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Foreword

In the twenty first century much of Applied Science is concerned with prob-

lems of great subtlety and complexity, and the greater the difficulty the

more sophisticated are the mathematical and computational techniques

needed in order to make significant progress. It is therefore particularly

unfortunate that the gap between applied scientists and mathematicians is

growing, indeed one is tempted to say has grown, so large that these groups

are usually unable to understand each other and so to communicate. The

training of undergraduate applied scientists frequently fails to cover even

the basic level of the powerful mathematical tools available. On the other

hand, mathematical students often learn little about the problems which

originally motivated the very mathematics they are studying. Thus com-

munication between the various groups at research level is often exceedingly

difficult, and as a consequence joint research, essential now in many areas,

faces major obstacles. It is thus timely that the present volume, which is

aimed at bridging the gap, should appear.

The book is aimed, on the one hand, at those who study that part

of Applied Science dealing with the properties and dynamics of materials,

that is Continuum Mechanics. “Materials” in this context may cover a wide

range of substances, from fluids to steel to exotic plastics for example with

memory; such a range is of obvious importance to almost all types of engi-

neering disciplines, including aeronautics, metallurgy, and civil engineering

to mention just a few. Less obvious perhaps, but just as important, is the

central role of Continuum Mechanics in several other branches of Applied

Science, for example Earth Science, where the properties and movements of

the core and mantel of the earth are much studied in traditional contexts

such as Volcanology, but also have recently become headline issues with

their connection with the safety of storage of nuclear waste.

v
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On the other hand, the book will be of interest to the many mathemati-

cians who are unaware of the wide range of problems to which mathematics

may be applied in an interesting and effective manner. They may also be

unfamiliar with the extension of standard results which are needed in appli-

cations. Thus for example, although functional analysts will know a great

deal about Banach spaces and linear operators on them, they may not be fa-

miliar with how solving practical problems necessitated the introduction of

Sobolev Spaces and of generalised solutions for a whole class of differential

equations.

A brief outline of the approach of the authors is as follows. The aim is

to start with classical Newtonian Mechanics and then to proceed to show

carefully how the basic structure of the governing equations of continuum

mechanics are developed. Of course it would be impossible in a single vol-

ume to cover the ramifications of this vast subject, however, the methods

the authors put in place form the basis for extension to rather general set-

tings. In the development, some key tools of mathematics are introduced

naturally and it is shown how they are instrumental in gaining insight into

the applications. The first is the Calculus of Variations. The great power

of this theory is perhaps unfamiliar to most people without a consider-

able mathematical background, and the authors outline how effective its

methods are in deriving the basic equations as well as in devising powerful

solution techniques including numerical methods.

The second main mathematical area introduced is Functional Analysis,

the basic theory of which is developed here. Several of its wide-ranging

implications are covered in the book. In particular, the authors describe

with great elegance how the idea of a generalised solution, which may at

first sound obscure, actually much simplifies the analysis of the differential

equations associated with continuum mechanics, and in particular is im-

portant in understanding the meaning and accuracy of numerical methods,

particularly when they are applied to common engineering problems with,

for example, discontinuous loads.

The book is written jointly by an engineer and a mathematician, and is

sensitive to the background of both applied scientists and mathematicians.

The authors take great care to introduce the material in such a way that

it is readily available and interesting to each group. I believe that many

students and researchers in both categories would benefit a great deal from

a study of this excellent volume.

University of Sheffield V. Hutson

England
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Preface

In the early days of mechanics, it was not uncommon for investigators to

develop mathematical methods to fit their immediate needs. Modern math-

ematicians and mechanicists, on the other hand, are often too specialized

to understand each other at all. This book is an attempt to relate contin-

uum mechanics with some methods of contemporary mathematics, and to

present the latter in a sound mechanical context.

Of course, each topic we treat (e.g., functional analysis, the calculus of

variations) has its own vast literature, and we naturally restrict ourselves

to those portions needed for our purposes. But even a mathematically

prepared reader can benefit from seeing how abstract notions arose from

applications. For example, generalized solutions to boundary value prob-

lems are closely related to solutions obtained via the extremal principles

of mechanics. S.L. Sobolev, who pioneered the use of such solutions and

introduced the functional spaces that now bear his name, understood this

link because he discovered generalized solutions while solving a hydrome-

chanics problem. But later mathematicians who developed the theory did

not maintain this relationship with mechanics. The same thing happened

throughout mathematics; ultimately the phenomenon can be attributed to

overspecialization of researchers working in the area.

Narrow specialization has led us to the point where experts in different

areas cannot communicate. Even those working in closely-related subareas

can fail to perceive common points between their disciplines. These points

exist precisely because they were inherited from older versions of scientific

theory, of course, but many specialists lack the historical perspective nec-

essary to see this. They regard the methods they employ as essentially

independent of other areas. This partially explains why we decided to start

with classical mechanics, although many readers will be familiar with much

vii
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of it already. Our plan is to examine continuum mechanics as a growing

discipline in which one model arises on the basis of pre-existing models,

and therefore inherits certain properties while disregarding others. Size

constraints prevent us from covering classical mechanics in detail, so we

merely stress those points that show how continuum mechanics developed.

We take a somewhat unified view of mechanics as a science rooted in the

simple models of a particle and rigid body, and then move to more compli-

cated models. We hope this will assist readers coming from various areas

in mechanics, engineering, and mathematics.

Plan of the Book. The book is meant to partially bridge the gap be-

tween mathematics and mechanics. It presents a set of topics that were

developed in mechanics as mathematical tools.

The purpose of Chapter 1 is to review some elementary ideas of clas-

sical mechanics. Although the objects of classical mechanics — particles

and rigid bodies — are elementary, the mathematical techniques needed

to describe them are not. Hence we also introduce some older portions

of mathematics that were developed for application in mechanics. These

include the calculus of variations, the elements of Lagrangian mechanics

(which we will not use in the sequel but which is important in its own right

in many applications), and basic functional analysis. Thus the first chapter

is preparation for the introduction and discussion of continuum mechanics.

Equipped with the necessary tools, we can begin working with the ob-

jects of continuum mechanics in Chapters 2 and 3. Some — like the spring,

string, and bar — are quite elementary. Others — like the beam, mem-

brane, and linearly elastic body — are more advanced. Each time we start

by deriving the equations that describe the object. Then we introduce

well-posed formulations for practical problems. Finally, we study these

formulations using mathematical methods. From Chapter 2 onward, the

models considered are not those of classical mechanics. We use results and

equations from classical mechanics, but apply them only after introducing

certain assumptions that may be regarded as additional axioms for the de-

formable objects. The two most important hypotheses are the continuum

assumption and the solidification principle. These permit us to apply the

tools of calculus and the equations of mechanics to deformable objects.

Next, we introduce other assumptions such as the smallness of deforma-

tions and linearity in the form of Hooke’s law. In this way we encounter a

few of the models mentioned above. While it might seem that the model

of a three-dimensional elastic body should encompass all the other models,
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this is not the case. The string and membrane models are independent of

the model of a three-dimensional body. And the bar and beam models are

based on additional hypothesis, so these can be regarded as independent of

the three-dimensional model as well.

Unlike classical mechanics where the focus is on initial value problems,

in continuum mechanics we encounter boundary value problems for statics

and initial-boundary value problems for dynamics. The statics problems

for the bar, beam, and string are described by ordinary differential equa-

tions and associated boundary conditions. Although the resulting boundary

value problems for these objects are relatively simple and can be solved us-

ing elementary tools, we take the opportunity to introduce a more powerful

approach that also applies to problems involving membranes and three-

dimensional bodies. This is the notion of generalized solution as the point

of minimum total energy for the “body-force system.” Using this mechan-

ical principle, we convert each boundary value problem for an equation or

system of equations to a problem of minimizing the total energy. In the

process, we come to adopt a very different point of view. Indeed, the me-

chanics of a problem can dictate certain conditions that are necessary for

solution but that may not be evident from a purely mathematical point of

view. Moreover, questions such as solvability or uniqueness of a generalized

solution will naturally lead us into the realm of functional analysis with its

generalized derivatives, Sobolev spaces, and many abstract results.

Despite the abstractness of these studies, they lead to very practical

outcomes. The various finite element methods, along with many other

numerical methods upon which engineers have come to rely, have these

generalized solutions as limits of the resulting numerical approximations.

So to understand how practical numerical methods work, one should study

the questions presented in this book.

For each mechanical object we cover in this book, we present a deriva-

tion of the governing equations that permit engineers to solve practical

problems. We also present mathematical tools necessary to study the re-

lated boundary value problems. Many of the objects under consideration

require only the calculus of functions in one or two variables. The linearly

elastic body, however, is presented in the context of tensor analysis. The

tensor apparatus, while not strictly required in this relatively simple case,

is needed to develop the theories for the corresponding nonlinear and in-

elastic models. Moreover, the tensorial notation is of value in its own right

because of the compact and vivid representation it provides.

In Chapter 3 we touch on some questions concerning vibration. Here the
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reader can see how the abstract theorems of functional analysis yield results

basic in engineering such as the discrete nature of the eigenfrequencies of

certain systems while also providing a firm background for topics such as

Fourier analysis and the method of separation of variables.

In this book we attempt to present only a minimal set of mathemat-

ical tools needed for the qualitative investigation of mechanics problems.

We demonstrate that a knowledge of mechanics can assist the pure math-

ematician, while at the same time a knowledge of mathematics can lead

to a deeper understanding of purely mechanical questions. We accomplish

these things in an unconventional but organized manner, progressing from

simple models to three-dimensional linear elasticity.

Clearly, a great many questions in continuum mechanics are of mutual

interest to mathematicians and engineers. A large number of these lie

outside the scope of this small book, but are important nevertheless. We ask

the reader to bear in mind that the present book is only a brief introduction

to the interaction between mechanics and pure mathematics. As such, it

cannot be complete.
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Some Notation

{x : P (x)} set of all x such that proposition P (x) holds

x ∈ A x belongs to the set A

ux or ∂u/∂x partial derivative with respect to single variable

Dα multi-index notation for partial derivative

u̇ time derivative of u

R
n n-dimensional Euclidean space

x vector in Euclidean space

0 zero vector in Euclidean space

x2 x · x
x abstract vector

δij , δ
ij , or δj

i Kronecker delta

d(·, ·) metric, distance function

(S, d) metric space

‖·‖ norm

‖·‖X norm on space X

(S, ‖·‖) normed space

(·, ·), 〈·, ·〉 inner products

H Hilbert space

X normed space, Banach space

E energy space

Ω compact domain

Lp(Ω) Lebesgue space; space of elements absolutely integrable

with degree p over Ω

Wm,n(Ω) Sobolev space

C(Ω) functions continuous on Ω

xi



December 24, 2008 10:59 World Scientific Book - 9in x 6in elasticity

xii Introduction to Mathematical Elasticity

C(n)(Ω) functions continuous and having continuous

derivatives up to order n on Ω

{xn} sequence

{xn1} subsequence of sequence {xn}
xn → x (strong) convergence of {xn} to x

xn ⇀ x weak convergence of {xn} to x

A ↪→ B embedding

� end of proof

supS supremum (least upper bound) of set S

inf S infimum (greatest lower bound) of set S

maxS maximum of set S

minS minimum of set S

| · | absolute value, magnitude

det(·) or | · | determinant

δu virtual displacement

E energy functional

α complex conjugate of α

A+̇B direct sum

M⊥ orthogonal complement of M
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Chapter 1

Models and Ideas of Classical

Mechanics

1.1 Orientation

An introductory section is usually written to convince readers that their

lives will be incomplete unless they buy the book. At some risk, the present

authors would like to state that a reader will profit most from this book if

he or she seeks a clearer view of continuum mechanics from two concurrent

viewpoints: that of the engineer, and that of the mathematician.

Continuum mechanics, which began with simple problems in hydrome-

chanics and the strength of materials, spans multiple theories including

elasticity, plasticity, and viscoelasticity. It employs models describing not

only how objects deform under load, but their thermal, electric, and mag-

netic properties. The various sub-theories within continuum mechanics can

reach high degrees of complexity. We will ultimately focus on the linearized

theory of elasticity, a departure point for many extensions of basic contin-

uum mechanics.

Any engineer will know at least some elements of continuum mechanics.

(It is worth noting that James Clerk Maxwell utilized notions from hy-

drodynamics when formulating his famous equations of electromagnetism.)

The understanding of a typical applied mathematician is, however, quite

different. To a mathematician working in the theory of shells, say, the

whole subject may commence with a statement of the form “The following

system of partial differential equations describes a shell in equilibrium. Sup-

plementing these with the boundary conditions, we arrive at the boundary

value problem considered in the next 300 pages.” Then the mathematician

can forget what was denoted by u or F : he or she can begin to play with

equations in a manner completely divorced from physical considerations.

Engineers and mathematicians are therefore unlikely to understand each

1
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other, even when discussing the same problem. The commonality between

their worlds is minimal. The purpose of the present book is to address

this unfortunate gap. Only a better mutual understanding can further the

collaborative efforts of these two technical communities. Mathematicians

should understand that the physical models they view as axioms are ac-

tually derived under rather crude assumptions. A mathematician can run

into trouble by oversimplifying the behavior of a real object or unwittingly

introducing highly artificial features into a model. Engineers, on the other

hand, should start to understand why mathematicians spend so much time

talking about things like the ill-posedness of a problem, or the weak con-

vergence of a sequence of approximations.

Our ideal reader will possess a wealth of curiosity and a desire to apply

it to the fascinating gulf that still exists between real physics and rigorous

mathematics. With that thought firmly in mind, let us begin.

1.2 Some Words on the Fundamentals of Our Subject

Among the most primitive of the sciences that treat the behavior of bodies

in space, the theory of elasticity is simple in some respects and complex in

others. It describes the motion and deformation of real bodies, but does

so by dealing with idealizations. Neglecting atomic structure, the subject

treats the motion and deformation of geometrical figures; unlike geometry,

however, it attributes the properties of mass and elasticity to the parts of

such figures. We might say that the theory of elasticity deals with spatial

transformations of geometrical figures having these mechanical properties.

In this book we shall consider some principal models and mathematical

questions in the theory of elasticity. Just as pure mathematics had its

roots in the ideas of arithmetic and elementary geometry, and developed

these so far that a novice may not see connections between the former

and the more advanced parts of modern mathematics, elasticity was based

on the ideas of classical mechanics. Classical mechanics also treats real

natural objects, but using highly simplified models. The set of all the

models in continuum mechanics constitutes a hierarchy entailing increasing

complexity but still resting on the laws of motion and equilibrium of real

bodies (which continuum mechanics inherited from classical mechanics).

So before proceeding to the theory of elasticity, we should touch on a few

essential points from classical mechanics.

First, we should point out that mathematicians are not alone in hav-
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ing to deal with abstractions. The objects of mechanics may have more

elaborate properties than those of pure mathematics, but they are still ab-

stractions. Such properties were assigned only after long experience with

the behavior of real bodies. They were also influenced by the mathematical

tools available for their study. Essential portions of mathematics, in turn,

were developed to meet the needs of mechanics, and the interplay between

these subjects is still strong. Although various viewpoints are possible, it

can be argued that classical mechanics is now a branch of mathematics. It

is common for sciences to branch out into separate areas initially, only to

reunite after reaching a more mature stage. Indeed, the ultimate aim of any

natural science is the study of one thing: Nature. Some mathematicians

believe they study an ideal world, but this latter “world” is an attempt to

describe Nature in a certain way.

So what are the objects of classical mechanics? We shall not delve into

the notions of space and time here. These may seem simple and evident to

students today, but classical mechanicists up to and including Newton did

not regard them as such. Although many of the ideas in mechanics were

elaborated long before Newton, we frequently refer to him as the founder

of classical mechanics. In fact, Newton collected known results and created

a general approach to modern mechanics just as Euclid did for geometry.

The most elementary object that exists in equilibrium or moves through

the space and time of classical mechanics is the material point or mass point.

We shall refer to it loosely as a particle. As with a geometric point, a mass

point has no spatial dimension — although it does have finite mass. The

notion of mass is regarded as primitive (and undefinable) in mechanics.

In elementary books we encounter statements to the effect that mass is

“the measure of inertia” of a body. But such “definitions” are meaningless

(despite the comfort we often take in them).

Next come collections of mass points and, after that, rigid bodies (i.e.,

bodies that cannot be deformed). Newton used the term “corpuscle” in-

stead of “mass point”. He avoided the term “rigid body” as well. But

time changes everything and we are discussing the present form of classical

mechanics.

In many mechanics books, a rigid body is defined as a collection of

mass points whose relative positions are fixed. Even for a body that could

realistically be considered as a finite collection of particles, however, the

definition is not complete until we specify how the particles can interact.

But the practical necessity of considering bodies that appear as geometric

figures having continuous mass distributions basically forces us to employ
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limit passages from finite sets of mass points to continuous bodies. To jus-

tify such passages we must bring in additional assumptions which, from a

mathematical viewpoint, could be regarded as new axioms of classical me-

chanics. Overall, however, it is more convenient to take the rigid body itself

as a primary notion. We then formulate as axioms for a continuous rigid

body the properties derived for a rigid body composed of a finite number

of particles. This is implicitly done in almost any book on theoretical me-

chanics. None of these constructs — point mass, rigid body, etc. — exist

in Nature, but all can serve as good approximations to real bodies.

Classical mechanics studies the motion and equilibrium of its objects

under the action of forces. Forces likewise may not truly exist in Nature,

but the force concept gives us a way to describe the effects of bodies or

fields on the motion of a given body. Force is another primitive notion in

mechanics; it is left undefined, but certain properties are attributed to it.

In that sense it is similar to the primitive notions of pure geometry, such

as those of point, line, and plane.

With the advent of relativity, classical mechanics lost much of its status

as an exact science. This hardly affected its usefulness as an engineering

tool. We could maintain, furthermore, that classical mechanics still is an

exact science in the same sense as mathematics is. Its structure, in fact, is

similar to that of a branch of mathematics: it has a set of primitive notions

(space, time, particle, force, etc.), as well as a set of axioms. Unlike the

axioms of mathematics, however, the axioms of mechanics are sometimes

left unstated.

Before embarking on the theory of elasticity, we shall provide an

overview of the conceptual base on which it rests. This includes a collection

of topics from classical mechanics, along with certain tools of the theory of

elasticity that happened to arise in the context of classical mechanics.

1.3 Metric Spaces and Spaces of Particles

Newtonian mechanics considers the motion of mass points and rigid bodies

in an absolute space. Of course, this implies that the latter exists and has

properties like those of the space of ordinary Euclidean geometry. We call

such a space a (Newtonian) reference frame. If we consider one absolute

space in which a system of particles moves, then there exist (infinitely

many) other absolute spaces in which this system can be taken as moving.

The spaces themselves translate with respect to one another at a constant
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velocity. We call any two such frames inertial reference frames. Note that

one inertial frame cannot rotate with respect to another; rotation about

some axis implies that the velocity of various points is proportional to their

distances from the axis, and this is obviously not the same for all points.

Newton’s first law implies that there is no preferred absolute space: no

experiment can distinguish one inertial reference frame from another. In

particular, it is impossible to determine which reference frame might be

“stationary” in an absolute sense. Nonetheless, it is conventional to con-

struct a reference frame that is “stationary with respect to the distant stars”

(or even “stationary with respect to the Earth’s surface,” although any

point of that surface executes a complex motion produced by the Earth’s

rotation about its axis, its revolution about the Sun, etc.). In Newton’s

time, a good number of stars appeared to be fixed in position, so they were

used to mark out a reference frame. Today we know that all stars are in

motion, but the idea is still convenient for ordinary calculations.

When an ideal particle has a fixed position in an absolute space, it

coincides with a point of the space. The space itself is isotropic and homo-

geneous — its properties are the same in all directions at all points — so

the only meaningful relation between any two of its points is one of sepa-

ration distance. We wish to apply the notion of distance to other objects

not necessarily related to geometrical space, so for the mass points we will

generalize it as follows. Suppose that to any pair of points A and B we

assign a nonnegative finite number denoted by d(A,B). In this way we get

a function in two variables that is defined for each pair of points in the

space. It is called a distance function or, in mathematics, a metric, if it

satisfies three axioms of the usual distance employed in geometry:

M1. d(A,B) ≥ 0, with d(A,B) = 0 if and only if A and B coincide;

M2. d(B,A) = d(A,B);

M3. d(A,B) ≤ d(A,C) + d(C,B), where C is any other point of the space.

Exercise 1.3.1. Demonstrate that M1 can be changed to “d(A,B) = 0 if

and only if the points A and B coincide.” So d(A,B) ≥ 0 is a consequence

of the altered system of axioms.

The absolute space is physically empty, composed only of fictitious

points. Material points are always associated with material objects; the

reference frame is a mental construction for the sake of expediency. Let

us take a fixed time instant. Now we can consider only the set S of mass

points, which could be finite or infinite, and pair this set with a metric d
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that was defined in the absolute space (but is now applied only to mass

points). In mathematics, we denote such a pair by the symbol (S, d) and

call it a metric space. When there is no chance for confusion (i.e., when

only one metric d is employed in a given discussion), we loosely refer to S

itself as a “metric space”.

The notion of metric space is general and can be used with sets S that do

not consist of spatial or mass points. The elements of S can be of any nature

if an appropriate metric d can be defined. In the term “metric space”, the

word “space” is simply a synonym for “set”. Hence, by definition, even a

set consisting of just one mass point is a metric space. Indeed, labeling this

point A, we could define the metric by setting d(A,A) = 0. The reader can

verify that M1–M3 hold in this simple case.

When dealing with metric spaces we often borrow mental pictures from

elementary geometry. For example, we can define a ball having center x0

and radius r > 0 as the set of points x of the metric space that fall within

distance r of x0. The ball is open if the inequality d(x, x0) < r is used; it

is closed if the inequality d(x, x0) ≤ r is used. Sometimes we require the

notion of a neighborhood of x0. By this we mean a subset of the space that

contains some open ball with center x0 and nonzero radius.

We have said that a metric can take any form satisfying the necessary

axioms. Consider, for instance, a set of mass points whose motion is con-

fined to the surface of a sphere. In this case it is natural to measure distance

along the great circle that connects any two points (of the two possible arcs

along the great circle, we must take the shorter one in order to satisfy

the metric axioms). This is essentially how we measure ordinary distances

between points on the Earth’s surface.

As another example we could consider how distances should be measured

in a town where the streets form a uniform rectangular grid. A metric can

be defined as the minimal distance between any two points when measured

along the grid lines. If we introduce Cartesian coordinates in the plane and

identify points with these coordinates, e.g.,

A = (a1, a2), B = (b1, b2),

then we can represent the “taxicab metric” by the expression

d1(A,B) = |b1 − a1| + |b2 − a2|. (1.3.1)

The reader can also verify that the function

dp(A,B) = (|b1 − a1|p + |b2 − a2|p)1/p (1.3.2)
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is a valid metric for any fixed p ≥ 1. When p = 2 we get the Euclidean

distance. The reader should guard against a tendency to accept such state-

ments without actually checking for satisfaction of the axioms. For the

p-metric above, the only nontrivial axiom to check is the “triangle inequal-

ity” M3. Satisfaction of this follows from Minkowski’s inequality
( m
∑

i=1

|ai + bi|p
)1/p

≤
( m
∑

i=1

|ai|p
)1/p

+

( m
∑

i=1

|bi|p
)1/p

(1.3.3)

which holds for any p ≥ 1 and any two sets of real numbers a1, . . . , am and

b1, . . . , bm.

Exercise 1.3.2. Demonstrate that for 0 < p < 1, the function dp(A,B)

cannot serve as a metric for points on the plane.

To introduce Cartesian coordinates as we have done above, we must

appoint an origin. We noted previously, however, that all points in an

absolute Newtonian space stand on an equal footing. So the choice of

coordinate origin is arbitrary and has no ultimate physical significance.

When we write A = (a1, a2, a3) we in reality introduce a directed line

segment extending from the frame origin to the point A. We can denote

this segment by a1e1 + a2e2 + a3e3 where e1, e2, and e3 are unit vectors

along the orthogonal frame axes. We can even draw this vector in the

geometrical space, where the mass points are, but must keep in mind that

it merely symbolizes a correspondence between a certain vector and the

position of a point as mentioned above; in particular it does not belong to

our initial set of mass points in the space. The reader has surely made use

of “position vectors” in solving mechanics problems. The concept is useful

because it allows us to impose all the machinery of vector algebra on a

space that really possesses only the metric property. In order to make the

best possible use of this correspondence between mass points and vectors,

we should introduce it in such a way that it is one-to-one and preserves

the distance (metric) between pairs of respective elements. A one-to-one

correspondence between two metric spaces in which distance is preserved

is said to be an isometric correspondence.

We started with a simple metric space having no algebraic structure and

arrived at another metric space with algebraic structure. We shall continue

to work with the latter space, loosely regarding position vectors as points.

Again, this is permissible only because of the isometric correspondence

mentioned above. Just as there are no position vectors in the space of

mass points, there are no mass points in the space of position vectors. It
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is natural to employ a mixture of the two different kinds of objects only

because we are used to drawing points and vectors on the same plane.

But from a mathematical viewpoint, the vectors and points are objects of

different natures and are treated using very different tools.

Let us quickly summarize. The principal objects of classical mechanics

are mass points, which are described using a reference frame that has been

imposed on an idealized absolute space. In this space, a free mass point

(i.e., one that is not experiencing forces or collisions with other bodies)

maintains both its speed and its direction of motion. From a mathematical

viewpoint, however, classical mechanics deals with the images of those mass

points under a one-to-one correspondence with a space of position vectors.

The rules for working with these vectors are taken from the theory of vector

spaces, but are supplemented by the rules of mechanics itself.

1.4 Vectors and Vector Spaces

Many of us were exposed to the vector concept in high school mathematics.

Unfortunately, beginning students are prone to assign the term “vector” to

any arrow drawn on the chalkboard. A nice demonstration that such an

arrow need not represent a vector was given by A.P. Minakov. Sketching

the perpendicular intersection of two one-way streets with a shop standing

on one corner, Minakov had his students imagine traffic flows of 30 cars

per minute down one street and 40 cars per minute down the other. He

noted that nothing would prevent anyone from labeling these flows with

appropriately sized arrows. He was quick to point out, however, that if

these arrows represented vectors then a resultant flow of (302+402)1/2 = 50

cars per minute would be entering the doors of the shop! Clearly we cannot

apply vector addition to just any quantities that happen to be represented

by directed line segments. Quantities have a vectorial nature only when

we can carry out vectorial operations with them. These include vector

addition, subtraction, and multiplication by a scalar.

The lesson here is that one cannot perform mathematical operations

on objects without first verifying that these objects share all properties

required for validity of the operations. This holds for the formation of a

metric and for the treatment of quantities as vectors. So what is a vector

— or, more precisely, a linear space of vectors? In mathematics, an element

of an n-dimensional Euclidean space is a special object denoted variously

by symbols such as x, x̄, x, or ~x. But the mere use of notation does not
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automatically make something a vector. With vectors, we must be able to

carry out two principal operations: vector addition and scalar multiplica-

tion. These operations are, in turn, subject to the axioms of a vector space.

Let V 6= ∅ be a set along with suitably defined operations of addition and

scalar multiplication. That is,

(a) to each pair x, y ∈ V there corresponds a unique vector x+ y, and

(b) to each x ∈ V and each scalar λ there corresponds a unique vector λx.

This structure — consisting of the elements with two operations of addition

and multiplication by scalars (real or complex) — can be a vector space

only if the following hold:

(1) V is algebraically closed with respect to the two operations. That is,

x+ y and αx both belong to V for any x, y ∈ V and any scalar α.

(2) Addition is both commutative and associative; that is, we have

x+ y = y + x, x+ (y + z) = (x+ y) + z,

for any x, y, z ∈ V .

(3) There is an additive identity element in V . This unique element is

called the zero vector and is denoted by 0; it has the property that

x+ 0 = x for any x ∈ V .

(4) Each x ∈ V has a unique additive inverse in V . This vector is denoted

by −x and has the property that x+ (−x) = 0.

(5) If x, y ∈ V and α, β are any scalars, then

(1) α(x + y) = αx + αy,

(2) (α+ β)x = αx+ βx,

(3) (αβ)x = α(βx).

Moreover, we have 1x = x.

Of course, these axioms are so simple that they obviously hold for ordinary

vectors in two or three dimensions. But such formalization allows us to

apply them to more abstract sets. Indeed, the notion of vector space applies

not only to sets of forces or position vectors, but also to finite (or infinite)

sets of trigonometric polynomials of the form
∑

k

(ak sin kx+ bk cos kx).

When considered on some interval a ≤ x ≤ b (finite or infinite), a set of

these polynomials can constitute a vector space (of dimension 2n if we sum

over k from 1 to n only). Here, however, the use of arrows to represent
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vectors would be fruitless. We urge the reader to verify the axioms of a

vector space for this example and thereby justify labeling trigonometric

polynomials as vectors (even though in many situations it would not be

advisable to do so).

We have referred to vector space dimension. This notion relates, as the

reader knows, to that of linear independence. A set of vectors {x1, . . . , xm}
is said to be linearly independent if from the equation

c1x1 + · · · + cnxm = 0

with scalar coefficients ck it follows that c1 = · · · = cm = 0. The dimension

n of a vector space is the maximal number linearly independent vectors in

the space. A set of n linearly independent vectors is called a basis of the

n-dimensional space; any vector from the space can be uniquely represented

as a linear sum of the basis vectors.

If we cannot find a finite n for the dimension of the space, we call

the space infinite dimensional. Here the problem of basis is not simple,

however. Above we considered the 2n-dimensional space of trigonometric

polynomials. For some problems this space is of great interest; the trigono-

metric polynomials are used to represent solutions to differential equations

of the hyperbolic or parabolic type (and not only these, of course, but this

is where interest in such polynomials originated). But infinite polynomials

b0 +

∞
∑

k=1

(ak sin kx+ bk cos kx),

called Fourier series, are also employed. In calculus, these series are consid-

ered apart from differential equations. Instead, they are used to represent

a 2π-periodic continuous function, and it is shown that the Fourier coef-

ficients ak and bk are defined uniquely. The set of continuous 2π-periodic

functions is obviously a vector space. Furthermore, it has infinite dimen-

sion since a finite set of functions 1, sin x, sin 2x, . . ., sin rx, cosx, cos 2x,

. . ., cos rx is linearly independent. Thus we have found an infinite set of

linearly independent “vectors” (i.e., continuous functions) in the space.

Exercise 1.4.1. Propose a few metrics over spaces of trigonometric poly-

nomials.
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1.5 Normed Spaces and Inner Product Spaces

It is clear that the space of functions continuous on a segment [a, b] is

also an infinite-dimensional vector space. An extension of this idea is the

space of vector functions — functions taking values from a vector space

such as R3 or R2 — that depend continuously on some parameter. If the

parameter is time t, such a space can be regarded as the set of all continuous

trajectories of a point in space for t in some segment such as [0, T ]. The

space of continuous vector functions on [a, b] is important in mechanics.

We often must characterize the difference between two trajectories f = f(t)

and g = g(t), not only at a given time instant (which could be done with

the metrics we have considered for the mass points), but “in total” on

the segment. We could accomplish this with the metric space notion and

introduce, say,

d(f ,g) = max
t∈[a,b]

|f(t) − g(t)|. (1.5.1)

Here, instead of the absolute value, we could use any metric on Rn to

characterize the distance between points on the trajectories at the instant

t. But the vectorial structure of the space leads us to use a particular kind

of metric, one based on the norm that appears in linear algebra.

A norm on a vector space is a function that assigns to every element x

in the space a finite nonnegative number ‖x‖. This function must satisfy

the following axioms:

N1. ‖x‖ ≥ 0, with ‖x‖ = 0 if and only if x = 0;

N2. ‖λx‖ = |λ| ‖x‖ for any scalar λ;

N3. ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for any two vectors x, y in the space.

A vector space V , when paired with a norm ‖·‖, is called a normed space.

From a mechanical viewpoint, the notion of norm brings in the idea of the

homogeneity of space. First, if two pairs of elements have equal differences

then the norms of these differences will be equal, regardless of the regions

of space from which we take the elements:

‖(x+ z) − (y + z)‖ = ‖x+ z − y − z‖ = ‖x− y‖ .
Second, axiom N2 guarantees homogeneity with respect to multiplication

by a scalar. The triangle inequality N3 extends the usual triangle axiom of

Euclidean space. Note that every normed space is automatically a metric

space. Indeed, the function

d(x, y) = ‖x− y‖ (1.5.2)
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is easily seen to satisfy M1–M3 on page 5.

Exercise 1.5.1. Prove that N1 can be changed to “‖x‖ = 0 if and only if

x = 0”. That is, ‖x‖ ≥ 0 is a consequence of the new set of axioms.

Exercise 1.5.2. Show that the inequality

∣

∣ ‖x‖ − ‖y‖
∣

∣ ≤ ‖x− y‖ (1.5.3)

holds for any x, y ∈ V .

It is clear that the metric (1.5.1) is induced by the norm

‖f‖C(a,b) = max
t∈[a,b]

|f(t)|, (1.5.4)

and therefore the space of continuous vector functions on [a, b] with this

norm is a normed space. It is usually denoted by C(a, b). We stress that

this notation indicates not only that a set of continuous vector functions is

under consideration, but that the norm (1.5.4) is assumed as well. Perhaps

it would be more reasonable to write C[a, b], but our notation is traditional

and in this book we deal exclusively with compact domains such as closed

and bounded intervals. The subscript C(a, b) is appended to the norm

symbol because we shall introduce other norms on the same set of vector

functions. For example, the norm

‖f‖L2(a,b) =

(
∫ b

a

|f(t)|2 dt
)1/2

(1.5.5)

characterizes the difference between two continuous vector functions in an

integral rather than a pointwise sense. Another difference between (1.5.5)

and (1.5.4) will become apparent when we consider the results of performing

limit passages for sequences of elements.

Exercise 1.5.3. On the set of all functions continuous on [0, 1], introduce

‖f‖ = sup
x∈[0,1]

|f(x)|
x

.

Is the result a normed space?

Remark 1.5.1. When we say that some quantity like a norm is “defined

on” a space, we mean that it must be defined (hence finite) at every point

of the space. �
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There is another integral quantity whose relationship to the norm (1.5.5)

is analogous to that between the ordinary dot product in Rn and the ordi-

nary length of a vector. It is given by

(f ,g)L2(a,b) =

∫ b

a

f(t) · g(t) dt,

and we have

(f , f)L2(a,b) = ‖f‖2
L2(a,b) .

This, along with the linearity of (f ,g)L2(a,b) with respect to the arguments

f and g, suggests that we could use this integral form in the same way we

use a dot product in Rn.

Exercise 1.5.4. Using a uniform Riemann sum approximation to the in-

tegral, confirm that the analogy between the dot product and the norm in

Rn really corresponds to the relation between (f, g)L2(a,b) and ‖f‖L2(a,b) for

ordinary functions continuous on [a, b].

Let us introduce the general case covering such analogies to the dot

product. An inner product space is a vector space V together with a func-

tion (f, g) defined for any pair of elements f, g ∈ V ; this function, termed

an inner product, satisfies the following axioms:

I1. (f, f) ≥ 0 for all f ∈ V , with (f, f) = 0 if and only if f = 0;

I2. (g, f) = (f, g) for all f, g ∈ V ;

I3. (λf + µg, h) = λ(f, h) + µ(g, h) for all f, g, h ∈ V and real scalars λ, µ.

In much of this book we employ real spaces. It is worth mentioning,

however, that for a complex space we need only change axiom I2 to read

I2′. (g, f) = (f, g) for all f, g ∈ V

and then change the real scalars in I3 to complex scalars.

The inner product structure lets us introduce the idea of orthogonality

between elements of a vector space. We say that f and g are orthogonal if

(f, g) = 0. (1.5.6)

This extends the familiar condition f · g = 0 in R3. In R3, of course, we

can go further and introduce the full notion of angle. In general this is not

possible; however, the orthogonality idea deserves special mention because

it lets us carry out orthogonal projections even in an abstract space.
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Exercise 1.5.5. Let e be a unit vector: (e, e) = 1. Prove that f − (f, e)e

is orthogonal to e. This shows that the operation (f, e)e is analogous to

orthogonal projection onto an axis in R3.

The next thing to notice is that an inner product space is automatically

a normed space under the natural norm

‖f‖ = (f, f)1/2 (1.5.7)

where the positive square root is taken. Hence it is also a metric space

under the induced metric

d(f, g) = ‖f − g‖ = (f − g, f − g)1/2. (1.5.8)

As always, we cannot simply state that (f, f)1/2 is a norm; we must

prove that the axioms hold. Verification of N1 and N2 is trivial, but this is

not the case for N3. The triangle inequality is equivalent to

‖x+ y‖2 ≤ ‖x‖2
+ 2 ‖x‖ ‖y‖ + ‖y‖2

,

which, in terms of the inner product, can be rewritten as

(x+ y, x+ y) ≤ (x, x) + 2 ‖x‖ ‖y‖ + (y, y).

By I1–I3 we have

(x+ y, x+ y) = (x, x) + 2(x, y) + (y, y).

We see that N3 is satisfied if we can establish the

Cauchy–Buniakowski–Schwarz inequality. We have

|(x, y)| ≤ ‖x‖ ‖y‖ . (1.5.9)

Equality holds if x or y is zero, or if there is a constant c such that y = cx.

Proof. Clearly (1.5.9) holds as an equality for x = 0. Now assume x 6= 0

and consider the vector

z = y − (y, x)

‖x‖2 x

= (y, e)e where e =
x

‖x‖ .

By Exercise 1.5.5, we have (z, x) = 0. By I1,

0 ≤ ‖z‖2 =

(

y − (y, x)

‖x‖2 x , y −
(y, x)

‖x‖2 x

)

= (y, y) − (y, x)(x, y)

‖x‖2 ,

which is equivalent to (1.5.9) squared. Equality in (1.5.9) holds only when

‖z‖ = 0; this means that z = 0, hence y = cx with c = (y, x)/ ‖x‖2
. �
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Exercise 1.5.6. Prove (1.5.9) for a complex space V .

Some equalities from elementary geometry extend to an inner product

space. One is the parallelogram equality: the sum of the squares of the

diagonals of a parallelogram is twice the sum of the squares of its sides.

The reader should prove this in abstract form.

Exercise 1.5.7. Show that

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2). (1.5.10)

Because in a real inner product space

4(x, y) = ‖x+ y‖2 − ‖x− y‖2 , (1.5.11)

we can represent an inner product using only its norm. Clearly the form

on the right-hand side of (1.5.11) does not satisfy the axioms of the inner

product in just any normed space, hence not every normed space is an inner

product space.

It is useful to present one special inner product space.

The space l2

This space consists of all the real infinite sequences X = (x1, x2, x3, . . .) for

which the series
∞
∑

k=1

|xk |2 (1.5.12)

converges. The inner product of X with the sequence Y = (y1, y2, y3, . . .)

is given by

(X,Y ) =

∞
∑

k=1

xkyk. (1.5.13)

We emphasize that from the set of all infinite sequences we select only those

for which (1.5.12) is convergent.

The space l2 is quite special. Let us explain why, using the results and

terminology that will appear later in the book. In a Hilbert space H with

an orthonormal basis (e1, e2, e3, . . .) (i.e., a separable Hilbert space), any

x ∈ H can be represented in the form

x =

∞
∑

k=1

xkek (1.5.14)
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with uniquely defined Fourier coefficients xk = (x, ek). Moreover

‖x‖2 =

∞
∑

k=1

|xk|2 (1.5.15)

and so we obtain a one-to-one correspondence between H and l2. This

means we could present the entire theory of separable Hilbert spaces using

only l2.

In a similar fashion we can introduce normed spaces lp, p ≥ 1, starting

with the same set of sequences X but under the condition that the series
∑∞

k=1 |xk |p must converge. The norm is given by

‖X‖lp =

(

∞
∑

k=1

|xk|p
)

(p ≥ 1). (1.5.16)

The inner product of l2 can be used with a space lp for p > 2, but such a

space is incomplete under the induced (i.e., l2) norm. We will understand

what this means after introducing Banach and Hilbert spaces.

Exercise 1.5.8. Show that for any integer k the elements 1, sin kx, and

cos kx are mutually orthogonal in L2(−π, π). Find the unit basis vectors

of this space and calculate the projections of the above elements along the

directions defined by the basis. In this way we obtain the Fourier coefficients

of a function given on (−π, π). The present general viewpoint (with the

inner product) allows us to consider other expansions of continuous and

discontinuous functions. Such expansions (in particular, involving the use

of orthogonal polynomials) are widely used in analysis.

1.6 Forces

The term “force” lacks a rigorous definition. But we think of force as the

quantity that effects the motions or deformations of bodies and character-

izes their mutual interaction. That forces have a vectorial nature is also well

known (in fact, force was the prototype for the general notion of a vector).

By this we mean that the resultant of several forces acting on the same

particle can be found by vector addition. The original force system can be

replaced by its resultant, and the motion of the particle will be unchanged.

Since forces are applied to certain points, the addition of two forces that

act on different mass points would be senseless. Therefore the sets of forces

acting on different particles constitute different vector spaces.
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In mathematics, vector quantities do not carry physical units. Hence

their norms, which can be regarded as characterizing their sizes or intensi-

ties, are dimensionless numbers. But many mechanical quantities do carry

units and this is the case with force. The SI base unit of force is the New-

ton (N). The need to perform extensive numerical calculations now requires

engineers to convert many of their equations and relations to dimensionless

form: a form in which everything is expressed in relative figures in such a

way that variable quantities typically lie near unity. This has its advantages

for calculation, but can obscure what happens with real objects. Of course,

some routine calculations can be performed entirely by a computer — even

to the plotting of final graphs. But the analysis of intermediate and final

results is often easier using quantities whose physical meanings are clear.

We will frequently use energy norms. These inherit the dimensional

units of the corresponding energy quantities. We will establish various

inequalities among the energy norms, and constants will appear in these

relations. It is important to understand that such constants often carry

dimensional units and would therefore have different values in other unit

systems. And, of course, we cannot directly compare the values of constants

that have different dimensions.

We will not stop to review the familiar processes of adding or subtract-

ing forces that act on the same particle. However, we should mention some

issues concerning rigid bodies. To say that force is a vector is really an

oversimplification. With rigid bodies, we run into various modifications of

the vector concept: we must distinguish between sliding vectors, free vec-

tors, etc. This is due to the peculiarities inherent in the effects produced

by forces acting on rigid bodies (in particular, the possibility of inducing

rotation). Before discussing this further, let us recall that when we de-

pict a force vector acting on a body, we in fact superpose pictures for two

different spaces: an absolute space, and a space of force vectors. From a

logical standpoint, this particular combination of pictures is even “worse”

than that of points and their position vectors. In applications, however,

convenience always triumphs over formal requirements, so for mathemati-

cians there is no recourse other than attempting to justify such “illegal”

actions. Engineers often make use of objects or tools that are imperfect

from a mathematical viewpoint. In the more extreme cases, entirely new

branches of mathematics have been created in response to this. A good

example was the δ-function, used so intensively in physics that it gave rise

to the theory of distributions or generalized functions.

For a system of separate mass points, it is forbidden to shift a force
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from one point to another. With a rigid body, because of the constraints

connecting the points, it is possible but not completely straightforward:

clearly an arbitrary shift in the point of application of a force on a rigid

body can introduce a rotational tendency that was not present originally.

This leads us to consider another characteristic of force: the moment it

produces about a point. In elementary physics we learn that moment equals

“force times lever arm.” This definition suffices for planar structures where

clockwise or counterclockwise rotation are the only two possibilities. In

general, however, the moment of a force F about a point O is the vector

quantity

M = r× F. (1.6.1)

Here r locates the point of application of F with respect to O. The reference

point O is arbitrary but typically placed at the coordinate origin.

When forces are applied to a particle, the resultant force is the simple

vector sum of all forces acting. We cannot distinguish whether the particle

moves under the action of some number of forces, or under the action of

their resultant. What is the simplest force complex to which we can reduce

the action of some set of forces acting on a rigid body, in such a way

that the resulting motion (i.e., the acceleration of all points of the body) is

indistinguishable from that produced by the original force set? The answer,

it turns out, consists of a resultant force and a resultant “couple.”

Let us mention, first, that long experimentation brought physicists to

the idea that a force acting on a rigid body can be shifted along its own line

of action. That is, the point of force application can be moved along this line

without affecting the resulting motion.1 A vector that can be “attached”

at any point of its line of action without affecting other characteristics of a

problem is called a sliding vector . A good deal more is required if we wish

to move the point of application off the original line of action. Suppose

a force F acts at a point A on a body and we want to shift this force

in a parallel fashion to some other point B (see Fig. 1.1). We begin by

introducing a pair of forces ±F at B. This is certainly permissible since

the effects of these additional forces completely cancel. But now we can

regard the pair of forces consisting of F acting at A and −F acting at B as a

couple C. So when we transfer the point of application of the original force

F from A to B, we must, in effect, compensate through the introduction

of C. Continuing to refer to Fig. 1.1, we can see that force couples possess

some very important properties. First, the resultant force associated with
1This is not true for a deformable body.
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C is zero. Second, the moment of C is given by

M = −AB × F.

We can obtain this by considering the sum of the moments of each of the

forces introduced above. Indeed, the moment of F acting at A is OA× F,

and the moment of −F acting at B is OB × (−F); hence the sum of these

moments is OA× F +OB × (−F) = −AB × F.

Fig. 1.1 Shifting a force off its line of action on a rigid body. When F is transferred
from point A to point B, the couple C appears.

The motion of the rigid body under the force F applied at A is exactly

the same as that under F applied at B in the presence of the couple C.

It turns out, however, that C is completely characterized by its moment

M. This means we can replace C by any other force couple (i.e., by any

other pair of forces that have equal magnitudes, opposite directions, and

non-coincident lines of action) that happens to produce the same moment

M, and the motion of the body will remain the same. Furthermore, we can

attach the moment M to any desired point of the body. Whereas force is an

example of a sliding vector, the moment of a couple is a free vector. A free

vector is one that we can attach to any point of a body without changing

the other characteristics of the problem.

Several moments Mi can be added according to the usual rules of vector

addition. This means that any set of forces acting on a rigid body can be

replaced by a single resultant force FR and a single couple having moment

MR. Indeed, we can transfer all the given forces to any fixed point D.
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Each time a force is moved off its line of action, a couple appears. The

force vectors can be summed at D to obtain FR, and the moments of the

couples can be summed to obtain MR. Again, the original set of forces and

the pair (FR at D, MR) will be equivalent in the sense that each will have

precisely the same effect on the rigid body. We should add that, whereas

the magnitude and direction of FR do not depend on the point to which it

is attached, the corresponding characteristics of MR do depend on the line

of action of FR.

Consideration of the set (space) of forces acting on a rigid body has led

us to a “vector addition” different from that used in pure mathematics. In

particular, the notion of couple enters the picture as we transfer all force

vectors to a common point in order to facilitate their combination. So a

force F applied to a rigid body at some point A possesses characteristics

beyond those of an ordinary vector. It has magnitude, a line of action along

which it can slide without affecting the resulting motion, and a moment

M = OA×F about any arbitrary reference point O. From a mathematical

viewpoint then, the force vector is a distinctly different object from the

vector of formal linear algebra. It does obey a set of well-defined rules,

however, and it is somewhat surprising that mathematicians have not seized

the opportunity to use these rules as the basis for a new abstract formal

system. Possibly this happened because these rules appear to hold only for

forces, hence they were left for mechanicists to consider and employ.

Exercise 1.6.1. Two forces of different magnitude and opposite direction

are applied to a rigid body. Can their action be equivalent to only the

resultant force (without a couple)? If so, when?

We have said that mechanics could be based on an explicit set of axioms.

Apparently, there have been no serious attempts to select the minimal set

of axioms. However, for the equivalence of sets of forces acting on a rigid

body, an attempt at axiomatization was made by the Polish mathematician

Stephan Banach. Banach initially received an engineering diploma and only

afterwards became a mathematician. He lectured on mechanics and even

wrote a book (Mechanics) on the subject. Although much of this book was

written from a traditional mechanical viewpoint, it also contains interesting

glimpses of a purely mathematical approach. One passage, concerning the

equivalence of sets of forces acting on a rigid body, is worth quoting here:

“In order to deduce the conditions for the equilibrium of a rigid body,
we shall assume the following hypotheses:
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I. To a system of forces acting on a rigid body which is in equilib-
rium we can add (or remove from the system) without disturbing
equilibrium:

(a) two forces equal in magnitude and acting along the same line,
but oppositely directed;

(b) several forces having a common point of application and whose
sum is zero.

II. Zero forces balance one another; in other words: if no forces act on
a rigid body, then the body can remain in equilibrium.

These hypothesis can be verified experimentally. We shall deduce from
them the necessary and sufficient conditions for the equilibrium of
forces.”

1.7 Equilibrium and Motion of a Rigid Body

It is impossible to tell whether a rigid body moves under the action of some

set of forces (and couples), or only under the action of the pair discussed

above (resultant force and resultant couple). If no resultant force acts on

a body, it remains in a state of “uniform motion”. But the meaning of this

phrase is not as simple as it is in the case of a particle. If the resultant

for a mass point is zero, it moves along a straight line at constant speed

with respect to an inertial frame (or is in equilibrium when this speed is

zero: we can treat both cases in a unified manner and speak only about

equilibrium). This is Newton’s first law. But the situation is different for

a rigid body. A vanishing resultant is not enough for a rigid body to be in

equilibrium with respect to an inertial frame, since the body can rotate.

Suppose we can neglect the size of a rigid body and consider it as a

particle. In this case we neglect all couples (their moments become zero),

and apply all forces to the particle. Thus we can replace the forces with

a single resultant. The mass of the particle should be taken as the whole

mass of the rigid body. This is

M =

∫

V

ρ(r) dV, (1.7.1)

where ρ = ρ(r) is the mass density of the body as a function of position, and

V is the volume occupied by the body. In this case we obtain the motion of

the body in an “integral sense” where rotation is neglected. In actuality the

body may rotate, of course, but there is one point whose motion coincides

precisely with that of the “equivalent” mass point under the action of the



December 24, 2008 10:59 World Scientific Book - 9in x 6in elasticity

22 Introduction to Mathematical Elasticity

resultant. This is the center of mass, given by

rM =
1

M

∫

V

ρ(r) r dV. (1.7.2)

Newton’s first law is traditionally formulated for a mass point. To for-

mulate it for a rigid body, we should say that the center of mass moves

along a straight line with constant velocity if the resultant force acting on

the body is zero. (Again, however, the body may rotate about its center of

mass.) In standard textbooks on classical mechanics we find that the linear

momentum of the body now remains constant during the motion.

The center of mass is a particularly convenient point to attach the re-

sultant force. The resultant couple is then called the principal couple. In

classical mechanics it is shown that if the force resultant is zero, then the

magnitude and direction of the resultant couple do not depend on the point

to which all the forces were referred to obtain the resultant.

Our present goal is to formulate the conditions for equilibrium of a rigid

body. Suppose the body is stationary with respect to a stationary frame of

the absolute space and that no forces act on it. Since there are no forces,

the body remains in equilibrium. But we have said that it is impossible to

distinguish whether a rigid body is under the action of some set of forces

or under the action of their resultant force and couple. Thus if these latter

quantities are together zero, it is equivalent to the case of the absence of

any forces; hence a body in equilibrium will remain in equilibrium if the

resultant force and couple vanish. The condition that the resultant force

and couple both vanish is equivalent to the statement that the body remains

in equilibrium. Forces acting on a rigid body that satisfy this condition are

said to be forces in equilibrium.

We mentioned that if the resultant is zero, the resultant couple does not

depend on the point of reduction of the forces. Transferring all the forces

so that their lines of action pass through the frame origin, we find that the

moment of the corresponding couples equals the moment of the forces with

respect to the origin. So the condition for equilibrium of a rigid body can

be written as
∑

i

Fi = 0,
∑

i

(ri × Fi) = 0, (1.7.3)

where ri locates the point of application of Fi for each i. In component form

this gives six equations. Equations (1.7.3) are used for three-dimensional

objects. For two-dimensional problems we get three scalar equations: two

for the components of the resultant force, and one for the couple.
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Equilibrium problems for rigid bodies normally involve geometrical con-

straints as well as applied forces. Usually the effects of constraints are

translated into reaction forces and moments, which are then found using

the equilibrium equations (1.7.3). Thus, for a three-dimensional problem

involving a rigid body, we can find up to six unknown components of re-

action forces or moments, and for a two-dimensional problem only up to

three. If a structure consists of several joined parts, we should also intro-

duce reactions in the joints and consider each body as separate under the

actions of all forces and reactions. If the number of equations is equal to

the number of unknown components and the system of equations is lin-

early independent, it can be solved and the reactions determined. This is a

typical problem of classical mechanics; such problems are common in both

civil and mechanical engineering. However, problems where the number of

equations is less than the number of reaction components are even more

frequent in practice. For such a problem we cannot find the reaction by

solving the system of equilibrium equations; instead we must bring in the

laws of deformation of the structure and use a model of a deformable body.

Among the simplest of such models (though still not simple) is that of a

linearly elastic body.

1.8 D’Alembert’s Principle

It is clear that the derivatives of the position vectors of the same mass

point in two inertial frames differ by the velocity of their relative motion.

However, the acceleration of the mass point is the same in both frames and

appears in the mathematical formulation of Newton’s second law for the

motion of a particle having mass m:

F = m
d2r

dt2
. (1.8.1)

The position vector r is often called the radius vector ; it can be drawn

in the absolute space as a directed segment starting at the origin of the

immovable frame and ending on the mass point. See Fig. 1.2.

The derivative of a vector function f = f(t) is defined by analogy with

that for a scalar function:

df(t)

dt
= lim

∆t→0

f(t+ ∆t) − f(t)

∆t
. (1.8.2)



December 24, 2008 10:59 World Scientific Book - 9in x 6in elasticity

24 Introduction to Mathematical Elasticity

Fig. 1.2 Trajectory of a moving particle.

If we express the function in component form as

f =

3
∑

k=1

fkek (1.8.3)

and the basis vectors ek do not depend on t, then

df(t)

dt
=

3
∑

k=1

dfk(t)

dt
ek. (1.8.4)

We shall now invoke Einstein’s summation rule: when we see repeating sub-

and superscripts in a term involving components of vectors, such as aibi, we

should perform a sum over i, with i taking values from 1 to the dimension

of the space in which the vectors are considered. We therefore write

df(t)

dt
=
dfk(t)

dt
ek. (1.8.5)

Exercise 1.8.1. Write out d2f(t)/dt2 in component form when the frame

basis is (a) time independent, and (b) time dependent.

Newton’s second law for a particle can be rewritten in the form

F −m
d2r

dt2
= 0. (1.8.6)

This simple transformation, after introduction of the notation

FI = −m d2r

dt2
, (1.8.7)
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brings us to

F + FI = 0, (1.8.8)

which looks precisely like the equilibrium equation for the particle. This

transformation was proposed by d’Alembert. The expression FI is called

the inertia force. Equation (1.8.8) can be regarded as a statement of

d’Alembert’s principle. During the motion, the set of all forces (includ-

ing the inertia force) forms a system of forces in equilibrium.

Thus, the problem of finding the acceleration of a particle reduces to

the problem of equilibrium of the system of all forces acting on the particle.

Of course, there is little point in using this principle for a free mass point.

It does offer advantages, however, when constraints are present (e.g., when

points form a rigid body). Let us consider this possibility further.

1.9 The Motion of a System of Particles

Consider the motion of a more complex object: a finite system of n particles.

Of course, for each particle we could think of simply writing down Newton’s

second law. However, we wish to focus on the interaction between particles

and the properties that result from this.

The theory for a finite system should inherit some features from the

theory for a single mass point. In particular, when we consider the system

as a mass unit without extent, as is done for the distant stars, the equations

should reduce to those for a mass point. Indeed, we shall see that the center

of mass of the system moves exactly as a material point having mass equal

to the total mass of the system and acted upon by the resultant force.

There is a hierarchy in the theories of classical mechanics.

Let the ith particle have mass mi and position vector ri with respect

to the origin of an inertial frame. Consider the forces acting on this par-

ticle, including those produced by the actions of the other particles in the

system. If the distances between pairs of particles are all preserved during

the motion (because of massless constraints), we call the system a rigid

body; we shall not, however, limit ourselves to this case. To characterize

the system as a whole at a time instant t, let us introduce the total mass

M =

n
∑

i=1

mi (1.9.1)
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and the position rC of the center of mass defined by

MrC =
n
∑

i=1

miri. (1.9.2)

The position of the ith particle relative to the center of mass is given by

the vector

ρi = ri − rC . (1.9.3)

Then, since (1.9.2) can be written as

n
∑

i=1

miri −
n
∑

i=1

mirC = 0, (1.9.4)

we have
n
∑

i=1

miρi = 0. (1.9.5)

Exercise 1.9.1. Putting ρi = (ξi, ηi, ζi), expand (1.9.5) in a Cartesian

frame. Note that in this frame the center of mass is the origin.

Henceforth we shall use an overdot notation for time derivatives. Equa-

tion (1.9.2) holds at any instant. Differentiating it with respect to time t,

we get

M ṙC =

n
∑

i=1

miṙi.

Consequently,

n
∑

i=1

miρ̇i = 0. (1.9.6)

A second differentiation gives

M r̈C =

n
∑

i=1

mir̈i

and
n
∑

i=1

miρ̈i = 0. (1.9.7)

These are only kinematical characteristics of the center of mass of the sys-

tem. They do not depend on the forces acting on the particles.
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We divide the forces acting on the system into two classes. The first, the

class of internal forces, includes forces that arise between the particles of

the system because of constraints or other effects. We denote a force acting

on the ith particle from the jth particle by Fij (noting, of course, that

Fii = 0 for any i). Secondly, we have the external forces. We account for

these by simply assuming that a resultant force Fi acts on the ith particle.

By Newton’s third law, the internal forces should be balanced in the

sense that

Fij = −Fji. (1.9.8)

As is common in classical mechanics, we assume both of these forces share

the same line of action connecting the particles. This is a restrictive assump-

tion, but it makes sense in physics where in statics we meet only central

forces between particles like gravitation or electrical attraction. Although

the equality (1.9.8) makes sense, it is only an assumption; in mathematics

we would call it an axiom with far-reaching consequences. Its validity is

not so evident, say, for dynamical processes.

By this assumption, the sum of all internal forces is zero:

n
∑

i,j=1

Fij = 0. (1.9.9)

This is often called d’Alembert’s principle.2 Although we obtained it from

(1.9.8), it may be taken as an independent principle; in fact, it represents a

weaker assumption than that in which the forces are assumed to be central

and obey Newton’s third law. We are about to see that (1.9.9) forms

the background for the derivation of some principal conservation laws in

mechanics.

Newton’s second law for the ith particle is

mir̈i = Fi +

n
∑

j=1

Fij . (1.9.10)

We have noted that the addition of forces acting on different particles is

senseless, because the force acting on one particle cannot directly affect an-

other one. However, this operation begins to make sense when we consider

a system of particles, as it gives us some characteristics of the system as a

whole. We have introduced the mass of the system and the position vector
2It is unrelated to the similarly named principle in § 1.8. d’Alembert’s name appears

throughout mechanics.
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of the center of mass. Let us introduce, similarly, the following character-

istics:

(1) the total linear momentum

n
∑

i=1

mivi ≡
n
∑

i=1

miṙi = M ṙC ; (1.9.11)

(2) the total angular momentum

n
∑

i=1

ri ×mivi ≡
n
∑

i=1

ri ×miṙi; (1.9.12)

(3) the resultant of external forces

FR =

n
∑

i=1

Fi; (1.9.13)

(4) the total moment of external forces (or total torque)

n
∑

i=1

ri × Fi. (1.9.14)

First we sum all the equations (1.9.10):

n
∑

i=1

mir̈i =

n
∑

i=1

(

Fi +

n
∑

j=1

Fij

)

.

By (1.9.9) we have

n
∑

i=1

mir̈i =

n
∑

i=1

Fi.

Hence

d

dt

n
∑

i=1

mivi = FR (1.9.15)

or

d

dt
(MvC) = FR, vC = ṙC . (1.9.16)

So the motion of the center of mass of the system of particles depends only

on the resultant external force acting on the system, and coincides with the

motion of a particle of mass M under the same resultant force. From this

we obtain a crucial result.
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Conservation of linear momentum. If FR = 0, then the linear mo-

mentum remains constant and the center of mass moves along a straight

line with constant velocity.

This follows from the fact that

d

dt
(MvC) = 0,

hence MvC is a constant. Similar reasoning brings us to the conservation

of total angular momentum. We begin with the elementary transformation

d

dt
(r ×mv) = v ×mv + r×mv̇ = r ×mr̈, v = ṙ. (1.9.17)

Next, cross the vector ri into both sides of (1.9.10) and sum over i:

n
∑

i=1

(ri ×mir̈i) =

n
∑

i=1

(ri × Fi) +

n
∑

i=1

ri ×
( n
∑

j=1

Fij

)

.

By (1.9.17), the sum on the left is the time derivative of the total angular

momentum:

d

dt

n
∑

i=1

(ri ×mivi).

The first sum on the right is the total moment of the external forces. Con-

sider the second sum on the right. Together with the term ri × Fij it

contains a dual term rj × Fji. By (1.9.8) their sum is

ri × Fij + rj × Fji = (ri − rj) × Fij = 0,

since Fij is assumed to be parallel to the vector ri − rj connecting the ith

and jth particles. So the second sum on the right is zero and we have

d

dt

n
∑

i=1

(ri ×mivi) =
n
∑

i=1

(ri × Fi), (1.9.18)

which involves only the external forces. In particular we have the following.

Conservation of total angular momentum. If the total moment of the

external forces acting on a system of n particles is zero,
n
∑

i=1

(ri × Fi) = 0,

then the total angular momentum
n
∑

i=1

(ri ×mivi)
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remains constant.

Exercise 1.9.2. Supply the proof.

Equation (1.9.18) describes the total angular momentum with respect

to the origin of the inertial frame. Let us find the total angular momentum

with respect to the center of mass of the system. We substitute

ri = rC + ρi, vi = vC + ρ̇i, vC = ṙC ,

into (1.9.18):

d

dt

n
∑

i=1

[(rC + ρi) ×mi(vC + ρ̇i)] =

n
∑

i=1

[(rC + ρi) × Fi].

This, after simple transformation, brings

d

dt

{

rC ×
n
∑

i=1

mivC + rC ×
n
∑

i=1

miρ̇i +

n
∑

i=1

miρi × vC +

n
∑

i=1

(ρi ×miρ̇i)

}

= rC ×
n
∑

i=1

Fi +
n
∑

i=1

(ρi × Fi).

Using (1.9.5) and (1.9.6) we get

[

d

dt
(rC ×MvC) − rC × FR

]

+
d

dt

n
∑

i=1

(ρi ×miρ̇i) =
n
∑

i=1

(ρi × Fi).

The bracketed difference on the left is zero, which follows from (1.9.16) if

we form the cross product with rC and use (1.9.17). Thus

d

dt

n
∑

i=1

(ρi ×miρ̇i) =

n
∑

i=1

(ρi × Fi). (1.9.19)

Although (1.9.18) and (1.9.19) are similar in form, the latter shows no

dependence on the motion of the center of mass. Hence the rotation of

the system about the center of mass is independent of the motion of the

center of mass. This holds for a system of particles and for a rigid body in

particular.

Finally, we mention that by introducing inertial forces for each particle

we can rewrite the equations of motion for the system in a form that coin-

cides formally with the equations of equilibrium for the system. This set of

equations constitutes, as in the case of one particle, d’Alembert’s principle.
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1.10 The Rigid Body

Let us reconsider the notion of a rigid body. In many books on theoretical

mechanics, a rigid body is defined as a set of particles connected in such a

way that their mutual distances are fixed. While this may seem acceptable,

it fails to specify how the particles can react with one another (i.e., with

something akin to (1.9.8)). The “definition” of a rigid body in mechanics

should include not only the idea of constant shape, but the mechanism of

force transmission between parts of the body.

The same textbooks often derive results for a rigid body consisting of a

finite number of particles, then pass directly to the theory of a “continuous”

body. It is supposed that this transition is done through an elementary limit

passage. They first think of approximating the body as a finite collection

of “particles”; each particle is actually an elemental volume over which

the “mass density” is essentially constant. Assuming all mutual distances

between particles are fixed during any motion, they calculate the total

linear and angular momenta of the system. These are expressed in terms

of finite summations, which are taken to become Riemann volume integrals

during the subsequent limit passage. The listener is expected to accept the

entire procedure without question, especially if he or she has a good calculus

background. It turns out, however, that there is reason for concern: when

we pass from a system containing finitely many objects to one containing

infinitely many objects, we can encounter unexpected changes in qualitative

behavior. In particular, we must question whether the properties of the

internal forces should carry over. The interior state of a deformable solid

cannot be described using only “central forces” (i.e., forces such as the

Fij that we used to describe a finite system of particles) or, indeed, using

forces alone. We must employ a stress tensor: an entity that inherits some

properties of force, but with other properties of its own.

The behavior of forces inside a rigid body cannot be derived straight-

forwardly from the corresponding picture for a finite system of particles.

Rather, it must be formulated as a kind of axiom that reflects our primary

interest in determining the integral characteristics of the motion. In par-

ticular, we can take the “simplest” case where the relations between parts

of the body are thought to mimic those that would apply to the internal

forces in a finite system. But again, this amounts essentially to formulating

an axiom. We find that to describe the motion of a rigid body (which we

consider as a system of n particles at fixed mutual separations while pre-

serving our assumption on the internal forces Fij), it is necessary to invoke
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only (1.9.16) and (1.9.18), or equivalently

d

dt
(MvC) = FR,

d

dt

n
∑

i=1

ρi ×miρ̇i =

n
∑

i=1

ρi × Fi. (1.10.1)

Denoting

GC =

n
∑

i=1

ρi ×miρ̇i, MC =

n
∑

i=1

ρi × Fi,

where GC is the angular (kinetic) momentum of the body with respect to

the center of mass C and MC the resultant angular moment of the external

forces with respect to C, we can rewrite (1.10.1) as

d

dt
(MvC) = FR,

d

dt
GC = MC . (1.10.2)

Using the kinematical analysis for a rigid body, which can be found in

any textbook on classical mechanics, we can express GC in terms of the

angular velocity vector ω for the body, which has three components in three-

dimensional space. So in scalar form, we get six simultaneous differential

equations in the six unknown components of vC and ω. These components

are uniquely defined by the equations and corresponding initial values, so

we have a description of the motion of a rigid body. While the form of these

equations seems simple, the study of rigid body motion occupies much space

in a typical textbook. Our goal is to discuss only some main ideas.

We should add that here the use of a Cartesian frame for the description

of relative motion of the body is not the best choice. And this leads us to

the idea that to describe the motion of bodies, we must introduce other

parameters such as the familiar Euler angles α, β, γ. In fact this is the

first step toward Lagrangian mechanics. The latter is a consequence of

Newtonian mechanics that makes use of generalized coordinates to describe

the motion of objects. It simplifies the solution of many problems.

We may regard (1.10.1) as consequences of the dynamic equations for

a system of particles. But normally (1.10.2) are applied to continuous

rigid bodies that occupy volumes or that are idealized as surface or linear

mass distributions. In such cases we may consider the terms of (1.10.1)

as Riemann-sum-type approximations to corresponding volume, surface, or

line integrals and obtain (1.10.2) using a limit passage. However, these

equations must be regarded as new axioms for rigid body mechanics. In-

deed, internal force terms such as Fij are absent. This results from the

assumptions on the nature of the internal forces. Inside a rigid body, how-

ever, it is strange to make any such assumptions; rather, it is preferable to
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begin with (1.10.2) as we will eventually use them to obtain relations for

deformable bodies where such simple assumptions cannot be applied at all.

So we will regard (1.10.2) as essentially axiomatic in nature.

