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These lecture notes cover mainly three connected topics. In the first part we give a detailed treatment of
cosmological perturbation theory. The second part is devoted to cosmological inflation and the generation
of primordial fluctuations. In part three it will be shown how these initial perturbation evolve and produce
the temperature anisotropies of the cosmic microwave background radiation. Comparing the theoretical
prediction for the angular power spectrum with the increasingly accurate observations provides important
cosmological information (cosmological parameters, initial conditions).
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Introduction

Cosmology is going through a fruitful and exciting period. Some of the developments are definitely also of
interest to physicists outside the fields of astrophysics and cosmology.

These lectures cover some particularly fascinating and topical subjects. A central theme will be the
current evidence that the recent ( z < 1) Universe is dominated by an exotic nearly homogeneous dark
energy density with negative pressure. The simplest candidate for this unknown so-called Dark Energy is a
cosmological term in Einstein’s field equations, a possibility that has been considered during all the history
of relativistic cosmology. Independently of what this exotic energy density is, one thing is certain since a
long time: The energy density belonging to the cosmological constant is not larger than the cosmological
critical density, and thus incredibly small by particle physics standards. This is a profound mystery, since
we expect that all sorts of vacuum energies contribute to the effective cosmological constant.

Since this is such an important issue it should be of interest to see how convincing the evidence for this
finding really is, or whether one should remain sceptical. Much of this is based on the observed temperature
fluctuations of the cosmic microwave background radiation (CMB). A detailed analysis of the data requires
a considerable amount of theoretical machinery, the development of which fills most space of these notes.

Since this audience consists mostly of diploma and graduate students, whose main interests are outside
astrophysics and cosmology, I do not presuppose that you had already some serious training in cosmology.
However, I do assume that you have some working knowledge of general relativity (GR). As a source, and
for references, I usually quote my recent textbook [1].

In an opening chapter those parts of the Standard Model of cosmology will be treated that are needed for
the main parts of the lectures. More on this can be found at many places, for instance in the recent textbooks
on cosmology [2-6].
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704 N. Straumann: Cosmological perturbation theory

In Part I we will develop the somewhat involved cosmological perturbation theory. The formalism will
later be applied to two main topics: (1) The generation of primordial fluctuations during an inflationary era.
(2) The evolution of these perturbations during the linear regime. A main goal will be to determine the CMB
power spectrum.

0 Essentials of Friedmann-Lemaitre models

For reasons explained in the Introduction I treat in this opening chapter some standard material that will be
needed in the main parts of these notes. In addition, an important topical subject will be discussed in some
detail, namely the Hubble diagram for Type Ia supernovas that gave the first evidence for an accelerated
expansion of the ‘recent’ and future universe. Most readers can directly go to Sect. 0.2, where this is treated.

0.1 Friedmann-Lemaitre spacetimes

There is now good evidence that the (recent as well as the early) Universe'is — on large scales — surprisingly

homogeneous and isotropic. The most impressive support for this comes from extended redshift surveys of
galaxies and from the truly remarkable isotropy of the cosmic microwave background (CMB). In the Two
Degree Field (2dF) Galaxy Redshift Survey,> completed in 2003, the redshifts of about 250’000 galaxies
have been measured. The distribution of galaxies out to 4 billion light years shows that there are huge
clusters, long filaments, and empty voids measuring over 100 million light years across. But the map also
shows that there are no larger structures. The more extended Sloan Digital Sky Survey (SDSS) has already
produced very similar results, and will in the end have spectra of about a million galaxies®.

One arrives at the Friedmann (Lemaftre-Robertson-Walker) spacetimes by postulating that for each ob-
server, moving along an integral curve of a distinguished four-velocity field u, the Universe looks spatially
isotropic. Mathematically, this means the following: Let Iso, (M) be the group of local isometries of a
Lorentz manifold (M, g), with fixed point 2z € M, and let SO3(u,) be the group of all linear transforma-
tions of the tangent space T, (M) which leave the 4-velocity u, invariant and induce special orthogonal
transformations in the subspace orthogonal to u,,, then

{Ty¢: ¢ € Iso, (M), dyu=u} 2D SO3(uy)

(¢« denotes the push-forward belonging to ¢; see [1, p. 550]). In [7] it is shown that this requirement implies
that (M, g) is a Friedmann spacetime, whose structure we now recall. Note that (), g) is then automatically
homogeneous.

A Friedmann spacetime (M, g) is a warped product of the form M = I x X, where [ is an interval of
R, and the metric g is of the form

g=—dt* + a*(t)y, (1

such that (3, ) is a Riemannian space of constant curvature k¥ = 0, +1. The distinguished time ¢ is the
cosmic time, and a(t) is the scale factor (it plays the role of the warp factor (see Appendix B of [1])). Instead
of t we often use the conformal time 7, defined by dn = dt/a(t). The velocity field is perpendicular to the
slices of constant cosmic time, u = 9/0kt.

By Universe 1 always mean that part of the world around us which is in principle accessible to observations. In my opinion the
‘Universe as a whole’ is not a scientific concept. When talking about model universes, we develop on paper or with the help
of computers, I tend to use lower case letters. In this domain we are, of course, free to make extrapolations and venture into
speculations, but one should always be aware that there is the danger to be drifted into a kind of ‘cosmo-mythology’.

Consult the Home Page: http://www.mso.anu.edu.au/2dFGRS .

For a description and pictures, see the Home Page: http://www.sdss.org/sdss.html .

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Leipzig) 15, No. 10-11 (2006) 705

0.1.1 Spaces of constant curvature
For the space (X, ) of constant curvature* the curvature is given by

RI(X,Y)Z =k[W(Z,Y)X —5(Z,X)Y]; 2
in components:

joz)cz = k(yikvj1 — Vit vik)- )

Hence, the Ricci tensor and the scalar curvature are
RYY =2ky; , R® = 6k. )

For the curvature two-forms we obtain from (3) relative to an orthonormal triad {6°}
) _ LpG) g rpl
Q= §Rijk19 NG =FkO; NO; )

(0; = ix0"). The simply connected constant curvature spaces are in  dimensions the (n+1)-sphere S™*!
(k = 1), the Euclidean space (k = 0), and the pseudo-sphere (k = —1). Non-simply connected constant
curvature spaces are obtained from these by forming quotients with respect to discrete isometry groups.
(For detailed derivations, see [8].)

0.1.2 Curvature of Friedmann spacetimes

Let {6"} be any orthonormal triad on (3, ). On this Riemannian space the first structure equations read
(we use the notation in [1]; quantities referring to this 3-dim. space are indicated by bars)

do" +o'; N§7 = 0. (6)
On (M, g) we introduce the following orthonormal tetrad:

0° = dt, 0° = a(t)6". (7
From this and (6) we get

A0 =0, dF = S0ONG —a iy A6 (8)

a

Comparing this with the first structure equation for the Friedmann manifold implies

Wi NG =0, wio/\ﬁo-l—wij/\ﬁjzgﬁi/\GO—Fa@ij/\éj, 9)

a

whence

woi: 9917 wij :(Dij. (10)

a

The worldlines of comoving observers are integral curves of the four-velocity field u = 0;. We claim
that these are geodesics, i.e., that

Vau = 0. (11)

To show this (and for other purposes) we introduce the basis {e,, } of vector fields dual to (7). Since u = eq
we have, using the connection forms (10),

Vuu = Ve,eo = on(eo)eA = wio(eo)ei =0.

4 For a detailed discussion of these spaces I refer — for readers knowing German — to [8] or [9].
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0.1.3 Einstein equations for Friedmann spacetimes
Inserting the connection forms (10) into the second structure equations we readily find for the curvature
2-forms Q*,,:
k+a?

e 6" A6, (12)

0% = 29 p 6, Q) =
a

A routine calculation leads to the following components of the Einstein tensor relative to the basis (7)

a2 k
szs(w,%ﬁ>, (13)
a2 k
Gi1=Gp=Gs3=-2-—— — —, (14)
a a
G =0(p#v). (15)

In order to satisfy the field equations, the symmetries of G, imply that the energy-momentum tensor
must have the perfect fluid form (see [1, Sect. 1.4.2]):

" = (p + p)uru” + pg"”, (16)

where u is the comoving velocity field introduced above.
Now, we can write down the field equations (including the cosmological term):

-2
3(a2+;) — 87Gp + A, (17)
a
e .2
K gap A (18)
a a? a?

Although the ‘energy-momentum conservation’ does not provide an independent equation, it is useful
to work this out. As expected, the momentum ‘conservation’ is automatically satisfied. For the ‘energy
conservation’ we use the general form (see (1.37) in [1])

Vup=—(p+p)V - u (19)

In our case we have for the expansion rate

V-u= w’\o(e)\)uo = wio(ei),
thus with (10)
V.ou=32 (20)
a

Therefore, Eq. (19) becomes
. a
p+35(p+p)=0- (1)
For a given equation of state, p = p(p), we can use (21) in the form

d
T (pa®) = —3pa* (22)

to determine p as a function of the scale factor a. Examples: 1. For free massless particles (radiation) we
have p = p/3, thus p oc a=*. 2. For dust (p = 0) we get p < a3,

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org
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With this knowledge the Friedmann equation (17) determines the time evolution of a(t).
Exercise. Show that (18) follows from (17) and (21).
As an important consequence of (17) and (18) we obtain for the acceleration of the expansion

ArG 1
i = fﬂT(p+3p)a+ s Aa. (23)
This shows that as long as p+-3p s positive, the first term in (23) is decelerating, while a positive cosmological

constant is repulsive. This becomes understandable if one writes the field equation as

G = k(T + T:L\V) (k = 87@), (24)
with
A
TS, = ———gu- 25
5% 7G 9 ( )
This vacuum contribution has the form of the energy-momentum tensor of an ideal fluid, with energy density
pan = A/87wG and pressure py = —pa. Hence the combination py + 3py is equal to —2py, and is thus

negative. In what follows we shall often include in p and p the vacuum pieces.

0.1.4 Redshift

As a result of the expansion of the Universe the light of distant sources appears redshifted. The amount of
redshift can be simply expressed in terms of the scale factor a(t).

Consider two integral curves of the average velocity field u. We imagine that one describes the worldline
of a distant comoving source and the other that of an observer at a telescope (see Fig. 1). Since light is
propagating along null geodesics, we conclude from (1) that along the worldline of a light ray dt = a(t)do,
where do is the line element on the 3-dimensional space (%, ) of constant curvature k = 0, +1. Hence the
integral on the left of

to obs.
/‘ﬂiz/ do, (26)
te a(t) source

between the time of emission (¢.) and the arrival time at the observer (%,), is independent of t. and ¢,.
Therefore, if we consider a second light ray that is emitted at the time ¢, + At, and is received at the time
t, + At,, we obtain from the last equation

tot Ao gy to dt
/ — = / —_ 27
torat, a(t) ¢, a(t)
For a small At, this gives
At, At

a(to) a a(te)
The observed and the emitted frequences v, and v,, respectively, are thus related according to

vo  Ate  alte)

= = ) 28
v T At alty) (28)
The redshift parameter z is defined by
g Ve Vo (29)
Z/O
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Observer (t,)

Integral curve of u"

Source (t,)

Fig.1  Redshift for Friedmann models.

and is given by the key equation

14 .= o) (30)

One can also express this by the equation v - a = const along a null geodesic.

0.1.5 Cosmic distance measures

We now introduce a further important tool, namely operational definitions of three different distance mea-
sures, and show that they are related by simple redshift factors.

If D is the physical (proper) extension of a distant object, and ¢ is its angle subtended, then the angular
diameter distance D 4 is defined by

Dy =D/ 31)

If the object is moving with the proper transversal velocity V, and with an apparent angular motion dd /dto,
then the proper-motion distance is by definition

v
Dy - =

Finally, if the object has the intrinsic luminosity £ and F is the received energy flux then the luminosity
distance is naturally defined as

Dy = (L/anF)'/2. (33)

Below we show that these three distances are related as follows

D= (1+2)Dy = (1+2)°Da.| (34)

It will be useful to introduce on (X, ) ‘polar’ coordinates (7, ¥, ), such that

2

=7zt r2dQ?, dQ? = dv? + sin® 9dp?. (35)

7y

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org
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roa(t,) t

Ir=r,

Fig.2  Spacetime diagram for cosmic distance measures.

One easily verifies that the curvature forms of this metric satisfy (5). (This follows without doing any work
by using in [1] the curvature forms (3.9) in the ansatz (3.3) for the Schwarzschild metric.)

To prove (34) we show that the three distances can be expressed as follows, if r, denotes the comoving
radial coordinate (in (35)) of the distant object and the observer is (without loss of generality) at r = 0.

a(t
Dy =realte), Dy = rea(ty), Dy = rea(to) aEtO; . (36)
Once this is established, (34) follows from (30).
From Fig. 2 and (35) we see that
D = a(te)red, @7

hence the first equation in (36) holds.
To prove the second one we note that the source moves in a time dtg a proper transversal distance

a<te)
a(to)

Using again the metric (35) we see that the apparent angular motion is

dD =V, dt. =V,dty

D Vidt
alte)re  alto)re’

dé =

Inserting this into the definition (32) shows that the second equation in (36) holds. For the third equation
we have to consider the observed energy flux. In a time dt. the source emits an energy Ldt.. This energy is
redshifted to the present by a factor a(t.)/a(to), and is now distributed by (35) over a sphere with proper
area 47 (r.a(tg))? (see Fig. 2). Hence the received flux (apparent luminosity) is

_ a(te) 1 1
F o= Ldte L5 Trrealio))? dto”
thus
La(t)
 dmat(to)r2”
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T T T
AT Qu=1,0,=0 | ©y=02,Q,=08

(Hy/c) D(0,2)

Fig. 3 Cosmological distance measures as a
function of source redshift for two cosmological
models. The angular diameter distance Dyng =
D 4 and the luminosity distance Dy, = Dy, have
been introduced in this section. The other two will
be introduced later.

Inserting this into the definition (33) establishes the third equation in (36). For later applications we write
the last equation in the more transparent form

L 1
F = Tlrealt)? G2 G5

The last factor is due to redshift effects.
Two of the discussed distances as a function of z are shown in Fig. 3 for two Friedmann models with
different cosmological parameters. The other two distance measures will be introduced later (Sect. 3.2).

0.2 Luminosity-redshift relation for Type Ia supernovas

A few years ago the Hubble diagram for Type la supernovas gave, as a big surprise, the first serious evidence
for a currently accelerating Universe. Before presenting and discussing critically these exciting results, we
develop on the basis of the previous section some theoretical background. (For the benefit of readers who
start with this section we repeat a few things.)

0.2.1 Theoretical redshift-luminosity relation

We have seen that in cosmology several different distance measures are in use, which are all related by
simple redshift factors. The one which is relevant in this section is the luminosity distance Dy,. We recall
that this is defined by

Dy = (L/4xF)/?, (39)

where L is the intrinsic luminosity of the source and F the observed energy flux.
We want to express this in terms of the redshift z of the source and some of the cosmological parameters.
If the comoving radial coordinate r is chosen such that the Friedmann- Lemaitre metric takes the form

2

2 70)2 _
W—FT ds2 y k—O,il, (40)

g = —dt* + d*(t)

then we have

1 1
142z 4m(rea(to))?

Fdto = Ldt, -
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The second factor on the right is due to the redshift of the photon energy; the indices 0, e refer to the
present and emission times, respectively. Using also 1 + z = a(to)/a(te), we find in a first step:

Dr(z) = ap(1+ 2)r(z) (ag = alty)). (41)
We need the function r(z). From

ag a dr
dz = ———dt, dt=—at)——
? a a a()\/l—er

for light rays, we see that

dr 1 dz a

Now, we make use of the Friedmann equation

H? + % = @p. (43)
a 3

Let us decompose the total energy-mass density p into nonrelativistic (NR), relativistic (R), A, quintessence
(Q), and possibly other contributions

p=pNR+PREPA P+ . (44)

For the relevant cosmic period we can assume that the “energy equation”

d
g (pa®) = —3pa® (45)

also holds for the individual components X = NR, R, A, Q,---.If wx = px/px is constant, this implies
that

3(14wx)

pPxa = const. (46)

Therefore,
w 1 w
p=3 (pxa™ @) s = 3 (pxdo(L 4 )N, @)
X X

Hence the Friedmann equation (43) can be written as

H?(z) n k
Hi  Hgag

(1+2)? =) Qx(1+42)30w0), (48)
X

where (1 x is the dimensionless density parameter for the species X,

Oy = Px)o. (49)

Pecrit

where p.it is the critical density:
3H?
Pcrit S
81G
1.88x 1072 h2 g em™3 (50)
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=8 x 107*ThZ GeV ™.

Here hyg is the reduced Hubble parameter

ho = Ho/(100 km s~ Mpc™") (5D
and is close to 0.7. Using also the curvature parameter Qi = —k/HZa3, we obtain the useful form

H?(2) = HyE* (2 Q¢ Qx), (52)
with

B2 (2 0k, Qx) = Qe (1+2)% + Y Qx (1 + 2)30Fwx), (53)

X

Especially for z = 0 this gives

Qx +Q0 =1, QOEZQX. (54)

X
If we use (52) in (42), we get
r(z) d 1 S P
/ r_ : (55)
0 V1 —kr2 Hopag Jy E(Z)

and thus

r(z) = S(x(2)), (56)
where

1 o d
and
siny : k=1
S(x) = x : k=0 (58)
sinhy : k=1.
Inserting this in (41) gives finally the relation we were looking for
1
Dp(z) = FIDL(Z?QK;QX)) (59)
0
with
1 2 odY
Dp (2, Qx) = (1 7591/2/ 60
(2 K, Qx) = ( JrZ)|QK|1/2 (| K| o E(z) (60)

for k = +1. For a flat universe, Qx = 0 or equivalently g = 1, the “Hubble-constant-free” luminosity
distance is

Dr(z) = (1+2) /OZ B (61)
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Astronomers use as logarithmic measures of £ and JF the absolute and apparent magnitudes >, denoted
by M and m, respectively. The conventions are chosen such that the distance modulus m — M is related to
Dy, as follows

Dy,
— M =51 25. 62

" o8 ( 1M pc) * (62)
Inserting the representation (59), we obtain the following relation between the apparent magnitude m and
the redshift z:

m =M +5logDr(z; Uk, x), (63)

where, for our purpose, M = M — 5log Hy + 25 is an uninteresting fit parameter. The comparison of this
theoretical magnitude redshift relation with data will lead to interesting restrictions for the cosmological
)-parameters. In practice often only (23, and (2, are kept as independent parameters, where from now on
the subscript M denotes (as in most papers) nonrelativistic matter.

The following remark about degeneracy curves in the {2-plane is important in this context. For a fixed
z in the presently explored interval, the contours defined by the equations Dy, (z; Qar, Qa) = const have
little curvature, and thus we can associate an approximate slope to them. For z = 0.4 the slope is about 1
and increases to 1.5-2 by z = 0.8 over the interesting range of {2); and (2. Hence even quite accurate data
can at best select a strip in the Q2-plane, with a slope in the range just discussed. This is the reason behind
the shape of the likelihood regions shown later (Fig. 5).

In this context it is also interesting to determine the dependence of the deceleration parameter

ad
qo = — (7) (64)
a*/o
on Qs and Q4. At an any cosmic time we obtain from (23) and (47)
aa 1 1
—— == Qx (14 2)33+Fwx) (1 4 3wy). 65
— QEQ(z)XXj x(1+2) (14 3wx) (65)

For z = 0 this gives

(Qar — 294 +---). (66)

N[ =

1
qo = 5 ng(l + Sw_x) =
X

The line go = 0 (2 = Qs/2) separates decelerating from accelerating universes at the present time. For
given values of Q/, 4, etc, (65) vanishes for z determined by

Q14 2)2 =20 +---=0. (67)
This equation gives the redshift at which the deceleration period ends (coasting redshift).
Redshift dependent w for quintessence. In quintessence models the ratio wg = pg/pg is often allowed

to be redshift dependent. Then the function E(z) in (53) gets modified. To see how, start from the energy
equation (45) and write this as

dIn(pga®)
— 97— 3ug.
dln(1+ 2)
5 Beside the (bolometric) magnitudes m, M, astronomers also use magnitudes mp, my, ... referring to certain wavelength

bands B (blue), V' (visual), and so on.
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This gives

) In(1+2)
pQ(2) = pqo(l + 2)* exp </ Bwo(2")dIn(1 + Z'))
0

or

In(1+z)
pq(2) = pgo exp (3/ (1+wg(2))dIn(1 + z’)) . (68)
0

Hence, we have to perform on the right of (53) the following substitution:
) In(14=z)
Qo(1 + 2)30+we) 5 Q4 exp 3/ (1+wg(z)dn(1+2") | . (69)
0

0.2.2 Type la supernovas as standard candles

It has long been recognized that supernovas of type la are excellent standard candles and are visible to
cosmic distances [10] (the record is at present at a redshift of about 1.7). At relatively closed distances they
can be used to measure the Hubble constant, by calibrating the absolute magnitude of nearby supernovas
with various distance determinations (e.g., Cepheids). There is still some dispute over these calibration
resulting in differences of about 10% for Hy. (For a review see, e.g., [11]; a recent paper in an ongoing
research project is [12].)

In 1979 Tammann [13] and Colgate [14] independently suggested that at higher redshifts this subclass of
supernovas can be used to determine also the deceleration parameter. In recent years this program became
feasible thanks to the development of new technologies which made it possible to obtain digital images of
faint objects over sizable angular scales, and by making use of big telescopes such as Hubble and Keck.

There are two major teams investigating high-redshift SNe Ia, namely the ‘Supernova Cosmology Project’
(SCP) and the ‘High-Z Supernova search Team’ (HZT). Each team has found a large number of SNe, and
both groups have published almost identical results. (For up-to-date information, see the home pages [15]
and [16].)

Before discussing these, a few remarks about the nature and properties of type Ia SNe should be made.
Observationally, they are characterized by the absence of hydrogen in their spectra, and the presence of
some strong silicon lines near maximum. The immediate progenitors are most probably carbon-oxygen
white dwarfs in close binary systems, but it must be said that these have not yet been clearly identified.®

In the standard scenario a white dwarf accretes matter from a nondegenerate companion until it ap-
proaches the critical Chandrasekhar mass and ignites carbon burning deep in its interior of highly degen-
erate matter. This is followed by an outward-propagating nuclear flame leading to a total disruption of the
white dwarf. Within a few seconds the star is converted largely into nickel and iron. The dispersed nickel
radioactively decays to cobalt and then to iron in a few hundred days. A lot of effort has been invested to
simulate these complicated processes. Clearly, the physics of thermonuclear runaway burning in degenerate
matter is complex. In particular, since the thermonuclear combustion is highly turbulent, multidimensional
simulations are required. This is an important subject of current research. (One gets a good impression of
the present status from several articles in [17]. See also the recent review [18].) The theoretical uncertainties
are such that, for instance, predictions for possible evolutionary changes are not reliable.

Itis conceivable that in some cases a type la supernova is the result of a merging of two carbon-oxygen-rich
white dwarfs with a combined mass surpassing the Chandrasekhar limit. Theoretical modelling indicates,
however, that such a merging would lead to a collapse, rather than a SN Ia explosion. But this issue is still
debated.

6 This is perhaps not so astonishing, because the progenitors are presumably faint compact dwarf stars.
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Fig. 4 Distance moduli relative to an empty uniformly expanding universe (residual Hubble diagram) for
SNe Ia; see text for further explanations. (Adapted from [25], Fig. 7.).

In view of the complex physics involved, it is not astonishing that type Ia supernovas are not perfect
standard candles. Their peak absolute magnitudes have a dispersion of 0.3-0.5 mag, depending on the
sample. Astronomers have, however, learned in recent years to reduce this dispersion by making use of
empirical correlations between the absolute peak luminosity and light curve shapes. Examination of nearby
SNe showed that the peak brightness is correlated with the time scale of their brightening and fading: slow
decliners tend to be brighter than rapid ones. There are also some correlations with spectral properties. Using
these correlations it became possible to reduce the remaining intrinsic dispersion, at least in the average,
to ~ 0.15mag. (For the various methods in use, and how they compare, see [19,25], and references
therein.) Other corrections, such as Galactic extinction, have been applied, resulting for each supernova in a
corrected (rest-frame) magnitude. The redshift dependence of this quantity is compared with the theoretical
expectation given by Egs. (62) and (60).

0.2.3 Results

After the classic papers [20-22] on the Hubble diagram for high-redshift type Ia supernovas, published
by the SCP and HZT teams, significant progress has been made (for reviews, see [23] and [24]). I discuss
here the main results presented in [25]. These are based on additional new data for z > 1, obtained in
conjunction with the GOODS (Great Observatories Origins Deep Survey) Treasury program, conducted
with the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST).

The quality of the data and some of the main results of the analysis are shown in Fig. 4. The data points
in the top panel are the distance moduli relative to an empty uniformly expanding universe, A(m — M),
and the redshifts of a “gold” set of 157 SNe Ia. In this ‘reduced’ Hubble diagram the filled symbols are the
HST-discovered SNe Ia. The bottom panel shows weighted averages in fixed redshift bins.

These data are consistent with the “cosmic concordance” model (3, = 0.3, Qx = 0.7), with Xﬁof =
1.06). For a flat universe with a cosmological constant, the fit gives Qp; = 0.29+913 (equivalently,
Qa = 0.71). The other model curves will be discussed below. Likelihood regions in the (£2;/, {25)-plane,
keeping only these parameters in (62) and averaging I, are shown in Fig. 5. To demonstrate the progress,
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Fig. 5  Likelihood regions in the (£2as, £24)-plane. The dotted
contours are old results from 1998. (Adapted from [25, Fig. 8]).

1

old results from 1998 are also included. It will turn out that this information is largely complementary to
the restrictions we shall obtain from the CMB anisotropies.

0.2.4 Systematic uncertainties

Possible systematic uncertainties due to astrophysical effects have been discussed extensively in the litera-
ture. The most serious ones are (i) dimming by intergalactic dust, and (ii) evolution of SNe la over cosmic
time, due to changes in progenitor mass, metallicity, and C/O ratio. I discuss these concerns only briefly
(see also [23,25]).

Concerning extinction, detailed studies show that high-redshift SN Ia suffer little reddening; their B-V
colors at maximum brightness are normal. However, it can a priori not be excluded that we see distant
SNe through a grey dust with grain sizes large enough as to not imprint the reddening signature of typical
interstellar extinction. One argument against this hypothesis is that this would also imply a larger dispersion
than is observed. In Fig. 4 the expectation of a simple grey dust model is also shown. The new high
redshift data reject this monotonic model of astrophysical dimming. Eq. (67) shows that at redshifts z >
(29 /Q)/3 — 1 =~ 1.2 the Universe is decelerating, and this provides an almost unambiguous signature
for A, or some effective equivalent. There is now strong evidence for a transition from a deceleration to
acceleration at a redshift z = 0.46 £ 0.13.

The same data provide also some evidence against a simple luminosity evolution that could mimic an
accelerating Universe. Other empirical constraints are obtained by comparing subsamples of low-redshift
SN Ia believed to arise from old and young progenitors. It turns out that there is no difference within the
measuring errors, after the correction based on the light-curve shape has been applied. Moreover, spectra of
high-redshift SNe appear remarkably similar to those at low redshift. This is very reassuring. On the other
hand, there seems to be a trend that more distant supernovas are bluer. It would, of course, be helpful if
evolution could be predicted theoretically, but in view of what has been said earlier, this is not (yet) possible.

In conclusion, none of the investigated systematic errors appear to reconcile the data with 2, = 0 and
qo > 0. But further work is necessary before we can declare this as a really established fact.
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To improve the observational situation a satellite mission called SNAP (“Supernovas Acceleration Probe”)
has been proposed [29]. According to the plans this satellite would observe about 2000 SNe within a year
and much more detailed studies could then be performed. For the time being some scepticism with regard
to the results that have been obtained is still not out of place, but the situation is steadily improving.

Finally, I mention a more theoretical complication. In the analysis of the data the luminosity distance
for an ideal Friedmann universe was always used. But the data were taken in the real inhomogeneous
Universe. This may not be good enough, especially for high-redshift standard candles. The simplest way
to take this into account is to introduce a filling parameter which, roughly speaking, represents matter that
exists in galaxies but not in the intergalactic medium. For a constant filling parameter one can determine
the luminosity distance by solving the Dyer-Roeder equation. But now one has an additional parameter in
fitting the data. For a flat universe this was recently investigated in [30].

0.3 Thermal history below 100 MeV
A. Overview

Below the transition at about 200 MeV from a quark-gluon plasma to the confinement phase, the Universe
was initially dominated by a complicated dense hadron soup. The abundance of pions, for example, was so
high that they nearly overlapped. The pions, kaons and other hadrons soon began to decay and most of the
nucleons and antinucleons annihilated, leaving only a tiny baryon asymmetry. The energy density is then
almost completely dominated by radiation and the stable leptons (e*, the three neutrino flavors and their
antiparticles). For some time all these particles are in thermodynamic equilibrium. For this reason, only a
few initial conditions have to be imposed. The Universe was never as simple as in this lepton era. (At this
stage it is almost inconceivable that the complex world around us would eventually emerge.)

The first particles which freeze out of this equilibrium are the weakly interacting neutrinos. Let us
estimate when this happened. The coupling of the neutrinos in the lepton era is dominated by the reactions:

e +et S v+, ei—&—u—)ei—i—u, et + et 4.
For dimensional reasons, the cross sections are all of magnitude
o~ G3T?, (70)

where G is the Fermi coupling constant (h = ¢ = kg = 1). Numerically, G me7 ~ 107°. On the other
hand, the electron and neutrino densities n., n, are about 7°. For this reason, the reaction rates I for
v-scattering and v-production per electron are of magnitude ¢ - v - n, ~ G%T. This has to be compared
with the expansion rate of the Universe

a
H= -~ (Gp)"/2
a

Since p ~ T* we get

H ~ G1/2T2 (71)
and thus

T

7 G~V2GALT? ~ (T/10'° K)3. (72)

This ration is larger than 1 for T' > 1019 K ~ 1 MeV, and the neutrinos thus remain in thermodynamic
equilibrium until the temperature has decreased to about 1 MeV. But even below this temperature the
neutrinos remain Fermi distributed,

1 1,

— ————p?d 7
o2 en/To 310 W (73)

n,(p)dp =
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as long as they can be treated as massless. The reason is that the number density decreases as a~> and the
momenta with a~!. Because of this we also see that the neutrino temperature 7}, decreases after decoupling
as a~!. The same is, of course true for photons. The reader will easily find out how the distribution evolves
when neutrino masses are taken into account. (Since neutrino masses are so small this is only relevant at
very late times.)

B. Chemical potentials of the leptons

The equilibrium reactions below 100 MeV, say, conserve several additive quantum numbers’, namely the
electric charge @), the baryon number B, and the three lepton numbers L., L,,, L,. Correspondingly, there
are five independent chemical potentials. Since particles and antiparticles can annihilate to photons, their
chemical potentials are oppositely equal: pr,— = —p.+, etc. From the following reactions

e —i—,u"' Vet Vy, € +p—=>Vet+n, u +p—v,+n
we infer the equilibrium conditions
He= = Hue = Pp= = Hu, = fin = Hp- (74)

As independent chemical potentials we can thus choose

[Hs Fems Pwes Py Hor- (75)

Because of local electric charge neutrality, the charge number density n¢ vanishes. From observations
(see subsection E) we also know that the baryon number density n; is much smaller than the photon number
density (~ entropy density s.). The ratio np /s, remains constant for adiabatic expansion (both decrease
with a~3; see the next section). Moreover, the lepton number densities are

nL, = Ne— + Ny, — Nt — N,y NL, = Ny— + Ny, —Ny+ — Ny, €tc. (76)

Since in the present Universe the number density of electrons is equal to that of the protons (bound or free),
we know that after the disappearance of the muons n,— ~ n.+ (recall ng < n,), thus pr.— (= —pe+) ~ 0.
It is conceivable that the chemical potentials of the neutrinos and antineutrinos can not be neglected, i.e.,
that iy, is not much smaller than the photon number density. In analogy to what we know about the baryon
density we make the reasonable asumption that the lepton number densities are also much smaller than s.,.
Then we can take the chemical potentials of the neutrinos equal to zero (|, |/kT < 1). With what we said
before, we can then put the five chemical potentials (75) equal to zero, because the charge number densities
are all odd in them. Of course, np does not really vanish (otherwise we would not be here), but for the
thermal history in the era we are considering they can be ignored.

Exercise. Suppose we are living in a degenerate 7.-see. Use the current mass limit for the electron neutrino
mass coming from tritium decay to deduce a limit for the magnitude of the chemical potential f,,_ .

C. Constancy of entropy

Let poq, Peq denote (in this subsection only) the total energy density and pressure of all particles in thermo-
dynamic equilibrium. Since the chemical potentials of the leptons vanish, these quantities are only functions
of the temperature T'. According to the second law, the differential of the entropy S(V, T') is given by

1
AS(V.T) = = [d(pealT)V) + peq(T)V]. ()
7 Even if B, Le, L, L+ should not be strictly conserved, this is not relevant within a Hubble time H, 0 1
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This implies

d(dS) = 0 = d (;) A d(peq(T)V) +d (peq(1)> AV

T
_ _ Peq d (peq(T)
= —Psar nav + - (P ) dr v,

i.e., the Maxwell relation

Deall) L lpealT) + peal D] 9)

If we use this in (77), we get

.
45 = | (e )]

so the entropy density of the particles in equilibrium is

5= 2 lpea(T) + pea(T)]. (79)

For an adiabatic expansion the entropy in a comoving volume remains constant:
S = a®s = const. (80)

This constancy is equivalent to the energy equation (21) for the equilibrium part. Indeed , the latter can be
written as

dp d
a’ d;q T [0® (peq + Pea)];
and by (79) this is equivalent to dS/dt = 0.

In particular, we obtain for massless particles (p = p/3) from (78) again p o< T* and from (79) that S =

constant implies 7" oc a~!.

