS) boundary conditions,

ψ
µ
+(ξ 1 = 0) = ψ

µ
−(ξ 1 = 0), ψ

µ
+(ξ 1 = 2π�) = −ψ

µ
−(ξ 1 = 2π�), (14.25)

where ψ
µ
± are the left- and right-moving components of ψµ.

For closed superstrings, ξ ∼ ξ 1 + 2π� and we can have, for each component ψ
µ
+ and ψ

µ
−,

independently,

Ramond (R) (periodic) boundary conditions,

ψ
µ
±(ξ 1 = 0) = ψ

µ
±(ξ 1 = 2π�), (14.26)

and Neveu–Schwarz (NS) (antiperiodic) boundary conditions,

ψ
µ
±(ξ 1 = 0) = −ψ

µ
±(ξ 1 = 2π�). (14.27)

So we can have RR, RNS, NSR, and NSNS boundary conditions.
Just as in the spinning-particle case, worldsheet supersymmetry leads to spacetime super-

symmetry of the quantized theory only under quite restrictive conditions [457] and, in any
case, spacetime supersymmetry is never explicit. In the alternative Green–Schwarz (GS)
formulation [471] spacetime supersymmetry is explicit from the outset.
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14.1.2 Green–Schwarz Actions

Green–Schwarz-type actions can be constructed for particles, strings, and other extended
objects, as we will see. The simplest example describes a massless particle moving in flat
(target) superspace with supercoordinates Z M(ξ) = (Xµ(ξ), θα I (ξ)) where I = 1, . . . , N
numbers the supersymmetries, α is a spacetime spinorial index, and the θ I are anticommut-
ing spacetime spinors (but worldsheet scalars) [191]:

S = − p

2

∫
dξe−1(Ẋµδa

µ − i θ̄ I γ a θ̇ I )ηab(Ẋ νδb
ν − i θ̄ I γ bθ̇ I ). (14.28)

This action is invariant under worldline reparametrizations, under target-space Poincaré
transformations, and also under the standard global superspace transformations

δεθ
I = ε I , δε Xµ = i ε̄ I γ aθ I δa

µ. (14.29)

In principle, there is no worldline supersymmetry, a very desirable property. A necessary
condition for having linearly realized worldline supersymmetry is that the numbers of on-
shell bosonic and fermionic degrees of freedom should be equal.9 To find the numbers of
on-shell degrees of freedom, it is necessary to know all the local symmetries of the action.
The above action turns out to have worldline-reparametrization invariance, which can be
used to gauge away one of the Xµs, and a new local symmetry generated by a fermionic
infinitesimal parameter κ (κ-symmetry), which halves the number of fermionic degrees
of freedom [60, 61, 854], which has already been halved by the Dirac equation. Under
κ-symmetry

δκθ
I = −i�µγ aδa

µκ I , δκ Xµ = i θ̄ I γ aδa
µδκθ

I , δκe = 4e ˙̄θ I κ I , (14.30)

where �µ = δS/δ Ẋµ is the momentum conjugate to Xµ.
Taking into account this new symmetry, if we denote by M the number of real compo-

nents of the minimal spinor in the spacetime dimension d considered, then, the necessary
condition for having worldsheet supersymmetry reads

N M = 4(d − 1), (14.31)

and, taking into account the values of M in Table B.1, it can be satisfied for d = 2, 3, 4, 5,

and 9 with N = 4, 4, 3, 2, and 2, respectively. Thus, the dimensions in which these actions
can be consistent are restricted.

The condition can be generalized to objects with p extended dimensions. Using world-
volume reparametrizations, we can always gauge away p + 1 Xµs. The condition of world-
volume supersymmetry becomes now

N M = 4(d − p − 1), (14.32)

9 In just one dimension, talking about degrees of freedom does not make much sense. However, the same
reasoning carries over to higher-dimensional cases, which allows a classification of all the possible super-
symmetric extended objects [13].
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Table 14.1. A brane scan taking into account only scalar supermultiplets. N is
given by the quotient between the numbers given and M .

p = −1 p = 0 p = 1 p = 2 p = 3 p = 4 p = 5

d M d (d − 1) (d − 2) (d − 3) (d − 4) (d − 5) (d − 6)

2 1 8 4
3 2 12 8 4
4 4 16 12 8 4
5 8 16 8
6 8 16 8
7 16 16
8 16 32 16
9 16 32 16

10 16 32 16
11 32 32

and it can be solved in the cases represented in Table 14.1 [13]. There are five series of
solutions. Four of them (with N M = 32, 16, 8, and 4) are associated with the four division
algebras O, Q, C, and R, respectively. These series correspond to objects related by double
dimensional reduction, as we will see.

There is another way to understand this result: if there is linearly realized worldvolume
supersymmetry, the worldvolume fields must fit in (p + 1)-dimensional scalar supermulti-
plets. Each solution in the table corresponds to a scalar multiplet. There is agreement with
the fact that scalar multiplets exist only in up to six dimensions.

For us, it is interesting that spacetime supersymmetric string actions could in principle
be constructed in d = 3, 4, 6, and 10, provided that the action has κ-symmetry. Green and
Schwarz showed in [472] that the ten-dimensional action previously constructed by them in
[471] has κ-symmetry. The Green–Schwarz (GS) action is not just a straightforward gen-
eralization of the superparticle action Eq. (14.28), because the kinetic term would not be
κ-symmetric by itself. The key to κ-symmetry is the addition of a (super-)Wess–Zumino
(WZ) term: the integral of a 2-form �2 such that �3 = d�2 is (target) Poincaré- and super-
symmetry invariant [528]:10

�2 = −id Xµδa
µ ∧ (θ̄1�aθ

1 − θ̄2�adθ2) + (θ̄1�adθ1) ∧ (θ̄2�adθ2). (14.33)

The GS action is then given by

S=−T

2

∫
�

d2ξ
√|γ |γ i j (∂i Xµδa

µ − i θ̄ I γ a∂iθ
I )(∂ j X νδb

ν − i θ̄ J γ b∂ jθ
J )ηab + T

∫
�

�2.

(14.34)

10 According to Table 14.1, this is an N = 2 theory, with two minimal (Majorana–Weyl spinors with 16 real
components) ten-dimensional spinors, θ1 and θ2, with equal or opposite chiralities: type-IIB and type-IIA
strings, respectively. These theories can also be described with the RNS theory, but only after quantization.
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This action, whose covariant quantization poses many problems, has very interesting
features. First, it can be generalized to the other string theories with N = 2 spacetime su-
persymmetry [137, 481] and other higher-dimensional objects of Table 14.1, always with a
WZ term (see also [78, 79]). This was done for the super 3-brane in d = 6 in [574] and for
the super 2-brane (supermembrane, now M2-brane) of d = 11 in [138, 139]. The M2-brane
is related to the ten-dimensional string by double dimensional reduction [14, 335] (the last
two members of the N M = 32 series).

These generalizations include the coupling of the supersymmetric extended objects to su-
pergravity fields: since GS actions are manifestly spacetime-supersymmetric, the coupling
to gravity implies the coupling to all the background fields of a supergravity theory.11 The
fact that it can and must be coupled to supergravity explains in part the necessity of the WZ
term: supergravity theories contain potentials that are (p + 1)-forms in superspace that can
naturally couple to p-dimensional objects through a WZ term (the integral of the pull-back
of the (p + 1)-form over the (p + 1)-dimensional worldvolume), just like particles couple
to the Maxwell 1-form Eq. (8.53) (see also Eq. (15.4)). The expansion of the (p + 1)-form
fields in components contains terms that do not vanish in flat spacetime and �2 above is
one such term. The full WZ term for the superstring coupled to supergravity also contains
the purely bosonic term Eq. (15.4).

κ-symmetry imposes constraints on the supergravity fields [137–9, 335, 481, 961]. In
particular [138, 139], the action for the 11-dimensional supermembrane coupled to the
fields of 11-dimensional supergravity can be κ-invariant only if certain constraints are
solved by the equations of motion of that theory. These constraints coincide with the super-
space constraints of d = 11 supergravity [262]. Thus worldvolume κ-invariance implies the
equations of motion of the spacetime supergravity fields, a highly non-trivial fact. Some-
thing similar happens in string theory coupled to background fields: by requiring invariance
under worldsheet Weyl transformations in the quantum theory one obtains the equations of
motion of the spacetime fields (see Section 15.1).

Although there is no clear motivation at this point, we could also include other super-
multiplets in the super-p-brane actions [339]. The new supersymmetric extended objects
include the Dp-branes we will study in more detail later [16, 17, 81, 140, 223, 569, 899].

14.2 Quantum theories of strings

In this section we are going to overview the quantization in Minkowski spacetime of the
bosonic and fermionic string actions that we have introduced in the previous section. We
will focus on the definition of quantum string theory (in particular on string interactions)
and on the results: the critical dimensions, mode expansions, and massless spectra of the
simplest consistent string theories.

14.2.1 Quantization of free-bosonic-string theories

Free strings can translate, rotate, and vibrate. The various allowed vibrational modes are
seen as different particle states in spacetime. These particle states must fit into Poincaré

11 Only recently has it been learned how to couple superstrings to RR backgrounds (to be defined later) [695,
694, 696].



418 String theory

multiplets characterized by mass and spin (or helicity). Failure to do so implies breaking of
spacetime Poincaré invariance.

The simplest way to quantize the Polyakov or the superstring action, Eqs. (14.5) and
(14.1.1), and obtain their spectra is to use the physical light-cone gauge in which all the
gauge invariances of the action are used to eliminate unphysical degrees of freedom. This
was first done for the bosonic string in [458], where it was found that Poincaré invariance
is recovered only in the critical dimension d = 26.

Here we will follow the careful treatment of [779] for the bosonic string, where it is
shown how, using worldsheet reparametrizations and Weyl rescalings, one can always set

X+ ≡ 1√
2
(X0 + X1) = ξ 0, ∂1γ11 = 0, det(γi j ) = −1, (14.35)

which allows the elimination of X+, X−, and γi j and leads to the Hamiltonian

H = −c

2

∫ 2π�

0
dξ 1

[
T −1�i�i + T ∂1 Xi∂1 Xi

]
, c = 2π�T/p+, (14.36)

where ξ 1 ∈ [0, 2π�], the �i are the momenta conjugate to the Xi , and p+ is the momentum
conjugate to x−, a cyclic variable, so p+ is a constant of motion. The equations of motion
for the Xi that follow from this Lagrangian are

(∂2
0 − c2∂2

1 )Xi = 0 ⇒ Xi = Xi
+ + Xi

−, Xi
± = Xi

±(ξ 1 ± cξ 0). (14.37)

The left- Xi
+ and right-moving Xi

− components are related by boundary conditions in the
open-string case and we consider only Xi . The boundary conditions play their role in the
mode expansions of the Xi s: for open strings with N boundary conditions

Xi = xi + pi

p+ ξ 0 − i
√

2α′
∑
n 	=0

αi
n

n
e

icnξ0

2� cos

(
nξ 1

2�

)
. (14.38)

If X has D boundary conditions at both ends, X (ξ 1 = 0) = x1 and X (ξ 1 = 2π�) = x2, then

X = x1 − x2 − x1

2π�
ξ 1 +

√
2α′

∑
n 	=0

αn

n
e

icnξ0

2� sin

(
nξ 1

2�

)
. (14.39)

For closed strings

Xi = xi + pi

p+ ξ 0 − i

√
α′

2

∑
n 	=0

[
αi

n

n
e

in
�

(ξ1+cξ0) + α̃i
n

n
e− in

�
(ξ1−cξ0)

]
. (14.40)

Reality implies in all cases α
i †
n = αi

−n and α̃
i †
n = α̃i

−n . On substituting the mode expansions
into the equal time commutators (using �i = p+∂0 Xi/(2π�)),

[x−, p+] = i, [Xi (ξ 1),� j (ξ 1 ′)] = iδi jδ(ξ 1 − ξ 1 ′), (14.41)

we find the commutation relations

[xi , p j ] = iδi j , [αi
m, α j

n ] = mδi jδm,−n, [α̃i
m, α̃ j

n ] = mδi jδm,−n. (14.42)
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The vacuum is defined to be annihilated by all the oscillators αi
n and α̃i

n with n > 0 and
states are created by acting on it with creation operators αi

−n and α̃i
−n , with n > 0, on the

momentum eigenstates |0, k〉
pi |0, k〉 = ki |0, k〉, p+|0, k〉 = k+|0, k〉. (14.43)

Relative to this vacuum, the mass operator M2 = −2p+ H − pi pi takes the form, for
open strings with only N boundary conditions,

M2 = 1

α′ (N + A). (14.44)

For open strings with DD boundary conditions in one coordinate

M2 =
(

x2 − x1

2πα′

)2

+ 1

α′ (N + A), (14.45)

and for closed strings

M2 = 2

α′ (N + Ñ + A + Ã). (14.46)

In all these cases

N =
∑
n>0

nαi
−nα

i
n, Ñ =

∑
n>0

nα̃i
−nα̃

i
n, (14.47)

are the level operators that take only positive integer values and A and Ã are constants that
arise in the normal ordering of the Hamiltonian and take the value A = Ã = (2 − d)/24.

In the closed-string case there is still one constraint that has not been eliminated, which
is associated with the ξ 1 shift symmetry:

N = Ñ . (14.48)

Let us now consider the lightest states of these three theories. The lightest states of
the open string with N boundary conditions are the |0, k〉, whose mass is, according to
Eq. (14.44), M2 = (2 − d)/(24α′), which is negative for d > 2, corresponding to a space-
time scalar tachyon and indicating the instability of the open-bosonic-string vacuum. The
next lightest states are obtained by acting with the αi

−1 operators on |0, k〉 and have
masses M2 = (26 − d)/(24α′). They fill a vector representation of SO(d − 2), just like a
d-dimensional massless spacetime vector particle. Poincaré invariance then requires the
mass of these states to be zero and d = 26 and the spectrum contains a scalar tachyon, a
massless vector, and massive and higher-spin states.

The lightest state of the DD open string is again |0, k〉, with (d = 26) M2 =
[(x2 − x1)/(2πα′)]2 − 1/α′, whose value and sign depend on the distance between the hy-
persurfaces x = x1, x2 to which the string endpoints are attached. When x2 = x1 there are
massless states αi

−1|0, k〉, i 	= x and αx
−1|0, k〉 (x being the DD direction), a massless vec-

tor, and a scalar in d − 1 dimensions. When x2 	= x1 we have the d − 2 states of a massive
(d − 1)-dimensional vector. The scalar plays the role of a Higgs scalar.
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Observe that the αns would represent oscillations of the strings in directions perpen-
dicular to the x = x1, x2 hypersurfaces, which is not possible. Hence they must represent
oscillations of the x = x1, x2 hypersurfaces which, thus, are the 25-dimensional worldvol-
umes of dynamical 24-dimensional objects: D24-branes. These objects can be understood
as new physical string states that must be non-perturbative since they do not appear in the
perturbative spectrum. Indeed, as we will see, their tension is ∼ g−1, where g is the string
coupling constant that we will define later.

In the presence of two D24-branes parallel at x = x1, x2, open strings can have both ends
attached to either one of them or have each end attached to each of them.12 Since we are
considering oriented strings, we must distinguish between the strings that connect 1 to 2
and those that connect 2 to 1. There are, then, four sectors and, according to the preceding
paragraphs, two of them include two massless vectors and scalars and two massive vectors,
and scalars, all of them living in the directions parallel to the D-branes. When the two
24-branes coincide, we have two extra massless vector and scalar fields. The four massless
vector fields turn out to be U(2) gauge fields. In general, when n D-branes coincide, there
are massless U(n) vector fields labeled by two indices I, J = 1, 2 that indicate to which
D-brane each string endpoint is attached and the gauge symmetry is spontaneously broken
to smaller groups when some of the D-branes become separated: the Higgs scalars give
mass to the gauge fields.

It is possible to introduce labels (Chan–Paton factors) for open-string endpoints even if
all coordinates have N boundary conditions, and the theory will have U(n) gauge vector
fields. In this case we can think that the spacetime is filled with n D25-branes.

Symmetry enhancements at particular values of moduli are some of the most interesting
features of string theories.

Let us consider now closed strings. The lightest states obeying the constraint (14.48)
after the tachyon |0, 0; k〉 are of the form αi

−1α̃
j
−1|0, 0; k〉 and, just in d = 26, they fit into

Poincaré representations: the part symmetric and traceless in i j corresponds to a massless
graviton, the trace part to a massless scalar, the dilaton, and the antisymmetric part to a
massless 2-form field: the Kalb–Ramond (KR) field.

After introducing interactions and following the reasoning of Chapter 3, closed-string
theories must contain gravity, which in a certain limit must coincide with Einstein’s GR.

Finally, let us consider unoriented strings. They can be obtained from oriented strings
by taking the quotient by the worldsheet parity operator �: ξ 1 → 2π� − ξ 1, which inter-
changes right- and left-moving sectors,

�Xµ
± = Xµ

∓, (14.49)

and is an involution, �2 = 1, and generates a Z2 symmetry group. Taking the quotient
means keeping only �-invariant states. On level-N states

�|N ; k〉 = (−1)N |N ; k〉, �|N , Ñ ; k〉 = |Ñ , N ; k〉. (14.50)

Thus, the KR tensor is removed from the closed-string spectrum and the massless vector
is removed from the open-string spectrum unless the endpoints have Chan–Paton factors

12 This system is not stable in bosonic-string theory, as the presence of tachyons indicates, but it will be in
type-II superstring theories.
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attached. In that case, only the U(n) vectors V I J
µ antisymmetric in I J survive, i.e. the

SO(n) or Sp(n) subgroups.
In general, the quotient of a theory by a discrete symmetry of the theory (such as � here)

is called an orbifold by analogy with the spacetime orbifolds discussed in Section 11.6. If
in a string theory worldsheet parity is combined with a discrete symmetry of the space-
time, then the quotient is called an orientifold [147, 148, 283, 464, 541, 542, 768, 827],13

but since orbifolds and orientifolds are often related by dualities, it is customary to call
all of them orientifolds. In this language, closed-unoriented-string theory is an orientifold
of closed-oriented-string theory. The hypersurfaces left invariant by the discrete spacetime
symmetries are called orientifold planes and, although they are similar in other respects
to Dp-branes, they are not dynamical objects in the sense that they are attached to the
fixed points of the spacetime orbifold and cannot translate or oscillate. However, there are
dynamical fields on them. In the above case, there is no spacetime symmetry, the whole
spacetime is invariant and we can say that there is an orientifold plane of 25 spatial dimen-
sions (O25-plane) that fills the entire spacetime, as a D25-brane does.

There is a crucial difference between orientifolds of point-particle theories and closed-
string theories: in the latter one must include, for consistency, twisted sectors: strings that
are closed up to a symmetry operation associated with the orientifold. In general, the in-
clusion of these twisted sectors makes the string theory non-singular at the orbifold fixed
points, as distinct from point-particle theories. Twisted sectors also appear in other contexts:
for instance, the winding modes that appear in toroidal compactifications (see Section 14.3)
can be seen as strings in R

n closed up to an element of �n , where �n is the discrete group
used to define the torus: Tn ≡ R

n/�n (�n = Z
n in the simplest case).

In bosonic-string theory we can add D-branes and O-planes more or less at will, because
the theory is already inconsistent due to the tachyon. In the consistent superstring theories,
D-branes and O-planes have to be introduced, paying attention to anomaly and tadpole can-
celations. These conditions are, in turn, related to the possibility of solving the equations
of motion of the effective string theory for a background that contains those objects. In
particular one has to be able to solve the harmonic equation for (p + 1)-form potentials
in compact spaces, which is possible only if the total charge associated with the poten-
tials vanishes. (Super-)Dp-branes and Op-planes of superstring theories are charged with
respect to (so-called) RR (p + 1)-form potentials, which we will define later, and a consis-
tent background will be one in which the sum of those charges vanishes. A very interesting
example, as we will see, is the construction of the type-I SO(32) superstring theory by
adding D9-branes and O9-planes to the type-IIB superstring theory [827].

There is one last consideration we must make: as we are going to see, open-string in-
teractions can produce closed strings. Thus, open strings are not fully consistent by them-
selves and have to be combined with a closed-string sector with the same orientability. The
fields of the massless spectra of the resulting theories (without D-branes) are represented in
Table 14.2. The consistency of the interacting theory also requires the addition of twisted
sectors in orbifolds and orientifolds.

13 For a review on orientifolds, see, for instance, [280] and also [44].
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Table 14.2. In this table we describe the massless
fields of the various bosonic-string theories.

Theory Massless fields

Closed oriented gµν , Bµν , φ

Closed unoriented gµν , φ

Open (and closed) oriented gµν , Bµν , V I J
µ , φ

Open (and closed) unoriented gµν , V [I J ]
µ , φ

14.2.2 Quantization of free-fermionic-string theories

Again, the simplest way to arrive to the physical spectrum is to go to the light-cone gauge,

X+ = ξ 0, e0
1 = ∂1e1

1 = ψ+ = ρiχi = 0, det(ea
i ) = +1, (14.51)

which allows the elimination of ea
i , χi , X±, and ψ± and leads to the Hamiltonian

H = −c

2

∫ 2π�

0
dξ 1

[
T −1�i

X�i
X + T ∂1 Xi∂1 Xi + 2�i

ψρ3∂1ψ
i
]
, (14.52)

and to the equations of motion (14.37) for the Xi and, for the upper (ψ i
+) and lower (ψ i

−)
components of the spinors ψ i ,

(∂0 ∓ ∂1)ψ
i
± = 0, (14.53)

they are left- and right-moving, respectively.
The quantization proceeds essentially along the same lines as in the bosonic string, pay-

ing attention to the second-class constraints that this theory has. Here we describe just the
general structure of the consistent superstring theories, leaving all details aside.

Superstring theories are Poincaré-invariant only in the critical dimension d = 10. It is
necessary to introduce the worldvolume fermion number F , defined modulo 2. The R and
NS sectors are separated into R± and NS± subsectors with respect to the operator eiπ F .
Then, consistency and the absence of tachyons require the combination of these subsectors
(GSO projection [457]) in very precise ways.

Closed strings There are several possibilities.

Type-IIB+ superstring R+R+ ⊕ R+NS+ ⊕ NS+R+ ⊕ NS+NS+, whose massless
spectrum corresponds to an N = 2B+, d = 10 supergravity multiplet with self-
dual 4-form potential and chiral fermions.

Type-IIB− superstring R−R− ⊕ R−NS+ ⊕ NS+R− ⊕ NS+NS+, whose massless
spectrum corresponds to an N = 2B−, d = 10 supergravity multiplet with anti-
self-dual 4-form potential and chiral fermions with the opposite chirality to the
previous case.

Type-IIA+− superstring R+R− ⊕ R+NS+ ⊕ NS+R− ⊕ NS+NS+, whose massless
spectrum corresponds to an N = 2A+−, d = 10 supergravity multiplet.
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Table 14.3. In this table we describe the massless fields of the various ten-dimensional superstring
(supergravity) theories.

Chiral Non-chiral Vector
Theory NSNS bosonic RR bosonic fermionic fermionic supermultiplets

Type IIA ĝµ̂ν̂ , B̂µ̂ν̂ , φ̂ Ĉ (1)
µ̂, Ĉ (3)

µ̂ν̂ρ̂ ψ̂µ̂, λ̂

Type IIB ̂µ̂ν̂ , B̂µ̂ν̂ , ϕ̂ Ĉ (0), Ĉ (2)
µ̂ν̂ , Ĉ (4 ±)

µ̂1···µ̂4 ζ̂
i (∓)

µ̂
, χ̂ i (±)

Type I ̂µ̂ν̂ , ϕ̂ Ĉ (2)
µ̂ν̂ ζ̂

(±)

µ̂
, χ̂ (∓)

(
V I

µ, ηI
)

Heterotic ĝµ̂ν̂ , B̂µ̂ν̂ , φ̂ ψ̂
(±)

µ̂
, λ̂(∓)

(
V I

µ, ηI
)

Type-IIA−+ superstring R−R+ ⊕ R−NS+ ⊕ NS+R+ ⊕ NS+NS+, whose massless
spectrum corresponds to an N = 2A−+, d = 10 supergravity multiplet. The
sign of the Chern–Simons term of the action is different from that of the
N = 2A+− theory.

There is a fifth possibility that gives the so-called type-0A and -0B strings, which are
bosonic and have a tachyon but have sometimes been considered.

Heterotic strings They are constructed by combining the right-moving fields of the closed
type-II superstring with the left-moving fields of the closed bosonic string. The 16
extra spacetime dimensions of the bosonic string must be compactified, which gives
rise to gauge symmetry. A generic toroidal compactification gives the gauge group14

U(1)16, but, as explained in Section 14.3, for special values of the radii of the cir-
cles and of the angles between them, there the gauge group can be bigger and non-
Abelian. In particular, one can show that the anomaly-free groups are SO(32) and
E8 × E8. The massless modes are those of N = 1±, d = 10 supergravity coupled to
vector supermultiplets with those gauge groups. The couplings between the massless
fields are, however, different from those of the type-I SO(32) theory.

Open superstrings They result from the combination of two subsectors: R+ ⊕ NS+ or
R− ⊕ NS+. In both cases, the massless spectrum corresponds to an N = 1, d = 10
vector supermultiplet V I J

µ , χ , where χ is a Majorana–Weyl gaugino with positive
chirality in one case and negative in the other and where we have added gauge indices
associated with U(n) Chan–Paton factors.

Open superstrings also need a closed superstring sector, but with the same spacetime
supersymmetry (N = 1), which is constructed by taking the quotient of one type IIB
by �. Then, we have to take also open unoriented superstrings, with gauge group
SO(n) or Sp(n). The only anomaly-free group is SO(32). The result is the

type-I± SO(32) superstring The massless modes correspond to N = 1±, d = 10
supergravity coupled to SO(32) vector supermultiplets.

The fields corresponding to the massless modes of all these theories are given in
Table 14.3.

14 If we had to compactify both right- and left-moving fields we would obtain U(1)32. The explanation for this
phenomenon can be found in Section 14.3.
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14.2.3 D-Branes and O-planes in superstring theories

In the bosonic-string case we have seen how theories (oriented or unoriented) with Dirich-
let boundary conditions could be constructed by adding to the simplest oriented theories
D-branes or O-planes. The presence of these objects changes the boundary conditions and
the orientability of the theory. In the bosonic case consistency of the construction was not so
important since the original theory was already sick, but in the construction of superstring
theories we have chosen only those which are completely (self-)consistent, free of anoma-
lies and tachyons, and we have found all of them in ten dimensions. We can, however, try
to construct new theories by compactification of these or by the addition of D-branes and
O-planes, breaking in general ten-dimensional Lorentz invariance and supersymmetry.

The rules for how to add D-branes and O-planes consistently to superstring theories are
much more restrictive than in the bosonic case. To start with, the following facts have to be
taken into account.

1. The type-IIA (B) theory admits only Dp-branes and Op-planes with p even (odd).

2. Dp-branes and Op-planes are charged with respect to the RR (p + 1)-form poten-
tials of each theory [777] (see Table 14.3) and their duals. This agrees with the fact
that type IIA (B) has odd (even)-rank RR potentials only. However, one has to intro-
duce a 9 (10)-form potential Ĉ (9) (Ĉ (10)) for the D8 (9)-brane and O8 (9)-plane of the
Type IIA (B) theory. These fields carry no local degrees of freedom and, therefore,
they are not associated with states of the spectrum.

3. Dp-branes carry a unit of positive or negative RR charge that equals its tension qDp =
±TDp. Op-planes have charges and tensions that depend on the symmetries involved.
The prototype is the type-IIB± O9-plane associated with worldsheet parity �, which
is a symmetry of both theories (but interchanges the two type IIAs) and has Ĉ (10)

charge qO9 = ±TO9 and tension TO9 = −32TD9 (negative). The Op-planes related to
it by T duality have

TOp = −2p−5TDp. (14.54)

4. The presence of a single Dp-brane or Op-plane halves the supersymmetry of the the-
ory. This is the amount preserved by those objects considered as superstring states.
From this point of view they are BPS states and they must saturate some Bogomol’nyi
bound, which implies a relation between their tensions and charges (identity in proper
units). Then, equilibrium of forces between objects of the same kind (including spa-
tial orientation) is to be expected, as discussed in Chapter 13, which means that we
can have parallel Dp-branes with the same charge in equilibrium and enhancement
of gauge symmetry when they coincide. We will see that classical solutions that de-
scribe these systems can be found in the effective supergravity theories. The stability
of these systems is reflected in the absence of tadpoles in the string theory.

5. It is possible to introduce Dp-branes that intersect (at any angle) if the resulting
system preserves supersymmetry. There are simple rules for allowed intersections at
right angles, which will be studied later.
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6. As we have mentioned, the absence of anomalies and tadpoles is related to the sta-
bility of the system of Dp-branes and Op-planes. In particular, the system should be
able to solve the equations of motion of the string effective theory which we are go-
ing to study in the next few chapters. The equations of motion for (p + 1)-forms are
generalizations of the harmonic equation which, in compact spaces, can be solved
only if the total charge is zero.15

These rules have been used extensively for building new string theories. The simplest
construction leads to the type-I SO(32) theory starting from type IIB: on introducing an
O9-plane (i.e. taking the quotient of the type-IIB theory by �), consistency requires the
addition of 32 D9-branes in order to obtain zero total RR charge, which results in the
introduction of an open, unoriented-string sector with gauge group SO(32).

14.2.4 String interactions

Strings interact by joining and splitting. It is then easy to understand that open strings can
interact to give closed strings and that consistency (unitarity) requires a closed-string sector
in open-string theories.

String amplitudes are defined as path integrals over all embeddings Xµ and all world-
sheet metrics γi j with given boundaries and boundary data that determine the string states
that are scattered. The boundary data are included as vertex operators in the path integral.
Without vertex operators, we have vacuum amplitudes, given by the path integral

Z =
∫

DXDγ e−SP−SEuler, (14.55)

where SP is the Euclidean Polyakov integral Eq. (14.5) and SEuler is the topological term
Eq. (14.14). For closed strings we will restrict ourselves to (just oriented or oriented plus
unoriented) compact surfaces. For open strings we will add surfaces with boundaries.

The sum over metrics can be decomposed into a sum of path integrals over worldsheets
with given topologies. The topology of two-dimensional surfaces can be characterized com-
pletely by the numbers g, b, and c, combined into the Euler characteristic χ , which is given
by the topological term Eq. (14.14) as explained on page 412. The result takes the form

Z =
∑

t

(eφ0)−χ(t)
∫

{�t }
DXDγ e−SP�t , (14.56)

where t stands for given topologies and {�t} is the space of surfaces with topology t . Now,
each topology can be associated with a loop order, given precisely by −χ(t), and the above
sum can be understood as a perturbative series expansion in which eφ0 plays the role of the
string coupling constant g:

g ≡ eφ0 . (14.57)

In Section 15.1 we will see that φ0 is the vacuum expectation value of the dilaton field.

15 The lines of force of the field can only go to sources or to infinity. In compact spacetimes, they have to start
and end on sources and the total charge has to be zero.
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14.3 Compactification on S1: T duality and D-branes

We can obtain four-dimensional string theories by compactification. The simplest com-
pactification would be on a circle. Already in this case we are going to start seeing stringy
effects (T duality, first discovered in [622, 819], and enhancement of gauge symmetry) that
we did not see in the field-theory (KK) case, which are a manifestation of the extended-
object nature of strings and a suggestion that there is a minimal length in string theory.
General references on T duality are [35, 456].

We are going to study first the compactification of closed bosonic strings on a circle.

14.3.1 Closed bosonic strings on S1

If Z ≡ Xd̂−1 is the compact coordinate, it is convenient to identify Z ∼ Z + 2π Rz , where
Rz is the compactification radius, and keep using the Minkowski metric. Now, in the mode
expansion Eq. (14.40) of Z the following applies.

1. There is another zero mode compatible with the periodicities of ξ 1 and Z :

Rzw

�
ξ 1, w ∈ Z. (14.58)

When we go around the closed string once, ξ 1 → ξ 1 + 2π�, we go w times around
the compact dimension: Z → Z + 2π Rzw. This is a winding mode, a purely stringy
animal that corresponds to the capacity of closed strings to be wrapped w times
around compact dimensions.

2. There are also string KK modes as in Chapter 11,

n

Rz p+ ξ 0, n ∈ Z. (14.59)

Quantization leads to the mass formula and constraint

M2 = n2

R2
z

+ R2
z w

2

α′ 2
+ 2

α′ (N + Ñ − 2), N = Ñ + nw. (14.60)

Observe that the mass of the w = 1 mode agrees with the definition of the string tension
on page 409: it is the product of the length of the compact dimension and the string tension.

The spectrum is now that of the uncompactified theory (the n = w = 0 sector) plus new
sectors with non-vanishing KK momentum or winding number. The spectrum of the un-
compactified theory has to be interpreted now in d̂ − 1 dimensions: the d̂-dimensional
graviton gives rise to a graviton, a (KK) vector and a (KK) scalar in d̂ − 1 dimensions,
while the KR 2-form gives rise to another 2-form and another (winding) vector and the
dilaton gives another dilaton. For generic values of the compactification radius Rz there are
no more massless states and the vector gauge symmetry group is U(1)2. As discussed in
Chapter 11, KK modes are charged with respect to the KK U(1) vector field. We will see
that winding modes are charged with respect to the winding U(1) vector field.
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The spectrum is invariant under the T-duality transformation

n′ = w, w′ = n, R′
z = α′/Rz. (14.61)

Two bosonic-string theories with one dimension compactified on a circle of radius Rz

and α′/Rz have the same spectra, with the winding modes of one of them having the same
masses as the KK modes of the other and vice-versa. Not only do they have the same
spectra, but also they have the same interactions and scattering amplitudes, but one has to
take into account that the string coupling constants of the two theories are related by [33]

g′ = g�s/Rz. (14.62)

This has very important consequences: if we diminish the size of the compactification
radius beyond the self-dual radius Rz = �s = √

α′, there is another completely equivalent
bosonic-string theory defined on a circle of radius bigger than �s. The self-dual radius can
be interpreted as the minimal radius on which a bosonic-string theory can be compactified.

On the other hand, at the self-dual radius there are four additional massless vectors:
N = ±n = ±w = 1 and Ñ = ±n = ∓w = 1. These, plus the KK and the winding vector
turn out to be the gauge vectors of SU(2) × SU(2) and we find a new enhancement of
symmetry at a special point (a T-duality fixed point) of the moduli space, which is one of
the most striking properties of string theory.

Is T duality related to some property of the Polyakov action that we have missed? Actu-
ally, yes: the Polyakov action is invariant under Poincaré-dualization of one of the embed-
ding coordinates, just as Maxwell’s action is invariant under the dualization of the vector
field (Section 8.7.1): we put ∂i Z ≡ Fi and add to the Polyakov action in Minkowski space-
time a Lagrange multiplier term enforcing the Bianchi identity ∂[i Fj] = 0:

SP [Xµ, γi j , Z ] = −T

2

∫
d2ξ

√
|γ | γ i j (∂i Xµ∂ j Xµ − Fi Fj ) − T

∫
d2ξεi j∂i Z ′Fj . (14.63)

The equations of motion of the Lagrange multiplier Z ′ and of Fi are

∂[i Fj] = 0, Fi = εi j∂ j Z ′, (14.64)

and we can use the latter to eliminate Fi . The result is the Polyakov action with Z replaced
by the dual embedding coordinate Z ′. This procedure can be used in the presence of non-
trivial spacetime metrics that are independent of z, as we will see in Section 15.2.2.

14.3.2 Open bosonic strings on S1 and D-branes

Equations (14.64) imply ∂ i Z = εi j∂ j Z ′, which implies that, under Poincaré duality, left-
moving objects transform into left-moving objects and right-moving ones into minus right-
moving objects. Then T duality can be described as the equivalent transformation

Z = Z+ + Z− → Z ′ = Z+ − Z−. (14.65)
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This description is useful for open strings. Open strings with N boundary conditions have
KK modes but no winding modes on a circle. Clearly, a T-duality transformation will not
take us into another similar open-string theory. Yet, we can perform the transformation and
try to identify the resulting theory. The main observation is that N boundary conditions
∂+Z+ = ∂−Z− and D boundary conditions ∂+Z+ = −∂−Z− are interchanged by T duality.
Indeed, on applying the above transformation to the open string with N boundary conditions
mode expansion Eq. (14.38), which we rewrite here in the form

Z± = z

2
± pz

2cp+ ξ± − i

√
α′

2

∑
n 	=0

e± in
2�

ξ±
, (14.66)

we find

Z ′ = Z+ − Z− = pz

cp+ ξ 1 +
√

2α′
∑
n 	=0

αn

n
e

icnξ0

2� sin

(
nξ 1

2�

)
, (14.67)

which coincides with the expansion with D boundary conditions Eq. (14.39) with z1 = 0
and z2 = pz/T . If we take into account that pz = n/Rz , we see that z2 = n2π R′

z , where
R′

z = α′/Rz is the T-dual radius. The coordinate Z with N boundary conditions has been
transformed into the compact coordinate Z ′ with dual compactification radius and D bound-
ary conditions at both ends, z1 = 0 and z2 = 2π R′

z ∼ 0. The momentum mode n has be-
come a winding mode with winding number n: the string has one endpoint attached to the
D24-brane, winds around the compact dimension n times, and ends again on the same
D24-brane.

We could repeat the procedure in another compact coordinate, giving a D23-brane. Thus,
T duality in a direction parallel to a Dp-brane transforms it into a D(p − 1)-brane with a
compact transverse dimension and vice-versa. Furthermore, with Chan–Paton factors, we
would have found endpoints with different labels on the same hypersurface. Thus, we would
have overlapping D-branes and the gauge group would be preserved by T duality.

What happens when we perform T duality on two parallel non-overlapping D24-branes
whose transverse dimension is compact? There are, as we discussed, four sectors labeled
by pairs i j with i j = 1, 2 indicating on which of the two D24-branes the first and second
endpoints are. The spectrum is consistent with spontaneously broken U(2) gauge symme-
try. The 11 and 22 sectors are T dual to open strings with N boundary conditions. If the
D24-branes are placed at angles θ1, and θ2, the 12 and 21 sectors with winding number w

have expansions

Zi j
± = Rzθi

2
+ [2πw − (θ j − θi )]Rz

4π�
ξ± ∓ i

√
α′

2

∑
n 	=0

e± in
2�

ξ±
, (14.68)

and the T-dual expansion is that of an N open string with momentum given by (pz i j )′ =
[w − (θi − θ − j)]/R′

z . The shift with respect to the standard KK momentum w/R′
z is

caused by the appearance of Wilson lines of the U(2) gauge field V i j of the N open strings
with two Chan–Paton factors. As explained on page 347, in a background with a compact
dimension we can have topologically non-trivial configurations of the gauge fields char-
acterized by the line integral of the gauge field around the compact direction (known as a
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Wilson line):

W [C] = exp

{
i
∮

C
A

}
. (14.69)

In this case, in the dual-string theory, we have the gauge-field configuration

(
V i j

z

)
= − 1

2π R′
z

(
θ1 0
0 θ2

)
. (14.70)

This non-trivial background breaks U(2) down to U(1)2, as can be seen in the spec-
trum16 [779]. Thus, the symmetry in the original configuration is equal to that in the
dual configuration. In one case, the symmetry breaking is associated with the separation
of the D24-branes and in the T dual it is associated with the presence of Wilson lines
(D25-branes, being spacetime-filling branes, cannot be spatially separated), but gauge sym-
metry is preserved by T duality. The generalization to n D-branes and U(n) gauge symmetry
is straightforward.

14.3.3 Superstrings on S1

Closed and heterotic superstring theories compactified on circles also have T duals: the
type-IIA and type-IIB theories compactified on circles of T-dual radii are each other’s dual
[283, 322] and the SO(32) and E8 × E8 heterotic strings compactified on circles of T-dual
radii are each other’s T-dual theory. Type-I SO(32) strings also have a T-dual theory, the
so-called type-I′, which has a nine-dimensional interpretation.

To make further progress in the study of string dualities, we need to study string effective
actions. They will allow us to extend these results easily to more general backgrounds and
they will also allow us to find possible non-perturbative dualities that the perturbative for-
mulation of string theory that we have just sketched in this chapter is not powerful enough
to exhibit.

16 To find the spectrum, one has to take into account the coupling of the U(2) gauge vector to the Polyakov
action through the boundary term Eq. (15.6).



15
The string effective action and T duality

After the previous chapter’s brief introduction to perturbative string theory and T duality
we are going to discuss how one arrives at the low-energy string effective (field theory)
actions, what their meaning is, and what their limits of validity are. We are going to start
exploiting them to study T duality and find Buscher’s T-duality rules, that relate different
curved backgrounds that are equivalent from the string-theory point of view. These rules
are some of the most powerful tools of string theory.

15.1 Effective actions and background fields

The low-energy string effective action describes the low-energy dynamics of a given string
theory. Here low energy means energies lower than the relevant energy scale: the string
mass ms. Thus, the low-energy limit is the α′ → 0 limit, heuristically, the limit in which the
string length can be ignored and a theory of particles (a field theory) is recovered.

On the other hand, at low energies only the massless modes are relevant and their dynam-
ics is described by a theory of the corresponding massless fields. The obvious way to find
this field theory is to compute string amplitudes for the massless modes, take the α′ → 0
limit and then construct a field theory that reproduces these amplitudes. In principle, the
effective field theory has an expansion in powers of α′, although usually only the lowest-
order terms are considered. The terms of higher order in α′ are also of higher order in
derivatives. Also, string amplitudes are calculated order by order in string perturbation the-
ory and the effective action can also be expanded in powers of the string coupling constant,
which here is the exponential of the dilaton field. Again, only the lowest orders are usually
considered.

Actually, for some superstring theories, it is possible to arrive at the effective theory using
(super)symmetry arguments. In particular, the massless modes of the type-II superstrings
fill the supergravity multiplets of the (two only) maximal ten-dimensional supergravity
theories: those of the type-IIA (non-chiral) theory fill the supergravity multiplet of N =
2A, d = 10 SUEGRA [211, 427, 571, 585] whose action is given in Eq. (16.38) and those
of the type-IIB (chiral) theory fill the supergravity multiplet N = 2B, d = 10 SUEGRA
[571, 820, 823] whose action is given Eq. (17.4). Similarly, since there is only one N = 1
supergravity in d = 10 dimensions [114, 233, 457], coupled to vector fields with the right

430
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gauge group it must be the effective action of the heterotic and type-I strings (but already
here the couplings of the 2-form are different in the two theories).

The fields of these effective theories are given in Table 14.3. The NSNS fields are some-
times called the common sector since they occur in all of them, including the bosonic
(oriented)-string theories. The fields in the common sector are the metric gµν , associated
with the graviton, the KR 2-form Bµν , and the dilaton φ whose vacuum expectation value
φ0 gives the string coupling constant g = eφ0 (see Eqs. (15.8) and (14.14)). The action for
the common sector in the string frame to be defined below is given (in d dimensions with
d = 10 and 26) by

S = g2

16πG(d)
N

∫
dd x

√|g| e−2φ

[
R − 4(∂φ)2 + 1

2 · 3!
H 2

]
, (15.1)

where, in our notation in which indices not shown are all antisymmetrized,

H = 3∂ B (15.2)

is the KR field strength, which is invariant under the gauge transformations necessary for
the consistent quantization of a massless 2-form field,

δB = 2∂�, (15.3)

where �µ is an arbitrary vector field. The overall factor e−2φ is associated with the genus-0
(tree-level) origin of these terms and the normalization is conventional. In particular, the
factor g2 (g is defined in Eq. (14.57)) compensates the factor e−2φ0 that appears in the
weak field expansion of the action around the vacuum gµν = ηµν, φ = φ0, so G(d)

N can be
interpreted as the d-dimensional Newton constant. Its value Eq. (19.26) can be determined
by using duality arguments that relate it to the string coupling constant and the string length
just as we determined the Newton constant in terms of the compactification radius of KK
theory in Eq. (11.97), as we will see in Section 19.3.

Observe that, up to normalization, the above action is also invariant under shifts of the
dilaton field that change its vacuum expectation value and thus g, which is a free param-
eter. A potential for the dilaton could give it a mass and fix g, solving two problems si-
multaneously: the determination of g and the existence of a massless scalar that couples
as the Jordan–Brans–Dicke field to all kinds of matter, inducing violations of the equiva-
lence principle [287, 288]. The massless KR 2-form that also couples to matter can also
be a source of violations of the equivalence principle. The KR 3-form field strength can
be understood as a completely antisymmetric dynamical torsion field, as we discussed on
page 132 and, in the same spirit, the dilaton can be understood as part of a non-metricity
tensor of the type considered by Weyl [834]. The above string effective action can then be
written as an Einstein–Hilbert action for a torsionful and non-metric-compatible connection
using Eq. (1.55) (see also Eq. (1.58)).

The RR fields are differential forms C (n)
µ1···µn of even (odd) rank in the N = 2B (A)

theory and appear in the respective actions Eqs. (17.4) and Eq. (16.38) with no couplings
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to the dilaton in the string frame. They couple to the KR 2-form due to the definitions of
the field strengths and also to the presence of Chern–Simons (CS) topological terms in the
supergravity actions. These CS terms contain a great deal of information on the possible
intersections of extended objects of the theory [900].

Although the identification of the field theories on the basis of symmetry arguments is
correct, the identification of the fields with the string modes is ambiguous, since the su-
pergravity theories are unique up to field redefinitions. To establish completely the relation
between supergravity fields and string modes, it is necessary to have more information. For
instance, making use of the relations in Figure 14.1, the supergravity fields must be related
by dualities in the same way as the string modes are.

String effective actions also arise in a different way: string theories are usually quantized
in flat spacetime, but the string worldsheet action can be written in a curved background
as a non-linear σ -model, Eq. (14.5), and, furthermore, can be generalized to describe the
coupling to all background fields associated with the string massless modes.1 The coupling
of the string to the Kalb–Ramond 2-form Bµν is represented by a WZ term that generalizes
the coupling of the Maxwell vector field to a charged point-particle, Eq. (8.53), i.e. it is the
integral of the pull-back of the 2-form over the two-dimensional worldsheet:

T

2

∫
�

B, (15.4)

where B is given by

B = 1
2 Bi j dξ i ∧ dξ j = d2ξεi j Bi j = d2ξεi j∂i Xµ∂ j X ν Bµν. (15.5)

Observe that the role of the electric charge is played here by the string tension. This coeffi-
cient can be changed but we will take it as above, defining the normalization of Bµν that we
will use. This is the normalization that leads to the effective action Eq. (15.1). Observe also
that the WZ term, being topological (metric-independent), is automatically Weyl-invariant
and does not contribute to the γi j equation of motion. Furthermore, the WZ term is invari-
ant, up to total derivatives, under gauge transformations of the 2-form, Eq. (15.3), which
means that strings are charged with respect to the KR 2-form and the charge is conserved. In
open-string worldsheets the non-vanishing boundary term is canceled out by the variation
of the term that represents the coupling of the open string to the 1-form Vµ:∫

∂�

V, (15.6)

provided that the vector transforms under the KR 2-form gauge symmetry Eq. (15.3),

δVµ = T �µ. (15.7)

Finally, this term is not parity-invariant and occurs only in oriented-string theories.

1 This is always true for the fields in the common sector for the bosonic and fermionic strings, although
worldsheet supersymmetry has to be studied case by case. The inclusion of RR massless superstring fields
in the σ -model is more complicated and how to do it is known only in certain cases.
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The coupling to the dilaton is related to the topological term Eq. (14.14):

− 1

4π

∫
d2ξ

√
|γ | φ(X)R(γ ). (15.8)

This term, which is of higher order in α′ for dimensional reasons, gives no contribution to
the γi j equation of motion but breaks Weyl invariance for generic dilaton fields.

Since Weyl invariance is absolutely necessary for the consistency of string theory, the
natural question to be asked is that of in which backgrounds gµν, Bµν, and φ Weyl in-
variance is quantum-mechanically preserved. The background fields can be understood as
coupling functions and then the question can be reformulated in terms of the vanishing of
the beta functionals associated with them.

To lowest order, these beta functionals are given by [205]

βg
µν = α′[Rµν − 2∇µ∇νφ + 1

4 Hµ
αβ Hναβ

] + O(α′ 2),

βB
µν = α′

2
e2φ∇ρ(e−2φ Hρµν) + O(α′ 2),

βφ = d − 26

6
− α′

2

[
∇2φ − (∂φ)2 − 1

4 R − 1
48 H 2

]
+ O(α′ 2),

(15.9)

and it turns out that the vanishing of these beta functionals is equivalent to the equations of
motion derived from the action Eq. (15.1) plus a term

g2

16πG(d)
N

∫
dd x

√
|g| e−2φ[−2(d − 2)�], � = 2(d − 26)

3α′(d − 2)
, (15.10)

for the bosonic string, which vanishes in the critical dimension d = 26 (the same happens
for the fermionic string for d = 10). Indeed, the equations of motion are (see Section 4.2)

16πG(d)
N e2(φ−φ0)

√|g|
δS

δgµν
∼ 1

α′
(
βg

µν − 4gµνβ
φ
) + O(α′),

16πG(d)
N e2(φ−φ0)

√|g|
δS

δφ
∼ −16

α′ β
φ + O(α′),

16πG(d)
N e2(φ−φ0)

√|g|
δS

δBµν

∼ − 1

α′ β
B µν + O(α′).

(15.11)

Thus, we see that quantum conformal invariance leads (in the critical dimension) to the
same effective action for the string common sector Eq. (15.1). The metric that appears in
that action is the same metric as that to which the string couples and therefore appears in
the σ -model and is called the string-frame metric. A conformal rescaling,

gµν = e
4

d−2 φgE µν, (15.12)

can eliminate the factor e−2φ in front of the Einstein–Hilbert term (see Appendix E). The
rescaled metric gE µν is called the Einstein-frame metric. In the Einstein frame, the string
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action is given by

S = 1

16πG(d)
N

∫
dd x

√
|gE|

[
RE + 4

d − 2
(∂φ)2 + 1

2 · 3!
e

−8
d−2 φ H 2

− (d − 2)�e
4

d−2 φ
]
. (15.13)

The solutions to these equations describe backgrounds (vacua) for bosonic-string theory
in which strings can be consistently quantized, to lowest order in α′ and the string coupling
constant. The simplest is evidently ten-dimensional Minkowski spacetime, which should
remain a good vacuum to all orders2 because all fields are trivial. Other vacua can be argued
to be exact and not to receive higher α′ corrections due to their unbroken supersymmetry
and/or the vanishing of their curvature invariants as is the case with pp-wave solutions
[41, 129, 493, 558–60, 910] and the four-dimensional solutions of [250] which are based
on the classification of the four-dimensional metrics that have all the curvature invariants
vanishing [789]. The next step is to try to quantize string theory on these vacua (for instance
in the KG10 solution [694, 696]).

It is amusing to see that quantizing string theory in non-trivial backgrounds amounts to
finding the generalization of Pythagoras’ law for vibrating strings (arguably the first law
in the history of physics) and that the generalization is possible only for backgrounds that
satisfy the above generalization of the Einstein equations.

The effective action has been obtained perturbatively in both α′ and the string coupling
constant g and, furthermore, in the low-energy (long-distance) approximation. As a general
rule, the results obtained working with it can be trusted as long as eφ << 1 and the curvature
scalar R << �−2

s or Rα′ << 1. Sometimes there are lengths in the system under consider-
ation that do not appear in the curvature, such as the radius of a circle. These distances
should be bigger than the string scale �s. At distances of the order of �s, or curvatures of
the order of �2

s , there are stringy effects that invalidate the effective action and its solutions,
unless higher order corrections to both are taken into account.

For instance, we have seen in the previous chapter that, when the distance between two
D-branes becomes of the order of �s or when the compactification radius takes the self-
dual value of �s, new massless states appear in the string spectrum that were not taken into
account in the calculation of the string effective action and should be included by hand at
that point. Beyond that point, the T-dual description of the effective-field theory should be
used. In more complex geometries one can find radii that are functions of other coordinates,
so there are regions in which they are smaller than �s. The solution cannot be trusted in those
regions. This is the basis of Sen’s argument, which we mentioned on page 245.

15.1.1 The D-brane effective action

The effective action of a Dp-brane (or, rather, the effective action of open-plus-closed-
string theory in the presence of a Dp-brane so the open-string sector has D bound-
ary conditions. in 25 − p coordinates) in a background with metric, KR 2-form, dila-
ton, and (p + 1)-dimensional U(1) vector is given by the following generalization of the

2 In superstring theories. In bosonic-string theories, the 26-dimensional Minkowski spacetime is not a stable
vacuum, as the presence of the tachyon suggests, and is also α′-corrected [395], although it is not known to
which solution the corrections converge.
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Nambu–Goto action [647]:

S = −TDpg
∫

d p+1ξ e−φ
√|gi j + Bi j + 2πα′Fi j |, (15.14)

where gi j and Bi j are the pull-backs over the (p + 1)-dimensional worldvolume of the
spacetime fields and Fi j = 2∂[i Vj] is the standard field strength of a gauge vector that in this
context is called the Born–Infeld (BI) vector field since the above action, with flat spacetime
metric and zero dilaton and KR field, was proposed by Born and Infeld in [171–3] as a non-
linear model for electrodynamics: the power expansion of the action contains a Maxwell
term F2 and an infinite series of higher-order terms. The main property of this theory is
that the spherically symmetric field was singularity-free and had a core with characteristic
size ∼�s with the above normalization.3 TDp is the Dp-brane tension.4

This action is invariant under spacetime and worldvolume reparametrizations, and also
under the KR and BI vector-field gauge transformations Eqs. (15.3) and (15.7) and has to
be added to the bulk closed-string effective action Eq. (15.1). If the strings are unoriented,
then there is no KR 2-form in either of them.

The fact that, in the presence of D boundary conditions, the string effective action in-
cludes the worldvolume action of an extended object, the Dp-brane, is a final argument
in favor of the interpretation of the latter as a dynamical object. On the other hand, the
Dp-brane action is a generalization of the string σ -model action and it may constitute the
starting point for quantization. Actually, the Dp-brane actions of superstring theories can
(and must) couple to all the fields of the (bulk) closed-superstring effective action, which is
a supergravity action. The consistent coupling to all these fields requires, first of all, a WZ
term for the action to be invariant under κ-symmetry transformations. The bosonic part of
the WZ term describes the coupling to a RR (p + 1)-form potential and other RR poten-
tials of lower rank. Thus, as first shown by Polchinski in [777], superstring Dp-branes carry
RR charges and are sources of the RR fields of those actions. We will discuss the effective
actions of these super-D-branes in Chapter 19.

15.2 T duality and background fields: Buscher’s rules

In the preceding section we have introduced string effective-field-theory actions and in this
section we want to show how to use them to study string dualities in the simplest case:
T duality. We will consider the effective action for the string common sector and the results
will be valid only for closed bosonic strings but will later be generalized to the heterotic
and type-II cases. We essentially follow [131], where the heterotic case was studied, with a
few notational changes.

3 A recent review actions of on this kind is [909].
4 In the literature, the same quantity as that which we define as tension is called effective tension, and the

coefficient in front of the Dp-brane effective action is called tension. We use only the physical tension
parameter defined above, which should avoid confusion.
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15.2.1 T duality in the bosonic-string effective action

T duality relates closed d̂-dimensional string theories compactified on circles of relatively
dual radii. The effective-field theories will be d̂ − 1 = d-dimensional field theories for the
massless modes and the KK formalism that was developed in Chapter 11 is perfectly suited
to obtaining them from the effective actions of the uncompactified d̂-dimensional effective
theories.5

Our starting point is the action Eq. (15.1) with hats on every object, following the no-
tation of Chapter 11. We denote the compact coordinate by xd̂−1 ≡ z ∈ [0, 2π�s], and as-
sume that all fields are independent of it. We can use the standard KK Ansatz Eq. (11.33)
and the results concerning the spin connection, Eqs. (11.36) and (11.35), and volume ele-
ment, Eq. (11.37). Before substituting in the Einstein–Hilbert part of the action, we use the
d̂-dimensional Palatini identity Eq. (D.4) with K = e−2φ̂ and immediately obtain∫

dd̂ x̂
√

|ĝ| e−2φ̂ R̂ =
∫

dz
∫

dd̂−1x
√|g| e−2φ̂k

{
− ωb

baωc
c

a − ωa
bcωbc

a

+ 2ωb
ba∂a ln (e−2φ̂k) − 2∂a ln k ∂a ln e−2φ̂ − 1

4 k2 F2(A)
}

.
(15.15)

It is evident that the combination e−2φ̂k now plays the role of a d-dimensional dilaton,
and thus we define

φ ≡ φ̂ − 1
2 ln k. (15.16)

The kinetic term for the dilaton gives∫
dd̂ x̂

√
|ĝ| e−2φ̂

[
−4(∂φ̂)2

]
=

∫
dz

∫
dd̂−1x

√|g| e−2φ̂k
[
−4(∂φ̂)2

]
. (15.17)

On combining these two terms and using now the d-dimensional Palatini identity with
K = e−2φ , we obtain, straightforwardly,∫

dd̂ x̂
√

|ĝ| e−2φ̂[R̂ − 4(∂φ̂)2] =
∫

dz
∫

dd̂−1x
√

|g| e−2φ
[
R − 4(∂φ)2

+ (∂ ln k)2 − 1
4 k2 F2(A)

]
.

(15.18)

The reduction of the KR 2-form is a bit trickier. First, we reduce the field strength by
identifying, in tangent-space indices,

Ĥabc ≡ Habc, Ĥabz = k−1 Fab(B), (15.19)

where
F(B) = 2∂ B, Bµ ≡ B̂µz. (15.20)

5 Observe that the KK formalism may describe the massive KK modes of the string but not the massive
winding modes. The massless modes have zero momentum and winding number except at the self-dual
radius, at which there are additional massless modes with non-trivial KK momentum and winding number.
The effective action that we are going to write cannot describe the enhancement of symmetry that takes
place at the self-dual radius. A direct calculation of the string effective action for that radius is necessary.
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The above identification of H does not completely determine the reduction of the KR
2-form. It simply gives

Hµνρ = 3(∂[µ B̂νρ] − A[µF(B)νρ]). (15.21)

Now, we could define Bµν = B̂µν , but we are free to implement field redefinitions, for
the sake of convenience. Here, it is convenient to define

B̂µν = Bµν − A[µ Bν], ⇒ H = 3[∂ B − 1
2 AF(B) − 1

2 B F(A)], (15.22)

so Bµν is invariant under the interchange of the two vector fields Aµ and Bµ.
The presence of two additional terms in the field strength H (apart from 3∂ B), gener-

ically known as Chern–Simons terms, is a new feature that is quite common in higher-
dimensional supergravities. H is invariant under the gauge transformations of the vector
fields and the 2-form, but the 2-form must also transform under gauge transformations of
the vector fields (the so-called Nicolai–Townsend transformations):

δ� Aµ = ∂µ�, δ� Bµ = ∂µ�,

δBµν = 2∂[µ�ν] + B[µ∂ν]� + A[µ∂ν]�.
(15.23)

The origin of the gauge transformation of the KK vector field A is the GCTs of the
compact coordinate δz = −�, while the gauge transformations of the vector field B and
the 2-form are the gauge transformations of the d̂-dimensional 2-form Eq. (15.3):

�µ = �̂µ, � = �̂z. (15.24)

After integration over the compact coordinate, the dimensionally reduced effective action
takes the form

S ∼
∫

dd x
√

|g| e−2φ

[
R − 4(∂φ)2 + 1

2 · 3!
H 2 + (∂ log k)2 − 1

4 k2 F2(A)

− 1
4 k−2 F2(B)

]
. (15.25)

We could now rescale the d-dimensional fields as we did in Eq. (11.54) and rewrite the
action in terms of the scale-invariant fields:

k̃ = k/k0, Ãµ = k0 Aµ, B̃µ = k−1
0 Bµ. (15.26)

The action Eq. (15.25) is manifestly invariant under the transformations

Aµ → Bµ, Bµ → Aµ, k → k−1, (15.27)

which invert the KK scalar (and therefore the radius of compactification) and interchange
the KK vector field that couples to KK modes with the vector field that, as we are going
to see, couples to the winding modes. These are, evidently, part of the string T-duality
transformations.

There are two ways to understand these transformations: first, we compactify a string
background, T-dualize it, and decompactify it into a different background. Another way to
think about them is to think of two compactifications of T-dual backgrounds: in one of them
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we call the KK scalar and vector field k and A and, in the other, we call them k−1 and B.
These two dual compactifications give the same d-dimensional string background. This is
a better way to think about T-duality transformations because it is the one that generalizes
to type-II effective actions.

In both cases, it is easy to relate the d̂-dimensional metric, KR 2-form, and dilaton of the
two dual string backgrounds (primed and unprimed):6

ĝ′
zz = 1/ĝzz, B̂ ′

µz = ĝµz/ĝzz,

ĝ′
µz = B̂µz/ĝzz, B̂ ′

µν = B̂µν + 2ĝ[µ|z| B̂ν]z/ĝzz,

ĝ′
µν = ĝµν − (ĝµz ĝνz − B̂µz B̂νz)/ĝzz, φ̂′ = φ̂ − 1

2 ln |ĝzz|.
(15.28)

These relations are known as Buscher’s rules [198–200] and relate two backgrounds with
one isometry that are completely equivalent7 from the string-theory point of view and, in
particular, are classical solutions of the string effective-action Eq. (15.1). If we set �z = �s,
we immediately obtain the relations Eqs. (14.61) and (14.62) between the moduli of the
two dual theories.

The rules were originally derived using the string σ -model, as we are going to do in
the next section (although at the classical level), but the effective-action method [121, 125,
130, 675] turns out to give the correct rules in a much simpler way. In Section 15.3 we will
study some simple examples of string solutions and T dualization using Buscher’s rules,
although string solutions and their duality relations are the main theme of Part III and we
will see many more examples in later chapters.

Buscher’s rules refer only to solutions with an isometry.8 However, from the string point
of view, it seems that it should be possible to define T duality whenever strings can be
wrapped around non-contractible cycles. However, the only (partial) realization of this
more general duality has been achieved in [476].

To end this discussion on Buscher’s T-duality rules, let us make some important remarks.

1. These rules are valid only to lowest order in α′.

2. T duality does not commute with gauge transformations (reparametrizations or gauge
transformations of the KR 2-form).

3. In the presence of fermions, Buscher’s rules have to be formulated in terms of the
Vielbein instead of the metric. We have used the Scherk–Schwarz recipe, which em-
ploys the Vielbein formalism, to derive the rules and one could draw the conclusion

6 These rules are valid only for the heterotic-string background fields (all in the NSNS sector) at lowest order
in α′. At higher orders in α′ one has to take into account the Yang–Mills fields and also corrections to these
rules [34, 126].

7 If the isometric direction is not compact or corresponds to an isometry with fixed points (a rotation instead
of a translation) so that strings cannot wrap around it, the stringy equivalence between the two solutions
related by Buscher’s rules need not be true. Still, the new configuration solves the string equations of motion
and it is another string solution [805].

8 It is clear, though, that they can be extended to the case of several mutually commuting symmetries (toroidal
compactifications). The rules follow from the results of Section 16.5.
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that our results automatically imply a transformation rule for the Vielbein. However,
the rules involve only world tensors and they determine the transformation rules for
the Vielbeins up to (z-independent) local Lorentz transformations, and only by con-
sidering T duality with fermions is the indeterminacy eliminated and one finds just
two possible transformation rules for the Vielbein [121]:

êâ ′
z = ∓êâ

z/ĝzz, êâ ′
µ = êâ

µ − (ĝµz ± B̂µz)êâ
z/ĝzz. (15.29)

Both signs lead to the same Buscher rules for world tensors Eqs. (15.28). Now, if we
start with the standard gauge choice for the Vielbein Eq. (11.33), the two possible
T-dual Vielbeins are given by

(
êµ̂

â ′
)

=
(

eµ
a ±k−1 Bµ

0 ±k−1

)
,

(
êâ

µ̂ ′
)

=
(

ea
µ −Ba

0 ±k

)
. (15.30)

We will see in Section 17.4 that T duality in type-II theories requires the use of the
lower (“non-standard”) sign for it to work in the fermionic sector.

15.2.2 T duality in the bosonic-string worldsheet action

We can also gain some insight by studying T duality from the point of view of the two-
dimensional σ -model that describes the motion of a string in a d̂-dimensional spacetime
with a metric ĝµ̂ν̂ and a KR 2-form B̂µ̂ν̂ :

Ŝ = −T

2

∫
d2ξ

√
|γ |γ i j ĝµ̂ν̂ (X̂)∂i X̂ µ̂∂ j X̂ ν̂ + T

2

∫
d2ξ εi j B̂µ̂ν̂ (X̂)∂i X̂ µ̂∂ j X̂ ν̂ . (15.31)

We do not include the dilaton term Eq. (15.8) since, in our purely classical approach, it
is not going to play any role at all.9 As in the effective action, we assume that the space-
time fields are independent of z = xd̂−1 and, thus, the embedding coordinate Z appears
only through its derivatives. We then decompose the d̂-dimensional fields into (d̂ − 1)-
dimensional fields using Eqs. (11.28), (15.20), and (15.22) and, on substituting into the
above, we obtain

Ŝ = −T

2

∫
d2ξ

√
|γ |[γ i j gi j − k2 F2

] + T

2

∫
d2ξ εi j

[
Bi j + Ai B j − 2Fi B j

]
, (15.32)

where gi j , Bi j , Ai , and Bi are the pull-backs of the d-dimensional metric, KR 2-form, KK
vector, and winding vector and where

Fi = ∂i Z + Ai , (15.33)

is the field strength of Z , which is invariant under the shifts

δ�Z = −�(X), δ� Aµ = ∂µ�. (15.34)

9 The T-duality transformation rule of the dilaton is a quantum effect. We found it in the string effective action
because this action contains information about the quantum theory.
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There is a conserved current associated with this invariance that coincides with the mo-
mentum canonically conjugate to the cyclic coordinate Z :

Pz
i = 1√|γ |

δ Ŝ

δ∂i Z
= 1√|γ |

δ Ŝ

δFi
= T (k2 Fi − � Bi ), ∇i Pz

i = 0, (15.35)

and there is, as usual, an associated magnetic-like (i.e. topologically) conserved current:

Wz
i = T �Fi − � Ai , ∇i Wz

i ∼ εi j∂i∂ j Z = 0. (15.36)

The charge associated with this current is the string winding number in the compact
dimension: up to normalization∫

dξ 1
√

|γ |W 0
z ∼

∫
dξ 1∂1 Z . (15.37)

We will see that the charges associated with these currents are the momentum of the
string in the compact dimension and the winding number, respectively.

As in the Minkowski-spacetime case, we want to perform a Poincaré-duality transforma-
tion of the action (15.32) with respect to the scalar Z . The Lagrange-multiplier term that
we have to add to enforce the Bianchi identity is now

+T
∫

d2ξ εi j∂i Z ′ (Fj − A j ), (15.38)

Now we want to eliminate Fi by using its equation of motion, which is the constraint

Fi = k−2 �F ′
i , F ′

i ≡ ∂i Z ′ + Bi . (15.39)

Since Bµ transforms under δ� in Eq. (15.23), for F̃i to be gauge-invariant (as the l.h.s. of
the above equation is) Z ′ has to transform simultaneously as follows:

δ� Z ′ = −�. (15.40)

On substituting Eq. (15.39) into the the action modified with the Lagrange-multiplier
term, we obtain the dual action

Ŝ′ = −T

2

∫
d2ξ

√
|γ |[γ i j gi j − k−2 F ′ 2

] + T

2

∫
d2ξεi j

(
Bi j + Bi A j − 2F ′

i A j
)
, (15.41)

which has exactly the same form as the original action (15.32) with the replacements
Eq. (15.27), which imply the Buscher T-duality rules Eqs. (15.28) for all fields except for
the dilaton, as we have explained.

The dual action has conserved currents Pi
z′, and W i

z′ , which are related to the conserved
currents of the original theory by

Pi
z′ = W i

z , W i
z′ = Pi

z , (15.42)

also as expected.
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To gain more insight into these transformations, we are going to find the worldline ac-
tions of the string momentum modes and winding modes and see that they have the ex-
pected dependences of the masses on the compactification radius and are interchanged by
T duality, as expected. The relation between these two worldline actions is similar to the
relation between T-dual D-brane worldvolume actions, as we will see in Section 15.2.3.

Winding and momentum modes. We want to find the action of winding modes as seen from
the (d̂ − 1)-dimensional point of view. We will perform a double dimensional reduction of
the spacetime fields (as we did to obtain Eq. (15.32)) and also of the worldvolume fields,
since we assume that the worldsheet coordinate ξ 1 is compact and that we can use the
KK formalism also in the worldsheet. The result will describe a particle moving in d̂ − 1
dimensions and coupled to the (d̂ − 1)-dimensional fields in a specific way. Its mass will
identify it as a bosonic-string winding mode.

Our starting point is thus Eq. (15.32). The next step consists in using part of the gauge
freedom to set

Z = w�z/(�ξ
1), (15.43)

where we take ξ 1 ∈ [0, 2π�] and Z ∈ [0, 2π�z]. This configuration has winding number w

and, indeed, on computing the conserved charge associated with W i
z , we obtain a num-

ber proportional to w. � and �z can be changed at will by worldsheet and spacetime
reparametrizations and the final physical results will not depend on either of them. With this
normalization, the asymptotic value of the KK scalar is k0 = Rz/�z . All the other world-
sheet fields are taken to be independent of ξ 1. We split the worldsheet metric as follows:

γ̂ττ = l2(γ − a2),

γ̂τσ = −l2ai ,

γ̂σσ = −l2,

γ̂ ττ = l−2γ −1,

γ̂ τσ = −l−2γ −1a,

γ̂ σσ = −l−2(1 − γ −1a2),

(15.44)

where γ is going to be the worldline metric after reduction.
Using this Ansatz in the action Eq. (15.32) and integrating ξ 1, we obtain

S = −π�T
∫

dξ 0

{
γ

−1
2

[
(gµν − k2 Aµ Aν)Ẋµ Ẋ ν + 2

w�z

�
ak2 Aµ Ẋµ

]

+
(

w�z

�

)2

γ
1
2 (1 − γ −1a2)k2

}
+ 2π�zwT

∫
dξ 0 Bµ Ẋµ, (15.45)

and, on solving the equation for the metric component a and substituting back into the ac-
tion, we obtain the worldline action of a point-particle charged with respect to the winding
vector:

S = −π�T
∫

dξ 0

[
γ

−1
2 gµν Ẋµ Ẋ ν +

(
w�z

�

)2

γ
1
2 k2

]
+ 2π�zwT

∫
dξ 0 Bµ Ẋµ. (15.46)

To read off the mass, we eliminate the worldline metric γ using its equation of motion. The
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final result is the worldline action for a winding mode with winding number w:

S = −2π |w|�zk0T
∫

dξ 0(k/k0)

√
|gµν Ẋµ Ẋ ν | + 2π�zwT

∫
dξ 0 Bµ Ẋµ. (15.47)

The mass is given by

M = 2π |w|�zk0T = 2π |w|�z
Rz

�z

1

2πα′ = |w| Rz

α′ , (15.48)

and it is equal (up to the sign) to the charge with respect to the scale-invariant winding
vector B̃µ. This action thus describes a winding state w, n = 0, N = Ñ = 1 in Eq. (14.60).

Let us now find the action for a string momentum mode. Our starting point is again
Eq. (15.32). We want now to eliminate Z using the conservation of the current Pi

z . The
situation is similar to the one we found in Section 11.2.3 when we reduced the action
of a massless particle moving in a space with an isometry in the direction Z using the
conservation of momentum in that direction. The first step is then to replace ∂i Z by Pi

z in
the action by performing a Legendre transformation of the Lagrangian L̂ in Eq. (15.32),
Ŝ = ∫

d2ξ
√|γ |L̂ , with respect to Z and only then use the equation of motion.

Therefore, we take the transformed action

˜̂S[Xµ, Pi
z ] =

∫
d2ξ

√
|γ |(−Pz

i∂i Z + L
)
, (15.49)

and eliminate ∂i X (and Fi ) completely by using (15.35), obtaining

Ŝ′[Xµ, Pi
z ] = −T

2

∫
d2ξ

√
|γ |γ i j

[
gi j + k−2T −2FiF j − 2

T
AiF j

]

+ T

2

∫
d2ξ εi j [Bi j − Ai B j ], (15.50)

where
Fi ≡ [Pz i + T � Bi ]. (15.51)

Now we can use consistently the equations of motion and replace Pi
z in Eq. (15.50) by

Pz
i = 1√|γ |δ

i0C, (15.52)

which is automatically conserved. The constant C is fixed by noting that the conserved
charge is the momentum in the direction z and is quantized in units n/�z:∫

dξ 1
√

|γ |P0
z = n

�z
, ⇒ C = n

2π��z
. (15.53)

After elimination of all the components of the worldsheet metric, we arrive immediately
at the worldline action of a KK mode with momentum number n Eq. (11.83), which cor-
respond to the states n, w = 0, N = Ñ = 1 in Eq. (14.60). These momentum modes are
related to the winding modes whose worldline action we found before by T-duality and
their worldline actions are related by Buscher’s T-duality rules Eqs. (15.28).
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15.2.3 T duality in the bosonic Dp-brane effective action

We have found in Section 14.3.2 how Dp-branes transform under T duality into D(p + 1)-
or D(p − 1)-branes depending on whether the compact coordinate is transverse or paral-
lel to the Dp-brane worldvolume. These relations between Dp-branes in spacetimes with
compact directions are also realized in their worldvolume effective actions Eq. (15.14), as
shown in [36, 113]. Not only do the spacetime fields transform following Buscher’s rules,
but also the relation between components of the BI vector and embedding coordinates is re-
alized in them. In the type-II superstring case there are WZ terms that describe the coupling
to RR forms and we need the type-II Buscher rules for them. We will study them in Chap-
ter 17 and the T-duality relations between the worldvolume actions of super-Dp-branes in
Chapter 19.

The T duality between the effective action of a D p̂-brane ( p̂ = p + 1) wrapped on a
compact spacetime dimension and the effective action of a Dp-brane can be established
by performing the double dimensional reduction of the former and the direct dimensional
reduction of the latter and showing that the resulting actions are identical. We follow [113].

Double dimensional reduction of the D p̂-brane effective action. We use hats both for
spacetime and for worldvolume objects, since each of them will be reduced in one di-
mension, parametrized, respectively, by x̂ d ≡ z ∈ [0, 2π�z] and ξ̂ p̂ ≡ ζ ∈ [0, 2π�]. We pro-
ceed in two steps: First, we rewrite the d̂-dimensional spacetime fields in terms of the d-
dimensional ones, as in Section 15.2.2, giving

Ĥı̂ ̂ ≡ ĝı̂ ̂ + B̂ı̂ ̂ + 2πα′ F̂ı̂ ̂ = gı̂ ̂ − k2 Fı̂ F̂ + Bı̂ ̂ + A[ı̂ B̂ ] − 2F[ı̂ B̂ ] + 2πα′ F̂ı̂ ̂ ,

(15.54)

where the pull-backs of d̂-dimensional fields over the ( p̂ + 1)-dimensional worldvolume
are computed with ∂ı̂ X̂ µ̂, the pull-backs of d-dimensional fields with ∂ı̂ Xµ, and where

Fı̂ = ∂ı̂ Z + Aı̂ . (15.55)

Next, we make the gauge choice Z = cζ , with the remaining embedding coordinates
independent of ζ . c is the constant �z/�. The ( p̂ + 1) × ( p̂ + 1) matrix Ĥı̂ ̂ defined above
splits as follows:

(
Ĥı̂ ̂

)
=

(
Mi j −U−

i

−U+
j −c2k2

)
=

(
Mi j 0

0 −c2k2

)(
I −(M−1)ikU−

k

c−2k−2U+
j 1

)
,

(15.56)

where

Mi j ≡ Hi j − k2 Ai A j − A[i B j], U±
i ≡ c(k−1Fi ± k Ai ), Fi ≡ ∂i V̂ζ + Bi . (15.57)

The determinant of Ĥı̂ ̂ is the product of the determinants of the two matrices above:

det(Ĥı̂ ̂ ) = −c2k2 det(Mi j ) [1 − U+
i (M−1)ikU−

k ], (15.58)
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and, on substituting this into the D p̂-brane effective action and integrating over ζ , we obtain
the effective action of a Dp-brane moving in d spacetime dimensions:

S = −TD p̂2π�|c|k0

∫
d p+1ξe−(φ−φ0)(k/k0)

1
2 [1 − U+

i (M−1)ikU−
k ]

1
2
√

|M |. (15.59)

Direct dimensional reduction of the Dp-brane effective action. Now we use hats and
primes (indicating that we are in the T-dual situation) for the spacetime fields which we
are going to reduce in the direction parametrized by z′, and primes but no hats for the
(p + 1)-dimensional worldvolume fields. We split the spacetime fields as in Eq. (15.54),

Ĥ ′
i j ≡ ĝ′

i j + B̂ ′
i j + 2πα′F ′

i j = M ′
i j − U− ′

i U+ ′
j , (15.60)

where

M ′
i j ≡ Hi j − k ′ −2 B ′

i B ′
j − B ′

[i A′
j], U± ′

i ≡ (k ′F ′
i ± k ′ −1 B ′

i ), F ′
i ≡ ∂i Z ′ + A′

i .

(15.61)

M ′
i j , U± ′

i , and F i
i are exactly the Buscher T duals of the unprimed ones plus the relation

Z ′ = V̂ζ . (15.62)

Now, it only remains to see that the action we obtain after this reduction is equivalent to
Eq. (15.59). First, we rewrite Ĥ ′

i j as the product of two matrices,

Ĥ ′
i j = M ′

ik[δk j − M ′ −1
ik U− ′

k U+ ′
j ], (15.63)

the second of which has p times the eigenvalue +1 (for each of the p vectors orthogonal to
U+ ′) and one time the eigenvalue 1 − U+ ′

i M ′ −1
i j U− ′

j for the eigenvector M ′ −1U− ′, and

det(Ĥ ′
i j ) = det(M ′

i j ) [1 − U+ ′
i (M ′ −1)ikU− ′

k ]. (15.64)

Writing e−(φ̂′−φ̂′
0) = e−(φ′−φ′

0)(k ′/k ′
0)

− 1
2 , the action takes the form

S = −T ′
Dp

∫
d p+1ξe−(φ−φ0)(k ′/k ′

0)
− 1

2 [1 − U+ ′
i (M ′ −1)ikU− ′

k ]
1
2
√

|M ′|. (15.65)

This action is identical to Eq. (15.59) after application of Buscher’s rules if we identify

T ′
Dp = TD(p+1)2π�|c|k

1
2
0 = 2π RzTp+1. (15.66)

The Dp-brane tension Tp should be essentially independent of the compactification ra-
dius (since it takes the same value in uncompactified spacetimes). It can depend solely on
�s and g. Since the string coupling constants of T-dual theories are related by Eqs. (14.61)
and (14.62) and since it has units of mass by p-volume, for all p

TDp ∼ 1

�
p+1
s g

. (15.67)

We will see later on other methods by which to find the same result and the proportional-
ity constant. The g−1 dependence of the tension of these objects gives them unique status,
intermediate between standard solitons, whose mass is proportional to g−2, and the funda-
mental objects that appear in the perturbative spectrum, with masses (tensions) independent
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of g, such as the fundamental string whose action is the string σ -model action and whose
tension is T = 1/(2π�2

s ).

15.3 Example: the fundamental string (F1)

Many string solutions (i.e. solutions of the string effective action Eq. (15.1)) are known.
For instance, all the vacuum Einstein solutions are string solutions with constant dilaton
and pure gauge KR 2-form and, for each of them that admits an isometry, we can find
a T-dual string solution (possibly with non-trivial dilaton and KR 2-form). To investigate
T duality, however, we must choose a convenient solution to which we can give a physical
and stringy interpretation, in the same spirit as that in which we chose a gravitational wave
in Section 11.2.3 to illustrate KK reduction, four-dimensional electric–magnetic duality
and KK oxidation. The so-called fundamental string solution [281, 282] (see also [337])
denoted by F1 represents a string at rest and can play this role.

We can understand the F1 solution as a solution of the (“bulk-plus-brane”) action that
results from the addition of the string effective action Eq. (15.1) to the string σ -model
action Eq. (15.31) which, denoted from now on by SF1, acts as a singular one-dimensional
source for the former. The equations of motion of the spacetime fields10 are Eqs. (15.11)
plus the source terms

16πG(d̂)
N e2(φ̂−φ̂0)√
|ĝ|

δ ŜF1

δĝµ̂ν̂
= +8πG(d̂)

N e2(φ̂−φ̂0)T√
|ĝ|

∫
d2ξ

√|γ |γ i j ĝiµ̂ĝ j ν̂δ
(d̂)(x̂ − X̂),

16πG(d̂)
N e2(φ̂−φ̂0)√
|ĝ|

δ ŜF1

δφ̂
= 0,

16πG(d̂)
N e2(φ̂−φ̂0)√
|ĝ|

δ ŜF1

δ B̂µ̂ν̂

= +8πG(d̂)
N e2(φ̂−φ̂0)T√

|ĝ|

∫
d2ξεi j∂i X̂ µ̂∂ j X̂ ν̂δ(d̂)(x̂ − X̂).

(15.68)

We also have to solve the equations of motion of the worldvolume fields,

− 2

T
√|γ |

δ ŜF1

δγ i j
= ĝi j − 1

2γi j ĝk
k = 0,

1

T
√|γ |

δ ŜF1

δ X̂ µ̂
= ĝµ̂ν̂

[∇2 X̂ ν̂ + γ i j �̂i j
ν̂
] + εi j

2
√|γ | Ĥµ̂i j = 0.