Unique specification of the position of a rigid body requires six inde-

pendent parameters. In contrast, the position of a particle in space can be

specified by three coordinates or other parameters that define these coor-

dinates uniquely. The position of a system consisting of some number of

particles and rigid bodies can be uniquely defined through some minimal

number of parameters. In this case we speak of the configuration of the

system; the space in which these parameters take their values is known as

the configuration space. The minimal number of independent parameters

describing the system uniquely is called the degree of freedom of the system.

The degree of freedom is less than or equal to the total number of

parameters that describes each item of the system. For example, if a particle

can move only on some surface, then the description of its position requires

just two parameters: coordinates of the point on the surface. If it can

move only along some curve, a single parameter is required. The same

holds for rigid bodies: if a point of a rigid body is fixed, we need just three

parameters (e.g., the angles that define its position uniquely). Therefore

the degree of freedom of a body with a fixed point is three.

The degree of freedom of a system of bodies in mechanics plays the same

role for its configuration space as the dimension plays for a vector space: it

shows the number of quantities we must know in order to determine some

object in the space uniquely. The configuration space is not a vector space.

Exercise 1.10.1. What is the degree of freedom of a moving “rigid” seg-

ment?

1.11 Motion of a System of Particles; Comparison of Tra-

jectories; Notion of Operator

A curve describing the motion of a particle in space is called a trajectory. If

we mark, in configuration space, the points taken by a system of particles

during its motion, we have what could be called the system trajectory.

Since the ordinary differential equations of motion for particles are of second

order, to define the motion uniquely we must provide two initial conditions
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for each component of the position vector for each particle. We have

mir̈i = Fi +
n
∑

j=1

Fij (i = 1, . . . , n), (1.11.1)

where the forces on the right can depend on time t and the position vectors

of the particles (we continue to denote by Fij the force exerted on the ith

particle by the jth particle and take Fii = 0). We typically specify, for

each particle, the position and velocity vectors at some initial time:

ri(0) = ai, ṙi(0) = bi (i = 1, . . . , n), (1.11.2)

where ai,bi are given constants describing the initial position and velocity

of the ith particle, respectively. The resulting problem is called a Cauchy

problem or initial value problem in ordinary differential equation theory.

The theory of Cauchy problems offers theorems covering existence and

uniqueness of solution and providing for the continuous dependence of solu-

tions on small changes in the initial conditions, masses, and external forces.

There are problems to which these theorems do not apply, but they usually

suffice for applications (note that the forces can depend on the ri and their

derivatives, so the equations can be complex).

In other kinds of problems, conditions are posed at various time instants.

Such problems are called boundary value problems, because the conditions

are commonly posed at two points often designated as “initial” and “final”

points (although more than two points may be involved). Boundary value

problems can have nonunique solutions, and their theory is not as clean

as that of Cauchy problems. Nonetheless, a great deal of effort has been

directed towards them and much is now known about both their theoretical

and practical treatment.

Suppose we are dealing with a particle system whose motion problem

has a unique solution under given initial or boundary conditions and under

a set of forces. If these parameters change, so does the system trajectory or

velocity. How should we measure this change on the time interval [0, T ]? If

we are interested only in the difference between the particle positions, we

can measure the deviation between two trajectories r = r1(t) and r = r2(t)

using a uniform norm. For a single particle we can use

‖r2 − r1‖ = max
t∈[0,T ]

‖r2(t) − r1(t)‖R3 , (1.11.3)

where ‖·‖
R3 is a norm on R3. We require continuity of the vector functions

r1(t) and r2(t) on the finite segment [0, T ], which is guaranteed by general

theorems covering many motion problems for systems of particles having
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unique solutions. The rectilinear motion of a particle with given initial and

final times a and b brings us to the uniform norm on the space of continuous

functions on the segment [a, b]. The resulting normed space is denoted by

C(a, b). The norm of a function f = f(t) in this space is given by

‖f‖C(a,b) = max
t∈[a,b]

|f(t)|. (1.11.4)

Later, when we consider a deformable body occupying a volume V , it

will be convenient to introduce the uniform norm for functions f = f(x)

continuous on V . We will take V to be compact (i.e., closed and bounded)

and use

‖f‖C(V ) = max
x∈V

|f(x)| (1.11.5)

for the norm.

Exercise 1.11.1. Verify that (1.11.5) satisfies the norm axioms.

If we must evaluate differences in velocities as well as positions, then for

continuously differentiable vector functions r = r1(t) and r = r2(t) we can

introduce another norm involving first derivatives. For the one-dimensional

case, a norm on the space of functions continuously differentiable on [a, b],

denoted by C(1)(a, b), can be introduced in various ways. These include

‖f‖C(1)(a,b) = max
t∈[a,b]

|f(t)| + max
t∈[a,b]

|f ′(t)| (1.11.6)

and

‖f‖C(1)(a,b) = max

{

max
t∈[a,b]

|f(t)|, max
t∈[a,b]

|f ′(t)|
}

, (1.11.7)

which are equivalent in the sense of convergence of sequences of differ-

entiable functions. (We will formalize this notion of equivalent norms in

Definition 1.12.1.) They can be extended to the space of functions having

continuous derivatives up to order m on a compact set V ⊂ Rn. We have

‖f‖C(m)(V ) = max
x∈V

|f(x)| +
∑

|α|≤m

max
x∈V

|Dαf(x)|, (1.11.8)

where the multi-index notation Dα is understood as follows:

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαn

n
, α = (α1, . . . , αn), |α| = α1 + · · · + αn.

Such norms are used when we must characterize a solution beyond simply

a deviation under a change in parameters of the problem. The importance
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of smoothness follows from the fact that the smoother a solution (i.e., the

larger the number m in C(m)(V )), the better the convergence of approxi-

mation schemes used to seek the solution numerically. Note that the norms

are written out for dimensionless variables; otherwise, we would append

coefficients to account for differences in units between the terms.

Exercise 1.11.2. Verify that (1.11.8) satisfies the norm axioms.

Let us return to the initial value problem (1.11.1)–(1.11.2) and suppose

that the Fi depend only on t. Assume these vector functions can be defined

independently. Then to a set of forces {Fi} given on [0, T ] there corresponds

a unique set of trajectories {ri} on [0, T ]. This reminds us of the definition of

a function, where to each point of some set called the domain of the function

there corresponds a unique value of the function. In this case, however, a set

of vector functions {Fi} stands in correspondence with another set of vector

functions {ri}. We cannot say that to a value of {Fi} at an instant t there

corresponds a value {ri} at the same instant t, since {ri} at t depends on all

the values taken by {Fi} on [0, t]. This dependence cannot be described in

terms of an ordinary function. We shall call the correspondence an operator

(or sometimes mapping, or map) if it is uniquely defined.

To really define a function, we must specify not only a rule of corre-

spondence between two sets, but the sets as well. The same holds for an

operator. An operator A has a domain D(A) and a range R(A). In this

book D(A) will be a subset of a normed space X , while R(A) will lie in a

normed space Y (which may coincide with X). The correspondence itself,

taking each point x ∈ D(A) into a uniquely defined point y ∈ R(A), will

be denoted

y = A(x). (1.11.9)

We say that A acts from X to Y . If Y = X , we say that A acts in X .

A mapping A acting from a normed space X to the scalars R or C

is called a functional. The branch of mathematics known as functional

analysis had its origins in the study of such mappings.

In linear algebra we treat operators represented by matrices. An n× n

matrix M applied to a vector x ∈ Rn yields another vector y ∈ Rn. The

reader must be aware that a matrix is not an operator but only a compo-

nent representative of the operator corresponding to some basis in Rn. The

matrix elements play the same role as the components of a vector in a fixed

basis: when we change the basis (and we can do this independently in the

domain Rn and in the range Rn), the matrix elements also change. They



December 24, 2008 10:59 World Scientific Book - 9in x 6in elasticity

Models and Ideas of Classical Mechanics 37

must do so in such a way that for any x given in some basis, application

of this representative matrix yields y given in another basis — but this y

must not depend on the choice of bases. Clearly, transformations of rep-

resentative matrices must obey certain rules, but not necessarily those for

transformations of vectors. The operators corresponding to such matrices

are also known as tensors of the second rank. In the theory of tensors,

vectors constitute tensors of the first rank and scalars constitute tensors of

zero rank. Although we can consider the correspondence M as a function

acting from Rn to Rn, we prefer to call it a matrix operator. We know that

a matrix operator is a linear transformation whose degree of continuity —

that is, how a change in x affects the change in y — is measured by its norm

‖M‖ (defined below). All such notions as continuity, linearity, and norm

can be extended to the general case. They are mostly simple restatements

of concepts from calculus or linear algebra.

So let us consider an operator A from a normed space X to a normed

space Y . First we extend the ordinary notion of continuity at a point. Re-

call that a real-valued function f of a real variable x is said to be continuous

at a point x0 of its domain if to every positive number ε there corresponds

a positive number δ (which may depend on ε) such that |f(x)− f(x0)| < ε

whenever |x− x0| < δ.

Definition 1.11.1. An operator A acting from X to Y is continuous at

x0 ∈ X if to every ε > 0 there corresponds δ = δ(ε) such that

‖A(x) −A(x0)‖ < ε whenever ‖x− x0‖ < δ.

The definition for an ordinary function was extended by using the norm

in place of the absolute value operation. To emphasize that the spaces X

and Y may have different norms, we could have written

‖A(x) −A(x0)‖Y < ε whenever ‖x− x0‖X < δ

instead of the above. However, we shall follow the usual practice and attach

subscripts to norm symbols only when the spaces involved may not be clear

from the context.

Definition 1.11.2. Let {xn} be a sequence in X . We say that {xn} con-

verges to x0 and write

x0 = lim
n→∞

xn

if for any ε > 0 there exists N = N(ε) such that

‖xn − x0‖ < ε whenever n > N.
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We may also write xn → x0 as n→ ∞.

Note that we have introduced the limit passage in a normed space us-

ing only the operations of classical analysis; indeed, only operations with

numbers — the values of the norm — are involved.

Having the notion of sequence convergence, we may introduce

Definition 1.11.3. An operator A acting from X to Y is sequentially con-

tinuous at x0 ∈ X if A(xn) → A(x0) as n→ ∞ for any sequence {xn} such

that xn → x0 as n→ ∞.

Lemma 1.11.1. The two types of continuity are equivalent.

Proof. First let us show that continuity implies sequential continuity.

Let A be continuous at x0 and take any convergent sequence {xn} with

xn → x0. Let ε > 0 be given. By continuity there exists δ such that

‖A(xn) −A(x0)‖ < ε whenever ‖xn − x0‖ < δ. But, by convergence of

{xn}, there exists N such that this last inequality holds whenever n > N .

Therefore, to any ε > 0 there correspondsN such that ‖A(xn) −A(x0)‖ < ε

whenever n > N . So A is sequentially continuous at x0.

Conversely, let us show that sequential continuity implies continuity.

Suppose A is not continuous at x0. Then there exists ε = ε0 with the

property that for every positive integer n there is a point xn inside the

ball ‖x− x0‖ < 1/n such that ‖A(xn) −A(x0)‖ ≥ ε0. The sequence {xn}
thus constructed is convergent to x0, but it is false that A(xn) → A(x0).

Therefore A is not sequentially continuous at x0. �

In view of the lemma, we will refer to sequential continuity as simply

“continuity” and use whichever formulation is convenient.

Definition 1.11.4. We say that A is linear if

A(αx + βy) = αA(x) + βA(y) (1.11.10)

for any two scalars α and β and any two elements x, y ∈ X .

For such an operator we often write Ax instead of A(x). One useful

observation is

Lemma 1.11.2. If a linear operator A is continuous at x = 0, it is con-

tinuous on the entire space X.

This follows immediately from the relation

A(x) −A(x0) = A(x − x0),
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since we can think of x − x0 as a vector y that becomes arbitrarily small

when we make x arbitrarily close to x0.

Why is the notion of continuity seldom stressed for matrix operators in

linear algebra? In fact the issue is trivial: any n× n matrix A having only

finite elements, which represents an operator A in some basis, corresponds

to a continuous operator.

Now we introduce

Definition 1.11.5. An operator A from a normed space X to a normed

space Y is bounded if there is a positive constant c such that

‖Ax‖ ≤ c ‖x‖ for all x ∈ X. (1.11.11)

If (1.11.11) holds, then A is continuous at x = 0 by Definition 1.11.1

with δ = ε/c and hence is continuous on X .

For linear operators, we have

Theorem 1.11.1. A continuous linear operator A from X to Y is bounded.

Proof. A is continuous at x = 0. Take ε = 1; by definition there exists

δ > 0 such that ‖Ax‖ ≤ 1 whenever ‖x‖ < δ. For every nonzero x ∈ X ,

the norm of x∗ = δx/(2 ‖x‖) is

‖x∗‖ = ‖δx/(2 ‖x‖)‖ = δ/2 < δ,

so ‖Ax∗‖ ≤ 1. By linearity of A, this gives us

‖Ax‖ ≤ 2

δ
‖x‖ ,

which is (1.11.11) with c = 2/δ. �

Definition 1.11.6. The infimum of the set of constants c for which

(1.11.11) holds is called the norm of A.

Alternatively the number ‖A‖ is a norm if, for any x ∈ X , we have

‖Ax‖ ≤ ‖A‖ ‖x‖ , (1.11.12)

and, for any ε > 0, we can find xε such that

‖Axε‖ > (‖A‖ − ε) ‖xε‖ . (1.11.13)

Clearly, when we use a term like operator “norm” we should prove that

it really has all norm properties and is suitably defined on some linear space.
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Here the space is the set of all continuous linear operators, with operations

of addition and scalar multiplication patterned after those for matrices:

(A+B)x = Ax+Bx, (αA)x = α(Ax).

The reader should prove that ‖A‖ satisfies N1–N3. The set of all continuous

linear operators from a normed space X to a normed space Y is denoted

L(X,Y ). If Y = X , the notation is L(X).

Exercise 1.11.3. Prove that the norm of an operator A can be defined as

‖A‖ = sup
‖x‖=1

‖Ax‖ or ‖A‖ = sup
‖x‖≤1

‖Ax‖ . (1.11.14)

Although other norms can be placed on L(X,Y ), we will typically use

the above norm which is related to the norms on X and Y .

1.12 Matrix Operators and Matrix Equations

Many continuum mechanics problems cannot be solved analytically. Even

when analytic solution is possible, engineers often prefer approximate nu-

merical simulations that yield instructive pictures of system behavior. For

example, the motion of a particle system can be studied by applying ap-

proximate methods to the Cauchy problem for the corresponding ordinary

differential equations; the problem is thereby reduced to a discrete one, to

be integrated in finite time steps using finite difference approximations of

the derivatives. For a Cauchy problem this is done successively beginning

with the initial point, whereas for a boundary value problem we must sat-

isfy the conditions at the final point of the system trajectory. The latter

leads to a system of equations which, in the case of a general particle system

with forces of attraction, etc., are transcendental as a rule. Treatment is

seldom straightforward.

In continuum mechanics many engineering problems, like those of the

theory of elasticity, are described by linear equations. Available solution

methods include the finite element method, the boundary element method,

the finite difference method, etc. All lead to systems of simultaneous linear

equations that can be written as

aijxj = fi (1.12.1)

or in matrix form as

Ax = f . (1.12.2)
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In this way, a matrix A approximates the original operator of the boundary

value problem. Formally, (1.12.2) looks like an equation for vector quanti-

ties f and x in a space Rn of higher dimension. But x and f are not real

vectors, since their various components refer to different points of the body

and we cannot work with them (for example, transforming between coor-

dinate systems) as we do with vectors if we wish to properly preserve their

physical meanings. Still, as soon as we write down the matrix equation it

begins to live a life of its own and we can treat it using customary methods.

For a time, we can virtually forget how the matrix equation originated —

until, of course, we reach the point where we must interpret the final results

in light of the original model.

Let us calculate a few matrix norms. Suppose, in analogy with (1.5.4),

we define a norm on Rn using

‖x‖ = max
1≤i≤n

|xi| (1.12.3)

for x = (x1, . . . , xn). Note the norm is written for a fixed basis of Rn that

may be non-orthogonal. Writing A = (aij), which represents the operator

A so that the ith component of the image y = Ax in the same basis is
∑n

j=1 aijxj , we have

‖Ax‖ = max
1≤i≤n

∣

∣

∣

∣

n
∑

j=1

aijxj

∣

∣

∣

∣

≤ max
1≤i≤n

n
∑

j=1

|aijxj |

≤
(

max
1≤i≤n

n
∑

j=1

|aij |
)

max
1≤j≤n

|xj |,

hence

‖Ax‖ ≤ µ ‖x‖ (1.12.4)

where

µ = max
1≤i≤n

n
∑

j=1

|aij |.

In linear algebra, µ is called the “max row sum” of the matrix A. Note

that µ ≥ ‖A‖ by definition of ‖A‖. But we can go further and show that

µ = ‖A‖. To see that equality holds in (1.12.4) for some nonzero x, let k
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be the value of i for which the max row sum occurs:

µ =
n
∑

j=1

|akj |.

Then choose the components of x according to the rule

xi =

{

+1, aki ≥ 0,

−1, aki < 0.

For this x, we have ‖x‖ = 1 and ‖Ax‖ = µ, so equality holds.

Exercise 1.12.1. Show that the quantity ‖x‖ specified in (1.12.3) satisfies

norm axioms N1–N3. Repeat for

‖x‖p =

( n
∑

i=1

|xi|p
)1/p

(1.12.5)

where 1 ≤ p < ∞. The latter norm, of course, induces a metric given

by dp(x,y) = ‖x− y‖p. A special case of this metric was encountered in

(1.3.2).

For the norm (1.12.5), we get

‖Ax‖p =

( n
∑

i=1

∣

∣

∣

∣

n
∑

j=1

aijxj

∣

∣

∣

∣

p)1/p

≤
[ n
∑

i=1

( n
∑

j=1

|aijxj |
)p]1/p

.

Next we apply Hölder’s inequality for sums. If p > 1, q > 1, and

1

p
+

1

q
= 1,

then for any two sets of real numbers a1, . . . , am and b1, . . . , bm, we have

m
∑

i=1

|aibi| ≤
( m
∑

i=1

|ai|p
)1/p( m

∑

i=1

|bi|q
)1/q

. (1.12.6)

Hence
( n
∑

j=1

|aijxj |
)p

≤
( n
∑

j=1

|aij |q
)p/q( n

∑

j=1

|xj |p
)

where q = p/(p− 1), so

‖Ax‖p ≤
[ n
∑

i=1

( n
∑

j=1

|aij |q
)p/q]1/p

‖x‖p .
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By this and the well-known conditions for equality in Hölder’s inequality,

we conclude that

‖A‖ =

[ n
∑

i=1

( n
∑

j=1

|aij |q
)p/q]1/p

.

If p = 2, then q = 2 and the formulas above reduce to

‖x‖2 =

( n
∑

i=1

|xi|2
)1/2

, ‖A‖ =

( n
∑

i=1

n
∑

j=1

|aij |2
)1/2

.

The norm ‖x‖2 is induced by an inner product: viz.,

(x,y) =
n
∑

i=1

xiyi.

In contrast, each of the norms ‖x‖p for p 6= 2 cannot be induced by an

inner product.

It is worth emphasizing that the operator norm depends on the under-

lying norm imposed on Rn.

Exercise 1.12.2. Consider a matrix operator A acting between different

normed spaces. Both spaces consist of n-tuples as above, but have respective

norms given by

‖x‖p =

( n
∑

i=1

|xi|p
)1/p

, ‖y‖r =

( n
∑

i=1

|yi|r
)1/r

.

Assuming y = Ax, estimate ‖A‖.

We mentioned equivalent norms for the spaces of differentiable functions

and Rn. Let us introduce a strict definition.

Definition 1.12.1. Two norms ‖·‖1 and ‖·‖2, imposed on the same set of

vectors X , are equivalent if there exist positive constants c and C such that

the inequality

c ‖x‖1 ≤ ‖x‖2 ≤ C ‖x‖1 (1.12.7)

holds for all x ∈ X .

Clearly, when a sequence {xn} converges to x0 in one norm then it also

converges to x0 in any equivalent norm.

Exercise 1.12.3. Show that any two norms in Rn are equivalent.
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Using some basis of a finite dimensional space, we can introduce a one-

to-one correspondence between it and Rn or Cn that preserves algebraic

operations and the norms. From this (and the equivalence of all norms

on R
n or C

n) it follows that on any finite-dimensional space all norms

are equivalent. This is false for infinite-dimensional spaces. Moreover,

the equivalence of all norms on a linear space means the space is finite-

dimensional.

As we have said, numerical approaches to the linear problems of con-

tinuum mechanics effectively reduce these problems to matrix equations.

Nonlinear problems also reduce, as a rule, to the solution of linear matrix

equations that arise as intermediate problems. So an ability to solve ma-

trix equations is essential. The relevant methods fall under the heading of

numerical linear algebra and lie outside the scope of the present book. The

reader can see any textbook on numerical analysis for a full discussion.

1.13 Complete Spaces

We expect a numerical approach to yield an approximation to a true so-

lution. This approximation could be good or bad, however, and the best

one can hope for is a reliable estimate of the error. Often we are merely

assured that a method can, in principle, yield a sequence of approximations

convergent to the true solution. Even so, it is evident that the numerical

implementation of such a method may not converge to the true solution:

roundoff error alone can prevent this. It can destroy a solution to a simul-

taneous system of equations when the dimension reaches a certain size.

Practitioners commonly judge the convergence of an approximation se-

quence by comparing successive terms of the sequence. When the differ-

ence seems “small enough” for the purpose at hand, computation is halted.

So the analyst simply watches the successive differences between approx-

imations and waits until some stopping criterion has been satisfied. For

problems involving matrix equations, these differences are typically gauged

using one of the norms on Rn; either absolute errors or relative errors (ob-

tained by dividing the difference by the norm of one of the solutions) can

be used. If the calculations were perfect, without roundoff or truncation

error, the analyst could continue the process indefinitely. The best he or

she could hope for, however, is to observe the pattern typical of what we

call a “Cauchy sequence” in calculus. This leads us to reframe the concept

in the more general metric space setting.
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Definition 1.13.1. Let {xn} be a sequence of points in a metric space

(S, d). We say that {xn} is a Cauchy sequence if to each ε > 0, there

corresponds a number N = N(ε) such that d(xn, xm) < ε whenever m > N

and n > N .

This definition practically coincides with the usual one given in calcu-

lus. We know that in R or R
n the concepts of “Cauchy sequence” and

“convergent sequence” are essentially equivalent. Is this true in a general

metric space? Let us explicitly generalize the idea of convergence.

Definition 1.13.2. Let {xn} be a sequence of points in a metric space

(S, d). We say that {xn} is convergent if there is a point x ∈ S having the

property that, to each ε > 0, there corresponds a number N = N(ε) such

that d(xn, x) < ε whenever n > N . In this case the point x is called the

limit of {xn}, and we write

lim
n→∞

xn = x

or xn → x as n→ ∞.

Observe that xn → x if and only if d(xn, x) → 0, by definition of the

ordinary limit in R. The reader should also be aware that we sometimes

write

lim
m,n→∞

d(xn, xm) = 0, or d(xn, xm) → 0 as m,n→ ∞,

if {xn} is a Cauchy sequence.

Again, in the Euclidean space Rn every Cauchy sequence is convergent

and vice versa. It is clear that even in a general metric space, every con-

vergent sequence is a Cauchy sequence; we formulate this as

Exercise 1.13.1. Suppose xn → x as n → ∞ in a general metric space

(S, d). Show that {xn} is a Cauchy sequence in (S, d).

What about the converse: are Cauchy sequences always convergent?

We consider a couple of examples. Recall that C(a, b) stands for the space

of continuous functions defined on the closed interval [a, b] with the “max

norm”

‖f‖ = max
t∈[a,b]

|f(t)|. (1.13.1)

Here a sequence of functions fn = fn(t) is a Cauchy sequence if

max
t∈[a,b]

|fn(t) − fm(t)| → 0 as m,n→ ∞.
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For any t ∈ [a, b], the sequence {fn(t)} is a numerical Cauchy sequence.

Hence it has a unique limit that we denote as f(t). This f(t) is a function

on [a, b]. Clearly {fn(t)} converges to f(t) in the sense that

sup
t∈[a,b]

|fn(t) − f(t)| → 0 as n→ ∞.

But we do not know whether f(t) is continuous on [a, b]. We now refer to

a theorem from classical analysis:

Theorem 1.13.1 (Weierstrass). Suppose a sequence of continuous func-

tions {fn(t)}, defined on a closed and bounded interval [a, b], is uniformly

convergent to a limit function f(t). Then f(t) is also continuous on [a, b].

Because uniform convergence is precisely equivalent to convergence in

the max metric of C(a, b), every Cauchy sequence taken from C(a, b) is

convergent to an element of the space.

But now consider the linear space of functions continuous on [−1, 1]

with the “L1-norm”

‖f‖1 =

∫ 1

−1

|f(t)| dt. (1.13.2)

Exercise 1.13.2. Show that (1.13.2) satisfies N1–N3. The reason for the

“L1” designation and the subscript “1” on the norm symbol will become

clear in § 1.15.

In this new normed space we consider a sequence {fn(t)} given by

fn(t) =















0, −1 ≤ t < 0,

nt, 0 ≤ t ≤ 1/n,

1, 1/n < t ≤ 1,

(n = 1, 2, 3, . . .).

If m > n, then

d(fm, fn) =

∫ 1/m

0

|mt− nt| dt+

∫ 1/n

1/m

|1 − nt| dt

=
1

2

(

1

n
− 1

m

)

→ 0 as m,n→ ∞,

so {fn(t)} is a Cauchy sequence. But fn(t) → U(t), where U(t) is the

Heaviside unit step function defined by

U(t) =

{

1, t ≥ 0,

0, t < 0.
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Indeed,

d(fn, U) =

∫ 1/n

0

|nt− 1| dt =
1

2n
→ 0 as n→ ∞.

However, the limit function U(t) is not continuous on (−1, 1). We have

established

Lemma 1.13.1. Let S be the space of functions continuous on [−1, 1] with

the L1-norm. There is a Cauchy sequence in S whose limit lies outside S.

To establish a theorem we must provide a full proof. On the other hand,

a proposition can be invalidated through just one counterexample. We have

shown that, in general, not all Cauchy sequences converge. What shall we

do then? It makes sense to select the class of spaces where the desired

equivalence does hold.

Definition 1.13.3. A metric space S is complete if every Cauchy sequence

taken from S converges to a limit in S. If S is not complete, it is incomplete.

A normed space that is complete in its natural metric is a Banach space.

An inner product space complete in its natural norm (i.e., complete in the

metric induced by that norm) is a Hilbert space.

We pause to note that the idea of metric space completeness was known

well before Stefan Banach (1892–1945). However, Banach was the first

to perceive the true usefulness of complete normed spaces. Banach was

educated as an engineer — he even published a book on classical mechanics.

This background helped him understand the importance of the spaces that

now bear his name. Unlike Banach, Hilbert was a pure mathematician. For

many years he was considered the best in the world. His ideas set the stage

for much of 20th century mathematics.

Whenever we encounter a new space, we should verify whether it is

complete. Our mere introduction of the “completeness” notion does not

mean such verification will be easy. We cannot, for example, immediately

generalize our conclusion regarding C(a, b) to the space C(Ω) where Ω is

a compact subset of Rn — at least not without being aware that Weier-

strass’s theorem generalizes appropriately to the multivariable case. The

same holds for a generalization to the space of continuous functions on Ω

with metric

‖f − g‖1 =

∫

Ω

|f(x) − g(x)| dx1 · · · dxn. (1.13.3)

In this case, however, incompleteness can indeed be shown.
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We should make another point. We examined two metric spaces above,

both constructed using the same base set S (i.e., the set of functions contin-

uous on [a, b]). The metrics were different, however, and this allowed us to

find a sequence {fn(t)} that happens to be a Cauchy sequence in one space

but not in the other. In this sense there is a lack of equivalence between

the norms on these two spaces.

It is evident that equivalent norms provide the same convergence prop-

erties. Recalling that all norms on Rn are equivalent, we could ask what

makes our present examples non-equivalent. The answer is that, in contrast

to Rn, these spaces are infinite-dimensional.

Exercise 1.13.3. Prove that the norms (1.13.1) and (1.13.2) on the set

of continuous functions are not equivalent. (Hint: construct a sequence of

elements that all have unit norm under (1.13.1), but whose norms under

(1.13.2) tend to zero.)

Of course, one might suggest that we simply avoid the L1 norm. But

norms of integral type are important. Is there a better way to circumvent

the difficulties associated with the incompleteness of such spaces? It turns

out that there is a powerful theorem which will permit us to “extend” an

incomplete space to a resulting complete space, the latter containing (at

least essentially — we shall clarify this below) the elements of the original

incomplete space. This construction is not unfamiliar, since we tacitly make

use of it when dealing with the real number system. We take up the full

details in the next section.

1.14 Completion Theorem

Although irrational numbers such as π and
√

2 are truly numbers, we do

not specify their values merely by giving them symbols. We can, however,

approximate them to any desired accuracy. Indeed we can find a Cauchy

sequence whose limit is irrational, but the best we can do to state the actual

limit is to assign it a name (such as “π” or “
√

2”). So, from this viewpoint,

an irrational number is defined through an approximation sequence. But

the choice of sequence is obviously non-unique; many different sequences

can define the same irrational number. One way around this difficulty

is to introduce equivalent Cauchy sequences. In this approach, any two

Cauchy sequences approaching the same limit are said to be equivalent; we

can collect all these sequences into equivalence classes and identify each
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irrational number with one of the classes. Each rational number can be

identified with an equivalence class as well. This idea lies at the base of the

metric space completion theorem.

Before stating the theorem we introduce some terminology. Some of

these concepts have been mentioned above, but we pause to formalize them.

Definition 1.14.1. Two sequences {xn}, {yn} in a metric space (S, d) are

said to be equivalent if d(xn, yn) → 0 as n → ∞. Given any Cauchy se-

quence {xn} in S, we can gather into an equivalence class X all Cauchy

sequences in S that are equivalent to {xn}. We then refer to any Cauchy

sequence fromX as a representative of X . Note that to any x ∈ S there cor-

responds a stationary equivalence class containing the “stationary” Cauchy

sequence x, x, x, . . ..

We think in terms of metric spaces primarily in those situations (e.g.,

the study of convergence) where the distance between elements is crucial.

If a one-to-one distance preserving correspondence exists between metric

spaces, we can work with the elements of either space. This is true even

if the spaces have elements of distinctly different natures — we can work

with the elements of one space and understand that, since distances are of

main concern, all statements we make relative to that space also hold for

the corresponding elements of the other space. With this in mind we state

Definition 1.14.2. A mapping from one metric space to another is an

isometry if it preserves distances; that is, f is an isometry from a metric

space (S1, d1) to a metric space (S2, d2) if

d2(f(x), f(y)) = d1(x, y) (1.14.1)

for every pair of points x, y taken from S1. If an isometry is also a one-to-

one correspondence, it is a one-to-one isometry and the two metric spaces

involved are isometric.

We know that a given real number can be approximated to any desired

accuracy by a rational number. In short, “the rationals are dense in the

reals.” The notion of denseness can be extended to more general sets.

Definition 1.14.3. Let X and Y be two subsets of a metric space (S, d).

We say that X is dense in Y if for any point y ∈ Y and any ε > 0, we can

find a point x ∈ X such that d(x, y) < ε.

Now we can talk about metric space completion. The main result is
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Theorem 1.14.1. Let S be a metric space. There is a one-to-one isometry

between S and a set S̃ which is dense in a complete metric space S∗.

This is the completion theorem. It guarantees that any metric space can

be completed. Of course, if S is already complete then there is nothing to

prove, so the result is interesting only when S is incomplete. The proof is

rather long and we subdivide it into digestible portions.

We begin by introducing the elements of S∗, using the idea of approx-

imating irrational numbers with classes of equivalent Cauchy sequences of

rational numbers. Given any particular Cauchy sequence {xn} in the origi-

nal space S, we form the equivalence classX mentioned in Definition 1.14.1.

We now view X as a single element of the space S∗ and construct the re-

maining elements similarly. So S∗ consists of equivalence classes of Cauchy

sequences taken from the original space S.

Definition 1.14.4. We call S∗ the completion of S.

Of course, we will have to define a suitable metric on S∗ and then show

that S∗ is complete in this metric.

Now we define S̃. Corresponding to any x ∈ S, there is a stationary

Cauchy sequence x, x, x, . . .. This sequence would, by our procedure above,

generate an equivalence class to be included in the completion space S∗.

The subset of S∗ consisting of only the stationary equivalence classes is

denoted by S̃. There is clearly a one-to-one correspondence between S

and S̃, and we will ultimately show that S̃ is dense in S∗. We begin by

introducing a suitable metric on S∗ (and S̃).

Lemma 1.14.1. Let X,Y ∈ S∗. The function D(X,Y ) given by

D(X,Y ) = lim
n→∞

d(xn, yn), (1.14.2)

where {xn} and {yn} are arbitrary representatives of X and Y , respectively,

is a metric on S∗.

Proof. We first show that the proposed metric is well-defined; i.e., that

the indicated limit exists and is independent of the choice of representative

sequences. The triangle inequality for the metric d (on S) allows us to write

d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn)

so that

d(xn, yn) − d(xm, ym) ≤ d(xn, xm) + d(ym, yn).
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Interchanging m and n and using the symmetry of the metric, we obtain

−[d(xn, yn) − d(xm, ym)] ≤ d(xn, xm) + d(ym, yn).

Therefore

|d(xn, yn) − d(xm, ym)| ≤ d(xn, xm) + d(yn, ym). (1.14.3)

Because {xn} and {yn} are Cauchy sequences, we know that d(xn, xm) → 0

and d(yn, ym) → 0 as m,n → ∞. It follows from (1.14.3) that {d(xn, yn)}
is a Cauchy sequence of real numbers. So the limit in (1.14.2) exists by

completeness of R. To see that it does not depend on the choice of repre-

sentatives, we take any two other representatives {x′n} and {y′n} from X

and Y , respectively, and use the inequality

|d(xn, yn) − d(x′n, y
′
n)| ≤ d(xn, x

′
n) + d(yn, y

′
n)

to get

|d(xn, yn) − d(x′n, y
′
n)| → 0 as n→ ∞.

This shows that

lim
n→∞

d(x′n, y
′
n) = lim

n→∞
d(xn, yn).

So D(X,Y ) is well-defined. Does it really satisfy the axioms of a metric?

First, the inequality D(X,Y ) ≥ 0 follows from passage to the limit as n→
∞ in the corresponding inequality d(xn, yn) ≥ 0 that is satisfied by d for

each n. If X = Y then we certainly have D(X,Y ) = 0 (since we can choose

the same representative sequence from both X and Y ). Conversely, the

statement D(X,Y ) = 0 implies that any two representatives {xn} and {yn}
give limn→∞ d(xn, yn) = 0. By Definition 1.14.1 these representatives are

equivalent and we conclude that X = Y . So metric axiom M1 is satisfied.

Satisfaction of M2 follows from the definition of D and the symmetry of d:

D(X,Y ) = lim
n→∞

d(xn, yn) = lim
n→∞

d(yn, xn) = D(Y,X).

Finally, the triangle inequality

D(X,Y ) ≤ D(X,Z) +D(Z, Y )

follows from passage to the limit as n→ ∞ in the inequality

d(xn, yn) ≤ d(xn, zn) + d(zn, yn).

So D is a suitable metric on S∗. Since S̃ is a subset of S∗, we can also

employ D as the metric on S̃. �
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Lemma 1.14.2. The space (S∗, D) is complete.

Proof. We will show that an arbitrary Cauchy sequence {X i} in S∗ is

convergent. From each X i we take a representative {x(i)
j } and, from this,

an element xki
such that ki > ki−1 and d(xki

, x
(i)
j ) < 1/i for all j > ki. To

see that {xki
} is a Cauchy sequence in S, we denote by Xki

the equivalence

class containing the stationary sequence (xki
, xki

, . . .) and write

d(xki
, xkj

) = D(Xki
, Xkj

)

≤ D(Xki
, Xki) +D(Xki , Xkj ) +D(Xkj , Xkj

)

≤ 1

i
+D(Xki , Xkj ) +

1

j

→ 0 as ki, kj → ∞.

Denoting by X the class determined by {xki
}, we have

D(Xki , X) ≤ D(Xki , Xki
) +D(Xki

, X)

≤ 1

i
+D(Xki

, X)

=
1

i
+ lim

j→∞
d(xki

, xkj
)

→ 0 as i→ ∞.

So Xki → X in the metric of S∗ and as {X i} is a Cauchy sequence then

X i → X as i→ ∞. �

Lemma 1.14.3. The set S̃ is dense in the set S∗, relative to the metric D.

Proof. Let X ∈ S∗ be given. We select a representative {xn} from X ,

and for each n denote by Xn the stationary equivalence class containing

(xn, xn, . . .). Because

D(Xn, X) = lim
m→∞

d(xn, xm) → 0 as n→ ∞,

we can approximate X as closely as desired by the elements Xn taken from

S̃. �

Lemma 1.14.4. The spaces (S, d) and (S̃, D) are isometric.

Proof. The one-to-one correspondence between S and S̃ is defined by

pairing with any x ∈ S the element X ∈ S̃ that contains (x, x, x, . . .). Given
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any x, y ∈ S, we can take their images X and Y under the correspondence

and write

D(X,Y ) = lim
n→∞

d(x, y) = d(x, y)

to see that it preserves distances. �

Theorem 1.14.1 follows from Lemmas 1.14.1–1.14.4. Since it is formu-

lated for a general metric space, it holds for all particular cases. If a space

has additional properties, these typically transfer to the completion space

as well.

The most important property of this kind is linearity. Suppose S is a

linear metric space with the additional operations of summation x+ y and

multiplication λx by a (real or complex) number. It is clear that the same

operations can be introduced in S∗ for the elements X,Y and, moreover,

that the above correspondence between S and S̃ preserves these algebraic

operations. Hence the completion is also a vector space.

Particularly important are the normed spaces. Each is a vector space

and, in addition, has a natural metric d(x, y) = ‖x− y‖. Here we can

also apply Theorem 1.14.1. Let us consider this case. Everything stated

for metric spaces continues to hold, of course, but there are additional

observations as well. The metric (1.14.2) now takes the form

D(X,Y ) = lim
n→∞

d(xn, yn) = lim
n→∞

‖xn − yn‖ .

This raises the question whether D(X,Y ) can be considered as the norm

of the element X − Y : we denote this by ‖X − Y ‖∗. The reader should

verify that ‖X‖∗ satisfies N1–N3. Hence S∗, resulting from application of

Theorem 1.14.1, is a Banach space.

Similar reasoning holds for an inner product space: Theorem 1.14.1

yields a Hilbert space S∗ whose inner product between X and Y is de-

fined by a limit passage in the inner product over representative Cauchy

sequences for these elements. The result is independent of the choice of

representatives and satisfies I1–I3.

In what follows, we will complete various normed and inner product

spaces. Let us formulate appropriate versions of the theorem.

Theorem 1.14.2. Let S be a normed space. There is a one-to-one isom-

etry between S and a set S̃ which is dense in a Banach space S∗. Algebraic

operations between elements are preserved under this correspondence. The

norm in S∗ is given by

‖X‖∗ = lim
n→∞

‖xn‖ , (1.14.4)
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where {xn} is any representative Cauchy sequence taken from the class X.

Theorem 1.14.3. Let S be an inner product space. There is a one-to-one

isometry between S and a set S̃ which is dense in a Hilbert space S∗. Alge-

braic operations between elements are preserved under this correspondence.

The inner product in S∗ is given by

(X,Y )∗ = lim
n→∞

(xn, yn), (1.14.5)

where {xn} and {yn} are any representative Cauchy sequences taken from

the classes X and Y , respectively.

Exercise 1.14.1. Denote by P the set of all polynomials with real coeffi-

cients on the closed segment [0, 1]. Observe that P is a linear space. Supply

it with the norm of C(0, 1), that is, ‖p‖ = maxx∈[0,1] |p(x)|. Clearly the re-

sulting normed space is not complete. Describe the space that results from

the completion theorem in this case.

Let us sketch a solution. Clearly, by the completion theorem, the reader

will get a complete space consisting of all the classes of equivalent Cauchy

sequences of polynomials. However, by the Weierstrass theorem, any con-

tinuous function in C(0, 1) can be uniformly approximated by a polynomial

to within any desired accuracy. This means that P is dense in C(0, 1), which

is a complete space. The latter means that any Cauchy sequence in C(0, 1),

including sequences of elements of P , has a continuous function as a limit.

It is easy to show that this limit does not depend on the choice of a repre-

sentative sequence from a class of the completion space. So here any class

of the completion space can be identified with a continuous function from

C(0, 1). We can regard the completion space obtained by the theorem as

another form of representation of the space C(0, 1).

1.15 Lebesgue Integration and the Lp Spaces

Suppose Ω is a closed and bounded (i.e., compact), Jordan measurable

subset of Rn. Let S be the collection of all functions f(x) continuous on Ω

and thus absolutely integrable over Ω in the Riemann sense:

∫

Ω

|f(x)| dΩ <∞. (1.15.1)
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Since the integral expression above is a valid norm on S, we can consider

the normed space (S, ‖·‖1) where

‖f‖1 =

∫

Ω

|f(x)| dΩ. (1.15.2)

Lemma 1.13.1 states that (S, ‖·‖1) is incomplete when Ω is a one-

dimensional interval [a, b]. The same holds for Ω ⊂ Rn with any finite

n. We can apply Theorem 1.14.2 and extend the operation of integration

to the elements of the resulting Banach space. The integral we obtain is

called the Lebesgue integral, after H. Lebesgue who introduced it from an-

other standpoint. Let us denote the elements of the completion by F (x)

and introduce

Definition 1.15.1. L1(Ω) is the Banach space formed by completing the

normed space (S, ‖·‖1). The norm on L1(Ω) is given by

‖F‖1 =

∫

Ω

|F (x)| dΩ. (1.15.3)

For brevity, we often write L(Ω) instead of L1(Ω).

The sense of integration on the right side of (1.15.3) is given by Theo-

rem 1.14.2; it is therefore

∫

Ω

|F (x)| dΩ = lim
n→∞

∫

Ω

|fn(x)| dΩ, (1.15.4)

where {fn(x)} is a representative sequence (i.e., of continuous functions

from S) taken from the class of equivalent Cauchy sequences F (x). We will

call the value
∫

Ω

|F (x)| dΩ

the Lebesgue integral of |F (x)|.
We pause to observe that an element of L(Ω) is not an ordinary function.

It is an equivalence class of Cauchy sequences of continuous functions. But

we do employ function notation as indicated above. This is convenient if

one maintains the correct interpretation of the symbolism. For example, the

sum F (x) +G(x) of two elements is understood to be the equivalence class

determined by a representative Cauchy sequence {fn(x) + gn(x)}, where

{fn(x)} and {gn(x)} determine F (x) and G(x), respectively.
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We have introduced the integral for |F (x)|. Let us introduce the value

of the integral
∫

Ω

F (x) dΩ

for elements F (x) ∈ L(Ω) themselves. The result will also be equivalent to

the Lebesgue integral of a function. Taking a representative {fn(x)} from

F (x), we use the modulus inequality
∣

∣

∣

∣

∫

Ω

f(x) dΩ

∣

∣

∣

∣

≤
∫

Ω

|f(x)| dΩ (1.15.5)

to show that the numerical sequence {
∫

Ω fn(x) dΩ} is a Cauchy sequence:
∣

∣

∣

∣

∫

Ω

fn(x) dΩ −
∫

Ω

fm(x) dΩ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

[fn(x) − fm(x)] dΩ

∣

∣

∣

∣

≤
∫

Ω

|fn(x) − fm(x)| dΩ

= ‖fn − fm‖1

→ 0 as m,n→ ∞.

Definition 1.15.2. The quantity
∫

Ω

F (x) dΩ ≡ lim
n→∞

∫

Ω

fn(x) dΩ (1.15.6)

is uniquely determined by F (x) and is called the Lebesgue integral of F (x)

over Ω.

Again, this is equivalent to the Lebesgue integral as presented in real func-

tion theory.

Remark 1.15.1. The classical theory of Lebesgue integration begins with

the notion of Lebesgue measurability of a set in R
n. This differs from

Jordan measurability in the way that the elementary domains, used for

defining whether a domain is measurable, contain a countable set of ele-

mentary parallelepipeds (inscribed and circumscribed) unlike the Jordan

case where only finite sets of these are used. The classical theory intro-

duces the notion of Lebesgue integral, but the “functions” involved are not

simple functions (just as they are not in our approach); rather, a function

here is a collection of all those that are equal almost everywhere (i.e., ex-

cept on a set of Lebesgue measure zero). Sets of Lebesgue measure zero

can be complicated, and hence the corresponding “functions” for which
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Lebesgue integration is introduced can differ substantially from ordinary

functions. For example, the set of all rational numbers on the segment

[0, 1] has Lebesgue measure zero. Thus the functions participating in the

classical theory of Lebesgue integration are also some classes of equivalent

functions and offer no advantages over those used in our approach. When

we say that the integrals are equivalent we mean that the resulting spaces

can be placed in one-to-one correspondence in such a way that the integrals

for the corresponding elements are equal. The correspondence is also iso-

metric and preserves linear operations over the elements. Moreover, in the

case of a continuous function for which the Riemann integral exists, both

approaches to the Lebesgue integral yield a value equal to this Riemann

integral. �

Note the following.

(1) If we take an element of L(Ω) that contains a stationary sequence of

elements of S, this integral is equal to the ordinary Riemann integral

of the function of the stationary sequence. Thus it extends the notion

of Riemann integral.

(2) In L(Ω) all the functions (elements) are absolutely integrable.

L(Ω) belongs to a class of Banach spaces that are denoted by Lp(Ω),

p ≥ 1. In particular, L(Ω) ≡ L1(Ω). For a fixed p ≥ 1, the space Lp(Ω) is

the completion of S with respect to the metric induced by the norm

‖f‖p =

(
∫

Ω

|f(x)|p dΩ
)1/p

. (1.15.7)

The norm of an equivalence class F (x) ∈ Lp(Ω) is given by

‖F‖p =

(
∫

Ω

|F (x)|p dΩ
)1/p

. (1.15.8)

Here integration is now understood in the Lebesgue sense:
∫

Ω

|F (x)|p dΩ = lim
n→∞

∫

Ω

|fn(x)|p dΩ, (1.15.9)

where {fn(x)} is any representative of F (x).

Exercise 1.15.1. Show that this integral is well-defined; i.e., that the limit

on the right exists and is unique for any given F (x) ∈ Lp(Ω). Hence the

norm (1.15.8) is well-defined.
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We now state some important facts regarding the Lp(Ω) spaces. First,

for compact Ω these spaces are nested in the sense that

Lp(Ω) ⊆ Lr(Ω) for 1 ≤ r ≤ p. (1.15.10)

Second, a sufficient condition for existence of the integral
∫

Ω

F (x)G(x) dΩ

is that

F (x) ∈ Lp(Ω) and G(x) ∈ Lq(Ω)

for p and q such that

1

p
+

1

q
= 1 and p > 1.

In this case Hölder’s inequality for integrals

∣

∣

∣

∣

∫

Ω

F (x)G(x) dΩ

∣

∣

∣

∣

≤
(
∫

Ω

|F (x)|p dΩ
)1/p (∫

Ω

|G(x)|q dΩ
)1/q

(1.15.11)

holds, with equality if and only if F (x) = λG(x) for some number λ.

Exercise 1.15.2. Use (1.15.11) to prove (1.15.10); i.e., there exists a con-

stant Cp,r not dependent on F (x) such that

(
∫

Ω

|F (x)|r dΩ
)1/r

≤ Cp,r

(
∫

Ω

|F (x)|p dΩ
)1/p

when 1 ≤ r ≤ p.

The space L2(Ω) deserves mention since it is a Hilbert space. (The

spaces Lp(Ω) for p 6= 2 are Banach spaces but their norms cannot be in-

duced by suitable inner products.) If we begin with a base set S of complex

functions, Theorem 1.14.3 yields a complex Hilbert space with inner prod-

uct

(F,G) = lim
n→∞

∫

Ω

fn(x)gn(x) dΩ =

∫

Ω

F (x)G(x) dΩ. (1.15.12)

Complex conjugation can be omitted to obtain the correct expression for

the inner product on the real version of L2(Ω).
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Fredholm’s operator in Lp(Ω)

Let us apply Hölder’s inequality to find the norm of Fredholm’s operator.

Equations of the general form

U(x) +

∫

Ω

K(x,y)U(y) dΩ = G(x), (1.15.13)

where K(x,y) and G(x) are given and U(y) is the unknown sought, occur

commonly in mathematical physics (and continuum mechanics in partic-

ular). They are known as Fredholm integral equations of the second kind.

We can write (1.15.13) in the slightly more abstract form

U(x) +AU(x) = G(x) (1.15.14)

where A is the linear integral operator given by

AU(x) =

∫

Ω

K(x,y)U(y) dΩ. (1.15.15)

This is Fredholm’s integral operator. Depending on the application, A can

be considered as acting in various spaces of functions. It may or may not

be continuous, depending on the properties of its kernel K(x,y). Let us

obtain a condition on K(x,y) sufficient to ensure that A is bounded when

it acts in the space Lp(Ω) (i.e., maps elements U ∈ Lp(Ω) into images

AU ∈ Lp(Ω)). We have

‖AU‖p =

(
∫

Ω

∣

∣

∣

∣

∫

Ω

K(x,y)U(y) dΩ

∣

∣

∣

∣

p

dΩ

)1/p

.

But by Hölder’s inequality we can write

∣

∣

∣

∣

∫

Ω

K(x,y)U(y) dΩ

∣

∣

∣

∣

p

≤
(
∫

Ω

|K(x,y)|q dΩ
)p/q (∫

Ω

|U(y)|p dΩ
)

where q = p/(p− 1), so

‖AU‖p ≤
[

∫

Ω

(
∫

Ω

|K(x,y)|q dΩ
)p/q

dΩ

]1/p

‖U‖p .

The needed condition for continuity of A is

[

∫

Ω

(
∫

Ω

|K(x,y)|q dΩ
)p/q

dΩ

]1/p

<∞.

In fact, it can be shown that the quantity on the left equals ‖A‖.
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The idea of Lebesgue integration can be extended to the case of non-

compact domains Ω. The above-stated fact about ‖A‖ holds even if Ω is

not compact, since Hölder’s inequality continues to hold in that case. The

reader should note the similarity in form between the corresponding norms

of the Fredholm operator and the matrix operator in § 1.12.

Vectorial versions of (1.15.13) are also important in mechanics.

1.16 Orthogonal Decomposition of Hilbert Space

The Hilbert space L2(Ω) plays an important role in modern theoretical in-

vestigations of partial differential equations. In this book we will encounter

other Hilbert spaces that relate to the energy functionals of the various

objects of continuum mechanics.

A Hilbert space possesses an important functional, the inner product,

whose existence we have not used so far. However, many properties that

hold in R3 — for example, those relating to projections, component rep-

resentations of vectors, etc. — can be extended to general Hilbert spaces.

Here we consider the decomposition of a Hilbert space into a sum of mu-

tually orthogonal subspaces. In R3 a proper subspace might be a set of

vectors acting in a direction parallel to a line or a plane. Suppose U is a

subspace of vectors whose line of action is parallel to a plane through the

origin, and that V consists of vectors whose line of action is parallel to a

line perpendicular to that plane. Then any v ∈ V has the property that

(v,u) = 0 for all u ∈ U . Two subspaces related in this way are said to be

mutually orthogonal. In this case any x ∈ R3 can be written uniquely as a

sum

x = u + v, u ∈ U, v ∈ V. (1.16.1)

We say that R3 has been decomposed as a direct sum of the subspaces U

and V , and write

R
3 = U+̇V. (1.16.2)

These ideas extend to a general Hilbert space as follows.

Definition 1.16.1. Let V be a subspace of a Hilbert space H . A vector

x ∈ H is orthogonal to V if (x, v) = 0 for every v ∈ V . Let U be another

subspace of H . We say that U and V are mutually orthogonal subspaces,

and write U ⊥ V , if every u ∈ U is orthogonal to V . Finally, if U and V

have the property that any x ∈ H can be expressed uniquely in the form
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x = u + v for some u ∈ U and v ∈ V , we say that H has an orthogonal

decomposition as the direct sum H = U +̇V .

The orthogonal projection of a vector x ∈ R3 onto a subspace M of R3

has a few properties by which we can define the projection uniquely. One

is that the difference between x and its projection m0, i.e., x − m0, has

the least length of all vectors x − m, where m ∈ M . It turns out that the

orthogonal projection of a vector on a subspace of a Hilbert space can be

defined in the same way. Thus we begin with the question of minimization

of the functional ‖x−m‖ over m ∈M , a closed subspace of H .

Exercise 1.16.1. Verify that the inequality ax2 + bx + c ≥ c holds for all

real x if and only if b = 0 and a ≥ 0. (This result will be needed in the

proof of Theorem 1.16.1.)

Theorem 1.16.1. Suppose M is a closed subspace of a Hilbert space H and

x ∈ H. There is a unique element m0 ∈M such that ‖x−m‖ is minimized

when m = m0. Furthermore, m0 is the unique “minimizing vector” if and

only if x−m0 is orthogonal to M .

Proof. We prove this when H is a real Hilbert space. The case where

x ∈M is trivial (simply take m0 = x), so we assume x /∈ M . Define

δ = inf
m∈M

‖x−m‖ .

Now the distance between any two elements mi,mj ∈ M can be expressed

using

‖mj −mi‖2 = ‖(mj − x) + (x−mi)‖2

where, by the parallelogram law, the right side satisfies

‖(mj − x) + (x −mi)‖2
+ ‖(mj − x) − (x−mi)‖2

= 2 ‖x−mj‖2
+ 2 ‖x−mi‖2

.

This means that

‖mj −mi‖2
= 2 ‖x−mj‖2

+ 2 ‖x−mi‖2 − 4

∥

∥

∥

∥

x− mi +mj

2

∥

∥

∥

∥

2

≤ 2 ‖x−mj‖2
+ 2 ‖x−mi‖2 − 4δ2. (1.16.3)

(Here we have used the fact that (mi + mj)/2 lies in M , since M is a

subspace.) By definition of δ we can take a sequence {mi} in M such

that ‖x−mi‖ → δ. Such a sequence is a Cauchy sequence by (1.16.3).
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Furthermore, because H is complete {mi} must converge and its limit m0

must belong to M since M is closed. By continuity of the norm we have

‖x−m0‖ = δ.

Equation (1.16.3) can also be used to prove uniqueness of the minimizing

vector. If m0, m̄0 ∈M are any two minimizing vectors, we can set mi = m0

and mj = m̄0 and obtain

‖m̄0 −m0‖2 ≤ 2 ‖x− m̄0‖2
+ 2 ‖x−m0‖2 − 4δ2 ≤ 2δ2 + 2δ2 − 4δ2 = 0,

hence m̄0 = m0.

We finish the proof by showing that m0 is the unique minimizing vector

if and only if x −m0 is orthogonal to M . Indeed, let m ∈ M . If m0 is a

minimizing vector then for any α we have

‖x−m0‖2 ≤ ‖x−m0 − αm‖2 = ‖x−m0‖2 − 2α(x−m0,m) + α2 ‖m‖2 .

This is a quadratic inequality; by Exercise 1.16.1 it can hold for all α if and

only if the coefficient of the first power of α, namely (x −m0,m), is zero.

This means that any m ∈ M is orthogonal to x −m0, and thus x −m0 is

orthogonal to M .

Conversely, let (x−m0,m) = 0 for any m ∈M . Denote m1 = m−m0.

Then

‖x−m‖2
= ‖x−m0 −m1‖2

= ‖x−m0‖2 − 2(x−m0,m1) + ‖m1‖2
.

As (x−m0,m1) = 0 we get

‖x−m‖2 = ‖x−m0‖2 + ‖m1‖2

and so m0 is the needed minimizer. �

Definition 1.16.2. Given a subspace M of a Hilbert space H , the set of

all x ∈ H that are orthogonal to M is called the orthogonal complement of

M and is denoted by M⊥.

Exercise 1.16.2. Let M be a closed subspace of H. Show that M⊥ is a

closed subspace of H. Hence M and M⊥ are orthogonal subspaces of H.

Now we can state the orthogonal decomposition theorem.

Theorem 1.16.2. If M is a closed subspace of a Hilbert space H, then

H = M+̇M⊥. (1.16.4)

Hence any x ∈ H has a unique representation x = m + n, where m ∈ M

and n ∈ M⊥.
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Proof. Let x ∈ H . According to Theorem 1.16.1 there is a unique m0 ∈
M such that x−m0 is orthogonal to M . Writing x = m0 +(x−m0) we see

that x is decomposed uniquely into a component in M and a component in

M⊥. �

Exercise 1.16.3. Our proof was given for a real Hilbert space. Supply the

proof for a complex Hilbert space.

1.17 Work and Energy

It was not a simple task to devise a way of measuring the action performed

by a person or machine. Eventually, the measure we now call work was

introduced. It involves the notion that a force (or set of forces) acts on an

object and thereby moves it. In the simplest case the force is constant and

acts on a particle in the direction of its motion. Then the product of the

force F and the distance s through which the force has shifted the particle

is called its work:

W = Fs. (1.17.1)

When the force is variable and so depends on the length parameter s as

some function F = F (s), it is reasonable to introduce work as an integral:

W =

∫ B

A

F (s) ds, (1.17.2)

where A,B are the initial and final points of the particle trajectory.

When the direction of the force does not coincide with the direction of

motion of the particle, a natural generalization is to introduce the force

vector F and represent a small piece of the trajectory as an elemental

displacement dr. Then the work can be written as a dot product:

W =

∫ B

A

F(s) · dr. (1.17.3)

In fact, nothing prevents us from introducing other measures of the action

of a force, but this particular one is intimately related to the quantity we

call energy.

The notion of energy occurs in all the physical sciences. It is applied in

many situations, but has no strict definition. We say that energy is con-

served after observing a wide variety of processes in Nature. In mechanics,

however, the law of conservation of mechanical energy follows directly from
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mathematical transformations that yield energy integrals in various situa-

tions; these integrals, in turn, are found to be related to work as introduced

in (1.17.3).

The notion of mechanical energy is extremely important. We use it

not only as a measure of something conserved during the motions and

deformations of bodies, but to characterize the differences between states

of a body. Moreover, we will introduce normed spaces that employ energy-

related expressions for norms and inner products.

Let us illustrate how the above mentioned work–energy relation arises

in simple problems. Consider the motion of a particle, having mass m,

under the action of a force F. We shall see how the simplest form of the

energy conservation law arises in mechanics. The equation of motion is

mr̈ = F. (1.17.4)

We represent dr along the trajectory as

dr = ṙ dt.

Dot multiplying (1.17.4) by this and integrating with respect to time over

[t0, t1], we get

∫ t1

t0

mr̈ · ṙ dt =

∫ t1

t0

F · dr.

On the right we have the work of the force F acting during the time interval

[t0, t1]. On the left, the simple transformation

mr̈ · ṙ =
d

dt

mṙ2

2
≡ d

dt

mv2

2

yields, after integration,

mv2

2

∣

∣

∣

∣

t=t1

− mv2

2

∣

∣

∣

∣

t=t0

=

∫ t1

t0

F · dr. (1.17.5)

It follows that if F is zero or orthogonal to the trajectory at all times, the

quantity mv2/2 stays constant. This is the kinetic energy of the particle.

The last equation states that the change in kinetic energy during some time

interval is equal to the work of the force during that same interval. This is

one formulation of the law of energy conservation.

We know that total energy (i.e., the sum of potential and kinetic energy

terms) is conserved. Let us consider a simple problem: the oscillations,



December 24, 2008 10:59 World Scientific Book - 9in x 6in elasticity

Models and Ideas of Classical Mechanics 65

along a straight line, of a particle attached to a spring. Hooke’s law relates

the extension x of the spring to the applied force F :

F = kx. (1.17.6)

By Newton’s third law the spring exerts a force −kx on the particle, and

the equation of motion of a particle of mass m is

mẍ(t) = F0(t) − kx(t). (1.17.7)

The active force F0(t) is assumed given. Before repeating the transforma-

tions done above, let us introduce the potential

V =
1

2
kx2 (1.17.8)

corresponding to the elastic force −kx. The name “potential” indicates

that its derivative with respect to x gives us the force expression:

dV
dx

= −(−kx). (1.17.9)

The equation of motion of the particle attached to the spring can be rewrit-

ten in the form

mẍ(t) +
dV(x)

dx
= F0(t). (1.17.10)

Now we multiply through by

dx(t) = ẋ(t) dt

and integrate along the trajectory over the time [t0, t1]. We get
∫ t1

t0

mẍ(t)ẋ(t) dt+

∫ t1

t0

dV(x)

dx
dx =

∫ t1

t0

F0(t) dx(t)

which brings us, after integration, to
[

mv2

2
+ V(x)

] ∣

∣

∣

∣

t=t1

−
[

mv2

2
+ V(x)

] ∣

∣

∣

∣

t=t0

=

∫ t1

t0

F0(t) dx(t) (1.17.11)

where

v(t) = ẋ(t).

The expression on the right-hand side of (1.17.11) is the work of the active

force F0(t) during [t0, t1]. On the left we see the particle’s kinetic energy

K = mv2/2. We see the sum K+V evaluated at the final and initial points

of the time period under consideration. Calling V the potential energy

and K + V the total energy, we come to a well-known statement of energy
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conservation: the change in total energy of the “particle-spring” system

during [t0, t1] is equal to the work performed by the external force during

that same period. Of course, the conservation of total energy holds when

the work is zero, e.g., when F0 = 0; in this case K + V stays constant over

time.

We called V the potential energy. It is clearly associated with the spring

and not the particle. Of course, we are free to assign names in any desired

way, but should have some justification. We have said that the energy

relates to the work done by forces. So why is V = kx2/2 called potential

energy? Consider the work done by the external force while stretching the

spring by an amount x. At the final position, the extension of the spring

is x, and the force to maintain this extension would be F = kx. A naive

application of the “work equals force times distance” idea would yield a

value of kx · x = kx2 for the work done. But V contains an additional

factor of 1/2. Why? The answer is that we cannot apply the force kx at

once: at first we need only a small force, near zero, to produce a bit of

extension. If we apply the force kx right away we will produce motion, but

we suppose that there is no motion. So our external force should increase

from zero to kx in such a way that at every moment we have a state of

equilibrium.3 Then the total work of the external force is

W =

∫ x

0

kξ dξ =
kx2

2
. (1.17.12)

This coincides with the value of V as introduced above.

The reader is aware of elementary physics problems in which a particle

moves vertically through the Earth’s gravitational field; in such cases we

also consider the total energy of the particle to be the sum of its kinetic

and potential energies, and the potential energy term is analogous to that

found above for the mass-spring system. We also introduce a gravitational

potential

V(z) = mgy, (1.17.13)

where y is height above the Earth’s surface. The total energy in this way
3Here we ran into a typical snag that is common in statics and thermodynamics: we

essentially treat a moving system as though it were in true static equilibrium at any
instant of the motion. Formally, this can be done in two ways: (1) we can consider
certain masses that are involved to be zero (as we have done with the mass of the
spring), or (2) we can assume extremely slow motion and consider all inertial forces to
be zero (although it is not altogether clear that we can do this when we observe finite
changes at the conclusion of the motion).
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is

E =
mv2

2
+ V(y). (1.17.14)

So the two problems exhibit the structure for total energy, which is con-

served during motion. In this sense they are analogous. Note that in both

cases the total energy is related not only to the particle but to “the sources”

of external force (i.e., the spring and gravitational field, respectively). In

many problems we can regard the forces as “external” in nature and thereby

introduce a potential-type function. Then V plays the role of the potential

energy of the system under consideration, but in fact it relates to the en-

ergy of some external objects that “emanate” those forces somehow. This

notion of the potential of external forces is extremely useful in Lagrangian

mechanics.

1.18 Virtual Work Principle

For a system of n particles in equilibrium, the resultant force acting on the

ith particle is zero:

Fi = 0 (i = 1, . . . , n). (1.18.1)

If the motions of the particles are unconstrained, we can denote by δri

the (arbitrary) permissible motion of the ith particle and write all the

equilibrium equations as the single equation

n
∑

i=1

Fi · δri = 0. (1.18.2)

This holds for all possible δri, and from it we can recover (1.18.1) since

we can appoint each δri independently. Equation (1.18.2) expresses the

virtual work principle (VWP) for the equilibrium of a system of independent

particles. We see that its terms express the work of the forces Fi over the

displacements given by the vectors δri. This is called virtual work, a name

we shall soon explain.

The transformation from (1.18.1) to (1.18.2) offers no real advantages

in this case. But the situation is different when constraints on the motion

are present.

We have mentioned the constraints under which a system of particles

becomes a rigid body. In mechanics there are also constraints of other
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types: supports, conditions of impenetrability, etc. We shall touch upon

some of the problems in which friction is negligible.

Let us consider the equilibrium of a particle under the influence of a

constraint that does not involve friction. The constraint itself is defined by

an equation. For example, a particle may be constrained to move without

friction on some surface expressed in Cartesian coordinates by

F (x, y, z) = 0. (1.18.3)

In vectorial form this looks like F (r) = 0. The absence of friction means

the reaction force R of the surface on the moving particle is always directed

along the surface normal n. When the constrained particle is in equilibrium,

the resultant force acting on it is zero. Let us call the remaining forces

active, and denote their resultant by F. We have

F + R = 0. (1.18.4)

The reaction R lies along n and participates in the force balance along

this direction, but has no component tangent to the surface; hence the

projection of F on the local tangent plane must be zero. The equation of

the tangent plane at a point r0 = (x0, y0, z0) on the surface is

∂F (r0)

∂x
(x− x0) +

∂F (r0)

∂y
(y − y0) +

∂F (r0)

∂z
(z − z0) = 0.

In vector form this is ∇F (r0) · (r − r0) = 0. Let us denote r − r0 by δr so

that

∇F (r0) · δr = 0. (1.18.5)

We call a vector δr satisfying (1.18.5) a virtual displacement of a particle

at the point r0. In general the vector r0 + δr does not define a point on the

surface, hence the displacement δr of the particle does not belong to the

set of actual displacements. Usually δr is considered as an infinitesimal dis-

placement of the particle, in this case it belongs to the surface tangent but

(with the same success) it could be finite and so in general does not belong

to the surface. This explains the curious term “virtual displacement”: it

does not belong, in general, to the set of real displacements of the particle

but is “proportional” to one of the real infinitesimal displacements. The set

of all virtual displacements δr covers all directions tangent to the surface,

so the condition that the projection of the active force F onto the tangent

plane is zero can be written in the form

F · δr = 0 (1.18.6)
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as R is orthogonal to δr. In equilibrium of the particle on a surface, (1.18.6)

must hold for all virtual displacements δr. It is the VWP equation in this

case. In form it coincides with the VWP equation for a free particle, but

the set of virtual displacement vectors δr is now restricted; because of this

restriction, we excluded from the equation the reaction force R, and this

offers some practical advantages.

If the particle is constrained to move only along a curve without friction,

then the reaction cannot have components parallel to the tangent at each

point. Here, the set of virtual displacements δr is restricted to the set

of vectors parallel to the tangent line at any point. Reasoning similar to

the above brings us to the equation of equilibrium, which coincides with

(1.18.6) for the surface constraint.

