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These lecture notes cover mainly three connected topics. In the first part we give a detailed treatment of
cosmological perturbation theory. The second part is devoted to cosmological inflation and the generation
of primordial fluctuations. In part three it will be shown how these initial perturbation evolve and produce
the temperature anisotropies of the cosmic microwave background radiation. Comparing the theoretical
prediction for the angular power spectrum with the increasingly accurate observations provides important
cosmological information (cosmological parameters, initial conditions).

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Contents

0 Essentials of Friedmann-Lemaı̂tre models 702
0.1 Friedmann-Lemaı̂tre spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702

0.1.1 Spaces of constant curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
0.1.2 Curvature of Friedmann spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
0.1.3 Einstein equations for Friedmann spacetimes . . . . . . . . . . . . . . . . . . . . . . 704
0.1.4 Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
0.1.5 Cosmic distance measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706

0.2 Luminosity-redshift relation for Type Ia supernovas . . . . . . . . . . . . . . . . . . . . . . 708
0.2.1 Theoretical redshift-luminosity relation . . . . . . . . . . . . . . . . . . . . . . . . . 708
0.2.2 Type Ia supernovas as standard candles . . . . . . . . . . . . . . . . . . . . . . . . . 712
0.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
0.2.4 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

0.3 Thermal history below 100 MeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

Part I: Cosmological perturbation theory 719
1 Basic equations 720

1.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
1.1.1 Decomposition into scalar, vector, and tensor contributions . . . . . . . . . . . . . . . 720
1.1.2 Decomposition into spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . 721
1.1.3 Gauge transformations, gauge invariant

amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722
1.1.4 Parametrization of the metric perturbations . . . . . . . . . . . . . . . . . . . . . . . 722

∗ Based on lectures given at the Physik-Combo, in Halle, Leipzig and Jena, winter semester 2004/5.
∗∗ E-mail: norbert.straumann@freesurf.ch

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



702 N. Straumann: Cosmological perturbation theory

1.1.5 Geometrical interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723
1.1.6 Scalar perturbations of the energy-

momentum tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
1.2 Explicit form of the energy-momentum conservation . . . . . . . . . . . . . . . . . . . . . 727
1.3 Einstein equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
1.4 Extension to multi-component systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
1.5 Appendix to Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744

2 Some applications of cosmological perturbation theory 750
2.1 Non-relativistic limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751
2.2 Large scale solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752
2.3 Solution of (2.6) for dust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754
2.4 A simple relativistic example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754

Part II: Inflation and generation of fluctuations 756
3 Inflationary scenario 756

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756
3.2 The horizon problem and the general idea of inflation . . . . . . . . . . . . . . . . . . . . . 756
3.3 Scalar field models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760

3.3.1 Power-law inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
3.3.2 Slow-roll approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

3.4 Why did inflation start? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
4 Cosmological perturbation theory for scalar field models 764

4.1 Basic perturbation equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
4.2 Consequences and reformulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768

5 Quantization, primordial power spectra 772
5.1 Power spectrum of the inflaton field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772

5.1.1 Power spectrum for power law inflation . . . . . . . . . . . . . . . . . . . . . . . . . 774
5.1.2 Power spectrum in the slow-roll approximation . . . . . . . . . . . . . . . . . . . . . 776
5.1.3 Power spectrum for density fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . 778

5.2 Generation of gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779
5.2.1 Power spectrum for power-law inflation . . . . . . . . . . . . . . . . . . . . . . . . . 782
5.2.2 Slow-roll approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
5.2.3 Stochastic gravitational background radiation . . . . . . . . . . . . . . . . . . . . . . 783
5.2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786

5.3 Appendix to Chapter 5:
Einstein tensor for tensor perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786

Part III: Microwave background anisotropies 788
6 Tight coupling phase 790

6.1 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
6.2 Analytical and numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795

6.2.1 Solutions for super-horizon scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796
6.2.2 Horizon crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796
6.2.3 Sub-horizon evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
6.2.4 Transfer function, numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Leipzig) 15, No. 10 – 11 (2006) 703

7 Boltzmann equation in GR 801
7.1 One-particle phase space, Liouville operator for geodesic spray . . . . . . . . . . . . . . . . 802
7.2 The general relativistic Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . 805
7.3 Perturbation theory (generalities) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
7.4 Liouville operator in the longitudinal gauge . . . . . . . . . . . . . . . . . . . . . . . . . . 808
7.5 Boltzmann equation for photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
7.6 Tensor contributions to the Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . 815

8 The physics of CMB anisotropies 816
8.1 The complete system of perturbation equations . . . . . . . . . . . . . . . . . . . . . . . . . 816
8.2 Acoustic oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
8.3 Formal solution for the moments θl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822
8.4 Angular correlations of temperature

fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823
8.5 Angular power spectrum for large scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824
8.6 Influence of gravity waves on CMB anisotropies . . . . . . . . . . . . . . . . . . . . . . . . 827
8.7 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831
8.8 Observational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834
8.9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837

Appendices 837
A Random fields, power spectra, filtering 837
B Collision integral for Thomson scattering 839
C Ergodicity for (generalized) random fields 841

Introduction

Cosmology is going through a fruitful and exciting period. Some of the developments are definitely also of
interest to physicists outside the fields of astrophysics and cosmology.

These lectures cover some particularly fascinating and topical subjects. A central theme will be the
current evidence that the recent ( z < 1) Universe is dominated by an exotic nearly homogeneous dark
energy density with negative pressure. The simplest candidate for this unknown so-called Dark Energy is a
cosmological term in Einstein’s field equations, a possibility that has been considered during all the history
of relativistic cosmology. Independently of what this exotic energy density is, one thing is certain since a
long time: The energy density belonging to the cosmological constant is not larger than the cosmological
critical density, and thus incredibly small by particle physics standards. This is a profound mystery, since
we expect that all sorts of vacuum energies contribute to the effective cosmological constant.

Since this is such an important issue it should be of interest to see how convincing the evidence for this
finding really is, or whether one should remain sceptical. Much of this is based on the observed temperature
fluctuations of the cosmic microwave background radiation (CMB). A detailed analysis of the data requires
a considerable amount of theoretical machinery, the development of which fills most space of these notes.

Since this audience consists mostly of diploma and graduate students, whose main interests are outside
astrophysics and cosmology, I do not presuppose that you had already some serious training in cosmology.
However, I do assume that you have some working knowledge of general relativity (GR). As a source, and
for references, I usually quote my recent textbook [1].

In an opening chapter those parts of the Standard Model of cosmology will be treated that are needed for
the main parts of the lectures. More on this can be found at many places, for instance in the recent textbooks
on cosmology [2–6].
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In Part I we will develop the somewhat involved cosmological perturbation theory. The formalism will
later be applied to two main topics: (1) The generation of primordial fluctuations during an inflationary era.
(2) The evolution of these perturbations during the linear regime. A main goal will be to determine the CMB
power spectrum.

0 Essentials of Friedmann-Lemaı̂tre models

For reasons explained in the Introduction I treat in this opening chapter some standard material that will be
needed in the main parts of these notes. In addition, an important topical subject will be discussed in some
detail, namely the Hubble diagram for Type Ia supernovas that gave the first evidence for an accelerated
expansion of the ‘recent’ and future universe. Most readers can directly go to Sect. 0.2, where this is treated.

0.1 Friedmann-Lemaı̂tre spacetimes

There is now good evidence that the (recent as well as the early) Universe1is – on large scales – surprisingly
homogeneous and isotropic. The most impressive support for this comes from extended redshift surveys of
galaxies and from the truly remarkable isotropy of the cosmic microwave background (CMB). In the Two
Degree Field (2dF) Galaxy Redshift Survey,2 completed in 2003, the redshifts of about 250’000 galaxies
have been measured. The distribution of galaxies out to 4 billion light years shows that there are huge
clusters, long filaments, and empty voids measuring over 100 million light years across. But the map also
shows that there are no larger structures. The more extended Sloan Digital Sky Survey (SDSS) has already
produced very similar results, and will in the end have spectra of about a million galaxies3.

One arrives at the Friedmann (Lemaı̂tre-Robertson-Walker) spacetimes by postulating that for each ob-
server, moving along an integral curve of a distinguished four-velocity field u, the Universe looks spatially
isotropic. Mathematically, this means the following: Let Isox(M) be the group of local isometries of a
Lorentz manifold (M, g), with fixed point x ∈ M , and let SO3(ux) be the group of all linear transforma-
tions of the tangent space Tx(M) which leave the 4-velocity ux invariant and induce special orthogonal
transformations in the subspace orthogonal to ux, then

{Txφ : φ ∈ Isox(M), φ�u = u} ⊇ SO3(ux)

(φ� denotes the push-forward belonging to φ; see [1, p. 550]). In [7] it is shown that this requirement implies
that (M, g) is a Friedmann spacetime, whose structure we now recall. Note that (M, g) is then automatically
homogeneous.

A Friedmann spacetime (M, g) is a warped product of the form M = I × Σ, where I is an interval of
R, and the metric g is of the form

g = −dt2 + a2(t)γ, (1)

such that (Σ, γ) is a Riemannian space of constant curvature k = 0,±1. The distinguished time t is the
cosmic time, and a(t) is the scale factor (it plays the role of the warp factor (see Appendix B of [1])). Instead
of t we often use the conformal time η, defined by dη = dt/a(t). The velocity field is perpendicular to the
slices of constant cosmic time, u = ∂/∂t.

1 By Universe I always mean that part of the world around us which is in principle accessible to observations. In my opinion the
‘Universe as a whole’ is not a scientific concept. When talking about model universes, we develop on paper or with the help
of computers, I tend to use lower case letters. In this domain we are, of course, free to make extrapolations and venture into
speculations, but one should always be aware that there is the danger to be drifted into a kind of ‘cosmo-mythology’.

