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The Analogue Between Rimfall
and Black Holes

W. G. Unruh

CIAR Cosmology and Gravity Program, Department of Physics & Astronomy,
University of British Columbia, 6224 Agricultural Road, Vancouver, B.C. V6T
1Z1, Canada
unruh@physics.ubc.ca

Deep beneath the great encircling seas of the Discworld1 lived a species of
hyper-intelligent fish. As is known the Discworld is ruled by Magic, but the
salt in the seas shorted out that magic. A small amount dissolved in the
waters, and resulted in the development of the high intelligence in those fish.
However, cut off from the Magic which bathed the rest of the world, their
view of the world was a materialist one, one in which they tried to discover
the laws of matter which governed their universe.

The deeps being dark, they experienced the world through sound, and over
the centuries have discovered that the outer boundary of their world was a
strange place. Known as Rimfall to those above, this was where the waters of
the Discworld plunged over the edge to bathe the shell of the Great Atuin,
on whose back the Discworld travelled through space. But to the fish, this
Rimfall was a boundary, a horizon beyond which nothing could be heard.
No fish who had ever travelled over the Rimfall had ever reported back. The
shouts, or were they screams, of those intrepid explorers who had travelled too
near to that boundary had suffered the most strange bass shifting, the high
pitched scream rapidly descending the scales to disappear from sound. Some
claimed that with the most careful measurements of the sound, one could
still hear sounds, of lower and lower frequency arbitrarily far into the future,
as though the sound from those explorers never ceased. However, in no case
could sounds ever be heard from beyond the location of that horizon, as that
peculiar surface in the Rimfall came to be known. In later years when the fish

1 Discworld is the location of the hugely popular Discworld series of novels by
Terry Pratchett (see especially “The Colour of Magic” which describes Rimfall,
but obviously not this fish world view). The Discworld is a disc with continents
surrounded by a great surrounding sea which falls off the edge of the disk in a
waterfall called the Rimfall. (“Arrangements are made” to return the water to
the sea). In Discworld, magic, rather than physics, rules and light behaves very
strangely. This means that in the aboveworld physics plays only a very minor
role, and is unknown except by a few insane individuals at the Unseen University.
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Fig. 1. Two fish from the Underwater University on Discworld experimenting at
the Rimfall. The graduate student has fallen over the horizon, where the velocity of
the water exceeds the velocity of sound in the water. Realising what was happening
he calls out Help, but with the “p” emitted just as he crosses the horizon. The sound
is stretched out, with part slowly escaping (but bass shifted) and part falling over
the horizon with the student. Exactly the same happens for someone falling into
a black hole, where it is light rather than sound which is trapped, and where the
light emitted just before horizon crossing is exponentially red shifted as seen by the
external observer

began to communicate with the world above, and in particular with visitors
from far distant worlds (since their worldview differences with the aboveworld
inhabitants of Discworld made communication essentially impossible), they
immediately recognised that, what those visitors called black holes, were in
many ways analogues in light of their experiences with Rimfall.

One of the fish in particular, playing with that strange new theory called
Quantum Mechanics realised that this Rimfall horizon was not simply a one
way street. Instead the theory predicted that even if the water flowing over
the Rimfall was absolutely cold, that horizon would produce thermal sonic
radiation, radiation with a temperature far far below any they had ever ex-
perienced, but with a non-zero temperature non-the-less. Again, in the con-
versations with those visitors from distant planets, they discovered that the
same effect for black holes had been found by a physicist (as those materi-
alist philosophers on the distant planets were called) and was known as the
Hawking Effect. Many of the fish began to see that they could use these phe-
nomena associated with light and gravity, as an analogue to the effect they
had discovered. In fact the equations of the motion of light in the gravitation
fields of the black holes were exactly the same, in both the classical and the
quantum regime, as the equations which governed the sound waves travelling
near the horizon of Rimfall.
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Of course those visitors saw things differently. For them it was the motion
of the sound waves in the fluid flowing over the waterfall which were the
analogue to their equations of motion of light or of other fields near the their
black holes. The bass shift of the screams of the fish falling over Rimfall were
the analogue of the redshift of light for someone falling into a black hole,
where again, the light would forever redshift and one would never be able to
see beyond the horizon as someone or something fell into the black hole.

I first used this analogy to try to explain classical black holes to a col-
loquium at Oxford University in 1972. The experiences of those fish near a
waterfall in which the velocity of the water became larger than the velocity of
sound in the water at some point were analogous to many of the experiences
of explorers near the horizon of a black hole. In 1981 [1] I realised that the
equations of motion of the sound waves were identical to those near a black
hole, and that the quantisation of those sound waves would produce thermal
radiation in the same manner as Hawking had predicted for black holes. Since
that time many other systems have also been shown to behave in the same
way.

This volume represents a wide variety of views of that analogy between
condensed matter systems and black hole and cosmological physics. In many
cases they represent the kind of physics which those fish would have devel-
oped on the Discworld, and explicate those analogies between the gravitation
physics of the visitors, and the physics of their sound world developed by the
fish. Not only were the sound waves an analogy, even the ripples on the sur-
face of the ocean also acted as an analogue to the behaviour of fields near a
black hole horizon. In fact, it soon seemed like a contest to see in how many
disparate physical systems one could find such analogues. This was in part a
revelling in the exuberance which nature showed in the diversity with which
it revealed the same physics in different contexts. Physics seems to manifest a
striking unity within the diversity of physical world. However, also driving the
subject was an attempt to find experimental situations in which these ideas
(which were after all theoretical ideas) could be tested. While no-one believed
that hearing the thermal noise from a cold fluid flowing past a sonic horizon
would prove that the thermal emission from a black hole must exist, such
successful experiments would greatly increase the confidence in the approx-
imation which were being made in both the gravitational and the analogue
situations. “Are quantum gravity (Planck scale) effects important in under-
standing either black hole evaporation or cosmological particle creation?” has
its analogy in “Do atomic processes have an effect on the thermal creation
of sound near a “dumb-hole’ horizon?”. Certainly the suggestions from the
sonic case are that Planckian physics is irrelevant to black hole evaporation,
and that the radiation emitted by a black hole is due to low energy processes,
processes on the length scale set by the black hole, not by quantum gravity.

The experiments, if they are ever done will be hard, very hard. There
is a competition between easily making a horizon, which in general requires
relatively low values for the “sound waves”, and obtaining sufficient energy
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in those sound waves to be detectable (for example for Bose-Einstein Con-
densates, in which the velocity of sound is millimetres per second, making a
horizon is relatively easy, but the energy emitted by a horizon correspond to
only a few KHz phonons emitted per second, because of the very low velocity
of the sound in such condensates).

A third area of importance of these studies is the cross fertilisation that
they offer. The questions which one asks, for example of a Bose-Einstein Con-
densate, when one is looking at a system as an analogue of another system
tend to be different from those asked by the practitioners in the field. The
study of such analogies thus leads to insights both in the original area and in
the area of the analogy.

Enjoy this volume, and revel in the insights into the unity of the universe
which it has to offer.

Reference

1. W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981)
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Abstract. The concept of a horizon known from general relativity describes the
loss of causal connection and can be applied to non-gravitational scenarios such as
out-of-equilibrium condensed-matter systems in the laboratory. This analogy facil-
itates the identification and possibly the experimental verification of exotic effects
known from gravity and cosmology, such as Hawking radiation, as well as a unified
description and better understanding of non-equilibrium phenomena in condensed
matter systems. By means of several examples including general fluid flows, dy-
namical quantum phase transitions, and expanding Bose–Einstein condensates, the
concepts of event, particle, and apparent horizons will be discussed together with
the resulting quantum effects.

1 Introduction

1.1 Preliminaries

For many condensed-matter systems, the equilibrium state and small fluc-
tuations around this state are quite well understood. Strictly speaking, the
equilibrium state – which could be a thermal state or the ground state of the
system – may describe static systems only. In the presence of an external or
internal time-dependence, the situation becomes more complicated. As long
as this time-dependence is sufficiently slow, the adiabatic theorem states that
the actual state of the system stays very near its equilibrium state. For fast
dynamics, on the other hand, this adiabaticity assumptions fails and non-
equilibrium phenomena become important. For such strongly time-dependent
systems, the usual split into the ground state (assuming zero temperature)
and small quasi-particle excitations is no longer unique nor well-defined. One
consequence of this non-uniqueness is the creation of quasi-particles, i.e., the
initial ground state may evolve into an excited state during the non-adiabatic
evolution.

In searching for a unified description of these non-equilibrium phenomena,
one realizes that the same situation occurs for quantum fields in curved space-

R. Schützhold: Effective Horizons in the Laboratory, Lect. Notes Phys. 718, 5–30 (2007)
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times, see, e.g., [1]. Indeed, it turns out that many of the concepts developed
in this field can be applied to condensed matter systems too. One can have
the analogue of horizons in laboratory systems, which imply the same effects
as in curved space-times, such as the amplification of quantum fluctuations
leading to the creation of quasi-particles. Studying the analogy between grav-
itational and condensed-matter systems leads to a better understanding on
both sides [2].

1.2 The Acoustic Analogy

A quarter of a century ago, Bill Unruh (see previous chapter and [3]) sug-
gested an intriguing analogy between (quantised) sound waves in irrotational
and inviscid fluids and quantum fields in curved space-times. His original mo-
tivation was to study analogous systems which reproduce major features of
black holes and whose underlying physics is (at least in principle) understood
– the black hole analogues [3]. Without rotation ∇× v = 0 and viscosity, the
propagation of phonons is described by the wave equation

(
∂

∂t
+ ∇ · v0

)
�0

c2s

(
∂

∂t
+ v0 ·∇

)
φ = ∇ · (�0∇φ) , (1)

with v0 denoting the (background) velocity of the fluid, �0 its density, and cs
the speed of sound. For an irrotational flow, the velocity perturbations asso-
ciated with the sound waves can be described by a potential δv = ∇φ. This
complicated wave equation has exactly the same form as that for a scalar field
in a curved space-time

�effφ =
1√−geff

∂µ

(√
−geff gµν

eff ∂νφ
)

= 0 , (2)

provided that the effective geometry of that curved space-time is described by
the Painlevé-Gullstrand-Lemâıtre metric [4]

gµν
eff =

1
�0cs

(
1 v0

v0 v0 ⊗ v0 − c2s1

)
, (3)

according to the background flow profile.
As a consequence, phonons in a flowing (irrotational and inviscid) fluid are

completely equivalent to a (quantum) field in a curved space-time described
by the above metric. Hence we may apply all the concepts known from general
relativity – such as horizons [1,5,6]. However, it is worth noting that the above
analogy applies to the kinematics, i.e., the phonon propagation – but not to
the dynamics, i.e., the evolution of the background is different (Euler versus
Einstein equations).
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1.3 Generalisations

Apart from phonons in fluids such as Bose–Einstein condensates or super-fluid
Helium, see, e.g., [7–9], one can introduce an effective metric for other scenar-
ios as well: If the quasi-particle excitations possess just one non-degenerate
mode, one can describe them by a single scalar field φ. In the case of degener-
acy, this is not possible; but if we assume that the multiple degenerate modes
are independent, we may pick out one mode and describe it again by a scalar
field. Furthermore, if the quasi-particle excitations (and their quantum fluctu-
ations) are small enough, we may linearise the equations of motion and hence
the most general low-energy effective action for these modes φ reads [9, 10]

Leff =
1
2
(∂µφ)(∂νφ)Gµν + V φ2 +O(φ3) +O(∂3) . (4)

The tensor Gµν describes the background and is related to the effective met-
ric. For Goldstone modes (such as phonons in Bose–Einstein condensates),
the potential V vanishes due to ω(k = 0) = 0, but in general it can be an
arbitrarily space-time dependent function. The remaining higher-order terms
O(φ3) and O(∂3) reflect the linearisation of the equation of motion and the
low-energy expansion (into powers of ω and k).

One example for the above action are surface waves (ripplons) on thin fluid
films [11] or photons in particularly designed wave-guides [12]. An example
for non-scalar quasi-particles are photons in dielectric media [13]. Since the
two polarisations are not independent in general media, an effective metric –
which must be the same for both polarisations – can only be introduced in the
presence of a strong symmetry between the two modes. For dielectric media
with a constant dielectric permittivity ε but an arbitrary four-velocity uµ,
this is the case and one obtains the Gordon metric [14]

gµν
eff = gµν

Minkowski + (ε− 1)uµ uν , (5)

for the propagation of the spin-one photon field within that dielectric medium.
This metric is slightly different from the sonic case in Eq. (3), but it may also
contain a horizon with the Hawking temperature being given by the same
expression as in Eq. (8) below plus relativistic corrections [13]. In addition to
spin-zero (phonons in fluids) and spin-one (photons in dielectric media) fields,
it is also possible to effectively model a spin-1/2 Dirac field in highly dispersive
quantum optical media, which support the phenomenon of slow light [15].

1.4 Geometric Concepts

As a result, the propagation of quasi-particle excitations in a rather large class
of systems displays universal behaviour in being completely equivalent to a
curved space-time described by the corresponding effective metric. As far as
purely kinematic aspects are concerned, we may forget the structure of the
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underlying system and just work with the effective metric, which allows us to
apply the geometric concepts known from general relativity. For example, we
may introduce sound cones in complete analogy to light cones as null rays of
the effective line element

ds2eff = geff
µν dx

µ dxν = 0 . (6)

The class of sound cones determines which points can send/receive sound
waves (or other quasi-particles under consideration) to/from which other
points and hence induce the causal connection. Roughly speaking, if this causal
connection is lost, we have the analogue of a horizon – which clearly indicates
the breakdown of adiabaticity (non-equilibrium). In order to be in equilib-
rium, every point must be able to exchange energy or momentum or, more
generally, information with any other point. In the presence of a horizon, the
quantum dynamics is far from equilibrium, which leads to effects such as the
amplification of the quantum fluctuations and the creation of quasi-particles.

2 Event Horizon

2.1 Black Hole Thermodynamics

Black holes are supposed to be the final states of massive stellar objects
whose internal pressure cannot compensate the gravitational attraction any-
more [5, 6]. Neglecting exotic phenomena such as magnetic monopoles, these
final states are largely independent of the initial object (“no-hair theorem”)
and can be determined in terms of three (conserved) quantities: their mass M ,
their angular momentum J , and their electric charge Q. (However, since black
holes are extremely compact objects and hence tend to dispose of any macro-
scopic net charge Q very quickly via pair creation, mainly neutral black holes
with Q = 0 will be considered in the following.)

It was Jacob Bekenstein [16] who first noticed an intriguing analogy be-
tween the laws of thermodynamics and the physics of black holes provided
that one identifies the corresponding quantities according to the table pro-
vided below:

Black holes Thermodynamics
mass M energy E

surface area A entropy S
surface gravity κ temperature T

angular velocity at the horizon Ωh intensive quantity, e.g., pressure p
(minus) angular momentum J extensive quantity, e.g., volume V

Indeed, by using the Einstein equations augmented with suitable energy
conditions on the matter fields (such as a non-negative energy density), one
can derive the four laws of black hole thermodynamics [5, 6, 16]
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Fig. 1. Space-time diagram of the collapse to a black hole. Time increases from
bottom to top and the radial coordinate from the middle to the side, where the
angular dependence has been dropped assuming spherical symmetry. The dotted
green line denotes the surface of the collapsing star and the black dashed-dotted line is
the singularity. The solid red lines/arrows are light rays/cones, which are bent by the
gravitational field. The dashed blue line is the horizon, i.e., the boundary between the
last ray which is able to escape to infinity and the first ray which is trapped and hits
the singularity. These two light rays are very close initially, but their fate is totally
different. This shows the strong distortion of the field modes, which is responsible
for the Hawking effect in the original derivation: The quantum fluctuations of the
initial vacuum state |0〉 are strongly distorted such that they transform into a final
state containing particles (with a thermal distribution according to the Hawking
temperature THawking)

• 0th law: the surface gravity κ is constant (across the horizon) in equilibrium
• 1st law: the energy conservation condition reads dM = κ dA/(8π)+Ωh dJ
• 2nd law: the total surface area A of the horizon always increases
• 3rd law (weak version): one cannot reach κ = 0

(which is only relevant for Q �= 0)

2.2 Hawking Effect and Trans-Planckian Problem

However, taking this analogy seriously did impose the problem that any body
with a finite temperature (and absorption cross section) should radiate –
whereas nothing was supposed to be able to escape a black hole. Therefore, a
major breakthrough was achieved by Stephen Hawkings seminal discovery [17]
that black holes indeed emit thermal radiation due to quantum effects with
the temperature being consistent with Bekensteins analogy (cf. Fig. 1)

t

r

|0>

THawking
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THawking =
1

8πM
� c3

GNkB
∝ κ . (7)

Without taking into account the quantum effects such as Hawking radiation,
there are several Gedanken experiments suggesting that it should be possible
to violate the second law of thermodynamics – but including these effects,
the analogy between black hole physics and thermodynamics provides such a
consistent picture that many physicists consider this analogy as a hint of some
fundamental principle in physics. For example, the black hole entropy, which is
given by the surface area (instead of the volume, for example) of the horizon
in Planckian units (constructed out of Newtons gravitational constant GN,
Planck’s constant �, and the speed of light c) is thought of as a measure of
the number of fundamental degrees of freedom. This observation is one of
the main motivations behind fundamental concepts such as the holographic
principle etc.

However, there is a serious flaw in this interesting picture: Tracing the
particles of the Hawking radiation (e.g., photons) back in time, one has to
undo the gravitational red-shift, which is exponentially strong in the vicin-
ity of the horizon (where the escape velocity equals the speed of light, cf.
Fig. 1). Therefore, the photons emitted at late times have their origin in
modes with extremely short wavenumbers corresponding to very large fre-
quencies/energies. For example, a photon given off by a solar-mass black hole
after just one second originates from a mode with a frequency which is bigger
than the mass of the black hole (over the speed of light squared) itself! Of
course, at these energy/frequency scales, one cannot trust the theory of quan-
tum fields (e.g., quantum electrodynamics) propagating in (classical) curved
space-times anymore. For example, effects of quantum gravity are expected
to become important at the Planck scale, which is around 1019 GeV. I.e., the
derivation of the Hawking effect is based on the extrapolation of a theory
(quantum fields propagating in classical curved space-times) to an energy re-
gion, where this theory is expected to break down (trans-Planckian problem).
This raises the question of whether the Hawking effect depends on details of
the underlying physics (e.g., quantum gravity) at Planckian energies [3,18,19].

2.3 De Laval Nozzle

In order to tackle the aforementioned trans-Planckian problem, let us consider
a toy model for a black hole in the laboratory. At a first glance, a radial
converging flow profile seems to be most appropriate since the insertion of v =
−f(r)r reproduces the Schwarzschild metric for an appropriate function f(r).
However, such a flow profile would be unstable in general [20] and generate
shock waves etc. A stable realization would be a de Laval nozzle sketched in
Fig. 2 with the horizon being situated at the point where the velocity of the
fluid exceeds the speed of sound v0 = cs. As it is intuitively clear, no sound
can escape from the region beyond the sonic horizon. This analogy is not
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Fig. 2. Cross section of a de Laval nozzle. The solid black lines indicate the (friction-
less) walls and the dotted green lines are stream-lines. The flow enters subsonically
on the right-hand-side, exceeds the speed of sound at the narrowest point and exits
the nozzle with a supersonic velocity. The dashed blue boundary is the acoustic ana-
logue of an event horizon since no sound (solid red circles) from beyond this point
can escape to the region on the right-hand-side

just a nice intuitive picture – there is an exact correspondence to black holes,
which allows us to repeat the steps of Hawkings derivation for that system.
In complete analogy to real black holes, one would predict a thermal emission
of sound waves corresponding to the temperature

THawking =
�

2π kB

∣∣∣∣ ∂∂r
(
v⊥0 − cs

)∣∣∣∣ , (8)

which is basically determined by the velocity gradient. Even though the Hawk-
ing temperature of the black hole analogues in the laboratory is typically or-
ders of magnitude larger than for real black holes with a few solar masses
(Chandrasekhar limit), it is still comparably small: Depending on the ac-
tual realizations, it varies from typical values of order nano-Kelvin for Bose–
Einstein condensates [21, 22] over micro-Kelvin for superfluid Helium [23] up
to fractions of a Kelvin for electromagnetic waveguides [12].

Of course, this prediction goes along with the same problems as for real
black holes, since it uses the above wave equation (1) for extremely short wave-
lengths (e.g., below the inter-particle distance), where fluid dynamics breaks
down. However, for this analogue system, the behaviour at short length scales
is (in principle) understood, which allows us to actually check the validity and
robustness of the prediction.

2.4 Impact of Dispersion Relation

Having established the analogy between black holes and fluids, we may now
retrace the steps of Hawkings original derivation and study the impact of
short-scale physics on the predicted radiation (see, e.g., [18, 19]). For many
fluids, the first deviations from the macroscopic Euler equation at short dis-
tances can be described in terms of a non-trivial dispersion relation ω(k):

v=c

v>c v<c
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For small k, the dispersion relation in the local rest frame of the fluid goes
as ω(k ↓ 0) = csk, but for large k, there are deviations from this linear behav-
iour, i.e., the group and phase velocity change at small distances.

In order to study the impact of the dispersion relation on the Hawking
radiation, let us make a few assumptions: Firstly, the surface gravity (and
hence the Hawking temperature) should be much smaller than the cut-off fre-
quency (which is the analogue of the Planck energy), where the dispersion
relation starts to deviate from the linear behaviour present a low k; otherwise
the whole concept of an effective metric breaks down. Secondly, we assume an
analytic dispersion relation with a finite radius of convergence around k = 0.
Finally, the dispersion relation ω(k) approaches the ω = csk-line at small k,
but otherwise it is supposed to be well separated from the ω = csk-line and
the k-axis. Using analytic continuation techniques, it can be shown that ar-
bitrary dispersion relations ω(k) satisfying these conditions indeed reproduce
the Hawking radiation – provided that the modes start off in their ground state
(with respect to the the local rest frame of the fluid) at short distances [18].

Let us consider a few examples: Sound waves in Bose–Einstein condensates
(see, e.g., [24]) are described by the Bogoliubov dispersion relation (� = 1)

ω2 = c2sk
2 +

k4

4m2
, (9)

with m being the mass of the particles forming the condensate. Since this
relation satisfies all the above conditions, the result of Hawkings original
derivation is correct for Bose–Einstein condensates. The origin of the acoustic
analogue of Hawking radiation is sketched in Fig. 3 for this situation.

However, if we consider a second example

ω2 = ω2
0 sin2(ak) , (10)

which is the dispersion relation of phonons in a lattice with the lattice spac-
ing a, we see that this relation violates the above assumptions. Indeed, due
to the additional zeros at k ∈ πa−1

N, it is very easy to excite these high-
wavenumber modes which then induces deviations from the thermal spectrum
of the Hawking effect [18], see also Fig. 4.

As a final example, let us consider some interactions between the sound
waves in the moving fluid and the walls in addition to the dispersion ω2(k) =
k2v2

phase(k) in the local rest frame of the fluid. For the frequency Ω measured
in the laboratory frame (i.e., the rest frame of the walls – not of the fluid),
this interaction can effectively be described by a damping term γ(k)

(Ω + vfluidk)2 = k2v2
phase(k) + iΩγ(k) , (11)

where ω2 = (Ω + vfluidk)2 is the co-moving frequency measured in the local
rest frame of the fluid. For small fluid velocities vfluid, the solutions of the
above equations for Ω just describe damping of the sound waves �(Ω) > 0
(assuming real wavenumbers k ∈ R); but for vfluid > vphase, the imaginary
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Fig. 3. Origin of Hawking radiation for Bose–Einstein condensates. The initial wave-
packet on the left-hand-side has a very high wavenumber and hence a supersonic
propagation velocity which enables it to overcome the drag of the flow and to prop-
agate towards the right. During its approach to the horizon, the wave-packet (in the
middle) is constantly stretched since the flow on its front end is slightly slower than
on its back end – in complete analogy to the gravitational red-shift. This distortion
squeezes the quantum fluctuations in such a way that the wave-packet, after starting
off in its ground state (left) is no longer in its ground state after crossing the horizon
(right) but contains particles in complete agreement with Hawkings prediction. In
the presence of an additional white-hole horizon (supersonic → subsonic flow), the
situation is more complicated, see chapter by U. Leonhardt and T. G. Philbin in
this volume

Fig. 4. Different dispersion relations: Curve 1 corresponds to a superlumi-
nal/supersonic dispersion (such as in Bose–Einstein condensates), for which Hawk-
ings prediction is correct. For the mixed situation in curve 2, the situation is more
complicated, but one would expect that it also reproduces Hawkings result. The
sub-luminal/subsonic dispersion 3 also yields the same thermal spectrum, since the
curve is well separated from the k-axis. The last curve 4, however, violates that
assumption and would result in deviations from Hawkings prediction in general
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part of Ω changes sign �(Ω) < 0 indicating an instability1. Due to this insta-
bility, the short-scale modes do not stay in their ground state but get excited –
which again destroys the thermal spectrum of the Hawking radiation. Trans-
lating these findings back to real black holes, the local rest frame of the fluid
corresponds to the (local) freely falling frame, whereas the laboratory frame
(i.e., the rest frame of the walls) is analogous to the global rest frame of the
black hole. Roughly speaking, if the Planckian degrees of freedom generate in-
teractions with respect to the global rest frame of the black hole instead of the
(local) freely falling frame, one may well obtain instabilities which generate
deviations from Hawkings result, for example.

In summary, one reproduces the Hawking effect for a rather large class
of scenarios, but there are also counter-examples, which do not appear to be
unphysical or artificial, displaying strong deviations from Hawkings result.
Therefore, whether real black holes emit Hawking radiation remains an open
question and could give non-trivial information about Planckian physics (e.g.,
whether the “space-time foam” is freely falling or at rest).

3 Cosmic Horizons

Apart from black hole horizons, the aforementioned analogy between quan-
tum fields in curved space-times and sound waves in fluids can also be applied
to cosmic horizons (occurring in a rapidly expanding or contracting universe,
for example [1, 5, 6]). Even though the two scenarios seem very different at a
first glance, there are fundamental similarities: The horizon causes a strong
distortion of the initial quantum vacuum fluctuations and so generates poten-
tially observable effects. Let us demonstrate such an effect for the example of
cosmic inflation, which (according to our standard model of cosmology) is a
very early epoch in the evolution of our universe governed by an accelerated
expansion as described by the de Sitter metric (c = 1)

ds2 = dτ2 − e2Hτdr2 , (12)

where H is the Hubble constant. (We have used the Friedmann-Robertson-
Walker representation.) During inflation, the most important field is supposed
to be the inflaton, which is a scalar quantum field satisfying the approximate
equation of motion (c = 1 if not otherwise indicated)(

∂2

∂τ2
+ 3H

∂

∂τ
− e−2Hτ∇2

)
φ = 0 . (13)

After a spatial expansion into plane waves, every k-mode corresponds to a
damped harmonic oscillator with a continuously decreasing potential e−2Hτk2.
Consequently, the temporal evolution can roughly be split up into three stages

1 This effect is known as the Miles instability [25], which is responsible for the
generation of water waves by wind blowing of its surface.
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• Oscillation e−2Hτk2 � H2: Initially, the damping term 3H∂/∂τ can be
neglected with respect to the potential term and the does oscillate almost
freely.

• Horizon-crossing e−2Hτk2 ≈ H2: After some period of time depending on
the wavenumber k, the continuously decreasing potential term becomes
small enough for the damping to set in.

• Freezing e−2Hτk2 
 H2: Finally, the modes are over-damped like a pen-
dulum in an extremely viscous fluid and effectively do not move anymore
(i.e., they are frozen).

0.1 0.2 0.5 1

φk(τ )

τ

φfrozen
k

Fig. 5. Temporal evolution of a given mode k over the three stages: oscillation,
horizon-crossing, and freezing

The transition from oscillation to freezing (sketched in Fig. 5) can also
be understood in terms of the cosmic horizon, which represents the maxi-
mum co-moving spatial distance at which events can be in causal contact. In
physical units of length, the horizon size is just given by the inverse Hub-
ble constant 1/H. Modes with a given wavelength λ are being continuously
stretched due to the cosmic expansion and after the wavelength λ exceeds
the horizon size 1/H, causal connection is lost and hence the modes cannot
oscillate anymore (freezing).

In a slowly expanding universe without horizon, the quantum vacuum fluc-
tuations evolve adiabatically and effectively stay in their ground state – i.e.,
they continuously decrease. (Roughly speaking, the zero-point energy �ω/2 of
a given mode diminishes since the wavelength λ is being continuously stretched
due to the cosmic expansion.) In the presence of a cosmic horizon such as
during inflation, however, the freezing of the modes prevent this continuous
decrease – i.e., the initial quantum vacuum fluctuations are amplified in com-
parison with the ground state. In our present standard model of cosmology,
this amplification mechanism provides the seeds for structure formation (such
as our galaxy) since, at the end of inflation, the frozen and amplified quan-
tum fluctuations are converted into temperature and density fluctuations, see
Fig. 6.
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Fig. 6. Sketch of the amplification (squeezing) of quantum fluctuations (left) and
picture of the anisotropies in the cosmic microwave background radiation (right) ob-
tained by the recent WMAP mission (see http://map.gsfc.nasa.gov/). Every k-
mode of the φ̂-field corresponds to a harmonic oscillator whose potential (sketched as
brown dotted curve) decreases/broadens e−2Hτk2. However, after the mode crossed
the horizon and is frozen, the quantum state (solid red curve) cannot adapt to
this change anymore and hence deviates from the ground state (dashed red curve),
thereby evolving to a squeezed state. This amplification mechanism is the reason
why the initial quantum fluctuations generate rather strong temperature and den-
sity fluctuations with a relative size of order 10−5, which can be observed in the
anisotropies of the cosmic microwave background radiation (right), for example

3.1 Particle Horizon

Now let us investigate how to simulate/recover these quantum effects within
an expanding universe in the laboratory: Depending on the properties of the
fluid, the effective metric in Eq. (3) is capable of modelling spherically sym-
metric as well as rotating black holes – but also the space-time of an expanding
(or contracting) universe. Recalling the effective line-element in Eq. (3)

ds2eff =
�0

cs

(
[c2s − v2

0]dt
2 + 2v0 · drdt− dr2

)
, (14)

there are basically two major possibilities for simulating an expanding uni-
verse: firstly, a decreasing sound speed for a fluid at rest, and, secondly, an
expansion of the fluid itself.

Let us start with the first possibility: If the speed of sound cs(t) decreases
fast enough such that the integral

∆r(t) =

∞∫
t

dt′ cs(t′) (15)

converges to a finite value, then a sound wave starting at a time t propagates
the maximum distance ∆r(t). From this time t on, points which are further
apart than ∆r(t) cannot be in causal contact (via sound waves) anymore –
i.e., this distance ∆r(t) is the size of the particle horizon, see Fig. 7.

This loss of causal connection results in many interesting non-equilibrium
effects – even on the classical level, where one prominent example is the
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t

c(t)

Fig. 7. Sketch of the emergence of a particle horizon. Time goes up in this picture
and the speed of sound cs(t) decreases. The vertical dotted green lines denote the
fluid at rest and the solid brown line is the trajectory of a chosen particle (also at
rest, i.e., vertical). The solid red arrows are the sound cones which become constantly
narrower. Hence a sound wave (solid red curve) emitted by the chosen particle (solid
brown line) at a time t is bent upwards and – if cs(t) decreases fast enough – cannot
propagate further than the dashed blue line, which then represents the associated
particle horizon

Kibble-Zurek mechanism [26]. Let us consider a thermal phase transition from
a symmetric phase to another phase where this symmetry is spontaneously
broken. If the phase transition occurs slowly enough, the system will choose
the same point in the internal symmetry-breaking manifold everywhere lead-
ing to a homogeneous state (equilibrium). However, if this transition takes
place in a rapidly expanding universe with a horizon, different spatial posi-
tions at distances larger than the horizon will be out of causal contact and
hence they will not choose the same point in the internal symmetry-breaking
manifold in general. If this internal symmetry-breaking manifold is not simply
connected, this random orientation may lead to the generation of topological
defects (such as kinks, vortices, or strings, see chapter by M. Sakellariadou in
this volume), cf. Fig. 8. As it becomes evident from the above considerations,
this mechanism is not restricted to expanding universes but can also occur
in the laboratory. In the vicinity of the transition, the response time of the
system typically diverges and thus the propagation speed of the excitations
vanishes. Therefore, one obtains an effective horizon which generates the same
effect in a suitable transition (e.g., quench) in the laboratory [26].
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Fig. 8. Sketch of the Kibble-Zurek mechanism [26] for the simple example of a
real scalar field (solid red curve) in one spatial dimension with a double-well po-
tential (dashed brown curve). Initially, the temperature is large and the field is in
the symmetric phase 〈φ〉 = 0. After cooling down, the field has to choose one of
the two minima (dashed lines). In the presence of a real or effective horizon of size
∆r, two points with a distance larger than ∆r cannot exchange information about
which minimum to select and hence they will choose different minima with a finite
probability. This generates topological defects (here: kinks) whose typical distance
is roughly determined by the horizon size ∆r at the “moment of choice”

3.2 Time-dependent Phase Transitions at Zero Temperature

The Kibble-Zurek mechanism is an example for the amplification of thermal
(i.e., classical) fluctuations leading to the generation of topological defects in
the presence of a real or effective particle horizon. However, as we have seen
at the beginning of this section, a horizon also implies the amplification of
quantum fluctuations. Therefore, let us consider phase transitions at very low
temperatures – where quantum fluctuations play the dominant role – instead
of thermal transitions in the following: For simplicity, we assume zero tem-
perature T = 0. Hence, the phase transition cannot by generated by heating
or cooling, but by changing an external parameter g instead. This could be
the pressure p or an external magnetic field B etc. A phase transition occurs
if the structure of the ground state changes for a certain critical value of this
external parameter g = gc: Below this critical value g < gc, the ground state
|Ψ<(g)〉 of the g-dependent Hamiltonian Ĥ(g) is different from the ground
state |Ψ>(g)〉 of Ĥ(g) above this critical value g > gc, see Fig. 9. For example,

V(  )φ

φ

∆r
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Fig. 9. Sketch of the level structure (i.e., plot of the energy E as a function of the
external parameter g for different states) near a phase transition. The solid green
lines denote the competing ground states |Ψ<(g)〉 and |Ψ>(g)〉, where the continuous
behaviour (level crossing) of |Ψ>(g)〉 is typical for a first-order phase transition, but
the new ground state could also be non-continuous and just come into existence for
g ≥ gc (lower solid green line). However, we are mostly interested in the vicinity
of the initial ground state |Ψ<(g)〉 and its excitations (red dotted lines). Some of
them (χ) remain stable after the transition g > gc, i.e., still lie above |Ψ<(g)〉, but
others (Φ) become unstable, i.e., dive below |Ψ<(g)〉. These quasi-particle excitations
Φ, which are stable for g < gc (since there |Ψ<(g)〉 is the true ground state) and
become unstable for g > gc, trigger the phase transition, i.e., the decay from the
false vacuum |Ψ<(g)〉 to the true ground state |Ψ>(g)〉

|Ψ<(g)〉 and |Ψ>(g)〉 could have different global/topological properties (such
as magnetisation) in the thermodynamic limit.

As in the case of thermal phase transitions, there exists a vast amount
of literature regarding the equilibrium properties in the vicinity of the phase
transition, for example in view of universal behaviour (e.g., scaling laws) near
the critical point [27]. However, since response times typically diverge in the
vicinity of the critical point, sweeping through the phase transition with a
finite velocity, for example, leads to a break-down of adiabaticity and thus
generates interesting dynamical (non-equilibrium) effects in complete analogy
to the examples studied before. Let us consider the quantum dynamics of
quasi-particle excitations Φ, which are stable for g < gc and become unstable
for g > gc, see Fig. 9. In order to do this quantitatively, a few assumptions are
necessary: Firstly, we suppose that the modes Φ are linear and independent
and obey an analytic dispersion relation with a vanishing gap – which are
exactly the same conditions that lead to the action in Eq. (4). In addition, if
we assume a homogeneous and isotropic medium (on large scales – which
is the same assumption as in the cosmological principle), the most general
low-energy effective action reads [28]

Leff =
1
2

(
1

α[g(t)]
Φ̇2 − β[g(t)] (∇Φ)2

)
. (16)
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The two factors α and β depend on the external parameter g and therewith on
time. As one would expect, this is equivalent to a scalar field in an expanding
or contracting universe with the effective metric

ds2eff =
√
αβ3 dt2 −

√
β/α dr2 . (17)

Constructing the effective energy

Heff =
1
2
(
αΠ2 + β (∇Φ)2

)
, (18)

we see that both parameters α and β must be positive before the phase tran-
sition (where Φ is stable), whereas at least one of the two parameters has to
change its sign at the critical point (since the mode Φ becomes unstable for
g > gc). Consequently, the propagation speed cs given by c2s = αβ vanishes
at the transition (if we exclude the possibility that one of the two coefficients
diverges – see next subsection).

The evanescent propagation speed cs(gc) = 0 is a consequence of the di-
vergence of the response time (the energy gap vanishes at gc) and results in
the occurrence of a particle horizon (as discussed before). This loss of causal
connection marks the breakdown of adiabaticity and implies non-equilibrium
phenomena such as the amplification of quantum fluctuations explained ear-
lier. The spectrum of these fluctuations can be calculated purely from the
effective metric in Eq. (17) and hence just requires the knowledge of the pa-
rameters α(t) and β(t). Note, however, that even though the spectrum of
the amplified quantum fluctuations is largely independent of the microscopic
structure (universality), the strength of their impact in the final state |Ψ>〉
(such as the anisotropies of the cosmic microwave background radiation in
Fig. 6) depends on the microscopic structure.

Let us consider a few simple examples: In the dilute-gas limit, the quantum
phase and density fluctuations within atomic Bose–Einstein condensates are
small and can be treated as linear perturbations. For wavelengths far above the
healing length, the effective action of the phase fluctuations Φ reads (� = 1)

Leff =
1
2

(
1
g
Φ̇2 − �0

m
(∇Φ)2

)
, (19)

where �0 is the background density of the condensate, m the mass of the
atoms, and g the time-dependent coupling strength representing the inter-
particle repulsion g > 0 or attraction g < 0. Obviously, a homogeneous con-
densate becomes unstable for attractive interactions and hence the critical
point is gc = 0. The speed of sound is governed by the two-particle contact
repulsion, which can by modified by an external magnetic field via the mech-
anism based on the Feshbach resonance. If one adjusts the time-dependent
external magnetic field such that cs(t) ∝ 1/t2 for late times t ↑ ∞, one
exactly recovers the de Sitter metric in Eq. (12). As a result the phonons
(phase fluctuations) within such Bose–Einstein condensates as described by
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Eq. (1) behave in the same way as the inflaton field during inflation – i.e., the
modes undergo the three stages described above: oscillation, horizon crossing,
and freezing. The frozen quantum fluctuations possess a scale-invariant 1/k3-
spectrum and are amplified to a size of the order of one percent, which places
an observation within reach of present experimental capabilities. Replacing
the fine-tuned evolution cs(t) ∝ 1/t2 by a constant rate of change of the time-
dependent external magnetic field also corresponds to an expanding universe,
but with a metric different from the de Sitter metric in Eq. (12), and gener-
ates a k−4/3-spectrum for the phase fluctuations and a k4/3-spectrum for the
density fluctuations [28]. Note that this behaviour is consistent with the am-
plification/suppression of quantum fluctuations by squeezing which maintains
the minimal Heisenberg uncertainty of the ground state, i.e., ∆qk∆pk = �/2.

As a second example, we study a simple 1+1 dimensional Hopefield model
of the electromagnetic field coupled to a linear medium via the magnetic
component

Leff =
1
2
(
E2 −B2 + Ψ̇2 −Ω2Ψ2 + 2gBΨ

)
, (20)

with the electromagnetic field (E,B) being governed by the potential A via
E = ∂tA and B = ∂xA. The field Ψ describes the (linearised and localised)
dynamics of the medium (Hopefield model) with the plasma frequency Ω
and g denoting the coupling (magnetic dipole moment). Integrating out (i.e.,
averaging over) the degrees of freedom Ψ of the medium, the low-energy ef-
fective theory for macroscopic electrodynamics in media yields the permeabil-
ity 1/µ = 1 − g2/Ω2 (which corresponds to inserting the adiabatic solution
Ψ ≈ gB/Ω2 back into the action). Hence there is a zero-temperature phase
transition at the critical value of the coupling gc = Ω after which the medium
becomes unstable to spontaneous magnetisation and the linearised descrip-
tion above breaks down. If we sweep through the critical point with a finite
velocity, the frozen two-point spectra behave as k−2/3 for A, and thus k4/3

for B (and Ψ), and finally k2/3 for E = Π (again respecting ∆qk∆pk = �/2).

3.3 Similarities to Cosmic Inflation

Interestingly, sweeping through a zero-temperature phase transition by means
of a time-dependent external parameter displays various similarities to “real”
cosmic inflation:

• Release of energy
After crossing the critical point, the system does not jump to the new
ground state |Ψ>〉 immediately. Because its response time is very large,
the system stays in the vicinity of the false vacuum |Ψ<〉 for a while and
decays down to |Ψ>〉 after a finite period of time. At that time, there will
be a finite energy difference between the states |Ψ<〉 and |Ψ>〉, which is
released by this decay. In the absence of damping, this energy difference
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will heat up the system – in close similarity to the (p)re-heating after
inflation.

• Robustness
The aforementioned decay typically occurs at small length scales since
these are the fastest modes. Therefore, structures on large length scales
may well leave their imprint in the final state, but initial small-scale per-
turbations/excitations will be completely washed out and do not affect the
final state significantly.

• Universality
As it became evident from the previous considerations, merely a few as-
sumptions suffice to determine the relevant features of the system, i.e., no
fine-tuning is necessary.

• Amplification of quantum fluctuations
Finally, the emergence of an effective particle horizon implies the same
amplification mechanism (oscillation → horizon crossing → freezing and
squeezing) as in inflation.

The first three points are qualitative, but the last one has a quantitative
nature and points to the main difference between zero-temperature phase
transitions in the laboratory and cosmic inflation – the spectrum of the am-
plified quantum fluctuations. Unless the dynamics of g(t) is fine-tuned such as
g(t) ∝ 1/t4 for Bose–Einstein condensates, laboratory systems do not repro-
duce the scale-invariant 1/k3-spectrum of inflation in general. (E.g., a sweep
with a finite velocity yields a k−4/3-spectrum in Bose–Einstein condensates.)
On the other hand, this may not be too surprising as the laboratory systems
considered above break many symmetries we observe in the real universe, e.g.,
they possess a preferred frame and do not respect the principle of equivalence
etc. This leads us to the question: can we conceive a phase transition which
does not break these symmetries? If we demand that the effective action (at
least at low energies) does not single out a locally preferred frame (remember
that the two-point function 〈Φ̂(x)Φ̂(x′)〉 depends on the effective Ricci scalar
etc.) and that the velocity of propagation (i.e., the speed of light) be constant
(such that we can set it equal unity), there is only one possibility left

A =
1
2

∫
dt d3r

Φ̇2 − (∇Φ)2

t2
. (21)

Note that, imposing the two conditions above (no locally preferred frame and
constant speed of light), we get scale-invariance for free – it turns out that the
effective action satisfies these requirements if and only if it is scale-invariant

A[λt, λr] = A[t, r] . (22)

For a laboratory system, such an action would probably seem rather strange,
but one might expect that its dynamics is dominated by (quantum) back-
reaction effects, which have been omitted so far (since they are usually very
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small in laboratory systems, but not necessarily in the early universe). In view
of the above scale-invariance, we indeed reproduce the scale-invariant 1/k3-
spectrum of inflation, which is also no surprise since the effective metric is
just the de Sitter metric in conformal coordinates. These interesting findings
entice the question/speculation of whether the epoch of cosmic inflation did
not actually correspond to a real exponential expansion – but to our distorted
view on such a phase transition in the very early universe instead.

3.4 Expanding Bose–Einstein Condensates

As mentioned earlier, there are basically two possibilities for simulating an
expanding universe with the effective line-element in Eqs. (3) and (14)

ds2eff =
�0

cs

(
[c2s − v2

0]dt
2 + 2v0 · drdt− dr2

)
.

So far, we considered the fluid such as a Bose–Einstein condensate at rest with
a time-dependent speed of sound cs(t). The second possibility is to let the con-
densate expand [29], which can be reached by changing the trapping potential
(which is used to confine the dilute atomic/molecular gas), e.g., to switch it
off entirely. (This is already done in time-of-flight measurements.) Assuming
homogeneity and isotropy of the background fluid (which reflects the situation
at the centre of the condensate quite well), we can describe the dynamics of
the background by a scale-factor b(t) and the velocity assumes a particularly
simple form v0 = rḃ/b. In complete analogy the general relativity, we can
diagonalise and thereby simplify the metric in Eq. (14) by a transformation
from the laboratory coordinates (t, r) to co-moving coordinates r = b(t)R

ds2eff =
�0

cs

(
c2sdt

2 − b2dR2
)

= dτ2 − �0b
2

cs
dR2 , (23)

where τ =
∫ t
dt′
√
�0(t′)cs(t′) denotes the effective proper co-moving time.

Note that the background density �0 as well as the speed of sound cs will
be time-dependent in an expanding condensate �0 ∝ 1/b3 and cs ∝ 1/b3/2

(assuming that the two-particle contact repulsion remains constant).
As an example, consider the free expansion of a three-dimensional con-

densate after the trap is suddenly switched off at time t = 0. Initially, the
interaction energy is transfered to kinetic energy and the condensate acceler-
ates (b̈ > 0). But very quickly (after a period of time which is roughly the
inverse of the initial trapping frequency) the scale factor approaches a con-
stant velocity and we can approximate b = αt. Insertion into Eq. (23) yields an
accelerated expanding universe with an apparent horizon (see Fig. 10) at [29]

rhorizon =
cs(t = 0)
α3/2

t−1/2 , Rhorizon =
cs(t = 0)
α5/2

t−3/2 , (24)
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Fig. 10. Sketch of an apparent horizon (blue dashed circle). The dotted green arrows
denote the streamlines of the expanding fluid (moving away from a chosen fluid
particle at rest in the centre of the picture). The solid red circles are sound waves.
The apparent horizon (blue dashed circle) emerges at the radius where the flow
velocity v exceeds the speed of sound cs. Obviously, no sound wave emitted beyond
the horizon can reach the inner region, i.e., the chosen fluid particle at rest

expressed in terms of the laboratory and co-moving coordinates, respectively.
Note that the free (linear b = αt) expanding condensate does not exactly
correspond to the de Sitter metric in Eq. (12), which would again require
some fine-tuning of the temporal evolution of the trapping potential (instead
of just switching it off, which is relatively easy to do experimentally).

As a consequence of the occurrence of a horizon, the initial quantum fluc-
tuations of the sound modes will be frozen and amplified during the (free)
expansion of the condensate, see Fig. 11. Again, their spectrum can be cal-
culated using the tools known from general relativity and cosmology: the
density-density correlation function 〈δ�̂(r)δ�̂(r′)〉 possesses a k4/3-spectrum
(as in the previous case) with its relative size being on the percent level [29].
Hence it should be feasible to observe this mechanism – which is analogous
to the generation of the seeds of structure formation in the early universe –
with high-precision absorption images of the expanding cloud (as it is already
done in the time-of-flight measurements).

4 Summary and Outlook

The analogy between quantised sound waves in fluids and quantum fields in
curved space-times – which can be extended to many other excitations such as
surface waves or photons in dielectrics – facilitates an interdisciplinary know-
how transfer in both directions. One the one hand, one may use the micro-
scopic structure of the fluid as a toy model for unknown high-energy (Planck-
ian) effects in quantum gravity, for example, and investigate the influence of

v=c

v<c

v>c
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Fig. 11. Sketch of expanding condensate. Time goes up in this diagram and the
dotted green lines denote particle trajectories of the expanding fluid. The apparent
horizon (dashed blue line) occurs where the flow velocity v exceeds the speed of
sound cs and moves inwards since v increases but cs decreases. The solid red curve
denotes half a wavelength of a given phonon mode, which is being stretched by
the expansion of the condensate. Initially, the wavelength is much smaller than the
horizon and oscillates almost freely. Later on, the mode crosses the horizon and after
that, the oscillation freezes because the two knots are separated by the horizon and
hence cannot exchange energy anymore

the corresponding cut-off – see the chapter by S. Weinfurtner, S. Liberati, and
M. Visser and [30], for example. Examining the derivation of the Hawking ef-
fect for various dispersion relations, one reproduces Hawking radiation for a
rather large class of scenarios, but there are also counter-examples, which do
not appear to be unphysical or artificial, displaying strong deviations from
Hawkings result. Therefore, whether real black holes emit Hawking radia-
tion remains an open question and could give non-trivial information about
Planckian physics.

On the other hand, the emergence of an effective geometry/metric allows
us to apply the vast amount of universal tools and concepts developed for
general relativity (such as horizons), which provide a unified description and
better understanding of (classical and quantum) non-equilibrium phenomena
(e.g., freezing and amplification of quantum fluctuations) in condensed mat-
ter systems. As an example for such a universal mechanism, the Kibble-Zurek
effect describes the generation of topological effects due to the amplification
of classical/thermal fluctuations in non-equilibrium thermal phase transitions.
This effect is one of the main themes of the COSLAB programme. It may play
a role in cosmology (e.g., falsifying some models, see chapter by M. Sakellar-
iadou) and has been observed in the laboratory. The loss of causal connec-
tion underlying the Kibble-Zurek mechanism can be understood in terms of
an effective horizon – which clearly indicates the departure from equilibrium.
The associated breakdown of adiabaticity leads to an amplification of thermal
fluctuations (as in the Kibble-Zurek mechanism) as well as quantum fluctua-

t
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tions (at zero temperature). The zero-temperature version of this amplification
mechanism is completely analogous to the early universe and becomes partic-
ularly important for the new and rapidly developing field of quantum phase
transitions (see contributions by G. E. Volovik as well as J. Yngvason2).

Furthermore, these analogue models might provide the exciting opportu-
nity of measuring the analogues of these exotic effects – such as Hawking ra-
diation or the generation of the seeds for structure formation during inflation
– in actual laboratory experiments, i.e., experimental quantum simulations of
black hole physics or the early universe. Even though the detection of these
exotic quantum effects is partially very hard (see, e.g., [23]) and requires ultra-
low temperatures etc., there is no (known) principal objection against it (see
chapter by P. Skyba and [22]). The analogue models range from black and/or
white hole event horizons (see chapter by U. Leonhardt and T. G. Philbin)
in flowing fluids and other laboratory systems (see chapter by P. Skyba) over
apparent horizons in expanding Bose–Einstein condensates, for example, to
particle horizons in quantum phase transitions etc.

However, one should stress that the analogy reproduces the kinematics
(quantum fields in curved space-times with horizons etc.) but not the dy-
namics, i.e., the effective geometry/metric is not described by the Einstein
equations in general. An important and strongly related problem is the cor-
rect description of the back-reaction (see chapter by U. R. Fischer) of the
quantum fluctuations (e.g., phonons) onto the background (e.g., fluid flow).
In gravity, the impact of the (classical or quantum) matter is usually incor-
porated by the (expectation value of the) energy-momentum tensor. Since
this quantity can be introduced at a purely kinematic level, we may use the
same construction for phonons in flowing fluids, for example – which is called
the pseudo energy-momentum tensor. The relevant component of this tensor
describing the energy density (which is conserved for stationary flows) may
become negative as soon as the flow velocity exceeds the sound speed. These
negative contributions explain the energy balance of the Hawking radiation
in black hole analogues as well as super-radiant scattering. However, it turns
out that the (expectation value of the) pseudo energy-momentum tensor does
not determine the quantum back-reaction correctly [31].

Finally, one should not neglect to mention another possibility for the oc-
currence of a horizon in the laboratory – the Unruh effect (see chapter by
B. Kuckert). A uniformly accelerated observer cannot see half of the (1+1-
dimensional) space-time, see Fig. 12, i.e., the two Rindler wedges are com-
pletely causally disconnected by the horizon(s). In each wedge, one may in-
troduce a set of observables corresponding to the measurements made by the
observers confined to this wedge – thereby obtaining two equivalent copies of
observables in one wedge. In terms of these two copies, the Minkowski vac-
uum is an entangled state which yields the usual phenomena (thermo-field

2 This contribution has already been published elsewhere and can be found in Lect.
Notes Phys. 690, 199–215 (2006).
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Fig. 12. Space-time diagram with a trajectory of a uniformly accelerated observer
(solid blue curve) and the resulting particle horizons (red dotted lines). The observer
is confined to the right Rindler wedge (region x > |ct| between the two horizons) and
cannot influence or be influenced by all events in the left Rindler wedge (x < |ct|),
which is completely causally disconnected

formalism etc., see chapter by G. Vitiello) including the Unruh effect – i.e.,
the uniformly accelerated observer experiences the Minkowski vacuum as a
thermal bath: For rather general quantum fields (Bisognano-Wichmann the-
orem, see chapter by B. Kuckert), it can be shown that the quantum state �̂
obtained by restricting the Minkowski vacuum to one of the Rindler wedges
behaves as a mixed state �̂ = exp{−2πĤτ/κ}/Z, where Ĥτ corresponds to the
Hamiltonian generating the proper (co-moving wristwatch) time τ measured
by the accelerated observer and κ is the analogue to the surface gravity in
Sect. 2.1 and determines the acceleration.

The thermal character of this restricted state �̂ arises from the quantum
correlations of the Minkowski vacuum in the two Rindler wedges, i.e., the
Minkowski vacuum is a multi-mode squeezed state with respect the two equiv-
alent copies of observables in each wedge. This is a quite general phenomenon
associated with doubling the degrees of freedom (see chapter by G. Vitiello)
and describes the underlying idea of the thermo-field formalism, for example.
The entropy of the thermal radiation in the Unruh and the Hawking effect can
be understood as an entanglement entropy: For the Unruh effect, it is caused
by averaging over the quantum correlations between the two Rindler wedges.
In the black hole case, each particle of the outgoing Hawking radiation has
its infalling partner particle (with a negative energy with respect to spatial
infinity) and the entanglement between the two generates the entropy flux of
the Hawking radiation.

Instead of accelerating a detector and measuring its excitations, one could
replace the accelerated observer by an accelerated scatterer. This device would
scatter (virtual) particles from the thermal bath and thereby create real par-
ticles – which can be interpreted as a signature if Unruh effect (see [32] and
chapter by P. Skyba).
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Many quantum condensed matter systems are strongly correlated and strongly
interacting fermionic systems, which cannot be treated perturbatively. How-
ever, physics which emerges in the low-energy corner does not depend on the
complicated details of the system and is relatively simple. It is determined by
the nodes in the fermionic spectrum, which are protected by topology in mo-
mentum space (in some cases, in combination with the vacuum symmetry).
Close to the nodes the behavior of the system becomes universal; and the
universality classes are determined by the toplogical invariants in momentum
space. When one changes the parameters of the system, the transitions are ex-
pected to occur between the vacua with the same symmetry but which belong
to different universality classes. Different types of quantum phase transitions
governed by topology in momentum space are discussed in this chapter. They
involve Fermi surfaces, Fermi points, Fermi lines, and also the topological
transitions between the fully gapped states. The consideration based on the
momentum space topology of the Green’s function is general and is applicable
to the vacua of relativistic quantum fields. This is illustrated by the possible
quantum phase transition governed by topology of nodes in the spectrum of
elementary particles of Standard Model.

1 Introduction

There are two schemes for the classification of states in condensed matter
physics and relativistic quantum fields: classification by symmetry (GUT
scheme) and by momentum space topology (anti-GUT scheme).

For the first classification method, a given state of the system is charac-
terized by a symmetry group H which is a subgroup of the symmetry group
G of the relevant physical laws. The thermodynamic phase transition between
equilibrium states is usually marked by a change of the symmetry group H.

G.E. Volovik: Quantum Phase Transitions from Topology in Momentum Space, Lect. Notes
Phys. 718, 31–73 (2007)
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This classification reflects the phenomenon of spontaneously broken symme-
try. In relativistic quantum fields the chain of successive phase transitions,
in which the large symmetry group existing at high energy is reduced at low
energy, is in the basis of the Grand Unification models (GUT) [1, 2]. In con-
densed matter the spontaneous symmetry breaking is a typical phenomenon,
and the thermodynamic states are also classified in terms of the subgroup H
of the relevant group G (see e.g, the classification of superfluid and supercon-
ducting states in Refs. [3, 4]). The groups G and H are also responsible for
topological defects, which are determined by the nontrivial elements of the
homotopy groups πn(G/H); cf. [5].

The second classification method reflects the opposite tendency – the anti
Grand Unification (anti-GUT) – when instead of the symmetry breaking the
symmetry gradually emerges at low energy. This method deals with the ground
states of the system at zero temperature (T = 0), i.e., it is the classification of
quantum vacua. The universality classes of quantum vacua are determined by
momentum-space topology, which is also responsible for the type of the effec-
tive theory, emergent physical laws and symmetries at low energy. Contrary
to the GUT scheme, where the symmetry of the vacuum state is primary giv-
ing rise to topology, in the anti-GUT scheme the topology in the momentum
space is primary while the vacuum symmetry is the emergent phenomenon in
the low energy corner.

At the moment, we live in the ultra-cold Universe. All the characteristic
temperatures in our Universe are extremely small compared to the Planck en-
ergy scale EP. That is why all the massive fermions, whose natural mass must
be of order EP, are frozen out due to extremely small factor exp(−EP/T ).
There is no matter in our Universe unless there are massless fermions, whose
masslessness is protected with extremely high accuracy. It is the topology in
the momentum space, which provides such protection.

For systems living in 3D space, there are four basic universality classes of
fermionic vacua provided by topology in momentum space [6, 7]:

(i) Vacua with fully-gapped fermionic excitations, such as semiconductors
and conventional superconductors.

(ii) Vacua with fermionic excitations characterized by Fermi points– points
in 3D momentum space at which the energy of fermionic quasiparticle
vanishes. Examples are provided by superfluid 3He-A and also by the
quantum vacuum of Standard Model above the electroweak transition,
where all elementary particles are Weyl fermions with Fermi points in the
spectrum. This universality class manifests the phenomenon of emergent
relativistic quantum fields at low energy: close to the Fermi points the
fermionic quasiparticles behave as massless Weyl fermions, while the
collective modes of the vacuum interact with these fermions as gauge
and gravitational fields.

(iii) Vacua with fermionic excitations characterized by lines in 3D momentum
space or points in 2D momentum space. We call them Fermi lines, though
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in general it is better to characterize zeroes by co-dimension, which is
the dimension of p-space minus the dimension of the manifold of zeros.
Lines in 3D momentum space and points in 2D momentum space have
co-dimension 2: since 3−1 = 2−0 = 2; compare this with zeroes of class
(ii) which have co-dimension 3−0 = 3. The Fermi lines are topologically
stable only if some special symmetry is obeyed. Example is provided by
the vacuum of the high Tc superconductors where the Cooper pairing
into a d-wave state occurs. The nodal lines (or actually the point nodes
in these effectively 2D systems) are stabilized by the combined effect of
momentum-space topology and time reversal symmetry.

(iv) Vacua with fermionic excitations characterized by Fermi surfaces. The
representatives of this universality class are normal metals and normal
liquid 3He. This universality class also manifests the phenomenon of
emergent physics, though non-relativistic: at low temperature all the
metals behave in a similar way, and this behavior is determined by the
Landau theory of Fermi liquid – the effective theory based on the exis-
tence of Fermi surface. Fermi surface has co-dimension 1: in 3D system it
is the surface (co-dimension = 3−2 = 1), in 2D system it is the line (co-
dimension = 2− 1 = 1), and in 1D system it is the point (co-dimension
= 1− 0 = 1; in one dimensional system the Landau Fermi-liquid theory
does not work, but the Fermi surface survives).

The possibility of the Fermi band class (v), where the energy vanishes in
the finite region of the 3D momentum space and thus zeroes have co-dimension
0, has been also discussed [8–11]. It is believed that this the so-called Fermi
condensate may occur in strongly interacting electron systems PuCoGA5 and
CeCoIn5 [12]. Topologically stable flat band may exist in the spectrum of
fermion zero modes, i.e. for fermions localized in the core of the topological
objects [13].

The phase transitions which follow from this classification scheme are
quantum phase transitions which occur at T = 0 [14]. It may happen that
by changing some parameter q of the system we transfer the vacuum state
from one universality class to another, or to the vacuum of the same univer-
sality class but different topological quantum number, without changing its
symmetry group H. The point qc, where this zero-temperature transition oc-
curs, marks the quantum phase transition. For T �= 0, the second order phase
transition is absent, as the two states belong to the same symmetry class H,
but the first order phase transition is not excluded. Hence, there is an isolated
singular point (qc, 0) in the (q, T ) plane (Fig. 1(a)), or the end point of the
first order transition (Fig. 1(b)).

The quantum phase transitions which occur in classes (iv) and (i) or be-
tween these classes are well known. In the class (iv) the corresponding quan-
tum phase transition is known as Lifshitz transition [15], at which the Fermi
surface changes its topology or emerges from the fully gapped state of class
(i), see Sect. 2.2. The transition between the fully gapped states characterized
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Fig. 1. Quantum phase transition between two ground states with the same sym-
metry but of different universality class – gapless at q < qc and fully gapped at
q > qc – as isolated point (a) as the termination point of first order transition (b)

by different topological charges occurs in 2D systems exhibiting the quan-
tum Hall and spin-Hall effect: this is the plateau-plateau transition between
the states with different values of the Hall (or spin-Hall) conductance (see
Sect. 5). The less known transitions involve nodes of co-dimension 3 [16–20]
(Sect. 3 on Fermi points) and nodes of co-dimension 2 [21–24] (Sect. 4 on
nodal lines). The quantum phase transitions involving the flat bands of class
(v) are discussed in Ref. [13].

2 Fermi Surface and Lifshitz Transition

2.1 Fermi Surface as a Vortex in p-space

In ideal Fermi gases, the Fermi surface at p = pF =
√

2µm is the boundary in
p-space between the occupied states (np = 1) at p2/2m < µ and empty states
(np = 0) at p2/2m > µ. At this boundary (the surface in 3D momentum space)
the energy is zero. What happens when the interaction between particles is
introduced? Due to interaction the distribution function np of particles in the
ground state is no longer exactly 1 or 0. However, it appears that the Fermi
surface survives as the singularity in np. Such stability of the Fermi surface
comes from a topological property of the one-particle Green’s function at
imaginary frequency:

G−1 = iω − p2

2m
+ µ . (1)

Let us for simplicity skip one spatial dimension pz so that the Fermi surface
becomes the line in 2D momentum space (px, py); this does not change the co-
dimension of zeroes which remains 1 = 3−2 = 2−1. The Green’s function has
singularities lying on a closed line ω = 0, p2

x + p2
y = p2

F in the 3D momentum-
frequency space (ω, px, py) (Fig. 2(a)). This is the line of the quantized vortex
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Fig. 2. (a) Fermi surface is a topological object in momentum space – a vortex
loop. (b) When the chemical potential µ decreases the loop shrinks and disappears
at µ < 0. The point µ = T = 0 marks the Lifshitz transition between the gapless
ground state at µ > 0 to the fully gapped vacuum at µ < 0

in the momemtum space, since the phase Φ of the Green’s function G = |G|eiΦ

changes by 2πN1 around the path embracing any element of this vortex line.
In the considered case the phase winding number is N1 = 1. If we add the
third momentum dimension pz the vortex line becomes the surface in the 4D
momentum-frequency space (ω, px, py, pz) – the Fermi surface – but again the
phase changes by 2π along any closed loop empracing the element of the 2D
surface in the 4D momentum-frequency space.

The winding number cannot change by continuous deformation of the
Green’s function: the momentum-space vortex is robust toward any pertur-
bation. Thus the singularity of the Green’s function on the Fermi surface is
preserved, even when interaction between fermions is introduced. The invari-
ant is the same for any space dimension, since the co-dimension remains 1.

The Green function is generally a matrix with spin indices. In addition, it
may have the band indices (in the case of electrons in the periodic potential of
crystals). In such a case the phase of the Green’s function becomes meaning-
less; however, the topological property of the Green’s function remains robust.
The general analysis [7] demonstrates that topologically stable Fermi surfaces
are described by the group Z of integers. The winding number N1 is expressed
analytically in terms of the Green’s function [6]:

N1 = tr
∮

C

dl

2πi
G(µ,p)∂lG

−1(µ,p) . (2)
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Here the integral is taken over an arbitrary contour C around the momentum-
space vortex, and tr is the trace over the spin, band and/or other indices.

2.2 Lifshitz Transitions

There are two scenarios of how to destroy the vortex loop in momentum
space: perturbative and non-perturbative. The non-perturbative mechanism
of destruction of the Fermi surface occurs for example at the superconducting
transition, at which the spectrum changes drastically and the gap appears.
We shall consider this later in Sect. 2.3, and now let us concentrate on the
perturbative processes.

Contraction and Expansion of Vortex Loop in p-Space

The Fermi surface cannot be destroyed by small perturbations, since it is
protected by topology and thus is robust to perturbations. But the Fermi sur-
face can be removed by large perturbations in the processes which reproduces
the processes occurring for the real-space counterpart of the Fermi surface –
the loop of quantized vortex in superfluids and superconductors. The vortex
ring can continuously shrink to a point and then disappear, or continuously
expand and leave the momentum space. The first scenario occurs when one
continuously changes the chemical potential from the positive to the negative
value: at µ < 0 there is no vortex loop in momentum space and the ground
state (vacuum) is fully gapped. The point µ = 0 marks the quantum phase
transition – the Lifshitz transition– at which the topology of the energy spec-
trum changes (Fig. 2(b)). At this transition the symmetry of the ground state
does not changes. The second scenario of the quantum phase transition to the
fully gapped states occurs when the inverse mass 1/m in Eq. (1) crosses zero.

Similar Lifshitz transitions from the fully gapped state to the state with the
Fermi surface may occur in superfluids and superconductors. This happens,
for example, when the superfluid velocity crosses the Landau critical veloc-
ity [Fig. 3]. The symmetry of the order parameter does not change across
such a quantum phase transition. On the other examples of the Fermi surface
in superfluid/superconducting states in condensed matter and quark matter
see [25]. In the non-superconduting states, the transition from the gapless
to gapped state is the metal-insulator transition. The Mott transition also
belongs to this class.

Reconnection of Vortex Lines in p-Space

The Lifshitz transitions involving the vortex lines in p-space may occur be-
tween the gapless states. They are accompanied by the change of the topology
of the Fermi surface itself. The simplest example of such a phase transition
discussed in terms of the vortex lines is provided by the reconnection of the
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Fig. 3. Illustration of Lifshitz transition in superfluid/superconductor at Landau
critical velocity. (a) In the presence of the superfluid motion with velocity vs, the
spectrum of quasiparticles is Doppler shifted. In the fully gapped superconductor
in Eq. (5) the spectrum becomes E(p) = ±

√
(p2/2m − µ)2 + |∆|2 + p · vs. When

the flow velocity exceeds the Landau critical velocity, vL ≈ ∆/pF if ∆ � µ, the
positive branch crosses zero energy level. Typically this leads to instability, but in
some cases, for example, in superfluid 3He-B, the superfluidity is not destroyed. In
this case the Landau critical velocity marks the quantum phase transition at which
two Fermi surfaces with E(p) = 0 emerge in the superfluid state (b). Liquid remains
superfluid, but the density of the fermionic states is nonzero due to Fermi surfaces.
Due to that the normal component of the liquid becomes nonzero even at T = 0, as
a result the density of the superfluid component ρs (the prefactor in the superfluid
current js = ρsvs) is reduced compared with its value ρ below the threshold. See
also Sect. 26.1 in Ref. [6]

vortex lines. In Fig. 4 the two-dimensional system is considered with the sad-
dle point spectrum E(p) = p2

x− p2
y−µ. The reconnection quantum transition

occurs at µ = 0. The three-dimensional systems, in which the Fermi surface
is a 2D vortex sheet in the 4D space (ω, px, py, pz), may experience the more
complicated topological transitions.

2.3 Metal-superconductor Transition

The transition to superconducting state, even if it occurs at T = 0, does not
belong to the class of the quantum phase transitions which we discuss in this
review, because it is the consequence of the spontaneously broken symmetry
and does not occur perturbatively. Let us discuss this transition from the
point of view of the momentum-space topology.
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Fig. 4. Lifshitz transition with change of the Fermi surface topology as reconnection
of vortex lines in momentum space. The direction of the “circulation” around the
vortex lines (grey arrows) and “vorticity” along the vortex lines (black arrows) are
shown

Topology of Gor’kov Function Across
the Superconducting Transition

Let us first note that the breaking of U(1) symmetry is not the sufficient
condition for superfluidity or superconductivity. For example, the U(1) sym-
metry of the atoms A which is the result of conservation of the number NA

of A atoms, may be violated simply due to possibility of decay of atom A to
atom B. But this does not lead to superfluidity, and the Fermi surface does
not disappear. For these two species of atoms the Hamiltonian is 2×2 matrix,
such as

H =
(
p2/2mA − µ ∆

∆∗ p2/2mB − µ

)
, (3)

where ∆ is the matrix element which mixes the atoms A and B. This mixing
violates the separate U(1) symmetry for each of the two gases, but the gap
does not appear. Zeroes of the energy spectrum found from the nullification
of the determinant of the matrix, (p2/2mA−µ)(p2/2mB−µ)−|∆|2 = 0, form
two Fermi surfaces if ∆ = 0, and these Fermi surfaces survive if ∆ �= 0 but is
sufficiently small. This is the consequence of topological stability of p-space
vortices. Each Fermi surface has topological charge N1 = 1, and their sum
N1 = 2 is robust to small perturbations.

The non-perturbative phenomenon of superfluidity in the fermionic gas
occurs due to Cooper pairing of atoms (electrons), i.e. due to mixing between
the particle and hole states. Such mixing requires introduction of the extended
matrix Green’s function even for a single fermions species. This is the Gor’kov
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Green’s function which is the matrix in the particle-hole space of the same
fermions, i.e. we have effective doubling of the relevant fermionic degrees of
freedom for the description of superconductivity. In case of s-wave pairing the
Gor’kov Green’s function has the following form:

G−1 =
(
iω − p2/2m+ µ ∆

∆∗ iω + p2/2m− µ

)
, (4)

Now the energy spectrum

E2 = (p2/2m− µ)2 + |∆|2 (5)

has a gap, i.e. the Fermi surface disappears. How does this happen? At ∆ = 0
the matrix Green’s function describes two species of fermions: particles and
holes. The topological charges of the corresponding Fermi surfaces are N1 = 1
for particles and N1 = −1 for holes, with total topological charge N1 = 0.
The trivial total topological charge of the Fermi surfaces allows for their an-
nihilation, which just occurs when the mixing matrix element ∆ �= 0 and
the energy spectrum becomes fully gapped. Thus the topology of the ma-
trix Gor’kov Green’s function G does not change across the superconducting
transition.

