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1.1 Geometry and Dynamics

1.1.1 Assumptions

• cosmology rests on two fundamental assumptions:

If the universe is isotropic about all
points, it must be homogeneous.

The galaxy distribution is mani-
festly anisotropic...

... but the microwave background is
phantastically isotropic.

1. when averaged over sufficiently large scales, the observable
properties of the Universe are isotropic, i.e. independent of
direction;

it remains to be clarified whatsufficiently largescales are;
nearby galaxies are very anisotropically distributed, distant
galaxies approach isotropy, the microwave background is al-
most perfectly isotropic

2. our position in the Universe is by no means preferred to any
other (cosmological principle);

reflects Copernican revolution of the world model, when it
was realised that the Earth is not at the centre of the Uni-
verse;

by the second assumption, the first must hold for every observer
in the Universe; if the Universe is in fact isotropic around all of
its points, it is also homogeneous; thus, these two assumptions
are often phrased as

the Universe is homogeneous and isotropic

• these are bold assumptions, which have to be justified; obviously,
an ideally homogeneous and isotropic universe would not allow
us to exist; it needs to be carefully studied how an idealised world
model following from these two assumptions can accomodate
structures

• of the four interactions (strong, weak, electromagnetic and gravi-
tational), strong and weak are limited to length scales typical for
elementary-particle interactions; electromagnetism is limited in
range by the shielding of opposite charges, although magnetic
fields can bridge very large scales; the remaining force relevant
for cosmology is gravity

• gravity is described by general relativity; Newtonian gravity was
constructed for isolated bodies and has fundamental difficulties in
explaining space filled with homogeneous matter

• general relativity describes space-time as a four-dimensional
manifold whose metric tensorgµν is a dynamical field; its dy-
namics is governed by Einstein’s field equations which couple
the metric to the matter-energy content of space-time
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• as the structure of space-time determines the motion of matter
and energy, which determine the structure of space-time, general
relativity is inevitably non-linear (in contrast to electrodynamics);
solutions of Einstein’s field equations are thus thus typically very
difficult to construct

1.1.2 Metric

• due to symmetry, the 4×4 tensorgµν has ten independent compo-
nents, the time-time componentg00, the three space-time compo-
nentsg0i, and the six space-space componentsgi j

• the two fundamental assumptions greatly simplify the metric;
phrased in a more precise language, they read

1. when averaged over sufficiently large scales, there exists a
mean motion of matter and energy in the Universe with re-
spect to which all observable properties are isotropic;

2. all fundamental observers, i.e. imagined observers follow-
ing this mean motion, experience the same history of the
Universe, i.e. the same averaged observable properties, pro-
vided they set their clocks suitably

• consider the eigentime element ds,

ds2 = gµνdxµdxν (1.1)

spatial coordinates attached to fundamental observers are called
comoving coordinates; in such coordinates, dxi = 0 for funda-
mental observers; requiring that their eigentime equal the coordi-
nate time dt, we have

ds2 = g00dt2 = c2dt2 ⇒ g00 = c2 (1.2)

• isotropy requires that clocks can be synchronised such thatg0i =

0; if that was impossible, the components ofg0i singled out a
preferred direction in space, violating isotropy; thus

g0i = 0 (1.3)

• the line element is thus reduced to

ds2 = c2dt2 + gi j dxidx j (1.4)

thus, spacetime can be decomposed into spatial hypersurfaces of
constant time, i.e. it permits afoliation; without violating isotropy
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and homogeneity, the spatial hypersurfaces can be scaled by a
functiona(t) which can only depend on time,

ds2 = c2dt2 − a2(t)dl2 (1.5)

where dl is the line element of homogeneous and isotropic three-
space; a special case of (1.5) is Minkowski space, for which dl is
the Euclidean line element

The space-time of the universe can
be foliated into flat or positively or
negatively curved spatial hypersur-
faces.

• isotropy requires three-space to have spherical symmetry; we thus
introduce polar coordinates (w, θ, φ) wherew is the radial coordi-
nate and (θ, φ) are the polar angles:

dl2 = dw2 + f 2
K(w)

[
dφ2 + sin2 θdθ2

]
= dw2 + f 2

K(w)dω2 , (1.6)

where dω is the solid-angle element; the radial functionfK(w) is
permitted because the relation between the radial coordinatew
and the area of spheres of constantw is still arbitrary

• the metric expressed by the line element (1.6) is manifestly
isotropic; it can be shown that homogeneity requiresfK(w) to be
trigonometric, hyperbolic, or linear inw,

fK(w) =


K−1/2 sin(K1/2w) (K > 0)
w (K = 0)
|K|−1/2 sin(|K|1/2w) (K < 0)

(1.7)

whereK is a constant parameterising the curvature of spatial hy-
persurfaces;fK(w) and|K|−1/2 have the dimension of a length

• an alternative form of the line element ds is obtained substituting
the radial coordinate byr for fK(w), then

dl2 =
dr2

1− Kr2
+ r2dω2 (1.8)

this is often used, but has the disadvantage of becoming singular
for K > 0 andr = K−1/2

• we thus arrive at the metric for the homogeneous and isotropic
universe,

ds2 = c2dt2 − a2(t)
[
dw2 + f 2

K(w)dω2
]

(1.9)

with fK(w) given by (1.7); this is called Robertson-Walker metric

1.1.3 Redshift

• spatial hypersurfaces can expand or shrink controlled by the scale
functiona(t); this leads to a red- or blueshift of photons propagat-
ing through space-time



CHAPTER 1. THE HOMOGENEOUS UNIVERSE 8

• consider light emitted from a comoving source at timete reaching
a comoving observer atw = 0 at timeto; since ds = 0 for light,
the metric (1.9) requires

c|dt| = dw (1.10)

where the modulus on the left-hand side indicates that time can
run with or againsw, depending on whetherw is measured to-
wards or from the observer

• the coordinate distance between source and observer is

weo =

∫ to

te

dw =
∫ to

te

cdt
a(t)
= const. (1.11)

thus the derivative ofweo with respect to the emission timete must
vanish

dweo

dte
=

1
a(to)

dto
dte
−

1
a(te)

⇒
dto
dte
=

ao

ae
(1.12)

• time intervals dte at the source are thus changed until they arrive at
the observer in proportion to changes in the scale of the universe
between emission and absorption

• let dt = ν−1 be the cycle time of a light wave, then

νe

νo
=
λo

λe
= 1+

λo − λe

λe
= 1+ z=

a(te)
a(to)

(1.13)

thus, light is red- or blueshifted by the same amount as the Uni-
verse expanded or shrunk between emission and observation

1.1.4 Dynamics

• the dynamics of the metric (1.9) is reduced to the dynamics of the
scale factora(t); differential equations fora(t) now follow from
Einstein’s field equations, which read

Gαβ =
8πG
c2

Tαβ + Λgαβ (1.14)

Λ is the cosmological constant originally introduced by Einstein
in order to allow static cosmological models

• Gαβ is the Einstein tensor constructed from the curvature tensor,
which depends on the metric tensor and its first and second deriva-
tives

• Tαβ is the stress-energy tensor of the cosmic fluid, which must be
of the form of the stress-energy tensor of a perfect fluid, charac-
terised by pressurep and (energy) densityρ, which can only be
functions of time because of homogeneity,

p = p(t) , ρ = ρ(t) (1.15)
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• when specialised to the metric (1.9), Einstein’s equations (1.14)
reduce to two differential equations for the scale factora(t):( ȧ

a

)2

=
8πG

3
ρ −

Kc2

a2
+
Λ

3
ä
a
= −

4πG
3

(
ρ +

3p
c2

)
+
Λ

3
(1.16)

these are Friedmann’s equations; a Robertson-Walker metric
whose scale factor satisfies (1.16) is called Friedmann-Lemaı̂tre-
Robertson-Walker metric; the scale factor is uniquely determined
once its value at a fixed timet is chosen; we seta = 1 today;

Alexander Friedmann

Georges Lemâıtre

• the Friedmann equations can be combined to yield the adiabatic
equation

d
dt

(
a3ρc2

)
+ p

d
dt

(
a3

)
= 0 (1.17)

which intuitively states energy conservation: the left-hand side is
the change in internal energy, the right-hand side is the pressure
work; this is the first law of thermodynamics in absence of heat
flow (which would violate isotropy)

• since energy conservation (1.17) follows from the Friedmann
equations (1.16), any two equations from (1.16) and (1.17) can be
used equivalently to all three of them; we follow common prac-
tise and use the first-order equation from (1.16), which we will
call theFriedmann equation henceforth, and (1.17) where needed

1.1.5 Remark on Newtonian Dynamics

• note that (1.16) can also be derived from Newtonian gravity, ex-
cept for theΛ term; the argument runs like this: in a homoge-
neous and isotropic universe, a spherical region of radiusRcan be
identified around an arbitrary point, the matter density within that
sphere must be homogeneous; the matter surrounding the sphere
cannot have any influence on its dynamics because it would have
to pull into some direction, which would violate isotropy; thus,
the size of the sphere is arbitrary

• suppose now a test massm is located on the boundary of the
sphere; it’s equation of motion is

r̈ = −
G
r2

(
4π
3

r3ρ

)
= −

4πG
3

rρ (1.18)

this is already the second eq. (1.16) except for the pressure term
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• the pressure term adds to the density because pressure is a con-
sequence of particle motion, i.e. the kinetic energy of particles,
which is equivalent to a mass density and thus acts gravitation-
ally; for particles with a mean squared velocity〈v2〉,

p =
ρ

3

〈
v2

〉
=

1
3

Ekin ⇒ ρp =
Ekin

c2
=

3p
c2

(1.19)

thus the pressure adds an equivalent mass densityρp, which we
have to add toρ; (1.18) thus reads

r̈ = −
4πG

3
r

(
ρ +

3p
c2

)
(1.20)

• in analogy to (1.17), energy conservation requires

3r2ṙρc2 + r3ρ̇c2 = 3pr2ṙ (1.21)

dividing by r and combining terms yields

2r ṙρ +

(
ρ +

3p
c2

)
r ṙ + r2ρ̇ = 0 (1.22)

eliminating the term in brackets with (1.20) yields

2ṙ r̈ =
8πG

3
(2r ṙρ + r2ρ̇) ⇒

d(ṙ2)
dt
=

8πG
3

d(ρr2)
dt

(1.23)

• integrating, we find ( ṙ
r

)2

=
8πG

3
ρ +

C
c2

(1.24)

with a constant of integrationC; putting K = −C/c2 yields the
first eq. (1.16) without theΛ term

• we thus find that Friedmann’s equations can be derived from
Newtonian dynamics if we account for the mass density equiv-
alent to the energy density related to pressure and solve the equa-
tion of motion of a self-gravitating homogeneous sphere taking
energy conservation into account; theΛ term is purely relativistic
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1.2 Parameters, Age and Distances

1.2.1 Forms of Matter

• two forms of matter can broadly be distinguished, relativistic and
non-relativistic; they are often called radiation and dust, respec-
tively

• for relativistic bosons and fermions, the pressure is

p =
ρc2

3
(1.25)

while non-relativistic matter is well approximated as pressure-
free, p = 0, because the pressure is much smaller than the rest-
mass energyρc2 it needs to be compared with

• for non-relativistic matter, (1.17) reads

d
dt

(
a3ρc2

)
= 0 ⇒

ρ̇

ρ
= −3

ȧ
a

(1.26)

which implies
ρ(t) = ρ0a

−3 , (1.27)

with the present densityρ0 and using the convention thata =
1 today; this simply reflects that the density of non-relativistic
matter is decreasing because of dilution as space is expanding

• for relativistic matter, (1.17) becomes

d
dt

(
a3ρc2

)
+
ρ

3
d
dt

(
a3

)
= 0 ⇒

ρ̇

ρ
= −4

ȧ
a

(1.28)

implying
ρ(t) = ρ0a

−4 (1.29)

the density of relativistic particles drops faster by one more power
of a because particles are diluted and lose energy because they are
redshifted

• we have thus exploited the adiabatic equation for deriving the de-
pendence of density on the scale factor for non-relativistic and
relativistic matter; inserting (1.27) and (1.29) into the Friedmann
equation as appropriate, we thus obtain a single equation for the
dynamics of the scale factor
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1.2.2 Parameters

• it is convenient to introduce parameters, most of which are
dimension-less; theHubble parameteris defined as the relative
expansion rate,

H(t) :=
ȧ
a
, H0 := H(t0) ; (1.30)

its value at the present timet0 is theHubble constant; it has the
unit of an inverse time, but is commonly expressed in units of
km s−1 Mpc−1 because it quantifies by how much the recession
velocity of cosmic objects grows as their distance increases; the
Hubble constant is frequently expressed by the dimension-less
parameterh,

H0 = 100h
km

s Mpc
= 3.2× 10−18 hs−1 (1.31)

• the inverse of the Hubble constant is the Hubble time,

tH :=
1

H0
= 3.1× 1017 h−1 s= 9.8× 109 h−1 yr (1.32)

the Hubble time times the speed of light is the Hubble radius,

rH :=
c

H0
= 9.3× 1027 h−1 cm= 3.0× 103 h−1 Mpc (1.33)

• the critical density is defined as

ρcr(t) :=
3H2(t)
8πG

, ρcr0 := ρcr(t0) =
3H2

0

8πG
(1.34)

writing it in the form

4πG
3

(
ρcra3

a

)
=

ȧ2

2
(1.35)

illustrates that in a sphere filled with matter of critical density the
gravitational potential is exactly balanced by the specific kinetic
energy

• the critical density today is

ρcr0 = 1.9× 10−29 h2 g cm−3 (1.36)

corresponding to a proton mass in approximately 105 cm3 of the
cosmic volume, or about a galaxy mass per Mpc3

• densities expressed in units of the critical density are the
dimension-less density parameters

Ω(t) :=
ρ(t)
ρcr(t)

, Ω0 := Ω(t0) =
ρ(t0)
ρcr0

(1.37)
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• the density parameter corresponding to the cosmological con-
stant, also often called cosmological constant, is

ΩΛ(t) =
Λ

3H2(t)
, ΩΛ0 := ΩΛ(t0) =

Λ

3H2
0

(1.38)

• distinguishing the densities of radiation,ρR, and non-relativistic
matter,ρM, we introduce the two density parameters

Ωr0 =
ρr0

ρcr
, Ωm0 =

ρm0

ρcr
(1.39)

using (1.27) and (1.29) yields

ρr = Ωr0ρcr0a
−4 , ρm = Ωm0ρcr0a

−3 (1.40)

• replacingρ→ (ρr + ρm) in Friedmann’s equation then yields

H2(a) = H2
0

[
Ωr0a

−4 + Ωm0a
−3 + ΩΛ0 −

Kc2

a2

]
(1.41)

specialising toa = 1, we haveH2(a = 1) = H2
0 on the left-hand

side; solving for theK-dependent term, we find

− Kc2 = 1−Ωr0 −Ωm0−ΩΛ0 =: ΩK (1.42)

the curvature parameter

• we thus arrive at the final form for Friedmann’s equation

H2(a) = H2
0

[
Ωr0a

−4 + Ωm0a
−3 + ΩΛ0 + ΩKa−2

]
=: H2

0E2(a) (1.43)

it is mostly used in this form for practical calculations

• note that all density contributions in square brackets scale with
different powers ofa; their relative importance thus changes over
time; today, the radiation density is much smaller than the mat-
ter density; however, going back in time, the radiation density
grows faster than the matter density, so there is a timeteq before
which radiation dominates; expressingteq by the scale factoraeq,
we have from (1.40)

aeq =
Ωr0

Ωm0
(1.44)

before that, the universe is called radiation-dominated; later, mat-
ter dominates while curvature is still negligible; finally curvature
becomes important andΩΛ may take over
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• the density parameters change with time; ignoring radiation den-
sity, one has for non-relativistic matter

Ωm(a) =
8πG

3H2(a)
ρm0a

−3 =
Ωm0

a+ Ωm0(1− a) + ΩΛ0(a3 − a)
(1.45)

and for the density parameter corresponding to the cosmological
constant

ΩΛ(a) =
Λ

3H2(a)
=

ΩΛ0a3

a+ Ωm0(1− a) + ΩΛ0(a3 − a)
(1.46)

• two interesting consequences follow from eqs. (1.45) and (1.46):
first, they implyΩm(a)→ 1 andΩΛ(a)→ 0 for a→ 0 regardless
of their present valuesΩm0 andΩΛ0; second, ifΩm0 + ΩΛ0 = 1,
this remains valid fora < 1

1.2.3 Parameter Values

• the cosmological parameters, most notablyH0, Ωm0 andΩΛ0,
were highly insecure for most of the last century; only re-
cently, the situation has much improved mainly because of the
microwave-background measurements and wide-field galaxy sur-
veys like the 2-Degree-Field (2dF) survey and Sloan Digital Sky
Survey (SDSS)

• combining microwave-background and SDSS measurements, the
cosmological parameters are now constrained as follows (all er-
rors are 1-σ error margins):

Hubble
constant

h 0.70+0.04
−0.03 CMB + SDSS

0.72± 0.07 HST Key
Project

matter density Ωm0 0.30± 0.04 assuming
ΩK = 0

0.41± 0.09 freeΩK

cosmological
constant

ΩΛ0 0.70± 0.04 assuming
ΩK = 0

0.65± 0.08 freeΩK

curvature ΩK −0.06± 0.04 freeΩK

baryon den-
sity

h2ΩB 0.023± 0.001

ΩB 0.047± 0.006
radiation den-
sity

Ωr0 (2.494± 0.007)· 10−5 from CMB
temperature
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• sinceΩK is very close to zero, we will assumeΩK = 0 in most of
what follows

• the Hubble constant is

H0 = 70+4
−3 km s−1 Mpc = (2.3± 0.1)× 10−18 s−1 (1.47)

i.e. the Hubble time is

1
H0
= (4.4± 0.3)× 1017 s= (1.4± 0.08)× 1010 yr (1.48)

• from (1.44), the scale factor at matter-radiation equality is

aeq = (8.3± 1.1)× 10−5 (1.49)

1.2.4 Age and Expansion of the Universe

• sinceH = ȧ/a, the age of the Universe is determined by

da
dt
= H0aE(a) ⇒ H0t =

∫ a

0

da′

a′E(a′)
(1.50)

where we have assumed that time starts running whena = 0; this
integral cannot generally be solved analytically, but limiting cases
are interesting to study

• early Universe: in the early Universe, radiation dominates be-
cause its contribution scales witha−4 in Friedmann’s equation;
during that time,E(a) = Ω1/2

r0 a−2 and

H0t =
a2

2
√
Ωr0

⇔ a =
[
2
√
Ωr0H0t

]1/2
(1.51)

thus, at early times, the expansion of the Universe scales like
a ∝
√

t until the radiation density drops near the density of non-
relativistic matter; at matter-radiation equality, the age of the uni-
verse is

teq = 1.9× 1011 s= 5.9× 103 yr (1.52)

• early matter-dominated era: after non-relativistic matter starts
dominating, and before curvature becomes important, we may ap-
proximateE(a) =

√
Ωm0a−3/2 and obtain

H0t =
2a3/2

3
√
Ωm0

⇔ a =

[
3
2

√
Ωm0H0t

]2/3

(1.53)

thus the expansion scales likea ∝ t2/3; this case is called the
Einstein-de Sitter limit and plays an important role in the theory
of cosmological inflation
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• very late Universe: ifΩΛ , 0, it dominates at late times; then,
E(a) =

√
ΩΛ and

H0t =
ln a
√
ΩΛ
⇒ a ∝ exp

[ √
ΩΛH0t

]
(1.54)

where we have ignored the lower integration limit because the
approximation of a dominating cosmological constant is only
valid after finite time; then, the Universe expands exponentially,
i.e. the cosmological constant is driving the Universe exponen-
tially apart; this case is called the de Sitter limit

• we shall see later that the period of radiation domination is brief;
for most of the cosmic time, radiation is negligible and matter,
cosmological constant and curvature co-exist in comparable den-
sities; we shall now study a few interesting simplified cases ig-
noring the contribution from the radiation density

• Einstein-de Sitter universe: ifΩΛ = 0 andΩm0 = 1, (1.50) holds
throughout cosmic history, and

H0t =
2
3

a3/2 ⇔ a =

(
3
2

H0t

)2/3

(1.55)

the age of such a Universe today is

t0 =
2

3H0
= 6.5× 109 h−1 yr (1.56)

this case is historically important

• in a flat universe withΩm0 , 0 andΩΛ = 1 − Ωm0 , 0, the
curvature term vanishes and

H0t =
∫ a

0

√
a′da′√

Ωm0+ ΩΛa′3
(1.57)

this can be integrated substitutingx := a3/2 and yields

H0t =
2

3
√

1−Ωm0

arcsinh


√

1−Ωm0

Ωm0
a3/2

 (1.58)

the age of the universe is

t(a = 1) =
0.96
H0
= 1.35× 1010 yr (1.59)

• the expansion of the spatially flat model becomes exponential
when√

1−Ωm0

Ωm0
a3/2 & 1 ⇒ a &

(
Ωm0

1−Ωm0

)1/3

≈ 0.75 (1.60)
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Figure 1.1: Cosmic aget(a) as a function of the scale factora

• as (1.54) shows, a universe expanding withH0 today may never
reacha = 0 going back in time; the fact that the universe is
expanding today does thus not imply that it originated in a Big
Bang!

