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The Homogeneous Universe
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1.1 Geometry and Dynamics

1.1.1 Assumptions

e cosmology rests on two fundamental assumptions:

1. when averaged over ficiently large scales, the observable
properties of the Universe are isotropic, i.e. independent
direction;
it remains to be clarified whayficiently largescales are;
nearby galaxies are very anisotropically distributed, distat,c universe is isotropic about all
galaxies approach isotropy, the microwave background is ﬁb‘ints, it must be homogeneous.
most perfectly isotropic

2. our position in the Universe is by no means preferred to a
other (cosmological principle);

reflects Copernican revolution of the world model, when
was realised that the Earth is not at the centre of the U
verse;

by the second assumption, the first must hold for every obser
in the Universe; if the Universe is in fact isotropic around all g
its points, it is also homogeneous; thus, these two assumptiQRg galaxy distribution is mani-
are often phrased as festly anisotropic

the Universe is homogeneous and isotropic

¢ these are bold assumptions, which have to be justified; obviously
an ideally homogeneous and isotropic universe would not alld
us to exist; it needs to be carefully studied how an idealised world
model following from these two assumptions can accomodate

structures ... but the microwave background is

¢ of the four interactions (strong, weak, electromagnetic and graelrlantastlcally Isotropic.

tational), strong and weak are limited to length scales typical for

elementary-particle interactions; electromagnetism is limited in

range by the shielding of opposite charges, although magnetic
fields can bridge very large scales; the remaining force relevant
for cosmology is gravity

e gravity is described by general relativity; Newtonian gravity was
constructed for isolated bodies and has fundamenfatdiies in
explaining space filled with homogeneous matter

e general relativity describes space-time as a four-dimensional
manifold whose metric tensaj,, is a dynamical field; its dy-
namics is governed by Einstein’s field equations which couple
the metric to the matter-energy content of space-time
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e as the structure of space-time determines the motion of matter
and energy, which determine the structure of space-time, general
relativity is inevitably non-linear (in contrast to electrodynamics);
solutions of Einstein’s field equations are thus thus typically very
difficult to construct

1.1.2 Metric

e due to symmetry, the 44 tensoig,, has ten independent compo-
nents, the time-time componemy,, the three space-time compo-
nentsggi, and the six space-space componests

e the two fundamental assumptions greatly simplify the metric;
phrased in a more precise language, they read

1. when averaged over ficiently large scales, there exists a
mean motion of matter and energy in the Universe with re-
spect to which all observable properties are isotropic;

2. all fundamental observers, i.e. imagined observers follow-
ing this mean motion, experience the same history of the
Universe, i.e. the same averaged observable properties, pro-
vided they set their clocks suitably

e consider the eigentime elemery, d
ds? = g, dx‘dx’ (1.1)

spatial coordinates attached to fundamental observers are called
comoving coordinates; in such coordinates, & 0 for funda-
mental observers; requiring that their eigentime equal the coordi-
nate time ¢, we have

dSZ = goodt2 = Czdt2 = Joo = 02 (12)

e isotropy requires that clocks can be synchronised suchyghat
0; if that was impossible, the componentsggf singled out a
preferred direction in space, violating isotropy; thus

0o =0 (1.3)
o the line element is thus reduced to
ds’ = c?dt? + g;dx dx! (1.4)

thus, spacetime can be decomposed into spatial hypersurfaces of
constant time, i.e. it permitsfaliation; without violating isotropy
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and homogeneity, the spatial hypersurfaces can be scaled t -
functiona(t) which can only depend on time, flat

ds? = c2dt? — a(t)dI? (1.5)

where d is the line element of homogeneous and isotropic thre
space; a special case pf (1.5) is Minkowski space, for whids d
the Euclidean line element

negatively

curved
e isotropy requires three-space to have spherical symmetry; we thus
introduce polar coordinatew/(6, ¢) wherew is the radial coordi-
nate andd, ¢) are the polar angles:

positively A%

The space-time of the universe can
di2 = dw? + f2(w) [d¢2 + sir? gdgz] = dw? + f2(W)dw?, (1.6) be foliated into flat or positively or

_ . . _ . negatively curved spatial hypersur-
where @ is the solid-angle element; the radial functit(w) is  faces.

permitted because the relation between the radial coordmate
and the area of spheres of constans still arbitrary

e the metric expressed by the line element](1.6) is manifestly
isotropic; it can be shown that homogeneity requifigsv) to be
trigonometric, hyperbolic, or linear iw,

K-Y2sinK¥2w) (K > 0)
fi (W) = { w (K = 0) (1.7)
IK|Y2sin(K|Y?w) (K < 0)

whereK is a constant parameterising the curvature of spatial hy-
persurfacesfy (w) and|K|Y/? have the dimension of a length

e an alternative form of the line elemend & obtained substituting
the radial coordinate bi/for f(w), then

_dr?

~1-Kr2

this is often used, but has the disadvantage of becoming singular
for K > 0 andr = K-1/2

di? + r’dw? (1.8)

e we thus arrive at the metric for the homogeneous and isotropic
universe,

ds? = ¢dt? - a%(t) |dw? + f2(w)de?| (1.9)

with fx(w) given by [1.T); this is called Robertson-Walker metric

1.1.3 Redshift

e spatial hypersurfaces can expand or shrink controlled by the scale
functiona(t); this leads to a red- or blueshift of photons propagat-
ing through space-time



CHAPTER 1. THE HOMOGENEOUS UNIVERSE 8

e consider light emitted from a comoving source at tiigueaching
a comoving observer at = 0 at timet,; since & = 0 for light,
the metric|[(1.P) requires

cdt| = dw (1.10)

where the modulus on the left-hand side indicates that time can
run with or againswv, depending on whether is measured to-
wards or from the observer

e the coordinate distance between source and observer is

o o cdt
Weo = dw = —— = const 1.11
. f f a(t) (L1
thus the derivative ofvg, With respect to the emission tilemust
vanish dw, 1 dt 1 dt
eo _ 0 0 _ % (112)

dt.  at)de alt)  de  a

e time intervals d. at the source are thus changed until they arrive at
the observer in proportion to changes in the scale of the universe
between emission and absorption

e let dt = v be the cycle time of a light wave, then

A Ao — A4 a(t
Yo _do g dozde 4, L)
Vo Ae Ae a(to)

thus, light is red- or blueshifted by the same amount as the Uni-
verse expanded or shrunk between emission and observation

(1.13)

1.1.4 Dynamics

e the dynamics of the metrif (3.9) is reduced to the dynamics of the
scale factor(t); differential equations foa(t) now follow from
Einstein’s field equations, which read

8nG
Ga,B = ?Taﬁ + Aga,B (114)

A is the cosmological constant originally introduced by Einstein
in order to allow static cosmological models

e G, is the Einstein tensor constructed from the curvature tensor,
which depends on the metric tensor and its first and second deriva-
tives

e T, is the stress-energy tensor of the cosmic fluid, which must be
of the form of the stress-energy tensor of a perfect fluid, charac-
terised by pressurp and (energy) density, which can only be
functions of time because of homogeneity,

p=pt). p=p) (1.15)
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e when specialised to the metric (IL.9), Einstein’s equatipns|(1.
reduce to two dferential equations for the scale facadt):

(a)2 871G K& A

a = 3P =3
a 4G 3p\ A
- "3 (p C2)+ 3 (1.16)

these are Friedmann’s equations; a Robertson-Walker me
whose scale factor satisfig¢s (1.16) is called Friedmann-iteena
Robertson-Walker metric; the scale factor is uniquely determin
once its value at a fixed tintds chosen; we set = 1 today;

¢ the Friedmann equations can be combined to yield the adiaba
equation Alexander Friedmann

& (%) + pg (28) = 0 (1.17)

which intuitively states energy conservation: the left-hand side is

the change in internal energy, the right-hand side is the pressure
work; this is the first law of thermodynamics in absence of heat
flow (which would violate isotropy)

e since energy conservation (1]17) follows from the Friedman
equations[(1.16), any two equations frgm (1.16) and {1.17) can |
used equivalently to all three of them; we follow common prac-
tise and use the first-order equation frdm (1.16), which we will
call the Friedmann equation henceforth, apnd (1.17) where needed ™

1.1.5 Remark on Newtonian Dynamics

e note that[(1.16) can also be derived from Newtonian gravity, excorges Lemare

cept for theA term; the argument runs like this: in a homoge-
neous and isotropic universe, a spherical region of radicem be
identified around an arbitrary point, the matter density within that
sphere must be homogeneous; the matter surrounding the sphere
cannot have any influence on its dynamics because it would have
to pull into some direction, which would violate isotropy; thus,
the size of the sphere is arbitrary

e suppose now a test massis located on the boundary of the
sphere; it's equation of motion is

r = _I’_Z (gr p) = —Trp (118)

this is already the second efg. (1.16) except for the pressure term
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¢ the pressure term adds to the density because pressure is a con-
sequence of particle motion, i.e. the kinetic energy of particles,
which is equivalent to a mass density and thus acts gravitation-
ally; for particles with a mean squared velocit#),

Bin _ 3P

p:e<V2>:1-Ekin =P o T @

3 3 (1.19)

thus the pressure adds an equivalent mass demsityhich we
have to add t@; (1.18) thus reads

f = -G, (p + 3—'0) (1.20)

e in analogy to[(1.1]7), energy conservation requires
3r2tpc? + r3pc? = 3prit (1.21)
dividing by r and combining terms yields

3p

g)rf +r%p=0 (1.22)

2rfp + (p +
eliminating the term in brackets with (1]20) yields

d(i?) _ 8xGd(or?)
d 3 dt

2(f = ?(2@ +r%) = (1.23)

e integrating, we find

r\? 8rG C
[ -+ (1.24)

;
with a constant of integratio@; putting K = —C/c? yields the
first eq. (1.1p) without the term

e we thus find that Friedmann’s equations can be derived from
Newtonian dynamics if we account for the mass density equiv-
alent to the energy density related to pressure and solve the equa-
tion of motion of a self-gravitating homogeneous sphere taking
energy conservation into account; théerm is purely relativistic
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1.2 Parameters, Age and Distances

1.2.1 Forms of Matter

¢ two forms of matter can broadly be distinguished, relativistic and
non-relativistic; they are often called radiation and dust, respec-
tively

e for relativistic bosons and fermions, the pressure is

_p¢
-3
while non-relativistic matter is well approximated as pressure-

free, p = 0, because the pressure is much smaller than the rest-
mass energyc? it needs to be compared with

p (1.25)

e for non-relativistic matter[ (1.17) reads

% (a80¢?) =0 = g _ _32 (1.26)
which implies
p(t) = poa®, (1.27)

with the present density, and using the convention that =
1 today; this simply reflects that the density of non-relativistic
matter is decreasing because of dilution as space is expanding

o for relativistic matter,[(1.17) becomes

A2, P9 (2 p_ 48
dt(apc)+3dt(a)—0:>p— 4- (1.28)
implying

p(t) = poa™ (1.29)

the density of relativistic particles drops faster by one more power
of abecause patrticles are diluted and lose energy because they are
redshifted

¢ we have thus exploited the adiabatic equation for deriving the de-
pendence of density on the scale factor for non-relativistic and
relativistic matter; insertindg (1.27) and (1}29) into the Friedmann
equation as appropriate, we thus obtain a single equation for the
dynamics of the scale factor
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1.2.2 Parameters

e it is convenient to introduce parameters, most of which are
dimension-less; theélubble parameters defined as the relative
expansion rate,

H(®) := g , Ho:=H(); (1.30)

its value at the present tintg is the Hubble constantit has the

unit of an inverse time, but is commonly expressed in units of
kms!Mpc? because it quantifies by how much the recession
velocity of cosmic objects grows as their distance increases; the
Hubble constant is frequently expressed by the dimension-less
parameteh,

_ km 18y 1
Ho = 1000 <3 = 32 10 hs (1.31)

e the inverse of the Hubble constant is the Hubble time,

1
thi= - = 31x10"hts=98x10htyr (1.32)
0

the Hubble time times the speed of light is the Hubble radius,

fy = Hi —93x107h cm=30x10°h" Mpc  (1.33)
0

¢ the critical density is defined as

3HA(t 3H3
Pcr(t) = 87T(g) > Per0 ::Pcr(to) = gco_; (1.34)

writing it in the form

3 52
4G (PCfa ) _& (1.35)

3 a 2

illustrates that in a sphere filled with matter of critical density the
gravitational potential is exactly balanced by the specific kinetic
energy

¢ the critical density today is
pero = 1.9x10¥h2gem® (1.36)

corresponding to a proton mass in approximatelycté® of the
cosmic volume, or about a galaxy mass per RMpc

e densities expressed in units of the critical density are the
dimension-less density parameters

PO oy - P

e = per(t) , Pero

(1.37)
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e the density parameter corresponding to the cosmological con-
stant, also often called cosmological constant, is

A

QA(t) = 3H—2(t) >

Qpo := Q)\(to) = (1.38)

2
3H;
e distinguishing the densities of radiatigry, and non-relativistic

matter,oy, we introduce the two density parameters

Pro Pmo

QrO =, QmO = (1-39)
Per Per
using [1.2¥) and (1.29) yields
Pr = Qropcroa_4 > Pm= Qmopcroa_3 (1.40)

e replacingo — (or + pm) in Friedmann’s equation then yields

Kc?
H2(@) = H3 | Q0a™ + Qmoa 3 + Qpo — 3 (1.41)

2
specialising taa = 1, we haveH?(a = 1) = H3 on the left-hand
side; solving for th&k-dependent term, we find

— K =1-Q— Qmo— Qo =: (1.42)
the curvature parameter

e we thus arrive at the final form for Friedmann’s equation

H@) = HZ[Qoa™+Qmoa ™+ Quo + Qxa’?]
= HZE%a) (1.43)

it is mostly used in this form for practical calculations

¢ note that all density contributions in square brackets scale with
different powers oé; their relative importance thus changes over
time; today, the radiation density is much smaller than the mat-
ter density; however, going back in time, the radiation density
grows faster than the matter density, so there is a tigleefore
which radiation dominates; expressiagby the scale factoge,
we have from[(1.40)

ro
= 1.44
7 Omo (1.44)

before that, the universe is called radiation-dominated; later, mat-
ter dominates while curvature is still negligible; finally curvature
becomes important artd, may take over
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¢ the density parameters change with time; ignoring radiation den-
sity, one has for non-relativistic matter

87TG 3 Qmo

Q = — 0 =
@ = 3@ ™ T AT 0l -3) + Q@ - 3)

(1.45)

and for the density parameter corresponding to the cosmological
constant

A _ QAoaS
3H2(a) a+ Qmo(l-a) + Quo(ad - a)

QA(a) = (1.46)

e two interesting consequences follow from efs. ([1.45) and|(1.46):
first, they implyQqn(a) — 1 andQ,(a) — 0 fora — 0 regardless
of their present value€,,o andQ,o; second, ifQmo + Qa0 = 1,
this remains valid foa < 1

1.2.3 Parameter Values

e the cosmological parameters, most notably, Q.0 and Q,o,
were highly insecure for most of the last century; only re-
cently, the situation has much improved mainly because of the
microwave-background measurements and wide-field galaxy sur-
veys like the 2-Degree-Field (2dF) survey and Sloan Digital Sky
Survey (SDSS)

e combining microwave-background and SDSS measurements, the
cosmological parameters are now constrained as follows (all er-
rors are ls- error margins):

Hubble h o.7oig;gg CMB + SDSS
constant
0.72+0.07 HST Key
Project
matter density Qmo 0.30+ 0.04 assuming
Q=0
0.41+0.09 free Q
cosmological | Qag 0.70+ 0.04 assuming
constant Q=0
0.65+0.08 free Qg
curvature Qk -0.06+ 0.04 free Q
baryon dend h°Qg | 0.023+0.001
sity
Qs 0.047+ 0.006
radiation den- Q, (2.494+0.007)- 10> | from CMB
sity temperature
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e sinceC) is very close to zero, we will assunék = 0 in most of
what follows
e the Hubble constant is

Ho = 70"3kms*Mpc = (23+0.1) x 1085 (1.47)

i.e. the Hubble time is

Hio = (44+03)x 10"s= (14=008)x 10'°yr  (1.48)

o from (1.44), the scale factor at matter-radiation equality is

Beq= (83+1.1)x10° (1.49)

1.2.4 Age and Expansion of the Universe

e sinceH = a/a, the age of the Universe is determined by

a da/
Han(a) = Hot—j; a’E(a’)

da _
dt

(1.50)

where we have assumed that time starts running vahe®; this
integral cannot generally be solved analytically, but limiting cases
are interesting to study

e early Universe: in the early Universe, radiation dominates be-
cause its contribution scales with* in Friedmann’s equation;
during that timeE(a) = Q¥*a? and

2
Hot = —— o a=[2yQoHot|" (1.51)

2 VQrO
thus, at early times, the expansion of the Universe scales like
a o/t until the radiation density drops near the density of non-
relativistic matter; at matter-radiation equality, the age of the uni-
verse is

teq=1.9x 10"s=59x 10°yr (1.52)

e early matter-dominated era: after non-relativistic matter starts
dominating, and before curvature becomes important, we may ap-
proximateE(a) = vVQmea /2 and obtain

b 28 3 JaH
t= a=|zvyQ t
4=y © 27 [2Y

thus the expansion scales likecc t%/3; this case is called the
Einstein-de Sitter limit and plays an important role in the theory
of cosmological inflation

2/3

(1.53)
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e very late Universe: i2, # 0, it dominates at late times; then,
E(a) = vQ, and
Ina

VQr

where we have ignored the lower integration limit because the
approximation of a dominating cosmological constant is only
valid after finite time; then, the Universe expands exponentially,
i.e. the cosmological constant is driving the Universe exponen-
tially apart; this case is called the de Sitter limit

Hot =

= ax exp[ \/gTAHOt] (1.54)

¢ we shall see later that the period of radiation domination is brief;
for most of the cosmic time, radiation is negligible and matter,
cosmological constant and curvature co-exist in comparable den-
sities; we shall now study a few interesting simplified cases ig-
noring the contribution from the radiation density

¢ Einstein-de Sitter universe: §, = 0 andQqo = 1, (1.50) holds
throughout cosmic history, and

2 3 2/3
Hot = §a3/2 & a= (EHot) (1.55)
the age of such a Universe today is
2
ty = T 6.5x 10°htyr (1.56)

this case is historically important

e in a flat universe withQ,,0 # 0 andQ, = 1 - Qo # 0, the
curvature term vanishes and

2 Wada
0 \/QmO + QAa’3

this can be integrated substituting= a*? and yields

2 N
Hot = ——— arcsin ———a / 1.58
O 3VI— O, { Qmo (1.58)

the age of the universe is

t(a=1)= OH—iG = 1.35x 10%yr (1.59)

Hot = (1.57)

¢ the expansion of the spatially flat model becomes exponential
when

1- QmO 3/2 ( QmO )1/3
1 /—a =1 = az ~ 0.75 1.60
Qmo 1- QmO ( )
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Figure 1.1: Cosmic ag#a) as a function of the scale factar

e as [1.5%) shows, a universe expanding wihtoday may never
reacha = 0 going back in time; the fact that the universe is
expanding today does thus not imply that it originated in a Big
Bang!

e however, it is straightforward to see that there must have been a
Big Bang because we know from the existence of the microwave
background that the radiation density is finite, from the existence
of luminous material that the matter density is finite, and from the
existence of objects with very high redshittthat the scale factor
of the universe must have been as small 4& % 2) or smaller in
the past

1.2.5 Distances

e distance measures are no longer unigue in general relativity; in
Euclidean geometry, a distance between two points is defined by
a measurement connecting the points at the same instant of time;
this is generally impossible for two reasons; first, what is con-
sidered simultaneous at the two points depends on their relative
motion; second, connecting the points requires time because of
the finite speed of light; distances in cosmology thus need to be
defined according to idealisations or measurement prescriptions,
which generally lead to ffierent expressions

e distance measures relate emission events on a source’s world line
to an observation event on an observer’s world line; the emission
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and observation times kg andt;, respectively, are uniquely re-
lated to the scale factoegs anda; > a, of the universe at, and
t;, which can in turn be expressed by the redstaftandz, < z

o theproper distance R}, is the distance measured by the time re-
quired for light to travel from a source to an observer; it is thus
determined by B, = —cdt = —cda/a; the minus sign is re-
quired becaus®y,, should increase away from, whiteand a
increase towards the observer; thus

a(z1) da c a(z1) da

az) & HoJaz aE(@

(1.61)

the integrand is the same as|in (1.50), thus

2 . 1 - Qmo 3/2
——|arcsin ,/
. 1-Q
- arcsm}{w /—moag/z]] (1.62)
QmO

for a spatially-flat universe

Dorop(z1, 22) =

¢ the comoving distance {3, is the distance on the spatial hyper-
surface at = const between the world lines of a source and an
observer comoving with the mean cosmic flow; this is the coor-
dinate distance between source and observer, tBds,d= dw;
since light rays propagate according te € 0, adw = —cdt =
—cda/a, thus

= W(z1, 2)

a(z2) da c a(z2) da
Dcom(z1,22) = C f — = f ——— =
ol 2 aw FEE) (1.63)

a(zl) aa B HO

¢ theangular diameter distance 3 is defined in analogy to the re-
lation in Euclidean space between the afAand the solid angle
éw of an objectpw Dgng = 0A,; since the solid angle of spheres of
constant radial coordinate is scaled byfx (w) in (1.6), we must
have
oA _ ow

4rna2f2W(z, )]  4n

(1.64)

in words, the area of the object must be related to the area of the
full sphere like the solid angle of the object to the solid angle of
the sphere; it follows

1/2
Dandz1,2) = (2] = alz) fulwz, )] (1.65)

as the coordinate distan®&z;, z,) = Dcom(Z1, 22), DandZ1, 22) =
a(22) f[Deom(z1, 22)]
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¢ a fourth important distance measure is tbheinosity distance
Dwum, Which is defined in analogy to the Euclidean relation be-
tween the intrinsic luminosity of an object and its flux; counting
emitted and absorbed photons and taking redshift into account,

one finds )

@ Dandzi, 22) (1.66)

a(z)
this Etherington relationis valid in arbitrary spacetimes; it is
physically intuitive because photons are redshiftechi\a, be-
tween emission and absorption, their arrival times are stretched
by a;/a,, and they are spatially diluted by a facte¥ (a,)?; this
yields a factor &;/a,)* between luminosity and flux, and thus a
factor (a1/ay)? in the luminosity distance

Dlum(zl, ZZ) =

prop

ang %
10F  Dun P

distance [c/H]

redshift z

Figure 1.2: Four dferent distance measures in a spatially-flat universe

¢ these distance measures can be vastigdint at moderate and
high redshifts; foz < 1,a~ 1 -z andE(a) ~ 1, then

D=2400) (1.67)
Ho

for all distance measures introduced above

¢ the angular-diameter distance from redshift zero to redszlfidt
an Einstein-de Sitter universe is

2c 1
Hol+ 2z

Dand(2) =

1
_(1+@U4 (1.68)
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this shows that cosmological distances need not be monotonic;
in fact, Dang(2) has a maximum foz = 5/4 in the Einstein-de
Sitter case[(1.68) and gently decreases for increasirbis is

a consequence of space-time curvature, to be distinguished from
spatial curvature!

