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1
What is thermodynamics?

1.1 Introduction

Thermodynamics is the branch of science that deals with relative energy levels
and transfers of energy between systems and between different states of matter.
Because these subjects arise in virtually every other branch of science, thermo-
dynamics is one of the cornerstones of scientific training. Various scientific
specialties place varying degrees of emphasis on the subject areas covered
by thermodynamics — a text on thermodynamics for physicists can look quite
different from one for chemists, or one for mechanical engineers. For chemists,
biologists, geologists, and environmental scientists of various types, the thermo-
dynamics of chemical reactions is of course a central concern, and that is the
emphasis to be found in this book. Let us start by considering a few simple
reactions and the questions that arise in doing this.

1.2 What is the problem?
1.2.1 Some simple chemical reactions

A chemical reaction involves the rearrangement of atoms from one structure
or configuration to another, normally accompanied by an energy change. Let’s
consider some simple examples.

e Take an ice cube from the freezer of your refrigerator and place it in a cup on the
counter. After a few minutes, the ice begins to melt, and it soon is completely changed
to water. When the water has warmed up to room temperature, no further change can
be observed, even if you watch for hours. If you put the water back in the freezer,
it changes back to ice within a few minutes, and again there is no further change.
Evidently, this substance (H,O) has at least two different forms, and it will change
spontaneously from one to the other depending on its surroundings.

e Take an egg from the refrigerator and fry it on the stove, then cool to room tem-
perature. Again, all change seems now to have stopped — the reaction is complete.
However, putting the fried egg back in the refrigerator will not change it back into a
raw egg. This change seems not to be reversible. What is different in this case?
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e Put a teaspoonful of salt into a cup of water. The salt, which is made up of a great
many tiny fragments of the mineral halite (NaCl), quickly disappears into the water.
It is still there, of course, in some dissolved form, because the water now tastes salty,
but why did it dissolve? And is there any way to reverse this reaction?

Eventually, of course, we run out of experiments that can be performed in
the kitchen. Consider two more reactions:

® On a museum shelf, you see a beautiful clear diamond and a piece of black graphite
side by side. You know that these two specimens have exactly the same chemical
composition (pure carbon, C), and that experiments at very high pressures and tem-
peratures have succeeded in changing graphite into diamond. But how is it that these
two different forms of carbon can exist side by side for years, while the two different
forms of H,O cannot?

® When a stick of dynamite explodes, a spectacular chemical reaction takes place. The
solid material of the dynamite changes very rapidly into a mixture of gases, plus
some leftover solids, and the sudden expansion of the gases gives the dynamite its
destructive power. The reaction would seem to be nonreversible, but the fact that
energy is obviously released may furnish a clue to understanding our other examples,
where energy changes were not obvious.

These reactions illustrate many of the problems addressed by chemical
thermodynamics. You may have used ice in your drinks for years without
realizing that there was a problem, but it is actually a profound and very
difficult one. It can be stated this way: What controls the changes (reactions)
that we observe taking place in substances? Why do they occur? And why can
some reactions go in the forward and backward directions (i.e., ice— water or
water—ice) while others can only go in one direction (i.e., raw egg— fried
egg)? Scientists puzzled over these questions during most of the nineteenth
century before the answers became clear. Having the answers is important;
they furnish the ability to control the power of chemical reactions for human
uses, and thus form one of the cornerstones of modern science.

1.3 A mechanical analogy

Wondering why things happen the way they do goes back much further than
the nineteenth century and includes many things other than chemical reactions.
Some of these things are much simpler than chemical reactions, and we might
look to these for analogies, or hints, as to how to explain what is happening.
A simple mechanical analogy would be a ball rolling in a valley, as in
Figure 1.1. Balls have always been observed to roll down hills. In physical
terms, this is “explained” by saying that mechanical systems have a tendency
to change so as to reduce their potential energy to a minimum. In the case
of the ball on the surface, the potential energy (for a ball of given mass) is
determined by the height of the ball above the lowest valley, or some other
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Potential energy

reference plane. It follows that the ball will spontaneously roll downhill, losing
potential energy as it goes, to the lowest point it can reach. Thus it will always
come to rest (equilibrium) at the bottom of a valley. However, if there is more
than one valley, it may get stuck in a valley that is not the lowest available, as
shown in Figure 1.2. This is discussed more fully in Chapter 2.

It was discovered quite early that most chemical reactions are accompanied
by an energy transfer either to or from the reacting substances. In other words,
chemical reactions usually either liberate heat or absorb heat. This is most easily
seen in the case of the exploding dynamite, or when you strike a match, but in
fact the freezing water is also a heat-liberating reaction. It was quite natural,
then, by analogy with mechanical systems, to think that various substances
contained various quantities of some kind of energy, and that reactions would
occur if substances could rearrange themselves (react) so as to lower their
energy content. According to this view, ice would have less of this energy (per
gram, or per mole) than has water in the freezer, so water changes spontaneously
to ice, and the salt in dissolved form would have less of this energy than solid
salt, so salt dissolves in water. In the case of the diamond and graphite, perhaps
the story is basically the same, but carbon is somehow “stuck” in the diamond
structure.

Of course, chemical systems are not mechanical systems, and analogies can
be misleading. You would be making a possibly fatal mistake if you believed
that the energy of a stick of dynamite could be measured by how far above the
ground it was. Nevertheless, the analogy is useful. Perhaps chemical systems
will react such as to lower (in fact, minimize) their chemical energy, although
sometimes, like diamond, they may get stuck in a valley higher than another

Figure 1.1 A mechanical
analogy for a chemical
system — a ball on a
slope. The ball will
spontaneously roll into
the valley.

Figure 1.2 The ball has
rolled into a valley, but
there is a deeper valley.
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Mechanics versus thermodynamics

Generally speaking, there are two main problems in learning thermodynamics.
One, of course, is to learn the details of the specialized procedures in one’s
discipline, which in our case involves chemical reactions, activities, fugacities,
equilibrium constants, and so on. The other, either more or less important depend-
ing on your point of view, is to understand thermodynamics as a whole — what
is it, what do the variables mean, and how does it relate to other branches of
science? In this book, the first four chapters deal mostly with this latter problem,
and the rest of the book with the details.

At several points in these first few chapters we will make reference to clas-
sical mechanics, the science which deals with the motions of bodies and the
forces causing those motions. This is an attempt to put thermodynamics into a
broader perspective; to make analogies with possibly more familiar situations.
Balls rolling in valleys and swinging pendulums are actually a special case in
mechanics, known as dissipative systems. That is, dynamic systems in which
energy is gradually dissipated (generally due to friction), and in which the moving
body comes to rest in an equilibrium position.

In mechanics, the motion of the body and its trajectory in a three-dimensional
valley might be considered, and the dissipated kinetic energy is simply lost from
the system. The energy “loss” is dissipated as heat, but mechanics knows nothing
about this. The potential energy change is independent of all this, as in Figure 1.1.
Thermodynamics, on the other hand, knows nothing about kinetic energy and tra-
jectories, but is concerned with energy changes between two different equilibrium
states. In Figure 1.2 the two states are shown as valleys at different elevations,
and the energy is potential energy; in thermodynamics the two states might be

calcite and aragonite, and the energy is in a different form.

nearby valley. We will see that this is in fact the case. The analogy is useful.
The problem lies in discovering just what kind of energy is being minimized.
What is this chemical energy?

1.3.1 Chemical energy

We mentioned above that an early idea was that it is the heat energy content
of systems that is minimized in chemical systems, that is, reactions will occur
if heat is liberated. This is another way of saying that the heat content of the
products is less than the heat content of the reactants of a reaction, so that the
reaction liberates heat (Figure 1.3)

This view of things was common in the nineteenth century, and a great deal
of effort was expended in measuring the flow of heat in chemical reactions.
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However, we don’t even have to leave our kitchen to realize that this cannot
be entirely correct. The melting of ice is obviously a reaction in which heat is
absorbed, not liberated, which is why it is useful in cooling drinks. Therefore,
despite the appealing simplicity of the “heat content” argument for explaining
why chemical reactions occur, it cannot be the whole story. Nevertheless, the
idea that some kind of “chemical energy” is liberated in reactions, or that
“chemical energy” is minimized in systems at rest (equilibrium) is a powerful
one. Perhaps heat is not the only energy involved. What other factors might
there be? Not too many, we hope!

1.3.2 Plus something else?

Another very important clue we must pay attention to is the fact that some chem-
ical reactions are able to take place with no energy change at all. For example,
when gases mix together at low pressures, virtually no heat energy is liberated
or absorbed. The situation is similar for a drop of ink spreading in a glass
of water. These are spontaneous processes' characterized by a mixing process,
rather than by a reorganization of atomic structures like graphite—diamond,
or raw egg— fried egg. Our “chemical energy” term will have to take account
of observations like these.

At this point, we might become discouraged, and conclude that our idea
that some sort of chemical energy is being reduced in all reactions must be
wrong — there seem to be too many exceptions. It certainly was a puzzle for
a long time. But we have the benefit of hindsight, and because we now know
that this concept of decreasing chemical energy of some kind is in fact the
correct answer, we will continue to pursue this line of thought.

! We are using the terms reaction and process more or less synonymously here. Later on (§2.6)

we will make a distinction.

Figure 1.3 Mechanical
processes always act so
as to lower the potential
energy content of the
mechanical system.
Perhaps, by analogy,
chemical systems have
some sort of “chemical
energy” that is lowered
during chemical
reactions.
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1.4 Limitations of the thermodynamic model

This book outlines the essential elements of a first understanding of chemical
thermodynamics, especially as applied to natural systems. However, it is useful
at the start to have some idea of the scope of our objective — just how useful is
this subject, and what are its limitations? It is at the same time very powerful
and very limited. With the concepts described here, you can predict the equilib-
rium state for most chemical systems, and therefore the direction and amount
of reaction that should occur, including the composition of all phases when
reaction has stopped. The operative word here is “should.” Our model consists
of comparing equilibrium states, one with another, and determining which is
more stable under the circumstances. We will not consider how fast the reac-
tion will proceed, or how to tell if it will proceed at all. Many reactions that
“should” occur do not occur, for various reasons. We will also say very little
about what “actually” happens during these reactions — the specific interactions
of ions and molecules that result in the new arrangements or structures that are
more stable. In other words, our model will say virtually nothing about why
one arrangement is more stable than another or has less “chemical energy,”
just that it does, and how to determine that it does.

These are serious limitations. Obviously, we will often need to know not
only if a reaction should occur but if it occurs, and at what rate. A great deal
of effort has also been directed toward understanding the structures of crystals
and solutions, and of what happens during reactions, shedding much light on
why things happen the way they do. However, these fields of study are not
completely independent. The subject of this book is really a prerequisite for
any more advanced understanding of chemical reactions, which is why every
chemist, environmental scientist, biochemist, geochemist, soil scientist, and the
like, must be familiar with it.

But in a sense, the limitations of our subject are also a source of its strength.
The concepts and procedures described here are so firmly established partly
because they are independent of our understanding of why they work. The laws
of thermodynamics are distillations from our experience, not explanations, and
that goes for all the deductions from these laws, such as are described in this
book. As a scientist dealing with problems in the real world, you need to know
the subject described here. You need to know other things as well, but this
subject is so fundamental that virtually every scientist has it in some form in
his tool kit.

1.5 Summary

The fundamental problem addressed here is why things (specifically, chemical
reactions) happen the way they do. Why does ice melt and water freeze? Why
does graphite turn into diamond, or vice versa? Taking a cue from the study
of simple mechanical systems, such as a ball rolling in a valley, we propose
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that these reactions happen if some kind of energy is being reduced, much as
the ball rolls in order to reduce its potential energy. However, we quickly find
that this cannot be the whole story — some reactions occur with no decrease in
energy. We also note that whatever kind of energy is being reduced (we call it
“chemical energy”), it is not simply heat energy.

For a given ball and valley (Figure 1.1), we need to know only one parameter
to determine the potential energy of the ball (its height above the base level,
or bottom of the valley). In our “chemical energy” analogy, we know that
there must be at least one other parameter, to take care of those reactions that
have no energy change. Determining the parameters of our “chemical energy”
analogy is at the heart of chemical thermodynamics.
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Defining our terms

2.1 Something is missing

We mentioned in Chapter 1 that an early idea for understanding chemical
reactions held that spontaneous reactions would always be accompanied by the
loss of energy, because the reactants were at a higher energy level than the
products, and they wanted to go “downhill.” This energy was usually thought
to be in the form of heat, but this idea received a setback when it was found
that some spontaneous reactions in fact absorb heat. Also, there are some
reactions, such as the mixing of gases, where the energy change is virtually
zero yet the processes proceed very strongly and are highly nonreversible.
Obviously, something is missing. If the ball-in-valley analogy is right, that is,
if reactions do proceed in the direction of decreasing chemical energy of some
kind, something more than just heat is involved.

To learn more about chemical reactions, we have to become a bit more
precise in our terminology and introduce some new concepts. In this chapter, we
will define certain kinds of systems, because we need to be careful about what
kinds of matter and energy transfers we are talking about; equilibrium states,
the beginning and ending states for processes; state variables, the properties
of systems that change during reactions; processes, the reactions themselves;
and phases, the different types of matter within the systems. All these terms
refer in fact to our models of natural systems, but they are also used to refer
to things in real life. To be quite clear about thermodynamics, it is a good idea
to keep the distinction in mind.

2.2 Systems
2.2.1 Real life systems

In real life, a system is any part of the universe that we wish to consider.
If we are conducting an experiment in a beaker, then the contents of the
beaker is our system. For an astronomer calculating the properties of the
planet Pluto, the solar system might be the system. In considering geochemical,
biological, or environmental problems here on Earth, the choice of system is
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usually fairly obvious, and depends on the kind of problem in which you are
interested.

Figure 2.1 shows a seashore environment with three possible choices of
natural system. At (a), we might be interested in the exchange of gases between
the sea and the atmosphere (e.g., if the sea warms by one degree, how much
CO, will be released to the atmosphere?). At (b), we might be interested in
the dissolved material in the sea itself (e.g., the reactions between dissolved
CO, and carbonate and bicarbonate ions). And at (c), we might be interested in
reactions between the sediment and the water between the sediment particles
(e.g., dissolution or precipitation of minerals in the sediment). The chosen
systems are shown as boxes, but in most cases we are not concerned with the
dimensions or shape of the box; we normally define the system in terms of
the masses or moles of components in the system, as well as the nature of its
contacts with whatever is outside the system (see §2.2.2).

These are examples of inorganic systems. Thermodynamics can also be
applied to organic systems, including living organisms. A single bacterium
could be our system, or a dish full of bacteria, or a single organelle within a
bacterium. The choice depends on your particular interests and is obviously
very wide. However, they are all similar in one respect. Because natural systems
exist in the real world, whatever system you choose is bounded by (in contact
with) other parts of the world and may exchange energy and matter (liquids,
solids, gases) with these other parts of the world. Systems of this type are said
to be “open.” All living organisms are thus open systems because they take
in nutrients, and get rid of waste products. All three systems in Figure 2.1 are
obviously open, because water can flow in and out of (a) and (b), and even
in (c), compaction of the sediments squeezes water out, and diffusion allows
solutes to move in and out.

Figure 2.1 A seashore
environment. The
locations of three natural
systems are shown.
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Models

A model in the sense used here is an abstract object characterized or described by
systems of equations, which attempt to represent the behavior of selected parts

of the universe.

Thermodynamics deals with its subject matter (energy levels, energy changes) in
an abstract way. The states and processes it describes are idealized; it does not
describe or deal with any objects or processes in the real world, except to the
extent that the variables in its equations are properties (e.g., volumes, energies)
of real substances. Some processes in the real world are very similar to these
idealized processes, and some are not. Where they are similar, thermodynamics
is directly useful. Where they are not, we invent correction factors (e.g., “activity

coefficients”) to account for the differences.

The reason for mentioning this somewhat philosophical point is that many aspects
of thermodynamics are abstract, or physically unrealistic. It helps to remember

that we are using mathematics to simulate real systems.

Models are certainly used in other senses in the Earth sciences, such as the facies

models of the sedimentologists.

2.2.2 Thermodynamic systems

Our goal is to understand the energy changes in natural systems. We will do this
by mathematically simulating much simpler “models” of these systems, having
variables that represent what we think are the essential elements of the natural
systems. These models will not be material, but mathematical and conceptual.
If we do it right, then the behavior of the model system will be very similar to
(or will mimic) that of the real system. We will call this “understanding” the
real system at the thermodynamic level.

Although most natural systems are open and are quite complex, our models
of these systems can be much simpler and still be valuable. The kinds of
thermodynamic or model systems that have been found to be useful in analyzing
and understanding natural (real life) systems are as follows, and are illustrated
in Figure 2.2. These thermodynamic systems are essentially defined by the types
of walls they have. This is because we must be able to control (conceptually)
the flow of matter and energy into and out of these systems.

e Isolated systems have walls or boundaries that are rigid (thus not permitting transfer
of mechanical energy), perfectly insulating (thus preventing the flow of heat), and
impermeable to matter. They therefore have a constant energy and mass content, since
none can pass in or out. Perfectly insulating walls and the systems they enclose are
called adiabatic. Isolated systems, of course, do not occur in nature, because there
are no such impermeable and rigid boundaries. Nevertheless, this type of system has
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Isolated
() system
[]
Closed
(b) syztgm
))

Figure 2.2 (a) Isolated system. Nothing can enter or leave the system (no energy, no
matter). Whatever is inside the walls (which could be anything) will have a constant
energy content and a constant composition. (b) Closed system. The closure is a
piston to indicate that the pressure on the system is under our control. Energy can
enter and leave the system, but matter cannot. The system here is shown as part
liquid, part gas or vapor, but it could be anything. Both the liquid and the gas could
also be considered as open systems, inside the closed system. Each may change
composition, although the two together will have a constant composition. (c) Open
system. Both matter and energy may enter and leave the system. The system may
have a changing energy content and/or a changing composition. The pitcher shows
one way of adding matter to the system.

great significance because reactions that occur (or could occur) in isolated systems
are ones that cannot liberate or absorb heat or any other kind of energy. Therefore,
if we can figure out what causes these reactions to go, we may have an important
clue to the overall puzzle.

® Closed systems have walls that allow transfer of energy into or out of the system
but are impervious to matter. They therefore have a fixed mass and composition but
variable energy levels.

® Open systems have walls that allow transfer of both energy and matter to and from
the system. The system may be open to only one chemical species or to several.

11
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As mentioned above, most natural systems are open. However, it is possible
and convenient to model them as closed systems; that is, to consider a fixed
composition, and simply ignore any possible changes in total composition. If
what happens because of changes in composition is important, it can often
be handled by considering two or more closed systems of different composi-
tions. Thus we will be dealing mostly with closed systems in our efforts to
understand chemical reactions. Basically this means that we will be concerned
mostly with individual chemical reactions, rather than with whole complex
systems. In other words, even though a bacterium is an open system, it can
be treated (modeled) as a closed system while considering many individual
reactions within it. The reactants may need to be ingested and the products
eliminated by the organism, but the reaction itself can be modeled indepen-
dently of these processes. This greatly simplifies the task of understanding the
biochemical reactions. The same is true of most geochemical and environmental
systems.

The most common kind of open system in chemical thermodynamics is
represented in Figure 2.2b, that is, two open subsystems within an overall closed
and finding

il

system. There can be any number of these “open subsystems,’
out how many there are and what their compositions are, given some physical
conditions, is a common problem in the application of thermodynamics. We
have a brief look at other kinds of open systems in Chapter 4.

It is one of the paradoxes of thermodynamics that isolated systems, that
have no counterpart in the real world, are possibly the most important of all in
terms of our understanding of chemical reactions. You will have to wait until
Chapter 4 to see why.

2.3 Equilibrium

In studying chemical reactions, we obviously need to know when they start and
when they have ended. To do this, we define the state of equilibrium, when no
reactions at all are proceeding. Here we encounter a distinct difference between
real and thermodynamic systems, because the state of equilibrium is defined
differently in the two cases.

In thermodynamic systems, that is, in our models, equilibrium is defined
in terms of chemical potentials, which we will get to in a later chapter. This
state, as you might imagine, is one of perfect equilibrium, perfect rest, with
absolutely no gradients or inhomogeneities of any kind. Real systems often
approach this state more or less closely, but probably never attain it. When
real systems do approach equilibrium, thermodynamics can be applied to them.
Obviously, we need to have some way of telling whether real systems are “at
equilibrium,” or have closely approached equilibrium.
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Equilibrium states in real systems have two attributes:

1. A real system at equilibrium has none of its properties changing with time, no matter
how long it is observed.

2. A real system at equilibrium will return to that state after being disturbed, that is,
after having one or more of its parameters slightly changed, then changed back to
the original values.

This definition is framed so as to be “operational,” that is, you can apply
these criteria to real systems to determine whether they are at equilibrium. And
in fact, many real systems do satisfy the definition. For example, a crystal of
diamond sitting on a museum shelf obviously has exactly the same properties
this year as last year (part 1 of the definition), and if we warm it slightly
and then put it back on the shelf, it will gradually resume exactly the same
temperature, dimensions, and so on that it had before we warmed it (part 2 of
the definition). The same remarks hold for a crystal of graphite on the same
shelf, so that the definition can apparently be satisfied for various forms of
carbon. Many other natural systems just as obviously are not at equilibrium.
Any system having temperature, pressure, or compositional gradients will tend
to change so as to eliminate these gradients, and is not at equilibrium until that
happens. A cup of hot coffee, for example, is not at equilibrium with the air
around it until it cools down.

So if diamond and graphite are both at equilibrium, do we have two kinds
of equilibrium? In our ball-in-valley analogy, the ball in any valley would fit
our definition. What distinction do we make between the lowest valley and the
others?

2.3.1 Stable and metastable equilibrium

In this section we use the simple mechanical analogy in §1.3 to distinguish
between stable and metastable equilibrium. This explanation is satisfactory for
an intuitive understanding, but we return to this subject for a better theoretical
understanding in §4.9.1.

Stable and metastable are the terms used to describe the system in its lowest
equilibrium energy state and any other equilibrium energy state, respectively.
In Figure 2.3, we see a ball on a surface having two valleys, one higher than
the other. At (a), the ball is in an equilibrium position, that fulfills both parts of
our definition — it will stay there forever, and will return there if disturbed, as
long as the disturbance is not too great. However, it has not achieved the lowest
possible potential energy state, and therefore (a) is a metastable equilibrium
position. If the ball is pushed past position (b), it will roll down to the lowest
available energy state at (d), a stable equilibrium state. During the fall, for
example, at position (c), the ball (system) is said to be unstable. In position (b),
it is possible to imagine the ball balanced and unmoving, so that the first part

13
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Figure 2.3 Four positions
of a ball on a surface, to
illustrate the concept of
equilibrium. Position a —
metastable equilibrium.
Position b — unstable.
Position ¢ — unstable.
Position d - stable
equilibrium.

Defining our terms

of the definition would be fulfilled, and this is sometimes referred to as a
third type of equilibrium, admittedly a trivial case, called unstable equilibrium.
However, it does not survive the second part of the definition, so we are left
with only two types of equilibrium, stable and metastable.

Of course, we find that the stable form of substances is different under
different conditions. For example, the stable form of H,O is water at +5°C,
and ice at —5°C (Figure 2.4). The freezing and melting of H,O is normally
fairly rapid, so we don’t often see metastable ice above its melting temperature,
or metastable water below its freezing temperature. But many such phase
changes are not so rapid, in fact they may not happen at all, even though
energy would be released if they did. These reactions, which get “stuck” in
a high energy state are usually not melting/freezing reactions, but solid state
reactions — that is, a reaction in which a mineral having one crystallographic
structure changes to a mineral having the same composition but with a different
structure.

A good example of this is the diamond/graphite reaction. We know now
that the stable form of pure carbon at Earth surface conditions is the mineral
graphite, but that at high temperatures and pressures, such as found deep in the
Earth’s mantle, graphite will spontaneously react to form diamond. However,
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Figure 2.4 The mechanical analogy for H,O at —5°C and +5°C and atmospheric
pressure. At —5°C, water is unstable and releases energy until it becomes ice
at —5°C. At +5°C, ice is unstable and releases energy until it becomes water
at +5°C. The problem is, what kind of energy is being minimized?
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when tectonic and igneous processes bring the diamond back to the surface, the
diamond does not (fortunately) change back to graphite, so we say that diamond
is a metastable form of carbon at Earth surface conditions (Figure 2.5). When
we develop this subject further, we should be able to predict or calculate under
what conditions it is the stable form of carbon.

2.3.2 Partial and local equilibrium

There are two other commonly used terms in connection with equilibrium
states.

Partial equilibrium

“Partial equilibrium” is intended to indicate that part or parts of the system
have reached equilibrium, but those parts have not reached equilibrium with
each other. The usual example of partial equilibrium is that of a crystal in an
aqueous solution. The crystal is actively dissolving, so the system as a whole
is not in equilibrium, but the aqueous solutes re-equilibrate very quickly, so
that the solution itself is very close to internal equilibrium. The system is then
said to be in partial equilibrium.

That may be true for the real system, but there is no such thing as partial
equilibrium in thermodynamics, or the systems that thermodynamics deals with.
In thermodynamics equilibrium is defined as equality of potentials in every
phase. Partial equilibrium in real systems is modeled in thermodynamics as a
metastable equilibrium. This distinction may not be clear at this point, but will
be further discussed in connection with metastable equilibrium (Chapter 4) and
titration (Chapter 18).

Diamond

Graphite

Figure 2.5 The mechanical analogy for carbon at Earth surface conditions. Graphite
is the stable form of carbon because it has the lowest energy content of any form
of carbon (under Earth surface conditions). Diamond has a higher energy content
but is prevented from changing to graphite by an energy barrier.
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Local equilibrium

Real world systems are in constant flux, and never really achieve thermo-
dynamic equilibrium, but we want to apply thermodynamics to them anyway,
so we have to choose parts of real systems which are reasonably close to
thermodynamic equilibrium.

For example, you cannot apply thermodynamics to the ocean as a whole.
Calcite is supersaturated at the surface, but undersaturated at 5 km depth
(Chapter 16). Thermodynamics cannot be applied to a system which is both
supersaturated and undersaturated. You can apply thermodynamics to volumes
close to equilibrium at the surface or at depth, not both together, so we say we
apply thermodynamics to areas of “local equilibrium.” It is obviously important
to apply thermodynamics appropriately, and generally we do this, but the point
is that local equilibrium is not part of thermodynamics, it is a concept we need,
a property that real systems must have, in order to apply thermodynamics.

Understanding thermodynamics does not depend in any way on local equi-
librium, but applying it to natural systems does. The question then naturally
arises as to how one distinguishes between places having local equilibrium
from places that do not. This question does not have a good answer. Places
having large gradients in temperature, pressure or composition can be ruled out,
but how large is “large”? Quite often the practice is to apply thermodynamics
and see how it works out. If it seems to work well, then local equilibrium is
assumed. Obviously some better approach would be desirable. There have been
several attempts at providing a quantitative criterion for local equilibrium. The
most accessible for Earth scientists appears to be that of Knapp (1989), which
is summarized in Zhu and Anderson (2002, Chapter 3), who also cite a number
of other references on the subject.

Defining local equilibrium

The question of fluid — solid phase equilibrium arises in many subject areas,
including environmental problems, studies of diagenesis, long range flow in
sedimentary basins, ore genesis, magmatic — hydrothermal systems, regional
metamorphism, and laboratory experimental systems. In each of these real
systems, local equilibrium in theory requires that any disequilibrium condition
relax instantaneously to an equilibrium state. In reality, this relaxation occurs
over a finite time and, for a fluid-flow system, a finite distance. Knapp (1989)
points out that each of these types of systems has a characteristic scale of
interest, which is hundreds of meters or kilometers in studies of sedimentary
basins, but perhaps microns in studies of surface processes. If the problem is
defined on the kilometer scale, then disequilibrium over distances of centimeters
is insignificant. The problem then is to determine, for a given system, the time
required for a system in disequilibrium to reach equilibrium, and the distance
the fluid has moved in that time period.
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Knapp considers the problem in terms of a one-dimensional flow path in a
quartz sandstone. The moving water is initially at equilibrium with quartz, then
a pulse of pure water is introduced, and the time and distance required for the
reattainment of equilibrium are calculated. Quite a few factors are involved,
including concentrations (including pH), temperature, fluid velocity, diffusion
and dispersion coefficients, and of course kinetics, including the surface area
(m? of mineral per m® of fluid). The results, presented in terms of Damkéhler
and Peclet numbers,' show that there is a region where the time and distance to
equilibrium is reaction dominated, and there is another region where they are
transport or advection dominated. Local equilibrium can occur in both domains.
Most natural environments with elevated temperatures fall in the reaction dom-
inated domain, where the effects of dispersion and diffusion can safely be
ignored, but local equilibrium would appear to be a questionable approximation
in what Knapp (1989) refers to as “human controlled environments” due to
characteristically large fluid velocities and low temperatures.

This analysis by Knapp is useful in defining and clarifying the local equi-
librium problem in a quantitative way. Unfortunately, despite the rather drastic
simplification, most of the parameters required to define the problem in real
situations at the present time are poorly known. The quantitative results are
then of questionable significance in any practical sense, but they are worth
reflecting on. All applications of thermodynamics assume local equilibrium,
but defining just what that is has proven difficult.

2.4 State variables

Systems at equilibrium have measurable properties. A property of a system is
any quantity that has a fixed and invariable value in a system at equilibrium,
such as temperature, density, or refractive index. Every system has dozens of
properties. If the system changes from one equilibrium state to another, the
properties therefore have changes that depend only on the two states chosen,
and not on the manner in which the system changed from one to the other.
This dependence of properties on equilibrium states and not on processes is
reflected in the alternative name for them, state variables. Several important
state variables (which we consider in later chapters) are not measurable in the
absolute sense in a particular equilibrium state, though they do have fixed,
finite values in these states. However, their changes between equilibrium states
are measurable.

! The Damkéhler number (Da) expresses the rate of reaction relative to the advection or fluid
flow rate. A large Da value means that reaction is fast relative to transport and that aqueous
concentrations may change rapidly in time and space. The Peclet number (Pe) expresses the
importance of advection relative to dispersion in transporting aqueous compounds. A large Pe
value means that advection dominates, which may result in large concentration gradients; a
small Pe value suggests that dispersion dominates, which promotes mixing in the fluid phase.
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Reference in the above definition to “equilibrium states” rather than “stable
equilibrium states” is deliberate, since as long as metastable equilibrium states
are truly unchanging they will have fixed values of the state variables. Thus both
diamond and graphite have fixed properties. Metastable states are extremely
common. For example, virtually all organic compounds are metastable in an
oxidizing environment, such as the Earth’s atmosphere. We should be grateful
for those “activation energy barriers” that prevent metastable states from spon-
taneously changing to stable states; otherwise we would not be here to discuss
the matter.

2.4.1 Total versus molar properties

Many physical properties, such as the volume and various energy terms, come in
two forms — the total quantity in the system and the quantity per mole or
per gram of substance considered. We use different fonts for these total and
molar properties. For example, water has a volume per mole (V) of about
18.0686 c¢cm?® mol~!, so if we have 30 moles of water in a beaker, its vol-
ume (V) is 542.06 cm?. This relationship for a pure substance such as H,O is
Z =17/n;, where Z is any total property, Z is the corresponding molar prop-
erty, and n; is the number of moles of the substance. In our water example,
above, 542.06/30 = 18.068. In more complex systems where more than one
substance is present, total and molar properties are related in the same way.
A beaker containing, for example, a kilogram of water (55.51 moles H,0) and
1 mole of NaCl occupies 1019.9 ¢cm?®. The molar volume of the system is then
Z=17/Y,;n;or 1019.9/(1+55.51) = 18.05 cm?® mol .
These two types of state variables have been given names:

e Extensive variables are proportional to the quantity of matter being considered — for
example, total volume (V).

® [ntensive variables are independent of the total size of the system and include concen-
tration, viscosity, and density, as well as all the molar properties, such as the molar

volume, V.

Scientific versus engineering units

In science, molar properties, such as molar volumes, molar energies, are most
commonly used. In engineering on the other hand, specific properties are more
common. Specific properties are mass-related rather than mole-related. Thus
the specific volume of water at 25°C is 1.0029 cm® g~'. Molar and specific

properties are of course related by the molar mass (or so-called gram formulas
weight, gfw) of the substance. That for water is 18.0153, so 1.0029cm? g~! x
18.0153 gmol~! = 18.068 cm® mol~'.
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Of course, many equations look much the same with total and molar prop-
erties because ratios are involved. That is, if (dU/0S)y = T, then it is also
true that (U/dS), =T or if (0G/dP); =V, then (0G/9P); =V, so that the
distinction may seem to be unimportant. However, sometimes it is important,
as we will see. In general terms, we use the total form of our variables (bold
type) in some theoretical discussions, and the molar form (italic type) in most
calculations.

Partial molar properties

In addition to total and molar properties, we have partial molar properties,
which are a little trickier to understand. It’s relatively easy to see that the
volume (extensive variable) of a system depends on how much stuff you have
in the system, but that its temperature or density (intensive variables) do not.
This is true no matter how many different phases there are in the system, as
long as you are considering the whole system, not just parts of it.

A problem arises, though, when you consider the properties of solutions,
which can have variable concentrations of solutes. The volume per gram of
halite, NaCl, is the same whether you consider 10 or 20 grams of it. But what
is the volume per gram of 10 grams of NaCl dissolved in a liter of water?
This property depends on the concentration of NaCl — the volume per gram or
per mole of 20 dissolved grams is different from that of 10 dissolved grams.
And what is the volume of something dissolved in something else? How is it
defined, or measured? These are important questions, and will be discussed in
Chapter 10.

The properties of dissolved substances is discussed in terms of partial molar
properties, the formal definition of which is

— 0Z
Z,— <7) @.1)
on; T,P.h;

where Z is the total or extensive form of any thermodynamic parameter, Z
the partial molar form, #; is the number of moles of component i, and 7; is
the number of moles of all components other than i in the same solution. Note
particularly that the partial derivative is taken of the total quantity Z, not the
molar Z, and that the main constraints are 7 and P. However, the important
thing to know about partial molar properties is not this differential equation, but
that they are the properties per mole of substances at a particular concentration
in a particular solution, as explained in Chapter 10. You think about partial
molar properties in exactly the same way you think about molar properties.
The only difference is that for a given substance, they are not fixed quantities
at a given T and P, but vary with the concentration of the substance and the
nature of the solution.

The differences between total, molar, and partial molar properties is also
discussed in more mathematical terms in Appendix C.
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2.5 Phases and components

We must also have terms for the various types of matter to be found within
our thermodynamic systems. A phase is defined as a homogeneous body of
matter, having distinct boundaries with adjacent phases, and so is mechanically
separable from the other phases. The shape, orientation, and position of the
phase with respect to other phases are irrelevant, so that a single phase may
occur in many places in a system. Thus the quartz in a granite is a single phase,
regardless of how many grains of quartz there are. A salt solution is a single
phase, as is a mixture of gases. There are only three very common types of
phases — solid, liquid, and gas or vapor. A system having only a single phase
is said to be homogeneous, and multiphase systems are heterogeneous.

The term generally used to describe the chemical composition of a system
is component. The components of a system are defined by the smallest set of
chemical formulas required to describe the composition of all the phases in the
system. This simple definition is sometimes surprisingly difficult to use. To
take a simple example, consider a solution of salt (NaCl) in water (H,0), in
equilibrium with water vapor. This might look like Figure 2.2b. There are two
phases, liquid and vapor, and two components, NaCl and H,O. A chemical
analysis could report the amounts or concentrations of Na, Cl, H, and O in the
system, but only two chemical formulas are needed to describe the compositions
of both phases.

Unfortunately, this does not nearly encompass all we need to say about com-
ponents. We will have more to say in Chapter 11, but we should at least point
out that the definition of components given above (“smallest set of chemical
formulas...”) is used for phases in our models, not in real systems. For exam-
ple, analysis of any calcite crystal will reveal the presence of many elements
besides those in the formulas CaCO;. Nevertheless, component CaCOj; is very
often used to represent calcite, whatever its actual composition.

2.5.1 Real versus model systems

Equilibrium, phases, and components are terms that appear to apply to
real systems, not just to the model systems that we said thermodynamics
applies to, and in general conversation, they do. But real phases, especially
solids, are never perfectly homogeneous. And real systems don’t really have
components, only our models of them do. Seawater, for example, has an
incredibly complex composition, containing dozens of elements. But our ther-
modynamic models might model seawater as having two, three, or more com-
ponents, depending on the application. As for equilibrium, real systems do
often achieve equilibrium as we have defined it, but it is never a perfect
equilibrium.

However, the fact that real phases are more or less homogeneous, and
that real systems achieve an approximate equilibrium, is what makes thermo-
dynamics useful. The model is perfect, but real life comes close enough in
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many respects so that the model is useful. In fact, the close similarity between
reality and our models of reality, and the fact that we use the same terms to
describe each, may lead to a certain degree of confusion as to what we are
talking about. Usually no harm is done, and the distinction gets easier with
practice.

2.6 Processes

Finally, we get to something that looks more interesting. Processes are
what we are usually interested in — changes in the real world. In geology,
these might be igneous, diagenetic, or metamorphic processes. In biology,
they might be cellular processes. In the environmental world, they might be
potentially harmful processes near waste disposal sites — the possibilities are
endless. However, most of the processes of interest to us have one thing
in common — they are extremely complicated. The only hope we have of
understanding them is to break complex processes down into their simpler
component parts, and to construct simplified models of them. We have already
begun to do this by defining several types of simple systems that we can
use; we will now define a process in a way that will help us model real
processes.

A thermodynamic process is what happens when a system changes from
one equilibrium state to another. Thus any two equilibrium states of the system
may be connected by an infinite number of different processes because only
the initial and final states are fixed; anything at all could happen during the
act of changing between them. A chemical reaction is one kind of process, but
there are others. For example, simply warming or cooling a system is a process
according to our definition.

In spite of there seeming to be an endless number of kinds of processes
in the world, we find that in thermodynamic models there are only two —
reversible and irreversible.?

e The most important irreversible processes are those that begin in a metastable equi-
librium state and lead to a more stable state, such as aragonite recrystallizing to
calcite. Another kind would be a stable equilibrium state changing to a lower energy
stable equilibrium state, such as when the weight on a piston is replaced by a smaller
weight.

® Processes that begin in a stable equilibrium state and proceed to another stable equi-
librium state, without ever leaving the state of equilibrium more than infinitesimally,

are reversible processes.

In some treatments of thermodynamics there is a third type — the virtual process. See Reiss
(1965) for its use.
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2.6.1 Irreversible processes

We have defined a metastable state of a system as a state that has more than
the minimum energy for the given conditions, but is for some reason prevented
from releasing that energy and reacting or changing to the stable state of
minimum energy. An irreversible process is one that occurs when whatever
constraint is holding the system in its high energy state is removed, and the
system slides down the energy gradient to a lower energy state. We consider
constraints in more detail in Chapter 4.

The only example we have given thus far of a metastable system is the
mineral diamond, that could lower its energy content by changing into graphite
but does not, because energy is required to break the carbon—carbon bonds in
diamond (which are very strong) before the atoms can rearrange themselves
into the graphite structure. There are many other similar examples of metastable
minerals. We have also mentioned that most organic compounds, such as all the
ones in living organisms, are metastable. When the life processes maintaining
their existence cease, they quickly react (decompose) to form more stable
compounds.

In most of the chemical reactions we will be considering, a combination
of minerals, or minerals plus liquids or gases, reacts to form some different
minerals under some given conditions. For example, the mineral corundum
(Al,04) is stable, considered by itself (i.e., there is no other form of Al,O;
that is more stable), but in the presence of water it reacts to form gibbsite
(Al,05 - 3H,0). The reaction is

AL O5(s) +3H,0(l) = Al,0, - 3H,0(s) (2.2)

and the energy relationships are shown in Figure 2.6. We will use (s), (1), (g),
and (aq) after our formulas to indicate whether they are in the solid, liquid,
gas, or aqueous (dissolved in water) state.

Do not confuse the metastability of diamond at Earth surface conditions
with the metastability of corundum or water. Diamond is metastable because
the same carbon atoms would have a lower energy in the crystal structure of
graphite. But corundum by itself is not metastable, and neither is water, at
25°C and atmospheric pressure. It is the combination of corundum and water
that can be regarded as metastable, because their combined atoms would have
a lower energy level in the form of gibbsite.

Another example is the dissolution of sugar in coffee (Figure 2.7), for which
we cannot write a simple balanced reaction. Nevertheless, the assemblage of
sugar lumps and a cup of coffee is a metastable assemblage in our usage.
They are prevented from reacting (sugar dissolving) by the fact that they are
separated, which constitutes a constraint on the system. When the constraint
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is removed by putting the sugar in the coffee, the reaction occurs, because the
“chemical energy” is lowered.’

The essence of most irreversible reactions is that energy is released during
the change (exactly what kind of energy we have not yet discussed). Therefore,
unless energy is added to the system, the reaction cannot go in the reverse
direction under the given conditions. In other words, the reaction or change
is spontaneous in one direction only. The ball will never roll uphill of its

3 The corundum plus water example and the sugar plus coffee example are different in an
instructive way. If you actually put a crystal of corundum in a beaker of water, nothing at all
happens, except that the corundum gets wet, whereas when the sugar is put in the coffee, it
dissolves immediately. Both assemblages are metastable but the constraints are different.
Corundum is prevented from reacting with water by an activation energy barrier, meaning
that the atoms in Al,O; are too tightly bound to react, even though the system could lower its
energy if they did. The sugar is prevented from dissolving in the coffee by a physical
separation.
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own accord. This does not mean that the reaction can never go in the opposite
way. It may very well go in the opposite way under different circumstances.
Thus the corundum plus water reacts spontaneously to form gibbsite at low
temperatures, but at high temperatures gibbsite spontaneously decomposes to
form corundum and water. Similarly, we said that ice—water at 5°C, but
water—ice at —5 °C. Spontaneous or irreversible (these terms are synonymous)
refers to a single set of conditions, such as a given temperature, pressure,
and composition. If the conditions are changed, the reaction may become
spontaneous in the other direction.

Reactions involving organic compounds

Reactions involving organic compounds, whether in living organisms or not,
are no different in principle from any other kind of reaction, such as those
between minerals. The only difference is that for organic compounds, the
reaction usually proceeds from one metastable state to another metastable state
of lower energy, rather than from a metastable state to a stable state. Consider
for example the reaction

CgH N, 05(aq) +H,0(l) = CsH,3NO, (ag) + C,H;NO, (aq) (2.3)

which represents the breaking of a peptide bond between two amino acids, one
of the more fundamental processes in biochemistry. The (ag) here means that
the compounds we are discussing are dissolved in water and, hence, the reaction
takes place in water. If we use names rather than chemical formulas, this is

leucylglycine + water = leucine + glycine (2.4)

This reaction occurs spontaneously, and the energy relations can be depicted
exactly as for simpler compounds. The only difference is that rather than react-
ing to compounds in the lowest possible energy state, leucylglycine plus water
reacts to form compounds in another metastable state (leucine plus glycine) of
lower energy than the initial state, as shown in Figure 2.8. Virtually all organic
compounds are metastable with respect to simple inorganic compounds and
elements such as water, nitrogen, hydrogen, and graphite. Thus the reaction

CgH3NO, (aq) + C,HsNO, (aq) = 2H,(g) +2NH;(g) + 4 HyO(1) + 8 Cyrpiee  (2.5)

is also spontaneous, as shown in Figure 2.8.

Living organisms have developed mechanisms (involving enzymes) for
overcoming the energy barriers separating products and reactants of reactions
required for the life processes of the organisms. Obviously no enzymes have
been developed to enable the breakdown of the organisms to the simple in-
organic compounds of which they are composed, as this would be fatal.
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2.6.2 Reversible processes

In the real world, a process is reversible if it can go either way, like warming a
crystal and later cooling it back down, or expanding a gas and later compressing
it to its original state. But these processes can only be considered thermodynam-
ically by integrating the relevant equations, and integration requires continuous
functions. So “reversible” is another term which has different meanings in real
and thermodynamic systems.

A reversible process in thermodynamics is one in which a system in a state
of equilibrium changes to another state of equilibrium without ever becoming
out of equilibrium. This type of process is not possible in the real world.
For example, a crystal of diamond at 25°C is warmed to 50°C. What is so
difficult about that? Although it is not difficult to warm a diamond to 50 °C, it
is impossible to do it without leaving the state of equilibrium. To change the
temperature of the crystal, heat must be applied to it. This sets up a temperature
gradient between the inside and the outside of the crystal, and heat travels
into the crystal, raising its temperature. But while a temperature gradient exists
in the crystal, it is not at equilibrium (a system at equilibrium can have no
gradients in temperature, pressure, or composition). In a real heating process,
the crystal of diamond is at equilibrium at 25°C, then it leaves the state of
equilibrium for a time, and then it attains equilibrium later under its new
conditions, 50 °C. However, in a reversible heating process, the crystal is at
all times at equilibrium with its environment, or at least never more than
infinitesimally different in temperature from its environment, and changes from
25°C to 50°C in a continuous state of equilibrium.*

4 We consider a different reversible process in more detail in §3.4.1.
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The reversible process as defined is impossible in the real world. However,
it is quite simple in the thermodynamic model, because the temperature, vol-
ume, and all other properties of the diamond are just points on mathematical
surfaces in the model, and there is nothing to prevent the point representing the
temperature to move around on a surface representing the equilibrium values
of various properties of the diamond.

Why in the world would we be interested in such a strange kind of impossi-
ble process? It’s simple, really. The reason the reversible process (defined as a
continuous succession of equilibrium states) is important in the thermodynamic
model is that it is the only kind of process that our mathematical tools of dif-
ferentiation and integration can be applied to — they only work on continuous
functions. Once our crystal of diamond leaves its state of equilibrium at 25 °C,
practically anything could happen to it, but as long as it settles back to equi-
librium at 50 °C, all of its state variables have changed by fixed amounts from
their values at 25 °C. We have equations to calculate these energy differences,
but they refer to lines and surfaces in our model, and that means that they must
refer to continuous equilibrium between the two states.

In other words, to calculate the energy difference between the two states,
we must use a fictitious path (the reversible process) between the two states.
The result is the real energy difference, no matter what actually happened to
the system between the two states. The reversible process is another example
of the difference between the real world and our models of the real world.
Reversible processes are quite simple to carry out in our models, because the
models are mathematical, not real.

2.6.3 Egg reactions

We have not discussed all the examples we used in Chapter 1. To conclude
our discussion of various common chemical reactions (§1.2.1), we should
discuss the thermodynamics of frying eggs. At a simple level, we could say
that the egg in the refrigerator represents a metastable state, and that frying it
promotes a reaction to a more stable state, analogous to the leucylglycine +
water— leucine + glycine reaction in Figure 2.8. Even if this was the case,
putting the fried egg back in the refrigerator would not suffice to reverse the
reaction; going from a stable state to a metastable one requires a source of
energy — it won’t occur spontaneously. In the water/ice case, the water returns
to ice in the fridge because ice is the stable form there.

Strictly speaking, however, we know that eggs in the refrigerator won’t last
indefinitely; they will eventually “go bad.” This means that they are not in
a truly metastable state in the refrigerator, but an unstable, slowly changing
state. This means that because the raw egg occupies no “valley” for the egg
components to roll into, it is very unlikely that we could restore the raw egg
state, even if we had an energy source.



2.6 Processes

In studying natural systems, such as eggs, it is often quite difficult to
distinguish stable, metastable, and unstable states from each other without a
considerable amount of work and ingenuity, but it can be done. When you
get numbers from tables, as we will be doing, all this work has been done
for you, although you have to realize that because of the difficulties involved,
some of the data may not be accurate and may be revised at some future date.
A compound believed to be stable under given conditions may later be found
to be metastable after more careful work is done.

Reactions in these complex systems are actually made up of a number of
simpler reactions, and applying thermodynamics requires that the individual
reactions be treated separately. The individual biochemical reactions in many
organic systems still have not been figured out. Nevertheless, we are confi-
dent that any particular reaction, once defined, will follow the logic and the
systematics described in this book.

2.6.4 Notation

Reaction deltas

We have now set up the general framework within which thermodynamics is
able to deal with processes. Any given process or chemical reaction within
a chosen system will proceed from an initial equilibrium state (normally a
metastable equilibrium state) to another equilibrium state more stable than the
first one. During this process or reaction the system is out of equilibrium.
The system has a number of properties or state variables, such as volume and
energy content, that have fixed values in equilibrium states and that therefore
have fixed amounts of change between equilibrium states. These changes are
always written using a delta notation, where the delta refers to the property in
the final state minus the property in the initial state. For example, if the system
undergoes a process during which its (molar) volume (V) changes from V;
to Vi, We write

nitial

AV = Vina — Viniti (2.6)

If the process is a chemical reaction, a number of compounds may be
involved. A generalized chemical reaction could be written as

aA+bB+---=mM+nN+---

An example is Equation (2.2), where A is ALO;, B is H,O, and M is
Al, 05 -3H,0 (there is no N); a and m are 1 and b is 3. The quantities A, B, M,
and N are chemical formulas representing any compounds or elements we hap-
pen to be interested in, and each can be solid, liquid, gas, or a solute. One side
of the reaction will usually be more stable than the other, and a reaction will
tend to occur, unless there is an energy barrier preventing the reaction, or unless
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the compounds are all at equilibrium together. In this case, the volume change
during the reaction is A,V (we insert a subscript “7” to indicate a chemical
reaction) and is equal to the sum of the volumes of the reaction products (the
final state) minus the sum of the volumes of the reactants (the initial state). Thus

AV=mVy+nVy+---—aVy—bVg—---

where V, is the volume of a mole of compound M, and so on. For example,
the change in volume for reaction (2.2) is

ArV = VA1203-3H20 - VA]203 -3 VHZO (2-7)

Note that each volume must be multiplied by its corresponding stoichiometric
coefficient in the reaction. Molar volumes are readily available for most pure
substances.

Following this convention, the change in energy of the ball rolling down
the hill in Figure 1.1 would be a negative quantity, as shown in Figure 1.3
(energy in state B minus energy in state A is negative). It follows, then, that
the change in the “chemical energy” term we are looking for will always be a
negative quantity in spontaneous reactions, as also shown in Figure 1.3 (energy
of products minus energy of reactants).

Chemical equations

For the most part, when we write reactions such as (2.2) and (2.3), we use
the = sign to indicate only that the reaction is “balanced,” meaning that the
same number and kinds of atoms appear on both sides, and that any electrical
charges are also the same on both sides. If we want to emphasize that the
reaction proceeds strongly or irreversibly we may use an arrow, as in A — B,
and if we want to emphasize that the two sides are in equilibrium, we might
use A = B. However, the = sign includes these possibilities, and all others.

2.7 Summary

If you look around the physical world today, you realize that there is an
incredible number of chemical and physical processes going on all around you,
and as you look into these in more and more detail, as science has done, you
find more and more complexity at all levels, right down to the atomic and
subatomic levels. How can we systematize and understand these processes in
such a way as to be able to control some of them for our own purposes?
Thermodynamics is the net result of our attempts to do this. It is not a
description of any real process but a rather abstract model that can be used
for all real processes. Processes in the real world are incredibly complex, but
our models of them are quite simple, containing a number of carefully defined
concepts. Processes (reactions, changes) involve energy and/or mass changes,



2.7 Summary

and these must enter or leave the place where the process is occurring; so
thermodynamics begins by defining several types of systems, depending on how
the energy and/or mass is transferred. Processes must be defined by beginning
and ending states, so thermodynamics defines equilibrium states, some having
more energy (metastable equilibrium states) than others (stable equilibrium
states), and processes or reactions that are able to go from higher energy states
to lower energy states (irreversible processes), just like a ball rolling down a
hill. Of course, a state of lower energy (stable) under one set of conditions

Volume change

The volume data in Appendix B are listed under V°, where superscript® means
standard state conditions, which we will discuss later. In the corundum — gibbsite

reaction, then,
AVE= V1§1203»3H20 - V/:1203 —3Vi,0 (2.8)
=63.912 —25.575 -3 x 18.068
= —15.867 cm® mol ™!

There is therefore a net decrease in volume of —15.867 cm?® mol~! for the reaction
as written. But you could equally well write

A Ve = %VZ]20343H20 - %‘%203 - Vﬁzo (29)

= —5.289cm® mol ™!
Or you could write

AV =2V3 0,310 — 2 VaLo, — 0 Vino (2.10)

= —31.734cm’*mol~!

All these results are cm? per mole, so the question is, per mole of what?

Clearly, the meaning of A, V° in this simple case is the volume change per mole
of whatever species have a stoichiometric coefficient of 1.0. The volume change
is —15.867cm?® per mole of Al,O; consumed or Al,O, -3H,0 formed (Equa-
tion 2.2; 2.8), and —5.289 cm? per mole of H,O consumed (Equation 2.9). How-
ever, a mole of Al,O; or H,O need not be consumed, conceptually or in reality.
The cm® mol ™! unit is actually a rate term, and as MacDonald (1990) points out,
just as a car does not need to travel for an hour for its speed to be 100 km hour™",
a mole of reaction need not occur for its A, V° to be —15.867 cm® mol~".

We make another small point about delta notation after introducing the affinity
in Chapter 18 (page 567).
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may be a state of higher energy (metastable) under other conditions (diamond
is metastable at the Earth’s surface, but stable deep in the mantle). Corundum
and water are, by themselves, perfectly stable and unreactive, but together they
have a higher energy state than does gibbsite.

The only thermodynamic difference between organic reactions (including
those in living organisms) and inorganic reactions is that both the reactants and
products of organic reactions are invariably metastable compounds; metastable,
that is, with respect to simple inorganic compounds and elements. Inorganic
reactions may involve metastable compounds, but more frequently they involve
a metastable assemblage changing to a stable one (one having the lowest
possible energy state).

Therefore, the determination of the energy states of substances and how
they change under changing conditions is fundamental to understanding what
processes are possible, and why they happen. The determination of the energy
states of individual substances must be done by experiment and measurement,
not by theoretical calculation, and the results are available in tables of data like
those at the end of this book. Calculation of the change of these energy terms
with changing conditions can be carried out only for hypothetical reversible
processes, that are not possible in reality but are quite simple in the thermody-
namic model.

As for the energy barriers that often prevent reactions from occurring,
thermodynamics has nothing whatever to say about them. It pretends they
do not exist. More exactly, thermodynamics simply deals with energy levels,
energy differences. It does not concern itself with whether a system actually
lowers its energy level or not. This is an important omission, of course, and is
the subject of much study in other branches of science, particularly kinetics.

The most important question now is what kind of energy is released during
these reactions? If it is not heat energy, then what is it? We have called it
“chemical energy,” but this is just because we haven’t said yet what it really
is. This is the topic of the next two chapters.
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The first law of thermodynamics

3.1 Temperature and pressure scales
3.1.1 Temperature

One of the early triumphs of the study of thermodynamics was the demon-
stration that there is an absolute zero of temperature. However, there are
several different temperature scales, for historical reasons. All you need to
know about this is that the kelvin scale (named after William Thompson, Lord
Kelvin) has an absolute zero of 0K'! and a temperature of 273.16 K at the
triple point where water, ice, and water vapor are at equilibrium together. The
melting point of ice at one atmosphere pressure is 0.01 degrees less than this,
at 273.15K (Figure 3.1). The Celsius scale (named after Anders Celsius, a
Swedish astronomer) has a temperature of 0°C at the ice point (273.15K) and
absolute zero at —273.15°C. This gives almost exactly 100°C between the
freezing and boiling points of water at one atmosphere, so water boils at 100 °C
(373.15K). Thus the numerical conversion between the two scales is

TK=T°C+273.15

Remember that all equations in thermodynamics use the absolute or kelvin
temperature scale, so that if you are given temperatures in °C, you must convert
them to the kelvin scale before using them. The “standard” temperature of
25°C for example is 298.15 K.

3.1.2 Pressure

Force is measured in newtons (N), where 1 newton will give a mass of 1kg
an acceleration of 1 msec™2. Pressure is defined as force per unit area, and
a pressure of 1 newton per square meter (1 Nm~2) is called 1 pascal (1 Pa).
This is a very small pressure, and older, larger pressure units are still in use.

' It is not a point of major importance, but by international agreement, temperatures on the
kelvin scale are so many “kelvins,” not “degrees kelvin,” while on the Celsius scale (no longer
called the centigrade scale) temperatures are “degrees Celsius.”
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Figure 3.1 Schematic P-T
phase diagram for the
system H,0. The
temperature of the triple
point is defined as
273.16 K.
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The bar, for example, is 10° Pa and is almost equal to the standard atmosphere
(1 atm = 1.01325 bar). Weather reports in many countries give the atmospheric
pressure in kilopascals (kPa), and it is usually close to 101 kPa, or 1 atm, or
1 bar. These units are summarized in Appendix A.

The standard temperature and pressure chosen for reporting values of ther-
modynamic variables is now 25°C and 0.1 MPa. A pressure of 0.1 MPa is
100kPa and 10° Pa, or 1 bar. It is convenient to use bars instead of pascals,
because the bar is essentially the same as atmospheric pressure, and the notation
is slightly simpler.

3.2 Internal energy

In everyday conversation we use words like heat, work, and energy quite fre-
quently, and everyone has a sufficiently good idea of their meaning for our
ideas to be communicated. Unfortunately, this type of understanding is not
sufficient for the construction of a quantitative model of energy relationships
like thermodynamics. To get quantitative about anything, or, in other words,
to devise equations relating measurements of real quantities, you must first
be quite sure what it is you are measuring. This is not too difficult if you
are measuring the weight of potatoes and carrots; it is a more subtle prob-
lem when you are measuring heat, work, and energy. Historically, it took
several decades of effort by many investigators in the nineteenth century to
sort out the difficulties that you are expected to understand by reading this
chapter!



3.2 Internal energy

3.2.1 Energy

Everyone knows what energy is, but it is an elusive topic if you are looking
for a deep understanding. In fact, a Nobel Prize-winning physicist has affirmed
that

It is important to realize that in physics today, we have no knowledge of what
energy is. (Feynman et al., 1963, pp. 4-2)

One of the most eminent of French scientists said

As we cannot give a general definition of energy, the principle of the
conservation of energy simply signifies that there is something which remains
constant. (Poincaré, 1952, p. 166)

If you consult a dictionary as to the meaning of energy, you find that the
scientific meaning is ‘the ability to do work, i.e., move a body.” In physics,
work is not what you do from 9 to 5 every day, but the action of a force
moving through a distance. So if you lift a book from the floor and put it on
the table, you are performing work (the mass of the book (multiplied by the
acceleration due to gravity) times the distance from the floor to the table), and
we say that we expended energy to lift the book. It has proved tremendously
useful to take the view that the energy we expended has not disappeared, but
has been transferred to the book. In other words, the book on the table has
more energy (potential energy) than it had on the floor, and the increase is
exactly equal to the work we did in lifting it. Thus we can use energy to do
work, and we can do work on a system to increase the energy of that system.
Work and energy are thus very closely related concepts (note that they have
the same dimensions in Appendix A).

If only things were that simple. However, we know that they are not, because
the energy in a stick of dynamite on the table is not equal to the work expended
in lifting it from the floor. Similarly, the energy in water is not the same as in
ice, whether on the floor or the table. These complications are actually of two

types.

1. There are many ways of doing work, because there are many kinds of forces. We
are particularly concerned with the work involved in chemical reactions.

2. The second is that although work and energy are indeed closely related, doing work
is not the only way of changing the energy of something, and changing the energy of
something does not always produce work. For example, we could change the energy
in our book by warming or cooling it.

We have to consider both work (in all its forms) and heat to get a consis-
tent picture of energy changes. You will notice that although we have been
illustrating energy and work by using the ball-in-valley idea (Chapter 2) and
the book-and-table idea (this chapter), which emphasizes potential energy, this
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particular kind of energy/work is actually irrelevant in thermodynamics, except
as an analogy. We will define the energy content of systems of importance to
us to be the same whether they are on the floor or the table.

3.2.2 Absolute energy

In discussing energy, we always seem to be talking about changes in energy.
The book has more energy on the table than on the floor, and presumably
more energy on the roof than on the table. And we add energy by warming
the book, too. But how much energy has the book got in any particular state —
say, on the table at 25°C? What is the absolute energy content of the book?
This was a difficult question until 1905, when Einstein postulated the essential
equivalence of mass and energy in his famous equation

E, =mc"
where E, is the rest energy of a system, m is the mass, and c is the speed of
light. Therefore, the energy contained in any macroscopic system is extremely
large, and adding energy to a system (for instance by heating it) will in fact
increase its mass. However, ordinary (i.e., nonnuclear) energy changes result in
extremely small and unmeasurable changes in mass, so that relativity theory is
not very useful to us, except in the sense that it gives energy an absolute kind
of meaning, which is sometimes helpful in trying to visualize what energy is.
Thus in considering ordinary everyday kinds of changes and chemical reac-
tions, we will continue to deal with energy changes only, never with how much
energy is in any particular equilibrium state. This is entirely sufficient for our
needs, but it does introduce some complications that would be avoided if we
had a useful absolute energy scale.

3.2.3 The internal energy

All that is required to develop our model of energy relationships is that every
equilibrium state of a system (such as our book on the table or the stick of
dynamite on the table) have a fixed energy content, called the internal energy,
U (or U, the molar internal energy) of the system. The numerical value of
this energy content is not known, and not needed. It could be thought of as
identical to the rest energy E,, if that helps, or as some small subset of E,; it
doesn’t really matter. All that matters is that when the system is at equilibrium,
its energy content or energy level is constant. Formally, the relation between
the total or rest energy and the internal energy used in thermodynamics is

E, = U+ constant

where the value of the constant is unknown (and unimportant). Since we do not
use absolute values of U or U, we cannot use absolute values of any quantities
having U in their equations of definition.