• however, it is straightforward to see that there must have been a
Big Bang because we know from the existence of the microwave
background that the radiation density is finite, from the existence
of luminous material that the matter density is finite, and from the
existence of objects with very high redshiftsz that the scale factor
of the universe must have been as small as 1/(1+ z) or smaller in
the past

1.2.5 Distances

• distance measures are no longer unique in general relativity; in
Euclidean geometry, a distance between two points is defined by
a measurement connecting the points at the same instant of time;
this is generally impossible for two reasons; first, what is con-
sidered simultaneous at the two points depends on their relative
motion; second, connecting the points requires time because of
the finite speed of light; distances in cosmology thus need to be
defined according to idealisations or measurement prescriptions,
which generally lead to different expressions

• distance measures relate emission events on a source’s world line
to an observation event on an observer’s world line; the emission
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and observation times bet2 andt1, respectively, are uniquely re-
lated to the scale factorsa2 anda1 > a2 of the universe att2 and
t1, which can in turn be expressed by the redshiftsz2 andz1 < z2

• theproper distance Dprop is the distance measured by the time re-
quired for light to travel from a source to an observer; it is thus
determined by dDprop = −cdt = −cda/ȧ; the minus sign is re-
quired becauseDprop should increase away from, whilet anda
increase towards the observer; thus

Dprop(z1, z2) = c
∫ a(z1)

a(z2)

da
ȧ
=

c
H0

∫ a(z1)

a(z2)

da
aE(a)

(1.61)

the integrand is the same as in (1.50), thus

Dprop(z1, z2) =
2

3
√

1−Ωm0

arcsinh


√

1−Ωm0

Ωm0
a3/2

1


− arcsinh


√

1−Ωm0

Ωm0
a3/2

2


 (1.62)

for a spatially-flat universe

• thecomoving distance Dcom is the distance on the spatial hyper-
surface att = const. between the world lines of a source and an
observer comoving with the mean cosmic flow; this is the coor-
dinate distance between source and observer, thus dDcom = dw;
since light rays propagate according to ds = 0, adw = −cdt =
−cda/ȧ, thus

Dcom(z1, z2) = c
∫ a(z2)

a(z1)

da
aȧ
=

c
H0

∫ a(z2)

a(z1)

da
a2E(a)

=: w(z1, z2)

(1.63)

• theangular diameter distance Dang is defined in analogy to the re-
lation in Euclidean space between the areaδA and the solid angle
δω of an object,δωD2

ang= δA; since the solid angle of spheres of
constant radial coordinatew is scaled byfK(w) in (1.6), we must
have

δA

4πa2
2 f 2

K[w(z1, z2)]
=
δω

4π
(1.64)

in words, the area of the object must be related to the area of the
full sphere like the solid angle of the object to the solid angle of
the sphere; it follows

Dang(z1, z2) =
(
δA
δω

)1/2

= a(z2) fK[w(z1, z2)] (1.65)

as the coordinate distancew(z1, z2) = Dcom(z1, z2), Dang(z1, z2) =
a(z2) fK[Dcom(z1, z2)]
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• a fourth important distance measure is theluminosity distance
Dlum, which is defined in analogy to the Euclidean relation be-
tween the intrinsic luminosity of an object and its flux; counting
emitted and absorbed photons and taking redshift into account,
one finds

Dlum(z1, z2) =

[
a(z1)
a(z2)

]2

Dang(z1, z2) (1.66)

this Etherington relationis valid in arbitrary spacetimes; it is
physically intuitive because photons are redshifted bya1/a2 be-
tween emission and absorption, their arrival times are stretched
by a1/a2, and they are spatially diluted by a factor (a1/a2)2; this
yields a factor (a1/a2)4 between luminosity and flux, and thus a
factor (a1/a2)2 in the luminosity distance
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Figure 1.2: Four different distance measures in a spatially-flat universe
with Ωm0 = 0.3.

• these distance measures can be vastly different at moderate and
high redshifts; forz� 1, a ≈ 1− z, andE(a) ≈ 1, then

D =
cz
H0
+ O(z2) (1.67)

for all distance measures introduced above

• the angular-diameter distance from redshift zero to redshiftz for
an Einstein-de Sitter universe is

Dang(z) =
2c
H0

1
1+ z

[
1−

1
(1+ z)1/2

]
(1.68)
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this shows that cosmological distances need not be monotonic;
in fact, Dang(z) has a maximum forz = 5/4 in the Einstein-de
Sitter case (1.68) and gently decreases for increasingz; this is
a consequence of space-time curvature, to be distinguished from
spatial curvature!

1.2.6 Horizons

• between timest1 andt2 > t1, light can travel across the comoving
distance

∆w(t1, t2) =
∫ t2

t1

cdt
a(t)
= c

∫ a(t2)

a(t1)

da
aȧ

(1.69)

cf. (1.63)

• ast → 0, a→ 0; the curvature and cosmological-constant terms
in the first eq. (1.16) become negligible and

ȧ = a

√
8πG

3
ρ (1.70)

let ρ ∝ ρ0a−n, then

∆w(t1, t2) =
c

H0

√
Ω0

∫ a(t2)

a(t1)

da
a2−n/2

∝ an/2−1 (1.71)

which diverges fora→ 0 if n < 2

• thus, ifn > 2, light can only travel by a finite distance between the
Big Bang and any later time, thus any particle in the Universe can
only be influenced by events within a finite region; there exists a
particle horizon

• a simpler definition of a horizon is often used; namely the time-
dependent Hubble radius

rH(t) =
c

H(t)
=

c
H0

a3/2

√
Ωm0

(
1+

aeq

a

)−1/2

(1.72)

where we have used the Einstein-de Sitter limit (2.25); partic-
ularly important for structure formation is the Hubble radius at
a = aeq,

rH,eq =
c

H0

a3/2
eq

√
2Ωm0

(1.73)

• ast → ∞, supposea ∝ tm, then

∆w(t1, t2) ∝ t1−m (1.74)

which converges form > 1; this happens if the expansion of the
Universe is dominated by the cosmological constant at late times

• then, the region which can be seen by a particle remains finite;
there exists anevent horizon
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1.3 Thermal Evolution

1.3.1 Assumptions

• the universe expands adiabatically– isotropy requires the uni-
verse to expand adiathermally: no heat can flow because flow
directions would violate isotropy; adiathermal expansion is adi-
abatic if it is reversible, but irreversible processes may occur;
however, the entropy of the universe is dominated by far by the
cosmic microwave background, thus entropy generation is com-
pletely negligible

• thermal equilibrium can be maintained despite the expansion–
thermal equilibrium can only be maintained if the interaction rate
of particles is higher than the expansion rate of the Universe; the
expansion rate of the Universe is highest at early times, so thermal
equilibrium may be difficult to maintain ast → 0; nonetheless,
for t → 0, particle densities grow so fast that interaction rates are
indeed higher than the expansion rate; as the Universe expands,
particle species drop out of equilibrium

• the cosmic “fluids” can be treated as ideal gases– ideal gas: no
long-range interactions between particles, interact only by direct
collisions; obviously good approximation for weakly interacting
particles like neutrinos; even valid for charged particles because
oppositely charged particles shield each other; consequence: in-
ternal energy of ideal gas does not depend on volume occupied;
cosmic “fluids” can be treated as possibly relativistic quantum
gases

• those assumptions are the starting point of our considerations;
they need to be verified as we go along

1.3.2 Quantum Statistics

• we will need many relations later for the behaviour of ideal quan-
tum gases which we now derive in a brief detour

• if a thermodynamic system has fixed internal energy, particle
numberN, and volume, it is called a micro-canocical ensemble;
its density in phase space is constant

• if only the mean internal energy is specified, the ensemble is
canonical; the probability of finding a quantum state (symboli-
cally labelled byα) with energyεα occupied is given by the Boltz-
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mann factor

fn =
e−εα/kT

Zc
, Zc =

∑
α

e−εα/kT (1.75)

whereT is the temperature,µ is the chemical potential andZC is
the canonical partition sum over all accessible quantum states; the
canonical phase-space distribution minimises the Helmholtz free
energieF(T,V,N) = −kT ln Zc

• if, in addition, only the mean number of particles is specified,
the ensemble is grand-canonical; all accessible quantum states
(labelled byα) are then occupied by an unknown numberNα of
particles such that

∑
α Nα = N; the total energy of that ensemble

is E(Nα) =
∑
α εαNα; the phase-space distribution function of a

grand-canonical ensemble is

fn =
e−[E(Nα)−µNα]/kT

Zgc
, Zgc =

∞∑
N=0

eµN/kT
∑
{Nα}

e−E(Nα)/kT (1.76)

whereZgc is the grand-canonical partition sum, in which the sec-
ond sum is over all sets{Nα} of occupation numbers which sum
up to N; the grand-canonical phase-space distribution minimises
the grand-canonical potentialΦ(T,V, µ) = −kT ln Zgc

• we now evaluate the grand-canonical partition sum:

Zgc =

∞∑
N=0

∑
{Nα}

e−
∑
α(εα−µ)Nα/kT (1.77)

although the second sum is constrained, we have to sum over all
possible particle numbersN; thus, ultimately all possible sets of
occupation numbersNα occur, and

Zgc =
∑
Nα

∏
α

e−(εα−µ)Nα/kT =
∏
α

Zα , (1.78)

with
Zα :=

∑
Nα

e−(εα−µ)Nα/kT (1.79)

• for fermions,Nα = 0,1 because of Pauli’s exclusion principle,
while for bosons,Nα = 0,1, . . . ,∞; thus

Zα =

 1+ e−(εα−µ)/kT fermions(
1− e−(εα−µ)/kT

)−1
bosons

(1.80)

where we have used the geometrical series

∞∑
n=0

e−nx =

∞∑
n=0

(
e−x)n

=
1

1− e−x
(1.81)
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• the mean occupation number of a quantum stateα is

N̄α =
1
Zα

∑
α

Nαe
−(εα−µ)Nα/kT =

kT
Zα

∂Zα
∂µ

(1.82)

which leads to the well-known result

N̄α =
1

e−(εα−µ)/kT ± 1
(1.83)

where the+ sign applies to fermions, the− sign to bosons

1.3.3 Properties of Ideal Quantum Gases

• in thermal equilibrium with a heat bath of temperatureT, the
chemical potential of a system withN particles must vanish,
µ = 0: the Helmholtz free energyF(T,V,N) = E − TS is min-
imised in equilibrium for a system at constantT andV, so from
dF = −SdT − PdV + µdN = 0

∂F
∂N
= µ = 0 (1.84)

• the particle momentum~p = ~~k is generally related to energy by

ε(p) =
√

c2p2 +m2c4 (1.85)

• for particles confined in a volumeV, the number of states per
k-space element is

dN = g
V

(2π)3
d3k (1.86)

whereg is the statistical weight, e.g. the spin degeneracy factor;
summations over quantum states are now replaced by integrals
overk space weighted according to (1.84)

• using (1.83), the spatial particle number density in thermal equi-
librium is

n =
g

(2π~)3

∫ ∞

0

4πp2dp
exp[ε(p)/kT] ± 1

(1.87)

the mean energy density is the number of states per phase-space
volume element, times the mean occupation number, times the
energy per state, integrated over momentum space,

u =
g

(2π~)3

∫ ∞

0

4πp2 ε(p) dp
exp[ε(p)/kT] ± 1

(1.88)
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• integrals like those in (1.87) and (1.88) are most easily carried out
by substituting the geometrical series (1.91),∫ ∞

0

xmdx
ex − 1

=

∫ ∞

0

xme−xdx
1− e−x

=

∫ ∞

0
dxxme−x

∞∑
n=0

e−nx

=

∞∑
n=1

∫ ∞

0
dxxme−nx = m!ζ(m+ 1) (1.89)

for fermions, use

1
ex + 1

=
1

ex − 1
−

2
e2x − 1

(1.90)

• using (1.78), (1.80) and (1.85), the grand-canonical potential can
be written as

Φ(T,V, µ) = ∓kT
gV

(2π~)3

∫ ∞

0
dp4πp2 ln

[
1± eµ/kTe−ε(p)/kT

]
(1.91)

where the upper sign applying to fermions, the lower to bosons;
from the expressions for the Helmholtz free energyF, the grand-
canonical potentialΦ and the thermodynamic Euler relation,

F(T,V,N) = U − TS

Φ(T,V, µ) = F − µN = U − TS− µN

U = TS− PV+ µN (1.92)

we find the simple relation

Φ = −PV ⇒ P = −
Φ

V
(1.93)

which enables us to directly compute the pressure of quantum
gases; likewise, from the total differential of the grand-canonical
potential, dΦ(T,V, µ) = −SdT − PdV − Ndµ, we find the entropy
as

S = −
∂Φ

∂T
(1.94)

• example: a relativistic bosons haveε = cp, and in thermal equi-
librium their chemical potential vanishes,µ = 0; their grand-
canonical potential is thus

Φ(T,V, µ) = kT
gV

(2π~)3

∫ ∞

0
4πp2dp ln

[
1− e−cp/kT

]
(1.95)

we substitutex := cp/kT and find

Φ(T,V, µ) =
gV

2π2~3

(kT)4

c3

∫ ∞

0
x2dx ln

(
1− e−x) (1.96)
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the integral over the logarithm can be solved as follows:∫ ∞

0
xm ln

(
1− e−x) dx =

xm+1

m+ 1
ln

(
1− e−x)∣∣∣∣∣∣∞

0

−

∫ ∞

0

xm+1

m+ 1
e−x

1− e−x
dx

= −m!ζ(m+ 2) (1.97)

where (1.89) was inserted; we thus find the grand-canonical po-
tential

Φ(T,V, µ) = −gV
π2

90
(kT)4

(~c)3
(1.98)

from which we obtain the pressure

PB = g
π2

90
(kT)4

(~c)3
(1.99)

and the entropy density

s=
S
V
= gk

2π2

45

(
kT
~c

)3

(1.100)

• summarising, these equations yield the following expressions for
the number, energy, entropy densities and the pressure of rela-
tivistic boson and fermion gases in thermal equilibrium:

nB = gB
ζ(3)
π2

(
kT
~c

)3

, nF =
3
4

gF

gB
nB

uB = gB
π2

30
(kT)4

(~c)3
, uF =

7
8

gF

gB
uB

PB = gB
π2

90
(kT)4

(~c)3
=

uB

3
, PF =

7
8

gF

gB
PB

sB = gBk
2π2

45

(
kT
~c

)3

, sF =
7
8

gF

gB
sB (1.101)

• some numbers are useful for later estimates; note: 1 eV= 1.6 ×
10−12 erg correspond tokT = 1.16× 104 K

nB = 10gB

(T
K

)3

cm−3 = 1.6× 1013gB

(
kT
eV

)3

cm−3

uB = 3.8× 10−15gB

(T
K

)4 erg
cm3
= 2.35× 10−3gB

(
kT
eV

)4 erg
cm3

sB

k
= 36gB

(T
K

)3

cm−3 = 5.7× 1013gB

(
kT
eV

)3

cm−3 (1.102)
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1.3.4 Adiabatic Expansion of Ideal Gases

• for relativistic boson or fermion gases in thermal equilibrium, the
pressure is a third of the energy density,

P =
u
3
=

E
3V

(1.103)

• the first law of thermodynamics in absence of heat transfer, dE +
PdV = 0, then implies

dE = −PdV = 3d(PV) ⇒ P ∝ V−4/3 (1.104)

i.e. theadiabatic indexis γ = 4/3; for non-relativistic ideal gases,
γ = 5/3

• according to (1.101), pressureP scales with temperatureT4 for
relativistic particles, thus

T ∝ V−1/3 ∝ a−1 (1.105)

wherea is the cosmological scale factor; the temperature of non-
relativistic gases drops faster,

T ∝ PV ∝ V−5/3+1 ∝ a−2 (1.106)

• the result (1.104) is very important for cosmology; it implies that
the photon temperature drops inversely proportional to the scale
factor, which has an important consequence for the spectrum of
the microwave background, as we shall see later

1.3.5 Particle Freeze-Out

• we have to verify the basic assumption that thermal equilibrium
can be maintained against the rapid expansion of the universe at
early times; for doing so, we compare the expansion rate of the
universe to the interaction rate of particles

• at early times, curvature and cosmological constant are negligible,
thus Friedmann’s equation implies

ȧ = a

√
8πG

3
ρ (1.107)

the expansion time-scaletexp can be approximated by

texp ≈
a
ȧ
=

√
3

8πGρ
≈ (Gρ)−1/2 (1.108)
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during the radiation-dominated era in the early universe,ρ ∝ a−4,
thus

texp ∝ a2 (1.109)

as we have already seen in (1.51) in the context of how the young
universe ages; the expansion time-scale thus increases rapidly as
the universe expands away from the Big Bang

• thermal equilibrium is maintained predominantly by two-body in-
teractions; the number of collision partners found by a particle
travelling for a time interval dt with velocityv relative to the cos-
mic rest frame through a particle population with number density
n is

dN = n〈σv〉dt (1.110)

whereσ is the collision cross section, which typically depends on
relative velocityv and is thus averaged withv

• the collision rate experienced by a single particle species is thus

Γ :=
dN
dt
= n〈σv〉 ∝ n ∝ T3 ∝ a−3 (1.111)

where we have used (1.101) and (1.105) which are both valid
throughout the radiation-dominated early phase of the universe;
the collision time-scale is thus

tcoll = Γ
−1 ∝ a3 (1.112)

• asa → 0, the ratio between expansion and collision time scales
is texp/tcoll ∝ a−1 → ∞, which implies that the collisions have a
much shorter time scale than the expansion in the early universe;
thermal equilibrium can thus be maintained despite the expansion
in particular at early times; as the universe keeps expanding, col-
lisions become rare and thermal equilibrium will ultimately break
down

• in absence of collisions, the continuity equation for the number
densityn of a particle species is

ṅ+ ~∇ · (n~v) = 0 (1.113)

in the homogeneous and isotropic universe,n is spatially constant,
and~v = H~r, where~r is the physical distance of a particle from the
origin; since~∇ · ~r = 3, we thus have

ṅ+ 3Hn = 0 (1.114)

• the right-hand side of (1.114) will deviate from zero in presence
of collisions and thermal particle creation; we saw in (1.111) that
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the collision rate isΓ = n〈σv〉; likewise, the source term for ther-
mal particle creation isS = 〈σv〉n2

T; thus, the continuity equation
changes to read

ṅ+ 3Hn = −Γn+ S = −Γn

(
1−

n2
T

n2

)
(1.115)

• we now introduce the comoving number densityN := a3n; sub-
stituting fromṄ = a3(3Hn+ ṅ) in (1.115) yields

Ṅ = −ΓN

(
1−

N2
T

N2

)
(1.116)

substituting further

d
dt
= ȧ

d
da
= aH

d
da
= H

d
d lna

(1.117)

yields
d lnN
d lna

= −
Γ

H

(
1−

N2
T

N2

)
(1.118)

• thus, if the comoving number density is thermal,N = NT, it
does not change; ifN deviates fromNT, it needs to change for
re-adjustment to its thermal equlibrium valueNT; this is impossi-
ble if Γ � H because then the rate of change becomes too small;
then, the particles freeze out of thermal equilibrium

• for relativistic particles,n ∝ T3 ∝ a−3, thusN = a3n = const.;
according to the freeze-out equation (1.118),

d lnN
d lna

= 0 ⇒ N = NT (1.119)

this implies that relativistic particle species retain their thermal-
equilibrium density regardless ofΓ/H, i.e. even after freeze-out

• for non-relativistic particles, the comoving number density in
thermal equilibrium is

NT ∝ T−3/2e−mc2/kT (1.120)

for kT . mc2, NT drops exponentially, i.e. very quicklyNT � N,
then

d lnN
d lna

≈ −
Γ

H
→ 0 (1.121)

as the collision rate falls below the expansion rate; the actual co-
moving number density of particles then remains constant, while
its thermal-equilibrium value drops to zero
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1.4 Recombination and Nucleosynthesis

1.4.1 The Neutrino Background

• neutrinos are kept in thermal equilibrium by the weak interaction

ν + ν̄↔ e+ + e− (1.122)

which freezes out when the temperature drops to

Tν ≈ 1010.5 K ≈ 2.7 MeV (1.123)

• due to their low mass, neutrinos are ultra-relativistic when they
freeze out of equilibrium, thus their comoving number density is
that of an ideal, relativistic fermion gas

• the electron-positron decay reaction

e+ + e− ↔ 2γ (1.124)

is suppressed a little later, when the temperature drops below

T ≈ 2mec
2 ≈ 1 MeV ≈ 1010 K (1.125)

because photons are no longer energetic enough for electron-
positron pair production afterwards

• electrons and positrons annihilate shortly after neutrino freeze-
out; their decay entropy thus heats the photon gas, but not the
neutrinos; the temperature of the photon gas is therefore higher
than that of the neutrino gas

• the entropies before and after electron-positron annihilation must
be equal; let primes denote quantities before annihilation, then
the entropy densities must satisfy

s′e+ + s′e− + s′γ = sγ (1.126)

• before annihilation, the temperatures of electrons, positrons and
photons can be considered equal because thermal equilibrium was
maintained,T′e+ = T′e− = T′γ =: T′

• the statistical weights of electrons, positrons and photons are all
ge+ = ge− = gγ = 2; their entropy densities therefore differ only
by the fermion factor 7/8 from (1.101),

s′e+ = s′e− =
7
8

s′γ (1.127)
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and since they are proportional toT3, the temperatureT after an-
nihilation follows from (1.126) as(

2 ·
7
8
+ 1

)
(T′)3 = T3

⇒ T =

(
11
4

)1/3

T′ ≈ 1.4T′ (1.128)

hence the photon temperature is approximately 40% higher today
than the neutrino temperature

1.4.2 Photons and Baryons

• assuming for simplicity that all baryons are locked up in hydro-
gen, the number density of baryons today is

nB =
ρB

mp
=
ΩB

mp

3H2
0

8πG
= 1.1× 10−5ΩB h2 cm3 (1.129)

wheremp is the proton mass, andΩB is the baryon density param-
eter, defined as in (1.37)

• as we shall see later, the baryon density parameter is constrained
to be

ΩBh2 ≈ 0.025 (1.130)

i.e. baryons contribute only≈ 10%− 20% of the matter in the
Universe

• the photon number density today is given by the temperature of
the microwave background through (1.101),

nγ = 407 cm−3 (1.131)

• bothnB andnγ scale with temperature∝ T3 ∝ a−3, implying that
their ratio is constant,

η :=
nB

nγ
= 2.7× 10−8ΩBh2 (1.132)

• there is approximately a billion photons per baryon in the uni-
verse; the entropy of the photon gas dominates the entropy of
the universe by a huge margin, justifying the assumption of adi-
abatic expansion, because any contribution to the entropy due to
irreversible processes can be neglected compared to the photon
entropy
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• it is unclear howη is set; it is a fundamental physical problem
why there are baryons in the universe, because they should have
annihilated with anti-baryons; there must have been an asymme-
try between baryons and antibaryons, which is possible under the
Sakharov conditions (CP violation, interactions changing baryon
number, departure from thermodynamic equilibrium, e.g. during
phase transitions)

• when we speak of “the temperature of the universe” from now on,
we refer to the temperature of the photon gas

• the smallness ofη will turn out to be very important for nucle-
osynthesis and the recombination of the universe, i.e. its transition
from the fully ionised to the neutral state

1.4.3 The Recombination Process

• as the temperature drops, electrons and protons combine to form
hydrogen atoms when the reaction

e− + p+ ↔ H + γ (1.133)

freezes out

• for determining how recombination proceeds, we need to min-
imise the Helmholtz free energyF(T,V,N), which is related to
the canonical partition functionZc,

F(T,V,N) = −kT ln Zc (1.134)

• for the process (1.133), the canonical partition function is given
by

Zc =
ZNe

e Z
Np
p ZNH

H

Ne!Np!NH!
(1.135)

whereZe,p,H and Ne,p,H are the canonical partition functions and
numbers of electrons, protons, and hydrogen atoms, respectively;
the photons do not contribute because they provide the heat bath
controlling the temperatureT

• the baryon number isNB = Np + NH, the electron number isNe =

Np, thusNH = NB − Ne; given the total baryon number, all other
numbers can be expressed by the electron numberNe

• since the numbersNe,p,H will be very large, we can use Stirling’s
formula for the factorials, lnN! ≈ N ln N − N
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• we now need to minimise the Helmholtz free energy with respect
to Ne:

∂F
∂Ne

= 0

=
∂

∂Ne

[
Ne ln Ze+ Np ln Zp + NH ln ZH

− Ne(ln Ne− 1)− Np(ln Np − 1)− NH(ln NH − 1)
]

= ln Ze+ ln Zp − ln ZH − 2 lnNe+ ln(NB − Ne) (1.136)

where we have used

∂Np

∂Ne
= 1 ,

∂NH

∂Ne
= −1 (1.137)

• for the electron number, (1.136) implies

N2
e

NB − Ne
=

ZeZp

ZH
(1.138)

• following (1.75), the canonical partition function for a single par-
ticle species is

Z =
4πgV
(2π~)3

∫ ∞

0
dpp2e−(ε−µ)/kT (1.139)

whereε = mc2 + p2/(2m) in the non-relativistic limit; thus

Z =
gV(2πmkT)3/2

(2π~)3
e−(mc2−µ)/kT (1.140)

• the total chemical potential must vanish in equilibrium
[cf. (1.84)], thusµe + µp = µH, and the ionisation potential of
hydrogen isχ = (me + mp − mH)c2 = 13.6 eV; inserting (1.140)
into (1.138) and using these relations yields

x2

1− x
=

(2πmekT)3/2

(2π~)3nB
e−χ/kT (1.141)

wherex = Ne/NB is the ionisation degree, andnB = NB/V is the
number density of baryons; this is Saha’s equation

• accroding to (1.132) and (1.101), the baryon density is

nB = ηnγ = 2η
ζ(3)
π2

(
kT
~c

)3

(1.142)

which yields

x2

1− x
=

√
π

4
√

2ζ(3)η

(
mec2

kT

)3/2

e−χ/kT ≈
0.26
η

(
mec2

kT

)3/2

e−χ/kT

(1.143)
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• for recombination to be considered finished,x � 1 andx2/(1 −
x) ≈ x2; since 1/η is a huge number,kT � χ is required forx to
be small; for example, puttingx = 0.1 yieldskTrec = 0.3 eV, or

Trec ≈ 3500 K (1.144)

• sinceχ = 13.6 eV, one would naively expectTrec ≈ 105 K; the
very large photon-to-baryon ratio 1/η delays recombination con-
siderably

Ionisation fraction as a function of
temperature for three different val-
ues of the baryon density parameter.
Once it sets in, recombination com-
pletes very quickly.