1.2.6 Horizons

e between times, andt, > ty, light can travel across the comoving

distance o o A g
2 cdt 2 da
Aw(ty, t :f —:Cf — 1.69
)= | 5=cl (1.69)

cf. (1.63)

e ast — 0,a — 0; the curvature and cosmological-constant terms
in the first eq.[(1.16) become negligible and

. 8rG
a=a %p (2.70)

letp « ppa™, then

C
Aw(t, 1) = e \/Q_o f

a(ty)

a(t)
¥ da o V21

e (1.71)

which diverges foa — 0if n< 2

e thus, ifn > 2, light can only travel by a finite distance between the
Big Bang and any later time, thus any particle in the Universe can
only be influenced by events within a finite region; there exists a
particle horizon

e a simpler definition of a horizon is often used; namely the time-
dependent Hubble radius

' c c a¥? Beq\ /2
I = = — -
i) H(t) ~ Ho \/_Qmo( a )

where we have used the Einstein-de Sitter lifit (R.25); partic-
ularly important for structure formation is the Hubble radius at

a= aeq;

(1.72)

3/2
C Qe

MHeq= — ——
" Ho v200,
e ast — oo, supposea « t™, then
AW(t, tp) oc tH (1.74)

which converges fom > 1; this happens if the expansion of the
Universe is dominated by the cosmological constant at late times

(1.73)

¢ then, the region which can be seen by a particle remains finite;
there exists aevent horizon



CHAPTER 1. THE HOMOGENEOUS UNIVERSE 21

1.3 Thermal Evolution

1.3.1 Assumptions

¢ the universe expands adiabaticalyisotropy requires the uni-
verse to expand adiathermally: no heat can flow because flow
directions would violate isotropy; adiathermal expansion is adi-
abatic if it is reversible, but irreversible processes may occur;
however, the entropy of the universe is dominated by far by the
cosmic microwave background, thus entropy generation is com-
pletely negligible

e thermal equilibrium can be maintained despite the expansion
thermal equilibrium can only be maintained if the interaction rate
of particles is higher than the expansion rate of the Universe; the
expansion rate of the Universe is highest at early times, so thermal
equilibrium may be dficult to maintain ag — 0; nonetheless,
fort — 0, particle densities grow so fast that interaction rates are
indeed higher than the expansion rate; as the Universe expands,
particle species drop out of equilibrium

¢ the cosmic “fluids” can be treated as ideal gase&deal gas: no
long-range interactions between particles, interact only by direct
collisions; obviously good approximation for weakly interacting
particles like neutrinos; even valid for charged particles because
oppositely charged particles shield each other; consequence: in-
ternal energy of ideal gas does not depend on volume occupied;
cosmic “fluids” can be treated as possibly relativistic quantum
gases

¢ those assumptions are the starting point of our considerations;
they need to be verified as we go along

1.3.2 Quantum Statistics

¢ we will need many relations later for the behaviour of ideal quan-
tum gases which we now derive in a brief detour

¢ if a thermodynamic system has fixed internal energy, particle
numberN, and volume, it is called a micro-canocical ensemble;
its density in phase space is constant

¢ if only the mean internal energy is specified, the ensemble is
canonical; the probability of finding a quantum state (symboli-
cally labelled byw) with energye, occupied is given by the Boltz-
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mann factor
e—@/kT

f =
Z

whereT is the temperaturgy is the chemical potential argt is

the canonical partition sum over all accessible quantum states; the
canonical phase-space distribution minimises the Helmholtz free
energieF(T,V,N) = —kT In Z;

, Zo= Z g /KT (1.75)

e if, in addition, only the mean number of particles is specified,
the ensemble is grand-canonical; all accessible quantum states
(labelled bya) are then occupied by an unknown numbgrof
particles such that,, N, = N; the total energy of that ensemble
is E(N,) = X, €.N,; the phase-space distribution function of a
grand-canonical ensemble is

e_[E(Nn)_ﬂNa]/kT 0

f = , Zge= Z gN/KT Z @ EMNa)/KT (1.76)
Zgec N=0 {Ng)

whereZy is the grand-canonical partition sum, in which the sec-
ond sum is over all setd\,} of occupation numbers which sum
up to N; the grand-canonical phase-space distribution minimises
the grand-canonical potenti@(T, V, ) = —KT In Zy

e we now evaluate the grand-canonical partition sum:

Zye = Z Z @ Zalea=1)Na/KT (1.77)
N=0 {Nqa}

although the second sum is constrained, we have to sum over all
possible particle numberfd; thus, ultimately all possible sets of
occupation numbend, occur, and

Ze= [ e =]z, (1.78)
N, « 1%

with
Z, = Z g (&=1)Na/KT (1.79)

N(l

e for fermions,N, = 0,1 because of Pauli’s exclusion principle,
while for bosonsN, = 0,1,..., oo; thus

1 + e (e—)/KT fermions
Z, = (1.80)

(1 — g (@) "T)_l bosons

where we have used the geometrical series

3 e = 3 CRIE _1 — (1.81)
l1-e

n=0 n=0
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e the mean occupation number of a quantum state

— 1 kT 0Z,
N, = — Nae_(EzY_H)Na/kT . 1.82
Z, Za: Z, ou (1.82)
which leads to the well-known result
— 1
Ny =——— (1.83)

T e(e-)/kT 41

where the+ sign applies to fermions, the sign to bosons

1.3.3 Properties of Ideal Quantum Gases

e in thermal equilibrium with a heat bath of temperatdre the
chemical potential of a system witN particles must vanish,
u = 0: the Helmholtz free energy(T,V,N) = E = TS is min-
imised in equilibrium for a system at constaneandV, so from
dF = -SdT - PdV + udN =0

OF
=K =0 (1.84)

the particle momenturp = K is generally related to energy by
e(p) = v/c2p? + mic? (1.85)

for particles confined in a volum¥, the number of states per

k-space element is
\Y

(2n)®
whereg is the statistical weight, e.g. the spin degeneracy factor;

summations over quantum states are now replaced by integrals
overk space weighted according {o (1.84)

dN = g——d%k (1.86)

using ), the spatial particle number density in thermal equi-
(1.83

librium is 02
9 * p ap
n= (2nh)3fo expIE(D)/KTT = 1 (1.87)

the mean energy density is the number of states per phase-space
volume element, times the mean occupation number, times the
energy per state, integrated over momentum space,

__9 f‘” 4np” e(p) dp
(2rh)* Jo  exple(p)/KT] + 1

u

(1.88)
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e integrals like those irj (1.87) and (1]88) are most easily carried out
by substituting the geometrical serigs (1.91),

* XxMdx * xMe*dx *° -
= f = f dxxMe™ Z e™
0 e-1 0 1-eX 0 =0

}:]mdmﬁémzwmam+1) (1.89)
n=1 0

for fermions, use
1 1 2
eX+1 -1 ex-1

e using [1.78),[(1.80) andl (1.B5), the grand-canonical potential can
be written as

(1.90)

gVv
(27h)°

O(T,V, ) = KT f dpdrp®In [1 + eﬂ/kTe-f@)/kT]
0

(2.92)
where the upper sign applying to fermions, the lower to bosons;
from the expressions for the Helmholtz free enefgyhe grand-
canonical potentiab and the thermodynamic Euler relation,

F(T,V,N) = U-TS
O(T,V,u) = F-uN=U-TS-uN
U = TS-PV+uN (1.92)

we find the simple relation

®=-PV = P= ‘% (1.93)

which enables us to directly compute the pressure of quantum
gases; likewise, from the totalftgrential of the grand-canonical
potential, d(T, V, u) = —SdT — PdV — Ndu, we find the entropy

as
o

T

e example: a relativistic bosons hawe- cp, and in thermal equi-
librium their chemical potential vanisheg, = 0; their grand-
canonical potential is thus

S= (1.94)

gV

O(T,V,u) = KT T

f Arp*dpin [1 -~ e‘°p/"T] (1.95)
0

we substitutex := cp/kT and find

4 00
O(T,V,u) = ;T\%(k;) f; x2dxIn (1 - ) (1.96)
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the integral over the logarithm can be solved as follows:

(&9

Xm+ 1

In(1-¢€7)

f X"In(1-e™)dx
0

m+1 0

00 erl e
- f dx
o M+11l-—e*X

= —-mi(m+2) (1.97)

where [(1.8P) was inserted; we thus find the grand-canonical po-
tential

72 (KT)*
O(T,V,u) = —gV%w (1.98)
from which we obtain the pressure
n? (KT)*
B=0 90 (70)° (2.99)
and the entropy density
s 2n? (kT\®
S= Vo gk4—5 (h_c) (1.100)

e summarising, these equations yield the following expressions for
the number, energy, entropy densities and the pressure of rela-
tivistic boson and fermion gases in thermal equilibrium:

ng = ggg(:—z)s, nng%ng
% = gski”—;(;—z)s, sngiss (1.101)

e some numbers are useful for later estimates; note: £eMo x
10-*?erg correspond thT = 1.16x 10° K

3

(]

Ng

kT\?
3 _ 34 (R -3
cm3=16x10" gB(eV) cm
T\* erg kT\* erg
_ 15 | =¥ _ 3 ~ ) =9
Us = 38x10° gB(K) =0 =235x10° gB(ev) =

3

~| &

_3 s, (KT ’ -3
cm= =57x108gs[——| cm (1.102)

3605 (%) eV
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1.3.4 Adiabatic Expansion of Ideal Gases

o for relativistic boson or fermion gases in thermal equilibrium, the
pressure is a third of the energy density,

u E
P=-=— 1.103
3 3V ( )
¢ the first law of thermodynamics in absence of heat transter: d
PdV = 0, then implies

dE = —PdV = 3d(PV) = Po V™3 (1.104)

i.e. theadiabatic indexs y = 4/3; for non-relativistic ideal gases,
v =25/3

e according tol), pressuRescales with temperaturg* for
relativistic particles, thus

TV «al (1.105)

wherea is the cosmological scale factor; the temperature of non-
relativistic gases drops faster,

T oc PV oc V731 o 572 (1.106)

e the result[(1.104) is very important for cosmology; it implies that
the photon temperature drops inversely proportional to the scale
factor, which has an important consequence for the spectrum of
the microwave background, as we shall see later

1.3.5 Particle Freeze-Out

e we have to verify the basic assumption that thermal equilibrium
can be maintained against the rapid expansion of the universe at
early times; for doing so, we compare the expansion rate of the
universe to the interaction rate of particles

e atearly times, curvature and cosmological constant are negligible,
thus Friedmann’s equation implies

a=a %p (1.107)

the expansion time-scalg, can be approximated by

a 3
texp X = = &Gy~ (Gp)™Y2 (1.108)

Q
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during the radiation-dominated era in the early univesse,a,
thus
texp o< & (1.109)

as we have already seen(in (1.51) in the context of how the young
universe ages; the expansion time-scale thus increases rapidly as
the universe expands away from the Big Bang

¢ thermal equilibrium is maintained predominantly by two-body in-
teractions; the number of collision partners found by a particle
travelling for a time interval dwith velocity v relative to the cos-
mic rest frame through a particle population with number density
nis

dN = n{ovydt (1.110)

whereo is the collision cross section, which typically depends on
relative velocityv and is thus averaged with

¢ the collision rate experienced by a single particle species is thus

= %—T =noVycnec T3ca™ (1.111)
where we have used (1.101) annd (1]105) which are both valid
throughout the radiation-dominated early phase of the universe;
the collision time-scale is thus

teon =t o @ (1.112)

e asa — 0, the ratio between expansion and collision time scales
iS texp/teo & @t — oo, which implies that the collisions have a
much shorter time scale than the expansion in the early universe;
thermal equilibrium can thus be maintained despite the expansion
in particular at early times; as the universe keeps expanding, col-
lisions become rare and thermal equilibrium will ultimately break
down

e in absence of collisions, the continuity equation for the number
densityn of a particle species is

h+ V- (V) =0 (1.113)

in the homogeneous and isotropic universis,spatially constant,
andv = Hr, wherer'is the physical distance of a particle from the
origin; sinceV - I’ = 3, we thus have

A+3Hn=0 (1.114)

e the right-hand side of (1.1]14) will deviate from zero in presence
of collisions and thermal particle creation; we saw/in (1]111) that
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the collision rate i$" = n{ov); likewise, the source term for ther-
mal particle creation i§ = (ocv)nZ; thus, the continuity equation
changes to read

n2
h+3Hn=-In+S = —rn(l——;) (1.115)
n

e we now introduce the comoving number dengity = a’n; sub-
stituting fromN = a®(3Hn + n) in (1.115) yields

: N2
N = —rN( - W) (1.116)
substituting further
d - ag = aHE = H—d (2.117)

yields

N2
dinN _ T (1— —T) (1.118)

dina H

e thus, if the comoving number density is thermil, = Ny, it
does not change; i deviates fromNy, it needs to change for
re-adjustment to its thermal equlibrium valg; this is impossi-
ble if ' < H because then the rate of change becomes too small;
then, the particles freeze out of thermal equilibrium

o for relativistic particlesn « T2 « a3, thusN = an = const;
according to the freeze-out equatipn (1]118),

dInN_
dlna

0= N=N; (1.119)

this implies that relativistic particle species retain their thermal-
equilibrium density regardless bfH, i.e. even after freeze-out

e for non-relativistic particles, the comoving number density in
thermal equilibrium is

Ny oc T3/2gme/KT (1.120)
for KT < mc, Ny drops exponentially, i.e. very quicklyr < N,
then dinN r
n
~-——0 1.121
dina H ( )

as the collision rate falls below the expansion rate; the actual co-
moving number density of particles then remains constant, while
its thermal-equilibrium value drops to zero
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1.4 Recombination and Nucleosynthesis

1.4.1 The Neutrino Background
e neutrinos are kept in thermal equilibrium by the weak interaction
v+veo e +e (1.122)
which freezes out when the temperature drops to

T, ~ 10'%°K ~ 2.7 MeV (1.123)

¢ due to their low mass, neutrinos are ultra-relativistic when they
freeze out of equilibrium, thus their comoving number density is
that of an ideal, relativistic fermion gas

¢ the electron-positron decay reaction
e +e o 2y (1.124)
is suppressed a little later, when the temperature drops below
T ~ 2mc® ~ 1 MeV ~ 10°K (1.125)

because photons are no longer energetic enough for electron-
positron pair production afterwards

e electrons and positrons annihilate shortly after neutrino freeze-
out; their decay entropy thus heats the photon gas, but not the
neutrinos; the temperature of the photon gas is therefore higher
than that of the neutrino gas

¢ the entropies before and after electron-positron annihilation must
be equal; let primes denote quantities before annihilation, then
the entropy densities must satisfy

S tS tS, =5 (1.126)

e before annihilation, the temperatures of electrons, positrons and
photons can be considered equal because thermal equilibrium was
maintained T, =T, =T, =T’

¢ the statistical weights of electrons, positrons and photons are all
O = 0= = 0, = 2; their entropy densities thereforefér only
by the fermion factor 78 from (1.101),

§ = = ggy (1.127)
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and since they are proportional T3, the temperatur& after an-
nihilation follows from [1.12B) as

(2-%+1)(T’)3 = T
11\
= T = (Z) T'~14T  (1.128)

hence the photon temperature is approximately 40% higher today
than the neutrino temperature

1.4.2 Photons and Baryons

e assuming for simplicity that all baryons are locked up in hydro-
gen, the number density of baryons today is

Qg 3H2
=B _ BTN 11x10°Qghen? (1.129)
m, m,8nG
wherem, is the proton mass, arfe is the baryon density param-
eter, defined as i (1.B7)

N

¢ as we shall see later, the baryon density parameter is constrained

to be

Qgh? ~ 0.025 (2.130)
i.e. baryons contribute only¢ 10% — 20% of the matter in the
Universe

e the photon number density today is given by the temperature of
the microwave background through (1.101),

n, = 407 cn1® (1.131)

e bothng andn, scale with temperature T3 « a3, implying that
their ratio is constant,
n
7= n—B =2.7x 108 Qgh? (1.132)

4

e there is approximately a billion photons per baryon in the uni-
verse; the entropy of the photon gas dominates the entropy of
the universe by a huge margin, justifying the assumption of adi-
abatic expansion, because any contribution to the entropy due to
irreversible processes can be neglected compared to the photon
entropy
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e it is unclear howy is set; it is a fundamental physical problem
why there are baryons in the universe, because they should have
annihilated with anti-baryons; there must have been an asymme-
try between baryons and antibaryons, which is possible under the
Sakharov conditions (CP violation, interactions changing baryon
number, departure from thermodynamic equilibrium, e.g. during
phase transitions)

e when we speak of “the temperature of the universe” from now on,
we refer to the temperature of the photon gas

¢ the smallness of will turn out to be very important for nucle-
osynthesis and the recombination of the universe, i.e. its transition
from the fully ionised to the neutral state

1.4.3 The Recombination Process

e as the temperature drops, electrons and protons combine to form
hydrogen atoms when the reaction

e +p- oH+y (1.133)
freezes out

e for determining how recombination proceeds, we need to min-
imise the Helmholtz free enerdy(T,V, N), which is related to
the canonical partition functiof,

F(T,V.N) = —kTInZ (1.134)

o for the procesq (1.183), the canonical partition function is given
by
Zé\lezglpzuH
~ Ne!N!Ng!

whereZ., 1 andNepy are the canonical partition functions and
numbers of electrons, protons, and hydrogen atoms, respectively;
the photons do not contribute because they provide the heat bath
controlling the temperaturé

Z, (1.135)

e the baryon number islg = N, + Ny, the electron number ¥, =
N,, thusNy = Ng — Ng; given the total baryon number, all other
numbers can be expressed by the electron nuiper

e since the numberl,, will be very large, we can use Stirling’s
formula for the factorials, IN! * NInN — N
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e we now need to minimise the Helmholtz free energy with respect

t0 Ne:
OF
- =0
ON,
d
= aNe[Nemze+Nplnz,,+NH|nzH

= Ne(InNe = 1) = Np(In N, = 1) = Nu(In Ny = 1)]
= InZe+InZ,—InZy — 2InNe + In(Ng — Ng) (1.136)
where we have used

ONe ~ 0N

=-1 (1.137)

o for the electron numbet], (1.136) implies

N2 ZZ,
Ng —Ne  Zy

(1.138)

« following (1.79), the canonical partition function for a single par-
ticle species is

4ngV
(273_1)3 f dppPe- (/KT (1.139)

wheree = me& + p?/(2m) in the non-relativistic limit; thus

gV(2rmkT)3/2 e (ME—4)/KT

L= oty

(1.140)

e the total chemical potential must vanish in equilibrium
[cf. @)] thuspe + pp = pn, and the ionisation potent|a| of

hydrogen isy = (me + m, — my)c? = 136 eV; inserting[(1.140)
into (1.138) and using these relations yields

X (2rmekT)¥? o/
1-x  (27h)3ng

wherex = Ng/Ng is the ionisation degree, amg = Ng/V is the
number density of baryons; this is Saha’s equation

e accroding to[(1.132) and (1.101), the baryon density is

(1.141)

3) (KT
Ng =N, = 217{752) (hC) (1.142)
which yields
X2 _ Vr (meCZ)S/Z e /KT 0. 26(meC2 i /KT
1-x " 4av2(@3) n A KT

(1.143)
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o for recombination to be considered finished< 1 andx?/(1 -
X) ~ x%; since ¥n is a huge numbekT < y is required forx to
be small; for example, putting= 0.1 yieldskT,. = 0.3eV, or

Trec ® 3500K

(1.144)

e sincey = 13.6eV, one would naively expedte. * 10°K; the
very large photon-to-baryon ratigl delays recombination con- o} Il Gl

siderably

ionisation fraction x

e
=

S
Y

o

0.2 0.4 0.6 08

e strictly, Saha’s equation is invalid for cosmological recombina- : s
tion because it assumes thermal equilibrium between the reac‘iigrﬂsation traction as a function of
partners, which breaks down as recombination proceeds; h%vrﬁperature tor three flerent val-
ever, due to the rapid progress of recombination, the deViatiSQS of the baryon density parameter.

between the ionisation degree predicted by Saha’s equation
by an exact treatment remains small

Two-Photon Recombination

%'F%e it sets in, recombination com-
pletes very quickly.