Topology of Diagonal Green’s Function Across
the Superconducting Transition

Let us consider what happens with the conventional Green’s function across
the transition. This is the G11 element of the matrix (4):

G11 = − iω + p2/2m− µ

ω2 + (p2/2m− µ)2 + |∆|2 . (6)

One can see that it has the same topology in momentum space as the Green’s
function of normal metal in Eq. (1):

G11(∆ = 0) =
1

iω − p2/2m+ µ
= − iω + p2/2m− µ

ω2 + (p2/2m− µ)2
. (7)

Though instead of the pole in Eq. (7) for superconducting state one has zero
in Eq. (6) for normal state, their topological charges in Eq. (2) are the same:
both have the same vortex singularity with N1 = 1. Thus the topology of the
conventional Green’s function G11 also does not change across the supercon-
ducting transition.

So the topology of each of the functions G and G11 does not change across
the transition. This illustrates again the robustness of the topological charge.
But what occurs at the transition? The Green’s function G11 gives the proper
description of the normal state, but it does not provide the complete de-
scription of the superconducting state. That is why its zeroes, though have
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non-trivial topological charge, bear no information on the spectrum of excita-
tions. On the other hand the matrix Green’s function G provides the complete
description of the superconducting states, but is meaningless on the normal
state side of the transition. Thus the spectrum on two sides of the transition
is determined by two different functions with different topological properties.
This illustrates the non-perturbative nature of the superconducting transi-
tion, which crucially changes the p-space topology leading to the destruction
of the Fermi surface without conservation of the topological charge across the
transition.

Momentum Space Topology in Pseudo-Gap State

Pseudo-gap is the effect of the suppression of the density of states (DOS) at
low energy [26]. Let us consider a simple model in which the pseudo-gap be-
havior of the normal Fermi liquid results from the superfluid/superconducting
fluctuations, i.e. in this model the pseudo-gap state is the normal (non-
superconducting) state with the virtual superconducting order parameter ∆
fluctuating about its equilibrium zero value (see review [27] and Ref. [28]).
For simplicity we discuss the extreme case of such state where ∆ fluctuates
being homogeneous in space. The average value of the off-diagonal element
of the Gor’kov functions is zero in this state, 〈G12〉 = 0, and thus the U(1)
symmetry remains unbroken. The Green’s function of this pseudo-gap state is
obtained by averaging of the function G11 over the distribution of the uniform
complex order parameter ∆:

G = 〈G11〉 =
∫
d∆d∆∗P (|∆|) −iω − ε

ω2 + ε2 + |∆|2 . (8)

Here ε(p) = p2/2m − µ and P (|∆|) is the probability of the gap |∆|. If
P (0) �= 0, then in the low-energy limit ω2 + ε2 
 ∆2

0, where ∆0 is the
amplitude of fluctuations, one obtains

G =
Z

iω − ε
, Z ∝ ω2 + ε2

∆2
0

ln
∆2

0

ω2 + ε2
. (9)

The Green’s function has the same topological property as conventional
Green’s function of metal with Fermi surface at ε(p) = 0, but the suppression
of residue Z is so strong, that the pole in the Green’s function is transformed
to the zero of the Green’s function. Because of the topological stability, the
singularity of the Green’s function at the Fermi surface is not destroyed: the
zero is also the singularity and it has the same topological invariant in Eq. (2)
as pole. So this model of the Fermi liquid represents a kind of Luttinger or
marginal Fermi liquid with a very strong renormalization of the singularity at
the Fermi surface.

This demonstrates that the topology of the Fermi surface is the robust
property, which does not resolve between different fine structures of the Fermi
liquids with different DOS.
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Using the continuation of Eq. (9) to the real frequency axis ω, one obtains
the density of states in this extreme model of the pseudo-gap:

ν(ω) = N0

∫
dε ImG = πN0

∫ ω

0

dε
ω + ε

∆2
0

=
3π
2
N0

ω2

∆2
0

, (10)

where N0 is the DOS of the conventional Fermi liquid, i.e. without the pseudo-
gap effect. Though this state is non-superfluid and is characterized by the
Fermi surface, the DOS at ω 
 ∆0 is highly suppressed compared to N0,
i.e. the pseudo-gap effect is highly pronounced. This DOS has the same de-
pendence on ω as that in such superconductors or superfluids in which the
gap has point nodes discussed in the next Sect. 3. When the spatial and time
variation of the gap fluctuations are taken into account, the pseudo-gap effect
would not be so strong.

3 Fermi Points

3.1 Fermi Point as Topological Object

Chiral Fermi Points

The crucial non-perturbative reconstruction of the spectrum occurs at the
superfluid transition to 3He-A, where the point nodes emerge instead of the
Fermi surface. Since we are only interested in effects determined by the topol-
ogy and the symmetry of the fermionic Hamiltonian H(p) or Green’s func-
tion G(p, iω), we do not require a special form of the Green’s function and
can choose the simplest one with the required topology and symmetry. First,
consider the Bogoliubov–Nambu Hamiltonian which qualitatively describes
fermionic quasiparticles in the axial state of p–wave pairing. This Hamiltonian
can be applied to superfluid 3He-A [4] and also to the p-wave BCS state of
ultracold Fermi gas:

H =

(
p2/2m− µ c⊥ p · (ê1 + i ê2)

c⊥ p · (ê1 − i ê2) −p2/2m+ µ

)

= τ3(p2/2m− µ) + c⊥ p · (τ1ê1 − τ2ê2), (11)

where τ1, τ2 and τ3 are 2×2 Pauli matrices in Bogoliubov–Nambu particle-hole
space, and we neglect the spin structure which is irrelevant for consideration.
The orthonormal triad (ê1, ê2, l̂ ≡ ê1 × ê2) characterizes the order parame-
ter in the axial state of triplet superfluid. The unit vector l̂ corresponds to
the direction of the orbital momentum of the Cooper pair (or the diatomic
molecule in case of BEC); and c⊥ is the speed of the quasiparticles if they
propagate in the plane perpendicular to l̂.
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Fig. 5. Angular dependence of the superfluid/superconducting gap (dashed lines)
at the former Fermi surface (solid lines). The gap ∆ is (a) isotropic in the s-wave
state and (b) is ∆(θ) = pF c⊥ sin θ for the p-wave state in Eq. (12), where θ is the
polar angle, and arrow shows the direction of the unit vector l̂. The spectrum of
quasiparticles has two nodes at the former Fermi surface: at θ = 0, i.e. at p1 = pF l̂
(filled circle) and at θ = π, i.e. at p2 = −pF l̂ (open circle). Their winding numbers of
the Fermi points given by Eq. (13) are correspondingly N3 = +1 and N3 = −1. (c)
According to Eq. (14), close to the Fermi points the quasiparticle spectrum becomes
“relativistic”. For the local observer, who measures the spectrum using clocks and
rods made of the low-energy fermions, the Hamiltonian for fermions in the vicinity of
the point with N3 = +1 is equivalent to the Weyl Hamiltonian for the right handed
massless fermions: H = cσ · p; and the spectrum has the conical form E = ±cp

The energy spectrum of these Bogoliubov–Nambu fermions is

E2(p) =
(
p2

2m
− µ

)2

+ c2⊥

(
p× l̂

)2

. (12)

In the BCS regime occuring for positive chemical potential µ > 0, there are
two Fermi points in 3D momentum space with E(p) = 0. For the energy
spectrum (12), the Fermi points are p1 = pF l̂ and p2 = −pF l̂, with Fermi
momentum pF =

√
2mµ [Fig. 5(b)].

For a general system, be it relativistic or nonrelativistic, the topological
stability of the Fermi point (the node of the co-dimension 3) is guaranteed by
the nontrivial homotopy group π2(GL(n,C)) = Z which describes the map-
ping of a sphere S2 embracing the point node to the space of non-degenerate
complex matrices [7]. This is the group of integers. The integer valued topo-
logical invariant (winding number) can be written in terms of the fermionic
propagator G(iω,p) as a surface integral in the 4D frequency-momentum
space pµ = (ω,p): [6]

N3 ≡
1

24π2
εµνρσ tr

∮
Σa

dSσG
∂

∂pµ
G−1 G

∂

∂pν
G−1 G

∂

∂pρ
G−1 . (13)
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Here Σa is a three-dimensional surface around the isolated Fermi point pµa =
(0,pa) and “tr”stands for the trace over the relevant spin and/or band indices.
For the case considered in Eq. (11), the Green’s function is G−1(iω,p) =
iω −H(p); the trace is over the Bogoliubov-Nambu spin; and the two Fermi
points p1 and p2 have nonzero topological charges N3 = +1 and N3 = −1
[Fig. 6 (right)].

We call such Fermi points the chiral Fermi points, because in the vicin-
ity of these point the fermions behave as right-handed or left handed parti-
cles (see below). These nodes of co-dimension 3 are the diabolical points –
the exceptional degeneracy points of the complex-valued Hamiltonian which
depends on the external parameters (see Ref. [29–32]). At these points two
different branches of the spectrum touch each other. Topology of these points
has been discussed in Ref. [33]. In our case the relevant parameters of the
Hamiltonian are the components of momentum p, and we discuss the contact
point of branches with positive and negative energies [34]. Topology of the
chiral Fermi points in relation to the spectrum of elementary particles has
been discussed in Ref. [35].

Emergent Relativity and Chiral Fermions

Close to any of the Fermi points the energy spectrum of fermionic quasipar-
ticles acquires the relativistic form (this follows from the so-called Atiyah-
Bott-Shapiro construction [7]). In particular, the Hamiltonian in Eq. (11) and
spectrum in Eq. (12) become [6]:

H → ei
kσ

k(pi − eAi) , E2(p) → gik(pi − eAi)(pk − eAk) . (14)

Here the analogue of the dynamic gauge field is A = pF l̂; the “electric charge”
is either e = +1 or e = −1 depending on the Fermi point; the matrix ek

i is
the analogue of the dreibein with gik = ei

je
k
j = diag(c2⊥, c

2
⊥, c

2
‖ = p2

F /m
2)

playing the role of the effective dynamic metric in which fermions move along
the geodesic lines. Fermions in Eq. (14) are chiral: they are right-handed if
the determinant of the matrix ei

j is positive, which occurs at N3 = +1; the
fermions are left-handed if the determinant of the matrix ei

j is negative, which
occurs at N3 = −1. For the local observer, who measures the spectrum using
clocks and rods made of the low-energy fermions, the Hamiltonian in Eq. (14)
is simplified: H = ±cσ · p [Fig. 5(c). Thus the chirality is the property of
the behavior in the low energy corner and it is determined by the topological
invariant N3.

Majorana Fermi Point

The Hamiltonians which give rise to the chiral Fermi points with non-zero
N3 are essentially complex matrices. That is why one may expect that in
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systems described by real-valued Hamiltonian matrices there are no topolog-
ically stable points of co-dimension 3. However, the general analysis in terms
of K-theory [7] demonstrates that such points exist and are described by the
group Z2. Let us denote this Z2 charge as N3M to distinguish it from the
Z charge N3 of chiral fermions. The summation law for the charge N3M is
1+1 = 0, i.e. two such points annihilate each other. Example of topologically
stable massless real fermions is provided by the Majorana fermions [7]. The
summation law 1 + 1 = 0 also means that 1 = −1, i.e. the particle is its
own antiparticle. This property of the Majorana fermions follows from the
topology in momentum space and does not require the relativistic invariance.

Summation Law for Majorana Fermions
and Marginal Fermi Point

The summation law 1− 1 = 0 for chiral fermions and 1 + 1 = 0 for Majorana
fermions is illustrated using the following 4× 4 Hamiltonian matrix:

H = cτ1px + cτ2σ2py + cτ3pz . (15)

This Hamiltonian describes either two chiral fermions or two Majorana fermi-
ons. The first description is obtained if one chooses the spin quantization axis
along σ2. Then for the direction of spin σ2 = +1 this Hamiltonian describes
the right-handed fermion with spectrum E(p) = cp whose Fermi point at
p = 0 has topological charge N3 = +1. For σ2 = −1 one has the left-handed
chiral fermion whose Fermi point is also at p = 0, but it has the opposite
topological charge N3 = −1. Thus the total topological charge of the Fermi
point at p = 0 is N3 = 1− 1 = 0.

In the other description, one takes into account that the matrix (15) is real
and thus can describe the real (Majorana) fermions. In our case the original
fermions are complex, and thus we have two real fermions with the spectrum
E(p) = cp representing the real and imaginary parts of the complex fermion.
Each of the two Majorana fermions has the Fermi (Majorana) point at p = 0
where the energy of fermions is zero. Since the Hamiltonian (15) is the same
for both real fermions, the two Majorana points have the same topological
charge.

Let us illustrate the difference in the summation law for charges N3 and
N3M by introducing the perturbation Mσ1τ2 to the Hamiltonian (15):

H = cτ1px + cτ2σ2py + cτ3pz +Mσ1τ2 . (16)

Due to this perturbation the spectrum of fermions is fully gapped: E2(p) =
c2p2 + M2. In the description in terms of the chiral fermions, the pertur-
bation mixes left and right fermions. This leads to formation of the Dirac
mass M . The annihilation of Fermi points with opposite charges illustrates
the summation law 1− 1 = 0 for the topological charge N3.
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Let us now consider the same process using the description in terms of
real fermions. The added term Mσ1τ2 is imaginary. It mixes the real and
imaginary components of the complex fermions, and thus it mixes two Ma-
jorana fermions. Since the two Majorana fermions have the same topological
charge, N3M = 1, the formation of the gap means that the like charges of the
Majorana points annihilate each other. This illustrates the summation law
1 + 1 = 0 for the Majorana fermions.

In both descriptions of the Hamiltonian (15), the total topological charge
of the Fermi or Majorana point at p = 0 is zero. We call such topologically
trivial point the marginal Fermi point. The topology does not protect the
marginal Fermi point, and the small perturbation can lead to formation of
the fully gapped vacuum, unless there is a symmetry which prohibits this.

3.2 Quantum Phase Transition in BCS–BEC Crossover Region

Splitting of Marginal Fermi Point

Let us consider some examples of quantum phase transition goverened by
the momentum-space topology of gap nodes, between a fully-gapped vacuum
state and a vacuum state with topologically-protected point nodes. In the
context of condensed-matter physics, such a quantum phase transition may
occur in a system of ultracold fermionic atoms in the region of the BEC–BCS
crossover, provided Cooper pairing occurs in the non-s-wave channel. For
elementary particle physics, such transitions are related to CPT violation,
neutrino oscillations, and other phenomena [18].

Let us start with the topological quantum phase transition involving topo-
logically stable Fermi points [16, 17]. Let us consider what happens with the
Fermi points in Eq. (12), when one varies the chemical potential µ. For µ > 0,
there are two Fermi points, and the density of fermionic states in the vicinity
of Fermi points is ν(ω) ∝ ω2. For µ < 0, Fermi points are absent and the spec-
trum is fully-gapped [Fig. 6]. In this topologically-stable fully-gapped vacuum,
the density of states is drastically different from that in the topologically-
stable gapless regime: ν(ω) = 0 for ω < |µ|. This demonstrates that the quan-
tum phase transition considered is of purely topological origin. The transition
occurs at µ = 0, when two Fermi points with N3 = +1 and N3 = −1 merge
and form one topologically-trivial Fermi point with N3 = 0, which disappears
at µ < 0.

The intermediate state at µ = 0 is marginal: the momentum-space topol-
ogy is trivial (N3 = 0) and cannot protect the vacuum against decay into one
of the two topologically-stable vacua unless there is a special symmetry which
stabilizes the marginal node. As we shall see in the Sect. 3.3, the latter takes
place in the Standard Model with marginal Fermi point.
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Fig. 6. Quantum phase transition between two p-wave vacua with the same sym-
metry but of different universality class. In the bottom right corner you find the
gap (dashed line) in the p-wave state. It depends on the direction in momentum
space and becomes zero when p is along the l̂-vector (along z-axis). At µ > 0, two
gap nodes give rise to two zeroes in the spectrum – Fermi points: one with winding
number N3 = +1 (filled circle) and another with winding number N3 = −1 (open
circle). The transition occurs when the chemical potential µ in Eq. (11) crosses zero
value. The Fermi points merge at µ = 0 forming the marginal (topologically trivial)
gap node with N3 = 0 (grey circle) and annihilate each other. At µ < 0 the Green’s
function has no singularities and the quantum vacuum is fully gapped

Transition Involving Multiple Nodes

The Standard Model contains 16 chiral fermions in each generation. The
multiple Fermi point may occur in condensed matter too. For systems of
cold atoms, an example is provided by another spin-triplet p-wave state, the
so-called α-phase. The Bogoliubov–Nambu Hamiltonian which qualitatively
describes fermionic quasiparticles in the α–state is given by [3,4]:
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N3 = +1

N3 = −1

Fig. 7. Fermi points in the α-phase of triplet superfluid/superconductor in the BCS
regime

H =
(

p2/2m− µ (Σ · p) c⊥/
√

3
(Σ · p)† c⊥/

√
3 −p2/2m+ µ

)
, (17)

with Σ · p ≡ σxpx + exp(2πi/3)σypy + exp(−2πi/3)σzpz .
On the BEC side (µ < 0), fermions are again fully-gapped, while on the

BCS side (µ > 0), there are 8 topologically protected Fermi points with
charges N3 = ±1, situated at the vertices of a cube in momentum space [3]
[Fig. 7]. The fermionic excitations in the vicinity of these points are left- and
right-handed Weyl fermions. At the transition point at µ = 0 these 8 Fermi
points merge forming the marginal Fermi point at p = 0.

3.3 Quantum Phase Transitions in Standard Model

Marginal Fermi Point in Standard Model

It is assumed that the Standard Model above the electroweak transition con-
tains 16 chiral fermions in each generation: 8 right-handed fermions with
N3 = +1 each and 8 left-handed fermions with N3 = −1 each. If so, then the
vacuum of the Standard Model above the electroweak transition is marginal:
there is a multiply degenerate Fermi point at p = 0 with the total topological
charge N3 = +8 − 8 = 0 [Fig. 8(a)]. This vacuum is therefore the interme-
diate state between two topologically-stable vacua: the fully-gapped vacuum
in Fig. 8(b); and the vacuum with topologically-nontrivial Fermi points in
Fig. 8(c).

The absence of the topological stability means that even the small mixing
between the fermions leads to annihilation of the Fermi point. In the Standard
Model, the proper mixing which leads to the fully gapped vacuum is prohibited
by symmetries, namely the continuous electroweak U(1)×SU(2) symmetry (or
the discrete symmetry discussed in Sect. 12.3.2 of [6]) and the CPT symmetry.
(Marginal gapless fermions emerging in spin systems were discussed in [36].
These massless Dirac fermions protected by symmetry differ from the chiral
fermions of the Standard Model. The latter cannot be represented in terms
of massless Dirac fermions, since there is no symmetry between left and right
fermions in Standard Model.)
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Fig. 8. Two scenarios of annihilation of marginal Fermi point (a) in Standard Model
of strong and electroweak interactions. Higgs mechanism leads to Dirac mass and
thus to the fully gapped vacuum (b), while CPT violation leads to splitting of Fermi
points (c). In the bottom edge you find the quantum phase transition in the model
in Eq. (20) when the CPT violating parameter b ≡ |b| crosses the Dirac mass M
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Explicit violation or spontaneous breaking of electroweak or CPT sym-
metry transforms the marginal vacuum of the Standard Model into one of
the two topologically-stable vacua. If, for example, the electroweak symme-
try is broken, the marginal Fermi point disappears and the fermions become
massive [Fig. 8(b)]. This is assumed to happen below the symmetry breaking
electroweak transition caused by Higgs mechanism where quarks and charged
leptons acquire the Dirac masses. If, on the other hand, the CPT symmetry
is violated, the marginal Fermi point splits into topologically-stable Fermi
points which protect chiral fermions [Fig. 8(c)]. One can speculate that in the
Standard Model the latter happens with the electrically neutral leptons, the
neutrinos [18,37].

Quantum Phase Transition with Splitting of Fermi Points

Let us consider this scenario on a simple example of a marginal Fermi point
describing a single pair of relativistic chiral fermions, that is, one right-handed
fermion and one left-handed fermion. These are Weyl fermions with Hamilto-
nians Hright = σ · p and Hleft = −σ · p, where σ denotes the triplet of spin
Pauli matrices. Each of these Hamiltonians has a topologically-stable Fermi
point at p = 0. The corresponding inverse Green’s functions are given by

G−1
right(iω,p) = iω − σ · p ,

G−1
left(iω,p) = iω + σ · p . (18)

The positions of the Fermi points coincide, p1 = p2 = 0, but their topological
charges (13) are different. For this simple case, the topological charge equals
the chirality of the fermions, N3 = Ca (i.e., N3 = +1 for the right-handed
fermion and N3 = −1 for the left-handed one). The total topological charge
of the Fermi point at p = 0 is therefore zero.

The splitting of this marginal Fermi point can be described by the Hamil-
tonians Hright = σ · (p− p1) and Hleft = −σ · (p− p2), with p1 = −p2 ≡ b
from momentum conservation. The real vector b is assumed to be odd under
CPT, which introduces CPT violation into the physics. The 4 × 4 matrix of
the combined Green’s function has the form

G−1(iω,p) =
(
iω − σ · (p− b) 0

0 iω + σ · (p + b)

)
. (19)

Equation (13) shows that p1 = b is the Fermi point with topological charge
N3 = +1 and p2 = −b the Fermi point with topological charge N3 = −1.

Let us now consider the more general situation with both the electroweak
and CPT symmetries broken. Due to breaking of the electroweak symmetry
the Hamiltonian acquires the off-diagonal term (mass term) which mixes left
and right fermions
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H =
(

σ · (p− b) M
M −σ · (p + b)

)
. (20)

The energy spectrum of Hamiltonian (20) is

E2
±(p) = M2 + |p|2 + b2 ± 2 b

√
M2 +

(
p · b̂

)2

, (21)

with b̂ ≡ b/|b| and b ≡ |b|.
Allowing for a variable parameter b, one finds a quantum phase transition

at b = M between the fully-gapped vacuum for b < M and the vacuum
with two isolated Fermi points for b > M [Fig. 8(d)]. These Fermi points are
situated at

p1 = +b̂
√
b2 −M2 ,

p2 = −b̂
√
b2 −M2 . (22)

Equation (13), now with a trace over the indices of the 4× 4 Dirac matrices,
shows that the Fermi point at p1 has topological charge N3 = +1 and thus the
right-handed chiral fermions live in the vicinity of this point. Near the Fermi
point at p2 with the charge N3 = −1, the left-handed fermions live. The
magnitude of the splitting of the two Fermi points is given by 2

√
b2 −M2 .

At the quantum phase transition b = M , the Fermi points with opposite
charge annihilate each other and form a marginal Fermi point at p = 0.
The momentum-space topology of this marginal Fermi point is trivial (the
topological invariant N3 = +1− 1 = 0).

Fermi Surface with Global Charge N3 and Quantum Phase
Transition with Transfer of N3

Extension of the model (20) by introducing the time like parameter b0

H =
(

σ · (p− b)− b0 M
M −σ · (p + b) + b0

)
, (23)

demonstrates another type of quantum phase transitions [18] shown in Fig. 9.
At b0 �= 0, Fermi points which exist at b0 = 0, b > M transform to the

closed Fermi surfaces. These Fermi surfaces in addition to the local charge
N1 have the global topological invariant N3 inherited from the original Fermi
points. The global charge N3 is defined by the same Eq. (13), but with a
three-dimensional surface Σa around the whole Fermi surface. On the line of
the quantum phase transition, b2− b20 = M2 (dashed line), two Fermi surfaces
contact each other at the point p = 0. At that moment, the topological charge
N3 is transferred between the Fermi surfaces through the point of the contact.
Above the transition line, the global charges of Fermi surfaces are zero. At the
quantum phase transition at b = M (thick vertical line) these Fermi surfaces
shrink to the points; and since the N3 topology of these points is trivial they
disappear at b < M where the state is fully gapped.
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Fig. 9. Topological quantum phase transitions in the model (23). The vacua at
b0 �= 0 and b > M have Fermi surfaces. At b2 > b2

0 + M2, these Fermi surfaces
have nonzero global topological charges N3 = +1 and N3 = −1. At the quantum
phase transition occurring on the line b0 = 0, b > M (thick horizontal line) the
Fermi surfaces shrink to the Fermi points with nonzero N3. At M2 < b2 < b2

0 + M2

the global topology of the Fermi surfaces is trivial, N3 = 0. At the quantum phase
transition occurring on the line b = M (thick vertical line), the Fermi surfaces shrink
to the points; and since their global topology is trivial the zeroes disappear at b < M
where the vacuum is fully gapped. The quantum phase transition between the Fermi
surfaces with and without topological charge N3 occurs at b2 = b2

0 + M2 (dashed
line). At this transition, the Fermi surfaces touch each other, and their topological
charges annihilate each other

Standard Model with Chiral Fermi Point

In the above consideration we assumed that the Fermi point in the Standard
Model above the electroweak energy scale is marginal, i.e. its total topological
charge is N3 = 0. Since the topology does not protect such a point, everything
depends on symmetry, which is a more subtle issue. In principle, one may
expect that the vacuum is always fully gapped. This is supported by the
Monte-Carlo simulations which suggest that in the Standard Model there is
no second-order phase transition at finite temperature, instead one has either
the first-order electroweak transition or crossover depending on the ratio of
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masses of the Higgs and gauge bosons [38]. This would actually mean that
the fermions are always massive.

Such scenario does not contradict to the momentum-space topology, only
if the total topological charge N3 is zero. However, from the point of view of
the momentum-space topology there is another scheme of the description of
the Standard Model. Let us assume that the Standard Model follows from the
GUT with SO(10) group. In this scheme, the 16 Standard Model fermions
form at high energy the 16-plet of the SO(10) group. All the particles of this
multiplet are left-handed fermions. These are: four left-handed SU(2) doublets
(neutrino-electron and 3 doublets of quarks) + eight left SU(2) singlets of
anti-particles (antineutrino, positron and 6 anti-quarks). The total topological
charge of the Fermi point at p = 0 is N3 = −16, and thus such a vacuum
is topologically stable and is protected against the mass of fermions. This
topological protection works even if the SU(2) × U(1) symmetry is violated
perturbatively, say, due to the mixing of different species of the 16-plet. Mixing
of left leptonic doublet with left singlets (antineutrino and positron) violates
SU(2)×U(1) symmetry, but this does not lead to annihilation of Fermi points
and mass formation since the topological charge N3 is conserved.

We discussed the similar situation in the Sect. 2.3 for the case of the
Fermi surface, and found that if the total topological charge of the Fermi
surfaces is non-zero, the gap cannot appear perturbatively. It can only arise
due to the crucial reconstruction of the fermionic spectrum with effective
doubling of fermions. In the same manner, in the SO(10) GUT model the mass
generation can only occur non-perturbatively. The mixing of the left and right
fermions requires the introduction of the right fermions, and thus the effective
doubling of the number of fermions. The corresponding Gor’kov’s Green’s
function in this case will be the (16× 2)× (16× 2) matrix. The nullification
of the topological charge N3 = −16 occurs exactly in the same manner, as
in superconductors. In the extended (Gor’kov) Green’s function formalism
appropriate below the transition, the topological charge of the original Fermi
point is annihilated by the opposite charge N3 = +16 of the Fermi point of
“holes”(right-handed particles).

This demonstrates that the mechanism of generation of mass of fermions
essentially depends on the momentum space topology. If the Standard Model
originates from the SO(10) group, the vacuum belongs to the universality
class with the topologically non-trivial chiral Fermi point (i.e. with N3 �= 0),
and the smooth crossover to the fully-gapped vacuum is impossible. On the
other hand, if the Standard Model originates from the left-right symmetric
Pati–Salam group such as SU(2)L×SU(2)R×SU(4), and its vacuum has the
topologically trivial (marginal) Fermi point withN3 = 0, the smooth crossover
to the fully-gapped vacuum is possible.
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Chiral Anomaly

Since chiral Fermi points in condensed matter and in Standard Model are
described by the same momentum-space topology, one may expect common
properties. An example of such a common property would be the axial or
chiral anomaly. For quantum anomalies in (3+1)–dimensional systems with
Fermi points and their dimensional reduction to (2+1)–dimensional systems,
see, e.g., Ref. [6] and references therein. In superconducting and superfluid
fermionic systems the chiral anomaly is instrumental for the dynamics of
vortices. In particular, one of the forces acting on continuous vortex-skyrmions
in superfluid 3He-A is the result the anomalous production of the fermionic
charge from the vacuum decsribed by the Adler-Bell-Jackiw equation [39].

4 Fermi Lines

In general the zeroes of co-dimension 2 (nodal lines in 3D momentum space
or point nodes in 2D momentum space) do not have the topological stability.
However, if the Hamiltonian is restricted by some symmetry, the topological
stability of these nodes is possible. The nodal lines do not appear in spin-triplet
superconductors, but they may exist in spin-singlet superconductors [3, 40].
The analysis of topological stability of nodal lines in systems with real fermions
was done by Horava [7].

4.1 Nodes in High-Tc Superconductors

An example of point nodes in 2D momentum space is provided by the layered
quasi-2D high-Tc superconductor. In the simplest form the 2D Bogoliubov–
Nambu Hamiltonian is

H = τ3

(
p2

x + p2
y

2m
− µ

)
+ aτ1(p2

x − λp2
y) . (24)

In case of tetragonal crystal symmetry one has either the pure s-wave state
with λ = −1 (p2

x + p2
y) or the pure d-wave state with λ = +1 (p2

x − p2
y). But

in case of orthorhombic crystal these two states are not distinguishible by
symmetry and thus the general order parameter is represented by the s + d
combination, i.e. in the orthorhombic crystal one always has |λ| �= 1. For
example, experiments in high-Tc cuprate YBa2Cu3O7 suggest that λ ∼ 0.7 in
this compound [41].

At µ > 0 and λ > 0, the energy spectrum contains 4 point nodes in 2D
momentum space (or four Fermi-lines in the 3D momentum space):

pa
x = ±pF

√
λ

1 + λ
, pa

y = ±pF

√
1

1 + λ
, p2

F = 2µm . (25)
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The problem is whether these nodes survive or not if we extend Eq. (24)
to the more general Hamiltonian obeying the same symmetry. The important
property of this Hamiltonian is that, as distinct from the Hamiltonian (11), it
obeys the time reversal symmetry which prohibits the imaginary τ2-term. In
the spin singlet states the Hamiltonian obeying the time reversal symmetry
must satisfy the equation H∗(−p) = H(p). The general form of the 2 × 2
Bogoliubov-Nambu spin-singlet Hamiltonian satisfying this equation can be
expressed in terms of the 2D vector m(p) = (mx(p),my(p)):

H = τ3mx(p) + τ1my(p) . (26)

Using this vector one can construct the integer valued topological invariant –
the contour integral around the point node in 2D momentum space or around
the nodal line in 3D momentum space:

N2 =
1
2π

∮
dl ẑ ·

(
m̂× dm̂

dl

)
, (27)

where m̂ ≡ m/|m|. This is the winding number of the plane vector m(p)
around a vortex line in 3D momentum space or around a point vortex in
2D momentum space. The winding number is robust to any change of the
Hamiltonian respecting the time reversal symmetry, and this is the reason
why the node is stable.

All four nodes in the above example of Eq. (24) are topologically stable,
since nodes with equal signs (++ and −−) have winding number N2 = +1,
while the other two nodes have winding number N2 = −1 [Fig. 10].

4.2 Z2-Lines

Now let us consider the stability of these nodes using the general topological
analysis (the so-called K-theory, see [7]). For the general n× n real matrices
the classification of the topologically stable nodal lines in 3D momentum space
(zeroes of co-dimension 2) is given by the homotopy group π1(GL(n,R)) [7].
It determines classes of mapping of a contour S1 around the nodal line (or
around a point in the 2D momentum space) to the space of non-degenerate
real matrices. The topology of nodes depends on n. If n = 2, the homotopy
group for lines of nodes is π1(GL(2,R)) = Z, it is the group of integers in
Eq. (27) obeying the conventional summation 1 + 1 = 2. However, for larger
n ≥ 3 the homotopy group for lines of nodes is π1(GL(n,R)) = Z2, which
means that the summation law for the nodal lines is now 1 + 1 = 0, i.e. two
nodes with like topological charges annihilate each other. These nodes of co-
dimension 2 are similar to the points of degeneracy of the energy spectrum of
the real-valued Hamiltonian which depends on the external parameters (see
Ref. [29,31,32]).

The equation (24) is the 2×2 Hamiltonian for the complex fermionic field.
But each complex field consists of two real fermionic fields. In terms of the real
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Fig. 10. Quantum phase transition by change of anisotropy parameter λ in Eq.
(24) for superconductors in the d + s state. At λ > 0 the 2D spectrum has 4 nodes:
two with topological charge N2 = +1 (filled circles) and two with topological charge
N2 = −1 (open circles). At λ = 0, points with opposite charges merge forming
two marginal nodes with N2 = 0 (grey circles). The marginal (topologically trivial)
nodes disappear at λ < 0 leaving the fully gapped vacuum

fermions, this Hamiltonian is the 4× 4 matrix and thus all the nodes must be
topologically unstable. What keeps them alive is the time reversal symmetry,
which does not allow to mix real and imaginary components of the complex
field. As a result, the two components are independent; they are described by
the same 2 × 2 Hamiltonian (24); they have zeroes at the same points; and
these zeroes are described by the same topological invariants.

If we allow mixing between real and imaginary components of the spinor
by introducing the imaginary perturbation to the Hamiltonian, such as Mτ2,
the summation law 1 + 1 = 0 leads to immediate annihilation of the zeroes
situated at the same points. As a result the spectrum becomes fully gapped:

E2(p) =

(
p2

x + p2
y

2m
− µ

)2

+ a2(p2
x − λp2

y)2 +M2 . (28)

Thus to destroy the nodes of co-dimension 2 occurring for 2×2 real-valued
Hamiltonian (24) describing complex fermions it is enough to violate the time
reversal symmetry.

How to destroy the nodes if the time reversal symmetry is obeyed which
prohibits mixing? One possibility is to deform the order parameter in such a
way that the nodes with opposite N2 merge and then annihilate each other
forming the fully gapped state. In this case, at the border between the state
with nodes and the fully gapped state the quantum phase transition occurs
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(see Sect. 4.5). This type of quantum phase transition which involves zeroes
of co-dimension 2 was also discussed in Ref. [24].

Another possibility is to increase the dimension of the matrix from 2 × 2
to 4× 4. Let us consider this case.

4.3 Gap Induced by Interaction Between Layers

High-Tc superconductors typically have several superconducting cuprate lay-
ers per period of the lattice, that is why the consideration of two layers which
are described by 4 × 4 real Hamiltonians is well justified. Let us start again
with 2 × 2 real matrix H, and choose for simplicity the easiest form for the
vector m(p). For m(p) = p = (px, py) the Hamiltonian is

H = τ3px + τ1py . (29)

The node which we are interested in is at px = py = 0 and has the topological
charge (winding number) N2 = 1 in Eq. (27). The Dirac-type Hamiltonian
(29) and the corresponding nodes of co-dimension 2 are relevant for electrons
leaving in the 2D carbon sheet known as graphene [42–45].

Let us now introduce two bands or layers whose Hamiltonians have oppo-
site signs:

H11 = τ3px + τ1py , H22 = −τ3px − τ1py , (30)

Each Hamiltonian has a node at px = py = 0. In spite of the different signs
of the Hamiltonian, the nodes have same winding number N2 = 1: in the
second band one has m2(p) = −m1(p), but N2(m) = N2(−m) according to
Eq. (27).

The Hamiltonians (29) and (30) can be now combined in the 4 × 4 real
Hamiltonian:

H = σ3(τ3px + τ1py) , (31)

where σ matrices operate in the 2-band space. The Hamiltonian (31) has
two nodes: one is for projection σ3 = 1 and another one – for the projection
σ3 = −1. Their positions in momentum space and their topological charges
coincide. Let us now add the term with σ1, which mixes the two bands without
violation of the time reversal symmetry:

H = σ3(τ3px + τ1py) + σ1m . (32)

The spectrum becomes fully gapped, E2 = p2 + m2, i.e. the two nodes an-
nililate each other. Since the nodes have the same winding number N2, this
means that the summation law for these nodes is 1+1 = 0. Thus the zeroes of
co-dimension 2 (nodal points in 2D systems or the nodal lines in the 3D sys-
tems) which appear in the 4× 4 (and higher) real Hamiltonians are described
by the Z2-group. The discussion of the Z2 nodes in high-Tc materials, polar
state in p-wave pairing and mixed singlet-triplet superconducting states can
be found in Ref. [46].
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The above example demonstrated how in the two band systems (or in the
double layer systems) the interaction between the bands (layers) induces the
annihilation of likewise nodes and formation of the fully gapped state. Exper-
iments on the graphite film with two graphene layers demonstrate that the
spectrum of quasiparticles is essentially different from that in a single carbon
sheet [44]. From the detailed calculations [45] it follows that the gap in the
spectrum emerges in the graphite bilayer at the neutrality point, illustrating
the rule 1 + 1 = 0 for the Z2 nodes of co-dimension 2.

Applying this to the high-Tc materials with 2, 3 or 4 cuprate layers per
period, one concludes that the interaction between the layers can in principle
induce a small gap even in a pure d-wave state. However, this does not mean
that such destruction of the Fermi lines necessarily occurs. The interaction
between the bands (layers) can lead to splitting of nodes, which then will
occupy different positions in momentum space and thus cannot annihilate (this
splitting of nodes has been observed in the bilayer cuprate Bi2Sr2CaCu2O8+δ

[47]). Which of the two scenarios occurs – gap formation or splitting of nodes –
depends on the parameters of the system. Changing these parameters one
can produce the topological quantum phase transition from the fully gapped
vacuum state to the vacuum state with pairs of nodes, as we discussed for the
case of nodes with co-dimension 3 in Sect. 3.

4.4 Reentrant Violation of “Special Relativity”
in Bilayer Graphene

There still can be some discrete symmetry which forbids the annihilation
of nodes of co-dimension 2, say, the symmetry between the two layers which
forbids the rule 1+1 = 0. For example, if the Hamiltonian still anti-commutes
with some matrix, say, with τ2-matrix, there is a generalization of the integer
valued invariant in Eq. (27) to the 2n× 2n real Hamiltonian (see also [24]):

N2 = − 1
4πi

tr
∮
dl τ2H

−1∇lH . (33)

Since the summation law for this N2 charge is 1 + 1 = 2, the nodes with
N2 = 1 present at each layer do not annihilate each other if the interaction
term preserves the symmetry. In this case the spectrum of the bilayer system
remains gapless.

Let us now consider the gapless spectrum in such bilayer material. We start
again with the Hamiltonian in Eq. (31), which describes gapless Dirac qua-
siparticles living in two independent layers, and add the interaction between
them which does not violate the τ2-symmetry:

H = σ3(τ3px + τ1py) +m(τ1σ1 − τ3σ2) . (34)

The energy spectrum becomes
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E+ = ±
(√

m2 + p2 +m
)
, E− = ±

(√
m2 + p2 −m

)
. (35)

Without interaction, i.e. at m = 0, the quasiparticles represent two Dirac
fermions with the topological charges N2 = 1 each. Since the Hamiltonian
(34) anti-commutes with the τ2-matrix, the total topological charge N2 must
be conserved even at m �= 0. Thus the total charge for quasiparticles must be
N2 = 2. However it is now distributed between the branches of quasiparticle
spectrum in the following manner. For m > 0, the quasiparticles with energy
E+ acquire the trivial topological charge N2 = 0, that is why their spectrum
becomes fully gapped: E+(p 
 m) ≈ ±2m. The quasiparticles with energy
E− have the rest nonzero topological charge N2 = 2, and thus they must
be gapless. The energy spectrum of these gapless fermions with N2 = 2 is
exotic: at p
 m the spectrum becomes that of classical particles with positive
and negative masses, E− ≈ ±p2/2m; in the region p � m it is relativistic
E ≈ ±p; and finally the relativistic invariance is violated again at high p of
order of inverse inter-atomic distance. When the parameter m crosses zero,
the quantum phase transition occurs.

It is important that the exotic branch with N2 = 2 contains only single
fermionic species, i.e. it cannot split into two fermions with N2 = 1 each.
That is why the quadratic law for the spectrum of exotic fermions is generic,
provided that the proper symmetry of the Hamiltonian is obeyed. The same
spectrum (35) takes place for quasiparticles in the carbon film consisting of
two graphene sheets: it occurs in some range of parameters of the system
where terms in the Hamiltonian, which violate the τ2-symmetry and induce
the gap in the spectrum, are small and can be neglected [45]. Exotic fermions
with parabolic spectrum lead to the unconventional quantum Hall effect [45],
which has been observed in the bilayer graphene [44].

All this shows that the stability of and the summation law for the nodal
lines depend on the type of discrete symmetry which protects the topological
stability. The integer valued topological invariants protected by discrete or
continuous symmetry were discussed in Chap. 12 of the book [6].

If the symmetry is obeyed we have the following situation. Fermions with
the elementary topological charge, N2 = ±1, are necessarily relativistic in
the low-energy corner, according to the Atiyah-Bott-Shapiro construction.
However, even a very small interaction between two species with N2 = +1
each may produce the exotic fermions, which are classical. In this scenario
the Lorentz invariance is violated both at very high and at very low energies,
therefore the term “reentrant violation of special relativity’.

Similar reentrant violation of Lorentz invariance in the 3D vacua may oc-
cur for the Fermi points of co-dimension 3 described by the topological charge
N3 [6,48]. Let us suppose that the Standard Model is an effective theory, and
that the right-handed neutrinos are absent in this theory. The left-handed neu-
trino, which has N3 = −1, is necessarily massless. Its spectrum is necessarily
relativistic in the low-energy corner, and thus the Lorentz invariance emerges
at low energies. Now let us consider two flavors of the left-handed neutrino
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– electron and muon neutrinos with N3 = −1 each. Since the theory is ef-
fective, mixing between the flavors is not prohibited, though it is very small.
The mixing may lead to the formation of the exotic non-relativistic neutrino
with N3 = −2 and the massive neutrino with N3 = 0. In the particular model
discussed in Refs. [6, 48], the corresponding spectrum of two neutrino flavors
is

E2
± = p2

z +
(√

m2 + p2
x + p2

y ±m
)2

. (36)

At pz = 0, this 3D spectrum transforms to the 2D spectrum in Eq. (35). The
magnitude m of the splitting of the neutrino spectrum has been discussed in
Ref. [49].

4.5 Quantum Phase Transition in High-Tc Superconductor

Let us return to the 2× 2 real Hamiltonian (24) and consider what happens
with gap nodes when one changes the asymmetry parameter λ. When λ crosses
zero there is a quantum phase transition at which nodes in the spectrum
annihilate each other and then the fully gapped spectrum develops [Fig. 10].
Note that there is no symmetry change across the phase transtion.

The similar quantum phase transition from gapless to gapped state without
change of symmetry also occurs when µ crosses zero. This scenario can be
realized in the BEC–BCS crossover region, see [21–23].

The presence of the gap nodes in high-Tc superconductors is indicated
by the measurement of the field dependence of electronic specific heat C at
low temperatures. If the superconducting state is fully gapped, then C ∝ H;
while if there are point nodes in 2D momentum space then the heat capac-
ity is nonlnear, C ∝

√
H [50]. An unusual behavior of C in high-Tc cuprate

Pr2−xCexCuO4−δ has been reported in Ref. [51]. It was found that the field
dependence of electronic specific heat is linear at T = 2 K, and non-linear at
T ≥ 3K. If so, this behavior could be identified with the quantum phase transi-
tion from gapped to gapless state, which is smeared due to finite temperature.
However, the more accurate measurements have not confirmed the change of
the regime: the nonlinear behavior C ∝

√
H continues below T = 2 K [52].

5 Topological Transitions in Fully Gapped Systems

5.1 Skyrmion in 2-Dimensional Momentum Space

The fully gapped ground states (vacua) in 2D systems or in quasi-2D thin
films, though they do not have zeroes in the energy spectrum, can also be
topologically non-trivial. They are characterized by the invariant which is
the dimensional reduction of the topological invariant for the Fermi point in
Eq. (13) [53,54]:
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Ñ3 =
1

24π2
eµνλ tr

∫
d2pdω G∂pµ

G−1G∂pν
G−1G∂pλ

G−1 . (37)

For the fully gapped vacuum, there is no singularity in the Green’s function,
and thus the integral over the entire 3-momentum space pµ = (ω, px, py) is well
determined. If a crystalline system is considered the integration over (px, py)
is bounded by the Brillouin zone.

An example is provided by the 2D version of the Hamiltonian (11) with
l̂ = ẑ, ê1 = x̂, ê2 = ŷ. Since for 2D case one has p2 = p2

x+p2
y, the quasiparticle

energy (12)

E2(p) =

(
p2

x + p2
y

2m
− µ

)2

+ c2(p2
x + p2

y) (38)

is nowhere zero except for µ = 0. The Hamiltonian (11) can be written in
terms of the three-dimensional vector g(px, py):

H = τigi(p) , g3 =
p2

x + p2
y

2m
− µ , g1 = cpx , g2 = −cpy . (39)

For µ > 0 the distribution of the unit vector ĝ(px, py) = g/|g| in the mo-
mentum space has the same structure as the skyrmion in real space (see
Fig. 11). The topological invariant for this momentum-space skyrmion is given
by Eq. (37) which can be rewritten in terms of the unit vector ĝ(px, py):

Ñ3 =
1
4π

∫
dpxdpy ĝ ·

(
∂ĝ
∂px

× ∂ĝ
∂py

)
. (40)

Since at infinity the unit vector field ĝ has the same value, ĝp→∞ → (0, 0, 1),
the 2-momentum space (px, py) becomes isomoprhic to the compact S2 sphere.
The function ĝ(p) realizes the mapping of this S2 sphere to the S2 sphere of
the unit vector ĝ with winding number Ñ3. For µ > 0 one has Ñ3 = −1 and
for µ < 0 one has Ñ3 = 0.

g (px,py)
py

px

Fig. 11. Skyrmion in p-space with momentum space topological charge Ñ3 = −1.
It describes topologically non-trivial vacua in 2+1 systems with a fully non-singular
Green’s function
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5.2 Quantization of Physical Parameters

The topological charge Ñ3 and other similar topological charges in 2 + 1 sys-
tems give rise to quantization parameters. In particular, they are responsible
for quantization of Hall and spin-Hall conductivities, which occurs without
applied magnetic field (the so-called intrinsic or anomalous quantum Hall
and spin quantum Hall effects). There are actually 4 responses of currents to
transverse forces which are quantized under appropriate conditions. These are:
(i) quantized response of the mass current (or electric current in electrically
charged systems) to transverse gradient of chemical potential ∇µ (transverse
electric field E); (ii) quantized response of the mass current (electric current)
to transverse gradient of magnetic field interacting with Pauli spins; (iii) quan-
tized response of the spin current to transverse gradient of magnetic field; and
(iv) quantized response of the spin current to transverse gradient of chemical
potential (transverse electric field) [55].

Chern–Simons Term and p-Space Topology

All these responses can be described using the generalized Chern–Simons term
which mixes different gauge fields (see Eq. (21.20) in [6]):

FCS{A} =
1

16π
NIJeµνλ

∫
d2xdtAI

µF
J
νλ . (41)

Here AI
µ is the set of the real or auxiliary (fictituous) gauge fields. In elec-

trically neutral systems, instead of the gauge field Aµ one introduces the
auxiliary U(1) field, so that the current is given by variation of the action
with respect to Aµ: δS/δAµ = Jµ. The auxiliary SU(2) gauge field Ai

µ is
convenient for the description of the spin-Hall effect, since the variation of
the action with respect to Aa

µ gives the spin current: δS/δAi
µ = Jµ

i . Some
components of the field Aµa are physical, being represented by the real phys-
ical quantities which couple to the fermionic charges. Example is provided by
the external magnetic field in neutral system, which play the role of Ai

0 (see
Sect. 21.2 in Ref. [6]). After the current is calculated the values of the aux-
iliary fields are fixed. The latest discussion of the mixed Chern–Simons term
can be found in Ref. [56]. For the related phenomenon of axial anomaly, the
mixed action in terms of different (real and fictituous) gauge fields has been
introduced in Ref. [57].

The important fact is that the matrix NIJ of the prefactors in the Chern–
Simons action is expressed in terms of the momentum-space topological in-
variants:

NIJ =
1

24π2
eµνλ tr QIQJ

∫
d2pdω G∂pµ

G−1G∂pν
G−1G∂pλ

G−1 , (42)

where QI is the fermionic charge interacting with the gauge field AI
µ (in case

of several fermionic species, QI is a matrix in the space of species).
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Intrinsic Spin Quantum Hall Effect

To obtain, for example, the response of the spin current J i
z to the electric

field Ei, one must consider two fermionic charges: the electric charge Q1 = e
interacting with U(1) gauge field, and the spin along z as another charge,Q2 =
sz = �σz/2, which interacts with the fictituous SU(2) field Az

µ. This gives the
quantized spin current response to the electric field J i

z = eijσspin−HallEj ,
where σspin−Hall = (e�/8π)N and N is integer:

N =
1

24π2
eµνλ tr σz

∫
d2pdω G∂pµ

G−1G∂pν
G−1G∂pλ

G−1 . (43)

Quantization of the spin-Hall conductivity in the commensurate lattice of
vortices can be found in Ref. [58].

The above consideration is applicable, when the momentum (or quasi-
momentum in solids) is the well defined quantity, otherwise (for example, in
the presence of impurities) one cannot construct the invariant in terms of the
Green’s function G(p, ω). However, it is not excluded that in some cases the
perturbative introduction of impurities does not change the prefactor NIJ in
the Chern–Simons term (41) and thus does not influence the quantization:
this occurs if there is no spectral flow under the adiabatic introduction of im-
purities. In this case the quantization is determined by the reference system –
the fully gapped system from which the considered system can be obtained
by the continuous deformation without the spectral flow (analogueous phe-
nomenon for the angular momentum paradox in 3He-A was discussed in [59]).
The most recent review paper on the spin current can be found in [60].

Momentum Space Topology and Hall Effect in 3D Systems

The momentum space topology is also important for the Hall effect in some
3+1 systems. The contribution of Fermi points to the intrinsic Hall effect is
discussed in the Appendix of Ref. [18]. For metals with Fermi surfaces having
the global topological charge N3 (see Sect. 3.3) the anomalous Hall effect
is caused by the Berry curvature on the Fermi surface [61]. The magnitude
of the Hall conductivity is related to the volume of the Fermi surface in a
similar way as the number of particles and the volume of the Fermi surface are
connected by the Luttinger theorem [61]. Another “partner” of the Luttinger
theorem emerges for the Hall effect in superconductors, where topology enters
via the spectral flow of fermion zero modes in the cores of topological defects –
Abrikosov vortices [62].

5.3 Quantum Phase Transitions

Plateau Transitions

The integer topological invariant Ñ3 of the ground state cannot follow the
continuous parameters of the system. That is why when one changes such a
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film thickness

skyrmion
is  fermion

skyrmion
is  fermion

skyrmion
is  boson

quantum phase transitions

N3
~

N3 = 2 
~

N3 = 4 
~

N3 = 6 
~

q

qc1 qc2 qc3

Fig. 12. Quantum phase transitions occurring when one increases the thickness q of
the 3He-A film. The transitions at q = qc2 and q = qc3 are plateau-plateau transitions
between vacua with different values of integer topological invariant Ñ3 in Eq. (37).
At these transitions the quantum statistics of real-space skyrmions living in thin
films changes. The change in the quasiparticle spectrum across the transitions may
be seen from the minimum value of the quasiparticle energy, minpE(p), at given q
(thick lines). The transitions at q = qc2 and q = qc3 between the fully gapped states
occur through the gapless states. At q = qc1 the transition is between gapless and
fully gapped states

parameter, for example, the chemical potential in the model (39), one obtains
the quantum phase transition at µ = 0 at which Ñ3 jumps from 0 to −1. The
film thickness is another relevant parameter. In the film with finite thickness
the matrix of Green’s function acquires indices of the levels of transverse quan-
tization. If one increases the thickness of the film, one finds a set of quantum
phase transitions between vacua with different integer values of the invariant
[Fig. 12], and thus between the plateaus in Hall or spin-Hall conductivity.

The abrupt change of the topological charge cannot occur adiabatically,
that is why at the points of quantum transitions fermionic quasiparticles be-
come gapless.

Topological Zero Modes and Edge States

If two vacua with different Ñ3 coexist in space [Fig. 13(a)], the phase bound-
ary between them must also contain gapless fermions. This is an example of
the so-called fermion zero modes living on different topological objects such
as 3D monopole, 2D soliton wall, and 1D vortex/string (see Ref. [63] and
references therein). The number of the gapless fermion zero modes obeys the
index theorem: in our case the number of the 1 + 1 fermions living at the
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Fig. 13. (a) Domain wall between two 2+1 vacua with different topological charges
Ñ3. (b) Structure of the phase boundary between vacua with charges Ñ3 = ±1
in Eq. (44). The prefactor in front of py changes sign at x = 0, which leads to
the change of sign of the topological charge in Eq. (37). (c) Fermion zero modes –
anomalous branches of fermions living at the interface whose spectrum crosses zero
energy level. The number of anomalous branches is determined by the difference of
the topological charges Ñ3 across the wall

phase boundary is determined by the difference of the topological charges of
the two vacua, Ñ (1)

3 − Ñ
(2)
3 (see Chap. 22 in Ref. [6]).

The boundary of the condensed matter system can be considered as the
phase boundary between the state with nonzero Ñ3 and the state with Ñ3 = 0.
The corresponding fermion zero modes are the edge states well known in
physics of the QHE.

Example of the phase boundary between two vacua with Ñ3 = ±1 is shown
in Fig. 13(b) for the px + ipy superfluids and superconductors. Here the py

component of the order parameter changes sign across the wall. The simplest
structure of such boundary is given by Hamiltonian

H =


 p2

2m − µ c
(
px + ipy tanh x

ξ

)
c
(
px − ipy tanh x

ξ

)
− p2

2m + µ


 . (44)

Let us first consider fermions in semiclassical approach, when the coordinates
x and px are independent. At x = 0 the time reversal symmetry is restored,
and the spectrum becomes gapless. At x = 0 there are two zeroes of co-
dimension 2 at points px = 0 and py = ±pF . They are similar to zeroes
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discussed in Sect. 4.2. These zeroes are marginal, and disappear at x �= 0
where the time reversal symmetry is violated. The topological charge is well
defined only at x �= 0. When x crosses zero, the topological charge in Eq. (37)
changes sign.

In the quantum mechanical description, x and px do not commute. The
quantum-mechanical spectrum E(py) contains fermion zero modes – branches
of spectrum which cross zero. According to the index theorem there are two
anomalous branches in Fig. 13(c).

The index theorem together with the connection between the topological
charge and quantization of physical parameters discussed in Sect. 5.2 implies
that the quantization of Hall and/or spin-Hall conductance is determined
by the number of edge states in accordance with Refs. [64]. The detailed
discussion of the edge modes in px + ipy superfluids and superconductors and
their contribution to the effective action can be found in Ref. [65]. These edge
modes are Majorana fermions.

“Higgs” Transition in p-Space

Note that the energy spectrum in Eq. (38) experiences an analogue of the
Higgs phase transition at µ = mc2 [Fig. 14]: if µ < mc2 the quasiparticle
energy has a single minimum at p = 0, while at µ > mc2 the minimum is
at the circumference with radius p0 =

√
2m(µ−mc2). There is no symmetry

breaking at this transition, since the vacuum state has the same rotational

  

E

spectrum at  µ < mc2 
single minimum

spectrum at  µ  > mc2 
Mexican Hat

Fig. 14. “Higgs” transition in momentum space.
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symmetry above and below the transition, while the asymptotic behavior of
the thermodynamic quantities (∝ Tn exp (−Emin/T )) experiences discontinu-
ity across the transition: the power n changes. That is why the point µ = mc2

marks the quantum phase transition, at which the topology of the minima of
the energy spectrum changes.

However, this transition does not belong to the class of transitions which
we discuss in the present review, since the topological invariant of the ground
state Ñ3 does not change across this transition and thus at the transition point
µ = mc2 the spectrum remains fully gapped. Moreover, such a transition does
not depend on dimension of space-time and occurs in 3+1 systems as well.
Example is provided by the s-wave superconductor or s-wave Fermi superfluid,
whose spectrum in Eq. (5) experiences the same Higgs-like transition at µ = 0,
i.e. in the BSC–BEC crossover region.

5.4 Quantum Phase Transition in 1D Quantum Ising Model

The momentum-space topology is applicable not only to fermionic systems,
but to any system which can be expressed in terms of auxiliary fermions.

Fermionization and Topological Invariant

Example is provided by the 1-dimensional quantum Ising model where the
topological quantum phase transition between the fully gapped vacua can be
described in terms of the invariants for the fermionic Green’s function. The
original Hamiltonian of this 1D chain of spins is:

H = −J
N∑

n=1

(
hσx

n + σz
nσ

z
n+1

)
, (45)

where σx and σz are Pauli matrices, and h is the parameter describing the
external magnetic field. After the standard Jordan-Wigner transformation
this system can be represented in terms of the non-interacting fermions with
the following Hamiltonian in the continuous N → ∞ limit (see Ref. [66] and
references therein):

H = 2J (h− cos(pa)) τ3 + 2J sin(pa)τ1 , − π

a
< p <

π

a
. (46)

It is periodic in the one-dimensional momentum space p with period 2π/a
where a is the lattice spacing. The integer valued topological invariant here
is the same as in Eq. (33) but now the integration is along the closed path in
p-space, i.e. from 0 to 2π/a:

Ñ2 = − 1
4πi

tr
∮
dp τ2H

−1∇pH . (47)

This invariant can be represented in terms of the Green’s function
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G−1 = igz − gxτ3 + gyτ1 , (48)

where for the particular case of the model (46), the components of the 3D
vector g(p, ω) are:

gx(p, ω) = 2J (h− cos(pa)) , gy(p, ω) = 2J sin(pa) , gz(p, ω) = ω . (49)

Then the invariant (47) becomes:

Ñ2 =
1
4π

∫ π/a

−π/a

dp

∫ ∞

−∞
dω ĝ ·

(
∂ĝ
∂p
× ∂ĝ
∂ω

)
. (50)

The invariant is well defined for the fully gapped states, when g �= 0 and thus
the unit vector ĝ = g/|g| has no singularity. In the model under discussion,
one has for h �= 1:

Ñ2(h < 1) = 1 , Ñ2(h > 1) = 0 . (51)

Instanton in (p, ω)-Space

The state with Ñ2 = 1 is the “instanton” in the (ω, p)-space, which is similar
to the skyrmion in (px, py)-space in Fig. 11. The real space-time counterpart
of such instanton can be found in Refs. [67]. It describes the periodic phase
slip process occurring in superfluid 3He-A [68]. In the model, the topolog-
ical structure of the instanton at h < 1 can be easily revealed for h = 0.
Introducing “space-time” coordinates t = p and z = ω/2J one obtains that
the unit vector ĝ precesses sweeping the whole unit sphere during one period
∆t = 2π/a [Fig. 15]:

ĝ(z, t) = ẑ cos θ(z) + sin θ(z) (x̂ cos(at) + ŷ sin(at)) , cot θ(z) = z . (52)

This state can be referred to as “ferromagnetic”, since in terms of spins it is
the quantum superposition of two ferromagnetic states with opposite magne-
tization.

At h > 1, i.e. in the “paramagnetic”phase, the momentum-space topology
is trivial, Ñ2(h > 1) = 0. The transition at h = 1 at which the topological
charge Ñ2 of the ground state changes is the quantum phase transition, it
only occurs at T = 0.

Phase Diagram for Anisotropic XY-Chain

The phase diagram for the extension of the Ising model to the case of the
anisotropic XY spin chain in a magnetic field with Hamiltonian (see e.g. [69])

H = −J
N∑

n=1

(
hσx

n +
1 + γ

2
σz

nσ
z
n+1 +

1− γ

2
σy

nσ
y
n+1

)
, (53)

is shown in Fig. 16 in terms of the topological charge Ñ2. The lines h = 1,
h = −1 and (γ = 0, −1 < h < 1), which separate regions with different Ñ2,
are lines of quantum phase transitions.
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Fig. 15. (a) Illustration of the topological invariant Ñ2 = 1 for “instanton”in
momentum space for h = 0. According to Eq. (52) one has the domain wall in
z = ω/2J space across which the direction of the vector g changes from ẑ at z = ∞
to −ẑ at at z = −∞. The structure is periodic in p and thus is precessing in
“time” t = p (black arrows). During one period of precession ∆t = 2π/a the unit
vector ĝ(t, z) sweeps the whole unit sphere giving Ñ2 = 1 in Eq. (50). (b) At the
transition point hc = 1 the gap in the energy spectrum of fermions vanishes, because
the transition between two vacuua with different topological charge cannot occur
adiabatically

N2 = 1 
~

N2 = −1 
~

γ

N2 = 0 
~

N2 = 0 
~

h

0

1 

−1 

Fig. 16. Phase diagram for anisotropic XY-chain in Eq. (53) in the plane (γ, h). The
regions with different topological charge Ñ2 are separated by the lines of topological
quantum phase transitions (thick lines)

ĝ

gapN2 = 1 
~

gap, N2
~

N2 = 0 
~ h

hc = 1 
(a) (b)
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Nullification of Gap at Quantum Transition

Because of the jump in Ñ2 [Fig. 15(b)], the transition cannot occur adi-
abatically. That is why the energy gap must tend to zero at the tran-
sition, in the same way as it occurs at the plateau-plateau transition in
Fig. 12. In the Ising model, the energy spectrum E2(p) = g2

x(p) + g2
y(p) =

4J2
(
(h− cos(pa))2 + sin2(pa)

)
has a gap E(0) = 2J |h − 1| which tends to

zero at h→ 1 [Fig. 15 (b)]. However, the nullification of the gap at the topo-
logical transition between the fully gapped states with different topological
charges is the general property, which does not depend on the details of the
underlying spin system and is robust to interaction between the auxiliary
fermions.

The special case, when the gap does not vanish at the transition because
the momentum space is not compact, is discussed in Sect. 11.4 of [6].

Dynamics of Quantum Phase Transition and Superposition
of Macroscopic States

In the quantum Ising model of Eq. (45) the ground state at h < 1 repre-
sents the quantum superposition of two ferromagnetic states with opposite
magnetization. However, in the limit of infinite number of spins N →∞ this
becomes the Schrödinger’s Cat – the superposition of two macroscopically
different states. According to Ref. [70] such superposition cannot be resolved
by any measurements, because in the limit N →∞ no observable has matrix
elements between the two ferromagnetic states, which are therefore disjoint.
In general, the disjoint states form the equivalence classes emerging in the
limit of infinite volume or infinite number of elements.

Another property of the disjoint macroscopic states is that their superpo-
sition, even if it is the ground state of the Hamiltonian, can never be achieved.
For example, let us try to obtain the superposition of the two ferromagnetic
states at h < 1 starting from the paramagnetic ground state at h > 1 and
slowly crossing the critical point h = 1 of the quantum phase transition. The
dynamics of the time-dependent quantum phase transition in this model has
been discussed in Refs. [66, 71]. It is characterized by the transition time τQ
which shows how fast the transition point is crossed: 1/τQ = ḣ|h=1 . One may
expect that if the transition occurs adiabatically, i.e. in the limit τQ → ∞,
the ground state at h > 1 transforms to the ground state at h < 1. However,
in the limit N → ∞ the adiabatic condition cannot be satisfied. If τQ → ∞
but τQ 
 N2/J , the transition becomes non-adiabatic and the level crossing
occurs with probability 1. Instead of the ground state at h < 1 one obtains
the excited state, which represents two (or several) ferromagnetic domains
separated by the domain wall(s). Thus in the N = ∞ system instead of the
quantum superposition of the two ferromagnetic states the classical coexis-
tence of the two ferromagnetic states is realized.
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In the obtained excited state the translational and time reversal symme-
tries are broken. This example of spontaneous symmetry breaking occurring
at T = 0 demonstrates the general phenomenon that in the limit of the infi-
nite system one can never reach the superposition of macroscopically differ-
ent states. On the connection between the process of spontaneous symmetry
breaking and the measurement process in quantum mechanics see Ref. [72]
and references therein. Both processes are emergent phenomena occurring in
the limit of infinite volume V of the whole system. In finite systems the quan-
tum mechanics is reversible. For general discussion of the symmetry breaking
phase transition in terms of the disjoint limit Gibbs distributions emerging at
V →∞ see the book by Sinai [73].

6 Conclusion

Here we discussed the quantum phase transitions which occur between the
vacuum states with the same symmetry above and below the transition. Such
a transition is essentially different from conventional phase transition which
is accompanied by the symmetry breaking. The discussed zero temperature
phase transition is not the termination point of the line of the conventional
2-nd order phase transition: it is either an isolated point (qc, 0) in the (q, T )
plane, or the termination line of the 1-st order transition. This transition is
purely topological – it is accompanied by the change of the topology of fermi-
onic Green’s function in p-space without change in the vacuum symmetry.
The p-space topology, in turn, depends on the symmetry of the system. The
interplay between symmetry and topology leads to variety of vacuum states
and thus to variety of emergent physical laws at low energy, and to variety
of possible quantum phase transitions. The more interesting situations are
expected for spatially inhomogeneous systems, say for systems with topolog-
ical defects in r-space, where the p-space topology, the r-space topology, and
symmetry are combined (see Refs. [7, 74] and Chap. 23 in [6]).
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1 Introduction

In spite of the progress in the science during the last hundred years, mankind,
in principle, does not know the exact answers to the fundamental questions
related to the beginning and the evolution of the Universe (or properties of
the quantum vacuum - ether) and mass. Theoretical models of the Universe’s
evolution from the Big Bang up to present day are supported e.g. by the dis-
covery of cosmic microwave background and by the latest astronomical and
astrophysical observations. However, due to the impossibility to realize a con-
trolled cosmological experiment, mankind can only act as a passive observer of
the stage of a theater called the Universe. This impossibility leads theoretical
and experimental physicists to look for the analogues between the physical
processes studied in cosmology with similar processes of condensed matter
physics which can be studied experimentally. It is obvious that there are not
one to one analogues, however, the possibility of the study of these processes
experimentally under various controlled conditions has obvious advantages.
Moreover, almost all properties of condensed matter are known from first
principles and nearly all of them were verified experimentally.

During its evolution, the Universe has passed through several phase transi-
tions at which the symmetry of its states had been spontaneously broken as in-
dividual interactions were separated or formed. Forgetting about, the so called
Planck scale at energies of 1019 GeV, at very high energy, the Grand Unifi-
cation Theory (GUT) suggests an initial group of symmetry SO(10) which
unifies the strong, weak and hypercharge interactions. The phase transitions
which followed at various energies reduced a degree of this symmetry. At ener-
gies about 1015 GeV, the symmetry group SO(10) was spontaneously broken
into subgroups of the Standard model: SU(3) × SU(2) × U(1) corresponding
to the separate symmetry for each of three interactions: electro-weak, strong
and electromagnetic. At an energy of 200 GeV the electro-weak interaction
was formed and the symmetry U(1)× SU(2) was broken. What has been left
- we are today - electromagnetic and strong interactions U(1)× SU(3). In the
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framework of the GUT, the Universe starting from the state with symmetry
SU(10) passed through several phase transitions: SU(10)→ SU(3) × SU(2) ×
U(1)→ SU(3)×U(1), simultaneously the energy and symmetries were reduced
as well [1].

The idea to use condensed matter to study analogues of the physical
processes studied in cosmology is very simple in principle: a symmetry of
low energy state is a relic of the symmetry of a higher energy state, both
separated from each other by a phase transition. In general, at higher temper-
atures condensed matter occupies an energy state having a higher symmetry.
Then, when condensed matter is cooled down, it undergoes a phase transition
which reduces its symmetry. A question which we may ask here is whether
we can find condensed matter system which can pass through phase transi-
tions and violate as many symmetries as possible to be an analogue of the
predictions mentioned above? It seems that there are few good candidates of
condensed matter systems. One of the best candidates for such analogues is
the superfluid phases of 3He (for comprehensive overview see [1, 2]).

In fact, about ten years ago experiments at Lancaster University showed
that using neutron irradiation one can overheat small regions of superfluid
3He-B above the temperature of superfluid transition [3]. Consecutive ex-
periments performed by the Grenoble and the Helsinki groups demonstrated
that the subsequent rapid cooling of such localized heated regions back into
the superfluid state are accompanied by the creation of vortices - topologi-
cal defects [4,5]. These defects, however, can be regarded as analogues of the
cosmological defects formed during the early evolution of the Universe as pre-
dicted by a Kibble-Zurek model [6, 7]. Thus, these experiments gave the first
quantitative tests of the cosmological Kibble-Zurek model.

Therefore, in the context of the above discussion, the superfluid helium-3
research provides a wider means for offering the possibility of experimental
investigations of quantum field/cosmological theories via analogues with the
superfluid phases of 3He. To show why the superfluid 3He phases are a good
model system to study the cosmological analogues, first it is necessary to de-
scribe its basic properties. Basic theory of the superfluid 3He had been devel-
oped by A. Leggett [8] and for a comprehensive theoretical and experimental
3He overview see [9] and [10], respectively.

2 Basic Properties of the Superfluid 3He

At higher temperatures 3He is a gas, while below temperature of 3K - due
to van der Walls forces – 3He is a normal liquid with all symmetries which
a condensed matter system can have: translation, gauge symmetry U(1) and
two SO(3) symmetries for the spin (SOS(3)) and orbital (SOL(3)) rotations.
At temperatures below 100 mK, 3He behaves as a strongly interacting Fermi
liquid. Its physical properties are well described by Landau’s theory. Quasi-
particles of the 3He (i.e. 3He atoms “dressed” into mutual interactions) have
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spin equal to 1/2 and similar to the electrons, they can create Cooper pairs
as well. However, different from electrons in a metal, 3He is a liquid without a
lattice and the electron-phonon interaction, responsible for superconductivity,
can not be applied here. As the 3He quasiparticles have spin, the magnetic
interaction between spins rises up when the temperature falls down until, at a
certain temperature, Cooper pairs are created - the coupled pairs of 3He quasi-
particles - and the normal 3He liquid becomes a superfluid. The Cooper pairs
produce a superfluid component and the rest, unpaired 3He quasiparticles,
generate a normal component (N -phase).

A physical picture of the superfluid 3He is more complicated than for
superconducting electrons. First, the 3He quasiparticles are bare atoms and
creating the Cooper pair they have to rotate around its common center of
mass, generating an orbital angular momentum of the pair (L=1). Secondly,
the spin of the Cooper pair is equal to one (S=1), thus superfluid 3He has mag-
netic properties (see Fig. 1). Thirdly, the orbital and spin angular momenta
of the pair are coupled via a dipole-dipole interaction.

Fig. 1. Schematic picture of the Cooper pair formed from two 3He quasiparticles.
Quasiparticles orbit around a common center of mass creating the orbital angular
momentum. The spins of individual quasiparticles are aligned perpendicularly to
the axis of rotation

It is evident that the phase transition of 3He into the superfluid state
is accompanied by spontaneously broken symmetry: orbital, spin and gauge:
SOL(3)× SOS(3) × U(1), except the translational symmetry, as the superfluid
3He is still a liquid. Although this phase transition is not the same as discussed
above (SU(3) × SU(2) × U(1)), a similarity is evident. Finally, an energy gap
∆ appears in the energy spectrum separating the Cooper pairs (ground state)
from unpaired quasiparticles - Fermi excitations.

