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Abstract. The optical properties and the resonance Raman spectroscopy of single
wall carbon nanotubes are reviewed. Because of the unique van Hove singulari-
ties in the electronic density of states, resonant Raman spectroscopy has provided
diameter-selective observation of carbon nanotubes from a sample containing nano-
tubes with different diameters. The electronic and phonon structure of single wall
carbon nanotubes are reviewed, based on both theoretical considerations and spec-
troscopic measurements.

The quantum properties of Single-Wall Carbon Nanotubes (SWNTs) depend
on the diameter and chirality, which is defined by the indices (n,m) [1,2].
Chirality is a term used to specify a nanotube structure, which does not have
mirror symmetry. The synthesis of a SWNT sample with a single chirality is
an ultimate objective for carbon nanotube physics and material science re-
search, but this is still difficult to achieve with present synthesis techniques.
On the other hand, the diameter of SWNTs can now be controlled signifi-
cantly by changing the furnace growth temperature and catalysts [3,4,5,6].
Thus, a mixture of SWNTs with different chiralities, but with a small range
of nanotube diameters is the best sample that can be presently obtained.
Resonance Raman spectroscopy provides a powerful tool to investigate the
geometry of SWNTs for such samples and we show here that metallic and
semiconducting carbon nanotubes can be separately observed in the resonant
Raman signal.

In this paper, we first review theoretical issues concerning the electron
and phonon properties of a single-walled carbon nanotube. We then describe
the electronic and phonon density of states of SWNTs. In order to discuss
resonant Raman experiments, we make a plot of the possible energies of
optical transitions as a function of the diameter of SWNTs.

Then we review experimental issues concerning the diameter-controlled
synthesis of SWNTs and Raman spectroscopy by many laser frequencies.
The optical absorption measurements of SWNTs are in good agreement with
the theoretical results.
M. S. Dresselhaus, G. Dresselhaus, Ph. Avouris (Eds.): Carbon Nanotubes,
Topics Appl. Phys. 80, 213–247 (2001)
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1 Theoretical Issues

The electronic structure of carbon nanotubes is unique in solid-state physics
in the sense that carbon nanotubes can be either semiconducting or metallic,
depending on their diameter and chirality [1,2]. The phonon properties are
also remarkable, showing unique one-dimensional (1D) behavior and special
characteristics related to the cylindrical lattice geometry, such as the Radial
Breathing Mode (RBM) properties and the special twist acoustic mode which
is unique among 1D phonon subbands.

Using the simple tight-binding method and pair-wise atomic force con-
stant models, we can derive the electronic and phonon structure, respectively.
These models provide good approximations for understanding the experimen-
tal results for SWNTs.

1.1 Electronic Structure and Density of States of SWNTs

We now introduce the basic definitions of the carbon nanotube structure
and of the calculated electronic and phonon energy bands with their special
Density of States (DOS). The structure of a SWNT is specified by the chiral
vector Ch

Ch = na1 + ma2 ≡ (n,m) , (1)

where a1 and a2 are unit vectors of the hexagonal lattice shown in Fig. 1.
The vector Ch connects two crystallographically equivalent sites O and A on
a two-dimensional (2D) graphene sheet, where a carbon atom is located at
each vertex of the honeycomb structure [7]. When we join the line AB′ to
the parallel line OB in Fig. 1, we get a seamlessly joined SWNT classified by
the integers (n,m), since the parallel lines AB′ and OB cross the honeycomb
lattice at equivalent points. There are only two kinds of SWNTs which have
mirror symmetry: zigzag nanotubes (n, 0), and armchair nanotubes (n, n).
The other nanotubes are called chiral nanotubes, and they have axial chiral
symmetry. The general chiral nanotube has chemical bonds that are not

Fig. 1. The unrolled honeycomb lattice
of a nanotube. When we connect sites O
and A, and sites B and B′, a nanotube

can be constructed.
−→
OA and

−→
OB define

the chiral vector Ch and the transla-
tional vector T of the nanotube, respec-
tively. The rectangle OAB′B defines the
unit cell for the nanotube. The figure is
constructed for an (n, m) = (4, 2) nano-
tube [2]
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parallel to the nanotube axis, denoted by the chiral angle θ in Fig. 1. Here
the direction of the nanotube axis corresponds to OB in Fig. 1. The zigzag,
armchair and chiral nanotubes correspond, respectively, to θ = 0◦, θ = 30◦,
and 0 ≤ |θ| ≤ 30◦. In a zigzag or an armchair nanotube, respectively, one of
three chemical bonds from a carbon atom is parallel or perpendicular to the
nanotube axis.

The diameter of a (n,m) nanotube dt is given by

dt = Ch/π =
√

3aC−C(m2 + mn + n2)1/2/π (2)

where aC−C is the nearest-neighbor C–C distance (1.42 Å in graphite), and Ch

is the length of the chiral vector Ch. The chiral angle θ is given by

θ = tan−1[
√

3m/(m + 2n)]. (3)

The 1D electronic DOS is given by the energy dispersion of carbon nano-
tubes which is obtained by zone folding of the 2D energy dispersion relations
of graphite. Hereafter we only consider the valence π and the conduction π∗

energy bands of graphite and nanotubes. The 2D energy dispersion relations
of graphite are calculated [2] by solving the eigenvalue problem for a (2 × 2)
Hamiltonian H and a (2 × 2) overlap integral matrix S, associated with the
two inequivalent carbon atoms in 2D graphite,

H =
(

ε2p −γ0f(k)
−γ0f(k)∗ ε2p

)
and S =


 1 sf(k)

sf(k)∗ 1


 (4)

where ε2p is the site energy of the 2p atomic orbital and

f(k) = eikxa/
√

3 + 2e−ikxa/2
√

3 cos
kya

2
(5)

where a = |a1| = |a2| =
√

3aC−C. Solution of the secular equation det(H −
ES) = 0 implied by (4) leads to the eigenvalues

E±
g2D(k) =

ε2p ± γ0w(k)
1 ∓ sw(k)

(6)

for the C-C transfer energy γ0 > 0, where s denotes the overlap of the elec-
tronic wave function on adjacent sites, and E+ and E− correspond to the
π∗ and the π energy bands, respectively. Here we conventionally use γ0 as a
positive value. The function w(k) in (6) is given by

w(k) =
√|f(k)|2 =

√
1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
. (7)

In Fig. 2 we plot the electronic energy dispersion relations for 2D graphite as
a function of the two-dimensional wave vector k in the hexagonal Brillouin
zone in which we adopt the parameters γ0 = 3.013 eV, s = 0.129 and ε2p = 0
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Fig. 2. The energy dispersion relations for 2D graphite with γ0 = 3.013 eV, s =
0.129 and ε2p = 0 in (6) are shown throughout the whole region of the Brillouin
zone. The inset shows the energy dispersion along the high symmetry lines between
the Γ , M , and K points. The valence π band (lower part) and the conduction π∗

band (upper part) are degenerate at the K points in the hexagonal Brillouin zone
which corresponds to the Fermi energy [2]

so as to fit both the first principles calculation of the energy bands of 2D
turbostratic graphite [8,9] and experimental data [2,10]. The corresponding
energy contour plot of the 2D energy bands of graphite with s = 0 and ε2p = 0
is shown in Fig. 3. The Fermi energy corresponds to E = 0 at the K points.

Near the K-point at the corner of the hexagonal Brillouin zone of graphite,
w(k) has a linear dependence on k ≡ |k| measured from the K point as

w(k) =
√

3
2

ka + . . . , for ka � 1. (8)

Thus, the expansion of (6) for small k yields

E±
g2D(k) = ε2p ± (γ0 − sε2p)w(k) + . . . , (9)

so that in this approximation, the valence and conduction bands are symmet-
ric near the K point, independent of the value of s. When we adopt ε2p = 0
and take s = 0 for (6), and assume a linear k approximation for w(k), we get
the linear dispersion relations for graphite given by [12,13]

E(k) = ±
√

3
2

γ0ka = ±3
2
γ0kaC−C . (10)

If the physical phenomena under consideration only involve small k vectors,
it is convenient to use (10) for interpreting experimental results relevant to
such phenomena.