• strictly, Saha’s equation is invalid for cosmological recombina-
tion because it assumes thermal equilibrium between the reaction
partners, which breaks down as recombination proceeds; how-
ever, due to the rapid progress of recombination, the deviation
between the ionisation degree predicted by Saha’s equation and
by an exact treatment remains small

Two-Photon Recombination

• direct hydrogen recombination produces energetic photons; the
final transition to the ground state is Lyman-α (2P→ 1S), so that
the energy of the emitted photon ishν ≥ ELyα = 3χ/4 = 10.2 eV

• the abundant Lyα photons keep reionising the cosmic gas because
they cannot stream away as from hydrogen clouds; the energy loss
due to cosmic expansion is slow

• recombination can only proceed by production of photons with
lower energy than Lyα; this is possible through the forbidden
transition 2S→ 1S, which requires the emission of two photons

• this process is slow, hence recombination proceeds at a somewhat
lower rate than predicted by Saha’s equation

Thickness of the Recombination Shell

• recombination is not instantaneous, but requires a finite time in-
terval; there is thus a “recombination shell” with finite thickness

• the optical depth along a light ray through the recombination shell
is

τ =

∫
neσTdr = nBσT

∫
xdr (1.145)

whereσT is the Thomson scattering cross section,

σT =
8π
3

(
e2

mec2

)2

= 6.65× 10−25 cm2 (1.146)

and dr = cdt = cda/ȧ is the proper length interval
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• the probability distribution for a photon to be scattered betweenz
andz− dz is

p(z)dz= e−τ
dτ
dz

dz (1.147)

this distribution is well described by a Gaussian with mean ¯z =
1100 and standard deviationσz ≈ 80

Detailed calculation of and Gaus-
sian fit to the last-scattering prob-
ability distribution as a function of
redshift.

• the finite width of the last-scattering shell implies that microwave
background photons seen today were released at different red-
shifts; since the plasma cooled as recombination proceeded, the
CMB photons were released at different temperatures; sinceT =
T0(1+ z),

δT ≈ T0δz≈ T0σz ≈ 200 K (1.148)

this is a sizeable temperature difference

• photons were redshifted after their emission; those emitted earlier
from somewhat hotter plasma were redshifted somewhat more,
and vice versa for photons emitted later; these effects cancel ex-
actly in Friedmann-Lemaı̂tre models becauseT ∝ a−1; despite
the CMB photons originate from plasma with a range of temper-
atures, the CMB is thus expected to have a Planck spectrum of a
singletemperature

1.4.4 Nucleosynthesis

• as the universe expands and cools, it passes through a temper-
ature range which allows the fusion of light nuclei; the faster
the expansion, the less time there is for nucleosynthesis, thus the
light-element abundances measure the expansion rate in the early
universe

• protons and neutrons form whenkT ≈ 1 GeV; afterwards, they
can interconvert through the weak interaction, e.g.

n+ νe↔ p+ e− (1.149)

and remain in thermal equilibrium until weak interactions freeze
out atkT ≈ 800 keV

• at this point, the neutron-to-proton number-density ratio was

nn

np
= e−∆mc2/kT =

1
6

(1.150)

where∆mc2 = 1.4 MeV is the mass difference between neutrons
and protons
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• fusion builds upon two-body processes because the probability
for others is too low; the first element to form is deuterium, the
next are helium isotopes, followed by Lithium; examples are

n+ p → 2H + γ
2H + 2H → 3He+ n

3He+ 2H → 4He+ p
4H + 3H → 7Li + γ (1.151)

the absence of stable nuclei with atomic weightsA = 5 andA = 8
and increasing coulomb barriers make the production of heavier
elements highly inefficient

• equilibrium of deuterium formationn+ p↔ 2H + γ is controlled
by Saha’s equation; as for recombination, high photon density
prevents2H formation through photo dissociation until temper-
ature has dropped well belowkT ≈ 2 MeV corresponding to the
binding energy;2H formation is delayed untilkT ≈ 80 keV, about
three minutes after the Big Bang

• this is well before matter-radiation equality, thus the density of
relativistic particles (photons, neutrinos, others?) controls the ex-
pansion rate, and baryon-to-photon ratioη is the only relevant
parameter,

η = 1010η10 , η10 = 273ΩBh2 (1.152)

• deuterium is crucial; if too much2H is formed, neutrons are
locked up, no heavier elements can form; if too little2H is formed,
an important agent for further fusion is missing; the2H produc-
tion rate needs to be “just right”,

nB〈σv〉t ≈ 1 (1.153)

this is the Gamow criterion

• the velocity-averaged fusion cross section〈σv〉 is known; the time
t is determined by the expansion rate, i.e. the photon density or
photon temperatureT; the Gamow criterion can thus be used for
estimatingT from constraints on the baryon densitynB

• neutrons are in equilibrium with protons untilkT ≈ 800 keV and
consumed in efficient fusion afterkT ≈ 80 keV; in between, they
decay with a half-life of

tn = 886.7± 1.9 s (1.154)

accordingly, the neutron-to-proton ratio drops to

nn

np
=

1
7

(1.155)
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• once2H exists, neutrons are efficiently locked up into4He be-
cause of its high binding energy; the expected primordial4He
abundance by mass is thus

Yp ≈
2nn

np + nn
=

2(nn/np)

1+ nn/np
=

1
4

(1.156)

this number is relatively insensitive to the baryon density, and
thus toη

• expected trends of light-element abundances withη are:
Helium abundance as a function of
η

Deuterium abundance as a function
of η

Lithium abundance as a function of
η

– gentle increase ofYp with increasingη as nucleosynthesis
starts earlier

– 2H and3He are burnt by fusion, thus their abundances de-
crease asη increases

– 7Li is destroyed by protons at lowη with an efficiency in-
creasing withη; its precursor7Be is produced more effi-
ciently asη increases; thus, a7Li valley is formed

• element abundances are calculated using Monte-Carlo codes; the
main uncertainties are the interaction rates and the half-life of free
neutrons; 2-σ prediction uncertainties are∼ 0.4% for4He,∼ 15%
for 2H and3He, and∼ 42% for7Li at η10 = 5

• comparison with observations is difficult because light elements
get produced and consumed (e.g. in stars) during cosmic history;
objects need to be found which either retain the primordial ele-
ment mix, or in which abundance changes can be constrained:

– 2H is observed in neutral hydrogen gas via resonant UV ab-
sorption from the ground state, or via the hyperfine transi-
tion of the ground state, or via2H-H molecule lines

– 3He+ is observed via the hyperfine transition of the ground
state

– 4He is probed by optical recombination line emission in
ionised hydrogen (HII-regions)

– 7Li is observed in the spectra of cool, low-mass stars in the
Galactic halo (very old, local stellar population)

heavy elements are formed by stars as early asz∼ 6, so observa-
tions need to concentrate on gas with lowest metal abundance;
possibly observed dependence of light-element abundances on
metal abundance may allow extrapolation to zero enrichment

• it is assumed that evolutionary corrections for2H, 4He and7Li are
low or negligible, but highly uncertain for3He because of later
production in pre-main sequence stars and destruction in stellar
interiours
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• 2H is ideal baryometer because of monotonic abundance decrease
with increasingη; destroyed by later fusion, so observed abun-
dances are lower bound to primordial abundance; can be observed
in high-z quasar spectra which require high resolution to allow
accurate continuum subtraction, corrections for saturation and ve-
locity shifts in hydrogen lines; such measurements find

n2H

nH
= (3− 4)× 10−5 (1.157)

at 95% confidence; substantial depletion is unlikely because it
should have increased metal abundance; somewhat lower values
are seen in the interstellar medium consistent with consumption;

Deuterium line in a high-redshift
quasar spectrum

The Spite plateau in the Lithium
abundance

Results from Big-Bang nucleosyn-
thesis

• 4He observations suffer from systematic uncertainties due to nec-
essary metallicity corrections, the interpretation of stellar absorp-
tion spectra and collisional excitation of observed recombination
lines; a conservative range for the4He abundance is

Yp = 0.238± 0.01 (1.158)

• 7Li is observed in low-metallicity halo stars which should have
locked up very nearly primordial gas, but they may have pro-
cessed it; cool stellar atmospheres are difficult to model; stellar
rotation is important because it induces mixing;7Li may also
have been produced by cosmic-ray spallation on the interstellar
medium

• 7Li abundance against iron abundance shows Spite plateau with
very little dispersion,

ALi ,p := 12+ log
n7Li

nH
= 2.2± 0.1 (1.159)

necessary corrections seem to be moderate

• results from Big-Bang nucleosynthesis theory and observations
can be summarised as follows:

– through (1.152), density ofvisiblebaryons impliesη10 ≥ 1.5

– 2H abundance (1.157) implies 4.2 ≤ η10 ≤ 6.3

– 7Li abundance predicted assuming this range ofη10 is 2.1 ≤
ALi ,p ≤ 2.8, consistent with the observed value (1.159)

– this yields 0.244≤ Yp ≤ 0.250, overlapping with measured
range (1.158)

• the baryon density implied by Big-Bang nucleosynthesis is

ΩBh2 = 0.019± 0.0024 (1.160)

at 95% significance; it is mainly based on the high-z deuterium
abundance, but yields a consistent set of light-element abun-
dances
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2.1 The Growth of Perturbations

2.1.1 Newtonian Equations

• there are pronounced structures in the universe on scales from
stars to galaxy clusters and filaments; while filaments and the
voids they surround can reach sizes of∼ 50h−1Mpc, they are still
small compared to the Hubble radius; in this chapter, we describe
the basic theory for structure growth in the expanding universe

• strictly, this theory should be worked out in the framework of gen-
eral relativity, which is a complicated exercise; with the inhomo-
geneities being “small”, i.e. much smaller than the typical scale
of the universe, we can neglect effects of curvature and the finite
speed of information propagation and work within the framework
of Newtonian dynamics

• the dynamics of stars in galaxies, and of galaxies in galaxy clus-
ters, shows that these objects need to contain much more matter
than can be inferred from the light they emit; this is evidence for
the existence of “dark matter” in the universe which dominates its
matter content

• we thus need to describe inhomogeneities in a cosmic fluid which
contains at least radiation, dark matter, and baryonic matter and
which moves according to Newtonian gravity

• we begin with the continuity equation, which formulates mass
conservation,

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 (2.1)

whereρ(t, ~x) and~v(t, ~x) are the density and velocity of the cosmic
fluid at position~x and timet; in contrast to the homogeneous
universe, they now depend on position

• the second equation is Euler’s equation which formulates the con-
servation of momentum,

∂~v
∂t
+ (~v · ~∇)~v = −

~∇p
ρ
+ ~∇Φ (2.2)

the terms on the right-hand side represent the pressure-gradient
and gravitational forces

• the Newtonian gravitational potentialΦ satisfies the Laplace
equation

∇2Φ = 4πGρ (2.3)
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2.1.2 Perturbation Equations

• we now decompose density and velocity into their homogeneous
background valuesρ0 and~v0 and small perturbationsδρ andδ~v,

ρ(t, ~x) = ρ0(t) + δρ(t, ~x) , ~v(t, ~x) = ~v0(t) + δ~v(t, ~x) (2.4)

• let ~r and~x be physical and comoving coordinates, respectively,
then~r = a~x and the velocity is

~v = ~̇r = ȧ~x+ a~̇x = H~r + a~̇x = ~v0 + δ~v (2.5)

i.e.~v0 = H~r is the Hubble velocity, andδ~v = a~̇x is the peculiar
velocity deviating from the Hubble flow

• inserting (2.4) into (2.1) and keeping only terms up to first order
yields

∂(ρ0 + δρ)
∂t

+ ~∇ · (ρ0~v0 + δρ~v0 + ρ0δ~v) = 0 (2.6)

the background quantitiesρ0 and~v0 need to satisfy mass conser-
vation separately,

∂ρ0

∂t
+ ρ0

~∇ · ~v0 =
∂ρ0

∂t
+ 3Hρ0 = 0 (2.7)

where~v0 = H~r and~∇ · ~r = 3 were used; thus

∂δρ

∂t
+ ~v0 · ~∇δρ + ρ0

~∇ · δ~v+ δρ~∇ · ~v0 = 0 (2.8)

• defining the density contrast,

δ :=
δρ

ρ0
(2.9)

we find
∂δρ

∂t
= δρ̇0 + δ̇ρ0 = −δρ0

~∇ · ~v0 + δ̇ρ0 (2.10)

using the unperturbed continuity equation (2.7); the perturbed
continuity equation (2.8) can now be written

δ̇ + ~v0 · ~∇δ + ~∇ · δ~v = 0 (2.11)

• likewise, we split the momentum conservation equation (2.2) into
unperturbed and perturbed parts, where we introduce the pressure
and potential perturbationsδp andδΦ,

∂δ~v
∂t
+ (δ~v · ∇)~v0 + (~v0 · ~∇)δ~v = −

~∇δp
ρ0
+ ~∇δΦ (2.12)

written in components, the term (δ~v · ~∇)~v0 reads[
(δ~v · ~∇)~v0

]
i
=

(
δ~vj

∂

∂r j

)
Hr i = Hδi j (δ~v) j = H(δ~v)i (2.13)
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• treated similarly, the Laplace equation becomes

∇2δΦ = 4πGρ0δ (2.14)

• we now convert to comoving coordinates,~x = ~r/a and comoving
peculiar velocities,~u := δ~v/a, and introduce the gradient with
respect to the comoving coordinates,

~∇x =
1
a
~∇r (2.15)

• likewise, we have to transform the time derivative; the total dif-
ferential of an arbitrary functionf (~r , t) is

d f =
∂ f
∂t

dt + ~∇r f · d~r =
∂ f
∂t

dt + ~∇r f · a(H~xdt + d~x)

=

(
∂ f
∂t
+ H~x · ~∇x f

)
dt + ~∇x f · d~x

hence, the partial time derivative in physical coordinates needs to
be replaced according to

∂

∂t
+ H~x · ~∇x→

∂

∂t
(2.16)

in order to keep notation simple,~∇ abbreviates~∇x hereafter

• we are now left with the three equations

δ̇ + ~∇ · ~u = 0

~̇u+ H~u = −
~∇δp
a2ρ0

+
~∇δΦ

a2

∇2δΦ = 4πGρ0a
2δ (2.17)

for the four variablesδ, ~u andδΦ; the over-dots denote partial
time derivatives; we additionally need an equation of state linking
the pressure fluctuation to the density fluctuation,

δp = δp(δ) = c2
sδρ = c2

sρ0δ (2.18)

with the sound speedcs

2.1.3 Density Perturbations

• taking the divergence of the Euler equation, we find an equation
for ~∇(~̇u) = d(~∇ · ~u)/dt, which can be inserted into the total time
derivative of the continuity equation; this yields the single equa-
tion for the density contrast

δ̈ + 2Hδ̇ =

(
4πGρ0δ +

c2
s∇

2δ

a2

)
(2.19)
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• we can decomposeδ into plane waves,

δ(~x, t) = δ(t)e−i~k·~x (2.20)

decoupling the time evolution from the spatial dependence; in-
serted into (2.19), this yields

δ̈ + 2Hδ̇ = δ

(
4πGρ0 −

c2
sk

2

a2

)
(2.21)

• starting from special-relativistic fluid mechanics, and ignoring
pressure gradients, the perturbation equations for an ideal rel-
ativistic fluid (e.g. photons) can be derived in a very similar
way, using the pressurep = ρc2/3 and the related sound speed
cs = c/

√
3; the result is the evolution equation

δ̈ + 2Hδ̇ =
32π
3

Gρ0δ (2.22)

• on a static background,H = 0, and (2.21) becomes the oscillator
equation

δ̈ + ω2
0δ = 0 , ω0 :=

√
c2

sk2

a2
− 4πGρ0 (2.23)

the oscillation frequency is real for sufficiently largek,

k ≥ kJ :=
2
√
πGρ0

cs
(2.24)

kJ defines the Jeans length

λJ :=
2π
kJ
= cs

√
π

Gρ0
(2.25)

perturbations smaller than the Jeans length oscillate; others grow
or decay

• we now study the behaviour of perturbations on scales much
larger than the Jeans length, or in pressure-less fluids; ifΩ = 1,
the perturbation equations read

δ̈ + 2Hδ̇ =
3
2

H2δ , δ̈ + 2Hδ̇ = 4H2δ (2.26)

for the matter- and radiation-dominated cases, respectively, for
which we have from (1.55) and (1.51)

ȧ
a
= H(t) =

2
3t
,

ȧ
a
= H(t) =

1
2t

(2.27)
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• theansatzδ(t) ∝ tn yields

n2 +
n
3
−

2
3
= 0 , n2 − 1 = 0 (2.28)

hencen = −1,2/3 in the matter-dominated andn = ±1 in the
radiation-dominated cases, which translates to

δ ∝


a

a−3/2

}
matter-dominated era

a2

a−2

}
radiation-dominated era

(2.29)

decaying modes are irrelevant for cosmic structure growth, soδ ∝
a2 during the radiation-dominated era, andδ ∝ a afterwards
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• during the matter-dominated era in models withΩm,0 , 1 and
ΩΛ,0, the linear evolution of the density contrast follows

δ(a) = δ0D+(a) (2.30)

with the linear growth factorD+(a); in excellent approximation,

D+(a) =
5a
2
Ωm

[
Ω4/7

m −ΩΛ +

(
1+

1
2
Ωm

) (
1+

1
70
ΩΛ

)]−1

(2.31)

• the sound speed defines the Jeans length, below which pertur-
bations cannot grow, but oscillate; for dark matter consisting of
weakly interacting massive particles, for instance, the concept of
a sound speed makes no sense because the dark matter behaves
like an ensemble of collision-less particles; in that case, one can
show that the Jeans length (2.24) is replaced by

λJ =
〈
v−2

〉−1/2
√

π

Gρ0
(2.32)

wherev is the velocity dispersion of the particles; perturbations
in collision-less matter smaller than the Jeans length are thus pre-
vented from growing because their gravity is insufficient for keep-
ing their particles bound

• (hypothetic) forms of dark matter withv → 0 are called “cold
dark matter” (CDM), they haveλJ → 0, hence structures can
grow on all scales; ifv is finite as it would be for neutrinos, the
matter is called “hot dark matter” (HDM)

2.1.4 Velocity Perturbations

• ignoring pressure gradients, the second equation (2.17) says

~̇u+ H~u =
~∇δΦ

a2
(2.33)
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the peculiar velocity field must thus be aligned with the gradient
of the potential perturbation; we attempt solving the continuity
equation using theansatz~u = u(t)~∇δΦ,

u(t)~∇2δΦ = u(t) 4πGρ0a
2δ = −ȧ

dδ
da

(2.34)

• for linearly growing perturbations, we have

dδ
da
= δ0

dD+(a)
da

=
δ

a
d lnD+(a)

d lna
=:

δ

a
f (Ω) (2.35)

where

f (Ω) :=
d lnD+(a)

d lna
≈ Ω0.6 (2.36)

is an excellent approximation; moreover, we insert

4πGρ0 = 4πG
3H2

8πG
Ω =

3H2Ω

2
(2.37)

into (2.34) and find

u(t) =
2 f (Ω)
3a2HΩ

(2.38)

• the peculiar velocity field satisfying the continuity equation can
thus be written as

δ~v = a~u =
2 f (Ω)
3aHΩ

~∇δΦ (2.39)

additional solutions are possible which are vorticity-free,~∇ · ~u =
0; sinceδ can either grow or decay,δ̇ = 0, and~∇ ·~u = 0 can occur
only whereδ = 0
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2.2 Statistics and Non-linear Evolution

2.2.1 Power Spectra

• we have seen before (2.20) that it is convenient to decompose
the density contrastδ into plane waves; we introduce the Fourier
transformδ̂ of the density contrastδ as

δ(~x) =
∫

d3k
(2π)3

δ̂(~k)e−i~k·~x , δ̂(~k) =
∫

d3xδ(~x)ei~k·~x (2.40)

• the density contrast is a random field, which must be isotropic
and homogeneous in order to comply with the fundamental cos-
mological assumptions; this means that the statistical properties
of δ, e.g. its mean or variance, do not change under rotations and
translations

• by definition, the mean of the density contrast vanishes,

〈δ〉 =

〈
ρ − ρ0

ρ0

〉
=
〈ρ〉

ρ0
− 1 = 0 (2.41)

the variance ofδ in Fourier spacedefines the power spectrum
P(k),

〈δ̂(~k)δ̂∗(~k′)〉 =: (2π)3P(k)δD(~k− ~k′) (2.42)

whereδD is Dirac’s delta distribution, which ensures that modes
of different wave vector~k are uncorrelated in Fourier space in
order to ensure homogeneity; the power spectrum cannot depend
on the direction of~k because of isotropy

• the correlation function ofδ in real space is defined as

ξ(y) := 〈δ(~x)δ(~x+ ~y)〉 (2.43)

where the average extends over all positions~x and orientations of
~y; the correlation function measures the coherence of the density
contrast between all points on the sky separated by a distance|~y|;
again,ξ cannot depend on teh direction of~y because of isotropy

• inserting the Fourier integrals forδ(~x) in (2.43), we find

ξ(y) =

〈∫
d3k

(2π)3

∫
d3k′

(2π)3
δ̂(~k)δ̂(~k′)e−i~k·~xe−i~k′(~x+~y)

〉
=

∫
d3k

(2π)3

∫
d3k′

(2π)3
〈δ̂(~k)δ̂∗(~k′)〉e−i~k·~xe+i~k′(~x+~y)