2 Consult the Home Page: http://www.mso.anu.edu.au/2dFGRS .
3 For a description and pictures, see the Home Page: http://www.sdss.org/sdss.html .
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0.1.1 Spaces of constant curvature

For the space (Σ, γ) of constant curvature4 the curvature is given by

R(3)(X, Y )Z = k [γ(Z, Y )X − γ(Z, X)Y ] ; (2)

in components:

R
(3)
ijkl = k(γikγjl − γilγjk). (3)

Hence, the Ricci tensor and the scalar curvature are

R
(3)
jl = 2kγjl , R(3) = 6k. (4)

For the curvature two-forms we obtain from (3) relative to an orthonormal triad {θi}

Ω(3)
ij =

1
2

R
(3)
ijkl θk ∧ θl = k θi ∧ θj (5)

(θi = γikθk). The simply connected constant curvature spaces are in n dimensions the (n+1)-sphere Sn+1

(k = 1), the Euclidean space (k = 0), and the pseudo-sphere (k = −1). Non-simply connected constant
curvature spaces are obtained from these by forming quotients with respect to discrete isometry groups.
(For detailed derivations, see [8].)

0.1.2 Curvature of Friedmann spacetimes

Let {θ̄i} be any orthonormal triad on (Σ, γ). On this Riemannian space the first structure equations read
(we use the notation in [1]; quantities referring to this 3-dim. space are indicated by bars)

dθ̄i + ω̄i
j ∧ θ̄j = 0. (6)

On (M, g) we introduce the following orthonormal tetrad:

θ0 = dt, θi = a(t)θ̄i. (7)

From this and (6) we get

dθ0 = 0, dθi =
ȧ

a
θ0 ∧ θi − a ω̄i

j ∧ θ̄j . (8)

Comparing this with the first structure equation for the Friedmann manifold implies

ω0
i ∧ θi = 0, ωi

0 ∧ θ0 + ωi
j ∧ θj =

ȧ

a
θi ∧ θ0 + a ω̄i

j ∧ θ̄j , (9)

whence

ω0
i =

ȧ

a
θi, ωi

j = ω̄i
j . (10)

The worldlines of comoving observers are integral curves of the four-velocity field u = ∂t. We claim
that these are geodesics, i.e., that

∇uu = 0. (11)

To show this (and for other purposes) we introduce the basis {eµ} of vector fields dual to (7). Since u = e0
we have, using the connection forms (10),

∇uu = ∇e0e0 = ωλ
0(e0)eλ = ωi

0(e0)ei = 0.

4 For a detailed discussion of these spaces I refer – for readers knowing German – to [8] or [9].
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0.1.3 Einstein equations for Friedmann spacetimes

Inserting the connection forms (10) into the second structure equations we readily find for the curvature
2-forms Ωµ

ν :

Ω0
i =

ä

a
θ0 ∧ θi, Ωi

j =
k + ȧ2

a2 θi ∧ θj . (12)

A routine calculation leads to the following components of the Einstein tensor relative to the basis (7)

G00 = 3
(

ȧ2

a2 +
k

a2

)
, (13)

G11 = G22 = G33 = −2
ä

a
− ȧ2

a2 − k

a2 , (14)

Gµν = 0 (µ �= ν). (15)

In order to satisfy the field equations, the symmetries of Gµν imply that the energy-momentum tensor
must have the perfect fluid form (see [1, Sect. 1.4.2]):

Tµν = (ρ + p)uµuν + pgµν , (16)

where u is the comoving velocity field introduced above.
Now, we can write down the field equations (including the cosmological term):

3
(

ȧ2

a2 +
k

a2

)
= 8πGρ + Λ, (17)

−2
ä

a
− ȧ2

a2 − k

a2 = 8πGp − Λ. (18)

Although the ‘energy-momentum conservation’ does not provide an independent equation, it is useful
to work this out. As expected, the momentum ‘conservation’ is automatically satisfied. For the ‘energy
conservation’ we use the general form (see (1.37) in [1])

∇uρ = −(ρ + p)∇ · u. (19)

In our case we have for the expansion rate

∇ · u = ωλ
0(eλ)u0 = ωi

0(ei),

thus with (10)

∇ · u = 3
ȧ

a
. (20)

Therefore, Eq. (19) becomes

ρ̇ + 3
ȧ

a
(ρ + p) = 0. (21)

For a given equation of state, p = p(ρ), we can use (21) in the form

d

da
(ρa3) = −3pa2 (22)

to determine ρ as a function of the scale factor a. Examples: 1. For free massless particles (radiation) we
have p = ρ/3, thus ρ ∝ a−4. 2. For dust (p = 0) we get ρ ∝ a−3.
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With this knowledge the Friedmann equation (17) determines the time evolution of a(t).

Exercise. Show that (18) follows from (17) and (21).

As an important consequence of (17) and (18) we obtain for the acceleration of the expansion

ä = − 4πG

3
(ρ + 3p)a +

1
3

Λa. (23)

This shows that as long as ρ+3p is positive, the first term in (23) is decelerating, while a positive cosmological
constant is repulsive. This becomes understandable if one writes the field equation as

Gµν = κ(Tµν + TΛ
µν) (κ = 8πG), (24)

with

TΛ
µν = − Λ

8πG
gµν . (25)

This vacuum contribution has the form of the energy-momentum tensor of an ideal fluid, with energy density
ρΛ = Λ/8πG and pressure pΛ = −ρΛ. Hence the combination ρΛ + 3pΛ is equal to −2ρΛ, and is thus
negative. In what follows we shall often include in ρ and p the vacuum pieces.

0.1.4 Redshift

As a result of the expansion of the Universe the light of distant sources appears redshifted. The amount of
redshift can be simply expressed in terms of the scale factor a(t).

Consider two integral curves of the average velocity field u. We imagine that one describes the worldline
of a distant comoving source and the other that of an observer at a telescope (see Fig. 1). Since light is
propagating along null geodesics, we conclude from (1) that along the worldline of a light ray dt = a(t)dσ,
where dσ is the line element on the 3-dimensional space (Σ, γ) of constant curvature k = 0,±1. Hence the
integral on the left of

∫ to

te

dt

a(t)
=
∫ obs.

source

dσ, (26)

between the time of emission (te) and the arrival time at the observer (to), is independent of te and to.
Therefore, if we consider a second light ray that is emitted at the time te + ∆te and is received at the time
to + ∆to, we obtain from the last equation

∫ to+∆to

te+∆te

dt

a(t)
=
∫ to

te

dt

a(t)
. (27)

For a small ∆te this gives

∆to
a(to)

=
∆te
a(te)

.

The observed and the emitted frequences νo and νe, respectively, are thus related according to

νo

νe
=

∆te
∆to

=
a(te)
a(to)

. (28)

The redshift parameter z is defined by

z :=
νe − νo

νo
, (29)
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Source (te)

Observer (to)

Integral curve of uµdt 
= a(

t) 
dσ

Fig. 1 Redshift for Friedmann models.

and is given by the key equation

1 + z =
a(to)
a(te)

. (30)

One can also express this by the equation ν · a = const along a null geodesic.

0.1.5 Cosmic distance measures

We now introduce a further important tool, namely operational definitions of three different distance mea-
sures, and show that they are related by simple redshift factors.

If D is the physical (proper) extension of a distant object, and δ is its angle subtended, then the angular
diameter distance DA is defined by

DA := D/δ. (31)

If the object is moving with the proper transversal velocity V⊥ and with an apparent angular motion dδ/dt0,
then the proper-motion distance is by definition

DM :=
V⊥

dδ/dt0
. (32)

Finally, if the object has the intrinsic luminosity L and F is the received energy flux then the luminosity
distance is naturally defined as

DL := (L/4πF)1/2. (33)

Below we show that these three distances are related as follows

DL = (1 + z)DM = (1 + z)2DA. (34)

It will be useful to introduce on (Σ, γ) ‘polar’ coordinates (r, ϑ, ϕ), such that

γ =
dr2

1 − kr2 + r2dΩ2, dΩ2 = dϑ2 + sin2 ϑdϕ2. (35)
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rea(to)
r 

=
 r

e
to

r 
=

 r
e

dte D

r 
=

 0

Fig. 2 Spacetime diagram for cosmic distance measures.

One easily verifies that the curvature forms of this metric satisfy (5). (This follows without doing any work
by using in [1] the curvature forms (3.9) in the ansatz (3.3) for the Schwarzschild metric.)

To prove (34) we show that the three distances can be expressed as follows, if re denotes the comoving
radial coordinate (in (35)) of the distant object and the observer is (without loss of generality) at r = 0.

DA = rea(te), DM = rea(t0), DL = rea(t0)
a(t0)
a(te)

. (36)

Once this is established, (34) follows from (30).
From Fig. 2 and (35) we see that

D = a(te)reδ, (37)

hence the first equation in (36) holds.
To prove the second one we note that the source moves in a time dt0 a proper transversal distance

dD = V⊥dte = V⊥dt0
a(te)
a(t0)

.

Using again the metric (35) we see that the apparent angular motion is

dδ =
dD

a(te)re
=

V⊥dt0
a(t0)re

.

Inserting this into the definition (32) shows that the second equation in (36) holds. For the third equation
we have to consider the observed energy flux. In a time dte the source emits an energy Ldte. This energy is
redshifted to the present by a factor a(te)/a(t0), and is now distributed by (35) over a sphere with proper
area 4π(rea(t0))2 (see Fig. 2). Hence the received flux (apparent luminosity) is

F = Ldte
a(te)
a(t0)

1
4π(rea(t0))2

1
dt0

,

thus

F =
La2(te)

4πa4(t0)r2
e

.
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Fig. 3 Cosmological distance measures as a
function of source redshift for two cosmological
models. The angular diameter distance Dang ≡
DA and the luminosity distance Dlum ≡ DL have
been introduced in this section. The other two will
be introduced later.

Inserting this into the definition (33) establishes the third equation in (36). For later applications we write
the last equation in the more transparent form

F =
L

4π(rea(t0))2
1

(1 + z)2
. (38)

The last factor is due to redshift effects.
Two of the discussed distances as a function of z are shown in Fig. 3 for two Friedmann models with

different cosmological parameters. The other two distance measures will be introduced later (Sect. 3.2).