The 1D energy dispersion relations of a SWNT are given by

E±
µ (k) = E±

g2D

(
k
K2

|K2| + µK1

)
,(

− π

T
< k <

π

T
, and µ = 1, · · · , N

)
,

(11)
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Fig. 3. Contour plot of the 2D electronic energy of graphite with s = 0 and ε2p = 0
in (6). The equi-energy lines are circles near the K point and near the center of the
hexagonal Brillouin zone, but are straight lines which connect nearest M points.
Adjacent lines correspond to changes in height (energy) of 0.1γ0 and the energy
value for the K, M and Γ points are 0, γ0 and 3γ0, respectively. It is useful to note
the coordinates of high symmetry points: K = (0, 4π/3a), M = (2π/

√
3a, 0) and

Γ = (0, 0), where a is the lattice constant of the 2D sheet of graphite [11]

where T is the magnitude of the translational vector T, k is a 1D wave
vector along the nanotube axis, and N denotes the number of hexagons of
the graphite honeycomb lattice that lie within the nanotube unit cell (see
Fig. 1). T and N are given, respectively, by

T =
√

3Ch

dR
=

√
3πdt

dR
, and N =

2(n2 + m2 + nm)
dR

. (12)

Here dR is the greatest common divisor of (2n + m) and (2m + n) for a
(n,m) nanotube [2,14]. Further K1 and K2 denote, respectively, a discrete
unit wave vector along the circumferential direction, and a reciprocal lattice
vector along the nanotube axis direction, which for a (n,m) nanotube are
given by

K1 = {(2n + m)b1 + (2m + n)b2}/NdR and
K2 = (mb1 − nb2)/N,

(13)

where b1 and b2 are the reciprocal lattice vectors of 2D graphite and are
given in x, y coordinates by

b1 =
(

1√
3
, 1

)
2π
a

, b2 =
(

1√
3
,−1

)
2π
a

. (14)

The periodic boundary condition for a carbon nanotube (n,m) gives N
discrete k values in the circumferential direction. The N pairs of energy
dispersion curves given by (11) correspond to the cross sections of the two-
dimensional energy dispersion surface shown in Fig. 2, where cuts are made on
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the lines of kK2/|K2|+µK1. In Fig. 4 several cutting lines near one of the K
points are shown. The separation between two adjacent lines and the length
of the cutting lines are given by the K1 and K2 vectors of (13), respectively,
whose lengths are given by

|K1| =
2
dt

, and |K2| =
2π
T

=
2dR√
3dt

. (15)

If, for a particular (n,m) nanotube, the cutting line passes through a K point
of the 2D Brillouin zone (Fig. 4a), where the π and π∗ energy bands of 2D
graphite are degenerate (Fig. 2) by symmetry, then the 1D energy bands have
a zero energy gap. Since the degenerate point corresponds to the Fermi energy,
and the density of states are finite as shown below, SWNTs with a zero band
gap are metallic. When the K point is located between two cutting lines,
the K point is always located in a position one-third of the distance between
two adjacent K1 lines (Fig. 4b) [14] and thus a semiconducting nanotube
with a finite energy gap appears. The rule for being either a metallic or a
semiconducting carbon nanotube is, respectively, that n−m = 3q or n−m �=
3q, where q is an integer [2,8,15,16,17].

Fig. 4. The wave vector k for one-dimensional
carbon nanotubes is shown in the two-
dimensional Brillouin zone of graphite
(hexagon) as bold lines for (a) metallic and
(b) semiconducting carbon nanotubes. In
the direction of K1, discrete k values are
obtained by periodic boundary conditions for
the circumferential direction of the carbon
nanotubes, while in the direction of the K2

vector, continuous k vectors are shown in
the one-dimensional Brillouin zone. (a) For
metallic nanotubes, the bold line intersects
a K point (corner of the hexagon) at the
Fermi energy of graphite. (b) For the semi-
conductor nanotubes, the K point always
appears one-third of the distance between
two bold lines. It is noted that only a few
of the N bold lines are shown near the
indicated K point. For each bold line, there
is an energy minimum (or maximum) in the
valence and conduction energy subbands,
giving rise to the energy differences Epp(dt)
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The 1D density of states (DOS) in units of states/C-atom/eV is calculated
by

D(E) =
T

2πN

∑
±

N∑
µ=1

∫
1∣∣∣dE±
µ (k)

dk

∣∣∣δ(E±
µ (k) − E)dE, (16)

where the summation is taken for the N conduction (+) and valence (−)
1D bands. Since the energy dispersion near the Fermi energy (10) is linear,
the density of states of metallic nanotubes is constant at the Fermi energy:
D(EF) = a/(2π2γ0dt), and is inversely proportional to the diameter of the
nanotube. It is noted that we always have two cutting lines (1D energy bands)
at the two equivalent symmetry points K and K ′ in the 2D Brillouin zone in
Fig. 3. The integrated value of D(E) for the energy region of Eµ(k) is 2 for
any (n,m) nanotube, which includes the plus and minus signs of Eg2D and
the spin degeneracy.

It is clear from (16) that the density of states becomes large when the
energy dispersion relation becomes flat as a function of k. One-dimensional
van Hove singularities (vHs) in the DOS, which are known to be propor-
tional to (E2 − E2

0 )−1/2 at both the energy minima and maxima (±E0) of
the dispersion relations for carbon nanotubes, are important for determin-
ing many solid state properties of carbon nanotubes, such as the spectra
observed by scanning tunneling spectroscopy (STS), [18,19,20,21,22], optical
absorption [4,23,24], and resonant Raman spectroscopy [25,26,27,28,29].

The one-dimensional vHs of SWNTs near the Fermi energy come from the
energy dispersion along the bold lines in Fig. 4 near the K point of the Bril-
louin zone of 2D graphite. Within the linear k approximation for the energy
dispersion relations of graphite given by (10), the energy contour as shown
in Fig. 3 around the K point is circular and thus the energy minima of the
1D energy dispersion relations are located at the closest positions to the K
point. Using the small k approximation of (10), the energy differences EM

11(dt)
and ES

11(dt) for metallic and semiconducting nanotubes between the highest-
lying valence band singularity and the lowest-lying conduction band singular-
ity in the 1D electronic density of states curves are expressed by substituting
for k the values of |K1| of (15) for metallic nanotubes and of |K1/3| and
|2K1/3| for semiconducting nanotubes, respectively [30,31], as follows:

EM
11(dt) = 6aC−Cγ0/dt and ES

11(dt) = 2aC−Cγ0/dt. (17)

When we use the number p (p = 1, 2, . . .) to denote the order of the valence
π and conduction π∗ energy bands symmetrically located with respect to
the Fermi energy, optical transitions Epp′ from the p-th valence band to
the p′-th conduction band occur in accordance with the selection rules of
δp = 0 and δp = ±1 for parallel and perpendicular polarizations of the
electric field with respect to the nanotube axis, respectively [23]. However,
in the case of perpendicular polarization, the optical transition is suppressed
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by the depolarization effect [23], and thus hereafter we only consider the
optical absorption of δp = 0. For mixed samples containing both metallic and
semiconducting carbon nanotubes with similar diameters, optical transitions
may appear with the following energies, starting from the lowest energy,
ES

11(dt), 2ES
11(dt), EM

11(dt), 4ES
11(dt), . . ..

In Fig. 5, both ES
pp(dt) and EM

pp(dt) are plotted as a function of nanotube
diameter dt for all chiral angles at a given dt value. [3,4,11]. This plot is very
useful for determining the resonant energy in the resonant Raman spectra
corresponding to a particular nanotube diameter. In this figure, we use the
values of γ0 = 2.9eV and s = 0, which explain the experimental observations
discussed in the experimental section.

Fig. 5. Calculation of the energy separations Epp(dt) for all (n, m) values as a
function of the nanotube diameter between 0.7 < dt < 3.0 nm (based on the work
of Kataura et al. [3]). The results are based on the tight binding model of Eqs. (6)
and (7), with γ0 = 2.9 eV and s = 0. The open and solid circles denote the peaks of
semiconducting and metallic nanotubes, respectively. Squares denote the Epp(dt)
values for zigzag nanotubes which determine the width of each Epp(dt) curve. Note
the points for zero gap metallic nanotubes along the abscissa [11]

1.2 Trigonal Warping Effects in the DOS Windows

Within the linear k approximation for the energy dispersion relations of
graphite, Epp of (17) depends only on the nanotube diameter, dt. However,
the width of the Epp band in Fig. 5 becomes large with increasing Epp [11].