(15.69)

We work in the static gauge, identifying the worldvolume coordinates with the first
spacetime coordinates X̂ i = ξ i ≡ (T, Y ), i = 0, 1. The remaining spacetime coordinates
are transverse to the string worldvolume and we make for them the Ansatz Xm(ξ) = 0,
m = 1, . . ., d̂ − 2. If the solution is to describe a fundamental string at rest, it is natural
to make an Ansatz for the metric with Poincaré symmetry in the worldvolume directions.
On the other hand, our experience with ERN BHs tells us that a full solution of the equa-
tions with sources can be expected only when there is supersymmetry/extremality and the
solution depends solely on a reduced number of functions that are harmonic in transverse

10 We add hats to all d̂-dimensional fields.
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space, whose singularities are associated with the sources. In this case, the solution should
depend on just one function, HF1(xm).

A solution of all the equations that satisfy the above criteria and Ansatz is the
fundamental-string solution given, for d̂ ≥ 5, by

dŝ2 = H−1
F1 [dt2 − dy2] − d �x 2

(d̂−2)
,

B̂t y = −(
H−1

F1 − 1
)
,

e−2(φ̂−φ̂0) = HF1,

HF1 = ε + hF1

|�x(d̂−2)|d̂−4
, hF1 = 16πG(d̂)

N T

(d̂ − 4)ω(d̂−3)

.

(15.70)

The integration constant hF1 is completely determined by the source and the value of the
Newton constant, and ε has to be taken equal to 1 in order to have asymptotic flatness.

It is reasonable to assume that this solution describes a string lying at rest in the direction
of the isometric coordinate y. Let us now take y to be compact, rescaling it by y → k0 y,
where k0 = Ry/�s, Ry being the compactification radius as usual and y ∈ [0, 2π�s]. The
dimensionally reduced solution has the non-vanishing fields

ds2 = H−1
F1 dt2 − d �x 2

(d−1),

Bt = −k0
(
H−1

F1 − 1
)
,

e−2(φ−φ0) = H
1
2

F1, k = k0 H
− 1

2
F1 ,

(15.71)

with the same HF1. This is the metric of a point-like object with mass and charged with
respect to the winding vector Bµ, just as corresponds to a string winding mode.11 The
T dual is charged with respect to the KK vector Aµ and the d̂-dimensional T dual is the
purely gravitational solution

dŝ ′ 2 = H−1
F1 dt2 − k−2

0 [dy′ + k0(H−1
F1 − 1)dt] − d �x 2

(d̂−2)
,

e−2φ̂′ = e−2φ̂′ = e−2φ̂0k2
0,

(15.72)

which is the zero mode of the shock wave solution Eq. (10.41) that can be shown to repre-
sent not just a point-particle, but also a fundamental string moving in the compact coordi-
nate y′, as expected.

11 To compare this with the masses predicted, we need the string value of G(d̂)
N .
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From eleven to four dimensions

In the previous chapter we started our study of string dualities in the effective action by
treating the simplest case: T duality in the string common sector. Now we are ready to
handle more complicated cases: type-II T duality, type-IIB S duality, heterotic/type-I string
duality and the strong-coupling limit of the type-IIA superstring. Actually, only the first of
these dualities (the only one which is perturbative) was known from the worldsheet point of
view; the rest were conjectured after they had been observed in the corresponding effective
actions and were interpreted in string language.

For instance, it was well known that the N = 2A, d = 10 supergravity theory can be
obtained from N = 1, d = 11 supergravity [264] by dimensional reduction (i.e. compact-
ifying on a circle and ignoring all the massive Kaluza–Klein modes). This reduction was
first performed in the Einstein frame. The reduction in the string frame [125, 962] gave
new and useful information. To go to the string frame, it is necessary to identify the dila-
ton, which turns out to be essentially the moduli field that measures the radius of the circle
in the 11th dimension, namely the KK scalar ˆ̂gxx . Since the dilaton is the string coupling
constant, the strong-coupling limit of the type-IIA string theory corresponds to the limit
of decompactification (large radius) of the 11th dimension. The surprising fact is that this
statement is true including the massive Kaluza–Klein modes and string modes if one also
includes the solitonic modes which appear in the non-perturbative spectrum of the string
theory. These non-perturbative states at strong coupling should be identified with the ordi-
nary Kaluza–Klein modes of 11-dimensional supergravity.

This relation between field theories is in agreement with the relation between the world-
volume action of the M2-brane wrapped on a compact dimension and that of the GS type-
IIA superstring theory [14, 335] which give, in a certain sense, the 11-dimensional and
N = 2A, d = 10 supergravity theories.

The other dualities form a chain that relates all string theories (at least under cer-
tain circumstances) to 11-dimensional supergravity. There has been conjectured the ex-
istence of the so-called M theory whose low-energy limit would be described by 11-
dimensional supergravity which, in different limits, would give all the ten-dimensional
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string theories which would be different, dual, manifestations of the same unique
theory.1

Our interest is mainly in four-dimensional string effective-field theories and classical so-
lutions and their connection to higher-dimensional theories and solutions. It is then natural
to start by introducing 11-dimensional supergravity and then performing the reduction on
a circle to find the type-IIA superstring effective action. We will do this in Section 16.1.
Since we are interested in classical solutions, we will study only the bosonic sectors of
these theories. However, we will also need the supersymmetry transformation rules for the
fermions in order to study their unbroken supersymmetries.

To study T duality between the effective actions of the type-IIA and -IIB theories, follow-
ing the philosophy of Section 15.2, we will have to perform dimensional reduction of both
theories to nine dimensions. The reduction of the IIA theory will be done in Section 16.3
whereas the reduction of the IIB theory will be postponed to the next chapter, in which we
will find the type-II Buscher rules.

The E8 × E8 heterotic string theory can be obtained by compactification of M theory on a
segment (the simplest orbifold), each E8 factor group living on one of the ten-dimensional
boundaries. From the point of view of effective actions, we can easily obtain the heterotic
string effective action (without the gauge fields) by compactifying 11-dimensional super-
gravity on an orbifold, which amounts to the S1 compactification which we carry out in
Section 16.1 followed by a truncation that we study in Section 16.4. A similar truncation
of the type-IIB theory that gives the type-I theory (again without the gauge fields) will be
studied in the next chapter and corresponds to the O9 plus 32 D9 construction of the type-I
SO(32) theory.

Further compactification increases the number of dualities: on the one hand, one can per-
form T dualities in more directions that can also be rotated into each other. Also, in even
dimensions, new dualities that involve the Hodge-dualization of differential-form potentials
appear: in d = 4, vectors can be dualized, in d = 6 2-forms, and in d = 8 3-forms. Further-
more, in odd dimensions, Hodge-dualization of differential forms can increase the number
of vector fields that can be rotated into other vector fields, enhancing the duality group.
Usually these dualities are manifest only in the Einstein frame and were known as hid-
den symmetries of supergravity theories. In Section 16.5 we are going to study the toroidal
compactification of N = 1, d = 10 supergravity, the effective theory of the heterotic string
down to d = 4, as an example and we will find that, generically, the classical duality group2

is O(n, n + 16) for compactification on an n-torus, all of it due to T duality, but, in d = 4,
vectors can be dualized into vectors and the symmetry is increased by the S-duality group
SL(2, R). (The duality groups that appear in toroidal compactifications of N = 2, d = 10
theories are given in Table 16.1.)

Finally, we are going to study the preservation of unbroken supersymmetry under duality
transformations in Section 16.6.

1 A 12-dimensional origin for M theory and type-IIB superstring theory by the name of F theory has also been
suggested.

2 Quantum effects such as charge quantization break the classical supergravity duality groups to discrete
subgroups, typically the ones obtained by restricting the matrix entries to taking integer values [583]. On
the other hand, if G is the classical duality group, the scalars parametrize a coset space G/H, where H is the
maximal compact subgroup of H. For the heterotic-string case H = O(n) × O(n + 16).
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Table 16.1. Hidden symmetries of toroidally compactified N = 2, d = 10 su-
pergravities [261, 608]. E3(+3) = SL(3, R) × SL(2, R), E4(+4) = SL(5, R), and
E5(+5) = SO(5, 5). The tilded numbers indicate that the corresponding fields are
dualized by some of the duality transformations which will merely be symmetries
of the equations of motion. The discrete subgroups are the U duality groups.

d G H ea
µ Cµνρ Bµν Aµ ϕ ψµ λ

9 GL(2, R) SO(2) 1 1 2 3 3 2 4
8 E3(+3) SO(3) × SO(2) 1 1̃ 3 6 7 2 6
7 E4(+4) SO(5) 1 0 5 10 14 4 16
6 E5(+5) SO(5) × SO(5) 1 0 5̃ 16 25 4 20
5 E6(+6) USp(8) 1 0 0 27 42 8 48
4 E7(+7) SU(8) 1 0 0 2̃8 70 8 56
3 E8(+8) SO(16) 1 0 0 0 128 16 128

A scheme of the dimensional reductions and truncations that we are going to study in this
chapter and the next is given in Figure 16.1. It is not a diagram of the web of dualities that
relates string theories, although it is closely related to it. A general reference for this and the
next chapter is [828], where much information and most original references to supergravity
theories can be found.

16.1 Dimensional reduction from d = 11 to d = 10

Here we are going to obtain the bosonic sector of N = 2A, d = 10 (also known as type-IIA)
supergravity and the supersymmetry transformation rules by straightforward dimensional
reduction of N = 1, d = 11 supergravity using the techniques developed in [836]. This di-
mensional reduction has been performed in [585], but now we will obtain the type-IIA
theory directly in the string frame.

We are going to describe the procedure used to perform the dimensional reduction in
some detail since our goal is to relate the various supergravity theories in different dimen-
sions. Throughout this and the next few sections we will use double hats for 11-dimensional
objects, single hats for ten-dimensional objects, and no hats for nine-dimensional objects.
We first introduce the theory of 11-dimensional supergravity.

16.1.1 11-dimensional supergravity

The fields of N = 1, d = 11 supergravity [264] are the Elfbein, a three-form potential, and
a 32-component Majorana gravitino,3{ ˆ̂e ˆ̂a ˆ̂µ,

ˆ̂C ˆ̂µ ˆ̂ν ˆ̂ρ,
ˆ̂
ψ ˆ̂µ

}
. (16.1)

3 Our conventions for 11-dimensional gamma matrices and spinors are given in Appendix B.1.3 and are

essentially identical to those of the original reference [264] except for the relation between ˆ̂
�10, the totally

antisymmetric tensor, and the remaining ten gamma matrices, which is not explicitly given in that reference.
In our case, that relation is given in Eq. (B.71), and in the supersymmetry transformation rules below the sign
of the topological term in the action is the opposite to that in [264]. Observe also that our spin connection
and contorsion have opposite signs, though, and that we have set the constant K = 1

2 .
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Fig. 16.1. A directory of supergravities. The relations between various supergravity theo-
ries upon compactification on circles (lines with two arrowheads) and truncation (lines with
a single arrowhead) are schematically represented here. The letters F, M, and S indicate that
the corresponding supergravity theory is the low-energy limit of F theory, M theory, or a
superstring theory.

The action for these fields is

ˆ̂S = 1

16πG(11)
N

∫
d11 ˆ̂x

√
| ˆ̂g|


 ˆ̂R( ˆ̂ω) − i

2

¯̂̂
ψ ˆ̂µ

ˆ̂
�

ˆ̂µ ˆ̂ν ˆ̂ρ∇ˆ̂ν


 ˆ̂ω + ˜̂̂

ω

2


 ˆ̂

ψ ˆ̂ρ − 1

2 · 4!
ˆ̂G 2

+ 1

192

¯̂̂
ψ ˆ̂µ

ˆ̂
�[ ˆ̂µ ˆ̂

� ˆ̂α ˆ̂
β ˆ̂γ ˆ̂

δ

ˆ̂
�

ˆ̂ν] ˆ̂
ψ ˆ̂ν

(
ˆ̂G ˆ̂α ˆ̂

β ˆ̂γ ˆ̂
δ + ˜̂̂

G
ˆ̂α ˆ̂
β ˆ̂γ ˆ̂

δ

)
− 1

(144)2

1√
| ˆ̂g|

ˆ̂ε ˆ̂G ˆ̂G ˆ̂C

.

(16.2)

Let us now describe each object in this action:

ˆ̂G = 4∂
ˆ̂C (16.3)
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is the field strength of the 3-form and is obviously invariant under the gauge transformations

δ ˆ̂χ
ˆ̂C = 3∂ ˆ̂χ, (16.4)

where ˆ̂χ is a 2-form;
˜̂̂

G ˆ̂µ ˆ̂ν ˆ̂ρ ˆ̂σ = ˆ̂G ˆ̂µ ˆ̂ν ˆ̂ρ ˆ̂σ − 3
2

¯̂̂
ψ [ ˆ̂µ

ˆ̂
� ˆ̂ν ˆ̂ρ

ˆ̂
ψ ˆ̂σ ] (16.5)

is the supercovariant field strength; and

∇ˆ̂µ
( ˆ̂ω

) ˆ̂
ψ ˆ̂ν = ∂ ˆ̂µ

ˆ̂
ψ ˆ̂ν − 1

4
ˆ̂ω ˆ̂µ

ˆ̂a ˆ̂b ˆ̂
� ˆ̂a ˆ̂b

ˆ̂
ψ ˆ̂ν (16.6)

is the covariant derivative with

˜̂̂
ω ˆ̂µ

ˆ̂a ˆ̂b = ˆ̂ω ˆ̂µ
ˆ̂a ˆ̂b − i

16

¯̂̂
ψ ˆ̂α

ˆ̂
� ˆ̂µ

ˆ̂a ˆ̂b ˆ̂α ˆ̂
β ˆ̂
ψ ˆ̂

β
,

ˆ̂ω ˆ̂µ
ˆ̂a ˆ̂b = ˆ̂ω ˆ̂µ

ˆ̂a ˆ̂b
( ˆ̂e

)
+ ˆ̂K ˆ̂µ

ˆ̂a ˆ̂b,

ˆ̂K ˆ̂µ
ˆ̂a ˆ̂b = − i

16

[
− ¯̂̂

ψ ˆ̂α
ˆ̂
� ˆ̂µ

ˆ̂a ˆ̂b ˆ̂α ˆ̂
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( ¯̂̂
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�

ˆ̂b ˆ̂
ψ
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ˆ̂b + ¯̂̂
ψ ˆ̂b

ˆ̂
� ˆ̂µ
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ψ

ˆ̂a
)]

.

(16.7)

This action is invariant under the local supersymmetry transformations with parameter ˆ̂ε (a
Majorana spinor):

δ ˆ̂ε
ˆ̂e ˆ̂a ˆ̂µ = − i

2
¯̂̂
ε

ˆ̂
�

ˆ̂a ˆ̂
ψ ˆ̂µ,

δ ˆ̂ε
ˆ̂
ψ ˆ̂µ = 2∇̃ ˆ̂µ

ˆ̂ε = 2∇ˆ̂µ

( ˜̂̂
ω

)
ˆ̂ε + i

144

( ˆ̂
�

ˆ̂α ˆ̂
β ˆ̂γ ˆ̂

δ ˆ̂µ − 8 ˆ̂
�

ˆ̂
β ˆ̂γ ˆ̂

δ ˆ̂η ˆ̂µ
ˆ̂α
) ˆ̂ε ˜̂̂

G ˆ̂α ˆ̂
β ˆ̂γ ˆ̂

δ
,

δ ˆ̂ε
ˆ̂C ˆ̂µ ˆ̂ν ˆ̂ρ = 3

2
¯̂̂
ε

ˆ̂
�[ ˆ̂µ ˆ̂ν

ˆ̂
ψ ˆ̂ρ].

(16.8)

Observe that the “topological” Chern–Simons term in the action ˆ̂ε ˆ̂G ˆ̂G ˆ̂C seems to break
parity ( ˆ̂ε is a tensor density, or pseudotensor). Parity is, however, preserved because the

3-form ˆ̂C is also a pseudotensor and so transforms with an extra sign under reflections.4

4 The sign of the topological term can be changed by a field redefinition ˆ̂C → − ˆ̂C . However, as we will see
in Chapter 17, with our conventions, to establish T duality between the type-IIA theory that we will obtain
by dimensional reduction to ten dimensions and the conventional type-IIB theory with self-dual 5-form and
positive-chirality gravitinos, taking into account everything (i.e. not just the bosonic sector), we are forced to
take the negative sign. The type-IIA theory that one would obtain with positive sign seems to be related to the
unconventional type-IIB theory with anti-self-dual 5-form and negative-chirality gravitinos. In other words;
there are two “different” 11-dimensional supergravity theories, which differ in the sign of the topological

term and are related by the (rather trivial) duality transformation ˆ̂C → − ˆ̂C . Each of these theories gives
rise to a different type-IIA theory (type IIA+− and type IIA−+), which in turn are related by T duality
to the two “different” N = 2B+ and N = 2B− supergravity theories. We mentioned all these theories in
Section 14.2.2.
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Now we are going to perform the dimensional reduction. For many purposes it is enough
to reduce the bosonic fields by setting to zero all fermions in the action and also reducing
the supersymmetry transformation laws, and this is what we are going to do.

16.1.2 Reduction of the bosonic sector

The action for the bosonic fields is

ˆ̂S = 1

16πG(11)
N

∫
d11 ˆ̂x

√
| ˆ̂g|


 ˆ̂R − 1

2 · 4!
ˆ̂G 2 − 1

(144)2

1√
| ˆ̂g|

ˆ̂ε ˆ̂G ˆ̂G ˆ̂C

, (16.9)

and the equations of motion are

ˆ̂R ˆ̂µ ˆ̂ν − 1

12

[
ˆ̂G ˆ̂µ
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ˆ̂α2
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ˆ̂α3
− 1

12
ˆ̂g ˆ̂µ ˆ̂ν

ˆ̂G 2

]
= 0,

∇ˆ̂µ
ˆ̂G ˆ̂µ ˆ̂ν ˆ̂ρ ˆ̂σ − 1

32 · 27

1√
| ˆ̂g|

ˆ̂ε ˆ̂ν ˆ̂ρ ˆ̂σ ˆ̂µ1··· ˆ̂µ4
ˆ̂ν1··· ˆ̂ν4 ˆ̂G ˆ̂µ1··· ˆ̂µ4

ˆ̂G ˆ̂ν1··· ˆ̂ν4
= 0.

(16.10)

The equation of motion of the 3-form potential can be rewritten in this way:

∂

(
� ˆ̂G + 35

2
ˆ̂C ˆ̂G

)
= 0. (16.11)

This equation has the form of a Bianchi identity and we could identify the expression in

parentheses with 7∂
ˆ̂̃
C where

ˆ̂̃
C is a 6-form potential that is the dual of the 3-form potential.

This implies that the field strength of the dual 6-form is [22, 119, 136]

� ˆ̂G = 7(∂
ˆ̂̃
C − 10 ˆ̂C∂

ˆ̂C) ≡ ˆ̂̃
G. (16.12)

This field strength is obviously invariant under the gauge transformations

δ ˆ̂̃
χ

ˆ̂̃
C = 6∂

ˆ̂̃
χ, (16.13)

where ˆ̂̃
χ is a 5-form. However, in its definition the 3-form appears explicitly and, to make

it invariant under the 3-form gauge transformations (16.4),
ˆ̂̃
C has to transform as follows:

δ ˆ̂χ
ˆ̂̃
C = −30∂ ˆ̂χ ˆ̂C . (16.14)

This procedure for defining the dual of some field in which the original field has not been
completely eliminated, by making use of the equations of motion, is usually referred to as
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“on-shell” dualization. The fact that the 3-form potential appears in the field strength of its
dual 6-form makes it very difficult (but not impossible, see [136]) to find a formulation of
11-dimensional supergravity in terms of the 6-form alone. On-shell dualization is enough
for determining the gauge-transformation laws and a field strength in which the 3-form
should be interpreted as a complicated function of the dual 6-form.

We now focus on the dimensional reduction of the theory in its 3-form formulation.
We assume that all fields are independent of the coordinate z = x10 which we choose to
correspond to a spacelike direction ( ˆ̂ηzz = −1) and we rewrite the fields and action in a ten-
dimensional form. The dimensional reduction of the metric gives rise to the ten-dimensional
metric, a vector field, and a scalar (the dilaton), whereas the dimensional reduction of the
3-form potential gives rise to a ten-dimensional 3-form and a (KR) 2-form, which are the
fields of the ten-dimensional N = 2A, d = 10 supergravity theory

{
ĝµ̂ν̂ , B̂µ̂ν̂ , φ̂, Ĉ (3)

µ̂ν̂ρ̂ , Ĉ (1)
µ̂,

}
. (16.15)

The metric, the KR two-form, and the dilaton are NSNS fields and the 3-form and the
vector are RR fields. We are going to use for RR forms the conventions proposed and used
in [112, 136, 470, 691], which we will explain later. Furthermore, we are going to use the
string metric, to which the NSNS sector couples as in the bosonic-string effective action
Eq. (15.1). The coupling to the RR sector is then completely determined just by defining
RR fields with “natural” gauge-transformation rules (with no scalars involved in them). On
the other hand, we have chosen for the RR fields the simplest normalization, which is also
the most common: they appear at the same order in α′ as the NSNS ones.5

Using the Scherk–Schwarz procedure as explained in Chapter 11 and rescaling the metric
so as to obtain the action in the string frame, we find that the fields of the 11-dimensional
theory have to be expressed in terms of the ten-dimensional ones as follows:

ˆ̂gµ̂ν̂ = e− 2
3 φ̂ ĝµ̂ν̂ − e

4
3 φ̂Ĉ (1)

µ̂Ĉ (1)
ν̂ ,

ˆ̂C µ̂ν̂ρ̂ = Ĉ (3)
µ̂ν̂ρ̂ ,

ˆ̂gµ̂z = −e
4
3 φ̂Ĉ (1)

µ̂,
ˆ̂C µ̂ν̂z = B̂µ̂ν̂ ,

ˆ̂gzz = −e
4
3 φ̂ .

(16.16)

For the Elfbeins we have

( ˆ̂e ˆ̂a ˆ̂µ
)

=

 e− 1

3 φ̂ êâ
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2
3 φ̂Ĉ (1)
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0 e
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)
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 e

1
3 φ̂ êâ

µ̂ −e
1
3 φ̂Ĉ (1)

â

0 e−
2
3 φ̂


. (16.17)

5 This is not the only normalization used in the literature. For instance, in [501], all the kinetic terms of the
RR fields in the action have an extra factor of α′ with respect to ours, so their RR fields have units of L−1

(ours are dimensionless). In [780, 778] the RR fields have dimensions L−4 and their kinetic terms appear in

the action with a purely numerical factor instead of the factor (16πG(10)
N )−1 that they carry in our case. Our

conventions are also those of [40], where the issue of normalizations has been studied exhaustively.
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The inverse relations are

ĝµ̂ν̂ =
(
− ˆ̂gzz

) 1
2
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φ̂ = 3
4 ln

(
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)
.

(16.18)

Now we can perform the reduction of the action Eq. (16.9). We first consider the
Ricci scalar term. To reduce this term, we use a slight generalization of Palatini’s iden-
tity Eq. (D.4). With the above Ansatz for the Elfbeins the non-vanishing components of the
11-dimensional spin connection are

ˆ̂ωzâz = − 2
3 e

1
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2 e
4
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(
ω̂âb̂ĉ + 2

3δâ[b̂∂ĉ]φ̂
)
,

(16.19)

where
Ĝ(2) = 2∂Ĉ (1) (16.20)

is the field strength of the ten-dimensional RR 1-form Ĉ (1)
µ̂. Using√

ˆ̂g =
√

|ĝ| e− 8
3 φ̂ , (16.21)

plus Palatini’s identity Eq. (D.4) for d = 11 and ˆ̂
φ = 0, plus the fact that the coordinate z

conventionally lives in a circle of radius equal to the reduced 11-dimensional Planck length
−�(11)
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)2

+ ω̂â
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.

Finally, using Palatini’s identity Eq. (D.4) again, but now for d = 10 and φ = φ̂, we obtain
for the Ricci scalar term∫

d11 ˆ̂x
√

| ˆ̂g|
[ ˆ̂R

]
= 2π−�(11)

Planck

∫
d10 x̂

√
|ĝ|

{
e−2φ̂

[
R̂ − 4

(
∂φ̂

)2
]

− 1
4

(
Ĝ(2)

)2
}
.

(16.22)

Now we have to reduce the ˆ̂G-term in Eq. (16.9). We identify field strengths in 11 and
ten dimensions with flat indices (this automatically ensures gauge invariance), taking into
account the scaling of the ten-dimensional metric

Ĝ(4)
âb̂ĉd̂ = e− 4

3 φ̂ ˆ̂Gâb̂ĉd̂, (16.23)
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which leads to
Ĝ(4) = 4

(
∂Ĉ (3) − Ĥ Ĉ (1)

)
, (16.24)

where Ĥ is the field strength of the NSNS two-form B̂,

Ĥ = 3∂ B̂. (16.25)

The remaining components of ˆ̂G are given by

ˆ̂Gâb̂ĉz = e
1
3 φ̂ Ĥâb̂ĉ, (16.26)

and the contribution of the ˆ̂G-term to the ten-dimensional action becomes∫
d11 ˆ̂x

√
| ˆ̂g|

[
− 1

2 · 4!

( ˆ̂G
)2

]
= 2π−�(11)

Planck

∫
d10 x̂

√
|ĝ|

[
1

2 · 3!
e−2φ̂ Ĥ 2 − 1

2 · 4!

(
Ĝ(4)

)2
]
.

(16.27)

Finally, taking into account
ˆ̂ε µ̂0···µ̂9z = ε̂ µ̂0···µ̂9, (16.28)

the third term in the d = 11 action Eq. (16.9) (all terms with curved indices) gives

ˆ̂ε ˆ̂G ˆ̂G ˆ̂C = 48ε̂∂Ĉ (3)∂Ĉ (3) B̂ − 96ε̂∂Ĉ (3)∂ B̂Ĉ (3), (16.29)

and, on integrating by parts, we obtain∫
d11 ˆ̂x

[
− 1

(144)2
ˆ̂ε ˆ̂G ˆ̂G ˆ̂C

]
= 2π−�(11)

Planck

∫
d10 x̂

[
− 1

144
ε̂∂Ĉ (3)∂Ĉ (3) B̂

]
. (16.30)

On putting all these results together, we find what is described in the literature as the
bosonic part of the N = 2A, d = 10 supergravity action in ten dimensions in the string
frame

Ŝ = 2π−�(11)

Planck

16πG(11)
N

∫
d10 x̂

√
|ĝ|

{
e−2φ̂

[
R̂ − 4

(
∂φ̂

)2
+ 1

2 · 3!
Ĥ 2

]

−
[

1

4

(
Ĝ(2)

)2
+ 1

2 · 4!

(
Ĝ(4)

)2
]

− 1

144

1√
|ĝ| ε̂∂Ĉ (3)∂Ĉ (3) B̂

}
.

(16.31)

In the first line of Eq. (16.38) we can see the known action for the bosonic NSNS fields
in the string frame (characterized by the overall factor e−2φ̂). The second line has no dilaton
factor and describes the RR sector whose truncation leaves us with the action of N = 1, d =
10 supergravity.

However, in string theory we want the string metric to be asymptotically flat and
we wanted, in 11-dimensional supergravity, to have asymptotically flat metrics. Both
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things cannot be true at the same time with the above relations between eleven- and ten-
dimensional fields since, with z compact, ˆ̂gzz does not have to go to −1 at infinity in the
non-compact directions and the ten-dimensional metric is essentially the 11-dimensional
one rescaled by powers of ˆ̂gzz (the dilaton). If the 11-dimensional metric is asymptotically
flat and we denote by φ̂0 the asymptotic value of the dilaton, then the ten-dimensional
metric that we have defined behaves at infinity as follows:

ĝµ̂ν̂ → e
2
3 φ̂0 η̂µ̂ν̂ . (16.32)

The exponential of the asymptotic value of the dilaton is the (type-IIA) string coupling
constant ĝA that counts loops in string amplitudes,

ĝA = eφ̂0 . (16.33)

We could repeat here the discussion of Section 11.2.2 with some minor modifications,
but it should be clear that, to obtain the “right” string metric, we have to rescale the metric.
To eliminate the additional factors of eφ̂0 that would appear, we have to rescale all the
other fields, although this does not seem strictly necessary. Thus, we make the following
substitutions:

ĝµ̂ν̂ → e
2
3 φ̂0 ĝµ̂ν̂ , Ĉ (1)

µ̂ → e
1
3 φ̂0Ĉ (1)

µ̂,

B̂µ̂ν̂ → e
2
3 φ̂0 B̂µ̂ν̂ , Ĉ (3)

µ̂ν̂ρ̂ → eφ̂0Ĉ (3)
µ̂ν̂ρ̂ ,

(16.34)

after which the relation between 11- and 10-dimensional fields is

ˆ̂gµ̂ν̂ = e− 2
3 (φ̂−φ̂0)ĝµ̂ν̂ − e

4
3 φ̂e

2
3 φ̂0Ĉ (1)

µ̂Ĉ (1)
ν̂ ,

ˆ̂C µ̂ν̂ρ̂ = eφ̂0Ĉ (3)
µ̂ν̂ρ̂ ,

ˆ̂gµ̂z = −e
4
3 φ̂e

1
3 φ̂0Ĉ (1)

µ̂,
ˆ̂C µ̂ν̂z = e

2
3 φ̂0 B̂µ̂ν̂ ,

ˆ̂gzz = −e
4
3 φ̂ .

(16.35)

For the Elfbein we have

( ˆ̂e ˆ̂a ˆ̂µ
)

=

 e− 1

3 (φ̂−φ̂0)êâ
µ̂ e

2
3 φ̂e

1
3 φ̂0Ĉ (1)

µ̂

0 e
2
3 φ̂


,

( ˆ̂e ˆ̂a
ˆ̂µ
)

=

 e

1
3 (φ̂−φ̂0)êâ

µ̂ −e
1
3 φ̂Ĉ (1)

â

0 e− 2
3 φ̂


.

(16.36)

The inverse relations are

ĝµ̂ν̂ = e− 2
3 φ̂0

(
− ˆ̂gzz

) 1
2
( ˆ̂gµ̂ν̂ − ˆ̂gµ̂z

ˆ̂gν̂z/ ˆ̂gzz

)
, Ĉ (3)

µ̂ν̂ρ̂ = e−φ̂0 ˆ̂C µ̂ν̂ρ̂ ,

Ĉ (1)
µ̂ = e− 1

3 φ̂0 ˆ̂gµ̂z/ ˆ̂gzz, B̂µ̂ν̂ = e− 2
3 φ̂0 ˆ̂C µ̂ν̂z,

φ̂ = 3
4 ln

(
− ˆ̂gzz

)
,

(16.37)



16.1 Dimensional reduction from d = 11 to d = 10 457

and, finally, the action becomes

Ŝ = ĝ2
A

16πG(10)
N A

∫
d10 x̂

√
|ĝ|

{
e−2φ̂

[
R̂ − 4

(
∂φ̂

)2
+ 1

2 · 3!
Ĥ 2

]

−
[

1
4

(
Ĝ(2)

)2
+ 1

2 · 4!

(
Ĝ(4)

)2
]

− 1

144

1√
|ĝ| ε̂∂Ĉ (3)∂Ĉ (3) B̂

}
,

(16.38)

where we have made the identification of the prefactor of the action

2π−�(11)

Plancke
8
3 φ̂0

16πG(11)
N

= ĝ2
A

16πG(10)
N A

. (16.39)

The factor g2
A absorbs the asymptotic value of the dilaton in the action.

Then, we find the following relation:

G(10)
N A = G(11)

N

2π−�(11)

Planckĝ
2
3
A

. (16.40)

Observe that we have taken the 11th coordinate z to live in a circle of radius equal to
the reduced 11-dimensional Planck length −�(11)

Planck, which, up to numerical factors, is the
only scale available in 11-dimensional supergravity. Actually, we have to distinguish be-
tween the interval in which z takes values (z ∈ [0, 2π−�(11)

Planck]) and the actual radius of the
11th dimension (measured at infinity) which we denote here by R11 and which is naturally
measured with the 11-dimensional metric:

R11 = 1

2π
lim

r→∞

∫ √
| ˆ̂gzz|dz = −�(11)

Plancke
2
3 φ̂0 = −�(11)

Planckĝ
2
3
A. (16.41)

By using this relation in (16.40), we find

G(10)
N A = G(11)

N

2π R11
= G(11)

N

V11
, (16.42)

as usual in KK theory (V11 is the volume of the internal space).
Now, in this case, we define the 11-dimensional Planck length6 by

16πG(11)
N ≡ (�

(11)

Planck)
9

2π
, (16.43)

6 The reason for this somewhat unusual definition is explained in Section 19.1.1.
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and, thus, in terms of it and ĝA only, the ten-dimensional Newton constant is given by

G(10)
N A = (�

(11)

Planck)
8

32π2ĝ
2
3
A

. (16.44)

This result has to be compared with the value we will obtain in Section 19.1.1 for G(10)
N

in terms of the type-IIA stringy variables �s and ĝA, Eq. (19.26):

G(10)
N A = 8π6ĝ2

A(α′)4. (16.45)

They are consistent if

�
(11)

Planck = 2π�sĝ
1
3
A, (16.46)

and, thus,
R11 = �sĝA. (16.47)

These are the two main relations between 11- and 10-dimensional type-IIA constants
and they deserve to be framed together:

�
(11)

Planck = 2π�sĝ
1
3
A,

R11 = �sĝA.

(16.48)

Once we have expressed R11 in these stringy variables, it is easy to see that the strong-
coupling limit of the type-IIA theory (ĝA → ∞) coincides with the decompactification limit
R11 in which a new dimension becomes macroscopic [962].

Just as the KK scalar of the 11-dimensional theory gives the string-theory dilaton, the
KK vector gives the RR 1-form and the 3-form gives the RR 3-form and the NSNS 2-form.
Since we know that there are D0- and D2-branes associated with the RR 1-form and 3-form,
we find that they originate, respectively, from the 11-dimensional graviton moving in the
compact direction and from a two-dimensional object that couples to the 11-dimensional 3-
form: the M2-brane. An M2-brane wrapped around the compact dimension gives the type-
IIA string (B̂µ̂ν̂ = e− 2

3 φ̂0 ˆ̂C µ̂ν̂z) and, unwrapped, gives the D2-brane (Ĉ (3)
µ̂ν̂ρ̂ = e−φ̂0 ˆ̂C µ̂ν̂ρ̂).

These and more relations between extended objects are represented in Figure 19.5 on
page 552.

16.1.3 Magnetic potentials

For each of the differential-form potentials Ĉ (1), Ĉ (3), and B̂ a magnetic dual Ĉ (7), Ĉ (5),
and B̂(6), respectively, whose equation of motion is equivalent to the Bianchi identity of the
original (electric) potential and vice-versa, can be introduced. (In general we can dualize
only on-shell since the electric potentials occur without derivatives in the action.) These
potentials will be useful in studying D-brane solutions and D-brane effective actions.

Dual field strengths are defined through the Hodge dual of the original field strengths, but
potentials can be defined in many ways. A way to define the dual (magnetic) potentials is
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to fix the form of the corresponding field strength. For RR potentials, a convenient general
form for the field strengths was proposed in [112, 470] and used explicitly in [136, 691]. In
differential-forms and component language, it is

Ĝ(2n) = dĈ (2n−1) − Ĥ Ĉ (2n−3),

Ĝ(2n) = 2n
[
∂Ĉ (2n−1) − 1

2(2n − 1)(2n − 2)∂ B̂Ĉ (2n−3)
]
.

(16.49)

The differential-forms language considerably simplifies the expressions. The gauge
transformations of the RR form potentials are

δĈ (2n−1) = d�̂(2n−2) − d B̂�̂(2n−4). (16.50)

This normalization is extremely useful because it can be generalized to the type-IIB
and massive type-IIA fields. For massless type-II supergravities, we can also introduce the
notation

Ĉ = Ĉ (0) + Ĉ (1) + Ĉ (2) + · · ·,
Ĝ = Ĝ(1) + Ĝ(2) + · · ·,

�̂(·) = �̂(0) + �̂(1) + · · ·,
(16.51)

with which we can write7 (as we are going to show)

Ĥ = d B̂,

Ĝ = dĈ − Ĥ ∧ Ĉ,

δ B̂ = d�̂,

δĈ = d�̂(·) − d B̂ ∧ �̂(·).
(16.52)

Now we have to prove that it is indeed possible to have magnetic RR potentials with
field strengths of that kind. First of all, the field strengths Ĝ(2) and Ĝ(4) we are already
using conform to this normalization. Their Bianchi identities are

dĜ(2) = 0, dĜ(4) − Ĥ ∧ Ĝ(2) = 0, (16.53)

and, from the action, the equations of motion are found to be

d�Ĝ(2) + H ∧ �Ĝ(4) = 0, d�Ĝ(4) − Ĥ ∧ Ĝ(4) = 0. (16.54)

The Bianchi identities for the dual field strengths Ĝ(8) and Ĝ(6) are, according to the
general normalization,

dĜ(8) − Ĥ ∧ Ĝ(6) = 0, dĜ(6) − Ĥ ∧ Ĝ(4) = 0. (16.55)

By comparison with the equations of motion for the electric potentials, we find the relations

Ĝ(8) = −�Ĝ(2), Ĝ(6) = +�Ĝ(4). (16.56)

7 The RR gauge transformations are also written, after a redefinition of the gauge parameters, in the form

δĈ = d�̂(·)eB̂ .
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These relations define the dual field strengths, which, together with the general form for the
field strengths, defines the magnetic RR potentials.

The above relations between electric- and magnetic-field strengths and their Bianchi
identities can be written in the general form

Ĝ(10−k) = (−1)[k/2] �Ĝ(k),

dĜ − Ĥ ∧ Ĝ = 0,
(16.57)

which we will see apply in this form to the massive type-IIA theory in Section 16.2 and to
the type-IIB theory in Chapter 17.

Observe that the set of all the Bianchi identities plus the duality relations between electric
and magnetic potentials determine all the equations of motion of the RR fields. Observe also
that all the “electric” RR potentials are pseudotensors and that their duals are, by definition,
tensors.

Now let us dualize the NSNS 2-form potential. Using the above general definitions for
RR potentials, field strengths etc., we can write

Ĥ (7) = e−2φ̂ � Ĥ ,

d H = 0,

d Ĥ (7) + 1
2

�Ĝ ∧ Ĝ = 0,

d
(

e−2φ � Ĥ
)

+ 1
2

�Ĝ ∧ Ĝ = 0,

d
(

e2φ � Ĥ (7)
)

= 0,

(16.58)

which, again, apply in precisely this form to massive type-IIA and type-IIB theories. In the
type-IIA case, one can take [603]

Ĥ (7) = d B̂(6) − 1
2

n=4∑
n=1

�Ĝ(2n+2) ∧ Ĉ (2n−1). (16.59)

It is more difficult to relate the magnetic potentials to 11-dimensional potentials since
some of them can be defined only in ten dimensions. For instance, the Ĉ (7) associated
with the D6-brane is the dual of the Ĉ (1), which in d = 11 is part of the metric. In fact,
the D6-brane can be obtained by compactification of the 11-dimensional KK monopole
(KKM), which is a purely gravitational solution that, by definition, always has a compact
direction. The potential to which the 11-dimensional KKM couples has been studied in

[578]. The potentials B̂(6) and Ĉ (5) can be related to
ˆ̂̃
C , and the associated extended objects

(the so-called solitonic 5-brane S5A which, by definition, couples to B̂(6) and the D4-
brane) originate from the 11-dimensional 5-brane M5 which, by definition, is the object

that couples to
ˆ̂̃
C . These relations are represented in Figure 19.5 on page 552.
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16.1.4 Reduction of fermions and the supersymmetry rules

Here we want to reduce to ten dimensions the fermions and the supersymmetry transfor-
mation laws in Eq. (16.8). We will keep only terms up to second order in fermions.

First we need to decompose the 11-dimensional gamma matrices in terms of the ten-
dimensional ones. This is done in Appendix B.1.4. Next, we have to decompose the 11-
dimensional spinors into ten-dimensional spinors. Eleven-dimensional Majorana spinors
are also ten-dimensional Majorana spinors. However, in ten-dimensional supergravity, the
elementary spinor is a Majorana–Weyl spinor. Thus, each 11-dimensional spinor can be
considered as a pair of Majorana–Weyl spinors with opposite chiralities (this is why this
theory is non-chiral and it is N = 2). In principle we could split all the spinors into their
chiral halves, but is is not worth doing it for the moment. Later on, we will have to do it in
order to relate the spinors to those of the type-IIB theory, which are of the same chirality
and cannot be considered the two halves of any Majorana spinor. As we will see, there
are two options in the type-IIB case: either we use indices i = 1, 2 for the spinors or we
combine them into a chiral complex spinor. We will use the first possibility.

We express the 11-dimensional spinors in terms of the ten-dimensional spinors (gravitino
ψ̂µ̂, dilatino λ̂, and the supersymmetry transformation parameter ε̂) as follows:8

ˆ̂ε = e− 1
6 φ̂ ε̂,

ˆ̂
ψ â = e

1
6 φ̂

(
2ψ̂â − 1

3 �̂âλ̂
)
,

ˆ̂
ψ z = 2i

3
e

1
6 φ̂ �̂11λ̂. (16.60)

Observe that, with these definitions, the gravitino ψ̂µ̂ is real but the dilatino λ̂ is purely
imaginary. We could use a purely real dilatino just by multiplying by i , but then its super-
symmetry rule would look unconventional.

We now want to use the relation between the 11- and ten-dimensional bosonic fields that
we have already obtained. However, we have performed the dimensional reduction working
in a special Lorentz gauge ˆ̂eâ

z = 0 and supersymmetry transformations do not preserve this
gauge. In fact,

δ ˆ̂ε
ˆ̂eâ

z = 1
3 e

1
3 φ̂ ¯̂ε �̂â�̂11λ̂. (16.61)

We have to introduce a compensating local Lorentz transformation in order to pre-
serve our gauge choice. Then, the ten-dimensional supersymmetry transformation δε̂ will
be a combination of an 11-dimensional supersymmetry transformation δ ˆ̂ε and an 11-
dimensional compensating local Lorentz transformation δ ˆ̂σ such that

δε̂
ˆ̂eâ

z ≡ (
δ ˆ̂ε + δ ˆ̂σ

) ˆ̂eâ
z = 1

3 e
1
3 φ̂ ¯̂ε �̂â�̂11λ̂ + 1

2
ˆ̂σ ˆ̂b ˆ̂c�v

( ˆ̂M ˆ̂b ˆ̂c

)
â ˆ̂d

ˆ̂ed̂
z = 0. (16.62)

Since the generators of the Lorentz group in the vector representation are given by
Eq. (A.60), the parameter of the compensating Lorentz transformation is given by

ˆ̂σ â
z = − 1

3 e
1
3 φ̂ ¯̂ε �̂â�̂11λ̂. (16.63)

8 As a first step, we simply identify, up to factors involving the dilaton, the dilatino λ̂ with the (flat) component
ˆ̂
ψ z and the gravitino ψ̂â with the (flat) components ˆ̂

ψ â . Then we see that it is natural to combine this dilatino
and this gravitino into a new one whose supersymmetry transformation rules are much simpler. The final
combinations are the ones we write.
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We now have to apply this definition of a ten-dimensional supersymmetry transforma-
tion to all fields, performing a compensating Lorentz transformation on all of them with
the above parameter and using the explicit form of the Lorentz transformations on each
individual field.

After some calculations we find the following N = 2A, d = 10 supersymmetry transfor-
mation laws (only for the “electric” NSNS and RR potentials):

δε̂ êâ
µ̂ = −i ¯̂ε�̂âψ̂µ̂,

δε̂ψ̂µ̂ =
{
∂µ̂ − 1

4

(
�ω̂µ̂ + 1

2�11 �Ĥµ

)}
ε̂

+ i

8
eφ̂

∑
n=1,2

1

(2n)!
�Ĝ(2n)�̂µ̂

(
−�̂11

)n
ε̂,

δε̂ B̂µ̂ν̂ = −2i ¯̂ε�̂[µ̂�̂11ψ̂ν̂],

δε̂Ĉ (1)
µ̂ = −eφ̂ ¯̂ε�̂11

(
ψ̂µ̂ − 1

2 �̂µ̂λ̂
)
,

δε̂Ĉ (3)
µ̂ν̂ρ̂ = 3eφ̂ ε̄�̂µ̂ν̂

(
ψ̂ρ̂] − 1

3!
�̂ρ̂]λ̂

)
+ 3Ĉ (1)

[µ̂δε̂ B̂µ̂ν̂],

δε̂ λ̂ =
(

�∂φ̂ + 1

12
�̂11 �Ĥ

)
ε̂ + i

4
eφ̂

∑
n=1,2

5 − 2n

(2n)!
�Ĝ(2n)

(
−�̂11

)n
ε̂,

δε̂ φ̂ = − i

2
¯̂ελ̂. (16.64)

Observe that, in principle, one obtains two additional terms in δε̂ êµ̂
â:

i

3
¯̂ε�̂â�̂µ̂λ̂ + 1

3δε̂φ̂ êµ̂
â, (16.65)

which combine into an infinitesimal Lorentz transformation of the Zehnbein with parameter

σ̂ âb̂ = − i

6
¯̂ε�̂âb̂λ̂. (16.66)

The same transformation also appears in the other fields with tangent-space indices
(i.e. just the fermions) but at higher orders in fermions. Thus, it can be absorbed into a
redefinition of the ten-dimensional local Lorentz transformations and that is why we have
ignored it.

Another point is that we have obtained these expressions without taking into account the
final rescaling of the bosonic fields by powers of eφ̂0 . It can be checked that, if we also
rescale the fermions according to

ψ̂µ̂ → e
1
6 φ̂0ψ̂µ̂, λ̂ → e− 1

6 φ̂0 λ̂, ε̂ → e
1
6 φ̂0 ε̂, (16.67)

the supersymmetry transformation rules remain invariant.
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In order to study which solutions of this theory preserve some supersymmetry, it is de-
sirable to include the magnetic potentials in the fermionic supersymmetry transformation
rules, since many solutions are naturally expressed in terms of the magnetic variables.9 Us-
ing the general definitions Eqs. (16.57) and (16.58) plus the identity Eq. (B.77), it is easy
to prove that

1

k!
�Ĝ(k) = (−1)k

(10 − k)!
�Ĝ(10−k)�̂11 = 1

2

{
1

k!
�Ĝ(k) + (−1)k

(10 − k)!
�Ĝ(10−k)�̂11

}
,

1

3!
�̂11 �Ĥ = − 1

7!
e2φ̂ �Ĥ (7) = 1

2

{
1

3!
�̂11 �Ĥ − 1

7!
e2φ̂ �Ĥ (7)

}
.

(16.68)

Furthermore,

�Ĥµ̂ = 2

7!
e2φ̂ �̂11�̂µ̂ν̂1···ν̂7 Ĥ (7) ν̂1···ν̂7 = 1

2

{
�Ĥµ̂ + 2

7!
e2φ̂ �̂11�̂µ̂ν̂1···ν̂7 Ĥ (7) ν̂1···ν̂7

}
. (16.69)

We simply have to substitute these identities into Eqs. (16.64) to obtain

δε̂ψ̂µ̂ =
{
∂µ̂ − 1

4

(
�ω̂µ̂ + 1

4�11 �Ĥµ + 1

2 · 7!
e2φ̂ �̂µ̂ν̂1···ν̂7 Ĥ (7) ν̂1···ν̂7

)}
ε̂

+ i

16
eφ̂

n=4∑
n=1

1

(2n)!
�Ĝ(2n)�̂µ̂

(
−�̂11

)n
ε̂,

δε̂ λ̂ =
[
�∂φ̂ + 1

4

(
1

3!
�̂11 �Ĥ − 1

7!
e2φ̂�Ĥ (7)

)]
ε̂

+ i
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eφ̂

n=4∑
n=1

5 − 2n

(2n)!
�Ĝ(2n)

(
−�̂11

)n
ε̂.

(16.70)

When using these expressions one should always keep in mind that the magnetic poten-
tials are not independent and that, if the magnetic potentials do not vanish, the electric ones
will not and vice-versa and their contributions have to be added.

Finally, it is possible to assign on-shell supersymmetry transformation rules to all the
RR potentials (electric and magnetic) [117]. It should also be possible to assign on-shell
supersymmetry transformation rules to the dual KR 6-form.

16.2 Romans’ massive N = 2A, d = 10 supergravity

Romans showed in [810] that (in contrast to 11-dimensional or N = 2B, d = 10 super-
gravity) N = 2A, d = 10 supergravity can be deformed by introducing a mass parameter

9 It is possible to find supersymmetry transformation rules for the magnetic RR potentials for which the
supersymmetry algebra is satisfied on-shell (which is not a problem since these potentials are, anyway,
defined only on-shell). See e.g. [117]. The same is probably true for the NSNS magnetic potentials, but the
transformation rules have not been given in the literature.
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m while keeping, formally, all the supersymmetry and gauge symmetry, although, actually,
both are broken, as we will see. It is not known how to derive this theory from the standard
11-dimensional SUGRA and it is not possible to deform 11-dimensional SUGRA in any
way to include a cosmological constant, while preserving at the same time 11-dimensional
Poincaré invariance [91, 303, 304].10

The deformation of the N = 2A, d = 10 theory consists in a deformation of the RR field
strengths and in a deformation of the Lagrangian. Both are consistent with a generalization
of the systematic definition of electric and magnetic RR field strengths in Section 16.1.3 in
which we replace the second and fourth of Eqs. (16.52) by11

Ĝ = dĈ − Ĥ ∧ Ĉ + meB̂,

δĈ = d�̂(·) − d B̂ ∧ �̂(·) − m�̂eB̂,
(16.71)

while the equations of motion, Bianchi identities, and duality relations Eqs. (16.57) remain
valid as they are. In particular, the 2- and 4-form field strengths are

Ĝ(2) = 2∂Ĉ (1) + m B̂. Ĝ(4) = 4∂Ĉ (3) − 12∂ B̂Ĉ (1) + 3m B̂ B̂, (16.72)

and the gauge transformations of the RR 1- and 3-forms are

δĈ (1) = ∂�̂(0) − m�̂, δĈ (3) = 3∂�̂(2) − Ĥ�̂(0) − 3m�̂B̂. (16.73)

The Lagrangian is deformed by replacing the RR field strengths by the deformed ones,
by adding a “cosmological-constant” term proportional to m2, and by adding new terms to
the Chern–Simons piece of the action. The action of the bosonic sector is

Ŝ = g2
A

16πG(10)
N A

∫
d10 x̂

√
|ĝ|

{
e−2φ̂

[
R̂ − 4

(
∂φ̂

)2
+ 1

2 · 3!
Ĥ 2

]

−
[

1
2 m2 + 1

2 · 2!

(
Ĝ(2)

)2
+ 1

2 · 4!

(
Ĝ(4)

)2
]

− 1

144

1√
|ĝ| ε̂

[
∂Ĉ (3)∂Ĉ (3) B̂ + 1

2 m∂Ĉ (3) B̂ B̂ B̂

+ 9

80
m2 B̂ B̂ B̂ B̂ B̂

]}
.

(16.74)

Actually, there is no cosmological-constant term: in the Einstein frame m2 carries a
dilaton factor and so it is a potential for the dilaton. On the other hand, the �̂ gauge trans-
formations can be used to gauge away Ĉ (1) completely, which is nothing but a Stückelberg

10 See, however, [28, 29, 136, 691]. Also, it is possible to derive other ten-dimensional massive theories from
d = 11 [566].

11 On redefining �̂(·), the RR gauge transformations can also be rewritten in the form

δĈ = (d�̂(·) − m�̂)eB̂ .
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field for the NSNS 2-form B̂ which transforms its kinetic term in the action into a conven-
tional mass term m2 B̂2, and is the reason why this theory is called massive.

One may wonder how some of the fields of the supergravity multiplet can become mas-
sive while the theory is formally invariant under N = 2 local supersymmetry since linearly
realized supersymmetry implies that all states in the same supermultiplet have the same
mass. The reason is not just gauge symmetry but also that supersymmetry is broken in this
theory. There are two ways to see this: on the one hand, a local supersymmetry transforma-
tion can be used to gauge away one dilatino and give mass to one gravitino; on the other
hand, the most (super)symmetric vacuum of this theory, which is not Minkowski spacetime
but the D8-brane, breaks half of the supersymmetries12 as well as some of the isometries of
Minkowski spacetime. Romans’ massive N = 2A, d = 10 supergravity can be interpreted
as the effective-field theory of type-IIA superstrings with an open-string sector associated
with a D8-brane that breaks translation invariance and supersymmetry [782].

There are good reasons to interpret the mass parameter m as another (0-form) RR field
strength,

Ĝ(0) ≡ m. (16.75)

A 0-form field strength has to be constant due to the Bianchi identity dĜ(0) = 0. It can
be dualized (on-shell) into a 10-form field strength Ĝ(10) whose equation of motion is this
Bianchi identity and whose Bianchi identity also follows the general rule Eqs. (16.57) and
implies the existence of a RR 9-form Ĉ (9), which must be non-trivial in order to have
�Ĝ(10) = −Ĝ(0) = −m. A RR 9-form potential was required by string theory since the type-
IIA theory admits all even p Dp-branes, which couple to RR (p + 1)-form potentials and
in massless N = 2A, d = 10 supergravity there is no potential for the D8-brane. Romans’
theory describes the effective type-IIA string theory in the presence of D8-branes. The
trouble with the 9-form potential is that it does not have dynamical degrees of freedom
and, if we include it in the form of a mass parameter, there is a D8-brane and if we do
not include it, there is not a D8-brane, whereas, for lower-rank potentials, the same theory
admits solutions with and without branes.13

The 11-dimensional origin of the D8-brane and its associated mass parameter are un-
known, although there are arguments based on the superalgebras of N = 2A, d = 10 and
d = 11 supergravity that support the idea that there is a nine-dimensional extended object
in d = 11 (the M9-brane discussed in [123, 142], also known as the KK9M-brane [666]),
which could also be associated with the (9 + 1)-dimensional boundaries of the Hořava–
Witten construction discussed on page 16.4.

The supersymmetry transformation rules are given by Eqs. (16.70), where the sums have
to be extended up to n = 5 to include Ĝ(10) and the new field strengths have to be used. The
same is true for the expression for Ĥ (7), Eq. (16.70).

12 Actually, the mass of the KR 2-form should be determined in the D8 background. The Stückelberg mech-
anism for higher-rank form potentials underlies many gauged higher-dimensional supergravities, but there
are cases in which the theory admits a maximally supersymmetric AdS vacuum with respect to which the
forms are massless in spite of the explicit “mass terms” they have in the action.

13 Actually, the theory can be generalized slightly, admitting the possibility that Ĝ(0) is only piecewise con-
stant, which is equivalent to the introduction of sources for the dual Ĉ(9) potential which are D8-branes
placed at the discontinuities of Ĝ(0) [118, 133], but we will not consider this generalization here.
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16.3 Further reduction of N = 2A, d = 10 SUEGRA to nine dimensions

Now we consider the dimensional reduction of the action of the massless N = 2A, d = 10
supergravity Eq. (16.38) to nine dimensions. This reduction should give us the effective
field theory of the type-IIA superstring compactified on a circle, which we will later com-
pare with the effective theory of the type-IIB theory on another circle in order to find their
relations under T duality.14

We could have reduced the 11-dimensional theory directly on a 2-torus, obtaining an
equivalent result with manifest invariance under global GL(2, R) transformations (in the
Einstein frame), according to the general arguments of Section 11.4. This would facil-
itate the comparison with the reduction of the N = 2B, d = 10 theory in its manifestly
SL(2, R)-invariant form [691] since these two symmetries coincide in nine dimensions
[125], although they have very different (geometrical and non-geometrical) origins. How-
ever, the compactification in two steps is necessary in order to obtain the T-duality relations
between the ten-dimensional fields, since these and their physical interpretation are much
simpler in the string frame, with string variables.

We start by reducing the bosonic NSNS sector of the action Eq. (16.38). Apart from
the fact that we are going to call x the compact coordinate, A(1) the KK vector, and A(2)

the winding vector, the result of this reduction was given in Eq. (15.25) and we can use it
directly. The only subtlety has to do with the normalization factor: after integration of the
compact coordinate x ∈ [0, 2π�s], we obtain

2π�sĝ2
A

16πG(10)
N A

= 2π�sg2
Ak0

16πG(10)
N A

= g2
A

16πG(9)
N A

, (16.76)

where we have used

gA = ĝAk
− 1

2
0 , G(9)

N A = G(10)
N A /(2π Rx). (16.77)

Next, we perform the dimensional reduction of the bosonic RR sector.

16.3.1 Dimensional reduction of the bosonic RR sector

The task of reducing the RR field strengths is simplified very much by using the normal-
ization Eqs. (16.52). We find that the ten-dimensional odd-rank RR potentials split into the
following nine-dimensional RR potentials of odd and even rank,

Ĉ (2n−1)
µ1···µ2n−1 = C (2n−1)

µ1···µ2n−1 + (2n − 1)A(1)
[µ1C (2n−2)

µ2···µ2n−1],

Ĉ (2n−1)
µ1···µ2n−2x = C (2n−2)

µ1···µ2n−2, (16.78)

and the even-rank RR field strengths reduce to nine dimensions according to

Ĝ(2n)
a1···a2n = G(2n)

a1···a2n , Ĝ(2n)
a1···a2n−1x = k−1G(2n−1)

a1···a2n−1, (16.79)

14 T duality can also be established between the massive N = 2A, d = 10 supergravity and N = 2B, d = 10
supergravity [118, 691], but, due to lack of space, we will restrict ourselves to the simplest case.
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where the nine-dimensional RR field strengths are defined as follows,

G(2n+1) = dC (2n) − HC (2n−2) + F (2)C (2n−1),

G(2n) = dC (2n−1) − HC (2n−3) + F (1)C (2n−2),
(16.80)

and the nine-dimensional gauge transformations that leave them invariant are

δA(i) = d�(i),

δB = d� − d�(1) A(2) − d�(2) A(1),

δC (2n) = d�(2n−1) − H�(2n−3) − F (2)�(2n−2),

δC (2n+1) = d�(2n) − H�(2n−2) − F (1)�(2n−1).

(16.81)

Using the notation introduced in Section 16.1.3, we can write the nine-dimensional RR
field strengths and gauge transformations in this way:

G = dC − HC + F (2)�oddC + F (1)�evenC.

δC = d�(·) − H�(·) − F (2)�even�
(·) − F (1)�odd�

(·).
(16.82)

The RR kinetic terms in the action reduce as follows:

−
√

|ĝ|
2 · (2n + 2)!

(
Ĝ(2n+2)

)2
= −

√|g|
2 · (2n + 2)!

k
(
G(2n+2)

)2 +
√|g|

2 · (2n + 2)!
k−1

(
G(2n+1)

)2
.

(16.83)
The reduction of the Chern–Simons term is straightforward. On putting everything to-

gether, after some integrations by parts, we obtain

S = g2
A
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] }
.

(16.84)

16.3.2 Dimensional reduction of fermions and supersymmetry rules

We can use the decomposition of ten- into nine-dimensional gamma matrices ex-
plained in Appendix B.1.5, which corresponds to the decomposition of ten-dimensional
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32-component fermions,

f̂ =
(

f 1

f 2

)
, (16.85)

into their two chiral 16-dimensional halves f 1 and f 2. Thus, from each ten-dimensional
spinor we obtain a pair of nine-dimensional spinors with internal indices i = 1, 2, which we
do not write explicitly in general and on which the Pauli matrices act. Now, from the two
ten-dimensional spinors λ̂ and ψ̂µ̂ we obtain three pairs of nine-dimensional spinors, ρ, λ,

and ψµ. The ten-dimensional supersymmetry parameter ε̂ gives a pair of nine-dimensional
supersymmetry parameters ε. The explicit relations are

ψ̂µ = ψµ + k A(1)
µσ 3ρ, λ̂ = σ 2(λ + ρ),

ψ̂x = kσ 3ρ, ε̂ = ε.
(16.86)

Observe that all these nine-dimensional spinors are real (we remind the reader that λ̂ was
defined to be imaginary).

Observe also that, in the dimensional reduction, the Dirac conjugates acquire an extra
σ 2. For instance

¯̂ε = ε̄σ 2. (16.87)

The dimensional reduction of the supersymmetry rules is a repetition of what we did in
the reduction from 11 to ten dimensions and we quote only the final results.

For the NSNS bosons:

δεea
µ = −i ε̄�aψµ, δεk = −ikε̄ρ, δεφ = − i

2
ε̄λ,

δε A(1)
µ = −ik−1ε̄σ 3

(
ψµ − �µρ

)
, δε A(2)

µ = −ikε̄
(
ψµ + �µρ

)
,

δε Bµν = −2i ε̄σ 3�[µψν] + δε A(1)
[µ A(2)

ν] + δε A(2)
[µ A(1)

ν].

(16.88)

For the RR bosons:

δεC (2n)
µ1···µ2n = 2nie−φk1/2ε̄Pn−1�[µ1···µ2n−1

[
ψµ2n ] − 1

4n
�µ2n ](λ − ρ)

]

− i2n(2n − 1)ε̄σ 3C (2n−2)
[µ1···µ2n−2�µ2n−1ψµ2n ]

− 2nδε A(2)
[µ1C (2n−1)
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δεC (2n−1)
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2 ε̄Pn−1�[µ1···µ2n−2

[
ψµ2n−1] − 1

2(2n − 1)
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]

− i(2n − 1)(2n − 2)ε̄σ 3C (2n−3)
[µ1···µ2n−3�µ2n−2ψµ2n−1]

− (2n − 1)δε A(1)
[µ1C (2n−2)

µ2···µ2n−1].

(16.89)
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For the fermions:
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(16.90)

16.4 The effective-field theory of the heterotic string

The full action and supersymmetry transformation rules of the N = 2A, d = 10 supergrav-
ity theory are invariant under the two Z2 transformations:

Ĉ (2n+1) → −Ĉ (2n+1), ψ̂µ̂ → ±�̂11ψ̂µ̂, λ̂ → ∓�̂11λ̂, ε̂ → ±�̂11ε̂. (16.91)

These transformations correspond to the 11-dimensional transformation of the compact
coordinate15 z → −z combined with the transformation f → ± f for all the fermions of
the theory, which is always a symmetry. Eliminating all the fields which are odd under
these transformations is always a consistent truncation of N = 2A, d = 10 supergravity
that is equivalent, according to the discussion in Section 11.6, to the compactification of
11-dimensional supergravity on the orbifold S1/Z2. In the two possible truncations all the
RR fields and half of the fermions (a chiral half) are eliminated. The result is a chiral theory
that is invariant under supersymmetry transformations generated by a single Majorana–
Weyl fermion, i.e. N = 1, d = 10 supergravity. The action for the bosonic sector of this
theory is that of the common sector Eq. (15.1). As for the supersymmetry transformation
rules, defining for all fermions f̂

f̂ = f̂ (+) + f̂ (−), �̂11 f̂ (±) ≡ ± f̂ (±), (16.92)

15 One should remember that the 11-dimensional ˆ̂C ˆ̂µ ˆ̂ν ˆ̂ρ is a pseudotensor.
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we obtain, for the two possible truncations,

δε̂ψ̂
(±)

â = ∇̂(±)

â ε̂(±),

δε̂ λ̂
(∓) =

(
�∂φ̂ ± 1

12
�Ĥ

)
ε̂(±),

(16.93)

where ∇̂(±)

â are the covariant derivatives associated with the two torsional spin connections

�̂
(±)

âb̂ĉ
= ω̂âb̂ĉ ± 1

2 Ĥâb̂ĉ. (16.94)

From the string/M-theoretical point of view, though, this is not the whole story: first
of all one expects to obtain the effective-field theory of some N = 1, d = 10 superstring
theory. There are three of these: type-I SO(32), heterotic with gauge group E8 × E8, and
heterotic with gauge group SO(32). Hořava and Witten showed in [543, 544] that, on each
of the (1 + 9)-dimensional boundaries of the compactified spacetime that correspond to
the endpoints of the segment S1/Z2, there is an E8 vector supermultiplet, so the orbifold
compactification of M theory gives the E8 × E8 heterotic-string theory.

This gives an entirely new way to view this string theory which, as is type-IIA, is also
related to M theory. For instance, the heterotic-string dilaton measures the distance between
the (1 + 9)-dimensional boundaries. Also, the dimensional reduction of the heterotic string
on a circle can be related to toroidal compactifications of M theory, which are related to
type-II string theory. In the end, this will give a relation between heterotic and type-I string
theories, as we will discuss in the next chapter.

As for the effective action of the heterotic-string theory, it is obtained by coupling the ac-
tion of pure N = 1, d = 10 supergravity [114] whose bosonic sector is given by Eq. (15.1)
to the corresponding vector supermultiplets. In the bosonic sector, this requires the addition
of the Yang–Mills kinetic term to the action,

Ŝ = ĝ2
h

16πG(10)

N h

∫
d10 x̂

√
|ĝ| e−2φ̂

[
R̂ − 4

(
∂φ̂
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+ 1

2 · 3!
Ĥ 2 − 1

4α
′ F̂ I

µ̂ν̂ F̂ I µ̂ν̂

]
,

(16.95)

together with a modification of the KR field strength by the addition of the Yang–Mills
Chern–Simons 3-form term defined in Eq. (A.50) [233]:

Ĥ = 3∂ B̂ − 1
2α

′ω̂3, ω̂3 = −3 ÂI F̂ I + 2 f I J K AI AJ AK . (16.96)

The supersymmetry transformation rules of the gravitino and dilatino fields are still given
by Eqs. (16.93), with Ĥ as defined above, but we also have to consider that of the gauginos,

δε̂χ̂
I = −

√
2α′

8
� F̂ I . (16.97)
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16.5 Toroidal compactification of the heterotic string

In this section we are going to study toroidal compactifications of the heterotic-string
effective-field theory from d̂ = 10 to d = 10 − n dimensions. Our goal is to find the T and
S dualities that arise in the compactification, especially in d = 4 dimensions. In contrast
to maximal supergravities (32 supercharges, N = 2, d = 10 theories and their toroidal re-
ductions, for example), after dimensional reduction on an n-torus the supergravity multiplet
becomes reducible into a lower-dimensional supergravity multiplet and n vector multiplets.
We will study how to separate the two kinds of fields. This is important, since matter fields
can always be consistently truncated, but they have to be correctly identified in order to
preserve supersymmetry.

This dimensional reduction was first done in [226] in the Einstein frame and in [675]
in the string frame, in which a stringy interpretation was given to the dualities they
found. Here we repeat what they did, first for pure N = 1, d = 10 supergravity using
our own conventions and emphasizing the relations between ten-dimensional and lower-
dimensional fields that will allow us to relate solutions in different dimensions. Later we
will add Yang–Mills fields in order to have the complete heterotic-string effective-field
theory.

16.5.1 Reduction of the action of pure N = 1, d = 10 supergravity

The Ricci scalar and dilaton terms. We can use the notation and Ansatz we made for the
metric in Section 11.4 and apply immediately Eqs. (11.183)–(11.185), although we have
to insert into the first of them the dilaton prefactor e−2φ̂ . On defining the d = (d̂ − n)-
dimensional dilaton field by

e−2φ ≡ e−2φ̂ K , (16.98)

integrating over the n redundant coordinates, and applying again Palatini’s identity to re-
express the d-dimensional spin-connection coefficients in terms of the Ricci scalar, we
obtain

ĝ2

16πG(10)
N

∫
d10 x̂

√
|ĝ| e−2φ̂

[
R̂ − 4(∂φ̂)2

]

= g2

16πG(d)
N

∫
dd x

√
|g| e−2φ

[
R − 4(∂φ)2 + 1

4 F2 − 1
4∂aGmn∂

aGmn
]
, (16.99)

where the d-dimensional string coupling constant is

g = eφ0 = eφ̂0
1√
K0

= ĝ

(
Vn

(2π�s)n

)1
2

, Vn = (2π)n R9 · · · R(10−n), (16.100)

and the d-dimensional Newton constant G(d)
N is related to G(10)

N by

G(d)
N = G(10)

N /Vn. (16.101)



472 From eleven to four dimensions

The KR term. As usual, we define the lower-dimensional KR field strength as identical to
the higher-dimensional one in flat indices so the gauge invariance is automatically inherited:

Habc ≡ Ĥabc = ea
µeb

νec
ρ
[

Ĥµνρ − 3Am
[µ Ĥνρ]m + 3Am

[µ An
ν Ĥρ]mn

]
. (16.102)

On the other hand, we have another two gauge-invariant combinations,

Ĥabi = ea
µeb

νei
m
[

Ĥµνm − 2An
[µ Ĥν]mn

]
, (16.103)

Ĥai j = ea
µei

me j
n Ĥµmn, (16.104)

where

Ĥµνm = 2∂[µ B̂ν]m, Ĥµmn = ∂µ B̂mn. (16.105)

Ĥµmn is just the field strength for the d-dimensional scalars,

Bmn = B̂mn. (16.106)

Although Ĥµνn looks like a good vector-field strength, it is not gauge-invariant. It enters
into the gauge-invariant combination Ĥabi , which can be rewritten in this way:

Ĥabi = ea
µeb

νei
m
[
2∂[µ

(
B̂ν]m + An

ν] B̂nm

)
− 2∂[µ An

ν] B̂nm

]
. (16.107)

2∂[µ An
ν] = Fn

µν is gauge-invariant by itself, and so the other piece on the r.h.s. must also
be gauge-invariant. This suggests the following (re)definition of the d-dimensional vector
fields and their strengths

A(1)m
µ = Am

µ, F (1)m
µν = 2∂[µ A(1)m

ν],

A(2)
m µ = B̂µm − An

µ B̂nm, F (2)
m µν = 2∂[µ A(2)|m|ν],

(16.108)

which leads to

Ĥabi = ei
m
(
F (2)

m ab + F (1)n
ab Bnm

)
. (16.109)

Using these results in the KR field strength Eq. (16.102), we arrive at the following
natural definition for the d-dimensional axion field:

B = B̂ − A(1)m B̂mn A(1)n + A(1)m A(2)
m, (16.110)

which implies

H = 3∂ B − 3
2 A(1)m F (2)

m − 3
2 A(2)

m F (1)m . (16.111)

Finally, we have

Ĥ 2 = H 2 + 3Ĥabi Ĥ abi + 3Ĥai j Ĥ ai j = H 2 + 3F2 + 3GmnG pq∂µ Bmp∂
µ Bnq, (16.112)
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where we use the shorthand notation

Fm = F (2)
m + F (1)p Bpm, F2 = GmnFmFn. (16.113)

On putting together the results of this and the previous section, we obtain

S = g2
h

16πG(d)
N

∫
dd x

√|g| e−2φ

{
R − 4(∂φ)2 + 1

2 · 3!
H 2

− 1
4

[
∂µGmn∂

µGmn − GmnG pq∂µ Bmp∂
µ Bnq

] + 1
4

(
F (1)

)2 + 1
4F2

}
.

(16.114)

This is essentially the result we were after, although we will have to massage it a bit more
and we will also have to add the fermions to the picture. We also wanted the relation be-
tween the ten- and d-dimensional fields in order to be able to reconstruct in ten-dimensional
language four-dimensional solutions. If we have such a solution in terms of the fields
gµν, Bµν, A(1)m

µ , A(2)
mµ, Gmn, Bmn , and φ, the ten-dimensional fields of the corresponding

ten-dimensional solutions are given by

ĝµν = gµν + A(1)m
µ A(1)n

νGmn, ĝmn = Gmn,

B̂µν = Bµν + A(1)m
µ A(1)n

ν Bmn − A(1)m
[µ A(2)|m|ν], B̂mn = Bmn

B̂µm = A(2)
mµ + A(1)n

µ Bnm, ĝµm = A(1)n
µGnm,

φ̂ = φ + 1
4 ln(det G). (16.115)

Manifestly O(n, n)-symmetric action. The d-dimensional action that we have just obtained
has a global GL(n, R) invariance that acts on the indices associated with the compact di-
mensions. In particular, the O(n) subgroup acts irreducibly on the vectors A(1)m and A(2)

m

without mixing them. The same happens for the scalars Gmn and Bmn . We know, though,
that, in the n = 1 case, Eq. (15.25), the action is invariant under the Z2 T-duality transfor-
mations Eqs. (15.27) that interchange these fields and which, combined with the SO(1,1)
rescalings of the fields, form an O(1, 1) duality group. We expect now that all the KK and
winding vectors A(1)m and A(2)

m can be interchanged independently and also rotated. The
resulting T-duality group will be O(n, n) but this cannot be seen with the action written as
above.

To make O(n, n) manifest, following [675] define the matrices G ≡ (Gmn) and B ≡
(Bmn), construct the 2n × 2n symmetric matrix

M =

 −G−1 G−1 B

−BG−1 −G + BG−1 B


, M−1 =


−G + BG−1 B −BG−1

G−1 B −G−1


,

(16.116)
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and introduce the 2n × 2n matrix L ,

L =

 0 In×n

In×n 0


 = L−1, (16.117)

which is nothing but the O(n, n) metric (diag(+, · · · , +, −, · · · , −)) in a non-diagonal
form.16 The essential property of M is that, as we can see in Eq. (16.116),

L M L = M−1, ⇒ MTL M = L , (16.118)

which is the definition of an O(n, n) matrix in this non-diagonal basis, i.e. M ∈ O(n, n).
Actually, M parametrizes the coset space O(n, n)/(O(n) × O(n)), as can be seen by count-
ing the number of independent scalars and comparing it with the dimension of the coset
space and also in the construction of Section 16.5.2.

Using the cyclic property of the trace and Eq. (16.118), we can rewrite the kinetic term
of the scalars in the action Eq. (16.114) in this manifestly O(n, n)-invariant way:

1
4

[
∂µGmn∂

µGmn − GmnG pq∂µ Bmp∂
µ Bnq

] = 1
8 Tr(∂ M L∂ M L). (16.119)

The scalars are coupled to the vectors and we also need to rewrite their kinetic terms.
Defining the O(n, n) column vectors

A� =
(

A(1)m
µ

A(2)
m µ

)
, F� = 2∂ A�, (16.120)

we can rewrite the kinetic term with them as follows:

1
4

(
F (1)

)2 + 1
4F

2 = − 1
4

(
M−1

)
��

F�F� = − 1
4(L M L)��F� F�, (16.121)

and the KR field strength in the form

H = 3∂ B − 3
2 L�� A� F�, (16.122)

and we arrive at the following O(n, n)-invariant action:

S = g2
h

16πG(d)
N

∫
dd x

√|g| e−2φ

{
R − 4(∂φ)2 + 1

2 · 3!
H 2

− 1
8 Tr (∂ M L∂ M L) − 1

4(L M L)��F� F�

}
.

(16.123)

The scalars M and vectors transform under � ∈ O(n, n) according to

M ′ = �M�T, F ′ = �F. (16.124)

16 We reserve the symbol η for the diagonal form of the O(n, n) metric.
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In the supergravity literature [134, 241, 298] η, the diagonal metric of O(n, n), is used
instead of L . The diagonalization is important since, as we are going to see, it distinguishes
vector fields in the supergravity multiplet (graviphotons) from vectors in the matter super-
multiplets. To do this, it suffices to perform a change of basis:

A = R A, F = RF, M = (R−1)T M R−1, (16.125)

η = (R−1)TL R−1 =
(

In×n 0

0 −In×n

)
, (16.126)

R = (R−1)T = 1√
2

(
In×n In×n

−In×n In×n

)
. (16.127)

The action and the KR field strength take the same form with L replaced by η and the
vector and scalar fields A and M replaced by A and M.

Manifestly O(p, p)-covariant equations of motion. It is clear that the equations of motion
for the metric, KR, dilaton, and vector fields are automatically O(p, p)-covariant. However,
M is a constrained matrix and its equations of motion have to be calculated with care. It
can be shown that they can be put into the manifestly O(p, p)-covariant form

∇µ

(
e−2φM−1∂µM

) = 1
2 e−2φ

(
ηMηFFT − ηFFTηM

)
. (16.128)

This equation transforms in the adjoint representation of O(p, p).

16.5.2 Reduction of the fermions and supersymmetry rules of N = 1, d = 10 SUGRA

To reduce the fermions and the supersymmetry rules, we need to construct Vielbeins for
the σ -model scalars, i.e. Vielbeins in the coset space O(n, n)/(O(n) × O(n)). We define
the matrix E ≡ (ei

m) so E−1 = (em
i ) and ET E = −G and construct the 2n × 2n matrix

V ≡ 1√
2

(−E + (E−1)T B −(E−1)T

−E − (E−1)T B (E−1)T

)
, (16.129)

with inverse

V −1 = − 1√
2

(
E−1 E−1

ET + B E−1 −ET + B E−1

)
. (16.130)

This matrix satisfies

V TV = M−1, V −1(V −1)T = M, (16.131)

and transforms under global � ∈ O(n, n) transformations on the right and local N ∈
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O(n) × O(n) on the left,

V ′ = N V �. (16.132)

It is natural to use indices V = (
V A

�

)
and V −1 = (

V �
A
)

where A, B = 1, . . ., 2n. On
the other hand, the change of basis from L to the diagonal metric η is

V ≡ V R−1. (16.133)

The combinations VF and V∂V−1 which are invariant under global O(n, n) transfor-
mations appear naturally in the reduction of the fermionic supersymmetry transforma-
tion rules. We are interested only in the purely bosonic transformation rules (with all
fermions set to zero). The reduction is made in two steps: first one reduces all the ten-
sor fields, then one decomposes ten-dimensional 32-component spinors into d-dimensional
spinors with extra internal indices and ten-dimensional gamma matrices into tensor prod-
ucts of d-dimensional gamma matrices and matrices associated with the internal symme-
tries. The second step depends strongly on n and, thus, we are going to perform only
the first step, with the ultimate goal of finding the right truncation of the matter vector
fields.

It is convenient to split the 2n-dimensional indices A, B into A1, B1 running from 1 to
n and A2, B2 that take values between n + 1 and 2n. Furthermore, in order to indicate the
correct contractions with the gamma matrices, we have defined the 2n “vector”

�̂A = (�̂d+1, . . ., �̂d+p, �̂d+1, . . ., �̂d+p). (16.134)

The result of the reduction is, then,

δε̂ψ̂
(+)
a = ∇(+)

a ε̂(+) +
√

2

4
�̂A1V A1

� �F�
a ε̂

(+)

− 1
4 �̂A1V A1

�∂aV�
B1�̂

B1 ε̂(+),

δε̂ψ̂
(+) A2 = −

√
2

8
V A2

� �F� ε̂(+) − 1
2V A2

� �∂V�
A1�̂

A1 ε̂(+),

δε̂(λ̂
(−) − �̂i ψ̂

(+)
i ) =

(
�∂φ − 1

12
�H

)
ε̂(+) +

√
2

8
�̂A1V A1

� �F� ε̂(+).

(16.135)

It is clear that ψ̂(+)
a will split into several d-dimensional gravitinos (four in d = 4, since

the ten-dimensional chiral spinors ψ̂(+)
a have 16 real components for each a, which cor-

responds to N = 4, d = 4 SUEGRA) and the combination λ̂(−) − �̂i ψ̂
(+)
i will split into

several d-dimensional dilatinos (again four in d = 4) since they transform into the dila-
ton under supersymmetry. The n spinors ψ̂(+) A2 transform into vectors and so they will
split into d-dimensional gauginos (4n in d = 4) of the n vector supermultiplets. The super-
symmetry parameter splits into as many d-dimensional supersymmetry parameters as the
gravitino, giving the number N of independent supersymmetry transformations that can be
performed (N = 4 in d = 4).



16.5 Toroidal compactification of the heterotic string 477

These supersymmetry transformation rules are clearly covariant under O(n, n) T-duality
transformations. This means that any d-dimensional solution will have the same number of
unbroken supersymmetries after an O(n, n) rotation. The corresponding ten-dimensional
solutions may but need not have the same amount of supersymmetry. This is due to the
fact that unbroken supersymmetry can be broken in dimensional reduction. We are going to
discuss this subtle point in Section 16.6, but obviously it applies to many other situations:
for instance the relation between the unbroken supersymmetries of N = 1, d = 11 and N =
2A, d = 10 supergravity solutions.

16.5.3 The truncation to pure supergravity

The fields of the reduced theory correspond to pure supergravity (16 supercharges in d
dimensions) coupled to n vector supermultiplets. The fields in the supergravity multiplet
are the gravitinos ψ̂(+)

a , the dilatino λ̂(−) − �̂i ψ̂
(+)
i , the graviton ea

µ, the dilaton φ, the KR
2-form Bµν , and n of the 2n KK and winding vectors A� . The n vector supermultiplets are
made out of the n2 scalars contained in V A

� , n of the 2n KK and winding vectors A� , and
the gauginos ψ̂(+) A2 . Thus, we know to which supermultiplet each field belongs, except for
the vector fields. These, however, can be identified by studying the truncation of the vector
multiplets, which consists in

E = In×n, B = 0, ψ̂(+) A2 = 0, (16.136)

plus the vanishing of the matter vector fields. Since the truncation has to be consistent at
the level of the equations of motion, if we substitute the above values of the fields into the
equations of motion of the theory, we will be forced to set to zero n combinations of the 2n
vector fields A� , which are then identified with the matter vector fields. The n orthogonal
combinations that remain are the supergravity vector fields.