0.2 Luminosity-redshift relation for Type Ia supernovas

A few years ago the Hubble diagram for Type Ia supernovas gave, as a big surprise, the first serious evidence
for a currently accelerating Universe. Before presenting and discussing critically these exciting results, we
develop on the basis of the previous section some theoretical background. (For the benefit of readers who
start with this section we repeat a few things.)

0.2.1 Theoretical redshift-luminosity relation

We have seen that in cosmology several different distance measures are in use, which are all related by
simple redshift factors. The one which is relevant in this section is the luminosity distance DL. We recall
that this is defined by

DL = (L/4πF)1/2, (39)

where L is the intrinsic luminosity of the source and F the observed energy flux.
We want to express this in terms of the redshift z of the source and some of the cosmological parameters.

If the comoving radial coordinate r is chosen such that the Friedmann- Lemaı̂tre metric takes the form

g = −dt2 + a2(t)
[

dr2

1 − kr2 + r2dΩ2
]

, k = 0,±1, (40)

then we have

Fdt0 = Ldte · 1
1 + z

· 1
4π(rea(t0))2

.
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The second factor on the right is due to the redshift of the photon energy; the indices 0, e refer to the
present and emission times, respectively. Using also 1 + z = a(t0)/a(te), we find in a first step:

DL(z) = a0(1 + z)r(z) (a0 ≡ a(t0)). (41)

We need the function r(z). From

dz = − a0

a

ȧ

a
dt, dt = −a(t)

dr√
1 − kr2

for light rays, we see that

dr√
1 − kr2

=
1
a0

dz

H(z)
(H(z) =

ȧ

a
). (42)

Now, we make use of the Friedmann equation

H2 +
k

a2 =
8πG

3
ρ. (43)

Let us decompose the total energy-mass density ρ into nonrelativistic (NR), relativistic (R), Λ, quintessence
(Q), and possibly other contributions

ρ = ρNR + ρR + ρΛ + ρQ + · · · . (44)

For the relevant cosmic period we can assume that the “energy equation”

d

da
(ρa3) = −3pa2 (45)

also holds for the individual components X = NR, R, Λ, Q, · · · . If wX ≡ pX/ρX is constant, this implies
that

ρXa3(1+wX) = const. (46)

Therefore,

ρ =
∑
X

(
ρXa3(1+wX)

)
0

1
a3(1+wX) =

∑
X

(ρX)0(1 + z)3(1+wX). (47)

Hence the Friedmann equation (43) can be written as

H2(z)
H2

0
+

k

H2
0a2

0
(1 + z)2 =

∑
X

ΩX(1 + z)3(1+wX), (48)

where ΩX is the dimensionless density parameter for the species X ,

ΩX =
(ρX)0
ρcrit

, (49)

where ρcrit is the critical density:

ρcrit =
3H2

0

8πG

= 1.88 × 10−29 h2
0 g cm−3 (50)
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= 8 × 10−47h2
0 GeV 4.

Here h0 is the reduced Hubble parameter

h0 = H0/(100 km s−1 Mpc−1) (51)

and is close to 0.7. Using also the curvature parameter ΩK ≡ −k/H2
0a2

0, we obtain the useful form

H2(z) = H2
0E2(z; ΩK , ΩX), (52)

with

E2(z; ΩK , ΩX) = ΩK(1 + z)2 +
∑
X

ΩX(1 + z)3(1+wX). (53)

Especially for z = 0 this gives

ΩK + Ω0 = 1, Ω0 ≡
∑
X

ΩX . (54)

If we use (52) in (42), we get

∫ r(z)

0

dr√
1 − kr2

=
1

H0a0

∫ z

0

dz′

E(z′)
(55)

and thus

r(z) = S(χ(z)), (56)

where

χ(z) =
1

H0a0

∫ z

0

dz′

E(z′)
(57)

and

S(χ) =




sin χ : k = 1
χ : k = 0

sinhχ : k = 1.

(58)

Inserting this in (41) gives finally the relation we were looking for

DL(z) =
1

H0
DL(z; ΩK , ΩX), (59)

with

DL(z; ΩK , ΩX) = (1 + z)
1

|ΩK |1/2 S
(

|ΩK |1/2
∫ z

0

dz′

E(z′)

)
(60)

for k = ±1. For a flat universe, ΩK = 0 or equivalently Ω0 = 1, the “Hubble-constant-free” luminosity
distance is

DL(z) = (1 + z)
∫ z

0

dz′

E(z′)
. (61)

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Leipzig) 15, No. 10 – 11 (2006) 713

Astronomers use as logarithmic measures of L and F the absolute and apparent magnitudes 5, denoted
by M and m, respectively. The conventions are chosen such that the distance modulus m − M is related to
DL as follows

m − M = 5 log
(

DL

1 Mpc

)
+ 25. (62)

Inserting the representation (59), we obtain the following relation between the apparent magnitude m and
the redshift z:

m = M + 5 log DL(z; ΩK , ΩX), (63)

where, for our purpose, M = M − 5 log H0 + 25 is an uninteresting fit parameter. The comparison of this
theoretical magnitude redshift relation with data will lead to interesting restrictions for the cosmological
Ω-parameters. In practice often only ΩM and ΩΛ are kept as independent parameters, where from now on
the subscript M denotes (as in most papers) nonrelativistic matter.

The following remark about degeneracy curves in the Ω-plane is important in this context. For a fixed
z in the presently explored interval, the contours defined by the equations DL(z; ΩM , ΩΛ) = const have
little curvature, and thus we can associate an approximate slope to them. For z = 0.4 the slope is about 1
and increases to 1.5-2 by z = 0.8 over the interesting range of ΩM and ΩΛ. Hence even quite accurate data
can at best select a strip in the Ω-plane, with a slope in the range just discussed. This is the reason behind
the shape of the likelihood regions shown later (Fig. 5).

In this context it is also interesting to determine the dependence of the deceleration parameter

q0 = −
( aä

ȧ2

)
0

(64)

on ΩM and ΩΛ. At an any cosmic time we obtain from (23) and (47)

− äa

ȧ2 =
1
2

1
E2(z)

∑
X

ΩX(1 + z)3(1+wX)(1 + 3wX). (65)

For z = 0 this gives

q0 =
1
2

∑
X

ΩX(1 + 3wX) =
1
2

(ΩM − 2ΩΛ + · · · ). (66)

The line q0 = 0 (ΩΛ = ΩM/2) separates decelerating from accelerating universes at the present time. For
given values of ΩM , ΩΛ, etc, (65) vanishes for z determined by

ΩM (1 + z)3 − 2ΩΛ + · · · = 0. (67)

This equation gives the redshift at which the deceleration period ends (coasting redshift).

Redshift dependent w for quintessence. In quintessence models the ratio wQ = pQ/ρQ is often allowed
to be redshift dependent. Then the function E(z) in (53) gets modified. To see how, start from the energy
equation (45) and write this as

d ln(ρQa3)
d ln(1 + z)

= 3wQ.

5 Beside the (bolometric) magnitudes m, M , astronomers also use magnitudes mB , mV , . . . referring to certain wavelength
bands B (blue), V (visual), and so on.
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This gives

ρQ(z) = ρQ0(1 + z)3 exp

(∫ ln(1+z)

0
3wQ(z′)d ln(1 + z′)

)

or

ρQ(z) = ρQ0 exp

(
3
∫ ln(1+z)

0
(1 + wQ(z′))d ln(1 + z′)

)
. (68)

Hence, we have to perform on the right of (53) the following substitution:

ΩQ(1 + z)3(1+wQ) → ΩQ exp

(
3
∫ ln(1+z)

0
(1 + wQ(z′))d ln(1 + z′)

)
. (69)

0.2.2 Type Ia supernovas as standard candles

It has long been recognized that supernovas of type Ia are excellent standard candles and are visible to
cosmic distances [10] (the record is at present at a redshift of about 1.7). At relatively closed distances they
can be used to measure the Hubble constant, by calibrating the absolute magnitude of nearby supernovas
with various distance determinations (e.g., Cepheids). There is still some dispute over these calibration
resulting in differences of about 10% for H0. (For a review see, e.g., [11]; a recent paper in an ongoing
research project is [12].)

In 1979 Tammann [13] and Colgate [14] independently suggested that at higher redshifts this subclass of
supernovas can be used to determine also the deceleration parameter. In recent years this program became
feasible thanks to the development of new technologies which made it possible to obtain digital images of
faint objects over sizable angular scales, and by making use of big telescopes such as Hubble and Keck.

There are two major teams investigating high-redshift SNe Ia, namely the ‘Supernova Cosmology Project’
(SCP) and the ‘High-Z Supernova search Team’ (HZT). Each team has found a large number of SNe, and
both groups have published almost identical results. (For up-to-date information, see the home pages [15]
and [16].)

Before discussing these, a few remarks about the nature and properties of type Ia SNe should be made.
Observationally, they are characterized by the absence of hydrogen in their spectra, and the presence of
some strong silicon lines near maximum. The immediate progenitors are most probably carbon-oxygen
white dwarfs in close binary systems, but it must be said that these have not yet been clearly identified.6

In the standard scenario a white dwarf accretes matter from a nondegenerate companion until it ap-
proaches the critical Chandrasekhar mass and ignites carbon burning deep in its interior of highly degen-
erate matter. This is followed by an outward-propagating nuclear flame leading to a total disruption of the
white dwarf. Within a few seconds the star is converted largely into nickel and iron. The dispersed nickel
radioactively decays to cobalt and then to iron in a few hundred days. A lot of effort has been invested to
simulate these complicated processes. Clearly, the physics of thermonuclear runaway burning in degenerate
matter is complex. In particular, since the thermonuclear combustion is highly turbulent, multidimensional
simulations are required. This is an important subject of current research. (One gets a good impression of
the present status from several articles in [17]. See also the recent review [18].) The theoretical uncertainties
are such that, for instance, predictions for possible evolutionary changes are not reliable.