When the value of |K1| = 2/dt is large, which corresponds to smaller
values of dt, the linear dispersion approximation is no longer correct. When
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we then plot equi-energy lines near the K point (see Fig. 3), we get circular
contours for small k values near the K and K ′ points in the Brillouin zone,
but for large k values, the equi-energy contour becomes a triangle which
connects the three M points nearest to the K-point (Fig. 6). The distortion
in Fig. 3 of the equi-energy lines away from the circular contour in materials
with a 3-fold symmetry axis is known as the trigonal warping effect.

In metallic nanotubes, the trigonal warping effects generally split the DOS
peaks for metallic nanotubes, which come from the two neighboring lines near
the K point (Fig. 6). For armchair nanotubes as shown in Fig. 6a, the two
lines are equivalent to each other and the DOS peak energies are equal, while
for zigzag nanotubes, as shown in Fig. 6b, the two lines are not equivalent,
which gives rise to a splitting of the DOS peak. In a chiral nanotube the two
lines are not equivalent in the reciprocal lattice space, and thus the splitting
values of the DOS peaks are a function of the chiral angle.

Fig. 6. The trigonal warping effect of the van Hove singularities. The three bold
lines near the K point are possible k vectors in the hexagonal Brillouin zone of
graphite for metallic (a) armchair and (b) zigzag carbon nanotubes. The minimum
energy along the neighboring two lines gives the energy positions of the van Hove
singularities

On the other hand, for semiconducting nanotubes, since the value of the k
vectors on the two lines near the K point contribute to different spectra,
namely to that of ES

11(dt) and ES
22(dt), there is no splitting of the DOS

peaks for semiconducting nanotubes. However, the two lines are not equiva-
lent Fig. 4b, and the ES

22(dt) value is not twice that of ES
11(dt). It is pointed

out here that there are two equivalent K points in the hexagonal Brillouin
zone denoted by K and K ′ as shown in Fig. 4, and the values of ES

ii(dt) are
the same for the K and K ′ points. This is because the K and K ′ points
are related to one another by time reversal symmetry (they are at opposite
corners from each other in the hexagonal Brillouin zone), and because the
chirality of a nanotube is invariant under the time-reversal operation. Thus,
the DOS for semiconducting nanotubes will be split if very strong magnetic
fields are applied in the direction of the nanotube axis.
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The peaks in the 1D electronic density of states of the conduction band
measured from the Fermi energy are shown in Fig. 7 for several metallic (n,m)
nanotubes, all having about the same diameter dt (from 1.31 nm to 1.43 nm),
but having different chiral angles: θ = 0◦, 8.9◦, 14.7◦, 20.2◦, 24.8◦, and 30.0◦

for nanotubes (18,0), (15,3), (14,5), (13,7), (11.8), and (10,10), respectively.
When we look at the peaks in the 1D DOS as the chiral angle is varied
from the armchair nanotube (10,10) (θ = 30◦) to the zigzag nanotube (18,0)
(θ = 0◦) of Fig. 7, the first DOS peaks around E = 0.9 eV are split into two
peaks whose separation in energy (width) increases with decreasing chiral
angle.

This theoretical result [11] is important in the sense that STS (scan-
ning tunneling spectroscopy) [22] and resonant Raman spectroscopy exper-
iments [25,27,28,29] depend on the chirality of an individual SWNT, and
therefore trigonal warping effects should provide experimental information
about the chiral angle of carbon nanotubes. Kim et al. have shown that the
DOS of a (13, 7) metallic nanotube has a splitting of the lowest energy peak
in their STS spectra [22], and this result provides direct evidence for the
trigonal warping effect. Further experimental data will be desirable for a sys-
tematic study of this effect. Although the chiral angle is directly observed by
scanning tunneling microscopy (STM) [32], corrections to the experimental
observations are necessary to account for the effect of the tip size and shape
and for the deformation of the nanotube by the tip and by the substrate [33].
We expect that the chirality-dependent DOS spectra are insensitive to such
effects.

In Fig. 8 the energy dispersion relations of (6) along the K–Γ and K–M di-
rections are plotted. The energies of the van Hove singularities corresponding

Fig. 7. The 1D electronic density of states vs energy for several metallic nanotubes
of approximately the same diameter, showing the effect of chirality on the van Hove
singularities: (10,10) (armchair), (11,8), (13,7), (14,5), (15,3) and (18,0) (zigzag).
We only show the density of states for the conduction π∗ bands
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Fig. 8. Splitting of the DOS in zigzag nanotubes. Two minimum energy positions
are found in the conduction band for zigzag nanotubes, (n, 0) measured from the
energy at the K point. Open circles denote metallic carbon nanotubes for k = |K1|
vectors away from the K point along the K → M and K → Γ lines, which are the
directions of the energy minima (see Fig. 6). (The inset shows an expanded view of
the figure at small E/γ0 and small ka for semiconducting nanotubes. The closed
circles denote semiconducting carbon nanotubes for k = |K1|/3 vectors. ) Note
that the maximum of the horizontal axis corresponds to the M point, ka = 2π/3,
which is measured from the K point. A nanotube diameter of 1 nm corresponds to
a (13,0) carbon nanotube

to the lowest 1D energy level are plotted for metallic (open circles) and semi-
conducting (closed circles) zigzag nanotubes (n, 0) by putting ka = |K1|a and
ka = |K1|a/3, respectively. The corresponding energy separation is plotted
in Fig. 5 as solid squares. In the case of (3n + 1, 0) and (3n− 1, 0) semicon-
ducting zigzag nanotubes, ES

11 comes respectively, from the K–Γ and K–M
lines, while ES

22 comes from K–M and K–Γ and so on. In the case of (3n, 0)
metallic zigzag nanotubes, the DOS peaks come from both K–M and K–Γ .
This systematic rule will be helpful for investigating the STS spectra in de-
tail. Using Eqs. (7) and (15), the widths of EM

11 and ES
11, denoted by ∆EM

11
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and ∆ES
11, respectively, are determined by the zigzag nanotubes, and are

analytically given by

∆EM
11(dt) = 8γ0sin2

(
a

2dt

)
, ∆ES

11(dt) = 8γ0sin2

(
a

6dt

)
. (18)

Although this trigonal warping effect is proportional to (a/dt)2, the terms
in (18) are not negligible, since this correction is the leading term in the ex-
pressions for the width ∆Epp(dt), and the factor 8 before γ0 makes this
correction significant in magnitude for dt=1.4 nm. For example, E11(dt) is
split by about 0.18 eV for the metallic (18, 0) zigzag nanotube, and this split-
ting is large enough to be observable by STS experiments. Although the
trigonal warping effect is larger for metallic nanotubes than for semiconduct-
ing nanotubes of comparable diameters, the energy difference of the third
peaks ES

33(dt) = 8γ0 sin2(2a/3dt) between the (17, 0) and (19, 0) zigzag nano-
tubes is about 0.63 eV, using an average dt value of 1.43 nm, which becomes
easily observable in the experiments. These calculations show that the trigo-
nal warping effect is important for metallic single wall zigzag nanotubes with
diameters dt < 2 nm. More direct measurements [22] of the chirality by the
STM technique and of the splitting of the DOS by STS measurements on the
same nanotube would provide very important confirmation of this prediction.

1.3 Phonon Properties

A general approach for obtaining the phonon dispersion relations of carbon
nanotubes is given by tight binding molecular dynamics (TBMD) calculations
adopted for the nanotube geometry, in which the atomic force potential for
general carbon materials is used [25,34]. Here we use the scaled force constants
from those of 2D graphite [2,14], and we construct a force constant tensor for
a constituent atom of the SWNT so as to satisfy the rotational sum rule for
the force constants [35,36]. Since we have 2N carbon atoms in the unit cell,
the dynamical matrix to be solved becomes a 6N × 6N matrix [35,37].