Exercise. Assume that all components are in equilibrium and use the results of this subsection to show that
the temperature evolution is for k = 0 given by

T T

—d = —V 2471'G7p( ) .

dt d {m i}
darT d

NS

Once the electrons and positrons have annihilated below T' ~ m,, the equilibrium components consist
of photons, electrons, protons and — after the big bang nucleosynthesis — of some light nuclei (mostly He*).
Since the charged particle number densities are much smaller than the photon number density, the photon
temperature 77, still decreases as a~'. Let us show this formally. For this we consider beside the photons
an ideal gas in thermodynamic equilibrium with the black body radiation. The total pressure and energy
density are then (we use units with A = ¢ = kg = 1; n is the number density of the non-relativistic gas
particles with mass m):

2 T 2
p=nT—|—7T—T4, p:nm+L+£T4

1
45 v—1 " 15 81)
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(y = 5/3 for a monoatomic gas). The conservation of the gas particles, na®

energy equation (22) implies, if o := s, /n,
dlnT oc+1
dlna |0+ 1/3(y—1)
For o < 1 this gives the well-known relation 7' o a>("=1) for an adiabatic expansion of an ideal gas.

‘We are however dealing with the opposite situation ¢ >> 1, and then we obtain, as expected, a-T" = const.
Let us look more closely at the famous ratio ng/s.,. We need

4 472
Sy 3T,0A, = ET?) = 3.60n,, np = pp/mp = QB Pcrit/Mp. (82)
From the present value of 7%, ~ 2.7 K and (50), perit = 1.12 x 107° h3(m,/cm?), we obtain as a measure
for the baryon asymmetry of the Universe

= const., together with the

2B 0.75 x 10°3(Qph?). (83)

Sy

Itis one of the great challenges to explain this tiny number. So far, this has been achieved at best qualitatively
in the framework of grand unified theories (GUTs).

D. Neutrino temperature

During the electron-positron annihilation below 7' = m, the a-dependence is complicated, since the
electrons can no more be treated as massless. We want to know at this point what the ratio 7’, /T, is after
the annihilation. This can easily be obtained by using the constancy of comoving entropy for the photon-
electron-positron system, which is sufficiently strongly coupled to maintain thermodynamic equilibrium.

We need the entropy for the electrons and positrons at 7' >> m,, long before annihilation begins. To
compute this note the identity

o0 n o0 n oo n 1 (o) n
/ f dx 7/ f dr = 2/ 2: dx = Py f dzx,
0 er — 1 0 e + 1 0 e —1 2 0 er — 1
whence

oo xn oo a:n
=(1-2" . 4
/0 e“”—%—ldx ( )/0 e$—1dx (&4

In particular, we obtain for the entropies s, s, the following relation

7
Se = g5 (T > me). (85)
Equating the entropies for T, > m, and T', < m,, gives
7
3 _ 3
(T'Ya) |befm>e |:]' +2x 8:| - (Twa) |after x 1’

because the neutrino entropy is conserved. Therefore, we obtain

11 1/3
(aTV)|after = (4) (aTA/)|befm’e ’ (86)
But (aT0)|, p1er = (aT0)|pe pore = (aTy) | be fore» ENCE We obtain the important relation
T, 11\ "/?
— =|— = 1.401. 87
<TV) after <4> 0 ( )
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E. Epoch of matter-radiation equality

In the main parts of these lectures the epoch when radiation (photons and neutrinos) have about the same
energy density as non-relativistic matter (Dark Matter and baryons) plays a very important role. Let us
determine the redshift, z., when there is equality.

For the three neutrino and antineutrino flavors the energy density is according to (84)

4/3
7 4
Py =3 X 3 X (11) Py (88)
Using
Ly 947 % 1075 hg 2 (1 + )4, (89)
Pcrit

we obtain for the total radiation energy density, p,,

p’”r = 4.15 x 107°hg 2 (1 + 2)%, (90)
crit
Equating this to
PM 3
=Qn(1+2) 1)
Pcrit
we obtain
1+ Zeq = 2.4 x 10*Qprh2. (92)

Only a small fraction of €2, is baryonic. There are several methods to determine the fraction (2p in
baryons. A traditional one comes from the abundances of the light elements. This is treated in most texts on
cosmology. (German speaking readers find a detailed discussion in my lecture notes [9], which are available
in the internet.) The comparison of the straightforward theory with observation gives a value in the range
Qph3 = 0.021 £ 0.002. Other determinations are all compatible with this value. In Part Il we shall obtain
Q p from the CMB anisotropies. The striking agreement of different methods, sensitive to different physics,
strongly supports our standard big bang picture of the Universe.

Part I
Cosmological perturbation theory

Introduction

The astonishing isotropy of the cosmic microwave background radiation provides direct evidence that the
early universe can be described in a good first approximation by a Friedmann model®. At the time of
recombination deviations from homogeneity and isotropy have been very small indeed (~ 107°). Thus
there was a long period during which deviations from Friedmann models can be studied perturbatively,
i.e., by linearizing the Einstein and matter equations about solutions of the idealized Friedmann-Lemaitre
models.

Cosmological perturbation theory is a very important tool that is by now well developed. Among the
various reviews I will often refer to [31], abbreviated as KS84. Other works will be cited later, but the

8 For detailed treatments, see for instance the recent textbooks on cosmology [2—6]. For GR I usually refer to [1].
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present notes should be self-contained. Almost always I will provide detailed derivations. Some of the more
lengthy calculations are deferred to appendices.

The formalism, developed in this part, will later be applied to two main problems: (1) The generation of
primordial fluctuations during an inflationary era. (2) The evolution of these perturbations during the linear
regime. A main goal will be to determine the CMB power spectrum as a function of certain cosmological
parameters. Among these the fractions of Dark Matter and Dark Energy are particularly interesting.

1 Basic equations

In this chapter we develop the model independent parts of cosmological perturbation theory. This forms the
basis of all that follows.

1.1 Generalities

For the unperturbed Friedmann models the metric is denoted by ¢(*), and has the form
9" = —dt* + *(t)y = a*(n) [~dn* + 1] ; (1.1)

~ is the metric of a space with constant curvature K. In addition, we have matter variables for the vari-
ous components (radiation, neutrinos, baryons, cold dark matter (CDM), etc). We shall linearize all basic
equations about the unperturbed solutions.

1.1.1 Decomposition into scalar, vector, and tensor contributions

We may regard the various perturbation amplitudes as time dependent functions on a three-dimensional
Riemannian space (X, y) of constant curvature K. Since such a space is highly symmetric, we can perform
two types of decompositions.

Consider first the set X'(3) of smooth vector fields on X. This module can be decomposed into an
orthogonal sum of ‘scalar’ and ‘vector’ contributions

XE)=x5xv, (1.2)

where X% consists of all gradients and X'V of all vector fields with vanishing divergence.
More generally, we have for the p-forms A”(X) on ¥ the orthogonal decomposition’

/\p(Z)::(1/\p_1(2){{)ker5, (1.3)

where the last summand denotes the kernel of the co-differential § (restricted to A" (X)).
Similarly, we can decompose a symmetric tensor ¢ € S(X) (= set of all symmetric tensor fields on X))
into ‘scalar’, ‘vector’, and ‘tensor’ contributions:

tig =t + by +t (1.4)
where
ty; = Tr(t)yi; + (ViV; — 5750) f (1.5)
9 Thisisa consequence of the Hodge decomposition theorem. The scalar product in AP (X) is defined as
@8 = [ anss
>

see also Sect. 13.9 of [1].
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t; = Vi€ + V&, (1.6)
th s Tr(t") =0, V-t" =0. (1.7)

In these equations f is a function on ¥ and &' a vector field with vanishing divergence. One can show
that these decompositions are respected by the covariant derivatives. For example, if £ € X (X), £ =
&+ VS, V& =0, then

AE = NE + VNS +2K ] (1.8)

(prove this as an exercise). Here, the first term on the right has a vanishing divergence (show this), and the
second (the gradient) involves only f. For other cases, see Appendix B of [31]. Is there a conceptual proof
based on the isometry group of (X,~)?

1.1.2  Decomposition into spherical harmonics
In a second step we perform a harmonic decomposition. For K = 0 this is just Fourier analysis. The spherical
harmonics {Y'} of (3, ~) are in this case the functions Y (x;k) = exp(ik - x) (for v = §;;dz’dz?). The
scalar parts of vector and symmetric tensor fields can be expanded in terms of
Y, : = —k"1V,Y, (1.9)
Yij = kT?V, VY + 14, (1.10)
and ’yin.

There are corresponding complete sets of spherical harmonics for K # 0. They are eigenfunctions of
the Laplace-Beltrami operator on (3, 7):

(A +E2)Y =0. (1.11)

Indices referring to the various modes are usually suppressed. By making use of the Riemann tensor of
(3, 7) one can easily derive the following identities:

VY =LY,

AY; = —(k* = 2K)Y;,
VY = —k(Yy; — 37;Y),
VY = 2k~ (k? — 3K)Y;,
Vjva;'m = %(3[( - k2) (}/z — %'Yijy) 5

AYi; = —(k* — 6K)Yy,

k K
(-

vm)/u - vj}/im = 5 - ﬁ

3 ) ('Yimi/j - 'Yijyrn)- (1.12)

Exercise. Verify some of the relations in (1.12).

The main point of the harmonic decomposition is, of course, that different modes in the linearized
approximation do not couple. Hence, it suffices to consider a generic mode.

For the time being, we consider only scalar perturbations. Tensor perturbations (gravity modes) will be
studied later. For the harmonic analysis of vector and tensor perturbations I refer again to [31].
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1.1.3 Gauge transformations, gauge invariant
amplitudes

In GR the diffeomorphism group of spacetime is an invariance group. This means that we can replace the
metric g and the matter fields by their pull-backs ¢*(g), etc., for any diffeomorphism ¢, without changing
the physics. For small-amplitude departures in

9=9" +dg, etc, (1.13)
we have, therefore, the gauge freedom
0g — 6g + ng(o), etc., (1.14)

where £ is any vector field and L¢ denotes its Lie derivative. (For further explanations, see [1, Sect. 4.1]).
These transformations will induce changes in the various perturbation amplitudes. It is clearly desirable
to write all independent perturbation equations in a manifestly gauge invariant manner. In this way one
can, for instance, avoid misinterpretations of the growth of density fluctuations, especially on superhorizon
scales. Moreover, one gets rid of uninteresting gauge modes.

I find it astonishing that it took so long until the gauge invariant formalism was widely used.

1.1.4 Parametrization of the metric perturbations
The most general scalar perturbation of the metric can be parametrized as follows

69 = a*(n) [-2Adn* — 2B,; dz’dn + (2Dv;; + 2E);;)dx'da?] . (1.15)

The functions A(n,z*), B, D, E are the scalar perturbation amplitudes; E);; denotes V;V;E on (3,7).
Thus the true metric is

g=a’(n){—(1+2A)dn* — 2B,;da'dn + [(1 + 2D)v;; + 2E);;]dz"da’ } . (1.16)

Let us work out how A, B, D, E change under a gauge transformation (1.14), provided the vector field
is of the ‘scalar’ type!”:

=€+ €'9;, & =4¢;. (1.17)
(The index O refers to the conformal time 7.) For this we need (= d/dn)

Lea?(n) = 2ad'€® = 2a*HE°, H = d' /a,

Ledn = dL¢n = (€°)'dn + €°)da’,

Leda' = dLea’ = d€' = €' da? + (€')'dn = €',; da? + ¢V,
implying

Le (a*(n)dn?) = 2a® {(HE" + (£°))dn® + £ pda’ dn}

Le (yijda'da?) = 28);;da’ da? + 2¢;da’ dny.
This gives the transformation laws:

A= A+HEO+ (Y, BB+ —¢, D-D+HE, E—-E+¢. (1.18)

10 1¢ suffices to consider this type of vector fields, since vector fields from X'V do not affect the scalar amplitudes; check this.
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From this one concludes that the following Bardeen potentials

1 N/
\P:A—a[a(B+E)] , (1.19)
®=D-H(B+E, (1.20)

are gauge invariant.
Note that the transformations of A and D involve only £°. This is also the case for the combinations

x:=a(B+E') — x +a&® (1.21)
and
3 , 1
ki=—-(HA-D")— 5Ax — (1.22)
a a
3 1
rt [H(HE + (€°)) — (HEY)'] — Eago. (1.23)

Therefore, it is good to work with A, D, y, . This was emphasized in [32]. Below we will show that y and
 have a simple geometrical meaning. Moreover, it will turn out that the perturbation of the Einstein tensor
can be expressed completely in terms of the amplitudes A, D, x, k.

Exercise. The most general vector perturbation of the metric is obviously of the form

((59;1,1/) = GQ(TI) ( 0 BZ ) y

B Hijj + Hyji

with B;* = H;!I* = 0. Derive the gauge transformations for 3; and H;. Show that H; can be gauged away.
Compute R, in this gauge. Result:

RY; = % (AB; +2K8;) .
1.1.5 Geometrical interpretation
Let us first compute the scalar curvature R of the slices with constant time 7 with the induced metric
g =da?(n) [(1+2D)yi; + 2E);;] da*da’. (1.24)
If we drop the factor a2, then the Ricci tensor does not change, but R(®) has to be multiplied afterwards

with 2.
For the metric vy;; + h;; the Palatini identity (Eq. (4.20) in [1])

0R;; = % [hki\jk — Wk + A — Ahz’j] (1.25)
gives

SR'; = h¥|;; — A (h = h), hij = 2Dv;j + 2E};;.
We also use

h=6D+2AE, B, =V, (AV/E) = V,;(V/AE - 2KV’E)
= A’E - 2KAFE
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(weused (V;A — AV, f = fREJQ)ij, for a function f). This implies
h);; = 2AD 4+ 2(A’E — 2KAE),
SR'; = —4D — 4KAFE),

whence
JR=0R'; + hR\) = ~4AD +12KD.

This shows that D determines the scalar curvature perturbation

SR®) = %(74AD +12KD). (1.26)
a

Next, we compute the second fundamental form'' K. 45 for the time slices. We shall show that

and
Kij — 595K = = (X5 — 37 8%) - (1.28)

Derivation. In the following derivation we make use of Sect. 2.9 of [1] on the 3 4 1 formalism. According
to Eq. (2.287) of this reference, the second fundamental form is determined in terms of the lapse «, the shift
3 = (3'0;, and the induced metric g as follows (dropping indices)

K=—— (8 —Ly)g. (1.29)

~(
2c
To first order this gives in our case

K= — [a®(1 + 2D)yij + 202E;;] — aByy;. (1.30)

2a(1+ A)

(Note that 3; = —a®B,;, ' = =" B,;.)
In zeroth order this gives

1
KO — 1,0 (131)

1] a 1)

Collecting the first order terms gives the claimed equations (1.27) and (1.28). (Note that the trace-free part
must be of first order, because the zeroth order vanishes according to (1.31).)

Conformal gauge. According to (1.18) and (1.21) we can always chose the gauge such that B = E = 0.
This so-called conformal Newtonian (or longitudinal) gauge is often particularly convenient to work with.
Note that in this gauge

3
X=0,A=0, D=%, x=—(HV - ),
a
1 This geometrical concept is introduced in Appendix A of [1].
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1.1.6 Scalar perturbations of the energy-
momentum tensor

At this point we do not want to specify the matter model. For a convenient parametrization of the scalar

perturbations of the energy-momentum tensor 7}, = Tl(uo,) + 61},,, we define the four-velocity u* as a
normalized timelike eigenvector of T#":

TH u” = —put, (1.32)
Guuru’ = —1. (1.33)

The eigenvalue p is the proper energy-mass density.
For the unperturbed situation we have

w0 = é, u(()o) = —a, V" =0, TO0; = —p©®) T(O)ij = p(o)éij, 70, =0, (1.34)
Setting p = p(O) + 6p, u* = uOH + §ut, etc, we obtain from (1.33)

ou’ = —2A7 dug = —aA. (1.35)
The first order terms of (1.32) give, using (1.34),

ST ou(@0 4 610y (005, 4 (T(O)“,, n p(O)(g/ty) su’ = 0.

For 1 = 0 and p = 7 this leads to
6T = —dp, (1.36)
6T = —a(p'® + p@)su’. (1.37)
From this we can determine the components of §7° :
5Toj =0 [goﬂgjvT”M]
_ 590k9$)T(0)ik + g(o)ooégojT(O)Oo + g(o)oogg?)éTio
= (—;vki31> (a®yi;)p 6"k + (—alz) (—a®Byy) (=p) = 7556T".
Collecting terms gives

o1
5T = a(p® + p©) [%jcw - EBU] (1.38)
— ——
a=26u;
Scalar perturbations of du’ can be represented as
i1 g
ou' = 57 V- (1.39)
Inserting this above gives

5T% = (p' + p ) (v — B)};. (1.40)

www.ann-phys.org (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



728

N. Straumann: Cosmological perturbation theory

The scalar perturbations of the spatial components 67 can be represented as follows

) . ) 1 .
6T ; = &' op + p© (qu - 30 AH) .

Let us collect these formulae (dropping (0) for the unperturbed quantities p(©), etc):

Sud
5T,
8T°,;

1 1
——A, bup = —ad, ou' = —yv); = u; = a(v — B);;
a a

_(Spa
(p+p)(v—B);, 6T = —(p+ )y vy,

) . ) 1 ..
6T, = dp &' +p (Hlj -39 AH) :

Sometimes we shall also use the quantity

Q:=a(p+p)(v—DB),

in terms of which the energy flux density can be written as

6TY; =

a

1
Q., (=TH=09,).

For fluids one often decomposes dp as

pry = 0p = c2op + pl,

where c; is the sound velocity

i = p/p.

I' measures the deviation between dp/dp and p/ p.
As for the metric we have four perturbation amplitudes:

’6::5p/p,v7F,H.‘

Let us see how they change under gauge transformations:

ST, — §TH, + (LgT(O))“V, (LgT(O))“V — ng(O)uV’A _ T(O)Aygu,/\ + T(O)“,\g’\w.

Now,

(LeTO)00 = 0700 4 = 0(—p),

hence

/
5p— Sp+ p€0; 5—)5-1—%50:5—3(14-10)7{50

(w := p/p). Similarly (¢! = 'Ving):

(LeT @)% =0 — T(O)jigo‘j + 70000 ; = —p€%; — p%;

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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(1.45)

(1.46)

(1.47)

(1.48)
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SO
v—B— (v—B)—¢&°. (1.49)
Finally,
(LeT )5 = p'6"5¢",
hence
5p — dp+p'€’, (1.50)
I — II. (1.51)

From (1.44), (1.48) and (1.50) we also obtain
I'—>T. (1.52)

We see that I", II are gauge invariant. Note that the transformation of § and v — B involve only £, while v
transforms as

v—v-—¢.

For Q we get
Q— Q—alp+pk” (1.53)

We can introduce various gauge invariant quantities. It is useful to adopt the following notation: For
example, we use the symbol dg for that gauge invariant quantity which is equal to J in the gauge where
Q =0, thus

b0 =0 aipﬂg — 5~ 3(1+ w)H(v— B). (1.54)
Similarly,
5X:5+3%X:6+3H(1+w)(3+ﬂ); (1.55)
Vi=(@w-B)y=v—B+a! —v—i—E’—l( +1Q>' (1.56)
= = X = = \XT 55 9) :
Q=Q+(p+px=alp+p)V. (1.57)

Another important gauge invariant amplitude, often called the curvature perturbation (see (1.26)), is

R:=Dg=D+H(v—B)=D,+H(v—B), =D, +HV. (1.58)

1.2 Explicit form of the energy-momentum conservation

After these preparations we work out the consequences V -T' = 0 of Einstein’s field equations for the metric
(1.16) and T*, as given by (1.34) and (1.42). The details of the calculations are presented in Appendix A
of this chapter.

The energy equation reads (see (1.238)):

(p0) + 3Hpd + 3Hprr + (p+p) [Av + E') +3D'] =0 (1.59)
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or, with (pd)'/p = ¢’ — 3H(1 4+ w)J and (1.56),

8+ 3H(c? —w)d + 3Hwl = —(1 +w)(AV +3D"). (1.60)
This gives, putting an index Y, the gauge invariant equation

&, 4 3H(cZ — w)dy + 3Hwl = —(1+ w)(AV + 3D%). (1.61)

Conversely, Eq. (1.60) follows from (1.61): the x-terms cancel, as is easily verified by using the zeroth
order equation

w = —3(c? —w)(1 +w)H, (1.62)

that is easily derived from the Friedman equations in Sect. 0.1.3. From the definitions it follows readily that
the last factor in (1.60) is equal to —(ak — 3HA — A(v — B)).
The momentum equation becomes (see (1.244)):

[(p+p)(v—B)| +4H(p+p)(v — B) + (p+p)A+ prp + 2(A + 3K)pll = 0. (1.63)
Using (1.44) in the form
prp, = p(c26 +wl), (1.64)

and putting the index y at the perturbation amplitudes gives the gauge invariant equation

[(p+p) V] +4H(p+ D)V + (p+ D) Ay + pc26y + puT + 2 (A + 3K)pIl = 0 (1.65)
or'2
2 2 w
/ 1— 2 CS w T — _— = 0. .
V' +( 3cS)HV+AX+1+w6X+1+w +3(A+3K)1+wn 0 (1.66)
For later use we write (1.63) also as
2

(v—DB) +(1-3c2)H(v—B)+ A+

w 2 w
o0+ —TI+ =(A K)——II = 1.67
14+w +1—|—w +3( +3 )1—|—w 0( )

(from which (1.66) follows immediately).

1.3 Einstein equations

A direct computation of the first order changes G*,, of the Einstein tensor for (1.15) is complicated. It is
much simpler to proceed as follows: Compute first dG*,, in the longitudinal gauge B = E = 0. (That these
gauge conditions can be imposed follows from (1.18).) Then we write the perturbed Einstein equations in
a gauge invariant form. It is then easy to rewrite these equations without imposing any gauge conditions,
thus obtaining the equations one would get for the general form (1.15).

6G*,, is computed for the longitudinal gauge in Appendix B to this chapter. Let us first consider the
component i = v = 0 (see Eq. (1.256)):

2
6G% = = [3H(HA—D') + (A +3K)D]

=2|3H(HA - D) + %(A +3K)D]| . (1.68)

12 Note that k. := p + p satisfies B = —3H(1 + c2)h.
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Since 6T% = —&p (see (1.42)), we obtain the perturbed Einstein equation in the longitudinal gauge
3H(HA — D)+ a—lz (A4 3K)D = —4nGpd. (1.69)
Since in the longitudinal gauge x = 0 and
k=3(HA—-D), (1.70)

we can write (1.69) as follows

1
E(A—FZ’)K)D—FHH = —4nGpod. (1.71)

Obviously, the gauge invariant form of this equation is

1
e (A +3K)D, + Hky = —4wGpd,, (1.72)

because it reduces to (1.71) for y = 0. Recall in this connection the remark in Sect.1.1.4 that the gauge
transformations of the amplitudes A, D, x,  involve only £°. Therefore, Ay, D,, k,, are uniquely defined;
the same is true for d, (see (1.55)).

From (1.72) we can now obtain the generalization of (1.71) in any gauge. First note that as a consequence
of

Ay=A—-x, Dy=D—Hy (1.73)
(verify this), we have, using also (1.22),

ky =3(HA, — D) =3(HA - D) +3Hy
o1
=K+ (3H + a2A) X (1.74)

From this, (1.73) and (1.55) one readily sees that (1.72) is equivalent to

aiz(A +3K)D + Hk = —4wGpd (any gauge), (1.75)

in any gauge.
For the other components we proceed similarly. In the longitudinal gauge we have (see Eqs. (1.257) and
(1.70)):

3G% =~ (HA = D) =~ =(H = D) ; = ~=r, (1.76)

0T = (p+p)(v—B),; = éQ,Ju (1.77)
This gives, up to an (irrelevant) spatially homogeneous term,

k = —12rGQ (long. gauge). (1.78)
The gauge invariant form of this is

Ky = —127G Q. (1.79)
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Inserting here (1.74), (1.57), and using the unperturbed equation

. K
H = — —4nG(p +p) (1.80)

(derive this), one obtains in any gauge

1
K+ E(A+3K)X: —127GQ (any gauge). (1.81)

Next, we use (1.258):
aj P __ St l 2 [ Y/
25G]—6](2’H +HHA+HA — D

1 i
—OHD' + KD + 5&(A+D)} (A+D)li;. (1.82)

1

2
This implies
2

% (5G7‘j - %5@ 6G’“k> = —% {(A + D) — %5@(A+ D), . (1.83)
Since

0T — L51;6T% = p [Hli‘j - g(sijAH}
we get following field equation for S := A + D

Sl — 160,A8 = —8rGa?p (Hli‘j - ggsijAn) .

Modulo an irrelevant homogeneous term (use the harmonic decomposition) this gives in the longitudinal
gauge
A+ D = —8rGa?pll (1.84)
The gauge invariant form is
Ay + D, = —87Ga’pll, (1.85)

from which we obtain with (1.73) in any gauge

’ X+ Hx — A — D = 81Ga?pIl (any gauge). ‘ (1.86)

Finally, we consider the combination

4 ) .. . 1
(6GT; — 6G%) = 3 {2(H FH)A+HA-D - 2HD} + S AA
a

DN =

Since

» 1
(6T%; — 6T°) = 5p[(l +3c2)5 + SwF]
_/_/

S+3wmyp

1
2
we obtain in the longitudinal gauge the field equation

. . .. . 1
6HA+6H?A+3HA—-3D —6HD = —EAA + 471G (1 + 35%)pd + 127GpT. (1.87)
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The gauge invariant form is obviously

6HA, +6H?A, +3HA, —3D, —6HD, = — % AAy +47G(1+352)pdy + 127Gpl. (1.88)

or

3(HA, — D)) +6H(HA, — D,) = — (;A + 3H) Ay, +4nG(1 + 3c2)pd, + 127Gl
With (1.74) we can write this as

foy + 2Hky = — (;2& + 3H> Ay +47G(1 + 3¢%)pd, + 127Gyl (1.89)

In an arbitrary gauge we obtain (the y-terms cancel)

1 .
k+2HKk = — <2A + 3H) A+47G(1 4+ 3¢2)ps + 127GpT . (1.90)
a

47 Gp(d+3wnyr)

Intermediate summary

This exhausts the field equations. For reference we summarize the results obtained so far. First, we collect
the equations that are valid in any gauge (indicating also their origin). As perturbation amplitudes we use
A, D, x, k (metric functions) and d, Q, IT, I" (matter functions), because these are either gauge invariant or
their gauge transformations involve only the component £° of the vector field £+,

e definition of x:

k=3(HA-D)— G%AX; (1.91)
o 6GY:

6712 (A +3K)D + Hk = —47Gpé; (1.92)
° 6GY;:

K+ % (A +3K)y = —127GQ; (1.93)

(] (SGZJ — %(513 5Gkkl

x+ Hx — A— D = 8rGa?pll; (1.94)
° 6Gzl — 6GO()Z
1 .
k4+2HKk = — <2A+3H> A+47G(1 + 3¢ pd + 127Gl (1.95)
a
A7 Gp(6+3wnyL)
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o T, (Eq. (1.60)):

: 1
6+ 3H(c2 —w)s + 3Huwl = (1 +w)(k — 3HA) — WAQ (1.96)
or
4 1
(p0) +3Hp(d + wry ) = (p+p)(r = 3HA) = 5 AQ; (1.97)
264wl

o T, =0 (Eq. (1.63)):

Q+3HQ=—(p+p)A—pry — %(A—FBK)pH. (1.98)

These equations are, of course, not all independent. Putting an index y or Q, etc at the perturbation
amplitudes in any of them gives a gauge invariant equation. We write these down for A,, D, - - - (instead
of Q, we use V; see also (1.61) and (1.66)):

Ky =3(HA, — D,); (1.99)
1
;(A +3K)Dy + Hk, = —41Gpdy; (1.100)
Ky = —127GQ,; (1.101)
Ay + D, = —81Ga’pll; (1.102)
. 1 :
fox +2Hk, = — (GQA + SH) Ay +47G(1 + 3¢2)pdy + 127Gl (1.103)
A7 Gp(dx+3wmy)
: 9 . 14w
0y +3H(c; —w)dy + 3HwI' = =3(1 + w)D,, — —— AV (1.104)
a

. 1 1 2 w 2 w

1-3A)HV = —=A, — = <) '+ =(A+3K)——1I]|. (1.105
V+(1-3c)HV - Ax a[1+wx+1—|—w +3( +3 )1+w ( )

Harmonic decomposition

We write these equations once more for the amplitudes of harmonic decompositions, adopting the following
conventions. For those amplitudes which enter in g,,,, and 7},,, without spatial derivatives (i.e., A, D, 9,I")
we set

A= A(k)Y(k) ,etc; (1.106)

those which appear only through their gradients (3, v) are decomposed as
1
B = _EB(’“)Y(]“) , etc, (1.107)

and, finally,, we set for E and II, entering only through second derivatives,

1
E=5EmYw (5 AE = —EwYw). (1.108)

The reason for this is that we then have, using the definitions (1.9) and (1.10),

Bli = By Yiryir Wij — 37 AL = T gy Yy - (1.109)
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The spatial part of the metric in (1.16) then becomes

gijdxidxj = az(n) [%-j + 2 (D — %E) Vi Y + 2EYij] dx’

The basic equations (1.91)-(1.98) imply for A ), B, etc'?, dropping the index (k),

. k2

k? — 3K
7723D+Hn: —47Gpd,
a

k? — 3K

T X = —12nGQ,
a

K —

X+ Hyx —A— D = 8r1Ga’pll/k?,

k2 .
k+2HK = (2 - 3H> A+47G(1 4 3¢2)pd + 12rGpl
a

47 Gp(6+3wnyr)
k2
(p8) +3Hp(0 + wry ) = (p+p)(k —3HA) + 50,
264wl
: 2 k* - 3K
Q+3HQ = _(P +p)A —prr + ngH

For later use we also collect the gauge invariant Egs. (1.99)—(1.105) for the Fourier amplitudes:

rx = 3(HA = Dy),

k2 — 3K
— =Dy + Hey = —4nGipdy,
a
ry = —127GQ, (Q, = —E(p—kp)V) :

k*(Ay + Dy ) = —8nGapll,

2

da’.

)

k .
fy +2Hk, = ((12 — 3H> Ay +4rG(1 + 305),05)( + 127Gprl’,

A7 Gp(dx+3wmy)
5y +3H(2 —w)dy + 3Hwl = —3(1 4+ w)Dy — (1 + w)

. k 2k w k
V4+(1-32HV ==A4 —5 -9 —_—
+( ) a X+1+wax+1+wa

k
~V,
a

(1.110)

(1.111)

(1.112)

(1.113)

(1.114)

(1.115)

(1.116)

(1.117)

(1.118)

(1.119)

(1.120)

(1.121)

(1.122)

(1.123)

(1.124)

13 We replace by X (k)Y (k)» Where according to (1.21) x(x) = —(a/k)(B — k~1E’); Eq. (1.111) is then just the translation
of (1.22) to the Fourier amplitudes, with & — () Y. Similarly, @ — Q1) Y(x), Qi) = —(1/k)alp + p)(v — B) (x)-
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Alternative basic systems of equations

From the basic equations (1.91)—(1.105) we now derive another set which is sometimes useful, as we shall
see. We want to work with dg, V and D, .
The energy equation (1.96) with index Q gives

do + 3H (2 — w)dg + 3HwI = (1 +w)(kg — 3HAQ). (1.125)

Similarly, the momentum equation (1.98) implies

2
Ag=——— | I+ 2 (A +3K)wl| . 1.12
o T cidg+w +3( +3K)w (1.126)
From (1.93) we obtain
1

But from (1.56) we see that
Xg = aV, (1.128)

hence
1
HQZ—g(A—‘r?)K)V (1.129)

Now we insert (1.126) and (1.129) in (1.125) and obtain

. 1
bo — 3Hwig = —(1 4+ w) = (A + 3K)V + 2H(A + 3K)wlL (1.130)
a

Next, we use (1.105) and the relation
Oy =00 +3(1+w)HV, (1.131)
which follows from (1.54), to obtain

. 1 2
V—i—HV:—aA c§69+wF+§(A+3K)wH : (1.132)

X a(l+w)

Here we make use of (1.102), with the result

V+HV = 1D\ — ;i [200 +wl = 87Ga®(1 + w)pll + (A + 3K)wll] | (1.133)

From (1.99), (1.101), (1.102) and (1.57) we find

D, + HD,, = 47Ga(p + p)V — 8nGa*Hpll. (1.134)

Finally, we replace in (1.100) 6, by d¢ (making use of (1.131)) and «,, by V according to (1.101), giving
the Poisson-like equation

1
5 (& +3K)Dy = ~4nGpio. (1.135)
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The system we were looking for consists of (1.130), (1.133), (1.134) and (1.135).
From these equations we now derive an interesting expression for R. Recall (1.58):

R=Dg =D, +aHV =D, +aV. (1.136)
Thus

R =D, +dV +aV.
On the right of this equation we use for the first term (1.134), for the second the following consequence of
the Friedmann equations (17) and (23)

.. 1 s K
a:—§(1+3w)a (H +a2>, (1.137)
and for the last term we use (1.133). The result becomes relatively simple for K = 0 (the V' -terms cancel):
. H 2
Using also (1.135) and the Friedmann equation (17) (for K = 0) leads to
H 2, 1 2
= - AD, —wl — —wAll| . 1.138
14w [SCS(HCL)2 x Y 3" } ( )

This is an important equation that will show, for instance, that R remains constant on superhorizon scales,
provided I' and IT can be neglected.