Substituting M = I2n×2n into Eq. (16.128) tells us only that F�1F�2 = 0, though, and
we also have to impose consistency of the truncation of the supersymmetry transformation
rules Eqs. (16.135). On substituting V = 0 and δε̂ψ̂

(+) A2 = 0, we find

F�2 = 0 ⇒ − 1√
2
(F�1 − F�2) = 0, (16.137)

which implies that the combinations F�2 are the matter vector fields and the F�1
are the

supergravity ones.
The action of the truncated pure supergravity d-dimensional theory is

S = g2
h

16πG(d)
N

∫
dd x

√|g| e−2φ

[
R − 4(∂φ)2 + 1

2 · 3!
H 2 − 1

4F�1F�2

]
, (16.138)
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where
H = 3∂ B − 3

2A
�1F�1 . (16.139)

In d = 4 (the n = 6 case), as we are going to see in Section 16.5.5, the KR 2-form can
be dualized into a pseudoscalar axion field a and the action is exactly as we wrote it in
Eq. (12.58) (up to notational details and the rescaling to the Einstein frame). Then, any
solution of N = 4, d = 4 SUEGRA like those we studied in Chapter 12 can be oxidized to
a solution of N = 1, d = 10 supergravity and understood as a string solution. Furthermore,
if we take into account that the four-dimensional supergravity vectors are

Am = 1√
2
(A(1) m + A(2)

m), (16.140)

and the truncation condition implies A(1) m = A(2)
m , we will find that all supersymmetric

four-dimensional solutions are also supersymmetric using the ten-dimensional supersym-
metry transformation rules.

16.5.4 Reduction with additional U(1) vector fields

Let us now consider the reduction of the the full action Eq. (16.95). We are going to do this
for generic points of the moduli space of toroidal compactifications at which, as discussed
on page 423, the symmetry group is the Abelian U(1)16, but here we will keep the number
of vector fields generic, p. Observe that the Yang–Mills terms appear in the heterotic-string
effective action at first order in α′ and we will explicitly exhibit this constant.

Before we work out this generic case, we should mention a particular but most interesting
case: the E8 × E8 and SO(32) are related by T duality after compactification on a circle.

All we need to reduce now is the KR and vector fields. We just quote the results, since
the procedure followed is the same as before. The p vector fields give p vector fields AI

µ

and p × n scalars aI
m :

ÂI
µ = 1√

α′ AI
µ + ÂI

m A(1) m
µ, ÂI

m = 1√
α′ a

I
m . (16.141)

The KR 2-form gives the same fields in d dimensions but with different definitions:

B̂µν = Bµν + B̂mn A(1) m
µ A(1) n

ν − A(1) m
[µ| A(2)

m|ν] − aI
m A(1) m

[µ AI
ν],

B̂µ m = A(2)
m µ + A(1) n

µ Bnm + 1
2 aI

m AI
µ,

B̂mn = Bmn. (16.142)

The vector-field strength decomposes as

F̂ I
ab = 1√

α′
(
F I

ab + aI
m F (1) m

ab
)
,

F̂ I
ai = 1√

α′ ei
m∂aaI

m,

(16.143)
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where F I
µν = 2∂[µ AI

ν], whereas the KR field strength decomposes as

Ĥai j = ei
me j

n
(
∂a Bmn − 1

2 aI
m∂aaI

n + 1
2 aI

n∂aaI
m
)
,

Ĥabi = ei
m
(
F (2)

m ab − Cmn F (1) n
ab + aI

m F I
ab

)
,

Ĥabc = Habc,

(16.144)

where the d-dimensional KR field strength and the scalars Cmn are given by

Hµνρ = 3∂[µ B νρ] − 3
2 L�� A�

[µ F�
νρ], Cmn = Bmn − 1

2 aI
maI

n, (16.145)

we have defined the (2n + p)-dimensional vector

(
A�

µ

) =

 A(1)m

µ

A(2)
m µ

AI
µ


, F�

µν = 2∂[µ A�
ν], � = 1, . . ., 2n + p, (16.146)

and L�� is the O(p, p + n) metric in a non-diagonal basis:

(L��) =




0 Ip×p 0

Ip×p 0 0

0 0 −In×n


. (16.147)

On putting everything together, we obtain an action of the form Eq. (16.123) but with the
fields and L�� defined above and the matrix M now of dimension (2n + p) × (2n + p)

parametrizing an O(n, n + p)/(O(n) × O(n + p)) coset space and given by

M =




−G−1 G−1C G−1aT

CTG−1 −G − CTG−1C + aTa −CTG−1aT + aT

aG−1 −aG−1C + a Ip×p − aG−1aT


. (16.148)

It can be constructed with the Vielbein

V ≡ 1√
2




−E + (E−1)TC −(E−1)T −(E−1)TaT

−E − (E−1)TC (E−1)T (E−1)TaT

√
2 a 0

√
2 Ip×p


, V TV = M−1. (16.149)

All the properties enjoyed by the old M as an O(p, p) matrix are now enjoyed by the new
M as an O(p, p + n) matrix with the new metric L . This metric can also be diagonalized
to η = diag(In×n, −I(n+p)×(n+p)) by the same matrix R given in Eq. (16.127) acting only
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on the first 2n indices. Clearly, all the vector fields associated with the n + p negative
eigenvalues of η are matter vector fields. The truncation to pure supergravity now includes
the conditions

aI
m = AI

µ = 0. (16.150)

The T-duality group is now O(n, n + p) and includes the interchange of KK and winding
vectors with the U(1) gauge vectors. This is not too surprising if we take into account that
the gauge fields of the heterotic string originate from the compactification of the right- or
left-moving part of 16 worldsheet scalars.

16.5.5 Trading the KR 2-form for its dual

As we mentioned in the introduction, in certain dimensions, the symmetry of the compact-
ified theory can be bigger than O(n, n + p), for instance due to the possibility of dualizing
fields that can be rotated into other already existing fields. Here we are going to see an
important example in d = 4 dimensions, in which the heterotic-string KR 2-form can be
dualized into a pseudoscalar axion field, which, together with the dilaton, parametrizes an
SL(2, R)/SO(2) coset space, Eq. (11.209) (the one present in N = 4, d = 4 supergravity,
studied in Section 12.2). It turns out that the equations of motion (but not the action) of the
full theory are SL(2, R)-covariant because the SL(2, R) transformations involve the dual-
ization of the vector fields (which are dual to vector fields precisely in d = 4). This new
hidden symmetry of the supergravity theory has been conjectured to be a non-perturbative
S duality of the full heterotic-string theory [397, 803, 842].

We are also interested in the dualization of the KR 2-form in d = 6, in which one obtains
another 2-form potential. A transformation of the dilaton and metric brings the theory into
the form of the theory that one obtains by compactifying N = 2A, d = 10 supergravity on
K3, which is evidence of a strong–weak-coupling duality between the full heterotic-string
theory compactified on T4 and the full type-IIA string theory compactified on K3.

The SO(32) heterotic string is also related by another strong–weak-coupling duality
to the type-I SO(32) superstring but the relation does not involve the dualization of the
(NSNS) KR 2-form, but rather its interchange by a RR 2-form, as we will see in Sec-
tion 17.5.

Then we are going to perform the dualization of the KR 2-form in arbitrary dimension d.
The general procedure for Poincaré dualizations is explained in Section 8.7.1: we consider
the action as a functional of H and add a Lagrange multiplier term to enforce the Bianchi
identity

Eµ1···µ6−n ≡ ∇µ
� Hµµ1···µ6−n + (−1)6−n

4
η��F�

νρ
�F�νρµ1···µ6−n = 0. (16.151)

The Lagrange-multiplier term that has to be added to Eq. (16.123) (diagonalized, so L is
replaced by η, F by F , etc.) is

g2
h

16πG(d)
N

∫
dd x

√
|g| 1

(6 − n)!
B̃µ1···µ6−n Eµ1···µ6−n . (16.152)
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Now we want to eliminate H completely from the action by using its equation of motion:

H ν1ν2ν3 = 1

(7 − n)!
e2φ 1√|g|ε

µ1···µ7−nν1ν2ν3 H̃µ1···µ7−n , (16.153)

where
H̃ = (7 − n)∂ B̃ (16.154)

is the (7 − n)-form dual to H .
Since B appears in the action only through H , B is completely eliminated from this

action and replaced by B̃, and we obtain the dual action

S = g2
h

16πGd)
N

∫
dd x

√|g| e−2φ

{
R − 4(∂φ)2 + (−1)d

2 · (7 − n)!
e4φ H̃ 2 − 1

8 Tr (∂Mη∂Mη)

− 1
4(ηMη)�� F�F�

+ (−1)6−p

8 · (6 − p)!
η��

1√|g|ε B̃F�F�

}
.

(16.155)

Now we study two special cases.

The n = 4, d = 6 case. In this case H̃ is just another 3-form field strength. The field content
of the effective action coincides with the massless sector of the type-IIA string compactified
on K3 and, in fact, there is a field redefinition that takes us from the massless fields of the
heterotic string compactified on T4 to the massless fields of the type-IIA string compactified
on K3, which supports the duality between the two theories (including the massive modes)
[332, 336, 583, 847, 962]:

H̃ = HIIA, φ = −φIIA, gµν = e−2φIIA gIIA µν. (16.156)

On performing this change of variables, we obtain

S = g2
h

16πG(6)
N

∫
d6x

√|gIIA|
{

e−2φIIA

[
RIIA − 4(∂φIIA)2 + 1

2 · 3!
H 2

IIA

− 1
8 Tr(∂Mη∂Mη)

] − 1
4 (ηMη)�� F�F� + 1

16
η��

1√|gI I A|εBI I AF�F�

}
.

(16.157)

Observe that, in these variables, the vector fields do not carry the factor e−2φIIA . This is
due to the fact that all of them are of RR origin.
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The n = 6, d = 4 case. To exhibit the new symmetry, we first go to the Einstein frame by
rescaling the metric,

gµν = e2φgEµν. (16.158)

Using the formulae in Appendix E to rescale the Ricci scalar and defining the complex
scalar field τ that parametrizes the coset space SL(2, R)/SO(2),

τ ≡ a + ie−2φ, a ≡ B̃, (16.159)

we obtain the action of N = 4, d = 4 SUEGRA coupled to p vector multiplets:

S = 1

16πG(4)
N

∫
d4x

√|gE|
{

RE − 1
2

∂µτ∂µτ

(Im(τ ))2
− 1

8 Tr(∂Mη∂Mη)

− 1
4 e−2φ (ηMη)�� F�F� + 1

8η��

1√|g|aεF�F�

}
.

(16.160)

The truncation of the vector fields A� = � = 7, . . ., 12 + p and the scalar fields M =
I(12+p)×(12+p) takes us to the pure supergravity action Eq. (12.58). The truncated action is
invariant under SO(6) rotations of the vector fields, which are associated with rotations17

in the internal T6 and, as discussed in Section 12.2, the equations of motion are covariant
under SL(2, R) transformations of τ , a non-perturbative symmetry that will not have a
simple interpretation until we introduce the solitonic 5-brane.

16.6 T duality, compactification, and supersymmetry

The hidden symmetries of supergravity theories that we have studied can be used to trans-
form 11- or ten-dimensional solutions with the appropriate number of isometries using one
of the mechanisms we described in Chapter 11 to generate new solutions: reduce, use the
d-dimensional hidden symmetry transformation, and oxidize again. The T-duality Buscher
rules of the string common sector can be interpreted as the simplest application of this
mechanism, using the Z2 symmetry of the theory reduced on a circle.

On the other hand, these hidden symmetries of supergravity theories are evidently sym-
metries of the supersymmetry transformation rules, which means that they preserve the un-
broken supersymmetries of the d-dimensional solutions, acting covariantly on their Killing
spinors.

This may lead us to think that the whole procedure of reduction–dualization–oxidation
preserves the unbroken supersymmetry of the 11- or 10-dimensional solutions. There is,
however, one loophole in all these arguments: unbroken supersymmetry has to be preserved
by dimensional reduction and this requires that the 11- or 10-dimensional Killing spinors

17 This SO(6) is part of the original T-duality group O(6, 6 + p), but does not contain any interchanges of
winding and KK vectors, which are constrained to be equal by the truncation conditions.
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are independent of the internal coordinates, but this need not be true even if all the bosonic
fields of the solution are independent of them. We have indeed assumed that the supersym-
metry parameters are independent of the internal coordinates to obtain the supersymmetry
transformation rules of the d-dimensional theories and a Killing spinor depending on the
internal coordinates simply would not appear as a d-dimensional Killing spinor, the d-
dimensional solution would not be supersymmetric and, after dualization and oxidation,
in general, the new 11- or ten-dimensional solution will not be supersymmetric either. In
those cases, duality does not respect supersymmetry [32, 68, 131, 340, 504].

This is a very interesting phenomenon with potentially important implications and it
is worth studying a concrete example: the T-dualization of Minkowski spacetime [131].
We have found T duality by studying string theory in Minkowski spacetime with a com-
pact dimension parametrized by a Cartesian coordinate with radius Rz , realizing that the
spectrum was identical to that of another string theory in Minkowski spacetime with a
compact dimension parametrized by a Cartesian coordinate with radius α′/Rz , which is the
string solution T dual to the former. Both spacetimes preserve all supersymmetries of N =
1, d = 10 supergravity. The Buscher rules allow us, however, to find T duals to Minkowski
spacetime associated with any other of its isometries, not only with the translational
ones.

Let us consider, then, the maximally supersymmetric ten-dimensional Minkowski space-
time with a two-dimensional subspace written in polar coordinates ρ and θ :

dŝ2 = dt2 − d �x 2
7 − dρ2 − ρ2dθ2. (16.161)

The T dual with respect to the isometry associated with shifts in the angular coordinate
θ ∈ [0, 2π ] is the solution

dŝ ′ 2 = dt2 − d �x 2
7 − dρ2 − ρ−2dθ2, e−2φ̂′ = ρ2. (16.162)

On looking into the supersymmetry transformation rules Eqs. (16.93), it takes no time to
see that this solution has no unbroken supersymmetries at all because the dilatino variation
δε̂λ̂ = ρ−1�̂9ε̂ will never vanish for non-trivial ε̂.

Apparently, the T-duality transformation has broken completely the supersymmetry of
the original background. The technical reason can be traced to the reduction to nine dimen-
sions: the nine-dimensional solution

ds2 = dt2 − d �x 2
7 − dρ2, e−2φ = k = ρ, (16.163)

is not supersymmetric according to Eqs. (16.135). The ten-dimensional Killing spinor equa-
tions are satisfied and the nine-dimensional ones are not, and the reason why is that the
ten-dimensional Killing spinor depends on the internal coordinate θ . This seems to happen
whenever the isometry is not translational, but rotational, acting with fixed points.

Physically, the dimensional reduction in the direction θ is not a compactification in the
standard KK sense. On the one hand, there are no non-contractible loops associated with
θ and there are no associated winding modes. On the other hand, the “radius” of the θ

direction, ρ, goes to zero in one limit and to infinity in another limit, and this space is
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certainly not asymptotically the KK vacuum. There seems to be no clear reason to expect
these two backgrounds, which are related by Buscher’s rules, to be equivalent for strings in
the standard sense of interchange of KK and winding modes. Nevertheless, the two back-
grounds are related by Buscher’s rules and there seems to be no reason why supersymmetry
should disappear [32]. It has been suggested that supersymmetry is still present but real-
ized non-locally [504]. For the moment, there is no definite physical explanation for this
phenomenon.



17
The type-IIB superstring and type-II T duality

In the previous chapter we initiated the study of the 11- and ten-dimensional supergravity
theories which arise in the low-energy limits of the various string theories and M theory.
Our goal was to study the dualities that relate the various string theories and M theory using
effective-field-theory actions as we did in Section 15.2 with T duality in the effective action
of the common string sector. In the coming chapters we will study these dualities from the
point of view of their effect on classical solutions of the effective actions that represent the
classical long-range fields of perturbative and non-perturbative states of these theories, as
we did in Section 15.3 with the solutions associated with string and winding modes.

In this chapter we are going to study the N = 2B, d = 10 (chiral) supergravity theory, the
effective field theory of the type-IIB superstring, and how it is related to the N = 2A (non-
chiral) theory after compactification on a circle (type-II T duality). Furthermore, we are also
going to study the truncations to N = 1 theories, which are the effective-field theories of
the type-I and heterotic superstrings, finding the field-theory version of the type-I/heterotic-
string duality.

First, in Section 17.1, we will study the bosonic sector of the theory, giving a non-self-
dual action from which one can derive equations of motion that have to be supplemented
by the self-duality constraint of the 5-form field strength [111]. We will also give the super-
symmetry transformation rules to lowest order in fermions. Then, in Section 17.2 we will
study the S-duality symmetry of this theory, which becomes manifest only after several
redefinitions.

Next, in Section 17.3 we will perform the dimensional reduction to nine dimensions
of N = 2B, d = 10 supergravity compactified on a circle. As we will see, the nine-
dimensional theory thus obtained is identical to the theory obtained by dimensional reduc-
tion of the N = 2A, d = 10 theory, Eq. (16.84). This will allow us to establish a correspon-
dence between fields of the ten-dimensional N = 2A and N = 2B theories compactified on
circles. This correspondence is part of the T duality existing between the two correspond-
ing superstring theories and with our procedure we will have obtained the generalization
of the T-duality Buscher rules to type-II theories found in [125] and generalized in [691].

Finally, in Section 17.5 we will study various consistent truncations of the theory and
their relations to N = 1 theories and the corresponding full string theories. In particular,

485
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we will find a non-perturbative strong–weak-coupling relation between the type-I SO(32)
and the heterotic SO(32) superstring theories.

17.1 N = 2B, d = 10 supergravity in the string frame

The fields of N = 2B, d = 10 SUEGRA [571, 820, 823] associated with the massless
modes of the type-IIB superstring are given in Table 14.2. Actually, as we have mentioned
a few times, there are two N = 2B, d = 10 theories, with all fermionic chiralities reversed
and opposite self-duality properties of the RR 5-form field strength. Here we are going to
describe the theory with a RR 4-form Ĉ (4) + with self-dual 5-form field strength (suppress-
ing the upper index + for convenience),

Ĝ(5) = +�Ĝ(5) (17.1)

(all the RR field strengths are normalized as explained in Section 16.1.3 according to
Eqs. (16.51) and (16.52), the only difference being the use of calligraphic letters for the
NSNS fields ̂µ̂ν̂ , B̂µ̂ν̂ , and ϕ̂) and negative-chirality pairs of gravitinos and supersymmetry
transformation parameters ζ̂

i (−)

µ̂
and ε̂i (−) and positive-chirality dilatinos χ̂ i (+) (although

we also suppress these ± and the i = 1, 2 indices of the SO(2) global symmetry that rotates
the fermions for convenience):

�̂11ζ̂µ̂ = −ζ̂µ̂, �̂11ε̂ = −ε̂, �̂11χ̂ = +χ̂ . (17.2)

Although the self-duality equation for Ĝ(5) looks like a constraint, it is indeed one of the
equations of motion of the theory [820], and it arises as such in the superspace formalism
[571]. It is not hard to see that, combined with the Bianchi identity, it gives a conventional-
looking equation of motion:

∂Ĝ(5) − 10

3
ĤĜ(3) = 0 ⇒ ∂�Ĝ(5) − 10

3
ĤĜ(3) = 0. (17.3)

It is known that it is not possible to write a covariant action for the above self-duality
equation of motion [685]. Nevertheless, having an action is very useful (for instance, to
perform dimensional reductions) and we would like to write one. The main observation is
that, if we do away with the self-duality of the 5-form, we can find an action that gives
the conventional equation of motion Eq. (17.3) [111]. This equation of motion does not
imply self-duality when it is combined with the Bianchi identity, but only ∂Ĝ(5) = ∂�Ĝ(5).
However, it is consistent with self-duality. This should be reflected in the following property
of the action: if we dualize the 4-form, we must end up with an identical action written in
terms of the dual 4-form. In other words, the action of the theory of the non-self-dual (NSD)
5-form must itself be “Poincaré self-dual.” In our conventions the action of such a Poincaré
self-dual NSD theory is

SNSD = ĝ2
B

16πG(10)
N B

∫
d10 x̂

√
|̂ |

{
e−2ϕ̂

[
R̂(̂ ) − 4

(
∂ϕ̂

)2 + 1

2 · 3!
Ĥ2

]

+ 1
2

(
Ĝ(0)

)2
+ 1

2 · 3!

(
Ĝ(3)

)2
+ 1

4 · 5!

(
Ĝ(5)

)2
− 1

192

1√
|̂ |ε ∂Ĉ (4)∂Ĉ (2)B̂

}
,

(17.4)
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It is worth remarking that the sign of the last term is linked to the self-duality of the
5-form. If we wanted to impose consistently instead anti-self-duality of Ĝ(5) and have an
action for the opposite chirality N = 2B, d = 10 theory, the sign would have been exactly
the opposite. This sign will ultimately be related, via T duality, to the sign of the Chern–
Simons term of the N = 2A, d = 10 theory and, via dimensional oxidation, to the analo-
gous sign of 11-dimensional supergravity.

It is also important to observe that the kinetic term for the 4-form has an extra factor of
1
2 with respect to the standard normalization. In a sense, this factor takes into account that
we have twice the right number of degrees of freedom. When, after dimensional reduction,
we eliminate the self-duality constraint, we will obtain fields with the correct normalization
thanks to this extra 1

2 .
Observe also that we have introduced, as in the N = 2A case, a prefactor g2

B to absorb in
it the asymptotic value of the dilaton, using the definition

gB ≡ eϕ̂0 . (17.5)

Assuming, as we do here, that the metric in the string frame is asymptotically flat, then it
will also be asymptotically flat in the “modified-Einstein-frame” metric, and we conclude
that the Newton constant of this theory is G(10)

N B . Its value is different from that of the IIA
theory, so the quotient ĝ2

B/GN B
(10) does not depend on ĝB (see Eq. (19.26)). This will be

important in finding a frame in which the action is invariant under S duality.

17.1.1 Magnetic potentials

On comparing the equations of motion of the RR 0- and 2-form potentials,

d�Ĝ(1) − Ĥ�Ĝ(3) = 0, d�Ĝ(3) + ĤĜ(5) = 0, (17.6)

with the Bianchi identities of the corresponding dual potentials,

dĜ(9) − ĤĜ(7) = 0, dĜ(7) − ĤĜ(5) = 0, (17.7)

we find the relation between the original and the dual field strengths:

Ĝ(9) = +�Ĝ(1), Ĝ(7) = −Ĝ(3), (17.8)

which defines them, in complete agreement with the first of Eqs. (16.57). Observe that Ĉ (0)

and Ĉ (2) are pseudotensors and acquire an extra minus sign under parity transformations.
Ĉ (5) has no definite parity properties: in fact, parity transforms the self-duality constraint
into an anti-self-duality constraint and chiral spinors into anti-chiral spinors and vice-versa.
Thus the N = 2B, d = 10 supergravity is not invariant under parity, which, in fact, relates
the two possible N = 2B, d = 10 supergravities. The magnetic potentials Ĉ (8) and Ĉ (6) are
tensors.

There is a RR potential, electric or magnetic, for all the associated p odd Dp-branes of
the type-IIB string theory, except for the D9-brane that requires a Ĉ (10) potential, which can
be added to the theory at no cost.
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Finally, the dual of the NSNS 2-form is a 6-form whose field strength can be written in
the form

Ĥ(7) = dB̂(6) + 1
2

n=3∑
n=0

�Ĝ(2n+3) ∧ Ĉ (2n). (17.9)

17.1.2 The type-IIB supersymmetry rules

The supersymmetry transformation rules of N = 2B, d = 10 supergravity, generalized to
include the magnetic RR potentials and field strengths plus Ĉ (10), are, suppressing the i, j =
1, 2 SO(2) indices in fermions and Pauli matrices [117],

δε̂êµ̂
â = −i ¯̂ε�̂â ζ̂µ̂,

δε̂ζ̂µ̂ = ∇µ̂ε̂ − 1
8 � Ĥµ̂σ3ε̂ + 1

16
eϕ̂

∑
n=1,···,5

1

(2n − 1)!
�Ĝ(2n−1)�̂µ̂Pn ε̂,

δε̂B̂µ̂ν̂ = −2i ¯̂εσ 3�̂[µ̂ζ̂ν̂],

δε̂Ĉ (2n−2)
µ̂1···µ̂2n−2 = i(2n − 2)e−ϕ̂ ¯̂εPn�̂[µ̂1···µ̂2n−3

(
ζ̂µ̂2n−2] − 1

2(2n − 2)
�̂µ̂2n−2]χ̂

)

+ 1
2(2n − 2)(2n − 3)Ĉ (2n−4)

[µ̂1···µ̂2n−4δε̂B̂µ̂2n−3µ̂2n−4],

δε̂χ̂ =
(

�∂ϕ̂ − 1

12
�Ĥσ 3

)
ε̂ + 1

4 eϕ̂
∑

n=1,···,5

(n − 3)

(2n − 1)!
�Ĝ(2n−1)Pn ε̂,

δε̂ϕ̂ = − i

2
¯̂εχ̂,

(17.10)

where

Pn =
{

σ 1, n even,

iσ 2, n odd.
(17.11)

Observe that the consistency of these supersymmetry transformations demands that the
gravitinos and supersymmetry transformation parameters have the same chirality, opposite
to that of the dilatinos. Observe also that, due to the self-duality of Ĝ(5),

�Ĝ(5) =�Ĝ(5) 1
2(1 + �̂11). (17.12)

The �Ĝ(5) term in δε̂ζ̂µ̂ survives due to the negative chirality of ε̂ and does not survive in
δε̂χ̂ for the same reason. This fact plays an important role in the existence of maximally
supersymmetric solutions of this theory.

17.2 Type-IIB S duality

In the original version of the ten-dimensional, chiral N = 2 supergravity [820] the the-
ory has a classical SU(1,1) global symmetry. The two scalars parametrize the coset space
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SU(1,1)/U(1), U(1) being the maximal compact subgroup of SU(1,1), and transform un-
der a combination of a global SU(1,1) transformation and a local U(1) transformation that
depends on the global SU(1,1) transformation. They are combinations of the dilaton and
the RR scalar. The group SU(1,1) is isomorphic to SL(2, R), the conjectured classical S-
duality symmetry group for the type-IIB string theory [583]. A simple field redefinition
[125] is enough to rewrite the action in terms of two real scalars parametrizing the coset
space SL(2, R)/SO(2), which can now be identified with the dilaton and the RR scalar.
Now the S-duality symmetry becomes manifest only when we rescale the metric to work
in the Einstein frame:

̂E µν = e− ϕ
2 µν. (17.13)

However, the RR potentials we are working with here are not the most appropriate to
exhibit manifest SL(2, R) symmetry. In fact, they have been chosen because they are the
most appropriate to study T duality and the worldvolume effective actions of D-branes. In
particular, while the NSNS and RR 2-forms we are using form an SL(2, R) doublet (as
we are going to see), their field strengths do not. Furthermore, our self-dual RR 4-form
potential Ĉ (4) is not SL(2, R)-invariant. Thus, for the purpose of exhibiting the SL(2, R)

symmetry it is convenient to perform the following field redefinitions:1,2

�̂B =
(

Ĉ (2)

B̂

)
, D̂ = Ĉ (4) − 3B̂Ĉ (2). (17.14)

These new fields undergo the following gauge transformations:

δ �̂B = 2 �̂�, δ D̂ = 4∂�̂ + 2 �̂�Tη �̂H, (17.15)

and have field strengths

�̂H = 3∂ �̂B,

F̂ = Ĝ(5) = + � F̂ = 5
(
∂ D̂ − �̂B T η �̂H

)
,

(17.16)

where η is the 2 × 2 matrix

η = iσ 2 =
(

0 1
−1 0

)
= −η−1 = −ηT. (17.17)

Given the isomorphism SL(2, R) ∼ Sp(2, R), it plays the role of an invariant metric:

SηST = η, ⇒ ηSηT = (S−1)T, S ∈ SL(2, R). (17.18)

Next, we define the complex scalar τ̂ that parametrizes the coset space SL(2, R)/SO(2),

τ̂ = Ĉ (0) + ie−ϕ̂ , (17.19)

1 In our conventions all fields are either invariant or transform covariantly as opposed to contravariantly.
2 The complete relations (including fermions) between the formulation of the N = 2B theory in “stringy

variables” that we have introduced in the previous section and the manifestly S-duality-covariant formulation
that we are going to introduce in this section can be found in [426].
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and the 2 × 2 symmetric SL(2, R) matrix M̂i j , given in Eq. (11.207) in terms of τ̂ , that
satisfies the property

M̂−1 = ηM̂ηT. (17.20)

Under S ∈ SL(2, R) given by Eq. (11.205) the new variables that we have defined trans-
form as follows:

M̂′ = SM̂ST, τ̂ ′ = ατ̂ + β

γ τ̂ + δ
, �̂B′ = S �̂B, (17.21)

and the 4-form D̂ and the Einstein metric ̂E are inert.
Now, it is a simple exercise to rewrite the NSD N = 2B action in the following mani-

festly S-duality-invariant form:

ŜNSD = ĝ2
B

16πG(10)
N B

∫
d10 x̂

√
|̂E|

{
R̂(̂E) + 1

4 Tr
(
∂M̂M̂−1

)2

+ 1

2 · 3!
�̂H TM̂−1 �̂H + 1

4 · 5!
F̂2 − 1

27 · 33

1√
|̂E|ε D̂ �̂HTη �̂H

}
. (17.22)

Observe that the factor ĝ2
B/(16πG(10)

N B ) is S-duality-invariant because it does not depend
on ĝB (see Eq. (19.26)). Thus it is in the Einstein frame that the full action is invariant
under S duality and masses measured in this frame are S-duality-invariant. As usual, this
is not the metric in which we should measure masses (at least masses that we want to
compare with the string spectrum) because, if the string metric is asymptotically flat, the
Einstein metric is not. We should use the modified Einstein frame. This metric will also
be S-duality-invariant, but the action will have the prefactor 1/(16πG(10)

N B ) which is not
invariant and, thus, masses measured in it will not be invariant.

It is easy to find how the stringy fields Ĥ, Ĝ(3), and Ĉ (4) transform under SL(2, R):

Ĥ′ =
(
δ + γ Ĉ (0)

)
Ĥ + γ Ĝ(3),

Ĝ(3) ′ = 1

|γ τ̂ + δ|2
[(

δ + γ Ĉ (0)
)

Ĝ(3) − γ e−2ϕ̂Ĥ
]
,

Ĉ (4) ′ = Ĉ (4) − 3
(

Ĉ (2) B̂
)(αγ βγ

βγ δβ

)(
Ĉ (2)

B̂

)
.

(17.23)

τ̂ transforms as above and we stress that the string metric does transform under SL(2, R):

̂ ′ = |γ τ̂ + δ|̂ . (17.24)

Some of the SL(2, R) transformations of N = 2B, d = 10 SUEGRA involve an inversion
of the dilaton, and, hence, of the string coupling constant ĝB, just as we discussed in the
case of N = 4, d = 4 SUEGRA, the effective theory of the heterotic string (Sections 12.2
and 16.5.5). These are, therefore, non-perturbative transformations from the string-theory
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point of view, and the perturbative description that we have of it gives little information
about them. We can take the point of view that the existence of this symmetry of the super-
gravity theory indicates the existence of a similar string S duality (with SL(2, R) broken
to SL(2, Z) by quantum effects such as charge quantization) that relates strongly coupled
type-IIB string theory to another weakly coupled type-IIB theory (because the supergravity
is invariant under these transformations), and try to check the implications.

As we learnt in Section 8.7 and applied later in the case of S duality in four-dimensional
KK theory, one of the main characteristics of S duality is that it interchanges fundamental,
perturbative states with solitonic, non-perturbative states. If the S dual of a theory is another
theory of the same kind (as is the case here), then the full spectrum of the theory, includ-
ing perturbative and non-perturbative states, must be S-duality-invariant. Thus, if there is
S duality in type-IIB superstring theory, there must be (or we must add) non-perturbative
states in it that are interchanged with the fundamental string states that we already know.
These non-perturbative states turn out to be D1-branes, viz. D-strings, and dyonic states
known as pq-strings. Their presence implies the possible addition of open-string sectors
to the IIB theory. Since the type-IIA and -IIB theories are T dual to each other, namely
D-strings are T dual to D0- and D2-branes, we will have to admit the possibility of hav-
ing the corresponding open-string sectors in the IIA theory and, again, due to T duality,
D3-branes in the IIB and so on and so forth.

The very first string solution that we studied, the F1 solution Eq. (15.70), represents
the long-range fields associated with a kind of fundamental, non-perturbative string state.
S duality requires the existence of S-dual solutions: D-string and pq-string solutions. We
will study all these issues related to the stringy interpretation of the supergravity symmetry
that we have uncovered in this section in more detail later on.

17.3 Dimensional reduction of N = 2B, d = 10 SUEGRA and type-II T duality

In this section we are going to study from the point of view of the type-II string effec-
tive actions the T duality between the IIA and IIB superstring theories compactified on
circles discovered in [283, 322]. As in the string common sector, it is possible to find
T-duality relations (“type-II Buscher rules”) between fields and solutions of both theo-
ries by performing the dimensional reduction of the effective-field theories (N = 2A and
N = 2B, d = 10 SUEGRAs) to nine dimensions on a circle. The dimensional reduction of
the N = 2A theory was performed in Section 16.3 and here we are going to do the same
to the action of the N = 2B theory Eq. (17.4), assuming now that all the fields are inde-
pendent of the dual compact coordinate that we call y in this case. Since the NSD action
has to be complemented by the self-duality constraint, at the end we will also have to re-
duce the constraint and then use it in the reduced nine-dimensional action to obtain exactly
Eq. (16.84).

We start with the reduction of the NSNS sector, which we have already performed. The
result is given in Eq. (15.25) but now we call y the compact coordinate, A(2) the KK vector,
A(1) the winding vector, and k−1 the KK scalar (a summary of the relations between the
ten- and nine-dimensional fields can be found in Section 17.3.1). The asymptotic value of
this KK scalar is Ry/�s but, since k is to be identified with the KK scalar coming from the
reduction of the IIA theory, it is also �s/Rx , and thus we have the T-duality relation between
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compactification radii
Ry

�s
= �s

Rx
. (17.25)

Furthermore, the normalization factor in front of the action is now

2π�sĝ2
B

16πG(10)
N B

= 2π�sg2
Bk−1

0

16πG(10)
N B

= g2
B

16πG(9)
N B

, (17.26)

where we have used

gB = ĝBk
1
2
0 , G(9)

N B = G(10)
N B /(2π Ry). (17.27)

The normalization factor is independent both of the d = 10 or d = 9 string coupling
constant and of the compactification radius, although the d = 9 string coupling constant
squared and the d = 9 Newton constant do depend on them in precisely the same way.

This is the T-dual reduction to the one we performed in Section 16.3 for the IIA theory.
The ten-dimensional IIB NSNS fields ̂µ̂ν̂ , B̂µ̂ν̂ , and ϕ̂ decompose in terms of the same
nine-dimensional IIA/B NSNS fields in the T-dual way.

As for the dimensional reduction of the RR sector, when we reduced the N = 2A the-
ory to nine dimensions, we defined the field strengths and gauge transformations for the
nine-dimensional RR potentials in Eqs. (16.79) and (16.80). Since we have completely de-
termined the reduction of the NSNS fields, the reduction of the N = 2B RR potentials is
completely determined by the requirement that they have the same nine-dimensional field
strengths as in the N = 2A case. This is achieved by the following identifications:

Ĉ (2n)
µ1···µ2n = C (2n)

µ1···µ2n − (2n)A(2)
[µ1C (2n−1)

µ2···µ2n ],

Ĉ (2n)
µ1···µ2n−1x = −C (2n−1)

µ1···µ2n−1 .
(17.28)

The field strengths reduce as follows:

Ĝ(2n+1)
a1···a2n+1 = G(2n+1)

a1···a2n+1, Ĝ(2n+1)
a1···a2n y = −kG(2n)

a1···a2n , (17.29)

and the corresponding kinetic terms in the action reduce as follows:√
|̂ |

2 · (2n + 1)!

(
Ĝ(2n+1)

)2
=

√|g|
2 · (2n + 1)!

k−1
(
G(2n+1)

)2 −
√|g|

2 · (2n)!
k
(
G(2n)

)2
. (17.30)

Although only the electric RR forms appear in the action, the reduction formulae work
for the magnetic ones as well. The final check for the RR fields is that the field strengths
satisfy the same duality relations as one obtains in the N = 2A case because, since we have
used the same definitions for the field strengths as in the N = 2A case, they satisfy the same
Bianchi identities and, then, if they satisfy the same duality relations, they satisfy the same
equations of motion. Indeed, the RR field strengths obtained from both theories satisfy

G(9−k) = −�G(k), (17.31)

which is always consistent in d = 9.
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This is clearly enough to conclude that the reduction of the N = 2A and N = 2B theories
to d = 9 gives the same nine-dimensional theory. However, just as a check, we can complete
the reduction of the action of the N = 2B theory and see that it coincides with Eq. (16.84).
We are only going to outline how this is done: the NSD action can be reduced to d = 9
straightforwardly using the above formulae, but we obtain a theory with 5- and 4-form RR
field strengths that originate from the ten-dimensional self-dual 5-form field strength. The
nine-dimensional 5- and 4-forms are related by Eq. (17.31), which is a constraint of the
action that we have to eliminate in order to arrive at the action Eq. (16.84). To eliminate
consistently the constraint and the 5-form, we first Poincaré-dualize it into a second 4-form,
following the standard procedure. Finally, we identify the two 4-forms and the result is
Eq. (16.84) with a single 4-form and with the correct sign in the Chern–Simons term.

This result allows us to map fields of one ten-dimensional theory onto fields of the other
ten-dimensional theory (which is always independent of one coordinate). This mapping
is the generalization of Buscher’s T-duality rules to type-II theories [125, 691] that we
describe in the next section, but it is worth making some preliminary remarks.

1. The rules reflect the T-duality rules for D-branes that we discussed on page 428.

2. We could have reduced the manifestly S-duality-invariant action Eq. (17.22) and we
would have obtained a manifestly SL(2, R)-invariant action in d = 9. As usual in KK
compactification, the action would also be invariant under a group R

+ of rescalings
of the internal dimension and other Z2 factors which combine into GL(2, R), which
is the invariance group that one obtains in the reduction from d = 11 to d = 9. The
IIB S duality now has a geometrical interpretation in the IIA theory.

3. It is possible to use the full SL(2, R) invariance of the action to perform a GDR of
the theory [426, 691]. The result is a family of massive supergravity theories that de-
pends on three mass parameters transforming in the adjoint of SL(2, R) that fit into
a symmetric mass matrix. One of the theories, which depends on a single parame-
ter, is precisely the theory one would obtain by reducing Romans’ theory to d = 9
[118]3, but there are other theories that cannot be obtained from known 11- and
ten-dimensional supergravities. Most of the d = 9 theories obtained in this way are
gauged supergravities [258, 726] and the gauge group is determined by the conjugacy
class of the chosen mass matrix [120]. While there is a simple string interpretation
for Romans’ theory based on the D8-brane, the remaining massive/gauged theories
have a less-conventional interpretation that is based on non-conventional extended
branes.

4. Although only low-rank RR potentials appear in the action, we have extended the
relation to the high-rank magnetic RR potentials. This implies the existence of new
high-rank RR potentials unrelated to the electric ones: the IIB Ĉ (8) can be related
to the IIA Ĉ (7), but also to a Ĉ (9) that exists in Romans’ theory only since it is the

3 This is the theory that one obtains with the GDR Ansatz studied in Section 11.5.3. Observe that the mass
parameter is naturally quantized since it is a winding number. This implies that the mass parameter of
Romans’ theory must also be quantized, if we insist on identifying these theories as string theory indicates.
This GDR Ansatz is related to the RR 9-form potential we are going to discuss next.
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magnetic dual of the mass parameter.4 In turn, the IIA Ĉ (9) implies the existence of
a IIB Ĉ (10) associated with the D9-brane. On combining these results with S dual-
ity, we arrive at the possible existence of the S dual of Ĉ (10), B̂(10), whose on-shell
supersymmetry transformation is given in Eq. (17.41). A new T duality implies the
existence of another B̂(10) in the IIA theory. These potentials play an interesting role,
as we are going to see in Section 17.5 [123, 580]. T-duality rules for B(10) and B(6)

have been given in [375].

17.3.1 The type-II T-duality Buscher rules

We are now ready to relate the N = 2A, B, d = 10 fields. For the sake of completeness we
summarize the relation between ten- and nine-dimensional fields for each theory first.
Summary of the type-IIA reduction
NSNS fields:

ĝµν = gµν − k2 A(1)
µ A(1)

ν,

B̂µν = Bµν − A(1)
[µ A(2)

ν],

φ̂ = φ + 1
2 ln k,

ĝµx = −k2 A(1)
µ,

B̂µx = A(2)
µ,

ĝxx = −k2,

gµν = ĝµν − ĝµx ĝνx/ĝxx ,

Bµν = B̂µν + ĝ[µ|x | B̂ν]x/ĝxx ,

φ = φ̂ − 1
4 ln |ĝxx |,

A(1)
µ = ĝµx/ĝxx ,

A(2)
µ = B̂µx ,

k = |ĝxx | 1
2 .

(17.32)

RR fields:

Ĉ (2n−1)
µ1···µ2n−1 = C (2n−1)

µ1···µ2n−1 + (2n − 1)A(1)
[µ1C (2n−2)

µ2···µ2n−1],

Ĉ (2n+1)
µ1···µ2n x = C (2n)

µ1···µ2n ,

C (2n−1)
µ1···µ2n−1 = Ĉ (2n−1)

µ1···µ2n−1 − (2n − 1)ĝ[µ1|x |Ĉ (2n−1)
µ2···µ2n−1]x/ĝxx ,

C (2n)
µ1···µ2n = Ĉ (2n+1)

µ1···µ2n x . (17.33)

Summary of the type-IIB reduction
NSNS fields:

̂µν = gµν − k−2 A(2)
µ A(2)

ν,

B̂µν = Bµν + A(1)
[µ A(2)

ν],

ϕ̂ = φ − 1
2 ln k,

̂µy = −k−2 A(2)
µ,

B̂µy = A(1)
µ,

̂yy = −k−2,

gµν = ̂µν − ̂µy ̂νy/̂yy,

Bµν = B̂µν + ̂[µ|y|B̂ν]y/̂yy,

φ = ϕ̂ − 1
4 ln |̂yy|,

A(1)
µ = B̂µy,

A(2)
µ = ̂µy/̂yy,

k = |̂yy|− 1
2 .

(17.34)

4 As explained on page 342, a non-vanishing value of the potential Ĉ(9) is related to the GDR associated with
the shifts of Ĉ(0) that we discussed before, which are in turn related to the mass parameter of Romans’
theory. Clearly, the whole picture is consistent.
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RR fields:

Ĉ (2n)
µ1···µ2n = C (2n)

µ1···µ2n − (2n)A(2)
[µ1C (2n−1)

µ2···µ2n ],

Ĉ (2n)
µ1···µ2n−1 y = −C (2n−1)

µ1···µ2n−1,

C (2n)
µ1···µ2n = Ĉ (2n)

µ1···µ2n + (2n)̂[µ1|y|Ĉ (2n)
µ2···µ2n ]y/̂yy,

C (2n−1)
µ1···µ2n−1 = −Ĉ (2n)

µ1···µ2n−1 y.

(17.35)

We obtain the following generalization of Buscher’s rules [125, 691].
From IIA to IIB:

̂µν = ĝµν −
(

ĝµx ĝνx − B̂µx B̂νx

)/
ĝxx , ̂µy = B̂µx/ĝxx ,

B̂µν = B̂µν + 2ĝ[µ|x B̂ν]x/ĝxx , B̂µy = ĝµx/ĝxx ,

ϕ̂ = φ̂ − 1
2 ln |ĝxx |, ̂yy = 1/ĝxx ,

Ĉ (2n)
µ1···µ2n = Ĉ (2n+1)

µ1···µ2n x + 2n B̂[µ1|x |Ĉ (2n−1)
µ2···µ2n ]

− 2n(2n − 1)B̂[µ1|x |ĝµ2|x |Ĉ (2n−1)
µ3···µ2n ]x/ĝxx ,

Ĉ (2n)
µ1···µ2n−1 y = −Ĉ (2n−1)

µ1···µ2n−1

+ (2n − 1)ĝ[µ1|x |Ĉ (2n−1)
µ2···µ2n−1]x/ĝxx .

(17.36)

From IIB to IIA:

ĝµν = ̂µν −
(
̂µy ̂νy − B̂µyB̂νy

)/
̂yy, ĝµx = B̂µy/̂yy,

B̂µν = B̂µν + 2̂[µ|yB̂ν]y/̂yy, B̂µx = ̂µy/̂yy,

φ̂ = ϕ̂ − 1
2 ln |̂yy|, ĝxx = 1/̂yy,

Ĉ (2n+1)
µ1···µ2n+1 = −Ĉ (2n+2)

µ1···µ2n+1 y + (2n + 1)B̂[µ1|y|Ĉ (2n)
µ2···µ2n+1]

+ 2n(2n + 1)B̂[µ1|y|̂µ2|y|Ĉ (2n)
µ3···µ2n+1]y/̂yy,

Ĉ (2n+1)
µ1···µ2n x = Ĉ (2n)

µ1···µ2n + 2n̂[µ1|y|Ĉ (2n)
µ2···µ2n ]y/̂yy.

(17.37)

17.4 Dimensional reduction of fermions and supersymmetry rules

As we discussed on page 439, we have to take into account carefully the T-duality trans-
formation of the Vielbeins when dealing with fermions. There are two possible rules
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compatible with fermions, which, combined with the standard KK Ansatz Eqs. (11.33),
give Eqs. (15.30). In our case we have already reduced the N = 2A fermions and super-
symmetry transformation rules using the standard KK Ansatz (with Aµ renamed A(1)

µ) and
it just turns out that we can obtain agreement with those results only by using the lower
sign in Eqs. (15.30) (with Bµ renamed A(2)

µ) [505, 506]. To be more explicit, the Ansatz
that we must use in the reduction of the N = 2B, d = 10 theory is

(
êµ̂

â
)

=

 eµ

a −k−1 A(2)
µ

0 −k−1


,

(
êâ

µ̂
)

=

 ea

µ −A(2)
a

0 −k


. (17.38)

The sign is irrelevant in the reduction of the bosonic sector, as we stressed, and, thus, it
does not change the type-II Buscher rules we just derived.

The N = 2B, d = 10 spinors are pairs of Majorana–Weyl spinors with only 16 real non-
vanishing components out of the 32 in the chiral basis that we are using with �̂11 = I16×16 ⊗
σ 3. The indices that label each pair of fermions are usually not explicitly shown. The Pauli
matrices that appear in the supersymmetry rules Eqs. (17.10) act only on those indices and
both survive in the nine-dimensional theory. In the decomposition of the ten-dimensional
gamma matrices that we have used in the type-IIA case new Pauli matrices appear but they
do not act on those indices; rather, they act on the chiral (upper and lower) components of
the 32-component spinors. These Pauli matrices do not survive the reduction.

Taking all these facts into account, the ten-dimensional 32-component fermions, which,
including the supersymmetry parameter, are ζ̂ i

µ̂
, χ̂ i , and ε̂i and the nine-dimensional,

16-component fermions ψ i
µ, λi , ρi , and εi , are related by

ζ̂ i
y =

(
0

−k−1ρi

)
, ζ̂ i

µ =
(

0
ψ i

µ − k−1 A(2)
µρi

)
,

χ̂ i = σ 2

(
0

λi − ρi

)
, ε̂i =

(
0
εi

)
,

(17.39)

and, using these relations, we obtain complete agreement with the nine-dimensional su-
persymmetry transformation rules that we derived from the N = 2A theory, Eqs. (16.88)–
(16.90).

Using Eqs. (16.86) and (17.39), we can derive Buscher’s rules for the fermions. They
are not too interesting except for the supersymmetry parameters, since they can be used for
Killing spinors, if they are independent of the compact coordinates, which is not always the
case, as we discussed in Section 16.6. Recalling that the gamma matrix which points into
the direction into which we T dualize is �̂9 = I16×16 ⊗ iσ 1, it is immediately possible to
derive the two T-duality rules:

ε̂ = ε̂2 − i �̂9ε̂1,

ε̂1 = − i

2
�̂9

(
1 + �̂11

)
ε̂, ε̂2 = 1

2

(
1 − �̂11

)
ε̂.

(17.40)
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17.5 Consistent truncations and heterotic/type-I duality

In Section 16.4 we saw how the N = 2A, d = 10 theory could be truncated to N = 1, d =
10 SUGRA to which vector supermultiplets could be coupled. We also studied how this
truncation and the addition of E8 × E8 vector supermultiplets could be justified from
the string/M-theory point of view as arising from an orbifold compactification of 11-
dimensional supergravity (M theory) with ten-dimensional E8 vector supermultiplets living
on the two boundaries.

In this section we are going to study the possible consistent truncations of the N =
2B, d = 10 theory and their relations to other string effective-field theories. We will follow
[117, 804] and, in particular, we will include in our discussion the RR 10-form potential
and its S dual B(10), to which one can give the on-shell supersymmetry transformation rule

δε̂B̂(10) = −ie−2ϕ̂ ¯̂εσ 3
(

10�̂[µ̂1···µ̂9ψ̂µ̂10] − �̂µ̂1···µ̂10 λ̂
)
. (17.41)

Several Z2 symmetries of the N = 2B, d = 10 theory are known.

1. (−1)F , which changes the signs of all fermions and leaves bosons invariant. It is
present in all theories and it is related to the truncation to N = 0 eliminating all
fermions.

2. The symmetry associated with the worldsheet parity symmetry �,

f̂ → σ 1 f̂ , Ĉ (2n−2) → (−1)nĈ (2n−2), B̂ → −B̂, B̂(10) → −B̂(10), (17.42)

where f̂ stands for any fermion doublet. The associated truncations are

Ĉ (2n−2) = 0, n = 1, 3, 5, B̂ = 0, B̂(10) = 0, (1 + σ 1) f̂ = 0.

(17.43)

The remaining fields are those of the N = 1, d = 10 supergravity multiplet (plus
Ĉ (10)) but they now appear as in the type-I string effective action:

S = ĝ2
I

16πG(10)
N I

∫
d10 x̂

√
|̂ |

{
e−2ϕ̂

[
R̂(̂ ) − 4

(
∂ϕ̂

)2
]

+ 1

2 · 3!

(
Ĝ(3)

)2
}
. (17.44)

We know that the quotient of the type-IIB string theory by � is equivalent to the
introduction of an O9-plane and that consistency requires the introduction of 32
D9-branes whose RR charges and tensions will cancel out exactly those of the
O9-plane, introducing at the same time open strings whose massless states fill an
SO(32) gauge supermultiplet. At lowest order in α′ these vector supermultiplets will
contribute to the above action with a term [64]

ĝ2
I

16πG(10)
N I

∫
d10 x̂

√
|̂ |

{
α′

4
e−ϕ̂ TrAdj (F2)

}
(17.45)
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(with the Killing metric normalized to K I J = −δI J ) plus the addition of a Chern–
Simons term Eq. (A.50) to Ĝ(3),

Ĝ(3) → 3∂Ĉ (2) − 1
2α

′ω̂3, (17.46)

which is needed for the supersymmetric coupling. The sum of Eqs. (17.44) and
(17.45) is the effective action of the type-I SO(32) superstring theory. Observe that
the vector fields kinetic term carries a dilaton factor e−ϕ̂ , which is associated with the
fact that these terms come from different string diagrams (worldsheet topologies).

3. The product (−1)F� induces a truncation of the N = 2B, d = 10 SUEGRA that
consists in keeping the same bosonic fields and the combination of fermions orthog-
onal to that of the previous case. The result is again an N = 1, d = 10 SUGRA with
bosonic action Eq. (17.44). From the string-theory point of view this truncation has
been associated in [804] with one in which the tensions of the O9-plane and the
D9-branes cancel out, but the charges do not. The corresponding string theory, which
has gauge group USp(32) and was constructed in [873], is not supersymmetric, even
though it is tachyon-free. The supersymmetry of the supergravity theory is broken
by the coupling to matter, which fails to be supersymmetric because the vector fields
are not in the adjoint representation (a necessary condition for supersymmetry). The
consistency of the coupling is due to the fact that supersymmetry is spontaneously
broken [330, 703], which makes it a fascinating theory.

4. The S-duality transformation S = η. It does not lead to any supersymmetric trunca-
tion, but it allows us to discuss the S duals of other truncations.

5. Those that correspond to the worldsheet transformations (−1)FL and (−1)FR, where
FL(R) is the spacetime fermion number coming from the left- (right-)movers. These
two transformations are related by

�(−1)FL� = (−1)FR, (−1)F(−1)FL(R) = (−1)FR(L) . (17.47)

Their action on the supergravity fields is

f̂ → ±σ 3 f̂ , Ĉ (2n−2) → −Ĉ (2n−2). (17.48)

The truncation is

Ĉ (2n−2) = 0, n = 1, . . ., 6, (1 ∓ σ 3) f̂ = 0. (17.49)

The remaining fields are those of pure N = 1, d = 10 supergravity just as they appear
in the heterotic-string effective action Eq. (15.1) (plus B̂(10)). In string theory one has
to take into account the twisted sectors that arise and which have been argued to give
the type-IIA superstring theory [280]. On the other hand, in [123, 580] it has been
argued that (−1)FL is actually the S dual of �,

S�S−1 = (−1)FL, (17.50)
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so one can also consider the S dual of the construction that leads to the type-I theory:
an O9-plane associated with (−1)FL and 32 S duals of the D9-branes (S9-branes).
The result is the heterotic SO(32) superstring theory which arises, then, as the S dual
of the type-I SO(32) superstring. These theories are each other’s strong-coupling
limit [278, 577, 782]. The fields of the effective theories are related by the strong–
weak-coupling transformation

̂µ̂ν̂ = e−φ̂ ĝµ̂ν̂ , ϕ̂ = −φ̂h, Ĉ (2)
µ̂ν̂ = B̂µ̂ν̂ . (17.51)

Since S(−1)F�S−1 = (−1)FR, one may also expect to find a (non-supersymmetric)
heterotic dual of the USp(32) superstring.

We can combine the construction of the type-I theory and this heterotic/type-I duality
with our knowledge of type-II T duality. Since we can consider the type-I theory as simply
type IIB with one O9-plane and 32 D9-branes and we know what the T dual of each of
them is (type IIA with an O8-plane and 32 D8-branes), we can immediately say that the T
dual of the type-I theory (called type I′ [778]) is essentially a nine-dimensional theory with
N = 1 supersymmetry (16 supercharges) and gauge group SO(32)× U(1)2. Since

T �T −1 = Ix�, Ix x = −x, (17.52)

the presence of the O8-plane implies that, instead of R
9 × S1, we have R

9 × S1/Z2 and we
actually have two O8-planes with RR charge −16 in the two nine-dimensional boundaries.
Introduction of Wilson lines into the compactification separates the D8-branes and one can
obtain different gauge groups [66, 710].

The S-dual version of this T duality is well known to lead from the heterotic SO(32)
theory to the heterotic E8 × E8 theory (up to the possible introduction of Wilson lines)
with one dimension compactified, which is associated with the Hořava–Witten scenario
with one extra dimension compactified, that is, M theory on S1 × S1/Z2. We have learned
that type-IIB S duality is a rotation of the 2-torus on which we compactify M theory and
here we are seeing precisely that the type I′ theory is a rotated version of the heterotic
E8 × E8 theory compactified on a circle and both are related to M theory. Furthermore,
the mysterious objects at the boundaries of the Hořava–Witten scenario, compactified on a
circle, are related to the O8-planes and D8-branes. More consequences of these chains of
dualities were studied in [123].



18
Extended objects

Introduction

In the previous chapters we have studied the upper-left- and upper-right-hand boxes of
Figure 14.1 that concern the standard perturbative formulation of string theory and the ef-
fective actions of the ten-dimensional string theories (and M theory). We have also learned
a bit about the existence of some non-perturbative states in the string spectrum, in particu-
lar D-branes and KK and winding modes in compactified theories (the lower-left-hand box
of Figure 14.1). We have studied in the three cases the existence of dualities that related
various theories and how these dualities are realized in the worldsheet action (when this is
possible, i.e. for T duality) and in the effective actions. We have also mentioned that S du-
alities and T dualities imply the existence of new solitonic states in the string spectrum.

In this chapter and the next we are going to study systematically the lower-right-hand
and central boxes of Figure 14.1, that is, the solitonic solutions of the string effective-field
theories and their worldvolume actions. We will study the implications that the various du-
alities have for them (which are evidently related to the effects of dualities on the effective
actions) and for the non-perturbative string spectrum. This chapter will be devoted to a gen-
eral introduction to extended objects and in the next chapter we will deal specifically with
those that occur in string/M theory.

These are subjects with many facets that are related in many ways to each other and to the
subjects of the previous chapters. Therefore, it is hopeless to try to give a complete, or even
half-complete, account of them in the space that we have at our disposal. Our aim will be to
cover the basic material and the essential results and solutions in a unified system of conven-
tions (like the rest of the book), giving pointers to the literature for further developments.

We start in Section 18.1 with a general introduction to the kinematics and dynamics of
generic extended objects in which we will discuss various forms of the actions for these
objects, their coupling to background fields (Section 18.1.1), and the generalization of the
Dirac quantization condition for extended objects (Section 18.1.2).

In Section 18.2 we treat the simplest generic black and extreme solutions of the “p-
brane a-model,” which is itself a generalization of the “a-model” studied in Section 12.1.
The string-theory solutions that we will study later are in general special cases of these

500
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general families of solutions.

18.1 Generalities

The basic extended objects are known as p-branes, objects with p spatial dimensions that
sweep out (p + 1)-dimensional worldvolumes as they evolve in time in a d-dimensional
ambient (or target) spacetime. Strings, which we have already studied, are the simplest ex-
amples of p-branes (p = 1), but there are many other examples that differ by their world-
volume dimensions, their worldvolume fields, their couplings to background fields, and
other characteristics such as being associated with a compact dimension (such as the KK
monopole and more general KKp-branes [666]). We will discuss these variants of the basic
p-brane in order of increasing complexity and in the next chapter we will see which of them
occur in string/M theory.

The dynamics of all these objects is governed by their (p + 1)-dimensional world-
volume actions and in what follows we are going to study them and use them as tools
to classify the objects. In this chapter we consider only bosonic actions, but in the next
chapter we will briefly discuss the κ-symmetric addition of fermions which is required by
the coupling to supergravity.

18.1.1 Worldvolume actions

The basic dynamical variables of a p-brane are the spacetime coordinates of the object
Xµ(ξ) , µ = 0, . . ., d − 1 (ξ i , i = 0, . . ., p are the worldvolume coordinates), which give
the embedding of the worldvolume in the d-dimensional target spacetime and are worldvol-
ume scalar fields. Some p-branes may have additional worldvolume fields (scalars, vectors
(such as the BI vector of Dp-branes), and tensors), whose physical meanings will be dis-
cussed in Section 19.6.

The simplest worldvolume and spacetime reparametrization-invariant action for a p-
brane is the generalization of the Nambu–Goto action Eq. (14.1) (in the same notation),

S(p)

NG[Xµ(ξ)] = −T(p)

∫
d p+1ξ

√|gi j | , (18.1)

which is proportional to the volume swept out by the p-brane. The proportionality con-
stant T(p) is the p-brane tension and has natural dimensions of L−(p+1) or, equivalently, of
mass per unit of spatial p-dimensional volume. In fact, let us consider a spacetime that is
the direct product of a non-compact (d − p)-dimensional spacetime and a p-dimensional
compact space so the metric of the original spacetime ĝµ̂ν̂ = diag(gµν, gmn) and a configu-
ration in which the p-brane1 wraps the p-dimensional space so X̂m = ξm m = 1, . . ., p and
the remaining embedding coordinates are independent of the X̂m = ξm . The Nambu–Goto
(NG) action becomes the action of a massive particle moving in the (d − p)-dimensional

1 This is the straightforward generalization of a string winding-mode configuration.
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spacetime,

S(p)

NG[Xµ(ξ)] = −T(p)V(p)

∫
dξ 0

√
|gµν Ẋµ Ẋ ν | , V(p) = ∫

dξ 1 · · · dξ p√|gmn|,
(18.2)

where V(p) is the volume of the internal manifold and T(p)V(p) is the mass of the particle if
the spacetime metric is asymptotically flat in the d − p directions orthogonal (“transverse”)
to the worldvolume. Transverse space, the space in which the wrapped p-brane moves as
a particle, plays a very important role in the definition of mass (as we have just seen) and
charge.

As we have discussed several times, on the one hand, the NG action is highly non-linear
and, on the other hand, it cannot describe massless (tensionless) objects (also known as null
branes). These problems are solved by introducing auxiliary fields. Several possibilities
have been proposed in the literature. For instance, we can introduce a scalar density field v

and write the action

S(p)[Xµ(ξ), v] =
∫

d p+1ξ
1

2v

[ |g| + v2T 2
(p)

]
, (18.3)

which is equivalent to the NG action upon elimination of v using its equation of motion.
In this action we can take consistently the tensionless limit to obtain a null brane action
[657]. Although this action is still highly non-linear, it is useful for certain purposes: we
can replace the tension (a constant) by a worldvolume p-form potential2 c(p) i1···i p whose
equation of motion tells us that the dual of its field strength G(p+1) = (p + 1)∂c(p) is just a
constant. The action is [896]

S(p)[Xµ(ξ), v, c(p)] =
∫

d p+1ξ
1

2v

[ |g| + (
�G(p+1)

)2]
, (18.4)

where here �G(p+1) = [1/(p + 1)!]εi1···i p+1G(p+1) i1···i p+1 and the equation of motion of c(p)

has the solution

G(p+1) i1···i p = T(p)

v
εi1···i p , (18.5)

where T(p) arises as just an integration constant. On substituting this solution into the action,
we recover exactly the action Eq. (18.3) and then T(p) is identified as the p-brane tension.
One can also consider solutions in which �G(p+1)/v is only piecewise constant, the disconti-
nuities being associated with brane intersections (see, for instance, [902] for an application
involving string and D-string junctions). On the other hand, these actions are also suitable
for supersymmetric objects and can be made κ-symmetric [135, 141].

2 This is similar to the replacement of the mass parameter by the RR 9-form potential in Romans’ massive
supergravity, Section 16.2.
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Another, more common, possibility is to introduce an independent metric on the world-
volume γi j (ξ) and write the following Polyakov-type action:

S(p)

P [Xµ, γi j ] = −T(p)

2

∫
d p+1ξ

√|γ | [γ i j gi j + (1 − p)
]
. (18.6)

The “cosmological-constant” term (p − 1) has been chosen to vanish in the string case
p = 1 (otherwise conformal invariance would be broken) and for p �= 1 to give γi j = gi j

identically as the solution of the equation of motion for γi j . On substituting this solution
into the above action to eliminate the auxiliary worldvolume metric, one recovers the NG
action with the above normalization. (The p = 1 case was discussed in Section 14.1.)

In the p �= 1 case, the “cosmological-constant” term can be considered as a mass (ten-
sion) term by following the same procedure as in the particle case. First we rescale the
worldvolume metric,

γi j = T
− 2

p−1

(p) γ ′
i j , (18.7)

giving

S(p)

P [Xµ, γi j ] = − 1
2

∫
d p+1ξ

√
|γ ′|

[
γ ′ i j gi j + T

p+1
p−1

(p) (1 − p)
]
. (18.8)

Now we can take the tensionless limit T(p) → 0 and then again rescale the worldvolume
metric to a dimensionless metric, again obtaining an action suitable for describing null
branes:

S(p)

P [Xµ, γi j ] = − P(p)

2

∫
d p+1ξ

√|γ ′′| γ ′′ i j gi j . (18.9)

The procedure of introducing auxiliary fields can also be used to linearize the Born–
Infeld action of D-branes [3], as we will see.

KK-brane actions. Certain objects necessarily live in spacetimes with compact dimensions,
with some of their worldvolume dimensions wrapped around them and no dynamics in
those directions. Their worldvolume actions can be formulated as gauged σ -models. The
main example is the KK monopole [122, 127, 375], whose interpretation as an extended
object of string/M theory is implied by duality, as we will see. The effective actions of the
M-theory objects which reduce to those of the objects of the massive type-IIA theory are
also given by gauged σ -models [136, 376, 663, 746]. What follows is a short introduction
to gauged σ -models (with no Wess–Zumino (WZ) term).

Our starting point is the (p + 1)-dimensional σ -model (p-brane Polyakov-type action)

S = −T(p)

2

∫
d p+1ξ

√
|γ |[γ i j gi j − (p − 1)

]
, (18.10)

which is invariant under the GCTs

Xµ → Xµ ′ = Xµ + εµ(X),

gµν(X) → g′
µν(X ′) = gµν(X) − 2

(
∂(µ|ερ

)
gρ|ν).

(18.11)
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Let us assume now that the metric admits an isometry group generated by the Killing
vectors k(I )

µ(X), I = 1, . . ., r ,

[k(I ), k(J )] = f I J
K k(K ), (18.12)

and let us consider the following infinitesimal transformations (which are not infinitesimal
GCTs):

Xµ → Xµ ′ = Xµ + ηI k(I )
µ,

gµν(X) → gµν(X ′) = gµν(X) + ηI k(I )
λ∂λgµν,

(18.13)

where the η I s are constant infinitesimal parameters. The variation of the action is

δηS = −T(p)

∫
d p+1ξ

√
|γ |η I γ i j∂i Xµ∂ j X ν ∇(µ|k(I )|ν) (18.14)

and vanishes if (as is assumed) the k(I ) satisfy the Killing equation ∇(µ|k(I )|ν) = 0.
Now we want to gauge this symmetry. The infinitesimal transformations will be

δη Xµ = ηI (ξ)k(I )
µ(X),

δηgµν(X) = ηI (ξ)k(I )
λ∂λgµν .

(18.15)

Observe that the Killing vectors transform as follows:

δηk(I ) = η(J )k(J )
ν∂νk(I )

µ = η(J )
([

k(J ), k(I )
]µ + k(I )

ν∂νk(J )
µ
)

= η(J ) f J I
K k(K )

µ + (
η(J )∂νk(J )

µ
)
k(I )

ν .
(18.16)

To make the σ -model invariant under the above local transformations, it suffices to re-
place the partial derivative of the worldvolume scalars Xµ by the covariant derivative

Di Xµ = ∂i Xµ + C I
i k(I )

µ, (18.17)

where we have introduced the non-dynamical worldvolume vector fields C (I )
i which trans-

form as standard gauge potentials:

δηC I
i = −(

∂iη
I + f J K

I C J
iη

K
) = −Diη

I . (18.18)

The covariant derivative defined above transforms covariantly, that is, with no derivatives
of the gauge parameter:

δηDi Xµ = (
ηJ ∂νk(J )

µ
)
Di X ν. (18.19)

The gauged σ -model action (without WZ term) then takes the form

S = −T(p)

2

∫
d p+1ξ

√|γ |[γ i jDi XµD j X νgµν − (p − 1)
]
. (18.20)

Since the worldvolume vector fields Ca
i are not dynamical (their derivatives do not occur

in the action), they play the role of Lagrange multipliers and may be eliminated by using
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their equations of motion directly in the action (at least in this simple σ -model with no WZ
term). These are

k(I ) µDi Xµ = 0, (18.21)

and their solution is

C I
i = −hI J k(J )

µ∂i X νgµν, (18.22)

where we have defined the metric hI J (assumed to be invertible, which is not true in general,
but is in many cases of interest),

hI J = kI
µkJ

νgµν, hI J h J K = δ I
K . (18.23)

In this case, we have on-shell

Di Xµ = (
gµ

ν − hI J k(I )
µk(J ) ν

)
∂i X ν. (18.24)

Observe that the matrix

µ
ν ≡ (

gµ
ν − hI J k(I )

µk(J ) ν

)
, µ

ν
ν
ρ = µ

ρ, (18.25)

projects onto the space orthogonal to the orbits of the isometry group:

µ
νk(I )

ν = 0, ∀ I = 1, . . ., r, (18.26)

so r directions simply disappear from the σ -model action. We will see this more clearly
when we perform the target-space (direct) dimensional reduction of the gauged σ -model.

After eliminating the auxiliary vector fields (assuming that this was possible), the gauged
σ -model takes the form

S = −T(p)

2

∫
d p+1ξ

√
|γ |[γ i j∂i Xµ∂ j X νµν − (p − 1)

]
, (18.27)

since gρσρ
µσ

ν = µν . In the case of just one isometry, we have seen in Section 11.2
that, in adapted coordinates, ̂µ̂ν̂ is zero except for the (d̂ − 1) × (d̂ − 1) submatrix ̂µν

which is the metric in d̂ − 1 dimensions. The above σ -model (adding hats everywhere)
does not depend on the isometric coordinate Z and reduces simply to a σ -model with
(d̂ − 1)-dimensional target space.

In this simple case, then, the gauged σ -model with d-dimensional target space is actually
a σ -model with (d − 1)-dimensional target space in disguise, written in d-dimensional
covariant language. In more general cases it is not possible to eliminate completely the
non-physical degrees of freedom (such as Z ), but the σ -model still has d − r degrees of
freedom.

Let us now consider the coupling of p-branes to other spacetime fields. The simplest and
more natural ones are the couplings to scalar fields (which act as local coupling “constants”)
and to (p + 1)-form potentials, the fields p-branes can be charged with respect to. Let us
start with (p + 1)-form potentials.
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18.1.2 Charged branes and Dirac charge quantization for extended objects

The Lagrangian of a (p + 1)-form potential A(p+1) µ1···µp+1 is usually constructed in terms
of its (p + 2)-form field strength,

F(p+2) µ1···µp+2 = (p + 2)∂[µ1 A(p+1) µ2···µp+2] (18.28)

(F(p+2) = d A(p+1) in differential-forms language), which is invariant under the gauge trans-
formations generated by a p-form �(p),

δA(p+1) µ1···µp+1 = (p + 1)∂[µ1�(p) µ2···µp+1] (18.29)

(δA(p+a) = d�(p) in differential forms language). The Lagrangian is3

S[A(p+1)] =
∫

dd x
√

|g|
[

(−1)(p+1)

2 · (p + 2)!
F2

(p+2)

]
, (18.30)

and the equation of motion is just

∇µF(p+2)
µµ1···µp+1 = 0 (18.31)

(d�F(p+2) = 0 in differential-forms language). As usual, we can work directly with the field
strength, provided that we impose on it the Bianchi identity

∇µ
�F(p+2)

µµ1···µd−p−3 = 0 (18.32)

(d F(p+2) = 0) to ensure the local existence4 of the A(p+1).
A(p+1) couples naturally to a current jµ1···µp+1 , the coupling being represented by the

Lagrangian term ∫
dd x

√
|g|(−1)(p+1)

(p + 1)!
A(p+1)µ1···µp+1 jµ1···µp+1 . (18.34)

This term is gauge-invariant if the current is divergence-free (“conserved”),

∇µ jµµ1···µp = 0 (18.35)

(d� j = 0 in differential-forms language). This condition follows from the gauge identity of
the free theory ∇µ∇ν F(p+2)

µνµ1···µp = 0 (off-shell) plus the equation of motion

∇µF(p+2)
µµ1···µp+1 = jµ1···µp+1, (18.36)

or, in differential-forms language,

δF = (−1)d j, d �F(p+2) = (−1)d+p � j. (18.37)

3 We are ignoring here possible scalar couplings, Chern–Simons terms, etc.
4 Given a field strength F(p+2) satisfying the Bianchi identity, then A(p+1) is given, up to gauge transforma-

tions, by the formula that generalizes Eq. (8.31):

Aµ1···µp+1 = (−1)(p+1)

∫ 1

0
dλλ(p+1)F(p+2) µ1···µp+2(λx)xµp+2 . (18.33)
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The conservation law for the current d� j = 0 suggests the following definition for the
charge qp associated with A(p+1):

qp ≡
∫

B(d−p−1)

� j, (18.38)

where, by definition, B(d−p−1) is a capping surface whose boundary is (topologically)
∂B(d−p−1) = S(d−p−2). More precisely, this is the charge contained in the capping surface.
The total charge would be calculated by integrating over a capping surface whose bound-
ary is the (d − p − 2)-sphere at infinity S(d−p−2)

∞ . As usual this definition is invariant under
smooth deformations of the capping surface in source-free ( j = 0) regions.

Using the generalization of the Gauss law Eq. (18.37) and Stokes’ theorem, we obtain
the usual definition

qp = (−1)d+p

∫
S(d−p−2)

�F(p+2), (18.39)

which is also invariant under smooth deformations of the (d − p − 2)-dimensional surface
in source-free regions.

Given a p-brane sweeping out a (p + 1)-dimensional worldvolume W(p+1), we can im-
mediately construct a conserved current for it that generalizes Eq. (8.49) for the current of
a point-like charged object:

jµ1···µp+1(x) = qp

∫
W(p+1)

d Xµ1 ∧ · · · ∧ d Xµp+1
δ(d)(x − X (ξ))√|g(X)|

= qp

∫
W(p+1)

d p+1ξ
∂(Xµ1 · · · Xµp+1)

∂(ξµ1 · · · ξµp+1)

δ(d)(x − X (ξ))√|g(X)| .

(18.40)

The charge associated with this current is qp, except when the p-brane worldvolume has
boundaries, since, in that case, we can continuously deform the surface of integration and
contract it to a point without meeting the p-brane source, obtaining zero charge. This is
easy to visualize for a string of finite length in a four-dimensional target space: the string
charge with respect to a 2-form potential is calculated through a closed line integral around
the string that can be slid off the string and contracted to a point as shown in Figure 18.1. In
a sense this explains why the KR 2-form does not appear in the open-string spectrum. It is
clear now that qp �= 0 only when the p-brane has compact topology or extends to infinity.
A brane with boundaries can also carry charge if the boundaries are attached to another
object just as open strings are attached to D-branes. This case, which is more complicated
(and interesting), will be studied in Section 19.6 since it depends strongly on the theory we
are considering.

On substituting the above p-brane current into the interaction term Eq. (18.34), we obtain
the standard form of the WZ term for p-branes which appears in the p-brane worldvolume
action,

(−1)(p+1)qp

∫
W(p+1)

A(p+1). (18.41)
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Fig. 18.1. Open strings cannot carry charge.

Electric–magnetic duality for extended objects. The electric–magnetic dual of a charged
p-brane is, by definition, an object that couples to the electric-magnetic dual of the (p + 1)-
form potential A(p+1). We have seen several examples, for instance, in Section 16.5.5, in
which we used Poincaré duality to replace the KR 2-form completely by its dual in various
dimensions and also in Sections 16.1.3 and 17.1.1 in which we defined the on-shell duals
of the RR potentials that appear in the N = 2A, B, d = 10 supergravity actions, not being
able to replace the original potentials completely by their duals.

In all (massless) cases, the dual is a ( p̃ + 1)-form Ã( p̃+1) with p̃ = d − p − 4, whose
field strength is, by definition, the Hodge dual of F̃p̃+2 = �F(p+2). The electric-magnetic
dual of a p-brane is therefore a p̃-brane with p̃ �= p in general, which is electrically charged
with respect to Ã( p̃+1). Only in even dimensions do objects with p = (d − 4)/2 have duals
of the same dimension, and then we can have p-brane dyons.

A new feature with respect to point-particles is that there can be self-dual p-branes,
charged with respect to a self-dual potential: point-particles couple only to vectors, which
are dual to vectors in d = 4, but, in d = 4, self- or anti-self-duality is consistent only with
a Euclidean signature. However, self-dual 2-forms in d = 6 and 4-forms in d = 10 can
be consistently defined. They occur in N = (1, 0), d = 6 SUGRA (Section 13.4.1) and in
N = 2B, d = 10 SUEGRA (Chapter 17), and are associated with chiral theories.

Dirac charge quantization. The charge of a p-brane moving in the background A(p+1) field
sourced by a dual p̃-brane is quantized as in the case of point-particles [718, 881, 882].5

Let us consider the quantum propagation of a charged p-brane moving along a closed
path6 so its worldvolume is topologically a (p + 1)-sphere S(p+1). The interesting term in
the path integral is the WZ term which, using Stokes’ theorem, can be written in the form

(−1)(p+1)qp

∫
B(p+2)

d A(p+1) = (−1)(p+1)qp

∫
B(p+2)

F(p+2), (18.42)

where B(p+2) is one of the many possible (p + 2)-dimensional capping surfaces with
∂B(p+2) = S(p+1). To avoid having any ambiguities in the path integral, the difference
between choosing two different capping surfaces B(p+2)

1 and B(p+2)

2 must be an integer

5 The derivation of the Dirac quantization condition we are about to explain is different from those used in
Section 8.7.2 for point-particles, which can also be generalized to charged p-branes.

6 This will be the analog of a point-particle moving along a closed path encircling a Dirac string.
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multiple of 2π :

(−1)(p+1)q
∫

B(p+2)

1

F(p+2) − (−1)(p+1)q
∫

B(p+2)

2

F(p+2) = 2πn. (18.43)

Now, the first capping surface plus the second (with reversed orientation) form (topologi-
cally) a (p + 2)-sphere S(p+2), and we arrive at the condition

qp

∫
S(p+2)

F(p+2) = (−1)(p+1)2πn. (18.44)

Defining now the “magnetic” charge, or, better, the electric charge of the dual p̃-brane,
by

pp = qp̃ = (−1)d+ p̃

∫
Sp+2

F(p+2), (18.45)

the above result takes the form of the generalization of the Dirac quantization condition we
were after:

qpqp̃ = 2πn, n ∈ Z. (18.46)

The charge quantization condition for p-brane dyons was found in [305].
Observe that, in the string σ -model action Eq. (15.31), the constant that plays the role of

the charge with respect to the KR 2-form is the string tension T . This identity, which has
the form of a BPS bound, indicates that the object described by the action is a BPS object.
All the extended objects we are going to deal with have the same property.

Observe also that, even though we have defined a scalar charge qp because this is a useful
quantity, this number does not give all the information. Actually, the charge should be the
tensor

Zµ1···µp ∼
∫

�

dd−1�µ jµµ1···µp (18.47)

(where � is a spacelike hypersurface) and includes information about spatial orientation,
etc. This explains why objects with the same tensions and qps can be in equilibrium if
they are parallel (so their Zµ1···µp s are identical) but not when one of them is tilted. These
tensorial charges appear naturally in supersymmetry algebras, as we are going to see in
Section 19.5.

18.1.3 The coupling of p-branes to scalar fields

A spacetime scalar K (X) can be introduced in only one place in the NG action if we want
to preserve reparametrization invariance and the gauge invariance of the WZ term,

S(p)

NG[Xµ(ξ)] = −T(p)

∫
d p+1ξ(K/K0)

√|gi j |. (18.48)
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We have introduced K0, the asymptotic value of K at infinity (assuming that the metric
gµν is asymptotically flat, at least in the directions transverse to the p-brane), so T(p) is the
physical p-brane tension7 and usually is proportional to K0.

The coupling to K can always be changed or eliminated by a Weyl rescaling of the
spacetime metric. It is important to make clear in which Weyl conformal reference frame
we are writing the p-brane action. There are two special frames that can always be defined.
We use the fundamental string worldsheet action to illustrate the definitions.

(Fundamental) p-brane frames. These are defined as the Weyl conformal frames in which
the p-brane action does not couple to the scalar K . At the same time, all the terms in the
action for the spacetime fields should carry the same K -dependent factor [337].

For instance, by definition, the fundamental string worldsheet action Eq. (15.31) does
not depend on the dilaton when it is written in the string conformal frame. At the same
time, all the terms in the action for the spacetime fields that couple to the string Eq. (15.1)
carry the same e−2φ factor.

Dual p-brane frames. These are the frames in which the electric-magnetic dual p̃-brane
would be fundamental. In the fundamental string case in d dimensions the KR 2-form is
dual to a (d − 4)-form potential C with field strength K = (d − 3)∂C and the dual object
has p̃ = d − 5 (a 5-brane in d = 10). On Poincaré dualizing the KR 2-form, we obtain

S = g2

16πG(d)
N

∫
dd x

√
|g|e−2φ

[
R − 4(∂φ)2 + (−1)(d−4)

2 · (d − 3)!
e4φG2

]
. (18.49)

Thus, gµv, the string metric, is not the metric to which the dual (d − 5)-brane naturally
couples. On performing a conformal transformation,

g = �(1)−(d−5)g(d−5), (18.50)

and imposing that the dilaton factor is the same for all terms in the action, one obtains

�(1)−(d−5) = e
4

d−4 φ, (18.51)

and

S = g2

16πG(d)
N

∫
dd x

√|g(d−5)|e 4
d−4 φ

[
R + (−1)(d−4)

2 · (d − 3)!
G2

]
. (18.52)

In the frame g(d−5), by definition, the NG (d − 5)-brane action has no dilaton factors.
Then, going back to the string frame, we find

S(d−5)

NG [Xµ(ξ)] = −T(d−5)

∫
dd−4ξ e−2φ

√|gi j |. (18.53)

The dual of the fundamental string has, then, a tension proportional to g−2 (g being the
string coupling constant), as a typical solitonic object. The dual object to the fundamental

7 This is called in the literature effective tension. See footnote 4 on page 435.



18.1 Generalities 511

string in d = 10 dimensions is known as the solitonic 5-brane or S5-brane (also called
NS5-brane to distinguish it from the D5-brane that couples to the RR 6-form potential).