¢ direct hydrogen recombination produces energetic photons; the

final transition to the ground state is Lyman2P — 1S), so that

the energy of the emitted photonhis > E,, = 3y/4 = 10.2eV

¢ the abundant Ly photons keep reionising the cosmic gas because
they cannot stream away as from hydrogen clouds; the energy loss

due to cosmic expansion is slow

e recombination can only proceed by production of photons with
lower energy than Ly; this is possible through the forbidden
transition B — 1S, which requires the emission of two photons

¢ this process is slow, hence recombination proceeds at a somewhat

lower rate than predicted by Saha’s equation

Thickness of the Recombination Shell

e recombination is not instantaneous, but requires a finite time in-
terval; there is thus a “recombination shell” with finite thickness

¢ the optical depth along a light ray through the recombination shell

IS

gT 3

and d = cdt = cda/a s the proper length interval

T:fneﬁdr :nBonxdr

whereo is the Thomson scattering cross section,

(e
8ika

2
—) = 6.65x 107%°cn?

(1.145)

(1.146)
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e the probability distribution for a photon to be scattered betweer '~
andz-dzis I \ d
__dr 08 / 5
p(2dz=e Td—zdz (1.147) / '-

2
]
T
|

this distribution is well described by a Gaussian with mean
1100 and standard deviatiory ~ 80

scottering probobility

2
B

e the finite width of the last-scattering shell implies that microwa\i"én_? _
background photons seen today were releasedfireint red- i
shifts; since the plasma cooled as recombination proceeded, the- | —

CMB photons were released affdrent temperatures; sinde= o e e
To(1+2), Detailed calculation of and Gaus-
0T ~ ToozZ~ Too, ~ 200K (1.148) sjan fit to the last-scattering prob-
this is a sizeable temperaturefdrence ability distribution as a function of
redshift.

e photons were redshifted after their emission; those emitted earlier
from somewhat hotter plasma were redshifted somewhat more,
and vice versa for photons emitted later; thefeats cancel ex-
actly in Friedmann-Lenitre models becausté « a!; despite
the CMB photons originate from plasma with a range of temper-
atures, the CMB is thus expected to have a Planck spectrum of a
singletemperature

1.4.4 Nucleosynthesis

e as the universe expands and cools, it passes through a temper-
ature range which allows the fusion of light nuclei; the faster
the expansion, the less time there is for nucleosynthesis, thus the
light-element abundances measure the expansion rate in the early
universe

e protons and neutrons form whéf ~ 1 GeV; afterwards, they
can interconvert through the weak interaction, e.qg.

N+vee P+€ (1.149)

and remain in thermal equilibrium until weak interactions freeze
out atkT ~ 800 keV

e at this point, the neutron-to-proton number-density ratio was

1
M _ gameiT _ 2 (1.150)
Ny 6

whereAmc& = 1.4 MeV is the mass dierence between neutrons
and protons
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e fusion builds upon two-body processes because the probability
for others is too low; the first element to form is deuterium, the
next are helium isotopes, followed by Lithium; examples are

n+p — *H+y
H+?H — °He+n
He+2?H — “He+p
H+3H = "Li+y (1.151)

the absence of stable nuclei with atomic weights 5 andA = 8
and increasing coulomb barriers make the production of heavier
elements highly inficient

e equilibrium of deuterium formation + p < 2H + y is controlled
by Saha’s equation; as for recombination, high photon density
prevents?H formation through photo dissociation until temper-
ature has dropped well beloaf ~ 2 MeV corresponding to the
binding energy?H formation is delayed untkT ~ 80 keV, about
three minutes after the Big Bang

¢ this is well before matter-radiation equality, thus the density of
relativistic particles (photons, neutrinos, others?) controls the ex-
pansion rate, and baryon-to-photon ragias the only relevant
parameter,
=101, no0=273pgh? (1.152)

e deuterium is crucial; if too mucRKH is formed, neutrons are
locked up, no heavier elements can form; if too littteis formed,
an important agent for further fusion is missing; fir€ produc-
tion rate needs to be “just right”,

Ng{owt ~ 1 (2.153)
this is the Gamow criterion

¢ the velocity-averaged fusion cross secijon) is known; the time
t is determined by the expansion rate, i.e. the photon density or
photon temperatur€; the Gamow criterion can thus be used for
estimatingT from constraints on the baryon density

e neutrons are in equilibrium with protons urkil ~ 800 keV and
consumed in #icient fusion aftekT ~ 80 keV; in between, they
decay with a half-life of

ty= 8867+ 195 (1.154)

accordingly, the neutron-to-proton ratio drops to

nn 1
— == 1.1
N, 7 (1.155)
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e once?H exists, neutrons arefficiently locked up inta*He be-
cause of its high binding energy; the expected primortfit
abundance by mass is thus

n, 2(nNn/Ny) 1

Y, ~ = = — 1.156) >
"Tptn, l+ng/n, 4 ( )

this number is relatively insensitive to the baryon density, ar
thus ton ozt

e expected trends of light-element abundances wie: Mo
Helium abundance as a function of

— gentle increase oY, with increasingy as nucleosynthesis,7

starts earlier
— 2H and®He are burnt by fusion, thus their abundances de-

crease ag increases z
— ’Li is destroyed by protons at low with an eficiency in-
creasing withy; its precursor’Be is produced morefg-

ciently asy increases; thus, 4.i valley is formed J

e element abundances are calculated using Monte-Carlo codes; the Mo
main uncertainties are the interaction rates and the half-life of fr§8 ,terium abundance as a function
neutrons; 2s prediction uncertainties are0.4% for*He,~ 15%
for 2H and®He, and~ 42% for’Li at ;0 = 5

ofn

107}

e comparison with observations isflicult because light elements
get produced and consumed (e.g. in stars) during cosmic histoIry;

objects need to be found which either retain the primordial ele- .

ment mix, or in which abundance changes can be constrained: ™’ 1

— 2H is observed in neutral hydrogen gas via resonant UV ab- *' )

sorption from the ground state, or via the hyperfine transi- o
tion of the ground state, or vidd-H molecule lines Lithium abundance as a function of

— 3He" is observed via the hyperfine transition of the groung
state

— “He is probed by optical recombination line emission in
ionised hydrogen (Hll-regions)

— ’Li is observed in the spectra of cool, low-mass stars in the
Galactic halo (very old, local stellar population)

heavy elements are formed by stars as early-a$, so observa-
tions need to concentrate on gas with lowest metal abundance;
possibly observed dependence of light-element abundances on
metal abundance may allow extrapolation to zero enrichment

e itis assumed that evolutionary correctionsdr “He and’Li are
low or negligible, but highly uncertain foiHe because of later
production in pre-main sequence stars and destruction in stellar
interiours
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¢ 2His ideal baryometer because of monotonic abundance decr § » e

with increasingy; destroyed by later fusion, so observed aburw 3 I 1

dances are lower bound to primordial abundance; can be obsers | ; '~ ]

in high-z quasar spectra which require high resolution to allo; MW Wﬂ ; M/ |

accurate continuum subtraction, corrections for saturation and z ki J TR

locity shifts in hydrogen lines; such measurements find ) / 59007 6000 i‘ff
H _ (3-4)x10° (1157) _'[ b :
Ny LA | | HJMAH—"

at 95% confidence; substantial depletion is unlikely becausefoo i 1

should have increased metal abundance; somewhat lower va £

are seen in the interstellar medium consistent with consumpticz ) Ly-a

e “He observations ster from systematic uncertainties due to nec- ***° TIPS -

essary metallicity corrections, the interpretation of stellar absoigsyterium line in a high-redshift
tion spectra and collisional excitation of observed recomblnatua[]asar spectrum
lines; a conservative range for thide abundance is

Y, = 0.238+ 0.01 (L158) ek %o o
e ’Li is observed in low-metallicity halo stars which should have f | o *’--
locked up very nearly primordial gas, but they may have pro--: o= 4

cessed it; cool stellar atmospheres aféidilt to model; stellar =
rotation is important because it induces mixingi may also
have been produced by cosmic-ray spallation on the mterstell’ar
medium

¢ 'Li abundance against iron abundance shows Spite plateau with; 5

very little dispersion, _ Lreml .
The Spite plateau in the Lithium

n .
ALip =12+ log r:“ =22+01 (1.159) abundance
H Fraction of critical density
necessary corrections seem to be moderate S oo - L e
o results from Big-Bang nucleosynthesis theory and observatiofgs, |
can be summarised as follows: 3 022z ™
— through [T.15R), density afisiblebaryons impliego > 1.5 o 5 )
— 2H abundance (1.157) implies2< o < 6.3 -
— ’Li abundance predicted assuming this rangg;gfs 2.1 < : ot ity ]
ALip < 2.8, consistent with the observed val{ie (1]159) g 3 3
g 1071 =
— this yields 0244 < Y, < 0.250, overlapping with measured = | pli ]
range [(1.158)
« the baryon density implied by Big-Bang nucleosynthesis is i 3
1 2 5
Qgh? = 0.019+ 0.0024 (1.160) peryon density (1077 & em™)

Results from Big-Bang nucleosyn-
at 95% significance; it is mainly based on the higtleuterium thesis

abundance, but yields a consistent set of light-element abun-
dances



Chapter 2

The Inhomogeneous Universe
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2.1 The Growth of Perturbations

2.1.1 Newtonian Equations

there are pronounced structures in the universe on scales from
stars to galaxy clusters and filaments; while filaments and the
voids they surround can reach sizes-d80h~'Mpc, they are still
small compared to the Hubble radius; in this chapter, we describe
the basic theory for structure growth in the expanding universe

strictly, this theory should be worked out in the framework of gen-
eral relativity, which is a complicated exercise; with the inhomo-
geneities being “small”, i.e. much smaller than the typical scale
of the universe, we can negledtects of curvature and the finite
speed of information propagation and work within the framework
of Newtonian dynamics

the dynamics of stars in galaxies, and of galaxies in galaxy clus-
ters, shows that these objects need to contain much more matter
than can be inferred from the light they emit; this is evidence for
the existence of “dark matter” in the universe which dominates its
matter content

we thus need to describe inhomogeneities in a cosmic fluid which
contains at least radiation, dark matter, and baryonic matter and
which moves according to Newtonian gravity

we begin with the continuity equation, which formulates mass
conservation,

(')p =3 _
VN =0 (2.1)

wherep(t, X) andv(t, X) are the density and velocity of the cosmic
fluid at positionX and timet; in contrast to the homogeneous
universe, they now depend on position

the second equation is Euler’s equation which formulates the con-
servation of momentum,

—

v " \Y -
N @=-2P Yo 2.2)
ot Ie
the terms on the right-hand side represent the pressure-gradient
and gravitational forces

the Newtonian gravitational potentiab satisfies the Laplace
equation
V2D = 4rGp (2.3)
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2.1.2 Perturbation Equations

e we now decompose density and velocity into their homogeneous
background values, andv, and small perturbationtp andév,

p(t’ )?) = pO(t) + 6p(t’ )?) ’ \7(t, )z) = \70(t) + 6\7(1:’ )?) (24)

e let © and X be physical and comoving coordinates, respectively,
thenr = axand the velocity is

V=r=ax+axX=Hr+ax =V + oV (2.5)

i.e.Vp = HF is the Hubble velocity, andv = ax is the peculiar
velocity deviating from the Hubble flow

e inserting [2.4) into[(2]1) and keeping only terms up to first order
yields
(oo + 6p)
—_—
ot
the background quantitigg andV, need to satisfy mass conser-
vation separately,

V - (oo + SpVo + pod¥) = 0 (2.6)

9po > o Opo B
E +poV \70 = E + 3Hp0 =0 (27)
wherev, = H andV - P = 3 were used: thus
85 =3 = -
8—::0+\70V5p+p0V5\7+5pV\70:0 (28)
¢ defining the density contrast,
0,
5= (2.9)
Lo
we find
(9(5,0 . : = .
W = 5[)0 + 6/)0 = —5p0V . \70 + 6/)0 (210)

using the unperturbed continuity equati¢n [2.7); the perturbed
continuity equation (2]8) can now be written

S+ -V6+V-60=0 (2.11)
e likewise, we split the momentum conservation equatfior] (2.2) into

unperturbed and perturbed parts, where we introduce the pressure
and potential perturbatiordp andé®,

‘96;?7 +(6V - V)Vo + (Vo - V)oV = _VOP | %50 (2.12)
Lo

written in components, the termy- 3)\70 reads

|(6V- V)W) = (5‘71'5%) Hri = HG;(6V); = H(Y),  (2.13)
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e treated similarly, the Laplace equation becomes

V26® = 4nGpod (2.14)

e Wwe now convert to comoving coordinate&s r/a and comoving
peculiar velocitiesd := §V/a, and introduce the gradient with
respect to the comoving coordinates,

=3 1 -
Vi= 2V, (2.15)

o likewise, we have to transform the time derivative; the total dif-
ferential of an arbitrary functiori(r, t) is

af L. . of .
df = Edt+vrf-dr_Edt+vrf-a(H>?dt+d>?)
= (‘Z—Imzﬁxf)dtﬁxf-dz

hence, the partial time derivative in physical coordinates needs to
be replaced according to

0 > 0

in order to keep notation simpl@, abbreviate¥ , hereafter

e we are now left with the three equations

§+Vv-d = 0
0+ Hd = —@+V6—(D
a2po a2
V3D = 4nGpga’s (2.17)

for the four variables, U and 5§®; the over-dots denote partial
time derivatives; we additionally need an equation of state linking
the pressure fluctuation to the density fluctuation,

Sp = 6p(6) = C26p = Capod (2.18)
with the sound speed

2.1.3 Density Perturbations

e taking the divergence of the Euler equation, we find an equation
for ﬁ(d) = d(ﬁ - t)/dt, which can be inserted into the total time
derivative of the continuity equation; this yields the single equa-
tion for the density contrast

) . 2v2s
5+ 2H6 = (47TGp06 s ) (2.19)
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e we can decomposginto plane waves,
S(X1) = s(t)e ** (2.20)

decoupling the time evolution from the spatial dependence; in-
serted into[(2.19), this yields

(2.21)

. : c2k?
0+ 2H¢ = 6(477Gp0 - ?)

e starting from special-relativistic fluid mechanics, and ignoring
pressure gradients, the perturbation equations for an ideal rel-
ativistic fluid (e.g. photons) can be derived in a very similar
way, using the pressune = pc?/3 and the related sound speed
cs = ¢/ V3; the result is the evolution equation

. . 321
8 +2H5 = == Gpod (2.22)

e on a static background = 0, and[(2.2]l) becomes the oscillator
equation

C2 k2

S+wid =0, wp:= ;2 — 47Gpo (2.23)

the oscillation frequency is real for ficiently largek,

2+nGpg

kaJ:: o

(2.24)

k; defines the Jeans length

2n T
Ayji=— = [— 2.25
J K Cs Goo ( )

perturbations smaller than the Jeans length oscillate; others grow
or decay

e we now study the behaviour of perturbations on scales much
larger than the Jeans length, or in pressure-less fluid¥;=f 1,
the perturbation equations read

. . 3 .. .
5+ 2H6 = EHz(s, 6+ 2Hé = 4H% (2.26)

for the matter- and radiation-dominated cases, respectively, for

which we have from[(1.35) and (1)51)

= H() = % , g: H(t) = % (2.27)

|



CHAPTER 2. THE INHOMOGENEOUS UNIVERSE 43

e theansatz(t) « t" yields

2, N_2_ > 4 _
Mz-5=0, M-1=0 (2.28)

hencen = -1, 2/3 in the matter-dominated amd = +1 in the
radiation-dominated cases, which translates to .

19 -

01/ A=0 ——

0-0.3,A=0.7 —— |
18 1

a :
32 ¢ Matter-dominated era
a

§ o (2.29) = |
a’
a2 radiation-dominated era

15

D,(2)/a

12+
11+

decaying modes are irrelevant for cosmic structure growtbieso ! ‘ ‘ ‘
a? during the radiation-dominated era, anha a afterwards ’ ’ * etz ’ *
linear growth factoD, /aas a func-
tion of redshift for diferent cos-

mologies

e during the matter-dominated era in models with, # 1 and
Qx .0, the linear evolution of the density contrast follows

6(a) = 6D, (a) (2.30)

with the linear growth factoD, (a); in excellent approximation,

1 1\
QY — Q)+ (1 + —Qm) (1 + —QA)] (2.31)

5a
D.(8) = 2 € 2 70

e the sound speed defines the Jeans length, below which pertur-
bations cannot grow, but oscillate; for dark matter consisting of
weakly interacting massive patrticles, for instance, the concept of
a sound speed makes no sense because the dark matter behaves
like an ensemble of collision-less particles; in that case, one can
show that the Jeans lengfh (3.24) is replaced by

A= {3 /Glpo (2.32)

wherev is the velocity dispersion of the particles; perturbations
in collision-less matter smaller than the Jeans length are thus pre-
vented from growing because their gravity is ifistient for keep-

ing their particles bound

¢ (hypothetic) forms of dark matter with — O are called “cold
dark matter” (CDM), they hava; — 0, hence structures can
grow on all scales; it is finite as it would be for neutrinos, the
matter is called “hot dark matter” (HDM)

2.1.4 \Velocity Perturbations

e ignoring pressure gradients, the second equation|(2.17) says

i+ Ho = 00 (2.33)

a2
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the peculiar velocity field must thus be aligned with the gradient
of the potential perturbation; we attempt solving the continuity
equation using thansatzl = u(t)%d),

5 .d
u(t)V26® = u(t) 4nGpoa’s = —a£ (2.34)

¢ for linearly growing perturbations, we have

ds _dD.(d &dinD.@ ¢

da-""da ~a dina 5f(Q) (2.35)
where dInD.(a)
. ainb.(@)  os
(@)= =2~ 0 (2.36)

is an excellent approximation; moreover, we insert

3H2 3H2%Q
4nGpg = 4nG 8 GQ = (2.37)
into (2.34) and find
ut) = 21(€) (2.38)
~ 3a2HQ '

¢ the peculiar velocity field satisfying the continuity equation can
thus be written as
_2f(Q) =

additional solutions are possible which are vorticity-fr@e,ti =
0; sinces can either grow or decay,= 0, andV - d = 0 can occur
only wheres = 0
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2.2 Statistics and Non-linear Evolution

2.2.1 Power Spectra

e we have seen beforg (2]20) that it is convenient to decompose
the density contragt into plane waves; we introduce the Fourier
transformé of the density contragtas

§(X) = f (27r)3 e® X §(K) = f Bxs(RE*  (2.40)

e the density contrast is a random field, which must be isotropic
and homogeneous in order to comply with the fundamental cos-
mological assumptions; this means that the statistical properties
of §, e.g. its mean or variance, do not change under rotations and
translations

¢ by definition, the mean of the density contrast vanishes,

(&) = <M> I (2.41)
Lo Po

the variance ob in Fourier spacedefines the power spectrum
P(K),

(0(k)o" (K)) =: (27)°P(K)dp (K - K') (2.42)
wheredp is Dirac’s deltaﬁdistribution, which ensures that modes
of different wave vectok are uncorrelated in Fourier space in

order to ensure homogeneity; the power spectrum cannot depend
on the direction ok because of isotropy

¢ the correlation function af in real space is defined as

£(y) = (6(X)5(X +)) (2.43)

where the average extends over all positigasid orientations of

y, the correlation function measures the coherence of the density
contrast between all points on the sky separated by a disfgnce
again,£ cannot depend on teh directionybecause of isotropy

e inserting the Fourier integrals fé(x) in (2.43), we find

— ﬂ dsk/ ’ —|k>? ~iK (%+Y)
&y) = < P (Zﬂ)sé(k)é(k)e >
3 3L’
— % (C;ﬂl;s <6(k)(5 (k/)> —Ik)? +|k (X+Y)
= 2 f (kZZ:)l; P(K) f ' singdge kvees?
_ g [ P(k)smky (2.44)