3.3 Energy transfers

Somewhat paradoxically, in spite of being possibly the most fundamental
of thermodynamic quantities, changes in U are little used in geochemical
applications. It is never listed in tables of thermodynamic values, for example,
and one rarely needs to calculate AU. The reason for this will become apparent
as we proceed. It has to do with the fact that we, the users of thermodynamics,
have a great predilection for using temperature, pressure, and volume as our
principal constraints or measured system parameters. It turns out that this
requires that we use AU in slightly modified forms, that is, AU modified by
what are often relatively small correction factors (such as PAV), and these
modified forms are given different names and symbols. It is then quite possible
to rarely think about AU, since it seems only to arise in the development of the
first law. For a better understanding of the subject, however, it is best to realize
that in most energy transfers in the real problems that we will be considering,
AU is by far the largest term involved. Just because we do not usually calculate
its value does not mean it is not important.

3.3 Energy transfers

In the discussions in the previous chapters, we proposed the idea that changes
or reactions occur because systems can lower their energy by such changes.
However, we mentioned that the most obvious kind of energy, heat energy,
was not the right kind of energy. There is another very common kind — energy
expended as work, as when dynamite is used to break rock. However, work
energy is not the answer to our questions either, nor is the combination of heat
and work. Nevertheless, they are extremely important, and together form the
basis of the first law.

® Heat (q) is the energy that flows across a system boundary in response to a temperature
gradient.

e Work (w) is the energy that flows across a system boundary in response to a force
moving through a distance (such as happens when a system changes volume).

Heat and work? are therefore not separate entities as such but are forms of
energy that are transferred in different ways. An enlightening analogy has been
offered by Callen (1960). In Figure 3.2 we consider the water in a very deep
pond (the amount of water is thus very great but finite and in principle could
be exactly measured) to correspond to the internal energy U of a system.

Water may be added and subtracted from the pond either in the form of
stream water (heat) or precipitation/evaporation (work). Both the inlet and
outlet stream water can be monitored by flow gauges, and the precipitation

2 We use g and w for increments or amounts of heat and work, and ¢ and w where the molar
form is appropriate. Many texts use 8¢ and dw for the same things, but not dq or dw, which
would imply they are exact differentials (see §C.2.1).

35



36

Figure 3.2 The pond
analogy for the first law.

The first law of thermodynamics

Rain, w,

Stream water flowing in, Evaporation, w,

A Stream water flowing out,

Very | deep

measured by a rain gauge. Evaporation would be trickier to measure, but we
may assume that we have a suitable measure for it. Now if the volume of
stream inlet water over some period of time is g;, the stream outlet water ¢q,,,
the rain w,, and the evaporation w, then if there are no other ways of adding
or subtracting water, clearly

AU= (ql _qo) + (W, - we)

where AU is the change in the amount of water in the pond, which could be
monitored by a level indicator as shown. Thus

AU=q+w
where

9=9—4,
and

wW=w,—Ww,

Once water has entered the pond, it loses its identity as stream or rain water.
The pond does not contain any identifiable stream water or rain water, simply
water. Similarly systems do not contain so much heat or work, just energy. Just
as the water level in the pond can be raised either by stream water alone or by
rain water alone, Joule showed in the nineteenth century that a temperature rise
in a water bath of so many degrees can be caused either by heating (transferring
energy due to a temperature difference) or by thrashing a paddle wheel about
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in it (transferring energy by force through distance, i.e., by deformation of the
system boundary).

Another implication or assumption in our pond analogy is that water is con-
served, that is, it cannot simply disappear as if by magic. The same proposition
regarding energy is known as the first law of thermodynamics. We invoked
this principle when we said that the energy expended in lifting the book from
the floor to the table was not lost, but transferred to the book.

3.4 The first law of thermodynamics

The first law of thermodynamics is the law of conservation of energy. If U is
the energy content of a system, and it may gain or lose energy only by the
flow of heat (g) or work (w), then clearly, as in the pond analogy, AU must
be the algebraic sum of ¢ and w. In order to express this algebraically, we
must have some convention as to what direction of energy flow +¢q, —q, +w,
and —w refer to. In the pond analogy we assumed implicitly that addition of
water to the pond was positive, whether as stream water or rain water. Thus
heat added o a system is positive, and work done on a system is positive.
This convention may be represented as in Figure 3.3a and is what we call the
“scientific” convention — scientists like it because it is internally consistent. It
results in the equation previously found,

o

Another convention (Figure 3.3b) is to say that heat added to a system is
positive, but that work done by a system is also positive, or that work done
on a system is negative. This we call the “engineering” convention, because
engineers prefer to think in terms of heat engines, and an engine doing work
is something positive. This results in the relation

AU=q—w
+q -4 "H‘I -q
V |J ¥ 4w V |'| e ————
System System
—1 —= 4w
AU=q+w AU=qg—-w
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commonly used
conventions for the sign
of ¢ and w, leading to
two formulations of the
first law.
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and also results in slightly simpler equations expressing pressure—volume work
(the minus signs in Equations (3.3) to (3.7) would be missing). In this text we
will use the scientific sign convention. Any additions of matter and energy to
the system are positive in sign and all losses are negative.

Note that we have not “proved” the first law. It is a principle that has been
deduced from the way things work in our experience, but the fact that it has
never been known to fail does not constitute a proof. Neither does the fact that
the sun has never failed to rise in the east constitute a proof that it will rise in
the east tomorrow, but I wouldn’t bet against it.

3.4.1 Work

Types of work

There are many different ways of doing work on a system, and many different
ways of having a system do work, depending on what kinds of forces are
available. For example,

® The force of gravity means that we have to do work to lift objects, as mentioned
above. If the mass is m, the acceleration due to gravity is g, and the distance is dh,
the work w is w = mg - dh.?

e Tensile force can be used to stretch a wire. If the tensile force is f and the increase
in length is dl, w = f -dl.*

e Tensile force can be used to increase the area of a soap film. If the surface tension is
v and the increase in surface area is dA, then w =y - dA.

e Expansion due to the heating of a gas, or indeed of anything at all, produces a
force. This case is of special interest to us, because the work done by expansion or
contraction of systems due to a change in temperature at constant pressure cannot be
avoided. We can choose to eliminate other forms of work, but not this one (unless
we consider only constant volume systems, which is useful at times, but not very
practical). It is treated in more detail below.

® Chemical work. For example, a battery can be used to do work, because a chemical
reaction occurs in it which produces a voltage. The work done by chemical reactions
is of course a principal focus of chemical thermodynamics, and the equations for it

will be developed in later chapters.

There are others, such as work done by centripetal and frictional forces, that
you can review in a physics text. Thermodynamics can accommodate all kinds
of forces and types of work, but because they are in principle all the same, and
are treated in the same way, it is simpler to develop the subject by considering

Don’t be confused by the differential term dh here. This is not (or at least not necessarily) an
infinitesimal distance. It is any distance in the & direction. We could call it Ak, but we will
later include it in a differential equation (§4.7), so we might as well use the differential
notation here too. It is only when we integrate that d2 must become very, very small. This is
treated in more detail in Appendix C.

This assumes the wire deforms elastically.
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only those forms of work that we cannot avoid. Therefore the basic structure
of thermodynamics is always developed using heat and pressure—volume work,
and other forms of work considered afterward. In our case, the only other form
of work of any importance is chemical reaction work.

Pressure-volume work

Work in natural environments is for the most part only of one kind — the
work of expansion, or pressure—volume work. Pressure—volume work is always
discussed using a piston-and-cylinder arrangement as shown in Figure 3.4. This
seems natural to engineers, but may seem rather artificial or even useless to
someone interested in processes that happen in nature or in the environment.
You have to realize that virtually all processes in all natural systems involve
some change in volume, and therefore work is done against the pressure on
the system, whatever that is (it is very often atmospheric pressure). We use a
piston—cylinder arrangement for convenience — any system that changes volume
could be used. Once we have found the appropriate equations for pressure—
volume work, we can use them in our models of any system, whether or not
they have pistons and cylinders.

The piston—cylinder arrangement as shown in Figure 3.4 is not a real piston
in a real cylinder, of course, but a conceptual one, so we can give it whatever
properties we like. We must be careful about this, however, otherwise the
results will be useless. The cylinder is fitted with some devices that can hold
the piston in position at various levels. When the piston is held stationary, the
forces tending to move the piston are balanced (force pushing up equals force
pushing down). If this were not the case, the piston would move. The two
forces are acting on opposite sides of the same piston, having the same area
(and force/area = pressure) so the pressure of the gas, P,,, is exactly balanced
by the external pressure, P,,. The external pressure is provided partly by the
stops that are holding it in place and partly by the weight of the piston itself,
plus any weights on the piston. If the stops are removed, then all of a sudden
P, is reduced to that produced by the piston and weights only, P, > P,,,,

Position Pext,
Pin12
y‘:’ext1
9 I ] I | I v, |
TP,
Vi

T constant
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Figure 3.4 Irreversible
expansion of a gas from
external pressure Py, to
Pext,- During expansion,
external pressure is fixed
by the weight of the
piston plus the weights
on the piston.
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Other forms of work

A block weighing 10.0kg is lifted 4 meters at a place where g = 9.80msec™2.

The work done is
w=mg-dh
=10.0x9.80 x 4
= 98.0 newtons x 4 meters
=392 joules

A film of water has a surface tension of y =72 x 10> Nm~'. The work done in
expanding its area by 1 cm? (= 107*m?) is

w=1vy-dA

=72Nm~! x 10™*m?

=72 x 10~*joules

and the piston moves up until it encounters more stops — WHAP! — and all
of a sudden P,, = P,,, once more, though at a different (lower) pressure (the
experiment has been arranged such that the gas pressure is 10 pressure units at
the upper stops, which is position 2, and 20 pressure units at the lower stops,
position 1). Real gases tend to cool during expansion, so if we want the initial
and final states to be at the same temperature, some heat must flow into the
cylinder from the surroundings.

At this stage, one normally says something like “If the piston is well-
lubricated and well-constructed, we can ignore friction effects” but we know
we are conducting a model experiment, so we just say there is no friction in
our model. The pressure—volume history of the change can be illustrated as in
Figure 3.5. The external pressure during expansion is constant, since it is fixed
by the mass of the piston. The work done during the expansion is’

w = force x distance
= —(total mass- g)-Ah
= — (P - A) - AR
=—P.(A-Ah)

=—P. -AV (3.2)

ext

> The work done will also include a term (3mv?) for the work done in accelerating the piston. If
we let the stops be part of the system, this kinetic energy is returned to the system at the upper
stops, and can be neglected (Kivelson and Oppenheim 1966).
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Figure 3.5 External

pressure (P.,) versus

20— e<— Piston in position 1, P,;=20 volume (V) plot for the
irreversible expansion of
the gas in Figure 3.4. The
vertical dashed lines
indicate an instantaneous
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|

|

P ext

10—
solid horizontal lines
Pt indicate change in

ex
During a7 _—Area=Py (V,-V) volume at constant
expansion =P AV pressure.
vV, vV,
' =v

p’

ext

|
|
|
|
|
|
|
|
|
\

where A is the area of the piston and A# the distance it travels, so w is the area
under the path of expansion or expansion curve in Figure 3.5. The minus sign
is because the system is doing work. If we repeat the process, but this time we
place a larger weight on the piston, exactly the same thing will happen, but
more work is done because a greater mass was lifted through the same volume.

If another weight is added for the next expansion, we may have a total
weight that is too great to allow the piston to reach the upper stops (position 2)
and it will come to rest (equilibrium) somewhere in between. Then if the second
weight is removed, the piston will proceed upward again as before, giving an
expansion path as shown in Figure 3.6. If we use a lot of weights and remove
them one at a time, letting the piston come to rest after each step, we will get
a path such as shown in Figure 3.7.

Clearly we are approaching a limit of maximum work obtainable from the
expansion of our gas, and clearly too, the maximum will be when we take an
infinite number of infinitesimally small incremental steps from V, to V,.

20 — !

| Péx

Figure 3.6 External
pressure (P.,) versus
volume (V) for a
two-stage expansion of
gas. After an initial

. "
‘/y Area=—w’'>—w €Xpansion at P some
weight was removed
v v from the piston and the
1 2 expansion continued

v at P,

ext*

L — >

’
Pext
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Figure 3.7 External
pressure (P,,) versus
volume (V) for a
multistage expansion of
gas. After each constant
P..; expansion, some
weight was removed,
allowing a further
expansion.

The first law of thermodynamics

PAV work

In Figure 3.5, suppose the pressure units are bars, V; = 1000cm? of ideal gas,
and during expansion P, is 5 bars. How much work is done?
The pressure on the gas is decreased by half (from 20 to 10 bars), so the (ideal)

gas will expand to twice its volume (PV = constant), so V, =2000cm?. Then
w=—Py(V,—V))
= —5x (2000 — 1000)
= —5000bar cm®

To convert this to joules, Appendix A gives the conversion 1bar =0.10Jcm™3,
)

w=—-500]
Note the minus sign, which indicates the system is doing work. If V, were less
than V,, AV would be negative and w would be positive, meaning work is done

on the system.

20 — .
Pext
10— \—:—
r
/Z/ Area=—w">-—w’'>-w
V, V,
\'

Since we have been letting the piston come to rest or equilibrium after every
weight removal, in the limit we will have an infinite number or continuous
succession of equilibrium states, giving us an example of a reversible process.
In this particular case the name “reversible” is particularly appropriate since
at any stage in the expansion the direction of movement can be reversed by
changing the external pressure infinitesimally.
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In the limit when infinitesimal increments of V are taken, the work of
expansion is (see Figure 3.8)

V.
— [ pav (3.3)

Vi

wrev - wmax

Here we need make no distinction between P,,, and P,, because they are
never more than infinitesimally different in our continuous succession of equi-
librium states. Again, note the negative sign required to comply with the
scientific sign convention.

Since the end positions 1 and 2 of our expansion in every case consisted
of our gas at stable equilibrium at a fixed P and T, then according to the
first law there is a fixed energy difference AU between the two states. We
have gone to some length to show that there is no fixed “difference in work,”
or work available from the change from one state to the other. Thus we are
led to believe that the amount of heat flowing into our thermostatted cylinder
must at all times, once equilibrium was established, have compensated for the
variations in work performed, giving the same total ¢ +w in every case. We
could verify this, of course, by making calorimetric measurements, but this is
basically what Joule and many other workers have already done.

Our intent here is not so much to illustrate the constant energy change
between states, but that this energy change, while accomplished by heat and
work, can be made up of an infinite variety of combinations of heat and work.
When the process is made reversible, we get the maximum work of expansion,
and this will be given by Equation (3.3), but even so, we are unable to calculate
this amount of work (evaluate the integral) without more information (we need
to know P as a function of V so that we can integrate Equation 3.3).

20
Pint= Pext
10

Vi Vo
Vv

V2
Area =_/. PdV=—w_.
Vi

Figure 3.8 Pressure versus volume for the reversible expansion of a gas. The
limiting case where an infinite number of constant F,,, steps are taken gives the
maximum area under the curve. During the expansion, internal pressure and
external pressure are never more than infinitesimally different, or P,,; = P,,; at all
times.

43



44

The first law of thermodynamics

The integration of (3.3) at constant external pressure results in

w= _PCXI(VZ _VI) (34)

=—P_ AV (3.5)
as in Equation (3.2). The internal pressure necessarily varies during this expan-
sion, as discussed above. It is also possible to integrate at constant internal
pressure P, but this is necessarily a reversible process, because the only way
to do this is to have the external and internal pressures equal at all times. This
results in

Wiey = _P(VZ _Vl)

= —PAV (3.6)

In this case, for both P and V to vary, the temperature would have to vary as
well. See Figure 4.10 for an example, although for a reversible compression
rather than expansion.

A point worth emphasizing is that in any real or nonreversible expansion, as
shown in our example, the work obtained is less than the maximum obtainable
(from a reversible expansion). Thus in general, rewriting (3.3),

\p)
—w<|[ Pdv (3.7)
Vi
where the < part of the < sign refers to any irreversible change in V. This can
also be expressed as®

W= Wi

or

—W =< —We,

For the opposite case of compressing the gas from position 2 back to
position 1, the inverse series of steps can be employed. Thus, if at position 2
a heavy weight is placed on the piston, it will WHAP down to the stops at
position 1, describing a path such as in Figure 3.9. Obviously, much more
work has had to be done in compressing the gas than we obtained, even in
the reversible case, from expansion. However, by adding a larger number of
smaller weights one at a time we can reduce the amount of work required

6 These minus signs can certainly be confusing. In equations like (3.4), which have an = sign, it
doesn’t matter whether the minus sign is on the left or the right. In inequality expressions like
(3.7), it does. The “engineering convention” (page 37) is perhaps less confusing in this respect.
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Position 1
Pext

\
20— * : Area = Work of compression
Aﬁ/;/ > Work of expansion

Pext

o

10— —— Position 2

for the compression, gradually approaching the stable equilibrium curve from
above, rather than from below as before. In the limit, of course, we find that
for a reversible compression the work required is exactly the same as the work
available from a reversible expansion.

Considering this work stuff in such detail may make it look complex, but it
really is not. Just remember that if you need to calculate work (which happens
surprisingly little in geochemistry), you need either a constant pressure process,
or a reversible one (so you can integrate). For “real” work processes, the work
done is invariably less than the reversible work (Equation 3.7), usually much
less, and usually of more interest to engineers than to geochemists.

3.4.2 Heat

It might be expected that since
AU=q+w
and

V2
—w < Pdv (3.8)

Vi
perhaps there is a very similar story for the heat transfers in the gas expansion

cases we have been considering. That is, perhaps

7,
—q < T dZ (3.9)

Z

Figure 3.9 External

pressure (P.,) versus

volume for the
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where Z is some property of the gas. This is indeed the case (except for a sign
change), but we must await the development of the second law, which will
introduce us to entropy (—Z in Equation 3.9).

3.4.3 The molar forms

Up to here we have considered total work, total heat and total energy involved in
processes. In future chapters where we deal primarily with chemical reactions,
it will often be more convenient to use the molar forms (§2.4.1), for example

AU =qg+w (3.10)
w=—P AV (3.11)
Wy = —PAV (3.12)

Vs
—w < Pdv (3.13)

Vi
and

2y

—q < Tdz (3.14)

Zy

Forms of work other than the work done by chemical reactions are not usually
expressed in a molar form, so we could be more explicit by writing (3.12), for
example, as

Wy = —PAV

rev

but the less explicit form is not incorrect.

3.5 Enthalpy, the heat of reaction

In processes at constant external pressure, the work done, as we have seen
(Equation 3.11), is — P, AV.” In the present derivation it doesn’t matter whether
we use P, or P, as long as it is constant. Therefore the first law can be written

AU =g, —PAV

7 You might see Equation (3.11) written as w = —P AV. The difference is, to repeat, that P, is
the (constant) external pressure (often it is atmospheric pressure) on the system which may be
undergoing any sort of process, whereas unsubscripted P refers to the system pressure, which
can have meaning only when the system is at equilibrium. Therefore if the system is
undergoing a process, and P is constant, that process must be a reversible one, in which the
heat flow in or out of the system constantly compensates for any tendency of the pressure to
change. See also Figure 4.10.
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Heat of reaction

The standard heat of reaction for reaction (2.2) is

AH

AH?=DH o a0 — A H —34/H

AlLO3(s) H,0()
= —2586.67 — (—1675.7) — 3(—285.83)
= —53.48kJ mol~!

= —53480Jmol ™!

Again, the minus sign means heat is evolved (exothermic reaction). This amount

of heat would raise the temperature of a liter of water about 12 °C.

where g, is the heat transferred in the constant pressure process. Thus
qp=AU+PAV

from which we can see that the heat transferred in constant pressure processes
is equal to a function involving only state variables, and so it is itself a state
variable. Don’t forget that we have gone to some trouble to show that in general
neither g nor w is a state variable; it is only in the special case of constant
pressure processes that they both become state variables. Because of this, it is
useful to define a new term, enthalpy,

H=U+PV (3.15)
which has the differential form
dH =dU+PdV+VdP

At constant pressure, this becomes

dHp = dU+PdV (3.16)
or
AH, =AU+PAV (3.17)
and since
AU =g, — PAV
therefore

AH, = gp (3.18)
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All we have done here is notice that, because work becomes a fixed quantity
in constant pressure processes, then heat does too, by the first law. And because
constant pressure processes are so common (including all reactions carried out
at atmospheric pressure, such as most biochemical reactions), it is convenient
to have a state variable defined to equal this heat term. Defining enthalpy as
in (3.15) accomplishes this, and we now have a “heat of reaction” term, which
will be useful in all constant pressure processes.

Note that because H is a state variable, AH is perfectly well defined between
any two equilibrium states. But when the two states are at the same pressure,
AH becomes equal to the total heat flow during the process from one to the
other, and in practice enthalpy is little used except in this context.® Processes
having a negative A, H (A,H < 0) are termed exothermic, and those having a
positive A, H are termed endothermic.

3.5.1 Additivity of state variables

At several points in our discussions so far, we have mentioned or assumed that
we can add and subtract state variables such as AH, for example as shown
in Figure 5.3. This is perhaps obvious, but it is so fundamental that we will
emphasize it here.

We said in Chapter 2 (§2.4) that a state variable is a property of a system
that has a fixed value when the system is at equilibrium, whether we know
the value of that property or not. For example, a mole of water at 25 °C,
1 atm has a fixed but unknown enthalpy H, and fixed values of all other state
variables. We also said that this means that the changes in these properties
between equilibrium states depends only on the equilibrium states, and not on
what happens between the time the system leaves one equilibrium state and
the time it settles down in its new equilibrium state. Therefore, if two different
reactions produce the same compound, we can subtract the A, H®, for example,
of these reactions to get the A of the combined reaction, and the properties of
that compound will cancel out. For example, carbon dioxide, CO,, might be
produced from the oxidation of either graphite or carbon monoxide, CO:

C+0, =C0, A, H® = —393.509kJ mol !
Co+10,=Co, A, H° = —282.984 k) mol !

Subtracting the reactions and the A,H° values (reverse the second reaction,
change the sign of A, H°, and add), we get

C+30,=CO A, H° = —110.525kJ mol !

Thus we get the properties of a reaction that is impossible to carry out experi-
mentally from two reactions that are relatively easy do experimentally.

8 Another use of the enthalpy is discussed in §6.2.3.
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3.5.2 Enthalpy of formation from the elements

A major problem arises from the definition of enthalpy, Equation (3.15). The
problem is that we cannot measure it. This arises from the nature of energy
itself, because we can only measure energy changes, not absolute energies.
Therefore we can only measure enthalpy changes, and changes in any other
property which includes the energy U (or U).

The problem this creates is that we do not want to have to tabulate an
enthalpy change for every process or chemical reaction which might become
of interest to us — there are too many. We would like to be able to associate
an enthalpy with every substance — solids, liquids, gases, and solutes — for
some standard conditions, so that having tabulated these, we could then easily
calculate an enthalpy change between any such substances under those standard
conditions. After that, we could deal with the changes introduced by impurities
and other nonstandard conditions. The method developed to allow this is to
determine, for every pure compound, the difference between the enthalpy of the
compound and the sum of the enthalpies of the elements, each in its most stable
state, which make up the compound. This quantity is called A, H®, the standard
molar enthalpy of formation from the elements. For aqueous ions, the quantity
determined is a little more complicated (Chapter 15), but the principle is the
same. It is this enthalpy quantity which is invariably tabulated in compilations
of data.

For example, the standard enthalpy of formation of anhydrite is

ArH (s, = Heasoy = Haw = sy =2 Hoyg (3.19)
where the superscript ° refers to the standard conditions (see below). None of
the individual H° quantities is determinable, but the difference is determinable
by calorimetry. Now if we want to know the heat liberated or absorbed in a
chemical reaction, we need only look up these A, H® values for each reactant and
product. For example, for the formation of gypsum from anhydrite, we write

CaS0, (s) +2H,0(]) = CaSO, - 2H,0(s) (3.20)

for which the “standard molar heat of reaction,” A, H°, is

AH® = AfHZaSO4-2H20 - AfHEaSO4 - ZAfHI(:IZO(I) (3.21)
= HEaSO4~2H20 - HéaSO4 - 2Hﬁ20(1> (3.22)

Note that in balanced reactions the H° terms for all the elements cancel out,
and we are left with the “real” enthalpy difference (Equation 3.22) between
products and reactants, with no contribution from arbitrary conventions or
assumptions. It is, however, a heat of reaction for standard conditions only.
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Standard states
It is often assumed that the “standard conditions” are 25 °C, 1 bar. Actually it
is a bit more complicated in two respects.

1. Knowing the 7 and P of the state is not sufficient — we must also specify the physical
state of the substance. For solids and liquids, it is simply the pure substance (as in
our anhydrite-gypsum-water example) but for gases it is the gas acting ideally at one
bar (or 10° Pa), and for solutes it is the solute acting ideally at a concentration of
one molal. The reasons for these choices will be discussed later (Chapter 8).

2. While the temperature and pressure of the standard conditions are indeed 25 °C and
one bar for purposes of tabulating data, we can and often do have standard conditions
at any 7 and P.

These more complete definitions of our “standard conditions” define our stan-
dard states, which will be seen to become particularly useful when we later
define the concept of activity (§8.2).

3.5.3 The heat capacity

An older name for the enthalpy is the “heat content.” This name is somewhat
discredited for good reasons, but nevertheless it helps a little in conveying
the essential idea behind the next concept, the heat capacity. The molar heat
capacity can be defined as the amount of heat required to raise the temperature
of one mole of a substance by one degree. Of course, some substances require
much more heat to do this than do others.

The formal definition is

dH
<7> =Cp (3.23)
dT ),
or
dAH
<7> =AGC, (3.24)
atr ),
or
dAH®
( ) =AC} (3.25)
at ),

Thus heat capacity is the rate of change in H or AH with T. A large Cp means
that H or AH changes a lot for a given change in 7, i.e., it takes a lot of heat
to raise the temperature.

It takes a different amount of heat to raise the temperature of a system
depending on whether the volume or the pressure is kept constant, giving two
different quantities, C, and C,. C, is rarely used in geochemistry, but the heat
capacity at constant pressure, Cp, is a surprisingly important quantity. It can
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be used to calculate not only A, H at high temperatures, as in the next section,
but the high temperature values of several other important quantities that we
will be considering.

Temperature dependence of the heat capacity

Many different equations have been suggested to represent the variation of C,
with temperature, and several are in current use. No differences in principle
are involved, so we will consider only three of these equations.

Maier-Kelley

This equation was suggested by Maier and Kelley (1932), and is used in the
program sUPCRT92 (Johnson et al., 1992) (except for a different sign for the ¢
term) for minerals and gases, to be described later. It is

Co=a+bT—cT™? (3.26)

Thus to know how C, for a substance varies with 7" we need only look up the
values of a, b, and ¢ for that substance. However, it is important to note that
these coefficients are only available for pure solids, liquids and gases, because
C, for pure substances increases in a fairly simple way with 7. Aqueous
solutes, however, have a much more complex behavior we will describe later.

The Maier—Kelley coefficients are available from various literature sources,
but the most convenient source is SUPCRT92. For example, for quartz, SUPCRT92
shows the coefficients in Table 3.1. This means that a = 11.22, b x 10° = 8.2,
and ¢ x 107> = —2.7, or

a=11.22
b =0.0082
c=-270000

These values are only valid up to 574.85°C, where a phase transition (from
a-quartz to B-quartz) takes place. At temperatures above the transition,
a=14.410, b =0.00194, and ¢ =0.

Inserting these values into equation (3.26) (and converting °C to kelvins),
you find that C, varies as in Table 3.2, showing that the amount of heat required

Table 3.1 Part of some SUPCRT92 output.

MAIER-KELLY COEFFICIENTS
NAME a(10%x0) b(10%¥*3)  c(10%**-5) T limit (C)
QUARTZ 11.220 8.200 -2.700 574.85
post-transition 1 14.410 1.940 .000 1726.85
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Table 3.2 Heat capacity of quartz as a function of temperature.

SUPCRT92

Berman (1988)  Shomate
T°C calmol'K~!  Jmol"!K~!  Jmol 'K™! Jmol'K~!
25 10.63 41.19 44.74 44.58
100 12.34 51.63 51.56 51.39
200 13.89 58.13 57.76 58.16
300 15.10 63.17 61.79 63.22
400 16.14 67.55 64.53 67.58
500 17.11 71.58 66.50 72.26

to raise the temperature of quartz (and most pure substances) increases as the
temperature increases.

In most geochemical work, these numbers are not of much interest by
themselves. However, they are the key to using thermodynamics at temperatures
above 25°C.

There are two things to remember when using Maier—Kelley coefficients
from SUPCRT92.

1. supcrTQ2 uses calories throughout. Normally you will want to convert to joules.

2. SUPCRTQ2 uses the equation Cp = a+b T + ¢ T2, rather than Equation (3.26) so if
you are using (3.26) you must change the sign of the SUPCRTQ2 c-term (or, if you
prefer, sUPCRTQ2 does use Equation (3.26), but includes the minus sign with the

tabulated c-term).

For chemical reactions in which solutes are not involved, the change in each
coefficient between products and reactants is evaluated in the usual way. For
example, for reaction of anhydrite plus water to form gypsum, Equation (3.20),

Aa = Acas0,-2H,0 — Acaso, — 2 au,0(1)
Ab = bCaSO4»2H20 - bCa504 -2 bHZO(l)
Ac = Ccas0,-2H,0 — Ccaso, — 2 CH,0()

so the change in C, between products and reactants is
ACo=Aa+AbT—AcT™? (3.27)

Berman-Brown

Another widely used heat capacity equation was suggested by Berman and
Brown (1985). They claim it reproduces calorimetric data better than does
Maier—Kelley, and also ensures that C, approaches the high temperature limit
predicted by lattice vibration theory. However, the main reason for knowing



3.5 Enthalpy, the heat of reaction

Table 3.3 The entry for a-quartz from the GeO-Calc database.

A—QUARTZ SI(1)0(2) aQz AQTZ

ST —856288. —910700.000 41.460 2.269

Ccl 80.01199 —240.276 —3546684.000 491568384. 0.0

V1 2.38945698 0.0 —0.24339298 0.00101375 0.0

T1 848.00 373.00 —-0.09186959 0.00024607 0.0
T2 0.023743 0.0 0.0 —0.0 0.0

about this equation is probably that it is used in the useful GeO-Calc software
(Brown et al., 1988).” The equation analogous to Equation (3.27) is

ACS = A kg + Ak, T A ky T2 4 A ks T3 (3.28)

The values for quartz are shown in Table 3.3, which is part of the database
for the Ge0-Calc software. The C, coefficients are listed on the line labeled C1.
They are also available from Table 3a in Berman (1988), where they are shown as
ky=180.01,k; x 1072 = —2.403,k, x 107> = —35.467,and k; x 1077 =49.157.

The calculated C, using these numbers is shown in Table 3.2. The agreement
is very good at low temperatures, but the difference increases towards the
transition point. This undoubtedly reflects a different choice of experimental
C, values to fit, rather than the ability of the equation to fit them. Differences
of this type abound throughout databases. Choices are made for you that you
may not agree with. You hope that this disagreement will not change the sense
of your results.

The measurement of Cp, will be considered in Chapter 5.

Shomate
In the 1940s C. Howard Shomate began using an equation for Cp that has
subsequently been adopted by the National Institute for Science and Technology
(NIST) for their archives of thermochemical data, and available for many
substances at the “chemistry webbook” website, http://webbook.nist.gov. The
equation is

Cy=A+Bt+C**+ D’ + E/t* (3.29)
where A, B, C, D and E are constants, and ¢t = T(K)/1000, the temperature in
kelvins divided by 1000. The webbook site also lists equations for H; — Hj,,
and S3, which require additional constants. The listing for quartz is shown in
Table 3.4.

Equations using these constants are

Hy —Hsy = At+Bt*/2+Ct*/3+Dt*/4—E/t+F —H

S° = Alnt+Bt+Ct*/2+ D /3—E/2t)+ G

 The “Ge0” in this unusual name is intended to signify the thermodynamic quantity G°, not the
prefix Geo-, as in Geo-engineering.
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Table 3.4 The NIST data for quartz.

Temperature (K) 298.0-847.0 847.0-1996
A —6.076591 58.75340
B 251.6755 10.279 25
C —324.7964 —0.131384
D 168.5604 0.025210
E 0.002 548 0.025 601
F —917.6893 —929.3292
G —27.969 62 105.8092
H —910.8568 —910.8568
Reference Chase, 1998 Chase, 1998
Comment quartz phase quartz phase

data last reviewed in June, 1967  data last reviewed in June, 1967

where HS — H5, is in kImol™" and S° is in Jmol~' K~!. Values for C§ using
equation (3.29) are listed in Table 3.2.

The Maier—Kelley and the Berman—-Brown equations are intended for tem-
peratures above 298.15 K, while the Shomate equation is valid down to 0 K.
The upper temperature limit for all three equations varies depending on the
experimental data available.

3.6.4 Temperature dependence of the enthalpy

Equation (3.25) for our more explicit situation (a chemical reaction) now
becomes

0N H® A
or ), T F (3.30)

where subscript “#” has been added to signify that AH° refers to a chemi-
cal reaction. Using (3.27), (3.30) can now be integrated to give the standard
enthalpy of reaction at any elevated temperature T at one bar pressure:

T T
/ dArH°:/ A,CsdT (3.31)
T; T;
T
AH = 8,H;, = [ (8at 8,7 = A,eT)ar

B Ab, ., (11

_A;~a(T_Tr)+T(T —Tr)+A,C (?_i> (332)
where A, H7 is the standard enthalpy of reaction at temperature 7, and A, H ;
is the standard enthalpy of reaction at the reference temperature, 7,, normally
298.15K. This is determined by calorimetry, usually by determining A H®
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for each compound in the reaction (§3.5.2). It is readily available for most
compounds. The effect of pressure on enthalpy will be considered later.
Using the Berman—-Brown formulation, the analogous enthalpy equation is

1
AH; = AH; = A k(T = T) +28,k, (T2 ~ T7)

11\ Ak (1 1
Ay == |- (= — = 3.33
Br) Hmn) 0w
These k coefficients are of course quite different from the Maier—Kelley
coefficients.
These equations are a bit awkward if you are using a calculator, but are
simple to program, and values for many reactions can be obtained directly from

the software, e.g., SUPCRT92 in the case of the Maier—Kelley coefficients. As
an example, consider the reaction

CaCO;(s) + Si0, (s) = CaSiO; (s) +CO, (g) (3.34)

which is a common metamorphic reaction in which wollastonite is formed when
carbonate rocks are intruded by granite magma. It is really only of interest at
high temperatures. From supcrT192, we find the Maier—Kelley coefficients in
Table 3.5, so

A,a = acysio, tdco, — dcaco; — Gsio,
=26.64+10.57—-24.98 —11.22

=1.01

Similarly, A,b = —0.00774, and A,c = 32000.

Inserting these values in Equation (3.32), not forgetting to change the sign
of A,c, we find the values of A H7 — A H7 shown in Table 3.6. Exactly the
same values are produced by SUPCRT92 for this reaction. To obtain the standard
heat of reaction at 7', A, H?., of course you need to know A H ‘}r, which in turn
is generally available from tabulated values of A H°, as discussed in §3.5.2.
In this case, SUPCRT92 reports that A, H5, = 22561 calmol™', so that A H° at
500°C, for example, is —1424 422561 =21 137 calmol~!.

Table 3.5 Maier—Kelley coefficients for reaction (3.34).

Compound a b c

calcite 24.98 0.00524 —620000
quartz 11.22 0.0082 —270000
wollastonite 26.64 0.0036 —652000

CO, 10.57 0.0021 —206000
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Table 3.6 A, H7 — A, H7.
values for reaction (3.34) from
Equation (3.32). The results
Jfrom SUPCRT92 are identical.

A Hy — A HS,

T°C cal mol ™! Jmol™!
25 0 0
100 —98 —408
200 —306 —1280
300 —598 —2502
400 —971 —4063
500 —1424 —5956

Now we know how to determine the standard enthalpy change for reactions
at high temperatures, which, as a matter of fact, you may not wish to do very
often, unless you get involved in heat flow problems. However, we will see
later on that the method is very similar for other important properties, so it is
the first of a set of procedures which are very useful.

But there are complications, as usual. If your field area contained wollas-
tonite at a granite contact, and you were really interested in this reaction, you
would almost certainly need values above 500 °C. This raises several points:

® You need to perform a different integration above 575 °C, using different coefficients
for quartz.

e All these data are for 1 bar pressure. Your field situation undoubtedly requires a
higher pressure, which has a big effect on the properties of CO,.

® You can get A, H° values at practically any 7 and P from SUPCRT92 without using
Equation (3.32) yourself (SUPCRT92 uses it for you), but you have to realize that
you get values of A H°, the enthalpy change under standard conditions, not the
conditions of your intrusive contact. The standard conditions for the minerals are the
pure minerals at 7 and P, which is fine, but the standard conditions for CO, are
T and 1 bar. In other words, you usually cannot assume that an unmodified A, H°
applies to some field situation.

We are getting a bit ahead of ourselves here. We consider these standard
conditions and how to change them in Chapter 8.

3.5.5 Standard and apparent enthalpy of reaction

Hopefully the material up to here is not too confusing. The enthalpy of reac-
tion is the heat that is liberated or absorbed when a reaction takes place at
constant pressure, and normally at constant temperature as well. We don’t
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have to measure the enthalpy change for every reaction of interest, because
the “formation from the elements” method allows us to tabulate enthalpies
of formation for every compound, and combining these gives us (standard)
enthalpies of reaction. The heat capacity tells us how enthalpy changes with
temperature, and the Maier—Kelley (or Berman—-Brown) coefficients allow us
to handle this easily. Integrating the relevant expression gives us an equation
for the difference in A H° at T and at T, a reference temperature, so as long
as you know A H° at T, you can get A, H® at T.

But now let’s discuss something that is confusing. The numbers we calcu-
lated in Table 3.6 for the wollastonite reaction are exactly the same numbers
you get by running supcrRT92 for this reaction. Now let’s try the same com-
parison for reaction (3.19); that is, we want to know the standard heat of
formation of anhydrite from the elements at temperatures above 25 °C, both
from Equation (3.32) and from supcrT92. The Maier—Kelley coefficients are
shown in Table 3.7.

The first problem we run into is that SUPCRT92 does not contain data for
the element calcium.'® In fact it has data for only a few naturally occurring
elements, such as silver, gold, sulfur, oxygen, etc. Geochemists are not usually
interested in the properties of native calcium, for good reason — it never occurs
in nature. However, SUPCRTY2 does contain anhydrite, and if you enter the
reaction as

1 ANHYDRITE
0

SUPCRT92 will report something called STANDARD STATE PROPERTIES
OF THE REACTION AT ELEVATED TEMPERATURES, which will include
a Delta H. The value for this Delta H at 25°C is definitely the standard
enthalpy of formation from the elements, A.H°, which refers to Equation (3.19).

Table 3.7 Maier—Kelley coefficients for reaction (3.19).

Compound or element  a x 10° b x 10° cx 107 Tlimit, K

CaSO, 16.78 23.6 0 1449.0
Ca(a) 5.25 3.44 0 713.0
S(rhombohedral) 3.58 6.24 0 368.6
S(monoclinic) 6.2 0 0 392.0
S(liquid) 8.73 0 0 717.8
0,(g) 7.16 1.0 —0.4 3000.0

10 The coefficients for calcium in Table 3.7 were obtained from Kelley (1960), which is one of
the same sources used by SUPCRT92.
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But if there are no data for calcium, what reaction do the Delta H values at
higher temperatures refer to?

The next problem we run into is that sulfur has two transitions in our
temperature range, which means we have to do three separate calculations to
get to 500 °C. This is a nuisance, but using a spreadsheet we can manage. The
fact that we would like to avoid this complication illustrates a point we will
make later on.

The results for A H7 — A, H7 from both the equation and SUPCRTY2 are
shown in Table 3.8 and in Figure 3.10. Clearly, SUPCRT92 is not using Equa-

Table 3.8 Values of A H® for anhydrite from
Equation (3.32), SUPCRT92, and Robie et al. (1978).

A,H3 — A Hj., calmol™!

T°C supcrT92  Equation (3.32) Robie et al. (1978)

25 0 0 0
30 119 -10
40 360 —28
50 603 —46
60 848 —63
70 1096 =79
80 1346 -95
90 1598 —110
100 1853 —163
125 2500 —452
126.85 —625
150 3161 —542
175 3838 —622
200 4529 —691
225 5235 —750
226.85 -917
250 5956 —799
275 6692 —837
300 7442 —864
325 8207 —880
326.85 -979
350 8987 —885
375 9781 —880
400 10591 —863
425 11415 —836

426.85 —834
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tion (3.32). Not only are the values different, but they tend in opposite directions
as T increases.

A clue is provided by plotting the same quantity (A, H7 — A, H7. ) from Robie,
Hemingway and Fisher (1978), a well-known compilation of thermodynamic
data at elevated temperatures (many chemical sources have data only at 25 °C).
We see that they show the same trend as the results from Equation (3.32),
with very similar values. They are not exactly the same because the Robie
et al. data are not derived from Equation (3.32) or any other equation. They are
smoothed experimental data. Nevertheless, we may deduce that they refer to
reaction (3.19), as do the results from Equation (3.32) in Table 3.8. So the ques-
tion is, what do the data from SUPCRT92 mean? What reaction does its Delta H
refer to?

Another clue is provided by calculating A.H7 — A H; for anhydrite
itself, by substituting anhydrite a, b, and c¢ values for A,a, A.b and
A,c in Equation (3.32), i.e., by integrating Equation (3.23), resulting in
Equation (3.35):

/TerH":/TrTC;dT

T
Hy — H;, = /T (a+bT — cT2)dT

b 11
a(T—Tr)-I-E(Tz—TrZ)—Fc(? _f> (3.35)
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Figure 3.10 Values of
AH7 — A H3, for the
mineral anhydrite from
suPcrT92 and from
Equation (3.32) (labeled
“Integral”). Plus signs are
data from Robie,
Hemingway and Fisher
(1978).
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The results from this calculation are identical with the SUPCRT92 results,
Figure 3.10.

What this means is that in the expression AH7 — AH7, the value of AH7
that SUPCRT92 calculates is not the difference in H° between anhydrite and
> H° of its constituent elements, all at 7', but the difference between the H°®
of anhydrite at T and ) H° of its constituent elements at 7,, 298.15 K. This
called the apparent enthalpy of formation, A,H°."" The value of A, H7, on the
other hand, is what it claims to be, the difference in H° of anhydrite and ) H°
of its constituent elements, all at T, which is in fact the heat of formation from
the elements, A H°.

The Benson-Helgeson convention

This way of doing things was started by Benson (1968) for enthalpy, and was
adopted by Helgeson in subsequent years for both enthalpy and other energy
terms. Thus the Robie et al. (1978) enthalpy and free energy values include pro-
vision for the change in the properties of the elements as temperature increases,
while SUPCRT92, and any data in publications by Helgeson and the Berkeley
group do not. There are distinct advantages in “neglecting” the elements at
elevated temperatures, as in the Benson—Helgeson method. You can dispense
with finding coefficients for the elements for whatever heat capacity equation
you are using, and you don’t have to deal with all the phase transitions in the
elements, such as those in sulfur that we complained about above. As long as
you deal only with balanced chemical reactions, the elements all cancel out
anyway, so it does not matter what properties you assign to them. So if it
doesn’t matter, why not just leave them out?

Probably the vast majority of geochemists deal only with balanced reac-
tions in considering geological problems, so they need never worry about
whether the “traditional,” Robie et al. method or the Benson—-Helgeson method
is being used in their databases. But if you search the literature for data on
specific compounds, you must make sure you know how data above 25 °C are
derived.

The Berman-Brown convention

Berman (1988), in presenting a widely used set of thermodynamic data
for metamorphic minerals, not only used a different heat capacity equation
(Equation 3.28), but also a somewhat different method for “neglecting” the
properties of the elements. The Berman—-Brown method is in fact the same
as Benson—-Helgeson for enthalpy, but different for Gibbs energy (§5.7.1,
page 144).

' The use of apparent quantities is now so general that we will not usually bother with the
separate notation A,H or A,G. That is, we will use A;H and A;G, whatever convention is
used.
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3.6 How far have we got?

We have defined internal energy as some unspecified subset of the total
energy in a system and considered the two common ways of changing this
energy content. Along the way, we have noted that energy never disappears,
and this is called the first law of thermodynamics. How far have we got
toward finding the “chemical energy,” that always decreases in spontaneous
changes?

Well, we’ve made the first vital step, but if you think about the previous
chapters you’ll realize that we cannot have the answer yet. Why? Because
we noted that some processes occur spontaneously with no energy change
(ink spreading in water). Obviously, then, clarifying our thoughts about energy
changes will not help in explaining processes that happen with no change in
energy of any kind.!? We still have some way to go toward defining a useful
“chemical energy.”

3.7 The model again

In this chapter we have discussed some very practical operations. There is noth-
ing particularly theoretical about gases expanding in cylinders and performing
work. It happens countless times every day all over the world. Equations such
as (3.2) belong to the real world. However, the result of the limit-taking, when
the number of expansions or compressions in a single cycle is increased with-
out limit, is a reversible process that belongs not to the real world but to the
thermodynamic model. This is another illustration of the point made in §2.6.2,
that energy differences between states can be calculated only for reversible
processes.
The equation

V2
Wiy = — Pdv [3.4]
Vi
is an extremely simple one, considered mathematically. If P can be expressed
as an integrable function of V, then the integration is carried out and w,,, is
determined for a given change from V, to V,. This presents absolutely no
conceptual difficulties (beyond those in understanding calculus) if P and V are
mathematical variables. However, if P and V represent measured pressures and
volumes from a real system in the real world, then even if P has been determined
as an integrable function of V for a number of individual measurements of P and
V, the integration represents a variation of P with V that is impossible to carry
out in the system. It is, however, simple to carry it out in the thermodynamic

12 Actually, we will note in the next chapter that the internal energy U is in fact the energy we
need to predict which way reactions will go under certain unusual conditions, but it is rarely
used in this sense.
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model, that is essentially mathematical and in that P as a function of V is
simply a line in P-V space. This line represents a reversible process, a perfectly
simple and understandable facet of the thermodynamic model.

3.7.1 Applicability of the equations

Don’t forget — this conclusion about the work done due to a change in volume
is not only applicable to piston—cylinder arrangements. Virtually all chemical
reactions involve some change in volume between reactants and products, and
the equations are applicable no matter what the physical form of the reactants
and products. In other words, when corundum and water react to form gibbsite
(Figure 2.2), the gibbsite occupies a different volume than does the sum of
the volumes of the water and the corundum; therefore, some work is done
during the reaction, and this work can be calculated using Equations (3.3) and
(3.5). Even in reactions in living cells there will generally be a difference in
volume between products and reactants, and a constant pressure environment,
and so some work is done during each and every biochemical reaction. This
work energy may be relatively small compared to the heat evolved or absorbed
during the same reactions, but it must always be considered. In reactions at
higher pressures, it of course becomes even more important.

3.7.2 Clarifying notation

We have introduced quite a few subscripts and superscripts all at once here,
which can be confusing. The logical relationships among these terms is shown
in Figure 3.11, using H as an example. The same relationships will hold for
other parameters we will introduce later.

The most general term for a change in H is simply AH. This refers to
any change in the enthalpy of any system between two equilibrium states
(stable or metastable), not necessarily associated with a chemical reaction.
A special case is the AH between the products and reactants of a chemical
reaction, called A, H, so this represents a subset of the more general term AH.
A special kind of chemical reaction involves only pure compounds, whose
thermodynamic parameters can be found in tables, and so a subset of all A,H
values can be called A,H°, to indicate that all products and reactants are in
their pure reference states.!> A special case of A H® is the reaction in which
a compound is formed from its elements, all in their pure reference states,
and this is called AfH °. Finally, we found that there are two conventions for
defining the enthalpy of formation from the elements, one being the traditional
or “common sense” method, where the compound and all its elements are at

13 Later on (Chapter 8) we will find that strictly speaking superscript ° refers to a more general
“standard state,” and that “pure reference states” are just one kind of standard state.
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the same temperature, and one, called A, H°, in which they are at different
temperatures. The difference is only important if you are dealing with the
properties of single phases, rather than with balanced chemical reactions, and
in most discussions we will use the A, H® notation to include the A, H* variety.

3.8 Summary

This chapter attempts to make precise our use of the terms energy, heat,
and work. The line of thought we are pursuing has to do with systems that
spontaneously decrease their energy content, and so we have started to get
quite clear about what kinds of energy we mean. Relativity theory tells us that
the total energy of all kinds contained in any system is given by multiplying
the mass of the system by the square of the speed of light, but this approach is
not very useful except in the study of nuclear processes. None of the chemical
reactions we are interested in are of this type. However, apart from relativity
theory there is no way of knowing the energy content of a system, so we have
to be content with knowing changes in the energy content.

When we consider by what means the energy content of systems can change,
we find that there are only two — we can heat/cool the system, or we can do
work on the system/have the system do work. There are several ways of doing
work on systems, depending on the forces we choose to consider (magnetic,
electrostatic, surface tension, etc.), and so we start out by choosing the most
common, pressure—volume work. The others are all handled in the same way
and can be brought in when the situation calls for them.

Then by appealing to long experience with energy transfers, we propose the
first law of thermodynamics, the law of conservation of energy. Systems (that
is, any system) can change their energy content by having energy subtracted
or added in the two forms — heat and work. Any combination of the two can
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result in the same total energy change; there is no specific “difference in heat”
or “difference in work™ between two different states of the same system.

Finally, we went into some detail on one special kind of energy transfer —
the heat absorbed or released during a chemical reaction, where the initial
and final states have the same pressure, generally referred to as a constant
pressure reaction. This quantity of heat is the enthalpy, and it is one of the
fundamental building blocks of our model. The fact that there are no absolute
values for H is a decided nuisance, but a very simple way around this is by
using the “formation from the elements” convention. This means that for every
compound, we measure AH for the reaction in which a compound is formed
from its elements, each in its most stable form, and these quantities are given
the symbol A H°, where the subscript “f” stands for “formation from the
elements,” and the superscript ® means all substances are in their pure (except
for dissolved substances) reference states. The AH for any other reaction can
then be found by combining these A;H® terms for compounds.

Defining what we mean by energy and energy transfers is, of course, impor-
tant, but it does not by itself answer our questions about why reactions go one
way and not the other.
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The second law of thermodynamics

4.1 Introduction

The first sentence of Gibbs’ (1875) classic memoir “On the equilibrium of
heterogeneous substances” is

The comprehension of the laws which govern any material system is greatly
facilitated by considering the energy and entropy of the system in the various

states of which it is capable.

Given the fact that virtually all of equilibrium thermodynamics can be derived
by doing exactly that, as Gibbs did, this must rank as one of the world’s great
understatements. In this chapter, we begin to explore what Gibbs was referring
to. By considering “the laws which govern any material system,” we should
be able to find the answers to the questions we posed in Chapter 1.

4.2 The problem restated

Having taken a couple of chapters to get our terminology settled and to get
used to discussing energy changes in systems, we must now get back to our
main problem — what determines whether chemical processes will go or not go?
Our method of determining this might be considered a bit simple-minded — we
will simply determine the “chemical energy” differences between equilibrium
states. Processes can take place spontaneously if they are in the direction of
lowering the chemical energy. They cannot take place spontaneously in the
opposite direction.

We have seen that the first great principle of energy transfers is that energy
never disappears; it simply takes on different forms. It is the second principle or
law that more directly addresses our main problem. It is observed that once the
conditions of the beginning and ending states are decided upon, processes can
proceed spontaneously in only one direction between these states and are never
observed to proceed in the other direction unless they are “pushed” with an
external energy source. Thus for beginning and ending conditions of P = 1 bar
and T =5°C, ice will melt, but water will never spontaneously change to ice.
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We are looking for a “chemical energy” term that will always decrease in such
spontaneous reactions and will enable us to systematize and predict what way
reactions will proceed under given conditions. This may seem like a simple
problem, but it is not.

The greatest single step forward in the development of thermodynamics
was the recognition and definition of a parameter, entropy, that enables such
predictions and systematizations to be made. And yet, entropy still is not the
energy term we have been looking for; the energy that always decreases in
spontaneous reactions. In fact, it is not even an energy term. Nevertheless, it
is the secret to an understanding of spontaneous reactions.

4.2.1 What's ahead

In this chapter, we will try to explain why this is so. As with the first law, there
is no way of proving the second law. It is a principle that is distilled from our
experience of how things happen. It can be stated in a lot of different ways,
usually having something to do with the impossibility of perpetual motion or
with the availability of energy, topics that seem to have little to do with the
problem we have set for ourselves — that of finding an energy term that always
decreases in spontaneous reactions. We will choose to state it in a way that
emphasizes its role as a directionality parameter. This leads to the shortest
possible path to the practical applications we wish to consider.

So here’s the plan. We will define entropy as a parameter in our model
systems, having certain properties. This definition is not, of course, pulled out
of the blue, but is based on many years of work by many scientists. It should
be accepted at first on faith, as simply a useful parameter, because it will not
have any intuitive meaning as do our other terms such as energy, work, and so
on. Then we will show how the “chemical energy” term we have been looking
for is related to entropy. Finally, we will discuss what entropy is (and what it
is not), and in Chapter 5, we will discuss how to measure it.

4.3 Thermodynamic potentials

At the start we should note that “directionality parameters” have a technical
name. They are called thermodynamic potentials. A potential in this sense is a
quantity (a state variable) which is minimized (or maximized) at equilibrium,
subject to certain constraints. This means that if you want to compare two
states of the same system to see which is the more stable, i.e., in which direction
the spontaneous change will “go,” two state variables must be the same in both
states, and we call these two variables the constraints on the system. But not
just any two. Which two depends on which state variable you have chosen to
be maximized or minimized, i.e., on your choice of thermodynamic potential.
Why two, and not one or three? Fundamentally it is because we chose to limit
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the ways our model systems can exchange energy to two: heat and only one
kind of work, and we need one constraint for each of these.

For example, an appropriate thermodynamic potential would have a lower
value for calcite than for aragonite at 25°C, 1 bar (note that in saying 25°C,
1 bar we have chosen two constraints; one for heat and one for work). Generally,
however, we have problems similar in principle but more complex. We may
have several phases, including a solution with many compositional variables,
and we will want to know the equilibrium compositions of all the phases at T
and P. In these cases there is a range of values for the thermodynamic potential,
one for every possible composition of the phases involved, and we need to
find the minimum value of the potential. For any other value, greater than
this minimum, some change in compositions (phases will dissolve, precipitate,
etc.) will take place until the minimum value is achieved. We then speak of
minimizing the potential at a given T and P, i.e., subject to the given constraints.
This is not a hypothetical problem, but a real problem in applied mathematics.
We will see one way of doing this (speciation) in Chapter 16.

In this chapter we will identify four thermodynamic potentials. The number
could in fact be extended — several other state variables with certain unusual
constraints can also be considered thermodynamic potentials. However, they
are never used in this sense, so we won’t bother with them. As a matter
of fact, only one thermodynamic potential is ever used in geochemistry, but
understanding is increased by learning about the others.

4.4 Entropy
4.4.1 Analogy

The first and most important thermodynamic potential we need is entropy.' One
way to define entropy would be to simply say that the Z-term in Equation (3.14)
does indeed exist, where entropy is called S, and Z = —S. This provides a
useful analogy between pressure—volume and temperature—entropy, and we will
see these terms linked together in many equations. They represent work and
heat energy in many processes we will be considering.

This way of defining entropy is also useful in explaining a somewhat puz-
zling feature of thermodynamics. In the next section, we will see that although
entropy is a state variable of the kind we are looking for (one that can be used to
tell which way reactions will go), it is unfortunately one that increases in spon-
taneous reactions, rather than decreasing, as we had supposed. This turns out

! Strictly speaking, when identifying a thermodynamic potential, it is necessary to specify the

constraints. In other words, entropy (S) by itself is not a potential; entropy at constant energy
and volume (Sy v) is a potential. In still other words, entropy is not maximized in systems at
constant 7 and P, only in systems at constant U and V.
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Potentials in mechanics

Our term “thermodynamic potential” is so named because it is similar to the
“potential” quantities in mechanics. The simplest and most relevant is potential
energy. A body has a potential or potential energy because a force is acting on
it that is capable of causing the body to move. For a given mass and force, the
potential energy is a function only of the position of the body.

Force is a vector quantity, but if we restrict ourselves to one dimension, the
functional relationship between the potential energy of a body E,, its position r,
and the force & is

dE,/dr = —F “-1)

Since the potential E, is a result of the force & and will decrease if the body
is allowed to move, the terms are given opposite signs. The functional form in
Equation (4.1) is common to all potential quantities. Any change in the potential
will appear as work, either done on the body to increase the potential, or by the

body in lowering its potential. Thus

)
w:/ dE,
r
= Epsrz _EPJI

where r; and r, are two positions of the body, and work is considered negative

when done by the body.

We will see that in thermodynamics there are quite a few equations in the form
of (4.1), such as

(U/0S))y =T, [4.16]
and
(3U/0V))g = —P [4.17]

and in all these cases, the numerator (in this case U) is a thermodynamic potential,
the denominator (in this case S or V) is a configuration term analogous to distance,

and the right hand side (in this case T or —P) is analogous to a force.

to be simply because entropy was historically defined as —Z in Equation (3.9),
rather than as Z. In other words, Equations (3.9) and (3.14)

Z,
—q < T dZ [3.9]

Z,

Zy
—q < ; Tdz [3.14]
1
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are actually written
Sy
g=| Tas (4.2)
Sy
and

S
qg<| TdS (4.3)
Sy
that is, without the minus sign. This is a sort of “historical accident.” Because of
the complete analogy between work—pressure—volume and heat—temperature—
entropy (except for the minus sign), we can also write

q.., =T AS 4.4)
Gy =T AS 4.5)
analogous to (3.6) and (3.12),
W, = —PAV [3.6]
w,, = —PAV [3.12]

A somewhat more mathematical way to express this analogy between work—
pressure—volume and heat—temperature—entropy, and which is discussed in
more detail in §C.2.1, is to note that although w,, (or dw,, if you prefer
that notation) is not the differential of any function (not an exact differential)
w,,/P is, being equal to —AV, or —dV in differential notation. So one might
suppose that similarly although g,., is not exact, perhaps ¢,.,/T is. And indeed
it is, being equal to dS.

4.4.2 Definition

However, a better way to define entropy is as follows. If there is indeed
“something missing,” that is, only one thing missing from the energy-
decreasing analogy, it is something that causes reactions to “go,” even when
no energy change whatsoever occurs. Now, we have defined a type of sys-
tem (the isolated system) that does not permit energy changes to occur in
the system. Therefore, all we have to do is define a parameter with which
we can predict reaction directions in this kind of system, combine it with the
energy-decreasing idea, and we should have our answer. This is what we do
with the following definition, paraphrased after Callen (1960). It can also serve
as a statement of the second law of thermodynamics. The statement reflects
Callen’s “postulational” approach to thermodynamics, that is, let’s postulate
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that there is a parameter that includes everything we need, and see how it
works out:

There exists an extensive property of systems, entropy (S), which for isolated
systems achieves a maximum when the system is at stable equilibrium. Entropy
is a smoothly varying function of the other state variables and is an increasing

function of the internal energy U.

Note that using an isolated system automatically ensures that we will com-
pare states having the same values of two state variables, U and V, our two
constraints. We insert the postulate that entropy increases with U to ensure that
the other directionality parameters to be derived decrease (have minima) rather
than increase. This can be shown by considering the isolated (model) system
in Figure 4.1.

4.4.3 The U-S-V/(V,+V,) surface

The exterior wall in Figure 4.1 is impermeable to energy and rigid, so the
system is of constant U and V.? The piston is movable and can be locked in
any position. It is impermeable but it conducts heat so that the two sides are
at the same temperature. If there are equal amounts of the same gas in the two
compartments, the equilibrium position of the piston when it is free to move is
where V, = V,. Also, according to our definition of S, the equilibrium position
of the piston is one of maximum entropy for the system, and any other position
has lower entropy.

Total volume V

Total energy U

Figure 4.1 An isolated system having a movable partition. The partition is
impermeable to matter but conducts heat. The volume V of the system is the sum
of the volumes of the two subsystems, thatis, V=V, +V,.

2 The discussion and diagrams in this section use the total quantities U, S, and V. We could
equally well use the molar properties U, S, and V. As mentioned in §2.4.1, most equations
remain true whether using total or molar properties. However, some don’t, and those that don’t
are very important, e.g., (2.1); (4.66). In the case of total and molar work and heat (w and w; ¢
and ¢), the molar form usually only makes sense when considering chemical reactions, but this
is the only case considered in much of geochemistry.
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In the equilibrium position, the piston is not locked in place, i.e., there is
no constraint other than U and V, no third constraint. In any other position
the piston must be locked in place, because the pressure on one side is greater
than the pressure on the other side.> Nevertheless, such locked positions are
unchanging, and are equilibrium states. We want to distinguish between these
states having an extra constraint, and those equilibrium states that have only
two constraints, so we call the three-constraint states metastable equilibrium
states.