It is natural to use in all cases the string frame because it is the theory of strings that we
know how to quantize (even if imperfectly). From the string point of view, we can classify
all the extended objects that we are going to see in terms of the scalar couplings that appear
in their NG actions

Fundamental p-branes They do not couple to the dilaton (to lowest order in α′), which
does not occur in the NG action

S(pf)
NG [Xµ(ξ)] = −T(p)

∫
d p+1ξ

√|gi j |. (18.54)

Their mass is independent of the string coupling constant g = eφ0 (φ0 being the con-
stant value of the dilaton at infinity). In d = 10 there is only one: the fundamental
string. In d = 11 the M2- and M5-branes can both be considered fundamental.

Solitonic p-branes They couple to the dilaton as follows:

S(ps)
NG [Xµ(ξ)] = −T(p)

∫
d p+1ξ e−2φ

√|gi j |. (18.55)

Their mass is proportional to g−2, which is typical of standard solitons. In d = 10
there is only one: the S5-brane.

Dirichlet (D) p-branes They couple to the dilaton as follows:

S(D)

NG [Xµ(ξ)] = −T(p)

∫
d p+1ξ e−φ

√|gi j |. (18.56)

Their mass is proportional to g−1. They are a new type of purely stringy solitons.
They occur only in d = 10 and lower dimensions and couple to RR potentials.

Momentum modes They are charged point-like objects that couple to the KK scalar k as
follows:

SNG[Xµ(ξ)] = −T(0)

∫
dξ k−1

√|gξξ |. (18.57)

Their mass is proportional to k−1
0 , that is, to the inverse of the radius of the compact

dimension, and they couple to the KK vector. We have met them in several places.
We are going to see that d = 11 momentum modes can be seen as d = 10 D0-branes,
given the relation between the KK scalar k and the dilaton and between the KK vector
and the RR 1-form, Eqs. (16.35).

Winding modes8 They are charged point-like objects that couple to the KK scalar k as
follows:

SNG[Xµ(ξ)] = −T(0)

∫
dξ k

√|gξξ |. (18.58)

8 There are also winding modes associated with other branes wrapped on compact spaces. Here we refer only
to the string winding modes.
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Their mass is proportional to k0, that is, to the radius of the compact dimension, and
they couple to the winding vector.

Kaluza–Klein (KK) branes They are described by gauged σ -models and couple to a pos-
itive power of the volume of the compact space associated with the gauging. In
the decompactification limit the tension becomes infinite. Thus, these objects exist
only when there are compact dimensions. The archetype of these objects is the KK
monopole, which is described by a U(1)-gauged σ -model and coupled both to the
dilaton and to the KK scalar k as follows:

S(KK)

NG [Xµ(ξ)] = −T(p)

∫
d p+1ξ e−2φk2

√|i j |. (18.59)

18.2 General p-brane solutions

In this section we are going to construct the simplest classical solutions that describe un-
charged (Schwarzschild) and charged p-branes in a d-dimensional spacetime. They are
solutions of a generalization proposed in [557] of the a-model discussed in Section 12.1
in which we will replace the 1-form potential adequate for BHs (which, in a sense, are
point-like objects, 0-branes) by a (p + 1)-form potential that is adequate for p-branes. This
p-brane a-model is, for specific as and ps, a simplified version of most of the supergravity
actions we are dealing with and the solutions we obtain will be supergravity (superstring)
solutions.

We are also going to see how, according to [337], it is possible to find a p-brane world-
volume source for the “extreme” ones, generalizing the results we obtained for ERN and
KK BHs (Sections 8.4 and 11.2.3, respectively), and for the fundamental string solution
(Section 15.3), which will be particular cases of our general solution.

18.2.1 Schwarzschild black p-branes

The Schwarzschild solution describes the gravitational field of a massive, point-like object
in vacuum. Is there an analogous solution of the d-dimensional Einstein–Hilbert action
describing the gravitational field of a massive p-brane in vacuum?

Let us consider the simplest p-brane configuration (a “flat” p-brane with trivial topol-
ogy). This configuration should give rise to an asymptotically flat spacetime characterized
by p + 1 translational isometries associated with the p-brane worldvolume. The require-
ment that the solution be asymptotically flat is essential, if we want to describe an isolated
p-brane. However, we cannot impose asymptotic flatness in the direction along which the
isometries act, but only in the d − (p + 1) spacelike transverse dimensions. In what fol-
lows, we will use the concept of asymptotic flatness in this restricted sense.

Solutions with these properties, Schwarzschild p-branes, were constructed using KK
techniques in Section 11.3.3, and the metric is given by Eqs. (11.148), although here we are
going to ignore all the hats. The first thing we can do is compute the p-brane tension9 using

9 The restricted asymptotic flatness of the metric does not allow us to define a finite d-dimensional mass.
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the definition we gave in Section 18.1.1. This was done in Section 11.3.3, Eqs. (11.149) and
(11.150), and the result can be expressed in this way: we can identify the p-brane tension
as the constant T(p) in the expansion of the gtt component of the metric

gtt ∼ 1 − 16πG(d)
N T(p)

( p̃ + 2)ω( p̃+2)

1

r p̃+1
. (18.60)

The coefficient of r−( p̃+1) is, by definition, the p-brane Schwarzschild radius to the power
p̃ + 1.

It is clear from the definition that infinite (uncompactified) p-branes have infinite energy.
Is this Schwarzschild p-brane solution analogous to the Schwarzschild BH solution in

the sense that it exhibits an event horizon? In other words: is it a black p-brane solu-
tion? In the presence of the p translational isometries the only sensible definition of an
event horizon is equivalent to the standard definition of an event horizon in the trans-
verse space. The event horizon thus defined becomes a (p + 2)-dimensional extended ob-
ject: the product of a BH horizon and the p-dimensional Euclidean space spanned by the
p-brane. Clearly, for positive tension, the Schwarzschild p-brane solution has an event hori-
zon of that form, whereas, for negative tension, the curvature singularity at r = 0 will be
naked.

When the spacetime has n compact dimensions, it is possible to have black p-branes,
p ≤ n, wrapping the compact dimensions with the same (finite) mass and event horizons
of different topologies. Therefore, the uniqueness of four-dimensional BHs is not true in
higher dimensions if some of the dimensions are compact. We know now that it is not
true even in the absence of compact dimensions, as the existence of the asymptotically flat
rotating black ring of [373] shows.

Black p-brane solutions (the Schwarzschild ones and the charged non-extreme ones that
we are going to see next) are classically unstable [477, 478] (the charged, extreme ones
are stable [479], as is usual in supersymmetric solutions) under linear perturbations along
the worldvolume dimensions with wavelengths larger than the Schwarzschild radius. On
the other hand, they are also quantum-mechanically unstable, because there is Hawking
radiation associated with their event horizons, but also because the area of the event horizon
(entropy) of several BHs with the same total mass is in general larger than the area of the
event horizon of a Schwarzschild p-brane. For a Schwarzschild string compactified on
a circle this happens whenever the length of the circle is larger than the Schwarzschild
p-brane radius. The two instabilities seem to be related in the sense that the classical one is
present whenever the thermodynamical one is present [485, 486, 800].

Although the thermodynamical argument seems to indicate that a black p-brane will
break up into several BHs that will eventually merge into one, it has been argued in [551]
that, for the black string, this process cannot take place in a finite time and that, instead,
the black string decays into a new non-translationally invariant (“inhomogeneous”) black
string. Initial data sets for inhomogeneous p-brane solutions have subsequently been pro-
posed in [552].

As we did in the BH case, we are going to use the Schwarzschild p-brane solution
Eqs. (11.148) as our basic black p-brane solution and we are going to see that the charged
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p-brane solutions of the p-brane a-model we are about to study can be built by “dressing”
it with appropriate factors.

18.2.2 The p-brane a-model

As we have already said, this is the simplest model that embodies the main characteristics
of the string effective action (and supergravity actions): gravity coupled to one scalar and
a (p + 1)-form to which the scalar couples non-minimally. It generalizes the a-model for
BHs that we used before, which appears here as the p = 0 case, but here we canonically
normalize the (p + 1)-form field strengths. The action is10

S = 1

16πG(d)
N

∫
dd x

√
|g|

[
R + 2(∂ϕ)2 + (−1)p+1

2 · (p + 2)!
e−2aϕ F2

(p+2)

]
, (18.61)

where F(p+2) = d A(p+1) is the field strength of the (p + 1)-form potential A(p+1).
The equations of motion are

Gµν + 2T ϕ
µν − 1

2 e−2aϕT
A(p+1)

µν = 0,

∇2ϕ + (−1)p+1

4 · (p + 2)!
ae−2aϕ F2

(p+2) = 0,

∇µ

(
e−2aϕ F(p+2)

µν1···νp+1
) = 0,

(18.62)

where T A(p+1) is the (p + 1)-form energy–momentum tensor, given in Eq. (1.122). As
usual, not all of them are independent in general (they can be derived from the Bianchi
identities). On the other hand, the solutions we will find will be defined up to gauge trans-
formations, including large gauge transformations that change the asymptotic behavior of
the fields so the physics could be inequivalent. The classical equations of motion are insen-
sitive to these subtleties.

We want to find single-charged-black-p-brane solutions of an analogous nature to the
black Schwarzschild p-brane of the previous section. The method we used to construct
them in Section 11.3.3 cannot be used in the presence of p-forms: we cannot simply add
extra dimensions to a lower-dimensional charged BH metric. For instance, if we took a
four-dimensional RN BH and added several extra dimensions, we would obtain a higher-
dimensional metric with vanishing scalar curvature (as in four dimensions) but now the
trace of the Maxwell energy-momentum tensor would not be zero in more than four di-
mensions. Another way of expressing the same fact is that, if we dimensionally reduce
the above action to d − p dimensions, one does not simply obtain the above action writ-
ten directly in d − p dimensions, but one finds extra fields. In particular, one finds extra

10 This action is equivalent to the original one written in [557] (whose main results we reobtain in a different
fashion here) which was given in the string frame. Here we do not want to assume that the scalar is the
dilaton and thus we prefer to use an Einstein-frame action. The constant a is, then, not the same as in [557]
but we obtain simpler, more-symmetric expressions.
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scalars that couple to the form. The approach taken originally by Horowitz and Strominger
in [557] was to perform this dimensional reduction, simultaneously reducing the (p + 2)-
form field strength to a 2-form. The resulting problem is a BH problem. In fact, we obtain
the a-model for BHs! (The two parameters a are related but different.) Then, they used the
solutions found in [432, 447] and rewrote them back into d-dimensional language.

Our approach will be to solve the problem directly in d dimensions with the Ansatz

ds2 = f [W dt2 − d y 2
p ] − g−1[W −1dρ2 − ρ2d�2

( p̃+2)], W = 1 + ω

ρ p̃+1
, (18.63)

which can be seen as a dressing of the Schwarzschild p-brane metric Eqs. (11.148) by the
functions f and g, which are related to the presence of the dilaton and the (p + 1)-form.
The natural Ansatz for A(p+1), if the p-brane is electrically charged and we want A(p+1) to
vanish at infinity, is, by analogy with the BH case,

At y1···y p = α
(
H−1 − 1

)
, H = 1 + h

ρ p̃+1
. (18.64)

The dilaton and the functions f and g are just functions of H , if we do not want to
consider primary scalar hair. We are going to assume that the value of the scalar field at
infinity vanishes, ϕ0 = 0. We can always generate a non-vanishing value by rescalings of
A(p+1) and shifts of ϕ, but, since these rescalings will be different in different conformal
frames, we postpone them until we specify those frames.

On substituting this Ansatz into the equations of motion and using Appendix F.2.2, we
arrive at the final form for the desired solutions, which is valid for p̃ ≤ 0:

ds2 = (
e−2aϕ H−2

) 1
p+1

[
W dt2 − d y 2

p

]
− (

e−2aϕ H−2
)− 1

p̃+1
[
W −1dρ2 + ρ2d�2

( p̃+2)

]
,

e−2aϕ = H 2x , At y1···y p = α(H−1 − 1), H = 1 + h

ρ p̃+1
, W = 1 + ω

ρ p̃+1
,

ω = h
[
1 − a2

4x
α2

]
, x = (a2/2)c

1 + (a2/2)c
, c = (p + 1) + ( p̃ + 1)

(p + 1)( p̃ + 1)
.

(18.65)

For p = 0 these solutions reduce to those of the dilaton a-model Eqs. (12.10). As has
happened in all the cases we have previously studied, when the extremality parameter ω = 0
so the “Schwarzschild factor” W becomes 1 (and W disappears), H becomes an arbitrary
harmonic function in the ( p̃ + 3)-dimensional Euclidean space transverse to the object.
These will be solutions describing extreme p-branes. When h = 0 so H = 1 and disappears,
we recover the Schwarzschild p-brane solutions. Finally, this general solution is written in
such a way that it is valid for the case a = 0 as well. In that case, the scalar decouples from
A(p+1) and the only solutions with no primary scalar hair have a completely trivial scalar
field.
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In general, these solutions have a regular event horizon at ρ = ω
1

p̃+1 when h ≥ 0 and
ω < 0.

The general solution Eq. (18.65) can be generalized further by assuming that there are q
additional translational isometries in the directions z1, . . ., zq . Using as Ansatz the metric
and the results of Section F.2.3 we, quite straightforwardly, obtain

ds2 = (
e−2aϕ H−2

) 1
p+1

[
W dt2 − d y 2

p

]
− (

e−2aϕ H−2
)− 1

p̃+1
[
dz 2

q + W −1dρ2 + ρ2d�2
(δ−2)

]
,

e−2aϕ = H 2x , At y1···y p = α(H−1 − 1), H = 1 + h

ρδ−3
, W = 1 + ω

ρδ−3
,

ω = h

[
1 − a2

4x
α2

]
, x = (a2/2)c

1 + (a2/2)c
, c = (p + 1) + ( p̃ + 1)

(p + 1)( p̃ + 1)
,

(18.66)

where δ = d − (p + q) > 3. Observe that q is essentially arbitrary. This solution can be
considered as the zero mode of the original solution when the qs of the transverse dimen-
sions are compact. Equivalently, we can say that it is the original solution “smeared” over
q dimensions.

Electric–magnetic duality in the p-brane a-model. Except in a few particular cases, the p-
brane a-model does not have any electric–magnetic-duality symmetry. Instead, in general,
there is an electric–magnetic duality relating pairs of these models: the equations of motion
(not the actions, as usual) of the (a, p) model and the (a, p̃) models ( p̃ = d − p − 4) are
related by the transformation (see the formulae in Section 1.6)

F(p+2) = e−2ϕ p̃ F( p̃+2), ϕp = −ϕ p̃. (18.67)

We have a symmetry of the same theory only when p̃ = p (BHs in d = 4, strings in
d = 6, membranes in d = 8, 3-branes in d = 10, etc.).

At the level of solutions, these transformations allow us to rewrite an electric solution of
the (a, p) model as a magnetic solution of the (a, p̃) model and vice-versa. Thus, we do not
obtain, strictly speaking, more solutions by this procedure: the magnetic dual of an electric
p-brane is the electric p̃-brane and all these solutions are already contained in the general
one, Eqs. (18.66). In many cases, though, the theory is written in terms of (p + 2)-forms
directly and it is useful to write these “magnetic” solutions directly in terms of them. On the
other hand, since the dilaton is inverted in the magnetic solution, if we use it to reexpress
the Einstein metric in a different conformal frame (the string frame, say) the metrics of the
electric and magnetic solutions will be different. We straightforwardly find
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ds2 = (
e+2aϕ H−2

) 1
p̃+1

[
W dt2 − d y 2

p̃

]
− (

e+2aϕ H−2
)− 1

p+1
[
dz 2

q + W −1dρ2 + ρ2d�2
(δ̃−2)

]
,

e−2aϕ = H−2x , F(p+2)z1···zqψ1···ψ(δ̃−2)
= (δ̃ − 3)αh�

(δ̃−2)
ψ1···ψ(δ̃−2)

,

H = 1 + h

ρδ̃−3
, W = 1 + ω

ρδ̃−3
,

ω = h

[
1 − a2

4x
α2

]
, x = (a2/2)c

1 + (a2/2)c
, c = (p + 1) + ( p̃ + 1)

(p + 1)( p̃ + 1)
,

(18.68)

where δ̃ = d − ( p̃ + q) and �(n) is the volume form of an n-sphere.
Most of the single-p-brane solutions we are going to deal with are included in these

general solutions, except for the self-dual ones. It is easy to deal with them using solutions
describing two p-branes and therefore we will study them after we study intersecting p-
brane solutions in Section 19.6.

18.2.3 Sources for solutions of the p-brane a-model

Our experience tells us that we may find charged-p-brane sources for the extreme, and only
for the extreme (ω = 0), charged-p-brane solutions of the a-model that we have just found.
On finding these sources, we will be able to relate the integration constants h and α of the
solution to the brane tension T(p) and charge parameter µp.

We consider the following generic coupled system:

S = Sa + Sp, (18.69)

where Sa is the bulk a-model action (18.61) and Sp is the charged p-brane action:

Sp[Xµ, γi j ] = −T(p)

2

∫
d p+1ξ

√
|γ | [e−2bϕ γ i j∂i Xµ∂ j X νgµν − (p − 1)

]
+ (−1)p+1µp

(p + 1)!

∫
d p+1ξ εi1···i p+1 A(p+1) µ1···µp+1∂i1 Xµ1 · · · ∂i p+1 Xµp+1 .

(18.70)
The coupling of the scalar to the p-brane is, in principle, arbitrary. However, in all the

relevant cases the parameters a and b turn out to be related by

a = −(p + 1)b, (18.71)

and, actually, only then do we have a solution of the coupled system, as we are going to
see.
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The equations of motion of the spacetime fields are

Gµν + 2T ϕ
µν + (−1)p+1

2 · (p + 1)!
e−2aϕT

A(p+1)
µν

− 8πG(d)
N T(p)√|g|

∫
d p+1ξ

√
|γ | e−2bϕγ i j∂i Xµ∂ j X νgρµgσν δ(d)(x − X (ξ)) = 0,

∇2ϕ + (−1)p+1a

4 · (p + 2)!
e−2aϕ F2

(p+2)

− 4πG(d)
N T(p)b√|g|

∫
d p+1ξ

√
|γ | e−2bϕ γ i j∂i Xµ∂ j X νgµν δ(d)(x − X (ξ)) = 0,

∇µ

(
e−2aϕ F(p+2)

µν1···νp+1
)

− 16πG(d)
N µp√|g|

∫
d p+1ξεi1···i p+1∂i1 X ν1 · · · ∂i p+1 X νp+1δ(d)(x − X (ξ)) = 0,

(18.72)
and those of the worldvolume fields are

γi j − e−2bϕgµν∂i Xµ∂ j X ν = 0,

∇2(γ )Xµ + γ i j∂i Xρ∂ j Xσ
(
�ρσ

µ − 2b∂(ρϕgσ)
µ
)

+ (−1)p+1µp/T(p)

(p + 1)!
√|γ | e2bϕ F(p+2)

µ
µ1···µp+1∂i1 Xµ1 · · · ∂i p+1 Xµp+1εi1···i p+1 = 0.

(18.73)

The first of the worldvolume equations can be used immediately in all the other equa-
tions to eliminate the worldvolume metric. Furthermore, using the static gauge for the first
(p + 1) p-brane embedding coordinates that we denote by Y i ,

Y i (ξ) = ξ i , (18.74)

and the following Ansatz for the transverse embedding coordinates;

Xm(ξ) = 0, (18.75)

which corresponds to a p-brane at rest at xm = 0, it is possible to perform the worldvolume
integrals in the equations of motion of the spacetime fields and only ( p̃ + 3)-dimensional
Dirac δ functions remain as sources.

Our Ansatz for the spacetime fields is given by the extreme (ω = 0) p-brane solutions
Eqs. (18.65), H being now a function of the transverse coordinates xm to be determined.

In the absence of sources (or outside of them) H can be any harmonic function of those
p̃ + 3 transverse coordinates, satisfying

∂m∂m H(x( p̃+3)) = 0. (18.76)

In general, H , and therefore the solution, has singularities that can be understood as orig-
inated by sources that are not included explicitly in the action. When we include source
terms in the action, the singularities of H have to match them. In this case, the sources are
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( p̃ + 3)-dimensional Dirac δ functions placed at the origin in transverse space, and H has
to have a single pole there, with the coefficient h necessary to match that of the Dirac δ

functions.
We find that all the equations are solved everywhere (including at the Dirac-δ-function

singularity) if and only if a and b are related by Eq. (18.71) and the tension T(p) and charge
parameter µ(p) are related by

µp = (−1)pT(p)/α. (18.77)

Then, H is given by

H =




ε + h

|x( p̃+3)| , h = 16πG(d)
N T(p)

( p̃ + 1)ω( p̃+2)α2
, p̃ ≥ 0,

ε + h ln |x2|, h = −16πG(d)
N T(p)

2πα2
, p̃ = −1,

ε + h|x |, h = −16πG(d)
N T(p)

2α2
, p̃ = −2,

(18.78)

where ε is not determined by the equations of motion alone. Asymptotic flatness in trans-
verse space ( p̃ ≥ 0) requires that ε = +1. The solutions with ε = 0 can sometimes be un-
derstood as the x p̃+3 → 0 limit of the asymptotically flat ones. Typically, the limit x p̃+3 → 0
is a near-horizon limit. We will see some very important examples in Section 19.5.1, but
we have already studied the simplest example: the near-horizon limit of the ERN BH which
corresponds to the RB solution Eq. (8.90).

Observe that, for p̃ ≥ 0 ( p̃ < 0), h is naturally positive (negative) (T(p) being naturally
positive). In general, the metrics of solutions with a single p-brane with p̃ < 0 will un-
avoidably have singularities that are unrelated to the p-brane sources because H will be-
come zero or negative at some point. To obtain consistent solutions, one must combine sev-
eral branes. An example of this kind of construction of a regular solution for branes with
p̃ = −1, i.e. (d − 3)-branes, can be found in [474]. For branes with p̃ = −2, i.e. (d − 2)-
branes (domain walls), a popular way of obtaining a regular metric consists in “cutting” the
space before the critical distance x = 1/|h| at which H = 0 is reached, for instance by con-
structing a one-dimensional orbifold with the positive-tension (d − 2)-brane at one of the
fixed points.11 Consistency requires us to place a brane with opposite tension and charge at
the other fixed point so the total charge and tension are zero. For this system

H = 1 − |hx |, x ∈ [0, π R], π R < 1/|h|. (18.79)

In stringy constructions, the negative-tension brane is an orientifold plane associated
with the symmetry x → −x that gives rise to the orbifold.

11 This is the basis of the Hořava–Witten scenario, and also of the Randall–Sundrum scenarios [797, 798]. See
also [133].
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The extended objects of string theory

After the general introduction to extended objects of the preceding chapter, in this one
we are going to study specifically the extended objects that appear in string theory. The
existence of these objects is implied by our previous knowledge of existing objects (strings
and Dp-branes) combined with duality. This path will be followed in Section 19.1, in which
we will arrive at the diagrams in Figures 19.4.1 and 19.4.1 that represent, respectively,
more- and less-conventional extended string/M-theory objects and their duality relations.
The duality relations can be used to find the masses of all these objects compactified on tori
(Tables 19.1–19.3) using as input the mass of a string wound once on a circle (i.e. the mass
of a winding mode). To obtain consistent results (in particular for electric–magnetic dual
branes to coexist satisfying the Dirac quantization condition), the ten-dimensional Newton
constant has to have a specific value in terms of the string coupling constant and the string
length that we will determine.

The next step (Section 19.2) will be to identify which are, among the general solutions
of the p-brane a-model, those that represent the long-range fields of the basic extended
objects of string and M theory that we found before. We will first identify families of
solutions and then we will study one by one the most important solutions. In Section 19.3
we will check the values of the integration constants of those solutions against the masses
and charges of the extended objects that we determined using duality arguments. Then, the
duality relations between the solutions will be checked in Section 19.4.

Next, in Section 19.5 we will learn how a great deal of information about all these ob-
jects is encoded in the spacetime superalgebras of the effective (supergravity) theories. In
particular, the superalgebras tell us (up to a point) which extended objects may exist and the
amount of unbroken supersymmetry preserved by each of them (always half of the total),
as we will check by solving explicitly the Killing-spinor equations (Section 19.5.1).

In Section 19.6 we will study the possible intersections between several of these objects.
The worldvolume fields of the extended objects contain a large amount of information
about these intersections and we will briefly review the worldvolume theories of the ex-
tended objects of string/M theory first. We will construct solutions describing the simplest
intersections, which will be used in Chapter 20 to construct four-dimensional BH solutions.

Some general references with emphasis on p-brane solutions of the string/M-theory ef-
fective actions are [333, 337, 417, 858, 862, 863, 901, 966]. The standard general refer-
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ences on D-branes are the second volume of Polchinski’s book [779] and [64, 604, 780]
and Johnson’s book [605].

19.1 String-theory extended objects from duality

We have already met some of the extended objects of string theory: (fundamental) strings
(F1) and, in type-II and type-I theories, Dp-branes (Dp) with p = 0, 2, 4, 6, 8 for the type-
IIA theory, p = 1, 3, 5, 7, 9 for the type-IIB theory, and p = 1, 5 for the type-I theory.
Although Dp-branes have masses proportional to the inverse string coupling constant, their
existence has been inferred from the perturbative formulation of string theory, which was
reviewed in Chapter 14. It is not surprising that T duality, a perturbative string duality,
does not require the existence of any new extended objects in the theory: it just relates
Dp-branes to D(p ± 1)-branes and fundamental strings to fundamental strings in different
states.1 These relations are represented from the viewpoint of the associated classical solu-
tions in Figure 19.4.1, which also contains many other relations and new objects required
by duality.2

We have stressed, however, that non-perturbative S dualities require in general the exis-
tence of new non-perturbative states dual to the ones present in the perturbative spectrum.
N = 2B, d = 10 SUEGRA has a global SL(2, R) symmetry and it was proposed in [583]
that this symmetry of the effective action reflects an S duality between type-IIB superstring
theories, which would be related by the discrete subgroup SL(2, Z), as discussed in Sec-
tion 17.2. Let us consider systematically what the implications of the existence of this S du-
ality, fundamental strings, and Dp-branes (with p odd) in type-IIB superstring theory are.

Extended objects from type-IIB S duality. Fundamental strings couple to the KR 2-form po-
tential B̂µ̂ν̂ , which is interchanged with the RR 2-form Ĉ (2)

µ̂ν̂
to which D1-branes (D-strings)

couple, by the S-duality transformation S = η. Thus, the S dual of the fundamental string is
the D-string and the two objects form an S-duality doublet, as represented in Figure 19.4.1.
This is not new information, but it fits nicely in the conjectured S duality.

Let us now consider Dp-branes beyond the D-string. The D3-brane couples to the 4-form
potential with self-dual field strength, which transforms into itself under S duality. Thus,
the D3-brane is an S-duality singlet. The D5-brane couples to Ĉ (6), which is the electric–
magnetic dual of Ĉ (2) (D5-branes are the electric–magnetic duals of D-strings, but not their
S duals). Under S duality Ĉ (6) must transform into B̂(6), the electric–magnetic dual of B̂.
We have to add to the string spectrum the 5-brane (the solitonic 5-brane, NS 5-brane, or S5-
brane) that couples to B̂(6) that we mentioned on page 510. The D5-brane and the S5-brane

1 To the standard Dp-branes with p ≥ 0 we can add a IIB D(−1)-brane, the D-instanton, with zero worldvol-
ume directions and ten transverse Euclidean directions. It can be obtained by T dualizing the D0-brane in
the Euclidean time direction.

2 Less-conventional objects whose existence is also implied by string dualities are represented in Fig-
ure 19.4.1. On the other hand, the T duality between fundamental strings is represented in Figure 19.4.1
as T duality between gravitational-wave solutions and fundamental-string solutions, which we know rep-
resent momentum and winding string states (Section 15.3). Waves and KK6 monopoles can be viewed as
electric–magnetic duals.
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transform as an S-duality doublet. We will determine more properties of the S5-brane using
S duality later on.

Next, there is the D7-brane, which couples to Ĉ (8), the electric–magnetic dual of Ĉ (0).
This pseudoscalar field does not transform linearly under S duality and it is very difficult
(if it is possible at all) to find how Ĉ (8) transforms. Still, the existence of an object related
to D7 by S = η is required for the S-duality conjecture to be true. Such an object can be
called an S7-brane. We will see that it is possible to find a classical solution that represents
it and that it is related to other solutions by T duality, which makes its presence necessary
from this point of view.

Finally, it has been conjectured that the D9-brane is dual to an S9-brane that couples to a
10-form potential B̂(10). The S9-brane plays an important role in the type-IIB construction
of the heterotic SO(32) superstring theory that we have reviewed in Section 17.5.

Extended objects from type-II T duality. We have completed the string spectrum to make
it consistent with type-IIB S duality. Now, the enhanced type-IIB spectrum has to be con-
sistent with type-IIA/B T duality. First, what is the T dual of the S5-brane in a transverse
direction? It must be an object that couples to the T dual of B̂(6), that is, to the electric–
magnetic dual of the type-IIA metric components that give rise to the KK vector field in
d = 9. We know only one object of this kind: the KK monopole, Eq. (11.160), which we
generated via electric–magnetic duality of the KK vector on page 329. We will check that
the classical solutions that represent the S5 and the KK monopole are indeed related by
T duality. It is clear that we can add to the type-IIA theory an S5A that will be dual to the
KK monopole of the type-IIB theory.

This is a remarkable relation with very important implications.

1. So far, we have seen the KK monopole just as a topologically non-trivial solution
(a gravitational instanton). Now we are going to view it as a new kind of extended
object, a KKp-brane with non-trivial worldvolume dynamics. The KK monopole
of the type-IIA theory has a (5 + 1)-dimensional worldvolume with a vector and a
scalar in addition to the ten embedding coordinates X̂ µ̂ and we will denote it by
KK6A. The worldvolume theory of the KK6B contains a self-dual 2-form potential
plus two extra scalars [127].

2. The KK-monopole solution Eq. (11.160) is well defined only when the coordinate
z (which is the one associated with the S5–KK6 T duality) is compact and has the
right periodicity, which is related to its charge and tension. Thus, we cannot take the
decompactification limit.3 KK6-branes do not exist in uncompactified theories.

3. The above two points are consistent with the requirements for a κ-symmetric world-
volume action: the above bosonic-field contents of the KK6A and KK6B theories
have one too many local degrees of freedom, but, as explained in Section 18.1.1,
they can be eliminated by gauging one isometry, which would be associated with the
coordinate z.

3 In other words; the tension and charge are proportional to the compactification radius and would diverge in
the decompactification limit.
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The KK6B, being purely gravitational, is an S-duality singlet and does not require the
introduction of any other object. On the other hand, T duality in the worldvolume directions
of the KK6- and S5-branes takes us into another KK6-brane or S5-brane.

Now, what is the T dual of an S7-brane? The actual transformation of the S7 solution
shows that the T dual, in a worldvolume direction, is a solution called the D61-brane in
[666]. It shares with KK-branes the requirement that a transverse direction should be com-
pact and it shares with the D6-brane the fact that it has a non-trivial Ĉ (7).

We can go on tracing all the objects related to these by S and T dualities. In general,
starting with the D7/S7 doublet,4 one finds KK-branes. Their presence is, nevertheless, re-
quired by these dualities in ten and 11 dimensions and by U duality in lower dimensions
[161, 578, 579, 738], but they have not been studied thoroughly and they are often consid-
ered exotic objects.

Extended objects from type-IIA/M Theory duality. We have shown in Section 16.1 that
the fact that the dimensional reduction of 11-dimensional supergravity on a circle gives
N = 2A, d = 10 SUEGRA can be interpreted as a suggestion that the strong-coupling limit
of type-IIA superstring theory is 11-dimensional supergravity or a theory that reduces to
it at low energies (M theory). In that limit, then, all the type-IIA extended objects must be
related to some 11-dimensional M-theory object [897].

The identification of the d = 11 objects requires the oxidation of the d = 10 classical
solutions associated with the type-IIA extended objects which will not be performed until
Section 19.4, after we find such solutions in Section 19.2. Here we will only give the results,
but we can check their internal consistency5 and their consistency with d = 10 dualities.

It has long being known that the type-IIA fundamental string (F1A) can be seen as the
11-dimensional membrane (2-brane) (M2) wrapped on a circle [335]. However, if there
was a membrane in d = 11, there should have been a membrane in d = 10 as well. Now
we know that type-IIA superstring theory has a membrane: the D2-brane. We will see that
the tensions, charges, and worldvolume effective actions of the fundamental string and the
D2-brane can be derived from that of the M2-brane.

How about the other Dp-branes? The D0-brane turns out to correspond to a d = 11
graviton KK mode, and its electric–magnetic dual, the D6-brane, is a d = 11 KK monopole
compactified on the U(1) fiber direction (z in Eq. (11.160)). The D4-brane has to originate
on a d = 11 4- or 5-brane, but there are no 3-branes in d = 10 and there is a 5-brane, the
S5A. Both the D4 and the S5A come from a d = 11 5-brane (M5) associated with the dual
6-form potential.

4 The reduction to d = 9 of the D7 and S7 gives a pair of objects that can be constructed by reducing the
KK7M on two directions in different orders. All S-duality doublets of the IIB theory have this property (see
the next footnote). The situation is, actually, more complicated, since there is an infinite number of “pq
7-branes” of which the D7 and S7 are just two examples that do not give rise to all the possibilities.

5 If we assume that one d = 11 object exists, all the different ways of reducing that object over a circle must
give different d = 10 objects. On the other hand, if we compactify the same object down to d = 9 over
the same directions but in different orders, then, since these compactifications are related by an SL(2, R)

transformation in the internal torus, we must obtain d = 9 S-duality doublets. Many examples of this fact
can be found in Figure 19.4.1.
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The D8-brane has with be associated with a d = 11 8- or 9-brane, but none of these is
explicitly known. As we explained in Section 16.2, the natural candidate would be the
KK9M-brane, but no associated solution of d = 11 supergravity corresponding to it is
known, and possibly no such solution exists. However, it may exist as a solution of a modi-
fied theory [123, 142, 666]. Its inclusion is necessary for the consistency of the diagrams in
Figures 19.4.1 and 19.4.1 on pages 552 and 553.

19.1.1 The masses of string- and M-theory extended objects from duality

We can immediately use our knowledge of the duality relations between the extended ob-
jects of string and M theories to find their masses when they are compactified on tori. All
we need to know is the duality transformation rules of compactification radii, the string
coupling constant and the string masses, and the mass of one of the extended objects. Let
us first recall the duality transformation rules.

In T duality, the relation between the compactification radii RA(B) and coupling con-
stants gA(B) of the type-IIA(B) theories (or any other pair of string theories) is given by
Eqs. (14.61) and (14.62), which we rewrite here for convenience:

RA,B = �2
s/RB,A, gA,B = gB,A�s/RB,A. (19.1)

In type-IIB S duality (with S = η and vanishing Ĉ (0)), the transformation rules for the
string coupling constant and radii can be deduced froms Eqs. (17.21) and (17.24), and take
the forms

g′
B = 1/gB, R′

i = Ri/g
1
2
B . (19.2)

These rules have to be supplemented by the following transformation rule for the masses,
which follows from Eq. (17.24) and the definition of mass, as we will explain in Sec-
tion 19.3:

M ′ = g
1
2
B M. (19.3)

In type-IIA/M-theory duality we have to use the relations Eqs. (16.48) (rewritten below)
between the string length and the 11-dimensional Planck length and between the string
coupling constant and the compactification radius of the 11th coordinate that we call here
R10 for convenience:

�s = −�(11) 2
Planck/[(2π)2 R10], gA = (2π)2 R2

10/
−�(11) 2

Planck. (19.4)
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Masses from d = 10 string dualities. We are going to apply these rules to the transforma-
tion of the (almost) only object whose mass we know: the (fundamental) string F1 wound
once around a compact coordinate (x9 ∈ [0, 2π R9], say). Its mass is just the mass of a
winding mode with w = 1 in the mass formula Eq. (14.60) (which is valid for superstrings
if we include left- and right-moving fermionic oscillators),

MF1w = R9

�2
s

, (19.5)

which is just the string tension times the volume of the compact space.
As a warm-up exercise, let us first perform a T duality in the x9 direction, in which we

know we should obtain an F1 with minimal momentum in the compact direction:

MF1m = M ′
F1w = R9

�2
s

= 1

R′
9

, (19.6)

in agreement with Eq. (14.60) with n = 1. In this example, it did not matter whether we
were dealing with the IIA or IIB fundamental string. Let us now assume that it is the IIB
one F1B. An S-duality transformation should take us to the D-string wound once around
x9. Using Eqs. (19.2) and (19.3), we find

MD1 = M ′
F1Bw = g

1
2
B MF1Bw = g

1
2
B

R9

�2
s

= R′
9

g′
B�2

s

. (19.7)

This mass should be equal to the D-string tension times the volume of the circle, so

TD1 = MD1

2π R′
9

= 1

(2π�s)g′
B�s

. (19.8)

We can now perform successive T-duality transformations to find the masses and tensions
of all the Dp-branes. A T duality in the direction x9 takes us to the D0-brane, whose mass
and tension are

TD0 = MD0 = M ′
D1 = R9

gB�2
s

= �2
s/R′

9

g′
A�s/(R′

9�
2
s )

= 1

g′
A�s

. (19.9)

If we T-dualize the D-string in a transverse direction (x8), we obtain instead the
D2-brane:

MD2 = M ′
D1 = R9

gB�2
s

= R9

g′
A�s/(R′

8�
2
s )

= R8 R9

g′
A�3

s

, ⇒ TD2 = 1

(2π�s)2g′
A�s

. (19.10)

By repeating this procedure, we obtain the mass of the Dp-brane wrapped around a
p-torus and its tension (removing the primes):

MDp = R10−p · · · R9

g�
p+1
s

, TDp = 1

(2π�s)pg�s
. (19.11)

The S5B-brane is the S-dual of the D5-brane:

MS5B = g
1
2 M ′

D5 = g′− 1
2

R′
5/g′ 1

2 · · · R′
9/g′ 1

2

g′−1�6
s

= R5 · · · R9

g2�6
s

,

TS5B = 1

(2π�s)5g2�s
,

(19.12)
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which confirms its non-perturbative character (M ∼ g−2). On S-dualizing the D7- and D9-
branes, we obtain the S7- and S9-branes,

MS7 = R9 · · · R3

g3
B�8

s

, TS7 = 1

(2π�s)7g3
B�s

, (19.13)

MS9 = R9 · · · R1

g4
B�10

s

, TS9 = 1

(2π�s)9g4
B�s

, (19.14)

which are even more non-perturbative (M ∼ g−3, g−4).
On T-dualizing the S5B-brane in a transverse direction (x9), we find the IIA KK

monopole (KK6A) with the U(1) fiber in the dual x9 direction. Its mass is

MKK6A = R2
9 R8 · · · R4

g2
A�8

s

, TKK6A = R9

(2π�s)6g2
A�2

s

. (19.15)

This object is non-perturbative (M ∼ g−2). Furthermore, its tension is proportional to the
radius of the U(1) fiber, and diverges in the decompactification limit, as we announced.

Since this is a purely gravitational object, there is an identical object in the IIB theory,
KK6B, whose mass is identical with the replacement of gA by gB. Furthermore, by virtue of
T duality, the S5A-brane also has the same mass as the S5B with the obvious replacements.

If we dualize the S7-brane in the transverse direction x2, we find the KK8A,

MKK8A = R9 · · · R3 R3
2

g3
A�11

s

, TKK8A = R3
2

(2π�s)8g3
A�3

s

, (19.16)

which is highly non-perturbative and tightly wrapped around x2. Similar results are ob-
tained when we T-dualize the S9-brane in any direction (say x9): we obtain the the KK9A,

MKK9A = R3
9 R8 · · · R2

g4
A�12

s

, TKK9A = R3
9

(2π�s)9g4
A�3

s

. (19.17)

All these results are collected in Tables 19.1 and 19.2.

Masses from type-IIA/M-theory duality. We said that the F1A is the M2 wrapped in the
11th dimension. Thus, the mass of the M2 wrapped on a torus must equal that of the F1A
wrapped on a circle:

MM2 = MF1A = R9

�2
s

= R9 R10

(−�(11)

Planck)
3
, ⇒ TM2 = 1

(2π−�(11)

Planck)
2−�(11)

Planck

. (19.18)

On the other hand, the mass of the M2 wrapped in two directions different from the one
that we consider the 11th (say x8 and x9) must coincide with that of the D2. Indeed,

MM2 = R8 R9

(−�(11)

Planck)
3

= R8 R9

gA�3
s

= MD2. (19.19)
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Table 19.1. In this table the masses of the various extended objects of type-IIA superstring theory
are given in ten-dimensional language (the compactification radii Ri , the string coupling constant
gA, and the string length �s) and in 11-dimensional (M-theory) language (the compactification radii
Ri and the reduced 11-dimensional Planck length −�(11)

Planck = �
(11)
Planck/(2π )). The coordinate which is

compactified to go from the 11- to the ten-dimensional theory is assumed to be x10, so the “11th-
dimensional radius” is here denoted by R10 = gA�s = g2/3

A
−�(11)

Planck. Furthermore, the configurations
of the various 11-dimensional objects that give rise to the ten-dimensional ones are also provided
in a notation whose meaning is the following: the array corresponds to the 11 coordinates, starting
from ˆ̂x0 up to ˆ̂x10. A plus means that one of the worldvolume directions occupies that spacetime
direction. A star means that the object has a special isometry in the corresponding direction. The
corresponding direction cannot be decompactified.

Type-IIA object Mass in d = 10 constants Mass in d = 11 constants 11-Dimensional object

F1m R−1
9

D0 g−1
A �−1

s R−1
10 WM(+, −10)

F1w R9�
−2
s R10 R9(

−�(11)
Planck)

−3 M2(+, −8, +2)

D2 R9 R8g−1
A �−3

s R9 R8(
−�(11)

Planck)
−3 M2(+, −7, +2, −)

D4 R9 · · · R6g−1
A �−5

s R10 R9 · · · R5(
−�(11)

Planck)
−6 M5(+, −5, +5)

S5A R9 · · · R5g−2
A �−6

s R9 · · · R5(
−�(11)

Planck)
−6 M5(+, −4, +5, −)

D6 R9 · · · R4g−1
A �−7

s R2
10 R9 · · · R4(

−�(11)
Planck)

−9 KK7M(+, −3, +6, −�)

KK6A R2
9 R8 · · · R4g−2

A �−8
s R10 R2

9 · · · R4(
−�(11)

Planck)
−9 KK7M(+, −3, +5, +�, +)

D8 R9 · · · R2g−1
A �−9

s R3
10 R9 · · · R4(

−�(11)
Planck)

−12 KK9M(+, −, +8, +�)

KK8A R3
9 R8 · · · R2g−3

A �−11
s R10 R3

9 R8 · · · R2(
−�(11)

Planck)
−12 KK9M(+, −, +7, +�, +)

KK9A R3
9 R8 · · · R1g−4

A �−12
s R10 R3

9 R8 · · · R1(
−�(11)

Planck)
−12 KK9M(+, +8, +�, −)

Table 19.2. In this table the masses of the various extended objects of type-IIB superstring theory
are given in terms of the compactification radii Ri , the string coupling constant gB, and the string
length �s. When a radius appears with a power different from 1, it means that that is a special
isometric direction of the object (a KK object).

Type-IIB object Mass Type-IIB object Mass

F1m R−1
9 KK6A R2

9 R8 · · · R4g−2
B �−8

s

F1w R9�
−2
s D7 R9 · · · R3g−1

B �−8
s

D1 R9g−1
B �−2

s S7 R9 · · · R3g−3
B �−8

s

D3 R9 · · · R7g−1
B �−4

s D9 R9 · · · R1g−1
B �−10

s

D5 R9 · · · R5g−1
B �−6

s S9 R9 · · · R1g−4
B �−10

s

S5B R9 · · · R5g−2
B �−6

s
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Table 19.3. In this table the masses of the extended objects of M the-
ory are given in terms of the the compactification radii Ri and the re-
duced 11-dimensional Planck length −�(11)

Planck = �
(11)
Planck/(2π). When a

radius appears with a power different from 1, it means that that is a
special isometric direction of the object (a KK object).

M object Mass

WM 0

M2 R10 R9(
−�(11)

Planck)
−3

M5 R10 · · · R6(
−�(11)

Planck)
−6

KK7M R2
10 R9 · · · R4(

−�(11)
Planck)

−9

KK9M R3
10 R9 · · · R4(

−�(11)
Planck)

−12

The D4 is an M5 wrapped in the 11th dimension,

MM5 = MD4 = R6 · · · R9

gA�5
s

= R6 · · · R10

(−�(11)

Planck)
6

, ⇒ TM5 = 1

(2π−�(11)

Planck)
5−�(11)

Planck

, (19.20)

and the S5A is an M5 that is not wrapped there,

MM5 = R5 · · · R9

(−�(11)

Planck)
6

= R5 · · · R9

g2
A�6

s

= MS5A. (19.21)

To complete this section, we can see that the D0 is nothing but a KK mode moving in
the 11th direction,

MD0 = 1

gA�s
= 1

R10
. (19.22)

These results are collected in Tables 19.1 and 19.3.

The Newton constant. If we want all the extended objects just found to be quantum-
mechanically compatible, we know that the charges of those pairs of extended objects
which are electric–magnetic duals must satisfy the Dirac quantization condition. We do
not know the charges of all of these objects, except in the case of the F1, since we know
the coefficient of the WZ term in the string σ -model action Eq. (15.31); namely the string
tension T . This coefficient coincides with the F1 charge, canonically normalized taking
into account the normalization of the spacetime effective action Eq. (15.1). Then

qF1 = T = 1

(2π�s)�s
. (19.23)

This identity between the canonically normalized charge and the coefficient of the WZ
term in the extended objects’ effective action is completely general. Furthermore, those
coefficients are always identical to the coefficients of the kinetic (NG) terms given on
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page 511 for various kinds of objects. Let us, then, consider the electric–magnetic dual
of the F1, the S5, whose tension is given in Eq. (19.12). Then

qS5 = TS5g2 = 1

(2π�s)5�s
. (19.24)

With the normalization Eq. (15.1), the Dirac quantization condition for n = 1 reads

qF1qS5 = 2π
g2

16πG(10)
N

, (19.25)

which is possible only if

G(10)
N = 8π6g2�8

s . (19.26)

We obtained a similar result in Chapter 11 in the context of d̂ = 5 KK theory.
There are more pairs of electric–magnetic duals: Dp- and D p̃-branes. According to the

above observations, the Dp-brane charge is

qDp = TDpg = 1

(2π�s)p�s
, (19.27)

and we find again (d = 10)

qDpqD p̃ = 1

(2π�s)6�2
s

= qF1qS5. (19.28)

For the two M-branes, we have

qMp = 1

(2π−�(11)

Planck)
p−�(11)

Planck

, (19.29)

so, on account of the definition of �
(11)

Planck, Eq. (16.43),

qMpqM p̃ = 1

(2π−�(11)

Planck)
7(−�(11)

Planck)
2

= 2π
2π

(�
(11)

Planck)
9

= 2π
1

16πG(11)
N

, (19.30)

which is the correct form of Dirac’s quantization condition with the standard normalization
of d = 11 supergravity. This is the reason behind the unusual definition of �

(11)

Planck.

19.2 String-theory extended objects from effective-theory solutions

The results discussed in the previous section and depicted in Figures 19.4.1 and 19.4.1 are
supported by (and, in many cases, based on) the study of explicit classical solutions of
the string effective action that can be interpreted as the long-range fields associated with
the extended objects of string theory. That interpretation is based on a comparison between
the charges of the sources and those of the solutions. p-branes can be charged with respect
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to (p + 1)-form potentials and, therefore, it is natural to start looking for p-brane solutions
that are charged with respect to each of the (p + 1)-form potentials of the string effective
theory. The existence of these solutions is a clear argument in support of the existence of
the associated string-theory extended object.

The search for these solutions can be systematized using the p-brane a-model solutions
as follows: for solutions that involve only one brane, the Chern–Simons terms can be ig-
nored and the relevant part of the string effective action is just

S = g2

16πG(d)
N

∫
dd x

√
|g|

{
e−2φ

[
R − 4(∂φ)2 + (−1)p1+1

2 · (p1 + 2)!
(H (p1+2))2

]

+ (−1)p2+1

2 · (p2 + 2)!
(G(p2+2))2

}
, (19.31)

where
H (p1+2) = d B(p1+1), G(p2+2) = dC (p1+1). (19.32)

By definition, since it is written in the string frame, it describes the potentials that
couple to fundamental p1-branes and Dp2-branes. We have to rewrite it in the modified
Einstein-frame metric6 g̃E µν in which the p-brane a-model is given.7 Using the relation

gµν = e
4

d−2 (φ−φ0) g̃E µν, (19.34)

we obtain (ignoring tildes) (see Appendix E)

S = 1

16πG(d)
N

∫
dd x

√
|g|

[
R + 4

d − 2
(∂φ)2 + (−1)p1+1

2 · (p1 + 2)!
e−4

p1+1
d−2 (φ−φ0)(H (p1+2))2

+ (−1)p2+1

2 · (p2 + 2)!
e2

p̃2−p1
d−2 (φ−φ0)g2(G(p2+2))2

]
. (19.35)

On comparing this action with the a-model action Eq. (18.61), we find that the relations
between the string dilaton φ and the a-model scalar ϕ, and between the string potentials
B(p1+1) and C (p2+1) and the a-model potentials A(p1,2+1), are

φ − φ0 =
√

d − 2

2
ϕ, B(p1+1) = A(p1+1), C (p2+1) = g−1 A(p2+1), (19.36)

and, furthermore,

a1 = 2(p1 + 1)√
2(d − 2)

, a2 = −( p̃2 − p2)√
2(d − 2)

. (19.37)

6 We always take the string-frame metric gµν to be asymptotically flat (at least in the non-compact directions).
On rescaling that metric by a power of the dilaton,

gµν = e
4

d−2 φgE µν, (19.33)

we obtain the Einstein-frame metric gE µν in which the Einstein–Hilbert term has no dilaton factors. How-
ever, this metric is not asymptotically flat and a constant rescaling by the dilaton VEV is necessary. The
result is the asymptotically flat modified Einstein-frame metric [677] g̃E µν given in Eq. (19.34).

7 Recall that we chose ϕ0 = 0.
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We could have Poincaré-dualized the field strengths. In that case, we would have ob-
tained for the duals of fundamental p1-branes (p3 = p̃1-branes) an a-model with

a3 = − 2(p3 + 1)√
2(d − 2)

, p3 = p̃1, B̃(p3+1) = g−2 A(p3+1), (19.38)

whereas for the dual Dp2-branes we would have the same a2.
Finally, to find solutions of d = 11 supergravity that describe M-theory branes

(Mp-branes), we just have to set a = 0, since there is no scalar in that theory.
The four families of solutions, which are valid for δ > 3, are given by the following.

(Black) M-theory p-Branes (Mp).

ds̃2
E = H

− 2
p+1

Mp

[
W dt2 − d �y 2

p

] − H
2

p̃+1
Mp

[
d�z 2

q + W −1dρ2 + ρ2d2
(δ−2)

]
,

C (p+1)
t y1···y p = α

(
H−1

Mp − 1
)
,

HMp = 1 + hMp

ρδ−3
, W = 1 + ω

ρδ−3
, ω = hMp

[
1 − 1

2c
α2

]
,

(19.39)

(Black) fundamental p-branes (Fp).

ds̃2
E = H

− 2
d−2

p̃+1
p+1

Fp

[
W dt2 − d �y 2

p

] − H
2

d−2
Fp

[
d�z 2

q + W −1dρ2 + ρ2d2
(δ−2)

]
,

ds2
s = H

− 2
p+1

Fp

[
W dt2 − d �y 2

p

] − [
d�z 2

q + W −1dρ2 + ρ2d2
(δ−2)

]
,

e−2φ = e−2φ0 HFp, B(p+1)
t y1···y p = α

(
H−1

Fp − 1
)
,

HFp = 1 + hFp

ρδ−3
, W = 1 + ω

ρδ−3
, ω = hFp

[
1 − p + 1

2
α2

]
,

(19.40)

(Black) solitonic p-branes (Sp).

ds̃2
E = H

− 2
d−2

Sp

[
W dt2 − d �y 2

p

] − H
2

d−2
p+1
p̃+1

Sp

[
d�z 2

q + W −1dρ2 + ρ2d2
(δ−2)

]
,

ds2
s = W dt2 − d �y 2

p − H
2

p̃+1

Sp

[
d�z 2

q + W −1dρ2 + ρ2d2
(δ−2)

]
,

e−2φ = e−2φ0 H−1
Sp , B̃(p+1)

t y1···y p = αe−2φ0

(
H−1

Sp − 1
)
,

HSp = 1 + hSp

ρδ−3
, W = 1 + ω

ρδ−3
, ω = hSp

[
1 − p̃ + 1

2
α2

]
.

(19.41)



532 The extended objects of string theory

(Black) Dp-branes.

ds̃2
E = H

−8 p̃+1
(d−2)2

Dp

[
W dt2 − d �y 2

p

] − H
8 p+1

(d−2)2

Dp

[
d�z 2

q + W −1dρ2 + ρ2d2
(δ−2)

]
,

ds2
s = H

− 4
d−2

Dp

[
W dt2 − d �y 2

p

] − H
4

d−2
Dp

[
d�z 2

q + W −1dρ2 + ρ2d2
(δ−2)

]
,

e−2φ = e−2φ0 H
−2 p̃−p

d−2
Dp , C (p+1)

t y1···y p = αe−φ0

(
H−1

Dp − 1
)
,

HDp = 1 + hDp

ρδ−3
, W = 1 + ω

ρδ−3
, ω = hDp

[
1 − d − 2

8
α2

]
.

(19.42)

19.2.1 Extreme p-brane solutions of string and M-theories and sources

The four families of solutions above contain subfamilies of extreme solutions with ω = 0 in
which the H functions can be arbitrary functions of the transverse coordinates �x(δ−1) (ρ =
|�x(δ−1)|) for δ ≥ 2. These are isotropic coordinates in which the metric of the transverse
space is conformally flat. As in the ERN BH case, in some cases they do not cover the whole
spacetime which can be analytically extended beyond ρ = 0, which is only a coordinate
singularity.

In Section 18.2.3 we saw that some of the extreme solutions of the p-brane a-model
(with q = 0 and a single-pole H ) could be matched against some charged-p-brane sources
(obeying Eqs. (18.71) and (18.77)), which allowed us to determine h, the coefficient of the
pole of H , in terms of the tension and charge of the source and in terms of the Newton
constant.

It turns out that the four families of objects that we are considering always satisfy
Eqs. (18.71) and (18.77) and we can use those results to determine h in the extreme so-
lutions with q = 0 and a single pole in terms of the tensions and Newton constants. Then,
for the ten- and 11-dimensional objects whose tensions we found in Section 19.1.1, we can
determine h as a function of �s, g, and �

(11)

Planck, using the values of G(10)
N and G(11)

N that we
determined there. For these d = 10, 11 objects α = ±1 is just the relative sign between the
charge parameter µp and the tension T(p) which we consider positive.

All we have to do to find h for the families of extreme Mp-branes, Dp-branes etc. is to
substitute into Eqs. (18.78) the values of T(p) (which are unknown in general, except in the
cases studied in the previous sections) and α, determined by setting ω = 0 in the solutions;

α2
Mp = 2(d − 2)

(p + 1)( p̃ + 1)
, αFp = 2

p + 1
, αSp = 2

p̃ + 1
, αDp = 8

d − 2
. (19.43)

Observe that, indeed, for the string/M-theory branes (M2 and M5 in d = 11 and F1, S5,
and Dp in d = 10) α2 = +1.

Writing the four families of extreme solutions with the right values for h is straightfor-
ward, but not very interesting, except in the case of the d = 11, 10 string/M-theory branes,
that we are going to write and study next.



19.2 String-theory extended objects from effective-theory solutions 533

19.2.2 The M2 solution

On substituting the values d = 11 and p = 2 into the general black-Mp-brane family of
solutions Eqs. (19.39), we immediately find the black M2 solution [494],

d ˆ̂s2 = H
− 2

3
M2

[
W dt2 − d �y 2

2

] − H
1
3

M2

[
W −1dρ2 + ρ2d2

(7)

]
,

ˆ̂Ct y1 y2 = α
(
H−1

M2 − 1
)
,

HM2 = 1 + hM2

ρ6
, W = 1 + ω

ρ6
, ω = hM2

[
1 − α2

]
,

(19.44)

and, in the extreme limit ω = 0, α = ±1, we obtain [344]

d ˆ̂s2 = H
− 2

3
M2

[
dt2 − d �y 2

2

] − H
1
3

M2 d �x 2
8 ,

ˆ̂Ct y1 y2 = ±(
H−1

M2 − 1
)
, HM2 = 1 + hM2

|�x8|6 ,
(19.45)

which is the solution commonly called an M2-brane in the literature written in isotropic
coordinates. The integration constant hM2 can be determined by the first of Eqs. (18.78),
the value of the M2 tension by Eq. (19.18) and the value of G(11)

N by Eq. (16.43),

hM2 = (�
(11)

Planck)
6

6ω(7)

. (19.46)

In Section 19.3 we will check by classical field-theory methods that this value of this
integration constant and the values of other integration constants really correspond to the
tension and charge of the M2-brane and the other objects.

It is clear that, if we want the solution to describe NM2 parallel M2-branes, we just have
to replace HM2 by another harmonic function with as many poles as branes, each of them
with the coefficient hM2. When NM2 M2s coincide, there is a single pole with coefficient
NM2hM2. Similar observations are valid for all the extreme solutions that follow.

The black M2-brane has a regular non-degenerate event horizon at ρ = (−ω)
1
6 whose

constant-time sections have the topology of S7 and a singular (would-be) inner horizon
covered by the event horizon.

In the extreme limit the event horizon does not become singular but becomes degenerate
(as in the ERN BH case) and the singularity covered by it becomes timelike. The Penrose
diagram of the (extreme) M2-brane is similar to that of the ERN BH but with only one
asymptotically flat region [334, 452] and is represented in Figure 19.1 (a more detailed
diagram can be found in [863]).
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M2 M5, D3 Dp

Fig. 19.1. Penrose diagrams of different (extreme) string/M-brane solutions: the M2-brane
which has a timelike singularity covered by a horizon which does not allow it to be seen
from the asymptotic region covered by the isotropic coordinates (shaded), the M5- and
D3-brane that are regular everywhere and have two asymptotic regions separated by the
horizon, and the Dp-branes with p �= 3 which have singular horizons. In all cases the angu-
lar coordinates of the transverse spheres and the spacelike worldvolume coordinates have
been ignored.

In fact, on taking the near-horizon limit ρ = |�x8| → 0 (which consists in the deletion
of the constant 1 in HM2) in spherical coordinates, we obtain a solution whose metric is
the direct product of those of AdS4 and S7 with radii R4 and 2R4 (after a rescaling of the
worldvolume coordinates),

d ˆ̂s2 = R2
4 d�2

(4) − (2R4)
2 d2

(7),
ˆ̂Ct y1 y2 =

(
r

R4

)3

, R4 = h
1
2
M2

2
, (19.47)

where we are using the following form of the metric of the AdSn space with radius Rn:

R2
n d�2

(n) ≡
(

r

Rn

)2(
dt2 − d �y 2

n−2

) −
(

Rn

r

)2

dr2. (19.48)

The dual 7-form field strength is given by the S7 volume form
˜̂̂

G0 = 6(2R4)
6ω(7).

All the extreme string/M-theory solutions that we are going to study preserve half of the
supersymmetries, but this near-horizon limit preserves all the supersymmetry and can be
considered a vacuum of M theory. The M2-brane can then be seen as a soliton interpolating
between two maximally supersymmetric vacua, Minkowski at infinity and AdS4 × S7 at
the horizon [452]. Since the S7 is a compact space, this vacuum can be seen to induce
spontaneous compactification to d = 4 [406]. The compactification of D = 11 supergravity
on S7 gives rise to a gauged N = 8, d = 4 SUEGRA with gauge group SO(8) (the isometry
group of the compact space) and an AdS4 vacuum [343] (see also [342] and references
therein).
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19.2.3 The M5 solution

On substituting the values d = 11 and p = 5 into the general black-Mp-brane family of
solutions Eqs. (19.39), we obtain the black-M5-brane solution [494]

d ˆ̂s2 = H
− 1

3
M5

[
W dt2 − d �y 2

5

] − H
2
3

M5

[
W −1dρ2 + ρ2d2

(4)

]
,

˜̂̂
Ct y1···y5 = α

(
H−1

M5s − 1
)
,

HM5 = 1 + hM5

ρ3
, W = 1 + ω

ρ3
, ω = hM5[1 − α2],

(19.49)

and, in the extreme limit ω = 0, α = ±1,

d ˆ̂s2 = H
− 1

3
M5

[
dt2 − d �y 2

5

] − H
2
3

M5 d �x 2
5 ,

˜̂̂
Ct y1···y5 = ±(

H−1
M5 − 1

)
, HM5 = 1 + hM5

|�x5|3 ,
(19.50)

which is what is usually called in the literature the M5-brane solution in isotropic coordi-
nates and is regular everywhere.

Using the first of Eqs. (18.78), and Eqs. (19.20) and (16.43), we obtain

hM5 = (�
(11)

Planck)
3

3ω(4)

. (19.51)

The event horizon of the black M5-brane, placed at ρ = (−ω)
1
3 , has (constant-time sec-

tions of) S4 topology and a singular event horizon.8

As in the M2 case, the event horizon remains regular but degenerate in the extreme limit
but now the singularity disappears and there is a new asymptotically flat region across the
horizon (see its Penrose diagram in Figure 19.1). Using the coordinate r defined by

ρ = h
1
3
S5r2/(1 − ρ6)

1
3 , (19.52)

the metric takes the form [863]

d ˆ̂s2 = r2
[
dt2 − d �y 2

5

] − h
2
3
S5

[
4

r2(1 − r6)
8
3

dr2 + d2
(4)

(1 − r6)
2
3

]
(19.53)

and covers both sides of the event horizon ρ = r = 0. The spatial infinities are now at r =
±1. This metric is invariant under r → −r , which allows us to identify the two asymptotic
regions. There are more asymptotic regions, all of which may also be identified.

8 This is a common feature of all extreme p-branes with p ≥ 1 [863].
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In the near-horizon limit ρ = |�x5| → 0 of the extreme M5 we obtain another maximally
supersymmetric solution, whose metric is the direct product of those of AdS7 and S4 with
radii R7 and R7/2,

d ˆ̂s2 = R2
7 d�2

(7) − (R7/2)2 d2
(4),

˜̂̂
Ct y1···y5 =

(
r

R7

)6

, R7 = 2h
1
2
M5, (19.54)

where we are using again the notation of Eq. (19.48). The 4-form field strength is given

by the S4 volume form ˆ̂G = 3(R7/2)3ω(4) and, again, the M5 can be seen as a vacuum-
interpolating soliton [452]. This vacuum induces spontaneous compactification on S4,
which is described by a d = 7 gauged SUEGRA with SO(5) gauge group (the isometry
group of S4) and an AdS7 vacuum [771].

These vacua play a crucial role in the AdS/CFT correspondence proposed by Maldacena
in [679] (for a review see [23]).

19.2.4 The fundamental string F1

The ten-dimensional black-fundamental-string solution is given, in the modified Einstein
frame and in the string frame, by

d ˜̂s2
E = H

− 3
4

F1 [W dt2 − dy2] − H
1
4

F1

[
W −1dρ2 + ρ2d2

(7)

]
,

dŝ2
s = H−1

F1 [W dt2 − dy2] − [
W −1dρ2 + ρ2d2

(7)

]
,

e−2φ̂ = e−2φ̂0 HF1, B̂t y = α
(
H−1

F1 − 1
)
,

HF1 = 1 + hF1

ρ6
, W = 1 + ω

ρ6
, ω = hF1[1 − α2].

(19.55)

The extreme limit ω = 0, α = ±1 is known as the fundamental-string solution [281, 282]:

d ˜̂s2

E = H
− 3

4
F1

[
dt2 − dy2

] − H
1
4

F1d �x 2
8 ,

dŝ2
s = H−1

F1 [dt2 − dy 2] − d �x 2
8 ,

e−2φ̂ = e−2φ̂0 HF1, B̂t y = ± (
H−1

F1 − 1
)
, HF1 = 1 + hF1

|�x8|6 .

(19.56)

Using the first of Eqs. (18.78), and Eqs. (14.3), (14.4), and (19.26), we obtain

hF1 = (2π�s)
6g2

6ω(7)

, (19.57)
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which, in the weak-coupling limit g → 0, with �s fixed, goes quickly to zero, giving a flat
spacetime metric. The F1 solution can then be understood as the long-range fields produced
by a fundamental string in the strong-coupling limit. In the weak-coupling limit, the string
decouples from the supergravity fields.

The event horizon of the black solution becomes singular in the extreme limit both in the
Einstein and in the string frame, and in that limit the dilaton also diverges at the horizon
as φ̂ ∼ ln |�x8|. In the dual string frame (the frame in which the S5-brane is fundamen-
tal and there is no dilaton factor in its worldvolume action, which is related to the string
frame by Eqs. (18.50) and (18.51)), ignoring the constant in HF1 leads to the solution with
metric

dŝ2
S5 = ρ4

h
2
3
F1

[
dt2 − dy 2

] − h
1
3
F1

dρ2

ρ2
− h

1
3
F1d2

(7), (19.58)

which is the direct product of the round S7 metric with radius h
1
6
F1 and the metric of a 1-

brane in three dimensions (i.e. a domain wall), which is singular. This near-horizon limit
is well defined in this frame, even if it leads to a metric with singularities, but, unlike the
M2 and M5 cases, it is not a maximally supersymmetric vacuum. These geometries play
roles analogous to the AdSn × Sm geometries in non-conformal versions of the AdS/CFT
correspondence [170].

19.2.5 The S5 solution

The ten-dimensional solitonic 5-brane solution is given by

d ˜̂s2
E = H

− 1
4

S5

[
W dt2 − d �y 2

5

] − H
3
4

S5

[
W −1dρ2 + ρ2d2

(3)

]
,

dŝ2
s = W dt2 − d �y 2

5 − HS5
[
W −1dρ2 + ρ2d2

(3)

]
,

e−2φ̂ = e−2φ̂0 H−1
S5 , B̂(6)

t y1···y5 = αe−2φ̂0
(
H−1

S5 − 1
)
,

HS5 = 1 + hS5

ρ2
, W = 1 + ω

ρ2
, ω = hS5

[
1 − α2

]
,

(19.59)

and, in the extreme limit ω = 0, α = ±1 in which it is usually known as the solitonic
5-brane solution [206, 207] (also known as the NS 5-brane), it takes the form

d ˜̂s2
E = H

− 1
4

S5

[
dt2 − d �y 2

5

] − H
3
4

S5 d �x 2
4 ,

dŝ2
s = dt2 − d �y 2

5 − HS5 d �x 2
4 ,

e−2φ̂ = e−2φ̂0 H−1
S5 ,

˜̂B(6)
t y1···y5 = ±e−2φ̂0

(
H−1

S5 − 1
)
,

HS5 = 1 + hS5

|�x4|2 ,

(19.60)
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and is, like the M5-brane, regular everywhere. Using the first of Eqs. (18.78), the S5 tension,
Eqs. (19.12), and G(10)

N , Eq. (19.26), we obtain

hS5 = �2
s , (19.61)

which is independent of g and remains constant in the weak-coupling limit.
In the near-horizon limit ρ = |�x4| → 0 in the string frame (which is the dual S5-brane

frame) we obtain a metric that is the product of Minkowski 6 + 1 and that of a round S3,

dŝ2 = dt2 − d �y 2
5 − dz2 − hS5d2

(3), z = h
1
2
S5 ln


 ρ

h
1
2
S5


. (19.62)

The S5-brane metric interpolates, then, between Minkowski spacetime at infinity and
the above regular metric at the horizon, which is at an infinite proper distance. There is no
need to continue the metric analytically beyond the horizon and, actually, it would be more
correct to say that, in the limit ρ → 0, one finds another asymptotic region with the above
metric.

19.2.6 The Dp-branes

The generic solution for black Dp-branes N = 2A, B, d = 10 SUEGRA with p < 7 is

d ˜̂s2

E = H
− 7−p

8
Dp

[
W dt2 − d �y 2

p

] − H
p+1

8
Dp

[
W −1dρ2 + ρ2d2

(8−p)

]
,

dŝ2
s = H

− 1
2

Dp

[
W dt2 − d �y 2

p

] − H
1
2

Dp

[
W −1dρ2 + ρ2d2

(8−p)

]
,

e−2φ̂ = e−2φ̂0 H
p−3

2
Dp , Ĉ (p+1)

t y1···y p = αe−φ̂0

(
H−1

Dp − 1
)
,

HDp = 1 + hDp

ρ7−p
, W = 1 + ω

ρ7−p
, ω = hDp[1 − α2].

(19.63)

The above solution is not entirely correct for p = 3 since it does not take into account
the self-duality of the 5-form field strength, but the only change that has to be made is in
the 4-form potential: the metric and dilaton fields are correct, as we will see.

In the extreme limit ω = 0, α = ±1 the solutions are valid for all p = 0, . . . , 9 (with the
same caveats in the case p = 3) for harmonic functions with poles of the right order. These
are the solutions usually known as Dp-brane solutions in the literature:

d ˜̂s2

E = H
p−7

8
Dp

[
dt2 − d �y 2

p

] − H
p+1

8
Dp d �x 2

9−p,

dŝ2
s = H

− 1
2

Dp

[
dt2 − d �y 2

p

] − H
1
2

Dpd �x 2
9−p,

e−2φ̂ = e−2φ̂0 H
p−3

2
Dp , Ĉ (p+1)

t y1···y p = ±e−φ̂0

(
H−1

Dp − 1
)
,

HDp = 1 + hDp

|�x9−p|7−p
, p < 7, HD7 = 1 + hD7 ln |�x2|, HD8 = 1 + hD8|x |.

(19.64)
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Using Eqs. (18.78), the Dp-brane tension formula, Eq. (19.11), and the value of G(10)
N ,

Eq. (19.26), we find

hDp = (2π�s)
7−pg

(7 − p)ω(8−p)

, p < 7, hD7 = − g

2π
, hD8 = − g

4π�s
. (19.65)

Several remarks are in order here.

1. The D-instanton (p = −1) solution is not included in this general case. It will be
dealt with in Section 19.2.7.

2. The D-string (p = 1) solution is related by IIB S duality (with S = η) to the F1B
solution. More general S-duality transformations generate solutions that represent
bound states of q F1Bs and p D1s called pq-strings [822]. The same can be said
about the D5 and the S5B, which can be combined into pq 5-branes [670]. There are
also pq 7-brane solutions, but they have a more complicated interpretation. We will
study these solutions in Section 19.4.3.

3. The metric and dilaton of the p = 3 solution are those of the self-dual D3-brane
solution, but the RR potential is different. The correct field strength is just the self-
dual part of the field strength of the generic solution and its components are

Ĝ(5)
mt y1 y3 y3 = ∓e−ϕ̂0

2
H−2

D3 ∂m HD3, Ĝ(5)
m1···m5

= ±e−ϕ̂0

2
εm1···m5m6

∂m6
HD3.

(19.66)

4. The solutions for p < 7 are well defined for all values of |�x9−p| > 0 (HDp > 0). The
D7 and D8 solutions are well defined only in certain regions of the transverse space
for which HDp > 0 due to the negative signs of hD7 and hD8. To obtain solutions that
are well defined everywhere in the transverse space, one has to consider configura-
tions with several branes and compact transverse spaces. The only singularities are
then at the positions of the branes.9 We are going to study the simplest of these com-
binations of D7-branes in Section 19.2.8. The simplest combination of D8-branes
which leads to a regular metric is the orbifold construction discussed on page 519.

5. The Hodge dual of the 10-form field strength associated with the D8-brane solution
is �Ĝ(10) = ±hD8g−1 = ∓1/(4π�s). This must, then, be the value of the mass param-
eter m = Ĝ(0) of the Romans massive N = 2A, d = 10 supergravity that describes
the effective string theory in the presence of one D8-brane [118, 782]. The param-
eter m which was completely arbitrary from the supergravity point of view must be
quantized from the string-theory point of view.

6. The p = 9 solution is just flat spacetime.

9 The positions of the branes can be identified in general with the poles of the harmonic functions, although
we know that, in many cases, these poles are just coordinate singularities and correspond to regular event
horizons.
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7. In all the p < 7 cases, except for p = 3, the Dp-brane horizon is singular and its
Penrose diagram is given in Figure 19.1. The near-horizon geometries (in the dual
frame) also correspond to solutions with singularities.

8. In the p = 3 case the solution has a regular horizon and the analytic continuation
across it is completely regular, as in the M5 case. There is again a discrete isometry
that relates the old and new asymptotically flat regions. The near-horizon geome-
try of the D3-brane is a maximally supersymmetric solution with the metric of the
completely regular space AdS5 × S5:

dŝ2
s = R2

5 d�2
(5) − R2

5 d2
(5), Ĝ(5) = ±2e−ϕ̂0 R4

5

(
ωAdS5 − ωS5

)
, R5 = h

1
4
D3

(19.67)

(compare with Eq. (13.100)), which has played a crucial role in the AdS/CFT-
correspondence conjecture [23, 679]. This solution induces spontaneous compactifi-
cation on S5. The theory is described by gauged N = 4, d = 5 SUEGRA with gauge
group SO(6) [487, 623].

19.2.7 The D-instanton

If we extrapolate the association of (p + 1)-forms to objects with a (p + 1)-dimensional
worldvolume to a 0-form (scalar) potential such as the type-IIB RR 0-form Ĉ (0), we con-
clude that the IIB theory admits a “−1-brane,” an object with a zero-dimensional worldvol-
ume: just a point in spacetime. Such an object must be an instanton, which is a Euclidean so-
lution. Then, associated with the type-IIB RR 0-form Ĉ (0), we expect to find a D-instanton
solution to the Euclidean equations of motion of the N = 2B, d = 10 supergravity theory.10

It is not clear how to define the complete Euclidean N = 2B, d = 10 supergravity because
it is not possible to have a real self-dual 5-form (a formal definition has nevertheless been
given in [435]), but this problem does not arise if one ignores the 5-form field strength, as
we do here.

We start with the action of the truncated N = 2B, d = 10 theory in the Einstein frame
and with Lorentzian signature in which we keep only the metric and the dilaton and the RR
0-form combined in the complex scalar τ̂ = Ĉ (0) + ie−ϕ̂:

Ŝ = ĝ2
B

16πG(10)
N

∫
d10 x̂

√
|̂E|

{
R̂E + 1

2

∂µτ̂ ∂µ ¯̂τ
(Im τ̂ )2

}
, (19.68)

To obtain the Euclidean action we have to perform a Wick rotation, which can be under-
stood as a coordinate redefinition t = x0 = i x̄10, where τ is treated as real afterwards. ϕ̂ is
a scalar and transforms as such under this reparametrization. However, Ĉ (0) can be treated

10 D-instantons of bosonic-string theories had been considered in [467, 776] before the relation between RR
charges and D-branes was discovered in [777]. The IIB instanton BPS condition had been obtained in [466].
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either as a scalar (and then its Hodge dual, the RR 7-form Ĉ (7), has to be treated as a pseu-
dotensor) or as a pseudoscalar (and the RR 7-form Ĉ (7) has to be treated as a tensor).11 The
second option (which is also the one we adopted for consistency when we defined the mag-
netic RR potentials) was chosen by the authors of [435], who performed the Wick rotation
using the RR 7-form and treating it as a tensor. If Ĉ (0) is a pseudoscalar then it acquires an

extra factor of i in the Wick rotation: Ĉ (0) = i ¯̂C
(0)

. The Euclidean action becomes

S̄ = ĝ2
B

16πG(10)
N

∫
d10 ¯̂x

√
| ¯̂gE|

{ ¯̂RE + 1
2 e2ϕ̂

[
(∂e−ϕ̂)2 − (∂

¯̂C (0))2
]}

, (19.69)

Observe that the two scalars contribute with different signs to the action. Their “energy–
momentum” tensors will appear with opposite signs in the Einstein equation. Thus, one
can obtain a solution with flat spacetime by taking the derivatives of the two scalars to be
equal, up to a global sign. Then one need only solve the scalar equations. The D-instanton
solution takes the following form in the (unmodified) Einstein and string frames [435]:

d ¯̂s2
E = e− ϕ̂0

2 d �̄x 2
10, d ¯̂s2

s = H
1
2

Di d �̄x 2
10,

e−2ϕ̂ = e−2ϕ̂0 H−2
Di ,

¯̂C (0) = ±e−ϕ̂0
(
H−1

Di − 1
)
,

HDi = 1 + hDi

|�̄x10|8
.

(19.70)

The value of hDi is the extrapolation to p = −1 of the value of hDp Eq. (19.65). This
value can also be obtained via a T-duality relation with the D0-brane.

At first sight there is a singularity at ρ = |�̄x10| = 0 (in the string frame). However, the
string metric is invariant under the reparametrization

ρ = h
1
4
Di/ρ̃, (19.71)

which shows that, in the limit ρ → 0, one finds another asymptotically flat region identical
to the one at ρ → ∞. The metric, therefore, describes a sort of Euclidean wormhole joining
the two asymptotically flat regions and is regular everywhere.

The value of the Euclidean action of the D-instanton can be calculated. In the modified
Einstein frame, and normalized in our conventions, it takes the value

I = 2π/gB = qDi/gB. (19.72)

The action Eq. (19.68) appears in other contexts in d �= 10 dimensions. We have met it,
for instance, as a truncation of the N = 4, d = 4 SUEGRA theory that arises in the toroidal
reduction of the heterotic-string effective action Eq. (16.160), but it appears in many other
reductions, as shown in [666]. It is possible to find instanton solutions for all of them that
are almost identical with the D-instanton solution, differing only in the harmonic function
which, in d > 2 dimensions, will be H = 1 + h/|�xd |d−2. The string-frame geometry will

11 This difference between these two options can be seen as the reason why Wick rotations and Hodge duality
do not commute.
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be different in each case. The d = 4 solution associated with the heterotic string was found
in [453] and also has a wormhole interpretation.

19.2.8 The D7-brane and holomorphic (d − 3)-branes

The D7-brane solution Eqs. (19.64) is just the simplest of a very rich family of solutions of
the action Eq. (19.68), which share many interesting properties and some pathologies that
can be eliminated after a careful analysis. They are the subject of this section.

The SL(2, R)/SO(2) σ -model of Eq. (19.68) is invariant under transformations of the
whole group SL(2, R), Eqs. (11.205) and (11.206), but only the discrete subgroup SL(2, Z)

is supposed to relate equivalent (dual) type-IIB theories. On the other hand, as discussed
in Section 11.4.1, only the modular group G ≡ PSL(2, Z) = SL(2, Z)/{±I2×2} acts on τ̂ .
In conclusion, type-IIB S duality tells us, then, that values of the τ̂ field that are related by
modular transformations must be considered equivalent and should be identified. The same
will be true in the cases in which τ can be viewed as the modular parameter of a torus.12

Thus τ , which in principle takes values in the whole complex upper half plane H, can be
restricted to take values in the fundamental domain of the modular group in H, which we
are going to discuss now.

The modular group G is generated by the elements T and S

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
, (19.73)

whose actions on τ are T (τ ) = τ + 1 and S(τ ) = −1/τ . Observe that S2 = −I2×2 ∼ I2×2

in G and also (ST )3 = (T −1S)3 ∼ I in G. Thus S and ST generate two cyclic subgroups of
orders 2 and 3, respectively.

The fundamental domain of G in H can be defined as the quotient H/G and corresponds
to the region |τ | ≥ 1 and − 1

2 ≤ Re(τ ) ≤ 1
2 with the lines Re(τ ) = − 1

2 and Re(τ ) = + 1
2 iden-

tified by a T transformation and with the arc of unit radius eiθ , θ ∈ [π/3, 2π/3] joining
the fundamental domain corners e

2π i
3 and e

π i
3 identified with itself (“orbifolded”) according

to eiθ ∼ ei(π−θ) (the S transformation) (see Figure 19.2).
H/G has, therefore, two special points associated with the two cyclic subgroups gener-

ated by S and ST : τ = i , which is invariant under S; and τ = ρ ≡ e
2π i

3 , which is invariant
under ST . If we consider its compactification Ĥ/G in which the point at infinity is added,
then a third special point appears: ∞ itself, which is invariant under the infinite subgroup
of integer powers of T and can be understood as an infinite-order orbifold point.

Since the fundamental domain in which τ takes values is topologically non-trivial, we
expect τ(x), which maps the transverse space on the fundamental domain, to be a multival-
ued function of x whose monodromies are in G. On the other hand, the real part of τ has,
therefore, the typical behavior of an axion field and takes values in a circle.

12 We remove all the hats henceforth, since the results of this section will be valid for many cases and dimen-
sions apart from the N = 2B, d = 10 case. The results for D7-branes in d = 10 dimensions will be valid for
(d − 3)-branes in d dimensions.
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e2 πi/3 πi/3e

i

-1/2 +1/2

T

S

τ

Fig. 19.2. The fundamental domain of the modular group.