In classical mechanics one also considers unilateral constraints. In the

case of a surface, for example, a particle may be able to move on the surface

or away from one side but cannot penetrate through to the other side. Here

the set of virtual displacements is obviously not restricted to vectors lying

in the tangent plane. When friction is absent, there are various arguments

(more of the nature of axioms, really) supporting the notion that the work

of the reaction force must be nonnegative:

R · δr ≥ 0. (1.18.7)

Then (1.18.4) gives

F · δr ≤ 0, (1.18.8)

which is regarded as the most general form of the virtual work principle

for a particle whose position is restricted by a unilateral constraint. When

treating a system of independent particles, we can write out the VWP

equation (or inequality) for each particle and then add. The resulting

equation (or inequality), by the independence of the virtual displacements

for each particle, is equivalent to the complete set of equilibrium equations

for the system. It does not contain the constraint reactions, however, so

solution of the equations is simplified. Thus, for the case of a system

of particles that can move only along certain curves or surfaces without

friction (such systems are called holonomic) so that the constraints are

expressed with equalities of the type f(r1, . . . , rn, t) = 0 (such constraints

are called geometric or holonomic, as opposed to the kinematic constraints

whose equations include velocities of points) the virtual work principle is
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expressed by

n
∑

i=1

Fi · δri = 0. (1.18.9)

Of course, in problem solving there is no need to try all possible virtual dis-

placements in this equation. For each i, it is enough to take only the vectors

that constitute a basis in the corresponding space of virtual displacements.

If there are unilateral constraints without friction, the virtual work prin-

ciple is given by

n
∑

i=1

Fi · δri ≤ 0. (1.18.10)

It turns out that the virtual work principle can be used not only in

cases involving independent particles, but with rigid bodies or systems of

such bodies under the actions of forces. It is only necessary to observe that

the virtual motions of different points of a rigid body are not independent.

When we do this, we can obtain the equilibrium conditions for a rigid body.

The reader can consult any textbook on classical mechanics for further

details. In the same way, we can consider the virtual work principle for

dynamic problems when “inertial” forces are present. So the virtual work

principle applies in dynamics as well (cf., equation (1.19.2)).

For a mechanical system without friction, it seemingly does not mat-

ter whether we use the virtual work principle or Newton’s laws to study

particle motion. However, the virtual work principle has a broader range

of application in classical mechanics. In general, the virtual work principle

is not a direct consequence of Newton’s laws, although in many cases it is

possible to demonstrate their equivalence as was done above. Experience

shows that the virtual work principle can be taken as the base formulation

for the laws of equilibrium (and, with use of d’Alembert’s principle, for the

laws of motion) of particles and rigid bodies with constraints.

1.19 Lagrange’s Equations of the Second Kind

Recall that the degree of freedom of a system of particles is the minimal

number of independent parameters needed to uniquely specify the position

of the system. This is often less than the formal number of Cartesian com-

ponents associated with the position vectors of the particles. If a particle

moves along a surface, it is sufficient to know two coordinates of the parti-
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cle’s position on the surface. If it moves along a line, knowledge of a single

coordinate suffices. Finally, if particles make up a rigid body, then their

mutual separation distances are constant, so fewer (six) position parameters

are needed to describe the motion. A reduction in the number of needed

parameters in comparison with the number of Cartesian components with

which we may describe the system is normally due to constraints imposed

on the system.

Let a system of r particles have n degrees of freedom so that its position

is uniquely defined by the coordinate parameters q1, . . . , qn. Because of

possible ties between particles, we should suppose that the position vector

for each particle depends on all the qi, which are independent: that is,

ri = ri(q1, . . . , qn, t). (1.19.1)

Of course, we could use Newton’s laws to describe the motion of a

system of particles having a degree of freedom less than the total number

of position vector components. But it is more reasonable to derive the

minimal number of necessary equations while avoiding the equations of

constraint, etc. This system of equations in the variables qi is composed of

Lagrange’s equations of the second kind. Our derivation will proceed under

relatively simple assumptions on the constraints. More complex cases are

treated in fundamental textbooks on classical mechanics.

Note that for these equations the parameters q1, . . . , qn become func-

tions of time t, and thus we can introduce corresponding velocities

q̇1, . . . , q̇n. In what follows we can consider q̇i to be independent of q̇j
at any time t.

We begin by combining, for a system of r particles, the virtual work

principle with d’Alembert’s principle. Let us include inertial forces −mir̈i

in equation (1.18.2):

r
∑

i=1

(Fi −mir̈i) · δri = 0. (1.19.2)

Here δri is a virtual displacement for the ith particle. We assume the Fi

depend on the positions and velocities of the particles. Thus, in terms of

the qi, they are

Fi = Fi(q1, . . . , qn, q̇1, . . . , q̇n, t). (1.19.3)

We transform (1.19.2), with the virtual displacements represented as

δrk =

n
∑

i=1

∂rk

∂qi
δqi. (1.19.4)
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Note that the virtual displacements are taken at a fixed instant t. They are

vectors proportional to infinitesimal vectors of admissible displacements

at a fixed t, so we can find them by writing out the formal expression

for the first differential while considering t as a fixed parameter. After

writing everything in terms of the δqi, we will select multipliers δqi in

(1.19.2). Using the mutual independence of the δqi, we will then equate

the coefficients of the δqi to zero and obtain the needed equations.

The work of the active forces from (1.19.2) can be represented as

r
∑

i=1

Fi · δri =

n
∑

j=1

Qj δqj , (1.19.5)

where Qj is called the component of the generalized forces relating to the

virtual “displacement” δqj . By the above assumptions, Qj depends on the

q1, . . . , qn, the q̇1, . . . , q̇n, and t.

Now we transform the terms of (1.19.2) for the inertial forces. It turns

out that these can be expressed in terms of the derivatives of the kinetic

energy. We first use the relation (1.19.4):

r
∑

i=1

mir̈i · δri =

r
∑

i=1

mir̈i ·
n
∑

j=1

∂ri

∂qj
δqj =

n
∑

j=1

δqj

(

r
∑

i=1

mir̈i ·
∂ri

∂qj

)

. (1.19.6)

Recall that the overdot denotes a total time derivative d/dt, which differs

from ∂/∂t. Note that

d

dt

(

ṙi ·
∂ri

∂qj

)

= r̈i ·
∂ri

∂qj
+ ṙi ·

d

dt

(

∂ri

∂qj

)

,

and therefore

r̈i ·
∂ri

∂qj
=

d

dt

(

ṙi ·
∂ri

∂qj

)

− ṙi ·
d

dt

(

∂ri

∂qj

)

. (1.19.7)

Next we use two formulas, proved at the end of this section:

∂ṙi

∂q̇j
=
∂ri

∂qj
, (1.19.8)

∂ṙi

∂qj
=

d

dt

(

∂ri

∂qj

)

, (1.19.9)

where qi and q̇j are considered as independent variables. Applying these to

the right side of (1.19.7) we get

r̈i ·
∂ri

∂qj
=

d

dt

(

ṙi ·
∂ṙi

∂q̇j

)

− ṙi ·
∂ṙi

∂qj
=

d

dt

(

1

2

∂ṙ2
i

∂q̇j

)

− ∂

∂qj

(

ṙ2
i

2

)

.
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Substituting this into (1.19.6), we get

r
∑

i=1

mir̈i · δri =

n
∑

j=1

δqj

r
∑

i=1

{

d

dt

[

∂

∂q̇i

(

1

2
miṙ

2
i

)]

− ∂

∂qj

(

1

2
miṙ

2
i

)}

=

n
∑

j=1

δqj

[

d

dt

(

∂E
∂q̇j

)

− ∂E
∂qj

]

where

E =
r
∑

i=1

1

2
miṙ

2
i . (1.19.10)

Combining this and (1.19.5) with (1.19.2), we derive

n
∑

j=1

δqj

[

Qj −
d

dt

(

∂E
∂q̇j

)

+
∂E
∂qj

]

= 0.

Finally, using the independence of the δqi, we obtain

d

dt

(

∂E
∂q̇j

)

− ∂E
∂qj

= Qj (j = 1, . . . , n). (1.19.11)

These are Lagrange’s equations of the second kind. They constitute a

system of n ordinary differential equations with respect to the unknown

functions qj(t). In general they contain terms involving qj(t), q̇j(t), and

q̈j(t), so the system is of order 2n.

Before finishing this section, we demonstrate how the assumption of po-

tentiality for the generalized forces leads us to something resembling the

Euler–Lagrange equations for the problem of minimum of a functional (con-

sidered in § 1.20). Potentiality of the set of Qj means there is a potential

function V = V(q1, . . . , qn) such that

Qj = − ∂V
∂qj

. (1.19.12)

In many cases V is called the potential energy; it is related to the energy of

the “source” of the external forces Qj . Substituting into (1.19.11), we get

d

dt

(

∂E
∂q̇j

)

− ∂E
∂qj

= − ∂V
∂qj

(j = 1, . . . , n).

By assumption, V does not depend on q̇j so ∂V/∂q̇j = 0. Introducing a

new function

L = E − V (1.19.13)
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called the kinetic potential or the Lagrangian, we transform (1.19.11) to

d

dt

(

∂L
∂q̇j

)

− ∂L
∂qj

= 0 (j = 1, . . . , n). (1.19.14)

These are Lagrange’s equations of the second kind for the case of active

forces having potential.

Although we derived the Lagrange equations under simplified conditions

for the mechanical system, they can be extended to much less restrictive

conditions. Moreover, they are used not only in classical mechanics: physi-

cists use these and similar equations in a variety of areas.

Finally, let us derive (1.19.8) and (1.19.9). Writing

∂ṙi

∂q̇j
=

∂

∂q̇j

(

n
∑

k=1

∂ri

∂qk
q̇k +

∂ri

∂t

)

and noting that ri does not depend on q̇j (and hence neither do ∂ri/∂qj or

∂ri/∂t), we immediately obtain (1.19.8). Relation (1.19.9) holds because

we can interchange the order in mixed partial differentiation:

d

dt

(

∂ri

∂qj

)

=

n
∑

k=1

∂

∂qk

(

∂ri

∂qj

)

q̇k +
∂

∂t

(

∂ri

∂qj

)

=
∂

∂qj

(

n
∑

k=1

∂ri

∂qk
q̇k +

∂ri

∂t

)

=
∂ṙi

∂qj
.

To present Lagrange’s equations from a variational standpoint, as a

consequence of Hamilton’s principle, we will need some basic notions from

the calculus of variations.

1.20 Problem of Minimum of a Functional

Lagrange’s equations are important in mechanics. We wish to show that

they can be derived from a variational principle that can serve as the start-

ing point for mechanics instead of Newton’s laws. We begin with some

elementary facts from the calculus of variations.

As with a function, we can consider the problem of extremum of a

functional. For definiteness let us take a functional F = F (x) given on

a Banach space X . The definitions of such concepts as a point of local

maximum or minimum, global maximum or minimum, etc., can be extended
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from functions to functionals. For example, a point x is called a point of

local minimum of F (x) if there is a δ-neighborhood of x such that F (x) ≤
F (z) for all z in the δ-neighborhood, i.e., whenever ‖z − x‖ < δ.

We will examine particular minimization problems for functionals in

detail when considering the equilibrium problems for elastic models. Now

we can find an equation that a local extreme point must satisfy (i.e., a

necessary condition for its existence) if F (x) is sufficiently smooth (differ-

entiable). We shall not pause to define differentiability of a functional, but

will proceed rather formally instead.

Suppose x0 is a point of local minimum of F (x). This means there is an

ε > 0 having the property that if we take an element ty such that ‖ty‖ ≤ ε,

where t is a real number, then

F (x0) ≤ F (x0 + ty). (1.20.1)

Now let us fix y in addition to x0. The functional F = F (x0 + ty) becomes

a simple function of the real variable t which, according to (1.20.1), is

minimized when t = 0. If it is differentiable, the necessary condition of

minimum is simply

dF (x0 + ty)

dt

∣

∣

∣

∣

t=0

= 0. (1.20.2)

This must hold for any y ∈ X . It is, in fact, a necessary condition for x to

be a minimum or maximum point of the functional.

We should note that the expression on the left-hand side of (1.20.2) is

called the Gâteaux derivative of the functional F (x). If F (x) is a function

in n variables, i.e., if x = (x1, x2, . . . , xn), this expression gives us the

directional derivative in the direction y = (y1, y2, . . . , yn). In particular,

when y = (1, 0, . . . , 0) it yields the partial derivative ∂F/∂x1.

Now let us apply (1.20.2) to a simple functional that appears in any

textbook on the calculus of variations:

F (y) =

∫ b

a

f(x, y, y′) dx. (1.20.3)

We shall consider F (y) over a set of functions y = y(x) satisfying the

Dirichlet boundary conditions

y(a) = c0, y(b) = c1. (1.20.4)

Let us employ the space C(2)(a, b). The problem of minimum is formulated

as
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Problem 1.20.1. Minimize the functional
∫ b

a

f(x, y, y′) dx

over the set of functions y(x) ∈ C(2)(a, b) that satisfy the boundary condi-

tions y(a) = c0 and y(b) = c1.

Suppose y(x) is a solution. Satisfaction of (1.20.4) by the sum y + tϕ

for any value of the parameter t requires that the function ϕ = ϕ(x) vanish

at the endpoints x = a, b. According to the scheme discussed above, we set

d

dt

∫ b

a

f(x, y + tϕ, y′ + tϕ′) dx

∣

∣

∣

∣

t=0

= 0. (1.20.5)

We can pass the derivative operator d/dt through the integral sign if

f(x, y, y′) is continuously differentiable in y and y′ (these being regarded

as independent variables). The result, after taking the total derivative, is

that the equation
∫ b

a

[fy(x, y, y
′)ϕ+ fy′(x, y, y′)ϕ′] dx = 0 (1.20.6)

must hold for any smooth function ϕ vanishing at x = a, b. Here partial

derivatives with respect to y and y′ are denoted by the subscripts. The left

side of (1.20.6) is called the first variation of the functional and is denoted

by δF (y, ϕ), while ϕ is called the variation of y and in mechanics books is

denoted δy. From (1.20.6), which must hold for arbitrary admissible ϕ(x),

we can derive a differential equation for y(x). We first integrate by parts

to obtain
∫ b

a

[

fy(x, y, y
′) − d

dx
fy′(x, y, y′)

]

ϕdx = 0, (1.20.7)

where the terms fyϕ
∣

∣

b

a
vanish because ϕ(a) = ϕ(b) = 0. Now we need the

Main Lemma of the calculus of variations. We introduce

Definition 1.20.1. By D(0, l) we mean the set of functions infinitely dif-

ferentiable on (0, l) and vanishing in some neighborhood of the endpoints

0 and l (this neighborhood can differ for different functions in the set).

Lemma 1.20.1. If G = G(x) is continuous on [0, l] and satisfies
∫ l

0

G(x)ϕ(x) dx = 0

for any ϕ ∈ D(0, l), then G(x) = 0 on [0, l].
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Proof. We suppose G(x∗) 6= 0 at some x∗ ∈ [0, l] and obtain a contradic-

tion. By continuity there is a neighborhood [x∗−ε, x∗+ε] of x∗ throughout

which the sign of G(x) persists (either strictly positive or strictly negative).

If we choose ϕ(x) so that it, too, has a constant sign in this neighborhood

and vanishes elsewhere, then the integral
∫ l

0

G(x)ϕ(x) dx =

∫ x∗+ε

x∗−ε

G(x)ϕ(x) dx

must be nonzero since its integrand G(x)ϕ(x) never changes sign. This

is the desired contradiction; the proof will be complete if we can display

a function ϕ ∈ D(0, l) satisfying the condition stated above. The “bell-

shaped” function

ϕ(x) =











exp

(

ε2

(x − x∗)2 − ε2

)

, |x− x∗| < ε,

0, |x− x∗| ≥ ε,

is one example. �

Because the set of admissible functions ϕ in (1.20.7) includes D(0, l),

we can apply Lemma 1.20.1 to (1.20.7) and obtain

fy − d

dx
fy′ = 0. (1.20.8)

This Euler equation is analogous to Fermat’s condition f ′ = 0 for an ordi-

nary function. In general it is an ordinary differential equation of second

order. Since the functional F will arise from a mechanical problem where

we usually seek a unique solution, we understand why we specified two

boundary conditions earlier. The derivative with respect to x in (1.20.8) is

a total derivative: i.e., we have

fy − fy′x − fy′yy
′ − fy′y′y′′ = 0. (1.20.9)

In (1.20.8) we recognize Lagrange’s equation (1.19.14) when f = L and

y = qi.

Subsequently, we will need to pose a minimum problem for (1.20.3)

without specifying a boundary condition at an endpoint. In fact, in addi-

tion to (1.20.8), from (1.20.5) there follow two boundary conditions called

natural boundary conditions. To see this we return to (1.20.6) and integrate

by parts without imposing (1.20.4). We get
∫ b

a

[

fy(x, y, y′) − d

dx
fy′(x, y, y′)

]

ϕdx+ fy′(x, y(x), y′(x))ϕ(x)

∣

∣

∣

∣

x=b

x=a

= 0.

(1.20.10)
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If we temporarily limit our consideration to those smooth functions ϕ(x)

that do satisfy ϕ(a) = ϕ(b) = 0, then we have
∫ b

a

[

fy(x, y, y
′) − d

dx
fy′(x, y, y′)

]

ϕdx = 0. (1.20.11)

By Lemma 1.20.1 we once again find that (1.20.8) must hold in (a, b).

Clearly, now relation (1.20.11) holds for any continuous ϕ. Thus, returning

to (1.20.10), we find that

fy′(x, y(x), y′(x))ϕ(x)

∣

∣

∣

∣

x=b

x=a

= 0

for any smooth function ϕ(x). The particular choices ϕ(x) = x − b and

ϕ(x) = x− a yield, respectively,

fy′ |x=a = 0, fy′ |x=b = 0. (1.20.12)

These are the natural boundary conditions for (1.20.3).

So one can minimize F in the absence of a boundary condition on y at

one of the endpoints a or b. At that endpoint the corresponding natural

condition applies automatically. Note that, although the Euler equation is

of second order, we cannot in general introduce two initial conditions for

y; we cannot prescribe y(a) and y′(a), for example, because the natural

condition at b would still apply. The result would be too many conditions

to define a solution of a second order ordinary differential equation. Hence

we always have two boundary conditions, one at each endpoint.

The Euler equation (1.20.8) appears in all the minimum problems for

the functional (1.20.3), regardless of the boundary conditions chosen, if

the problem is correctly posed. For more general functionals it changes

form. Listed below are additional functionals of interest along with their

corresponding Euler equations.

1. If y(x) is replaced by a vector function y(x) = (y1(x), y2(x), . . . , yn(x)),

then a functional of the type

F (y) =

∫ b

a

f(x,y,y′) dx (1.20.13)

results. The Euler equation can be written in vector form as

∇yf − d

dx
∇y′f = 0 (1.20.14)

or, alternatively, in scalar form as the system of equations

fyi
− d

dx
fy′

i
= 0 (i = 1, . . . , n). (1.20.15)
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These, in fact, follow easily from (1.20.8): if we fix all but the ith component

of the minimizing function, we obtain a functional of exactly the same form

as before (but with respect to the function yi). Natural boundary conditions

for this functional can be stated as

fy′

i

∣

∣

x=a
= 0, fy′

i

∣

∣

x=b
= 0 (1.20.16)

for i = 1, . . . , n.

2. An extreme point of the functional

Fn(y) =

∫ b

a

f(x, y, y′, . . . , y(n)) dx (1.20.17)

will satisfy the Euler–Lagrange equation

fy − d

dx
fy′ +

d2

dx2
fy′′ − · · · + (−1)n dn

dxn
fy(n) = 0 (1.20.18)

with 2n natural boundary conditions. The method of obtaining this is

similar to that for the simplest functional. Namely, supposing y to be a

minimizer of the functional, we find that Fn(y+ tϕ), being a function of the

real parameter t when ϕ is sufficiently smooth, takes its minimum at t = 0.

This leads to a result analogous to (1.20.6). Subsequent integration by parts

yields a result analogous to (1.20.10) but having 2n boundary terms outside

the integrals. This equation holds, in particular, for all ϕ ∈ D(0, l). Now

all the boundary terms vanish, and as a consequence of Lemma 1.20.1 we

get the above Euler–Lagrange equation. Next, considering all the smooth

functions ϕ, we will derive the natural boundary conditions for the func-

tional.

In a similar manner we can find the necessary conditions of minimum

for a functional defined on functions in many variables.

3. In the two-dimensional case where

F (u) =

∫∫

S

f(x, y, u(x, y), ux(x, y), uy(x, y)) dx dy, (1.20.19)

the equation

fu −
(

∂fux

∂x
+
∂fuy

∂y

)

= 0 (1.20.20)

plays the role of the Euler equation. Here the subscripts ux and uy de-

note partial differentiation with respect to these quantities as independent

variables. The operations ∂/∂x and ∂/∂y, on the other hand, are complete

partial derivatives where all the arguments of f (i.e., u, ux, uy) are regarded
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as functions of x and y and the chain rule is applied. Natural boundary

conditions can be stated as

(

fux
nx + fuy

ny

) ∣

∣

Γ
= 0, (1.20.21)

where Γ is the boundary of S.

Note that at each point of the boundary there is exactly one natural

boundary condition; this was the case for the earlier simple problem for

f(y). When we use minimum energy principles to set up mechanics prob-

lems, the natural conditions represent, as a rule, force conditions on the

boundary.

Many other functionals can be found in textbooks along with sufficient

conditions for a function to be a minimum point. But we know enough

about the calculus of variations for our immediate purposes.

Exercise 1.20.1. Derive the natural boundary conditions for F (y) .

Exercise 1.20.2. Derive the component-form Euler equations for a func-

tional containing derivative terms up to y(n). How many boundary condi-

tions should be given?

Example

Consider a simple equilibrium problem for a bar (a structure that will be

considered in more detail later) of length l stretched by both a distributed

load t(x) and forces F0 and F1 applied to its ends (Fig. 1.3). We first

consider the case of a “free” bar under these forces, which means the bar is

not clamped at any point. We will encounter similar equations, and even

boundary conditions, in the equilibrium problem for a string.

The linear model assumes that during deformation the external forces

do not change and are applied at the same points in space. This will be

the case for all linear models in this book.

Fig. 1.3 A bar under axial loading.
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When the bar is rigid and there are no geometrical constraints on its

motion, the condition for equilibrium is that the resultant force must vanish:
∫ l

0

t(x) dx + F0 + F1 = 0. (1.20.22)

Let us see what happens when the bar is linearly elastic. We will frequently

use the minimum total energy principle. For the present problem, this states

that the equilibrium of the bar is reached at the point (i.e., the set of values

of the displacement function u(x)) where the functional

Eb(u) =
1

2

∫ l

0

ES[u′(x)]2 dx−
∫ l

0

t(x)u(x) dx − F0u(0) − F1u(l)

(1.20.23)

takes its minimum on the set of all sufficiently smooth functions u(x). In

deriving the functional we use Hooke’s law, which relates the tension σ in

a cross section of the bar with the strain ε = u′(x). So the force F in

the cross section due to deformation is F = ESu′(x), where E is Young’s

modulus and S is the cross-sectional area.

Note that Eb(u) contains the non-integrated terms F0u(0)+F1u(l). This

means we cannot simply use the above formulas, but must repeat the steps

that led to the necessary conditions for a minimum. We should arrive at

an equilibrium equation and a set of natural boundary conditions.

So we assume a state of equilibrium described by the displacement func-

tion u(x). First we consider how the self-balance condition (1.20.22) ap-

pears in the equilibrium problem for the bar. We fix an arbitrary u(x) and

consider Eb(u) over the set of functions u(x) + c where c is an arbitrary

constant representing the strain energy of the bar. The first term of Eb(u),

the strain energy for the displacement u(x) + c, does not depend on c:

1

2

∫ l

0

ES[(u(x) + c)′]2 dx =
1

2

∫ l

0

ESu′
2
(x) dx.

Because c is arbitrary, we can get any large negative value for the quantity
∫ l

0

t(x)[u(x) + c] dx+ F0[u(0) + c] + F1[u(l) + c],

which is the work of external forces over u(x) + c. So the minimization

problem makes sense only if the coefficient of c vanishes:
∫ l

0

t(x) dx + F0 + F1 = 0.
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Hence (1.20.22) is a necessary condition for the existence of a minimum

of Eb(u). This equation for the elastic bar matches that for the rigid bar,

confirming that the elastic model inherits the properties of the more ele-

mentary rigid model. We will see that not all elastic models (that of the

membrane, for example) preserve all of the equilibrium conditions for the

corresponding free rigid objects.

The requirement for external force balance can be explained in another

way, if we apply the forces exactly as in Fig. 1.3; the resultant is along

the x-axis. Clearly the body should move in the same direction. But

we neglected the mass of the bar (m = 0). Consequently the bar should

experience infinite acceleration, since its mass is zero but the resultant force

is not. We could prevent this only by assuming the resultant force is zero.

This happens for the equilibrium problems for all the free structures we

will consider.

Thus we have found the force balance condition to be necessary for

equilibrium. Assuming this, let us continue. According to the above theory,

we implement the equation

dEb(u+ λϕ)

dλ

∣

∣

∣

∣

λ=0

= 0

for all sufficiently smooth ϕ(x). Appropriate calculations yield
∫ l

0

ESu′(x)ϕ′(x) dx −
∫ l

0

t(x)ϕ(x) dx − F0ϕ(0) − F1ϕ(l) = 0.

Integrating by parts in the first integral, we obtain

−
∫ l

0

[(ESu′(x))′ + t(x)]ϕ(x) dx

+ [ESu′(l) − F1]ϕ(l) + [−ESu′(0) − F0]ϕ(0) = 0. (1.20.24)

Since this holds for all smooth ϕ(x), it holds in particular for those that

satisfy ϕ(0) = 0 = ϕ(l). For these we get

−
∫ l

0

[(ESu′(x))′ + t(x)]ϕ(x) dx = 0.

By Lemma 1.20.1 then, we have the equilibrium equation

(ESu′(x))′ + t(x) = 0. (1.20.25)

This is the Euler equation for the functional. Substituting it into (1.20.24)

we obtain

[ESu′(l) − F1]ϕ(l) + [−ESu′(0) − F0]ϕ(0) = 0,
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where ϕ is arbitrary. By this we get two natural boundary conditions:

ESu′(l) = F1, ESu′(0) = −F0. (1.20.26)

These have a clear mechanical sense: the external forces at the endpoints

equal the tension forces at those same points. The negative sign in the sec-

ond condition stands in accord with the algebraic sign rule for the strength

of materials. We derived it without reference to that rule (cf., § 3.2).

Again, we have derived exactly two natural boundary conditions. What

if we fix the end at x = 0? We should repeat all the above, requiring

ϕ(x) = 0 at x = 0. The derivation would yield the equilibrium (Euler)

equation for 0 < x < l and the right-end natural condition ESu′(l) = F1.

There would still be precisely one condition for each endpoint, as expected,

since the Euler equation is of second order.

Mechanical considerations are used to explain why an equilibrium solu-

tion for a free bar exists only for special choices of the external loads. In

general, they can throw light on the physical origins of many conditions

that seem to arise artificially in pure mathematics. Newton said that it is

useful to solve problems, meaning the problems of real life.

Exercise 1.20.3. Prove that if a solution of the Euler equation with natural

boundary conditions exists, it minimizes the functional Eb(u).

1.21 Hamilton’s Principle

The pioneers of modern mechanics were sure that the universe was created

in the most economical fashion and that all processes occur in an optimal

manner. The existence of optimum principles was part of the ideology

of Metaphysics and their manifestations were everywhere sought. While

it is not our goal to discuss all the extremal principles of mechanics, we

should touch on one closely related to the calculus of variations. This is

Hamilton’s principle of stationary action, which can be regarded as a simple

consequence of the equations derived in § 1.20. On the other hand, it can

also be regarded as the basis from which some portion of classical mechanics

can be developed. It has many restrictive assumptions and the interested

reader can pursue these in various textbooks.

This principle allows us to obtain the Lagrangian equations by seeking

the stationary point of a functional called the action. The action W is given
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by

W =

∫ t2

t1

L dt, (1.21.1)

where L is the Lagrangian of a system of particles; here we regard the inte-

gration variable t as time and its limits as arbitrary but temporarily fixed

instants. It should be emphasized that W is required to have a station-

ary value (not necessarily a minimum), which means that its first variation

must vanish and the Euler–Lagrange equations must hold. To exclude any

additional conditions at the endpoints of the time interval, we consider only

motions in which all particles in the system start and finish at the posi-

tions taken by the real particles in the actual motion. So the trajectories

of admissible motions in the space of parameters qj , given by the functions

q1(t), . . . , qn(t) on the segment [t0, t1], must start at (q1(a), . . . , qn(a)) and

finish at (q1(b), . . . , qn(b)). We also take them to be sufficiently smooth as

usual.

Let us compose the Euler–Lagrange equations for the problem of mini-

mum of the functional
∫ t1

t0

L(q1, . . . , qn, q̇1, . . . , q̇n, t) dt

under the stated assumptions. By (1.20.15) we obtain

d

dt

(

∂L
∂q̇j

)

− ∂L
∂qj

= 0 (j = 1, . . . , n),

which coincides with (1.19.14). We may now state

Hamilton’s stationary action principle. Among all trajectories that

start and finish along with the real trajectory, the actual trajectory yields a

stationary value for the action functional W.

For an ordinary function, the fact that the derivative vanishes at some

point does not mean the function takes a minimum value there. A similar

statement can be made for a variational problem. A real trajectory is not

necessarily a point of maximum or minimum of the functional. Hamilton’s

principle shows that a real trajectory of the system is one of its extremals

(i.e., satisfies (1.19.14)).

We conclude this section by mentioning the “variational principles of

mechanics.” The calculus of variations deals with the minimization and

maximization of functionals. The derivation of necessary conditions of
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minimum leads to equations similar to (1.20.10), which contain admissi-

ble perturbations of the unknown functions. These functionals are linear

with respect to the variations. The use of various versions of the Main

Lemma yields differential equations, as a consequence.

In mechanics, certain equations can be obtained as Euler–Lagrange

equations of functionals; however, the variational problems are only to find

stationary points of a functional, not necessarily minima or maxima. More-

over, in mechanics there are integro-differential equations that resemble the

equality of the first variation of a functional to zero but such that the ex-

pressions are not the first variation of any functional. Nonetheless, from

such equations we can still use the Main Lemma to derive mechanically

meaningful differential equations. They fall under the heading of the vari-

ational principles of mechanics. An example is the virtual work principle

as applied to non-elastic bodies. Such “variational principles” are widely

used in the generalized setup of boundary value problems, and in the con-

struction of numerical solution methods.

1.22 Energy Conservation Revisited

The notion of energy plays a central role in science. In “physics” books

whose contents are mainly mathematical, we find discussions of energy and

its transformations — largely offered as illustrations of how mathematical

tools can generate physically meaningful relations. In this book we take

energy as a central quantity. We omit many important portions of classical

mechanics and consider only those that relate to the contents of the book.

Not surprisingly, the idea of energy turns out to be extremely fruitful in the

mathematical analysis of mechanical problems. We therefore return to the

main principle of physics: that of energy conservation. Let us examine, in

general form, the equations that give rise to the notion of energy and to its

all-important conservation law. The reader is asked to work the following

preparatory exercise.

Exercise 1.22.1. We say that a function F = F (x1, . . . , xn) is homo-

geneous of degree r if there is a constant r such that F (cx1, . . . , cxn) =

crF (x1, . . . , xn) whenever c > 0. Euler’s theorem states that if F is differ-

entiable and homogeneous of degree r, then

n
∑

k=1

xk
∂F

∂xk
= rF.
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Show that g(x, y) = x2 + 2xy + 3y2 is homogeneous of degree 2 and verify

Euler’s theorem for this function.

We would like to derive the law of energy conservation for a system

of material particles having n degrees of freedom. Let us consider the

relatively simple case of a system under stationary holonomic constraints;

this means the constraint equations do not depend explicitly on time t. So

we can express the position vector of a particle as a function of the variables

q1, . . . , qn:

ri = ri(q1, . . . , qn) (i = 1, . . . , n).

We recall that the kinetic energy E of a system of r particles having masses

mi and position vectors ri is

E =
r
∑

i=1

1

2
miṙ

2
i .

Substituting

ṙi =
n
∑

j=1

∂ri

∂qj
q̇j

into E , we find that E is a quadratic form with respect to the variables q̇j

and having coefficients that depend only on the variables qk. That is,

E =
1

2

n
∑

i,j=1

aij q̇iq̇j

where aij = aij(q1, . . . , qn). The time derivative of E is

dE
dt

=
n
∑

i=1

(

∂E
∂q̇i

q̈i +
∂E
∂qi

q̇i

)

=
d

dt

(

n
∑

i=1

∂E
∂q̇i

q̇i

)

−
n
∑

i=1

(

d

dt

∂E
∂q̇i

− ∂E
∂qi

)

.

Since E is homogeneous of degree two with respect to the q̇i, Euler’s theorem

yields

∂E
∂q̇i

q̇i = 2E .

Substituting this, and using the Lagrange equations (1.19.11) for the second

term

d

dt

(

∂E
∂q̇j

)

− ∂E
∂qj

= − ∂V
∂qj

,
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we get

dE
dt

=
d(2E)

dt
+

n
∑

i=1

∂V
∂qi

q̇i.

If V does not depend on t explicitly, then

dV
dt

=

n
∑

i=1

∂V
∂qi

q̇i

and hence

d

dt
(E + V) = 0. (1.22.1)

So E +V is time-independent, which is a statement of energy conservation.
Again, however, we proceeded under certain assumptions: (1) E is a ho-
mogeneous quadratic form with respect to the q̇i, having coefficients that
do not depend explicitly on time t; (2) the forces are potential, and the
potential does not depend explicitly on t either. A system satisfying these
assumptions is said to be conservative. Thus we have established that

For a conservative system of particles, E + V the sum of kinetic energy
and the potential function is conserved over time.

The function V is often called the potential energy. This is reasonable in

view of its role in the sum above. But there is a deeper reason for this name,

which we will understand through consideration of the following problem.

In § 1.17 we mentioned energy conservation for a point massm projected

vertically upward through the gravitational field. The result is

mv2

2
+mgh =

mv2
0

2
+mgh0,

where v and h are the vertical velocity and height of the body, respectively,

and v0, h0 are their initial values. Here V = mgy; taking the +y-direction

upwards, we see that ∂V/∂y = −(−mg) where −mg is the weight force

acting on the body. We recall that mgh is sometimes called the potential

energy of the particle. It is, however, related to the work of the gravi-

tational force and the expression mg(h − h0) is the corresponding change

in the kinetic energy of the Earth. Despite the fact that this results in a

negligible effect on the Earth’s motion, the problem really does involve two

bodies in principle. Here the Earth is something like an infinite source of

produced work whose state does not change because of the work done. So

the term “potential energy” is a convenient way to talk about the change in

kinetic energy of the other bodies acting on the system under consideration,

without explicitly mentioning those bodies or their states.
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Chapter 2

Simple Elastic Models

2.1 Introduction

Theoretical mechanics deals with particles and rigid bodies. Its role in

continuum mechanics is similar to that of arithmetic in calculus: certain

statements are accepted as axioms and various consequences are derived.

Unfortunately, we cannot directly transfer the laws of rigid bodies to

deformable bodies. The forces that restrict the relative displacements be-

tween points of a deformable body (and which, together with the inertial

forces in dynamics, must be in balance) are of a more complex nature. We

will see that on a macroscopic level they must be described using a stress

tensor. Despite this, we shall continue to refer to them as internal forces.

The equations describing a deformable body should reduce to those

for a rigid body when deformation is negligible. Some models of continuum

mechanics, like those of linear elasticity, satisfy this requirement completely.

In other cases we encounter technical models of objects that hold only under

additional restrictions.

We will present a few classical models of continuum mechanics, begin-

ning with the oldest and simplest: the model for a spring.

2.2 Two Main Principles of Equilibrium and Motion for

Bodies in Continuum Mechanics

When we wish to apply calculus to real bodies within the framework of

continuum mechanics, we should neglect atomic structure. This is the first

— and possibly roughest — assumption to be regarded as an axiom. It is

formulated along with the solidification principle below. Since these are not

absolute and cannot be derived logically from other simpler statements, we

89
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call them “central principles” of continuum mechanics.

Continuum principle. Continuum mechanics considers the interior

structure of a deformable object to be continuous. The distribution of any

material characteristic can be described using sufficiently smooth functions.1

Basic continuum mechanics consists of the problems of equilibrium and

motion of deformable bodies. The second principle, that of solidification,

adopts the equations of equilibrium and motion for a rigid body as the main

tool for investigating the equilibrium and motion of any part of the body

at each time instant.

We can split the set of all forces acting on any selected portion of a

body into

(1) internal forces, by means of which the constituents of the portion react

with each other, and

(2) external forces. These can be further subdivided into

(a) contact reactions acting across the boundary of the body,

(b) forces due to fields (e.g., gravitational) of other bodies, and

(c) forces due to fields of distant portions of the same body.

The last contribution is negligible in many practical problems, and as

a rule is not represented in the describing equations.

We will limit ourselves to internal forces of contact type. When we

isolate a portion of a body, the reaction forces from the remainder will act

only across the surface of contact between the two portions.

Solidification principle. Let a deformable body be in equilibrium. Any

portion of the body can be treated as a rigid body in equilibrium under the

action of the set of all external forces and internal forces applied to the

points of that portion by the remainder of the body. This means that if we

“cut away” the rest of the body, the deformed portion of interest must be in

equilibrium as a fictitious rigid body under the action of all external forces

acting on it, as well as the reaction forces produced by the “cutaway” part.

The equations of motion are derived from the equilibrium equations via

d’Alembert’s principle; i.e., by formal inclusion of the inertia forces.
1(a) The notion of “sufficiently smooth function” is rather fluid, depending on the

situation and the tools being employed. (b) In some continuum problems the material
involved is assumed at the outset to be quite irregular (e.g., porous). But in later stages,
an averaging technique is employed, and the problem becomes a typical problem of
continuum mechanics (i.e., with a continuous representation of material characteristics).
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We would like to mention two points. First, recall that the rigid body

equations rest on the assumption that all internal forces are self-balanced

and do not affect the motion of the body. In the theory of elasticity, central

forces are insufficient to describe the internal interactions of particles; we

will have to introduce a more complex object called a stress tensor. But the

introduction of this latter object is based on the same main assumption:

in the state of equilibrium of any finite portion of the body, the internal

stresses (playing the role of internal forces for a rigid body) are self-balanced

and do not participate in the equilibrium equations (although they affect the

shape of the portion of material). Of course, nothing except its subsequent

success in applications can justify this assumption; it therefore has the

character of an axiom.

Second, we must remember that in deriving the equations of equilibrium

or motion in continuum mechanics, we use the tools of calculus. These

involve working with infinitesimally small portions of bodies and limit pas-

sages which, for real bodies having atomic structure, are invalid. Hence the

models of continuum mechanics cannot be precise, regardless of whether

they are linear or nonlinear. All equations of continuum mechanics are ap-

proximate; because of this, some finite (or discrete) models may be just as

accurate as the continuous versions that mathematicians regard as precise.

2.3 Equilibrium of a Spring

We begin with a simple model of a spring under load. We show the structure

of the relations used to construct the model, and then discuss the energy

relations used to analyze the problem based on the model.

First we should introduce a measure of internal forces. In this

problem there is only Felast, the reaction of the spring.

Next we should obtain the equation of equilibrium. For a spring

clamped at one end under an external force F applied to the free end, we

have

Felast = F. (2.3.1)

Next we present a measure of deformation of the spring. We could

use the strain ε = ∆l/l, where ∆l is the change in the length l of the spring.

At present, however, it will suffice to use ∆l itself and for convenience we

rename this x.

The equation that relates the force and deformation characteristics is
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called a constitutive law. In our case it is Hooke’s law

Felast = kx, (2.3.2)

where k is the spring constant. Combining (2.3.1) and (2.3.2), we obtain

the equilibrium equation in terms of the displacement:

kx = F. (2.3.3)

The result will seldom be so elementary. Whether simple or complex, how-

ever, the equilibrium equation is the starting point for those who seek solu-

tions of any given problem. Our present interest is not so much in explicit

solutions but in their existence and uniqueness (trivial issues in the present

case) and in certain qualitative properties of the model and problem.

Let us consider the spring from an energy standpoint. We find the

additional internal energy of the spring due to elongation, understanding

that this comes from the work needed to extend the spring by an additional

amount x. Over an infinitesimal extension ds, the extension force does work

ks ds. The total work is
∫ x

0

ks ds =
1

2
kx2. (2.3.4)

An equal amount of strain energy is stored by the spring during defor-

mation. An extension x caused by a constant force F produces an amount

of work Fx. The difference

E =
1

2
kx2 − Fx (2.3.5)

is called the total energy of the spring. Since

F = − d

dx
(−Fx),

we conclude by definition of potential that −Fx is the potential of a con-

stant force F . We will find that −Fx is a potential energy similar to that of

a particle in the gravitational field. The total energy will play a central role

in each of our problems. In the present case it can be found by integrating

the difference ks− F over s between 0 and x.

Remark 2.3.1. We have introduced two types of energy without worrying

too much. But the careful reader may raise a concern. First, how can we

obtain the additional extension ds, and hence the additional work ks ds,

if the force F = ks corresponds exactly to the equilibrium state? We

could answer as follows. Let us increase the applied force by a very small

quantity δF . This will extend the spring length by δs = δF/k. The work
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for the increased force is between Fδs = ks δs and (F + δF ) δs. In terms

of infinitesimals, dF = k ds, we get ks ds for the infinitesimal increase of

work just as above. The same trick is used in other situations in continuum

mechanics when deriving expressions for the differentials of the density of

the work and strain energy.

However, there is still a question of how to change the spring length

without changing the kinetic energy. This way of loading — when dynamic

effects are absent and the deformation is produced in such way that at

any moment the body-system is in equilibrium — is common in continuum

mechanics and thermodynamics. It would certainly be worth carrying out

a more careful analysis regarding this strange assumption of the existence

of changeable motion and deformation where dynamic effects can be fully

neglected! �

Let us consider the formula for E . Evidently the point of minimum

of E gives us (2.3.3). This represents a general principle of the theory of

elasticity, the minimum total energy principle; it allows us to derive

equilibrium equations for much more complex elastic objects.

Next we do a trivial transformation that leads to nontrivial conse-

quences. We multiply both sides of the equilibrium equation (2.3.3) by

an arbitrary variable δx:

−kx δx+ F δx = 0. (2.3.6)

(We typically refer to δx as the variation of x, but it is an ordinary variable

and could just as well be denoted by z, say. It can be subject to kinematical

constraints, although that is not the case here.) If we say that (2.3.6) has

a solution x if it holds for all virtual displacements δx that we will regard

as additional spring elongations, then it becomes equivalent to (2.3.3). But

(2.3.6) is a statement of the virtual work principle because F δx is the

work of F over δx and −kx δx can be regarded as the work of internal forces

over that same virtual displacement. Hence, the virtual work principle

could be used as a starting point for investigating the elastic model of the

spring.

It is worth noting that we can formally obtain the virtual work principle

from the principle of minimum total energy. The differential of E , which

must be zero at the point of minimum, is

dE = kx dx− F dx = 0.

This yields (2.3.6) up to the notation dx = δx.



December 24, 2008 10:59 World Scientific Book - 9in x 6in elasticity

94 Introduction to Mathematical Elasticity

Although the virtual work principle appears to be a consequence of the

minimum total energy principle, it is actually more general and can be

regarded as independent. For example the equation of the virtual work

principle for a spring, which is

−Felastδx+ Fδx = 0, (2.3.7)

holds even if the spring is inelastic. In this case the internal energy cannot

be defined with formulas depending only on x; the same holds for viscoelas-

tic materials, for which Felast depends on the history of deformation.

We have presented the structure of the main relations that underpin

the mathematical study of equilibrium problems in elasticity. In the next

section we will show how to use the VWP equation or the minimum total

energy principle to introduce a generalized setup of an equilibrium problem

for an elastic model and to investigate existence and uniqueness of gener-

alized solutions. Since the model of a spring is differential, we need a more

complex model to demonstrate that.

Now we wish to consider the dynamical problem for a massless spring.

Suppose a point mass m is attached to the free end. Let us include dynam-

ical effects in the spring model. We apply both F and the elastic reaction

to the mass. By d’Alembert principle we should add the inertial force

−md2x/dt2 to the equilibrium equation for the mass m; hence the equation

of motion for the mass is

m
d2x

dt2
+ kx− F = 0. (2.3.8)

This holds at all times during the motion.

Next, we wish to obtain the energy relations for this spring-mass model

when F is constant. Let us multiply by dx = (dx/dt) dt and integrate over

an arbitrary time interval [t0, t1]:

∫ t1

t0

m
d2x

dt2
dx

dt
dt+

∫ t1

t0

kx
dx

dt
dt−

∫ t1

t0

F
dx

dt
dt = 0.

Using

m
d2x

dt2
dx

dt
=
m

2

d

dt

(

dx

dt

)2

, kx
dx

dt
=
k

2

d

dt
x2,

and integrating, we get

m

2

(

dx

dt

)2 ∣
∣

∣

∣

t1

t0

+
kx2

2

∣

∣

∣

∣

t1

t0

− Fx

∣

∣

∣

∣

t1

t0

= 0.
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We can rewrite this as
[

m

2

(

dx

dt

)2

+
kx2

2
− Fx

]

∣

∣

∣

∣

t=t1

=

[

m

2

(

dx

dt

)2

+
kx2

2
− Fx

]

∣

∣

∣

∣

t=t0

.

Because t0 and t1 are arbitrary, the quantity

m

2

(

dx

dt

)2

+
kx2

2
− Fx

stays constant during the motion. The first term is the kinetic energy of m,

while the remaining terms constitute the total (i.e., strain plus potential)

energy of the spring-force system. So we have derived the law of energy

conservation for the spring-mass-force system (valid only for constant F )

and introduced the total energy that is related to the static problem. The

situation will be similar for each elastic model we examine.

In the statics problems treated in this book, the total energy will be the

sum of the strain energy and the potential energy V . In this book −V will

be the work of all the external forces over the field of displacements. The

principle of minimum total energy will play a central role.

2.4 Equilibrium of a String

Any concrete model in continuum mechanics rests on the main principles

and additional assumptions that reflect real properties of the object under

consideration. Often the assumptions contradict more exact theories —

or even each other — but the result is always an approximation having a

certain degree of accuracy under given circumstances. When the circum-

stances change, the model must often change.

The vibrating string equation has been known for centuries. Violin

designers do not use it in their work, since the sound of a violin depends

on more than just the motion of its strings. Nevertheless, the equation

provides a good model for string deflections, and we shall find it useful in

our study of continuum mechanics.

First we examine the main assumptions behind the derivation of the

string equation. We shall eventually examine the setup of a corresponding

boundary value problem and show how functional analytic tools are used.

The problems of equilibrium and oscillation of a string allow us to consider

the main principles of continuum mechanics in a relatively easy setting.

Let us derive the simplest equilibrium equation for an initially straight

string, with fixed ends, under load. Classically, the string is assumed to be
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tightly stretched in advance. The additional assumptions of the classical

theory are as follows.

(1) The string is represented as a curve in the plane (Fig. 2.1). Its change

in shape under a normally-directed load f = f(x) is described by a

function w = w(x) giving the deflection from the initially horizontal

state.

(2) The angle of inclination of the string under load, represented by the

derivative wx(x), is sufficiently small: squared and higher degrees of

wx(x) are negligible in comparison with linear terms. (Note that wx

is dimensionless, so comparison of the degrees makes sense even if we

consider variables having units.)

(3) The string is absolutely flexible: at any cross section, the reaction

force of one part of the string on another — the tension force T0 — is

tangent to the curve w = w(x) at the point x representing the string

after deformation.

(4) The tension T0 remains unchanged under any normal load distribution.

By Assumption (2), the length of a piece [a, b] of the string after deformation

is

l =

∫ b

a

√

1 + wx
2 dx. (2.4.1)

Because wx is small,

b− a ≤ l ≤ (b− a)

(

1 +
1

2
max

x∈[a,b]
wx

2

)

. (2.4.2)

So if we take the length of any part [a, b] to be unchanged during deforma-

tion — i.e., if we assume that l = b − a — then the error we introduce is

of the second order of smallness with respect to max |wx|. But we assumed

we can neglect such terms. A consequence of this is Assumption (4): if we

accept Hooke’s law for additional elongation of the string, the constancy

of the length of each piece implies the constancy of the tension force T0.

So why do we refer to (4) as an assumption? The answer is that the more

exact theory of a stretched string is essentially nonlinear, and in order to

reach such conclusions we would have to study a nonlinear problem. Such

an undertaking is not our goal here. So we consider the string to be such

that the length of any of its parts is unchangeable; hence our only measure

of deformation is the inclination angle, and the theory is simplified a priori.

Regarding the string as a continuous curve, we have utilized the contin-

uum principle of § 2.2. We will use the solidification principle to obtain the
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Fig. 2.1 Deflection of a loaded string.

equilibrium equations. Consider a small portion of the string [x, x + ∆x],

with reactions and external forces as shown in Fig. 2.2. We denote the

density of the distributed vertical load by f(x).

Fig. 2.2 Derivation of the string equation.

For the planar equilibrium problem we need three equations: two for the

force components and one for the moment. We begin by projecting forces

onto the vertical axis. Figure 2.2 shows that the tension reactions from the

right and left are, respectively, T0 sinα(x + ∆x) and −T0 sinα(x), where

α(x) is the angle at x between the initial x-direction of the string and its

tangent for the loaded state. We take the external load to be continuously

distributed so that f(x) is continuous. That load should be calculated as

the integral
∫ x+∆x

x

f(ξ) dξ,
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so we can use the mean value theorem and obtain f(ξ1)∆x. Thus

T0 sinα(x + ∆x) − T0 sinα(x) + f(ξ1)∆x = 0.

Dividing by ∆x and letting ∆x→ 0, we get

T0α
′(x) cosα(x) + f(x) = 0.

From this and the above assumptions, it follows that the classical equation

of equilibrium for a string is

T0w
′′(x) + f(x) = 0. (2.4.3)

In particular, this follows from the equivalence of infinitesimally small quan-

tities when suppressing the terms of a higher order of smallness with respect

to w′(x):

sinα(x) ∼ α(x) ∼ tanα(x) = w′(x), cosα(x) ∼ 1.

Equation (2.4.3) can be found in textbooks on mathematical physics

and applied mathematics.2 At this point the typical textbook stops. We,

however, are interested in all aspects of the derivation, including subtleties

like validity of the hypotheses, potential contradictions, etc. So we pose a

reasonable question. There should be two other equilibrium equations for

the same portion of the string. Where are they? Are they trivial, or are

there substantial issues that require examination?

Let us project the forces onto the x-direction:

T0 cosα(x + ∆x) − T0 cosα(x) = 0.

Textbooks reasonably ignore this equation; because α(x) is small, it seems

to involve only quantities of second order in α. But let us proceed further.

Dividing by ∆x and letting ∆x→ 0, we have

[T0 sinα(x)]α′(x) = 0.

It follows that α(x) must be constant. What has gone wrong? The an-

swer lies in our assumptions. We have now derived an equation in which

the quantities are of a higher order of smallness, but such quantities are

suppressed by the two main assumptions for the string: that of “inexten-

sibility” and the constancy of T0. Assuming T0 = T0(x) depends on x, we

get another equilibrium equation:

T0(x+ ∆x) cosα(x + ∆x) − T0(x) cosα(x) = 0,
2In textbooks they normally derive dynamical equations at once, which can be obtained

from this one via d’Alembert’s principle. Here we could replace f(x) by f − ρwtt and
get the wave equation.
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leading to

[T0(x) cosα(x)]
′
= 0.

From this we can find T0(x). If we invoke Hooke’s law or a nonlinear

constitutive relation for this quantity, we will find that points of the string

can move horizontally as well as vertically, and that T0 can be expressed in

terms of the horizontal (longitudinal) displacement u(x).

We have found two equations governing w and u, but have not con-

sidered the moment equation for equilibrium. Is it trivial? Actually no;

the reader should derive it and observe that it also involves quantities of a

higher order of smallness. So the solidification principle yields a third non-

trivial equation for the same two variables w, u. What is the source of this

contradiction? It is the assumption that the string is absolutely flexible. A

real string offers some relatively small bending resistance and also has thick-

ness; consideration of this would give us a third unknown variable in our

set of three equations. It can also appear in the other equations, depending

on how it is introduced, so all three equations may have to be rewritten.

Some readers may recognize our procedure as the reverse of that used to

derive the equations for a beam in the strength of materials, which will be

considered in Chapter 3. In that theory we examine the linear problem of

beam bending. However, with our present approach it is possible to get

a nonlinear boundary value problem for the ordinary differential equations

that describe bending of a prestretched beam.

We often hear the term “elastic” applied to a string modeled this way.

For many students, this term implies the use of Hooke’s law. But we are

not using this law here. In fact, the term “elastic” is fairly difficult to define

precisely. It is somewhat naive to say that it describes solids for which (at

least for simple problems like extension of a rod) the deformation does not

depend on the history of how the object was loaded. This description also

applies to the membrane idea, which itself applies to certain liquid films

(e.g., soap films). The classification of various materials is actually a rather

delicate problem.

For a string, however, we really can derive the equations from nonlinear

elasticity. We assume some constant initial stretching. Then we linearize

the equations with respect to the additional deformation of the string due

to a normal load, which is assumed small. Clearly we should place some as-

sumptions on the order of various terms such that the dependence between

the strains and stresses disappears from the equilibrium equation. So the

ordinary theory of the string results from linearization of the more general
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equations of nonlinear elasticity. In fact, the theory of linear elasticity is

sometimes referred to as “linearized elasticity”. This is because in large

part we do not know the initial state of the body before loading; it can

be strained. We can find deformations that result only from the action of

forces. In this sense, the situation is worse than that with the string; we

know nothing (or almost nothing) about the initial state of the body and

must find the additional deformation.

An additional comment. In deriving the equilibrium equation we tacitly

assumed the reactions are contact forces only. All other models in this book

are treated similarly. This is the usual assumption in continuum mechanics,

although other approaches do exist.

Further digging into unstated hypotheses would uncover other interest-

ing issues. One is that the point to which the load f(x) was initially related

has moved. This means that the force should be changed somehow to re-

flect not only this fact, but also a change in density, since the length of the

elementary part of the string also changes. However, all these amount to a

change of the second order of smallness.

We see that even with this simple mechanical object, we could pursue

numerous extensions of the model. In reality we must stop somewhere. For

practical purposes a crude theory often works as well as a “more accurate”

one, since something important may be missing from the latter theory as

well. Because the classical string model given by (2.4.3) suffices for many

purposes, we shall continue to discuss this equation in the context of how

to formulate a good boundary value problem for equilibrium of the string.

2.5 Equilibrium Boundary Value Problems for a String

We have derived a simple linear equation governing the equilibrium of a

string:

T0w
′′(x) + f(x) = 0. (2.5.1)

This is a familiar second-order differential equation. It is easily integrated,

and the general solution involves two free constants which, in the textbooks,

are fixed by two initial conditions. But our task is to consider a real object

rather than an abstract equation. So let us return to the initial problem

after a few general comments.

It is worth noting that we will deal with a model of the string and not the

string itself. The model was based on observations of real strings; however,
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after a model has been formulated, it will often take on a life of its own. We

have imposed some restrictive assumptions during the derivation above —

requiring, for example, the inclination angle to be “infinitesimally small”

everywhere. What does this mean practically? After all, the angles we

obtain from a numerical solution are always finite. Should we restrict them?

If so, how? Would a restriction of 0.01 or 0.0000001 be enough? From

the infinitesimal viewpoint, both of these numbers are “large”. There are

sticky issues here, but it is common in mathematics to simply forget about

the original assumption and proceed according to the usual approaches of

one’s field. An engineer may avoid certain loads that he knows will cause

the string to leave its elastic regime or even snap. A mathematician may

choose to study the equation under conditions that violate all assumptions

made in deriving it. The results of such a study can be useful for engineers,

revealing qualitative properties and bounds of applicability of the model.

Through direct empirical activity, of course, engineers also add much to our

understanding of a model’s range of applicability.

The last general point: any model is approximate. Although designed

using ideal assumptions that are exact, its parameters can be found only

approximately; this means that even exact solutions found on the basis

of the model will be approximate. However, what is their accuracy? We

could consider the models of physics as perturbations of ideal models (such

models do not exist, of course, but there are certainly more accurate models

that we can regard as “exact”), so our question concerns the dependence of

ideal solutions on those perturbations and the difference between an ideal

solution and our approximate one. As one of the first steps in studying the

accuracy of our solution with respect to real objects, we can pose a problem

of the dependence of solutions on parameters of the object, and thus of the

model.

Many mathematics books examine the dependence of functions, or prob-

lem solutions, on parameters. They emphasize results pertaining to discon-

tinuity, irregularities like branching solutions, etc. This is because conti-

nuity is relatively simple, while discontinuities can arise in various ways.

But the number of discontinuity-related results seems disproportionate to

real life: familiar objects seldom fall apart because of tiny perturbations

in their shapes or material properties. We are fortunate that things are

this way, and that small errors during production of objects seldom lead to

catastrophe (by which we mean the irregular behavior of an object when,

for small reasons, we see large deviations in behavior). So, in large part,

engineering models display continuity of the output with respect to the
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input parameters; in other words, their solutions depend continuously on

the parameters of the object. However, irregularities in the dependence

of solutions on parameters for real objects are of great interest: some do

lead to catastrophic failures. Moreover, we sometimes exploit them in the

design of objects. So the relevant theorems are important.

Let us return to our simple problem. Our derivation assumed that the

string carries a significant tension T0. Hence we must fix the ends of the

string in the horizontal direction. Since we should also restrict them in the

vertical direction, we are led to consider a boundary value problem.

Let the string correspond to the interval (0, l). Assume one end is fixed

vertically:

w(0) = a. (2.5.2)

A similar condition w(l) = b can be placed on the other end. These define

a solution uniquely. Of course, when b 6= a we find that |w′| is at least

|b − a|/l at some points, hence engineers should watch carefully for the

failure of assumptions. If we take into account the change in tension due

to this clamping (which can be done by recalculating T0 through the use

of Hooke’s or other constitutive laws) then only values in w′ additional to

(b − a)/l play a role in the smallness assumptions. So the same equation

can be used when (b− a)/l is not small.

We can also “clamp” an end in such a way that free vertical motion is

possible, say by a frictionless button that moves inside a channel (Fig. 2.3).

We must express this as a boundary condition for the string equation. Let

us consider the condition for equilibrium of the button. Here the only ac-

tive force is the tension T0; this has a horizontal component balanced by

the reaction of the channel walls, and a vertical component −T0w
′ (ap-

proximately, since the sine of the angle of inclination of the string is ap-

proximately equal to w′, and in this problem we must use this as an exact

relation). So

T0w
′ = 0 at x = l, (2.5.3)

and thus

w′ = 0 at x = l. (2.5.4)

Geometrically, this end of the string is perpendicular to the clamping line

AB.

We can suppose an external vertical force P acts on the button. This

yields another approximate condition of equilibrium for the vertical com-
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Fig. 2.3 Use of a button sliding in a channel to “fix” a string end without impeding its
vertical deflection.

ponents of the forces at the point x = l:

T0w
′ = P at x = l. (2.5.5)

Finally, suppose the last mode of end clamping is realized at both ends.

In mathematical physics these boundary conditions would be called Neu-

mann conditions ; in mechanics, we say the problem is posed “without ge-

ometrical constraints on the boundary” (or, in the theory of elasticity, as

a problem “with force conditions on the boundary”). Vertical motion is

not geometrically restricted. Since, in equilibrium, the string should satisfy

the equilibrium equations for a rigid body, the forces acting on the string

should be self-balanced ; otherwise the string will move. So the following

question is significant. In this version of the problem we neglect the mass of

the string; the body (string) moves under the action of forces while having

no mass. What happens? It is clear that the acceleration will be infinite

if the external forces are not self-balanced, but we have not involved accel-

eration at all. How is this potentially bad behavior of the body reflected

in the equilibrium problem? The answer is that if the external forces are

not self-balanced, the boundary value problem cannot have a solution. This

holds for any equilibrium problem for an object that can move freely in some

direction or rotate about an axis: the corresponding external loads must be
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self-balanced with respect to all possible free motions; otherwise the statics

problem will not have a solution.

For equilibrium of a planar rigid body, classical mechanics specifies three

equations for self-balance of the external forces: two for the force compo-

nents — vertical and horizontal — and one for the moment. In this setup

the horizontal components are balanced by boundary devices, so we have

two conditions. For the vertical forces we have

∫ l

0

f(x) dx + P0 + Pl = 0,

where P0 and Pl are forces applied at the respective endpoints x = 0 and

x = l. The moment with respect to the left end seems to be

∫ l

0

xf(x) dx + lPl = 0

but also appears to be unnecessary: in this model, the string resists any

rotation as a rigid body.

We will consider Neumann problems for other objects. The situation

with the self-balance conditions is similar for the approximate theories de-

scribing beams, plates, and shells: depending on the theory, some self-

balance relations may be lost because the theoretical assumptions introduce

additional properties into the model (this will happen in the membrane the-

ory). In elasticity theory, however, the self-balance conditions of classical

mechanics are fulfilled “exactly”.

A final remark for this section: we could consider other boundary con-

ditions and thereby run into fairly difficult problems even for this simple

differential equation. Some would be hard to pose correctly; others would

lead to complex nonlinearities. For example, we could assume nonzero fric-

tion between the button and the clamping device; the theory of friction is

difficult, and the law depends on the concrete structure of this device. We

could introduce forces that depend on the string deflection, etc. So even

with a simple object, the variety of possible boundary value problems is

significant. It becomes truly daunting if we consider a nonlinear equation

for the string.
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2.6 Generalized Formulation of the Equilibrium Problem

for a String

We reconsider the equilibrium problem for a string with fixed ends:

T0w
′′(x) + f(x) = 0, x ∈ (0, l), (2.6.1)

w(0) = 0, w(l) = 0. (2.6.2)

Let us try to forget that we can easily solve this via double integration;

we seek general methods appropriate for more complex problems. The

simplicity of the present problem will give us a good look at these tools

without obscuring them with too much detail.

Besides differential equations and boundary conditions, a mathematical

setup for a boundary value problem must delineate a class in which we will

seek solutions. Since the existence or uniqueness of a solution can turn on

the choice of this class, it is of obvious importance.

Historically it was common to consider only those solutions to a bound-

ary value problem that possess as many continuous derivatives as appear

in the equations of the problem. We call such a setup classical.3 For

the present problem, a classical solution should be a function belonging to

C(2)(0, l); that is, it should be continuous on [0, l] together with its first

two derivatives, in addition to satisfying (2.6.1) and (2.6.2). Of course, to

have such a solution we must require that the load density f be continuous:

f ∈ C(0, l). But we can also assume f is discontinuous. The load can con-

tain even lumped forces. Now let us forget that we can solve the problem

using simple integration. We wish to change the setup in order to imbed

non-smooth solutions. We do this to demonstrate how we will handle more

complex problems where direct integration is impossible. How should we

alter the setup to consider such problems? The methods of the calculus of

variations prompt us to use integro-differential equations instead of pure

differential equations. This approach is based on Lemma 1.20.1. If the

equation
∫ l

0

F (x)ϕ(x) dx = 0,

with respect to a function F (x) continuous on [0, l], holds for any ϕ ∈
D(0, l), the set of functions infinitely differentiable on (0, l) and vanishing
3Of course, the theory considered solutions having singular points as well. But those

points were regarded as exceptional, and the solutions containing them as supplementary
to the smooth solutions of the truly classical problems.
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in some neighborhood of each endpoint, then F (x) = 0 on [0, l]. An ex-

amination of the proof shows that Lemma 1.20.1 still holds if F (x) is only

piecewise continuous; then F (x) = 0 at each point of continuity of F (x).

This suggests a way in which we could reduce the requirements on the

smoothness of a solution to (2.6.1)–(2.6.2).

Supposing w is a solution to the problem (2.6.1)–(2.6.2), let us multiply

(2.6.1) by ϕ ∈ D(0, l) and integrate over [0, l]:

∫ l

0

[T0w
′′(x)ϕ(x) + f(x)ϕ(x)] dx = 0. (2.6.3)

When T0w
′′(x) + f(x) is continuous on [0, l], then (2.6.3), formulated as a

result that must hold for all ϕ ∈ D(0, l), is equivalent to (2.6.1). This fol-

lows from Lemma 1.20.1. Thus we can consider this new integrodifferential

equation, which contains the unknown function w(x), given load f(x), and

an arbitrary function ϕ(x), as the basis for formulating the boundary value

problem. It uniquely defines a smooth w(x) when f(x) is smooth, as for

smooth f(x) it is equivalent to the equation T0w
′′(x)+f(x) = 0. We can go

further and consider the integral equation when f(x) is not continuous but

merely integrable. We expect w′′(x) to be integrable as well, and can try

to reduce the smoothness requirements on the solution by saying that the

integrodifferential equation defines a generalized solution. This new setup

seemingly will not allow us to include lumped forces, which are common,

so we will proceed.

Integrating by parts in the first term of (2.6.3) we get

∫ l

0

[−T0w
′(x)ϕ′(x) + f(x)ϕ(x)] dx = 0, (2.6.4)

since ϕ(0) = 0 = ϕ(l). Each term in (2.6.4) has a clear meaning. First,

∫ l

0

f(x)ϕ(x) dx (2.6.5)

is the work of external forces over the virtual displacement ϕ. Because the

term

−
∫ l

0

T0w
′(x)ϕ′(x) dx (2.6.6)

arose from the expression

∫ l

0

T0w
′′(x)ϕ(x) dx, (2.6.7)
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it is called the work of internal forces over the same virtual displacement

ϕ. Indeed, the integral (2.6.7) shares the form of (2.6.5) with the internal

force T0w
′′(x) replacing the external loading function f(x).

We can include lumped forces Fi at points x = ci by rewriting (2.6.4)

as
∫ l

0

[−T0w
′(x)ϕ′(x) + f(x)ϕ(x)] dx+

∑

i

Fiϕ(ci) = 0. (2.6.8)

We stop at this stage of generalization. A pure mathematician might con-

tinue on to the theory of distributions : a subject that finds applications

to the theory of differential equations. However, in the class of merely in-

tegrable functions we would lose not only uniqueness of solution but the

possibility of formulating boundary conditions as w would not be contin-

uous. As we will see, this setup can be done directly if we start with the

virtual work principle for the string. This is another reason we do not try

to generalize further.

In what follows we will introduce generalized solutions to various prob-

lems of mechanics. It is, of course, desirable for a generalization to have

mechanical roots as well. Our definitions will be based on the minimum to-

tal energy principle or the virtual work principle. When introducing a new

setup, we should clearly understand the features of such a generalization.

A generalized solution represents an extension of a classical solution

in the sense that the former can be much less smooth; however, when a

classical solution of the problem exists, the generalized one must coincide

with it. We typically adhere to the following guidelines when introducing

generalized solutions.

(1) A smooth classical solution of a problem should be a generalized solu-

tion as well.

(2) The notion of generalized solution is related to mechanical principles

and truly extends the problem setup to regimes of parameters, loads,

etc., for which classical solutions do not exist.

(3) The generalized setup is well-posed; this means that a generalized solu-

tion exists for all mechanically meaningful external data, and is unique

for those problems expected to have this property.

The third item holds for linear problems and clearly fails for nonlinear ones

where nonuniqueness is expected.

So, according to our mechanical viewpoint on the problem, we should

stop (at least) at the level of generalization given by (2.6.4).
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The approach we have demonstrated is typical of pure mathematics. A

problem is transformed: when the new form appears useful, another theory

begins to develop. In the present case, however, we can arrive at the same

equation (2.6.4) or its extension (2.6.8) via mechanical considerations. So

we shall consider the principle of minimum total energy for the string.

2.7 Virtual Work Principle for a String

Let us obtain the same equilibrium equation from a mechanical viewpoint.

We begin with the total energy functional for the “string-load” system:

E(w) =

∫ l

0

T0

2
wx

2(x) dx −
∫ l

0

f(x)w(x) dx. (2.7.1)

The first term is the strain energy possessed by the string because of its

transverse deflection. The second accounts for the work of external forces.