Then if we consider the same situation but with successively greater energy
contents U’, U”, and U"” (which might be achieved by increasing the gas
temperature), we will have entropy—volume curves as in Figure 4.2, where S
is plotted against V,/(V, +V,), which varies between 0 and 1. The maximum
value of S is at V,/(V,+V,) =0.5, where V, =V,, and the curves for U,
U”, and U” are arranged with increasing entropies because we defined S
to be an increasing function of U. In Figure 4.3, the curves of Figure 4.2
are drawn in three dimensions, and in Figure 4.4 the complete surface is
shaded with a number of contours — the horizontal ones being contours of
constant S and V, the vertical ones contours of constant U and V (recall
that the whole diagram is for conditions of constant V).* In Figure 4.5 two

V constant
u”

V4/(V1+V5)

3 If you find yourself wondering how one could lock and unlock the piston if the system is truly
isolated, you have not yet fully grasped the fact that thermodynamics deals with mathematical
models, not real things. In the model, the position of the piston is, or could be, a mathematical
variable.

Don’t confuse this surface, U-S-V/(V, +V,), which includes metastable equilibrium states,
with the USV (or USV) surface (§4.6), which has only stable equilibrium states. This is
important.

4
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Figure 4.2 Entropy (S)
versus volume fraction
V,/(V,+V,) for the system
in Figure 4.1 at three
different energy levels,
where U"'>U">U".
Volume V is constant.
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4.4 Entropy

of these contours are abstracted to show more clearly that the two contours,
which meet at a point, have a common tangent.

This tangent is located at the extremum in both curves, and so is in math-
ematical terms both dUgy = 0 and dSyy = 0. In other words, the condition
that at equilibrium S is a maximum for given U, V implies the condition that
U is a minimum for given S, V at a given equilibrium point.

Not only is S a parameter that always increases when a metastable state
changes to a stable state at given values of U and V, but U is a parame-
ter (a state variable) that always decreases when a metastable state changes
to a stable state at given values of S and V. Thus as long as we consider
only systems at constant U and V or constant S and V, both Syy and Ugy
are parameters of the type we have been looking for — they are thermody-
namic potentials. These kinds of systems are very rare; still, we’re getting
closer.

4.4.4 Mixing example

Figure 4.6 shows another system having three constraints. As before, the system
is isolated, so U and V are two constraints. The third constraint is a partition
separating two gases. A spontaneous process (mixing) occurs when the partition
is removed, and according to our definitions, entropy therefore increases. The
importance of the isolated system is that it prevents energy changes from
taking place in systems undergoing reactions, and it is therefore the clue to the
missing factor we have mentioned several times (e.g., §1.3.1). We knew there
was something missing because some spontaneous processes (like melting ice)
take place while absorbing heat energy, and some (like mixing gases) take
place with little or no energy change at all. If reactions can take place with
no energy change, and if entropy is the directionality parameter that predicts
which way reactions will go when there is no energy change, then perhaps
combining entropy with our other parameters such as heat and work will lead
to more useful directionality parameters. This is exactly the case.
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Figure 4.5 Constant S, V,
and constant U, V
sections from the
U-S-V/(V, +V,) surface
shown in Figure 4.4, with
their common tangent,
which is simultaneously
dSyy and dUg y. The
tangent point represents
a position of stable
equilibrium for the
system.
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Figure 4.6 Entropy
increases in spontaneous
processes in isolated
systems.

The second law of thermodynamics

— 0
1o
k=
7]
©
1e
2 Sy,v increases
1% to maximum
1e
[} —_—
4 0O
(]

Isolated system

Gases A, B

— Isolated system

GasA | GasB

In other words, the reason we were a little off-base with suggesting that
there is an analogy between a ball rolling in a valley and spontaneous chemical
reactions is that some reactions can happen with no drop in energy at all.
Chemical systems are more complex than simple mechanical systems, and
analogies are dangerous. Entropy is a state variable that always increases in
spontaneous reactions in which there is no energy change (those which take
place in isolated systems), and is the missing factor. Combined with other state
variables, we will have directionality parameters (our “chemical energy” term)
for all kinds of systems.

Despite the apparent usefulness of entropy, we have not yet discussed what
entropy actually is. We have no intuitive feeling for it such as we have for
energy, pressure, and the other terms we have used so far. We must for the
moment just use it as a parameter that we have defined in such a way as to be
useful, and figure out what it means later.

4.5 The fundamental equation

The first and second laws can be combined into a single equation, which
lies fairly close to the very heart of thermodynamics, called the Fundamental
Equation.



4.6 The USV surface

Combining Equation (3.1) (AU = g+ w) with Equations (3.6) (w,., =

rev

—PAV) and (4.4) (q,., = T AS) (or Equations 3.12, 4.5 and 3.10) we obtain
AU=TAS—-PAV (4.6)
and
AU=TAS—-PAV 4.7)

These can also be written in differential notation as

[dU=TdS—PaV] (4.8)

and

|dU=TdS—PdV| (4.9)

This is probably the single most important equation in thermodynamics, and
for this reason it is called the Fundamental Equation.

It is worth mentioning that the “fundamental” nature of (4.9) does not mean
that we often use it directly. We usually use it after a little manipulation, so
that we can use integration limits of 7 and P, rather than S and V. In other
words, we usually use Equation (4.37). Equation (4.9) is fundamental because
it is directly linked to the first and second laws, and because Equation (4.37)
and many others are derived from it.

4.6 The USV surface
4.6.1 Geometrical meaning of the fundamental equation

The easiest way to get a clear geometric picture of the fundamental equation is
to realize that by virtue of the first law, every system at equilibrium, whether
as simple as an ideal gas or as complex as a bacterium, has a single fixed
energy content for given values of two independent variables, and by virtue
of the second law we are able to use as variables S and V. Every system
can therefore be represented by a surface in USV space, such as shown in
Figure 4.7. Note that, in order to make the surface easier to draw, U increases
downward in Figure 4.7. At every point on the surface, such as point A, there
will be a tangent surface, the equation for which is the fundamental equation,
dU =TdS —PdV. Figure 4.8 shows how, starting at point A, increments of
dS and dV are combined with the slopes 0U/dS and 0U/0V to produce the
total change in U at any other point on the tangent plane. In this case, each
of dU, dS, and dV has any magnitude, however large. Because of this, you
may visualize Equation (4.9) as having the form Z = aX + bY, which is a
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Figure 4.7 Every system
has a unique USV
surface. The fundamental dU= TdS— PdV tangent plane
equation (4.9) represents at point A
a tangent to this surface

when dS and dV are of

arbitrary magnitude, and

it can be integrated to ~
give the change in U, AU,

between any two points

on the surface, such as A

and B. The tangent plane

is illustrated further in

Figure 4.8.

Figure 4.8 The tangent
surface at point A in
Figure 4.7, showing how
dU is geometrically
related to dS and dV.

combination of the straight-line equations Z = aX and Z = bY, and is the
equation of a plane in XYZ space.’

On the other hand, the fundamental equation can also be used to calculate
values of AU between any two points on the USV surface itself, such as
between points A and B. Because U follows some complex function of S and
V between A and B, the fundamental equation must be integrated between

5 Z here has no connection with the Z in Equation (3.14).
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A and B, and this means allowing dS and dV to take on infinitesimal values®
and performing a summation, symbolized by the | symbol. This is written

AU = Uy — U,

:/ABTdS—fABPdv

The calculation of this difference follows the reversible path shown on the
USV surface — a continuous succession of equilibrium states, because that’s
what integration implies. However, the calculated AU is the same no matter
how the change from A to B is actually carried out.

The difference in U or in fact any thermodynamic property between a quartz
crystal at 25°C and the same crystal at 50 °C has nothing to do with how that
difference is achieved, but the calculation of that difference follows a reversible
path. That just means we calculate the difference by integrating an equation.
If you have difficulty understanding differential equations as used here, study
Figures 4.7 and 4.8.

4.7 Those other forms of work

Even though we hardly ever need to include other kinds of work in our
fundamental equation, it will prove useful to have a brief look at what this
equation looks like when they are included. Because many work terms don’t
make much sense in the molar form, we use the total energy form of the
fundamental Equation (4.8). A very general formulation, including all forms of
work, is

dU=TdS— 3 X;dx; (4.10)
— i
heat all forms of work

where X is a generalized force and dx; a generalized displacement. Normally,
we consider X; to be —P and x; to be V or V, and we get the fundamental
equation. We considered a few other possibilities for the ), X; dx; term in
§3.4.1. So, for example, if a system could exchange energy because of gravity
acting on a mass m in addition to P-V work, Equation (4.9) would become

dU=TdS—PdV +mgdh (4.11)
_ —
heat work

For the tensile force and surface tension forms of work we would have

dU=TdS—PdV+fdl (4.12)
~ ——
heat work

% See Appendix C, page 589. for a note on infinitesimals and integration.
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and

dU=TdS—PdV+ydA (4.13)
_~ —_——

heat work

The chemical work term that we mentioned in §3.4.1 is —A d&, where A is
the affinity and ¢ is the progress variable, resulting in

dU=TdS— PdV — Adé (4.14)
N~ ——— ——
heat PV work  chemical work
—

work

and, of course we could have any or all combinations, at least in principle.
These equations should be fairly intuitive — dU represents the change in total
energy of a system, and the three terms on the right are the three sources of
energy change — heat, P-V work, and another kind of work. Because we are
so interested in chemical reactions, we have a great deal more to say about
Equation (4.14).

4.8 Applicability of the fundamental equation

For such a simple relationship, Equation (4.9) traditionally generates quite a bit
of confusion. This is of two types, or perhaps two aspects of the same problem.
That problem is reversibility versus irreversibility.

Equations (4.7) and (4.9)

AU=TAS—PAV [4.7]

dU=TdS—Pav [4.9]
appear to be limited to reversible processes, as both (3.12) and (4.5)

rev

Grow = TAS [4.5]

refer to reversible processes. But this is not the case, which can be explained
in various ways.

1. For one thing, Equations (4.7) and (4.9) contain only state variables (U, S, and V, in
addition to T and P). Therefore, because the changes in state variables do not depend
on the nature of the change, Equation (4.7) (or the integration of Equation 4.9) is true
for any change between two equilibrium states which have the same composition,
with one important exception (see §4.8.1).

2. Although Equations (3.13) and (3.14) will both be untrue in an irreversible process,
the amount by which they become untrue (resulting in —w < PAV and g < TAS)
will cancel when they are added together. We could give examples of this, but it
must be true because of item 1.
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3. In Figure 4.7, points A and B represent two stable equilibrium states of a system.
Integration of the fundamental equation from A— B takes place on the USV surface,
as shown, which is necessarily a reversible process. An irreversible process A—B
would cause the system to leave the surface at A, be not representable in USV space
between A and B, then the system would reappear at B. In either case, AU, AS, and
AV are related by Equation (4.7).

4.8.1 Two kinds of irreversibility

So the Equation (4.9) applies to reversible and irreversible processes. There
remains the “important exception” just mentioned. The problem here is that
there are two very different kinds of irreversible processes.’

1. One kind of irreversibility involves a system changing from one equilibrium state
to another. The equilibrium state can be stable or metastable (in the thermodynamic
sense, discussed below), as long as there is no change from one to the other (i.e.,
metastable— stable). For example Equation (4.9) can be applied to increments of
changes such as the irreversible gas expansion in Figure 3.4, or perhaps the irre-
versible heating of a crystal from 25 to 50°C by simply putting it in an oven at
50°C. The crystal could be (stable) calcite or (metastable) aragonite. Integrating
Equation (4.9) applies to all these processes. They could be thought of as processes
in response to a change in the first and/or second constraints.

2. But Equation (4.9) does nor apply to irreversible processes in which a metastable
state changes to a stable state, such as a crystal of aragonite at some 7 and P within
the calcite stability field recrystallizing to calcite. Equations (4.14) and (4.46) apply
to these cases. In these cases a second form of work (non-PV work) is being done.

In one sense, it is perfectly obvious that if there is more than one form
of work involved, you need one of the equations in §4.7, not Equation (4.9).
In geochemistry, and most of chemistry, the only other form of work of interest
is chemical work, and so the equation we use to represent a chemical reaction
progressing towards stable equilibrium is (4.14), or more usually (looking
ahead) (4.46).

The most general way of expressing the applicability of the fundamental
equation is that it applies to any process which does not involve release of a
third constraint.

4.9 Constraints and metastable states

We introduced the idea of constraints and metastable states in §4.4.3. Because
of the importance of these concepts, we take a closer look at them here.

7 We mentioned these briefly in §2.6, page 21.
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4.9.1 Metastable states

It is here that distinguishing between real systems and our model systems
becomes most valuable.

Real metastable states

The distinction between stable and metastable equilibrium according to most
sources is that the stable equilibrium state is “truly unchanging,” or unchanging
given indefinite time, whereas the metastable state may be changing, but too
slowly to be observed. This distinction clearly refers to real systems, and is
often very difficult to make. We know that at 25°C, 1 bar, calcite is the most
stable form of CaCO;. Aragonite is another form, and although it does not
change to calcite on museum shelves, it does change in nature under some
conditions, given very long time periods, so is it metastable or unstable? Is
volcanic glass an unstable or a metastable phase? These questions can start
arguments among geochemists. There are many reactions for which kinetic rate
constants are known at high temperatures (the reacting assemblage is therefore
unstable), but not at 25 °C, where the assemblage is considered metastable. At
what temperature does metastable change to unstable? If anyone was interested,
the answer would of course be completely arbitrary. The kinetics of very slowly
changing systems is a problem for real systems, but it is not a problem in
thermodynamics.

Thermodynamic metastable states

In thermodynamics, a metastable equilibrium state has at least three constraints.
Two of these constraints apply to a stable equilibrium state, and the third pre-
vents the system from achieving that state.> On releasing the third constraint
the system experiences a spontaneous process and achieves the stable equilib-
rium state. We have seen two examples so far, in Figures 4.1 and 4.6. These
examples were chosen to follow from our definition of entropy, and show
spontaneous processes having no overall energy change in the system. They
show entropy acting as a thermodynamic potential.

However, processes happening in isolated systems are pretty rare, in fact
strictly speaking they are nonexistent. We need to develop other, more
useful thermodynamic potentials (§4.12), to deal with the usual type of
metastable— stable processes such as aragonite—calcite which invariably
involve a decrease in system energy. But even without doing that, we can
see several other examples of thermodynamic metastable states by looking

8 Actually, to be quite accurate, we should put the previous sentence in mathematical terms. It
would then read Two of these constraints represent the independent variables of a function
simulating the energy content of a physical system, and the third represents a possible
additional independent variable. However, that has the disadvantage of obscuring the physical
meaning of the constraints.
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at the equations in §4.7. In each equation we see the fundamental equation,
dU=TdS — PdV. Taking only one example, Equation (4.12), applying force
f to stretch a wire obviously does work on the wire (adds energy to the sys-
tem), and releasing the force allows the wire to do work and resume its stable

equilibrium state. While stretched, the system is in a metastable state. Similar
statements apply to the other equations. In each case, doing work on the system

puts it in a higher energy state (U is increased) and is held there by the third
constraint. Releasing the constraint allows the system to do work in a sponta-

neous process. We give a more precise definition of constraints in §4.9.2. These
relationships are illustrated in Figure 4.9a for the system Al,O,—H,O, where

the arrow A — A’ refers to a “chemical work” term, as in Equation (4.14).

(a)

Gibbsite surface

A

(b)

Gibbsite surface

U
4
4
A
/
A \
— /
| \ S
Corundum + water surface
G
4

4
A/
/
A \
— /
\ P

Corundum + water surface
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Figure 4.9

(a) Two equilibrium states
of the system Al,05;-H,0
in USV space: metastable
corundum plus water,
and stable gibbsite. The
process A— A’ is
reaction (2.2). Changes in
U along either surface
can be described by
Equation (4.9). Changes
in U between the surfaces
(A — A’) are described by
Equation (4.14). (b) The
same system in GTP
space. Note that U and G
increase downwards.
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Real systems may be truly unchanging and metastable, or they may be
unstable and changing very, very slowly. Often we don’t know which. But our
models of systems have no such uncertainty. Metastable systems are modeled
as in complete thermodynamic equilibrium, with (at least) three constraints. If
the real system is really unstable, our model is in this respect incorrect, but
generally useful nonetheless.

4.9.2 Constraints

Constraint, like several other terms, has a slightly different meaning in real and
model systems. Real systems, such as aragonite, are said to be constrained from
reacting to a more stable state (calcite) by an activation energy barrier. The
usage is rather imprecise, because we don’t actually know if the aragonite is
changing on some very long time scale or not. In model systems, the meaning
is much more exact. A constraint in mathematics is a condition that must be
observed. For example you might want to find the minimum value of a function
of many variables, while assigning constant values to some of the variables.
Each variable held constant is a constraint on the solution. In thermodynamics
it is essentially the same thing. We minimize some function of many variables
while constraining two state variables to constant (known) values. We constrain
two, because in the first law we define only two ways of changing the energy
of a system, heat and P-V work. If there is a third way of changing energy, a
third state variable must be constrained — a third constraint. The system must be
in some equilibrium state for that variable, or any variable, to be defined. The
only thermodynamic equilibrium state that is not a stable equilibrium state is a
metastable equilibrium state. A thermodynamic constraint, then, is defined as a
state variable, associated with some method of changing system energy, that is
held constant while minimizing a thermodynamic potential. Stable equilibrium

Constraints in mechanics

Constraints, along with potentials, work, and energy, is another topic common to
thermodynamics and mechanics. The motion of bodies in mechanics is subject not
only to the force applied, but also to whatever constraints are present. A marble
rolling on the surface of a bowl is constrained to remain on the surface. Beads

on a string are constrained to move in a straight line, and so on.

Constraints in mechanics can be classified into various types, for example as
to whether the equation of constraint contains time as a variable or not. In
thermodynamics, which has only scalar variables, and which has no time variable,

constraints are simpler, and are identified with ways in which systems can change

their energy content.




4.10 The energy inequality expression

requires two constraints. Any extra constraints result in equilibrium states with
greater energy contents we call metastable.’

4.10 The energy inequality expression

Stable equilibrium states are the target destination for all metastable states,
once their constraints are released. What equations refer to this process? We
try here to make these important relationships fairly intuitive.

Equation (4.8) can also be written in the form of a total differential as

ouU oU
showing that, comparing with (4.8),
oU
and
oU
(W>s =-pr (4.17)

which are the slopes of the USV surface in the V and S directions.

The USV surface defined by this equation has an energy U defined for
given values of the two constraint variables S and V. It refers to changes in
energy between stable equilibrium states of a system (which may take place
reversibly or irreversibly). At given values of S and V, a metastable state will
have greater values of U than those represented by this surface, and it will be
held in that state by a third constraint of some kind. Examples of equations
having a third constraint are shown in §4.7.

Consider the wire-stretching example (Equation 4.12) again. If we impose
a third constraint, i.e., we do non-PV work on the system like stretching the
wire, we increase the value of U (d!I and therefore f dI is positive).!° When the
constraint is released, the wire shrinks back to its former length, and the system
lowers its U irreversibly to the stable value.!! During this process, the shrinking

Clearly, isolated systems are an exception to this last statement (i.e., the statement that
applying a third constraint results in a state with greater energy). We applied a constraint in an
isolated system in two cases, illustrated in Figures 4.1 and 4.6, resulting in metastable states,
but with no increase in system energy. In all simulations of real processes, however, the
statement is true.

At this point you may well wonder why the PV work term has a negative sign, while all the
other work terms are positive. In PV work adding energy decreases the volume, so dV is
negative, but in all the other cases, increasing energy increases the displacement or differential

1

term. For example in stretching a wire, dl is positive. Therefore only for PV work do we use
the negative sign to make P dV positive for a positive energy change.

You might also be wondering, what if I release the constraint reversibly? Can’t be done.
That’s like supposing a ball can roll downhill reversibly.

83



84

The second law of thermodynamics

wire can do useful work. Therefore for any irreversible process (meaning any
process in which the third constraint is released'?) U decreases, the third term
on the right side becomes negative (e.g., d! is negative), and if we don’t include
this negative term, we can only write

dU <TdS—PdV (4.18)

Combining (4.18) and (4.9), a general fundamental equation for all states of
the system is

dU<TdS—PdV (4.19)
If S and V are constant, dS = 0 and dV = 0, and it follows from (4.19) that
dUgy <0 (4.20)

which is analogous to (4.28), and shows that the second law provides another
criterion for spontaneous processes, this time that U is minimized at equilibrium
in systems having constant values of S and V. It is another thermodynamic
potential. We saw this previously in graphical form in Figure 4.5.

Let’s just look at Equation (4.20) a little more closely. Breaking it into
separate statements, it says

dUgy <0 for irreversible processes, 4.21)

dUgy =0 at equilibrium (4.22)

These equations actually imply the existence of a third constraint. They imply
the existence of a function U with independent variables S and V and a third
independent variable, because if S and V are constant, the system cannot change
its energy by heat or PV work. U can only change using a second work term
involving increments of a third constraint, and that change is always negative
for irreversible processes (Equation 4.21). Equation (4.22) says that U is at a
minimum (or maximum) of some continuous function. That function can only
be U as a function of the third constraint, because S and V cannot change, so
U cannot show a minimum with respect to either variable. It can only show a
minimum with respect to changes in some third variable,'* which can only be
a second work term.'*

12 1t is very hard to avoid intermixing real-life and mathematical terminology. “Releasing” a
constraint is real-life terminology, and gives an intuitive feeling for the situation. Actually,
releasing or imposing a constraint simply means changing the sign of the differential term in
the second work term in Equations (4.11)—(4.14). If it is positive we impose the constraint,
and U increases. If it is negative we release the constraint, and U decreases.

13 Note that Figures 4.4 and 4.5 show this, i.e., the locked piston is the third constraint.

14 This situation has not of course completely escaped the attention of other authors. It is put in a
different way by Tisza, page 622.
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We considered the wire-stretching example because it is so simple. The
same discussion could be held using chemical work, such as the charging
and discharging of a battery. In such cases the third constraint is the progress
variable £. Integrating A d§¢ gives the energy difference between the stable
equilibrium state and any other (metastable) equilibrium state, and when A =0,
Adé =0, and U has its minimum value. However, such examples are more
complex because both A and ¢ require quite a bit of explanation, which we
come to in Chapter 18.

4.11 Entropy and heat capacity

So far, all we know about entropy is that it increases in spontaneous reactions
in isolated systems, and that it appears in equations such as (4.55) and (4.56).
Hidden in the equations we have derived so far is an important relationship
between entropy and heat capacity, which we will see in Chapter 5 serves as a
basis for the measurement of entropy.

Combining Equations (3.17) and (4.9),

dH=dU+PdV+VdP [3.17)]
dU=TdS—PdV [4.9]

we find!?®
dH=TdS+VdP (4.23)

If we choose constant pressure conditions, dP becomes zero, so
dH

ds = = (4.24)
and substituting Cp dT for dH (Equation 3.23), we have
CpdT =TdS
or
ds = %dT (4.25)

Here we have the entropy defined in terms of something measurable, the
heat capacity. Integrating (4.25), we have

s, —s, = [ Car (4.26)
nTOn = [ .

and so you see that assuming that you can get numbers for C, at a series of
temperatures, you could divide each C, by its value of T and evaluate the
integral, giving you the difference in entropy between two temperatures.

15 Equation (4.23) happens to be another fundamental equation, one that is never used in this
sense. It shows that enthalpy is a thermodynamic potential which is minimized for processes at
constant (S, P).
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4.11.1 lllustrating entropy changes

Our statement of the second law (page 70) implicitly includes the following
relationships (4.27)—(4.30):

ASyy >0 for spontaneous processes (4.27)
or, switching to molar units and differential notation,
dSyy >0 for spontaneous processes (4.28)
and, at the maximum value of S,
dSyy =0 equilibrium (4.29)
or, combining (4.28) and (4.29),
dSyy >0 for any constant U,V process (4.30)

In addition, we have the relation between C, and entropy, Equation (4.25).
It refers to reversible processes. If in the derivation we used the more general
Equation (4.19), we would find the more general relationships

dH

ds > 22 431
> & (431)
as> Sar 4.32)
T
and
nC,
Sy, —Sp, = /T o (4.33)

where the inequality (>) of course refers to irreversible processes.

The normal reaction for students reaching this point is to have not much idea
what all these equations really mean, if anything. Before going on to discuss
entropy in other terms, we can illustrate what they mean in terms of some
simple measurements.

Example 1 Take Equation (4.24). It says that, for example, if you melt ice
reversibly at 0°C,'¢ the AS will equal the heat of fusion, AH, divided by the

16 How do you melt ice reversibly? I thought we said reversible processes were impossible. Well,
they are, but phase transitions are a special case. Because the two phases can coexist at
equilibrium, the change in thermodynamic properties such as AS and AH at that temperature
between the two phases will be the same as the change that would be observed in a reversible
change from one phase to the other, so phase transitions such as this are often said to be
“reversible.” Nevertheless, you cannot melt ice or freeze water at exactly 0°C.
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temperature, 273.15 K. The heat of fusion of ice is +6008Jmol~! (positive,
because we must add heat to the system), so

AS S

water
6008
27315

=21.995J mol~!

ice—water — Sice

Now the enthalpy change for the melting of ice changes very little from 273.15
to 274K, in fact hardly at all, so we can assume it is still +6008 Jmol~!. So
if you melt ice irreversibly, say at 274 K, then AS will be greater than the
enthalpy change divided by the temperature, so

AS S,

water — Mice
6008

>
274

> 21.927Jmol™!

ice— water

Similarly, if you freeze water at 272K, the enthalpy change is now
—6008kJmol~!, and

ASwater—>ice = Sice - Swater
—6008
272

> —22.088 Jmol~!
which means that

ASiers water < +22.088Jmol™!
In other words,

21.927 < AS, < 22.088 Tmol~!

ice— water

so we have determined the entropy change between ice and water at equilibrium
at 273.15K to within 1% with two irreversible measurements.

Example 2 As another example, consider the problem of determining the
change in entropy of a substance X between 300K and 350K at one bar. We
will suppose that the heat capacity of X is constant at exactly 10Jmol~! so
that 5007 are required to heat one mole of X from 300 to 350K, 25017 to heat
it from 300 to 325 K, and so on. It follows that on heating one mole of X from
300 to 350K in a thermostat at 350K,

s s 500
— s
350 70300 < Zan
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and on cooling back to 300K in a similar thermostat at 300 K

—500
S300 — S350 > 300
from which we conclude that
500 500
300 > S350 — S300 > 350

or
1.67 > S350 — S0 > 1.43Tmol !

which means we have determined the AS to about one part in six with two
measurements. To improve our precision, we could double the number of
measurements, and heat and cool in two stages each. That is, because

S350 - S300 = (S35() - S325) + (S325 - S300)

then
250 250 250 250

~ > S350 — S300 >

325 7300 7 350 © 325
or
1.60 > Sy50 — S300 > 1.48 Jmol ™!
Given enough patience, we could make 50 measurements at one degree inter-

vals, in which case

10+10+ +1o+1o o s 10+10+ +10+10
— — e — — > —_— > — — e — —
349 ' 348 301 ' 300 ~ U0 TR0 7301 T 302 349 ' 350

or
1.543890 > S350 — S0 > 1.539 128 Tmol !

Clearly we are approximating an integral, which is of course Equation (4.26),
which in this case becomes

AS = S350 — S300

350 ¢
—Lar
300 T
350

= / CpdInT
300
= 10 x In(350/300)

=1.541507J mol !
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This type of calculation is similar to the one we did for work using the
piston—cylinder arrangement, in the sense that we approach the reversible pro-
cess by taking more and more steps. We reiterate that the physical operation
implied by the integral [(C,/T)dT is a reversible process, which is impossi-
ble. This doesn’t bother us, however, because the integration involves surfaces
in the thermodynamic model, not physical reality. It is helpful though to see, as
above, what sequence of physically real measurements could lead to the same
result.

4.11.2 T-S diagrams

We mentioned a couple of times the complete analogy between w—P-V and
g—T-S relationships. Thus isotherms on a P-V diagram (Figure 4.10) are quite
analogous to isobars on a 7-S diagram (Figure 4.11).

The isobars in Figure 4.11!7 have a positive slope because 3S/3T, or Cp, is
always positive, and the slope increases with T because Cp does.

1000

800

600

200 300 400 (500 600

400 - ‘

P, bars
T T

200 -

50 100 s 150 200

'7 The entropy data in this diagram are from program sTEAM, v.2.2, developed by Harvey et al.
(2000). This program, in common with many other sources, reports values of entropy which
are not third law entropies (Chapter 5), but the difference in entropy between the state of
interest and the T and P of the triple point of water. Program SUPCRTg2 on the other hand,
reports third law entropies, that is, the entropy of water using zero as the entropy of perfectly
crystalline ice at 0 K. The third law entropy of water at the triple point is 63.304 Jmol~' K~
or 15.130 calmol~' K™, so this must be added to many tabulated values to get third law
entropies. More detail on steam tables is presented in §13.6.1.
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Figure 4.10 Ideal gas
isotherms. The work done
by a constant pressure
reversible compression
from 100°C to 600°C at
600 bars is the area under
the P constant arrow.
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Figure 4.11 The entropy
of water. The contours
are labeled in bars. The
arrows outline a Carnot
cycle. Data from program
sTEAM (Harvey et al.
2000).
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We won’t go through all the details as we did with work and P-V diagrams,
but you can see from equation (4.3) that the area under an isobar in Figure 4.11
between two points on the isobar will equal the reversible heat between those
states, just as the area under an isotherm in Figure 3.8 (or Figure 4.10) is the
reversible work. The only purpose in showing this 7S diagram is to complete
the analogy with PV diagrams. However, it is worth noting that this particular
type of diagram is very useful in illustrating Carnot cycles, which we will
not discuss in any detail. A Carnot cycle consists of an isothermal expansion
(shown at 600°C), then an adiabatic (S constant, ¢ = 0) expansion, then an
isothermal compression (shown at 500 °C), then an adiabatic compression. Each
expansion and compression is reversible (continuous succession of equilibrium
states), and the fact that it is a cycle, ending up at the starting point, means that
the total energy change is zero. And by the first law, if AU =0, then g and
w must be equal and opposite, or ¢ = —w. Because the heat transfer in each
step of the cycle equals the area under the curve (under the arrow in this case),
it follows that the area enclosed by the rectangle is the total heat input during
the cycle.

Because steam engines and internal combustion engines operate in cycles
of compression and expansion of some working substance, you can readily
imagine that this idealized cycle is of great interest to engineers. It represents
the ideal, or maximum work that can be attained by any engine.
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4.12 A more useful thermodynamic potential

Now we have two parameters, Sy, and Ugy, that will tell us which way
processes will go, but they refer to processes which virtually never occur, except
perhaps in classroom exercises — that is, processes which occur at constant
values of U and V, or of S and V, our two constraints. We need a parameter
which will refer to processes at constant 7" and P, our most common case.'8

4.12.1 Gibbs energy

From Equation (4.19) (in the molar form),
dU—TdS+PdV <0 (4.34)
we can see that if we define a function
G=U—-TS+PV (4.35)
called the Gibbs energy or the Gibbs free energy, the differential of which is
dG=dU—-TdS—-SdT+PdV+VdP (4.36)
or

dGyp=dU—TdS+PdV (4.37)

Reversible versus irreversible compression

The reversible compression shown in Figure 4.10 looks very much like the
irreversible compression shown in Figure 3.9, but it is quite different. In Figure 3.9
the initial and final states are at the same temperature. The compression is
irreversible, and any amount of work and heat exchange can occur, depending on
the weight on the piston. No isotherms can be shown, because this would imply
that we knew the temperature at all points on the compression arrow, but we

don’t. In Figure 4.10 the initial and final temperatures are different, and during

the compression the temperature is indicated by the isotherms. It is an example
of Equation (3.6).

18 1t is usual to speak of processes occurring at constant U and V, or constant 7 and P. It would

be more accurate to speak of processes having the same values of U and V, or of T and P,
before and after the process. It doesn’t really matter what the system does between the two
states; that is, the system need not be at constant 7 and P during the process.
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which, combined with (3.16), is
dGy,=dH—TdS (4.38)
then we find by comparing (4.37) and (4.34) that
dGrp <0 (4.39)

Thus our definition of the second law has led to a function, G, which will
always decrease to a minimum in spontaneous processes in systems having
specified values of 7 and P. It is an extremely useful thermodynamic potential.
All we have to do is to find a way to get measurable values of this function for
all pure compounds and solutes, and to find how they change with T, P, and
concentration, and we will then be able to predict the equilibrium configuration
of any system by minimizing G.

To see how G changes with T and P is fairly simple. To see how it changes
with composition is a little more difficult (see §§7.6; 8.2). Combining (4.9)
and (4.36), we find another fundamental equation,'®

dG=—-8dT+VdP (4.40)

Because (4.40) could also be written as a total differential,

3G 0G
dG:(—) dT—|—(—> dpP (4.41)
T ), P ),

we see from (4.40) that

(0G/oT), = —S (4.42)
and

(0G/oP); =V (4.43)

which are the slopes of the G-T-P surface in the 7 and P directions
(Figure 4.9b). We will see how to integrate these expressions shortly.
In addition,

dGpp=0 (4.44)

Equation (4.44) is simply the condition for a minimum in G, that is, the tangent
is horizontal (see Figure 4.14). It follows too, that AG; , < 0 for spontaneous
processes in systems having the same 7 and P before and after the process,

19 Equation (4.40) is derived in a more mathematically elegant way in §C.4. It is more elegant
because it shows in a simple way how all thermodynamic potentials are intimately related.
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because any spontaneous process must head toward this minimum from some
higher point (some point of greater G value).?
The total form of Equation (4.36) is

dG=dU—TdS—SdT +PdV+VdP (4.45)
and combining this with Equation (4.14), we get
dG=-SdT+VdP—-Ad¢ (4.46)

which is analogous to (4.14), and so can be written

dG=—-SdT+VdP — Ad¢ (4.47)
N —— S—— N —
heat PV work chemical work
—

work

Gibbs energy in chemical reactions

Let’s review what we know about Equation (4.46). The dG = —SdT +VdP
part describes an equilibrium surface in GTP space for a particular system.
Recalling the discussion in §4.8.1, dG = —SdT + V dP describes either the
stable equilibrium surface or a metastable equilibrium surface. Its just that the
functional relationship between S and T and between V and P will be different
in the two cases. In other words, you can apply dG = —S dT + V dP to either
calcite or aragonite.

When the third constraint is added, as in Equation (4.46), the dG = —S dT +
V dP part of the equation normally refers to the stable equilibrium surface. The
A d§ part then represents chemical work, such as the work you would obtain
by discharging the battery (or changing aragonite to calcite), and so represents
the difference in G between the two surfaces.?!

The equation thus opens the way to considering chemical reactions trying
to achieve stable equilibrium, not just the equilibrium states themselves, and
would therefore appear to be extremely important. Well, it is, but perhaps not
as much as you might think. In Chapter 18 we will show how to use the
quantity A d¢ in considering chemical reactions, but in fact calculating the
value of A is not usually required. Using the progress variable ¢ itself is quite
common, but although implicitly linked to 4, this link is not necessarily made
explicit in calculations.

% Note that the mathematical conditions for a function minimum, such as dUg y = 0 and
dGy,p =0, are all true simultaneously at the minimum, as illustrated in Figure 4.5, and they
imply nothing whatsoever about how the function (i.e., the system) reached or achieved that
minimum.

It is conceivable that the “dG = —S dT + V dP part of the equation” could refer to a
metastable state or surface, in which case the “A d¢ part” would represent the work of

2

charging the battery or changing calcite to aragonite, but in fact it is never used in this sense.
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4.12.2 Helmholtz energy

Similarly, if we define a function
A=U—TS (4.48)

called the Helmholtz energy, or the Helmholtz work function, the differential
of which is

dA=dU—TdS—SdT (4.49)
or
dA; =dU—TdS (4.50)
we find, comparing (4.34) and (4.50),
dA,+PdV <0 (4.51)
or
dA;, <0 (4.52)

Thus we have another function, A, which will always decrease to a minimum
in spontaneous processes in systems having specified values of 7" and V, and
is another thermodynamic potential. The usefulness of this function will be
discussed below.

4.13 Gibbs and Helmholtz functions as work
4.13.1 Gibbs energy as useful work

A ball in a metastable equilibrium valley (e.g., Figure 1.2) is capable of doing
work as it rolls down to lower elevations (once it is pushed over the barrier).
The maximum work it can do is exactly equal to the (minimum) work required
to push the ball back up to its metastable elevation. One way of understanding
the Gibbs energy is that it is equal to the maximum amount of useful work
that chemical systems can do as they change from metastable states to stable
states, underlining the usefulness of the ball-in-valley analogy.

However, we must first distinguish between fotal work and useful work.
Chemical systems undergoing change (i.e., in which reactions occur) can do
various kinds of work. For instance, batteries can do electrical work. While
undergoing these reactions, the chemical system invariably has some change
in volume, because it is most unlikely that the reaction products would have
exactly the same volume as the reactants. This change in volume AV takes
place under some ambient pressure P, so that P AV work is done during the
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reaction regardless of whether any other kind of work is done or not — if
the reaction is to take place, it cannot be avoided. This “work against the
atmosphere” (or against the confining pressure, whatever it is) usually is not
useful; it simply takes place whether we like it or not, and at atmospheric
pressure it is often a rather small part of the total energy change. Although
we can decide to eliminate electrical work or other kinds of mechanical work
from our systems, we cannot eliminate this P AV work (unless we consider
only constant volume systems, which is not usually very practical). We can
talk about the total work w, or the total work per mole, w. Net work (per mole)
other than P AV work can be written

Wpet = (wlotal - wPAV)

= (w+PAV)

and because g < T AS (integration of Equation 4.3), it follows from the first
law (AU = g+ w) that

w>AU—TAS (4.53)
Adding P AV to both sides,

w+PAV>AU-TAS+PAV

and so
Wy = AU —TAS+PAV (4.54)
Now,
G=U-TS+PV
dG=dU—-TdS—SdT+PdV —-VdP
dGyp=dU—TdS+PdV (4.55)
and
AGyp,=AU—-TAS+PAV (4.56)

So, combining (4.54) and (4.56),
Wyt > AGrp (4.57)
or, the other way around,

AGT,P S wnet
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Gibbs energy as maximum work

The maximum amount of work, other than the work done by the confining
pressure, available from reaction (2.2) is

A,G° = AGS ~ A£G, —30GS

Al,03-3H,0(s) AL O3(s) H,0()

—2310.21 — (—1582.3) — 3(—237.129)

—16.523kImol~!

= —16523Tmol™!

By comparison, PAV work done by atmospheric pressure during this reaction is
1.61Jmol~!.

However, don’t forget that according to our sign convention, —w is the work
done by a system, or available from a system, so we should perhaps write

_AGT,P > — Wyet

In other words, the net useful work available from a system cannot be greater
than the decrease in G that the system undergoes (that’s why it is often called
Gibbs free energy). For example, if a battery is doing work by lighting the bulb
in a flashlight, the maximum amount of useful work it can do is given by its
decrease in G toward stable equilibrium, when the battery is dead (we continue
this thought in §12.5.1). If the system does no work other than expanding or
contracting against its confining pressure (no work other than P AV work),
then w,,, = 0, and

AG.p<0 (4.58)

This result is not surprising, as it agrees with our conclusion in §4.10, but
it does serve to link the Gibbs energy with an intuitive concept, the available
work.

4.13.2 Helmholtz energy as total work

Comparing Equations (4.53) and (4.50), we see that
w> AA; (4.59)

which is analogous to (4.57), only in this case we say that the total work per
mole (rather than the available work) cannot be greater than the decrease in A,
or that AA; is an upper limit to the total work done in isothermal processes.
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If no work at all is done, then w = 0, which implies that AV =0, and
AAry =0 (4.60)

so that A always decreases in spontaneous processes under constant 7, V con-
ditions. It is another thermodynamic potential.

It might seem useful to have a function related to the total work available
from a system, but in fact A is little used in this sense. It (that is, A )
is also not much used as a thermodynamic potential, despite the fact that
replacement processes in weathering, metamorphism and metasomatism are
commonly interpreted to occur at constant volume (Nahon and Merino 1997,
Carmichael 1986). However, replacement processes do not, by definition, take
place in a closed system, so that the Helmholtz energy is not the appropriate
potential. So what is the appropriate potential quantity in open systems? We
consider this in §4.14.

Where the Helmholtz energy frequently is used is in constructing equations
of state (Chapter 13), and that is the reason for including it here.

4.13.3 Notation again

As a reminder, Figure 4.12 shows the logical relationship between all our
various AG terms, just as Figure 3.11 did for AH terms. Refer to §3.7.2 for a
discussion.

4.14 Open systems
4.14.1 The open system equation

If you look at Figure 3.3 and Figure 4.1, or if you think about the fundamen-
tal equation (4.9), you realize that we have expended all this time and effort
in defining thermodynamic potentials that are limited in one very important
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respect, and that is that they apply only to systems which do not change com-
position. Everything we have said is limited to constant composition systems.

Such systems are indeed important, and they can include changes in compo-
sition in a limited sense. For example we can use G to predict that in a system
having 1 gram of halite plus a kilogram of water, the water will change com-
position as the halite dissolves to an equilibrium composition. But the solution
must have the same composition as the halite 4+ water that we started with. The
system has not changed composition; components have just been redistributed
between phases within the system, as in Figure 2.2b.

The total Gibbs energy G depends on the mass of system we consider. The
G of 2 kg of halite is twice the G of 1kg of halite (§2.4.1). So if the total energy
of a system depends on the mass or number of moles there are in the system,
surely it also depends on what that mass consists of. Because we deal only
with energy changes, we have no way of knowing whether a mole of halite has
more or less energy then a mole of sylvite (KCl) or a mole of anything else,
and we don’t need to know. We just need to know how the energy of a system
changes if we add halite or sylvite to it. We know that if we add halite to a
system consisting of halite, the change is linear, but how does it change if we
add sylvite to halite (in solid solution)?

Because we have a mathematical model of energy changes, we have a simple
mathematical answer to this question. G is a state variable, so dG is an exact
differential (§C.2.1). This means that, among other things, we can write the
total differential as in Equation (4.41), or in the total energy form as

d d
dG:(—G) dT+<—G> dP (4.61)
aT ), P ),

This shows, as long as we can integrate these derivatives, how G changes
with changes in 7 and P. To see how it changes when we add n;, moles of
component 1 and n, moles of component 2, we just add more derivatives, so

G G G G
6=(5) ae(1S) () ans(S) oy
oT P.n oP T,n anl T,P,ny anZ T,P,n;

where n means (n,, n,), or in general, with ¢ components,

G G ‘(3G
dG=| — dT — dpP — dn; 4.63
<aT)P,n * <8P>T,n +§<ani>T$P,?z,- " ( )
° (3G
=-SdT+VdP+Y [ — dn, (4.64)
i=1 on; T,P.#;
where n now means n,, n,, . . . , n, (all components), n; refers to any individual

component i, and 7; refers to all components except i.

Our new derivative terms (0G/0n;)r,p 5, look suspiciously like our definition
of a partial molar property in Equation (2.1), and indeed they are partial molar
Gibbs energies. They allow us to deal with compositional changes, and as such
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they are one of the most important quantities in chemical thermodynamics.
They are given a name, chemical potentials, and a symbol, u, i.e.,

_ oG
= on, T.P.7;

We have a lot more to say about them, but for the moment we will just get the
equations we need for future reference. We can now write (4.64) as

dG = —SdT +VdP + " pdn, (4.65)

for ¢ independent components.

4.14.2 The Gibbs-Duhem equation

An interesting result is obtained by integrating (4.63) at constant 7' and P, that
is, by supposing that the quantity of system varies from zero up to some finite
value. The result is*

Grp= Z/‘Lini (4.66)

which shows that u is not just some abstract partial derivative, but is the Gibbs
energy per mole of a dissolved substance. That is, Equation (4.66) shows that
the total Gibbs energy of a system is simply the sum of the number of moles
of each component in the system (n;) times the free energy per mole of that
component ().

Our new “more complete” fundamental equation (4.63) is a bit inconvenient
for some purposes, in that some of the differential terms (d7, dP) are intensive,
but the others (dn,) are extensive. We would like to have an equation which
contains compositional terms, but which has differentials of intensive variables
only. We get this by first differentiating (4.66),

dG =nydu, +pdny +nydpy +pydny +- -+ n.du.+ . dn, (4.67)

and subtracting from this Equation (4.63). The result is

0=SdT —VdP+Y ndu, (4.68)
i=1
which is called the Gibbs—Duhem equation, or “Gibbs 97” by readers of Gibbs
original papers,? as that is its number in the original. One important application
is in the derivation of the phase rule (Chapter 11).

22 Equation (4.66) is also the result of Euler’s theorem (§C.2.3) applied to G as a function
homogeneous in the first degree in the masses of the components.
23 Available in Dover reprint edition (Gibbs, 1875), and highly recommended for mind-stretching.
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The integrated form

Another important application of this equation is to show that even though
the components in the system are compositionally independent of one another,
their chemical potentials are not always independent. In a binary solution of
components 1 and 2, you can change n, without changing n,, but doing this
will change both w, and u,. This turns out to be quite important in Chapter 10.
Let’s see how it works.

At a constant T and P, Equation (4.68) becomes

> ndp; =0 (4.69)
i=1
so for a binary system
nydw, +n,du, =0 (4.70)
or, dividing by n, +n,,
Xy dpy+x,dp, =0 (4.71)
SO
X2
dpy = ——dp, (4.72)
X
" ’ X,], X
wi—wi=— [ Zdp, (4.73)
1

showing that if you know how one potential changes as a result of a com-
positional change, you can calculate the change in the other. They are not
independent.

This process can be extended to ternary or even higher order systems,
and it can be shown that all chemical potentials in a multicomponent system
can be evaluated if the potential of one component is known over the whole
compositional space. However, the process becomes complex, and has been
little used even in ternary systems. Pitzer and Brewer (1961, Chapter 34) have
a discussion of this, with several useful references. The vast majority of uses
of the Gibbs—Duhem relation have been in binary systems, using variations of
Equation (4.73). We should mention that the term Gibbs—Duhem is commonly
applied to any of Equations (4.68)—(4.73).

Equation (4.73) proves inconvenient in practice, because g — —oo as x — 0.
That is, pw changes very rapidly in dilute solutions and does not approach a
limit, so it’s not convenient in integration. Equation (4.73) is therefore modified
to a more convenient form, which we will see in Chapter 10.

4.14.3 Other kinds of open systems

The open system as a subsystem in an overall closed system (Figure 2.2b) is
by far the most commonly used kind of open system in geochemistry. In any
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multi-phase system, the compositions of the phases must be adjusted to achieve
a Gibbs energy minimum, and this type of calculation is very common. But
there are other kinds of open systems.

Externally controlled potentials

You might say that the open systems discussed above are not “really” open; the
phases can change composition, but that can only be handled thermodynam-
ically in an overall closed system. The significant feature of this situation is
that the overall system composition is constant. A truly open system has matter
passing in and out, to and from the environment of the system, and we may
not know exactly how much of this stuff is in the system at any one time — it
may be quite variable. How do we handle that?

In real life, we may know no more than that — we know there are some
components in our real system, but we don’t know how much, and we don’t
know anything else about them, except their chemical composition and perhaps
that they have the same T and P as all the other components. If that is the
case, thermodynamics is of no help. To make a thermodynamic model we
must know either the mass (or number of moles) or the chemical potential of
each component. A system in which we know the masses of some components
and the potentials of others can be visualized as in Figure 4.13, where for
simplicity we have only one component of each type. In this system we have a
hypothetical semipermeable membrane, through which component B can freely
pass, but component A cannot. The external system containing B can have
its pressure or composition controlled independently of the system containing
composition A, so we have an open system with externally controlled potentials.
Note that the amount or mass of component B in the external part of the system

Ptotal
Temp. T
The system The environment
(A,B)

y

~<«—+—» Pure |e——— PB

B
/]

l"lBsystem = l"lBer\vwronment

Membrane permeable
only to B
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Figure 4.13 The system
contains two components
A and B, and the
environment contains
pure component B. The
temperature is the same
in both but the pressures
are independent, so that
the chemical potential of
B in the system (A,B) is
controlled by that in the
environment.
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is irrelevant. The use of such a “magical membrane” to model our system may
seem bothersome to some. We can address this in two ways.

e There actually are such membranes in common use in experimental work. Platinum at
high temperatures is permeable to hydrogen but not to other substances, and this fact
is extensively used to control the oxidation state of experiments. This is discussed
further in §11.5.2.

e Real geological systems have no such membranes, but they do have components
(e.g. H,O) which have externally controlled potentials, such as practically any rock
undergoing hydrothermal alteration, and the membrane allows us to model this situ-
ation. The fact that the model system has a membrane but the real system does not is
no more important than many other differences between the two kinds of systems.

The question is, what thermodynamic potential is appropriate to this situa-
tion? It cannot be the Gibbs energy, because if we write (4.65) for components
A and B, and consider 7, P, and n, to be fixed, we get

dGyp,, = ppdng

The closed system criterion for equilibrium is dGy. , = 0, but this is obviously
inappropriate in this case because wg is certainly not zero and dng is not
necessarily zero because we have said nothing about Pg. There are in fact no
conditions pertaining only to the system containing both A and B that will
specify the equilibrium state when the environment is attached to it. This is
essentially self-evident. A thermodynamic potential appropriate for the system
plus environment must evidently contain terms referring to both parts of the
system.

Thompson’s L function

The thermodynamics of this situation was worked out independently by
Korzhinskii (1959) and Thompson (1970). The easiest way to do this is by a
Legendre transform (discussed in §C.4) of a potential already established for
other parameters. Starting with

G =G(T, P, ny, ng)

we want a new function, which Thompson (1970) has called L, which preserves
the potential qualities of G but has different independent variables; i.e., we
want

L =L(T, P,ny, pg)

We find the Legendre transform by subtracting from G the product of the old
variable and the derivative of the old function with respect to that variable.

Thus
L=G—-ng <&>
ang
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or
L=G—ngug 4.74)

Differentiating (4.74) and adding (4.65) written for components A and B, we
get

dL=—-SdT+VdP+ p,dn, —ngdug 4.75)

showing that L has (7T, P, n,, i) as independent variables. L is a function that
is minimized at equilibrium for given values of T, P, n, and wg, in exactly the
same way that G is minimized for given values of T, P, n, and ng. Since ng
is not zero, dL is clearly only zero when duyg is zero, which will of course be
when py is the same in the system and in the environment.

The L function has not found much use in geochemistry to date, and we will
not use it in this text. It is included here to demonstrate that thermodynamics
can in fact handle truly open systems, and because it is an interesting exercise in
the use of the Legendre transform. Also it seems quite posssible that inventive
geochemists will find much greater use for this (and other thermodynamic
potentials?) in the future. Its derivation and use in metamorphic studies has
had a somewhat troubled history, nicely reviewed and discussed by Rumble
(1982).

Engineering applications

Open systems are much more common in mechanical engineering. Basically
this is because the applications do not involve chemical reactions to nearly the
same extent. All kinds of heat engines, turbines, refrigeration machines, boilers,
and so on can be modeled in terms of mass and energy balances. Conservation of
mass and energy in the inputs and outputs, which is basically the first law, plus
heat to work conversion, the second law, account for much of thermodynamic
modeling in these applications. Mechanical engineering texts may not even
mention the concept of activity (Chapter 8), so central to geochemistry.

4.15 The meaning of entropy

As long as we are dealing with pure compounds, we have answered just about
all our questions. We have an energy parameter, the Gibbs energy, which
always decreases in spontaneous reactions at a given 7 and P, and we know
how to measure this energy term — calorimetry. We know, however, that this
energy term, AG, is made up partly of a fairly comprehensible term AH, which
is just a heat flow term, and another term AS, which is more mysterious. All
we know about this one is that we defined the second law such that the entropy
always increases in spontaneous reactions in isolated systems. The entropy is
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not itself an energy term, but the product of 7" and S, or T and AS, is an energy
term.

If we had to rely on classical thermodynamics, we would know little more
than we have already said about entropy. It is a parameter, with a method of
measurement, which increases in spontaneous processes, even when no energy
changes are possible, that is, in isolated systems. We would also notice, after
measuring the entropy of many substances, that the entropies of gases are
relatively large, those of solids relatively small, and those of liquids somewhere
in between, but we would probably not have any mental picture of what entropy
represents physically.

If you look at some processes that are quite irreversible but that involve
little or no energy change, such as the mixing of two gases or the spreading
of a colored dye in water, you observe a driving force for processes that is
quite different from the energy-drop paradigm we have been pursuing (the
ball rolling downhill). There is no energy drop when gases mix, but they do
so invariably and irreversibly, and this shows that another driving force for
reactions is mixing, or an increase in “mixed-upness,” which will take place if
it is possible. If you think about gases as collections of countless tiny molecules
zipping around with the speed of rifle bullets, but with quite a lot of space
between them, you realize that if two different gases are brought together, it
is no more difficult to understand why they will always mix together than it is
to understand why a ball will roll downhill. But this mixing process involves
no energy change (at least for ideal gases), so the first law of thermodynamics
is powerless — it cannot be the basis for a thermodynamic explanation. The
second law and entropy do provide it. Entropy can be thought of as a degree
of mixed-upness, and increasing the randomness or mixed-upness of systems
is one of the driving forces for spontaneous reactions.

The confusion arises because it is not the only one — the ball rolling down
the hill (energy decrease) is also one. It is the two together that provide the
complete answer. In some processes energy decrease is the dominant factor,
and in others, mixing or entropy increase is the dominant factor. The two are
brought together in the Gibbs energy equation

dGy,=dH—TdS [4.38]
which can also be written
AG;p=AH—TAS

Here there are two factors that together determine whether AG;p will be
positive or negative. One is AH(= AU + P AV), which is the energy change
due to heat and work in the process represented by A, and the other is T AS,
the energy change due to the mixing factor. In many spontaneous reactions,
AH is negative (the process is exothermic) and AS is positive (mixed-upness
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increases), and so both factors are negative (T AS positive, —T AS negative)
and AG is negative. In other reactions, AH is positive (process is endothermic,
e.g., melting ice), but the AS term is sufficiently large and positive so that
T AS > AH, and AG is negative in spite of the positive AH. This will be
especially true at high temperatures, when T is large. There are all varieties
of combinations; the point is that whether or not any particular process is
spontaneous is the result of the two competing factors. Systems want to lower
their energy content, but they also want to maximize their mixed-upness. The
balance between these factors decides the issue.

4.15.1 But what is entropy, really?

This question has been around since Clausius invented the term in 1865,
and the answer takes on many forms. Some follow the historical route, from
steam engines, to Carnot, Clausius, Thompson, Joule, Rankine, and so on.
A particularly lucid, concise account of this history is Purrington (1997).
A central feature of this approach is Carnot cycles, as used by Clausius to
deduce the existence of the entropy parameter. This approach is rather abstract,
and needs some manipulation to be seen to be connected to thermodynamic
potentials and chemical reactions. Others emphasize the impossibility of some
processes, or the “availability” of energy, and some have a rather unique
viewpoint, such as Reiss (1965), who considers entropy as the “degree of
constraint.”

Virtually since the beginning, however, a popular viewpoint has been to
see entropy as a measure of disorder. Helmholtz used the word “Unordnung”
(disorder) in 1882. This results from familiar relationships such as S, >
Stiquids > Ssotias» and the universally positive entropy of mixing. We used this
relationship in the previous section when we spoke of “degree of mixed-
upness.” However the “disorder” analogy can involve a serious fallacy, as made
clear by Lambert (1999; see also http://www.entropysite.com).

The rather subjective concepts of disorder and mixed-upness are useful
analogies in certain situations, such as melting solids and mixing gases, but
they fail completely in most other situations. You cannot tell whether a- or
B-quartz is “more disordered” or has the higher entropy by looking at their
structures. Shuffling a deck of cards perhaps increases its disorder, but it does
not increase the entropy of the cards. To see this, just imagine cooling the cards
down to near zero K, measuring their heat capacity up to room temperature, and
determining the entropy of the card deck from these measurements. Obviously,
the result will be the same no matter in what state of order the cards are. The
same is true for the configuration of any macroscopic system. Checkers on a
board are ordered at the start of a game, and become progressively disordered
during a game, but the entropy of the checkers remains the same no matter
what their arrangement.
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A complete understanding of this inevitably involves statistical and even
some quantum mechanics. In statistical mechanics, the atoms in a system are
postulated to have a number of “microstates,” which are energetic states of the
system, the definition of which involves the distribution of energy quanta over
available energy levels in the particles in a macroscopic system. If a change
occurs so as to increase the number of available microstates, energy will spread
out among the newly available microstates. The basic postulate of statistical
mechanics is that over long periods of time, every possible microstate of an
isolated assembly occurs with equal probability (Nash, 1972). The quantity W
in the famous Boltzmann—Planck equation

S=klnW

is in fact the number of these microstates, where W = 1 for a perfect crystal at
absolute zero K and k is Boltzmann’s constant (which, significantly, includes
temperature). The stable state simply has an immensesly greater number of
equivalent microstates.

Much of the discussion in statistical mechanics concerns probability dis-
tributions and their application to microstates. Information theory (Shannon,
1949) defines a quantity — Y _; p;log p;, called the entropy of a probability dis-
tribution, which has some remarkable similarities to the properties of classical
or thermodynamic entropy. What seems to be overlooked by nonexperts is
that in chemistry and physics, the probability distributions being discussed are
those of energy distributions among microstates. When we speak of mixing or
“mixed-upness,” we actually refer to particles (atoms, molecules) distributing
themselves in different energetic states, not to macroscopic things like cards or
checkers. Explaining entropy does involve probability theory, but the proba-
bilities refer to energetic states, not to the outcome of dealing cards or tossing
dice.

The central fact about entropy as used in science is that it involves the
distribution of energy in a system. Energy tends to become “spread out,” or
delocalized, if not prevented from doing so. The ‘“configurational entropy”
much used by mineralogists in discussing the various arrangements of atoms on
a crystal lattice (Chapter 14) is fundamentally different fom the arrangement of
checkers on a board because energy is transferred when atomic arrangements
are changed — the heat capacity of each arrangement is different.

If you “really” want to understand entropy, you need to learn more than
just equilibrium thermodynamics. In this book, we take the simple view that
entropy is a parameter, having a clearly defined method of measurement, which
enables us to define thermodynamic potentials in chemical systems. It is simply
related to “disorder” in many simple situations, which is an intuitive aid, but
this aid doesn’t extend very far. Because of this resemblance to probability and
disorder, entropy has been related to everything from shuffled cards to the fall
of empires, but these connections for the most part have nothing to do with the
second law of thermodynamics.
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4.16 A word about Carnot

Some readers may have noticed that, despite the numerous equations and deriva-
tions, the introduction of entropy and the second law is less than completely
rigorous in this chapter. This is because at a crucial point, the introduction of
the relationship between entropy, temperature, and heat (Equation 4.3), we rely
on analogy rather than demonstration or argument. Most treatments rely on a
discussion of Carnot cycles, but as one chemist has observed,

Arguments based on heat engines have little appeal to chemists
(McGlashan, 1979, p. 111).

In my experience, such arguments have even less appeal to geochemists. This
is perhaps unfortunate, because approaching the subject from various points of
view certainly aids understanding, and in fact the heat engine approach is very
useful in the derivation of Equation (4.3), and also the kelvin temperature scale.

However, such discussions tend to be rather long and abstract, and exactly
how conclusions about irreversible heat transfers in Carnot cycles get trans-
ferred to irreversibility in chemical reactions requires even more discussion.
This detracts from the task attempted here — the shortest possible, intuitively
clear, development of the concepts necessary to use thermodynamics in solving
Earth science problems. Readers who want to know more about the historical
development of the entropy concept and its deeper meaning must consult the
many excellent treatises on this subject.

4.17 The end of the road

We pause here to note that, in case you hadn’t noticed, we have arrived at
the answer to the question posed in Chapters 1 and 2. The question was, what
controls whether a reaction or a process will happen or not happen? Why does
water freeze below 0 °C and ice melt above 0 °C? What is the “chemical energy”
term that always decreases to a minimum, like the ball rolling down the hill? In
answering this question, we first had to define fairly carefully some terminology
such as system, equilibrium, and process. We then noted (Chapter 3) that
systems have fixed energy contents (U, or U) at equilibrium, but this didn’t
help, because although this energy is conserved, it doesn’t distinguish at all
between directions processes take (bricks could cool themselves, and use this
energy to fly, as far as U is concerned).

The missing ingredient to understanding why reactions go one way and not
the other is entropy. Entropy is defined as a state variable that always increases
in spontaneous processes in isolated systems. But a parameter that is useful
only in isolated systems is not of much practical use, so we defined another
state variable, the Gibbs energy, that always decreases in spontaneous process
in systems at a given T and P (see Figure 4.14). This is the parameter we
have been looking for. Figure 4.14 shows two different states of a system at
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Figure 4.14 Gibbs energy
decreases in spontaneous
processes at a given
temperature and
pressure.

The second law of thermodynamics

Water, corundum separate at T, P

Scale of increasing G
i

Gibbsite, same T, P

_——

.

Gr pdecreases
b to minimum

the same temperature and pressure. A spontaneous process (the formation of
gibbsite) occurs when the constraint keeping the reactants separated is removed
(corundum and water are mixed together).

Similarly, in Figure 2.4, the “chemical energy” term is in fact the Gibbs
energy. At +5°C, 1 bar, G, > G and at —5°C, 1 bar, G, > Gie.-
In Figure 2.5 Ggumond > Ggraphices @ssuming both have the same P and T.
Mathematically, the entropy and Gibbs energy potentials are two sides of the
same coin — one implies the other, as shown in Figure 4.15. Looking at it in still
another way, you see from Figure 4.5 that a single system can have dUs, =0
and dS; , = 0 simultaneously. If we were not limited to three dimensions, we
could show that the same system also has dG; », = 0. Each condition implies
all the others.