As another important application, we can derive through elimination a second order equation for do. For
this we perform again a harmonic decomposition and rewrite the basic equations (1.130), (1.133), (1.134)
and (1.135) for the Fourier amplitudes:

. kk? - 3K k? - 3K

. k 1 k[, @@ 2k 3K

k? - 3K

. a a2

D,+HD, = —47rG(p+p)%V—87rGHﬁpH. (1.142)

Through elimination one can derive the following important second order equation for d¢ (including the
A term)
2

Sg + (2+3c2 — 6w)Hog + [c§a2 —47Gp(1 — 6% + 8w — 3w?)
2 K 2
+ 12(w—cs)§ + (Bcs —bw)A| dg = S, (1.143)

where
2— .
Sz—kngl"—2(1—3K) Hwll

aQ k?
K 1 k2 .
- <1 - ?;62) [3 N 24 (5 3cf/w)H2} 2wl (1.144)

This is obtained by differentiating (1.139), and eliminating V' and V with the help of (1.139) and (1.140).
In addition one has to use several zeroth order equations. We leave the details to the reader. Note that S = 0
forI' =11 = 0.
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1.4 Extension to multi-component systems

The phenomenological description of multi-component systems in this section follows closely the treatment
in [31].

Let T(‘;)V denote the energy-momentum tensor of species («). The total T, is assumed to be just the
sum

T =) T (1.145)
@

and is, of course, ‘conserved’. For the unperturbed background we have, as in (1.34),

79" = (o0 + p)uPu @ + p06,", (1.146)

(u“))“) — (i,o) . (1.147)

The divergence of T(’g Yo does, in general, not vanish. We set

with

Tl = Qayus ZQ(W =0. (1.148)

The unperturbed @ ,),, must be of the form

Q) = (e, 0), (1.149)
(a)p a
and we obtain from (1.148) for the background

p0 = =3H(p? +p) + QY = =3H(1 — ¢{V)ha, (1.150)
where

ha = pi +p, ¢ = Q) /(3Hhy). (1.151)
Clearly,

PO =300 p@ =3"pO b= p@ 4 p =3 "h,, (1.152)

and (1.148) implies

QY =0 e ) hag” =0 (1.153)

We again consider only scalar perturbations, and proceed with each component as in Sect.1.1.6. In
particular, Egs. (1.32), (1.33), (1.42) and (1.44) become

Tl o) = ~P(e)%(ay» (1.154)
G Wy Uiy = —1, (1.155)
Uiy = == A, 0u(n) = ~77Val; = OU(a)i = a(va — B,
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6T(0a)0 = _5)00¢7
0T(ay; = ha(va = B)jj; Tiayo = —ha¥val;,
i i i 1 i

0pa = C20pa + Pal'a = PaTiar € = Pa/Pa- (1.156)

In (1.156) and in what follows the index (0) is dropped.
Summation of these equations give (0o, := 000/ pa):

P8 = paba; (1.157)
ho =" va, (1.158)
PTL =Y Tras (1.159)
pll = ana, (1.160)

The only new aspect is the appearance of the perturbations 60 (,),. We decompose Q(y),, into energy
and momentum transfer rates:

Q(a)u = Qauu =+ f(a)ua u“f(a)u =0. (1.161)

Since u; and f(); are of first order, the orthogonality condition in (1.161) implies

Fayo = 0. (1.162)

We set (for scalar perturbations)

0Q(a) = QVea, (1.163)
J)j = Hhafalj (1.164)

with two perturbation functions €, f, for each component. Now, recall from (1.42) that
dug = —aA, du; = a(v — B));.

Using all this in (1.161) we obtain

Qa0 = —aQY (e + A), (1.165)
6Qej = @ | QY (v = B) + Hhafa R (1.166)

The constraint in (1.148) can now be expressed as

> QVea=0,> hafa=0 (1.167)

[e%

(we have, of course, made use of (1.153)).
From now on we drop the index (0).
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We turn to the gauge transformation properties. As long as we do not use the zeroth-order energy equation
(1.150), the transformation laws for 0, Ve, T1.«, II, remain the same as those in Sect. 1.1.6 for 6, v, 7y,
and II. Thus, using (1.150) and the notation w, = pu/pa, We have

/
B — Bo + %50 = 60— 3(1 + wa)H(1 — ),

Vo — B = (v — B) — &°,
0pa = Opa + P&’
11, — Il,,
Iy — Ta. (1.168)

The quantity Q, introduced below (1.42), will also be used for each component:
1
0Ty = — Qalir = Q= > Qupi (1.169)

The transformation law of Q,, is
Qn — Qo — aho 0. (1.170)

For each o we define gauge invariant density perturbations (0o ) o (0o ) and velocities Vi, = (vo—B)y.
Because of the modification in the first of Eq. (1.168), we have instead of (1.54)

Ay i= (0a) g, = 0o — 3H(1 + wa)(1 = ga)(va — B). (1.171)
Similarly, adopting the notation of [31, Eq. (1.55)] generalizes to

Ao = (0a)y =0 +3(1+wa)(1 —qa)Hx. (1.172)
If we replace in (1.171) v, — B by v — B we obtain another gauge invariant density perturbation

Ao = (0a) g = 0o — 3H(1 + wa )(1 — qa) (v — B), (1.173)

which reduces to d,, for the comoving gauge: v = B.
The following relations between the three gauge invariant density perturbations are useful. Putting an
index x on the right of (1.171) gives

Ay = Do —3H(1 + wa)(1 — qa)Va. (1.174)
Similarly, putting x as an index on the right of (1.173) implies
Acs = Agq —3H(1 + wo)(1 — ga) V- (1.175)
For V,, we have, as in (1.56),
Vo =00+ E'. (1.176)
From now on we use similar notations for the total density perturbations:
A:=6g, As =16, (A=AL). (1.177)

Let us translate the identities (1.157)-(1.160). For instance,

Zpa cafZapaé +3H(wv-—B Zh —qa) = pd + 3H(v — B)h = pA.
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We collect this and related identities:

PA =" paleq (1.178)

= ipaAa—aZQaVa, (1.179)
pAs = Ea:paAsm "‘ (1.180)
hV = Za:hava, (1.181)
pll = ipana' (1.182)

We would like to write also pI' in a manifestly gauge invariant form. From (using (1.157), (1.159) and
(1.156))

pF =prL — 0305 = ; PaTLa _Ci ;pa(sa = ;para + ;(C

2 padatpala
we get
pl' = pLint + pliel, (1.183)
with
Plint =Y _pala (1.184)
and
Pl = > (2 = c2)pada. (1.185)

[

Since pl';,; is obviously gauge invariant, this must also be the case for pI'..;. We want to exhibit this
explicitly. First note, using (1.152) and (1.150), that

/ /
ciz%:ZZa Z2po¢_z Tal_qa (1186)
e

i.e.,
2 =2 hoé 2
d=c-) o lach, (1.187)
where
Ezzzhicz (1.188)
S — h (o'N *

Now we replace d, in (1.185) with the help of (1.173) and use (1.186), with the result

Pl = > (2 = c)paleca- (1.189)

(e
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One can write this in a physically more transparent fashion by using once more (1.186), as well as (1.152)

and (1.153),

hs
pllrel = Z(Ci - C%)?(l - Qﬁ)paAcm

a,B
or
1 2 2y hahig
pFrel = §§(ca _Cﬁ) h (1_Q(X)(1_QB)
|: Acoz _ Acﬂ
(I+wa)(1=¢qa) (IT+ws)(l—gs)]

For the special case g, = 0, for all a,, we obtain
1 9 9 hahg
pFrel - 5 Zﬁ(ca — CB)TSaﬁ )
a,

Aca Acﬁ
14wy 14+ wg )

Sag =

The gauge transformation properties of ¢,,, f,, are obtained from

5Q(a)u — 5Q(o¢u) + gAQ(a)u,)\ + Q(a))\g)\,/r
For p = 0 this gives, making use of (1.149) and (1.165),

€a+A—>5a+A+€O%(:3/+(§°)’-

Recalling (1.18), we obtain
(Qa)’

Eq = Eq + 2260,

Qa
For 1 = 7 we get
6Q(a)i = 0Q(ayi + Q(a)0& s
thus
v— B+ Hhofo = v— B+ Hhofo — £
But according to (1.49) v — B transforms the same way, whence

We see that the following quantity is a gauge invariant version of €,

Buni= (ca)g =2+ &L (0 - 1)
We shall also use
Q.) Qo)
E, = (€Q)Qa =E€a Tt (Cga)(va - B) = Eea + (Qa) (Va - V)
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and
Ey, = (Ea)x =€a — %X. (1.198)
Qa
Beside
we also make use of
Fo = Feo —3¢a(Va = V). (1.200)

In terms of these gauge invariant amplitudes the constraints (1.167) can be written as (using (1.153))

ZQ(XEC(X =0, (1.201)
> QuEBo = (Qa)Va, (1.202)
ZhaFw =0. (1.203)

Dynamical equations

We now turn to the dynamical equations that follow from

Ty s = 0Q (o) s (1.204)

and the expressions for 5T(Va)u;v and 6Q) (), given in (1.156), (1.165) and (1.166). Below we write these
in a harmonic decomposition, making use of the formulae in Appendix A for 5T(”Q)M_V (see (1.235) and
(1.243)). In the harmonic decomposition Egs. (1.165) and (1.166) become

0Q(a)0 = —aQa(ea + A)Y, (1.205)
0Q(a)j = a[Qa(v — B) + Hha fa] Y;. (1.206)

From (1.235) we obtain, following the conventions adopted in the harmonic decompositions and using
the last line in (1.156),

/

/
(Pada) + 3%pa5a + 3%pama + o (kve + 3D — E') = aQu(A + €4). (1.207)

In the longitudinal gauge we have Ay, = 0, Vo = Vo, Fso = €0, £ = 0, and (see (1.73) A = A,,,D =
D, . We also note that, according to the definitions (1.19), (1.20), the Bardeen potentials can be expressed
as

]AX -V, D, = ®. \ (1.208)

Eq. (1.207) can thus be written in the following gauge invariant form
a a’ c?
(pozAsoz)/ + SipaAsa + 3*1904 (a Asa + Foz) + hoz(kva + 3<I)I) = aQa (\I] + Esa)- (1209)
a a Wq
Similarly, we obtain from (1.243) the momentum equation

/ 2 2 _ K
[ha(va — B)] + 4%ha(va ~ B) ~ khaA — kpamia + %paﬂa
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= alQu(v — B) + Shaful (1.210)

The gauge invariant form of this is (remember that f,, is gauge invariant)

/ 2
(haVi) + 4% hoVi — kpa <%Asa + ra>
a

(o3

2 k* - 3K

—kho¥ + - ———
* 3 k

Eqgs. (1.209) and (1.211) constitute our basic system describing the dynamics of matter. It will be useful to

rewrite the momentum equation by using

Pally = alQaV + ghafa]. (1.211)

/
(haVa)' = haVi 4+ Vol Hy = (14 ¢2) = =35 (1= ga) (1 + 2 e

Together with (1.151) and (1.200) we obtain

/ / 2
V- 3%(1 — @)1+ 2V +4%Va - k% <CO‘ASQ + I‘a)
2 k2 -3K p, Qo a a
kU 4+ - ——— —Ily=a|—V+ —fo] = — (Fa + 3¢.Va
or
, a a a 5
Vit —Vo=kU+ —F,+3—(1—qq)c5Va
a a a
2 We, gk273K We

+k AV

—_— 1I,. 1.212
1T w. ( )

T+ws, %] 3 k  1+w,

Here we use (1.174) in the harmonic decomposition, i.e.,

!
1
Aa = Aga +3(1 +wa)(1 — qa)%EVm (1.213)
and finally get
a a 2 w 2k*-3K w
Vit Sy kLR k| S A, o p |-2E T2 We y1 (1214
O‘+a +a + [1+wa +1+wa } 3 k 1+ wg, ( )

In applications it is useful to have an equation for V3 := V., — V. We derive this for g, =I'n =0 (=
Tint =0, Fyy = Feo, = fo). From (1.214) we get

where

Hap = 1 i”‘;a " — 11”;6 5. (1.216)
Beside (1.213) we also use (1.175) in the harmonic decomposition,

Aca :Am+3(1+wa)(1—qa)%’%V, (1.217)
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to get

(Vo = V). (1.218)

?v\»—‘

Ap =Aco +3(1 + wo)(1 — ¢a )%

From now on we consider only a two-component system «, 3. (The generalization is easy; see [31].)
Then V,, — V' = (hg/h)V4gs, and therefore the second term on the right of (1.215) is (remember that we
assume ¢, = 0)

2 2
c %
o

A,

k -
14+ wqs 14+ wg

2 2
Cg, c

14+ wq

=k

ca T

+3a—/ Vg hs + A Vags (1.219)
a a“h ﬁ“h '

At this point we use the identity'*

Ba _ A B
14w, 14w h

Sas- (1.220)

Introducing also the abbreviation

2 hs 5 ha
2i=c f+ i (1.221)

the right hand side of (1.219) becomes k(c2 — ) 125 + kc2Sas + 32 2V, 5. So finally we arrive at

/
Vi + %(1 — 3¢2)Vag

2 k? - 3K
3 k

For the generalization of this equation, without the simplifying assumptions, see (I1.5.27) in [31].
Under the same assumptions we can simplify the energy equation (1.209). Using

/
Palsa 1 , R pa hl, po a’ 9 1
=~ (palsy) — e Pap  lala 3%
( I ) he Palsa) = 3 Beay g = =3 (L ca)

A
= k(% — cﬁ)T + kc2Sas + Ff,g Mop. (1.222)

in (1.209) yields

A /
) = _kV, — 30 1.22
(1 — wa) kVy — 3 (1.223)

From this, (1.217) and the defining equation (1.192) of S,,3 we obtain the useful equation

Slg = —kVag. (1.224)

14 Erom (1.192) we obtain for an arbitrary number of components (making use of (1.178))

hﬂ Aca P Acao A
S s = e S R e s e - fas s -
h 1+ wa h1+wﬁ 1+ wa h 1+ wa 1+w
B N——
pg/h
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It is sometimes useful to have an equation for (A, /(1 + w,))’. From (1.217) and (1.223) (for ¢, = 0)

we get
Ao ) "1\
= kV, -3 +3( L V) .
1+ wy a k
For the last term make use of (1.137), (1.140) and (1.121). If one uses also the following consequence of
(1.118) and (1.120)

/
3
Ly @ = dnGpa®(1 + w)k~'V = s 1+ w)k=1V (1.225)
a

one obtains after some manipulations

A ! K a’ A a w ad w 2 3K
— = —kV,+3—V+3—¢? 3— r-3——— > (1—- - |II. (1.226
(1+wa> ot k * acsl—i—w+ al+4w a1—|—w3< k2) ( )

1.5 Appendix to Chapter 1

In this Appendix we give derivations of some results that were used in previous sections.

A. Energy-momentum equations

In what follows we derive the explicit form of the perturbation equations 67#,,.,, = 0 for scalar perturbations,
i.e., for the metric (1.16) and the energy-momentum tensor given by (1.34) and (1.42).

Energy equation
From

THyp =T, +TH T, — T, TH, (1.227)
we get for v = 0:

§(TH0,) = 8THq 1 + STH \T2g + TH (0T g — 0T 1oy — T ,06T* (1.228)

(quantities without a § in front are from now on the zeroth order contributions). On the right we have more
explicitly for the first three terms

§THo, = 6T + 0T 0,
STH AT = 8TH 10T = 6T T % + 6T 00T,
TH, 0T g = T# 06T % + T# ;6T ) = AHST o + 17 ;;6T";

we used some of the unperturbed Christoffel symbols:

[0 =H, [%; =To0 = 0, % = Hyij, T'oj = HO';, T ji = L', (1.229)
where I i are the Christoffel symbols for the metric «y;;. With these the other terms become

—OTA 0Ty = =010, TH — 6T o T#; = —6T 00T % — 6T joT7;,

—T2,00THy = —T° 00T g — T ,06TH; = —HSTy — HOT";.
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Collecting terms gives

§(T"0,u) = (6T"0)ji + 6T%,0 — HOT"; + 3HET o — (p + p)dT " s0. (1.230)
We recall part of (1.42)

6T = —dp, 6T = —(p + p)vl*, 6T*; = pd’; + pIT';, (1.231)
where

I =10 — 15%; AIL (1.232)
Inserting this gives

§(T"0,) = =0po — (p +p) v = 3H(6p + p) — (p+p)oT 0. (1.233)
We need 6. In a first step we have

6T = 29" (8gij0 + 6900 — 0i0.;) + 369" (Gui,o + Guo,i — 0Gio.w),
SO

i LT ij(,2

00 = 5 (@27 78gij,0 + 69" (a ),O%j) .
Inserting here (1.16), i.e.,

8ij = 2a°(Dvij + Ejij), 697 = —2a*(Dy" + EIV),
gives

6T = (3D + AE)'. (1.234)
Hence (1.233) becomes

—8(T"0,) = (6p) + 3H(dp + 3p) + (p +p)[AN(v + E') + 3D'], (1.235)
giving the energy equation:

| (0p)' +3H(0p+0p) + (p+ P)[ A + E') +3D'] = 0] (1.236)
or

(6p) +3H(3p + 6p) + (p+ p)[A(v+ E) + 3D] = 0. (1.237)

We rewrite (1.236) in terms of 0 := dp/p, using also (1.44) and (1.56),
(pd) + 3Hpd + 3Hprr, + (p + p)[AV + 3D'] = 0. (1.238)
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Momentum equation
For v =i Eq. (1.227) gives
§(THi,) = 6TH; o + STH ZTA 4+ TH \0T™; — 0T, THy — T, 0TH,. (1.239)
On the right we have more explicitly, again using (1.229),
§TH; 0 = 0T9,; ; + 6T % o,
6TH ;T = 6TH,;T9; = 6T, T7; + 6T%,,;T9,,
TH AT = TH 08T + T# ;0T = AHSTO; + T%);6T7,,
1A, THy = =610, T — 619, T+ = —0T0,T% — 019, T,
10T+ = —T° ;6T " — 19 ,;,6T"; = —Hr; ;0T o — HOT®; — T9,,0T* ;.

Collecting terms gives

§(T ) = (8T7;)1; 4+ 0T% 0 + 3HST®; — Hi;6T7 + (p + p)oI ;. (1.240)
One readily finds
6I%; = (A—HB);; (1.241)

We insert this and (1.231) into the last equation and obtain
8(T"5.) = {op+ (p+p) (v = B) + (p+ p)(v — B) +4H(v — B) + AJ}, + pIl ;.

From (1.232) we obtain (R(7);; denotes the Ricci tensor for the metric ;)

IV,); =1V ;; — 410, = 10V ;; + R(y),; 11V — 310, = [2(A + 3K)II) i (1.242)

As aresult we see that 6(7";,,,) is equal to 0; of the function
[(p+p)(v—B) +4H(p+p)(v—B)+ (p+p)A+prr + 2(A + 3K)pll, (1.243)

and the momentum equation becomes explicitly (h = p + p)
[h(v — B)) + 4Hh(v — B) + hA + prp + 2(A + 3K)pIl = 0. (1.244)

B. Calculation of the Einstein tensor for the longitudinal gauge

In the longitudinal gauge the metric is equal to g, + 6g,.,, With
goo = —a?, goi = 0, 01%;; = 2H(D—A)+D'lyij, ¢ = —a™%, ¢” = 0, g = a™?y7; (1.245)
5900 = 72a2A, 5901 = 0, ng = 20,2D")/7;j,

59™ = 20774, 59" =0, 59" = ~2a~* D", (1.246)

The unperturbed Christoffel symbols have been given before in (1.229).
Next we need

5FH(1,8 = %5gﬂu(gva,ﬁ + 9vp,a — g(xﬂ,ll) + %gwj(égua,ﬁ + 6gu[3,a - 6gaﬁ,u)~ (1247)
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For example, we have
6T%0 = $2a72A(—a?)' + §(—a?)(—2a%A) = A",
Some of the other components have already been determined in Sect.A. We list, for further use, all §T'*:
6T%0 = A’, 6T%; = A, 6T%; = [2H(D — A) + D'},
6T%0 = A, 0T = D'6%;, 6T, = D 16" + D ;6" — DS,
(1.248)

(indices are raised with v%/).
For 0 R, we have the general formula

SR, = 00T, — 0,075, + 617, T o + 17,67 s — 077, T, —T73,0T 5. (1.249)
We give the details for d Ry,
8Roo = Ox6T2 00 — B00T x0 + 0T 00T e + 170007 xg — 0T x0T 05 — 72007 0, (1.250)
The individual terms on the right are:
92000 = (1%0)" + (6T%00),s = A" + A,
—006T* 0 = —A" = 3D",
ST700T ag = 6T 00T M xo + 6T 0ol i = 4H A" + T 47,
[7000T yg = T9000T* o 4 T000T xi = H(A' +3D"),
—O0T7 50T 05 = —0T930T g — T30 T g = —H(A' + 3D"),
—T7 3001?05 = —T036T g0 — T300T s = —H (A’ + 3D").

Summing up gives the desired result

(6Rog = AA +3HA' —3D" — 3HD'. (1.251)
Similarly one finds (unpleasant exercise)
6Ro; =2(HA-D");, (1.252)
6Rij = —(A+D)jyj + [-AD — (4H* + 2H')A — HA (1.253)
+(4H? +2H)D — 5HD' + D"] ;. (1.254)
Using also the zeroth order expressions for the Ricci tensor
Roo = —3H/, Rij = [H' + 2H* + 2K]ij, Roi =0, (1.255)
one finds for the Einstein tensor'”
6G% = a% [3H(HA - D)+ AD + 3KD], (1.256)

15 Note that SRM, = §g" Ry, + g" 6 Ry,
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2
0G% = ——[HA=D;, (1.257)

2
==

6GZ] {(27_[/ +H2)A +HA/ _ D//

1 o ,
—9MD' + KD + 5A(A+D)}51j - A+ D). (1.258)

These results can be derived less tediously with the help of the *3+1 formalism’, developed, for instance,
in Sect. 2.9 of [1]. This was sketched in [33].

C. Summary of notation and basic equations

Notation in cosmological perturbation theory is a nightmare. Unfortunately, we had to introduce lots of
symbols and many equations. For convenience, we summarize the adopted notation and indicate the location
of the most important formulae. Some of them are repeated for further reference.

Recapitulation of the basic perturbation equations

For scalar perturbations we use the following gauge invariant amplitudes:
metric: ¥, ® (Bardeen potentials)

V=4, =D (1.259)
total energy-momentum tensor T*" : A, V; instead of A we also use
Ay=A—3(1+ w)H%V. (1.260)

The basic equations, derived from Einstein’s field equations, and some of the consequences, can be
summarized in the harmonic decomposition as follows:
e constraint equations:

(k* = 3K)® = 4nGpa’A, (1.261)

b~ HV = —4nG(p +p)%V; (1.262)
e relevant dynamical equation:

a2

O+ V= *87TGﬁpH; (1.263)
e energy equation:

. 3K k

A—3HwA:—<1—k2> [(1+w)V+2HwH} ; (1.264)

a

e momentum equation:

. k 1 k 2 k? - 3K

V4+HV = -V 4 — = CEAerF—fiBwH ) (1.265)

a l+wa |- 3 k2

If A is replaced in (1.264) and (1.265) by A, these equations become

A, +3H(Z —w)Ay = =31 +w)d — (1 + w)SV — 3HuwT, (1.266)
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. k 2k w k 2 w kX-3Kk
V+(1-3HV = -0 AN — -— 1L 1.267
+( <) a +1+ 1+wa 31+w k2 a ( )
multi-component systems:
T =3 Tay Ty = Qo 2 Qayu =0- (1.268)
(@) o
e additional unperturbed quantities, beside py, , Pa, Pas Cas : Qa, Ga, Satisfy:
P=D PasP= Pash:=p+p=) ha, (1.269)
[0 [0 «
Qo = 3HhaGa, Y Qo =0, Y  haga =0, (1.270)
Pa = —3H(1 — qo)ha- (1.271)
e perturbations: gauge invariant amplitudes: A, Aso, Aca, o, Lo,
PA=) pala (1.272)
=Y raBa—ay_ QaVa, (1273)
pAs = ZpaAsou (1.274)
hV = Z ha Vi, (1.275)
Pl =" palla, (1.276)
pl' = pling + plrel, (1.277)
Plint = Y pala, (1278)
«@
Plra = Y (2 = 2)palea (1279)
or
1 hoh
PPt = 5 Y (co = ) =3 (1= 4a)(1 — 45)
a,f3
Aca Acﬁ
. — ; (1.280)
[(1 Fwa)(1—qa) (1+wp)(1—gp)
for the special case g, = 0, for all a:
1 hoh
Pl = 5 G cz)aTBSaﬁ ; (1.281)
o,
ACOC AC
Sap i = A (1.282)

1+w, 1+wg
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e additional gauge invariant perturbations from 6Q (),
energy: By, E.n, Esq; momentum: F,, F,,; constraints:

> QaFea =0, (1.283)
> QuEa = (Qa) Va, (1.284)
ZhaFca =0. (1.285)

e dynamical equations for g, = 'y, = 0 (= D[iyy = 0); some of the equations below hold only for
two-component systems;

A !
s :—k = (b/; 1286
<1+wa) Va =3 ( )

Eq. (1.226) for K = 0:

Ao\ ", A ' ' 2
= kv, +3%L 2 p32 W p 38 W Zyp (1.287)
1+ wq a 14w al+w al+w3
/ / 2 2 k2 — 3K
Vi Sy kb Lp, phCe A, - 2R3 (1.288)
" a a 14+ wgy 3 k
for Vag = Va — Vﬁi
/ / 2
Lot (1= 36 Vap = k(2 — ¢ 26,5+ Cp, o 2F 3K
Vap + o (1 —=3c;)Vap = k(c, — c3) o + kcZSap + . Fos 3 ’ IM.p, (1.289)
relation between S, g and V,z:
ap = —kVag. (1.290)

When working with A, it is natural to substitute in (1.288) A, with the help of (1.174) in terms of A,,:

/ / 2 2
, G 9 a ce 2k*-3K 1w,

—(1 - w=kU+ —F,+k Aoy — = ———— ——11,, 1.291
Va+a( 3ca)V. +a + 1+ we 3 k 1+ wq (1.291)

2 Some applications of cosmological perturbation theory

In this chapter we discuss some applications of the general formalism. More relevant applications will
follow in later parts.

Before studying realistic multi-component fluids, we consider first the simplest case when one compo-
nent, for instance CDM, dominates. First, we study, however, a general problem

Let us write down the basic equations (1.139)-(1.142) in the notation adopted later (4, = ¥, D, =
(I), (SQ = A)

: k k%2 —-3K k2 - 3K
A—3HwA = —(1+w)= ———V —2H—>—ull, 2.1
. k 1 k a? 2 k% - 3K

HV =—2d+ —— =" |2A I — 1 —pll — = ———wlIl 2.2
V+HV " +1—|—wa A4 w 87G( —|—w)k2p 3 2 wll| | 2.2)
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k* — 3K

— P = 47 GpA, 2.3)

a

. 2
b+ HO = —47G(p +p) %V - SwGH% Il 2.4)

Recall also (1.121):

2
O+ = —SWG%pH. 2.5)

Note that ® = —W for II = 0.
From these perturbation equations we derived through elimination the second order equation (1.143) for
A, which we repeat for II = 0 (vanishing anisotropic stresses) and I' = 0 (vanishing entropy production):

) , k2
A+ (2+3c2 —6w)HA + 2= — 47Gp(1 — 6¢2 + 8w — 3w?)
a

K
+12(w — ci); + (3¢2 = 5w)A| A = 0. (2.6)

Sometimes it is convenient to write this in terms of the conformal time for the quantity pa®/A. Making use
of (pa®) = —3Hw(pa®) (see (0.22)) one finds

(pa®A)" + (1+3c2)H(paA) + [(k* — 3K)c? — 4rG(p + p)a®] (pa®A) = 0. .7
Similarly, one can derive a second order equation for ®:

. k2 K
O+ (4+3cHHD + [032 +87Gp(c? —w) —2(1+3c}) = + (L+cZ)A| @ =0. (2.8)
a a
Remarkably, for p = p(p) this can be written as [34]

prp [ H> a N | oK
£2 L(p+p)(Hq>)} +350=0 (2.9)

(Exercise).
2.1 Non-relativistic limit

It is instructive to first consider a one-component non-relativistic fluid. The non-relativistic limit of the
second order equation (2.6) is

2
A+ 2HA = 4xGpA — 2 <z) A. (2.10)

From this basic equation one can draw various conclusions.
The Jeans criterion

One sees from (2.10) that gravity wins over the pressure term o ¢ for k < k, where

k2 (%)2 — 47Gp @2.11)
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defines the comoving Jeans wave number. The corresponding Jeans length (wave length) is

2w w2 1/2 AJ c
J kJa (Gp) "2r T H (2.12)

For A < Ay we expect that the fluid oscillates, while for A > A ; an over-density will increase.

Let us illustrate this for a polytropic equation of state p = const p”. We consider, as a simple example,
a matter dominated Einstein-de Sitter model (K = 0), for which a(t) o« t?/3, H = 2/(3t). Eq. (2.10) then
becomes (taking p from the Friedmann equation, p = 1/(67G#?))

4 L2 2
A+?¢A+(w3t2)Ao, 2.13)

where L2 is the constant

£27-2/3 2.2
2 = 5 Gl (2.14)
a

The solutions of (2.27)are

Lt~ 4
AL(t) o t™%T2s56, ( ) ViI=Y g > 0. (2.15)
14

The Bessel functions J oscillate for t < L/, whereas for ¢ > L/ the solutions behave like

+

=
et

Ap(t) oct™ (2.16)

Now, t > L'/V signifies c2k? /a®> < 6wG p. This is essentially again the Jeans criterion k < k. At the same
time we see that

AL x t*? x a, (2.17)
A x th (2.18)

Thus the growing mode increases like the scale factor.
2.2 Large scale solutions

Consider, as an important application, wavelengths larger than the Jeans length, i.e., cs(k/aH) < 1. Then
we can drop the last term in equation (2.9) and solve for ® in terms of quadratures:

H H
o(t, k) / ”+p DOEP) gt + = d(k). (2.19)
a
We write this differently by using in the integrand the following background equation (implied by (1.80))
M:(g)'_a A
H? H a?

With this we obtain

ot =0 |12 ['a (- K)a] 4

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org

a —d(k). (2.20)




Ann. Phys. (Leipzig) 15, No. 10-11 (2006) 755

Let us work this out for a mixture of dust (p = 0) and radiation (p = %p). We use the ‘normalized’ scale
factor ¢ := a/aeq, Where aqq is the value of a when the energy densities of dust (CDM) and radiation are
equal. Then (see Sect. 0.1.3)

1

= g p= gt @21)
Note that
(' =kag, x:= % (2.22)
From now on we assume K = 0, A = 0. Then the Friedmann equation gives
H? — C“g 4 2.23)
thus
22 42221 % W xiq — (T)q (2.24)

In (2.11) we need the integral

VCFT [ ¢
7/adt Haqu/(d 5 \/CT

As a result we get for the growing mode

VEF1 ¢?
(¢, k)=C(k) |1— (2.25)
C=cl="a W
From (2.3) and the definition of 2 we obtain
3 o
d = 5% A, (2.26)
hence with (2.15)
4 2 / 2
A = —w?C(k) < 1— C: < (2.27)
3 ¢+1 ¢ Ve+1
The integral is elementary. One finds that A is proportional to
16 16
U ¢+ c 7<——+—\/<+ ] (2.28)
. C(C +1) {
This is a well-known result.
The decaying mode corresponds to the second term in (2.11), and is thus proportional to
U ! (2.29)
d= —F—7—. .
(vC+1
Limiting approximations of (2.19) are
10,2 .
y,=4 96 o<l (2.30)
¢ (>
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For the potential ® oc 22A the growing mode is given by

B(0) = 0(0) 35 Ui, @30
Thus
1 : (k1
®(¢) = @(0) { (2.32)
% (> 1

In particular, ® stays constant both in the radiation and in the matter dominated eras. Recall that this holds
only for ¢;(k/aH) < 1. We shall later study Eq. (2.9) for arbitrary scales.

2.3 Solution of (2.6) for dust

Using the Poisson equation (2.3) we can write (2.9) in terms of A

e (74) |

For dust this reduces to (using pa® = const)

()]

The general solution of this equation is

2

k
+d5A=0. (2.33)

1+w
a?H

=0. (2.34)

at’

a?(t')H2(t') +d(k)H(1). (2.35)

t
At k) = C()H(1) /
0
This result can also be obtained in Newtonian perturbation theory. The first term gives the growing mode
and the second the decaying one.
Let us rewrite (2.35) in terms of the redshift z. From 1 + z = ag/a we get dz = —(1 + z) Hdt, so by
(0.52)

dt 1
&= HI T EG) H(z) = HyE(2). (2.36)

Therefore, the growing mode D (z) can be written in the form

5 142

Here the normalization is chosen such that D (z) = (1+2) ! = a/ag for Qp = 1, Q4 = 0. This growth
function is plotted in Fig. 7.12 of [5].

2.4 A simple relativistic example
As an additional illustration we now solve (2.7) for a single perfect fluid with w = const, K = A = 0. For
a flat universe the background equations are then

a d\?* 8rG
pr+3—(1+w)p=0, () = ——a’p.
a a 3
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Inserting the ansatz

pa® = An7", a = ao(n/m)”?

we get

3
= —An7" =2 A=-—"_p3%
n 3 41 TVES 871'Gﬁ

B 8rG
2
The energy equation then gives 5 = 2/(1 + 3w) (= 1 if radiation dominates). Let z := kn and
fi=a""2A x palA.
Also note that k/(aH) = x//3. With all this we obtain from (2.7) for f

@ 2d 5, BB+
@ Trdr T T

f=o0. (2.38)
The solutions are given in terms of Bessel functions:
f(x) = Cojslcsz) + Dong(csz). (2.39)

This implies acoustic oscillations for ¢z > 1, i.e., for §(k/aH) > 1 (subhorizon scales). In particular,
if the radiation dominates (5 = 1)

A x z[Coj1(csz) + Dony(csz)], (2.40)

and the growing mode is soon proportional to x cos(c,x), while the term going with sin(csx) dies out.
On the other hand, on superhorizon scales (csx < 1) one obtains

f~ CaP + Da=(F+Y),
and thus
A~ Cz? + Dz~ (2071,
D ~ §52(6' + Dz~ 28+
2 )

V ~ gﬁ (—ﬁilcx + Dx—%) . (2.41)

We see that the growing mode behaves as A o< a? in the radiation dominated phase and A o a in the matter
dominated era.
The characteristic Jeans wave number is obtained when the square bracket in (2.7) vanishes. This gives

7TC2 1/2
Ay = 5 h= ) 2.42
J (Gh> ; p+p (2.42)

Exercise. Derive the exact expression for V.