We can now interpret the D7-brane solution in the light of the preceding discussion. First,
it is useful to rewrite it using ω = x1 + i x2 in the form

d ˜̂s2
E = dt2 − d �y 2

7 − Im(H) dωdω̄, τ = H, (19.74)

where
H = ie−ϕ̂0hD7 ln ω, or H = ie−ϕ̂0hD7 ln ω̄, (19.75)

for D7- and anti-D7-branes (positive and negative charge w.r.t. Ĉ (0)), respectively, where we
have eliminated the constant 1 in HD7 since the solution is not asymptotically flat anyway.
If we go around the origin ω = 0 at which the (anti-)D7 is placed, then, according to the
source calculation,

ω → e2π iω, ⇒ τ → τ ± 1 = T ±1(τ ). (19.76)

The D7-brane solution has, as we expected from our general discussion, non-trivial mon-
odromy. Furthermore, the monodromy around a D7-brane with charge n is T n . For (d − 3)-
branes monodromy plays the role of charge (they are equivalent, when standard charge can
be defined), which can be represented by a monodromy matrix.

The D7-brane solution is, however, defined only in the disk |ω| < 1 due to the negative
sign of hD7 and we may be interested in different transverse spaces. The corresponding
solutions may be found thanks to the following observation: the Ansatz Eqs. (19.74) is
a solution for any H that is a holomorphic or antiholomorphic function of ω [474]. D7-
branes will be placed at points around which the monodromy of τ is T n . The restriction
to (anti)holomorphicity has to do with the impossibility of having objects with opposite
charges in equilibrium.

Observe that what appears in the metric is Im(H), not Im(τ ), even if they coincide in
this form of the solution. Then gωω̄ does not transform under G transformations of τ , but
the relation gωω̄ = Im(τ ) breaks down. In fact, the general 7-brane solution can be written
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in a more general form13

d ˜̂s2
E = dt2 − d �y 2

7 − Im(H) | f (ω)|2dωdω̄, τ = H, (19.78)

where f (ω) is any holomorphic function of ω, but f (ω) can always be reabsorbed (locally!)
into a change of coordinates ω′ = F(ω), d F/dω = f , and τ(ω′) = τ [F−1(ω′)].

H is in general multivalued and hence gωω̄ could also be. When it is, we use a multivalued
f (ω) in order to make gωω̄ single-valued. A general solution for f (ω) can be given on
the basis of the observation that Im(τ ) transforms under G (or under monodromy) as the
absolute value squared of a modular form of weight −1 would,14 i.e.

Im(τ ′) = Im(τ )

|γ τ + δ|2 , (19.79)

and, therefore, going around closed loops in transverse (ω) space Im(H) can transform
in this way for some values of γ and δ. Then, we can build a single-valued function by
multiplying Im(H) by the absolute value squared of a modular form of H of opposite
weight 1, i.e. an f [H(ω)] such that

f

[
αH + β

γH + δ

]
= (γH + δ) f (H). (19.80)

Then gωω̄ = Im(H) | f (ω)|2 will always be single-valued. The choice of modular form is
not unique, though. The choice in [474] was

f = η2(H)

N∏
n=1

(ω − ωn)
− 1

12 , (19.81)

where η is Dedekind’s function15

η(z) = q
1
24

∞∏
n=1

(1 − qn), q = e2π i z, (19.82)

13 There is another form of the general solution, which is manifestly SL(2, R)-invariant:

d ˜̂s2
E = dt2 − d �y 2

7 − e−2U dωdω̄, τ = H1/H2, e−2U = Im
(
H1H̄2

)
, (19.77)

where H1,2 are two arbitrary holomorphic functions ω transforming as a doublet under SL(2, R), both in
τ and in the metric (but e−2U is invariant, as it must be). The structure of this family is similar to that
of the SWIP solutions of N = 4, d = 4 SUGRA (Section 12.2.1). We can relate it either to the solution
Eq. (19.74) as the particular case H1 = H, H2 = 1 or to the solution Eq. (19.78) as the particular case
H1/H2 = H, f = H2 since Im(H1H̄2) = |H2|2Im(H1/H2).

14 There are no modular forms of negative weight, however; see [848].
15 Dedekind’s η function is not, strictly speaking, a modular form: only its 24th power is a weight-12 modular

form (actually, a cusp form, since it vanishes at infinity where it admits the expansion η24 = q − 24q2 + · · ·)
because its transform contains a phase factor that is a 24th root of unity. However, since we are taking its
absolute value, this phase is immaterial.
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and the ωns are the decompactification points16 at which H ∼ i ln(ω − ωn) so Im(τ ) di-
verges when we approach them. Near the decompactification points η2 ∼ (ω − ωi )

1
12 and

the metric would become singular without the additional factor �N
n=1(ω − ωn)

− 1
12 . As a

result of the presence of this factor, the spacetime will be asymptotically conical: when
|ω| → ∞, | f (ω)| ∼ |ω|− N

12 and the transverse metric takes the form

dr2 + (1 − N/12)12r2dθ2, r = |ω|1− N
12 /(1 − N/12), (19.83)

and it is asymptotically conical with deficit angle N/12 when N < 12. For N = 12 (i.e. 12
D7-branes) the space is asymptotically conical; for N > 12 it has finite volume, but it is
singular except in the exceptional case N = 24 [435, 474].

Let us now go back to the problem of finding a globally well defined D7 ((d − 3)-
brane) solution. This problem was first considered and solved in [474] with the Rie-
mann sphere as the transverse space. The crucial observation is that there is essentially
a unique function that maps the fundamental region of the modular group bijectively onto
the sphere [848]: the modular invariant j (τ ) given in terms of the even Jacobi θ functions
θ2(τ ), θ3(τ ), and θ4(τ ) by

j (τ ) = (θ8
2 + θ8

3 + θ8
4 )3

η24
. (19.84)

The simplest solution is then implicitly given by j (τ ) = ω or

τ(ω) = j−1(ω). (19.85)

More general solutions can be obtained by replacing ω by a holomorphic function h(ω),
which is often a quotient of polynomials.

j (τ ) is single-valued on Ĥ/G and j−1(ω) is multivalued on S2 with monodromy in G.
The only points around which there are non-trivial monodromies are the inverse images
of the orbifold points Ĥ/G; namely j (∞) = ∞, j (i) ≡ ωi , and j (ρ) ≡ ωρ , and the mon-
odromies are related to the transformations that leave them invariant. In fact we can describe
the monodromies of τ(ω) = j−1(ω) by a sphere with two branch cuts joining the points ∞
and ωρ and ωρ and ωi as in Figure 19.3. Crossing the first cut in the sense of the arrow, the
function jumps from τ to T (τ ); and crossing the second, it jumps from τ to S(τ ). To check
this, we can compute the monodromy along closed paths around those points. The paths
are represented in Figure 19.3 and are the inverse images of the open paths in H (closed in
H/G) represented in Figure 19.4.

Around ∞ the above solution admits the expansion τ(ω) ∼ −[1/(2π i)] ln ω + · · ·. Ev-
idently, on going once around infinity (ω → ωe−2π i ), τ → τ + 1 = T (τ ) and we can say
that this solution describes a (d − 3)-brane (a D7-brane in the ten-dimensional string con-
text) of unit charge at ω = ∞ and, due also to some other welcome properties, this is why
this solution Eq. (19.85) is generally known as the finite-energy (d − 3)-brane solution.

Around ωi the above solution admits the expansion τ(ω) ∼ i + α(ω − ωi )
1/2 + · · ·, and,

on going once around it (i.e. ω − ωi → (ω − ωi )e+2π i ), we see that, to leading order in ω −
ωi , τ → −1/τ = S(τ ). Finally, around ωρ , τ(ω) ∼ ρ + β(ω − ωρ)

1
3 + · · ·, and, on going

once around it (i.e. ω − ωρ → (ω − ωρ)e+2π i ), we see that τ → −(1 + 1/τ) = T −1S(τ ).

16 These are the points at which there are D7-branes, associated with T n monodromy.



546 The extended objects of string theory
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Fig. 19.3. The image of the fundamental domain of the modular group by j (τ ).
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Fig. 19.4. The inverse image of the monodromy paths.

Apart from the fact that these singular points are given to us by the structure of the
solution Eq. (19.85), it should be clear that the consistency of monodromy implies the
existence of other singular points apart from ∞ such that the monodromy around all of
them is T −1 [435]. The same conclusion could have been drawn from conservation of
charge. Here the consistency of monodromy plays the same role as conservation of charge:
we are dealing with a compact space and, just as the total charge has to be zero in such a
space, the “total monodromy” has to be trivial.17

It is natural to associate with each singular point characterized by a monodromy matrix
in G a (d − 3)-brane. The standard IIB D7-branes are associated with T n monodromies,
but a consistent solution on a sphere requires, as we have seen, 7-branes with S and ST
monodromy that may also have negative tensions. These 7-brane solutions are generically
known as pq 7-branes, but, as distinct from pq-strings or 5-branes (Section 19.4.3), they
are characterized by a PSL(2Z) matrix, not by a pair of charges.

19.2.9 Some simple generalizations

The extreme p-brane solutions admit many generalizations. The most interesting ones de-
scribe intersections of branes and we will study them in Section 19.6. For a single p-brane,

17 Just as in the D8-brane case, the (d − 3)-branes that we have to add may have negative tensions.
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the simplest generalizations involve either a modification of the worldvolume geometry,
which we have taken so far to be flat (p + 1)-dimensional spacetime, or a modification of
the geometry of the transverse space.

Since the supergravity equations of motion are local, it is clear that global modifications
of the worldvolume geometry such as imposing periodicity conditions on the n coordinates
will give new solutions describing the p-branes wrapped on a rectangular n-torus. Another
interesting possibility is to replace the flat worldvolume metric ηi j by gi j (t, �yp) and the
transverse metric δmn by hmn(x):

ds2 = Hα(x)gi j (x)dyi dy j − Hβ(x)hmn(x)dxmdxn. (19.86)

The equations of motion (with a minor modification of the (p + 1)-form potential Ansatz)
are still solved if gi j and hmn are Ricci-flat and H is harmonic in the new transverse space
(see [179, 391, 418, 602]). This kind of solution can also be used to describe the wrapping
of branes on cycles of more complicated spaces and also intersections.

A possible choice of transverse metric hmn consists in the replacement of the round
S( p̃+2) metric d2

( p̃+2)
by the metric of an Einstein space with the same curvature as the

round S( p̃+2) [341] (G/H coset spaces in the cases studied in [220]) in the flat metric written
in spherical coordinates dρ2 + ρ2d2

( p̃+2)
. In the M2, M5, and D3 cases, the near-horizon

limits are now the product of an AdS space and the Einstein space. This kind of solution
induces spontaneous compactification in the Einstein space and the theory is described by
a gauged supergravity with a gauge group related to the isometry group of the Einstein
space (for a review, see e.g. [401]). Furthermore, since they do not preserve all the su-
persymmetries (unlike the AdSn × Sm solutions), the supergravities will also have fewer
supercharges.

It is also possible to look directly for metrics that can be understood as near-horizon
limits (see, for instance, [389]).

19.3 The masses and charges of the p-brane solutions

In Section 19.1.1 we found the masses and charges of the extended objects of string/M the-
ory using duality arguments. We matched these with the coefficients of the harmonic func-
tions of the extreme solutions by studying the coupling of supergravity to the sources. This
procedure is, however, difficult or impossible to follow for generic solutions that represent
complex systems of extended objects or are “black” (non-extreme). In those cases we need
a procedure by which to calculate the masses and charges of the objects described by the
solutions using only the solution and the normalizations of the fields that appear in the
action. This is the subject of this section. We will follow [40, 677].

19.3.1 Masses

We need to collect here several pieces of data that are scattered over several chapters.

1. The closed-superstring worldvolume action is given in Eq. (14.1.1). T = 1/(2πα′)
is the string tension, α′ = �2

s is the Regge slope, and �s is the string length. With
that normalization of the worldvolume fields, the low-energy effective action of the
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common sector of the different superstring theories is, in the string frame, given
by Eq. (15.1). The complete effective actions of the type-IIA and -IIB superstring
theories are given in Eqs. (16.38) and (17.4), respectively.

2. In the normalization factor of Eq. (15.1) ĝ is the (dimensionless) d = 10 string
coupling constant, which is related to the dilaton vacuum expectation value by
Eq. (14.57). (Sometimes we use ĝA (ĝB, ĝI, ĝh) for the coupling constant of the type-
IIA (-IIB, -I, heterotic) superstring theory, but it should be clear from the context
which coupling constant we are talking about.)

The explicit factor of ĝ2 is meant to absorb the asymptotic value of the dilaton, so
that G(10)

N is really the ten-dimensional Newton constant. We are assuming here that
string-frame metrics are asymptotically flat.

3. When we are dimensionally reducing the above actions to d dimensions, we inte-
grate over the compact, redundant, dimensions and obtain an overall factor that is
the volume of these compact dimensions, V10−d . One finds the following relations
between the d-dimensional string coupling constant g and Newton constant G(d)

N and
the ten-dimensional ones (see Section 11.2.2):

G(d)
N = G(10)

N /V10−d, g = ĝ/V10−d . (19.87)

Here we are going to compactify on rectangular tori, with orthogonal circles, and so
the volume of the compact space is

V10−d = (2π)10−d R9 · · · Rd . (19.88)

4. The ten-dimensional Einstein metric ĝE µ̂ν̂ is related to the string metric ĝµ̂ν̂ by

ĝE µ̂ν̂ = e− φ̂
2 ĝµ̂ν̂ , (19.89)

i.e. by performing this rescaling in the above action we bring it into the canoni-
cal form because the factor e−2φ̂ in front of the curvature disappears. However, the
Einstein metric cannot be asymptotically flat if the string metric is and the factor in
front of the action is ĝ2(16πG(10)

N )−1.

Following [677], we define a modified Einstein metric g̃E µ̂ν̂ that has the same value
at infinity as the string metric and is the one to use to define masses. These masses
are the same as those masses that appear in the string spectrum and, in particular,
the mass of the fundamental string is independent of the string coupling constant:18

˜̂gE µ̂ν̂ ≡ e
−φ̂−φ̂0

2 ĝµ̂ν̂ = ĝ
1
2 ĝE µ̂ν̂ . (19.91)

If we rewrite the string effective action in terms of the modified Einstein metric, we
obtain the correct normalization factor (16πG(10)

N )−1 and no dilaton factors.

18 In d dimensions, the relation between the modified Einstein metric and the string metric is

g̃(d)
E µν

= e− 4
d−2 (φ−φ0)gµν. (19.90)



19.3 The masses and charges of the p-brane solutions 549

5. In d dimensions, the mass M of any static, asymptotically flat metric describing
a point-like object can be found from its asymptotic behavior at spatial infinity
[706, 877]. In the string-theory context, the mass ME associated with the “Einstein
metric” (i.e. with the “wrong” normalization factor g2(16πG(d)

N )−1 in the action) can
be implicitly defined by

gE t t ∼ 1 − 16πG(d)
N ME

g2(d − 2)ω(d−2)

1

|�xd−1|d−3
, �xd−1 = (x1, . . ., xd−1), (19.92)

The mass M associated with the modified Einstein metric (i.e. with the “right” nor-
malization factor (16πG(d)

N )−1) is defined analogously by,

g̃E t t ∼ 1 − 16πG(d)
N M

(d − 2)ω(d−2)

1

|�xd−1|d−3
. (19.93)

If both the string metric and the “modified string metric” are asymptotically flat (as
we have assumed) then the Einstein metric is not, and it is necessary to rescale the
coordinates with factors of g

1
4 in order to be able to use Eq. (19.92). Taking this into

account, we find that the relation (in any dimension) between ME and M is given by

ME = g
1
4 M. (19.94)

6. Under IIB S duality, it is the (unmodified) Einstein-frame metric that is invariant.
Then ME is S-duality-invariant, which implies the following S-duality transformation
rule for M , which was already given in Eq. (19.3):

M ′
E = ME, ⇒ M ′ = g

′− 1
4

B g
1
4
B M = g

1
2
B M. (19.95)

We can apply these formulae to find the masses of any of the solutions we have stud-
ied. They should coincide with the masses of the corresponding states in string/M theory.
Let us take, for example, the F1 solution given in Eq. (19.56), assuming that the string is
compactified on a circle and y is a compact dimension so we can dimensionally reduce the
above solution, and calculate the modified Einstein mass of the resulting point-like object
that lives in d = 9 by using Eq. (19.93).

First, we need the nine-dimensional dilaton (see Eq. (15.16)),

e−2(φ−φ0) = e−2(φ̂−φ̂0)
√

|ĝyy| = H
1
2

F1, (19.96)

so, in this case, the relation between the nine-dimensional metrics is

g̃Eµν = H
1
7

F1 gµν, ⇒ g̃E t t = H
− 6

7
F1 ∼ 1 − 6hF1

7ρ6
, (19.97)

which, compared with Eq. (19.93), gives the right value,

MF1w = 6hF1ω(7)

16πG(9)
N

= 12π R9hF1ω(7)

16πG(10)
N

= R9

�9
s

, (19.98)

on account of Eqs. (19.87), (19.26), and (19.57).
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For the Dp-brane solutions (p < 7) Eqs. (19.64) compactified on p circles we calculate
first the (10 − p)-dimensional dilaton, which is given by

e−2(φ−φ0) = e−2(φ̂−φ̂0)
√

ĝy1 y1 · · · ĝy p y p = H
p−6

4
Dp . (19.99)

Then, according to Eq. (19.90),

g̃E µν = H
p−6

2(8−p)

Dp gµν, ⇒ g̃E t t = H
− p−7

p−8
Dp ∼ 1 − p − 7

p − 8
hDp

1

|�x p−9|7−p
, (19.100)

which, compared with Eq. (19.93), gives again the right value,

MDp = (7 − p)hDpω(8−p)

16πG(10−p)

N

= (7 − p)(2π)p R9 · · · R10−phDpω(8−p)

16πG(10)
N

= R9 · · · R10−p

�
p+1
s g

.

(19.101)

19.3.2 Charges

With the normalization of the superstring effective actions Eqs. (16.38) and (17.4), the
(electric) charges associated with the KR 2-form and the RR (p + 1)-form potentials,
which are carried, respectively, by fundamental strings and Dp-branes, can be defined by
the integrals19

qF1 = g2

16πG(10)
N

∫
S7∞

e−2φ̂ � Ĥ , qDp = g2

16πG(10)
N

∫
S8−p

∞

�Ĝ(p+2), (19.102)

whereas the charge associated with the NSNS 6-form potential, carried by the S5, is given
by

qS5 = g2

16πG(10)
N

∫
S4∞

e2φ̂ � Ĥ (7) = g2

16πG(10)
N

∫
S4∞

Ĥ . (19.103)

qF1 and qS5 are the electric–magnetic duals of each other, as are qDp and qD p̃. With the
above normalization, the generalization of the Dirac quantization condition for extended
objects reads

qDpqD p̃ = 2πn
16πG(10)

N

ĝ2
, qF1qS5 = 2πn

16πG(10)
N

ĝ2
, n ∈ Z. (19.104)

It is easy to see that the values of the charges of the string/M-theory solutions coincide
with the values we gave in Section 19.1.1. It should be stressed that both the masses and
the charges of the extreme solutions are determined by the same h. This is due to the fact
that the masses (tensions) and charges of these objects saturate BPS bounds. The solu-
tions preserve half of the supersymmetries of the corresponding supergravity theory (see
Section 19.5.1).

19 These definitions are valid for field configurations in which only one potential is non-trivial. In general, the
charge is obtained by integrating the form F such that d F = 0 is the equation of motion. (This is sometimes
called the Page charge [687].) The presence of non-trivial Chern–Simons terms in the action implies that F
consists in various terms, as we will discuss in Section 19.6.1.
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19.4 Duality of string-theory solutions

In Section 19.1 we used string dualities to find and relate all the extended objects of string
and M theories. In the subsequent sections we have established a relation between those
objects and certain classical solutions of the string effective actions and d = 11 supergravity
using arguments based on the symmetries of the solutions which determine the dimensions
of the worldvolumes of the objects they describe, on the basis of the charges they carry and
the matching with p-brane sources.

On the other hand, in Chapters 15–17 we learned how string dualities manifest them-
selves in string effective actions and, to close the loop, here we are going to see how the
duality relations between string states are realized as relations between solutions of the
effective actions. These relations are represented in Figures 19.4.1 and 19.4.1.

The three main types of duality relations that we are going to study are (i) those between
the solutions of d = 11 supergravity and solutions of N = 2A, d = 10 supergravity, via the
dimensional-reduction formulae Eqs. (16.35); (ii) those between solutions of N = 2A, d =
10 and N = 2B, d = 10 supergravity, via the type-II Buscher T-duality rules Eqs. (17.36)
and (17.37); and (iii) those between solutions of N = 2B, d = 10 supergravity, via SL(2, Z)

transformations Eqs. (17.21) or (17.23) and (17.24). We are also going to need the results
of Section 11.3.1 in order to perform reductions on transverse directions.

The supergravity duality transformations can also be used to construct new solutions.
We will study two families of solutions constructed in this way: pq strings and pq
5-branes.

19.4.1 N = 2A, d = 10 SUEGRA solutions from d = 11 SUGRA solutions

There are two basic p-brane solutions of d = 11 SUGRA: the M2- and M5-brane solutions
Eqs. (19.45) and (19.50). If they really describe the M2- and M5-brane states of M theory,
their reduction must give rise to the F1A, D2, D4, and S5A solutions Eqs. (19.56), (19.64)
and (19.60) of N = 2A, d = 10 SUEGRA [14, 335, 899] under double and direct dimen-
sional reductions, i.e. in a worldvolume direction (corresponding to branes wrapped in the
compact dimension) or in a transverse direction.

Double dimensional reductions are, by definition, made in a direction none of the fields
depends on, and one just has to rewrite the solution in d = 10 variables using Eqs. (16.35)
in a straightforward manner. The only subtlety is that, in order to have a non-trivial value
for ĝ = eφ̂0 , one must first rescale the compact worldvolume coordinate (that we call here
z) z → e

2
3 φ̂0 z in Eqs. (19.45) and (19.50).

Direct dimensional reductions are made precisely in one of the directions on which the
p-brane metric depends. We could substitute the harmonic function for another one in-
dependent of the compact direction but, in that case, we would lose the relation to the
quantum object it represents. The right procedure is, as we explained in Section 11.3.1, to
construct first the correct solution that describes the p-brane in a transverse space with a
compact coordinate, which amounts to solving the Laplace equation in such a space, and
then Fourier-expand the solution, keeping only the zero mode. The solution is the same
harmonic function as that which describes an infinite periodic array of parallel p-branes
separated by a distance equal to the length of the compact direction. This harmonic function
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is the linear superposition of those of each p-brane:

Hp = 1 + h p

|�x p̃+3| p̃+1
−→ Hp = 1 +

∑
m∈Z

h p

[|�x p̃+2|2 + (z + 2πm Rz)]
p̃+1

2

. (19.105)

The zero mode can then be found using Eqs. (11.124). For M2- and M5-branes with a
compact transverse coordinate ( p̃ = 5, 2 and n = 6, 3, respectively) we find

HM2 ∼ 1 + hM2ω(5)

2π Rzω(4)

1

|�x7|5 = HD2, HM5 ∼ 1 + hM5ω(2)

2π Rzω(1)

1

|�x4|2 = HS5A, (19.106)

using the actual values of the integration constants h. The reduction is now straightforward.
This procedure is sometimes called smearing. The brane is said to be delocalized in one

dimension. Sometimes duality gives delocalized solutions (for instance, oxidizing the F1A
and D4 solutions using Eqs. (16.37)) and one has to show that one can indeed add the
missing coordinate. This is a clear insufficiency of these methods.

There are more extended solutions in N = 2A, d = 10 SUEGRA that do not originate
on M2- or M5-branes: the D0, D6, and D8 solutions. The d = 11 origin of the D8 is not
known. To find the origins of the D0 and D6, we can simply apply the oxidation formulae
Eqs. (16.37).

For the D0, we find that the only non-trivial field is the metric, which has the form of
the pp-wave Eq. (10.42) with H replaced by HD0 and z by e

2
3 φ̂0 . Actually, HD0 is the zero

mode of the harmonic function H of an AS shock pp-wave moving in the compact 11th
dimension. The reduction of such a shock wave was studied in Section 11.3.2 and, if we
compare hD0 with h in Eq. (11.131), we find that it corresponds to a shock wave with the
minimal momentum pz = 1/−�(11)

Planck. The D0-brane is, therefore, nothing but a KK mode.
The D6 also oxidizes to a purely gravitational solution: the KK monopole Eq. (11.160)

(with six extra dimensions) with k0 replaced by e
2
3 φ̂0 and H by HD6. Observe that hD6 =

�sg/2 = Rz/2 also has the right value, which is related to the periodicity of z and diverges
in the decompactification limit. This means that the KK monopole is not a solution of
standard d = 11 supergravity and can be included only when a dimension is compact.

This exercise shows the need to add purely gravitational solutions such as KK monopoles
and waves in order to be able to explain the spectrum of objects of type-IIA superstring the-
ory. Of course, once they are included in d = 11, if we reduce in a different dimension we
find a gravitational wave and a KK monopole in (compactified) N = 2A, d = 10 supergrav-
ity.

19.4.2 N = 2A/B, d = 10 SUEGRA T-dual solutions

The type-II T-duality rules Eqs. (17.36) and (17.37) were derived using dimensional reduc-
tion and, therefore, if we want to T-dualize p-brane solutions in a transverse direction, we
have to delocalize them previously in that direction. Conversely, T duality in a worldvol-
ume direction typically takes us to a p-brane solution that is delocalized in a transverse
direction. The main example is the whole chain of T dualities that relates the Dp-branes:
if we start with the D0, fully localized in nine-dimensional transverse space, we have to
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delocalize it in one direction in order to find the D-string, which will be fully localized in
eight dimensions and vice-versa.

One finds a precise correspondence through T duality between the coefficients hDp that
we have determined before: on T-dualizing a Dp in a transverse direction, we find the
following coefficient after smearing:

hDpω(6−p)

2π Rω(5−p)

= (2π�s)
7−pg

2π R

ω(6−p)

(7 − p)ω(8−p)ω(6−p)

. (19.107)

Using the T-duality rules for g and R Eqs. (19.1) and the identity

ω(n−1)

nω(n+1)ω(n−2)

= 1

(n − 1)ω(n)

,

we find hD(p+1)(g′), as given in Eq. (19.65).
Another example of T duality, namely that between the F1 and an AS shock wave that

describes a string moving in a compact direction, can be found in Section 15.3. It is also a
simple exercise to relate the S5, and KK monopole solutions by T duality in a transverse
direction of the S5, which becomes the special isometric direction of the KK monopole.

19.4.3 S duality of N = 2B, d = 10 SUEGRA solutions: pq-branes

Performing S-duality transformations to relate the F1B to the D1 and the S5B to the D5
poses no problems but offers some opportunities: SL(2, R) is a three-dimensional group
and, after a general transformation, the new solution may have up to three new independent
physical parameters. This procedure was used by Schwarz in [822] to construct a solution
with four independent parameters. In the (unmodified) Einstein frame in which SL(2, R)

invariance is manifest, it takes the form

dŝ2
E = H

− 3
4

pq1[dt2 − dy2] − H
1
4
pq1d �x 2

8 ,

B̂t y = �a(H−1
pq1 − 1), M̂ = �a�aT H

− 1
2

pq1 + �b�bT H
1
2
pq1,

Hpq1 = 1 + h pq1ĝ− 3
2

|�x8|6 , �aTη�b = 1.

(19.108)

Observe that h pq1 comes with a factor ĝ− 3
2 to take into account the rescaling of co-

ordinates necessary to relate this metric to an asymptotically flat string of modified string
metric with the usual formulae. The constant vectors �a and �b can be seen as the two column
vectors of an SL(2, R) matrix,(

�a �b
)

=
(

α β

γ δ

)
, �aTη�b = αδ − βγ = 1, (19.109)

and transform covariantly under SL(2, R), which leaves this family invariant. The four
independent parameters correspond to the asymptotic values of the two scalars, combined
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in the matrix M̂0, and the charges qF1 and qD1 . The mass must be a function of those four
parameters (again, a saturated BPS bound). To find the values of the physical parameters of
this solution in terms of the constants �a, �b, and h pq1, we can use an SL(2, R) definition for
the charges: (

qD1

qF1B

)
= �q = g2

16πG(10)
N

∫
S7∞

�M̂−1 �̂H = 6ω(7)h pq1ĝ− 3
2

(2π�s)7�s
M̂−1

0 �a, (19.110)

where M̂0 = �a�a T + �b�b T. Using the property �aTM̂−1
0 �a = 1, we find the relation between �q

and h pq1:

h pq1 = (2π�s)
7�sĝ

3
2

6ω(7)

√
�qTM̂−1

0 �q. (19.111)

We can now express the full solution in terms of the physical parameters M0 and �q .
The object described by any of these solutions (usually called the pq-string) is a p = 1

object (a string) that has both qF1B and qD1 charges in a IIB vacuum characterized by the
moduli M0 (eϕ̂0 = ĝ and Ĉ (0)

0 = θ̂/(2π)), and can be understood as the superposition of
D1s and F1Bs. The values of the charges are therefore quantized: they can only be multiples
of those of one (D, F) string: n/(2π�2

s ). The tension of this object is proportional to h pq1,
and, therefore, for trivial moduli, to√

q2
D1 + q2

F1B < |qD1| + |qF1B|.
The tension of two parallel (or coincident) strings of the same kind would be the sum
of the tensions of each of them (bound states at threshold), which means that there is
zero interaction energy and it costs zero energy to disintegrate the system. In this case, the
tension is in general smaller, which means that this solution represents a bound state of
F1Bs and D1s with non-zero binding energy (non-threshold bound states). However, the
solution is stable with respect to disintegration only if the numbers of D1s and F1As are
relatively prime: if they have a GCT different from 1, say N , the tension is N times that of
a single pq-string with nD1/N and nF1/N strings, and it takes zero energy to disintegrate
it. The pq-strings with coprime numbers of strings are the basic states of the theory.

A solution describing analogous bound states of D5 and S5Bs (pq-5-branes) was con-
structed in [670]:

dŝ2
E = H

− 1
4

pq5[dt2 − d �y 2
5 ] − H

3
4
pq5d �x 2

5 ,

B̂t y1···y5 = η�b(H−1
pq5 − 1), M̂ = �a�a T H

1
2
pq5 + �b�b T H

− 1
2

pq5,

Hpq5 = 1 + h pq5
ĝ− 1

2

|�x4|2 , �aTη�b = 1.

(19.112)

On T-dualizing these solutions, one obtains new bound states of F1s and Dps [671,
672]. These solutions describe intersecting branes with non-zero interaction energy. Other
intersecting solutions with non-zero interaction energy are, for instance, the systems of
Dp-branes and D(p + 2)-branes studied in [181, 256].
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19.5 String-theory extended objects from superalgebras

In Chapter 5 we introduced supergravities as the gauge theories of the supersymmetry al-
gebras. These contain a great deal of information about the global and local symmetries of
each supergravity theory. When we studied four-dimensional Poincaré-extended supersym-
metry algebras, we saw that, associated with each of the possible “electric” central charges
Qi j , there was an SO(2) gauge potential Ai j

µ whose gauge symmetry is generated by Qi j .
They contributed to the gauge superpotential with a term 1

2 Ai j
µ Qi j . The “magnetic” central

charges could be associated with the electric–magnetic dual potentials, which are not in-
dependent. The central charges could be associated with electric and magnetic charges of
supergravity solutions in Chapter 13 and the superalgebra could be used to see whether the
solutions preserved any supersymmetries.

This correspondence between central charges and Abelian potentials holds for “quasi-
central charges” with Lorentz indices as well, and with each charge Z (p)

a1···ap we can as-
sociate in the supergravity theory a (p + 1)-form potential A(p+1) that transforms under
Abelian gauge transformations. They contribute to the gauge superpotential with a term
(1/p!)A(p+1)

µ
a1···ap Z (p)

a1···ap . The electric–magnetic dual ( p̃ + 1)-form potential is associ-

ated with a Z ( p̃)
a1···ap̃ quasi-central charge that must also be present in the superalgebra. It

is clear that these quasi-central charges must be associated with p-brane solutions of the
supergravity theory [59] and that the superalgebra can be used to study their unbroken
supersymmetries.

This is a very powerful tool that can be used to determine which objects/states may exist
in a supergravity theory knowing just which quasi-central charges are algebraically allowed
in the anticommutator of the supercharges of a given superalgebra.20 Here we are going to
write the superalgebras of the string/M-theory effective actions (supergravities) and we are
going to study some examples, following in part [905] and starting with the algebra of
d = 11 supergravity.

The superalgebra of d = 11 superalgebra (also known as M superalgebra) admits quasi-
central charges of ranks 1, 2, 5, 6, 9, and 10. The last three values are just the duals of the
first three. Therefore, the M superalgebra is usually written in the form{ ˆ̂Qα,

ˆ̂Qβ
}

= c( ˆ̂
�

ˆ̂a ˆ̂C−1)αβ ˆ̂P ˆ̂a + c2

2!
(
ˆ̂
�

ˆ̂a ˆ̂b ˆ̂C−1)αβ ˆ̂Z (2)

ˆ̂a ˆ̂b
+ c5

5!
(
ˆ̂
�

ˆ̂a1··· ˆ̂a5 ˆ̂C−1)αβ ˆ̂Z (5)

ˆ̂a1··· ˆ̂a5
, (19.113)

with constants c, c2, and c5 that are convention-dependent and immaterial for our discus-
sion.21 We immediately recognize the momentum and the charges associated with the M2-
and M5-branes. The gravitational wave is associated with the momentum, but what is the
charge associated with the KK monopole (KK7M)? Furthermore, is there a charge for the
KK9M? As a matter of fact, as we have stressed repeatedly, these KK-branes are not states

20 We found all the possibilities in d = 4 in Section 5.4.1. In higher dimensions the analysis is almost identical.
21 This formula can be interpreted as a decomposition of a symmetric bi-spinor into Lorentz tensors. A con-

sistency check is provided by the counting of independent components on both sides of the equation:
33 × 32/2. Physically, this formula should be understood as an inventory of possibilities: for instance, the
superalgebra of N = 1, d = 10 supergravity admits quasi-central charges of ranks 1 and 5, but, physically,
we expect on the r.h.s. one rank-5 and two rank-1 charges: momentum and the string charge. The counting
on the two sides gives different results, but physically it is correct.
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of the uncompactified d = 11 theory and appear only after compactification. Still, we can
include them in the d = 11 superalgebra using dual charges and vectors ka, and la that
project the charges in the compact direction. The two terms that correspond to the KK7M
and the KK9M and should be added are [666]

+c6

6!
(
ˆ̂
�

ˆ̂a1··· ˆ̂a6 ˆ̂C−1)αβ ˆ̂Z (7)

ˆ̂a1··· ˆ̂a7
k

ˆ̂a7 + c9

9!
(
ˆ̂
�

ˆ̂a1··· ˆ̂a9 ˆ̂C−1)αβ ˆ̂Z (8)

ˆ̂a1··· ˆ̂a8
l ˆ̂a9

. (19.114)

The dimensional reduction of the M algebra should give the N = 2A, d = 10 superalge-
bra with a charge for each of the known objects of this theory. We need only reduce the vec-
tor indices (as we did in the reduction of d = 11 supergravity). Each of the standard quasi-

central charges gives two in d = 10: ˆ̂Pâ = P̂â , ˆ̂Pz = Ẑ (0), ˆ̂Z (2)

âb̂
= Ẑ (2)

âb̂
, ˆ̂Z (2)

âz = Ẑ (1)

â , etc. The

non-standard ones give rise to three, for instance ˆ̂Z (7)

â1···â7
= Ẑ (7)

â1···â7
, ˆ̂Z (7)

â1···â6z = Ẑ (6)

â1···â6
, and

ˆ̂Z (7)

â1···zâ6
= Ẑ (6)

â1···â6
, corresponding, respectively, to the KK7A, the D6, and the KK6A. The

KK6A is the standard KK monopole. The KK7A is the solution one obtains by reducing
the KK7M (the M-theory KK monopole) in a genuine transverse direction (the harmonic
function is smeared by the usual procedure and then one solves for the vector field in the
metric [691]).

The result of the reduction is the N = 2A, d = 10 superalgebra generalized with the
inclusion of KK-brane charges:{

Q̂α, Q̂β
}

= c(�̂âĈ−1)αβ P̂â +
∑

n=0,1,4,8

cn

n!
(�̂â1···ân �̂11Ĉ−1)αβZ (n)

â1···ân

+
∑

n=2,5,6

cn

n!
(�̂â1···ân Ĉ−1)αβẐ (n)

â1···ân

+ c5

5!
(�̂â1···â5�̂11Ĉ−1)αβẐ (6)

â1···â5â6
k̂â6 + c6

6!
(�̂â1···â6 Ĉ−1)αβẐ (7)

â1···â6â7
l̂ â7

+ c8

8!
(�̂â1···â8 Ĉ−1)αβẐ (7)

â1···â7
m̂â8 + c9

9!
(�̂â1···â9 Ĉ−1)αβẐ (8)

â1···â8
n̂â9 . (19.115)

Let us now turn to the N = 2B, d = 10 superalgebra. It contains an SO(2) pair of chiral
supercharges labeled by i, j = 1, 2 and the charges that appear on the r.h.s. of their anti-
commutator carry a pair symmetric or antisymmetric in these indices. The allowed ranks
for antisymmetric indices are 3 and 7 and those for symmetric indices are 1,5, and 9. The
charges with antisymmetric indices are proportional to σ 2 and those with symmetric indices
can be decomposed into a basis of symmetric 2 × 2 matrices: I, σ 1 and σ 3. The charges pro-
portional to σ 2 and I are invariant under SO(2), and charges proportional to σ 1 and σ 3 form
SO(2) doublets. Combining the latter into symmetric traceless charges denoted by (i j), the
algebra is usually written in the form{

Q̂i α, Q̂ j β
}

= cδi j (�̂âĈ−1)αβ P̂â + c1(�̂
âĈ−1)αβẐ (1)(i j)

â

+ c3

3!
(σ 2)i j (�̂â1â2â3 Ĉ−1)αβẐ (3)

â1â2â3

+ c5

5!
δi j (�̂â1···â5 Ĉ−1)αβẐ (5)

â1···â5
+ c5

5!
(�̂â1···â5 Ĉ−1)αβẐ (5)(i j)

â1···â5
, (19.116)

where it is understood that the r.h.s. has to be projected over the positive-chirality subspace.
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SL(2, R) acts on the spinors through SO(2) rotations and, therefore, Ẑ (1)(i j) and Ẑ (5)(i j)

correspond to the two doublets of strings (D1 and F1B) and 5-branes (D5 and S5B). Ẑ (3)

corresponds to the S-duality-invariant D3. There is no invariant 5-brane and Ẑ (5)

â1···â5
should

be replaced by Ẑ (6)

â1···â5â6
k̂â6 associated with the KK6B. To these charges one should add

Ẑ (9)(i j) for the D9–S9 doublet and two Ẑ (7)s for the D7–S7 doublet22 if we are to relate this
superalgebra to the N = 2A, d = 10 by T duality, as we should expect. As Figures 19.4.1
and 19.4.1 show, more charges with more auxiliary vectors need to be included if one really
wants to have complete agreement and consistency with all the dualities conjectured.

19.5.1 Unbroken supersymmetries of string-theory solutions

If we follow now the reasoning of Section 13.5.1, we arrive at the conclusion that the
quantum theory based on the above superalgebras admits states with momentum P0 = T(p)

(the tension) and the quasi-central charge Z (p)

1···p = T(p) corresponding to extended objects
that are invariant under the supersymmetry transformations generated by spinors that satisfy
constraints of the form Eq. (13.120) that we can rewrite in the form

(I ± �01···pO)ε = 0, (19.117)

where O is an operator that depends on the theory and the state. In all cases �01···pO is a
traceless operator that squares to the identity and half of its eigenvalues are +1 and the other
half −1. Therefore 1

2(I ± �01···pO) is a projector that eliminates half of the components of
ε. There is, therefore, a half-supersymmetric state for each quasi-central charge in the above
superalgebras and we expect the associated solutions of the supergravity theories (which
will be extreme solutions) to have unbroken supersymmetries generated by Killing spinors
that satisfy the same constraints. Let us see some examples.

Unbroken supersymmetries of the M2-brane. We are going to work out in detail this ex-
ample to illustrate how the Killing-spinor equations are usually solved. The rest of the
examples follow the same pattern and we will give only the results.

The d = 11 SUGRA Killing-spinor equations are δ ˆ̂κ
ˆ̂
ψ ˆ̂µ = 0 with δ ˆ̂κ

ˆ̂
ψ ˆ̂µ given by

Eq. (16.8). We just have to substitute into it the spin connection and 4-form components of
the M2 solution Eq. (19.45). Choosing the Elfbeins

ˆ̂ei
j = H

− 1
3

M2 δi
j , ˆ̂em

n = H
1
6

M2δm
n, (19.118)

and using the results of Appendix F.2.4, we find the non-vanishing components

ˆ̂ωm
nl = − 1

3 H−1
M2∂q HM2ηm

[nηl]q,

ˆ̂ωi
m j = 2

3 H
− 3

2
M2 ∂q HM2ηi

[mη j]q,

ˆ̂Gmi jk = ∓εi jk H
− 7

6
M2 ∂m HM2, (19.119)

22 Each of them is SO(2) invariant, but we may assume that they are interchanged by S duality. The situation
is still not completely clear since, as we have stressed before, there is an infinite number of pq 7-branes, not
just a doublet, and this is difficult to reflect in the superalgebra.
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and substituting, and assuming that ∂i
ˆ̂κ = 0, we find the equations

δ ˆ̂κ
ˆ̂
ψ i = 1

3 H
− 3

2
M2 ∂n HM2

ˆ̂
�(i)

n

(
1 ∓ i

2
ε(i) jk

ˆ̂
�(i) jk

)
ˆ̂κ = 0,

δ ˆ̂κ
ˆ̂
ψm = 2∂m

ˆ̂κ − 1
6 H−1

M2∂n HM2

[ ˆ̂
�mn ∓ i

( ˆ̂
�mn + 2δmn

) ˆ̂
�012

] ˆ̂κ = 0.

(19.120)

The first equation is purely algebraic and can be solved only if ˆ̂κ satisfies the constraint(
1 ∓ i ˆ̂

�012
) ˆ̂κ = 0. (19.121)

Using this constraint in the second equation, it takes the form

2
(
∂m + 1

6 H−1
M2∂m HM2

) ˆ̂κ = 0, (19.122)

whose solution is ˆ̂κ = H
− 1

6
M2

ˆ̂κ0, where ˆ̂κ0 is a constant spinor. The M2 Killing spinors are,
therefore,

ˆ̂κ = H
− 1

6
M2

ˆ̂κ0,
(
1 ∓ i ˆ̂

�012
) ˆ̂κ0 = 0. (19.123)

The constraint has the form Eq. (19.117) predicted by the supersymmetry algebra and
therefore only half of the components of ˆ̂κ0 are independent and only half of the supersym-
metries are unbroken. We have included the two possible signs of the M2 charge. They are
irrelevant for a single brane but may be crucial in the presence of other branes.

Observe that the Killing spinor exists for any function HM2 (not necessarily harmonic!).
The Killing-spinor equations do not imply the equations of motion that restrict HM2 to be
harmonic. On the other hand, strictly speaking, the solution is supersymmetric only if the
Killing spinors have the correct asymptotic behavior: if the solution is asymptotically the
vacuum, the Killing spinors have to approach the vacuum Killing spinors asymptotically.
Furthermore, they have to be normalizable. These conditions are satisfied if HM2 is the
harmonic function that describes parallel M2-branes. If HM2 corresponds to the AdS4 × S7

solution, which is a vacuum solution itself, the asymptotic behavior is right by definition.
Furthermore, the Killing-spinor equation can be solved for spinors that do not satisfy the
constraint by introducing dependence on the “worldvolume” coordinates and the solution
is maximally supersymmetric. The group-theoretical methods explained in Chapter 13 are
better suited for solving the equation.

Unbroken supersymmetries of the M5-brane. An entirely analogous calculation gives

ˆ̂κ = H
− 1

12
M5

ˆ̂κ0,
(

1 ∓ ˆ̂
�012345

) ˆ̂κ0 = 0. (19.124)

As in the M2 case, in the near-horizon limit (or, equivalently, on choosing the HM5 that
describes the AdS7 × S4 solution) the spinors that do not satisfy the constraint also solve
the Killing-spinor equation and the solution is maximally supersymmetric.
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Unbroken supersymmetries of KK monopoles. The KK-monopole solution, in all theories,
is the direct product of the d = 4 Euclidean Taub–NUT solution and (d − 4)-dimensional
Minkowski spacetime and can be seen as a (d − 5)-brane. In all cases, the Killing-spinor
equations reduce to

∇mκ = 0, m = (d − 4), (d − 3), (d − 2), (d − 1), (19.125)

since the solution is trivial in the worldvolume directions. As discussed on page 399, in
the frame in which the spin connection is (anti-)self-dual, Eq. (9.43), the Killing spinors
are constant spinors satisfying the constraint (1 ± �(d−4)(d−3)(d−2)(d−1))κ = 0, which can
be rewritten in the form Eq. (19.117) with p = d − 5 and O depending on the specific
theory. For N = 1, d = 11, N = 2A, d = 10, and N = 2B, d = 10 (with self-dual RR 5-
form), respectively, we have

(
1 ∓ i ˆ̂

�0123456
) ˆ̂κ = 0

(
1 ∓ �̂012345�̂11

)
κ̂ = 0,

(
1 ± �̂012345

)
κ̂ = 0.

(19.126)

Unbroken supersymmetries of the Dp-branes. Taking into account that the NSNS 3-form
field strength is zero for these solutions, and that only the field strength Ĝ(p+2) and its dual,
whose combinations add up, is different from zero, the N = 2A and N = 2B Killing-spinor
equations can be written in the following unified way:

δκ̂ ψ̂µ̂ =
{
∂µ̂ − 1

4 �ω̂µ̂ + 1
8 eφ̂

1

(p + 2)!
�Ĝ(p+2)�̂µ̂ODp

}
κ̂,

δκ̂ λ̂ =
{
�∂φ̂ − 1

4 eφ̂
p − 3

(p + 2)!
�Ĝ(p+2)ODp

}
κ̂,

(19.127)

where

ODp = i(−�̂11)
p+2

2 , p odd (IIA), ODp = P p+3
2

, p even (IIB), (19.128)

where Pn is defined in Eq. (17.11).
With this notation, the Killing spinors are given by

κ̂ = H
− 1

8
Dp κ̂0,

(
1 ∓ �̂01···pODp

)
κ̂0 = 0. (19.129)

Unbroken supersymmetries of the fundamental string. Since, for this solution, the RR po-
tentials vanish, we can write the Killing-spinor equations for the N = 2 and N = 1 theories
in the unified form

δκ̂ ψ̂µ̂ =
{
∂µ̂ − 1

4

(
�ω̂µ̂ + 1

2 �Ĥµ̂O
)}

κ̂ = 0,

δκ̂ λ̂ =
{
� ∂φ̂ − (1/12) �ĤO

}
κ̂ = 0,

(19.130)
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where κ̂ is a Majorana spinor, a pair of Majorana–Weyl spinors, or a Majorana–Weyl spinor
and OF1 = �̂11, σ

3, and I, for the N = 2A, 2B, and 1 theories, respectively. The solutions
are given by

κ̂ = H
1
4

F1κ0,
(

1 ± �̂01OF1

)
κ̂0 = 0. (19.131)

Unbroken supersymmetries of the solitonic 5-brane. The N = 2A, 2B, 1, d = 10 cases can
also be treated in a unified way. The result is

κ̂ = κ̂0,
(

1 ± �̂0···5OS5

)
κ̂0 = 0. (19.132)

where now OS5 = σ 3 for the N = 2B theory and I in the other two cases.
Observe that, up to possible �̂11 factors, this is essentially the projector for a metric of

SU(2) holonomy (see the discussion on page 399) in the frame in which the spin connec-
tion is (anti-)self-dual (because the Killing spinor is constant). Actually, the Killing-spinor
equation for the S5 can be seen as the condition of covariant constancy of the spinor with
respect to the torsion spin connection ̂

(±)

µ̂
= ω̂µ̂ ± �Ĥµ̂ in the proper subspaces of O. The

torsionful spin connection for the S5 is identical to that of the BPST instanton given in
Section 9.2.2.

T duality of the Killing spinors. Several of the solutions whose Killing spinors we have
calculated are related by T duality and so must be the Killing spinors themselves. The
T-duality transformation rules for the Killing spinors are given in Eqs. (17.40) and here
we are going to check them on Dp-brane Killing spinors. Clearly, the H -dependent factor
plays no role and we are going to focus on the projectors.

The D0-brane Killing spinor satisfies(
1 ± i �̂0�̂11

)
κ̂D0 = 0, ⇒ �̂11κ̂D0 = ±i �̂0κ̂D0. (19.133)

A T-duality transformation in the ninth direction gives the following two Majorana–Weyl
Killing spinors of the N = 2B theory

κ̂1
D1 = − i

2
�̂9(1 + �̂11)κ̂D0, κ̂2

D1 = 1
2 �̂

9(1 − �̂11)κ̂D0. (19.134)

Using the D0 constraint above, we can rewrite them in the form

κ̂1
D1 = ∓�̂09 1

2(1 ∓ i �̂0)κ̂D0, κ̂2
D1 = 1

2(1 ∓ i �̂0)κ̂D0, ⇒ (I ± �̂09σ 1)κ̂D1 = 0,

(19.135)

which is the constraint of the D1 Killing spinor. The dependence on H is clearly correct.
Another T-duality transformation in the eighth direction gives, using the constraint of

κ̂D1,

κ̂D2 = κ̂2
D1 − i �̂8κ̂1

D1 ± i �̂098
(
κ̂2

D1 − i �̂8κ̂1
D1

)
, ⇒ (

1 ∓ i �̂098
)
κ̂D2 = 0, (19.136)

which is the D2-brane Killing-spinor algebraic constraint.
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Maximally supersymmetric vacua of string and M theories. We have mentioned that the
AdS4 × S7 and AdS7 × S4 solutions of d = 11 supergravity Eqs. (19.54) and Eqs. (19.47)
are maximally supersymmetric solutions and, therefore, vacua of the theory. The metrics
of these spaces are products of those of symmetric spaces and the Killing spinors and
symmetry superalgebras can be constructed and studied using the methods of Chapter 13
(see [25]). The superalgebras are extended AdS superalgebras of the kind we studied in
Section 5.4, written in 11-dimensional notation. These are also the superalgebras of the
gauged SUEGRAs one obtains by compactification on S7 and S4.

These are not the only maximally supersymmetric solutions of d = 11 supergravity since
we can always take the Penrose limit of any solution while preserving (or increasing) the
number of supersymmetries [158, 160, 495, 764]. The Penrose limits of the above two
vacua give the same KG11 solution (first found in [636]) which has an Hpp-wave metric of
the form Eq. (10.18) with

ˆ̂Gux1···x3 = λ, Ai j =




− 1

18
λ2δi j i, j = 1, 2, 3,

− 1

72
λ2δi j i, j = 4, . . ., 9.

(19.137)

The symmetry superalgebra of this solution was studied in [392]. It does not seem to be
associated with any known supergravity. The same happens for the other KG solutions.

There are no more maximally supersymmetric vacua in d = 11 [393, 636]. Let us turn
now to the ten-dimensional theories. In the N = 2A, 1 cases the only maximally supersym-
metric vacuum is Minkowski spacetime [393]. In the N = 2B theory there is, as we have
seen, a maximally supersymmetric solution with the metric of AdS5 × S5 Eq. (19.67). The
superalgebra is that of gauged N = 4, d = 5 SUEGRA with gauge group SO(6), but it is
naturally written in ten-dimensional notation. The Penrose limit gives the maximally super-
symmetric KG10 solution [159] which also has an Hpp-wave metric of the form Eq. (10.18)
with

Ĝ(5)

ux1···x4 = Ĝ(5)

ux5···x8 = λ, Ai j = − 1
2δi jλ

2, i, j, = 1, . . ., 8, (19.138)

in our conventions.
There are no more maximally supersymmetric vacua in d = 10 [393], but there are other

vacua with fewer supersymmetries, which are perhaps more interesting from a phenomeno-
logical point of view. We have mentioned some of them (those that can be obtained by re-
placing the spheres by other Einstein spaces). A complete classification is still lacking, but
there is currently intense work in this direction (see, for instance, [423, 582]).

19.6 Intersections

Although now it may seem natural to look for solutions that represent simultaneously
branes of different kinds in equilibrium, the first solutions of that kind were only identi-
fied in [753] among general solutions found years before in [494]. After that, very many
solutions were quickly constructed and the basic rules that govern their existence stud-
ied. Trying to review all these solutions and the various approaches in depth in the space
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available would be utterly hopeless. Thus, we will be pragmatic, focusing on the simplest
families of solutions and the general rules. More information can be obtained from reviews
such as [417, 588, 858].

The solutions we have studied so far describe p-branes at rest, in their lower energy states
in which none of their worldvolume fields is excited and has a non-trivial configuration.
We have checked this by matching the solutions with p-brane sources in Sections 18.2.3
and 19.2.1. Excited worldvolume fields describe, first of all, deformations of the p-brane
in the target spacetime when they involve the embedding coordinates Xµ(ξ) (as happens
in all the supersymmetric cases). These deformations can be seen, in certain cases, as other
branes that end on or intersect the original brane. The converse relation is always true: a
brane that ends on or intersects another brane always corresponds to an excitation of the
worldvolume fields of the latter. The dimension of the intersection, which behaves as a dy-
namical solitonic object in the worldvolume of the host brane, determines the nature of the
intersecting brane. That dimension is associated with the rank of the excited worldvolume
differential-form fields: k-brane intersections to (k + 1)-form worldvolume fields. There
are three main examples of this correspondence.

1. By definition, open strings end on Dp-branes and their endpoints are seen as point-
particles electrically charged w.r.t. the BI vector field (BIons). Worldvolume half-
supersymmetric solutions of the Dp-brane action in flat spacetime describing a
point-like electric charge were found in [209, 434] (see also [502, 646]. There is
always an excited embedding scalar that corresponds to a spike sticking out of the
Dp-brane. The energy of this solitonic worldvolume solution per unit length of the
spike is precisely equal to the fundamental-string tension. Furthermore, perturba-
tions along the spike have Dirichlet boundary conditions and one concludes that this
solution represents a fundamental string attached to the Dp-brane.

Since these are supersymmetric worldvolume solutions, it is not surprising that there
are solutions describing several parallel (or antiparallel) spikes in equilibrium.

The BI vector field can be dualized into a (p − 2)-form potential, which is another
BI vector for the D3-brane [450, 451, 469]. The D3 electric–magnetic self-duality is
related to type-IIB S duality and the dual BIons turn out to describe D-strings ending
on a D3-brane.23 The dual (p − 3)-BIons of other Dp-branes are related to this one
by T duality: a D(p − 2) ending on a Dp with a (p − 3)-dimensional intersection
associated with the (p − 2)-form dual of the BI vector field.

These intersections can be written in the form F1 ⊥ Dp(0) and D(p − 2) ⊥ Dp(p −
3).

2. In [567] a supersymmetric worldvolume solution of the M5 equations of motion
in flat spacetime [15, 80, 119, 570, 757] in which two embedding scalars and
the self-dual 2-form24 were excited was found. It corresponds to the intersection

23 If the D-string ended on N coincident D3-branes, whose worldvolume field theory, contains a non-Abelian
SU(N ) BI vector field (in fact, it is a non-linear generalization of N = 4, d = 4 super-Yang–Mills theory),
the intersection would be seen as an SU(N ) magnetic monopole in the worldvolume [321, 469].

24 The bosonic worldvolume fields of the string/M-theory extended objects can be found in Table 19.6.
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Table 19.4. Elementary intersections of ten-dimensional
extended objects.

F1 ‖ S5, F1 ⊥ Dp(0),

S5 ⊥ S5(1), S5 ⊥ S5(3), S5 ⊥ Dp(p − 1) (p > 1),

Dp ⊥ Dp′(m), p + p′ = 4 + 2m,

W ‖ F1, W ‖ S5, W ‖ Dp,

KK6 ⊥ Dp(p − 2)

Table 19.5. Elementary intersections of 11-dimensional extended objects.

M2 ⊥ M2(0), M2 ⊥ M5(1), M5 ⊥ M5(1), M5 ⊥ M5(3),

W ‖ M2, W ‖ M5,

KK7M ‖ M2, KK7M ⊥ M2(0), KK7M ‖ M5, KK7M ⊥ M5(1), KK7M ⊥ M5(3),

W ‖ KK, W ⊥ KK7M(2), W ⊥ KK7M(4)

M2 ⊥ M5(1). The dimensional reduction along the intersection corresponds to
F1A ⊥ D4(0), which was discussed above.

3. A solution describing the supersymmetric M5 worldvolume soliton associated with
the intersection M5 ⊥ M5(3) was constructed in [568]. The worldvolume gauge field
is here the dual of an embedding scalar. These are present in any p-brane with
p < d − 1 and are (p − 1)-forms. They indicate the possibility of two p-branes in-
tersecting over a (p − 2)-brane.

Indeed, on T-dualizing the D1 ⊥ D3(0) in a direction parallel to the D3 and perpen-
dicular to the D1, we find D2 ⊥ D2(0). T duality in directions transverse to both
branes generates another sequence of possible intersections, Dp ⊥ Dp(p − 2).

Had we dualized in a direction perpendicular to the D3 and parallel to the D1, we
would have generated D0 ⊥ D4(0) and then further T dualities would have generated
the sequence Dp ⊥ Dp + 4(p).

It is clear that we can go on generating new intersections via dualities. The results,
in terms of supergravity solutions (including gravitational waves and KK monopoles
[116, 669]), are summarized in Tables 19.4 and 19.5. Some of the intersections (named
overlaps in [421]) cannot be associated with excited worldvolume fields. They arise, in
fact, in degenerate limits of intersections involving more than two branes. For instance, the
M5 ⊥ M5(1) intersection corresponds to an M2 ending on two M5s in a limit in which
these become infinitely close and the M2 disappears.

As we have mentioned, these intersections, seen as excited worldvolume configura-
tions (branes within branes), always preserve some supersymmetry. Actually, in general
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Table 19.6. Bosonic worldvolume fields of string/M-
theory branes. S and T are worldvolume scalars, Vi is a
worldvolume vector, and V +

i j is a 2-form with self-dual
field strength.

Object Worldvolume dimension Worldvolume fields

M2 2 + 1 Xµ

M5 5 + 1 Xµ, V +
i j

KK7M 6 + 1 Xµ, Vi

S5A 5 + 1 Xµ, V +
i j , S

KK6B 5 + 1 Xµ, V +
i j , S, T

S5B 5 + 1 Xµ, Vi

KK6A 5 + 1 Xµ, Vi , S
Dp p + 1 Xµ, Vi

excitations,25 no supersymmetry would be preserved, but we are interested in the cases in
which some supersymmetry is preserved, in part because they are easier to deal with and
we can also expect to find a classical (supersymmetric) solution associated with that brane
configuration. Worldvolume supersymmetry and the worldvolume superalgebras have been
used to study the possible intersections [124, 419].

What is the spacetime version of these worldvolume arguments? As we have seen, the
low-energy effective actions are very powerful tools with which to study extended objects
that arise as classical solutions. Supersymmetric solutions describing single branes can
typically be related to elementary brane sources and we expect the same to be true for in-
tersecting brane sources, although not many results have been obtained in this direction for
specific solutions. However, one can use general arguments based on the field equations
(charge conservation [53, 869, 900]) and spacetime supersymmetry to determine which in-
tersections are allowed. Then, one can try to find the corresponding supergravity solutions.

Let us review these arguments.

19.6.1 Brane-charge conservation and brane surgery

Following [900], let us consider the charge carried by a F1B solution. In the absence of
any other object (i.e. with only the B̂ potential excited), the charge is given by the first
of Eqs. (19.102) and it is different from zero only if the string has no free endpoints at
a finite distance since, otherwise, we could slide the S7 on which we integrate along the
string beyond its endpoint and contract it to a point26 without encountering any singularity
(source) because (this is just the B̂ equation of motion)

d
(

e−2ϕ̂ �Ĥ
)

= 0 (19.139)

25 There are non-supersymmetric BIon solutions with no scalars excited, and, therefore, such solutions are not
associated with deformations of the worldvolume [434].

26 This can be visualized best in d = 4, in which S7 is replaced by S1.
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outside the string in the presence of other fields, the equation of motion has additional terms
and the homotopy-invariant definition of charge is

qF1 ∼
∫

S7

(
e−2ϕ̂ �Ĥ − �Ĝ(3)Ĉ (0) − Ĝ(5)Ĉ (2)

)
, (19.140)

where S7 surrounds the string. Let us consider a semi-infinite string. At a large enough
distance L from the endpoint, boundary effects are not important and the charge is still
approximately given by the first of Eqs. (19.102). The larger L is for a fixed value of the S7

radius R7, the better the approximation. Closer to the endpoint, the additional terms must
contribute (otherwise, we are back in the previous case), but we can obtain the same value
for the integral by making R7 → 0 keeping R7/L constant until the only contribution to the
integral comes from the endpoint. The degenerate S7 can be decomposed, for convenience,
into the product S5 × S2, if we assume that the contribution to qF1B comes from the last
term in the above integral. The integral decomposes into a product of integrals,∫

S5
Ĝ(5)

∫
S2

Ĉ (2). (19.141)

The first integral gives the D3-brane charge (assuming, as we are doing here, that Ĥ does
not contribute), Ĝ(5) = �Ĝ(5), and thus the string endpoint must be at a D3-brane. If there is
no D1-brane present, then, Ĝ(3) ∼ dĈ (2) = 0 inside the D3-brane and, locally, Ĉ (2) = dV ,
where V is a vector that lives in the D3-brane worldvolume. Then

qF1B ∼
∫

S2
dV . (19.142)

The interpretation is clear: an F1B can end on a D3-brane and at the intersection point
there is an excited worldvolume vector field (the dual BI vector field) whose magnetic
charge is proportional to the F1B charge. This is the same result as we obtained before.

A similar reasoning indicates that, if it is the second term that contributes to the charge
integral, the F1B can also end on a D-string and at the intersection the BI vector field is
excited so its dual field strength is a constant.27

These arguments that determine the opening of branes seem to depend on field redef-
initions (the charge integrand is defined up to total derivatives). However, the different
expressions for the charge are just choices that are more or less adequate to describe a
given physical situation. The most symmetric expression for qF1B can be obtained by using
Eq. (17.9). Each of the four possible terms corresponds to the F1B ending on one of the
four Dp-branes p = 1, 3, 5, and 7 and exciting the dual BI field magnetically.

19.6.2 Marginally bound supersymmetric states and intersections

We are considering only supersymmetric brane intersections, in which the branes that in-
tersect do not interact and are in supersymmetric equilibrium. These intersections can be

27 This is similar to viewing the mass parameter of Romans’ N = 2A, d = 10 SUEGRA as the dual of the RR
10-form field strength.
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considered as bound states with zero binding energy (or marginally bound states) and their
existence depends on whether it is possible to impose the simultaneous annihilation of that
state by the supercharges that annihilate those associated with each individual brane.

As we saw, the annihilation of a p-brane state by a given set of supercharges is entirely
equivalent to the action of a projector Pp of the generic form Eq. (19.117) on a spinor,
Ppε = 0. Then, the existence of a supersymmetric state composed of a p- and a p′-brane
depends on the compatibility of the respective projectors Pp and Pp′ : it will exist if

[Pp, Pp′] = 0, (19.143)

and the state will preserve a quarter of the supersymmetries.
This equation depends on p and p′ but also on the spatial orientation of the branes. A

general analysis is complicated because of the different Op that occur in the projectors.
Let us consider a simple example first: two p-branes of the same kind, S5A for simplic-
ity, extended along five Cartesian coordinates (so they are either parallel or orthogonal).
It is relatively easy to see that the two associated projectors commute if the number of
relative transverse dimensions (those which are parallel to one brane and transverse to the
other) is 0 mod 4, which leads to the allowed (supersymmetric) intersections S5 ⊥ S5(3)

and S5 ⊥ S5(1), which are included in Table 19.4. For Dp-branes Op = iI, i�11, σ
1, iσ 2

depend on p mod 4 and the analysis of intersections between Dp-branes gives the allowed
intersection Dp ⊥ D(p + 4)(p) and, with a little more effort, the other cases in the table
[52, 346].

This analysis, which is essentially based on the spacetime supersymmetry algebra, allows
the study of more complicated intersections involving more branes [115] or non-orthogonal
intersections (branes at angles [128, 143, 182, 852, 904]). The inclusion of another brane
is allowed if its associated projector commutes with the other ones. The amount of unbro-
ken supersymmetry is generically halved each time a brane is included, except in the case
in which the projector of the additional brane does not impose any new constraint on the
spinor. The canonical example is that of a D5 in the directions 12345 and an S5B in the di-
rections 12678, so they intersect in two directions. Their associated projectors PD5(12345)

and PS5B(12679) (in the obvious notation) commute, and

PD5(12345)PS5B(12679)ε ∼ PD3(129)ε = 0, (19.144)

and, thus, including a D3 in the directions 129 does not break any additional supersymme-
try (for any sign of the charge). This property gives rise to the phenomenon of D3-brane
creation when a D5 and an S5B cross [65, 107, 290, 370, 497]. Adding a fourth brane may
break all or no additional supersymmetry, depending on its charge’s sign (Section 20.1).

Another case in which no additional constraint is imposed is when we add a brane of the
same kind, but rotated by a supersymmetry-preserving angle (“branes at angles”) [143]. We
have no space to review this important case and we refer the reader to the literature.

19.6.3 Intersecting-brane solutions

The worldvolume and spacetime arguments that we have reviewed above suggest that clas-
sical solutions of the low-energy effective string/M theories describing intersecting-branes
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should exist. In this section we are going to study the simplest intersecting-brane solutions.
These (like most of the solutions that have been found so far) are actually “imperfect” and
represent intersecting branes (even in the cases in which we expect a brane ending on an-
other brane) that are partially delocalized, smeared along the relative transverse directions.
These intersecting-brane solutions have to be understood, then, as approximations to the
true field configurations, but are, nevertheless, worth studying.

The construction of these solutions is surprisingly simple using the harmonic-
superposition rule [421, 908]. This rule can be used for marginally bound systems of su-
persymmetric (extreme) branes when the number of overall transverse dimensions is finite
(although it gives asymptotically flat solutions only when it is ≥3) and when the Chern–
Simons terms in the field strengths do not contribute to the equations of motion. This rule
gives an Ansatz for the metric, (p + 1)-form potentials, and dilaton (in d = 10) that is
based on the forms of the solutions that describe each of the extreme branes independently,
namely Eqs. (19.45), (19.50), (19.56), (19.64), and (19.60). Of course, the solutions con-
structed using this rule have to be checked directly in the equations of motion. For all
combinations of two branes this can be done using a generalization of the p-brane a-model
that we will briefly study in the next section (see [49, 50] for further generalizations to more
branes and non-extremal branes).

Basically, the harmonic-superposition rule says that the metric is diagonal and each com-
ponent consists in the same factors as each of the individual solutions smeared over the
relative transverse directions,28 multiplied. The same is true for the dilaton. Finally, the
differential-form potentials are the sum of those of each individual solution.

Let us use this rule to construct the solution describing the intersection of a F1 in the
direction y with a Dp-brane extended in the orthogonal directions �z p ≡ (z1, . . ., z p). By
combining Eqs. (19.56) and (19.64), smearing HF1 along �z p and HDp along y, we obtain

dŝ2
s = H

− 1
2

Dp H−1
F1 dt2 − H

+ 1
2

Dp H−1
F1 dy 2 − H

− 1
2

Dp d�z 2
p − H

+ 1
2

Dp d �x 2
8−p,

e−2φ̂ = e−2φ̂0 H
p−3

2
Dp HF1, Ĉ (p+1)

t z1···z p = ±e−φ̂0

(
H−1

Dp − 1
)
,

B̂t y = ± (
H−1

F1 − 1
)
, HDp,F1 = 1 + hDp,F1

|�x8−p|6−p
.

(19.145)

It is straightforward to apply the rule to other cases and we will do this in Chapter 20,
where more examples can be found. The metrics of some basic intersections can be found,
for instance, in [417, 588, 858].

The main insufficiency of these solutions is the delocalization of the branes. For in-
stance, the above solution does not tell us at which point along the coordinate y and in
the hyperplane �z p the string intersects the Dp-brane. This is immaterial if at the end we
want to wrap the solution in those directions and to perform dimensional reduction of the
solution, as we will do in Chapter 20 to construct d = 4, 5 BHs. Nevertheless, since we
have a clear worldvolume picture of supersymmetric intersections, it is natural to try to

28 That is, all the harmonic functions depend only on the same overall transverse directions.
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find the solutions that would have BIons and their generalizations as sources (this was the
approach of [461]). Partially localized solutions and some special fully localized solutions
have been found in [48, 379, 503, 561, 598, 658, 874, 967], but in [688, 760] it was argued,
using AdS/CFT-correspondence arguments, that fully localized solutions might not exist in
general, and these arguments seem to be confirmed by the results in [461]. If the string in
the F1 ⊥ Dp(0) intersection can be seen as “hair” on the Dp-brane, then the absence of a
fully localized solution for that configuration can be seen as a sort of “no-hair theorem” for
Dp-brane solutions.

Nevertheless, an Ansatz for fully localized intersections of this and other kinds has been
given in [794]. The solutions depend on an unknown function that satisfies a highly non-
linear differential equation, but it is not known whether this equation has solutions with the
appropriate boundary conditions.

19.6.4 The (a1–a2) model for p1- and p2-branes and black intersecting branes

This is a straightforward generalization of the p-brane a-model that includes (p1 + 1)- and
(p2 + 1)-form potentials, coupled to a scalar with parameters a1 and a2:

S = 1

16πG(d)
N

∫
dd x

√|g|
[

R + 2(∂ϕ)2 + ∑
i=1,2

(−1)pi +1

2 · (pi + 2)!
e−2ai ϕ F2

(pi +2)

]
, (19.146)

and it is just a convenient simplification of the higher-dimensional supergravity actions we
are dealing with. Notice, in particular, the absence of Chern–Simons terms: the solutions
we will obtain will be solutions of the full supergravity action only when those terms do
not contribute to the equations of motion. This condition will be fulfilled in most cases.

The equations of motion corresponding to this action are

Gµν + 2T ϕ
µν + ∑

i=1,2

(−1)pi +1

2 · (pi + 1)!
e−2ai ϕT

A(pi +1)

µν = 0,

∇2ϕ + ∑
i=1,2

(−1)pi +1

4 · (pi + 2)!
ai e

−2ai ϕ F2
(pi +2) = 0,

∇µ(e−2ai ϕ F(pi +2)
µν1...νpi +1) = 0, i = 1, 2.

(19.147)

The harmonic-superposition rule and our experience indicate that an adequate Ansatz for
a p1- and a p2-brane intersecting over r spatial directions may depend on three functions:
Hi , i = 1, 2, which will be independent harmonic functions in the extreme limit and are
associated with the potentials, and the “Schwarzschild factor” W , which becomes 1 in the
extreme limit. The Ansatz must be such that, when a given Hi is set to 1 to recover a solution
for a single p j -brane, i �= j . All these conditions are fulfilled by the metric Ansatz

ds2 = H 2z1
1 H 2z2

2

[
W dt2 − d �y 2

r

] − H 2z1
1 H−2y2

2 d �y 2
(p1−r) − H−2y1

1 H 2z2
2 d �y 2

(p2−r)

− H−2y1
1 H−2y2

2

[
d �y 2

q + W −1dρ2 + ρ2d2
(δ−2)

]
. (19.148)



19.6 Intersections 571

The coordinates �yr = (y1
1 , . . . , yr

1) (plus, of course, time) correspond to the common
directions of the two branes relative to the worldvolume of the intersection and the solu-
tion is assumed to be independent of them. The coordinates �y(p1−r) = (y2

1 , . . . , y(p1−r)

2 ) and
�y(p2−r) = (y3

1 , . . . , y(p2−r)

3 ) are relative transverse coordinates (to the p1- and p2-branes,
respectively). For simplicity, we will also assume the solution to be independent of them
(i.e. it will be delocalized). The solution may depend only on the overall transverse coor-
dinates (the rest), but, as we did for single-brane solutions, we include, for completeness,
q additional isometries and the solution will not depend on �yq . Finally, the parameters
z1, z2, y1, and y2 are determined by the single-brane solutions of the a-model, Eq. (18.66).

The dilaton is assumed to be a certain product of powers of H1 and H2. Finally, the Ansatz
for the potentials is the usual one and we need only take into account that the pi -brane lies
in the directions �yr and �y(pi −r):

A(pi +1)11···r112···(pi −r)2 = αi (H−1
i − 1), i = 1, 2. (19.149)

If this Ansatz is to work, then, by insisting on the independence of the two would-be
harmonic functions H1 and H2, we should simply acquire constraints on ω, r , a1, and a2.
On plugging the Ansatz into the equations of motion, we find, after a long and boring
calculation, that it does indeed lead to solutions under a few conditions on those constants:

ds2 = (
e−2a1ϕ1 H−2

1

) 1
p1+1

(
e−2a2ϕ2 H−2

2

) 1
p2+1

[
W dt2 − d �y 2

r

]
− (

e−2a1ϕ1 H−2
1

) 1
p1+1

(
e−2a2ϕ2 H−2

2

)− 1
p̃2+1 d �y 2

(p1−r)

− (
e−2a1ϕ1 H−2

1

)− 1
p̃1+1

(
e−2a2ϕ2 H−2

2

) 1
p2+1 d �y 2

(p2−r)

− (
e−2a1ϕ1 H−2

1

)− 1
p̃1+1

(
e−2a2ϕ2 H−2

2

)− 1
p̃2+1[

d �y 2
q + W −1dρ2 + ρ2d2

(δ−2)

]
.

A(pi +1)11···r112···(pi −r)2 = α1(H−1
1 − 1),

e−2ai ϕi ≡ H 2xi
i , e−2ai ϕ = e−2ai ϕi (e−2a j ϕ j )

li
x j , i �= j,

Hi = 1 + hi

ρδ−3
, W = 1 + ω

ρδ−3
,

ω = hi

[
1 − a2

i

4xi
α2

i

]
, li = (xi − 1)

[
ci (r + 1) − p j + 1

p̃i + 1

]
, i �= j,

xi = (a2
i /2)ci

1 + (a2
i /2)ci

, ci = (pi + 1) + ( p̃i + 1)

(pi + 1)( p̃i + 1)
,

a1a2 = −2(r − r0), r0 = (p1 + 1)(p2 + 1)

d − 2
− 1.

(19.150)

This solution generalizes to the non-extreme regime extreme intersecting solutions ob-
tained in [51] in another (a1–a2) model (see also [50, 925] and references therein). Some
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of these generalizations had already been obtained in certain cases in [254, 255, 274]. As
usual, in the extremal limit W = 1 the Hi are arbitrary independent harmonic functions of
the overall transverse coordinates.

The most interesting relation that we obtain is the one in the last line, that among the ai s,
the dimensionality of the branes, and r :

r = (p1 + 1)(p2 + 1)

d − 2
− a1a2

d − 2
− 1. (19.151)

This equation contains the intersection rules and we can apply it to some basic examples,
using the values for the ai constants appropriate for each kind of brane (see page 531).

As an example, let us consider the case of d = 11 SUGRA.29 Since there is no scalar,
a1 = a2 = 0, which implies r = r0. Equation (19.151) immediately gives the three inter-
sections M2 ⊥ M2(0), M2 ⊥ M5(1), and M5 ⊥ M5(3) (but not the overlap M5 ⊥ M5(1),
which requires a different Ansatz, see e.g. [417]). For example, the solution corresponding
to a black intersection M2 ⊥ M2(0) in which brane 1 lies in the directions �y2 = (y1, y2)

and brane 2 lies in the directions �z2 = (z1, z2) is given by

d ˆ̂s2 = H
− 2

3
1 H

− 2
3

2 W dt2 − H
− 2

3
1 H

1
3

2 d �y 2
2 − H

1
3

1 H
− 2

3
2 d�z 2

2

−H
1
3

1 H
1
3

2

[
d �w 2

q + W −1dρ2 + ρ2d2
(5−q)

]
.

ˆ̂Ct y1 y2 = α1(H−1
1 − 1),

ˆ̂Ctz1z2 = α2(H−1
2 − 1),

Hi = 1 + hi
ρ4−q , W = 1 + ω

ρ4−q , ω = hi
[
1 − α2

i

]
.

(19.152)

On reducing in a relative transverse dimension, we obtain a black intersecting solution,
F1A ⊥ D2(0). On reducing in one of the extra isometric transverse directions �wq , we obtain
D2 ⊥ D2(0) (this is the reason why the extra isometric �wqs are introduced into the Ansatz).

The solution corresponding to a black intersection M2 ⊥ M5(1) in which the M2 lies in
the directions �y2 = (y1, y2) and the M5 in y1, �z4 = (z1, . . ., z4) is

d ˆ̂s2 = H
− 2

3
1 H

− 1
3

2 [W dt2 − (dy1)2] − H
− 2

3
1 H

2
3

2 (dy2)2 − H
1
3

1 H
− 2

3
2 d�z 2

4

− H
1
3

1 H
2
3

2

[
W −1dρ2 + ρ2d2

(2)

]
.

ˆ̂Ct y1 y2 = α1(H−1
1 − 1),

ˆ̂̃
Ct y1z1···z4 = α2(H−1

2 − 1),

Hi = 1 + hi
ρ
, W = 1 + ω

ρ
, ω = hi

[
1 − α2

i

]
.

(19.153)

29 Examples in d = 10 can be found in the next chapter, where they are used to construct BH solutions: the
black D1 ‖ D5 is given in Eqs. (20.14) and the black D2 ‖ S5 ‖ D6 is given in Eqs. (20.37).
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String black holes in four and five dimensions

Following our general plan, in the previous chapter we have started to see classical solutions
that describe the long-range fields generated by configurations of extended objects in
string/M theory. In general, the solutions do not reflect some of the characteristics of the
brane configuration which may be understood as “hair,” but in many cases of interest (in
general, in the presence of unbroken supersymmetry), given a classical supergravity solu-
tion, we can tell which brane configurations give rise to it. This is in itself a very interesting
development, but there is more, because, if the brane configurations only involve D-branes,
they can be associated with two-dimensional CFTs (string theories) over which we have
good control. Furthermore, each of the branes considered here (D- or not D-) has a world-
volume supersymmetric field theory associated. All this allows us to relate supergravity
configurations to QFTs whose degrees of freedom can be understood as the microscopi-
cal degrees of freedom of the quantum (super)gravity theory contained in string/M theory.
This is, roughly speaking, the basis of the AdS/CFT correspondence and generalizations
[170, 679] and also the basis for the microscopical computations of BH entropies [870],
the subject of this final chapter.

In this chapter we are going to present N = 2A/B, d = 10 SUEGRA solutions associ-
ated with configurations of extended objects of type-II superstring theories that lead to BH
solutions of maximal d = 5, 4 SUEGRAs (N = 4, d = 5 and N = 8, d = 4) (Section 20.2).
The association can be understood as a strong–weak-coupling limit (see Figure 20.1). We
will carefully relate the solutions’ integration constants to the physical parameters of the
stringy sources and then, using our knowledge of the QFTs associated with those sources
in the extreme and supersymmetric cases, we will count the states of these QFTs at each
energy level and the corresponding entropy will be shown to coincide with one quarter of
the area of the BH’s horizon (Section 20.3).

Although it is quite self-contained, this chapter is far from complete due to lack of space
and also to the immense amount of literature on this subject. Fortunately, there are some
good reviews such as [294, 759] and also Maldacena’s Ph.D. Thesis, [677]. Other reviews
that are interesting for their emphasis on particular aspects of the problem or as sources of
bibliography are [43, 57, 62, 547, 548, 678, 708, 713, 758, 856, 927].

Before we study how to construct BHs as composed of intersecting systems of branes,
it is interesting to review how the idea of compositeness of BHs came about by studying a
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Black holes as

bound states of

pbrane solitons

Black holes as

bound states of

Dbranes

Entropy=Area/4

Entropy = collective 

of Dbrane bound state

coordinate degeneracy

Weak coupling

  Gravity

Semiclassical coordinate

Collective

quantizatio

Strong coupling

(exploit supersymmetry)

Fig. 20.1. The logic behind the string-theory calculation of extreme BH entropies is repre-
sented in this diagram [75].

d = 4 model whose BH-type solutions are related to the dilaton BHs studied in Sec-
tion 12.1.1.

20.1 Composite dilaton black holes

Let us consider the following string-inspired model (which is actually an inconsistent trun-
cation of the heterotic-string effective action compactified on T6, so not all its solutions will
be string solutions):

S =
∫

d4x
√|g| {R + 2

[
(∂φ)2 + (∂σ )2 + (∂ρ)2

] − 1
4 e−2φ

[
e−2(σ+ρ)(F (1) 1)2

+ e−2(σ−ρ)(F (1) 2)2 + e2(σ+ρ)(F (2)
1)

2 + e2(σ−ρ)(F (2)
2)

2
]}

.