In biochemistry, processes having a negative A,G (A, G < 0) are termed
exergonic, and those having a positive A,G are termed endergonic. For some
reason, these terms are not common in geochemistry.

The problem at the moment is that these new state variables S and G will
have no “feeling of reality” for a reader new to the subject. That is, what is
entropy or Gibbs energy, and how does one measure these things? Only by
actually using these concepts will one become familiar with them. The next
chapter is a first attempt at describing these variables in more familiar terms.

water

4.18 Summary

What you should know at this point is that we have defined a parameter,
entropy, which can tell us which way reactions will go, but only in isolated



4.18 Summary

The Second Law:

There is a system property, entropy
(S), which always increases in

WORDS: spontaneous reactions in isolated
systems (those having constant U
and V).

EQUATION: ASyy >0

IMPLIES

There is a system property, Gibbs
. free energy (G), which always
WORDS: decreases in spontaneous reactions
in constant T,P systems.
EQUATION: AG7p<0

systems.’* The statement defining entropy is one way of stating the second
law of thermodynamics. Combining entropy with the first law, we then defined
another parameter, the Gibbs energy, which can tell us which way reactions go
in systems at a given temperature and pressure. We also showed that the Gibbs
energy is equal to the maximum amount of useful energy or work available
from such reactions, but we have not yet seen how to measure any of these
apparently useful quantities.

It is normal at this point for newcomers to this subject to be rather confused,
or perhaps impatient. If we think about natural processes that we would like
to understand, such as occur in living plants and animals, or even simpler
inorganic processes such as occur in creating our weather patterns or in erupting
volcanoes, we could be forgiven for wondering what earthly use the kind of
material we have considered up to now can be. We seem to have restricted
ourselves to ridiculously simple cases such as balls rolling in valleys, and even
though we have claimed that certain simple inorganic processes such as melting
ice and polymorphic mineral changes are analogous, we haven’t shown how to
do anything remotely useful.

Not only is it not yet useful, but even after restricting ourselves to simple
cases and claiming not to be dealing with reality but with models of reality, we

24 That is, only in isolated systems if used by itself as a thermodynamic potential. Indirectly, i.e.,
combined with other state variables to define other thermodynamic potentials, it gives
directionality parameters for any kind of equilibrium system. All thermodynamic potentials
include entropy in some way.
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have introduced at least one concept (entropy) that is rather difficult to fully
comprehend and have used a level of mathematics that, although not exceeding
that taught in introductory calculus courses, has physical implications that are
hard to grasp. The best remedy for this is to review the material to some extent,
and to plunge ahead even if it is not entirely clear. After some familiarity
with practical applications is attained, some of the earlier material will become
clearer, so the best approach is continuous review, in addition to assimilation
of new material.

It may well seem that we have made no progress toward understanding
complex processes, but this is not true. Most natural processes are so complex
that we simply must start with the very simplest ones we can think of and define
our terms very carefully. Our goal of finding the secret to why reactions go in
one direction and not the other may seem overly simple, but it is in fact the basic
concept necessary to build up an understanding of all the natural phenomena
mentioned above. Of course, even when we have mastered thermodynamics,
we will find that we don’t have all the answers to all our questions; in fact,
we will find that the things thermodynamics can tell us are fairly limited. They
have, however, a level of certainty which surpasses that of most other ways
of looking at the same problems, and this makes the subject an absolutely
essential element of all research into problems that involve energy transfers.
You may wish to know much more than thermodynamics can tell you, but you
need to know what it can tell you.
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Getting data

5.1 Introduction

We have had quite enough theoretical discussion for now. Let’s see how to
get some numbers into our equations so as to be able to calculate something
useful. Welcome to the world of experimental thermochemistry.

In this chapter we will have a look at a few of the ways in which the
thermodynamic parameters we have derived are measured; i.e., where the
numbers in the tables and databases come from. A deep knowledge of this
subject is not necessary in order to use thermodynamics to model chemical,
geological, or environmental systems, in the same sense that a knowledge of
a composer’s life and times is not necessary to enjoy his or her music. But
it does enrich the experience, and in the case of using thermodynamics, such
knowledge does serve to make the user conscious of the many, many reasons
why his or her data might be incorrect. It enables the user to truly believe in
the “modeler’s motto” — never trust your data absolutely.

Thermochemical data are produced for the most part by dedicated scien-
tists, who devote a good part of their lives to tracking down elusive sources
of error, and devising ever-improved methods for determining nature’s fun-
damental parameters as defined by thermodynamic theory. When determined
by independent methods and/or independent laboratories, the results are often
satisfyingly in agreement, but almost as often they are not, meaning that there
is some source of error, and identifying it can take a lot of discussion (perhaps
arguments would be a better term) and a long time.

Beginning with the establishment of the Geophysical Laboratory in
Washington in 1905, scientists primarily interested in geological processes
have contributed to our knowledge of these thermodynamic properties, espe-
cially, as might be expected, those of the rock and soil-forming minerals, and
aqueous solutions such as sea water and hydrothermal solutions. In addition to
the measurement of mineral and solution properties, collecting these data into
databases for use by computer programs, and the testing of these databases for
internal consistency has become increasingly important.

The experimental part and the self-consistent database part of using ther-
modynamics in the Earth sciences today have both become large and complex
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subjects, each worthy of separate study. Geologists and geochemists primarily
interested in Earth processes, but who need to do some thermodynamic mod-
eling in order to better understand these processes, can be forgiven for not
wanting to be involved with either experiment or database development. Nev-
ertheless, rigorous thermodynamic methods can produce nonsensical results,
given incorrect data, so a blind faith in the database attached to some computer
program can be a recipe for disaster.

In this chapter (nor in this book) we cannot address these areas of study to
any great extent, but understanding thermodynamics for most people is helped
by having some knowledge of how fundamental data are determined. The aim
of this chapter is thus to trace the connection between laboratory experiments
and thermodynamic modeling. The idea is not only to impart some idea of
how it is done, but some idea of the great difficulties involved at every stage,
and therefore some respect for data. Good data are a precious commodity; you
should have some interest in where yours come from.

The discussion of methods in this chapter is very sketchy. Many details and
variations are omitted, because all we want to do is illustrate what is involved.
Do not conclude from the simplicity of the presentation that there is nothing
much to this experimental business. It is not too difficult to get data that are
not much good; it is extremely difficult, time consuming, frustrating and often
expensive, to get excellent data, ones that stand the test of time.!

Sections 5.2 to 5.7 deal primarily with obtaining data for solid phases.
Section 5.8 deals with liquids, gases and solutes. An overview of many methods
used by Earth science experimenters can be found in Ulmer and Barnes (1987).

5.2 What to measure?

Imagine that you have an interesting field problem, and you want to do some
thermodynamic modeling to better understand it, but for some reason there are
no data for the mineral you are most interested in, gibbsite. You go to a fully
equipped laboratory, but what do you do there?

5.2.1 What not to do

Perhaps in your field study you have concluded that gibbsite is being formed
from some other mineral by some alteration process you have figured out, and

I Much the same can of course be said about field work, or indeed about any serious branch of
science. If you don’t know much about it, it looks easy. I am reminded of the story of the
geochemist, well versed in theory and experiment, who said that field mapping could be
carried out by a bunch of monkeys trained to collect samples. Let’s hope that such appalling
ignorance is not widespread.
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you want to use thermodynamics to see if it makes sense. Maybe thermody-
namics will tell you that this process is not permissible at your favorite 7" and
P, or that gibbsite is not the stable phase.

But your alteration process involves other minerals, as well as an aqueous
solution. The most obvious thing to do then is to set up an experiment in which
you try to duplicate this reaction. Perhaps you put some groundwater and some
minerals together in some reaction vessel for a while, then look at the results.
In other words, you try to duplicate nature. This approach has been tried many
times, and generally the results are of very limited usefulness. The results are
usually quite complex and difficult to interpret, and in any case they apply
only to one specific set of starting materials — it is difficult to draw general
conclusions from the results. Besides, the measurements you can make in such
experiments, which are usually the compositions of some complex phases, have
nothing to do with measuring heat and work, which as we have seen is the
basis of all our thermodynamic parameters.

5.2.2 What to do

If you wish to use thermodynamics, perhaps you should look at the equations
to get a clue as to what to measure. Looking at the first law, AU = g+ w,
you see that you will be involved in measuring heat and work. Looking at the
second law, either dS = [(C,/T)dT or AS = AH/T, you see that measuring
heat at various temperatures is also involved. Measuring quantities associated
with ¢ and with w are therefore fundamental to experimental thermodynamics.
There are quite a number of ways of doing this, but for the moment we can
divide them into direct and indirect methods.

Direct methods

Based on our discussion so far, it seems that we would like most to know A, .G

for reactions of interest to us, because this will tell us which way the reactions

will go, assuming that pressure and temperature are fixed. For example, if we

were not sure which of the two forms of carbon was the stable form at 25 °C,

1 bar, we could measure Gy ypnie — Ggiamona> Which is A, G for the reaction
C(diamond) = C(graphite)

and if this quantity was negative, then graphite would be stable, and if it was
positive, diamond would be stable. The same reasoning would hold for any
complex reaction involving gibbsite, as long as we know the Gibbs energy of
every species in the reaction.

There are quite a number of ways of determining changes in Gibbs energy,
but we will discuss only the most common one here. Others are associated
with determining the equilibrium constant or cell voltages, as we will see in
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Chapters 9 and 12. To see how changes in G are measured, consider first
Equations (4.56) and (3.17)

AG;,=AU—TAS+PAV [4.56]

AH, =AU+ PAV [3.17]
Combining these, we have
AG,p=AH,—TAS (5.1)

From this, we see that we can calculate AG for a process if we know AH,
and AS for that process. We know (from §3.5) that AH, is simply the heat
transferred to or from the closed system during a constant pressure process,
so all we have to do is carry out some process (reaction) at some constant P,
probably atmospheric P, and measure how much heat is evolved or absorbed.

This AH is also connected to AS, but only for a reversible process, as
we have seen. This might be a little difficult to do, experimentally. But we
also have an equation involving AS, Cp, and T (Equation 4.25), and C, is
related to AH (Equation 3.25), so it begins to look like measuring heat is
pretty important, even if you are not concerned with heat flow in your field
situation. Therefore, calorimetry, the art and science of measuring heat flows,
is the secret to determining values of AG.

Indirect methods

So far we have talked about using thermodynamics to determine phase relation-
ships. But the opposite approach can also be used; phase relationships deter-
mined under strictly controlled conditions (meaning controlled by the phase
rule, Chapter 11) can be used to deduce fundamental thermodynamic proper-
ties. For example, for gibbsite, you might conduct experiments to determine
the temperature at which gibbsite changes to corundum,

2 AI(OH),(s) = ALO5(s) +3H,0() (5.2)

or, you might determine the solubility of gibbsite in water at various tempera-
tures and pH values. Both these relationships are interesting to Earth scientists
even without thermodynamic manipulation, but they can also be used to deter-
mine the thermodynamic properties of gibbsite and related species. This is a
subject for later chapters, but intuitively it would seem that knowing the prop-
erties of corundum and water, you might be able to deduce those for gibbsite
from the requirement that reaction (5.2) be at equilibrium.

Even more importantly, families of such relationships, that is, a number of
relationships involving the same minerals, can be used to test the consistency
of thermodynamic data. For example, suppose you have determined A,H*° for
each of gibbsite, corundum, and water from calorimetry. If you get a different
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result from studying reaction (5.2), then there is some error. Or you might have
several different reactions involving gibbsite, so your data for gibbsite must fit
all those reactions. In fact all the data for all the minerals in your database must
fit all the reactions that you know about. Finding errors in these cases can be
difficult, but the point is, phase relationships are a good way to examine how
consistent your data are.

For now, let’s concentrate on calorimetry, the classical method for deter-
mining thermodynamic properties.

5.3 Solution calorimetry

Heat flows can be measured in various ways. One way is to observe some
process in which heat is liberated under controlled conditions, resulting in a
rise in temperature, and then duplicate that temperature rise using an electrical
heater. The energy used by the heater can be measured exactly, and will equal
the energy released by the process considered. This is the principle used in the
calorimeter in Figure 5.1.

This apparatus is used to measure how much heat is liberated when a known
amount of solid material, such as a mineral, dissolves. Most minerals are
notoriously insoluble in water and so an acid, such as hydrofluoric acid (HF),
is used. The method is called solution calorimetry.

Press here

Electrical leads

go here . :._(

Stirring motor

Vacuum

Heating coil

16 |
12 Reaction vessel
8 ) ‘
Combination sample container
4 and stirring blades
0
Centimeters
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Figure 5.1 An adiabatic
heat-of-solution
calorimeter. The reaction
vessel contains acid.
Pushing down on the
handle at the top
punctures the upper seal
and pushes out the
bottom of the sample
container, allowing the
sample to dissolve.

A thermometer is wound
around the reaction
vessel and records the
change in temperature.
No electrical leads are
shown. (Simplified from
Robie and Hemingway,
1972.)
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5.3.1 The method

A few grams of crushed mineral are put into the sample holder and sealed with
gold foil. The sample holder is then place in the reaction chamber, which is
then filled with acid. A long rod reaches from the top of the sample holder
through various seals to the top of the apparatus. This assembly is then sealed
and placed in a vacuum chamber, which goes into a water bath. The purpose
of the vacuum and water bath is to minimize the loss of heat from the reaction
chamber.

When everything has settled down, the mineral sample and the acid are at
the same temperature, but are separated. The long rod is then pushed down.
This punctures the seal on the sample container, and the bottom also falls out,
allowing the sample to mix with the acid and dissolve. The sample holder also
has fins, and rotation stirs the solution and speeds up the dissolution process.
The dissolution of the mineral releases heat, which raises the temperature of
the acid, and the amount of temperature change is measured by a resistance
thermometer, which is wrapped around the reaction vessel. The apparatus is
calibrated by using an electrical heating coil to raise the temperature in a
different experiment, but using exactly the same setup. The voltage drop across
the electrical heater and the current flowing through it are known, and so the
amount of heat required to raise the temperature of the calorimeter by any given
amount is known exactly by turning on the heater for a short time and observing
the temperature increase. By comparing the temperature change caused by
the heating coil to that caused by the mineral dissolution, the heat liberated
by the mineral dissolution can be determined quite precisely. A number of
small corrections must be made for various heat losses in the apparatus, plus
a correction to the heat measured over the temperature interval to what would
have been observed if the process had occurred at a constant temperature of
25°C. These calculations require a knowledge of the heat capacity of the
calorimeter (see below). Because we know the mass of mineral grains used,
the heat of solution per mole of mineral at 25 °C then can be calculated. The
whole process is exacting and painstaking.

5.3.2 The interpretation

What are the meaning and use of this heat of solution? In terms of the processes
we have been discussing, we have observed an irreversible reaction between a
metastable state (pure acid and mineral grains, separated, at 7)) and a stable
state (mineral dissolved in acid at T,), made some measurements, and calculated
from this the heat that would be released in the reaction

mineral, HF separated — mineral dissolved in HF + gy oiution

at 25°C. If the calorimeter is open to the atmosphere, then the mineral disso-
lution process happens at a constant pressure, and by Equation (3.18), the heat
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measured, ¢gomions 1S €qual to the change in enthalpy of the system, AH. This
change is illustrated in Figure 5.2.

Of course, a heat of solution is not exactly what we wanted, although it is
a AH. We want a AH that is the difference between products and reactants
of reactions of all kinds, such as our corundum-water—gibbsite or diamond-—
graphite reactions, and innumerable others. But the heat of solution technique
allows us to do this. Note that in any balanced chemical reaction, the total
or bulk composition of the reactants must be exactly the same as that of the
products. That’s what “balanced” means — all the atoms on the left side of the
reaction must appear also on the right. Therefore, if in separate experiments
we dissolve the reactants and the products in the same kind of acid, we will
get identical solutions. We will, however, measure different heats of solution,
because the products and reactants have different structures and different energy
contents. Therefore, the difference in the heats of solution must be equal to the
difference in enthalpies of the products and reactants themselves.

To put this argument in formal terms, suppose our reaction is

A+B=AB

for example, SiO, 4 Al,O; = Al,SiOs. First we dissolve the reactants, and then,
in a separate experiment, we dissolve the products:

A+ B +solution” — solution” +heat (AH,)

AB + solution” — solution” 4 heat (AH,)

Mineral, HF
separate

e

\

>AH

Mineral dissolved in HF

Molar enthalpy, H
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Figure 5.2 Enthalpy is a
state variable of fixed but
unknown value in the
beginning and final
equilibrium states. AH is
obtained by measuring
the heat liberated in the
reaction at constant
pressure.
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Figure 5.3 Compounds
A+ B together have heat
of solution AH,.
Compound AB has heat
of solution AH,. Both
processes result in
solution”, so the heat of
reaction A+B — AB,
which cannot be carried
out in a calorimeter, is
AH; — AH,.

Getting data

As long as both solution’ and solution” have the same compositions in both
reactions, the reactions may be subtracted giving

A+B— AB+AH,

where AH; = AH, — AH, and is the heat of reaction (A,H) of the reaction
A+ B = AB, as shown in Figure 5.3. A, B, and AB can also refer to complex
organic compounds of any kind. We need only be able to separate them into
their pure forms, so as to be able to work with them.

Because of practical difficulties, the determination of A H® of a compound
is rarely the sum of only two heats of solution, as in Figure 5.3. Quite often
10 or 15 solution reactions may have to be carried out to determine one AfH °,
and the whole process may take several weeks.

5.3.3 A real example

The enthalpy of formation from the elements has been determined for gibbsite
most recently by Hemingway and Robie (1977), and we look at their results
here. The reactions they used, at a calorimeter temperature of 303.5 K, were:

Al(s)+3HF(aq) = AlF;(aq) + H,(g)  A.H; = —595195+1192 mol""

(5.3)

AI(OH);(s) + 3HF(aq) = AlF;(aq) +3H,0() A, Hj=—2046+3Jmol~! (5.4)

3H,(g) + 20,(g) =3H,0(/) A, HS = —857490 75T mol~!

(5.5)
The enthalpy of formation from the elements for gibbsite is the reaction
Al(s) + §Hy(8) +50,(g) = Al(OH);(s) ArH e (5.6)

A+ B + solution”

AHy=AH,~AH,
AH, AB + solution’

AH,
solution”

solution”

Molar enthalpy, H
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Hai+ 3 Hi+3Ho,
Af Hag(oryg = —1293.334 kJ

o

Hai(om),

Molar enthalpy, H

so apparently we get this from the sum A Hj — A H; + A H3.? Actually, we
do not. We said that the aqueous solution would cancel out if it was identical in
all cases. But in reaction (5.3) one mole of Al dissolves in HF solution and H,
gas is evolved, which leaves the calorimeter. But in reaction (5.4), a mole of Al
dissolves in the same kind of HF solution, but it brings with it some H,O from
the gibbsite, which dilutes the acid solution. So the solutions after reactions (5.3)
and (5.4) do not have the same composition. This dilution of the acid solution
is not a neutral process, but evolves heat, and this must be measured. But this
raises another question — how do you write a dilution reaction? And what is the
composition of the solutions in those reactions, anyway? The way we usually
write reactions gives no clue as to the composition of the solutions after the
dissolution reactions. The calorimetry people actually write their reactions in a
much more explicit way, as shown in the box on page 121. A graphical idea

of the meaning of AfH;ibbsite is shown in Figure 5.4.

5.4 The third law

Now we must consider how to measure entropy. So far, all we know about
entropy is that it increases in spontaneous reactions in isolated systems, and
that it appears in equations such as (4.55) and (4.56). To get it into a form
that would suggest a method of measurement, we combine Equations (3.17)
and (4.9),

dH =dU+PdV +V dP [3.17]

dU=TdS—PdV [4.9]

2 Remember that to subtract a reaction the best way is to reverse it, in this case reaction (5.4),
change the sign of A;H? and then add the reactions and the A H*° values.
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giving
dH =T dS+V dP (5.7)

If we choose constant pressure conditions, dP becomes zero, and substituting
C, dT for dH (Equation 3.23), we have

CpdT =TdS

or

C
ds = =24dr (5.8)
T

Here at last we have the entropy defined in terms of something measurable,
the heat capacity. Integrating (5.8), we have
T
Sp,— Sy, = /T1 ’ %dT (5.9)
and so you see that assuming that you can get numbers for C, at a series of
temperatures, you could divide each C, by its value of T and evaluate the
integral, giving you the difference in entropy between two temperatures.

By now you are probably accustomed to being told that we cannot know
the absolute values of thermodynamic parameters, only differences. But this
applies only to the internal energy, U, and any parameters that contain U, such
as H and G. Entropy is different in that we can get absolute values, by virtue
of the third law of thermodynamics.

5.4.1 The third law - historical aspects

Lacking an absolute value in some state, entropy is in the same boat as enthalpy
and Gibbs energy, having only differences rather than absolute values. Dif-
ferences in S can be determined from Equation (5.9), but this means that the
only way to determine the difference in entropy for any chemical reaction is
for there to be some equilibrium path between the products and reactants. For
example, to determine AS between rhombic and monoclinic sulfur at 298.15 K
and 1 bar, you would need to measure heat capacities from 25 to 95°C (the
equilibrium phase transition temperature) for both phases, then integrate (5.9)
up to 95°C for rthombic S and back to 25 °C for monoclinic S. To determine
the AS between calcite and aragonite, you would need to integrate up to the
transition pressure for calcite and back down for aragonite, perhaps using Equa-
tion (5.39). That is, you would do this in principle, but in practice it would not
work well, because V changes so little with pressure.

This is but one of a host of difficulties you would have in finding an equilib-
rium path between states you were interested in. In some cases an equilibrium
path exists but kinetic or other factors make the experimental determinations
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The enthalpy of gibbsite

The gibbsite reactions in §5.3.3 were carried out by dissolving 0.005 moles
of Al (0.1349g Al; 0.3900g AlI(OH);) in 920.0 g of 20.1% HF solution. This
HF solution has 184.92g of HF (9.243 moles), and 735.08 ¢ H,O (40.8029
moles). To report measurements per mole of Al, these amounts are multiplied
by 1/0.005 = 200. Therefore the starting HF solution for the experiments, per
mole of Al, has 9.243 x 200 = 1849 moles HF and 40.8029 x 200 = 8163 moles
H,O0, so the dissolution reactions are written

Al(s) +[1849HF + 8263 H,0](agq) = [AlF;+ 1846 HF 48163 H,0](aq)
+%H2(8)
and
Al(OH);(s) +[1849HF + 8263 H,0](agq) = [AIF; + 1846 HF
+8166H,0](aq)

The dilution reaction was performed by dissolving water into the solution pro-
duced by reaction (5.3), thus

3H,0(/) + [AIF; + 1846 HF + 8163 H,0](aq) = [AIF,+ 1846 HF
+8166 H,0](aq)

This results in a correction of —622Jmol~!. In addition, the heat capacities
of Al(OH);, Al, H,0, and H, were required to correct the measurement from
303.5K to 298.15K, (+615Jmol ™).

Finally, note that the actual calorimetric measurement of reaction (5.3) was
not —595195Jmol~!, but —592952Jmol~'. The problem is that the H, gas
which is evolved during the experiment, and which escapes from the calorimeter,
carries with it some HF vapor and some H,O vapor, and this causes some cooling
due to evaporation. Correcting for this requires knowledge of the enthalpy of
vaporization of HF and H,O from the experimental solution. The final result is
AcH =—1293130Jmol L.

gibbsite
The A H° of gibbsite in Appendix B, from the NBS tables of Wagman et al.
(1982), is very slightly different, —2586.67kImol~! for Al,O;-3H,0, or
—1293334Jmol~! for AI(OH);, and is from Hemingway et al. (1982). The dif-
ference is due to the use of different data fitting techniques and is not statistically
significant.

Thermodynamic data are not written in stone, they are written in blood, so to

speak. Many obscure errors are possible, but you should not change data to suit

your latest theory.
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difficult. In other cases, such as with virtually all organic compounds, no
equilibrium path is possible, so using thermodynamics would be greatly inhib-
ited. Until development and general acceptance of the third law, this was in
fact the case.

This meant that the driving force for reactions, AG, could only be determined
for substances for which such equilibrium paths could be used. Otherwise a
“constant of integration” was always involved. Some method of determining
AG using only thermal data was greatly desired. We should perhaps note that
the emphasis here is on chemical reactions. You will commonly find statements
to the effect that a reversible path is required to calculate entropy differences,
but these statements are generalities, applicable to many processes such as the
gas expansions in Chapter 3. An example of such a statement is found in the
quotation from Schottky (1929) in Appendix G. As mentioned, such reversible
paths are difficult or impossible to find for chemical reactions, the focus of a
large part of chemistry and geochemistry, and it is in these cases that the third
law is useful.

It was widely believed that determining the “constant of integration” for
entropy was possible, beginning with LeChatelier in 1888. Contributions by
Lewis (1899), Richards (1902), van’t Hoff (1904), Haber (1905), Nernst (1906),
and Planck (1912), not to mention Einstein’s (1907) fundamental work on
heat capacities and Boltzmann’s development of an atomistic approach,’ led to
the general belief that the heat capacity, and perhaps entropy, became zero at
absolute zero temperature. However, convincing calorimetric data supporting
this idea, as well as confirming the limitations, only developed during the 1920s
and 1930s. W.F. Giauque received the Nobel prize in Chemistry in 1949 for
his lifelong contributions to our understanding of the third law.

The physics of materials at low temperatures is now a large and important
topic, and a complete understanding of the third law requires some knowl-
edge of statistical mechanics and even some quantum mechanics. A fairly brief
overview is Wilks (1961). However, for those whose interests lie at the other
end of Earth’s temperature spectrum and are mainly interested in having accu-
rate thermochemical data, the only important aspect of the third law is that it
provides an absolute reference point for entropy data.

The structure of thermodynamics is based on the first and second laws,
but it is the third law which allows the structure to be useful for chemical
reactions. By far the most data on Gibbs energy differences and equilibrium
constants has been through use of third law entropies. An illustration of the
difference between the old “equilibrium method” and the use of the third law
in determining the Gibbs energy difference between the two solid forms of
sulfur is given in the box on page 126.

3 References in Lewis and Randall (1923, Chapter 31).
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Lewis and Randall (1914) point out that the change in Gibbs energy at
25 °C for the sulfur transition was also determined by Bronsted in 1906 using a
completely different method. In separate experiments he dissolved both forms
of sulfur in four different organic solvents. The solubilities of each form in
each solvent were different, but the ratio [solubility of S(mono)/solubility of
S(rhombic)] was constant, the average value being 1.28. He also determined
that the sulfur in solution in each case was Sg. In §9.4.1 we will see that this is
a special case of the equilibrium constant being equal to a solubility, and that
A, G° = (RT/8) In[solubility ratio], resulting in A, G° = 18.3 cal mol~!, roughly
confirming the Lewis and Randall determination, probably within the combined
uncertainty of the experimental results. The interest is not the value of A,G°,
but that it was necessary to use an equilibrium in the determination. Before the
third law came into general use, there was no other way.

5.4.2 Statement of the third law
The statement of the third law by Lewis and Randall (1923) is still useful:

If the entropy of each element in some crystalline state be taken as zero at the
absolute zero of temperature: every substance has a finite positive entropy, but
at the absolute zero of temperature the entropy may become zero, and does so

become in the case of perfect crystalline substances.

The reference to perfect crystalline substances means that a nonzero entropy
may be “frozen-in” at low temperatures, and is so in the case of glasses, gels,
and various other cases of substances having some configurational disorder.
The most important case for geologists is that of solid solutions, in which two
or more atoms occupying a crystal lattice site may be disordered. This disorder
is undoubtedly still present when the crystal is cooled down to cryogenic
temperatures for heat capacity measurements, so the entropy does not approach
zero at 0 k. This “residual entropy” must be calculated and added to the entropy
evaluated from Equation (5.10). Also note the condition that the entropy of
the (perfectly crystalline) elements is assumed to be zero. The heat capacity is
certainly zero at 0 K, but all we can really say about entropy is that the entropy
of all perfectly crystalline substances becomes the same at 0K, and is called
zero by convention (Melrose, 1970). Of course, giving it any other number
would make no difference to equilibrium calculations.

If we let T, be absolute zero in Equation (5.9), the entropy of minerals at
any temperature, say our standard temperature of 298.15 K, is (assuming no
residual entropy)

Swn= | T Crr (5.10)

=0 T
and all that is required to determine “absolute” values for the entropy of
minerals is to measure their heat capacity at a series of temperatures between
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Figure 5.5 A cryogenic or
low-temperature
calorimeter. The sample
container can be raised
by the rotary winch so as
to be in contact with the
liquid helium reservoir
for cooling to 4.2 K, or
lowered into the vacuum
for heating. The
re-entrant well in the
sample container
contains a heating coil.
(Simplified from Robie
and Hemingway, 1972.)
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zero and 298.15 K and to evaluate the integral. This gives rise to another kind
of calorimetry, cryogenic, or low-temperature calorimetry.

5.4.3 Cryogenic calorimetry

A cryogenic calorimeter (Figure 5.5) is an apparatus designed for the deter-
mination of heat capacities at very low temperatures. The procedure is to
cool the sample down to a temperature within a few degrees of absolute zero
(a temperature of absolute zero itself is actually impossible to achieve, a fact
actually implicit in the third law), introduce a known quantity of heat using an
electrical heating coil, and observe the resulting increase in temperature (usu-
ally a few degrees). The quantity of heat is equal to AH, and this divided by
difference gives an approximate value of C, at the midpoint of the temperature
range. Corrections are then made to compensate for heat leaks, for the heat
absorbed by the calorimeter, and to get exact Cp values from the approximate
ones. The integration of Cp/T values to obtain the entropy at 298.15 K is
illustrated in Figure 5.6. A much more detailed description of the calorimeter
and its operation is in Robie (1987).
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Figure 5.6 (a) Measured heat capacity of muscovite as a function of temperature
(Robie et al., 1976). (b) Cp/T versus T for the same data. Integration gives the
shaded area under the curve, which is equal to the entropy at the upper limit of
integration, in this case, S5gq 15 = 287.7Jmol~".

5.5 The problem resolved

We now know how to tell which way reactions will go, not just in a theoretical
way (they will decrease their Gibbs energy at T, P), but in a practical way
(how do we get this AG?). For example, SiO, comes in several crystalline
varieties (polymorphs), such as the minerals quartz and cristobalite. They have
the same composition SiO,, but different crystallographic structures and energy
contents, and one is stable and one is metastable at 25°C, 1 bar. The problem
is analogous to the diamond — graphite problem, and the reaction is

: (\cristobalite __ q: quartz
Si0; = Si0;

Which way does this reaction go at 25°C, 1 bar? You could answer this
question thermodynamically as follows:

1. Dissolve quartz in a solvent (HF acid) and measure the heat released.

2. Dissolve the same amount of cristobalite in the same amount of the same solvent
and measure the heat released.

3. Because the solution after dissolution in the two cases has exactly the same com-
position and is identical in all respects, the difference in the two measured heat
terms must be the difference in enthalpy between quartz and cristobalite, A, H =
Hypg* — Hsistobalite (remember, products minus reactants).

4. Measure the heat capacities of both quartz and cristobalite from near absolute zero
to 298 K, and calculate Sy and Spstovaticc,

5. Subtract these two entropies to give A, S = Sjq " — Sgistebalite,

6. Calculate A,G = A, H —298.15-A,S. If this is negative, quartz is stable; if it is
positive, cristobalite is stable.
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Sulfur and the third law of thermodynamics

The problem is which of the two crystalline forms of sulfur is more stable? This
is equivalent to asking what is AG* for the reaction

S(rhomb) = S(mono)

This is the example used by Lewis and Randall (1923) to illustrate calculation of
Gibbs energies.

Equilibrium method The only data available are the heat capacities of rhom-
bic and monoclinic sulfur from 0 to 100 °C, and the enthalpy of transition between

the two forms at 0°C.

ACs = —0.50 T 40.0025 T2 cal mol ' K~
A H® =77.0calmol™!

trans

General integration of Equation (3.31) gives an integration constant on each side,
which can be combined into one, and at 273.15K AH® is 77.0 calmol~!, allowing
calculation of the constant. General integration of

dAS®  ACp
dr ~— T

results in another integration constant, and combining these expressions with
AG = AH —TAS gives

AG° =120.340.50TInT —0.00125 >+ IT

The crucial point is that the equilibrium temperature at which AG°® =0 is known
to be 95°C, allowing I to be calculated. Thus AG® at 25°C is calculated to be
17.5 calmol~!.

The third law method Modern data from the JANAF tables (Chase, 1998)
give

§momb = 32,056 J mol !

§mere — 33,028 Jmol !

A H® = 0.360kJ mol !

trans

(continued)
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Then

AG° =AH° —TAS°
=360 —298.15(33.028 —32.056)
=70.2J mol ™!

= 16.8calmol™'

Putting AG° = 0 the equilibrium temperature is predicted to be 97.2°C.

You are no doubt quite sure that you don’t have to do this incredible amount
of work to answer such a simple question; there must be an easier way. Well,
there is, but only because other people have already done this incredible amount
of work, and lots more like it. In other words, you can look up the data in
tables. However, you do not look up heats of solution.

The trick we have just used to get the difference in enthalpy between two
minerals (that is, to dissolve them both and subtract the heats of solution) is
a very useful way of determining heats of reaction, because many reactions
proceed very slowly, or not at all, and so you cannot measure the heat of
reaction directly in a calorimeter. You cannot measure the heat of reaction as
cristobalite changes directly into quartz at 25 °C, because it never does — it is
a truly metastable form of SiO,. However, most minerals will dissolve fairly
rapidly in some kind of solvent, providing an indirect means of getting their
enthalpy differences.

To have tables of data that enable you to calculate A H for any reaction,
it would seem that all you need to do is tabulate heats of solution. But if you
think about this for a minute or so, you find that although fine in theory, this
will not work well in practice. For one thing, you would need to tabulate heats
of solution for all combinations of substances that might be of interest. That
is, the heats of solution of gibbsite, corundum, and water separately are not
enough — you need the heat of solution of corundum 4 water in a 1:1 ratio. But
for other reactions, you would need corundum + water in other proportions.
Then you would need to be sure that the solution compositions were identi-
cal, and given the variety and concentrations of solvents used, your database
would soon become very large and unmanageable. This problem is resolved,
of course, by using “formation from the elements” properties, as discussed in
Chapter 3. This enables us to tabulate a single number for each property for each
compound, and makes calculation of reaction deltas easy, at least for standard
conditions.
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5.5.1 Gypsum - anhydrite example

The change in enthalpy for any reaction between compounds for which there
are formation-from-the-element data is given by a simple algebraic addition of
these AfH ° terms, because in balanced reactions, the elements always cancel
out. To take another example, consider reaction (3.20) again

CaSO,(s) (anhydrite) +2H,0(/) = CaSO, - 2H,0(s) (gypsum) (5.11)

Both gypsum and anhydrite occur at the Earth’s surface, and it is not always
clear which is the stable phase. To determine the enthalpy change in this
reaction, we consider the reactions in which each phase in the reaction is
formed from its elements:

Ca(s) +S(s) +20,(g) = CaSO,(s); AfH:nhydrile = —1434.11 kI mol™!
H,(g) + 10,(g) = H,0(0); AH®. = —285.830k) mol”!
Ca(s)+S(s) +30,(g) +2H,(g) = CaSO, - 2H,0(s); A;H? = —2022.63kJ mol~!

gypsum

So for reaction (5.11) we have

AH® = AHC AH® o —2AH

gypsum -5 anhydrite water

= —2022.63 — (—1434.11) — 2 (—285.830)

= —16.86kJ mol~!

from which we see that the reaction between anhydrite and water to form
gypsum is exothermic; that is, 16.86 kJ of heat would be released for every
mole of anhydrite reacted.

As mentioned in Chapter 3, it is important to realize that this heat of reaction,
A,H°, is equal to the difference in the absolute enthalpies of the reactants and
products — the enthalpies of the elements have nothing to do with it, because
they all cancel out. Thus

AH =AH  —AH . —2AH

gypsum anhydrite water
— o — o — o _ o _ o
- HCaSO4-2H2O HCa HS 2HH2 3H02
° o ° °
- (HCaSO4 - HCa - HS - 2H02)

(5.12)
—2(Hy,o— H, — L Hp,)

= HéaSO4-2H20 - HéaSO4 -2 H:lzo
= —16.86kJ mol ™!

If you look carefully, you’ll see that all the H° terms for the elements cancel
out. But if you think before you look, you’ll realize that they must cancel out if
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the reaction is balanced. Otherwise there is a mistake somewhere. Despite many
statements to the contrary, the absolute enthalpies of the elements (Hg,, Hg,,
etc.) are not assumed to be zero. There is no need to do so, because they all
cancel out in balanced reactions.*

As you might expect, all the hard work of cryogenic calorimetry has already
been done too, for most common substances, and the results are obtainable in
tables and compilations of data. From Appendix B, we find that

Staso, (anhydrite) =106.7Jmol ' K
SCaso, 21,0 (gypsum) = 194.1 Jmol ' K™!

Sh,o (water) = 69.91Jmol ' K™
and the entropy of reaction for (5.11) is

A.S°=S; -8,

r gypsum anhydrite

—-28;

water

=194.1 —106.7 — 2(69.91)

= —-52.42Tmol ' K~!

So is gypsum or anhydrite stable?

Now that we have numerical values for both A, H°® and A, S° for reaction (5.11),
it is a simple matter to calculate A, G° to see which way the reaction goes. Our
number for enthalpy is in kJ and that for entropy is in J, so we must convert
one of them to be consistent. Converting kJ to J, we have

A,G°=AH°—TA,S°
= —16860 —298.15(—52.42)

= —1231Jmol™!

which is negative; therefore, gypsum is more stable than anhydrite in the
presence of water at Earth surface conditions. We repeat that what we have
found is that the assemblage of anhydrite plus water is metastable with respect
to gypsum at 25°C, 1 bar.> Anhydrite by itself is not metastable, as there is no
other form of CaSO, that has a lower energy.

In the derivation of the enthalpies and Gibbs energies of aqueous ions, the assumption that the
properties of the elements are zero is convenient, but even there it is not necessary

(Chapter 15).

Actually, we are not really sure whether it is metastable or unstable. The reaction between
water and anhydrite to form gypsum is probably very, very slow at 25 °C, but much faster at
slightly higher temperatures. This is an example of the discussion in §4.9.1. Metastable is a
rather fuzzy concept in geology, but crystal clear in thermodynamics.
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Gibbs energy From tables
Although we must do the calorimetry experiments in order to calculate free
energy differences, there is usually no need to use A,H° and A,S° values
from tables to calculate A, G°. Values of A;G° for most compounds have been
calculated and are also to be found in the same tables of data, and so we can use
these values directly, instead of going through the A H° — T A, S° calculation.
For example, A,G° for anhydrite can be calculated from
AG AH TA,S

o i o _ o
CasO, — CaS0, CaSO,

where AfSéaSO is
4

AfS?:asm = S¢us0, — S¢a — S5 =285,

Don’t forget that absolute entropies are obtainable for the elements just as well
as for compounds, and these numbers are available in tables of data, such as
Appendix B. These numbers are

Substance S°, Jmol ' K~!

CaSO0,(s) 106.7
Ca(s) 41.42
S(s) 31.80
0,(g) 205.138
So
ArS¢.s0, = 106.7—41.42 - 31.80 — 2 x 205.138

= —376.796Jmol ! K~!
Therefore, the Gibbs energy of formation of anhydrite is

AG AHS  —TA,Se

Easo4 = CaSOy 12 casoy
= —1434110—298.15(—376.796)
= —1321768Jmol~!

= —1321.77kJ mol~!

which is the number for A,G° in Appendix B (—1321.79kJmol "), within the
limits of accuracy of the data.
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The calculation for determining whether gypsum or anhydrite is stable is
therefore a little easier — we just look up the A,G° numbers instead of both the
A;H° and S° numbers. Thus

A,G°=AG? — ;G 0, —28,Gy

CaS04-2H,0 CaSO,

= —1797280 — (—1321790) — 2(—237 129)

= —1232Jmol ! (5.13)

which is what we got before (—1231J mol~!), within the limits of accuracy of
the tabulated data.

Again, although we use the Gibbs energies of formation, the G values for
the elements all cancel out, and what we calculate is the difference between
the absolute Gibbs energies of the compounds in the reaction. Free energy and
enthalpy are similar in this respect.

5.5.2 An aqueous organic example

To emphasize that our model is just as useful for organic or biochemical
processes as for mineralogical ones, let’s take another look at the reaction
involving amino acids we considered in §2.6.1. Equations (2.3) and (2.5) are, to
repeat,

C3H,¢N,05(ag) +H,0(/) =C4H3NO, (ag) + C,H;NO, (aq) (5.14)
CeH3NO,(aq) + C,HsNO, (aq) =2H,(g) +2NH;(g) +4H,0(/) +8 Cgraphile (5.15)

From the tables in Appendix C, we find the following properties:

Substance Formulas A;G°, Jmol™!
leucine C¢H53NO,(aq) —343088
glycine C,HsNO, (aq) —370778
leucylglycine CgH (N,05(aq) —462834
hydrogen H,(g) 0
ammonia NH;(g) —16450
water H,0(I) —237129
graphite C(s) 0

Therefore for reaction (5.14),

ArG = AfG]eucine + Af Gglycine - Af Gleucylg]ycine - Af Gwaler

= —343088 — 370778 — (—462 834) — (—237 129)

= —13903Jmol !
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and for reaction (5.15)
A,G°=2 AfGloiz(g) +24, G;H3(g) +44, G:{ZO(Z) +84, GOC(:)

— 4G

leucine A/ ;lycine
=2(0) +2(—16450) +4 (—237129) + 8 (0)
—(—343088) — (—370778)

= —267550Jmol ™!

Thus we see that, as illustrated in Figure 2.8, both reactions have a negative
“chemical energy,” or A,G°. However, to say any more about these reactions,
we must emphasize a factor we have not yet mentioned, and which we cannot
develop fully until Chapter 9 (§9.9).

The problem with solutions

It matters not a bit whether the substances we consider are organic or inorganic,
stable or metastable, as long as we have data for them. But it matters a great
deal whether they are pure substances (such as gypsum, quartz, diamond,
liquid water, etc.) or are dissolved in some solvent, as with all substances
designated (aq) in the tables. The problem is that the Gibbs energy (and all
other properties) of a pure substance is a fixed and known quantity, but the
Gibbs energy of a substance in solution depends on its concentration. The
tabulated values of A,G° for (ag) substances are for one particular standard
concentration. Therefore, although we have calculated a negative A,G° for
our two reactions above, they both involve at least some dissolved substances
and, therefore, the conclusion that the reactions should proceed spontaneously
applies only when all the (aq) substances have the standard concentrations.
We look more carefully at these problems in Chapters 7, 8, and 9.

Enzymes as catalysts

One more thing to note about chemical reactions is that living organisms have
evolved mechanisms involving enzymes that overcome the energy barriers
between reactants and products for reactions required by the organism. Such
reactions, therefore, proceed easily and quickly, whereas in the inorganic world,
diamond persists forever in its metastable state. No organism needs to change
diamond to graphite, so no enzymes exist for this reaction. Living organisms
also have mechanisms that drive some reactions “uphill,” or against the Gibbs
energy gradient. Thus peptide bonds are formed in organisms, as well as broken.
The energy required to do this is obtained ultimately from the sun, but the
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exact mechanisms are complex. The study of such reactions forms a large part
of the science of biochemistry.

5.6 Data at higher temperatures

Everything we have discussed so far is about determining data for “standard
> which usually means pure phases at 25°C, 1 bar, although we
will see later that it can mean something else. But as geologists we often deal
with reactions at metamorphic and igneous temperatures of many hundreds of
degrees. Specialized calorimeters can be used up to a few hundred degrees, but
the experimental difficulties become great.

Obviously other methods are needed. As usual, there are several, but we
will mention just two.

conditions,’

5.6.1 Drop calorimetry

The amount of heat required to raise the temperature of a mole of substance
from 7, to T at constant pressure is simply Hy — Hy, (or Hy — H7. for a standard
reference substance); again, a difference between two unknown quantities. This
quantity is conveniently determined by cooling the substance from 7 to 7, and
measuring the amount of heat given up by the substance during this process.®
To do this, a calorimeter is placed directly under a furnace and the sample is
dropped from the furnace where it has temperature 7, into the calorimeter,
where it gives up its heat and achieves temperature 7, (Figure 5.7). The amount
of heat given up by the sample is determined by using this heat to melt a
working substance in the calorimeter (either H,O or diphenyl ether (C¢Hs),0),
and measuring the volume change of this substance by the displacement of
mercury. The relationship between the volume change and the AH of the
solid—liquid phase transition (7, in the calorimeter is 273.15K for H,O;
303.03 K for diphenyl ether) is accurately known, so this amount of heat equals
Hy — Hy,. Small corrections are then applied using heat capacities to adjust this
AH to Hy — Hy., where T, is invariably 298.15 K. More details of the method
are given by Robie (1987). Experimental results for muscovite are shown in
Figure 5.8.

Values of Hy — Hy, can be combined to give A H® for substances at high
temperatures. Thus for any substance

AHS = ApH, + Ay (H — H3) (5.16)

6 As a matter of fact, drop calorimetry has been largely superseded by differential scanning
calorimetry (DSC) (§5.6.2), but I include a description here because it illustrates the
acquisition of high temperature enthalpies and heat capacities more intuitively than does DSC,
and because much of presently used data were obtained by this method.
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Figure 5.7 A drop
calorimeter. (Simplified
from Douglas and King
(1968).)

Getting data
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where Af refers to the reaction in which the substance is formed from its
elements. For example,

Af(H; - H;,)sioz = (H; - H%)Sioz - (H; - H;,)Si - (H; - H;,)oz
= (H;‘,Sioz - H;,Si - H;A,oz) - (H;},SiOZ - H;r,Si - H;r,oz)

=ArHY 0, — 817, 0, (.17)

7,Si0,

and therefore

AfH;,sio2 = AfHOT,,SiOZ +A,(Hy _H;r)SiOz (5.18)
To get heat capacities from these measurements, the experimental values
of (Hy — Hy ) for the substance and its elements are first fitted to a function,

which is commonly

(H; —H;)=A+BT+CT*+ DT (5.19)
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Once the “best fit” values of A, B, C, and D are calculated, (H; — H;,) may
be computed for any desired temperature. For example, the equation for the
muscovite data in Figure 5.8 is

Hj — H3pg = —387934+97.65T +13.19 x 107 T2 +25.44 x 10° T~

The heat capacity

A knowledge of how the quantity H; — Hy,, varies with T is useful because
the first derivative, or the slope of the curve, is the heat capacity, Cp. As we
have said, H7. is an unknown quantity, but it is certainly a constant, so that

d
—(H3) =
—(H;) =0

Therefore
d d
. Ho _Ho - Ho
S (H = HE) = ()
=C3
=B+2CT - DT
or

Cy=a+bT—cT™? (5.20)

135

Figure 5.8 Values of

Hy — Hygg for muscovite as
measured in a drop
calorimeter. The slope of
the curve at any point
equals the heat capacity
at that temperature. Data
from Pankratz (1964).
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where
a=B,b=2C,and c=D.

Thus the Maier—Kelley coefficients for the muscovite data mentioned above
are a = 97.65, b =26.38 x 1073, and ¢ = 25.44 x 10°, and these are the values
for muscovite in Helgeson et al. (1978).

We have carried the superscript ° throughout this derivation, so clearly
we intend “standard conditions” to include high temperatures at times. In this
case, it means simply that we are measuring some pure compound, rather than
any arbitrary mixture, for which H and C, would be more appropriate than H°
and Cj.

5.6.2 Differential scanning calorimetry

Determination of C, by differentiating an experimental curve introduces an
uncertainty greater than the uncertainty of the measurements themselves. A dif-
ferential scanning calorimeter (DSC) measures Cp directly. In this method, a
sample and a reference material are slowly heated simultaneously with separate
heating elements (Figure 5.9). Care is taken to keep the temperature of each
sample exactly the same, but because the samples are of different materials,
the power delivered to each heater is different, and the difference is a direct
function of the difference in the heat capacity of the two materials. Knowing
the C, of the reference material, the Cp of the sample may be determined.
See Hohne et al. (1996) for an overview of the many different variations of
differential scanning calorimetry.

Results for the Cp, of muscovite from DSC measurements (Krupka et al.,
1979) are compared to Cp calculated from the Maier—Kelley coefficients of
Pankratz (1964) in Figure 5.10. The slight difference may be due to the fact

Figure 5.9 Schematic cross-section of a power compensated differential scanning
calorimeter (modified from Robie (1987)). R - reference; S — sample. Under each
sample pan is a platinum resistance thermometer and a platinum heater. The large
metal block helps to keep the temperatures in the two chambers equal.
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that the DSC measurements were corrected for the deviation of the sample
composition from the stoichiometric formulas KAl, (AlSi;0,,) (OH),, whereas
the Pankratz measurements were not. The line through the data points of Krupka
et al. was calculated using equation (3.28), with the muscovite coefficients
from Berman and Brown (1985).

5.6.3 Entropies above 298 K

For temperatures above 298 K, entropies can be calculated by combining S7.
and the (H7 — H} ) measurements previously described. Since we know S7.,
all we need are values of S7 — 7, which equals (Hy — Hy)/T.

Thus

d(S7 —S7.) = dS; (because S7. is constant)

HS — HS
(2
T
T T H° — H?°
f dS°=f d<u>
T, T, T

The right-hand side is integrated by parts, giving

T A T (Hi—Hj
ST—STr:<f)+/T <?>dT

r

SO
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Figure 5.10 The heat
capacity of muscovite,
determined from drop
calorimetry and from
differential scanning
calorimetry.
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Since (H7 — H} ) and therefore (Hy — Hy )/ T? is known as a function of T, the
integral can be evaluated, and S5 values calculated for elevated temperatures.
As in the case of AH*° values, an alternative and usually preferable method is
to calculate S values, or more likely A,S° values, at elevated temperatures by
means of the Maier—Kelley heat capacity coefficients. In other words, since

d C?
- So — P
dT( ) T
then
d A, C3
—(ArS"): r~pP
dT T

where A,S° refers to the entropy change of a balanced chemical reaction.
Integrating,

T TACS
dAS° = | =241 5.21
/n an,st == (5.21)

r

Combining this with the Maier—Kelley equation

AC3 = Aa+ AbT — AcT ™2 (5.22)
we have
. . T(Aa A.c
A, Sy —A,S; = /T (T +a,b- 28 ) T
or
s R T Ac/1 1
A,S5—A,S; =A,aln (7> +AB(T=T,)+ =5 (F - F) (5.23)

In this equation A,S% refers to the entropy change of any balanced chemical
reaction at temperature 7. If the reaction is the formation of a compound from
its elements, A, S7 becomes A,S7.

The apparent entropy of formation can be calculated from
Cs
T

T
AS; =885+ [ =ar
r Tr

where C; /T refers to the compound only.

5.6.4 Gibbs energies above 298 K

Standard Gibbs energies of formation from the elements at 298 K are computed
from

AGy = AH; —TAS;, (5.24)
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and at higher temperatures from
AGo = AHS —TASS

Using the heat capacity approach, for apparent Gibbs energies at higher
temperatures for a compound §

T
A,G7= A_fG‘}rﬁfT (0G7/oT)dT (5.25)

T
=G 4 [ —spar

o e " Chi
=AfGTr,i+/Tr [—STP,—fT - dT} ar

T

o o r T Cio’i
=G =871 =T)~ [ [/T . dT] dr

The integration in the last term is performed by parts. That is

/udv:uv—fvdu

where
T CO.
u:/ ZPigr and v=T
. T
This results in
o o . T G,
AGY, = AfGTpi—STN.(T—Tr)—i—/Tr cs, dT—T/Tr —Lar (5.26)

which, after substitution of

"o boo_ o 1
/T,- CpaT =a(T~T,)+ 3 (T —Tr)—l-c(?—f) (5.27)
and
TCy T cf1 1
dT =aln| — b(T —-T, = —-= 5.28
Lr T an<Tr>+( r)+2<T2 Tr2> ( )

and collection of terms, results in

AHG;‘”- = AfG;*r’i - S;",.,i(T - Tr)

+ T-T7T,—-T1 T
. —7T — n| —
i r T,

(5.29)
(2TT,-T*-T7?)

b;
2
¢ (T*+T?—2TT,)

27T?
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For a mineral reaction, A,G° is obtained by substituting A,S7 for §7 ;
and A,a, Ab, and A,c for a;, b;, and c;, where A,a, etc. are the usual
product—reactant terms.

Thus

AG7=A,G7 —ASI(T-T)

+Aa|T-T,-T1
T —Thh( =
~a . r

(5.30)
+ Az’b (1T, -1*-T7)
Ac(T*+T?—2TT,)
2TT?

A special case would be the reaction in which i is formed from its elements,
all at T, in which case A,S7 becomes A;S7 ., A.a becomes Aq;, and so on,
and Equation (5.30) then gives A;G®, the traditional Gibbs energy of formation
as a function of T for compound i, but this would perhaps only be of interest
to compare with older data compilations which use this quantity.

High temperature muscovite free energies

Equation (5.29) is used to calculate Gibbs energy values in many programs,
including supcrT92. To illustrate this consider muscovite again. The required
information is shown in Table 5.1. We have by now seen how all of these
quantities were (or might have been) derived.

Table 5.2 shows the result of plugging the values from Table 5.1 into
Equation (5.29), compared to the values from sUPCRT92. The values are identical
up to 100°C, but then begin to deviate. This is because the values from
SUPCRT92 are not all at 1 bar. Above 100°C they are at the pressure of the
water — steam equilibrium. Clearly this pressure difference has an effect on the
Gibbs energy, to be discussed next.

Table 5.1 Data for muscovite for
Equation (5.29), plus the molar
volume.

AfG‘}r —1336301  calmol™'

S5, 68.8 calmol~! K~!
a 97.56 calmol ™!

b 0.026 38 calmol ' K!
c 2544000  calmol™! K2
1% 140.7 cm?® mol ™!
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Table 5.2 The apparent Gibbs energy of formation of muscovite, from
SUPCRT92 and from Equation (5.29). Data in calmol™.

T°C P bars SsUPCRT92  Equation (5.29) Difference P correction = V(P — 1)

0.01 1.000 —1334662 —1334 662 0 0
25 1.000 —1336301 —1336301 0 0
50 1.000 —1338101 —1338101 0 0
75 1.000 —1340059 —1340059 0 0
100 1.013  —1342171 —1342171 0 0
125 2320 —1344428 —1344 432 4 4
150 4757 —1346825 —1346 838 13 13
175 8918 —1349357 —1349383 26 27
200 15.536  —1352015 —1352063 48 49
225 25479 —1354792 —1354874 82 82
250 39.736  —1357680 —1357811 131 130
275 59.431 —1360673 —1360869 196 197
300 85.838 —1363760 —1364 046 286 285
325 120458 —1366935 —1367337 402 402
350 165.211 —1370187 —1370739 552 552

5.7 Data at higher pressures

Fundamentally, to know AG®° at any T and P, we need to be able to evaluate
T P

8,Gypi =G, + [ (G T),_pdT+ [ (0G/oP),_pdP  (531)
cooefet P

and there are similar equations for enthalpy and entropy. The integrals in
Equation (5.31) take care of the change in G with T and P, respectively, and
we have just seen how the temperature integral is handled in Equation (5.25).
The second integral shows that we need to know how G varies with pressure
at high temperatures.

In this section we will discuss only the effect of pressure on solid phases,
i.e., minerals. The evaluation of the pressure integral is done in quite a different
way for gases, water, and aqueous solutes, and will be treated in later chapters.

5.7.1 Effect of P on Gibbs energy

As shown previously (Equation 4.43), the derivative of G with respect to P is
V,ie.,

(0G;/oP); =V, [4.43]

so that to calculate the effect of P on G; we must know how V; varies as a
function of P.
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Constant V

When substance i is a solid phase and thus has relatively small variation of V
with both P and T (relative that is to liquids and gases), the errors introduced
by the assumption that V is not affected by P or T tend to cancel one another,
and very little error is introduced by assuming that V; is a constant at all P, T
values. As a result, the assumption of constant V for solids is often adopted
for minerals, and results in

P
/ (aGi/aP)TdP = Gi,P - Gi,P,
Pl'

=V(P-1) (5.32)

where V; is the molar volume of the solid phase in Jbar™', and P, = 1 bar.
Determination of the molar volume can be done experimentally, but is more
commonly calculated from X-ray determination of the mineral structure. This
term V,(P —1) is then added to the right side of Equation (5.29) to evaluate

A,G" at high pressures as well as high temperatures, giving

T
AGy, =Gy =87 (T=T)a [T —T,—Tn <?)]

T
¢ (T*+T?-2TT,)
2TT?

e (TT,-T°-T7)+

> +V(P=1)  (533)

An example of this for muscovite is shown in Table 5.2.

If we are dealing with a mineral reaction (that is, a reaction involving
only solid phases for which (4.43) is valid) instead of a pure compound, we
substitute A,S7 for §7 ; and A,a, A.b, and A,c for a;, b;, and c;, where A, a,
etc. are the usual product-reactant terms, just as we did in Equation (5.30).
Equation (5.33) then becomes

T
A,Gy =AG5  —A,S; (T—T)+A,q |:T —T,—Tln (?ﬂ

T

Ab; s ooy A (TP+T?-2TT,)
+— (TT,-T*-T72) + 277

FAV(P—1) (5.34)

Variable V

Alternatively, some attempt at modeling the temperature and pressure effects
on mineral volumes can be attempted (see Helgeson et al., 1978, and Berman,
1988 for lengthy discussions of this topic). The only attempt at this to find
its way into a widely used database is that of Berman (1988). Berman fit the
available data for rock-forming minerals to the expression

\%
VP'T =14+v,(P—P)+v,(P—P) +vy(T = T,) + v, (T — T,)? (5.35)
P.T,

rir

where v, — v, are fit parameters, P. = 1 bar, and 7, = 298.15 K. The equation has
no theoretical basis, and Berman cautions against its use at conditions beyond
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those used in the derivation of the parameters. Nevertheless, it fits available
data quite well, and should lead to improved accuracy of phase equilibrium
calculations.

To give some idea of the volume changes involved using Equation (5.35),
Figure 5.11 shows the % change in the molar volume of muscovite over the
range of P and T of validity of the fit parameters. The maximum change is
less than 2%, and over a wide range of metamorphic conditions it is much
less than that, so it may seem that it is not worth bothering with. However,
in reactions involving only solids, both A,V and A,S will be small. These
quantities represent the slopes of A, G versus P and T, so small errors in either
A,V or A,S§ will mean relatively large errors in A, G and hence in the T and P
of computed phase transitions.

To get the change in G from P,, T to P,T, we need [V dP from P, to P at
temperature 7, where V is given by (5.35). Thus

T,P T,P
/ Vdp =/ Vi, [140,(P = P,) +0,(P = P)? +vy(T — T,) +v,(T — T,)*] dP
TP, T.P,

Integrating and collecting terms then results in

T,P
VdP=V; p [{I=v,+v,+05(T = T,) +v,(T - T,)*} (P—P,)

T.P

+ (L) (P-p)+ 2P -P)] (536
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Figure 5.11 The % change
in the molar volume of
muscovite as a function
of Pand T, from
Equation (5.35).
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The right side of Equation (5.36) could be substituted for V(P —1) in
Equation (5.33). Realistically, however, it should probably be used only with
the Berman (1988) database of mineral properties, as it was derived using this
formula.

The Berman—-Brown convention
We mentioned in Chapter 3 the two conventions used to define “apparent”
properties, which are used as a form of “formation from the element” prop-
erties at temperatures above 298.15 K. The Benson—Helgeson convention was
described there. The Berman—Brown convention, although the same for AH®,
is different for AG°.

In the Berman—Brown convention, the apparent Gibbs energy, A,G°, is
defined as

AGhr=AHp=T-Spp (5.37)

Notice the difference between this equation and Equation (5.1) or Equa-
tion (5.24), that is, it uses S°, not AS°. In other words, the entropies of the
elements at 298.15K are omitted because they are not needed to define S°.
However, it means that while Benson—Helgeson values of A, G° are the same
as traditional AfG" values at 298.15K, 1 bar, Berman—-Brown values of A,G°
are not.

If you integrate Equation (5.31) using both the Berman and Brown (1985)
heat capacity Equation (3.28) and the Berman—Brown convention for A,G°,
you find

AGhp = NG, | —TS; o

tko[(T—T)—T(nT —1nT))]

+2kl [(TO‘S _ T[OAS) + T(T70A5 _ Tr—O.S)]
S [ A e ]

T2-T2 T
T3

(-1
+Vp 1. [(%1 - v2> (P*—P>)+ %(ﬂ —P%
Hl—v—1+v,+v(T—T,) +v,(T—T,)*} (P— Pr)] (5.38)
which is the equivalent of sUPCRT92’s Equation (5.33). The numbers for indi-

vidual minerals these two equations produce are quite different, but for balanced
reactions they are very nearly the same.
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5.7.2 Effect of P on enthalpy and entropy

For most geochemical modeling purposes, only the pressure effect on G is
required. The effect of pressure on S is’

(5,3,

showing that the effect of pressure on entropy can be obtained by measuring
the effect of temperature on volume (or density), which is usually a much
simpler task. Fairly simple manipulations then show the effect of pressure on

enthalpy to be
oH av
(f) —v-T (f) (5.40)
P ), T ),

Therefore the effect of pressure on H and S using the constant molar volume
assumption ((aV/9T), = 0) is particularly simple. Equation (5.39) shows that
there is no effect on S, and integration of Equation (5.40) with (dV/0T), =0
shows that the pressure effect on H is the same as that on G, that is, V(P —1).