= 2π
∫

k2dk
(2π)3

P(k)
∫ π

0
sinθdθe−ikycosθ

= 4π
∫

k2dk
(2π)3

P(k)
sinky

ky
(2.44)
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whereθ was the angle between vectors~k and~y; obviously, the
variance ofδ is the correlation function aty = 0,

σ2 = 4π
∫

k2dk
(2π)3

P(k) (2.45)

• the variance in real space depends on the scale which we are con-
sidering; let us introduce

δ̄(~x) :=
∫

d3yδ(~x)WR(|~x− ~y|) (2.46)

i.e. the density contrast field averaged on the scaleR with a win-
dow function WR; the idea of the window function is that it ap-
proaches a finite constant well withinR, and drops to zero outside
R

• the Fourier convolution theorem sayŝf ∗ g = f̂ ĝ, i.e. the Fourier
transform of a convolution is the product of the Fourier transforms
of the convolved functions; applying this to (2.45) yieldsˆ̄δ =
δ̂ŴR; thus, the power spectrum of the density contrast filtered on
the scaleR is P̄(k) = P(k)Ŵ2

R(k); using (2.45), the variance of the
filtered density-contrast field is

σ2
R = 4π

∫
k2dk
(2π)3

P(k)Ŵ2
R(k) (2.47)

the variance on a scale of 8h−1 Mpc,σ8, is often used for charac-
terising the amplitude of the power spectrum

2.2.2 Evolution of the Power Spectrum

• we have seen in (2.29) that density perturbations grow∝ a2 during
the radiation-dominated era, and∝ a afterwards

• as the universe expands, the Hubble radius grows, and thus the
scale of perturbations which can be in causal contact; a density
perturbation mode is said to “enter the horizon” when its wave
lengthλ equals the Hubble radius

• modes entering the horizon while radiation dominates feel the ra-
diation pressure, which almost completely stops the growth of the
density perturbation until matter starts dominating and radiation
pressure quickly becomes negligible; accordingly, modes which
are small enough to enter the horizon beforeaeq are relatively
suppressed compared to larger modes which enter the horizon af-
terwards



CHAPTER 2. THE INHOMOGENEOUS UNIVERSE 47

• modes of comoving wave numberk enter the horizon ataeq if

λ = λ0 = aeq
2π
k0
= rH,eq =

c
H0

a3/2
eq

√
2Ωm0

(2.48)

thus the wave number of modes entering the horizon ataeq is

k0 = 2π
H0

c

√
2Ωm0

aeq
= 2π

H0

c
Ωm0

√
2
Ωr0

(2.49)

modes larger than this, i.e. withk < k0, continue growing; modes
with k > k0 stop growing when they enter the horizon ataenterand
continue only afteraeq when radiation ceases to dominate

• according to (1.72), the Hubble radius scales like∝ a2 during
radiation domination and∝ a3/2 later, henceaenter is determined
by

aenterλ = aenter
2π
k
∝

{
a2

enter (aenter< aeq)
a3/2

enter (aenter> aeq)

⇒ aenter∝

{
k−1 (aenter< aeq)
k−2 (aenter> aeq)

(2.50)

growth suppression during the
radiation-dominated era

• while the growth of small modes is suppressed, modes larger than
λ0 continue growing∝ a2 during radiation domination, hence the
relative suppression of the small modes is

fsup=

(
aenter

aeq

)2

=

(
k0

k

)2

(2.51)

• suppose the initial power spectrum at very early times isPi(k);
when modes enter the horizon before, the spectrum isPenter(k) =
a4

enterPi(k) if they enter beforeaeq, and Penter(k) = a2
enterPi(k) if

they enter afterwards; in both cases,Penter(k) = k−4Pi(k) because
of (2.50)

• the total power in density fluctuations on scales 2π/k is k3P(k);
assuming that the power entering the horizon should not depend
on time, the initial power spectrum must satisfy

k3Penter(k) = k3 · k−4Pi(k) = const. ⇒ Pi(k) ∝ k (2.52)

this is called the Harrison-Zel’dovich-Peebles spectrum

• for k < k0 the shape of the spectrum is unchanged because all
such modes grow similarly; fork > k0, suppression∝ f 2

sup ∝ k−4

sets in; thus, we expect the spectrum to behave like

P(k) ∝

{
k (k < k0)
k−3 (k� k0)

(2.53)
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this is the shape of the spectrum for cold dark matter (CDM);
for hot dark matter (HDM), it is cut off above the Jeans wave
numberkJ corresponding to the finite velocity dispersion of the
hot particles
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2.2.3 The Zel’dovich Approximation

• once the density contrastδ approaches unity, the linear descrip-
tion of its evolution will break down; a kinematical treatment for
following the evolution further into the non-linear regime was in-
vented by Zel’dovich

• it starts by decomposing the cosmic fluid into particles and writ-
ing their (physical) trajectories as

~r(t) = a(t)~x+ b(t) ~f (~x) (2.54)

where~x is the particle’s position at some very early time; the first
term describes the universal expansion, the second the peculiar
motion; we assume that thedisplacement field~f is irrotational,

~f (~x) = ~∇ψ(~x) (2.55)

with some scalar potentialψ(~x)

• since trajectories cannot get lost, the evolution of physical density
is given by the Jacobian determinant of the mapping~x→ ~r,

ρ = ρ0 det−1

[
∂r i

∂xj

]
= ρ0 det−1

[
a(t)δi j + b(t)

∂2 f
∂xi∂xj

]
(2.56)

• let (λ1, λ2, λ3) be the eigenvalues of thedeformation tensor fi j :=
∂2 f /∂xi∂xj, then the density is

ρ =
ρi

(a+ bλ1)(a+ bλ2)(a+ bλ3)
(2.57)

whereρi is the mean density at the initial time; the mean density
at later times isρ0 = ρia−3, i.e. the density contrast is

δ =
1

(1+ b/aλ1)(1+ b/aλ2)(1+ b/aλ3)
− 1

≈ −
b
a

(λ1 + λ2 + λ3) = −
b
a
~∇ · ~f (2.58)

and the velocity perturbation

~u =
~̇r − H~r

a
=

(
ḃ
a
−

ȧb
a2

)
~f = H

(
db(a)

da
−

b
a

)
~f (2.59)

obviously satisfies the continuity equation~∇ · ~u = −δ̇
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• from the growth of the linear density perturbations (2.30), we can
immediately infer that

b
a
= D+(a) , δ0 = −~∇ · ~f (2.60)

thus
db
da
= D+ + a

dD+
da
= D+[1 + f (Ω)] (2.61)

and
~u = HD+(a) f (Ω) ~f (2.62)

i.e. the displacement field~f is directly proportional to the velocity
perturbation~u

• combining results, the particle trajectories according to the
Zel’dovich approximation are

~r = a
[
~x+ D+(a) ~f

]
= a

[
~x+

~u
H f (Ω)

]
(2.63)

• an important result can be derived from the Zel’dovich approxi-
mation assuming that the density contrast, and thus the perturba-
tion of the gravitational potential, are Gaussian random fields; the
theory of multivariate Gaussians allows to derive the probability
distribution p(λ1, λ2, λ3) for the eigenvalues of the deformation
tensorFi j ; the result is

p(λ1, λ2, λ3) =
153

8π
√

5σ6
|(λ3 − λ2)(λ3 − λ1)(λ2 − λ1)|(2.64)

× exp

{
−

3
2σ2

[
2(λ2

1 + λ
2
2 + λ

2
3) − (λ1λ2 + λ1λ3 + λ2λ3)

]}
with σ2 from (2.45); this result shows that the probability
for two eigenvalues ofFi j to be equal is zero, implying that
isotropic collapse is excluded; forming structures will therefore
be anisotropic, progressively flattening as the collapse proceeds;
the resulting flattened mass distributions were called “pancakes”
by Zel’dovich

2.2.4 Nonlinear Evolution

• when the density contrast reaches unity, linear perturbation theory
breaks down; the Zel’dovich approximation breaks down when
trajectories cross because they just pass each other, ignoring their
gravitational interaction
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• for a correct treatment, one has to resort to numerical simulations;
they decompose the matter distribution into particles whose ini-
tial velocities are typically slightly perturbed according to some
assumed power spectrum; the particles are then transported to
redshifts high enough for linear evolution to hold on all scales
considered; for later evolution, the equations of motion for all
particles are solved

• ideally, particles move under the influence of the gravity from all
other particles, but direct summation of all the gravitational forces
of N − 1 particles onN particles becomes prohibitively time-
consuming; several approximation schemes are therefore being
employed

• the particle-mesh (PM) algorithm computes the gravitational po-
tential of the particle distribution on a grid (mesh) by solving
Poisson’s equation in Fourier space, making use of fast-Fourier
techniques; the gravitational forces are then given by the gradi-
ents of the Potential at the particle positions; this technique has a
spatial resolution limited by the size of the mesh cells

nonlinear structure evolution, sim-
ulated in different cosmologies
(Virgo collaboration)

• the particle-particle particle-mesh (P3M) algorithm improves the
PM technique by adding corrections for nearby particles which
are determined by direct summation

• tree codes bundle distant particles into groups whose gravitional
force on a particle is approximated as if they were point masses,
or masses whose spatial distribution has a few low-order multi-
poles only, e.g. the monopole corresponding to a point mass, plus
a dipole corresponding to a linear deformation, and so on; the
particle tree is updated as the evolution proceeds

• non-linear evolution causes density-perturbation modes to cou-
ple: while modes of different wave lengths evolve independently
during linear evolution, mode coupling in the non-linear evolution
moves power from large to small scales as structures collapse; the
effect on the power spectrum is that the amplitude on small scales
is increased at the expense of intermediate scales; large scales
continue to evolve linearly and independently

• even if the original density perturbation fieldδ is Gaussian, it must
develop non-Gaussianities during non-linear evolution; this is ev-
ident becauseδ ≥ −1 by definition, but can become arbitrarily
large; an originally Gaussian distribution ofδ thus becomes in-
creasingly skewed as it develops a tail towards infiniteδ

• typical behaviour seen in numerical simulations shows the for-
mation of “pancakes” and filaments as predicted by the theory of
Gaussian random fields; galaxy clusters develop where filaments
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intersect; filaments fragment into individual lumps which gradu-
ally stream towards the higher-density regions; giant voids form
as matter accumulates in the walls of the cosmic network
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2.3 Spherical Collapse

2.3.1 Collapse of a Homogeneous Overdense Sphere

• the distribution of the dark matter in the universe can be consid-
ered as composed of individual so-called halos, approximately
spherical overdense clouds of dark matter which can reach highly
non-linear densities in their centres

• an approximate understanding of the parameters of such halos and
their relation to the dark-matter density contrast can be obtained
by studying the dynamics of a spherical, homogeneous overden-
sity, leading to the so-called spherical collapse model

• suppose this spherical overdensity is embedded into the otherwise
homogeneous, expanding background universe; as it is overdense,
it will reach a maximum radius and subsequently contract and
collapse; we define parameters

x :=
a
ata

, y :=
R
Rta

(2.65)

i.e. x is the scale factora in units of the scale factorata when the
halo reaches its turn-around radius, andy is the radius of the halo
R in units ofRta

• we restrict ourselves to the case of an Einstein-de Sitter model,
for which

H =
ȧ
a
= H0a

−3/2 (2.66)

for simplifying the notation, we introduce the scaled timeτ :=
Htat, whereHta = H0a

−3/2
ta is the Hubble parameter at the turn-

around time; using these units, Friedmann’s equation is trans-
formed to

x′ :=
dx
dτ
=

1
Hta

ȧ
ata
=

H
Hta

x = x−1/2 (2.67)

• the Newtonian equation of motion for the radius (i.e. for a test
particle of arbitrary mass at the radius of the halo) is

R̈= −
GM
R2
= −

4π
3
ρtaR

3
ta

G
R2

(2.68)

introducingτ instead oft, and expressing the density at turn-
around by the critical density and the overdensityζ of the halo
with respect to the background at turn-around,

ρta =
3H2

ta

8πG
ζ (2.69)

we find

y′′ = −
ζ

2y2
(2.70)
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• the obvious boundary conditions for solving (2.70) are

y′|x=1 = 0 , y|x=0 = 0 (2.71)

meaning that the halo starts with zero radius ata = 0 and reaches
a maximum ata = ata

• equations (2.67) and (2.70) imply

τ =
2
3

x3/2 , y′ = ±
√
ζ

√
1
y
− 1 (2.72)

where the first boundary condition (2.71) was used; the plus sign
applies before, the minus sign after turn-around; integrating be-
fore turn-around, and using the second boundary condition (2.71),
we find

τ =
1
√
ζ

[
1
2

arcsin(2y− 1)−
√

y− y2 +
π

4

]
(2.73)

• turn-around meansx = 1 = y andτ = 2/3, which requires

ζ =

(
3π
4

)2

(2.74)

from symmetry, collapse happens at twice the time required for
turn-around, i.e. atτ = 4/3, at which timex = xc = 41/3

2.3.2 Collapse Parameters

• at early times, we can expand (2.73) to low order iny and find

τ ≈
8
9π

y3/2

[
1+

3y
10

]
(2.75)

the overdensity inside the halo relative to the background is

∆ =

(
x
y

)3

ζ (2.76)

because the background density scales likex−3 while the density
within the halo scales likey−3; insertingτ from (2.72) into (2.75)
and raising to the power 2/3 yields

∆ = 1+
3y
5

(2.77)

to lowest order iny; the linear densitycontrast inside the halo
when it has the radiusy is therefore

δ = ∆ − 1 =
3y
5

(2.78)
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• linearly extrapolating this tox = 1 gives the linear density con-
trast expected inside the halo at turn-around,

δta =
ata

a
δ =

δ

x
=

3y
5x

(2.79)

now,
1
x
=

(
3τ
2

)−2/3

≈

(
3π
4

)2/3 1
y

(2.80)

where we have used (2.75) to lowest order iny; inserting this
result into (2.80) yields

δta =
3
5

(
3π
4

)2/3

≈ 1.06 (2.81)

• when the halo collapses atxc = 41/3 = 22/3, the linear density
contrast inside the halo would be

δc = 22/3δta =
3
5

(
3π
2

)2/3

≈ 1.69 (2.82)

this means that a halo can be considered collapsed when its den-
sity contrast expected from linear theory has reached the value of
δc; this value depends very little on the cosmological parameters,
so it can be quite generally used although it was derived for the
Einstein-de Sitter model
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• when the halo reaches virial equilibrium, the potential energy of
the halo is twice that at turn-around, so virialisation is expected
when the radius drops toy = 1/2 after turn-around; assuming
virialisation happens at collapse timexc, its overdensity is

∆v =

(
22/3

1/2

)3

ζ = 32ζ = 18π2 ≈ 178 (2.83)

according to (2.76) and (2.74); a halo in virial equilibrium is thus
expected to have a mean density≈ 178 times higher than the
background

• these two parameters derived from the spherical collapse model,
δc and∆v, are very widely used in cosmology for characterising
dark-matter halos and their formation

• extending these calculations into more general cosmological
models is surprisingly difficult and requires numerical solutions
of the underlying differential equations; approximations to the so-
lutions forΩm < 1 are

δc =
3
5

(
3π
2

)2/3 {
(1.0+ 0.0406 log10Ωm) (ΩΛ0 = 0)
(1.0+ 0.0123 log10Ωm) (ΩΛ0 = 1−Ωm0)

(2.84)
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and

∆v = 9π2


[
1+ 0.1210(Ωm − 1)+ Ω0.6756

m

]
(ΩΛ0 = 0)[

1+ 0.7076(Ωm − 1)+ Ω0.4403
m

]
(ΩΛ0 = 1−Ωm0)

(2.85)
whereΩm is the matter density parameter at the redshift of halo
collapse

2.3.3 The Press-Schechter Mass Function

• an important piece of information is the distribution of halos over
mass, the so-called mass function, which gives the number den-
sity of halos at redshiftz within the mass range betweenM and
M + dM

• a characteristic length scaleR(M) can be assigned to a halo of
massM, which is defined as the radius of a homogeneous sphere
filled with the mean cosmic matter density having massM,

4π
3

R3ρcrΩm = M ⇒ R(M) =

(
3M

4πρcrΩm

)1/3

(2.86)

whereΩm andρcr have to be evaluated at the redshift required

• aiming at halos of massM, we consider the density contrast field
filtered on the scaleR(M); we therefore usēδ as defined in (2.46),
i.e. the density contrast convolved with a window functionWR

which has a characteristic scaleR= R(M)

• it will be convenient to scale halo masses with the so-called non-
linear mass, which is the massM∗ for whose characteristic length
scaleR(M∗) =: R∗ the variance (2.47) of the density contrast be-
comesδ2

c,

σ2
R∗ = 4π

∫ ∞

0

k2dk
(2π)3

P(k)Ŵ2
R∗(k) = δ2

c (2.87)

• for a Gaussian random field, the probability of finding at a given
point ~x in space a filtered density contrastδ̄(~x) is

p(δ̄,a) =
1√

2πσ2
R(a)

exp

[
−
δ̄2(~x)

2σ2
R(a)

]
(2.88)

where we have explicitly noted that the varianceσ will depend
on time or equivalently on the scale factora through the linear
growth factor,σR(a) = σRD+(a)



CHAPTER 2. THE INHOMOGENEOUS UNIVERSE 56

• Press & Schechter suggested that the probability of finding the
filtered density contrast at or above the linear density contrast for
spherical collapse,̄δ > δc, is equal to the fraction of the cosmic
volume filled with halos of massM,

F(M,a) =
∫ ∞

δc

dδ̄p(δ̄,a) =
1
2

erfc

(
δc

√
2σR(a)

)
(2.89)

where erfc(x) is the complementary error function; obviously, this
equation implies that the fraction of cosmic volume filled with
halos of fixed massM is a highly sensitive function of the scale
factora

• the distribution of halos over massesM is simply∂F(M)/∂M, so
we have to relateσR to M, which is accomplished by the charac-
teristic radiusR(M),

∂

∂M
=

dσR(a)
dM

∂

∂σR(a)
=

dσR

dM
∂

∂σR
(2.90)

where we have inserted the varianceσR on the scaleR at the
present epoch; using

d
dx

erfc(x) = −
2
√
π

e−x2
(2.91)

we find

∂F(M)
∂M

=
1
√

2π

δc

σRD+(a)
d lnσR

dM
exp

(
−

δ2
c

2σ2
RD2
+(a)

)
(2.92)

• the normalisation of the mass function is wrong, however; it is
easy to see that ∫ ∞

0

∂F(M)
∂M

dM =
1
2

(2.93)

the reason for this problem is quite subtle, as we shall see later;
for now, we will arbitrarily multiply the mass function by a factor
a factor of two
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• this fraction of the cosmic volume filled with halos of masses
within [M,M+dM] is converted to a (comoving) number density
by dividing with the mean volumeM/ρ0 occupied byM

N(M,a)dM =

√
2
π

ρ0δc

σRD+(a)
d lnσR

dM
exp

(
−

δ2
c

2σ2
RD2
+(a)

)
dM
M
(2.94)

• the Press-Schechter mass function (2.94) has turned out to de-
scribe the mass distribution of dark-matter haloes in cosmologi-
cal simulations remarkably well; only recently have modifications
been applied in order to improve its agreement with large, high-
resolution simulations, or to take into account that halo collapse
is not expected to proceed spherically, but elliptically
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2.4 Halo Formation as a Random Walk

2.4.1 Correct Normalisation of the Press-Schechter
Mass Function

• the normalisation problem, however, is embarassing and needs
to be resolved; the solution was given with an elegant argument
interpreting the statistics of halo formation in terms of a random
walk

• suppose the density-contrast fieldδ is given; a large sphere is cen-
tred on some point~x and its radius gradually shrunk; for each
radiusR of the sphere, the density contrastδ̄ averaged within
R is measured and monitored as a function ofR; by choosing a
window functionWR in the definition (2.46) of̄δ whose Fourier
transform has a sharp cut-off in k space,̄δ will undergo a random
walk because decreasingRcorresponds to adding shells ink space
which are independent of the modes which are already included

Progressive smoothing of the den-
sity field• δ̄(~x) is thus following a random trajectory; a halo is expected to

be formed at~x if δ̄(~x) reachesδc for some radiusR; if δ̄(~x) < δc

for some radius, it may well exceedδc for a smaller radius; or, if
δ̄(~x) ≥ δc for some radius, it may well drop belowδc for a smaller
radius

• for determining halo numbers correctly, it is thus necessary to
count all points in space which are part of haloes of any mass; as
R is shrunk around a point~x, that point must be counted as being
part of a halo if there is a radiusR for which δ̄(~x) ≥ δc

• in the terminology of the random walk, we need to introduce an
absorbing barrierat δc such that points~x with trajectoriesδ̄(~x)
vs. R which hit the barrier are removed from counting them as
not being parts of haloes

Random walk with an absorbing
barrier• a trajectory meeting the boundary has equal probability for mov-

ing above or below; for anyforbiddentrajectory continuing above
the boundary, there is anallowedmirror trajectory continuing be-
low it, and conversely; for any trajectory reaching a pointδ̄ < δc

exclusively alongallowedtrajectories, there is a path reaching its
mirror point on the linēδ = δc exclusively alongforbiddentrajec-
tories, and conversely; thus, the probability for reaching a point
δ̄ < δc alongallowed trajectories exclusively below the barrier
is the probability for reaching it alongany trajectory, minus the
probability for reaching its mirror pointδc + (δc − δ̄) = 2δc − δ̄
alongforbiddentrajectories,

ps(δ̄)dδ̄ =
1

√
2πσR

[
exp

(
−
δ̄2

2σ2
R

)
− exp

(
−

(2δc − δ̄)2

2σ2
R

)]
(2.95)
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whereσR is the variance of̄δ on the scaleR, as before

• (2.95) is the probability distribution for the averaged density con-
trast to fall within [̄δ, δ̄ + dδ̄] andnot to exceedδc when averaged
on anyscale; the probability for̄δ to exceedδc on some scale is
thus

1− Ps = 1−
∫ ∞

δc

dδ̄ps(δ̄) = erfc

(
δc
√

2σR

)
(2.96)

without the factor 1/2 in (2.89); the rest of the derivation of the
Press-Schechter mass function proceeds as before

2.4.2 Extended Press-Schechter Theory

• considering the random walk of the density contrast field when
averaged over increasing or decreasing scales allows the statistics
of haloes to be greatly extended; in order to simplify notation, we
abbreviateS := σ2

R
Trajectory of a halo in theS-ω
plane; increasingS means decreas-
ing mass, andω decreases with time

• first, we note that we can either consider the barrier heightδc to be
constant whileσR is increasing with time, orσR to be constant,
while δc is decreasing with time, because only the ratioδc/σR

enters the relevant expressions; thus, the barrier can be considered
moving towards zero as time progresses,

ω :=
δc

D+(a)
(2.97)

reflecting the fact that halo collapse becomes easier as structure
formation proceeds; sinceδc(a) decreases monotonically with in-
creasing time, it can uniquely be used instead of time; the evo-
lution of a halo can now be expressed as a random walk inS as
time proceeds, orω decreases

Trajectories of low-mass haloes at
early time, forming a massive halo
at a later time

• second, we note that

−
∂Ps

∂S
dS = −

∂

∂S

∫ δc

−∞

dδ̄ps(δ̄)

