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of all substances, great fields of equilibria hitherto unsuspected, in which
the individual states differ from one another with respect to the new var-
iable, the number of photons. If such a necessity arises and the law of
conservation of photons can be established, it may be necessary to revise
still further our ideas of thermal radiation, for in that case it would be
doubtful whether what is known as black body radiation is as definite a
thing as has been supposed. '

1 Tewis, these PROCEEDINGS, 13, 307 (1927).

2 Lewis, Nature, 118, 874 (1926).

3 Einstein, Ann. Physik, 38, 881 (1921); J. Physigue, 3, 277 (1913).
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In this paper it is shown that the Schrodinger wave mechanics, plus
the Uhlenbeck-Goudsmit spinning electron, completely represents the
fine structure of hydrogen-like spectra.

The Hamiltonian function of the system in classical mechanics is taken

as
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in which 7, ¢, ¢ are polar coordinates of the center of the electron, referred
to the nucleus (of atomic number Z); 6, ¢, ® are Eulerian angles of the
(spherical) electron referred to a parallel polar axis and initial plane;
m is the mass of the electron, I its moment of inertia, e its charge, while
0= Ze?

2m?c?

The writer has made use of the above expression for the quantization
of the system on the old quantum theory;! the results were identical with
those of other investigators.? It should be remarked that this form is
valid only to terms of order v?/c?, where v is the velocity of the electron.

, and « is an abbreviation for ¢ — o.
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Further, the terms due to the relativity change of mass are omitted;
it will be shown later that their inclusion leads to the addition of the
Sommerfeld correction (with half-integral azimuthal quantum number k)
to the energy.

To derive the corresponding wave equation we note that H is equal to
the potential energy plus a quadratic form in the momenta. Introducing
this quadratic form in Schrédinger’s variation principle,® we obtain,
neglecting terms of order Q% and higher,
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We have to treat this by the method of perturbations.® Our
perturbation is the term with factor 2mQ/r®. We put u = auy 4+ 2mQv,
E = E, 4+ 2mQe, where u, is a characteristic function of the unperturbed
equation, and E, is the corresponding parameter.

The unperturbed equation corresponds to a spherical electron moving
about the nucleus and simultaneously rotating, the two motions not af-
fecting each other. A particular solution #, is then the product of the
functions characteristic of these two motions. The first of these is well
known.® ‘The second is a special case of that worked out by Reiche and
Rademacher.® The result is
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where N is a normalizing factor, x,(r) is Schrodinger’s function for the
quantum numbers # and /, P}* is an associated Legendre function, and F
a hypergeometric function. = is a positive integer; m, ms, ms, I, d, 5, p
are integers or zero; the four latter cannot be negative.

E, includes both orbital and spin energy. The latter is constant and
does not affect the spectrum; it is proportional to o(¢ + 1),” where
@+ s + o

g =

N
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We must take ¢ = 1. Moreover, d = | m—m |, s = Inz-l-nsl This
limits us to the following cases:

p d s n2 ns F
1 0 0 0 0 cos 0
0 2 0 =1 *1 1
0 1 1 0 =1 1
0 1 1 =] 0 1
0 0 2 =] =] 1

We define . : |
Y7'(3,0) = Pi*(cos 9)e™,  Z33(0, ¥, ®) = T(ma, my, 6)e’ ™% (4)

so that . .
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After carrying out our substitutions on the wave equations (2) and per-
forming several reductions, it takes the form.
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When ne = = 1, X(I, m, 1, 13) = = y(ng) Yt™ZM — nun, Y7270
When 73 = 0, X(l, m, 0, m5) = = y( — 1)Y71z0 4 yptizs,
In general, y(+ 1) =1, y(—1) = (—m +1) (0 + n)

but in some cases these values are to be divided by 2; their sign varies
from case to case. '

The general theory* shows that we can perform the following expa.n-
sions:
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where the summation extends over all possible values of #’, so that the
right side of our equation can be expressed as the series
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X, in general, contains two terms, in one or both of which the indices
of the functions Y and Z differ from I, n,, 72, 3. If there is a term in X
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in which these indices do not differ from I, 7;, ns, 73, there is then one term
of the above expansion in which all five indices have the particular values
n, I, n1, ns, n3; and the theory* shows that the coefficient of this term must
vanish. Since the coefficient of ¥7;"Z}: in X is always —nn,, it follows that

®)

But if #; = —1 this is of precisely the same form as the result obtained by
applying the same method of perturbations to the wave equation discussed
by Professor Epstein,® which corresponds to a non-magnetic electron
revolving about a nucleus containing a fixed magnetic dipole of moment
Z times that of the spinning electron. This equation has been shown by
Professor Epstein® to give the energy levels which, when added to the
relativity correction (in the form for the new mechanics, with apparent
half-quanta), produce the observed fine structure, on the assumption that
the condition #; = I 4 1 or —I is satisfied. 1

Now, it can be shown by considerations too lengthy for inclusion here
that we are actually restricted to the cases in which #n, = —1 and n, =
14 1 or —I. Our wave equation thus gives the correct energy levels,
provided that the relativity correction is additive; and this is now evident.
For the characteristic function of the hydrogen-like atom without spin is
affected by the relativity correction only in the form of the function
X=(r). We have made no use of the explicit form of this function, so
that all our considerations still apply in the case including relativity;
the energy terms which appear here as additive corrections will play the
same part there.

With this the outline of the demonstration is completed; a more detailed
account of the method will be published later. ‘The writer wishes to express
his deep indebtedness to Professor P. S. Epstein, whose constant advice
and encouragement have made this work possible, and whose own investi-
gations have contributed largely to its successful conclusion.
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