To see the parallels with the elementary problems we studied earlier, we

could regard this term as a kind of potential of the load, or as the poten-

tial energy of the “string–load” system. However, we will not need this

viewpoint in what follows.

Suppose the string ends are fixed:

w(0) = w0, w(l) = w1. (2.7.2)

Let us seek a point of minimum of E(w) and see how it relates to a so-

lution of the equilibrium problem for the string. Denoting4 by δw(x) an

admissible variation of w, which is a twice-differentiable function vanishing

at the endpoints, we get the expression for the first variation of E(w). At

a minimum point it should vanish:

δE(w, δw) =

∫ l

0

T0wx δwx dx−
∫ l

0

f δw dx = 0. (2.7.3)

Because this matches (2.6.4) for δw = ϕ, we obtain implicit confirmation

that the total energy can attain a minimum value on the solution of the

equilibrium problem. We will confirm this later (as a consequence of The-

orem 2.13.2).
4It is traditional in mechanics to denote such a function by two symbols such as δw,

although it is an ordinary function. We sometimes encounter situations in which the
symbol δ is interpreted as meaning that the deviation δw, being an admissible (virtual)
displacement, is small or even infinitesimal. That is why the notation is used in the
mechanical literature. But the equations depend on δw linearly, hence remain valid for
non-small δw as well.
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We now state

Virtual work principle for a string. In the state of equilibrium of

the string, the sum of the work of internal and external forces over any

admissible field of displacements δw is equal to zero.

We see that the equilibrium equation (2.7.3), which we restate as

−
∫ l

0

T0wx δwx dx+

∫ l

0

f δw dx = 0, (2.7.4)

expresses the virtual work principle for a string with fixed ends.

Such formulations are typical in elasticity; people gloss over “small”

details such as smoothness of the displacement field. It is taken to be

“sufficiently smooth”. But for us the issue of smoothness is crucial. We

will use the virtual work principle as a basis for defining a generalized

(energy) solution to the string problem, but the smoothness issue will be

treated carefully.

The equilibrium problems of continuum mechanics satisfy a similar vir-

tual work principle.5 The reader may wonder why we have borrowed a

term from classical mechanics, even though the form of this statement dif-

fers markedly from the form of the virtual work principle used there. It

turns out that the difference is not so great. In classical mechanics, we see

only the work of forces which, in our present terms, could be called external

forces. Our “internal” forces are absent in classical mechanics because it

employs a model of a rigid body in which the work of the internal forces

that keep the particles of the body mutually stationary is always zero. In

continuum mechanics, because of deformation, work due to small distur-

bances in the mutual positions of the points of a body appears, and this

brings new terms into the expression for virtual work. In this case, the

work of internal forces is obtained by calculating the first variation of the

strain energy functional. When we come to the stress and strain tensors, we

will introduce it from another viewpoint, deriving it as the work of stresses

inside the body over the field of infinitesimally small virtual displacements.

This approach works even if one cannot derive an expression for the strain

energy functional.

We will use the above principle and similar formulations for generalized

setups of corresponding problems. For additional rigor, we will need mate-

rial from functional analysis; we must specify the classes in which we seek
5We have “derived” the virtual work principle from the minimum energy principle. The

former is more general, however, and can be applied in problems for which a total energy
functional does not exist.
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solutions and introduce tools for proving solvability and uniqueness. This

will brings us to the idea of energy spaces which, in large part, turn out to

be subspaces of Sobolev spaces. The latter are spaces in which the norm

is of integral type, involving not only the functions themselves, as in the

space Lp, but also their derivatives. The main tool for proving existence–

uniqueness will be Riesz’s representation theorem for a linear continuous

functional in a Hilbert space. These topics will be presented below, but let

us further discuss the virtual work principle for a string.

We know that a solution to the boundary value problem for a string

with fixed ends satisfies the virtual work principle stated above. Let us

seek the conditions of minimum for the energy functional E(w) with no

endpoint constraints. Of course, we get the same equation (2.7.4) of the

virtual work principle from which, by the general theory of the calculus of

variations, follows the equilibrium equation (2.6.1) and the natural bound-

ary conditions

T0wx(0) = 0, T0wx(l) = 0.

(Later we derive these for a more general case and therefore do not pause

to treat them here.) These coincide with the equilibrium conditions for

“free” ends of the string (equation (2.5.3)). This suggests that the natural

boundary conditions for the string are related to the equilibrium condition.

We verify this as follows.

We extend the formulation of the virtual work principle for the string,

including the action of some forces at the string ends. Clearly these forces,

P0 and P1 say, are external to the string, and their work values over a

virtual displacement field δw(x) are P0 δw(0) and P1 δw(l). We know we

must supplement the total energy functional with new terms. This leads

us to the following equation, which we can write directly using the above

word formulation of the virtual work principle: in equilibrium, the sum of

the work of internal and external forces over any virtual displacement field

of the string is equal to zero:

−
∫ l

0

T0wx δwx dx+

∫ l

0

f δw dx+ P0 δw(0) + P1 δw(l) = 0. (2.7.5)

The presence of terms outside the integrals distinguishes this from the prob-

lems we considered in the calculus of variations. However, the method of

obtaining the necessary conditions that follow from the equation is practi-
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cally the same. We integrate by parts on the left, and rearrange:

−
∫ l

0

T0wxx δwx dx−
∫ l

0

f δw dx+ T0wx(l) δw(l) − T0wx(0) δw(0)

= P0 δw(0) + P1 δw(l).

Fig. 2.4 Sign convention for reaction forces.

First we consider only those virtual displacements for which δw(0) = 0

and δw(l) = 0. For these, the problem does not differ from that for the

string with fixed ends; hence the differential equation of equilibrium (2.6.1)

holds. This also means that the sum of the integral terms equals zero

independently of the values of δw at the ends. Consequently,

T0wx(l) δw(l) − T0wx(0) δw(0) = P0 δw(0) + P1 δw(l).

Taking δw = x and δw = l − x, respectively, we get two end conditions:

wx(l) = P1/T0, wx(0) = −P0/T0. (2.7.6)

The first coincides with the Neumann condition (2.5.5). The negative sign

is a simple consequence of Newton’s third law. When we use a surface to

“cut away” a portion of a spatial object for study, we must replace the

action of any removed portions by suitable force reactions. But a cut can

be viewed from either side, and by Newton’s third law the mutual reaction

forces should be equal and opposite. We will see a similar sign pattern for

the contact reactions in all our elastic models. So let us pause to develop

a convenient formal rule for this. We must introduce a sign convention for

the reaction forces. We temporarily imagine the string to have nonzero

thickness. Figure 2.4 shows positive directions for forces acting at cross

sections of a small portion, depending on the side of the cut. Contact

forces due the string inclination are regarded as positive when they act as
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shown in Figure 2.4. The situation is the same with the forces Pi acting

at the ends of the string; i.e., the positive directions for P0 and P1 at the

ends are opposite. We will introduce a similar sign convention for stresses

in the theories of beam bending and elasticity.

So we have obtained the natural boundary conditions (2.7.6) for a free

string. These turned out to be the equilibrium conditions for the endpoints

of free clamping. The self-balance equation for external forces now follows

from the fact that (2.7.5) must hold, in particular, for δw = 1. So we have

∫ l

0

f dx + P0 + P1 = 0

which is the self-balance equation stated earlier. We could consider more

general string problems using the virtual work principle. We could, say,

place elastic supports at points along the string. These would be considered

as part of a combined structure (“string + supports”) and a term accounting

for the work of the support reactions included in the work of “internal”

forces. For example, if a spring acts on the string at point c with reaction

kw(c) (i.e., proportional to w(c)), then the virtual work principle reads

∫ l

0

T0wx δwx dx+ kw(c) δw(c) =

∫ l

0

f δw dx+ P0 δw(0) + P1 δw(l).

To derive the dynamical equations we also apply d’Alembert’s principle; we

add the inertia forces to study motion in the presence of, say, air resistance

or point masses attached to the string.

However, to consider the mathematical consequences of the virtual work

principle we require additional machinery as noted above.

2.8 Riesz Representation Theorem

We first demonstrate that a continuous linear functional defined on Rn can

be represented as a scalar product in Rn. We know that any vector x ∈ Rn

can be expressed as

x =

n
∑

i=1

xiei, (2.8.1)

where the ei are the vectors of the standard basis. This allows us to see

that a given linear functional F (x) (i.e., a linear function of the n variables
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xi with no additive constant term) can be written in the form

F (x) =

n
∑

i=1

xiai (2.8.2)

with scalars ai that do not depend on x. Indeed, with ai ≡ F (ei) we have

F (x) = F

( n
∑

i=1

xiei

)

=
n
∑

i=1

xiF (ei) =
n
∑

i=1

xiai.

Therefore we can write (2.8.2) as

F (x) = x · a (2.8.3)

where the vector a is uniquely determined by F (x). This is the aforemen-

tioned representation of F (x) as an inner product. Note that the equation

x · a = a1x1 + · · · + anxn = 0

specifies a hyperplane through the origin in Rn. The orientation of this

hyperplane is described by its normal vector a with components ai.

These ideas can be extended to a general Hilbert space H . Of course,

we cannot use the technique outlined above to determine the coefficients in

an infinite-dimensional setting. However, two other facts come to our aid:

For a linear continuous functional F in H : (1) the kernel of F , which is the

set of all x for which F (x) = 0, is a hyperplane (subspace) of the Hilbert

space as was the case in Rn above, and (2) the orthogonal complement of

the kernel in H is one-dimensional and contains a unique vector f such that

F is uniquely defined through the inner product: F (x) = (x, f). This was

proved by F. Riesz. The Riesz representation theorem will play a signifi-

cant role in our presentation; it will allow us to analyze linear problems of

continuum mechanics by recasting them as operator equations.

Theorem 2.8.1 (Riesz representation). Let F (x) be a continuous lin-

ear functional given on a Hilbert space H. There is a unique element f in

H such that

F (x) = (x, f) for every x ∈ H. (2.8.4)

Furthermore, this element satisfies ‖f‖ = ‖F‖.

Proof. Denote by M the kernel of F (x): i.e., the set of all x for which

F (x) = 0. It follows from the linearity of F (x) that M is a subspace of H .
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Furthermore, M is closed; if {mk} ⊂ M is convergent in H to a limit m∗,

then m∗ ∈ M because

F (m∗) = F

(

lim
k→∞

mk

)

= lim
k→∞

F (mk) = 0

by continuity of F . Applying Theorem 1.16.2 we obtain the unique decom-

position

H = M+̇M⊥.

In this case the orthogonal complement M⊥ is one-dimensional. To prove

this, take any two elements n1 and n2 from M⊥ and examine the linear

combination

n3 = F (n1)n2 − F (n2)n1. (2.8.5)

We know this element belongs toM⊥ becauseM⊥ is a subspace. But it also

belongs to M because F (n3) = F (n1)F (n2) − F (n2)F (n1) = 0. Therefore

it must be the zero vector, and (2.8.5) shows that n2 must be a scalar

multiple of n1. Because n2 ∈ M⊥ is arbitrary, M⊥ is one-dimensional.

Now let n0 be a normalized element of the one-dimensional subspace

M⊥. We can represent any x ∈ H as

x = m+ αn0

for some element m from M and some scalar α. Taking the inner product

of both sides with n0 we find that α = (x, n0), hence

F (x) = F (m) + αF (n0) = (x, n0)F (n0) = (x, F (n0)n0).

This is the desired representation (2.8.4) with f = F (n0)n0. Uniqueness is

proved by supposing the existence of two “representers” f1 and f2 so that

F (x) = (x, f1) = (x, f2) holds for all x.

This yields (x, f1 − f2) = 0 for all x, and we can set x = f1 − f2 to deduce

that f1 = f2.

Finally, we must establish ‖F‖ = ‖f‖. We have

‖f‖2
= (f, f) = F (f) ≤ ‖F‖ ‖f‖

where the inequality holds by definition of the norm of a functional. There-

fore ‖f‖ ≤ ‖F‖. On the other hand

‖F‖ = sup
‖x‖6=0

|F (x)|
‖x‖ = sup

‖x‖6=0

|(x, f)|
‖x‖ ≤ sup

‖x‖6=0

‖x‖ ‖f‖
‖x‖ = ‖f‖

by the Schwarz inequality. Since ‖f‖ ≤ ‖F‖ and ‖f‖ ≥ ‖F‖, we have

‖f‖ = ‖F‖. �
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2.9 Generalized Setup of the Dirichlet Problem for a String

Let us return to equation (2.7.4),
∫ l

0

T0wx δwx dx =

∫ l

0

f δw dx, (2.9.1)

and for simplicity fix the ends of the string as follows:

w(0) = 0, w(l) = 0. (2.9.2)

We have seen that (2.9.1), when it holds for all admissible δw(x), is equiva-

lent to the differential equation of equilibrium (2.6.1). So we exploit (2.9.1)

for the generalized setup of the equilibrium problem.

In (2.9.1), an admissible δw(x) can have the same smoothness as w(x)

and satisfy the same boundary conditions (2.9.2):

δw(0) = 0, δw(l) = 0. (2.9.3)

Thus we enjoy a full symmetry between the properties of δw(x) and w(x).

When posing a problem we should specify the class of functions in which

we seek a solution. If we momentarily forget the equilibrium equation

and consider only (2.9.1), then all we can expect of the solution are the

properties that make sense for all the terms of (2.9.1); hence we can require

only some integrability of w, wx, δw, and δwx. With the same thing in

mind, we require integrability of f .

To formulate the generalized setup of the problem we construct the en-

ergy space starting with the subspace S0 of functions in C(2)(0, l) satisfying

(2.9.2). Let us exploit the symmetry of the left side of (2.9.1) with respect

to w and δw. We introduce

(w, δw)S =

∫ l

0

T0wx δwx dx. (2.9.4)

Considering the properties of this functional when w, δw ∈ S0, we see that

it can act as an inner product on S0.

Exercise 2.9.1. Show this in detail.

It turns out that the resulting inner product space is incomplete. The

situation is unchanged if we impose a lesser requirement on the elements

of S0, that they merely have continuous first derivatives on [0, l]. We shall

introduce generalized solutions that, in general, lack two continuous deriva-

tives but always have finite strain energy. The class in which we will seek

generalized solutions is introduced as follows.
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Definition 2.9.1. The completion of the set S0 of functions with respect

to the norm

‖w‖S = (w,w)S
1/2

(2.9.5)

is the energy space for the Dirichlet string problem. We denote it by ESD.

Remark 2.9.1. We will denote all energy spaces using similar notation:

the first subscript will refer to the object and the second to the type of

boundary conditions. Currently, S stands for “string” and D for “Dirichlet

boundary conditions”. A second subscript N will mean “Neumann” (or

“natural”) conditions. �

The quantity ‖w‖2
S is the double strain energy functional for the string

and is clearly defined for each element of ESD . This property is mechan-

ically meaningful. But the ESD norm involves wx and not w. Hence we

do not know the properties of w, and cannot determine conditions on f in

order to ensure that the term
∫ l

0 f δw dx makes sense for all δw ∈ ESD .

So we would like to consider our equilibrium problem in ESD , at each

point of which the strain energy is defined. We will use the minimum energy

principle (or, equivalently, the virtual work principle). Again, we know

nothing about the properties of w. We must also know how to treat another

term in the equation: the work of external loads. Certain results, called

imbedding theorems, are useful here: they show us that the elements of one

space can be identified with those of another and specify the properties of

this identification. They permit us to formulate conditions under which the

work of external loads makes sense and, in addition, demonstrate that the

problem of minimization of the total energy functional has a unique solution

in ESD . Of primary interest is a particular case of the Sobolev theorem

regarding the equilibrium of a membrane (Theorems 2.16.2–2.16.4). Now

let us consider a simple imbedding theorem for the space ESD.

2.10 First Theorems of Imbedding

To understand the imbedding concept we begin with a simple example.

Consider the space C(Ω) of all continuous functions f = f(x) on a compact

domain Ω ⊂ Rn. Any f ∈ C(1)(Ω) belongs to C(Ω). It might seem that

little is gained by regarding such a function first as an element of C (1)(Ω)

and then as an element of C(Ω). We should be careful, however, not to

think of this correspondence as the result of applying a simple “identity
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operator” — this would only be the case if the domain and range of the

operator were the same space. In fact the norms on the two spaces differ:

the norm of C(Ω) does not implicate the derivative of its argument. So

the operator that pairs a given function in C(1)(Ω) with the same function

but regarded as an element of C(Ω) (including with respect to its norm!)

cannot be called an identity operator. Instead it is called the imbedding of

C(1)(Ω) into C(Ω). Let us denote it by T and write the correspondence as

f = Tf. (2.10.1)

Again, both occurrences of the symbol f stand for the same function f(x).

But — and this is crucial — the function on the right is considered as an

element of C(1)(Ω), and on the left as an element of C(Ω).

It is clear that T is linear. What about its other properties? According

to the definitions of the norms on the two spaces,

‖f‖C(Ω) = max
x∈Ω

|f(x)| (2.10.2)

and

‖f‖C(1)(Ω) = max
x∈Ω

|f(x)| +
n
∑

k=1

max
x∈Ω

∣

∣

∣

∣

∂f(x)

∂xn

∣

∣

∣

∣

, (2.10.3)

we have

‖f‖C(Ω) ≤ ‖f‖C(1)(Ω) . (2.10.4)

In terms of T this is

‖Tf‖C(Ω) ≤ ‖f‖C(1)(Ω) . (2.10.5)

So T is bounded and thus continuous. It is not continuously invertible,

however, since there are continuous functions that do not have continuous

derivatives on Ω.

The imbedding theorems specify the properties of imbedding operators.

In the present case we can state the following theorem, the second part of

which (on compactness) is a consequence of Exercise 3.25.1. The notions

of compact set and compact operator are detailed in § 3.25.

Theorem 2.10.1. Let Ω be compact. The imbedding operator from C (1)(Ω)

to C(Ω) is continuous and compact.

The situation with Sobolev and energy space imbedding results is

slightly different from the one above. We will continue to see a one-to-one

correspondence–identification between the elements of two different spaces;
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the image of an element under this correspondence, however, may not be

that same element (indeed the natures of the elements of the two spaces

may differ). We will continue to use the term “imbedding” when referring

to theorems that provide additional properties of elements of a space when

these elements can be regarded as belonging to another “wider” space.

Since many of the spaces we use are based on the completion theorem,

it is instructive to consider

Exercise 2.10.1. Suppose X is a Banach space. What we can say about

its completion? What are the relations between the elements of X and those

of its completion?

The essential properties of the energy space elements are obtained from

certain inequalities between the elements (“functions”) or their derivatives

and the energy norms. A standard trick for obtaining such inequalities is

as follows. Recall that an energy space element is really an equivalence

class of Cauchy sequences of smooth functions. We take one such smooth

function, derive the needed inequality for it, and then extend the inequality

to the actual energy space element (by exploiting properties of the norm

of the space). So the first step requires only simple calculus, while the

second requires justification of limit passages in the inequality. In § 1.15

we saw how such passages were justified: we established the existence of

the limiting inequality and showed that it was independent of the choice

of representative sequence. In the interest of brevity we omit such details

from our subsequent development.

Let us consider the space ESD. The expression for ‖u‖S involves only

the derivative of u, which is square integrable. To establish the properties of

the elements of ESD, we first establish some properties of the base functions,

then extend these to all elements of the space. Now we prove a simple

inequality for u(x) from the base class S0:

max
x∈[0,l]

|u(x)| ≤ l1/2

(
∫ l

0

[u′(x)]2 dx

)1/2

. (2.10.6)

For this, we write out the integral representation

u(x) =

∫ x

0

u′(t) dt. (2.10.7)

We now invoke the Schwarz inequality, which states that
(
∫ b

a

f(x)g(x) dx

)2

≤
(
∫ b

a

f2(x) dx

)(
∫ b

a

g2(x) dx

)

. (2.10.8)
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We have

|u(x)| =

∣

∣

∣

∣

∫ x

0

1 · u′(t) dt
∣

∣

∣

∣

≤
(
∫ x

0

12 dt

)1/2(∫ x

0

[u′(t)]2 dt

)1/2

≤ l1/2

(
∫ l

0

[u′(x)]2 dx

)1/2

as required. Now take an element U(x) ∈ ESD. Inequality (2.10.6) holds

for any function un(x) in its representative sequence. We can rewrite this

inequality for differences un(x) − um(x):

max
x∈[0,l]

|un(x) − um(x)| ≤ l1/2

(
∫ l

0

[un
′(x) − um

′(x)]
2
dx

)1/2

.

On the right we have, up to a constant multiplier, the norm of the difference

un(x)− um(x) in the space ESD. This tends to zero as m,n→ ∞. On the

left, we get the norm of this difference in the space C(0, l). It follows that

{un(x)} is a Cauchy sequence in both ESD and C(0, l). By completeness

of C(0, l), there is a limiting continuous function u(x) to which {un(x)}
converges in C(0, l). If we take another representative of U(x) and repeat

the above reasoning, we arrive at the same limit function u(x) (the reader

should verify this). So we have a correspondence between an element U ∈
ESD and a function u ∈ C(0, l).

What are the properties of this correspondence? If U(x) contains a

stationary sequence {u(x)} where u ∈ S0, then u(x) is also the limiting

element obtained in the above correspondence. The correspondence we

have described — wherein each U ∈ ESD is paired with a function u —

is an operator of the same nature as the operator T mentioned previously.

This new operator, G say, takes any element of ESD into C(0, l) and, again,

is such that any element U(x) containing a stationary sequence composed

of an element u(x) of the base set S0 is mapped to that same function u(x).

We call it the operator of imbedding of ESD into C(0, l). A consequence of

(2.10.6) is that for u = GU we get

max
x∈[0,l]

|u(x)| ≤ c ‖U‖S

with c = l1/2/T0, so G is continuous. We will also find (Lemma 3.25.1) that

it is compact.
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Theorem 2.10.2. The imbedding operator from ESD into C(0, l) is con-

tinuous and compact.

Because of this limiting correspondence between the elements of ESD

and C(0, l), we will use the name of the limiting function u(x) for the corre-

sponding element U(x) from ESD and write equations and other relations

in terms of u(x). So the first statement of Theorem 2.10.2 (about continuity

of the operator) we shall express as

‖u‖C(0,l) ≤ m ‖u‖S (2.10.9)

with some constant m independent of u ∈ ESD.

There are, however, situations in which we cannot blur the distinction

between u(x) and U(x); then we must deal with the actual element U(x)

(carrying out appropriate limit passages when necessary). Similar com-

ments hold for the other energy spaces we encounter subsequently.

We should add something about the nature of the derivatives of the

elements U ∈ ESD . Again, these elements are paired with continuous

functions. Not all these functions have derivatives of the type to which we

become accustomed in classical calculus. However, to each such continuous

function u(x) there corresponds a class of sequences {u′n(x)}, equivalent

in L2(0, l), each being a Cauchy sequence in L2(0, l). When the sequences

have a continuous limit function, it is possible to prove that the latter is an

ordinary derivative of u(x). If such a continuous limit does not exist, we

still have a correspondence between u(x) and some element of L2(0, l) that

contains the above sequences {u′n(x)}. This element is called the generalized

derivative of u(x). In § 2.16 we will consider in more detail how to introduce

function spaces containing generalized derivatives. The space ESD is one

of the simplest examples where we must do this. Moreover, it is one of the

so-called Sobolev spaces.

2.11 Generalized Setup of the Dirichlet Problem for a

String, Continued

Having introduced the notion of imbedding, we return to our previous prob-

lem.

Definition 2.11.1. By a generalized solution of the Dirichlet problem of

equilibrium of a string is meant an element w ∈ ESD that satisfies the
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equation of the virtual work principle for the string:

∫ l

0

T0wx(x) δwx(x) dx =

∫ l

0

f(x) δw(x) dx, (2.11.1)

for any δw ∈ ESD .

Observe, on the left side of (2.11.1), the inner product between u and

δw in the space ESD . Note also the assumption that the smoothness prop-

erties of w(x) and δw(x) are the same. This has a meaning, since virtual

displacements can include the class of real displacements and so it makes

no sense to restrict the class of virtual displacements only to very smooth

functions. Such symmetry in the properties of w and δw in the definition

allows us to use Hilbert space tools.

Now consider the right side. Clearly, it is a linear functional with respect

to δw in ESD . Earlier we required that the load f be integrable: f ∈ L(0, l).

Thus
∣

∣

∣

∣

∫ l

0

f δw dx

∣

∣

∣

∣

≤ max
x∈[0,l]

|δw(x)|
∫ l

0

|f(x)| dx,

and by (2.10.9) we have
∣

∣

∣

∣

∫ l

0

f δw dx

∣

∣

∣

∣

≤ m1 ‖w‖S (2.11.2)

with a constant m1 depending on the norm of f in L(0, l) only. Inequality

(2.11.2) means that the integral

∫ l

0

f δw dx

is a linear continuous functional in ESD with respect to δw. Hence we can

apply Theorem 2.8.1 in the Hilbert space ESD and get

∫ l

0

f δw dx = (w∗, δw)S ,

where w∗ ∈ ESD is uniquely defined by f . Finally, we can substitute this

representation into (2.11.1) and get an equivalent relation

(w, δw)S = (w∗, δw)S

valid for all δw ∈ ESD . Rewriting it as

(w − w∗, δw)S = 0
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and using the arbitrariness of δw, we see that there exists a unique general-

ized solution w∗ of the equilibrium problem for the string. Let us formulate

this as

Theorem 2.11.1. Let f ∈ L(0, l). There is a unique generalized solution

w∗ ∈ ESD of the boundary value problem of equilibrium for a string under

load f , in the sense of Definition 2.11.1.

We could extend the set of admissible loads to include point forces acting

on the string.

Exercise 2.11.1. Repeat all the above steps for such loads, supplementing

the work of external forces with the term
∑m

i=1 Fiδw(ci), where the force Fi

acts at the point x = ci (cf., equation (2.6.8)).

A final remark concerns the minimum energy principle for this problem.

Using the above notation, we can rewrite the total energy functional in

terms of the inner product as

E(w) =
1

2

∫ l

0

T0wx
2 dx −

∫ l

0

fw dx =
1

2
(w,w)S − (w∗, w)S .

This can be easily transformed as

E(w) =
1

2
(w − w∗, w − w∗)S − 1

2
(w∗, w∗)S .

It is clear that E(w) takes its minimum at w∗, which is a generalized solution

of the problem under consideration. Thus we formulate

Theorem 2.11.2. Under the conditions of Theorem 2.11.1, the total en-

ergy functional takes its minimum value at w∗ ∈ ESD, which is a general-

ized solution of the Dirichlet problem for the string.

Next we consider the problem of equilibrium for the string with free

ends.

2.12 Neumann Problem for the String

Now we include external concentrated forces acting at the string ends. In

this case the virtual work principle takes the form
∫ l

0

T0wx δwx dx =

∫ l

0

f δw dx+ P0 δw(0) + P1 δw(l), (2.12.1)
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and there are no restrictions on the endpoint values of w(x) or δw(x). In

the equilibrium state u = u(x), with given forces f(x), P0, and P1, this

equation must hold for any admissible δw. Let us adapt our presentation

of the Dirichlet problem to this new problem.

Our base set S1 will consist of all the functions that are twice contin-

uously differentiable on [0, l], with no additional restrictions. (Note that

here we use only the set of functions and not the notation C(2)(0, l), which

assumes a certain norm!) As before, we wish to employ the energy inner

product

(w, δw)S =

∫ l

0

T0wx δwx dx. (2.12.2)

A difficulty lurks here, however: the set of smooth functions satisfying

(w,w)S = 0 is not empty; it consists of functions such that wx = 0 on [0, l],

hence of the constant functions w = c. These represent parallel translations

of the string as a rigid body. When studying the equilibrium of the free

string, we are interested only in its deformation, and can try to remove

“rigid motions” from consideration.

The algebraic notion of factor space is useful in this regard. We can

unite all constant functions into a class MR, and let this class play the role

of “zero” in a new factor space S1F = S1/MR. Each element of the latter

contains all functions whose differences are constant.

It is clear that the functional (w, δw)S is an inner product on S1F , hence

S1F is a suitable base space for an energy space for the Neumann problem.

Before proceeding, we should verify that our setup — defined by (2.12.1) —

makes sense. When we take δw = c, for a solution w(x) the VWP equation

must hold. Since the left side is zero, so is the right side. When δw = 1,

the self-balance condition
∫ l

0

f(x) dx + P0 + P1 = 0 (2.12.3)

follows. Since the functional for the work of external forces is linear with

respect to δw, we see that (2.12.1) holds for any δw = c, and thus makes

sense in the space S1F .

At this point the reader may ask why, for a free string, we do not

encounter the self-balance condition for the moment of external forces. The

answer is that because of tension T0 the string resists any inclination as a

whole body. This can easily be seen by watching the reactions at the ends

of the inclined string. So the self-balanced moment of the external forces

is not a necessary condition for the problem.
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Now we can introduce the energy space for the problem.

Definition 2.12.1. The energy space ESN for the Neumann problem is

the completion of S1F in the norm ‖·‖S .

At this point we could continue to follow the steps taken above for the

Dirichlet problem.6 Instead we will simplify the analysis by introducing

an equivalent problem. The idea is to select from each element of S1F

a representative function in such a way that the collection of those func-

tions forms a linear space. Then we reformulate the problem in terms of

representative functions and establish an existence–uniqueness theorem for

this new problem. Finally, we use the one-to-one correspondence between

problems to formulate a corresponding theorem for the original problem.

As MR is one-dimensional, the selection of representative functions will

be done using a linear functional such that over the set of representative

functions ‖·‖S is actually a norm. Since this procedure is common to all

Neumann problems we will consider, we should explain the properties of

such a functional. Each time we will show that the energy space, which we

obtain as the completion of some set of smooth functions with respect to

an energy norm, is a subspace of a Sobolev space (a topic to be considered

later). So the functional should be taken as continuous in this space. Here,

on the set of representative functions, the energy norm will be equivalent

to the norm of W 1,2(0, l). Hence the functional should be taken continuous

in W 1,2(0, l). This problem for a free string is typical. In more advanced

theories like the theory of elasticity, the representative elements are selected

using linear functionals of integral form. But now, because of the imbedding

of W 1,2(0, l) to C(0, l) we simply fix the end x = 0 of the string (note that

the value w(0) defines a linear functional acting on W 1,2(0, l)). Everything

is clear mechanically: we preclude free movement of the string. Of course,

the result is not a Neumann problem: the two problems stand in one-to-one

correspondence, however, as do their respective energy spaces. Hence we

can obtain the needed solution of the Neumann problem by studying the

problem for the string with one fixed end.

So we consider the problem of equilibrium under the same load as for

the Neumann problem. Because the left end is fixed, we have w(0) = 0
6A slight difficulty lurks, however. We need an inequality along the lines of (2.10.6),

but must account for the fact that elements u now are defined up to a constant. So
we cannot simply use the space C(0, l) and its norm in the inequality, but rather must
use a factor space C(0, l)/MR with norm ‖f‖ = minc maxx∈[0,l] |f(x) − c|. The reader
is encouraged to prove a corresponding imbedding theorem and existence-uniqueness
theorem.
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and δw(0) = 0. Under this condition the virtual work principle for the

Neumann problem changes to

∫ l

0

T0wx δwx dx =

∫ l

0

f δw dx+ P1 δw(l). (2.12.4)

Note that the end force P0 has disappeared from the equilibrium equation.

In order to have (2.12.4) with w(0) = 0 = δw(0) be equivalent to the pre-

vious setup of the Neumann problem when “rigid” motions are permitted,

we should maintain the condition (2.12.3) that “restores” P0.

Therefore, let us obtain an existence-uniqueness theorem for a string

with clamped left end and free right end. At this point we can repeat

our steps from the Dirichlet problem. This is done as follows. First we

replace S0 with the set S01 of twice continuously differentiable functions

that vanish at x = 0, and impose the energy norm on this set just as we

did for the Dirichlet problem. Then we introduce the energy space ESD1

as the completion of S01 in the energy norm. Definition 2.11.1 is rephrased

as

Definition 2.12.2. By a generalized solution of the new problem of equi-

librium of a string with fixed end at x = 0 is meant an element w ∈ ESD1

that satisfies the equation of the virtual work principle (2.12.4) for any

δw ∈ ESD1.

Everything else, including the imbedding theorem, follows with only

small changes in notation.

Theorem 2.12.1. Let f ∈ L(0, l). There is a unique generalized solution

w∗ ∈ ESD1 of the boundary value problem of equilibrium of a string under

load f, P1, in the sense of Definition (2.12.2).

The one-to-one correspondence between the above problems is achieved

when we suppose that the self-balance equation (2.12.3) holds. So we also

formulate

Theorem 2.12.2. Let f ∈ L(0, l), and let the load be self-balanced as in

(2.12.3). Then there is a unique generalized solution w∗ ∈ ESN for the

boundary value problem of equilibrium of a string under load f, P0, P1.

The reader can formulate corresponding theorems on the principle of

minimum total energy for these problems.
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Note, finally, that for Theorem 2.12.1 we need not impose (2.12.3). But

it turns out that in order to formulate the existence theorem for a free string,

we must impose the self-balance condition as we did in Theorem 2.12.2.

Exercise 2.12.1. Establish the existence-uniqueness theorem for the equi-

librium problem of a string with free ends that is fixed at (a) one interme-

diate point c, (b) n intermediate points. Suppose the load includes a finite

number of external point forces. Is it necessary to add self-balance condi-

tions for the external forces? Explain using mechanical and mathematical

reasoning.

2.13 The Generalized Solution of Linear Mechanical Prob-

lems and the Principle of Minimum Total Energy

In § 2.12 we saw that existence-uniqueness results could be established for

very different equilibrium problems in parallel fashion. This also holds for

more complex problems of linear elasticity. In this section we formulate an

abstract theorem to which we shall reduce all the linear problems of this

book.

Let us consider the structure of the equations describing the two bound-

ary value problems for the string. The goal is to recognize those properties

necessary to prove existence and uniqueness. The equation that followed

from the virtual work principle had two terms. The first of these was

quadratic, obtained by the way of varying the strain energy; it was used

to define an inner product in an energy space. The other term, the work

of external forces, was a linear functional. Since many problems share this

structure of the VWP equation, it makes sense to consider such an equation

in general form. So let H be a Hilbert space with inner product (·, ·)H (in

this book always an energy space, which can have a complex structure) and

consider

(u, v)H = F (v), (2.13.1)

where F (v) is a linear functional in v. A solution of this equation is defined

as follows.

Definition 2.13.1. An element u ∈ H is a solution of (2.13.1) if it satisfies

the equation for any v ∈ H .

We formulate
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Theorem 2.13.1. Let F (u) be a linear continuous functional in H. Then

(2.13.1) has a solution in the sense of Definition 2.13.1 that is unique in

H.

Proof. By Theorem 2.8.1, we get the unique element u∗ ∈ H such that

F (v) = (u∗, v)H

for any v ∈ H . Thus (2.13.1) can be rewritten as

(u, v)H = (u∗, v)H ,

and so (u − u∗, v)H = 0. By the arbitrariness of v, we see that u = u∗ is

the required unique solution. �

This proof parallels our procedure for the string. Theorem 2.13.1 will

be used frequently below.

Another simple and useful theorem is equivalent to the minimum total

energy principle for many linear equilibrium problems of mechanics. Let us

introduce the “total energy” functional

Φ(u) =
1

2
(u, u)H − F (u). (2.13.2)

Theorem 2.13.2. Let F (u) be a linear continuous functional in H. The

functional Φ(u) attains its minimum at the unique point u∗ ∈ H that sat-

isfies (2.13.1) in the sense of Definition 2.13.1.

Proof. By the representation F (u) = (u∗, u)H , we get

Φ(u) =
1

2
(u, u)H − (u∗, u)H =

1

2
(u− u∗, u− u∗)H − 1

2
(u∗, u∗)H .

As (u∗, u∗)H does not depend on u and (u−u∗, u−u∗)H ≥ 0, the minimum

is attained when u = u∗ and is unique. �

By equating the first variation of Φ(u) to zero, we obtain (2.13.1). So

it is clear why this relationship exists between the minimum point of the

total energy functional and (2.13.1).

Remark 2.13.1. The hardest part of proving theorems for particular elas-

tic problems is to obtain conditions under which F — which for all of our

problems will be the work of external forces — is a continuous linear func-

tional. Each time we will show that, in the energy space for the problem,

the energy norm of F is equivalent to the norm of a Sobolev spaceW k,m(Ω);

we will then use the Sobolev imbedding theorem to formulate conditions

for continuity of F .
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We should also add that, in large part, mathematical books that treat

questions of existence-uniqueness for similar elliptic problems start with

the equation Au = f and introduce the bilinear form (Au, v). This form

is typically the product of Au with v in the space L2(Ω), and requires one

to prove coerciveness of A, which in our terms means that the following

inequality holds:

(Au, u) ≥ ‖u‖2
W k,p .

This is the condition of equivalence of the energy norm to a Sobolev norm.

Then they apply the Lax–Milgram theorem, which is a consequence of the

Riesz representation theorem. So our approach differs from theirs only

in form. But the energy approach of this book has a firm mechanical

background. �

2.14 Nonlinear Model of a Membrane

Let us turn to another model, one that reduces upon linearization to the

familiar Poisson’s equation. We consider the physical background for the

membrane model. The physical object best described by the model is a

soap film. From physics, it is known that the force on a straight edge of

such a film is proportional to its length. Thus, the mechanical quantity

characterizing the film’s equilibrium is given as the force per unit length

acting on its edge. Although this “surface tension” depends on temperature

and other parameters, in the first approximation it is constant. It should

be noted that the surface tension for a soap film is twice that of the liquid

from which the film is made.7 A soap film resists deformation only through

surface tension which, on any infinitesimally small line, acts tangent to the

film surface in the direction normal to the line. Since its value does not

depend on the film’s thickness or strain energy, we can model the film with

a surface having certain mechanical properties.

The next step is to find the expression for the strain energy due to

additional deformation of a soap film. Imagine a film spanning a wire frame.

In order to increase the film area, we must apply some force to one side of the

frame. This force is infinitesimally greater than that produced by surface

tension. The work done during this process is transformed into strain energy
7By assumption, the surface tension does not depend on the direction of the line and

is the same at each point of the film. This reminds us of Pascal’s law for the pressure
inside a liquid volume. Indeed, in both cases we idealize a mechanical object in such a
way that the model lacks certain features of strains possessed by solid bodies.
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of the film. Supposing the film is planar, and that the moving side of the

frame is straight and moves in the plane in a direction perpendicular to

itself, the work is equal to the surface tension multiplied by the increase in

area. The same holds for other wire/soap geometries, as long as the surface

tension is constant: the strain energy of a soap film due to deformation is

proportional to its increase in area. Now a membrane is not a soap film,

but there is nothing to stop us from transferring this same property to

membrane theory as an axiom (or, as mechanicists say, an assumption).

In fact we will do this, and turn next to the derivation of the equilibrium

equation.

When a system is in stable equilibrium, its total energy functional takes

a minimum value. If no external forces act and the total and strain energy

functionals coincide, a soap film with fixed edge contour has minimum area

among all the surfaces spanning this contour. So the film represents a

physical solution to Plateau’s famous geometric problem: find a surface of

minimum area with a given boundary contour. We are interested in solving

an extension of Plateau’s problem that includes the action of external forces.

We assume the latter do not depend on the deformation of the membrane

at each point: i.e., that the load is simply a given function f = f(x, y).

This “dead load” assumption is natural for linear problems, but becomes

questionable for some nonlinear problems.

For simplicity we suppose that the initial state of the membrane is a

compact planar domain Ω with a piecewise smooth boundary Γ, and that

its deformation is characterized only by a normal deflection u = u(x, y).

The corresponding surface area is

A =

∫

Ω

√

1 + ux
2 + uy

2 dx dy, (2.14.1)

where the subscripts indicate partial differentiation. Multiplying this by the

surface tension coefficient a, we obtain the strain energy of the membrane.

For the plane membrane when u = 0, this energy is

a

∫

Ω

dx dy;

thus the accumulated strain energy is

Es(u) = a

∫

Ω

[

√

1 + ux
2 + uy

2 − 1

]

dx dy. (2.14.2)

By the minimum total energy principle, in the equilibrium state the



December 24, 2008 10:59 World Scientific Book - 9in x 6in elasticity

130 Introduction to Mathematical Elasticity

functional

Et(u) = a

∫

Ω

[

√

1 + ux
2 + uy

2 − 1

]

dx dy −
∫

Ω

fu dx dy (2.14.3)

takes its minimum over the set of all admissible functions u = u(x, y). The

second term on the right is the work of distributed load f over displace-

ments u. If the edge is fixed, admissible functions must satisfy a boundary

condition of the form

u
∣

∣

Γ
= ψ(s) (2.14.4)

with given ψ. Thus, when the membrane with fixed edge is in equilibrium,

the total energy functional Et(u) takes its minimum over all sufficiently

smooth functions satisfying (2.14.4). This can be called the Dirichlet prob-

lem for a nonlinear membrane. Implementation of the corresponding Euler–

Lagrange condition will be left to the reader. A more important point is as

follows. Although we derive the equilibrium equations from the principle

of minimum total energy, these equations actually turn out to have wider

applicability: for nonlinear problems, they can yield solutions that do not

correspond to points of minimum energy but still describe the membrane

equilibrium.

We need not formulate boundary conditions for admissible functions if

the membrane edge is free (i.e., the edge is not fixed, but some forces can

act on the edge). But we recall that the solution will necessarily satisfy the

natural boundary conditions that arise in the variational formulation of the

problem. This is the Neumann problem. Note that when the strain energy

is zero, we have ux = 0 and uy = 0 at all points so that u = constant. If we

add a constant c to some deflection field u(x, y), the strain energy does not

change. Mechanically this is clear: translation of the membrane as a rigid

whole cannot change its deflection or its strain energy. But any rotation of

the membrane as a whole about x or y changes its strain energy by (2.14.2),

and this means that in the membrane theory under consideration only the

condition that the resultant external force vanishes is necessary. Since the

addition of a constant c to the deflection function u does not change the

strain energy, the total energy minimum principle is meaningful only if the

external forces are self-balanced:

c

∫

Ω

f dx dy = 0. (2.14.5)

We obtained a similar condition when considering the equilibrium of a free

string; it means that the resultant of the external forces is zero. It is a
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necessary condition for solvability of this nonlinear problem. Because of

the above-mentioned dependence of the energy integral on the rotation of

the membrane as a rigid body, we have no other conditions for self-balance

of the external forces.

We turn to the simplified membrane theory that is in common use.

2.15 Linear Membrane Theory: Poisson’s Equation

The deformation of a planar membrane is described by a deflection function

u = u(x, y). We assume any infinitesimal portion of the membrane rotates

only through a ‘small” angle. Since this angle is characterized by the first

derivatives ux and uy of u, we must suppose that |ux| and |uy| are small as

well: i.e., that we can neglect terms of higher order with respect to these

quantities. The integrand of the strain energy expression (2.14.2) has the

form
√

1 + z − 1 where z = ux
2 + uy

2. Since |z| � 1, we replace the entire

integrand by z/2 = (ux
2 +uy

2)/2 and obtain the approximate total energy

functional

E(u) =
a

2

∫

Ω

[

ux
2 + uy

2
]

dx dy −
∫

Ω

fu dx dy. (2.15.1)

Supposing we can apply the minimum energy principle, we obtain a new

approximate linearized model of the membrane.

Note that it is common practice, when considering mechanical deriva-

tions of formulas and models, to initially suppose that certain terms are

very small or even infinitesimal but later to regard the simplified formula-

tion as independent and holding for very finite quantities — even forgetting

that these quantities must be at least “small” in some sense. Moreover,

when considering the corresponding mathematical setup for the simplified

problem, we even bring infinite values into consideration. Indeed, such a

simplified problem can come to live a life of its own.

We will start with the problem for a membrane with fixed edge:

u
∣

∣

Γ
= ψ(s), (2.15.2)

where ψ is a given smooth function.

So let u be a sufficiently smooth function (in this case, twice differen-

tiable on a closed domain Ω) at which E(u) attains its minimum (we suppose

implicitly, as is common in applications, that f is at least integrable). Let

v be a sufficiently smooth function vanishing on Γ. The function u + tv,

where t is an arbitrary real parameter, satisfies (2.15.2); it is sufficiently
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smooth, hence admissible for use in comparison of functions on the basis of

the minimum energy principle.

At any t, we have

E(u) ≤ E(u+ tv). (2.15.3)

At fixed u and v, the functional E(u+ tv) is a function of the real variable

t and takes its minimum at t = 0. This means that at t = 0 its derivative

with respect to t is zero:

a

∫

Ω

(uxvx + uyvy) dx dy −
∫

Ω

fv dx dy = 0. (2.15.4)

Note that this is also the virtual work principle for the membrane.

By the arbitrariness of v, using the ordinary tools of the variational

calculus, we arrive at Poisson’s equation

a (uxx + uyy) + f = 0. (2.15.5)

This also follows directly from the mechanical equilibrium equations. The

reader is encouraged to construct a derivation, starting with a small rect-

angular portion of the membrane and keeping in mind that the sides of this

portion rotate during deformation.

2.16 Generalized Setup of the Dirichlet Problem for a Lin-

ear Membrane

We are limited to a study of certain properties of associated boundary value

problems for Poisson’s equation. We would like to consider such problems

in a generalized setting. There are several reasons for this. First, a classical

study of Poisson’s equation is tied too closely to this particular equation;

the usual potential-based methods are not readily transferable to other me-

chanics problems. Second, our approach is comparatively simple (now that

we have some familiarity with functional analysis) and can handle the pres-

ence of nonsmooth forces. Third, the generalized setup is based on the

virtual work principle and therefore has solid mechanical underpinnings.

Finally, the powerful finite element method is based on the same gener-

alized setup. It should be added that a generalized solution may have a

higher degree of smoothness than is specified in the generalized setup (for

sufficiently smooth external parameters, of course).

Our experience indicates that we can base a generalized setup of the

Dirichlet problem for a membrane on (2.15.4), which expresses the virtual
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work principle in this case. For simplicity we consider a membrane with

fixed edge:

u
∣

∣

Γ
= 0. (2.16.1)

We start with equation (2.15.4):

a

∫

Ω

(uxvx + uyvy) dx dy −
∫

Ω

fv dx dy = 0. (2.16.2)

We would like to apply the general theorems of § 2.13 to this problem. The

first term in (2.16.2) looks like an inner product. So we introduce the set

S2 of functions twice continuously differentiable on a compact set Ω and

vanishing on the boundary Γ. The functional

(u, v)M = a

∫

Ω

(uxvx + uyvy) dx dy (2.16.3)

is an inner product on S2.

Exercise 2.16.1. Verify this.

Because the corresponding inner product space is incomplete (why?),

we introduce a norm

‖u‖M = (u, u)M
1/2

(2.16.4)

and define an energy space for the problem.

Definition 2.16.1. The completion of S2 with respect to the norm ‖·‖M is

called the energy space EMD for the Dirichlet problem for the membrane.

Definition 2.16.2. An element u ∈ EMD is a generalized solution of the

equilibrium problem with condition (2.16.1) if it satisfies equation (2.16.2)

for any v ∈ EMD .

Because u belongs to EMD its first derivatives are square-integrable or,

equivalently, members of L2(Ω). So we seek solutions of Poisson’s equation

having finite energy. For the linear theory we imposed the more strin-

gent requirement that the first derivatives of the solution be small. But

mathematicians commonly try to vary the conditions imposed on a model.

Occasionally such investigation yields physical insight. In any case it pro-

vides a reliable basis for future use of the model, clarifying its range of

applicability and offering justification for numerical solution methods.

Next, according to § 2.13 we should require that the second term of

(2.16.2) be a linear continuous functional in the energy space. What does
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this mean in terms of the distributed load f — i.e., what is the class of

admissible forces? Examining the second integral term of (2.16.2), we see

that we must know the properties of u, a typical element of EMD . Hence

we should establish an imbedding theorem for EMD into another space of

functions.

Rather than establishing the imbedding theorem in a sharp form, we

will present an older result based on the Friedrichs inequality. This states

that for any function u ∈ S2,
∫

Ω

u2 dx dy ≤ c

∫

Ω

(

ux
2 + uy

2
)

dx dy (2.16.5)

with a constant c that does not depend on u. To obtain it, let us assume

Ω lies in the first quadrant of the xy-plane.

Exercise 2.16.2. Show that the Friedrichs inequality also holds on domains

that do not necessarily lie in the first quadrant.

Since Ω is compact, we can cover it with some square S having side

length a and sides parallel to the axes, two of which lie on the axes. We

now make the domain of u encompass all of S by setting u ≡ 0 on S \ Ω

to obtain a new function that we continue to call u. Note that u(x, y) = 0

when x = 0 or y = 0. The representation

u(x, y) =

∫ x

0

ut(t, y) dt

holds everywhere in the first quadrant. Let us square both sides and inte-

grate over the domain:

∫

Ω

|u(x, y)|2 dx dy =

∫ a

0

∫ a

0

∣

∣

∣

∣

∫ x

0

ut(t, y) dt

∣

∣

∣

∣

2

dx dy.

By the Schwarz inequality we have

∫

Ω

|u(x, y)|2 dx dy =

∫ a

0

∫ a

0

∣

∣

∣

∣

∫ x

0

1 · ut(t, y) dt

∣

∣

∣

∣

2

dx dy

≤
∫ a

0

∫ a

0

∫ x

0

12 dt

∫ x

0

|ut(t, y)|2 dt dx dy

≤
∫ a

0

∫ a

0

∫ a

0

12 dt

∫ a

0

|ut(t, y)|2 dt dx dy

= a2

∫ a

0

∫ a

0

|ut(t, y)|2 dt dy,
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hence
∫

Ω

|u|2 dx dy ≤ a2

∫ a

0

∫ a

0

|ux(x, y)|2 dx dy = a2

∫

Ω

|ux|2 dx dy. (2.16.6)

In fact we have the needed estimate, since it is clear that
∫

Ω

|u|2 dx dy ≤ a2

∫

Ω

(

|ux|2 + |uy|2
)

dx dy

with c = a2. Because the constant c depends only on a, it depends only on

Ω (which dictated our original choice of a). Note that we have obtained an

even sharper result, inequality (2.16.6).8

Applying the Friedrichs inequality to a representative sequence {un} of

an element of EMD , we find that
∫

Ω

(un − um)2 dx dy ≤ c

∫

Ω

(

(un − um)x
2

+ (un − um)y
2
)

dx dy. (2.16.7)

It follows that {un} is a Cauchy sequence in L2(Ω).

We have introduced Lp(Ω) as the completion of a set of smooth functions

on Ω with respect to the norm of Lp(Ω). Inequality (2.16.7) means that

any representative sequence of an element of EMD is a Cauchy sequence

in the norm of L2(Ω). Similarly, equivalent Cauchy sequences in the norm

EMD stay equivalent in the norm of L2(Ω). Hence any element of EMD

belongs to L2(Ω) and, moreover, Friedrichs inequality yields the following

result.

Lemma 2.16.1. The space EMD imbeds into the space L2(Ω). The imbed-

ding operator is continuous and its norm is less than or equal to a.

The Friedrichs inequality yields conditions on the forces sufficient to

make the work functional continuous. For when f ∈ L2(Ω), we have
∣

∣

∣

∣

∫

Ω

fv dx dy

∣

∣

∣

∣

≤
(
∫

Ω

f2 dx dy

)1/2(∫

Ω

v2 dx dy

)1/2

≤ c1

(
∫

Ω

f2 dx dy

)1/2

‖v‖M .

Thus, applying Theorem 2.13.1, we get

Theorem 2.16.1. Let f ∈ L2(Ω). The Dirichlet problem for a membrane

has a generalized solution in the sense of Definition 2.16.2 that is unique

in the space EMD.
8In the proof, we estimated u through the values of only one derivative ux, which

indicates that the inequality is not the sharpest possible. A sharper result will be given
by Sobolev’s imbedding theorem.
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In a similar fashion, the reader can reformulate Theorem 2.13.2 for this

problem.

Exercise 2.16.3. Do this.

Before moving to other questions, let us mention that in this section

we simplified the problem by requiring u = 0 on Γ. When the membrane

edge is fixed by (2.15.2) with ϕ 6= 0 at all points of Γ, the treatment is

classical. Suppose a function ũ satisfies (2.15.2). Also suppose ũ has finite

energy so its first derivatives belong to L2(Ω). If u satisfies the homogeneous

conditions (2.16.1), then u+ ũ satisfies (2.15.2). Replacing u by u+ ũ in the

VWP equation (2.15.4), we come to an equation with respect to u ∈ EMD

that formally looks different from (2.16.2):

a

∫

Ω

(uxvx + uyvy) dx dy + a

∫

Ω

(ũxvx + ũyvy) dx dy −
∫

Ω

fv dx dy = 0.

But the second integral term, under the above conditions for ũ, is also a

linear continuous functional in EMD , so we have established the existence

theorem in this case as well. The uniqueness theorem for nonhomogeneous

Dirichlet boundary conditions should be established separately, since the

choice of ũ is not unique. But this theorem follows from Theorem 2.16.1,

since assuming there are two solutions of the problem we find that their

difference belongs to the space EMD and satisfies the membrane equation

with zero external forces, hence is zero.

We have established solvability in the energy class of Dirichlet’s problem

when the load belongs to L2(Ω). It is possible to weaken this restriction

on the load, but we shall require Sobolev’s imbedding theorem and related

ideas.

Generalized derivatives and Sobolev spaces

We have employed partial derivatives that belong to the space L2(Ω). These

are not classical in nature and cannot be considered pointwise as ordinary

derivatives. An equivalent method of introducing them was advanced by

S.L. Sobolev, who pioneered the use of generalized solutions in mechanics

and put forth a class of spaces that now bear his name. The Friedrichs

inequality represents a particular case of the properties possessed by the

elements of one Sobolev space. K.O. Friedrichs proved that in Sobolev

spaces, the derivatives obtained from the completion procedure are the

same as (more precisely, stand in one-to-one correspondence with) those
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obtained from Sobolev’s definition. Since we use generalized derivatives

throughout this book, we should explain Sobolev’s initial approach to the

concept.

Sobolev’s definition of a generalized derivative is based on two things:

the formula for integration by parts, and the Main Lemma of the calculus

of variations. The former is
∫

Ω

uϕx dx dy = −
∫

Ω

uxϕdx dy, (2.16.8)

which holds for smooth functions u and ϕ when ϕ vanishes on the boundary

∂Ω of Ω. Suppose now that u and another function ω are merely integrable

over Ω (in the sense of Riemann or Lebesgue). Let (2.16.8) hold in the form

∫

Ω

uϕx dx dy = −
∫

Ω

ωϕdx dy (2.16.9)

for all smooth functions ϕ that vanish on ∂Ω. Then ω is called the gener-

alized derivative of u in the sense of Sobolev. The generalized derivative,

if it exists, is uniquely defined up to a set of “measure zero”.9 It also

coincides with the classical derivative of u if the latter exists. With this

understanding, we denote it by ux.

Higher derivatives can be introduced similarly. For example, the gener-

alized derivative β = uxy of an integrable function u is uniquely determined

by the equality
∫

Ω

uϕxy dx dy =

∫

Ω

βϕ dx dy (2.16.10)

provided β is integrable and the equality holds for every smooth ϕ that

vanishes on ∂Ω along with its first partial derivatives.

In fact, we can introduce generalized derivatives of any order on a finite-

dimensional domain. Note that, according to the mode of definition given

below, we need not know the previous (i.e., lower-order) derivatives in order

to determine a higher-order one. Indeed, we are not guaranteed that other

derivatives exist. In Sobolev spaces (of which most of our energy spaces

are particular cases) however, all previous derivatives will exist. So the

situation is similar to the classical one.

9Since we have not covered the classical definition of the Lebesgue integral, this remark
was directed only toward those who happen to be familiar with that theory. It is worth
mentioning, however, that a smooth line in two dimensions has measure zero in this
theory; in regards to uniqueness, two functions are considered the same if they are
“equal almost everywhere”.
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Sobolev was able to establish some properties of the elements of Sobolev

spaces. Roughly, the imbedding theorems state that derivatives of lower

order (and hence the function itself) are “smoother” than those of higher

order. Under certain conditions the generalized derivatives (and functions

themselves) stand in one-to-one correspondence with continuous functions

and therefore can be identified with ordinary functions. In this way we

relate the generalized theory to the classical one and obtain results on the

existence of classical solutions to particular problems.

But let us return to the introduction of generalized derivatives. Us-

ing the completion theorem, we will treat the spaces of functions having

generalized derivatives integrable with some degree over the domain. The

following multi-index notation for partial derivatives is useful:

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαn

n
, α = (α1, . . . , αn), |α| = α1 + · · · + αn.

The multi-index α is simply an n-tuple of nonnegative integers where n is

the dimension of the space Rn under consideration. For example, if n = 3

and α = (1, 3, 0), then

Dαf =
∂4f

∂x1∂x3
2

.

Definition 2.16.3. Let Ω be a compact subset of R
n, and let p ≥ 1 be a

fixed integer. Consider the normed space consisting of all l-times continu-

ously differentiable functions f(x) given on Ω and having the norm

‖f‖ =

(
∫

Ω

∑

|α|≤l

|Dαf |p dΩ
)1/p

. (2.16.11)

The completion of this space is the Sobolev space denoted by W l,p(Ω).

Sobolev used another definition, in which the norm is given on the set

of functions having all generalized derivatives Dαf up to order l integrable

to the p-degree over Ω. Using Definition 2.16.3 we get a space equivalent

to Sobolev’s space: the spaces stand in a one-to-one correspondence under

which both the algebraic operations and the norm are preserved, provided

Ω is compact and Jordan measurable (the latter means that we can use Rie-

mann integration over Ω). We have confined our attention to such domains

so far, and will continue to do so.

We have already met such a space in solving the membrane problem:

W 1,2(Ω) for Ω ⊂ R2. It follows from the Friedrichs inequality that, for
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Dirichlet boundary conditions, the energy norm for the membrane is equiv-

alent to the norm (2.16.11) with α = 2 and p = 2.

This equivalence of an energy norm to a Sobolev norm is important. To

prove equivalence it is useful to know the forms of various equivalent norms

in W l,p(Ω). This question is treated in Sobolev’s book ([Sobolev (1991)],

Theorem 2, p. 64). As a consequence of Sobolev’s equivalence theorem we

have Poincaré’s inequality

∫

Ω

|ϕ|2 dV ≤M

[

{
∫

Ω

ϕdV

}2

+

∫

Ω

n
∑

i=1

(

∂ϕ

∂xi

)2

dV

]

(2.16.12)

where dV = dx1 · · · dxn. It will be used to treat the Neumann problem for

the membrane.

For the string problem we used a one-dimensional energy space that

turns out to be equivalent to W 1,2(0, l). We found that the elements are in

correspondence with continuous functions, and called this correspondence

the imbedding operator. Similarly, the elements of a Sobolev space have

some additional smoothness properties that are not seen from the definition.

In the one-dimensional case we used the integral representation of a

smooth function

u(x) = u(x0) +

∫ x

x0

du(s)

ds
ds. (2.16.13)

For the n-dimensional case, Sobolev derived the analogous expression

ϕ(x) =
∑

∑

αi≤l−1

xα1
1 · · ·xαn

n

∫

C

ζα1···αn
(y)ϕ(y) dVy

+

∫

Ω

1

rn−l

∑

∑

αi=l

wα1···αn
(y,x)

∂lϕ

∂yα1
1 · · · ∂yαn

n
dVy, (2.16.14)

where

r = |x − y|, dVy = dy1 · · · dyn. (2.16.15)

Here all the ζ and w coefficients are smooth functions determined by the

shape of Ω and l. The domain Ω is assumed to be “star-shaped”.

Definition 2.16.4. A domain is star-shaped if it contains a ball such that

any point of the domain can be connected with any point of the ball via a

segment lying in the domain.

By studying the properties of the integrals in the representation formula,

Sobolev derived a general and rather long imbedding theorem. We will
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need only special cases of this, which we formulate as separate theorems.

Sobolev extended these theorems for finite unions of star-shaped domains.

In what follows we shall assume that Ω is a finite union of compact star-

shaped domains. Later the imbedding results were extended to domains

having the “cone property”.

Definition 2.16.5. A domain Ω has the cone property if there is a fixed

cone such that for any point of Ω we can place the vertex of the cone in

such a way that all its points are inside Ω.

It turns out that Ω has the cone property if and only if it is the union

of finitely-many star-shaped domains. We assume the cone property holds

in what follows.

The degrees q we will encounter below cannot be improved (increased).

The significance of this will become clear as we come to understand the role

played by the imbedding theorems in proving existence theorems.

The first imbedding theorem we will need applies to the space of func-

tions of two variables.

Theorem 2.16.2. Let γ be a piecewise differentiable curve in a compact

set Ω ⊂ R2. For any finite q ≥ 1, there are compact (hence continuous)

imbeddings

W 1,2(Ω) ↪→ Lq(Ω), W 1,2(Ω) ↪→ Lq(γ). (2.16.16)

The next result enables us to discuss plates and shells.

Theorem 2.16.3 (Imbedding of W 2,2 to C). Let Ω be a compact sub-

set of R2. Then there is a continuous imbedding

W 2,2(Ω) ↪→ C(Ω). (2.16.17)

For the first derivatives, the imbedding operators to Lq(Ω) and Lq(γ) are

compact for any finite q ≥ 1.

Theorem 2.16.3 relates the elements of the Sobolev space W 2,2 to the el-

ements of the space C of continuous functions. Neither Sobolev’s definition

of W 2,2 nor the one we have chosen — using equivalent Cauchy sequences

of functions — will allow us to say that u ∈ W 2,2 is a continuous function

on Ω. But these Cauchy sequences have a limit function that is continuous;

we will identify this with u and, in this sense, speak of u as a function.

Under Sobolev’s description, this “function” would be defined uniquely.

For functions of three variables we formulate
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Theorem 2.16.4 (W 1,2 ↪→ Lq, 3d case). Let γ be a piecewise smooth

surface in a compact set Ω ⊂ R3. The imbeddings

W 1,2(Ω) ↪→ Lq(Ω), 1 ≤ q ≤ 6, (2.16.18)

W 1,2(Ω) ↪→ Lp(γ), 1 ≤ p ≤ 4, (2.16.19)

are continuous. They are compact if 1 ≤ q < 6 or 1 ≤ p < 4, respectively.

Returning to the membrane problem

Lemma 2.16.1 means that EMD has a norm equivalent to that of the space

W 1,2(Ω) in the two-dimensional case. Theorem 2.16.2 implies that the ele-

ments of the energy space belong to Lq(Ω) for any finite q ≥ 1. To prove the

existence of a generalized solution to the Dirichlet problem for a membrane,

we need only the fact that
∫

Ω
fv dx dy is a linear continuous functional with

respect to v in the energy space. This is provided by Hölder’s inequality

∣

∣

∣

∣

∫

Ω

fv dx dy

∣

∣

∣

∣

≤
(
∫

Ω

|f |p dx dy
)1/p (∫

Ω

|v|q dx dy
)1/q

,
1

p
+

1

q
= 1.

(2.16.20)

Hence we obtain an immediate sharpening of the existence result: a gener-

alized solution exists when f ∈ Lp(Ω) for some p > 1.

Note that part of Theorem 2.16.2 refers to imbedding on a curve. This

is also useful for a membrane problem if forces are given on some curve γ.

In this case the functional of the work of external forces has a term
∫

γ

ϕv ds. (2.16.21)

Exercise 2.16.4. (a) Show that (2.16.21) is a linear continuous functional

in the space W 1,2(Ω) if there exists p > 1 such that ϕ ∈ Lp(γ). (b) Using

the form of the total energy functional presented below for the Neumann

problem, prove the existence-uniqueness theorem for this case.

Free membrane (Neumann problem)

Let us consider a membrane free from geometrical constraints. Its total

energy is given by

E(u) =
a

2

∫

Ω

[

ux
2 + uy

2
]

dx dy −
∫

Ω

fu dx dy −
∫

γ

ϕuds, (2.16.22)
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where ϕ is a distributed load over a piecewise smooth curve γ, which could

be inside Ω or include a part or the whole boundary Γ of Ω.

Equilibrium of the membrane occurs when the total energy takes its

minimum value. We have already considered the bar and string free from

geometrical constraints. Each time we were led to self-balance conditions

for the external forces, and the outcome will be the same here. Let us

consider the quadratic part of the strain energy:

a

2

∫

Ω

[

ux
2 + uy

2
]

dx dy.

Its value does not change if we replace u by u + c for any constant c.

However, the linear part of E(u) — the work of external forces — does

change, and can acquire arbitrarily large negative values as c is varied. To

prevent this from happening, we require that
∫

Ω

f dx dy +

∫

γ

ϕds = 0. (2.16.23)

This is the self-balance condition for the external load. It tells us that

the resultant force acting on the membrane must be zero in order for the

problem of minimum to be meaningful. This is not surprising, since the

membrane is free of geometrical constraints and we neglected its inertia.

There is one interesting point, however. If we consider the membrane as

a rigid body in space, we must require the load to satisfy two other self-

balance equations: the two resultant moments of the external load with

respect to the x- and y-axes must vanish. These conditions are not needed

for the solvability of the problem though. How can we explain this? As

in the theory of a stretched string, the membrane is also initially stretched

and resists any inclination as a rigid body. So the moment self-balance

conditions disappear.

It is worth mentioning that Neumann’s problem for Laplace’s equation

appears in classical mathematical physics. In this case f = 0 and the

self-balance equation becomes
∫

γ

ϕds = 0. (2.16.24)

When γ is the boundary contour of Ω, we can use the calculus of variations

to show that for a smooth solution of the problem ϕ/a must be equal to the

normal derivative of the solution. Moreover, in mathematical physics they

show — and it looks like a strange artificial condition — that (2.16.24) is

necessary and sufficient for solvability of the problem. We now see that it

has a clear mechanical meaning.
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To formulate the equilibrium problem for the free membrane, we cal-

culate the first variation of E(u). This gives us the equation that we get

directly from the use of the virtual work principle:

a

∫

Ω

(uxvx + uyvy) dx dy −
∫

Ω

fv dx dy −
∫

γ

ϕv ds = 0. (2.16.25)

Exercise 2.16.5. Let γ = Γ. Use the calculus of variations to show that

the natural boundary condition for E(u) is

a
∂u

∂n

∣

∣

∣

∣

Γ

= ϕ,

where n is the external unit normal to the boundary. Note that up to the

factor a, this is the boundary condition that, when taken together with Pois-

son’s equation ∆u = −f , constitutes the classical Neumann problem of

mathematical physics.

As for the Dirichlet problem, we can introduce a generalized solution.

The energy space should be related to the strain energy of the membrane.

We could try to repeat the approach for the Dirichlet problem and attempt

to introduce an inner product

(u, v)M = a

∫

Ω

(uxvx + uyvy) dx dy (2.16.26)

over the set of smooth functions on Ω. But this fails axiom I1 since (c, c)M =

0 for any constant c. Note that u(x) = c is the only smooth function that

satisfies the equation (u, u)M = 0. We are reminded of the situation for a

free string and, as in that case, there are two ways around the difficulty.

One is to announce that the set of all constants forms the zero element of

our new space. Then an element of the space is the set of all functions that

differ from one another by a constant value. The result is a factor space.

Application of the completion theorem allows us to repeat everything that

was done for the Dirichlet problem. The self-balance equation (2.16.23) is

needed to prove that the functional of external work is linear in the energy

space. Unfortunately, we would have to reformulate the Sobolev imbedding

theorems in terms of the factor-type energy space. This we avoid by taking

another approach. Let us select, from each element of the factor space, a

unique representative. We do this in such a way that we obtain an energy

space, consisting of the representatives, which is a linear subspace of the

Sobolev spaceW 1,2(Ω). We can then repeat the development for Dirichlet’s

problem practically without changes.
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The condition to select a representative function from the class of func-

tions that differ from one another by a constant follows from Poincaré’s

inequality (2.16.12):

∫

Ω

u dx dy = 0. (2.16.27)

With this condition, Poincaré’s inequality takes the form of Friedrichs’s

inequality. In the subset of all the functions that have two continuous

derivatives in Ω and satisfy condition (2.16.27), (·, ·)M is an inner product.