Equations (5.39) and (5.40) result in particularly simple expressions for an
ideal gas, which are often useful. Substituting R7/P for V in Equation (5.39)
leads to

P,
=RIln—= 5.41
n (5:41)
and making the same substitution in (5.40) results in

AH = Hp —Hj,

=0 (5.42)

These results should make intuitive sense. Changing the pressure on an ideal
gas does not change the fact that there are no interparticle forces, so there
should be no effect of pressure on energy terms. However, it does change the
ordering or arrangement of the particles, and hence the entropy.

5.8 Other methods

Up to here in this chapter we have discussed getting data only for solid phases.
We have seen that the goal is to determine A,G° over a wide range of 7" and
P (and that A,G°= A;G* at 25°C, 1 bar for one widely used convention, but

7 This equation is obtained by applying the reciprocity relation (Equation C.10) to
Equation (4.40).
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not for another). Doing this requires integration of Equation (5.31), which in
turn requires that we know how V and C, vary with T and P. For solids, V is
either considered a constant, or its slight variation can be estimated, and C, is
measured directly (§5.6.2) or indirectly (§5.6.1) by calorimetry.

For gases and liquids the fundamentals are the same (we still must inte-
grate (5.31)), but methods are quite different because V is far from constant.
For dissolved substances, more difficulties arise because solution properties
vary with the concentration of the solute, and for electrolytes, there is also
a variable degree of association of the charged particles. We will mention
a few experimental methods here, but we cannot discuss the data obtained
until we learn more about how we deal with the properties of dissolved
substances.

5.8.1 Density measurement

The vibrating tube densitometer is an instrument designed to precisely measure
liquid or gas density. A tube or spool is vibrated mechanically at its natural
frequency and sensors measure the frequency of that vibration. The measured
frequency will decrease as density increases, and can be calculated after cal-
ibrating the instrument with fluids of known density. Other density related
variables such as specific gravity, molecular weight, and concentration may
also be calculated. It is now very widely used in industry as well as scientific
laboratories. See, e.g., Majer et al. (1991).

A more direct method is provided by a dilatometer, basically a pressure
vessel connected to a mercury reservoir and a glass capillary column. Changes
in the height of the mercury in the column are directly related to the change in
density of the fluid in the pressure vessel. The apparatus is calibrated using pure
water, with its known volumetric properties. Of course, no brief description
can give any idea of the multitude of details of operation and correction factors
that go into making precise measurements.

5.8.2 Calorimetry

Calorimetry of liquids and solutes has been revolutionized in recent years
by the combination of the differential scanning technique, in which some
difference between a sample and a standard is observed, with the continuous
flow of fluids through the calorimeter. Instead of having two mineral samples
(§5.6.2), two columns or tubes are used, through which a reference solution
and a sample solution flow at a controlled rate (Figure 5.12). As before, the
difference in the power required to keep the columns at the same temperature
is directly related to the difference in the heat capacities of the two fluids.
See Wood (1989) for a history of the development of these methods and their
advantages.
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Heat capacities

Figure 5.12 shows a schematic cross-section through a twin-tube flow calorime-
ter. The shaded area represents a large copper block with two cavities, through
which pass two thin-walled tubes, each with a heating coil. On the left is the
reference tube or cell, and on the right is the working cell. The pump delivers
fluid at a known rate, and the back-pressure regulator allows the escape of
fluid at a fixed pressure. A six-port, two-position valve controls the fluid flow.
In one position, fluid (pure water) from the pump passes through both cells,
establishing the base-line operation; in the other position the water is diverted
into the sample loop, pushing 10 cm? of sample solution from the sample loop
into the working cell. The different heat capacity of the sample solution causes
a change in the power delivered to the working cell heater to maintain the
temperatures of the two cells at the same value. The ratio of the power required
to keep the working cell temperature at the baseline value to the power required
during the establishment of the baseline is directly proportional to the ratio of
the heat capacities of water and sample, multiplied by the ratio of the mass
flow rates.

Heat of solution/dilution
Without knowing the exact reasons, to be discussed in Chapter 10, it seems
natural that we would need to know the heat change when a solute dissolves
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Figure 5.12 Schematic
cross-section of the
twin-flow calorimeter of
Smith-Magowan and
Wood (1981). Modified
from Robie (1987).
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into a fluid, such as NaCl dissolving in water, i.e., calorimetric heats of solution,
either solid into liquid, or liquid into liquid, i.e., mixing of liquid solutions.

A practical consideration in conducting this kind of heat of solution mea-
surements is that it is frequently much simpler and more accurate to measure
heat flows associated with diluting solutions, rather than with making them
more concentrated. Dissolving NaCl in a concentrated solution of NaCl in
water is a rather slow process, so that the heat is absorbed over a long period of
time, and it is difficult to know when the process is complete. Adding water to
a concentrated NaCl solution is on the other hand accomplished fairly quickly
and the same information can be deduced from these dilution measurements
as from “solution” measurements. Of course, what is “dilution” and what is
“solution” is to some degree quite arbitrary — a “heat of dilution” on adding
water to NaCl solutions could be considered a “heat of solution” of water in the
system NaCl-H,O. Normally, however, water is considered the solvent, and
adding water is called dilution. Heat of dilution measurements have also bene-
fited from the twin-tube differential method. One such instrument is described
by Busey et al. (1984).

5.8.3 Conductance measurements

Electrolyte solutions are those in which the solute (e.g., NaCl) dissociates into
charged particles called ions (e.g., Na™ and CI™). Naturally, such solutions
are much better conductors of electricity than is the solvent alone (normally
water), and the conductivity of the solution will depend on the extent to which
the dissociation takes place. That is, if only some of the NaCl dissociates
into Na*™ and Cl1~, the solution will be less conducting than if all of it does.
Measurement of conductivity is therefore a means of determining the degree
of dissociation of solutes. Significant improvements in the speed and accuracy
of conductance measurements has been achieved by using a flow-through cell
(Zimmerman etal. 1995).

5.8.4 Isopiestic measurements

Isopiestic means, roughly, equal pressures. In Figure 5.13 a number of con-
tainers contain solutions of various concentrations of a salt A, enclosed in a
sealed, evacuated chamber. One of the containers contains a standard solution
of a salt B, for which the properties are accurately known. As the solutions
all have different vapor pressures, water will slowly evaporate from some and
condense in others until all containers have exactly the same vapor pressure.
The properties of the salt and the water in each solution are related in an
interesting way by thermodynamics. Because you know the properties of the
standard solution, and now all solutions have the same water vapor pressure, it
is possible to calculate the properties (well, one property anyway) of salt A as
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LU

Heavy metal block

a function of concentration by analyzing the (changed) concentrations of all the
containers. How this is done is discussed in §4.14.2 and §10.9. An overview
of the isopiestic method is given in Rard and Platford (1991).

5.9 Summary

This chapter contains the transition from somewhat abstract theory to usable
numbers. The Gibbs energy and enthalpy are forms of energy, closely related
to the “energy in the deep pond,” U (Figure 3.2). Energy can be transferred by
heat and/or work, and assuming only mechanical (P AV) work is involved, the
fundamental properties we need to know in order to know the energy change
are the thermal and volumetric properties AH (or more fundamentally C,)
and V.

Thermal properties are measured by some form of calorimetry, an exacting
experimental procedure in which some kind of reaction is carried out, such as
dissolution of a solid phase, and the heat (g) released or absorbed is measured.
If the reaction occurred at constant pressure, the measured ¢ is a AH, and if
not, it is fairly easily converted into a AH. Entropy can also be measured by
calorimetry, though of a different type, and combining the enthalpy and entropy
measurements gives AG numbers. Values of AG° can also be obtained by
other methods, to be discussed in later chapters. All these quantities are related
to the heat capacity, which turns out to be a very fundamental and important
parameter. If pressure changes are important, then the volume or density is also
required.

The use of these concepts in modern computer programs adds some com-
plications which, although not required to understand thermodynamics itself,
are required to understand how the programs use data. These complications
include the choice of algorithm to represent heat capacity as a function of tem-
perature, how to represent the effect of pressure, and the various conventions
for “formation from the elements” quantities.

At this point, much of the theory and practice of chemical thermodynamics
has been presented. It is worth pausing to reflect on just how it is that deli-
cate measurements near absolute zero temperature, combined with a bunch of
differential equations which refer to unattainable conditions, are essential in
deciphering the origins of ore deposits, metamorphic rocks, and other geologi-
cal phenomena.
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Figure 5.13 Isopiestic
measurement in which
sample solutions
containing various known
weights of salt A are
equilibrated with a
standard solution of salt B.
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6
Some simple applications

6.1 Introduction

We now know how to determine in which direction any chemical reaction will
proceed at a given temperature and pressure, at least when all the products
and reactants are pure phases. When even one of the products or reactants is
a solute, that is, part of a solution, we would be stuck because although we
have had a brief look at how calorimetry can be used with liquids and liquid
solutions, we haven’t yet seen how to use the data obtained. We will start
considering this problem in the next chapter. Before going on, however, we
should explore some relationships using the concepts we have defined so far,
so as to make sure we fully understand them. Naturally, we will only be able
to consider some simple properties of pure phases, and reactions between pure
phases.

6.2 Some properties of water

Water is an extraordinarily important substance in many ways in Earth pro-
cesses, both organic and inorganic. The fact that it is a liquid in the relatively
narrow range of 7 and P found at the Earth’s surface was of course essential
to the evolution of life. The reason for this, that is, the polar structure of the
H,0 molecule and its many unusual properties such as hydrogen bonding, is
a fascinating subject in physical chemistry. In geochemical thermodynamics,
we are concerned only with its macroscopic properties and its role in mineral
reactions, both at and near the surface and at depth in the crust, that is, the
weathering, metamorphic, and igneous environments.

So what macroscopic properties do we mean? Well, those that are connected
with heat (g) and work (w), of course. Water is an important agent in the
transport of heat, such as in convecting systems, but this is not really a
thermodynamic subject. By “connected with heat” I mean things like the heat
capacity, entropy, and enthalpy of water itself, and how changes in these
properties are of interest. The property connected with work is of course the
molar or specific volume.
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6.2.1 Volume

So how is the molar volume connected to work that a geologist might be
interested in? You might immediately think of exploding volcanos, but our
interest in volume is a more subtle one.

We have seen previously the connection between Gibbs energy and volume,
Equation (4.43), which can also be written as

Py Py
f dG=[ var 6.1)
Py

Py

and which, if the volume is a constant, results in Equation (5.32). But what if
V is not constant, as with fluids? In this case you need an equation expressing
V as a function of P, and if you are interested in a range of T, the equation
must express V as a function of both P and T'. Such an equation is an equation
of state.

The equation of state for water is discussed in Chapter 13. Here we can
look at diagrams showing the properties of water, generated by the equation.
The simplest of these diagrams shows molar or specific volume of water as
a function of P and T (Figure 6.1). We see a fairly simple-looking fanning
of specific volume lines (isochores) away from the liquid—vapor curve. At the
critical point (374 °C, 221 bar), the specific volume is 3.22cm® g}, but this
isochore has no particular significance away from the critical point.

Over most of this diagram, water is above the critical pressure and/or the
critical temperature, and is thus “supercritical”. It will expand to fill any
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Figure 6.1 The specific
volume (cm3g~") of
water as a function of P
and T. Dashed contours
are water fugacity in
bars. Small dot indicates
the critical point. Data
from the program sTeam
(813.6.1)
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Figure 6.2 The entropy of
water in kJmol~" as a
function of P and T. Data
from the program sTeam
of Harvey et al. (2000).

Some simple applications

containing volume, thus is gas-like, but its density is far greater than nor-
mal gases, and is therefore liquid-like. Before this was well understood,
hydrothermal ore deposits thought to have formed above 374 °C had a spe-
cial name — “pneumatolytic,” meaning formed from a gas. However we know
now that above the critical pressure this temperature has no special signifi-
cance — water properties vary smoothly and continuously from low to high
temperatures.

6.2.2 Entropy

Figure 6.2 shows the entropy of water as a function of 7 and P. Clearly,
isentropic expansion (that is, lowering P) will result in cooling, because the
contours have a positive slope. This will be true for any pure substance, because
the slope of the isentropes is

(%>S - Clp (%)P (6.2)

and T, Cp, and (0V/0T), are all inherently positive. However, isentropic pro-
cesses can only occur reversibly, which is not possible in real life, and although
they might be approximated under some conditions, this is not likely to be very
common, so we will not pursue this kind of cooling process. Essentially the
same information is available from Figure 4.11.
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6.2.3 Enthalpy

A more useful cooling process is Joule-Thompson or isenthalpic expansion.
This is a “throttling” process, whereby a fluid is pushed through an orifice
(originally a “porous plug”) into a chamber at a lower pressure. Geologically,
it would correspond to a fluid encountering a constriction while rising through
a crack or fissure, and expanding as it passes the constriction. If the process
is adiabatic, that is, if it happens sufficiently fast that conduction of heat from
the wall rocks into the fluid is negligible, and if the pressures on the two sides
of the orifice remain constant, the process will be isenthalpic.

To see this, consider a given mass of gas at pressure P, on the high pressure
side of the orifice, plug, or constriction. As it is pushed through the orifice,
the piston pushing it sweeps out a volume (AV) which we can call V,, so the
work done in pushing the gas is P,V, (positive because work is done on the
gas). On the other side, this same mass of gas pushes the other piston back at
constant pressure through a volume (or a AV) V,, doing work —P,V, (negative
because it is work done by the gas). The total work for the process is therefore
P,V, — P,V,. Because no heat is transferred, ¢ = 0, so that by the first law, the
internal energy change is equal to the work done, AU = w.

U,-U =w
=PV -PV,
SO
U,+P,V,=U,+P,V,
or
H,=H,
AH=0

To investigate the variation of temperature during an isenthalpic change
of pressure, one is naturally interested in the derivative (07/0P),, called the
Joule-Thompson coefficient, w;r. Omitting the derivation, this is

T\ =V +TOV/T),
<@>H - Cr
V(Ta—1)

Cp

or,

_ WV(Ta—1)

My = (6.3)
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Figure 6.3 The enthalpy
of water (Jmol~") as a
function of P and T. The
small dot indicates the
critical point. Data from
the program sTeam of
Harvey et al. (2000).
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where « is the coefficient of thermal expansion, (dV/dT),/V, and C, is the
isobaric heat capacity. Since both V and C, are intrinsically positive quantities,
the sign of the derivative (dT/dP), clearly depends on (T — 1), which in turn
depends on Ta.

As shown by Waldbaum (1971), all minerals have values of « so small that
Ta « 1 for all Earth conditions, so that (d7/dP), is always negative, and rocks
will always be warmed by isenthalpic expansions (dP negative, dT positive).
For most common minerals, the effect is about 20 to 30 degrees per kilobar of
pressure change, although if this pressure change is due to a change in depth in
the Earth, the effect is less (Ramberg, 1971). Some mantle convection models
incorporate provision for adiabatic expansion/compression, but most do not,
and under crustal conditions it is negligible.

For fluids, which have much larger values of «, (Tao— 1) can be positive
or negative. Because fluids become less dense and hence show greater thermal
expansion at higher temperatures and lower pressures, this is the range of
conditions where they exhibit positive values of u,r. For gases, with the largest
« values, this transition takes place at very low temperatures and is of limited
interest to Earth scientists. It means, though, that gases invariably have a
positive u;r under ordinary conditions.

The most important Earth fluid, water, has a very interesting behavior in this
as in many other respects. In Figure 6.3 we show contours of constant enthalpy
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of water as a function of P and T.! Where the contours have a negative slope,
water warms on adiabatic expansion and cools if adiabatically compressed.
Where they have a positive slope, water cools on adiabatic expansion and
warms if adiabatically compressed, and the two regions are separated by the
Joule-Thompson inversion curve. Much the same information is contained in
the enthalpy—pressure diagram (Figure 6.4), where it can be seen that constant
enthalpy changes in pressure lead to increases in temperature in one region
(arrow 1) and decreases in another (arrow 2).

The effect of dissolved NaCl on the Joule-Thompson coefficient has been
calculated by Wood and Spera (1984), and the effect will be similar for other
electrolytes. Because the addition of most electrolytes to water results in a
decrease in V and in «, w;p is smaller, and the net effect is to move the
inversion curve to higher temperatures and lower pressures.

Isenthalpic boiling

A special case of adiabatic isenthalpic volume change of particular interest to
geologists concerned with fluids in the upper levels of the Earth’s crust is the
case where a phase change, especially boiling, occurs along the cooling path of
the fluid (Figure 6.5). The onset of boiling in a hot aqueous fluid in the crust

' As in Figures 4.11 and 6.4, these enthalpy numbers use the normal Steam Table convention, in
which Uy, o = Sy, = 0. Converting Steam Table values to apparent formation from the
elements values (e.g., A,H®) is discussed in Chapter 13, page 388.
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Figure 6.4 Isotherms on
log P versus enthalpy in
kJ mol~" for water.
Dashed contours are the
Joule-Thompson
coefficient, u 7. The
contour for u,r =0 is the
Joule-Thompson
inversion curve. Data
from the program sTeam
of Harvey et al. (2000).
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Joule-Thompson expansion

As an example of how the Joule-Thompson coefficient might be used, consider
some hot spring fluids (approximated by pure water) rising vertically in the crust.
When boiling begins, the pressure is 165 bars and the temperature is 350 °C. At

this point, the properties are

Vv 31.35 cm? mol ™
=3.135 Tbar~! mol™!

a 0.01039 K!

C: 1822 Jmol~'K™!

SO

wrr = 3.135(623.15 % 0.01039 — 1)/182.2

=0.0942 K bar™!

meaning that the fluid is cooling at the rate of 0.094 °C per bar change in pressure

as it rises, simply due to adiabatic decompression. If the water has risen under a

hydrostatic head for two kilometers, the pressure change is about 200 bars, giving
200 x 0.094 ~ 19 degrees of cooling. Actually, the change is less (about 12 °C),
because u;y is not constant but decreases with increasing pressure in this range.

is the cause of a number of important changes in the properties of the liquid
phase because of the partitioning of the aqueous constituents between the two
phases. In addition there is a new factor in the heat budget, the heat required
to vaporize the liquid to steam, i.e., the heat of vaporization.

Surface
discharge

Poorly conducting
P fixed by overlying rock walls

water column

o° ‘
o

o \ H
Y o% 000\ ‘ ‘ Vapor expands against P
! * Level at which boiling begins,
water at same P, upward
flow

Figure 6.5 A hydrothermal
fluid rising through a
fissure begins to boil.

T decreasing upwards
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Adiabatic cooling

As shown in Figure 6.4 there is quite a large difference between the enthalpy
of water and steam at equilibrium. At 300°C, 85.88 bars for example, from
Figure 6.4, H, ey = 24.23kImol~! and Hg,,, = 49.54 kI mol~! (these two points
marked with squares). This increase in enthalpy of the steam must come from
the system itself, which is cooled as a result, but the enthalpy of the water +
steam remains the same. For example, if mole fraction x,, of the water vaporizes
at 300°C, and the resulting water + steam is thereby cooled to 7 °C, then the

energy balance is
H,(300°C) =x,,-H,(T°C)+(1—x,,)-H,(T°C)

where subscripts “w” and “s” refer to water and steam respectively. To solve
this we must know either T or x,,. If we know that the system cooled to 275 °C,
where H, =21.81kJmol~! and H, = 50.18kJmol~' then x, is 0.91. In other
words, when only 9 percent of the water boils isenthalpically the temperature
drops 25 °C.

The calculation works equally well using values of A,H° and/or mass fractions
rather than mole fractions, but commonly numbers are obtained from Steam
=S5
gram. Remember, we do not know values of H, and H. We follow the usual

Tables, which use the convention U, =0, and joules or calories per

riple triple

engineering custom above in using values for these quantities which are actually
differences. These differences in enthalpy are the same as differences using the

“apparent formation from the elements” convention, but Steam Table differences

in Gibbs energy are not (see §13.6.1 and page 390).

Whatever the means of cooling the fluid to the point of phase separation
(boiling), the boiling process is generally thought to be fast relative to the
conduction of heat through the walls of the fluid reservoir, so that the fluid must
itself supply the heat of vaporization, with no help from the wall rocks. This
would result in essentially adiabatic conditions and the fluid would therefore
be cooled as a result of boiling. Quite possibly the steam—water system would
be confined at a constant pressure, exerted by the overlying column of water,
so that the steam would expand at a constant pressure and the water would
also be at the same constant pressure. These are the conditions required for
isenthalpic expansion, and the boiling process is quite commonly assumed to
be isenthalpic. This does not of course mean that the water and steam have
the same enthalpy (see example). This subject is treated in more detail by
Henley et al. (1984).
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Figure 6.6 The dielectric
constant of water. Data
from NIST program
STEAM.
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6.2.4 Dielectric constant and the Born function

The dielectric constant is not exactly a thermodynamic property of the types
we have been discussing, but it is included here because of its importance in
understanding the properties of electrolytes in water, and especially the HKF
model (Chapter 15), which is incorporated in the program sUPCRT92, a widely
used geochemical tool. So a brief foray into physical chemistry is perhaps
warranted.

The dielectric constant is defined as the ratio of the capacitance of a sub-
stance to the capacitance of a vacuum in the same space. Bockris and Reddy
(1970) offer a more enlightening definition. They say

Electric force in ) ) Electric force in
: 18 € times

a medium = = a vacuum

_ apq less than  4iq-

e 2

where g, and g_ are electrostatic charges separated by distance r. If the material
between them (the medium) has a dielectric constant €, the attractive force
between the charges is reduced. The relevance to electrolytes in water becomes
obvious if you think of ¢, as a cation and g_ as an anion.

The dielectric constant of water at various temperatures and pressures is
shown in Figure 6.6. The remarkable decrease from ~80 at 25°C to ~20
at 300°C at saturation vapor pressures is due to the behavior of the water
molecules which, because they are miniature dipoles, are quite strongly lined
up between the charges at low 7, but become more thermally agitated and
less strongly lined up at higher 7. In consequence, oppositely charged ions
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are more strongly attracted to one another at higher temperatures, resulting in
larger concentrations of neutral ion-pairs.

The Born function

This dramatic change in the dielectric constant has important implications for
the thermodynamic properties of electrolytes in water. Born (1920) gives a
very simple calculation of the work required to insert a charged sphere from a
vacuum into a medium having a dielectric constant €. This takes place in three
steps:

1. Uncharging the sphere in the vacuum produces work energy

__(Zey
2r

2. Moving the uncharged sphere from the vacuum into the medium requires no work,

and

3. Charging the sphere in the medium requires work

(Ze)®
w=-——
2€r

where Z is the number of electronic charges (electrons) on the sphere
(corresponding to the valence of an ion); e is the charge on an electron; r is the
radius of the sphere; and € is the dielectric constant of the medium. As there
are no thermal effects, the combined work done is in fact the Gibbs energy of
the transfer of the charged sphere from the vacuum to the medium,

aG = Zr _(Ze)

2er 2r
@iy 69

Changing from a sphere to a mole (Avogadro’s number, N, ) of ions, r becomes
the ionic radius of, say, the jth ion, and the total Gibbs energy becomes the
molar Gibbs energy of ion—solvent interaction, A;_¢G, so

No(Ze)* T 1
A G=—"7—""--1
o 2r; €

1
— wabsolute |:7 _ l:| (65)
€

We call the fraction [N,(Ze)?/2r;] @™ because later on (Chapter 15) we
will define another, relative,  used in the HKF model. A;_(G is also called
Asolvation G or Ahydration G.
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Figure 6.7 Theoretical
Gibbs energies of
ion—-water interaction
(solvation). Data from
Millero (1996), Table 4.3.

Some simple applications

Despite the simplifying assumptions in the derivation, such as assuming that
the medium, water, is a continuum with no structure, and that the only work
is electrostatic, and even more assumptions in calculating the properties of
individual ions from the measured properties of electrolytes, A;_¢G as estimated
by the Born function comes reasonably close to the measured Gibbs energy of
ion solvation, as shown in Figure 6.7. Other thermodynamic properties such
as the volume, entropy and enthalpy of solvation can also be obtained by
appropriate differentiation of Equation (6.5). As a result, ever since its inception
the Born equation has been used as a primitive model for the electrostatic
contribution to the properties of an ion in a dielectric solvent.

When data at high temperatures and pressures began to be available, it
was realized that the Born model was also capable of accounting for the
large negative values of various partial molar properties of electrolytes at high
temperatures (such as the partial molar volume, §10.2.4), and Helgeson and
Kirkham (1976) used it in combination with other terms in their equation of
state for aqueous species (Chapter 15).

6.2.5 Geological applications

A familiarity with the volumetric and thermal properties of water, as pre-
sented here, is a part of standard thermodynamic knowledge for geochemists.
Theoretically, both might be highly useful in interpreting geological processes.
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6.3 Simple phase diagrams

The volumetric properties are in fact useful in interpreting fluid inclusions,
and in knowing how much water to put in a pressure vessel, but the thermal
properties are more difficult to use. The problem, as usual, is not in the ther-
modynamics, but in the difficulty of interpreting what we see in the field in
terms of Earth processes that happened perhaps millions of years ago. Fluids
rising through fissures in the upper few kilometers of the crust might well
pass by an obstruction, which would have the effect of “throttling” the fluid,
hence cooling it whether or not boiling was involved. The problem usually is
establishing that that sort of thing actually happened.

Another aspect of this problem is that there are two different fluid regimes
in the crust, an upper regime where fluid pressure is fixed by the mass of the
overlying water column, and a lower regime where the fluids are trapped in
pores and grain boundaries where they are not free to circulate and where the
pressure is fixed by the prevailing stress pattern in the rocks. This stress is
thought to be homogeneous at depths where the rocks behave plastically, but
may be far from this in the region where the rocks are brittle. The bound-
aries between these various regimes is a continuous topic of debate, and does
not concern our treatment of the thermodynamics involved. However, it is
unlikely that fluids can pass reversibly between the two regimes; at some
point there will be an irreversible release of pressure, with its attendant ther-
mal effects. This change need not be adiabatic, of course, and the question
of the heat flow to and from geological processes is a continual problem for
modelers.

6.3 Simple phase diagrams

The reason we are interested in knowing A,G for reactions is that we can
then tell which way the reaction will go, or which side is more stable at one
particular 7 and P. If we know how A,G varies with T and P, we might
find that under some conditions A,G changes sign, so that the other side is
more stable. This implies that there is a boundary between regions of 7 and P,
with one side of the reaction stable on one side of the boundary, and the other
side of the reaction stable on the other side of the boundary. A phase diagram
shows which phases are stable as a function of 7', P, composition, or other
variables.

For example, calcium carbonate (CaCO;) has two polymorphs, calcite and
aragonite. Their properties (from Appendix B) are shown in Table 6.1. Because
Af GZalcite < AfGngoniw, we conclude immediately that calcite is the stable form
of CaCO; at 25°C, 1 bar, and that aragonite is a metastable form. But what
about other temperatures and pressures? Is aragonite stable at high temperature?
At high pressure? How can we tell?

161



162

Some simple applications

Table 6.1 Thermodynamic properties of calcite and aragonite, from
Appendix B.

AH° A,G°
\f \f s° Ve
Formulas  Form kI mol~! Jmol"'K~!  cm?®mol~!
CaCO; calcite —1206.92 —1128.79 92.9 36.934
CaCO; aragonite —1207.13 —1127.75 88.7 34.150

6.3.1 LeChatelier’s principle

When looking at thermodynamic data, or the results of some thermodynamic
calculation, it is always a good idea to ask yourself if it makes sense, if it is
reasonable. To some extent this is a matter of experience, but in another way,
“making sense” means obeying LeChatelier’s principle. This simply says that
if a change is made to a system, the system will respond such as to absorb the
force causing the change. For example, if the pressure on a system is raised,
the system will respond by lowering its volume, that is, by being compressed.
Systems never expand as a result of increased pressure. The result of a change
in temperature is less obvious, though equally certain. If the temperature of a
system is raised, the enthalpy and the entropy of the system will both increase.
This is because of Equations (3.24) and (5.8), which show that the temperature
derivative of each is a simple function of C,, the heat capacity, which is always
positive for pure compounds.

Therefore by looking at V° and A H*° or §° for calcite and aragonite, and
assuming that the relative magnitudes of these properties do not change much
with 7 and P, we can tell something about their relative positions on the phase
diagram. We note that V,,oonie < Vearciees therefore, increasing the pressure on
calcite should favor the formation of aragonite. Also, AfH ° and S° for calcite
are greater than the values for aragonite, and so raising the temperature of
calcite will not favor the formation of aragonite. In other words, lowering the
temperature of calcite should favor the formation of aragonite. If the stability
field of aragonite lies somewhere at higher pressure and lower temperature than
25°C, 1 bar, the boundary between the two phases must have a positive slope,
as shown in Figure 6.8. This is the common case for phase boundaries; it is
normal for the high-pressure, lower volume side to be the lower enthalpy, lower
entropy side. The most common exception to this is the ice—water transition,
as shown in Figure 3.1.

In Figure 6.8 we see that a phase diagram is a kind of free energy map —
it shows a T—P region where calcite is stable (G < G 4ygonire)» @nd another
where aragonite is stable (G ygonite < Galcire)- These two regions are necessarily
separated by a line where G eonie = G the phase boundary. We have a
lot more to say about phase diagrams in Chapter 17.

calcite

calcite»
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Aragonite stable
Garag < Gealc

NG
o
2 G¢

P Calcite stable Toward aragonite
Gealc < Garag
@ 25°C, 1 bar
Toward aragonite calcite stable
T

6.3.2 The effect of pressure on A,G°

Having figured out the relationship between calcite and aragonite qualitatively,
the next step is to define the stability field of aragonite, that is, to calcu-
late the position of the phase boundary. This should be possible, because we
know that

AG/P=V [4.43]
and thus
dAG /0P = AV

AG and AV refer to the difference in G and V between any two equilibrium
states. In this case we are dealing with a chemical reaction between two
compounds in their pure states, so we can also write

9A,G° /0P = A, V°

Integrating this equation between 1 bar and some higher pressure P, we have
P

AGy,—AG .= [ AV dP (6.6)

1 bar
and if we assume that A, V° is a constant, this becomes
P

AGL—AG =AMV [ ap

1 bar

=AV(P—1)
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Figure 6.8 The form of the
calcite—aragonite phase
diagram deduced from
LeChatelier’s principle.
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We could use this to evaluate A,G} at any chosen value of P. However, we

are particularly interested in a value of A, G =A,Gj =0, that is, on the
eabm

phase boundary. We know the values of

A,GS = AG AGE

aragonite 2 M ealcite
=—1127.75—-(—1128.79)
=1.04 kI mol !

= 1040 T mol~!
and

AvVe=Ve

r aragonite

—Ve

calcite
=34.150 —36.934

= —2.784 cm?® mol !

So we can solve the equation for P,
equilibrium at 25 °C.
However, there is one little problem.

4m> the pressure of the calcite—aragonite

The units of volume
Volumes are generally measured in cubic centimeters, milliliters, liters, and so
on. But if you look at an equation such as

w=—PAV

you see that we have a problem with our units. Work (w) and PAV are obviously
energy terms (Jmol ™), but the product of P in bars and AV in cm® mol~! is
not joules. We must always convert our volumes to joulesbar™!, so that the
product of P and V or AV is Jmol~!. The conversion factor (Appendix A) is

lem® =0.10 Jbar™!

so now our A V° is —2.784 x 0.1 = —0.2784 Jbar~'.

Now we can solve for pressure Py, :

AGS

egbm

- Ar(;cl’bar = AVVO(Pequ - 1)
0— 1040 = —0.2784(P, o, — 1)

P = 3737 bar

eqbm

The relationship between G and P in this calculation is shown in Figure 6.9.
This gives us one point on the calcite—aragonite phase boundary. We also know
that the boundary has a positive slope, and so we could sketch a diagram
that would be approximately right, but we really need one more piece of
information — either another point on the boundary or its slope.
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T constant

Garagonite I

Gcalcite I

1 bar Pequ

Garagonite — Ycalcite

Figure 6.9 The relationship between G and P. Note that we don’t know individual G
values, so there are no numbers on the y-axis. We do know Gg,gite — Garagonite and
the slopes of the lines (the molar volumes), and this is sufficient to solve for Pyqyn,.
At Pegbmr Galcite = Garagonites the two phases can coexist, and we have a phase
boundary.

6.4 The slope of phase boundaries

The phase boundary is the locus of T and P conditions where A, G =0, i.e.,
where

Gcalcite = Garagonile (67)
It follows that on the boundary,
dGcalcite = dGaragonite (68)

This simply says that as you move along the boundary, the change in G
has to be the same as the change in G ,g0nices
boundary. From Equation (4.40) we have

calcite

otherwise you won’t stay on the

dG=—SdT+VdP [4.40]
This applies to each mineral, and combining with (6.8) gives

=S dT + Vcalcile ar

dP = -S§,

aragonite

dT +V,

calcite aragonite

Rearranging this gives
ar = (Seatete = Saragonice)
dT (Vcalcite - Va

ragonite)
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or, for any reaction
dP_A,S
dT ~ AV

(6.9)

which gives the slope of an equilibrium phase boundary in terms of the entropy
and volume changes between the phases involved in the reaction. This is called
the Clapeyron equation.

Equation (5.1) says

AG,,=AH—TAS [5.1]

This applies to any change between two equilibrium states at the same 7 and
P. If those two equilibrium states have the same value of G, such as calcite
and aragonite do on their phase boundary (6.7), then AG , =0, and

AH =TAS (6.10)
or
AH
L =AS 6.11
T (6.11)

This is a useful relationship for any phase boundary,? which is the usual place
to find AG; » = 0. This gives an alternative form of the Clapeyron equation,

dP AH

= = 12
dT TAV ©612)

6.4.1 The slope of the calcite—aragonite boundary

We have one point on the calcite—aragonite boundary at 3737 bar, 25 °C. If we
assume that the A,.S and the A,V at this P and T are the same as those at 1
bar, 25°C, we can calculate the slope from the data in our tables. Thus

ArS = Saragonilc - Scalcitc
=88.7—-92.9
= —42Jmol”' K~ (6.13)
and
Arv = Varagonile — Vcalcite

=34.150—-36.934
= —2.784cm’ mol ™!

= —0.2784Jbar™!

2 That is, any phase boundary in a one-component system. With two or more components, the
relationship is in principle the same but becomes more complicated, and less useful.
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Therefore
dP_AS
dT ~ AV
. —42
T —0.2784

=15.09 bar/°C

Therefore, to get another point on the calcite—aragonite phase boundary,
we simply choose an arbitrary temperature increment, say 100 °C, calculate
the corresponding pressure increment, 100 x 15.09 = 1509 bar, and add these
increments to our first point. We now have a second point at 125 °C, 3737+
1509 = 5246 bar, and we can plot the boundary as in Figure 6.10.

Keep in mind that we have assumed that the A,.S and A,V from the tables
are unchanged at all temperatures and pressures, that is, that they are constants.
This is quite a good approximation for a reaction involving only solid phases
such as this one, but you would not use it for reactions involving liquids,
gases, or solutes. In general, all thermodynamic parameters do vary with T
and P, so phase boundaries are in principle curved and not straight as we have
assumed. However, the amount of curvature is quite small in some cases, such
as this one.

6.4.2 Comparison with experimental results

Table 6.2 shows the results of some experiments on the stability of CaCO; at
elevated temperatures and pressures. A mixture of calcite and aragonite was
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Figure 6.10 Calculation of
the calcite-aragonite
phase diagram.
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Figure 6.11 Comparison
of experiment and
calculation of the
calcite—aragonite phase
diagram.

Some simple applications

Table 6.2 Experimental results for the system CaCOj; from
Crawford and Hoersh (1972).

Temperature Pressure Experimental Duration
°C bars result days
128 5180 A 21
132 5180 A 21
153 4830 C 35
76 4480 A 3
90 4140 C 28
93 4140 C 17
56 4140 A 28
70 4140 A 17
70 3690 C 8
81 3520 C 36

held at the indicated T and P for the length of time shown, then quenched and
examined. The stable phase is shown as C (calcite) or A (aragonite). These
points are plotted in Figure 6.11.

Also shown in this figure are the two points we have just calculated at 25
and 125°C, plus results using data from Helgeson et al. (1978), and a line
showing the experimenter’s best estimate of the phase boundary. As you see,
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6.4 The slope of phase boundaries

the calculated results using data from Appendix B are a little high, and the
Helgeson et al. results are a bit low.?

Using a reaction involving only solids, such as our calcite—aragonite exam-
ple, is actually quite a stringent test of accuracy of AG®° values. The reason is
that minerals have relatively small entropies, and entropies of reaction, which
are differences, are thus even smaller. The standard entropy of reaction for
calcite-aragonite for example is only —4.2Jmol"!K~! (Equation 6.13), or
—2.5Jmol~! K~! from supcrT92. Why should the entropy have such an effect?

Figure 6.12 shows A,G* for the calcite = aragonite reaction from HDNB
data, for 1 bar and 4140 bars.* Also shown are the four experimental points
at that pressure. As you can see, shifting the A ,G° curve down by only
15 calmol~! would shift the A, G° = 0 intersection by about 20 °C, which would
be within the experimental bracket at 4140 bars. Clearly, the amount of tem-
perature change for a given change in A,G° depends on the slope of the line
as it passes through A,G° =0, and the slope of the line is of course —A,S°.
The relationship is just a variation of Equation (4.42), or

A, G°
( : ) =—A,S° (6.14)
»

oT

where in this case, A, G° is the assumed error in A, G°, 9T is the resulting AT,
and —A,S° is the slope of the A, G° line as it passes through zero. In this case,
the slope (at 102.6 °C, from sUPCRT92, or by fitting a polynomial to the AG®
line in Figure 6.12 and differentiating) is 0.73 calmol~' K~!, so an assumed
error of —15 calmol™! gives AT = —15/0.73 = —20°C.

6.4.3 Errors

An error in A,G° of 15calmol™ (~63Jmol™!) is extremely small. Stan-
dard errors in Gibbs energies determined by statistical methods are normally

3 Data from Appendix B are mostly from calorimetric sources, and have not been “refined”
using high pressure experimental data, therefore it is not surprising that they do not fit the
experimental points, although the agreement is actually fairly good. Data from Helgeson et al.
(1978), called HDNB data, were so refined, and normally fit experimental data very well. That
they miss somewhat in this case may be due to the fact that other data at much higher
pressures, as well as solubility data, were also used in refining the AG® data.

This phase boundary may also be calculated directly by SUPCRT92, using the “univariant curve
option.” Surprisingly, the results are worse than using the HDNB data. For many minerals,
SUPCRT92 uses HDNB data but for calcite and aragonite the values of AG® are slightly
different.

In this discussion of the calcite = aragonite reaction we use the terms A,.G° and A,S°.

Figure 6.12 uses the term AG°. We might also have used AG and AS. This can cause
confusion, unless you refer to Figure 4.12 to see that there is no logical problem, just a

4

difference in how explicit we wish to be. That is, A,.G° is just a special case of AG. In this
case, we are dealing with a chemical reaction (subscript “r”), and with pure phases in their
(high T) standard states (superscript °), so A,G° is correct, but AG° or AG is not incorrect.
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Figure 6.12 A G° for the
reaction calcite =
aragonite. Lower curve at
1 bar, upper curve
corrected to 4140 bars.
Dashed curve shows the
effect of an error in AG®
of —15calmol~". Squares
(aragonite) and triangles
(calcite) from Table 6.2.

Some simple applications
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measured in kilocalories, or kilojoules. With uncertainties of that magnitude,
possible errors in calculated phase boundaries are obviously huge. On the other
hand, if you know the position of a phase boundary accurately, you can deduce
very accurate free energy values from it. For example, if the determinations
of Crawford and Hoersh (1972) in Table 6.2 are accurate, we could deter-
mine A,G° for the calcite—aragonite reaction with extremely little error just
by reversing the calculation we have just done. In other words, phase stabil-
ity determinations are a very powerful tool in determining the best values of
thermodynamic terms.

This fact was first used in a systematic way by Helgeson et al. (1978) to
determine values of most of the common rock-forming minerals, using certain
data as “bedrock,” or well-known, and calculating free energies from phase
equilibria, as well as other sources such as solubilities and calorimetry, to
develop a network of self-consistent numbers. Self-consistent in this sense
means that the calculated free energies would reproduce all the phase equilibria
and other data that were used in determining them. Since then several other
investigators have also done this, using a variety of methods, including in some
cases observations on natural assemblages as well as experimental results. These
data have also been assembled into databases for use by computer programs.

Because of these efforts, the situation with regard to data of geochemical
interest has improved greatly. Nevertheless, many problems remain — the prop-
erties of the minerals in experiments may be different from those of natural
minerals; there are many experimental difficulties that may result in incor-
rect data, and so on. We might say that there will always be problems with
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data — there will never be complete agreement as to the “best” numbers to use,
and there will always be new data to consider.

Accuracy and precision

The problem will generally be one of accuracy, and not precision. Accuracy
refers to how close to “the truth” your determination is, and precision refers
to the dispersion of your determinations — i.e., the reproducibility. Statistical
methods resulting in “standard errors” refer to precision, but this is no longer a
problem in this field. To illustrate this, consider the case where ten laboratories
cooperate in determining the composition of a sample they wish to establish as
a standard. When the results are in, it is found that nine laboratories agree very
closely, but the tenth gives a very different result. Using standard statistical
methods, the tenth result can be eliminated as an “outlier,” and the nine results
combined to give a very impressive “standard error.” However, it may be that
the tenth result is actually more accurate; that the nine laboratories used some
method or technique that introduced a systematic error.

The problem of systematic error in analytical and experimental work will
always be with us, which is why there are always arguments about the validity of
various methods, and which results are “the best.” Reproducibility is generally
very good, but who cares, until confidence is established that the accuracy
is good. Of course once there is confidence in the methods, measurements
of precision become important in assembling data from various sources, for
example in developing equations of state. Estimates of precision are commonly
used to assign weighting factors to data from different sources.

Thus having self-consistent data is no guarantee, because they may be self-
consistent with flawed experiments or analyses. This subject is now a large
and very important part of geochemical research, but it is not particularly a
thermodynamic subject, so we will not pursue it further here.

6.5 Another example
6.5.1 The effect of temperature on A,G°

To illustrate the effect of temperature on A,G°, we could continue with the
calcite—aragonite case and try to calculate the temperature where the phase
boundary crosses the 1 bar pressure line (Figure 6.10). Unfortunately, this
turns out to be close to absolute zero, so it is not a very useful example.
As another case let’s consider the polymorphs of Al,SiOs. There are three
of these, kyanite, andalusite, and sillimanite. Therefore there are three two-
phase boundaries, and these three boundaries meet at a single point, where
Glyanite — Gandalusite _ Gsillimanite 59 shown in Figure 6.13. These minerals, which
form quite commonly in rocks subjected to high temperatures and pressures
in the Earth’s crust, are of special interest to geologists who study these rocks
because the “triple point,” the point where the three phase boundaries meet, is
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Figure 6.13 The phase
diagram for the
aluminum silicate
polymorphs.

Some simple applications
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in the middle of a rather common range of 7—P conditions. If a rock contains
one of these minerals, the geologist immediately has a general idea of the 7" and
P conditions at the time the rock formed. It is only a “general idea” because it
is not safe to assume that rocks reach chemical equilibrium at some P and T,
and then remain unaltered as they are exhumed and are exposed at the Earth’s
surface. Many complications can occur, which are not within the subject of
thermodynamics.

According to Figure 6.13, the kyanite—andalusite boundary crosses the 1 bar
line at some elevated temperature. We should be able to calculate what this
is by methods perfectly analogous to those we used for calcite—aragonite. The
data we need (from Appendix B) are shown in Table 6.3.

First, we note that all seems to be well to start with, in that there is no
conflict between the data and Figure 6.13. Kyanite has the lower value of A, G°,
and so it should be the stable phase at 25°C, 1 bar, as shown in the diagram.
The values of A,S° and A,V° would indicate that kyanite is the high-pressure
phase, and that the kyanite — andalusite boundary has a positive slope, also as
shown by the diagram.

To calculate the temperature of the kyanite — andalusite boundary at 1 bar,
we start with Equation (4.42),

(0G/oT)p = —S (4.42]

Table 6.3 Thermodynamic data for the Al,SiOs minerals, from Appendix B.

A H° A,G°
f f S° Ve

Formulas Form kImol™! Jmol'K~'  cm?mol™!

Al,SiO; kyanite —2594.29 —2443.88 83.81 44.09
Al,SiO; andalusite —2590.27 —2442.66 93.22 51.53
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from which we can write immediately’
(0A,G° /T, = —A, 5°
Integrating this from 298.15 K to some higher temperature 7', we get
T
A, G — A, Gy = / _A,S°dT (6.15)
298
and if we assume that A,S° is a constant, this becomes

T
A,G7 = A, Gy = =4, S50 /2‘98 dr
= —A, 85 (T —298.15) (6.16)

Now if we let A, G7 =0, T becomes T, and we can solve for this. From
the tables, A, G5, = 1220Jmol™" and A, S5, =9.41Tmol ' K™!, so

chbm
A,G7—A, G = _ArS;98[ dT
298
0—1220 = —9.41(T g, —298.15)
Togom = 427.8 K
=154.6°C
The relationship between G and T is shown in Figure 6.14. Note that in

Figure 6.9, the slope of G versus P is positive, whereas in Figure 6.14, the
slope of G versus T is negative. This is because for pure substances V is always

It is not immediately clear to many students why, if (0G/0T), = —S, we can “write
immediately” (0A,G°/0T)p, = —A,S°, that is, why we can just stick in a A whenever we wish.
It is because the derivative relationship can be applied to all terms of any balanced reaction.
For example, if the reaction is A +2B = C (e.g., reaction (5.11)),
A,G° =G = &G —24,Gy
=G -G, —2Gj
so the derivative with respect to T is
(3A,G°/0T) = (G2 /3T) — (9G53 /AT) — 2 (9G3, /oT)
= —SaHS3+25;
=—(Sc =S —253)

=—A,5°
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Figure 6.14

The relationship between
G and T. Note the general
similarity to Figure 6.9,
with the exception that
the slopes are negative.

Some simple applications
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25 Tequ

positive, and § is always positive by virtue of the third law. This is only true
in general for pure substances; for differences (i.e., A,V, A,S) or for solutes,
these quantities may be negative, as we will see.

6.5.2 A different formulas for A,G%

Another useful way of expressing the effect of temperature on G is given by
expanding (6.16). Thus

A,GS— A, Gy = —A,8°(T —298.15)

A,G5 — (A H3gg —298.15 A, 8%,) = —T A, S35 +298.15 A, S3g

Collecting and rearranging terms gives
A,GT=AHyg—TA,S5 (6.17)

In other words, you can calculate A, G° at some temperature 7" using the values
of A, H° and A,S° at 298.15 K. However, this is subject to the same restriction
as before, that both A, H° and A,S° are not functions of temperature. Of course,
both these terms always are functions of temperature, but often this can be
neglected without introducing much error, especially if 7 is not very different
from 298 K.

Both (6.16) and (6.17) are therefore approximations, to be used only over a
small temperature interval, or in cases where the result need only be approx-
imate. More accurate formulae involve the heat capacity, but as there are a
variety of equations expressing the heat capacity as a function of 7, there are
a variety of more accurate expressions for A,G°. We looked at two of these in
Chapter 5, Equations (5.29) and (5.38).
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6.6 Summary

The main idea in this chapter is to illustrate the uses of our thermodynamic
variables, using only pure phases. We did this by considering some properties
of water at elevated 7 and P, and by calculating simple phase diagrams. In
phase diagrams, the condition A,G =0 becomes a central concern, and for
pure phases, this is the same as A, G° = 0.

Many reactions involving only pure phases also involve water, but calcu-
lating the Gibbs energy of water at high 7 and P is more difficult than for
minerals, because we cannot assume that it is incompressible. How to han-
dle this, as well as how to deal with solutions, is an important topic in later
chapters.
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7.1 Introduction

If the world were made of pure substances, our development of the ther-
modynamic model would now be complete. We have developed a method,
based on measurements of heat flow, that enables predictions to be made
about which way reactions will go in given circumstances. But one of the
reasons that the world is so complex is that pure substances are relatively
rare, and strictly speaking they are nonexistent (even “pure” substances con-
tain impurities in trace quantities). Most natural substances are composed of
several components, and the result is called a solution. Therefore, we need
to develop a way to deal with components in solution in the same way that
we can now deal with pure substances — we have to be able to get numerical
values for the Gibbs energies, enthalpies, and entropies of components in solu-
tions. We will then be able to predict the outcome of reactions that take place
entirely in solution, such as the ionization of acids and bases, and reactions
that involve solids and gases as well as dissolved components, such as whether
minerals will dissolve or precipitate. Our thermodynamic model will then be
complete.

In this chapter we have a look at how to deal with dissolved substances —
solutes. When we mix two substances together, sometimes they dissolve into
one another, like sugar into coffee or alcohol into water, and sometimes they
do not, like oil and water. In the former case, if we thought about it at all, we
would probably expect that the properties of the mixture or solution would be
some kind of average of the properties of the two separate substances. This
is more or less true for some properties, but decidedly not true for the most
important one, Gibbs energy.

After making sure we understand how to express the composition of solu-
tions, we begin by considering properties of ideal solutions, which are, as
you might expect, the simplest possible properties that solutions might have.
As you might also expect, no real solutions are in fact ideal, although some
come fairly close. But the properties of ideal solutions are of interest not only
because some solutions are almost ideal, but because what we often do for
more complex solutions is to subtract the properties of the ideal solution from
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the corresponding property of the real solution, and then deal only with the
difference between the two, which simplifies things quite a bit.

7.2 Measures of concentration

A number of concentration terms are used in describing solutions, and it is
naturally important to be able to change from one to another.

Mole fraction

Consider a solution containing a number of components, n; moles of com-
ponent 1, n, moles of component 2, and so on. If it is an aqueous solution,
then water is one of the components, normally the major component. The mole
fraction of any one component i is defined as

X; = i (7.1)

i

where ), n; is the total number of moles of components, n; +n, +n;+---.

The mole fraction is very commonly used, especially in theoretical dis-
cussions, because it is perfectly general, and it can cover the entire range of
compositions from dilute solutions to pure components. It is inconvenient for
aqueous solutions because these are usually quite dilute on the mole fraction
scale; that is, water is by far the dominant component, and the mole fractions
of the solutes are numerically very small.

The mole fraction is a simple concept, but there is one important thing to
note. In any mole fraction the question is, n,, n,, etc., are moles of what? This
is not as simple as it might seem. Let’s say you have a solution containing
1 mole (=58 g) of NaCl, 1 mole (~75g) of KCl, and 50 moles (=900 g) of
water. What is the mole fraction of NaCl? Is it

"INaC1
fNact T kel + 1,0
_ 1
T 141450
=0.0192

XNaCl =

or is it
2nn.al
NNg+ g+ + - +Ny0
2
1+14+2450
=0.0370

XNaCl =
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Completely dissociated electrolytes under ambient conditions has long been
a major topic in solution chemistry, so the second option is traditionally used.
That is, for the mole fraction of an aqueous solution of a strong electrolyte
such as NaCl or KCl, Equation (7.1) is modified to
X, = _ (7.2)

vn;+ ny,0

where v is the number of moles of ions resulting from the dissolution of one
mole of solute (assuming complete dissociation; e.g., v is 2 for NaCl, 3 for
Na,SO,, 4 for AICl;, etc.). The corresponding mole fraction of the solvent,
water, is then

ny,0

‘0= T .
2 vn; + ny,o

However, the situation is not as clear under conditions of high 7 and P,
where even “strong” electrolytes dissociate to a variable extent, and may hardly
dissociate at all.

So the message is, if you use mole fractions, make sure you know how they
are defined.

Molality
The molality (m;) of component i is the number of moles of i (n;) per kilogram
of pure solvent, usually water. Even if the aqueous solution contains several
solutes, the molality is the number of moles of one of them in 1000 g of pure
water. It is less general than mole fraction in the sense that you cannot express
the composition of the pure solute in molal units, because m,; becomes infinite
for pure i.

The use of molality is virtually universal for aqueous solutions because it is
independent of the temperature and pressure of the solution, and equations in
molality are usually simpler than equations in mole fractions.

Molarity

The molarity (M;) of component i is the number of moles of i in 1 liter of
solution (not a liter of pure solvent). This is a convenient unit in the laboratory,
where solutions are prepared in volumetric flasks. It has the disadvantage that
as temperature or pressure changes, the volume of the solution changes but
the definition of the liter does not, and the molarity is therefore a function of
temperature and pressure. The conversion to molality requires a knowledge of
the density of the solution, which is readily available in handbooks for binary
solutions at 25°C, but usually not available for natural solutions. For dilute
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Table 7.1 Relationship between NaCl molality,
weight %, and molality at 25°C. Density data
from Pitzer et al. (1984).

Molality Weight % Density Molarity

molkg™! 2/100 g gcm® mol L~!
0.01 0.058 0.997 46 0.0100
0.10 0.58 1.001 17 0.0995
0.25 1.44 1.007 22 0.2482
0.50 2.84 1.01710 0.4941
0.75 4.20 1.02676 0.7377
1.0 5.52 1.03623 0.9790
2.0 10.46 1.07228 1.9201
3.0 14.92 1.10577 2.8225
4.0 18.95 1.13705 3.6864
5.0 22.61 1.166 44 4.5133
6.0 25.96 1.19423 5.3051

solutions at ambient conditions, m and M are about the same. The relationship
for NaCl is shown in Table 7.1

Weight percent

Measurement in weight %, the grams of solute per 100 grams of solution, is
used in the metallurgical literature, and in some areas of geochemistry. Natural
solutions found in fluid inclusions, basinal brines and evaporitic environments
can reach concentrations of several molal. To convert to or from molality you
need to know the molecular weight of the component. The relationship between
NaCl weight % and molality is shown in Table 7.1.

Parts per million

For trace components a million grams of solution rather than 100 grams may
be used, giving parts per million (ppm). For example, an aqueous solution that
is 10™* molal in Zn contains 0.0001 x 65.37 = 0.006537 grams of NaCl in
(1000+0.006 537) grams of solution, or about 10° grams of solution. Therefore
there would be 6.537 grams of Zn in 10° grams of solution, or 6.5 ppm. If the
solution contains a number of other solutes, they should all be included in
the denominator, but it is common practice to ignore all components except
the solute of interest and water.

Roughly equivalent and perhaps more common units are milligrams per liter
and milligrams per kilogram of solvent. Being a volumetric unit, conversion
of mg/L should involve the density, but for dilute solutions, mg/L, mg/kg and
ppm are about the same. Table 7.2 gives a comparison for Zn.
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Table 7.2 Zinc concentration units.

Molality ppm mg/kg
0.0001 6.5 6.5
0.001 65.0 65.0
0.005 327.0 327.0
0.010 653.0 654.0
0.050 3258.0 3269.0
0.100 6495.0 6537.0
0.150 9710.0 9806.0
0.200 12905.0 13074.0

7.3 Properties of ideal solutions

What are the properties of true ideal solutions and why do real solutions not
behave this way? The picture differs for gases, liquids, and solids. Before
developing the equations, it will help to have a mental picture of what an ideal
solution is.

7.3.1 ldeal gaseous solutions

Taking the simplest case first, an ideal gas consists of hypothetical, vanishingly
small particles that do not interact in any way with each other. They are unaware
of the existence of the other particles and there are no forces or energies of
attraction or repulsion. An ideal gas obeys the ideal gas law, PV = nRT, where
n is the number of moles, T is related to the movement and individual energies
of the particles, V is the volume occupied by the particles, and P comes from
the only interaction allowed in the system — particles bouncing off the walls or
boundaries. A solution of two ideal gases will also obey the ideal gas law since
the particles of the different constituents remain unaware of all other particles,
just as with an ideal single-component gas. You might say that molecules in
an ideal gas, whether pure or a solution, think they are in a perfect vacuum. Of
course, real gases do interact at the molecular scale and can only be expected
to approach ideal behavior at very low densities and pressures, or in the limit
as P — 0.

7.3.2 Ideal liquid solutions

Liquids are necessarily more complicated than gases. To start with, they have
much greater cohesiveness than gases; for example, a liquid equilibrated with
its gaseous vapor develops a meniscus. This boundary has a measurable surface
tension caused by the fact that particle interactions in the liquid are stronger
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than those in the vapor. A liquid must have significant interaction among its
particles — if it did not, it would disperse and become a gas.

In an ideal liquid solution, the forces of interaction between all molecules,
whether of one type or another, are exactly the same. For example in a liquid
solution of constituents A and B, interactions A—A, A-B, and B-B must be
identical. This means that all constituents A,B,..., must have the same molecular
properties (size, charge, polarity, bonding characteristics). This is never the
case, of course, but mixtures of some organic compounds come fairly close.

Given this uniformity of intermolecular forces in the ideal liquid solution
(as opposed to the absence of such forces in the ideal gas), it follows that many
properties of the solution are very simply related to the properties of the pure
compounds. Thus the volume of the solution is the sum of the volumes of the
pure components before mixing, and no heat is absorbed or given off when the
solution is prepared (because such effects are caused by changes in the particle
interactions, which we have just ruled out).

7.3.3 ldeal solid solutions

A solid has a rigid structure, and its component molecules, ions, or atoms
are confined to specific structural sites. The regularity of the structure varies,
of course, from glassy to fully crystalline materials, but whatever the degree
of ordering, the positions of the particles are fixed. Whereas ideal gases and
gaseous solutions have a complete absence of interparticle forces and ideal
liquid solutions have a complete uniformity, solids must have highly specific
interactions between different constituents. We speak of specific sites in crys-
tals, such as tetrahedral silicon—oxygen bonds and octahedral aluminum sites,
and the same is true (although to a lesser extent) of glassy solids. The inter-
actions between Si-Si, Si—O, Si—Al, O-O, and Al-O in an aluminosilicate are
all quite different. However, within the framework of a perfectly crystalline
compound it is frequently possible to substitute one element for another. This
substitution and the corresponding solid solution would be ideal if the two
substituting elements or species were completely indistinguishable. The clos-
est approximation to an ideal solid solution would be the substitution of two
isotopes of the same element on the same crystal site. Like ideal gaseous
and liquid solutions, there would be no heat evolved on mixing the compo-
nents and the total volume of the solution must simply be the sum of the
volumes of the pure constituents before mixing. We go into more detail in
Chapter 14.

7.3.4 Two kinds of ideal solution

There is only one kind of ideal gas solution, as discussed above, but there are
two kinds of ideal liquid and solid solutions.
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Our discussion of liquid and solid solution ideality above makes no provision
for the possibility that there might be more than one definition of ideality; that
a solution might act ideally in one way but not in another. If in a liquid solution
of A and B there are A—A and A-B interactions but no B-B interactions we
have another kind of ideal solution, in which changing the concentration of B
results in a perfectly linear change in the properties of B, and has no effect on
the properties of A. In order for there to be no B-B interaction, particles of
B must be quite widely separated — the concentration of B in A must be very
small. This leads to the concept of the “infinitely dilute solution,”
there is only one particle of B in a sea of A, and therefore there is interaction
between the particle of B and the surrounding A, and of course A—A interaction,
but here being no other B particles, there is no B-B interaction. We can’t deal
with a single molecule of B, so we need to think of a mole of B particles and
have so much A that no B particle is influenced by another B particle — perhaps
a roomful of A, as in the room analogy on page 278.

These two kinds of ideality permeate discussions of liquid and solid solution
properties, and are formalized by two ideal solution laws — Raoult’s law and
Henry’s law.

in which

7.4 ldeal solution laws

These relationships or laws were discovered in the nineteenth century by
investigations of gas or vapor pressures associated with solutions of known
composition. Because the gas or vapor was at a fairly low pressure, it acted as
an ideal gas, and because it was in equilibrium with the solution, it provided
information on the nature of the liquid solution. Today, the original connection
with an associated vapor or gas phase is a secondary concern. The relationship
between the ideal solution components themselves proves to be more useful,
a subject to be discussed in terms of activities, an important topic introduced
here and treated more fully in Chapter 8. Before discussing these relationships,
we look first at solutions of ideal gases.

7.4.1 Dalton’s law

The simplest imaginable system other than a vacuum is undoubtedly an ideal
gas. One mole of ideal gas occupies 22.41 liters at 0°C, 1 atm, so that (from
the ideal gas law) one mole of ideal gas occupying one liter at 0 °C would have
a pressure of 22.41 bars.

It was an early discovery (Dalton, 1811) that mixtures of gases would exert
a pressure equal to the sum of the pressures that each of the species gases
would have if each alone occupied the same volume. This was established
using gases at relatively low pressures where they behave close to ideally, and
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in fact it is only strictly true for mixtures of ideal gases, which are also then

ideal gases. Thus for each species gas 1,2, 3, etc.

P,V =nRT
P,V =n,RT
etc...

and for the gas mixture

Plolalv = Z anT

Thus

P
P

total
P,
P, total

etc...

or,
Pi=ux-

P,=x,-

etc...

ny

2in

n
iy
Ptolal
P,

total

(1.3)

P,, P,, etc., are called the partial pressures of the solution gases and
equations (7.3) are now normally used as the definition of partial pressure even
though in real, nonideal solutions they give a quantity that is not equivalent to
the original meaning, i.e., the pressure a gas would exert if it alone occupied

the total volume.!