It is conceivable that in some cases a type Ia supernova is the result of a merging of two carbon-oxygen-rich
white dwarfs with a combined mass surpassing the Chandrasekhar limit. Theoretical modelling indicates,
however, that such a merging would lead to a collapse, rather than a SN Ia explosion. But this issue is still
debated.

6 This is perhaps not so astonishing, because the progenitors are presumably faint compact dwarf stars.
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Fig. 4 Distance moduli relative to an empty uniformly expanding universe (residual Hubble diagram) for
SNe Ia; see text for further explanations. (Adapted from [25], Fig. 7.).

In view of the complex physics involved, it is not astonishing that type Ia supernovas are not perfect
standard candles. Their peak absolute magnitudes have a dispersion of 0.3–0.5 mag, depending on the
sample. Astronomers have, however, learned in recent years to reduce this dispersion by making use of
empirical correlations between the absolute peak luminosity and light curve shapes. Examination of nearby
SNe showed that the peak brightness is correlated with the time scale of their brightening and fading: slow
decliners tend to be brighter than rapid ones. There are also some correlations with spectral properties. Using
these correlations it became possible to reduce the remaining intrinsic dispersion, at least in the average,
to � 0.15 mag. (For the various methods in use, and how they compare, see [19, 25], and references
therein.) Other corrections, such as Galactic extinction, have been applied, resulting for each supernova in a
corrected (rest-frame) magnitude. The redshift dependence of this quantity is compared with the theoretical
expectation given by Eqs. (62) and (60).

0.2.3 Results

After the classic papers [20–22] on the Hubble diagram for high-redshift type Ia supernovas, published
by the SCP and HZT teams, significant progress has been made (for reviews, see [23] and [24]). I discuss
here the main results presented in [25]. These are based on additional new data for z > 1, obtained in
conjunction with the GOODS (Great Observatories Origins Deep Survey) Treasury program, conducted
with the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST).

The quality of the data and some of the main results of the analysis are shown in Fig. 4. The data points
in the top panel are the distance moduli relative to an empty uniformly expanding universe, ∆(m − M),
and the redshifts of a “gold” set of 157 SNe Ia. In this ‘reduced’ Hubble diagram the filled symbols are the
HST-discovered SNe Ia. The bottom panel shows weighted averages in fixed redshift bins.

These data are consistent with the “cosmic concordance” model (ΩM = 0.3, ΩΛ = 0.7), with χ2
dof =

1.06). For a flat universe with a cosmological constant, the fit gives ΩM = 0.29±0.13
0.19 (equivalently,

ΩΛ = 0.71). The other model curves will be discussed below. Likelihood regions in the (ΩM , ΩΛ)-plane,
keeping only these parameters in (62) and averaging H0, are shown in Fig. 5. To demonstrate the progress,
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old results from 1998 are also included. It will turn out that this information is largely complementary to
the restrictions we shall obtain from the CMB anisotropies.

0.2.4 Systematic uncertainties

Possible systematic uncertainties due to astrophysical effects have been discussed extensively in the litera-
ture. The most serious ones are (i) dimming by intergalactic dust, and (ii) evolution of SNe Ia over cosmic
time, due to changes in progenitor mass, metallicity, and C/O ratio. I discuss these concerns only briefly
(see also [23,25]).

Concerning extinction, detailed studies show that high-redshift SN Ia suffer little reddening; their B-V
colors at maximum brightness are normal. However, it can a priori not be excluded that we see distant
SNe through a grey dust with grain sizes large enough as to not imprint the reddening signature of typical
interstellar extinction. One argument against this hypothesis is that this would also imply a larger dispersion
than is observed. In Fig. 4 the expectation of a simple grey dust model is also shown. The new high
redshift data reject this monotonic model of astrophysical dimming. Eq. (67) shows that at redshifts z ≥
(2ΩΛ/ΩM )1/3 − 1 � 1.2 the Universe is decelerating, and this provides an almost unambiguous signature
for Λ, or some effective equivalent. There is now strong evidence for a transition from a deceleration to
acceleration at a redshift z = 0.46 ± 0.13.

The same data provide also some evidence against a simple luminosity evolution that could mimic an
accelerating Universe. Other empirical constraints are obtained by comparing subsamples of low-redshift
SN Ia believed to arise from old and young progenitors. It turns out that there is no difference within the
measuring errors, after the correction based on the light-curve shape has been applied. Moreover, spectra of
high-redshift SNe appear remarkably similar to those at low redshift. This is very reassuring. On the other
hand, there seems to be a trend that more distant supernovas are bluer. It would, of course, be helpful if
evolution could be predicted theoretically, but in view of what has been said earlier, this is not (yet) possible.

In conclusion, none of the investigated systematic errors appear to reconcile the data with ΩΛ = 0 and
q0 ≥ 0. But further work is necessary before we can declare this as a really established fact.
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To improve the observational situation a satellite mission called SNAP (“SupernovasAcceleration Probe”)
has been proposed [29]. According to the plans this satellite would observe about 2000 SNe within a year
and much more detailed studies could then be performed. For the time being some scepticism with regard
to the results that have been obtained is still not out of place, but the situation is steadily improving.

Finally, I mention a more theoretical complication. In the analysis of the data the luminosity distance
for an ideal Friedmann universe was always used. But the data were taken in the real inhomogeneous
Universe. This may not be good enough, especially for high-redshift standard candles. The simplest way
to take this into account is to introduce a filling parameter which, roughly speaking, represents matter that
exists in galaxies but not in the intergalactic medium. For a constant filling parameter one can determine
the luminosity distance by solving the Dyer-Roeder equation. But now one has an additional parameter in
fitting the data. For a flat universe this was recently investigated in [30].

0.3 Thermal history below 100 MeV

A. Overview

Below the transition at about 200 MeV from a quark-gluon plasma to the confinement phase, the Universe
was initially dominated by a complicated dense hadron soup. The abundance of pions, for example, was so
high that they nearly overlapped. The pions, kaons and other hadrons soon began to decay and most of the
nucleons and antinucleons annihilated, leaving only a tiny baryon asymmetry. The energy density is then
almost completely dominated by radiation and the stable leptons (e±, the three neutrino flavors and their
antiparticles). For some time all these particles are in thermodynamic equilibrium. For this reason, only a
few initial conditions have to be imposed. The Universe was never as simple as in this lepton era. (At this
stage it is almost inconceivable that the complex world around us would eventually emerge.)

The first particles which freeze out of this equilibrium are the weakly interacting neutrinos. Let us
estimate when this happened. The coupling of the neutrinos in the lepton era is dominated by the reactions:

e− + e+ ↔ ν + ν̄, e± + ν → e± + ν, e± + ν̄ → e± + ν̄.

For dimensional reasons, the cross sections are all of magnitude

σ � G2
F T 2, (70)

where GF is the Fermi coupling constant (� = c = kB = 1). Numerically, GF m2
p � 10−5. On the other

hand, the electron and neutrino densities ne, nν are about T 3. For this reason, the reaction rates Γ for
ν-scattering and ν-production per electron are of magnitude c · v · ne � G2

F T 5. This has to be compared
with the expansion rate of the Universe

H =
ȧ

a
� (Gρ)1/2.

Since ρ � T 4 we get

H � G1/2T 2 (71)

and thus

Γ
H

� G−1/2G2
F T 3 � (T/1010 K)3. (72)

This ration is larger than 1 for T > 1010 K � 1 MeV , and the neutrinos thus remain in thermodynamic
equilibrium until the temperature has decreased to about 1 MeV. But even below this temperature the
neutrinos remain Fermi distributed,

nν(p)dp =
1

2π2

1
ep/Tν + 1

p2dp , (73)
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as long as they can be treated as massless. The reason is that the number density decreases as a−3 and the
momenta with a−1. Because of this we also see that the neutrino temperature Tν decreases after decoupling
as a−1. The same is, of course true for photons. The reader will easily find out how the distribution evolves
when neutrino masses are taken into account. (Since neutrino masses are so small this is only relevant at
very late times.)

B. Chemical potentials of the leptons

The equilibrium reactions below 100 MeV, say, conserve several additive quantum numbers7, namely the
electric charge Q, the baryon number B, and the three lepton numbers Le, Lµ, Lτ . Correspondingly, there
are five independent chemical potentials. Since particles and antiparticles can annihilate to photons, their
chemical potentials are oppositely equal: µe− = −µe+ , etc. From the following reactions

e− + µ+ → νe + ν̄µ, e− + p → νe + n, µ− + p → νµ + n

we infer the equilibrium conditions

µe− − µνe = µµ− − µνµ = µn − µp. (74)

As independent chemical potentials we can thus choose

µp, µe− , µνe
, µνµ

, µντ
. (75)

Because of local electric charge neutrality, the charge number density nQ vanishes. From observations
(see subsection E) we also know that the baryon number density nb is much smaller than the photon number
density (∼ entropy density sγ). The ratio nB/sγ remains constant for adiabatic expansion (both decrease
with a−3; see the next section). Moreover, the lepton number densities are

nLe
= ne− + nνe

− ne+ − nν̄e
, nLµ

= nµ− + nνµ
− nµ+ − nν̄µ

, etc. (76)

Since in the present Universe the number density of electrons is equal to that of the protons (bound or free),
we know that after the disappearance of the muons ne− � ne+ (recall nB � nγ), thus µe− (= −µe+) � 0.
It is conceivable that the chemical potentials of the neutrinos and antineutrinos can not be neglected, i.e.,
that nLe is not much smaller than the photon number density. In analogy to what we know about the baryon
density we make the reasonable asumption that the lepton number densities are also much smaller than sγ .
Then we can take the chemical potentials of the neutrinos equal to zero (|µν |/kT � 1). With what we said
before, we can then put the five chemical potentials (75) equal to zero, because the charge number densities
are all odd in them. Of course, nB does not really vanish (otherwise we would not be here), but for the
thermal history in the era we are considering they can be ignored.

Exercise. Suppose we are living in a degenerate ν̄e-see. Use the current mass limit for the electron neutrino
mass coming from tritium decay to deduce a limit for the magnitude of the chemical potential µνe

.