(21)°
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whered was the angle between vectdrsand y, obviously, the
variance ob is the correlation function at= 0,
k2dk

o? = 4r @P(k) (2.45)

¢ the variance in real space depends on the scale which we are con-
sidering; let us introduce

5(%) = f APy (RIWr(X - 1) (2.46)

i.e. the density contrast field averaged on the sRaklgth a win-
dow function W, the idea of the window function is that it ap-
proaches a finite constant well withi) and drops to zero outside
R

¢ the Fourier convolution theorem saf//g\g = {9, i.e. the Fourier
transform of a convolution is the product of the Fourier transforms
of the convolved functions; applying this t45) yieldls=
6Wg; thus, the power spectrum of the density contrast filtered on
the scaleRis P(K) = P(k)\W2(K); using [2.45), the variance of the
filtered density-contrast field is
k2dk A
2=4r | —=P(KW3(K 2.47

k=47 | GsPONER (2.47)
the variance on a scale oh8! Mpc, o, is often used for charac-
terising the amplitude of the power spectrum

2.2.2 Evolution of the Power Spectrum

 we have seen ifi (2.29) that density perturbations gr@a® during
the radiation-dominated era, anch afterwards

e as the universe expands, the Hubble radius grows, and thus the
scale of perturbations which can be in causal contact; a density
perturbation mode is said to “enter the horizon” when its wave
lengthA equals the Hubble radius

e modes entering the horizon while radiation dominates feel the ra-
diation pressure, which almost completely stops the growth of the
density perturbation until matter starts dominating and radiation
pressure quickly becomes negligible; accordingly, modes which
are small enough to enter the horizon befagg are relatively
suppressed compared to larger modes which enter the horizon af-
terwards
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e modes of comoving wave numbleenter the horizon &g if

3/2
c ag

/l:l :ae—:r = —

thus the wave number of modes entering the horizan#s

(2.48)

Ho [2Qmo Ho 2
= 270 = 21000/ = 2.49
ko c Beq c ™V, (2.49)

modes larger than this, i.e. with< kg, continue growing; modes
with k > kg stop growing when they enter the horizoregie,and
continue only aftea,q When radiation ceases to dominate

e according to[(1.72), the Hubble radius scales lkea? during
radiation domination ane a®? later, hencegn, is determined

by
_ 2 aénter (@enter < Aeq)
Aenterl =  Qenter K o { agﬁer (aenter> aeq)

k! (Genter < eq)
2.50
K2 (o> Beg) 200

= Aenter {

« while the growth of small modes is suppressed, modes larger tfg&@Vth ~ suppression  during  the
Ao continue growingx a2 during radiation domination, hence thadiation-dominated era
relative suppression of the small modes is

2 2
fsup = (aenter) = (%) (2.51)

Beq
e suppose the initial power spectrum at very early timeB;(g);
when modes enter the horizon before, the spectruf.is(k) =
agePi(K) if they enter beforegeq, and PentelK) = a2ePi(K) if
they enter afterwards; in both cas@s,.(k) = k=*P;(k) because

of (2.50)

e the total power in density fluctuations on scalegkis k*P(k);
assuming that the power entering the horizon should not depend
on time, the initial power spectrum must satisfy

K2PentelK) = k3 - k*P;(K) = const = Pi(k) « k (2.52)
this is called the Harrison-Zel'dovich-Peebles spectrum

e for k < kg the shape of the spectrum is unchanged because all
such modes grow similarly; fdc > ko, suppressiorc 3, oc k™
sets in; thus, we expect the spectrum to behave like

P(K) o { E_g Et ;kﬁz) (2.53)
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100000

this is the shape of the spectrum for cold dark matter (CDM); ‘ ‘ T —
for hot dark matter (HDM), it is cut & above the Jeans wave ™| T 1
numberk; corresponding to the finite velocity dispersion of the
hot particles £

100

P(K)

10 |

1k

2.2.3 The Zel'dovich Approximation

01 . . . .
0.0001 0.001 0.01 0.1 1 10
K [2/(cHo)]

e once the density contragtapproaches unity, the linear descriplinear and non-linear CDM power
tion of its evolution will break down; a kinematical treatment foBpectra
following the evolution further into the non-linear regime was in-
vented by Zel'dovich

e it starts by decomposing the cosmic fluid into particles and writ-
ing their (physical) trajectories as

F(t) = a()x + b(t) F(9) (2.54)

whereXis the particle’s position at some very early time; the first
term describes the universal expansion, the second the peculiar
motion; we assume that thlikksplacement field is irrotational,

f(%) = V(%) (2.55)
with some scalar potentigi(X)

e since trajectories cannot get lost, the evolution of physical density
is given by the Jacobian determinant of the mappirg r,

o*f

alt)oy + bty 7 o
J

0 = podet™ [ﬂ] = ppdet™ (2.56)

6Xj

e let (11, A2, A3) be the eigenvalues of tlieformation tensor;;f:=
8%f |9%0x%;, then the density is

Pi
= 2.57
P = @+ bl)(@+ biy)(a+ bls) (2.57)
wherep; is the mean density at the initial time; the mean density
at later times igg = pia 3, i.e. the density contrast is

1
0 = (1+ b/ay)(1+ b/aty)(1 + b/ais) -1

> o

b b
~ —a(/ll+/12+/13) = —aV' f (258)

and the velocity perturbation

d= "= HP:(*—’—@) f”:H(M—g) f (2.59)

a a a? da

obviously satisfies the continuity equatiﬁn d=-6
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¢ from the growth of the linear density perturbations (2.30), we can
immediately infer that

b

- =D.@. So=-V-f (2.60)
thus &b 4D
% = D+ + aa = D+[1 + f(Q)] (261)
and R
d=HD,(@f(Q)f (2.62)
i.e. the displacement fieltlis directly proportional to the velocity
perturbationd

e combining results, the particle trajectories according to the
Zel'dovich approximation are

X +

r=a|x+D.(3)f]=a

v f(Q)} (2.63)

e an important result can be derived from the Zel'dovich approxi-
mation assuming that the density contrast, and thus the perturba-
tion of the gravitational potential, are Gaussian random fields; the
theory of multivariate Gaussians allows to derive the probability
distribution p(14, 25, 43) for the eigenvalues of the deformation
tensorF;j; the result is

153
871 V506

3
X eXp{_ZT-Z [2(/15 + A5+ 3) = (ldz + Aads + /12/13)]}

P(A1, A2, A3) =

(A3 = A2)(A3 — A1)(12 — 1{R.64)

with o2 from (2.45); this result shows that the probability
for two eigenvalues of; to be equal is zero, implying that
isotropic collapse is excluded; forming structures will therefore
be anisotropic, progressively flattening as the collapse proceeds;
the resulting flattened mass distributions were called “pancakes”
by Zel'dovich

2.2.4 Nonlinear Evolution

¢ when the density contrast reaches unity, linear perturbation theory
breaks down; the Zel'dovich approximation breaks down when
trajectories cross because they just pass each other, ignoring their
gravitational interaction
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¢ for a correct treatment, one has to resort to numerical simulations;
they decompose the matter distribution into particles whose ini-
tial velocities are typically slightly perturbed according to some
assumed power spectrum; the particles are then transported to
redshifts high enough for linear evolution to hold on all scales
considered; for later evolution, the equations of motion for all
particles are solved

¢ ideally, particles move under the influence of the gravity from
other particles, but direct summation of all the gravitational forc
of N — 1 particles onN particles becomes prohibitively time-
consuming; several approximation schemes are therefore b
employed
¢ the particle-mesh (PM) algorithm computes the gravitational p -

tential of the particle distribution on a grid (mesh) by solvin
Poisson’s equation in Fourier space, making use of fast-Fou
techniques; the gravitational forces are then given by the gr
ents of the Potential at the particle positions; this technique h
spatial resolution limited by the size of the mesh cells

ple: while modes of dierent wave lengths evolve independentlyseo:

during linear evolution, mode coupling in the non-linear evolution

moves power from large to small scales as structures collapse; Hr———

effect on the power spectrum is that the amplitude on small scategco cooion 1

is increased at the expense of intermediate scales; large scatedinear structure evolution, sim-

continue to evolve linearly and independently ulated in diferent cosmologies

) L. . ) o ) _ (Virgo collaboration)
e even if the original density perturbation fieigs Gaussian, it must

develop non-Gaussianities during non-linear evolution; this is ev-
ident becausé > —1 by definition, but can become arbitrarily
large; an originally Gaussian distribution &fthus becomes in-
creasingly skewed as it develops a tail towards infidite

e the particle-particle particle-mesh3(®) algorithm improves the
PM technique by adding corrections for nearby particles which
are determined by direct summation

e tree codes bundle distant particles into groups whose gravitional
force on a particle is approximated as if they were point masses,
or masses whose spatial distribution has a few low-order multi-"
poles only, e.g. the monopole corresponding to a point mass, plus
a dipole corresponding to a linear deformation, and so on; the

particle tree is updated as the evolution proceeds

e non-linear evolution causes density-perturbation modes to cou-

e typical behaviour seen in numerical simulations shows the for-
mation of “pancakes” and filaments as predicted by the theory of
Gaussian random fields; galaxy clusters develop where filaments
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intersect; filaments fragment into individual lumps which gradu-
ally stream towards the higher-density regions; giant voids form
as matter accumulates in the walls of the cosmic network
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2.3 Spherical Collapse

2.3.1 Collapse of a Homogeneous Overdense Sphere

¢ the distribution of the dark matter in the universe can be consid-
ered as composed of individual so-called halos, approximately
spherical overdense clouds of dark matter which can reach highly
non-linear densities in their centres

e an approximate understanding of the parameters of such halos and
their relation to the dark-matter density contrast can be obtained
by studying the dynamics of a spherical, homogeneous overden-
sity, leading to the so-called spherical collapse model

e suppose this spherical overdensity is embedded into the otherwise
homogeneous, expanding background universe; as itis overdense,
it will reach a maximum radius and subsequently contract and
collapse; we define parameters

e a yi= R
. ata ’ . Rta
i.e. X is the scale factoa in units of the scale facta;, when the

halo reaches its turn-around radius, gns the radius of the halo
Rin units of R

(2.65)

e we restrict ourselves to the case of an Einstein-de Sitter model,
for which

H = g = Hoa 372 (2.66)

for simplifying the notation, we introduce the scaled time=
Hit, whereH,, = Hoa”? is the Hubble parameter at the turn-
around time; using these units, Friedmann’s equation is trans-

formed to

/

dx 1 a H 12
=—=——=—X= 2.67
dr Heaa Hi ( )
¢ the Newtonian equation of motion for the radius (i.e. for a test
particle of arbitrary mass at the radius of the halo) is

. GM A G
R= =2 —gptaaea@ (2.68)

introducing v instead oft, and expressing the density at turn-
around by the critical density and the overdengitgf the halo
with respect to the background at turn-around,

3H2
Pta = 871G

’ (2.69)

we find

4

V=57 (2.70)
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e the obvious boundary conditions for solvirig (4.70) are

Ylk1=0, Yuo=0 (2.71)

meaning that the halo starts with zero radiua at0 and reaches
amaximum af = ag,

e equations[(2.67) and (2]70) imply

_ 242 -
T_3x3, Y =++/¢ y 1 (2.72)

where the first boundary condition (2]71) was used,; the plus sign
applies before, the minus sign after turn-around; integrating be-
fore turn-around, and using the second boundary condjtion|(2.71),

we find
1 T
= — | = i —_ —_ —\2 —_
VZlz arcsin(3— 1) — \Jy—-y2 + 1 (2.73)
e turn-around means= 1 =y andr = 2/3, which requires
37\’
(= (7) (2.74)

from symmetry, collapse happens at twice the time required for
turn-around, i.e. at = 4/3, at which timex = x, = 4'/3

2.3.2 Collapse Parameters

e at early times, we can exparjd (2.73) to low ordey and find

8 3y

~ 2 \BI2 =
T 9”y3 [1+ 10] (2.75)
the overdensity inside the halo relative to the background is

3
X

A=|- 2.76
5] 276

because the background density scalesiewhile the density

within the halo scales likg3; insertingr from (2.72) into[(2.75)
and raising to the power/3 yields

A=1+ %y (2.77)

to lowest order iny; the linear densitycontrastinside the halo
when it has the radiugis therefore
3y

=A-1==2 2.7
o = (2.78)
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¢ linearly extrapolating this tax = 1 gives the linear density con-
trast expected inside the halo at turn-around,

. O 3y
Qa5 0 2.79
Jta 3 = Bx (2.79)
now, 2/3 2/3
L_3) (%) L (2.80)
X 2 4 y

where we have usedl (2]75) to lowest ordetyjninserting this

result into [(2.8D) yields
3(3r\”
b= ¢ (?) ~ 1.06 (2.81)

e when the halo collapses & = 4'/° = 2?3, thelinear density
contrast inside the halo would be

3 (37\%3

8e = 223610 = = (—”) ~ 1.69 (2.82) =

150 //
this means that a halo can be considered collapsed when its den: ./
sity contrast expected from linear theory has reached the value of/ /
dc; this value depends very little on the cosmological parameters‘f“j/ pcom —— |

so it can be quite generally used although it was derived for the | e -

Einstein-de Sitter model

. - . virial overdensity in diferent cos-
e when the halo reaches virial equilibrium, the potential energy mologies as a function of the halo

the halo is twice that at turn-around, so virialisation is expect%g”alose redshift
when the radius drops tp = 1/2 after turn-around; assuming
virialisation happens at collapse tirmg its overdensity is

180

3

22/3\3 ,
according to[(2.76) and (2.]74); a halo in virial equilibrium is thus
expected to have a mean density178 times higher than the
background

¢ these two parameters derived from the spherical collapse model,
oc andA,, are very widely used in cosmology for characterising
dark-matter halos and their formation

e extending these calculations into more general cosmological
models is surprisingly dlicult and requires numerical solutions
of the underlying diterential equations; approximations to the so-
lutions forQ, < 1 are

3(371)2/3 { (1.0+ 0.0406l0g, Q) (Qno = 0)
2

be=3 (1.0 +0.012310g,Qm) (a0 =1 — Qo)
(2.84)
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1+ 0.1210Q — 1) + Q28758 (Q,0 = 0)

and
Ay = O 0.4403
1+0.7076Qn — 1) + Q) (Qr0=1-Qmo)
(2.85)

whereQ,, is the matter density parameter at the redshift of halo
collapse

2.3.3 The Press-Schechter Mass Function

e an important piece of information is the distribution of halos over
mass, the so-called mass function, which gives the number den-
sity of halos at redshifz within the mass range betwed&h and
M + dM

e a characteristic length scalM) can be assigned to a halo of
massM, which is defined as the radius of a homogeneous sphere
filled with the mean cosmic matter density having milss

(2.86)

1/3
%TRSpchm: M = R(M):( M )

4o Qm
whereQ,, andp¢ have to be evaluated at the redshift required

e aiming at halos of magl, we consider the density contrast field
filtered on the scalR(M); we therefore usé as defined in (2.46),
i.e. the density contrast convolved with a window functhi
which has a characteristic scdte= R(M)

e it will be convenient to scale halo masses with the so-called non-
linear mass, which is the mabs for whose characteristic length
scaleR(M,) =: R, the variance[(2.47) of the density contrast be-
comess?,

~ kedk
o (27)°

0% =4n P(K)W3 (k) = 62 (2.87)

o for a Gaussian random field, the probability of finding at a given
point X in space a filtered density contr&$k) is

— 1 B 52(>z)]
p(s,a) = \/mexp[ 202(a) (2.88)

where we have explicitly noted that the varianceavill depend
on time or equivalently on the scale factthrough the linear
growth factorog(a) = orD. ()
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e Press & Schechter suggested that the probability of finding the
filtered density contrast at or above the linear density contrast for
spherical collapsej > ¢, is equal to the fraction of the cosmic
volume filled with halos of mash,

R 1 1)
F(M,a :f dsp(s, a) = —erfc(—c) 2.89
(M.2)= | dopo.a) = gerfe = ) (289
where erfck) is the complementary error function; obviously, this
equation implies that the fraction of cosmic volume filled with
halos of fixed mas#/ is a highly sensitive function of the scale
factora

e the distribution of halos over masskkis simplydF(M)/0M, so
we have to relater to M, which is accomplished by the charac-

teristic radiusR(M),
0 dor(@) 0 dor 0
_ = = 2.90
oM dM dogr(@) dM dog (2.90)

where we have inserted the varianeg on the scaleR at the
present epoch; using

d 3 2 2
Sere®) = —ﬁe (2.91)
we find
2
OF(M) 1 6 dinog (_ 82 ) 2.5
M VarorD.(a) dM 202D2(a)

1

¢ the normalisation of the mass function is wrong, however; it is °';

0.01 ¢

easy to see that % ol
f OFM) 4 - 1 (2.93)
0

0.0001 ¢

1e-05

oM 2
the reason for this problem is quite subtle, as we shall see later;;
for now, we will arbitrarily multiply the mass function by a factor  *"| | | \

a faCtor Of tWO le+12 1e+13 e 1e+14 1e+15

. . . . ) Press-Schechter mass function for
e this fraction of the cosmic volume filled with halos of masseﬂs'e ACDM model at four diferent

within [M, M + dM] is converted to a (comoving) number denSit¥edShiftS
by dividing with the mean volum&1/p, occupied byM

_ 2 poéc dan'R 65 dMm
N(M. a)dM = \/;O-RD+(a) dMm EXp(_zagoz(a) ™M

(2.94)

e the Press-Schechter mass functipn (2.94) has turned out to de-
scribe the mass distribution of dark-matter haloes in cosmologi-
cal simulations remarkably well; only recently have modifications
been applied in order to improve its agreement with large, high-
resolution simulations, or to take into account that halo collapse
is not expected to proceed spherically, but elliptically

dN/dM [10"*Mg,,Mp

1e-06
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2.4 Halo Formation as a Random Walk

2.4.1 Correct Normalisation of the Press-Schechter
Mass Function

¢ the normalisation problem, however, is embarassing and needs
to be resolved; the solution was given with an elegant argum
interpreting the statistics of halo formation in terms of a rando
walk

e suppose the density-contrast fiélg given; a large sphere is cen
tred on some poink and its radius gradually shrunk; for eac
radiusR of the sphere, the density contrastiveraged within
Ris measured and monitored as a functiorRpby choosing a
window functionWk in the definition [(2.4p) ob whose Fourier
transform has a sharp cutfan k space¢ will undergo a random
walk because decreasiRgorresponds to adding shellskdispace
which are independent of the modes which are already includ

= . ) . . Progressive smoothing of the den-
¢ §(X) is thus following a random trajectory; a halo is expected ts(?tygzield g

be formed af if 5(X) reaches. for some radius; if 6(X) < o
for some radius, it may well exceed for a smaller radius; or, if
6(X) > 6. for some radius, it may well drop belasy for a smaller
radius

e for determining halo numbers correctly, it is thus necessary to
count all points in space which are part of haloes of any mass;
Ris shrunk around a poir®, that point must be counted as bein¢ ==~
part of a halo if there is a radil®for which 6(X) > 6. Ng

e in the terminology of the random walk, we need to introduce &
absorbing barrierat 6. such that pointx with trajectoriess(X)
vs. R which hit the barrier are removed from counting them ¢ -_
not being parts of haloes _

. : . Random walk with an absorbing
e a trajectory meeting the boundary has equal probability for MOY: vier

ing above or below; for anfporbiddentrajectory continuing above
the boundary, there is allowedmirror trajectory continuing be-
low it, and conversely; for any trajectory reaching a p@inrt 6.
exclusively alongllowedtrajectories, there is a path reaching its
mirror point on the line = ¢, exclusively alondorbiddentrajec-
tories, and conversely; thus, the probability for reaching a point
0 < ¢ alongallowed trajectories exclusively below the barrier
is the probability for reaching it alongny trajectory, minus the
probability for reaching its mirror poini. + (6c — 6) = 26 —
alongforbiddentrajectories,

_ 2 82
Ps(6)ds = \/510_ [exp(—%)—exp(—%)} (2.95)
R R R
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whereo is the variance of on the scal®, as before

e (2.95) is the probability distribution for the averaged density con-
trast to fall within p, 6 + dé] andnotto exceed. when averaged
on anyscale; the probability fos to exceeds. on some scale is

thus
1-Pg=1- fw dsps(8) = erfc( O ) (2.96)
Oc \/QO'R
without the factor 12 in (2.89); the rest of the derivation of the,
Press-Schechter mass function proceeds as before <

2.4.2 Extended Press-Schechter Theory

e considering the random walk of the density contrast field wh¢
averaged over increasing or decreasing scales allows the static
of haloes to be greatly extended; in order to simplify notation, v
abbreviates := o4

Trajectory of a halo in theS-w
plane; increasing means decreas-
' ing mass, and decreases with time

o first, we note that we can either consider the barrier heéigtatbe
constant whileog is increasing with time, oog to be constant
while 6. is decreasing with time, because only the raligor
enters the relevant expressions; thus, the barrier can be consid
moving towards zero as time progresses, S

w = 6C
" D.(a)