7.4.2 Henry's law

Henry’s law in its original form stated that the solubility of a gas in a liquid
is proportional to the pressure on the gas. In Figure 7.1 is shown an apparatus
for controlling the pressure on a gas i in contact with a liquid. As the pressure

on the gas P; increases, more of it dissolves in the liquid, and so x; increases.
When x; is sufficiently small, it is directly proportional to P,;, and the constant

' There are several definitions of partial pressure. de Heer (1986, §23.4) says there are five, and

explains the three most common. In my experience, only the definition in Equations (7.3) is

ever used in geochemistry.
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Figure 7.1 lllustration of
Henry’s law. As the
pressure P, on the gas i
increases, more of it goes
into solution in the liquid,
increasing Xx;.

Ideal solutions

Temperature T

Gas i

Liquid X;
containing dissolved i

of proportionality is called the Henry’s law constant, Ky, . As x; gets larger,
there is inevitably some deviation from strict proportionality, as shown.
Mathematically, this is expressed as

P, =Ky x; (7.4)

where P; is the pressure or partial pressure of some component i, x; is its mole
fraction in solution, and Ky, is a constant, specific for component i, the Henry’s
law constant. Actually, it is more often used in terms of molality,

P; = Ky,m; (7.5)

where m; is the molality of 7 in solution. K}, will have a different numerical
value in the two cases. It follows that in the concentration range where Henry’s
law is obeyed,

(7.6)

a result we will use later (§7.5.3).

In this experimental situation, it will be noted that the total pressure is not
strictly speaking P;, because some of the liquid solvent will evaporate into
gas i, so that the piston is supported partly by gas i and partly by vaporized
liquid. In other words there are always at least two partial pressures in a gas
in contact with a liquid. However, if the vapor pressure of the liquid is small
compared to the gas pressure, it can be neglected, and the pressure on the
piston equated with P;. This was the case in the early experiments of Henry and
others.

Henry’s law results from the lack of interaction between the solute particles,
and represents the limiting behavior as solute concentrations approach zero. It
has been generalized to refer not only to gas concentrations and pressures, but
to any linear proportionality between the activity and concentration.
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Finally, it is important to be aware of the physical meaning of the tangent
in Figure 7.1. As x; — 0, it represents the values of P; in equilibrium with
the solution in which a particle of i interacts with the solvent but is unaware
of any other particles of i; i is “infinitely dilute.” As we go out along the
tangent to larger values of x;, the value of P; given by the tangent at any x; of
course deviates from the actual measured P;, but still represents the P; which
would be in equilibrium with i in solution, if i continued to fail to be aware
of other i particles. It represents the P; for a hypothetical solution of i which
displays dilute solution behavior at all concentrations. This rather esoteric
sounding situation proves to be surprisingly useful when we generalize P; to the

activity a; (§8.3.4).

7.4.3 Raoult’'s law

Raoult’s law originally concerned the composition of a vapor phase in equilib-
rium with a solution of two or more components. This sounds quite different
from the Henry’s law situation, but the two are intimately related. In fact,
Raoult’s law can be considered to be just a special case of Henry’s law.
Many combinations of components A and B (e.g., water and alcohol, or two
organic liquids) were dissolved into one another in various proportions, and
the composition and pressure of the coexisting vapor phase was measured
(Figure 7.2). The results of these measurements varied widely, but a very few
systems showed a particularly simple relationship. When the two liquids A and
B were very similar, the vapor pressure of their mixture was a simple function
of the vapor pressures of the pure liquids,

Pmixture = xAP/: +xBPl(; (77)

P= XAPAOI XBPBO
Liquid A
Vapor
PBO
Liquid A+B l
Liquid B

185

Figure 7.2 The vapor
pressure of a solution of
A and B that obeys
Raoult’s law.
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and the partial pressures of A and B in the vapor were found to be directly
proportional to their concentration in the liquid (Figure 7.2).

__liquid po
Py=xy Py

__liquid po
Py =xg" Py

The only way that these simple relationships can hold is for the liquid
solution to be ideal, in the sense discussed in §7.3.2. That is, intermolecular
forces between A—A, B-B, and A—B must be identical, so that a molecule of A
behaves exactly the same way whether it is surrounded mostly by A or mostly
by B. Thus the relationship

Pi — x?q“idP}’ (7.8)
can be taken as a statement of Raoult’s law, which means the solution is ideal.
In Figure 7.3b we see that in an ideal solution of this type, P/P° for both
components (i.e., P,/P3 and Py/P;) are represented by diagonal lines, so that
if we define activity as a = P/P°, then activity equals mole fraction (a, = x,;
ag = xg) in Raoultian systems. The concept of activity is actually a bit more
complicated. We get to that in Chapter 8.

Raoult’s law has therefore been generalized to refer, not only to the partial
pressures of gases, but to any solution, including solid solutions, in which
component activities equal their mole fractions.

Although some authors use different terminology to distinguish between
Raoultian and Henryan ideality, many do not. We must always be clear whether
we are referring to Raoultian or Henryan ideality.

P; 1.0
Yoz
el

g o ﬂ =a

P PB P°
Pe
0
O0 1 0 1
A xliq B xliq or xVvapor
B B B

(a) (b)

Figure 7.3 (a) The vapor pressure (P, ) of a binary solution that obeys Raoult’s law
is P =P, +P; = xpP; + xgF5. The partial pressure of each component is given by the
diagonal lines, e.g., between 0 at xg =0 and F; at xg = 1. (b) The partial pressure of
each component divided by the vapor pressure of the pure component.
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7.5 Ildeal solution equations
7.5.1 Volume, enthalpy, heat capacity

These terms are simply additive in ideal solutions. Volume is the most intuitive
of these terms, and we illustrate the additivity of volumes in ideal solutions in
§10.2.1. This leads to Equation (10.4), the generalized form of which is

Videal sol’'n — Z'xi ViO (79)

where V is the molar volume of an ideal solution, and V; is the molar volume
of the pure component i.

The form of Equation (7.9) applies also to any thermodynamic parameter
which does not contain entropy in its definition. The important ones are enthalpy
and heat capacity, so that

Hideal sol'n = inHio (710)
and
CPideal sol'n — Z'xiCP? (71 1)
i

The difference between the property of a solution and the combined proper-
ties of the pure components is called a mixing property. For an ideal solution,
from Equations (7.9)-(7.11)

Amix Videal sol'n = Videal sol'n — Z Xi Vfo (712)

_ aAmixG
-\ ),

=0
AnixHigea sorn = Higeal sorn — inHio (7.13)
B (aAmixG/T)
/1 Jp
=0
Amixc‘l’ideal sol’'n — CPideal sol’'n incp? (714)

_ aAmixI_I
o /),

=0

7.5.2 Entropy, Gibbs energy

Entropy and other potential quantities which contain entropy (such as G) are
specifically defined so as to change in spontaneous processes, and two or more
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substances dissolving into one another is a perfect example of a spontaneous
process.

Consider two ideal gases which are allowed to mix at constant P and 7. In
the final mixture, which is also an ideal gas, the partial pressure of gas 1 is
P, =x,P, and of gas 2 is P, = x, P, where x, and x, are the mole fractions. The
change in entropy on mixing, A, S, is equal to the AS involved in expanding
each gas from its initial pressure P to its partial pressure in the gas mixture.
From Equation (5.41), this process is, for each gas

AS, = RIn(P/P,)
and

AS, = RIn(P/P,)
and the total change in entropy is

A i Sideal sorn = X1 RIn(P/Py) +x,RIn(P/P,)

=x,RIn(1/x;) + x,RIn(1/x,)

=—R(x;Inx; +x,1Inx,) (7.15)

or, in general terms,
AmixSideal sol'n — Sideal sol'n Z xiS? (7]6)
=—R) x;Inx; (7.17)

0A i G
=—(—r (7.18)
T ),

Because the x terms are fractional, A, Sija sorn 1S inherently positive.

Equation (7.17) can also be derived from reasonably simple statistical consid-
erations which have nothing to do with the physical state of the particles. In
other words it applies equally to ideal gas, liquid, and solid solutions.

It is important to note the fundamental difference between the ideal mixing
of volumes and other terms not containing entropy (Equations 7.9, 7.10, 7.11),
which are just linear combinations of the pure end-member terms, and the
ideal entropy of mixing, Equations (7.16), (7.17), which are nonlinear, and
result in all mixtures having a higher entropy than points on the }_, x;S? line
or plane. It is this property which gives the entropy, Gibbs energy and other
thermodynamic potentials (all of which contain an entropy term, either as part
of the definition or as a constraint) their ability to predict energy differences,
and hence reaction directions.
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The Gibbs paradox

Equation (7.17) has resulted in a quite remarkable literature on what is called “the
Gibbs paradox.” Consider the case of two gases, A and B. The mixing expression
for —AS/R is then (x, Inx, + x5 Inxg). Gibbs pointed out (Gibbs, Dover 1961
edition, p. 166), using slightly different expressions, that this is independent of
the nature of the gases,

...except that the gases which are mixed must be of different kinds. If we
should bring into contact two masses of the same kind of gas, they would
also mix, but there would be no increase in entropy.

This situation, which Gibbs explains on the same page, has been discussed by
innumerable authors, often on a molecular or statistical basis. The best treatment,
I think, is by E.T. Jaynes (1992). He says that

Usually, Gibbs’ prose style conveys his meaning in a sufficiently clear
way, using no more than twice as many words as Poincaré or Einstein
would have used to say the same thing.

but that on this point he is more than usually obscure, although perfectly right.

Jaynes then examines the case where, unknown to us, there are actually two
different kinds of argon, Arl and Ar2, identical in all respects, except that Ar2
is soluble in Whifnium, while Arl is not. Whifnium is one of the rare superkalic
elements; in fact, it is so rare that it has not yet been discovered. Until the
discovery of Whifnium in the next century, we would not know there were such
things as Arl and Ar2, and even if by chance we happened to mix Arl and Ar2
we would have no way of knowing that they were two different entities, and we
would correctly describe the mixing process as having zero change in entropy.
After the discovery of Whifnium, we can prepare pure Arl and Ar2, and carry out
the same mixing process, and we can even suppose that every molecule follows
exactly the same path that might have happened previously by pure chance (when
we knew nothing about Arl and Ar2). But in this case the entropy change is
given by Equation (7.17), and is nonzero, perfectly illustrating why there is a
paradox. Jaynes then goes on to discuss Whafnium, in which Arl is soluble but
Ar2 is not.

In his usual elegant style, Jaynes uses this situation to clarify not only the
macroscopic nature of thermodynamics, but the role of information, reversible
and irreversible mixing and the work available. Particularly interesting is his use
of this example to emphasize the importance of defining the constraints (which
he calls macrovariables) defining a system. When we know about Arl and Ar2
and are able to separate them by doing work on the system, we have an extra

constraint in the sense of §4.9.2.
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Figure 7.4 Gibbs energy
of ideal mixing, from
Equation (7.20).

Ideal solutions

It follows from Equations (5.1), (7.16), and the fact that A, Higear sorn =0
(Equation 7.13), that the Gibbs energy of (ideal) mixing is
Amix Gideal sol'n — AmixI—Iideal sol'n TAmixSideal sol'n
= Gideal sol’'n — inG? (719)
=RTY x;Inx, (7.20)

The ), x;G? term defines a straight line (or plane surface) between points rep-
resenting end-member components, and the Y, x; In x; term (which is inherently
negative) describes how far below this line or plane is the surface representing
the G of the (ideal) solution.

Figure 7.4 shows A, H, A, S, and A
several things to note in this diagram.

mix mix G for an ideal solution. There are

1. Because the mixing of A and B takes place at a constant 7" and P and is a spon-
taneous process, A ;G must be negative. The curve shown is an expression of
Equation (7.20). No experimental data are required; just mole fraction numbers from
Oto 1.

2. The A,;, S shown is an expression of Equation (7.16), but because it is a much smaller

-1

quantity (reaching a maximum of 5.76 Jmol ' K~! at xz = 0.5) it is exaggerated in

the diagram.

3. A, H is from Equation (7.13) and is of course zero at all xz. A_;,G is therefore a
mirror reflection of TA_;, S, because A ;G =A . H—TA_;S. The T A, S curve
is not shown.

....... AmixS
[0 R TP L S J
= AmixH
g
5 -400 AmixG
Q, RTIn x5 =-1266.3 J/mol
5 -800
—1200 RTIn xg =—-2271.5 J/mol
Ha
-1600
—2000
Ug
0 0.2 0.4 0.6 0.8 1.0
A B

XB
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4. We don’t have absolute values for G, so we must always measure the difference in
G from some other state at the same 7 and P. In Figure 7.4 this other state is pure
A (x5, =1) and pure B (x5 = 1).

5. Despite appearances, the molar Gibbs energy curve in Figure 7.4 is actually asymp-
totic to each vertical axis, whereas the volume curve in Figure 10.2 is not. This is
not of great importance by itself, but it is connected to the fact that we cannot use
the infinite dilution standard state for Gibbs energy. We leave this important topic
to Chapter 8.

Chemical potentials

Figure 7.4 also introduces us to a new problem. Because the mixing curve is
concave downward, the Gibbs energies of components A and B in the solution
are necessarily less than the corresponding values of G§ and Gy, the molar
Gibbs energies of the pure compounds. The fact that this is so provides the
(thermodynamic) reason why A and B form a solution. If we mix n, moles of
A and nz moles of B the reaction is

LN A + ng B= (nA A’ ng B)so]ution (721)

and the Gibbs energy change for this reaction is A ; G, which is negative.
During this reaction, the Gibbs energy of both A and B become lower. If the
mixing line lies above the straight line joining G4 and Gy, then AG
be positive, the dissolution reaction (7.21) would not be spontaneous, and no
solution would form — A and B would be immiscible, like oil and water.

So G < G5, and Gy™*" < Gj,. But this raises a few questions, like
what are these quantities G5 and G"™°"? Where are they on the diagram?
How can you separate AG,,;, into these two separate quantities? If we know
that, then perhaps we could evaluate G5 — G5 and G§ — G,

You can see by simple inspection of Figure 7.4 that at any point on the
A, G curve, the tangent at that point allows calculation of the numerical value
of that point on the curve by combining two points on the tangent in a linear
combination. In Figure 7.4 we show the tangent to the curve at x; = 0.4, and
identify the intersections of the tangent with the two ordinate axes as u, and
wg. In Equation (7.19) we see that if G and Gy, are zero, then A ;, G =G
and in drawing Figure 7.4, this is exactly what we have assumed. We have made
A, G the difference between the G of the solution and zero. Evidently then,

would

solution »

mix

Gsolulion

= XaMa T Xpip (7.22)
But what is the physical meaning of w? There are two ways of answering this.
Euler's answer

Mathematically minded people simply invoke Euler’s theorem for homoge-
neous functions (§C.2.3). In plain language, this says that for any extensive
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(total) function such as V or in this case G, having n, moles of component A
and ny moles of component B

0 0
G=n, (*G> +ng (—G> (7.23)
0ny g ong s
or, dividing by (n, + ng),
a 0
G=ux, <—G> + xp (—G) (7.24)
anA ng anB na

Comparing (7.22) and (7.24), we have

oG
Ma = P
na T,P,ng

()
Mg =\ 5
? ong T.P.np

so the tangent intersections are in fact the partial derivatives of the total Gibbs
energy of the solution G with respect to n, and ng. These are in fact our
first examples of partial molar terms, introduced in §2.4.1 and §4.14.1. w is
a partial molar Gibbs energy, and it is our answer to the question, what is the
Gibbs energy per mole of a dissolved substance? It is important to develop an
intuitive understanding of partial molar terms, so we devote quite a bit more
discussion to this in Chapter 10.

(7.25)

Our answer

But we don’t have to use Euler’s theorem. We can simply expand our definition
of G, which so far is restricted to closed (constant composition) systems. If we
exclude chemical work, which means we deal only with systems at complete
stable equilibrium, we know from Equation (4.65)

dG =—-SdT+VdP+_ pdn;

At constant 7 and P [by implication a condition of Equations (7.23) and (7.24)]
the first two terms on the right drop out, and integrating the other terms from
an increment of solution up to the whole system, we get, for two components

1 and 2,
d 0
Gon () an ()
on, T.P,i an, T.P,i,

which is Equation (7.23), and from there we get Equations (7.25) again.

So that answers one question-how do we split G into G and
Gy™ion and where are these things on the diagram? The next question is, how
do we evaluate G5 — G and G — Gyion?
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7.5.3 The relation between composition and free energy

Figure 7.4 also shows a very important relationship between Gibbs energy and
composition, namely, that
upa—GL=RT Inx,
(7.26)
g —Gg =RT Inxg
Equations (7.26) provide a relationship between the concentration of an
ideal solution component and its Gibbs energy. This is an important milestone.
Equations (4.42) and (4.43)

(0G/oT), = —S [4.42]

(3G/oP), =V [4.43]

showed how Gibbs energy varies with T and P, respectively (expanded upon in
Figures 6.9, 6.14); now we can see how Gibbs energy varies with concentration
of something in solution. If we can calculate the Gibbs energy of solids, liquids,
gases, and solutes over a range of 7, P, and composition (x), we have just
about solved all our problems, in principle. Basically, from here on we will
be amplifying and coming to grips with practical matters, such as the fact that
Equation (7.26) only applies to Raoultian solutions.
But where do Equations (7.26) come from?

Gibbs energy and mole fraction |

The most direct way to derive the relationship between Gibbs energy and mole
fraction is to simply differentiate the total form of Equation (7.20) with respect
to n;. For two components, G = G/(n, +n,), so multiplying both sides of
(7.20) by (n, + n,), then differentiating, gives

0 0
— (Gyopn =1 G} —1,G3) = — [RT (n Inx; +n,yInx,)]
on, on,

which, with n,, G{, and G constant, gives

. 8 3
p — G =RT | — (n;Inx,) +
on,

g min(l —xl)]]

=RT (Inx; +x, — x,)

=RTInx, (7.27)

which is (7.26) for component 1.

Applying the same method to Equation (7.15) we get
S, —S, =—Rlnx, (7.28)

and recall that A, H =0, so

—o0

H—H =0 (7.29)

i
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as well, for ideal solutions.

There is a complication in (7.27) and (7.28) which is actually very general
but will only become important in the study of solid solutions (Chapter 14).
We discuss it in more detail in §9.10.2, but briefly, the problem is that in
Equation (7.27) the left side is a difference in energy per mole, which obviously
depends on how the mole is defined, but the right side has a mole fraction,
which is independent of the definition of the mole as long as all components
of the solution are treated in the same way.

For example, normally we define a mole of nitrogen as Avogadro’s number
of N, in nitrogen gas, and oxygen as O,. But we could define these as the
same number of N and O, or of N, and O,, without affecting the mole fraction.
Whether these forms exist or not is not relevant. The mole fraction of N, in a
solution of nitrogen and oxygen does not depend on which of these ways we
define the mole, but the value of u does. Avogadro’s number of N, particles
has twice the mass and twice the energy of the same number of N, particles,
SO

i, — 3, = 2, — B3, ] (7.30)

Therefore, if there is any question as to the size of the mole, which usu-
ally only arises in defining components in solid solutions, Equation (7.27) is
generalized to

uy —G)=nRTInx

= RT Inx} (7.31)
where n is the factor relating the two definitions of the mole.

Gibbs energy and mole fraction Il

It will also prove useful to derive (7.27) another way, especially when we use
molal units of concentration instead of mole fractions. So first we will re-derive
(7.27), and then use the same method for molal units in §8.2.3.

Equation (7.27) expresses the relationship between u and x, or concentration.
To derive this, it would seem natural to find an expression for the derivative
of w with a concentration term, and then integrate. In other words, what is
the value of (du,;/0n;); ? How does u; (the G of i in solution) vary with the
amount of i in solution in the ideal case? This is a partial derivative, so if #;
is the number of moles of i, we need to keep the concentrations of all other
components constant. We denote all other components by #;.

If we expand (du,;/0n;); p,, Dy introducing P;, the pressure on gaseous i
which is, or might be, in equilibrium with solute i (whether or not there is such
a gas phase is irrelevant), we get

o ou; 0P,
I'L[ — I'Ll 1 (7.32)
on; /. OP; dn;
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where u; is the same in the solution and in the (perhaps hypothetical) gas phase,
where it can be called G, (the gas being assumed ideal), so that (9u;/9P;) =
(0G;/0P;) =V, = RT/P;, and where (0P;/0n;) = P;/n; is an expression of
Henry’s law (Equation 7.6).2 Combining all this we get

o, RT
(i) - (1.33)
on; . n;

i

for ideal solutions. Integrating this equation between two values of n;, n; and
n!, we get
" ’ n;/
wi —m;=RTIn—
n;
{/
=RTIn ?', by Henry’s law
{/
n! —u?=RTIn P—’o if state " is pure i

and, from Equation (7.8)
m;—m; =RTInx; (state ” no longer needs superscript) (7.34)
which is Equation (7.26) for component i.
When xz; = 0.4 and x, = 0.6, R=28.31451Jmol"'K~!, and T =298.15K,
Equation (7.26) gives
s — G5 = —1266Tmol ™!
and
g — Gy =—2271Jmol™!
This says that a mole of A has 1266 Jmol~! less in the dissolved state than in

the pure state, and this is the “thermodynamic explanation” for why A dissolves
in B.

Constructing the tangents

Although not essential to understanding the thermodynamics involved, it is of
some interest to know how to calculate the position of the tangents and the
chemical potential intercepts in Figure 7.4.

2 OK, Equation (7.6) shows the ratio of P; to m;, not n;. But as m; is just n; per kilogram of
solvent, the ratio is the same.
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The tangent is the slope of the curve calculated from Equation (7.20).
Therefore the equation for the slope of the tangent is (not forgetting that
xp=1—xg)

dA i G d
—— ) = — [RT(xs In x5 + x5 Inxp)]
dxg dxg
—RTIn (’LB> (7.35)
XA
and the equation for the tangent line itself is
dA G
Ha =D G—xp (7le ) (7.36)
dxg

If you substitute (7.35) into (7.36) you get, not surprisingly, w, = RT Inx,,
which is Equation (7.26), except that we take w® = 0 in the diagram. This may
make the whole thing look like an exercise in algebra. Well, it is, but it is
algebra that is exceptionally useful as a basis for understanding solutions.

7.6 Next step - the activity

We have now developed the relationship between the Gibbs energy of a com-
ponent of a solution and the concentration of that component (Equations 7.26,
7.27,7.34). However, it only applies to ideal solutions, and only for concentra-
tions in mole fractions. Obviously we need to expand the range of applicability
of this relationship.

Doing this gets complicated, because we have gaseous, liquid and solid
solutions, a variety of concentration scales, nonideal solutions, and several
different standard states that u° refers to. That is, the quantity u; — u; need not
always refer to the difference between i in solution and i in its pure state. At
the same time, the form of Equation (7.34) is very convenient, and we want to
retain it for all these conditions. We do this by defining the activity, already
mentioned in §7.4.3, as

m;—u? =RTng; (7.37)

All the complications are accommodated by this parameter, and we try to sort
it all out in Chapter 8.

7.7 Summary
In Chapter 4 (§4.12.1) we saw that

(0G/3T)p =S [4.42]
and

(0G/oP); =V [4.43]



7.7 Summary

We didn’t bother to write, though it is equally true, that

(3G/dT), = —S (7.38)
and

(0G/oP); =V (7.39)
and, differentiating by n,, that

@S/on)rp=S; (7.40)
and

@V/on)rp=V; (7.41)

meaning that any solution property, not just Gibbs energy, can be split up into
the contributions of the individual components. Finally, because

9 (9G) 09 (0G
oT \on; )~ om; \OT

and similarly for P, then

o _
ki g
oT
and
o,  —
by
oP
So it turns out that
(al'l‘i/aT)P,n = _§l
(a/*l‘i/aP)T,n = vt (742)

(a/-"/ani)T,P,ﬁ,- = RT/n,

are the relationships we need to be able to evaluate (by integration) to know
the Gibbs energy of any substance as a function of 7, P, and composition.
But we’re not finished yet. The first two equations apply to any solution, but
the (0u/dn;) equation deals only with ideal solutions. We need to find ways
to evaluate the partial molar properties in the first two equations, and how to
modify the third one so that it works for any solution. We do this in Chapter 10.
A central concept in all of this is the activity, which we take up in Chapter 8.
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8
Fugacity and activity

8.1 Fugacity
8.1.1 Introduction

The fugacity was introduced by G.N. Lewis in 1901, and became widely used
after the appearance of Thermodynamics, a very influential textbook by Lewis
and Randall in 1923. Lewis describes the need for such a function in terms of an
analogy with temperature in the attainment of equilibrium between phases. Just
as equilibrium requires that heat must flow such that temperature is the same
in all parts of the system, so matter must flow such that chemical potentials are
also equalized. He referred to the flow of matter from one phase to another as
an “escaping tendency,” such as a liquid escaping to the gas form to achieve
an equilibrium vapor pressure. He pointed out that in fact vapor pressure is
equilibrated between phases under many conditions (and in fact is the basis for
the isopiestic method of activity determinations, §5.8.4), and could serve as a
good measure of escaping tendency if it behaved always as an ideal gas.

The chemical potential is of course another measure of “escaping tendency,”
but Lewis pointed out that there are “certain respects in which this function
is awkward.” This refers to the fact that u — —oo as @ — 0, because activity
is defined as u — u°® = RT Ina. Lewis defined a function which would be
much like a vapor pressure, which would be equilibrated between phases at
equilibrium, even in nonideal cases, and even if no vapor phase actually existed.
It is an absolute property, in the sense that it does not depend on a standard
state, and it has units of pressure. Lewis and Randall (1923) called it a kind of
“ideal or corrected vapor pressure.”

Fugacity has proved useful in a number of ways. One way is to provide
a relatively simple way to evaluate the integral [ VdP. In §5.7.1 we saw one
way to do this. That is, for solids, we often assume that the molar volume
is constant, making the integration very simple. Another way, for gases, is to
assume the ideal gas law (see below). This is actually a special case of the
most general method, which is to develop an equation of state for the system
(Chapter 13), from which you can generate all its thermodynamic properties.

Lacking an equation of state, how do we evaluate the pressure integral for
a fluid such as H,O or CO,, either in the pure form, mixed with other fluid
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components, or reacting with solid phases? A possible way to proceed would
be to express V as a function of P in some sort of power series, just as we did
for Cp as a function of T (Equation 3.26). [V dP could then be integrated, and
we could determine the values of the power series coefficients for each gas or
fluid and tabulate them as we do for the Maier—Kelley coefficients.

8.1.2 Definition of fugacity

Fortunately, thanks to the insight of Lewis, we can proceed in a simpler and
completely different fashion. To see how the inspiration for such a function
might have arisen, consider the form of the volume integral [ V dP for an ideal
gas. Starting with (4.43),

dG=VdP

RT
=Z_aqp
P

=RTdInP (8.1)

Py P RT
dG =[ 2 ap
r P

Py 1

P
Gp,—Gp, =RTIn Fz (8.2)
1

If P, is 1 bar and this is designated a standard or reference state denoted by
a superscript °, then P, becomes simply P, and
P
G—G°=RTIh —
Po
=RTInP since P° =1 (8.3)
Thus for ideal gases RT In P all by itself gives the value of [ ::1 dG. Unfortu-
nately, this doesn’t work for real gases although it’s not a bad approximation at

low pressures and high temperatures where real gases approach ideal behavior.
However, the form of the relationship

dG=VdP=RTdnP

(Equation 8.1) is sufficient to suggest that we could define a function such that
the relationship would hold true for real gases. This function is the fugacity,
f, where

dG=VdP=RTdInf (8.4)
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and

Py Py
/ dG= [ var
Py

Py
Py
Gp,— Gy, =/P RTdInf
1

_RTI I (8.5)
Ir,

Because f appears as a ratio in (8.5), this equation cannot serve as a full
definition of f. We must specify how to determine the fugacity at some P
and T, then the integral can be used to calculate it at other pressures at that
T. To complete the definition, it would be convenient for f to approximate
P for gases that behave more or less ideally, that is, at low values of P. We
accomplish this by stipulating that

(Y

11)12) (;) =1 (8.6)
This means that for an ideal gas, f = P, and for gases at low pressures, f =~ P.
Equations (8.6) plus (8.4) or (8.5) make up the definition of fugacity.

Fugacity coefficient
The ratio f/P is called the fugacity coefficient, y,. Thus

fi= Vf,-P (8.7)

where P is the pressure of a pure fluid compound, or the partial pressure of
a compound in a solution. The partial pressure is a measure of concentration,
so the fugacity coefficient is another kind of activity coefficient, introduced
in §10.6.1.

8.1.3 Calculation of fugacity

From the preceding equations we see that to measure fugacity, we need to know
the molar volume as a function of P. In other words we have to measure gas
densities. Also we should measure these densities down to very low pressures —
pressures sufficiently low that we can say f = P to whatever degree of accuracy
is required. But at these low pressures, the volume of a given mass of gas
becomes very large and very difficult to measure accurately. Thus, while in
principle evaluating [ V dP is straightforward, in practice it is difficult when
the lower limit of integration is a very low pressure. To avoid evaluating this
integral at very low pressures where V — oo, it is convenient to define a
residual function a, where

a= Vrea] _ Videal gas (88)

=V —RT/P
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Thus « is the difference between the molar volume of the gas and the volume
it would have if it behaved ideally. Then

V=a+RT/P
and
dG=VdP
=RTdInf

RTdInf = (a+ RT/P)dP

dinf =dInP+ (a/RT)dP
Integrating from P, to P

P P 1 ,P
dlnf = dlnP+ — dpP
J, ame= dmps g ],

Py 0

1 P
lan—lnfp0=1nP—lnP0+ﬁ/[JUadP (8.9)
where P, means some unspecified value of P, sufficiently low such that P = f
to a good approximation. At this low value of P, the two terms In f; and In P,
are equal, so that Equation (8.9) becomes

] P
1nf=1nP+E/P adP

0

and
S
In==1
nP ny,
1 p RT
=— V——)dP (8.10)
RT Jp, P

This is for a pure gas or fluid. If the gas is in a mixture of gases, total
pressure P becomes the partial pressure x;P, and molar volume V becomes the
partial molar volume V;, so

fi 1 (P({— RT
=— [ (V.==)aP 8.11
x,P RT/p P ®.11)

0

In Y= In

This is Equation (3.14) in Prausnitz et al. (1999), a standard reference on
fugacities in fluids. Equation (8.10) shows that for an ideal gas, in which
V =RT/P, f = P, that is, fugacity is the same as pressure, which we also saw
from Equation (8.6). Similarly, Equation (8.11) shows that in an ideal mixture
of gases in which V, = RT/P, fugacity is equal to partial pressure.
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Equation (8.11) has P and T as independent variables. More commonly,
however, P is known as some function of V and T'. In this case Equation (8.11)
becomes

fi 1 [=[[oP\ RT
ny, =In 7L = — ) lav—RTIz 8.12
MY =M0p RTKz m, ) P B (8.12)

where Z is the compressibility factor (§13.2.4). This is Equation (3.53) in
Prausnitz et al. (1999).
Because
Z—1 V-—RT/P
P~ RT

we can rewrite Equation (8.10) as
P
1 = Z—1)dlnP 8.13
ny = [ (Z=Ddm (8.13)

so the fugacity coefficient can be calculated as a function of Z, the compress-
ibility factor, and since Z is known and is the same for most gases in terms
of their P, and T,, then f/P can be calculated for any gas given its P, and T..
Several authors have prepared charts showing f/P as a function of P, at various
T.. This is a useful device for obtaining fugacities of gases in the lower range
of geologically interesting P—T conditions. The charts do not extend far into
the metamorphic range of P-T conditions, but nevertheless the compressibility
factor has found very wide use in equations of state and other treatments of
fugacity.

The Lewis fugacity rule
In Chapter 7 we saw that if substances mix ideally (A,,V = 0),

V=x,Va+xzVg [10.4]

This volumetric ideal mixing is known as Amagat’s law. If substances mix
nonideally (A,,V #0),

V=x,Vs+x3 Vg [10.7]

It follows, because (10.7) is perfectly general, that for ideal solutions, the partial
molar volume is the same as the molar volume, V; = V. Therefore, comparing
(8.10) and (8.11), we see that

fpure _ fmix
P x;P
or
fimix =x; .fpure (814)

This is the Lewis fugacity rule, and is seen to be true if Amagat’s law is true.
So fluids can mix ideally volumetrically, but might still be nonideal mixtures.
Note that it assumes the additivity of the molar volumes of all components of
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Calculation of fugacity

What is the fugacity of water at 800 °C between 1 and 1000 bars?

Using Equation (8.10) and volume data from the NIST program STEAM, v.2.2
the calculated values of V — RT/P are shown in Figure 8.1a. Integrating this
curve from P, = 1 bar (where y, = 0.9998, close enough to ideal gas) to various

pressures gives values of RT In (f/P) as shown in Figure 8.1b.

To do the integration, volume data were obtained from the NIST program at
0.1 bar intervals from 1 to 10 bars, and at 10 bar intervals from 10 to 1000 bars.
Integration was done numerically in MATLAB®, after fitting the curve with a
spline function. If you try this, don’t forget to get V, RT/P, and P in compatible
units. The easiest way is to change volumes in cm®mol~! to Jbar~! mol~! by
multiplying by 0.1.

The results at various pressures are shown below, compared with values calculated
by the NIST program.

P RTIn(f/P) v, f £ from NIST

bars Jmol™! — bars bars
1 0.000 1.0 0.9998 1.0
100 —160.772 0.9821 98.2 98.2
200 —322.532 0.9645 192.9 192.9
300 —482.704 0.9473 284.2 284.2
400 —639.849 0.9308 372.3 372.3
500 —792.594 0.9150 457.5 457.5
600 —939.696 0.9000 540.0 540.0
700 —1080.076 0.8860 620.2 620.1
800 —1212.853 0.8729 698.3 698.3
900 —1337.339 0.8608 774.7 774.7
1000 —1453.034 0.8497 849.7 849.7

the mixture, not only at pressure P but at all pressures from P, to P. In effect,
it proposes that the fugacity coefficient of i is independent of composition and
of the nature of the other components in the solution. The Lewis fugacity rule
is often used in the absence of better alternatives, but can be very inaccurate for
small concentrations (partial pressures) of i. It becomes more accurate under
certain limiting conditions (see Prausnitz et al., 1999, Chapter 5).

8.1.4 Fugacities from equations of state

Determining fugacities in fluid mixtures is essentially equivalent to determining
an equation of state for the mixture. Deriving thermodynamic properties from
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Figure 8.1 (a) The value of
a =V —RT/P for water at
800°C, from 1 bar to

1000 bars, from the NIST
program sTeAaMm. (b) The
value of the integral

J{ adP for water at
800°C, i.e., the area
enclosed by the curve

in (a).
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that equation is then straightforward, if often computationally tedious. We will
look at only a couple of examples.

Fugacities from the van der Waals equation

Thermodynamic properties can be derived from any equation of state, but
because of the differentiation and integration involved, the resulting expres-
sions rapidly get surprisingly complex. For example, Prausnitz et al. (1999,
Equation 3.65) show that the expression for the fugacity of i in a mixture of
gases obeying the relatively simple van der Waals equation is

: v (nyb 1
RTIn L = RTIn— Y |2 ] L
x;P V—nsb on;, | (V—nzb)
an2a)] 1
(2wl iz (8.15)
on; |V

where n; is the total number of moles of gas components, and a and b are
the van der Waals constants for the mixture. But here another problem arises.
The a and b parameters are known for each of the individual gases in the
mixture, but how are they combined to give an overall a and b for the mixture
of gases? This is the problem of the mixing rules, encountered for all equations
of state of this type, which have measured or fit parameters for individual
gases, which must be combined in some fashion when the gases are mixed.
There is no “correct” way of combining these parameters, and a mixing rule
which works in one case may not work in another.

Properties derived from extensions of the van der Waals equation get even
more complex. For example, the equation for fugacity coefficients in H,0-CO,
mixtures using the MRK Equation (13.17) occupies a whole page (Kerrick and
Jacobs, 1981).

Fugacities from virial equations
Another commonly used equation of state is the virial equation. We discuss
the calculation of fugacity from virial coefficients in Chapter 13, §13.5.1.



8.1 Fugacity

Fugacity standard states

The fact that fugacities often appear in the ratio f/f° has led to a common
confusion about “fugacity standard states.” For example in one textbook the

authors say

The fugacity is a relative function because its numerical value is always
relative to that of an ideal gas at unit fugacity; in other words, the
standard state fugacity f7 in [...the equation u; — u? = RT In (f;/f7)...]
is arbitrarily set equal to some fixed value, usually 1 bar.

This is a bit misleading. The numerical value of f; is not relative to anything,
but w — w° is. Fugacity is calculated from measured densities or molar volumes,
as on page 203, and the fact that the lower limit of integration is some very
low pressure does not change the fact that fugacity is a system property, while
activity is not. Fugacity is independent of whatever one chooses as f°, but the

choice of f° of course governs the corresponding value of u — u°.

The expression RT In f; gives the difference between u; at 7, P, and u; of ideal
gas i at T, 1 bar, just as RT In (m;7y;) gives the difference between w; at T, P,
and u; in an ideal one molal solution at 7', P. f; is no more a relative value

than is m;7y;. So fugacities do not have standard states any more than corrected
concentrations have standard states.

In other words, a; = 0.01 is meaningless unless the standard state is known, but

fi =0.01 bars is unambiguous.

8.1.6 Summary

The fugacity is a property of systems and of system constituents that was
invented in order to facilitate the evaluation of [ dG for gaseous compounds.
However, the fact that its only practical use is for gases or supercritical fluids
does not change the fact that in principle it is a property of all system compo-
nents or species. Each species fugacity is therefore a system property or state
variable, whether measurable or not.

G.N. Lewis, who invented the fugacity, suggested that it be called an “escap-
ing tendency,” but in most solid and liquid systems it is more intuitively thought
of as a (corrected) vapor pressure or partial pressure, but remember that it is at
the same time a thermodynamic model parameter. Thus it still has significance
at values of say 107% bars, whereas a pressure of this value would have no
physical significance. Its dimensions are the dimensions of pressure, and it is
most often measured in bars or pascals. In spite of its appearing as a ratio in
one of its equations of definition (8.5), it is nevertheless an absolute quantity
for a given species in a given system, as is G, thanks to the other equation of

205



206

Fugacity and activity

definition, (8.6). In other words, fugacities do not have standard states in the
way that activities do. They are absolute system properties.

Fugacities in gas mixtures are important in understanding metamorphic
mineral equilibria, and the composition of fluids evolving from crystallizing
magmas and boiling hydrothermal fluids. The difficulties are formidable, both
experimental and theoretical. That is, determining densities at high tempera-
tures and pressures in fluid mixtures is difficult, and the treatment in terms
of equations of state is always a problem. Far more detail is available in
Prausnitz et al. (1999).

Another thing to note is that in Equation (8.5) we see the beginnings of a
way to attack our primary goal, a simple way of relating system composition to
the Gibbs energy. A ratio of fugacities is related in a simple way to a difference
in Gibbs energies. These fugacities could, at least in principle, refer to species
in a solution. Perhaps we can generalize this ratio to a quantity which will refer
to a difference in Gibbs energies in all kinds of situations. This is the role of
the activity.

8.2 Activity
8.2.1 Introduction

In Chapter 7 (§7.6) we introduced the activity, and we said that in the form
RT Ina,, it gives the quantity u; — u?. If you think about this, you will realize
that there are not many more important concepts related to using thermo-
dynamics in chemical systems. The goal of finding the minimum value of our
thermodynamic potential G (or w) in chemical systems is made complicated
by the variety and complexity of our systems, and the fact that we use a
variety of standard states in calculating our difference in Gibbs energy. In
a sense, all these complexities are transferred to a single quantity, the activity, a
dimensionless number which is directly related to w; — u? for any component i
in any system under any conditions. How to calculate a; for various kinds of
components (pure phases, associated and dissociated solutes, etc.) in various
kinds of systems (multiphase solid, liquid and gaseous solutions) system is
therefore an important topic.

Let us first summarize our development of the concept of the fugacity, f.
Starting with the definition

dG =RTdIn f (84]
and
},ij}})(f/P) =1 (8.6]
we found
@

Gp,—Gp, =RTIn 8.5]

Ir,
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which expresses the relationship between the Gibbs energy and fugacity of a
gas at two different pressures at the same 7. However, changing the pressure
on a pure phase is not the only way of changing the fugacity. Because fugacity
approximates partial pressure, we might, for instance, simply introduce other
components at the same P and 7, which will also change the fugacity. Dealing
with a solution rather than a pure phase, though, means we should use w rather
than G. So generalizing from a single gas to a gas i in a mixture of gases,
and from two states at different pressures to any two states " and ” at the same
temperature, this becomes

ﬂ;’_M;.:RTm% (8.16)

i
One implication of this is that the fugacity of i is the same in any two states
or phases that are in mutual equilibrium, because if u' = w” then f" = f”.
This of course was Lewis’s intention in defining the fugacity in the first place.
Because in principle any substance or species has a fugacity, Equation (8.16)
seems to offer a general method for determining Gibbs energy differences. The
problem with that is that the fugacities (& vapor pressures) of substances other
than gases are far too small to measure, and are mostly unknown. However,
even in systems where species fugacities are unknown, the ratio of a species
fugacity to its fugacity in some other state is quite often a measurable and
useful quantity, and comparing (8.16) with Equation (7.37), we see that this
ratio is in fact a way of expressing the activity.

8.2.2 Definition I: gases

Rewriting (8.16) so that state ” is any (unsuperscripted) state and state ’ is a
standard state designated by superscript °, we have

o_ fi
m;—p;=RTIn == (8.17)
fi
This is a simple generalization of (8.16), and hence a direct result of the
definition of fugacity. We now define the activity of species i as

o= (8.18)

i f}o

where f; and f? are the fugacities of i in the particular solution or state of

1

interest to us and in some reference state at the same temperature. Thus
w; —u; =RTIna, (8.19)

which is of course Equation (7.37), arrived at in a different way. We begin now
to see why using the activity can be confusing. In Chapter 7 (Equation 7.34)
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the state that u refers to is i as a pure liquid or solid, and in this case (8.16)
u? refers to i existing as a gas or perhaps fluid in some as yet undefined state,
which might be, and is in fact, completely arbitrary. It will be interesting to see
how it is that we can use W, in a multicomponent, multiphase system, where at
equilibrium w,; must be the same in every phase, while limited by the fact that
we can only know u; as the difference between it in whatever state it is and
some other, arbitrary state which will be different for each kind of phase. We
will try to do this in the remainder of this chapter and the next chapter, where
activities become part of the equilibrium constant.

8.2.3 Definition II: solutes

We use the same method we used in §7.5.3. We need an expression for
the derivative of u with a concentration term, which we can integrate. The
derivative of p; with respect to the molality of i, m;, is (0u;/0m;)7.p 5., Where
m; means the molality of all solution components except i.

If we expand (du;/0m;)y,p ; by introducing P;, the pressure on gaseous i
which is, or might be, in equilibrium with solute i (whether or not there is such
a gas phase is irrelevant), we get

o oum; OP;
I'Ll — Ml 1 (8.20)
om; ) ;. OP; om,

where u; is the same in the solution and in the vapor phase, where it can
be called G; (the vapor being assumed an ideal gas), so that (du,/0P;) =
(0G,/0P;,) =V, = RT/P,, and where (0P;/0m;) = P,/m; is an expression of
Henry’s law (§7.4.2), as mentioned earlier. Combining all this we get

(%)m _RT (8:21)

om; m;
for ideal (Henryan) solutions. Integrating this equation between two values of
molality, m; and m}, we get
" !’ m;,
wi —u;=RTIn— (8.22)
m;
showing the effect of changing solute concentration on the chemical potential,
as we wanted. However, it is limited to ideal (Henryan) solutions. The relation-
ship is generalized to any kind of solution by introducing a correction factor at
each concentration. Thus

i "
Yu M,

Yu m;

] — ;= RTIn (8.23)
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where 7, is the Henryan activity coefficient, and Equation (8.23) now refers
to any real solution at a given temperature in which species i changes concen-
tration, all other species remaining unchanged.'

Equation (8.23) can be generalized and so made more useful by choosing
a single concentration m/ for all solutes. In choosing this concentration, we
should realize that

1. yy in the denominator will be different for all different solutes unless we choose
some idealized state, and

2. it would be convenient to have the denominator (y;;m’) disappear, i.e., be unity.

The only state which satisfies these conditions and is equal to 1 molal for all
solutes is the ideal (Henryan) one molal solution, and this is universally used
as the standard state for solutes. Introducing superscript ° for the standard state,
and dropping the now unnecessary superscript ”, we get

.m;
1 — g = RTTn 21 (8.24)
Vi, M;
and because y; =1 and m? = 1, this is usually written
mi — i = RT In (yy, m;) (8.25)

The quantity (yy, m;)/(7vqm;) is another definition of the activity, a;, so
w;—u; =RTIna, (8.26)

The activity thus allows calculation of the difference between the w; in a
solution and w; in the ideal one molal standard state at the same 7 and P as
the solution. This sounds like a fairly esoteric thing to do, but because standard
Gibbs energies of formation are determined for this ideal standard state (albeit
at 25°C, 1 bar), it is immensely useful, as we will see.

At this point you should note that we have not used the infinite dilution
standard state for aqueous solutes, as we will for other properties in Chapter 10.
Having m? — 0 in Equation (8.24) would obviously be inconvenient.

8.2.4 Definition lll: solids and liquids

Now that we know about the fugacity, we can derive Equation (7.27) in still
another way, because for an ideal gas f;/f7 is equal to P;/P?, which is equal to
the mole fraction, x; (Equation 7.8). So, for ideal gaseous and liquid solutions,
and by extension, for any ideal (Raoultian) solution,

wi—pmf =RTInx; (8.27)
! Note that you can do this, i.e., change the concentration of i without changing any other

concentrations, because molality is moles per kg of solvent. You cannot do it using mole
fraction or molarity.
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For solutions covering a wide range of compositions, such as many solid and
liquid solutions, this equation can be used by introducing another correction
factor, the Raoultian activity coefficient, yg. Thus

mi— p; = RTIn (x;vg,) (8.28)
As before, we now define another activity term
a; = X;Yg, (8.29)

which is useful for solutions covering a wide range of concentrations, and for
which g is known or can be estimated. In geochemistry, this tends to be for
solid and gaseous solutions only, but it is widely used in metallurgy for liquids
as well. The standard state, as before, is that state for which a = 1, in this case
the pure liquid or solid (x = 1; yg = 1 in this state by definition).

In §8.3.4 we will see that we can also use <y instead of y; with the
mole fraction in Equation (8.28). This rarely happens in geochemistry, but is
instructive nonetheless.

8.2.5 Summary
Here are our various definitions of activity:

m;—p; = RT Ina,

M — :RTln%
le m (8.30)
My — =RT1noi7:

u; M

wi — pi = RT Inx;yg,

In any equilibrium state, both u; and u? are absolute, finite quantities with a
fixed difference between them. If the same standard state is chosen for each
of these equations, then w; — u? is the same in each equation, and the activity
would be the same in all phases at equilibrium. This would be nice, but it would
mean using a vapor pressure as the standard state for activity in solids, or an
ideal one molal solution standard state for activities in a gas, or perhaps an
ideal gas at one bar for an aqueous solute. This would be not only inconvenient,
but impossible in many cases. So we accept the small inconvenience of having
different activities for the same species in different phases.

In a multicomponent, multiphase system at equilibrium, u; is the same in
every phase, but in most cases u; and therefore u; — u? is different for solids,
liquids, gases, and solutes (we know this without knowing the numerical value
of either term). Thermodynamic properties are determined and tabulated for
substances in these various standard states, and how they relate to one another
in chemical reactions can be seen when we consider the equilibrium constant
(Chapter 9).
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Finally, note that fugacities have units of pressure (e.g., bars), but that
activities and activity coefficients are always dimensionless.

8.3 Standard states and activity coefficients
8.3.1 Introduction

Standard states are simply a special sort of reference state for physical prop-
erties, made necessary, as we have mentioned several times, by our lack of
knowledge of absolute values for the properties U, w, H, and A. We have to
express values of these quantities in some real state as differences from some
other state, the standard state.

If you mention the subject of standard states to most geochemists, they
will normally assume that you are referring to the activity—chemical potential
relationship, because this is by far the most important usage of standard states.
But there is another important usage of standard states, and that is for enthalpy.
The Helmholtz energy uses the same standard states as the Gibbs energy, and
using U quantitatively is rare, so standard states for w and H are the only ones
we really need to worry about. But of course once these states are defined
they have other properties as well, so we have standard state volumes, heat
capacities and entropies, in addition to Gibbs energies and enthalpies. The
difference with these properties is that we know their values in all states, and
probably would not define standard states for them if it were not for our Gibbs
energy—enthalpy problem.

In this chapter, we discuss the various standard states used for the Gibbs
energy and the activity. The standard state used for enthalpy, volume and heat
capacity is quite different, and is discussed, along with a more detailed look at
partial molar properties, in Chapter 10.

Standard states are states of matter in specified conditions. The definition
must be sufficiently complete as to determine the thermodynamic parameters
of the substance, and therefore must have at least four attributes:

. temperature
. pressure

. composition

B W N =

. state of aggregation (solid polymorph, liquid, gas, ideal gas, ideal solution, etc.).

Thus “25°C, 1 bar” is not a standard state. The question is, what system at
25°C, 1 bar?

Because the goal of the definition is to specify the thermodynamic param-
eters of the substance, it frequently happens that the standard state chosen is
a hypothetical, perhaps physically unrealizable state. The importance of these
states lies in our knowing their properties, not in being able to actually achieve
them. Certain standard states are so commonly used that one need not always
elaborate on the definition, i.e., it may be obvious from the context. If there is
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any deviation from usual practice, it would be necessary to be quite specific
about the nature of the standard state.

In the following discussion of standard states we must distinguish between
the properties of the standard state (7°, P°, m®, etc.) and those of the state of
interest (i.e., the equilibrium state in which the activity of some component
or species is of interest to us; 7, P, m, etc.) because the two states are often
completely different. We will also refer to the state of interest as “the system.”

8.3.2 Definitions

The general relationship between activity and Gibbs energy is Equation (8.19),
m; —u; =RTIna, [8.19]

Thus a; is a measure of the difference between the chemical potential of i
in some equilibrium state, and the chemical potential of i in its standard state.
When i is in its standard state, a;, = 1 and this difference is zero.”> As we have
seen, the activity can take on several different forms, depending on whether
we are using fugacities, molalities, or mole fractions. Therefore the definition
of the standard state will be different in each case, because a, = 1 will imply
a different state for i in each case.

We will now have a look at the standard states for each of these cases.
These states are very different from each other, and some are very hypothetical
and seemingly very unrealistic. We will try to show how this arises, and that
the standard states we use are actually quite reasonable. To do this with real
numbers rather than just symbols, we need either experimental data or some
equations that simulate or fit experimental data in a realistic way. Real data
unfortunately have uncertainties, so we will borrow the concept of regular
solutions from Chapter 10. For our purposes here, all we need to know is that
in such solutions, activity coefficients follow the relationships

RTInvyg, = We X5
(8.31)
RT Inyg, = wai

where w,; is a constant. These equations are discussed in §10.6.1, page 306. We
choose an arbitrary but convenient value for wg of 2000J mol~!. This gives us
some activity coefficient numbers to play with and to illustrate several things
about these coefficients and about standard states.

2 In the standard state, a; is 1.0, but the reverse is not always true. Activity coefficients and
concentrations can sometimes combine to give a value of g; equal to 1.0 in some real state
which is not the standard state.
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8.3.3 RT In(f,/f°)

The first thing to note is that in all three cases, the state of interest and the
standard state must be at the same temperature. You can see this by looking at
the derivation, in which RT was treated as a constant during integration. Thus
the standard state temperature must be defined as the temperature of whatever
state we are comparing with it. Because we are often interested in a series of
equilibrium states at different temperatures, we therefore have a corresponding
series of standard states, one for each temperature. This can be regarded rather
as a single standard state having a variable temperature.

Fixed pressure

We can also see from Equation (8.17) why it often proves convenient to choose
a standard state for i, which is not only not its most stable state, but one that
is extremely hypothetical. If f? is set to 1.0, Equation (8.17) becomes

m;—u =RTInf; (8.32)

which is a very convenient form of the equation, provided that fugacities of i are
available or measurable. The physical significance of setting the denominator
to 1.0 is that constituent i is said to be in a state in which the fugacity is 1.0
at all temperatures. The only substance for which this is true is an ideal gas at
P =1, so Equation (8.32) implies the choice of “ideal gaseous i at one bar and
temperature 77 as the standard state. This perhaps seems reasonable enough
for a gas, but it can be used for any substance including solids and liquids. The
only reason it is not universally used is that fugacities (f;) are not known for
many constituents of interest, especially solids® and dilute solutes.

To put this in other terms, if you have the fugacity of some substance i in
some system, then RT In f; is the difference in Gibbs energy per mole of i in
the system at 7 and i as an ideal gas at T and 1 bar. Whether i could ever come
close to existing as an ideal gas is irrelevant. Other examples of hypothetical
standard states are discussed below.

Note that if you do set f° =1, then u; and f; are independent of the system
pressure. That is to say, they depend on P° but not on P. Once the standard
state is chosen, it is a function only of the value of 7, held constant during
the integration. Another way of putting this is that we have a fixed pressure
standard state.

Finally, comparing Equations (8.32) and (8.19) we see that it is quite possible
for the activity of i to be numerically identical to the fugacity of i. It just requires
that the standard state chosen for i is ideal gas i at 7 and 1 bar. We will find
(Chapter 9) that this is a very common situation when i is a gas or a gaseous
component, and in fact it is the standard state used in program SUPCRT92, as
shown in Table 8.1. In this table, note that at each of the three temperatures

3 Interest in the condensation of solids from the solar nebula in the early history of the solar
system has made the fugacity of solids a more relevant topic.
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Table 8.1 Part of the output from SUPCRTO2 for pure CO, gas. Some rows and
columns have been removed.

DELTA G DELTA H DELTA S

PRES(bars) TEMP(degC) LOG K (cal) (cal) (cal/K)
500.000 .000 74.398 -92986. -94267. 50.3
500.000 100.000 57.494 -98166. -93344. 53.2
500.000 200.000 47.857 -103611. -92315. 55.6
1000.000 .000 74.398 -92986. -94267. 50.3
1000.000 100.000 57.494 -98166. -93344. 53.2
1000.000 200.000 47.857 -103611. -92315. 55.6
5000.000 .000 74.398 -92986. -94267. 50.3
5000.000 100.000 57.494 -98166. -93344. 53.2
5000.000 200.000 47.857 -103611. -92315. 55.6

0, 100 and 200°C, the thermodynamic parameters AfG°, AfH", and S° are
identical at all pressures, and the same holds true at other temperatures.* This
is because SUPCRT92 supplies standard state properties, and the standard state
for gases is the ideal gas at 7" and 1 bar. The properties shown refer to this
state, not to real CO, at T and P.

Variable pressure
But it is not necessary to set f° = 1 bar, just convenient in many cases. Another
option, fairly common in geochemistry though not in chemistry, is to let
f° = fP"¢, and to define the standard state pressure as the system pressure. In
this case, we compare the fugacity of i with the fugacity of pure i at the same
T and P. If the Lewis fugacity rule (§8.1.3) holds, this is the same as using the
mole fraction of i, but normally this will be only approximately true.

Again, because we often consider various system pressures, the standard
state pressure will vary, so we have a variable pressure standard state.

8.3.4 RTInx;

This formulation is used for liquid and solid solutions, where relatively large
ranges of compositional change occur. In this case, we have less choice as to
the nature of the standard state — if @; = 1, then x; = 1.5 In other words, the

Careful readers will note that the table heading for entropy is DELTA S, whereas what is
reported is S°, the standard third law entropy for CO, gas. This is because the tables in
SUPCRT92 are set up to report data for complete balanced reactions, although you can, as in
this case, get data for single compounds.

As before, there may be some conditions where x; and 7y, just happen to combine to give
a; = 1.0. This is not another standard state.
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standard state must be pure i, and it must be at the same T and P as the system,
because only n was allowed to vary during integration.

But we do have a choice as to what kind of activity coefficient we want to
use, Raoultian or Henryan. You might think that if the standard state consists
of pure i, normally a pure solid or liquid, it might be difficult to use a dilute
solution (Henryan) standard state. However, using hypothetical states makes it
quite simple, and quite instructive. But first we consider the Raoultian standard
state.

Raoultian vy

If we choose x; = 1, yg. = 1, then the standard state is pure i at the system 7'
and P. This is possibly the simplest of all standard states. The activity of a solid
or liquid solution is simply equal to its mole fraction, if activity coefficients
are ignored (a common occurrence), or its mole fraction multiplied by some
correction factor yg . And yes, this standard state is the actual, existing, pure
phase, unless you want to get very picky and hold that there are no “really”
pure phases, so that the pure phase standard state is just as hypothetical as all
the others. This is a useless distinction we can leave to purists.

To illustrate the Raoultian activity—activity coefficient relationship we use
activity coefficients defined by Equations (8.31), shown in Figure 8.2. In real
systems these are measured quantities with associated uncertainties, and the
shape of the activity curve may not fit any simple function. Figure 8.2 shows

1.0 7 2.5
i /
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> B
£ r
= L L
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r, 1.337
0.2F ¢
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0 0.2 0.4 0.6 0.8 1
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Figure 8.2 Ideal or Raoult’s law activity (= xg) at intervals is shown by the solid bars,
and the activity of B by the hollow bars, The ratio of these two quantities (ag/xg) is
the activity coefficient. The value of yg, = 1.337 at xg = 0.4 is shown by the arrow.
The dashed line is tangent to the activity of B at xg =0, and indicates Henry’s law.
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Figure 8.3 Henry’s law
tangent (Figure 8.2)
extended to intersect the
xg = 1 axis. Raoultian
activities from Figure 8.2
are also shown. Henryan
activities shown

are yy - Xg-
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the activity of component B, and the ratio of the hollow and black bars shows
that the activity coefficient is a measure of how far the activity is from the ideal
at any given mole fraction.® This value of this ratio, the activity coefficient, is
shown on the right-hand axis, and the value of 1.337 from §10.6.2 is indicated.
Note that the activity coefficient yg, — 1 as xz — 1, consistent with ag =1
for pure B. The dashed line is the tangent to the activity curve at x; = 0 (the
Henry’s law slope), and is discussed further below.

Henryan vy
However, if we choose x; =1, Yo, = 1, the standard state becomes a pure
phase (x; = 1) which forms ideal Henryan solutions with another component.
But the only pure phase which does this is a hypothetical one, defined by the
intersection of the Henry’s law slope at the other component composition with
the x; = 1 axis. All compositions along this tangent line obey Henry’s law.
Because our example is using regular solution theory for simplicity, we know
the equation for the activity curve, so we can differentiate it and find the value
of this at xz = 0. With w; = 2000J mol~! this slope (K, discussed in §7.4.2,
but expressed in terms of fugacity rather than pressure) turns out to be 2.2407,
giving an intercept at xg = 1 of 2.2407 as shown in Figure 8.3.

Because we know the equations for both the Raoult’s law line and the
Henry’s law line, we can express any measured fugacity in terms of its deviation

2.5
2.0

1.5

1.0

0.5

0.0 |||||||||||||||||||||||i
0.0 0.2 0.4 0.6 0.8 1.0

XB

6 The same data are shown in Figure 10.15. There the emphasis is on regular solution theory.
Here it is on activity coefficients and standard states.
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from both lines, and hence find the relationship between the two kinds of
activity coefficients, yg and yy. The two equations are

So=xpYr,, and fp=xp Ky vy,

from which

Yoy = Vrg /Ku (8.33)

In Figure 8.4, where the activities and activity coefficients of B are the previ-
ously defined Raoultian values, all divided by 2.2407. The data are shown in
Table 8.2.

A final point. The standard state could equally well be chosen anywhere on
the Henry’s law slope, all points on which have the properties of the infinitely
dilute solution. However if, say, x; = 0.5 were chosen, the activity coefficient
in the standard state would be 2 instead of 1. This is not a reasonable thing
to do, but the idea of sliding the standard state along the Henry’s law slope
while at the same time changing the concentration axis from mole fraction to
something else certainly is reasonable. Metallurgists sometimes use a weight
percent axis, and define the standard state at 1% on the Henryan slope (see
e.g., Lupis, 1983, Chapter 7). In chemistry and geochemistry where aqueous
solutions are used, a molality axis is best, and 1 molal on the Henryan slope
becomes the standard state, as discussed in the next section.

Fixed versus variable pressure
An ideal binary solid solution A—B at temperature 7" and pressure of 1 bar
having xz = 0.5 has an activity of B az = 0.5 on a Raoultian basis. What is
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Figure 8.4 Henryan
activity and activity
coefficient data from
Figure 8.3, with the
Henryan slope
normalized to 1.0.
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Table 8.2 Raoultian and Henryan activities and activity coefficients
for a regular solution having wg; = 2000 J mol~". Raoultian data
are from Table 10.2.