C. Constancy of entropy

Let ρeq, peq denote (in this subsection only) the total energy density and pressure of all particles in thermo-
dynamic equilibrium. Since the chemical potentials of the leptons vanish, these quantities are only functions
of the temperature T . According to the second law, the differential of the entropy S(V, T ) is given by

dS(V, T ) =
1
T

[d(ρeq(T )V ) + peq(T )dV ]. (77)

7 Even if B, Le, Lµ, Lτ should not be strictly conserved, this is not relevant within a Hubble time H−1
0 .
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This implies

d(dS) = 0 = d

(
1
T

)
∧ d(ρeq(T )V ) + d

(
peq(I)

T

)
∧ dV

= − ρeq

T 2 dT ∧ dV +
d

dT

(
peq(T )

T

)
dT ∧ dV,

i.e., the Maxwell relation

dpeq(T )
dT

=
1
T

[ρeq(T ) + peq(T )]. (78)

If we use this in (77), we get

dS = d

[
V

T
(ρeq + peq)

]
,

so the entropy density of the particles in equilibrium is

s =
1
T

[ρeq(T ) + peq(T )]. (79)

For an adiabatic expansion the entropy in a comoving volume remains constant:

S = a3s = const. (80)

This constancy is equivalent to the energy equation (21) for the equilibrium part. Indeed , the latter can be
written as

a3 dpeq

dt
=

d

dt
[a3(ρeq + peq)],

and by (79) this is equivalent to dS/dt = 0.
In particular, we obtain for massless particles (p = ρ/3) from (78) again ρ ∝ T 4 and from (79) that S =

constant implies T ∝ a−1.

Exercise. Assume that all components are in equilibrium and use the results of this subsection to show that
the temperature evolution is for k = 0 given by

dT

dt
= −

√
24πG

√
ρ(T )

d
dT

[
ln dp

dT

] .

Once the electrons and positrons have annihilated below T ∼ me, the equilibrium components consist
of photons, electrons, protons and – after the big bang nucleosynthesis – of some light nuclei (mostly He4).
Since the charged particle number densities are much smaller than the photon number density, the photon
temperature Tγ still decreases as a−1. Let us show this formally. For this we consider beside the photons
an ideal gas in thermodynamic equilibrium with the black body radiation. The total pressure and energy
density are then (we use units with � = c = kB = 1; n is the number density of the non-relativistic gas
particles with mass m):

p = nT +
π2

45
T 4, ρ = nm +

nT

γ − 1
+

π2

15
T 4 (81)

www.ann-phys.org c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



720 N. Straumann: Cosmological perturbation theory

(γ = 5/3 for a monoatomic gas). The conservation of the gas particles, na3 = const., together with the
energy equation (22) implies, if σ := sγ/n,

d lnT

d ln a
= −

[
σ + 1

σ + 1/3(γ − 1)

]
.

For σ � 1 this gives the well-known relation T ∝ a3(γ−1) for an adiabatic expansion of an ideal gas.
We are however dealing with the opposite situation σ � 1, and then we obtain, as expected, a·T = const.
Let us look more closely at the famous ratio nB/sγ . We need

sγ =
4

3T
ργ =

4π2

45
T 3 = 3.60nγ , nB = ρB/mp = ΩBρcrit/mp. (82)

From the present value of Tγ � 2.7 K and (50), ρcrit = 1.12×10−5 h2
0(mp/cm3), we obtain as a measure

for the baryon asymmetry of the Universe

nB

sγ
= 0.75 × 10−8(ΩBh2

0). (83)

It is one of the great challenges to explain this tiny number. So far, this has been achieved at best qualitatively
in the framework of grand unified theories (GUTs).

D. Neutrino temperature

During the electron-positron annihilation below T = me the a-dependence is complicated, since the
electrons can no more be treated as massless. We want to know at this point what the ratio Tγ/Tν is after
the annihilation. This can easily be obtained by using the constancy of comoving entropy for the photon-
electron-positron system, which is sufficiently strongly coupled to maintain thermodynamic equilibrium.

We need the entropy for the electrons and positrons at T � me, long before annihilation begins. To
compute this note the identity∫ ∞

0

xn

ex − 1
dx −

∫ ∞

0

xn

ex + 1
dx = 2

∫ ∞

0

xn

e2x − 1
dx =

1
2n

∫ ∞

0

xn

ex − 1
dx,

whence ∫ ∞

0

xn

ex + 1
dx = (1 − 2−n)

∫ ∞

0

xn

ex − 1
dx. (84)

In particular, we obtain for the entropies se, sγ the following relation

se =
7
8

sγ (T � me). (85)

Equating the entropies for Tγ � me and Tγ � me gives

(Tγa)3
∣∣
before

[
1 + 2 × 7

8

]
= (Tγa)3

∣∣
after

× 1,

because the neutrino entropy is conserved. Therefore, we obtain

(aTγ)
∣∣
after

=
(

11
4

)1/3

(aTγ)
∣∣
before

. (86)

But (aTν)|after = (aTν)|before = (aTγ)
∣∣
before

, hence we obtain the important relation

(
Tγ

Tν

)∣∣∣∣
after

=
(

11
4

)1/3

= 1.401. (87)
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E. Epoch of matter-radiation equality

In the main parts of these lectures the epoch when radiation (photons and neutrinos) have about the same
energy density as non-relativistic matter (Dark Matter and baryons) plays a very important role. Let us
determine the redshift, zeq, when there is equality.

For the three neutrino and antineutrino flavors the energy density is according to (84)

ρν = 3 × 7
8

×
(

4
11

)4/3

ργ . (88)

Using

ργ

ρcrit
= 2.47 × 10−5h−2

0 (1 + z)4, (89)

we obtain for the total radiation energy density, ρr,

ρr

ρcrit
= 4.15 × 10−5h−2

0 (1 + z)4, (90)

Equating this to

ρM

ρcrit
= ΩM (1 + z)3 (91)

we obtain

1 + zeq = 2.4 × 104ΩMh2
0. (92)

Only a small fraction of ΩM is baryonic. There are several methods to determine the fraction ΩB in
baryons. A traditional one comes from the abundances of the light elements. This is treated in most texts on
cosmology. (German speaking readers find a detailed discussion in my lecture notes [9], which are available
in the internet.) The comparison of the straightforward theory with observation gives a value in the range
ΩBh2

0 = 0.021 ± 0.002. Other determinations are all compatible with this value. In Part III we shall obtain
ΩB from the CMB anisotropies. The striking agreement of different methods, sensitive to different physics,
strongly supports our standard big bang picture of the Universe.

Part I

Cosmological perturbation theory

Introduction

The astonishing isotropy of the cosmic microwave background radiation provides direct evidence that the
early universe can be described in a good first approximation by a Friedmann model8. At the time of
recombination deviations from homogeneity and isotropy have been very small indeed (∼ 10−5). Thus
there was a long period during which deviations from Friedmann models can be studied perturbatively,
i.e., by linearizing the Einstein and matter equations about solutions of the idealized Friedmann-Lemaı̂tre
models.

Cosmological perturbation theory is a very important tool that is by now well developed. Among the
various reviews I will often refer to [31], abbreviated as KS84. Other works will be cited later, but the

8 For detailed treatments, see for instance the recent textbooks on cosmology [2–6]. For GR I usually refer to [1].
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present notes should be self-contained. Almost always I will provide detailed derivations. Some of the more
lengthy calculations are deferred to appendices.

The formalism, developed in this part, will later be applied to two main problems: (1) The generation of
primordial fluctuations during an inflationary era. (2) The evolution of these perturbations during the linear
regime. A main goal will be to determine the CMB power spectrum as a function of certain cosmological
parameters. Among these the fractions of Dark Matter and Dark Energy are particularly interesting.

1 Basic equations

In this chapter we develop the model independent parts of cosmological perturbation theory. This forms the
basis of all that follows.

1.1 Generalities

For the unperturbed Friedmann models the metric is denoted by g(0), and has the form

g(0) = −dt2 + a2(t)γ = a2(η)
[−dη2 + γ

]
; (1.1)

γ is the metric of a space with constant curvature K. In addition, we have matter variables for the vari-
ous components (radiation, neutrinos, baryons, cold dark matter (CDM), etc). We shall linearize all basic
equations about the unperturbed solutions.

1.1.1 Decomposition into scalar, vector, and tensor contributions

We may regard the various perturbation amplitudes as time dependent functions on a three-dimensional
Riemannian space (Σ, γ) of constant curvature K. Since such a space is highly symmetric, we can perform
two types of decompositions.

Consider first the set X (Σ) of smooth vector fields on Σ. This module can be decomposed into an
orthogonal sum of ‘scalar’ and ‘vector’ contributions

X (Σ) = X S
⊕

X V , (1.2)

where X S consists of all gradients and X V of all vector fields with vanishing divergence.
More generally, we have for the p-forms

∧p(Σ) on Σ the orthogonal decomposition9

∧p
(Σ) = d

∧p−1
(Σ)

⊕
kerδ , (1.3)

where the last summand denotes the kernel of the co-differential δ (restricted to
∧p(Σ)).

Similarly, we can decompose a symmetric tensor t ∈ S(Σ) (= set of all symmetric tensor fields on Σ)
into ‘scalar’, ‘vector’, and ‘tensor’ contributions:

tij = tSij + tVij + tTij , (1.4)

where

tSij = Tr(t)γij +
(∇i∇j − 1

3 γij�
)
f , (1.5)

9 This is a consequence of the Hodge decomposition theorem. The scalar product in
∧p(Σ) is defined as

(α, β) =
∫

Σ
α ∧ �β;

see also Sect. 13.9 of [1].
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tVij = ∇iξj + ∇jξi, (1.6)

tTij : Tr(tT ) = 0; ∇ · tT = 0. (1.7)

In these equations f is a function on Σ and ξi a vector field with vanishing divergence. One can show
that these decompositions are respected by the covariant derivatives. For example, if ξ ∈ X (Σ), ξ =
ξ∗ + ∇f, ∇ · ξ∗ = 0, then

�ξ = �ξ∗ + ∇ [�f + 2Kf ] (1.8)

(prove this as an exercise). Here, the first term on the right has a vanishing divergence (show this), and the
second (the gradient) involves only f . For other cases, see Appendix B of [31]. Is there a conceptual proof
based on the isometry group of (Σ, γ)?