(20.1)

Extreme BH-type solutions of this model (which are actually heterotic (or type-II) string
solutions) were found in [277], further discussed in [275, 276], and later rediscovered and
reinterpreted in [298]. They can be written as follows:

ds2 = (H (1) 1 H (1) 2 H (2)
1 H (2)

2)
− 1

2 dt2 − (H (1) 1 H (1) 2 H (2)
1 H (2)

2)
− 1

2 d �x 2
3 ,

A(1) m
t = α(1) m(H (1) m − 1)−1, (α(1) m)2 = 1, m = 1, 2,

Ã(2)
m t = α(2)

m(H (2)
m − 1)−1, (α(2)

m)2 = 1, m = 1, 2,

e−4φ = H (1) 1 H (2)
1

H (1) 2 H (2)
2
, e−4σ = H (1) 1 H (2)

2

H (1) 2 H (2)
1
, e−4ρ = H (1) 1 H (1) 2

H (2)
1 H (2)

2
,

(20.2)

where the H (i)
ms are independent harmonic functions in three-dimensional Euclidean space
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and the potentials Ã(2)
m correspond to the dual field strengths

F̃ (2)
1 = e−2(φ+σ−ρ)�F (2)

1, F̃ (2)
2 = e−2(φ−σ+ρ)�F (2)

2. (20.3)

The harmonic functions appropriate to describe a single BH are

H (i)
m = 1 + |q(i)

m |
|�x3| . (20.4)

The q(1)
ms are electric charges and the q(2)

ms are magnetic charges. Their signs are given
by the α(i)

m constants. The signs in the harmonic functions are chosen in order to have a
regular metric. The ADM mass and horizon are (G(4)

N = 1)

M = 1
4

∑
i,m=1,2

|q(i)
m |, A = 4π

√ ∏
i,m=1,2

|q(i)
m |. (20.5)

The area is non-zero (and the horizon is regular) only when the four charges are finite.
The metrics can be related to those of the extreme a-model dilaton BHs of Section 12.1.1:

when only one charge is different from zero, the metric is that of the extreme a = √
3 BH,

Eq. (12.22). If there are two non-vanishing charges that are equal, the metric is that of the
extreme a = 1 BH, Eq. (12.23). Three identical non-vanishing charges give the metric of
the extreme a = 1/

√
3 BH, Eq. (12.24); and four identical non-vanishing charges give the

metric of the a = 0 BH (the ERN BH), Eq. (12.25). This fact suggests the interpretation
of ERN BHs as objects composed of four extreme a = √

3 “BHs” [298], each of which
breaks/preserves separately half of the supersymmetries while the ERN preserves an eighth
as a type-II (i.e. N = 8, d = 4 SUEGRA) solution.

It is interesting to study in a bit more detail the preservation of supersymmetries in terms
of BPS bounds. As we discussed in Section 13.5.1, there are four central-charge skew
eigenvalues Zi in N = 8, d = 4 SUEGRA. Their absolute values are in this case [611]

|Z1| = 1
4 |q1

1 + q2
1 + q1

2 + q2
2|, |Z2| = 1

4 |q1
1 − q2

1 + q1
2 − q2

2|,
|Z3| = 1

4 |q1
1 + q2

1 − q1
2 − q2

2|, |Z4| = 1
4 |q1

1 − q2
1 − q1

2 + q2
2|.

(20.6)

If only one of the charges q is different from zero (the extreme a = √
3 dilaton BH), M =

|Zi |, i = 1, . . . , 4, and half of the supersymmetries are preserved. If two are different from
zero (the extreme a = √

3 dilaton BH) (say q1
1 and q2

1, both positive), then M = |Z1,2| <

|Z3,4| and a quarter of the supersymmetries are preserved. For three (say q1
1, q2

1 and q1
2,

all positive), M = |Z1| < |Z2,3,4| and an eighth of the supersymmetries are preserved. If we
add a fourth charge q2

2, then, if it is positive, no additional supersymmetries are broken,
but all are broken if it is negative.

This discussion parallels the discussion of the addition of branes to a type-II configu-
ration on page 568 and we need only establish the link between the d = 4 solutions and
d = 10 brane solutions wrapped on T6 to arrive at the conclusion that d = 4 BHs can be
understood as composed of wrapped branes and that, in order to obtain d = 4 BHs with
regular horizons, we need to include enough branes to break seven eighths of the super-
symmetries. After reaching this conclusion, it is natural to try the construction of d = 4
and d = 5 BHs directly from d = 10 extended objects in order to identify precisely which
elementary string-theory objects these BHs are made of. This information will later be used
in the entropy calculation.
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20.2 Black holes from branes

20.2.1 Black holes from single wrapped branes

To gain some insight, we are first going to investigate the construction of BHs in any di-
mension by wrapping completely p-brane solutions on Tp. The harmonic functions do not
change and we need only reduce the metrics. These are diagonal and lead to a metric and
the KK scalar modulus associated with the volume of the torus and we just have to rescale
with it the reduced metric to the modified Einstein frame. The (p + 1)-form gives directly
a vector in 10 − p dimensions and higher forms that vanish in these simple solutions.

The simplest example is provided by the F1, Eq. (19.56), wrapped on a circle. It gives
rise to a d = 9 charged extremal BH solution:

ds̃2
E = H

− 6
7

F1 dt2 − H
1
7

F1d �x 2
8 , At = ±(

H−1
F1 − 1

)
,

ds2
s = H−1

F1 dt2 − d �x 2
8 , e−2φ = e−2φ0 H

1
2

F1,

k = k0 H
− 1

2
F1 .

(20.7)

The horizon would be at the pole of HF1, �x8 = 0. However, its area (volume) is zero and
so it is singular. Furthermore, the size of the compact coordinate, measured in terms of the
modulus k, vanishes there and the dilaton diverges.

If we reduce further on T5, smearing the harmonic function, we obtain the d = 4 solution

ds̃2
E = H

− 1
2

F1 dt2 − H
1
2

F1d �x 2
3 , At = ±(

H−1
F1 − 1

)
,

ds2
s = H−1

F1 dt2 − d �x 2
3 , e−2φ = e−2φ0 H

1
2

F1,

k = k0 H
− 1

2
F1 , V5 = V5 0,

(20.8)

which has the metric of the a = √
3 dilaton BH, one component of the solution Eq. (20.2).

The metric and moduli of this solution are also singular at the horizon.
Let us try with Dp-brane solutions Eq. (19.64) wrapped on Tp (p ≤ 6). They give

ds̃2
E = H

− 7−p
8−p

Dp dt2 − H
1

8−p

Dp d �x 2
9−p, At = ±

(
H−1

Dp − 1
)
,

ds2
s = H

− 1
2

Dp dt2 − H
1
2

Dpd �x 2
9−p, e−2φ = e−2φ0 H

p−6
4

Dp ,

Vp = Vp,0 H
− p

4
Dp .

(20.9)

In all cases the metric, the modulus that measures the volume of the torus, Vp, and the
dilaton are singular on the horizon.1

1 Except for the p = 3 metric in the string reference frame and the p = 6 dilaton, which is constant.
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If we reduce further to d = 4 (p ≤ 6) on a T6−p, we obtain the solutions

ds̃2
E = H

− 1
2

Dp dt2 − H
1
2

Dpd �x 2
3 , At = ±

(
H−1

Dp − 1
)
,

ds2
s = H

− 1
2

Dp dt2 − H
1
2

Dpd �x 2
3 , e−2φ = e−2φ0,

Vp = Vp 0 H
− p

4
Dp , V6−p = V6−p 0 H

6−p
4

Dp ,

(20.10)

which also has the (singular) metric of the extreme a = √
3 dilaton BH. The moduli are

different but, clearly, Dp-branes and F1s can also be seen as the building blocks of the
d = 4 BHs, Eqs. (20.2). An analogous calculation can be done for S5s, with analogous
results, and, if we consider KK monopoles or gravitational waves, we are going to obtain
the same result. All these objects can be used to construct the d = 4 BHs and we know
that we need at least four of them in order to break more supersymmetries and obtain one
extreme BH with a regular horizon.

There is a BH solution of the model in Eq. (20.1) that also describes non-extreme BHs
with regular horizons and reduces to the solution Eqs. (20.2) in the extremal limit. It can
also be seen as originating from a combination of simpler objects, which turn out to be the
dimensional reductions of the non-extremal F1, Dp, S5, etc. solutions. This is the kind of
solution we will try to obtain in Section 20.2.2 in d = 4 and also in d = 5.

Now, however, we are going to discuss briefly what happens near the singularity of the
extreme d = BHs we have obtained by reducing a single d = 10 object. These are solutions
of the string effective action and, as we discussed in Section 15.1, in general they can be
trusted only as long as their curvature, measured in string units �−2

s , is small. Furthermore,
these are solutions of the compactified string effective action and we know that the standard
KK dimensional reduction of the effective action is valid when the compactification radii
are larger than the self-dual radius �s because close to it new stringy massless degrees of
freedom that were not considered in the effective action appear. Similar effects are expected
to take place when the curvature approaches �−2

s .
Thus, new massless stringy degrees of freedom must come into play near the singular-

ities of the above d = 4 solutions since the moduli that measure the volumes of the tori
in general vanish there, and the solution cannot be trusted beyond a surface of radius ∼�s

around the singularity that is sometimes called the stretched horizon. For the BH obtained
by compactifying the F1 on T6 Sen suggested in [846] that an entropy that would coincide
with the entropy associated with the degeneracy of string states with the same mass could
be associated with the stretched horizon. This suggestion goes in the direction of the idea
that BHs could be identified with highly excited string states and vice-versa [875].

This correspondence between string states and BHs was made more precise in [553],
taking into account the dependence of the radius of the stretched horizon on the string cou-
pling constant ∼g2�s: at strong coupling the size of the stretched horizon is bigger than the
string length and the solution that describes the microscopical configuration should be a BH
with a regular horizon. At weak coupling, the string picture is the right one. The transition
between BHs and strings takes place at the value of g at which the BH’s Schwarzschild
radius RS ∼ �s and at this point the string and BH description of the BH/string object of a



578 String black holes in four and five dimensions

given mass M should agree.2 The mass of a highly excited closed-string state is, according
to Eqs. (14.46) and (14.48), M ∼ N

1
2 /�s, while, at the correspondence point, the Schwarz-

schild BH’s mass is M ∼ RS/(g�s)
2 ∼ 1/(g2�s). If both are the mass of the same object

then g ∼ N− 1
4 .

Let us now compute the entropy of this object in the string description and in the BH
description at the correspondence point RS ∼ �s, g ∼ N− 1

4 . The BH entropy is

S ∼ R2
S/G(4)

N ∼ g−2 ∼
√

N . (20.11)

The string entropy is the logarithm of the degeneracy of states at the mass level M .
String theories are a particular case of two-dimensional CFTs [455], which in general have
an infinite spectrum of states. The degeneracy of states of a CFT characterized by a central
charge c, for large values of the two-dimensional energy E , is given by Cardy’s formula,

ρ(E) ∼ e
√

π(c−24E0)E L/3, (20.12)

where E0 is the lowest energy and L the size of the spatial coordinate of the two-
dimensional theory. For string theories L ∼ �s and E = M2 ∼ N/�2

s . Therefore, ρ ∼ eM/M0

and S = ln ρ ∼ √
N , which is in good qualitative agreement with the result in the BH pic-

ture.
The BH–string correspondence principle can be extended to higher-dimensional

Schwarzschild BHs and also to charged BHs, generalizing at the same time the string pic-
ture to a string/brane picture characterized by the same conserved quantities.

Clearly, this principle underlies the logic of the calculation of entropies of stringy BHs
depicted in Figure 20.1. It works best when there is unbroken supersymmetry (extreme
BHs); it can be argued that the counting of states remains unmodified when we vary g. In the
next few sections we are going to construct these d = 4, 5 stringy extreme supersymmetric
BH solutions.

20.2.2 Black holes from wrapped intersecting branes

We have seen that, in order to construct d = 4 extreme BH solutions with regular horizons,
we need at least four extended objects that break seven eighths of the supersymmetries.
In d = 5, three are necessary and, since this case is a bit simpler and the counting of mi-
crostates for it clearer, we are going to start with it.

There are many possible configurations of three extended objects that give rise to a reg-
ular BH in d = 5 upon compactification on T5. They are related by string (U) dualities in
the five compact dimensions, which appear in d = 5 as hidden symmetries of the maximal
N = 4, d = 5 SUEGRA. These symmetries do not act on the Einstein metric (although they
do act on the moduli), thus any of these configurations is equally good for obtaining a BH
metric (the issue of U duality will be studied in Section 20.2.3). Not all the corresponding
d = 10 configurations are equally simple to treat, basically because we do not have good
string descriptions of KK monopoles of S5-branes. D-brane configurations are clearly pre-
ferred. The simplest configurations of this kind are D5 ‖ D1 ‖W, as proposed in [208] as a

2 The BH–fundamental-string transition has been studied further in [284, 554, 618, 619].
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simpler alternative to the original configuration proposed by Strominger and Vafa in [870],
and the T-dual configuration W‖ D2 ‖ D6 proposed in [680]. We are going to study the
former.

In d = 4, a configuration that fits the requirements, W ‖ D2 ‖ S5A ‖ D6, was also pro-
posed in [680] and two T-dual alternatives D0 ‖ D4 and D1 ‖ D5 plus an F1 and a KK
monopole were proposed in [606]. We are going to study the configuration proposed in
[680].

We will not study rotating BHs, although we have mentioned them in several places, re-
marking, in particular, on the non-existence of supersymmetric rotating BHs with a regular
horizon in d = 4. It is interesting to mention their existence in d = 5, where they can also
be modeled with string-theory extended objects [180, 183].

d = 5 Black holes from intersecting branes. To obtain regular extreme d = 5 BHs, it is
necessary to construct them as intersections of at least three d = 10 extended objects. A
possible configuration that leads to regular extreme d = 5 BHs is

0 1 2 3 4 5 6 7 8 9
D1 + + ∼ ∼ ∼ ∼ − − − −
D5 + + + + + + − − − −
W + → ∼ ∼ ∼ ∼ − − − −

(20.13)

where + signs stand for worldvolume dimensions (isometric in the solutions), − signs
stand for overall transverse directions on which the solution depends, ∼ signs stand for
transverse directions in which the solution has been smeared, and → indicates the direction
in which the wave propagates. The direction with +, ∼, or → signs will be compactified
on a T5 = S1 × T4 with volume V 5 = 2π R1V 4, where R1 is the radius of the coordinate y1

and V 4 = (2π)4 R2 · · · R5 is the volume of the T4 on which the coordinates y2, . . ., y5 are
compactified. Then the solution will depend only on the overall transverse coordinates �x4.

Our procedure will be to construct first the d = 10 solution of N = 2B, d = 10 SUEGRA
that describes this system and then reduce it to d = 5 in two steps (S1 and T4). Since we
will also be interested in non-extremal BHs, we are going to construct the black intersecting
solution first and then we will take the extreme limit.

The harmonic-superposition rule cannot be used directly in this black intersection. We
start from the non-extreme D1 ‖ D5 intersection (contained in Eq. (19.150):

dŝ2
s = H

− 1
2

D1 H
− 1

2
D5 [W dt2 − (dy1)2] − H

1
2

D1 H
1
2

D5[W −1dr2 + r2d	2
(3)]

−H
1
2

D1 H
− 1

2
D5 [(dy2) 2 + (dy3) 2 + (dy4) 2 + (dy5) 2],

Ĉ (2)
t y1 = αD1e−φ̂0

(
H−1

D1 − 1
)
, Ĉ (6)

t y1···y5 = αD5e−φ̂0
(
H−1

D5 − 1
)
,

e−2φ̂ = e−2φ̂0 HD5/HD1, Hi = 1 + r2
i

r2
, W = 1 + ω

r2
,

ω = r2
i (1 − α2

i ), i = D1, D5.

(20.14)
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Now, to add a wave, we use the procedure studied on page 327 and boost the above
solution in the direction y1, obtaining [208, 550]

dŝ2
s = H

− 1
2

D1 H
− 1

2
D5

{
H−1

W W dt2 − HW[dy1 + αW(H−1
W − 1)dt]2

}
− H

1
2

D1 H
1
2

D5[W −1dr2 + r2d	2
(3)]

− H
1
2

D1 H
− 1

2
D5 [(dy2)2 + (dy3)2 + (dy4)2 + (dy5)2],

Ĉ (2)
t y1 = αD1e−φ̂0

(
H−1

D1 − 1
)
, Ĉ (6)

t y1···y5 = αD5e−φ̂0
(
H−1

D5 − 1
)
,

e−2φ̂ = e−2φ̂0 HD5/HD1, Hi = 1 + r2
i

r2
, W = 1 + ω

r2
,

ω = r2
i (1 − α2

i ), i = D1, D5, W.

(20.15)

In the extreme limit ω = 0 we recover a D1 ‖ D5 ‖ W that could have been constructed
using the harmonic-superposition rule.

Let us now dimensionally reduce this solution in the direction y1. In this reduction a
modulus field that measures the size of that direction arises,3

k1

k1 0
= |ĝy1 y1 | 1

2 = H
1
2

W

H
1
4

D1 H
1
4

D5

, (20.16)

and k1 0 = R1/�s. In the reduction on T4 we obtain another modulus field associated with
its volume,4

kV 4 = |ĝy2 y2 ĝy3 y3 ĝy4 y4 ĝy5 y5 | 1
2 = HD1/HD5. (20.17)

The d = 5 dilaton is given by

e−2φ = e−2φ̂k1 = e−2φ0
H

1
2

W

H
1
4

D1 H
1
4

D5

, e−2φ0 = e−2φ̂0k1,0. (20.18)

3 Before reducing, we can rescale y1 so that it takes values in [0, 2π�s]. We will do the same systemati-
cally in common worldvolume directions, but not in relative transverse directions, since, in order to apply
Eqs. (11.124), the coordinates have to take values in [0, 2π R]. The value at infinity of the corresponding
modulus is 1.

4 All we are doing here is a standard toroidal compactification of the kind we have performed in Section 16.5
and studied in general in Section 11.4. In general we would obtain a bunch of moduli fields coming from the
internal metric. For this and the solutions that will follow, the internal metric is proportional to the identity
and there is only one non-trivial modulus: its determinant. Its square root is kv. We have not performed the
toroidal reduction of RR fields, but it is clear that they give rise to a series of form potentials of equal and
lower ranks. Since the potentials in this and the other solutions that we are going to study have components
only in compact directions (plus time) only the time component of the vector fields that originate from the
reduction will be non-trivial and have the obvious value.
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The solution of maximal d = 5 SUEGRA in the modified Einstein frame is

ds̃2
E = (HD1 HD5 HW)− 2

3 W dt2 − (HD1 HD5 HW)
1
3 [W −1dr2 + r2d	2

(3)],

A(i)
t = αi

(
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−1 − 1
)
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i

|�x4|2 , α2
i = 1, i = D1, D5, W,

kV 4 = HD1

HD5
, e−2φ = e−2φ0
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1
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D5

, k1 = k1 0
H

1
2

W

H
1
4

D1 H
1
4

D5

,

W = 1 + ω

r2
, ω = r2

i (1 − α2
i ), i = D1, D5, W.

(20.19)

This is a BH solution with event horizon at ρ = −ω (ω < 0). As usual, in the extreme
limit W = 1 disappears and we can replace dr2 + r2d	2

(3) by d �x 2
4 and the Hi could be

arbitrary harmonic functions. However, we will take them as above in that limit and, with
that choice, it is easy to see that there is a regular horizon at �x4 = 0, with finite area (and,
hence, finite entropy) given by

A = ω(3)

(
lim

|�x4|→0
|�x4|6 HD1 HD5 HW

)1
2

= 2π2(rD1rD5rW)
1
2 . (20.20)

Furthermore, the moduli fields are finite there, as we wanted. If rD1 = rD5 = rW then all
the moduli are constant5 and the metric takes the form

ds2 = H−2W dt2 − H [W −1dr2 + r2d	2
(3)], H = HD1 = HD5 = HW, (20.21)

which is just that of the d = 5 RN BH! (See Eq. (8.225).) The only difference is the number
of vector fields of the total solution, which is dictated in our case by the requirement that
we have an N = 2B, d = 10 SUEGRA solution that we can relate to a type-IIB superstring
configuration.

Our next task is to relate the constants ri to the physical parameters of the solution. This is
very easy to do in the extreme case in which we can immediately associate the supergravity
solution with a supersymmetric configuration with ND1 D-strings (all with the same kind
of charge, either positive or negative, to preserve supersymmetry), ND5 D5s (again all of
them with the same kind of charge), and NW units of momentum in the direction y1. Since
the D5s are not smeared, using Eq. (19.65) we obtain

r2
D5 = ND5hD5 = ND5�

2
s ĝ. (20.22)

For the D-strings, which are smeared in four directions, we have to use repeatedly
Eqs. (11.124):

r2
D1 = ND1hD1

ω(5)

V 4ω(1)

= ND1�
6
s ĝ

R2 · · · R5
. (20.23)

5 When we relate these constants to the numbers of branes of each kind, it will become clear that, in general, it
is not possible to attain this equality except for special values of the moduli g, R, and V , although, for large
numbers of branes, we can be arbitrarily close to the equality.
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For the gravitational wave that propagates in a compact direction and has four compact
transverse directions, we have to use first the coefficient in Eq. (11.131) which, for NW

units of momentum, takes the form

hW = 8N G(d̂)
N

R2
z (d̂ − 4)ω(d̂−3)

. (20.24)

Here z = y1, d̂ = 10, and G(10)
N is given by Eq. (19.26). Smearing in four directions, we find

r2
W = hW

ω(5)

V 4ω(1)

= NW�8
s ĝ2

R2
1 R2 · · · R5

. (20.25)

This complete identification of all the parameters of the solution in terms of stringy
quantities and compactification moduli can be used in the expressions for the area of the
horizon and the entropy of the extreme BH. In any dimension, the entropy is one quarter of
the area of the horizon in Planck units [706], and we obtain

G(5)
N = G(10)

N

V 5
= π

4

�8
s g2

R1 · · · R5
, S = A

4G(5)
N

, ⇒ S = 2π
√

ND1 ND5 NW, (20.26)

a beautiful formula that does not depend either on any moduli g and Ri or on the string
length �s: it depends only on integers, which suggests that it can be explained in terms of
a counting of possible string states on the background of the intersecting branes that are
compatible with the same supergravity solution. Observe that the mass of the extreme BH
(which is typical of a marginally bound configuration) does depend on the moduli:

M = ND1 R1

ĝ�s
+ ND5 R1 · · · R5

ĝ�6
s

+ NW

R1
. (20.27)

The identification of the physical parameters in the non-extreme case is just a bit more
complicated and the interpretation in terms of stringy objects is quite a bit more com-
plicated. The physical parameters of the solution are the mass, D1 charge, D5 charge, and
momentum, which are not proportional to the numbers of D1s, D5s, and momentum modes.
The Chern-Simons terms are zero in this solution and the charges, measured in units of the
fundamental D1 and D5 charges Eq. (19.27) (actually, charge densities), are simply

QD1

2π�2
s

= ĝ2

16πG(10)
N

∫
S3×T4

�Ĝ(3) = αD1r2
D1 R2 · · · R5

2π�8
s ĝ

, ⇒ αD1r2
D1 = QD1�

6
s ĝ

R2 · · · R5
,

QD5

(2π)5�6
s

= ĝ2

16πG(10)
N

∫
S3

�Ĝ(7) = αD5r2
D5

(2π)5�8
s ĝ

, ⇒ αD5r2
D5 = QD5�sĝ,

QW = αWr2
W R2

1 R2 · · · R5

�8
s ĝ2

, ⇒ αWr2
W = QW�8

s ĝ2

R2
1 R2 · · · R5

,

(20.28)

where the last result was obtained by comparison with Eq. (20.24). The Qi s are integers.
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The mass of this brane configuration has to be measured in d = 5 in the modified Einstein
frame. On expanding the gtt component of the metric, we find

ω − 2
3(r

2
D1 + r2

D5 + r2
W) = − 8

3π
G(5)

N M = − 2M�8
s ĝ2

3R1 · · · R5
. (20.29)

These four relations plus the three relations among ω, αi , and ri in the last of Eqs. (20.19)
allow us in principle to express all the integration constants in terms of the physical charges
and moduli. In practice, however, one arrives at the equation

∑
i=D1,D5,W

√
ω2 + 4Q2

i = 2M�8
s ĝ2

3R1 · · · R5
≡ M, Qi ≡ αi r

2
i , (20.30)

and it is difficult in general to write ω(M,Qi ) in a manageable way. So it is better to
express all the constants in terms of ω andQi : namely, M using the above equation, the αi s
using

αi = 2Qi

ω +
√

ω2 + 4Qi

, (20.31)

and the ri s using Eqs. (20.28). The horizon area takes the value

A = 2π2
√∏

i

(r2
i − ω) ∼ 2π2

√
QD1QD5QW

(
1 + 1

2 |ω|) 1
2 , ω << |Qi |, (20.32)

from which we can immediately find the entropy. However, this formula is difficult to ex-
plain in terms of counting of states since the Qi s are not related to the numbers of stringy
objects. In [550] it was proposed that one should interpret the Qi s as total charge densities
associated with Ni branes and N̄i antibranes; that is, Qi ≡ Ni − N̄i . Furthermore, we also
assume6 that

ω2

4�4
s ĝ2

≡ 4ND5 N̄D5,
ω2 R2

2 · · · R2
5

4�12
s ĝ2

≡ 4ND5 N̄D5,
ω2 R4

1 R2
2 · · · R2

5

4�16
s ĝ4

≡ 4NW N̄W.

(20.33)
The remaining physical parameters can be written in terms of the Ni s and N̄i s:

M = (ND1 + N̄D1)
R1

ĝ�s
+ (ND5 + N̄D5)

R1 · · · R5

ĝ�6
s

+ (NW + N̄W)
1

R1
,

R2
1 = ĝ

1
2 �2

s

ND1 N̄D1

NW N̄W
, R2

2 · · · R2
5 = �8

s

ND1 N̄D1

ND5 N̄D5
,

(20.34)

6 This could always be seen as a change of variables, although the resulting expressions have a very appealing
physical interpretation. Observe that, when all the branes of one kind have charges of the same sign, ω = 0
and we have an extremal BH as before.
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The mass formula should be compared with that of the extreme BH Eq. (20.27): branes
and antibranes contribute equally to it, and there seems to be no interaction/binding energy
between them.

The entropy takes the form

S = 2π
(√

ND5 −
√

N̄D5

)(√
ND1 −

√
N̄D1

)(√
NW −

√
N̄W

)
. (20.35)

d = 4 Black holes from intersecting branes. In [549] a stringy model based on a system of
intersecting D6, D2, S5A, and W in the configuration

0 1 2 3 4 5 6 7 8 9
D6 + + + + + + + − − −
S5 + + + + + + ∼ − − −
D2 + + ∼ ∼ ∼ − + − − −
W + → ∼ ∼ ∼ ∼ ∼ − − −

(20.36)

was proposed in order to describe d = 4 BHs. In the extreme limit (which had been con-
structed before in [606, 680]) it has a regular horizon and moduli that are regular there (if
the D2 were placed in directions 012, then the moduli would be singular at the horizon).
The construction of the d = 10 solution is similar to that of the solution associated with the
d = 5 BH which we have discussed in detail and we will therefore omit unnecessary details
here.

The black intersecting solution is

dŝ2
s = H

− 1
2

D6 H
− 1

2
D2

{
H−1

W W dt2 − HW
[
dy1 + αW(H−1

W − 1)dt
]2

}
− H

− 1
2

D6 H
1
2

D2[(dy2)2 + (dy3)2 + (dy4)2 + (dy5)2]

− H
− 1

2
D6 H

− 1
2

D2 HS5(dy6)2 − H
1
2

D6 H
1
2

D2 HS5[W −1dr2 + r2d	2
(2)],

e−2φ̂ = e−2φ̂0 H
3
2

D6 H
− 1

2
D2 H−1

S5 , B̂(6)
t y1···y5 = αS5e−2φ̂0

(
H−1

S5 − 1
)
,

Ĉ (3)
t y1 y6 = αD2e−φ̂0

(
H−1

D2 − 1
)
, Ĉ (7)

t y1···y6 = αD6e−φ̂0
(
H−1

D6 − 1
)
,

Hi = 1 + ri

r
, α2

i = +1, i = D6, D2, S5, W,

W = 1 + ω

r
, ω = ri (1 − α2

i ), i = D6, D2, S5, W,

(20.37)

We dimensionally reduce this solution in three steps: first on S1 (y1), then on T4
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(y2, . . ., y5), and then on S1 (y6). In the modified Einstein frame it takes the form

ds̃2
E = (HD6 HD2 HW HS5)

− 1
2 W dt2

− (HD6 HD2 HW HS5)
1
2 [W −1dr2 + r2d	2

(2)],

A(i)
t = αi

(
H−1

i − 1
)
,

e−2φ = e−2φ0
H

1
2

W

H
1
2

S5

, k1 = k1 0
H

1
2

W

H
1
4

D6 H
1
4

D2

,

K6 = H
1
2

S5

H
1
4

D6 H
1
4

D2

, KV 4 = HD2

HD6
.

Hi = 1 + ri

r
, α2

i = +1, i = D6, D2, S5, W,

W = 1 + ω

r
, ω = ri (1 − α2

i ), i = D6, D2, S5, W.

(20.38)

This solution has a regular horizon at r = −ω (ω < 0). Actually, when all the constants
ri have the same value, all the Hi = H and the metric is identical to that of the d = 4 RN
BH. In all cases, the extreme-limit W = 1 solution (compare it with the solution Eq. (20.2))
has a regular horizon.

In this case we are going to find the physical parameters directly in the non-extreme case.
Using definitions similar to those of the d = 5 case, we find

αD2rD2 = QD2�
5
s ĝ

2R2 · · · R5
, αD6rD6 = QD6�sĝ

2
,

αS5rS5 = QS5�
2
s

2R6
, αWrW = QW�8

s ĝ2

2R2
1 R2 · · · R6

,

(20.39)

and, for the mass,

ω − 1
2

∑
i

ri = − M�8
s ĝ2

4R1 · · · R6
. (20.40)

We find the following equation relating charges, mass, and ω:

∑
i

√
ω2 + 4Qi = M�8

s ĝ2

4R1 · · · R6
≡ M, Qi ≡ αi ri , (20.41)

which is, again, very difficult to solve. We therefore use ω as a parameter and find, for the
αi s, again Eq. (20.31), etc. The area of the horizon is given by

A = 4π

√∏
i

(ri − ω). (20.42)
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Now, introducing a parametrization similar to the five-dimensional Qi ≡ Ni − N̄i and

ω2

�2
s ĝ2

≡ 4ND6 N̄D6,
ω2 R2

2 · · · R2
5

�10
s ĝ2

≡ 4ND2 N̄D2,

ω2 R4
1 R2

2 · · · R2
6

�16
s ĝ4

≡ 4NW N̄W,
ω2 R2

6

�2
s ĝ2

≡ 4ND6 N̄D6,

(20.43)

we obtain for the mass and entropy

M = (ND2 + N̄D2)
R1 R6

ĝ�3
s

+ (ND6 + N̄D6)
R1 · · · R6

ĝ�7
s

+ (NS5 + N̄S5)
R1 · · · R5

ĝ2�6
s

+ (NW + N̄W)
1

R1
,

S = 2π
∏

i

(√
Ni −

√
N̄i

)
.

(20.44)

We can also express the moduli in terms of them, �s, and ĝ.

20.2.3 Duality and black-hole solutions

The solutions we have obtained are particular solutions that have only a few vectors and
scalars excited of maximal N = 4, d = 5 and N = 8, d = 4 SUEGRA. These theories have,
respectively, 27 and 56 U(1) vector fields, which are rotated among themselves by the
U-duality groups E6(+6) and E7(+7) (see Table 16.1) and scalars that parametrize the coset
spaces E6(+6)/USp(8) and E7(+7)/SU(8) [263] and are also rotated the same U-duality
groups, but the Einstein metrics are U-duality-invariant and all unbroken supersymmetries
are preserved.

Several questions arise immediately. How does U duality act on these solutions and on
their d = 10 description? How does U duality act on physical parameters such as the masses
and entropies? What is the more general BH-type solution of these theories?

Most U-duality rotations correspond to T and S dualities in higher dimensions, whose
effects on the components are well known to us. We can use them to find configurations
that are more convenient for our purposes. For instance, we can dualize the d = 4 BH we
have obtained into one composed entirely of D-branes [76, 77], whose stringy description is
much better known than that of the S5s we have used. If we denote by Tn a T-duality trans-
formation in the nth coordinate, ignoring time and the three overall transverse coordinates,
we find

1 2 3 4 5 6
D6 + + + + + +
S5 + + + + + ∼
D2 + ∼ ∼ ∼ ∼ +
W → ∼ ∼ ∼ ∼ ∼

−→
ST2T1T5

1 2 3 4 5 6
D3 ∼ ∼ + + ∼ +
D5 + + + + + ∼
D3 ∼ + ∼ ∼ + +
D1 + ∼ ∼ ∼ ∼ ∼

(20.45)
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which can be T-dualized further into a configuration involving only D3s etc.,

−→
T2T3

1 2 3 4 5 6
D3 ∼ + ∼ + ∼ +
D3 + ∼ ∼ + + ∼
D3 ∼ ∼ + ∼ + +
D3 + + + ∼ ∼ ∼

(20.46)

U-duality transformations do not change the d = 5, 4 Einstein metric of these solutions;
they amount simply to a relabeling of the vector fields and to a complicated non-linear
transformation of the scalars. The physical parameters defined in terms of the Einstein
metric (such as the mass and entropy) do not change, which means that there must be
duality-invariant expressions for them. If the mass is an independent parameter (as it would
be from the supergravity point of view), this is an empty statement, but, since the mass
depends on the masses of the constituents and the moduli, which are transformed by duality,
it is not, as a matter of fact.

The U-duality-invariant expressions for the masses and entropies are particularly simple
in the extreme limits since they are completely determined by the moduli and the vector’s
electric and magnetic charges (27 electric charges in d = 5 and 28 electric and 28 mag-
netic charges in d = 4) encoded in the superalgebra’s central-charge matrix. Actually, if
the entropy counts microstates, it should not depend on any moduli, but only on charges.
This is what happens in the explicit solutions that we have constructed. Since, at least in
this case, there is only one U-duality invariant that can be constructed from the charges
alone, the U-duality invariant expressions for the entropy of extreme BHs of N = 4, d = 5
and N = 8, d = 4 SUEGRA can easily be determined [381, 383, 611]. In the N = 8, d = 4
case, the entropy must be given by the beautiful formula

S = 4π
√|♦|, (20.47)

where ♦ is the unique quartic invariant of E7. In the SO(8) form

−♦ ≡ xi j y jk xkl yli − 1
4 xi j yi j x

kl ykl + 1

96
εi jklmnop(xi j xkl xmnxop + yi j ykl ymn yop),

(20.48)
where xi j and yi j are, respectively, the real and imaginary parts of the 8 × 8 antisymmetric
central-charge matrix zi j = (xi j + iyi j )/

√
2 that contains the 28 electric and 28 magnetic

charges. This parametrization is very convenient because it can easily be related to the
charges of extended objects of N = 2A, d = 10 SUEGRA compactified on T6 [75]: if the
indices i, j, k, l, m, n = 1, . . ., 6 then

• xi j = 1

4!
√

2
εi jklmnZ (4)

klmn correspond to D4s wrapped on the klmn directions,

• yi j = 1√
2
Z (2)

i j correspond to D2s wrapped on the i j directions,



588 String black holes in four and five dimensions

• x78 = 1√
2
Z (0) corresponds to D0 charge,

• y78 = − 1√
2
Z (6)

123456 corresponds to a D6 wrapped on T6,

• xi7 = 1

5!
√

2
εi jklmnZ (5)

jklmn correspond to S5As wrapped on jklmn,

• xi8 = 1√
2

pi correspond to KK momentum in the directions i ,

• yi7 = 1

5!
√

2
ε(i) jklmnZ (6)

jklmn(i) correspond to KK6As wrapped on jklmn with isomet-

ric direction i , and

• yi8 = 1√
2
Z (1) i correspond to F1s wrapped in the directions i .

The d = 4 extremal BH that we have constructed corresponds to x18 = (1/
√

2)NW,
y16 = (1/

√
2)ND2, x67 = (1/

√
2)NS5, and y78 = −(1/

√
2)ND6, and the diamond formula

immediately gives the right value for the entropy. The dual configurations give exactly the
same result. In fact, the above identification between entries of the central-charge matrix
and charges of extended objects is clearly not unique, but is defined only up to U-duality
rotations. We can also look at it from a different point of view: the objects we have con-
sidered are all wrapped on T6 and are T dual to each other and, essentially, they cannot be
distinguished from the d = 4 central-matrix point of view. Their masses may be different
if they are related by S dualities, though. On the other hand, since U duality acts on the
moduli, too, we have to use the description in which compactification radii are bigger than
the critical self-dual radius and the coupling constant is small.

It would be very interesting to have explicitly the most general U-duality-invariant BH-
type solutions of these theories consistent with the no-hair theorems, which would be simi-
lar to the SWIP solutions of pure N = 4, d = 4 SUEGRA that we studied in Section 12.2.1
to check these formulae, but obtaining them turns out to be an extremely difficult problem.
A simpler problem consists in finding a generating solution that would give the general so-
lution when we act on it with a general U-duality transformation, which would preserve the
metric. Simple arguments [75, 271] tell us that such solutions must have, respectively, four
and five independent charge parameters in d = 4 and 5 dimensions. It is not hard to find
brane configurations with these parameters and generating solutions have been proposed in
[144, 145].

20.3 Entropy from microstate counting

In the previous section we constructed BH solutions of maximal d = 4, 5 SUEGRA and
identified the N = 2A/B, d = 10 SUEGRA solutions they originate from. In the extreme
cases, we identified unambiguously their “components,” which places us in the upper-left-
hand box of Figure 20.1, and allows us to move clockwise in the figure and calculate the
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microscopical entropy and see that it coincides with A/(4G(d)
N ), the commonly accepted

semiclassical value.7

From the string-theory point of view, the BH solutions that we have obtained are just
vacua on which strings should be quantized taking into account the boundary conditions
imposed by the presence of D-branes and other extended objects. However, this may be
difficult to do since, in general, the string coupling constant ĝ is going to be large in order
for the solutions to have a macroscopical Schwarzschild radius, and we only know how to
quantize perturbatively, for small ĝ. We have argued above, however, that the entropy is
independent of the moduli and, therefore, we can try to calculate it in the limit ĝ → 0 in
which the Schwarzschild radius goes to zero and the BH description has to be replaced by
a system of branes in Minkowski spacetime, a background we do know how to quantize
type-II superstrings on.8 The microscopic entropy is calculated in this limit and its value
is then extrapolated to the large-ĝ (BH) regime. It is also important for the validity of this
calculation that only BPS microstates contribute to the entropy,9 and that the dimension of
supermultiplets (and, hence, the counting of BPS states) is independent of ĝ.

All we have to do now is to identify the string theory defined by the vacuum of extended
objects associated with the BH in the weak-coupling limit and find, in particular the central
charge c, and the values of L and E0 that characterize it as a CFT. Then Cardy’s formula
Eq. (20.12) gives the state degeneracy and its logarithm gives the entropy.

The first calculation along these lines was performed in [870] and in [208] a similar
calculation with a simpler model (the extreme D1 ‖ D5 ‖W d = 5 BH that we constructed
above) was performed. The background of worldsheet string-theory that we have presented
in this book is not sufficient to explain in detail the identification of the two-dimensional
CFT associated with this BH (i.e. with ND1 parallel D1s intersecting in one dimension, ND5

parallel D5s, and momentum in the direction of the D1s), but its essential aspects are not
too difficult to understand. First of all, since the theory will be supersymmetric, E0 = 0.
Then, one has to realize that the only string states that are going to contribute correspond to
the open sector with one endpoint on one of the ND1 parallel D1s and the other on one of the
ND5 parallel D5s, which have momentum in the direction y1 that contributes to their mass10

the amount NW/R1. The number of these string modes (states of the two-dimensional CFT)
is clearly proportional to the product ND1 ND5 and we expect c, which measures the number
of local degrees of freedom of a CFT, to be proportional to it. A more precise calculation
gives c = 6ND1 ND5. Finally, in this case11 L = 2π R1 and, on substituting this into Cardy’s
formula, we obtain the entropy Eq. (20.35) in the extreme limit, a very interesting result
whose validity has been reviewed more recently in [927]. Similar arguments explain why

7 See, however, the discussion on page 245, which is clearly related to the correspondence principle.
8 We are assuming implicitly that the ri coefficients of our BH solutions are proportional to positive powers

of ĝ, which implies that they are composed of D-branes, F1s, or Ws.
9 There are subleading contributions from non-BPS states as well. They introduce small corrections to the

entropy [212].
10 There are no more contributions to the masses of these states, apart from the oscillators, but states with

excited oscillator modes do not have the required properties of supersymmetry. The same happens to the
states that start and end on branes of the same kind.

11 Clearly, we are considering the theory that lives in the intersection of the D-branes.
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the entropy of the d = 4 BH is also proportional to the square root of the product of the
numbers of D-branes.

There is, unfortunately, no more space to study more general examples of these calcula-
tions (see, for instance, [75]); neither is there time to see how these string models explain
qualitatively and quantitatively the Hawking radiation [292, 293, 681], nor extra dimen-
sions to relate these calculations to the d = 3 BH of Bañados, Teitelboim, and Zanelli and
non-stringy CFTs12 [82, 213, 590, 849]. We hope that the reader will have found these
introductory notes useful.

12 To what extent are strings fundamental to this result?



Appendix A

Lie groups, symmetric spaces, and Yang–Mills fields

In this appendix we review some basic definitions and properties of Lie groups and alge-
bras and their use in the construction of homogeneous and symmetric spaces and in field
theory. Rigorous definitions and proofs can be found, for instance, in [527, 630], and in the
physicist-oriented [89, 221 (Volume I), 252, 267 (Volume II), 454].

A.1 Generalities

A Lie group G of dimension n is both a group and a differential manifold of dimension n:
the points of the manifold are the elements of the group and the maps

G × G → G,

(g1, g2) → g1g2,

G → G,

g → g−1,
(A.1)

are differentiable. For each element g ∈ G there are also two natural diffeomorphisms: left
and right translations by g, denoted by Lg and Rg respectively, and defined by

Lg : G → G,

h → Lg(h) ≡ gh,

Rg : G → G,

h → Rg(h) ≡ hg.
(A.2)

The identity e is a naturally distinguished point. The tangent space at the identity T(1,0)
e

is the Lie algebra g of G. This name will be justified later. Each element v(e) ∈ g can be
extended to a vector field v(g) defined at all points g ∈ G by taking the push-forward of the
left- or the right-translation diffeomorphisms

vL(g) ≡ Lg ∗ v(e), vR(g) ≡ Rg ∗ v(e). (A.3)

Sometimes we use the following notation for them:

Lg ∗ v ≡ gv, Rg ∗ v ≡ vg. (A.4)

The vector fields defined in this way have the property of being, respectively, left- and
right-invariant, i.e. they satisfy

Lg ∗ vL(h) = vL(gh), Rg ∗ vR(h) = vR(hg). (A.5)
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Similarly, we can define left- and right-invariant differential forms ω and η of any rank
using the pull-backs associated with the left- and right-translation diffeomorphisms:

Lg
∗ ω(h) = ω(gh), Rg

∗ η(h) = η(hg). (A.6)

It is customary to work with left-invariant vector fields and 1-forms. We can always
construct a basis of left-invariant vector fields {eI (g)} using the above procedure starting
with a basis of vector fields at the identity {eI (e)} and a dual basis of left-invariant 1-forms
{eI (g)}. The Lie bracket of two left-invariant vector fields is another left-invariant vector
field that we can write as a linear combination of elements of the {eI (g)} basis.1 Thus,

[eI , eJ ] = − f I J
K eK , (A.7)

where f I J
K = − f J I

K = +( f I J
K )∗ are the structure constants. The Jacobi identity

Eq. (1.14) implies
f J [K

I fL M]
K = 0. (A.8)

The vector fields at the identity are thus an n-dimensional vector space endowed with an
antisymmetric, bilinear (but non-associative) product [·, ·] (the Lie bracket of the associated
left-invariant vector fields) that satisfies the Jacobi identity; that is, by definition, a Lie
algebra, which justifies our definition of g. We will denote a basis of g by {TI } and, by
convention,

eI (e) ≡ −TI , ⇒ [TI , TJ ] = f I J
K TK . (A.9)

The dual left-invariant 1-forms satisfy the Maurer–Cartan equations

deI = 1
2 f J K

I eJ ∧ eK , (A.10)

and d2eI = 0 is equivalent to the Jacobi identity.
The exponential map provides a local parametrization of G in a neighborhood of the

identity with coordinates σ I :
g(σ ) = eσ I TI . (A.11)

If the group is a connected and compact manifold, any of its elements can be expressed in
this way. With this parametrization it is easy to construct a basis of left-invariant2 1-forms
by expanding the Maurer–Cartan 1-form V ,

V = −g−1dg = eI TI , (A.12)

in terms of which the Maurer–Cartan equations are dV − V ∧ V = 0.
For matrix groups the generators TI are just matrices and the Lie bracket is just the

standard commutator. The left and right translations are just matrix multiplications from
the left, gT , or from the right, T g. We can take different sets of matrices of different di-
mensions or operators that satisfy the same commutation relations and provide different

1 The same is true for right-invariant vector fields. On the other hand, the Lie bracket of any left-invariant
vector field with any right-invariant vector field vanishes.

2 Right-invariant 1-forms are provided by dgg−1.
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representations that we denote by the subscript r in �r (TI ). Their exponentiation generates
a representation of the group,

�r [g(σ )] = eσ I �r (TI ), [�r (TI ), �r (TJ )] = f I J
K �r (TK ). (A.13)

A Lie algebra can be complexified and we can then perform complex changes of basis
that complexify the structure constants. If all the structure constants are real (as we will
usually take them to be) and all the generators have the same definite Hermiticity prop-
erties, then all of them must be anti-Hermitian, �r (TI )

† = −�r (TI ), and the elements of
the group are represented by unitary operators �r [g(σ )]† = �r [g(σ )]−1, i.e. we obtain a
unitary representation.

Any representation of a compact Lie group is equivalent to a unitary representation. The
unitary representations of compact Lie groups are also finite-dimensional and the operators
can be represented by their matrices in a given basis. All matrix representations automati-
cally satisfy the Jacobi identity.

Sometimes we will be interested in non-compact groups (for instance, the Lorentz group
in d dimensions SO(1, d − 1)). Their unitary representations are infinite-dimensional and
their finite-dimensional representations are necessarily non-unitary. Then not all the gen-
erators can be either Hermitian or anti-Hermitian at the same time (with real structure
constants). The “non-compact generators” will be represented by Hermitian operators.

In the adjoint representation each element T ∈ g is represented by an operator �Adj(T )

acting on g itself according to

�Adj(T )T ′ ≡ [T, T ′], ∀ T, T ′ ∈ g. (A.14)

Thus, the generators themselves are represented by

�Adj(TI )TJ ≡ [TI , TJ ] = f I J
K TK ≡ TK �Adj(TI )

K
J , (A.15)

so the components of the operator �Adj(TI ) in the basis {TI } are the structure constants

�Adj(TI )
K

J = f I J
K . (A.16)

These matrices satisfy the Lie algebra (A.9) due to the Jacobi identity (A.8).
The adjoint representation of the Lie algebra allows us to define the adjoint representation

of the group by exponentiation,

�Adj[g(σ )] ≡ exp{σ I �Adj(TI )}, (A.17)

and the adjoint action of the group on the algebra,

T ′
J = TL

(
�Adj [g(σ )]

)L
J . (A.18)

An equivalent definition of the adjoint action of the group on the algebra is

�Adj(g)T ≡ Lg ∗ Rg−1 ∗ T = gT g−1. (A.19)

In any representation we have

�r (g)�r (TI )�r (g
−1) = �r [�Adj(g)TI ] = �r (TJ )(�Adj(g))J

I . (A.20)
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We can now introduce the symmetric, bilinear Killing form (or metric) K (·, ·) into the
Lie algebra:

K (T, T ′) ≡ Tr{�Adj(T )�Adj(T ′)}, K I J = K (TI , TJ ) = f I K
L f J L

K . (A.21)

The Killing metric is invariant under the adjoint action of the group on the algebra due
to the cyclic property of the trace. Infinitesimally, we have

f I (J
K KL)K = 0, (A.22)

and this is the condition that any other invariant metric should satisfy. We can define

f I J K ≡ f I J
L KL K , (A.23)

which is fully antisymmetric on account of (A.22).
It is easy to see that

Tr[�Adj(T[I )�Adj(TJ )�Adj(TK ])] = − 1
2 f I J K . (A.24)

The Killing metric contains a great deal of information. Let us first make some defini-
tions.

A Lie algebra g is Abelian [T, T ′] = 0, ∀ T, T ′ ∈ g. This is sometimes expressed as
[g, g] = 0. Abelian Lie algebras generate by exponentiation Abelian Lie groups.

A subgroup H ⊂ G is an invariant subgroup if ghg−1 ∈ H ∀ h ∈ H, g ∈ G. A subalgebra
h ⊂ g is an invariant subalgebra or ideal if [M, T ] ∈ h ∀ M ∈ h, T ∈ g. This is sometimes
expressed as [h, g] ⊂ h. The Lie algebra h of an invariant subgroup H ⊂ G is an invariant
subalgebra of the Lie algebra g of G.

A Lie group (algebra) is simple if it does not have any proper invariant subgroup (subal-
gebra). Simple Lie algebras generate simple Lie groups.

A Lie group (algebra) is semisimple if it does not have any non-trivial invariant Abelian
subgroup (subalgebra). Semisimple Lie algebras generate semisimple Lie groups.

For any Lie algebra, the set of all possible Lie brackets of its elements [g, g] ≡ g(1) ≡ g(1)

is an ideal called the derived subalgebra. We can define two sequences of ideals g(n) and
g(n):

[g(n−1), g(n−1)] ≡ g(n), [g(n−1), g] ≡ g(n). (A.25)

A Lie algebra is solvable (nilpotent) if g(n) (g(n)) is just the 0 element for some n. Every
nilpotent algebra is solvable. It can be shown that a Lie algebra is semisimple iff it does not
possess any invariant solvable subalgebra.

Now the following can be shown.

Cartan’s first criterion g is solvable if g(T, T ′) = 0, ∀ T, T ′ ∈ g(1).

Cartan’s second criterion g is semisimple iff its Killing form is non-degenerate.

(Weyl) A connected semisimple (linear) Lie group is compact iff its Lie-algebra Killing
metric is definite negative.

If the Killing metric of a Lie algebra is 0, then the algebra is solvable.

The Killing metric of a nilpotent Lie algebra is 0.
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We can diagonalize and normalize the Killing metric using GL(n, R) transformations
so that it only has ±1, 0 in the diagonal. The zeros are associated with invariant Abelian
subalgebras and the +1s with non-compact directions.

A.2 Yang–Mills fields

A.2.1 Fields and covariant derivatives

Fields always transform in finite-dimensional representations of the symmetry group, even
if they are not unitary.3 �r (g)i

j i, j = 1, . . ., dim(r) denotes the matrix corresponding to
group element g in the representation labeled by r . The indices which are also carried by
the fields will in general not be shown. In any representation, there are three different types
of fields according to the way they transform: contravariant fields, represented by a column
vector and transforming according to

ψ i ′ = (�r (g))i
jψ

j , (A.26)

covariant fields, represented by a row vector and transforming according to

ξ ′
i = ξ j (�

−1
r (g)) j

i , (A.27)

and Lie-algebra-valued fields that transform under the adjoint action of the group

ϕ = ϕ I �r (TI ) ,

ϕ′ = �r (g)ϕ�−1
r (g), ⇒ ϕ′ I = [

�Adj(g)
]I

J ϕ
J .

(A.28)

The relation among the three kinds of fields depends on the group and representation we
are considering. If the representation r is unitary and ψ is contravariant then ψ† is covari-
ant. If the group is defined by the property that it preserves the scalar product associated
with a metric η 〈u|v〉 = u†ηv so u′ = �v(g)u and �†

v(g)η�v(g), where �v(g) is the matrix
associated with the group element g in the defining fundamental or vector representation
(these are the groups SO(n+, n−), SU(n+, n−), and Sp(n)) then, given a contravariant vec-
tor field ψ , the row vector ψ†η transforms as a covariant vector field. It is also possible to
relate contravariant and covariant fields in the spinor representations of SO(n+, n−) groups
(see Appendix B).

Since
�r (g) = exp{σ I �r (TI )} ≡ exp{σr }, (A.29)

for infinitesimal values of the parameters (group manifold coordinates) σ I , i.e. for trans-
formations near the identity or infinitesimal transformations, the various fields transform as
follows:

δσψ = σ I �r (TI ) ψ = σrψ,

δσ ξ = −ξσ I �r (TI ) = −ξσr ,

δσϕ = [σr , ϕ], ⇒ δσϕ I = σ I
Adj J ϕ

J .

(A.30)

3 Their solutions correspond to states in the quantum theory and therefore must fit into unitary representations,
according to Wigner’s theorem, however.
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If we now consider local (i.e. gauge) transformations of the fields with σ I = σ I (x), the
derivatives4 of the fields ∂µψ, ∂µξ, and ∂µϕ do not transform as do the fields themselves,
i.e. they do not transform covariantly under local transformations.5 It is then necessary to
introduce a compensating field Aµ transforming under the adjoint action of the group on
the Lie algebra (like ϕ) to define a new covariant derivative. This compensating field is the
gauge field and can be defined in any representation

Ar µ = AI
µ�r (TI ). (A.31)

With it we define the covariant derivative Dµ by its action on the fields (here g is a
coupling constant):

Dµψ = ∂µψ − g Ar µψ,

Dµξ = ∂µξ + gξ Ar µ,

Dµϕ = ∂µϕ − g[Ar µ, ϕ], ⇒ Dµϕ I = ∂µϕ I − g fJ K
I AJ

µϕK .

(A.32)

The covariant derivative transforms covariantly under gauge transformations, i.e.(
Dµψ

)′ = �r [g(x)]Dµψ,(
Dµξ

)′ = (Dµξ)�−1
r [g(x)],(

Dµϕ
)′ = �r [g(x)](Dµϕ)(�r [g(x)])−1,

(A.33)

if the gauge field transforms as follows:

A′
r µ = �r [g(x)]Aµ(�r [g(x)])−1 + 1

g
(∂µ�r [g(x)])(�r [g(x)])−1,

δσ AI
µ = 1

g

(
∂µσ I − g fJ K

I AJ
µσ K

)
,

δσ Ar µ = 1

g
Dµσr .

(A.34)

Observe that it transforms as ϕ or σ up to an inhomogeneous term typical of a connection
(which is its geometrical meaning). The spin connection ω̂µ defined in Chapter 1 is just the
connection for the gauge group SO(1, d − 1).

Observe also that the covariant derivatives of contravariant and covariant fields are com-
patible: if the representation is unitary (and therefore all the generators anti-Hermitian so
the real gauge field is anti-Hermitian as well)

(Dψ)† = ∂µψ† + gψ†Aµ, (A.35)

etc. If we are dealing with a metric-preserving group, then in the vector representation

(Dψ)†η = ∂µψ†η + gψ†ηAµ, (A.36)

on account of
�v(T †

I )η = −η�v(TI ) . (A.37)

4 Partial derivatives should be replaced by derivatives covariant with respect to GCTs.
5 Sometimes in the literature covariant transformation means a transformation in which there are no derivatives

of the local parameters σ I , which is, obviously, a necessary condition.
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A.2.2 Kinetic terms

Now we want to build gauge-invariant actions for the fields ψ, ϕ, and Aµ (ξ can simply be
transformed into a contravariant field). Invariants can be built in several ways. The simplest
is to take the product of covariant and contravariant objects that, by definition, transform
oppositely. This works both for ψ and for ϕ (which is once covariant and once contravari-
ant): With our convention for the signature (+, −, · · · , −), gauge-invariant kinetic terms
for ψ and ϕ are

gµν (Dµψ)†Dνψ,

−gµν Tr
(
DµϕDνϕ

) ∼ K I J gµν Dµϕ I Dνϕ
J .

(A.38)

(If the group is not compact, some kinetic terms will have a wrong sign.)
There is no covariant derivative for the gauge field because it does not transform covari-

antly (due to the inhomogeneous term). The closest to the covariant derivative of the gauge
field that we can use to construct a kinetic term is its gauge field strength, which is just
the curvature of the connection Aµ. We can define it as we defined the Riemann curvature
tensor for the Levi-Cività connection in terms of the Ricci identity:[

Dµ, Dν

]
ψ = −gFr µνψ,[

Dµ, Dν

]
ξ = +gξ Fr µν, ,[

Dµ, Dν

]
ϕ = −g[Fr µν, ϕ].

(A.39)

From these relations we find

Fr µν = F I
µν�r (TI ) = 2∂[µ Ar ν] − g[Ar µ, Ar ν], (A.40)

or, in components,
F I

µν = 2∂[µ AI
ν] − g fJ K

I AJ
µ AK

ν. (A.41)

The gauge field strength transforms under the adjoint action of the group on the algebra
(like ϕ) and, thus,

DµFr νρ = ∂µFr νρ − g[Ar µ, Fr νρ]. (A.42)

The gauge field strength always satisfies the Bianchi identity6

D[µFνρ] = 0. (A.43)

Finally, the kinetic term for Aµ which is invariant is

Tr
(
Fr µν Fr µν

) ∼ K I J F I
µν F Jµν, (A.44)

where there is a proportionality coefficient that depends on conventions and on the repre-
sentation r . The Yang–Mills equation of motion is, therefore

DµFµν = 0. (A.45)

6 This can be checked by expanding in powers of g. The first term (of zeroth order in g) vanishes in the
absence of torsion, the second due to several cancelations, and the last term O(g2) due to the Jacobi identity
(A.8).
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There is another invariant that we can build in four dimensions,

Tr (Fµν
�Fµν) ∼ − 1

2
√|g| K I J ε

µνρσ F I
µν F J

ρσ , (A.46)

but it is a total derivative and does not contribute to the Aµ equations of motion. In the
Euclidean signature, the integral of the above term is (up to numerical factors) the instanton
number, a topological invariant that does contribute to the Euclidean path integral.

Sometimes it is useful to work with differential forms. Thus, we define the Lie-algebra-
valued 1- and 2-forms,

A ≡ Aµdxµ, F = 1
2 Fµνdxµ ∧ dxν ≡ d A − A ∧ A, (A.47)

where we have defined the exterior covariant derivative D. The kinetic term for A can now
be written as the d-form (in d dimensions)∫

dd x
√

|g| TrAdj F
2 ∼

∫
TrAdj(F ∧ �F), (A.48)

and the four-dimensional topological term can be rewritten as∫
d4x

√
|g| TrAdj(F�F) ∼

∫
TrAdj(F ∧ F). (A.49)

Now we define the Chern–Simons 3-form

ω3 = 1

3!
ω3 µνρdxµ ∧ dxν ∧ dxρ ≡ TrAdj

(
A ∧ d A − 2

3 A ∧ A ∧ A
)
, (A.50)

or, in components, using the property Eq. (A.24) and the normalization K I J = δI J for a
compact group:

ω3 µνρ = −3!
(

AI
[µ∂ν AI

ρ] − 1
3 f I J K AI

[µ AJ
ν AK

ρ]
)
. (A.51)

The Chern–Simons 3-form has the very important property7

dω3 = TrAdj(F ∧ F), (A.52)

which makes it evident that the topological term F ∧ F is a total derivative.

A.2.3 SO(n+, n−) gauge theory

The group SO(n+, n−) is defined as the group of n × n (where n = n+ + n−) real matrices8

�̂â
b̂ that act on (contravariant) n-dimensional vectors by

V̂ ′ â = �̂â
b̂ V̂ b̂, (A.53)

7 To prove it one simply has to realize that the trace over the exterior product of four As vanishes because
complete antisymmetry in four indices is the opposite to cyclic symmetry. (For three indices, complete
antisymmetry and cyclic symmetry are the same thing and this is why ω3 can be defined at all.)

8 We use hats to avoid confusion with (Lorentzian) tangent-space indices. When n+ = 1 and n− = d − 1 they
are, of course, identical.
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have determinant +1, and preserve the metric η̂âb̂ = diag(+ · · · + − · · · −) (n± plus (mi-
nus) signs), so

V̂ ′ â η̂âb̂ V̂ ′ b̂ = V̂ â η̂âb̂ V̂ b̂. (A.54)

This implies that SO(n+, n−) matrices satisfy the defining property

η̂âb̂ �̂b̂
d̂ η̂d̂ ĉ = (�̂−1)ĉ

â, η̂âb̂η̂b̂ĉ = δâ
ĉ. (A.55)

This generalizes to arbitrary signature the n− = 0 orthogonality condition �̂T = �̂−1.
If we consider also translations in the n-dimensional vector space, we obtain the group

ISO(n+, n−), which acts on contravariant vectors as follows:

V̂ ′ â = �̂â
b̂ V̂ b̂ + Ŵ â. (A.56)

The Poincaré group in d spacetime dimensions is ISO(1, d − 1) in this notation.
We can immediately define the action of SO(n+, n−) on covariant vectors V̂â:

V̂ ′
â = V̂b̂(�̂

−1)b̂
â. (A.57)

Using the defining property of SO(n+, n−) matrices Eq. (A.55), we can relate covariant
and contravariant vectors in the standard way, raising and lowering indices with η̂:

V̂â = η̂âb̂ V̂ b̂, V̂ â = η̂âb̂ V̂b̂. (A.58)

Let us now consider infinitesimal SO(n+, n−) transformations �̂â
b̂ ∼ δâ

b̂ + σ̂ â
b̂. The

defining property of SO(n+, n−) matrices in the vector representation Eq. (A.55) implies
that the infinitesimal parameters of the transformation satisfy σ̂ âb̂ = σ̂ [âb̂] and thus the
group has n(n − 1)/2 independent generators M̂âb̂ (one for each independent parameter),
which are conveniently labeled by an antisymmetric pair of indices âb̂ (this expresses the
fact that the adjoint representation is just the antisymmetric product of two vector represen-
tations). We can write

σ̂ â
b̂ = 1

2 σ̂
ĉd̂ �v

(
M̂ĉd̂

)
â

b̂, (A.59)

where
�v

(
M̂ĉd̂

)
â

b̂ = +2η̂[ĉ
â η̂d̂]b̂ (A.60)

are the SO(n+, n−) generators in the vector representation. Observe that we need to divide
by two in order to avoid counting the same generator twice. These generators are normal-
ized so that

Tr
[
�v

(
M̂âb̂

)
�v

(
M̂ĉd̂

)]
= −4η̂[âb̂][ĉd̂]. (A.61)

The infinitesimal transformations of contravariant and covariant vectors take the forms:

δσ̂ V̂ â = 1
2 σ̂

ĉd̂ �v

(
M̂ĉd̂

)
â

b̂ V̂ b̂,

δσ̂ V̂â = V̂b̂

[
− 1

2 σ̂
ĉd̂ �v

(
M̂ĉd̂

)
b̂

â

]
.

(A.62)
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Using this representation of the generators, one can find the so(n+, n−) algebra[
M̂âb̂, M̂ĉd̂

]
= −η̂âĉ M̂b̂d̂ − η̂b̂d̂ M̂âĉ + η̂âd̂ M̂b̂ĉ + η̂b̂ĉ M̂âd̂, (A.63)

which can be also be written[
M̂âb̂, M̂ĉd̂

]
= −M̂êb̂�v

(
M̂ĉd̂

)
ê

â − M̂âê�v

(
M̂ĉd̂

)
ê

b̂. (A.64)

These commutation relations can be interpreted as the action of M̂ĉd̂ on M̂âb̂, which trans-
forms as the antisymmetric product of two covariant vectors, indicating that the adjoint
representation is the antisymmetric product of two vector representations. This can be seen,
for instance, by using the Eckart–Schrödinger representation of the iso(n+, n−) algebra9

M̂âb̂ = x̂â∂b̂ − x̂b̂∂â = −x̂ ĉ�v

(
M̂âb̂

)
d̂

ĉ∂d̂, P̂â = −∂â, (A.67)

which gives the additional commutator[
P̂â, M̂b̂ĉ

]
= −P̂d̂ �v

(
M̂b̂ĉ

)
d̂

â, (A.68)

indicating that the linear momentum P̂â is a covariant SO(n+, n−) vector.
The so(n+, n−) structure constants are defined by[

M̂âb̂, M̂ĉd̂

]
= 1

2 fâb̂ ĉd̂
ê f̂ M̂ê f̂ , ⇒ �Adj

(
M̂âb̂

)
ê f̂

ĉd̂ = fâb̂ ĉd̂
ê f̂ = 4�v

(
M̂âb̂

)
[ê

[ĉ η̂ f̂ ]
d̂],

(A.69)
where, as we are going to do systematically, we have introduced an additional factor of 1

2
in order to sum over each generator only once. The Killing metric is

K̂âb̂ ĉd̂ = Tr
[
�Adj

(
M̂âb̂

)
�Adj

(
M̂ĉd̂

)]
= (d − 2) Tr

[
�v

(
M̂âb̂

)
�v

(
M̂ĉd̂

)]
= 4(d − 2)η̂[âb̂] [ĉd̂]. (A.70)

Apart from the vector and adjoint representations and other tensor representations (that
can be built as tensor products of a number of covariant and contravariant vector repre-
sentations), SO(n+, n−) groups also admit spinorial representations that are complex, in
general. These are 2[n/2]-dimensional and can be constructed from a representation of a

9 If we consider infinitesimal Poincaré transformations

δxµ = aµ + σµ
ν xν (A.65)

of vector fields in a space of signature (n+, n−), we find

δV µ =
[
aν Pν + 1

2σαβ Mαβ

]
V µ + 1

2σαβ�v
(
Mαβ

)µ
ρ V ρ,

δVµ =
[
aν Pν + 1

2σαβ Mαβ

]
Vµ − 1

2σαβ�v
(
Mαβ

)ρ
µVρ.

(A.66)

The generators in the Eckart–Schrödinger representation appear in the universal transport term.
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Clifford algebra as explained in Appendix B. We denote the so(n+, n−) generators in a
spinorial representation by

�s

(
M̂âb̂

)
α

β, α, β = 1, . . ., 2[n/2]. (A.71)

Spinors are the elements of the representation space, and they are represented by 2[n/2]-
component contravariant vectors ψ̂α and covariant vectors ξ̂α. They transform infinitesi-
mally under SO(n+, n−) according to

δσ̂ ψ̂α = 1
2 σ̂

ĉd̂ �s

(
M̂ĉd̂

)
α̂

β̂ ψ̂β,

δσ̂ ξ̂α = ξ̂β

[
− 1

2 σ̂
ĉd̂ �s

(
M̂ĉd̂

)
β̂

α̂

]
.

(A.72)

Covariant and contravariant spinors are related by the operation of Dirac conjugation:
with each contravariant spinor ψ̂α one can associate a covariant spinor (its Dirac conjugate)

denoted by ¯̂
ψα and related to it by

¯̂
ψα = ψ̂β � Dβα, (A.73)

where D is the Dirac conjugation matrix and satisfies

D−1�s

(
M̂âb̂

)
†D = −�s

(
M̂âb̂

)
. (A.74)

There is another conjugation operation that transforms a contravariant spinor into a covari-
ant one: Majorana conjugation. More details can be found in Appendix B.

The SO(n+, n−) connection, customarily denoted by ω̂µ and called spin connection, is

ω̂µ = 1
2 ω̂µ

âb̂�
(

M̂âb̂

)
, (A.75)

and the SO(n+, n−)-covariant derivative acting on contravariant fields ψ̂ is

D̂µψ̂ = ∂µψ̂ − ω̂µψ̂, (A.76)

whereas that acting on Lie-algebra-valued fields is

ϕ̂ = 1
2 ϕ̂

âb̂�
(

M̂âb̂

)
, D̂µϕ̂ = ∂µϕ̂ − [

ω̂µ, ϕ̂
]
. (A.77)

ψ̂, ϕ̂, and the connection ω̂µ undergo the following infinitesimal gauge transformations

with local parameter σ̂ âb̂:

δσ̂ ψ̂ = σ̂ ψ̂,

δσ̂ ϕ̂ = [
σ̂ , ϕ̂

]
,

δσ̂ ω̂µ = D̂µσ̂ = (
∂µσ̂ − [

ω̂µ, σ̂
])

, σ̂ ≡ 1
2 σ̂

âb̂�
(

M̂âb̂

)
,

(A.78)
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As usual, the curvature is another Lie-algebra-valued field defined through the commutator
of two covariant derivatives in any representation:[

D̂µ, D̂ν

]
ψ̂ = −R̂µνψ̂, (A.79)

where

R̂µν = 1
2 R̂µν

âb̂�
(

M̂âb̂

)
, R̂µν

âb̂ = 2∂[µω̂ν]
âb̂ − 2ω̂[µ|âĉ ω̂|ν]ĉ

b̂, (A.80)

transforms as σ̂ and satisfies the Bianchi identities

D̂[µ R̂νρ] = 0. (A.81)

SO(3) and three-dimensional real Lie algebras. For the particular case n = 3 the adjoint
representation coincides with the vector representation. Then we have two different no-
tations (with one and with two antisymmetric indices) for the same representation. The
relation between the two of them is

Ti = 1
2εi jk Tjk, Ti j = εi jk Tk, (A.82)

and the Ti s satisfy the algebra

[Ti , Tj ] = −εi jkη
kl Tl, ⇒ fi j

l = −εi jkη
kl, ⇒ Ki j = −2ηi j . (A.83)

For ηkl = δkl (for the group SO(3)) an explicit representation is given in Eq. (A.94). The
only other possibility, η = diag (+ + −), is SO(2, 1). They are identical as complex alge-
bras (it suffices to multiply T1 and T2 by i), but not as real algebras.

All the possible real three-dimensional Lie algebras can be written in terms of a matrix
Qkl .

[Ti , Tj ] = −εi jkQkl Tl, Q(lk)εki j Qi j = 0. (A.84)

If we make the separation Qlk = Q(kl) − εkli ai , the constraint on Q is just Q(kl)al = 0. Q(kl)

can be diagonalized and its eigenvectors ai can be found, and all the three-dimensional Lie
algebras (nine in total) can be classified. This is the Bianchi classification (see e.g. [640]).
The only semisimple ones are those of SO(3) and SO(2, 1).

A.3 Riemannian geometry of group manifolds

We can define Riemannian metrics on Lie groups. The most interesting ones are those
invariant under the left- and right-translation diffeomorphisms (bi-invariant metrics). If
BI J are the components of a non-singular metric in the basis of left-invariant vector fields
{eI }, then

ds2 = BI J eI ⊗ eJ , (A.85)

where the eI are a basis of left-invariant 1-forms constructed for instance as in Eq. (A.12),
is automatically a metric invariant under the left-translation diffeomorphisms and has an
isometry group G. Under right translations g → gh

eI → �Adj(h
−1)I

J eJ , ⇒ BI J → �Adj(h
−1)K

I �Adj(h
−1)L

J BK L . (A.86)
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Infinitesimally, BI J will be invariant if the analog of Eq. (A.22) holds. In that case the
metric will have an isomorphism group of G × G (or smaller, if some left and right actions
coincide).

For semisimple groups it is natural to use the Killing metric. If we diagonalize it and
normalize it so that its diagonal contains only +1s and −1s, then the metric is just ηI J and
a metric-compatible connection will be an SO(n+, n−) connection, ωI J = −ωJ I . In the
absence of torsion, the connection 1-form can be determined by comparing the Maurer–
Cartan equations (A.10) with the structure equations (1.143),10

ωI
J = 1

2 eK fK J
I = 1

2 eK �Adj(TK )I
J . (A.87)

The curvature 2-form is given simply by

RI
J = 1

8 eK ∧ eL fK L
M fM J

I , (A.88)

and all its components in this basis are constant and completely determined by the structure
constants. The Ricci tensor is proportional to the Killing metric. Furthermore, repeated use
of the Jacobi identity shows that the curvature is covariantly constant,

∇I RJ K L M = 0. (A.89)

Let us consider a simple but useful example:

A.3.1 Example: the SU(2) group manifold

SU(2) matrices U (U † = U−1, det U = +1) can be parametrized by z0, z1 ∈ C,

U ≡
(

z0 z1

−z̄1 z̄0

)
, |z0|2 + |z1|2 = 1, (A.90)

so SU(2) has the topology of S3. We can parametrize both by the Euler angles {θ, ϕ, ψ},

z0 = cos

(
θ

2

)
ei(ϕ+ψ)/2, z1 = sin

(
θ

2

)
ei(ϕ−ψ)/2, (A.91)

where11 θ ∈ [0, π ], ϕ ∈ [0, 2π ], and ψ ∈ [0, 4π ], whose main property is that we can con-
struct any general SU(2) rotation as the product of three rotations:

U (ϕ, θ, ψ) = U (ϕ, 0, 0)U (0, θ, 0)U (0, 0, ψ). (A.92)

The left-invariant Maurer–Cartan 1-forms ei , i = 1, 2, 3, are

U−1dU ≡ −ei Ti , (A.93)

where the Ti s are the anti-Hermitian generators of the su(2) Lie algebra Eq. (A.83) (with
ηkl = δkl),

Ti = i

2
σ i . (A.94)

10 If the metric is not ηI J = (+ · · · , − · · ·) then ωI
J = eK fK J

I + eK KK J
I , where KK J

I = K J K
I has to

be determined case by case.
11 On imposing the restriction ψ ∈ [0, 2π ], we obtain RP

3, which is homeomorphic to SO(3).
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With the Euler-angles parametrization they are

e1 = sin ψ dθ − sin θ cos ψ dϕ,

e2 = −(cos ψ dθ + sin θ sin ψ dϕ),

e3 = −(dψ + cos θ dϕ),

(A.95)

and it can easily be checked that they satisfy the Maurer–Cartan equation

dei = − 1
2εi jke j ∧ ek . (A.96)

Using the Killing metric we can construct a bi-invariant (that is SU(2) × SU(2) ∼ SO(4)

-invariant) metric on SU(2) (S3). On normalizing to obtain the volume of S3, we obtain12

d�2
(3) = 1

4

[
(e1)2 + (e2)2 + (e3)2

] = 1
4

[
d�2

(2) + (e3)2
]
. (A.97)

A.4 Riemannian geometry of homogeneous and symmetric spaces

We can define the action of a (transformation) group G on a space M as a continuous map

G × M → M
(g, x) → gx

(A.98)

such that
g1(g2x) = (g1g2)x, ex = x, ∀ g1, g2 ∈ G, x ∈ M. (A.99)

Each g ∈ G induces a homeomorphism of M into M. G is said to act transitively on M if,
given any two points of M, there is always a transformation of the group that relates them.
M is then a homogeneous space. The subgroup H ⊂ G that leaves a given point invariant
is the isotropy group of that point. The isotropy groups of all points of M are isomorphic
and we can talk about the isotropy group of M. Then, it can be shown that M and the coset
space G/H defined by the equivalence classes under right multiplication by elements of H,
sometimes denoted by {gH}, are homeomorphic. Observe that G acts from the left on these
equivalence classes.

It can also be shown that, if H is topologically closed, the coset space G/H can be given
the structure of a manifold of dimension dim G − dim H on which G acts transitively. A
manifold M that is a homogeneous space is always diffeomorphic to the coset manifold
G/H, which is what we will mean by homogeneous space henceforth.

A very important theorem states that G can be seen as a principal bundle with base space
G/H, structure group H, and projection G → G/H.

The Lie algebra of any homogeneous space G/H can be decomposed as the direct sum
of vector spaces g = h ⊕ p, where h is the Lie subalgebra of H and k is its orthogonal
complement. Since h is a subalgebra

[h, h] ⊂ h. (A.100)

12 See Appendix C for the definitions of spheres and their volumes.
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G/H is reductive if
[k, h] ⊂ k, (A.101)

which means that k is a representation of H.
G/H is symmetric if it is reductive and

[k, k] ⊂ h. (A.102)

The pair (k, h) is then a symmetric pair.13 The two components of a symmetric pair are
mutually orthogonal with respect to the Killing metric which is block-diagonal.

If G/H is reductive and k is a subalgebra,

[k, k] ⊂ k (A.103)

(so it is an ideal), then g is the semidirect sum of h and k, and G is the semidirect product
of the corresponding subgroups G = H � K.

By construction, there is a natural transitive action of G on homogeneous spaces and it is
natural to define on them Riemannian metrics that are invariant under the left action of G.
If the isotropy group H of a homogeneous (not necessarily symmetric or reductive) space
G/H is compact, then there is always at least one G-invariant Riemannian metric. If G/H
is symmetric, G is connected, and H is compact, and it is equipped with the G-invariant
metric, then G/H is a (Riemannian) globally symmetric space.

Thus, these homogeneous spaces with a G-invariant metric have an isometry group G
that acts transitively from the left. If they are reductive, their Riemann curvature tensor is
covariantly constant14 as in Eq. (A.89).

We have already seen a particular example of homogeneous reductive spaces with a
G-invariant Riemannian metric: group manifolds equipped with a bi-invariant metric on
g. They have a trivial isotropy subgroup H = e and are trivial coset manifolds. They are
clearly reductive but not symmetric because k = g and then [k, k] = k. The isometry group
is the product of the left isometry group G and the right isometry group which is also G.15

Now, we are going to show a procedure by which to construct G-invariant Rieman-
nian metrics on homogeneous spaces. Let us introduce some notation: we denote by {Mi }
(i, j = 1, . . ., dim H) a basis of h, and by {Pa} (a, b = 1, . . ., d = dim G − dim H) a ba-
sis of k. By exponentiating the generators of k we can construct a coset representative
u(x) = u(x1, . . ., xd). We can construct the coset representative as a product of generic
elements of the one-dimensional subgroups generated by the Pas:

u(x) = ex1 P1 · · · exq Pq . (A.104)

Under a left transformation g ∈ G, u transforms into another element of G, which be-
comes a coset representative u(x ′) only after a right transformation with an element h ∈ H,

13 This decomposition can be characterized by an involutive (σ 2 = 1) automorphism σ of g such that σ(T ) =
+T, ∀ T ∈ h and σ(T ) = −T, ∀ T ∈ k.

14 These spaces should not be confused with spaces of constant curvature, that have RI J K L = K δI J K L .
These are a particular type of symmetric space that has the maximal number of Killing vectors allowed
( 1

2 d(d + 1)). They are also known as maximally symmetric spaces.
15 In general, the right isometry group of G/H will be N (H)/H, where N (H) is the normalizer of H.
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which is a function of g and x :
gu(x) = u(x ′)h. (A.105)

Now we construct the left-invariant Maurer–Cartan 1-form and expand it in horizontal, ea ,
and vertical, ϑ i , components:

V ≡ −u−1du = ea Pa + ϑ i Mi . (A.106)

The horizontal components ea can be used as Vielbeins for G/H and, given any metric
Bab on k, we can construct a Riemannian metric

ds2 = Babea ⊗ eb. (A.107)

To find under what conditions this metric will be (left-)G-invariant, we have to look at
the transformation of the Maurer–Cartan 1-forms under left multiplication by a constant
element g ∈ G, u(x ′) = gu(x)h−1:

ea(x ′) = (he(x)h−1)a = �Adj(h)a
beb(x),

ϑ i (x ′) = (hϑ(x)h−1)i + (h−1dh)i + (he(x)h−1)i .
(A.108)

The last term in the second equation is zero in the reductive case and the ϑ i s transform
as a connection. Furthermore, the restriction of �Adj(h) to k is a representation of h. The
Riemannian metric will be invariant under the left action of G if

fi(a
c Bb)c = 0, (A.109)

which is guaranteed if we can set Bab = Kab, the projection on k of the (non-singular)
Killing metric. There are many important cases in which G is not semisimple but there is
a non-degenerate invariant metric. For instance, we can describe Minkowski space as the
quotient of the Poincaré group (which is not semisimple because it contains the Abelian
invariant subgroup of translations) by the Lorentz subgroup. The Minkowski metric is a
non-degenerate invariant metric for this coset. Another example is provided by the Hpp-
wave spacetimes constructed in Section 10.1.1.

The resulting Riemannian metric contains G in its isometry group (generically G ×
N (H)/H) and must admit n Killing vector fields k(I ). The Killing vectors k(I ) and the H-
compensator WI

i are defined through the infinitesimal version of gu(x) = u(x ′)h with

g = 1 + σ I TI ,

h = 1 − σ I WI
i Mi ,

xµ ′ = xµ + σ I k(I )
µ.

(A.110)

Using these equations in
u(x + δx) = u(x) + σ I k(I )u, (A.111)

we obtain
TI u = k(I )u − uWI

i Mi . (A.112)
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Acting with u−1 on the left and using the definitions of the adjoint action and the Maurer–
Cartan 1-forms, we obtain

TJ �Adj(u
−1)J

I = −k(I )
a Pa − (k(I )

µϑ i
µ + WI

i )Mi , (A.113)

which, projected onto the horizontal and vertical subspaces, gives

k(I )
a = −�Adj(u

−1(x))a
I , (A.114)

WI
i = −k(I )

µϑ i
µ − �Adj(u

−1(x))i
I . (A.115)

The Killing vectors associated with the right isometry group N (H)/H are just the vectors
ea dual to the horizontal Maurer–Cartan 1-forms in the directions of N (H)/H.