Raoultian Henryan

B ag YRy dg Yug

0.1 0.192 1.922 0.086 0.858
0.2 0.335 1.676 0.150 0.748
0.3 0.446 1.485 0.199 0.663
0.4 0.535 1.337 0.239 0.597
0.5 0.612 1.224 0.273 0.546
0.6 0.683 1.138 0.305 0.508
0.7 0.753 1.075 0.336 0.480
0.8 0.826 1.033 0.369 0.461
0.9 0.907 1.008 0.405 0.450
1.0 1.000 1.000 0.446 0.446

the activity of B if the solid solution is at a pressure of 1000 bars? This is of
course dependent on how we define the standard state. It is done in two ways:

1. Most chemistry texts define all standard states as having a fixed pressure of 1 bar.
Therefore a component of an ideal solid solution will have a different activity at
1000 bars than it has at 1 bar.

2. In geochemistry it is more common to define the standard state as having a standard
state pressure equal to the pressure of interest, P° = P, so that a component of an
ideal solid solution will have the same activity at 1000 bars that it has at 1 bar.

The details of these calculations will be discussed below (§8.4).

8.3.6 RT'”[(VH,mi)/(Vﬁ,-mf)]

There are some very good reasons why the thermodynamics of aqueous solu-
tions looks quite different from the cases already considered.

e We can and do use fugacities for the solvent, water, because its vapor pressure is a
measurable quantity, but in most cases we cannot use fugacities for the solute because
most solutes are nonvolatile — they have no measurable vapor pressure.

e For water vapor, a gas, the f° = 1 bar standard state is used, but for liquid water, f° is
the fugacity of pure water (often approximately equal to the vapor pressure of pure
water). This results in f = f° and a = 1 for pure water, the Raoultian standard state.

® Solute concentrations measured in mole fractions tend to be very small, which is
inconvenient. So we use molalities which, being independent of density and hence
of T and P are by far the most convenient measure of concentration. But this means
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that we cannot use the pure solute as a standard state, because m becomes infinite
for the pure solute. We must use different standard states for the solvent and solute,
a situation often called “unsymmetrical,” but which in itself causes no problems.

e We can use a Raoultian standard state (pure water) for the solvent, but its deviation
from ideal behavior, whether based on a mole fraction or a molality scale, is often
converted to the osmotic coefficient ¢, which does not actually have a standard state.
It is an absolute system property.

We look first at the solute and then at the solvent.

8.3.6 Activity coefficients of solutes

Activities of the solute, whether electrolyte or nonelectrolyte, use molalities
and the (7yy m?) standard state. We must now examine what this means.

We want to use the Henryan standard state, which is a state in which the
solute exhibits dilute solution behavior. That is, no matter what the actual
concentration, the solute behaves as if there is absolutely no solute—solute
interactions — each solute molecule thinks it is alone in the solvent. It is a
state which obey’s Henry’s law, which at real concentrations is obviously a
hypothetical state, and it lies anywhere on the Henry’s law tangent. In §8.3.4
we saw that we could choose a point on this tangent having x; = 1, or we could
choose any other point. What the other points on this slope mean depends on
what concentration scale we are using — if we use a weight percent scale we
can choose a weight percent standard state, and if we use a molality scale we
can choose a molal standard state.

Although theoretically we could choose any value for m°, any choice except
m°® =1 would introduce complications, and of course we want y;; =1 so that
the standard state lies on the tangent and refers to properties at infinite dilution.
This leads to the adoption of the “hypothetical ideal one molal” standard state
for aqueous solutes. If in Figure 8.4 we change the concentration scale to
molality, and focus on the lower left corner of the diagram, we have Figure 8.5.
We have assumed that B is a nonelectrolyte with ¥ = 1 such as sucrose or
oxygen, and the conversion is

55.51-xg
" = 1 —xp

In this case, in which we have continued our example of a regular solution
having wg; = 2000J mol~!, the solution does not deviate from the ideal very
greatly until molalities well above 1 m. Activity coefficients based on mole
fractions and molalities are shown in Table 8.3. The reason for two slightly
different values of yy, vy, and yy,,, is that molality is not exactly proportional
to mole fraction except in the limit of infinite dilution, so that a Henryan tangent
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Table 8.3 Activity coefficients of component B on various scales
for a regular solution having wg; = 2000J mol~".

Mole fraction Molality Yr Viix Yiim
Xp mg Figure 8.2 Figure 8.4 Figure 8.5
0 0.000 2.241 1.000 1.000
0.001 0.056 2.237 0.998 0.997
0.002 0.111 2.233 0.997 0.995
0.003 0.167 2.230 0.995 0.992
0.004 0.223 2.226 0.994 0.990
0.005 0.279 2.223 0.992 0.987
0.006 0.335 2.219 0.990 0.984
0.007 0.391 2.216 0.989 0.982
0.008 0.448 2.212 0.987 0.979
0.009 0.504 2.209 0.986 0.977
0.010 0.561 2.205 0.984 0.974
0.050 2.921 2.071 0.924 0.878
0.100 6.168 1.922 0.858 0.772
0.150 9.796 1.791 0.799 0.679
0.200 13.877 1.676 0.748 0.598
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on a mole fraction diagram will appear to be slightly curved on a molality
diagram. The correction factor for activity coefficients is

In (y4,) = In (y,,) +1n (1 +0.018 0154 1m)

and, as you can see, it is insignificant until quite large molalities are reached.

In this section the magnitude of our activity coefficients has been fixed
by our choice of a regular solution model. We did this so as to produce
realistic numbers, and to concentrate on the meanings of activity coefficients
and standard states. In most situations, however, activity coefficients are either
measured in a laboratory situation, or they are calculated on a theoretical basis
to serve as correction factors to some known concentrations in modeling a
real solution or equilibrium. They will not always fit a regular solution model,
although the results of Aranovich and Newton are interesting in this regard,
as mentioned above. The calculation of activity coefficients from electrostatic
considerations will be discussed in Chapter 15.

8.3.7 Osmotic coefficients

In aqueous solutions the activity of the pure solvent, measured as f/f°, is 1.0.
In dilute solutions, the focus of a great deal of solution chemistry, the activity
remains very close to 1.0, so its accurate expression requires several significant
figures. The example given by Robinson and Stokes (1959), a classic reference,
is a 2 molal KCI solution, which has a water mole fraction of 0.9328 and a
water activity of 0.9364. Its activity coefficient is therefore 1.004, a figure
“which fails to emphasize the departure from ideality indicated by the activity
coefficient of the solute,” which is 0.614. To overcome this problem use of
the osmotic coefficient has become standard practice, even though its slope
changes sign at concentrations above about 1 molal, as shown in Figure 8.6a.
The same pattern, this time for NaCl solutions, becomes more subdued at
higher temperatures and pressures (Figure 8.6b). A less complicated pattern is
shown by many nonelectrolytes such as sucrose, shown in Figure 8.7.

Osmotic pressure

The osmotic coefficient has its origin, as you might suspect, through its con-
nection with osmotic pressures. The chemical potential of water in an aqueous
solution is inherently less than that of the pure solvent, as you can see from
My — ) = RTInx,. If this solution is separated from the pure solvent by a
membrane permeable only to the solvent, pure solvent will pass through the
membrane into the solution in an attempt to remove this difference. If the
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Figure 8.6 (a) The osmotic
coefficient and activity of
KCI in aqueous KCI
solutions at 25°C, 1 bar.
Data from Robinson and
Stokes (1959).

(b) Osmotic coefficient for
aqueous NaCl solutions
at various temperatures
and pressures. Data from
Pitzer and Peiper (1984).

Figure 8.7 Henryan
activity of sucrose,
Raoultian activity of
water, and osmotic
coefficients in sucrose
solutions at 25°C. The
inset is an enlargement
of the region up to

1 molal, and the circle
shows the ideal one
molal standard state.
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solution is arranged such that this raises the level of the solution above that of
the pure solvent, the added pressure on the solution will increase the potential
W, in the solution, and the process will continue until w, is the same on both
sides of the membrane. This difference in pressure on the two sides of the
membrane is called the osmotic pressure. An approximate expression for the
osmotic pressure is

RTIna,
——

P—P° = (8.34)

where P — P° is the osmotic pressure and V{ is the molar volume of the
pure solvent. The expression is approximate because the volume term should
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strictly be the partial molar volume of the solvent rather than its molar volume.
The molar osmotic coefficient is defined as

fi0

fio

Inay,o=In

vm

= 5551 (835)

and, combining Equations (8.34) and (8.35) we get

RTvm>

— 8.36
55.51V; (8.36)

P-P =¢ (
where m is the molality of the solute and v is the number of moles of ions
produced by dissociation of one mole of solute (e.g., ¥ =2 for NaCl). This
shows that ¢ is a factor correcting the approximate expression to the true
osmotic pressure, hence its name. There is another version of the osmotic
coefficient used with the mole fraction scale of concentrations.

Equation (8.35) is written for one solute. If there are several, we write

55.51

¢ = R Inay,q, or for many solutes,

=—=—1Inay, (8.37)

where m; is the molality of any solute species, and ), m; is the sum of all
species molalities (e.g., 2 my,q for completely dissociated NaCl).

H,O Activity at High T and P

The fact that the activity of water in even quite concentrated salt solutions is
not greatly different from 1.0, as mentioned above, is the reason that ay,o = 1
is routinely used in geochemical calculations, no matter what the solution
composition. Until recently there have been no measurements of water activity
in concentrated solutions at high 7 and P to modify this practice. Aranovitch
and Newton (1996, 1997) measured the activity of water in concentrated NaCl,
KCl, and NaCl+KCl brines to temperatures of 550-900°C and pressures up
to 15000 bars, and found that in contrast to its behavior at ambient conditions,
ay,o can drop to very low values at high 7" and P. These solutions, which are
close to saturation with halite and/or sylvite, can have ay,o as low as 0.15 on
the Raoultian scale. This is important in petrology, as it means that hydration of
anhydrous minerals such as garnets and pyroxenes to biotites and amphiboles
as well as partial melting may begin at much higher temperatures than have
been found experimentally using pure water. In the present context, the work
of Aranovitch and Newton is interesting for other reasons as well. They find
that regular solution theory works quite well for these solutions, and they find
that the dissociation of NaCl and KCl, which decreases remarkably from 25
to 350 °C at solution vapor pressures, increases again to complete dissociation
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at 10 to 15kbar, 550-900 °C. Therefore they do not use ¥ = 2 in calculating
mole fraction (see §7.2), but must use a variable v.

As an Earth scientist using thermodynamics, you may never actually use the
osmotic coefficient. However in reading the chemical literature you will find
it mentioned quite a lot, so you have to know what it is. It is another measure
of the deviation of the solvent, usually water, from ideal behavior.

8.3.8 Activity coefficients as deviation functions

We noted in §13.2.3 that the fugacity coefficient, in the form RT In Vs is a
residual function, defined (§13.2.3) as the difference between a “real system”
thermodynamic function and the same function for an ideal gas under the same
conditions.

The same can be said for all the expressions for u — w° in Equations (8.30).
They all express the difference between the chemical potential of a solute
species in a real system, and the same potential in an ideal system under
the same conditions. The term “residual function” is strictly speaking applied
only when the ideal system is an ideal gas, so differences from other states
such as infinitely dilute solutions or pure phases are called “deviation func-
tions” (Ewing and Peters, 2000).

We begin to see just how pervasive the concept of ideality is in
thermodynamics.

8.4 Effect of temperature and pressure on activities

The change in activities as a response to changes in temperature and pressure of
the system naturally depends to a large extent on the standard states involved.
Note too, that any variation of activity with change in 7 or P is actually
due to variation of the activity coefficient, because these effects are normally
calculated for constant composition conditions.

8.4.1 Temperature

We have by now defined activity in four different but equivalent ways,
Equations (8.30). Differentiating with respect to temperature, we have

d d
E(Rln a;) = ﬁ(Rln ;) (8.38)
_ 0 (m M
oT\ T T
—(H,~H)
—L.
= ! (8.40)
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where y; may be y;, ¥, or yy. Thus the temperature derivative of the activity
is a simple function of the relative partial molar enthalpy, L;, which was
discussed in §9.3.3. The numerical value of L; of course depends on the form of
activity being used, because this determines the value of ﬁ:. For standard states
based on Raoult’s law, that is, where the standard state is the pure substance
iat T and P, ﬁ; is the same as H;, the molar enthalpy of the substance (an
unknown quantity, but as usual it appears in a difference term, so we don’t
need to know its absolute value).

For the ideal gaseous standard state, ﬁ; is evidently the molar enthalpy
of an ideal gas. For standard states based on Henry’s law, where y; — 1 as
x or m — 0, H; is the partial molar enthalpy of the solute in the hypothetical
pure substance having yy; = 1 or the hypothetical ideal one molal solution
respectively. Substances in these strange states have partial molar enthalpies
(and volumes) equal to that at infinite dilution, hence providing a method of
measurement. This can be seen by considering Equations (8.38) and (8.39),
which show that ﬁ? becomes equal to H; when v; is 1.0. Therefore for Henryan
standard states where vy, — 1 as x; or m — 0, ﬁf must be the partial molar
enthalpy of i at infinite dilution, and for Raoultian standard states where y;, — 1
as x; — 1, ﬁf must be the partial molar enthalpy (the molar enthalpy) of pure i
(confirming what we stated by simple inspection, above).

Note that in the case of multicomponent solutions infinite dilution means
infinite dilution of all components, not just of component i. Thus the Henryan
standard states, which seem so unattainable, are actually convenient because
some of their properties are the same as those of the infinitely dilute solu-
tion, and these are obtainable by extrapolation from measurements at finite
concentration.

8.4.2 Pressure

In considering the effect of pressure on activity, we must recall that the standard
state pressure (P°) is not always the same as the system pressure (P), so that
the differentiation with respect to pressure is not always completely analogous
to differentiation with respect to temperature. The argument here is very similar
to that in §6.3.2.

First of all, for variable pressure standard states, those that do have P° = P,
we have

a 0
— (RTIna;))= —(RT Inv;
S5(RTIna) = = (RTIn,)

a o
= ﬁ(/"”i_l‘l‘i)
=Vi_v;

where y; may be 7y, ¥, or vy, and V: is either the molar volume of pure i or
the partial molar volume of 7 at infinite dilution, depending on the standard state
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used (see above). Integration of this expression requires a knowledge of the
variation of the relative partial molar volume V,—V,; with pressure for which
there is no general expression. There is also no special symbol for V, —V? as
there is for H, — H,.
However for the fixed pressure standard states,
) =0 (8.41)

because changing P does not change the pressure on the standard state (P°).
Therefore

0 —
ﬁ(Rln a;) =V,

A case of particular interest to us is the activity of solids, for which in many
cases the assumption that V, is unaffected by pressure (solid i is incompressible)
is reasonable. If V, is a constant, then

Py 1 Py __
dlnag; = — V.dP
P RT Jp,

hl(“i)Pz _ln(ai)Pl Zvi(PZ —P))/RT

Furthermore, if P, =1 bar and the standard state of i is pure i at 7 and one
bar, then pure i at P, has an activity of 1, and

In(a;)p, =1In(a;)p = V.(P—1)/RT
or for pure solids
In(a;)p = Vi(P—1)/RT (8.42)

This permits calculation of the activity of a pure mineral at any pressure,
relative to the same mineral at one bar.

For example, consider calcite and aragonite at equilibrium at 3737 bars and
25°C, from our example in Chapter 6. The molar volumes of calcite and arag-
onite are taken from Appendix B (or Table 6.1), so for calcite Equation (8.42)
gives

1N dyeie o737 = 3.6934 - (3737 —1)/(8.31451 x 298.15)
=5.566
SO
eatcite, p=3737 = 201
and the activity of aragonite is
In ypygonite, p=3737 = 3.4150 - (3737 —1)/(8.31451 x 298.15)

=5.147



8.5 Activities and standard states: an overall view

SO

aaragonitc,l’: 3737 = 172

Thus CaCO; in the form of calcite and aragonite at 3737 bars, although
having the same chemical potential, has two different activities because there
are two different standard states. Recalling that activity is the ratio f;/f°, we
see too that the physical meaning of an activity of calcite of 261 is that the
fugacity (which ~ vapor pressure) of calcite is increased by a factor of 261
when it is squeezed from 1 bar to 3737 bars. We know this without knowing
either f at 3737 bars or f° at one bar for calcite.

8.5 Activities and standard states: an overall view

We have now said everything necessary about activities and standard states, but
the overall effect for the newcomer is often one of confusion at this stage. To
try to draw the various threads together we consider in Figure 8.8 a hypothetical
three-phase equilibrium at temperature 7 and pressure P. A solid crystalline
solution of B in A is in contact with an aqueous solution of A(ag) and B(ag),
which is in turn in contact with a vapor phase containing A(v) and B(v) in
addition to water vapor. We can suppose the dissolution of (A,B)(s) to be
stoichiometric so that the ratio of A to B is the same in all three phases, but this
is irrelevant to our development as we consider only component A. Let’s say
that for a solid solution composition of x, = 0.5, x5 = 0.5, the concentration
of A(aq) at equilibrium (1, ) is 1072 molal, and the fugacity of A in the vapor
(f,) is 107> bars. Assuming activity coefficients in the solid and liquid phases
to be 1.0, the activity of A in the solid solution (using a standard state of pure
crystalline A at 7 and P) is 0.5, the activity of A in the aqueous solution
(using a standard state of the hypothetical ideal one molal solution of A at
T and P) is 1072, and the activity of A in the vapor (using a standard state
of pure ideal gaseous A at T and one bar) is 107°. Because the system is
at equilibrium, the chemical potential of A (u,) is the same in each of the
three phases, but because the three standard states are different, the standard
chemical potential of A (u3) is different for the three phases. The difference
(ma —uy) is calculable from the equations we have just derived. Thus, letting
T =25°C,

(A — M3 )sotia = RT Inx,
=8.31451 x 298.15 x In (0.5)
= —1.72kJmol !
(Ma — H3)ag=RTInm,
=8.31451x298.15 x In(107%)
=—11.4kJmol ™!
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Figure 8.8 (a) A hypothetical three-phase system at equilibrium at pressure P and
temperature T. (b) The top part of the histogram of chemical potentials in kJ mol=".
The length of the bar for each phase is fixed when the standard state is chosen, and
the chemical potential of A in the equilibrium system is represented by a line
across the histogram at a level depending on the amount of B in the system. The
lengths of the bars on the left represent traditional standard states, but any position
for the top of the bars could be chosen, such as the one on the right, thus defining

a new standard state.
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(/‘LA _I'LoA)gas = RTlan
=8.31451 x 298.15 x In(107%)

= —28.5kJmol~!

It is instructive to consider these differences on a histogram (Figure 8.8)
in which the ordinate is a scale of kJmol~!, on which we plot the absolute
chemical potentials of A. These absolute potentials may be very large, so we
look at only the tops of the bars in the histogram, and we unfortunately don’t
know the values of the absolute potentials individually, so we can’t put an
absolute scale on the ordinate. But we can plot the relative positions of the
tops of the bars, and the position of the equilibrium chemical potential of A in
the system.

If we now consider systems having more and more B in the solid solu-
tion (and hence in the other two phases), but always at equilibrium, the his-
togram bars stay where they are (because we are not changing standard states)
but the level of the (absolute) chemical potential of A is lowered, increas-
ing the distance between the top of the histogram bar for each phase and
the level of w,, that is, increasing the (negative) value of (w, —u3) as the
activity of A is lowered.

This diagram is worth careful thought. It illustrates several things that are
useful in understanding activities, chemical potentials, and standard states,
such as the absolute nature of chemical potentials and the necessity of using
differences, the equality of chemical potentials in each phase, and the arbitrary
nature of the standard state.

This is all very nice, but wouldn’t it be a lot simpler to have the same activity
in every phase, just as we have the same chemical potential in every phase? This
is worth some thought too. Having the same activity in each phase means having
the same value of u — u° in each phase, and presumably we could choose what-
ever value we like for this. If we chose this to be —20kJmol~!, the histogram
for every phase would look like that shown in Figure 8.8. Then because the three
standard states have the same value of u°, they could all coexist at equilibrium
(if they could exist at all). However, arbitrarily choosing a; means arbitrarily
choosing f7 and m?, and this results in some standard states that are even more
weird than the traditional ones. For example, if u — u° = —20kJmol~!, then
a; =107, and if m; =107 and m,/m? = 107>, then m? = 10" or 31.9. So
the standard state becomes a hypothetical ideal 31.9 molal solution.

So probably it is better to stick to having different standard states and
different activities in each phase.

8.5.1 Changing standard states

Another way to think about standard states is to consider how to change from
one to another. For example, let’s say we have a real system consisting of a
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gas in contact with a liquid. Methane in the gas has a measured partial pressure
of 0.01 bar, which we take to be its fugacity, and we want to calculate how
much methane is dissolved in the water. In the gas phase, fcy, = 0.01bar, and
using a standard state of ideal methane gas at 1 bar ( fén, =10 bar), we have
an activity of methane of 0.01 (acy, = 0.01). The relevant reaction is

CH,(g) = CH,(aq)
and getting numbers from the tables we have

A,G° =BGy~ A Ccu,e

= —34451 — (—50720)

= 16269 Jmol™!
This means that, because the elements all cancel out (§3.5),
Gty (ag) — Gty () = 16 269 Tmol !

where GEH4(a 0 is the absolute G of methane in an ideal 1 molal solution, and
Gly, (o Is the absolute G of methane as an ideal gas at 1 bar. Then

logK = —A,G°/(2.30259 RT)

=—16269/(2.30259 x 8.31451 x 298.15)

=—-2.850

where

K — ACHy (ag)

AcHy(g)

Therefore if acy,,) = 0.01, then

10-285% — AcHy(ag)
0.01

and

ACHy(aq) = 0.01 x 102850

— 1074.850

So the calculated activity of dissolved methane is 10~*85, With a standard state
of ideal 1 molal methane, this means nmcy, Yey, = 107+, and on the reasonable
assumption that ey, = 1.0, then mcy, = 107*%. So in spite of the fact that two
different standard states are used for the same component in the same reaction,
we arrive at a useful answer. This is because the standard states used do not
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influence the final result in any way. They are simply useful fictions to hang
tabulated data on.

To illustrate this, we can choose a completely different standard state for
the gaseous methane and see what happens. Our new standard state is ideal
gaseous methane at some pressure chosen at random, such as 978.4852 bar.
First, we need A;G° of methane in this new state. Because the gas is ideal, this
is easy. From Equation (8.5), and because for an ideal gas, f = P,

Go78.4852 bars — G1 par = RT In(978.4852/1)

=17070.2Tmol ™!

This is the change in G as ideal methane is squeezed from 1 bar to 978.4852
bar. The difference in G between ideal methane at 1 bar and the elements C
and 2H, at 1 bar is —50 720J mol~! (Figure 8.9). Therefore, the difference
in G between methane ideal gas at 978.4852 bar and the elements at 1 bar is
—50720+17 070 = —33 650 I mol~'. We can call this AfG‘, our new standard
state Gibbs energy. Our calculation is now

AG" =0:Gly 0 — A G0
— 34451 — (=33 650)
= —801Jmol™!

) * _ —1
Genyaq) — Gomy e = —801Jmol

CH, as ideal gas
at 978.4852 bars

—33650 J P=1 bar CH, in 1m Henryan
* M R solution
g \(\\0’
C(s) + 2H,(g) /CH{%(Q) _ Al _34451J
\Qc\\“ 4
0> CH,(a
gl «(aq) C(s) +2H,(g)

CH, as ideal gas —
at 1 bar SYSTEM

STATE OF INTEREST

-50720 J
C(s) +2H,(g)
Figure 8.9 The pressure on the gas phase is 1 bar, but the partial pressure of CH, in

the gas is 0.01 bar. The Gibbs energy (u) of CH, is the same in each phase, and a
variety of standard state data may be used.
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Then

logK = —A,G* /(2.30259 RT)
=801/(2.30259 x 8.31451 x 298.15)
=0.140

or

K = et

AcHy(g)

— 100.140

=1.38

Now acy,,) is no longer 0.01. Because of the change of standard state,

Jenye

aCH:l(X) = fEH ( )
4.8

_ 001
" 978.4852

— 10—4.99

and so, solving for acy, (., With our new K,

9cHy(ag) _

1.38

AcHy ()

Acty(ag = 1.38 X dey,g
=138x 107+

— 1074.85

as before. So using any arbitrary standard state makes no difference at all. If you
follow the calculations closely, you will see that the properties of the standard
state cannot affect the results. They are a convenient repository for tabulated
data derived from experimental work. As shown in Figure 8.9, all paths from
the elements to the equilibrium state must give the same total change in G,
because G of all products and reactants is fixed in both states. The standard state
is merely a repository somewhere along the elements— equilibrium state path.

Units again
A reminder:

e Activities and activity coefficients (a, ) have no units, but fugacity (f) does.
e Activities have standard states, but fugacities do not.



8.6 Summary

8.6 Summary

It would be hard to overemphasize the importance of the concepts of fugacity
and activity and their relationship to the chemical potential, at least in chemi-
cal thermodynamics. In thermodynamics for engineers or physicists, chemical
reactions play a smaller role, but for anyone interested in processes involving
chemical changes, this is a central topic. That is because the fugacity and activ-
ity are the parameters which relate the composition of a system to its Gibbs
energy; how changes in phase compositions change the Gibbs energy of the sys-
tem, and so determine the equilibrium phase compositions at a given T and P.

Fugacity and activity are basically compositional terms. In ideal solutions
they are not necessary; pressure and various composition terms can be directly
linked to the Gibbs energy. Real solutions have a variety of intermolecular
forces, so that ideal solution models need correction factors. These corrections
can be made either to the composition terms (fugacity and activity coefficients)
or to the thermodynamic potentials (excess functions), and efforts to model
these correction factors in mathematical terms have always been, and likely
always will be, an important research field.

Because there are three main kinds of solutions and there are several com-
monly used methods of expressing concentrations, activity can take on several
different forms requiring different kinds of correction factors, and because
Gibbs energy is always a difference in energy between two states, there are
several different standard or reference states in common use. This all adds up
to possible confusion, and although it is possible to learn how things are done
and to follow the rules, it is of course much better to understand the reasons
for why things are done this way.
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9
The equilibrium constant

9.1 Reactions in solution

Reactions involving dissolved compounds are different in an important way
from reactions involving only pure compounds, such as pure solids. To see
why, consider two reactions, one between pure compounds and one between
dissolved substances.

The first is a reaction in which all products and reactants are pure substances,
the kind of reaction we have been considering up to now. It is

NaAlSiO, (s) +2 SiO, (s) = NaAlSi; O (s) (9.1)

The second is a reaction in which all products and reactants are dissolved in
water and are capable of changing their concentration:

H,CO;(aq) = HCO5 (aq) + H' (aq) (9.2)

The temperature and pressure are normal, 298.15 K and 1 bar. As usual, we
want to know which way each reaction will go. Reaction (9.1) presents no prob-
lem. We look up the values of A;G* for each compound, and calculateA, G°:

A,G° = AG? —AGE o —2AGE

NaAlSi;Og NaAlISiO4 Si0,

= —3711.5—(—1978.1) —2(—856.64)

= —20.12kImol~!

We see that the reaction as written is spontaneous; NaAlSiO, (nepheline) and
Si0, (quartz) at 1 bar pressure should react together to form NaAlSi; Oy (albite).
If the reaction does proceed (thermodynamics doesn’t tell us whether it will or
not, only that the energy gradient favors it), then nepheline and quartz get used
up during the reaction. However, while being used up, they do not change their
Gibbs energies. The reaction should actually proceed as long as any reactants
are left. When either the nepheline or the quartz is used up completely, the
reaction must stop. This reaction can be represented graphically as in Figure 9.1.
Here we use bars to represent the magnitude of the combined Gibbs energy
of the products and of the reactants. The difference in the height of the bars
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A,G°

Total molar free energy

Nepheline + 2 quartz
Energy barrier

Albite

represents A G°, the driving force for the reaction. The middle bar represents
an activation energy barrier that prevents the reaction from occurring. It is put
there to form a link with the discussion in Chapter 2, but thermodynamics
is unable to calculate the size of this barrier, or anything whatever about
it. Nevertheless it is often there, and is the reason that one of the states is
metastable. The point here is that the size of the bars does not change during
the reaction, if it proceeds, because none of the products or reactants changes
in any way—only the amounts present change. The value of A,G° never goes
to zero.
Reaction (9.2) is different. We can start off the same way, by looking up
the values of A,G° for each compound:
A,G°=AG? +A,G? AG

°
HCO3 (aq) Ht (aq) H,CO3(aq)

= —586.77+0 — (—623.109)

=36.339kJ mol !

This is positive, and so the reaction goes spontaneously to the left. So far, so
good. But as soon as the reaction starts, the concentrations of H* and HCO3
start to decrease, the concentration of H,COj starts to increase, and the Gibbs
energies of all three change, as shown in Figure 9.2. All we can say from the
tabulated data is that if all three aqueous species were present in their reference
state concentrations, the reaction would start to go to the left. But suppose we
are interested in some other concentrations? And what happens to the reaction
after it starts? Because the solutes can change their concentrations and their
Gibbs energies, the situation is quite different from the “all pure substances”
situation. These problems are all handled easily by the equilibrium constant.
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Figure 9.1 Molar Gibbs
energies when all
products and reactants
are pure compounds. The
Gibbs energy of reaction
is given by A,G° because
all products and reactants
are in their reference
states, and this does not
change during the
reaction until one of the
reactants disappears.
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Au® Apn=0

-
NP
x

Total molar free energy

Products b

Reactants
Products
Reactants
Reactants
Products

(a) (b) ()

Figure 9.2 Molar Gibbs energies of reactants and products of a reaction between
aqueous solutes. (a) A hypothetical starting condition, represented by the numbers
in the tables of data (note superscript ° on A,u°, indicating standard conditions for
all products and reactants). (b) Either the reaction in (a) after it has proceeded for
some time, or a beginning state where the reactants and products are not all at

1 molal (no superscript °). The point is that, as shown by the arrows, the Gibbs
energy of the reactants decreases and that of the products increases during the
reaction. (c) Sooner or later, a state of equilibrium is reached, when the Gibbs
energies of reactants and products are equal.

9.2 Reactions at equilibrium

Chemical reactions can not only go one way or the other (our main problem),
but they can stop going for two reasons. Either one of the reactants is used up,
or the reaction can reach an equilibrium state, with all products and reactants
present in a balanced condition. The second possibility is the subject of this
chapter—how much can we predict about this balanced state of equilibrium?

In Chapter 4 we defined the molar Gibbs energy, G, which always decreases
in spontaneous reactions (AG < 0). In Chapter 6, we used the fact that a reaction
at equilibrium (e.g., calcite = aragonite) does not go either way (AG = 0) to
calculate the 7" and P of equilibrium between phases. The expression AG =0
expresses a balance between the Gibbs energies of calcite and aragonite, that
i, Goucite = Garagonite (86.3.1). If there is more than one reactant or product, the
same relationship must hold (the G of reactants and products are equal), but
each side is now a sum of G terms, and the G terms for solutes are properly
written as u rather than G. Of course, not all products and reactants need be
solutes. For example, the reaction

Si0, (s) + 2H,0 = H,Si0, (aq) (9.3)
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shows what happens when quartz dissolves in water. Molecules of SiO, dissolve
and combine with water molecules to form the solute species H,SiO,. This
dissolution process continues until the solution is saturated with silica, and then
stops. The system is then at equilibrium, because

Mu,sio, = Msio, + ZMHZO (9.4)

If we added some H,SiO, to this solution it would then be supersaturated,
My,sio, would be greater than its equilibrium value, and the reaction would
tend to go to the left, precipitating quartz.!

9.3 The most useful equation in thermodynamics

To find out what we can say about this balanced equilibrium state when several
solutes and other phases are involved, let’s consider a general chemical reaction

aA+bB = cC+dD (9.5)

where A, B, C, and D are chemical formulas, and a, b, ¢, d (called stoichiomet-
ric coefficients) are any numbers (usually small integers) that allow the reaction
to be balanced in both composition and electrical charges, if any. When this
reaction reaches equilibrium,

Cpe+dup = apy +bug

and

Ap=cpe+dup —apy —bug (9.6)
=0

By our definition of activity, Equation (7.37),

ma =pp+RTInay
kg = pg+ RTInag
ke = p¢e+RTInac

and

up = pp + RT Inay,

' At the risk of becoming repetitious, we note that it is in our model reaction that quartz
precipitates. In real life, something else might happen — nothing might precipitate, or some
other SiO, phase such as silica gel might precipitate.
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Substituting these expressions into (9.6), we get
A= cpe+dup —aps —bug
=c(ue+RTInac) +d(up+RT Inap)
—a(uy+RTIna,) —b(uy +RT Inag)
= (cud +duy —apl —buy) +RTInal. +RT naf)

—RTIna% —RTInd}

c ,d
o dcdp
=Ap +RTln<aﬂ b)

AdB

There may be any number of reactants and products, and so to be completely
general we can write

Apw=Au +RTIn[]al 9.7

where i is an index that can refer to any product or reactant, v; refers to the
stoichiometric coefficients of the products and reactants, with v; positive if i is a
product, and negative if i is a reactant. [] (or [],) is a symbol meaning “product

1
of all i terms,” which means that all the @; terms are to be multiplied together
(much as Y, a; would mean that all @, terms were to be added together). So in
our case, the v terms are ¢, d, —a, and —b, and

vi _ ¢ . d —a _ —b
Hai =dcdapda, ag
i

¢ d
_ 4cap

- _a b
ap ag

In the general case, [[;a;" is given the symbol Q, so (9.7) becomes
Ap=Au’+RTInQ (9.8)

We must be perfectly clear as to what (9.8) means. In Figure 9.3 (a variation
of Figure 9.2) are pictured the possible relationships between the Gibbs energies
of the products and reactants in reaction (9.5).

First, the term A,u° refers to the difference in Gibbs energies of products
and reactants when each product and each reactant, whether solid, liquid, gas,
or solute, is in its pure reference state. This means the pure phase for solids
and liquids [e.g., most minerals, H,O(s), H,O(/), alcohol, etc.], pure ideal
gases at 1bar [e.g., O,(g), H,O(g), etc.], and dissolved substances [solutes,
e.g., NaCl(ag), Nat, etc.] in ideal solution at a concentration of 1molal.
Although we do have at times fairly pure solid phases in our real systems
(minerals such as quartz and calcite are often quite pure), we rarely have pure
liquids or gases, and we never have ideal solutions as concentrated as 1 molal.
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A AB,CD AB,.CD
hypothetical Not at At
state equilibrium equilibrium
> >
) =
[0 Q
& Ape o
s M s Arp_zo
£ £ At
3 3
© o
g €
© ©
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Therefore, A, u° usually refers to quite a hypothetical situation. It is best not
to try to picture what physical situation it might represent, but to think of it as
just the difference in numbers that are obtained from tables.

A, u, on the other hand, is the difference in Gibbs energy of reactants and
products as they actually occur in the system you are considering, which may
or may not have reached stable equilibrium.? The activities in the Q term (the
concentrations, fugacities, mole fractions, etc. of the products and reactants)
change during the reaction as it strives to reach equilibrium and at any particular
moment result in a particular value of A, u. Thus A, u° is a number obtained
from tables that is independent of what is happening in the real system you
are considering, but A, u and Q are linked together — whatever activities (think
concentrations) are in Q will result in a certain value of A, .

If it makes more sense, you can write Equation (9.8) as

Ap—Au’=RThhQ 9.9)

which means that whatever terms are in Q control how different the chemical
potentials (A, ) are from their standard tabulated values (A,u°). When all
activities in Q are 1.0, then there is no difference, A, = A, u°.

We are especially interested in the value of Q when our systems reach
equilibrium, that is, when the product and reactant activities have adjusted

2 Strictly speaking, u has meaning only in equilibrium states, so we cannot really consider the
reaction which is not at equilibrium. What we really do is to consider the reaction as taking
place in a series of metastable equilibrium states, as discussed more fully in connection with
the progress variable in Chapter 18. At this stage, however, you may consider this a mere
quibble, and think of reacting substances as having w values if you wish.
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themselves spontaneously such that A u = 0. In this state, the [[;@;" term is
called K, instead of Q, and (9.8) becomes

0=A,u°+RTInK
or
Au°=—RTInK (9.10)

Standard states usually refer to pure substances (except for the aqueous standard
states) in which u = G, so this equation is often written

A,G° = —RTan‘ (9.11)

This equation has been called, with some reason, the most useful in chem-
ical thermodynamics, and it certainly merits the most careful attention. Most
important is the fact that the activity product ratio (K) on the right-hand side
is independent of variations in the system composition. Its value is controlled
completely by a difference in standard (tabulated) state Gibbs energies (A,G°)
and so is a function only of the temperature and pressure. It is a constant for a
given system at a given temperature or temperature and pressure and is called
the equilibrium constant. Its numerical value for a given system is not depen-
dent on the system actually achieving equilibrium, or in fact even existing.
Its value is fixed when the reacting substances are chosen. The left-hand side
refers to a difference in Gibbs energies of a number of different physical and
ideal states, which do not represent any real system or reaction. The right-hand
side, on the other hand, refers to a single reaction that has reached equilibrium,
or more exactly, to the activity product ratio that would be observed if the
system had reached equilibrium.

The great usefulness of Equation (9.11) lies in the fact that knowledge of a
few standard state Gibbs energies allows calculation of an indefinite number
of equilibrium constants. Furthermore, these equilibrium constants are very
useful pieces of information about any reaction. If K is very large, it tends to
shows that a reaction will tend to go “to completion,” that is, mostly products
will be present at equilibrium, and if K is small, it tends to show that the
reaction hardly goes at all before enough products are formed to stop it.> If you
are a chemical engineer designing a process to produce some new chemical,
it is obviously of great importance to know to what extent reactions should
theoretically proceed. The equilibrium constant, of course, will never tell you
whether reactants will actually react, or at what rate; there may be some reason
for reaction kinetics being very slow. It indicates the activity product ratio at
equilibrium, not whether equilibrium is easily achievable.

3 These are just generalizations which are not always true, because the activities of products and
reactants at equilibrium can be very large or very small. We emphasize this a bit more in the
boxed statement on page 266.
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Finally, NEVER write Equation (9.11) as

A,G=—RTInK

that is, omitting the superscript °, because doing so indicates a complete lack
of understanding of the difference between A,G and A,G° and is just about
grounds for failing any course in this subject.

Let’s go over it once more. A, G° (or A, °) is the difference in Gibbs energy
between products and reactants when they are all in their reference states (pure
solids and liquids, solutes at ideal 1 molal, gases at 1 bar), determined directly
from the tables. Products and reactants are virtually never at equilibrium with
each other under these conditions (A,G° or A,u° never becomes equal to
zero). A,G (or A,u) is the difference in free energy between products and
reactants in the general case (when at least one of the products or reactants is
not in its reference state) and becomes equal to zero when the reaction reaches
equilibrium. A,G cannot be used in place of A,G° in (9.11) because this would
mean, among other things, that every reaction at equilibrium (A, G = 0) would
have an equilibrium constant of 1.0.

9.3.1 A first example

Let’s calculate the equilibrium constant for reaction (9.2),
H,C0;(aq) = HCO; (aq) +H" (aq)
First we write, as before,

A,6°= AfG:{co; +4,Gyi — A/”ngco3

Getting numbers from the tables, we find

A,G° = —586.7740 — (—623.109)

r

=36.339kJ mol !

=36399J mol !

The fact that this number is positive is not as significant as in our previous
examples. In this case it means that if H,CO;, HCO5, and CO%‘ were all
present in an ideal solution, and each had a concentration of 1 molal, the
reaction would go to the left. This hypothetical situation is not of much interest.
We want the value of K.

Inserting this result in Equation (9.11), we get

A,G°=—RTInK

36339 = —(8.3145 x 298.15) In K
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SO
InK = —36339/(8.3145 x 298.15)
= —14.659
or K =430-10"7
— 10—6.37

If you don’t like dealing with natural logarithms, you can use the conversion
factor log x = Inx/2.30259 (Appendix A). This gives

log K = —36339/(2.30259 x 8.3145 x 298.15)

=—6.37
directly.
This means that when these three aqueous species are at equilibrium,
ducoy "dur 10-637
AH,C04

This is the answer to our question in §9.1 (“what happens to the reaction after
it starts?”). The reaction continues until the ratios of the activities of the products
and reactants equals the equilibrium constant, in this case 107%%". It doesn’t
matter what the starting activities were, and individual activities at equilibrium
can be quite variable. In other words the values of ay, o, and of (cho_; - ay+)
are not determined, nor are the values of ayco; OF Ay individually; only the
ratio expressed by K is fixed. In specific cases, the values of these individual
activities are determined by the bulk composition of the solution, and can be
determined by speciation (Chapter 16). For now, we are content to determine
K. In this case K is the ionization constant for carbonic acid, H,CO;. It is a
very small number, meaning that carbonic acid is a weak acid.

9.4 Special meanings for K

Equilibrium constants are also sometimes equal to system properties of interest,
such as vapor pressures, solubilities, phase compositions, and so on. This is
because quite often it can be arranged that all activity terms drop out (are equal
to 1.0) except the one of interest, which can then be converted to a pressure or
composition.

9.4.1 Kequal to a solubility

Quartz-water example
In our quartz—water example (Equation 9.3), the equilibrium constant expres-
sion is
Ay, si
K= 450 (9.12)

2
dsio, 1,0
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At this point the expression is perfectly general, valid for any conditions,
and K is calculable from Equation (9.11) if we know the Gibbs energies of
the three species in their reference states. In this case we are dealing with pure
quartz and water saturated with quartz. The quartz is in its reference state, and
the water contains so little silica that it is almost pure.* By our definitions then
(Equations 8.30) ag;o, = 1 and ay,o = 1. Therefore

K= ay,sio,
= (mH4SiO4 7H4Sio4)
= my,sio, assuming Yy, sio, = 1.0
This shows that assuming 7y, g0, is 1.0, which happens to be an excellent
approximation in this case, we can calculate the concentration of silica (my,g;o,)

in equilibrium with quartz, that is, the solubility of quartz.
Following our routine, we write for the reaction as written

AG = AGy oo = NGy —20,Gr (9.13)

HySi0y4

Then, getting numbers from the tables,

A,G° = —1307.7 — (—856.64) — 2(—237.129)

r

=23.198kJ mol !
=23198 Jmol~!
Then
A,G° = —RTInkK
23198 = —(8.3145 x 298.15) In K
SO

log K = —23198/(2.30259 x 8.3145 x 298.15)

= —4.064

Thus the molality of SiO, in a solution in equilibrium with quartz is about
10494 or about 5.2 ppm.’

4 Dissolving minerals in water changes ay,o very little. So while strictly speaking ay,q is not
1.0 when saturated with some mineral, this assumption is usually quite good. i

5 If the molality of H,SiO,(ag) is x, then the molality of SiO,(aq) is also x, as there is 1 mole
of SiO, in each.
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Doing it backwards
So we see that Gibbs energies can sometimes be used to calculate a solubility.
The same calculation also works in the other direction, that is, measuring a
solubility can be used to calculate a value of A,.G°. In the quartz—water case,
the reaction is particularly simple, in that because the quartz and water are
essentially pure phases, not only are ay, and ag;q, equal to 1.0, but their values
of AfG° are known, as shown above. Therefore, a value of A,G° calculated
from a solubility measurement can be used to calculate A,G° for aqueous silica.
Thus if you measured the solubility of quartz to be 5.2 ppm at 25 °C, you could
use (9.13) in the form
A;Grsio, = 8Goo +28,Gy +A, G (9.14)

o
H,Si0,

to calculate AfG:145104 = —1307.7kJmol~!, and as a matter of fact that is

usually how this quantity is determined.

A strange procedure

Note the strangeness of what we are doing here. On the left-hand side of
A,G° = —RTInK (Equation 9.11) we enter the standard Gibbs energies of
the reactants and products, which in this case includes A,G° of H,SiO, at a
concentration of one molal (its concentration in its standard state) in a hypo-
thetical ideal solution, and on the right-hand side calculated its equilibrium
concentration, only a few ppm. Remember what we said in deriving the equi-
librium constant—the left-hand side consists of tabulated reference state data;
it has nothing to do with real systems or with equilibrium. But from these
data, equilibrium activity ratios and sometimes compositions can be calculated.
Think about it.

9.4.2 K equal to fugacity of a volatile species

Hematite—-magnetite example
The next example is the same in principle. Consider the reaction®

6Fe,0;(s) = 4Fe;0,(s) + 0,(g) (9.15)
for which the equilibrium constant is

4
AFe;0, 40,

6
aFeZO3

K =

6 It is important in this reaction to note that we write oxygen as O,(g), that is, oxygen gas.
There are also data for dissolved oxygen, written O,(aq) which are of course completely
different. The same ambiguity does not exist for hematite and magnetite, but it is always a
good idea to append the (g), (aq), (s), or (/) symbols for clarity.
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If the reaction involves pure hematite Fe,O; and pure magnetite Fe;O,, then
Xpe,0, = 1 and Xg,o, = 1, 80 dp,0, = 1 and ag,o, = 1. Therefore

K =a,
= fo,

=P 0, Yr
Assuming that the activity coefficient 7y, is 1.0, again in this case an excellent
approximation, we can calculate the partial pressure of oxygen in a gas phase
in equilibrium with the two minerals hematite and magnetite.
Following the routine, we write
ArGo =4 AfG;‘e3O4 + Asz)z -6 AfG;eZO3
=4(—1015.4) +0— 6(—742.2)
=391.6kJmol~!

=391600J mol~!

A,G°=—RTInK

391600 = —(8.3145 x 298.15) In K

log K = —391600/(2.30259 x 8.3145 x 298.15)

= —68.40

So the oxygen fugacity in equilibrium with hematite and magnetite at 25 °C and
1 bar is 107%%4% bar, This is an incredibly small quantity, which would have
absolutely no significance if it were simply a partial pressure, unconnected
to thermodynamics. A partial pressure of this magnitude would be produced
by one molecule of oxygen in a volume larger than that of a sphere with a
diameter of the solar system (§12.12). However, it is in fact a parameter in
the thermodynamic model, just as valid as any other part of the model. It can
be used, for example, to calculate other parameters that might be more easily
measurable. For example, the reaction

CH,(8) +0,(g) = CO,(g) +2H,(g) (9.16)

is one that you might be interested in if you were studying the bottom muds in
Figure 2.1c. The equilibrium constant for this is

A,G° = —394.359+2(0) — (—50.72) — 0
= —343.639kJ mol !

= —343639J mol~!

log K =343639/(2.30259 x 8.3145 x 298.15)

=60.203
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which means that at equilibrium,

2
fco, 'fﬂz — 1()60-203

fen, - fo,

Now 1029 g just as ridiculous as 107%%4% in a sense. But if we insert the
value f, =107 into this expression, we get

Jeo,
Sen,

fI-ZI — 1060.203 . 10—68.40
< H2

— 1078,20

which begins to look a little more reasonable. This tells you something about
how the CO,/CH, ratio varies with fy . For example, you could say that accord-
ing to the thermodynamic model, if f;, is controlled by hematite-magnetite,
the CO, and CH, fugacities (partial pfessures) are equal when fy is 1041
bar, and this might in fact be a measurable quantity in the muds.

The point is that by writing a few reactions and using thermodynamics,
your thoughts about what might be happening in the bottom muds or any
other environment take shape in a controlled fashion — controlled, that is, by
the implied hypothesis of chemical equilibrium. Your system may not be at
complete equilibrium, but your model is, because that is a good place to start.
And the fact that one of your thermodynamic parameters, such as f; , turns
out to be impossibly small or large does not make it ridiculous; it just means
you won’t be able to measure it directly, and you might want to concentrate
on other parameters to which your impossible one is connected by the model.

Muscovite example

The hematite—magnetite example is just one of a great variety of geologically
important reactions in which the fugacity of one species is numerically equal
to an equilibrium constant. That one species can be O, as in the example, but
it can also be another species, typically H,O, CO,, or H,. For example, the
assemblage muscovite plus quartz reacts at high temperatures to andalusite plus
K-feldspar in the reaction

KAlSi;0,(OH), (s) + SiO, (s) = AL, SiOs(s) + KAISi;O4(s) + H,0(g)  (9.17)
for which the equilibrium constant is

__ @apsios " 4kalsi; 05 * 4H,0

K

AKAl38i30,0(0H),  4si0,
= ag,o (minerals are pure so a = 1)

 fuo
Faro

= fu,o (ideal gas std. state at P =1 so f° = 1 bar)
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so that as long as the minerals are all quite pure and are only very slightly
soluble so that the water is also quite pure, K is numerically equal to the
fugacity of pure water at the specified 7 and P. These conditions are met in
experimental work (though perhaps not in nature) so that determination of the
equilibrium 7 and P for the reaction allows determination of K, because the
fugacity of pure water is well known (Figure 6.1).

The equilibrium diagram for this reaction (calculated by SUPCRT92) is shown
in Figure 9.4. The water fugacity at 2000 bars, 599.75°C (indicated by the
square) is 1052 bars, so K = 1052 at this point. However, be sure to note the
assumptions we have made in saying K = 1052. They are:

1. The standard state for all minerals is the pure mineral at T = 599.75°C and 2000
bars.

2. The standard state for water is ideal gaseous H,O at T'=599.75°C and a pressure
of one bar.

These are the common choices in geochemical calculations, but of course others
are possible. Every value of an equilibrium constant implies that standard state
choices have been made.

Humidity buffer example

Another example which is the same in principle though different in experi-
mental practice and in application, is the case of the metal sulfate minerals.
Sulfate minerals such as melanterite (FeSO, - 7H,0), rozenite (FeSO, - 4H,0),
calcanthite (CuSO, - 5H,0), bonattite (CuSO, - 3H,0) and many others, are

2000 —
1500 — andalusite
r muscovite +
B + K-feldspar
oN r quartz +
I r H,O
Q- 1000 [~
500
i I I I I | I I I I | I I I I |
400 500 600 700
ToC
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Figure 9.4 Equilibrium
pressures and
temperatures for
reaction (9.17) as
calculated by supcrT92.
The square indicates the
equilibrium state at
599.75°C, 2000 bars.
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Relative humidity and water activity

The relative humidity (RH) is defined as

RH water vapor pressure, or Py o

vapor pressure of pure liquid water, or Py q

This is usually reported as a percentage by multiplying by 100, i.e., %RH =
RH x 100. Because the water vapor pressure and the water fugacity are almost
identical (Table 9.1), we can write

(std. state pure liquid water)

where f o is the fugacity of pure water. So measurements of RH are one form of
water activity. Alternatively, we can use ideal gaseous H,O at P = 1 bar standard
state, giving

ay,o = fHTZO (std. state ideal gas H,O at 1 bar)

=RH x fg,0

Both standard states are used in this type of work (Jerz and Rimstidt, 2003). They
give totally different values of In K for reactions (Table 9.1).

common in mines, on mine tailings, and on sulfide minerals exposed to air.
When these phases dissolve they create very acid solutions. They store metals
and sulfate during dry periods and dissolve readily during flushing events, caus-
ing sudden increases in the acidity of drainage from abandoned mine sites with
attendant environmental damage (Nordstrom and Alpers, 1999). It is therefore
important to have thermodynamic data for them in order to understand acid
mine drainage situations.

The pressure of interest for reactions between these minerals is naturally
atmospheric pressure (1 bar) and the temperature of interest ranges from ambi-
ent to the somewhat elevated temperatures that would occur in mine waste
dumps (oxidation of sulfides is exothermic). Many of these hydrated sulfates
are stable only at water fugacities less than that of liquid water (they are not
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stable in water), so we need a way of controlling fy;,o in the range of, say,
25-100°C. A convenient way to do this is with the humidity buffer technique.
Consider, for example, the calcanthite—bonattite reaction, which is

CuS0, - 5H,0(s) = CuSO, - 3H,0(s) + 2 H,0(g) (9.18)

To determine the equilibrium constant for this reaction, all we need to do is
determine the fy; o (or Py,q) at which both minerals are stable, at some fixed
T and P. This could be done by actually measuring the vapor pressure in a
closed space containing the two minerals by some suitable method, and this
can be done. A more convenient and very accurate method is to connect the
space containing the two minerals with another space containing a saturated salt
solution. A saturated salt solution has a fixed vapor pressure at any temperature
(a consequence of the phase rule, Chapter 11), and these vapor pressures
(fugacities) have been compiled for many salt solutions by Greenspan (1977).
Those for four salts are shown in Figure 9.5a. There is then a fixed fy,o above
the two minerals. One of them will be unstable at that fy o so the reaction
between them will begin to proceed one way or the other, and the container
with the minerals will then either gain or lose weight, depending on which
way the reaction proceeds. By varying the temperature, a temperature at which
there is no weight change can be found, and the fugacity of the saturated salt
solution at that temperature will be the equilibrium fugacity for the mineral
reaction. In the sense that two or more containers reach equilibrium by transfer
of water through the vapor phase, the method is similar in principle to the
isopiestic method mentioned in §5.13.
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Figure 9.5 (a) The % relative humidity established by saturated solutions of four
different salts as a function of temperature. The circles indicate the equilibrium
temperature for reaction (9.18) at the indicated % RH. (b) The % RH values from

(a) converted to InK and plotted versus the inverse absolute equilibrium
temperature. From this plot, values of A,G° and A H° for reaction (9.18) may be
obtained. The line is a least-squares fit to the data, and is shown as the dashed line
in (a).
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Table 9.1 Data for the calcanthite—bonattite reaction from Chou et al. (2002). Fugacity

(f1,0) and vapor pressure (P, o) of pure water are from IAPWS-95 in the form of
program STEAM (see §13.6.1).

Buffer

MgCl, - 6H,0 Nal - 2H,0 NaBr-2H,0 KI

Equilibrium 7 °C 24.06 31.47 51.41 68.02
S0 (bars) 0.02994 0.04612 0.1320 0.2845
Pp o (bars) 0.02997 0.04619 0.1324 0.2862
% RH 32.85 36.00 50.69 62.16
InK (ay,o std. state liquid water) —2.226 —2.043 —1.359 —0.951
InK (ay,o std. state ideal gas) —9.242 —8.193 —5.402 —3.453

Data for the calcanthite—bonattite reaction from Chou et al. (2002) are shown
in Table 9.1 and Figure 9.5.”

9.5 Kin solid-solid reactions

It should be evident by now that the equilibrium constant is most useful in
reactions between dissolved substances, those that change their activities during
the reaction. Reactions of the other kind, between pure substances that do not
change their activities during the reaction [e.g., reaction (9.1)] have no need of
an equilibrium constant because in general they do not reach an equilibrium;
they proceed until one of the reactants disappears. But what happens if you
do calculate K for such a reaction—-what does it mean? Let’s do this for
reaction (9.1) and see what happens.

A.G° = A, Gy 244Gy ArGy

NaAlSi30g SiOy(s) NaAlISiOy
= —3711.5—-2(—856.64) — (—1978.1)
= —20.12kJ mol !

= —20120Tmol~!

7 The values of fflzo and Py in Table 9.1 indicate that they are very nearly equal. However
for the purists, we point out that these two quantities do not refer to the exact same conditions.
S0 is the fugacity of water at T (which is < 100°C) and a pressure of 1 bar. At these
conditions, water has no vapor phase, and so cannot have a vapor pressure. The values of
Py, o refer to the vapor pressure of water at 7' under its own vapor pressure. The difference
between the vapor pressure and 1 bar is small but not totally insignificant. For example, at
T = 68.02 °C, the fugacity of water at the vapor pressure of water (0.2862 bars) is 0.2843
bars, while at a pressure of 1 bar, it is 0.2845 bars.
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log K = 20120/(2.30259 x 8.3145 x 298.15)
=352

K =3349

As usual, this means that at equilibrium,

INaAISI;05 10°5

2
ANaalsioy 4sio,

If we in fact have pure nepheline, pure albite and pure quartz involved in
the reaction, then we come up with the same answer as before. The activities
of NaAlSi;Oq, NaAlSiO,, and SiO, are 1.0 by our definitions, so the ratio
Anaaisisop/ (aNaAlSiO4a§i02) is fixed at 1.0 and can never be equal to 3349 — the
three pure minerals can never reach equilibrium at 25 °C, 1 bar. But suppose the
minerals are not pure — suppose they are solid solutions. Albite (NaAlSi;Oy)
forms a solid solution with anorthite (CaAl,Si,Og) in the mineral plagioclase,
and nepheline also usually occurs in a solid solution with kalsilite (KA1SiO,),
so the mole fractions and hence the activities of both NaAlSi;O, and NaAlISiO,
will generally be less than 1.0, even though there are pure minerals with these
compositions. The activity is less than 1.0 when the minerals are not pure, but
occur as a components of solid solutions.

In this particular case, having ay,aisi,0, less than 1.0 would not help to
achieve equilibrium. Equilibrium could only be achieved by lowering ay,aisio,
Or dg;, . For example, in the presence of pure nepheline and pure albite, ag;o, ()
would have to be 0.0173 to achieve equilibrium. This of course could not
happen if quartz was present, but ag;,, might be controlled in some other way,
such as by the amount of dissolved SiO, in a solution that is undersaturated
with quartz. To calculate this SiO, concentration, the reaction would be written
using SiO, (aq) rather than SiO,(s) (see page 253).

There is an important lesson here. When we write a chemical reaction, we
look up a value of A,G° for each chemical formulas. The values of A G° are
determined for those chemical species in very particular states — pure solids,
ideal 1 molal solution, and so on. If our reaction is concerned with those species
in those particular states, then the result is directly applicable to our problem —
the value of A, G is the same as the value of A,G°, and the reaction accordingly
will go or not go. This case basically arises only when dealing with pure solids.
When dealing with solutions (solid, liquid, or gaseous), A,G° is only a starting
point. The reacting species are never in their reference states and have values
of Gibbs energy that add up to A,G, not A,G°. The chemical formulas in our
reactions represent species in some kind of solution, and we deal with these
solutions with our activity terms, which are basically concentrations.

Reactions between solid phases such as (9.1) are in principle no different
from any other kind of reactions, such as (9.2). The only difference is that there
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Figure 9.6 (a) The
solubility of quartz in
water as a function of
temperature at a pressure
of 1000 bar. (From Morey
et al., 1962.) (b) The same
data converted to

log Mo, (aq) @nd plotted
versus the reciprocal of
absolute temperature.

The equilibrium constant

is in fact such a thing as relatively pure albite and quartz, and the like, to which
the numbers in the tables apply directly, and we are sometimes interested in
reactions between these pure compounds. In principle, however, each chemical
formulas in a chemical reaction, whether Mg,SiO,(s) or HCOj (ag), can and
usually does occur in a solution of some kind, with an activity controlled by
its concentration.

9.6 Change of K with temperature |
To get the effect of temperature on K, assuming as before (§6.5) that A H°
and A, S° are constants (not affected by temperature), we need only combine
Equations (9.11) and (6.17),

A,G°=—RTInK

r

= A;-Hg% =T ArS;98

SO
—A,H;, A,SS
InkK = r27298 r~298 9.19
n RT + R ( )
or
—A,H; A,SS
lOgK — r=7298 r~298 (920)

230259 RT  2.30259R

As both A H° and A,S° are assumed constant, this can be rewritten
logK =a(1/T)+b

where a and b are constants, which is an equation in the form y = ax+b,
meaning that log K is a linear function of 1/7. An example of this is shown in
Figure 9.6.

In Figure 9.6a are shown some solubility data for quartz, measured at a
constant pressure of 1000 atm. As discussed in §9.4.1, these numbers can be
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Calculation of aqueous silica

What is the silica content of a solution in equilibrium with plagioclase and
nepheline solid solutions at 25°C and 1 bar? The activities of the solid solution
components are

ANaAlsio, = 0.75

ANaAISi;05 — 0.5

The reaction is Equation (9.1) as before, except that we must use SiO,(aq) rather
than SiO,(s). Thus we write

NaAlSiO,(s) +2 SiO,(aq) = NaAlSi;Og(s)
Getting data from Appendix B,

A,G° = Af'G;IaAlsi_;og -2 AfG;ioz (ag) Af G;\JaAlsim
= —3711.5—2(—833.411) — (—1978.1)

= —66.578kJ mol ™!
Then

log K = —(—66578)/(2.30259 x 8.3145 x 298.15)
=11.664

K= 101I.664

_ ANaAISi;Og

ANaAISiO, aéioz(gq)
=0.5/(0.75 X 5,0, (ag))
A0, (aq) = [0.5/(10"%* x 0.75)]'/
— 1075.92
So assuming ¥sionaq) = 1> Msioz(aq) 1N equilibrium with these two solid solutions
is 10732 molal, slightly less than would be in equilibrium with the pure minerals.

e This is quite a hypothetical situation. Solid solutions with these activities are
common, but based on experience, they would never equilibrate with aqueous

silica at 25 °C. However at higher temperatures, such equilibria are common.
e We used SiO,(agq) here, but H,SiO, in Equation (9.12). We discuss this in
§9.10.




254

The equilibrium constant

interpreted as values of the equilibrium constant for the quartz dissolution reac-
tion. The same data plotted as log mg;q, 4, Versus 1/T, where T is in kelvins,
are shown in Figure 9.6b. Obviously this shows a good linear correlation,
indicating that A, H° does not change greatly over the temperature range of
25-300°C.

9.6.1 Another example
As an example of the effect of T on K, as well as some of the other points we
have made, consider the reaction

CaCO;(s) + SiO, (s) = CaSiO;(s) +CO,(g) 9.21)

This is an important reaction at high temperatures, when granites intrude lime-
stones at depth in the Earth, but we will consider it at low temperatures and
1 bar pressure.

log K versus 1/T

A plot of logK versus 1/T can be used to obtain an estimate of A, H° for
the reaction for which K is the equilibrium constant. According to the authors
(Morey et al., 1962), the slope of the line in Figure 9.6b (fitted by the method of
least squares) is —1180K, and so from (8.14),

A HC
= _(—1180)
2.30259R

and

A, H° =1180x2.30259 x 8.3145
=22590J mol ™!