=: pS(S, ω)dS =
ω
√

2πS3
e−ω

2/2SdS (2.98)

is the probability forδ̄ to hit the barrierδc for the first time when
the variance is increased fromS to S + dS; it represents the frac-
tion of mass in haloes of a massM corresponding to the scale
R

• consider now a trajectory passing through the barrierω2 for the
first time atS2, continuing to eventually pass throughω1 > ω2
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at someS1 > S2; it represents a halo of massM1 corresponding
to S1 which, at a later time corresponding toω2, reaches mass
M2 > M1 corresponding toS2; the conditional probability for the
halo to pass within [S1,S1+ dS1] atω1, starting fromS2 atω2 is,
according to (2.98),

pS1(S1, ω1|S2, ω2)dS1 =
ω1 − ω2

√
2π(S1 − S2)3/2

exp

[
−

(ω1 − ω2)2

2(S1 − S2)

]
dS1

(2.99)
because the probability (2.98) only needs to be transformed shift-
ing the origin of trajectories from (S, ω) = (0,0) to (S, ω) =
(S2, ω2)

• from (2.99) and Bayes’ theorem on conditional probabilities, we
can straightforwardly derive the probability for a halo which for
the first time reachesω1 atS1 to reachω2 for the first time atS2:

pS2(S2, ω2|S1, ω1)dS2 pS(S1, ω1)dS1

= pS1(S1, ω1|S2, ω2)dS1 pS(S2, ω2)dS2

⇒ pS2(S2, ω2|S1, ω1)dS2

=
pS1(S1, ω1|S2, ω2)dS1 pS(S2, ω2)dS2

pS(S1, ω1)dS1

=
1
√

2π

[
S1

S2(S1 − S2)

]3/2
ω2(ω1 − ω2)

ω1

× exp

[
−

(ω2S1 − ω1S2)2

2S1S2(S1 − S2)

]
dS2 (2.100)

this provides the conditional probability for a halo of massM1 to
have merged to form a halo of mass betweenM2 andM2 + dM2

• the expected transition rate fromS1 to S2 within the timest1 and
t2 corresponding toω1 andω2 is determined by (2.100) taking the
limit ω2→ ω1 =: ω,

d2pS2

dS2dω
(S1→ S2|ω)dS2dω (2.101)

=
1
√

2π

[
S1

S2(S1 − S2)

]3/2

exp

[
−
ω2(S1 − S2)

2S1S2

]
dS2dω

this gives the merger rate, i.e. the probability that, in the time
interval corresponding to dω, a halo of massM1 will merge with
another halo of massM2 − M1

• we finally need to substitute the massesM1 and M2 for S1 and
S2, and the time forω; we wish to know the probability for a halo
of massM to accrete another halo of mass∆M within the time
interval dt at timet; the transformation is

d2pM

d ln∆Mdt
(M1→ M2|t) =

dS2

d ln∆M

∣∣∣∣∣dωdt

∣∣∣∣∣ d2pS2

dS2dω
(2.102)
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• by the definition (2.97), the derivative ofω with respect tot is∣∣∣∣∣dωdt

∣∣∣∣∣ = δc

D2
+(a)

D′+(a)ȧ = H
δc

D+(a)
d lnD+(a)

d lna
(2.103)

whereH is the Hubble parameter at scale factora

• since∆M = M2 − M1, andS was introduced forσ2
R, we have

dS2

d ln∆M
= ∆M

dσ2
R(M2)

dM2
(2.104)

• with expressions (2.103) and (2.104), the merger probability
(2.102) becomes

d2pM

d ln∆Mdt
=

√
2
π

Hδc

σR2D+

d lnD+
d lna

∆M
d lnσR

dM
(M + ∆M)

×

(
1−

σ2
R2

σ2
R

)−3/2

× exp

[
−

δ2
c

2σ2
R2D2

+

(
1−

σ2
R2

σ2
R

)]
(2.105)

whereσR2 := σR(M2) = σR(M + ∆M)

• in much the same way, the random-walk interpretation of halo
growth allows deducing halo-survival times and other interesting
quantities related to halo growth

A “merger tree”, i.e. a graphical
representation of the accretion his-
tory of a halo2.4.3 Halo Density Profiles

• generally, a self-gravitating system of particles does not have an
equilibrium state; the virial theorem demands that its total en-
ergy is minus half its potential energy, i.e. any inevitable energy
loss makes the potential energy become more negative, i.e. the
halo more tightly bound, which increases its energy loss; any halo
density profile must therefore reflect a potentially long-lived, but
transient state

• knowing global halo properties like their mass, their distribution
in mass and redshift, and their growth over time, their internal
density profiles are an important characteristic; a simple analytic
model is the isothermal sphere, which is a spherically-symmetric,
self-gravitating system of non-interacting particles whose kinetic
energy is characterised by a constant temperatureT

• the equations describing the isothermal sphere are thus the Euler
equation of hydrostatic equilibrium,

dp
dr
= −

GM(r)
r2

ρ (2.106)
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and the equation of state for the ideal gas

p =
ρ

m
kT (2.107)

wherem is the mass of the particles constituting the sphere

• inserting (2.107) into (2.106) yields

kT
m

d lnρ
dr
= −

G
r2

∫ r

0

4π
3
ρ(r ′)r ′2dr ′ (2.108)

where we have expressed the mass as an integral over the density;
differentiation with respect tor yields the second-order differen-
tial equation forρ,

d
dr

(
r2d lnρ

dr

)
= −

4πGm
kT

r2ρ (2.109)

• one solution of (2.109) is singular,

ρ1(r) =
σ2

2πGr2
, σ2 :=

kT
m

(2.110)

whereσ is the (radially constant) velocity dispersion of the parti-
cles; the other solution is non-singular and can be approximated
by the non-singular expression

ρ2(r) = ρ0

1+ (
r
r0

)2−1

(2.111)

whereρ0 and the core radiusr0 are constants

• both solutions have the advantage that they reproduce the flat ro-
tation curves observed in spiral galaxies; the rotational velocity
vrot of a particle orbiting at radiusr is determined by

v2
rot =

GM
r

(2.112)

which is constant atr � r0 for both density profiles of the isother-
mal sphere; however, the temperature within a stable “gas” sphere
cannot be constant because particles would evaporate from it;
besides, the mass of the isothermal sphere diverges linearly as
r → ∞; the isothermal profile is thus at best an approximation for
the inner parts of haloes

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.1  1  10

de
ns

ity
 a

nd
 m

as
s 

pr
of

ile
s

r/rs

NFW
singular isothermal

non-singular isothermal
NFW mass

singular isothermal mass
non-singular isothermal mass

Singular and non-singular isother-
mal and NFW density and mass
profiles

• numerical simulations of halo formation in the cold dark matter
model consistently show density profiles like

ρ(r) =
ρs

x(1+ x)2
, x :=

r
rs

(2.113)

which have a characteristic scale radiusrs beyond which they fall
off ∝ r−3, and within which the density profile flattens consider-
ably
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• it is easy to see that the mass of such haloes within radiusr is

M(r) = 4πρsr
3
s

∫ x

0

x′dx′

(1+ x′)2
= 4πρsr

3
s

[
ln(1+ x) −

x
1+ x

]
(2.114)

it rises∝ x2 for small x and diverges logarithmically forx →
∞; the divergence is not a fundamental problem because the halo
profile must become invalid at the latest whereρ drops to the
cosmic background density

• the virial radiusrvir of a halo is often defined as the radiusr200

enclosing a mean overdensity of 200 times thecritical cosmic
density, but modifications of that definition are frequent; the
factor 200 is a rough approximation to the density contrast of
18π2 ≈ 178 expected at virialisation in the spherical collapse
model; this implies

M200

(
4π
3

r3
200

)−1

= 200
3H2

8πG
(2.115)

where M200 is often identified with the total halo massM; we
obtain

r200 =

( GM
100H2

)1/3

(2.116)

• the ratioc := r200/rs is calledconcentrationof the halo; it turns
out to be a function of halo mass and redshift and to depend on
cosmological parameters; generally,c is the higher the earlier
haloes form; given the halo massM, the (virial) radius is given
by (2.116), the concentration parameter givesrs = r200/c, and the
scale densityρs is then determined from (2.114) by the require-
ment thatM(r200) = M; thus, the profile (2.113) is essentially
determined by a single parameter, e.g. its mass

• it is currently unclear how the density profile arises; also, its slope
near the core is being discussed
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3.1 Structures in the Cosmic Microwave
Background

3.1.1 Simplified Theory of CMB Temperature Fluctu-
ations

The Dipole

• we saw earlier that the universe is filled with a radiation back-
ground which has an ideal Planck spectrum with a temperature
of 2.726 K; this cosmic microwave background is spectacularly
isotropic, i.e. its temperature is almost the same everywhere on
the sky

• the Earth is not at rest with respect to the microwave background;
its motion around the Sun, combined with the Sun’s motion
around the centre of the Milky Way, combined with the Milky
Way’s motion within the Local Group, combined with the motion
of the Local Group towards the Virgo cluster, causes an effective
net motion with velocityv with respect to the CMB

• as can be shown by a Lorentz transformation from the CMB rest
frame to the rest frame of the Earth, this motion causes a dipolar
pattern in the CMB temperature,

T(θ) = T0

(
1+

v
c

cosθ
)
+ O

(
v2

c2

)
(3.1)

whereT0 is the mean CMB temperature andθ is the angle be-
tween the line-of-sight and the direction of motion; the CMB tem-
perature is slightly enhanced towards the direction of motion, and
decreased in its antidirection, corresponding to the Doppler shift

CMB dipole as measured by COBE
• the COBE satellite determined the velocity of the Earth with re-

spect to the CMB to be

v = (371± 1) km s−1 (3.2)

pointing towards the Galactic coordinates

l = (264.3± 0.2)◦ , b = (48.1± 0.1)◦ (3.3)

the amplitude of the dipole is thus of order 10−3 K

Expectations from Structure Growth

• structures exist in the universe with a density contrast well above
unity which, at the time when the CMB decoupled, must have had
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a density contrast of

δ(aCMB) =
δ(a = 1)
D+(aCMB)

& a−1
CMB ≈ 10−3 (3.4)

if the CMB energy densityu were of equal magnitude, tempera-
ture fluctuations in the CMB should be of order 10−3 K, because

u ∝ T4 ⇒
δu
u
= 4

δT
T

(3.5)

i.e. of the same order as the CMB dipole

• after the detection of the CMB in 1965, temperature fluctuations
were sought at this level, but not found; it was realised later that
the problem can be solved if dark matter does not electromagneti-
cally interact, because then structures can form in the dark matter
much before decoupling without leaving a direct imprint on the
CMB temperature fluctuations; this is the strongest argument that
dark matter should not interact electromagnetically, and probably
only through the weak interaction

• based on the assumption of weakly interacting dark matter, the
expected temperature fluctuations in the CMB are expected to be
of orderδT/T ≈ 10−5, i.e. in the regime of micro-Kelvins; they
were finally detected at this level by Cobe in 1992

Perturbation Equations and the Sachs-Wolfe Effect

• studying the origin of the CMB fluctuations in detail is a com-
plicated process; one must begin with the collisional Boltzmann
equation for the photons and account for relativistic effects on
the photon propagation like curvature and time delay; however,
the simplified treatment shown here illustrates the main physical
effects

• the number density, energy density and pressure of the CMB pho-
tons are

n ∝ T3 , u ∝ T4 , p =
u
3
∝ T4 (3.6)

introducing the relative temperature fluctuationΘ := δT/T0,
whereT0 is the mean CMB temperature, we have

δn
n0
= 3Θ ,

δu
u0
= 4Θ =

δp
p0

(3.7)

• ignoring expansion terms and settinga = 1, the continuity and
Euler equations for the slightly perturbed photon gas read

ṅ+ n0
~∇ · ~v = 0 , ~̇v = −c2

~∇δp
u0 + p0

+ ~∇δΦ (3.8)
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where~v is the streaming velocity of the perturbations; they follow
from the divergence of the relativistic energy-momentum tensor

• using (3.7) andu0 + p0 = 4/3u0 = 4p0, these equations can be
written in terms of the temperature fluctuation

Θ̇ +
1
3
~∇ · ~v = 0 , ~̇v = −c2~∇Θ + ~∇δΦ (3.9)

• inserting the divergence of the Euler equation into the time deriva-
tive of the continuity equation yields

Θ̈ −
c2

3
~∇2Θ +

1
3
~∇2δΦ = 0 (3.10)

transforming to Fourier space, this becomes

¨̂Θ +
c2k2

3
Θ̂ −

k2

3
δΦ̂ = 0 (3.11)

• we now need to add a relativistic effect by hand which would
appear in the equations if we derived them fully relativistically;
perturbing the metric by the potentialδΦ causes the time delay

δt
t
=
δΦ

c2
(3.12)

which causes the photons to be redshifted such that

δT
T0
= Θ =

δΦ

c2
(3.13)

fluctuations in the potential thus produce temperature fluctua-
tions, and we have to add a source term

¨̂Θ =
δ ¨̂Φ
c2

(3.14)

to (3.11), which then reads

¨̂Θ +
c2k2

3
Θ̂ −

k2

3
δΦ̂ −

δ ¨̂Φ
c2
= 0 (3.15)

• combining temperature and potential fluctuations to form an ef-
fective temperature fluctuation̂Θ − δΦ̂/c2 =: θ̂, we obtain the
oscillator equation for̂θ,

¨̂θ +
c2k2

3
θ̂ = 0 (3.16)

obviously, the solutions are trigonometric functions; if˙̂θ = 0 at
t = 0, the solution at the time of recombination is

θ̂(trec) = θ̂(0) cos

[
ck
√

3
trec

]
(3.17)

c/
√

3 trec =: rs is called the sound horizon
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• the time delay (3.12) causes another temperature shift on the
photons escaping from the last-scattering surface; because of the
Hubble expansion, the time delay causes a fluctuation in the scale
factor at which the photons escape,

δT
T0
= θ = −

δa
a
= −

ȧδt
a

(3.18)

becauseT ∝ a−1; in the matter-dominated era in the early uni-
verse,a ∝ t2/3, thus

ȧ
a
=

2
3t
⇒ θ = −

2
3
δΦ

c2
(3.19)

such that the temperature fluctuationΘ̂ becomes

Θ̂ = θ̂ +
δΦ̂

c2
=

1
3
δΦ̂

c2
(3.20)

this is the Sachs-Wolfe effect

Effects of Baryons

• baryons couple to the photons through Compton scattering; since
the mean photon energy is of order 0.3 eV at the time of CMB
decoupling, which is very small compared to the rest-mass en-
ergy of the electrons in the cosmic plasma, the limit of Thomson
scattering is sufficient

• in presence of baryons, Euler’s equation must be corrected by
multiplying the velocity and the potential gradient with the factor
(1+ R), whereR is the ratio between the momentum densities of
baryons and photons,

R :=
ρBc2 + pB

u0 + p0
≈

3
4
ΩB0

Ωr0
a (3.21)

• replacing~v→ (1+R)~v and~∇δΦ→ (1+R)~∇δΦ transforms (3.15)
to

¨̂Θ +
Ṙ ˙̂Θ

1+ R
+

c2k2

3(1+ R)
Θ̂ =

k2

3
δΦ̂ +

Ṙ ˙δΦ̂
(1+ R)c2

+
δ ¨̂Φ
c2

(3.22)

thus the sound speedc/
√

3 is reduced by the baryons to
c/
√

3(1+ R)

• equation (3.22) describes sound waves in the temperature fluctu-
ations which are driven by the gravitational potential fluctuation
δΦ and its time derivatives, and damped by the expansion of the
universe; on scales larger than the sound horizon,

2π
k
<

ctrec
√

3(1+ R)
(3.23)

these acoustic oscillations are suppressed
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Damping

• further damping occurs due to imperfect coupling between the
photons and the baryons; the photons exert a random walk and
can thus diffuse across the length scale

λD =
√

Nλ (3.24)

whereλ is the mean free path of the photons

λ =
1

neσT
(3.25)

with the Thomson cross sectionσT, and the number of collisions
per unit time is

dN = neσTcdt (3.26)

thus,

λ2
D =

∫ trec

0

cdt
neσT

(3.27)

• structures smaller than the diffusion length are damped, hence
damping sets in for wave numbers

k > kD =
2π
λD

(3.28)

Polarisation

• Thomson scattering is anisotropic; its differential cross section is

dσ
dΩ
=

3σT

8π

∣∣∣~e′ · ~e∣∣∣2 (3.29)

where~e′ and~e are the unit vectors in the directions of the in-
coming and outgoing electric fields, respectively; evidently, the
scattered electric field with a field vector orthogonal to that of the
incoming field has zero intensity

Origin of the CMB polarisation
• if the infalling radiation is isotropic, the scattered radiation is un-

polarised; if, however, the infalling radiation has a quadrupolar
intensity anisotropy, the scattered radiation is polarised because
it has different intensities in its two orthogonal polarisation direc-
tions

• since the electrons within the last-scattering shell are irradiated by
anisotropic light, the CMB is expected to be linearly polarised to
some degree; the intensity of the polarised light should be of order
10% that of the unpolarised light, i.e. it should have an amplitude
of order 10−6 K
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3.1.2 CMB Power Spectra and Cosmological Parame-
ters

• three effects were identified before which determine temperature
fluctuations in the CMB: the Sachs-Wolfe effect on large scales,
acoustic oscillations on scales smaller than the sound horizon, and
damping on small scales due to photon diffusion

• the visible temperature fluctuations on the sky are determined by
the projection on the sky of photon density fluctuations in three-
dimensional space; due to that procedure, fluctuations of a single
wave numberk are smeared out over a range of angular scales

• Fourier decomposition is not defined on the sphere; instead, one
has to project the temperature fluctuations onto another set of
basis functions which are orthonormal on the sky; these are the
spherical harmonic functionsYm

` (~θ); if T(~θ) is the temperature at
position~θ on the sky, it can be expanded into a series

T(~θ) =
∑
`m

a`mYm
` (~θ) (3.30)

with the (generally complex) coefficientsa`m
Appearance of the three most im-
portant CMB effects in the power
spectrum

• because of the orthonormality of the spherical harmonics,∫ 2π

0
dϕ

∫ π

0
sinθdθYm1∗

`1
(θ, ϕ) Ym2∗

`2
(θ, ϕ) = δ`1`2δm1m2 (3.31)

the expansion coefficients are given by

a`m =
∫ 2π

0
dϕ

∫ π

0
sinθdθT(θ, φ)Ym

` (θ, φ) (3.32)

Launch of the Boomerang experi-
ment

• the power spectrum of the temperature map is defined by

C` =
〈
|a`m|

2
〉

(3.33)

which depends only on the multipole order` because of statistical
isotropy; conventionally, the quantitỳ(` + 1)C` is shown instead
of C` because it reflects the total power contained in the multipole
`

• the shape of̀ (` + 1)C` is characteristic; as expected, the Sachs-
Wolfe effect dominates on large scales, i.e. small`, acoustic os-
cillations set in on scales smaller than the projection of the sound
horizon on the sky, and very small scales are damped
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• the many pronounced features of the CMB power spectrum, and
their tight relation to the cosmological parameters, allow cosmo-
logical parameters to be determined very accurately if theC` can
be measured with high precision; this has caused substantial ef-
forts to be put into the CMB measurements, with remarkable suc-
cess

• after relatively noisy measurements of the CMB on small frac-
tions of the sky with balloon-borne experiments like Boomerang
or Maxima, or ground-based experiments like Dasi, VSA or
CBI, the Nasa satellite “Wilkinson Microwave Anisotropy Probe”
(WMAP) has obtained accurate full-sky maps of the microwave
sky with an angular resolution of& 15′ at frequencies between 23
and 94 GHz, and is continuing to measure; it has so far produced
a CMB power spectrum which covers the first two acoustic peaks
with high accuracy

The WMAP satellite
• although the WMAP results alone suffer from degeneracies be-

tween different cosmological parameters, their combination with
results from other cosmological experiments (in particular mea-
surements of supernovae of type Ia, galaxy correlation functions,
and structures in the distribution of neutral hydrogen) has pro-
duced the most accurate set of cosmological parameters to date:

Full-sky CMB map produced by the
WMAP satelliteCMB temperature TCMB 2.275± 0.002 K

total density Ωtot 1.02± 0.02
matter density Ωm 0.27± 0.04
baryon density Ωb 0.044± 0.004
Hubble constant h 0.71+0.04

−0.03
baryon-to-photon ratio η 6.1+0.3

−0.2 × 10−10

fluctuation amplitude σ8 0.84± 0.04
scalar spectral index ns 0.93± 0.03
decoupling redshift zdec 1089± 1
age of the Universe t0 13.7± 0.2 Gyr
age at decoupling tdec 379+8

−7 kyr
reionisation redshift (95% c.l.) zr 20+10

−9
reionisation optical depth τ 0.17± 0.04

most of these parameters should remain as further CMB data
come in and are being analysed, but the error bars should continue
to shrink; the most insecure numbers in this table are probably the
redshift of reionisation and optical depth

CMB spectrum derived from the
WMAP results• the power spectrum of the polarised radiation shows similarly

pronounced features as that of the temperature; also, the struc-
tures in the polarisation map are expected to be correlated with
those in the temperature map, i.e. there is a non-vanishing cross-
power spectrum between temperature and polarisation
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• polarisation was first detected in the CMB by the Dasi experiment
located at the Amundsen-Scott station at the South Pole; its am-
plitude, power spectrum and and cross-power spectrum with the
temperature agree very well with expectations from theory; the
WMAP satellite has measured the cross-power spectrum between
temperature and polarisation only, which agrees very well with
the theoretical expectations derived from the temperature power
spectrum

The DASI interferometer at the
Amundsen-Scott station at the
South Pole

• the European satellitePlanck will obtain full-sky maps of the
CMB temperature and polarisation with an angular resolution of
& 5′ at frequencies between 30 and 857 GHz, further substantially
improving upon the results from WMAP

Temperature and polarsation map
produced by DASI

The European Planck satellite
planned for launch in 2007

3.1.3 Foregrounds

• originating at redshiftz ≈ 1100, the CMB shines through the
entire visible universe on its way to us; it is thus hidden behind a
sequence of foreground layers

• the most important ones of those are caused by the microwave
emission from our own Galaxy; warm dust in the plane of
the Milky Way with a temperature near 20 K produces emis-
sion mainly above the CMB peak frequency; electrons gyrat-
ing in the Galactic magnetic field emit synchrotron radiation
which has a power law falling from radio frequencies into the
microwave regime; thermal free-free emission (bremsstrahlung)
from ionised hydrogen partially falls into the microwave regime;
further sources include, e.g. the line emission from molecules like
CO

• hot plasma in galaxy clusters inverse-Compton scatters mi-
crowave background photons to higher energies, giving rise to the
so-called Sunyaev-Zel’dovich effect in the microwave regime; the
characteristic spectral behaviour of that effect will enable future
CMB missions to detect of order 104 galaxy clusters out to high
redshifts

• other types of point source appearing in the microwave back-
ground include high-redshift galaxies, and planets, asteroids, and
possibly comets in the Solar System; also, dust in the plane of the
Solar System emits the so-called Zodiacal light, which adds faint
microwave emission