In superfluid 3He the density of Fermi excitations decreases upon further
cooling. For temperatures below around 0.25Tc (where Tc is the superfluid
transition temperature), the density of the Fermi excitations is so low that
the excitations can be regarded as a non-interacting gas because almost all
of them are paired and occupy the ground state. Therefore, at these very low
temperatures, the superfluid phases of helium-3 represent well defined models
of the quantum vacua (see below) which allows us to study any influences of
various external forces on the ground state and excitations from this state as
well.
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As it was mentioned above, the ground state of superfluid 3He is formed
by the Cooper pairs having both spin (S=1) and orbital momentum (L=1).
As a consequence of this spin-triplet, orbital p-wave pairing, the order para-
meter (or wave function) is far more complicated than that of conventional
superconductors and superfluid 4He. The order parameter of the superfluid
3He joins two spaces: the orbital (or k space) and spin and can be expressed
as:

Ψ(k) = Ψ↑↑(k̂)| ↑↑〉+ Ψ↓↓(k̂)| ↓↓〉+
√

2Ψ↑↓(k̂)(| ↑↓〉+ | ↓↑〉) , (1)

where k̂ is a unit vector in k space defining a position on the Fermi surface,
Ψ↑↑(k̂), Ψ↓↓(k̂) a Ψ↑↓(k̂) are amplitudes of the spin sub-states operators de-
termined by its projection | ↑↑〉, | ↓↓〉 a (| ↑↓〉+ | ↓↑〉) on a quantization axis
z.

The order parameter is more often written in a vector representation as a
vector d(k) in spin space. For any orientation of the k on the Fermi surface,
d(k) is in the direction for which the Cooper pairs have zero spin projection.
Moreover, the amplitude of the superfluid condensate at the same point is
defined by |d(k)|2 = 1/2tr(ΨΨH). The vector form of the order parameter
d(k) for its components can be written as:

dν(k) =
∑

µ

Aνµkµ , (2)

where ν (1,2,3) are orthogonal directions in spin space and µ (x,y,z) are those
for orbital space. The matrix components Aνµ are complex and theoretically
each of them represents possible superfluid phase of 3He. Experimentally,
however, only three are stable (see Fig. 2).

Looking at the phase diagram of 3He we can see the presence of two main
superfluid phases: A - phase and B - phase. While B - phase consists of all three
spin components, the A - phase does not have the component (| ↑↓〉+ | ↓↑〉).
There is also a narrow region of the A1 superfluid phase which exists only at
higher pressures and temperatures and in nonzero magnetic field. The A1 -

Fig. 2. Phase diagram of the 3He
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phase has only one spin component | ↑↑〉. The phase transition from N - phase
to the A or B - phase is a second order transition, while the phase transition
between the superfluid A and B phases is of first order.

As one can see from Fig. 2, the B - phase occupies a low field region and it is
stable down to the lowest temperatures. In zero field, the B - phase is a pure
manifestation of p-wave superfluidity suggested by Balian and Werthamer
(know as the BW state as well) [11]. Having equal numbers of all possible
spin and angular momentum projections, the energy gap separating ground
state from excitation is isotropic in k space.

The A - phase is preferable at higher pressures and temperatures in zero
field. In limit T→ 0K, the A - phase can exist at higher magnetic fields
(above 340 mT) at zero pressure and this critical field needed for creation of
the A - phase rises up as the pressure increases. The A - phase is theoretically
described by the ABM state discussed by Anderson, Brinkman and Morel [12].
As it was mentioned above, the absence of Sz = 0 component of the Cooper
pairs leads to anisotropy in the energy gap of the quasiparticle excitations.
In this phase, all Cooper pairs have orbital momenta orientated in a common
direction defined by the vector l̂, that is the direction in which the energy gap is
reduced to zero. It results in a remarkable difference between these superfluid
phases, as it can be seen from a spectrum of excitation (see Fig. 3). The B
- phase has an isotropic gap, while the A - phase energy spectrum consists
of two Fermi points i.e. points with zero energy gap. The difference in the
gap structure leads to the different thermodynamic properties of quasiparticle
excitations in the limit T→ 0K. The density of excitation in the B - phase
falls down exponentially with temperature as exp(−∆/kBT ), where kB is the
Boltzman constant. At the lowest temperatures their density is so low that
the excitations can be regarded as a non-interacting gas with a mean free path
of the order of kilometers. On the other hand, in A - phase the Fermi points
(or nodes) are far more populated with quasiparticle excitations. The nodes
orientation in the l̂ direction make the A - phase excitations almost perfectly
one-dimensional. The presence of the nodes in the energy spectrum leads to
a T3 temperature dependence of the density of excitations and entropy. As
a result, as T→ 0K, the specific heat of the A - phase is far greater than
that of the B - phase. In this limit, the A - phase represents a model system

Fig. 3. Energy spectrum of quasiparticles in A - and B - phase. While the B - phase
has isotropic energy gap, the A - phase consists of Fermi points
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for a vacuum of the Standard model and B - phase is a model system for a
Dirac vacuum. Therefore, it is extremely interesting to study the properties
of these two different superfluid states in one liquid, as well as, when they are
in contact.

As an example of a few experiments which recently were carried out with
the aim of studying the properties of the A-B boundary under various condi-
tions, we can mention the Lancaster [13–15] and the Helsinki [16] experiments.
The Lancaster’s experiments studied the thermodynamics of the A-B phase
transition, a structure of A - phase gap nodes and measured the surface ten-
sion between these two different states of vacua. The experiment realized by
Helsinki group showed that the penetration of the vortices from the A - phase
to B - phase starts with the aid of the Kelvin-Helmholtz instability due to
counterflow just on the A-B boundary.

In experiments with superfluid 3He phases, application of different external
forces can excite the collective modes of the order parameter representing so
called Bose excitations, while the Fermi excitations are responsible for the
energy dissipation. Coexistence and mutual interactions of these excitations in
the limit T→ 0K (in limit of low energies), can be described by quantum field
theory, where Bose and Fermi excitations represent Bose and Fermi quantum
fields. Thus, 3He research has a much broader impact by offering the possibility
of experimentally investigating quantum field/cosmological theories via their
analogies with the superfluid phases of 3He.

Now we would like to show and discuss some already experimentally ob-
served phenomena in superfluid 3He phases which could be considered as
analogues of cosmological phenomena.

3 States with Coherent Spin Precession in 3He-B
and their Cosmological Analogues

Another, but fundamental, signature of any superfluid (or superconducting)
system is the presence of supercurrents if the system is not in a coherent state.
In general, the supercurrents are created by the phase gradients of the order
parameter. The order parameter describing the superfluid 3He phase is com-
plex and consists of an orbital and spin part. Therefore, any inhomogeneity
in the spin part of the order parameter leads to the generation of spin super-
currents. This inhomogeneity may simply be created by the application of an
inhomogeneous magnetic field on a sample of superfluid 3He and by applying
NMR techniques. The amplitudes of the spin currents are proportional to the
inhomogeneity tensor in spin space Ωjβ [8]:

Jiα = ρijαβΩjβ , (3)

where ρijαβ is the spin density tensor. The spin supercurrents transfer magne-
tization over the sample much faster than the magnetic relaxation processes
can do and in such a way mask them.
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However, these spin supercurrents together with the aid of the dipole-
dipole interaction which works as a negative feedback, can lead to the spon-
taneous creation of various types of coherently precessing spin states in 3He-
B [17–19]. The crucial property of these dynamic states is that the coherent
phase of the spin precession is established spontaneously in the presence of an
inhomogeneous external magnetic field. As the spin precession is established
spontaneously, the precessing spin system of the superfluid 3He-B is in a dy-
namic equilibrium state corresponding to the minimum of the total energy.
This is considered as an equivalent of the phase-coherent Bose condensate and
it is referred to as a magnetic or spin superfluidity. The macroscopic states
with coherent spin precession are regarded as its experimental evidence.

The dynamic states with coherent spin precession can also be considered
as a model system to study their analogues to cosmology (see below).

The first state with coherent spin precession, a homogeneously precessing
domain (HPD), was discovered by the Moscow group in 1984 (for a compre-
hensive overview see [17]) and theory of HPD was simultaneously developed
by I. Fomin [20]. The HPD can be created using both a pulse and continuous
NMR technique. To explain how the HPD is generated, let’s assume that a
sample of superfluid 3He-B occupies a cylindrical experimental cell in which a
magnetic field B0 together with a linear field gradient ∇ B are applied. Under
conditions of a cw-NMR experiment, the presence of a linear magnetic field
gradient ∇B creates inhomogeneity in the initially homogeneous spin part of
the order parameter since the spins are precessing with various rates. In an
attempt to relax the order parameter gradient, the condensate responds by
generating the spin supercurrents which redistribute spins through the sam-
ple of 3He-B. The supercurrents have the effect of increasing the tipping angle
at the low field side of the sample and reducing it on the opposite side. The
spins on the high field side of the sample have their tipping angle reduced,
i.e. they are brought closer to the field direction, and once parallel there is
no longer any precession, thus creating a stationary domain (SD). Conversely,
the spins on the low field side continue tipping until a magic - Leggett angle
(∼ 104◦) is reached, above which a dipole torque increases the rate of spin
precession. This generates a spin current in the opposite direction to that due
to field inhomogeneity, compensating it, and finally giving rise to a dynamic
equilibrium state with coherent spin precession, the homogeneously precess-
ing domain. These two domains are separated by a domain wall of thickness
λF ∼ (1/∇B)1/3 which sits at the position z0, where the frequency of the
spin precession ωl i.e. the angular frequency of the rf-field, fulfills a Larmor
resonance condition ωl = γ(B0 − z0∇B), where γ is the gyromagnetic ratio.
When the domain is excited continuously, the exciting rf-field compensates for
the energy losses from magnetic relaxation processes in the precessing domain,
and the HPD can be maintained indefinitely. Because the resonance frequency
ωl is constant, the position of the domain wall z0 can easily be controlled by
a steady magnetic field B0.
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Fig. 4. A schematic visualization of the HPD in the equilibrium state (A), first (B)
and the second (C) axial surface oscillation modes of the HPD

As it was mentioned above, the HPD occupies a state of minima of en-
ergy. As a result, any disturbances or external forces applied to this system
will deviate the HPD from its equilibrium (or ground) state, thus creating
the gradients in the phase of the spin precession, i.e. the phase gradient of
the spin part of the order parameter. These gradients will again give rise to
the spin supercurrents, a powerful mechanism which, in general, will restore
the system to a new dynamical equilibrium state. The restoring process may
be accompanied by generation of the spin precession waves - oscillations of
the spin distribution around the equilibrium state (see Fig. 4). This phenom-
enon of the spin precession waves together with spin supercurrents can be, in
principle, used to create and study a spin wave analogue of a black hole.

3.1 A Spin Wave Analogue of a Black Hole

In their paper [22], R. Schuetzhold and W. Unruh have suggested the realiza-
tion of an experiment to observe the gravity wave analogues of a black hole
on surface waves of a flowing liquid. If one can control the flow velocity of the
liquid and simultaneously can excite its surface waves, one can reach a point
at which the velocity of liquid flow exceeds that of the surface waves. For ob-
servers who get the information by means of the surface waves, at this point
an event horizon forms and the wave (or information) never gets to them.

In paper [23] it had been shown that using the HPD generated by cw-
NMR technique one can excite the spin precession waves. These waves are
analogues to those on the surface of liquid in gravitational field. Following [21],
the dispersion relation of the HPD surface oscillation modes can be expressed
as:

Ω2
Sm = Qim

c1c2
RB

tanh
(
QimL

c2
R2c1

)
∇B , (4)

where R is the radius of the cell, B is the resonance field, Qim are the m-th
nonzero roots of equation J ′

i(x) = 0 (where Ji(x) is the Bessel function for
integer i; for example, with i = 0 for an axial and i = 1 for planar modes), L
is the HPD length, c21 = (5c2⊥−c2‖)/4 and c22 = (5c2⊥+3c2‖)/4, where c⊥ and c‖
are the spin wave velocities with respect to the direction of the magnetic field.
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Fig. 5. A schematic visualization of the experimental arrangement for the creation
a spin wave analogue of a black hole. Two HPD’s are connected through a channel
with variable depth. One HPD serves as a source of the spin precession waves which
propagate through the channel on a spin flow controlled by the difference in the
phase between the rf-excitation field of individual HPD’s

This dispersion relation is similar to that of the surface waves on a liquid in
the gravitational field as used in [22]. In this case, however, the magnetic field
gradient ∇B plays a role of the gravitational field.

A spin wave analogue of the black hole can be, in principle, experimentally
observed using two HPD’s connected with a channel with variable depth and
simultaneously create both: a continuous spin flow and spin precession waves
(see Fig. 5). The continuous spin flow between HPD’s can simply be adjusted
and controlled by setting of the phase difference between the rf excitation
fields which are used for the HPD’s generation i.e. by setting the phase dif-
ference of the spin precession in individual HPD’s. Simultaneously, one of the
HPD serves as a source of the spin precession wave excited on its resonance
frequency. The wave will propagate through the channel on the spin flow, the
velocity of which changes due to variable depth of channel. This arrangement
- two HPD’s connected by the channel with variable depth - is similar to that
suggested in [22] and, in principle, could be used for the creation and the
study of the spin wave analogue of a black hole.

3.2 A Persistent Precessing Domain as an Analogue of Q-Ball

A Q-ball is a long-lived state with coherent precession. The precession fre-
quency (or rotation frequency) and stability are determined by the conserva-
tion of the global charge, e.g. a baryon charge in the case of a cosmological
Q-ball, or conservation of the spin projection into the direction of the applied
field in the case of a condensed matter Q-ball analogue. Based on this descrip-
tion of a Q-ball, a persistent precessing domain (PPD) excited in superfluid
3He-B seems to be (or can be considered as) a clear representative.

The homogeneously precessing domain and a domain with spin 1/2 [18]
are well know, however, the physical origin of a PPD is not very well under-
stood. The PPD was observed by the Lancaster group for the first time in
1992 [19]. It seems that the PPD is a homogeneously spin precessing structure
kept insulated from the wall of the cell by the texture of the order parameter
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(or a surface energy). Due to a negligibly small density of Fermi excitations,
the dissipation is very small and a PPD life time may be as long as several
tens of minutes. As a PPD slowly decays, the frequency of the induced signal
rises. Moreover, if the PPD is excited using a cw-NMR technique, one has
to use frequencies higher than the Larmor frequency (so called off resonant
excitation) [26]. However, experiments made during the last five years showed
that very reproducible PPD’s can be generated in a local magnetic field mini-
mum and to excite them it is enough to apply only a noise signal from a noise
generator instead of the rf-pulse [27,28].

What kind of spin structure is the PPD? This is still an open question.
Based on the fact that reproducible PPD’s are excited in a field minimum,
the Leggett equations of the spin dynamics of 3He-B at local field minima
were solved [29]. The solutions were found to resemble some of the properties
of the PPD, e.g. when the PPD shrinks its precessing frequency rises.

As a PPD can only be excited in the limit of a vanishingly small quasi-
particle density, it seems that the orbital degrees of freedom are defrosted.
A motion of the orbital momenta gives rise to a orbital viscosity that leads
to energy dissipation. In their paper [30], S. Fisher and N. Suramlishvilli
calculated the orbital viscosity of the B - phase in both the hydrodynamic
and ballistic regime. They showed that orbital viscosity in the limit T → 0K
becomes vanishingly small, which gives rise to the possibility of coupled spin-
orbital dynamics. The orbital angular momentum motion may be induced via
the spin-orbit coupling by the spin precession. It looks like this could be the
case for a PPD. Taking into account a temperature dependence of the orbital
viscosity together with the fact that the mean free path of quasiparticles is
limited by the size of an experimental cell D, they found the relaxation time
to be:

τ ∼ D

πvf

√
kBT

∆
exp (∆/kBT ) , (5)

where vf is the Fermi velocity.
In Fig. 6 the temperature dependence scaled by Tc of the PPD lifetime is

shown [31]. The PPD was excited away from the vertical wall of the cell. The
line represents a fit of the experimental data using equation (5). Instead of
a typical size of the cell D, a longer mean free path was taken into account
because quasiparticles can travel a longer distance due to reflections from the
wall of the cell. However, when the PPD was pushed closer to the hemispher-
ical end cap of the cell, the PPD lifetime dramatically shortened by a few
orders of magnitude [27]. In this region the PPD lifetime was observed to be
temperature independent at the lowest temperatures, showing that additional
relaxation processes are temperature independent [31]. A possible explanation
of this effect can be found if one again considers the orbital degree of freedom
in superfluid 3He-B at ultralow temperatures i.e. a coherent precession of both
the spin and orbital angular momentum. Such a precession was theoretically
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Fig. 6. A temperature dependence scaled by Tc of the PPD lifetime. The line
represents a fit of the experimental data using equation (5)

predicted to have a temperature independent relaxation mechanism due to
pair-breaking, analogous to Schwinger mechanism [32].

4 Search for an Unruh Effect Analogue in 3He-B

W. Unruh [24] studied the behaviors of a uniformly accelerated detector which
is moving in a physical vacuum (vacuum of a quantum field). He showed that
an accelerated detector ”feels or sees” this vacuum state as a thermal bath
and detects it as black body radiation with an effective temperature TU :

TU =
�a

2πkBc
, (6)

where a is the detector acceleration, � and kB is the Planck and Boltzman
constant, respectively, and c is the velocity of light in vacuum.

The superfluid 3He-B phase can be regarded as the mixture of two compo-
nents: the superfluid component at temperature T=0K represents the vacuum
state and a normal component i.e. the gas of excitations whose total energy
represents the real temperature background T of the liquid. The overall den-
sity of excitations ρn falls down very rapidly with temperature as (see Fig.7):

ρn = 2N(0)
∫ ∞

∆

ε√
ε2 −∆2(T )

f(ε, T )dε , (7)

where f(ε, T ) is the Fermi-Dirac distribution function, N(0) is the density of
states of the normal liquid at the Fermi level per unit volume and per spin
and ∆(T ) is the energy gap in the spectrum of excitations which below 0.25Tc

can be approximated as ∆(0) ∼ ∆ = 1.76kBTc.
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Fig. 7. The temperature dependence of the density of excitations in 3He-B at 0 bar
calculated using expression (7)

4.1 Vibrating Wire – An Accelerated Detector in Superfluid
3He-B

The physical properties of the excitations from the vacuum state of superfluid
3He-B can be investigated using a vibrating wire resonator. The vibrating
wire is a simple device widely used to study of quantum liquids (4He and
3He). Usually it is a superconducting wire - a very thin fiber - bowed into a
semicircle (or other shape e.g. rectangular) and immersed in the liquid (see
Fig. 8). With the aid of a static magnetic field B orientated along the plane
of the wire loop and an AC current I0 driving the wire, the wire vibrates on
resonance as a consequence of an acting Lorentz force. The motion of the wire
per unit of mass and wire length is described by following equation:

d2x/dt2 + γdx/dt+ ω2
0x = fexp(iωt) , (8)

where parameter f = I0B/m describes the driving force per mass, m = πr2ρw

is the mass per unit length of wire with r and ρw being the radius and density
of the wire, respectively. The second term in equation (8) characterizes a
damping force of the fluid acting against the wire motion and it is assumed
that it is a linear function of the wire velocity v. The constant γ (γ = γ2+iγ1)
is the damping constant, where γ2 refers to the dissipative component of the
damping force. The γ1 characterizes its reactive component associated with
the fluid backflow around the wire and effectively gives the wire a greater
mass. The last term in equation (8) is the restoring force of the wire, where
ω0 is the wire resonance frequency in vacuum. The steady state solution of
equation (8) is very well known and leads to a Lorentz shape of the absorption
and dispersion curves dependent on the frequency. The width of the absorption
curve γ2 = 2π∆f2 is related to the damping force acting on the wire motion:
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Fig. 8. A typical experimental arrangement of one fiber vibrating wire made from
a multifilament superconductor. On the right: the resonance characteristics of the
wire

F = 2π∆f2v. (9)

On the other hand, the frequency shift of the resonance frequency from its
vacuum value ∆f1 is associated with γ1 as γ1 = 4π∆f1.

The vibrating wire moves in the direction which is almost perpendicular
to the applied magnetic field B, so an additional voltage Ui is induced. Its
magnitude can be found by applying Faraday’s law in form Ui = kBlv, where
l is the wire length and the constant k characterizes the geometric shape of
the wire.

Thus, the vibrating wire may be considered as an accelerated detector
which moves with an effective acceleration through the vacuum of excitations
and, in principle, the wire could be used for the generation and detection of
a condense matter analog of the Unruh effect in superfluid 3He-B.

Assuming that a vibrating wire moves at the resonance frequency Ω with
velocity v then the corresponding Unruh temperature TU can be calculated
using expression [2]:

TU (v) =
�Ω

4kB [ln(vL/v +
√
v2

L/v
2 − 1)−

√
1− v2/v2

L]
. (10)

The role of the velocity of light in the superfluid 3He-B is given by the
Landau velocity vL (vL = ∆/pf , where pf is the Fermi momentum). That is
the velocity at which a microscopic object moving through the B - phase cre-
ates excitations assuming that the object does not: (i) perturb the local gap
parameter and (ii) create a backflow. In Fig. 9, the dependence of the Unruh
temperature TU on the vibrating wire velocity for two resonance frequencies
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Fig. 9. Calculated Unruh temperature as function of the vibrating wire velocity for
two resonance frequencies 1000Hz (◦) and 4000 Hz (�)

Ω is presented. As can be seen from Fig. 9, the Unruh temperature is highly
enhanced at wire velocities very close to the Landau velocity. This means
that before the Landau velocity is reached, one could observe the Unruh ef-
fect. Unfortunately, the motion of the macroscopic object like a vibrating wire
in superfluid 3He-B represents a more complex problem. The energy gap is
suppressed within a few coherence lengths of the wire surface and the super-
fluid backflow around the wire must also be taken into account. Indeed, as
the velocity of the wire rises, the energy of the superfluid component close to
the wire is lifted by 2pfv due to backflow until it reaches a threshold value
∆ − pfv, i.e. the energy value of the excitations approaching the wire from
behind (see Fig. 10). Having this energy at a critical velocity vc = ∆/3pf , the
superfluid component can be scattered on the wire roughnesses into empty
energy states which cause a rapid increase of the wire damping [25]. This
effect limits the wire velocity, with respect to the Landau velocity, and the
ability to observe an additional friction due to the Unruh effect. An ordinary
macroscopic vibrating wire should be driven at the velocities lower than vL/3.

The motion of the wire in superfluid 3He-B is restricted due to a mutual
interaction between the excitations and the wire. This interaction leads to
a damping of the wire motion. A total ordinary damping force acting on
the wire, in general, consists of three terms: F = FI + FC + FT , where FI

is the intrinsic damping force of the wire, FC is the damping force due to
pair breaking if the wire velocity is above the critical one, and FT is thermal
damping force due to a collision of the wire with existing excitations. Here we
shall assume that we have an ideal wire with FI = 0. The FC term is close to
zero because the wire velocity v is always less than the velocity vc. The last
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Fig. 10. Quasiparticle energy spectrum as viewed from the reference frame of the
wire. An observer connected to the wire sees the energy of the quasiparticles moving
in his direction as lower by pfv, whereas those moving opposite to him are lifted
by pfv. He also sees that the energy of the superfluid component due to backflow is
lifted by 2pfv. In the laboratory frame the wire (the black dot) moves from left to
right

term FT per unit area can be expressed as: [25]:

FT = pf 〈nvg〉
[
1− exp

(
−pfv

kBT

)]
, (11)

where vg and n are the group velocity and the number of excitations per unit
volume, respectively, v is the wire velocity and

〈nvg〉 = n(pf )kBT exp(−∆/kBT ) (12)

represents the quasiparticle flux with n(pf ) being the density of states in
momentum space. The origin of this non-linearity with respect to the wire
velocity arises due to an Andreev scattering of the excitations from the flow
field around the moving wire. At low velocity, the damping force per unit area
of the wire becomes linear in velocity v:

FT = pf 〈nvg〉
pfv

kBT
= n(pf )vp2

fexp(−∆/kBT ). (13)

For very low temperatures the damping force FT depends only on tem-
perature and is constant at constant velocity and at constant temperature.
The total damping force acting on the wire can easily be determined from the
width ∆f2 of the vibrating wire resonance curve.
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Vibrating Wire and Unruh Effect Analogue

Let an ideal vibrating wire (FI = 0) move through superfluid 3He-B as a
consequence of the Lorentz force. The wire motion is damped due to the
interaction with excitations representing the thermal background and with
the new (”Unruh”) excitations generated via tunnelling processes because of
the wire acceleration. This additional Unruh damping, per unit area of the
wire, can be expressed as:

Q̇U = (∆+ kBTU )〈nvg〉U ≈ ∆〈nvg〉U , (14)

where < nvg >U represents the quasiparticle flux of ’Unruh’ excitations each
having energy ∆ because ∆ >> kBTU . The quasiparticle flux of the ’Unruh’
excitations is proportional to n(pf )kBTU exp(−∆/kBTU ) and contributes an
additional damping force, FU = n(pf )∆kBTU exp(−∆/kBTU )/v, acting on
the wire. The total damping force is now F = FT + FU = FT (1 + FU/FT ),
where the second term in brackets represents the contribution to the damping
force due to the Unruh effect scaled by thermal damping:

FU

FT
=
kBTU

pfv

vL

v
exp

(
− ∆

kB

(T − TU )
TTU

)
. (15)

Let’s assume that we can neglect the backflow and the ideal wire moves
with a velocity very close to vL i.e. v � vL. Then the Unruh temperature TU

can simply be adjusted by the wire velocity (see Fig. 9) and we can express
it as TU = aT (in this case the pre-factor in equation (15) will be aT/1.76Tc

within 10% accuracy). Figure 11 shows a dependence of FU/FT for various
values of the Unruh temperatures, TU = aT , as a function of temperature T .
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TU = aT , as a function of the temperature. The dependence is calculated for 0 bar



Superfluid 3He as a Model System for Cosmology 91

The sensitivity of vibrating wire techniques can be expressed in terms of a
relative change of the resonance curve width as δ∆f2/∆f2 and is of order of
10−4. The ratio FU/FT is proportional to the relative change δ∆f2/∆f2 and
thus the above sensitivity of the measurement gives a limit for detection of
the additional damping force caused by ”Unruh” excitations.

In a real experiment the vibrating wire oscillates at resonance frequencies
up to a few kHz. If the wire velocity is ∼ 0.25vL with a resonance frequency of
4000 Hz (see Fig. 9), then the corresponding Unruh temperature TU is slightly
above 40 nK. However, nowadays the superfluid 3He-B can be cooled to low
temperatures of about 80-100 µK, which is ∼ 104 times higher than the Unruh
temperature discussed above. Due to the small values of the wire velocities
(less than vc) and low resonance frequencies Ω as well, the number of ”Unruh”
excitations (and the Unruh temperature) are very small in comparison with
those representing the background temperature T . Therefore, the contribution
of the ”Unruh” excitations to the total damping force acting on the wire is
well below the sensitivity of present day detection techniques.

A question which one could ask is what should be done to observe the
condense matter analog of the Unruh effect in superfluid 3He-B by means of a
vibrating wire or, perhaps by the use of any other method and in such a way
confirm the theoretical prediction? Apart from an ’easy to suggest and hard
to make’ solution of cooling of the superfluid 3He-B well below 100 µK, in
case of the vibrating wire, the main problem seems to be the reduction of the
backflow around the wire. The reduction of the backflow would allow one to
drive the wire at velocities closer to the Landau velocity and, by approaching
this velocity, the wire could detect the presence of the Unruh effect. It is a
matter of speculation, however, whether the progress in (nano) technology
will allow the use of a nano-wire (or nano-object) of diameter comparable
to the coherence length of the order parameter of 3He-B. Another possible
way to observe the condense matter analog of the Unruh effect in superfluid
3He-B could be an application of NMR methods operating at much higher
frequencies.

5 Discussion

I hope that this is not end of the story and in near future many interesting
condensed matter experiments related to cosmology will be performed. Not
only with superfluid 3He phases, but also with superconductors, Bose-Einstein
condensates and other condensed matter systems. Due to the impossibility to
make an active, a controllable cosmological experiment, it seems that this
is only the way we can experimentally verify our imagination about funda-
mental cosmological phenomena, of course with limitations. So, we shall keep
watching this analogous space.

I would like to thank to Ian Bradley, Shaun Fisher, Rich Haley, Martin
Kupka, George Pickett, Ray Simmonds, Ralf Schuetzhold, William Unruh
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Dynamical Aspects of Analogue Gravity:
The Backreaction of Quantum Fluctuations
in Dilute Bose-Einstein Condensates

U. R. Fischer

Eberhard-Karls-Universität Tübingen, Institut für Theoretische Physik,
Auf der Morgenstelle 14, D-72076 Tübingen, Germany

1 Analogue Gravity: An Overview

1.1 The Concept of an Effective Space-time Metric

Curved space-times are familiar from Einstein’s theory of gravitation [1],
where the metric tensor gµν , describing distances in a curved space-time with
local Lorentz invariance, is determined by the solution of the Einstein equa-
tions. A major problem for an experimental investigation of the (kinematical
as well as dynamical) properties of curved space-times is that generating a
significant curvature, equivalent to a (relatively) small curvature radius, is a
close to impossible undertaking in manmade laboratories. For example, the
effect of the gravitation of the whole Earth is to cause a deviation from flat
space-time on this planet’s surface of only the order of 10−8 (the ratio of
Schwarzschild and Earth radii). The fact that proper gravitational effects are
intrinsically small is basically due to the smallness of Newton’s gravitational
constant G = 6.67 × 10−11 m3kg−1sec−2. Various fundamental classical and
quantum effects in strong gravitational fields are thus inaccessible for Earth-
based experiments. The realm of strong gravitational fields (or, equivalently,
rapidly accelerating a reference frame to simulate gravity according to the
equivalence principle), is therefore difficult to reach. However, Earth-based
gravity experiments are desirable, because they have the obvious advantage
that they can be prepared and, in particular, repeated under possibly different
conditions at will.

A possible way out of this dilemma, at least inasmuch the kinematical
properties of curved space-times are concerned, is the realization of effective
curved space-time geometries to mimic the effects of gravity. Among the most
suitable systems are Bose-Einstein condensates, i.e., the dilute matter-wave-
coherent gases formed if cooled to ultralow temperatures, where the critical
temperatures are of order Tc ∼ 1 nK · · · 1 µK; for reviews of the (relatively)
recent status of this rapidly developing field see [2–4]. In what follows, it will

U.R. Fischer: Dynamical Aspects of Analogue Gravity: The Backreaction of Quantum Fluctu-
ations in Dilute Bose–Einstein Condensates, Lect. Notes Phys. 718, 93–113 (2007)
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be of some importance that Bose-Einstein condensates belong to a special
class of quantum perfect fluids, so-called superfluids [5].

The curved space-times we have in mind in the following are experienced
by sound waves propagating on the background of a spatially and temporally
inhomogeneous perfect fluid. Of primary importance is, first of all, to real-
ize that the identification of sound waves propagating on an inhomogeneous
background, which is itself determined by a solution of Euler and continuity
equations, and photons propagating in a curved space-time, which is deter-
mined by a solution of the Einstein equations, is of a kinematical nature. That
is, the space-time metric is fixed externally by a background field obeying the
laws of hydrodynamics (which is prepared by the experimentalist), and not
self-consistently by a solution of the Einstein equations.

As a first introductory step to understand the nature of the kinematical
identity, consider the wave equation for the velocity potential of the sound
field φ, which in a homogeneous medium at rest reads

[
1
c2s

∂2

∂t2
−∆

]
φ = 0 , (1)

where cs is the sound speed, which is a constant in space and time for such
a medium at rest. This equation has Lorentz invariance, that is, if we replace
the speed of light by the speed of sound, it retains the form shown above
in the new space-time coordinates, obtained after Lorentz-transforming to a
frame moving at a constant speed less than the sound speed. Just as the
light field in vacuo is a proper relativistic field, sound is a “relativistic” field.1

The Lorentz invariance can be made more manifest by writing equation (1)
in the form �φ ≡ ηµν∂µ∂νφ = 0, where ηµν = diag(1,−1,−1,−1) is the
(contravariant) flat space-time metric (we choose throughout the signature
of the metric as specified here), determining the fundamental light-cone-like
structure of Minkowski space [6]; we employ the summation convention over
equal greek indices µ, ν, · · · . Assuming, then, the sound speed cs = cs(x, t) to
be local in space and time, and employing the curved space-time version of
the 3 + 1D Laplacian � [1], one can write down the sound wave equation in
a spatially and temporally inhomogeneous medium in the generally covariant
form [7,8]

1√−g
∂µ(
√
−ggµν∂νφ) = 0 . (2)

Here, g = det[gµν ] is the determinant of the (covariant) metric tensor. It is to
be emphasized at this point that, because the space and time derivatives ∂µ are
covariantly transforming objects in (2), the primary object in the condensed-
matter identification of space-time metrics via the wave equation (2) is the
contravariant metric tensor gµν [9]. In the condensed-matter understanding of
1 More properly, we should term this form of Lorentz invariance pseudorelativistic

invariance. We will however use for simplicity “relativistic” as a generic term if
no confusion can arise therefrom.
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analogue gravity, the quantities gµν are material-dependent coefficients. They
occur in a dispersion relation of the form gµνkµkν = 0, where kµ = (ω/cs,k)
is the covariant wave vector, with �k the ordinary spatial momentum (or
quasi-momentum in a crystal).

The contravariant tensor components gµν for a perfect, irrotational liquid
turn out to be [7, 8, 10]

gµν =
1

Acc2s

(
1 v
v −c2s1 + v ⊗ v

)
, (3)

where 1 is the unit matrix and Ac a space and time dependent function, to
be determined from the equations of motion for the sound field (see below).
Inverting this expression according to gβνgνα = δβ

α, to obtain the covariant
metric gµν , the fundamental tensor of distance reads

gµν = Ac

(
c2s − v2 v

v −1

)
, (4)

where the line element is ds2 = gµνdx
µdxν . This form of the metric has been

derived by Unruh for an irrotational perfect fluid described by Euler and con-
tinuity equations [7]; its properties were later on explored in more detail in
particular by M. Visser [8]. We also mention that an earlier derivation of Un-
ruh’s form of the metric exists, from a somewhat different perspective; it was
performed by Trautman [10]. The metric belongs to the Painlevé-Gullstrand
class of metrics, historically introduced in Refs. [11].

The conformal factor Ac in (4) depends on the spatial dimension of the
fluid. It may be unambiguously determined by considering the effective action
of the velocity potential fluctuations above an inhomogeneous background,
identifying this action with the action of a minimally coupled scalar field in
D + 1-dimensional space-time

Aeff =
∫
dD+1x

1
2g

[(
∂

∂t
φ− v · ∇φ

)2

− c2s(∇φ)2
]

≡ 1
2

∫
dD+1x

√
−ggµν∂µφ∂νφ , (5)

where the prefactor 1/g in front of the square brackets in the first line is
identified with the compressibility of the (barotropic) fluid, 1/g = d(ln ρ)/dp,
with p the pressure and ρ the mass density of the fluid; we assume here and
in what follows that g is a constant independent of space and time so that
c2s = gρ, as valid for a dilute Bose gas (see the following subsection). Using
the above identification, it may easily be shown that the conformal factor
is given by Ac = (cs/g)

2/(D−1) = (ρ/g)1/(D−1)), while the square root of the
negative determinant is

√−g = cs(cs/g)D+1/(D−1) = (ρD/g)1/(D−1). The case
of one spatial dimension (D = 1) is special, in that the conformal invariance
in two space-time dimensions implies that the classical equations of motion
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are invariant (take the same form) for any space and time dependent choice
of the conformal factor Ac, explaining the singular character of the conformal
factor at the special value D = 1.

The line element ds2 = gµνdx
µdxν gives us the distances travelled by the

phonons in an effective space-time world in which the scalar field φ “lives”.
In particular, quasiclassical (large momentum) phonons will follow light-like,
that is, here, sound-like geodesics in that space-time, according to ds2 = 0.
Noteworthy is the simple fact that the constant time slices obtained by setting
dt = 0 in the line element are conformally flat, i.e. the quasiparticle world
looks on constant time slices like the ordinary (Newtonian) lab space, with
a Euclidean metric in the case of Cartesian spatial co-ordinates we display.
All the intrinsic curvature of the effective quasiparticle space-time is therefore
encoded in the metric tensor elements g00 and g0i [12].

1.2 The Metric in Bose-Einstein Condensates

We assumed in Eq. (5) that the compressibility 1/g is a constant. This entails
that the (barotropic) equation of state reads p = 1

2gρ
2. We then have, in the

microscopic terms of the interaction between the particles (atoms) constitut-
ing the fluid, a contact interaction (pseudo-)potential, V (x−x′) = gδ(x−x′).
This is indeed the case for the dilute atomic gases forming a Bose-Einstein
condensate. Well below the transition temperature, they are described, to
lowest order in the gas parameter (ρa3

s)
1/2 
 1 [where as is the s-wave scat-

tering length, assumed positive] by the Gross-Pitaevskǐı mean-field equation
for the order parameter Ψ ≡ 〈Ψ̂〉, the expectation value2 of the quantum field
operator Ψ̂ [3]:

i�
∂

∂t
Ψ(x, t) =

[
− �

2

2m
∆+ Vtrap(x, t) + g|Ψ(x, t)|2

]
Ψ(x, t) . (6)

Here, Vtrap denotes the one-particle trapping potential and the coupling con-
stant g is related to the s-wave scattering length as via g = 4π�

2as/m (in three
spatial dimensions). The Madelung transformation decomposing the complex
field Ψ into modulus and phase reads Ψ =

√
ρ exp[iφ], where ρ yields the con-

densate density and φ is the velocity potential. It allows for an interpretation
of quantum theory in terms of hydrodynamics [13]. Namely, identifying real
and imaginary parts on left- and right-hand sides of (6), respectively, gives us
the two equations

2 Observe that 〈Ψ̂〉 �= 0 breaks particle number conservation (the global U(1) in-
variance). We will come back to this point in Sect. 2, where we introduce a
particle-number-conserving mean-field ansatz for the full quantum field operator,
which has the number-conserving property that 〈Ψ̂〉 = 0, and for which the order
parameter therefore does not equal 〈Ψ̂〉.
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− �
∂

∂t
φ =

1
2
mv2 + Vtrap + gρ− �

2

2m
∆
√
ρ

√
ρ

, (7)

∂

∂t
ρ+∇ · (ρv) = 0 . (8)

The first of these equations is the Josephson equation for the superfluid phase.
This Josephson equation corresponds to the Bernoulli equation of classical
hydrodynamics, where the usual velocity potential of irrotational hydrody-
namics equals the superfluid phase φ times �/m, such that v = �∇φ/m.
The latter equation implies that the flow is irrotational save on singular lines,
around which the wave function phase φ is defined only modulo 2π. Therefore,
circulation is quantized [14], and these singular lines are the center lines of
quantized vortices. The usual classical terms in Eq. (7) are augmented by the
“quantum pressure” pQ ≡ − �

2

2m (∆
√
ρ)/
√
ρ. The second equation (8) is the

continuity equation for conservation of particle number, i.e., atom number in
the superfluid gas. The dynamics of the weakly interacting, dilute ensemble
of atoms is thus that of a perfect Euler fluid with quantized circulation of sin-
gular vortex lines. This is true except for regions in which the density rapidly
varies and the quantum pressure term pQ becomes relevant, which happens
on scales of order the coherence length3 ξ = �/

√
gmρ where ρ is a constant

(asymptotic) density far away from the density-depleted (or possibly density-
enhanced) region. This is the case in the density-depleted cores of quantized
vortices, or at the low-density boundaries of the system. The quantum pres-
sure is negligible outside these domains of rapidly varying and/or low density.
The whole armoury of space-time metric description of excitations, explained
in the last section, and based on the Euler and continuity equations, is then
valid for phonon excitations of a Bose-Einstein condensate, with the space-
time metric (4), as long as we are outside the core of quantized vortices and
far from the boundaries of the system, where both the flow is irrotational and
the quantum pressure is negligible.

We mention here in passing that the form (2) of the wave equation is
valid in quite general physical contexts. That is, a generally covariant curved
space-time wave equation can be formulated not just for the velocity pertur-
bation potential in an irrotational Euler fluid, for which we have introduced
the effective metric concept. If the spectrum of excitations (in the local rest
frame) is linear, ω = cpropk, where cprop is the propagation speed of some
collective excitation, the statement that an effective space-time metric exists
is true, provided we only consider wave perturbations of a single scalar field
Φ constituting a fixed classical background. More precisely, given the generic
requirement that the action density L is a functional of Φ and its space-time
derivatives ∂µΦ, i.e. L = L[Φ, ∂µΦ], the fluctuations φ ≡ δΦ around some clas-
sical background solution Φ0 of the Euler-Lagrange equations always satisfy
a wave equation of the form of Eq. (2), with a possible additional scalar po-
3 Note that the coherence or “healing” length is also frequently defined in the

literature, see e.g. [4], with an additional factor of 1/
√

2, i.e., as ξc = �/
√

2gmρ.
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tential term [15] comprising, for example, a mass term for the scalar field. As
a consequence, the effective metric description also applies, inter alia, to the
quasiparticle excitations around the gap nodes in the superfluid 3He-A [16],
photon propagation in dielectrics [17], and surface waves in shallow water [18].

The analogy between photons propagating on given (curved) space-time
backgrounds and phonons in spatially and temporally inhomogeneous super-
fluids or, more generally, quantized quasiparticles with linear quasiparticle
dispersion in some background, allows us to apply many tools and methods
developed for quantum fields in curved space-times [19]. We can therefore
conclude that the associated phenomena occur (provided the fundamental
commutation relations of these quantum fields are fulfilled [20]). Among these
phenomena are Hawking radiation [21], the Gibbons-Hawking effect in de Sit-
ter spacetime [22], and cosmological particle production [23,24]. Furthermore,
cosmic inflation and the freezing-in of quantum vacuum fluctuations by the
horizon crossing of the corresponding modes may be simulated [25]. A com-
prehensive recent review of the subject of analogue gravity in its broadest
sense is given in [26].

1.3 Pseudo-energy-momentum Tensor

An important quantity characterizing the dynamics of the field φ is the
pseudo-energy-momentum tensor, cf. [27]. Since the equation of motion for
the scalar mode, ∇µgµν∇νφ = 0, where ∇µ denotes the space-time-covariant
derivative, is equivalent to covariant energy-momentum balance, expressed by
∇µT

µν = 0, the classical pseudo-energy-momentum tensor reads [27]

Tµν = (∂µφ)(∂νφ)− 1
2

gµν(∂ρφ)(∂σφ)gρσ . (9)

We already stressed that the identification of field theoretical effects in curved
space-time by analogy (including the existence of the pseudo-energy-mo-
mentum tensor), is of a kinematical nature. An important question concerns
the dynamics, that is, the backreaction of the quantum fluctuations of the
scalar field onto the classical background. Extending the analogy to curved
space-times a bit further, one is tempted to apply the effective-action method
(see, e.g., [19] and [28]). In the effective-action method, one integrates out
fluctuations of the quantum fields to one-loop order, and then determines
the expectation value of the energy-momentum-tensor by the canonical iden-
tification δAeff/δg

µν ≡ 1
2

√−g 〈T̂µν〉. Since the dependence of the effective
action Aeff on the degrees of freedom of the background η enters via the ef-
fective metric gµν = gµν(η), one finds the backreaction contribution to the
equations of motion of the η by differentiation of the effective action according
to

δAeff

δη
=
δAeff

δgµν

δgµν

δη
=

1
2
√
−g

〈
T̂µν

〉 δgµν

δη
. (10)
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The precise meaning of the expectation value of the pseudo-energy-momentum
tensor, 〈T̂µν〉, is difficult to grasp in general, due to the non-uniqueness of the
vacuum state in a complicated curved space-time background and the ultra-
violet (UV) renormalization procedure. Adopting a covariant renormalization
scheme, the results for 〈T̂µν〉 can be classified in terms of geometrical quanti-
ties (cf. the trace anomaly [19]).

However, in calculating the quantum backreaction using the effective-
action method, one is implicitly making two essential assumptions: first, that
the leading contributions to the backreaction are completely determined by
the effective action in Eq. (5), and, second, that deviations from the low-energy
effective action at high energies do not affect the (renormalized) expectation
value of the pseudo-energy-momentum tensor, 〈T̂µν〉. Since the effective covari-
ance in Eq. (5) is only a low-energy property, the applicability of a covariant
renormalization scheme is not obvious in general. In the following, we criti-
cally examine the question of whether the two assumptions mentioned above
are justified, e.g., whether 〈T̂µν〉 completely determines the backreaction of
the linearized quantum fluctuations.

The remainder of these lecture notes, which is based on the results of
the publication [29], is organized as follows. In Sect. 2, we give a brief in-
troduction to Bose-Einstein condensates, and introduce a particle-number-
conserving ansatz for the field operator separated into condensate, single-
particle and multi-particle excitation parts. In the subsequent Sect. 3, based
on this ansatz, the backreaction onto the motion of the fluid using the full
current will be calculated, and it is shown that this yields a different result
than that obtained by the effective-action method. Afterwards, the failure
of the effective-action technique is discussed in more detail in Sect. 4. The
cutoff dependence of the pseudo-energy-momentum tensor (9) is addressed in
Sect. 5. As a simple example, we consider the influence of the backreaction
contribution on a static quasi-1D condensate in section 6.

2 Excitations in Bose-Einstein Condensates

2.1 Particle-number-conserving Mean-field Expansion

In the s-wave scattering approximation, a dilute many-particle system of inter-
acting bosons is described, on a “microscopic” level corresponding to distance
scales much larger than the true range of the interaction potential, by the
field operator equation of motion in the Heisenberg picture (we set from now
on � = m = 1)

i
∂

∂t
Ψ̂ =

(
−1

2
∇2 + Vtrap + g Ψ̂ †Ψ̂

)
Ψ̂ . (11)

In the limit of many particles N � 1, in a finite trap at zero temperature with
almost complete condensation, the full field operator Ψ̂ can be represented in
terms of the particle-number-conserving mean-field ansatz [30,31]
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Ψ̂ =
(
ψc + χ̂+ ζ̂

)
ÂN̂−1/2 . (12)

Here, the order parameter ψc = O(
√
N) [note that ψc �= 〈Ψ̂〉, as opposed to the

Ψ in Eq. (6)]. The one-particle excitations are denoted χ̂ = O(N0), where one-
particle here means that the Fourier components of χ̂ are linear superpositions
of annihilation and creation operators of quasiparticles âk and â†k, cf. Eq. (38)
below. The remaining higher-order, multi-particle corrections are described
by ζ̂ = O(1/

√
N). The above mean-field ansatz can be derived in the dilute-

gas limit by formally setting g = O(1/N) [31–34]; we shall use this formal
definition of the dilute-gas limit in what follows. The dilute-gas limit should
be compared and contrasted with the usual thermodynamic limit, in which
the density and particle interaction remains constant, while the size of the
(trapped) system increases with N → ∞, adjusting the harmonic trapping
potential Vtrap correspondingly (in D spatial dimensions, the thermodynamic
limit corresponds to keeping NωD constant for N → ∞, where ω is the
geometric mean of the trapping frequencies [4]). In the presently used dilute-
gas limit, on the other hand, the trapping potential remains constant, but the
interaction and the density change. The advantage of the limit gN constant is
that in this limit we have a well-defined prescription to implement the mean-
field approximation, keeping one power of g for each factor of N , cf. [36].

2.2 Gross-Pitaevskǐı and Bogoliubov-de Gennes Equations

Insertion of Eq. (12) into (11) yields to O(N) the Gross-Pitaevskǐı equation
[35] for the order parameter ψc

i
∂

∂t
ψc =

(
−1

2
∇2 + Vtrap + g|ψc|2 + 2g

〈
χ̂†χ̂

〉)
ψc + g

〈
χ̂2
〉
ψ∗

c . (13)

The Bogoliubov-de Gennes equations [37] for the one-particle fluctuations χ̂
are obtained to O(N0)

i
∂

∂t
χ̂ =

(
−1

2
∇2 + Vtrap + 2g|ψc|2

)
χ̂+ gψ2

c χ̂
† , (14)

Finally, the time evolution of the remaining higher-order corrections in the
expansion (12), ζ̂ = O(1/

√
N), neglecting the O(1/N) terms, is given by:

i
∂

∂t
ζ̂ ≈

(
−1

2
∇2 + Vtrap + 2g|ψc|2

)
ζ̂ + gψ2

c ζ̂
†

+2g(χ̂†χ̂− 〈χ̂†χ̂〉)ψc + g(χ̂2 − 〈χ̂2〉)ψ∗
c . (15)

The Gross-Pitaevskǐı equation in the form (13) ought to be compared with
the simple-minded form of (6). The additional terms 2g〈χ̂†χ̂〉 and g〈χ̂2〉 in the
Gross-Pitaevskǐı equation in the form of Eq. (13) above ensure that the expec-
tation value of the multi-particle operator, ζ̂ = O(1/

√
N), vanishes in leading
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order, 〈ζ̂〉 = O(1/N). Without these additional terms, the mean-field expan-
sion (12) would still be valid with ζ̂ = O(1/

√
N), but without 〈ζ̂〉 = O(1/N).

The proper incorporation of the so-called “anomalous” fluctuation average
〈χ̂2〉 (the “normal” fluctuation average is 〈χ̂†χ̂〉) into the description of Bose-
Einstein condensates has also been discussed from various points of view
in [31,38,39].

3 Quantum Backreaction

3.1 Calculation of Backreaction Force From Microscopic Physics

The observation that the Gross-Pitaevskǐı equation (13) yields an equation
correct to leading order O(

√
N), using either |ψc|2 or |ψc|2 + 2

〈
χ̂†χ̂

〉
in the

first line of (13), hints at the fact that quantum backreaction effects corre-
spond to next-to-leading, i.e. quadratic order terms in the fluctuations and
cannot be derived ab initio in the above manner without additional assump-
tions. Therefore, we shall employ an alternative method: In terms of the exact
density and current given by

� =
〈
Ψ̂ †Ψ̂

〉
, j =

1
2i

〈
Ψ̂ †∇Ψ̂ −H.c.

〉
, (16)

the time-evolution is governed by the equation of continuity for � and an
Euler type equation for the current j. After insertion of Eq. (11), we find that
the equation of continuity is not modified by the quantum fluctuations but
satisfied exactly (i.e., to all orders in 1/N or �)

∂

∂t
�+ ∇ · j = 0 , (17)

in accordance with the U(1) invariance of the Hamiltonian and the Noether
theorem, cf. [28]. However, if we insert the mean-field expansion (12) and write
the full density as a sum of condensed and non-condensed parts

� = �c +
〈
χ̂†χ̂

〉
+O(1/

√
N) , (18)

with �c = |ψc|2, we find that neither part is conserved separately in general.
Note that this split requires 〈ζ̂〉 = O(1/N), i.e., the modifications to the Gross-
Pitaevskǐı equation (13) discussed above. Similarly, we may split up the full
current [with �cvc = �(ψ∗

c∇ψc)]

j = �cvc +
1
2i
〈
χ̂†∇χ̂−H.c.

〉
+O(1/

√
N) , (19)

and introduce an average velocity v via j = �v. This enables us to unambigu-
ously define the quantum backreaction Q as the following additional contri-
bution in an equation of motion for j analogous to the Euler equation:
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∂

∂t
j = f cl(j, �) + Q +O(1/

√
N) , (20)

where the classical force density term

f cl(j, �) = −v [∇ · (�v)]− �(v ·∇)v + �∇
(

1
2

∇2√�
√
�

− Vtrap − g�

)
. (21)

Here, “classical” means that the force density contains no explicit quantum
fluctuation terms (i.e., only those absorbed in the full density and full current),
and in addition just the “quantum pressure”, which already occurs on the
mean-field level. Formulation in terms of the conventional Euler equation,
i.e., using a convective derivative of the velocity defined by j = ρv giving the
acceleration, yields

(
∂

∂t
+ v ·∇

)
v = −∇

(
Vtrap + g�− 1

2
∇2√�
√
�

)
+

Q

�
+O(N−3/2) . (22)

The quantum backreaction force density Q can now be calculated by com-
paring the two equations above and expressing ∂j/∂t in terms of the field
operators via Eqs. (11) and (16)

∂

∂t
j =

1
4

〈
Ψ̂ †∇3Ψ̂ − (∇2Ψ̂ †)∇Ψ̂ + H.c.

〉

−
〈
Ψ̂ †Ψ̂

〉
∇Vtrap −

1
2g

∇
〈
g2(Ψ̂ †)2Ψ̂2

〉
. (23)

After insertion of the mean-field expansion (12) , we obtain the leading con-
tributions in the Thomas-Fermi limit

Q = ∇ ·
(
v ⊗ jχ + jχ ⊗ v − �χv ⊗ v

)
− 1

2g
∇
(
g2
〈
2|ψc|2χ̂†χ̂+ ψ2

c (χ̂†)2 + (ψ∗
c )2χ̂2

〉)

−1
2

∇ ·
〈
(∇χ̂†)⊗∇χ̂+ H.c.

〉
, (24)

with �χ =
〈
χ̂†χ̂

〉
and jχ = �

〈
χ̂†∇χ̂

〉
. Under the assumption that the relevant

length scales λ for variations of, e.g., � and g, are much larger than the healing
length ξ = (g�)−1/2, we have neglected terms containing quantum pressure
contributions ∇2� and [∇�]2, which amounts to the Thomas-Fermi or local-
density approximation. These contributions would, in particular, spoil the
effective (local) geometry in Eq. (5) (the inclusion of the quantum pressure to
derive a “nonlocal metric” has been discussed in [40]).

3.2 Comparison with Effective-action Technique

To compare the expression for the backreaction force density derived from
the full dynamics of Ψ̂ (24) with the force obtained from Eq. (10), we have



Quantum Backreaction in Bose-Einstein Condensates 103

to identify the scalar field φ and the contravariant metric gµν . We already
know that phonon modes with wavelength λ� ξ are described by the action
in Eq. (5) in terms of the phase fluctuations φ provided that gµν is given by
(3), where Ac = cs/g and

√−g = c3s/g
2 = ρ2/cs in three spatial dimen-

sions. The density fluctuations δ� are related to the phase fluctuations φ via
δ� = −g−1(∂/∂t+ v ·∇)φ.

The variables η = {ρb, φb} or alternatively η = {ρb,∇φb} = {ρb,vb} in
(10) are then defined by the expectation values of density and phase operators
according to

Φ̂ = 〈Φ̂〉+ φ̂ = φb + φ̂ ,

�̂ = 〈�̂〉+ δ�̂ = �b + δ�̂ . (25)

The phase operator can formally be introduced via the following ansatz for
the full field operator

Ψ̂ = eiΦ̂
√
�̂ . (26)

Since Φ̂ and �̂ do not commute, other forms such as Ψ̂ =
√
�̂ eiΦ̂ would not

generate a self-adjoint Φ̂ (and simultaneously satisfy Ψ̂ †Ψ̂ = �̂). Note that,
in contrast to the full density which is a well-defined and measurable quan-
tity, the velocity potential, Φ̂, is not [41]. This can be seen as follows. The
commutator between density and phase operators

[�̂(r), Φ̂(r′)] = iδ(r − r′) , (27)

yields, if one takes, on both sides, matrix elements in the number basis of the
space integral over r for a given volume V in which r′ is situated,

(N −N ′)〈N |Φ̂(r′)|N ′〉 = iδNN ′ , (28)

where N and N ′ are two possible values for the number of particles in V. This
is an inconsistent relation for N,N ′ positive semidefinite and discrete (which
the very existence of particles requires), most obviously for N = N ′. The
commutator therefore makes sense only if it is understood to be effectively
coarse-grained over a sub-volume V with large enough number of particles
N � 1, such that the inconsistency inherent in (28) becomes asymptotically
irrelevant. It cannot be defined consistently locally, i.e., in arbitrarily small
volumina, where there is just one particle or even none, or when the number
fluctuations in larger volumina V are large, such that the probability to have
a very small number of particles in V is not negligible [42].

The action in terms of the total density � and the variable Φ reads (ne-
glecting the quantum pressure term, i.e., in the Thomas-Fermi limit)

L = −�
(
∂

∂t
Φ+

1
2
(∇Φ)2

)
− ε[�]− Vtrap� , (29)
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with ε[�] denoting the internal energy density. The quantum corrections to the
Bernoulli equation up to second order in the fluctuations, using the effective-
action method in Eq. (10) are then incorporated by writing (the background
density here equals the full density, � = �b)

∂

∂t
φb +

1
2
(∇φb)2 + h[�]− δAeff

δ�
= 0 , (30)

where h[�] = dε/d�+ Vtrap. We obtain, using (5),

δAeff

δ�
=
δAeff

δgµν

δgµν

δ�
=
√−g

2
〈T̂µν〉

δgµν

δ�
= −1

2
〈(∇φ̂)2〉 . (31)

Clearly, taking the gradient of this result we obtain a backreaction force which
markedly differs from the expression (24) derived in the previous subsec-
tion. Moreover, it turns out that the backreaction force density in Eq. (24)
contains contributions which are not part of the expectation value of the
pseudo-energy-momentum tensor, 〈T̂µν〉. For example, the phonon density
�χ contains 〈(δ�̂)2〉ren (where 〈. . . 〉ren means that the divergent c-number
χ̂χ̂† − χ̂†χ̂ = δ(0) has been subtracted already) which is part of 〈T̂µν〉ren,
but also 〈φ̂2〉ren which is not. [Note that 〈φ̂2〉ren cannot be cancelled by the
other contributions.] The expression 〈(∇χ̂†)⊗∇χ̂+ H.c.〉 in the last line
of Eq. (24) contains 〈∇φ̂⊗∇φ̂〉ren which does occur in 〈T̂µν〉ren, but also
〈∇δ�̂⊗∇δ�̂〉ren, which does not. One could argue that the latter term ought
to be neglected in the Thomas-Fermi or local-density approximation since it
is on the same footing as the quantum pressure contributions containing ∇2�
and [∇�]2 [which have been neglected in (24)], but it turns out that this
expectation value yields cutoff dependent contributions of the same order of
magnitude as the other terms, see Sect. 5 below.

4 Failure of Effective-action Technique

After having demonstrated the failure of the effective-action method for de-
ducing the quantum backreaction, let us study the reasons for this failure in
more detail. The full action governing the dynamics of the fundamental field
Ψ reads

LΨ = iΨ∗ ∂

∂t
Ψ − Ψ∗

(
−1

2
∇2 + Vtrap +

g

2
Ψ∗Ψ

)
Ψ . (32)

Linearization according to Ψ = ψc +χ yields the effective second-order action
generating the Bogoliubov-de Gennes equations (14)

Lχ
eff = iχ∗ ∂

∂t
χ− χ∗

(
−1

2
∇2 + Vtrap + 2g|ψ2

c |
)
χ− 1

2
[
g(ψ∗

c )2χ2 + H.c.
]
.

(33)
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If we start with the action (29) in terms of the total density � and the nonfun-
damental variable Φ, the quantum corrections to the equation of continuity
δAeff/δφb are reproduced correctly but the derived quantum backreaction con-
tribution to the Bernoulli equation, δAeff/δ�b, and therefore the backreaction
force, is wrong.

One now is led to the question why the effective-action method works for
the fundamental field Ψ and gives the correct expression for the backreaction
force, but fails for the non-fundamental variable Φ. The quantized fundamen-
tal field Ψ̂ satisfies the equation of motion (11) as derived from the above
action and possesses a well-defined linearization via the mean-field expansion
(12). One of the main assumptions of the effective-action method is a similar
procedure for the variable Φ, i.e., the existence of a well-defined and lineariz-
able full quantum operator Φ̂ satisfying the quantum Bernoulli equation (for
large length scales), cf. Eq. (30)

∂

∂t
Φ̂+

1
2
(∇Φ̂)2 + h[�̂] ?= 0 . (34)

The problem is that the commutator of �̂ and Φ̂ at the same position diverges,
cf. Eq. (27), and hence the quantum Madelung ansatz in Eq. (26) is singular.
As a result, the above quantum Bernoulli equation is not well-defined (in con-
trast to the equation of continuity), i.e., insertion of the quantum Madelung
ansatz in Eq. (26) into Eq. (11) generates divergences [41].

In order to study these divergences by means of a simple example, let us
consider a generalized Bose-Hubbard Hamiltonian [43], which considers bosons
sitting on a lattice with sites i, which can hop between nearest neighbor sites
and interact if at the same site:

Ĥ = −α
2

∑
〈ij〉

(Ψ̂ †
i Ψ̂j + H.c.) +

∑
i

(
βin̂i +

γ

2
n̂2

i

)
, (35)

where Ψ̂i is the annihilation operator for bosons at a given lattice site i, and
〈ij〉 denotes summation over nearest neighbors; n̂i = Ψ̂ †

i Ψ̂i is the so-called
filling factor (operator), equal to the number of bosons at the lattice site
i. The quantities βi multiplying the filling factor depend on the site index.
In the continuum limit, the lattice Hamiltonian (35) generates a version of
Eq. (11). Setting aD/2Ψ̂(xi) = Ψ̂i, where the Ψ̂(xi) are the continuum field
operators and a is the lattice spacing taken to zero (we consider for simplicity
a simple cubic lattice in D spatial dimensions), the effective mass is given by
1/m∗ = αa2: The bosons moving through the lattice obviously become the
heavier the smaller the hopping amplitude α becomes at given a. The coupling
constant is determined by g = γaD, and the trap potential is governed by
Vtrap(x) = g/2 + β(x)− α.

On the other hand, inserting the quantum Madelung ansatz employing a
phase operator, Eq. (26) in its lattice version, the problem of operator ordering
arises and the (for the Bernoulli equation) relevant kinetic energy term reads
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ĤΦ =
1
4

∑
i

√
n̂i(n̂i + 1) (∇Φ̂)2i + H.c. , (36)

with the replacement n̂i + 1 instead of n̂i being one effect of the non-commu-
tativity. In the superfluid phase with large filling n � 1, we therefore obtain
the following leading correction to the equation of motion

∂

∂t
Φ̂+

1
2
(∇Φ̂)2 + h[�̂] +

1
n̂

(∇Φ̂)2

16
1
n̂

= O
(

1
n3

)
. (37)

The Bernoulli equation in its quantum version thus receives corrections de-
pending on microscopic details like the filling of a particular site and is not of
the (conjectured) form (34).

By means of this simple example, we already see that the various limiting
procedures such as the quantization and subsequent mean-field expansion,
the variable transformation (Ψ∗, Ψ) ↔ (�, Φ), and the linearization for small
fluctuations, as well as continuum limit do not commute in general – which
explains the failure of the effective-action method for deducing the quantum
backreaction. The variable transformation (Ψ∗, Ψ) ↔ (�, Φ) is applicable to
the zeroth-order equations of motion for the classical background as well as
to the first-order dynamics of the linearized fluctuations – but the quantum
backreaction is a second-order effect, where the aforementioned difficulties,
such as the question of the choice of fundamental variables and their operator
ordering, arise.

5 Cutoff Dependence of Effective Action

Another critical issue for the applicability of the effective-action method is
the UV divergence of 〈T̂µν〉. Extrapolating the low-energy effective action in
Eq. (5) to large momenta k, the expectation values 〈δ�̂2〉 and 〈φ̂2〉 entering
�χ would diverge. For Bose-Einstein condensates, we may infer the deviations
from Eq. (5) at large k from the Bogoliubov-de Gennes equations (14). Assum-
ing a static and homogeneous background (which should be a good approxima-
tion at large k), a normal-mode expansion yields a Bogoliubov transformation
between the bare bosonic operators χ̂k and the quasiparticle operators âk, â†k:

χ̂k =

√
k2

2ωk

[(
ωk

k2 −
1
2

)
â†k +

(
ωk

k2 +
1
2

)
âk

]
, (38)

where the frequency ωk is determined by the Bogoliubov dispersion relation
for the dilute Bose gas, ω2

k = g�k2 + k4/4. The above form of the Bogoliubov
transformation results, after inversion, in the usual phonon quasiparticle op-
erators at low momenta, and gives χ̂k = âk at k →∞, i.e., the quasiparticles
and the bare bosons become, as required, identical at large momenta.
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Using a linear dispersion ω2
k ∝ k2 instead of the full Bogoliubov dispersion,

expectation values such as 〈χ̂†χ̂〉 would be UV divergent, but the correct
dispersion relation implies χ̂k ∼ â†k g�/k

2 + âk for large k2, and hence 〈χ̂†χ̂〉
is UV finite in three and lower spatial dimensions. Thus the healing length ξ
acts as an effective UV cutoff, kcut

ξ ≡ 1/ξ.
Unfortunately, the quadratic decrease for large k in Eq. (38), giving asymp-

totically χ̂k ∼ â†k g�/k
2 + âk, is not sufficient for rendering the other expec-

tation values (i.e., apart from �χ and jχ) in Eq. (24) UV finite in three spatial
dimensions. This UV divergence indicates a failure of the s-wave pseudo-
potential gδ3(r − r′) in Eq. (11) at large wavenumbers k and can be elim-
inated by replacing gδ3(r − r′) by a more appropriate two-particle interac-
tion potential Vint(r − r′), see [36]. Introducing another UV cutoff wavenum-
ber kcut

s related to the breakdown of the s-wave pseudo-potential, we obtain
〈(∇χ̂†)⊗∇χ̂+ H.c.〉 ∼ g2�2 kcut

s and 〈χ̂2〉 ∼ g� kcut
s .

In summary, there are two different cutoff wavenumbers: The first one,
kcut

ξ , is associated to the breakdown of the effective Lorentz invariance (change
of dispersion relation from linear to quadratic) and renders some – but not
all – of the naively divergent expectation values finite. The second wavenum-
ber, kcut

s , describes the cutoff for all (remaining) UV divergences. In dilute
Bose-Einstein condensates, these two scales are vastly different by defini-
tion. Because the system is dilute, the inverse range of the true potential
kcut

s ≡ 1/r0, must be much larger than the inverse healing length. Thus the
following condition of scale separation must hold:

kcut
UV = kcut

s � kcut
ξ = kcut

Lorentz . (39)

In terms of the length scales governing the system, using that kcut
ξ =

√
4πasρ,

in the dilute gas we must have the following condition fulfilled, 4πasr
2
0 
 d3,

where d = �−1/3 is the interparticle separation. Note that the opposite scale
separation relation, kcut

Lorentz � kcut
UV is very unnatural in the sense that every

quantum field theory which has the usual properties such as locality and
Lorentz invariance must have UV divergences (e.g., in the two-point function).

The renormalization of the cutoff-dependent terms is different for the two
cases: The kcut

s -contributions can be absorbed by a �-independent renormal-
ization of the coupling g [34, 36], whereas the kcut

ξ -contributions depend on
the density in a nontrivial way and thus lead to a quantum renormalization of
the effective equation of state. We supply an example for this renormalization
in the section to follow.

6 Static Example for the Backreaction Force

In order to provide an explicit example for the quantum backreaction term
in Eq. (24), without facing the above discussed UV problem, let us consider a
quasi-one-dimensional (quasi-1D) condensate [44, 45], where all the involved
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quantities are UV finite. In a quasi-1D condensate the perpendicular harmonic
trapping ω⊥ is much larger than the axial trapping ωz such that the conden-
sate assumes the shape of a strongly elongated cigar with all atomic motion in
the perpendicular direction frozen out, ω⊥ being much larger than the mean
energy per particle.

In accordance with general considerations [46], the phonon density �χ is
infrared (IR) divergent in one spatial dimension, therefore inducing finite-size
effects, i.e., a dependence of the various quantities of interest on the system
size. Nevertheless, in certain situations, we are able to derive a closed local
expression for the quantum backreaction term Q: Let us assume a completely
static condensate v = 0 in effectively one spatial dimension, still allowing for a
spatially varying density � and possibly also coupling g. Furthermore, since we
require that spatial variations of � and g occur on length scales λ much larger
than the healing length (Thomas-Fermi approximation), we keep only the
leading terms in ξ/λ
 1, i.e., the variations of � and g will be neglected in the
calculation of the expectation values. In this case, the quantum backreaction
term Q simplifies considerably and yields (in effectively one spatial dimension,
where g ≡ g1D and � ≡ �1D now both refer to the 1D quantities)

Q = −∇
〈
(∇χ̂†)∇χ̂

〉
− 1

2g
∇
(
g2�

〈
2χ̂†χ̂+ (χ̂†)2 + χ̂2

〉)

= −∇
(

1
3π

(g�)3/2

)
+

1
2πg

∇
(
g5/2�3/2

)
+O(ξ2/λ2)

=
�

2π
∇
√
g3�+O(ξ2/λ2) . (40)

It turns out that the IR divergences of 2〈χ̂†χ̂〉 and 〈(χ̂†)2 + χ̂2〉 cancel each
other such that the resulting expression is not only UV but also IR finite.
Note that the sign of Q is positive and hence opposite to the contribution of
the pure phonon density 〈χ̂†χ̂〉, which again illustrates the importance of the
“anomalous” term 〈(χ̂†)2 + χ̂2〉.

A possible experimental signature of the quantum backreaction term Q
calculated above, is the change incurred on the static Thomas-Fermi solution
of the Euler equation (22) for the density distribution (cf. [35, 36])

�1D =
µ− Vtrap

g1D
+

√
µ− Vtrap

2π
+O(1/

√
N) , (41)

with µ denoting the (constant) chemical potential. The classical [O(N)] den-
sity profile �cl = (µ− Vtrap)/g1D acquires nontrivial quantum [O(N0)] cor-
rections �Q =

√
µ− Vtrap/2π, where the small parameter is the ratio of the

interparticle distance 1/� = O(1/N) over the healing length ξ = O(N0). Note
that the quantum backreaction term �Q in the above split � = �cl + �Q should
neither be confused with the phonon density �χ in � = �c + �χ (remember that
�χ is IR divergent and hence contains finite-size effects) nor with the quantum
pressure contribution ∝∇2√� in the Euler type Eq. (22).
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Evaluating the change ∆R of the Thomas-Fermi size (half the full length),
where µ = Vtrap, of a quasi-1D Bose-Einstein condensate induced by back-
reaction, from Eq. (41) we get ∆R = −2−5/2(ω⊥/ωz)as. Here, the quasi-
1D coupling constant g1D is related to the 3D s-wave scattering length
as and the perpendicular harmonic trapping ω⊥ by g1D = 2asω⊥ (provided
as 
 a⊥ = 1/

√
ω⊥ [44]). In units of the classical size Rcl = (3asNω⊥/ω

2
z)1/3,

we have
∆R

Rcl
= − 1

4
√

2

(
1

3N

)1/3(
ω⊥
ωz

as

az

)2/3

, (42)

where az = 1/
√
ωz describes the longitudinal harmonic trapping length. In

quasi-1D condensates, backreaction thus leads to a shrinking of the cloud rela-
tive to the classical expectation – whereas in three spatial dimensions we have
the opposite effect [4,36]. In one dimension, we thus obtain a softening of the
quantum renormalized equation of state of the gas; conversely, in three spa-
tial dimensions the effective equation of state becomes stiffer due to quantum
fluctuations.