(2.97)

reflecting the fact that halo collapse becomes easier as struc
formation proceeds; sin@g(a) decreases monotonically with in-
creasing time, it can uniquely be used instead of time; the e’
lution of a halo can now be expressed as a random watk as :
time proceeds, ap decreases \V

2

* second, we note that Trajectories of low-mass haloes at

AP g, early time, forming a massive halo

_6_Sds = 35 _md6_ps(6_) at a later time
w

= ps(S,w)dS = ———e“/5ds  (2.98)
> V2rS?

is the probability fom to hit the barriew, for the first time when
the variance is increased froto S + dS; it represents the frac-
tion of mass in haloes of a mas4 corresponding to the scale
R

e consider now a trajectory passing through the batiefor the
first time atS,, continuing to eventually pass through > w»
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at someS; > S,; it represents a halo of ma#4; corresponding
to S; which, at a later time corresponding &®, reaches mass
M, > M; corresponding t&,; the conditional probability for the
halo to pass within$,, S; + dS,] at w, starting fromS, atws is,

according to[(2.98),
B w1 — W2 _M
Ps.(S1, w1IS2, w)dS, = V2r(S; - S,)32 eXp[ 2(S1 - Sz)]ds1
(2.99)

because the probability (2]98) only needs to be transformed shift-
ing the origin of trajectories from§, w) = (0,0) to S,w) =
(S2, w?)

o from (2.99) and Bayes’ theorem on conditional probabilities, we
can straightforwardly derive the probability for a halo which for
the first time reaches; atS; to reachw, for the first time atS,:

Ps, (S2, w2lS1, w1)dS; Ps(S1, w1)dS;

Ps, (S1, w1|S2, w2)dS; ps(S2, w2)dS;

= Ps, (S2, w2|S1, w1)dS,

Ps, (S1, w1lS2, w2)dS; Ps(Sz, w2)dS;
Ps(S1, w1)dS;
_ 1 Si 32 wr(w1 — wy)
 Vr [52(51 - 52)] w1
(w2S1 — w182)2
* exp[ 25:5,(S1 - S2)

this provides the conditional probability for a halo of masgsto
have merged to form a halo of mass betwé&snandM, + dM,

] ds, (2.100)

¢ the expected transition rate frof to S, within the timest; and
t, corresponding ta); andw, is determined by (2.100) taking the
limit W = W1 =. W,

d? Ps,
45,40 (S1 = Solw)dSzdw (2.101)
1 S 3/2 25, _ S
T Vx [sz(sll— Sz)] ex'“[‘—w (251182 2)]0'520'“

this gives the merger rate, i.e. the probability that, in the time
interval corresponding tow a halo of mas$1; will merge with
another halo of madsl, — M;

¢ we finally need to substitute the masdds and M, for S; and
S,, and the time fotw; we wish to know the probability for a halo
of massM to accrete another halo of maa$A within the time
interval d at timet; the transformation is

®pu dS, |dw| dps,

dinamd M = Mol = 5o 14| 98,00

(2.102)
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e by the definition[(2.97), the derivative afwith respect td is

do| ¢ 6c dinD,(a)
at ‘ @ @2 HE m " dna

whereH is the Hubble parameter at scale facior

(2.103)

e sinceAM = M, — My, andS was introduced foaﬁ, we have

dinam ~ AM7aw, (2.104)
o with expressions[ (2.103) and (2.104), the merger probability
(2.102) becomes
o2 py \F Hé. dInD, _ dlnog
dnaMd = VrowD. dina “M—am M+ AM)
o2\ 2
(-3
ORr
52 oﬁz) Bl
expl-———=|1- — 2.105
x Xp[ 20@03( o2 (2.105)

WhereO'Rz = O'R(Mz) = O'R(M + AM)

¢ in much the same way, the random-walk interpretation of ha
growth allows deducing halo-survival times and other interestii
guantities related to halo growth

A “"merger tree”, i.e. a graphical
representation of the accretion his-
2.4.3 Halo Density Profiles tory of a halo

¢ generally, a self-gravitating system of particles does not have an
equilibrium state; the virial theorem demands that its total en-
ergy is minus half its potential energy, i.e. any inevitable energy
loss makes the potential energy become more negative, i.e. the
halo more tightly bound, which increases its energy loss; any halo
density profile must therefore reflect a potentially long-lived, but
transient state

e knowing global halo properties like their mass, their distribution
in mass and redshift, and their growth over time, their internal
density profiles are an important characteristic; a simple analytic
model is the isothermal sphere, which is a spherically-symmetric,
self-gravitating system of non-interacting particles whose kinetic
energy is characterised by a constant temperdture

¢ the equations describing the isothermal sphere are thus the Euler
equation of hydrostatic equilibrium,
dp _ GM(r)

ar r2

(2.106)
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and the equation of state for the ideal gas
P
= ZKkT 2.107
p=— ( )
wheremis the mass of the particles constituting the sphere

e inserting [(2.10]) intd (2.106) yields
kT dInp G ("dn 5
- F__ = —o(rr’edr’ 2.108
m dr reJ, 3 pr)rar ( )
where we have expressed the mass as an integral over the density;
differentiation with respect toyields the second-orderftren-
tial equation forpo,

d (rzdlnp) __4nGm

e ) ERee 5% (2.109)

e one solution of[(2.109) is singular,
2
__ 2. KT

whereo is the (radially constant) velocity dispersion of the parti-
cles; the other solution is non-singular and can be approximated
by the non-singular expression

(2.110)

-1

2
pa(t) = po |1+ (rr—o) ] (2.111)

wherepg and the core radiug are constants

¢ both solutions have the advantage that they reproduce the flat ro-
tation curves observed in spiral galaxies; the rotational velocity
Vit Of @ particle orbiting at radiusis determined by

GM
Vrzot = T (2112) o
which is constant at > rq for both density profiles of the isother- ¢ .|

mal sphere; however, the temperature within a stable “gas” sphére e
cannot be constant because particles would evaporate from:it;, |~

. : ) ) § BN
besides, the mass of the isothermal sphere diverges linearly as, | g contind N
Ir — oo; the isothermal profile is thus at best an approximation for -
the inner parts of haloes

0.1 1 10

. . . . Singular and non-singular isother-
e numerical simulations of halo formation in the cold dark mattq;rr]al and NEW density and mass

model consistently show density profiles like

. Ps . L
p(r) = —x(1+ 2 X = . (2.113)

profiles

which have a characteristic scale radiylbeyond which they fall
off o« r=3, and within which the density profile flattens consider-
ably
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e itis easy to see that the mass of such haloes within radais

X oxdx

M(r) = dnpgts | —vu
(r) ”Psrs 0 (1+X,)2

X
= 4-7I'psré3 |n(1 + X) - m

(2.114)
it risesec x? for small x and diverges logarithmically fox —
oo; the divergence is not a fundamental problem because the halo
profile must become invalid at the latest wher@lrops to the
cosmic background density

e the virial radiusr,;, of a halo is often defined as the raditgy
enclosing a mean overdensity of 200 times thigical cosmic
density, but modifications of that definition are frequent; the
factor 200 is a rough approximation to the density contrast of
187> ~ 178 expected at virialisation in the spherical collapse
model; this implies

4 .\ 3H2
Mooo| =13 =200— 2.115
200( 3 200) 87TG ( )
where Mg is often identified with the total halo madd; we
obtain 3
GM
I'200 = (—10042) (2.116)

e the ratioc := ryq/rs is calledconcentrationof the halo; it turns
out to be a function of halo mass and redshift and to depend on
cosmological parameters; generaltyjs the higher the earlier
haloes form; given the halo mas4, the (virial) radius is given
by (2.116), the concentration parameter gies r,qo/C, and the
scale densitys is then determined from (2.1114) by the require-
ment thatM(roo) = M; thus, the profile[(2.113) is essentially
determined by a single parameter, e.g. its mass

e itis currently unclear how the density profile arises; also, its slope
near the core is being discussed
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3.1 Structures in the Cosmic Microwave
Background

3.1.1 Simplified Theory of CMB Temperature Fluctu-
ations

The Dipole

e we saw earlier that the universe is filled with a radiation back-
ground which has an ideal Planck spectrum with a temperature
of 2.726 K; this cosmic microwave background is spectacularly
isotropic, i.e. its temperature is almost the same everywhere on
the sky

¢ the Earth is not at rest with respect to the microwave background,;
its motion around the Sun, combined with the Sun’s motion
around the centre of the Milky Way, combined with the Milky
Way’s motion within the Local Group, combined with the motion
of the Local Group towards the Virgo cluster, causesféecéve
net motion with velocity with respect to the CMB

e as can be shown by a Lorentz transformation from the CMB rest
frame to the rest frame of the Earth, this motion causes a dipolar
pattern in the CMB temperature,

T(6) = To(1+ \—écose)+0(\§) (3.1)

where T, is the mean CMB temperature afds the angle be-

tween the line-of-sight and the direction of motion; the CMB ten
perature is slightly enhanced towards the direction of motion, a
decreased in its antidirection, corresponding to the Doppler sh

_ . _ . CMB dipole as measured by COBE
¢ the COBE satellite determined the velocity of the Earth with re-

spect to the CMB to be

v=(371+ 1) kms? (3.2)
pointing towards the Galactic coordinates
| =(2643+0.2)°, b=(481+0.1) (3.3)

the amplitude of the dipole is thus of order 3 &

Expectations from Structure Growth

e structures exist in the universe with a density contrast well above
unity which, at the time when the CMB decoupled, must have had
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a density contrast of
d(a=1)
D+(aCMB)

if the CMB energy densityl were of equal magnitude, tempera-

ture fluctuations in the CMB should be of orderi®, because
ou oT
T > — =4— .
U oc = " T (3.5)

i.e. of the same order as the CMB dipole

d(acwe) = X acyg ~ 10° (3.4)

e after the detection of the CMB in 1965, temperature fluctuations
were sought at this level, but not found; it was realised later that
the problem can be solved if dark matter does not electromagneti-
cally interact, because then structures can form in the dark matter
much before decoupling without leaving a direct imprint on the
CMB temperature fluctuations; this is the strongest argument that
dark matter should not interact electromagnetically, and probably
only through the weak interaction

e based on the assumption of weakly interacting dark matter, the
expected temperature fluctuations in the CMB are expected to be
of ordersT/T ~ 107, i.e. in the regime of micro-Kelvins; they
were finally detected at this level by Cobe in 1992

Perturbation Equations and the Sachs-Wolfe Hect

¢ studying the origin of the CMB fluctuations in detail is a com-
plicated process; one must begin with the collisional Boltzmann
equation for the photons and account for relativistiiees on
the photon propagation like curvature and time delay; however,
the simplified treatment shown here illustrates the main physical
effects

¢ the number density, energy density and pressure of the CMB pho-
tons are u
N T3, uoT4, p::—),ocT4 (3.6)

introducing the relative temperature fluctuati@n := 6T /T,
whereT, is the mean CMB temperature, we have
on su sp

— =30, —=40=— (3.7)
No Uo Po

e ignoring expansion terms and setting= 1, the continuity and
Euler equations for the slightly perturbed photon gas read

)
2 p

+ V5O (3.8)
Uo + Po

henV-v=0, V=—
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wherev s the streaming velocity of the perturbations; they follow
from the divergence of the relativistic energy-momentum tensor

e using [3.T) andiy + po = 4/3Uy = 4py, these equations can be
written in terms of the temperature fluctuation
- 1 - : =3 =3
®+§V-\7:O, V=-c*VO + V6d (3.9)

¢ inserting the divergence of the Euler equation into the time deriva-
tive of the continuity equation yields

- CZ = 1 =
- §v2® + éVZ(S(D =0 (3.10)
transforming to Fourier space, this becomes
5 Czkz " k2 R

e we now need to add a relativisti¢tect by hand which would
appear in the equations if we derived them fully relativistically;
perturbing the metric by the potenti&b causes the time delay

ot 60
—=— 3.12
i (3.12)
which causes the photons to be redshifted such that
oT oo
=@ =— A
T C] = (3.13)

fluctuations in the potential thus produce temperature fluctua-
tions, and we have to add a source term

5D
to (3.11), which then reads
W P L
®+C2—®——5c1>—6—:0 (3.15)

3 3 c?

e combining temperature and potential fluctuations to form an ef-
fective temperature fluctuatio® — sd/c? =: 6, we obtain the
oscillator equation foé,

s e,

obviously, the solutions are trigonometric functionsg it 0 at
t = 0, the solution at the time of recombination is

(ted = 4(0) cos[%tm] (3.17)

¢/ V3t =: I is called the sound horizon
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e the time delay[(3.12) causes another temperature shift on the
photons escaping from the last-scattering surface; because of the
Hubble expansion, the time delay causes a fluctuation in the scale
factor at which the photons escape,

oT oa aot

= =_-"=_"=

To a a
becaus€él « a!; in the matter-dominated era in the early uni-
versea o t¥3, thus

a 2 260

(3.18)

-z = A
a 3t o 3¢ (3.19)
such that the temperature fluctuati®rbecomes
. 6D 16D
O=0+—==-— 3.20
" ¢ 3¢ ( )

this is the Sachs-Wolfefiect

Effects of Baryons

e baryons couple to the photons through Compton scattering; since
the mean photon energy is of ordeB@V at the time of CMB
decoupling, which is very small compared to the rest-mass en-
ergy of the electrons in the cosmic plasma, the limit of Thomson
scattering is sfiicient

e in presence of baryons, Euler's equation must be corrected by
multiplying the velocity and the potential gradient with the factor
(1 + R), whereRis the ratio between the momentum densities of
baryons and photons,

R= peC° + P 3Q80

~ 3.21
Uo + Po 4 Qo ( )

e replacingV — (1+ RV andVed — 1+ R)%CD transformsS)

to
RO A - K. R 60
RO 5K, RO s

o) U= 7
TR0 R 3T @R T @

thus the sound speed/ V3 is reduced by the baryons to
c/V3(1+R)

e equation|(3.22) describes sound waves in the temperature fluctu-
ations which are driven by the gravitational potential fluctuation
6® and its time derivatives, and damped by the expansion of the
universe; on scales larger than the sound horizon,

(3.22)

2n Clrec
AR (3.23)

these acoustic oscillations are suppressed
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Damping

o further damping occurs due to imperfect coupling between the
photons and the baryons; the photons exert a random walk and
can thus dtuse across the length scale

Ao = VNA (3.24)
where is the mean free path of the photons

1
A=
neO-T

(3.25)

with the Thomson cross sectiort, and the number of collisions
per unit time is

dN = norcdt (3.26)
thus, t
rec Cdt
A2 = f 3.27
b o NeoT ( )

e structures smaller than thefidision length are damped, hence
damping sets in for wave numbers

2n
k>kp=— (3.28)
Ap
Quadrupole
Polarisation Anisotropy
N &
e Thomson scattering is anisotropic; itsfdrential cross section is 4
Thomson
do 3oy 2 > Scattering
—=—1€" 3.29 A
dQ 8r é| ( ) l\ B
o
where& and € are the unit vectors in the directions of the in €
coming and outgoing electric fields, respectively; evidently, tf
scattered electric field with a field vector orthogonal to that of tf Finf?ar
incoming field has zero intensity Polarization
Origin of the CMB polarisation

e if the infalling radiation is isotropic, the scattered radiation is un-
polarised; if, however, the infalling radiation has a quadrupolar
intensity anisotropy, the scattered radiation is polarised because
it has diferent intensities in its two orthogonal polarisation direc-
tions

¢ since the electrons within the last-scattering shell are irradiated by
anisotropic light, the CMB is expected to be linearly polarised to
some degree; the intensity of the polarised light should be of order
10% that of the unpolarised light, i.e. it should have an amplitude
of order 10°K
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3.1.2 CMB Power Spectra and Cosmological Parame-
ters

¢ three défects were identified before which determine temperature
fluctuations in the CMB: the Sachs-Wolf&ect on large scales,
acoustic oscillations on scales smaller than the sound horizon, and
damping on small scales due to photofilion

¢ the visible temperature fluctuations on the sky are determined by
the projection on the sky of photon density fluctuations in three-
dimensional space; due to that procedure, fluctuations of a single
wave numbek are smeared out over a range of angular scales

e Fourier decomposition is not defined on the sphere; instead, one
has to project the temperature fluctuations onto another set ~f :
basis functions which are orthonormal on the sky; these are = | *" ="
spherical harmonic functioriﬁg‘(ﬁ); if T(f) is the temperature at , |

positiond on the sky, it can be expanded into a series l

TO) = Z a{mY;n(é)) (3.30) Socs ‘e“r/
m

" [ TPTUINPPI PR T TPPPEPIN
1000 100 10

with the (generally complex) cdigcientsa,n, angulor scole in are mit

Appearance of the three most im-
portant CMB dtects in the power
spectrum

e because of the orthonormality of the spherical harmonics,

21 T
[ do [ sinecon 0.0 Y 0.0) = budmm. (3:3D)
0 0

the expansion cdgcients are given by

21 T
aym = f dg f singdaT (6, 6)Y™(6, ¢) (3.32)
0 0

¢ the power spectrum of the temperature map is defined by i et 5

Launch of the Boomerang experi-

C = (laml®) (333) | ent

which depends only on the multipole orddsecause of statistical
isotropy; conventionally, the quantity/ + 1)C, is shown instead

of C, because it reflects the total power contained in the multipole
{

¢ the shape of(¢ + 1)C, is characteristic; as expected, the Sachs-
Wolfe effect dominates on large scales, i.e. sndakcoustic os-
cillations set in on scales smaller than the projection of the sound
horizon on the sky, and very small scales are damped
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¢ the many pronounced features of the CMB power spectrum, and
their tight relation to the cosmological parameters, allow cosmo-
logical parameters to be determined very accurately ifthean
be measured with high precision; this has caused substantial ef-
forts to be put into the CMB measurements, with remarkable st ’
cess v
1

e after relatively noisy measurements of the CMB on small fra
tions of the sky with balloon-borne experiments like Boomerar
or Maxima, or ground-based experiments like Dasi, VSA (
CBI, the Nasa satellite “Wilkinson Microwave Anisotropy Probe
(WMAP) has obtained accurate full-sky maps of the microwa
sky with an angular resolution of 15 at frequencies between 23
and 94 GHz, and is continuing to measure; it has so far produc
a CMB power spectrum which covers the first two acoustic pea
with high accuracy

¢ although the WMAP results alone fer from degeneracies be-
tween diferent cosmological parameters, their combination wi
results from other cosmological experiments (in particular me
surements of supernovae of type la, galaxy correlation functiof
and structures in the distribution of neutral hydrogen) has pt
duced the most accurate set of cosmological parameters to da

Full-sky CMB map produced by the

CMB temperature Tems | 2275+ 0.002K WMAP satellite
total density Qiot 1.02+ 0.02

matter density Qm 0.27+ 0.04

baryon density Qp 0.044+ 0.004

Hubble constant h 0.71+593 " R
baryon-to-photon ratio n 6.1733 x 10710 il
fluctuation amplitude s 0.84+ 0.04 ik

scalar spectral index Ns 0.93+0.03 E ol
decoupling redshift Zdec 1089+ 1 il

age of the Universe to 137+ 0.2Gyr ol

age at decoupling tyec 379 kyr )
reionisation redshift (95% c.l.) z 2073° ]
reionisation optical depth T 0.17+0.04

H i
most of these parameters should remain as further CMB dS T \
come in and are being analysed, but the error bars should conti  .: *m mw
to shrink; the most insecure numbers in this table are probably- * L
redshift of reionisation and optical depth - e

. L . CMB spectrum derived from the
e the power spectrum of the polarised radiation shows similafy1ap results

pronounced features as that of the temperature; also, the struc-
tures in the polarisation map are expected to be correlated with
those in the temperature map, i.e. there is a non-vanishing cross-
power spectrum between temperature and polarisation
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¢ polarisation was first detected in the CMB by the Dasi experim
located at the Amundsen-Scott station at the South Pole; its
plitude, power spectrum and and cross-power spectrum with
temperature agree very well with expectations from theory; t
WMAP satellite has measured the cross-power spectrum betw:
temperature and polarisation only, which agrees very well wi
the theoretical expectations derived from the temperature po
spectrum

The DASI interferometer at the
Amundsen-Scott station at the
%‘)’uth Pole

e the European satellittlanck will obtain full-sky maps of the
CMB temperature and polarisation with an angular resolution
> 5 at frequencies between 30 and 857 GHz, further substanti
improving upon the results from WMAP

3.1.3 Foregrounds

e originating at redshifz ~ 1100, the CMB shines through the
entire visible universe on its way to us; it is thus hidden behind
sequence of foreground layers

¢ the most important ones of those are caused by the microwave
emission from our own Galaxy; warm dust in the plane of" :
the Milky Way with a temperature near 20K produces emideémperature and polarsation map
sion mainly above the CMB peak frequency; electrons gyrdtioduced by DASI
ing in the Galactic magnetic field emit synchrotron radiation [\
which has a power law falling from radio frequencies into the R
microwave regime; thermal free-free emissitmefmsstrahlunp
from ionised hydrogen partially falls into the microwave regime;
further sources include, e.g. the line emission from molecules like
CO

so-called Sunyaev-Zel'dovicttect in the microwave regime; the
characteristic spectral behaviour of théfieet will enable future
CMB missions to detect of order 4@alaxy clusters out to high
redshifts

e other types of point source appearing in the microwave backle European Planck satellite
ground include high-redshift galaxies, and planets, asteroids, &ffmned for launch in 2007
possibly comets in the Solar System; also, dust in the plane of the
Solar System emits the so-called Zodiacal light, which adds faint
microwave emission

e while these microwave foregrounds need to be carefully sub-
tracted from the microwave sky to arrive at the CMB, they them-
selves provide important data sets for cosmology, but also for re-
search on the Galaxy and possibly also the Solar System
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3.2 Cosmological Inflation

3.2.1 Problems

Planck Scales

e Big-Bang cosmology fders a very successful, coherent picture
for the evolution of the universe, but at the same time has funda-
mental problems

e evidently, the néve picture of the Big Bang predicts the en-
ergy density to grow beyond all boundaries; heuristically, we ex-
pect this approach to break down at the latest when quantum-
mechanical ffects set in; an estimate for when this may happen
is given by the following argument:

e a quantum-mechanical length scale for a particle of massits
de Broglie wavelength,

2rth

Agg = — 3.34
= — (3:39)
while a gravitational length scale is given by its Schwarzschild
radius, oG
m
rS = CZ (335)

guantum-mechanicaliects are expected to become important in
general relativity at the latest when the two become equal, which
defines the Planck mass

[c 5 e Gev
e through{(3.3#), the Planck mass defines a length scale, the Planck
length
h hG
lp= — = 4/— ~ 10*cm 3.37
P = e = (3.37)

and a time scale, the Planck time

to= 2 = JENICT s (3.38)

at times closer to the Big Bang than the Planck time, the purely
general-relativistic treatment of cosmology is expected to break
down
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The Horizon and Flatness Problems

¢ we have seen earlier that the particle horizon is given by

Cc a(tz) da
AW(ty, t) = — \/Q — 3.39
G [ o 6
in the early universe, i.e. before curvature and cosmological-
constant terms became relevant

e at recombination, the universe is well in the matter-dominated
epoch, so we can set= 3; inserting furthea(t;) = 0 anda(t,) =

aecin (3.39) yields
2
AW(O, tre) = H—C V8o~ 175VQh ' Mpc (3.40)
0

this is thecomovingradius of a sphere around an given point in
the recombination shell which could have causal contact with this
point before recombination

¢ the angular-diameter distance from us to the recombination shell
is

2c

aec~ 5t Mpc (3.41)
Ho

2C
Dang(oa Zred) ® H_oarec(l - Vafec) ~

¢ the angular size of the particle horizon at recombination on t
CMB sky is therefore

Aw(O, .
Brec = M ~ VQodrec ® 1.7° Qo (3.42)
Dang(O, Zre)

e given any point on the microwave sky, the causally connected riz€ Of causally connected regions
gion around it has a radius of approximately one degree, i.e. fQliythe CMB
times the radius of the full moon; how is it possible that the
CMB temperature is so very closely the same all over the full
sky? points on the sky further apart thar2° had no chance of
causally interacting and “communicating” their temperature; this
constitutes théorizon problem

¢ ignoring the cosmological-constant term, the Friedmann equation
can be written
8rG Kc?