• while these microwave foregrounds need to be carefully sub-
tracted from the microwave sky to arrive at the CMB, they them-
selves provide important data sets for cosmology, but also for re-
search on the Galaxy and possibly also the Solar System
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3.2 Cosmological Inflation

3.2.1 Problems

Planck Scales

• Big-Bang cosmology offers a very successful, coherent picture
for the evolution of the universe, but at the same time has funda-
mental problems

• evidently, the näıve picture of the Big Bang predicts the en-
ergy density to grow beyond all boundaries; heuristically, we ex-
pect this approach to break down at the latest when quantum-
mechanical effects set in; an estimate for when this may happen
is given by the following argument:

• a quantum-mechanical length scale for a particle of massm is its
de Broglie wavelength,

λdB =
2π~
mc

(3.34)

while a gravitational length scale is given by its Schwarzschild
radius,

rS =
2Gm

c2
(3.35)

quantum-mechanical effects are expected to become important in
general relativity at the latest when the two become equal, which
defines the Planck mass

mP =

√
~c
G
≈ 2× 10−5 g ≈ 1019 GeV

c2
(3.36)

• through (3.34), the Planck mass defines a length scale, the Planck
length

lP =
~

mPc
=

√
~G
c3
≈ 10−33 cm (3.37)

and a time scale, the Planck time

tP =
lP
c
=

√
~G
c5
≈ 10−43 s (3.38)

at times closer to the Big Bang than the Planck time, the purely
general-relativistic treatment of cosmology is expected to break
down
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The Horizon and Flatness Problems

• we have seen earlier that the particle horizon is given by

∆w(t1, t2) =
c

H0

√
Ω0

∫ a(t2)

a(t1)

da
a2−n/2

(3.39)

in the early universe, i.e. before curvature and cosmological-
constant terms became relevant

• at recombination, the universe is well in the matter-dominated
epoch, so we can setn = 3; inserting furthera(t1) = 0 anda(t2) =
arec in (3.39) yields

∆w(0, trec) =
2c
H0

√
Ω0arec ≈ 175

√
Ω0 h−1 Mpc (3.40)

this is thecomovingradius of a sphere around an given point in
the recombination shell which could have causal contact with this
point before recombination

• the angular-diameter distance from us to the recombination shell
is

Dang(0, zrec) ≈
2c
H0

arec

(
1−
√

arec

)
≈

2c
H0

arec ≈ 5h−1 Mpc (3.41)

• the angular size of the particle horizon at recombination on the
CMB sky is therefore

θrec =
arec∆w(0,arec)
Dang(0, zrec)

≈
√
Ω0arec ≈ 1.7◦

√
Ω0 (3.42)

Size of causally connected regions
on the CMB

• given any point on the microwave sky, the causally connected re-
gion around it has a radius of approximately one degree, i.e. four
times the radius of the full moon; how is it possible that the
CMB temperature is so very closely the same all over the full
sky? points on the sky further apart than≈ 2◦ had no chance of
causally interacting and “communicating” their temperature; this
constitutes thehorizon problem

• ignoring the cosmological-constant term, the Friedmann equation
can be written

H2(a) =
8πG

3
ρ −

Kc2

a2
= H2(a)

[
Ωtotal(a) −

Kc2

a2H2

]
(3.43)

thus the deviation ofΩtotal from unity is

|Ωtotal− 1| =
Kc2

a2H2
(3.44)
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• we have already seen thatΩ → 1 for a → 0 during the matter-
dominated era; during radiation-domination,a2H2 = ȧ2 ∝ t−1,
during the early matter-dominated era,a2H2 ∝ t−2/3, thus

|Ωtotal− 1| ∝

{
t radiation-dominated era
t2/3 early matter-dominated era

(3.45)

therefore, if there is any tiny deviation ofΩtotal from unity at early
times, it moves rapidly away from unity; in order forΩtotal to
be anywhere near unity today, it must have been extremely close
to unity at early times, which constitutes an uncomfortable fine-
tuning problem, theflatness problem

• the horizon problem is exacerbated by the observation that not
only is the temperature of the CMB very nearly the same all over
the sky, but also coherent structures exist in the CMB which are
much larger than the horizon size at decoupling; how could these
structures be formed?

• apart from the problem of how structures can be coherent beyond
the horizon scale, it remains as yet unexplained where structures
originate from in the first place; ultimately, cosmology needs to
explain why there are structures rather than complete homogene-
ity

3.2.2 Inflation

Effect of a shrinking comoving
Hubble radius

Horizon and causally connected re-
gions

The Idea of Inflation

• returning to (3.44), we note thatc/H is the Hubble radius, hence
c/(aH) is thecomovingHubble radius; at least the flatness prob-
lem could be solved if the comoving Hubble radius couldshrink
sufficiently for some time, because then the deviation ofΩtotal

from unity would be driven towards zero

• the physical picture behind ashrinkingcomoving Hubble radius
is the following: the Hubble radius characterises the radius of
the observable universe, thus thecomovingHubble radius gives
the radius of the observable universe in comoving coordinates,
i.e. after transforming to non-expanding coordinates; if the co-
moving Hubble radius could shrink during some time, the ob-
servable part of the universe could be moved within causally con-
nected regions, thus the contents of the entire observable universe
could be brought into causal contact; after this phase ends, the
observable universe can expand again, but its physical state can
appear coherent everywhere thereafter
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Conditions for Inflation

• the condition for a shrinking, comoving Hubble radius is

d
dt

( c
aH

)
< 0 (3.46)

sinceaH = ȧ, this implies

d
dt

(c
ȧ

)
= −

cä
ȧ2

< 0 ⇒ ä > 0 (3.47)

i.e. it is equivalent to accelerated expansion

• accelerated expansion seems incompatible with gravity because
the gravitational force exerted by the matter inside a representa-
tive spherical section of the universe is expected to decelerate its
expansion

• Friedmann’s equation allows accelerated expansion if

ρc2 + 3p < 0 (3.48)

i.e. expansion can accelerate if and only of the pressure is suffi-
ciently negative,

p < −
ρc2

3
(3.49)

• energy conservation requires

d
dt

(
ρc2a3

)
+ p

d
dt

(
a3

)
= 0 ⇒ ρ̇ = −3

ȧ
a

(
ρ +

p
c2

)
(3.50)

since, by definition, the cosmological constant has ˙ρ = 0, it must
correspond to a form of matter which has

p = −ρc2 (3.51)

i.e. the cosmological constant provides a suitably exotic equation
of state

• once the cosmological-constant term becomes appreciable in
Friedmann’s equation, it quickly dominates because it scales
with the highest power of the scale factora; as we have seen,
it accelerates cosmic expansion, thusa grows rapidly, and the
cosmological-constant term very quickly entirely determines the
dynamics; this is the case of de Sitter expansion mentioned earlier
in the context of the late cosmic evolution,

a ∝ exp
( √
ΩΛH0t

)
(3.52)

i.e. exponential expansion sets in onceΛ starts dominating
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Inflation and Scalar Fields

• as an example for a simple physical system which may have neg-
ative pressure, consider a self-interacting scalar fieldφ, which has
the Lagrangian density

L =
1
2
∂µφ∂

µφ − V(φ) (3.53)

whereV(φ) is the interaction potential

• the fieldφ has the energy-momentum tensor

Tµν = ∂µφ∂νφ − gµνL (3.54)

its time-time component is the energy density,

ρc2 =
1
2
φ̇2 + V(φ) +

1
2

(~∇φ)2 (3.55)

while the pressure is given by its space-space components,

p =
1
2
φ̇2 − V(φ) −

1
6

(
~∇φ

)2
(3.56)

• due to homogeneity, the terms~∇φ must vanish; the requirement
(3.49) then translates to

1
2
φ̇2 − V(φ) < −

1
3

(
1
2
φ̇2 + V(φ)

)
(3.57)

which is satisfied if
φ̇2 < V(φ) (3.58)

thus the scalar fieldφ shows the desired behaviour provided its ki-
netic energy is sufficiently small compared to its potential energy,
i.e. if it “moves” sufficiently slowly

• inserting the energy density ofφ into Friedmann’s equation yields

H2 =
8πG

3

[
1
2
φ̇2 + V(φ)

]
(3.59)

and the continuity equation (3.50) requires

φ̈ + 3Hφ̇ = −
dV(φ)

dφ
(3.60)

these equations determine the evolution ofφ in the expanding cos-
mological background
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Slow-Roll Conditions

• following the requirement (3.58), we impose the conditions

φ̇2 � V ,
d
dt
φ̇2 �

dV(φ)
dt

⇒ φ̈ �
dV(φ)

dφ
(3.61)

for successful inflation, i.e. we want inflation to be strong and to
persist sufficiently long; these conditions simplify the evolution
equations to

H2 ≈
8πG

3
V(φ) , 3Hφ̇ ≈ −

dV(φ)
dφ

=: −V′ (3.62)

Slowly rolling field in a flat poten-
tial

• consequently, the conditioṅφ2 � V(φ) can be written(
V′

3H

)2

=
(V′)2

24πGV
� V ⇒

1
24πG

(
V′

V

)2

=: ε � 1 (3.63)

additionally,

φ̈ = −
d
dt

V′

3H
= −

V′′φ̇
3H
+

V′Ḣ
3H2

(3.64)

and, with

2HḢ =
8πG

3
V′φ̇ ⇒

Ḣ
H
=

4πG
3H2

V′φ̇ =
φ̇

2
V′

V
(3.65)

we find

φ̈ = −
V′′φ̇
3H
+

(V′)2φ̇

6VH
� V′ = −3Hφ̇ (3.66)

and thus

V′′

3H2
−

(V′)2

6VH2
=

1
8πG

V′′

V
−

3
2
ε =: η −

3
2
ε � 1 (3.67)

• thus, successful inflation is equivalent to the condition that the
two slow-roll parameters

ε :=
1

24πG

(
V′

V

)2

� 1 , η :=
1

8πG

(
V′′

V

)
� 1 (3.68)

are both much smaller than unity

Amount and End of Inflation

• today’s age of the universe ist0 ≈ 4 × 1017 s; the Planck time,
which is a possible time for the onset of inflation, istP ≈ 10−43 s;
during the radiation-dominated era,

|Ωtotal− 1| ∝ t (3.69)

thus,Ωtotal ≈ 1 today can be achieved if

|Ωtotal− 1| ≈ 1060 (3.70)

at the onset of inflation
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• for inflation to solve the flatness problem, the comoving Hubble
radius thus needs to shrink by a factor of≈ 1030, which corre-
sponds to an increase in the scale factor by a factor of approx-
imately e60; this would at the same time solve the horizon (or
causality) problem

Driving the universe spatially flat
• during inflation, the energy density of the inflaton field is approx-

imately constant sinceρc2 ≈ V, and the changes inV are small
due to the slow-roll conditions

• all other densities drop by huge amounts; sinceρ ∝ a−3 for non-
relativistic matter andρ ∝ a−4 for radiation, their densities de-
crease by factors of≈ e−180 and≈ e−240, respectively

• since there is matter and radiation in the universe today, there
must be a way to convert the energy density of the inflaton field
into the energy density of radiation or matter as inflation ends,
i.e. when (ε, η) ≈ 1

• at this time, the kinetic termṡφ andφ̈ become important; the infla-
ton field may oscillate around the minimum of its potential energy

• it is assumed that the inflaton field can decay through some cou-
pling to “ordinary” matter and thus turn its energy density back
into other constituents of the cosmic fluid; however, how this “re-
heating” process may occur is an open question

Inflation and Structure Formation

• as any other quantum field, the inflaton field must have undergone
vacuum fluctuations before inflation because of the uncertainty
principle

The universe expands beyond the
horizon

• once inflation sets in, the vacuum fluctuations are quickly driven
outside of the horizon (or, in the language of the shrinking co-
moving horizon, the horizon quickly contracts below the length
scale of the quantum fluctuation), where they “freeze in” because
they lack causal contact

Initial quantum fluctuations are in-
flated to macroscopic scales

• for a highly simplified treatment of the qualitative properties of
density fluctuations produced that way, consider a spherical over-
density; it must of course satisfy Friedmann’s equation, which we
write in the form (3.43),

H2 = H2

(
Ω −

Kc2

a2H2

)
(3.71)

whereΩ is the density parameter inside the overdensity, from
which we obtain

ρa2 =
3H2a2

8πG
Ω =

3H2a2

8πG
+

3Kc2

8πG
=
ρa2

Ω
+

3Kc2

8πG
(3.72)
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and thus

ρa2

(
1
Ω
− 1

)
= const. (3.73)

• for a linear overdensity in the early universe,Ω = 1 + δΩ with
δΩ � 1, thusδρ = ρδΩ � ρ, and (3.73) implies

ρa2

(
1
Ω
− 1

)
≈ ρa2δΩ ≈ δρa2 = const. (3.74)

i.e. the physical overdensityδρ inside the spherical perturbation
must scale∝ a−2

• the fluctuationδΦ in the gravitational potential caused by the
spherical overdensity is

δΦ =
GδM

R
=

4πG
3

(aL)3 δρ

aL
= const. L2 (3.75)

whereR is the physical radius of the sphere, andL is its comoving
radius; the last equality follows becauseδρ ∝ a−2; the potential
fluctuation caused by the perturbation thus remains constant dur-
ing inflation

• the physical scale (aL) changes by≈ 30 orders of magnitude dur-
ing inflation, thus inflation predicts approximately identical po-
tential fluctuations on all accessible physical scales

• the detailed theory of the inflationary origin of structures starts
with the vacuum expectation value of the inflaton field on the
scale corresponding to wave numberk,〈

0
∣∣∣|φk|

2
∣∣∣ 0〉 (3.76)

and solves the equations for the field amplitudes; the result is
that the root-mean-square fluctuations in the gravitational poten-
tial scale as follows, 〈

δΦ2
〉1/2
∝

H2

φ̇
(3.77)

which is approximately constant because of the slow-roll condi-
tions

• due to Poisson’s equation, the Fourier modes of the potential and
density fluctuations are related byk2δΦ̂(k) ∝ −δ̂(k), thus the (pri-
mordial) density power spectrum predicted by inflation is

|δ̂(k)|2 ∝ k4|δΦ̂(k)|2 ∝ k3Pi(k) ⇒ Pi(k) ∝ k (3.78)

this is the Harrison-Zel’dovich-Peebles spectrum which was orig-
inally required for completely different reasons; precise calcula-
tions find

Pi(k) ∝ kn (3.79)

with k . 1
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• since the density fluctuations arise from superpositions of enor-
mous numbers of statistcally independent vacuum fluctuations of
the inflaton field, they are expected to be Gaussian because of the
central limit theorem

• thus, inflation provides a physical picture for solving the horizon
and flatness problems of the Big Bang theory, and at the same
time provides a natural explanation for the origin of structures in
the universe, which are predicted to be nearly scale-invariant and
Gaussian
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3.3 Dark Energy

3.3.1 Expansion of the Universe

• observations force us to accept that the cosmological constant to-
day makes up≈ 70% of the energy density of the universe

• measurements of the CMB power spectrum reveal that the uni-
verse is spatially flat or very close to flat, i.e. the total energy
density contributed by all constituents of the cosmic fluid equals
the critical density

• we know from the CMB itself, but also from other observations,
that the matter density, dark and baryonic, contributes approx-
imately 30% to the total energy density, and the abundance of
light elements requires the baryon density to be much lower; in
the framework of the Friedmann model, the remaining 70% of the
energy density must be contributed by the cosmological constant

Supernovae 1994 d

A white dwarf fed by a companion
star

• the most important class of observations supporting this conclu-
sion is supernovae of type Ia; such supernovae occur in binary
stars consisting of a white dwarf and an evolved companion;
when the companion becomes a red giant, it grows over its Roche
volume and looses mass to the white dwarf

• white dwarfs are stabilised by the Fermi pressure of a degenerate
electrons gas; this can only stabilise masses up to 1.4 M� against
gravity; when the companion star feeds the white dwarf beyond
this limit, the white dwarf collapses and explodes

• thus, when a type-Ia supernova explodes, a fixed amount of “ex-
plosives” blows up; this makes it plausible that they release fixed
amounts of energy, thus their intrinsic luminosity is plausibly con-
stant; they form a class of “standard candles”

• probably due to the complicated explosion mechanism and the ra-
diation transport out of the dense exploding core to the surface of
the supernova, type-Ia supernovae are not strictly standard can-
dles; fortunately, their lightcurve shape allows the scatter in their
luminosities to be largely reduced

cosmological parameter range com-
patible with SN-Ia observations

• knowing their absolute luminosity and observing their apparent
brightness, their (luminosity) distances can be infered; their red-
shift can be determined from their spectra; thus, it is possible to
reconstruct the luminosity distance as a function of redshift

• initially very surprisingly, the distance turns out to be significantly
larger than expected in a universe without cosmological constant;
observations of type-Ia supernovae first forced cosmologists to
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take seriously the possibility that the universe undergoes acceler-
ated expansion

• meanwhile, high-redshift supernovae have shown that the expan-
sion of the universe turned over from decelaration to acceleration
around a redshift of unity

the cosmic expansion turned from
deceleration to acceleration nearz∼
1

3.3.2 Modified Equation of State

• this is an unfavourable situation because we have no idea what
the cosmological constant may be, and it is entirely unclear why
at present the density parameters of matter and the cosmological
constant should be anywhere near equality

• a simple estimate of the energy or equivalent matter density of
the cosmological constant produces an awfully wrong result; a
natural density scale would be the Planck mass divided by the
cubed Planck length, which gives

ρ =
mP

l3P
≈

10−5

(10−33)3
g cm−3 ≈ 1094 g cm−3 (3.80)

which is about 120 orders of magnitude larger than the critical
density of the universe

• the main reasons why the cosmological constant is considered
necessary are that the total matter density is much smaller than
unity, while the spatial curvature of the universe is close or equal
to zero, and that observations of supernovae of type Ia require the
expansion of the universe to be accelerated

• seeking a physical explanation for the cosmological constant, it
is useful to look at cosmological inflation, which also grew from
the requirement of accelerated expansion; as we have seen there,
this requires a form of matter whose pressure is

p < −
1
3
ρc2 (3.81)

while the cosmological constant hasp = −ρc2

• it is plausible to generalise the equation of state (3.81) as

p = wρc2 , w < −
1
3

(3.82)

with a parameterw which may or may not depend on time;
forms of matter with such equations of state have been termed
“quintessence”
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• suppose for simplicity thatw is constant; then the continuity equa-
tion requires

d
dt

(
a3ρQc2

)
+ wρQc2 d

dt

(
a3

)
= 0 (3.83)

which implies
ρQ = ρQ0a

−3(1+w) (3.84)

whereρQ0 is the quintessence density today; evidently, the be-
haviour of the cosmological constant is recovered forw = −1

• replacingΩΛ byΩQ, and ignoring the radiation density, the Fried-
mann equation reads

H2(a) = H2
0

[
Ωm0a

−3 + (1−Ωm0−ΩQ0)a
−2 + ΩQ0a

−3(1+w)
]

(3.85)
for w = −1/3, the quintessence terms cancel, and the equation
looks like the Friedmann equation for an open model withΩm0

only andΩQ0 = 0

• if w is not constant, the continuity equation leads to

ρQ(a) = ρQ0 exp

[
−3

∫ 1

a
(1+ w)d lna

]
(3.86)

• as for cosmological inflation, a self-interacting scalar field is one
candidate for a form of matter which can have negative pressure;
the ratiow between pressure and density is

w =
φ̇2 − V(φ)

φ̇2 + V(φ)
(3.87)

and the scalar fieldφ satisfies the evolution equation (3.60),

φ̈ + 3Hφ̇ + V′(φ) = 0 (3.88)

3.3.3 Models of Dark Energy

• so far, the interaction potentialV(φ) is completely unconstrained;
one suggestion is

V(φ) =
κ

φα
(3.89)

the so-called Ratra-Peebles potential; the constantκ has the di-
mension (mass)4+α; it needs to be set such as to agree with the
quintessence density parameter today
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• for a power-law expansion,a ∝ tn, the evolution equation (3.88)
admits power-law solutions forφ,

φ ∝ t2/(2+α) (3.90)

the kinetic term
φ̇ ∝ t−α/(2+α) (3.91)

decays forα > 0

• the energy density of the quintessence field then scales as

ρQ =
1
2
φ̇2 + V(φ) ∝ t−2α/(2+α) (3.92)

and its ratio to the density of matter or radiation scales as

ρQ

ρ
∝ t2−2α/(2+α) = t4/(2+α) (3.93)

because the densities of matter and radiation both scale∝ t2 while
they dominate the expansion; forα = 0, the quintessence density
ρQ is constant and reproduces the behaviour of the cosmological
constant; forα > 0, the quintessence density decays more slowly
than that of matter or radiation, leadingφ to dominate the expan-
sion of the universe at late times

• if α > 0, the field grows arbitrarily large in this model, thusV
approaches zero, and the energy densityρQ→ 0

Equation-of-state parameterw as a
function of redshift for two models
of dark energy

• a favourable aspect of the model (3.89) is that it has so-called
tracker properties, meaning that a wide variety of initial condi-
tionsφ andφ̇ lead to the same final solution forφ; this may help
solving the coincidence problem, which states that nearly equal
values forΩΛ andΩm today seem to require delicate fine-tuning
in the early universe

• another model, which is motivated by super-gravity theories, has
an exponential term in addition to the power-law potential,

V(φ) =
κ

φα
e4πGφ2

(3.94)

it shares the tracker property with the power-law model, but has a
significantly different behaviour

3.3.4 Effects on Cosmology

• the modified expansion rate in quintessence models may have
pronounced cosmological consequences on age and distances,
nucleosynthesis, the microwave background, structure formation
and so forth
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• since nucleosynthesis depends critically on how the expansion
time scale compares to the time scales of neutron decay and
the nuclear interactions, the cosmic expansion during nucleosyn-
thesis is tightly constrained by observations of the light-element
abundances; thus, at the time of nucleosynthesis, the quintessence
field must be negligible compared to the radiation density which
otherwise drives the expansion

• changes in the expansion time scale during CMB recombination
changes the width of the recombination shell and thus modifies
the height of the high-order acoustic peaks; if expansion is faster,
the temperature of the cosmic plasma drops more rapidly, the re-
combination shell becomes thinner, thus fewer small-scale fluc-
tuations are projected onto each other looking into the recom-
bination shell, the damping of the high-order acoustic peaks is
reduced, so they can be higher

Growth factor, angular-diameter
distance, and halo concentrations in
ΛCDM and two dark-energy mod-
els

• modified expansion behaviour changes the curvature of space-
time, and thus the angular-diameter and luminosity distances; this
influences the appearance of supernovae of type Ia, the apparent
size of fluctuations in the CMB, the cosmic volume of redshift
shells, and the overall geometry of the universe, and thus effects
like gravitational lensing

• the growth factor is modified, typically in such a way that struc-
tures form earlier in quintessence compared to cosmological-
constant models; structures are thus expected to be present at
higher redshifts in quintessence models, and more pronounced
at given redshifts, compared to the cosmological-constant case