For reasonably realistic experimental parameters, the effect of quantum
backreaction on the equation of state should be measurable; for N � 103,
ω⊥/ωz � 103, and as/az � 10−3, we obtain |∆R/Rcl| � 1%.

7 Conclusion

By explicit analysis of the analytically tractable case of a dilute Bose gas
in the mean-field approximation, we have demonstrated the following. Even
given that the explicit form of the quantum backreaction terms depends on
the definition of the classical background, the effective-action method does not
yield the correct result in the general case (which is, in particular, independent
of the choice of variables). The knowledge of the classical (macroscopic) equa-
tion of motion – such as the Bernoulli equation – may be sufficient for deriving
the first-order dynamics of the linearized quantum fluctuations (phonons), but
the quantum backreaction as a second-order effect cannot be obtained with-
out further knowledge of the microscopic structure (which reflects itself, for
example, in the operator ordering imposed). It is tempting to compare these
findings to gravity, where we also know the classical equations of motion only

Rµν −
1
2

gµν R =
8πG
c4

Tµν , (43)

which – in analogy to the Bernoulli equation – might yield the correct first-
order equations of motion for the linearized gravitons, but perhaps not their
(second-order) quantum backreaction. Another potentially interesting point of
comparison is the existence of two different high-energy scales – one associated
to the breakdown of Lorentz invariance kcut

ξ = kcut
Lorentz and the other one,

kcut
UV = kcut

s , to the UV cutoff introduced by the true interaction potential
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range. The question then poses itself whether one of the two cutoff scales (or
in some sense both of them) correspond to the Planck scale in gravity.

The dominant O(ξ/λ) quantum backreaction contributions like those in
Eq. (41) depend on the healing length as the lower UV cutoff and hence can-
not be derived from the low-energy effective action in Eq. (5) using a covari-
ant (i.e., cutoff independent) regularization scheme, which does not take into
account details of microscopic physics (represented, for example, in the quasi-
particle dispersion relation). Note that the leadingO(ξ/λ) quantum correction
to the pressure could be identified with a cosmological term, 〈T̂µν〉 = Λ gµν

in Eq. (10), provided that the cosmological “constant” Λ is not constant but
depends on g and �. Note that in general relativity, the Einstein equations
demand Λ to be constant, due to the equivalence principle and the resulting
requirement that the metric be parallel-transported, ∇µgµν = 0.

As became evident, the knowledge of the expectation value of the pseudo-
energy-momentum tensor 〈T̂µν〉 is not sufficient for determining the quantum
backreaction effects in general. Even though 〈T̂µν〉 is a useful concept for de-
scribing the phonon kinematics (at low energies), we have seen that it does not
represent the full dynamics of the fluid dynamical variables defined in terms of
the fundamental quantum field Ψ̂ . Related limitations of the classical pseudo-
energy-momentum tensor, in particular the background choice dependence of
the description of the second-order effect of the exchange of energy and mo-
mentum between excitations and that background, and the resulting form of
the conservation laws, have been discussed in [27].

In general, the quantum backreaction corrections to the Euler equation
in Eq. (22) cannot be represented as the gradient of some local potential,
cf. Eq. (24). Hence they may effectively generate vorticity and might serve as
the seeds for vortex nucleation from the vortex vacuum.

In contrast to the three-dimensional case (see, e.g., [35, 36]), the quan-
tum backreaction corrections given by Eq. (40) diminish the pressure in con-
densates that can be described by Eq. (11) in one spatial dimension (quasi-
1D case). This is a direct consequence of the so-called “anomalous” term
〈(χ̂†)2 + χ̂2〉 in Eq. (40), which – together with the cancellation of the IR di-
vergence – clearly demonstrates that it cannot be neglected in general. We
emphasize that even though Eqs. (40)–(42) describe the static quantum back-
reaction corrections to the ground state, which can be calculated by an al-
ternative method [36] as well, the expression in Eq. (24) is valid for more
general dynamical situations, such as rapidly expanding condensates. Quan-
tum backreaction can thus generally not be incorporated by rewriting the
Euler equation in terms of a renormalized chemical potential. While the sta-
tic quantum backreaction corrections to the ground state can be absorbed by
a redefinition of the chemical potential µ(�) determining a quantum renor-
malized (barotropic) equation of state p(�), this is not possible for the other
terms in Eq. (24), like the quantum friction-type terms depending on j ⊗ v.

We have derived, from the microscopic physics of dilute Bose-Einstein
condensates, the backreaction of quantum fluctuations onto the motion of the
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full fluid and found a quantum backreaction force that is potentially exper-
imentally observable in existing condensates. We observed a failure of the
effective-action technique to fully describe the backreaction force in Eq. (24),
and a cutoff dependence of backreaction due to the breakdown of covariance
at high energies. Whether similar problems, in particular the question of the
correct choice of the fundamental variables and the related operator ordering
issues, beset the formulation of a theory of “real” (quantum) gravity remains
an interesting open question.

References

1. C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, 1973)
2. J. R. Anglin and W. Ketterle, “Bose-Einstein condensation of atomic gases”,

Nature 416, 211 (2002)
3. A. J. Leggett, “Bose-Einstein condensation in the alkali gases: Some fundamental

concepts”, Rev. Mod. Phys. 73, 307 (2001)
4. F. Dalfovo, S. Giorgini, L. P. Pitaevskǐı, and S. Stringari, “Theory of Bose-
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and R. Schützhold, “Aspects of Cosmic Inflation in Expanding Bose-Einstein
Condensates”, New J. Phys. 7, 248.1–248.17 (2005)
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40. C. Barceló, S. Liberati, and M. Visser, “Analogue gravity from Bose-Einstein
condensates”, Class. Quantum Grav. 18, 1137 (2001)

41. We note that the problem that the “canonical” commutator between density
and phase operators leads to fundamental inconsistencies was first pointed out
in the context of superfluid hydrodynamics by H. Fröhlich, “A contradiction
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Abstract. Analogue space-times are powerful models for probing the fundamen-
tal physical aspects of geometry – while one is most typically interested in ulti-
mately reproducing the pseudo–Riemannian geometries of interest in general rela-
tivity and cosmology, analogue models can also provide useful physical probes of
more general geometries such as pseudo–Finsler space-times. In this chapter we
shall see how a 2-component Bose–Einstein condensate can be used to model a spe-
cific class of pseudo–Finsler geometries, and after suitable tuning of parameters,
both bi-metric pseudo–Riemannian geometries and standard single metric pseudo–
Riemannian geometries, while independently allowing the quasi-particle excitations
to exhibit a “mass”. Furthermore, when extrapolated to extremely high energy the
quasi-particles eventually leave the phononic regime and begin to act like free bosons.
Thus this analogue space-time exhibits an analogue of the “Lorentz violation” that
is now commonly believed to occur at or near the Planck scale defined by the in-
terplay between quantum physics and gravitational physics. In the 2-component
Bose–Einstein analogue space-time we will show that the mass generating mech-
anism for the quasi-particles is related to the size of the Lorentz violations. This
relates the “mass hierarchy” to the so-called “naturalness problem”. In short the
analogue space-time based on 2-component Bose–Einstein condensates exhibits a
very rich mathematical and physical structure that can be used to investigate many
issues of interest to the high-energy physics, cosmology, and general relativity com-
munities.

1 Introduction and Motivation

Analogue models of curved space-time are interesting for a number of rea-
sons [1]: Sometimes the analogue space-time helps us understand an aspect
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of general relativity, sometimes general relativity helps us understand the
physics of the analogue space-time, and sometimes we encounter somewhat
unusual mathematical structures not normally part of the physics mainstream,
with the payoff that one might now develop new opportunities for exploiting
the traditional cross-fertilization between theoretical physics and mathemat-
ics [2–4].

Specifically, in this chapter we will discuss an analogue space-time based
on the propagation of excitations in a 2-component Bose–Einstein condensate
(BEC) [5–10]. This analogue space-time has a very rich and complex structure.
In certain portions of parameter space the most natural interpretation of the
geometry is in terms of a specific class of pseudo–Finsler space-times, and
indeed we will see how more generally it is possible to associate a pseudo–
Finsler space-time with the leading symbol of a wide class of hyperbolic partial
differential equations. In other parts of parameter space, the most natural
interpretation of the geometry is in terms of a bi-metric space-time, where
one has a manifold that is simultaneously equipped with two distinct pseudo-
Riemannian metric tensors. Further specialization in parameter space leads
to a region where a single pseudo-Riemannian metric tensor is encountered
– this mono-metric regime corresponds to Lorentzian space-times of the type
encountered in standard general relativity and cosmology [11–14, 23]. Thus
the analogue space-time based on 2-component BECs provides models not
just for standard general relativistic space-times, but also for the more general
bi-metric, and even more general pseudo–Finsler space-times.

Additionally, the 2-BEC system permits us to provide a mass-generating
mechanism for the quasi-particle excitations [5,6]. The specific mass-generating
mechanism arising herein is rather different from the Higgs mechanism of the
standard model of particle physics, and provides an interesting counterpoint
to the more usual ways that mass-generation is achieved. Furthermore, at
short distances, where the “quantum pressure” term can no longer be ne-
glected, then even in the mono-metric regime one begins to see deviations
from “Lorentz invariance” – and these deviations are qualitatively of the type
encountered in “quantum gravity phenomenology”, with the interesting prop-
erty that the Lorentz violating physics is naturally suppressed by powers of the
quasi-particle mass divided by the mass of the fundamental bosons that form
the condensate [7–10]. So in these analogue systems the mass-generating mech-
anism is related to the “hierarchy problem” and the suppression of Lorentz-
violating physics. The 2-BEC model also allows us to probe the “universality”
(or lack thereof) in the Lorentz violating sector [7–10]. More generally, as one
moves beyond the hydrodynamic limit in generic pseudo–Finsler parts of pa-
rameter space, one can begin to see hints of geometrical structure even more
general than the pseudo–Finsler geometries.

While we do not wish to claim that the 2-BEC analogue space-time of this
chapter is necessarily a good model for the real physical space-time arising
from the putative theory of “quantum gravity” (be it string-model, loop-
variable, or lattice based), it is clear that the 2-BEC analogue space-time is an
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extraordinarily rich mathematical and physical structure that provides many
interesting hints regarding the sort of kinematics and dynamics that one might
encounter in a wide class of models for “quantum gravity phenomenology”.
This is the fundamental reason for our interest in this model, and we hope we
can likewise interest the reader in this system and its relatives.

2 Theory of the 2-Component BEC

The basis for our analogue model is an ultra-cold dilute atomic gas of N
bosons, which exist in two single-particle states |A〉 and |B〉. For example, we
consider two different hyperfine states, |F = 1,mF = −1〉 and |F = 2,mF =
1〉 of 87Rb [15,16]. They have different total angular momenta F and therefore
slightly different energies. That permits us, from a theoretical point of view,
to keep mA �= mB, even if they are very nearly equal (to about one part in
1016). At the assumed ultra-cold temperatures and low densities the atoms
interact only via low-energy collisions, and the 2-body atomic potential can
be replaced by a contact potential. That leaves us with with three atom-
atom coupling constants, UAA, UBB, and UAB, for the interactions within and
between the two hyperfine states. For our purposes it is essential to include
an additional laser field, that drives transition between the two single-particle
states.

In Fig. 1 the energy levels for different hyperfine states of 87Rb, and pos-
sible transitions involving three-level processes, are schematically explained.
A more detailed description on how to set up an external field driving the
required transitions can be found in [17].

2.1 Gross–Pitaevskii Equation

The rotating-frame Hamiltonian for our closed 2-component system is given
by:1

Ĥ =
∫

dr

{ ∑
i=A,B

(
−Ψ̂ †

i

�
2∇2

2mi
Ψ̂i + Ψ̂ †

i Vext,i(r)Ψ̂i

)

+
1
2

∑
i,j=A,B

(
UijΨ̂

†
i Ψ̂

†
j Ψ̂iΨ̂j + λΨ̂ †

i (σx)ijΨ̂j

)}
, (1)

with the transition rate λ between the two hyperfine states. Here Ψ̂i(r) and
Ψ̂ †

i (r) are the usual boson field annihilation and creation operators for a single-
particle state at position r, and σx is the usual Pauli matrix. For temperatures
1 In general, it is possible that the collisions drive coupling to other hyperfine

states. Strictly speaking the system is not closed, but it is legitimate to neglect
this effect [18].
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Fig. 1. The horizontal lines indicate the hyperfine states of 87Rb. The arrows rep-
resent two laser fields – with the two frequencies Ω1 and Ω2 – necessary to drive
transitions between the two trapped states |F = 1, mF = −1〉 and |F = 2, mF = 1〉,
where the frequency difference corresponds to the energy difference of the two hy-
perfine states. This is realized by a three-level atomic system, because the hyperfine
states must be coupled over an intermediate level, that has to lie somewhat below
the excited |e〉 states, as indicated by ∆

at or below the critical BEC temperature, almost all atoms occupy the spatial
modes ΨA(r) and ΨB(r). The mean-field description for these modes,

i � ∂tΨi =
[
− �

2

2mi
∇2 + Vi − µi + Uii |Ψi|2 + Uij |Ψj |2

]
Ψi + λΨj , (2)

are a pair of coupled Gross–Pitaevskii equations (GPE): (i, j) → (A,B) or
(i, j) → (B,A).

2.2 Dynamics

In order to use the above 2-component BEC as an analogue model, we have
to investigate small perturbations (sound waves) in the condensate cloud.2

The excitation spectrum is obtained by linearizing around some background
densities ρi0 and phases θi0, using:

2 The perturbations amplitude has to be small compared to the overall size of the
condensate cloud, so that the system remains in equilibrium.
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Ψi =
√
ρi0 + ε ρi1 e

i(θi0+ε θi1) for i = A, B . (3)

To keep the analysis as general as possible, we allow the two initial background
phases to be independent from each other, and define

δAB ≡ θA0 − θB0 , (4)

as their difference.
A tedious calculation [5–7] shows that it is convenient to introduce the

following 2× 2 matrices: An effective coupling matrix,

Ξ̂ = Ξ + X̂, (5)

where we introduced the energy-independent matrix

Ξ ≡ 1
�

[
ŨAA ŨAB

ŨAB ŨBB

]
. (6)

This matrix contains the quantities

ŨAA ≡ UAA −
λ cos δAB

√
ρA0ρB0

2
1
ρ2
A0

, (7)

ŨBB ≡ UBB −
λ cos δAB

√
ρA0ρB0

2
1
ρ2
B0

, (8)

ŨAB ≡ UAB +
λ cos δAB

√
ρA0ρB0

2
1

ρA0 ρB0
. (9)

A second matrix, denoted X̂, contains differential operators Q̂X1 – these are
the second-order differential operators obtained from linearizing the quantum
potential:

VQ(ρX) ≡ − �
2

2mX

(∇2√ρX√
ρX

)
= − �

2

2mX

(
∇2√ρX0 + ερX1√

ρX0 + ερX1

)
(10)

= − �
2

2mX

(
Q̂X0(ρX0) + ε Q̂X1(ρX1)

)
. (11)

The quantity Q̂X0(ρX0) corresponds to the background value of the quantum
pressure, and contributes only to the background equations of motion – it
does not affect the fluctuations. Now in a general background

Q̂X1(ρX1) =
1
2

{
(∇ρX0)2 − (∇2ρX0)ρX0

ρ3
X0

− ∇ρX0

ρ2
X0

∇+
1
ρX0

∇2

}
ρX1 , (12)

and we define the matrix X̂ to be

X̂ ≡ −�

2

[
Q̂A1
mA

0

0 Q̂B1
mB

]
. (13)
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Given the background homogeneity that will be appropriate for later parts
of the current discussion, this will ultimately simplify to

Q̂X1(ρX1) =
1

2ρX0
∇2ρX1 , (14)

in which case

X̂ = −�

4

[ 1
mA ρA0

0
0 1

mB ρB0

]
∇2 = −X ∇2 . (15)

Without transitions between the two hyperfine states, when λ = 0, the
matrix Ξ only contains the coupling constants Ξij → Uij/�. While Ξ is inde-
pendent of the energy of the perturbations, the importance of X̂ increases with
the energy of the perturbation. In the so-called hydrodynamic approximation
X̂ can be neglected, effectively X̂ → 0 and Ξ̂ → Ξ.

Besides the interaction matrix, we also introduce a transition matrix,

Λ ≡ −
2λ cos δAB

√
ρi0 ρj0

�

[
+1 −1
−1 +1

]
(16)

and a mass-density matrix,

D ≡ �

[ ρA0
mA

0
0 ρB0

mB

]
≡ �

[
dA 0
0 dB

]
. (17)

The final step is to define two column vectors,

θ̄ ≡ [θA1, θB1]T , (18)

and
ρ̄ ≡ [ρA1, ρB1]T . (19)

We then obtain two compact equations for the perturbation in the phases and
densities:

˙̄θ = − Ξ̂ ρ̄− V · ∇θ̄ + Θ θ̄, (20)
˙̄ρ = −∇ ·

(
D ∇θ̄ + ρ̄ V

)
− Λ θ̄ −ΘT ρ̄ . (21)

Here the background velocity matrix simply contains the two background
velocities of each condensate,

V =
[

vA0 0
0 vB0

]
, (22)

with two possibly distinct background velocities,

vA0 =
�

mA
∇θA0 ,

vB0 =
�

mB
∇θB0 .

(23)
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Additionally we also introduce the matrix Θ, which depends on the difference
of the initial phases and is defined as

Θ ≡ λ sin δAB

�




+
√

ρB0
ρA0

−
√

ρB0
ρA0

+
√

ρA0
ρB0

−
√

ρA0
ρB0


 . (24)

Now combine these two equations into one:

∂t(Ξ̂−1 ˙̄θ) = − ∂t

(
Ξ̂−1 V · ∇θ̄

)
−∇(V Ξ̂−1 ˙̄θ)

+ ∇ ·
[(
D − V Ξ̂−1 V

)
∇θ̄
]

+ Λ θ̄ (25)

+ K θ̄ +
1
2
{
Γa∂aθ̄ + ∂a(Γaθ̄)

}
,

where the index a runs from 0–3 (that is, over both time and space), and we
now define

Γt = Ξ̂−1Θ−ΘT Ξ̂−1, (26)
Γi = V Ξ̂−1Θ−ΘT Ξ̂−1V , (27)

and

K = ΘT Ξ̂−1Θ +
1
2
∂t(Ξ̂−1Θ + ΘT Ξ̂−1) +

1
2
∇(V Ξ̂−1Θ + ΘT Ξ̂−1V ) .

(28)

Note that the Γa matrices are antisymmetric in field-space (A ↔ B), while
the matrix K is symmetric. Also, both Γa → 0 and K→ 0 as δAB → 0.

Our first goal is to show that equation (25), which fundamentally describes
quasi-particle excitations interacting with a condensed matter system in the
mean-field approximation, can be given a physical and mathematical interpre-
tation in terms of a classical background geometry for massless and massive
particles propagating through an analogue space-time [2–4,19]. This analogy
only holds (at least in its cleanest form) in the so-called hydrodynamic limit
Ξ̂ → Ξ, which limit is directly correlated with the healing length which we
shall now introduce.

2.3 Healing Length

The differential operator Q̂X1 that underlies the origin of the X̂ contribution
above is obtained by linearizing the quantum potential

VQ(ρX) ≡ − �
2

2mX

(∇2√ρX√
ρX

)
(29)
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which appears in the Hamilton–Jacobi equation of the BEC flow. This quan-
tum potential term is suppressed by the smallness of �, the comparative large-
ness of mX , and for sufficiently uniform density profiles. But of course in any
real system the density of a BEC must go to zero at the boundaries of its
electro-magnetic trap (given that ρX = |ψX(x, t)|2). In a 1-component BEC
the healing length characterizes the minimal distance over which the order
parameter goes from zero to its bulk value. If the condensate density grows
from zero to ρ0 within a distance ξ the quantum potential term (non local)
and the interaction energy (local) are respectively Ekinetic ∼ �

2/(2mξ2) and
Einteraction ∼ 4π�

2aρ0/m. These two terms are comparable when

ξ = (8πρ0a)−1/2, (30)

where a is the s-wave scattering length defined as

a =
m U0

4π�2
. (31)

Note that what we call U0 in the above expression is just the coefficient of the
non-linear self-coupling term in the Gross–Pitaevskii equation, i.e., just UAA

or UBB if we completely decouple the 2 BECs (UAB = λ = 0).
Only for excitations with wavelengths much larger than the healing length

is the effect of the quantum potential negligible. This is called the hydrody-
namic limit because the single–BEC dynamics is then described by the con-
tinuity and Hamilton–Jacobi equations of a super-fluid, and its excitations
behave like massless phononic modes. In the case of excitations with wave-
lengths comparable with the healing length this approximation is no longer
appropriate and deviations from phononic behaviour will arise.

Such a simple discrimination between different regimes is lost once one
considers a system formed by two coupled Bose–Einstein condensates. One
is forced to introduce a generalization of the healing ξ length in the form
of a “healing matrix”. If we apply the same reasoning used above for the
definition of the “healing length” to the 2-component BEC system we again
find a functional form like that of equation (30) however we now have the
crucial difference that both the density and the scattering length are replaced
by matrices. In particular, we generalize the scattering length a to the matrix
A:

A =
1

4π�2

[√
mA 0
0

√
mB

] [
ŨAA ŨAB

ŨAB ŨBB

] [√
mA 0
0

√
mB

]
. (32)

Furthermore, from (30) a healing length matrix Y can be defined by

Y −2 =
2
�2

[√
ρA0mA 0

0
√
ρB0mB

] [
ŨAA ŨAB

ŨAB ŨBB

] [√
ρA0mA 0

0
√
ρB0mB

]
.

(33)
That is, in terms of the matrices we have so far defined:
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Y −2 =
1
2
X−1/2 Ξ X−1/2; Y 2 = 2 X1/2 Ξ−1 X1/2. (34)

Define “effective” scattering lengths and healing lengths for the 2-BEC system
as

aeff =
1
2

Tr[A] =
mAŨAA +mBŨBB

8π�2
, (35)

and

ξ2eff =
1
2

Tr[Y 2] = Tr[XΞ−1] =
�

2[ŨBB/(mAρA0) + ŨAA/(mBρB0)]
4(ŨAAŨBB − Ũ2

AB)
. (36)

That is

ξ2eff =
�

2[mAρA0ŨAA +mBρB0ŨBB]
4mAmBρA0ρB0 (ŨAAŨBB − Ũ2

AB)
. (37)

Note that if the two components are decoupled and tuned to be equivalent to
each other, then these effective scattering and healing lengths reduce to the
standard one-component results.

3 Emergent Space-time at Low Energies

The basic idea behind analogue models is to re-cast the equation for excita-
tions in a fluid into the equation describing a massless or massive scalar field
embedded in a pseudo–Riemannian geometry. Starting from a two component
superfluid we are going to show that it is not only possible to obtain a massive
scalar field from such an analogue model, in addition we are also able to model
much more complex geometries. In Fig. 2 we illustrate how excitations in a
2-component BEC are associated with various types of emergent geometry.

Most generally, we show that excitations in a 2-component BEC (in the
hydrodynamic limit) can be viewed as propagating through a specific class
of pseudo–Finsler geometry. As additional constraints are placed on the BEC
parameter space, the geometry changes from pseudo–Finsler, first to bi-metric,
and finally to mono-metric (pseudo–Riemannian, Lorentzian) geometry. This
can be accomplished by tuning the various BEC parameters, such as the
transition rate λ, the background velocities vA0, vB0, the background densities
ρA0, ρB0, and the coupling between the atoms UAA, UBB and UAB.

At first, it might seem to be quite an artificial thing to impose such con-
straints onto the system. But if one considers that the two macroscopic wave
functions represent two interacting classical fields, it is more or less obvious
that this is the only way in which to enforce physical constraints onto the
fields themselves, and on the way they communicate with each other.
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Fig. 2. The dependence of the emergent geometry on the 2-component BEC para-
meters

3.1 Pseudo-Finsler Geometry

In the hydrodynamic limit (Ξ̂ → Ξ), it is possible to simplify equation (25) –
without enforcing any constraints on the BEC parameters – if we adopt
a (3+1)-dimensional “space-time” notation by writing xa = (t, xi), with
i ∈ {1, 2, 3} and a ∈ {0, 1, 2, 3}. Then equation (25) can be very compactly
rewritten as [2, 3]:

∂a

(
fab ∂bθ̄

)
+ (Λ+ K) θ̄ +

1
2
{
Γa ∂aθ̄ + ∂a(Γaθ̄)

}
= 0 . (38)

The object fab is a 4 × 4 space-time matrix (actually a tensor density), each
of whose components is a 2 × 2 matrix in field-space – equivalently this can
be viewed as a 2 × 2 matrix in field-space each of whose components is a
4 × 4 space-time tensor density. By inspection this is a self-adjoint second-
order linear system of PDEs. The space-time geometry is encoded in the
leading-symbol of the PDEs, namely the fab, without considering the other
subdominant terms. That this is a sensible point of view is most easily seem by
considering the usual curved-space-time d’Alembertian equation for a charged
particle interacting with a scalar potential in a standard pseudo–Riemannian
geometry

1√−g [∂a − iAa]
(√
−ggab[∂b − iAb]θ

)
+ V θ = 0 (39)

from which it is clear that we want to make the analogy
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fab ∼
√
−g gab (40)

as the key quantity specifying the geometry. In addition

Γa ∼ iAa and Λ+ K ∼ V − gabAaAb (41)

so that Γa is analogous to a vector potential and Λ (plus corrections) is related
to the scalar potential V – in a translation invariant background this will
ultimately provide a mass term.

Specifically in the current 2-BEC system we have

fab =
(

−Ξ−1 −(V Ξ−1)T

− V Ξ−1 D − V Ξ−1V T

)
, (42)

where

V T =
[

vT
A0 0
0 vT

B0

]
(43)

is a 2 × 2 matrix in field space that is also a row vector in physical 3-space.
Overall, this does look like a rather complicated object. However, it is possible
to re-write the 4 × 4 geometry containing 2 × 2 matrices as its elements, in
form of a single (2 · 4)× (2 · 4) matrix.3 Explicitly we have4

fab =



Ξ−1

11

(
−1 −vT

A0

−vA0
dA

Ξ−1
11
δij − vA0v

T
A0

)
Ξ−1

12

(
1 vT

B0

vA0 vA0v
T
B0

)

Ξ−1
21

(
1 vT

A0

vB0 vB0v
T
A0

)
Ξ−1

22

(
−1 −vT

B0

−vB0
dB

Ξ−1
22
δij − vB0v

T
B0

)


 ,

(44)

which we can re-write as

f =
[
−Ξ−1

11 V1VT
1 +D11h −Ξ−1

12 V1VT
2 +D12h

−Ξ−1
21 V2VT

1 +D21h −Ξ−1
22 V2VT

2 +D22h

]
, (45)

where

Va
1 :=

(
1,vi

A0

)
, (46)

Va
2 :=

(
1,vi

B0

)
, (47)

and
hab := diag(0, 1, 1, 1) . (48)

Even simpler is the form
3 This result can be generalized for n-component systems. Any 4 × 4 geometry

obtained from a n-component system can be re-written as a single (n · 4)× (n · 4)
matrix.

4 Note Ξ12 = Ξ21, so Ξ−1
12 = Ξ−1

21 .
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f =
[
−Ξ−1

11 V1VT
1 −Ξ−1

12 V1VT
2

−Ξ−1
21 V2VT

1 −Ξ−1
22 V2VT

2

]
+D ⊗ h . (49)

The key point is that this allows us to write

fab =
[
fab
11 fab

12

fab
21 fab

22

]
, (50)

where

fab
11 =−Ξ−1

11 Va
1Vb

1 +D11h
ab ,

fab
12 =−Ξ−1

12 Va
1Vb

2 ,

fab
21 =−Ξ−1

12 Va
2Vb

1 ,

fab
22 =−Ξ−1

22 Va
2Vb

2 +D22h
ab.

(51)

It is also possible to separate the representation of fab into field space and
position space as follows

fab =
[
Ξ−1

11 0
0 0

]
Va

1Vb
1 +

[
0 0
0 Ξ−1

22

]
Va

2Vb
2

+
[

0 Ξ−1
12

0 0

]
Va

1Vb
2 +

[
0 0

Ξ−1
21 0

]
Va

2Vb
1 +Dhab.

(52)

Why do we assert that the quantity fab defines a pseudo–Finsler geometry?
(Rather than, say, simply a 2× 2 matrix of ordinary Lorentzian geometries?)
To see the reason for this claim, recall the standard result [20] that the leading
symbol of a system of PDEs determines the “signal speed” (equivalently, the
characteristics, or the causal structure) [3]. Indeed if we consider the eikonal
approximation (while still remaining in the realm of validity of the hydrody-
namic approximation) then the causal structure is completely determined by
the leading term in the Fresnel equation

det[fabkakb] = 0 , (53)

where the determinant is taken in field space. (The quantity fabkakb is exactly
what is called the leading symbol of the system of PDEs, and the vanishing
of this determinant is the statement that high-frequency modes can propa-
gate with wave vector ka, thereby determining both characteristics and causal
structure.) In the 2-BEC case we can explicitly expand the determinant con-
dition as

(fab
11kakb)(fcd

22kckd)− (fab
12kakb)(fcd

21kckd) = 0 . (54)

Define a completely symmetric rank four tensor

Qabcd ≡ f
(ab
11 f

cd)
22 − f

(ab
12 f

cd)
21 , (55)

then the determinant condition is equivalent to
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Qabcdkakbkckd = 0 , (56)

which now defines the characteristics in terms of the vanishing of the pseudo-
co-Finsler structure

Q(k) = Qabcdkakbkckc , (57)

defined on the cotangent bundle. As explained in appendix A, this pseudo-
co-Finsler structure can be Legendre transformed to provide a pseudo–Finsler
structure, a Finslerian notion of distance

ds4 = gabcd dx
adxbdxcdxd . (58)

Here the completely symmetric rank 4 tensor gabcd determines the “sound
cones” through the relation ds = 0. It is interesting to note that a distance
function of the form

ds = 4
√
gabcd dxadxbdxcdxd (59)

first made its appearance in Riemann’s inaugural lecture of 1854 [21], though
he did nothing further with it, leaving it to Finsler to develop the branch of
geometry now bearing his name [22]. The present discussion is sufficient to
justify the use of the term “pseudo–Finsler” in the generic 2-BEC situation,
but we invite the more mathematically inclined reader to see appendix A for
a sketch of how much further these ideas can be taken.

The pseudo–Finsler geometry implicit in (50) is rather complicated com-
pared with the pseudo-Riemannian geometry we actually appear to be living
in, at least as long as one accepts standard general relativity as a good de-
scription of reality. To mimic real gravity, we need to simplify our model. It
is now time to use the major advantage of our analogue model, the ability to
tune the BEC parameters, and with it the 2-field background configuration.
The first order of business is to decouple fab in field space.

3.2 Bi-metric Geometry

The reduction of equation (52) to a diagonal representation in field space (via
an orthogonal rotation on the fields),

fab → diag
[
fab
11 , f

ab
22

]
= diag

[√
−g11 gab

11,
√
−g22 gab

22

]
, (60)

enforces a bi-metric structure onto the condensate. There are two ways to
proceed.

Distinct Background Velocities

For
V1 �= V2 , (61)

we require all five 2 × 2 matrices appearing in (52) to commute with each
other. This has the unique solution Ξ−1

12 = 0, whence
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ŨAB = 0 . (62)

We then get

fab =
[
Ξ−1

11 0
0 0

]
Va

1Vb
1 +

[
0 0
0 Ξ−1

22

]
Va

2Vb
2 +Dhab . (63)

Since D is a diagonal matrix this clearly represents a bi-metric geometry. The
relevant parameters are summarized in Table 1.

Equal Background Velocities

For
V1 = V2 ≡ V , (64)

we are still dealing with a pseudo–Finsler geometry, one which is now indepen-
dently symmetric in field space (fab = [fT ]ab), and position space fab = f ba.5

In terms of the BEC parameters that means we must set equal the two back-
ground velocities, vA0 = vB0 ≡ v0, and equation (52) is simplified to:

fab = −Ξ−1VaVb +Dhab . (65)

From the above, diagonalizability in field space now additionally requires the
commutator of the interaction and mass-density matrix to vanish:

[Ξ,D] = 0 =⇒ ŨAB(dA − dB) = 0 . (66)

Here, we have a choice between two tuning conditions that do the job:

ŨAB = 0 or dA = dB . (67)

Under the first option, where ŨAB = 0, the two off-diagonal elements in
equation (65) are simply zero, and we get the desired bi-metricity in the form6

fab =
[
Ξ−1

11 0
0 Ξ−1

22

]
VaVb +Dhab . (68)

Under the second option, for dA = dB ≡ d, we have D = d I. The situation
is now a bit trickier, in the sense that one has to diagonalize Ξ−1:

Ξ̃−1 = OT Ξ−1O

= diag
[

ŨAA+ŨBB+
√

(ŨAA−ŨBB)2+4Ũ2
AB

2 (ŨAAŨBB−Ũ2
AB)

,
ŨAA+ŨBB−

√
(ŨAA−ŨBB)2+4Ũ2

AB
2 (ŨAAŨBB−Ũ2

AB)

]
.

(69)

Once this is done, the way to proceed is to use the elements of Ξ̃−1 instead
of Ξ−1 in equation (68). The relevant parameters are summarized in Table 1.
5 The most general pseudo–Finsler geometry is symmetric under simultaneous ex-

change of field space and position space: fab = [fT ]ba.
6 We would like to stress that this constraint can be easily fulfilled, at least in the

special case δAB = 0, by tuning the transition rate λ, see equation (9).
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Table 1. If the pseudo–Finsler geometry decouples into two independent Lorentzian
geometries fab

11 =
√−g11g11 and fab

11 =
√−g11g11, with two distinct speed of sounds

c11 and c22, we are effectively dealing with a bi-metric Lorentzian metric. The table
shows the results from three different tuning scenarios, that are sufficient to drive the
2-component BEC from Finsler to bi-Lorentzian space-time. The rightmost column
dA = dB is addressed in [23] where the authors analyze cosmic inflation in such a
bi-metric system

Bi-metric Tuning Scenarios

vA0 �= vB0 vA0 = vB0

ŨAB = 0 ŨAB = 0 dA = dB

fab
11 ∝

(
−1 −vT

A0
−vA0 ŨA0dA hij − vA0vT

A0

) (
−1 −vT

0
−v0 ŨA0dA hij − v0vT

0

) (
−1 −vT

0
−v0 Ξ̃

−1
11 d hij − v0vT

0

)

fab
22 ∝

(
−1 −vT

B0
−vB0 ŨB0dB hij − vB0vT

B0

) (
−1 −vT

0
−v0 ŨB0dB hij − v0vT

0

) (
−1 −vT

0
−v0 Ξ̃

−1
22 d hij − v0vT

0

)

g11ab ∝
(
−(c2

11 − v2
A0) −vT

A0

−vA0 hij

) (
−(c2

11 − v2
0) −vT

0

−v0 hij

)

g22ab ∝
(
−(c2

22 − v2
B0) −vT

B0

−vB0 hij

) (
−(c2

22 − v2
0) −vT

0

−v0 hij

)

c2
11 = ŨAAdA = UAAρA0+UABρB0

mA
Ξ̃−1

11 d

c2
22 = ŨBBdB = UBBρB0+UABρA0

mB
Ξ̃−1

22 d

There is a subtlety implicit in setting the background velocities equal that
should be made explicit. If V1 = V2 so that vA0 = vB0, then since the masses
appear in the relationship between phase and velocity we deduce

mBθA0(t,x)−mAθB0(t,x) = f(t) . (70)

If mA �= mB, and if the background velocity is nonzero, we must deduce
that δAB(t, x) will be at the very least be position dependent, and we will
be unable to set it to zero. Alternatively, if we demand δAB = 0, and have
∇θA0(t,x) = ∇θB0(t,x) �= 0, then we cannot set vA0 = vB0 �= 0. Fortunately
this will not seriously affect further developments.

Last, but certainly not least, we present the conditions for a mono-metric
geometry in a 2-component BEC.

3.3 Mono-metric Geometry

Despite the fact that there are three different routes to bi-metricity, once one
demands mono-metricity, where
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fab = diag
[
fab
11 , f

ab
11

]
= diag

[√
−g11 gab

11,
√
−g11 gab

11

]
, (71)

then one ends up with one set unique of constraints to reduce from pseudo–
Finsler to a single-metric Lorentzian geometry, namely:

vA0 = vB0 = v0 ;

ŨAB = 0 ;

ŨAA = ŨBB = Ũ ;
dA = dB = d .

(72)

This tuning completely specifies the space-time geometry, in that

fab
11 = fab

22 ∝
(
−1 −vT

0

−v0 Ũd h
ij − v0v

T
0 ,

)
(73)

and after a small calculation we get

g11
ab = g22

ab ∝
(
−(c2 − v2

0) −vT
0

−v0 hij ,

)
(74)

where we have defined
c2 = Ũ d , (75)

as the speed of sound.7

Throughout the preceding few pages we have analyzed in detail the first
term in equation (38), and identified different condensate parameters with
different emergent geometries. Since there is more than one term in the wave
equation describing excitations in a two-component system, this is not the end
of the story. The remaining terms in equation (38), which we might generically
view as “mass” and “vector potential” terms, do not directly affect the space-
time geometry as such. But when an excitation propagates through a specific
analogue space-time geometry, these terms will contribute to the kinematics.
It then becomes useful to consider the “mass eigenmodes” in field-space.

3.4 Merging Space-time Geometry with Mass Eigenmodes

The eigenmodes we are interested in are eigenmodes of the field-space matrices
occurring in the sub-dominant terms of the wave equation. These eigenmodes
(when they exist) do not notice the presence of multiple fields – in our specific
case a 2-field system – and therefore propagate nicely through the effective
curved space-time. As promised in the abstract and the motivation, we are
striving for an analogue model representing a massive scalar field in a mono-
metric Lorentzian structure. By using the results from Sect. 3.3 we are able
to decouple the first term of equation (38).
7 The speed of sound for quasi-particle excitations is of course our analogue for the

speed of light in real gravity.
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In the following we are focusing on two issues: First, we decouple the re-
maining terms in Eq. (38), and subsequently we check that these eigenmodes
do not recouple the geometric term. There is however one more (technical)
problem, and that is the fact that the terms we want to associate with the
effective mass of the scalar field still contain partial derivatives in time and
space, which ultimately implies a dependence on the energy of the propa-
gating modes.8 Luckily, this problem can be easily circumvented, for equal
background phases,9

θA0 = θB0 , (76)

in which case
K = Γ t = Γ i = 0 . (77)

This has the effect of retaining only the matrix Λ among the sub-dominant
terms, so that the wave equation becomes

∂a(fab∂bθ̄) + Λ θ̄ = 0 . (78)

Due to the fact that the structure of the coupling matrix Λ cannot be changed,
its eigenmodes determine the eigenmodes of the overall wave equation. The
eigenvectors of Λ are given by

EV1 := [+1,+1]
EV2 := [−1,+1]

(79)

The final step is to make sure that our space-time geometry commutes with
the eigenvectors of Λ, that is

[
fab, Λ

]
= 0 . (80)

This constraint is only fulfilled in the mono-metric case, where we are dealing
with two identical classical fields, that effectively do not communicate with
each other.10 That is, all field matrices are proportional to the identity matrix.

3.5 Special Case: Ξ = constant

There is one specific class of geometries we are particularly interested it, and
that is when Ξ is a position independent and time independent constant. In
the next section we will focus exclusively on this case, and apply it to quantum
gravity phenomenology. This case is however, also of interest as an example of
an alternate interplay between fine tuning and emergent geometry. Under the
8 This can be easily be seen by going to the eikonal approximation where ∇ − ik

and ∂t → iω.
9 Note that δAB = 0 plus mono-metricity implies either mA = mB with arbitrary

v0 �= 0, or mA �= mB with zero v0 = 0. These are exactly the two situations we
shall consider below.

10 While ŨAB = 0, UAB �= 0.
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assumption that Ξ is position and time independent, we are able to directly
manipulate the overall wave equation for the excitations and as a consequence
obtain slightly milder tuning conditions for mono-metricity.

Let us define
θ̃ = Ξ−1/2 θ̄ , (81)

and multiply the whole wave equation (38) with Ξ1/2 from the left. What we
are doing is a transformation in field space onto a new basis θ̃, and in the new
basis the wave equation is given by,

∂a

(
f̃ab ∂bθ̃

)
+
(
Λ̃+ K̃

)
θ̃ +

1
2

{
Γ̃a ∂aθ̃ + ∂a(Γ̃aθ̃)

}
= 0 , (82)

where the matrices in field space transform as: Λ̃ = Ξ1/2ΛΞ1/2, K̃ =
Ξ1/2KΞ1/2, Γ̃ a = Ξ1/2Γ aΞ1/2, and the tensor-density as

f̃ab = Ξ1/2 fab Ξ1/2 . (83)

In general, the transformation matrix Ξ1/2 is non-diagonal, though always
symmetric:11

Ξ1/2 =
Ξ +

√
detΞ I√

Tr[Ξ] + 2
√

detΞ
. (84)

A close look at equation (52), now using the tensor-density f̃ab, makes it
obvious that for

ŨAB = 0 , (85)

the geometry reduces from pseudo-Finsler to bi-metric. For the sake of keeping
the discussion short and easy to follow, we set the background velocities equal,
and now get

f̃ab = VaVb + D̃hab . (86)

In view of the tuning, ŨAB = 0, we see

D̃ = diag(ŨAA dA, ŨBB dB) . (87)

The new mass-density matrix, and therefore the overall geometry, is diagonal
in field space; hence we are now dealing with the required bi-metric structure.

So far we are in complete agreement with what we have obtained in our
previous analysis, see Fig. 2. However, if we now ask for mono-metricity, we
obtain a slightly milder constraint:

ŨAA dA = ŨBB dB . (88)

Last but not least, we show in detail the results we obtain for this tuning
scenario when including the Λ term (the mass term). To avoid confusion, we
re-define a few matrices,
11 See appendix B.
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C2
0 = Ξ1/2 D Ξ1/2 ; and Ω2 = Ξ1/2 Λ Ξ1/2 . (89)

Both C2
0 and Ω2 are symmetric matrices. If [C2

0 , Ω
2] = 0, which is equivalent

to the matrix equation D Ξ Λ = Λ Ξ D, and is certainly satisfied in view
of the above constraint, then they have common eigenvectors. Decomposition
onto the eigenstates of the system results in a pair of independent Klein-
Gordon equations

1√−gI/II
∂a

{√
−gI/II (gI/II)ab ∂bθ̃I/II

}
+ ω2

I/II θ̃I/II = 0 , (90)

where the “acoustic metrics” are given by

(gI/II)ab ∝
[
−
(
c2 − v2

0

)
| −v0

T

−v0 | Id×d

]
. (91)

The metric components depend only on the background velocity v0 and the
common speed of sound c. It is also possible to calculate the eigenfrequencies
of the two phonon modes,

ω2
I = 0; ω2

II = Tr[Ω2] . (92)

A zero/ non-zero eigenfrequency corresponds to a zero/ non-zero mass for the
phonon mode.

In the eikonal limit we see that the in-phase perturbation will propagate
with the speed of sound,

vs = v0 + k̂ c , (93)

while the anti-phase perturbations propagates with a lower group velocity
given by:

vg =
∂ω

∂k
= v0 + k̂

c2√
ω2

II + c2 k2
. (94)

Here k is the usual wave number. The dispersion relation we obtain for the
mono-metric structure is Lorentz invariant.

The fact that we have an analogue model representing both massive and
massless particles is promising for quantum gravity phenomenology if we now
extend the analysis to high-energy phonon modes where the quantum pres-
sure term is significant, and where we consequently expect a breakdown of
Lorentz invariance. For the following, we concentrate on the generalization of
flat Minkowski space-time, which implies a constant Ξ and zero background
velocities, v0. In the language of condensed matter physics, we are thinking
of a uniform condensate at rest.

4 Application to Quantum Gravity Phenomenology

In using this 2-BEC model to probe issues of interest to the “quantum gravity
phenomenology” community it behooves us to simplify as much as possible
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the parts of the model not of direct interest for current considerations. Specif-
ically, we wish to use the “quantum pressure” term as a model for the type
of Lorentz violating physics that might occur in the physical universe at or
near the Planck scale [24]. Since we are then interested in high energies, and
consequently short distances, one might expect the average space-time curva-
ture to be negligible – that is, we will be interested in looking for “quantum
pressure” induced deviations from special relativity, and can dispense with
the notion of curved space-times for now. (“Flat” pseudo–Finsler spaces are
already sufficiently complicated to lead to interesting physics.) In terms of the
BEC condensates this means that in this section of the chapter we will con-
centrate on a spatially-homogeneous time-independent background, so that
in particular all the matrices fab will be taken to be position-independent.
(And similarly, Ξ, Λ, D, etc. are taken to be position independent and we set
v0 = 0, so the background is at rest.) We now consider Lorentz invariance
breakdown in a flat mono-metric spacetime geometry as indicated in Fig. 3.
This greatly simplifies the calculations (though they are still relatively messy),
but without sacrificing the essential pieces of the physics we are now interested
in.
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Fig. 3. How to tune the system to exhibit breakdown of Lorentz symmetry

Now the purpose of quantum gravity phenomenology is to analyze the
physical consequences arising from various models of quantum gravity. One
hope for obtaining an experimental grasp on quantum gravity is the generic
prediction arising in many (but not all) quantum gravity models that ultraviolet
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physics at or near the Planck scale, MPlanck = 1.2× 1019 GeV/c2, (or in some
models the string scale), typically induces violations of Lorentz invariance at
lower scales [25,26]. Interestingly most investigations, even if they arise from
quite different fundamental physics, seem to converge on the prediction that
the breakdown of Lorentz invariance can generically become manifest in the
form of modified dispersion relations

ω2 = ω2
0 + (1 + η2) c2 k2 + η4

(
�

MLorentz violation

)2

k4 + . . . , (95)

where the coefficients ηn are dimensionless (and possibly dependent on the
particle species considered), and we have restricted our expansion to CPT
invariant terms (otherwise one would also get odd powers in k). The particular
inertial frame for these dispersion relations is generally specified to be the
frame set by cosmological microwave background, and MLorentz violation is the
scale of Lorentz symmetry breaking which furthermore is generally assumed
to be of the order of MPlanck.

Although several alternative scenarios have been considered in the litera-
ture in order to justify the modified kinematics discussed above, to date the
most commonly explored avenue is an effective field theory (EFT) approach.
In the present chapter we focus on the class of non-renormalizable EFTs
with Lorentz violations associated to dispersion relations like equation (95).
Relaxing our CPT invariance condition this class would include the model de-
veloped in [27], and subsequently studied by several authors, where an exten-
sion of quantum electrodynamics including only mass dimension five Lorentz-
violating operators was considered. (That ansatz leads to order k3 Lorentz
and CPT violating terms in the dispersion relation.) Very accurate constraints
have been obtained for this model using a combination of experiments and
observations (mainly in high energy astrophysics). See e.g. [26,28–30]. In spite
of the remarkable success of this framework as a “test theory”, it is interesting
to note that there are still significant open issues concerning its theoretical
foundations. Perhaps the most pressing one is the so called naturalness prob-
lem which can be expressed in the following way: Looking back at our ansatz
(95) we can see that the lowest-order correction, proportional to η2, is not
explicitly Planck suppressed. This implies that such a term would always be
dominant with respect to the higher-order ones and grossly incompatible with
observations (given that we have very good constraints on the universality of
the speed of light for different elementary particles). Following the observa-
tional leads it has been therefore often assumed either that some symmetry
(other than Lorentz invariance) enforces the η2 coefficients to be exactly zero,
or that the presence of some other characteristic EFT mass scale µ
MPlanck

(e.g., some particle physics mass scale) associated with the Lorentz symme-
try breaking might enter in the lowest order dimensionless coefficient η2 –
which will be then generically suppressed by appropriate ratios of this char-
acteristic mass to the Planck mass: η2 ∝ (µ/MPlanck)σ where σ ≥ 1 is some
positive power (often taken as one or two). If this is the case then one has two
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distinct regimes: For low momenta p/(MPlanckc) 
 (µ/MPlanck)σ the lower-
order (quadratic in the momentum) deviations in (95) will dominate over the
higher-order ones, while at high energies p/(MPlanckc) � (µ/MPlanck)σ the
higher order terms will be dominant.

The naturalness problem arises because such a scenario is not well justified
within an EFT framework; in other words there is no natural suppression of
the low-order modifications in these models. In fact we implicitly assumed that
there are no extra Planck suppressions hidden in the dimensionless coefficients
ηn with n > 2. EFT cannot justify why only the dimensionless coefficients of
the n ≤ 2 terms should be suppressed by powers of the small ratio µ/MPlanck.
Even worse, renormalization group arguments seem to imply that a similar
mass ratio, µ/MPlanck would implicitly be present also in all the dimensionless
n > 2 coefficients – hence suppressing them even further, to the point of com-
plete undetectability. Furthermore it is easy to show [31] that, without some
protecting symmetry, it is generic that radiative corrections due to particle
interactions in an EFT with only Lorentz violations of order n > 2 in (95) for
the free particles, will generate n = 2 Lorentz violating terms in the dispersion
relation, which will then be dominant. Observational evidence [25] suggests
that for a variety of standard model particles |η2| � 10−21. Naturalness in
EFT would then imply that the higher order terms are at least as suppressed
as this, and hence beyond observational reach.

A second issue is that of “universality”, which is not so much a “prob-
lem”, as an issue of debate as to the best strategy to adopt. In dealing with
situations with multiple particles one has to choose between the case of univer-
sal (particle-independent) Lorentz violating coefficients ηn, or instead go for a
more general ansatz and allow for particle-dependent coefficients; hence allow-
ing different magnitudes of Lorentz symmetry violation for different particles
even when considering the same order terms (same n) in the momentum ex-
pansion. The two choices are equally represented in the extant literature (see
e.g. [32] and [28] for the two alternative ansätze), but it would be interest-
ing to understand how generic this universality might be, and what sort of
processes might induce non-universal Lorentz violation for different particles.

4.1 Specializing the Wave Equation

For current purposes, where we wish to probe violations of Lorentz invariance
in a flat analogue space-time, we start with our basic wave equation (25)
and make the following specializations: δAB → 0 (so that Γ a → 0 and K →
0). We also set all background fields to be homogeneous (space and time
independent), and use the formal operators Ξ̂1/2 and Ξ̂−1/2 to define a new
set of variables

θ̃ = Ξ̂−1/2 θ̄ , (96)

in terms of which the wave equation becomes

∂2
t θ̃ =

{
Ξ̂1/2 [D∇2 − Λ] Ξ̂1/2

}
θ̃ , (97)
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or more explicitly

∂2
t θ̃ =

{
[Ξ −X∇2]1/2 [D∇2 − Λ] [Ξ −X∇2]1/2

}
θ̃ . (98)

This is now a (relatively) simple PDE to analyze. The objects Ξ̂1/2 and Ξ̂−1/2

are 2 × 2 matrices whose elements are pseudo-differential operators, but to
simplify things it is computationally efficient to go directly to the eikonal
limit where12

Ξ̂ → Ξ +X k2 . (99)

This finally leads to a dispersion relation of the form

det
{
ω2 I− [Ξ +Xk2]1/2 [Dk2 + Λ] [Ξ +Xk2]1/2

}
= 0 , (100)

and “all” we need to do for the purposes of this chapter, is to understand this
quasiparticle excitation spectrum in detail.

4.2 Hydrodynamic Approximation

The hydrodynamic limit consists of formally setting X̂ → 0 so that Ξ̂ → Ξ.
(That is, one is formally setting the healing length matrix to zero: Y → 0.
More precisely, all components of the healing length matrix are assumed small
compared to other length scales in the problem.) The wave equation (98) now
takes the form:

∂2
t θ̃ = {Ξ1/2 [D∇2 − Λ] Ξ1/2}θ̃ . (101)

Since this is second-order in both space and time derivatives, we now have at
least the possibility of obtaining an exact “Lorentz invariance”. We can now
define the matrices

Ω2 = Ξ1/2 Λ Ξ1/2 ; C2
0 = Ξ1/2 D Ξ1/2 ; (102)

so that after Fourier transformation

ω2θ̃ =
{
C2

0 k
2 +Ω2

}
θ̃ ≡ H(k2) θ̃ , (103)

leading to the Fresnel equation

det{ω2 I−H(k2)} = 0 . (104)

That is
ω4 − ω2 tr[H(k2)] + det[H(k2)] = 0 , (105)

12 Once we are in the eikonal approximation the pseudo-differential operator Ξ̂1/2 →√
Ξ + k2X can be given a simple and explicit meaning in terms of the Hamilton–

Cayley theorems of appendix B.
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whence

ω2 =
tr[H(k2)]±

√
tr[H(k2)]2 − 4 det[H(k2)]

2
. (106)

Note that the matrices Ω2, C2
0 , and H(k2) have now carefully been arranged

to be symmetric. This greatly simplifies the subsequent matrix algebra. Also
note that the matrix H(k2) is a function of k2; this will forbid the appearance
of odd powers of k in the dispersion relation – as should be expected due to
the parity invariance of the system.

Masses

We read off the “masses” by looking at the special case of space-independent
oscillations for which

∂2
t θ̄ = −Ω2 θ̄ , (107)

allowing us to identify the “mass” (more precisely, the natural oscillation
frequency) as

“masses” ∝ eigenvalues of (Ξ1/2 Λ Ξ1/2) = eigenvalues of (Ξ Λ) . (108)

Since Λ is a singular 2× 2 matrix this automatically implies

ω2
I = 0; ω2

II = tr (Ξ Λ) . (109)

So we see that one mode will be a massless phonon while the other will have a
non zero mass. Explicitly, in terms of the elements of the underlying matrices

ω2
I = 0; ω2

II = −2
√
ρA0 ρB0 λ

�2
{ŨAA + ŨBB − 2ŨAB} (110)

so that (before any fine-tuning or decoupling)

ω2
II = −2

√
ρA0 ρB0 λ

�2
(111)

×
{
UAA + UBB − 2UAB −

λ

2
√
ρA0 ρB0

[√
ρA0

rρB0
+
√
ρB0

ρA0

]2}
.

It is easy to check that this quantity really does have the physical dimensions
of a frequency.

Mono-Metricity Conditions

In order for our system to be a perfect analogue of special relativity:

• we want each mode to have a quadratic dispersion relation;
• we want each dispersion relation to have the same asymptotic slope.
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Let us start by noticing that the dispersion relation (106) is of the form

ω2 = [quadratic1]±
√

[quartic] . (112)

The first condition implies that the quartic must be a perfect square

[quartic] = [quadratic2]
2 , (113)

but then the second condition implies that the slope of this quadratic must
be zero. That is

[quadratic2](k
2) = [quadratic2](0) , (114)

and so
[quartic](k2) = [quartic](0) (115)

must be constant independent of k2, so that the dispersion relation is of the
form

ω2 = [quadratic1](k
2)± [quadratic2](0) . (116)

Note that this has the required form (two hyperbolae with the same asymp-
totes, and possibly different intercepts). Now let us implement this directly in
terms of the matrices C2

0 and M2.
Step 1: Using the results of the appendix, specifically equation (255):

det[H2(k)] = det[Ω2 + C2
0 k

2] (117)
= det[Ω2]− Tr

{
Ω2 C̄2

0

}
k2 + det[C2

0 ] (k2)2 . (118)

(This holds for any linear combination of 2× 2 matrices. Note that we apply
trace reversal to the squared matrix C2

0 , we do not trace reverse and then
square.) Since in particular det[Ω2] = 0, we have:

det[H2(k)] = −Tr
{
Ω2 C̄2

0

}
k2 + det[C2

0 ] (k2)2 . (119)

Step 2: Now consider the discriminant (the quartic)

quartic ≡ tr[H(k2)]2 − 4 det[H(k2)] (120)
= (Tr[Ω2] + Tr[C2

0 ] k2)2 − 4
[
− Tr

{
Ω2 C̄2

0

}
k2

+ det[C2
0 ] (k2)2

]
(121)

= Tr[Ω2]2 + {2Tr[Ω2] Tr[C2
0 ] + 4 Tr

{
Ω2 C̄2

0

}
}k2

+
{
Tr[C2

0 ]2 − 4 det[C2
0 ]
}

(k2)2 (122)

= Tr[Ω2]2 + 2{2Tr
{
Ω2 C2

0

}
− Tr[Ω2] Tr[C2

0 ]}k2

+
{
Tr[C2

0 ]2 − 4 det[C2
0 ]
}

(k2)2 . (123)

So in the end the two conditions above for mono-metricity take the form

mono-metricity ⇐⇒
{

Tr[C2
0 ]2 − 4 det[C2

0 ] = 0;

2Tr
{
Ω2 C2

0

}
− Tr[Ω2] Tr[C2

0 ] = 0.
(124)
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Once these two conditions are satisfied the dispersion relation is

ω2 =
tr[H(k2)]± Tr[Ω2]

2
=

Tr[Ω2]± Tr[Ω2] + Tr[C2
0 ] k2

2
(125)

whence

ω2
1 =

1
2

Tr[C2
0 ] k2 = c20k

2 ω2
2 = Tr[Ω2]+

1
2

Tr[C2
0 ] k2 = ω2

II + c20k
2 , (126)

as required. One mode is massless, one massive with exactly the “mass” pre-
viously deduced. One can now define the quantity

mII = �ωII/c
2
0 , (127)

which really does have the physical dimensions of a mass.

Interpretation of the Mono-Metricity Conditions

But now we have to analyse the two simplification conditions

C1 : Tr[C2
0 ]2 − 4 det[C2

0 ] = 0 ; (128)
C2 : 2 Tr

{
Ω2 C2

0

}
− Tr[Ω2] Tr[C2

0 ] = 0 ; (129)

to see what they tell us. The first of these conditions is equivalent to the
statement that the 2×2 matrix C2

0 has two identical eigenvalues. But since C2
0

is symmetric this then implies C2
0 = c20 I, in which case the second condition

is automatically satisfied. (In contrast, condition C2 does not automatically
imply condition C1.) Indeed if C2

0 = c20 I, then it is easy to see that (in order
to make C2

0 diagonal)
ŨAB = 0 , (130)

(which is sufficient, by itself, to imply bi-metricity) and furthermore that

ŨAA ρA0

mA
= c20 =

ŨBB ρB0

mB
. (131)

Note that we can now solve for λ to get

λ = −2
√
ρA0 ρB0 UAB , (132)

whence
c20 =

UAA ρA0 + UAB ρB0

mA
=
UBB ρB0 + UAB ρA0

mB
, (133)

and

ω2
II =

4ρA0ρB0UAB

�2

{
UAA + UBB − 2UAB + UAB

[√
ρA0

ρB0
+
√
ρB0

ρA0

]2}
.

(134)
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Note that (134) is equivalent to (112) with (132) enforced. But this then
implies

ω2
II =

4ρA0ρB0UAB

�2

{
UAA + UBB + UAB

[
ρA0

ρB0
+
ρB0

ρA0

]}
. (135)

Interpretation: Condition C2 forces the two low-momentum “propagation
speeds” to be the same, that is, it forces the two O(k2) coefficients to be
equal. Condition C1 is the stronger statement that there is no O(k4) (or
higher order) distortion to the relativistic dispersion relation.

4.3 Beyond the Hydrodynamical Approximation

At this point we want to consider the deviations from the previous analogue
for special relativity. Our starting point is again equation (98), now retaining
the quantum pressure term, which we Fourier transform to get:

ω2θ̃ =
{√

Ξ +X k2 [D k2 + Λ]
√
Ξ +X k2

}
θ̃ ≡ H(k2) θ̃ . (136)

This leads to the Fresnel equation

det{ω2 I−H(k2)} = 0 . (137)

That is
ω4 − ω2 tr[H(k2)] + det[H(k2)] = 0 , (138)

whence

ω2 =
tr[H(k2)]±

√
tr[H(k2)]2 − 4 det[H(k2)]

2
, (139)

which is now of the form

ω2 = [quartic1]±
√

[octic] . (140)

Masses

The “masses”, defined as the zero momentum oscillation frequencies, are again
easy to identify. Just note that the k-independent term in the Fresnel equation
is exactly the same mass matrix Ω2 = Ξ1/2 Λ Ξ1/2 that was present in
the hydrodynamical limit. (That is, the quantum potential term X does not
influence the masses.)

Dispersion Relations

Differently from the previous case, when the hydrodynamic approximation
held, we now have that the discriminant of (139) generically can be an eighth-
order polynomial in k. In this case we cannot hope to recover an exact analogue
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of special relativity, but instead can at best hope to obtain dispersion relations
with vanishing or suppressed deviations from special relativity at low k; pos-
sibly with large deviations from special relativity at high momenta. From the
form of our equation it is clear that the Lorentz violation suppression should
be somehow associated with the masses of the atoms mA/B. Indeed we will use
the underlying atomic masses to define our “Lorentz breaking scale”, which
we shall then assume can be identified with the “quantum gravity scale”. The
exact form and relative strengths of the higher-order terms will be controlled
by tuning the 2–BEC system and will eventually decide the manifestation (or
not) of the naturalness problem and of the universality issue.

Our approach will again consist of considering derivatives of (139) in grow-
ing even powers of k2 (recall that odd powers of k are excluded by the parity
invariance of the system) and then setting k → 0. We shall compute only the
coefficients up to order k4 as by simple dimensional arguments one can expect
any higher order term will be further suppressed with respect to the k4 one.

We can greatly simplify our calculations if before performing our analysis
we rearrange our problem in the following way. First of all note that by the
cyclic properties of trace

Tr[H(k2)] = Tr[(Dk2 + Λ) (Ξ + k2X)] (141)
= Tr[ΛΞ + k2(DΞ + ΛX) + (k2)2DX] (142)
= Tr[Ξ1/2ΛΞ1/2 + k2(Ξ1/2DΞ1/2 +X1/2ΛX1/2)

+(k2)2X1/2DX1/2] . (143)

Putting this all together, we can now define symmetric matrices

Ω2 = Ξ1/2ΛΞ1/2 ; (144)

C2
0 = Ξ1/2DΞ1/2; ∆C2 = X1/2ΛX1/2 ; (145)

C2 = C2
0 +∆C2 = Ξ1/2DΞ1/2 +X1/2ΛX1/2 ; (146)

Z2 = 2X1/2DX1/2 =
�

2

2
M−2 . (147)

With all these definitions we can then write

Tr[H(k2)] = Tr
[
Ω2 + k2(C2

0 +∆C2) +
1
2
(k2)2Z2

]
, (148)

where everything has been done inside the trace. If we now define

Hs(k2) = Ω2 + k2(C2
0 +∆C2) +

1
2
(k2)2Z2 , (149)

then Hs(k2) is by definition both polynomial and symmetric and satisfies

Tr[H(k2)] = Tr[Hs(k2)] , (150)
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while in contrast,
det[H(k2)] �= det[Hs(k2)] . (151)

But then

ω2 =
1
2

[
Tr[Hs(k2)]±

√
Tr[Hs(k2)]2 − 4 det[H(k2)]

]
. (152)

Whence

dω2

dk2
=

1
2

[
Tr[H ′

s(k
2)]± Tr[Hs(k2)] Tr[H ′

s(k
2)]− 2 det′[H(k2)]√

Tr[Hs(k2)]2 − 4 det[H(k2)]

]
, (153)

and at k = 0

dω2

dk2

∣∣∣∣
k→0

=
1
2

[
Tr[C2]± Tr[Ω2] Tr[C2]− 2 det′[H(k2)]k→0

Tr[Ω2]

]
. (154)

But now let us consider

det[H(k2)] = det[(Dk2 + Λ) (Ξ + k2X)] (155)
= det[Dk2 + Λ] det[Ξ + k2X] (156)
= det[Ξ1/2(Dk2 + Λ)Ξ1/2] det[I + k2Ξ−1/2XΞ−1/2] (157)

where we have repeatedly used properties of the determinant. Furthermore

det[I + k2Ξ−1/2XΞ−1/2] = det[I + k2Ξ−1X] (158)
= det[I + k2X1/2ΞX1/2] (159)
= det[I + k2Y 2/2] , (160)

so that we have

det[H(k2)] = det[Ω2 + C2
0k

2] det[I + k2Y 2/2] . (161)

Note the the matrix Y 2 is the “healing length matrix” we had previously
defined, and that the net result of this analysis is that the full determinant is
the product of the determinant previously found in the hydrodynamic limit
with a factor that depends on the product of wavenumber and healing length.

But now, given our formula (255) for the determinant, we see

det′[H(k2)] = (−Tr(Ω2C̄2
0 ) + 2k2 det[C2

0 ]) det[I + k2Y 2/2]
+ det[Ω2 + C2

0k
2] (−Tr[Ȳ 2] + k2 det[Y 2])/2 , (162)

whence
det′[H(k2)]k→0 = −Tr(Ω2C̄2

0 ) , (163)

and so
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dω2

dk2

∣∣∣∣
k→0

=
1
2

[
Tr[C2]± Tr[Ω2] Tr[C2] + 2Tr(Ω2C̄2

0 )
Tr[Ω2]

]
. (164)

That is:

dω2

dk2

∣∣∣∣
k→0

=
1
2

[
Tr[C2]±

{
Tr[C2] + 2

Tr(Ω2C̄2
0 )

Tr[Ω2]

}]
. (165)

Note that all the relevant matrices have been carefully symmetrized. Also note
the important distinction between C2

0 and C2. Now define

c2 =
1
2

Tr[C2] , (166)

then
dω2

dk2

∣∣∣∣
k→0

= c2(1± η2) , (167)

with

η2 =
{

Tr[C2] Tr[Ω2] + 2Tr(Ω2C̄2
0 )

Tr[Ω2] Tr[C2]

}
=
{

1 +
Tr(Ω2C̄2

0 )
ω2

II c
2

}
. (168)

Similarly, consider the second derivative:

d2ω2

d(k2)2
=

1
2

[
Tr[H ′′

s (k2)]

±Tr[Hs(k2)] Tr[H ′′
s (k2)] + Tr[H ′

s(k
2)] Tr[H ′

s(k
2)]− 2 det′′[H(k2)]√

Tr[Hs(k2)]2 − 4 det[H(k2)]

∓ (Tr[Hs(k2)] Tr[H ′
s(k

2)]− 2 det′[H(k2)])2

(Tr[Hs(k2)]2 − 4 det[H(k2)])3/2

]
, (169)

whence

d2ω2

d(k2)2

∣∣∣∣
k→0

=
1
2

[
Tr[Z2]± Tr[Ω2] Tr[Z2] + Tr[C2]2 − 2 det′′[H(k2)]k→0

Tr[Ω2]

∓ (Tr[Ω2] Tr[C2]− 2 det′[H(k2)]k→0)2

Tr[Ω2]3

]
. (170)

The last term above can be related to dω2/dk2, while the determinant piece
is evaluated using

det′′[H(k2)] = (2 det[C2
0 ]) det[I + k2Y 2/2] (171)

+(−Tr(Ω2C̄2
0 ) + 2k2 det[C2

0 ]) (−Tr[Ȳ 2] + k2 det[Y 2])/2
+ det[Ω2 + C2

0k
2] (det[Y 2]/2)

+(−Tr(Ω2C̄2
0 ) + 2k2 det[C2

0 ]) (−Tr[Ȳ 2] + k2 det[Y 2])/2 .
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Therefore

det′′[H(k2)]k→0 = (2 det[C2
0 ])

+(−Tr(Ω2C̄2
0 )) (−Tr[Ȳ 2])/2 + det[Ω2] (det[Y 2])/2

+(−Tr(Ω2C̄2
0 )) (−Tr[Ȳ 2])/2 . (172)

That is, (recalling Tr[Ā] = −Tr[A]),

det′′[H(k2)]k→0 = (2 det[C2
0 ])− (Tr(Ω2C̄2

0 )) (Tr[Y 2]) , (173)

or
det′′[H(k2)]k→0 = −Tr[C2

0 C̄
2
0 ]− Tr[Ω2C̄2

0 ] Tr[Y 2] . (174)

Now assembling all the pieces, a little algebra yields

d2ω2

d(k2)2

∣∣∣∣
k→0

= 1
2

[
Tr[Z2]± Tr[Z2]± 2

Tr[Ω2C̄2
0 ]

Tr[Ω2]
Tr[Y 2]

± Tr[C2]2 − 4 det[C2
0 ]

Tr[Ω2]
∓ Tr[C2]2

Tr[Ω2]
η2
2

]
. (175)

With the above formula we have completed our derivation of the lowest-
order terms of the generic dispersion relation of a coupled 2-BEC system –
including the terms introduced by the quantum potential at high wavenum-
ber – up to terms of order k4. From the above formula it is clear that we
do not generically have Lorentz invariance in this system: Lorentz violations
arise both due to mode-mixing interactions (an effect which can persist in the
hydrodynamic limit where Z → 0 and Y → 0) and to the presence of the
quantum potential (signaled by Z �= 0 and Y �= 0). While the mode-mixing
effects are relevant at all energies the latter effect characterizes the discrete
structure of the effective space-time at high energies. It is in this sense that
the quantum potential determines the analogue of quantum gravity effects in
our 2-BEC system.

4.4 The Relevance for Quantum Gravity Phenomenology

Following this physical insight we can now easily identify a regime that is
potentially relevant for simulating the typical ansätze of quantum gravity
phenomenology. We demand that any violation of Lorentz invariance present
should be due to the microscopic structure of the effective space-time. This
implies that one has to tune the system in order to cancel exactly all those vio-
lations of Lorentz invariance which are solely due to mode-mixing interactions
in the hydrodynamic limit.

We basically follow the guiding idea that a good analogue of quantum-
gravity-induced Lorentz violations should be characterized only by the ultra-
violet physics of the effective space-time. In the system at hand the ultraviolet
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physics is indeed characterized by the quantum potential, whereas possible vi-
olations of the Lorentz invariance in the hydrodynamical limit are low energy
effects, even though they have their origin in the microscopic interactions. We
therefore start by investigating the scenario in which the system is tuned in
such a way that no violations of Lorentz invariance are present in the hydro-
dynamic limit. This leads us to again enforce the conditions C1 and C2 which
corresponded to “mono-metricity” in the hydrodynamic limit.