In Part IIT we shall study more complicated coupled fluid models that are important for the evolution
of perturbations before recombination. In the next part the general theory will be applied in attempts to
understand the generation of primordial perturbations from original quantum fluctuations.
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Part I1
Inflation and generation of fluctuations

3 Inflationary scenario

3.1 Introduction

The horizon and flatness problems of standard big bang cosmology are so serious that the proposal of a very
early accelerated expansion, preceding the hot era dominated by relativistic fluids, appears quite plausible.
This general qualitative aspect of ‘inflation’ is now widely accepted. However, when it comes to concrete
model building the situation is not satisfactory. Since we do not know the fundamental physics at superhigh
energies not too far from the Planck scale, models of inflation are usually of a phenomenological nature.
Most models consist of a number of scalar fields, including a suitable form for their potential. Usually there
is no direct link to fundamental theories, like supergravity, however, there have been many attempts in this
direction. For the time being, inflationary cosmology should be regarded as an attractive scenario, and not
yet as a theory.

The most important aspect of inflationary cosmology is that the generation of perturbations on large
scales from initial quantum fluctuations is unavoidable and predictable. For a given model these fluctuations
can be calculated accurately, because they are tiny and cosmological perturbation theory can be applied.
And, most importantly, these predictions can be confronted with the cosmic microwave anisotropy mea-
surements. We are in the fortunate position to witness rapid progress in this field. The results from various
experiments, most recently from WMAP, give already strong support of the basic predictions of inflation.
Further experimental progress can be expected in the coming years.

In what follows I shall mainly concentrate on this aspect. It is, I think, important to understand in sufficient
detail how the involved calculations are done, and which aspects are the most generic ones for inflationary
models. We shall learn a lot in the coming years, thanks to the confrontation of the theory with precise
observations.

3.2 The horizon problem and the general idea of inflation

I begin by describing the famous horizon puzzle (topic belonging to Chap. 0), which is a very serious
causality problem of standard big bang cosmology.

Past and future light cone distances

Consider our past light cone for a Friedmann spacetime model (Fig. 3.1). For aradial light ray the differential
relation dt = a(t)dr/(1 — kr?)*/? holds for the coordinates (,7) of the metric (0.40). The proper radius
of the past light sphere at time ¢ (cross section of the light cone with the hypersurface {¢t = const}) is

r(t) d'r

I,(t) =alt —_—, 3.1
where the coordinate radius is determined by
r(t) d to dt'
/ r_ / . 3.2)
o V1—kr? . a(t)

Hence,

L) = alt) /t ’ a‘z) (33)

We rewrite this in terms of the redhift variable, using (2.36),

1 ody
lp(z) = oo+ Z) /0 E(z’) (3.4
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t

£,®
t
73 hys.distance
¢ phy
t=0 Fig.3.1  Spacetime diagram illustrating the horizon prob-

lem.

Similarly, the extension I (¢) of the forward light cone at time ¢ of a very early event (¢ ~ 0, z ~ c0) is

C gy | gy
lf(t):“(”/o oty T Ho(+2) ). E@) (3-5)

For the present Universe (%) this becomes what is called the particle horizon distance

oo dZ/

-Dor:-H-i1 s
" ° Jy EE)

(3.6)

and gives the size of the observable Universe.
Analytical expressions for these distances are only available in special cases. For orientation we consider
first the Einstein-de Sitter model (K = 0, Q4 = 0, Q5 = 1), for which a(t) = ag(t/ty)?/ and thus

! p\1/3
Dhor:3t0:2H0’1, lp(t) = 3t, l—p = (f) —1=v1+4+2z—-1. (3.7
f
For a flat Universe a good fitting formula for cases of interest is (Hu and White)

1 1 + 0.0841n Q]V[
VQu .
It is often convenient to work with ‘comoving distances’, by rescaling distances referring to time ¢ (like

1,(t),1¢(¢)) with the factor a(ty)/a(t) = 1+ z to the present. We indicate this by the superscript c. For
instance,

Dhor ~ 2H; (3.8)

. 1 [ d¢
YO =T )y B

. (3.9)
This distance is plotted in Fig. 3 of Chap. 0 as Dcom (2). Note that forag = 1: $(n) = n, l5(n) =10 — 7.
Hence (3.5) gives the following relation between 7 and z:

1 * dy
 Ho ). E(z)

n
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The number of causality distances on the cosmic photosphere

The number of causality distances at redshift z between two antipodal emission points is equal to ,,(z) /1 (),
and thus the ratio of the two integrals on the right of (3.4) and (3.5). We are particularly interested in this
ratio at the time of last scattering with 2. ~ 1100. Then we can use for the numerator a flat Universe with
non-relativistic matter, while for the denominator we can neglect in the standard hot big bang model g
and €2, . A reasonable estimate is already obtained by using the simple expression in (3.7), i.e., zrle/f ~ 30.A
more accurate evaluation would increase this number to about 40. The length [ (zye) subtends an angle of
about 1 degree (exercise). How can it be that there is such a large number of causally disconnected regions
we see on the microwave sky all having the same temperature? This is what is meant by the horizon problem
and was a troublesome mystery before the invention of inflation.

Vacuum-like energy and exponential expansion

This causality problem is potentially avoided, if {;(¢) would be increased in the very early Universe as a
result of different physics. If a vacuum-like energy density would dominate, the Universe would undergo
an exponential expansion. Indeed, in this case the Friedmann equation is

L\ 2
k 81G
(a) + = vaam Pvac = CO?’LSt, (310)

a a2 3
and has the solutions

cosh Hyoet @ k=1

alt) N G.11)
sinh Hyet @ k=1,
with
871G
Hyae = T‘—Tpvac . 3.12)

Assume that such an exponential expansion starts for some reason at time ¢; and ends at the reheating
time t., after which standard expansion takes over. From

a(t) = a(t;)e™ 071 (t; <t < t.), (3.13)

for k = 0 we get

t
) e dt ag CHo A aop
lc te ~ Q / 7:7(1_6 vac t): ,
f( ) 0 t; a(t) Hvaca(ti) Hvaca(ti)

where At :=t. — t;. We want to satisfy the condition l;(te) > 5 (te) =~ Hgl (see (3.8), i.e.,

: H
0 Hye < agHy & 22 < 2020 (3.14)
ae  GeHyac

or
eHvac . Heqaeq Hvacae

a
eHvacBl > .
apgHy Hypag Heqaeq

Here, eq indicates the values at the time ¢., when the energy densities of non-relativistic and relativistic
matter were equal. We now use the Friedmann equation for £ = 0 and w := p/p = const. From (0.46) it
follows that in this case

(1+3w)/2

Ha xa™ ,
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and hence we arrive at

1/2
HyacAt a0 Geq \ _ 1/2 Te _ —1/2 Tpy T
vac =(1+ 2 =(1+ 2z - 3.15
‘ > (acq> (ae) (1 7ea) (ch) (1 2e0) Ty Tp G-19)

where weused T’ = const. So the number of e-folding periods during the inflationary period, N' = H. . At,
should satisfy

Tp 1 T, Te
In{— |- =1 In( == ]~ In(=]. 1
N> n<T0> 2nzeq~¢— n(Tp1> 70 + n(Tpl) (3.16)

For a typical GUT scale, T, ~ 10'* GeV, we arrive at the condition N >> 60.
Such an exponential expansion would also solve the flatness problem, another worry of standard big
bang cosmology. Let me recall how this problem arises.
The Friedmann equation (0.17) can be written as
3k

Q' —1)pa’® = %G const.,
T

where

4]
Q(t) = 3H?/8nC (3.17)

(p includes vacuum energy contributions). Thus

2
0l o1= (7t —1)%, 3.18
( 0 ) pag ( )
Without inflation we have
Qeq \ 2
P = Peq (7) (Z > Zeq)7 (3.19)
ap 3
P = pPo (;) (2 < Zeq)- (3.20)
According to (0.47) zeq is given by
1 _ Q]\4 4 2
+ 2eq = = =~ 10% Qphg. (3.21)
Qg
Exercise: Derive the estimate on the right of (3.21).
For z > z.q we obtain from (3.18) and (3.19)
011 (st 1) 0% peaieq (! = 1)(1 + 2e) " ( a )2 (3.22)
—1= — = — Ze — .
0 peqagq pa? 0 4 Qeq
or
Tog \ T\
Q1= (95" — 1)1 + 2eq) " ( T‘*) ~107%(Q;! — 1) (;1) : (3.23)

Let us apply this equation for 7' = 1 MeV, Qg ~ 0.2 — 0.3. Then | Q — 1 |< 10~*?, thus the Universe
was already incredibly flat at modest temperatures, not much higher than at the time of nucleosynthesis.
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t P e ———— — - Ef(t)>>fp(t)

phys.distance  Fig. 3.2  Past and future light cones in
models with an inflationary period.

Such a fine tuning must have a physical reason. This is naturally provided by inflation, because our
observable Universe could originate from a small patch at ¢.. (A tiny part of the Earth surface is also
practically flat.)

Beside the horizon scale [ ¢(t), the Hubble length H ' (t) = a(t)/a(t) plays also an important role. One
might call this the “microphysics horizon”, because this is the maximal distance microphysics can operate
coherently in one expansion time. It is this length scale which enters in basic evolution equations, such as
the equation of motion for a scalar field (see Eq. (3.30) below).

We sketch in Figs. 3.2-3.4 the various length scales in inflationary models, that is for models with a
period of accelerated (e.g., exponential) expansion. From these it is obvious that there can be — at least in
principle — a causal generation mechanism for perturbations. This topic will be discussed in great detail in
later parts of these lectures.

Exponential inflation is just an example. What we really need is an early phase during which the comoving
Hubble length decreases (Fig. 3.4). This means that (for Friedmann spacetimes)

(H™'(t)/a) <O. (3.24)

This is the general definition of inflation; equivalently, @ > 0 (accelerated expansion). For a Friedmann
model Eq. (0.23) tells us that

a>0&p<—p/3. (3.25)

This is, of course, not satisfied for ‘ordinary’ fluids.
Assume, as another example, power-law inflation: a o< t?. Thena > 0 < p > 1.

3.3 Scalar field models

Models with p < —p/3 are naturally obtained in scalar field theories. Most of the time we shall consider
the simplest case of one neutral scalar field ¢ minimally coupled to gravity. Thus the Lagrangian density is
assumed to be

2

= Mg Lo e —vig) (3.26)
167 g B pPV- P ®)s .

where R[g] is the Ricci scalar for the metric g. The scalar field equation is

Op =V, (3.27)
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t

R e _ 7/ d: phys. distance
Pl (wavelength)

(RT
({(t) (causality horizon)
|
|
tF
' Fig.3.3  Physical distance (e.g. between clusters of
- galaxies) and Hubble distance, and causality horizon
phys.distance 1, inflationary models.
t
H' ()
dC
t
R comoving distance
H (1)
Fig. 3.4  Part of Fig. 3.3 expressed in terms of comoving distances.

and the energy-momentum tensor in the Einstein equation

8w

= —T
Mg,

G » (3.28)

I
T =VuoVoo+ gLy, (3.29)

(L, is the scalar field part of (3.26)).
We consider first Friedmann spacetimes. Using previous notation, we obtain from (0.1)

1 1 - 1
/7‘9 — asf, DSD = \/?ga#(\/ *ggm’au@) - 7?(0’3@) + EA’YSD'

The field equation (3.27) becomes

. ; 1
G +3HY — Lo = —V(p). (3.30)

Note that the expansion of the Universe induces a ‘friction’ term. In this basic equation one also sees the
appearance of the Hubble length. From (3.29) we obtain for the energy density and the pressure of the scalar
field

1 1

= Ty = = > — 2 31

pe=Too = 59" +V + 55 (V). (3.31)
1. 1 1

= _THi=-p* -V - — 2, 3.32

Py =3 5% 62z (Vo) (3.32)

(Here, (V)? denotes the squared gradient on the 3-space (X, ).)
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Suppose the gradient terms can be neglected, and that ¢ is during a certain phase slowly varying in time,
then we get

pe ™V, pp~ —V. (3.33)

Thus p, = —p,, as for a cosmological term.
Let us ignore for the time being the spatial inhomogeneities in the previous equations. Then these reduce
to

G+ 3HO+V,(p) =0; (3.34)
1. 1.
Py = §¢2+V7p¢»=§<p2—V- (3.35)

Beside (3.34) the other dynamical equation is the Friedmann equation

K 8 1
2

H>4+ = = —— |Z¢*+ V(go)] ) (3.36)
a?  3ME

Egs. (3.34) and (3.36) define a nonlinear dynamical system for the dynamical variables a(t), ¢(t), which
can be studied in detail (see, e.g., [35]).

Let us ignore the curvature term K /a? in (3.36). Differentiating this equation and using (3.34) shows
that

. 4
H=———¢° (3.37)
Mg,
Regard H as a function of ¢, then
dH 4
— = ——. 3.38
de Mlgl i ( )
This allows us to write the Friedmann equation as
dH\® 127 3272
=) = g2 =—"_V(p). 3.39
(%) - e -5 6

For a given potential V' (¢) this is a differential equation for H (). Once this function is known, we obtain
©(t) from (3.38) and a(t) from (3.37).

3.3.1 Power-law inflation

We now proceed in the reverse order, assuming that a(t) follows a power law
a(t) = const. t¥. (3.40)
Then H = p/t, so by (3.37)

1
=4/ %Mplg, o(t) =4/ %Mpl In(t) + const.,

Tt
Hoxexp| —/——]. 3.41
p( » Mp1> (3.41)

Using this in (3.39) leads to an exponential potential

V(g) = Vo exp (—4\/jj\fm> . (3.42)
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3.3.2 Slow-roll approximation

An important class of solutions is obtained in the slow-roll approximation (SLA), in which the basic
Eqgs. (3.34) and (3.36) can be replaced by

- 81
- 3ME
3Hp = —V,,. (3.44)

H? V(yp), (3.43)

A necessary condition for their validity is that the slow-roll parameters

Mg (Ve
= — | = 4
ev(p) = o0 < 7 (3.45)
M2V
nv(p) : = —871:1 T (3.46)
are small:
ey K 1, ‘ nv ‘<< 1. (3.47)

These conditions, which guarantee that the potential is flat, are, however, not sufficient (for details, see
Sect. 5.1.2).
The simplified system (3.43) and (3.44) implies

M3, 1 2
.2 Pl
= — = . 3.48
7 247 'V ( 790) ( )
This is a differential equation for ¢(t).
Let us consider potentials of the form
>\ n
Vip) = et (3.49)
Then Eq. (3.48) becomes
2772
o _ Mg 1
= —V. 3.50
¢ DY V. (3.50)
Hence, (3.43) implies
a 4 9.
a - anng ((p ) ;
and so
alt) = apexp | 2 (68 — $2(1)) (3.51)
= X —_— — . .
0 €Xp nMFQ’I Yo — ¥
We see from (3.50) that 1¢? < V(¢) for
> M (3.52)
4 437 Pl :
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Consider first the example n = 4. Then (3.50) implies

. b\ 2\
£ _ \/ — Mp; = p(t) = g exp <\/ — Mpy t) . (3.53)
© 6m 6m

For n # 4:

9 nj2 _  2-n/2 (79) nA L 3-n/2
©(t) ©o +t(2 5 ‘/247TMP1 . (3.54)

1

For the special case n = 2 this gives, using the notation V' = §m2<p2, the simple result

(1) = po — 100!
P\t) = %o Weria

Inserting this into (3.51) provides the time dependence of a(t).

(3.55)

3.4 Why did inflation start?

Attempts to answer this and related questions are very speculative indeed. A reasonable direction is to
imagine random initial conditions and try to understand how inflation can emerge, perhaps generically,
from such a state of matter. A.Linde first discussed a scenario along these lines which he called chaotic
inflation. In the context of a single scalar field model he argued that typical initial conditions correspond
to 24% ~ 1(dip)? ~ V() ~ 1 (in Planckian units). The chance that the potential energy dominates in
some domain of size > (O(1) is presumably not very small. In this situation inflation could begin and V' ()
would rapidly become even more dominant, which ensures continuation of inflation. Linde concluded from
such considerations that chaotic inflation occurs under rather natural initial conditions. For this to happen,
the form of the potential V() can even be a simple power law of the form (3.49). Many questions remain,
however, open.

The chaotic inflationary Universe will look on very large scales — much larger than the present Hubble
radius — extremely inhomogeneous. For a review of this scenario I refer to [36]. A much more extended
discussion of inflationary models, including references, can be found in [4].

4 Cosmological perturbation theory for scalar field models

To keep this Chapter independent of the previous one, let us begin by repeating the set up of Sect. 3.3.
We consider a minimally coupled scalar field ¢, with Lagrangian density

1
L==59"0up0up ~U(p) 4.1
and corresponding field equation
Op =U. (4.2)

As a result of this the energy-momentum tensor
1
", = 0"pd,p — ", (23A<p8w + U(@)) (4.3)

is covariantly conserved. In the general multi-component formalism (Sect. 1.4) we have, therefore, (), = 0.
The unperturbed quantities p,,, etc, are
1

po=—T% = @(W +U(p), (4.4)
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pe = 3T = 53 (¢) ~ Ulg) @5)
30" 242 ’ '
hy = = Ly 4.6
¢*Pw+pw*a2(‘ﬁ)~ (4.6)
Furthermore,
a/
p:a =—-3—h, 4.7
a
It is not very sensible to introduce a “velocity of sound” c,,.
4.1 Basic perturbation equations
Now we consider small deviations from the ideal Friedmann behavior:
® = o+ 0p, pp =+ py + dp, etc. (4.8)

(The index 0 is only used for the unperturbed field .) Since Lepg = €94 the gauge transformation of ¢

is
S — 5o + %0

Therefore,
1 / / /
Gpx = 0 = — X = 09 — (B + E)
is gauge invariant (see (1.21)). Further perturbations are
1 /
5T% = - — A+ 5 + U,¢a2(5<p} ,

1
5T0i = - ? 306590,2"

1

[Pt A — 00 + U ,a%50]8;.
This gives (recall (1.43))

1 ,
5p = - [~ A + p0¢’ + a*U ,d¢),

1 ,
[pode’ — o5 A — a®U ,d¢],

a2

=0, Q= —podop.

dp = prg, =

Einstein equations

We insert these expressions into the general perturbation equations (1.91)—(1.98) and obtain

1
k=3(HA- D)~ Ay,

1
(A +3K)D + Hr = —47Gl00¢ — PaA+ U 04l

1
K+ p) (A +3K)x = 120Gpodep,

(4.9)

(4.10)

@11

4.12)

(4.13)

(4.14)

4.15)
(4.16)

(4.17)

4.18)

(4.19)

www.ann-phys.org (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



768 N. Straumann: Cosmological perturbation theory

A+D=x+Hyx

Eq. (1.95) is in the present notation

i+ 2Hk = — <;2A - 3H> A+ 47G[5p + 36p],
with

5p + 36p = 2(—293A + 2906 — U ,0¢).
If we also use (recall (1.80))

H = —4nGyf + g

we obtain

A+ 3K

k+2Hk = — <c12 + 471'G<,b(2)> A+ 871G (29009 — U ,0¢).

The two remaining equations (1.97) and (1.98) are:

(5p) +8H(Ep+p) = (p+ )5 — 3HA) — - AQ,
and

Q+3HQ=—(p+p)A—dp,

(4.20)

421

4.22)

(4.23)

with the expressions (4.14) — (4.16). Since these last two equations express energy-momentum ‘conserva-
tion’, they are not independent of the others if we add the field equation for (; we shall not make use of

them below.

Egs. (4.17)—(4.21) can immediately be written in a gauge invariant form:

Ky = 3(HAy — Dx)7

1 Lo .
22 (A +3K)Dy + Hry = —47G[po0oy — 50(2)Ax + Updoxl;

Ky = 127G pobpy,
Ay+ D, =0
A+ 3K

fy +2HK, = — (a2 + 477G<,bg> Ay + 871G (200005 — U ,0¢py).

(4.24)

(4.25)

(4.26)
4.27)

(4.28)

From now on we set K = 0. Use of (4.27) then gives us the following four basic equations:

fx = 3(Ay + HA),

1 Lo .
?AAX — Hky = 47Gpodpy — <p(2)AX + U ,004],
Ky = 120G podpy,

/%X+2HKX:—G2

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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— AAy — ATGHF A, + 8TG (20004 — U.p00y).

(4.29)

(4.30)
431

(4.32)
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Recall also
AnGpt = —H. (4.33)
From (4.29) and (4.31) we get

Ay, + HA, = 47Gpodp,, . (4.34)

The difference of (4.32) and (4.30) gives (using also (4.29))
(AX +HA) + 3H(Ax + HAy) = 4nG(¢odoy — U dpy)

ie.,
Ay +4HA + (H +3H?) A, = 471G (podpy — U p00y). (4.35)
Beside (4.34) and (4.35) we keep (4.30) in the form (making use of (4.33))
1 . .
S AA - 3HA — (H + 3H?) Ay = AnG(pobpy + U p0py). (4.36)

Scalar field equation
We now turn to the ¢ equation (4.2). Recall (the index 0 denotes in this subsection the ¢-coordinate)
goo = —(142A), go; = —aB,j, gij = a’[vij + 2Dvij + 2E};];

. I y y
g =—(1-24), g% = ——B7, gV = 5[4 — 2Dy —2E};
a a

V—g=a*/y(1+ A+3D+ AE.
Up to first order we have (note that 9;¢ and g% are of first order)

1 1
O :78 — I’“’ay = —
o= Jeg V99 e) =

Using the zeroth order field equation (3.34), we readily find

. 1 1,
(V=99"¢) + 000 = —PoAB.

. , 1
0p+3Hop + (_aQA + U,W) dp =
. . . 1
(A-3D—-AE+3HA - aAB)gbO — (3Hpo +2U ,)A.
Recalling the definition of &,
. 1 .
k=3(HA-D)— EA(B +akE),
we finally obtain the perturbed field equation in the form
. ) 1 N )
0p+3Hép + (—azA + Uﬁw) do = (k+ A)po — (3Hpo + 2U ,) A. (4.37)

By putting the index y at all perturbation amplitudes one obtains a gauge invariant equation. Using also
(4.29) one arrives at

1 .
8y + 3Hbpy + (—aQA + UW) Sy = dpoAy — 2U LAy (4.38)

Our basic — but not independent — equations are (4.34), (4.35), (4.36) and (4.38).

www.ann-phys.org (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



770 N. Straumann: Cosmological perturbation theory

4.2 Consequences and reformulations

In (1.58) we have introduced the curvature perturbation (recall also (4.16))
H H
%o ¥o

It will turn out to be convenient to work also with

apo
=—-2ZR, z:= —,
U ZR, z

thus

u:a{égox—g]DX} :a[&p—goD}

(4.39)

(4.40)

4.41)

This amplitude will play an important role, because we shall obtain from the previous formulae the simple

equation

Z//

u' — Au— —u=0.
z

This is a Klein-Gordon equation with a time-dependent mass.
‘We next rewrite the basic equations in terms of the conformal time:

AA, —3HA, — (H' +3H?) A\ = 47G (90, + U pa’dpy ),
Al +HA, = 4rGedpy,
Al 4 3HAL + (H' + 2MH°) Ay = 4nG (0, — U pa*5py ),
0@ + 2HIY, — Ny + U ppa®Spy = 4pp A — 2U ,a*A,,.
Let us first express u (or R) in terms of A,,. From (4.40), (4.39) we obtain in a first step

2
dnGzu = 47TG2:2AX + 4#Gi0l(5¢x.

/
0

For the first term on the right we use the unperturbed equation (see (4.33))
ArGof = H> — M/,

and in the second term we make use of (4.44). Collecting terms gives

a?A,\’
4rGzu = X,
TGzu ( o] >

(4.42)

(4.43)

(4.44)
(4.45)
(4.46)

(4.47)

(4.48)

Next, we derive an equation for A, alone. For this we subtract (4.43) from (4.45) and use (4.44) to
express 0, in terms of A, and A;. Moreover we make use of (4.47) and the unperturbed equation (3.34),

@0 + 2Hey + U p(po)a® = 0.

(4.49)
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Detailed derivation: The quoted equations give

AL+ 6HA, — ANA +2(H +2H?) A, =

2
—87GU ,a*dp, = o (00 + 2Hpp) (AL + HA,),
0

thus

AL +2(H — 95 /90) Ay — DA+ 2(H = Heg /) Ay = 0.
Rewriting the coefficients of A, A;( slightly, we obtain the important equation:

(a/ep)’
Al +2 ” /w% Al — NA + 20 (H /) Ay = 0. (4.50)
Now we return to (4.48) and write this, using (4.47), as follows:

u AL +HA

—=A 4 XX 4.51

z xt L ’ (4.51)
where

Z*H 72 ’

L:471'G? =AnG(py)“/H=H —H'/H. (4.52)

Differentiating (4.51) implies
N/ A;é + (HA,) A;( +HA,

<*> = At L v

or, making use of (4.52) and (4.50),
wy’ (a/¢p)’
L(2) = (=2 /)4, 2 A+ AA
e (H H /H) X a/@{) X + X
'2 ’
wo /H
20 (/) Ay + (HAL) — (A + 1) E0 7
eo' /M
From this one easily finds the simple equation
Hz? ru’
1mG7 (2) = a4, (4.53)
a z

Finally, we derive the announced Eq. (4.42). To this end we rewrite the last equation as

H
AA, = 47TG§ (zu' — 2'u),
from which we get
!
AA, = 4nG (Z) (2 — 2'u) + 47TGZL-[—2(zu” —2"u).
Taking the Laplacian of (4.51) gives

H
AnG 5 20u = LAA, + DA+ HAA,
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Combining the last two equations and making use of (4.52) shows that indeed (4.42) holds.
Summarizing, we have the basic equations

Z//

u' = Au— Z—u=0, (4.54)
P
ANA, =4 GH ! ! 4.55
y =4m ﬁ(zu—zu), (4.55)
2 /
<“ ;;‘X> — 4nGau. (4.56)

We now discuss some important consequences of these equations. The first concerns the curvature

perturbation R = —u/z (original definition in (4.39)). In terms of this quantity Eq. (4.55) can be written as
R 1 1

H 1—H/H? (aH)?

(=AAy). (4.57)

The right-hand side is of order (k/aH)?, hence very small on scales much larger than the Hubble radius.
It is common practice to use the terms “Hubble length” and “horizon” interchangeably, and to call length
scales satisfying k/aH < 1 to be super-horizon. (This can cause confusion; ‘super-Hubble’ might be a
better term, but the jargon can probably not be changed anymore.)

We have studied R already at the end of Sect.1.3. I recall (1.138):

H |2 1 2
R = =c? ADy —wl' — ZwAll| . 4.58
lT+w |37 (Ha2 "X — 3" (4.58)
This general equation also holds for our scalar field model, for which II = 0, D, = —A, . The first term

on the right in (4.58) is again small on super-horizon scales. So the non-adiabatic piece pI' = dp — c2dp
must also be small on large scales. This means that the perturbations are adiabatic. We shall show this more
directly further below, by deriving the following expression for I':

U, 1

I‘ [ )
p 617G H a2

AA,. (4.59)

After inflation, when relativistic fluids dominate the matter content, Eq. (4.58) still holds. The first term
on the right is small on scales larger than the sound horizon. Since I" and II are then not important, we
see that for super-horizon scales R remains constant also after inflation. This will become important in the
study of CMB anisotropies.

Later, it will be useful to have a handy expression of A, in terms of R. According to (1.58) and (1.57)
we have

H

R=Dy+ —— (4.60)
X alp+p)
We rewrite this by combining (1.99) and (1.101)
H /
R=D (HA, — DX). 4.61)

X 4nGa2(p + p)

At this point we specialize again to K = 0, and use (1.80) in the form

AnGa®(p+p) = H*(1 — H'JH?)
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and obtain
1 !
where
e:=1—H/H>. (4.63)
If IT = O then D, = —A,, so
1
—R=A + = (HA + A)), (4.64)
I claim that for a constant R
A, =— (1 — ﬂ2 /a2d77> R. (4.65)
a

We prove this by showing that (4.65) satisfies (4.64). Differentiating the last equation gives by the same

equation and (4.63) our claim.

As a special case we consider (always for K = 0) w = const. Then, as shown in Sect.2.4,

2
3w+ 1

Hof o2 B
ﬁ/adn72ﬁ+1’

_ 3(w+1)
X7 3w+4+5

a = ag(n/m)’, 8=

Thus

hence

This will be important later.
Derivation of (4.59): By definition

pl' =0p—c2op, ¢ =p/p=pl =

Now, by (4.7) and (4.5)

p=-3H p=¢(p—Uy,)=—

and by (4.14) and (4.15)

pop — pop

(4.66)

4.67)

(4.68)

SO(3HS0 + 2U7LP)3

Sp=—@*A+ @6+ U ,0p, 0p = ¢dp — 9> A — U L.

With these expressions one readily finds

2U0 . e .
pl'= — = 22 [—¢0p + (8¢ — pA)]. (4.69)

3 Hy
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Up to now we have not used the perturbed field equations. The square bracket on the right of the last equation
appears in the combination (4.18)-H - (4.19) for the right hand sides. Since the right hand side of (4.69)
must be gauge invariant, we can work in the gauge x = 0, and obtain (for K = 0) from (4.18),(4.19)

1
2 BA=AnG[=gop +9(0p — 9A)],

thus (4.59) since in the longitudinal gauge A = A, .
Application. We return to Eq. (4.57) and use there (4.59) to obtain

R = 47TG%F. (4.70)

As aresult of (4.59) I is small on super-horizon scales, and hence (4.70) tells us that R is almost constant
(as we knew before).

The crucial conclusion is that the perturbations are adiabatic, which is not obvious (I think). For multi-
field inflation this is, in general, not the case (see, e.g., [38]).

5 Quantization, primordial power spectra

The main goal of this Chapter is to derive the primordial power spectra that are generated as a result of
quantum fluctuations during an inflationary period.

5.1 Power spectrum of the inflaton field

For the quantization of the scalar field that drives the inflation we note that the equation of motion (4.42)
for the scalar perturbation (4.41),

—als Yo | 5 %A
u=aq ‘Px_ﬁ Y| =a ch—i—ﬁ x| s G.D

is the Euler-Lagrange equation for the effective action
1 Z”
Seff = 5/ d3xdn [(u')2 — (Vu)? + Zuz} : (5.2)

The normalization is chosen such that Sy reduces to the correct action when gravity is switched off.
(In [37] this action is obtained by considering the quadratic piece of the full action with Lagrange density
(3.26), but this calculation is extremely tedious.)

The effective Lagrangian of (5.1) is

1 ZI/
L=~ [(u’)2 — (Vu)? + uﬂ : (5.3)
2 z
This is just a free theory with a time-dependent mass m? = —z""/z. Therefore the quantization is straight-

forward. Once u is quantized the quantization of ¥ = A, is then also fixed (see Eq. (4.55)).
The canonical momentum is

o

= o u, (5.4)
and the canonical commutation relations are the usual ones:
[a(n, %), 4(n,x')] = [#(n,x),7(n,x)] =0, [a(n,x), 7(n,x)] =i6® (x —x'). (5.5)
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Let us expand the field operator (7, X) in terms of eigenmodes uy,(1)e’* > of Eq. (4.42), for which
Z//
ufl + <k2 — ) u = 0. (5.6)
z
The time-independent normalization is chosen to be

wiuh — upul = —i. (5.7
kUL k

In the decomposition

a(n,x) = (Qﬁ)fg/z/dgk {uk(n)&keik'x + uZ(n)dﬂeiik'x (5.8)

the coefficients ay, &L are annihilation and creation operators with the usual commutation relations:

lane, dner] = [af, al,] = 0, [ax, al,] = 0@ (k — K). (5.9)

With the normalization (5.7) these imply indeed the commutation relations (5.5). (Translate (5.8) with the
help of (4.55) into a similar expansion of ¥, whose mode functions are determined by u(7).)

The modes uy(n) are chosen such that at very short distances (k/aH — oo) they approach the plane
waves of the gravity free case with positive frequences

up(n) ~ \/%e_ik" (k/aH > 1). (5.10)

In the opposite long-wave regime, where k can be neglected in (5.6), we see that the growing mode solution
is

up < z (k/aH < 1), (5.11)

i.e., ux/z and thus R is constant on super-horizon scales. This has to be so on the basis of what we saw in
Sect. 4.2. The power spectrum is conveniently defined in terms of R. We have (we do not put a hat on R)

R(n,x) = (27T)‘3/2/7€k(77)eik"‘d3k, (5.12)
with
Ri(n) = {ukéﬁ) ax + uzy) &Tk} : (5.13)

The power spectrum is defined by (see also Appendix A)

o2

(0| R R |0) =: 3 Pr(k)6® (k — K'). (5.14)
From (5.13) we obtain
k2 Juk(n)]?
P, = —— . 1
’R(k) 27T2 22 (5 5)

Below we shall work this out for the inflationary models considered in Chap. 4. Before, we should address
the question why we considered the two-point correlation for the Fock vacuum relative to our choice of
modes u (7). A priori, the initial state could contain all kinds of excitations. These would, however, be
redshifted away by the enormous inflationary expansion, and the final power spectrum on interesting scales,
much larger than the Hubble length, should be largely independent of possible initial excitations. (This
point should, perhaps, be studied in more detail.)
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5.1.1 Power spectrum for power law inflation

For power law inflation one can derive an exact expression for (5.15). For the mode equation (5.6) we need
2" [ z. To compute this we insert in the definition (4.40) of z the results of Sect. 3.3.1, giving immediately
z o a(t) o< tP. In addition (3.40) implies ¢ oc /1=, s0 a(n) oc n?/*~P. Hence,

2" s 1Y) 1
i —_ ) = 5.16
p; (V 4) peat (5.16)
where
1 pp-1)
2 —

Using this in (5.6) gives the mode equation

2_1/4
ul + <k2 - ”772/) up = 0. (5.18)

This can be solved in terms of Bessel functions. Before proceeding with this we note two further relations
that will be needed later. First, from H = p/t and a(t) = aot? we get

1 1

~HI=T (5.19)

77:

In addition,

ﬁMPI/t - 1

=2 = Mpy,
H 4w (p/t) VAarp

Q

SO

H 1 A1 22
b X1 (5.20)

Let us now turn to the mode equation (5.18). According to [39, 9.1.49], the functions w(z) = z'/2C, (\z),
C, x H, l(,l) ,H 1(/2) , ... satisfy the differential equation

2_1/4
w’ + </\2 - V2/> w = 0. (5.21)
z

From the asymptotic formula for large z ( [39, 9.2.3])

2
HW ~ (| Zeiemzvm=am) (p < arg 2z < ), (5.22)
Tz

we see that the correct solutions are

™ s
ur () = %6’(”%)5(—77)1/2H£1)(—kn)~ (5.23)

Indeed, since —kn = (k/aH)(1 —1/p)~', k/aH > 1 means large —kn, hence (5.23) satisfies (5.10).
Moreover, the Wronskian is normalized according to (5.7) (use 9.1.9 in [39]).