In Fig. 9 we show the results thus obtained for (a) the phonon dispersion
relations ω(k) and (b) the corresponding phonon density of states for 2D
graphite (left) and for a (10,10) armchair nanotube (right). For the 2N = 40
carbon atoms per circumferential strip for the (10,10) nanotube, we have 120
vibrational degrees of freedom, but because of mode degeneracies, there are
only 66 distinct phonon branches, for which 12 modes are non-degenerate
and 54 are doubly degenerate. The phonon density of states for the (10,10)
nanotube is close to that for 2D graphite, reflecting the zone-folded nanotube
phonon dispersion. The same discussion as is used for the electronic structure
can be applied to the van Hove singularity peaks in the phonon density of
states of carbon nanotubes below a frequency of 400 cm−1 which can be
observed in neutron scattering experiments for rope samples.
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Fig. 9. (a) Phonon dispersion relations and (b) phonon DOS for 2D graphite (left)
and for a (10,10) nanotube (right) [35]

There are four acoustic modes in a nanotube. The lowest energy acoustic
modes are the Transverse Acoustic (TA) modes, which are doubly degener-
ate, and have x and y displacements perpendicular to the nanotube z axis.
The next acoustic mode is the “twisting” acoustic mode (TW), which has
θ-dependent displacements along the nanotube surface. The highest energy
mode is the Longitudinal Acoustic (LA) mode whose displacements occur
in the z direction. The sound velocities of the TA, TW, and LA phonons
for a (10,10) carbon nanotube, v

(10,10)
TA , v

(10,10)
TW and v

(10,10)
LA , are estimated

as v
(10,10)
TA =9.42 km/s, v

(10,10)
TW = 15.00 km/s, and v

(10,10)
LA =20.35km/s, re-

spectively. The calculated phase velocity of the in-plane TA and LA modes
of 2D graphite are vG

TA=15.00 km/s and vG
LA=21.11 km/s, respectively. Since

the TA mode of the nanotube has both an ‘in-plane’ and an ‘out-of-plane’
component, the nanotube TA modes are softer than the in-plane TA modes of
2D-graphite. The calculated phase velocity of the out-of-plane TA mode for
2D graphite is almost 0 km/s because of its k2 dependence. The sound veloc-
ities that have been calculated for 2D graphite are similar to those observed
in 3D graphite [10], for which vG3D

TA = 12.3 km/s and vG3D
LA = 21.0 km/s. The

discrepancy between the vTA velocity of sound for 2D and 3D graphite comes
from the interlayer interaction between the adjacent graphene sheets.

The strongest low frequency Raman mode for carbon nanotubes is the
Radial Breathing A1g mode (RBM) whose frequency is calculated to be
165 cm−1 for the (10,10) nanotube. Since this frequency is in the silent
region for graphite and other carbon materials, this A1g mode provides a
good marker for specifying the carbon nanotube geometry. When we plot
the A1g frequency as a function of nanotube diameter for (n,m) in the
range 8 ≤ n ≤ 10, 0 ≤ m ≤ n, the frequencies are inversely proportional
to dt [5,35], within only a small deviation due to nanotube-nanotube in-
teraction in a nanotube bundle. Here ω(10,10) and d(10,10) are, respectively,
the frequency and diameter dt of the (10,10) armchair nanotube, with val-
ues of ω(10,10)=165 cm−1 and d(10,10)=1.357nm, respectively. However, when
we adopt γ0 = 2.90 eV, the resonant spectra becomes consistent when we
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take ω(10,10) = 177 cm−1. As for the higher frequency Raman modes around
1590 cm−1 (G-band), we see some dependence on dt, since the frequencies of
the higher optical modes can be obtained from the zone-folded k values in
the phonon dispersion relation of 2D graphite [26].

Using the calculated phonon modes of a SWNT, the Raman intensities of
the modes are calculated within the non-resonant bond polarization theory, in
which empirical bond polarization parameters are used. [38] The bond param-
eters that we used in this chapter are α‖−α⊥ = 0.04 Å3, α′

‖ +2α′
⊥ = 4.7 Å2,

and α′
‖ − α′

⊥ = 4.0 Å2, where α and α′ denote the polarizability parameters
and their derivatives with respect to bond length, respectively. [35] The eigen-
functions for the various vibrational modes are calculated numerically at the
Γ point (k = 0). When some symmetry-lowering effects, such as defects and
finite size effects occur, phonon modes away from the Γ point are observed in
the Raman spectra. For example, the DOS peaks at 1620 cm−1 related to the
highest energy of the DOS, and some DOS peaks related to M point phonons
can be strong. In general, the lower dimensionality causes a broadening in the
DOS, but the peak positions do not change much. The 1350 cm−1 peaks (D-
band) are known to be defect-related Raman peaks which originate from K
point phonons, and exhibit a resonant behavior [39].

2 Experiment Issues

For the experiments described below, SWNTs were prepared by both laser
vaporization and electric arc methods. In the laser vaporization method, the
second harmonic of the Nd:YAG laser pulse is focused on a metal catalyzed
carbon rod located in a quartz tube filled with 500 Torr Ar gas, which is
heated to 1200◦C in an electric furnace. The laser-vaporized carbon and
catalyst are transformed in the furnace to a soot containing SWNTs and
nanoparticles containing catalyst species.

2.1 Diameter-Selective Formation of SWNTs

The diameter distribution of the SWNTs can be controlled by changing the
temperature of the furnace. In the electric arc method, the dc arc between
the catalyzed carbon anode and the pure carbon cathode produces SWNTs
in He gas at 500 Torr. In the arc method, the diameters of the SWNTs are
controlled by changing the pressure of the He gas. Increasing the temperature
makes larger diameter SWNTs, while the higher ambient gas pressure, up to
760 Torr, makes a larger yield and diameter of SWNTs by the carbon arc
method.

The diameter of SWNTs can be controlled, too, by adopting different cat-
alysts and different relative concentrations of the catalyst species, such as NiY
(4.2 and 1.0 at. %), NiCo (0.6 and 0.6 at. %), Ni (0.6 at. %) and RhPd (1.2 and
1.2 at. %), which have provided the following diameter distributions by the
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laser ablation method with a furnace temperature of 1150 to 1200◦C, respec-
tively, 1.24–1.58nm, 1.06–1.45nm, 1.06–1.45nm and 0.68–1.00nm [3,40]. The
diameter distribution in each case was determined from TEM experiments
and from measurement of the RBM frequencies using Raman spectroscopy
and several different laser excitation energies. It is important to note that the
determination of the frequency of the RBM does not provide a measurement
of the nanotube chirality, though the diameter dependence is well observed
by measurement of the RBM frequency. The diameter distribution is then
obtained if the RBM of a (10,10) armchair nanotube is taken to be 165 cm−1

RBM and γ0 = 2.75 eV [3]. However, if we adopt the value of γ0 = 2.90 eV,
the Raman signal is consistent with 177 cm−1 for a (10,10) armchair nano-
tube. For these larger values of γ0 and ωRBM(10, 10) the diameter distribution
for each catalyst given above is shifted upward by 7%. Most of the catalysts,
except for the RhPd, show very similar diameter distributions for both the
laser vaporization and the electric arc methods at growth conditions giving
the highest yield. In the case of the RhPd catalyst, however, no SWNTs are
synthesized by the arc discharge method, in contrast to a high yield provided
by the laser vaporization method.

2.2 Sample Preparation and Purification

SWNTs are not soluble in any solvent and they cannot be vaporized by
heating at least up to 1450◦C in vacuum. In order to measure the optical ab-
sorption of SWNTs, the sample can be prepared in two possible forms: one is
a solution sample and the other is a thin film. Chen et al. made SWNT solu-
tions by cutting and grinding the nanotube sample [41], and they successfully
measured the optical absorption spectra of undoped and of doped SWNTs
using a solution sample. Kataura and co-workers have developed a so called
“spray method” for thin film preparation [42], whereby the soot containing
SWNTs is dispersed in ethanol and then sprayed onto a quartz plate using
a conventional air-brush which is normally obtained in a paint store. In this
way, the thickness and the homogeneity of the thin film are controlled by the
number of spraying and drying processes, but the thickness of the film (∼
300nm with 20% filling) is not precisely controlled.