~ 22.6kImol™!

However, although the data may appear to be quite linear, confirming a constant
A,H° and A,S°, you must realize that a gentle curvature can easily be obscured
by small random experimental errors, and even a gentle curvature implies a
significant change in slope and of A,H°. In this case, a theoretical treatment of
these and other data (contained in program sUPCRT92, Johnson et al., 1992) shows
that A,H° can vary (at 1kbar) from 35.2kJmol~" at 25°C to 23.2kJmol~" at
300°C, while retaining an excellent fit to the data. It follows that exceptionally
accurate values of K are needed to give accurate values of AH® and AS° by
this method (Prue, 1969). The assumption of constant A, H° is not suitable for

accurate work, but is often useful nonetheless.
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First, we get the equilibrium constant, as usual,

AG*=AGY g +A:Go —AG

CaSiO;

o o
CaCO; Af GSio2

— —1549.66 4 (—394.359) — (—1128.79) — (—856.64)
=41.411kJ mol™!

=41411Jmol™!

A,G° = —RTInkK

41411 = —(8.3145 x298.15)InK

log Kpgs = —41411/(2.30259 x 8.3145 x 298.15)

=-7.25

This means, as usual, that

dcasio;dco, 10-75

Acaco, 4sio,
and because all the solid phases are pure, their activities are all 1.0, and we
write

— 10725
aco, =10
= feo,

Of course, both CaSiO; (wollastonite) and CaCO; (calcite) often form solid
solutions and in natural situations might have activities less than 1.0, as dis-
cussed above. However, we are interested here in the pure phases.

The calculated fco, of 1077% can be thought of as meaning that if calcite,
wollastonite, and quartz were at equilibrium with a gas phase having a pressure
of 1 bar at 25 °C, the partial pressure of CO, in that gas would be about 10772
or 5.6 x 1078 bar. As long as the three minerals remain pure and at equilibrium,
the equilibrium constant will continue to be equal to fr,,, and so we can
calculate the temperature at which the CO, pressure (fugacity) will reach 1 bar
by calculating the change in K with T.

To do this, we will first get another expression for the effect of 7 on K that
will be more convenient. From (8.13) you can see that the slope of the graph
of InK as a function of 1/T is —A,H°/R, which is to say that at a temperature
of 298 K,

dinK A Hjy
d(1)T) R
Integrating this between 298 K and T, we get

T A H® T
dan:—’i”Sf d(1)7)
298 R 298
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Figure 9.7 The fugacity of
CO, in equilibrium with
calcite, wollastonite, and
quartz.

The equilibrium constant

and so
AHS, (1 |
I Ky —In Kogy = = =25 <? " 298 15)
or
AHS, (1 1
log Ko — log K — _Srfa0s (1 9.22
08B =108 R = 530259 R \ T~ 298.15 0-22)

By substituting terms, you can easily show that these are equivalent to our pre-
vious equations, (9.19) and (9.20). Remember, they are valid only for constant
A H° and A,S°.

Now we need A, H° for reaction (9.21). This is

AH = AHE o +AHY, —AH

CaSiO; AH

o _ o
CaCo; Si0,

= —1634.94 4 (—393.509) — (—1206.92) — (—910.94)
=89.411kJ mol™!
If we want to calculate the temperature T at which fc, reaches 1bar while

in equilibrium with calcite, quartz, and wollastonite, then K, =1, logK; =0,
and using our value of A H°, we get

411 1 1
0=-7.25—- 89 ( )

230259 x8.3145 \ T 298.15

from which T = 555 K or about 282 °C. The meaning of these calculations is
illustrated in Figure 9.7.

Gas phase having

a CO,, partial pressure of 107725 bar Pure CO, gas phase
T=25°C T=282°C
P=1 bar P =1 bar

Wollastonite Wollastonite

Calcite Calcite

(a) (b)
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A common error

You must remember that you CANNOT calculate In K at 7' from

A,GS = —RTInK [9.11]

where A, G° comes from the normal tables, simply by changing T from 298.15
to some other value. In this Equation (9.11) , A,G° and K must refer to the
same temperature. If you want K at some temperature other than 25 °C, first
get A, G° at that new temperature from (6.17) or some other method, then get
K from (9.11), using your new value of A, G7 in place of A,.G5. Of course,
this procedure has essentially been done for you in equations such as (9.20) and
(9.22). An interesting exception to this rule is the case of some isocoulombic
reactions (§9.7.2).

9.7 Change of K with temperature Il

In Equation (9.11) we saw that InK = —A G°/RT, so that the effect of tem-
perature on K evidently depends on the effect of temperature on A,G°. In §9.6
we assumed a constant AH° and AS°, resulting in a simple linear relationship
between log K and 1/T. However, we also pointed out in §3.5.3 that

dAH
—— =AC 3.23
1T P [3.23]
or
dA H°
4 =AC} 9.23
dT r~pP ( )
and

dA,S°  ACS
U (9.24)
dr T

In other words, what we have really assumed is that A, C}, is zero, or that the heat
capacities of reactants and products are equal. However, if you look at measured
heat capacities, they look something like those shown in Figure 9.8. Pure
solids, liquids, and gases generally have C} values that increase monotonically
(constantly increasing) with T as illustrated by the mineral corundum. Over a
temperature range of only 200 °C, the variation of C; may be fairly linear; over a
larger range of 7, it will show a distinct curvature. If the particular values of Cj
of products and reactants in the reaction of interest happen to be about the same
and so cancel out, the A .Cp =0 approximation works well, but realistically
this only happens in fairly simple reactions such as calcite=aragonite, or by
chance.

Furthermore, Cj for aqueous species behaves quite differently, always show-
ing a change in curvature as illustrated by HCl(ag) in Figure 9.8, so that
reactions having both minerals and aqueous species have virtually no chance
of having A,C} constant over a range of temperatures.
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Figure 9.8 The heat
capacities of corundum
(Al,03) and HCl(aq) as a

function of temperature.
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9.7.1 Nonaqueous reactions

In §3.5.3 we introduced both the Maier—Kelley and the Berman—Brown equa-
tions to describe the variation of heat capacity with temperature, and in
Equation (5.30) showed an equation for the variation of A,G° with T, using
the Maier—Kelley formulation. This equation is

A,Gy =A,G5 —A, S5 (T—T,)

+Aa|T-T,-T1 d
T —TIn| =
r ' T,

+ A,g (2TT,—-T*-T7)

A,c(T*+T?—2TT,)
2772

and substituting this into A,G° = —RT In K results in

AHO (1 1\ Aaf/ T T
anT:h'lKTr_ R ?_? + R ln?‘i—?_l

Ab T2
a T+ =L -2T 9.25
+ o ( e ) 9.25)

Ay (=T*=T?+2TT,)
R 272772

+

This rather long equation is simple to use if the Maier—Kelley a, b, and ¢
values are available for all products and reactants, and gives accurate results.
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9.7.2 Aqueous reactions

However, if your reactions contain aqueous species, the Maier—Kelley formu-
lation does not apply, and a, b, and ¢ values are not available because they
don’t work. The Cj of HCl(aq) shown in Figure 9.8 is fairly typical of aqueous
species, which are convex upward and have a maximum somewhere around
50-100°C (see also Figures 10.12; 15.10). If the aqueous and mineral species
in your reaction are all in the SUPCRT92 database, you should use that program,
which incorporates the HKF model, introduced in §13.6.2, and discussed more
fully in Chapter 15. Failing that you must estimate your equilibrium constant
as a function of T and P, and there are only a couple of ways of doing that.

Isocoulombic reactions

Generally speaking, to model the change in log K with 7 you must account for
the change in Cj; for each species in the reaction individually, especially for
aqueous species. However, it is sometimes possible to write the reaction such
that equal numbers of ions appear on each side of the reaction or, failing that,
the same total charge on each side, in which case a great deal of the variation
will cancel out. Such reactions are called “isocoulombic” (Mesmer and Baes,
1974; Lindsay, 1980).

It is understood that the isocoulombic reaction has no solids or gases,
because their variation of C; with T is quite different, as discussed above.
The transformation from the reaction you are interested in to an isocoulombic
reaction is made by combining your reaction with another one, which is often
the ionization of water reaction. For example,

H,PO, (aq) = H* + H,PO;

is a typical ionization reaction with all charges appearing on the right side. The
equilibrium constant for this reaction shows a considerable curvature, plotted
as log K versus 1/7. Add to this the reaction

OH™ +H* = H,0(/)
and we have
H,PO, (ag) + OH™ = H,PO; +H,O0(/)

which has the same charge on both sides, and log K versus 1/T is rather close
to a straight line. Of course, to recover the desired ionization constant at some
higher temperature, you need to know the ionization constant for water as a
function of T in order to be able to “uncombine” it at the higher T. log K as
a function of 1/T for isocoulombic reactions can be surprisingly accurate in
many cases.

Gu et al. (1994) have extended this method by noticing that the ACjy and
AS° terms for many isocoulombic reactions are not only small, but are often
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of opposite sign, and tend to cancel one another. Omitting the AS° term leads
to what they call the one-term extrapolation method. What this amounts to is
that for well-balanced aqueous reactions, A,G* is independent of temperature,
so that Equation (9.11) becomes

A,G5 =A,G; = —RTInK (9.26)

so that only the Gibbs energy change of a reaction at 25°C is sufficient to
calculate the value at any other temperature. A discussion of this method with
examples is given by Wood and Samson (1998).

The density model

Franck (1956, 1961) observed that the ionization constants of water and of many
aqueous solutes at elevated temperatures and pressures showed a remarkably
linear behavior when plotted as log K versus log p over wide ranges of T and
P, where K is the equilibrium constant and p is the density of pure water.
Since then this relationship and variations of it have been used in many studies
(several references to these are in Anderson et al., 1991). Marshall and Franck
(1981) used the expression

logK =a+b/T+c/T*+d/T*+ (e+ f/T+g/T*)logp 9.27)

to represent the ionization constant of water to 1000 °C with much success.
Mesmer (1985, 1986) then showed that when this is simplified to include only
the constants a, b and f, these parameters take on values fixed by the properties
of water at some reference condition, and in Mesmer et al. (1987, 1988, 1989)
that the resulting equation is quite successful in predicting solute properties to
about 300°C. Anderson et al. (1991) give a more complete description, and
include the data required to use the model equation.
Using only the a, b, and f terms, Equation (9.27) can be rewritten

p3lnp
T

InK = p, + p—Tz + (9.28)

where p,, p,, and p; are constants and p is the density of water at T and P.

Because In K is proportional to A,G° (Equation 9.11) and In p is specified
at specific values of T and P, it follows that an expression relating In K and
Inp is logically equivalent to one giving A,G° as a function of 7 and P. In
Chapter 4 we saw that an equation giving A,G° as a function of 7 and P is
called a fundamental equation, and that it implicitly contains information on
the variation of all thermodynamic parameters with 7 and P. Therefore there
are implicit relationships between the parameters in both Equations (9.27) and
(9.28) and all other thermodynamic parameters. These are given by Gates et al.
(1982) for Equation (9.27).

Differentiation of Equation (9.28) with respect to temperature yields

AH° = —R[p,+ p;(Ta+1np)] (9.29)



9.7 Change of K with temperature Il

where « is the coefficient of thermal expansion of H,O (and V is the molar
volume),

a=(1/V)(@V/dT), = (3In V/T), = —(dIn p/dT),

and AH° is the standard enthalpy of reaction in a chosen reference state.
Differentiating Equation (9.29) with respect to T at constant P gives

ACp = —RTp;(0a/dT)p, or

—ACS

~ RT(da/oT), (9:30)

D3
showing that Equation (9.28) implies that the quantity AC;/RT(0a/0T), is a
constant. This means that AC; must mimic (da/9T)p. The value of p; can be
determined by choosing values for 7" and P, that is, a reference state. Denoting
the reference state by subscript r, then

AC3/RT(9a/0T), = AC}, /RT,(9a/0T) p.

so that at any T and P, Equation (9.28) implies that

ACS = ACS .M 9.31)
’ " T,(9a/3T)p. ’

Similarly, differentiation of Equation (9.28) with respect to pressure gives

AV = —p,RB
ACB

= Tty (9.32)

where 3 is the compressibility coefficient of water,

B=(1/V)(@V/dP); = (3In V/aP); = —(a1n p/dP);

Inserting this expression for the heat capacity into the standard expres-
sions for enthalpy end entropy, Equations (3.31) and (5.21) gives expressions
for AH°and AS°, and combining these as AH®° — TAS° gives AG®° and from
this log K. Comparing the expression for log K with Equation (9.28) gives
expressions for p; and p,.

These and other relationships that follow from the model are summarized in
the box on page 263. This empirical formulas apparently works well because
(0a/0T) as a function of temperature for water is U-shaped, which gives to the
expression for A, Cj (if AC} is negative) an inverted-U shape with a maximum
around 100 °C, which is the same shape that the C; of many aqueous ions have
(see Chapter 15). Furthermore the variation of ACj at higher pressures is also
fairly faithfully modeled by the expression for ACy, and the equations fit the
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Figure 9.9 The standard (infinite dilution) heat capacity of aqueous NaCl. Data from
Pitzer et al. (1984) (lower curve). Upper two curves are from the density model:
crosses — data from Anderson et al. (1991); diamonds — data from program sTEAMm,
Harvey et al. (2000). The Pitzer et al. data are also shown in Figure 10.12.

C; of individual electrolytes just as well as the AC}, of reactions. A comparison
of heat capacities for NaCl(ag) is shown in Figure 9.9.

To use the equation, one needs only the values of In K, AH®, and AC;, for
the reaction at the reference conditions (which will frequently be 25 °C, 1 bar,
but could easily be some other conditions in cases where experimental data
at high temperatures or pressures are involved), as well as the density of the
solvent, water, at the desired P, T conditions. To obtain estimates of A, V°
and A,C; for the reaction at T, P, values of o and B for the solvent are also
required. These data and several other examples and additional details are given
by Anderson et al. (1991). However, note that data for (0a/9T), are now more
easily available from the NIST program sTEAM (Harvey et al., 2000). Program
STEAM does not provide values of (da/0T), directly, but does give values of
(9°p/dT?) », which can be modified to (d/dT), by multiplying by — V. That is,

(601) _ <azlnp)
T ), o2 ),
_ l<82p>

p \oT? /),
()

ar? ),
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of K with temperature Il

The density model equations

AH® = —R[p,+ ps(Ta+Inp)]

pot —2% (ra—Ta4m?
= r+Tr(8a/3T)Pr a—T.a +In—

r

AS® =R(p, — p;a)

N
=85t T,(9/0T) p, (@-a)

AV°® = —p;RB
BAC},
" T.(3a/0T) P,
AG®=—R(p;T + p,+ ps31np)
ACS

R \T T,)" RT,(9a/0T)p.

The data in Anderson et al. (1991) are based on

AH? ACh - a,

Pr

—InK, 4+t

P =R e T RT (9ajoT)
AH?  (T.a,+1Inp,)AC,

Pr=""p RT,(3a/0T) p,
—ACE,

P = RT,(afoT)p,

p

T
=AG°+AH°[1—— _ T-T In — 9.33
Sl ( Tr) " T, Gasil)p, (“f( i pr) €39

AHS (11 AC; 1
K =Ink, — r(———)—i—i&(—ln&—&(T—Tr))

T p T

(9.34)

IAPS-84, while the NIST

data are based on TAPWS-95, discussed in §13.6.1. A comparison of the two

sources of data for saturation pressures is shown in

Figure 9.9.

For reactions for which log K, AH°, and ACj, at 25 °C are available but little
else, the density model is one of the best ways of obtaining estimates of log K
and other parameters at higher temperatures and pressures.

9.7.3 Combined reactions

Obviously both the isocoulombic and the density model methods are suitable
only for reactions having only aqueous species, because solids, liquids and gases
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have heat capacities with a quite different temperature variation. For reactions
having both pure phases and aqueous species, the heat capacity expressions
can be simply combined.

For reactions in which the aqueous species are “isocoulombic” but minerals
or other phases are also present, one simply uses the Maier—Kelley expression
for log K, Equation (9.25), whether or not the pure phases in the reaction
are compositionally balanced. For the density model, two expressions for the
variation of log K are combined, giving

AH (1 1 Aa T T,
1nKT:1nKTr_ R ?—? + R ]n? 7_]

+A’b T+ U 2T,
2R T !
Ay (=T*=T?+2TT,)
R 27717
ACs 1
G (Lyp &g g
RT,(aoz/aT)Pr T p T

(9.35)

+

where a, b, ¢ are Maier—Kelley heat capacity coefficients and ACj refers to
aqueous species only.

However, Anderson (1995) notes that it is often advantageous to use the
model, not on the overall reaction, but on individual species. This makes it
easier to add parameters calculated by Maier—Kelley or some other method. In
using the density model with individual species and minerals, it is advisable to
calculate high T, P Gibbs energies and later combine these to the desired log K
values. This should be done with a slightly different version of Equation (9.33)
[substitute —S°(T —T,) for AH?(1 —T/T,)] and Equation (5.33) for the pure
phases. This ensures that all species use the same convention for Gibbs energies.

9.8 Change of K with pressure

The variation of the equilibrium constant with pressure depends of course
on how standard states are defined, because this controls how A, G° and the
activity terms in K vary with pressure. This was discussed in some detail in
connection with activities (§8.3). To briefly summarize, if the standard states
of all the reaction species are defined as fixed at 1 bar (or conceivably some
other pressure), then K does not vary with P; it is a constant at a given T.
If the standard states are defined as variable in P, then K does vary with
P. This variation takes different forms, depending on whether the reaction
species are solid, liquid, gaseous, or aqueous, and is best handled by calculating
the variation of each individual species activity with P, then combining them
into K.

Surprisingly, it is not often necessary to do this, because applications com-
monly provide data along isobars, so that only the temperature variation is of
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interest. Each isobar has its own standard state pressure, so it is not necessary
to calculate the change in activities or equilibrium constants between isobars.

The only commonly used relation between pressure and the equilibrium
constant is the case where all reactants and products are solids. Assuming the
solids are incompressible, applying relation (5.32) to each of the terms in A, G°
results in

dnK _ 9A,G°

/RT
oP oP
=—A,V°/RT
so that
A, Ve
anpzzanpl—ﬁ(Pz—Pl) (9.36)

9.9 The amino acid example again

Let’s write Equation (5.14) one more time.

CsH 4N, 05(aq) + H,0(]) = C¢H3NO, (ag) + C,HsNO, (aq) (9.37)
or
leucylglycine + water = leucine + glycine (9.38)
AVGO = AfG;eucine + Af GZlycine - Af Greucylglycine - Af G:/aler
= —13903Jmol ™!

We now know that our calculation of this A,G° (§5.5.2), the reaction in which
a peptide bond between two amino acids is broken, was only a beginning.
The value of —13903 Jmol~! means that if all reactants and products had unit
activity (leucine, glycine, and leucylglycine had concentrations of 1 molal,
and water was pure), the reaction would start to go to the right; leucylglycine
would start to break down to leucine and glycine. But we note again the
fundamental difference between this reaction between dissolved compounds,
and reaction (9.1) between solid compounds. Repeating (9.1) here,

NaAlSiO,(s) +2 SiO, (s) = NaAlSi;Og(s) (9.39)
AGo = Af GID\IaAlSi3OS - Af GIO\IaAlSiO4 =2 A/"G;io2

= —20.12kJmol™!
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The value of A,G° of —20120J mol~! means that reaction (9.39) will also
go to the right. But this reaction will continue to go (strictly, it should continue
to go, according to our model) until either NaAlSiO,(s) or SiO,(s) is used up.
Thus NaAlSiO,(s) and SiO,(s) are not stable together — one of them must
disappear.

This is not the case with leucylglycine. We cannot say that leucylglycine is
not stable in water—what happens to it depends entirely on its concentration and
on the concentrations of other things in solution such as leucine and glycine.
The unit activities are only a starting point, and a very unrealistic one at that.
The next step is to calculate the equilibrium constant for (9.37)

A,G° = —RTInkK

—13903 = —(8.3145 x 298.15)InK

log K o5 = 13903/(2.302 59 x 8.3145 x 298.15)

=2.436

Thus

Aleucine ag]ycine _ 102.436

aleucylglycine Ayater

The activity (mole fraction) of water in biochemical systems is usually close
to 1.0, so we see that although leucylglycine is not “unstable” in water, its
concentration at equilibrium must be quite a bit less than that of its constituent
amino acids. For example, if leucine and glycine had concentrations of say
1073 m (activities of 107%), the equilibrium activity of leucylglycine would
be 10784 (concentration 107843 m). So with concentrations of 1073, 1073,
and 10784 leucine, glycine, and leucylglycine would not react at all, but
would be at equilibrium. In fact, with a concentration of leucylglycine of less
than 107843 the reaction as written would go to the left — leucylglycine would
form from the two amino acids. So remember this — unless the reaction consists
only of pure phases,

You cannot reliably tell which way the reaction will go by looking at A,G°.

You can always tell which way the reaction will go by looking at A,G.
Look at Equation (9.8) one more time. When leucine, glycine, leucylglycine,
and water all have unit activities, (9.8) becomes

Apw=Au°+RTInQ

1x1
—13903 = —139034+RTIn | ——
1x1
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In other words, A, is the same as A,u°; the driving force for the reaction
can be obtained directly from the tables, as for solid—solid reactions. When
products and reactants have reached equilibrium,

Au=Ap"+RTInK

107 x 1073
0=—13903+RTIn { ~

Now the In K term exactly balances the A, u° term, and the driving force for the
reaction s zero. If ayyeyg1ycine < 10754, the driving force (A, i) becomes positive.

9.9.1 Peptides favored at higher temperatures

To round out our discussion of this reaction, let’s calculate the effect of tem-
perature on the equilibrium constant in reaction (8.18). From Appendix B we
find the following data:

Substance Formulas A/H, Jmol™"  §°, Jmol~' K™
leucine C¢H3NO,(aq) —632077 215.48
glycine C,H;NO,(aq) —513988 158.32
leucylglycine CgH,(N,0;(aq) —847929 299.16
water H,0(]) —285830 69.91
ArHO = AfHTeuciue + AfI_Izlycine - AJ"I-Iijeucylglyiue - AfH:valer

= —632077 — 513988 — (—847929) — (—285830)

= —12306J mol !

These aqueous species are not ionized, so perhaps our constant A,.C; assump-
tion will not be too bad over small temperature intervals. Suppose we wanted
the value of K at 100 °C. Equation (9.22) then becomes

logK,; =logK Aty (1 !
o =1lo -] =2 | - — —
ERr =08 R = 530050k \ T~ 298.15
—12306 1 |
—2.436— -
230259 x8.3145 \ 373.15 _ 298.15

=2.00

Alternatively, by calculating A,S°, you could use Equation (6.17) first, then
Equation (9.11). Thus

o __ o o o o
ArS - Sleucinc + Sglycine - Sleucylglyine - Swater

=215.48+158.32-299.16 — 69.91

=4.73J mol !
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Then

ArG§73 = Anggs - TArS;98
=—12306—373.15x4.73

= —14071Jmol~!

from which

_AFG;73
2.30259 RT
. —~14071
T 230259 x8.3145 x 373.15

=1.97

log K373 =

There will often be a small discrepancy in log K calculated in different ways,
as here (2.00 versus 1.97), because of slight inconsistencies in the data. In
other words, to get answers that are exactly the same no matter which way the
calculation is done, the data in the tables for each compound must satisfy the
relation

A;G® = A;H® —298.15 x A, §°

Because enthalpy, entropy, and Gibbs energy data come from different experi-
ments, using a variety of methods, this relation is often not satisfied exactly in
the tabulated data.

The interesting aspect of this calculation of K is that according to the data,
leucylglycine (and perhaps all peptide bonds in proteins) becomes more stable
as temperature increases. Thus for the same concentrations of leucine and
glycine (1073m) as before, we find the leucylglycine concentration is 1078% m
at 100°C, compared to 1078436, at 25°C. That is, its concentration is more
than doubled. This result is quite interesting to those scientists trying to figure
out how life could have begun in the early days of the Earth, 3.5 billion years
ago. The fact that increasing temperatures do not impair but in fact aid the
bonding of simple amino acids, the building blocks of life, has led to thoughts
that perhaps life began when the oceans were at higher temperatures, or in
particular locations (volcanic environments) where heat was available.

This result is typical of the value of thermodynamics. It does not and cannot
tell you how life began, but it can tell you which processes are possible and
which impossible, and what the effects of changing the constraints on your
system will be. This guides the development of scientific ideas in an essential
way and provides a universally agreed-upon bedrock from which to start.
However, it is up to you to think of the processes to ask thermodynamics about,
and this is the creative part of science.
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9.10 Some conventions regarding components

There are two ways in which the way chemical formulas are used which may
prove confusing:

1. Aqueous species are used in both hydrated and nonhydrated forms. For example,
dissolved silica is written as SiO,(aq) or as SiO, - 2H,0 (or H,SiO,, which is the
same thing).

2. Formulas can be presented in various multiples. For example forsterite may be listed
as Mg, Si0O, or as MgSi, 50,.

These are quite simple relationships, but they can cause quite a bit of confusion.

9.10.1 Hydrated versus nonhydrated species

H,SiO, example
One way to write the dissolution reaction for quartz is

SiO, (s) +2H,0 = H,Si0, (aq) (9.40)
Another way to write the same reaction is
Si0, (s) = Si0, (aq) (9.41)

The only difference between these two ways of writing a reaction for the
dissolution of quartz is that in (9.40) we have assumed that the dissolved
silica is in the form of a molecule containing one SiO, attached to two H,O
molecules, whereas in (9.41) we have made no assumption as to the form of
the dissolved silica. So what do we actually know about dissolved silica? What
we know, besides the concentrations under various conditions, is that

1. Under most conditions, the aqueous silica molecule has only one Si (i.e., it is
monomeric, not polymeric), and

2. Except in very basic solutions it is uncharged, electrically neutral.

We might as well then write a formulas for this species that is as simple as
possible, while observing these two facts, and SiO,(ag) does this. Therefore,
Si0, (aq) does not refer to a species of dissolved silica which is not attached to
any H,O or other molecules; it refers to the silica that exists as a monomeric
uncharged species of whatever nature in solution. It might be attached to two
H,O, or six H,O, or be a mixture of several such species; it doesn’t matter.
The other common formulas, H,SiO, (ag), originates historically in the belief
that Si in water must be tetrahedrally coordinated by oxygens, as it is in crystals.
That may well be true, but there may be other oxygens in the form of H,Os
also attracted to the Si. The exact nature of the complexes of Si and many
other elements of interest is a continuing research topic. The important point
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from the thermodynamic point of view is that what we call the dissolved silica,
whether H,SiO, (ag) or SiO,(aq), doesn’t matter, because as long as we derive
the properties of each in a consistent manner, each will give the right answer
in calculations.

In what way are the properties of these species different? Because these
two formulas refer to the same physical substance, dissolved silica, their con-
centrations and activities are identical. But because they are related by the
equation

Si0,(aq) +2H,0(l) = H,Si0,(aq)

their standard state properties such as A,G° and A H° must be different by
exactly twice the corresponding property of H,O(/). Thus

AfG;l4SiO4(aq) =4 G;iOZ(aq) +24, GOHZO (0
The Gibbs energy of formation of H,SiO, is defined as the sum of the Gibbs
energies of SiO,(ag) and (twice that of) H,O(/). In other words, the rela-
tionship between H,SiO,(ag) and SiO,(aq) is strictly a formal one. They are

derived from the same experimental data and will yield the same results in
calculations.

H,CO; example

The same relationship also holds for other species. For example, when CO,
gas dissolves in water, it hydrolyzes (reacts with water) to a very small extent,
forming some H,CO; molecules in solution. It is rather difficult to determine
the exact amount of H,CO;, and this problem is avoided by simply calling
the total amount of carbon dioxide in solution either CO,(aq) or H,CO;(aq),
exactly as the dissolved silica is called SiO,(ag) or H,SiO,(ag). Then for the
same reason as before, we find that

G AG

f T HyCOs(ag) — +4,G

° °
CO;(aq) H,0()

Again, this relationship is strictly formal, although in this case it can be more
confusing, because there is in fact some literature on the subject of how much
dissolved CO, actually hydrolyzes to the species H,CO; and how much remains
as CO, molecules. In other words, H,CO; is sometimes used as a species, and
sometimes in the conventional sense we are discussing. The thermodynamic
properties of H,CO; in these two senses will of course be completely different.
In this book we use the conventional sense for H,CO;(ag). Another way of
looking at this is to see H,CO; as an alternative component, rather than as an
aqueous species.
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Al(OH); example

Another example is the aluminum species Al(OH);(aq). Again, this is a
monomeric uncharged species of Al in solution. There is really no need to
assume that it has three oxygens and three hydrogens attached to it. Whatever
is attached to it, we can call it AlO, s(ag), whose properties will differ from
those of A1(OH);(ag) by those of 1.5H,0(/), because

AlO, 5(aq) + 1.5H,0(l) = Al(OH);(aq)

and similarly for other aqueous aluminum species. Thus in basic solutions the
dominant Al species can be referred to as AI(OH); or as AlO;. The essential
information is that the species is monomeric and has one negative charge.

9.10.2 What is a mole of olivine?

Another way that the choice of formulas can differ is that some choices can
be multiples of other choices. This is most often seen in choosing solute
species in solids, because there are no “real” species, just a crystal structure
that is a solid solution. For example, the mineral olivine is a solid solution of
two components, forsterite (Mg,SiO,) and fayalite (Fe,SiO,). The solution is
represented by (Mg, Fe),Si0,, because the Mg and Fe atoms share the same
positions in the crystal structure.

But what reason do we have to choose Mg,Si0O, and Fe,SiO, as our compo-
nents? The formulas simply shows us the stoichiometry of the components — the
ratios or relative amounts of the elements. Why not MgSi, sO,, or Mg,Si,0,?
The same question could also arise in discussing aqueous species, except in
that case we often have experimental evidence about the nature of the species
in solution. That kind of evidence does not exist for the three-dimensional
crystal structures of solid solutions — we are free to choose any component that
is stoichiometrically correct. Does it make any difference? Yes.

In §7.2 we noted that some confusion might arise in the definition of mole
fractions, but here the choice makes no difference. That is,

NEesiy 50, . Npe,sio,

MEesiy 50, T MMgSips0;,  MFeySi0, T Mg, sio,

So that is not the problem. The problem is that the choice of formulas, the
mole of substance, affects the energy content per mole and hence the activity.

Suppose our system consists of a certain mass (a crystal) of pure forsterite,
Mg,SiO,. The Gibbs energy of the system is a finite, unknown quantity, which
depends on the mass of the crystal. A crystal with twice the mass has a G
twice as large. But the molar G does not vary with the size of the crystal. The
molar G is defined as G = G/n (§2.4.1), where n is the number of moles in
the crystal. The point is, the number of moles of what? Obviously the number
of moles of Mg,Si0, in the crystal will be exactly half the number of moles of
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MgSi, 5O, in the crystal, because Mg,SiO, contains twice the number of atoms
that MgSi 5O, does. Therefore, Gy,,si0, = 2 Gpgsiy 0, OFs if you prefer, you
can say that Gy, g0, = 2 G s, 0, Simply because it contains twice the mass
and, therefore, twice the energy of whatever kind.

This difference in the Gibbs energy of the mole is translated into a difference
in activities. Because Gy, sio, = 2 Gygsiys0, A4 Gyyg,si0, = 2 Opgsiy 50,> then

o _ _ o
GMgZSiO4 - GMgZSiO4 =2 (GMgSioAsoz GMgSio‘st)
and
RTIn ayg,5i0, = 2 RT In aygs;, 0,

and therefore

_ 2
AMg,Si04 = 9MgSig 50,

The problem this poses can be seen in considering Raoult’s law, which we
said was a; = x;. But if a; = af 5, we have a problem. Because x; is independent
of how we write the formulas for i, we see that a; and g, 5; cannot both be equal
to x;, even if Raoult’s law is followed exactly. If a,s; versus x; is a straight
line, then a; versus x; will describe a parabola.

This is a well-known problem, and generally the formulas for components is
chosen such that the simple statement of Raoult’s law is followed as closely as
possible. Again, this relationship between activities is entirely formal and tells
us nothing about forsterite or olivine. However, it is important to remember
that choosing a formulas for your components has consequences for activities.

The problem is more difficult in other systems. How does one choose
components in a complex silicate melt, for example? In a melt there are no
stoichiometric restrictions to be observed, but the formal relationship between
the activities of various component choices that we have discussed remains
true. So if you measure the activity of some component in a melt, and determine
the deviations of these activities from Raoult’s law by calculating activity
coefficients, the question is, what part of these activity coefficients represents
nonideal behavior, and what part represents a poor choice of components?
Generally speaking, extremely large or extremely small activity coefficients
mean that the component involved has been badly chosen, which is to say that
it does not come very close to representing the “real” situation in the system.
In these situations, thermodynamics provides no help whatsoever. It points
out the consequences of choices relative to each other, and from there on the
investigator is on her own. In other words, the choice of components, as much
as the choice of system to investigate, is a part of the “art of doing science,”
that part which relies on skill and intuition, and can never be taught.
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9.11 Summary

This chapter contains a sudden increase in the amount of practical, usable
material. If you ever have occasion to use thermodynamics in a practical
situation, it will very likely involve the use of the equilibrium constant.

The molar Gibbs energy of a dissolved substance changes with the con-
centration of the substance. The activity is a dimensionless concentration-like
term that is used to give the Gibbs energy in a particular state, in terms of
its difference from its value in some reference state (Equation 7.37). When
a reaction has reached equilibrium, the activities of the various products and
reactants can have a variety of values individually, but their ratio, as expressed
in the equilibrium constant K, has a fixed and calculable value.

The equilibrium constant is calculated from numbers (Gibbs energies) taken
from tables of standard data (derived experimentally, as discussed in Chapter 5).
These standard data give the term A, u° or A,G°, which is a constant for a
given T and P. It has nothing to do with whether your system or reaction has
reached equilibrium (A, = 0) or not. However, it can be used to calculate K,
which gives the ratio of product and reactant activities your reaction will have
if it ever reaches equilibrium.

The superscript ° therefore has considerable significance. It should not be
omitted or inserted carelessly in your calculations.
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Real solutions

10.1 Introduction

We have now considered both ideal solution behavior and deviations from this,
but in a rather generalized way, using activity coefficients. We now have to
start to consider how to measure these things, and doing this means we have
to consider partial molar properties in much more detail.

We start with a fairly detailed look at the volumetric properties of solutions,
because these are the most intuitive. Partial molar properties of the other state
variables are the same in principle, but become more complicated in the case
of enthalpy measurements because of its relative nature. The Gibbs energy is
also a relative property, but is treated in quite a different way.

Most of the material in this chapter is quite general, and can be applied to
any kind of solution, although most of our examples are for aqueous solutions.
The properties of electrolyte solutions introduce complications, discussed in
Chapter 15. The properties of real gaseous solutions are often handled by
“equations of state,” the subject of Chapter 13, and those of solid solutions
have some unique aspects, discussed in Chapter 14.

10.2 Solution volumes

All real solutions are of course nonideal. Our discussion of their properties
will be concerned for the most part with deviations from the properties of ideal
solutions, whether Henryan or Raoultian.

10.2.1 Partial and apparent properties

The properties of a dissolved substance are described in terms of partial,
apparent, and excess total or molar properties, so we begin by discussing these
terms, using volume as an example.

The volume of mixing
If two substances are immiscible (they do not dissolve into one another to any
appreciable extent, like oil and water), obviously the volume of the two together
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is simply the sum of the two volumes separately. But if they are completely
miscible (they dissolve into one another completely, forming a solution), this
may be more or less true, but probably not exactly true. Why?

If you mix white sand and black sand together, there is no interaction or
chemical reaction at all between the two kinds of sand, and the volume of the
mixture is the same as the two volumes separately. If the volume of the white
sand is V, and the volume of the black sand is V,, the total volume is

V=V, +V,

It’s sort of like stacking boxes as in Figure 10.1. There is no change in total
volume just because they are together.

However, using total volumes usually turns out to be inconvenient. If the
volume per mole of white sand is V,, and of black sand is V,, then the total
volume is

V=n,V,+nV, (10.1)

where n,, and n, are the number of moles of white and black sand in the
mixture. The molar volume is defined as the total volume divided by the number
of moles of all components in the system (i.e., the molar volume of pure white
sand is therefore V,/n,); so if the mixture contains n,, moles of white sand
and n, moles of black sand, the total number of moles in the mixture is n,, +n,.
Dividing both sides of Equation (10.1) by n,, + n,, we get

V=x,V,+x,V, (10.2)

Here, V is the molar volume of the mixture and x is the mole fraction, where

Ny

RS
n
= 10.3
—— (10.3)
and similarly for x,. This equation simply says that the volume of the mixture
is the same as the volume of the two things separately. The introduction of
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Figure 10.1 (a) There is no
volume change when
boxes are stacked
together — they do not
interact. (b) When
molecules are mixed
together, they may
occupy less volume than
they did separately.
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Figure 10.2 The molar volume of solutions of A and B. The molar volume of pure A
(Vz) is 18.0cm® mol~" and that of pure B (Vg) is 16.0cm® mol~'. The molar volume
of an ideal solution having xz = 0.4 is 0.6 x 18.04+ 0.4 x 16.0 = 17.2cm®mol~". The
molar volume of a real solution having xg = 0.4 is actually 15.9 cm®mol~". It may be
calculated in the same way, but using V, and Vj instead of V; and V3. The
difference between the real and the ideal molar volumes is the change in V on
mixing A,,xV. The apparent molar volume of B (V) in a solution is the intercept on
the xg = 1 axis of a line joining the molar volume of pure A and the molar volume
of the solution. %V = 12.75cm® mol~" from Equation (10.12).

n and x is just to determine how much of each is used. If we plot molar
volume against mole fraction of either component sand, we get a straight line
(Figure 10.2), called the ideal mixing line.

Clearly these relations do not depend on the grain size of the sands;! they
depend on the fact that the sands do not react in any way with each other.
Each grain of white sand is indifferent to what kind of sand is next to it. Now
imagine that the grain size of the sands gets smaller and smaller. Soon they get
so small that you can no longer distinguish the colors — the mixture becomes
gray. Imagine the grain size continuing to get smaller and smaller — right down
to atomic proportions, so that instead of having a mechanical mixture of black
and white sand, we have a true solution of black and white atoms. If the black
and white atoms continue to have no attraction, repulsion, or chemical reaction
with one another, the volume of the two together will continue to be exactly the
same as the sum of the two separately. Actually, we have oversimplified a bit —
normally the white molecules interact with each other even in the pure state,
and similarly with the black molecules. If these interactions are very similar
in nature, then when they are mixed together the molecules will continue to
interact with each other in the same way, and the volumes will be additive. In
other words, it is not necessary for there to be no molecular interactions for

' Actually, only as long as the grain size of the black and white sands are the same.
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ideal mixing, only that white molecules react with black molecules in exactly
the same way that they do with other white molecules.

But suppose that at this molecular size, white (w) and black (b) particles are
attracted to one another more than to others of the same kind, perhaps even
forming a new kind of particle (wb). Because of this attraction, the particles
will be closer together than they would otherwise be, and the total volume of
the mixture will be smaller, as shown in Figure 10.1b, and instead of getting
a straight mixing line as in Figure 10.2, the line is curved downward as in
Figure 10.2. Alternatively, if the white and black particles repel each other,
the total volume will be greater, and in Figure 10.2b the curved line for the
molar volume of the mixture will lie above the straight line that represents no
interaction. The volume change on mixing (A, V, Figure 10.2) caused by the
attraction between A and B is the difference between the straight line and the
curved line. The straight line

V=x,Vi+x Vg (10.4)

is called ideal mixing and is rarely observed.? The curved line represents
nonideal mixing, the general case. The difference between the ideal mixing
line and the actual molar volume V is called the change in volume on mixing,
A V. Thus

mix

AninV=V—(xpaVa+x53Vg) (10.5)

10.2.2 Partial molar volumes

Now suppose in our mixture of white and black particles that attract each other,
that we are not satisfied to have the total volume or the molar volume of the
mixture as a whole. We would like to know the volume of each component
in the mixture, not just the combined volume. But how can this be done,
when each is dispersed at the molecular level and is interacting strongly with
another component? Simple. Just draw the tangent to the molar volume curve
at the composition you are interested in. The intercepts of this tangent give
the volumes of each component in the solution, called partial molar volumes,
which are combined to give the total molar volume in exactly the same way as
the black and white sands in Equation (10.2) and Figure 10.2.

Looking at partial molar volumes in this way, they seem to be just a sort of
geometrical construct. They are defined such that they can be substituted for
V4 and V; in Equation (10.2) in cases where mixing results in a curved line
for the molar volumes; thus?

V=x,Vs+xz Vg (Figure 10.2) (10.6)
2 Volumetric ideal mixing (Equation 10.4) is also called Amagat’s law, which we saw was

connected to the Lewis fugacity rule in Chapter 8.
3 These equations are also derived in §C.2.3.
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Figure 10.3 A roomful of
1 molal salt solution. The
observer sees the change
in volume caused by
adding one mole of salt,
which is the partial molar
volume of salt in the 1
molal solution.

Real solutions

or, multiplying both sides by (n, + ng),
V=n,V,+nyVy (10.7)

In Figure 10.2 we have shown a case where A and B are attracted to each
other, and their partial molar volumes are both /ess than the volumes of the
pure components (V, < V¢). If A and B repelled one another, the mixing line
would lie above the straight line and the partial molar volumes would be larger
than the pure volumes. There is no general rule for the shapes and positions
of these mixing curves; they must be measured experimentally. This would be
done by density measurements in the case of volume, and calorimetry in the
case of enthalpy and entropy. It is quite possible for the mixing curve to be
shaped such that in a certain range of composition one of the tangent intercepts
is at less than zero volume — a negative partial molar volume. This is why
some of the tabulated thermodynamic parameters in Appendix B are negative
for some solute components. It is, of course, not possible for pure components
to have a negative volume.

The room analogy
But there is another way of looking at partial molar volumes which shows that
they really are the volume of a mole of each component in solution. Just for a
change we will switch from components A and B to a solution of salt (NaCl)
in water. Consider an extremely large quantity of water — say enough to fill a
large room (Figure 10.3). Now let’s add enough salt to make the concentration
exactly 1 molal, and adjust the volume of the solution so that the room is
full and a little excess solution sticks up into a calibrated tube inserted into
the ceiling. By observing changes in the level of solution in the tube, we can
accurately record changes in the V of the solution in the room.

Now, when we add a mole of NaCl (58.5 g of NaCl occupying 27 cm?)
to the solution, the change in concentration is very small. In fact, if we can

Tube showing total volume of fluid

AV is partial molar volume of NaCl

1 mole NaCl added
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detect any change in concentration by the finest analytical techniques available,
then our room is too small, and we must find and inundate a larger one.
Eventually, we will fill a sufficiently large room with salt solution that on
adding 58.5 g of NaCl we are unable to detect any change in concentration — it
remains at 1.000 mole NaCl/kg H,O. But although the concentration remains
unchanged, the volume of course does not. The salt added cannot disappear
without a trace. The level in the tube in the ceiling changes, and the AV seen
there is evidently the volume occupied by 1 mole of NaCl in a 1 molal NaCl
solution, in this case about 19.47 cm®mol~' of NaCl. This is, in quite a real
sense, the volume occupied by a mole of salt in that salt solution and has a
right to be thought of as a molar volume (just as much as 27 cm®mol ™! is
the molar volume of crystalline salt) rather than as an arbitrary mathematical
construct. It is referred to as the partial molar volume of NaCl in the salt
solution, Vy,q.

Some readers will have difficulty in seeing how, on adding our salt, the
concentration does not change but the total volume does. If this is the case,
think of the room as containing not a solution, but nine million white tennis
balls and one million black tennis balls, all mixed together. The room is full,
the balls are arranged so that no space is available for another ball, and a few
balls overflow into the tube in the ceiling. The total volume is the volume of
ten million tennis balls. Now we add one more black tennis ball, somewhere
in the middle of the room. The fractional concentration of black balls changes
from 10°/107 to (10°+1)/(10” +1), or from 0.1 to 0.10000009, a change
so small it is completely negligible.* But the total volume has changed by the
volume of one tennis ball, and this change must be reflected by the level of
the balls in the tube, which will rise by the volume of one ball. We can even
extend the analogy by imagining that the balls in the room are compressed by
the pressure, so that when we add another ball, it becomes compressed too,
and the level in the tube rises by the volume of a compressed tennis ball, not
a normal (standard state) tennis ball.

The formulas for partial molar properties
The partial molar concept is applied to most thermodynamic properties, not
just volume. The mathematical expression, introduced in §2.4.1 on page 19, is

Z —
(—) =7 (10.8)
on; 7

where Z is a thermodynamic parameter such as V, S, G, etc., n; is the moles
of component i, and 7; is the moles of all solution components except i. It is

4 If you don’t find it negligible, just imagine a bigger room and more tennis balls, until the
change is negligible.
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important to note that the derivative is taken of the rofal quantity, Z, not the
molar property, Z. It is the change in the fotal volume of the solution in the
room that is measured, not the molar volume.

Put in this partial differential form, partial molar properties look somewhat
obscure. However, it is important to have an intuitive grasp of their meaning,
and you will be well advised to think of them in the sense of the room analogy,
as molar properties of solutes in solutions of particular compositions, rather
than in terms of Equation (10.8).

10.2.3 Apparent molar volume

The first thing we come across when looking at real data is that quite often the
data are reported as “apparent” molar volumes, enthalpies, entropies or heat
capacities. If we call component 1 the solvent (usually water in our cases),
component 2 the solute (say, NaCl), Z and Z the total and molar forms of any
of these properties, then apparent molar properties are defined as

oy _L—mZy (10.9)
ny
or, in the case of volume,
V—n,VA
oy YT (10.10)
ny

where V7 is the molar volume of the pure phase. Thus the apparent molar
volume is the volume that should be attributed to a mole of solute, if one
assumes that the solvent contributes the same volume it has in its pure state
(Figure 10.2). Alternatively,

V=nV +n*V (10.11)
or, dividing by (n, + n,),
V=xV'+x, %V (10.12)

The apparent molar volume is known as accurately and as easily as the molar
volume or the total volume of a solution whose composition is known, whereas
finding the partial molar volume always involves some manipulation of the
raw data (such as determining a tangent) and requires a knowledge of a range
of compositions, not just a single one. Therefore measurement of the density
of a solution (§5.8.1) enables you to calculate V, the total volume of the
solution. Then because you know the molar volume of the pure solvent V7,
Equation (10.10) gives you the apparent molar volume of the solute in the
solution you measured.
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To obtain partial molar volumes from measurements of apparent molar
volumes, differentiate Equation (10.11),

oV =
oV =V, (10.13)
ony T,P.n;
v
_ e sy 10.14
" (anZ >T.P,nl * ( )
otV
=m<—>+¢V if n, =55.51 (10.15)
om

so that evidently we need an equation to represent *V as a function of m, in
order to calculate (3V /dm). For electrolytes, it is found that using /m rather
than m gives a more linear plot, so that Equation (10.15) becomes

— 1% om'/? o
V,= \%
2 m<8m1/2>< om )+

oty
=1m'"? (—) +%v (10.16)

om'/?

Extrapolating values of V back to m = 0 will therefore provide a value of V;,
the partial molar volume at infinite dilution, which is the standard state value.

10.2.4 An example from NaCl-H,O

As an example of the various terms we have defined, consider the system
NaCl-H,O. This system differs from the system A-B in Figure 10.2 only in
the sense that A and B are completely miscible (they dissolve in each other in
all proportions), while in NaCl-H,O water becomes saturated with NaCl at a
concentration which depends on P and T'. This is 6.1 molal at 25 °C, 10.4 molal
at 300°C, so we can only look at concentrations below this value.

Partial molar volume

Apparent molar volumes at concentrations up to 5 molal are shown in
Table 10.1 and Figure 10.4. If the mass of solvent, water, is 1 kg, then n,
is 1000/18.0154 = 55.51, and n, is the NaCl molality, m. The volume of the
pure solvent V; is 18.068 cm® mol™', so measurements of the total volume of
the solution V give molar volumes [from V/(55.51 4+ m)] and apparent molar
volumes from Equation (10.11).

Apparent molar volumes #V can be converted into partial molar volumes
in several ways. One way would be to actually do the operation illustrated
in Figure 10.2, that is, construct the tangent to the molar volume curve, and
determine the intercept on the xy,c = 1 axis.> The tangent at 3 molal is shown

5 The mole fractions in Table 10.1 and Figure 10.5 are calculated using » = 1 rather than v =2
as defined in Equation (7.2). Extrapolating a tangent to xy,c; = 1 using v = 2 results in a value
of %VNaC], and the diagram is less intuitive.
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Table 10.1 Volumetric data for NaCl- H,O at 25°C, I bar. From the
equation of state of Archer (1992).

Apparent molar Partial molar
Molality Mole  volume #V Molar volume Total volume volume V
m molkg™" fraction cm?mol™! Vem?mol™!  Vem? cm? mol~!
0.0 0.0000 16.62 18.068 1002.95 16.62
0.2 0.0036 17.43 18.066 1006.44 17.85
0.4 0.0072 17.78 18.066 1010.07 18.39
0.6 0.0107 18.05 18.068 1013.79 18.80
0.8 0.0142 18.28 18.071 1017.59 19.15
1.0 0.0177 18.49 18.076 1021.45 19.47
1.5 0.0263 18.94 18.091 1031.37 20.15
2.0 0.0348 19.33 18.112 1041.59 20.75
2.5 0.0431 19.67 18.136 1052.09 21.27
3.0 0.0513 19.98 18.165 1062.84 21.75
3.5 0.0593 20.27 18.197 1073.81 22.19
4.0 0.0672 20.52 18.232 1085.00 22.59
4.5 0.0750 20.76 18.270 1096.39 22.97
5.0 0.0826 20.97 18.311 1107.97 23.31
(’nNa\CI)1/2
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in Figure 10.5. Note that the intercept at xy,o = 1, 21.67cm?>mol™!, is a
bit different from the value in Table 10.1, 21.75cm?® mol~'. This is because
the tangent method involves differentiation plus a very long distance from
Xnac) = 0.0513 (the value at 3 molal) to xy,q = 1.

Another way would be to determine the slope of the total volume curve
(Equation 10.13), which gives another slightly different value.

But the commonest method has been to fit an equation to #V data. If we use
a linear equation and m'/? in place of m, we get

W=V St m'? (10.17)

known as the Masson equation, where the slope is S}, and the intercept at
m =0 is the partial molar volume at infinite dilution, V" . Using the data in
Table 10.1, S, is 1.978, and V™ is 16.54 cm?®mol~!. However, Millero (1971)
shows that despite the fact that this equation has the correct theoretical slope
at infinite dilution, and was used extensively for many years, it often gives
incorrect values of V' .

Other approaches can be used based on corrections to this equation
(e.g., Helgeson and Kirkham, 1976), but in recent years the tendency has been
to use the Pitzer equations (Chapter 15). Determining the intercept of this
equation, or any nonlinear equation, at m = 0 places great emphasis on mea-
surements of very dilute solutions, where they are most difficult. Clearly, some
theoretical knowledge of what the slope at the intercept (the “limiting slope”)
should be is important, and all modern treatments of data of this type use the
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Figure 10.5 Molar volume
of NaCl solutions versus
mole fraction NaCl. The
tangent to the curve at

3 molal intercepts the
Xnac) = 1 axis at Vy,¢ and
the Xyaci = 0 axis at Vy, .
The dashed line
intercepts the xyuc =1
axis at the apparent
molar volume V. The
tangent to the curve at
Xnact = 0 intercepts the
Xnaci = 1 axis at Vg
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limiting slopes predicted from Debye—Hiickel theory, which will be discussed
in Chapter 15. The values in Table 10.1 from Archer (1992) are from an equa-
tion of state which uses the theoretical limiting slopes, and in addition involves
not just the data at 25°C, 1 bar, but a great many other data as well.

Electrostriction

Millero (1971) provides an interesting history of ideas on the volume occupied
by dissolved electrolytes. Before 1770, a salt was thought to dissolve in water
simply by filling up void spaces, thereby not changing the water volume. The
experimental evidence used to support this idea was that a glass of water did
not overflow when a spoonful of salt was added. In 1770 Watson (reference
in Millero, 1971) showed that the volume definitely decreases when various
salts are added to water, showing that the prevailing theory of the “porous”
nature of water was incorrect. However, his work was soon forgotten, and the
older ideas prevailed for another 70 years. Millero reports that Watson tired of
chemistry and entered the ministry.

These days we look at the partial molar volume of salts. The molar volume
of pure crystalline NaCl is 27.015 cm®mol~!, so you see from the values of the
partial molar volume in Table 10.1 that NaCl occupies less volume per mole
in solution than it does in the solid form, at all concentrations. This fact is
even more striking if you look at the partial molar volume at infinite dilution at
high temperatures, as shown in Figure 10.6. At every pressure up to 1000 bars,
Vac becomes negative, reaching almost —100 cm? mol~! at 300 °C, saturation
vapor pressure (which is 86 bars). This means that if you were the observer
on top of the room full of pure water in Figure 10.3, and if the water was at
300°C, you would observe the volume of water in the room to decrease by
almost 100 cm® when 58 grams of NaCl was added to the water. The volume
of water is so large that after adding the salt, its presence is undetectable, i.e., it
is at infinite dilution.

Figure 10.1 suggests that this effect is due to attraction between the NaCl
and the H,O. This is true, but in the case of electrolytes in water, it is somewhat
oversimplified. Water is not gas-like, with a complete absence of structure,
but largely due to its polar nature and hydrogen bonding, it has some kind
of structure which has been the subject of much debate. Addition of charged
particles in the form of a dissociated electrolyte disrupts and “collapses” this
structure, and the resulting ion—water interactions of several types usually
results in an overall decrease in volume, known as “electrostriction”, despite
the additional volume of the electrolyte. These interactions form the basis of
the HKF model embedded in SUPCRT92, to be discussed in Chapter 15.

10.3 The infinite dilution standard state

So far we have just assumed that the standard state for our mixing components
is the pure phase, just as it was in Chapter 3. This presents no problem
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for water and NaCl — the standard states are, or could be, pure water and
pure halite at the 7 and P of interest. But this doesn’t work in the many
cases where the solute does not exist as a pure liquid or solid phase, such as
H,SO,, or any gaseous solute. An alternative is the “infinitely dilute solution,”
which is always available by extrapolation, and has the advantage that in
the standard state the solute particles interact only with the solvent, not with
other solute particles. Deviations from the standard state value are then some
measure of solute—solute (or solute-affected solvent—solute) interactions. So
infinite dilution is the standard state chosen for enthalpy, volume and heat
capacity.

A final reminder about standard states

Standard states are necessary because G, A, H, and their partial derivatives,
as well as the activity (functionally) related to a difference in Gibbs energies),
can only express the energy difference between a state of interest and some
other state. The standard state is used to answer the question, the difference
from what other state? Once this state is defined, it of course also has values of
V¢ and C°p, which don’t really require standard states, because their absolute
values are (or can be) known.
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Figure 10.6 The partial
molar volume of NaCl at
infinite dilution as a
function of temperature
and pressure. P = sat is

1 bar up to 100°C, and
the saturation pressure of
water above 100°C. Data
from Pitzer and Peiper
(1984).
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10.3.1 The entropy standard state

In summary, then, for dissolved substances we use the ideal one molal standard
state for Gibbs energy, and the infinite dilution standard state for enthalpy,
volume and heat capacity. What about entropy?

By looking at one of our Equations (7.26)

ua—GL=RT Inx,

it is easy to see why we cannot use infinite dilution for Gibbs energy. G is
a constant, so u, — —oo as x, — 0. So infinite dilution is hard to deal with.
Equation (7.28) is

S;—8;, =—RlInyx;

i

so the same problem arises for entropy. Now we can write

G=H-1TS

G°=H°-TS°
and
G—G°=(H—H°)—T(S—S°)

where G° is for an ideal one molal solution and H° is for infinite dilution, and
the question is, to what does S° refer?

It happens that for H (and V, C,), the value at infinite dilution is equal to
the value in an ideal one molal solution (and anywhere else on the Henryan
tangent), so if G, H, and S refer to an ideal one molal solution, then G — G°
and H — H° are both zero, and S — S° is zero only if S° also refers to an ideal
one molal solution. Because entropy is calculated from other measurements
(e.g., S = (H — G)/T) rather than being measured directly, this fact is perhaps
not as useful as the others we have been discussing.

10.3.2 The reference state

Because partial molar volume, enthalpy, and heat capacity are the same any-
where on the Henry’s law tangent, including both the state of infinite dilution
and the ideal one molal solution, either of these states can serve as the standard
state for these properties. We have chosen to say that the infinitely dilute solu-
tion is the standard state, but many treatments prefer to say that the standard
state for these properties, as well as for the Gibbs energy and entropy, is the
ideal one molal solution. For some reason, these treatments (e.g., Klotz, 1964,
p- 361) then define the “reference state” for enthalpy, volume and heat capacity
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as the state of infinite dilution. This appears to have little usefulness, whatever
standard state definition is used.

If the standard state is defined as having a fixed pressure of 1 bar, the
reference state is also sometimes referred to as a state reached from the standard
state by a change in pressure (Pitzer and Brewer, 1961, p. 249). Because in this
text we use a variable pressure standard state, we have no need of the reference
state in this sense either.

10.3.3 Symbols for the standard state

Superscript °, as in V°, indicates the standard state. Up to this point, this has
generally been synonymous with the pure state (pure solid, liquid, or gas), so
one might get the impression that ° indicates the pure phase. However, with
solutions, we must be more careful, because the pure phase is not always the
standard state.

In solutions, particularly electrolyte solutions, the standard state for the
solvent is always the pure phase (pure water), so that, for example, V; refers
to the molar volume of pure component 1, that is, pure water. For the solute,
the standard state for most properties is, as just mentioned, the state of infinite
dilution, so we could use V, for the partial molar volume of the solute in the
standard state. However, this proves a bit confusing, so for clarity we introduce
superscript * to indicate the infinite dilution state (V;O), and we understand that
this is also the standard state for most properties. This raises the question of what
symbol to use for the solute in its pure state. The IUPAC recommends the use
of * for pure substances, but our examples involve only minerals so we will just
use the mineral name. Thus we use V' for the molar volume of pure NaCL

In the case of the Gibbs energy for aqueous solutes we saw (§8.2.3) that the
standard state is neither the pure phase nor the infinitely dilute state, and the
usual ° symbol is appropriate, as in G° and u°.

10.4 Excess properties

In this section we extend our discussion of solution volumes (§10.2) to other
properties, and introduce the excess properties. The difference between the
property (V, H, etc.) of a real solution, and what that property would be if the
solution was ideal, is called an excess property.

Thus, from Equations (7.9), (7.10), (7.11),

VEX — V

real sol'n — Yideal sol'n

= Vreal sol'n — in Vio (1018)

=A,V (10.19)

mix
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and similarly
H™=A_ H (10.20)
Cy* =A,,,Cp (10.21)

For ideal solutions, these quantities are of course all zero (Equations 7.12,
7.13, 7.14). They are also true for the total properties, so that for ideal
solutions

VX =0 (10.22)
H™ =0 (10.23)
Cp,™ =0 (10.24)

Relations between excess properties are the same as between their parent
properties. For example,

0G*™* _ aGreal _ aGid”l (1025)
op ), \opP op |

= Vrieal — Vidcal (1026)
=V (10.27)
so that in addition,
aGEX
( ) = -8 (10.28)
T ),
OH*®X )
( ) =Cp™ (10.29)
T /),

and so on.
The total excess enthalpy is also called the relative enthalpy, L, and is
related to the excess total Gibbs energy by

L p— HEX
— GEX + T SF_X
IG™
=G™*-T (10.30)
aT P.m
0G™/T
:—T2< / ) (10.31)
oT P.m

The total excess heat capacity, the relative heat capacity, also gets its own
symbol

J=Cp™ (10.32)

o™
= ( ) (10.33)
or P.m




10.4 Excess properties

For entropy,

§% = Sreal sol'n Sideal sol'n (1034)
= Amix Sreal sol'n Amix Sideal sol'n
= AmixSrcal sol’n + R Z xi 11'1 -xj (1035)

Excess total entropy is also related to the relative enthalpy and excess total
Gibbs energy as

§* =(L-G™)/T (10.36)
For Gibbs energy,
G™ = Greal sol'n — Gideal sol'n
= Amix Greal sol'n Amix Gideal sol'n
= AmixGreal sol’'n — RTZ-X[ lnxi (1037)

Partial molar excess properties
These have the same meaning as other partial molar properties. The general

(E)ZEX ) _ Z;x
on; /g,
_ azreal azideal
—\ om, on;
—real  —ideal

i i

formulation then is

For volume, using i = 2 to indicate the solute, this becomes

—EX —teal  —ideal
V, =V, =V,
—real —oo
=V, =V,

superscript “real” is not generally needed, so we have
V) =V,-Vy (10.38)

where the substitution V;deal =V, means that we are using the infinitely dilute
solution of the solute as the ideal solution. It is therefore a Henryan sort of
ideal solution. Similarly for enthalpy and heat capacity, the only difference
being that they get special symbols,

H, =H,—H, (10.39)

I, (10.40)

289



290

Figure 10.7 Schematic
illustration of the
meaning of V°. The
diagram is a modification
of Figure 10.5 but with
the dilute region of the
Xnac) Scale greatly
exaggerated and not to
scale.

Figure 10.8 Schematic
illustration of the
meaning of H .
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