1.1.2 Decomposition into spherical harmonics

In a second step we perform a harmonic decomposition. For K = 0 this is just Fourier analysis. The spherical
harmonics {Y } of (Σ, γ) are in this case the functions Y (x;k) = exp(ik · x) (for γ = δijdxidxj). The
scalar parts of vector and symmetric tensor fields can be expanded in terms of

Yi : = −k−1∇iY, (1.9)

Yij : = k−2∇i∇jY + 1
3 γijY, (1.10)

and γijY .
There are corresponding complete sets of spherical harmonics for K �= 0. They are eigenfunctions of

the Laplace-Beltrami operator on (Σ, γ):

(� + k2)Y = 0. (1.11)

Indices referring to the various modes are usually suppressed. By making use of the Riemann tensor of
(Σ, γ) one can easily derive the following identities:

∇iY
i = kY,

�Yi = −(k2 − 2K)Yi,

∇jYi = −k(Yij − 1
3 γijY ),

∇jYij = 2
3 k−1(k2 − 3K)Yi,

∇j∇mYim = 2
3 (3K − k2)

(
Yij − 1

3 γijY
)
,

�Yij = −(k2 − 6K)Yij ,

∇mYij − ∇jYim =
k

3

(
1 − 3K

k2

)
(γimYj − γijYm). (1.12)

Exercise. Verify some of the relations in (1.12).

The main point of the harmonic decomposition is, of course, that different modes in the linearized
approximation do not couple. Hence, it suffices to consider a generic mode.

For the time being, we consider only scalar perturbations. Tensor perturbations (gravity modes) will be
studied later. For the harmonic analysis of vector and tensor perturbations I refer again to [31].
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1.1.3 Gauge transformations, gauge invariant
amplitudes

In GR the diffeomorphism group of spacetime is an invariance group. This means that we can replace the
metric g and the matter fields by their pull-backs φ�(g), etc., for any diffeomorphism φ, without changing
the physics. For small-amplitude departures in

g = g(0) + δg, etc, (1.13)

we have, therefore, the gauge freedom

δg → δg + Lξg
(0), etc., (1.14)

where ξ is any vector field and Lξ denotes its Lie derivative. (For further explanations, see [1, Sect. 4.1]).
These transformations will induce changes in the various perturbation amplitudes. It is clearly desirable
to write all independent perturbation equations in a manifestly gauge invariant manner. In this way one
can, for instance, avoid misinterpretations of the growth of density fluctuations, especially on superhorizon
scales. Moreover, one gets rid of uninteresting gauge modes.

I find it astonishing that it took so long until the gauge invariant formalism was widely used.

1.1.4 Parametrization of the metric perturbations

The most general scalar perturbation of the metric can be parametrized as follows

δg = a2(η)
[−2Adη2 − 2B,i dxidη + (2Dγij + 2E|ij)dxidxj

]
. (1.15)

The functions A(η, xi), B, D, E are the scalar perturbation amplitudes; E|ij denotes ∇i∇jE on (Σ, γ).
Thus the true metric is

g = a2(η)
{−(1 + 2A)dη2 − 2B,i dxidη + [(1 + 2D)γij + 2E|ij ]dxidxj

}
. (1.16)

Let us work out how A, B, D, E change under a gauge transformation (1.14), provided the vector field
is of the ‘scalar’ type10:

ξ = ξ0∂0 + ξi∂i, ξi = γijξ|j . (1.17)

(The index 0 refers to the conformal time η.) For this we need (’≡ d/dη)

Lξa
2(η) = 2aa′ξ0 = 2a2Hξ0, H := a′/a,

Lξdη = dLξη = (ξ0)′dη + ξ0|idxi,

Lξdxi = dLξx
i = dξi = ξi,j dxj + (ξi)′dη = ξi,j dxj + ξ′|idη,

implying

Lξ

(
a2(η)dη2) = 2a2 {(Hξ0 + (ξ0)′)dη2 + ξ0|idxidη

}
,

Lξ

(
γijdxidxj

)
= 2ξ|ijdxidxj + 2ξ′

|idxidη.

This gives the transformation laws:

A → A + Hξ0 + (ξ0)′, B → B + ξ0 − ξ′, D → D + Hξ0, E → E + ξ. (1.18)

10 It suffices to consider this type of vector fields, since vector fields from X V do not affect the scalar amplitudes; check this.
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From this one concludes that the following Bardeen potentials

Ψ = A − 1
a

[
a(B + E′)

]′
, (1.19)

Φ = D − H(B + E′), (1.20)

are gauge invariant.
Note that the transformations of A and D involve only ξ0. This is also the case for the combinations

χ := a(B + E′) → χ + aξ0 (1.21)

and

κ :=
3
a

(HA − D′) − 1
a2 �χ → (1.22)

κ +
3
a

[H(Hξ0 + (ξ0)′) − (Hξ0)′]− 1
a2 �ξ0. (1.23)

Therefore, it is good to work with A, D, χ, κ. This was emphasized in [32]. Below we will show that χ and
κ have a simple geometrical meaning. Moreover, it will turn out that the perturbation of the Einstein tensor
can be expressed completely in terms of the amplitudes A, D, χ, κ.

Exercise. The most general vector perturbation of the metric is obviously of the form

(
δgµν

)
= a2(η)

(
0 βi

βi Hi|j + Hj|i

)
,

with Bi
|i = Hi

|i = 0. Derive the gauge transformations for βi and Hi. Show that Hi can be gauged away.
Compute R0

j in this gauge. Result:

R0
j =

1
2
(�βj + 2Kβj

)
.

1.1.5 Geometrical interpretation

Let us first compute the scalar curvature R(3) of the slices with constant time η with the induced metric

g(3) = a2(η)
[
(1 + 2D)γij + 2E|ij

]
dxidxj . (1.24)

If we drop the factor a2, then the Ricci tensor does not change, but R(3) has to be multiplied afterwards
with a−2.

For the metric γij + hij the Palatini identity (Eq. (4.20) in [1])

δRij =
1
2

[
hk

i|jk − hk
k|ij + hk

j|ik − �hij

]
(1.25)

gives

δRi
i = hij |ij − �h (h := hi

i), hij = 2Dγij + 2E|ij .

We also use

h = 6D + 2�E, E|ij |ij = ∇j(�∇jE) = ∇j(∇j�E − 2K∇jE)

= �2E − 2K�E
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(we used (∇i� − �∇i)f = −R
(0)
ij ∇jf , for a function f ). This implies

hij |ij = 2�D + 2(�2E − 2K�E),

δRi
i = −4D − 4K�E),

whence

δR = δRi
i + hijR

(0)
ij = −4�D + 12KD.

This shows that D determines the scalar curvature perturbation

δR(3) =
1
a2 (−4�D + 12KD). (1.26)

Next, we compute the second fundamental form11 Kij for the time slices. We shall show that

κ = δKi
i, (1.27)

and

Kij − 1
3 gijK

l
l = − (

χ|ij − 1
3 γij�χ

)
. (1.28)

Derivation. In the following derivation we make use of Sect. 2.9 of [1] on the 3+1 formalism. According
to Eq. (2.287) of this reference, the second fundamental form is determined in terms of the lapse α, the shift
β = βi∂i, and the induced metric ḡ as follows (dropping indices)

K = − 1
2α

(∂t − Lβ)ḡ. (1.29)

To first order this gives in our case

Kij = − 1
2a(1 + A)

[
a2(1 + 2D)γij + 2a2E|ij

]′ − aB|ij . (1.30)

(Note that βi = −a2B,i , βi = −γijB,j .)
In zeroth order this gives

K
(0)
ij = − 1

a
Hg

(0)
ij . (1.31)

Collecting the first order terms gives the claimed equations (1.27) and (1.28). (Note that the trace-free part
must be of first order, because the zeroth order vanishes according to (1.31).)

Conformal gauge. According to (1.18) and (1.21) we can always chose the gauge such that B = E = 0.
This so-called conformal Newtonian (or longitudinal) gauge is often particularly convenient to work with.
Note that in this gauge

χ = 0, A = Ψ, D = Φ, κ =
3
a

(HΨ − Φ′).

11 This geometrical concept is introduced in Appendix A of [1].
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1.1.6 Scalar perturbations of the energy-
momentum tensor

At this point we do not want to specify the matter model. For a convenient parametrization of the scalar
perturbations of the energy-momentum tensor Tµν = T

(0)
µν + δTµν , we define the four-velocity uµ as a

normalized timelike eigenvector of Tµν :

Tµ
νuν = −ρuµ, (1.32)

gµνuµuν = −1. (1.33)

The eigenvalue ρ is the proper energy-mass density.
For the unperturbed situation we have

u(0)0 =
1
a

, u
(0)
0 = −a, u(0)i = 0, T (0)0

0 = −ρ(0), T (0)i
j = p(0)δi

j , T (0)0
i = 0. (1.34)

Setting ρ = ρ(0) + δρ, uµ = u(0)µ + δuµ, etc, we obtain from (1.33)

δu0 = − 1
a

A, δu0 = −aA. (1.35)

The first order terms of (1.32) give, using (1.34),

δTµ
0u

(0)0 + δµ
0u

(0)0δρ +
(
T (0)µ

ν + ρ(0)δµ
ν

)
δuν = 0.

For µ = 0 and µ = i this leads to

δT 0
0 = −δρ, (1.36)

δT i
0 = −a(ρ(0) + p(0))δui. (1.37)

From this we can determine the components of δT 0
j :

δT 0
j = δ

[
g0µgjνT ν

µ

]
= δg0kg

(0)
ij T (0)i

k + g(0)00δg0jT
(0)0

0 + g(0)00g
(0)
ij δT i

0

=
(

− 1
a2 γkiB|i

)
(a2γij)p(0)δi

k +
(

− 1
a2

)
(−a2B|j)(−ρ(0)) − γijδT

i
0.