In the case of the NiY catalyst, a web form of SWNTs which is pre-
dominantly in the bundle form is obtained by the electric arc method, and
the resulting material can be easily purified by heating in air at 350◦C for
30min and by rinsing out metal particles using hydrochloric acid. The purifi-
cation is effective in removing the nanospheres (soot) and catalyst, and this
is confirmed by TEM images and X-ray diffraction. The nanotube diameter
distribution of the sample can be estimated by TEM observations [43,44], and
the diameter distribution, thus obtained, is consistent with the distribution
obtained using resonance Raman spectroscopy of the RBMs.
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2.3 Diameter-Dependent Optical Absorption

In Fig. 10, the optical absorption spectra of an as-prepared and a purified
SWNT thin film sample are shown, respectively, by the solid and dashed
curves. Both samples are synthesized using the electric arc method and the
NiY catalyst [3]. The three peaks appearing at 0.68, 1.2 and 1.7 eV correspond
to the two semiconductor DOS peaks and the metallic DOS peaks discussed
in the previous section. When we consider the distribution of nanotube di-
ameters, only the first three peaks of the DOS spectra can be distinguished
in relation to the calculation [45], which is consistent with the optical spectra
shown in Fig. 10. Since there is no substantial difference in the spectra be-
tween the as-prepared and purified samples, we can conclude that the peaks
come from the SWNTs. The dotted line denotes the photo-thermal deflection
spectrum (PDS) for the same purified sample. The signal of the PDS data is
proportional to the heat generated by multi-phonon processes involved in the
recombination of the optically pumped electron-hole pairs, and thus the PDS
spectra are considered to be free from light scattering by nano-particles [46].
Furthermore, since carbon black is used as a black body reference, the PDS
reflects the difference in electronic states between SWNTs and amorphous
carbon. These peak structures are more clearly seen in the PDS than in the
absorption spectra, while the peak positions are almost the same as in the
absorption spectra, which indicates that these peaks are not due to light scat-
tering losses. Thus we understand that the residual nanospheres and metal

Fig. 10. Optical density in the absorption spectra of as-prepared (solid line) and pu-
rified (dashed line) SWNT thin film samples synthesized by the electric arc method
using a NiY catalyst [3]. The photo-thermal deflection spectrum (PDS, dotted line)
is also plotted for the same sample, and the spectral features of the PDS data are
consistent with the absorption spectra
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particles in the sample do not seriously affect the optical absorption spectrum
in the energy region below 2 eV. This fact is confirmed by the observation of
no change in the absorption spectra between purified and pristine samples
in which the density of nanoparticles and catalysts are much different from
each other.

The purified sample shows a large optical absorption band at 4.5 eV, which
corresponds to the π-plasmon of SWNTs observed in the energy loss spec-
trum [47], which is not so clearly seen in the as-prepared sample. Figure 11
shows the optical absorption spectra of SWNTs with different diameter dis-
tributions associated with the use of four different catalysts [3]. For conve-
nience, the large background due to the π plasmon is subtracted. The inset
shows the corresponding Raman spectra of the RBMs taken with 488 nm laser
excitation. The diameter distributions can be estimated from the peak fre-
quencies using the rule, ωRBM ∝ (1/dt), where dt is the diameter of a SWNT
that is in resonance with the laser photons [5,35]. Thus, higher lying Raman

Fig. 11. Optical absorption spectra are taken for single wall nanotubes synthe-
sized using four different catalysts, [3,4] namely NiY (1.24–1.58 nm), NiCo (1.06–
1.45 nm), Ni (1.06–1.45 nm), and RhPd (0.68–1.00 nm). Peaks at 0.55 eV and 0.9 eV
are due to absorption by the quartz substrate [3]. The inset shows the correspond-
ing RBM modes of Raman spectroscopy obtained at 488 nm laser excitation with
the same 4 catalysts
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peaks indicate the presence of smaller diameter SWNTs in the sample. The
nanotube diameter distribution can be estimated from the diameter dt de-
pendence of ωRBM ∝ 1/dt, once the proportionality between ωRBM and one
(n,m) nanotube is established, such as for the (10,10) nanotube. Information
on the nanotube diameter distribution is available either by TEM or from
measurement of the ωRBM band for many laser excitation energies Elaser.

A method for determining E11(dt) comes from optical spectra, where the
measurements are made on ropes of SWNTs, so that appropriate corrections
should be made for inter-tube interactions in interpreting the experimental
data [29,48,49,50,51,52,53,54]. In interpreting the optical transmission data,
corrections for the nonlinear k dependence of E(k) away from the K-point
also needs to be considered. In addition, the asymmetry of the 1D electronic
density of states singularities should be taken into account in extracting the
energy Epp(dt) from the absorption line shape. Furthermore, the diameter
distributions of the nanotubes, as well as the difference in gap energies for
nanotubes of different chiralities, but for a given dt, should be considered in
the detailed interpretation of the optical transmission data to yield a value
for γ0. The calculations given in Fig. 5 provide a firm basis for a more detailed
analysis.

Another important issue to address here is the so-called antenna effect
of nanotubes. Since the diameter of SWNTs is much smaller than the wave
length of light, an effective medium theory or other model must be used for
describing the dielectric function of the nanotubes within an aligned nanotube
bundle, for nanotubes that have an arbitrary polarization with respect to the
randomly oriented nanotube bundles, which collectively have an anisotropic
ε1(ω) and ε2(ω). The optical measurements should determine such funda-
mental properties for SWNTs.

Kazaoui et al. [24] have reported optical absorption spectra for doped
SWNTs as shown in Fig. 12, including both donor (Cs) and acceptor (Br), and
they found that the intensity of the absorption peaks decreased, especially for
the lower energy absorption peaks with increasing dopant concentration. In
the undoped SWNTs, three peaks at 0.68 eV, 1.2 eV and 1.8 eV are found in
the absorption spectra in Fig. 12. When the doping concentration x in MxC,
(M = Cs, Br) is less than 0.005, the first peak at 0.68 eV decreases continu-
ously in intensity with increasing x without changing the intensity of the sec-
ond and the third peaks. In subsequent doping in the range 0.005 < x < 0.04,
the two peaks of 0.68 eV and 1.2 eV decrease in intensity. At the high dop-
ing level shown in Fig. 12b, the peak at 1.8 eV smoothes out and new bands
appears at 1.07 eV and 1.30 eV for CBr0.15 and CCs0.10, respectively. These
doping-induced absorption peaks may come from the transition between con-
duction to conduction inter-subband transitions and from valence to valence
inter-subband transitions, respectively, for donor and acceptor type SWNTs.
The difference between the peak positions 1.07 eV and 1.30 eV for acceptor
and donor type SWNTs, respectively, is consistent with the expected magni-
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Fig. 12. (a) Optical absorption spectra for Cs and Br doped SWNT samples for
various stoichiometries x for CCsx and CBrx. The entire set of spectra for the CCsx
samples is offset for clarity with a short line indicating the 0 level. * in the figure
indicates features coming from the quartz substrate and from spectrometer noise.
(b) The absorption spectra for CCsx and CBrx for the almost saturated doping
regime [24]

tude of the asymmetry between the π and π∗ bands. However, the detailed
assignments for the inter-subband transitions which are responsible for the
doping-induced peaks are not clear within the rigid band model.

2.4 Diameter-Dependent Resonance Raman Scattering

In the resonance Raman effect, a large scattering intensity is observed when
either the incident or the scattered light is in resonance with electronic tran-
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sitions between vHs in the valence and conduction bands Epp(dt) for a given
nanotube (n,m) [4,25,27,28,29,55,56,57,58]. In general, the size of the optical
excitation beam is at least 1µm in diameter, so that many nanotubes with a
large variety of (n,m) values are excited by the optical beam simultaneously,
as is also the case for the optical absorption measurements discussed above.
Since it is unlikely that any information on the nanotube chirality distribu-
tion is available experimentally, the assumption of equal a priori probability
can be assumed, so that at a given diameter dt the resonance Raman effect
is sensitive to the width of the Epp(dt) inter-subband transitions plotted in
Fig. 5.

In Fig. 13 are plotted the resonance Raman spectra for SWNT samples
using (a) NiY and (b) RhPd catalysts. The left and right figures for each
sample (see Fig. 13) show the Raman spectra the phonon energy region of the
radial breathing mode and the tangential G-bands, respectively [4]. As a first
approximation, the resonant laser energy for the RBM spectra, and the G-
band Raman spectra are used to estimate the Epp(dt) transition energies,
as shown in Fig. 5, with the diameter distribution for each catalyst. When
the nanotube diameter values of dt = 1.24–1.58 nm and dt = 0.68–1.00nm
are used for the NiY and RhPd catalyst samples, respectively, the resonance
for the metallic nanotubes EM

pp(dt) is seen in the laser energy region around
1.6–2.0 eV and 2.4–2.8 eV, respectively. Hereafter we call this region of laser
energy, which is resonant with metallic nanotubes, the “metallic window”.
This metallic window for the Raman RBM intensity is consistent with the
optical density of the third peaks as a function of laser excitation energy,
as shown in Fig. 14, where for laser excitation energies greater than 1.5 eV,
the optical density (absorption) and the Raman intensity of the RBMs are
consistent both for the NiY and RhPd catalyzed samples.