In this case (165) and (175) take respectively the form

dω2

dk2

∣∣∣∣
k→0

=
1
2
[
Tr[C2

0 ] + (1± 1) Tr[∆C2]
]

= c20 +
1± 1

2
Tr[∆C2] , (176)

and

d2ω2

d(k2)2

∣∣∣∣
k→0

=
Tr[Z2]± Tr[Z2]

2
∓ Tr[C2

0 ] Tr[Y 2]

±1
2

Tr[∆C2]2 + 2Tr[C2
0 ] Tr[∆C2]

Tr[Ω2]
∓ 1

2
Tr[∆C2]2

Tr[Ω2]

=
Tr[Z2]± Tr[Z2]

2
± Tr[C2

0 ]
(
−Tr[Y 2] +

Tr[∆C2]
Tr[Ω2]

)
. (177)

Recall (see Sect. 4.2) that the first of the physical conditions C1 is equiv-
alent to the statement that the 2× 2 matrix C2

0 has two identical eigenvalues.
But since C2

0 is symmetric this then implies C2
0 = c20 I, in which case the

second condition is automatically satisfied. This also leads to the useful facts

ŨAB = 0 =⇒ λ = −2
√
ρA0 ρB0 UAB ; (178)

c20 =
ŨAA ρA0

mA
=
ŨBB ρB0

mB
. (179)

Now that we have the fine tuning condition for the laser coupling we can
compute the magnitude of the effective mass of the massive phonon and de-
termine the values of the Lorentz violation coefficients. In particular we shall
start checking that this regime allows for a real positive effective mass as
needed for a suitable analogue model of quantum gravity phenomenology.

Effective Mass

Remember that the definition of mII reads

m2
II = �

2ω2
II/c

4
0 . (180)

Using equation (178) and equation (179) we can rewrite c20 in the following
form

c20 = [mBρA0UAA +mAρB0UBB + UAB(ρA0mA + ρB0mB)]/(2mAmB) . (181)
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Similarly equation (178) and equation (179) when inserted in equation (135)
give

ω2
II =

4UAB(ρA0mB + ρB0mA)c20
�2

. (182)

We can now estimate mII by simply inserting the above expressions in equa-
tion (180) so that

m2
II =

8UAB(ρA0mA + ρB0mB)mAmB

[mBρA0UAA +mAρB0UBB + UAB(ρA0mA + ρB0mB)]
. (183)

This formula is still a little clumsy but a great deal can be understood by
doing the physically reasonable approximation mA ≈ mB = m and ρA ≈ ρB.
In fact in this case one obtains

m2
II ≈ m2 8UAB

[UAA + 2UAB + UBB]
. (184)

This formula now shows clearly that, as long as the mixing term UAB is small
compared to the “direct” scattering UAA+UBB, the mass of the heavy phonon
will be “small” compared to the mass of the atoms. Though experimental
realizability of the system is not the primary focus of the current article, we
point out that there is no obstruction in principle to tuning a 2-BEC system
into a regime where |UAB| 
 |UAA + UBB|. For the purposes of this paper it
is sufficient that a small effective phonon mass (small compared to the atomic
masses which set the analogue quantum gravity scale) is obtainable for some
arrangement of the microscopic parameters. We can now look separately at the
coefficients of the quadratic and quartic Lorentz violations and then compare
their relative strength in order to see if a situation like that envisaged by
discussions of the naturalness problem is actually realized.

Coefficient of the Quadratic Deviation

One can easily see from (176) that the η2 coefficients for this case take the
form

η2,I = 0 ; (185)

η2,II c
2
0 = Tr[∆C2] = Tr[X1/2ΛX1/2] = Tr[XΛ]

= −1
2

λ

mAmB

(
mAρA0 +mBρB0√

ρA0ρB0

)
. (186)

So if we insert the fine tuning condition for λ, equation (178), we get

η2,II =
UAB (mAρA0 +mBρB0)

mAmBc20
. (187)
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Remarkably we can now cast this coefficient in a much more suggestive form
by expressing the coupling UAB in terms of the mass of the massive quasi-
particle m2

II . In order to do this we start from equation (182) and note that
it enables us to express UAB in (187) in terms of ω2

II , thereby obtaining

η2,II =
�

2

4c40

ρA0mA + ρB0mB

ρA0mB + ρB0mA

ω2
II

mAmB
. (188)

Now it is easy to see that

ρA0mA + ρB0mB

ρA0mB + ρB0mA
≈ O(1) , (189)

and that this factor is identically unity if either mA = mB or ρA0 = ρB0. All
together we are left with

η2,II = η̄

(
mII√
mAmB

)2

, (190)

where η̄ is a dimensionless coefficient of order unity.
The product in the denominator of the above expression can be interpreted

as the geometric mean of the fundamental bosons masses mA and mB. These
are mass scales associated with the microphysics of the condensate – in analogy
with our experience with a 1-BEC system where the “quantum gravity scale”
is set by the mass of the BEC atoms. It is then natural to define an analogue of
the scale of the breakdown of Lorentz invariance as Meff =

√
mAmB. (Indeed

this “analogue Lorentz breaking scale” will typically do double duty as an
“analogue Planck mass”.)

Using this physical insight it should be clear that equation (190) effectively
says

η2,II ≈
(
mII

Meff

)2

, (191)

which, given that mI = 0, we are naturally lead to generalize to

η2,X ≈
(
mX

Meff

)2

=
(

mass scale of quasiparticle
effective Planck scale

)2

; X = I, II . (192)

The above relation is exactly the sort of dimensionless ratio (µ/M)σ that has
been very often conjectured in the literature on quantum gravity phenom-
enology in order to explain the strong observational constraints on Lorentz
violations at the lowest orders. (See earlier discussion.) Does this now imply
that this particular regime of our 2-BEC system will also show an analogue
version of the naturalness problem? In order to answer this question we need
to find the dimensionless coefficient for the quartic deviations, η4, and check if
it will or won’t itself be suppressed by some power of the small ratio mII/Meff .
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Coefficients of the Quartic Deviation

Let us now consider the coefficients of the quartic term presented in equa-
tion (177). For the various terms appearing in (177) we get

Tr[Z2] = 2Tr[DX] =
�

2

2

(
m2

A +m2
B

m2
Am

2
B

)
; (193)

Tr[∆C2] = Tr[XΛ] = −λ
2
mAρA0 +mBρB0

mAmB
√
ρA0ρB0

= UAB
mAρA0 +mBρB0

mAmB
; (194)

Tr[Y 2] = 2 Tr[XΞ−1] =
�

2

2
ρA0mAŨAA + ρB0mBŨBB

ρA0mAρB0mBŨAAŨBB

; (195)

where in the last expression we have used the fact that in the current scenario
ŨAB = 0. Now by definition

η4 =
1
2
(M2

eff/�
2)
[

d2ω2

(dk2)2

]
k=0

(196)

is the dimensionless coefficient in front of the k4. So

η4 =
M2

eff

2�2

[
Tr[Z2]± Tr[Z2]

2
± Tr[C2

0 ]
(
−Tr[Y 2]

2
+

Tr[∆C2]
Tr[Ω2]

)]
(197)

=
M2

eff c20
�2

[
Tr[Z2]± Tr[Z2]

2Tr[C2
0 ]

±
(
−Tr[Y 2]

2
+

Tr[∆C2]
Tr[Ω2]

)]
. (198)

Whence

η4,I =
M2

eff c20
�2

[
Tr[Z2]
Tr[C2

0 ]
+
(
−Tr[Y 2]

2
+

Tr[∆C2]
Tr[Ω2]

)]
; (199)

η4,II =
M2

eff c20
�2

[(
Tr[Y 2]

2
− Tr[∆C2]

Tr[Ω2]

)]
. (200)

Let us compute the two relevant terms separately:

Tr[Z2]
Tr[C2

0 ]
=

�
2

4c20

(
m2

A +m2
B

m2
Am

2
B

)
=

�
2

4c20M
2
eff

(
m2

A +m2
B

mAmB

)
; (201)

− Tr[Y 2]/2 +
Tr[∆C2]
Tr[Ω2]

= − �
2

4M2
eff


 ρA0mAŨ

2
AA + ρB0mBŨ

2
BB

ρA0ρB0ŨAAŨBB

(
ŨAA + ŨBB

)



= − �
2

4M2
eff c20


 m2

AŨAA +m2
BŨBB

mAmB

(
ŨAA + ŨBB

)

 ; (202)
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where we have used ρX0ŨXX = mXc
2
0 for X = A,B as in equation (179).

Note that the quantity in square brackets in the last line is dimensionless. So
in the end:

η4,I =
1
4



(
m2

A +m2
B

mAmB

)
− m2

AŨAA +m2
BŨBB

mAmB

(
ŨAA + ŨBB

)

 (203)

=
1
4


 m2

AŨBB +m2
BŨAA

mAmB

(
ŨAA + ŨBB

)

 ; (204)

η4,II =
1
4


 m2

AŨAA +m2
BŨBB

mAmB

(
ŨAA + ŨBB

)

 . (205)

Note: In the special case mA = mB we recover identical quartic deviations
η4,I = η4,II = 1/4, indicating in this special situation a “universal” deviation
from Lorentz invariance. Indeed we also obtain η4,I = η4,II if we demand
ŨAA = ŨBB, even without fixing mA = mB.

Thus in the analogue space-time we have developed the issue of universal-
ity is fundamentally related to the complexity of the underlying microscopic
system. As long as we keep the two atomic masses mA and mB distinct we
generically have distinct η4 coefficients (and the η2 coefficients are unequal
even in the case mA = mB). However we can easily recover identical η4 coef-
ficients, for instance, as soon as we impose identical microphysics for the two
BEC systems we couple.

Avoidance of the Naturalness Problem

We can now ask ourselves if there is, or is not, a naturalness problem present
in our system. Are the dimensionless coefficients η4,I/II suppressed below
their naive values by some small ratio involving Meff =

√
mAmB ? Or are

these ratios unsuppressed? Indeed at first sight it might seem that further
suppression is the case, since the square of the “effective Planck scale” seems to
appear in the denominator of both the coefficients (204) and (205). However,
the squares of the atomic masses also appear in the numerator, rendering both
coefficients of order unity.

It is perhaps easier to see this once the dependence of (204) and (205) on
the effective coupling Ũ is removed. We again use the substitution ŨXX =
mXc

2
0/ρX0 for X = A,B, so obtaining:

η4,I =
1
4

[
mAρA0 +mBρB0

mAρB0 +mBρA0

]
; (206)

η4,II =
1
4

[
m3

AρB0 +m3
BρA0

mAmB (mAρB0 +mBρA0)

]
. (207)



Analogue Space-time Based on 2-Component Bose–Einstein Condensates 151

From these expressions is clear that the η4,I/II coefficients are actually of
order unity.

That is, if our system is set up so that mII 
 mA/B – which we have seen
in this scenario is equivalent to requiring UAB 
 UAA/BB – no naturalness
problem arises as for p > mII c0 the higher-order, energy-dependent Lorentz-
violating terms (n ≥ 4) will indeed dominate over the quadratic Lorentz-
violating term.

It is quite remarkable that the quadratic coefficients (192) are exactly of
the form postulated in several works on non-renormalizable EFT with Lorentz
invariance violations (see e.g. [26]). They are indeed the squared ratio of the
particle mass to the scale of Lorentz violation. Moreover we can see from
(204) and (205) that there is no further suppression – after having pulled
out a factor (�/MLorentz violation)2 – for the quartic coefficients η4,I/|I. These
coefficients are of order one and generically non-universal, (though if desired
they can be forced to be universal by additional and specific fine tuning).

The suppression of η2, combined with the non-suppression of η4, is pre-
cisely the statement that the “naturalness problem” does not arise in the
current model. We stress this is not a “tree level” result as the dispersion
relation was computed directly from the fundamental Hamiltonian and was
not derived via any EFT reasoning. Moreover avoidance of the naturalness
problem is not directly related to the tuning of our system to reproduce spe-
cial relativity in the hydrodynamic limit. In fact our conditions for recovering
special relativity at low energies do not a priori fix the the η2 coefficient, as its
strength after the “fine tuning” could still be large (even of order one) if the
typical mass scale of the massive phonon is not well below the atomic mass
scale. Instead the smallness of η2 is directly related to the mass-generating
mechanism.

The key question is now: Why does our model escape the naive predic-
tions of dominant lowest-dimension Lorentz violations? (In fact in our model
for any p � mII the k4 Lorentz violating term dominates over the order
k2 one.) We here propose a nice interpretation in terms of “emergent sym-
metry”: Non-zero λ simultaneously produces a non-zero mass for one of the
phonons, and a corresponding non-zero Lorentz violation at order k2. (Single
BEC systems have only k4 Lorentz violations as described by the Bogoliubov
dispersion relation.) Let us now drive λ→ 0, but keep the conditions C1 and
C2 valid at each stage. (This also requires UAB → 0.) One gets an EFT which
at low energies describes two non-interacting phonons propagating on a com-
mon background. (In fact η2 → 0 and cI = cII = c0.) This system possesses
a SO(2) symmetry. Non-zero laser coupling λ softly breaks this SO(2), the
mass degeneracy, and low-energy Lorentz invariance. Such soft Lorentz viola-
tion is then characterized (as usual in EFT) by the ratio of the scale of the
symmetry breaking mII , and that of the scale originating the Lorentz viola-
tion in first place MLorentz violation. We stress that the SO(2) symmetry is an
“emergent symmetry” as it is not preserved beyond the hydrodynamic limit:
the η4 coefficients are in general different if mA �= mB, so SO(2) is generi-
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cally broken at high energies. Nevertheless this is enough for the protection
of the lowest-order Lorentz violating operators. The lesson to be drawn is
that emergent symmetries are sufficient to minimize the amount of Lorentz
violation in the lowest-dimension operators of the EFT. In this regard, it is
intriguing to realise that an interpretation of SUSY as an accidental symmetry
has indeed been considered in recent times [33], and that this is done at the
cost of renouncing attempts to solve the hierarchy problem in the standard
way. It might be that in this sense the smallness of the particle physics mass
scales with respect to the Planck scale could be directly related to smallness
of Lorentz violations in renormalizable operators of the low-energy effective
field theory we live in. We hope to further investigate these issues in future
work.

5 Outlook, Summary and Discussion

So where can (and should) we go from here? If 2-component BECs provide
such a rich mathematical and physical structure, are 3-component BECs, or
general multi-component BECs even better? That depends on what you are
trying to do:

• If one wishes to actually build such an analogue space-time in the labora-
tory, and perform actual experiments, then iteration through 1-BEC and
2-BEC systems seems the most promising route in terms of our technolog-
ical capabilities.

• For n-component BECs we sketch the situation in Fig. 4. The key point
is that due to overall translation invariance one again expects to find one
massless quasi-particle, with now n − 1 distinct massive modes. Unfortu-
nately the matrix algebra is now considerably messier – not intrinsically
difficult (after all we are only dealing with n×n matrices in field space) –
but extremely tedious. Physical insight remains largely intact, but (except

Fig. 4. The figure captures the key features of possible eigenmodes for a small
perturbation (circles) in a 1 (left side), 2, 3, 4, and 5-component (right side) BEC.
In a 1-component system only one kind of perturbation is allowed, which corresponds
to a massless particle propagating through an effective curved space-time, while in
the 2-component case two different kinds of mode appear, the one in phase (massless
particle) and one in anti-phase (massive particle). For a three-component system we
again expect to find one massless particle, when all perturbations are in phase, and
now in addition to that two massive particles
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in some specific particularly simple cases), computations rapidly become
lost in a morass of technical detail.

• However, if one wishes to draw general theoretical lessons from the ana-
logue space-time programme, then multi-component systems are definitely
the preferred route – though in this case it is probably better to be even
more abstract, and to go beyond the specific details of BEC-based systems
to deal with general hyperbolic systems of PDEs.

• In appendix A we have sketched some of the key features of the pseudo–
Finsler space-times that naturally emerge from considering the leading
symbol of a hyperbolic system of PDEs. While it is clear that much more
could be done based on this, and on extending the field theory “normal
modes” of [2,3], such an analysis would very much move outside the scope
of the COSLAB programme.

In short the 2-BEC system is a good compromise between a system complex
enough to exhibit a mass-generating mechanism, and still simple enough to
be technologically tractable, with good prospects for laboratory realization of
this system in the not too distant future.

The key features we have emphasised in this chapter have been:

• A general analysis of the 2-BEC system to see how perturbations on a
2-BEC background lead to a system of coupled wave equations.

• Extraction of the geometric notion of pseudo–Finsler space-time from this
wave equation, coupled with an analysis of how to specialize pseudo–
Finsler geometry first to a bi-metric Lorentzian geometry and finally to the
usual mono-metric Lorentzian geometry of most direct interest in general
relativity and cosmology.

• The mass-generating mechanism we have identified in suitably coupled 2-
component BECs is an essential step in making this analogue space-time
more realistic; whatever one’s views on the ultimate theory of “quantum
gravity”, any realistic low-energy phenomenology must contain some mass-
generating mechanism.

• Use of the “quantum pressure” term in the 2-BEC system to mimic the
sort of Lorentz violating physics that (based on the relatively young field
of “quantum gravity phenomenology”) is widely expected to occur at or
near the Planck scale.

• Intriguingly, we have seen that in our specific model the mass-generating
mechanism interacts with the Lorentz violating mechanism, naturally lead-
ing to a situation where the Lorentz violations are suppressed by powers of
the quasi-particle mass scale divided by the analogue of the Planck scale.

In summary, while we do not personally believe that the real universe
is an analogue space-time, we are certainly intrigued by the fact that so
much of what is normally viewed as being specific to general relativity and/or
particle physics can be placed in this much wider context. We should also
be forthright about the key weakness of analogue models as they currently
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stand: As we have seen, obtaining an analogue space-time geometry (including
space-time curvature) is straightforward – but what is not straightforward is
obtaining the Einstein equations. The analogue models are currently analogue
models of quantum field theory on curved space-time, but not (yet?) true
analogue models of Einstein gravity. Despite this limitation, what can be
achieved through the analogue space-time programme is quite impressive, and
we expect interest in this field, both theoretical and hopefully experimental,
to continue unabated.

Appendix A Finsler and co-Finsler Geometries

Finsler geometries are sufficiently unusual that a brief discussion is in order
– especially in view of the fact that the needs of the physics community are
often somewhat at odds with what the mathematical community might view
as the most important issues. Below are some elementary results, where we
emphasise that for the time being we are working with ordinary “Euclidean
signature” Finsler geometry. For general references, see [34].

A.1 Basics

Euler theorem: If H(z) is homogeneous of degree n then

zi ∂H(z)
∂zi

= n H(z) . (208)

Finsler function: Defined on the “slit tangent bundle” T 
=0(M) such that
F : T 
=0(M) → [0,+∞) where

F (x, t) : F (x, λt) = λ F (x, t) , (209)

and
T 
=0(M) =

⋃
x∈M

[Tx − {0}] . (210)

That is, the Finsler function is a defined only for nonzero tangent vectors
t ∈ [Tx − {0}], and for any fixed direction is linear in the size of the vector.
Finsler distance:

dγ(x, y) =
∫ y

x

F (x(τ), dx/dτ) dτ ; τ = arbitrary parameter . (211)

Finsler metric:

gij(x, t) =
1
2
∂2[F 2(x, t)]
∂ti ∂tj

. (212)

The first slightly unusual item is the introduction of co-Finsler structure:
co-Finsler function: Define a co-Finsler structure on the cotangent bundle by
Legendre transformation of F 2(x, t). That is:
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G2(x, p) = tj(p) pj − F 2(x, t(p)) (213)

where t(p) is defined by the Legendre transformation condition

∂[F 2]
∂tj

(x, t) = pj . (214)

Note
∂pj

∂tk
=

∂[F 2]
∂tj ∂tk

= 2gjk(x, t) , (215)

which is why we demand the Finsler metric be nonsingular.

Lemma: G(x, p) defined in this way is homogeneous of degree 1.

Proof: Note

zi ∂H(z)
∂zi

= n H(z) (216)

implies

zi ∂

∂zi

[
∂m

(∂z)m
H(z)

]
= (n−m)

[
∂m

(∂z)m
H(z)

]
. (217)

In particular:

• F 2 is homogeneous of degree 2.
• gij is homogeneous of degree 0.
• ∂[F 2]/∂t is homogeneous of degree 1.
• Therefore p(t) is homogeneous of degree 1

and t(p) is homogeneous of degree 1.
• Therefore t(p)p− F 2(t(p)) is homogeneous of degree 2.
• Therefore G(p) is homogeneous of degree 1.

Thus from a Finsler function F (x, t) we can always construct a co-Finsler
function G(x, p) which is homogeneous of degree 1 on the cotangent bundle.

From the way the proof is set up it is clearly reversible – if you are given
a co-Finsler function G(x, p) on the cotangent bundle this provides a natural
way of extracting the corresponding Finsler function:

F 2(x, t) = t p(t)−G2(x, p(t)) . (218)

A.2 Connection with the Quasi-particle PDE Analysis

From the PDE-based analysis we obtain the second-order system of PDEs

∂a

(
fab

AB ∂bθ
B
)

+ lower order terms = 0 . (219)

We are now generalizing in the obvious manner to any arbitrary number n
of interacting BECs, but the analysis is even more general than that – it
applies to any field-theory normal-mode analysis that arises from a wide class
of Lagrangian based systems [2, 3].
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Going to the eikonal approximation this becomes

fab
AB papb ε

B + lower-order terms = 0 , (220)

which leads (neglecting lower order terms for now) to the Fresnel-like equation

det[fab
AB papb] = 0 . (221)

But by expanding the n × n determinant (n is the number of fields, not the
dimension of space-time) we have

det[fab
AB papb] = Qabcd... papbpcpd . . . (222)

where if there are n fields there will be 2n factors of p.
Now define

Q(x, p) = Qabcd... papbpcpd . . . , (223)

and
G(x, p) = 2n

√
Q(x, p) = [Q(z, p)]1/(2n) , (224)

then

• Q(x, p) is homogeneous of degree 2n.
• G(x, p) is homogeneous of degree 1, and hence is a co-Finsler function.
• We can now Legendre transform G→ F , providing a chain

Q(x, p) → G(x, p) → F (x, t) . (225)

Can this route be reversed?

Step 1: We can always reverse F (x, t) → G(x, p) by Legendre transformation.
Step 2: We can always define

gab(x, p) =
1
2

∂

∂pa

∂

∂pb
[G(x, p)2] , (226)

this is homogeneous of degree 0, but is generically not smooth at p = 0.
In fact, if gab(x, p) is smooth at p = 0 then there exits a limit

gab(x, p→ 0) = ḡab(x) , (227)

but since gab(x, p) is homogeneous of degree 0 this implies

gab(x, p) = ḡab(x) [∀p] , (228)

and so the geometry simplifies Finsler → Riemann.
This observation suggests the following definition.

Definition: A co-Finsler function G(x, p) is 2n-smooth iff the limit

1
(2n)!

lim
p→0

(
∂

∂p

)2n

G(x, p)2n = Q̄abcd... (229)
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exists independent of the direction p in which you approach zero.

Lemma: If G(x, p) is 2n-smooth then

G(x, p)2n = Q̄abcd... papbpcpd . . . , (230)

and indeed
G(x, p) = 2n

√
Q̄abcd... papbpcpd . . . . (231)

Proof: G2n is homogeneous of degree 2n, so (∂/∂p)2nG2n is homogeneous of
degree 0. Therefore if the limit

1
(2n)!

lim
p→0

(
∂

∂p

)2n

G(x, p)2n = Q̄abcd... (232)

exists, it follows that

1
(2n)!

(
∂

∂p

)2n

G(x, p)2n = Q̄abcd... [∀p] , (233)

and so the result follows.

Special case n = 1: If G(x, p) is 2-smooth then

1
2

∂2

∂pa ∂pb
G(x, p)2 = Q̄ab = gab(x, p) , (234)

and co-Finsler → Riemann.
These observations have a number of implications:

• For all those co-Finsler functions that are 2n smooth we can recover the
tensor Qabcd....

• Not all co-Finsler functions are 2n smooth, and for those functions we
cannot extract Qabcd... in any meaningful way.

• But those specific co-Finsler functions that arise from the leading symbol
of a 2nd-order system of PDEs are naturally 2n-smooth, and so for the
specific co-Finsler structures we are physically interested in

Q(x, p) ↔ G(x, p) ↔ F (x, t) . (235)

• Therefore, in the physically interesting case the Finsler function F (x, t)
encodes all the information present in Qabcd....

Special case n = 2: For two fields (appropriate for our 2-BEC system), we can
follow the chain

fab → Q(x, p) ↔ G(x, p) ↔ F (x, t) (236)

to formally write
ds4 = gabcd dx

adxbdxcdxd , (237)
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or
ds = 4

√
gabcd dxadxbdxcdxd . (238)

This is one of the “more general” cases Riemann alludes to in his inaugural
lecture of 1854 [21].

This discussion makes it clear that the general geometry in our 2-BEC
system is a 4-smooth Finsler geometry. It is only for certain special cases that
the Finsler geometry specializes first to “multi-metric” and then to “mono-
metric” Riemannian geometries.

A.3 Lorentzian Signature Finsler Geometries

The distinction between Finsler and pseudo–Finsler geometries has to do with
the distinction between elliptic and hyperbolic PDEs. Elliptic PDEs lead to
ordinary Finsler geometries, hyperbolic PDEs lead to pseudo–Finsler geome-
tries.

Remember that in special relativity we typically define

dγ(x, y) =
∫ y

x

√
gab(dxa/dτ)(dxb/dτ)dτ , (239)

then

• dγ(x, y) ∈ IR+ for spacelike paths;
• dγ(x, y) = 0 for null paths;
• dγ(x, y) ∈ II+ for timelike paths;

The point is that even in special relativity (and by implication in general
relativity) “distances” do not have to be real numbers. This is why physicists
deal with pseudo–Riemannian [Lorentzian] geometries, not (strictly speaking)
Riemannian geometries.

To see how this generalizes in a Finsler situation let us first consider a
co-Finsler structure that is multi-metric, that is:

Q(x, p) = Πn
i=1(g

ab
i papb) , (240)

where each one of these n factors contains a Lorentzian signature matrix and
so can pass through zero. Then

G(x, p) = 2n

√
Πn

i=1(g
ab
i papb) , (241)

and

G(x, p) ∈ exp
(
iπ!

2n

)
IR+ , (242)

where

• ! = 0 → G(x, p) ∈ IR+ → outside all n signal cones;
• ! = n→ G(x, p) ∈ II+ → inside all n signal cones.
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So we can now define

• Spacelike ↔ outside all n signal cones ↔ G real;
• Null ↔ on any one of the n signal cones ↔ G zero;
• Timelike ↔ inside all n signal cones ↔ G imaginary;
• plus the various “intermediate” cases:

“intermediate” ↔ inside ! of n signal cones ↔ G ∈ i�/n × IR+ . (243)

Now this basic idea survives even if we do not have a multi-metric theory.
The condition Q(x, p) = 0 defines a polynomial of degree 2n, and so de-
fines n nested sheets (possibly crossing in places). Compare with Courant and
Hilbert’s discussion of the Monge cone [20].

That is:

Q(x, p) = 0 ⇔ Q(x, (E,p)) = 0;
⇔ polynomial of degree 2n in E for any fixed p;
⇔ in each direction ∃ 2n roots in E;
⇔ corresponds to n [topological] cones.

(These are topological cones, not geometrical cones, and the roots might hap-
pen to be degenerate.)

Question: Should we be worried by the fact that the co-metric gab is singular
on the signal cone? (In fact on all n of the signal cones.) Not really. We have

G(x, p) = 2n

√
Q̄abcd... papbpcpd . . . , (244)

so

gab(x, p) =
1
2

∂2

∂pa ∂pb

(
n
√
Q(x, p)

)
=

1
2n

∂

∂pb

{
Q

1
n−1 Qabcd... pbpcpd . . .

}
,

(245)
whence

gab(x, p) =
1
2n
Q

1
n−1 Qabcd... pcpd . . . (246)

+
1
2n

(
1
n
− 1
)
Q

1
n−2

[
Qacde... pcpdpe . . .

] [
Qbfgh... pfpgph . . .

]
,

which we can write as

gab(x, p) =
1
2n
Q−(n−1)/n Qabcd... pcpd . . . (247)

− 1
2n

n− 1
n

Q−(2n−1)/n
[
Qacde... pcpdpe . . .

] [
Qbfgh... pfpgph . . .

]
.

Yes, this naively looks like it’s singular on the signal cone where Q(x, p) = 0.
But no, this is not a problem: Consider
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gabpapb =
1
2n
Q−(2n−1)/nQ− 1

2n
n− 1
n

Q−(2n−1)/nQ2 , (248)

then

gabpapb =
1
2n

(
1− n− 1

n

)
Q1/n =

1
2n2

Q1/n = 0 , (249)

and this quantity is definitely non-singular.

A.4 Summary

In short:

• pseudo–Finsler functions arise naturally from the leading symbol of hy-
perbolic systems of PDEs;

• pseudo–Finsler geometries provide the natural “geometric” interpretation
of a multi-component PDE before fine tuning;

• In particular the natural geometric interpretation of our 2-BEC model
(before fine tuning) is as a 4-smooth pseudo–Finsler geometry.

Appendix B Some Matrix Identities

To simplify the flow of argument in the body of the paper, here we collect a
few basic results on 2× 2 matrices that are used in our analysis.

B.1 Determinants

Theorem: For any two 2× 2 matrix A:

det(A) =
1
2
{
Tr[A]2 − Tr[A2]

}
. (250)

This is best proved by simply noting

det(A) = λ1λ2 =
1
2
[
(λ1 + λ2)2 − (λ2

1 + λ2
2)
]

=
1
2
{
Tr[A]2 − Tr[A2]

}
. (251)

If we now define 2× 2 “trace reversal” (in a manner reminiscent of standard
GR) by

Ā = A− Tr[A] I; ¯̄A = A ; (252)

then this looks even simpler

det(A) = −1
2

Tr[A Ā] = det(Ā) . (253)

A simple implication is now:

Theorem: For any two 2× 2 matrices A and B:
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det(A+ λ B) = det(A) + λ {Tr[A] Tr[B]− Tr[A B]}+ λ2 det(B) . (254)

which we can also write as

det(A+ λ B) = det(A)− λ Tr[A B̄] + λ2 det(B) . (255)

Note that Tr[A B̄] = Tr[Ā B].

B.2 Hamilton–Cayley Theorems

Theorem: For any two 2× 2 matrix A:

A−1 =
Tr[A] I−A

det[A]
= − Ā

det [Ā]
. (256)

Theorem: For any two 2× 2 matrix A:

A1/2 = ±




A±
√

detA I√
Tr[A]± 2

√
detA


 . (257)
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Abstract. In this report I review some aspects of the algebraic structure of QFT
related with the doubling of the degrees of freedom of the system under study. I
show how such a doubling is related to the characterizing feature of QFT consist-
ing in the existence of infinitely many unitarily inequivalent representations of the
canonical (anti-)commutation relations and how this is described by the q-deformed
Hopf algebra. I consider several examples, such as the damped harmonic oscillator,
the quantum Brownian motion, thermal field theories, squeezed states, classical-to-
quantum relation, and show the analogies, or links, among them arising from the
common algebraic structure of the q-deformed Hopf algebra.

1 Introduction

Since several years I am pursuing the study of the vacuum structure in quan-
tum field theory (QFT) through a number of physical problems such as boson
condensation and the infrared effects in spontaneously broken symmetry gauge
theories, coherent domain formation and defect formation, soliton solutions,
particle mixing and oscillation, the canonical formalism for quantum dissipa-
tion and unstable states, the quantization in curved background, thermal field
theories, quantum-to-classical relationship. In this paper I would like to share
with the reader the satisfying feeling of a unified view of several distinct phys-
ical phenomena emerging from such a study of the QFT vacuum structure.
Besides such a pleasant feeling, there is a concrete interest in pointing out
the analogies (“links”) among these phenomena, which arises since these links
provide a great help not only in the formulation of their mathematical de-
scription, but also in the understanding of the physics involved in them. Such
a “compared study” also reflects back to a deeper understanding of structural
aspects of the same QFT formalism.
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Quite often QFT is presented as an extension of quantum mechanics (QM)
to the relativistic domain. Sometimes it is referred to as “second quantiza-
tion”. Of course, the reasons for that come from the historical developments
in the formulation of the quantum theory of elementary particle physics and
solid state physics. However, a closer view to the formalism of QFT shows
that it is not necessarily related with the relativistic domain and it is not
simply a “second” quantization recipe subsequent the quantization procedure
in QM. For example, the QFT formalism is widely used, with great success,
in condensed matter physics, e.g. in the formulation of superconductivity, of
ferromagnetism, etc., where typically one does not refer to the relativistic do-
main. On the other hand, in dealing with fermion fields one cannot rely on
the quantization scheme adopted in QM for boson creation and annihilation
operators.

As it will appear in the following, QFT is drastically different from QM.
The main reason for this resides in the fact that the well known von Neumann
theorem, which characterizes in a crucial way the structure of QM [1,2], does
not hold in QFT. In QM the von Neumann theorem states that for systems
with a finite number of degrees of freedom all the representations of the canon-
ical commutation relations (ccr) are unitarily equivalent. This means that they
are physically equivalent; namely, the representations of the ccr are related
by unitary operators and, as well known, physical observables are invariant
under the action of unitary operators. Their value is therefore the same inde-
pendently of the representation one chooses to work in. Such a choice is thus
completely arbitrary and does not affect the physics one is going to describe.
The situation is quite different in QFT where the von Neumann theorem does
not hold. Indeed, the hypothesis of finite number of degrees of freedom on
which the theorem rests is not satisfied since fields involve by definition infi-
nitely many degrees of freedom. As a consequence, infinitely many unitarily
inequivalent (ui) representations of the ccr are allowed to exist [3–5]. The ex-
istence of ui representations is thus a characterizing feature of QFT and a full
series of physically relevant consequences follows.

One of the aspects I will discuss below is related with the algebraic struc-
ture of QFT. I will show that the relevant algebra underlying the QFT for-
malism is the Hopf algebra, and this underlies the existence of the ui repre-
sentations. It manifests in the doubling of the system degrees of freedom and
its q-deformation bears deep physical meaning. In the first part of the paper,
I will start by considering some aspects of the two-slit experiment. This is a
typical subject in QM where quantum features fully show up. The discussion
turns out to be useful for the subsequent discussion of the q-deformed Hopf
algebra structure of QFT [6,7] and it also provides a good example where the
quantum-to-classical relation manifests itself.

The q-deformation of the Hopf algebra will be shown to be also related
with quantum dissipation and with thermal field theory, where the description
of statistical thermal averages of observables in operatorial terms is made pos-
sible by exploiting the existence of infinitely many ui representations [5,8–10].
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Recognizing that a symplectic structure with classical dynamics is embedded
in the space of the ui representations of ccr in QFT [10] leads to show that
trajectories (i.e. a sequence of phase transitions) in such a space may satisfy,
under convenient conditions, the criteria for chaoticity prescribed by nonlin-
ear classical dynamics. In a figurate way one could say that a classical blanket
covers the space of the QFT ui representations. Moving on such a blanket
describes (phase) transitions among the representations.

The problem of the interplay between “classical and quantum” is indeed
another topic on which I will comment on in this paper and I will show that it
is intrinsic to the mathematical structure of QFT [10,11]. The phenomenon of
decoherence in QM and the related emergence of classicality from the quantum
realm is analyzed in detail in the literature [12]. Similarly, although based on
different formal and conceptual frame, the emergence of macroscopic ordered
patterns and classically behaving structures out of a QFT (not QM!) dynamics
via the spontaneous breakdown of symmetry is since long well known [5, 13].
Examples of such classically behaving macroscopic quantum systems are crys-
tals, ferromagnets, superconductors, superfluids. These are quantum systems
not in the trivial sense that they, as all other systems, are made of quantum
components, but in the sense that their macroscopic behavior, characterized
by the classical (c-number) observable called order parameter, cannot be ex-
plained without recourse to the underlying quantum field dynamics.

On the other hand, in recent years the problem of quantization of a clas-
sical theory has attracted much attention in gravitation theories and in non-
hamiltonian dissipative system theories, where a novel perspective has been
proposed [14] according to which the “emergence” of the quantum-like behav-
ior from a classical frame may occur. I will comment in particular on classical
deterministic systems with dissipation (information loss) which are found to
exhibit quantum behavior under convenient conditions [14–16]. The paper
is organized as follows: the doubling the degrees of freedom is discussed in
Sect. 2, the two-slit experiment in Subsect. 2.1, unitarily inequivalent repre-
sentations in QFT in Sect. 3, quantum dissipation in Subsect. 3.1, the thermal
connection and the arrow of time in Subsect. 3.2, two-mode squeezed coher-
ent states in Sect. 4, quantum Brownian motion in Sect. 5, the dissipative
noncommutative plane in Sect. 6. Thermal field theory in the operatorial for-
malism (TFD) is presented in Sect. 7. In Sect. 8 the q-deformed Hopf algebra
is shown to be a basic feature of QFT. Entropy as a measure of entanglement
and the trajectories in the space of the ui representations are discussed in
Sects. 9 and 10 respectively. Deterministic dissipative systems are considered
in Sect. 11 with respect to the quantization problem. Section 12 is devoted to
conclusions. In this paper I have not considered the doubling of the degrees
of freedom in inflationary models and in the problem of the quantization of
the matter field in a curved background. The interested reader is referred to
the papers [17–19].
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2 Doubling the Degrees of Freedom

One of the main features underlying the QFT formalism is the doubling of the
degrees of freedom of the system under study. Such a doubling is not simply
a mathematical tool useful to describe our system. On the contrary, it bears
a physical meaning. It also appears to be an essential feature of QM, as I will
show in the examples I am going to discuss in this paper.

The standard formalism of the density matrix [20,21] and of the associated
Wigner function [22] suggests that one may describe a quantum particle by
splitting the single coordinate x(t) into two coordinates x+(t) (going forward
in time) and x−(t) (going backward in time). Indeed, the standard expression
for the Wigner function is [22],

W (p, x, t) =
1

2π�

∫
ψ∗
(
x− 1

2
y, t

)
ψ

(
x+

1
2
y, t

)
e−i py

� dy , (1)

where
x± = x± 1

2
y . (2)

By employing the Schwinger quantum operator action principle, or recalling
the mean value of a quantum operator

Ā(t) = (ψ(t)|A|ψ(t))

=
∫ ∫

ψ∗(x−, t) (x−|A|x+)ψ(x+, t)dx+dx−

=
∫ ∫

(x+|ρ(t)|x−)(x−|A|x+)dx+dx− , (3)

one requires the density matrix

W (x, y, t) = (x+|ρ(t)|x−) = ψ∗(x−, t)ψ(x+, t) (4)

to follow two copies of the Schrödinger equation: the forward in time motion
and the backward in time motion, respectively. These motions are controlled
by the two Hamiltonian operators H±:

i�
∂ψ(x±, t)

∂t
= H±ψ(x±, t) , (5)

which gives

i�
∂(x+|ρ(t)|x−)

∂t
= H (x+|ρ(t)|x−) , (6)

where
H = H+ −H− . (7)

Using two copies of the Hamiltonian (i.e. H±) operating on the outer product
of two Hilbert spaces F+ ⊗ F− has been implicitly required in QM since the
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very beginning of the theory. For example, from Eqs. (6), (7) one finds imme-
diately that the eigenvalues of H are directly the Bohr transition frequencies
�Ωnm = En−Em which was the first clue to the explanation of spectroscopic
structure.

The notion that a quantum particle has two coordinates x±(t) moving at
the same time is therefore central [23].

In conclusion, the density matrix and the Wigner function require the in-
troduction of a “doubled” set of coordinates, (x±, p±) (or (x, px) and (y, py)).

Let me show how the doubling of the coordinates works in the remarkable
example of the two-slit diffraction experiment. Here I will shortly summarize
the discussion reported in [24].

2.1 The Two-slit Experiment

In order to derive the diffraction pattern it is required to know the wave
function ψ0(x) of the particle when it “passes through the slits” at time zero.
In other words, one searches for the density matrix

(x+|ρ0|x−) = ψ∗
0(x−)ψ0(x+) . (8)

The probability density for the electron to be found at position x at the
detector screen at a later time t is written as

P (x, t) = (x|ρ(t)|x) = ψ∗(x, t)ψ(x, t) (9)

in terms of the solution ψ(x, t) to the free particle Schrödinger equation

ψ(x, t) =
( M

2π�it

)1/2
∫ ∞

−∞
e[

i
�

A(x−x′,t)]ψ0(x′)dx′, (10)

where

A(x− x′, t) =
M(x− x′)2

2t
(11)

is the Hamilton-Jacobi action for a classical free particle to move from x′ to
x in a time t. Eqs. (8)–(11) then imply that

P (x, t) =
M

2π�t

∫ ∞

−∞

∫ ∞

−∞
e

[
iM

(x−x+)2−(x−x−)2

2�t

]
(x+|ρ0|x−)dx+dx− . (12)

Equation (12) shows that P (x, t) would not oscillate in x, i.e. there would not
be the usual quantum diffraction, if x+ = x−. In Eq. (12), in order to have
quantum interference the forward in time action A(x−x+, t) must be different
from the backward in time action A(x− x−, t): the non-trivial dependence of
the density matrix (x+|ρ0|x−) when the electron “passes through the slits”
on the difference (x+ − x−) crucially determines the quantum nature of the
phenomenon.
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Fig. 1. Two slit experiment

In the quantum diffraction experiment the experimental apparatus is pre-
pared so that w 
 d 
 D, with w the opening of the slits which are sepa-
rated by a distance 2d. D is the distance between the slits and the screen
(Fig. 1). The diffraction pattern is described by |x| � |x±|. By defining
K = Mvd

�D , β = w
d , with v = D/t the velocity of the incident electron,

Eq. (12) leads [24] to the usual result

P (x,D) ≈ 4
πβKx2

cos2(Kx) sin2(βKx) , (13)

where the initial wave function

ψ0(x) =
1√
2

[
φ(x− d) + φ(x+ d)

]
, (14)

with φ(x) = 1√
w

if |x| ≤ w
2 and zero otherwise, has been used. From Eqs. (8)

and (14) we have

(x+|ρ0|x−) =
1
2
{φ(x+ − d)φ(x− − d) + φ(x+ + d)φ(x− + d)

+φ(x+ − d)φ(x− + d) + φ(x+ + d)φ(x− − d)} . (15)

In the rhs of Eq. (15) the first and the second terms describe the classical
processes of the particle going forward and backward in time through slit 1
and going forward and backward in time through slit 2, respectively. In these
processes it is x+(t) = x−(t) and in such cases no diffraction is observed
on the screen. The third term and the fourth term describe the particle going
forward in time through slit 1 and backward in time through slit 2, or forward
in time through slit 2 and backward in time through slit 1, respectively. These
are the terms generating quantum interference since |x+(t)− x−(t)| > 0.

In conclusion, the doubling the system coordinates, x(t) → (x+(t), x−(t))
plays a crucial rôle in the description of the quantum system. If x(t) ≡ x+(t) ≡
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x−(t), then the system behavior appears to be a classical one. When forward in
time and backward in time motions are (at the same time) unequal x+(t) �=
x−(t), then the system is behaving in a quantum mechanical fashion and
interference patterns appear in measured position probability densities.

I will not comment further on the two-slit experiment. In the following
section I go back to the general discussion of the doubling of the degrees of
freedom and of its meaning in QFT.

3 Unitarily Inequivalent Representations in QFT

The mathematical rôle and the physical meaning of the doubling of the degrees
of freedom fully appears in dealing with phase transitions, with equilibrium
and non-equilibrium thermal field theories and with dissipative, open systems.
In these cases the doubling of the degrees of freedom appears to be a structural
feature of QFT since it strictly relates with the existence of the unitarily
inequivalent representations of the ccr in QFT.

Let me consider the case of dissipation [25–27]. I will discuss the canonical
quantization of the damped (simple) harmonic oscillator (dho), which is a
simple prototype of dissipative system.

3.1 Quantum Dissipation

Dissipation enters into our considerations if there is a coupling to a thermal
reservoir yielding a mechanical resistance R. According to the discussion in
Sect. 2, the equation of motion for the density matrix is given by Eq. (6),
where now the Hamiltonian H for motion in the (x+, x−) plane is [23,24]

H =
1

2M

(
p+ −

R

2
x−

)2

− 1
2M

(
p− +

R

2
x+

)2

+ U(x+)− U(x−) , (16)

where p± = −i� ∂
∂x±

. In order to simplify the discussion, it is convenient,
without loss of generality, to make an explicit (simple) choice for U(x±), say
U(x±) = 1

2κx
2
±. By choosing as doubled coordinates the pair (x, y) with

y = x+ − x− , (17)

the Hamiltonian (16) can be derived from the Lagrangian (see [25]– [29])

L = Mẋẏ +
1
2
R(xẏ − ẋy)− κxy . (18)

The system described by (18) is sometimes called Bateman’s dual system [29].
I observe that the doubling imposed by the density matrix and the Wigner
function formalism, as seen in Sect. 2, here finds its physical justification in
the fact that the canonical quantization scheme can only deal with an isolated
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system. In the present case our system has been assumed to be coupled with a
thermal reservoir and it is then necessary to close the system by including the
reservoir. This is achieved by doubling the phase-space dimensions [25, 26].
Equation (18) is indeed the closed system Lagrangian.

By varying Eq. (18) with respect to y gives

Mẍ+Rẋ+ κx = 0 , (19)

whereas variation with respect to x gives

Mÿ −Rẏ + κy = 0 , (20)

which is the time reversed (R → −R) of Eq. (19). The physical meaning of
the doubled degree of freedom y is now manifest: y may be thought of as
describing an effective degree of freedom for the reservoir to which the system
(19) is coupled. The canonical momenta are given by px ≡ ∂L

∂ẋ = Mẏ − 1
2Ry;

py ≡ ∂L
∂ẏ = Mẋ+ 1

2Rx. For a discussion of Hamiltonian systems of this kind
see also [30,31]. Canonical quantization is performed by introducing the com-
mutators

[x, px] = i � = [y, py], [x, y] = 0 = [px, py] , (21)

and the corresponding sets of annihilation and creation operators

α≡
(

1
2�Ω

) 1
2
(

px√
M
− i
√
MΩx

)
, α†≡

(
1

2�Ω

) 1
2
(

px√
M

+ i
√
MΩx

)
, (22)

β ≡
(

1
2�Ω

) 1
2
(

py√
M
− i
√
MΩy

)
, β† ≡

(
1

2�Ω

) 1
2
(

py√
M

+ i
√
MΩy

)
, (23)

[α, α† ] = 1 = [β, β† ] , [α, β ] = 0 = [α, β† ] . (24)

I have introduced Ω ≡ [ 1
M (κ− R2

4M )]
1
2 , the common frequency of the two os-

cillators Eq. (19) and Eq. (20), assuming Ω real, hence κ > R2

4M (case of no
overdamping).

In Sect. 5 I show that, at quantum level, the β modes allow quantum
noise effects arising from the imaginary part of the action [23]. Moreover, in
Sect. 8 the modes α and β will be shown to be the modes involved in the
coproduct operator of the underlying q-deformed Hopf algebra structure. The
q-deformation parameter turns out to be a function of R, M and t.

By using the canonical linear transformations A ≡ 1√
2
(α+ β), B ≡

1√
2
(α− β), the quantum Hamiltonian H is then obtained [25,26] as

H = H0 +HI , (25)

H0 = �Ω(A†A−B†B) , HI = i�Γ (A†B† −AB) , (26)

where the decay constant for the classical variable x(t) is denoted by Γ ≡ R
2M .
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In conclusion, the states generated by B† represent the sink where the en-
ergy dissipated by the quantum damped oscillator flows: the B-oscillator rep-
resents the reservoir or heat bath coupled to the A-oscillator.

The dynamical group structure associated with the system of coupled
quantum oscillators is that of SU(1, 1). The two mode realization of the al-
gebra su(1, 1) is indeed generated by J+ = A†B†, J− = J†

+ = AB, J3 =
1
2 (A†A+B†B + 1), [J+, J− ] = −2J3, [J3, J± ] = ±J±. The Casimir oper-
ator C is C2 ≡ 1

4 + J2
3 − 1

2 (J+J−+ J−J+) = 1
4 (A†A−B†B)2.

I also observe that [H0,HI ] = 0. The time evolution of the vacuum |0〉 ≡
|nA = 0, nB = 0〉 = |0〉⊗ |0〉 , (A⊗ 1)|0〉⊗ |0〉 ≡ A|0〉 = 0; (1⊗ B)|0〉⊗ |0〉 ≡
B|0〉 = 0, is controlled by HI

|0(t)〉 = exp
(
−itH

�

)
|0〉 = exp

(
−itHI

�

)
|0〉

=
1

cosh (Γt)
exp

(
tanh (Γt)A†B†)|0〉 , (27)

〈0(t)|0(t)〉 = 1 ∀t , (28)

lim
t→∞

〈0(t)|0〉 ∝ lim
t→∞

exp (−tΓ ) = 0 . (29)

Notice that once one sets the initial condition of positiveness for the eigen-
values of H0, such a condition is preserved by the time evolution since H0 is
the Casimir operator (it commutes with HI). In other words, there is no dan-
ger of dealing with energy spectrum unbounded from below. Time evolution
for creation and annihilation operators is given by

A �→ A(t) = e−i t
�

HIA ei t
�

HI = A cosh (Γt)−B† sinh (Γt) , (30)

B �→ B(t) = e−i t
�

HIB ei t
�

HI = B cosh (Γt)−A† sinh (Γt) (31)

and h.c.. I note that Eqs. (30) and (31) are Bogoliubov transformations: they
are canonical transformations preserving the ccr. Equation (29) expresses the
instability (decay) of the vacuum under the evolution operator exp

(
−itHI

�

)
.

In other words, time evolution leads out of the Hilbert space of the states. This
means that the QM framework is not suitable for the canonical quantization of
the damped harmonic oscillator. A way out from such a difficulty is provided
by QFT [25]: the proper way to perform the canonical quantization of the dho
turns out to be working in the framework of QFT. In fact, for many degrees
of freedom the time evolution operator U(t) and the vacuum are formally (at
finite volume) given by

U(t) =
∏
κ

exp (Γκt
(
A†

κB
†
κ −AκBκ

)
, (32)

|0(t)〉 =
∏
κ

1
cosh (Γκt)

exp
(
tanh (Γκt)A†

κB
†
κ

)
|0〉 , (33)
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with 〈0(t)|0(t)〉 = 1,∀t. Using the continuous limit relation
∑

κ �→ V
(2π)3

∫
d3κ,

in the infinite-volume limit we have (for
∫
d3κ Γκ finite and positive)

〈0(t)|0〉 → 0 as V →∞ ∀ t , (34)

and in general, 〈0(t)|0(t′)〉 → 0 as V →∞ ∀ t and t′, t′ �= t. At each time
t a representation {|0(t)〉} of the ccr is defined and turns out to be ui to any
other representation {|0(t′)〉, ∀t′ �= t} in the infinite volume limit. In such
a way the quantum dho evolves in time through ui representations of ccr
(tunneling). I remark that |0(t)〉 is a two-mode time dependent generalized
coherent state [32,33]. Also note that

NAκ
(t) = 〈0(t)|A†

κAκ|0(t)〉 = sinh2 Γt . (35)

The Bogoliubov transformations, Eqs. (30) and (31) can be implemented
for every κ as inner automorphism for the algebra su(1, 1)κ. At each time t
one has a copy {Aκ(t), A†

κ(t), Bκ(t), B†
κ(t) ; |0(t)〉 | ∀κ} of the original algebra

induced by the time evolution operator which can thus be thought of as a
generator of the group of automorphisms of

⊕
κ su(1, 1)κ parameterized by

time t (we have a realization of the operator algebra at each time t, which can
be implemented by Gel’fand-Naimark-Segal construction in the C*-algebra
formalism [3,34]). Notice that the various copies become unitarily inequivalent
in the infinite-volume limit, as shown by Eq. (34): the space of the states splits
into ui representations of the ccr each one labeled by time parameter t. As
usual, one works at finite volume and only at the end of the computations the
limit V →∞ is performed.

Finally, I note that the “negative” kinematic term in the Hamiltonian (26)
(or (16)) also appears in two-dimensional gravity models where, in general,
two different strategies are adopted in the quantization procedure [35]: the
Schrödinger representation approach, where no negative norm appears, and
the string/conformal field theory approach where negative norm states arise
as in Gupta-Bleuler electrodynamics.

3.2 The Thermal Connection and the Arrow of Time

It is useful [25] to introduce the functional FA for the A-modes

FA ≡ 〈0(t)|
(
HA −

1
β
SA

)
|0(t)〉 , (36)

where β is a non-zero c-number, HA is the part of H0 relative to A- modes
only, namely HA =

∑
κ �ΩκA

†
κAκ, and the SA is given by

SA ≡ −
∑

κ

{
A†

κAκ ln sinh2
(
Γκt
)
−AκA

†
κ ln cosh2

(
Γκt
)}

. (37)
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One then considers the extremal condition ∂FA
∂ϑκ

= 0 ∀κ , ϑκ ≡ Γκt to be
satisfied in each representation, and using the definition Eκ ≡ �Ωκ, one finds

NAκ
(t) = sinh2

(
Γκt
)

=
1

eβ(t)Eκ − 1
, (38)

which is the Bose distribution for Aκ at time t, provided β(t) is the (time-
dependent) inverse temperature. Inspection of Eqs. (36) and (37) then sug-
gests that FA and SA can be interpreted as the free energy and the entropy,
respectively. I will comment more about this in Sects. 7 and 9.
{|0(t)〉} is thus recognized to be a representation of the ccr at finite tem-

perature (it turns out to be equivalent to the thermo field dynamics (TFD)
representation {|0(β)〉} [5, 8], see Sect. 7). Use of Eq. (37) shows that

∂

∂t
|0(t)〉 = −

(
1
2
∂SA

∂t

)
|0(t)〉 . (39)

One thus see that i
(

1
2�

∂SA
∂t

)
is the generator of time translations, namely time

evolution is controlled by the entropy variations [36]. It is remarkable that the
same dynamical variable SA whose expectation value is formally the entropy
also controls time evolution: damping (or, more generally, dissipation) implies
indeed the choice of a privileged direction in time evolution (arrow of time)
with a consequent breaking of time-reversal invariance.

One may also show that dFA = dEA − 1
β dSA = 0 , which expresses the

first principle of thermodynamics for a system coupled with environment at
constant temperature and in absence of mechanical work. As usual, one may
define heat as dQ = 1

β dSA and see that the change in time dNA of particles
condensed in the vacuum turns out into heat dissipation dQ:

dEA =
∑

κ

�ΩκṄAκ
(t)dt =

1
β
dSA = dQ . (40)

Here ṄAκ
denotes the time derivative of NAκ

.
It is interesting to observe that the thermodynamic arrow of time, whose

direction is defined by the increasing entropy direction, points in the same
direction of the cosmological arrow of time, namely the inflating time direc-
tion for the expanding Universe. This can be shown by considering indeed the
quantization of inflationary models [17] (see also [18]). The concordance be-
tween the two arrows of time (and also with the psychological arrow of time,
see Refs. [37]) is not at all granted and is a subject of an ongoing debate (see,
e.g., [38]).

In Sect. 6 I will show that quantum dissipation induces a dissipative phase
interference [24], analogous to the Aharonov-Bohm phase [39], and a noncom-
mutative geometry in the plane (x+, x−) [40].

The quantum dissipation Lagrangian model discussed above is strictly
related with the squeezed coherent states in quantum optics and with the
quantum Brownian motion. I will briefly discuss these two topics in follolwing
sections.
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4 Two-mode Squeezed Coherent States

Here I will only mention that in the quantum damped oscillator treatment
presented above the time evolution operator U(t) written in terms of the α
and β modes (Eqs. (22) and (23)) is given by

U(t) ≡ exp
(
−itHI

�

)
=
∏
κ

exp
(
− θκ

2
(
α2

κ − α†2
κ

))
exp

(
θκ

2
(
β2

κ − β†2
κ

))

≡
∏

κ
Ŝα(θκ)Ŝβ(−θκ) , (41)

with Ŝα(θκ)≡ exp
(
− θκ

2

(
ακ

2−ακ
†2)) and similar expression for Ŝβ(−θκ) with

β and β† replacing α and α†, respectively. The operators Ŝα(θκ) and Ŝβ(−θκ)
are the squeezing operators for the ακ and the βκ modes, respectively, as well
known in quantum optics [41]. The set θ ≡ {θκ ≡ Γκt} as well as each θκ

for all κ is called the squeezing parameter. The state |0(t)〉 is thus a squeezed
coherent states at each time t.

To illustrate the effect of the squeezing, let me focus the attention only
on the ακ modes for sake of definiteness. For the β modes one can proceed
in a similar way. As usual, for given κ I express the α mode in terms of
conjugate variables of the corresponding oscillator. By using dimensionless
quantities I thus write α = X+ iY , with [X,Y ] = i

2 . The uncertainty relation
is ∆X∆Y = 1

4 , with ∆X2 = ∆Y 2 = 1
4 for (minimum uncertainty) coherent

states. The squeezing occurs when ∆X2 < 1
4 and ∆Y 2 > 1

4 (or ∆X2 > 1
4 and

∆Y 2 < 1
4 ) in such a way that the uncertainty relation remains unchanged.

Under the action of U(t) the variances ∆X and ∆Y are indeed squeezed as

∆X2(θ) = ∆X2 exp(2θ) , ∆Y 2(θ) = ∆Y 2 exp(−2θ) . (42)

For the tilde-mode similar relations are obtained for the corresponding vari-
ances, say X̃ and Ỹ :

∆X̃
2
(θ) = ∆X̃

2
exp(−2θ) , ∆Ỹ

2
(θ) = ∆Ỹ

2
exp(2θ) . (43)

For positive θ, squeezing then reduces the variances of the Y and X̃ variables,
while the variances of the X and Ỹ variables grow by the same amount so
to keep the uncertainty relations unchanged. This reflects, in terms of the A
and B modes, the constancy of the difference NAκ

− NBκ
against separate,

but equal, changes of NAκ
and NBκ

(degeneracy of the states |0(t)〉 labelled
by different NAκ

, or different NBκ
, cf. Eq. (35)).

In conclusion, the θ-set {θκ(Nκ)}, is nothing but the squeezing parameter
classifying the squeezed coherent states in the hyperplane (X, X̃;Y, Ỹ ). Note
that to different squeezed states (different θ-sets) are associated unitarily in-
equivalent representations of the ccr’s in the infinite volume limit. Also note
that in the limit t→∞ the variances of the variables Y and X̃ become infinity
making them completely spread out.

Further details on the squeezing states and their relation with deformed
algebraic structures in QFT can be found in Refs. [28, 42,43].
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5 Quantum Brownian Motion

By following Schwinger [20], the description of a Brownian particle of mass
M moving in a potential U(x) with a damping resistance R, interacting with
a thermal bath at temperature T is provided by [23,24]

HBrownian = H− ikBTR

�
(x+ − x−)2 . (44)

Here H is given by Eq. (16) and the evolution equation for the density matrix
is

i�
∂(x+|ρ(t)|x−)

∂t
= H(x+ |ρ(t)|x−)− (x+ |N [ρ]|x−) , (45)

where N [ρ] ≈ (ikBTR/�)[x, [x, ρ]] describes the effects of the reservoir random
thermal noise [23,24]. In general the density operator in the above expression
describes a mixed statistical state. The thermal bath contribution to the right
hand side of Eq. (44), proportional to fluid temperature T, can be shown [24]
to be equivalent to a white noise fluctuation source coupling the forward and
backward motions according to

〈y(t)y(t′)〉noise =
�

2

2RkBT
δ(t− t′) , (46)

so that thermal fluctuations are always occurring in the difference y = x+−x−
between forward in time and backward in time coordinates.

The correlation function for the random force f on the particle due to the
bath is given by G(t−s) = (i/�)〈f(t)f(s)〉. The retarded and advanced Greens
functions are studied in Ref. [23] and for brevity I omit here their discussion.
The mechanical resistance is defined by R = limΩ→0ReZ(Ω+ i0+), with the
mechanical impedance Z(ζ) (analytic in the upper half complex frequency
plane Im ζ > 0) determined by the retarded Greens function −iζZ(ζ) =∫∞
0
dtGret(t)eiζt. The time domain quantum noise in the fluctuating random

force is N(t− s) = (1/2)〈f(t)f(s) + f(s)f(t)〉.
The interaction between the bath and the particle is evaluated by following

Feynman and Vernon and one finds [23] for the real and the imaginary part
of the action

ReA[x, y] =
∫ tf

ti

dtL , (47)

ImA[x, y] = (1/2�)
∫ tf

ti

∫ tf

ti

dtdsN(t− s)y(t)y(s) , (48)

respectively, where L is defined in Eq. (18) for the given choice of U(x±) there
adopted (without loss of generality).

I observe that at the classical level the “extra” coordinate y, is usually
constrained to vanish. Note that y(t) = 0 is a true solution to Eq. (20) so that
the constraint is not in violation of the equations of motion. From Eqs. (47)
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and (48) one sees that at quantum level nonzero y allows quantum noise effects
arising from the imaginary part of the action. On the contrary, in the classical
“� → 0” limit nonzero y yields an “unlikely process” in view of the large
imaginary part of the action implicit in Eq. (48). Thus, the meaning of the
constraint y = 0 at the classical level is the one of avoiding such “unlikely
process”.

The rôle of the doubled y coordinate (the quantum β, or B mode in the
discussion of the previous section) is thus shown again to be absolutely cru-
cial in the quantum regime. There it accounts for the quantum noise in the
fluctuating random force in the system-environment coupling [23]: in the limit
of y → 0 (i.e. for x+ = x−) quantum effects are lost and the classical limit is
obtained.

It is interesting to remark that the forward and backward in time velocity
components v± = ẋ± in the (x+, x−) plane

v± =
∂H
∂p±

= ± 1
M

(
p± ∓

R

2
x∓

)
(49)

do not commute
[v+, v−] = i�

R

M2
, (50)

and it is thus impossible to fix these velocities v+ and v− as being identical.
Equation (50) is similar to the usual commutation relations for the quantum
velocities v = (p − (eA/c))/M of a charged particle moving in a magnetic
field B; i.e. [v1, v2] = (i�eB3/M

2c). Just as the magnetic field B induces
an Aharonov-Bohm phase interference for the charged particle, the Brownian
motion friction coefficient R induces an analogous phase interference between
forward and backward motion which expresses itself as mechanical damp-
ing. Equation (50) will be also discussed in connection with noncommutative
geometry induced by quantum dissipation [40]. I will comment more on this
in the next section.

In the discussion above I have considered the low temperature limit: T 

Tγ where kBTγ = �γ = �R

2M . At high temperature, T � Tγ , the thermal
bath motion suppresses the probability for x+ �= x− due to the thermal term
(kBTR/�)(x+ − x−)2 in Eq. (44) (cf. also Eq. (46)). By writing the diffusion
coefficient D = kBT

R as

D =
T

Tγ

(
�

2M

)
, (51)

the condition for classical Brownian motion for high mass particles is that
D � (�/2M), and the condition for quantum interference with low mass
particles is that D 
 (�/2M). In colloidal systems, for example, classical
Brownian motion for large particles would appear to dominate the motion. In
a fluid at room temperature it is typically D ∼ (�/2M) for a single atom, or,
equivalently, T ∼ Tγ , so that the rôle played by quantum mechanics, although
perhaps not dominant, may be an important one in the Brownian motion.
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6 Dissipative Noncommutative Plane

The harmonic oscillator on the noncommutative plane, the motion of a particle
in an external magnetic field and the Landau problem on the noncommuta-
tive sphere are only few examples of systems whose noncommutative geometry
has been studied in detail. Noncommutative geometries are also of interest in
Chern–Simons gauge theories, the usual gauge theories and string theories,
in gravity theory [44,45]. Here I show that quantum dissipation induces non-
commutative geometry in the (x+, x−) plane [40].

The velocity components v± = ẋ± in the (x+, x−) plane are given Eq.
(49). Similarly,

ṗ± = − ∂H
∂x±

= ∓U ′(x±)∓ Rv∓
2

. (52)

From Eqs. (49) and (52) it follows that

Mv̇± +Rv∓ + U ′(x±) = 0 . (53)

When the choice U(x±) = 1
2κx

2
± is made, these are equivalent to the equations

Eqs. (19) and (20). The classical equation of motion including dissipation
thereby holds true if x+(t) ≈ x−(t) ≈ x(t):

Mv̇ +Rv + U ′(x) = 0 . (54)

If one defines
Mv± = �K± , (55)

then Eq. (50) gives

[K+,K−] =
iR

�
≡ i

L2
, (56)

and a canonical set of conjugate position coordinates (ξ+, ξ−) may be defined
by

ξ± = ∓L2K∓

[ξ+, ξ−] = iL2 . (57)

Another independent canonical set of conjugate position coordinates (X+,X−)
is defined by (Fig. 2)

x+ = X+ + ξ+ , x− = X− + ξ−

[X+,X−] = −iL2 . (58)

Note that [Xa, ξb] = 0 , where a = ± and b = ±.
The commutation relations Eqs. (57) and (58) characterize the noncom-

mutative geometry in the plane (x+, x−). It is interesting to consider the case
of pure friction in which the potential U = 0. Equations (16), (55) and (57)
then imply
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Fig. 2. The hyperbolic path of a particle moving in the x = (x+, x−) plane. The
noncommuting coordinate pairs X = (X+, X−), which points from the origin to
hyperbolic center, and ξ = (ξ+, ξ−), which points from the center of the orbit to the
position on the hyperbola, are shown. x = X + ξ

Hfriction =
�

2

2M
(K2

+ −K2
−) = − �

2

2ML4
(ξ2+ − ξ2−) . (59)

The equations of motion are

ξ̇± =
i

�
[Hfriction, ξ±] = − �

ML2
ξ∓ = − R

M
ξ∓ = −Γξ∓ , (60)

with the solution(
ξ+(t)
ξ−(t)

)
=
(

cosh(Γt) − sinh(Γt)
− sinh(Γt) cosh(Γt)

)(
ξ+
ξ−

)
. (61)

Equation (61) describes the hyperbolic orbit

ξ−(t)2 − ξ+(t)2 =
2L2

�Γ
Hfriction . (62)

The hyperbolae are defined by (x −X)2 − c2(t − T )2 = Λ2 , where Λ2 =
(mc

�
L2)2, the hyperbolic center is at (X, cT ) and one branch of the hyperbolae

is a particle moving forward in time while the other branch is the same particle
moving backward in time as an anti-particle.

Now I observe that a quantum phase interference of the Aharonov-Bohm
type can always be associated with the noncommutative plane where

[X,Y ] = iL2 , (63)

with L denoting the geometric length scale in the plane. Suppose that a parti-
cle can move from an initial point in the plane to a final point in the plane via
one of two paths, say P1 or P2. Since the paths start and finish at the same
point, if one transverses the first path in a forward direction and the second
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path in a backward direction, then the resulting closed path encloses an area
A. The phase interference ϑ between these two points is determined by the
difference between the actions for these two paths �ϑ = S(P1) − S(P2), and
I show below it may be written as

ϑ =
A
L2

. (64)

A physical realization of the mathematical noncommutative plane is
present in every laboratory wherein a charged particle moves in a plane with
a normal uniform magnetic field B. For this case, there are two canonical
pairs of position coordinates which do not commute: (i) the position R of the
center of the cyclotron circular orbit and (ii) the radius vector ρ from the
center of the circle to the charged particle position r = R + ρ (Fig. 3). The
magnetic length scale of the noncommuting geometric coordinates is due to
Landau [46],

L2 =
�c

eB
=

φ0

2πB
(magnetic) . (65)

Here φ0 is the magnitude of the magnetic flux quantum associated with a
charge e.

For motion at fixed energy one may (in classical mechanics) associate with
each path P (in phase space) a phase space action integral

S(P) =
∫
P
pidq

i . (66)

As said, the phase interference ϑ between the two paths P1 and P2 is
determined by the action difference

Fig. 3. A charge e moving in a circular cyclotron orbit. Noncommuting coordinate
pairs are R = (X, Y ), which points from the origin to the orbit center, and ρ =
(ρx, ρy), which points from the center of the orbit to the charge position r = R + ρ



182 G. Vitiello

�ϑ =
∫
P1

pidq
i −
∫
P2

pidq
i =

∮
P=∂Ω

pidq
i (67)

wherein P is the closed path which goes from the initial point to the final
point via path P1 and returns back to the initial point via P2. The closed P
path may be regarded as the boundary of a two-dimensional surface Ω; i.e.
P = ∂Ω. Stokes theorem yields

ϑ =
1
�

∮
P=∂Ω

pidq
i =

1
�

∫
Ω

(dpi ∧ dqi) . (68)

The quantum phase interference ϑ between two alternative paths is thereby
proportional to an “area”A of a surfaceΩ in phase space (p1, . . . , pf ; q1, . . . , qf )
as described by the right hand side of Eq. (68).

If one reverts to the operator formalism and writes the commutation
Eq. (63) in the noncommutative plane as

[X,PX ] = i� where PX =
(

�Y

L2

)
, (69)

then back in the path integral formalism Eq. (68) reads

ϑ =
1
�

∫
Ω

(dPX ∧ dX) =
1
L2

∫
Ω

(dY ∧ dX) (70)

and Eq. (64) is proved, i.e. the quantum phase interference between two alter-
native paths in the plane is determined by the noncommutative length scale
L and the enclosed area A.

I also remark that the existence of a phase interference is intimately con-
nected to the zero point fluctuations in the coordinates; e.g. Eq. (63) implies
a zero point uncertainty relation ∆X∆Y ≥ (L2/2).

Resorting back to Eq. (56) for the quantum dissipative case, i.e.

L2 =
�

R
(dissipative) , (71)

one then concludes that, provided x+ �= x−, the quantum dissipative phase
interference ϑ = A

L2 = AR
�

is associated with two paths in the noncommutative
plane, starting at the same point P1 and ending to the same point P2 so to
enclose the surface of area A.

A comparison can be made between the noncommutative dissipative plane
and the noncommutative Landau magnetic plane as shown in Fig. 3. The
circular orbit in Fig. 3 for the magnetic problem is replaced by the hyperbolic
orbit and it may be shown that the magnetic field is replaced by the electric
field. The hyperbolic orbit in Fig. 2 is reflected in the classical orbit for a
charged particle moving along the x-axis in a uniform electric field. For more
details on this comparison see [40].
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Finally, I recall that the Lagrangian for the system of Eq. (53) has been
found [27] to be the same as the Lagrangian for three-dimensional topolog-
ical massive Chern–Simons gauge theory in the infrared limit. It is also the
same as for a Bloch electron in a solid which propagates along a lattice plane
with a hyperbolic energy surface [27]. In the Chern–Simons case one has
θCS = R/M = (�/ML2), with θCS the “topological mass parameter”. In
the Bloch electron case, (eB/�c) = (1/L2), with B denoting the z-component
of the applied external magnetic field. In Ref. [27] it has been considered the
symplectic structure for the system of Eq. (53) in the case of strong damping
R � M (the so-called reduced case) in the Dirac constraint formalism as
well as in the Faddeev and Jackiw formalism [47] and in both formalisms a
non-zero Poisson bracket for the (x+, x−) coordinates has been found.

Below I will consider the algebraic structure of the space of the physical
states emergent from the doubling of the degrees of freedom discussed in the
present and in the previous section. Before that I will discuss thermal field
theory in the following section.

7 Thermal Field Theory

In this section I discuss the doubling of the degrees of freedom in connection
with thermal field theory. Specifically, I will comment on the formalism of
thermo field dynamics (TFD) [5, 8, 48]. In Sect. 8 it will be shown that the
algebraic structure on which the TFD formalism is based is naturally provided
by the q-deformed Hopf algebras for bosons and for fermions (usually called
hq(1) and hq(1|1), respectively).