Next, starting with this base set and applying the completion theorem, we

can introduce an energy space exactly as is done for the Dirichlet prob-

lem for Poisson’s equation. Now we can literally repeat everything we did

for Dirichlet’s problem in order to establish generalized solvability of the

equilibrium problem for a free membrane.

Exercise 2.16.6. Carry out this program in detail; formulate the corre-

sponding existence/uniqueness theorem for the generalized solution.

It is worth noting that, in order to prove this theorem in the class

of representative functions satisfying (2.16.27), we will not need the self-

balance condition. We will need only the fact that the forces are in the

corresponding spaces Lp. How is this possible after all our emphasis on the

self-balance condition? The answer is simple. The condition (2.16.27) that

we posed on u is an additional geometric constraint that was not present

in the initial formulation of the problem. So here we prove the existence

theorem for another problem, for a non-free membrane. If we wish to

return to the initial problem for the free membrane, we must reconsider

the equilibrium equation not only for representative functions u, but for

all functions of the form u + c, and so we arrive once again at the self-

balance condition as a necessary condition for solvability. This condition,

supplemented with the condition ϕ ∈ Lp(γ), is sufficient for existence of a

generalized solution for the free membrane.

Exercise 2.16.7. Formulate the existence-uniqueness theorem for the free

membrane. Note that a generalized solution is unique up to an additive

constant c.
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2.17 Other Membrane Equilibrium Problems

We have considered two classical boundary value problems for a membrane:

Dirichlet’s and Neumann’s. We could also consider a mixed problem where

a portion of the boundary contour is fixed and a force is given over the

rest. If the fixed portion contains a piece having finite nonzero length,

then considerations involving the existence of a generalized solution are

essentially the same as for Dirichlet’s problem.

In the definition of the energy space we can consider the set of functions

that vanish only on the fixed portion of the boundary. From the results of

Sobolev’s book on equivalent norms in W 1,2(Ω), it follows that on this set

of functions Friedrichs’ inequality holds. So on the set, the energy norm is

equivalent to the standard norm of W 1,2(Ω). This means that in the energy

space the form of the imbedding theorem coincides with the form of the

imbedding theorem in W 1,2(Ω). Thus to prove the existence-uniqueness

theorem, we can literally repeat everything that was said for Dirichlet’s

problem.

Existence of a generalized solution does not require a self-balance condi-

tion, which is clear from the mechanics of the problem. We leave the details

to the reader and proceed to another boundary value problem sometimes

encountered for Poisson’s equation.

A membrane with Winkler’s support on the edge

Mechanically this problem is a bit strange; it involves, along the boundary

contour, a distributed support known to civil engineers as Winkler’s foun-

dation. The reader can imagine that acting at each point of the boundary

curve is an elastic support force whose distribution is given by k(s)u(s),

where k(s) ≥ 0 is the elastic coefficient. As the support at a point does not

depend on the force at other points of the boundary, Winkler’s foundation

can be modeled using a continuum of separate springs acting on the bound-

ary. The problem is strange in the sense that it is difficult to imagine such

a support for a soap film; however, in other circumstances the idea is quite

practical.

The elastic energy of Winkler’s foundation is given by the Hooke’s law

energy formula

1

2

∫

Γ

k(s)u2(s) ds.
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We can imagine some distributed load ϕ on Γ, so the equilibrium problem

for a membrane with elastically supported boundary can be presented as a

minimum problem for the total energy functional

1

2

∫

Ω

(

u2
x + u2

y

)

dx dy +
1

2

∫

Γ

ku2 ds−
∫

Ω

fu dx dy −
∫

Γ

ϕuds.

The equilibrium equation, which is the VWP equation as well, is given by

the first variation of this functional:

a

∫

Ω

(uxvx + uyvy) dx dy +

∫

Γ

kuv ds

−
∫

Ω

fv dx dy −
∫

Γ

ϕv ds = 0, (2.17.1)

where u is a solution of the problem under consideration when this equality

holds for all admissible functions v. Note that u and v need not satisfy any

geometrical constraints except to be sufficiently smooth.

It is clear that Winkler’s foundation should affect the boundary condi-

tions for the equilibrium function. To see how this happens, we must repeat

the variational derivation of the equations and the natural conditions. So

let us integrate by parts in the first term of (2.17.1):

− a

∫

Ω

(uxx + uyy) v dx dy +

∫

Γ

(

a
∂u

∂n
+ ku

)

v ds

−
∫

Ω

fv dx dy −
∫

Γ

ϕv ds = 0.

Taking the set of smooth v that vanish on Γ, we derive Poisson’s equation

a∆u = −f . Returning to the equation for v without restrictions on the

boundary, we obtain
(

a
∂u

∂n
+ ku

)∣

∣

∣

∣

Γ

= ϕ. (2.17.2)

This mixed condition, containing the sum of a function and its normal

derivative, can be used to pose the third classical problem for Poisson’s

equation.

Let us return to the VWP equation (2.17.1). We can use this to intro-

duce the generalized setup of the problem. The quadratic portion can serve

as the inner product in the energy space:

(u, v)MW = a

∫

Ω

(uxvx + uyvy) dx dy +

∫

Γ

kuv ds. (2.17.3)



December 24, 2008 10:59 World Scientific Book - 9in x 6in elasticity

Simple Elastic Models 147

If k(s) > 0 on some portion of Γ having non-zero length, and k(s) is piece-

wise continuous on Γ, it is possible to show [Sobolev (1991)] that
∫

Ω

u2 dx dy ≤ C (u, u)MW (2.17.4)

for some constant C that does not depend on u ∈ C(1)(Ω). So the norm

induced by this inner product is equivalent to the norm of W 1,2(Ω). Hence

we need not continue to discuss the existence and uniqueness questions for

a generalized solution, but can simply refer to § 2.16 since our problem

reduces to the following equation in W 1,2(Ω):

(u, v)MW −
∫

Ω

fv dx dy −
∫

Γ

ϕv ds = 0, (2.17.5)

where (u, v)MW is an inner product of W 1,2(Ω).

We could consider various mixed problems for which the condition

(2.17.2) is given only on some portion of Γ. Indeed, (2.17.4) holds if we

take the contour integral only along a portion of Γ where k(s) > 0.

We could also consider a load ϕ distributed along a curve inside Ω. The

results stated above for the generalized solution remain valid. But this is not

so for the classical formulation. Over the internal contour where the force

is applied, we will have an additional natural “boundary” condition. This

happens because a smooth solution u will be continuous together with its

derivative in the direction tangent to the contour, while the derivative in the

direction normal to the contour will have a jump. Indeed, for solutions that

do not depend on y the membrane equation reduces to the string equation,

and a force uniformly distributed over a straight line parallel to the y-axis

becomes a point force for the corresponding string problem. At the point

of application of such a force, we see a jump in the inclination angle of the

string. For the membrane, a jump occurs in the normal derivative on the

contour. A similar jump in the normal derivative occurs if a Winkler-type

support is distributed over a contour inside Ω.

Exercise 2.17.1. Derive the additional condition that arises at the points

of a contour inside of Ω to which a distributed load ϕ is applied. Repeat for

a linearly distributed Winkler support inside Ω.

A non-classical problem for a membrane

Let us consider a non-classical boundary value problem that is intermediate

between the Dirichlet and Neumann problems for a membrane. We suppose
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the membrane is attached to a contour Γ that maintains its shape but

can execute small “rigid-body” motions in space. These motions can be

described by linear polynomials c1 + c2x + c3y with arbitrary but fixed

constants c1, c2, c3. The boundary condition for the membrane is

u
∣

∣

Γ
= ψ(s) + (c1 + c2x+ c3y)

∣

∣

Γ
, (2.17.6)

where ψ(s) describes the shape of the rigid contour. The constants ck are

not known in advance.

We assume the existence of a function ũ ∈ W 1,2(Ω) that satisfies

ũ
∣

∣

Γ
= ψ(s).

We seek a solution of the VWP equation (2.16.2) in the form

u(x, y) + ũ(x, y) + c1 + c2x+ c3y

where

u
∣

∣

Γ
= 0,

i.e., u ∈ EMD is an unknown function. We also seek c1, c2, c3. This is

neither a Dirichlet problem nor a Neumann problem. Furthermore, it is

hard to solve without a consideration of mechanical meaning. With such

consideration we can reduce it to problems treated earlier.

We begin by defining the class of admissible displacements v in (2.16.2).

Since the contour can move as a rigid body and this is described by c1+c2x+

c3y, the general form of an admissible displacement is v(x, y)+d1+d2x+d3y,

where v ∈ EMD (hence v|Γ = 0) and d1, d2, d3 are arbitrary constants.

Substitution of this admissible displacement into (2.16.2) gives

a

∫

Ω

(uxvx + uyvy) dx dy + a

∫

Ω

(uxd2 + uyd3) dx dy

+ a

∫

Ω

(ũxvx + ũyvy) dx dy + a

∫

Ω

(ũxd2 + ũyd3) dx dy

+ a

∫

Ω

(c2vx + c3vy) dx dy + a

∫

Ω

(c2d2 + c3d3) dx dy

−
∫

Ω

fv dx dy −
∫

Ω

f(d1 + d2x+ d3y) dx dy = 0. (2.17.7)

Next we use the arbitrariness of d1, d2, d3. Setting all these to zero, we get
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the first necessary equation for equilibrium:

a

∫

Ω

(uxvx + uyvy) dx dy + a

∫

Ω

(ũxvx + ũyvy) dx dy

+ a

∫

Ω

(c2vx + c3vy) dx dy −
∫

Ω

fv dx dy = 0. (2.17.8)

Now we put d1 = 1, d2 = 0, d3 = 0:
∫

Ω

f dx dy = 0. (2.17.9)

Similarly, with d1 = 0, d2 = 1, d3 = 0 we get

a

∫

Ω

ux dx dy + a

∫

Ω

ũx dx dy + a

∫

Ω

c2 dx dy −
∫

Ω

fx dx dy = 0 (2.17.10)

and with d1 = 0, d2 = 0, d3 = 1,

a

∫

Ω

uy dx dy + a

∫

Ω

ũy dx dy + a

∫

Ω

c3 dx dy −
∫

Ω

fy dx dy = 0. (2.17.11)

The set of four equations (2.17.8)–(2.17.11) is equivalent to (2.17.7).

Equation (2.17.9) is the self-balance condition for the external forces f .

Since the membrane contour can move as a rigid body, in equilibrium the

external forces must be self-balanced. We cannot define c1 uniquely, since

the membrane can freely shift in space through an arbitrary distance c1.

What can we say about c2 and c3? When we try to rotate the membrane,

on the contour we immediately see the normal projections of the internal

tension forces that resist the rotation. So we see mechanically that c2 and c3
should be determined by the remaining equations. How should we construct

a procedure that defines these constants?

Let us use the linearity of (2.17.8) in u to define u as a sum of three par-

ticular solutions. Supposing for a moment that c2 and c3 can be arbitrary,

we see that u takes the form

u = u1 + c2u2 + c3u3 + c1, (2.17.12)

where u1, u2, u3 all belong to EMD ; they must satisfy

a

∫

Ω

[(u1)xvx + (u1)yvy] dx dy = −a
∫

Ω

(ũxvx + ũyvy) dx dy +

∫

Ω

fv dx dy,

(2.17.13)

a

∫

Ω

[(u2)xvx + (u2)yvy] dx dy =

∫

Ω

xv dx dy, (2.17.14)
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and

a

∫

Ω

[(u3)xvx + (u3)yvy] dx dy =

∫

Ω

yv dx dy. (2.17.15)

Because these equations are of the form considered in § 2.16, we can imme-

diately state that each has a unique solution in EMD . Note that (2.17.14)

and (2.17.15) are particular cases of the Dirichlet problem for “forces” equal

to x and y, respectively.

Once u1, u2, and u3 have been determined, we can substitute (2.17.12)

into (2.17.10) and (2.17.11). The resulting two equations are sufficient to

determine c2 and c3 uniquely.

Exercise 2.17.2. Prove this.

Note that ũ can be introduced in a non-unique way, and so we should

prove uniqueness of the generalized solution separately. The reader is urged

to do this.

Boundary conditions at a corner point

We know that mechanical meaning can help us solve problems. This is not

its only advantage, however. When we derive mechanical equations, we

often impose conditions that are not reflected in the equations. Commonly

these specify that certain values must be small — even infinitesimal. When

the equations are applied to real objects, however, such assumptions are of-

ten violated. This is definitely the case when, instead of seeking a smooth

function u with small derivatives, we seek a generalized solution whose

derivatives can be large at points. Many other examples could be given.

Whenever we apply an equation to a situation in which its background as-

sumptions are violated, we should provide some justification. This typically

requires a clear mechanical understanding of the situation.

For example, let us consider the natural boundary condition for the

solution of the Neumann problem for the membrane. In deriving the natural

boundary condition an intermediate step was to consider the equation

a

∫

Γ

∂u

∂n
v ds−

∫

Γ

ϕv ds = 0. (2.17.16)

Applying the Main Lemma of the calculus of variations to the curvilinear

integral and using the arbitrariness of v, we get the natural condition

∂u

∂n

∣

∣

∣

∣

Γ

= ϕ(s). (2.17.17)
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But suppose Γ has a corner point P located at s = s0. To derive the

above integral formula, we must apply Green’s theorem. At P , however,

the normal to Γ is not defined. Here we must consider two one-sided unit

normals n− and n+. If we suppose that from each side there is some “one-

sided limit” by continuity, and that ϕ is continuous, then

∂u

∂n−

∣

∣

∣

∣

s=s−

0

= ϕ(s0) and
∂u

∂n+

∣

∣

∣

∣

s=s+
0

= ϕ(s0).

Both of these apply at P , in addition to continuity of u(s) there. The result

∂u

∂n−

∣

∣

∣

∣

s=s−

0

=
∂u

∂n+

∣

∣

∣

∣

s=s+
0

(2.17.18)

bears a superficial resemblance to continuity of the normal derivative, but

of course it is not. We shall not pursue the issue of corner points further.

We merely observe that the resulting problem is nonstandard and requires

careful analysis of solution behavior near P . Such an analysis should be

based on the idea that, although strange things can happen at P , a valid

solution must have finite energy. This occurs not only for the membrane

model but for more general models of elastic bodies. Engineers try to avoid

corner points when designing elastic structures meant to carry significant

loads. We see the possibility of unexpected behavior in mathematical solu-

tions as well.

A great many “strange” mathematical effects are actually borne out

somehow in engineering practice — either theoretically or experimentally.

So it is not surprising that strange mechanical effects can show a math-

ematician where to expect difficulties in mathematical investigations with

the model. Mathematical studies, in turn, can provide valuable information

for the engineering community. The interest in strange effects is mutual.

2.18 Banach’s Contraction Mapping Principle

This book presents ideas and models from mechanics, together with modern

mathematical tools for their investigation. Banach’s contraction mapping

principle is used throughout mechanics, from the investigation of numerical

tools to the properties of mechanical problems. We interrupt our consider-

ation of mechanical models to consider this powerful principle.

Those who deal with numerical solutions in linear algebra are accus-

tomed to iterative approaches. Such methods can be applied to simultane-
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ous algebraic equations of the form

Cx −Dx = b, (2.18.1)

where x ∈ Rn and the n × n matrices C and D are such that C is easily

invertible and
∥

∥C−1D
∥

∥ = q < 1. In this case the system is solved by the

scheme

xn+1 = C−1Dxn + C−1b. (2.18.2)

For any initial value x0, which is usually chosen as x0 = 0, the sequence of

iterates {xn} converges to a unique solution x∗ of the system. Furthermore,

the convergence rate is at least as fast as that of a geometric progression

having common ratio q. Iterative methods are appropriate for solving large

systems, when applicable, since errors do not accumulate during iteration.

In mechanics we encounter the method of elastic solutions. It is used

to solve the equations of viscoelasticity and plasticity, with given boundary

values for the displacement vector u, that take the form

Cu = Du + f . (2.18.3)

Here f is an external load vector and C is the differential operator of linear

elasticity. The operator D characterizes special properties of the body; it

can be linear or nonlinear and, in a certain sense, for “small” arguments, is

majorized by the linear elastic term. The solution scheme for such equations

coincides formally with the above iteration scheme for matrix equations,

although it is more complicated.

The convergence of these and similar schemes is covered by a general

result known as Banach’s contraction principle. An attractive feature of

this principle is its usefulness not only in justifying numerical methods, but

in deriving many qualitative results in the theory of equations — in partic-

ular, theorems on existence and uniqueness of solutions. Abstract forms of

the implicit function theorem rest on it as well. Banach’s principle is one

of the few results of nonlinear analysis that holds importance from both

theoretical and practical points of view. We should mention its central role

in establishing Picard’s theorem on existence and uniqueness of solutions to

the Cauchy problem for ordinary differential equations. In fact, Banach’s

principle originated with Picard’s theorem.

We will present the contraction mapping theorem in the context of a

Banach space B. The classical proof contains two results of practical impor-

tance. We begin with a definition that generalizes the above requirement

for a matrix to have a norm of value q < 1.
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Definition 2.18.1. An operator A acting in B is called a contraction op-

erator on a subset S of B if there is a constant q < 1 such that for any

x, y ∈ S the inequality

‖A(x) − A(y)‖ ≤ q ‖x− y‖ (2.18.4)

holds.

We see that when A is applied to any pair of points, the images of these

points are separated by a factor of q times the distance between the points

themselves. The term “contraction” refers to this property of A. It is easily

seen that on an open set S the operator A is continuous.

It turns out that many equations of mechanics can be phrased as

x = A(x), (2.18.5)

where A acts in some Banach space B. Note that a solution x∗ to this

equation has the property that A(x∗) = x∗; that is, the image of the solution

under A must be the solution itself. We call such a point a fixed point of

the operator A. We are now ready to formulate the first part of Banach’s

contraction principle.

Theorem 2.18.1. Let A be a contraction operator on a subset S of a

Banach space B, with contraction constant q < 1. Then A has no more

than one fixed point in S.

Proof. Supposing the existence of two fixed points x1, x2, we have

‖x1 − x2‖ = ‖A(x1) −A(x2)‖ ≤ q ‖x1 − x2‖

since A is a contraction operator. Since q < 1 we have x1 = x2. �

The second result concerns the convergence of the iterative scheme

xn+1 = A(xn), n = 0, 1, 2, . . . . (2.18.6)

Theorem 2.18.2. Suppose

(i) the operator A in a closed set S of a Banach space B is a contraction

with constant q < 1:

‖A(x) −A(y)‖ ≤ q ‖x− y‖ for any x, y ∈ S;

(ii) A(x) ∈ S if x ∈ S.

Then for any initial point x0 ∈ S
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(i) the sequence {xn} with xn = A(xn−1), n = 1, 2, 3, . . ., converges to a

fixed point x∗ ∈ S of A, and

(ii) the running approximation error is given by

‖xn − x∗‖ ≤ qn

1 − q
‖x1 − x0‖ . (2.18.7)

Proof. Let us first demonstrate that {xn} is a Cauchy sequence. We

begin by writing

‖xn+1 − xn‖ = ‖A(xn) −A(xn−1)‖
≤ q ‖xn − xn−1‖
= q ‖A(xn−1) −A(xn−2)‖
≤ q2 ‖xn−1 − xn−2‖
...

≤ qn−1 ‖A(x1) −A(x0)‖
≤ qn ‖x1 − x0‖ .

Using this and the triangle inequality, we get

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖ + ‖xn+m−1 − xn+m−2‖
+ · · · + ‖xn+1 − xn‖

≤
(

qn+m−1 + qn+m−2 + · · · + qn
)

‖x1 − x0‖

= qn 1 − qm

1 − q
‖x1 − x0‖

≤ qn

1 − q
‖x1 − x0‖ .

Since q < 1, we have

‖xn+m − xn‖ → 0 as m,n→ ∞.

This means that {xn} is a Cauchy sequence; by completeness of B it must

converge to a point x∗. Because S is closed, x∗ ∈ S. At the same time, the

sequence {A(xn)}, which is {xn+1}, is also a Cauchy sequence convergent

to the same point x∗. Passing to the limit as n → ∞ in the equality

xn+1 = A(xn), we get x∗ = A(x∗). So x∗ is the needed point. The

error estimate (2.18.7) follows from the above estimate for ‖xn+m − xn‖ as

m→ ∞. �

Now we can assert
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Theorem 2.18.3. Let A be a contraction operator in a closed set S of a

Banach space B and A(S) ⊆ S. Then

(i) the equation x = A(x) has a unique solution x∗ ∈ S;

(ii) for any initial point x0 ∈ S the sequence {xn} converges to x∗ ∈ S;

(iii) the approximation error at the nth iteration satisfies

‖xn − x∗‖ ≤ qn

1 − q
‖x1 − x0‖ .

A particular case of the theorem occurs when A is a contraction operator

on all of B. Then A has a unique fixed point in B.

In Chapters 1 and 2 we introduced some principles of continuum me-

chanics and some methods of pure mathematics with which its problems are

now studied. We applied the latter to relatively simple mechanical models

which, nonetheless, contain the salient features of more complex models.

In Chapter 3 we proceed to a consideration of the main ideas and models

of continuum mechanics using the methods we have developed.
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Chapter 3

Theory of Elasticity: Statics and

Dynamics

3.1 Introduction

Everyday materials exhibit a range of atomic structures. Some are simple

and regular; others are complex. So the internal forces acting on an atomic

level must differ widely. In continuum mechanics, however, we see a rela-

tively simple type of macro-representation of the internal forces in terms

of the stress tensor. How can a simple mathematical structure cover so

many possibilities? The answer lies in the way the stress tensor presents an

average picture of atomic and molecular interactions. Some authors tell us

that continuum mechanics yields results concerning certain “elementary”

or “infinitesimal” portions of a material. We are asked to accept that such

a portion will contain a typical number of atoms. But while it is inter-

esting to wonder about the difference between real microinteractions and

the simplified picture given by the continuum mechanics approach, such

considerations properly lie within the realm of the physicist.

Similar comments apply to the problem of describing material deforma-

tion. Atomic or molecular structure is complex and differs greatly between

materials. So the motion of separate atoms during deformation can be

complex. However, in the macro-level integral picture we describe the dis-

placements of points using a relatively simple strain tensor. This yields

an average picture of deformation in the body, neglecting the motions of

individual atoms.

Engineering experience shows that, to within practical accuracy, the

tensor tools of continuum mechanics give good results; we apply these in

engineering design despite the fact that they are not valid pointwise. These

tools are based on the continuum and solidification principles discussed in

Chapter 2. Why are they so good? The reason is that metals and other

157
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engineering materials are typically subjected to relative strains on the order

of a few thousandths. Clearly, on average, the same changes are seen in

the distances between adjacent atoms in the material. Note that in contin-

uum mechanics we deal only with additional quantities that arise during

deformation. The relations between changes in interatomic forces and rela-

tive changes in interatomic distances are approximated by relatively simple

(e.g., linear) functions. Hence the integral quantities we see in practice are

given by relatively simple relations as well. These relations we describe with

simple tools — stress and strain tensors — to within accuracy sufficient for

our purposes.

3.2 An Elastic Bar Under Stretching

In § 1.20 we quoted a few equations related to the model of an elastic bar.

We now examine this model in detail. Within its simple framework we will

examine certain ideas that apply to all linearly elastic bodies.

Consider the equilibrium of a prismatic bar under an axial force F , as

shown in Fig. 3.1.

Fig. 3.1 Bar under an axial force.

We cut the bar along CC ′ (Fig. 3.2) in the direction perpendicular to

the axis. To maintain equilibrium of the portion CC ′B′B we must apply

reaction forces produced by the remainder AA′C ′C. We expect these to

be distributed over the cross section rather than concentrated at a specific

point. Although the force distribution could be quite nonuniform in real-

ity, we make the simplifying assumption that it is uniform (in addition to

our tacit assumption that it acts only through the cut). Note that this

contradicts our original picture where F was applied along Ox. Indeed,

we can imagine moving CC ′ toward BB′, eventually encountering a cross

section with a distributed load on one side and a concentrated load on the

other. Hence we should take F as distributed instead. In accordance with
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common sense we suppose the distribution σ of F is uniform with σ = F/S.

The solidification principle says that the resultant force F ′ = σ′S on the

left should be directed opposite to F and of the same value, which leads to

the equality |σ′| = |σ|. Each cross section has two sides and the reactions

from each side are equal but opposite in direction. By convention, we take

as positive those reactions which place the bar under tension as in Fig. 3.2.

Reactions that place the bar under compression are regarded as negative.

In the present case we have σ′ = σ.

Fig. 3.2 A portion of the bar from Fig. 3.1. F1 has been changed to an axial uniformly

distributed load with density σ = F/S, where S is the cross-sectional area.

In a sense, the force density σ is not unlike the pressure p in a liquid or

gas. The resultant force on a planar area in the latter case can be calculated

by multiplying σ by the area S. But the analogy is limited. Pascal’s law

states that the pressure in a liquid acts normally to any small planar area

element inside the liquid and, moreover, its resultant depends only on the

element area. Let us see what happens if we cut the bar along DD′ at

angle α as shown in Fig. 3.3. It is reasonable to suppose that the force

remains uniformly distributed, but this means the load still acts along Ox

and is therefore not normal to DD′. Moreover, because the area of DD′

is S/ sinα, we must take σ′′ = σ sinα in order to preserve the resultant;

this dependence on cut orientation is not seen in a liquid. We will call σ

the stress. In the theory of the bar, we will not require the stress values

on cross sections that are not perpendicular to the bar axis. Hence we will

not make use of quantities such as σ′′. But we must understand that in a

solid this quantity depends not only on the location of a point but on the

orientation of the cut used to define it. This will lead to the notion of a

tensor of stress within the body.

So we have introduced the stress in the bar by the formula

σ = F/S, (3.2.1)

and can determine the resultant acting over each cross section. We can also
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Fig. 3.3 In cross section DD′, the density of the uniformly distributed reaction changes
to F sin α/S; their direction is not normal to DD′.

calculate the support reaction at AA′, which has the same value F . Let

us complicate the problem by introducing external forces distributed along

the axis. We suppose that such forces would be uniformly distributed over

the cross section of application; hence we assume a uniform distribution of

stress over any cross section. To get the value of σ at a cross section we

will sum up all external forces, lumped and distributed, acting on the right

end and divide by the cross-sectional area.

At this point it is not clear why we have introduced the stress instead

of using simple reaction forces at a cross section. Indeed, the latter ap-

proach is taken in the strength of materials. It might seem that we have

overcomplicated things. Since our goal is to discuss the theory of elasticity,

however, we are preparing all concepts that will be needed later (in §§ 3.6,

3.8, 3.11, and 3.13).

The above problem seems simple; it suffices to apply an equation of

statics. Although we suspect at least some deformation in any bar under

load, we have neglected this and treated an undeformed bar. The systems

considered by the strength of materials, in which all forces inside the body

as well as all support reactions are uniquely determined by the tools of

statics only, are called statically determinate.

Fig. 3.4 Bar with both ends clamped, under an axial force F.

A system that cannot be treated this way is shown in Fig. 3.4. Indeed,
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the only equation we have from statics is that the force F and the reactions

R0 and R1 are balanced:

F −R0 −R1 = 0. (3.2.2)

From this we cannot obtain definite values for R0 and R1. A system for

which we cannot find all reactions uniquely by the tools of statics alone

is said to be statically indeterminate. To find the reactions and hence the

stresses in the bar, we must make use of additional information. We shall

exploit the simplest of all constitutive equations (i.e., the equations that

relate stresses to strains): Hooke’s law.

For a spring, Hooke’s law is formulated as

F = k
∆l

l
. (3.2.3)

Here k is the spring constant and ∆l is the increase in the length l of

the spring under an applied force F . The same idea can be applied to

a cable or bar under tension. We characterize the deformation by the

relative extension ∆l/l, which is called strain. This characteristic can be

introduced for a bar if we suppose that, during deformation, any normal

cross section shifts uniformly and as a whole along the x-direction as was

done above. In this way we can characterize the location of the cross section

after deformation by the displacement function u(x) of the points of Ox. For

our purposes, we need the local value of the strain when the deformation

is not uniform along Ox. We take a small portion of the bar between

[x, x+ ∆x], so that l = ∆x, and consider its change under deformation. If

the displacements of the segment ends are u(x) and u(x + ∆x) (Fig. 3.5)

then the change in length of the portion is u(x+∆x)−u(x) and the strain

is

u(x+ ∆x) − u(x)

∆x
.

Letting ∆x→ 0 we obtain

ε =
du(x)

dx
. (3.2.4)

Note that ε is dimensionless. For ordinary structural steel it should not

exceed about 0.001, hence it is “very small” from an engineering standpoint.

This allows us to ignore the fact that the point x at which we find ε does

in fact move during deformation.

We can now generalize Hooke’s law as

σ = Eε. (3.2.5)
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Fig. 3.5 Deformation of a small portion of the bar.

The coefficient E, known as Young’s modulus, carries units of pressure; its

value for ordinary steels is around 2 × 105 MPa. In terms of the reaction

N in a bar, Hooke’s law takes the form

N = ESε (3.2.6)

where S is the cross-sectional area. Although we have previously considered

homogeneous prismatic bars, we can extend the theory by assuming that E

and S can depend on x. For this, we assume all the previous assumptions

on the uniform distribution of the external load over a cross section must

be fulfilled.

With the additional variable ε involved, to define everything uniquely

we need the expression relating strain with displacement (3.2.4), the con-

stitutive law (3.2.6), the equilibrium equation which we will derive, and

supplementary boundary conditions.

Fig. 3.6 A portion of the bar between x and x + ∆x under load.

As above, we will isolate a portion of the bar between x and x+ ∆x. It

is subject to the reactions and the distributed load q(x) shown in Fig. 3.6.

The arrow for N shows its positive direction on the cross section. When

we construct the equilibrium equation in scalar form, we should use the

projections onto the axis. Supposing the linear density of the distributed
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load to be t(x), we get the equilibrium equation:

N(x+ ∆x) −N(x) +

∫ x+∆x

x

t(s) ds = 0.

Dividing this by ∆x and letting ∆x→ 0, we obtain

dN(x)

dx
+ t(x) = 0. (3.2.7)

This is a static equation that is valid for any constitutive law. Substitution

from (3.2.4) and (3.2.6) gives the equilibrium equation for an elastic bar in

terms of displacements:

d

dx

(

ES
du

dx

)

+ t(x) = 0. (3.2.8)

This second-order differential equation for u(x) should be supplemented

with two boundary conditions, one at each end. Forces or displacements

could be specified in any combination.

In the strength of materials, the system of external forces is simple.

Normally the load consists of a few lumped forces or a linearly distributed

load. Solution can proceed with elementary tools, using linearity of the

problem and describing the deformation of finite portions a of the bar by

the formula

N = ES
∆a

a
. (3.2.9)

The differential equation (3.2.8) is normally used when S depends on x.

Lumped forces can be included by incorporating delta-functions into t(x);

a term Fk δ(x− xk) can be used to describe a force Fk applied at xk.

Let us apply this technique to the simple problem shown in Fig. 3.4.

Assume the bar has length l and the force F is applied at x = a. We

seek the support reactions. We begin by making a cut at the right end

and applying a fictitious reaction R1, which we regard as given. The other

reaction is

R0 = F −R1. (3.2.10)

Supposing R1 to be given, we transformed the system to a statically deter-

minate one. But this does not change the fact that we still have only one

equation for two variables R0 and R1. To establish another relationship

we will use Hooke’s law. Since the portion of the bar that lies to the left

of x = a is stretched by a force R0, its elongation is ∆a = aR0/ES. The

remainder, having length b = l − a, is compressed with a force R1, hence
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its length decreases by ∆b = bR1/ES. The total displacement of the right

end with respect to the left end is ∆a − ∆b. Since both ends are fixed,

however, we must have ∆a − ∆b = 0. In the strength of materials this is

called a compatibility condition. In terms of the reactions, it reads

aR0

ES
− bR1

ES
= 0

or

R1 = R0
a

b
.

The equilibrium equation gives

R0 =
b

l
F, R1 =

a

l
F.

In this case we need not know E and S; it suffices to know that they are

constants. To find the displacements we would need numerical values for

E and S.

Note that we did not solve the equilibrium equation explicitly. Rather,

we used the fact that the tension N is constant in that portion of the

bar where no external forces are applied. This is equivalent to solving the

equilibrium equation. Because the equation is of second order, we need two

boundary conditions: these were that the bar ends are fixed.

This idea — that a statically indeterminate system can be transformed

into a determinate one by sectioning, introducing fictitious reaction forces,

and supplementing the equilibrium equations with additional equations de-

scribing the deformations of the system — is called the deformation method.

It can be applied to complex problems.

Boundary value problems

We could state results for the bar simply by adapting those for the string,

since the equations describing these two objects have the same form. But

perhaps we should carry out a few steps independently for the bar, as E

and S can vary. We suppose E(x)S(x) is continuously differentiable on

[0, l], at least. We start by deriving the virtual work principle for the bar.

We have consistently said that we expect u(x) to be sufficiently smooth.

Let us explain what this means in the present case. Suppose t(x) is con-

tinuous on [0, l], but that a set of lumped forces Fk also act at points xk,

which can include the endpoints. At points other than the xk, the equi-

librium equation (3.2.7) shows that dN/dx is continuous. If E(x)S(x) is
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continuously differentiable and nonzero, then u(x) is twice continuously

differentiable there.

Although lumped forces were not considered when we derived the equi-

librium equation, they are common in engineering practice. It is useful to

know what happens near the point xk of application of a lumped force Fk.

We continue to suppose t(x) is continuous. Consider a small portion of the

bar corresponding to the segment [xk −∆, xk +∆], ∆ > 0. The equilibrium

of this portion is determined by the equation

−N(xk − ∆) + Fk +

∫ xk+∆

xk−∆

t(s) ds+N(xk + ∆) = 0.

As ∆ → +0, the value of the integral tends to zero by continuity of t(x).

We get

N(xk + 0) −N(xk − 0) = −Fk, (3.2.11)

where N(xk − 0) and N(xk +0) are the one-sided limits of N(x) as x tends

to xk from the left and right, respectively.

Exercise 3.2.1. Comment on the smoothness of u(x) at a point where

E(x)S(x) has a jump. For simplicity assume there is no lumped force at

this point.

According to (3.2.11), N(x) has a jump at xk and therefore so does

u′(x). This means the equilibrium equation holds only on the intervals

(xk , xk+1) which exclude the points of application of the lumped forces. So

it must be considered as the set of equations

d

dx

(

ES
du

dx

)

+ t(x) = 0, x ∈ (xk , xk+1) (k = 0, 1, . . . , n), (3.2.12)

along with the jump conditions (3.2.11). We should supplement these with

the continuity conditions for u(x) at the xk, which state that the bar cannot

be broken:

u(xk − 0) = u(xk + 0) (k = 1, . . . , n− 1). (3.2.13)

Finally, we require two conditions at the endpoints x0 and xn+1.

We have obtained a multipoint boundary value problem: equation

(3.2.12) is supplied with boundary conditions at the ends of the bar, but

also with conditions at the intermediate points xk. In engineering practice

the functions t(x), E(x), and S(x) are likely to be simple and it should

be easy to integrate the equation explicitly over (xk , xk+1). This allows

engineers to solve the problem graphically, using simple rules.
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Now we derive the VWP equation and the expression for the total en-

ergy. Suppose the virtual displacement function δu(x) is continuous to-

gether with its first and second derivatives on [0, l]. It must also vanish at

points where the bar is fixed. We multiply (3.2.8) by δu(x) and integrate

over the length to obtain
n
∑

k=0

∫ xk+1

xk

[

d

dx

(

ES
du

dx

)

+ t(x)

]

δu(x) dx = 0.

Integrating by parts in the first term, we have
∫ l

0

ES
du

dx

d(δu)

dx
dx−

∫ l

0

t(x) δu(x) dx −
n
∑

k=0

ES
du

dx
δu(x)

∣

∣

∣

∣

x=xk+1−0

x=xk+0

= 0.

Taking into account that N = ESu′, that δu(x) is continuous at xk , and

the jump equation (3.2.11), we finally get
∫ l

0

ES
du

dx

d(δu)

dx
dx −

∫ l

0

t(x) δu(x) dx −
n
∑

k=0

Fk δu(xk) = 0. (3.2.14)

Each term is the work of some force over the virtual displacement δu.

Equation (3.2.14) expresses the virtual work principle for the bar. A word

statement for the equilibrium problem under consideration is as follows.

Among all functions u(x) that satisfy the geometrical constraints of
the clamped ends, the one that satisfies (3.2.14) for all sufficiently
smooth virtual displacements that also satisfy the geometrical con-
straints (δu = 0 at the clamped ends) is the solution of the equilibrium
problem.

In § 2.7 we derived the equilibrium equation for a string under load,

which looks like the bar equation. In view of the form taken by the total

energy functional for the string, we can try the expression

E(u) =
1

2

∫ l

0

ES

(

du

dx

)2

dx−
∫ l

0

t(x)u(x) dx −
n
∑

k=0

Fk u(xk) (3.2.15)

as the total energy for the bar. It should be a functional for which the

left-hand side of (3.2.14) is the first variation. Direct calculation confirms

this choice: E(u) is the total energy of the bar-load system, where the first

term is the strain energy of the bar.

Thus we can regard the equilibrium problem for the bar as the prob-

lem of minimum of the total energy functional. The lumped forces at the

ends impose natural boundary conditions on u(x); the remaining condi-

tions (3.2.11) are similar to the natural conditions at the ends, but they
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arise at intermediate points xk where the values of u′ jump. We can use

the integro-differential equation (3.2.14) to introduce generalized setups for

the Dirichlet, Neumann, and mixed equilibrium problems for the bar. The

steps are strictly analogous to those for the string, and we leave them to

the reader.

Exercise 3.2.2. Derive the natural boundary conditions and the conditions

at xk that follow from the problem of minimum of the total energy func-

tional.

Exercise 3.2.3. An initially unstretched spring lies along the axis of the

bar treated in Exercise 3.2.2. One end of the spring is attached to the bar at

a point x = c 6= xk, while the other end is clamped to an external support.

The spring constant is K, hence the constitutive law is F = Kv where v

is the displacement of the spring end along the bar. The strain energy of

the spring is 1
2Kv

2. Using the variational procedure, find the equilibrium

equations and the natural conditions.

Exercise 3.2.4. Formulate the VWP equation for the bar under load (t(x)

and Fk for k = 0, . . . , n) when there are also springs attached to the

bar. The springs, having elastic coefficients ck, are attached at points zk

(k = 1, . . . ,m) and their other ends are clamped. Consider the cases when,

for the unloaded bar, the springs are (1) unstressed, and (2) prestressed.

Define a generalized solution, introduce the energy space, and formulate the

existence-uniqueness theorem for a generalized solution.

We finish this section with a few remark on the problem of longitudinal

dynamics of the bar. This can be treated simply via d’Alembert’s principle.

We assume a dependence of the displacement function u on time τ and

incorporate inertial forces into the distributed external forces t = t(x, τ):

t(x) 7→ t(x, τ) − ρ
∂2u(x, τ)

∂τ2
,

where ρ is the density along the bar. The VWP equation becomes

∫ l

0

(

ES
∂u

∂x

∂δu

∂x
+ ρ

∂2u(x, τ)

∂τ2
δu

)

dx

−
∫ l

0

t(x, τ) δu dx −
n
∑

k=0

Fk δu(xk) = 0.
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Using techniques from the calculus of variations, we can obtain the equation

in differential form (which we can obtain from (3.2.8) as well):

ES
∂2u(x, τ)

∂x2
= ρ

∂2u(x, τ)

∂τ2
− t(x, τ).

3.3 Bending of a beam

The bending of a beam is one of the most important problems in engineer-

ing mechanics. As with the problem of stretching a bar, the mathematical

tools needed for its solution are quite elementary. Engineers have even

found elementary graphical methods for treating large structures consist-

ing of many beams. Nonetheless, we shall consider the beam problem in

order to demonstrate the application of the methods and theorems we have

developed.

We consider a straight beam of length l on which act a distributed

transverse load q(x) and lumped forces Pk that are perpendicular to the

beam. We assume a planar deformation of the beam, hence the forces are

parallel to this plane.

Fig. 3.7 A beam under load. Inset: a cantilever end.

The beam deformation is described with a single function w(x), the

deflection of the midline of the beam. In Fig. 3.7 we show a beam along

with two ways in which its end can be “fixed”. The left end is clamped,

which corresponds to the conditions w = 0 and w′ = 0 at x = 0. The

right end is prevented from moving in the y-direction but is free to rotate;

this end is said to be freely supported. The inset shows another type of

boundary condition that corresponds to a cantilever beam with a given
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force and moment.

Fig. 3.8 The normals to the midline of a beam before and after deformation.

We will consider the classical theory of beam bending, which starts with

hypotheses laid down by D. Bernoulli (1700–1782). We suppose that, dur-

ing deformation, any straight line segment normal to the midline does not

change its length and, moreover, remains normal to the midline after de-

formation (Fig. 3.8). The midline is defined by the centroids of the beam

cross sections; hence, for a rectangular beam it is the set of intersections

of the cross-sectional diagonals. Although Bernoulli’s hypotheses are only

approximate, they provide a good approximation for many civil engineering

problems. They allow us to express the strain of the beam at any point in

terms of a single function w(x). As a physical model of beam deformation,

we can consider the deformation of an elastic midline that resists bending

according to certain rules. The resistance of the beam to external forces is

described by two quantities: the bending moment M and the shear force

Q. When we cut the beam along the cross section, we replace the action

of the remainder of the beam by the reactions M and Q. As for the bar,

we can regard a cross section — the boundary between the left and right

portions of the beam — as “attached” to one portion. The values of M and

Q for the two portions must be equal in absolute value but, by Newton’s

third law, opposite in direction since the cross section itself is in equilib-

rium. In Fig. 3.9 we show positive directions for M and Q for a segment of

beam between cross sections separated by ∆x. We recall the solidification

principle, which states that in equilibrium under the action of all external

forces and the reaction forces from the remainder of the body, any portion

of the body must obey the equilibrium law for a rigid body. When we take

a section of bar between two cross sections as shown in Fig. 3.9 and sup-

pose the lumped external forces and moments are absent on the segment,



December 24, 2008 10:59 World Scientific Book - 9in x 6in elasticity

170 Introduction to Mathematical Elasticity

we have two equilibrium equations: one for the vertical forces, which is

(Q+ ∆Q) −Q+

∫ x+∆x

x

q(s) ds = 0,

and one for the moment with respect to the center point of the left cross

section,

(M + ∆M) −M − (Q+ ∆Q)∆x−
∫ x+∆x

x

sq(s) ds = 0.

Dividing by ∆x and letting ∆x→ 0 we get two equilibrium equations

dM

dx
= Q,

dQ

dx
= −q(x). (3.3.1)

Fig. 3.9 A portion of the beam between x and x + ∆x under load. The arrows are
shown for positive directions of M, Q, q, P .

At point xk an external lumped force Pk and a lumped moment Mk are

given. Supposing that Q and M are continuous from each side at xk , we

obtain

M(xk + 0) −M(xk − 0) +Mk = 0,

Q(xk + 0) −Q(xk − 0) + Pk = 0. (3.3.2)

Hence M(x) and Q(x) have jumps at the point xk.

For a cantilever beam (i.e., a beam having one end clamped and a

force and moment assigned at the other end), equations (3.3.1)–(3.3.2) are

sufficient to determine the force characteristics in any cross section; this

is an example of a statically determinate problem. But if both ends are

clamped, it is impossible to determine the strain state and we must utilize

the properties of the beam material. Bernoulli’s hypotheses, along with the
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assumption that the material obeys Hooke law, relate M with w through

the formula

M = −EI d
2w

dx2
. (3.3.3)

See, for example, [Gere and Timoshenko (1997)] or [Lebedev and Cloud

(2004)]. Here E is Hooke’s modulus and I is the cross-sectional moment of

inertia. Substituting this into (3.3.1), we get the equilibrium equation in

terms of the normal deflection w(x):

d2

dx2

(

EI
d2w

dx2

)

= q(x). (3.3.4)

This holds at all points excepts those where lumped external forces and

moments are applied.

Let us first consider an equilibrium problem for a beam, with constant

values of E and I , under the action of a piecewise continuous distributed

load q(x). Normally, by the term “classical solution” we mean a solution

continuous together with all its derivatives up to the order of the differen-

tial equation. We will continue to use this term, however, when a solution

has a finite set of singular points at which its behavior can be determined.

The problem under consideration is so simple that we can solve it analyt-

ically and find conditions for uniqueness. First let us discuss the question

of boundary conditions. The general solution to (3.3.4) depends on four

independent constants and takes the form

w(x) = c0 + c1x+ c2x
2 + c3x

3 + wp(x), (3.3.5)

where wp(x) is its particular solution. To determine four constants uniquely,

we must formulate four additional conditions. These can be two conditions

at x = 0 — say w(0) = 0 and w′(0) = 0 — and two others at x = l. Say,

for the case of Fig. 3.7, we put w(l) = 0 and w′′(l) = 0. The reader may

wonder whether we could place all four conditions at x = 0, on w, w′, w′′,

and w′′′ say. In fact this would give us a Cauchy or initial value problem

of the type considered in textbooks on ordinary differential equations. But

an engineer must deal with conditions at the other end of the beam. So

here we must consider a boundary value problem. It is easy to verify that

the four above conditions, two at each end, define the constants uniquely

if we know wp.

What happens to the solution when lumped forces and moments come

into play? We previously suggested that the reader investigate the equilib-

rium equations at such singular points. It is easily seen that if an external
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couple is applied at some point, then M has a jump at this point. Some

books explain that Q = dM/dx has a corresponding δ-function term. The

δ-function, which is not a classical function, is a relatively new object in

mathematics. Engineers proceeded to use it well before its formalization,

however; they would divide a beam into sections by the points of applica-

tion of lumped forces and couples, while placing some additional conditions

at the points (consisting of the two continuity conditions for w and w′, and

the conditions for the jumps in M and Q). In doing so, they were far ahead

of their time; it was only later that so-called generalized solutions would be

considered by mathematicians working in the theory of differential equa-

tions. These engineers were aided by the use of graphical tools applicable

to simplified linear force distributions of the form q(x) = a+ bx.

Nonetheless, we will consider the beam equilibrium problem in order to

explain some peculiarities that arise in more general problems of elasticity

where analytic solutions are not available. So we temporarily ignore the

solution methods used by engineers and proceed to consider the problem

in a complex way — a way that will suffice for more complex problems.

We begin by deriving the VWP equation from the equilibrium equation

(3.3.4). We restrict ourselves to the case of a beam with clamped ends:

w(0) = 0 = w′(0), w(l) = 0 = w′(l). (3.3.6)

Suppose the beam carries a piecewise continuous load q(x), along with

lumped forces Pk and moments Mk at the points xk (k = 1, 2, . . . , n − 1).

Elementary calculations show that the solution w(x) of the equilibrium

problem is continuous together with its first derivative w′(x) on [0, l]. The

functions w′′(x) and w′′′(x) are discontinuous only at the points xk , while

w(4)(x) is discontinuous at the xk and at the jump points of q(x). Let us

take a virtual displacement δw(x) that belongs to C(2)(0, l) and obeys the

geometrical constraints at the ends:

δw(0) = 0 = δw′(0), δw(l) = 0 = δw′(l). (3.3.7)

We recall that the δ-notation is traditional in mechanics; we could just as

well write h(x) or ϕ(x) instead of δw(x).

We remember that (3.3.4) holds on any interval that does not contain

one of the points xk . We suppose

0 = x0 < x1 < x2 < · · · < xn = l.

Let us multiply (3.3.4) by δw(x), integrate the result over each segment
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(xk , xk+1), and then add the equalities for all k. We get

n−1
∑

k=0

∫ xk+1

xk

[

d2

dx2

(

EI
d2w

dx2

)]

δw(x) dx −
n−1
∑

k=0

∫ xk+1

xk

q(x) δw(x) dx = 0.

Clearly

n−1
∑

k=0

∫ xk+1

xk

q(x) δw(x) dx =

∫ l

0

q(x) δw(x) dx

is the work of distributed load q(x) over virtual displacement δw(x).

Now let us transform the first sum. We wish to make the integrand

symmetric in w and δw, which will lead us to the expression for the strain

energy. So we apply integration by parts to each of the integrals twice.

Because we are not assuming that w′′(x) or the higher-order derivatives are

continuous, we use the one-sided notation xk + 0 and xk − 0. We obtain

n−1
∑

k=0

∫ xk+1

xk

[

d2

dx2

(

EI
d2w

dx2

)]

δw(x) dx =

∫ l

0

EI
d2w

dx2

d2(δw)

dx2
dx

+

n−1
∑

k=0

d

dx

(

EI
d2w

dx2

)

δw

∣

∣

∣

∣

x=xk+1−0

x=xk+0

−
n−1
∑

k=0

EI
d2w

dx2

d(δw)

dx

∣

∣

∣

∣

x=xk+1−0

x=xk+0

.

As δw and δw′ are continuous at xk and vanish at x = 0 and x = l, we

have
n−1
∑

k=0

d

dx

(

EI
d2w

dx2

)

δw

∣

∣

∣

∣

x=xk+1−0

x=xk+0

−
n−1
∑

k=0

EI
d2w

dx2

d(δw)

dx

∣

∣

∣

∣

x=xk+1−0

x=xk+0

=

n−1
∑

k=1

(

EIw′′′δw

∣

∣

∣

∣

x=xk−0

−EIw′′′δw

∣

∣

∣

∣

x=xk+0

)

−
n−1
∑

k=1

(

EIw′′δw′

∣

∣

∣

∣

x=xk−0

−EIw′′δw′

∣

∣

∣

∣

x=xk+0

)

=
n−1
∑

k=1

(

EIw′′′

∣

∣

∣

∣

x=xk−0

−EIw′′′

∣

∣

∣

∣

x=xk+0

)

δw(xk)

−
n−1
∑

k=1

(

EIw′′

∣

∣

∣

∣

x=xk−0

−EIw′′

∣

∣

∣

∣

x=xk+0

)

δw′(xk).

In terms of w(x), equations (3.3.2) are written as

−EIw′′|x=xk+0 +EIw′′|x=xk−0 +Mk = 0,

−EIw′′′|x=xk+0 +EIw′′′|x=xk−0 + Pk = 0. (3.3.8)
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Hence the sum of the non-integrated terms takes the form

−
n−1
∑

k=1

Qk δw(xk) +

n−1
∑

k=1

Mk δw
′(xk) .

Combining the above formulas, we obtain

∫ l

0

EI
d2w

dx2

d2(δw)

dx2
dx −

n−1
∑

k=1

Qk δw(xk)

+

n−1
∑

k=1

Mk δw
′(xk) −

∫ l

0

q(x) δw(x) dx = 0. (3.3.9)

The terms

A(δw) =
n−1
∑

k=1

Qk δw(xk) −
n−1
∑

k=1

Mk δw
′(xk) +

∫ l

0

q(x) δw(x) dx

represent the work of the external load over the virtual displacement δw(x).

If in (3.3.9) we call the first integral term (with a negative sign) the work of

the internal forces over virtual displacements δw(x), then (3.3.9) expresses

the virtual work principle for the beam: the work of all internal and external

forces over any virtual displacement of the beam is zero. The reader should

consider why the Mk terms differ in sign from the other terms in A(δw).

It is easy to verify that the functional for which the left side of (3.3.9)

is the first variation is

E(w) =
1

2

∫ l

0

EIw′′2(x) dx −
n−1
∑

k=1

Qkw(xk)

+

n−1
∑

k=1

Mkw
′(xk) −

∫ l

0

q(x)w(x) dx. (3.3.10)

By analogy with the theory of the elastic bar, we call this the total energy

of the beam under load and regard 1
2

∫ l

0 Iw
′′2(x) dx as the strain energy

of the beam. This analogy is not merely formal: if we calculate the work

required to deform the beam from the undeflected state to the one defined

by the function w(x), we get this expression for the energy accumulated

due to the work. We should note that the expressions for the total energy

and other work quantities remain valid when the ends of the bar are not

clamped; in that case we simply include the work of the given forces on

virtual displacements of the ends in the expression for the complete work

A(δw).
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We will use these relations to introduce and analyze a generalized setup

of the equilibrium problem for a beam.

3.4 Generalized Solutions to the Equilibrium Problem for

a Beam

For a beam with clamped ends, we have established that the virtual work

principle is represented by the equation

∫ l

0

EI
d2w

dx2

d2(δw)

dx2
dx −

n−1
∑

k=1

Qk δw(xk)

+

n−1
∑

k=1

Mk δw
′(xk) −

∫ l

0

q(x) δw(x) dx = 0. (3.4.1)

We assumed the existence of a solution w(x), having certain smoothness

properties, of the equilibrium problem for a beam with clamped ends. With

this w(x), equation (3.4.1) holds for any δw(x) from the class described

in the previous section. It is easy to see that we can reverse the trans-

formations of that section and demonstrate that, assuming (3.4.1) holds

for all admissible virtual displacements on the intervals outside xk , where

w(x) ∈ C(4), the function w(x) is a solution of the equilibrium equation

(3.3.4); moreover, the xk are singular points of w(x) where the jump re-

lations (3.3.8) hold. It is instructive to derive a condition at those points

where q(x) jumps. So in some sense, (3.4.1) is equivalent to the complete

formulation of the equilibrium problem for a beam under load.

Now we will tackle this problem without using the common engineering

approach of partitioning the beam, etc. Instead we will require that the

equilibrium equation hold, in the VWP sense, on the whole segment [0, l].

A more classical approach to the problem, with its fourth-order equation,

would generate a solution q(x) involving the δ-function and its derivatives at

the xk. Solutions of this type are not normally considered in textbooks on

ordinary differential equations. But here we will deal with the generalized

approach based on (3.4.1). One advantage is that we will not assume —

but rather will prove — the existence of a solution. Clearly there are other

advantages and disadvantages, but the principal advantage is that we can

extend the approach to equilibrium problems in three-dimensional elasticity

and obtain similar results on existence and uniqueness. This will be done

in situations where the simple reasoning used in the strength of materials
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does not apply.

There are two ways in which we can consider this question of how to for-

mulate a generalized setup of the equilibrium problem for a clamped beam.

We can start with the virtual work principle as expressed in (3.4.1). We

can also start with the problem of minimum of the total energy functional

(3.3.10), for which (3.4.1) expresses the equality to zero of its first varia-

tion. These approaches are equivalent. In both cases we should delineate

the space of the elements in which we will seek a minimizer of (3.3.10) or a

solution to (3.4.1). The space is the same in each case. It will be an energy

space: that is, a Hilbert space.

First we introduce the set C
(2)
0 of all functions w(x) that are twice

continuously differentiable on [0, l] and satisfy the boundary conditions

w(0) = 0 = w(l) and w′(0) = 0 = w′(l). On C
(2)
0 we define an inner

product using the quadratic part of the expression in (3.4.1):

(w1, w2)B =

∫ l

0

EI
d2w1

dx2

d2w2

dx2
dx. (3.4.2)

Of course, the reader should verify satisfaction of the inner product axioms.

As is typical of the spaces introduced in the energy approach, our inner

product space is incomplete.

Definition 3.4.1. The energy space EB for the problem of equilibrium of

a beam with clamped ends is the completion of C
(2)
0 with respect to the

norm induced by the inner product (·, ·)B .

This definition says that the second derivatives of an element of EB

belong to L2(0, l). In a certain sense then, this element can have a jump

in its second derivative as required by (3.3.8). Let us examine some other

properties of such an element. For the first derivatives of an element of EB ,

the situation is exactly as for an element of the energy space for a string or

a bar: the base functions upon which we constructed ES are continuously

differentiable and vanish at the ends. Hence any representative Cauchy

sequence {wn(x)} of an element w ∈ ES is such that the sequence {w′
n(x)}

converges uniformly to a continuous function φ(x). The same thing clearly

holds for the sequence {wn(x)}, so it converges uniformly to some function

ψ(x) on [0, l]. This means that we see the convergence of the sequence

{wn(x)} in the space C(1)(0, l). By completeness, we have ψ′(x) = φ(x).

We will redenote this function ψ(x) as w(x), the same notation as for the

base functions w with which we started constructing EB . We recall that

this continuously differentiable function w(x) does not depend on the choice
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of representative sequence. Moreover, the imbedding operator from EB to

C(1)(0, l), as it follows from the imbedding result in ES , is continuous; this

is expressed through the inequality

‖w(x)‖C(1)(0,l) ≤ c ‖w(x)‖B (3.4.3)

where c is a constant that does not depend on w(x) ∈ EB . We know that

despite the appearance of the same notation, the elements on the left- and

right-hand sides are really different: on the left w(x) is truly a function;

on the right it is a class of equivalent Cauchy sequences that all converge

to the function w(x). In the sequel we shall use the notation w(x) in both

senses and the reader should bear this in mind.

So now we can introduce two definitions for a generalized solution of

the problem under consideration. The first is based on the principle of

minimizing the total energy functional.

Definition 3.4.2. A generalized solution for the problem of equilibrium of

a beam with clamped ends is an element w(x) ∈ EB that minimizes the

functional (3.3.10).

The other definition is based on the VWP equation. It can be shown

that the two definitions both specify the same element.

Definition 3.4.3. A generalized solution for the problem of equilibrium of

a beam with clamped ends is an element w(x) ∈ EB that satisfies equation

(3.4.1) for all δw(x) ∈ EB .

Let us consider (3.4.1) in light of Definition 3.4.3. The meaning of this

equation is as follows. When we substitute the elements w(x) and δw(x) of

EB , we then take a representative sequence from each and pass to the limit

in each term of (3.4.1). Then we substitute the results into the equation,

which must hold in the limiting sense, after the limit passage in each term.

Because of (3.4.3), the results of the limit passages in all the non-integrated

terms of (3.4.1) are the same as if we had simply substituted the values for

the limit functions on the left side of (3.4.3). So we can consider these

terms as ordinary functions defined by the imbedding theorems.

Next, for both definitions of a generalized solution, we should establish

the properties of the functional describing the work of the external load. It

is easy to see that the work of the external load A(w) is a linear functional.

If we suppose that q(x) ∈ L(0, l), then by imbedding inequality (3.4.3) we

have

|A(w)| ≤ c0 ‖w(x)‖B (3.4.4)
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with a constant c0 that does not depend on w ∈ EB . Thus A(w) is a linear

continuous functional in EB and so, by the Riesz representation theorem,

it can be represented as

A(w) = (w,w0)B (3.4.5)

with some uniquely determined element w0(x) ∈ EB . It is easy to see

that w0(x) is a solution of the problem under consideration in the sense of

both Definitions 3.4.2 and 3.4.3. We leave it to the reader to formulate a

corresponding uniqueness-existence theorem.

Finally, we should mention the problem of a beam free of geometric

constraints. Because the beam can move as a rigid body, the solidification

principle requires self-balanced external forces as a necessary condition for

equilibrium. In an approximate model, however, the self-balance condition

can be modified. In this case there are two conditions: the resultant force

in the direction normal to the beam must be zero, and the moment of all

external forces and moments with respect to some point must be zero.

For the generalized setup of the free beam, we use the VWP and total

energy expressions for the clamped beam; we must, however, add the work

of the external load at the beam ends. An arbitrary small displacement

of the beam as a rigid body is given as w = a + bx where a and b are

constants. If w(x) is a solution of the equilibrium problem for a free beam,

then (3.4.1) must hold for δw0(x) = a + bx with any constants a and b.

For this δw0(x), the quadratic term in the VWP is zero. Taking a = 1,

b = 0, and then a = 0, b = 1, we get two equations for the external load;

these are the self-balance conditions for the external load as required by

the solidification principle.

What follows is merely a sketch of the subsequent procedure. To in-

troduce a generalized solution, we wish to use the same form of the inner

product — defined by the internal energy of the beam — as for the beam

with clamped ends. However, we find that ‖a+ bx‖B = 0. So we cannot

use this inner product directly. Fortunately, the rigid displacement a+ bx

is the only smooth function for which ‖w(x)‖B = 0. So we can announce

that the class of all elements of the form a+bx constitutes the zero element

of the new space, and so consider a factor space. This is a mathematically

clear way to pose and solve the equilibrium problem. But we can reduce

the problem to a simpler one. A solution of the problem under considera-

tion is defined up to the rigid displacement a+ bx. This suggests that we

select from each class a unique function w(x) + a + bx. We should select

this unique function so that the set of representative functions is a linear
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space and the energy norm on the new set has all the norm properties. We

will do this in such a way that afterwards, in the new energy space, the

form of the imbedding theorem for the clamped beam will not change. The

conditions for selecting the unique function from the class may be

w(0) = 0, w′(0) = 0;

they may also be integral conditions such as

∫ l

0

w(x) dx = 0,

∫ l

0

w′(x) dx = 0.

After that, on the set of functions twice continuously differentiable on

[0, l] and that satisfy one pair of the conditions above, we consider the inner

product (·, ·)B and introduce the energy space using the completion theo-

rem. The remaining steps replicate those for the beam with clamped ends.

It is interesting that in this beam problem with additional restrictive con-

ditions, formulation of the existence-uniqueness theorem does not require

self-balanced external loads. Indeed, we have imposed additional geometric

constraints on the beam that were absent in the original problem. When

we formulate the existence theorem for the original beam, the self-balance

conditions arise necessarily. Uniqueness of the generalized solution for a

free beam is guaranteed up to a rigid motion a+ bx.

3.5 Generalized Setup: Rough Qualitative Discussion

The type of solution we are considering, in addition to being known as a

generalized or energy solution, is frequently termed a weak solution. When

the novice sees integrands containing only derivatives of order less than

the order of the corresponding differential equation, he may think that

generalized solutions are non-smooth almost everywhere. Consequently he

may believe that such solutions should be introduced when non-smooth

loading parameters appear in the problem. This is only somewhat correct.

Of course, non-smooth loading parameters do yield non-smooth solutions.

But in many cases we should solve problems that do not have classical

solutions at all. Consider, for example, the following simple problem for a

beam under a lumped force P at the center point as shown in Fig. 3.10.

The analytic representation of the solution on each of the intervals (0, 1)

and (1, 2) is given by a third-order polynomial, so the solution depends on

eight constants. To find these, we need eight equations. The boundary
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Fig. 3.10 A clamped beam of length 2, loaded with a lumped force P at x = 1.

conditions

w(0) = 0 = w′(0), w(2) = 0 = w′(2),

provide four of them. We also have continuity conditions at x = 1:

w(1 − 0) = w(1 + 0), w′(1 − 0) = w′(1 + 0).

Finally, we have the conditions for the lumped load (3.3.2):

EIw′′(xk + 0) = EIw′′(xk − 0),

−EIw′′′(xk + 0) +EIw′′′(xk − 0) + P = 0.

The last equation says that w′′′(x) has a jump at x = xk. When we consider

the equilibrium problem based on the equation

(EIw′′(x))
′′

= q(x),

the jump condition is external: it does not follow from the equilibrium

equation on the entire beam, but is derived separately via mechanical con-

siderations. Moreover, with a jump in the third derivative of the solution,

we cannot consider a classical solution that has fourth derivatives every-

where. So we arrive at the area of generalized solutions. The fact that

engineers found a simple way to circumvent this difficulty for beam equilib-

rium problems does not change the fact that there are many problems for

which this is not possible. We should really introduce generalized solutions

when a classical setup does not make sense.

The good news is that a generalized solution is not as generalized as

it might seem at first glance. If a linear mechanical problem based on an

elliptic equation or system has a classical solution that possesses all needed

derivatives, and if the corresponding energy of the state is finite, then the

solution is the generalized solution as well. Indeed, despite the fact that the

corresponding generalized solution belongs to an energy space (produced

by the completion theorem), it will contain a stationary sequence — each
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element of which is the classical solution. In this sense the classical solution

is also a generalized one.

But there is even better news. Despite the fact that we define the

elements of Sobolev and energy spaces as whole entities over some domain

S in R
n, they possess certain local properties of additional smoothness in

the domain that we can use. For example, from the general theory that lies

outside the scope of this book, a generalized solution to the equation ∆u =

f in S, an open bounded domain of R2, belongs to W 2,p(B) for a closed

set B in S if f ∈ Lp(S), where p > 1. So the generalized solution has not

only the first but the second generalized derivatives on B and these are also

in Lp(B). By Sobolev’s theorem, this means that the imbedding operator

presents a continuous function on B that corresponds to the solution. In

all subsequent calculations we can use this function on B instead of the

element of the energy space. This situation resembles that for the beam

under lumped loads: outside of certain singular portions of S, we can use

ordinary continuous functions to describe the solution. On the singular

sets and their neighborhoods, we must use the form that is defined as an

element of the energy space. For the above problem, the singular set is not

the whole boundary of S; rather, it consists only of the points where the

boundary is not smooth, such as corner points.

We should add that the equations of the most popular numerical method

for the solution of mechanical equilibrium problems — the finite element

method — are based on the VWP equation. Hence convergence of the

method is always shown as convergence of approximations to the energy

solution. The same holds for any variational numerical method applicable

to these problems.

We now turn to the description of equilibrium problems for more general

deformations. The groundwork was laid by Cauchy, who developed the

notion of stress tensor for a solid; this served to generalize the notion of

pressure for a liquid or gas.

3.6 Pressure and Stresses

When dealing with material points or rigid bodies, it suffices to consider

lumped forces having certain directions and lines of action. For deformable

bodies we must consider volume-distributed forces; one cannot shift the

point of application of such a force, as this will alter the deformation of

the body. As earlier for the bar, we suppose we can describe the action of
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one portion the body on another by introducing a cut along with suitable

reaction forces over this surface. One such reaction is the pressure, defined

in elementary physics as force per unit area:

p = F/S. (3.6.1)

This “definition” assumes that F acts normally to the planar area S and

is distributed uniformly over that area. Pascal’s law for the pressure in

a liquid or gas also fits this definition. We can consider a nonuniform

distribution of pressure over a surface, introducing a value of p at some

point r via the limit expression

p = lim
∆S→0

∆F

∆S
, (3.6.2)

where ∆F is the normal force acting on small area ∆S. Here we should

use a limit process in which ∆S tends to zero along with the maximum dis-

tance from r to all other points of ∆S (i.e., ∆S cannot tend to a segment).

Pressure thus defined plays the role of force density over the surface. Know-

ing this density, we can reconstruct the integral characteristics — resultant

force and moment — of the distributed force acting on any finite part of

the surface.

Again, because of Pascal’s law, pressure is a suitable tool for describing

the force distribution inside a gas or liquid. The pressure at any point in

a liquid, acting on a small (we could say infinitesimal) planar area, does

not depend on the orientation of that area. But consider a point on the

surface of a bar stretched by two equal forces F0 applied at the ends. In

an infinitesimal surface tangent to the bar, the normal force, and thus the

“pressure”, is zero. In the normal cross section it is nonzero and seems

close to the average F0/S0, where S0 is the area of the bar cross section.

Hence the pressure alone cannot define the strain state in a solid material.

We need another tool.

The first idea is to include forces acting on a surface in an arbitrary

direction, not just normally. To this end we employ a vectorial version of

the above limit construction. Let ∆F be the resultant of forces distributed

over a small area ∆S of the surface S. Then the “density” of the force

distribution at a point is

σ = lim
∆S→0

∆F

∆S
. (3.6.3)

The new symbol σ stands for “stress”, an extension of the notion of pres-

sure. The above example of a stretched bar shows that σ can depend on the
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spatial orientation of the infinitesimal surface used to define it. This leads

to the notion of stress tensor. Cauchy demonstrated that the stress val-

ues acting on any three mutually orthogonal infinitesimal areas that pass

through a point of interest uniquely define the “state of stress” at that

point.