These formulae simplify considerably the calculation of Killing vectors, if we construct
the space with the above recipe. As in group manifolds, the spin connection16 can easily be
found: on comparing the Maurer–Cartan equations

dea − ϑ i ∧ eb fib
a − 1

2 eb ∧ ec fbc
a = 0 (A.116)

with the structure equation (1.143), we obtain

ωa
b = ϑ i fib

a + 1
2 ec fcb

a, (A.117)

if we do not allow for torsion, or

ωa
b = ϑ i fib

a, T a = − 1
2 ec ∧ eb fcb

a. (A.118)

It is straightforward to compute the curvature using the Maurer–Cartan equations:

dϑ i − 1
2ϑ

j ∧ ϑk f jk
i − 1

2 ea ∧ eb fab
i = 0. (A.119)

In the symmetric case ( fcb
a = 0) and in the reductive case with the torsionful connection

Eq. (A.118)
Ra

b = [dϑ i − 1
2ϑ

j ∧ ϑk f jk
i ] fib

a = 1
2 ec ∧ ed fcd

i fib
a (A.120)

(using the Maurer–Cartan equations) and is covariantly constant. In the reductive (non-
symmetric) case

Ra
b = 1

2 ec ∧ ed
(

fcd
i fib

a + 1
2 fcd

e feb
a − 1

2 fce
a fdb

e
)
. (A.121)

The reductive case (symmetric or not) is particularly interesting because, as we have
said, according to Eqs. (A.108) the vertical 1-forms ϑ i transform as a connection for the
group H. The above formulae Eqs. (A.117) and (A.118) relate this gauge connection to the
spin connection (and torsion). Sometimes this is expressed by saying that the gauge group
has been embedded into the tangent-space group. These relations are used very often in the
construction of solutions. This suggests the following definitions.

16 We assume here that Bab is diagonal with only +1s and −1s on the diagonal.
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A.4.1 H-covariant derivatives

The H-covariant derivative of any object that transforms contravariantly, φ′ = �r (h)φ, or
covariantly, ψ ′ = ψ�r (h−1) (for instance, u(x) itself), in the representation r of H is

Dµφ ≡ ∂µφ − ϑµ
i�r (Mi )φ, Dµψ ≡ ∂µψ + ψϑµ

i�r (Mi ). (A.122)

The curvature Fi is
Fi = dϑ i − 1

2ϑ
j ∧ ϑk f jk

i (A.123)

and it is covariantly constant with respect to the full (Lorentz-plus-gauge) covariant deriva-
tive if we use the torsional spin connection Eq. (A.118) and also in the symmetric case.
This statement is clearly equivalent to the covariant constancy of the Lorentz curvature.

This implies that, in any reductive coset space G/H, there is a solution of the Yang–Mills
equations of motion for the group H in the curved geometry associated with the (torsionful)
spin connection defined above. This result is implicitly or explicitly used in many places.
The simplest example is provided by the coset manifold SU(2)/U(1), which gives a round
2-sphere. The U(1) connection solves the Maxwell equations and corresponds to the Dirac
monopole (see the calculation of the Robinson–Bertotti superalgebra on page 386 and Ap-
pendix C.1).

The gauge field ϑ i is invariant under the combination of the diffeomorphisms generated
by the Killing vectors k(I ) and gauge transformations generated by WI

i , i.e.

−Lk(I )ϑ
i = DµWI

i , (A.124)

where Lk(I ) is the standard Lie derivative.
The H-covariant Lie derivative with respect to the Killing vectors17 k(I ) of contravariant

(φ) or covariant (ψ) objects in the representation r of H is

Lk(I )φ ≡ Lk(I )φ + WI
i�r (Mi )φ, Lk(I )ψ ≡ Lk(I )ψ − ψWI

i�r (Mi ). (A.125)

This Lie derivative satisfies, among other properties

[Lk(I ) , Lk(J )
] = L[k(I ),k(J )], (A.126)

Lk(I )e
a = 0, (A.127)

Lk(I )u = Lk(I )u − uWI
i Mi = TI u, (A.128)

where the last property follows from Eqs. (A.115) and (A.112). The connection 1-forms
ϑ i are not covariant or contravariant objects and this definition does not apply to them.
The best one can do for them is to combine the standard Lie derivative and a compensat-
ing gauge transformation. The resulting operator acting on ϑ i is identically zero, due to
Eq. (A.124).

17 H-covariant Lie derivatives can be defined with respect to any vector, but the property Eq. (A.126) holds
only for Killing vectors. The spinorial Lie derivative [632, 633, 655] and the more general Lie–Lorentz
and Lie–Maxwell derivatives that appear in calculations of supersymmetry algebras [390, 748] discussed
in Section 13.2.1 can actually be seen as particular examples of this more general operator (see e.g. [460])
and, actually, are identical objects when they are acting on Killing spinors of maximally supersymmetric
spacetimes [25].
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A.4.2 Example: round spheres

The n-dimensional sphere Sn (see Appendix C) is a homogeneous topological space on
which the orthogonal group SO(n + 1) acts transitively.18 Any point is invariant under
rotations around the axis that crosses that point: the isotropy group is thus SO(n), and Sn

is therefore homeomorphic to SO(n + 1)/SO(n). If the SO(n + 1) generators are {M̂âb̂},
â, b̂ = 1, . . ., n + 1, the generators of SO(n) can be chosen as {Mab ≡ M̂ab} a, b = 1, . . ., n
and those of the orthogonal complement as Pa ≡ Mn+1 a . We immediately see that Sn is a
symmetric space:

[Pa, Mbc] = 2δa[c Pb] = −Pd�v(Mbc)
d

a, [Pa, Pb] = Mab. (A.129)

To construct an SO(n + 1)-symmetric Riemannian metric,19 we first construct a coset
representative u as above and then the Maurer–Cartan 1-form V :

−V = Pndxn + e−xn Pn Pn−1exn Pn dxn−1

+ e−xn Pn exn−1 Pn−1 Pn−2exn Pn−1exn Pn dxn−2 · · · . (A.130)

Here we can use repeatedly the formula

[X, Y ] = Z , [Y, Z ] = X, [Z , X ] = Y, ⇒ eaX Y e−aX = cos(a) Y + sin(a) Z ,

(A.131)
for the triplets Pa, Pb, and Mab, or, far better, the definition of the adjoint action:

e−xn Pn Pn−1exn Pn = 1
2 M̂âb̂�Adj(e

−xn Pn )âb̂
n−1. (A.132)

In both cases, the result is

−e = Pndxn + Pn−1 cos xn dxn−1 + Pn−2 cos xn cos xn−1 dxn−2 + · · ·,

−ϑ = sin xn
a=n−1∑

a=1

Mn adxa + cos xn sin xn−1
a=n−2∑

a=1

Mn−1 adxa (A.133)

+ cos xn cos xn−1 sin xn−2
a=n−3∑

a=1

Mn−2 adxa + · · ·.

Using the SO(n)-invariant metric20 δab, we obtain the SO(n + 1)-invariant metric

ds2 = (dxn)2 + cos2 xn
[
(dxn−1)2 + cos2 xn−1

[
(dxn−2)2 + · · · . (A.134)

On comparing this with the metric Eq. (C.4) in standard spherical coordinates, we see that
the coset coordinates that we have used are related to them by xn = θn−1 + π/2, . . ., x1 =
ϕ. The spin connection is given by

ωa
b = 1

2ϑ
cd fcd n+1b

n+1a = 1
2ϑ

cd�v(Mcd)
a

b = ϑa
b, (A.135)

18 SO(n + 1) rotates in the standard form the coordinates of the ambient space R
n+1, respecting the defining

equation (x1)2 + · · · + (xn+1)2 = 1.
19 With 1

2 n(n + 1) isometries, spheres with this metric (round spheres) are also maximally symmetric spaces.
20 On rescaling some entries of δab, one obtains squashed spheres (see Appendix C.2) that have less symmetry.
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and the curvature, which corresponds to a maximally symmetric space, by

Rcd
a

b = 1
2 fn+1c n+1d

e f fe f n+1b
n+1a = 1

2δcd
e f �v(Mef )

a
b = δ[c

aδd]b. (A.136)

We can construct AdSd spacetimes in an almost identical way as the coset manifolds
SO(2, d − 1)/SO(1, d − 1) with Pa ≡ M̂−1 a a = 0, 1, . . ., d − 1 and {Mab ≡ M̂ab} using
the metric ηab on k. The d = 4 case is worked out in Section 13.3.3 and the d = 2 case in
Section 13.3.4, page 386.
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Gamma matrices and spinors

In this appendix we explain our conventions for gamma matrices in diverse dimensions and
their relations (via dimensional reduction). We start by reviewing basic facts about spinors
and gamma matrices in diverse dimensions. At the end we review spinors and gamma
matrices in spaces of arbitrary dimensions and signatures.

B.1 Generalities

Let us first review some facts about gamma matrices.1 Gamma matrices are the gen-
erators of the d-dimensional Clifford algebra associated with the metric ηab = diag
(+ − · · · −), a, b = 0, . . ., d − 1 and, therefore, satisfy the anticommutation relations

{�a, �b} = +2ηab. (B.1)

Any other element of the Clifford algebra can be constructed as a linear combination of the
gamma matrices and their products.

Clifford algebras are relevant in physics due to the fact that a representation of the
d-dimensional Clifford algebra for the above metric ηab can be used to construct a rep-
resentation of the d-dimensional Lorentz algebra so(1, d − 1),

[Mab, Mcd] = −ηac Mbd − ηbd Mac + ηad Mbc + ηbc Mad, (B.2)

that we denote by �s by taking antisymmetric products of two gamma matrices:

�s(Mab) = 1
2�ab, �ab ≡ �[a�b]. (B.3)

(We use the notation
�a1···an = �[a1�a2 · · · �an ] (B.4)

for the antisymmetrized (with weight unity) product of n gamma matrices.)

1 We will follow [913] but using our mostly minus-signature metric. See also [221, 923, 947].
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Lorentz transformations in this representation are constructed by exponentiation2

�s(�) = exp
{

1
2σ

ab�s(Mab)
}
. (B.5)

How many different representations can be built in this way? It can be shown that

There is only one (physically3) inequivalent irreducible representation of the Clifford
algebra in d dimensions and it is 2[d/2]-dimensional.

The corresponding representation of the Lorentz algebra �s is a spinorial represen-
tation and the elements of the complex 2[d/2]-dimensional vector representation space
are called (Dirac) spinors. We use the first Greek letters as indices in this vector space:
α, β = 1, . . ., 2[d/2].

It is worth stressing that, even if we use an irreducible representation of the Clifford
algebra, the corresponding representation of the Lorentz group is reducible for d even. In
that case, the representation space is the direct sum of two subspaces of dimension 2[d/2]−1

whose elements are called Weyl spinors and will be discussed later.
We consider only unitary representations. The definition of the algebra means that, if the

gamma matrices are unitary, �0 is Hermitian and the rest of the �i are anti-Hermitian:

�0 † = +�0, �i † = −�i , i = 1, . . ., d − 1. (B.6)

This implies
�0�a�0 = �a †. (B.7)

In any representation, all gamma matrices are traceless. This can be seen by considering
tr
(
�a�b�a

)
with a �= b and using the anticommutators and the cyclic property of the trace.

We can prove the existence of a 2[d/2]-dimensional representation of the Clifford al-
gebra by explicit construction as in [221]. This will provide us with gamma matrices
in any dimension. Let us first consider the case d even. We can proceed by induction:
if we assume that a representation of the (d − 2)-dimensional gamma matrices {�a

(d−2)},
a = 0, . . ., d − 3 exists and that it is 2[(d−1)/2]-dimensional, then

�a
(d) = �a

(d−2) ⊗ σ 1, �d−2
(d) = I ⊗ iσ 2, �d−1

(d) = I ⊗ iσ 3, (B.8)

2 The Lorentz group O (1, d − 1) is neither connected nor simply connected for d ≥ 3. Exponentiation of the
generators gives only transformations in the component of the group manifold connected with the identity
(the proper (determinant +1), orthochronous (�1

1 > 1) Lorentz group). To obtain all the Lorentz transfor-
mations, one needs to multiply by discrete transformations such as time-reversal and parity (depending on the
dimension d). More precisely, the exponentiation of the generators of the Lorentz algebra so(1, d − 1) in this
representation �s gives elements of the simply connected group which is locally isomorphic to SO(1, d − 1)

(and, therefore, has the same Lie algebra) and which is called, by definition, Spin(1, d − 1). The Lorentz
group is doubly connected and, thus, some representations of Spin(1, d − 1) (in particular the spinorial �s)
are double-valued as representations of the Lorentz group.

3 By physically equivalent we mean representations of the Clifford algebra that give, with the above con-
struction, equivalent representations (i.e. that are representations related by similarity transformations) of
the Lorentz group. Two physically equivalent representations of the Clifford algebra may but need not be
strictly equivalent.
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where σ 1,2,3 are the (Hermitian, unitary, 2 × 2) Pauli matrices

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
, (B.9)

that satisfy
σ iσ j = δi j + iεi jkσ k, (B.10)

is a 2[d/2]-dimensional representation of the d-dimensional Clifford algebra. A d = 2 repre-
sentation of the two-dimensional Clifford algebra is provided by (for instance)

{
I2×2, iσ 2

}
and this completes the proof for d even.

Now, if d is even and
{
�0, . . ., �d−1

}
are 2d/2 × 2d/2 gamma matrices satisfying the

d-dimensional Clifford algebra, then the gamma matrices
{
�0, . . ., �d−1, �d

}
with

�d ≡ −iϕ(d)�0 · · · �d−1, ϕ(d) = (−1)
1
4 (d−2)+1, (B.11)

satisfy the (d + 1)-dimensional Clifford algebra.4 Thus, the even d irreducible representa-
tions determine the d + 1 irreducible representations and this completes the proof. Observe
that this matrix is different from the chirality matrix Q = �d+1 (γ5 in d = 4):

�d+1 = i�d = ϕ(d)i�0 · · · �d−1,

�2
d+1 = +1, �

†
d+1 = +�d+1. �0�d+1�

0 = −�
†
d+1.

(B.13)

Observe also that, in odd dimensions, by construction, the product of all gamma matrices
is proportional to a constant whose sign can be chosen at will (by changing the sign of �d).
The two possible signs give inequivalent representations of the Clifford algebra (which are,
nevertheless, physically equivalent).

Let us now consider equivalent representations of the Clifford algebra, related by a sim-
ilarity transformation

�a ′ = S�a S−1. (B.14)

If d is even, then, if we change the sign of all the gamma matrices, we obtain an equivalent
representation with S = Q, the chirality matrix. If d is odd, changing the signs of all the
gamma matrices does not provide an equivalent representation because it changes the sign
of the product of all the gamma matrices.

For both even and odd d the Hermitian conjugates of the gamma matrices constitute an-
other representation related to the original one by S = D, where D is the Dirac conjugation
matrix and can be taken to be D = i�0.

In even d the transposed gamma matrices also provide another equivalent representation
of the Clifford algebra. In that case, by definition, S = C, the charge-conjugation matrix,
which we will use later. For d odd, sometimes it is the transposed gamma matrices that

4 By putting together
�0 · �d−1 = (−1)[d/2]�d−1 · �0,(

�0 · �d−1
)(

�d−1 · �0
)

= (−1)d−1,
(B.12)

it is easy to check that �d anticommutes with all the other gammas, squares to −1, and is anti-Hermitian.
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provide a representation and sometimes it is the transposed gamma matrices with the sign
reversed that provide an equivalent representation.

Clearly, for even d (and for odd d, up to a sign) the complex conjugates of gamma
matrices give also an equivalent representation and, by definition, S = B. The matrix B is
related to D and C and we will not use it now.

Gamma matrices carry a vector Lorentz index that is raised and lowered with η. They are
invariant under Lorentz transformations that act on their three (two spinorial, one vector)
indices:(

�′ a
)
α

β = �a
b�

α
γ

(
�b

)
γ

δ

(
�−1

)δ
β = (

�a
)
α

β, �α
γ = �s(�)α

γ . (B.15)

If we consider infinitesimal transformations, we find that gamma matrices and generators
of the Lorentz group in the spinorial representation must obey the commutation relations5[

�a, �s(Mbc)
] = �v(Mbc)

a
d�

d . (B.16)

These commutation relations are identical to those of the momentum Pa and the Lorentz
generators in the Poincaré algebra. Thus, they indicate that the gamma matrices transform
as vectors in the spinorial representation.6

Let us now study spinors. Dirac spinors transform under the Lorentz group as expected
(contravariantly),

ψ ′ α = �α
βψβ = �s(�)α

βψβ,

�s(�) = exp
{

1
2σ

ab�s(Mab)
} = exp

{
1
4σ

ab�ab
}
,

(B.17)

or, infinitesimally,
δσψα = 1

2σ
ab�s(Mab)

α
βψβ. (B.18)

In flat Minkowski spacetime, Lorentz transformations are global. In curved space-
time Lorentz transformations make sense only at one point in tangent space and there-
fore Lorentz transformations are naturally local (σ ab = σ ab(x)). Hence theories containing
spinors are required to be invariant under local Lorentz transformations, and are naturally
gauge theories of the Lorentz group. The Lorentz covariant derivative acting on a (con-
travariant) spinor is, according to the results of Appendix A.2.3 and Eq. (B.3),

∇µψ = (
∂µ − 1

4ωµ
ab�ab

)
ψ. (B.19)

In field theory, a Dirac spinor ψα is a field ψα(x) that satisfies the massive or massless
(m = 0), charged or uncharged (e = 0) d-dimensional Dirac equation

(i �∇ − m + e �A)ψ = 0, �∇ ≡ �aea
µ∇µ, �A ≡ �aea

µ Aµ. (B.20)

We can also define spinors ξα transforming covariantly,

ξ ′
α = ξβ

(
�−1

)β
α = ξβ�s

(
�−1

)β
α,

�s
(
�−1

) = exp
{− 1

2σ
ab�s(Mab)

} = exp
{− 1

4σ
ab�ab

}
,

(B.21)

5 This consistency check is satisfied in our conventions.
6 Observe, though, that gamma matrices do not commute and therefore they do not provide a spinorial repre-

sentation of the translation generators of the Poincaré algebra.
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or, infinitesimally,
δσ ξα = ξβ

[− 1
2σ

ab�s(Mab)
β

α

]
. (B.22)

The Lorentz covariant derivative acts on covariant spinors according to

∇µξ = ∂µξ + ξ
(− 1

4ωµ
ab�ab

) ≡ ξ
←−∇ µ. (B.23)

Just as we can transform contravariant vectors into covariant vectors by “lowering the
index” with the metric, we can transform contravariant spinors into covariant spinors by
conjugation. Given a Dirac spinor transforming contravariantly, there are two kinds of con-
jugate spinors that transform covariantly.

The Dirac conjugate ψ̄ of a spinor ψ is a new spinor that transforms covariantly and
whose components ψ̄α are linear combinations of those of (ψα)∗:

ψ̄α =
(
ψ†D

)
α

= (ψβ)∗Dβα, (B.24)

where D is the Dirac conjugation matrix. According to the above definition

D �ab D−1 = −�
†
ab. (B.25)

Taking the Hermitian conjugate of Eq. (B.17) and using �ab † = −�0�ab�0, we find
that, up to a phase, the Dirac conjugation matrix is given by �0. Our convention is
D = i�0, so

ψ̄ ≡ iψ†�0. (B.26)

Obviously, by definition, the product ψ̄αψ
α is a Lorentz invariant. Also ¯̄ψ = ψ .

The Dirac conjugate satisfies the conjugate Dirac equation

i∇aψ̄�a + mψ̄ = ψ̄(i �←−∇ + m − e �A) = 0. (B.27)

The Majorana conjugate ψc of a spinor ψ is a new spinor that transforms covariantly
and whose components ψc

α are linear combinations of ψα,

ψc
α = (

ψTC
)
α

= ψβCβα (B.28)

(not ψ� as in the Dirac conjugate), and that transform as the Dirac conjugate under
Lorentz transformations. Here C is the charge-conjugation matrix. By transposing
Eq. (B.17) and using the definition of ψc, we find that C must satisfy

C �ab C−1 = −�T
ab. (B.29)

The matrices − 1
2�

T
ab also satisfy the Lorentz algebra. The charge-conjugation matrix

C relates this representation and the standard one. It is natural to look for a charge-
conjugation matrix that also relates a representation of the Clifford algebra and the
representation obtained by transposing all gamma matrices. There are two possibili-
ties: C+ and C− defined by

C±�aC−1
± = ±�a T. (B.30)
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When d is even, both matrices exist because +�a T and −�a T generate the same
finite group as �a . When d is odd, only one of them exists because of the above
definition of �d−1 in terms of �0, . . ., �d−2. Furthermore, both matrices, when they
exist, are either symmetric or antisymmetric.

When d is even, the charge-conjugation matrices act on �d+1 as follows:

C±�d+1C−1
± = ϕ2�T

d+1. (B.31)

Using the C± charge-conjugation matrices and taking the Majorana conjugate of the
Dirac equation, we find that the Majorana conjugate satisfies the following equation:

ψc(i �←−∇ ∓ m + e �A) = 0, (B.32)

which implies that ψc has charge opposite to that of ψ̄ (hence the name “charge-
conjugation matrix”). It is obviously desirable that both ψc and ψ̄ have the same
mass and, thus, in the massive case the only acceptable charge-conjugation matrix is
C−.

By construction ψcψ is Lorentz-invariant and (ψc)c = ψ .

We can now study various types of spinors that are in general associated with special
representations of gamma matrices.

Weyl spinors (Also called chiral spinors.) For even d it is possible to define as before the
chirality matrix �d+1 which anticommutes with all the gamma matrices and therefore
commutes with the generators of the Lorentz group �s(Mab) and with their exponen-
tials, which span the Spin(1, d − 1) group. Thus (Schur’s lemma) this representation
of the Spin(1, d − 1) group, and Dirac spinors, are reducible even if the gamma ma-
trices provide an irreducible representation of the d-dimensional Clifford algebra of
ηab. The chirality matrix is traceless and squares to unity and therefore half of its
eigenvalues are +1s and the other half are −1s. It is natural to split the space of
Dirac spinors into the direct sum of the subspaces of spinors with eigenvalues +1
and −1. The elements of each of these subspaces are called Weyl spinors and, by
definition, satisfy the Weyl or chirality condition

1
2(1 ± �d+1)ψ = ψ. (B.33)

For the positive sign, the spinors are called left-handed (negative chirality); and for
the negative sign they are called right-handed (positive chirality). A Weyl spinor
describes half the degrees of freedom of a Dirac spinor.

Observe that, while Weyl spinors are irreducible representations of the Spin(1, d −
1) group, they are not irreducible representations of the Lorentz group SO(1, d − 1)

because this group contains discrete transformations that interchange the two sub-
spaces of opposite chiralities. In particular, the parity transformation is implemented
by P = i�0, which does not commute but anticommutes with the chirality matrix,
switching the chirality of the spinors.
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Using the Dirac equation, it can be seen that the Weyl condition is preserved in time
for m = 0.

Associated with Weyl spinors there are Weyl (or chiral) representations of gamma
matrices. In a Weyl representation the generators of the Lorentz group are diagonal
and the chirality matrix is �(d+1) = I ⊗ σ 3. In a chiral basis of gamma matrices, half
of the components of a Weyl spinor are zero and it is sometimes advantageous to use
half-size spinors.

Majorana spinors are spinors whose Majorana conjugate is proportional to their Dirac
conjugate (the Majorana condition):

λ̂ = α λ̄. (B.34)

This is a reality condition because it relates the components of λ to those of its com-
plex conjugate. Thus, it describes half the degrees of freedom of a Dirac spinor. Us-
ing our definitions of Majorana and Dirac conjugates in the definition of a Majorana
spinor, we find that it implies

|α|2�0 �
(
C−1

)�
�0C−1 = +1. (B.35)

This condition cannot be fulfilled in all dimensions and this is the reason why Majo-
rana spinors exist only in certain dimensions. This condition and the (anti)symmetry
of C do not depend on the representation and the results found in any representation
are valid in general.7

Associated with Majorana spinors there are Majorana representations in which all
�s are purely imaginary.8 If a Majorana representation exists, then the condition for
the existence of Majorana spinors is automatically satisfied by the choice

C = iα�0. (B.36)

With any other representation we have to check explicitly whether the above equation
holds.

Below d = 11, there are Majorana spinors in all but d = 5, 6, and 7.

Majorana–Weyl spinors satisfy both Majorana and Weyl conditions. They exist in even
dimensions if, in addition to the Majorana condition, one can satisfy a compatibility
condition between Majorana and Weyl conditions:

C−1 �T
d+1 C = �0 �

†
d+1 �0. (B.37)

This condition is representation-dependent and, again, can be satisfied only in certain
dimensions. Using the definition of �d+1 we have chosen and its properties, we see
that the above condition is satisfied whenever η2(d) = −1 (d even); that is, when

d = 2(mod 4) = 2, 6, 10, . . .. (B.38)

7 This condition and similar conditions will be studied in detail, for arbitrary signature, in Section B.2. For
the moment we will simply quote the results for Lorentzian signature and d ≤ 11.

8 With mostly plus signature all �s are purely real (essentially the same matrices multiplied by i). If we used
the Pauli metric, so that {�a, �b} = +2δab, all �s would be real except for �4, which would be imaginary.
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Table B.1. Spinors that exist in various dimensions with sig-
nature (1, d − 1). M is the number of real independent com-
ponents of the smaller spinorial representation in the given
dimension. (W, Weyl; M, Majorana; M–W, Majorana–Weyl;
and S–M, Symplectic–Majorana spinors.)

d W M M–W S-M S-M and W M

2 x x x 1
3 x 2
4 x x x 4
5 x 8
6 x x x 8
7 x 16
8 x x x 16
9 x 16

10 x x x 16
11 x 32

Majorana spinors do not exist in d = 6 and so Majorana–Weyl spinors exist only in
d = 2 and 10 (at least in our representation and in fewer than 11 dimensions). It can
be shown that these are also the only dimensions in which they exist.

Symplectic-Majorana spinors When defining Majorana spinors (i.e. spinors satisfying
a reality condition) is not possible, one can take an even number of Dirac spinors
labeled by i = 1, . . ., 2n and impose a reality condition on the whole set:

ψ̄ i = ψi
c ≡ �i jψ

i c, (B.39)

where � is real and satisfies
�i j� jk = −δik . (B.40)

Below d = 11 this can be done consistently in d = 4, 5, 6, 7, and 8. In d = 6 we can
impose simultaneously the symplectic-Majorana and Weyl conditions.

In many cases, n = 2 symplectic-Majorana spinors appear combined in a single, un-
constrained, Dirac spinor that contains the same number of degrees of freedom.

See Table B.1 for a summary.

B.1.1 Useful identities

Most of the gamma identities (for up to four gammas) that we need can be obtained from
the following products by symmetrization, antisymmetrization, etc.:

�a�b = �ab + ηab, (B.41)

�a�b�c = �abc + ηab�c − ηca�b + ηbc�a, (B.42)

�a�b�c�d = �abcd + ηab�cd − ηcb�da + ηcd�ab + ηda�bc

− ηac�bd − ηbd�ac + ηabηcd − ηacηbd + ηadηbc. (B.43)
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For instance, we can obtain

�ab�cd = �ab
cd + 4�[d

[aηc]
b] + 2η[d

aηc]
b, (B.44)

from which we can derive the Lorentz algebra. With more than four, we use repeatedly

�a�b1···bn = �ab1···bn + nηa[b1�b2···bn ], (B.45)

�b1···bn�a = �b1···bna + n�[b1···bn−1ηbn ]a. (B.46)

Using them, we find, for instance, the (anti)commutator[
�a, �b1···bn

]
± = [1 ∓ (−1)n]�ab1···bn + n[1 ± (−1)n]ηa[b1�···bn ] (B.47)

and the general formula

�b1···bn�a1···am =
min(n,m)∑

p=0

n!m!

(n − p)!(m − p)!p!
�[b1···bn−p

[ap+1···am ηbn−p+1···bn ]
a1···am−p]

= �b1···bn
a1···am + nm�[b1···bn−1

[a2···am ηbn ]
a1] + · · · .

(B.48)

B.1.2 Fierz identities

These identities are used very often in supergravity theories. To derive these identities, we
first need a basis {OI } of the vector space of 2[d/2] × 2[d/2] matrices. This basis can be built
out of the gamma matrices{

O I
} = {

I, �a, i�ab, i�abc, �abcd, . . .
}
. (B.49)

(Observe that there are 22[d/2] matrices in this basis. Furthermore, this is why a decomposi-
tion like Eq. (B.48) is always possible.) All these matrices are linearly independent except
for the last one (the product of all gamma matrices) in odd dimensions. Now we construct
a dual basis orthogonal to the one above:

{OI } = {I, �a, i�ab, i�abc, �abcd, . . .}, OI (O J ) ≡ tr(OIOJ ) = 2[d/2]δI J , (B.50)

as we can easily check:

tr I
2 = 2[d/2],

tr
(
�̃a�̃b

)
= tr

(
�̃(a�̃b)

)
= tr

(
Iδab

) = 2[d/2]δab,

tr
(
I�̃a

)
= 0,

(B.51)

etc. Any 2[d/2] × 2[d/2] matrix P is a linear combination of the {O I }:
P = pIO I ,

tr(OI P) = 2[d/2] pI ,

Pα
β = pIO I α

β = 2−[d/2] ∑
I

Pγ
δOδ

I γO I α
β .

(B.52)
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Let us now consider the product of bilinears of spinors,

Q = (
λ̄Mχ

)(
ψ̄ Nϕ

) = λ̄αχ
βψ̄γ ϕδ Mα

β N γ
δ. (B.53)

For fixed indices α and δ, Mα
β N γ

δ is just a matrix Pγ
β(α, δ) to which we can apply the

above formula, obtaining

Mα
β N γ

δ = 2−[d/2]
∑

I

(MOI N )α
δO I γ

β . (B.54)

On substituting this identity into Q and taking into account the necessary permutation of
the spinors, we obtain the general Fierz identities

Q = p 2−[d/2] ∑
I

(
λ̄MO I Nϕ

) (
ψ̄OI χ

)
,

p =
{−1 anticommuting spinors,

+1 commuting spinors.

(B.55)

Now, depending on the dimensions and the particular properties of the spinors, this ex-
pression can be further simplified. For instance, if we are dealing with Majorana–Weyl
spinors, then terms with n and d − n gammas will be related.

In some cases (N = 2 SUGRA theories) spinors appear in SO(2) doublets ψ i , i = 1, 2.
It is then convenient to arrange them in a vector,

ψ ≡
(

ψ1

ψ2

)
, (B.56)

and it is useful to have Fierz identities for these vectors.9 In the space of 2 × 2 matrices a
convenient basis is provided by the Pauli matrices and the identity. Is is easy to arrive at the
following N = 2 Fierz identities:

Q = p 2−[d/2]−1 ∑
I,A

(
λ̄MO I Nσ Aϕ

)(
ψ̄OI σ

Aχ
)
,

p =
{−1 anticommuting spinors,

+1 commuting spinors.

(B.57)

with A = 0, 1, 2, 3 and σ 0 = 1.

B.1.3 Eleven dimensions

Our 11-dimensional gamma matrices satisfy the anticommutation relations

{ ˆ̂
�

ˆ̂a, ˆ̂
�

ˆ̂b} = +2 ˆ̂η ˆ̂a ˆ̂b. (B.58)

9 In higher-N supergravity theories, spinors come in higher-dimensional multiplets and further generalizations
exist.
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It is possible to choose (in a way consistent with all the properties that we are going to

enumerate) the 11th gamma matrix ˆ̂
�10 to be

ˆ̂
�

ˆ̂10 = i ˆ̂
�

ˆ̂0 · · · ˆ̂
�

ˆ̂9 ≡ −i �̂11, (B.59)

where �̂11 will be the ten-dimensional chirality matrix {�̂11, �̂
â} = 0.

They are in a purely imaginary (i.e. Majorana) representation, i.e. ˆ̂
�

ˆ̂a � = − ˆ̂
�

ˆ̂a . They are all

anti-Hermitian, except for ˆ̂
�

ˆ̂0, which is Hermitian:

ˆ̂
�

ˆ̂0 † = + ˆ̂
�

ˆ̂0.

ˆ̂
�

ˆ̂ı † = − ˆ̂
�

ˆ̂ı , ˆ̂ı = 1, . . ., 10.

(B.60)

We have the property
ˆ̂
�

ˆ̂0 ˆ̂
�

ˆ̂a ˆ̂
�

ˆ̂0 = ˆ̂
�

ˆ̂a †. (B.61)

The Dirac conjugation matrix ˆ̂D is the real antisymmetric matrix

ˆ̂D = i ˆ̂
�0, (B.62)

and thus we have
ˆ̂D ˆ̂
�

ˆ̂a1··· ˆ̂an ˆ̂D−1 = (−1)[n/2]
( ˆ̂
�

ˆ̂a1··· ˆ̂an

)†
. (B.63)

Their Hermiticity properties combined with their imaginary nature mean that all are

symmetric except for ˆ̂
�

ˆ̂0, which is antisymmetric:

ˆ̂
�

ˆ̂0 T = − ˆ̂
�

ˆ̂0, ˆ̂
�

ˆ̂ı T = + ˆ̂
�

ˆ̂ı , ˆ̂ı = 1, . . ., 10. (B.64)

We choose a charge-conjugation matrix equal to the Dirac conjugation matrix,

ˆ̂C = ˆ̂D = i ˆ̂
�0, (B.65)

which satisfies
ˆ̂C T = ˆ̂C † = ˆ̂C−1 = − ˆ̂C,

ˆ̂C ˆ̂
�

ˆ̂a ˆ̂C−1 = − ˆ̂
�

ˆ̂a T. (B.66)

The last property implies

ˆ̂C ˆ̂
�

ˆ̂a1··· ˆ̂an ˆ̂C−1 = (−1)n+[n/2]
( ˆ̂
�

ˆ̂a1··· ˆ̂an

)
T. (B.67)

The standard definitions of the Dirac conjugates and Majorana conjugates and our spe-

cific choice of Dirac and charge-conjugation matrices ˆ̂C = ˆ̂D imply that the Majorana con-
dition ¯̂̂

λ = ˆ̂
λc (B.68)
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is equivalent to requiring that all components of a Majorana spinor are real. Using the
property (B.67) and the definition of (anticommuting) Majorana spinors, one finds

ˆ̂ε ˆ̂
�

ˆ̂a1··· ˆ̂an ˆ̂
ψ = (−1)n+[n/2] ¯̂̂

ψ
ˆ̂
�

ˆ̂a1··· ˆ̂an ˆ̂ε, (B.69)

so the above bilinear is symmetric for n = 0, 3, 4, 7, and 8 and antisymmetric for n =
1, 2, 5, 6, 9, and 10.

On the other hand, taking the Hermitian conjugate10 and using Eq. (B.63), we find( ¯̂̂
ε

ˆ̂
�

ˆ̂a1··· ˆ̂an ˆ̂
ψ

)†
= (−1)[n/2] ¯̂̂

ψ
ˆ̂
�

ˆ̂a1··· ˆ̂an ˆ̂ε, (B.70)

which implies, on comparison with Eq. (B.69), that the above bilinear is real for even n and
imaginary for odd n.

Finally, we have the useful identity

ˆ̂
�

ˆ̂a1··· ˆ̂an = i
(−1)[n/2]+1

(11 − n)!
ˆ̂ε ˆ̂a1··· ˆ̂an

ˆ̂b1··· ˆ̂b11−n ˆ̂
� ˆ̂b1··· ˆ̂b11−n

. (B.71)

B.1.4 Ten dimensions

The 11-dimensional Majorana representation of gamma matrices can be constructed from
the ten-dimensional Majorana (purely imaginary) representation, according to

ˆ̂
�â = �̂â, â = 0, . . ., 9,

ˆ̂
�10 = +i �̂0 · · · �̂9.

(B.72)

Ten-dimensional Majorana spinors are identical to 11-dimensional spinors and the same
definitions and identities apply to them.

However, in ten dimensions we can also have Weyl spinors that satisfy many additional
identities. They are defined in terms of the chirality matrix �̂11,

�̂11 = −�̂0 · · · �̂9 = i ˆ̂
�10, (B.73)

so �̂11 is Hermitian and satisfies (�̂11)
2 = +1. Spinors of positive, ψ̂(+), and negative, ψ̂(−),

chiralities are defined as usual:
�̂11ψ̂

(±) = ±ψ̂(±). (B.74)

Furthermore, in d = 10 we can define Majorana–Weyl fermions. It is useful to work in
a Majorana–Weyl representation of the gamma matrices in which, in addition to having
imaginary gamma matrices, the chirality matrix �̂11 has the form

�̂11 = I16×16 ⊗ σ 3 =
(

I16×16 0
0 −I16×16

)
. (B.75)

10 We use the convention (ab)� = +a�b� for anticommuting numbers. This is the convention used in [264,
599, 795] etc. The opposite convention is used in [946, 948] etc.
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We will see explicitly that it is possible to have �̂11 defined as above in terms of the ten
gamma matrices and at the same time having precisely that form. The sign of �̂11 is chosen
in order to have that relation with positive sign and to have as well

�̂11 = 1

10!
ε̂â1···â10�̂

â1···â10 = 1

10!
√

|ĝ| ε̂µ̂1···µ̂10�̂
µ̂1···µ̂10, (B.76)

which leads to

�11�̂
â1···ân = (−1)[(10−n)/2]+1

(10 − n)!
ε̂ â1···ân b̂1···b̂10−n �̂b̂1···b̂10−n

. (B.77)

In the Majorana–Weyl representation each 32-component real Majorana spinor ψ̂ can be
constructed from one positive-chirality and one negative-chirality 16-component spinor:

ψ̂ =
(

ψ̂(+)

ψ̂ (−)

)
. (B.78)

B.1.5 Nine dimensions

We have chosen a Majorana–Weyl representation for the ten-dimensional gamma matrices.
They can be constructed from a purely real representation of the nine-dimensional ones:

�̂a = �a ⊗ σ 2, a = 0, . . ., 8, �̂9 = I16×16 ⊗ iσ 1, (B.79)

where �8 satisfies
�8 = �0 · · · �7. (B.80)

As usual, it will be proportional to the eight-dimensional chiral matrix �(8) 9 (see below).
One can explicitly check that, with these definitions, the ten-dimensional representation of
the gamma matrices is indeed chiral and �̂11 = I16×16 ⊗ σ 3.

B.1.6 Eight dimensions

The purely nine-dimensional gamma matrices we are using can be constructed in the stan-
dard way from a purely real eight-dimensional representation (which is not chiral):

�a = �a
(8), a = 0, . . ., 7, �8 = �0 · · · �7. (B.81)

The chirality matrix is defined by

�(8) 9 = i�8 = i�0 · · · �7. (B.82)

We will not be able to decompose this representation in terms of a seven-dimensional
representation. There are no purely real or imaginary (in Lorentzian signature) repre-
sentations of the gamma matrices in seven dimensions. Thus, we cannot decompose
�a

(8) = �a
(7) ⊗ A2×2 with the same factor matrix A for all a = 0, . . ., 6. Thus, it is impossi-

ble to use this representation to perform a dimensional reduction from d = 8 to d = 7, 6, 5
dimensions because we would break Lorentz invariance.
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However, it is possible to reduce directly to four dimensions. If {γ a} is a Majorana
(purely imaginary) representation of the four-dimensional gamma matrices, the purely real
representation of the eight-dimensional ones can be constructed in this way:

�a
(8) = γ a ⊗ σ 2 ⊗ σ 1, a = 0, 1, 2, 3, �4

(8) = �4
(5) ⊗ σ 3 ⊗ σ 3,

�5
(8) = �4

(5) ⊗ σ 1 ⊗ σ 3, �6
(8) = I4×4 ⊗ I2×2 ⊗ iσ 2,

�7
(8) = I4×4 ⊗ iσ 2 ⊗ σ 3,

(B.83)

where
�4

(5) = γ 0γ 1γ 2γ 3. (B.84)

Since a four-dimensional Majorana representation exists, this proves the existence of the
nine-, ten-, and 11-dimensional representations we are using. For the purpose of dimen-
sional reduction of the gamma matrices from d = 10 to d = 4 this is not the best represen-
tation. It is more convenient to use those of [192, 457].

B.1.7 Two dimensions

A (purely imaginary) Majorana–Weyl representation of the two-dimensional Clifford alge-
bra is given by

γ 0
(2) = σ 2, γ 1

(2) = iσ 1. (B.85)

The chiral matrix is, as expected in a Weyl representation,

γ(2) 3 = γ 0
(2)γ

1
(2) = σ 3. (B.86)

The two-dimensional gamma matrices are sometimes denoted by ρa .

B.1.8 Three dimensions

We can build a purely imaginary Majorana representation from the two-dimensional (purely
imaginary) Majorana–Weyl representation:

γ a
(3) = γ a

(2), a = 0, 1, γ 2
(3) = −iγ 0

(2)γ
1
(2) = −iσ 3. (B.87)

B.1.9 Four dimensions

Given the above Majorana representation (purely imaginary) of the three-dimensional
gamma matrices, we can build a Majorana representation (purely imaginary) of the four-
dimensional gamma matrices:

γ a = γ a
(3) ⊗ σ 3, a = 0, 1, 2, γ 3 = I2×2 ⊗ iσ 1. (B.88)

The chiral matrix is

γ5 = −iγ 0γ 1γ 2γ 3 = i

4!
εabcdγ

abcd, (B.89)
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and, using the explicit form of the three-dimensional gamma matrices,

γ5 = I2×2 ⊗ σ 2. (B.90)

It is obviously Hermitian and imaginary (and therefore antisymmetric). In this representa-
tion we can use as charge-conjugation matrix C− = iγ 0, which is real and antisymmetric.
The Majorana condition says that Majorana spinors are purely real spinors, ψ = ψ∗.

There is another possible choice; namely C+ = γ5γ
0, which is also real and antisymmet-

ric and would impose the following condition on Majorana spinors: ψ = −iγ5ψ
∗. This is

inconsistent (just take the complex conjugate of this relation) and so with it we can define
only symplectic-Majorana spinors.

We can also build a Weyl representation that is complex:

γ a = γ a
(3) ⊗ σ 2, a = 0, 1, 2, γ 3 = I2×2 ⊗ iσ 1. (B.91)

With the above Majorana representation of three-dimensional gamma matrices, we find

γ5 = I2×2 ⊗ σ 3. (B.92)

There are no Majorana–Weyl fermions in four dimensions and there are no Majorana–
Weyl representations of the gamma matrices. The Weyl and Majorana representations given
here are related by the similarity transformation (which is valid also for γ5)

γ a
M = Sγ a

WS−1, S = I2×2 ⊗ (I2×2 − iσ 1), (B.93)

We also have the identity

γ a1···an = (−1)[n/2]i

(4 − n)!
εa1···anb1···b4−nγb1···b4−nγ5. (B.94)

Using this identity the d = 4 Fierz identities for anticommuting spinors take the form

( λ̄Mχ)(ψ̄ Nϕ) = − 1
4( λ̄M Nϕ)(ψ̄χ) − 1

4( λ̄Mγ a Nϕ)(ψ̄γaχ)

+ 1
8( λ̄Mγ ab Nϕ)(ψ̄γabχ) + 1

4( λ̄Mγ aγ5 Nϕ)(ψ̄γaγ5χ)

− 1
4( λ̄Mγ5 Nϕ)(ψ̄γ5χ). (B.95)

B.1.10 Five dimensions

There are no Majorana representations in d = 5, but only pairs of (complex) symplectic-
Majorana spinors that can be combined into a single unconstrained Dirac spinor.

Using any representation of the four-dimensional gamma matrices γ a , a = 0, 1, 2, 3, we
can construct a five-dimensional representation (which is necessarily complex, even if the
four-dimensional gamma matrices are purely imaginary)

γ̂ a = γ a, a = 0, 1, 2, 3, γ̂ 4 = −iγ5 = γ0γ1γ2γ3. (B.96)

Then the product of all the five-dimensional gammas is

γ̂ 0 · · · γ̂ 4 = +1. (B.97)
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B.1.11 Six dimensions

With the above representation of the five-dimensional gamma matrices, we can construct a
six-dimensional representation

ˆ̂γ â = γ̂ â ⊗ σ 1, â = 0, 1, 2, 3, 4, ˆ̂γ 5 = I4×4 ⊗ iσ 2, (B.98)

which is a Weyl representation, since the chirality matrix ˆ̂γ 7 is

ˆ̂γ 7 = ˆ̂γ 0 · · · ˆ̂γ 5 = I4×4 ⊗ σ 3. (B.99)

A useful formula is

ˆ̂γ ˆ̂a1··· ˆ̂an = (−1)[n/2]

(6 − n)!
ˆ̂ε ˆ̂a1··· ˆ̂an

ˆ̂b1··· ˆ̂b6−n ˆ̂γ ˆ̂b1··· ˆ̂b6−n

ˆ̂γ 7. (B.100)

B.2 Spaces with arbitrary signatures

We now want to generalize our results on spinors and gamma matrices to d-dimensional
spaces with signatures (+t , −s), where t is the number of timelike dimensions and s is the
number of spacelike dimensions. The essential reference is [642] and other useful refer-
ences are [404, 828, 878], which we roughly follow.

The general setup is the same as in the signature-(1, d − 1) case: we consider the gen-
erators of the Clifford algebra associated with the metric ηab = diag(+t , −s), where the in-
dices are a, b = −(t − 1), −(t − 2), . . ., 0, 1, . . ., s, which is the metric of SO(t, s). These
are the 2[d/2] × 2[d/2] gamma matrices �a which satisfy the usual anticommutation rela-
tions and out of which one can build the generators of so(t, s) in the spinorial represen-
tation in the usual form. They are unique up to similarity transformations. The complex
2[d/2]-component vectors in the representation space are Dirac spinors. We consider uni-
tary representations and, therefore, all timelike (spacelike) gamma matrices are Hermitian
(anti-Hermitian):

�a † = +�a, a ≤ 0, �a † = −�a, a > 0. (B.101)

A representation can be constructed by “Wick-rotating” the signature-(1, d − 1) matri-
ces, multiplying them by factors of i if necessary. Given a d-even representation, one can
construct the chirality matrix Q = �d+1,

�d+1 = ϕ(s, t)�−(t−1)�−(t−2) · · · �−1�0�1 · · · �s, ϕ(s, t) = −e
π i
4 (s−t), (B.102)

which is unitary and Hermitian and anticommutes with all the �as. Using it, we can con-
struct a representation of the (d + 1)-dimensional gamma matrices: if the signature is
(t, s + 1) we define

�s+1 = −i�d+1, (B.103)

and, if the signature is (t + 1, s), we simply define

�−t = �d+1. (B.104)
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Thus, in even dimensions the gamma matrices are independent and in odd dimensions
they are not: the product of all the gamma matrices is a power of the imaginary unit.

In even dimensions, {±�a}, {±�a †}, {±�a T}, and {±�a ∗} generate equivalent represen-
tations. In odd dimensions, however, due to the above-mentioned constraint, only one sign
gives an equivalent representation. The matrices of the corresponding similarity transfor-
mations are the chirality matrix Q (�d+1), the Dirac matrix D±, the charge conjugation
matrix C±, and the B± matrix:

Q�a Q−1 = −�a, D± �a D−1
± = ±�a †,

C± �a C−1
± = ±�a T, B± �a B−1

± = ±�a ∗.
(B.105)

In even dimensions all these matrices exist and, evidently,

D± = D∓Q, C± = C∓Q, B± = B∓Q. (B.106)

In odd dimensions Q does not exist and only one of the C± and B± exists.
In general, D is defined (up to a phase α) by

D = α�0�−1 · · · �−(t−1). (B.107)

In our conventions we find

D �a D−1 = (−1)t+1�a †, (B.108)

and, thus,
D = D+, for odd t, D = D−, for even t, (B.109)

and then one has the relations

C± = BT
±D, for odd t, C± = BT

∓D, for even t, (B.110)

so the existence and properties of C± are determined by the existence and properties of B±.
The main result is11

BT
± = ε±(t, s)B±, ε±(t, s) = sqcos

[π

4
(s − t ± 1)

]
. (B.111)

When ε = ±1, B is symmetric or antisymmetric. When ε± = 0, B± does not exist. The
value depends on (s − t) mod 8 and it is represented in Table B.2, from [878]. Observe
that, since these matrices are assumed to be unitary, we also have

B∗
±B± = ε±(t, s). (B.112)

Thus, for instance, when s = t only B− exists and is symmetric, whereas for s = t + 1,
both B+ and B− exist and are, respectively, antisymmetric and symmetric.

11 The function sqcos θ is defined as the projection on the x axis of the line that forms an angle θ with
the x axis and joins the origin to a square centered on the origin and with sides of length 2. Then
sqcos(−π/4, 0, π/4) = +1, sqcos(3π/4, π, 5π/4) = −1, and sqcos(π/2, 3π/2) = 0.
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Table B.2. Possible values of ε±(±).

s − t

1 2 3 4 5 6 7 8

ε+ 0 −1 −1 −1 0 +1 +1 +1
ε− +1 +1 0 −1 −1 −1 0 +1

The symmetry of B± determines that of the charge-conjugation matrix C±

CT
± = ε±(±1)t(−1)

t (t−1)
2 C±, for odd t,

CT
± = ε∓(−1)

t (t−1)
2 C±, for even t.

(B.113)

We can now define the Dirac ψ̄ and Majorana ψc conjugates of a spinor ψ :

ψ̄ = ψ†D, ψc = ψTC. (B.114)

The existence of these conjugation operations is due to the equivalence of the Hermitian
conjugate and transposed representations of the gamma matrices.

Now we can proceed to define various types of constrained spinors.

Weyl spinors. In any even dimension these are eigenspinors of the chirality matrix, which
has only eigenvalues +1 and −1 because Q2 = 1. Since it is traceless, half of the
eigenvalues are +1 and half are −1. Q commutes with all the so(t, s) generators,
which means that the (Dirac) spinorial representation is reducible to the direct sum
of the two Weyl spinorial representations.

(Pseudo-)Majorana spinors. They satisfy the reality constraint

ψ̄ = ψc, (B.115)

which, using the relation among D, C, and B, can be rewritten in the form

ψ∗ = Bψ. (B.116)

On taking the complex conjugate of this equation, we find the consistency condition

BB∗ = ε = +1. (B.117)

Only in this case is it possible to define Majorana spinors. If the equation is satisfied
by B−, the spinors are called Majorana spinors. If it is satisfied by B+, they are
called pseudo-Majorana spinors. Thus, Table B.2 can be reinterpreted in terms of the
existence of Majorana (M) or pseudo-Majorana (pM) spinors as in Table B.3.

(Pseudo-)Majorana–Weyl spinors. The Majorana and Weyl conditions are compatible if

D−1Q†D = C−1QTC, (B.118)
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Table B.3. Possible spinors in d = t + s dimensions with signatures
(+t , −s). M stands for Majorana, pM for pseudo-Majorana, SM for
symplectic-Majorana, pSM for pseudo-symplectic-Majorana, MW for
Majorana–Weyl, and pMW for pseudo-Majorana–Weyl; ∗ meaning
that d has to be even. In addition to this, Weyl spinors are possible
for any even d .

s − t

1 2 3 4 5 6 7 8

pSM pSM pSM
pM pM pM

M M M
SM SM SM

pMW∗
MW∗

which, using the relation among D, C, and B, can be simplified to

Q∗ = BQB−1, (B.119)

which is satisfied for s − t = 0 mod 4.

(Pseudo-)symplectic-Majorana spinors. When BB∗ = −1 the Majorana reality condi-
tion cannot be consistently imposed. However, then one can introduce an even num-
ber of Dirac spinors labeled by i = 1, . . ., 2n and impose the reality condition

ψ̄ i = ψi
c ≡ �i jψ

j c, (B.120)

where � is real and satisfies
�i j� jk = −δik . (B.121)

This condition can be rewritten in the more transparent form

ψ i ∗ = �i jBψ j , (B.122)

which is consistent if BB∗ = −1. The cases in which these spinors can be defined are
represented in Table B.3.

Now we are going to use these results in several examples of interest.

B.2.1 AdS4 gamma matrices and spinors

The spinor representations of SO(2, 3) (which we also refer to as AdS4) have the same
dimension (four) as those of SO(1, 3). The corresponding gamma matrices, which we write
with hats, are 4 × 4 matrices and any representation of them includes a representation of the
SO(1, 3) (unhatted) gamma matrices. Furthermore, it is clear that AdS4 spinors transform
as Lorentz spinors under the Lorentz subgroup. Our goal now will be to construct an explicit
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representation of the gamma matrices and the generators of the AdS4 group. Since s − t = 1
we expect only a Majorana representation. It appears in two forms, which are equivalent
through similarity transformations. We call them electric and magnetic and denote them by
a − or a + subscript or superscript, respectively.

The magnetic representation. It is built by the standard procedure from the Clifford alge-
bra associated with the SO(2, 3) metric η̂âb̂: first we construct five gamma matrices
satisfying {

γ̂â, γ̂b̂

} = +2η̂âb̂. (B.123)

These matrices can be constructed by using the four SO(1, 3) Dirac matrices:

γ̂+ −1 = γ5 = −iγ 0 · · · γ 3, γ̂+ a = γa, (B.124)

and, using purely imaginary Dirac matrices, we obtain a purely imaginary represen-
tation of the SO(2, 3) Clifford algebra.

The SO(2, 3) generators in the magnetic spinorial representation are constructed
from the Clifford algebra in the usual fashion

�+
(

M̂âb̂

)
= 1

2 γ̂+ âb̂, (B.125)

and they automatically satisfy the so(2, 3) algebra Eq. (4.152).

SO(2, 3) spinors ψ̂+α transform with the exponential of all these generators and are,
in particular, Lorentz spinors.

Since t = 2, we know that D = D−. Furthermore, the only B leading to consistent
Majorana spinors is B− and thus we can use only C+, which is antisymmetric. We
can take

C+ = D− = γ̂ 0
+γ̂ −1

+ = γ 0γ5. (B.126)

It is easy to check that the charge-conjugation matrix C+ satisfies

C+γ̂ âC−1
+ = +γ̂ â T = −γ̂ â †. (B.127)

Since the Dirac conjugation and charge-conjugation matrices are identical, B− =
I4×4, the Majorana condition ¯̂

ψ+ = ψ̂c
+ implies that Majorana spinors are purely real

spinors in this representation, ψ̂∗
+ = ψ̂+.

In this representation the ten matrices[
�+

(
M̂âb̂

)
C−1

+
]

αβ (B.128)

are real and symmetric. This is necessary in order to build the osp(N/4) supersym-
metry algebra. The six matrices(

C−1
+

)
αβ,

(
i γ̂ â

+C−1
+

)
αβ (B.129)

are real and antisymmetric and we will use them to add other (“central”) charges in
the anticommutator {Qα i , Qβ j } supersymmetry algebra.
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These 16 matrices are a basis of the linear space of real 4 × 4 matrices. We will later
work out the details simultaneously with analogous matrices of the electric represen-
tation. For the moment it suffices to observe that other antisymmetrized products of
gamma matrices can be related to the above antisymmetrized products of zero, one,
and two gamma matrices via

γ̂
â1···ân+ ∼ 1

(5 − n)!
ε̂ â1···â5 γ̂+ ân+1···â5, (B.130)

with ε̂−10123 = +1. In particular,

γ̂ âb̂ĉd̂ ê
+ = i ε̂ âb̂ĉd̂ ê. (B.131)

The electric representation. This is the representation that is used most often. The
SO(2, 3) generators in the electric spinorial representation �− are built directly from
the SO(1, 3) Dirac gamma matrices γ a:

�−
(

M̂ab

)
= 1

2γ
ab, �−

(
M̂a−1

)
= i

2
γ a. (B.132)

It can be checked that these matrices satisfy the so(2, 3) algebra Eq. (4.152).

In this representation

iγ 0�−
(

M̂âb̂

)(
iγ 0

)−1 = −�−
(

M̂âb̂

)
† = −�−

(
M̂âb̂

)
T, (B.133)

which implies that we can take as Dirac and charge-conjugation matrices

D = D+ = C− = iγ 0, (B.134)

which coincide with the ones we used in d = 4 dimensions with signature (1, 3). This
may seem contradictory. However, we have not yet identified from which represen-
tation of the Clifford algebra the above so(2, 3) representation arises. Actually, it can
be constructed by the standard procedure from the following hatted gamma matrices:

γ̂− −1 = γ5, γ̂− a = iγaγ5, (B.135)

which provide a purely imaginary representation of the Clifford algebra associated
with η̂âb̂. Then, we can see that the Dirac conjugation and charge-conjugation matri-
ces are given by the product of the two timelike gammas, as in the magnetic case:

D+ = C− = γ̂ 0
−γ̂ −1

− = iγ 0. (B.136)

As is needed for supersymmetry, in the electric representation the ten matrices[
�−

(
M̂âb̂

)
C−1

−
]αβ

(B.137)

are also real and symmetric, and the six matrices(
C−1

−
)
αβ,

(
i γ̂ â

−C−1
−

)
αβ (B.138)

are real and antisymmetric.
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Although these two representations are built in different ways, they are equivalent: they
are related by a complete chiral–dual-type change of basis in spinor space:12

ψ̂+ = Sψ̂−,

�+
(

M̂âb̂

)
= S�−

(
M̂âb̂

)
S−1,

C+ = (S−1)TC−S−1,

S = 1√
2
(1 + iγ5).

(B.139)

Observe that, given that C± is always real and antisymmetric and squares to minus the
identity, the condition (from now on we suppress + and − subindices)

C�
(

M̂âb̂
)
C−1 = −�

(
M̂âb̂

)
T (B.140)

is equivalent to the statement that the 4 × 4 matrices �
(

M̂âb̂
)

α
β are at the same time a

spinorial representation of the algebra so(2, 3) and a fundamental representation of the
algebra sp(4, R). Using Cαβ as a metric to raise and lower indices,13 one can construct real,

symmetric representations of sp(4, R) [443] mâb̂ αβ , where

mâb̂ αβ =
[
�

(
M̂âb̂

)
C−1

]αβ

. (B.141)

These objects satisfy the identity

mâb̂ αβmĉd̂ αβ = 2δ[âb̂]
[ĉd̂], (B.142)

which simply states that these matrices are an orthonormal basis in the ten-dimensional
space of 4 × 4 real symmetric matrices with the trace of the standard product of matrices
as scalar product and, therefore, for any symmetric matrix Oαβ ,

Oαβ = 1
2 mâb̂ γ δmâb̂ αβ Oγ δ, ⇒ mâb̂ γ δmâb̂ αβ = 2δ(γ δ)

(αβ), (B.143)

and, by definition of mâb̂, we obtain the identity

mâb̂ αβmâb̂
γ δ = (

C−1
)αγ (

C−1
)βδ + (

C−1
)αδ(C−1

)βγ
, (B.144)

which is crucial for the consistency of the osp(4/N ) superalgebra.
The matrices mâb̂ αβ can also be used to convert objects in the adjoint of so(2, 3) into

objects in the fundamental of sp(4, R), which are somewhat easier to deal with.
Let us now consider the six real, antisymmetric matrices n

ˆ̂a αβ ,

nâ αβ = 1√
2

(
i γ̂ âC−1

)
αβ,

n4 αβ = 1√
2

(
C−1

)
αβ,

(B.145)

12 By this we mean a change of basis, not just a rotation of the spinors as in Eqs. (5.84).
13 Upper-left indices are contracted with adjacent lower-right indices: ξα = ξβCβα = −Cαβξβ .
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labeled by the index ˆ̂a = (â, 4) which we raise and lower with the SO(2, 4) metric ˆ̂η ˆ̂a ˆ̂b =
diag(+ + − − −−). It can be proved that these matrices are an orthonormal basis in the
space of real 4 × 4 antisymmetric matrices with the trace as scalar product (rasing and
lowering indices with C):

n
ˆ̂a αβn ˆ̂b βα

= 2δ
ˆ̂a ˆ̂b,

n
ˆ̂a γ δn ˆ̂a αβ

= −2δ[γ δ]
[αβ].

(B.146)
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n-Spheres

An n-dimensional unit-radius1 sphere Sn is the hypersurface of R
n+1 defined by

(x1)2 + · · · + (xn+1)2 = 1. It is usually parametrized in terms of spherical coordinates
{r, ϕ, θ1, . . ., θn−1},

x1 = ρn−1 sin ϕ,

x2 = ρn−1 cos ϕ,

x3 = ρn−2 cos θ1, (C.1)
...

...

xk = ρn−k+1 cos θk−2, 3 ≤ k ≤ n + 1,

where

ρl = [(x1)2 + · · · + (xn+1−l)2]
1
2 = r

l∏
m=1

sin θn−m,

ρ0 = r = [(x1)2 + · · · + (xn+1)2]
1
2 ,

(C.2)

and ϕ ∈ [2, 2π ], θi ∈ [0, π ], setting r = 1. The metric induced on Sn in spherical coordi-
nates is denoted by d�2

(n) and is implicitly defined in

d �x 2
(n+1) = dρ2

0 + ρ2
0dθ2

n−1 + · · · + ρ2
n−2dθ2

1 + ρ2
n−1dϕ2 ≡ dr2 + r2d�2

(n). (C.3)

In practice, it is convenient to use the recursive formula

d�2
(n) = dθ2

n−1 + sin2 θn−1 d�2
(n−1), d�2

(1) = dϕ2. (C.4)

The spheres equipped with this metric, which is clearly SO(n + 1)-invariant, are called
round spheres (see Appendix A.4.2). Other metrics with less symmetry on the same Sn

manifolds are possible, but sometimes a different notation is used to denote the correspond-
ing Riemannian spaces.

1 For a topological space, the radius is irrelevant, but it becomes relevant when we consider the metric induced
from the Euclidean metric of R

n+1.

634
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For some purposes, such as the calculation of the curvature in spacetimes with spherical
symmetry, it is convenient to rename the coordinates ϕ and θk and use ψi , i = 1, . . ., n
with

ψi = θn−i , i = 1, . . ., n − 1, ψn = ϕ, (C.5)

and define

qi = r2
i−1∏
k=1

sin ψi , i = 1, . . ., n, (C.6)

so the metric takes the form

d �x 2
(n+1) = q0dr2 +

i=n∑
i=1

qi dψ2
i = dr2 + r2d�2

(n). (C.7)

The volume form on Sn is, in spherical coordinates,

d�n ≡ dϕ

n−1∏
i=1

sini θi dθi . (C.8)

In Cartesian coordinates in the embedding (n + 1)-dimensional space it takes the form

d�n = 1

n!rn+1
εµ1···µn+1 xµn+1dxµ1 · · · dxµn . (C.9)

Other useful identities are

dn+1x = rndrd�n, rnd�n = dn y
√

|g|, (C.10)

where the y are coordinates on the n-sphere.
The volume of the unit n-sphere Sn is given by

ω(n) =
∫

Sn
d�n = 2π

n+1
2

	
(n + 1

2

) . (C.11)

Using

	(x + 1) = x	(x), 	(0) = 1, 	

(
1

2

)
= π1/2, (C.12)

one obtains ω(1) = 2π, ω(2) = 4π, ω(3) = 2π2, etc.
The round n-spheres are globally symmetric spaces SO(n + 1)/SO(n) (Appendix A.4.2).

There is also a description of the round spheres S3 and S7 as principal (Hopf) bundles in
which both the base space and the fiber are spheres. The S3 case is based on the descrip-
tion of S2 as the coset manifold SO(3)/SO(2) ∼ SU(2)/U(1) and the general theorem (see
page 604) that ensures that G (SU(2) ∼ S3) is a principal bundle with base G/H (S2) and
structure group H (SO(2) ∼ S1). Let us now study these Hopf fibrations.
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C.1 S3 and S7 as Hopf fibrations

There is a natural action of U(1) on SU(2)

U → U

(
u 0
0 ū

)
, |u|2 = 1, (C.13)

(i.e. through shifts of ψ), that allows us to take the quotient SU(2)/U(1) that can be identi-
fied with S2. This is why the metric on S2 is the metric on the coset manifold SU(2)/U(1):

d�2
(2) = (e1)2 + (e2)2. (C.14)

We can then view SU(2) (S3) as a fiber bundle with fiber U(1) (S1) and base space S2. From
this point of view e3 is a U(1) connection in the bundle and its curvature coincides with
that of the Dirac magnetic monopole [892] (see Section 8.7.2).

This is the simplest case n = 1 in the first sequence of Hopf principal fiber bundles [540],

S2n+1 U(1)→ CP
n, (C.15)

since CP
1 is nothing but the Riemann sphere S2. Here S2n+1 is described by the equation

in C
n , z̄0z0 + · · · + z̄nzn = 1. There is another infinite sequence of Hopf fiberings,2

S4n+3 SU(2)→ HP
n, (C.16)

where H is the field of quaternions. Here S4n+3 is described by the equation in H
n , z̄0z0 +

· · · + z̄nzn = 1. The first member in this series describes S7 as a fiber bundle with SU(2) as
fiber and S4 (HP

1) as base space. The S7 metric can be similarly constructed [892],

d�2
(7) = 1

4

[
d�2

(4) +
3∑

i=1

(ei + Ai )2

]
, (C.17)

where the ei are the SU(2) Maurer–Cartan 1-forms and d�2
(4) is the metric on S4, that we

construct as before,

d�2
(4) = dχ2 + sin2 χ d�2

(3), d�2
(3) = 1

4

3∑
i=1

(Ei )2, (C.18)

where the Ei are a second set of SU(2) Maurer–Cartan 1-forms and (in different coordi-
nates) and the 1-form with su(2) indices

Ai = − sin2(χ/2) Ei (C.19)

coincides with the gauge connection of the BPST instanton. This metric is also maximally
symmetric (SO(8)-invariant).

2 The last “sequence” can be defined analogously using octonions, but only the first element is well defined.
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C.2 Squashed S3 and S7

The metrics of the round S3 and S7 associated with their description as Hopf fibrations can
easily be deformed to those of squashed spheres by introducing a parameter λ:

d�̃2
(3) = 1

4

[
d�2

(2) + λ2(e3)2
]
,

d�̃2
(7) = 1

4

[
d�2

(4) + λ2
3∑

i=1
(ei + Ai )2

]
.

(C.20)

Only for certain values of λ does one obtain Einstein metrics: λ = 1, the round spheres
(i.e. SO(4)- and SO(8)-invariant), and, for the S7 case only, λ = 1/

√
5. The metric of this

squashed S7 is only SO(5) × SO(3)-invariant, which makes it interesting in Kaluza–Klein
compactifications [58].
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Palatini’s identity

This identity allows us to express the Einstein–Hilbert action in terms of the spin-
connection coefficients alone, with no partial derivatives, which are eliminated upon in-
tegrating by parts. On substituting the expression for the Ricci scalar,

R = 2ea
µeb

ν∂[µων]
ab + ωa

acωb
b

c + ωb
acωac

b, (D.1)

into the Einstein–Hilbert action and integrating by parts, using the relation between the
Levi-Cività connection and the spin connection

∂a ln
√

|g| = �ba
b = ωba

b + ea
µ∂beµ

b, (D.2)

we obtain∫
dd x

√
|g| K R =

∫
dd x

√
|g| K

{−2∂[µ| (ea
µeb

ν) ω|ν]
ab + 2ωa

ab(∂b ln K )

+ 2eb
µ∂ceµ

cωa
ab − ωb

baωc
c

a − ωa
bcωcb

a
}
. (D.3)

Simple manipulations of the two terms with explicit Vielbeins lead us to the following
generalization of Palatini’s identity which is often used:∫

dd x
√

|g| K R =
∫

dd x
√

|g| K
{−ωb

baωc
c

a − ωa
bcωbc

a + 2ωb
ba(∂a ln K )

}
. (D.4)

Observe [836] that the integrand is a scalar under reparametrizations (there are no world
indices at all).
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Conformal rescalings

If we make the local scale transformation in d dimensions

g̃µν = �2gµν, (E.1)

the determinant of the metric and the Christoffel symbols transform as follows:√
|g̃| = �d

√
|g|, �̃µν

ρ = �µν
ρ + (

δν
ρδµ

α + δµ
ρδν

α − gµνgρα
)
∂α ln �. (E.2)

So the covariant derivative of a vector (defined to be invariant with index down) and the
Laplacian of a scalar transform as follows:

∇̃µ Aν = ∇µ Aν − 2A(µ∂ν) ln � + gµν Aρ ∂ρ ln �,

∇̃2s = �−2
[∇2s + (d − 2) ∂µ ln � ∂µs

]
,

(E.3)

where the formulae are written using only g̃ on the l.h.s. and only g on the r.h.s. The
completely antisymmetric tensor εµ1···µd is scale-invariant with our conventions.

The Ricci tensor and scalar and the Einstein tensor transform as follows:

R̃µν = Rµν − (d − 2)
[
∂µ ln � ∂ν ln � − gµν(∂ ln �)2

]
+ (d − 2)

[
∇µ∂ν ln � + 1

d − 2
gµν∇2 ln �

]
, (E.4)

R̃ = �−2
[
R + (d − 1)(d − 2)(∂ ln �)2 + 2(d − 1)∇2 ln �

]
, (E.5)

G̃µν = Gµν − (d − 2)

[
∂µ ln � ∂ν ln � + d − 3

2
gµν(∂ ln �)2

]

+ (d − 2)
[∇µ∂ν ln � − gµν∇2 ln �

]
. (E.6)
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Connections and curvature components

F.1 For some d = 4 metrics

F.1.1 General static, spherically symmetric metrics (I)

The metric
ds2 = gtt(r)dt2 + grr (r)dr2 − r2d�2

(2) (F.1)

leads to the Levi-Cività connection components

�t t
r = − 1

2∂r gtt/grr , �tr
t = 1

2∂r gtt/gtt , �rr
r = 1

2∂r grr/grr ,

�rθ
θ = 1/r, �rϕ

ϕ = 1/r, �θθ
r = r/grr ,

�θϕ
ϕ = cos θ/ sin θ, �ϕϕ

r = sin2 θ �θθ
r , �ϕϕ

θ = − sin θ cos θ,

(F.2)

and the Ricci tensor

Rtt = −
√

gttκ
′

√−grr
+ g′

t t

rgrr
, Rrr =

√−grrκ
′

√
gtt

− g′
t t

rgrr
,

Rθθ = − rg′
t t

2grr gtt
+ rg′

rr

2g2
rr

−
(

1 + 1

grr

)
, Rϕϕ = sin2 θ Rθθ ,

(F.3)

where the prime indicates partial derivatization with respect to r and κ is

κ = 1
2

g′
t t√−grr gtt

. (F.4)

The Ricci scalar is

R = 2
κ ′

√−grr gtt
− 2

rgrr

[
ln

(
− gtt

grr

)]′
+ 2

r2

(
1 + 1

grr

)
. (F.5)

If we choose the Vierbein basis

et
0 = √

gtt , er
1 = √−grr , eθ

2 = r, eϕ
3 = r sin θ, (F.6)
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the non-vanishing components of the spin-connection 1-form are

ωt
01 = κ, ωθ

12 = − 1√−grr
, ωϕ

13 = − sin θ√−grr
, ωϕ

23 = − cos θ. (F.7)

The non-vanishing components of the curvature 2-form are

Rtr
01 = −κ ′, Rtθ

02 = 1
2 g′

t t/(grr
√

gtt),

Rtϕ
03 = sin θ Rtθ

02, Rrθ
12 = − 1

2 g′
rr/(−grr )

3
2 ,

Rrϕ
13 = sin θ Rrθ

12, Rθϕ
23 = sin θ

(
1 + 1

grr

)
.

(F.8)

F.1.2 General static, spherically symmetric metrics (II)

They can be written in the form

ds2 = λ(r)dt2 − λ−1(r)dr2 − R2(r)d�2, (F.9)

and lead to the non-vanishing Levi-Cività connection coefficients

�t t
r = 1

2λλ′, �tr
t = 1

2λ
−1λ′, �rr

r = − 1
2λ

−1λ′,

�rθ
θ = (ln R)′, �rϕ

ϕ = (ln R)′, �θθ
r = − 1

2λ(R2)′,

�θϕ
ϕ = cos θ/ sin θ, �ϕϕ

r = − 1
2λ(R2)′ sin2 θ, �ϕϕ

θ = − cos θ sin θ.

(F.10)

The components of the Ricci tensor are

Rtt = − λ

2R2

(
R2λ′)′

, Rrr = −λ−2 Rtt + 2
R′′

R
,

Rθθ = 1
2

[
λ(R2)′]′ − 1, Rϕϕ = sin2 θ Rθθ ,

(F.11)

and the Ricci scalar is

R = − 1

R2

[
(R2λ)′′ − 2 + 2λR R′′]. (F.12)

If we choose the Vielbein 1-form basis

et
0 = λ

1
2 , er

1 = λ− 1
2 , eθ

2 = R, eϕ
3 = R sin θ, (F.13)

we obtain the spin-connection 1-form with components

ω0
01 = 1

2λ
− 1

2 λ′, ω2
21 = (ln R)′λ

1
2 , ω3

31 = (ln R)′λ
1
2 , ω3

32 = (1/R) cot θ, (F.14)

and with them the curvature 2-form components

R01
01 = − 1

2λ
′′, R02

02 = − 1
2(ln R)′λ′,

R03
03 = − 1

2(ln R)′λ′, R12
12 = − 1

2R
(2R′′λ + R′λ′),

R13
13 = − 1

2R
(2R′′λ + R′λ′), R23

23 = − 1

R2

[
(R′)2λ − 1

]
.

(F.15)
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The components of the Ricci-tensor 1-form are

R0
0 = 1

2∇2 ln λ, R1
1 = 1

2∇2 ln λ − 2
R′′λ
R

,

R2
2 = − 1

2∇2 ln λ − (R2λ)′′ − 2

2R2
, R3

3 = − 1
2∇2 ln λ − (R2λ)′′ − 2

2R2
,

(F.16)

where the form of the Laplacian of a scalar function f (r) in these coordinates is

∇2 f (r) = −R−2
(
R2λ f ′)′

. (F.17)

The last two components can also be written in this simpler form:

R2
2 = R3

3 = ∇2 ln R + 1/R2. (F.18)

F.1.3 d = 4 IWP-type metrics

These are stationary (not necessarily axially symmetric) metrics of the form

ds2 = e2U(dt + ω)2 − e−2U d �x 2, ω = ωi dxi , ⇒
√

|g| = e−2U , (F.19)

where Uand ωi are functions of �x only. The components of the inverse metric are

gtt = e−2U
(
1 − e4Uω2

)
, gti = e2Uωi , gi j = −e2Uδi j . (F.20)

A convenient Vierbein 1-form basis and its dual vector basis are provided by

e0 = eU (dt + ω), ei = e−U dxi , e0 = e−U∂t , ei = eU
(−ωi∂t + ∂i

)
, (F.21)

and the corresponding spin-connection 1-forms are given by

ω0i = ∂i e
U e0 + e3U∂[iωk]e

k, ωi j = e3U
(
∂[iω j]e

0 − ∂[i e
−2Uδ j] k

)
ek . (F.22)

The self-dual combinations (in the upper indices) take the form

ω+ 0i = i

4
e3U

[
∂i V e0 − iεi jk∂ j V ek

]
, ω+ i j = − 1

4 e3U
[
εi jk∂k V e0 − 2i∂[i V δ j] kek

]
,

(F.23)
where

V = b + ie−2U , ∂[iω j] = − 1
2εi jk∂kb. (F.24)

The components of the Ricci tensor are

Rtt = e8U∂[iω j]∂[iω j] + e4U∂2U = 1
2(Im V )−4∂V ∂ V̄ − 1

2(Im V )−3∂2Im V,

Rti = − 1
2 e8Uωi∂V ∂ V̄ + 1

2 e6Uωi∂
2e−2U + e6Uεi jk∂ j e

−2U∂kb,

Ri j = − 1
4 e4U

[(
e4Uωiω j + δi j

)
∂V ∂ V̄ − ∂(i V ∂ j)V̄

]
+ 1

2 e2U
(

e4Uωiω j + δi j

)
∂2e−2U + 4e6Uω(iε j)kl∂ke−2U∂lb, (F.25)
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and the Ricci scalar is given by

R = 1
2

∂V ∂ V̄

(Im V )3
+ ∂2Im V

(Im V )2
. (F.26)

F.2 For some d > 4 metrics

F.2.1 d > 4 General static, spherically symmetric metrics

We are going to use the metric

ds2 = λ(ρ)dt2 − µ−1(ρ)dρ2 − R2(ρ)d�2
(d−2), (F.27)

where d�2
(d−2), implicitly defined in Eq. (C.7), is the metric on S(d−2) (we use the ψi coor-

dinates). For considering the most general higher-dimensional static, spherically symmetric
metrics it would suffice to take µ(ρ) = λ(ρ) or R(ρ) = ρ. We prefer this, however, because
it covers both cases and sometimes the components of the metric are simpler if we do not
force R to be ρ or µ to be λ. This is the class of metrics we used for single (extreme or
non-extreme) BHs (point-like objects with d − 2 asymptotically flat directions).

The non-vanishing components of the Levi-Cività connection are

�t t
ρ = 1

2µλ′, �tρ
t = 1

2λ
−1λ′, �ρρ

r = − 1
2µ

−1µ′,

�ρp
r = δq

r (ln R)′, �qr
ρ = − 1

2δqrµ(R2)′q(r)/R2,

�qr
s =

{
θrqδ

s
(r) cot ψ(q) + θqrδ

s
(q) cot ψ(r) − θqsδ(q)r cot ψ(s) q−1

(s) q(q)

}
,

(F.28)

where

θrq =
{

1 r > q,

0 r ≤ q,
(F.29)

and where q, r, s = 1, . . ., d − 2 label the angular coordinates and, here,

gqr = −δqr q(r). (F.30)

Using the Laplacian of a scalar function of ρ in this coordinate system,

∇2 f (ρ) = −
[
(λµ)

1
2 Rd−2 f ′

]′

(λ/µ)
1
2 Rd−2

, (F.31)

we can write the components of the Ricci tensor in their simplest form as follows:

Rtt = 1
2λ∇2 ln λ, Rqr = gqr

[
∇2 ln R + d − 3

R2

]
,

Rρρ = − 1
2µ

−1∇2 ln λ + d − 2

R

(
λ
µ

) 1
2

[
R′

(
λ
µ

)− 1
2

]′
,

(F.32)
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and the Ricci scalar is

R = ∇2 ln
(
λRd−2

) + (d − 2)(d − 3)
1

R2
− d − 2

R
(λµ)

1
2

[
R′

(
λ

µ

)− 1
2

]′

. (F.33)

However, if we are interested in finding singular contributions to the curvature, these
formulae are not completely appropriate, because in obtaining them we have performed
operations in which singular contributions are ignored. The unsimplified formulae are

Rqr = − 1

d − 2
gqr


∇2 ln µ + 1

Rd−2

(
λ

µ

)− 1
2

[(
λ

µ

)1
2 (

Rd−2µ
)′
]′

− (d − 2)(d − 3)

R2

}
, (F.34)

R = ∇2 ln

(
λ

µ

)
− 1

Rd−2

(
λ

µ

)− 1
2

[(
λ

µ

)1
2 (

Rd−2µ
)′
]′

− d − 2

R
(λµ)

1
2

[
R′

(
λ

µ

)1
2

]′

− (d − 2)(d − 3)

R2
. (F.35)

F.2.2 A general metric for (single, black) p-branes

This metric can be understood as a generalization of the previous one with translational
isometries in p dimensions and it is adequate for describing the gravitational fields of p-
branes. Therefore, in general, it is not asymptotically flat in those p dimensions. It is,
roughly speaking, the result of adding those p dimensions to the general, static, spherically
symmetric (d − p)-dimensional metric of the previous section. Thus, it has the general
form

ds2 = λ(ρ)dt2 − f (ρ)d �y 2
p − µ−1(ρ)dr2 − R2(ρ)d�2

( p̃+2), (F.36)

where �yp = (y1
p, . . ., y p

p ) are the coordinates on the p-brane that we denote with the indices
i, j, k = 1, . . ., p, ρ2 = (x p+1)2 + · · · + (xd−1)2 is the radial coordinate in the (d − p −
1)-dimensional, asymptotically flat space transverse to the p-brane, the d − p − 2 angular
coordinates are labeled by q, r, s = 1, . . ., d − p − 2, and p̃ ≡ d − p − 4 is the dimension
of the object that is the electric–magnetic dual to the p-brane.

The non-vanishing components of the Levi-Cività connection are

�t t
ρ = 1

2µλ′, �tρ
t = 1

2λ
−1λ′, �ρρ

ρ = − 1
2µ

−1µ′,

�ρq
r = δq

r (ln R)′, �i j
ρ = − 1

2δi jµ f ′, �iρ
j = 1

2δi
j f −1 f ′,

�qr
ρ = − 1

2δqrµ(R2)′q(r)/R2,

�qr
s =

{
θrqδ

s
(r) cot ψ(q) + θqrδ

s
(q) cot ψ(r) − θqsδ(q)r cot ψ(s) q−1

(s) q(q)

}
.

(F.37)
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The non-vanishing components of the Ricci tensor are

Rtt = R(d−p)
t t − 1

4 pµ(ln f )′λ′, Rρρ = R(d−p)
ρρ + 1

2 p(µ f )− 1
2

[
(µ f )

1
2 (ln f )′

]′
,

Ri j = − 1
2δi j f ∇2 ln f, Rqr = R(d−p)

qr − 1
2 pgqrµ(ln f )′(ln R)′ ,

(F.38)

where we have indicated with the superscript (d − p) the components of the curvature of
the (d − p)-dimensional metric that one obtains if the p coordinates �yp are suppressed and
which are given in Appendix F.2.1.

The Ricci scalar is

R = R(d−p) + 1
2 p

{
∇2

(d−p) ln f + f −1∇2 f + µ
[
(ln f )′]2

}
. (F.39)

F.2.3 A general metric for (composite, black) p-branes

This metric is a generalization of the general higher-dimensional, static, spherically sym-
metric metric with translational isometries in

∑N
n=1 rn dimensions that split into N blocks.