The central point in the TFD formalism is the possibility to express the
statistical average 〈A〉 of an observable A as the expectation value in the
temperature dependent vacuum |0(β)〉:

〈A〉 ≡ Tr[A e−βH]
Tr[e−βH]

= 〈0(β)|A|0(β)〉 , (72)

where H = H − µN , with µ the chemical potential.
The first problem is therefore to construct a suitable temperature depen-

dent state |0(β)〉 which satisfies Eq. (72), namely

〈0(β)|A|0(β)〉 =
1

Tr[e−βH]

∑
n

〈n|A|n〉e−βEn , (73)

for an arbitrary variable A, with

H|n〉 = En|n〉 , 〈n|m〉 = δnm . (74)

Such a state cannot be constructed as long as one remains in the original Fock
space {|n〉}. To see this, let me closely follow [8]. One can expand |0(β)〉 in
terms of |n〉 as



184 G. Vitiello

|0(β)〉 =
∑

n

fn(β)|n〉 . (75)

Then, use of this equation into (73) gives

f∗
n(β)fm(β) =

1
Tr[e−βH]

e−βEnδnm , (76)

which is impossible to be satisfied by c-number functions fn(β). However,
Eq. (76) can be regarded as the orthogonality condition in a Hilbert space in
which the expansion coefficient fn(β) is a vector. In order to realize such a
representation it is convenient to introduce a dynamical system identical to the
one under study, namely to double the given system. The quantities associated
with the doubled system are denoted by the tilde in the usual notation of
TFD [8]. Thus the tilde-system is characterized by the Hamiltonian H̃ and
the states are denoted by |ñ〉, with

H̃|ñ〉 = En|ñ〉 , 〈ñ|m̃〉 = δnm , (77)

where En is the same as the one appearing in Eq. (74) by definition. It is also
assumed that non-tilde and tilde operators are commuting (anti-commuting)
boson (fermion) operators. One then considers the space spanned by the direct
product |n〉 ⊗ |m̃〉 ≡ |n, m̃〉. The matrix element of a bose-like operator A is
then

〈m̃, n|A|n′, m̃′〉 = 〈n|A|n′〉δmm′ , (78)

and the one of the corresponding Ã is

〈m̃, n|Ã|n′, m̃′〉 = 〈m̃|Ã|m̃′〉δnn′ . (79)

In TFD it turns out to be convenient to identify

〈m|A|n〉 = 〈ñ|Ã†|m̃〉 . (80)

Eq. (76) is satisfied if one defines

fn(β) =
1√

Tr[e−βH]
e

−βEn
2 |ñ〉 , (81)

and Eq. (73) is obtained by using the definition (81) in |0(β)〉 given by (75):

|0(β)〉 =
1√

Tr[e−βH]

∑
n

e
−βEn

2 |n, ñ〉 . (82)

The vectors |n〉 and |ñ〉 thus appear as a pair in |0(β)〉. I remark that the
formal rôle of the “doubled” states |ñ〉 is merely to pick up the diagonal matrix
elements of A. In this connection, thinking of the rôle of the environment,
which is able to reduce the system density matrix to its diagonal form in the
QM decoherence processes [12], it is remarkable that the doubled degrees of
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freedom in TFD are indeed susceptible of being interpreted as the environment
degrees of freedom, as better specified in the following.

It is useful to consider, as an example, the case of the number operator. Let
A ≡ N = a†a. For definiteness I consider the boson case. Then the statistical
average of N is the Bose-Einstein distribution fB(Ω), where Ω denotes the
mode energy, H = Ωa†a,

〈N〉 ≡ Tr[N e−βH ]
Tr[e−βH ]

= 〈0(β)|N |0(β)〉 =
1

eβΩ − 1
= fB(Ω) . (83)

One then can show [8] that, by setting

u(β) ≡
√

1 + fB(Ω), v(β) ≡
√
fB(Ω) , (84)

u2(β)− v2(β) = 1 , (85)

so that
u(β) = cosh θ(β) , v(β) = sinh θ(β) , (86)

and defining
G ≡ −i(a†ã† − aã) , (87)

the state |0(β)〉 is formally given (at finite volume) by

|0(β)〉 = eiθ(β)G |0〉 =
1

u(β)
exp

( v(β)
u(β)

)
a†ã†|0〉 . (88)

It is clear that the state |0(β)〉 is not annihilated by a and ã. However, it is
annihilated by the “new” set of operators a(θ) and ã(θ),

a(θ)|0(β)〉 = 0 = ã(θ)|0(β)〉 , (89)

with

a(θ) = exp(iθG) a exp(−iθG) = a cosh θ − ã† sinh θ ,

ã(θ) = exp(iθG) ã exp(−iθG) = ã cosh θ − a† sinh θ , (90)

[a(θ), a†(θ)] = 1 , [ã(θ), ã†(θ)] = 1 . (91)

All other commutators are equal to zero and a(θ) and ã(θ) commute among
themselves. Equation (90) are nothing but the Bogoliubov transformations of
the (a, ã) pair into a new set of creation, annihilation operators. I will show
in Sect. 8 that the Bogoliubov-transformed operators a(θ) and ã(θ) are linear
combinations of the deformed coproduct operators.

The state |0(β)〉 is not the vacuum (zero energy eigenstate) of H and
of H̃. It is, however, the zero energy eigenstate for the “Hamiltonian” Ĥ,
Ĥ|0(β)〉 = 0, with

Ĥ ≡ H − H̃ = Ω(a†a− ã†ã) . (92)

The state |0(β)〉 is called the thermal vacuum.
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I note that in the boson case J1 ≡ 1
2 (a†ã†+aã) together with J2 ≡ 1

2G and
J3 ≡ 1

2 (N+Ñ+1) close the algebra su(1, 1). Moreover, δ
δθ (N(θ)−Ñ(θ)) = 0,

with (N(θ)− Ñ(θ)) ≡ (a†(θ)a(θ)− ã†(θ)ã(θ)), consistently with the fact that
1
4 (N − Ñ)2 is the su(1, 1) Casimir operator.

In the fermion case J1 ≡ 1
2G, J2 ≡ 1

2 (a†ã†+aã) and J3 ≡ 1
2 (N+Ñ−1) close

the algebra su(2). Also in this case δ
δθ (N(θ)−Ñ(θ)) = 0 , with (N(θ)−Ñ(θ)) ≡

(a†(θ)a(θ) − ã†(θ)ã(θ)), again consistently with the fact that 1
4 (N − Ñ)2 is

related to the su(2) Casimir operator.
Summarizing, the vacuum state for a(θ) and ã(θ) is formally given (at

finite volume) by

|0(θ)〉 = exp (iθG) |0, 0〉 =
∑

n

cn(θ) |n, ñ〉 , (93)

with n, ñ = 0, . . . ,∞ for bosons and n, ñ = 0, 1 for fermions, and it appears
therefore to be an SU(1, 1) or SU(2) generalized coherent state [33], respec-
tively for bosons or for fermions.

In the infinite volume limit |0(θ)〉 becomes orthogonal to |0, 0〉 and we have
that the whole Hilbert space {|0(θ)〉}, constructed by operating on |0(θ)〉 with
a†(θ) and ã†(θ), is asymptotically (i.e. in the infinite volume limit) orthogonal
to the space generated over {|0, 0〉}. In general, for each value of θ(β), i.e. for
each value of the temperature T = 1

kBβ , one obtains in the infinite volume
limit a representation of the canonical commutation relations unitarily in-
equivalent to the others, associated with different values of T . In other words,
the parameter θ(β) (or the temperature T ) acts as a label for the inequivalent
representations [25].

The TFD formalism is a fully developed QFT formalism [5,8,48] and it has
been applied to a rich set of problems of physical interest, in condensed matter
physics, high energy physics, quantum optics, etc. (see [5,8,17,18,25,28,37,48]
and references therein quoted). I will show in Sect. 8 that the doubling of the
degrees of freedom on which the TFD formalism is based finds its natural
realization in the coproduct map.

Let me recall the so-called “tilde-conjugation rules” which are defined in
TFD. For any two bosonic (respectively, fermionic) operators O and O′ and
any two c-numbers α and β the tilde-conjugation rules of TFD are postulated
to be the following [8]:

(OO′)˜= ÕÕ′ , (94)

(αO + βO′)˜= α∗Õ + β∗Õ′ , (95)

(O†)˜= Õ† , (96)

(Õ)˜= O . (97)

According to (94) the tilde-conjugation does not change the order among
operators. Furthermore, it is required that tilde and non-tilde operators are



Links 187

mutually commuting (or anti-commuting) operators and that the thermal
vacuum |0(β)〉 is invariant under tilde-conjugation:

[O, Õ′]∓ = 0 = [O, Õ′†]∓ , (98)

|0(β)〉˜= |0(β)〉 . (99)

In order to use a compact notation it is useful to introduce the label σ defined
by
√
σ ≡ +1 for bosons and

√
σ ≡ +i for fermions. I shall therefore simply

write commutators as [O,O′]−σ
.= OO′ − σO′O, and (1 ⊗ O)(O′ ⊗ 1) ≡

σ(O′ ⊗ 1)(1 ⊗O), without further specification of whether O and O′ (which
are equal to a, a† in all possible ways) are fermions or bosons.

Upon identifying from now on a1 ≡ a, a†1 ≡ a†, one easily checks that the
TFD tilde-operators (consistent with (94)–(99)) are straightforwardly recov-
ered by setting a2 ≡ ã , a†2 ≡ ã†. In other words, according to such identifica-
tion, it is the action of the 1 ↔ 2 permutation π: πai = aj , i �= j, i, j = 1, 2,
that realizes the operation of “tilde-conjugation” defined in (94–97):

πa1 = π(a⊗ 1) = 1⊗ a = a2 ≡ ã ≡ (a)˜ (100)

πa2 = π(1⊗ a) = a⊗ 1 = a1 ≡ a ≡ (ã)˜ . (101)

In particular, since the permutation π is involutive, also tilde-conjugation
turns out to be involutive, as in fact required by the rule (97). Notice that, as
(πai)† = π(ai

†), it is also ((ai)˜ )† = ((ai)†)˜, i.e. tilde-conjugation commutes
with hermitian conjugation. Furthermore, from (100)–(101), one has

(ab)˜= [(a⊗ 1)(b⊗ 1)]˜= (ab⊗ 1)˜= 1⊗ ab = (1⊗ a)(1⊗ b) = ãb̃ . (102)

Rules (96) and (94) are thus obtained. (98) is insured by the σ-commutativity
of a1 and a2. The vacuum of TFD, |0(β)〉, is a condensed state of equal number
of tilde and non-tilde particles [8], thus (99) requires no further conditions:
Eqs. (100)–(101) are sufficient to show that the rule (99) is satisfied.

TFD appears equipped with a set of canonically conjugate “thermal” vari-

ables: θ and pθ ≡ −i
δ

δθ
. pθ can be regarded as the momentum operator “con-

jugate” to the “thermal degree of freedom” θ. The notion of thermal degree
of freedom [48] thus acquires formal definiteness in the sense of the canoni-
cal formalism. It is remarkable that the “conjugate thermal momentum” pθ

generates transitions among inequivalent (in the infinite volume limit) repre-
sentations: exp(iθ̄pθ) |0(θ)〉 = |0(θ + θ̄)〉. Notice that derivative with respect
to the θ parameter is actually a derivative with respect to the system temper-
ature T . This sheds some light on the rôle of θ in thermal field theories for
non-equilibrium systems and phase transitions. I shall comment more on this
point in the following section.

Finally, when the proper field description is taken into account, a and ã
carry dependence on the momentum k. The Bogoliubov transformation anal-
ogously, should be thought of as inner automorphism of the algebra su(1, 1)k
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(or su(2)k). This shows that one is globally dealing with ⊕ksu(1, 1)k (or
⊕ksu(2)k). Therefore one is lead to consider k-dependence also for the θ pa-
rameter.

As a final comment, I observe that the “analogies” with the formalism of
quantum dissipation presented in Sect. 3.1 are evident.

8 The q-deformed Hopf Algebra and QFT

In this section I want to point out that the doubling of the degrees of freedom
is intimately related to the structure of the space of the states in QFT [9].
This brings us to consider the q-deformed Hopf algebra [6, 7].

One key ingredient of Hopf algebra [7] is the coproduct operation, i.e. the
operator doubling implied by the coalgebra. The coproduct operation is in-
deed a map ∆ : A → A⊗A which duplicates the algebra A. Coproducts are
commonly used in the familiar addition of energy, momentum, angular mo-
mentum and of other so-called primitive operators. The coproduct of a generic
operator O is a homomorphism defined as ∆O = O ⊗ 1 + 1⊗O ≡ O1 +O2,
with O ∈ A. Since additivity of observables such as energy, momentum, angu-
lar momentum, etc. is an essential requirement, the coproduct, and therefore
the Lie-Hopf algebra structure, appears to provide an essential algebraic tool
in QM and in QFT.

The systems discussed in the sections above, where the duplication of the
degrees of freedom has revealed to be central, are thus natural candidates to
be described by the Lie-Hopf algebra. The remarkable result holds [9] accord-
ing to which the infinitely many ui representations of the ccr, whose exis-
tence characterizes QFT, are classified by use of the q-deformed Hopf algebra.
Quantum deformations of Hopf algebra have thus a deeply non-trivial physical
meaning in QFT.

In the following I consider boson operators. The discussion and the conclu-
sions can be easily extended to the case of fermion operators [9]. For notational
simplicity I will omit the momentum suffix κ.

The bosonic algebra h(1) is generated by the set of operators {a, a†,H,N}
with commutation relations:

[ a , a† ] = 2H , [N , a ] = −a , [N , a† ] = a† , [H , • ] = 0 . (103)

H is a central operator, constant in each representation. The Casimir operator
is given by C = 2NH−a†a. h(1) is an Hopf algebra and is therefore equipped
with the coproduct operation, defined by

∆a = a⊗ 1 + 1⊗ a ≡ a1 + a2 , ∆a† = a† ⊗ 1 + 1⊗ a† ≡ a†1 + a†2 , (104)

∆H = H⊗1+1⊗H ≡ H1 +H2 , ∆N = N ⊗1+1⊗N ≡ N1 +N2 . (105)

Note that [ai, aj ] = [ai, a
†
j ] = 0, i, j = 1, 2, i �= j. The coproduct provides the

prescription for operating on two modes. As mentioned, one familiar example
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of coproduct is the addition of the angular momentum Jα, α = 1, 2, 3, of two
particles: ∆Jα = Jα ⊗ 1 + 1⊗ Jα ≡ Jα

1 + Jα
2 , J

α ∈ su(2).
The q-deformation of h(1) is the Hopf algebra hq(1):

[ aq , a
†
q ] = [2H]q , [N , aq ] = −aq , [N , a†q ] = a†q, [H , • ] = 0 ,

(106)
where Nq ≡ N and Hq ≡ H. The Casimir operator Cq is given by Cq =
N [2H]q − a†qaq, where [x]q = qx−q−x

q−q−1 . The deformed coproduct is defined by

∆aq = aq ⊗ qH + q−H ⊗ aq , ∆a†q = a†q ⊗ qH + q−H ⊗ a†q , (107)

∆H = H ⊗ 1 + 1⊗H , ∆N = N ⊗ 1 + 1⊗N , (108)

whose algebra is isomorphic with (106): [∆aq,∆a
†
q] = [2∆H]q , etc. . Note that

hq(1) is a structure different from the commonly considered q-deformation of
the harmonic oscillator [49] that does not have a coproduct and thus cannot
allow for the duplication of the state space.

I denote by F1 the single mode Fock space, i.e. the fundamental represen-
tation H = 1/2, C = 0. In such a representation h(1) and hq(1) coincide as
it happens for su(2) and suq(2) for the spin-1

2 representation. The differences
appear in the coproduct and in the higher spin representations.

As customary, I require that a and a†, and aq and aq
†, are adjoint opera-

tors. This implies that q can only be real (or of modulus one in the fermionic
case. In the two mode Fock space F2 = F1 ⊗ F1, for |q| = 1, the hermitian
conjugation of the coproduct must be supplemented by the inversion of the
two spaces for consistency with the coproduct isomorphism).

Summarizing, one can write for both bosons (and fermions) on F2 = F1⊗
F1:

∆a = a1 + a2 , ∆a† = a†1 + a†2 , (109)

∆aq = a1q
1/2 + q−1/2a2 , ∆a†q = a†1q

1/2 + q−1/2a†2 , (110)

∆H = 1, ∆N = N1 +N2 . (111)

Now, the key point is [9] that the full set of infinitely many unitarily
inequivalent representations of the ccr in QFT are classified by use of the q-
deformed Hopf algebra. Since, as well known, the Bogoliubov transformations
relate different (i.e. unitary inequivalent) representations, it is sufficient to
show that the Bogoliubov transformations are directly obtained by use of the
deformed copodruct operation. I consider therefore the following operators
(cf. (107) with q(θ) ≡ e2θ and H = 1/2):

αq(θ) ≡
∆aq√
[2]q

=
1√
[2]q

(eθa1 + e−θa2) , (112)

βq(θ) ≡
1√
[2]q

δ

δθ
∆aq =

2q√
[2]q

δ

δq
∆aq =

1√
[2]q

(eθa1 − e−θa2) , (113)
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and h.c.. A set of commuting operators with canonical commutation relations
is given by

α(θ) ≡
√

[2]q
2
√

2
[αq(θ) + αq(−θ) − β†

q(θ) + β†
q(−θ)] , (114)

β(θ) ≡
√

[2]q
2
√

2
[βq(θ) + βq(−θ) − α†

q(θ) + α†
q(−θ)] , (115)

and h.c. One then introduces [9]

A(θ) ≡ 1√
2

(α(θ) + β(θ)) = A cosh θ −B† sinh θ , (116)

B(θ) ≡ 1√
2

(α(θ)− β(θ)) = B cosh θ −A† sinh θ , (117)

with
[A(θ), A†(θ)] = 1 , [B(θ), B†(θ)] = 1 . (118)

All other commutators are equal to zero and A(θ) and B(θ) commute among
themselves. Equations (116) and (117) are nothing but the Bogoliubov trans-
formations for the (A,B) pair (see the corresponding transformations, e.g. in
the case of the dho, Eqs. (30) and (31)). In other words, Eqs. (116), (117)
show that the Bogoliubov-transformed operators A(θ) and B(θ) are linear
combinations of the coproduct operators defined in terms of the deformation
parameter q(θ) and of their θ-derivatives.

From this point on one can re-obtain the results discussed in the previous
sections, for example for the dho provided one sets θ ≡ Γt.

The generator of (116) and (117) is G ≡ −i(A†B† −AB):

− i
δ

δθ
A(θ) = [G, A(θ)] , − i

δ

δθ
B(θ) = [G, B(θ)] , (119)

and h.c.. Compare this generator with HI in Eq. (26).
Let |0〉 ≡ |0〉⊗ |0〉 denote the vacuum annihilated by A and B, A|0〉 = 0 =

B|0〉. By introducing the suffix κ (till now omitted for simplicity), at finite
volume V one obtains

|0(θ)〉 = ei
∑

κ θκGκ |0〉 =
∏
k

1
cosh θk

etanh θkA†
kB†

k |0〉 , (120)

to be compared with Eq. (33). θ denotes the set {θκ = 1
2 ln qκ,∀κ} and

〈0(θ)|0(θ)〉 = 1. The underlying group structure is
⊗

κ SU(1, 1)κ and the
vacuum |0(θ)〉 is an SU(1, 1) generalized coherent state [33]. The q-deformed
Hopf algebra is thus intrinsically related to coherence and to the vacuum
structure in QFT.

In the infinite volume limit, the number of degrees of freedom becomes
uncountable infinite, and thus one obtains [5, 8, 25] 〈0(θ)|0(θ′)〉 → 0 as
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V →∞, ∀ θ, θ′, θ �= θ′. By denoting withHθ the Hilbert space with vacuum
|0(θ)〉, Hθ ≡ {|0(θ)〉}, this means that Hθ and Hθ′ become unitarily inequiv-
alent. In this limit, the “points” of the space H ≡ {Hθ, ∀ θ} of the infinitely
many ui representations of the ccr are labelled by the deformation parameter
θ [9,25]. The space H ≡ {Hθ, ∀ θ} is called the space of the representations.

I note that pθ ≡ −i
δ

δθ
can be regarded [9] as the momentum operator

“conjugate” to the “degree of freedom” θ. For an assigned fixed value θ̄, it is

eiθ̄pθA(θ) = eiθ̄GA(θ)e−iθ̄G = A(θ + θ̄) , (121)

and similarly for B(θ).
It is interesting to consider the case of time–dependent deformation para-

meter. This immediately relates to the dissipative systems considered in the
previous sections. The Heisenberg equation for A(t, θ(t)) is

− iȦ(t, θ(t)) = −i δ
δt
A(t, θ(t))− i

δθ

δt

δ

δθ
A(t, θ(t))

= [H,A(t, θ(t))] +
δθ

δt
[G, A(t, θ(t))] = [H +Q,A(t, θ(t))] , (122)

and Q ≡ δθ
δtG plays the role of the heat–term in dissipative systems. H is the

Hamiltonian responsible for the time variation in the explicit time dependence
of A(t, θ(t)). H + Q can be therefore identified with the free energy [25]:
variations in time of the deformation parameter involve dissipation. In thermal
theories and in dissipative systems the doubled modes B play the role of the
thermal bath or environment.

Summarizing, QFT is characterized by the existence of ui representations
of the ccr [3] which are related among themselves by the Bogoliubov trans-
formations. These, as seen above, are obtained as linear combinations of the
deformed coproduct maps which express the doubling of the degrees of free-
dom. Therefore one may conclude that the intrinsic algebraic structure of
QFT (independent of the specificity of the system under study) is the one
of the q-deformed Hopf algebra. The ui representations existing in QFT are
related and labelled by means of such an algebraic structure.

It should be stressed that the coproduct map is also essential in QM in
order to deal with a many mode system (typically, with identical particles).
However, in QM all the representations of the ccr are unitarily equivalent
and therefore the Bogoliubov transformations induce unitary transformations
among the representations, thus preserving their physical content. The q-
deformed Hopf algebra therefore does not have that physical relevance in
QM, which it has, on the contrary, in QFT. Here, the representations of the
ccr, related through Bogoliubov representations, are unitarily inequivalent and
therefore physically inequivalent: they represent different physical phases of
the system corresponding to different boundary conditions, such as, for exam-
ple, the system temperature. Typical examples are the superconducting and
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the normal phase, the ferromagnetic and the non-magnetic (i.e. zero magneti-
zation) phase, the crystal and the gaseous phase, etc. The physical meaning of
the deformation parameter q in terms of which ui representations are labelled
is thus recognized.

When the above discussion is applied to non-equilibrium (e.g. thermal
and/or dissipative) field theories it appears that the couple of conjugate vari-
ables θ and pθ ≡ −i ∂

∂θ , with θ = θ(β(t)) (β(t) = 1
kBT (t) ), related to the

q-deformation parameter, describe trajectories in the space H of the repre-
sentations. In [10] it has been shown that there is a symplectic structure
associated to the “degrees of freedom” θ and that the trajectories in the H
space may exhibit properties typical of chaotic trajectories in classical nonlin-
ear dynamics. I will discuss this in the following. In the next section I present
further characterizations of the vacuum structure of the ui representations in
QFT.

9 Entropy as a Measure of the Entanglement

In Sect. 3 I have shown that the time evolution of the state |0(t)〉 is actually
controlled by the entropy variations (cf. Eq. (39)). I will shortly comment on
the entropy in this section from a more general point of view, also in connection
with entanglement of the A−B modes, since it appears as a structural aspect
of QFT related with the existence of the ui representations of the ccr.

The state |0(θ)〉 may be written as:

|0(θ)〉 = exp
(
−1

2
SA

)∣∣ I〉 = exp
(
−1

2
SB

)∣∣ I〉 , (123)

SA ≡ −
∑

κ

{
A†

κAκ ln sinh2 θκ −AκA
†
κ ln cosh2 θκ

}
. (124)

Here | I〉 ≡ exp
(∑

κ A
†
κB

†
κ

)
|0〉 and SB is given by an expression similar to

SA, with Bκ and B†
κ replacing Aκ and A†

κ, respectively. I simply write S for
either SA or SB . I can also write [5, 8, 25]:

|0(θ)〉 =
+∞∑
n=0

√
Wn (|n〉 ⊗ |n〉) , (125)

Wn =
∏
k

sinh2nk θk

cosh2(nk+1) θk

, (126)

with n denoting the set {nκ} and with 0 < Wn < 1 and
∑+∞

n=0Wn = 1. Then

〈0(θ)|SA|0(θ)〉 =
+∞∑
n=0

WnlnWn , (127)

which confirms that S can be interpreted as the entropy operator [5, 8, 25].
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The state |0(θ)〉 in Eq. (120) can be also written as

|0(θ)〉 =

(∏
k

1
cosh θk

)

×
(
|0〉 ⊗ |0〉+

∑
k

tanh θk (|Ak〉 ⊗ |Bk〉) + . . .

)
, (128)

which clearly cannot be factorized into the product of two single-mode states.
There is thus entanglement between the modes A and B: |0(θ)〉 is an entangled
state. Equations (125) and (127) then show that S provides a measure of the
degree of entanglement.

I remark that the entanglement is truly realized in the infinite volume limit
where

〈0(θ)|0〉 = e
− V

(2π)3

∫
d3κ ln cosh θκ −→

V →∞
0 , (129)

provided
∫
d3κ ln cosh θκ is not identically zero. The probability of having the

component state |n〉 ⊗ |n〉 in the state |0(θ)〉 is Wn. Since Wn is a decreasing
monotonic function of n, the contribution of the states |n〉⊗|n〉 would be sup-
pressed for large n at finite volume. In that case, the transformation induced
by the unitary operator G−1(θ) ≡ exp(−i

∑
κ θκGκ) could disentangle the A

and B sectors. However, this is not the case in the infinite volume limit, where
the summation extends to an infinite number of components and Eq. (129)
holds (in such a limit Eq. (120) is only a formal relation since G−1(θ) does
not exist as a unitary operator) [19].

It is interesting to note that, although the mode B is related with quantum
noise effects (cf. the discussion in Sect. 5), nevertheless the A−B entanglement
is not affected by such noise effects. The robustness of the entanglement is
rooted in the fact that, once the infinite volume limit is reached, there is no
unitary generator able to disentangle the A−B coupling.

10 Trajectories in the H Space

In this section I want to discuss the chaotic behavior, under certain conditions,
of the trajectories in theH space. Let me start by recalling some of the features
of the SU(1, 1) group structure (see, e.g., [33]).

SU(1, 1) realized on C×C consists of all unimodular 2×2 matrices leaving
invariant the Hermitian form |z1|2 − |z2|2, zi ∈ C , i = 1, 2. The complex z
plane is foliated under the group action into three orbits: X+ = {z : |z| < 1},
X− = {z : |z|〉1} and X0 = {z : |z| = 1}.

The unit circle X+ = {ζ : |ζ| < 1}, ζ ≡ eiφ tanh θ, is isomorphic to
the upper sheet of the hyperboloid which is the set H of pseudo-Euclidean
bounded (unit norm) vectors n : n · n = 1. H is a Kählerian manifold with
metrics
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ds2 = 4
∂2F

∂ζ∂ζ̄
dζ · dζ̄ , (130)

and
F ≡ − ln(1− |ζ|2) (131)

is the Kählerian potential. The metrics is invariant under the group action [33].
The Kählerian manifold H is known to have a symplectic structure. It may

be thus considered as the phase space for the classical dynamics generated by
the group action [33]. The SU(1, 1) generalized coherent states are recognized
to be “points” in H and transitions among these points induced by the group
action are therefore classical trajectories [33] in H (a similar situation occurs
[33] in the SU(2) (fermion) case).

Summarizing, the space of the unitarily inequivalent representations of
the ccr, which is the space of the SU(1, 1) generalized coherent states, is a
Kählerian manifold , H ≡ {Hθ, ∀θ} ≈ H; it has a symplectic structure and
a classical dynamics is established on it by the SU(1, 1) action (generated
by G or, equivalently, by pθ: Hθ → Hθ′). Variations of the θ–parameter in-
duce transitions through the representations Hθ = {|0(θ)〉}, i.e. through the
physical phases of the system, the system order parameter being dependent
on θ. These transitions are described as trajectories through the “points” in
H. One may then assume time-dependent θ: θ = θ(t). For example, this is
the case of dissipative systems and of non-equilibrium thermal field theories
where θκ = θκ(β(t)), with β(t) = 1

kBT (t) .
It is interesting to observe that, considering the transitions Hθ → Hθ′ , i.e.

|0(θ)〉 → |0(θ′)〉, we have

〈0(θ)|0(θ′)〉 = e
− V

2(2π)3

∫
d3κFκ(θ,θ′) (132)

where Fκ(θ, θ′) is given by Eq. (131) with |ζκ|2 = tanh2(θκ−θ′κ), which shows
the role played by the Kählerian potential in the motion over H.

The result that the group action induces classical trajectories in H has
been also obtained elsewhere [50,51] on the ground of more phenomenological
considerations.

With reference to the discussion presented in Sects. 3–5, we may say that
on the (classical) trajectories in H it is x+ = x− = xclassical, i.e. on these tra-
jectories the quantum noise accounted for by y is fully shielded by the thermal
bath (cf. Eq. (46)). In Sect. 5 (see [23]) it has been indeed observed that the
y freedom contributes to the imaginary part of the action which becomes
negligible in the classical regime, but is relevant for the quantum dynamics,
namely in each of the “points” in H (i.e. in each of the spaces Hθ, for each θ)
through which the trajectory goes as θ changes. Upon “freezing” the action
of G(θ) (i.e. upon “freezing” the “motion” through the ui representations)
the quantum features of Hθ, at given θ, become manifest. This relates to the
’t Hooft picture [14] and to the results of Refs. [15,16] where dissipation loss in
deterministic systems may manifest itself as quantum behavior (see Sect. 11).
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Let me use the notation |0(t)〉θ ≡ |0(θ(t))〉. For any θ(t) = {θκ(t),∀κ} it
is

θ〈0(t)|0(t)〉θ = 1 , ∀t . (133)

I will now restrict the discussion to the case in which, for any κ, θκ(t) is a
growing function of time and

θ(t) �= θ(t′) , ∀t �= t′, and θ(t) �= θ′(t′) , ∀t, t′ . (134)

Under such conditions the trajectories inH satisfy the requirements for chaotic
behavior in classical nonlinear dynamics. These requirements are the following
[52]:

i) the trajectories are bounded and each trajectory does not intersect itself.
ii) trajectories specified by different initial conditions do not intersect.
iii) trajectories of different initial conditions are diverging trajectories.

Let t0 = 0 be the initial time. The “initial condition” of the trajectory is then
specified by the θ(0)-set, θ(0) = {θκ(0),∀κ}. One obtains

θ〈0(t)|0(t′)〉θ −→
V →∞

0 , ∀ t , t′ , with t �= t′ , (135)

provided
∫
d3κ ln cosh(θκ(t)− θκ(t′)) is finite and positive for any t �= t′ .

Equation (135) expresses the unitary inequivalence of the states |0(t)〉θ
(and of the associated Hilbert spaces {|0(t)〉θ}) at different time values t �= t′

in the infinite volume limit. The non-unitarity of time evolution, implied for
example by the damping, is consistently recovered in the unitary inequivalence
among representations {|0(t)〉θ}’s at different t’s in the infinite volume limit.

The trajectories are bounded in the sense of Eq. (133), which shows that
the “length” (the norm) of the “position vectors” (the state vectors at time
t) in H is finite (and equal to one) for each t. Equation (133) rests on the
invariance of the Hermitian form |z1|2−|z2|2, zi ∈ C , i = 1, 2 and I also recall
that the manifold of points representing the coherent states |0(t)〉θ for any t
is isomorphic to the product of circles of radius rκ

2 = tanh2(θκ(t)) for any κ.
Equation (135) expresses the fact that the trajectory does not crosses

itself as time evolves (it is not a periodic trajectory): the “points” {|0(t)〉θ}
and {|0(t′)〉θ} through which the trajectory goes, for any t and t′, with t �= t′,
after the initial time t0 = 0, never coincide. The requirement (i) is thus
satisfied.

In the infinite volume limit, we also have

θ〈0(t)|0(t′)〉θ′ −→
V →∞

0 ∀ t , t′ , ∀ θ �= θ′ . (136)

Under the assumption (134), Eq. (136) is true also for t = t′. The meaning
of Eq. (136) is that trajectories specified by different initial conditions θ(0) �=
θ′(0) never cross each other. The requirement (ii) is thus satisfied.

In order to study how the “distance” between trajectories in the space H
behaves as time evolves, consider two trajectories of slightly different initial
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conditions, say θ′(0) = θ(0) + δθ, with small δθ. A difference between the
states |0(t)〉θ and |0(t)〉θ′ is the one between the respective expectation values
of the number operator A†

κAκ. For any κ at any given t, it is

∆NAκ
(t) ≡ N ′

Aκ

(
θ′(t)

)
−NAκ

(
θ(t)

)

= θ′〈0(t)|A†
κAκ|0(t)〉θ′ − θ〈0(t)|A†

κAκ|0(t)〉θ (137)

= sinh2
(
θ′κ(t)

)
− sinh2

(
θκ(t)

)
= sinh

(
2θκ(t)

)
δθκ(t) ,

where δθκ(t) ≡ θ′κ(t)− θκ(t) is assumed to be greater than zero, and the last
equality holds for “small” δθκ(t) for any κ at any given t. By assuming that
∂δθκ

∂t has negligible variations in time, the time-derivative gives

∂

∂t
∆NAκ

(t) = 2
∂θκ(t)
∂t

cosh
(
2θκ(t)

)
δθκ . (139)

This shows that, provided θκ(t) is a growing function of t, small variations in
the initial conditions lead to growing in time ∆NAκ

(t), namely to diverging
trajectories as time evolves.

In the assumed hypothesis, at enough large t the divergence is dominated
by exp (2θκ(t)). For each κ, the quantity 2θκ(t) could be thus thought to play
the rôle similar to the one of the Lyapunov exponent.

Since
∑

κ EκṄAκ
dt = 1

β dSA , where Eκ is the energy of the mode Aκ and
dSA is the entropy variation associated to the modes A (cf. Eq. (40)) [25], the
divergence of trajectories of different initial conditions may be expressed in
terms of differences in the variations of the entropy (cf. Eqs. (137) and (139)):

∆
∑

κ

EκṄAκ
(t)dt =

1
β

(
dS′

A − dSA

)
. (140)

The discussion above thus shows that also the requirement (iii) is satisfied.
The conclusion is that trajectories in the H space exhibit, under the condition
(134) and with θ(t) a growing function of time, properties typical of the chaotic
behavior in classical nonlinear dynamics.

11 Deterministic Dissipative Systems and Quantization

In Sect. 3 we have seen that the canonical quantization for the damped oscil-
lator is obtained at the expense of introducing an “extra” coordinate y. The
role of the “doubled” y coordinate is absolutely crucial in the quantum regime
where it accounts for the quantum noise. When the classical solution y = 0
is adopted, the x system appears to be “incomplete”; the loss of information
due to dissipation amounts to neglecting the bath and to the ignorance of
the bath-system interaction, i.e. the ignorance of “where” and “how” energy
flows out of the system. One can thus conclude that the loss of information
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occurring at the classical level due to dissipation manifests itself in terms of
“quantum” noise effects arising from the imaginary part of the action, to which
the y contribution is crucial. This result suggests to consider the approach to
dissipation presented above in connection with the proposal put forward by
’t Hooft in a series of papers [14]. He proposes that Quantum Mechanics may
indeed result from a more fundamental deterministic theory as an effect of a
process of information loss. He considers a class of deterministic Hamiltonian
systems described by means of Hilbert space techniques. The quantum sys-
tems are obtained when constraints implementing the information loss are
imposed on the original Hilbert space. The Hamiltonian for such systems is
of the form

H =
∑

i

pi fi(q) , (141)

where fi(q) are non-singular functions of the canonical coordinates qi. The
equations for the q’s (i.e. q̇i = {qi,H} = fi(q)) are decoupled from the con-
jugate momenta pi and this implies [14] that the system can be described
deterministically even when expressed in terms of operators acting on the
Hilbert space. The condition for the deterministic description is the existence
of a complete set of observables commuting at all times, called beables [53].
For the systems of Eq. (141), such a set is given by the qi(t) [14].

In order to cure the fact that the Hamiltonians of the type (141) are not
bounded from below, one might split H in Eq. (141) as [14]:

H = HI −HII , HI =
1
4ρ

(ρ+H)2 , HII =
1
4ρ

(ρ−H)2 , (142)

where ρ is a time-independent, positive function of qi. HI and HII are then
positively (semi)definite and {HI ,HII} = {ρ,H} = 0 . Then the constraint
condition is imposed onto the Hilbert space:

HII |ψ〉 = 0 , (143)

which ensures that the Hamiltonian is bounded from below. This condition,
indeed, projects out the states responsible for the negative part of the spec-
trum. In other words, one gets rid of the unstable trajectories [14]. In Refs. [15]
and [16] it has been shown that the system of damped-antidamped oscillators
discussed in Sect. 3 does provide an explicit realization of ’t Hooft mecha-
nism. In addition, it has been also shown that there is a connection between
the zero point energy of the quantum harmonic oscillator and the geometric
phase of the (deterministic) system of damped/antidamped oscillators. This
can be seen by noticing that the Hamiltonian Eq. (25) is of the type (141)
with i = 1, 2 and with f1(q) = 2Ω, f2(q) = −2Γ , provided one uses a set of
canonical transformations which for brevity I do not report here (see [15]). By
using J2 = − i

2 (J+ − J−) and C = 1
2 (A†A−B†B) one may write Eq. (26) as

H = HI −HII , HI =
1

2ΩC (2ΩC − ΓJ2)2 , HII =
Γ 2

2ΩC J
2
2 . (144)
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Note that C, being the Casimir operator, is a constant of motion, which ensures
that once it has been chosen to be positive it will remain such at all times.
The constraint (143) is now imposed by putting

J2|ψ〉 = 0 , (145)

and the physical states |ψ〉 are by this defined. It is now convenient to intro-
duce

x1 =
x+ y√

2
, x2 =

x− y√
2

,

and
x1 = r coshu , x2 = r sinhu , (146)

in terms of which [27]

C =
1

4Ωm

[
p2

r −
1
r2
p2

u +m2Ω2r2
]
, J2 =

1
2
pu . (147)

Of course, only nonzero r2 should be taken into account in order for C to be
invertible. If one does not use the operatorial formalism, then the constraint
pu = 0 implies u = − γ

2m t. Equation (145) implies

H|ψ〉 = HI |ψ〉 = 2ΩC|ψ〉 =
(

1
2m

p2
r +

K

2
r2
)
|ψ〉 , (148)

where K ≡ mΩ2. HI thus reduces to the Hamiltonian for the linear harmonic
oscillator r̈ + Ω2r = 0. The physical states are even with respect to time-
reversal (|ψ(t)〉 = |ψ(−t)〉) and periodical with period τ = 2π

Ω .
I will now introduce the states |ψ(t)〉H and |ψ(t)〉HI

satisfying the equa-
tions:

i�
d

dt
|ψ(t)〉H = H |ψ(t)〉H , (149)

i�
d

dt
|ψ(t)〉HI

= 2ΩC|ψ(t)〉HI
. (150)

Equation (150) describes the two-dimensional “isotropic” (or “radial”) har-
monic oscillator. HI = 2ΩC has the spectrum Hn

I = �Ωn, n = 0,±1,±2, ....
According to the choice for C to be positive, only positive values of n will be
considered. The generic state |ψ(t)〉H can be written as

|ψ(t)〉H = T̂

[
exp

(
i

�

∫ t

t0

2ΓJ2dt
′
)]
|ψ(t)〉HI

, (151)

where T̂ denotes time-ordering. Of course, here � is introduced on purely di-
mensional grounds and its actual value cannot be fixed by the present analysis.
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Fig. 4. Trajectories for r0 = 0 and v0 = Ω, after three half-periods for κ = 20,

γ = 1.2 and m = 5. The ratio
∫ τ/2

0
(ẋ1x2 − ẋ2x1)dt/E = π γ

mΩ3 is preserved. E is the
initial energy: E = 1

2
mv2

0 + 1
2
mΩ2r2

0

One obtains [15]:

H〈ψ(τ)|ψ(0)〉H = HI
〈ψ(0)| exp

(
i

∫
C0τ

A(t′)dt′
)
|ψ(0)〉HI

≡ eiφ , (152)

where the contour C0τ is the one going from t′ = 0 to t′ = τ and back and
A(t) ≡ Γm

�
(ẋ1x2 − ẋ2x1). Note that (ẋ1x2 − ẋ2x1)dt is the area element in

the (x1, x2) plane enclosed by the trajectories (see Fig. 4) (cf. Sect. 6). Notice
also that the evolution (or dynamical) part of the phase does not enter in φ,
as the integral in Eq. (152) picks up a purely geometric contribution [39].

Let me consider the periodic physical states |ψ〉. Following [39], one writes

|ψ(τ)〉 = eiφ− i
�

∫ τ
0 〈ψ(t)|H|ψ(t)〉dt|ψ(0)〉 = e−i2πn|ψ(0)〉 , (153)

i.e. 〈ψ(τ)|H|ψ(τ)〉
�

τ − φ = 2πn, n = 0, 1, 2, . . ., which by using τ = 2π
Ω and

φ = απ, gives

Hn
I ,eff ≡ 〈ψn(τ)|H|ψn(τ)〉 = �Ω

(
n+

α

2

)
. (154)

The index n has been introduced to exhibit the n dependence of the state
and the corresponding energy. Hn

i,eff gives the effective nth energy level of the
physical system, i.e. the energy given by Hn

i corrected by its interaction with
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the environment. One thus see that the dissipation term J2 of the Hamiltonian
is actually responsible for the “zero point energy” (n = 0): E0 = �

2Ωα.
I recall that the zero point energy is the “signature” of quantization since

in Quantum Mechanics it is formally due to the non-zero commutator of the
canonically conjugate q and p operators. Thus dissipation manifests itself as
“quantization”. In other words, E0, which appears as the “quantum contri-
bution” to the spectrum, signals the underlying dissipative dynamics. If one
wants to match the Quantum Mechanics zero point energy, has to fix α = 1,
which gives [15] Ω = γ

m .
In connection with the discussion presented in Sect. 3.1, the thermody-

namical features of the dynamical rôle of J2 can be revealed by rewriting
Eq. (151) as

|ψ(t)〉H = T̂

[
exp

(
i
1
�

∫ u(t)

u(t0)

2J2du
′

)]
|ψ(t)〉HI

, (155)

where u(t) = −Γt has been used. Thus,

− i�
∂

∂u
|ψ(t)〉H = 2J2|ψ(t)〉H . (156)

2J2 appears then to be responsible for shifts (translations) in the u variable,
as it has to be expected since 2J2 = pu (cf. Eq. (147)). One can write indeed:
pu = −i� ∂

∂u . Then, in full generality, Eq. (145) defines families of physical
states, representing stable, periodic trajectories (cf. Eq. (148)). 2J2 imple-
ments transition from family to family, according to Eq. (156)Equation (149)
can be then rewritten as

i�
d

dt
|ψ(t)〉H = i�

∂

∂t
|ψ(t)〉H + i�

du

dt

∂

∂u
|ψ(t)〉H . (157)

The first term on the r.h.s. denotes of course derivative with respect to the
explicit time dependence of the state. The dissipation contribution to the
energy is thus described by the “translations” in the u variable. Now I consider
the derivative

∂S

∂U
=

1
T
. (158)

From Eq. (144), by using S ≡ 2J2
�

and U ≡ 2ΩC, one obtains T = �Γ .
Equation (158) is the defining relation for temperature in thermodynamics
(with kB = 1) so that one could formally regard �Γ (which dimensionally is an
energy) as the temperature, provided the dimensionless quantity S is identified
with the entropy. In such a case, the “full Hamiltonian” Eq. (144) plays the role
of the free energy F :H = 2ΩC−(�Γ )2J2

�
= U−TS = F . Thus 2ΓJ2 represents

the heat contribution in H (or F). Of course, consistently, ∂F
∂T

∣∣
Ω

= − 2J2
�

.
In conclusion 2J2

�
behaves as the entropy, which is not surprising since it
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controls the dissipative (thus irreversible) part of the dynamics. In this way the
conclusions of Sect. 3 are reobtained. It is also suggestive that the temperature
�Γ is actually given by the background zero point energy: �Γ = �Ω

2 .
Finally, I observe that

∂F
∂Ω

∣∣∣∣
T

=
∂U

∂Ω

∣∣∣∣
T

= mr2Ω , (159)

which is the angular momentum, as expected since it is the conjugate variable
of the angular velocity Ω.

The above results may suggest that the condition (145) can be then inter-
preted as a condition for an adiabatic physical system. 2J2

�
might be viewed as

an analogue of the Kolmogorov–Sinai entropy for chaotic dynamical systems.
Finally, I note that a reparametrization-invariant time technique in a spe-

cific model [54] also may lead to a quantum dynamics emerging from a deter-
ministic classical evolution.

12 Conclusions

In this report I have reviewed some aspects of the algebraic structure of QFT
related with the doubling of the degrees of freedom of the system under study.
I have shown how such a doubling is related to the characterizing feature
of QFT consisting in the existence of infinitely many unitarily inequivalent
representations of the canonical (anti-)commutation relations and how this is
described by the q-deformed Hopf algebra. I have considered several examples
of systems and shown the analogies, or links, among them arising from the
common algebraic structure of the q-deformed Hopf algebra.

I have considered the Wigner function and the density matrix formalism
and shown that it requires the doubling of the degrees of freedom, which thus
appears to be a basic formal feature also in Quantum Mechanics. In this con-
nection I have considered the two-slit experiment and shown that quantum
interference effects disappear in the limit of coincidence of the doubled vari-
able x±. Then I have shown how in QFT it is the q-deformed coproduct which
is relevant and how Bogoliubov transformations are constructed in terms of it.
I have considered quantum dissipation by studying the damped harmonic os-
cillator and the quantum Brownian motion and commented on how the arrow
of time emerges from the intrinsic thermodynamic nature of dissipation. The
vacuum structure is the one of the generalized coherent states. The connection
(links) with the two-mode squeezed states and the noncommutative geometry
in the plane emerges in a natural way in the discussion of these systems. In
view of the similarity of some features of the coherent states with those of the
fractals, it is an interesting question to ask whether fractal properties enter
the QFT structure. A study on this point is in progress.

The relation with thermal field theory, in the thermo field dynamics for-
malism, reveals one further formal analogy with the systems mentioned above.



202 G. Vitiello

In such a contest entropy appears to be a measure of the degree of entangle-
ment between the system and the thermal bath in which it is embedded. This
also relates with the connection between the doubled variables and quantum
noise effects.

For brevity, here I have not considered the doubling of the degrees of
freedom in expanding geometry problems (inflationary models) and in the
quantization of the matter field in a curved background. For this I refer to
the papers [17–19].

Finally, I have discussed how ’t Hooft proposal, according to which the loss
of information due to dissipation in a classical deterministic system manifests
itself in the quantum features of the system, finds a possible description in the
formal frame common to the systems mentioned above. In particular, I have
shown that the quantum spectrum of the harmonic oscillator can be obtained
from the dissipative character of the underlying deterministic system. In recent
years, the problem of quantization of a classical theory has attracted much
attention in gravitation theories and in non-hamiltonian dissipative system
theories, also in relation with noncommutative space-time structures involv-
ing deformation theory (see for example [45]). By taking advantage of the
fact that the manifold of the QFT unitarily inequivalent representations is a
Kählerian manifold, I have shown that classical trajectories in such a man-
ifold, which may exhibit chaotic behavior under some conditions, describe
(phase) transitions among the inequivalent representations. The space of the
QFT representations appears thus covered by a classical blanket.
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The Classical and Quantum Roots
of Pauli’s Spin-statistics Relation

B. Kuckert

II. Institut für Theoretische Physik, Luruper Chaussee 149, 22761 Hamburg,
Germany

1 Introduction

The world would be a different place if spin-one-half particles were not subject
to Pauli’s exclusion principle. In all fundamental branches of modern (natural)
science, the connection between particle spins and multiparticle behavior plays
a crucial role, and to date, no physical system violating it has ever been
observed.

On the other hand, the framework of quantum physics – be it relativistic
or not – does admit particles with a spin-statistics relation opposite to the
familiar one. In quantum mechanics, this is evident, since, e.g., scalar multi-
particle wave functions that are antisymmetric under particle exchange can
be defined without any problems, i.e., scalar fermions fit into the framework
of quantum mechanics.

In quantum field theory, the spin-statistics connection has been established
by Burgoyne for fields with Lorentz (or more precisely: SL(2,C)-) symmetry
and a finite number of components (see Ref. [27] and references given there).
Fields with infinitely many components, however, may violate Pauli’s relation
[26], and the confinement to finite-component fields has no proper physical
justification.

A next step was taken by Doplicher, Haag, and Roberts [9] and generalized
in Ref. [6]. They proved a spin-statistics theorem in the algebraic approach
to quantum field theory. The interesting aspect was that they did this in an
analysis that evaluated which particle statistics are possible at all. Particle
statistics is an output, not an input. They consider single-particle states with
sharp, at most finitely degenerate masses m > 0. Massless-particle states are
excluded.

In this article we review a novel approach to the spin-statistics connection,
which dates back to Refs. [16] and [11], but which makes weaker assumptions.
Our analysis is based on surprisingly close ties between the classical sym-
metries of a quantum field and the intrinsic structure of its algebras of field
operators. These ties have been discovered by Bisognano and Wichmann [1,2].

B. Kuckert: The Classical and Quantum Roots of Pauli’s Spin-Statistics Relation, Lect. Notes
Phys. 718, 207–228 (2007)
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One of them is that a uniformly accelerated observer perceives the field’s vac-
uum state as a thermal state whose temperature is linearly proportional to
the observer’s acceleration; this has been discovered by Unruh [29] indepen-
dently and is called the Unruh effect. Another one is the fact that a family
of antiunitary conjugations generate reflections by spacelike planes combined
with a charge conjugation. We call this modular P1CT-symmetry.

This symmetry will be the main input to our analysis. Apart from lead-
ing to some most general spin-statistics theorems, this approach exhibits the
beauty and impact of the links between classical and quantum physics.

Surprisingly one does not need to assume covariance with respect to a
representation of SL(2,C) from the outset. It suffices to assume modular
P1CT-symmetry in order to construct a representation of SL(2,C) with re-
spect to which the field is covariant. This representation can easily be seen
to satisfy Pauli’s spin-statistics relation. If P1CT symmetry is only known to
hold for some given timelike vector, one can still construct a representation
of SU(2), which satisfies the spin-statistics relation as well.

Several assumptions that have been needed for the older spin-statistics
theorems can be dropped; these include the restriction to finite-component
fields, but also the positivity of the energy (“spectrum condition”), covariance
(which is proved, not assumed), and a couple of technicalities.

This way, the input to the analysis is reduced to a minimum of physically
well motivated and standard assumptions, and at the same time, the output
is much more general than the older results.

In Sect. 2, the properties of quantum fields that are relevant for our analy-
sis will be specified. As a concrete (though finite-component) example, the
hermitian scalar field in 1+1 spacetime dimensions is constructed in order to
illustrate the assumptions we make. Then the general standing assumptions
are formulated; first for finite-component fields, then for general fields.

In Sect. 3, the Unruh effect and the Bisognano-Wichmann theorem are
discussed. The general notion of state and KMS-state are introduced, and
basic features of the mathematical theory of Tomita and Takesaki are worked
out.

In Sect. 4, it is shown how a covariant and “well behaved” representation of
SU(2) (or SL(2,C)) can be constructed from the modular P1CT-conjugations.
To this end, simply connected covering groups GR and GL of SO(3) and L1,
respectively, are constructed (in a classical setting). The section is concluded
with a remark on the (straightforward) construction of a full PCT-operator
from modular P1CT-conjugations.

The chapter ends with a conclusion summarizing the results, commenting
on related earlier results in the same spirit, and finishing with some remarks
on remaining open problems.
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2 Setting

The analysis to follow is a general and abstract one, and this requires the
specification of a corresponding setting by means of basic assumptions. These
will be formulated in this section. Before doing so, we discuss an elementary
example of a quantum field: the hermitian scalar field in 1 + 1 spacetime di-
mensions, which is a solution of the Klein-Gordon equation. The construction
of higher dimensional quantum fields works the same way.

2.1 The Klein-Gordon Equation

If e0 ∈ R
1+1 is a future-directed timelike unit vector, and if e1 is the unique

spacelike unit vector with e0e1 = 0 that “points to the right,” then coordinates
x0 and x1 on R

1+1 are defined by x0(q) := qe0 and x1(q) := qe1. The partial
differential operator

�x := ∂2
x0
− ∂2

x1
.

does not depend on the choice of e0.
The Fourier transform of the Klein-Gordon equation

(� +m2)u = 0 , (1)

where m > 0 is a given mass, is1

(−p2 +m2)û(p) = 0 . (2)

As a consequence, the support of û has to be a subset of the hyperbola Hm ⊂
R

1+1 specified by the condition p2 = m2. One connected component of Hm

consists of positive-energy vectors only; it is called the upper mass shell H+
m.

The elements of H+
m are the 4-momenta of classical relativistic point particles.

Denote by L1 the restricted Lorentz group, i.e., the connected component
of the Lorentz group containing its unit element.2 In 1 + 1 dimensions, L1

coincides with the one-parameter Abelian group B(χ), χ ∈ R, of boosts. H+
m

is an orbit of L1 without fixed points. So if one chooses any point p′ ∈ H+
m,

then there is, for each p ∈ H+
m, a unique χ(p) ∈ R with p = B(χ(p))p′. By

construction, χ(B(ξ)p) = χ(p) + ξ, so the measure dχ on H+
m is invariant

under boosts and does note depend on the choice of p′.
For each p ∈ H+

m, the plane wave q �→ e±ipq on R
1+1 is a classical solution

of the Klein-Gordon equation. The Klein-Gordon equation is linear, so if a+

and a− are, say, integrable functions on H+
m, then

F (q) :=
∫

H+
m

(
a+(p)e−ipq + a−(p)eipq

)
dχ(p) (3)

1 û(p) := (2π)−1
∫

R1+1 u(q)e−ipq d2x(q), where pq is the Lorentzian inner product
of the points q, p ∈ R

1+1.
2 This definition can be transferred to 1 + 3 dimensions.
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is a solution of the Klein-Gordon equation as well. If the functions a± are
not integrable, the field F may still be well defined as a distribution. As an
example, put a± ≡ (2π)−1, then

F (q) = (2π)−1

∫
H+

m

(e−ipq + eipq) dχ(p) = π−1

∫
H+

m

cos(pq) dχ(p) =: Φ(q) ,

(4)
and for a± ≡ ±(2πi)−1, F equals

F (q) = (2πi)−1

∫
H+

m

(e−ipq − eipq) dχ(p) = π−1

∫
H+

m

sin(pq) dχ(p) =: ∆(q) ,

(5)
where, as usual, the integrations are to be read accordingly.3

2.2 The Hermitian Scalar Field

Quantum fields are obtained by “plugging” classical field equations and their
solutions into the well-known second quantization procedure. This procedure
replaces the complex (or, more generally speaking, finite-dimensional vec-
tor) field values by linear operators in an infinite-dimensional Hilbert space,
namely, a Fock space. We briefly figure this procedure out here in order to
illustrate what are the structures we generalize. The Hilbert space of the her-
mitian scalar field is constructed from wave functions that are considered as
the wave functions of one or several particles of mass m. The single-particle
wave functions are the elements of the Hilbert space H1 := L2(H+

m, dχ). Put
the vacuum (zero-particle) space H0 equal to C, define the vacuum vector
Ω := 1 ∈ H0, and define the N -particle space HN as the Hilbert space of
symmetric wave functions in L2((H+

m)N , dNχ), i.e., all wave functions ψ with

ψ(pπ(1) · · · pπ(N)) = ψ(p1 · · · pN )

for all permutations π ∈ SN . The bosonic Fock space H is defined by
H :=

⊕
N∈N

HN . The subspace D :=
⋃

M∈N

⊕
0≤N≤M HN is called the finite-

particle space. The definition of the N -particle wave functions as symmetric
functions endows the field with a Bose–Einstein statistics.

To each wave function φ ∈ H1, assign a creation operator a+(φ) by

a+(φ)ψ := CN φ ⊗s ψ, ψ ∈ D ,

3 In precise terms: Φ assigns to each test function ϕ on R
1+1 the value

Φ(ϕ) :=

∫
H+

m

(ϕ̂(p) + ϕ̌(p) ) dχ(p) = π−1

∫
H+

m

∫
R1+1

cos(pq)ϕ(q) d2x(q) dχ(p)

where ϕ̌ is the inverse Fourier transform; both ϕ̂ and ϕ̌ are smooth and decrease
rapidly at infinity, so their restrictions to H+

m are well defined and integrable. ∆
is defined the same way.
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where ⊗s denotes the symmetrized tensor product and where CN is a constant
we specify later on. Spelled out,

(a+(φ)ψ)(p1 · · · pN ) =
CN

N

∑
ν

φ(pν)ψ(pπ(1) · · · p̂ν · · · pπ(N)) , (6)

where the hat symbol indicates omission of the argument. This defines a+(φ)
as a linear operator on the finite-particle space D.

The adjoint operator a(φ) := a+(φ)∗ is called an annihilation operator; it
assigns to each ψ ∈ HN , N ≥ 1, the wave function a(φ)ψ ∈ HN−1 defined by

(a(φ)ψ)(p1, . . . , pN−1) := CN

∫
H+

m

φ(p)ψ(p1 · · · pN−1, p) dχ(p) ;

together with a(φ)Ω := 0, this suffices to specify a(φ) on D.
Annihilation operators can also be defined for sharp momenta. Namely,

one can define to each p ∈ H+
m the annihilation operator a(p) assigning to

each ψ ∈ HN , N ≥ 1, the wave function a(p)ψ ∈ HN−1 given by

(a(p)ψ)(p1 · · · pN−1) := CNψ(p, p1 · · · pN−1), ψ ∈ HN ,

and assigning 0 ∈ H to Ω. a(p) is, like a(φ), well defined on the finite-particle
space D as an operator, but its hermitian adjoint is ill-defined as an operator,
since the symmetric tensor product of a wave function by a delta function is
no wave function.

Given any single-particle wave functions ψ, φ ∈ H1, the commutators
[a(ψ), a(φ)] and [a+(ψ), a+(φ)] vanish by construction. It is customary to
choose the constants CN in such a fashion that creation and annihilation
operators exhibit the commutation relation

[a(φ), a+(ψ)] = 〈φ, ψ〉 , (7)

which requires CN =
√
N . With this choice, all creation and annihilation

operators are unbounded, i.e., they are not continuous.
When defining the hermitian scalar field as an operator valued distribution,

it must be taken into account that an annihilation operator a(φ) depends on
its argument φ in an antilinear fashion. The dependence is, however, R-linear,
and one can define the scalar field as a C-linear distribution in two steps.

For each real-valued test function ϕ on R
1+1, define

Φ(ϕ) := a(ϕ̂|H+
m

) + a+(ϕ̂|H+
m

) ,

then one can define for an arbitrary complex-valued ϕ

Φ(ϕ) := Φ(Re(ϕ)) + iΦ(Im(ϕ))

(cf. Eq. (4)). Φ is called the hermitian scalar field of mass m.
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One verifies by straightforward computation that

[Φ(q), Φ(q′)] = i∆(q − q′) (8)

(cf. Eq. (5)), which is to be read as an equation of distributions.4 The distri-
bution ∆ vanishes outside the light cone, i.e., ∆(q) = 0 if q2 < 0. Namely, the
integrand in Eq. (5) is odd with respect to some p′ ∈ H+

m if q is spacelike.
Note that pq > 0 for all p ∈ H+

m if q ∈ V̄+. The consequence of this is called
microcausality: field operators located in spacelike separated regions commute
(for the hermitian scalar field).

2.3 The General Setup

The analysis to follow concerns a very large class of quantum field theories.
The framework will be fixed by specifying a couple of standing assumptions.
There are several standard properties of quantum fields we do not need to
assume here from the outset (covariance, positivity of the energy, etc.). For a
discussion of the general setting of quantum field theory, see, e.g., [13,22,27].
For the reader’s convenience, we first spell out our assumptions for finite-
component fields.

(a) The field. We consider an n-component quantum field F consist-
ing of n distinct linear maps F1 · · ·Fn that assign to each test function
ϕ ∈ C∞

0 (R1+3) linear operators F1(ϕ) · · ·Fn(ϕ) in a Hilbert space H with
domains of definition D(F1(ϕ)) · · ·D(Fn(ϕ)). There exists a dense sub-
space D of H with D ⊂ D(Fν(ϕ))∩D(Fν(ϕ)∗) and Fν(ϕ)D∪Fν(ϕ)∗D ⊂ D
for all indices ν.5

In the above case of the hermitian scalar field (like for other fields in Fock
spaces), the space D is the finite-particle space.

For each open region O ⊂ R
1+3, the field operators Fν(ϕ) with suppϕ ⊂

O, their hermitian adjoints, and the unit operator generate a field algebra
F(O) of unbounded operators defined on D. In general, an algebra A with an
antilinear map ∗ : A → A with (A∗)∗ = A for all A ∈ A (like the hermitian
adjoint in the present case) is called a ∗-algebra.6

In order to make the problem well posed, we need a notion of statistics and
a notion of spin. The statistics of F is assumed to be abelian Bose–Einstein
or Fermi-Dirac statistics in the following way.
4 spelled-out: [Φ(ϕ), Φ(ϕ′)] = i(∆ ∗ ϕ′)(ϕ); here ∆ ∗ ϕ′ is the convolute of the

distribution ∆ and the test function ϕ′; this convolute is a distribution one then
applies to the test function ϕ. We refrain from spelling out these expressions from
now on.

5 It is common (and not costly) to assume continuity and the existence of a Fourier
transform in addition, but these properties will not be used in what follows, so
we omit them here.

6 A map like ∗ is called an antilinear involution; ∗-algebras are also called involutive
algebras.
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(b)Microcausality (Bose–Fermi alternative). If ϕ and ψ are test func-
tions with spacelike separated supports, then

Fν(ϕ)Fµ(ψ)|D = ±Fµ(ψ)Fν(ϕ)|D ,

where the sign on the right-hand side is positive if F has Bose–Einstein
statistics and negative if F has Fermi-Dirac statistics.

Microcausality is closely related to Einstein causality, but not even in the
bosonic case do the two notions coincide. Einstein causality requires that any
two observables located in spacelike separated regions are commensurable in
the sense that their spectral measures commute.7 But fields with Fermi-Dirac
statistics are not observables, and not even for bosonic fields does microcausal-
ity imply Einstein causality. The sign on the right-hand side does, however,
specify the statistics of the field. For the hermitian scalar field, both Einstein
causality and microcausality hold.

The assumption of microcausality is a crucial difference with the algebraic
approach one finds summarized in [13]. There the input is a system of observ-
ables satisfying Einstein causality in the proper sense, and a field structure
and its possible statistics are constructed from these data. It should be re-
marked that not only Bose and Fermi statistics, but also parastatistics are
admitted, which is ruled out here from the outset. The present approach can,
however, be transferred to the algebraic one in a straightforward fashion.

A standard property of quantum fields is that they describe excitations of
a vacuum state vector Ω. One usually characterizes Ω by its property that
it is invariant under a unitary representation of SL(2,C) in H acting on the
field in a covariant fashion. However, we will not assume, but establish the
existence of a covariant representation of a symmetry group. So the usual
characterization of the vacuum vector is not appropriate for our purposes.

But the vacuum vector has another important property. Namely, the sub-
space F(O)Ω of H is dense for each open region O ⊂ R

1+1 by a well known
theorem due to Reeh and Schlieder. One says that Ω is cyclic with respect to
each F(O). If O is an open cone, the assumptions made in the Reeh-Schlieder
theorem can be relaxed considerably. So excitations of the vacuum vector by
field operators located in O are not to be considered as state vectors of a
particle located in O, since they are not perpendicular to the excitations by
field operators located outside O.

We use this important property to characterize the vacuum state from the
outset.

(c) Vacuum vector. There exists a vector Ω ∈ D that is cyclic with respect
to F(O) assigned to each open set O ⊂ R

1+3.

Note that there may be many such vectors.

7 It does, in general not suffice that the observables A and B commute in the sense
that AB = BA cf., e.g., Nelson’s counterexample discussed in [25].
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The notion of vacuum we use here is considerably more general than the
usual one for the time being, but assuming modular P1CT-symmetry below
in Sect. 4 will, eventually, imply that Ω has the familiar invariance properties.

As announced earlier, our analysis will also apply for infinite-component
fields. For such fields, the preceding assumptions look a bit different. Denote
by C a linear space of arbitrary dimension (the coordinate space, which is finite
dimensional for finite-component fields) and by D the space of test functions
in R

1+3. The above assumptions are generalized as follows.

(A) The field. The quantum field F with component space C is a linear
function that assigns to each ξ ∈ C ⊗ D a linear operator F (ξ) in a
separable Hilbert space H.
(A.1) F is free from redundancies in C, i.e., if c, d ∈ C and if F (c⊗ ϕ) =

F (d⊗ ϕ) for all test functions ϕ ∈ D, then c = d.
(A.2) Each field operator F (ξ) and its adjoint F (ξ)∗ are densely defined.

There exists a dense subspaceD ofH withD ⊂ D(F (ξ))∩D(F (ξ)∗)
and F (ξ)D ∪ F (ξ)∗D ⊂ D for all ξ ∈ C⊗D.

For each open region O ⊂ R
1+3, denote by F(O) the algebra generated

by all F (c ⊗ ϕ)|D and all F (c ⊗ ϕ)∗|D with supp(ϕ) ⊂ O. Defining an
involution ∗ on F(O) by A∗ := A∗|D, each algebra F(O) is endowed with
the structure of a ∗-algebra.
(A.3) F(O) is nonabelian for each O, and if O �= P, then F(O) �= F(P).

(B) Microcausality. There exists a unitary and self-adjoint operator k on
H with kΩ = Ω and with kF(O)k = F(O) for all O. Define F± :=
1
2 (F ± kFk). If c and d are arbitrary elements of C and if ϕ,ψ ∈ D have
spacelike separated supports, then

F+(c⊗ φ)F+(d⊗ ψ) = F+(d⊗ ψ)F+(c⊗ φ) ,
F+(c⊗ φ)F−(d⊗ ψ) = F−(d⊗ ψ)F+(c⊗ φ) , and
F−(c⊗ φ)F−(d⊗ ψ) = −F−(d⊗ ψ)F−(c⊗ φ)

for all c, d ∈ C. The involution k is the statistics operator, and F± are
the bosonic and fermionic components of F , respectively. Defining κ :=
(1 + ik)/(1 + i) and F t(d⊗ψ) := κF (d⊗ψ)κ∗, the normal commutation
relations read [

F (c⊗ ϕ), F t(d⊗ ψ)
]

= 0 .

This property is referred to as twisted locality. Denote F t(O) := κF(O)κ∗.
(C) Vacuum vector. There exists a vector Ω ∈ D that is cyclic with respect

to F(O) for each open set O ⊂ R
1+3.

3 The Unruh Effect and the Bisognano-Wichmann
Theorem

In this section, a property of quantum fields will be discussed that is closely
related to the Hawking effect. It has been discovered by Unruh [29] and,
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independently, by Bisognano and Wichmann [1,2] that a uniformly accelerated
observer in Minkowski space perceives the vacuum state of a quantum field
as a thermal state with a temperature that is proportional to his acceleration
(Unruh effect). In addition, Bisognano and Wichmann showed that there is a
close tie between PCT-symmetry and the intrinsic algebraic structure of the
field (modular P1CT-symmetry). The second phenomenon will play a crucial
role in the next section.

3.1 States of Quantum Systems

Consider an arbitrary quantum system described by a ∗-algebra A of opera-
tors in a Hilbert space H, and suppose that A contains the unit operator 1.
Typically, the elements of A are observables or field operators. A state of the
system is a linear functional ω on A assigning to each A ∈ A an expectation
value ω(A) ∈ C in such a fashion that ω(A∗A) ≥ 0 and that ω(1) = 1. The
states of A are a convex set S; if ω0 and ω1 are states and if 0 < t < 1, then
a mixed state ωt can be defined by convex combination:

ωt(A) := tω0(A) + (1− t)ω1(A) .

States that are not mixtures of two other states are called pure states of A.
In elementary quantum mechanics, pure states ωψ are assigned to normalized
wave functions ψ by

ωψ(A) := 〈ψ,Aψ〉 ,
and mixed states are assigned to density matrices ρ by

ωρ(B) :=
tr(ρB)
tr(ρ)

,

where the domain of A should contain ψ and where B should be bounded.
Next endow the quantum system described by A with a Hamiltonian H,

and denote the time evolution on A by At := eitHAe−itH . The quantum
dynamical system defined this way can have thermal equilibrium states. As
an example, consider a finite quantum system with the property that all A ∈ A

are bounded. Then the Gibbs state ωβ at inverse temperature β assigns to each
A ∈ A the expectation value

ωβ(A) :=
tr(e−βHA)
tr(e−βH)

=: Z−1tr(e−βHA) .

This notion, however, is subject to a severe constraint: for infinitely extended
systems the trace of the operator e−βH becomes infinite, so ωβ is ill defined.
But there is a characteristic property of Gibbs states that “survives” the
transition to infinite systems. Namely,
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ωβ(AtB) = Z−1tr(e−βH eitHAe−itH B)

= Z−1tr(ei(t+iβ)HAe−itH eβHe−βH B)

= Z−1tr(e−βHB ei(t+iβ)HAe−i(t+iβ)H)
= ωβ(BAt+iβ) .

The first and the last term do not depend on how ωβ is defined. In general, a
state ω is called a KMS-state with inverse temperature β if there is, for any
given A,B ∈ A, a continuous C-valued function f on the strip {−β ≤ �z ≤
0} that is analytic on the interior of the strip and satisfies f(t) = ω(AtB)
and f(t − iβ) = ω(BAt). This criterion does not refer to the concrete way
how ω is defined. Its relevance for physics has been discovered by Kubo,
Martin, and Schwinger [15,23] on the one hand and by Haag, Hugenholtz, and
Winnink [14] on the other. It has been shown by Pusz and Woronowicz (for C∗-
algebras) that the KMS-condition describes precisely the thermal equilibrium
states in the sense of the fundamental laws of thermodynamics [24]. The zero-
temperature states are the ground states of the Hamiltonian.

3.2 N-point Functions

For each N ∈ N, the state functional induced by the vacuum state vector Ω
assigns to each product Φ(ϕ1), . . . , Φ(ϕN ) the expectation value

wN (ϕ1, . . . , ϕN ) := 〈Ω,Φ(ϕ1) · · ·Φ(ϕN )Ω〉 .

The distributions wN defined this way are called the N -point functions.
The N -point functions of the hermitian scalar field vanish for all odd N .