We have not discussed how the force distribution on a surface can be

seen physically. It is clear that no continuous “material” surface can exist

inside a body composed of atoms. In fact we have implicitly used the first

principle of continuum mechanics: we have employed an ideal model of a

continuum without any atoms, where we can draw surfaces and employ

any description of the distribution of some characteristic that is given by

a smooth function depending on the coordinates. In § 3.10 we will discuss

the “coordinates” of the points of a body; this problem is not simple, and

for now we shall continue in the footsteps of Cauchy. We will do everything

in terms of the Cartesian coordinates (x1, x2, x3) in the volume occupied

by the deformed body that is in equilibrium. First, we must define the

dependence of σ on the orientation of the infinitesimal area, which we take

to be planar. Let us produce a crosscut inside the body. In doing so, we

have “deleted” some internal constraints inside the body. The crosscut is

a two-sided surface. Experience in classical mechanics tells us that if we

wish to have this cut be an ideal surface and insure that nothing changes

in the remainder of the deformed body, we should add appropriate reaction

forces distributed over the cut. Here we encounter two questions: (1) Why

shouldn’t we add the distributed moments that act over the cut? (2) Why

shouldn’t we consider reactions other than those acting on the sides of

the cross section? In both cases the answer is the same: there is no logical

reason to ignore these possibilities. Moreover, there are different versions of

continuum mechanics in which reactions of these types are included (e.g.,

Cosserat mechanics). Thus, in making this assumption on the reaction,

Cauchy effectively introduced an axiom for continuum mechanics. Cauchy’s

version of the theory is typically used in engineering practice when dealing

with samples of metal, wood, etc, because it agrees with experimental data.

So we return to our development. Suppose n is the “exterior” unit normal

to one of the flat cross sections as shown in Fig. 3.11.

We denote the stress on this side of the cut as σn. The exterior unit

normal on the other side is −n, so we can define the corresponding stress on

it as σ−n. These quantities σn and σ−n act on an ideal elementary square

that offers no other type of resistance; its equilibrium is assured only if we
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Fig. 3.11 Stresses on the cross section.

suppose that

σn = −σ−n. (3.6.4)

In some books this equality is called Cauchy’s lemma.

Note that for a cut perpendicular to the xk-axis, for which the positive

direction gives the direction of the exterior normal, we will use the notation

σk for the stress.

Following Cauchy, we cut out a small upright pyramid in the deformed

body, three faces of which are parallel to the Cartesian coordinate planes;

the fourth is a plane with exterior unit normal n as shown in Fig. 3.12.

We will show that at point (x1, x2, x3), the vertex opposite side Sn, the

relation between the stresses is

σn = σ1n1 + σ2n2 + σ3n3, (3.6.5)

where n = (n1, n2, n3). Note that this represents a linear dependence n →
σn. This transformation can be represented by a matrix composed of the

components of σk. The vectors n and σn are defined uniquely; they must

not depend on the coordinate systems used in the spaces of vectors n and

σn. So this transformation, termed the stress tensor, must also be frame

independent. Also note that, unlike the objects of linear algebra, the matrix

components of the transformation have units.

We first apply the solidification principle to the pyramid. Under all the

forces applied, the pyramid is in equilibrium. On the face perpendicular to

the xk-axis the resultant reaction force is

[−σk(x1, x2, x3) − βk] mes(Sk),
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Fig. 3.12 Equilibrium of a pyramid in a deformed body. −σk is the vector-stress on
the upright sides perpendicular to the xk-axis, and σn is the vector-stress on the side
having normal n. F is the density of external forces acting on the pyramid.

where mes(Sk) is the area of face Sk and the vector βk (which depends on

Sk) tends to zero when mes(Sk) → 0. The negative sign is a consequence of

(3.6.4) and the fact that the unit normal of the face is opposite the direction

of the xk-axis. Similarly, the resultant stress on Sn is

[σn(x′1, x
′
2, x

′
3) + βn] mes(Sn),

where (x′1, x
′
2, x3) is a point of Sn and βn → 0 when mes(Sn) → 0. The

resultant of all other applied forces is proportional to the volume V of the

pyramid. These could include gravitational or electrostatic forces, as well

as inertia forces. So we believe that all these are given as

F = γV, (3.6.6)

where γ is bounded for all small V . The resultant of all the above forces,

by the solidification principle, must vanish:

[−σ1(x1, x2, x3) − β1] mes(S1) +

[−σ2(x1, x2, x3) − β2] mes(S2) +

[−σ3(x1, x2, x3) − β3] mes(S3) +

[σn(x′1, x
′
2, x

′
3) + βn] mes(Sn) + γV = 0.
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Dividing by mes(Sn) and taking into account that

mes(Sk)

mes(Sn)
= nk,

we get

[σn(x′1, x
′
2, x

′
3) + βn] = [σ1(x1, x2, x3) + β1]n1

+ [σ2(x1, x2, x3) + β2]n2

+ [σ3(x1, x2, x3) + β3]n3 − γ
V

mes(Sn)
.

Now we produce the limit passage when all sides of the pyramid tend to

zero proportionally so the direction of n does not change. We suppose, by

the continuum principle, continuity of all functions describing the stresses.

During the limit passage, (x′1, x
′
2, x

′
3) → (x1, x2, x3) for all points of V and

V/mes(Sn) → 0. By the properties of the vector-functions β, we come to

the relation (3.6.5).

So the stress vectors on three mutually orthogonal, infinitesimal, plane

areas at a point define the value of the stress on an infinitesimal plane of any

orientation at the same point. Each of the stress vectors σk can be repre-

sented in the Cartesian frame using three components σk = (σk1, σk2, σk3).

Hence the set of nine components σij uniquely defines the stress at a point

on an arbitrarily directed infinitesimal area. Note that we could have begun

with a pyramid in a non-Cartesian frame. The result would be the same:

some nine quantities — components — uniquely define the distribution of

stresses at the point. Evidently we have encountered an object whose prop-

erties differ from those of a force vector. It is called Cauchy’s stress tensor.

Now it is time to ask the following question.

Is continuum mechanics an exact mathematical science?

Yes and no. It is an exact science for the models it employs. But it is an

approximate science relative to the behavior of real bodies.

In constructing Cauchy’s stress tensor, we used a limiting process to

obtain the relation (3.6.5) between the stresses acting on infinitesimal areas

at a point. At this stage, many books on continuum mechanics contain

a discussion regarding the size of the elementary volume V at which we

should terminate the limit passage to obtain a reliable result; any body

has an atomic structure, and clearly we cannot say anything about the

results of the limit passage when V becomes less than the volume of a
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single atom. But such a procedure contradicts the very definition of limit:

while producing the limit as some quantity tends to zero, we cannot stop at

some nonzero finite stage and announce that we have completed the limit

passage. To use the tools of calculus, we must let V tend to zero without

restriction. We have done this above. We will encounter the same situation

in deriving the equations of equilibrium, the expressions for strains, etc. So

what do the equations we derive in continuum mechanics really mean?

Before answering this question we recall a few points from thermody-

namics. This science treats various aspects of heat transfer and the behavior

of bodies under heating, while trying to maintain the viewpoint that gases

and other objects consist of atoms and molecules in motion. Hence thermo-

dynamics is sometimes regarded as a simplified consequence of statistical

mechanics. In fact, however, this is not quite the case because statisti-

cal mechanics deals with models of gases which do not cover many of the

objects of thermodynamics.

But if thermodynamics is so regarded — i.e., as a very imperfect sci-

ence whose results should be proved by statistical mechanics — then why

is this not the case for continuum mechanics as well? Its objects of interest

also consist of moving atoms. The answer is simple: we have no analogue

of present-day statistical mechanics available to describe solids. Thus we

see textbooks present continuous mechanics as though it were an absolute

science like geometry or arithmetic. And this is correct in the same sense

that geometry provides a description of real objects. The main objects of

geometry — points, lines, and surfaces — do not exist in reality. The main

objects used in continuum mechanics are also “absolute,” but are approxi-

mate as representations of real bodies: we cannot talk about the stress on an

infinitesimal area that happens to be smaller than an atomic cross section.

So in continuum mechanics we deal with idealized objects. But continuum

bodies and their relations give us an approximation to phenomena on the

macro-level, when the atomic structure of materials can be neglected.

The stress tensor is an idealization: it is the result of some averaging

process for the “real” relations between atoms in a body. The same can be

said of all the tools and equations we encounter in continuum mechanics.

So the continuum mechanics we find in textbooks is a mathematical

science. In some ways it is no less abstract than geometry or arithmetic. It

is regarded as part of engineering only because engineers use it in practice.

It belongs to the portion of mathematics that considers idealized objects

subject to idealized relations.

One additional aspect is rarely mentioned. If continuum mechanics pro-
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vides only an approximation for real bodies, then is it not inexact? The

answer is “yes and no”. Continuum mechanics is exact in the way it treats

its own models, but these models are only approximate representations of

real objects. It is possible to construct finite models of deformable bodies in

which limit passages are not used, but which give us some approximations

to actual processes. In a certain sense such finite models can be considered

as independent models of mechanics even when they are constructed as

approximations to other models of continuum mechanics. This is the case,

for example, with various versions of the Finite Element Method. Such

finite approximations, being constructed with proper understanding, nor-

mally obey the main principles of continuum mechanics. The equations of

FEM, being a finite model of the deformation of a body, are not “worse”

and, in some situations, less exact than the boundary value problem based

on the “ideal” differential equations of continuum mechanics.

One consequence of this is the following. When mathematicians study a

numerical method for some application, they attempt to prove convergence

of the resulting approximations to the exact solution of the problem. If con-

vergence cannot be justified, the reason may be weakness in our technique

or simply bad properties of the approximate method. The logical equality

of infinitesimal and finite models for mechanical bodies means that each

model can be treated independently. If convergence can be justified, on the

other hand, then the method has nice properties. However, the question as

to which type of model is better — the infinitesimal or the finite — can be

answered only through engineering practice.

Before discussing the mechanical aspects of the stress tensor, we would

like to introduce tensors in general. We will encounter several of these in

our subject, and it will be helpful to understand the properties they share.

3.7 Vectors and Tensors

We have already discussed vectors in this book. It bears repeating that,

although the vectors we know from linear algebra reflect the properties

of forces, the sets of vectors from classical mechanics sometimes possess

additional properties. We must work carefully with such objects. For us, it

is essential to regard a vector as an “entity” that can be defined uniquely

through specification of its components in any particular coordinate frame.

Once its components are known in one frame, they can be calculated in any

other frame by certain well-defined rules.
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The same holds for tensors, which we will present in a more restrictive

way than is done in algebra. A main theme in our introduction of tensors

is that these entities are objective like vectors: that is, they do not depend

on the choice of basis. For example, second-rank tensors will represent

objective linear transformations between spaces of objective vectors, as was

the case for the stress tensor above. But we begin with a formal introduction

of the second-rank tensors and only later relate them to the set of linear

transformations between vectors. Our formal theory of tensors is based on

the three-dimensional Euclidean space of vectors (the discussion will hold

for two-dimensions as a special case). We then see how the object we have

called the “stress tensor” fits into this theory.

We start with the tensor product of two vectors a and b. Although

this is often denoted by a
⊗

b, we will write it simply as ab and call it

a dyad. Dyads are the simplest tensors of the second rank, and are such

that ab 6= ba if a 6= b. Now in the Euclidean space of vectors, there are

operations of addition and multiplication by a scalar α. We relate these to

the tensor product by requiring the following to hold:

(a + b)c = ac + bc, (3.7.1)

a(b + c) = ab + ac, (3.7.2)

α ab = (αa)b = a(αb). (3.7.3)

The reader can verify that if we consider each dyad as a vector (of another

space, not the initial three-dimensional Euclidean space) and introduce all

the possible algebraic sums of dyads

∑

k

αkakbk,

we arrive at a new linear space of vectors based on the initial three-

dimensional space. This is the space of second-rank tensors. It is easy

to see that it is nine-dimensional. Moreover, if (e1, e2, e3) is a basis for the

three-dimensional space, the set of nine dyads

{e1e1, e1e2, e1e3, e2e1, e2e2, e2e3, e3e1, e3e2, e3e3}

is a basis for the space of second-rank tensors. To represent a dyad ab with

respect to this basis, we can write

a =
∑

k

αkek, b =
∑

m

βmem,
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and use the above properties:

ab =

3
∑

k=1

3
∑

m=1

αkβmekem. (3.7.4)

So the component of the dyad ab corresponding to the dyad ekem is αkβm.

In the same manner, we can obtain the representation of any tensor A of

the new linear space by using the above basis of nine dyads:

A =

3
∑

k=1

3
∑

m=1

akmekem. (3.7.5)

The akm are called the components of A in the above basis. We can tabulate

these in a 3 × 3 matrix analogous to the component representation of a

vector. Tensors play a role in continuum mechanics similar to that played by

vectors in classical mechanics. They represent certain objective quantities

that do not depend on the choice of coordinate frame.

But if the new space is an ordinary vector space, why must we intro-

duce a new idea? The answer is that we wish to preserve the relationship

between the elements of the tensor space and the initial Euclidean space un-

der linear transformations of the coordinate frame of the Euclidean space.

The transformation (3.7.4) of a dyad shows that a linear transformation of

the coordinate frame leads to a nonlinear dependence on the coefficients of

the transformation in the components of a tensor. So the rules of transfor-

mation for tensors differ from the rules in ordinary nine-dimensional linear

space.

A second-rank tensor can be put in correspondence with a linear trans-

formation from one set of vectors to another. When both kinds of vectors

are objective — that is, do not depend on the bases of the spaces — so is the

transformation itself. As for the vectors, this allows us to find the relations

between the components of a tensor given in different bases. Objectivity is

a requirement for tensors of any rank.

It is worth noting that the matrix representation of a tensor allows us

to introduce other useful operations with tensors which correspond to the

product of matrices and to the product of a matrix by a vector. We will

identify a second-rank tensor with a linear transformation acting in three-

dimensional vector space. Moreover, the transformation rules for the tensor

components allow us to construct the operations in such a way that they

are preserved under transformations of the basis of the initial Euclidean

space.
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Thus our main question is as follows. Suppose a tensor is an objective

entity. Given its components with respect to one basis, and given the law

describing transformation of bases from one frame to the next, what are its

components with respect to a new basis?

Suppose two bases e1, e2, e3 and e′1, e
′
2, e

′
3 are linearly related through

the formulas

ek =

3
∑

m=1

Am
k e′m. (3.7.6)

In the first basis a tensor has the representation

A =

3
∑

t,s=1

αtsetes.

By (3.7.6) we obtain

A =
3
∑

t,s=1

αts
3
∑

m=1

Am
t e′m

3
∑

n=1

An
s e′n =

3
∑

m,n=1

( 3
∑

t,s=1

αtsAm
t A

n
s

)

e′me′n.

So the components αmn′ of A in the new basis {e′
me′n} are

αmn′ =

3
∑

t,s=1

αtsAm
t A

n
s

and

A =

3
∑

t,s=1

αtsetes =

3
∑

m,n=1

αmn′e′me′n.

The dependence between the components of A in the two bases is

quadratic with respect to the transformation coefficients Aj
i . This differs

from the formal linear transformations of the nine-dimensional tensor space,

which are considered in the theory of vector spaces.

The components of a tensor with respect to a given basis can be repre-

sented as a 3× 3 matrix. In linear algebra, a matrix represents some linear

transformation (operator) of the vector space in a fixed basis. A change of

basis of the space is given by a transformation of the type (3.7.6), which

can also be represented by a 3× 3 matrix. The components of the operator

transform by the same formulas as the components of the tensor above. So

between the set of linear operators over three-dimensional Euclidean space

and the set of tensors as introduced above there is a one-to-one correspon-

dence, and the components of a second-rank tensor in some basis constitute



December 24, 2008 10:59 World Scientific Book - 9in x 6in elasticity

192 Introduction to Mathematical Elasticity

the matrix representation of a linear operator in the same basis. It follows

that we can use matrix and tensor techniques interchangeably if we intro-

duce the latter while preserving the correspondence in such operations as

matrix multiplication. We saw this for the stress tensor. Although (3.6.5)

was derived using a Cartesian basis, we will use it with an arbitrary basis

in R3 that makes sense in continuum mechanics.

Before introducing the tensor apparatus, let us note a few peculiarities

in the notation. First, the reader has noted our use of both superscripts

and subscripts. In a three-dimensional space we normally introduce a dual

basis along with any given basis. Its basis vectors, denoted by em, satisfy

two properties:

(1) em is orthogonal to the two vectors ei and ej (for i 6= j and i, j 6= m);

(2) the length of em is such that em · em = 1.

Exercise 3.7.1. Prove that such a basis exists.

Any vector

x =

3
∑

i=1

αiei

can be represented using the dual basis: i.e., as

x =

3
∑

i=1

αie
i.

The same holds for a tensor A, which can be represented as

A =

3
∑

i,j=1

αijeiej =

3
∑

i,j=1

αije
iej =

3
∑

i,j=1

αi
·jeie

j =

3
∑

i,j=1

α·j
i eiej .

So for each basis e1, e2, e3 we will use four kinds of dyads.

The use of both superscripts and subscripts provides a convenient for-

malism and a way to avoid calculation errors. All the indices (in both

vectorial and tensorial formulas) come in pairs; note how they occur above:

when we have to carry out a summation, they necessarily are one-up and

one-down. The superscripted components αi, αij are called contravariant,

while the subscripted components are called covariant. The components

α·j
i and αi

·j are said to be mixed. Note that for the mixed components we

insert a dot to avoid ambiguity in the order of indices.
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Another formalism is Einstein’s rule for summation over repeated in-

dices: when an index is repeated, once as a subscript and once as a su-

perscript, summation over that index is understood and the summation

symbol is omitted. Using this, the examples above can be written as

αiei =

3
∑

i=1

αie
i, αijeiej = αije

iej = αi
·jeie

j = α·j
i eiej .

Exercise 3.7.2. Prove that the dual to the dual basis is the initial basis,

so the duality is mutual.

We can introduce the dual basis algebraically and then verify its prop-

erties. For this we introduce the metric coefficients of the space:

gij = ei · ej . (3.7.7)

As e1, e2, e3 are linearly independent, we have det(gij) 6= 0; hence the

matrix (gij) has an inverse whose components we denote by gij . The vectors

of the dual basis are given by the relation

ei = gijej . (3.7.8)

Exercise 3.7.3. Verify this.

Exercise 3.7.4. Prove that

gij = ei · ej . (3.7.9)

The dual basis can help us assign a meaning to the dot product of a

tensor with a vector. This provides a way to relate the tensor with a linear

operator. We begin by defining the dot product of a dyad with a vector:

(ab) · c = a(b · c). (3.7.10)

The result is a vector a multiplied by a numerical factor b · c. Similarly,

we define

a · (bc) = (a · b)c. (3.7.11)

So the dot product is defined in such a way that one must dot multiply the

two vectors nearest the dot symbol. When we apply the dot product to two

dyads, we must retain the order of the vectors left outside the dot product:

(ab) · (cd) = (b · c)ad.

The result is a dyad ad with numerical coefficient b · c.
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We have extended the notion of dot product so that familiar properties

are preserved. We have, for example, the distributive property

a(b + c) · d = a(b · d) + a(c · d). (3.7.12)

This lets us introduce the dot product between a vector and an arbitrary

tensor, or between two arbitrary tensors. The dot product is introduced so

that it mimics matrix multiplication. We formulate this as an exercise.

Exercise 3.7.5. Let i1, i2, i3 be an orthonormal basis. (a) Show that the

basis is self-dual. (b) Show that the dot product between a tensor A = αij iiij
and a vector b = βkik is given by

∑3
j=1 α

ijβjij. (c) Show that the product

of the matrix (αij) and a column vector (β1, β2, β3)T yields a vector with the

same components as in part (b). (d) What is the correspondence between

a vector-matrix product and the dot product of a vector by a tensor from

the left? (e) A tensor is the dot product of two tensors. Show that its

components in this basis can be obtained by the corresponding product of

two matrices that represent each of the tensors in this basis.

This clear correspondence between tensor and matrix operations can

fail if the basis is not orthonormal. In this case, if we wish to preserve

matrix-vector manipulations with the components, we should express one

factor in terms of the given basis and the other in terms of the dual basis.

This is based on the relation ei · ej = δi
j , which defines the dual basis.

Exercise 3.7.6. Repeat the previous exercise for an arbitrary basis. Note

that when we use only covariant components or contravariant components

for the tensors, the formulas for their dot products differ from those obtained

by multiplication of the corresponding matrices: they contain gij or gij .

Only for mixed bases do we get complete correspondence with the formulas

of matrix multiplication.

We could also ask which tensors correspond to the zero and unit oper-

ators in a linear space. The zero tensor is simply the tensor whose com-

ponents in any basis are zero. The situation with the unit tensor is not as

obvious. The tensor

A0 = e1e1 + e2e2 + e3e3,

which corresponds to the unit matrix, does not correspond to the unit oper-

ator; indeed, the reader can verify that only in a Cartesian basis (e1, e2, e3)

do we have B ·A0 = B for any tensor B. In what basis does the unit tensor

correspond to the unit matrix? It turns out to be the mixed basis, where
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the unit tensor can be represented as E = eiei. The reader should verify

that

E = eiei = eie
i = gijeiej = gije

iej . (3.7.13)

The metric tensor E plays the role of the unit tensor in the space of tensors:

A · E = E ·A = A. (3.7.14)

Exercise 3.7.7. Verify this fact as well.

Let us show how to find vector or tensor components using the duality

of the bases. For a vector we have

a · ek = αiei · ek = αiδk
i = αk . (3.7.15)

Similarly,

a · ek = αk. (3.7.16)

We will also have occasion to employ double-dot products. For a tensor

A and a dyad eiej , we define

A ·· eiej = αij . (3.7.17)

To carry out a double-dot product between higher-order tensors, we (1) dot

multiply the two vectors nearest the dot, and then (2) repeat for the two

remaining vectors. The result is a product of two scalars. For example, if

we double-dot multiply two dyads ab and cd, we obtain

ab ·· cd = (b · c)(a · d).

Since any tensor can be expand into dyads, this example will suffice for our

purposes.

The metric tensor is symmetric: its components do not change when the

indices are swapped. In matrix theory this operation is called transposition.

It looks like

ET =
(

gijeiej

)T
= gjieiej .

But in general, tensors are not symmetric: AT 6= A.

We have covered only a small portion of tensor analysis. The reader

should consult more specialized sources (e.g., [Lebedev and Cloud (2003)])

for additional information. We could add, however, that higher-order ten-

sors can be introduced in the same manner. We will use the tensor of elastic

moduli {cijkl}, which is a fourth-rank tensor. Construction of such tensors

starts with tensor products of four vectors abcd, and parallels our devel-

opment for second-rank tensors. Results for the dot product operation are

similar as well.
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3.8 The Cauchy Stress Tensor, Continued

Now we can introduce Cauchy’s stress tensor. It is a second-rank tensor

given in terms of the Cartesian unit basis (i1, i2, i3) by

σ = i1σ1 + i2σ2 + i3σ3

= σ11i1i1 + σ12i1i2 + σ13i1i3

+ σ21i2i1 + σ22i2i2 + σ23i2i3

+ σ31i3i1 + σ33i3i2 + σ33i3i3. (3.8.1)

Here we can use superscripts and subscripts interchangeably because the

Cartesian basis is self-dual. When changing frames, however, we must

carefully use the index conventions.

Note that (3.6.5) can be written as

σn = n · σ. (3.8.2)

An important point of tensor theory, often used but seldom stated clearly,
is this:

A formula derived in one coordinate frame but then presented in non-
component form remains valid in any frame.

Equation (3.8.2) was derived in a Cartesian frame, but holds in any frame.

Let us return to the problem of equilibrium. By the solidification prin-

ciple, we have used only the equation for the resultant force. The equation

for the resultant moment remains. The reader should pause to solve

Exercise 3.8.1. Isolate a small cube in the deformed body. Consider the

equilibrium equation for the moments of the external forces and the reac-

tions of the cut part as was done for the pyramid. Write out the projections

of the resultant moment, taken with respect to the center point of the cube,

onto the axes. Produce the limit passage as the side of the cube tends to zero

and the cube contracts down to its center. Show that each limit equation

yields one equation of the following set: σ12 = σ21, σ13 = σ31, σ23 = σ32.

The result of the exercise can be rewritten as

σT = σ. (3.8.3)

Again, we have derived the symmetry property (3.8.3) in a Cartesian frame.

But it holds for any frame, and also takes the same form in any frame:

σij = σji, σij = σji. (3.8.4)
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Exercise 3.8.2. Write out the symmetry equations for the mixed compo-

nents of σ.

So σ is a symmetric tensor. It follows that only six of its components

are independent.

Let us return to the problem of stress distribution at a point. Pascal’s

law for a liquid in equilibrium states that the pressure at a point does

not depend on the orientation. Implicit in this formulation is the fact

that the pressure in a liquid or gas corresponds to a force that is always

perpendicular to the infinitesimal plane area. This is not the case with a

moving, nonideal liquid having viscosity. It is clear that we cannot expect

such a distribution of stresses at a point in a solid body. What then is the

simplest way to represent this distribution in a solid? The answer is this:

at any point, there are three mutually orthogonal directions that define three

mutually orthogonal plane infinitesimal areas at which the stress vector is

normal to the area element. For a liquid in equilibrium there are infinitely

many such directions.

The proof is simple. The fact that the stress vector is orthogonal to

the infinitesimal area with unit normal n is expressed as σn = pn, where

p gives the value of the stress vector. Using the representation formula for

σn, which by the symmetry of σ can be rewritten as

σn = σ · n, (3.8.5)

we have

σ · n = pn. (3.8.6)

But there is a one-to-one correspondence between the set of all tensors over

R3 and the set of linear operators on it. Any fact for operators can be

restated for tensors and vice versa. What does (3.8.6) mean in terms of

an operator corresponding to σ? It means that n is an eigenvector of the

operator and p is the corresponding eigenvalue. Now we use a fact about

symmetrical operators from linear algebra. It states exactly what we for-

mulated above for the stress tensor: there are three mutually orthonormal

vectors, nk for k = 1, 2, 3, the eigenvectors of the operator. These are

the needed normals to the infinitesimal areas on which the stress vector is

proportional to the normal. Linear algebra states a bit more: the corre-

sponding eigenvalues pk are all real; furthermore, when they are distinct

there are only three such directions. If the pk include repeated values, then

there are infinitely many such mutually orthonormal directions.
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Exercise 3.8.3. Show that in the frame composed of its eigenvectors, σ is

represented as σ = p1n1n1 + p2n2n2 + p3n3n3.

In continuum mechanics eigenvalues and eigenvectors are called, respec-

tively, the principal stresses and principal axes for the stress tensor at a

point. This is explained by the fact that the eigenvalues of a symmetric

tensor have extremal properties. One of these may be stated in terms of

stresses as

|σn| ≤ max{|p1|, |p2|, |p3|}
for any direction n.

We shall not elaborate on this or similar statements. We should note,

however, the mechanical meaning of the property discussed above. The de-

formed state at any point of a solid body can be achieved by three simple

stretching or compressing actions along three mutually orthogonal direc-

tions. Because these directions change from point to point, the viewpoint

has practical importance only if the body under consideration (or some por-

tion of it) is homogeneously deformed. Nonetheless, the principal stresses

play an important role in many theories of the strength of materials and

structures.

Knowledge of stress distribution at a point is important but insufficient

to uniquely determine the stress field in a body under load. First, we

should derive the equations of equilibrium. Since we have already used

the equilibrium equations for an infinitesimal volume on the basis of the

solidification principle, it might be surprising that we can still obtain three

more equations from it. When we showed how to derive the relation for σn,

we — roughly speaking — approximated the equilibrium equations for an

elementary volume to zero order. To obtain differential equations governing

the stress tensor, we must approximate the equilibrium equations to higher

order. Cauchy considered the equilibrium of a rectangular parallelepiped

with faces parallel to the Cartesian coordinate planes. The parallelepiped

is cut from the deformed body; for this reason, in addition to the external

forces acting on the parallelepiped, we must include the reactions of the

rest of the body that act on the faces. Cauchy’s approximation of these

reactions essentially involved two terms of Taylor’s formula, which in one

dimension looks like

σ(x + δx) ≈ σ(x) + σ′(x) δx.

Cauchy obtained three differential equations in this way, but we wish

to derive them in a slightly different manner. We will use the formula for
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integration by parts in three dimensions:
∫∫∫

V

∂f

∂xk
dx1 dx2 dx3 =

∫∫

S

fnk dS. (3.8.7)

Here S is the surface bounding a volume V in space, n is the outward unit

normal at a point of S, ik is the unit vector along the xk-axis, and nk = n·ik
is the cosine of the angle between n and the xk-axis.

Let us isolate a small volume V , having surface S, within the deformed

body. By the solidification principle, the volume should be in equilibrium

as a rigid body under the action of all external forces. These include the

reaction forces which, at each point of the surface, are given by (3.8.5).

Recall that σn = σ · n. Equating the resultant force to zero, we obtain
∫∫

S

σ · n dS +

∫∫∫

V

F dx1 dx2 dx3 = 0 (3.8.8)

where F is the density of external forces at a point of V . Using

n =

3
∑

k=1

nkik,

and (3.8.7), we write the first integral as

∫∫

S

σ · n dS =

∫∫

S

σ ·
3
∑

k=1

nkik dS

=

3
∑

k=1

∫∫

S

σnk dS · ik

=

3
∑

k=1

∫∫∫

V

∂σ

∂xk
dx1 dx2 dx3 · ik.

Hence (3.8.8) takes the form

∫∫∫

V

( 3
∑

k=1

∂σ

∂xk
· ik + F

)

dx1 dx2 dx3 = 0. (3.8.9)

We assume the integrand is continuous. Since (3.8.9) holds for any V , the

integrand is zero:

3
∑

k=1

∂σ

∂xk
· ik + F = 0. (3.8.10)
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We differentiated σ while assuming it is written in a fixed Cartesian frame

so that only its components can depend on the coordinates xk. Using

3
∑

k=1

∂σ

∂xk
· ik =

3
∑

k=1

∂(σij iiij)

∂xk
· ik =

3
∑

k=1

∂σik

∂xk
ii =

∂σik

∂xk
ii,

we can rewrite (3.8.10) in component form:

∂σ11

∂x1
+
∂σ12

∂x2
+
∂σ13

∂x3
+ F 1 = 0,

∂σ21

∂x1
+
∂σ22

∂x2
+
∂σ23

∂x3
+ F 2 = 0,

∂σ31

∂x1
+
∂σ32

∂x2
+
∂σ33

∂x3
+ F 3 = 0. (3.8.11)

This system could be obtained by applying the equilibrium equation for

forces to an elementary (infinitesimal) parallelepiped. Surprisingly, the

equation for the resultant moment yields only the symmetry of σ.

We can write the same equilibrium equations in non-component form.

The reader is aware of the formal vector-operator

∇ = i1
∂

∂x1
+ i2

∂

∂x2
+ i3

∂

∂x3
. (3.8.12)

The formal dot product ∇ · σ is

∇ · σ =

(

i1
∂

∂x1
+ i2

∂

∂x2
+ i3

∂

∂x3

)

· σij iiij =
∂σij

∂xi
ij =

∂σji

∂xi
ij

by the symmetry of σ. So the equilibrium equation can be written as

∇ · σ + F = 0. (3.8.13)

Later we will discuss how to define ∇ to preserve (3.8.13) in curvilinear

coordinates.

Hence we have obtained two forms of the equilibrium equations for a de-

formed body: (3.8.11) and (3.8.13). They represent three linear equations

in the six independent components σij , and our experience with linear alge-

bra suggests they cannot determine these unknowns uniquely. Additional

equations, known as constitutive relations, will characterize the material

properties by relating the stress tensor to the deformational characteristics

(normally described by the strain tensor). In this book we shall use an

extension of Hooke’s law to three dimensions.

Before proceeding there is something we should consider. We have ob-

tained the equations of equilibrium. But these equations, and the stress
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tensor itself, are written in the deformed state of the body. In solving a

problem, we normally begin with the undeformed body; we cannot know

the deformations (i.e., the final state of the body) in advance. So given the

initial state of the body, we must recalculate everything with regard for the

deformation (which would be found from the solution). This leads us to

nonlinear equilibrium equations. But nonlinear equations are notoriously

hard to solve, and we cannot envision Cauchy’s contemporaries having much

success with this approach. In fact, they understood that the deformations

of solids in normal working ranges are quite small. So their approach was

to assume that the equilibrium equations and stress tensor are written as

if the body were not deformed. We might regard this as a “linearization”

process. The result is an approximation to the exact relations of continuum

mechanics. Experience shows that it works well for engineering purposes.

Of course, a mathematician would prefer to write down the exact relations

and then estimate the difference between the “exact” and approximate so-

lutions. But this was never done. Nonlinear problems are difficult, and for

real engineering problems the most we can expect is to find some numer-

ical solutions, which are approximate themselves. It is doubtful that, in

the near future at least, we will see an analytical comparison between the

solutions of nonlinear and linearized versions of the equations for the more

difficult problems of mechanics.

It follows that without some discussion we cannot directly apply

d’Alembert’s principle and write down the dynamical equations for the

body. Indeed, if the deformation develops over time, we cannot use the

same fixed volume — consisting of the same points — at different time

instants. Some points would have left the volume and others would have

entered. We cannot add the inertial forces to the external forces, because

different instants of time enter the definition of the temporal derivative.

This situation can be remedied, but it does lead us to consider how we can

and should describe the spatiotemporal state of a body. The two main ap-

proaches are named for Lagrange and Euler, respectively. We will discuss

them later.

Now we wish to discuss some additional technical points. We have

written down the derivatives of the stress tensor. When considered in a

Cartesian frame, this amounts to merely differentiating the components of

the tensor. In mechanics, however, curvilinear coordinates are often used.

In order to properly apply the formulas of calculus in curvilinear systems,

we must cover some facts from differential geometry.
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3.9 Basic Tensor Calculus in Curvilinear Coordinates

Differentiating a vector-function fkek with respect to xi and assuming the

basis vectors ek are constants, we obtain

∂fk

∂xi
ek.

If the ek also depend on xi, we must apply an analogue of the product rule:

∂(fkek)

∂xi
=
∂fk

∂xi
ek + fk ∂ek

∂xi
. (3.9.1)

We need expressions for the derivatives of the basis vectors. These are

clearly needed to differentiate tensors as well. Before addressing this issue,

however, we would like to show how a basis may be introduced in curvilinear

coordinates. Books on continuum mechanics normally relegate such mate-

rial to an appendix. Although the reader may be familiar with differential

geometry, our presentation will suppose only a knowledge of calculus.

We begin by choosing an origin 0 in a three-dimensional space. The

position of any other point is determined by a radius vector r from 0 to this

point. When a Cartesian frame is given, we can represent r = (x1, x2, x3)

using the Cartesian coordinates of the point. However, we can assume

the coordinates of the point are determined through three other quantities

q1, q2, q3. Then the xk become functions of the qi:

xk = xk(q1, q2, q3) (k = 1, 2, 3). (3.9.2)

These functions must be invertible in some region so that

qj = qj(x1, x2, x3) (j = 1, 2, 3). (3.9.3)

We call q1, q2, q3 curvilinear coordinates in space. Cylindrical and spherical

coordinates are familiar examples. In each of these there are points (like a

“pole”) where the one-to-one correspondence between coordinates fails. At

such points, differential operators typically have singularities. They seldom

cause trouble with basic manipulations, however.

So we assume the radius vector of a point is defined by the curvilinear

coordinates (q1, q2, q3). Using these, we can introduce three vectors that

serve as a local basis at the point. We denote the components of this basis

by rk:

rk =
∂r

∂qk
. (3.9.4)
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Here the index k in qk should be regarded as a subscript for purposes of

the summation convention. We can easily assign a geometric meaning to

rk. For example, to derive r1 at a point (q10 , q
2
0 , q

3
0), we must fix the two

other coordinates q2 = q20 and q3 = q30 . The end of the radius vector

r = r(q10 , q
2
0 , q

3
0) describes a curve in space as q1 changes. The difference

r(q10 + δq1, q20 , q
3
0) − r(q10 , q

2
0 , q

3
0)

is the vector-chord connecting the points (q1
0 , q

2
0 , q

3
0) and (q10 + δq1, q20 , q

3
0).

A similar structure is used to define the tangent to a curve in calculus.

Indeed, the derivative

r1 = lim
δq1→0

r(q10 + δq1, q20 , q
3
0) − r(q10 , q

2
0 , q

3
0)

δq1

is a vector tangent to the q1-line at the point (q10 , q
2
0 , q

3
0). Similarly, rk is

tangent to the qk-line.

When the Jacobian of the transformation (3.9.3) is not zero, we obtain

a basis r1, r2, r3 which, in general, will change from point to point. We

introduce the dual basis r1, r2, r3 by the relations

ri · rj = δj
i . (3.9.5)

In general the rj also depend on the coordinates qi.

Now any vector or tensor field in space can be represented in terms of

the two bases. One such tensor field is the metric tensor

gijrirj = gijr
irj = δj

i r
irj , (3.9.6)

where gij = ri · rj and gij = ri · rj .

Exercise 3.9.1. Prove that the matrices (gij) and (gij) are mutually in-

verse.

We can represent a given vector-function in terms of the above bases:

f = f iri = fjr
j . (3.9.7)

Here each component and each basis vector can depend on the qi. Consider

the derivative

∂f

∂qj
=
∂(f iri)

∂qj
=
∂f i

∂qj
ri + f i ∂ri

∂qj
. (3.9.8)

The last term contains the derivative of the basis vectors. The derivative of

a vector is a vector as well. Since r1, r2, r3 constitute a basis at each point
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in space, any vector can be written in terms of this basis. We write

∂ri

∂qj
= Γk

ijrk (3.9.9)

where the Γk
ij are Christoffel’s symbols of the second kind. They have certain

symmetries with respect to the indices (Γk
ij = Γk

ji) and can be expressed in

terms of the components of the metric tensor. A similar development may

be carried out for expansion in terms of the dual basis.

Exercise 3.9.2. For the cylindrical and spherical coordinate systems, de-

rive expressions for the components of the metric tensor and Christoffel’s

symbols.

Returning to the derivative of f , we have

∂f

∂qj
=
∂f i

∂qj
ri + f iΓk

ijrk =
∂f i

∂qj
ri + fkΓi

kjri =

(

∂f i

∂qj
+ fkΓi

kj

)

ri.

The expression in parentheses is called the covariant (or absolute) derivative

of the contravariant component of f , and we write

∇jf
i =

∂f i

∂qj
+ Γi

kjf
k. (3.9.10)

Similarly, the covariant derivative of the covariant component of f is

∇jfi =
∂fi

∂qj
− Γk

ijfk. (3.9.11)

We have

∂f

∂qj
= ∇jf

iri = ∇jfir
i (3.9.12)

(cf., [Lebedev and Cloud (2003), § 4.6]). In the same manner we can obtain

the derivatives of a tensor-function with respect to qk:

∂

∂qk
A = ∇ka

ijrirj , ∇ka
ij =

∂aij

∂qk
+ Γi

ksa
sj + Γj

ksa
is. (3.9.13)

In § 3.8 we introduced the ∇-operator in a Cartesian frame. To express

it in curvilinear coordinates, we begin with the first differential of a scalar

function F depending on q1, q2, q3:

dF =
∂F

∂qi
dqi.

Let us represent it using the differential of the radius vector r, which is

dr =
∂r

∂qi
dqi.
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We shall use the formula

dF = ∇F · dr,
which becomes evident when written in a Cartesian frame:

dF = ∇F · ∂r
∂qi

dqi = ∇F · ridq
i.

Because we can obtain this formally by putting

∇F = rk ∂F

∂qk
,

the ∇-operator is defined as

∇ = rk ∂

∂qk
. (3.9.14)

It is also known as the gradient. It is a formal vector that can be applied

to a vector,

∇f = rk ∂f

∂qk
, (3.9.15)

and to a second-rank tensor:

∇A = rk ∂A

∂qk
. (3.9.16)

Clearly ∇f is a second-rank tensor, while ∇A is a third-rank tensor.

The ∇-operator plays an essential role in what follows. For example,

we derive an important formula

g = ∇r = rk ∂r

∂qk
= rkrk. (3.9.17)

Comparing this with the representation of the metric tensor in terms of the

basis {ek}, we see that g is the metric tensor for the basis {rk}. So we can

represent it in any of the forms

g = rkrk = rkr
k = gijrirj = gijr

irj , (3.9.18)

where gij = ri · rj and gij = ri · rj . Recall that the metric tensor plays the

role of the unit element in the space of second-rank tensors: that is, for any

tensor A we have

A = A · g = g ·A. (3.9.19)

We can also introduce a formal dot product of the ∇-operator with a

vector a or tensor A. Known as divergence operations, these are given by

∇ · a = rk · ∂a
∂qk

, ∇ · A = rk · ∂A
∂qk

. (3.9.20)
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The differential of a vector-function f , given by

df = dr · ∇f = (∇f)
T · dr, (3.9.21)

plays an important role in the theory of deformation.

We shall use the following version of Green’s formula, which we have

derived in a Cartesian frame:
∫

S

n · f dS =

∫

V

∇ · f dV, (3.9.22)

where f is a vector-function and S is the boundary of the volume V .

We leave the derivation of several analogues of the product rule for

differentiation as

Exercise 3.9.3. Let a and b be vectors and A a second-rank tensor. Prove

the following formulas:

∇ · (ab) = b(∇ · a) + a · (∇b),

∇(a · b) = (∇a) · b + (∇b) · a,
∇ · (A · a) = a · (∇ ·A) + A ·· (∇a)T

= (∇ · A) · a + AT ·· (∇a).

For a second-rank tensor A = aijeiej we will need something analogous

to the squared magnitude of a vector. It is

A ··AT = aijeiej ·· akmemek = aijakmgjmgik = aijaij . (3.9.23)

The following characteristic of a transformation f = f(r) at a point will

be useful:

N =
(

∇f ··∇fT
)1/2

. (3.9.24)

In Cartesian coordinates this looks like

N =





3
∑

i,j=1

(

∂fi

∂xj

)2




1/2

. (3.9.25)

It can be viewed as a norm of the Jacobian matrix for the transformation

f .
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3.10 Euler and Lagrange Descriptions of Continua

The stress tensor and equilibrium equations cannot completely specify the

state of a medium; we must also describe any motion that takes place.

In mechanics, the two principal descriptions of motion are the Eulerian

description and the Lagrangian description (although both were known to

Euler). These are intimately related, of course, and full knowledge of one

should enable us to obtain the other. But each has advantages depending

on the situation.

In the Lagrangian description, the medium points themselves serve as

“coordinates”; that is, each individual material point (volume element)

receives a label which it retains throughout its motion. Normally the as-

signment of such labels is done in terms of some initial state of the medium.

We might, for example, label a given material point with the Cartesian co-

ordinates (x1, x2, x3) of the spatial point that it happens to occupy in the

initial, undeformed state of the medium. This material point carries the

“coordinate” label (x1, x2, x3) for all subsequent times as well. If the mo-

tion involves deformation, then such coordinates will cease to be Cartesian:

initially straight coordinate lines will become curvilinear, and at each point

and fixed time instant we will obtain a local, natural basis related to the

coordinates in precisely the manner discussed near the beginning of § 3.9.

The basis changes with time, and its “origin” moves through absolute space

since it is attached to a moving material point. In this description the mass

of any fixed “volume” in the coordinates (x1, x2, x3) remains the same; the

density of the material, however, can change. Since the main volume forces

applied to the material — such as the gravitational or inertial forces — are

proportional to the density ρ of the material at a point, they are normally

written out as F = ρK. Because the reference “coordinates” of the mass

points of the medium could be chosen in any way, possibly not even con-

nected with some real spatial coordinates, the coordinate space may possess

rather strange properties.

The Lagrangian description is often convenient for theoretical develop-

ments. It can be used to derive general statements of the conservation

laws, for example. This is so because with any fixed “volume” of mate-

rial in terms of Lagrange’s coordinates, we watch the same points over

time. From the equilibrium equations in Lagrangian coordinates, we can

write down the dynamical equations immediately using d’Alembert’s prin-

ciple. The Lagrangian approach ideally fits the tools we derived earlier: the

Cauchy stress tensor and the equilibrium equations.
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The Lagrangian approach is also taken in the linearized theories of

solids, where deformations are assumed small. In fact the strains are also

assumed small (we could say “infinitesimal”, but subsequently the equa-

tions are applied to problems with finite strains). As a result we identify

the material points with their initial positions. But, unlike the nonlinear

theory, we imagine the deformation occurring in such a manner that the

material points do not change their positions; the displacements and defor-

mations constitute a sort of “cartoon ghost” picture distributed over the

media. In this case we observe displacements under loading, but do not

suppose them to affect the positions and the values of external forces (as

does happen in nonlinear theories).

The Eulerian description is used for media where displacements may be

large and material points may travel over long distances. This is the case for

the motion of water in a river. For problems involving gases and liquids, our

interest centers on what happens at a certain point in space. It is clear that

such a fixed spatial point may be occupied by a different material point at

each successive time instant. Hence the techniques required to implement

the Eulerian and Lagrangian approaches differ. But they are equivalent,

and we can always choose the best one for the situation at hand.

In summary then, the two approaches differ in the coordinates we use

to describe the medium. In the Lagrangian approach, we use coordinates

“rigidly” attached to material points — the coordinates of a certain par-

ticle do not change during deformation. In the Eulerian approach, the

coordinates are attached to spatial points.

3.11 Strain Tensors

We have considered the one-dimensional version of a bar under tension.

Placing the bar along the x-axis and denoting by u = u(x) the displacement

of a point x on its centerline, we have seen that the strain is given by the

derivative du/dx. We would like to extend this to three dimensions. We

begin by introducing three-dimensional strains for small deformations, as

occurred historically in elasticity theory. In three dimensions, an analogue

of the first derivative is the gradient of the displacement vector. Let us

introduce this quantity next.

As the reference frame for a continuum medium, we choose Cartesian

coordinates erected in the undeformed state of the medium. Hence we

introduce an orthonormal basis i1, i2, i3. This basis and its dual may be used
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interchangeably since ik = ik. We describe deformation using Lagrange’s

approach.

After deformation, a point characterized by the position vector r = xki
k

moves to the spatial point whose position vector is R. The displacement

vector

u = R− r (3.11.1)

describes how the point shifts during deformation. Since we accept

(x1, x2, x3) as the coordinates of the point after deformation, the compo-

nents of u = uii
i must depend on the coordinates of the point. That is, the

uj are functions of the coordinates:

ui = ui(x1, x2, x3). (3.11.2)

We take these to be sufficiently smooth and, in particular, continuously

differentiable at each point of the medium. Then the gradient of the dis-

placement field is, by definition,

∇u = ij
∂

∂xj
uii

i =
∂ui

∂xj
ijii. (3.11.3)

The components of the gradient contain all first partial derivatives of the

ui. So the tensor ∇u is nonzero unless u is constant. However, we need

a characteristic of the deformation itself. This means we expect this char-

acteristic to be zero when the medium moves as a rigid body. But in this

case for the gradient we get nonzero values. Therefore we must introduce

another characteristic. In linear algebra, any operator can be represented

as a sum of symmetric and skew-symmetric operators. This is done by a

simple transformation, which we apply to ∇u:

∇u =
1

2
(∇u + ∇uT ) +

1

2
(∇u − ∇uT ). (3.11.4)

The first addend, which we define as

ε =
1

2
(∇u + ∇uT ) (3.11.5)

and call the strain tensor of small deformation, is symmetric. The tensor

described by the second addend is skew-symmetric.
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Let us consider some properties of ε. Its components are

ε11 =
∂u1

∂x1
, ε12 =

1

2

(

∂u1

∂x2
+
∂u2

∂x1

)

, ε13 =
1

2

(

∂u1

∂x3
+
∂u3

∂x1

)

,

ε21 =
1

2

(

∂u2

∂x1
+
∂u1

∂x2

)

, ε22 =
∂u2

∂x2
, ε23 =

1

2

(

∂u2

∂x3
+
∂u3

∂x2

)

,

ε31 =
1

2

(

∂u3

∂x1
+
∂u1

∂x3

)

, ε32 =
1

2

(

∂u3

∂x2
+
∂u2

∂x3

)

, ε33 =
∂u3

∂x3
.

Only six of these are independent because ε12 = ε21, ε13 = ε31, and ε23 =

ε32. At times we may wish to explicitly show the displacement field v for

which ε is written out. Then we will write

ε = ε(v) = ε(v(x1, x2, x3)) = εij(v)iiij .

We begin to study the properties of ε with

Exercise 3.11.1. Prove that for u0 = a + b × r with constant vectors a

and b, we have ε(u0) = 0.

By this exercise, the general form of the solution of the equation ε = 0

is

u0 = a + b× r.

We call u0 an infinitesimal (or small) rigid motion of the body. We will

use the terms “infinitesimal” and “small” interchangeably. “Infinitesimal”

refers to the way in which u0 can be derived from the formula for the

displacements of the body if it moves as a rigid whole in space: we should

suppose that the rigid displacement is infinitesimal and take into account

only terms of the first order of smallness.

From classical mechanics we know that the infinitesimal displacement

vector for a rigid body takes the general form of u0. So ε, which is linear

in the components of the displacement vector, does not change if we add

any u0 to a displacement field u:

ε(u + u0) = ε(u).

Hence the linear strain tensor of small deformation does not depend on

infinitesimal rigid-body motions of the medium.

Now let us examine the components of ε under certain special defor-

mations. First we stretch the medium uniformly along the xi-direction.

The corresponding displacement vector ui has only one nonzero compo-

nent: that having subscript i, which is cxi where c is a constant. The only
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nonzero component of ε is εii = ∂ui/∂xi = c. This value of strain exactly

matches that in a stretched bar; in this case the displacement is cxi.

Next we consider a skew-type displacement. A pure shear deformation is

characterized by a displacement vector having just one nonzero component

given by ui = γxj , where γ is a constant and j 6= i. It is clear that the

only nonzero components of ε are εij = εji = 1
2γ. For small values, γ is

approximately equal to the inclination angle of the xj -axis (Fig. 3.13).

Fig. 3.13 Pure shear in the medium in the (xi, xj) plane: ui = γxj , while the two
remaining components of u are zero. For small γ, the inclination angle of the lines
parallel to the xj-axis is approximately γ. Here εij = γ/2.

For these particular types of deformation, we can use the linearity of ε

to see the mechanical sense of each of its components. A component with

repeated subscripts shows stretching along the corresponding axis, while a

component εij with i 6= j characterizes a local pure shear at a point. Any

small deformation at a point can be approximated by a superposition of

these two elementary deformation types, and we can use ε to characterize

small deformations of the medium.

We have introduced the tensor ε using Cartesian coordinates in the

initial (reference) undeformed state of the medium. With the same success

we can use any coordinates of the undeformed state and so, as a consequence

of the tensor nature of ∇u, we see that ε is a symmetric, second-rank tensor.

Let us discuss some properties of ε that follow from the general theory.

As a symmetric second-rank tensor, ε has — at each point — three real
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eigenvalues Ei and three corresponding orthonormal eigenvectors ni defined

by

ε · ni = Eini.

The ni are uniquely defined if the Ei are distinct. The deformation at

a point can be approximated by special deformations: the elongation or

shortening (with no shearing), along the directions ni with strains Ei, of a

small cube centered at the point and having sides parallel to the ni. The

directions ni are called the principal directions of the tensor ε and the Ei

are called the principal strains.

Other properties of ε that follow from its tensor nature are discussed

in textbooks on linear elasticity. Here we are interested in the accuracy to

which ε approximates the deformation from the viewpoint of the nonlinear

theory. We can only touch on this problem of accuracy, as the latter the-

ory is not simple, and the interested reader should consult more advanced

books. We suppose that a point of the undeformed medium is defined by

the curvilinear coordinates (q1, q2, q3) and employ the notation of § 3.9.

One nonlinear strain tensor, known as the Cauchy–Green strain tensor

for finite deformation, is introduced as follows. Two infinitesimally sepa-

rated points of the medium define a vector dr whose length squared is

ds2 = dr · dr.

After deformation, the endpoints of dr move and define a new vector dR

whose length squared is

dS2 = dR · dR.

Since we deal with infinitesimal quantities, dR and dr are related by the

formula

dR = dr · ∇R = ∇RT · dr.

Here

∇ = rk ∂

∂qk
.

So

dS2 = dR · dR = dr · ∇R · ∇RT · dr = dr · G× · dr,

where

G× = ∇R · ∇RT (3.11.6)
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is called the Cauchy deformation measure. Let u = R− r. Then

∇R = ∇r + ∇u.

Next, we denote g = ∇r, the metric tensor in the initial state of the body,

which plays the role of the unit operator. We get

G× = (∇r + ∇u) · (∇r + ∇u)T = (g + ∇u) · (g + ∇uT )

= g · g + ∇u · g + g · ∇uT + ∇u · ∇uT

= g + ∇u + ∇uT + ∇u · ∇uT .

The Cauchy–Green tensor E is introduced by the formula

G× = g + 2E (3.11.7)

so that

E =
1

2
(∇u + ∇uT ) +

1

2
∇u · ∇uT

= ε +
1

2
∇u · ∇uT ,

where

ε =
1

2
(∇u + ∇uT ) (3.11.8)

is the tensor of small deformation. This tensor plays the main role in what

follows.

Certain other quantities can be taken as measures of deformation. From

knowledge of such a quantity, however, we must be able to recover the

displacement field of a body up to rigid motions. The tensor of small

deformation has this property. The displacement field is recovered from

Cesàro’s formula

u(s) = u0 + ω0 × (r − r0) +

∫ M

M0

{ε(s) + [r(s) − r] × [∇ × ε(s)]} · dr(s),

where r0 is the position vector of the initial point M0, r is the position

vector of the point M , u0 and ω0 are the displacement and rotation vectors

for M0, and s defines the position vector r(s) of an intermediate point of

integration between M0 and M (see textbooks on linear elasticity). If the

tensor field ε is expressed through the position vector r, then the condition

∇ × (∇ × ε) = 0

holds. This compatibility condition for ε permits Cesàro’s representation

to hold.
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When does the tensor of small deformations ε approximate the Cauchy–

Green tensor of finite deformation E? The difference between the tensors

is

E − ε =
1

2
∇u · ∇uT .

So ε ≈ E when
∥

∥∇u · ∇uT
∥

∥� ‖ε‖ .

As a rule of thumb engineers may require that
∥

∥∇u · ∇uT
∥

∥ lie within 1-2%

of ‖ε‖.
In practical terms, the use of the linear strain tensor requires that the

norm
∥

∥∇u · ∇uT
∥

∥ be small in comparison with ‖ε‖. In particular, at

any point the portion of the displacement vector that corresponds to the

rotation of the medium as a rigid whole must be small as well. Some

mechanical structures, such as thin beams or plates, are quite flexible in

certain directions. In such cases the angle of rigid rotation can be finite and

significant, whereas the deformation remains small. If we wish to preserve

the accuracy of the description of deformation, we must supplement the

expression for strains with quadratic terms corresponding to the rotation

angles. In the most widely used theory of plates and shells, this is done on

the basis of an intuitive picture of the deformation, without bringing in the

strain tensor of finite deformation.

3.12 The Virtual Work Principle

The Cauchy stress tensor σ characterizes the distribution of internal stresses

in the deformed state of a medium, whereas the strain tensor ε of small

deformation is given using the initial undeformed state of the medium. If

we wish to derive expressions for the components of σ and the equilibrium

equation in terms of the initial state, we should present these quantities in

the same description. In this book we restrict ourselves to the linearized

theory of solids, part of which is known as the theory of linear elasticity.

Here we consider small deformations of the medium. In engineering practice

they are small but finite, and we cannot talk about infinitely small strains,

etc. We shall do this, however, in order to obtain the linearized theory: we

suppose the strains to be infinitely small, and in this case do not distinguish

between the points and frames of the initial undeformed state and the

deformed state. We use the terms “infinitely small” or “infinitesimal” only
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to justify the use of calculus in deriving relations. And, as always, after

arriving at a model we shall ignore these issues and apply the model in

situations where all quantities are finite. So, in this case, we will consider

both the Cauchy stress tensor and the equilibrium equation as if they were

introduced in the initial state of the medium. We shall proceed exactly as

in numerical analysis when we seek the increment ∆f(x) of some function

f(x) at a point x; we settle for the first differential:

∆f(x) ≈ f ′(x)∆x.

For sufficiently small ∆x it is a good approximation. Analogously, the

results we obtain in our subject will suffice for much of engineering practice.

Hence, from now on, Cauchy’s stress tensor is assumed given in the

initial nondeformed state of the medium. Since we will introduce no further

stress tensors (and, moreover, since the result is not exactly Cauchy’s stress

tensor!) we shall refer to it merely as “the stress tensor”. As we have said,

for this tensor the equilibrium equation should hold:

∇ · σ + F = 0. (3.12.1)

This was derived in a Cartesian frame; being written in non-component

form, however, it holds in any coordinate frame.

We would like to derive the virtual work principle for continuum media

using the above stress and strain tensors. In classical mechanics, the prin-

ciple reads that for a system in equilibrium, the work of all forces on any

virtual displacement equals zero. In continuum mechanics we will consider

the displacements δu to be virtual if they are smooth enough and agree

with the geometric constraints on the boundary. The symbol δ reflects the

idea of smallness of δu as a perturbation of a real displacement field, but

in the linearized theory this smallness is not important.

Consider a portion V of the medium, bounded by surface S. Assume

it is in equilibrium and recall the solidification principle. A distributed

volume force F is assumed to act on V . If the boundary S is interior to the

medium, we must also consider a distributed reaction f = σn. As we saw,

this is related to σ by the formula

f = n · σ, (3.12.2)

where n is the exterior unit normal to S. Equation (3.12.2) must hold at

points on the boundary surface of the medium for any given distribution

of surface forces f . This type of boundary condition for the body corre-

sponds to the Neumann condition for a membrane. When such a condition
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holds over the entire boundary of the body, we have what is typically called

the first or second problem of elasticity (depending on the author’s prefer-

ence). A problem with prescribed displacements over the entire boundary

corresponds to the Dirichlet problem for a membrane. We will discuss this

problem later.

The work of all external forces over a virtual displacement δu in the

volume V is given by

δWe =

∫

V

F · δu dV +

∫

S

f · δu dS. (3.12.3)

Let us transform the second integral using (3.12.2), Green’s formula

(3.9.22), and the formula from Exercise 3.9.3. We get
∫

S

f · δu dS =

∫

S

n · σ · δu dS

=

∫

V

∇ · (σ · δu) dV

=

∫

V

[(∇ · σ) · δu + σ ·· (∇δu)] dV.

By symmetry of σ we have

σ ·· (∇δu) = σ ·· (∇δu)T , (3.12.4)

hence by definition of the strain tensor of small deformation,

δε = ε(δu) =
1

2
(∇δu + ∇δuT ),

we have

σ ·· (∇δu) = σ ·· δε.

Therefore
∫

S

f · δu dS =

∫

V

[(∇ · σ) · δu + σ ·· δε] dV.

Substituting this into the expression (3.12.3) for δWe, we get

δWe =

∫

V

[(F + ∇ · σ) · δu + σ ·· δε] dV =

∫

V

σ ·· δε dV,

where the last equality holds by the equilibrium equation (3.12.1). Equating

this with expression (3.12.3), we finally get
∫

V

F · δu dV +

∫

S

f · δu dS −
∫

V

σ ·· δε dV = 0. (3.12.5)
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This is the analytic form of the virtual work principle. It holds for all

sufficiently smooth δu. The term

δWi = −
∫

V

σ ·· δε dV (3.12.6)

is called the work of internal forces. So (3.12.5) expresses the virtual work

principle for an arbitrary volume V of the medium. It preserves the word

statement of the virtual work principle of classical mechanics: the work of

all internal and external forces over any virtual displacement field is zero.

This equation holds even for a continuum body with portions of the

boundary clamped. On the clamped portion S1 we have δu = 0 and on the

remainder of S the load is given: f = n · σ. However, supposing that on

S1 there is some reaction f , we can repeat the derivation as above but we

must take into account that δu = 0 holds on S1 so that (3.12.5) becomes

−
∫

V

F · δu dV −
∫

S\S1

f · δu dS +

∫

V

σ ·· δε dV = 0. (3.12.7)

Note that during the derivation we did not use the material properties.
Hence

The VWP formulas (3.12.5) or (3.12.7) hold for all types of material,
whether elastic or not.

Exercise 3.12.1. Verify (3.12.4).

Exercise 3.12.2. Show that σ · · δε = σijδεij . Write out all the possible

representations in components of the tensors of this complete product.

Exercise 3.12.3. Show that the virtual work principle implies the equilib-

rium equation (3.12.1) along with the force boundary condition n ·σ|S = f .

This is the natural boundary condition for the VWP equation.

Later we will see that, for small deformations of a linearly elastic body

under load, the left side of (3.12.7) is the first variation of the total energy

functional. A consequence is that when a solution u of the equilibrium

problem for a linearly elastic body is sufficiently smooth, the fulfillment of

the virtual work principle for all smooth δu implies the equilibrium equa-

tions and the natural boundary condition n · σ|S = f , and conversely.
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3.13 Hooke’s Law in Three Dimensions

The connection between the stress and strain tensors is called a constitutive

relation for a material. In elementary physics, such relations are presented

in the form of Hooke’s law for the wire or spring, or some relation connect-

ing the pressure, volume, and temperature of a gas. In fact, deformation

in solids is also accompanied by some temperature change. Practically,

however, the influence of temperature is often negligible and need not ap-

pear in the constitutive relation. In a more general theory that includes

thermodynamics, such problems are called isothermal.

We would like to extend Hooke’s law to three dimensions. It seems

reasonable to seek a linear relation with constant coefficients. So we would

like to consider a linear model of an elastic body. We should say at the

outset that some materials that can be regarded as solids cannot be de-

scribed using this law even for small deformations. For example, polymers

normally exhibit time-dependent strains when under constant load. The

behavior of plastic materials like copper and lead cannot be represented

by a linearly elastic constitutive law in principle. But many common solid

materials (wood, the steels, various other metals, etc.) are well-described

by Hooke’s law.

As we said, the linear law is only an approximation. Any textbook

on the strength of materials will display a stress-strain diagram for the

stretching of a steel bar. This will show a nonlinear elastic portion as

well as a portion attributed to plasticity (a regime when an additional

stretching force causes strains that remain unrestored when the force is

reduced). The diagrams for different materials differ somewhat (even for

steels). Fortunately, the portion of a stress-strain diagram near zero, which

is nearly linear and corresponds to an elastic material, is fairly large. So

the linear elastic model serves well in much of engineering design.

The one-dimensional version of Hooke’s law is

σ = Eε. (3.13.1)

Its most general linear extension, preserving the tensorial nature of the

stress and strain, is

σ = c ·· ε. (3.13.2)

Here σ and ε are the familiar stress and strain tensors. The quantity c is

a tensor of elastic moduli ; this is a fourth-rank tensor having components
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denoted by cijkl. In component form, (3.13.2) is

σij = cijklεkl. (3.13.3)

Although a fourth-rank tensor has 34 = 81 components, the symmetry of

σ and ε implies that we must relate only six components of the former to

six components of the latter: in other words, there can be no more than 36

independent elastic constants. Thermodynamic considerations lead to an

additional symmetry property,

cijkl = cklij , (3.13.4)

which further restricts the number of independent elastic constants to 21.

But 21 is still a huge number of independent elastic constants for the

purposes of manual calculation. The success people had prior to the advent

of the computer indicates that many elastic materials can be described

with fewer constants. Indeed, practical materials in large part have special

symmetry properties that reduce the number of constants significantly. The

properties of metals and alloys, for instance, do not depend on direction

in the material. Such materials are said to be isotropic (or to exhibit

isotropy). If there is some dependence on the direction, the material is

anisotropic. An example is wood, which exhibits a definite grain structure.

Materials can be divided into symmetry classes according to these sorts of

properties. The reader can refer to books on engineering elasticity for more

information. Our main interest will be in isotropic materials.

For an isotropic material, the components of c are expressed in terms of

only two elastic constants that are independent. Engineers commonly use

Young’s modulus E and Poisson’s ratio ν. The first of these is well known

from elementary physics. Let us take a moment to discuss Poisson’s ratio.

When we stretch an elastic film along some direction so that its strain is

ε, the film shortens in the perpendicular direction. In this direction the

strain is proportional to ε, that is −νε. Of course, for large deformations

the coefficient ν depends on ε, but for small strains experiment shows that

it is practically constant. This constant coefficient is called Poisson’s ratio.

For steels its values are close to 0.28.

With Poisson’s ratio we can pose a relation between the components of

the stress and strain tensors. We will do this in a Cartesian frame. First,

when only one stress σ11 is present, it should be related to ε11 via Hooke’s

law ε11 = σ11/E. Applying σ22, which acts perpendicularly, we see an

additional contribution −νσ22/E to ε11. Applying σ33, we see a similar

contribution −νσ33/E. By the assumed linearity of the situation we can
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use the superposition principle; when all three stresses are present we get

ε11 =
1

E

(

σ11 − νσ22 − νσ33
)

.

Assuming an isotropic material, symmetry leads to the two additional re-

lations

ε22 =
1

E

(

σ22 − νσ11 − νσ33
)

,

ε33 =
1

E

(

σ33 − νσ11 − νσ22
)

.

We could ask whether these formulas for εii change under the action of

some σkm, k 6= m. The answer is no: the strains εii do not depend on the

shear stresses σkm. This can be “proved” experimentally. Here the initial

assumption is that for an isotropic material the stress and strain tensors

are coaxial : that is, the principal directions of the tensors should coincide.

Of course, this is only an assumption which, as a consequence, gives us the

above relations in which σkm does not appear.

Next we would like to relate the σkm to the εij . In the presence of σ12,

it is clear that we have the proportionality relationship ε12 = σ12/µ with

coefficient 1/µ. Again, experiments shows that no other stresses affect ε12.

If this statement is unconvincing, we may suppose that the stress and strain

tensors are coaxial and obtain the above fact as a direct consequence. So

ε12 =
σ12

µ
, ε13 =

σ13

µ
, ε23 =

σ23

µ
.

Another consequence is the set of relations between the constants E, ν, and

µ:

E =
µ(3λ+ 2µ)

λ+ µ
, ν =

λ

2(λ+ µ)
, λ =

(E − 2µ)µ

3µ−E
. (3.13.5)

In technical books µ may be denoted by G and called the shear modulus.

Thermodynamic considerations show that µ > 0 and 0 < ν < 0.5.

In this book we need the inverse relations between ε and σ where Lame’s

constants λ and µ appear. In a Cartesian frame they are

σij = λϑδij + 2µεij , ϑ = ε11 + ε22 + ε33, (3.13.6)

where δij is the Kronecker delta given by

δij =

{

1, i = j,

0, i 6= j.
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In non-component form (3.13.6) can be written as

σ = λϑg + µε, (3.13.7)

where g is the metric tensor. In curvilinear coordinates we must take

ϑ = gijε
ij , (3.13.8)

which is the trace of the tensor ε (its first invariant). This tensor form of

Hooke’s law is a consequence of the fact that the stress and strain tensors

are coaxial.