The metallic window for a given diameter distribution of SWNTs is ob-
tained by the third peak of the optical absorption, as discussed in the pre-
vious subsection, and more precisely by the appearance of Raman intensity
at 1540 cm−1 which can be seen only in the case of a rope sample contain-
ing metallic nanotubes, where the spectra are fit to a Breit–Wigner–Fano
plot [4,27,28,29] as shown in Fig. 2.4.

It is pointed out here that the phonon energies of the G-band are large
(0.2 eV) compared with the RBM phonon (0.02 eV), so that the resonant con-
dition for the metallic energy window is generally different according to the
difference between the RBM and G-band phonon energy. Furthermore, the
resonant laser energies for phonon-emitted Stokes and phonon-absorbed anti-
Stokes Raman spectra (see Sect. 2.5) are different from each other by twice
the energy of the corresponding phonon. Thus when a laser energy is selected,
carbon nanotubes with different diameters dt are resonant between the RBM
and G bands and between the Stokes and anti-Stokes Raman spectra, which
will be described in more detail in the following subsection.
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Fig. 13. Resonance Raman spectra for (a) NiY (top) and (b) RhPd (bottom) cat-
alyzed samples. The left and right figures for each sample show Raman spectra in
the phonon energy region of the RBM and the tangential G-bands, respectively [4]
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Fig. 14. Optical density of the absorption spectra (left scale) and the intensity
of the RBM feature in the Raman spectra are plotted as a function of the laser
excitation energy greater than 1.5 eV for NiY and RhPd catalyzed SWNT samples.
The third peaks correspond to the metallic window [3]

Fig. 15. Breit–Wigner–Fano
plot for the Raman signals
associated with the indi-
cated G-band feature for the
NiY and RhPd catalyzed
samples [3]. The difference
in the fitting parameters in
the figures might reflect the
different density of states at
the Fermi level D(EF) which
have been reported [59]

2.5 Stokes and Anti-Stokes Spectra
in Resonant Raman Scattering

So far, almost all of the resonance Raman scattering experiments have been
carried out on the Stokes spectra. The metallic window is determined experi-
mentally as the range of Elaser over which the characteristic Raman spectrum
for metallic nanotubes is seen, for which the most intense Raman component
is at 1540 cm−1 [28]. Since there is essentially no Raman scattering intensity
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for semiconducting nanotubes at this phonon frequency, the intensity I1540
provides a convenient measure for the metallic window. The normalized in-
tensity of the dominant Lorentzian component for metallic nanotubes Ĩ1540
(normalized to a reference line) has a dependence on Elaser given by

Ĩ1540(d0) =
∑
dt

A exp
[−(dt − d0)2

∆d2
t/4

]
× [(EM

11(dt) − Elaser)2 + Γ 2
e /4]−1

× [(EM
11(dt) − Elaser ± Ephonon)2 + Γ 2

e /4]−1,

(19)

where d0 and ∆ dt are, respectively, the mean diameter and the width of
the Gaussian distribution of nanotube diameters within the SWNT sam-
ple, Ephonon is the average energy (0.197 eV) of the tangential phonons and
the + (−) sign in (19) refers to the Stokes (anti-Stokes) process, Γe is a
damping factor that is introduced to avoid a divergence of the resonant de-
nominator, and the sum in Eq. (19) is carried out over the nanotube diam-
eter distribution. Equation (19) indicates that the normalized intensity for
the Stokes process ĨS

1540(d0) is large when either the incident laser energy is
equal to EM

11(dt) or when the scattered laser energy is equal to EM
11(dt) and

likewise for the anti-Stokes process. Since the phonon energy is on the same
order of magnitude as the width of the metallic window for nanotubes with
diameters dt, the Stokes and the anti-Stokes processes can be observed at
different resonant laser energies in the resonant Raman experiment. The de-
pendence of the normalized intensity Ĩ1540(d0) for the actual SWNT sample
on Elaser is primarily sensitive [27,28,29] to the energy difference EM

11(dt) for
the various dt values in the sample, and the resulting normalized intensity
Ĩ1540(d0) is obtained by summing over dt.

In Fig. 16 we present a plot of the expected integrated intensities Ĩ1540(d0)
for the resonant Raman process for metallic nanotubes for both the Stokes
(solid curve) and anti-Stokes (square points) processes. This figure is used
to distinguishes 4 regimes for observation of the Raman spectra for Stokes
and anti-Stokes processes shown in Fig. 17: (1) the semiconducting regime
(2.19 eV), for which both the Stokes and anti-Stokes spectra receive contri-
butions from semiconducting nanotubes, (2) the metallic regime (1.58 eV),
where metallic nanotubes contribute to both the Stokes and anti-Stokes
spectra, (3) the regime (1.92 eV), where metallic nanotubes contribute to
the Stokes spectra and not to the anti-Stokes spectra, and (4) the regime
(1.49 eV), where the metallic nanotubes contribute only to the anti-Stokes
spectra and not to the Stokes spectra. The plot in Fig. 16 is for a nanotube
diameter distribution dt = 1.49 ± 0.20 nm assuming γe = 0.04 eV. Equa-
tion (17) can be used to determine γ0 from the intersection of the Stokes
and anti-Stokes curves at 1.69 eV in Fig. 16, yielding a value of γ0 = 2.94 ±
0.05 eV [55,60].
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Fig. 16.Metallic window for carbon nanotubes with diameter of dt = 1.49±0.20 nm
for the Stokes (solid line) and anti-Stokes (square points) processes plotted in terms
of the normalized intensity of the phonon component at 1540 cm−1 for metallic
nanotubes vs the laser excitation energy for the Stokes and the anti-Stokes scat-
tering processes [60]. The crossing between the Stokes and anti-Stokes curves is
denoted by the vertical arrow, and provides a sensitive determination of γ0 [55,60]

Fig. 17. Resonant Raman spectra for the Stokes and anti-Stokes process for
SWNTs with a diameter distribution dt = 1.49± 0.20 nm [60]

2.6 Bundle Effects on the Optical Properties
of SWNTs (Fano Effect)

Although the origin of the 1540 cm−1 Breit–Wigner–Fano peak is not well ex-
plained, the Fano peaks are relevant to the bundle effect which is discussed in
this subsection. This idea can be explained by the Raman spectra observed for
the Br2 doped SWNT sample. The frequency of the RBMs are shifted upon
doping, and from this frequency shift the charge transfer of the electrons from
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the SWNTs to the Br2 molecules can be measured [61]. This charge transfer
enhances the electrical conductivity whose temperature dependence shows
metallic behavior [62]. When SWNTs made by the arc method with the NiY
catalyst are used, the undoped SWNT sample exhibits the RBM features
around 170 cm−1. When the SWNTs are doped by Br2 molecules, new RBM
peaks appear at around 240 cm−1 when the laser excitation energy is greater
than 1.8 eV, as shown in Fig. 18a. When the Raman spectra for the fully Br2
doped sample are measured, new features at 260 cm−1 are observed, but the
peak at 260 cm−1 disappears and a new peak at 240 cm−1 can be observed
for laser excitation energy greater than 1.96 eV (see Fig. 18) when the sample
chamber is evacuated at room temperature, and the spectra for the undoped
SWNTs are observed showing RBM peaks around 170 cm−1. Since heating in
vacuum up to 250◦C is needed to remove the bromine completely, the evac-
uated sample at room temperature consists of a partially doped bundle and
an easily undoped portion, which is identified with isolated SWNTs, not in
bundles. Since the Fermi energy shifts downward in the acceptor-doped por-
tion of the sample, no resonance Raman effect is expected in the excitation

Fig. 18. (a) Resonance Raman spectra for bromine doped SWNTs prepared using
a NiY catalyst. The sample is evacuated after full doping at room temperature. An
additional peak around 240 cm−1 can be seen for laser excitation energies greater
than 1.96 eV. (b) (left scale) The optical density of the absorption spectra for pris-
tine (undoped) SWNT samples and (right scale) the intensity ratio of the RBMs
at ∼240 cm−1 appearing only in the doped samples to the RBM at ∼180 cm−1 for
the undoped sample. The additional RBM peaks appear when the metallic window
is satisfied [63]
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energy range corresponding to the semiconductor first and second peaks and
the metallic third peak in the optical absorption spectra. In fact, in Fig. 18b,
the intensity ratio of the Raman peaks around 240 cm−1 to that at 180 cm−1

is plotted by solid circles and the curve connecting these points is shown in
the figure as a function of laser excitation energy. Also shown in the figure
is the corresponding optical absorption spectrum for the pristine (undoped)
sample plotted by the dotted curve. The onset energy of the Raman peaks
at 240 cm−1 is consistent with the energy 2∆EF which corresponds to the
energy of the third metallic peak of the optical absorption. In fact, the opti-
cal absorption of the three peaks disappear upon Br2 doping (Fig.12) [24,41].
The peaks of Raman intensity at 240 cm−1 are relevant to resonant Raman
scattering associated with the fourth or the fifth broad peaks of doped semi-
conductor SWNTs.