For N = 2, one has

w2(q1, q2) = ∆+(q1 − q2) :=
1
2π

∫
H+

m

e−ip(q1−q2) dχ(p) (9)

and, recursively,

wN (q1 · · · qN ) =
N∑

ν=2

∆+(q1 − qν)wN−2(q2 · · · q̂ν · · · qN ) .

These wN are invariant under boosts.
In general, the N -point functions of quantum fields are the basic input of

the Feynman rules and, hence, the data from which scattering cross sections
are computed. Conversely, quantum fields are completely fixed by their N -
point functions by Wightman’s reconstruction theorem (cf., e.g., [22, 27]).

3.3 Rindler Wedges and the Unruh Effect

The Unruh effect is perceived by a uniformly accelerated observer, and the
spacetime region W such an observer can interact with – i.e., send a signal
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Fig. 1. Space-time diagram of Rindler wedge

and receive a reply – is called a Rindler wedge see Fig. 1. The edge of W is
a plane S,8 and the set S′ of points that are spacelike separated from S has
two connected components, one of which is W . In what follows we consider
wedges in the set W0 of Rindler wedges whose edges contain the origin, and
without loss of relevant information, we can and will confine ourselves to the
case of 1 + 1 dimensions, where W0 contains precisely two wedges ±W with
the edge S = {0}. For arbitrary Minkowski coordinates x0, x1, the wedge W
at the right hand of {0} is

W := {q ∈ R
1+1 : x1(q) > |x0(q)|} .

The Rindler coordinates ρ and σ on W s are obtained from the Carte-
sian coordinates by ρ :=

√
−x2 and σ := artanh(x0/x1), respectively. Con-

versely, the Cartesian coordinates are obtained from the Rindler coordinates
by x0 = ρ sinhσ and x1 = ρ coshσ, respectively. Endowing W with the metric
ρ2dσ2 − dρ2, one obtains the two-dimensional Rindler spacetime. A geodesic
in this spacetime has the form {q ∈W : ρ(q) = α} for some fixed α > 0. Em-
bedded into Minkowski space, this is the trajectory of an observer uniformly
accelerated by the acceleration a = α−1.

Consider two events q and r on this hyperbola with σ(q) = −σ(r) =: σ,
then t := 2σ/a is the time elapsing between these events according to the
observer’s clock.

Written in Rindler coordinates, the two-point function of the hermitian
scalar field reads, by eq. (9),

8 in other than three spatial dimensions: an affine subspace of codimension 2.
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w2(q, r) =
1
2π

∫
R

dχ exp
(
2ima−1 coshχ sinh(at/2)

)
=: f(t).

f has the property that

f(t+ 2πi/a) =
1
2π

∫
R

dχ exp
(
2ima−1 coshχ sinh(at/2 + iπ)

)

=
1
2π

∫
R

dχ exp
(
−2ima−1 coshχ sinh(at/2)

)

=
1
2π

∫
R

dχ exp
(
2ima−1 coshχ sinh(−at/2)

)
= f(−t) = w2(q2, q1).

One can conclude from this that the vacuum state is a KMS-state with inverse
temperature 2π/a, which is the inverse Unruh temperature in natural units.
In order to make the argument complete and precise, one needs to use the fact
that the two-point function is invariant under both spacetime translations and
Lorentz boosts. Note that the Unruh temperature does not depend on m. The
Unruh effect and the Unruh temperature just obtained are typical features of
a large class of quantum fields, as will be discussed now.

3.4 The Bisognano-Wichmann Theorem

The Unruh effect was – independently and at the same time – also discovered
by Bisognano and Wichmann, but in a different and more general formulation
and with a different scope. Again, we confine ourselves to the hermitian scalar
field, but this time, we consider the case of 1 + 3 dimensions, since we need it
for later use.

As is well known, there is a unitary representation U of the restricted
Lorentz group L1(R1+3) ≡ L↑

+(R1+3) in H with the properties

U(λ)Φ(ϕ)U(λ)∗ = Φ(λϕ) ,

where (λϕ)(x) = ϕ(λ−1x), and U(λ)Ω = Ω. It is defined by

U(λ)Φ(ϕ)Ω := Φ(λ(ϕ))Ω ;

note that the set of all vectors Φ(ϕ)Ω, ϕ ∈ C∞
0 (R1+3), is dense.

On the other hand, we know from Jost’s PCT-theorem that there exists
an antilinear operator Θ – called the PCT-operator – with the properties

Θ2 = 1 , (10)
ΘΩ = Ω , (11)

ΘU(λ)Θ = U(λ) , and (12)

ΘΦ(ϕ)Θ = Φ(x �→ ϕ(−x)) . (13)
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Consider a Rindler wedge W ∈ W0, denote by BW (χ), χ ∈ R, the unique
one-parameter group of boosts with BW (χ)W = W and by RW (α), α ∈ S1,
the Abelian group of rotations with RW (α)W = W . Define θW := ΘRW (π).

Bisognano and Wichmann discovered that BW has an analytic continua-
tion to a representation of the complex Lorentz group and that

θWBW (πi)Φ(ϕ)Ω = Φ(ϕ)∗Ω (14)

for all test functions ϕ with support in W .
The bridge of this observation to physics is built by an important branch

of the theory of operator algebras, which has been developed by Tomita and
Takesaki [3, 28].

Ω is cyclic with respect to F(−W ) by Assumption (C). This has the
consequence that no nonzero field operator in the field algebra F(W ) can
annihilate Ω, i.e., Ω is separating with respect to each F(W ). Namely, if
A ∈ F(W ) satisfies AΩ = 0 and B ∈ F(−W ), then ABΩ = BAΩ = 0,
whence A = 0 follows by Assumption (C).

The fact that Ω is both cyclic and separating with respect to F(W) implies
that an antilinear operator SW can be defined on the domain F(W )Ω by

SWAΩ := A∗Ω .

It is, though nontrivial, not difficult to show that SW can be extended to an
operator SW := S∗∗

W , which is called the Tomita operator of Ω and F(W ).
The operator ∆W := S∗

WSW is a selfadjoint operator with positive spectrum;
it is called the modular operator of Ω and F(W ). Furthermore, the operator
JW := SW∆

−1/2
W is antiunitary, and J2

W = 1; it is called the modular conjuga-
tion of Ω and F(W ). The modular operator and conjugation yield the polar
decomposition SW = JW∆

1/2
W of the Tomita operators, i.e., the decomposi-

tions into the “length” ∆1/2
W and the “phase” JW .

A glance at Eq. (14) shows that ∆1/2
W = BW (πi) and θW = JW . As a

consequence, BW (χ) = ∆−it for all t ∈ R.
One can now use the properties of JW and ∆W in order to show that the

one-parameter group B(χ), t ∈ R, implements a time evolution with respect
to which the vacuum state is a KMS-state. We first prove a simple lemma.

Lemma 1. Let K be a unitary or antiunitary operator in H such that KD =
D and KΩ = Ω, and suppose there is a Rindler wedge X such that
KF(W )K∗ = F(X). Then KJWK∗ = JX , and K∆WK∗ = ∆X .

Proof. If A ∈ F(X), then

KSWK∗AΩ = KSW K∗AK︸ ︷︷ ︸
∈F(W )

Ω = A∗Ω = SXAΩ .

So SW has the polar decomposition KSWK∗ = KJK∗ ·K∆1/2K∗. But the
polar decomposition of an operator is unique. �
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It follows from this lemma that JW and ∆it
W commute for all t ∈ R, and

since JWΩ = Ω = ∆it
WΩ by construction, one computes

〈
Ω,
(
∆−it

W A∆it
W

)
BΩ

〉
=
〈
Ω,A∆it

WBΩ
〉

=
〈
A∗Ω,∆it

W (B∗)∗Ω
〉

=
〈(
JW∆

1/2
W A

)
Ω,∆−it

W

(
JW∆

1/2
W B∗

)
Ω
〉

=
〈
JW

(
∆

1/2
W AΩ

)
, JW

(
∆it

W∆
1/2
W B∗Ω

)〉

=
〈
∆it

W∆
1/2
W B∗Ω,∆

1/2
W AΩ

〉

=
〈
Ω,B

(
∆

1/2
W ∆−it

W ∆
1/2
W

)
AΩ
〉

=
〈
Ω,B∆

−i(t+i)
W AΩ

〉

=
〈
Ω,B

(
∆

−i(t+i)
W A∆

i(t+i)
W

)
Ω
〉
.

So with respect to the dynamics induced by ∆−it
W , t ∈ R, the vacuum state

is a KMS-state with inverse temperature 1. But by the Bisognano-Wichmann
theorem, ∆1/2

W = BW (πi), so ∆W = BW (−2πi), and ∆−it
W = BW (2πt). As

above, this yields the Unruh effect.
In addition, Bisognano and Wichmann have shown that JW = θW , i.e., the

operator θW , which we call a P1CT-operator, is a modular conjugation. We call
this phenomenon modular P1CT-symmetry. In a more general setting, where
the Bisognano-Wichmann theorem does, as it stands, not hold in general,
Guido and Longo have shown that if one assumes the Unruh effect, one can
derive modular P1CT-symmetry [11]. Accordingly, modular P1CT-symmetry
is the more general principle. As it stands, it makes sense even if the modular
group does not implement Lorentz boosts or if the theory is not even Lorentz
covariant.

The proofs of Bisognano and Wichmann apply to arbitrary finite-component
quantum fields satisfying standard conditions. To be precise: they apply to pre-
cisely those Wightman fields for which Burgoyne has proved his spin-statistics
theorem.

But like the spin-statistics issue, the Bisognano-Wichmann symmetries
and the Unruh effect are meaningful notions in more general settings. The
symmetry that will be exploited in what follows is modular P1CT-symmetry.

4 Modular P1CT-symmetry, the Spin-statistics
Connection, and Modular PCT-symmetry

Assuming modular P1CT-symmetry in addition to the assumptions (A)–(C)
specified in Sect. 2, one can construct representations of SL(2,C) in C and
D with respect to which the field is covariant, and these representations are
easily seen to satisfy Pauli’s spin-statistics relation.
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Modular P1CT-symmetry neither entails the Unruh effect nor covariance
with respect to SL(2,C), and the notion of spin is well defined once a repre-
sentation of SU(2) has been specified. If one assumes P1CT-symmetry only
for wedges whose edge is perpendicular to a distinguished timelike vector e0,
then already this input suffices to construct representations of SU(2) inH and
C with respect to which the field is covariant, and like in the above case, these
representations can very easily be verified to satisfy Pauli’s spin-statistics
connection. So in contradistinction to the old spin-statistics theorems, the
argument to be outlined now does not require full Lorentz symmetry! This
is possible because our result is merely an existence result. It does not for-
bid pathological representations in appropriate settings, and there is nothing
wrong about this – as mentioned above: there are according examples, even
with full Loventz symmetry.

The groups SL(2,C) and SU(2) are relevant because they are simply con-
nected covering groups of the spacetime symmetry groups L1 and SO(3),
respectively. Since all simply connected covering groups are isomorphic, any
other simply connected covering groups can replace SL(2,C) and SU(2), and
this will be customary in the subsequent analysis.

The notion of covering group and the construction of our alternative cov-
ering groups will be the topic of the next subsection. Then a subsection with
sketches of the proofs of our two spin-statistics theorems follows, and a sub-
section with a brief construction of a full PCT-operator from modular P1CT-
conjugations will conclude the section.

4.1 Covering Groups of SO(3) and L1

Consider arbitrary topological spaces X and Y . A continuous map f from X
onto Y is called an N -sheeted covering map, N ∈ N ∪ ∞ if for each y ∈ Y ,
there are precisely N elements x of X with f(x) = y and if for each x ∈ X
there exists a neighborhood U of x with the property that the restriction f |U
has a continuous inverse from f(U) onto U . Endowed with the map f , the
space X is called a covering space of Y .

Recall that a topological space is called pathwise connected if any two of its
elements can be connected by a curve and that it is called simply connected if
in addition, each curve can be continuously contracted to any of its points. The
unit circle S1 is pathwise connected, but not simply connected, whereas the
unit sphere S2 is simply connected. It is also well known (though less evident)
that SO(3) is pathwise, but not simply connected, whereas SU(2) is simply
connected. SU(2) is a two-sheeted simply connected covering space of SO(3);
the covering map f is well known from textbooks. Since f(AB) = f(A)f(B)
and f(1) = 1, the group SU(2) is called a covering group of SO(3).

Each pathwise connected Lie group G has a simply connected covering
group G̃. In order to see this, denote by G the class of all curves c : [0, 1] → G
starting at c(0) = 1 and ending at an arbitrary c(1) ∈ G. Two curves c, d ∈ G
are called homotopic if c(1) = d(1) and if c can be deformed into d continuously
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and keeping the endpoint c(1) fixed.9 Homotopy is an equivalence relation, so
let G̃ be the quotient space of G by this relation, i.e., the set of equivalence
classes. Evidently, G̃ is a group when endowed with the group product [c][d] =
[cd], where [c] denotes the equivalence class of [c]. It is straightforward to
verify that G̃ is simply connected and that a covering map f can be defined
by f([c]) := c(1). If H is another simply connected covering group of G with
covering map g, then there is a bijection γ : H → G with γ(AB) = γ(A)γ(B),
γ(1) = 1, and g(A) = f(γ(A)), i.e., the structures of H and G as covering
groups are identical. Given a concrete group H, there typically are many
choices for γ, none of which needs to be particularly “natural.” Given G,
there are, in general, many simply connected covering groups H. Since G̃ has
been constructed in an intrinsic fashion – which also applies for a large class
of pathwise connected topological spaces without manifold structure – it is
called the universal covering group of G.

For the example of SO(3), the group SU(2) is a simply connected covering
group, but it is not the universal covering group in this topologists’ terminol-
ogy. Another simply connected covering group is constructed as follows.

For each a ∈ S2 ⊂ R
3, denote by ja the orthogonal reflection by the

two-dimensional subspace a⊥. For each pair (a, b) ∈ S2×S2, the linear trans-
formation jajb is a rotation. But there are uncountably many other pairs (c, d)
with jajb = jcjd, so neither rotations nor elements of a covering group can be
represented by pairs in S2 × S2.

There is, however, an equivalence relation that yields a quotient space
doing the job. Namely, call elements (a, b) and (c, d) of S2 × S2 equivalent
if jajb = jcjd and if there exists a rotation σ having the same axis as jajb
and satisfying (σa, σb) = (c, d). In this case, (a, b) is not equivalent to (c,−d)
Fig. 2. Denote the equivalence class of (a, b) by π(a, b). Denote by GR the
quotient space S2 × S2/ ∼.

Define a map ρ̃ : GR → SO(3) by ρ̃(π(a, b)) := jajb.10

Theorem 1. ρ̃ is a covering map, and GR is simply connected.

We refer to Ref. [20] for the proof. The theorem implies that there exists a
unique group product on GR with ρ̃(gh) = ρ̃(g)ρ̃(h) and ρ(1) = 1, so GR is
a covering group.

The same construction yields a simply connected covering of L1 as well.
First note that the above equivalence relation constituting GR can be refor-
mulated as follows: (a, b) and (c, d) are equivalent if jajb = jcjd and if there
exists a rotation τ commuting with jajb and satisfying (c, d) = (τ2a, τ2b). In
this form, it can be transferred to the construction of GL.

9 i.e., there exists a continuous map h : [0, 1]× [0, 1] → G with h(0, s) = 1, h(1, s) =
c(1), h(t, 0) = c(t), and h(t, 1) = d(t).

10 Here and below there occur tilde symbols that appear redundant. This is the
notation of the original paper [21], where they are not redundant. The symbol ρ,
e.g., is used for the notation ρ(a, b) := jajb.
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is

equivalent

to

but not to

a

b

c

d

c

−d

Fig. 2. The equivalence relation ∼

Assign to each Rindler wedge W ∈ W0 the orthogonal reflection jW by
the edge of W . For each pair (W,X) ∈ W0×W0, the transformation jW jX is
a restricted Lorentz transformation , and it can be shown that each restricted
Lorentz transformation can be written as such a pair (this is less evident than
for SO(3)). Let pairs (W,X) and (Y,Z) satisfy the relation (W,X) ∼ (Y,Z) if
jW jX = jY jZ and if there exists a Lorentz transformation ν ∈ L1 commuting
with jW jY and satisfying (ν2W,ν2X) = (Y,Z). This relation can be shown to
be an equivalence relation. Let GL be the quotient space GL := W0×W0/ ∼.

A map λ̃ : GL → L1 is defined by λ̃(π(W,X)) := jW jX . Like ρ̃, this
map can be shown to be a covering map, but the proof is considerably much
more involved. GL is simply connected and can, like GR, be endowed with
the structure of a simply connected covering group.

4.2 The Spin-statistics Connection

We now first construct representations of GR in C and H that can be shown
to satisfy the spin-statistics connection by an elementary argument. Some
remarks on the corresponding analysis for GL will follow at the end of this
subsection.

If e0 is a future-directed timelike vector, then the set of spacelike unit
vectors perpendicular to e0 is a 2-sphere S2

e0
=: S2, and one can assign to

each a ∈ S2 the Rindler wedge

Wa := {q ∈ R
1+3 : qa ≥ |qe0|} .
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For each a ∈ S2, denote by ja be the orthogonal reflection by the plane
a⊥ ∩ e⊥0 ,11 and for each test function ϕ ∈ D, define jaϕ ∈ D by jaϕ(x) :=
ϕ(jax).

In addition to the above assumptions, we assume that the modular conju-
gations Ja belonging to the vacuum vector Ω and the field algebras F(Wa),
a ∈ S2, act as P1CT-operators. In the general formulation, this reads:

(D) Partial modular P1CT-symmetry. For each a ∈ S2, there exists an
antilinear involution Ca in C such that for all c ∈ C and ϕ ∈ D, one has

JaF (c⊗ ϕ)Ja = F t(Cac⊗ jaϕ) .

The map a �→ Ja is continuous, i.e., if aν →ν→∞ a in S2, then Jaν
Ψ →

JaΨ for each Ψ ∈ H.

The next task is to establish covariance of the field with respect to GR by
constructing appropriate representations.

Theorem 2. (i) If (a, b) ∼ (c, d), then JaJb = JcJd =: W̃ (π(a, b)).
(ii) The map W̃ from GR into the group of unitary operators in H is a

group representation, i.e., W̃ (g)W̃ (h) = W̃ (gh).
(iii) There exists a representation D̃ of GR in C with

W̃ (g)F (c⊗ φ)W̃ (g)∗ = F (D̃(g)c⊗ ρ̃(g)φ) ∀g, c, φ , (15)

where (ρ̃(g)φ)(x) := φ(ρ̃(g)−1x).

Proof. The first two statements are elementary, cf. [20].
It remains to construct D̃. If (a, b) ∼ (c, d), then modular P1CT-symmetry

implies

F (CaCbc⊗ jajbφ) = JaJbF (c⊗ φ)JbJa

= JcJdF (c⊗ φ)JdJc

= F (CcCdc⊗ jcjdφ)
= F (CcCdc⊗ jajbφ)

for all c and all φ. Using Assumption (A.1), one obtains CaCbc = CcCdc for
all c, so a map D̃ : GR → GL(C) is defined by D̃(π(a, b)) := CaCb. This map
D̃ now inherits the representation property from W̃ .

Now the proof of our spin-statistics theorem is elementary algebra.

Theorem 3 (Spin-statistics connection).

F±(c⊗ ϕ) =
1
2
(1± F (D̃(−1)c⊗ ϕ))

for all c and all ϕ.
11 I.e., the linear reflection with jaa = −a, jae0 = −e0, and jax = x for all

x ∈ a⊥ ∩ e⊥0 .
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Proof. Lemma 1 implies, by definition of k and κ above, the relations

kJak = Ja, whence Jaκ = κ∗Ja .

Using twisted locality, one also obtains

κJaκ
∗ = κ∗Jaκ = J−a .

For each a ∈ S2 one has

W̃ (−1) = JaJ−a = JaκJaκ
∗ = J2

a(κ∗)2 = k ,

so

F (c⊗ ϕ) = kF (c⊗ ϕ)k = W̃ (−1)F (c⊗ ϕ)W̃ (−1)

= W̃ (−1)F (c⊗ ϕ)W̃ (−1)∗ = F (D̃(−1)c⊗ ϕ) .

�
If, in particular, D̃ is irreducible with spin s, then D̃(−1) = e2πis, so

F− = 0 for integer s and F+ = 0 for half-integer s.
In order to obtain a symmetry with respect to GL, one needs a stronger

P1CT-symmetry, which is straightforward to write down:

(D’) Full modular P1CT-symmetry. For each W ∈ W0, there exists an
antilinear involution CW in C such that for all c ∈ C and ϕ ∈ D, one has

JWF (c⊗ ϕ)JW = F t(CW c⊗ jWϕ) .

The map W �→ JW is continuous, i.e., if Wν →ν→∞ W in W0, then
JWν

Ψ → JWΨ .

Like above, one can construct representations W̃ and D̃ with the desired
properties. For bosonic fields, the unitary representation W̃ in H, which, ac-
tually, is a representation of L1, has been constructed earlier by Buchholz,
Dreyer, Florig, and Summers [5, 7, 10].

The proof of the spin-statistics relation is the same.

4.3 PCT-symmetry

In order to justify the term “modular P1CT-symmetry”, one should show that
this condition yields, at least in 1 + 3 dimensions, a full PCT-operator in a
base-independent fashion.

Theorem 4 (PCT-symmetry). There exists an antiunitary involution Θ
with the properties

(i) JaJbJc = Θ for each right-handed orthogonal basis (a, b, c) of e⊥0 .
(ii) There exists an antilinear involution C such that

ΘF (c⊗ ϕ)Θ = F t(Cc⊗ PTϕ) ,

where (PTϕ)(x) := ϕ(−x).
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Proof. Let (a′, b′, c′) be a second right-handed orthonormal base, and define
Θ′ := Ja′Jb′Jc′ . Then it follows from modular symmetry that

Θ′ΘF (c⊗ ϕ)Ω = Θ′ΘF (c⊗ ϕ)ΘΘ′Ω

= F (Ca′Cb′Cc′CaCbCcc⊗ ϕ)Ω

= F (D̃(1)c⊗ ϕ)Ω
= F (c⊗ ϕ)Ω .

Since Ω is cyclic, this implies the statement. �

If (a, b, c) is right-handed and (a′, b′, c′) is left-handed, then D̃(1) has to be
replaced by D̃(−1) in the above computation. Since J−aJ−bJ−c = κJaJbJcκ

∗,
this is no surprise.

5 Conclusion

Pauli’s spin-statistics relation links the spin of a quantum field, which is a
classical quantity, to its statistics, which exhibits quantum theoretical pecu-
liarities.

Each rotation can be obtained by combining two reflections by two-
dimensional subspaces, and each restricted Lorentz transformation can be
obtained by combining two reflections by two-dimensional spacelike subspaces.
These facts can be used in order to construct simply connected covering groups
GR ∼ SU(2) and GL ∼ SL(2,C) of the rotation and the restricted Lorentz
group, respectively, in a purely classical fashion.

Considering fields with modular P1CT-symmetry (which is a standard
symmetry), the constructions of GR and GL can be “quantized” in order to
obtain unitary representations of these groups in the fields’ Hilbert spaces
by multiplying pairs of P1CT-operators. The representations obtained this
way can easily be seen to exhibit Pauli’s spin-statistics relation. It is the
close link of the P1CT-operators to the field’s algebraic structure that links
the classical objects GR and GL to their covariant representations in the
quantum theoretical setting.

A couple of remarks concerning the closely related literature are in place
now. The first proof of the spin-statistics connection using modular P1CT-
symmetry was given by the author in [16]. It uses the Doplicher-Haag-Roberts
framework, whose input is a system of observables and whose output is a sys-
tem of field algebras similar to the above ones and a first-kind gauge symmetry
group [8]. Modular P1CT-symmetry needs to be assumed only for the observ-
ables; then it can be derived for the field. On the other hand, the argument
only applies to a restricted class of particle states, as already mentioned in
the introduction.
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In this aspect, the result of Guido and Longo [12] is superior. They just
start with a system of field algebras (like we have done above), not caring
on how they have been constructed and which masses are incorporated in
the theory. They assume the Unruh effect directly for this algebra, and using
an earlier result together with Brunetti [4], they prove the existence of a
covariant representation with the correct spin-statistics relation. The authors
also have succeeded in generalizing this result to conformal field theory [12]. As
a remarkable spin-off, they derive modular P1CT-symmetry from the Unruh
effect.

On the other hand, Guido and Longo make the stronger symmetry as-
sumption (as their derivation of modular P1CT-symmetry from the Unruh
effect shows), and they do so for the full field and not only for the observable
input. The Unruh effect itself already entails full Lorentz symmetry, whereas
partial modular P1CT-symmetry merely entails rotational symmetry. The re-
sult discussed above generalizes the results in Refs. [16] and [11].

The next challenge would be the construction of a simply connected cover-
ing GP of the restricted Poincaré group P1 not from pairs, but from quadru-
ples of reflections by arbitrary spacelike planes. Another situation where more
than two P1CT-conjugations are needed is met in higher-dimensional space-
times in order to generalize the above strategy. These problems are under
present investigation.
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Abstract. The production of Hawking radiation by a single horizon is not depen-
dent on the high-frequency dispersion relation of the radiated field. When there are
two horizons, however, Corley and Jacobson have shown that superluminal disper-
sion leads to an amplification of the particle production in the case of bosons. The
analytic theory of this “black hole laser” process is quite complicated, so we provide
some numerical results in the hope of aiding understanding of this interesting phe-
nomenon. Specifically, we consider sonic horizons in a moving fluid. The theory of
elementary excitations in a Bose-Einstein condensate provides an example of “su-
perluminal” (Bogoliubov) dispersion, so we add Bogoliubov dispersion to Unruh’s
equation for sound in the fluid. A white-hole/black-hole horizon pair will then dis-
play black hole lasing. Numerical analysis of the evolution of a wave packet gives a
clear picture of the amplification process. By utilizing the similarity of a radiating
horizon to a parametric amplifier in quantum optics we also analyze the black hole
laser as a quantum-optical network.

1 Introduction

One important contribution of the theoretical study of black hole analogues
has been to help clarify the derivation of the Hawking effect [1–3]. This in
turn led to a study [4] of Hawking radiation in a more general context, one
that involves, among other features, two horizons. The results of [4] are of
particular interest because they offer a scenario, perhaps realizable in a black
hole analogue, in which the Hawking radiation is amplified. Let us begin by
describing the background to these ideas.

There is an apparent contradiction in Hawking’s semiclassical derivation
of black hole evaporation [5], in that the radiated fields undergo arbitrarily
large blue-shifting in the calculation, thus acquiring arbitrarily large masses,
which contravenes the underlying assumption that the gravitational effects
of the quantum fields may be ignored. This is known as the trans-Plankian
problem [1–3,6,7]. A similar issue arises in condensed matter analogues such as
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(2007)
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Fig. 1. Sonic horizons in a moving fluid, in which the speed of sound is 1. The
velocity profile of the fluid, v(z), attains the value −1 at two values of z; these
are horizons for sound waves that are right-moving with respect to the fluid. At
the right-hand horizon right-moving waves are trapped, with waves just to the left
of the horizon being swept into the supersonic flow region v < −1; no sound can
emerge from this region through the horizon, so it is reminiscent of a black hole.
At the left-hand horizon right-moving waves become frozen and cannot enter the
supersonic flow region; this is reminiscent of a white hole

the sonic black hole [1,8], and to make our discussion concrete from the outset
we shall consider sonic horizons in one-dimensional fluid flow (see Fig. 1).

When the velocity profile of the fluid is as shown in Fig. 1 two horizons are
formed for sound waves that propagate to the right with respect to the fluid.
The horizon on the right of the supersonic flow region v < −1 behaves like
a black hole horizon for right-moving waves, while the horizon on the left of
the supersonic flow region behaves like a white hole horizon for these waves.
In [8] Unruh showed that in such a system, with some reasonable simplifying
assumptions, the equation for a small perturbation φ of the velocity potential
is

(∂t + ∂zv)(∂t + v∂z)φ− ∂2
zφ = 0 . (1)

In terms of a new coordinate τ defined by

dτ := dt+
v

1− v2
dz

(1) is the equation φ ;µ
;µ = 0 of a scalar field in the black-hole-type metric

ds2 = (1− v2)dτ2 − dz2

1− v2
.

The results for quantum black holes [5, 9, 10] apply equally well here, so it
follows that each horizon will produce a thermal spectrum of phonons with
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Fig. 2. Hawking phonons in the fluid flow of Fig. 1. Real phonons have positive
frequency in the fluid-element frame and (3) shows that for right-moving phonons
this frequency (ω − vk) is ω

1+v
= k. Thus in the subsonic-flow regions ω (conserved

for each ray) is positive, whereas in the supersonic-flow region it is negative; k is
positive for all real phonons. The frequency in the fluid-element frame diverges at
the horizons– the trans-Plankian problem

a temperature determined by the quantity that corresponds to the surface
gravity at the horizon, namely the absolute value of the slope of the velocity
profile:

kBT =
�α

2π
, α :=

∣∣∣∣dvdz
∣∣∣∣
v=−1

. (2)

The trajectories of the created phonons are readily drawn (see Fig. 2), but
they are formally deduced from the dispersion relation of the sound equation
(1). Geometrical acoustics applied to (1) gives the dispersion relation

ω − vk = ±k (3)

and the Hamilton equations

dz

dt
=
∂ω

∂k
= v ± 1 , (4)

dk

dt
= −∂ω

∂z
= −v′k . (5)

The left-hand side of (3) is the frequency in the frame co-moving with a fluid
element, whereas ω is the frequency in the laboratory frame; the latter is
constant for a time-independent fluid flow (“time-independent Hamiltonian”
dω/dt = ∂ω/∂t = 0). Since the Hawking radiation is right-moving with respect
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to the fluid, we clearly must choose the positive sign in (3) and hence in (4)
also. By approximating v(z) as a linear function near the horizons we obtain
from (4) and (5) the ray trajectories of Fig. 2. The disturbing feature of
the rays is the behavior of the wave vector k: at the horizons the radiation
is exponentially blue-shifted1, leading to a diverging frequency in the fluid-
element frame. These runaway frequencies are unphysical since (1) asserts that
sound in a fluid element obeys the ordinary wave equation at all wavelengths,
in contradiction with the atomic nature of fluids (see Sect. 2). Moreover the
conclusion that this Hawking radiation is actually present in the fluid also
assumes that (1) holds at all wavelengths, as exponential blue-shifting of wave
packets at the horizon is a feature of the derivation [5,9,10]. Similarly, in the
black-hole case the equation used in the calculation [5,9,10] does not hold at
arbitrarily high frequencies because it ignores the gravity of the fields. For the
black hole, a complete resolution of this difficulty will require knowledge of
the gravitational physics of quantum fields, i.e. quantum gravity, but for the
dumb hole the physics is available for a more realistic treatment. The issue to
be addressed is the dispersion relation for sound at high frequencies [1], and
a consideration of this will lead us to the black hole laser.

2 Dispersion

In reality one would expect the dispersion relation for sound to differ from the
linear formula (3) when the wavelength is of the order of the distance between
the fluid atoms. What kind of dispersion relation should we expect at these
wavelengths? Let us naively picture the fluid atoms as occupying well-defined
positions with a separation distance a (see Fig. 3). The equation for small

Fig. 3. A “classical” picture of fluid atoms. Each atom is labeled and a is the
equilibrium separation

oscillations in this chain of atoms is the wave equation with a discretized
second-order spatial derivative:

∂2
t φk −

1
a2

(φk+1 − 2φk + φk−1) = 0 . (6)

A partial differential equation that serves as an approximation to (6) is ob-
tained by substituting the following relation, familiar from numerical analysis:
1 We trust the reader will not be too distracted by our mixing of acoustic and

optical terminology.
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1
a2

(φk+1 − 2φk + φk−1) = ∂2
zφ+

a2

12
∂4

zφ+O(a4) .

For small a we thus obtain the approximate dispersion relation

ω2 ≈ k2 − a2

12
k4 . (7)

As the last term in (7) is negative we find that the group velocity dω
dk of

waves decreases with decreasing wavelength, i.e. we have subluminal or normal
dispersion.

A nonlinear dispersion relation ω = ω(k) such as (7) limits the amount
of blue-shifting that occurs at a horizon, so the embarrassment of infinite
frequencies disappears; there then remains the question of whether one can
still derive the Hawking effect. Unruh [1] modified the sound equation (1) to
incorporate subluminal dispersion and showed numerically that the predic-
tion of thermal radiation at temperature (2) still holds good, regardless of the
details of the high-frequency behavior. Indeed, analysis of generalized models
shows that the precise form of the dispersion relation at high frequencies has
no effect on the particle production by a single horizon, at least to lowest
order [2, 3]. Unsurprisingly, such a general conclusion involves some assump-
tions about the short-distance physics at the horizon, and since Planck-scale
physics is unknown it remains possible that conditions at this scale conspire
to invalidate the evaporation result for real black holes [3].

We now turn to the main purpose of this section, namely the introduction
of a dispersion relation that, together with the horizon arrangement of Fig. 1,
leads to black hole lasing.

2.1 Bogoliubov Dispersion

The dispersion relation used by Corley and Jacobson in the original treatment
of the black hole laser [4] is well known from the theory of elementary exci-
tations in a Bose–Einstein condensate [11, 12]. In this formalism the bosonic
atoms are described by an a field ψ̂ but most of the atoms are assumed to
form a condensate with macroscopic wave function

ψ0 =
√
ρ0e

iS0 . (8)

The deviations of ψ̂ from the mean field ψ0 are given by a quantum field φ̂ of
small fluctuations:

ψ̂ = ψ0 + eiS0 φ̂ .

It is then found that φ̂ satisfies the Bogoliubov–de Gennes equation

i�∂tφ̂ =
(
− �

2

2m
∇2 − µ+ 2mc2

)
φ̂+mc2φ̂† , (9)
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where µ is the chemical potential and c is the speed of sound. The field φ̂ is
given by the usual mode expansion

φ̂ =
∑

ν

(
uν âν + v∗ν â

†
ν

)
. (10)

For plane-wave modes

uν = ueik·r−iωt, vν = veik·r−iωt ,

(9) and its complex conjugate give

�ω

(
u
v

)
=

(
�
2k2

2m − µ+ 2mc2 mc2

−mc2 −�
2k2

2m + µ− 2mc2

)(
u
v

)
.

The condition for this matrix equation to have a solution is
(

�
2k2

2m
− µ+ 2mc2 − �ω

)(
−�

2k2

2m
+ µ− 2mc2 − �ω

)
+m2c4 = 0 ,

and assuming the chemical potential µ is equal to the local energy of the
condensate, mc2, this is the Bogoliubov dispersion relation

ω2 = c2k2 +
�

2

4m2
k4 . (11)

From (11) we see that the group velocity increases with decreasing wavelength,
so it is an example of superluminal or anomalous dispersion. Comparison with
(7) shows that the purely quantum term in (11) corresponds to an imaginary
separation distance between the atoms, a reflection of the inapplicability of
the classical picture of Fig. 3 to a condensate.

Let us now add Bogoliubov dispersion to our model system of Fig. 1. The
appropriate generalization of (1) is

(∂t + ∂zv)(∂t + v∂z)φ− ∂2
zφ+

1
k2

c

∂4
zφ = 0 , (12)

where kc is a constant; this give the dispersion relation

ω − vk = ±k
√

1 +
k2

k2
c

, (13)

so that we have Bogoliubov dispersion in a moving fluid. As with (3) we need
only consider the positive sign in (13) since our interest is in phonons that
propagate to the right with respect to the fluid.

How does the presence of the kc-dependent term in (13) alter the ray tra-
jectories of Fig. 2? We numerically solve the Hamilton equations resulting
from (13) (with the positive sign) and obtain the trajectories shown in Fig. 4.
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Fig. 4. Numerical solution of ray trajectories for the dispersion relation (13). Both
rays are right-moving with respect to the fluid and have the same positive value of
ω. The ray that is confined to the supersonic-flow region has negative frequency in
a frame co-moving with the fluid, whereas the ray that passes through the system
from left to right has positive frequency in the fluid frame

The qualitative behavior of the rays in Fig. 4 is easily understood from the
superluminal character of the dispersion relation (13). Consider the ray ap-
proaching the white hole horizon from the left: the ray moves at the group
velocity and is blue-shifted as it nears the horizon; this increases the group
velocity until the ray traverses the horizon into the supersonic-flow region.
Similarly, the ray being swept towards the white hole horizon from the right
is blue-shifted until the group velocity exceeds the speed of the flow, allowing
the ray to move away from the horizon. The behavior at the black hole horizon
is simply the time reverse of that at the white hole horizon. Thus, the ray in
the supersonic-flow region bounces back and forth between the horizons while
the ray incident from the left passes through the system.

In Fig. 4 we have actually solved for the two rays using the same positive
value of ω, the frequency in the laboratory frame, which is constant throughout
the motion. It is then the case that the ray propagating through the system
has positive frequency ω−vk in a frame co-moving with the fluid, whereas the
bouncing ray has negative frequency in the fluid frame and does not therefore
represent a real phonon. (A real phonon in the supersonic-flow region that is
swept towards the white hole horizon has negative ω and exhibits the same
bouncing behavior.) We have chosen the same value of ω for both rays in
order to discuss particle creation. As the ray from the left reaches the horizon
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geometrical acoustics breaks down, allowing a wave packet centered on this ray
to undergo mode conversion wherein it develops a component corresponding
to another branch of the dispersion relation having the same conserved value
of ω. Thus a wave packet centered on the incoming ray in Fig. 4 will develop a
component between the horizons that is centered on the bouncing ray in Fig. 4,
which has negative frequency in the fluid frame. In the quantized theory it is
a positive frequency in the fluid frame that is associated with an annihilation
operator through a mode expansion such as (10). That fact that a positive-
frequency wave packet develops a negative-frequency component implies a
mixing of creation and annihilation operators in the quantum theory and this
means there is particle creation by the system [1,5, 9, 10].

The significance of the frequency in the fluid frame is apparent from the
inner product

(φ1, φ2) = i

∫
[φ∗

1(∂t + v∂z)φ2 − φ2(∂t + v∂z)φ∗
1] dz (14)

which is conserved for solutions of (12), i.e. ∂t(φ1, φ2) = 0. The operator
∂t + v∂z is the time derivative in the fluid frame and so is associated with
the frequency in this frame. It is easily shown a wave packet φ made up of
plane-wave solutions with positive (negative) frequency in the fluid frame has
positive (negative) conserved norm (φ, φ). Since it is the frequency in the fluid
frame that is important for particle production and for the inner product (14),
the terms positive/negative frequency will hereafter refer to the fluid frame.

The above considerations lead to the schematic picture of Fig. 5 for the
evolution of an incident positive-frequency (and positive-norm) wave packet
φin. At the white hole horizon the packet φin undergoes mode conversion,
producing a negative-frequency component φ(1)

−R that propagates to the right
together with the positive-frequency part φ(1)

+ . When these packets reach the
black hole horizon there is further mode conversion and a positive-frequency
packet φ(1)

out exits the system leaving behind a red-shifted negative-frequency
packet φ(1)

−L that propagates to the left towards the white hole horizon. On
reaching the white hole horizon φ

(1)
−L generates through mode conversion a

positive-frequency packet φ(2)
+ , which joins the blue-shifted negative-frequency

packet φ(2)
−R in propagating towards the black hole horizon. When φ(2)

+ and φ(2)
−R

reach the black hole horizon mode conversion occurs again and there is an-
other output of a positive-frequency packet φ(2)

out, leaving a negative-frequency
packet φ(2)

−L between the horizons. The process continues as outlined. Now the
total norm of this evolving solution is conserved, so in each instance of mode
conversion amounts of positive- and negative-frequency wave packet are cre-
ated that have equal and opposite norm. Thus with each bounce the norm of
the negative-frequency packet between the horizons increases in magnitude;
indeed, it increases exponentially since the norms of the wave packets created
by mode conversion are in proportion to the norm of the incident packet. The
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Fig. 5. Schematic picture of the evolution of a positive-frequency wave packet φin.
Lines that begin at the horizons denote wave packets created by mode conversion.
All wave packets follow one of the ray trajectories of Fig. 4. The dotted lines indicate
modes that are empty in this evolution but that feature in the connection formulae
for modes at the horizons

size of the negative frequency packet generated by φin determines the particle
production so the number of particles produced increases exponentially with
time – this is the black hole laser [4].

To quantify the above description one can utilize the connection formulae
obtained by Corley and Jacobson for modes at the horizons [4]. Let us assume
that the slope of the velocity profile is −α at the white hole horizon and γ
at the black hole horizon. Then the relation between modes with the same
conserved value of ω at the white hole horizon is (see Fig. 5):

φωin = [2 sinh (πω/α)]−1/2
(
eπω/2αφ

(1)
ω+ + e−πω/2αφ

(1)
ω−R

)
, (15)

φω−Lin = [2 sinh (πω/α)]−1/2
(
e−πω/2αφ

(1)
ω+ + eπω/2αφ

(1)
ω−R

)
, (16)

with similar formulae for the other modes that meet at this horizon in Fig. 5.
At the black hole horizon the connection formulae for modes is (see Fig. 5):

φ
(1)
ωout = [2 sinh (πω/γ)]−1/2

(
eπω/2γφ

(1)
ω+ + e−πω/2γφ

(1)
ω−L

)
, (17)

φ
(1)
ω−L = [2 sinh (πω/γ)]−1/2

(
e−πω/2γφ

(1)
ω+ + eπω/2γφ

(1)
ω−L

)
, (18)

with similar formulae applying for the other modes that interact at this hori-
zon in Fig. 5. For modes that travel between the horizons (φ(n)

ω+, φ(n)
ω−R and
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φ
(n)
ω−L) we must in addition specify how their values at the two horizons are

related to each other. This can be done using a WKB approximation to prop-
agate the modes from one horizon to the other; the result will be a simple
phase relationship between the values at each horizon:

φ
(n)
ω+

∣∣∣
BH

= eiθ+ φ
(n)
ω+

∣∣∣
WH

, (19)

φ
(n)
ω−R

∣∣∣
BH

= e−iθ− φ
(n)
ω−R

∣∣∣
WH

, (20)

φ
(n)
ω−L

∣∣∣
WH

= e−iθ0 φ
(n)
ω−L

∣∣∣
BH

, (21)

where BH (WH) refers to the black hole (white hole) horizon. Using the above
formulae as building blocks one can calculate the evolution of a wave packet
and hence compute the number of created particles [4]; in Sect. 4 we shall
address this task in a different guise. First, a numerical solution for an evolving
wave packet will provide an enlightening picture of the process outlined in
Fig. 5.

3 Numerical Results

Let us summarize what we expect to see if we propagate a positive-frequency
wave packet towards the white hole horizon. According to Fig. 5 this positive-
norm wave packet will plough through the system and emerge out of the black
hole horizon (φ(1)

out) somewhat amplified, leaving behind a small negative-norm
packet (φ(1)

−L) such that the total norm is conserved. After a period of time
equal to that required by the negative-frequency ray in Fig. 4 to propagate
from the black hole horizon to the white hole horizon and back again we expect
another, smaller, positive-norm packet (φ(2)

out) to emerge from the system. At
regular intervals there should be further outputs of positive-norm packets
(φ(3)

out, etc.) and a build-up of the negative-norm packet between the horizons.
The increasing amplitude of the negative-norm packet will cause an increase
in the size of the positive-norm outputs produced by mode conversion, and
this increase should in fact be exponential.

In Fig. 6 we show the result of a numerical evolution of a wave packet cen-
tered on the positive-frequency ray in Fig. 4. Periodic boundary conditions
are in force in Fig. 6 and the incident packet has ploughed through the system
(φ(1)

out) and is circling round on the left-hand side where it is about to hit the
white hole horizon a second time. The successive outputs of positive-norm
packets (φ(2)

out, etc.) are clearly visible; five separate emissions are distinguish-
able, corresponding to the negative-norm packet bouncing off the black hole
horizon five times. As the total amount of positive-norm packet increases with
each output it is balanced by a growing amount of negative-norm packet be-
tween the horizons, leaving the total norm unchanged.
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Fig. 6. Numerical solution for a positive-frequency wave packet that has entered
the horizon system from the left. The packet is centered on the positive-frequency
ray in Fig. 4 so it has propagated through the system (φ

(1)
out) and begun to emerge

on the left-hand side due to periodic boundary conditions. A sequence of positive-
frequency wave packets are seen to follow φ

(1)
out, in line with expectations based on

Fig. 5

The distance between the horizons has been set quite small relative to the
length of the incident wave packet in order to increase the number of bounces
that occur before φ

(1)
out collides with the white hole horizon. This makes it

difficult to see clearly the motion of the negative-frequency wave packet that
is confined to the supersonic-flow region. Nevertheless alternate red- and blue-
shifting is observed between the horizons as the solution evolves and the time
between successive positive-norm outputs is equal to the time between visits
to the black hole horizon of the ray on which the negative-frequency packet
is centered (see Fig. 4).

Although the last output φ(5)
out in Fig. 6 seems to be somewhat larger than

φ
(2)
out there is no clear sign of an exponential increase in the size of the output

packets after this number of emissions. The analytic formulae for the evolution
show that about ten outputs would be required in this simulation before there
is a significant increase in their size, as we shall see in the next section.

Before we turn to an analytic treatment of the black hole laser and the
calculation of the particle production, we briefly mention the equally remark-
able results when the field φ is fermionic rather than bosonic [4]. The con-
served norm for a fermionic field is positive definite, so both positive- and
negative-frequency packets have positive norm. From this fact alone follows
the evolution of a positive-frequency fermionic wave packet. When the ini-
tial wave packet ploughs through the system as in Fig. 6 it is diminished in
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amplitude in order to conserve the total norm, since the negative-frequency
packet left behind also has positive norm. As subsequent positive-frequency
packets are emitted conservation of norm requires the amount of negative fre-
quency packet between the horizons to decrease rather than increase as in the
bosonic case. In the limit of infinite time the amount of negative frequency
packet goes to zero and therefore so does the number of particles produced –
there is complete suppression of the Hawking effect. This can be understood
as a filling up of all the allowed fermionic states between the horizons by the
Hawking particles created in this region [4].

4 Black Hole Amplifier

The Bogoliubov transformation that underlies particle creation by a black
hole is similar to that which describes the action of a parametric amplifier
or a phase-conjugating mirror in quantum optics [13, 14]. An optical device
will transform a set of incident quantum light modes, described by annihila-
tion operators {â1, . . . , ân} and their Hermitian conjugates {â†1, . . . , â†n}, into
outgoing modes, described by operators {â′1, . . . , â′n} and {â′†1 , . . . , â′

†
n }. If the

device is linear this transformation is given by the scattering matrix S:




â′1
...
â′n
â′†1
...
â′†n




= S




â1

...
ân

â†1
...
â†n




. (22)

The S-matrix is constrained by the requirement that the creation and anni-
hilation operators satisfy the usual commutation relations; this imposes the
quasi-unitarity condition

SGS† = G, G =
(
I 0
0 −I

)
. (23)

Matrices S satisfying (23) form the group U(n, n) [15]. An example of such a
matrix is

S =




cosh ξ 0 0 sinh ξ
0 cosh ξ sinh ξ 0
0 sinh ξ cosh ξ 0

sinh ξ 0 0 cosh ξ


 , (24)

which is the scattering matrix for a parametric amplifier or a phase-conjugating
mirror [13,14]. In this case there are two input and output modes and the de-
vice creates or annihilates pairs of photons. The energy for the pair production
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or the reservoir for pair annihilation is provided by the pump process of the
amplifier, which determines the parameter ξ. For a black hole we may define
ξ by

tanh ξ = e−πω/γ , (25)

where γ is the surface gravity at the horizon and ω is the frequency of the
quantum modes under consideration. Then (24) gives the Bogoliubov trans-
formation for the Hawking effect [9, 10], which we write concisely as

(
â′1
â′†2

)
=
(

cosh ξ sinh ξ
sinh ξ cosh ξ

)(
â1

â†2

)
. (26)

For a moving fluid, (25) and (26) describe phonon creation by a black hole
horizon, where γ denotes the slope of the velocity profile v(z) at the horizon.
A white hole horizon in the fluid, where the slope of v(z) is −α, is the time
reverse of a black hole horizon. The “surface gravity” is α and the roles of
input and output modes are reversed. Thus, defining a parameter ζ by

tanh ζ = e−πω/α (27)

the white hole horizon generates the Bogoliubov transformation
(
â′1
â′†2

)
=
(

cosh ζ − sinh ζ
− sinh ζ cosh ζ

)(
â1

â†2

)
. (28)

In the black hole laser the particle production by the pair of horizons is not
given by (26) and (28) because the horizons interact due to the superluminal
dispersion. We can represent the black hole laser as a quantum-optical device
by expressing the amplification process of Fig. 5 in terms of the annihilation
operators of the modes, and using a more convenient notation (see Fig. 7).
In the nth amplification step we have a pair of input modes â+n and â−n at
the white hole horizon that generates an output mode â′+n on the right-hand
side of the black hole laser as well as a mode â′−n that is trapped between the
horizons where it serves as a further input to the device, i.e.

â′−n = â−(n+1). (29)

The picture is that of a network of amplifiers, as outlined in Fig. 7.
The output of the black hole laser is completely specified by the matrix B

that effects the Bogoliubov transformation for each step in Fig. 7:
(
â′−n

â′†+n

)
= B

(
â−n

â†+n

)
. (30)

There are four distinct processes incorporated in the matrix B, allowing it to
be expressed as

B = B4B3B2B1 . (31)
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Fig. 7. The black hole laser as a network of amplifiers. The mode operators with
negative subscripts correspond to the Hawking radiation trapped between the hori-
zons, while those with positive subscripts describe the Hawking radiation present
outside the horizons. An input consisting of a mode on the left of the black hole
laser and a mode between the horizons produces an output mode on the right of
the black hole laser and another output mode between the horizons, as in Fig. 5.
The process repeats, with the output mode between the horizons acting as an input
mode for the next cycle, i.e. â′

−n = â−(n+1)

First there is the pair production by the white hole horizon, described by (28);
we therefore have

B1 =
(

cosh ζ − sinh ζ
− sinh ζ cosh ζ

)
. (32)

Next, the two modes produced by the white hole horizon propagate to the
black hole horizon, as in Fig. 5; this imparts separate phases θ− and θ+ to
each mode operator, so we write

B2 =
(
e−iθ− 0

0 eiθ+

)
. (33)

At the black hole horizon the modes are transformed according to (26), giving

B3 =
(

cosh ξ sinh ξ
sinh ξ cosh ξ

)
. (34)

Finally the mode trapped between the the horizons propagates to the white
hole horizon, acquiring a phase θ0:

B4 =
(
e−iθ0 0

0 1

)
. (35)

The particle content after m amplification steps is now easily calculated
from (30) and (29), using the value (31)–(35) forB. It is worthwhile to consider
the restrictions on the 2×2 matrix B resulting from the fact that it determines
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a U(2, 2) scattering matrix S (see (30) and (22)). Constructing S from B and
imposing (23) one finds that the components of B must satisfy

|B11|2−|B12|2 = 1 , |B21|2−|B22|2 = 1 , B∗
11B21−B∗

12B22 = 0 , (36)

which is the statement that B is a U(1, 1) matrix. The constraints (36) impose
the following structure on B:

B = eiψ

(
µ ν∗

ν µ∗

)
, ψ real , (37)

|µ|2 − |ν|2 = 1 . (38)

Using (30), (29) and (37) we find after m cycles that â′−m for the mode trapped
between the horizons and â′†+m for the mode outside the horizons are given by

â′−m = eimψµmâ−1 + ν∗
m∑

l=1

ei(m−l+1)ψµm−lâ†+l , (39)

â′
†

+m = eimψνµm−1â−1 + |ν|2
m−1∑
l=1

ei(m−l+1)ψµm−l−1â†+l + eiψµ∗â†+m . (40)

The condition that we have vacuum before the formation of the black hole
laser gives

â−1|0〉 = 0 , â+l|0〉 = 0 , l = 1, . . .m .

We may write the particle content for the two output modes in terms of |µ|2
because of (38). The particle number for the trapped mode after m cycles is

〈N̂−m〉 = 〈â′†−mâ
′
−m〉

= |ν|2
m∑

l=1

|µ|2(m−l) = |ν|2 |µ|
2m − 1

|µ|2 − 1

= |µ|2m − 1 , (41)

whereas the number of particles outside the horizons is

〈N̂+m〉 = 〈â′†+mâ
′
+m〉

= |ν|2|µ|2(m−1)

= |µ|2m
(
1− |µ|−2

)
. (42)

The explicit form of |µ|2 is found from (31)–(35) and (37) to be

|µ|2 =
1
2
[
1 + cosh(2ξ) cosh(2ζ)− cos(θ+ + θ−) sinh(2ξ) sinh(2ζ)

]
. (43)
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Note that the phase θ0 does not appear in (43) and thus has no effect on
the particle content; this is because θ0 is acquired by a mode traveling to the
white hole horizon where it interacts with a mode from outside the device,
and the latter has no phase sensitivity. The combination θ+ + θ−, however, is
the phase difference between the two modes that propagate across the device
from the white hole horizon and this affects how these modes interact at
the black hole horizon. We see from (41)–(43) that for frequencies such that
cos(θ+ + θ−) = 1 the particle production is maximally suppressed; indeed if
the horizons are symmetric (ξ = ζ) there is no production at this frequency.
On the other hand maximal amplification of the Hawking radiation occurs at
frequencies for which cos(θ+ + θ−) = 0, giving a WKB-type condition

θ+ + θ− = 2π
(
n+

1
2

)
, n an integer.

In Fig. 8 we use formula (42) to plot the particle number outside the
horizons as a function of the number of amplification cycles. The slopes of
v(z) at the horizons are those used for the numerical example in Sect. 3 and
the frequency chosen is that on which the incident pulse in Fig. 6 is centered.
A WKB approximation is used to estimate the phases θ+ and θ−. Figure 8
shows the consequence, in terms of Hawking radiation, of the wave-packet
evolution in Fig. 6. As discussed in Sect. 3, the stream of positive-frequency
pulses emerging from the black hole horizon in Fig. 6 implies a growth in
particle production, as in Fig. 8. The solution domain in Fig. 6 is only large
enough to contain the result of five amplification cycles. In this time the
positive-frequency pulses trailing φ

(1)
out are of approximately the same size;

this implies an approximately linear increase in the particle number, as is the
case in Fig. 8 with n ≤ 5. In order for the exponential nature of the increase
in particle number to be clearly seen in a wave-packet evolution, one would
require at least ten positive-frequency outputs in the evolution, as one sees
from Fig. 8.

In summary, the black hole laser is a dramatic quantum-vacuum effect
and provides an interesting example of the interplay of Hawking radiation

Fig. 8. The number of Hawking particles outside the horizons versus the number
of amplification cycles, as given by formula (42)
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and nonlinear dispersion. Any cosmological significance of this process re-
mains highly speculative [4], but in contrast a laboratory example of black
hole lasing is not nearly so far-fetched. Bose–Einstein condensates have the
properties required for the construction of a sonic black hole laser, however
formidable the practical difficulties may be, and this is not the only current
possibility [16]. As the study of black hole analogues continues the prospect
of exponentially amplified Hawking radiation is tantalizing for both theorists
and experimentalists.
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3. Unruh W.G., Schützhold R. (2005) Phys Rev D71:024028
4. Corley S., Jacobson T. (1999) Phys Rev D59:124011
5. Hawking S.W. (1975) Commun Math Phys 43:199
6. ’t Hooft G. (1995) Nucl Phys B256:727
7. Jacobson T. (1991) Phys Rev D44:1731
8. Unruh W.G. (1981) Phys Rev Lett 46:1351
9. Birrell N.D., Davies P.C.W. (1982) Quantum fields in curved space. Cambridge

Univeristy Press, Cambridge
10. Brout R., Masser S., Parentani R., Spindel Ph. (1995) Phys Rep 260:329
11. Dalfovo F., Giorgini S., Pitaevskii L.P., Stringari S. (1999) Rev Mod Phys 71:463
12. Pitaevskii L.P., Stringari S. (2003) Bose–Einstein condensation. Clarendon

Press, Oxford
13. Shen Y.R. (1984) The principles of nonlinear optics. Wiley, New York
14. Leonhardt U. (2003) Rep Prog Phys 66:1207
15. Cornwell J.F. (1984) Group theory in Physics. Volume 2. Academic Press, Lon-

don
16. Volovik G.E. (2005) JETP Lett 82:624



Cosmic Strings

M. Sakellariadou

Department of Physics, King’s College London, University of London, Strand
WC2R 2LS, United Kingdom
Mairi.Sakellariadou@kcl.ac.uk

Cosmic strings, a hot subject in the 1980’s and early 1990’s, lost its appeal
when it was found that it leads to inconsistencies in the power spectrum of the
measured cosmic microwave background temperature anisotropies. However,
topological defects in general, and cosmic strings in particular, are deeply
rooted in the framework of grand unified theories. Indeed, it was shown that
cosmic strings are expected to be generically formed within supersymmetric
grand unified theories. This theoretical support gave a new boost to the field
of cosmic strings, a boost which has been recently enhanced when it was
shown that cosmic superstrings (fundamental or one-dimensional Dirichlet
branes) can play the rôle of cosmic strings, in the framework of braneworld
cosmologies.

To build a cosmological scenario we employ high energy physics; inflation
and cosmic strings then naturally appear. Confronting the predictions of the
cosmological scenario against current astrophysical/cosmological data we im-
pose constraints on its free parameters, obtaining information about the high
energy physics we employed.

This is a beautiful example of the rich and fruitful interplay between cos-
mology and high energy physics.

1 Introduction

The basic ingredient in cosmology is general relativity and the choice of a
metric. The Friedmann-Lemâıtre-Robertson-Walker (FLRW) model, known
as the hot big bang model is a homogeneous and isotropic solution of Einstein’s
equations; the hyper-surfaces of constant time are homogeneous and isotropic,
i.e., spaces of constant curvature. The hot big bang model is based on the
FLRW metric

ds2 = dt2 − a2(t)γijdx
idxj = a2(τ)[dτ2 − γijdx

idxj ] ; (1)
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a(t) or a(τ) is the cosmic scale factor in terms of the cosmological time t or
the conformal time τ (with dt = adτ) respectively, and γij is the metric of a
space with constant curvature κ. The metric γij can be expressed as

γijdx
idxj = dr2 + χ2(r)

(
dϑ2 + sin2ϑdϕ2

)
, (2)

with χ(r) =



r for κ = 0
sin r for κ = 1
sinh r for κ = −1 ;

(3)

the scale factor a(τ) has been rescaled so that the curvature is κ = ±1 or 0.
The cornerstone of the hot big bang model is the high degree of symmetry

of the FLRW metric: there is only one dynamical variable, the cosmic scale
factor. The FLRW model is so successful that became the standard cosmolog-
ical model. The high degree of symmetry of the metric, originally a theorist’s
simplification, is now an evidence thanks to the remarkable uniformity of tem-
perature of the Cosmic Microwave Background (CMB) measured first by the
COBE-DMR satellite [1].

The four pillars upon which the success of standard hot big bang model lie
are: (i) the expansion of the Universe, (ii) the origin of the cosmic background
radiation, (iii) the synthesis of light elements, and (iv) the formation of large-
scale structures. However, there are questions, which mainly concern the initial
conditions, to which the hot big bang model is unable to provide an answer.
These shortcomings of the FLRW model are: (i) the horizon problem, (ii) the
flatness problem, (iii) the exotic relics, (iv) the origin of density fluctuations,
(v) the cosmological constant, and (vi) the singularity problem. To address
these issues, inflation was proposed [2, 3]. Inflation essentially consists of a
phase of accelerated expansion, corresponding to repulsive gravity and an
equation of state 3p < −ρ, which took place at a very high energy scale. Even
though inflation is at present the most appealing scenario to describe the early
stages of the Universe, the issue of how generic is the onset of inflation is still
under discussion [4–6], at least within a large class of inflationary potentials,
in the context of classical general relativity and loop quantum cosmology.

From the observational point of view, the remarkable uniformity of the
CMB indicates that at the epoch of last scattering, approximately 2× 105 yr
after the big bang, when the Universe was at a temperature of approximately
0.26 eV � 3 × 103 K, the Universe was to a high degree or precision (10−5)
isotropic and homogeneous. At very large scales, much bigger than 110Mpc ≈
1021 km, the Universe is smooth, while at small scales the Universe is very
lumpy. The fractional overdensity at the time of decoupling between baryons
and photons was(

δρ

ρ

)
dec

= C ×
(
δT

T

)
≤ O(10−2 − 10−3) ; (4)

the constant C depends on the nature of density perturbations and it is C =
O(10 − 100). Then one asks the following question: how does a very smooth
Universe at the time of decoupling became very lumpy today?
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In the 1980’s and 1990’s, cosmologists had the following picture in mind:
small, primeval density inhomogeneities grew via gravitational instability into
the large inhomogeneities we observe today. To address the question of the
origin of the initial density inhomogeneities, one needs to add more ingredients
(namely scalar fields) to the cosmological model. This is where high energy
physics enter the picture. Clearly, to build a detailed scenario of structure
formation one should know the initial conditions, i.e., the total amount of
nonrelativistic matter, the composition of the Universe, the spectrum and
type of primeval density perturbations.

For almost two decades, two families of models have been considered chal-
lengers for describing, within the framework of gravitational instability, the
formation of large-scale structure in the Universe. Initial density perturba-
tions can either be due to freezing in of quantum fluctuations of a scalar field
during an inflationary period, or they may be seeded by a class of topological
defects [7], which could have formed naturally during a symmetry breaking
phase transition in the early Universe. On the one hand, quantum fluctuations
amplified during inflation produce adiabatic, or curvature fluctuations with a
scale-invariant spectrum. It means that there are fluctuations in the local
value of the spatial curvature, and that the fractional overdensity in Fourier
space behaves as |δk|2 ∝ k−3. If the quantum fluctuations of the inflaton field
are in the vacuum state, then the statistics of the CMB is Gaussian [8,9]. On
the other hand, topological defects trigger isocurvature, or isothermal fluctua-
tions, meaning that there are fluctuations in the form of the local equation of
state, with nongaussian statistics and a scale-invariant spectrum. The CMB
anisotropies provide a link between theoretical predictions and observational
data, which may allow us to distinguish between inflationary models and topo-
logical defects scenarios, by purely linear analysis. The characteristics of the
CMB anisotropy multipole moments (position, amplitude of acoustic peaks),
and the statistical properties of the CMB are used to discriminate among
models, and to constrain the parameters space.

Many particle physics models of matter admit solutions which correspond
to a class of topological defects, that are either stable or long-lived. Provided
our understanding about unification of forces and the big bang cosmology
are correct, it is natural to expect that such topological defects could have
formed naturally during phase transitions followed by spontaneously broken
symmetries, in the early stages of the evolution of the Universe. Certain types
of topological defects (local monopoles and local domain walls) lead to disas-
trous consequences for cosmology and thus, they are undesired, while others
may play a useful rôle. We consider gauge theories, thus we are only inter-
ested in cosmic strings, since on the one hand strings are not cosmologically
dangerous (monopoles and domain walls are), and on the other hand they can
be useful in cosmology (textures decay too fast).

Cosmic strings are linear topological defects, analogous to flux tubes in
type-II superconductors, or to vortex filaments in superfluid helium. In the
framework of Grand Unified Theories (GUTs), cosmic strings might have been
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formed at a grand unification transition, or much later, at the electroweak
transition, or even at an intermediate one. These objects carry a lot of energy
and they could play a rôle in cosmology and/or astrophysics. In the simplest
case, the linear mass density of a cosmic string, denoted by µ, is equal to
the string tension. Thus, the characteristic speed of waves on the string is
the speed of light. For strings produced at a phase transition characterised by
temperature Tc, one expects roughly µ ∼ T 2

c . The strength of the gravitational
interaction of cosmic strings is given in terms of the dimensionless quantity
Gµ ∼ (Tc/MPl)2, where G and MPl denote the Newton’s constant and the
Planck mass, respectively. For grand unification strings, the energy per unit
length is µ ∼ 1022 kg/m, or equivalently, Gµ ∼ O(10−6 − 10−7).

Topological defects (global or local) in general, and cosmic strings in par-
ticular, are ruled out as the unique source of the measured CMB temperature
anisotropies. Clearly, one should then address the following question: which
are the implications for the high energy physics models upon which the cosmo-
logical scenario is based? This leads to the following list of questions: (i) how
generic is cosmic string formation? (ii) which is the rôle of cosmic strings, if
any? and (iii) which is a natural inflationary scenario (inflation is still a para-
digm in search of a model)? These questions will be addressed in what follows.
We will see that cosmic strings are generically formed at the end of an infla-
tionary era, within the framework of Supersymmetric Grand Unified Theories
(SUSY GUTs). This implies that cosmic strings have to be included as a sub-
dominant partner of inflation. We will thus consider mixed models, where both
the inflaton field and cosmic strings contribute to the measured CMB tem-
perature anisotropies. Comparing theoretical predictions against CMB data
we will find the maximum allowed contribution of cosmic strings to the CMB
measurements. We will then ask whether the free parameters of supersym-
metric inflationary models can be adjusted so that the contribution of strings
to the CMB is within the allowed window.

Finally, the recent proposal that cosmic superstrings can be considered
as cosmic string candidates opens new perspectives on the theoretical point
of view. More precisely, in the framework of large extra dimensions, long
superstrings may be stable and appear at the same energy scale as GUT scale
cosmic strings.

In what follows we first discuss, in Sect. 2, topological defects in GUTs.
We classify topological defects and we give the criterion for their formation.
We then briefly discuss two simple models leading to the formation of global
strings (vortices) and local (gauge) strings, namely the Goldstone and the
Abelian-Higgs model, respectively. Next, we present the Kibble and Zurek
mechanisms of topological defect formation. We concentrate on local gauge
strings (cosmic strings) and give the equations of motion for strings in the
limit of zero thickness, moving in a curved spacetime. We subsequently dis-
cuss the evolution of a cosmic string network; the results are based on heavy
numerical simulations. We then briefly present string statistical mechanics
and the Hagedorn phase transition. We end this Section by addressing the
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question of whether cosmic strings are expected to be generically formed af-
ter an inflationary era, in the context of supersymmetric GUTs. In Sect. 3
we discuss the most powerful tool to test cosmological predictions of theo-
retical models, namely the spectrum of CMB temperature anisotropies. We
then analyse the predictions of models where the initial fluctuations leading
to structure formation and the induced CMB anisotropies were triggered by
topological defects. In Sect. 4, we study inflationary models in the framework
of supersymmetry and supergravity. In Sect. 5, we address the issue of cos-
mic superstrings as cosmic strings candidates, in the context of braneworld
cosmologies. We round up with our conclusions in Sect. 6.

2 Topological Defects

2.1 Topological Defects in GUTs

The Universe has steadily cooled down since the Planck time, leading to a
series of Spontaneous Symmetry Breaking (SSB), which may lead to the cre-
ation of topological defects [7], false vacuum remnants, such as domain walls,
cosmic strings, monopoles, or textures, via the Kibble mechanism [10].

The formation or not of topological defects during phase transitions, fol-
lowed by SSB, and the determination of the type of the defects, depend on
the topology of the vacuum manifold Mn. The properties of Mn are usually
described by the kth homotopy group πk(Mn), which classifies distinct map-
pings from the k-dimensional sphere Sk into the manifold Mn. To illustrate
that, let us consider the symmetry breaking of a group G down to a subgroup
H of G. If Mn = G/H has disconnected components, or equivalently if the or-
der k of the nontrivial homotopy group is k = 0, then two-dimensional defects,
called domain walls, form. The spacetime dimension d of the defects is given
in terms of the order of the nontrivial homotopy group by d = 4−1−k. IfMn

is not simply connected, in other words if Mn contains loops which cannot
be continuously shrunk into a point, then cosmic strings form. A necessary,
but not sufficient, condition for the existence of stable strings is that the first
homotopy group (the fundamental group) π1(Mn) of Mn, is nontrivial, or
multiply connected. Cosmic strings are line-like defects, d = 2. If Mn con-
tains unshrinkable surfaces, then monopoles form, for which k = 1, d = 1. If
Mn contains noncontractible three-spheres, then event-like defects, textures,
form for which k = 3, d = 0.

Depending on whether the symmetry is local (gauged) or global (rigid),
topological defects are called local or global. The energy of local defects is
strongly confined, while the gradient energy of global defects is spread out
over the causal horizon at defect formation. Patterns of symmetry breaking
which lead to the formation of local monopoles or local domain walls are
ruled out, since they should soon dominate the energy density of the Universe
and close it, unless an inflationary era took place after their formation. Local



252 M. Sakellariadou

textures are insignificant in cosmology since their relative contribution to the
energy density of the Universe decreases rapidly with time [11].

Even if the nontrivial topology required for the existence of a defect is
absent in a field theory, it may still be possible to have defect-like solutions.
Defects may be embedded in such topologically trivial field theories [12]. While
stability of topological defects is guaranteed by topology, embedded defects
are in general unstable under small perturbations.

2.2 Spontaneous Symmetry Breaking

The concept of Spontaneous Symmetry Breaking has its origin in condensed
matter physics. In field theory, the rôle of the order parameter is played by
scalar fields, the Higgs fields. The symmetry is said to be spontaneously broken
if the ground state is characterised by a nonzero expectation value of the Higgs
field and does not exhibit the full symmetry of the Hamiltonian.

The Goldstone Model

To illustrate the idea of SSB we consider the simple Goldstone model. Let φ
be a complex scalar field with classical Lagrangian density

L = (∂µφ̄)(∂µφ)− V (φ) , (5)

and potential V (φ):

V (φ) =
1
4
λ[φ̄φ− η2]2 , (6)

with positive constants λ, η. This potential, Eq. (6), has the symmetry break-
ing Mexican hat shape. The Goldstone model is invariant under the U(1) group
of global phase transformations,

φ(x) → eiαφ(x) , (7)

where α is a constant, i.e., independent of spacetime. The minima of the
potential, Eq. (6), lie on a circle with fixed radius |φ| = η; the ground state
of the theory is characterised by a nonzero expectation value, given by

〈0|φ|0〉 = ηeiθ , (8)

where θ is an arbitrary phase. The phase transformation, Eq. (7), leads to the
change θ → θ + α, which implies that the vacuum state |0〉 is not invariant
under the phase transformation, Eq. (7); the symmetry is spontaneously bro-
ken. The state of unbroken symmetry with 〈0|φ|0〉 = 0 is a local maximum of
the Mexican hat potential, Eq. (6). All broken symmetry vacua, each with a
different value of the phase θ are equivalent. Therefore, if we select the vac-
uum with θ = 0, the complex scalar field φ can be written in terms of two
real scalar fields, φ1, φ2, with zero vacuum expectation values, as
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φ = η +
1√
2
(φ1 + iφ2) . (9)

As a consequence, the Lagrangian density, Eq. (5), can be written as

L =
1
2
(∂µφ1)2 +

1
2
(∂µφ2)2 −

1
2
λη2φ2

1 + Lint . (10)

The last term, Lint, is an interaction term which includes cubic and higher-
order terms in the real scalar fields φ1, φ2. Clearly, φ1 corresponds to a massive
particle, with mass

√
λη > 0, while φ2 corresponds to a massless scalar par-

ticle, the Goldstone boson. The appearance of Goldstone bosons is a generic
feature of models with spontaneously broken global symmetries.