3.14 The Equilibrium Equations of Linear Elasticity in Dis-

placements

We are ready to write out the equilibrium equations of linear elasticity

in displacements. Substituting Hooke’s law (3.13.2) into the equilibrium

equation (3.12.1), we obtain

∇ · (c ·· ε) + F = 0. (3.14.1)

The streamlined tensor notation makes this look simple. But a component

representation will be needed for any detailed work. In general curvilin-

ear coordinates, (3.14.1) is cumbersome because the fourth-rank tensor c

depends on the frame vectors; even when it is constant as a tensor, its

components become variable along with the basis vectors. Hence, large

expressions arise from application of the ∇-operator to c ·· ε. In Cartesian

coordinates, however, both the basis vectors and the components of c are

constants and the resulting equations are much simpler. For an isotropic

elastic body they are called the Navier or Navier–Cauchy equations. It is

easier to derive these directly by substituting (3.13.6) into (3.8.11) given in

Cartesian coordinates (where it suffices to use subscripts only). The Navier

equations are

µ

(

1

1 − 2ν

∂ϑ

∂x1
+ ∆u1

)

+ F1 = 0,

µ

(

1

1 − 2ν

∂ϑ

∂x2
+ ∆u2

)

+ F2 = 0,

µ

(

1

1 − 2ν

∂ϑ

∂x3
+ ∆u3

)

+ F3 = 0, (3.14.2)
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where

ϑ =
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
(3.14.3)

and

∆ = ∇ · ∇ =
∂2

∂x1
2 +

∂2

∂x2
2 +

∂2

∂x3
2 . (3.14.4)

Suppose an elastic body occupies volume V . The three equations

(3.14.2) are coupled. We expect that three equations will be sufficient

to determine three unknown functions — that they should determine the

deformation of the body uniquely given suitable conditions on the bound-

ary S. This is confirmed below. It makes sense to consider the equilibrium

problem where the displacement vector is given at each point:

u
∣

∣

S
= a. (3.14.5)

When Navier’s system (3.14.2) is supplied with boundary conditions

(3.14.5), we have the first problem of elasticity. This problem is analo-

gous to Dirichlet’s problem for the membrane. When the displacement

vector on the boundary is given, we cannot arbitrarily prescribe values for

f ; similarly, if we are given f on the boundary we cannot arbitrarily assign

u there. This brings us to the second problem of elasticity, in which the

surface force f is given on S:

n · σ
∣

∣

S
= f . (3.14.6)

This is analogous to Neumann’s problem for the membrane. One can also

consider mixed problems for the Navier system. For example, the displace-

ment may be given over part of S and a surface force over the rest. Alterna-

tively, just the normal component of u may be given along with tangential

surface forces. There are no special names for problems in which various

elastic supports, etc, may act. In general, the boundary conditions should

be such that at each point of the boundary we have three independent

scalar conditions.

Anyone familiar with partial differential equations is aware of the role

played by Poisson’s equation in the theory of second-order elliptic equa-

tions: much of the theory attempts to extend the properties of boundary

value problems for Poisson’s equation to general elliptic equations. It seems

that the central role in the theory of second-order elliptic systems in two

and three dimensions belongs to the equations of linear elasticity in dis-

placements.
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Other boundary value problems are considered in the theory of linear

elasticity. For example, we could study a system consisting only of the

equilibrium equations in components of the stress tensor along with Hooke’s

law and the relations for the components of the strain tensor. In this

case the system contains many more differential equations and unknown

variables. Because it is equivalent, by the way of derivation, to Navier’s

system, we must supplement it with only three boundary conditions at each

boundary point.

Also considered in linear elasticity are the equations in the components

of the stress tensor. Here we have three equations of equilibrium in the

stresses. However, we know this is not enough to determine the strain

state of a body uniquely. The remaining equations come from eliminat-

ing u from the components of the strain tensor. This yields six nontrivial

relations between the components of ε. Using Hooke’s law, we produce

six additional equations for the components of the stress tensor: these are

called Saint Venant’s equations. Together with the equilibrium equations

they constitute a system of nine equations with respect to six unknown

independent components of σ. Since this system is a consequence of the

complete system of equations of linear elasticity, for unique solvability we

should supplement it with three boundary conditions. These boundary

value problems normally arise when a load is given on the boundary. We

should note that the equilibrium problem for Saint Venant’s equations is

somewhat strange from the viewpoint of general differential equation the-

ory, despite the fact that it is equivalent to the equilibrium problem in

displacements. The system of equations is formulated for six independent

components of the stress tensor. It contains three scalar equilibrium equa-

tions, each of the first order, and six Saint Venant equations of the second

order. Moreover, there are only three boundary conditions at each point of

the boundary.

Although common sense is valuable in formulating problems, it should

be supported by thorough investigation. We should prove that we have

actually formulated uniquely solvable problems — intuition can mislead us

otherwise. Our proof for the equilibrium problem in displacements will be

based on the fact that the conditions µ > 0 and 0 < ν < 0.5 are sufficient

to guarantee that the strain energy of the elastic body vanishes only when

deformation is absent. The next steps in the investigation of solvability

of the problem for an elastic body are similar to those in the equilibrium

problem for a membrane.

Before treating the boundary value problems of linear elasticity in more
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detail, we should mention the following. Pure mathematicians normally

begin with the setup of a mechanical problem in final form; they try to avoid

interpretation of mechanical meaning whenever possible. This approach

is not the best, as mechanical problems — from the simplest problems

involving bars to the more complex problems involving three-dimensional

bodies — exhibit similar general properties. Knowledge of these can provide

an investigator with important cues on how to proceed. For example, the

virtual work principle and the principle of minimum total energy dictate the

form of the generalized setup of boundary value problems. The generalized

solution constitutes a relatively recent tool in pure mathematics, but the

principles have been known in mechanics for a long time.

Theoretical investigation of boundary value problems of elasticity cen-

ters on Navier’s system. We will consider some problems for this system

below.

3.15 Virtual Work Principle in Linear Elasticity

In § 3.12, for the state of a body as described by the continuously dif-

ferentiable stress tensor, we established that the virtual work principle is

equivalent to the equilibrium equation and the natural (force) boundary

conditions. This holds independently of the constitutive law for the mate-

rial. So the VWP equation

−
∫

V

F · δu dV −
∫

S\S1

f · δu dS +

∫

V

σ ·· δε dV = 0 (3.15.1)

can be used to pose the mixed problem in which the displacement field is

given on a portion S1 of the boundary,

u
∣

∣

S1
= a, (3.15.2)

while a surface load f acts on the remainder. The virtual displacement field

should be sufficiently smooth and satisfy

δv
∣

∣

S1
= 0. (3.15.3)

Let us apply the VWP equation in the framework of linear elasticity.

It turns out to define the setup of the equilibrium problem completely.

Certain of its other consequences are physically important as well. Let us

invoke Hooke’s law. Changing δu to v and substituting σij = cijklεkl into
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the VWP equation, we get
∫

V

cijklεkl(u)εij(v) dV −
∫

V

F · v dV −
∫

S\S1

f · v dS = 0. (3.15.4)

Now we can establish some principal results of linear elasticity. First, the

left side of the VWP equation (3.15.4) is the first variation of the functional

Et(u) =
1

2

∫

V

cijklεkl(u)εij(u) dV −
∫

V

F · u dV −
∫

S\S1

f · u dS. (3.15.5)

This follows immediately from symmetry of the quadratic form

cijklεkl(u)εij(v) in u and v.

Exercise 3.15.1. Verify this.

The term

E(u) =
1

2

∫

V

cijklεkl(u)εij(u) dV (3.15.6)

is called the strain energy. Any deformation of the body should be associ-

ated with stored energy, which should be positive for an elastic deformation.

So we suppose that the functional E(u) has the following property.

Positiveness assumption. There is a positive constant c0 such that for

any tensor ε,

ε ·· c ·· ε ≥ c0 ε · ε. (3.15.7)

This inequality implies positive definiteness of the density of strain energy

of the elastic body.

In component form (3.15.7) can be written as

cijklεklεij ≥ c0 ε
mnεmn. (3.15.8)

Elasticity textbooks normally express this condition in Cartesian coordi-

nates. When written for an isotropic body, it reduces to two ordinary

inequalities for the elastic moduli:

λ+
2

3
µ > 0, µ > 0. (3.15.9)

The parameter λ+ 2
3µ is called the bulk modulus, and µ the shear modulus.

Again, we suppose (3.15.7) holds. The functional E(u) represents the

total energy of the load-elastic body system. So we expect that its minimum

is achieved at a solution u of the mixed equilibrium problem. The fact that

the first variation of E(u) is the left side of the VWP equation (3.15.4)
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supports this opinion. From the VWP equation we can derive the setup of

the equilibrium problem in the form of Navier’s differential equations and

the natural condition

n · σ
∣

∣

S\S1
= f . (3.15.10)

For a complete setup, these should be supplemented with the condition

(3.15.2). However, to be convinced that the setup is well-posed we should

demonstrate the existence of a unique solution to the problem in the VWP

formulation. We start with the next fundamental fact of linear elasticity:

the uniqueness theorem due to Kirchhoff.

Theorem 3.15.1. Let S1 be a nonempty portion of S. The mixed problem

of linear elasticity can have no more than one smooth solution u.

Proof. Assume the existence of two solutions u1,u2 of (3.15.4). Sub-

tracting the two equations
∫

V

cijklεkl(u1)εij(v) dV −
∫

V

F · v dV −
∫

S\S1

f · v dS = 0,

∫

V

cijklεkl(u2)εij(v) dV −
∫

V

F · v dV −
∫

S\S1

f · v dS = 0,

and introducing u0 = u2 − u1, we get
∫

V

cijklεkl(u0)εij(v) dV = 0.

But u0 = 0 on S1, so we can take v = u0 and obtain
∫

V

cijklεkl(u0)εij(u0) dV = 0.

By the positiveness assumption (3.15.7) we have

εij(u0) = 0 for all i, j.

So ε is zero, and consequently u0 can only take the form of the infinitesimal

rigid displacement u0 = a + b × r. Because u0 = 0 on S1, however, we

have u0 = 0 throughout V . �

We will return to the uniqueness theorem later (Theorems 3.17.1 and

3.18.1). Note that we assumed smoothness in the solution; this could mean

the Cartesian components of the displacement vector all belong to C (2)(V ),

for example.

One simple but important consequence of the VWP equation, used for

numerical solution of elasticity problems, is Betti’s duality theorem. We
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consider the same body with a portion of the boundary fixed: u = 0 on S1,

say. Let (F1, f1) and (F2, f2) be two systems of loads, where the first and

second elements of a pair denote the systems of body and surface forces,

respectively. If u1 and u2 are the solutions of the two problems, then
∫

V

cijklεkl(ui)εij(v) dV −
∫

V

Fi · v dV −
∫

S\S1

fi · v dS = 0 (i = 1, 2).

Setting v = u2 in the first equation and v = u1 in the second, we obtain two

equalities. But the first integral is the same in each case by the symmetry

of the elastic moduli tensor. It follows that
∫

V

F2 · u1 dV +

∫

S\S1

f2 · u1 dS =

∫

V

F1 · u2 dV +

∫

S\S1

f1 · u2 dS.

This equality is a statement of

Theorem 3.15.2 (Betti’s duality theorem). The work of one load sys-

tem over the displacement field caused by a second load system, on the same

body, is equal to the work of the second system over the displacement field

caused by the first system.

Betti’s theorem was first established for beam problems.

3.16 Generalized Setup of Elasticity Problems

We will not attempt to treat the classical setup of the boundary value

problems of linear elasticity. This may seem strange, but such studies are

more complex technically than a study of the generalized approach. So we

start to consider the latter, and will try to mimic our earlier treatment of

mechanical models.

The VWP equation (3.15.4) has the same quadratic structure as the cor-

responding equations for all other objects we have considered (bar, beam,

string, and membrane). It has a bilinear portion that corresponds to the

work of internal forces over admissible displacements, and a linear portion

that equals the work of external forces over the same admissible displace-

ments. We are thereby prompted to use (3.15.4) to define a generalized

setup. We can then use Theorem 2.13.1 to establish an existence-uniqueness

result. Moreover, the theorem will show that our equilibrium formulation

for the elastic body is fully satisfactory.

We start by introducing the space in which the problem will be posed.

Let C20 be the set of all vector-functions defined on the closed and bounded
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set V ⊂ R3. These functions, describing admissible displacements of points

of the body, must be of class C(2)(V ) and satisfy homogeneous boundary

conditions on S1:

u
∣

∣

S1
= 0. (3.16.1)

The statement u ∈ C(2)(V ) means that u itself has two continuous deriva-

tives on V (in a coordinate-free sense) or that each Cartesian component

of u has all continuous derivatives up to the order two on V .

On C20 we introduce the bilinear functional

(u,v)E =

∫

V

cijklεkl(u0)εij(v) dV. (3.16.2)

This is related to the strain energy of the elastic body that occupies V . By

analogy with the membrane and other models we have considered, it should

serve as an inner product on C20. It is clearly linear in both u and v. The

symmetry in the indices of the elastic moduli cijkl gives us the property

(u,v)E = (v,u)E . By (3.15.7) we get

(u,u)E ≥ 0.

From (u,u)E = 0 and (3.15.7) it follows that, as we said above,

u = a + b× r

and so by (3.16.1) we have u = 0. Hence (3.16.2) defines an inner product

on C20. The resulting inner product space is not complete, however; this is

similar to the incompleteness of the space of continuous functions with the

norm of Lp(V ).

Definition 3.16.1. The energy space EE0 for an elastic body occupying

volume V , and having a portion S1 of the boundary surface clamped as in

(3.16.1), is the completion of C20 in the norm ‖·‖E induced by the inner

product (3.16.2).

Now we can define a generalized solution of the problem under consid-

eration. We will use the VWP equation (3.15.4) rewritten via (3.16.2).

Definition 3.16.2. We say that u ∈ EE0 is a generalized solution to the

equilibrium problem for an elastic body occupying volume V and having

fixed boundary surface portion S1 if it satisfies the VWP equation

(u,v)E −
∫

V

F · v dV −
∫

S\S1

f · v dS = 0 (3.16.3)

for any v ∈ EE0.
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Thus, roughly speaking, this solution satisfies the virtual work principle

for the elastic body.

Note that the structure of (3.16.3) is appropriate for the application

of Theorem 2.13.1. Of course, we will have to impose conditions on the

forces F and f so that the integral terms in (3.16.3) are linear continuous

functionals in v ∈ EE0. First we should study the properties of the elements

of EE0. We wish to show that EE0 is a subspace of a Sobolev space. This

is a consequence of Korn’s inequality, treated next.

Korn’s inequality

For vector-functions in EE0, Korn’s equality is

∫

V

(

|u|2 + ∇u ··∇uT
)

dV ≤ c

∫

V

cijklεkl(u)εij(u) dV, (3.16.4)

where c is a constant that does not depend on u ∈ EE0 (see (3.9.24)). In

Cartesian coordinates this can be rewritten as

∫

V

[ 3
∑

i=1

u2
i +

3
∑

i,j=1

(

∂ui

∂xj

)2 ]

dV ≤ c

∫

V

cijklεkl(u)εij(u) dV. (3.16.5)

In three-dimensional elasticity, this inequality is commonly presented in

Cartesian coordinates in the equivalent form

∫

V

[ 3
∑

i=1

u2
i +

3
∑

i,j=1

(

∂ui

∂xj

)2 ]

dV ≤ c∗
∫

V

3
∑

i,j=1

[

1

2

(

∂ui

∂xj
+
∂uj

∂xi

)]2

dV.

(3.16.6)

A general proof of Korn’s inequality is beyond the scope of this book. But

we can treat the important case for which

u
∣

∣

S
= 0. (3.16.7)

The proof depends only on integration by parts. First we prove (3.16.6)

for a smooth vector-function u having second continuous derivatives in V .

Denoting the right-hand side of (3.16.6) by A, we get

A ≥
∫

V

(

ε211 + ε222 + ε233 + ε212 + ε213 + ε223
)

dV = A1, say.
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Let us expand the integrand of A1:

A1 =

∫

V

{

(

∂u1

∂x1

)2

+

(

∂u2

∂x2

)2

+

(

∂u3

∂x3

)2

+
1

4

[

(

∂u1

∂x2

)2

+

(

∂u1

∂x3

)2

+

(

∂u2

∂x1

)2

+

(

∂u2

∂x3

)2

+

(

∂u3

∂x1

)2

+

(

∂u3

∂x2

)2
]

+
1

2

(

∂u1

∂x2

∂u2

∂x1
+
∂u1

∂x3

∂u3

∂x1
+
∂u2

∂x3

∂u3

∂x2

)}

dV.

We integrate by parts twice in each of the last three terms of the integrand:
∫

V

∂ui

∂xj

∂uj

∂xi
dV =

∫

V

∂ui

∂xi

∂uj

∂xj
dV.

Applying the elementary inequality |ab| ≤ a2/2 + b2/2, we estimate
∣

∣

∣

∣

∫

V

∂ui

∂xi

∂uj

∂xj
dV

∣

∣

∣

∣

≤ 1

2

∫

V

[

(

∂ui

∂xi

)2

+

(

∂uj

∂xj

)2
]

dV

and so

A1 ≥
∫

V

{

(

∂u1

∂x1

)2

+

(

∂u2

∂x2

)2

+

(

∂u3

∂x3

)2

+
1

4

[

(

∂u1

∂x2

)2

+

(

∂u1

∂x3

)2

+

(

∂u2

∂x1

)2

+

(

∂u2

∂x3

)2

+

(

∂u3

∂x1

)2

+

(

∂u3

∂x2

)2
]

− 1

2

(

(

∂u1

∂x1

)2

+

(

∂u2

∂x2

)2

+

(

∂u3

∂x3

)2
}

dV.

Thus

A1 ≥ 1

4

∫

V

3
∑

i,j=1

(

∂ui

∂xj

)2

dV.

Because all components of u vanish on the boundary, Friedrichs inequality

(2.16.5) yields

∫

V

|u|2 dV ≤ c1

∫

V

3
∑

i,j=1

(

∂ui

∂xj

)2

dV
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with a constant c1 that does not depend on u. A consequence of this chain

of inequalities is the proof of (3.16.6) for smooth u.

When u = 0 on only a portion of S, the proof is much more technical

(see, for example, [Ciarlet (1994)]).

Now we should show that Korn’s inequality holds for elements of EE0.

This is done in a routine way. An element of EE0 is the union of equivalent

Cauchy sequences of vector-functions {un} ∈ C20 in the norm ‖u‖E =

(u,u)
1/2
E . Putting u = un − um in (3.16.3), we see that {un} is such that

each of its components is a Cauchy sequence in the norm of W 1,2(V ). By

definition of W 1,2(V ), if u ∈ EE0 then u ∈ W 1,2(V )×W 1,2(V )×W 1,2(V )

as well, which means that (3.16.3) holds for all u ∈ EE0. Moreover, on EE0

the norms of EE0 and W 1,2(V ) ×W 1,2(V ) ×W 1,2(V ) are equivalent.

Consequently we can use the Sobolev imbedding Theorem 2.16.4. We

see that each Cartesian component of u ∈ EE0 belongs to L6(V ) and thus

the magnitude, the Cartesian norm of u, is such that |u| ∈ L6(V ). More-

over, on any piecewise smooth surface Z lying in V , the Cartesian com-

ponents of u and the absolute value of u all belong to L4(Z). It suffices

for Z to consist of a finite number of pieces, each representable in its own

Cartesian frame (x1, x2, x3) as x3 = fk(x1, x2), where fk(x1, x2) is con-

tinuously differentiable in the domain of parameters x1, x2 that describe

the corresponding piece. Thus the imbedding Theorem 2.16.4 yields the

inequalities

(
∫

V

|u|6 dV
)1/6

≤ c2 ‖u‖E (3.16.8)

and

(
∫

S\S1

|u|4 dV
)1/4

≤ c3 ‖u‖E , (3.16.9)

with constants ck that do not depend on u.

3.17 Existence Theorem for an Elastic Body

Now we can return to the equilibrium problem for an elastic body. An

application of Theorem 2.13.2 allows us to formulate

Theorem 3.17.1. Let the Cartesian components of F and f belong to

L6/5(V ) and L4/3(S \ S1), respectively. Then there exists a unique gen-
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eralized solution of the equilibrium problem for an elastic body occupying

volume V , in the sense of Definition 3.16.2.

Proof. To apply Theorem 2.13.2, we should verify that the integrals that

yield the work of external forces over v in (3.16.3) define linear continuous

functionals in v ∈ EE0. Linearity with respect to v is obvious. Continuity

follows from Hölder’s inequality, when we take into account (3.16.8) and

(3.16.9), by Theorem 2.16.4. Indeed
∣

∣

∣

∣

∫

V

F · v dV
∣

∣

∣

∣

≤
∫

V

|F||v| dV

≤
(
∫

V

|F|6/5 dV

)5/6(∫

V

|v|6 dV
)1/6

≤ c3 ‖v‖E

and
∣

∣

∣

∣

∣

∫

S\S1

f · v dS
∣

∣

∣

∣

∣

≤
∫

S\S1

|f ||v| dS

≤
(
∫

S\S1

|f |4/3 dS

)3/4
(

∫

S\S1

|v|4 dS
)1/4

≤ c4 ‖v‖E .

It follows that the corresponding functionals are continuous. �

Theorem 3.17.1 assumes the homogeneous boundary condition (3.16.1).

The case of a nonhomogeneous condition

u
∣

∣

S1
= a (3.17.1)

can be considered exactly as for the nonhomogeneous condition for Poisson

equation (see p. 136).

Exercise 3.17.1. Carry out the steps.

3.18 Equilibrium of a Free Elastic Body

Let us consider the problem of an elastic body under the action of external

forces and without geometrical restrictions. Mechanical experience tells us

that equilibrium can occur only if the forces are self-balanced. We came to

the same conclusion for the other mechanical objects we studied. Let us
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investigate further. We start with the equilibrium equation in the form of

the virtual work principle, (3.16.3), where S1 is absent:

(u,v)E −
∫

V

F · v dV −
∫

S

f · v dS = 0. (3.18.1)

We know that for u0 = a + b × r, which is the general form of small rigid

motions of the elastic body, we have

(u,u0)E = 0

for any admissible u, including a solution. Setting v = u0 in (3.18.1) we

get
∫

V

F · u0 dV +

∫

S

f · u0 dS = 0

or, using the properties of the scalar triple product,

a ·
(
∫

V

F dV +

∫

S

f dS

)

+ b ·
(
∫

V

r× F dV +

∫

S

r × f dS

)

= 0.

Because the constant vectors a and b are arbitrary, two conditions are

implied:
∫

V

F dV +

∫

S

f dS = 0, (3.18.2)

∫

V

r × F dV +

∫

S

r × f dS = 0. (3.18.3)

The first of these says that the resultant external force is zero. The second

means that the moment of all external forces is zero. The external forces

are self-balanced as expected.

It is clear that if a solution u exists for the equilibrium problem of

a body free of geometrical constraints, then u + u0 with any small rigid

motion u0 = a + b × r is also a solution. From this set of solutions, let us

choose a unique solution that satisfies the conditions
∫

V

(u + u0) dV = 0,

∫

V

r × (u + u0) dV = 0. (3.18.4)

We will use the fact that these equations define the vector constants a and

b uniquely for any integrable vector function u. Uniqueness of the choice

of a,b can be established by the reader in

Exercise 3.18.1. Prove that the equations
∫

V

u0 dV = 0,

∫

V

r × u0 dV = 0,

imply a = 0 and b = 0.
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Indeed, in component form the equations of Exercise 3.18.1 constitute

a system of six linear equations in the components of a and b. Since this

system has the unique solution zero, its determinant is nonzero. Hence the

system of six scalar equations (3.18.4) with respect to the components of a

and b, which has the same determinant, has a unique solution. In this way

we reduce the equilibrium problem for the free body to that for the body

restricted by the additional conditions (3.18.4). Note that by requiring that

displacements of a rigid body to satisfy (3.18.4), we fix a position of this

body completely.

Let us sketch out the equilibrium problem for a free elastic body. We

start by introducing the energy space. Suppose V is a compact domain in

R3 for which the Sobolev imbedding theorems hold. Let C
(2)
f (V ) be the

set of vector-functions u(r) having values in R3 such that their Cartesian

components belong to C(2)(V ) and satisfy (3.18.4). Clearly, C
(2)
f (V ) is a

linear space.

Exercise 3.18.2. Verify that (·, ·)E is an inner product on C
(2)
f (V ).

Let us introduce the completion of this space.

Definition 3.18.1. The completion of C
(2)
f (V ) with respect to the norm

induced by the inner product (·, ·)E is called the energy space EEf .

By analogy with Definition 3.16.2 we define a generalized solution.

Definition 3.18.2. We say that u + u0 with u ∈ EEf is a generalized

solution of the equilibrium problem for a free (of geometrical constraints)

elastic body occupying V if u satisfies

(u,v + v0)E −
∫

V

F · (v + v0) dV −
∫

S

f · (v + v0) dS = 0

for any v ∈ EEf and v0 = a1 + b1 × r with arbitrary constant vectors a1

and b1. Here u0 = a +b× r where a and b are arbitrary constant vectors.

From this definition it follows that the external forces must satisfy the

self-balance conditions (3.18.2). When they do, the equation for u takes

the form

(u,v)E −
∫

V

F · v dV −
∫

S

f · v dS = 0 (3.18.5)

with u,v ∈ EEf .

The form of (3.18.5) is similar to that of the equation in Defini-

tion 3.16.2. Moreover, Korn’s inequality (3.16.4) holds for u ∈ EEf (see
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[Ciarlet (1994)]). By analogy with the considerations of § 3.17, we have the

following existence theorem.

Theorem 3.18.1. Suppose the Cartesian components of F belong to

L6/5(V ) and those of f belong to L4/3(S). Suppose the self-balance con-

ditions (3.18.2) hold. Then there exists a generalized solution u+a+b×r,

where u ∈ EEf , of the equilibrium problem for a free elastic body occupying

volume V , in the sense of Definition 3.18.2. Here u is unique and a,b are

arbitrary constant vectors.

3.19 Variational Methods for Equilibrium Problems

Earlier we studied mechanical models based on differential equations. De-

spite the widespread belief that all the imprecision of such models comes

from imprecise geometrical assumptions, they are fundamentally imprecise.

This is because all materials have atomic structure, so the limit passages

involved in deriving the differential equations are fundamentally imprecise.

No model in continuum mechanics can be truly precise as it is constructed

using limit passages. The equations that we have entail some rather vague

averaging process. Because of this, the finite models used in numerical

calculations are — fundamentally speaking — no less precise than the dif-

ferential ones if they obey the fundamental laws of mechanics in some sense.

Indeed, they can and deserve to be studied independently from the differ-

ential equation models. As a rule, the starting point for an approximate

(finite-dimensional) numerical model is a corresponding differential equa-

tion model. Normally the latter satisfies the fundamental laws of mechanics

that we just mentioned. The constructed approximate model may or may

not, depending on how we derive it. But there are approximate models that

obey the fundamental mechanical laws automatically, as a consequence of

the fact that they were derived from a differential equation model. This is

the case, in particular, for models obtained by variational methods for the

approximate solution of equilibrium problems.

We saw that all the linear problems we considered fit the same elemen-

tary abstract equation defined by the problem of minimum of a quadratic

functional in a Hilbert space H :

Φ(u) =
1

2
(u, u)H − F (u), (3.19.1)

where F (x) is a linear continuous functional. We formulate this problem as
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Problem 3.19.1. (Minimum problem) Find the element u∗ ∈ H that min-

imizes Φ(u) in the space H.

Existence and uniqueness of solution to this problem was given by The-

orem 2.13.2. We shall consider an approximate solution using variational

methods. The results for this abstract problem can be simply reformulated

for any particular equilibrium problem considered in this book. Let us start

by formulating the approximation equations.

A variational method of approximation for practical purposes was pro-

posed by Walter Ritz (1878–1909). Given some set of elements e1, . . . , en ∈
H , we can approximate u∗ using a linear combination

n
∑

k=1

ckek. (3.19.2)

How should we choose the coefficients ck for a good approximation? Ritz

supposed they can be given as a solution to the following minimization

problem:

Problem 3.19.2. Find real coefficients ck such that Φ

(

∑n
k=1 ckek

)

takes

a minimum value.

A solution of this problem is called an nth-order Ritz approximation.

We will denote it by un. In Ritz’s time, when all calculations were done by

hand, n was normally no greater than three and engineers had to choose

the ek carefully to obtain reasonable results. Ritz’s method became popular

among civil engineers and others (see, e.g., [Timoshenko (1959)]). Modern

computers permit much larger values of n and have revitalized this old

method. The popular finite element method is a modification and extension

of Ritz’s method. When Ritz’s method was restricted to just 3–5 elements,

engineers had to base their selection of the ek on engineering intuition.

When the solution behavior is unknown in advance and n is large, however,

it is important to know whether the ek are linearly independent and whether

the method converges.

Gram determinant and linear independence

First we wish to state a practical criterion for the linear independence of a

system of vectors in a Hilbert space. The definition of linear independence

is familiar from linear algebra.
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Definition 3.19.1. A system e1, . . . , en is linearly independent if the equa-

tion

c1e1 + · · · + cnen = 0 (3.19.3)

with respect to the coefficients ck has only c1 = · · · = cn = 0 as a solution.

Theorem 3.19.1. In a Hilbert space H, the system e1, . . . , en is linearly

independent if and only if its Gram determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

(e1, e1)H (e2, e1)H . . . (en, e1)H

(e1, e2)H (e2, e2)H . . . (en, e2)H

...
...

. . .
...

(e1, en)H (e2, en)H . . . (en, en)H

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.19.4)

is not zero.

Proof. By (3.19.3) we can construct a system of simultaneous equations,

obtaining the kth equation by multiplying (3.19.3) by ek:

c1(e1, e1)H + c2(e2, e1)H + · · · + cn(en, e1)H = 0,

c1(e1, e2)H + c2(e2, e2)H + · · · + cn(en, e2)H = 0,

...

c1(e1, en)H + c2(e2, en)H + · · · + cn(en, en)H = 0. (3.19.5)

Its determinant is the Gram determinant. If it is not zero, then c1 = c2 =

· · · = cn = 0 and so the ek are linearly independent.

Conversely, suppose the ek are linearly independent so that (3.19.3) has

only the trivial solution. Multiply the first equation of the system (3.19.5)

by c1, the second by c2, etc, and add all the equations. We get

(c1e1 + c2e2 + · · · + cnen , c1e1 + c2e2 + · · · + cnen)H = 0,

which implies that

c1e1 + c2e2 + · · · + cnen = 0.

Because the ek are linearly independent, it follows that c1 = c2 = · · · =

cn = 0. Thus the system (3.19.5) has only the trivial solution. By the

general theory of linear systems this means that its determinant, the Gram

determinant, is not zero. �
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Our proof was for a real space H , but a small modification would ac-

commodate a complex space H . The present version will suffice for our

purposes.

So let us return to the problem of minimizing Φ(u) over the set of linear

combinations (3.19.2), which is the central point of Ritz’s method. We seek

the working formulas of the method.

Formulas of Ritz’s method

Let us put

un =

n
∑

k=1

ckek (3.19.6)

into the expression for Φ(u):

Φ(un) =
1

2

( n
∑

k=1

ckek ,

n
∑

m=1

cmem

)

H

− F

( n
∑

k=1

ckek

)

.

Now Φ(un) depends only on the coefficients ck and, moreover, quadrati-

cally. Its minimum in Ritz’s sense, if it exists (we will see that it does),

approximates the solution of Problem 3.19.1. The point of minimum is

specified by the set of equations

∂

∂ck
Φ(un) = 0 (k = 1, 2, . . . , n).

Writing these out in detail, we obtain

c1(e1, e1)H + c2(e2, e1)H + · · · + cn(en, e1)H − F (e1) = 0,

c1(e1, e2)H + c2(e2, e2)H + · · · + cn(en, e2)H − F (e2) = 0,

...

c1(e1, en)H + c2(e2, en)H + · · · + cn(en, en)H − F (en) = 0. (3.19.7)

This is called Ritz system of equations of the nth approximation. Since its

determinant is the Gram determinant for e1, e2, . . . , en, we have

Theorem 3.19.2. Let e1, e2, . . . , en be linearly independent in H and F (u)

a linear continuous functional. The Ritz system of equations for the nth

approximation un has a unique solution.

Thus, when solving Problem 3.19.2 we always get a unique result.

Whether this will approximate the solution is another matter. Convergence
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now becomes an issue: clearly, if the linear combinations (3.19.6) cannot

approximate an element u0 that happens to be the needed solution, we

cannot expect convergence. Thus we should add a special property for the

sequence e1, e2, . . . , en, . . .. Under this property, known as completeness of

a system of elements, finite linear combinations of the ek can approximate

any element of H to within any predetermined accuracy.

Definition 3.19.2. A sequence of vectors e1, e2, . . . , en, . . . is complete in

a Hilbert space H if for any ε > 0 and any fixed u ∈ H there is a linear

combination
∑n

k=1 ckek such that
∥

∥

∥

∥

∥

u−
n
∑

k=1

ckek

∥

∥

∥

∥

∥

H

< ε

with coefficients that depend on ε and u.

This is close to the notion of basis, but the ek need not actually con-

stitute a basis. In C([0, 1]), for example, the system of monomials xk is

complete: it is not a basis, but can still approximate any continuous func-

tion with a polynomial of finite degree to within any preassigned accuracy.

Now we can formulate

Theorem 3.19.3. Let e1, e2, . . . , en, . . . be a complete system in H, and

assume that any finite subset e1, e2, . . . , en is linearly independent. Then

the sequence of Ritz approximations {un} converges to a solution u∗ of

Problem 3.19.1.

Proof. Recall that F (u) was represented as F (u) = (u, u∗)H , where u∗

turned out to be the solution of the minimum problem (see the proof of

Theorem 2.13.2). So we can convert Problem 3.19.1 to that of minimizing

the functional

Φ(u) =
1

2
(u, u)H − (u, u∗).

Since the additive constant 1
2 (u∗, u∗)H can be ignored when seeking the

minimum, we can minimize

Ψ(u) = Φ(u) +
1

2
(u∗, u∗)H =

1

2
‖u− u∗‖2

H

instead. So we reduce the problem of finding Ritz approximations to

the problem of minimizing the functional Ψ(u) over linear combinations
∑n

k=1 ckek, whereas the main Problem 3.19.1 reduces to the trivial problem

of minimizing Ψ(u). Obviously this latter minimum is zero and is attained
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at u = u∗. It is also clear that by extending the basis set e1, e2, . . . , en we

get a better approximation to the minimum. This means that

Ψ(u1) ≥ Ψ(u2) ≥ · · · ≥ Ψ(un) ≥ · · ·
or, in terms of norms,

‖u1 − u∗‖H ≥ ‖u2 − u∗‖H ≥ · · · ≥ ‖un − u∗‖H ≥ · · · .
Convergence of un to u∗ will be shown if we can find a subsequence of {un}
convergent to u∗. Given a sequence εk → 0, εk > 0, by completeness of

e1, e2, . . . , en, . . . there is a sequence {ûk}, where

ûk =

nk
∑

r=1

ĉrer,

such that

‖u− ûk‖H < εk.

Remembering that the minimum Ritz problem yields the best approxima-

tion for the same basis set of e1, . . . , enk
we see that for the nkth order of

approximation

‖u− unk
‖H ≤ ‖u− ûk‖H < εk

where unk
is the Ritz approximation of nk-th order. We have found the

required subsequence. �

Although we have established convergence of the method with no re-

strictions, the reader should be aware that in practice difficulties can occur

with numerical roundoff error in higher approximations.

Bubnov–Galerkin method

Recall equation (2.13.1) for finding the minimum point of Problem 3.19.1:

(u, v)H − F (v) = 0, (3.19.8)

where v is an arbitrary element of H . Long ago in Russia there was an

engineering journal that published the paper of an author but also a review

by the person who submitted the paper to the journal. One such paper was

written by S. Timoshenko and submitted by shipbuilding engineer I.G. Bub-

nov (1872–1919). Timoshenko, at that time a young engineer, considered

an equilibrium problem using Ritz’s method. In his review, Bubnov men-

tioned that Ritz’s equations could alternatively be obtained from (3.19.8).
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In modern terminology, if one substitutes the linear combination (3.19.6)

for u in (3.19.8), and then successively puts e1, e2, . . . , en in place of v, the

result will be (3.19.7). This small remark had the effect of extending Ritz’s

method beyond its original realm of application, and the extension was

named after Bubnov. A later modification was called the Bubnov–Galerkin

method : in this case the substitution for v is made in terms of another “ba-

sis” set e′1, e
′
2, . . . , e

′
n. For this second basis, it is important that the set of

equations obtained consists of n equations with respect to the n variables

ck. The second set must be such that the system has a unique solution. By

selecting this set appropriately, we may obtain an algebraic system that is

easier to solve than the original Ritz system. In the non-Russian technical

literature, Bubnov’s name has largely disappeared from this modification,

although B.G. Galerkin (1871–1945) was a student of Bubnov and accepted

the latter’s role in originating the method.

Finally, we note a particular case of this method. If the ek are orthonor-

mal so that (ek, en)H = δkn where δkn is the Kronecker symbol, then the

system (3.19.7) is easy to solve:

ck = F (ek).

In this way, as an approximation, we obtain a portion of a Fourier series.

Such series will be considered in abstract form in § 3.22.

Ritz’s method is used when the number of “basis” elements n (and

hence the number of equations) is large. If the resulting matrix is not

sparse, a typical numerical method will require something on the order of n2

operations to solve the system. The finite element method uses a special set

of basis elements for which the matrix entries are given by simple formulas.

More importantly, the nonzero entries are clustered in a band near the main

diagonal. In this case something on the order of n operations are required

for a solution, which means we can attack much larger problems. The

reader can refer to specialized books for thorough coverage of the method,

but we provide a brief sketch for the simplest case of a one-dimensional

problem for an elastic bar with clamped ends and distributed load t(x).

For the VWP equation (3.2.14) (simpler case), Ritz’s equations are
∫ l

0

ESu′v′ dx =

∫ l

0

t(x)v(x) dx. (3.19.9)

The nth-order Ritz approximation is

un(x) =

n
∑

k=1

ckϕk(x).
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As a basis element ek we take a function ϕk(x) constructed as follows. We

partition the segment [0, 1] and number its nodes starting with 1. Let ϕk(x)

be a piecewise linear “tent function” that is nonzero only between nodes

k − 1 and k + 1 and equal to 1 at node k as shown in Fig. 3.14.

Fig. 3.14 Graph of the kth tent function.

The entry (ek, em)H in (3.19.7) takes the form

∫ 1

0

ESϕ′
k(x)ϕ′

m(x) dx,

whereas the expression F (ek) takes the form

∫ 1

0

t(x)ϕk(x) dx.

Because (ek, em)H 6= 0 only when |k−m| ≤ 1, the system matrix is tridiago-

nal. Simple formulas yield the entries for any given partition. Furthermore

the partition need not be uniform.

For the two-dimensional case of a membrane, we can partition the do-

main into triangles and use piecewise-linear functions as the basis set. In

this case it is more challenging to number the nodes in such a way that

nonzero members of the Gram matrix lie near the main diagonal. Fortu-

nately, algorithms have been developed to handle this numbering automat-

ically.

We will not discuss the difficulties that arise in the application of FEM

to various problems. We should note, however, that despite the faith placed
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by many engineers in “universal” FEM packages, there are many practical

problems that such packages cannot solve.

3.20 A Brief but Important Remark

We have studied equilibrium problems for linear elasticity, as well as prob-

lems for membranes and other elastic bodies, in Cartesian coordinates. It

is important to understand, however, that the results we have obtained are

valid in any coordinate system if we can transform between the two systems

and the energy integrals make sense. The form of the imbedding theorems

will change because, for example, the Jacobian of the transformation will

appear in the integrals for the Lp-norm. But that is all. We urge the

reader to investigate the form of the existence theorems (the conditions on

the external forces) for linear elasticity in polar and cylindrical coordinates.

3.21 Countable Sets and Separable Spaces

We have made use of complete systems of elements in a space, putting aside

the question whether such a system — indexed with integers — can exist

in principle. Before discussing this further, we must take a brief detour

toward the foundations of set theory. Namely, we must ask how the sizes

of two given sets can be compared. Which one has “more elements”?

For sets containing just a few elements, we can simply count the elements

of each set and compare the numbers. This procedure will not work for

infinite sets, however. We can compare two infinite sets as follows. We

say that two sets are of equal power if a one-to-one correspondence exists

between their elements. Of the various infinite sets, we can think of the

natural numbers N = {1, 2, 3, . . .} as having the least power; only a finite

set can have a smaller power. Any set that has the same power as N is

said to be countable. Because a countable set S can be put into one-to-

one correspondence with N, its elements can be indexed using the positive

integers: we are permitted to write, say,

S = {s1, s2, s3, . . .}.

Countable sets possess some interesting properties. We can delete any

finite number of elements from a countable set, and the new set will still

be countable. We can even delete all the odd integers from the set of all

integers and still have a countable set. A particularly useful property is the
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following.

Theorem 3.21.1. A countable union of countable sets is countable.

Proof. We will show how to renumber the elements of the resulting union

of sets. Let us denote the elements of the first set by a11, a12, a13, . . ..

This can be done because the set is countable. We denote the elements

of the second set by a21, a22, a23, . . .. The elements of the third set are

denoted similarly, and so on. The union of all these sets is the set whose

general element can be written in the form aij for i, j = 1, 2, 3, . . .. But

these elements can be renumbered in many different ways. For example,

we could take the first element of the union as a11, but the second and third

elements as a12 and a21 — i.e., as those elements having indices that sum

to 3. The fourth, fifth, and sixth elements could be taken as a13, a22, and

a31 — i.e., as those elements having indices that sum to 4. Continuing in

this way (i.e., taking the elements whose indices sum to 5, 6, 7, and so on)

we succeed in renumbering the elements of the union in such a way that

they stand in one-to-one correspondence with N. �

This theorem has some important consequences. First, the set of ra-

tional numbers is countable. Indeed its elements can be labeled using the

scheme aij = i/j, where i runs through all integer values and j through all

nonzero integer values.

Second, we can apply the theorem in a successive manner any finite

number of times. One application shows that the set of polynomials having

degree n and rational coefficients is countable. A second application shows

that the set of all polynomials having rational coefficients is countable.

Are there sets whose powers exceed that of a countable set? The answer

is yes: the set of all real numbers in the segment [0, 1] is infinite but not

countable. A long proof can be found in any textbook on real analysis. A

set having power equal to that of this segment is said to have the power of

the continuum. The set of points that constitute R3 is an example.

Using rational numbers, we can approximate any real number to within

any desired accuracy. When the accuracy is fixed, we can use a finite set of

numbers to approximate a bounded set of numbers. We rely on this fact in

ordinary machine computation. It turns out that not all functional spaces

have elements that can be approximated in this way, however. Our work

will therefore focus on the spaces covered by the following definition.

Definition 3.21.1. A metric space is said to be separable if it has a count-

able dense subset.
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So [0, 1] is separable as a metric space with the usual metric d(x, y) =

|x − y|. A much less trivial example is the space C(a, b), in which the set

of all polynomials with rational coefficients happens to be countable and

dense. This is guaranteed by Weierstrass’ theorem, which states that any

function continuous on [a, b] can be approximated uniformly to within any

fixed accuracy by a polynomial. Clearly, we can select this polynomial with

rational coefficients.

Weierstrass’ theorem can be extended to the spaces C (k)(V ) where V is

a compact subset of Rn. It is easy to see that the property of denseness is

transitive in a metric space: if A is dense in B, and B is dense in C, then

A is dense in C. A consequence of this is that all our energy spaces are

separable, because they are constructed on certain base subsets of C (k)(V )

using the completion procedure in a countable number of actions.

When we wish to extend the idea of a basis in Rn to infinite-dimensional

spaces in an elementary way, we should do this using separable spaces.

3.22 Fourier Series

We have mentioned orthonormal systems of elements. Any university cal-

culus sequence will contain a treatment of Fourier series. Fourier’s initial

development in terms of sines and cosines can be extended to a powerful ab-

stract form involving only the property of orthogonality between elements

of a Hilbert space. We wish to present this for a complex Hilbert space H ,

so we take C as the scalar field over which H is defined. In this case, the

Fourier series representation of an element u ∈ H takes the form

u =

∞
∑

k=1

αkek, (3.22.1)

where the αk are the Fourier coefficients of u and the ek are elements of an

orthonormal basis. Let us explain this situation in more detail.

Orthonormal system of elements

Definition 3.22.1. The vectors e1, e2, . . . , en form an orthonormal system

if (ek, em)H = δkm, where δkm is Kronecker’s symbol.
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An orthonormal sequence e1, e2, . . . , en is linearly independent. Indeed,

taking the inner product between em and both sides of the equation
n
∑

k=1

ckek = 0,

we obtain cm = 0 for all m.

Given a linearly independent system of vectors g1, g2, . . . , gn that is a

basis in the n-dimensional linear space of all linear combinations
∑n

k=1 ckgk,

we can derive another basis of the same space using the Gram–Schmidt

formulas

e1 =
g1
‖g1‖H

, ek =
ĝk

‖ĝk‖H

(k = 2, . . . , n),

where

ĝk = gk − (gk, e1)He1 − · · · − (gk, ek−1)Hek−1 (k = 2, . . . , n).

Because g1, g2, . . . , gn is a linearly independent system, ĝk cannot be zero

for any k. It can be verified directly that e1, e2, . . . , en is an orthonormal

system containing n vectors. It is therefore a basis of the same space.

Fourier coefficients

We have seen that if we know a solution u∗, then Ritz’s method applied to

a minimization problem reduces to the problem of finding the coefficients

ck of the functional
∥

∥

∥

∥

∥

n
∑

k=1

ckek − u∗

∥

∥

∥

∥

∥

2

H

that minimize this as a function of the ck. Now suppose u∗ is given. Let

us rename it u and minimize the functional
∥

∥

∥

∥

∥

u−
n
∑

k=1

ckek

∥

∥

∥

∥

∥

2

H

. (3.22.2)

Since H is now complex, our prior technique of differentiation is not ap-

propriate. When e1, e2, . . . , en is an orthonormal set, however, we can find

the needed coefficients directly.

Theorem 3.22.1. Let e1, e2, . . . , en be an orthonormal set. The best ap-

proximation of u by a linear combination
∑n

k=1 ckek is achieved when

ck = (u, ek)H (k = 1, 2, . . . , n).
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We call αk = (u, ek)H the kth Fourier coefficient of u.

Proof. Let us represent (3.22.2) as

A =

(

u−
n
∑

k=1

ckek , u−
n
∑

m=1

cmem

)

H

.

Expansion yields

A = (u, u)H −
(

u,

n
∑

m=1

cmem

)

H

−
( n
∑

k=1

ckek, u

)

H

+

( n
∑

k=1

ckek ,

n
∑

m=1

cmem

)

H

or

A = (u, u)H −
n
∑

m=1

cm(u, em)H −
n
∑

k=1

ck(ek, u)H

+

n
∑

k=1

ck

n
∑

m=1

cm(ek, em)H .

Remembering that (ek, em)H = δkm and writing αk = (u, ek)H , we get

A = (u, u)H −
n
∑

m=1

cmαm −
n
∑

k=1

ckαk +
n
∑

k=1

ckck.

Adding and subtracting
∑n

k=1 αkαk, we get

A = (u, u)H −
n
∑

k=1

αkαk +

n
∑

k=1

(ck − αk)(ck − αk). (3.22.3)

Since
n
∑

k=1

(ck − αk)(ck − αk) =

n
∑

k=1

|ck − αk|2

is nonnegative and takes zero as its minimum value when ck = αk, and the

rest of A does not depend on ck, the result is proved. �

Fourier series

We started with A ≥ 0. Putting ck = αk in (3.22.3), we obtain

n
∑

k=1

|αk|2 ≤ ‖u‖2
H . (3.22.4)
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This is Bessel’s inequality. It has several important consequences.

(1) The series
∑∞

k=1 |αk|2 converges.

Indeed, the terms are nonnegative and for any n the partial sum
∑n

k=1 |αk|2
is bounded from above by ‖u‖2

H .

(2) The series
∑∞

k=1 αkek converges in H .

Let un =
∑n

k=1 αkek. Then {un} is a Cauchy sequence in H . Indeed, if

m < n then

un − um =

n
∑

k=m+1

αkek

and, by direct calculation,

‖un − um‖2
H =

n
∑

k=m+1

|αk|2 → 0 as m→ ∞

because
∑∞

k=1 |αk|2 converges. Thus un converges as n→ ∞. Consequently

we get

(3)
∥

∥

∥

∥

∥

∞
∑

k=1

αkek

∥

∥

∥

∥

∥

2

H

=
∞
∑

k=1

|αk|2 ≤ ‖u‖2
H .

This is all we can say about the Fourier series
∑∞

k=1 αkek while assuming

only orthonormality of the system e1, e2, . . .. Unless this system has basis-

like properties, there may exist elements that cannot be approximated by

particular Fourier sums un.

Theorem 3.22.2. Suppose the system e1, e2, . . . is complete in H. Then

u =

∞
∑

k=1

αkek (3.22.5)

and Parseval’s equality

∞
∑

k=1

|αk|2 = ‖u‖2
H (3.22.6)

holds.
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The proof of the first equality, which is the Fourier series representation

of u, was given when we considered the convergence of Ritz approximations.

Parseval equality is a consequence.

It is difficult to prove directly that e1, e2, . . . is complete in H . In § 3.28

we will examine a class of operators related to eigenvalue problems for

elastic structures, and will see that the eigenfunctions of these operators

have the necessary property. Now we turn to the problem of vibration.

3.23 Problem of Vibration for Elastic Structures

So far we have considered mostly equilibrium problems. We now turn to

vibration problems. These are related to the problem of resonance and have

great value in engineering.

Vibration equations can be formulated in the same fashion for all the

objects we have considered. First, starting with the equilibrium equation

in VWP form and using d’Alembert’s principle, we present the dynamical

equations. Then, supposing a certain time dependence of the external forces

and solutions, we get the equations for forced vibrations.

Let us show how this plan is carried out for a three-dimensional elastic

body. We start with the VWP equation (3.15.4):
∫

V

cijklεkl(u)εij(v) dV −
∫

V

F · v dV −
∫

S\S1

f · v dS = 0. (3.23.1)

D’Alembert’s principle says that at each point of V we must replace the

external body force F by

F − ρ
∂2u

∂t2

where ρ is the density of the material at the point and t is time. In this

way we get the equation of motion
∫

V

cijklεkl(u)εij(v) dV −
∫

V

(

F− ρ
∂2u

∂t2

)

· v dV −
∫

S\S1

f · v dS = 0.

(3.23.2)

To study forced vibrations, we suppose the forces and displacements

share the same time dependence: namely, as eiωt where ω is the angular

frequency. This can be done by the formal replacement (we retain the

same notation for the spatially-dependent part of a quantity as for the

entire quantity)

F 7→ eiωtF(r), f 7→ eiωtf(r), u 7→ eiωtu(r).
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If we permit ω to take complex values, then u and v will have complex

components. We shall take v in conjugate form as v. Substituting into

(3.23.2) and canceling the common factor eiωt, we obtain the equation for

forced vibrations:
∫

V

cijklεkl(u)εij(v) dV −
∫

V

(

F + ω2ρu
)

·v dV −
∫

S\S1

f ·v dS = 0. (3.23.3)

Now we recast (3.23.3) in operator form in the space EE0. Introducing

conjugate values, etc., we come to complex linear spaces. We will continue

using our earlier notation for the energy spaces, however. It is clear that

the properties we have established for their elements are preserved as well.

So the first term of (3.23.3) is
∫

V

cijklεkl(u)εij(v) dV = (u,v)E . (3.23.4)

Assuming F and f satisfy the conditions of Theorem 3.17.1, and applying

the Riesz representation theorem, we get
∫

V

F · v dV +

∫

S\S1

f · v dS = (u∗,v)E = 0 (3.23.5)

with an element u∗ ∈ EE0 that is uniquely defined by F and f . Finally,

consider the conjugate term
∫

V

ρu · v dV =

∫

V

ρu · v dV.

For fixed u ∈ EE0, this is a linear functional in v. Moreover, because L2(V )

is imbedded to EE0 continuously, we get
∣

∣

∣

∣

∫

V

ρu · v dV
∣

∣

∣

∣

≤ c ‖u‖E ‖v‖E (3.23.6)

with a constant that does not depend on u,v ∈ EE0. So this functional is

continuous in EE0 and we can represent it as an inner product in EE0:
∫

V

ρu · v dV = (v,u∗∗)E ,

which is the same as
∫

V

ρu · v dV = (u∗∗,v)E . (3.23.7)

Here u∗∗ depends on the single variable u in such a way that to u ∈ EE0

there corresponds a unique u∗∗ ∈ EE0. This is the same as saying that we

have defined an operator A:

u∗∗ = A(u).
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Hence
∫

V

ρu · v dV = (Au,v)E . (3.23.8)

Exercise 3.23.1. Show that A is linear.

This operator is also continuous. Indeed, by (3.23.6) we have

|(Au,v)E | =

∣

∣

∣

∣

∫

V

ρu · v dV
∣

∣

∣

∣

≤ c ‖u‖E ‖v‖E .

Putting v = Au we get

‖Au‖2
E ≤ c ‖u‖ ‖Au‖E ,

hence ‖A‖ ≤ c.

Substituting (3.23.4), (3.23.5), and (3.23.7) into (3.23.3), and denoting

µ = ω2, (3.23.9)

we get

(u,v)E − µ(Au,v)E − (u∗,v)E = 0.

Since v ∈ EE0 is arbitrary, we get the necessary operator equation

u− µAu = u∗. (3.23.10)

A similar equation holds for the forced vibrations of all the mechanical

objects we considered earlier.

The eigenvalue problem in finite- and infinite-dimensional

space

When u∗ = 0 in (3.23.10), the result looks like the eigenvalue problem in

linear algebra that is considered in a finite-dimensional space:

Mx = λx, (3.23.11)

with M an n × n matrix and λ = 1/µ. There is a difference, however,

because EE0 is infinite dimensional. Before proceeding, let us recall what

is known for the eigenvalue problem in linear algebra. We seek nonzero

solutions x to (3.23.11), known as eigenvectors. An eigenvector exists if

and only if

det(M − λI) = 0. (3.23.12)
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The number of eigenvalues does not exceed n. When det(M−λI) 6= 0, the

inverse (M− λI)−1 exists and the equation

Mx − λx = b (3.23.13)

has a solution x for any b. Linear algebra textbooks rarely mention the

class of vectors b for which a solution exists if λ is an eigenvalue. This

question is important in applications. We will discuss it for the general

case of equation (3.23.10).

When there is a nontrivial solution x∗ of the equation

x− µBx = 0 (3.23.14)

with a linear operator B in an infinite-dimensional abstract Hilbert space

H (that is, x∗ is an eigensolution of B), then the equation

x− µBx = b (3.23.15)

cannot have a solution for any b ∈ H . The same holds for (3.23.10).

Let B be continuous. When (3.23.14) lacks a nontrivial solution, unlike

the finite-dimensional case, this does not mean we can solve (3.23.15) for

any b. In functional analysis, when it happens that it is possible to find the

inverse (I−µB)−1 but its domain is not the whole space or the inverse is not

continuous, we say that µ belongs to the spectrum of B. This situation does

not arise in finite-dimensional linear algebra. Fortunately, for a bounded

elastic object such points do not arise if the body has a “regular” shape

(i.e., a shape required by the corresponding imbedding theorems).

First we will establish some properties of the operator A from the elas-

ticity problem of § 3.22. Then we will discuss the spectral properties of a

general class of operators to which A belongs.

3.24 Self-Adjointness of A and Its Consequences

We begin with

Definition 3.24.1. A continuous linear operator B acting in a Hilbert

space H is self-adjoint if the equality

(Bx, y) = (x,By) (3.24.1)

holds for all x, y ∈ H .
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We noted that all the qualitative properties we can establish for A in

the framework of linear elasticity will also apply to the rest of the linear

problems of this book. The first is

Theorem 3.24.1. A is a self-adjoint continuous operator.

Proof. Continuity was proved earlier. Remember that A is introduced

by the equality

(Au,v)E =

∫

V

ρu · v dV.

Interchanging u and v, we get
∫

V

ρv · u dV = (Av,u)E = (u, Av)E .

Writing
∫

V

ρu · v dV as

∫

V

ρv · u dV

we find that

(Au,v)E = (u, Av)E

for all u,v ∈ EE0. Hence A is self-adjoint. �

Theorem 3.24.2. A is strictly positive, which means that (Au,u)E > 0

whenever u 6= 0.

Proof. By definition of A we have

(Au,u)E =

∫

V

ρu · u dV

and so (Au,u)E ≥ 0. From
∫

V

ρu · u dV = 0

it follows that u = 0. �

We will refer to a value µ for which the equation

u = µAu (3.24.2)

has a nonzero solution as an eigenvalue of A, and to the solution itself

as an eigensolution or oscillation mode. Since eigenvalues are related to

eigenfrequencies, they are important in the theory of elasticity.
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We now prove some consequences of Theorem 3.24.1. Despite their

simplicity, the following theorems are valuable in mechanics.

Theorem 3.24.3. The disk

|µ| < 1

‖A‖
contains no eigenvalues of A.

Proof. From (3.24.2) it follows that

‖u‖E = ‖µAu‖E ≤ |µ| ‖A‖ ‖u‖E .

In the disk |µ| ‖A‖ = q < 1 and so

‖u‖E (1 − q) ≤ 0.

This implies u = 0, hence no µ in the disk can be an eigenvalue. �

By (3.23.9), the eigenfrequencies ω are bounded from below by the value
√

1/ ‖A‖.

Remark 3.24.1. For a body free of geometrical constraints, the operator

A is not strictly positive. It is merely positive, as the rigid infinitesimal

displacement a + b × r is its eigensolution corresponding to µ = 0, an

eigenvalue of A. This is an exceptional value for the problem, however, and

the remaining eigenvalues that do not correspond to rigid motions of the

body do obey the theorem.

Theorem 3.24.4. The eigenvalues µ are real and can be selected to be

positive.

Proof. An eigenvalue satisfies

µ = (u,u)E/(Au,u)E

and hence is positive by Theorem 3.24.2. �

So the eigenfrequencies ωk of a bounded elastic body are positive and

bounded away from zero.

Theorem 3.24.5. If µ1 6= µ2 are two eigenvalues of A, then their corre-

sponding eigensolutions u1 and u2 are orthogonal:

(u1,u2)E = 0. (3.24.3)

Moreover, the eigenvectors satisfy the generalized orthogonality property

(Au1,u2)E = 0. (3.24.4)
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Proof. We have two equalities:

u1 = µ1Au1, u2 = µ2Au2.

We multiply the first by u2 from the left and the second by u1 from the

right to get

(u2,u1)E = µ1(u2, Au1)E ,

(u2,u1)E = µ2(Au2,u1)E .

Subtracting, we obtain

µ1(u2, Au1)E − µ2(Au2,u1)E = 0.

Because A is self-adjoint, we have (u2, Au1)E = (Au2,u1)E . Thus

(µ1 − µ2)(u2, Au1)E = 0.

Since µ1 6= µ2, it follows that (u2, Au1)E = 0. This establishes

(3.24.4). Orthogonality of u1 and u2 follows from the equality (u2,u1)E =

µ1(u2, Au1)E . �

Later (in Theorem 3.28.2) we will use Theorem 3.24.5 to prove that we

can select the set of eigensolutions of A that constitute an orthogonal basis

of EE0. This permits application of the separation of variables method to

dynamics problems. We will also need the main result of the next section.

3.25 Compactness of A

Before we discuss compactness of an operator, we should introduce the no-

tion of compactness for a set. In elementary calculus we are accustomed to

the fact that a closed and bounded subset of Rn has the following property:

from any sequence contained in the set we can select a Cauchy subsequence.

In an infinite-dimensional Hilbert space H this property does not hold. For

instance, we can take an orthonormal sequence {ek} that definitely exists

in H and lies in the unit ball ‖x‖H ≤ 1; since the distance between any two

distinct elements of {ek} is given by

‖ek − em‖2
H = (ek − em, ek − em)H = ‖ek‖2

H + ‖em‖2
H = 2,

this sequence cannot contain a Cauchy subsequence.

Theorem 3.25.1. Any bounded sequence in a Hilbert space H contains a

Cauchy subsequence if and only if H is finite dimensional.
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This theorem holds in a normed space as well. In the following defini-

tion, X is a Banach space.

Definition 3.25.1. A set S ⊂ X is precompact if from any of its sequences

we can select a Cauchy subsequence. If a precompact set S is closed, it is

compact.

Note that a sequence {xk} such that ‖xk‖X → ∞ as k → ∞ does not

contain a Cauchy subsequence. So a precompact subset of a Banach space

is bounded.

To formulate a criterion for compactness, we will need

Definition 3.25.2. A finite set of elements e1, e2, . . . , en is a finite ε-net

of a set S ⊂ X if for any x ∈ S there exists ek such that ‖x− ek‖X < ε.

In other words, e1, e2, . . . , en is a finite ε-net of set S if the union of all

balls of radius ε and having centers at these points covers S.

Now let us formulate

Theorem 3.25.2. (Hausdorff criterion) S ⊂ X is precompact if and only

if for any ε > 0 there exists a finite ε-net of S.

Proof. We will prove the “if” part; the converse can be found in any text-

book on functional analysis (e.g., [Lebedev and Vorovich (2002)]). Assume

that for any ε > 0 there exists a finite ε-net of S. Let us take an arbitrary

sequence {xk} from S and show that it contains a Cauchy subsequence.

(1) Let us construct a finite 1
2 -net of S. S is covered by the union of a

finite number of balls of radius 1
2 with centers at the 1

2 -net. One of

these balls, say B1, contains infinitely many elements of {xk}. We

denote this subsequence by {xk1}. Let us select its first element and

call that y1.

(2) In the same way, a finite union of balls of radius 1
22 that corresponds

to a 1
22 -net of S covers S, so some ball B2 contains infinitely many

members of {xk1}. We denote this subsequence by {xk2}. Let us select

an element whose position in the initial sequence lies beyond that of y1

and call it y2. Because y1 and y2 belong to B1, we have ‖y1 − y2‖X <

2 · 1
2 = 1.

(3) Similarly, construct a finite 1
23 -net of S and a select corresponding ball

B3 that contains a subsequence {xk3} of the sequence {xk2}. Select an

element whose position in the initial sequence lies beyond that of y2
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and call it y3. Because y2 and y3 belong to B2, we have ‖y2 − y3‖X <

2 · 1
22 = 1

2 .

We can continue this process indefinitely. On the kth step we construct

a finite 1
2k -net, then the ball cover, then select a ball Bk that contains an

infinite subsequence of the sequence obtained in the previous step. Selecting

a corresponding element and denoting it by yk, we see that both yk and

yk−1 lie in Bk−1 so that

‖yk−1 − yk‖X < 2 · 1

2k−1
=

1

2k−2
.

We now show that {yk} is the needed Cauchy sequence. For any integer

m, we have

‖yn+m − yn‖X ≤ ‖(yn+m − yn+m−1‖ + ‖yn+m−1 − yn+m−2‖X

+ · · · + ‖yn+1 − yn‖X

≤ 1

2n+m−2
+

1

2n+m−3
+ · · · + 1

2n−1

<
1

2n−2
→ 0 as n→ ∞.

This completes the proof. �

A classical result on compactness in infinite-dimensional spaces is

Theorem 3.25.3. (Arzelà) Let [a, b] be a finite interval. A family of func-

tions fα(x) is precompact in C(a, b) if and only if it is bounded in C(a, b)

and equicontinuous.

Proof. Let us first explain what is meant by “equicontinuity” of a family

of functions. We know that a function f(x) continuous on [a, b] is uniformly

continuous: for any ε > 0 there is a δ > 0 such that for any x, y ∈ [a, b]

we have |f(x) − f(y)| < ε. This is called Weierstrass’ theorem on uniform

continuity of a continuous function on a compact set. If for any ε > 0

we can find δ > 0 having the property that for any x, y ∈ [a, b] such that

|x − y| < δ we get |fα(x) − fα(y)| < ε for all functions of the family, then

the family is said to be equicontinuous.

We will present a geometrical proof of the “if” part of the theorem.

Assuming the family is bounded and equicontinuous, we construct an ε-net

of the family. Let us start with ε/3. By the equicontinuity of the family,

we can find δ > 0 such that for any x, y ∈ [a, b], |x − y| ≤ δ, we have

|fα(x) − fα(y)| < ε/3. Now let us introduce the necessary ε-net.
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Since the family is bounded, there exists c such that |fα(x)| < c. Let us

depict on the domain [a, b] × [−c, c] a grid of lines parallel to the axes Ox

and Oy (Fig. 3.15). The lines parallel to Oy are separated by a distance δ,

and those parallel to Ox by ε/3.

Fig. 3.15 Construction of an ε-net.

Connect all the nodes of this picture (except those in vertical lines)

with straight segments. In this way we get a finite number of graphs that

represent some piecewise linear continuous functions on [a, b]. This is the

required ε-net of the family. Indeed, from the picture it is easily seen that

any function of the family, because of equicontinuity, can be approximated

with one of the piecewise linear functions ϕk(x) in such a way that

|fα(x) − ϕk(x)| < ε.

We leave the details to the reader. (Hint: On a segment [xk, xk + δ] of the

domain, the graph of any function in this family can lie within no more

than two vertically-adjacent cells.) �

A version of Arzelà’s theorem also holds in C(V ), where V is a compact

subset of Rn. We advise the reader to adapt the above geometrical proof

to this case.

Exercise 3.25.1. Let [a, b] be a finite interval. Show that a set of functions

that is bounded in the space C(1)(a, b) is precompact in C(a, b).

In § 2.10 we established that each element of the energy space ESD

stands in unique correspondence with an element of C(0, l). We called
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this correspondence an imbedding operator, and found that it is linear and

continuous from ESD to C(0, l). Now we wish to prove

Lemma 3.25.1. The image of the unit ball in ESD under the imbedding

operator from ESD to C(0, l) is a precompact set in C(0, l).

Proof. In order to establish continuity of the imbedding, we started with

inequality (2.10.6) for a continuously differentiable function and then, by

the limit passage over a representative sequence of an element of ESD ,

obtained the needed property. We will do the same thing here. For a

continuously differentiable function u(x) on [0, l] we have

u(y) − u(x) =

∫ y

x

u′(s) ds.

Hölder’s inequality gives

|u(y) − u(x)| =

∣

∣

∣

∣

∫ y

x

1 · u′(s) ds
∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ y

x

12 ds

∣

∣

∣

∣

1/2 ∣
∣

∣

∣

∫ y

x

|u′(s)|2 ds
∣

∣

∣

∣

1/2

=
√

|y − x|
∣

∣

∣

∣

∫ y

x

|u′(s)|2 ds
∣

∣

∣

∣

1/2

≤
√

|y − x|
(
∫ l

0

|u′(s)|2 ds
)1/2

.

Let U(x) be an element of ESD and {un(x)} a representative sequence.

The inequality

|un(y) − un(x)| ≤
√

|y − x|
(
∫ l

0

|u′n(s)|2 ds
)1/2

holds for any un(x). Let u(x) be the limit of the sequence {un(x)}, the

existence and continuity of which were established in § 2.10. As n→ ∞ we

obtain

|u(y) − u(x)| ≤
√

|y − x| lim
n→∞

(
∫ l

0

|u′n(s)|2 ds
)1/2

.

But by definition

lim
n→∞

∫ l

0

|u′n(s)|2 ds =

∫ l

0

|U ′(s)|2 ds
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and so

|u(y) − u(x)| ≤
√

|y − x|
(
∫ l

0

|U ′(s)|2 ds
)1/2

.

Hence the set of all u(x) that constitute the image of the unit ball of ESD

is an equicontinuous and bounded set of functions belonging to C(0, l). An

application of Arzelà’s theorem completes the proof. �

From the elementary inequality
∫ l

0

|u(s)|2 ds ≤ l max
x∈[0,l]

|u(x)|2,

which holds for any function continuous on [0, l], we obtain

Lemma 3.25.2. If {un(x)} is a Cauchy sequence in C(0, l), then it is a

Cauchy sequence in the norm of L2(0, l).