H?(a) = 3Pz = H?(a)

Kc?

Qiotal(@) — W] (3.43)

thus the deviation afoi, from unity is

Kc2

(3.44)
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e we have already seen th@t— 1 for a — 0 during the matter-
dominated era; during radiation-dominatiatH? = a2 o t,
during the early matter-dominated eadH? « t=2/3, thus

t radiation-dominated era

t?2 early matter-dominated era (3.45)

[Qtotar — 1| o< {
therefore, if there is any tiny deviation S, from unity at early
times, it moves rapidly away from unity; in order f@, to
be anywhere near unity today, it must have been extremely close
to unity at early times, which constitutes an uncomfortable fine-
tuning problem, thélatness problem

e the horizon problem is exacerbated by the observation that not
only is the temperature of the CMB very nearly the same all ov
the sky, but also coherent structures exist in the CMB which &
much larger than the horizon size at decoupling; how could the—é
structures be formed? 5

e apart from the problem of how structures can be coherent beyc
the horizon scale, it remains as yet unexplained where structu
originate from in the first place; ultimately, cosmology needs ' 1 i
explain why there are structures rather than complete homoge: | \ / =

ity 1k

3.2.2 Inflation

Lag (timeh

Effect of a shrinking comoving

The Idea of Inflation Hubble radius

— COMOVING
Hubble length

e returning to[(3.4}4), we note thatH is the Hubble radius, hence
c/(aH) is thecomovingHubble radius; at least the flatness prob-
lem could be solved if the comoving Hubble radius costalink
suficiently for some time, because then the deviatiorgf,
from unity would be driven towards zero

||||||

||||||

e the physical picture behindshrinkingcomoving Hubble radius
is the following: the Hubble radius characterises the radius of
the observable universe, thus tb@movingHubble radius gives
the radius of the observable universe in comoving coordinates,
i.e. after transforming to non-expanding coordinates; if the ce
moving Hubble radius could shrink during some time, the ollorizon and causally connected re-
servable part of the universe could be moved within causally cdHons
nected regions, thus the contents of the entire observable universe
could be brought into causal contact; after this phase ends, the
observable universe can expand again, but its physical state can
appear coherent everywhere thereafter
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Conditions for Inflation

¢ the condition for a shrinking, comoving Hubble radius is

d/c
= (ﬁ) <0 (3.46)
sinceaH = 4, this implies

d/c ca y
i.e. it is equivalent to accelerated expansion

accelerated expansion seems incompatible with gravity because
the gravitational force exerted by the matter inside a representa-
tive spherical section of the universe is expected to decelerate its
expansion

Friedmann’s equation allows accelerated expansion if
pC+3p<0 (3.48)

i.e. expansion can accelerate if and only of the pressureflis su

ciently negative,

pc

s 4
p< 3 (3.49)
energy conservation requires
d d . a
<o) +pg (@) =0 = p=-32 (p ; C_F;) (3.50)

since, by definition, the cosmological constant pas0, it must
correspond to a form of matter which has

p = —pc? (3.51)

i.e. the cosmological constant provides a suitably exotic equation
of state

once the cosmological-constant term becomes appreciable in
Friedmann’s equation, it quickly dominates because it scales
with the highest power of the scale factar as we have seen,

it accelerates cosmic expansion, thaigrows rapidly, and the
cosmological-constant term very quickly entirely determines the
dynamics; this is the case of de Sitter expansion mentioned earlier
in the context of the late cosmic evolution,

ac exp( \/Q_AHOt) (3.52)

i.e. exponential expansion sets in oricstarts dominating
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Inflation and Scalar Fields
e as an example for a simple physical system which may have neg-

ative pressure, consider a self-interacting scalar fieWhich has
the Lagrangian density

£= 50,696 - V(@) (353)
whereV(9¢) is the interaction potential
¢ the field¢ has the energy-momentum tensor
Ty =0,00,0 — g, L (3.54)
its time-time component is the energy density,
2 = %¢2 +V(g) + %(%)2 (3.55)

while the pressure is given by its space-space components,
1 "2 1 5 \2
p=5¢*-V(9) - =(V9) (3.56)

¢ due to homogeneity, the terrﬁfw must vanish; the requirement
(3.49) then translates to

1. 1/1.
5¢°-V9) < -3 (§¢2 + V(¢)) (357)

which is satisfied if _
> < V() (3.58)

thus the scalar field shows the desired behaviour provided its ki-
netic energy is dticiently small compared to its potential energy,
i.e. if it “moves” suficiently slowly

e inserting the energy density #finto Friedmann’s equation yields

H2 = 871'6[

¢ V(¢)] (3.59)
and the continuity equatiof (350) requires
¢+3Hp = ——— (3.60)

these equations determine the evolution of the expanding cos-
mological background
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Slow-Roll Conditions

o following the requirement (3.58), we impose the conditions

"2 d., dv(¢) dv(g)
<V G do

= < (3.61)

for successful inflation, i.e. we want inflation to be strong and -
persist sticiently long; these conditions simplify the evolutior

equations to
N 8nG

H2 TV(¢) , BHp~ ——2 = -V (3.62)

e consequently, the conditiat? < V(¢) can be written

vV (V) 1 (V.
(BH) = GV <V = UG (V) =e<1l (3.63)

additionally,

dVv V% VH

?="d3H T 3H T 3ne (3.69)
and, with
. 81G, - H 4G, ,. ¢V
we find v VN2
b=-32 (6\/)H¢ < V' = -3Hp (3.66)
and thus
v (V/)Z 1 Vv 3 . 3
3H2 — 6VH2 = 87TG V — EE =n- EE < 1 (367)

Via)

N 7

Slowly rolling field in a flat poten-
tial

e thus, successful inflation is equivalent to the condition that the

two slow-roll parameters
7’ 2 142
E;:ﬁ(i) <1, n::i(v )<<1 (3.68)

Vv 8rG\ V
are both much smaller than unity

Amount and End of Inflation

¢ today’s age of the universe s ~ 4 x 10"s; the Planck time,
which is a possible time for the onset of inflationtdsc 1043s;
during the radiation-dominated era,

|Qtotal — 1 oc t (3-69)
thus, Qi * 1 today can be achieved if
|Quota — 1] ~ 107 (3.70)

at the onset of inflation



CHAPTER 3. THE EARLY UNIVERSE 78

e for inflation to solve the flatness problem, the comoving Hubb+
radius thus needs to shrink by a factorf10®, which corre- ~| Not to scale !
sponds to an increase in the scale factor by a factor of appr:
imately €% this would at the same time solve the horizon (c ﬁ
causality) problem 1 . L by

¢ during inflation, the energy density of the inflaton field is approx-' _ _
imately constant sincec® ~ V, and the changes M are small Priving the universe spatially flat
due to the slow-roll conditions

e all other densities drop by huge amounts; since a=3 for non-
relativistic matter angb o« a* for radiation, their densities de-
crease by factors of e and~ e 24, respectively

e since there is matter and radiation in the universe today, there
must be a way to convert the energy density of the inflaton field
into the energy density of radiation or matter as inflation ends,
i.,e.wheng,n) ~ 1

e atthistime, the kinetic termgandg become important; the infla-
ton field may oscillate around the minimum of its potential energy

e itis assumed that the inflaton field can decay through some cr
pling to “ordinary” matter and thus turn its energy density bacg
into other constituents of the cosmic fluid; however, how this “re"
heating” process may occur is an open question

Inflation and Structure Formation

e as any other quantum field, the inflaton field must have undergc
vacuum fluctuations before inflation because of the uncertair
principle

. . . . . . The universe expands beyond the

e once inflation sets in, the vacuum fluctuations are quickly drlvef']r(l)rizon
outside of the horizon (or, in the language of the shrinking cr-

moving horizon, the horizon quickly contracts below the lengt

scale of the quantum fluctuation), where they “freeze in” beca

they lack causal contact

o for a highly simplified treatment of the qualitative properties of
density fluctuations produced that way, consider a spherical ove
density; it must of course satisfy Friedmann’s equation, which we
write in the form [3.4B),

H? = HZ(Q—

Kc?
a2H2) (3.71)
Initial quantum fluctuations are in-

whereQ is the density parameter inside the overdensity, fromﬂeoI {0 MACToScopic scales
which we obtain P

o 3H%E 3% 3KS @ 3KC
PE="8:G "~ 811G " 8G  Q &G

(3.72)



CHAPTER 3. THE EARLY UNIVERSE 79

and thus L
pa® (ﬁ - 1) = const (3.73)

e for a linear overdensity in the early univerge,= 1 + 6Q with
5Q < 1, thussp = péQ < p, and [3.78) implies

1
pa® (ﬁ -~ 1) ~ palsQ ~ Spa’ = const (3.74)
i.e. the physical overdensityp inside the spherical perturbation
must scalex a2

¢ the fluctuations® in the gravitational potential caused by the
spherical overdensity is

~ GoM 4G .0p 2
od = R -3 (aL) AL = constL (3.75)

whereR s the physical radius of the sphere, dnid its comoving
radius; the last equality follows becauge « a=2; the potential
fluctuation caused by the perturbation thus remains constant dur-
ing inflation

¢ the physical scaleal) changes by 30 orders of magnitude dur-
ing inflation, thus inflation predicts approximately identical po-
tential fluctuations on all accessible physical scales

¢ the detailed theory of the inflationary origin of structures starts
with the vacuum expectation value of the inflaton field on the
scale corresponding to wave numlxer

(0ll¢?|0) (3.76)

and solves the equations for the field amplitudes; the result is
that the root-mean-square fluctuations in the gravitational poten-
tial scale as follows,

(607)" o %2 (3.77)

which is approximately constant because of the slow-roll condi-
tions

e due to Poisson’s equation, the Fourier modes of the potential and
density fluctuations are related k§6®(k) o« —5(K), thus the (pri-
mordial) density power spectrum predicted by inflation is

BR)P o« KISDK)]? o« K3Pi(K) = Pi(K) o« k (3.78)

this is the Harrison-Zel'dovich-Peebles spectrum which was orig-
inally required for completely dlierent reasons; precise calcula-
tions find

Pi(k) « K" (3.79)

withk <1
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e since the density fluctuations arise from superpositions of enor-
mous numbers of statistcally independent vacuum fluctuations of
the inflaton field, they are expected to be Gaussian because of the
central limit theorem

e thus, inflation provides a physical picture for solving the horizon
and flatness problems of the Big Bang theory, and at the same
time provides a natural explanation for the origin of structures in
the universe, which are predicted to be nearly scale-invariant and
Gaussian
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3.3 Dark Energy

3.3.1 Expansion of the Universe

e observations force us to accept that the cosmological constant to-
day makes up 70% of the energy density of the universe

e measurements of the CMB power spectrum reveal that the
verse is spatially flat or very close to flat, i.e. the total ener
density contributed by all constituents of the cosmic fluid equ
the critical density

e we know from the CMB itself, but also from other observation
that the matter density, dark and baryonic, contributes appr
imately 30% to the total energy density, and the abundance
light elements requires the baryon density to be much lower;
the framework of the Friedmann model, the remaining 70% of t
energy density must be contributed by the cosmological const

. . . i Supernovae 1994 d
¢ the most important class of observations supporting this conc

sion is supernovae of type la; such supernovae occur in bin
stars consisting of a white dwarf and an evolved companid
when the companion becomes a red giant, it grows over its Ro(
volume and looses mass to the white dwarf

¢ white dwarfs are stabilised by the Fermi pressure of a degene
electrons gas; this can only stabilise masses up4tg against
gravity; when the companion star feeds the white dwarf beyoRd, 1 ie qwarf fed by a companion
this limit, the white dwarf collapses and explodes

star
e thus, when a type-la supernova explodes, a fixed amount of “c ° I B
plosives” blows up; this makes it plausible that they release fix apf
amounts of energy, thus their intrinsic luminosity is plausibly cor
stant; they form a class of “standard candles” 2t

A0

e probably due to the complicated explosion mechanism and the
diation transport out of the dense exploding core to the surface
the supernova, type-la supernovae are not strictly standard ¢ 1
dles; fortunately, their lightcurve shape allows the scatter in the
luminosities to be largely reduced

a®

e P
Ga\z‘“(‘ng o > )

Expands 1o Inlinltv__ =

e knowing their absolute luminosity and observing their apparent®
brightness, their (luminosity) distances can be infered; their red-
shift can be determined from their spectra; thus, it is possible to &,
reconstruct the luminosity distance as a function of redshift B TR .

"
Recollapses ¢ #0

0.0 0.5 1.0 1.5 2.0 - 2.5
o initially very surprisingly, the distance turns out to be significantly S
larger than expected in a universe without cosmological const

observations of type-la supernovae first forced cosmologistsP@Ple with SN-la observations

aq.ﬂsmological parameter range com-
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take seriously the possibility that the universe undergoes acce X 4 Ly
ated expansion 1§ ot R SRR

E . Geawng Discovorma
. HEVEESR

e meanwhile, high-redshift supernovae have shown that the exp
sion of the universe turned over from decelaration to accelerat|
around a redshift of unity

J=g+ ] w0 ] /]
aiz)=g+zldg/dz Constart AccelormIon. & dgydz=0 fie

.
i

0 gl

e ) the cosmic expansion turned from
3.3.2 Modified Equation of State deceleration to acceleration near

¢ this is an unfavourable situation because we have no idea W%at
the cosmological constant may be, and it is entirely unclear why
at present the density parameters of matter and the cosmological
constant should be anywhere near equality

e a simple estimate of the energy or equivalent matter density of
the cosmological constant produces an awfully wrong result; a
natural density scale would be the Planck mass divided by the
cubed Planck length, which gives

mp 10° 3 4 3
ngzmgcm ~ 10 gcm (3.80)
which is about 120 orders of magnitude larger than the critical
density of the universe

e the main reasons why the cosmological constant is considered
necessary are that the total matter density is much smaller than
unity, while the spatial curvature of the universe is close or equal
to zero, and that observations of supernovae of type la require the
expansion of the universe to be accelerated

e seeking a physical explanation for the cosmological constant, it
is useful to look at cosmological inflation, which also grew from
the requirement of accelerated expansion; as we have seen there,
this requires a form of matter whose pressure is

p < ——pC2 (3.81)

while the cosmological constant hps= —pc?

e itis plausible to generalise the equation of state (3.81) as

1
p=wpc’, w<-3 (3.82)
with a parametew which may or may not depend on time;
forms of matter with such equations of state have been termed
“quintessence”
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e suppose for simplicity that is constant; then the continuity equa-
tion requires

d 3 d 3
3 (a%0qc?) + WpQCZE (a%) =0 (3.83)
which implies

pq = pgod > (3.84)

wherepqo is the quintessence density today; evidently, the be-
haviour of the cosmological constant is recoveredidcs —1

e replacing®, by Qq, and ignoring the radiation density, the Fried-
mann equation reads

H(a) = HE [Qmoa™® + (1 - Qmo — Qqo)a ? + Qgoa > |
(3.85)
for w = -1/3, the quintessence terms cancel, and the equation
looks like the Friedmann equation for an open model @itk
only andQgqo = 0

¢ if wis not constant, the continuity equation leads to

1
po(d) = pao exp[—Sf (1+w)dIna (3.86)

e as for cosmological inflation, a self-interacting scalar field is one
candidate for a form of matter which can have negative pressure;
the ratiow between pressure and density is

_#-V(©)
2+ V(9)

and the scalar field satisfies the evolution equatidn (3].60),

(3.87)

é+3Ho +V'(¢) = 0 (3.88)

3.3.3 Models of Dark Energy

¢ so far, the interaction potentisl(¢) is completely unconstrained;
one suggestion is
K
V)= (3.89)
the so-called Ratra-Peebles potential; the constdrats the di-
mension (mas$)?; it needs to be set such as to agree with the
guintessence density parameter today
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o for a power-law expansiom, « t", the evolution equation (3.88)
admits power-law solutions faf,

¢ o t2/2+D) (3.90)

the kinetic term _
¢ oc t7/(2*) (3.91)

decays forwr > 0

¢ the energy density of the quintessence field then scales as

1. 2 a
po = 5¢° + V(g) oc 72/ (3.92)
and its ratio to the density of matter or radiation scales as
PQ {2-20/(2+a) _ (4/(2+a) (3.93)
P

because the densities of matter and radiation both sc&levhile - _ _ _ _
they dominate the expansion; fer= 0, the quintessence density _ |
po is constant and reproduces the behaviour of the cosmologi |

constant; forr > 0, the quintessence density decays more slow .|

than that of matter or radiation, leadipgo dominate the expan- * ...

sion of the universe at late times

e if @ > 0, the field grows arbitrarily large in this model, thus A _ _ _
approaches zero, and the energy density»> 0 * : * iz =

e a favourable aspect of the modgl (3.89) is that it has so-callléa
tracker properties, meaning that a wide variety of initial condi
tions¢ and¢ lead to the same final solution fgr this may help
solving the coincidence problem, which states that nearly equal
values forQ2, andQ,, today seem to require delicate fine-tuning
in the early universe

of dark energy

e another model, which is motivated by super-gravity theories, has
an exponential term in addition to the power-law potential,

V(p) = —e*o’ (3.94)
¢a
it shares the tracker property with the power-law model, but has a
significantly diferent behaviour

3.3.4 Hfects on Cosmology

e the modified expansion rate in quintessence models may have
pronounced cosmological consequences on age and distances,
nucleosynthesis, the microwave background, structure formation
and so forth

uation-of-state parameteras a
ction of redshift for two models
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e since nucleosynthesis depends critically on how the expansion
time scale compares to the time scales of neutron decay and
the nuclear interactions, the cosmic expansion during nucleosyn-
thesis is tightly constrained by observations of the light-element
abundances; thus, at the time of nucleosynthesis, the quintessence
field must be negligible compared to the radiation density which
otherwise drives the expansion

18

e changes in the expansion time scale during CMB recombinati
changes the width of the recombination shell and thus modifi
the height of the high-order acoustic peaks; if expansion is fast
the temperature of the cosmic plasma drops more rapidly, the .|
combination shell becomes thinner, thus fewer small-scale flU .|
tuations are projected onto each other looking into the reco
bination shell, the damping of the high-order acoustic peaks |
reduced, so they can be higher itz

e modified expansion behaviour changes the curvature of space=.
time, and thus the angular-diameter and luminosity distances; this‘|
influences the appearance of supernovae of type la, the appaﬁ?ie”ﬁt
size of fluctuations in the CMB, the cosmic volume of redshiit .|

i

shells, and the overall geometry of the universe, and tiiests © |

like gravitational lensing

a LAR

.05 vt
SUGRA

¢ the growth factor is modified, typically in such a way that struc- D ok
tures form earlier in quintessence compared to cosmological- ez
constant models; structures are thus expected to be present at
higher redshifts in quintessence models, and more pronounced

at given redshifts, compared to the cosmological-constant case .|

¢ halo collapse against the universal expansion is modified, whigi:ch_
implies that the spherical collapse proceed$edently; conse- : 7
guently, the spherical-collapse paramet&rsand A, are modi-  °
fied, having pronouncedffects on halo statistics (e.g. through | |

the Press-Schechter mass function) g MEOEN.