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Leipzig) 15, No. 10-11 (2006) 777

In what follows we are interested in modes which are well outside the horizon: (k/aH) < 1. In this
limit we can use (9.1.9 in [39])

1 1\
iHV(2) ~ —T'(v) (22) (z—0) (5.24)
to find
_ . v) 1 _
~ OV 3/2 ji(v—1/2)7/2 _ l/+1/2. 2
Therefore, by (5.19) and (5.20)
- F(V) - 1 k —v+1/2
_ 9v—3/2 _ w2 —
lug| =2 F(3/2)(1 €) Tor <aH> . (5.26)

The form (5.26) will turn out to hold also in more general situations studied below, however, with a different
€. We write (5.26) as

1 k —v+1/2
lug| = C(V)\/T?; <aH> : (5.27)
with
_3/0 I(v) _
_ ov—3/2 _ o \w—1/2
Clv)=2 F3/2) (1—¢) (5.28)

(recall v = % + plj .

The power spectrum is thus

B olu ] K1, 1 kT
Pr(k)= — =—=C — | — . 5.29
® (k) 2m2 | 22 272 22 ) 2k \aH (5.29)

For z we could use (5.20). There is, however, a formula which holds more generally: From the definition
(4.40) of z and (3.38) we get

M3 a dH
_ _Mp e dH 5.30
: 4 H dyp (5-30)

Inserting this in the previous equation we obtain for the power spectrum on super-horizon scales

4 H4 k 3—2v

For power-law inflation a comparison of (5.20) and (5.30) shows that

Mg, (dH/dp)* _ 1 _
=, =¢ (5.32)

The asymptotic expression (5.31), valid for k/aH < 1, remains, as we know, constant in time'®.

Therefore, we can evaluate it at horizon crossing k = aH:

4 H*

G

(5.33)

k=aH

16 1 et us check this explicitly. Using (5.32) we can write (5.31) as
1 H? [k \*%
Pr(k)=C?(v —_— = ,
%)= 0*w) o (i)
and we thus have to show that F/2(aH)2¥~3 is time independent. This is indeed the case since aH o 1/n, H = p/t, t
nt/(=P) = H x n=1/1=p),
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We emphasize that this is not the value of the spectrum at the moment when the scale crosses outside the
Hubble radius. We have just rewritten the asymptotic value for k/aH < 1 in terms of quantities at horizon
crossing.

Note also that C'(v) ~ 1. The result (5.33) holds, as we shall see below, also in the slow-roll approxi-
mation.

5.1.2 Power spectrum in the slow-roll approximation

We now define two slow-roll parameters and rewrite them with the help of (3.37) and (3.38):

_ A an g My (dH)dg) (5.34)
H? ~ M2, H> 4r \ H(p) )’ '
__$ _ My LPH/dS? (535)

" H¢ 4n H

(| € |,] 0 |« 1 in the slow-roll approximation). These parameters are approximately related to ¢, ny
introduced in (3.45) and (3.46), as we now show. From (3.36) for K’ = 0 and (3.37) we obtain

€ 8
H*(1-2)= —=U(yp). 5.36
(-5 =50 (536)
For small | ¢ | we obtain from this the following approximate expressions for the slow-roll parameters:
M3 (Uy )\
~ : 5.37
T 1er \U ) 637
2
S~ Mlgl U#PSD o Ml?’l Uv‘P . (538)
8t U 160 \ U

(In the literature the letter 7 is often used instead of ¢, but 7 is already occupied for the conformal time.)
We use these small parameters to approximate various quantities, such as the effective mass 2 /z.
First, we note that (5.34) and (5.30) imply the relations!’

H A 22

According to (5.35) we have 6 = 1 — " /' H. For the last term we obtain from the definition z = ap’ /H
1 /

z
;H = - =W/,

Hence

/

V4
= - = 4
b=1+e—~ (5.40)

Next, we look for a convenient expression for the conformal time. From (5.39) we get
o = edn = dn— (W /H2)dy = dy +d [~
aH H)’

17 Note also that
S=g+HY=(1-¢)H?,
a

sod > 0fore < 1.
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SO

1
n=—ﬁ+/ﬁda. (5.41)

Now we determine 2’ /2 to first order in € and §. From (5.40), i.e., 2’ /z = H(1 + € — §), we get

S o 2
z_<z) = =0VH+ (1 +e—-0H,
hence
e |22 e )20 5.42
= 7 € )( )| - (5.42)

We can consider ¢’, ¢’ as of second order: For instance, by (5.39)

4 227
¢ = MZ, o2 — 2eH
or
e’ =2He(e —9). (5.43)

Treating ¢, ¢ as constant, Eq. (5.41) gives n = —(1/H) + en, thus

1 1
=—— . 5.44
1 H1l-¢ 49
This generalizes (5.19), in which € = 1/p (see (5.20)). Using this in (5.42) we obtain to first order
2" 1
— = — (242 —30).
~ o (2+2¢ )
We write this as (5.16), but with a different v:
2" , 1)\ 1 1+e—-6 1
— = - = = =+ —. 5.45
z (V 4) n?’ v 11— '3 (>45)

As aresult of all this we can immediately write down the power spectrum in the slow-roll approximation.
From the derivation it is clear that the formula (5.33) still holds, and the same is true for (5.28). Since v is
close to 3/2 we have C'(v) ~ 1. In sufficient approximation we thus finally obtain the important result:

2 3—2v
L H (k) . (5.46)

=2 - \om
k=arr  TMp € \aH

4 H*

Prb) = 30 (amdg?

This spectrum is nearly scale-free. This is evident if we use the formula (5.31), from which we get

dln P
n—1:= 22 R 5 9,954, (5.47)
dlnk

S0 n is close to unity.
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Exercise. Show that (5.47) follows also from (5.46).
Solution: In a first step we get

4
n—l:d { H

—In|—"
dp | (dH/dy)?

|
peam) dInk
For the last factor we note that £ = a H implies

Tk — % L dH _ dnk _H | dH/dg

H dp o T H

or, with (3.37),

dnk 4r H lMlgl(dH/dg))Q_l]

dp ~ MZ dH/de | 4 \ H
Hence, using (5.34),

dp M3 dH/de 1
dlnk  A4rx H -1

Therefore,

_ My dH/dp 1 [ dH[dp _ d*H[dp*] _ 1

-1 =
" ir  H e—-1| H dHJdg | e—1

by (5.34) and (5.35).

5.1.3 Power spectrum for density fluctuations

Let Py (k) be the power spectrum for the Bardeen potential ® = D,,. The latter is related to the density

fluctuation A by the Poisson equation (2.3),

E*® = 47Gpa’A.

(5.48)

Recall also that for IT = 0 we have & = —¥ (= —A, ), and according to (4.67) the following relation for

a period with w = const.

o Bt
3w—+5
and thus
1
P(Il)/2(k) — Mplm(k).

3w+5 R

Inserting (5.46) gives for the primordial spectrum on super-horizon scales

3(w+1)}2 4 H*

Po(k) = { 3w+5 | M3 (dH/dp)?

k=aH

From (5.48) we obtain

2Aw+1) [k \?
A = o () =,
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and thus for the power spectrum of A:

Pa) = <£)4P¢<k> -3 [?’3(;";1?} (C§I>4PR<k>. (5.53)

During the plasma era until recombination the primordial spectra (5.46) and (5.51) are modified in a
way that will be studied in Part III of these lectures. The modification is described by the so-called transfer
function'® T'(k, z), normalized such that T'(k) ~ 1 for (k/aH) < 1. Including this, we have in the (dark)
matter dominated era (in particular at the time of recombination)

4 k : rim 2
Pa(k) = o (aH) PRI™(1)T2 (k), (5.54)

where Pf;im (k) denotes the primordial spectrum ((5.46) for our simple model of inflation).
Remark. Using the fact that R is constant on super-horizon scales allows us to establish the relation
between Ay (k) := A(k,n) |k=ar and A(k,n) on these scales. From (5.52) we see that

k

A(k,n) = (aH>2 Ag (k). (5.55)

In particular, if | R(k) |o< k™71, thus | A(k,n) |*= Ak"3, then

’ | An(k) [P= AE", (5.56)

and this is independent of k for n = 1. In this case the density fluctuation for each mode at horizon crossing
has the same magnitude. This explains why the case n = 1 — also called the Harrison-Zel’dovich spectrum
—is called scale free.

5.2 Generation of gravitational waves

In this section we determine the power spectrum of gravitational waves by quantizing tensor perturbations
of the metric.
These are parametrized as follows

Guv = > () [V + 2H ), (5.57)

where a?(1)7,,, is the Friedmann metric (y,,0 = 0, ;;: metric of (¥,v)), and H,,,, satisfies the transverse
traceless (TT) gauge conditions

Hy = Ho; = H'; = H{; = 0. (5.58)

The tensor perturbation amplitudes H;; remain invariant under gauge transformations (1.14). Indeed, as
in Sect. 1.14, one readily finds

Leg® = 20 (n) {=(HE + (6"))dn® + (& — £°\i)da’dn + (Hriy€ + &) da'da’}

Decomposing £# into scalar and vector parts gives the scalar and vector contributions of L g'%, but there
are obviously no tensor contributions.

18 For more on this, see Sect. 6.2.4, where the z-dependence of T'(k, z) is explicitly split off.
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The perturbations of the Einstein tensor belonging to H,,,, are derived in the Appendix to this Chapter.
The result is:
6G% = 6G%; = 6G' = 0,
1
a?

5G'; = [(Hij)” +2%(Hij)'+ (A+2K)H@}. (5.59)

We claim that the quadratic part of the Einstein-Hilbert action is

2
— MPl

S —
167w

/ [(Hik)’(H’“i)’ — Hy HY - 2KHikH’2} a2 (n)dny/Fd . (5.60)
(Remember that the indices are raised and lowered with ~;;.) Note first that \/—gd*z = ﬁa“(n)dnd%—i—
quadratic terms in H;;, because H;; is traceless. A direct derivation of (5.60) from the Einstein-Hilbert
action would be extremely tedious (see [37]). It suffices, however, to show that the variation of (5.60) is just
the linearization of the general variation formula (see Sect. 2.3 of [1])

2
Mg,

59 =
5 167

/ G"5g,\/—gd*x (5.61)

for the Einstein-Hilbert action

2
— MPI

5= 167

/ Ry/—gd*z. (5.62)

Now, we have after the usual partial integrations,

M2 2Hi \/ i
65 = 871:1 / {(“ azk)) + (=A+2K)H'y, | 6H* 0% (n)dny/Ad3x.

Since §H*; = $8g"; this is, with the expression (5.59), indeed the linearization of (5.61).

We absorb in (5.60) the factor a?(n) by introducing the rescaled perturbation

. M2\ /2 _
P'i(z) == (8751) a(n)H*;(z). (5.63)
Then 53 becomes, after another partial integration,
1 . . " .
S — 5/ [(P%)’(Pki)’ — Py PRI (“a — ZK) szp’z] dnyyd>z. (5.64)

In what follows we take again K = 0. Then we have the following Fourier decomposition: Let €;; (k, A)
be the two polarization tensors, satisfying

€i5 = €44, €ii = O7 kiﬁij(k, /\) = 0, Gij(k, )\)eji(k, )\)* = 5}\)\/,
€ij(—k,A) = (k. A), (5.65)

then

Pii(n,x) = (2m)~%/2 / Pk vea(n)ej(k, Ae™ ™. (5.66)
A
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The field is now quantized by interpreting vk »(n) as the operator

() = ve(M)aw +vi(m)al . (5.67)

where vy (1)e€;; (k, \)e™* satisfies the field equation'” corresponding to the action (5.64), that is (for K = 0)
7" 2 a//

(Instead of 2"’ /z in (5.6) we now have the “mass” a”’ /a.)
In the long-wavelength regime the growing mode now behaves as vy,  a, hence vy /a remains constant.
Again we have to impose the normalization (5.7):

VU — VRV = —i, (5.69)

and the asymptotic behavior

v (n) ~ \/%e*“”f (k/aH > 1). (5.70)

The decomposition (5.66) translates to

HY5(0.3) = (20) 572 [ @3 nea(n)e (e 57
A
where
A 8T 1/2 1
hia(n) = <> — e (1) (5.72)
MP2’1 a

We define the power spectrum of gravitational waves by

22

Fpg(k;)&(?’) (k=) =D (Ol rhf ,]0) (5.73)
A
thus
L ME,a? 272 .
DOl 10) = == = Py (k)0 (k — ). (5.74)
A

Using (5.67) for the left-hand side we obtain instead of (5.15)%

8t k3

Py(k) =255 5[] (5.75)
Pl

The factor 2 on the right is due to the two polarizations.

19 we ignore possible tensor contributions to the energy-momentum tensor

20 1n the literature one often finds an expression for Py (k) which is 4 times larger, because the power spectrum is defined in terms
of hl i = 2H, 35+
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5.2.1 Power spectrum for power-law inflation
For the modes vy (n) we need a’’ /a. From
a” 1
—= (aH) /a=H*+H =2H* |1 - 5(1 —H'/H?)
and (5.39) we obtain the generally valid formula
1

%;::Qqu.—s/m. (5.76)

For power-law inflation we had £ = 1/p, a(n) o< n?/(*=P), thus

p 1
H=———
p—117
and hence
a” 5 1) 1 3 1
a )= =2 . 77
u (u 4>7F7M Q‘Fp_l (5.77)
This shows that for power-law inflation vy (n) is identical to uy (). Therefore, we have by Eq. (5.27)
1 o\ THH2
=C(p)—= | — 5.78
wl=ce = () - (5.79)
with
—32 L(w) -
Cu) =2173/2 ol (1 —g)=1/2, 5.79
(1) Favg ) (579)
Inserting this in (5.75) gives
160 k% 1 1 (k"7
Pyk)= — — = C*() = [ — . 5.80
o(k) M3, 272 a? (1) 2k (aH) (5-80)
or
A0 H N kN
Py(k)=C*(p)= | — — . 5.81
0=t (5-) () (5:81)
Alternatively, we have
Pytk) = 2t 22 (5.82)
= W) — —5 . .
! ™ Ml%l k=aH
5.2.2 Slow-roll approximation
From (5.76) and (5.44) we obtain again the first equation in (5.77), but with a different u:
1 1
= =. 5.83
P=1:T3 (5.83)

Hence vy (n) is equal to u (n) if v is replaced by p. The formula (5.82), with C' (1) given by (5.79), remains
therefore valid, but now i is given by (5.83), where ¢ is the slow-roll parameter in (5.34) or (5.39). Again
C(p) = 1.
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The power index for tensor perturbations,

dln P, (k
nr(k) := 21%,5), (5.84)

can be read off from (5.81):

559

showing that the power spectrum is almost flat*'.
Consistency equation

Let us collect some of the important formulas:

2 172 4 H?
Ag(k):= -P. = —— 5.86
s =gt =3 Mg\|dH/de| |,y 50
1 2 H
Ap(k):= - PY2(k) = ——= — 5.87
T() 5 g () 5ﬁMPl k:aH, ( )
n—1=2— 4e, (5.88)
np = —2e. (5.89)
The relative amplitude of the two spectra (scalar and tensor) is thus given by
i (m )
— =€ | == =4¢e). (5.90)
A2 Pr
More importantly, we obtain the consistency condition
Af
ny =—2—, (5.91)
A%

which is characteristic for inflationary models. In principle this can be tested with CMB measurements, but
there is a long way before this can be done in practice.

5.2.3 Stochastic gravitational background radiation

The spectrum of gravitational waves, generated during the inflationary era and stretched to astronomical
scales by the expansion of the Universe, contributes to the background energy density. Using the results of
the previous section we can compute this.

I first recall a general formula for the effective energy-momentum tensor of gravitational waves. (For
detailed derivations see Sect. 4.4 of [1].)

By ‘gravitational waves’ we mean propagating ripples in curvature on scales much smaller than the
characteristic scales of the background spacetime (the Hubble radius for the situation under study). For

21 The result (5.86) can also be obtained from (5.82). Making use of an intermediate result in the solution of the Exercise on p.88
and (5.34), we get

din H? dyp 2
np = = ~ —2¢.
dp dlnk e—1
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sufficiently high frequency waves it is meaningful to associate them — in an averaged sense — an energy-
momentum tensor. Decomposing the full metric g,,,, into abackground g,,,, plus fluctuation h,,,,, the effective
energy-momentum tensor is given by the following expression

@w)_ 1 (
of 327G

if the gauge is chosen such that h#”|,, = 0, h*, = 0. Here, a vertical stroke indicates covariant derivatives
with respect to the background metric, and (- - -) denotes a four-dimensional average over regions of several
wave lengths.

For a Friedmann background we have in the TT gauge for by, = 2H,,,, : hyo = 0, hyjj0 = hij0, thus

Bl 13) (5.92)

1 L
7 = g <Hin”>. (5.93)

As in (5.71) we perform (for K = 0) a Fourier decomposition
Hij(n,x) = (2m)~%/? / kY ha(n, ke (k, A)e™ ™. (5.94)
A

The gravitational background energy density, p,, is obtained by taking the space-time average in (5.93).
At this point we regard hy (7, k) as a random field, indicated by a hat (since it is on macroscopic scales
equivalent to the original quantum field hix (n, k)), and replace the spatial average by the stochastic average
(for which we use the same notation). Clearly, this is only justified if some ergodicity property holds. This
issue will appear again in Part III, and we shall devote Appendix C for some clarifications.

If we adopt this procedure we obtain, anticipating the §-function in (5.96),

1 / >’ 7 % /
Py = GG @ /d3kd3k > (A 0h5 (1K) ) ) (5.95)

A

Here, the average on the right includes also an average over several periods. (As always, a dot denotes the
derivative with respect to the cosmic time ¢, thus h = h’/a.) Using (5.72) and (5.67) we obtain for the
statistical average

>~ (Al 0hS (1.K)) = 2lhi, () 25 (k — ), (5.96)
A

where (see (5.72))

st \% 1
hi(n) = () — k(1) (5.97)
M3, a
Thus
2 3 2
P = SrGar(am) /d k(|hi(m)]?) (5.98)
where from now on (- - -) denotes the average over several periods. For the spectral density this gives
dpy(k k3
pdeatl) () (5:99

dk Ga2(27)3

If n; is some early time, we can write

hy.(n)
hi(n:)

2 7T2

ol =
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where Py (k,n;) is the power spectrum at n; (for which we may take (5.75)). Hence we obtain

Lo k) _ MB ] M)
dk 8ma? \ | hi(n;)

2
>Pg(k7m)- (5.101)

When the radiation is well inside the horizon, we can replace hj}, by khy,.
The differential equation (5.68) reads in terms of hy(7)

I
W+ 2L 4 k2h =0, (5.102)
a
For the matter dominated era (a(n) oc 1?) this becomes
" 4 / 2
'+ ;h +k*h=0.

Using 9.1.53 of [39] one sees that this is satisfied by ji (kn)/kn. Furthermore, by 10.1.4 of the same
reference, we have 3j;(z)/x — 1 forx — 0 and

(j1(93))/ _ _%jz(x) —0(z—0).

xT

So the correct solution is

hi(n) J1(kn)
=3 5.103
h.(0) kn ( )

if the modes cross inside the horizon during the matter dominated era. Note also that

sinx cosT

j = — . 5.104
J1 (x) 22 T ( )
For modes which enter the horizon earlier, we introduce a transfer function T, (k) by
hi j1(k
k) _ g irlkn) gy, (5.105)

he(0) 7 kn

that has to be determined numerically from the differential equation (5.102). We can then write the result
(5.101) as

dpy(k) _ MRy K> L 31 (kn) |*
k== = P prriv ()| T, (k)| 5.106
where ngrim(k‘) denotes the primordial power spectrum. This holds in particular at the present time 79
(ap = 1). Since the time average (cos?kn) = %, we finally obtain for Q (k) = py(k)/peric (using
o = 2Hg ")
aQg(k) 3 . 9 1
= - PP ()T, (k . 5.107
dlnk 8 g ( )l g( )| (kn0)2 ( )
Here one may insert the inflationary result (5.82), giving
dQg(k) 3 H? 9 1
= — —5 T,(k . (5.108)
dInk 2m M3, k:aH| o(k) (kmo)2
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T T T T T T
1 0-10
=
~ -
% 10 12
= Fig. 5.1 Differential energy density (5.108) of the stochastic
C}O background of inflation-produced gravitational waves. The nor-
AT malization of the upper curve, representing the scale-invariant
limit, is arbitrary. The blue curves are normalized to the COBE
quadrupole, and show the result for n = —0.003, —0.03, and
10-16 I | | | | I —0.3. (Adapted from [40].)
2 4 6
10 10 10 10
kng

5.2.4 Numerical results

Since the normalization in (5.82) can not be predicted, it is reasonable to choose it, for illustration, to be
equal to the observed CMB normalization at large scales. (In reality the tensor contribution is presumably
only a small fraction of this; see (5.90).) Then one obtains the result shown in Fig. 5.1, taken from [40].
This shows that the spectrum of the stochastic gravitational background radiation is predicted to be flat in
the interesting region, with d€2,/d In(kno) ~ 10~'*. Unfortunately, this is too small to be detectable by the
future LISA interferometer in space.

Exercise. Consider a massive free scalar field ¢ (mass m) and discuss the quantum fluctuations for a de
Sitter background (neglecting gravitational back reaction). Compute the power spectrum as a function of
conformal time for m/H < 3/2.

Hint: Work with the field a¢ as a function of conformal time.

Remark: This exercise was solved at an astonishingly early time (~ 1940) by E. Schrodinger.

5.3 Appendix to Chapter 5:
Einstein tensor for tensor perturbations

In this Appendix we derive the expressions (5.59) for the tensor perturbations of the Einstein tensor.

The metric (5.57) is conformal to G, = Y., + 2H,,,. We first compute the Ricci tensor Ruv of this
metric, and then use the general transformation law of Ricci tensors for conformally related metrics (see
Eq. (2.264) of [1]).

Let us first consider the simple case K = 0, that we considered in Sect. 5.2. Then y,,,, is the Minkowski
metric. In the following computation of R;w we drop temporarily the tildes.

The Christoffel symbols are immediately found (to first order in H,,,))

oo =T%; =0, I'%; = H;,

T =H'p+H'yj— Hy''. (5.109)

o, = (H';),

So these vanish or are of first order small. Hence, up to higher orders,
R, =0\, — 0,1, (5.110)
Inserting (5.109) and using the TT conditions (5.58) readily gives

Rop =0, Ro; =0, (5.111)
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R;j = 0\ — 0,1 i = 9T + 0k T% ;5 — 9;T%; — 0;,T%
= Hjj+ (H"j+ H"j 5 — Hig™) i

)

Thus
R = HZ’; — AH;;. (5.112)

Now we use the quoted general relation between the Ricci tensors for two metrics related as g, = ef G-
In our case e/ = a?(n), hence

Vuf = 2Hd,u0, VuVuf = 0,(2H,0) — T, 2Hdx0
= 2M/0,00,0 — 2HH),,, Af = 3"V, V., [ =2H .

As a result we find

Ry = Ry + (=21 + 212)5,0000 + (H' + 2H?) G + 2HH),, (5.113)
thus

0Rgg = 0Rg; = 0,

SRy = H; — AHj + 2(H' + 2H*)H,; + 2HH];. (5.114)
From this it follows that

SR = g""§R,, + 6g" R(Y) = 0. (5.115)

The result (5.59) for the Einstein tensor is now easily obtained.
Generalization to K # 0

The relation (5.113) still holds. For the computation of R;w we start with the following general formula for
the Christoffel symbols (again dropping tildes).

" ap =" (Hyaip + Hygla — Hap|w) (5.116)

(see [1, Eq. (2.93)]). For the computation of the covariant derivatives H g, with respect to the unperturbed
metric 7,,,, we recall the unperturbed Christoffel symbols (1.229) with a — 1,

M =T% =T =1"%; =T%; =0, '}, =T (5.117)
One readily finds
Hyo1, =0, Hijio = Hyj;, Hijie = Hijj, (5.118)

where the double stroke denotes covariant differentiation on (X, ). Therefore,

6T%q = 610 = 6T"gp = 0, 0T°; = Hj;, 6T%g; = (H';)’
0Ty = H'jyp + H'yyy — Hppll (5.119)

With these expressions we can compute §?,,,,,using the formula (1.249). The first of the following two
equations

0Ry =0, 0Ryp; =0 (5.120)
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is immediate, while one finds in a first step 0 Rg; = H k ik and this vanishes because of the TT condition.
A bit more involved is the computation of the remaining components. From (1.249) we have

(5Rij = 8)\(5F)\Z‘j — ajél“’\,\i + (Sl—‘ajir)\,\g + F”jiéI‘A,\(, — 6F0Air>\ja — FOM(SFAJ*U
= HJ\ + 06T — 9;0T" 15 + 0T° ;T g + T% ;0T g — 6T% T 5 — T%330T 5.

But
0T = H'yjs + H' gy — Hi,I' = 0,
SO
0Rij = HJj + 06T ij 4 6T ;T — 6T, T jg — T°30T" o = HY + (6T5)
or
OR;; ZH{}+HZ¢\|jz+Hlj\|iz _Hij\|lHl~ (5.121)

In order to impose the TT conditions , we make use of the Ricci identity*?
H' 0 = H'iyjo + 3K Hij,
giving

SRy; = HJ; + 6K H;; — AH;;. (5.122)

Part IIT
Microwave background anisotropies

Introduction

Investigations of the cosmic microwave background have presumably contributed most to the remarkable
progress in cosmology during recent years. Beside its spectrum, which is Planckian to an incredible degree,
we also can study the temperature fluctuations over the “cosmic photosphere” at a redshift z ~ 1100.
Through these we get access to crucial cosmological information (primordial density spectrum, cosmological
parameters, etc). A major reason for why this is possible relies on the fortunate circumstance that the
fluctuations are tiny (~ 107°) at the time of recombination. This allows us to treat the deviations from
homogeneity and isotropy for an extended period of time perturbatively, i.e., by linearizing the Einstein
and matter equations about solutions of the idealized Friedmann-Lemaitre models. Since the physics is
effectively linear, we can accurately work out the evolution of the perturbations during the early phases
of the Universe, given a set of cosmological parameters. Confronting this with observations, tells us a lot
about the cosmological parameters as well as the initial conditions, and thus about the physics of the very
early Universe. Through this window to the earliest phases of cosmic evolution we can, for instance, test
general ideas and specific models of inflation.

Let me add in this introduction some qualitative remarks, before we start with a detailed treatment. Long
before recombination (at temperatures 7' > 6000k, say) photons, electrons and baryons were so strongly

22 On (2, ~) we have:

HliHjl — HliHjl = Rlslesi +RislelS = 3KH”
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coupled that these components may be treated together as a single fluid. In addition to this there is also a
dark matter component. For all practical purposes the two interact only gravitationally. The investigation
of such a two-component fluid for small deviations from an idealized Friedmann behavior is a well-studied
application of cosmological perturbation theory, and will be treated in Chapter 6.

At a later stage, when decoupling is approached, this approximate treatment breaks down because the
mean free path of the photons becomes longer (and finally ‘infinite’ after recombination). While the electrons
and baryons can still be treated as a single fluid, the photons and their coupling to the electrons have to
be described by the general relativistic Boltzmann equation. The latter is, of course, again linearized about
the idealized Friedmann solution. Together with the linearized fluid equations (for baryons and cold dark
matter, say), and the linearized Einstein equations one arrives at a complete system of equations for the
various perturbation amplitudes of the metric and matter variables. Detailed derivations will be given in
Chapter 7. There exist widely used codes e.g. CMBFAST [43], that provide the CMB anisotropies — for
given initial conditions — to a precision of about 1%. A lot of qualitative and semi-quantitative insight into
the relevant physics can, however, be gained by looking at various approximations of the basic dynamical

system.
Let us first discuss the temperature fluctuations. What is observed is the temperature autocorrelation:
AT(n) AT(n’) 204+1
c) = < T T = Z 7CZPZ (cos¥),

where ¥ is the angle between the two directions of observation n, n’, and the average is taken ideally over

all sky. The angular power spectrum is by definition 1(12-;1) Cy versus | (9 ~x/l).

A characteristic scale, which is reflected in the observed CMB anisotropies, is the sound horizon at
last scattering, i.e., the distance over which a pressure wave can propagate until decoupling. This can be
computed within the unperturbed model and subtends about half a degree on the sky for typical cosmological
parameters. For scales larger than this sound horizon the fluctuations have been laid down in the very early
Universe. These have first been detected by the COBE satellite. The (gauge invariant brightness) temperature
perturbation ® = AT/T is dominated by the combination of the intrinsic temperature fluctuations and
gravitational redshift or blueshift effects. For example, photons that have to climb out of potential wells
for high-density regions are redshifted. We shall show in Sect. 8.5 that these effects combine for adiabatic
initial conditions to %\Il, where W is one of the two gravitational Bardeen potentials. The latter, in turn, is
directly related to the density perturbations. For scale-free initial perturbations and almost vanishing spatial
curvature the corresponding angular power spectrum of the temperature fluctuations turns out to be nearly
flat (Sachs-Wolfe plateau; see Fig. 8.1 ).

On the other hand, inside the sound horizon before decoupling, acoustic, Doppler, gravitational redshift,
and photon diffusion effects combine to the spectrum of small angle anisotropies. These result from gravita-
tionally driven synchronized acoustic oscillations of the photon-baryon fluid, which are damped by photon
diffusion (Sect. 8.2).

A particular realization of ©(n), such as the one accessible to us (all sky map from our location), cannot
be predicted. Theoretically, © is a random field ©(x, 7, n), depending on the conformal time 7, the spatial
coordinates, and the observing direction n. Its correlation functions should be rotationally invariant in n,
and respect the symmetries of the background time slices. If we expand © in terms of spherical harmonics,

- Z aflmyim (n) 5
Ilm

the random variables a;,,, have to satisfy23
<alm> =0, <az(mal/m’> = 5ll’5mm/cl(77)a

23 A formal proof of this can easily be reduced to an application of Schur’s Lemma for the group SU (2) (Exercise).
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where the C;(n) depend only on 7. Hence the correlation function at the present time 7 is given by the
previous expression with C; = C;(r)), and the bracket now denotes the statistical average. Thus,

l
1
Cr=—— b m /-
l B + 1 <m§lalmal >

The standard deviations o (C}) measure a fundamental uncertainty in the knowledge we can get about the
C7’s. These are called cosmic variances, and are most pronounced for low [. In simple inflationary models
the a;,, are Gaussian distributed, hence

O(Ch) _ 2
o,  Vart

Therefore, the limitation imposed on us (only one sky in one universe) is small for large .

Exercise. Derive the last equation.