Definition 3.25.3. A linear operator C from a normed space X to a

normed space Y is compact if the image of the unit ball ‖x‖X ≤ 1 is

precompact in Y .

The reader is asked to work

Exercise 3.25.2. Show that a linear operator C is compact if and only if

any bounded sequence {xk} ⊂ X contains a subsequence {xk1} such that

{Cxk1} is a Cauchy sequence in Y .

In the exercise, it is sufficient to require {xk} to lie within the ball

‖x‖X ≤ 1.

A linear compact operator C is continuous. Indeed, the image C(B) of

the unit ball B = {x : ‖x‖X ≤ 1} is precompact and therefore bounded; we

can define the norm of the operator C as

‖C‖ = sup
‖x‖

X
≤1

‖Cx‖Y .

Theorem 3.25.4. The set of linearly independent eigenvectors that corre-

spond to an eigenvalue µ of a compact operator C acting in a Hilbert space

H is finite.

Proof. Let us extend the set of eigenvectors of C that correspond to µ by

zero and denote it by N . Then N is a closed subspace of H and therefore

a Hilbert space. Let us introduce an operator C1 = µC that is evidently

linear and compact as well. But C1 maps the unit ball of N into itself. By
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Definition 3.25.3 this ball is precompact. Thus, by Theorem 3.25.1, N is

finite dimensional. �

We now return to our operators for the elastic objects. First we consider

the operator AS for the string. It is given by the representation

(ASw, v)S = ρ

∫ l

0

w(x)v(x) dx, (3.25.1)

where (cf., § 2.9)

(w, v)S =

∫ l

0

T0w
′(x)v′(x) dx (3.25.2)

defined in the complex space ESD . Like the operator A for linear elasticity,

AS is a linear continuous self-adjoint operator and satisfies the inequality

|(ASw, v)S | ≤ c ‖w‖L2(0,l) ‖v‖L2(0,l) . (3.25.3)

Now we prove

Theorem 3.25.5. AS is a compact operator.

Proof. From (3.25.3) and the imbedding theorem for ESD we have

|(ASw, v)S | ≤ c1 ‖w‖L2(0,l) ‖v‖S (3.25.4)

with a constant c1 that does not depend on w, v ∈ ESD . Let us take an

arbitrary bounded sequence {wk} in ESD. By Lemma 3.25.2, it contains

a subsequence {wk1} that is a Cauchy sequence in L2(0, l). Let us rename

it {wk}. To prove the theorem, it suffices to show that the subsequence

{ASwk} is a Cauchy sequence in ESD . Indeed, in (3.25.4) we can substitute

w = wk − wm and v = ASwk −ASwm to obtain

|(ASwk −ASwm , ASwk −ASwm)S |
≤ c1 ‖wk − wm‖L2(0,l) ‖ASwk −ASwm‖S .

Canceling ‖ASwk −ASwm‖S , we get

‖ASwk −ASwm‖S ≤ c1 ‖wk − wm‖L2(0,l) → 0 as n,m→ ∞.
�

Theorem 3.25.6. The operator A given by (3.23.8) is compact.

The proof is based on Rellich’s result on the compactness of the imbed-

ding operator in the space W 1,2(V ). We formulate this as

Theorem 3.25.7. The elements of the unit ball in the space W 1,2(V ) con-

stitute a precompact set in L2(V ).
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This is a special case of the Sobolev–Kondrashev theorem on compact-

ness of the imbedding operator to Lp(V ). The proof requires techniques

that lie outside of the scope of this book.

Having established that operators of the same type as A (equation

(3.23.8)) are compact, we shall study the effect of this property on the

spectrum of A. The outcome is a collection of results known as the Fred-

holm alternative.

3.26 Riesz–Fredholm Theory for a Linear, Self-Adjoint,

Compact Operator in a Hilbert Space

In this section we consider the spectrum of an abstract, linear, self-adjoint,

compact operator A in a Hilbert space H . The results will immediately

apply to (3.23.8).

We know that the set of eigenvectors of A corresponding to the same

eigenvalue, augmented with the zero vector, constitutes a finite-dimensional

subspace. Moreover, eigenvectors corresponding to distinct eigenvalues are

mutually orthogonal. Now we discuss the distribution of eigenvalues. As we

recall, these are all real and bounded away from the origin in the complex

plane.

Theorem 3.26.1. The eigenvalues of A have no finite accumulation point.

Proof. Suppose to the contrary that µ0 is an accumulation point of eigen-

values such that |µ0| <∞. There is a sequence of eigenvalues µk of A such

that µk → µ0 as k → ∞. For each µk let us select a unit eigenvector

xk, ‖xk‖H = 1. Thus (xk, xm) = δkm. The sequence {µkxk} is bounded

in H . By Exercise 3.25.2 the sequence {A(µkxk)} must contain a Cauchy

subsequence. But this is impossible as µkAxk = xk and therefore

‖A(µkxk) −A(µmxm)‖2
H = ‖xk − xm‖2

H = ‖xk‖2
H + ‖xm‖2

H = 2

when k 6= m. �

Now we wish to study the solvability of the equation

x− µAx = b. (3.26.1)

We denote by N the set of all solutions of the homogeneous equation

x− µAx = 0. (3.26.2)
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When µ is an eigenvalue of A, according to Theorem 3.25.4, N is a finite-

dimensional subspace of H . By Theorem 1.16.2 there exists an orthogonal

complement M of N in H . That is, M is a closed subspace of H , it has only

zero in common with N , any element of M is orthogonal to all elements

of N , and each element x ∈ H has the unique representation x = m + n

where n ∈ N and m ∈ M . First we prove

Lemma 3.26.1. For any x ∈M the inequality

‖x− µAx‖H ≥ c0 ‖x‖H (3.26.3)

holds with a constant c0 > 0 that does not depend on x.

Proof. Suppose there is no such c0. Then there is a sequence {xk} such

that ‖xk‖H = 1 for all k but ‖xk − µAxk‖H → 0 as k → ∞. Since

A is compact, we can select a Cauchy subsequence {Axk1} from {Axk}.
Renaming {xk1} as {xk}, we find that {Axk} is a Cauchy sequence and

xk − µAxk = εk, where ‖εk‖H → 0 as k → ∞. We rewrite the last relation

as

xk = µAxk + εk. (3.26.4)

Because ‖εk‖H → 0 as k → ∞, the sequence {µAxk + εk} has the same

limit as {µAxk}; we denote it by x0. By (3.26.4), limk→∞ xk = x0. As M

is closed, x0 belongs to M as well. What we can say about x0? On one

hand, x0 ∈ M and

‖x0‖H = lim
k→∞

‖xk‖H = 1.

On the other hand, letting k → ∞ in (3.26.4) we get

x0 = µAx0.

Therefore x0 ∈ N , which contradicts the assertion that x0 lies in M and is

nonzero. �

By Lemma 3.26.1 we can use ‖x− µAx‖H as a norm on M . Moreover,

because A is continuous, the reverse inequality

‖x− µAx‖H ≤ c1 ‖x‖H (3.26.5)

holds with a constant c1 that does not depend on x ∈ M . Taken together

with (3.26.3), this means that the expression ‖x− µAx‖H constitutes an-

other norm on M that is equivalent to the old norm ‖x‖H , and that M is

complete in this new norm. The new norm induces an inner product

〈x, y〉 = (x− µAx, y − µAy)H (3.26.6)
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that we can use on M instead of the initial inner product (x, y)H . With

this new inner product M is a Hilbert space as well.

Exercise 3.26.1. Let B be a continuous linear operator in a normed space

X, and suppose the inequality ‖Bx‖X ≥ c ‖x‖X holds for all x ∈ X with

some constant c > 0 that does not depend on x. Show that the functional

‖Bx‖X constitutes a norm on X equivalent to the initial norm.

Exercise 3.26.2. Let B be a continuous linear operator B in a Hilbert

space H, and suppose the inequality ‖Bx‖X ≥ c ‖x‖X holds for all x ∈ H

with a constant c > 0 that does not depend on x. Show that the func-

tional 〈x, y〉 = (Bx,By)X is an inner product on H, and that H remains a

Hilbert space under the induced norm 〈x, x〉1/2. Also show that this norm

is equivalent to the initial norm on H.

Now we can formulate

Theorem 3.26.2. Equation (3.26.1) has a solution if and only if b ∈ M .

Proof. “Only if” part. Let us first prove that for solvability of (3.26.1),

b must be orthogonal to N . Indeed, suppose (3.26.1) has a solution x0. Let

us take the inner product of both sides of (3.26.1) with an arbitrary n ∈ N :

(x0 − µAx0, n)H = (b, n)H .

Recall that A is self-adjoint and µ is real. Then

(x0 − µAx0, n)H = (x0, n− µAn)H = 0

and so (b, n)H = 0 for any n ∈ N .

“If” part. Assume b ∈ M . We must prove existence of a solution

to equation (3.26.1). Let us start with the functional (x, b)H , which is

evidently linear and continuous not only on H but on M as well. As we

said above, we can use 〈x, y〉 instead of (x, y)H as an inner product on M .

So, using the Riesz Representation Theorem 2.8.1, we get a unique element

b0 ∈M such that

(x, b)H = 〈x, b0〉
for any x ∈ M . Equivalently,

(x, b)H = (x− µAx, b0 − µAb0)H . (3.26.7)

Let us show that this holds for any x ∈ H . Indeed, we can uniquely

represent any x as x = n+m, where n ∈ N and m ∈M . Equality (3.26.7)
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holds if we put x = m. Putting x = n+m, we see that

(x, b)H = (n+m, b)H = (m, b)H

because (n, b)H = 0 (note that b ∈M by the condition). On the other hand

(x− µAx, b0 − µAb0)H = ((n− µAn) + (m− µAm), b0 − µAb0)H

= (m− µAm, b0 − µAb0)H ,

because n − µAn = 0 (n is one of the eigenvectors of A corresponding to

µ). So (3.26.7) holds for any x ∈ H as it is valid for x = m. Let us denote

b0 − µAb0 = x0. Then (3.26.7) takes the form

(x, b)H = (x− µAx, x0)H .

Since A is self-adjoint and µ is real, we get

(x− µAx, x0)H = (x, x0 − µAx0)H .

Hence the identity

(x, b)H = (x, x0 − µAx0)H

holds for all x ∈ H . But this means that

b = x0 − µAx0,

and thus x0 is the needed solution to (3.26.1). �

Remarks:

(1) The condition for solvability of the equation, b ∈ M , is sufficient for a

compact, self-adjoint, linear operator. If the operator is only symmetric

and linear, it is necessary for solvability.

(2) We use an abstract form of the theorem of solvability of the equation.

For the elastic problems we considered earlier, the abstract condition of

solvability can be formulated in a more mechanical form. Here the term

(b, x)H corresponds to the work of external forces and so the solvability

condition must be written in terms of work. For example, in linear

elasticity it is
∫

V

F · vk dV +

∫

S\S1

f · vk dS = 0

where vk is an eigenvector corresponding to µ. In fact, the conjugation

of vk is not necessary as the eigenfunctions for these problems are real-

valued. Mechanicists say that solvability of the problem for a free body

requires the external forces to be “orthogonal” to the oscillation modes.

This is stated by the above equality.
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The reader should understand that we merely proved an existence the-

orem; the proof does not yield a method of solving (3.26.1). However, the

condition that b must be orthogonal to all eigenvectors of A corresponding

to an eigenvalue µ is quite practical. Uniqueness of solution of (3.26.1) is

related to N ; namely, a solution is unique if and only if N = {0}. Indeed,

if N 6= {0} and x0 satisfies (3.26.1), then so does x0 +n for any n ∈ N . On

the other hand, if there are two solutions x1, x2 to (3.26.1), then x1 −x2 is

a solution of the homogeneous equation (3.26.1) and thus belongs to N . A

direct consequence of this is

Theorem 3.26.3. Equation (3.26.1) has a unique solution for any b ∈ H if

and only if µ is not an eigenvalue of A. Moreover, if µ is not an eigenvalue

of A then there exists a continuous inverse (I−µA)−1 whose domain is H.

Proof. Suppose µ is not an eigenvalue of A. Then N = {0}, and thus

M = H . By Theorem 3.26.2, equation (3.26.1) has a solution for any b ∈ H

and by the above it is unique. Moreover, (3.26.3) shows that (I − µA)−1

defined on the whole space H is continuous.

Conversely, M = H means that (3.26.1) has a solution for any b ∈ H .

But then N , which is the orthogonal complement of M in H , consists only

of the zero element. This means that N does not contain eigenvectors and

therefore µ is not an eigenvalue. �

It makes sense to collect the properties we have obtained for the spec-

trum of the operator A.

Theorem 3.26.4. Let A be a linear, self-adjoint, compact operator in a

Hilbert space H. The spectrum of A has the following properties.

(1) The spectrum of A can contain only eigenvalues of A.

(2) The eigenvalues µk of A, if they exist, are real.

(3) The set of eigenvalues has no finite accumulation point.

(4) To an eigenvalue of A there corresponds no more than a finite set of

linearly independent eigenvectors.

(5) Eigenvectors x1, x2 of A that correspond to distinct eigenvalues are

orthogonal: (x1, x2)H = 0. They also possess the generalized orthogo-

nality property (Ax1, x2)H = 0.

(6) Equation (3.26.1) has a solution if and only if b is orthogonal to all

eigenvectors of A that correspond to the eigenvalue µ.

(7) Equation (3.26.1) has a unique solution for any b ∈ M that depends

continuously on b if and only if µ is not an eigenvalue of A.
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Additional information about the spectrum can be found from the ex-

tremum nature of the eigenvalues. First we need the idea of weak conver-

gence in a Hilbert space.

3.27 Weak Convergence in Hilbert Space

For a sequence of vectors in Rn, norm convergence and componentwise

convergence are equivalent. In infinite-dimensional space such as l2, they

are not. We wish to consider an analogue of componentwise convergence in

a separable Hilbert space H . The component that defines the orthogonal

projection of x ∈ H onto the axis defined by a unit vector e ∈ H is the

product (x, e)H . We use this fact as follows.

Definition 3.27.1. A sequence {xk} is weakly convergent to x0 if for any

h ∈ H we have

lim
k→∞

(xk, h)H = (x0, h)H . (3.27.1)

We write xk ⇀ x0 as k → ∞.

Definition 3.27.2. We say that {xk} is a weak Cauchy sequence if for any

h ∈ H we have

(xk − xm, h)H → 0 as k,m→ ∞. (3.27.2)

The usual definition of weak convergence in a normed space is based

on continuous linear functionals. We based our statements on the Riesz

representation theorem to obtain a more geometrical picture of the idea.

From now on, ordinary convergence in norm will be called strong con-

vergence. We consider some properties of weak convergence.

Theorem 3.27.1. A limit of a weakly convergent sequence is unique.

Proof. Let {xk} have two weak limits x′ and x′′. That is,

lim
k→∞

(xk, h)H = (x′, h)H and lim
k→∞

(xk, h)H = (x′′, h)H .

It follows that (x′, h)H = (x′′, h)H or (x′−x′′, h)H = 0. Putting h = x′−x′′,
we get (x′ − x′′, x′ − x′′)H = 0 and thus x′ = x′′. �

An orthonormal sequence {ek} cannot converge. Nor can it contain a

Cauchy subsequence, because ‖ek − em‖H =
√

2 for k 6= m. However, for
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any x ∈ H we get

lim
k→∞

(x, ek)H = 0

because the sequence of Fourier coefficients of x with respect to ek tends

to zero by Bessel’s inequality. Hence {ek} has zero as a weak limit in H , so

strong convergence and weak convergence are different. Clearly, a strongly

convergent sequence converges weakly to the same element. Failure of the

converse raises the question whether each weak Cauchy sequence has a weak

limit in H . The answer is given by

Theorem 3.27.2. Any weak Cauchy sequence {xk} has a weak limit in H.

Proof. In Lemma 3.27.1 we will show that there is a constant c such

that ‖xk‖H ≤ c. For any x ∈ H , because {(xk, x)H} is a numerical Cauchy

sequence we have

lim
k→∞

(xk , x)H = lim
k→∞

(x, xk)H = F (x).

The reader can verify that F (x) is a linear functional. Next,

|F (x)| ≤ sup
k

‖xk‖H ‖x‖H ≤ c ‖x‖H

and so by the Riesz representation theorem

F (x) = (x, x′)H

where x′ ∈ H is uniquely defined by F (x). For x′ it follows that

lim
k→∞

(xk, x)H = (x′, x)H for all x ∈ H

and so x′ is a weak limit of {xk}. �

We still need to prove

Lemma 3.27.1. Let {xk} be a weak Cauchy sequence in a Hilbert space

H. Then it is bounded: there is a constant c such that ‖xk‖H ≤ c for all k.

Proof. Suppose to the contrary that {xk} is unbounded. Without loss of

generality, suppose ‖xk‖H → ∞ as k → ∞. We will show that this implies

the existence of z∗ ∈ H and a subsequence {xnk
} such that (xnk

, z∗)H → ∞
as nk → ∞; this contradicts the definition of weak convergence for {xk}.
We start with
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(1) Let z be an arbitrary element of H and ρ > 0 an arbitrarily small

number. The elements

zk = z + ρ
xk

2 ‖xk‖H

lie in the closed ball of radius ρ with center z. Note that ‖zk − z‖H = ρ/2.

The sequence {zk} has the property

(xk, zk)H = (xk , z)H +
ρ

2

(

xk,
xk

‖xk‖H

)

H

= (xk, z)H +
ρ

2
‖xk‖H → ∞

as k → ∞, since (xk , z)H is bounded at least.

(2) We construct the above-mentioned {xnk
} and z∗. The element z∗ will

be the limit of the centers of a sequence of nested closed balls {Bk} with

radii tending to zero.

(2-1) Fix some ρ1 > 0 and take x1 as the center of the first ball B1. By (1),

we get k1 and zk1 ∈ B1 such that (xk1 , zk1)H > 1. As the inner product

is continuous with respect to both arguments and zk1 is an interior point

of B1, there is a closed ball B2 ⊂ B1 with center zk1 and radius ρ2 ≤ ρ1/2

such that for all z ∈ B2 we have (xk1 , z)H > 1.

(2-2) Consider the tail of the sequence {xk} consisting of those terms having

indices greater than k1. The norms of this subsequence tend to infinity. So

considering for this tail the set of values (xk, z)H when z ∈ B2, we find

ourselves in the situation of point (1) of the proof, and so there are k2 > k1

and zk2 ∈ B2 such that (xk2 , zk2)H > 2. By continuity of (xk2 , z)H in z,

we find a closed ball B3 with center zk2 and radius ρ3 ≤ ρ1/3 such that

B3 ⊂ B2 and for all z ∈ B3 we have (xk2 , z)H > 3. We can continue this

indefinitely.

(2-n) On the nth step, similarly, we consider the tail of the sequence {xk}
consisting of those term whose indices exceed kn−1; we get a closed ball

Bn+1 enclosed in Bn and an element zkn
, the center of Bn+1 whose radius

ρn is no more than ρ1/n such that for all z ∈ Bn+1 we have (xkn
, z)H > n.

The sequence {zkn
} of centers of the nested closed balls Bn is a Cauchy

sequence and therefore has a limit z∗. Because z∗ belongs to each Bn,

(xkn
, z∗)H > n→ ∞ as n→ ∞.

This contradicts the condition that {xk} is a weak Cauchy sequence in the

Hilbert space H . �
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The following is a simple but useful sufficient condition for a weakly

convergent sequence to converge strongly to the weak limit.

Theorem 3.27.3. Suppose {xk} converges weakly to x∗ in H and

lim
k→∞

‖xk‖H = ‖x∗‖H as k → ∞.

Then x∗ is a strong limit of {xk}.

Proof. Let us start with

αk = ‖xk − x∗‖2
H = (xk − x∗, xk − x∗)H

= (xk, xk)H − (x∗, xk)H − (xk , x
∗)H + (x∗, x∗)H .

As k → ∞, each of the first three addends tends to (x∗, x∗)H . In-

deed, (xk, xk)H → (x∗, x∗)H by the condition of the theorem. We have

(xk , x
∗)H → (x∗, x∗)H by the definition of weak convergence of {xk} to x∗,

and similarly for (x∗, xk)H . This means that αk → 0, which was to be

proved. �

We formulate some properties of weak convergence as exercises.

Exercise 3.27.1. Let xk ⇀ x∗, and let {xk} be a strong Cauchy sequence.

Show that x∗ is a strong limit of {xk} as well.

Exercise 3.27.2. Show that if a sequence {xk} converges weakly to x∗ in

H, then ‖x∗‖H ≤ supk ‖xk‖H .

Exercise 3.27.3. Let B be a continuous linear operator in H and xk ⇀ x∗.

Show that Bxk ⇀ Bx∗; that is, a continuous linear operator B is weakly

continuous.

Exercise 3.27.4. Suppose B is a compact linear operator in H. Show that

B maps a sequence {xk} that converges weakly to x∗ into a sequence {Bxk}
that converges strongly to Bx∗.

Exercise 3.27.5. Let B be a compact linear operator in a Hilbert space H,

and let xk ⇀ x∗. Show that

lim
k→∞

(Bxk , xk)H = (Bx∗, x∗)H . (3.27.3)

Definition 3.27.1 is somewhat inconvenient to check. Let us establish a

more convenient condition for weak convergence.

Theorem 3.27.4. Let e1, e2, e3, . . . be a complete system of elements in

H. Then {xk} is a weak Cauchy sequence if it is bounded (i.e., if there
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is a constant c0 such that ‖xk‖H ≤ c0 for all k), and for any fixed k the

numerical sequence (xn, ek)H is a Cauchy sequence.

Proof. We must show that for any h ∈ H and any ε > 0 we can find a

number N such that

|(xn − xm, h)H | < ε whenever m,n > N.

So we take ε > 0 and fix h ∈ H . As e1, e2, e3, . . . is a complete system in

H , we can find a finite linear combination

hR =

R
∑

k=1

ckek

such that

‖h− hR‖H <
ε

3c0
.

Since R is finite and for each ek we have (xn −xm, ek)H → 0 as n,m→ ∞,

there exists N such that for n,m > N we get

|(xn − xm, hR)H | < ε

3
.

Now we are prepared to demonstrate the needed inequality for n,m > N :

|(xn − xm, h)H | = |(xn − xm, h− hR + hR)H |
≤ |(xn, h− hR)H | + |(xm, h− hR)H | + |(xn − xm, hR)H |
≤ (‖xn‖H + ‖xm‖H) ‖h− hR‖H + |(xn − xm, hR)H |
≤ 2c0

ε

3c0
+
ε

3
= ε.

�

We saw that if {xk} is a weak Cauchy sequence, the conditions of the

theorem hold. This means the conditions of the theorem are equivalent to

the definition of a weak Cauchy sequence. Note that in this new definition

in a separable Hilbert space H , we can use an orthonormal basis of H as a

complete set e1, e2, . . ..

We know that a ball in an infinite-dimensional Hilbert space is not

precompact. Let us introduce

Definition 3.27.3. A set S is weakly precompact in a Hilbert space if any

sequence from S contains a weakly Cauchy subsequence.

The following property is used to justify numerical methods.

Theorem 3.27.5. A ball in a separable Hilbert space H is weakly precom-

pact.
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Proof. Let e1, e2, e3, . . . be a complete system of elements in H . Any se-

quence {xk} from the ball is bounded; hence, by Theorem 3.27.4, it suffices

to find a subsequence {xmn
} such that for any k the sequence {(xmn

, ek)H}
is a numerical Cauchy sequence. Using the diagonal process, we will con-

struct this subsequence as follows.

(1) Consider the numerical sequence {(xk, e1)H}. By hypothesis it is

bounded as

|(xk , e1)H | ≤ c0 ‖e1‖H ,

and so it contains a numerical Cauchy subsequence {(xk1 , e1)H}. Let us

take an element of {xk1} as the first element of the needed subsequence.

Denote this element by x11 .

(2) Consider the numerical sequence {(xk1 , e2)H}. It is bounded and there-

fore contains a Cauchy subsequence {(xk2 , e2)H} defined by some in-

dices k2. From {xk2} take an element whose position in the initial

sequence is further than that of x11 . Denote this element by x22 .

(3) Similarly, consider {(xk2 , e3)H}. Again, it is a bounded numerical se-

quence containing a Cauchy subsequence {(xk3 , e3)H}. Select an el-

ement x33 from {xk3} such that its position in the initial sequence

exceeds that of the previous element.

We can continue this process indefinitely. The result is a subsequence {xnn
}

that is a subsequence (starting with some number) of any {xkm
}. Therefore

{(xnn
, ek)H} is a numerical Cauchy sequence for any fixed k. �

3.28 Completeness of the System of Eigenvectors of a Self-

Adjoint, Compact, Strictly Positive Linear Operator

The principal goal of this section is to demonstrate that a self-adjoint, com-

pact, strictly positive linear operator A in an infinite-dimensional separable

Hilbert space H has a set of eigenvectors that constitutes an orthonormal

basis of H . This permits us to apply the Fourier method to dynamics

problems in mechanics. We also obtain an extremal method for finding the

eigenvalues of the operator. We start with a simple

Lemma 3.28.1. Let A be a self-adjoint, compact, strictly positive linear

operator in H. On the unit ball B = {x ∈ H : ‖x‖H ≤ 1}, the form

(Ax, x)H attains its maximum. That is, there exists x0 with ‖x0‖H = 1

such that (Ax0, x0)H ≥ (Ax, x)H for any x having ‖x‖H ≤ 1.
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Proof. The element x0, if it exists, must lie on the unit sphere. If it is

such that ‖x0‖H < 1, then for y0 = x0/ ‖x0‖H we get

(Ay0, y0)H = (Ax0, x0)H/ ‖x0‖2
H > (Ax0, x0)H .

Next we prove existence of the maximum point. The set of numbers

(Ax, x)H for all x ∈ B is bounded from above, so there is a sequence

{xk} such that

lim
k→∞

(Axk, xk)H = sup
x∈B

(Ax, x)H .

As {xk} is bounded, by Theorem 3.27.5 it contains a subsequence {xk1}
having a weak limit x0 which, by Exercise 3.27.2, lies within B. But then,

by Exercise 3.27.5, we have

lim
k1→∞

(Axk1 , xk1)H = (Ax0, x0)H .

This completes the proof. �

We will show that by using this extremum approach we have obtained

an eigenvector of A.

Theorem 3.28.1. Let A be a self-adjoint, compact, strictly positive linear

operator in H, and let x0 be an element at which (Ax, x)H attains its max-

imum on the unit sphere S, ‖x‖H = 1, of H. Then x0 is an eigenvector of

A and µ0 = 1/(Ax0, x0)H is the smallest eigenvalue of A.

Proof. Let µ1 be an eigenvalue of A and x1 a corresponding eigenvector.

Then x1 = µ1Ax1 and (x1, x1)H = µ1(Ax1, x1)H . Division by ‖x1‖2
H gives

µ1 =
1

(Ay1, y1)H
, y1 =

x1

‖x1‖H

.

So µ1 ≥ µ0, since µ0 is the infimum of 1/(Ax, x)H on the unit sphere of H .

Now we show that x0 is an eigenvector and µ0 an eigenvalue of A. It

is evident that the problem of maximum of (Ax, x)H on the unit sphere is

equivalent to the problem of finding the supremum of the functional

F (x) =

(

A
x

‖x‖H

,
x

‖x‖H

)

H

for x ∈ H , and so F (x) attains its maximum at the same point x0 as

(Ax, x)H does on the unit sphere. Thus

F (x0) ≥ F (x0 + th)
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for any real t and any h ∈ H . Let h be fixed. As a function of t, F (x0 + th)

takes its maximum at t = 0 and thus

dF (x0 + th)

dt

∣

∣

∣

∣

t=0

= 0.

A quick calculation gives

Re(Ax0, h)H −
(

A
x0

‖x0‖H

,
x0

‖x0‖H

)

H

Re(x0, h)H = 0.

Because ‖x0‖H = 1, this takes the form

Re(Ax0, h)H − 1

µ0
Re(x0, h)H = 0.

This holds for any h. It therefore holds when we change h to ih, getting

Im(Ax0, h)H − 1

µ0
Im(x0, h)H = 0.

Thus

(Ax0, h)H − 1

µ0
(x0, h)H = 0.

As h is arbitrary, it follows that

Ax0 −
1

µ0
x0 = 0.

This completes the proof. �

Theorem 3.28.2. Let A be a self-adjoint, compact, strictly positive linear

operator in H. Then A has a countable set of eigenvalues

µ0 ≤ µ1 ≤ µ2 ≤ · · ·

having no finite accumulation point (µk → ∞ as k → ∞). To each µk there

corresponds no more than a finite number of mutually orthogonal eigenvec-

tors which together constitute an orthonormal basis of H.

Proof. Constructing eigenvectors. We have constructed the first eigen-

value µ0 and its corresponding eigenvector x0. By Theorem 3.26.4, two

eigenvectors corresponding to different eigenvalues are orthogonal. Clearly,

from the set of eigenvectors that correspond to the same eigenvalue, we

can select mutually orthogonal ones. This prompts us to seek the next

eigenvector orthogonal to x0; in general, each eigenvector sought should

be orthogonal to all those previously found. We do this as follows. The
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set of vectors of the form αx0 with a scalar α is a subspace X1 of H . By

Theorem 1.16.2 we decompose H into the direct orthogonal sum

H = X1 +̇H1

where any element of H1 is orthogonal to x0. The subspace H1 is a Hilbert

space itself, so we can apply Theorem 3.28.1 and find max(Ax, x)H = 1/µ1

on the unit sphere S1 of H1 and a vector x1 ∈ S1 at which (Ax, x)H attains

this maximum. As in the proof of Theorem 3.28.1, this element satisfies

(Ax1, h1)H − 1

µ1
(x1, h1)H = 0 (3.28.1)

where h1 is an arbitrary element of H1. But this equality holds when

we change h1 to x0. Indeed, both terms on the left-hand side are zero:

(x1, x0)H = 0 as x1 ∈ H1 and so is orthogonal to x0, and (Ax1, x0)H =

(x1, Ax0)H = (1/µ0)(x1, x0)H = 0. Thus (3.28.1) holds for any h1 ∈ H and

we see that

µ1Ax1 = x1.

Hence µ1 is an eigenvalue of A and x1 is a corresponding eigenvector. By

construction, the maximum of the form (Ax, x)H is taken on the unit sphere

S1. Meanwhile, S1 is a part of S, which is the unit sphere of H . Thus, in

terms of eigenvalues, we have µ1 ≥ µ0.

Let us describe a step-by-step procedure for finding the eigenpairs. Sup-

pose we have found the first k eigenvectors, which are mutually orthogonal,

and the corresponding eigenvalues µ0 ≤ µ1 ≤ · · · ≤ µk−1. We introduce the

subspace Xk spanned by the eigenvectors x0, . . . , xk−1 and its orthogonal

complement Hk in H . On the unit sphere Sk of the subspace Hk, we seek

the maximum of (Ax, x)H . This is the same as to find the supremum of

F (x) =

(

A
x

‖x‖H

,
x

‖x‖H

)

H

in x ∈ Hk, x 6= 0. This maximum is attained at a vector xk ∈ Sk. Denoting

this maximum of maxSk
(Ax, x)H by 1/µk, we get

(Axk , hk)H − 1

µk
(xk, hk)H = 0, (3.28.2)

which holds for any hk ∈ Hk. It still holds when we change hk to any

xr, r < k, since both terms on the left-hand side equal zero as above. So

(3.28.2) holds for any hk ∈ H , and thus

µkAxk = xk .
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We have constructed the next eigenpair µk, xk of A. This procedure gives

us an orthonormal system x1, x2, x3, . . .. The process cannot be disrupted.

A disruption could occur only if maxSk
(Ax, x)H = 0; however, this could

happen only if Hk = {0}, i.e., if H were finite-dimensional, a possibility we

have excluded.

Let us show that x1, x2, x3, . . . is a basis of H . The above procedure re-

sults in an infinite orthonormal system x1, x2, x3, . . .. By Theorem 3.26.4,

to an eigenvalue there corresponds no more than a finite number of eigen-

vectors from x1, x2, x3, . . ., and so the number of eigenvalues µ1, µ2, µ3, . . .

is infinite as well. By the same theorem the set µ1, µ2, µ3, . . . has no finite

accumulation point, so

µk → ∞ as k → ∞. (3.28.3)

To demonstrate that x1, x2, x3, . . . is an orthonormal basis of H , we must

show that for any x ∈ H the Fourier representation

x =

∞
∑

k=0

(x, xk)Hxk

holds. Take any x ∈ H . On page 248 we saw that the sequence

sn =

n
∑

k=0

(x, xk)Hxk

converges strongly. Our task is to demonstrate that the limit is x. Consider

zn = x − sn. Its limit exists and is z. It suffices to show that z = 0. So

suppose to the contrary that z 6= 0. Next, zn is an element of Hn+1

as (zn, xr)H = (x, xr)H − (x, xr)H = 0 for r ≤ n. By the maximum

construction of the eigenvalues we have

(Azn, zn)H

‖zn‖2
H

≤ 1

µn+1
→ 0 as n→ ∞.

Because {zn} converges strongly to z 6= 0, we get

(Az, z)H

‖z‖2
H

= 0.

This implies (Az, z)H = 0 and so, by strict positiveness of A, z = 0. This

contradiction completes the proof. �

We recall that Theorem 3.28.2 can be applied to the problem of oscilla-

tions of all the elastic objects we have considered.
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Further notes on applications of spectral properties

Certain spectral properties of a self-adjoint, compact, strictly positive linear

operator A in a Hilbert space are presented in Theorems 3.27.5 and 3.28.2.

Here we mention additional facts and a few literature references.

(1) For any x ∈ H there is a representation

Ax =

∞
∑

k=0

(x, xk)H

µk
xk.

The series is strongly convergent and defines a sequence of finite-

dimensional operators An given by

Anx =

n
∑

k=0

(x, xk)H

µk
xk ,

This sequence {An} converges in the operator norm to A [Lebedev and

Vorovich (2002)].

(2) Courant’s minimax method. R. Courant proposed a method for finding

eigenvalues of A without having to find the previous eigenvalues. Courant’s

formula is

1

µn+1
= inf

Qn

sup
x∈Sn

(Ax, x)H ,

where Qn is an arbitrary n-dimensional subspace of H and Sn is the unit

sphere in the orthogonal complement of Qn with respect to H . The infi-

mum is taken over all subspaces Qn. The proof can be found in [Lebedev

and Vorovich (2002)]. A consequence of Courant’s principle is that the

eigenfrequencies of all the types of elastic bodies we have considered can

only increase if we impose additional geometric constraints such as equality

to zero on some set or additional elastic supports [Lebedev and Vorovich

(2002)].

(3) In [Lebedev and Cloud (2003)] there is a discussion of the separation

of variables method for dynamical problems involving elastic bodies. It is

based on the spectral properties of A discussed above.

3.29 Other Standard Models of Elasticity

An important part of the theory of elasticity is devoted to approximate

theories of objects whose shapes are closely related to those of planes and
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surfaces. Such objects are called plates and shells. The theory of these ob-

jects reduces to the theory of deformation of surfaces having special elastic

properties. As the initial theory is three-dimensional, such approximations

cannot be precise (except in special cases) and are not unique. But linear

shell theories provide engineers with good descriptions of real elastic ob-

jects. They can be studied using more or less the approach taken in this

book. To characterize their energy spaces is more challenging, however. A

nice introduction to the mathematical theory of plates, with an extensive

discussion of the finite element method, is contained in [Destuynder and

Salaun (1996)]. The presentation in [Ciarlet (1998), (2000), (2005)] is more

serious. Finally, there are numerous open problems in the various nonlinear

theories of elasticity and elastic shells. One of the few classes of nonlinear

problems that have been studied is treated in [Vorovich (1999)].

We will merely sketch some facts in the theory of plates. A plate is a

structure that looks like a tabletop. In the theory of plate bending based

on the Kirchhoff hypotheses, which are similar to those of beam theory,

the deformation of the plate is described in terms of the displacement of

its midplane. The midplane occupies domain S with Cartesian coordinates

x1, x2. The plate has a relatively small thickness 2h and occupies the

volume S× [−h, h]. Kirchhoff’s assumptions specify that after deformation

the normal to the midplane remains straight and normal to its deformed

state; moreover, ε13 and ε23 are small and taken to be zero. A further

assumption that σ3 = 0 permits one to exclude ε33 from all the relations of

three-dimensional linear elasticity. Kirchhoff’s plate theory is not unique

in applications.

Kirchhoff’s assumptions facilitate a theory of bending described by just

one function: the deflection w of the midplane. The stress characteristics

of the plate there are given in terms of couples

Mij =

∫ h

−h

x3σij dx3 (i, j = 1, 2)

whereas strains are defined by

ρij = − ∂2w

∂xi∂xj
.

These are related to Mij by an analogue of Hooke’s law:

Mij = Dijklρkl

(summation convention in force). The rigidity tensor {Dijkl} must define

a positive strain energy due to deformation, and we assume it satisfies the
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inequality

Dijklρijρkl ≥ c0ρmnρmn

with a constant c0 > 0 that does not depend on the choice of ρij .

The strain energy of the plate is given by

1

2

∫

S

Dijklρklρij dx1 dx2.

The VWP equation takes the form
∫

S

Dijklρkl δρij dx1 dx2 −
∫

S

Fδw dx1 dx2 −
∫

∂S

fδw ds = 0,

where δw is a virtual displacement, F is the distributed force over S, and

f is given on the boundary ∂S of S.

For an isotropic plate, a variational procedure applied to the VWP

equation produces the biharmonic equation

D∇4w + F = 0, (x1, x2) ∈ S

and two natural boundary conditions.

For a clamped boundary, we obtain an analogue to Dirichlet’s problem

with the conditions

w|∂S = 0,
∂w

∂n

∣

∣

∣

∣

∂S

= 0.

So here we can get two boundary value problems: equilibrium of the plate

with clamped edge, and equilibrium of a free plate.

An energy inner product for these problems has the form

(w1, w2)P =
1

2

∫

S

Dijklρkl(w1)ρij(w2) dx1 dx2.

One may then introduce the energy space and show that the energy norm

is equivalent to the norm on W 2,2(S). Hence it is possible to use Sobolev’s

imbedding result to see that the energy space in imbedded into C(S). Fi-

nally, one may formulate a generalized setup for the problem and establish

conditions on the external forces that guarantee existence and uniqueness

of the generalized solution.

Additional investigation is needed regarding the self-balance conditions

for the equilibrium of a free plate.

Similarly, one can consider equilibrium problems in the linear theory of

shells (see, e.g., [Ciarlet, 1998 & 2000]).
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Appendix A

Hints for Selected Exercises

1.3.1. 0 = d(A,A) ≤ d(A,B) + d(B,A) = d(A,B) + d(A,B) = 2d(A,B).

1.3.2. For p ≥ 1 the function dp(A,B) satisfies the triangle inequality,

which takes the specific form

(|b1−a1|p+|b2−a2|p)1/p ≤ (|c1−a1|p+|c2−a2|p)1/p+(|b1−c1|p+|b2−c2|p)1/p.

This is a special case of Minkowski’s inequality (1.3.3), which also holds

for this range of p. Minkowski’s inequality follows from Hölder’s inequality

(1.12.6). This latter result, one of the central inequalities of analysis, is a

consequence of the elementary inequality

ab ≤ ap

p
+
bq

q

(

1

p
+

1

q
= 1

)

which, in turn, can be proved by establishing that

t1/p ≤ t

p
+ 1 − 1

p
(*)

holds for all t ≥ 0 — again, where p ≥ 1 — and then putting t = apb−q.

Equality holds in (*) if and only if t = 1.

Use differentiation to show that the inequality sign in (*) reverses for

0 < p < 1. This ultimately leads to a sign reversal in Minkowski’s inequality

for this same range of p, and shows that the triangle inequality fails to hold

for dp(A,B) whenever 0 < p < 1.

1.4.1. Consider the set of coefficients of a trigonometric polynomial as

the components of an abstract vector (a1, . . . , an, b0, b1, . . . , bn). Any of the

metrics we have introduced for ordinary vectors would be appropriate.

1.5.1. 0 = ‖x− x‖ ≤ ‖x‖ + ‖−x‖ = 2 ‖x‖.

281
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1.5.2. The two inequalities

‖x‖ = ‖(x− y) + y‖ ≤ ‖x− y‖ + ‖y‖ ,
‖y‖ = ‖(y − x) + x‖ ≤ ‖x− y‖+ ‖x‖ ,

show that both ‖x‖−‖y‖ and ‖y‖−‖x‖ are less than or equal to ‖x− y‖.
1.5.3. We cannot impose this “norm” on the set of all functions continuous

on [0, 1]. Indeed, it does not always take a finite value — consider f(x) = 1

for example. We could introduce a normed space by restricting ourselves

to “the set of continuous functions for which the above norm is finite,”

however.

1.5.4. Partition [a, b] uniformly with segment width ∆. The expressions

can be approximated by Riemann sums

∑

k

f(xk)g(xk)∆ and

(

∑

k

f2(xk)∆

)1/2

,

where xk = a + k∆. Regarding the set (f(a), f(a + ∆), f(a + 2∆), . . .) as

the components of a fictitious vector, we see that the expressions (up to a

factor) are the dot product and the Euclidean norm. So it remains only to

produce the limit passage for the partition.

1.5.5.

(f − (f, e)e , e) = (f, e) − ((f, e)e , e)

= (f, e) − (f, e)(e, e)

= (f, e) − (f, e)

= 0.

1.5.7.

‖x+ y‖2
+ ‖x− y‖2

= (x + y, x+ y) + (x− y, x− y)

= (x, x + y) + (y, x+ y) + (x, x− y) − (y, x− y)

= (x, x) + (x, y) + (y, x) + (y, y)

+ (x, x) − (x, y) − (y, x) + (y, y)

= 2(x, x) + 2(y, y)

= 2 ‖x‖2
+ 2 ‖y‖2

.
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1.8.1. (a)

d2f(t)

dt2
=
d2fk(t)

dt2
ek.

(b)

d2f(t)

dt2
= fk(t)

d2ek(t)

dt2
+ 2

dfk(t)

dt

dek(t)

dt
+
d2fk(t)

dt2
ek(t).

1.9.1. The vector equation

e1

n
∑

i=1

miξi + e2

n
∑

i=1

miηi + e3

n
∑

i=1

miζi = 0

implies the three scalar equations
n
∑

i=1

miξi = 0,

n
∑

i=1

miηi = 0,

n
∑

i=1

miζi = 0,

by linear independence.

1.9.2. Equation (1.9.18) yields

d

dt

n
∑

i=1

(ri ×mivi) = 0,

hence
n
∑

i=1

(ri ×mivi) = C

as required.

1.10.1. 5.

1.11.1. We verify the norm axioms.

(1) Obviously ‖f‖C(V ) ≥ 0, and from the equality ‖f‖C(V ) = 0 it follows

that f = 0 on V .

(2) We have

‖αf‖C(V ) = max
x∈V

|αf(x)| = |α|max
x∈V

|f(x)| = |α| ‖f‖C(V ) .

(3) We have

|f(x) + g(x)| ≤ |f(x)| + |g(x)| ≤ max
x∈V

|f(x)| + max
x∈V

|g(x)|,
so

max
x∈V

|f(x) + g(x)| ≤ max
x∈V

|f(x)| + max
x∈V

|g(x)|.
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1.11.2. Similar to Exercise 1.11.1.

1.11.3. From the definition of ‖A‖ it follows that

‖A‖ = sup
x6=0

‖Ax‖
‖x‖ .

The chain of equalities and inequalities

‖A‖ = sup
x6=0

‖Ax‖
‖x‖ = sup

x6=0

∥

∥

∥

∥

A

(

x

‖x‖

)∥

∥

∥

∥

= sup
‖x‖=1

‖Ax‖

≤ sup
‖x‖≤1

‖Ax‖ ≤ sup
0<‖x‖≤1

‖Ax‖
‖x‖ ≤ sup

0<‖x‖

‖Ax‖
‖x‖ = ‖A‖

demonstrates that any of several expressions can be used to represent ‖A‖.

1.12.1. The first two norm axioms hold trivially. That the triangle in-

equality holds for (1.12.3) can be seen as follows. For each i = 1, . . . , n we

have

|xi + yi| ≤ |xi| + |yi| ≤ max
1≤i≤n

|xi| + max
1≤i≤n

|yi|.

Therefore,

max
1≤i≤n

|xi + yi| ≤ max
1≤i≤n

|xi| + max
1≤i≤n

|yi|.

Use Minkowski’s inequality to verify the triangle inequality for (1.12.5).

1.12.2. By the triangle inequality we have

‖Ax‖r =

( n
∑

i=1

∣

∣

∣

∣

n
∑

j=1

aijxj

∣

∣

∣

∣

r)1/r

≤
( n
∑

i=1

[( n
∑

j=1

|aijxj |
)p]r/p)1/r

.

Use of Hölder’s inequality in the form given on page 42 then gives us

‖Ax‖r ≤
( n
∑

i=1

[( n
∑

j=1

|aij |q
)p/q( n

∑

j=1

|xj |p
)]r/p)1/r

=

( n
∑

i=1

[( n
∑

j=1

|aij |q
)p/q]r/p)1/r

‖x‖p .

So

‖A‖ =

( n
∑

i=1

( n
∑

j=1

|aij |q
)r/q)1/r
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where q = p/(p− 1).

1.13.1. d(xm, xn) ≤ d(xm, x) + d(xn, x).

1.13.2. Let c ∈ [−1, 1]. If f is continuous and f(c) 6= 0, then |f(x)| is

nonnegative and |f(c)| > 0. So |f(x)| is positive in some neighborhood of

point c and we have
∫ 1

−1
|f(x)| dx > 0. This shows that ‖f‖1 = 0 implies

f = 0. The remaining axioms follow from the properties of the definite

integral.

1.13.3. Take fn(x) equal to zero everywhere except on [−1/n, 1/n], where

it should equal 1 − n|x|. Then the norm in C(−1, 1) is 1 for each n, and

the L1 norm tends to 0.

1.15.1. Take a representative {fn} from F and consider the sequence {Kn}
given by

Kn = ‖fn‖p .

This is a numerical Cauchy sequence:

|Km −Kn| =
∣

∣ ‖fm‖p − ‖fn‖p

∣

∣

≤ ‖fm − fn‖p → 0 as m,n→ ∞.

Hence by completeness of R there exists a number

K = lim
n→∞

Kn = lim
n→∞

(
∫

Ω

|fn(x)|p dΩ
)1/p

.

K is independent of the choice of representative sequence. If {f̃n} is another

representative of F , i.e., if

‖fn − f̃n‖p → 0 as n→ ∞,

then we can set

K̃ = lim
n→∞

K̃n = lim
n→∞

‖f̃n‖p

but subsequently find that

|K − K̃| =
∣

∣ lim
n→∞

‖fn‖p − lim
n→∞

‖f̃n‖p

∣

∣

= lim
n→∞

∣

∣ ‖fn‖p − ‖f̃n‖p

∣

∣

≤ lim
n→∞

‖fn − f̃n‖p = 0.
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This shows that K̃ = K. The uniquely determined number

Kp = lim
n→∞

∫

Ω

|fn(x)|p dΩ

is the right-hand side of (1.15.9).

1.15.2. The statement Lp(Ω) ⊆ Lr(Ω) is trivial when r = p, so assume

1 ≤ r < p. Then p/r > 1, and we can take q such that

1

q
+

1

p/r
=

1

q
+
r

p
= 1.

Hölder’s inequality gives

∣

∣

∣

∣

∫

Ω

1 · |F (x)|r dΩ
∣

∣

∣

∣

≤
(
∫

Ω

1q dΩ

)1/q (∫

Ω

|F (x)|p dΩ
)r/p

= (mes Ω)1−
r
p

(
∫

Ω

|F (x)|p dΩ
)r/p

, mesΩ =

∫

Ω

1 dΩ.

This yields the desired inequality with Cp,r = (mes Ω)
1
r
− 1

p .

1.16.1. The “if” part is obvious. We address the “only if” part. For

sufficiently large x the term ax2 dominates bx, showing that we must have

a ≥ 0. If a = 0, then bx will take both positive and negative values unless

b = 0. For the case a > 0, we write

f(x) = ax2 + bx = a

(

x+
b

2a

)2

− b2

4a
.

The minimum is taken at x = −b/2a and is −b2/4a. This implies that b

must be zero.

1.16.2. We first show that M⊥ is a subspace. Take any two elements

x, y ∈M⊥ and any scalars α1 and α2. For all m ∈M we have

(α1x+ α2y,m) = α1(x,m) + α2(y,m) = 0,

so α1x+α2y ∈M⊥ as required. We proceed to show that M⊥ is closed. Let

{xn} be any convergent sequence in M⊥, with xn → x. Take an arbitrary

v ∈ M . Then (xn, v) = 0 for each n. By continuity of the inner product we

have

(x, v) = lim
n→∞

(xn, v) = 0,

hence x ∈ M⊥.
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1.22.1. We have

n
∑

k=1

xk
∂g

∂xk
= x

∂g

∂x
+ y

∂g

∂y

= x(2x+ 2y) + y(2x+ 6y)

= 2(x2 + 2xy + 3y2)

= 2g.

2.9.1. The symmetry of the functional in w and δw is evident, as is its

linearity in each of variables. Next,

(w,w)S =

∫ l

0

T0w
2
x dx ≥ 0

and in the case when

(w,w)S =

∫ l

0

T0w
2
x dx = 0

we get wx = 0. So w = c = constant and, by (2.9.2), w = 0.

2.10.1. As it is complete we cannot find any “new” element. Here the

set that is dense and each element of which contains a stationary sequence

constitutes the whole space. So the completion gives us nothing new ex-

cept another viewpoint on the same initial space. This new space is quite

inconvenient to use, but it is in one-to-one correspondence with the initial

space. The correspondence preserves the norm and algebraic operations, so

so it does not matter which space we work with.

2.16.2. A translation of the coordinate origin does not change the form of

the inequality.

2.16.4. Use Theorem 2.16.2.

2.16.5. We apply integration by parts to the first term in (2.16.25). The

formulas are
∫

Ω

ghx dx dy = −
∫

Ω

gxh dx dy +

∮

Γ

ghnx ds,

∫

Ω

ghy dx dy = −
∫

Ω

gyh dx dy +

∮

Γ

ghny ds,
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where s parameterizes Γ, and nx and ny are the direction cosines of the

outward normal to Ω. Equation (2.16.25) becomes

−
∫

Ω

[a (uxx + uyy) + f ] v dx dy +

∮

Γ

[a (uxnx + uyny) − ϕ] v ds = 0.

Now the usual methods of the calculus of variations yield the Euler equation

a (uxx + uyy) + f = 0

and the natural boundary condition

a (uxnx + uyny) − ϕ = 0.

3.2.1. Because there is no lumped force at the point x, equation (3.2.11)

shows that N is continuous there. So we get ESu′′|x−0 = ESu′′|x+0. If

ES has a jump at x, then so must u′′ in order to preserve continuity of

N = ESu′′. Continuity of N is also preserved in the special case when

u′′(x) = 0; in this case there is no jump.

3.2.2. Setting the first variation of E(u) equal to zero, we get
∫ l

0

ES
du

dx

d(δu)

dx
dx−

∫ l

0

t(x) δu(x) dx −
n
∑

k=0

Fk δu(xk) = 0.

Integrating by parts, we obtain

−
n−1
∑

k=0

∫ xk

xk−1

[

d

dx

(

ES
du

dx

)

+ t(x)

]

δu dx

+

n−1
∑

k=0

ES
du

dx
δu

∣

∣

∣

∣

x=xk−1−0

x=xk−1+0

−
n
∑

k=0

Fk δu(xk) = 0.

First we should select a subset of δu that differ from zero only on (xk−1, xk).

This yields the Euler equation

d

dx

(

ES
du

dx

)

+ t(x) = 0

on each of the intervals (xk−1, xk), k = 1, . . . , n− 1. Next, considering the

integral equation on the segment [0, l] we see that for any δu, the integral

term is zero because of the above equalities. Considering successively the

non-integrated terms we get the following. Taking δu nonzero at node

x0 = 0 and zero at other nodes xk ,

ES
du

dx

∣

∣

∣

∣

x=0

= −F0.
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Then taking δu nonzero only at node xn = l we get

ES
du

dx

∣

∣

∣

∣

x=l

= Fn.

These are natural boundary conditions at the extremes. Taking δu such

that it is nonzero only at node xk, we get jump conditions at xk:

ES
du

dx

∣

∣

∣

∣

xk+0

−ES
du

dx

∣

∣

∣

∣

xk−0

= −Fk.

We should call these natural conditions as well, since the equilibrium equa-

tion is not valid at the points xk . These points now constitute the boundary

for the domain where it is valid. Finally, the self-balance condition
∫ l

0

t(x) dx +
n
∑

k=0

Fk = 0

is obtained when we substitute to the equation for first variation δu = 1.

3.2.3. For the attached spring, we have v = u(c). Add 1
2Ku

2(c) to the

energy expression of Exercise 3.2.2. When deriving the Euler equation,

include the node c in the partition and obtain n+ 1 nodes between which

the equilibrium equation of Exercise 3.2.2 holds. The conditions at the

points xk (k = 0, . . . , n) remain the same. At point c we get the condition

ES
du

dx

∣

∣

∣

∣

c+0

−ES
du

dx

∣

∣

∣

∣

c−0

= Ku(c),

which can be formally obtained from the equation at node xk by putting

Fk = −Ku(c). The self-balance condition disappears, as the spring plays a

role similar to that of a geometric constraint.

3.7.1. Given an initial basis (e1, e2, e3), we can construct the reciprocal

basis (e1, e2, e3). We construct e1 by writing

e1 = α(e2 × e3)

and then determining the constant α so that e1 · e1 = 1:

α[e1 · (e2 × e3)] = 1.

Denoting the scalar quantity e1 · (e2 × e3) by V (this is the volume of the

parallelepiped spanned by the initial basis), we get α = 1/V and

e1 =
1

V
(e2 × e3).

The vectors e2 and e3 are constructed similarly.
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3.7.2. The proof follows from the definition of a dual basis and the equal-

ities that define the dual basis: ek · em = δk
m.

3.7.3. In order to show that the vectors ei = gijej constitute the dual

basis, we dot-multiply the equality by ek. Since the matrices (gij) and

(gjk) are mutually inverse, we obtain

ei · ek = gijej · ek = gijgjk = δi
k.

By definition, e1, e2, e3 constitute the dual basis.

3.7.4. Take the identity of Exercise 3.7.3 and dot multiply with ek:

ei · ek = gijej · ek = gijδk
j = gik.

3.12.3. The formulation of this exercise is typical for books on mechanics;

all conditions needed to make the statement precise were omitted. Let us

state them explicitly here. (1) The tensor σ must be continuously differen-

tiable; moreover, the coordinates in space should be such that all its com-

ponents are continuously differentiable. (2) The external force F must be

a continuous vector function. (3) The boundary should have some smooth-

ness, and the boundary force condition holds only at points of smoothness

of the boundary and continuity of f . To prove the statement, we start with

(3.12.5) and change σ ·· δε to σ ·· (∇δu):
∫

V

F · δu dV +

∫

S

f · δu dS −
∫

V

σ ·· (∇δu) dV = 0.

Using the third formula of Exercise 3.9.3 and the symmetry of the tensor

σ, we integrate by parts in the last integral:
∫

V

F · δu dV +

∫

S

f · δu dS +

∫

V

∇ · σ · δu dV −
∫

S

n · σ · δu dS = 0.

Hence
∫

V

(∇ · σ + F) · δu dV +

∫

S

(−n · σ + f) · δu dS = 0.

Next we write down this formula only for virtual displacements δu that

vanish on the boundary
∫

V

(∇ · σ + F) · δu dV = 0.

By the main lemma of the calculus of variations we find, because of the

arbitrariness of δu, that ∇ ·σ +F = 0 in V . Finally, we derive the natural
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boundary condition. So, returning to the last equation but for all virtual

displacements δu and taking into account that the equilibrium equation

holds, we get
∫

S

(−n · σ + f) · δu dS = 0.

Applying the main lemma to the surface integral, we obtain

−n · σ
∣

∣

S
+ f = 0.

3.18.1. Use r × b× r = 0.

3.25.1. Verify the conditions of Arzela’s theorem.

3.27.1. Suppose limk→∞ xk = x̃∗. By definition of weak convergence, for

any h ∈ H we have

lim
k→∞

(xk , h)H = (x∗, h)H .

On the other hand, from continuity of the inner product we obtain

lim
k→∞

(xk , h)H = (x̃∗, h)H .

Thus (x∗, h)H = (x̃∗, h)H . Since h is arbitrary, we have x̃∗ = x∗.

3.27.2. By definition of weak convergence we have

(x∗, x∗)H = lim
k→∞

(xk , x
∗)H ≤ sup

k
‖xk‖H ‖x∗‖H .

Canceling ‖x∗‖H we get the result.

3.27.3.

lim
k→∞

(Bxk, h)H = lim
k→∞

(xk , B
∗h)H = (x∗, B∗h)H = (Bx∗, h)H .

3.27.4. By the previous exercise, {Bxk} converges weakly to Bx∗. The

sequence {xk} is bounded and so {Bxk} contains a Cauchy subsequence

{xk1} which, by Exercise 3.27.1, converges to Bx∗. The assumption that

there is a subsequence {xk2} for which {Bxk2} has no strong limit Bx∗

leads to a contradiction.

3.27.5. As B is compact and xk ⇀ x∗, by Exercise 3.27.4 we have

lim
k→∞

Bxk = Bx∗.
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Write

(Bxk, xk)H − (Bx∗, x∗)H = (Bxk −Bx∗, xk)H + (Bx∗, xk − x∗)H .

The right-hand side tends to zero as k → ∞. Indeed, ‖xk‖H ≤ c and so

|(Bxk −Bx∗, xk)H | ≤ ‖Bxk −Bx∗‖H ‖xk‖H → 0.

Moreover, (Bx∗, xk − x∗)H → 0 because xk ⇀ x∗.
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action, 83

active force, 68

almost everywhere, 56, 137

angular frequency, 249

angular momentum, 28

conservation of, 29

anisotropic material, 219

Arzelà’s theorem, 257

ball, 6

closed, 6

open, 6

Banach space, 47

Banach, S., 20, 47

bar, 158

equilibrium equation, 163

total energy functional, 166

virtual work principle, 166

basis, 10

beam, 168

bending of, 168

energy norm, 176

energy space, 176

equilibrium equation, 171

existence-uniqueness theorem, 178

generalized solution, 177

total energy functional, 174

Bessel’s inequality, 248

Betti’s duality theorem, 226

Bubnov–Galerkin method, 240

bulk modulus, 225

Cauchy deformation measure, 213
Cauchy problem, 34
Cauchy sequence, 45

weak, 267
Cauchy stress tensor, 196
Cauchy’s lemma, 184
Cauchy–Green strain tensor, 212
Cauchy–Schwarz inequality, 14
center of mass, 22
Christoffel symbols, 204
classical mechanics, 2, 4
classical setup, 105
closed ball, 6
compact operator, 260
compact set, 35, 256
compatibility condition, 164
complete metric space, 47
complete system, 239
completeness, 239
completion, 50, 118
completion theorem, 50

inner product space, 54
normed space, 53

cone property, 140
configuration space, 33
conservation of energy, 87
conservative system, 87
constitutive relation, 200, 218
continuity, 37

sequential, 38
continuum mechanics

central principles, 90
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contraction operator, 153
contraction principle, 153
contravariant components, 192
convergence, 37, 45

strong, 267
weak, 267

coordinate origin, 7
corner point, 151
Cosserat mechanics, 183
countability, 243
couple, 18

principal, 22
Courant’s method, 277
covariant components, 192
covariant derivative, 204
curvilinear coordinates, 202

d’Alembert’s principle, 25, 27, 30
decomposition theorem, 62
deformable body, 89
deformation method, 164
degree of freedom, 33
denseness, 49
diagonal process, 272
dimension, 10
dimensionless form, 17
direct sum, 60
Dirichlet conditions, 75
displacement vector, 209
distributions, 17
double-dot product, 195
dual basis, 192
dyad, 189

eigenfrequency, 253
eigensolution, 253
eigenvalue, 253
eigenvector, 251
elastic body

energy norm, 228
energy space, 228, 234
equilibrium equation, 221
existence-uniqueness theorem, 232,

235
generalized solution, 228, 234
virtual work principle, 216

elastic force, 91
elasticity, 2
energy, 63

conservation of, 87
kinetic, 64
potential, 87
strain, 92, 129, 225
total, 92

equicontinuity, 257
equilibrium

conditions for, 22
equivalence class, 55

stationary, 49
equivalent norms, 43
Euler equation, 77
Euler–Lagrange equation, 79
Eulerian description, 207
external forces, 27

factor space, 123
finite ε-net, 256
first problem of elasticity, 222
first variation, 76
fixed point, 153
force(s), 4, 16

active, 68
elastic, 91
external, 27
in equilibrium, 22
inertia, 25
internal, 27
line of action of, 18
moment of, 18
resultant of, 16
self-balanced, 103
tension, 96

forced vibrations, 250
Fourier coefficient, 247
Fourier series, 10
Fredholm alternative, 262
Fredholm integral equation, 59
free vector, 19
Friedrichs inequality, 134
function(s)

generalized, 17
sufficiently smooth, 90
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unit step, 46
functional, 36

Gâteaux derivative, 75
generalized derivative, 120, 137
generalized functions, 17
generalized orthogonality, 254
generalized solution, 107, 120
gradient operator, 205
Gram determinant, 237
Gram–Schmidt formulas, 246
Green’s formula, 206

Hölder’s inequality
for integrals, 58
for sums, 42

Hamilton’s principle, 84
Hausdorff criterion, 256
Hilbert space, 47
holonomic constraints, 86
holonomic system, 69
homogeneity of space, 5, 11
Hooke’s law, 65, 81, 92, 96, 99, 161,

218

imbedding, 135
imbedding operator, 117
imbedding theorem, 116, 117, 140,

141
incomplete metric space, 47
inequality

Cauchy–Schwarz, 14
Friedrichs, 134
Hölder, 42, 58
Korn, 229
Minkowski, 7
modulus, 56
Poincaré, 139
Schwarz, 118, 134
triangle, 5, 11

inertial force, 25
inertial frame, 5
initial value problem, 34
inner product, 13
inner product space, 11, 13

completion of, 54

internal forces, 27, 89
isometric correspondence, 7
isometry, 49
isothermal problem, 218
isotropic material, 219
isotropic space, 5
isotropy, 219

kernel, 59, 113
kinetic energy, 64
kinetic potential, 74
Kirchhoff uniqueness theorem, 226
Korn’s inequality, 229
Kronecker delta, 220

Lagrange’s equations, 71, 73
Lagrangian, 74
Lagrangian description, 207
Lax–Milgram theorem, 128
Lebesgue integral, 55, 56
Lebesgue norm, 55
limit, 45
limit passage, 187
line of action, 18
linear independence, 10, 237
linear momentum, 28

conservation of, 29
linearity, 38

main lemma, 76
mass, 3

center of, 22
mass point, 3

equation of motion, 64
total energy principle, 64
virtual work principle, 67

material point, 3
equation of motion, 64
total energy principle, 64
virtual work principle, 67

mechanics
classical, 2, 4
theoretical, 89

membrane, 128
energy norm, 133
energy space, 133
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equilibrium equation, 132
existence-uniqueness theorem, 135
total energy functional, 130
virtual work principle, 143

method of elastic solutions, 152
metric, 5

axioms of, 5
taxicab, 6

metric coefficients, 193
metric space(s), 4, 6

complete, 47
completion of, 50
incomplete, 47
isometric, 49

metric tensor, 195
minimizing vector, 61
minimum energy principle, 81
Minkowski’s inequality, 7, 281
mixed basis, 194
mixed components, 192
modulus inequality, 56
moment, 18
momentum

angular, 28
linear, 28

multi-index notation, 138

natural boundary condition, 77
natural norm, 14
Navier–Cauchy equations, 221
neighborhood, 6
Neumann condition, 103
norm(s), 11

axioms of, 11
equivalent, 43
Lebesgue, 55
natural, 14

normed space, 11
completion of, 53

open ball, 6
operator(s), 36

compact, 260
continuous, 37
contraction, 153
domain of, 36

finite dimensional, 277
gradient, 205
linear, 38
matrix, 36
norm of, 39
range of, 36
self-adjoint, 252
strictly positive, 253

orthogonal complement, 62
orthogonal decomposition, 61
orthogonality, 13, 60
orthonormal system, 245
oscillation mode, 253

parallelogram equality, 15
Parseval’s equality, 248
particle, 3

equation of motion, 64
total energy principle, 64
virtual work principle, 67

plasticity, 218
plate, 278
Plateau’s problem, 129
Poincaré’s inequality, 139
Poisson’s ratio, 219
position vector, 7
positiveness, 225
potential energy, 87
power of continuum, 244
precompact set, 256
pressure, 182
principal axes, 198
principal couple, 22
principal direction, 212
principal strains, 212
principal stresses, 198
principle

d’Alembert, 25, 27, 30
Hamilton’s variational, 84
minimum total energy, 81, 93, 122
solidification, 90
virtual work, 67

pure shear deformation, 211

radius vector, 23
rational numbers, 244
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reference frame, 4
representative Cauchy sequence, 49
resonance, 249
resultant, 16
Riesz representation theorem, 113
rigid body, 3, 31
rigid motion, 210
Ritz approximation, 236
Ritz method, 238
Ritz, W., 236

Saint Venant’s equations, 223
Schwarz inequality, 118, 134
second problem of elasticity, 222
self-adjoint operator, 252
separability, 244
sequence(s)

Cauchy, 45
convergent, 37, 45
equivalent Cauchy, 48
limit of, 45
representative Cauchy, 49

sequential continuity, 38
set(s)

compact, 35, 256
dense, 49
precompact, 256

shear modulus, 220, 225
shell, 278
sliding vector, 18
Sobolev space, 138
Sobolev, S.L., 136
solidification principle, 90
space

Banach, 47
Hilbert, 47
metric, 4
normed, 11
Sobolev, 138
vector, 8

spectrum, 252
spring, 91

total energy, 92
virtual work principle, 93

star-shaped domain, 139
statically determinate, 160

statically indeterminate, 161
stationary equivalence class, 49
stationary value, 84
strain, 91, 161
strain energy, 225
strain tensor, 208

of small deformation, 209
Cauchy–Green, 212

stress, 159
strictly positive operator, 253
string, 95, 100, 122

energy space, 116, 124
existence-uniqueness theorem, 122,

125
generalized solution, 120, 125
virtual work principle, 109

strong convergence, 267
sufficiently smooth function, 90
summation convention, 24

taxicab metric, 6
tension, 96
tensor(s), 189

Cauchy stress, 196
coaxial, 220
first invariant, 221
metric, 195
of elastic moduli, 195
strain, 208
zero, 194

theorem
Arzelà, 257
Banach’s contraction, 153
Betti, 226
completion, 50
decomposition, 62
imbedding, 117
Riesz representation, 113
uniqueness, 226
Weierstrass, 46

theoretical mechanics, 89
theory of distributions, 107
theory of elasticity, 2
trajectory, 33
triangle inequality, 5, 11
trigonometric polynomial, 9
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uniqueness theorem, 226
unit step function, 46

variation, 93
variational methods, 235
variational principle, 84
vector space, 8

axioms of, 9
basis of, 10
dimension of, 10
infinite dimensional, 10
norm on, 11

vector(s)
displacement, 209
free, 19
minimizing, 61
position, 7
radius, 23
sliding, 18
zero, 9

vibration, 249
virtual displacement, 68
virtual work, 67
virtual work principle, 67, 214, 224

weak Cauchy sequence, 267
weak convergence, 267

criterion for, 270
weak solution, 179
Weierstrass theorem, 46
Winkler’s foundation, 145
work, 63

of internal forces, 107, 217
virtual, 67

Young’s modulus, 81, 162

zero vector, 9
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