» ] Growth factor, angular-diameter
e the core densities of haloes appear to reflect the cosmic bagktance and halo concentrations in

ground density at their formation times; since quintessence makes$ym and two dark-energy mod-
haloes form earlier, they tend to be denser in their cores, whigh

may have strongfects on their appearance (e.g. through gravi-

tational lensing, X-ray emission, and so forth)

¢ the modified growth factor in quintessence models changes the
time evolution of fluctuations in the gravitational potential; pho-
tons propagating from the CMB recombination shell throughout
the universe thus experience changes in the gravitational poten-
tial which are stronger than in the cosmological-constant model,
a larger fraction of the CMB amplitude is thus of secondary rather
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than primary origin, possibly changing the normalisation of the
power spectrum



Chapter 4

The Late Universe
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4.1

Galaxies and Gas

4.1.1 Ellipticals and Spirals

galaxies are objects with typical sizes of a few kpc, while their
typical distances are of order Mpc, so they are clearly disti
guished entities

galaxies typically consist of a central, more or less amorpho
nearly spherically-symmetric part, called the bulge, and a fl
tened, structure, called the disk

bulges contain predominantly old, metal-poor, red population
stars which have an almost isotropic velocity dispersion

disks contain more metal-rich, younger, blue population-I st
which move around the centre in nearly circular orbits

galaxies are classified by the ratio between bulges and disks; thasg
dominated by the bulge are called ellipticals, those dominated
the disk are called spirals, and there is a continuous classificat
range in between, the Hubble sequence; historically, elliptic
are also called early-type, and spirals late-type galaxies

disks have near-exponential intensity profiles,

[(r) =lo exp(—L) (4.2)
fo Galaxy morphologies are classified
with the scale length,, while bulges have the less steep dely the ratio between bulges and
Vaucouleurs- or'/* profile, disks
r 1/4
I(r) =1o expl— (E) ] (4.2)

other types of galaxy are less easily fit into this scheme, such as
the irregular, dwarf, or blue compact galaxies

spectra of ellipticals show signatures of old stellar populations;
they correspond to temperature near 5000 K, are rich in metal
lines, and dominated by giant stars moving the stellar main
sequence

spectra of spirals are characterised by signatures of recent star for-
mation; they contain young, hotter, bluer stars with less absorp-

tion features; the radiation of the young stars can ionise ambient

gas and thus produce narrow nebular emission lines
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¢ the metal abundances in galaxies reflect metal production by type-
Il supernovae, which are the end products of massive-star evolu-
tion; typically, metal abundances increase with increasing galaxy
mass and towards galaxy centres

¢ galaxy luminosities and dynamical properties like velocity disper-
sionso, (for ellipticals) or rotational velocities (for spirals) are
closely related to each other; ellipticals inhabit thedamental
planedefined by
Lo 1% 03 (4.3)

with a scatter of about.® magnitudes; in absence of cen-
tral surface-brightness information, the less well-defined Faber-
Jackson relation holds

Lo o (4.4)

which has a scatter of about 1 mag; for spirals, the Tully-Fisher
relation relates luminosity and rotational velocity with a scatter
similar to that of the fundamental plane

e elliptical and spiral galaxy populations inhabitfdrent regions
of space; while spirals dominate in low-density regions (well
outside galaxy clusters), ellipticals predominantly inhabit high-
density regions like cluster cores; apparently, disks do not survive
in dense environments

4.1.2 Spectra, Magnitudes an&K-Corrections

¢ the intensity of electromagnetic radiation is characterised by the
energy received per unit time and unit detector area from unit
solid angle on the sky and per unit frequency interval; this is
called thespecific intensity,t when integrated over the solid
angle of a source, it is called thkix density $, which is con-
sequently the energy received per area, time and frequency;
conventional unit is Jansky,

w erg
1 =1 26 -1 239 4. |
Jy=10 m2 Hz o scntHz (4.5) i ]

o we will loosely speak of thélux below, which can be specific in- SPectra of dferent galaxy types
tensity if not integrated over solid angle, flux density if integrated
over solid angle, or or flux if integrated over detector ared; i§
the flux per unit frequency, the flul per unit wavelength is

dv
da

c

f,=—f, (4.6)
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e intensities are measured through filters with transmission func-
tions T, or T,; sets of transmission curves define a filter system,
such as the Johnson-UBVRI system or that used by the Sloan
Digital Sky Survey (SDSS)

¢ the transmission curves define tHeeetive wavelength o SSEB _
and the sensitivity
Q= fd InvT, (4.8) i ]

wave length A [Angstrom]

o at least in optical astronomy, fluxes are commonly measured'fignSmission curves of the Johnson
magnitudes, which provide a peculiarly defined logarithmic scaféter system
generally, the magnitudgifferenceof two objects is

Am=-25 Ioglo(%) , (4.9)
2

if Ry, are the instrumental responses to the flux received from
objects 1 and 2; the zero point is commonly defined as the instru-
mental response to the flux of a standard star (elgyrae, which

is an AQV star)

¢ for so-calledAB magnitudes, the zero point is defined in terms
of the physical flux in Jy; for instance, theB magnitude system
used by the SDSS is defined by

diny f,T,
JdinvtT, o

m= -2.5log,, 486 (4.10)

e this can directly be related to the number of electrons released in
a CCD; the energy received per unit time and unit frequency in-
terval by a telescope with collecting ar@as dE = Adtdvf,; this
energy comes in form ofMd, = dE/(hv) photons, a fractiofT,
of which can pass the filter; thus, the number of photons arriv-
ing at the CCD, or the number of electrons released by the CCD
assuming 100%f&ciency of the CCD in converting photons to
electrons, is

At
Ne = Ffdlnv f,T, (4.12)
wheret is the total exposure time

o for example, an object with aAB magnitude o = 25 in a given
filter band with sensitivityQ = 0.1 has

fd InvT, =3.6x10%° (4.12)
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and thus releases

Ne _ 4
A = 55X 10 (4.13)

electrons per second exposure time and® @ullecting area;
hence, a CCD attached to a telescope with 4 m mirror diameter
releases- 70 electrons per second from such an object

¢ theabsolutemagnitudeM of an object is the magnitude the object
would have if its distance was 10 pc from the observer; if its true
(luminosity!) distance iP, and its magnitude im, the absolute
magnitude is

DL

M=m+5Io 4.14

o for objects at cosmological distances, tRecorrection must be
applied which takes into account that the spectrum is redshifted
with respect to the fixed filter

K(2) = 2.5 J LTy (4.15)
2)=25logg—— :
10 f da a4 Ta
this modifies the absolute magnitude according to
M=m+5Ilo Do + K(2 (4.16)
- glO 10 pC '
e sincedf, = vf,, theK-correction for power-law spectrd, o« v,
is
f dinyyet2T,
K =25log,, = 2.5(e—-1)l0g,((1+2)

fd Inv (1 + 2)~o+tly—e+1)2T,

(4.17)
i.e. theK-correction vanishes for spectrav—!; it becomes posi-
tive for bluer (steeper) spectra with> 1 and negative for redder
(flatter) spectra

4.1.3 Luminosity Functions

¢ the number density of galaxies with luminosities betweeand
L + dL is described by the luminosity function; its measurement
is quite involved because it requires a detailed understanding of
the survey characteristics

e measured galaxy luminosity functions are typically well fit by the
Schechter function,

do(L) = ¢. (LL) exp(—LL*) ?_—L (4.18)
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¢ the faint-end slope = —1.0 + 0.15 quite independent of galaxy
type; the cut-& luminosity L. is brighter for ellipticals than for
spirals; its mean value 81, = —19.50+ 0.13 in the photographic
B; filter band, rising fromM, = —19.59 for ellipticals toM. =
—19.39 for spirals toM, = —18.94 for irregulars

e ellipticals contribute~ 35% to¢., spirals~ 57%, and irregulars
~ 8%; the overall normalisation ig, ~ (0.0140+ 0.0017h?,
but its exact value is uncertain because it still depends on galaxy
selection, and is locally sensitive to galaxy clustering

e a cosmologically important number to derive from the luminosity
function is the luminosity density

P = fo " Ldg(L) = (e + 2)p.L. (4.19)

where

I'(x) = f e 't Ldt (4.20)
0
is the gamma function

¢ the galaxy luminosity function in galaxy clusters is very similar

to that outside clusters at intermediate luminosities, but deviations
exist at the bright and the faint ends; at the bright end, luminous
cD galaxies exist in the centres of many clusters which are not
simply the brightest objects drawn from a Schechter function; at
the faint end, the luminosity function steepens considerably due
to a dwarf population which has ~ —1.8; such a dwarf galaxy
population may also exist outside clusters

e there is no compelling evidence for brighter galaxies to be
more strongly clustered (luminosity segregation); however, the
Butcher-Oemler #ect says that the fraction of blue galaxies in
clusters increases with increasing redshift; this is probably a con-
sequence of both enhanced star formation in cluster galaxies at
moderate and high redshifts, and later depletion of star-forming
galaxies due to mergers

¢ while the luminosity function in the (near-infrare) band does
not evolve with redshift out ta ~ 0.6, it exhibits strong evolu-
tion in the B band; there is a significant population of faint blue
galaxies at moderate and high redshifts which seems to be ac-
tively star-forming

e metals (i.e. all elements heavier than helium) are produced in
stars, mostly in stars more massive and less long-lived than the
Sun; since metals are produced by nuclear fusion with a mass-
to-energy conversionfiéciency near 1%, the luminosity density
of galaxies can be related to the metal abundance; the evolution
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of the luminosity density with redshift then allows the metal pro-
duction to be deduced as a function of redshift; in turn, this yields
the star-formation rate as a function of redshift; apparently, most
stars were formed between redshifts 1 and 2

e approximately 10% of the energy produced during that time
should be radiated in the narrow Lymankne, so that a pop-
ulation of Lymane emitting galaxies should be seen, but they
are not; this may mean that most star formation happens in dust-
shrouded environments which scatter the radiation into the in-
frared; the cosmic infrared background is consistent with this pic-
ture

4.1.4 Correlation Functions and Biasing
¢ the density-fluctuation field has the power specti(k) defined

in (2.42); its correlation function given bl (2]44), thus the power
spectrum is related to the correlation function by

PK) = f Bxe(x)e = 21 f ooxzdxf(x) f " sinadgexcos
0 0
3 =, sinkx
= 47rj; X“dx &(X) i (4.21)

e observationally, the correlation function of the galaxies describes
the excess probability above random for finding a galaxy at dis-
tancex from another; let &; and d/, be two infinitesimally small
volume elements separated byandn the number density of
galaxies; then, the probabilityRdfor finding one galaxy in 9
and another in ¥, is dP = n?dV,dV,; if the galaxies are ran-
domly distributed; if the galaxies are correlated, this probability
becomes

dP = n?[1 + &(r)]dV1dV, (4.22)

¢ this gives the principle for measurirgfr): in a volume-limited
survey of galaxies, count pairs of galaxies separated by a distance
betweerr andr + dr, and compare it to the pair counts expected
if the galaxies were randomly distributed; for instance{[2D)
and(RR be the pair counts in the dat®) and the randomised
(R) galaxy surveys, then

_ DD

“RR (4.23)

3

is one estimate fof
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e a simple assumption holds that the number density of galaxies is
related to the density contrast by

= 6% =bs=6+(b-1) (4.24)

whereb is the bias factor, which can be inferred from velocity
measurements

¢ density perturbations give rise to peculiar motion and displace-
ments

=

r
6X =~ - X (4.25)

from which¢é can be inferred according to
§=-V-6% (4.26)

which follows in the framework of the Zel'dovich approximation;
cf. Egs. [(2.54], 2.58 arjd 2.60)
e peculiar velocitiesi cause displacements

o a
- Hf(Q)
of the comoving coordinates (¢f. 2]63)

% (4.27)

¢ the peculiar motion adds to the Hubble velocity; the apparent co-
moving distance to a galaxy is inferred from its observed line-of-
sight velocity
v=V-8& =a(HX+10)-& (4.28)

whereé, is the line-of-sight direction

e interpreting the total velocity as Hubble velocity implies that the
apparent comoving distance vector to a galaxy is

v u- &
oo = o = Rear —1 & (4.29)

H
e an apparent displacemef®yy,is thus related to the real displace-
mentéXea by
U ° é)(

0 Xapp = OXreal + Téx = 0Xeal + T(Q)(0Xear- )6  (4.30)

e becauseV « V5®, a density perturbation with wave vectior
causes a displacement parallell?tolet u be the cosine of the
angle between the line-of-sight aﬁdthenézeap 8¢ = 0Xreald,
k-8 = ku, and i

6 = —ik - 6%X = —ikoR (4.31)
from this, we obtain

Oapp = Oreal [1 + f(Q)/JZ] (4.32)
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¢ the apparent density contrast in the galaxy counts is thus related
to the real density contrast by the term caused by the velocity
perturbations plus the biasing term,

5gpp = Oreal [1 + f(Q),u ]+(b 1)5real 6gal

real

[1+ f(%)“z] (4.33)

e the peculiar anisotropy caused by the fagtdrcan be used to

measure
_ f©Q)
the ratio between the redshift- and real-space power spectra is
Papp o
1+ 4.35 i
7 = pi) (4.35)

which can be written as

Papp _ 28 B\ . (4B 45
I:)real_(l _+_) (3

0.z et + e @39

where P,4(u) are the Legendre polynomials; the redshift-spac _
power spectrum thus exhibits a characteristic quadrupolar patte
and the ratio between quadrupole and monopole can be use

-20 o 0

infer 8 o /i

two-dimensional galaxy correlation
nction measured from the 2dF
?axy Redshift Survey

e on small scales, virialised motion within bound structur
(e.g. galaxy clusters) leads to an apparent extension along
line-of-sight (finger-of-god #ect); this can approximately be de-
scribed by damping in Fourier space according to

6 — 6(1 + Kplo?) ™2 (4.37)

where o is the velocity dispersion of the galaxies within the
bound structure; the overalftect is then

2
Papp (1 + '8'”2)
I:)real - 1+ kzl'lzo-z

(4.38)

4.1.5 Intervening Gas

¢ the light from distant sources passes througfude gas which is
seen in absorption; the resulting absorption linffiercan impor-
tant way to study the large-scale structure

¢ the shape of absorption lines is given by the Lorentz profile

dp r/2

dw ~ (w—wo)? + ([/2)2 (4.39)
which can be considered as the probability distribution for a pho-
ton of frequencyw to be absorbed by an atom with a transition

frequencywy; I is the line width
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e the Lorentz profile arises in the theory of the damped classi-
cal harmonic oscillator, wherE is the damping rate; quantum-
mechanicallyl" ! is the lifetime of the excited state resulting from
the absorption

¢ the natural line width defined by the decay probability of the ex-
cited state is often increased by atomic collisions, which shorten
the lifetime and thus broaden the absorption line

e if the gas moves thermally with respect to the line of sight, the
resulting absorption-line profile is a convolution of the Lorentz
profile with a Gaussian

dp_ T f‘” e /2 gy
do  (27)320 J_., (w - wo — woV/C)2 + (I'/2)?

which is called the Voigt profile; it has a Gaussian core and
Lorentzian wings

(4.40)

¢ the absorption cross section of the Lymatransition of a hydro-
gen atom in thermal equilibrium is

o(w) = 69% 102 IP (4.41)
dw
which gives rise to the optical depth

T(w) = o(w) f ndl := o(w) N¢ (4.42)

which is the cross section times the column denBityi.e. the
hydrogen number densityintegrated over the line-of-sight

e the central optical depth of a Lymaniine which is Doppler
broadened with a velocity dispersion, the central optical depth

is
o oy P N
o= (km 51) (1.86>< 1012 crrrz) (4.43)

typical velocity dispersions are of order a few tens of ki #hus
measurable central optical depths~of.1 are reached with col-
umn densities oN. ~ 102 cm 2

¢ the observed probability distribution of column densities is very
wide and approximately follows a power-law

PG> N) o Nz (4.44)
up toN; ~ 10°*cm?

e whenN; ~ 10®cm?, the optical depth becomes unity in the
Lorentzian wings rather than the Gaussian core of the lines; such
saturated lines are called “damped” and the absorbers “damped”
Lyman- absorbers
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e if absorbers have the typical absorption cross secti@) and a
physical number density ok, (2), their expected number per unit
redshift is

dDprop

dz

with the proper-distancByop given in [1.61); the redshift distri-
bution of absorbers is the power law

dN = (29 N (2)

dz (4.45)

dN 2.3+04
5«1+ (4.46)

e quasars typically have strong redshifted Lymaamission lines, & 0 |
which are absorbed by intervening neutral hydrogen gas; the tcg ,, | =~ >

optical depth for that absorption is | l’. 1

op R ,
A WW.’T .MM’W/ :

5000 8000 7000

derop

dz

dz (4.47)

Flux (lﬂ'm erg s

T = fOVZQ o[(1 + 2)wo] NwI(2)

o if there was continuously distributed neutral hydrogen along tifé Lymane forest blueward of the
line-of-sight to any distant quasar, all flux blueward of the Lymadyman emission line
a emission line should be absorbed, which is not observed; this
indicates that the intergalactic hydrogen must be ionised

¢ this Gunn-Petersonfgectimplies remarkably tight bounds on the
density parameter in neutral hydrogen; for instance, the absence
of complete absorption in the spectra of quasars near redsghift
5 implies
Qu <15x108%h (4.48)

e complete absorption has recently been detected in quasars just
above redshifzg = 6, which may indicate that the universe was
reionised around that redshift; however, even small admixtures of
neutral hydrogen are flicient to cause complete absorption, thus
reionisation may have started considerably earlier

¢ hydrogen absorption lines trace the gas distribution, which should
follow the density distribution of the dark matter; Lymanab-
sorbers are thus an important tracer for large-scale structures and
constrain the density-fluctuation power spectrum on small scales
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4.2 Gravitational Lensing

4.2.1 Assumptions, Index of Refraction

¢ due to space-time curvature, masses and other concentrations of
energy deflect light towards themselves, in a way similar to con-
vex glass lenses; this gives rise to dfeet called “gravitational
lensing”

e basic assumptions in conventional lensing theory are that the
Newtonian gravitational potentid@ of the lensing mass is small
in the sens® < ¢?, and that the extent of the lensesilong the
line-of-sight is small compared to the Hubble lendthg c/Hg

e under these conditions, the Minkowski metric of flat space-time
is modified; instead of

ds® = c2dt? — dx? (4.49)

the line element becomes
ds® = (1 + 2—?) c’dt® — (1 - 2—?) dx® (4.50)
c C

i.e. the coéicients ofc?dt?> and d are perturbed away from
unity; according to the general assumptions above, these pertur-
bations are small

« since light propagates according t&?d= 0, the metric[(4.50)
implies

() ()
where we have used that {12x)/? ~ (1 + x) for x < 1

e the speed of light is thus changed in presence of the perturbing

potential to
, X AT
c = " =C 1+02 = (4.52)
where
) o
n:= (1 - @) >1 (4.53)

is the dfective index of refraction of a weak gravitational field;
since® <0,n> 1, thusc <c

e consequently, there arises a time delay compared to light propa-
gation in vacuum; we have

d(At) = i—f( - d?X E %X(n ~1)= —ngx (4.54)
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and obtain th&hapiro delayn a gravitational field

at=-2 [ odx (4.55)

where the integral is evaluated along the line-of-sight

4.2.2 Deflection Angle and Lens Equation

¢ in complete analogy to geometrical optics, we can now use Fer-
mat’s principle to calculate the deflection of light caused by the
refractive index; Fermat's principle requires the light-travel time
between fixed points 1 and 2 to be extremal, thus

5[12 n(X)dx =0 (4.56)
introducing a parameterrunning along the light path, this reads
fl i n[X(2)]IXdA (4.57)
with X := dx/da
e using|X = (R)Y2, Euler's equation reads
d—i% - g—; =0 (4.58)

with L = n(R)(x2)Y/2

o the derivativex is proportional to the tangent vector to the light
ray; the curve parametdrcan be normalised such that & the
unit tangent vector; we then find from Euler’s equation

%n(x)é— Vn = né+ (ﬁn - 88— Vn=0 (4.59)

sincen -1 « 1, ﬁn/n = Vinn ~ ﬁn, and we obtain for the
change of the tangent vector along the light ray

. - = = 2 =
€=Vn-(Vn-8e=V,n= —ngcD (4.60)

i.e.8is determined by the component of the gradiemt peérpen-
dicular to the line-of-sight

e the total change of the direction 8is the deflection angle

= 0—22 f V., odl (4.61)

where the integral is carried out along an unperturbed, straight
line instead of the true, curved, line-of-sight in the spirit of the
Born approximation for small-angle scattering

Qu»
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e according to the second assumption, the thin lenses can be pro-
jected along the line-of-sight; their surface-mass density is

x(b) = f o(B, 2)dz (4.62)

and their deflection angle is the superposition of the deflection
angles of all infinitesimal mass elements,

a(b) = 46 f oty 22— 1) (4.63)

o if Dysgs are the angular-diameter distances from the observer to
the lens and the source, and from the lens to the source, respec-
tively, the relation A

Dy = Dol — Dy (4.64)

obviously holds, wherg andd are the angular positions of source
and image on the sky relative to the optical axis; this is the lens
equation

¢ introducing the reduced deflection angle

Djc~
&= Fd:‘? (4.65)
the lens equation becomes
B =0-a() (4.66)

¢ the surface-mass densily scaled with the critical surface mass
density

-1
Ser 1= [4”6 DdDdS] (4.67)

c2 D
is theconvergence := X/%

¢ the lensing potential is a weighted projection of the Newtonian

potential
. Dds E
w(@) = B.D. 3 f ®(Dyf) dz (4.68)
its gradient is the (reduced) deflection angle
Vou(6) = DgV  y = é%"s V. 0(Dyf, 2)dz = @(@) (4.69)
S

and its Laplacian is the convergence

2 DyDys
c2 Dg

Agr() = f AD(Dyf, 2)dz = 2« (4.70)

where Poisson’s equation and the definition of the critical surface-
mass density have been used in the last steps
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4.2.3 Local Lens Mapping and Mass Reconstruction

¢ the local imaging properties of a lens are described by the Jaco-
bian of the lens mapping

:5_5_[ _ 0%]:[ Py

o8 = |~ a8, | = ™~ e,

which is obviously symmetric; the local lens mapping is thus de-
termined by the curvature of the lensing potential

A

=6y —wy]  @.70)

e images are locally magnified by a factor

o6 1
= det| — | = det(A ) = —— 4.72
K © (aﬁ) © (ﬂ ) detA ( )
e the trace of the Jacobian is
tra=2-Ay =2(1-«) (4.73)

subtracting it from A leaves the trace-free shear matrix

é‘..