Collecting terms gives

δT 0
j = a(ρ(0) + p(0))

[
γijδu

i − 1
a

B|j︸ ︷︷ ︸
a−2δuj

]
. (1.38)

Scalar perturbations of δui can be represented as

δui =
1
a

γijv|j . (1.39)

Inserting this above gives

δT 0
j = (ρ(0) + p(0))(v − B)|j . (1.40)
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The scalar perturbations of the spatial components δT i
j can be represented as follows

δT i
j = δi

j δp + p(0)
(

Π|i|j − 1
3

δi
j �Π

)
. (1.41)

Let us collect these formulae (dropping (0) for the unperturbed quantities ρ(0), etc):

δu0 = − 1
a

A, δu0 = −aA, δui =
1
a

γijv|j ⇒ δui = a(v − B)|i;

δT 0
0 = −δρ,

δT 0
i = (ρ + p)(v − B)|i, δT i

0 = −(ρ + p)γijv|j ,

δT i
j = δp δi

j + p

(
Π|i|j − 1

3
δi

j �Π
)

. (1.42)

Sometimes we shall also use the quantity

Q := a(ρ + p)(v − B),

in terms of which the energy flux density can be written as

δT 0
i =

1
a

Q,i , (⇒ T t
i = Q,i). (1.43)

For fluids one often decomposes δp as

pπL := δp = c2
sδρ + pΓ, (1.44)

where cs is the sound velocity

c2
s = ṗ/ρ̇. (1.45)

Γ measures the deviation between δp/δρ and ṗ/ρ̇.
As for the metric we have four perturbation amplitudes:

δ := δρ/ρ , v , Γ , Π . (1.46)

Let us see how they change under gauge transformations:

δTµ
ν → δTµ

ν + (LξT
(0))µ

ν , (LξT
(0))µ

ν = ξλT (0)µ
ν,λ − T (0)λ

νξµ
,λ + T (0)µ

λξλ
,ν . (1.47)

Now,

(LξT
(0))00 = ξ0T (0)0

0,0 = ξ0(−ρ)′,

hence

δρ → δρ + ρ′ξ0 ; δ → δ +
ρ′

ρ
ξ0 = δ − 3(1 + w)Hξ0 (1.48)

(w := p/ρ). Similarly (ξi = γijξ|j):

(LξT
(0))0i = 0 − T (0)j

iξ
0|j + T (0)0

0ξ
0
,i = −ρξ0|i − pξ0|i;
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so

v − B → (v − B) − ξ0. (1.49)

Finally,

(LξT
(0))i

j = p′δi
jξ

0,

hence

δp → δp + p′ξ0, (1.50)

Π → Π. (1.51)

From (1.44), (1.48) and (1.50) we also obtain

Γ → Γ. (1.52)

We see that Γ, Π are gauge invariant. Note that the transformation of δ and v − B involve only ξ0, while v
transforms as

v → v − ξ′.

For Q we get

Q → Q − a(ρ + p)ξ0. (1.53)

We can introduce various gauge invariant quantities. It is useful to adopt the following notation: For
example, we use the symbol δQ for that gauge invariant quantity which is equal to δ in the gauge where
Q = 0, thus

δQ = δ − 3
aρ

HQ = δ − 3(1 + w)H(v − B). (1.54)

Similarly,

δχ = δ + 3
(1 + w)H

a
χ = δ + 3H(1 + w)(B + E′); (1.55)

V : = (v − B)χ = v − B + a−1χ = v + E′ =
1
a

(
χ +

1
ρ + p

Q
)

; (1.56)

Qχ = Q + (ρ + p)χ = a(ρ + p)V. (1.57)

Another important gauge invariant amplitude, often called the curvature perturbation (see (1.26)), is

R := DQ = D + H(v − B) = Dχ + H(v − B)χ = Dχ + HV. (1.58)

1.2 Explicit form of the energy-momentum conservation

After these preparations we work out the consequences ∇·T = 0 of Einstein’s field equations for the metric
(1.16) and Tµ

ν as given by (1.34) and (1.42). The details of the calculations are presented in Appendix A
of this chapter.

The energy equation reads (see (1.238)):

(ρδ)′ + 3Hρδ + 3HpπL + (ρ + p)
[�(v + E′) + 3D′] = 0 (1.59)
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or, with (ρδ)′/ρ = δ′ − 3H(1 + w)δ and (1.56),

δ′ + 3H(c2
s − w)δ + 3HwΓ = −(1 + w)(�V + 3D′). (1.60)

This gives, putting an index χ, the gauge invariant equation

δ′
χ + 3H(c2

s − w)δχ + 3HwΓ = −(1 + w)(�V + 3D′
χ). (1.61)

Conversely, Eq. (1.60) follows from (1.61): the χ-terms cancel, as is easily verified by using the zeroth
order equation

w′ = −3(c2
s − w)(1 + w)H, (1.62)

that is easily derived from the Friedman equations in Sect. 0.1.3. From the definitions it follows readily that
the last factor in (1.60) is equal to −(aκ − 3HA − �(v − B)).

The momentum equation becomes (see (1.244)):

[(ρ + p)(v − B)]′ + 4H(ρ + p)(v − B) + (ρ + p)A + pπL + 2
3 (� + 3K)pΠ = 0. (1.63)

Using (1.44) in the form

pπL = ρ(c2
sδ + wΓ), (1.64)

and putting the index χ at the perturbation amplitudes gives the gauge invariant equation

[(ρ + p)V ]′ + 4H(ρ + p)V + (ρ + p)Aχ + ρc2
sδχ + ρwΓ + 2

3 (� + 3K)pΠ = 0 (1.65)

or12

V ′ + (1 − 3c2
s)HV + Aχ +

c2
s

1 + w
δχ +

w

1 + w
Γ +

2
3

(� + 3K)
w

1 + w
Π = 0. (1.66)

For later use we write (1.63) also as

(v − B)′ + (1 − 3c2
s)H(v − B) + A +

c2
s

1 + w
δ +

w

1 + w
Γ +

2
3

(� + 3K)
w

1 + w
Π = 0 (1.67)

(from which (1.66) follows immediately).

1.3 Einstein equations

A direct computation of the first order changes δGµ
ν of the Einstein tensor for (1.15) is complicated. It is

much simpler to proceed as follows: Compute first δGµ
ν in the longitudinal gauge B = E = 0. (That these

gauge conditions can be imposed follows from (1.18).) Then we write the perturbed Einstein equations in
a gauge invariant form. It is then easy to rewrite these equations without imposing any gauge conditions,
thus obtaining the equations one would get for the general form (1.15).

δGµ
ν is computed for the longitudinal gauge in Appendix B to this chapter. Let us first consider the

component µ = ν = 0 (see Eq. (1.256)):

δG0
0 =

2
a2

[
3H(HA − D′) + (� + 3K)D

]

= 2
[
3H(HA − Ḋ) +

1
a2 (� + 3K)D

]
. (1.68)

12 Note that h := ρ + p satisfies h′ = −3H(1 + c2s)h.
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Since δT 0
0 = −δρ (see (1.42)), we obtain the perturbed Einstein equation in the longitudinal gauge

3H(HA − Ḋ) +
1
a2 (� + 3K)D = −4πGρδ. (1.69)

Since in the longitudinal gauge χ = 0 and

κ = 3(HA − Ḋ), (1.70)

we can write (1.69) as follows

1
a2 (� + 3K)D + Hκ = −4πGρδ. (1.71)

Obviously, the gauge invariant form of this equation is

1
a2 (� + 3K)Dχ + Hκχ = −4πGρδχ, (1.72)

because it reduces to (1.71) for χ = 0. Recall in this connection the remark in Sect.1.1.4 that the gauge
transformations of the amplitudes A, D, χ, κ involve only ξ0. Therefore, Aχ, Dχ, κχ are uniquely defined;
the same is true for δχ (see (1.55)).

From (1.72) we can now obtain the generalization of (1.71) in any gauge. First note that as a consequence
of

Aχ = A − χ̇, Dχ = D − Hχ (1.73)

(verify this), we have, using also (1.22),

κχ = 3(HAχ − Ḋχ) = 3(HA − Ḋ) + 3Ḣχ

= κ +
(

3Ḣ +
1
a2 �

)
χ. (1.74)

From this, (1.73) and (1.55) one readily sees that (1.72) is equivalent to

1
a2 (� + 3K)D + Hκ = −4πGρδ (any gauge), (1.75)

in any gauge.
For the other components we proceed similarly. In the longitudinal gauge we have (see Eqs. (1.257) and

(1.70)):

δG0
j = − 2

a2 (HA − D′),j = − 2
a

(H − Ḋ),j = − 2
3a

κ,j , (1.76)

δT 0
j = (ρ + p)(v − B),j =

1
a

Q,j . (1.77)

This gives, up to an (irrelevant) spatially homogeneous term,

κ = −12πGQ (long. gauge). (1.78)

The gauge invariant form of this is

κχ = −12πGQχ. (1.79)
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Inserting here (1.74), (1.57), and using the unperturbed equation

Ḣ =
K

a2 − 4πG(ρ + p) (1.80)

(derive this), one obtains in any gauge

κ +
1
a2 (� + 3K)χ = −12πGQ (any gauge). (1.81)

Next, we use (1.258):

a2

2
δGi

j = δi
j

[
(2H′ + H2)A + HA′ − D′′

−2HD′ + KD +
1
2

�(A + D)
]

− 1
2

(A + D)|i|j . (1.82)

This implies

a2

2

(
δGi

j − 1
3

δi
j δGk

k

)
= − 1

2

[
(A + D)|i|j − 1

3
δi

j(A + D)|k|k

]
. (1.83)

Since

δT i
j − 1

3 δi
jδT

k
k = p

[
Π|i|j − 1

3 δi
j�Π

]

we get following field equation for S := A + D

S|i|j − 1
3 δi

j�S = −8πGa2p
(
Π|i|j − 1

3 δi
j�Π

)
.