The difference from the metric of Section F.2.2 is that the previous one also had spherical
symmetry SO(p) in the p directions associated with the isometries, but in the present met-
ric the spherical symmetry is split into N groups and is, thus,

∏N
n=1 SO(rn). This metric is

adequate for describing the gravitational field of composite (intersecting etc.) p-branes. It
has the general form

ds2 = λ(ρ)dt2 −
N∑

n=1

fn(ρ)d �y 2
n − µ−1(ρ)dr2 − R2(r)d�2

(δ−2), (F.40)

where �yn = (y1
n , . . ., yrn

n ) are the coordinates of the nth “block” that we denote with the
indices in, jn, kn = 1, . . ., rn , ρ2 = (x p+1)2 + · · · + (xd−1)2 is the radial coordinate in the
(d − ∑

n rn − 1)-dimensional, asymptotically flat space transverse to the p-branes, the δ −
2 angular coordinates are labeled by q, r, s = 1, . . ., δ − 2, and δ is defined by

δ = d −
N∑

n=1

rn. (F.41)

The non-vanishing components of the Levi-Cività connection are

�t t
ρ = 1

2µλ′, �tρ
t = 1

2λ
−1λ′,

�ρρ
r = − 1

2µ
−1µ′, �ρp

r = δq
r (ln R)′,

�in jm
ρ = − 1

2δi jδnmµ f ′
(n), �inρ

jm = 1
2δi

jδn
m f −1 f ′

(n),

�qr
ρ = − 1

2δqrµ(R2)′q(r)/R2,

�qr
s =

{
θrqδ

s
(r) cot ψ(q) + θqrδ

s
(q) cot ψ(r) − θqsδ(q)r cot ψ(s) q−1

(s) q(q)

}
.

(F.42)
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The non-vanishing components of the Ricci tensor are

Rtt = R(δ)
t t − 1

4µ
∑N

n=1 rn(ln fn)
′λ′,

Rin jm = − 1
2δi jδnm

{
∇2 fn + µ f(n)

[
(ln fn)

′]2
}

,

Rρρ = R(δ)
ρρ + 1

2

∑N
n=1 rn(µ f(n))

− 1
2

[
(µ f(n))

1
2
(
ln f(n)

)′]′
,

Rqr = R(δ)
qr − 1

2 gqrµ(ln R)′
N∑

n=1

rn(ln fn)
′ ,

(F.43)

where we have indicated with the superscript (δ) the components of the curvature of the
δ-dimensional metric that one obtains if the coordinates �yn are suppressed.

The Ricci scalar is

R = R(δ) + 1
2

N∑
n=1

rn

{
∇2

(δ) ln f(n) + f −1
(n) ∇2 f(n) + µ

[
(ln f(n))

′]2
}

. (F.44)

F.2.4 A general metric for extreme p-branes

d-dimensional metrics of the general form

ds2 = H 2xηi j dyi dy j + H−2yηmndxmdxn, (F.45)

where i, j = 0, 1, . . ., p and m, n = p + 1, . . ., d − 1 and H is a function solely of the
xms often occur in the study of p-branes. The coordinates yi correspond to the p-brane
worldvolume and the coordinates xm are transverse to the p-brane. Observe that, with our
conventions, ηmn = −δmn . The non-vanishing components of the Levi-Cività connection
are

�i j
m = xηi j H 2(x+y)−1∂m H, �im

j = xδi
j H−1∂m H,

�mn
p = −y H−1

{
δpm∂n H + δpn∂m H − δmn∂p H

}
.

(F.46)

The non-vanishing components of the Ricci tensor are

Ri j = gi j∇2 ln H x ,

Rmn = gmn∇2 ln H−y + zH−1∂m∂n H

+ H−2∂m H∂n H
{

x2(p + 1) + y2( p̃ + 1) + (2y − 1)z
}
,

(F.47)

where we have used the fact that√
|g| = H z−2y, z = x(p + 1) − y( p̃ + 1), (F.48)

and the fact that, for a scalar function of the xms in this metric,

∇2 f (xm) = −H 2y−1
[
z∂m H∂m f + H∂2 f

]
, ∂2 ≡ +∂m∂m,

∇2 ln H = (1 − z)H 2y−2(∂ H)2 − H 2y−1∂2 H.
(F.49)
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The Ricci scalar is

R = ∇2 ln H 2(z−y) − H 2(y−1)(∂ H)2
[
x2(p + 1) + y2( p̃ + 1) − z(z − 2y)

]
. (F.50)

The simplest choice of Vielbein is

ei
j = δi

j H x , em
n = δm

n H−y, (F.51)

and it gives the following non-vanishing components of the spin connection:

ωm
np = 2y H−1∂q Hηm

[nηp]q, ωi
m j = −2x H (x+y)−1∂q Hηi

[mη j]q . (F.52)

F.2.5 Brinkmann metrics

The metric of any spacetime admitting a covariantly constant null Killing vector can always
be put into the Brinkmann-metric form Eq. (10.4), that we rewrite here for convenience:

ds2 = 2du(dv + K du + Ai dxi ) + g̃i j dxi dx j , (F.53)

where all the functions in the metric are independent of v. Either K or Ai can be removed
by a coordinate transformation that preserves the above form of the metric, but here we
work with the most general form.

Using also light-cone coordinates in tangent space, a natural Vielbein basis is

eu = du, ev = dv + K du + Ai dxi , ei = ẽ j
i dx j ,

eu = ∂u − K∂v, ev = ∂v, ei = ẽi
j
[
∂ j − A j∂v

]
,

(F.54)

where the ẽi
j are Vielbeins in the (d − 2)-dimensional wavefront space. The associated

components of the spin connection are

ωuiu = ẽi
j
[
∂ j K − ∂u A j

]
, ωui j = 1

2 F̃i j − ẽ[i |k∂uẽa|k],

ωi jk = ω̃i jk, ωi ju = − 1
2 F̃i j − ẽ(i |k∂uẽk| j),

(F.55)

where Fi j = 2∂[i A j].
The components of the Ricci tensor are

Ri j = R̃i j ,

2Riu = ∇̃ j Fji + ∇̃i

(
g̃ jk∂u g̃ jk

)
− ∇̃ j

(
g̃ jk∂u g̃ki

)
,

Ruu = ∇̃i∂
i K − 1

4 F̃2 + 1
2 g̃i j∂2

u g̃i j + 1
4∂u g̃i j∂u g̃i j − g̃i j ∇̃i

(
∂u A j

)
,

(F.56)

where all the objects with tildes are calculated from the metric g̃i j , treating u as some

constant. The Ricci scalar is just R = R̃.
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The harmonic operator on R
3 × S1

This section is based on [476].
We want to relate the solutions of the Laplace equation in R

3 × S1 and in R
3. We denote

the corresponding Laplacians by �(4) and �(3) and we have

�(4) = �(3) + ∂2
z . (G.1)

The Laplacian, being a local operator, has the same form in R
3 × S1 and in R

4. Clearly,
the difference is in the periodicity conditions that the solutions must satisfy in the first case.
This observation will help us to construct them starting with harmonic functions on R

4.
The solution of the Laplace equation (more precisely, it is the Green function of the

Laplacian) in R
4 is 1/|�x4 − �x4(0)|2, where �x4 = (x1, x2, x3, x4). In particular, it satisfies

�(4)

1

|�x4 − �x4(0)|2 = −4π2δ(4)(�x4 − �x4(0)). (G.2)

This harmonic function has a singularity at �x4 = �x4(0). We are in general interested in
harmonic functions that go to 1 at infinity and with a different coefficient for the pole (h):

HR4 = 1 + h

|�x4 − �x4(0)|2 . (G.3)

Since the Laplacian is linear, we can combine linearly harmonic functions to construct
one with singularities placed at regular intervals on the x4 axis. The resulting harmonic
function will have the periodicity required for it to be a harmonic function on R

3 × S1.
More explicitly,

HR3×S1 = 1 +
∑
n∈Z

h

|�x3 − �x3(0)|2 + (z − z(0) − 2πn�)2
. (G.4)

This series can be summed:

HR3×S1 = 1 + h

2�|�x3 − �x3(0)|2
sinh |�x3 − �x3(0)|/�

cosh |�x3 − �x3(0)|/� − cos(z − z(0))/�
. (G.5)

648
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In this form it is evident that we have a function with the right periodicity and one can
also immediately check that it is a solution of the Laplace equation. On the other hand, near
the singularity �x3 → �x3(0), z → z(0), or in the equivalent limit � → 0 in which the period-
icity of the fourth coordinate is irrelevant, HR3×S1 becomes exactly HR4 plus subdominant
terms.

Now we want to expand in Fourier series the periodic harmonic function HR3×S1 :

HR3×S1 =
∑
n∈Z

HR3×S1,n(�x3 − �x3(0))e
inz
� . (G.6)

The Fourier modes are

HR3×S1,n(�x3 − �x3(0)) = δn,0 + h/(2�)

|�x3 − �x3(0)|e
− |n|(|�x3−�x3(0)|−inz(0))

� . (G.7)

If we consider only the zero mode, we find

HR3×S1,0 = 1 + h/(2�)

|�x3 − �x3(0)| , (G.8)

which is a harmonic function on R
3, satisfying

�(3) HR3×S1,0 = −2πh

�
δ(3)(�x3 − �x3(0)). (G.9)

Using

�(3)

1

|�x3 − �x3(0)| = −4πδ(3)(�x3 − �x3(0)), (G.10)

it is easy to see that the higher (KK) modes satisfy the massive three-dimensional Laplace
equation [

�(3) − |n|2
�2

]
HR3×S1,n = −2πh

�
δ(3)(�x3 − �x3(0))e

inz(0)
� . (G.11)
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[35] E. Álvarez, L. Álvarez-Gaumé, and Y. Lozano, Nucl. Phys. Proc. Suppl. 41 (1995) 1–20.
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Physics Publishing (1999), pp. 137–272.

[58] M. A. Awada, M. J. Duff, and C. N. Pope, Phys. Rev. Lett. 50 (1983) 294.
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[144] M. Bertolini, P. Fré, and M. Trigiante, Class. Quant. Grav. 16 (1999) 2987.

[145] M. Bertolini and M. Trigiante, Nucl. Phys. B582 (2000) 393.

[146] B. Bertotti, Phys. Rev. 116 (1959) 1331.

[147] M. Bianchi and A. Sagnotti, Phys. Lett. B247 (1990) 517.

[148] M. Bianchi and A. Sagnotti, Nucl. Phys. B361 (1991) 519.
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[173] M. Born and L. Infeld, Proc. Roy. Soc. London A144 (1934) 425.

[174] N. Boulanger and L. Gualtieri, Class. Quant. Grav. 18 (2001) 1485.

[175] D. G. Boulware, Phys. Rev. D8 (1973) 2363.



654 References

[176] B. D. Boulware and S. Deser, Ann. Phys. 89 (1975) 193–240.

[177] R. H. Boyer, Proc. Roy. Soc. London A311 (1969) 245.
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[592] E. Inönü and E. P. Wigner, Proc. Nat. Acad. Sci. 39 (1953) 510.

[593] W. Israel, Phys. Rev. 164 (1967) 1776–1779.

[594] W. Israel, Commun. Math. Phys. 8 (1968) 245.

[595] W. Israel and K. A. Khan, Nuovo Cim. 33 (1964) 331.

[596] W. Israel and J. M. Nester, Phys. Lett. 85A, (1981) 259.

[597] W. Israel and G. A. Wilson, J. Math. Phys. 13, (1972) 865.

[598] N. Itzhaki, A. A. Tseytlin, and S. Yankielowicz, Phys. Lett. B432 (1998) 298.

[599] C. Itzykson and B. Zuber, Quantum Field Theory, New York: McGraw-Hill (1980).



References 663

[600] J. M. Izquierdo, N. D. Lambert, G. Papadopoulos, and P. K. Townsend, Nucl. Phys. B460 (1996) 560–578.

[601] R. Jackiw, C. Nohl, and C. Rebbi, Phys. Rev. D15 (1977) 1642–1646.

[602] B. Janssen, JHEP 0001 (2000) 044.

[603] B. Janssen, P. Meessen, and T. Ortı́n, Phys. Lett. B453 (1999) 229.

[604] C. V. Johnson, lectures given at ICTP, TASI, and BUSSTEPP, hep-th/0007170.

[605] C. V. Johnson, D-Branes, Cambridge: Cambridge University Press (2002).

[606] C. V. Johnson, R. R. Khuri, and R. C. Myers, Phys. Lett. B378 (1996) 78–86

[607] A. I. Janis, E. T. Newman, and J. Winicour, Phys. Rev. Lett. 20 (1968) 878.

[608] B. Julia, in Superspace & Supergravity, Eds. S. W. Hawking and M. Roček, Cambridge: Cambridge University Press (1981), p. 331.
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Page numbers in italic are those on which the definition or a very specific discussion of the subject can be found. 4d means four dimensions
or four-dimensional, etc.

AdSd , see anti-de Sitter (AdS) spacetime
p-brane

(a1–a2) model for intersecting branes, 570–573
action, 570

a-model, 514–519
action, 514

’t Hooft, 206
Ansatz

for periodic SU(2) instantons, 317
for the BPS monopole, 277

Ansatz for SU(2) instantons, 274
’t Hooft–Polyakov monopole, see solution,

’t Hooft–Polyakov

Abbott–Deser approach, 106, 111, 175, 176–179, 180, 372,
394

compared with Landau–Lifshitz energy–momentum
pseudotensor, see Landau–Lifshitz energy–momentum
pseudotensor

action, 26
p-brane (a1–a2) model, see p-brane, (a1–a2) model
p-brane a model, see p-brane, a-model
p-brane with variable tension, 502
Born–Infeld (BI), see Born–Infeld
Einstein–Hilbert, see Einstein–Hilbert action
Nambu–Goto (NG), see Nambu–Goto (NG)
Polyakov-type, see Polyakov-type
Ramond–Neveu–Schwarz (RNS) model, see

Ramond–Neveu–Schwarz
spinning particle, see Poincaré, N = 1, d = 1 supergravity
supergravity theories, see supergravity theories
superparticle (Green–Schwarz), see Green–Schwarz

ADM mass, 176, 176, 189
of composite BH solutions, see solution, composite

4d BHs
of Reissner–Nordström BH, see solution, RN
of Schwarzschild’s BH, see solution, Schwarzschild

AdS–CFT correspondence, 399, 536, 537, 540, 570, 573
Aharonov–Bohm phase, 254
Aichelburg, see solution, Aichelburg–Sexl shock wave
angular-momentum, 268
angular-momentum tensor, 41

orbital, 34
spin, 34

anholonomy coefficients, see Ricci, rotation coefficients
anti-de Sitter (AdS), see de Sitter (anti-)
anti-de Sitter (AdS) spacetime, see solution, AdS
Arnowitt, see ADM mass

Ashtekar variables, 138
asymptotically locally Euclidean (ALE) solutions, 272
Atiyah, see solution, Atiyah–Hitchin
autoparallel

curve, 7, 13
equation, 7

axidilaton, 359
axion, 217, 339, 349, 359, 360, 362, 363, 478, 480, 542
axion–dilaton gravity, 359–363

and S duality, 360
as a truncation of N = 4, d = 4 supergravity, 361

axitor, 146

Bañados–Teitelboim–Zanelli (BTZ) BH, see solution, BTZ
Bekenstein–Hawking entropy, 187

and horizon area, see horizon, area
and the Euler characteristic, 245
density of BH microstates, 207

Bel–Robinson tensor, 171
Belavin, see solution, BPST instanton
Belinfante tensor, 34, 35, 39, 40, 58, 59, 68, 80, 85, 130, 133

for a Dirac spinor, 37
for a spin-2 field, 82
for a vector field, 35

Bertotti, see solution, Robinson–Bertotti (RB)
BH, see black hole (BH)
Bianchi

Bianchi IX gravitational instantons
Eguchi–Hanson solution, see solution, Eguchi–Hanson
Kaluza–Klein monopole, see solution, Kaluza–Klein
Taub-bolt solution, see solution, Taub-bolt

clasification of 3d real Lie algebras, 602
Bianchi identities, 109, 217

and gauge identities, 30, 39, 58, 59, 66, 102, 111, 114, 120, 129,
136, 227

Fierz–Pauli Lagrangian, 66
and Poincaré dualization of the KR field, 480
and the dual 6-form potential of N = 1, d = 11

supergravity, 452
contracted, 12, 13, 101, 131, 174, 214, 220, 351

as a gauge identity, 102, 119, 120
for the background metric, 177

for (p + 2)-form field strengths, 506, 514
for d-form field strengths, 343
for curvature and torsion, 8, 135, 158, 273, 602

for metric-compatible connections, 12
for metric-compatible torsion-free connections, 13

for embedding coordinates, 427, 440
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Bianchi identities (cont.)
for Maxwell’s field strength, 166, 167, 217, 220, 221, 225, 227,

228, 257, 383
and electric–magnetic duality, 245, 248
and electric–magnetic duality in dilaton a-model, 358
and existence of a potential, 220
and magnetic sources, 249
and Poincaré duality, 248
and S duality in 4d KK theory, 311
and S duality in dilaton–axion gravity, 360, 361
and the Chern–Simons (CS) 3-form, 256
in dilaton a-model, 350, 351

for RR field strengths, 458–460, 464, 487, 492
and the mass parameter of Romans’ theory, 465

for the self-dual RR 5-form, 486
for Yang–Mills fields, 273, 276, 597
in massive electrodynamics, 258

Big-Bang singularities, 195
Birkhoff’s theorem, 189, 190, 228
black p-branes, see solution, Schwarzschild p-branes
black hole, 194
black hole (BH)

axion–dilaton, see solution, axion–dilaton
Bañados–Teitelboim–Zanelli (BTZ), see solution, BTZ black

hole
dilaton, see solution, dilaton
entropy problem, 197, 207–208
information problem, 197, 206–207
Kerr, see solution, Kerr
Kerr–Newman, see solution, Kerr–Newman
Reissner–Nordström (RN), see solution, Reissner–Nordström

(RN)
Schwarzschild, see solution, Schwarzschild
string, 573–590
SWIP, see solution, SWIP

Bogomol’nyi (or BPS) bound, 509, 556
and equilibrium of forces, 397, 424
and supersymmetry, 373, 394–398

in N = 1, d = 4 supergravity, 399
in N = 2, d = 4 supergravity, 400
in N = 4, d = 4 supergravity, 400
in extended supergravities, 396

and the positivity of mass, 179, 398
and the Reissner–Nordström (RN) solution, 231
for the ’t Hooft–Polyakov monopole, 276
in N = 8, d = 8 supergravity, 575
of string/M-theory objects, 550
saturated (Bogomol’nyi identity), 310

Bogomol’nyi equation for SU(2) monopoles 276
Bogomol’nyi–Prasad–Sommerfield (BPS)

limit of the ’t Hooft–Polyakov monopole, 276, 277, 373
Bohm, see Aharonov–Bohm phase
Boltzmann’s constant, 204
Bonnet, see Gauss–Bonnet theorem
Bonnor, 196, 267

magnetic-dipole solution, see solution, Bonnor
Born–Infeld (BI)

action, 503
vector field, 435, 435, 443, 501, 564, 567

dual, 549, 564
solitons (BIons), 549, 550, 554, 564, 566, 570

Boulware, 59, 78
bound

Bogomol’nyi bound, see Bogomol’nyi (or BPS) bound
BPS bound, see Bogomol’nyi (or BPS) bound
supersymmetry bound, see Bogomol’nyi (or BPS) bound

Boyer, 198
Boyer–Lindquist coordinates, see coordinates, Boyer–Lindquist
BPS, see Bogomol’nyi–Prasad–Sommerfield (BPS)
BPS states, 370, 395–401, 408

and the superalgebra, 395
annihilated by supercharges, 394

contribution to extreme BH entropy, 589
Dp-branes and Op-planes, 424

BPST instanton, see solution, BPST instanton
Brans, see Jordan–Brans–Dicke theory
Brill, 280
Brinkmann metrics, 282

connection and curvature, 647
BTZ, see Bañados–Teitelboim–Zanelli (BTZ) BH
Buscher T duality, 435–445

and breaking of supersymmetry, 482–484
between F1 and W, 445
between JNW and Schwarzschild solutions, 216
in type-II theories, 448, 485, 491, 493

between solutions, 551–556
transformations, 494–495
transformations of Killing spinors, 496, 562

transformations, 437, 438
transformations for Vielbeins, 439

Cahen–Wallach symmetric spacetimes, 283, 389
Cardy’s formula, 578, 589
Cartan

connection, 17, 20, 128, 132, 138
first criterion (solvability), 594
Maurer–Cartan, see Maurer–Cartan
Riemann–Cartan spacetime, see Riemann–Cartan spacetime
second criterion (semisimplicity), 594

Cartan–Sciama–Kibble (CSK) theory, 34, 39, 41, 113, 127–140
Cauchy horizon, see horizon, Cauchy
CFT, see conformal field theories
Chan–Paton factors, 420, 423, 428
charge conjugation matrix, 615
Chazy, see solution, Chazy–Curzon
Chern class

first, and the Wu–Yang monopole, 255
second, and SU(2) Yang–Mills instanton, 273, 310

Chern–Simons
3-form, 132, 256, 598

in N = 1, d = 10 supergravity, 498
in KR field strength, 470

term, 432, 530
N = 1, d = 11 supergravity, 451
N = 1, d = 5 supergravity, 313
N = 2, d = 9 supergravity, 493
N = 2A±∓, d = 10 supergravity, 423, 487
N = 2B± supergravity, 487
in supergravity field strengths, 437, 550, 569, 570
Romans’ N = 2A, d = 10 supergravity, 464

Christoffel symbols, 10, 13, 20, 92, 126, 127, 210
and Weyl rescalings, 639

Clifford
action, 377
algebra, 601, 611, 612, 613, 615, 616, 624, 626, 630, 631

compensator (H -), 606
Compton wavelength, 50, 115

compared with the Schwarzschild radius and Planck length, 116,
206

conformal field theories (CFTs), 573, 578, 589, 590
conformastationary, see metric, conformastationary
connection

affine, 6
Cartan, see Cartan, connection
chiral, 367
metric-compatible, 10
spin, 18, 601

continuity equation, 29
coordinate basis, 3
coordinates

adapted to an isometry, 21, 99
Boyer–Lindquist, 268, 366
Eddington–Finkelstein, see solution, Schwarzschild
harmonic, 199
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isotropic, 198, 216, 232, 234, 265, 271, 532–535
Kruskal–Szekeres (KS), 192–193, 194, 209–211
Schwarzschild, see Schwarzschild, coordinates
spherical, 634

correspondence principle, 245, 577, 578, 589
cosmological constant, 102–103
cotangent space, 3
Coulomb

field, 200, 233
force, 218

covariant derivative
of world-tensor densities, 6
of world tensors, 5
of Yang–Mills fields, see Yang–Mills, covariant derivative

crosscaps, 412
CSK, see Cartan–Sciama–Kibble (CSK) theory
curvature, see tensor, curvature
curve, 7
Curzon, see solution, Chazy–Curzon

Dp-brane
solution, see solution, Dp

Dp-branes
defined, 420

D-instanton, see solution, D(−1)

de Broglie wavelength, 52
De Donder gauge, 57, 65, 65, 87, 282
de Sitter (anti-)

N = 1, d = 4 superalgebra, 152
gauging, 152–155

N = 1, d = 4 supergravity, 151, 159–160, 377
action, 154, 159
supersymmetry transformations, 160, 168
vacua, 384–386

N = 2, d = 4 supergravity, 151, 167–169, 378, 382
action, 168
solutions, 400
vacua, 389–390

N = 4, d = 5 (SO(6)-gauged) supergravity, 540, 563
N = 4, d = 7 (SO(5)-gauged) supergravity, 536
N = 8, d = 4 (SO(8)-gauged) supergravity, 534
(gauged) supergravities from spontaneous compactification, 547
algebra, 143, 385

spinorial representations, 629–633
connection, 167
group, 46, 115, 132, 142, 143, 150, 159

gauging of, 143
radius, 143
spacetime, 103, 104, 143, 159, 161, 179, 235, 286, 372

stability, 372
superalgebras, 563
supergroup, 150

Dehn twists, 336
Demiański

Plebański–Demiański solutions, see solution, Plebański
Deser, 45, 176

Abbott–Deser approach, see Abbott–Deser approach
argument for GR’s self-consistency, 44, 46, 59, 78, 85, 89–93
Boulware–Deser paper, see Boulware

diamond invariant of E7, 587, 588
Dicke, see Jordan–Brans–Dicke theory
differential form, 3, 6, 23
dilaton a-model, 350–358, 515

and secondary hair, 216
equations of motion, 351

dilaton BHs, 574
dilaton field, 121, 149, 216, 218, 303, 307, 313, 412, 420, 426,

430–432, 439, 440, 445, 447, 453, 455–457, 464, 471, 477,
480, 498, 510, 515, 530, 537, 569, 571, 576, 580

and electric–magnetic duality, 516
and fundamental p-brane frames, 510
and S duality, 490

and the string coupling constant, 425, 487
Buscher’s T-duality transformation rule, 438
coupling to D-branes, 511
coupling to fundamental branes, 511
coupling to Kaluza–Klein (KK) branes, 512
coupling to solitonic branes, 511
coupling to the Dp-brane, 434
coupling to the string, 433
dimensional reduction on S1, 436, 549
dimensional reduction on Tp , 550
from N = 1, d = 11 supergravity, 457–458, 470, 475

Dirac
conjugate, 18, 152, 468, 601, 615, 621

and Majorana spinors, 617
in arbitrary signature, 628

conjugation matrix, 601, 613, 615, 621
in arbitrary signature, 627

delta function, 69, 71, 234, 518, 519
equation, 415, 614, 617

conjugate, 615, 616
from superparticle action, 412, 413

magnetic monopole, 248–254, 276
and SU(2)/U(1) coset space, 608
and Hopf fibrations, 636
and Wu–Yang formulation, 255
equation, 249, 249, 272, 277, 328
no existence for gauge group R, 253
solution, 250, 252

magnetic monopoles
absence in massive electrodynamics, 226

massive equation
from superparticle action, 413

matrices, see gamma matrices
quantization condition, 254, 254

and Aharonov–Bohm phase, 254
and the time periodicity of the Taub–NUT solution, 270
and Wu–Yang formulation, 255
for extended objects, 500
for extended objects, 508, 509, 520, 550
for extended objects and the Newton constant, 528, 529
in Kaluza–Klein (KK) theories, 306, 312, 329, 339

spinor, 612
and Wilson lines, 347
commuting in WNI technique, 181
energy–momentum tensor, 36, 37, 39
energy–momentum tensor coupled to gravity, 130, 131
energy–momentum tensor coupled to gravity in first-order

formalism, 139–140
Lorentz transformations, 614
reducible in even d, 616

string singularities
and the wire singularities of the Taub–NUT solution, 270

string singularity, 251–255
for extended objects, 508

Dirac–Schwinger–Zwanziger (DSZ) quantization condition, 214,
256

and S duality, 362
and S duality, 258

Dirichlet (D) boundary conditions, 411
divergence

modified, 8
Dreibein, 14
DSZ, see Dirac–Schwinger–Zwanziger (DSZ) quantization

condition

Eckart–Schrödinger representation, 600
Eguchi, see solution, Eguchi–Hanson
Einbein, 14
Einstein, 69, 73, 95, 99, 102

and the gravity energy–momentum tensor, 171
equation

in axion–dilaton gravity, 361
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Einstein (cont.)
equations, 45, 46, 101, 114, 118, 120, 121, 123, 174, 176, 180,

182, 190, 197, 200, 202, 209–211, 213, 238, 541
cosmological, 102, 104, 106, 109, 112
from string theory, 434
in CSK theory, 133, 134, 138, 140
in dilaton a-model, 350, 351
in Einstein–Maxwell theory, 227
in Einstein–Maxwell theory (duality-invariant form), 246
in Kaluza–Klein (KK) theories, 302
in purely affine theory of gravity, 126
in supergravity theories, 156, 159, 165, 168
in the Einstein-scalar theory, 214
interpretation of solutions, 187
not solved at singular points, 200
of NGT, 124
vacuum, 92, 93, 96, 126, 188
with a Dirac spinor, 131

frame, 302, 304, 305, 313, 319, 342, 346, 357, 434, 447, 464,
471, 478, 482, 514, 540, 555

manifest duality-invariance of the action, 303, 448, 466, 489,
490, 549

versus string frame, 530, 548
frame (modified), 304, 305, 319, 322, 328, 335, 487, 536, 537,

541, 576, 581, 585
and definition of mass, 305, 548, 583
versus string frame, 530, 548

gauge, 57
medium-strong form of the PEGI, 99
metric, 121, 490, 516, 549, 578

duality invariance, 586
metric (modified), 549
non-symmetric gravity theory, see non-symmetric gravity

theory)
scalar theories of gravity, 46
space, 547, 563, 637
teleparallelism theories of gravity, 145
tensor, 9, 12, 13, 40, 96, 101, 133, 138

cosmological, 104, 106, 177
for the Reissner–Nordström (RN) metric, 239
for the Schwarzschild metric, 202
transformation under Weyl rescalings, 639

Einstein–Fokker theory, 55–57
Einstein–Hilbert action, 46, 96, 102, 114, 115, 274

and Komar’s formula, 177
and Palatini’s identity, 638

in dimensional reduction, 301, 333, 334, 436, 454,
471

and the string effective action, 431
boundary terms, 118
coupling to matter, 120
coupling to the Maxwell field, 218
dimensional reduction on S1, 299, 314

string frame, 436
dimensional reduction on Tn , 332
Einstein versus string frames, 433, 530
Euclideanized, 203
first-order form, 96, 123–126

from gauge formulation, 144
in N = 1, d = 4 supergravity, 154
in 2d and Euler characteristic, 411
in CSK theory, 132, 134

for a Dirac spinor, 139
symmetries and gauge identities, 134–139

in teleparallel theories, 146, 148
Noether current, 120
purely affine form, 126
symmetries and gauge identities, 119
weak-field expansion, 107–108

Einstein–Infeld–Hoffmann method, 402
Einstein–Maxwell theory, 213, 218–227, 279, 285, 286, 350

and N = 2, d = 4 supergravity, 373

and electric–magnetic duality, 245–258
group, 246

equations of motion, 219, 227
equations of motion with sources, 238
generalized to N vectors, 237
in 4d, 310

and N = 2, d = 4 supergravity, 316
oxidation of solutions, 320

in 5d
and N = 1, d = 5 supergravity, 313

in higher d, 263, 317
dimensional reduction, 291, 313–315
equations of motion, 263
oxidation of solutions, 320
reduction of solutions, 317

most general BH solutions, 262
with θ-term, 256–258

Einstein–Maxwell-dilaton theory, see dilaton a-model
Einstein-scalar theory
Einstein-Hilbert action, 20

and Komar’s formula, 180
Euclideanized, 208

Einstein–Infeld-Hoffmann method, 413
in 4d, 214–218
in higher d, 262

oxidation of solutions, 326
JNW solutions, see solution, Janis–Newman–Winicour

Einstein–Straus–Kaufman theory, 124
Einstein–Yang–Mills theories, 215
Elfbein, 449
energy–momentum tensor

Belinfante, see Belinfante
canonical, 26, 29, 31, 39, 47, 56, 68, 80, 133, 135

covariant, 129, 136, 140
for a scalar field, 33
of the FP theory, 79, 81
relation to the Vielbein energy–momentum tensor, 134
symmetrization and Belinfante tensor, 34, 35–37

for a (p + 1)-form potential, 22, 23
for the gravitational field in teleparallelism theories, 145
improved, 37, 38
Rosenfeld, see Rosenfeld
super-energy–momentum tensors, 171
Vielbein, see Vielbein, energy–momentum tensor

equivalence principle of gravitation and inertia, 99
ERN, see solution, extreme Reissner–Nordström (RN)
Euler characteristic

in 4d, 144
Euler angles, 392, 603, 604
Euler characteristic

in 2d, 412, 425
in 4d, 243, 274

with boundary terms, 243
Euler–Lagrange equations, 10, 27, 33
event horizons

and Killing horizons, 197
exterior derivative, 6, 23

F1 solution, see solution, F1
Ferrara, 164
Feynman, 45, 46, 59, 95

diagrams in string theory, 409, 412
Fierz

identities, 158, 159, 167, 169, 182
genera, 620
in N = 2, d = 4 supergravity, 620
in 4d, 625

Fierz–Pauli Lagrangian, 44–46, 58, 59, 63, 63–96, 101, 114
and non-symmetric gravity theories (NGT), 124
and string theory, 405
coupling to matter, 67–76

consistency, 76
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Noether method, 78
first-order form, 89
in a curved background, 108, 103–112
in supergravity theories, 154
in teleparallel theories, 146–149
massive, 66
symmetries and Noether currents, 66
wave operator, 64

covariantized, 178
Figueroa–O’Farrill, 375
Fokker, see Einstein–Fokker theory
FP, see Fierz–Pauli
frame, 14

Einstein, see Einstein, frame
Kaluza–Klein (KK), see Kaluza–Klein (KK), frame
modified Einstein, see Einstein, frame (modified)
non-holonomic, 15

Frolov, 188
fundamental string (F1) solution, see solution, F1

GCT, see general coordinate transformation
Gauss, 24, 243
Gauss–Bonnet theorem, 243
Gauss–Ostrogradski theorem, 24, 27, 117
Gaussian system of units, 218
general coordinate transformation (GCT), 3
generalized dimensional reduction (GDR), see Kaluza–Klein (KK)
genus, 412
geodesic, 7, 13, 45, 98, 189, 190, 229

equation, 10, 98
light-like, 192
timelike, 56, 230

Georgi–Glashow model, 276, 277
Gibbons–Hawking Euclidean approach, 208–211
Gibbons–Hawking multicenter metrics, see solution, Gibbons
Ginzburg–Landau Lagrangian, 345
Glashow, see Georgi–Glashow model
Goldstone boson, 295, 296
Gordon, see Klein–Gordon equation
Goto, see Nambu–Goto (NG) action
GR, see general relativity (GR)
graviphoton, 475
Green function, 287, 294, 648
Green–Schwarz (GS)

actions, 415–417
superparticle action, 415
superstring action, 416

Gross, 272, 291, 329
Grossmann, 55
GSO projection, 422
Gupta, 59

program, 78

Haag–Lopuszański–Sohnius theorem, 163
Hagedorn’s temperature, 207
Hamilton–Jacobi equation, 73, 75
Hamiltonian, 114, 252, 253, 308

bosonic-string theory, 418, 419
fermionic-string theory, 422
positivity in supersymmetric QFTs, 397

Hanson, see solution, Eguchi–Hanson
harmonic gauge, 65
Harrison transformation, 267
Hartle–Hawking paper, 281
Hawking

Bekenstein–Hawking entropy, see Bekenstein–Hawking entropy
Gibbons–Hawking Euclidean approach, see Gibbons
Gibbons–Hawking multicent. metrics, see solution, Gibbons
Hartle–Hawking paper, see Hartle–Hawking paper
non-decreasing-area theorem, 197
radiation, 93, 187, 203, 205, 242, 590

absence in BPS limit, 398, 400

Schwarzschild p-branes, 513
temperature, 205

and surface gravity, 204
and the Euclidean time period, 209
for extreme Reissner–Nordström (ERN) BHs, 213
negative specific heat, 205
Reissner–Nordström (RN) BHs, 240

viewpoint on the BH information problem, 207
Heaviside system of units, 218
Heisenberg algebras, 283–284, 285

spinorial representation, 389
Higgs

field, 276, 419, 420
mechanism

and generalized dimensional reduction, 341
in Kaluza–Klein (KK) theories, 294, 295, 295

Hilbert gauge, 57
Hilbert–Lorentz gauge, 57
Hirzebruch signature, 274
Hitchin, see solution, Atiyah–Hitchin
Hořava–Witten scenario, 348, 465, 470, 499, 519
Hodge

dual, 22, 23, 24, 217, 221, 246, 258, 264, 316, 338, 343, 448,
458, 508, 539, 541

star, 22
Hoffmann, see Einstein–Infeld–Hoffmann method
Hopf fibrations, 392, 636–637

and the Kaluza–Klein (KK) monopole, 270
and the BPST instanton, 636
and the Dirac monopole, 636

horizon
area

and entropy, 204
and entropy in d dimensions, 212
of Schwarzschild BH, see solution, Schwarzschild, horizon

area
Cauchy, 229, 230, 265, 323, 327
event, 187, 193, 193, 194, 197, 200, 202, 203, 205, 212, 214,

229, 230, 232, 239, 243, 244, 265, 323, 324, 327, 350, 356,
365, 513, 516, 533, 535, 537, 539, 581

and no-hair conjecture, 196, 353
and the cosmic-censorship conjecture, 195, 196
in black p-brane solutions, 513

Killing, 197, 198, 244
bifurcate, 198
degenerate, 198, 231

Horowitz, 515
Hosotani (or Wilson-line) mechanism, 347

ideal, see Lie, algebra, invariant subalgebra
Infeld

Born–Infeld, see Born–Infeld (BI)
Einstein–Infeld–Hoffmann method, see Einstein–Infeld

instanton
BPST, see solution, BPST
D, see solution, D(−1)

number, 598
isometry, 21

group, see Lie, group, of isometries
Israel

Israel–Khan solutions, see solution, Israel–Khan
Witten–Nester–Israel (WNI) technique, see Witten

IWP, see solution, Israel–Wilson-Perjés (IWP)

Jacobi
Hamilton–Jacobi equation, see Hamiton–Jacobi equation
identity, 5, 6, 8, 592, 593, 597, 603

supersymmetric, 151, 163
theta functions, 545

Jacobian, 4
Janis, see solution, Janis–Newman–Winicour
Johnson, 521
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Jordan metric, 302
Jordan–Brans–Dicke theory, 302, 431

Kähler
metric, 367
potential, 367, 368

Kalb–Ramon (KR) field, 12, 313
Kalb–Ramond (KR) field, 124, 132, 420, 434

coupling to strings, 432, 432, 439
in teleparallelism theories, 147, 148
reduction on S1, 436

Kaluza, 291
Kaluza–Klein (KK), 121, 348, 349, 350, 426, 436

action, 358
action dualized in modified Einstein frame, 311, 313
action in Einstein frame, 302
action in KK frame, 301
action in modified Einstein frame, 304
and the 4d dilaton a-model, 354
charges, 242
compactification radius and Dirac quantization, 312,

529
decompactification, 296
dimensional reduction on Tn

moduli, 334
dimensional reduction on S1, 296–310

Ansatz, 297
AS shock wave, 321
ERN solutions, 317, 319
massless-particle action, 306
Newton constant, 305, 457
of Einstein–Maxwell action, 313–316
Scherk–Schwarz formalism, 291, 299–303, 453
Schwarzschild BHs, see solution, Schwarzschild

dimensional reduction on Tn , 331–335
and the modular group, 336
global symmetries, 334
moduli, 334, 335
Newton constant, 338

dimensional reduction on orbifolds, 348
Hořava–Witten scenario, see Hořava–Witten scenario

extreme electric KK BH
in higher d, 408

frame, 121, 302, 322, 357
generalized dimensional reduction (GDR), 339–347

and (d̂ − 3)-branes, 342
and Wilson lines, 347

metric, 121, 302
modes, 282, 293, 294, 408, 426, 427, 447, 523, 649

and the D0-brane, 528, 554
Bogomol’nyi identity for, 310
in string theory, 426, 428, 436, 442
masses and charges, 310
worldline action, 309

moduli, 299
and T duality, 492

Newton constant, 431
principle, 291
scalar, 295, 296, 311, 348, 349, 426, 441, 576

and the dilaton, 447, 458
and T duality, 437, 491

skew dimensional reduction on S1, 330
spectrum, 294–296, 372

massless modes, 295
S duality of 4d theory, 491
vacuum, 292, 372

and T duality, 484
instability, 296
metric, 292
moduli problem, 292
symmetries, 292, 295

vector, 294, 296, 348, 408, 426, 427, 439, 477, 522
and the RR 1-form, 458
and T duality, 482
and T duality, 437, 446, 466, 473, 480, 484, 491
in string theory, 437

Kaluza–Klein (KK) Melvin, see solution, Kaluza–Klein (KK)
solution, see solution, Melvin

Kaluza–Klein (KK) mode, see Kaluza–Klein (KK), mode
Kaluza–Klein (KK) monopole

and SU(2) holonomy, 399
as M-theory solution

and the M superalgebra, 557
as M-theory solution (KK7M), 523

intersections, 565
worldvolume fields, 566

as string-theory solution (KK6)
and the IIB superalgebra, 559

as string-theory solution
unbroken supersymmetries, 561

as string-theory solution (KK6), 521–523, 526
and the IIA superalgebra, 558
intersections, 565
worldvolume fields, 566

as string-theory solutions (KK6)
in BH constructions, 577–579, 588

solution, see solution, Kaluza–Klein (KK) monopole
worldvolume action, 505, 512

Kaufman, see Einstein–Straus–Kaufman
Keplerian orbits, 72, 73, 189
Kerr, see solution, Kerr
KGn, see solution, Kowalski–Glikman in nd
Khan, see solution, Israel–Khan
Kibble, see Cartan–Sciama–Kibble (CSK) theory
Kaluza–Klein (KK), 290

modes
in string theory, 500

scalar, 511
vector, 511

Kaluza–Klein (KK) mode
worldvolume action, 511

Kaluza–Klein (KK) monopole
Killing

conformal equation, 21
in Minkowski spacetime, 40

energy, 177
equation, 21, 98, 111, 297, 370, 378, 504

in Minkowski spacetime, 36
integrability condition, 21

form, see Killing, metric
horizon, see horizon, Killing

versus Killing spinor, 183
metric, 43, 144, 284, 385, 498, 594, 594, 603–606

of so(n+, n−), 600
spinor, 176, 183, 373, 378, 394–396, 399, 400, 496, 563, 608

as fermionic generator of a symmetry superalgebra, 373, 374,
378

bilinear and bosonic generators, 374, 379
dependence on internal coordinates, 391, 482–483
of AdS4, 389
of Minkowski spacetime, 384
of the Dp-branes, 561
of the F1, 562
of the KK7M-brane, 561
of the M2-brane, 560
of the M5-brane, 560
of the S5-brane, 562
preserved by the covariant Lie derivative, 379
versus Killing vector, 183, 374, 384

spinor equation, 373, 378, 379
and holonomy, 399
as a paralellism equation, 380
integrability equation, 380
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integrability equation in N = 2, d = 4 theories, 382–383
of N = 1, d = 4 AdS supergravity, 385
of N = 1, d = 4 Poincaré supergravity, 183, 398
of N = 1, d = 6 supergravity, 390
of N = 2, d = 4 Poincaré supergravity, 387

spinors
general form in maximally supersymmetric vacua, 380
T-duality tranformation rules, see Buscher T duality, in type-II

theories, transformations of Killing spinors
vector, 21, 98, 110, 111, 177–180, 183, 270, 288, 330, 370, 375,

378, 391, 504, 608
and symmetry of the point-particle action, 307
as bosonic generator of a symmetry superalgebra, 374, 378
as generators of the isometry algebra, 371, 504
commuting and compactification on Tn , 331
conformal, 21
conformal and Lie–Lorentz derivative, 376–377
gauge, 176
null, covariantly constant and Brinkmann metrics, 282, 647
of coset manifolds, 606, 607
of maximally symmetric spaces, 605
of Minkowski metric, 67
of Minkowski spacetime, 384
of stationary axially symmetric metrics, 268
of the Minkowski metric, 35, 99, 178
spacelike and Kaluza–Klein (KK) compactification, 297–299
timelike and definition of mass, 179
timelike and Killing horizon, 244
timelike and staticity, 188
timelike and surface gravity, 198
timelike and the Schwarzschild metric, 191
translational, 179
versus Killing spinor, 374, 384

KK6-brane, see Kaluza–Klein (KK) monopole, as string–theory
solution (KK6)

KK7M-brane, see Kaluza–Klein (KK) monopole, as M–theory
solution (KK7M)

KK8A-brane, 526
KK9A-brane, 526
KK9M-brane, 465, 524

and the M superalgebra, 557
Klein, 290

Kaluza-Klein theories, see Kaluza–Klein
Klein–Gordon equation, 36, 293, 294
Komar’s formula, 180, 221

compared to Abbott–Deser approach, 180
in higher d, 211

Kosmann, 375
Kraichnan, 59
Kretschmann invariant, 190

Lagrange, see Euler–Lagrange
Landau

Ginzburg–Landau Lagrangian, see Ginzburg–Landau
Landau–Lifshitz energy–momentum pseudotensor, 173, 174–176

compared with Abbott–Deser approach, 178, 179
Laplace equation, 272, 280, 294, 551, 648, 649
Legendre transformation, 308, 442
Leibniz rule, 5, 6, 376
level operators, 419
Lichnerowicz, 375
Lie

algebra, 5, 43, 591, 592, 595
Abelian, 594
Bianchi classification of 3d real Lie algebras, 602
complexified, 593
de Sitter (anti-), see de Sitter (anti-), algebra
derived subalgebra, 594
Heisenberg, see Heisenberg algebras
invariant subalgebra, 594, 605
nilpotent, 284, 594, 594
of isometry group, 183

of GL(d), 15
of SO(1, 2), 602
of SO(3), 270
of SO(4) (anti-)self-dual generators, 275
of SO(n+, n−), 600
of SO(n+, n−) (spinorial representation), 601
of SU(2) (SO(3)), 602
of isometries, 371, 379
of the conformal group SO(2, d − 1), 40
of the Lorentz group SO(1, d − 1), 40
of the Lorentz group SO(1, d − 1) (spinorial representation),

611, 612
of the Poincaré ISO(1, d − 1), 35
of the Poincaré ISO(1, d − 1), 143
of the Poincaré group ISO(1, d − 1), 36, 40, 384
reductive decomposition, 605
semidirect sum, 605
semisimple, 594, 594
simple, 594
solvable, 284, 594, 594
symmetric decomposition, 605

bracket, 5, 80, 592
and commutators of matrices, 592

brackets
and Ricci rotation coefficients, 15

covariant derivative, 608
derivative, 5, 6, 8, 13, 297, 371, 374, 379, 608

H -covariant, 608
and extrinsic curvature, 25
and Killing vectors, 20
covariant, 369, 375, 375–378, 379
properties, 5
spinorial, see Lie, Lie–Lorentz derivative

group, 591
ISO(n+, n−), 599
SO(n+, n−), 598
SO(n+, n−), vector representation, 599
SU(2), 603
affine group IGL(d, R), 17
and N = 1, 2, d = 6 vacua, 390
compact, 593
compact (Weyl theorem), 594
conformal SO(2, d − 1), 40
de Sitter (anti-), see de Sitter (anti-), group
invariant subgroup, 594
Lorentz SO(1, d − 1), 17, 32, 142
of isometries, 370
Poincaré ISO(1, d − 1), 17, 26, 32, 46, 48, 49, 52, 96, 108,

114, 127, 132, 134, 137, 140–142, 150
Riemannian geometry, 602–604
semisimple, 594
simple, 594
translation, 145

Lie–Lorentz derivative, 375, 375–377, 384, 608
and H -covariant Lie derivative, 381

Lie-Maxwell derivative, 375, 377–378, 608
superalgebra

N = 1, d = 4 Poincaré, 151
supergroup

de Sitter (anti-), see de Sitter (anti-), supergroup
Poincaré, 150

Lie–Lorentz derivative, see Lie, Lie–Lorentz derivative
Lie–Maxwell derivative, see Lie, Lie–Maxwell derivative
Lifshitz, see Landau–Lifshitz energy–momentum pseudotensor
Lindquist, see coordinates, Boyer–Lindquist
loop quantization, 138
Lopuszanski, see Haag–Lopuszański–Sohnius theorem
Lorentz

group, see Lie, group, Lorentz
Hilbert–Lorentz gauge, see Hilbert–Lorentz gauge
Lie–Lorentz derivative, see Lie, Lie–Lorentz derivative

Lovelock tensor, 101
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MacDowell–Mansouri formulation, 114, 140, 142
Majorana

conjugate, 601, 615
in arbitrary signature, 628

representation, 617
spinors, 617, 628

Majorana–Weyl spinors, 617, 628
Maldacena, 536, 573
manifold, 3
Mansouri, see MacDowell–Mansouri formulation
Maurer–Cartan

1-form, 278, 380, 382, 385, 387, 389, 391, 592, 603, 606, 607,
636

SO(n), 609
SU(2), 604
horizontal, 606
vertical, 606

equations, 380, 592, 592, 603, 604, 607
Maxwell

Lie–Maxwell derivative, see Lie, Lie–Maxwell derivative
Melvin

Kaluza-Klein (KK) Melvin solution, see solution, Kaluza-Klein
(KK) Melvin

solution, see solution, Melvin
Mercury (precession of the perihelion), 45, 46, 57, 59, 76, 78, 85,

88
metric, 9

conformastationary, 280
induced, 98
Killing, see Killing, metric
postulate, 10
Ricci-flat, see Ricci, -flat metric

Mills, see Yang–Mills
Misner, 176, 270
moduli, 218, 407
monopole

’t Hooft–Polyakov, see solution, ’t Hooft–Polyakov monopole
Dirac, see Dirac, magnetic monopole
Kaluza–Klein (KK), see solution, Kaluza–Klein (KK)
Wu–Yang, see Wu–Yang monopole

MP, see solution, Majumdar–Papapetrou

Nambu–Goto (NG) action, 528
for p-branes in curved spacetime, 501, 503

wrapped on p dimensions, 501
for Dp-branes, 511
for fundamental p-branes, 511
for Kaluza–Klein p-branes, 512
for momentum modes, 511
for point-particles in curved spacetime, 97–99, 224

coupled to a scalar, 306, 309
for point-particles in Minkowski spacetime, 51, 52
for solitonic p-branes, 511
for strings in curved spacetime, 409, 410, 413, 435
for winding modes, 511

Nambu-Goto (NG) action
Nester

Witten–Nester–Israel (WNI) technique, see Witten
Nester 2-form, 181
Neugebauer, 281
Neumann (N) boundary conditions, 410
Neveu

Ramond–Neveu–Schwarz (RNS) model, see
Ramond–Neveu–Schwarz

Neveu–Schwarz (NS) boundary conditions
for closed superstrings, 414
for open superstrings, 414

Newman
Janis–Newman–Winicour solutions, see solution,

Janis–Newman–Winicour
Kerr–Newman solution, see solution, Kerr–Newman

Newman–Penrose formalism, 131

NGT, see non-symmetric gravity theory (NGT)
Nicolai–Townsend transformations, 437
nilpotent, see Lie, algebra, nilpotent
Noether

approach
to conserved charges in GR, 179–180

current, 29, 31, 36, 38, 43, 61, 66, 77, 80, 82, 85, 93, 110, 114,
178, 305, 339

for Lorentz transformations, 34
for translations, 32
in Maxwell theory, 221, 223, 227
in Maxwell theory with θ-term, 256
of the CSK theory, 134–136
of the Einstein–Hilbert action, 119–120
superpotential, 30, 30

method, 41–44, 46, 59
for gravity, 78–88, 95
for supergravity, 154

method , 78
theorems, 26–44, 49, 61, 98, 217

non-symmetrc gravity theory (NGT), 113
non-symmetric gravity theory (NGT), 114, 124–126

Einstein–Straus–Kaufman theory, see Einstein–Straus
Nordström

Kaluza–Klein theories, 290
Reissner–Nordström (RN) BH, see solution, RN
scalar theories of gravity, 46, 55

and Einstein–Fokker’s, 56
Nordtvedt effect, 77
Novikov, 188
NS, see Neveu–Schwarz
NS5-brane, see S5-brane
NUT

charge, 269
charge versus magnetic mass, 269
Euclidean Taub–NUT, see solution, Euclidean Taub–NUT
Taub–NUT, see solution, Taub–NUT

Op planes, see orientifold (Op) planes
Ogievetsky, 58, 80
Olive, 395
orientifold (Op) planes, 421
Ostrogradski, see Gauss–Ostrogradski theorem

Palatini
formalism, see Einstein–Hilbert action, first-order form
identity, see Einstein–Hilbert action, and Palatini’s identity

for the variation of the Ricci tensor, 105, 124, 132, 137
Papapetrou

equations for a pole–dipole singularity, 413
Majumdar–Papapetrou solutions, see solution, Majumdar

parallel
spinor, see Killing, spinors
transport, 6

Paton, see Chan–Paton factors
Pauli

Fierz–Pauli Lagrangian, see Fierz–Pauli Lagrangian
matrices, 164, 274, 275, 383, 468, 488, 496, 613, 620
metric, 617
terms, 94

Peccei–Quinn symmetry, 360
PEGI, see principle of equivalence of gravitation and inertia
Pellegrini–Plebański Lagrangian, 145–148
Penrose

diagram, 193
Dp p < 7 spacetime, 540
extreme Reissner–Nordström (ERN) spacetime, 231
M2 spacetime, 533
naked singularity, 195
Reissner–Nordström (RN) spacetime, 229
Schwarzschild spacetime, 193

limit, 283, 286, 390, 563
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Newman–Penrose formalism, see Newman–Penrose formalism
Perjés, see solution, Israel–Wilson–Perjés (IWP)
Perry, 272, 291, 329
PGR, see principle of general covariance or relativity
Planck, 51

constant, 292
length, 103, 115, 116

and horizon entropy, 204, 582
and S duality in Kaluza–Klein (KK) theory, 312
compared with the Compton wavelength and Schwarzschild

radius, 116, 206
in 11d, 454, 457, 457, 529
in 11d versus the string length, 524
reduced, 115
size of compact dimensions, 292, 293
versus string length, 405

mass, 116, 116, 242
masses of Kaluza–Klein modes, 293
reduced, 116

Plebański
Pellegrini–Plebański Lagrangian, see Pellegrini–Plebański
Plebański–Demiański solutions, see solution, Plebański

Poincaré
N = (1, 0), d = 6 supergravity, 316, 320

action, 390
supersymmetry transformation, 390
vacua, 390–391

N = 1, d = 1 supergravity
action, 412
supersymmetry transformations, 412

N = 1, d = 10 supergravity, 300, 303, 338, 354
action, 470
and heterotic superstrings, 348, 361, 423
and type-I superstrings, 423
compactification on T4 and N = 2A, d = 10 on K3, 481
compactification on Tn , 471–482
supersymmetry transformations, 470

N = 1, d = 11 supergravity, 290, 300, 303, 449–451, 531, 551,
572

action, 449
and M theory, 348, 447, 523
and the supermembrane, 417
compactification on S1, 452–458, 461–463
compactification on S4, 536, 563
compactification on S7, 534, 563
compactification on T2, 338
compactification on T3, 338
supersymmetry transformations, 451
vacua, 563

N = 1, d = 2 supergravity
action, 413
and superstrings, 412–414
supersymmetry transformations, 413

N = 1, d = 4 supergravity, 134, 151, 155–159, 377
action, 154, 155
supersymmetric solutions, 398–399
supersymmetry transformations, 156
vacua, 383–384

N = 1, d = 5 supergravity, 291, 320, 393
action, 313
supersymmetry transformation, 392
vacua, 392–393

N = 2, d = 4 supergravity, 151, 164–167, 374, 375, 382, 393,
396, 397

action, 164
from N = 1, d = 5 supergravity, 316
supersymmetric solutions, 399–401
supersymmetry transformations, 166
vacua, 386–389

N = 2A, d = 10 massive (Romans’) supergravity, 463–465, 502
action, 464

and type-IIA superstrings in a D8 background, 539
N = 2A, d = 10 supergravity, 303, 348, 508, 551, 554, 573

action, 457
and type-IIA superstrings, 422, 430, 447, 523
compactification on K3 and N = 1, d = 10 on T4, 481
compactification on S1, 466–469
compactified on T6 and U duality, 587
supersymmetry transformations, 462, 463
truncation to N = 1, d = 10 supergravity, 469

N = 2B, d = 10 supergravity, 338, 486–491, 508, 551, 554,
573

action (NSD) in Einstein frame, 490
action (NSD) in string frame, 486
and type-IIB superstrings, 407, 422, 430, 485
compactification on S1, 491–496
compactification on S5, 540, 563
Euclidean, 540
supersymmetry transformations, 488
truncation to N = 1, d = 10 supergravity, 497–499
vacua, 563

N = 4, d = 4 supergravity, 281, 338, 357, 362, 363, 366, 407,
541

action, 361, 482
and heterotic strings on T6, 349
supersymmetric solutions, 400

N = 4, d = 5 supergravity, 578
and U duality, 586

N = 8, d = 4 supergravity, 575
and U duality, 586

duality, 248
of Kaluza–Klein (KK) theory, 310

gauge theory of gravity, 146
group, see Lie, group, Poincaré

Poisson equation, 48
Polchinski, 435, 521
Polubarinov, 58, 80
Polyakov, 261, 267

’t Hooft–Polyakov monopole, see solution, ’t Hooft
Polyakov-type action

as σ -model, 99
for massless point-particles coupled to linearized gravity, 70
for massless point-particles in curved spacetime, 97, 307

as source for AS shock wave, 287
reduction on S1, 307–310

for massless point-particles in Minkowski spacetime, 52
for point-particles in curved spacetime, 97
for point-particles in Minkowski spacetime, 52
for strings in curved spacetime, 410

topological term, 411
supersymmetric, see Poincaré, N = 1, d = 2 supergravity

Pontrjagin class (first), 274
Prasad, see Bogomol’nyi–Prasad–Sommerfield (BPS)
principle of correspondence, see correspondence principle
principle of equivalence of gravitation and inertia (PEGI), 56, 69

and the principle of general covariance or relativity (PGR), 93
strong form and self-coupling of the gravitational field, 77,

78
weak form and identity between gravitational and inertial

masses, 72
principle of general covariance of relativity (PGR), 96, 99–102

and point-particle actions, 96
and the equations of motion of the gravitational field, 101
and the Lovelock tensor, 101

Proca Lagrangian, 60, 225–227
dualization, 258–259

Pythagoras, 434

QFT, see quantum field theory
quantum field theory (QFT), 143, 188, 213, 369, 371, 372, 374,

397, 573, 676
Quinn, see Peccei–Quinn symmetry
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R, see Ramond
Ramond

Kalb–Ramond (KR) field, see Kalb–Ramond
Ramond (R) boundary conditions

for closed superstrings, 414
for open superstrings, 414

Ramond–Neveu–Schwarz (RNS) model, 414
Randall–Sundrum scenarios, 519
Rarita–Schwinger spinor, 134, 152, 154
RB, see solution, Robinson–Bertotti (RB)
reduction theorem, 273
Regge slope, 409, 547
Reissner–Nordström (RN) BH, see solution, Reissner–Nordström
rheonomic approach, see supergravity theories, rheonomic
Ricci

-flat metric, 93, 277, 287, 547
1-form, 25
identities, 8
identity, 12, 18, 21, 109, 111, 158, 182, 602

for GL(d, R) connection, 16
for Yang–Mills fields, 597

rotation coefficients, 15, 145, 333
scalar, 9, 12, 13, 40, 56, 102, 106, 114, 115, 132, 301, 305, 333,

454, 471, 482
linearized, 94

tensor, 8, 12, 13, 91, 92, 94, 107, 123, 126, 273
of group manifolds with bi-invariant metrics, 603

Riemann
2-form, 25
space, 13–19
tensor, 7, 7, 12, 14, 107, 126, 605

of a maximally symmetric space, 610
relation with the curvature of the GL(d, R) connection, 16

Riemann–Cartan spacetime, 10–12, 144
RN, see solution, Reissner-Nordström (RN)
RNS model, see Ramond–Neveu–Schwarz
Robinson

Bel–Robinson tensor, see Bel–Robinson tensor
Robinson–Bertotti (RB) solution, see solution,

Robinson–Bertotti
Romans, see Poincaré, N = 2A, d = 10 massive
Rosenfeld energy–momentum tensor, 34, 35, 38, 39–41, 58, 59, 68,

73, 80, 82, 93, 130
and gauge identities, 102, 172
for a massive point-particle, 50
for the first-order FP theory, 90, 93
for the FP theory, 83, 85, 86

and corrections to the point-particle solution, 87
relation to the one predicted by GR, 84

of embedding coordinates, 410
Rosenfeld energy–momentum tensor, 172
Rumpf Lagrangian, 146

SRFT, see special–relativistic field theory
SRQFT, see special-relativistic quantum-field theory
S5-brane

solution, see solution, S5

Sagnac connection, 283
Scherk–Schwarz

formalism for dimensional reduction, see Kaluza–Klein (KK)
Schoen–Yau positive-energy theorem, 181
Schrödinger

Eckart–Schrödinger representation, see Eckart–Schrödinger
representation

Schrödinger
equation, 252, 253

Schur’s lemma, 616
Schwarz (A.S.), see solution, BPST instanton
Schwarz (J.H.)

Green-Schwarz (GS) actions, see Green–Schwarz (GS) actions
Neveu–Schwarz (NS) boundary conditions, see Neveu

Ramond-Neveu–Schwarz (RNS) model, see
Ramond–Neveu–Schwarz model

Scherk–Schwarz formalism for dimensional reduction, see
Kaluza–Klein (KK)

Schwarzschild
coordinates, 176, 188, 189, 228, 269

problems of, 191
observer, 192, 193
radius, 74, 116, 116, 189–191, 589

at the correspondence point, 577
compared with the Compton wavelength and Planck length,

116, 206
solutions, see solution, Schwarzschild
time, 192, 193

Schwinger
Dirac-Schwinger-Zwanziger (DSZ) quantization condition, see

Dirac-Schwinger-Zwanziger (DSZ) quantization condition
pair creation, 205
Rarita-Schwinger spinor, see Rarita-Schwinger spinor

Sciama, see Cartan–Sciama–Kibble (CSK) theory
semisimple algebra (group), see Lie, algebra (group)
Sen argument, 245, 434
Sexl, see solution, Aichelburg–Sexl shock wave
Simons, see Chern–Simons
simple algebra (group), see Lie, algebra (group)
Smarr formula

for RN BHs, 240
for Schwarzschild BHs, 203, 205

in higher d, 212
Sohnius, see Haag–Lopuszański–Sohnius theorem
solution

AdS2 × S2, 235
AdS2 × Sd−2, 266
AdS3 × S3, 390
AdS4 × S7, 534, 560, 563
AdS5 × S5, 540, 563
AdS7 × S4, 536, 560, 563
AdSd , 534

as coset spaces, 610
S7

as a Hopf fibration, 636
Sn , 634–635
Sn as coset spaces, 609–610
p-brane a-model, 515

with extra isometries, 516
pq-5, 556
pq-strings, 555
AdSd

as coset spaces, 384
’t Hooft–Polyakov monopole, 267, 276

BPS limit, see Bogomol’nyi–Prasad–Sommerfield (BPS)
Aichelburg–Sexl (AS) shock wave, 71, 286

dimensional reduction, see Kaluza–Klein (KK), dimensional
reduction on S1

Atiyah–Hitchin, 279
axion–dilaton BH, 363
Bianchi IX gravitational instantons, 277–279
Bonnor’s magnetic dipole, 196
BPST instanton, 267, 272, 274–275

and the KK monople, 277
and the round S7, 636
and the S5-brane, 562

BTZ black hole, 211, 590
Chazy–Curzon, 324
composite 4d BHs, 574

N = 8, d = 4 central charges, 575
ADM mass, 575
horizon area, 575
relation with dilaton BHs, 575

D(−1), 541
D3, 539
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Dp, 538
compactified on T6, 577
compactified on Tp , 576

Dp (black), 532
Dp (black, p < 7), 538
D7, 543
D7 (another form), 544
D7 (modular-covariant form), 544
dilaton a = 1 BH (dyonic), 357
dilaton a = 1, d = 4 BH (electric), 355
dilaton a = 1/

√
3, d = 4 BH (electric), 355

dilaton a = √
3, d = 4 BH (electric), 354, 576, 577

dilaton BHs, 350
thermodynamics, 356

dilaton general a, d BH (electric), 352
dilaton general a, d = 4 BH (electric), 354
Eguchi–Hanson, 272, 277

as a Bianchi IX gravitational instanton, 278
as a Bianchi IX gravitational instanton with self-dual

connection, 279
Euclidean Taub–NUT, see solution, Kaluza–Klein monopole

multicenter, 272
extreme electric KK BH

in higher d, 322, 357
extreme Reissner–Nordström (ERN), 231, 291, 310, 397, 532,

533
4d entropy, Euclidean calculation, 244
and equilibrium of forces, 234
as a supersymmetric solution, 398
as an interpolating soliton, 235
as supersymmetric solution, 399, 400
dimensional reduction, see Kaluza-Klein (KK), dimensional

reduction
in 4d Euclidean, 242, 244
in 4d isotropic coordinates, 232
in IWP class, 281
near-horizon limit, 235
oxidation, 320
reduced on S1, 319
reduction on S1, 317–320, 322

Extreme Reissner-Nordström (ERN)
in 4d as composite BHs, 575
near-horizon limit, 519
Penrose diagram, 231

Fp (black), 531
F1, 445

compactified on S1, 576
compactified on T6, 576

F1 (black), 536, 536
Gödel-like solution of N = 1, d = 5 SUGRA, 381, 393, 393
Gibbons–Hawking multicenter metrics, 272

and self-duality, 273
wire singularities, 272

intersecting branes
p-brane (a1 − a2) model, 571
D5 ‖ D1 ‖ W (black), 580
D5 ‖ D1 ‖ W (black, reduced to 5d), 581
D5 ‖ D1 ‖ S5A ‖ W (black), 584
D5 ‖ D1 ‖ S5A ‖ W (black, reduced to 4d), 585
D5 ‖ D1 (black), 579
M2 ⊥ M2(0), 572
M2 ⊥ M5(1), 572

Israel–Khan, 323, 324
and periodic arrays of Schwarzschild BHs, 325

Israel–Wilson–Perjés (IWP), 280, 281
as solutions of N = 2, d = 4 supergravity, 399, 400
as solutions of N = 4, d = 4 supergravity, 400
connection and curvature, 642
included in SWIP class, 366
Neugebauer, see Neugebauer

Janis–Newman–Winicour
in 4d, 215, 351

in higher d, 263, 351
massless, 216
scalar hair, 216

Kaluza–Klein (KK) Melvin, 331
Kaluza–Klein (KK) monopole, 267, 270, 272, 329

and the D6-brane, 554
and T duality, 555
as a Bianchi IX gravitational instanton, 278, 279
as M-theory solution (KK7M), 460
worldvolume action, 522

Kaluza–Klein (KK) monopole, 501
Kerr, 180, 196, 268

and cosmic censorship, 268
interior solution not known, 268

Kerr–Newman, 267, 279
boosting, 286
in IWP class, 281
in SWIP class, 366
supersymmetric, 399

Kerr-Newman, 195, 196
Kowalski–Glikman Hpp-waves, 381
Kowalski–Glikman in 10d (KG10), 434, 563
Kowalski–Glikman in 11d (KG11), 563
Kowalski–Glikman in 4d (KG4), 286, 382, 386, 393,

399
supersymmetry algebra, 389

Kowalski–Glikman in 5d (KG5), 287, 393
Kowalski–Glikman in 6d (KG6), 391

dimensional reduction, 393
Mp (black), 531
M2, 533
M2 (black), 533
M5, 535
M5 (black), 535
Majumdar–Papapetrou (MP), 397

dyonic in 4d isotropic coordinates, 260
in 4d isotropic coordinates, 233
in higher d, 317
in higher-d isotropic coordinates, 265

Melvin, 267, 331
Plebański–Demiański, 400
Reissner–Nordström (RN), 268, 356

4d dyonic in Schwarzschild coordinates, 260
4d entropy, 240, 244
4d magnetic, 260
4d temperature, 240
ADM mass, 228
and the cosmic-censorship conjecture, 230
as Weyl’s static axisymmetric electrovacuum solution,

228
Cauchy horizon, 229
derived, 227
discharge, 205
horizon area, 229
in 4d, 280
in 4d alternative coordinate system, 236
in 4d dressed-Schwarschild form, 236
in 4d Euclidean, 242, 273
in 4d Schwarzschild coordinates, 228
in 4d, as a string solution, 585
in 5d as a string solution, 581
in dilaton a-model, 351, 352, 358
in higher d, 265
Penrose diagram, 229
reduction on S1, 325
sources, 238–239
specific heat, 241
thermodynamics, 240–242
with N electric charges, 237

Reissner–Nordström-Kaluza–Klein (RNKK) dyon,
330, 350

Reissner–Nordström–(anti-)de Sitter, 179



682 Index

solution (cont.)
Robinson–Bertotti (RB), 235, 286, 382, 399, 519
Reissner–Nordström (RN), 196, 203

as a vacuum of N = 2, d = 4 SUEGRA, 386
dyonic in 4d, 394
electric, in 4d, 235
electric, in higher d, 266
in 4d Euclidean, 242
symmetry superalgebra, 386–388, 608

Sp (black), 531
S5, 537
S5 (black), 537
Schwarzschild, 187–212, 215, 216, 225, 228, 230, 234, 236, 238,

240, 242, 578
4d entropy, 204
4d temperature, 204
ADM mass, 189
and supersymmetry, 398
as an eternal BH, 194
as Weyl’s axisymmetric vacuum solution, 324
boosting, 286
derived, 188
dimensional oxidation of, 326
dimensional reduction of, 323–326
entropy in higher d, 212
horizon area, 197
horizon area in higher d, 212
in 4d Eddington–Finkelstein coordinates, 191
in 4d Euclidean, 209–210, 242, 273
in 4d Euclidean action, 211
in 4d harmonic coordinates, 200
in 4d isotropic coordinates, 198
in 4d Kruskal–Szekeres coordinates, 193, 194
in 4d Schwarzschild coordinates, 176, 179, 188, 268, 269
in higher d, 211, 263, 264, 352, 512, 578
in string theory, 405
interior, 190
Penrose diagram, 193
periodic arrays of, 325
perturbations of, 195
perturbative expansion, 88
singularities, 190–192, 230, 238
sources, 200–202
specific heat, 205
stability, 189
surface gravity, 198
temperature in higher d, 212
thermodynamics, 202–211, 241, 356
with negative mass, 195

Schwarzschild p-branes, 326, 331, 512–514, 515
instability of, 513–514
tension, 513

SWIP, 363–368, 544, 588
as N = 2, d = 4 supergravity solutions, 367–368
as solutions of N = 4, d = 4 supergravity, 400
duality properties, 366
entropy and N = 4, d = 4 central charges, 401
general, 363–365
horizon area, 365
supersymmetric, 365–366

Taub-bolt, 273
as a Bianchi IX gravitational instanton, 278

Taub–NUT, 267–271
charged, 268
electrically charged, 280
extreme electrically charged, 280
in Schwarzschild coordinates, 269
interior solutions, 271

Weyl’s axisymmetric vacuum, 323
boosting, 286
higher-d generalizations, 326
Schwarzschild solution, 324

Weyl’s static axisymmetric electrovacuum, 228
solvable, see Lie, algebra, solvable
Sommerfield, see Bogomol’nyi–Prasad–Sommerfield (BPS)
Sorkin, 272, 291, 329
space

affinely connected, 6
cotangent, see cotangent space
maximally symmetric, 605
Riemann, see Riemann, space
Riemann–Cartan, see Riemann–Cartan spacetime
tangent, see tangent space
Weitzenböck, see Weitzenböck, spacetime

special geometry, 367–368
special-relativistic field theory (SRFT), 26, 32, 33, 45–47, 49, 51,

53, 55, 57–61, 63, 65, 67–73, 75, 77–79, 81, 83, 85, 87, 89,
91, 93, 95, 96, 100, 112, 171, 173, 200

special-relativistic quantum-field theory (SRQFT), 95, 112
specific heat

dilaton a-model BH, 356
Reissner–Nordström (RN) BH, 213, 241
Schwarzschild BH, 205

spin–energy potential, 34, 36, 41, 131, 135, 136
spin–energy potnetial, 133
spinning particle, 413
spinor, 601

Dirac, see Dirac, spinor
Majorana, see Majorana, spinor
Majorana–Weyl, see Majorana–Weyl, spinor
symplectic-Majorana, 618, 629
Weyl, see Weyl, spinor

squashed
S3 and S7, 637
spheres, 609

Stückelberg
field, 226, 227, 258, 259, 296, 314, 341, 342, 345, 465

Stokes’ theorem, 24, 29, 31, 32, 175, 178, 181, 222, 223, 250, 255,
257, 276, 306, 507, 508

and the Gauss–Ostrogradski theorem, 24
Straus, see Einstein–Straus–Kaufman
string

USp(32) theory, 498
coupling constant, 116, 412, 420, 425, 431, 456, 487
heterotic theories, 423
length, 116, 292, 409, 430, 431, 520, 527, 547, 577, 582

versus 11d Planck length, 524
versus Planck length, 405

mass, 409
metric, 121
oriented, 411
singularity, see Dirac, string singularity
type-I theories, 423
type-I′ theory, 499
type-IIA theories, 422
type-IIB theories, 422
unoriented, 411

Strominger, 515
Strominger–Vafa paper, 579
SUEGRA, see supergravity theories, extended
SUGRA, see supergravity theories
Sundrum, see Randall–Sundrum scenarios

mechanism, 346, 465
supergravity theories, 113, 126, 132, 313, 349, 354, 358, 359,

369–371, 373, 375, 380, 405, 413, 417, 424
N = 2, d = 4 supergravity and special geometry, 367
and the WNI technique, 181, 395
as effective string theories, 290, 406–408, 432, 435
as supergroup gauge theories, 140, 142, 151–155

and supersymmetric solutions, 557–559
Bogomol’nyi (or BPS) bounds, see Bogomol’nyi (or BPS)

bounds
bosonic truncation, 373
de Sitter (anti-), 143, see de Sitter (anti-)defined, 150
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extended, 121, 150, 160–163, 379, 381
quasi-central charges, 397

gauged, see de Sitter (anti-)
hidden symmetries and dualities, 448
manifest duality invariance in the Einstein frame, see Einstein,

frame, manifest duality invariance
massive, 342

Romans’, see Poincaré, N = 2A, d = 10 massive (Romans’)
supergravity

matter fields, 316
Poincaré, see Poincaré
rheonomic approach, 139
supersymmetric solutions, 396

and string states, 408
vacua, 374, 379

supergravity theory, 374
superparticle (Green–Schwarz), see Green–Schwarz
superpotential, 31
superstring (Green–Schwarz), see Green–Schwarz
supersymmetric states, see BPS states
surface gravity, 198, 212

and temperature, 204
and temperature in d dimensions, 212
of Schwarzschild solution, see solution, Schwarzschild, surface

gravity
Susskind, 206
S duality, 247, 262, 291, 338, 500, 586, 588

and generation of solutions, 329
group, 338
in N = 4, d = 4 supergravity, 361, 362, 363, 366, 401
in 4d axion-dilaton gravity, 359–361
in 4d dilaton a-model, 357–358
in 4d Kaluza–Klein (KK) theory, 310–313, 408

and generation of solutions, 328
in axion–dilaton gravity, 349
in string theory, 407, 407
invariance of the DSZ quantization condition, 258
of N = 2B, d = 10 supergravity

solutions, 555–556, 564
superalgebra, 558

of N = 2B, d = 10 supergravity and the type-IIB superstring,
488–491

of heterotic superstring theory on T6, 448, 480, 482
of type-IIB superstring theory, 447, 485, 494, 497, 521–522,

523–525, 539, 542, 549
and its relation to M theory on T2, 493

tadpoles, 424
tangent space, 3
Taub-bolt, see solution, Taub-bolt
Taub–NUT, see solution, Taub–NUT
Teitelboim, see solution, BTZ black hole
tensor, 3

angular momentum, see angular-momentum tensor
Bel–Robinson, see Bel–Robinson tensor
Belinfante, see energy–momentum tensor, Belinfante
curvature

of GL(d, R) connection, 16
of affine connection, see Riemann, tensor
of Yang–Mills fields, 597

density, 4
Einstein, see Einstein, tensor
energy–momentum, see energy–momentum tensor
Lovelock, see Lovelock tensor
non-metricity, 9
Ricci, see Ricci, tensor
spin–energy potential, see spin–energy potential
torsion, see torsion
Weyl, see Weyl, tensor

tentor, 146
tetrad, 14
Thirring, 46, 59, 70, 82, 87

Thorne, 194
Tod, 399, 400
torsion, 6, 8

modified, 8
Townsend, 188, 437

Nicolai–Townsend transformations, see Nicolai–Townsend
translation group, see Lie, group, translation
trator, 146
twisted sectors, 421
type-I superstring theories, see string, type II
type-I′ superstring theory, see string, type I′
type-II superstring theories, see string, type II
tyupkin, see solution, BPST instanton
T duality, 247, 426–588

and D-branes, 443–445
and O-planes, 424
and string BH solutions, 587
between E8 × E8 and SO(32) heterotic superstrings on S1, 478
between massive N = 2A, d = 10 and N = 2B, d = 10

supergravity, 466
between type-I and type-I′ theories, 499
between type-IIA and type-IIB theories, 491, 522

and extended objects, 522–523, 524–526, 541
and intersections of extended objects, 565
and the Chern–Simons term, 451, 487
and the superalgebra, 559
Buscher’s rules, see Buscher T duality, in type-II theories

between winding and momentum modes, 441–442
Buscher’s rules, see Buscher T duality
group for the heterotic string on Tn

and pure N = 4, d = 4 supergravity, 482
group for the heterotic superstring on Tn , 448, 473, 477, 480
in N = 4, d = 4 supergravity, 361, 362, 363, 366, 401
selfdual radius and symmetry enhancement, 313

U duality, 247, 312, 407, 523, 578, 586
and string BH solutions, 587
diamond-invariant, 587
groups in various dimensions, 449

Vafa, see Strominger–Vafa paper
van Nieuwenhuizen, 164
vector, 3

world, 4
Vielbein, 11, 14

Ansatz for dimensional reduction from d = 11 to d = 10, 456
Ansatz for dimensional reduction on S1, 300
Ansatz for dimensional reduction on Tn , 332
energy–momentum tensor, 128, 133, 135, 136

conservation, 129
for a Dirac spinor, 131
relation to the canonical energy–momentum tensor,

130, 134
first postulate, 16, 16, 17, 17, 18, 20
formalism, 19, 113

for the Einstein–Hilbert action, 136
second postulate, 16

Vierbein, 14
von der Heyde model, 148

Wald, 80, 203
Wallach, see Cahen–Wallach symmetric spacetimes
Weinberg, 59, 78
Weitzenböck

connection, 11, 19, 145
invariants, 145
spacetime, 11, 19–20, 145

and teleparallelism, 20, 145
Wess–Zumino (WZ) term

for p-branes, 528
for a point-particle, 224, 225, 306
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Wess–Zumino (cont.)
in the string worldsheet action, 432
supersymmetric, 417

for Dp-branes, 435, 443
in the superstring GS action, 416

Wess-Zumino (WZ) term
for p-branes, 507–509

Weyl, 57
axisymmetric vacuum solutions, see solution, Weyl
basis, 162
canonical cordinates, 323
formalism for fermions in curved spacetime, 18, 37, 127, 128,

145, 375
and the CSK theory, 131

non-metricity tensor, 431
representation, 396, 617, 624, 625
rescalings, 40, 121, 122, 264, 417, 418

and conformal reference frames, 510
and tracelessness of the Maxwell energy–momentum

tensor, 219
effect on the curvature, 639
invariance of string action, 410, 433
invariance of the string action, 432
supersymmetric, 414

rescalings and massless fields, 123
spinors, 612, 616, 628

equivalent to Majorana in 4d, 151
static axisymmetric electrovacuum solutions, see solution,

Weyl
tensor in 4d, 14, 383, 384, 386

and the Einstein–Fokker theory, 56
tensor in higher d, 14
theorem (compactness of Lie groups), 594

Wick rotation, 209, 243, 285
not commuting with electric–magnetic duality, 262
of gamma matrices, 626
of Taub–NUT solution, 271
of the SL(2, R)/SO(2) σ -model

and the D-instanton, 540
Wigner’s theorem, 595
Wigner–Inönü contraction, 115, 142, 152, 153, 159, 161,

162, 167

Wilczek, 144
Wilson (G. A.), see solution, Israel–Wilson–Perjés (IWP)
Wilson line, 347

and D-branes, 428, 429, 499
mechanism, see Hosotani (or Wilson-line) mechanism

Winicour, see solution, Janis–Newman–Winicour
wire singularities

of Gibbons–Hawking multicenter metrics, see solution, Gibbons
of Taub–NUT solution, see Dirac, string singularities

Witten, 395
condition, 183
effect, 256–258, 261, 362
Hořava–Witten scenario, see Hořava–Witten scenario

Witten–Nester–Israel (WNI) technique, 181, 395, 398
WNI, see Witten–Nester–Israel (WNI) technique
worldsheet parity, 420
Wu–Yang monopole, 254–255
WZ, see Wess–Zumino term

Yang
Wu–Yang monopole, see Wu–Yang monopole

Yang–Mills
Bianchi identity, see Bianchi identities, for Yang–MIlls fields
Cherns–Simons 3-form, see Chern–Simons, 3-form
covariant derivative, 596
equation of motion, 597
field, 274, 391, 438, 470, 471, 478, 596

strength, 273, 597
theories, 127, 134, 137, 139, 595–598

and gravity, 140–144, 148
instantons, see solution, BPST instanton
solutions, 391
supersymmetric, 373, 564

Yang–Mills theories, 273
Yau, see Schoen–Yau positive-energy theorem

Zanelli, see solution, BTZ black hole
Zehnbein, 462
Zumino, see Wess–Zumino term
Zwanziger, see Dirac–Schwinger–Zwanziger
Zweibein, 14