Tij i= Ajj - %trﬂ = K6ij — Wij (4.74)
which is symmetric and has the componepts= (11 — ¥2,)/2
andyz = y1»

T = —( [CRL ) (4.75)
Y2 7

thus, the Jacobian can be decomposed into an isotropic part, re-
sponsible for isotropic image stretching, and an anisotropic, trace-
free part, responsible for image distortion

e convergence and shear aréelient linear combinations of second
derivatives ofy, thusk can be reconstructed from measurable im-
age distortions; in Fourier space

N 1 A . 1 - R -
K=-5 (ki + k%)l/’, Y11= —E(kf - k%)l//, Y2 = —kikoyr
(4.76)
thus A L(K-k
Y1 _ = 1 ~
( Y2 ) B kz( 2kiko )K @.77)
¢ this can easily be inverted noting that
1(-k\[}
[@( éklkz )} =1 (4.78)
so that

e LK k% 71 1.2 12\~ “
“Tle ( éklkz )( 3] T ke [(kl —K)y + 2k1k2)’2] (4.79)
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which is easily transformed back into configuration space
1 = -, -
== f o R |[DE - 7)) (4.80)

with y := y1 + iy, and the kernel

02 — 62 + 2i6,6
D) = 2 o L2 (4.81)

4.2.4 Deflection by Large-Scale Structures

e light propagation in General Relativity, specialised to the
Friedmann-Lemidre-Robertson-Walker metric, yields the result
that the comoving separation of two light raysvolves with the
radial coordinatev as

d?x
with K given in [1.42); this is an oscillator equation with the so-
lutions fx (w) given in (1.7)

near localised inhomogeneities, space-time can be approximated
as Minkowskian, perturbed by the lensing potenttgl which
gives rise to the light deflection

d?x 25

W = _EVLQ (483)
as shown in(4.60), where the curve parameteas been replaced
by w

the combined light deflection by the space-time curved on large
scales, and the superposed small-scale perturbations, is thus

2% 2.
32 Ki=-5V.0 (4.84)

this is the equation for an externally driven harmonic oscillator;
the solution can be found using the Green'’s function of the har-
monic oscillator to be

(6, W) = fx(W)d — é f ! dw fi(w— W)V, @[ f(W)d] (4.85)
0

the deflection angle is the deviation of the true separation of the
light rays from the separation expected in homogeneous space-
time, divided by the distance to the sources

I () AV fi (W — W) =
@@, w) = W =5 f dw’ fw S A d)[f::v;g]
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e as for the thin-lens case, where 2 Ay = V2y = V - q, the
effective convergence is defined as

1 fu(w—w) fe(w) ( 0?0
- 5% = [ R (e
(4.87)
inserting Poisson’s equation (2]17)
3H3
AD = =2 Qo (4.88)
yields y
Kot = C—12 f dw’ W(w, W) f (W8] (4.89)
0
with
. 3 (Ho\? Qmo f(w—w)fx(w)
W(W, W) 1= 2( - ) . w0 (4.90)

4.2.5 Limbers Equation and Weak-Lensing Power
Spectra

given a homogeneous and isotropic random fig{&, w) with
power spectruni¢(k), and a weighted projection

a(x) := fdwq(w) f(X, w) (4.91)

what is the power spectruny(l) of g, wherel is a two-
dimensional wave number?

e supposg](2) is varying on much larger scales th&nLimber’'s

equation holds
Py(l) = f aw W p [ | ] (4.92)
’ f2w) " [ fic(w) |

e eq. [4.89) for the fective convergence is of the type (4.91), with
g represented byV and f represented by; the condition for
Limber’s equation is well satisfied because the density conirast
is varying on much smaller scales thaf thus

2
P.(1) = f dw’ ng‘é" ")‘/)

e as in the thin-lens case, magnification and shear are defined via

the Jacobian matrix of the lens mapping

dai
36,

I
o (W,)] (4.93)

Aij = 6ij — (4.94)
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to first order in thea;/00;, the magnification is

1—@—%_1—1+6-07—1+2K» (4.95)
96,  86,] B o '

¢ the statistics ofi and the sheay are identical to the statistics of
ket €XCept for constant factors; this is obvious for the statistics of
the magnification fluctuation

Ou = 2k = Psu(l) = 4P (1) (4.96)
considering the shear components in Fourier space, we have

2\2
<&§>=(' ey (33) = Wy?@™ . (%) = (1+4') 2)
(4.97)

and thus

22
(19°) = —(I4+2I2I2+I;‘)<&2>-( )<w>—<§ﬁ> (4.98)

thus the power spectra of the cosmic shear and fileetéve con-
vergence are identical

Py(1) = Pu(l) (4.99)
o following (2.44), the correlation function of thefective conver-
gence is
= (ke (O)ker (6 + @) = F b e 4.100
£(¢) = (kea(Der(¥ + 4)) = e (4.100)

note that the wave vectbis now two-dimensional, thus the inte-
gral over the angle enclosed by the vecicasd yields

60 = [ 5P.0H09) (4.101)

where J(X) is the zeroth-order Bessel function of the first kind;
this is identical to the shear correlation functign

e 0on angular scales of arc minutes, the typical expected shear- and
convergence correlation functions are of order*1€hus typical
shear values on such scales are of order a few per cent

¢ albeit weak, the shear can be measured quantifying the distortions
of the images of distant galaxies; the shear correlation function
can then be compared to the theoretical expectafion (4.101) in
order to constrain cosmological parameters and the dark-matter
power spectrum; this has been achieved with spectacularly solid
results, leading to an independent confirmation of the standard,
low-density, spatially flat cosmological model with cosmological
constant
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e the cosmic-shear measurements are expected to contribute sub-
stantially to answering the question about the equation of state of
the dark energy
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4.3 Galaxy Clusters

4.3.1 Galaxiesin Clusters

e galaxy clusters are a cosmologically important class of object;
they trace the most pronounced density peaks of large-scale struc-
ture; they are the largest gravitationally bound objects in the uni-
verse, assemble the latest in cosmic history, and thus reflect strc-
ture growth; they are closed objects in that their interiour does
not mix with outside; they are an overdense environment which
impacts on the evolution of their member galaxies

e galaxy clusters were originally defined as regions in the sky with
enhanced galaxy number density; an example are Abell’s criteria:
(1) at least 50 galaxies in the magnitude rangg frs + 2], where
mg is the magnitude of the third-brightest cluster galaxy; (2) the
galaxies are enclosed by the Abell radiis = 1.5h"*Mpc; and
(3) their redshift falls within [@D1, 0.2]; Abell's famous cluster
catalogue is built on these criteria; many other definitions and
catalogues exist

e Abell’'s catalog contains 4076 clusters, of which 2683 have rich-
ness clas® > 1, this corresponds to a local number density of
rich clusters ol ~ 10°h®Mpc®; the mean separation between
clusters is thus n"1/® ~ 50h~* Mpc

¢ elliptical galaxies are enriched compared to spiral galaxies in
clusters; the galaxy population at intermediate luminosities is
well-described by a Schechter luminosity function, but there are
deviations both at the bright and the faint ends; cD galaxies are a
special, bright class of objects in cluster centres; at the faint end,
the luminosity function steepens considerably

¢ the number density of galaxies in clusters is approximately de-
scribed by a cored distribution

2\—3/2
n(r) = ng (1+ r_2) (4.102)

c

with the core radius. ~ 120h~*Mpc and the central number
densityny ~ 2 x 10* h® Mpc™3

e galaxies move within the gravitational potential well of the clus-
ter; they have a velocity distribution centred on the bulk velocity
of the cluster with a velocity dispersion

0'\2, = <Vﬁ> - <V||>2 (4103)

wherevy; is the velocity component parallel to the line-of-sight;
typical cluster velocity dispersions are of ordef000 km s*
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e moving with this velocity, galaxies take approximately a few Gyr
to cross galaxy clusters, i.e. an amount of time comparable to the
Hubble time; it is thus unclear whether galaxy clusters can be
considered as relaxed objects in equilibrium (and the definition
of equilibrium in self-gravitating systems is equally unclear)

¢ for a galaxy of mass at radiusR enclosing the cluster mas4,
the virial theorem demands
m GMm
ATy =—~V) = 25(303) - = (4.104)
where the factor 3 comes in becausgis the dispersion along
one spatial direction only; this yields the mass estimate

3Ro2 _— R oy 2
~—g =10%h Mpc(l.Sh—lMpc)(loookmsl)

(4.105)
althought the application of the virial theorem is questionable,
this mass is approximately 10 times the mass visible in galaxies;
this was the first hint at substantial amounts of dark matter in the
universe

M

¢ for self-gravitating gas spheres in hydrostatic equilibrium, the hy-
drostatic equation reads
dp _ GM(r)
a r2

wherep andp are the gas pressure and density, respectively; for
an ideal gasp = pkT/m, wheremis the particle mass; thus,

(4.106)

kTdo pkdT GM
— == 4.107
m dr " m dr r2 ( )
e considering the motion of galaxies within the dark-matter domi-
nated cluster as the motion of a gas with temperature

2

3~ m_ 5 _ oy
SKT=5@0) = T=— (4.108)
in an external potential well created by the mésseq. (4.10])

becomes

(4.109)

ro2 dlnp+dlna§
G \diInr dinr

wherep is now the (number) density of galaxies



CHAPTER 4. THE LATE UNIVERSE 108

4.3.2 X-Ray Emission

e soon after X-ray detectors were first used in astronomy, it was
detected that galaxy clusters are the brightest X-ray sources in the
sky; when X-ray spectra could be taken, it was discovered that
the X-ray radiation has an exponential ctif-oharacteristic of
thermal radiation; when the sources could be spatially resolved,
clusters turned out to beftlise sources

¢ the X-ray radiation thus reveals that clusters are filled with ther-
mal gas which is hot enough for emitting X-rays; in an ionised,
hot gas (a plasma), electrons scatt#rians and radiate because
of their acceleration; this is thermaéremsstrahlungfree-free
emission)

¢ heuristically, the X-ray emissivity, (X) (i.e. the amount of energy
emitted in photons of frequenayper unit frequency intervaly,
per unit time and unit plasma volume) must scale with the squared
particle number density because it is a two-body process; with the
time available for the scattering process, which is proportional to
the inverse relative velocity, or the inverse square root of the tem-
perature; and the Boltzmann factor for the distribution of energy
at a given temperature; accordingly, we expect

2
. _~ P hvkT
j,(X) =C—e (4.110)
VT
whereC is a constant; this is confirmed by the theory of radiation

processes

o if the gas has densify and temperatur®, eq. (4.10]) requires

rkT (dlnp dInT)

M(r) = “Gm\dinr - dinr

(4.111)

e combining this with the mass estimdfe (4.JL09), we have

) dlnpga|+dlno-§ _kT dlnpgas+dInT
v\ dinr dinr )] m\ dinr dinr

introducing the ratio of specific energies

) (4.112)

_ Moy
Bi= 7 (4.113)
yields
using the definition of3, dInc2 = dInT + dIng, and [(4.114)
becomes

dINpgas = Bd Npga + (8 — 1)dInT + d8 (4.115)
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and thus
Pyas < pgal TA L (4.116)

e assuming isothermal gas, its distribution should thus follow the
galaxy distribution to the power of theparameter; adopting the
galaxy distribution[(4.102) suggests iherofile

r2 -38/2
Pgas = Po (1+ I’_z) (4.117)
0
since the X-ray emissivity is p?, this implies
2\"¥
Jo(r) e (1 + r_Z) (4.118)
0

and, after projection, the X-ray flux per unit solid angle

0 -36+1/2
) (4.119)

Sx = Sxo |1+ —
X xo( + %
which routinely provides excellent fits to the X-ray surface bright-
ness of observed clusters with~ 200h~tkpc ands ~ 2/3

e such ‘B fits” yield the derivative dlpg.s/dInr and thus the
isothermal mass estimate

3BrkT  r2/r3

M(r) =
") Gm 1+r2/rZ

(4.120)

such mass estimates can be highly misleading because of the
many assumptions they rely on; (4.120) impliegr) o« r for
r>rop

e assuming an NFW dark-matter density profile (2]113) and gas in
hydrostatic equilibrium with it yields density and X-ray surface-
brightness profiles which can excellently be fit wikprofiles,
but the resulting mass profile is wrong

e explaining the total X-ray luminosities of clusters requires central
particle number densities of

PO L 102cm3 (4.121)
m
total gas masses are of order(10 — 20)% of the total cluster
masses, which corresponds to the cosmic baryon fraction

Qe 0047
L LPNY 4.122
O 03 ° ( )
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comparing the thermal energy content to the total (frequency-
integrated) X-ray emissivity defines the cooling time

3nkT
teool = 2—j (4.123)

which drops below the Hubble time in the centres of massive clus-
ters; where gas should thuffieiently cool; traces of cool gas
(e.g. stars) have not been seen, and recent X-ray spectra do not
reveal any spectral signatures (e.g. metal lines) of cool gas; there-
fore, there must be a way of re-heating the cooling gas in cluster
cores, which could be provided by Active Galactic Nuclei (AGN)

in clusters

4.3.3 Gravitational Lensing by Galaxy Clusters

the cores of galaxy clusters are dense enough to produce strong
gravitational lensing, giving rise to strongly distorted images of
background galaxies, so-callacts assuming axial symmetry of
the projected mass distribution, arcs should trace a circle with the
Einstein radiusgg of the cluster, which is given by the require-
ment that the mean cluster convergence within the Einstein radius
iS unity M) 1
E !

(k) (D) T 1, (4.124)
whereX, is the critical surface-mass density definedin (#.67) and
D4 is the angular-diameter distance to the cluster

if cluster and source redshifts are known, and a cosmological
model is adopted, this can be inverted to yield the cluster mass
enclosed by the Einstein radius

M(be) = nD3Zc, 62 (4.125)

mass estimates obtained this way are of the same order of magni-
tude as those found with other techniques, but there are systematic
discrepancies; in many clusters, the strong-lensing mass estimate
obtained from([(4.125) is substantially higher than, e.g. the X-ray
mass estimate

the reason for such systematic deviations is that clusters are typ-
ically highly asymmetric and substructured, which gives rise to
strong gravitational tidal fields; this allows strong gravitational
lensing dfects at a substantially lower cluster mass than that re-
quired if the clusters were symmetric

away from their cores, clusters weakly deform the images of
background galaxies and thus imprint their approximately tan-
gential shear pattern on them; this distortion is observable as in
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cosmological weak lensing; usirig (4]80), the observed shear pat-
tern can be transformed into a mass map; such weak-lensing mass
measurements typically agree well with X-ray mass determina-
tions

4.3.4 Sunyaev-Zel'dovich Hects

the CMB radiation shines through the hot plasma in galaxy clus-
ters and must Compton-scattei the electrons; since they are
extremely more energetic than the photons, they typically loose
energy and scatter the photons to higher energy

the photon number is conserved, but the photon energy is in-

creased; the resulting spectrum must thus deviate from the shape
of the Planck curve which the photons have before scattering;

there must be a lack of photons at low and an increase of pho-

tons at high energies compared to the Planck curve; this is the

thermal Sunyaev-Zel'dovich (tSZ)tect

the relative intensity change at frequendg

5|_| _ 2(1;1)3 (exx“_exl)2 [xcotn(3) - 4] (4.126)

wherex := hy/KT is the dimensionless frequency; note that
the CMB temperature as seen by the cluster, and not the electron
temperature in the cluster!

y is the Compton parameter

KT,
y = f mec;‘TT nedll (4.127)

i.e. the typical relative energy change of a photon in Compton
scattering, times the scattering probability;is the electron tem-
perature of the cluster, antd is the Thomson cross section

the relative intensity chang# /1 is negative for frequencies be-
low, and positive abovex = 3.83 orv = 217 GHz; although

the zero-crossing frequency depends on the CMB temperature
which is higher at high-redshift clusters, it is later redshifted
such that the@bservedzero-crossing of the tSZfect is redshift-
independent; this is a most remarkable feature of the tRCte

clusters moving with respect to the CMB rest frame additionally
Compton-scatter the CMB radiation like mirrors and thus give
rise to a frequency shift called the kinetic Sunyaev-Zel'dovich
(kSZ) dfect; it may be possible to use thifect for measuring
the bulk velocities of clusters
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4.3.5 Clusters as Cosmological Tracers

e we have seen irj (2.96) that the fraction of cosmic volume filled
with haloes of masM is

F(M,a) = erfc(ﬁ%(a)) (4.128)
R

whereo(a) is the variance of dark-matter fluctuations filtered on
the scaleR corresponding to the cluster mags

o the observed fraction of the cosmic matter contained in clusters
nc(@Q)M¢(a)
p(a)
wherep is the mean cosmic density, andandM,. are the number

densities and masses of observed galaxy clusters; inserting typical
numbers yields

F'(M,a) = (4.129)

F'(M,a=1)=~1%Q.} (4.130)

for typical cluster masses ef5 x 10*h™ M,

e equating this with the expected cluster fractipn (4]128) yields an
estimate fowrg, which can be converted to the convential normal-
isation parametetg; typically, values near.6 — 0.7 are found,
which are somewhat lower than those found from weak gravita-
tional lensing

e comparing the Press-Schechter mass function to the observed
mass distribution of clusters at increasing redshifts constrains
structure growth as a function of cosmic time, and thus also cos-
mological parameters, maino; the lack of strong evolution
implies low density in good agreement with, = 0.3

4.3.6 Scaling Relations

¢ the total potential energy of a cluster is proportional to the squared
mass, divided by the radius

GM?
R
and the radius scales with the mass IRex M3 (cf.|[2.116);

thus, the mean total potential energy is expected to scale with the
mass as

V) o — (4.131)

(V) oc —M>3 (4.132)
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¢ the mean kinetic energyf’) is proportional to the temperatuiie
times the number of particlds, i.e. to the product M; the virial
theorem requires(@) = —(V), or

TMox M2 = To M3 (4.133)

two orders of magnitude in cluster mass thus correspond to a fac-
tor of ~ 20 in cluster temperature

¢ the bolometric (i.e. frequency-integrated) X-ray luminosity of a
cluster scales like the electron density, times the mass, times the
square root of the temperature; thus

Ly o« M % TY2 c MMY3 o« M#3 o T2 (4.134)

becauseM « R®

¢ these simple scaling relations derived from gravitational physics
predict a luminosity-temperature relatidey o« T2 and a
mass-temperature relatidl o« T3; while the observed mass-
temperature relation is close to that expectation, the luminosity-
temperature relation is observed to be flatter than expected
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