Solution: The claim is a special case of the following general fact: Let &;,¢&5, ..., &, be independent
Gaussian random variables with mean O and variance 1, and let

1
(=2 &
=1
Then the variance and standard deviation of { are

var(Q) = 2, o(Q) =1/ 2.

n

To show this, we use the equation of Bienaymé
1 o )
var(€) = oz 3 var(e?)

and the following formula for the variance for each £2:

var(€?) = (€) — () =1-3-1=2

(the even moments of £ are mor, = 1-3 - - - -(2k — 1)).
Alternatively, we can use the factthat Y-, 2 is x2 -distributed, with distribution function (p = n/2, A =

1/2):
\P
I'(p)

for x > 0, and 0 otherwise. This gives the same result.

xp—le—)\x

fz) =

6 Tight coupling phase

Long before recombination, photons, electrons and baryons are so strongly coupled that these components
may be treated as a single fluid, indexed by r in what follows. Beside this we have to include a CDM
component for which we we use the index d (for ‘dust’ or dark). For practical purposes these two fluids
interact only gravitationally.
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6.1 Basic equations

We begin by specializing the basic equations, derived in Part I and collected in Sect.1.5.C to the situation just
described. Beside neglecting the spatial curvature (KX = 0), we may assume ¢, = ', =0, F, = F, =0
(no energy and momentum exchange between r and d). In addition, it is certainly a good approximation

to neglect in this tight coupling era the anisotropic stresses II,. Then ¥ = —® and since I'j,; = 0 the
amplitude I" for entropy production is proportional to
Acd Acr w hdhr 2 2
S =S5y = - , I'= —c)S. 6.1
d Trw; 1tw’ Itw 2 (ca—cr) (6.1)
We also recall the definition (1.221)
hy ha
= %63 + Fci (6.2)

The energy and momentum equations are

/

A - 3%wA = —k(1+w)V, 6.3)
a’ 2 w
Vide —V=kU4+k—A4+k—T. (6.4)
a 1+w 1+w

By (1.290) the derivative of .S is given by

S" = —kVqr, (6.5)
and that of V,. follows from (1.289):
vy +3I(1—3c2)v =k(cZ—c )i+kc2s (6.6)
dr a z)Vdr d T 1+w zM .
In the constraint equation (1.261) we use the Friedmann equation for K = 0,
87tGp
=1 6.7
3H?2 ’ (6.7)
and obtain
3 (Ha\’
Ob=-—V=—-|(—) A 6.8
() 68

It will be convenient to introduce the comoving wave number in units of the Hubble length « := Ha/k
and the renormalized scale factor ( := a/aeq, Where aeq is the scale factor at the ‘equality time’ (see
Sect. 0.3.E). Then the last equation becomes

d=-U= 53:2A. (6.9)

Using ¢/ = kx(¢ and introducing the operator D := (d/d{ we can write (6.3) as

! (1+w)V. (6.10)

T

(D —3w)A =

Similarly, (6.4) (together with (6.1)) gives

(D+1)V + 2 — (5 —c2)S. (6.11)

T 1+w 1z h2

W A 1hah,
_JU
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We also rewrite (6.5) and (6.6)

1
DS = ~—Va, 6.12)

1 A 1
(D4+1—-3c)Vy = ;(cg - c,l)m + ;ciS. (6.13)

It will turn out to be useful to work alternatively with the equations of motion for V,, and

o Aca
T 14w,

(. =r,d). (6.14)

From (1.288) we obtain

2

@ A, 6.15
1T w. (6.15)

! a’l
Vit Vo =kU 4k

Here, we replace A, by A, with the help of (1.174) and (1.175), implying (in the harmonic decomposition)

/
1
Ag = Aeo +3(1 + wa)% £ (Vo = V). (6.16)
We then get
a' a
VI —(1—32)WVa =kU + k2 X, —3—2V. (6.17)
a a
From (1.287) we find, using (6.1),
/ " h hr
X! = —kV, +3%¢2 e (6.18)

a *l+w a h?
Rewriting the last two equations as above, we arrive at the system

U 2

(D+1-32)Va = — + %Xa —3e2V, (6.19)
Va 5 A hahy , o 9

DXa = —? + 305 m + 3 h2 (Cd — CT)S. (620)

This system is closed, since by (6.1), (1.272) and (1.275)

A h h
S=X;-X,, — = 2X,, V= “V,. 6.21
¢ 1+w z@; h Za; h (6.21)
Note also that according to (1.220)
A hd hr

— =X —S=X,—-—-5. 22

From these basic equations we now deduce second order equations for the pair (A, S), respectively, for
X4 (o =7, d). For doing this we note that for any function f, f* = (a’/a)Df, in particular (using (1.80)
and (1.62))

Dz = —%(Sw + 1)z, Dw = —3(1 4+ w)(c? — w). (6.23)
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The result of the somewhat tedious but straightforward calculation is [41]:

1 —
DA + [ W | 32 —6w] DA
2 3 iy
+ LTQ = 3w +9(cf — w) + 5 (Bw” — 1)] A=— o (2 = c3)S,
(6.24)
1—3w c? 2 — 2
2 2 zZQ T d
for the pair A, .S, and
1—
DX, + { Sw _ 3c3] DX.
2 ho [3 3
e N C N 1 Z(1 = 2 202 2 D 2 Xa
+{x2 N [2( +w)+2( 3w)cs + 9cz(cz — o) + 3Dc
h 1+w 1-3w
= 375 [(C% —c)D+ 5 + Tc% + 30%(0? — C%) + DC%:| Xg
(6.26)
for the pair X,.

Alternative system for tight coupling limit

Instead of the first order system (6.17), (6.18) one may work with similar equations for the amplitudes A,
and V. From (1.291) we obtain instead of (6.17) for II, = F, =0

/ 2
V!4 %(1 —362) Vo = kU + ja Asa. (6.27)

[

Beside this we have Eq. (1.286)

A !/
== =— -39 2
( 1T w. ) kVy —3 (6.28)

To this we add the following consequence of the constraint equations (1.261), (1.262) and the relations
(1.260), (1.274), (1.275):

K20 = —4nGa> %: [paAsa + 3%%(1 + wa)Va] . (6.29)

Instead one can also use, for instance for generating numerical solutions, the following first order differential
equation that is obtained similarly

li /
K2 4 3% (qﬂ + Zw) = —41Ga® " palsa (6.30)
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Adiabatic and isocurvature perturbations

These differential equations have to be supplemented with initial conditions. Two linearly independent types
are considered for some very early stage, for instance at the end of the inflationary era:

e adiabatic perturbations: all S, = 0, but R # 0;
e isocurvature perturbations: some S,5 # 0, but R = 0.

Recall that R measures the spatial curvature for the slicing @ = 0. According to the initial definition
(1.58) of R and the Egs. (6.9), (6.10) we have

72

R=® -2V =
1+w

{D—k g(l —w)} A. 6.31)

Explicit forms of the two-component differential equations

At this point we make use of the equation of state for the two-component model under consideration. It is
convenient to introduce a parameter c by

3pp ¢ Qq 3c
R = — = — - = — — 1 6'32
4p, ¢ - Q 4 (632)

We then have for various background quantities

pa 1 4\ 1
= —|1—-— — | — =0
Peq 9 ( 3C> <37pd )

po 20431 p 11
Peq 3 c 447 Peq 6447
p 1 1 p 11
- = 3 +]—77 = LT
Peq 2(< )C4 Peq 6 ¢4
h, 4 (+c¢  hy 4 ¢
7 = 3 ) = 11— = )

h 3c(C+4/3)" h 3c) C+4/3

w = 1 - _° w, 0

_3(§+1)7 T_4C+3cv d 9

1 ¢ 4 1 1 (c—4/3)¢

2 2 2 2

:O’ ,’I":i b >S:777 2:7—’

AT TR r e ST 94 T T 3ol +4/3)

+11 (+1 1 1 k
H? = H? Sl =, w:= =(—) . .
€q 2 C47‘r 24—2 w27w Teq oH e (633)

Since we now know that the dark matter fraction is much larger than the baryon fraction, we write the
basic equations only in the limit ¢ — oo. (For finite ¢ these are given in [41].) Eq.(6.26) leads to the pair
L ¢

2 S —
DXT+(21+C 1>DX,«

2w22 41 ¢ _[3 ¢ ¢
+{31+<+3c+4/3[<+4/32”)(”{2C+1C+4/3D]Xd’
(6.34)

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Leipzig) 15, No. 10-11 (2006) 797

1 ¢ 3 ¢ 4 1 ¢
D2+D—}X —{D+2— }XT. 6.35
{ 21+¢ 21+¢f 7Y 3¢+4/3 C+4/3 (6.35)
From (6.24) and (6.25) we obtain on the other hand
5 ¢ ¢
D2A+(1+— >DA
2¢+1 (¢+4/3

3. 1/ ¢ \* 3¢ 9¢2
+{2+4<+2(<+1> <+1+4(<+4/3>}A

_8 5 ¢ _
- gw (C+1)2(C +4/3) (€S = (¢+1)A], (6.36)
2 L1 2 ¢ _ 2,5 ¢
We also note that (6.31) becomes
_ 1 ¢l 3
T W CCH43) [“*”D i 24“] A (6.38)

We can now define more precisely what we mean by the two types of primordial initial perturbations by
considering solutions of our perturbation equations for { < 1.
e adiabatic (or curvature) perturbations: growing mode behaves as

_ 2 17 w? 4
A= 1= qrcse ] - et

5 (40(0)). (639)

2
w4 28

= 1—- — LECEE =

S 32C{ 25C+ },:R ™

e isocurvature perturbations: growing mode behaves as
w? 17
A= "¢3|1- = e
¢ [ Tt } 7
w? 3 1
SZI_EC [1—---];:>R:1§(1+O(§)). (6.40)

From (6.21) and (6.22) we obtain the relation between the two sets of perturbation amplitudes:

¢+1 ¢ 1

¢+1

4
XT:c+4/3A_<+4/3S’ Xe= 0 §c+4/35’ 641
1 /4

6.2 Analytical and numerical analysis

The system of linear differential equations (6.34)—(6.37) has been discussed analytically in great detail
in [41]. One learns, however, more about the physics of the gravitationally coupled fluids in a mixed
analytical-numerical approach.
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6.2.1 Solutions for super-horizon scales

For super-horizon scales (z > 1) Eq. (6.12) implies that S is constant. If the mode enters the horizon in
the matter dominated era, then the parameter w in (6.33) is small. For w < 1 Eq. (6.36) reduces to

2 5. ¢ ¢
DA+(—1+2<+1 C+4/3>DA

3. 1/ ¢ \* 3¢ 9¢2
+{_2+4C+2(<+1> _<+1+4(c+4/3)}A
_ 82 ¢?

T 9V [T+ 12(C+4/3)

For adiabatic modes we are led to the homogeneous equation already studied in Sect. 2.1, with the two
independent solutions Uy and Uy given in (2.28) and (2.29). Recall that the Bardeen potentials remain
constant both in the radiation and in the matter dominated eras. According to (2.32) ® decreases to 9/10 of
the primordial value ®P™™,

For isocurvature modes we can solve (6.41) with the Wronskian method, and obtain for the growing
mode [41]

S. (6.43)

33C2+22¢C+ 24+ 43¢ +4)VT+¢

o _ 4
AZSO - 15&] SC (<+1)(3§+4)[1+(1+<)1/2]4 (644)
thus
1 25(3 . C<<1
Ajso~{ 8% 6.45
{ AW25¢ 1 (> 1. (6.45)

6.2.2 Horizon crossing
We now study the behavior of adiabatic modes more closely, in particular what happens in horizon crossing.
Crossing in radiation dominated era

When the mode enters the horizon in the radiation dominated phase we can neglect in (6.36) the term
proportional to S for ( < 1. As long as the radiation dominates  is small, whence (6.36) gives in leading
order

(D?* =D —2)A = —%&@A. (6.46)

(This could also be directly obtained from (6.24), setting ¢2 ~ 1/3, w ~ 1/3.) Since D? — D = (?d?/d(?
this perturbation equation can be written as

Fﬂd2—k<§w%ﬂ—2)]A::0 (6.47)

Instead of { we choose as independent variable the comoving sound horizon r, times k. We have

HZ/%MZ/%%%,

with ¢s ~ 1/v/3, d¢/dn = kx¢ = aH( = (aH)/(aH)eq)(k/w)¢ =~ (k/wy/2), thus ¢ =~ (k/v/2w)n and

w = kry ~ \/ng ~ kn/V3. (6.48)
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Therefore, (6.45) is equivalent to

2
{CZZ+ (1;” A=o. (6.49)

This differential equation is well-known. According to 9.1.49 of [39] the functions w(z) o z'/2C, (\x),
C, x Hl(,l), H,£2), satisfy

21
w' + [ A— x24 w=0. (6.50)

Since j, (z) = \/7/2xJy41/2(2), n,(x) = \/7/22Y,, 1 /2(x), we see that A is a linear combination of
ujr (u) and unq (u):

A(¢) = Cuji(u) + Duny (u); u= \/gwg‘ (u = kry = f%) . 6.51)

Now,
. 1. 1 )
xj1(z) = —sinx — cosz, xny(xz) = —— cosx — sinx. (6.52)
x x

On super-horizon scales u = kry < 1, and uj; (u) = v x a, while uny (u) = —1/u  1/a. Thus the first
term in (6.49) corresponds to the growing mode. If we only keep this, we have

AlQ)=C <1 sinu — cos u> . (6.53)

u

Once the mode is deep within the Hubble horizon only the cos-term survives. This is an important result,
because if this happens long before recombination we can use for adiabatic modes the initial condition

] A(n) o< cos[krs(n)]. \ (6.54)

We conclude that all adiabatic modes are temporally correlated (synchronized), while they are spatially
uncorrelated (random phases). This is one of the basic reasons for the appearance of acoustic peaks in the
CMB anisotropies. Note also that, as a result of (6.9) and (6.33), ® oc A/¢? o AJu?, ie.,

(6.55)

U = 3prim) {sinu - ucosu}

u3

Thus: If the mode enters the horizon during the radiation dominated era, its potential begins to decay.

As an exercise show that for isocurvature perturbations the cos in (6.52) has to be replaced by the sin
(out of phase).

We could have used in the discussion above the system (6.34) and (6.35). In the same limit it reduces to

2
<D2 -D—-2+ 3w2§2> X, ~0, D’X;~ (D +2)X,. (6.56)

As expected, the equation for X, is the same as for A. One also sees that X is driven by X, and is growing
logarithmically for w > 1.

The previous analysis can be improved by not assuming radiation domination and also including baryons
(see [41]). It turns out that for w > 1 the result (6.54) is not much modified: The cos-dependence remains,
but with the exact sound horizon; only the amplitude is slowly varying in time o (1 + R)’l/ 4,
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Since the matter perturbation is driven by the radiation, we may use the potential (6.55) and work out its
influence on the matter evolution. It is more convenient to do this for the amplitude A,y (instead of A.y),
making use of the equations (6.27) and (6.28) for o = d:

/
la=—kVy— 30, V] = —%Vd — k®. (6.57)
Let us eliminate V:
!

!
= VI 30" = %ka 112D — 30" = %(_ ' —30) + k2D — 30"

The resulting equation

a/

/
A+ LA = k20— 30" — 3L 9 (6.58)
a a

can be solved with the Wronskian method. Two independent solutions of the homogeneous equation are
Agq = const. and Agy = In(a). These determine the Green’s function in the standard manner. One then
finds in the radiation dominated regime (for details, see [5, p. 198])

Agq(n) = A®P"™ In(Bkn), (6.59)

with A ~ 9.0, B ~ 0.62.
Matter dominated approximation

As a further illustration we now discuss the matter dominated approximation. For this (( > 1) the system
(6.34),(6.35) becomes

1 2
<D2 - -D+ aﬂc) X, = (—D + 3) X4, (6.60)
2 3 2
1
(D2 + 5D — g) Xq=0. (6.61)

As expected, the equation for X is independent of X,., while the radiation perturbation is driven by the
dark matter. The solution for X is

X4 = AC+ B¢3/2, (6.62)

Keeping only the growing mode, (6.60) becomes

d dX, 1dX, 2 , 3A
— - = = X, —— ] =0. .
aC (C dC) 2 dc +3w ( 7 4w2> 0 (6.63)
Substituting
_. 34 —-3/4
Xr - 4w2 + C f(C))

we get for f(() the following differential equation

" 31 2 w?
== (1642+3C) f. (6.64)
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For w > 1 we can use the WKB approximation

/
f= é;;; exp (ii\/§w§1/2> ,

implying the following oscillatory behavior of the radiation

3A 1 8
X, = — +B—— +iy/ w2 . .
e + N exp ( z\/gwg ) (6.65)

A look at (6.42) shows that this result for X4, X,. implies the constancy of the Bardeen potentials in the
matter dominated era.

6.2.3 Sub-horizon evolution

For w > 1 one may expect on physical grounds that the dark matter perturbation X, eventually evolves
independently of the radiation. Unfortunately, I can not see this from the basic equations (6.34), (6.35).
Therefore, we choose a different approach, starting from the alternative system (6.27)—(6.29). This implies

wa = —kVyg -39, (6.66)
a/

V)= —Va- k®, (6.67)

E*® = 4nGa’[pgAsq + - - ] (6.68)

As an approximation, we drop in the last equation the radiative’* and velocity contributions that have not
been written out. Then we get a closed system which we again write in terms of the variable (:

1
DAy = *EVd —-3D?, (6.69)
1
DVy=-V;— ;(I), (6.70)
311
b~ - ——-Agy. 6.71
4 w? ¢ d ( )

In the last equation we used pg = (¢/¢ + 1)p, (6.7) and the expression (6.33) for 22,
For large w we can easily deduce a second order equation for A,4: Applying D to (6.69) and using (6.70)
gives

1 1
D*A,q = ——DVa+ ?(Dx)vd —3D?®

1 1 1
= 0+ —(1-3w)-Vy—3D*®

2%+ 2( 3“’>de 3
-l 1(1 3w)DA 3(1 3w)D® — 3D*®
= 22 2 w sd B w .

Because of (6.71) the last two terms are small, and we end up (using again (6.33)) with

2, 1 ¢ 3 ¢ _

24 The growth in the matter perturbations implies that eventually pgAgsq > prAsr evenif Agy < Agy.
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known in the literature as the Meszaros equation. Note that this agrees, as was to be expected, with the
homogeneous equation belonging to (6.35).

The Meszaros equation can be solved analytically. On the basis of (6.62) one may guess that one solution
is linear in (. Indeed, one finds that

Xa(€) =D1(() =¢+2/3 6.73)

is a solution. A linearly independent solution can then be found by quadratures. It is a general fact that
f(¢) := Agq/D1(¢) must satisfy a differential equation which is first order for f’. One readily finds that
this equation is

% " 1 2 /
<1+ 2>f +74C(C+1)[21< +24¢ + 4]f" = 0.

The solution for f’ is

Floc(C+2/3)72¢C ¢+ )2

Integrating once more provides the second solution of (6.72)

DﬂQDMQh{i&I§+1}2M1+Q (6.74)

For late times the two solutions approach to those found in (6.62).
The growing and the decaying solutions D, Dy have to be superposed such that a match to (6.59) is
obtained.

6.2.4 Transfer function, numerical results
According to (2.31), (2.32) the early evolution of ® on super-horizon scales is given by>

(prim)gc"_lU :g
10 ¢ 7710

B()=d GPrim) - for > 1. (6.75)

At sufficiently late times in the matter dominated regime all modes evolve identically with the growth
Sfunction Dy(¢) given in (2.37). I recall that this function is normalized such that it is equal to a/ag when
we can still ignore the dark energy (at z > 10, say). The growth function describes the evolution of A, thus
by the Poisson equation (2.3) ® grows with Dg(a)/a. We therefore define the transfer function T (k) by
(we choose the normalization ag = 1)

) 9 Dy(a)
10 a

for late times. This definition is chosen such that T'(k) — 1 for ¥ — 0, and does not depend on time.
At these late times pp; = Q2 ma 3 Perit, hence the Poisson equation gives the following relation between
® and A

®(k,a) = @Prim T(k) (6.76)

a2 31,
@ = (2) 4mGoyA = S —5 HQuA.
Therefore, (6.76) translates to
Aa) = 3k P D (a)T(k) (6.77)
5 QuH? g ’ '

25 The origin of the factor 9/10 is best seen from the constancy of R for super-horizon perturbations, and Eq. (4.67).
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The transfer function can be determined by solving numerically the pair (6.24), (6.25) of basic pertur-
bation equations. One can derive even a reasonably good analytic approximation by putting our previous
results together (for details see again [5, Sect. 7.4]). For a CDM model the following accurate fitting formula
to the numerical solution in terms of the variable § = k/keq, where ke is defined such that the correspond-
ing value of the parameter w in (6.33) is equal to 1 (i.e., keg = GeqHoq = \/2QMH0/\/K, using (0.52))
was given in [42]:

. In(1+0.171q
Tpprs(q) = W

[140.2844 + (1.184)% + (0.3994)° + (0.4904)] /4. (6.78)
Note that § depends on the cosmological parameters through the combination®® %, usually called the
shape parameter T'. In terms of the variable ¢ = k/(T'hgMpc~1) (6.78) can be written as

Teprs(q) = % [1+3.89¢ + (16.1¢)% + (5.46¢)% + (6.71¢)*] /4. (6.79)
This result for the transfer function is based on a simplified analysis. The tight coupling approximation is
no more valid when the decoupling temperature is approached. Moreover, anisotropic stresses and baryons
have been ignored. We shall reconsider the transfer function after having further developed the basic theory
in the next chapter. It will, of course, be very interesting to compare the theory with available observational
data. For this one has to keep in mind that the linear theory only applies to sufficiently large scales. For late
times and small scales it has to be corrected by numerical simulations for nonlinear effects.
For a given primordial power spectrum, the transfer function determines the power spectrum after the
‘transfer regime’ (when all modes evolve with the growth function D). From (6.77) we obtain for the power
spectrum of A

9 Kkt

Pa(z) = —
25 02, A

PP D2 ()T (k). (6.80)

We choose P""™) o k"~ and the amplitude such that

Pa(2) = &% <I§0)3+n T2(k) (gzgg;)z 6.81)

Note that Pa(0) = 5121[ for k = Hj. The normalization factor dy has to be determined from observations
(e.g. from CMB anisotropies at large scales). Comparison of (6.80) and (6.81) and use of (5.50) implies

2 n—1
(prim) . g (prim) o % 2 Qs k
PRI () = 3PP () = 0% ( o) \m) (6.82)

Exercise. Write the equations (6.27)-(6.30) in explicit form, using (6.33) in the limit when baryons are
neglected (¢ — o0). (For a truncated subsystem this was done in (6.69) — (6.71)). Solve the five first
order differential equations (6.27), (6.28) for &« = d, r and (6.30) numerically. Determine, in particular, the
transfer function defined in (6.76). (A standard code gives this in less than a second.)

7 Boltzmann equation in GR

For the description of photons and neutrinos before recombination we need the general relativistic version
of the Boltzmann equation.

26 since k is measured in units of ho Mpc—' and Geq = 4.15 X 1075 /(Qarh3).
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7.1 One-particle phase space, Liouville operator for geodesic spray

For what follows we first have to develop some kinematic and differential geometric tools. Our goal is to
generalize the standard description of Boltzmann in terms of one-particle distribution functions.
Let g be the metric of the spacetime manifold M. On the cotangent bundle 7% M = Upe v Ly M we

have the natural symplectic 2-form w, which is given in natural bundle coordinates®’ (z*, p, ) by

w=dz" Ndp,. (7.1

(For an intrinsic description, see Chap. 6 of [44].) So far no metric is needed. The pair (T* M, w) is always
a symplectic manifold.

The metric g defines a natural diffeomorphism between the tangent bundle 7'M and T M which can be
used to pull w back to a symplectic form w, on T'M. In natural bundle coordinates the diffeomorphism is
given by (z#,p%) — (2", pa = gapp”), hence

wg = da" N d(gup”). (7.2)

On T'M we can consider the “Hamiltonian function”

1 v
L= 59uwp"p (7-3)

and its associated Hamiltonian vector field X, determined by the equation

ix,wg = dL. (7.4)
It is not difficult to show that in bundle coordinates
X, =pt— —TI* gpapﬁi (7.5)
ozt @ Opt

(Exercise). The Hamiltonian vector field X, on the symplectic manifold (7'M, wy) is the geodesic spray.
Its integral curves satisfy the canonical equations:

dx*

— 7.6
o P (7.6)
dp* o
o —TH,5p°p°. (1.7)

The geodesic flow is the flow of the vector field X ;.
Let ng be the volume form belonging to wy, i.e., the Liouville volume

Qy,, = const wg A -+ Awy,
or (g = det(gap))
Qu, = (—9)(dz® Adz* A da® A da®) A (dp° A dp* A dp® A dp?)
= (—g)da®"* A dp®?. (7.8)
The one-particle phase space for particles of mass m is the following submanifold of 7'M

®,, = {v € TM | v future directed, g(v,v) = —m?}. (7.9)

27 1f 2+ are coordinates of M then the dz* form in each pointp € M abasis of the cotangent space T,y M. The bundle coordinates
of 8 € T,y M are then (z#, By) if B = Bydx” and z# are the coordinates of p. With such bundle coordinates one can define
an atlas, by which T M becomes a differentiable manifold.
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This is invariant under the geodesic flow. The restriction of X, to @, will also be denoted by X. (1,
induces a volume form €2,,, (see below) on ®,,,, which is also invariant under X,:

Lx,Qp, =0. (7.10)
Q,, is determined as follows (known from Hamiltonian mechanics): Write ng in the form
Q,, =—dL Ao,
(this is always possible, but o is not unique), then €2,,, is the pull-back of €2, by the injectioni : &,, — T'M,
Q =1i"0. (7.11)

While ¢ is not unique (one can, for instance, add a multiple of dL), the form 2, is independent of the
choice of o (show this). In natural bundle coordinates a possible choice is

d:0123 A dp'*

o=\—g )
o) o)
because
0123 0 dp**®

—dL Ao = [—guptdp” + -] Ao = (—g)dz"*° A guop™dp” A o =Q,.
Hence,

Qu = AT, (7.12)
where 7 is the volume form of (M, g),

n=/—gda®'?, (7.13)

and

(7.14)

with p® > 0, and JuP"p” = —m2.

We shall need some additional tools. Let ¥ be a hypersurface of ®,,, transversal to X,. On X we can use
the volume form
vols = ix,Qm | X. (7.15)
Now we note that the 6-form
W = 1ix,Qm (7.16)
on ®,, is closed,
dwy, =0, (7.17)

because

dwm = dingm == LXng =0
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(we used df2,,, = 0 and (7.10)). From (7.12) we obtain
Wi = (ix,n) ANy +n ANix, I,,. (7.18)

In the special case when X is a “time section”, i.e., in the inverse image of a spacelike submanifold of M
under the natural projection ®,, — M, then the second term in (7.18) vanishes on X, while the first term
is on ¥ according to (7.5) equal to i,n A Il,,,, p = p*0/0x". Thus, we have on a time section?® ¥

’VOlg =W | S =iy ALy, (7.19)

Let f be a one-particle distribution function on ®,,,, defined such that the number of particles in a time
section X is

N(Z) = / Fwm. (7.20)
®
The particle number current density is
nt(z) = / [Ty, (7.21)
P (z)
where P, () is the fiber over = in ®,,, (all momenta with (p,p) = —m?). Similarly,, one defines the

energy-momentum tensor, etc.
Let us show that

nu”‘:/p (Lx, f) . (7.22)

m

We first note that (always in ®,,)

d(fwm) = (Lx, f) Q. (7.23)
Indeed, because of (7.17) the left-hand side of this equation is

df Nwm =df Nix,Qm = (ngdf) AQp, = (Lng) Q-

Now, let D be a domain in ®,,, which is the inverse of a domain D C M under the projection ®,,, — M.
Then we have on the one hand by (7.18), setting ixn = X*0o,,

fwm = / U;L/ p#me = / o.un,u = / inl = / (v : n)’%
oD oD Py, (z) oD oD D

On the other hand, by (7.23) and (7.12)

[ fom = /D d(feom) = /D (Lx, f) U = /D " /P (e,

Since D is arbitrary, we indeed obtain (7.22).
The proof of the following equation for the energy-momentum tensor

™., = /P " (Lx, f) 1y, (7.24)

can be reduced to the previous proof by considering instead of n” the vector field N := v, T#, where v,,
is geodesic in x.

28 Note that in Minkowski spacetime we get for a constant time section voly, = dx'23 A dp'23.
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integral
curve of

Fig. 7.1 Picture for the proof of (7.25).

7.2 The general relativistic Boltzmann equation

Let us first consider particles for which collisions can be neglected (e.g. neutrinos at temperatures much
below 1 MeV). Then the conservation of the particle number in a domain that is comoving with the flow ¢,
of X, means that the integrals

/ fwma
bs()

3 as before a hypersurface of ®,,, transversal to X, are independent of s. We now show that this implies
the collisionless Boltzmann equation

The proof of this expected result proceeds as follows. Consider a ‘cylinder’ G, sweping by X under the
flow ¢ in the interval [0, s| (see Fig. 7.1), and the integral

/ Ly, [ = | fom
g oG

(we used Eq. (7.23)). Since ix,wm = i X, (3 X, Q,,) = 0, the integral over the mantle of the cylinder
vanishes, while those over ¥ and ¢4(3) cancel (conservation of particles). Because ¥ and s are arbitrary,
we conclude that (7.25) must hold.

From (7.22) and (7.23) we obtain, as expected, the conservation of the particle number current density:
nt., =0.

With collisions, the Boltzmann equation has the symbolic form

Lx,f=Clf]} (7.26)

where C|[f] is the “collision term”. For the general form of this in terms of the invariant transition matrix
element for a two-body collision, see (B.9). In Appendix B we also work this out explicitly for photon-
electron scattering.

By (7.24) and (7.26) we have

™, = QF, (727)

with

Q”:/P p"C[f]I,,. (7.28)

m
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7.3 Perturbation theory (generalities)

We consider again small deviations from Friedmann models, and set correspondingly
f=r9+sr. (7.29)

How does 0 f change under a gauge transformation? At first sight one may think that we simply have
O0f = 0f + Lyef (0), where T¢ is the lift of the vector field ¢, defining the gauge transformation, to the
tangent bundle. (We recall that T'¢ is obtained as follows: Let ¢4 be the flow of ¢ and consider the flow T'¢,
on T'M, T¢s = tangent map. Then T'¢ is the vector field belonging to T'¢,.) Unfortunately, things are not
quite as simple, because f is only defined on the one-particle subspace of 7'M, and this is also perturbed
when the metric is changed. One way of getting the right transformation law is given in [33]. Here, I present
a more pedestrian, but simpler derivation.

First, we introduce convenient independent variables for the distribution function. For this we choose an
adapted orthonormal frame {e, /i = 0,1, 2, 3} for the perturbed metric (1.16), which we recall

g=a*(n){—(1+24)dn* — 2B,;da'dn + (1 + 2D)v;; + 2E);;]dz"'dz’ } . (7.30)

€g is chosen to be orthogonal to the time slices 1 = const, whence

1 .
%:Eﬁ%+ﬁ@%a:1+AJ%:B¢ (7.31)

This is indeed normalized and perpendicular to J;. At the moment we do not need explicit expressions for
the spatial basis e; tangential to ) = const.
From

p=plep =p"o,
we see that pﬁ /o = p°. From now on we consider massless particles and set? g = p(), whence
q=a(l+ A)p°. (7.32)

Furthermore, we use the unit vector 4* = p’/q. Then the distribution function can be regarded as a function
of n,z%, q,7", and this we shall adopt in what follows. For the case K = 0, which we now consider for
simplicity, the unperturbed tetrad is {%&7, %82-}, and for the unperturbed situation we have ¢ = ap®, p* =
POy’

As a further preparation we interpret the Lie derivative as an infinitesimal coordinate change. Consider
the infinitesimal coordinate transformation

Th = ot — ¢ (z), (7.33)
then to first order in &
(Lfg>;w (.T) = guu(w) - g;w(w)v (7.34)

and correspondingly for other tensor fields. One can verify this by a direct comparison of the two sides. For
the simplest case of a function F/,

F(z) — F(z) = F(z + &) — F(z) = £"0,F = L¢F.
Under the transformation (7.33) and its extension to 7'M the p* transform as

=t =& upt.

29 This definition of q is only used in the present subsection. Later, after eqn. (7.62), ¢ will denote the comoving momentum agq.
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We need the transformation law for q. From
q= a1+ Ax)]p"
and the transformation law (1.18) of A,
a' ’
A= At~ 4",
a
we get
g = a(n)[l - HEYL + A(2)HE" + €7 )p° — &),

The last square bracket is equal to p°(1 — €2 — £° ;47). Using also (7.32) we find

q=q-q¢" " (7.35)
Since the unperturbed distribution function f(°) depends only on ¢ and 7, we conclude from this that
o100 . ,
f =31 + 47—+ 1. (1.36)

Here, we use the equation of motion for £(°). For massless particles this is an equilibrium distribution that
is stationary when considered as a function of the comoving momentum aq. This means that

3f(0) N 8f(0) .

on g ¢ 7"
for (aq)’ = 0, i.e., ¢ = —Hgq. Thus,
, (0)
7O 9,07 . (7.37)
dq
If this is used in (7.36) we get
o+ )
5f = d0f+q gq (1% + €% '] | (7.38)

Since this transformation law involves only £°, we can consider various gauge invariant distribution func-
tions, such as (6 f)y, (0f)g. From (1.21), x — x + a&°, we find

af©
dq
Fs reduces to 0 f in the longitudinal gauge, and we shall mainly work with this gauge invariant perturbation.

In the literature sometimes F, := (§f)g is used. Because of (1.49), v — B — (v — B) — £°, we obtain F,
from (7.39) in replacing B + E’ by —(v — B):

Fo:=(8f)x = 0f —q—5—[H(B+ E') +7'(B+ E').]. (7.39)

o100 )
Foi= (6)0 = 6f + 05— [H(v— B) +7'(v = B, (7.40)
Since by (1.56) (v — B) + (B + E’) =V, we find the relation
af© .
Fe=Fs+q a4 [HV +~'V,]. (7.41)

Instead of v, V' we could also use the baryon velocities vy, Vj.
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810 N. Straumann: Cosmological perturbation theory

7.4 Liouville operator in the longitudinal gauge

We want to determine the action of the Liouville operator £ := Lx_ on F;. The simplest way to do this is
to work in the longitudinal gauge B = F = 0.

In this section we do not assume a vanishing K. It is convenient to introduce an adapted orthonormal
tetrad

1 1
€y = mam e = meu (7.42)

where é; is an orthonormal basis for the unperturbed space (X, ). Its dual basis will be denoted by ¥, and
that of e, by 0. We have

0° = (1+ A)8°, ¢° = (1+ D)6, (7.43)
where

0° = a(n)dny, 6" = a(n)d'. (7.44)

Connection forms. The unperturbed connection forms have been obtained in Sect. 0.1.2. In the present
notation they are

@'y =% = =0, o' =&, (7.45)

where (" are the connection forms of (3, y) relative to 9.

For the determination of the perturbations dw*,, of the connection forms we need df*. In the following
calculation we make use of the first structure equations, both for the unperturbed and the actual metric. The
former, together with (7.45), implies that the first term in

de® = (14 A)dA° + dA A 6°
vanishes. Using the notation dA = A’dn + A‘iéi = A MO_“ we obtain
do°® = A;0° N 6°. (7.46)
Similarly,
d0' = (14 D)d0’' +dD NO" = (1+ D)[-w'; N0 —&'g AO°]+ D|;67 NO" + D)g0° AO". (7.47)

On the other hand, inserting w*, = @*, + dw, into d6* = —w*, A §¥, and comparing first orders, we
obtain the equations

—6w’; A" — &% A (DOY) = —A;6° NG, (7.48)

—_———
0

—(5in ANE° — (5&)13‘ NG — (I)io A AQ° — (:)ij A D@ =
—Di'; NG — Di'o NG° + D;67 ANG' + Db A6 (7.49)
Eq. (7.48) requires

6w’y = A;0° + (o< 67). (7.50)
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Let us try the guess

Sw'; = —=D;67 + D|;0" (7.51)
and insert this into (7.49). This gives

—bw'g AO° — Ao A O° = —D@'g A G° + D)g0° A O, (7.52)

and this is satisfied if the last term in (7.50) is chosen according to
_ 1 _.
0w’ = A6 — (A= D)a’% + ~D'0", (7.53)

Since the first structure equations are now all satisfied (to first order) our guess (7.51) is correct, and we
have determined all dw”,,.
From (7.45) and (7.53) we get to first order

!