• halo collapse against the universal expansion is modified, which
implies that the spherical collapse proceeds differently; conse-
quently, the spherical-collapse parametersδc and∆v are modi-
fied, having pronounced effects on halo statistics (e.g. through
the Press-Schechter mass function)

• the core densities of haloes appear to reflect the cosmic back-
ground density at their formation times; since quintessence makes
haloes form earlier, they tend to be denser in their cores, which
may have strong effects on their appearance (e.g. through gravi-
tational lensing, X-ray emission, and so forth)

• the modified growth factor in quintessence models changes the
time evolution of fluctuations in the gravitational potential; pho-
tons propagating from the CMB recombination shell throughout
the universe thus experience changes in the gravitational poten-
tial which are stronger than in the cosmological-constant model;
a larger fraction of the CMB amplitude is thus of secondary rather
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than primary origin, possibly changing the normalisation of the
power spectrum



Chapter 4

The Late Universe

87
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4.1 Galaxies and Gas

4.1.1 Ellipticals and Spirals

• galaxies are objects with typical sizes of a few kpc, while their
typical distances are of order Mpc, so they are clearly distin-
guished entities

• galaxies typically consist of a central, more or less amorphous,
nearly spherically-symmetric part, called the bulge, and a flat-
tened, structure, called the disk

• bulges contain predominantly old, metal-poor, red population-II
stars which have an almost isotropic velocity dispersion

• disks contain more metal-rich, younger, blue population-I stars
which move around the centre in nearly circular orbits

Galaxy morphologies are classified
by the ratio between bulges and
disks

• galaxies are classified by the ratio between bulges and disks; those
dominated by the bulge are called ellipticals, those dominated by
the disk are called spirals, and there is a continuous classification
range in between, the Hubble sequence; historically, ellipticals
are also called early-type, and spirals late-type galaxies

• disks have near-exponential intensity profiles,

I (r) = I0 exp

(
−

r
r0

)
(4.1)

with the scale lengthr0, while bulges have the less steep de-
Vaucouleurs- orr1/4 profile,

I (r) = I0 exp

− (
r
r0

)1/4 (4.2)

• other types of galaxy are less easily fit into this scheme, such as
the irregular, dwarf, or blue compact galaxies

• spectra of ellipticals show signatures of old stellar populations;
they correspond to temperature near 5000 K, are rich in metal
lines, and dominated by giant stars moving off the stellar main
sequence

• spectra of spirals are characterised by signatures of recent star for-
mation; they contain young, hotter, bluer stars with less absorp-
tion features; the radiation of the young stars can ionise ambient
gas and thus produce narrow nebular emission lines
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• the metal abundances in galaxies reflect metal production by type-
II supernovae, which are the end products of massive-star evolu-
tion; typically, metal abundances increase with increasing galaxy
mass and towards galaxy centres

• galaxy luminosities and dynamical properties like velocity disper-
sionsσv (for ellipticals) or rotational velocities (for spirals) are
closely related to each other; ellipticals inhabit thefundamental
planedefined by

L ∝ I−0.7
0 σ3

v (4.3)

with a scatter of about 0.4 magnitudes; in absence of cen-
tral surface-brightness information, the less well-defined Faber-
Jackson relation holds

L ∝ σ3−4
v (4.4)

which has a scatter of about 1 mag; for spirals, the Tully-Fisher
relation relates luminosity and rotational velocity with a scatter
similar to that of the fundamental plane

• elliptical and spiral galaxy populations inhabit different regions
of space; while spirals dominate in low-density regions (well
outside galaxy clusters), ellipticals predominantly inhabit high-
density regions like cluster cores; apparently, disks do not survive
in dense environments

4.1.2 Spectra, Magnitudes andK-Corrections

• the intensity of electromagnetic radiation is characterised by the
energy received per unit time and unit detector area from unit
solid angle on the sky and per unit frequency interval; this is
called thespecific intensity Iν; when integrated over the solid
angle of a source, it is called theflux density Sν, which is con-
sequently the energy received per area, time and frequency; its
conventional unit is Jansky,

1 Jy= 10−26 W
m2 Hz

= 10−23 erg
s cm2 Hz

(4.5)

spectra of different galaxy types• we will loosely speak of theflux below, which can be specific in-
tensity if not integrated over solid angle, flux density if integrated
over solid angle, or or flux if integrated over detector area; iffν is
the flux per unit frequency, the fluxfλ per unit wavelength is

fλ =
∣∣∣∣∣dνdλ

∣∣∣∣∣ fν =
c
λ2

fν (4.6)
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• intensities are measured through filters with transmission func-
tionsTν or Tλ; sets of transmission curves define a filter system,
such as the Johnson-UBVRI system or that used by the Sloan
Digital Sky Survey (SDSS)

• the transmission curves define the effective wavelength

λeff :=

∫
dλλTλ∫
dλTλ

(4.7)

and the sensitivity

Q :=
∫

d lnνTν (4.8)

Transmission curves of the Johnson
filter system

• at least in optical astronomy, fluxes are commonly measured in
magnitudes, which provide a peculiarly defined logarithmic scale;
generally, the magnitudedifferenceof two objects is

∆m= −2.5 log10

(
R1

R2

)
, (4.9)

if R1,2 are the instrumental responses to the flux received from
objects 1 and 2; the zero point is commonly defined as the instru-
mental response to the flux of a standard star (e.g.α Lyrae, which
is an A0V star)

• for so-calledAB magnitudes, the zero point is defined in terms
of the physical flux in Jy; for instance, theAB magnitude system
used by the SDSS is defined by

m= −2.5 log10

∫
d lnν fνTν

Q
− 48.6 (4.10)

• this can directly be related to the number of electrons released in
a CCD; the energy received per unit time and unit frequency in-
terval by a telescope with collecting areaA is dE = Adtdν fν; this
energy comes in form of dNγ = dE/(hν) photons, a fractionTν

of which can pass the filter; thus, the number of photons arriv-
ing at the CCD, or the number of electrons released by the CCD
assuming 100% efficiency of the CCD in converting photons to
electrons, is

Ne =
At
h

∫
d lnν fνTν (4.11)

wheret is the total exposure time

• for example, an object with anABmagnitude ofm= 25 in a given
filter band with sensitivityQ = 0.1 has∫

d lnνTν = 3.6× 10−30 (4.12)
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and thus releases
Ne

At
= 5.5× 10−4 (4.13)

electrons per second exposure time and cm2 collecting area;
hence, a CCD attached to a telescope with 4 m mirror diameter
releases∼ 70 electrons per second from such an object

• theabsolutemagnitudeM of an object is the magnitude the object
would have if its distance was 10 pc from the observer; if its true
(luminosity!) distance isDL and its magnitude ism, the absolute
magnitude is

M = m+ 5 log10

(
DL

10 pc

)
(4.14)

• for objects at cosmological distances, theK-correction must be
applied which takes into account that the spectrum is redshifted
with respect to the fixed filter

K(z) = 2.5 log10

∫
dλ fλTλ∫

dλ fλ/(1+z)Tλ

(4.15)

this modifies the absolute magnitude according to

M = m+ 5 log10

(
DL

10 pc

)
+ K(z) (4.16)

• sinceλ fλ = ν fν, theK-correction for power-law spectra,fν ∝ ν−α,
is

K = 2.5 log10

∫
d lnν ν−α+1ν2Tν∫

d lnν (1+ z)−α+1ν−α+1ν2Tν

= 2.5(α−1) log10(1+z)

(4.17)
i.e. theK-correction vanishes for spectra∝ ν−1; it becomes posi-
tive for bluer (steeper) spectra withα > 1 and negative for redder
(flatter) spectra

4.1.3 Luminosity Functions

• the number density of galaxies with luminosities betweenL and
L + dL is described by the luminosity function; its measurement
is quite involved because it requires a detailed understanding of
the survey characteristics

• measured galaxy luminosity functions are typically well fit by the
Schechter function,

dφ(L) = φ∗

(
L
L∗

)α
exp

(
−

L
L∗

)
dL
L∗

(4.18)
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• the faint-end slopeα = −1.0 ± 0.15 quite independent of galaxy
type; the cut-off luminosity L∗ is brighter for ellipticals than for
spirals; its mean value isM∗ = −19.50±0.13 in the photographic
BJ filter band, rising fromM∗ = −19.59 for ellipticals toM∗ =
−19.39 for spirals toM∗ = −18.94 for irregulars

• ellipticals contribute∼ 35% toφ∗, spirals∼ 57%, and irregulars
∼ 8%; the overall normalisation isφ∗ ≈ (0.0140± 0.0017)h3,
but its exact value is uncertain because it still depends on galaxy
selection, and is locally sensitive to galaxy clustering

• a cosmologically important number to derive from the luminosity
function is the luminosity density

ρL =

∫ ∞

0
Ldφ(L) = Γ(α + 2)φ∗L∗ (4.19)

where

Γ(x) =
∫ ∞

0
e−ttx−1dt (4.20)

is the gamma function

• the galaxy luminosity function in galaxy clusters is very similar
to that outside clusters at intermediate luminosities, but deviations
exist at the bright and the faint ends; at the bright end, luminous
cD galaxies exist in the centres of many clusters which are not
simply the brightest objects drawn from a Schechter function; at
the faint end, the luminosity function steepens considerably due
to a dwarf population which hasα ∼ −1.8; such a dwarf galaxy
population may also exist outside clusters

• there is no compelling evidence for brighter galaxies to be
more strongly clustered (luminosity segregation); however, the
Butcher-Oemler effect says that the fraction of blue galaxies in
clusters increases with increasing redshift; this is probably a con-
sequence of both enhanced star formation in cluster galaxies at
moderate and high redshifts, and later depletion of star-forming
galaxies due to mergers

• while the luminosity function in the (near-infrared)K band does
not evolve with redshift out toz ∼ 0.6, it exhibits strong evolu-
tion in theB band; there is a significant population of faint blue
galaxies at moderate and high redshifts which seems to be ac-
tively star-forming

• metals (i.e. all elements heavier than helium) are produced in
stars, mostly in stars more massive and less long-lived than the
Sun; since metals are produced by nuclear fusion with a mass-
to-energy conversion efficiency near 1%, the luminosity density
of galaxies can be related to the metal abundance; the evolution
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of the luminosity density with redshift then allows the metal pro-
duction to be deduced as a function of redshift; in turn, this yields
the star-formation rate as a function of redshift; apparently, most
stars were formed between redshifts 1 and 2

• approximately 10% of the energy produced during that time
should be radiated in the narrow Lyman-α line, so that a pop-
ulation of Lyman-α emitting galaxies should be seen, but they
are not; this may mean that most star formation happens in dust-
shrouded environments which scatter the radiation into the in-
frared; the cosmic infrared background is consistent with this pic-
ture

4.1.4 Correlation Functions and Biasing

• the density-fluctuation field has the power spectrumP(k) defined
in (2.42); its correlation function given by (2.44), thus the power
spectrum is related to the correlation function by

P(k) =
∫

d3xξ(x)ei~k~x = 2π
∫ ∞

0
x2dxξ(x)

∫ π

0
sinθdθeikxcosθ

= 4π
∫ ∞

0
x2dxξ(x)

sinkx
kx

(4.21)

• observationally, the correlation function of the galaxies describes
the excess probability above random for finding a galaxy at dis-
tancex from another; let dV1 and dV2 be two infinitesimally small
volume elements separated byr, and n the number density of
galaxies; then, the probability dP for finding one galaxy in dV1

and another in dV2 is dP = n2dV1dV2; if the galaxies are ran-
domly distributed; if the galaxies are correlated, this probability
becomes

dP = n2[1 + ξ(r)]dV1dV2 (4.22)

• this gives the principle for measuringξ(r): in a volume-limited
survey of galaxies, count pairs of galaxies separated by a distance
betweenr andr + dr, and compare it to the pair counts expected
if the galaxies were randomly distributed; for instance, let〈DD〉
and〈RR〉 be the pair counts in the data (D) and the randomised
(R) galaxy surveys, then

ξ =
〈DD〉
〈RR〉

− 1 (4.23)

is one estimate forξ
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• a simple assumption holds that the number density of galaxies is
related to the density contrast by

δn
n
=: δgal = bδ = δ + (b− 1)δ (4.24)

whereb is the bias factor, which can be inferred from velocity
measurements

• density perturbationsδ give rise to peculiar motion and displace-
ments

δ~x =
~r
a
− ~x (4.25)

from whichδ can be inferred according to

δ = −~∇ · δ~x (4.26)

which follows in the framework of the Zel’dovich approximation;
cf. Eqs. (2.54, 2.58 and 2.60)

• peculiar velocities~u cause displacements

δ~x =
~u

H f (Ω)
(4.27)

of the comoving coordinates (cf. 2.63)

• the peculiar motion adds to the Hubble velocity; the apparent co-
moving distance to a galaxy is inferred from its observed line-of-
sight velocity

v = ~v · ~ex = a(H~x+ ~u) · ~ex (4.28)

where~ex is the line-of-sight direction

• interpreting the total velocity as Hubble velocity implies that the
apparent comoving distance vector to a galaxy is

~xapp=
~v

aH
= ~xreal+

~u · ~ex

H
~ex (4.29)

• an apparent displacementδ~xapp is thus related to the real displace-
mentδ~xreal by

δ~xapp= δ~xreal+
~u · ~ex

H
~ex = δ~xreal+ f (Ω)(δ~xreal · ~ex)~ex (4.30)

• becauseδ~v ∝ ~∇δΦ, a density perturbation with wave vector~k
causes a displacement parallel to~k; let µ be the cosine of the
angle between the line-of-sight and~k, thenδ~xreal · ~ex = δxrealµ,
~k · ~ex = kµ, and

δ̂ = −i~k · δ~̂x = −ikδx̂ (4.31)

from this, we obtain

δapp= δreal

[
1+ f (Ω)µ2

]
(4.32)
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• the apparent density contrast in the galaxy counts is thus related
to the real density contrast by the term caused by the velocity
perturbations plus the biasing term,

δ
gal
app= δreal

[
1+ f (Ω)µ2

]
+(b−1)δreal = δ

gal
real

[
1+

f (Ω)µ2

b

]
(4.33)

• the peculiar anisotropy caused by the factorµ2 can be used to
measure

β :=
f (Ω)

b
(4.34)

the ratio between the redshift- and real-space power spectra is

Papp

Preal
=

(
1+ βµ2

)2
(4.35)

which can be written as

Papp

Preal
=

(
1+

2β
3
+
β2

5

)
+

(
4β
3
+

4β2

7

)
P2(µ) +

8β2

35
P4(µ) (4.36)

whereP2,4(µ) are the Legendre polynomials; the redshift-space
power spectrum thus exhibits a characteristic quadrupolar pattern,
and the ratio between quadrupole and monopole can be used to
infer β

two-dimensional galaxy correlation
function measured from the 2dF
Galaxy Redshift Survey

• on small scales, virialised motion within bound structures
(e.g. galaxy clusters) leads to an apparent extension along the
line-of-sight (finger-of-god effect); this can approximately be de-
scribed by damping in Fourier space according to

δ̂→ δ̂(1+ k2µ2σ2)−1/2 (4.37)

whereσ is the velocity dispersion of the galaxies within the
bound structure; the overall effect is then

Papp

Preal
=

(
1+ βµ2

)2

1+ k2µ2σ2
(4.38)

4.1.5 Intervening Gas

• the light from distant sources passes through diffuse gas which is
seen in absorption; the resulting absorption lines offer an impor-
tant way to study the large-scale structure

• the shape of absorption lines is given by the Lorentz profile

dp
dω
=

Γ/2
(ω − ω0)2 + (Γ/2)2

(4.39)

which can be considered as the probability distribution for a pho-
ton of frequencyω to be absorbed by an atom with a transition
frequencyω0; Γ is the line width



CHAPTER 4. THE LATE UNIVERSE 96

• the Lorentz profile arises in the theory of the damped classi-
cal harmonic oscillator, whereΓ is the damping rate; quantum-
mechanically,Γ−1 is the lifetime of the excited state resulting from
the absorption

• the natural line width defined by the decay probability of the ex-
cited state is often increased by atomic collisions, which shorten
the lifetime and thus broaden the absorption line

• if the gas moves thermally with respect to the line of sight, the
resulting absorption-line profile is a convolution of the Lorentz
profile with a Gaussian

dp
dω
=

Γ

(2π)3/2σ

∫ ∞

−∞

e−v2/2σ2
dv

(ω − ω0 − ω0 v/c)2 + (Γ/2)2
(4.40)

which is called the Voigt profile; it has a Gaussian core and
Lorentzian wings

• the absorption cross section of the Lyman-α transition of a hydro-
gen atom in thermal equilibrium is

σ(ω) = 6.9× 10−2 dp
dω

cm2 (4.41)

which gives rise to the optical depth

τ(ω) = σ(ω)
∫

ndl := σ(ω) Nc (4.42)

which is the cross section times the column densityNc, i.e. the
hydrogen number densityn integrated over the line-of-sight

• the central optical depth of a Lyman-α line which is Doppler
broadened with a velocity dispersionσv, the central optical depth
is

τ0 =

(
σv

km s−1

)−1 ( Nc

1.86× 1012 cm−2

)
(4.43)

typical velocity dispersions are of order a few tens of km s−1, thus
measurable central optical depths of∼ 0.1 are reached with col-
umn densities ofNc ∼ 1012 cm−2

• the observed probability distribution of column densities is very
wide and approximately follows a power-law

P(> Nc) ∝ N−0.75
c (4.44)

up toNc ≈ 1021 cm−2

• when Nc ≈ 1018 cm−2, the optical depth becomes unity in the
Lorentzian wings rather than the Gaussian core of the lines; such
saturated lines are called “damped” and the absorbers “damped”
Lyman-α absorbers
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• if absorbers have the typical absorption cross sectionσ(z) and a
physical number density ofnHI(z), their expected number per unit
redshift is

dN = σ(z) nHI(z)

∣∣∣∣∣∣dDprop

dz

∣∣∣∣∣∣ dz (4.45)

with the proper-distanceDprop given in (1.61); the redshift distri-
bution of absorbers is the power law

dN
dz
∝ (1+ z)2.3±0.4 (4.46)

• quasars typically have strong redshifted Lyman-α emission lines,
which are absorbed by intervening neutral hydrogen gas; the total
optical depth for that absorption is

τ =

∫ zQ

0
σ[(1 + z)ω0] nHI(z)

∣∣∣∣∣∣dDprop

dz

∣∣∣∣∣∣ dz (4.47)

the Lyman-α forest blueward of the
Lyman-α emission line

• if there was continuously distributed neutral hydrogen along the
line-of-sight to any distant quasar, all flux blueward of the Lyman-
α emission line should be absorbed, which is not observed; this
indicates that the intergalactic hydrogen must be ionised

• thisGunn-Peterson effect implies remarkably tight bounds on the
density parameter in neutral hydrogen; for instance, the absence
of complete absorption in the spectra of quasars near redshiftzQ ≈

5 implies
ΩHI . 1.5× 10−8 h−1 (4.48)

• complete absorption has recently been detected in quasars just
above redshiftzQ = 6, which may indicate that the universe was
reionised around that redshift; however, even small admixtures of
neutral hydrogen are sufficient to cause complete absorption, thus
reionisation may have started considerably earlier

• hydrogen absorption lines trace the gas distribution, which should
follow the density distribution of the dark matter; Lyman-α ab-
sorbers are thus an important tracer for large-scale structures and
constrain the density-fluctuation power spectrum on small scales
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4.2 Gravitational Lensing

4.2.1 Assumptions, Index of Refraction

• due to space-time curvature, masses and other concentrations of
energy deflect light towards themselves, in a way similar to con-
vex glass lenses; this gives rise to an effect called “gravitational
lensing”

• basic assumptions in conventional lensing theory are that the
Newtonian gravitational potentialΦ of the lensing mass is small
in the senseΦ � c2, and that the extent of the lensesL along the
line-of-sight is small compared to the Hubble length,L � c/H0

• under these conditions, the Minkowski metric of flat space-time
is modified; instead of

ds2 = c2dt2 − d~x2 (4.49)

the line element becomes

ds2 =

(
1+

2Φ
c2

)
c2dt2 −

(
1−

2Φ
c2

)
d~x2 (4.50)

i.e. the coefficients of c2dt2 and d~x2 are perturbed away from
unity; according to the general assumptions above, these pertur-
bations are small

• since light propagates according to ds2 = 0, the metric (4.50)
implies (

1+
Φ

c2

)
cdt =

(
1+
Φ

c2

)
|d~x| (4.51)

where we have used that (1+ 2x)1/2 ≈ (1+ x) for x� 1

• the speed of light is thus changed in presence of the perturbing
potential to

c′ =
|d~x|
dt
= c

(
1+
Φ

c2

)
=:

c
n

(4.52)

where

n :=

(
1−
Φ

c2

)
≥ 1 (4.53)

is the effective index of refraction of a weak gravitational field;
sinceΦ ≤ 0, n ≥ 1, thusc′ ≤ c

• consequently, there arises a time delay compared to light propa-
gation in vacuum; we have

d(∆t) =
dx
c′
−

dx
c
=

dx
c

(n− 1) = −
2Φ
c3

dx (4.54)
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and obtain theShapiro delayin a gravitational field

∆t = −
2
c3

∫
Φdx (4.55)

where the integral is evaluated along the line-of-sight

4.2.2 Deflection Angle and Lens Equation

• in complete analogy to geometrical optics, we can now use Fer-
mat’s principle to calculate the deflection of light caused by the
refractive index; Fermat’s principle requires the light-travel time
between fixed points 1 and 2 to be extremal, thus

δ

∫ 2

1
n(~x)dx = 0 (4.56)

introducing a parameterλ running along the light path, this reads∫ 2

1
n[~x(λ)]|~̇x|dλ (4.57)

with ~̇x := d~x/dλ

• using|~̇x| = (~̇x2)1/2, Euler’s equation reads

d
dλ
∂L

∂~̇x
−
∂L
∂~x
= 0 (4.58)

with L = n(~x)(~̇x2)1/2

• the derivative~̇x is proportional to the tangent vector to the light
ray; the curve parameterλ can be normalised such that~̇x = ~e, the
unit tangent vector; we then find from Euler’s equation

d
dλ

n(~x)~e− ~∇n = n~̇e+ (~∇n · ~e)~e− ~∇n = 0 (4.59)

sincen − 1 � 1, ~∇n/n = ~∇ ln n ≈ ~∇n, and we obtain for the
change of the tangent vector along the light ray

~̇e= ~∇n− (~∇n · ~e)~e= ~∇⊥n = −
2
c2
~∇⊥Φ (4.60)

i.e.~̇e is determined by the component of the gradient ofn perpen-
dicular to the line-of-sight

• the total change of the direction of~e is the deflection angle

~̂α =
2
c2

∫
~∇⊥Φdl (4.61)

where the integral is carried out along an unperturbed, straight
line instead of the true, curved, line-of-sight in the spirit of the
Born approximation for small-angle scattering
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• according to the second assumption, the thin lenses can be pro-
jected along the line-of-sight; their surface-mass density is

Σ(~b) =
∫

ρ(~b, z)dz (4.62)

and their deflection angle is the superposition of the deflection
angles of all infinitesimal mass elements,

~̂α(~b) =
4G
c2

∫
d2b′
Σ(~b′)(~b− ~b′)

|~b− ~b′|2
(4.63)