Fig. 19. The Raman Spectra for the undoped sample (top) and for the evacuated
sample (bottom) after full Br2 doping at room temperature. The Fano spectral
feature at 1540 cm−1 is missing in the spectrum for the evacuated sample [63]
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For this evacuated sample, the G-band spectra with the laser energy
1.78 eV is shown in Fig. 19. This laser energy corresponds to an energy in the
metallic window, but no resonance Raman effect is expected from the doped
bundle portion, as discussed above. Thus the resonant Raman spectra should
be observed only in metallic nanotubes in the undoped portion of the sample
which is considered to contain only isolated SWNTs. Surprisingly there are
no 1540 cm−1 Fano-peaks for such an evacuated sample, although the un-
doped sample has a mixture 1590 cm−1 and 1540cm−1 peaks, as shown in
Fig. 19 for comparison. Thus it is concluded that the origin of the 1540 cm−1

peaks is relevant to the nanotubes located within bundles. The interlayer
interaction between layers of SWNTs is considered to be on the order of
5–50 cm−1 [29,48,49,50,52,53,54] and thus the difference between 1590 cm−1

and 1540 cm−1 is of about the same order of magnitude as the interlayer in-
teraction. One open issue awaiting solution is why the 1540 cm−1 peaks are
observed only when the metallic nanotube is within a bundle, and when the
laser excitation is within the metallic window and corresponds to an inter-
band transition contributing to the optical absorption. Thus the mechanism
responsible for the 1540 cm−1 peak is not understood from a fundamental
standpoint.

2.7 Resonance Raman Scattering of MWNTs

Multi-walled carbon nanotubes (MWNTs) prepared by the carbon arc
method are thought to be composed of a coaxial arrangement of concen-
tric nanotubes. For example, 13C-NMR [64] and magnetoresistance measure-
ments [65,66] show Aharonov–Bohm effects that are associated with the con-
centric tube structures. On the other hand, the thermal expansion measure-
ments [67] and the doping effects [68] suggest that some kinds of MWNTs
have scroll structures. If the RBMs, which are characteristic of SWNTs [35],
are observed in MWNTs, the RBM Raman spectra might provide experimen-
tal evidence for the coaxial structure. In many cases, however, MWNTs have
very large diameters compared with SWNTs even for the innermost layer of
the nanotube, and no one has yet succeeded in observing the RBMs in large
diameter MWNTs. Zhao and Ando have succeeded in synthesizing MWNTs
with an innermost layer having a diameter less than 1.0 nm, by using an elec-
tric arc operating in hydrogen gas [69]. The spectroscopic observations on this
sample revealed many Raman peaks in the low frequency region, which these
RBM frequencies can be used to assign (n,m) values for some constituent
layers of MWNTs [70]. Since the resonance Raman effect can be observed in
MWNTs (see Fig. 20), we can be confident that these low frequency features
are associated with RBMs.

Several MWNT samples have been prepared by the carbon arc method
using a range of hydrogen pressures from 30 to 120 Torr, and yielding good
MWNT samples under all of these operating conditions. Relative yields de-
pend on the hydrogen pressure and on the arc current [69], with the highest
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Fig. 20. The resonant Raman
spectra of multi-wall carbon
nanotubes with very small in-
nermost diameters that grow
preferentially using an electric
arc in hydrogen gas [71]

yield of MWNTs being obtained at 60 Torr of hydrogen gas pressure. The
sample purity, after purification of the sample, which was characterized us-
ing an infrared lamp, is over 90% MWNTs and the diameter distribution
of the innermost shell was measured by TEM. Most of the MWNTs have
diameters of the innermost shell of about 1.0 nm, and sometimes innermost
diameters less than 0.7 nm were observed.

In Fig. 20 resonance Raman scattering of samples synthesized under dif-
ferent conditions have been measured, and RBM peaks have been observed
from 200 to 500 cm−1[63]. Peaks between 150 and 200 cm−1 are due to the
air. In fact these peaks of O2 and N2 are commonly observed not only for the
MWNT sample but also for the quartz substrate and they are not observed
in Ar gas. Peaks above 200 cm−1 show very sharp resonances, which strongly
suggest that these structures originate from the RBM vibrations of nano-
tubes. Resonance effects for each peak are similar to those of single-walled
nanotubes. However, the peak frequencies are about 5% higher than those
of single-walled nanotubes with the same diameter, which might be due to
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the inter-layer interaction. For example, the RBM peak at 280 cm−1 shows
a maximum intensity at 2.41 eV. This is the same behavior as the peak at
268 cm−1 in SWNTs. This fact is consistent with the recent calculation of
bundle effects on the RBM frequency of SWNTs which predict a 10% upshift
in the mode frequency due to tube–tube interactions [53]. From the simple
relationship between nanotube diameter and RBM frequency [35], the candi-
date nanotube shells for the peak at 490 cm−1 are (5,1), (6,0), (4,3) and (5,2)
having RBM frequencies at 509.6, 472.8, 466.4 and 454.3 cm−1, respectively.
If we take into account the 5% up-shift due to the interlayer interactions, the
candidates are narrowed down to the nanotube shells (6,0), (4,3) and (5,2),
which have diameters of 0.470, 0.477 and 0.489 nm, respectively, and these
diameters are consistent with the TEM observations. It is very interesting
that the (6,0) nanotube has the same structure as D6h C36 which has D6h

symmetry [72]. However, we also have to consider the electronic states of
the nanotube to clearly identify the resonance effect. By use of the zone-
folding band calculation [2,8,16], assuming a transfer integral γ0 = 2.75 eV,
it is found that (6,0) and (5,2) are metallic nanotubes and have their lowest
energy gap EM

11 at 4.0 eV. The resonance laser energy, where the RBM peak
has a maximum intensity, occurs at 1.7 eV, and the peak at 490 cm−1 was
assigned to the (4,3) nanotube which is a semiconductor, and has its lowest
energy gap ES

11 at 1.6 eV. In the same way, the candidates (7,1) and (5,4) were
considered for the Raman band at 388 cm−1. The nanotube (7,1) is metallic
and the lowest energy gap EM

11 is at 3.4 eV, while the (5,4) nanotube should
be semiconducting and is expected to have ES

11 and ES
22 at 1.28 and 2.52 eV,

respectively. Thus, the peak at 388 cm−1 should be assigned to the nanotube
shell (5,4) because of the resonance observed at 2.4 eV[71].