, 1 i

Wo= | S (1= A)+ D' | 6"+ A,6°. (7.54)

a a

We shall not need w'; explicitly, except for the property w';(eg) = 0, which follows from (7.45) and (7.51).
We take the spatial components p’ of the momenta p relative to the orthonormal tetrad {e,, } as independent

variables of f (beside ). Then

Lf=p'eu(f) —walplp

(p=1p"ep). (7.55)

op’

Derivation. Eq. (7.55) follows from (7.5) and the result of the following consideration.

Let X = Y7 €0, be a vector field on a domain of R™! and let  be a hypersurface in R™*1,
parametrized by

0:UCR" = R"™ (', 2™ (2, 2™, gzt - 2™)),

to which X is tangential. Furthermore, let f be a function on X, which we regard as a function of z!, - - -, ™.
I claim that
~ . 0(foy)
X(f) = E T 7.56

This can be seen as follows: Extend f in some manner to a neighborhood of ¥ (at least locally). Then

(7.57)

n

x(n1z=3 (¢ 5% +et 52

1

(3 w7l+1:g(m17---z")

Now, we have on ¥ : dg — dz"*! = 0 and thus (dg — d2"*!, X) = 0 since X is tangential. Using (7.57)
this implies

it =) ¢ =,
p ox
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812 N. Straumann: Cosmological perturbation theory

whence (7.57) gives by the chain rule

i of 09\ _N~p0fo9)
Z§ (8:10’ Ozt 8xi>_zg ort

=1

This fact was used in (7.55) for the vector field

o O
Xg=p'e, —wta(p)p aipl‘

(7.58)

L f to first order. For Lf we need

Preuf) =102 (1= A)f +plef) =B (L= A)f + ol éa(65)

and
9 i
(p)p oy w'o(p)p’ o9 +w'(p)p’ op
o 0 i 0 0 i 0 i Vi 9
= [w'o(e0)p” +w'o(P)]p o + [w'j(e0)p” +w';(P)]p o

From (7.54) we get w'o(eg) = Al, and

a/

) 1 .
i =|—=(1-A)+ =-D'| p".
Wo(p) = |55 (1=A)+ D' | p

Furthermore, the Gauss equation implies w;(p) = @';(p), where &'; are the connection forms of the
spatial metric (see Appendix A of [1]).
As an intermediate result we obtain

Lf=(1- ) f+— i(0f)

~i j 042 #li P° of
— @)’ + (p") A" + EDp +p (1—A) o (7.59)
From now on we use as independent variables 1, z°, p,v* = p'/p (p = [Zi(pi)ﬂl/z). We have
of _ piof ! 1, 2\ Of
LA’ 5t — p; - 7.60
w pop b ( pp/p)ayl (7.60)

Contracting this with @’ ; (p)p’, appearing in (7.59), the first term on the right in (7.60) gives no contribution
(antisymmetry of @';), and since df/ O~ is of first order we can replace & 4 by the connection forms of
the unperturbed metric a2’yij; these are the same as the connection forms &* ; of ~y;; relative to 9. What
remains is thus

i P
Wj(P); (6li

Inserting this and (7.60) into (7.59) gives in zeroth order for the Liouville operator

© _ P [ oy _ oy 0FC
(L) a(f ol =)

af p O5f p asf
l J k1
/p)ay wj(p)p o' a’yvrjal.
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and the first order contribution is

o)
AEN + B a5) + entof) - Byt 2
y

N iaf<0> Jaj ,OFO 0 asf

ap c(Ap Op a p op a g, op

Therefore, we obtain for the Liouville operator, up to first order,

, (0) a8 f

LY © _ 4,91 r_

poﬁf (1-A4) (f Hp o +(0f) —Hp o
p 5 i kpi 00 [ AP }5‘%0)
Les VL) A Ay v 5 U SO |
pe(f) o g pve() p

(7.61)

As a first application we consider the collisionless Boltzmann equation for m = 0. In zeroth order we
get the equation (7.37) (g in that equation is our present p). The perturbation equation becomes
a6 f af©

c a0 06
5 =L JS8F) — IR
0f) — ’Hpap +7'(6f) =y 7+ o o

—[D' ++'¢:(A)] p =0.

(7.62)
It will be more convenient to write this in terms of the comoving momentum, which we denote by ¢, ¢ = ap.
(This slight change of notation is unfortunate, but should not give rise to confusions, because the equations at

the beginning of Sect. 7.3, with the earlier meaning ¢ = p, will no more be used. But note that (7.38)-(7.41)
remain valid with the present meaning of ¢.) Eq. (7.62) then becomes

- N 06 (0)
(By +7'€)0f =T jrr o m‘f —[D'+7'é(A)] q gq =0. (7.63)
It is obvious how to write this in gauge invariant form
. ;  OF s of©
(O + 7€) Fs — T jpr? 7" o = [® +7'e(¥)] q J(;q : (7.64)

(From this the collisionless Boltzmann equation follows in any gauge; write this out.)
In the special case K = 0 we obtain for the Fourier amplitudes, with p :=k - 7,

af©

Fr+iukFs = [fbl + ik‘M\IJ] q
dq

(7.65)

This equation can be used for neutrinos as long as their masses are negligible (the generalization to the
massive case is easy).

7.5 Boltzmann equation for photons

The collision term for photons due to Thomson scattering on electrons will be derived in Appendix B. We
shall find that in the longitudinal gauge, ignoring polarization effects (to be discussed later),

afO

) 3 o
C[f] = weneorp |(0f) —0f — ¢ v’éi(vb)+ZQmW] . (7.66)
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814 N. Straumann: Cosmological perturbation theory

On the right, x.n. is the unperturbed free electron density (x. = ionization fraction), o the Thomson
cross section, and v, the scalar velocity perturbation of the baryons. Furthermore, we have introduced the
spherical averages

1
(0f) = - | 0fddy, (7.67)
5'2
1 1
Qij = o . [viv; — §5ij]5f dQ,. (7.68)

(Because of the tight coupling of electrons and ions we can take v, = vp.)
Since the left-hand side of (7.63) is equal to (a/po)Lf, the linearized Boltzmann equation becomes
00 of©®

! _ [D' +~'ei(A)]

(O +7'€:)5f — T jer? " i

0
= aTeneor [<5f> —0f - qag(:) v'éi(ve) + %Qmivj :
(7.69)
This can immediately be written in a gauge invariant form, by replacing
0f > Fs,vp = Vo, A=V, D — O, (7.70)

In our applications to the CMB we work with the gauge invariant brightness temperature perturbation

Os(n,2*,77) = /Eq?’dq/ 4/f(°)q3dq- (7.71)

(The factor 4 is chosen because of the Stephan-Boltzmann law, according to which dp/p = 46T /T.) It is
simple to translate the Boltzmann equation for F; to a kinetic equation for ©,. Using

o0
/q (J;q ¢*dg = 74/f(°)q3dq

we obtain for the convective part (from the left-hand side of the Boltzmann equation for Fy)
- 100, .
O} +7'€(0;) — L' jy77" oy T A
The collision term gives
. iy Loij
(0o — Os +7'é Vs + 16”7 7/ 1L;;),

with 7 = z.n.ora/ag, 6p = (O;) (spherical average), and

1 1

1

The basic equation for ©; is thus

. . . o
(65 + \I])/ + ’Yléi(gs + \Ij) - Pij'VJP)/k 871' (93 + \Ij) =
. 1 . .
(U — @) + 70y — O, +7v'&;Vi + —~'771L;). (1.73)

16
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In a mode decomposition we get for K = 0 (I drop from now on the index s on ©):
1
O +iku(© + V) = - + 7y — © —iuVj, — EQQPQ(“)] (7.74)

(recall Vi, — —(1/k)V4). The last term on the right comes about as follows. We expand the Fourier modes

©(n, k*,~7) in terms of Legendre polynomials

o0

O, k', 7) =D (=)'0i(n, k)Pi(), p=k-~,
=0

and note that

1 . . 1
NI — —
167 0 Hlj 1092P2(N)

(Exercise). The expansion coefficients 0;(n, k) in (7.75) are the brightness moments™’

have simple interpretations. We show that in the notation of Chap. 1:

1 5

bo= {2, 0 =V, b= 11

-

Derivation of (7.77). We start from the general formula (see Sect. 7.1)

d*p
Tt = / Ppfp) 5 = / Ppu f(p)pdp d2.

According to the general parametrization (1.156) we have

8T 0 = —0py = — / p*6.f(p)pdp dS2,.

Similarly, in zeroth order

T 0= =) =~ / P21 (p)pdp A,
Hence,

6py [ @f dqdQ,

PO [P fOdgdQ,

(7.75)

(7.76)

. The lowest three

(7.77)

(7.78)

(7.79)

(7.80)

(7.81)

In the longitudinal gauge we have A, = dp,/ p(o) Fs = df and thus by (7.71) and (7.75)

1
AS’Y = 4@ /@ dQ'Y = 490
Similarly,

T{ 0 = —hyoli = / p'podfpdp dS,

30 1n the literature the normalization of the 0; is sometimes chosen differently: 6; — (21 + 1)6;.
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or
i 3 ise 3
vy = =@ [ 0 fp dp dQd. (7.82)
4py
With (7.80) and (7.71) we get

V= % / 7'0 dQ,,. (7.83)

For the Fourier amplitudes this gauge invariant equation gives (V,, — —(1/k)V,,)

s i 3 i
—iVyk :E/’Y@dgw

or
. 3
_ZV'Y = E /J@ dQ'Y .

Inserting here the decomposition (7.75) leads to the second relation in (7.77).
For the third relation we start from (1.156) and (7.79)

; : i Ly i
0T(,); = 0pyd'5 + pif) (Hlvlj — 30 jAHv) . /P p;d.fp dp A,

From this and (7.79) we see that 6p, = %5 P~ thus Iy, = 0 (no entropy production with respect to the
photon fluid). Furthermore, since p(WO) = % p(vo) we obtain with (7.72)

i

15 1 i L i
w‘§5jAHw=4-3g/hw—§5j]9d9w=ﬂj.

In momentum space (IL, — (1/k?)IL,) this becomes
—(k ];j _

or, contracting with %73' and using (7.76), the desired result.
Hierarchy for moment equations

Now we insert the expansion (7.75) into the Boltzmann equation (7.74). Using the recursion relations for
the Legendre polynomials,

I+1

m-PlJrl(/'l’)? (7.84)

Pr1(p) +

l
pb(p) = N1

we obtain

. 0( Z) i ! lO( Z) l|:21+1 =1 2l+1 ! 1:| ! !

RS , 1
= —(I)/PO — T l;(—z)lﬁlﬂ — Z‘/E,Pl - TOHQPQ
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Comparing the coefficients of P, leads to the following hierarchy of ordinary differential equations for the
brightness moments 6;(7):

0, = —%k&l — @, (7.85)
2

0 :k<90+\11— 502) — 0 — V), (7.86)

b (20 30\ _ 9

ez_k(gel 793) 7150 (7.87)

9'—1@(L9 i+t ) 1> 2 (7.88)

M= T a3 ' '

At this point it is interesting to compare the first moment equation (7.86) with the phenomenological
equation (1.212) for ~:

1 1
VV’ = k¥ + ZAS"’ - gk’Hv +HE,. (7.89)
On the other hand, (7.86) can be written with (7.77) as
, 1 1 .
V,=kV + ZAS,Y — EIcHW —7(Vy = V). (7.90)

The two equations agree if the phenomenological force I, is given by

HEF, = —+(V, — Vb).‘ (7.91)

From the general relation (1.203) we then obtain

th ——%F

L, = = 30y T (7.92)

7.6 Tensor contributions to the Boltzmann equation
Considering again only the case K = 0, the metric (5.57) for tensor perturbations becomes

v = @ () [0 + 2H ], (7.93)
where the H,,,, satisfy the TT gauge conditions (5.58). An adapted orthonormal tetrad is

0° = a(n)dn, 0" = a(8'; + H';)d’. (7.94)
Relative to this the connection forms are (Exercise):

Wl = %oi + %H;jaj, w'y = %(Hik,j — Hy, "ok (7.95)

For L f we get from (7.55) to first order

0
_P il i 0 0f i  0f
Lf =" +p —&(f) +wo(p)p oy Y i(p)p’ op
0 7
AN T Y )5 Of
= [P

www.ann-phys.org (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



818 N. Straumann: Cosmological perturbation theory

Passing again to the variables 7, z*, p, 7' we obtain instead of (7.61)

a , af©
Zrf= 0 _
0 f=r Hp ap
osf pt - 9fO
§f) —Hp———+ == 9:(§ H ~*? . 7.96
+(3.f) HpaerpO (6f) + 1P (7.96)
Instead of (7.63) we now obtain the following collisionless Boltzmann equation
. , . 0 f(O)
(On +7'0i)of + Hij’YI’YJ(] dq =0. (71.97)
For the temperature (brightness) perturbation this gives
(0 +7'0:)0 = H] ;74 (7.98)

This describes the influence of tensor modes on ©. The evolution of these tensor modes is described
according to (5.59) by

HY + 2HH]; — AH;; =0, (7.99)

if we neglect tensor perturbations of the energy-momentum tensor. We shall study the implications of the
last two equations for the CMB fluctuations in Sect. 8.6.

8 The physics of CMB anisotropies

We have by now developed all ingredients for a full understanding of the CMB anisotropies. In the present
chapter we discuss these for the CDM scenario and primordial initial conditions suggested by inflation
(derived in Part IT). Other scenarios, involving for instance topological defects, are now strongly disfavored.

We shall begin by collecting all independent perturbation equations, derived in previous chapters. There
are fast codes that allow us to solve these equations very accurately, given a set of cosmological parameters.
It is, however, instructive to discuss first various qualitative and semi-quantitative aspects. Finally, we shall
compare numerical results with observations, and discuss what has already come out of this, which is a lot.
In this connection we have to include some theoretical material on polarization effects, because WMAP has
already provided quite accurate data for the so-called E-polarization.

The B-polarization is much more difficult to get, and is left to future missions (Planck satellite, etc). This
is a very important goal, because accurate data will allow us to determine the power spectrum of the gravity
waves.

For further reading I recommend Chap. 8 of [5] and the the two research articles [45,46]. For a well
written review and extensive references, see [48].

8.1 The complete system of perturbation equations

For references in later sections, we collect below the complete system of (independent) perturbation equa-
tions for scalar modes and K = 0 (see Sects. 1.5.C and 7.5). Let me first recall and add some notation.
Unperturbed background quantities: p,,, p, denote the densities and pressures for the species v = b
(baryons and electrons), v (photons), ¢ (cold dark matter); the total density is the sum p = Za Pa> and
the same holds for the total pressure p. We also use w, = Puo/pa,w = p/p. The sound speed of the
baryon-electron fluid is denoted by ¢;, and R is the ratio 3p;/4p- .
Here is the list of gauge invariant scalar perturbation amplitudes:
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0q = Asa,0 := Ay : density perturbations (0p./pa,dp/p in the longitudinal gauge); clearly:
p&=73_pada.

e V.,V :velocity perturbations; p(1 + w)V = > pa(l 4+ wa)Va.

0, Ny : brightness moments for photons and neutrinos.

I1,,, I : anisotropic pressures; II = 1L, + II,,. For the lowest moments the following relations hold:

12
0y =46y, V, =01, I, = 392, (8.1)
and similarly for the neutrinos.

e U ®: Bardeen potentials for the metric perturbation.
As independent amplitudes we can choose: 0y, o, Vi, Vi, ®, W, 0;, N;. The basic evolution equations
consist of three groups.

o Fluid equations:

8, = —kV,— 3%, (8.2)
V! = —aHV, + k¥; (8.3)
5L = —kVy — 30, (8.4)
V) = —aHVy + kcioy + kW + 7(6; — V3)/R. 8.5)
e Boltzmann hierarchies for photons (Eqs. (7.85)—(7.88)) (and the collisionless neutrinos):
1
0y = —§k91 -, (8.6)
2
0 = k(00 + ¥ = 20,) = (61 — i), 8.7)
2 3 9
!/ - _ o
0, = k<301 793) Fosba, (8.8)
l [+1
0 =k(=——=0_1— ——0 > 2. 8.9
(= k(g0 2z+3”1)’ = (8.9)
e FEinstein equations : We only need the following algebraic ones for each mode:
H
K2 :47rGa2p[5—|—3%(1+w)V], (8.10)
E*(® + 0) = —87Ga’p 1. (8.11)

In arriving at these equations some approximations have been made which are harmless *!, except for
one: We have ignored polarization effects in Thomson scattering. For quantitative calculations these have
to be included. Moreover, polarization effects are highly interesting, as I shall explain later. We shall take
up this topic in Sect. 8.7.

8.2 Acoustic oscillations

In this section we study the photon-baryon fluid. Our starting point is the following approximate system of
equations. For the baryons we use (8.4) and (8.5), neglecting the term proportional to 7. We truncate the
photon hierarchy, setting §; = 0 for I > 3. So we consider the system of first order equations:

1
by = —5 kb1 — ', (8.12)

31 In the notation of Sect. 1.4 we have set ¢a = I'a = 0, and are thus ignoring certain intrinsic entropy perturbations within
individual components.
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2
0 = k(00 + ¥ = 20,) = (61 — ), 8.13)
5y = —kVi, — 39/, (8.14)
V) = —aHV, + kciop + kY + 7(0; — V3)/R, (8.15)

and (8.8). This is, of course, not closed (¢ and ¥ are “external” potentials).

As long as the mean free path of photons is much shorter than the wavelength of the fluctuation, the
optical depth through a wavelength ~ 7 /k is large™. Thus the evolution equations may be expanded in the
small parameter k /7.

In lowest order we obtain ¢ = V4, 6 = 0 for [ > 2, thus &, = 360, (= 307, /4).

Going to first order, we can replace in the following form of (8.15)

B !/
0, — Vo =+ 'R |V + %91 - k\p} (8.16)
on the right V}, by 6;:
_ S
6, —Vy =7 'R e’1+a91k\p} (8.17)
We insert this in (8.13), and set in first order also 65 = 0:
/
egzk(eﬁqf)—R[eHZw—w] (8.18)
Using o/ /a = R’/ R, we obtain from this
1 R’
0] = ——=kbp + k¥ — 01. 8.1
1T Ir R 1+R" (.19

Combining this with (8.12), we obtain by eliminating 6, the driven oscillator equation:

R /
96’ + 1+7R %96 + c§k290 = F(’l]), (820)
with
1 k2 R d
e F))=——0 - — 3 — . 8.21
“ T 31+R) () 3 1+Ra 8.21)

According to (1.186) and (1.187) ¢, is the velocity of sound in the approximation ¢, ~ 0. It is suggestive
to write (8.20) as (meg = 1 + R)

k2
(memfp)” + 5 (0o +me¥) = —(meg®')'. (8.22)

This equation provides a lot of insight, as we shall see. It may be interpreted as follows: The change
in momentum of the photon-baryon fluid is determined by a competition between pressure restoring and
gravitational driving forces.

Let us, in a first step, ignore the time dependence of meg (i.e., of the baryon-photon ratio R), then we
get the forced harmonic oscillator equation

k? k?

meff%' + 390 = 7§meﬂ‘\lj — (meffq)l)/. (8.23)

32 Estimate +/k as a function of redshift z > zrec and (aH/k).
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The effective mass meg = 1 + R accounts for the inertia of baryons. Baryons also contribute gravitational
mass to the system, as is evident from the right hand side of the last equation. Their contribution to the
pressure restoring force is, however, negligible.

We now ignore in (8.23) also the time dependence of the gravitational potentials ®, ¥. With (8.21) this
then reduces to

0y + k*c200 = — 1 k>0, (8.24)

This simple harmonic oscillator under constant acceleration provided by gravitational infall can immediately
be solved:

6o(n) = [00(0) + (1 + R)¥] cos(krs) + kiéo(()) sin(krs) — (1+ R)¥, (8.25)

Cs

where 75(n) is the comoving sound horizon [ csdn.
We know (see (6.54)) that for adiabatic initial conditions there is only a cosine term. Since we shall see
that the “effective” temperature fluctuation is AT = 6y + U, we write the result as

AT(n, k) = [AT(0,k) + R¥] cos(krs(n)) — RU. (8.26)

Discussion

In the radiation dominated phase (R = 0) this reduces to AT'(n) o coskrs(n), which shows that the
oscillation of 6 is displaced by gravity. The zero point corresponds to the state at which gravity and pressure
are balanced. The displacement —¥ > 0 yields hotter photons in the potential well since gravitational infall
not only increases the number density of the photons, but also their energy through gravitational blue shift.
However, well after last scattering the photons also suffer a redshift when climbing out of the potential
well, which precisely cancels the blue shift. Thus the effective temperature perturbation we see in the CMB
anisotropies is indeed AT = 6y + ¥, as we shall explicitely see later.
It is clear from (8.25) that a characteristic wave-number is k = 7/75(ndcc)
/2 T/ CsNdec- A spectrum of k-modes will produce a sequence of peaks with wave numbers

km = mm/rs(Mdec), m=1,2,.... (8.27)

Odd peaks correspond to the compression phase (temperature crests), whereas even peaks correspond to
the rarefaction phase (temperature troughs) inside the potential wells. Note also that the characteristic
length scale 7 (74ec ), Which is reflected in the peak structure, is determined by the underlying unperturbed
Friedmann model. This comoving sound horizon at decoupling depends on cosmological parameters, but
not on 2. Its role will further be discussed below.

Inclusion of baryons not only changes the sound speed, but gravitational infall leads to greater compres-
sion of the fluid in a potential well, and thus to a further displacement of the oscillation zero point (last term
in (8.25)). This is not compensated by the redshift after last scattering, since the latter is not affected by the
baryon content. As a result all peaks from compression are enhanced over those from rarefaction. Hence,
the relative heights of the first and second peak is a sensitive measure of the baryon content. We shall see
that the inferred baryon abundance from the present observations is in complete agreement with the results
from big bang nucleosynthesis.

‘What is the influence of the slow evolution of the effective mass m.g = 1+ R? Well, from the adiabatic
theorem we know that for a slowly varying m.g the ratio energy/frequency is an adiabatic invariant. If
A denotes the amplitude of the oscillation, the energy is %meﬁw2A2. According to (8.21) the frequency

w = kc; is proportional to me_ﬁl/Q. Hence A ox w™1/? mif/;l o (14 R)~1/4,
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Photon diffusion. In second order we do no more neglect 65 and use in addition (8.8),
2 3 9
0! :k(fa 770)7 -y 8.28
2 gt —70s) — 71502, (8.28)

with 63 ~ 0. This gives in leading order
20 . _
Oy =~ 577 1k, . (8.29)

If we neglect in the Euler equation for the baryons the term proportional to a’ /a, then the first order equation
(8.17) reduces to

Vi =6, — 7 'R[0] — kV]. (8.30)
We use this in (8.16) without the term with a’/a, to get

RQ

0y — Vy =7 'R[O] — k] — — (6 — kV'). (8.31)
T

This is now used in (8.13) with the approximation (8.29) for #5. One finds

! 8 kz R2 1! I
(1+ R)O, = Kl + (1+ )W) — o= — + — (6 — k). (8.32)

In the last term we use the first order approximation of this equation, i.e.,
(1+ R)(0] — k¥) = kb,
and obtain
8 k2 k R? o

(1+ R)0; =k[bp+ (1 4+ R)TV] — — — +

2 F  F1+R (8.33)

Finally, we eliminate in this equation 67 with the help of (8.12). After some rearrangements we obtain

TR 8 1 K2 k2 8 k2 1
ny 8 O+ — gy SE L g g3
ot T re T9irR| T 30 R T warirr &3

The term proportional to 6}, in this equation describes the damping due to photon diffusion. Let us determine
the characteristic damping scale.

If we neglect in the homogeneous equation the time dependence of all coefficients, we can make the
ansatz 6y o< exp(i [ wdn). (We thus ignore variations on the time scale a/a with those corresponding to
the oscillator frequency w.) The dispersion law is determined by

2+‘wk2 R? +8 1 Jrkz 1 0
e 2 A —
37 |[(1+R)? 91+R 31+R 7
giving
1R+ E5(1+R)

=dkcy+i—FT—rP " 8.35

O E T U+ Ry (83
So acoustic oscillations are damped as exp[—k?/k%)], where

1 [1RP+E%(1+R)
k2 == | - ——2_""dn. 8.36
D 6/7" a+r2 (8.36)
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This is sometimes written in the form

R+ 2f711+R
1/l t5h (Lt )dn (8.37)

kh = —
P76)+  (1+R)

Our result corresponds to fo = 9/10. In some books and papers one finds fo = 1. If we would include
polarization effects, we would find fo = 3/4. The damping of acoustic oscillations is now clearly observed.

Sound horizon. The sound horizon determines according to (8.27) the position of the first peak. We
compute now this important characteristic scale.

The comoving sound horizon at time 7 is

n
rs(n) = /O cs(n')dn'. (8.38)

Let us write this as a redshift integral, using 1 4+ z = ag/a(n), whence by (0.52) for K # 0

1 dz dz

dn=———— = —|Qk|"/? . 8.39
g ag H(z) (2] E(2) (8.39)
Thus
oo dZ/
— 1/2
re(z) = Qx| / cs(2) e (8.40)
This is seen at present under the (small) angle
rs(2)
0s(z) = : 8.41
where 7(z) is given by (0.56) and (0.57):
z dZI
=S (|| / : 8.42
) =5 (1l [ 52 .42
Before decoupling the sound velocity is given by (8.21), with
30, 1
2% . 8.43
40,142 (8.43)

We are left with two explicit integrals. For zq.. we can neglect in (8.40) the curvature and A terms. The
integral can then be done analytically, and is in good approximation proportional to (Q,7)~/2 (exercise).
Note that (8.42) is closely related to the angular diameter distance to the last scattering surface (see (0.34)
and (0.60)). A numerical calculation shows that 8(24..) depends mainly on the curvature parameter Q.
For a typical model with Q = 2/3, Quh3 = 0.02, Qph3 = 0.16, n = 1 the parameter sensitivity is
approximately [48]

A0, A(Qrh2) A(Qh2) AQ, AQo
~ .24 —0.07 0.17 1.1 :
0, Qurh2) QyhZ * o o,
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8.3 Formal solution for the moments 6,

We derive in this section a useful integral representation for the brightness moments at the present time.
The starting point is the Boltzmann equation (7.74) for the brightness temperature fluctuations ©(n, k, ),

(O + ) + k(O + W) = W — & + 7y — © — iV — %ezpz(u)]. (8.44)
This is of the form of an inhomogeneous linear differential equation

v +g(x)y = h(z),
whose solution can be written as (variation of constants)

y(z) — G {yo Jr/ h(x/)eCJ(an')dx/}7

Zo

with
G(x) = /xg(u)du.

Inourcase g = iku+7, h="7[0p + ¥ —iuV, — %GQPQ(/,L)] + U’ — @', Therefore, the present value of
O + U can formally be expressed as

(© + W) (10, s k) =
7o 1 .
/ dn [+(90 + W —ipVy = 15 02P) + W — @ e~ T(mmo) gtkp(n=mo),
0

(8.45)

where

7o
7(777770):/ Tdn (8.46)
n

is the optical depth. The combination 7e~" is the (conformal) time visibility function. It has a simple
interpretation: Let p(n, o) be the probability that a photon did not scatter between 1 and today (7).
Clearly, p(n — dn,m0) = p(n,m0)(1 — 7dn). Thus p(n, 1) = e~7"10) and the visibility function times
dn is the probability that a photon last scattered between 7 and 7 + dr). The visibility function is therefore
strongly peaked near decoupling. This is very useful, both for analytical and numerical purposes.

In order to obtain an integral representation for the multipole moments 6;, we insert in (8.45) for the
p-dependent factors the following expansions in terms of Legendre polynomials:

e o= — N "(—i) (20 + 1)5i(k(no — m)) Pu(p), (8.47)
l
—ipe M0 =N (i) (20 + 1) (ko — 1)) Pi(), (8.48)
l
(=) Pa(p)e ™m0 = S™(—i) (20 4 1) S35 + P ) (8.49)

l

Here, the first is well-known. The others can be derived from (8.47) by using the recursion relations (7.84)
for the Legendre polynomials and the following ones for the spherical Bessel functions

i1 — (L + )i = (204 1)3p, (8.50)
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or by differentiation of (8.47) with respect to k(19 — 7). Using the definition (7.75) of the moments 6;, we
obtain for [ > 2 the following useful formula:

[ o , . . ) P | . .
Oilm) =/ dne= ™" {(790 +T\P+\If’—<1>’)Jz(k(no—77))+T%J{+T—92(BJ{’+31)]~ (8.51)
20+1  Jy 20

Sudden decoupling approximation. In a reasonably good approximation we can replace the visibility
function by the d-function, and obtain with An = 19 — Ndec, Vo (Ndec) = 01(Nqec) the instructive result

0 k
P0K) - 9+ ), () + 63 (e G ED) + ISW + Quad. (852)

Here, the quadrupole contribution (last term) is not important. ISW denotes the integrated Sachs-Wolfe
effect:

70
ISW = | dn(¥' = 2)ji(k(m0 —m)). (8.53)
which only depends on the time variations of the Bardeen potentials between recombination and the present
time.

The interpretation of the first two terms in (8.52) is quite obvious: The first describes the fluctuations of
the effective temperature 0y + ¥ on the cosmic photosphere, as we would see them for free streaming between
there and us, if the gravitational potentials would not change in time. (¥ includes blue- and redshift effects.)
The dipole term has to be interpreted, of course, as a Doppler effect due to the velocity of the baryon-photon
fluid. It turns out that the integrated Sachs-Wolfe effect enhances the anisotropy on scales comparable to
the Hubble length at recombination.

In this approximate treatment we have to know — beside the ISW — only the effective temperature 6y + ¥
and the velocity moment #; at decoupling. The main point is that Eq. (8.52) provides a good understanding
of the physics of the CMB anisotropies. Note that the individual terms are all gauge invariant. In gauge
dependent methods interpretations would be ambiguous.

8.4 Angular correlations of temperature
fluctuations

The system of evolution equations has to be supplemented by initial conditions. We can not hope to be able
to predict these, but at best their statistical properties (as, for instance, in inflationary models). Theoretically,
we should thus regard the brightness temperature perturbation ©(n, z¢,~7) as a random field. Of special
interest is its angular correlation function at the present time 7)9. Observers measure only one realization of
this, which brings unavoidable cosmic variances (see the Introduction to Part III).

For further elaboration we insert (7.75) into the Fourier expansion of ©, obtaining

9(77)1:77) = (271-)_3/2/dgkzel(nak>Gl(w7’7;k>7 (854)
l

where
Gi(a,v; k) = (—i)' Py(k - ~) exp(ik - z). (8.55)

With the addition theorem for the spherical harmonics the Fourier transform is thus

4 ~
0.k, 7) = D Yiun (7) g i) (=)' Vi (). (8.56)
Im
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This has to be regarded as a stochastic field of k (parametrized by ~ ). The randomness is determined
by the statistical properties at an early time, for instance after inflation. If we write © as (dropping 7)
R(k) x (©(k,~v)/R(k)), the second factor evolves deterministically and is independent of the initial
amplitudes, while the stochastic properties are completely determined by those of R (k). In terms of the
power spectrum of R(k),

272
K3

(see (5.14)), we thus have for the correlation function in momentum space

(R(k)R*(K")) = =5 Pr(k)§°(k — k') (8.57)

272 Ok, k- ~) ©*(k, k- ~")
O(k,v)O*(K',~")) = == Pr(k)&8*(k — k' : ’ : 8.58
Because of the §-function the correlation function in x-space is
’ dsk 3 1./ A
(O(z,v)0(x, ")) = on) d°k'(O(k,v)O(K',~")). (8.59)
Inserting here (8.56) and (8.58) finally gives
Oz, 9)0(@,+)) = — S L+ 1)C Py ) (8.60)
b ) 47T l )
with
(20 +1)? /°° dk | 6,(k) |?
—C; = — P . .61
yrae ok |R(k) = (k) (8.61)

Instead of R (k) we could, of course, use another perturbation amplitude. Note also that we can take R (k)

and Pg (k) at any time. If we choose an early time when Pg (k) is given by its primordial value, P7(3lD rim) (k),
then the ratios inside the absolute value, 6;(k)/R(k), are two-dimensional CMB transfer functions.

8.5 Angular power spectrum for large scales

The angular power spectrum is defined as [(I + 1)C} versus (. For large scales, i.e., small [, observed first
with COBE, the first term in Eq. (8.52) dominates. Let us have a closer look at this so-called Sachs-Wolfe
contribution.

For large scales (small k) we can neglect in the first equation (8.6) of the Boltzmann hierarchy the term
proportional to k: 6, = —®’ ~ U’, neglecting also II (i.e., f) on large scales. Thus

o(n) = 60(0) + () — T(0). (8.62)

To proceed, we need a relation between y(0) and ¥(0). This can be obtained by looking at superhorizon
scales in the tight coupling limit, using the results of Sect. 6.1. (Alternatively, one can investigate the
Boltzmann hierarchy in the radiation dominated era.)

From (7.77) and (1.175) or (1.217) we get (recall x = Ha/k)

1 1
00 = ZAS’Y = ZAC’Y —xV.
The last term can be expressed in terms of A, making use of (6.10) for w = 1/3,
3 9
xV = 4% (D —-1)A.
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Moreover, we have from (6.41)

3 C+1 ¢

120 T et T ran”

Putting things together, we obtain for ( < 1

3, 1 1
0y = 1 l:l‘ (D-1)+ 4] A 4(5‘, (8.63)
thus
3, 1
0y ~ Zm (D-1)A— ZCS’ (8.64)

on superhorizon scales (x > 1).
For adiabatic perturbations we can use here the expansion (6.39) for w < 1 and get with (6.9)

00(0) ~ Z:cQA = % T(0). (8.65)
For isocurvature perturbations, the expansion (6.40) gives

00(0) = ¥(0) = 0. (8.66)
Hence, the initial condition for the effective temperature is

3U(0) : (adiabatic)

. (8.67)
0 : (isocurvature).