• if Dd,s,ds are the angular-diameter distances from the observer to
the lens and the source, and from the lens to the source, respec-
tively, the relation

Ds~β = Ds~θ − Dds~̂α (4.64)

obviously holds, where~β and~θ are the angular positions of source
and image on the sky relative to the optical axis; this is the lens
equation

• introducing the reduced deflection angle

~α :=
Dds

Ds
~̂α (4.65)

the lens equation becomes

~β = ~θ − ~α(~θ) (4.66)

• the surface-mass densityΣ, scaled with the critical surface mass
density

Σcr :=

[
4πG
c2

DdDds

Ds

]−1

(4.67)

is theconvergenceκ := Σ/Σcr

• the lensing potential is a weighted projection of the Newtonian
potential

ψ(~θ) :=
Dds

DdDs

2
c2

∫
Φ(Dd~θ) dz (4.68)

its gradient is the (reduced) deflection angle

~∇θψ(~θ) = Dd
~∇⊥ψ =

2
c2

Dds

Ds

∫
~∇⊥Φ(Dd~θ, z)dz= ~α(~θ) (4.69)

and its Laplacian is the convergence

∆θψ(~θ) =
2
c2

DdDds

Ds

∫
∆Φ(Dd~θ, z)dz= 2κ (4.70)

where Poisson’s equation and the definition of the critical surface-
mass density have been used in the last steps
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4.2.3 Local Lens Mapping and Mass Reconstruction

• the local imaging properties of a lens are described by the Jaco-
bian of the lens mapping

A =
∂~β

∂~θ
=

[
δi j −

∂αi

∂θ j

]
=

[
δi j −

∂2ψ

∂θi∂θ j

]
:=

[
δi j − ψi j

]
(4.71)

which is obviously symmetric; the local lens mapping is thus de-
termined by the curvature of the lensing potentialψ

• images are locally magnified by a factor

µ := det

∂~θ
∂~β

 = det
(
A−1

)
=

1
detA

(4.72)

• the trace of the Jacobian is

trA = 2− ∆ψ = 2(1− κ) (4.73)

subtracting it from A leaves the trace-free shear matrix

Γi j := Ai j −
δi j

2
trA = κδi j − ψi j (4.74)

which is symmetric and has the componentsγ1 = (ψ11 − ψ22)/2
andγ2 = ψ12

Γ = −

(
γ1 γ2

γ2 −γ1

)
(4.75)

thus, the Jacobian can be decomposed into an isotropic part, re-
sponsible for isotropic image stretching, and an anisotropic, trace-
free part, responsible for image distortion

• convergence and shear are different linear combinations of second
derivatives ofψ, thusκ can be reconstructed from measurable im-
age distortions; in Fourier space

κ̂ = −
1
2

(
k2

1 + k2
2

)
ψ̂ , γ̂1 = −

1
2

(
k2

1 − k2
2

)
ψ̂ , γ̂2 = −k1k2ψ̂

(4.76)
thus (

γ̂1

γ̂2

)
=

1
k2

(
k2

1 − k2
2

2k1k2

)
κ̂ (4.77)

• this can easily be inverted noting that[
1
k2

(
k2

1 − k2
2

2k1k2

)]2

= 1 (4.78)

so that

κ̂ =
1
k2

(
k2

1 − k2
2

2k1k2

) (
γ̂1

γ̂2

)
=

1
k2

[
(k2

1 − k2
2)γ̂1 + 2k1k2γ̂2

]
(4.79)
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which is easily transformed back into configuration space

κ =
1
π

∫
d2θ′<

[
D(~θ − ~θ′)γ(~θ′)

]
(4.80)

with γ := γ1 + iγ2 and the kernel

D(~θ) =
θ2

2 − θ
2
1 + 2iθ1θ2

θ4
(4.81)

4.2.4 Deflection by Large-Scale Structures

• light propagation in General Relativity, specialised to the
Friedmann-Lemâıtre-Robertson-Walker metric, yields the result
that the comoving separation of two light rays~x evolves with the
radial coordinatew as

d2~x
dw2
+ Kw = 0 (4.82)

with K given in (1.42); this is an oscillator equation with the so-
lutions fK(w) given in (1.7)

• near localised inhomogeneities, space-time can be approximated
as Minkowskian, perturbed by the lensing potentialΦ, which
gives rise to the light deflection

d2~x
dw2
= −

2
c2
~∇⊥Φ (4.83)

as shown in (4.60), where the curve parameterλ has been replaced
by w

• the combined light deflection by the space-time curved on large
scales, and the superposed small-scale perturbations, is thus

d2~x
dw2
+ K~x = −

2
c2
~∇⊥Φ (4.84)

this is the equation for an externally driven harmonic oscillator;
the solution can be found using the Green’s function of the har-
monic oscillator to be

~x(~θ,w) = fK(w)~θ −
2
c2

∫ w

0
dw′ fK(w− w′)~∇⊥Φ[ fK(w′)~θ] (4.85)

• the deflection angle is the deviation of the true separation of the
light rays from the separation expected in homogeneous space-
time, divided by the distance to the sources

~α(~θ,w) =
fK(w)~θ − ~x(~θ,w)

fK(w)
=

2
c2

∫ w

0
dw′

fK(w− w′)
fK(w)

~∇⊥Φ[ fK(w′)~θ]

(4.86)
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• as for the thin-lens case, where 2κ = ∆ψ = ~∇2ψ = ~∇ · α, the
effective convergence is defined as

κeff =
1
2
~∇ · ~α =

∫ w

0
dw′

fK(w− w′) fK(w′)
fK(w)

(
∂2Φ

∂xi∂xi

)
[ fK(w′)~θ]

(4.87)
inserting Poisson’s equation (2.17)

∆Φ =
3H2

0

2a
Ωm0δ (4.88)

yields

κeff =
1
c2

∫ w

0
dw′W(w,w′)δ[ fK(w′)~θ] (4.89)

with

W(w,w′) :=
3
2

(H0

c

)2 Ωm0

a
fK(w− w′) fK(w′)

fK(w)
(4.90)

4.2.5 Limber’s Equation and Weak-Lensing Power
Spectra

• given a homogeneous and isotropic random fieldf (~x,w) with
power spectrumPf (k), and a weighted projection

g(~x) :=
∫

dw q(w) f (~x,w) (4.91)

what is the power spectrumPg(l) of g, where l is a two-
dimensional wave number?

• supposeq(z) is varying on much larger scales thanf , Limber’s
equation holds

Pg(l) =
∫

dw
q2(w)

f 2
K(w)

Pf

[
l

fK(w)

]
(4.92)

• eq. (4.89) for the effective convergence is of the type (4.91), with
q represented byW and f represented byδ; the condition for
Limber’s equation is well satisfied because the density contrastδ
is varying on much smaller scales thanW; thus

Pκ(l) =
∫ w

0
dw′

W2(w,w′)

f 2
K(w′)

Pδ

[
l

fK(w′)

]
(4.93)

• as in the thin-lens case, magnification and shear are defined via
the Jacobian matrix of the lens mapping

Ai j = δi j −
∂αi

∂θ j
(4.94)
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to first order in the∂αi/∂θ j, the magnification is

µ =

(
1−

∂α1

∂θ1
−
∂α2

∂θ2

)−1

= 1+ ~∇ · ~α = 1+ 2κeff (4.95)

• the statistics ofµ and the shearγ are identical to the statistics of
κeff except for constant factors; this is obvious for the statistics of
the magnification fluctuation

δµ = 2κeff ⇒ Pδµ(l) = 4Pκ(l) (4.96)

considering the shear components in Fourier space, we have〈
γ̂2

1

〉
=

(l21 − l22)
2

4
〈ψ̂2〉 ,

〈
γ̂2

2

〉
= (l1l2)

2〈ψ̂2〉 ,
〈
κ̂2

eff

〉
=

(l21 + l22)
2

4
〈ψ̂2〉

(4.97)
and thus〈
|γ̂|2

〉
=

1
4

(l41 + 2l21l
2
2 + l42)〈ψ̂

2〉 =
(l21 + l22)

2

4
〈ψ̂2〉 =

〈
κ̂2

eff

〉
(4.98)

thus the power spectra of the cosmic shear and the effective con-
vergence are identical

Pγ(l) = Pκ(l) (4.99)

• following (2.44), the correlation function of the effective conver-
gence is

ξκ(φ) =
〈
κeff(~θ)κeff(~θ + ~φ)

〉
=

∫
d2l

(2π)2
Pκ(l)e

−i~l·~φ (4.100)

note that the wave vector~l is now two-dimensional, thus the inte-
gral over the angle enclosed by the vectors~l and~φ yields

ξκ(φ) =
∫ ∞

0

ldl
2π

Pκ(l)J0(lφ) (4.101)

where J0(x) is the zeroth-order Bessel function of the first kind;
this is identical to the shear correlation functionξγ

• on angular scales of arc minutes, the typical expected shear- and
convergence correlation functions are of order 10−4, thus typical
shear values on such scales are of order a few per cent

• albeit weak, the shear can be measured quantifying the distortions
of the images of distant galaxies; the shear correlation function
can then be compared to the theoretical expectation (4.101) in
order to constrain cosmological parameters and the dark-matter
power spectrum; this has been achieved with spectacularly solid
results, leading to an independent confirmation of the standard,
low-density, spatially flat cosmological model with cosmological
constant
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• the cosmic-shear measurements are expected to contribute sub-
stantially to answering the question about the equation of state of
the dark energy
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4.3 Galaxy Clusters

4.3.1 Galaxies in Clusters

• galaxy clusters are a cosmologically important class of object;
they trace the most pronounced density peaks of large-scale struc-
ture; they are the largest gravitationally bound objects in the uni-
verse, assemble the latest in cosmic history, and thus reflect strc-
ture growth; they are closed objects in that their interiour does
not mix with outside; they are an overdense environment which
impacts on the evolution of their member galaxies

• galaxy clusters were originally defined as regions in the sky with
enhanced galaxy number density; an example are Abell’s criteria:
(1) at least 50 galaxies in the magnitude range [m3,m3+2], where
m3 is the magnitude of the third-brightest cluster galaxy; (2) the
galaxies are enclosed by the Abell radiusRA = 1.5h−1Mpc; and
(3) their redshift falls within [0.01,0.2]; Abell’s famous cluster
catalogue is built on these criteria; many other definitions and
catalogues exist

• Abell’s catalog contains 4076 clusters, of which 2683 have rich-
ness classR ≥ 1; this corresponds to a local number density of
rich clusters ofn ∼ 10−5 h3 Mpc3; the mean separation between
clusters is thus∼ n−1/3 ∼ 50h−1 Mpc

• elliptical galaxies are enriched compared to spiral galaxies in
clusters; the galaxy population at intermediate luminosities is
well-described by a Schechter luminosity function, but there are
deviations both at the bright and the faint ends; cD galaxies are a
special, bright class of objects in cluster centres; at the faint end,
the luminosity function steepens considerably

• the number density of galaxies in clusters is approximately de-
scribed by a cored distribution

n(r) = n0

(
1+

r2

r2
c

)−3/2

(4.102)

with the core radiusrc ∼ 120h−1 Mpc and the central number
densityn0 ∼ 2× 104 h3 Mpc−3

• galaxies move within the gravitational potential well of the clus-
ter; they have a velocity distribution centred on the bulk velocity
of the cluster with a velocity dispersion

σ2
v =

〈
v2
‖

〉
−

〈
v‖
〉2 (4.103)

wherev‖ is the velocity component parallel to the line-of-sight;
typical cluster velocity dispersions are of order∼ 1000 km s−1
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• moving with this velocity, galaxies take approximately a few Gyr
to cross galaxy clusters, i.e. an amount of time comparable to the
Hubble time; it is thus unclear whether galaxy clusters can be
considered as relaxed objects in equilibrium (and the definition
of equilibrium in self-gravitating systems is equally unclear)

• for a galaxy of massm at radiusR enclosing the cluster massM,
the virial theorem demands

2〈T〉 = −〈V〉 ⇒ 2
m
2

(3σ2
v) =

GMm
R

(4.104)

where the factor 3 comes in becauseσv is the dispersion along
one spatial direction only; this yields the mass estimate

M ∼
3Rσ2

v

G
= 1015 h−1 Mpc

(
R

1.5h−1 Mpc

) (
σv

1000 km s−1

)2

(4.105)
althought the application of the virial theorem is questionable,
this mass is approximately 10 times the mass visible in galaxies;
this was the first hint at substantial amounts of dark matter in the
universe

• for self-gravitating gas spheres in hydrostatic equilibrium, the hy-
drostatic equation reads

dp
dr
= −

GM(r)
r2

ρ (4.106)

wherep andρ are the gas pressure and density, respectively; for
an ideal gas,p = ρkT/m, wherem is the particle mass; thus,

kT
m

dρ
dr
+
ρk
m

dT
dr
= −

GM
r2

ρ (4.107)

• considering the motion of galaxies within the dark-matter domi-
nated cluster as the motion of a gas with temperature

3
2

kT =
m
2

(3σ2
v) ⇒ T =

mσ2
v

k
(4.108)

in an external potential well created by the massM, eq. (4.107)
becomes

M = −
rσ2

v

G

(
d lnρ
d ln r

+
d lnσ2

v

d ln r

)
(4.109)

whereρ is now the (number) density of galaxies
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4.3.2 X-Ray Emission

• soon after X-ray detectors were first used in astronomy, it was
detected that galaxy clusters are the brightest X-ray sources in the
sky; when X-ray spectra could be taken, it was discovered that
the X-ray radiation has an exponential cut-off characteristic of
thermal radiation; when the sources could be spatially resolved,
clusters turned out to be diffuse sources

• the X-ray radiation thus reveals that clusters are filled with ther-
mal gas which is hot enough for emitting X-rays; in an ionised,
hot gas (a plasma), electrons scatter off ions and radiate because
of their acceleration; this is thermalbremsstrahlung(free-free
emission)

• heuristically, the X-ray emissivityjν(~x) (i.e. the amount of energy
emitted in photons of frequencyν per unit frequency intervaldν,
per unit time and unit plasma volume) must scale with the squared
particle number density because it is a two-body process; with the
time available for the scattering process, which is proportional to
the inverse relative velocity, or the inverse square root of the tem-
perature; and the Boltzmann factor for the distribution of energy
at a given temperature; accordingly, we expect

jν(~x) = C
ρ2

√
T

e−hν/kT (4.110)

whereC is a constant; this is confirmed by the theory of radiation
processes

• if the gas has densityρ and temperatureT, eq. (4.107) requires

M(r) = −
rkT
Gm

(
d lnρ
d ln r

+
d lnT
d ln r

)
(4.111)

• combining this with the mass estimate (4.109), we have

σ2
v

(
d lnρgal

d ln r
+

d lnσ2
v

d ln r

)
=

kT
m

(
d lnρgas

d ln r
+

d lnT
d ln r

)
(4.112)

introducing the ratio of specific energies

β :=
mσ2

v

kT
(4.113)

yields

d lnρgas= β(d lnρgal+ d lnσ2
v) − d lnT (4.114)

using the definition ofβ, d lnσ2
v = d lnT + d lnβ, and (4.114)

becomes

d lnρgas= βd lnρgal+ (β − 1)d lnT + dβ (4.115)
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and thus
ρgas∝ ρ

β

gal T
β−1 (4.116)

• assuming isothermal gas, its distribution should thus follow the
galaxy distribution to the power of theβ parameter; adopting the
galaxy distribution (4.102) suggests theβ profile

ρgas= ρ0

(
1+

r2

r2
0

)−3β/2

(4.117)

since the X-ray emissivity is∝ ρ2, this implies

jν(r) ∝

(
1+

r2

r2
0

)−3β

(4.118)

and, after projection, the X-ray flux per unit solid angle

SX = SX0

(
1+

θ

θ0

)−3β+1/2

(4.119)

which routinely provides excellent fits to the X-ray surface bright-
ness of observed clusters withr0 ∼ 200h−1 kpc andβ ∼ 2/3

• such “β fits” yield the derivative d lnρgas/d ln r and thus the
isothermal mass estimate

M(r) =
3βrkT
Gm

r2/r2
0

1+ r2/r2
0

(4.120)

such mass estimates can be highly misleading because of the
many assumptions they rely on; (4.120) impliesM(r) ∝ r for
r � r0

• assuming an NFW dark-matter density profile (2.113) and gas in
hydrostatic equilibrium with it yields density and X-ray surface-
brightness profiles which can excellently be fit withβ-profiles,
but the resulting mass profile is wrong

• explaining the total X-ray luminosities of clusters requires central
particle number densities of

ρ0

m
∼ 10−2 cm−3 (4.121)

total gas masses are of order∼ (10− 20)% of the total cluster
masses, which corresponds to the cosmic baryon fraction

Ωb0

Ωm0
=

0.047
0.3

= 16% (4.122)
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• comparing the thermal energy content to the total (frequency-
integrated) X-ray emissivity defines the cooling time

tcool =
3nkT

2 j
(4.123)

which drops below the Hubble time in the centres of massive clus-
ters; where gas should thus efficiently cool; traces of cool gas
(e.g. stars) have not been seen, and recent X-ray spectra do not
reveal any spectral signatures (e.g. metal lines) of cool gas; there-
fore, there must be a way of re-heating the cooling gas in cluster
cores, which could be provided by Active Galactic Nuclei (AGN)
in clusters

4.3.3 Gravitational Lensing by Galaxy Clusters

• the cores of galaxy clusters are dense enough to produce strong
gravitational lensing, giving rise to strongly distorted images of
background galaxies, so-calledarcs; assuming axial symmetry of
the projected mass distribution, arcs should trace a circle with the
Einstein radiusθE of the cluster, which is given by the require-
ment that the mean cluster convergence within the Einstein radius
is unity

〈κ〉 =
M(θE)
π(DdθE)2

1
Σcr

!
= 1 , (4.124)

whereΣcr is the critical surface-mass density defined in (4.67) and
Dd is the angular-diameter distance to the cluster

• if cluster and source redshifts are known, and a cosmological
model is adopted, this can be inverted to yield the cluster mass
enclosed by the Einstein radius

M(θE) = πD2
dΣcr θ

2
E (4.125)

• mass estimates obtained this way are of the same order of magni-
tude as those found with other techniques, but there are systematic
discrepancies; in many clusters, the strong-lensing mass estimate
obtained from (4.125) is substantially higher than, e.g. the X-ray
mass estimate

• the reason for such systematic deviations is that clusters are typ-
ically highly asymmetric and substructured, which gives rise to
strong gravitational tidal fields; this allows strong gravitational
lensing effects at a substantially lower cluster mass than that re-
quired if the clusters were symmetric

• away from their cores, clusters weakly deform the images of
background galaxies and thus imprint their approximately tan-
gential shear pattern on them; this distortion is observable as in
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cosmological weak lensing; using (4.80), the observed shear pat-
tern can be transformed into a mass map; such weak-lensing mass
measurements typically agree well with X-ray mass determina-
tions

4.3.4 Sunyaev-Zel’dovich Effects

• the CMB radiation shines through the hot plasma in galaxy clus-
ters and must Compton-scatter off the electrons; since they are
extremely more energetic than the photons, they typically loose
energy and scatter the photons to higher energy

• the photon number is conserved, but the photon energy is in-
creased; the resulting spectrum must thus deviate from the shape
of the Planck curve which the photons have before scattering;
there must be a lack of photons at low and an increase of pho-
tons at high energies compared to the Planck curve; this is the
thermal Sunyaev-Zel’dovich (tSZ) effect

• the relative intensity change at frequencyν is

δI
I
= y

2(kT)3

h2

x4ex

(ex − 1)2

[
xcoth

( x
2

)
− 4

]
(4.126)

wherex := hν/kT is the dimensionless frequency; note thatT is
the CMB temperature as seen by the cluster, and not the electron
temperature in the cluster!

• y is the Compton parameter

y :=
∫

kTe

mec2
σT nedl (4.127)

i.e. the typical relative energy change of a photon in Compton
scattering, times the scattering probability;Te is the electron tem-
perature of the cluster, andσT is the Thomson cross section

• the relative intensity changeδI/I is negative for frequencies be-
low, and positive above,x = 3.83 or ν = 217 GHz; although
the zero-crossing frequency depends on the CMB temperature
which is higher at high-redshift clusters, it is later redshifted
such that theobservedzero-crossing of the tSZ effect is redshift-
independent; this is a most remarkable feature of the tSZ effect

• clusters moving with respect to the CMB rest frame additionally
Compton-scatter the CMB radiation like mirrors and thus give
rise to a frequency shift called the kinetic Sunyaev-Zel’dovich
(kSZ) effect; it may be possible to use this effect for measuring
the bulk velocities of clusters
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4.3.5 Clusters as Cosmological Tracers

• we have seen in (2.96) that the fraction of cosmic volume filled
with haloes of massM is

F(M,a) = erfc

(
δc

√
2σR(a)

)
(4.128)

whereσR(a) is the variance of dark-matter fluctuations filtered on
the scaleRcorresponding to the cluster massM

• the observed fraction of the cosmic matter contained in clusters

F′(M,a) =
nc(a)Mc(a)

ρ̄(a)
(4.129)

whereρ̄ is the mean cosmic density, andnc andMc are the number
densities and masses of observed galaxy clusters; inserting typical
numbers yields

F′(M,a = 1) ≈ 1%Ω−1
m0 (4.130)

for typical cluster masses of∼ 5× 1014 h−1 M�

• equating this with the expected cluster fraction (4.128) yields an
estimate forσR, which can be converted to the convential normal-
isation parameterσ8; typically, values near 0.6 − 0.7 are found,
which are somewhat lower than those found from weak gravita-
tional lensing

• comparing the Press-Schechter mass function to the observed
mass distribution of clusters at increasing redshifts constrains
structure growth as a function of cosmic time, and thus also cos-
mological parameters, mainlyΩm0; the lack of strong evolution
implies low density in good agreement withΩm0 = 0.3

4.3.6 Scaling Relations

• the total potential energy of a cluster is proportional to the squared
mass, divided by the radius

〈V〉 ∝ −
GM2

R
(4.131)

and the radius scales with the mass likeR ∝ M1/3 (cf. 2.116);
thus, the mean total potential energy is expected to scale with the
mass as

〈V〉 ∝ −M5/3 (4.132)
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• the mean kinetic energy〈T〉 is proportional to the temperatureT
times the number of particlesN, i.e. to the productT M; the virial
theorem requires 2〈T〉 = −〈V〉, or

T M ∝ M5/3 ⇒ T ∝ M2/3 (4.133)

two orders of magnitude in cluster mass thus correspond to a fac-
tor of ∼ 20 in cluster temperature

• the bolometric (i.e. frequency-integrated) X-ray luminosity of a
cluster scales like the electron density, times the mass, times the
square root of the temperature; thus

LX ∝ M
M
R3

T1/2 ∝ M M1/3 ∝ M4/3 ∝ T2 (4.134)

becauseM ∝ R3

• these simple scaling relations derived from gravitational physics
predict a luminosity-temperature relationLX ∝ T1/2 and a
mass-temperature relationM ∝ T3; while the observed mass-
temperature relation is close to that expectation, the luminosity-
temperature relation is observed to be flatter than expected
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