Finally we consider the interlayer interactions in MWNTs. The RBM band
in Fig. 20 at 490 cm−1 is split into three peaks indicating the same resonance
feature. These peaks cannot be explained by different nanotubes, since there
are no other candidates available. The nanotube (5,1) is the only candidate
having the nearest diameter and the nearest energy gap in the optical spec-
tra. However, the calculated energy gap of a (5,1) nanotube is 1.7 eV, which
is 0.1 eV wider than that for a (4,3) nanotube. If one of the peaks originates
from a (5,1) nanotube, the resonance feature should be different from that for
the other peaks. Further, the RBM frequency of a (5,1) nanotube becomes
534 cm−1, taking into account the 5% up-shift due to the inter-tube interac-
tion in a nanotube bundle. Thus, it is proper to think that these three peaks
are originating from the same nanotube. The possible reason for the splitting
of this peak is the interlayer interaction. When the first layer is (4,3), then
(10,7) is the best selection as the second layer, since the interlayer distance
is 0.342 nm, which is a typical value for MWNTs [73]. The other nearest can-
didates for the second layers are (13,3), (9,8) and (11,6) having inter-layer
distances 0.339, 0.339 and 0.347 nm, respectively. The interlayer distance for
the (13,3) and (9,8) candidates are about the same (about 1% smaller) as
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the typical inter-layer distance, and but the interlayer distance for the (11,6)
nanotube is 1.5% larger. The magnitude of the interlayer interaction should
depend on the interlayer distance, and, consequently, the RBM frequency of
the first layer may depend on the chiral index of the second layer. Indeed,
the observed frequency separation between the split peaks is about 2%, which
may be consistent with the difference in interlayer distances. The splitting
into three RBM probably indicates that there are at least three kinds of
second layers. Furthermore, this splitting cannot be explained by a scrolled
structure for MWNTs. This strongly suggests that the MWNTs fabricated by
the electric arc operating in hydrogen gas has a concentric structure. For the
thinnest nanotube (4,3), the RBM frequency of the second layer is 191 cm−1.
This should be the highest RBM frequency of the second layer nanotube.
Since the low frequency region is affected by signals from the air, Raman
spectra were taken while keeping the sample in argon gas. However, no peak
was observed below 200 cm−1, suggesting that only the innermost nanotube
has a significant Raman intensity. The innermost layer has only an outer
nanotube as a neighbor, while the other nanotubes, except for the outermost
layer, have both inner and outer nanotube neighbors.

The interlayer interaction probably broadens the one-dimensional band
structure, in a like manner to the bundle effect in SWNTs [48,49,50,51,52,29]
[53,54]. The band broadening decreases the magnitude of the joint density
of states at the energy gap, leading to a decrease in the resonant Raman
intensity of the second layer. On the other hand, the RBM frequency of the
outermost layer is too low to measure because of its large diameter. Thus,
RBMs are observed in MWNTs only for the innermost nanotubes. Theoret-
ical calculations show that SWNTs with diameters smaller than C60 show
metallic behavior because of the hybridization effect of the 2pz orbital with
that of the σ electron [74,75]. The hybridization effect lowers the energy of the
conduction band and raises the energy of the valence band, which results in
the semi-metallic nature of the electronic states. However, the electrostatic-
conductance of two-probe measurement of MWNTs shows that semiconduct-
ing nanotubes seems to be dominant in this diameter region[76]. Thus it is
necessary to investigate the electronic properties of SWNTs with diameters
smaller than that of C60.

3 Summary

In summary, the spectra of the DOS for SWNTs have a strong chirality de-
pendence. Especially for metallic nanotubes, the DOS peaks are found to be
split into two peaks because of the trigonal warping effect, while semiconduct-
ing nanotubes do not show a splitting. The width of the splitting becomes a
maximum for the metallic zigzag nanotubes (3n, 0), and is zero for armchair
nanotubes (n, n), which are always metallic. In the case of semiconducting
nanotubes, the upper and lower bounds of the peak positions of ES

11(dt) on
the Kataura chart shown in Fig. 5 are determined by the values of ES

11(dt) for
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the (3n + 1, 0) or (3n− 1, 0) zigzag nanotubes. The upper and lower bounds
of the widths of the ES

ii(dt) curves alternate with increasing i between the
(3n + 1, 0) and (3n− 1, 0) zigzag nanotubes.

The existence of a splitting of the DOS spectra for metallic nanotubes
should depend on the chirality which should be observable by STS/STM
experiments, consistent with the experiments of Kim et al. [22]. The width
of the metallic window can be observed in resonant Raman experiments,
especially through the differences between the analysis for the Stokes and
the anti-Stokes spectra. Some magnetic effects should be observable in the
resonant Raman spectra because an applied magnetic field should perturb the
1D DOS for the nanotubes, since the magnetic field will break the symmetry
between the K and K ′ points. The magnetic susceptibility, which has been
important for the determination of γ0 for 3D graphite [77,78], could also
provide interesting results regarding a determination of Epp(dt) for SWNTs,
including the dependence of Epp(dt) on dt.

Purification of SWNTs to provide SWNTs with a known diameter and
chirality should be given high priority for future research on carbon nanotube
physics. Furthermore, we can anticipate future experiments on SWNTs which
could illuminate phenomena showing differences in the E(k) relations for
the conduction and valence bands of SWNTs. Such information would be of
particular interest for the experimental determination of the overlap integral s
as a function of nanotube diameter. The discussion presented in this article
for the experimental determination of Epp(dt) depends on assuming s = 0,
in order to make direct contact with the tight-binding calculations. However,
if s �= 0, then the determination of Epp(dt) would depend on the physical
experiment that is used for this determination, because different experiments
emphasize different k points in the Brillouin zone. The results of this article
suggest that theoretical tight binding calculations for nanotubes should also
be refined to include the effect of s �= 0. Higher order (more distant neighbor)
interactions should yield corrections to the lowest order theory discussed here.

The 1540 cm−1 feature appears only in the Raman spectra for a metal-
lic bundle, but not for semiconducting SWNTs nor for individual metallic
SWNTs. The inter-tube interaction in MWNTs gives 5% higher RBM mode
frequencies than in SWNT bundles, and the intertube-interaction effect be-
tween the MWNT innermost shell and its adjacent outer shell is important
for splitting the RBM peaks of a MWNT sample.

Acknowledgments

The authors gratefully acknowledge stimulating and valuable discussions with
Profs. M.S. Dresselhaus and G. Dresselhaus for the writing of this chapter.
R.S. and H.K. acknowledge a grant from the Japanese Ministry of Education
(No. 11165216 and No. 11165231), respectively. R.S. acknowledges support
from the Japan Society for the Promotion of Science for his visit to MIT.



244 Riichiro Saito and Hiromichi Kataura

H.K. acknowledges the Japan Society for Promotion of Science Research for
support for the Future Program.

References

1. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and
Carbon Nanotubes (Academic, New York 1996) 213, 214

2. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon
Nanotubes (Imperial College Press, London, 1998) 213, 214, 215, 216, 217,
218, 224, 241

3. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka,
Y. Achiba, Synth. Met. 103, 2555 (1999) 213, 220, 227, 228, 229, 234

4. H. Kataura, Y. Kumazawa, N. Kojima, Y. Maniwa, I. Umezu, S. Masubuchi,
S. Kazama, X. Zhao, Y. Ando, Y. Ohtsuka, S. Suzuki, Y. Achiba In Proc. of the
Int. Winter School on Electronic Properties of Novel Materials (IWEPNM’99),
H. Kuzmany, M. Mehring, J. Fink (Eds.) (American Institute of Physics, Wood-
bury 1999) AIP Conf. Proc. (in press) 213, 219, 220, 229, 232, 233

5. S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, P. C. Ek-
lund, Phys. Rev. Lett. 80, 3779 (1998) 213, 225, 229

6. J. C. Charlier and S. Iijima, Chapter 4 in this volume 213
7. M. S. Dresselhaus, G. Dresselhaus, R. Saito, Phys. Rev. B 45, 6234 (1992) 214
8. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 46, 1804
(1992) 216, 218, 241

9. G. S. Painter, D. E. Ellis, Phys. Rev. B 1, 4747 (1970) 216
10. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg,

Graphite Fibers and Filaments , Vol. 5, Springer Ser. Mater. Sci. (Springer,
Berlin, Heidelberg 1988) 216, 225

11. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 61, 2981 (2000) 217,
220, 222

12. P. R. Wallace, Phys. Rev. 71, 622 (1947) 216
13. J. W. McClure, Phys. Rev. 104, 666 (1956) 216
14. R. A. Jishi, D. Inomata, K. Nakao, M. S. Dresselhaus, G. Dresselhaus, J. Phys.

Soc. Jpn. 63, 2252 (1994) 217, 218, 224
15. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992) 218
16. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60,

2204 (1992) 218, 241
17. K. Tanaka, K. Okahara, M. Okada, T. Yamabe, Chem. Phys. Lett. 191, 469

(1992) 218
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