(0o + ¥)(0) = {
If this is used in (8.62) we obtain

Oo(n) = T(n) — g\ll(()) for adiabatic perturbations.

On large scales (2.32) gives for ¢ > 1, in particular for 7;ec,

W) = 1%\1:(0). (8.68)

Thus we obtain the result (Sachs-Wolfe)

1
(0o + ¥)(Ndec) = g\Il(ndec) for adiabatic perturbations. (8.69)

On the other hand, we obtain for isocurvature perturbations with (8.66) 6y(n) = ¥ (), thus

’ (0o + ) (Ndec) = 2¥(ngec) | for isocurvature perturbations. (8.70)

Note the factor 6 difference between the two cases. The Sachs-Wolfe contribution to the 6; is therefore

8.71)

05wV (k) _ 20 (naee)i(kAn) : (adiabatic)
20+ 1 2U (naec)ji(kAn) : (isocurvature).

We express at this point ¥ (7)qe. ) in terms of the primordial values of R and S. For adiabatic perturbations
‘R is constant on superhorizon scales (see (1.138)), and according to (4.67) we have in the matter dominated
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eraV = — %R On the other hand, for isocurvature perturbations the entropy perturbation S' is constant
on superhorizon scales (see Sect. 6.2.1), and for ¢ > 1 we have according to (6.45) and (6.9) ¥ = — %S .

Hence we find

1 1 .
(90 + \P)(ndec) — _E(R(Prlm) + 2s(pr1m)).

(8.72)

The result (8.71) inserted into (8.61) gives the the dominant Sachs-Wolfe contribution to the coefficients

C; for large scales (small [). For adiabatic initial fluctuations we obtain with (8.72)

25

47 Oodk . rim
P = 5 | G k) P ),

Here we insert (6.82) and obtain

QO \? [ dk
OSW ~ pppl-ns2 ( M ) /ﬁ — li(kAD))?.
l 0 H Dg(O) 0 k2—n | l( 77)|

The integral can be done analytically. Eq. 11.4.34 in [39] implies as a special case

® A (a2 P2
t=MJu(at)]?dt =
A ! 2Xa! AT (u + 1)T(24)
20— A+1 =A+1
XQFl(M 2+ y 2+ ,M+1,1)

Since

3(0) =\ 3y 0)

the integral in (8.74) is of the form (8.75). If we also use Eq. 15.1.20 of the same reference,

LIy —a—p)
T(y—a)T(y-B)’

oF 1 (ar, B33 1) =

we obtain

I'(3—n) T(2H=1)

A tniQ[jl(ta)Pdt = 24—n7;n—1 [1'\(4—777)]2 F(2l+57n)

and thus

QM >2 F(S—TL) F(Zl-',—;L—l)
)/

Dy(0) ) [D(453%)]? T(3H5=2)

CZSW ~ 2”7471'2(1{0770)17”5%1 (

For a Harrison-Zel’dovich spectrum (n = 1) we get

2
sw _ T <o Qm
1+ 1)C _25H(D9(0)>'

(8.73)

(8.74)

(8.75)

(8.76)

(8.77)

(8.78)

Because the right-hand side is a constant one usually plots the quantity I(I + 1)C) (often divided by 27).
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8.6 Influence of gravity waves on CMB anisotropies

In this section we study the effect of a stochastic gravitational wave background on the CMB anisotropies.
According to Sect. 5.2 such a background is unavoidably produced in inflationary models.

A. Basic equations. We consider only the case K = 0. Let us first recall some basic formulae from Sects.
5.2 and 7.6. The metric for tensor modes is of the form

g =a*(n)[—dn® + (6;; + 2H,;)dz'dz’]. (8.79)
For a mode H;; x exp(ik - ), the tensor amplitudes satisfy

H'; =0, H k' =0. (8.80)
The tensor perturbations of the energy-momentum tensor can be parametrized as follows

§T% =0, 0T% =0, 6T"; = {7y, (8.81)

)

where H(T)j satisfies in k-space
()i = 0, Tig);k* =0. (8.82)
According to (5.59) the Einstein equations reduce to
!
HY + 25 Bl + K Hyy = 87Ga® L 1. (8.83)
a
The Boltzmann equation (7.98) becomes in the metric (8.79)
©' + iku® = —H;~'y’. (8.84)

The solution of this equation in terms of H;; is
0 o )
O,y y) = = | Hijmo, k)y'y’e” 0= dn. (8.85)
0

For the photon contribution to HéT)j we obtain as in Sect. 7.5

1, do,

To this one should add the neutrino contribution, but in what follows we can safely neglect the source Hz('T)
in the Einstein equation (8.83).

i

B. Harmonic decompositions. We decompose H;; as in Sect. 5.2:

Hij(n,k) = > ha(n k)eij(k, \), (8.87)
A==42

where the polarization tensor satisfies (5.65). If k = (0, 0, k) then the x,y components of ¢;;(k, \) are

(eij(k,N)) = ( b >,/\—i2. (8.88)
Fr —1
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One easily verifies that for this choice of k

ANy — 26Y) = — 4/ =Y , A=+£2. 8.89
N0 = 50 = 5y 5 () (8.89)
If we insert this and the expansion
e =) = dg Y (=) % (ko — m)Yas (k) Vi () (8.90)
LM

in (8.85) we obtain for each polarization A the expansion (dropping the variable 7)

Z agy) (k) Yim (v (8.91)

with

LM
\/’“ / YVQ,\ YLM(')’)dQ—y (892)
Since k points in the 3-direction we have YL*M(IQ:) = dnmo 2{;“ If we also use the spherical integral

. (2l+1)5(2L+1)]1/2 I 2 L I 2 L
V¥ YorYrodQ = —1ym
/“"”LO [ i 000 ) S a0

we obtain

8 [T . :
afy) = ?/0 dnh(n, k)2L+ D)2 " jr(k(no — ) (=) XL A0ma,

L=1,142

, (L 1 2 L I 2 L
(=)' X = ( )L(2L+1)<0 0 0><—m \ 0).

Note that this is invariant under A — —\. With a table of Clebsch-Gordan coefficients one readily finds

where

Xia = —\/g[(l +2)(1+ )i — 1) m’

_ 3 e 1
Xiran = \/;[ } @l +3)2+1)

3 1
&*J:‘Vg“*/muﬁxm_n’

> gLXpa=-— 3{(l+2)!}1/2

— 92!
L=1,14+2 8 (l 2)'

and thus
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Jit+2 Ji Ji—2
GraETD lEy@ D T @i @)

Using twice the recursion relation

Jiz)
r  2+1

(Ji—1 + Jis1)s

shows that the last square bracket is equal to j;(k(no — 1))/ [k(no — 1)]?. Thus we find

1/2
o) = VA [
oo 172 Ji(k(no —m))
X/o dnh’\(n,k)(2l + 1) Tl =2 Omx-

(8.93)

Recall that so far the wave vector is assumed to point in the 3-direction. For an arbitrary direction al(i‘n) (k)
()

lm

is determined by (see (8.91) and use the fact that a; ’ (k) is proportional to d,,)

Zalm Yim(v) = alX) (k)Yin (R~ (R)y),

where R(k) rotates (0,0,1) to k. Let D!, (k) be the corresponding representation matrices>. Since
Yia(R™ (k)y) = Dhos (B)Yim (v),

we obtain
apy) (k) = afy) (k) D, (k). (8.94)

where al(;\\)(k) is given by (8.93) form = A.

C. The coefficients C; for tensor modes. For the computation of the C;’s due to gravitational waves we
proceed as in Sect. 8.4 for scalar modes. On the basis (8.91) and (8.94) we can write

a, -~
O, k,y) = ha (s, K Zh;”; Dy (B)Yim (), (8.95)

where 7; is some very early time, e.g., at the end of inflation. A look at (8.93) shows that the factor
al(?n) (k)/hx(ns, k) involves only K\ (1, k)/hx(n;, k), and is thus independent of the initial amplitude of h
and also independent of A (see paragraph D below). The stochastic properties are entirely located in the first
factor of (8.95). Its correlation function is given in terms of the primordial power spectrum Péprim) (k) of

the gravitational waves:

272 . .
D (ha (s )R (01, ) = - PP (R)5% (e — B (8.96)
A

33 The Euler angles are (0,9, 0),where (19, ) are the polar angles of k.
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(see also (5.73)). With this and the orthogonality properties of the representation matrices

N A 2041

/ dWDL (R)DL% s (B) = 2L 600, (8.97)

we obtain at the present time
’ 1 GW ’
Oz, 1)0(,7)) = = D 2+ DV Ry - ), (8.98)
l
with
oo (A)
C dm / dkk? Lﬂzp(prim)(k) Am (k)
T 2+1 (2m)3 k3 9 ha(ni, k)

Finally, inserting here (8.93) gives our main result

GW __ (l+2)'/ (prlm)
=

(8.99)

/ k) gi(k(no —m)) ’
i m, ) [k(no —n)]?

Note that the tensor modes (8.95) are in I?:-space orthogonal to the scalar modes, which are proportional

~

to D! (k).

D. The modes hy(n, k). In the Einstein equations (8.83) we can safely neglect the anisotropic stresses
I(7y;5. Then hy(n, k) satisfies the homogeneous linear differential equation

!
W+ 2L W 4 k2h =0, (8.100)
a

At very early times, when the modes are still far outside the Hubble horizon, we can neglect the last term

in (8.100), whence h is frozen. For this reason we solve (8.100) with the initial condition h’(n;, k) = 0.
Moreover, we are only interested in growing modes.

This problem was already discussed in Sect. 5.2.3. For modes which enter the horizon during the matter
dominated era we have the analytic solution (5.103),

hi(n) 3j1(/f77) . (8.101)

hi(0) kn
For modes which enter the horizon earlier, we use again a transfer function T} (k):

he(n) _ 3j1(k77)

hi(0) kn

that has to be determined by solving the differential equation numerically.
On large scales (small [), larger than the Hubble horizon at decoupling, we can use (8.101). Since

<j1(:c))’ _ 7%.2(:5)’ (8.103)

T

Ty(k), (8.102)

we then have

Wink) o)
3h(0, k) x

.z = k. (8.104)
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Using this in (8.99) gives

L+2)! [ dE _rim
CFW:QWM/O ?Pg(p ) (k)IE (k), (8.105)
with
o gi(xo — x)ja(x
Il(k):/ de7 0 = ko (8.106)
. _

Remark. Since the power spectrum is often defined in terms of 2H;;, the pre-factor in (8.105) is the 4
times smaller.
For inflationary models we obtained for the power spectrum Eq. (5.82),

4 H?
Py(k) ~ — — , (8.107)
! m M}gl k=aH
and the power index
ny ~ —2e¢. (8.108)

For a flat power spectrum the integrations in (8.105) and (8.106) can perhaps be done analytically, but I
was not able to do achieve this.

E. Numerical results A typical theoretical CMB spectrum is shown in Fig. 8.1. Beside the scalar contri-
bution in the sense of cosmological perturbation theory, considered so far, the tensor contribution due to
gravity waves is also plotted.

Parameter dependences are discussed in detail in [47] (see especially Fig. 1 of this reference).

8.7 Polarization

A polarization map of the CMB radiation provides important additional information to that obtainable
from the temperature anisotropies. For example, we can get constraints about the epoch of reionization.
Most importantly, future polarization observations may reveal a stochastic background of gravity waves,
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generated in the very early Universe. In this section we give a brief introduction to the study of CMB
polarization.

The mechanism which partially polarizes the CMB radiation is similar to that for the scattered light from
the sky. Consider first scattering at a single electron of unpolarized radiation coming in from all directions.
Due to the familiar polarization dependence of the differential Thomson cross section, the scattered radiation
is, in general, polarized. Itis easy to compute the corresponding Stokes parameters. Not surprisingly, they are
not all equal to zero if and only if the intensity distribution of the incoming radiation has a non-vanishing
quadrupole moment. The Stokes parameters () and U are proportional to the overlap integral with the
combinations Y3 o £ Y5 _5 of the spherical harmonics, while V' vanishes.) This is basically the reason why
a CMB polarization map traces (in the tight coupling limit) the quadrupole temperature distribution on the
last scattering surface.

The polarization tensor of an all sky map of the CMB radiation can be parametrized in temperature
fluctuation units, relative to the orthonormal basis {d¥, sin ¥ dp} of the two sphere, in terms of the Pauli
matrices as ©-14+Qo3+Uoc;+V 0. The Stokes parameter V' vanishes (no circular polarization). Therefore,
the polarization properties can be described by the following symmetric trace-free tensor on S

_[(@ U
(Pas) = ( U —Q ) : (8.109)

As for gravity waves, the components () and U transform under a rotation of the 2-bein by an angle « as
Q +iU — e2(Q +iU), (8.110)

and are thus of spin-weight 2. P,;, can be decomposed uniquely into ‘electric’ and ‘magnetic’ parts:
Pab = Eiab — 39abAE + 5 (€0 Bipe + €6 Bac). (8.111)

Expanding here the scalar functions £ and B in terms of spherical harmonics, we obtain an expansion of
the form

Pap = Z Z [a(Elm)Yv(lEm)ab + a’(B;m)Yv(le)ab] (81 12)

=2 m

in terms of the tensor harmonics:
}/(lEm)ab = Nl (Y(lm);ab - %gabif(lm);cc) ’ 5/(le)@[) = %NI(Y(lm);acacb +a & b)a (8113)

where [ > 2 and

N, = (2((ll+—22))!!)1/2'

Equivalently, one can write this as

Q+iU = ﬁi > [aﬁm) + iaﬁm)} Y (8.114)

=2 m

where Y, are the spin-s harmonics:

[20+1
Y = D ) .
st 471_ —s,m( 78070)
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The multipole moments aﬁm) and agm) are random variables, and we have equations analogous to those
of the temperature fluctuations, with

1
TE Ox E
i~ = Y gm (aprag,), ete. (8.115)

(We have now put the superscript © on the a;,, of the temperature fluctuations.) The C;’s determine the
various angular correlation functions. For example, one easily finds

OMm)Q(n")) = Z crE 2l4+ lNlPl (cos ) (8.116)
1

(the last factor is the associated Legendre function /™ for m = 2).
For the space-time dependent Stokes parameters () and U of the radiation field we can perform a normal
mode decomposition analogous to

9(77,337’7) = (271')_3/2/d3k291<7]ak>Gl($7’Y§k>7 (8.117)
l

where
Gi(z,y: k) = (—i)' Pi(k - ) exp(ik - x). (8.118)

If, for simplicity, we again consider only scalar perturbations this reads

Qiﬁ]:@ﬂ*ﬂ/ﬁ%EjEﬁj&hjﬁ, (8.119)
l
where
1\ /2
Gtk = (0t (2 ) ) explik ) (5.120)
I

if the mode vector k is chosen as the polar axis. (Note that (G; in (8.118) is equal to OG?.)

The Boltzmann equation implies a coupled hierarchy for the moments 6;, £, and B; [49,50]. It turns out
that the B; vanish for scalar perturbations. Non-vanishing magnetic multipoles would be a unique signature
for a spectrum of gravity waves. We give here, without derivation, the equations for the Ej:

12— 4)1/2 1+1)% —4]1/2 .
E| = k{(%_)lEl—l - %Elﬂ —7(E + \/6P5l,2)7 (8.121)
where
1
= s[>~ VoEs]. (8.122)

The analog of the integral representation (8.51)is

—‘r(’r] (k(no - 77))
S AU e ®129

For large scales the first term in (8.122) dominates, and the E; are thus determined by 6.
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For large [ we may use the tight coupling approximation in which Ey = —/6 = P = 0, /4. In the

sudden decoupling approximation, the present electric multipole moments can thus be expressed in terms
of the brightness quadrupole moment on the last scattering surface and spherical Bessel functions as

Ey(no,k) 3 1 ju(kno)
— 892<77de(:7k) (knO)Q .

2l+1
Here one sees how the observable E;’s trace the quadrupole temperature anisotropy on the last scattering
surface. In the tight coupling approximation the latter is proportional to the dipole moment 6, .

(8.124)

8.8 Observational results

In recent years several experiments gave clear evidence for multiple peaks in the angular temperature power
spectrum at positions expected on the basis of the simplest inflationary models and big bang nucleosynthesis
[51]. These results have been confirmed and substantially improved by WMAP [52] (see Fig. 8.2).

In spite of the high accuracy of the data, it is not possible to extract unambiguously cosmological
parameters, because there are intrinsic degeneracies, especially when tensor modes are included. These can
only be lifted if other cosmological information is used. Beside the supernova results, use has been made for
instance of the available information for the galaxy power spectrum (in particular from the 2-degree-Field
Galaxy Redshift Survey (2dFGRS)), and limits for the Hubble parameter. For example, if one adds to the
CMB data the well-founded constraint Hy > 50 km/s/Mpe, then the total density parameter Q.4 has to
be in the range 0.98 < Qo1 < 1.08 (95 %) (see Fig. 8.3). The Universe is thus spatially almost flat. (For
further evidence, see Fig. 8.4.) In what follows we therefore always assume K = 0.
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based on the same models and
data as in Fig. 8.3. (Adapted from
[47, Fig. 9].)
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Table 1
Parameter CMB alone CMB and 2dFGRS
Qph 0.024 + 0.001 0.023 + 0.001
Qarh 0.14 £ 0.02 0.134 4+ 0.006
ho 0.72 + 0.05 0.71 £ 0.04
Qp 0.047 £ 0.006 ~ same
Qs 0.29 £0.07 ~ same

Table 1 is extracted from the extended analysis [53] of the WMAP data and other cosmological infor-
mation. It shows the 68% confidence ranges for some of the cosmological parameters for two types of fits,
assuming a ACDM model. In the first only the CMB data are used (but tensor modes are included), while
in the second these data are combined with the 2dFGRS power spectrum (assuming adiabatic, Gaussian
initial conditions described by power laws).

Note that there is little difference between the two columns. The age of the Universe for these parameters
is close to 14 Gyr. Another interesting result coming from the rise of the temperature-polarization correlation
function at large scales (small /) in Fig. 2 is that reionization of the Universe has set in surprisingly early —,
at a redshift of z, = 17 & 5, with a corresponding optical depth 7 = 0.17 & 0.06.

Before the new results possible admixtures of isocurvature modes were not strongly constraint. But now
the measured temperature-polarization correlations imply that the primordial fluctuations were primarily
adiabatic. Admixtures of isocurvature modes do not improve the fit.

One worry is that the quadrupole amplitude (C2) measured by WMAP is lower than expected according
to the best fit ACDM model [28]. This issue has led to lots of discussions. A reanalysis [54] of the effects
of Galactic cuts indicates that this discrepancy is not particularly significant, being in the region of a few
percent. This issue may look differently, once the second year WMAP data have been analyzed. (We are
still eagerly waiting for seeing this.)

WMAP has determined the amplitude of the primordial power spectrum:

PP (1) ~ 295 x 1079 A, A = 0.6-1 (8.125)
(depending on the model). Using (5.46) this implies

1 H? 9
hence the Hubble parameter during inflation is

H~ (0.9 —1.2) x 10%/2 GeV. (8.127)
With (5.36) this gives

UY* ~ (6.3 —7.1) x 10'%/* GeV. (8.128)

The WMAP data constrain the ratio P, /Pr, and hence by (5.90) also ¢ : & < 0.08. Therefore, we can
conclude that the energy scale of inflation has to satisfy the bound

U'Y* < 3.8 x 106 GeV. (8.129)

A positive detection of the B - mode in the CMB polarization would provide a lower bound for U/%,
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8.9 Concluding remarks

A wide range of astronomical data support the following ‘concordance’ ACDM model: The Universe is
spatially flat and dominated by vacuum energy density and weakly interacting cold dark matter. Furthermore,
the primordial fluctuations are adiabatic and nearly scale invariant, as predicted in simple inflationary models.
Deviations from Gaussian statistics are small**,

A vacuum energy with density parameter {24 ~ 0.7 is so surprising that it should be examined whether
this conclusion is really unavoidable. Since we do not have a tested theory predicting the spectrum of
primordial fluctuations, it appears reasonable to consider a wider range of possibilities than simple power
laws. An instructive illustration in this direction has been given in [56], by constructing an Einstein-de Sitter
model with Q5 = 0, fitting the CMB data as well as the power spectrum of 2dFGRS. In this the Hubble
constant is, however, required to be rather low: Hy ~ 46 km/s/Mpc. The authors argue that this cannot
definitely be excluded, because ‘physical’ methods lead mostly to relatively low values of H. In order to be
consistent with matter fluctuations on cluster scales they add relic neutrinos with degenerate masses of order
eV or a small contribution of quintessence with zero pressure (w = 0). In addition, they have to ignore the
direct evidence for an accelerating Universe from the Hubble-diagram for distant Type Ia supernovas, on
the basis of remaining systematic uncertainties. There is also the question whether the model is compatible
with the observed large scale structure.

We do not discuss here other recent proposals. It is very likely that the present concordance model will
survive. Additional evidence is steadily accumulating. But the mysteries of Dark Matter and Dark Energy
will remain with us for a long time.

Note Added in Proof. Shortly before this paper was published, the improved WMAP data after three years
of integration became available [astro-ph/0603449; astro-ph/0603450]. There have also been significant
improvements in other astronomical data (high redshift supernovae, galaxy clustering, etc.). It is most
remarkable that a six parameter cosmological ACDM model is able to fit a rich body of astronomical
observations. An exciting result is that the WMAP data match the basic inflationary model predictions, and
is even well fit by the simplest model V' oc (2.

Appendices
A Random fields, power spectra, filtering

Let £(x) a random field on R3, and £(k) its Fourier transform, normalized according to
£(x) = (2m)~3/2 / £(k)e™ > d%k. (A.1)

In our applications £(x) will be, for instance, the field of density fluctuations §(x) at a fixed time.
In practice £(k) will be distributional (generalized random field).

Correlation function and power spectrum

In our cosmological applications we shall often assume that the different k- modes are uncorrelated:

(ER)EK)) =0 (k —K)P(K). (A2)

.2
Note that ‘5 (k)‘ is not defined. (One might, therefore, prefer to work in a finite volume with periodic
boundary conditions.)

34 The search for non-Gaussian behavior is a topical subject. Such deviations are also expected in inflationary models, when
non-linear corrections are taken into account. For an extended recent review see [55].
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The function P (k) is the power spectrum belonging to £(x). This is also the Fourier transform of the

correlation function:

Celox=x) = (€L = g [ Pk

Filtering

Let W be a window function (filter) and define the filtered £ by
w =ExW.

With our convention we have for the Fourier transforms
éw = (2m)* /26 W

Therefore,
P, (1) = (2m)* 17 (1) | Pl

With (A.3) this gives, in particular

/’W e (K)d3k.

For W we choose a top-hat:

Example

1 47 .
W(X) = Ve(Ri |X|)7 V= ?RJ,

where 6 is the Heaviside function. The Fourier transform is readily found to be

3(sinkR — kRcoskR)

W (k) = (27)%/2W (kR), W(kR) := ok

Thus,
Pe,y (K) = | W (kR) ‘ Pe (k).

For a spherically symmetric situation we get from (A.7)
(& (x) = % / ‘W(kR)‘ng(k)de

(independent of x).
For this reason one often works with the following definition of the power spectrum

kS
Pe(k) = —=Pe(k).
e(k) 1= 55 Pe(k)
Then the last equation becomes
dk
o) = [ [Wn| P -
If £ is the density fluctuation field §(x), the filtered fluctuation o'% on the scale R is

aR—/‘W (kR) ‘ Pg(k)ik
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B Collision integral for Thomson scattering
The main goal of this Appendix is the derivation of equation (7.66) for the collision integral in the Thomson
limit.
When we work relative to an orthonormal tetrad the collision integral has the same form as in special
relativity. So let first consider this case.

Collision integral for two-body scattering

In SR the Boltzmann equation (7.26) reduces to

p'ouf = C[f] (B.1)

or
. 1
0f +v'oif = 5] (B2)

In order to find the explicit expression for C[f] things become easier if the following non-relativistic
normalization of the one-particle states |p, A) is adopted:

¥ N|p,\) = (2m)*55, 26 (p’ — p). (B.3)

(Some readers may even prefer to discretize the momenta by using a finite volume with periodic boundary
conditions.) Correspondingly, the one-particle distribution functions f are normalized according to

3
[ o) (“’2%1; =n, (B.4)

where g is the statistical weight (= 2 for electrons and photons), and n is the particle number density.
The S-matrix element for a 2-body collision p, ¢ — p’, ¢ has the form (suppressing polarization indices)

®.d|S —1lp,q) = —i(2m)*sW (' + ¢ —p— @) (', |T|p, q)- (B.5)

Because of our non-invariant normalization we introduce the Lorentz invariant matrix element M by

M
v, dTlp,q) = : (B.6)
(2p02q02p/02q/0)1/2
The transition probability per unit time and unit volume is then (see, e.g., Sect. 64 of [57])
1 d3p/ d3q/
dw = (2m)* MPsD (' +¢ —p - : B.7
(27) 2p0240 (M8 (" + ¢ —p—q) (27)32p/0 (27)32¢0 (B.7)

Since we ignore in the following polarization effects, we average | M|? over all polarizations (helicities) of
the initial and final particles. This average is denoted by | M|2. Per polarization we still have the formula
(B.7), but with |M|? replaced by |M|2. From time reversal invariance we conclude that |M|? remains
invariant under p, g <> p’, ¢’.

With the standard arguments we can now write down the collision integral. For definiteness we consider
Compton scattering v(p) + e~ (¢) — v(p') + e~ (¢’) and denote the distribution functions of the photons
and electrons by f(p) and f.)(q), respectively. In the following expression we neglect the Pauli suppression
factors 1 — f,), since in our applications the electrons are highly non-degenerate. Explicitly, we have

1 1 / 2d3q 2d3¢’ 2d3p’
(

ﬁc[ﬁ - ﬁ 27)32¢0 (27)32¢'0 (27)32p’0

@m) MPSY (P + ¢ —p—q)
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x {1+ f) fF@) e (d)— 1+ ) F0)fe (@)} - (B.8)

At this point we return to the normalization of the one-particle distributions adopted in Sect. 7.1. This
amounts to the substitution f — 473 f. Performing this in (B.1) and (B.8) we get for the collision integral

1 d3 d3 / d3 /
x{(1+ 47r3f(p)) FO) fold) — A +47°f(0) f(0) fe) (@)} -

Clf] = M2 +¢ —p—q)

(B.9)

The invariant function | M |2 is explicitly known, and can for instance be expressed in terms of the Mandelstam
variables s, t, u (see Sect. 86 of [57]).
The integral with respect to d3¢’ can trivially be done

1 d3q 1 dp 10 10 0 0 3
Cl) = f5m3 | T o5 o807+ 4° =1 = )T x -+ ). (B.10)

The integral with respect to p’ can most easily be evaluated by going to the rest frame of ¢*. Then

1
/dgp’p,oq,05(p’°+q —p’—¢q") /dQ /allpl|p| (m+q°—p"—¢°)--

We introduce the following notation: With respect to the rest system of ¢* let w := p¥ = |p|, w’ :=p¥ =
[p’|, E' = +/q’?> + m?2. Then the last integral is equal to

w’ 1 w'?

E1+0E/ow|  mw

In getting the last expression we have used energy and momentum conservation.
So far we are left with

dS
Qs
clf 1671' m / /

In the rest system of ¢* the following expression for |M|? can be found in many books (for a derivation,
see [58])

\M%{} (B.11)

/
= 3rm2op [

+;_mﬂ, (B.12)

. . . . . . 12—~
where 4 is the scattering angle in that frame. For an arbitrary frame, the combination d€2s “—~|M|? has to
be treated as a Lorentz invariant object.

At this point we take the non-relativistic limit w/m — 0, in which w’ ~ w and C[f] reduces to the

simple expression

Clf] = %awne/mp,u + o2 F () — F )] (B.13)
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Derivation of (7.66)

In Sect. 7.4 the components p* of the four-momentum p refer to the tetrad e,, defined in (7.42). Relative to
this* we introduced the notation p* = (p, py*). The electron four-velocity is according to (1.156) given to
first order by

U(e) = é(l - A)o, + évijv(e)‘jaj =ey+ vfe)ei; vfe) = V(e)i = €i(V(e))- (B.14)
Now w in (B.13) is the energy of the four-momentum p in the rest frame of the electrons, thus

w=—(p.uge)) = pll = &(ve)7']- (B.15)
Similarly,
W' == ue) =L = &(ve)"]- (B.16)
Since in the non-relativistic limit w’ = w, we obtain the relation

P[1 = &i(vie))y""] = p[1 — éiv(e))7']- (B.17)
Therefore, to first order

FO A = OW)+ 5w, 4"

o) _
= ) + ;?);p (v —p)+0f(p,7")
a1 , , .
= 1O + 9= lo)0" =) + 555, (B.18)

Remember that the surface element df2p/ in (B.13) also refers to the rest system. This is related to the
surface element d$2./ by’

I\ 2
Q= <f:> S = [1 4 26;(v(e))7"" ). (B.19)
Inserting (B.18) and (B.19) into (B.13) gives to first order, with the notation of Sect. 7.5,
of0 8o i
C[f] = neorp [(6f) =0 f —prei(U(e))’Y + ZQi'ﬂ Y1, (B.20)

that is the announced equation (7.66).
This approximation suffices completely for our applications. The first order corrections to the Thomson
limit have also been worked out [59].

C Ergodicity for (generalized) random fields

In Sect. 5.2.3 we have replaced a spatial average by a stochastic average. Since this is often done in
cosmology, we add some remarks about what is behind this procedure.

35 Without specifying the gauge one can easily generalize the following relative to the tetrad defined by (7.31).
36 Under a Lorentz transformation, the surface element for photons transforms as

dQ = (W' Jw)2dQY’

(exercise).
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Mathematical remarks on generalized random fields

Let ¢ be a generalized random field. Each ‘smeared’ ¢(f) is a random variable on some probability space
(9, F, ). Often one can choose Q = S'(RP), F : o-algebra generated by cylindrical sets, and ¢(f) the
‘coordinate function’

¢(f)(w) = (w, f), w € S'(RP), feSRP).

Notation: We use the letter ¢ for elements of €2 and interpret ¢( f) as the coordinate function: ¢ — (¢, f).

Let 7, denote the translation of RP by a. This induces translations of €, as well as random variables such
as A = ¢(f1)--- ¢(fn), which we all denote by the same symbol 7,. Assume that 1 is an invariant measure
on (2, F) which is also ergodic: For any measurable subset M € €2 which is invariant under translations
(M) equals O or 1. Then the following Birkhoff ergodic theorem holds: “spatial average (of individual
realization)= stochastic average”, i.e., pi-almost always

1
li — WAda=(A),, C.1
i,y [ e da = (), ©

where A is a finite hypercube, and the right-hand side denotes the stochastic average of the random variable
A.

Generalized random fields on a torus. Often it is convenient to work on a “big” torus 7° with vol-
ume V = LP. Then Q = D'(T”) (periodic distributions), etc. The Fourier transform and cotransform are
topological isomorphisms between D(T'?) and S(AP), AP := (27 /L)PZP , the rapidly decreasing (tem-
pered) sequences®’. These provide, in turn, isomorphisms between D’(T'?) and S’(AP). Each (periodic)
distribution S € D’(TP) can be expanded in a convergent Fourier series

S= % kEXA:D k() Xk Xn(2) = \%Vei'” (C2)
(x1 regarded as a distribution), where

cx(S) = (8, e ko), (C.3)
Written symbolically,

S(x) = é > Spettr, Sy = /S(:c)e_““‘“f du. (C4)

keADP

Let us consider the correlation functions (¢(f)¢(g)),. In terms of the Fourier expansion for ¢(z), we
have

()6 = 1 DRI,

kK’
This is only translationally invariant if the tempered sequences ¢y, are uncorrelated,
(D1r0%) = O (| 01])-

37 For proofs of this and some other statements below, see W. Schempp and B. Dressler, Einfiihrung in die harmonische Analyse
(Teubner, 1980), Sect. 1.8.
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Then

oW, = & 30 10D g, <)
k

<l

By definition, the power spectrum Py (k) of the generalized random field ¢ is the Fourier transform of the
correlation function (distribution)

BEOWN = 3 3 Palk)e ), )

keAD

Therefore,

Py(k) = 3 (08P )

If the measure is ergodic with respect to translations 7,, we obtain p-almost always the same result if we
take for a particular realization of ¢(x) its spatial average. This follows from Birkhoff’s ergodic theorem,
stated above, together with the following well-known theorem of H. Weyl:

Theorem (H. Weyl). Let f be a continuous function on the torus 77, then
) 1
lim — / for,da= fd\, (C.8)
AMRP [A] Sy D

where ) is the invariant normalized measure on T'7.
For a proof I refer to Arnold’s “Mathematical methods of classical mechanics”, Sect. 51.

A discrete example for ergodic random fields

Proving ergodicity is usually very difficult. Below we give an example of a discrete random Gaussian field,
for which this can be established without much effort.

Let Q = RZ” , and consider the discrete random field ¢,.(w) = w,, where w : 7ZP — R, and w, denotes
the value of w at site # € Z”. We assume that the random field ¢, is Gaussian, and that the underlying
probability measure y is invariant under translations. Then the correlation function C'(z — y) = (dz¢y)
depends only on the difference x — y. Being of positive type, we have by the Bochner-Herglotz theorem a
representation of the form

C(z) = / e*® do(k), (C.9)
TD

where o is a positive measure.
Now we can formulate an interesting fact:

Theorem (Fomin, Maruyama). (1) The random field ¢, is ergodic (i.e., the probability measure p is
ergodic relative to discrete translations 7,), if and only if the measure ¢ is nonatomic. (2) The translations
are mixing if o is absolutely continuous with respect to A.

For a proof, see Cornfeld, Fomin, and Sinai, Ergodic Theory, Springer (Grundlehren, 245), Sect. 14.2.
(I was able to simplify this proof somewhat.)
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