Going around a closed path L in physical space, the phase θ of the Higgs
field φ develops a nontrivial winding, i.e., ∆θ = 2π. This closed path can be
shrunk continuously to a point, only if the field φ is lifted to the top of its
potential where it takes the value φ = 0. Within a closed path for which the
total change of the phase of the Higgs field φ is 2π, a string is trapped. A
string must be either a closed loop or an infinitely long (no ends) string, since
otherwise one could deform the closed path L and avoid to cross a string.

We should note that we considered above a purely classical potential,
Eq. (6), to determine the expectation value of the Higgs field φ. In a more re-
alistic case however, the Higgs field φ is a quantum field which interacts with
itself, as well as with other quantum fields. As a result the classical potential
V (φ) should be modified by radiative corrections, leading to an effective po-
tential Veff(φ). There are models for which the radiative corrections can be
neglected, while there are others for which they play an important rôle.

The Goldstone model is an example of a second-order phase transition
leading to the formation of global strings, vortices.

The Abelian-Higgs Model

We are interested in local (gauge) strings (cosmic strings), so let us consider
the simplest gauge theory with a spontaneously broken symmetry. This is the
Abelian-Higgs model with Lagrangian density

L = D̄µφDµφ− 1
4
FµνF

µν − V (φ) , (11)

where φ is a complex scalar field with potential V (φ), given by Eq. (6), and
Fµν = ∂µAν − ∂νAµ is the field strength tensor. The covariant derivative Dµ

is defined by Dµ = ∂µ − ieAµ, with e the gauge coupling constant and Aµ

the gauge field. The Abelian-Higgs model is invariant under the group U(1)
of local gauge transformations

φ(x) → eiα(x)φ(x) ; Aµ(x) → Aµ(x) +
1
e
∂µα(x) , (12)
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where α(x) is a real single-valued function.
The minima of the Mexican hat potential, Eq. (6), lie on a circle of fixed

radius |φ| = η, implying that the symmetry is spontaneously broken and the
complex scalar field φ acquires a nonzero vacuum expectation value. Following
the same approach as in the Goldstone model, we chose to represent φ as

φ = η +
φ1√

2
, (13)

leading to the Lagrangian density

L =
1
2
(∂µφ1)2 −

1
2
µ2φ2

1 −
1
4
FµνF

µν +
1
2
M2AµA

µ + Lint , (14)

where the particle spectrum contains a scalar particle (Higgs boson) with
mass ms =

√
λη and a vector field (gauge boson) with mass mv =

√
2eη. The

breaking of a gauge symmetry does not imply a massless Goldstone boson.
The Abelian-Higgs model is the simplest model which admits string solutions,
the Nielsen-Olesen vortex lines. The width of the string is determined by the
Compton wavelength of the Higgs and gauge bosons, which is ∼ m−1

s and
∼ m−1

v , respectively.
In the Lorentz gauge, ∂µA

µ = 0, the Higgs field φ has the same form as in
the case of a global string at large distances from the string core, i.e.,

φ ≈ ηeinθ , (15)

where the integer n denotes the string winding number. The gauge field as-
ymptotically approaches

Aµ ≈
1
ie
∂µ lnφ . (16)

The asymptotic forms for the Higgs and gauge fields, Eqs. (15) and (16)
respectively, imply that far from the string core, we have

Dµφ ≈ 0 , Fµν ≈ 0 . (17)

As a consequence, far from the string core, the energy density vanishes ex-
ponentially, while the total energy per unit length is finite. The string linear
mass density µ is

µ ∼ η2 . (18)

In the case of a global U(1) string there is no gauge field to compensate the
variation of the phase at large distances from the string core, resulting to a
linear mass density which diverges at long distances from the string. For a
global U(1) string with winding number n = 1 one obtains

µ ∼ η2 +
∫ R

δ

[
1
r

∂φ

∂θ

]2
2πrdr ≈ 2πη2 ln

(
R

δ

)
, (19)
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where δ stands for the width of the string core and R is a cut-off radius at
some large distance from the string, e.g. the curvature radius of the string, or
the distance to the nearest string segment in the case of a string network. The
logarithmic term in the expression for the string energy mass density per unit
length leads to long-range interactions between global U(1) string segments,
with a force ∼η2/R.

The field equations arising from the Lagrangian density, Eq. (11), read

(∂µ − ieAµ)(∂µ − ieAµ)φ+
λ

2
φ(φφ̄− η2) = 0

∂νF
µν − 2eIm

[
φ̄(∂ν − ieAν)φ

]
= 0 . (20)

The equations of motion can be easily solved for the case of straight, static
strings.

The internal structure of the string is meaningless when we deal with scales
much larger than the string width. Thus, for a straight string lying along the
z-axis, the effective energy-momentum tensor is

T̃µ
ν = µδ(x)δ(y)diag(1, 0, 0, 1) . (21)

2.3 Thermal Phase Transitions and Defect Formation

In analogy to condensed matter systems, a symmetry which is spontaneously
broken at low temperatures can be restored at higher temperatures. In field
theories, the expectation value of the Higgs field φ can be considered as a Bose
condensate of Higgs particles. If the temperature T is nonzero, one should
consider a thermal distribution of particles/antiparticles, in addition to the
condensate. The equilibrium value of the Higgs field φ is obtained by min-
imising the free energy F = E − TS. Only at high enough temperatures the
free energy is effectively temperature-dependent, while at low temperatures
the free energy is minimised by the ordered state of the minimum energy.

Let us consider for example the Goldstone model, for which the high-
temperature effective potential is

Veff(φ, T ) = m2(T )|φ|2 +
λ

4
|φ|4 where m2(T ) =

λ

12
(T 2 − 6η2) . (22)

The effective mass-squared term m2(T ) for the Higgs field φ in the symmetric
state 〈φ〉 = 0, vanishes at the critical temperature Tc =

√
6η. The effective

potential is calculated using perturbation theory and the leading contribution
comes from one-loop Feynman diagrams. For a scalar theory, the main effect is
a temperature-dependent quadratic contribution to the potential. Above the
critical temperature, m2(T ) is positive, implying that the effective potential
gets minimised at φ = 0, resulting to a symmetry restoration. Below the
critical temperature, m2(T ) is negative, implying that the Higgs field has a
nonvanishing expectation value.
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Even if there is symmetry restoration and the mean value 〈φ〉 of the Higgs
field vanishes, the actual value of the field φ fluctuates around the mean
value, meaning that φ at any given point is nonzero. The thermal fluctuations
have, to a leading approximation, a Gaussian distribution, thus they can be
characterised by a two-point correlation function, which typically decays ex-
ponentially, with a decay rate characterised by the correlation length ξ. The
consequence of this is that fluctuations at two points separated by a distance
greater than the correlation length ξ are independent.

Kibble [10] was first to estimate the initial density of topological defects
formed after a phase transition followed by SSB in the context of cosmology.
His criterion was based on the causality argument and the Ginzburg tempera-
ture, TG, defined as the temperature below which thermal fluctuations do not
contain enough energy for regions of the field on the scale of the correlation
length to overcome the potential energy barrier and restore the symmetry,

ξ3(TG)∆F (TG) ∼ TG ; (23)

∆F is the difference in free energy density between the false and true vacua.
According to the Kibble mechanism, the initial defect network is obtained

by the equilibrium correlation length of the Higgs field at the Ginzburg tem-
perature. Consequently, laboratory tests confirmed defect formation at the
end of a symmetry breaking phase transition, but they disagree with defect
density estimated by Kibble. More precisely, Zurek [13,14] argued that the the
relaxation time τ̄(T ), which is the time it takes correlations to establish on
the length scale ξ(T ), has an important rôle in determining the initial defect
density.

Let us describe the freeze-out proposal suggested by Zurek to estimate
the initial defect density. Above the critical temperature Tc, the field starts
off in thermal equilibrium with a heat bath. Near the phase transition, the
equilibrium correlation length diverges

ξ(T ) = ξ0

(
T − Tc

Tc

)−ν

, (24)

where ν denotes the critical component. At the same time, the dynamics of the
system becomes slower, and this can be expressed in terms of the equilibrium
relaxation timescale of the field, which also diverges, but with a different
exponent µ:

τ̄(T ) = τ̄0

(
T − Tc

Tc

)−µ

. (25)

The values of the critical components µ, ν depend on the theory under consid-
eration. Assuming, for simplicity, that the temperature is decreasing linearly,

T (t) =
(

1− t

τ̄Q

)
Tc , (26)

where the quench timescale τ̄Q characterises the cooling rate.
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As the temperature decreases towards its critical temperature Tc, the cor-
relation length ξ grows as

ξ(t) ∼
(
|t|
τ̄Q

)−ν

, (27)

but at the same time the dynamics of the system becomes slower,

τ̄(t) ∼
(
|t|
τ̄Q

)−µ

. (28)

As the system approaches from above the critical temperature, there comes a
time |t̂| during the quench when the equilibrium relaxation timescale equals
the time that is left before the transition at the critical temperature, namely

τ̄(t̂) = |t̂| . (29)

After this time, the system can no longer adjust fast enough to the change of
the temperature of the thermal bath, and falls out of equilibrium. At time t̂,
the dynamics of the correlation length freezes. The correlation length cannot
grow significantly after this time, and one can safely state that it freezes to its
value at time t̂. Thus, according to Zurek’s proposal the initial defect density
is determined by the freeze-out scale [13,14]

ξ̂ ≡ ξ(t̂) ∼ τ̄
ν/(1+µ)
Q . (30)

We note that the above discussion is in the framework of second-order phase
transitions.

The above prediction, Eq. (30), has been tested experimentally in a variety
of systems, as for example, in superfluid 4He [15, 16] and 3He [17, 18], and
in liquid crystals [19–21]. Apart the experimental support, the Kibble-Zurek
picture is supported by numerical simulations [22–24] and calculations using
the methods of nonequilibrium quantum field theory [25].

2.4 Cosmic String Dynamics

The world history of a string can be expressed by a two-dimensional surface
in the four-dimensional spacetime, which is called the string worldsheet:

xµ = xµ(ζa) , a = 0, 1 ; (31)

the worldsheet coordinates ζ0, ζ1 are arbitrary parameters chosen so that ζ0

is timelike and ζ1 spacelike (≡ σ).
The string equations of motion, in the limit of a zero thickness string, are

derived from the Goto-Nambu effective action which, up to an overall factor,
corresponds to the surface area swept out by the string in spacetime:
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S0[xµ] = −µ
∫ √

−γd2ζ , (32)

where γ is the determinant of the two-dimensional worldsheet metric γab,

γ = det(γab) =
1
2
εacεbdγabγcd , γab = gµνx

µ
,ax

ν
,b . (33)

If the string curvature is small but not negligible, one may consider an expan-
sion in powers of the curvature, leading to the following form for the string
action up to second order

S = −
∫
d2ζ
√
−γ(µ− β1K

AKA + β2R) , (34)

where β1, β2 are dimensionless numbers. The Ricci curvature scalar R is a
function of the extrinsic curvature tensor KA

ab (with A = 1, 2),

R = KabAKA
ab −KAKA ; (35)

KA = γabKA
ab. Finite corrections and their effects to the effective action have

been studied by a number of authors [26–29].
By varying the action, Eq. (32), with respect to xµ(ζa), and using the

relation dγ = γγabdγab, where γab is given by Eq. (33b), one gets the string
equations of motion:

xµ ;a
,a + Γµ

νσγ
abxν

,ax
σ
,b = 0 , (36)

where Γµ
νσ is the four-dimensional Christoffel symbol,

Γµ
νσ =

1
2
gµτ (gτν,σ + gτσ,ν − gνσ,τ ) , (37)

and the covariant Laplacian is

xµ ;a
,a =

1√−γ ∂a(
√
−γγabxµ

,b) . (38)

One can derive the same string equations of motion by using Polyakov’s form
of the action [30]

S[xµ, hab] = −µ
2

∫ √
−hhabγabd

2ζ , (39)

where hab is the internal metric with determinant h.
Including a force of friction Fµν due to the scattering of thermal particles

off the string, the equation of motion reads [31]

µ
[
xµ ;a

,a + Γµ
νσγ

abxν
,ax

σ
,b

]
= Fµ(uλ

⊥, T, σ) . (40)

The force of friction depends on the temperature of the surrounding matter
T , the velocity of the fluid transverse to the world sheet uν

⊥ ≡ uν−xν
,ax

σ,αuσ,
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and the type of interaction between the particles and the string, which we
represent by σ. Cosmic strings of mass per unit length µ would have formed
at cosmological time

t0 ∼ (Gµ)−1tPl , (41)

where tPl is the Planck time. Immediately after the phase transition the string
dynamics would be dominated by friction [31], until a time of order

t� ∼ (Gµ)−2tPl . (42)

For cosmic strings formed at the grand unification scale, their mass per unit
length is of order Gµ ∼ 10−6 and friction is important only for a very short
period of time. However, if strings have formed at a later phase transition, for
example closer to the electroweak scale, their dynamics would be dominated by
friction through most of the thermal history of the Universe. The evolution of
cosmic strings taking into account the frictional force due to the surrounding
radiation has been studied in Ref. [32].

The string energy-momentum tensor can be obtained by varying the ac-
tion, Eq. (32), with respect to the metric gµν ,

Tµν√−g = −2
δS

δgµν
= µ

∫
d2ζ
√
−γγabxµ

,ax
ν
,bδ

(4)(xσ − xσ(ζa)) . (43)

For a straight cosmic string in a flat spacetime lying along the z-axis and
choosing ζ0 = t, ζ1 = z, the above expression reduces to the one for the
effective energy-momentum tensor, Eq. (21).

Cosmic Strings in Curved Spacetime

The equations of motion for strings are most conveniently written in comoving
coordinates, where the FLRW metric takes the form

ds2 = a2(τ)[dτ2 − dr2] . (44)

The comoving spatial coordinates of the string, x(τ, σ), are written as a func-
tion of conformal time τ and the length parameter σ. We have thus chosen the
gauge condition ζ0 = τ . For a cosmic string moving in a FLRW Universe, the
equations of motion, Eq. (36), can be simplified by also choosing the gauge in
which the unphysical parallel components of the velocity vanish,

ẋ · x′ = 0 , (45)

where overdots denote derivatives with respect to conformal time τ and primes
denote spatial derivatives with respect to σ.

In these coordinates, the Goto-Nambu action yields the following equations
of motion for a string moving in a FLRW metric:
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ẍ + 2
(
ȧ

a

)
ẋ(1− ẋ2) =

(
1
ε

)(
x′

ε

)′
. (46)

The string energy per unit σ, in comoving units, is ε ≡
√

x′2/(1− ẋ2), im-
plying that the string energy is µa

∫
εdσ. Equation (46) leads to

ε̇

ε
= −2

ȧ

a
ẋ2 . (47)

One usually fixes entirely the gauge by choosing σ so that ε = 1 initially.

Cosmic Strings in Flat Spacetime

In flat spacetime spacetime, the string equations of motion take the form

∂a(
√
−γγabxµ

,b) = 0 . (48)

We impose the conformal gauge

ẋ · x′ = 0 , ẋ2 + x′2 = 0 , (49)

where overdots denote derivatives with respect to ζ0 and primes denote deriv-
atives with respect to ζ1. In this gauge the string equations of motion is just
a two-dimensional wave equation,

ẍ− x′′ = 0 . (50)

To fix entirely the gauge, we also impose

t ≡ x0 = ζ0 , (51)

which allows us to write the string trajectory as the three dimensional vector
x(σ, t), where ζ1 ≡ σ, the spacelike parameter along the string. This implies
that the constraint equations, Eq. (49), and the string equations of motion,
Eq. (50), become

ẋ · x′ = 0
ẋ2 + x′2 = 1
ẍ− x′′ = 0 . (52)

The above equations imply that the string moves perpendicularly to itself
with velocity ẋ, that σ is proportional to the string energy, and that the
string acceleration in the string rest frame is inversely proportional to the
local string curvature radius. A curved string segment tends to straighten
itself, resulting to string oscillations.

The general solution to the string equation of motion in flat spacetime,
Eq. (52c), is
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x =
1
2
[a(σ − t) + b(σ + t)] , (53)

where a(σ − t) and b(σ + t) are two continuous arbitrary functions which
satisfy

a′2 = b′2 = 1 . (54)

Thus, σ is the length parameter along the three-dimensional curves a(σ),b(σ).

Cosmic String Intercommutations

The Goto-Nambu action describes to a good approximation cosmic string
segments which are separated. However, it leaves unanswered the issue of what
happens when strings cross. Numerical simulations have shown that the ends
of strings exchange partners, intercommute, with probability equal to 1. These
results have been confirmed for global [33], local [34], and superconducting [35]
strings.

String-string and self-string intersections leading to the formation of new
long strings and loops are drawn in Fig. 1. Clearly string intercommutations
produce discontinuities in ẋ and x′ on the new string segments at the intersec-
tion point. These discontinuities, kinks, are composed of right- and left-moving
pieces travelling along the string at the speed of light.

2.5 Cosmic String Evolution

Early analytic work [37] identified the key property of scaling, where at least
the basic properties of the string network can be characterised by a single
length scale, roughly the persistence length or the interstring distance ξ, which
grows with the horizon. This result was supported by subsequent numerical
work [38]. However, further investigation revealed dynamical processes, in-
cluding loop production, at scales much smaller than ξ [39, 40].

The cosmic string network can be divided into long (infinite) strings and
small loops. The energy density of long strings in the scaling regime is given
by (in the radiation era)

ρL = κ̃µt−2 , (55)

where κ̃ is a numerical coefficient (κ̃ = 20 ± 10). The small loops, their size
distribution, and the mechanism of their formation remained for years the
least understood parts of the string evolution.

Assuming that the long strings are characterised by a single length scale
ξ(t), one gets

ξ(t) =
(
ρL

µ

)−1/2

= κ̃−1/2t . (56)

Thus, the typical distance between the nearest string segments and the typical
curvature radius of the strings are both of the order of ξ. Early numerical
simulations have shown that indeed the typical curvature radius of long strings
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Fig. 1. Illustration of string intersections: (a) string-string intersection in one point,
leading to the formation of two new long strings via exchange of partners; (b) string-
string intersections in two points, leading to the formation of two new long strings via
exchange of partners, and one closed loop; and (c) self-string intersections leading
to the formation of one long string and a closed string loop [36]

and the characteristic distance between the strings are both comparable to
the evolution time t. Clearly, these results agree with the picture of the scale-
invariant evolution of the string network and with the one-scale hypothesis.

However, the numerical simulations have also shown [40, 41] that small-
scale processes (such as the production of small closed loops) play an essential
rôle in the energy balance of long strings. The existence of an important
small scale in the problem was also indicated [40] by an analysis of the string
shapes. In response to these findings, a three-scale model was developed [42],
which describes the network in terms of three scales, namely the usual energy
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density scale ξ, a correlation length ξ̄ along the string, and a scale ζ relating
to local structure on the string. The small-scale structure (wiggliness), which
offers an explanation for the formation of the small sized loops, is basically
developed through intersections of long string segments. It seemed likely from
the three-scale model that ξ and ξ̄ would scale, with ζ growing slowly, if
at all, until gravitational radiation effects became important when ζ/ξ ≈
10−4 [43,44]. Thus, according to the three-scale model, the small length scale
may reach scaling only if one considers the gravitational back reaction effect.
Aspects of the three-scale model have been checked [45] evolving a cosmic
string network in Minkowski spacetime. However, it was found that loops
are produced with tiny sizes, which led the authors to suggest [45] that the
dominant mode of energy loss of a cosmic string network is particle production
and not gravitational radiation as the loops collapse almost immediately. One
can find in the literature studies which support [46] this finding, and others
which they do not [47,48].

Very recently, numerical simulations of cosmic string evolution in a FLRW
Universe (see, Fig. 2), found evidence [49] of a scaling regime for the cosmic
string loops in the radiation and matter dominated eras down to the hun-
dredth of the horizon time. It is important to note that the scaling was found
without considering any gravitational back reaction effect; it was just the re-
sult of string intercommuting mechanism. As it was reported in Ref. [49],
the scaling regime of string loops appears after a transient relaxation era,

Fig. 2. Snapshot of a network of long strings and closed loops in the matter era [49]
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driven by a transient overproduction of string loops with length close to the
initial correlation length of the string network. Calculating the amount of en-
ergy momentum tensor lost from the string network, it was found [49] that
a few percents of the total string energy density disappear in the very brief
process of formation of numerically unresolved string loops during the very
first timesteps of the string evolution. Subsequently, two other studies support
these findings [50], [51].

2.6 String Thermodynamics

It is one of the basic facts about string theory that the degeneracy of string
states increases exponentially with energy,

d(E) ∼ eβHE . (57)

A consequence of this is that there is a maximum temperature Tmax = 1/βH,
the Hagedorn temperature [52–54]. In the microcanonical ensemble the de-
scription of this situation is as follows: Consider a system of closed string
loops in a three-dimensional box. Intersecting strings intercommute, but oth-
erwise they do not interact and are described by the Goto-Nambu equations
of motion. The statistical properties of a system of strings in equilibrium are
characterised by only one parameter, the energy density of strings, ρ,

ρ =
E

L3
, (58)

where L denotes the size of the cubical box. The behaviour of the system
depends on whether it is at low or high energy densities, and it undergoes a
phase transition at a critical energy density, the Hagedorn energy density ρH.
Quantisation implies a lower cutoff for the size of the string loops, determined
by the string tension µ. The lower cutoff on the loop size is roughly µ−1/2,
implying that the mass of the smallest string loops is m0 ∼ µ1/2.

For a system of strings at the low energy density regime (ρ 
 ρH), all
strings are chopped down to the loops of the smallest size, while larger loops
are exponentially suppressed. Thus, for small enough energy densities, the
string equilibrium configuration is dominated by the massless modes in the
quantum description. The energy distribution of loops, given by the number
dn of loops with energies between E and E + dE per unit volume, is [53–55]

dn ∝ e−αEE−5/2dE (ρ
 ρH) , (59)

where α = (5/2m0) ln(ρH/ρ).
However, as we increase the energy density, more and more oscillatory

modes of strings get excited. In particular, if we reach a critical energy density,
ρH, then long oscillatory string states begin to appear in the equilibrium state.
The density at which this happens corresponds to the Hagedorn temperature.
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The Hagedorn energy density ρH, achieved when the separation between the
smallest string loops is of the order of their sizes, is ρc ∼ m4

0. At the Hagedorn
energy density the system undergoes a phase transition characterised by the
appearance of infinitely long strings.

At the high energy density regime (ρ � ρc), the energy distribution of
string loops is [53–55]

dn = Am
9/2
0 E−5/2dE (ρ� ρH) , (60)

where A is a numerical coefficient independent of m0 and of ρ. Equation (60)
implies that the mean-square radius R of the closed string loops is

R ∼ m
−3/2
0 E1/2 , (61)

meaning that large string loops are random walks of step ∼ m−1
0 . Equations

(60) and (61) imply
dn = A′R−4dR (ρ� ρH) , (62)

where A′ is a numerical constant. From Eq. (62) one concludes that the dis-
tribution of closed string loops is scale invariant, since it does not depend on
the cutoff parameter m0.

The total energy density in finite string loops is independent of ρ. Increas-
ing the energy density ρ of the system of strings, the extra energy E − EH,
where EH = ρHL

3, goes into the formation of infinitely long strings, implying

ρ− ρinf = const (ρ� ρH) , (63)

where ρinf denotes the energy density in infinitely long strings.
Clearly, the above analysis describes the behaviour of a system of strings of

low or high energy densities, while there is no analytic description of the phase
transition and of the intermediate densities around the critical one, ρ ∼ ρH.
An experimental approach to the problem has been proposed in Ref. [56] and
later extended in Ref. [57].

The equilibrium properties of a system of cosmic strings have been studied
numerically in Ref. [56]. The strings are moving in a three-dimensional flat
space and the initial string states are chosen to be a loop gas consisting of
the smallest two-point loops with randomly assigned positions and velocities.
This choice is made just because it offers an easily adjustable string energy
density. Clearly, the equilibrium state is independent of the initial state. The
simulations revealed a distinct change of behaviour at a critical energy density
ρH = 0.0172 ± 0.002. For ρ < ρH, there are no infinitely long strings, thus
their energy density, ρinf , is just zero. For ρ > ρH, the energy density in finite
strings is constant, equal to ρH, while the extra energy goes to the infinitely
long strings with energy density ρinf = ρ − ρH. Thus, Eqs. (60) and (63) are
valid for all ρ > ρH, although they were derived only in the limit ρ� ρH. At
the critical energy density, ρ = ρH, the system of strings is scale-invariant. At
bigger energy densities, ρ > ρH, the energy distribution of closed string loops
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at different values of ρ were found [56] to be identical within statistical errors,
and well defined by a line dn/dE ∝ E−5/2. Thus, for ρ > ρH, the distribution
of finite strings is still scale-invariant, but in addition the system includes the
infinitely long strings, which do not exhibit a scale-invariant distribution. The
number distribution for infinitely long strings goes as dn/dE ∝ 1/E, which
means that the total number of infinitely long strings is roughly log(E−EH).
So, typically the number of long strings grows very slowly with energy; for
ρ > ρH there are just a few infinitely long strings, which take up most of the
energy of the system.

The above numerical experiment has been extended [57] for strings moving
in a higher dimensional box. The Hagedorn energy density was found for
strings moving in boxes of dimensionality dB = 3, 4, 5 [57]:

ρH =




0.172± 0.002 for dB = 3
0.062± 0.001 for dB = 4
0.031± 0.001 for dB = 5

(64)

Moreover, the size distribution of closed finite string loops at the high energy
density regime was found to be independent of the particular value of ρ for a
given dimensionality of the box dB. The size distribution of finite closed string
loops was found [57] to be well defined by a line

dn

dE
∼ E−(1+dB/2) , (65)

where the space dimensionality dB was taken equal to 3, 4, or 5 . The statistical
errors indicated a slope equal to −(1+dB/2)±0.2. Above the Hagedorn energy
density the system is again characterised by a scale-invariant distribution
of finite closed string loops and a number of infinitely long strings with a
distribution which is not scale invariant.

2.7 Genericity of Cosmic Strings Formation within SUSY GUTs

The Standard Model (SM), even though it has been tested to a very high
precision, is incapable of explaining neutrino masses [58–60]. An extension of
the SM gauge group can be realised within Supersymmetry (SUSY). SUSY
offers a solution to the gauge hierarchy problem, while in the supersym-
metric extension of the standard model the gauge coupling constants of the
strong, weak and electromagnetic interactions meet at a single point, MGUT �
(2 − 3) × 1016 GeV. In addition, SUSY GUTs provide the scalar field which
could drive inflation, explain the matter-antimatter asymmetry of the Uni-
verse, and propose a candidate, the lightest superparticle, for cold dark mat-
ter. We will address the question of whether cosmic string formation is generic,
in the context of SUSY GUTs. Within SUSY GUTs there is a large number
of SSB patterns leading from a large gauge group G to the SM gauge group
GSM ≡ SU(3)C× SU(2)L×U(1)Y. The study of the homotopy group of the
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false vacuum for each SSB scheme determines whether there is defect forma-
tion and identifies the type of the formed defect. Clearly, if there is formation
of domain walls or monopoles, one will have to place an era of supersymmet-
ric hybrid inflation to dilute them. To consider a SSB scheme as a successful
one, it should be able to explain the matter/anti-matter asymmetry of the
Universe and to account for the proton lifetime measurements [58].

In what follows, we consider a mechanism of baryogenesis via leptogenesis,
which can be thermal or nonthermal one. In the case of nonthermal leptogen-
esis, U(1)B−L (B and L, are the baryon and lepton numbers, respectively) is
a sub-group of the GUT gauge group, GGUT, and B-L is broken at the end or
after inflation. If one considers a mechanism of thermal leptogenesis, B-L is
broken independently of inflation. If leptogenesis is thermal and B-L is broken
before the inflationary era, then one should check whether the temperature at
which B-L is broken – this temperature defines the mass of the right-handed
neutrinos – is smaller than the reheating temperature. To have a successful
inflationary cosmology, the reheating temperature should be lower than the
limit imposed by the gravitino. To ensure the stability of proton, the discrete
symmetry Z2, which is contained in U(1)B−L, must be kept unbroken down to
low energies. Thus, the successful SSB schemes should end at GSM×Z2. Tak-
ing all these considerations into account we will examine within all acceptable
SSB patterns, how often cosmic strings form at the end of the inflationary
era.

To proceed, one has to first choose the large gauge group GGUT. In Ref. [61]
this study has been done in detail for a large number of simple Lie groups.
Considering GUTs based on simple gauge groups, the type of supersymmetric
hybrid inflation will be of the F-type. The minimum rank of GGUT has to be
at least equal to 4, to contain the GSM as a subgroup. Then one has to study
the possible embeddings of GSM in GGUT so that there is an agreement with
the SM phenomenology and especially with the hypercharges of the known
particles. Moreover, the large gauge group GGUT must include a complex
representation, needed to describe the SM fermions, and it must be anomaly
free. In principle, SU(n) may not be anomaly free. We thus assume that
all SU(n) groups we consider have indeed a fermionic representation which
certifies that the model is anomaly free. We set as the upper bound on the
rank r of the group, r ≤ 8. Clearly, the choice of the maximum rank is in
principle arbitrary. This choice could, in a sense, be motivated by the Horava-
Witten [62] model, based on E8×E8. Concluding, the large gauge group GGUT

could be one of the following: SO(10), E6, SO(14), SU(8), SU(9); flipped SU(5)
and [SU(3)]3 are included within this list as subgroups of SO(10) and E6,
respectively.

A detailed study of all SSB schemes which bring us from GGUT down to the
SM gauge group GSM, by one or more intermediate steps, shows that cosmic
strings are generically formed at the end of hybrid inflation. If the large gauge
group GGUT is SO(10) then cosmic strings formation is unavoidable [61].
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The genericity of cosmic string formation for E6 depends whether one
considers thermal or nonthermal leptogenesis. More precisely, under the as-
sumption of nonthermal leptogenesis, cosmic string formation is unavoidable.
Considering thermal leptogenesis, cosmic strings formation at the end of hy-
brid inflation arises in 98% of the acceptable SSB schemes [63]. Finally, if
the requirement of having Z2 unbroken down to low energies is relaxed and
thermal leptogenesis is considered as the mechanism for baryogenesis, cosmic
string formation accompanies hybrid inflation in 80% of the SSB schemes.

The SSB schemes of SU(6) and SU(7) down to the GSM which could ac-
commodate an inflationary era with no defect (of any kind) at later times are
inconsistent with proton lifetime measurements. Minimal SU(6) and SU(7) do
not predict neutrino masses [61], implying that these models are incompatible
with high energy physics phenomenology.

Higher rank groups, namely SO(14), SU(8) and SU(9), should in general
lead to cosmic string formation at the end of hybrid inflation. In all these
schemes, cosmic string formation is sometimes accompanied by the formation
of embedded strings. The strings which form at the end of hybrid inflation
have a mass which is proportional to the inflationary scale.

3 Cosmic Microwave Background
Temperature Anisotropies

The CMB temperature anisotropies offer a powerful test for theoretical mod-
els aiming at describing the early Universe. The characteristics of the CMB
multipole moments can be used to discriminate among theoretical models and
to constrain the parameters space.

The spherical harmonic expansion of the CMB temperature anisotropies,
as a function of angular position, is given by

δT

T
(n) =

∑
�m

a�mW�Y�m(n) with a�m =
∫

dΩn
δT

T
(n)Y ∗

�m(n) ; (66)

W� stands for the !-dependent window function of the particular experiment.
The angular power spectrum of CMB temperature anisotropies is expressed
in terms of the dimensionless coefficients C�, which appear in the expansion
of the angular correlation function in terms of the Legendre polynomials P�:〈

0
∣∣∣∣δTT (n)

δT

T
(n′)

∣∣∣∣0
〉 ∣∣∣ (n·n′=cos ϑ)

=
1
4π

∑
�

(2!+ 1)C�P�(cosϑ)W2
� , (67)

where we have used the addition theorem of spherical harmonics, i.e.,

�∑
m=−�

Y�m(n)Y �
�m(n′) =

2!+ 1
4π

P�(n · n′) . (68)
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It compares points in the sky separated by an angle ϑ. Here, the brackets
denote spatial average, or expectation values if perturbations are quantised.
Equation (67) holds only if the initial state for cosmological perturbations of
quantum-mechanical origin is the vacuum [8,9]. The value of C� is determined
by fluctuations on angular scales of the order of π/!. The angular power
spectrum of anisotropies observed today is usually given by the power per
logarithmic interval in !, plotting !(!+ 1)C� versus !.

To find the power spectrum induced by topological defects, one has to
solve, in Fourier space for each given wave vector k a system of linear pertur-
bation equations with random sources:

DX = S , (69)

where D denotes a time dependent linear differential operator, X is a vector
which contains the various matter perturbation variables, and S is the random
source term, consisting of linear combinations of the energy momentum tensor
of the defect. For given initial conditions, Eq. (69) can be solved by means of
a Green’s function, G(τ, τ ′), in the form

Xj(τ0,k) =
∫ τ0

τin

dτGjm(τ0, τ,k)Sm(τ,k) . (70)

To compute power spectra or, more generally, quadratic expectation values of
the form 〈Xj(τ0,k)X∗

m(τ0,k′)〉, one has to calculate

〈Xj(τ0,k)X�
l (τ0,k′)〉

=
∫ τ0

τin

dτGjm(τ,k)
∫ τ0

τin

dτ ′G�
ln(τ ′,k′)× 〈Sm(τ,k)S�

n(τ ′,k′)〉 . (71)

Thus, to compute power spectra, one should know the unequal time two-point
correlators 〈Sm(τ,k)S�

n(τ ′,k′)〉 in Fourier space [64]. This object is calculated
by means of heavy numerical simulations.

The CMB temperature anisotropies provide a powerful tool to discrimi-
nate among inflation and topological defects. On large angular scales (! � 50),
both families of models lead to approximately scale-invariant spectra, with
however a different prediction regarding the statistics of the induced perturba-
tions. Provided the quantum fields are initially placed in the vacuum, inflation
predicts generically Gaussian fluctuations, whereas in the case of topological
defect models, the induced perturbations are clearly nongaussian, at least at
sufficiently high angular resolution. This is an interesting fingerprint, even
though difficult to test through the data. In the context of inflation, nongaus-
sianity can however also be present, as for example in the case of stochastic
inflation [65], or in a class of inflationary models involving two scalar fields
leading to nongaussian isothermal fluctuations with a blue spectrum [66]. In
addition, allowing nonvacuum initial states for the cosmological perturbations
of quantum-mechanical origin, one generically obtains a non-Gaussian spec-
trum [8,9], in the context of single-field inflation.
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On intermediate and small angular scales however, the predictions of in-
flation are quite different than those of topological defect models, due to the
different nature of the induced perturbations. On the one hand, the inflation-
ary fluctuations are coherent, in the sense that the perturbations are initially
at the same phase and subsequently evolve linearly and independently of each
other. The subsequent progressive phase shift between different modes pro-
duces the acoustic peak structure. On the other hand, in topological defect
models, fluctuations are constantly induced by the sources (defects). Since
topological defects evolve in a nonlinear manner, and since the random initial
conditions of the source term in the perturbation equations of a given scale
leaks into other scales, perfect coherence is destroyed. The predictions of the
defects models regarding the characteristics of the CMB spectrum are:

• Global O(4) textures lead to a position of the first acoustic peak at ! � 350
with an amplitude ∼1.5 times higher than the Sachs-Wolfe plateau [67].

• Global O(N) textures in the large N limit lead to a quite flat spectrum,
with a slow decay after ! ∼ 100 [68]. Similar are the predictions of other
global O(N) defects [69,70].

• Local cosmic strings simulations [71] found a broad peak at ! ≈ 150−400,
being produced from both vector and scalar modes, which peaks at ! ≈ 180
and ! ≈ 400 respcetively.

The position and amplitude of the acoustic peaks, as found by the CMB
measurements [72–75], are in disagreement with the predictions of topological
defect models. As a consequence, CMB measurements rule out pure topolog-
ical defect models as the origin of initial density perturbations leading to the
observed structure formation.

3.1 Mixed Models

Since cosmic strings are expected to be generically formed in the context
of SUSY GUTs, one should consider mixed perturbation models where the
dominant rôle is played by the inflaton field but cosmic strings have also a
contribution, small but not negligible. Restricting ourselves to the angular
power spectrum, we can remain in the linear regime. In this case,

C� = αCI
� + (1− α)CS

� , (72)

where CI
� and CS

� denote the (COBE normalized) Legendre coefficients due
to adiabatic inflaton fluctuations and those stemming from the cosmic string
network, respectively. The coefficient α in Eq. (72) is a free parameter giving
the relative amplitude for the two contributions. Comparing the C�, calculated
using Eq. (72) – where CI

� is taken from a generic inflationary model and CS
�

from numerical simulations of cosmic string networks – with data obtained
from the most recent CMB measurements, one gets that a cosmic string con-
tribution to the primordial fluctuations higher than 14% is excluded up to
95% confidence level [76–78] (see, Fig. 3).
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Fig. 3. �(� + 1)C� versus � for three different models. The string contribution turns
out to be ∼18% of the total [76]

In what follows, we follow a conservative approach and do not allow cosmic
strings to contribute more than 10% to the CMB temperature anisotropies.

3.2 Supersymmetric Hybrid Inflation

Inflation offers simple answers to the shortcomings of the standard hot big
bang model. In addition, simple inflationary models offer successful candidates
for the initial density fluctuations leading to the observed structure formation.

One crucial question though is to answer how generic is the onset of in-
flation [4–6] and to find consistent and natural models of inflation from the
point of view of particle physics. Even though one can argue that the initial
conditions which favor inflationary models are the likely outcome of the quan-
tum era before inflation [4], one should then show that inflation will last long
enough to solve the shortcomings of the standard hot big bang model [5, 6].
In addition, to find natural ways to guarantee the flatness of the inflaton po-
tential remains a difficult task. Inflation is, unfortunately, still a paradigm in
search of a model. It is thus crucial to identify successful but natural infla-
tionary models motivated from high energy physics.

In what follows we discuss two well-studied inflationary models in the
framework of supersymmetry, namely F/D-term inflation. Our aim is to check
the compatibility of these models – here cosmic string inflation is generic –
with the CMB and gravitino constraints.
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F-term Inflation

F-term inflation can be naturally accommodated in the framework of GUTs,
when a GUT gauge group GGUT is broken down to the GSM at an energy
MGUT, according to the scheme

GGUT
MGUT−−−→ H1

9−→Minfl1Φ+Φ−H2−→GSM ; (73)

Φ+, Φ− is a pair of GUT Higgs superfields in nontrivial complex conjugate
representations, which lower the rank of the group by one unit when acquiring
nonzero vacuum expectation value. The inflationary phase takes place at the
beginning of the symmetry breaking H1

Minfl−→ H2.
F-term inflation is based on the globally supersymmetric renormalisable

superpotential
WF

infl = κS(Φ+Φ− −M2) , (74)

where S is a GUT gauge singlet left handed superfield, Φ+ and Φ− are de-
fined above; κ and M are two constants (M has dimensions of mass) which
can be taken positive with field redefinition. The chiral superfields S,Φ+, Φ−
are taken to have canonical kinetic terms. This superpotential is the most
general one consistent with an R-symmetry under which W → eiβW ,Φ− →
e−iβΦ− , Φ+ → eiβΦ+, and S → eiβS. An R-symmetry can ensure that the
rest of the renormalisable terms are either absent or irrelevant.

The scalar potential reads

V (φ+, φ−, S) = |FΦ+ |2 + |FΦ− |2 + |FS |2 +
1
2

∑
a

g2
aD

2
a . (75)

The F-term is such that FΦi
≡ |∂W/∂Φi|θ=0, where we take the scalar com-

ponent of the superfields once we differentiate with respect to Φi = Φ+, Φ−, S.
The D-terms are

Da = φ̄i (Ta)i
j φ

j + ξa , (76)

with a the label of the gauge group generators Ta, ga the gauge coupling,
and ξa the Fayet-Iliopoulos term. By definition, in the F-term inflation the
real constant ξa is zero; it can only be nonzero if Ta generates an extra U(1)
group. In the context of F-term hybrid inflation, the F-terms give rise to the
inflationary potential energy density, while the D-terms are flat along the
inflationary trajectory, thus one may neglect them during inflation.

The potential has one valley of local minima, V = κ2M4, for S > M
with φ+ = φ− = 0, and one global supersymmetric minimum, V = 0, at
S = 0 and φ+ = φ− = M . Imposing initially S �M , the fields quickly settle
down the valley of local minima. Since in the slow roll inflationary valley, the
ground state of the scalar potential is nonzero, SUSY is broken. In the tree
level, along the inflationary valley the potential is constant, therefore perfectly
flat. A slope along the potential can be generated by including the one-loop
radiative corrections. Thus, the scalar potential gets a little tilt which helps
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the inflaton field S to slowly roll down the valley of minima. The one-loop
radiative corrections to the scalar potential along the inflationary valley, lead
to an effective potential [79–82]

V F
eff(|S|) = κ2M4

{
1 +

κ2N
32π2

[
2 ln

|S|2κ2

Λ2

+
(
|S|2
M2

+ 1
)2

ln
(

1 +
M2

|S|2
)

+
(
|S|2
M2

− 1
)2

ln
(

1− M2

|S|2
)]}

(77)

where Λ is a renormalisation scale and N stands for the dimensionality of the
representation to which the complex scalar components φ+, φ− of the chiral
superfields Φ+, Φ− belong. For example, N = 27,126,351, correspond to
realistic SSB schemes in SO(10), or E6 models.

Considering only large angular scales, i.e., taking only the Sachs-Wolfe
contribution, one can get the contributions to the CMB temperature anisotro-
pies analytically. The quadrupole anisotropy has one contribution coming from
the inflaton field, splitted into scalar and tensor modes, and one contribution
coming from the cosmic string network, given by numerical simulations [83].
The inflaton field contribution is

(
δT

T

)
Q−infl

=
[(

δT

T

)2

Q−scal

+
(
δT

T

)2

Q−tens

]1/2

, (78)

where the quadrupole anisotropy due to the scalar and tensor Sachs-Wolfe
effect is

(
δT

T

)
Q−scal

=
1

4
√

45π
V 3/2(ϕQ)
M3

PlV
′(ϕQ)(

δT

T

)
Q−tens

∼ 0.77
8π

V 1/2(ϕQ)
M2

Pl

, (79)

respectively, with V ′ ≡ dV (ϕ)/dϕ, MPl the reduced Planck mass, MPl =
(8πG)−1/2 � 2.43× 1018GeV, and ϕQ the value of the inflaton field when the
comoving scale corresponds to the quadrupole anisotropy became bigger than
the Hubble radius. It can be calculated using Eqs. (77)–(79).

Fixing the number of e-foldings to 60, the inflaton and cosmic string con-
tribution to the CMB, for a given gauge group GGUT, depend on the su-
perpotential coupling κ, or equivalently on the symmetry breaking scale M
associated with the inflaton mass scale, which coincides with the string mass
scale. The relation between κ and M is

M

MPl
=

√
NQN κ

2π yQ
, (80)

where
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Fig. 4. Contribution of cosmic strings to the quadrupole anisotropy as a function of
the superpotential coupling κ. The three curves correspond to N = 27 (curve with
broken line), N = 126 (full line) and N = 351 (curve with lines and dots) [82]

y2
Q =

∫ |SQ|2

M2

1

dz
[
z
{
(z + 1) ln(1 + z−1) + (z − 1) ln(1− z−1)

}]
. (81)

The total quadrupole anisotropy has to be normalised to the COBE data.
A detailed study has been performed in Ref. [82]. It was shown that the

cosmic string contribution is consistent with the CMB measurements, pro-
vided [82]

M <∼ 2× 1015GeV ⇔ κ <∼ 7× 10−7 . (82)

In Fig. 4, one can see the contribution of cosmic strings to the quadrupole
anisotropy as a function of the superpotential coupling κ [82]. The three curves
correspond to N = 27 (curve with broken line), N = 126 (full line) and
N = 351 (curve with lines and dots).

The constraint on κ given in Eq. (82) is in agreement with the one found
in Ref. [84]. Strictly speaking the above condition was found in the context
of SO(10) gauge group, but the conditions imposed in the context of other
gauge groups are of the same order of magnitude since M is a slowly varying
function of the dimensionality N of the representations to which the scalar
components of the chiral Higgs superfields belong.

The superpotential coupling κ is also subject to the gravitino constraint
which imposes an upper limit to the reheating temperature, to avoid gravitino
overproduction. The reheating temperature TRH characterises the reheating
process via which the Universe enters the high entropy radiation dominated
phase at the end of the inflationary era. Within the minimal supersymmetric
standard model and assuming a see-saw mechanism to give rise to massive
neutrinos, the reheating temperature is [82]

TRH ≈
(8π)1/4

7
(ΓMPl)1/2 , (83)
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where Γ is the decay width of the oscillating inflaton and Higgs fields into
right-handed neutrinos

Γ =
1
8π

(
Mi

M

)2

minfl ; (84)

with minfl =
√

2κM the inflaton mass and Mi the right-handed neutrino mass
eigenvalue with Mi < minfl/2. Equations (80), (83), (84) lead to

TRH ∼
1
12

(
60
NQ

)1/4( 1
N

)1/4

y
1/2
Q Mi . (85)

In order to have successful reheating, it is important not to create too many
gravitinos, which imply the following constraint on the reheating tempera-
ture [85] TRH ≤ 109 GeV. Since the two heaviest neutrinos are expected to
have masses of the order of M3 � 1015 GeV and M2 � 2.5 × 1012 GeV re-
spectively [86], Mi is identified with M1 ∼ 6 × 109 GeV [86]. The gravitino
constraint on κ reads [82] κ <∼ 8× 10−3, which is clearly a weaker constraint
than the one imposed from the CMB data.

Concluding, F-term inflation leads generically to cosmic string formation
at the end of the inflationary era. The cosmic strings formed are of the GUT
scale. This class of models can be compatible with CMB measurements, pro-
vided the superpotential coupling is smaller1 than 10−6. This tuning of the
free parameter κ can be softened if one allows for the curvaton mechanism.

According to the curvaton mechanism [88, 89], another scalar field, called
the curvaton, could generate the initial density perturbations whereas the
inflaton field is only responsible for the dynamics of the Universe. The cur-
vaton is a scalar field, that is sub-dominant during the inflationary era as
well as at the beginning of the radiation dominated era which follows the in-
flationary phase. There is no correlation between the primordial fluctuations
of the inflaton and curvaton fields. Clearly, within supersymmetric theories
such scalar fields are expected to exist. In addition, embedded strings, if they
accompany the formation of cosmic strings, they may offer a natural curvaton
candidate, provided the decay product of embedded strings gives rise to a
scalar field before the onset of inflation. Considering the curvaton scenario,
the coupling κ is only constrained by the gravitino limit. More precisely, as-
suming the existence of a curvaton field, there is an additional contribution to
the temperature anisotropies. The WMAP CMB measurements impose [82]
the following limit on the initial value of the curvaton field

ψinit <∼ 5× 1013
( κ

10−2

)
GeV , (86)

provided the parameter κ is in the range [10−6, 1] (see, Fig. 5).
1 The linear mass density µ gets a correction due to deviations from the Bogo-

mol’nyi limit, which may enlare [87] the parameter space for F-term inflation.
Note that this does not hold for D-term inflation, since then strings are BPS
(Bogomol’nyi-Prasad-Sommerfield) states.
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Fig. 5. The cosmic strings (dark gray), curvaton (light gray) and inflaton (gray)
contributions to the CMB temperature anisotropies as a function of the the initial
value of the curvaton field ψinit, and the superpotential coupling κ, for N = 126 [82]

The above results hold also if one includes supergravity corrections. This
is expected since the value of the inflaton field is several orders of magnitude
below the Planck scale.

D-term Inflation

The early history of the Universe at energies below the Planck scale is de-
scribed by an effective N= 1 supergravity (SUGRA) theory. Inflation should
have taken place at an energy scale V 1/4 � 4 × 1016 GeV, implying that
inflationary models should be constructed in the framework of SUGRA.

However, it is difficult to implement slow-roll inflation within SUGRA.
The positive false vacuum of the inflaton field breaks spontaneously global
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supersymmetry, which gets restored after the end of inflation. In supergravity
theories, the supersymmetry breaking is transmitted to all fields by gravity,
and thus any scalar field, including the inflaton, gets an effective mass of the
order of the the expansion rate H during inflation.

This problem, known as the problem of Hubble-induced mass, originates
from F-term interactions – note that it is absent in the model we have de-
scribed in the previous subsection – and thus it is resolved if one considers
the vacuum energy as being dominated by non-zero D-terms of some super-
fields [90,91]. This result led to a dramatic interest in D-term inflation, since
in addition, it can be easily implemented within string theory.

D-term inflation is derived from the superpotential

WD
infl = λSΦ+Φ− ; (87)

S,Φ−, Φ+ are three chiral superfields and λ is the superpotential coupling.
D-term inflation requires the existence of a nonzero Fayet-Iliopoulos term
ξ, which can be added to the Lagrangian only in the presence of an extra
U(1) gauge symmetry, under which, the three chiral superfields have charges
QS = 0, QΦ+ = +1, and QΦ− = −1. This extra U(1) gauge symmetry can
be of a different origin; hereafter we consider a nonanomalous U(1) gauge
symmetry. Thus, D-term inflation requires a scheme, like

GGUT ×U(1) MGUT−−−→ H×U(1) 9−→Mnfl1Φ+Φ−H → GSM . (88)

The symmetry breaking at the end of the inflationary phase implies that
cosmic strings are always formed at the end of D-term hybrid inflation. To
avoid cosmic strings, several mechanisms have been proposed which either
consider more complicated models or require additional ingredients. For ex-
ample, one can add a nonrenormalisable term in the potential [92], or add
an additional discrete symmetry [93], or consider GUT models based on non-
simple groups [94], or introduce a new pair of charged superfields [95] so that
cosmic string formation is avoided at the end of D-term inflation. In what fol-
lows, we show that standard D-term inflation followed unavoidably by cosmic
string production is compatible with CMB data, because the cosmic string
contribution to the CMB data is not constant nor dominant. Thus, one does
not have to invoke some new physics.

In the global supersymmetric limit, Eqs. (75), (87) lead to the following
expression for the scalar potential

V D(φ+, φ−, S) = λ2
[
|S|2(|φ+|2 + |φ−|2) + |φ+φ−|2

]
+
g2

2
(|φ+|2−|φ−|2+ξ)2 ,

(89)
where g is the gauge coupling of the U(1) symmetry and ξ is a Fayet-Iliopoulos
term, chosen to be positive.

In D-term inflation, as opposed to F-term inflation, the inflaton mass ac-
quires values of the order of Planck mass, and therefore, the correct analysis
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must be done in the framework of SUGRA. The SSB of SUSY in the infla-
tionary valley introduces a splitting in the masses of the components of the
chiral superfields Φ±. As a result, we obtain [96] two scalars with squared
masses m2

± = λ2|S|2 exp
(
|S|2/M2

Pl

)
± g2ξ and a Dirac fermion with squared

mass m2
f = λ2|S|2 exp

(
|S|2/M2

Pl

)
. Calculating the radiative corrections, the

effective scalar potential for minimal supergravity reads [82,96]

Veff =
g2ξ2

2

{
1 +

g2

16π2
×
[
2 ln

|S|2λ2

Λ2
e

|S|2

M2
Pl

+
(
λ2|S|2
g2ξ

e
|S|2

M2
Pl + 1

)2

ln
(

1 +
g2ξ

λ2|S|2 e
− |S|2

M2
Pl

)

+
(
λ2|S|2
g2ξ

e
|S|2

M2
Pl − 1

)2

ln
(

1− g2ξ

λ2|S|2 e
− |S|2

M2
Pl

)]}
(90)

As it was explicitely shown in Refs. [82,96], D-term inflation can be com-
patible with current CMB measurements; the cosmic strings contribution to
the CMB is model-dependent. The results obtained in Refs. [82, 96] can be
summarised as follows: (i) g >∼ 2× 10−2 is incompatible with the allowed cos-
mic string contribution to the WMAP measurements; (ii) for g <∼ 2×10−2 the
constraint on the superpotential coupling λ reads λ <∼ 3× 10−5; (iii) SUGRA
corrections impose in addition a lower limit to λ; (iv) the constraints induced
on the couplings by the CMB measurements can be expressed as a single con-
straint on the Fayet-Iliopoulos term ξ, namely

√
ξ <∼ 2× 1015 GeV. They are

shown in Fig. 6.
Assuming the existence of a curvaton field, the fine tuning on the couplings

can be avoided provided [82,96]
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Fig. 6. Cosmic string contribution to the CMB temperature anisotropies as a func-
tion of the superpotential coupling λ for different values of the gauge coupling g.
The maximal contribution allowed by WMAP is represented by a dotted line [82,96]
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Fig. 7. The cosmic strings (dark gray), curvaton (light gray) and inflaton (gray)
contributions to the CMB temperature anisotropies as a function of the initial value
of the curvaton field ψinit, for λ = 10−1 and g = 10−1 [96]

ψinit <∼ 3× 1014
( g

10−2

)
GeV for λ ∈ [10−1, 10−4] . (91)

Clearly, for smaller values of λ, the curvaton mechanism is not necessary. We
show in Fig. 7 the three contributions as a function of ψinit, for λ = 10−1

and g = 10−1. There are values of ψinit which allow bigger values of the
superpotential coupling λ and of the gauge coupling g, than the upper bounds
obtained in the absence of a curvaton field.

Concluding, standard D-term inflation always leads to cosmic string for-
mation at the end of the inflationary era; these cosmic strings are of the
grand unification scale. This class of models is still compatible with CMB
measurements, provided the couplings are small enough. As in the case of
F-term inflation the fine tuning of the couplings can be softened provided one
considers the curvaton mechanism.

The above conclusions are still valid in the revised version of D-term in-
flation, in the framework of SUGRA with constant Fayet-Iliopoulos terms. In
the context of N =1, 3 + 1 SUGRA, the presence of constant Fayet-Iliopoulos
terms shows up in covariant derivatives of all fermions. In addition, since
the relevant local U(1) symmetry is a gauged R-symmetry [97], the constant
Fayet-Iliopoulos terms also show up in the supersymmetry transformation
laws. In Ref. [98] there were presented all corrections of order gξ/M2

Pl to the
classical SUGRA action required by local supersymmetry. Under U(1) gauge
transformations in the directions in which there are constant Fayet-Iliopoulos
terms ξ, the superpotential must transform as [97]

δW = −i gξ
M2

Pl

W , (92)
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otherwise the constant Fayet-Iliopoulos term ξ vanishes. This requirement is
consistent with the fact that in the gauge theory at MPl →∞ the potential is
U(1) invariant. To promote the simple SUSY D-term inflation model, Eq. (87),
to SUGRA with constant Fayet-Iliopoulos terms, one has to change the charge
assignments for the chiral superfields, so that the superpotential transforms
under local R-symmetry [98]. In SUSY, the D-term potential is neutral under
U(1) symmetry, while in SUGRA the total charge of Φ± fields does not vanish
but is equal to −ξ/M2

Pl. More precisely, the D-term contribution to the scalar
potential V [see Eq. (89)], should be replaced by (g2/2)(q+|φ+|2+q−|φ−|2+ξ)2
where

q± = ±1− ρ±
ξ

M2
Pl

with ρ+ + ρ− = 1 . (93)

In addition, the squared masses of the scalar components φ± become

m2
± = λ2|S|2 exp

(
|S|2/M2

Pl

)
± g2ξq± ; (94)

the Dirac fermion mass remains unchanged.
For the limits we imposed on the Fayet-Iliopoulos term ξ, the correction

ξ/M2
Pl is ∼ 10−6, implying that the constraints we obtained on g and λ, or

equivalently on
√
ξ, as well as the constraint on ψinit still hold in the revised

version of D-term inflation within SUGRA [63].
It is important to generalise the above study in the case of nonminimal

SUGRA [99], in order to know whether qualitatively the above picture remains
valid. A recent study [99] has shown that non-minimal Kähler potential do
not avoid the fine tuning, since the cosmic string contribution remains domi-
nant unless the couplings and mass scales are small. For example, taking into
account higher order corrections in the Kähler potential, or considering su-
pergravity with shift symmetry, we have obtained [99] that the 9% constraint
in the allowed contribution of cosmic strings in the CMB spectrum implies

√
ξ ≤ 2× 1015GeV ⇔ Gµ ≤ 8× 10−7 . (95)

The cosmic string problem can be definitely cured if one considers more com-
plicated models, for example where strings become topologically unstable,
namely semi-local strings.

4 Cosmic Superstrings

At first, and for many years, cosmic strings and superstrings were considered
as two well separated issues. The main reason for this clear distinction may
be considered the Planckian tension of superstrings. If the string mass scale
is of the order of the Planck mass, then the four-dimensional F- and D-string
self gravity is G4µF ∼ O(g2

s ) and G4µD1 ∼ O(gs) (gs stands for the string
coupling), respectively, while current CMB measurements impose an upper
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limit on the self gravity of strings of Gµ < 10−6. Moreover, heavy super-
strings could have only been produced before inflation, and therefore diluted.
In addition, Witten showed [100] that, in the context of the heterotic theory,
long fundamental BPS strings are unstable, thus they would not survive on
cosmic time scales; non-BPS strings were also believed to be unstable.

At present, the picture has been dramatically changed (for a review, see
e.g., Ref. [101]). In the framework of braneworld cosmology, our Universe
represents a three-dimensional Dirichlet brane (D3-brane) on which open fun-
damental strings (F-strings) end [102]. Such a D3-brane is embedded in a
higher dimensional space, the bulk. Brane interactions can unwind and evap-
orate higher dimensional branes, leaving behind D3-branes embedded in a
higher dimensional bulk; one of these D3-branes could play the rôle of our
Universe [103]. Large extra dimensions can be employed to address the hier-
archy problem [104], a result which lead to an increasing interest in braneworld
scenarios. As it has been argued [105, 106] D-brane-antibrane inflation leads
to the production of lower-dimensional D-branes, that are one-dimensional
(D-strings) in the noncompact directions. The production of zero- and two-
dimensional defects (monopoles and domain walls, respectively) is suppressed.
The large compact dimensions and the large warp factors can allow for su-
perstrings of much lower tensions, in the range between 10−11 < Gµ < 10−6.
Depending on the model of string theory inflation, one can identify [107] D-
strings, F-strings, bound states of p fundamental strings and q D-strings for
relatively prime (p, q), or no strings at all.

The probability that two colliding superstrings reconnect can be much less
than one. Thus, a reconnection probability P < 1 is one of the distinguish-
ing features of superstrings. D-strings can miss each other in the compact
dimension, leading to a smaller P, while for F-strings the scattering has to
be calculated quantum mechanically, since these are quantum mechanical ob-
jects.

The collisions between all possible pairs of superstrings have been studied
in string perturbation theory [108]. For F-strings, the reconnection probabil-
ity is of the order of g2

s . For F-F string collisions, it was found [108] that
the reconnection probability P is 10−3 <∼ P <∼ 1. For D-D string collisions,
10−1 <∼ P <∼ 1. Finally, for F-D string collisions, the reconnection probability
can take any value between 0 and 1. These results have been confirmed [109]
by a quantum calculation of the reconnection probability for colliding D-
strings. Similarly, the string self-intersection probability is reduced. When D-
and F-strings meet they can form a three-string junction, with a composite
DF-string. In IIB string theory, they may be found bound (p, q) states of p
F-strings and q D-strings, where p and q are coprime. This leads to the ques-
tion of whether there are frozen networks dominating the matter content of
the Universe, or whether scaling solutions can be achieved.

The evolution of cosmic superstring networks has been addressed numeri-
cally [110–115] and analytically [116].
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The first numerical approach [110], studies independent stochastic net-
works of D- and F-strings, evolving in a flat spacetime. One can either evolve
strings in a higher dimensional space keeping the reconnection probability
equal to 1, or evolve them in a three-dimensional space with P 
 1. These
two approaches lead to results which are equivalent qualitatively, as it has
been shown in Ref. [110]. These numerical simulations have shown that the
characteristic length scale ξ, giving the typical distance between the nearest
string segments and the typical curvature of strings, grows linearly with time

ξ(t) ∝ ζt ; (96)

the slope ζ depends on the reconnection probability P, and on the energy
of the smallest allowed loops (i.e., the energy cutoff). For reconnection (or
intercommuting) probability in the range 10−3 <∼ P <∼ 0.3, it was found [110]

ζ ∝
√
P ⇒ ξ(t) ∝

√
Pt , (97)

in agreement with older results [40].
One can find in the literature statements claiming that ξ(t) should be

proportional to Pt instead. If this were correct, then the energy density of
cosmic superstrings of a given tension could be considerably higher than that
of their field theory analogues (cosmic strings). In Ref. [117] it is claimed
that the energy density of longs strings ρl evolves as ρ̇l = 2(ȧ/a)ρl −P(ρl/ξ),
where H = ȧ/a is the Hubble constant. Substituting the ansatz ξ(t) = γ(t)t,
the authors of Ref. [117] obtain γ̇ = −[1/(2t)](γ − P), during the radiation-
dominated era. This equation has a stable fixed point at γ(t) = P, implying
that [117] ξ � Pt. However, Ref. [117] misses out the fact that intersections
between two long strings is not the most efficient mechanism for energy loss
of the string network. The possible string intersections can be divided into
three possible cases (see, Fig. 1): (i) two long strings collide in one point
and exchange partners with intercommuting probability P1; (ii) two strings
collide in two points and exchange partners chopping off a small loop with
intercommuting probability P2

1 ; and (iii) one long string self-intersects in one
point and chops off a loop with intercommuting probability P2, which in
general is different than P1. Only cases (ii) and (iii) lead to a closed loop
formation and therefore remove energy from the long string network. Between
cases (ii) and (iii), only case (iii) is an efficient way of forming loops and
therefore dissipating energy: case (iii) is more frequent than case (ii), and
case (ii) has in general a smaller probability, since P1 ∼ P2 [110]. However,
the heuristic argument employed in Ref. [117] does not refer to self-string
intersections (i.e, case (iii)); it only applies to intersections between two long
strings, which depend on the string velocity. However self-string intersections
should not depend on how fast the string moves, a string can intersect itself
even if it does not move but it just oscillates locally.

The findings of Ref. [110] cleared the misconception about the behaviour
of the scale ξ, and shown that the cosmic superstring energy density may be
higher than the field theory case, but at most only by one order of magnitude.
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An important question to be addressed is whether cosmic superstrings can
survive for a long time and eventually dominate the energy density of the Uni-
verse. This could lead to an overdense Universe with catastrophic cosmological
consequences. If the reconnection probability is too low, or equivalently, the
strings move in a higher dimensional space and therefore miss each other even
if P is high, then one may fear that the string network does not reach a scal-
ing regime. The string energy density redshifts as 1/a2, where a stands for
the scale factor. Since for a string network with correlation length ξ, there is
about 1 long string per horizon volume, the string energy density is ∼ µ/a2.
String interactions leading to loop formation guarantee a scaling regime, in
the sense that strings remain a constant fraction of the energy density of the
Universe. Loops do not feel the expansion of the Universe, so they are not
conformally stretched and they redshift as 1/a3. As the loops oscillate, they
lose their energy and they eventually collapse. Clearly, scaling is not a trivial
issue for cosmic superstrings.

In the first numerical approach [110], where they have been only consid-
ered independent stochastic networks of either F- or D-strings, it was shown
that each such network reaches a scaling regime. This has been shown by
either evolving strings in a higher dimensional space with intercommuting
probability equal to 1, or evolving strings in a three-dimensional space with
intercommuting probability much smaller than 1.

In a realistic case however, (p, q) strings come in very large number of dif-
ferent types, while a (p, q) string can decay to a loop only if it self-intersects
of collide with another (p, q) or (−p,−q) string. A collision between (p, q) and
(p′, q′) strings will lead to a new string (p±p′, q±q′), provided the end points
of the initial two strings are not attached to other three-string vertices, thus
they are not a part of a web. If the collision between two strings can lead to the
formation of one new string, on a timescale much shorter than the typical col-
lision timescale, then the creation of a web may be avoided, and the resulting
network is composed by strings which are on the average nonintersecting. Then
one can imagine the following configuration: A string network, composed by
different types of (p, q) strings undergoes collisions and self-intersections. En-
ergy considerations imply the production of lighter daughter strings, leading
eventually to one of the following strings: (±1, 0), (0,±1),±(1, 1),±(1,−1).
These ones may then self-intersect, form loops and scale individually. Pro-
vided the relative contribution of each of these strings to the energy density
of the Universe is small enough, the Universe will not be overclosed.

This result has been confirmed by studying numerically the behavior of
a network of interacting Dirichlet-fundamental strings (p, q) in Ref. [112]. To
model (p, q) strings arising from compactifications of type IIB string theory,
the authors studied [112] the evolution of nonabelian string networks. The
positive element of such nonabelian networks is that they contain multiple
vertices where many different types of string join together. Such networks
have the potential of leading to a string dominated Universe due to tan-
gled networks of interacting (p, q) strings that freeze. It was shown [112] that
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such freezing does not take place and the network reaches a scaling limit.
In this field theory approach however strings are not allowed to have differ-
ent tensions, which is a characteristic property of cosmic superstrings. This
issue has been addressed later in the context of modelling (p, q) cosmic su-
perstrings [113]. It was found that such networks rapidly approach a stable
scaling solution, where once scaling is reached, only a small number of the
lowest tension states is populated substantially. An interesting question is to
find out whether the field theory approach of Ref. [112] mimics the results
of the modelling approach of Ref. [113]. Finally, performing full classical field
theory simulations for a model of a string network with junctions, where the
junctions can be thought of as global monopoles connected by global strings,
it was shown [115] that the evolution is consistent with a late-time scaling
regime. Thus, the presence of junctions is not itself inconsistent with scaling.

The cosmic superstring network is characterised [110] by two components:
there are a few long strings with a scale-invariant evolution; the characteristic
curvature radius of long strings, as well as the typical separation between two
long strings are both comparable to the horizon size, ξ(t) �

√
Pt, and there

is a large number of small closed loops having sizes 
 t. Assuming there are
string interactions, the network of long strings will reach an asymptotic energy
density, where the energy density in long strings is

ρl =
µ

Pt2 . (98)

Thus, the fraction of the total density in the form of strings in the radiation-
dominated era reads

ρstr

ρtotal
=

32π
3

Gµ

P . (99)

Recent numerical investigations [114] of strings evolving in a matter- or
radiation-dominated FLRW background claim a weaker power law for the
dependence of the scaling string energy density. More precisely, in Ref. [114]
it was found that for P >∼ 0.1, the function ρ(1/P) is approximately flat, while
for P <∼ 0.1, the function ρ(1/P) is well-fitted by a power-law with exponent
0.6+0.15

−0.12. The behaviour of the string energy density as a function of P has
an important impact for the observational consequences of cosmic superstring
networks.

Oscillating string loops loose energy by emitting graviton, dilaton and
Ramond-Ramond (RR) fields. Accelerated cosmic strings are sources of grav-
itational radiation, in particular from the vicinity of the cusps where the string
velocity approaches the speed of light. Similarly, cosmic superstrings emit
gravity waves but since the intercommutation probability is less than unity,
their network is denser with more cusps, resulting in an enhancement of the
emitted gravitational radiation. As it was pointed out [118], the gravitational
wave bursts emitted from cusps of oscillating string or superstring loops could
be detectable with the gravitational-wave interferometers LIGO/VIRGO and
LISA.
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One can place constraints on the energy scale of cosmic strings from the
observational bounds on dilaton decays [119]. Considering that the dilaton
lifetime is in the range 107s <∼ τ <∼ tdec, one can obtain an upper bound
η <∼ P−1/3 <∼ 1011 GeV [110] for the energy scale of cosmic superstrings, which
determines the critical temperature for the transition leading to string forma-
tion. A lower reconnection probability allows a higher energy scale of strings,
at most by one order of magnitude.

5 Conclusions

A realistic cosmological scenario necessitates the input of high energy physics,
implying that models describing the early stages of the evolution of the Uni-
verse have their foundations in both general relativity as well as high energy
physics. Comparing the predictions of such models against current astrophys-
ical and cosmological data one concludes to either their acceptance or their
rejection, while in the first case one can also fix the free parameters of the
models. One of the most beautiful examples in this interplay between cosmol-
ogy and high energy physics is the case of cosmic strings.

Cosmic strings are expected to be generically formed during the evolution
of the Universe, provided the general theoretical picture we have in mind is cor-
rect. However, many independent studies concluded in the robust statement
that cosmic strings have a limited rôle in the measured CMB temperature
anisotropies. Knowing the upper bounds on the contribution of strings to the
CMB, one has to examine whether the theoretical models can be adjusted so
that there is an agreement between predictions and data. This issue has been
addressed in length here. In this respect, cosmology uses high energy physics
to build a natural and successful cosmological model, while it offers back some
means for testing high energy physics itself.

Cosmic strings are a robust prediction of GUTs, or even M-theory. Even
though their rôle in explaining the origin of the observed large-scale structure
is sub-dominant, their astrophysical and cosmological implications remain im-
portant. Cosmic strings are a small but by no means negligible contribution
to any successful cosmological model.

References

1. G. F. Smoot, et al. Astrophys. J. 396, L1 (1992)
2. A. H. Guth, Phys. Rev. D 23, 347 (1981)
3. A. D. Linde, Phys. lett. B 108, 389 (1982)
4. E. Calzetta and M. Sakellariadou, Phys. Rev. D 45, 2802 (1992); E. Calzetta

and M. Sakellariadou, Phys. Rev. D 47, 3184 (1993)
5. G. W. Gibbons and N. Turok, The Measure Problem in Cosmology, [arXiv:hep-

th/06090]



286 M. Sakellariadou

6. C. Germani, W. Nelson and M. Sakellariadou, On the Onset of Inflation in
Loop Quantum Cosmology, [gr-qc/0701172]

7. A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects
(Cambridge University Press, Cambridge, England, 2000)

8. J. Martin, A. Riazuelo and M. Sakellariadou, Phys. Rev. D 61, 083518 (2000)
9. A. Gangui, J. Martin and M. Sakellariadou, Phys. Rev. D 66, 083502 (2002)

10. T. W. B. Kibble, J. Phys. A 9, 387 (1976)
11. N. Turok, Phys. Rev. Lett. 63, 2625 (1989)
12. T. Vachaspati and M. Barriola, Phys. Rev. Lett. 69, 1867 (1992)
13. W. H. Zurek, Nature 317, 505 (1985)
14. W. H. Zurek, Phys. Rep. 276, 178 (1996)
15. P. C.Hendry, Nature 368, 315 (1994)
16. M. E. Dodd et al., Phys. Rev. Lett. 81, 3703 (1998)
17. V. M. Ruutu, et al., Nature 382, 334 (1996)
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