Modulo an irrelevant homogeneous term (use the harmonic decomposition) this gives in the longitudinal
gauge

A + D = −8πGa2pΠ (1.84)

The gauge invariant form is

Aχ + Dχ = −8πGa2pΠ, (1.85)

from which we obtain with (1.73) in any gauge

χ̇ + Hχ − A − D = 8πGa2pΠ (any gauge). (1.86)

Finally, we consider the combination

1
2

(δGi
i − δG0

0) = 3
{

2(Ḣ + H2)A + HȦ − D̈ − 2HḊ
}

+
1
a2 �A.

Since

1
2

(δT i
i − δT 0

0) =
1
2

ρ
[
(1 + 3c2

s)δ + 3wΓ︸ ︷︷ ︸
δ+3wπL

]

we obtain in the longitudinal gauge the field equation

6ḢA + 6H2A + 3HȦ − 3D̈ − 6HḊ = − 1
a2 �A + 4πG(1 + 3s2

s)ρδ + 12πGpΓ. (1.87)
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The gauge invariant form is obviously

6ḢAχ +6H2Aχ +3HȦχ −3D̈χ −6HḊχ = − 1
a2 �Aχ +4πG(1+3s2

s)ρδχ +12πGpΓ. (1.88)

or

3(HAχ − Ḋχ)· + 6H(HAχ − Ḋχ) = −
(

1
a2 � + 3Ḣ

)
Aχ + 4πG(1 + 3c2

s)ρδχ + 12πGpΓ.

With (1.74) we can write this as

κ̇χ + 2Hκχ = −
(

1
a2 � + 3Ḣ

)
Aχ + 4πG(1 + 3c2

s)ρδχ + 12πGpΓ. (1.89)

In an arbitrary gauge we obtain (the χ-terms cancel)

κ̇ + 2Hκ = −
(

1
a2 � + 3Ḣ

)
A +4πG(1 + 3c2

s)ρδ + 12πGpΓ︸ ︷︷ ︸
4πGρ(δ+3wπL)

. (1.90)

Intermediate summary

This exhausts the field equations. For reference we summarize the results obtained so far. First, we collect
the equations that are valid in any gauge (indicating also their origin). As perturbation amplitudes we use
A, D, χ, κ (metric functions) and δ, Q, Π, Γ (matter functions), because these are either gauge invariant or
their gauge transformations involve only the component ξ0 of the vector field ξµ.

• definition of κ:

κ = 3(HA − Ḋ) − 1
a2 �χ; (1.91)

• δG0
0:

1
a2 (� + 3K)D + Hκ = −4πGρδ; (1.92)

• δG0
j :

κ +
1
a2 (� + 3K)χ = −12πGQ; (1.93)

• δGi
j − 1

3 δi
j δGk

k:

χ̇ + Hχ − A − D = 8πGa2pΠ; (1.94)

• δGi
i − δG0

0:

κ̇ + 2Hκ = −
(

1
a2 � + 3Ḣ

)
A +4πG(1 + 3c2

s)ρδ + 12πGpΓ︸ ︷︷ ︸
4πGρ(δ+3wπL)

; (1.95)
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• T 0ν
;ν (Eq. (1.60)):

δ̇ + 3H(c2
s − w)δ + 3HwΓ = (1 + w)(κ − 3HA) − 1

ρa2 �Q (1.96)

or

(ρδ)· + 3Hρ(δ + wπL︸︷︷︸
c2

sδ+wΓ

) = (ρ + p)(κ − 3HA) − 1
a2 �Q; (1.97)

• T iν
;ν = 0 (Eq. (1.63)):

Q̇ + 3HQ = −(ρ + p)A − pπL − 2
3

(� + 3K)pΠ. (1.98)

These equations are, of course, not all independent. Putting an index χ or Q, etc at the perturbation
amplitudes in any of them gives a gauge invariant equation. We write these down for Aχ, Dχ, · · · (instead
of Qχ we use V ; see also (1.61) and (1.66)):

κχ = 3(HAχ − Ḋχ); (1.99)

1
a2 (� + 3K)Dχ + Hκχ = −4πGρδχ; (1.100)

κχ = −12πGQχ; (1.101)

Aχ + Dχ = −8πGa2pΠ; (1.102)

κ̇χ + 2Hκχ = −
(

1
a2 � + 3Ḣ

)
Aχ + 4πG(1 + 3c2

s)ρδχ + 12πGpΓ︸ ︷︷ ︸
4πGρ(δχ+3wπL)

; (1.103)

δ̇χ + 3H(c2
s − w)δχ + 3HwΓ = −3(1 + w)Ḋχ − 1 + w

a
�V ; (1.104)

V̇ + (1 − 3c2
s)HV = − 1

a
Aχ − 1

a

[
c2
s

1 + w
δχ +

w

1 + w
Γ +

2
3

(� + 3K)
w

1 + w
Π
]

. (1.105)

Harmonic decomposition

We write these equations once more for the amplitudes of harmonic decompositions, adopting the following
conventions. For those amplitudes which enter in gµν and Tµν without spatial derivatives (i.e., A, D, δ, Γ)
we set

A = A(k)Y(k) , etc ; (1.106)

those which appear only through their gradients (B, v) are decomposed as

B = − 1
k

B(k)Y(k) , etc , (1.107)

and, finally„ we set for E and Π, entering only through second derivatives,

E =
1
k2 E(k)Y(k) (⇒ �E = −E(k)Y(k)). (1.108)

The reason for this is that we then have, using the definitions (1.9) and (1.10),

B|i = B(k)Y(k)i, Π|ij − 1
3 γij�Π = Π(k)Y(k)ij . (1.109)
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The spatial part of the metric in (1.16) then becomes

gijdxidxj = a2(η)
[
γij + 2

(
D − 1

3 E
)
γijY + 2EYij

]
dxidxj . (1.110)

The basic equations (1.91)-(1.98) imply for A(k), B(k), etc13, dropping the index (k),

κ = 3(HA − Ḋ) +
k2

a2 χ, (1.111)

− k2 − 3K

a2 D + Hκ = −4πGρδ, (1.112)

κ − k2 − 3K

a2 χ = −12πGQ, (1.113)

χ̇ + Hχ − A − D = 8πGa2pΠ/k2, (1.114)

κ̇ + 2Hκ =
(

k2

a2 − 3Ḣ

)
A +4πG(1 + 3c2

s)ρδ + 12πGpΓ︸ ︷︷ ︸
4πGρ(δ+3wπL)

, (1.115)

(ρδ)· + 3Hρ(δ + wπL︸︷︷︸
c2

sδ+wΓ

) = (ρ + p)(κ − 3HA) +
k2

a2 Q, (1.116)

Q̇ + 3HQ = −(ρ + p)A − pπL +
2
3

k2 − 3K

k2 pΠ. (1.117)

For later use we also collect the gauge invariant Eqs. (1.99)–(1.105) for the Fourier amplitudes:

κχ = 3(HAχ − Ḋχ), (1.118)

− k2 − 3K

a2 Dχ + Hκχ = −4πGρδχ, (1.119)

κχ = −12πGQχ

(
Qχ = − a

k
(ρ + p)V

)
, (1.120)

k2(Aχ + Dχ) = −8πGa2pΠ, (1.121)

κ̇χ + 2Hκχ =
(

k2

a2 − 3Ḣ

)
Aχ +4πG(1 + 3c2

s)ρδχ + 12πGpΓ︸ ︷︷ ︸
4πGρ(δχ+3wπL)

, (1.122)

δ̇χ + 3H(c2
s − w)δχ + 3HwΓ = −3(1 + w)Ḋχ − (1 + w)

k

a
V, (1.123)

V̇ + (1 − 3c2
s)HV =

k

a
Aχ +

c2
s

1 + w

k

a
δχ +

w

1 + w

k

a
Γ − 2

3
w

1 + w

k2 − 3K

k2

k

a
Π. (1.124)

13 We replace χ by χ(k)Y(k), where according to (1.21) χ(k) = −(a/k)(B − k−1E′); Eq. (1.111) is then just the translation
of (1.22) to the Fourier amplitudes, with κ → κ(k)Y(k). Similarly, Q → Q(k)Y(k), Q(k) = −(1/k)a(ρ + p)(v − B)(k).

www.ann-phys.org c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



736 N. Straumann: Cosmological perturbation theory

Alternative basic systems of equations

From the basic equations (1.91)–(1.105) we now derive another set which is sometimes useful, as we shall
see. We want to work with δQ, V and Dχ.

The energy equation (1.96) with index Q gives

δ̇Q + 3H(c2
s − w)δQ + 3HwΓ = (1 + w)(κQ − 3HAQ). (1.125)

Similarly, the momentum equation (1.98) implies

AQ = − 1
1 + w

[
c2
sδQ + wΓ +

2
3

(� + 3K)wΠ
]

. (1.126)

From (1.93) we obtain

κQ +
1
a2 (� + 3K)χQ = 0. (1.127)

But from (1.56) we see that

χQ = aV, (1.128)

hence

κQ = − 1
a

(� + 3K)V. (1.129)

Now we insert (1.126) and (1.129) in (1.125) and obtain

δ̇Q − 3HwδQ = −(1 + w)
1
a

(� + 3K)V + 2H(� + 3K)wΠ. (1.130)

Next, we use (1.105) and the relation

δχ = δQ + 3(1 + w)HV, (1.131)

which follows from (1.54), to obtain

V̇ + HV = − 1
a

Aχ − 1
a(1 + w)

[
c2
sδQ + wΓ +

2
3

(� + 3K)wΠ
]

. (1.132)

Here we make use of (1.102), with the result

V̇ + HV = 1
a Dχ − 1

a(1+w)

[
c2
sδQ + wΓ − 8πGa2(1 + w)pΠ + 2

3 (� + 3K)wΠ
]

(1.133)

From (1.99), (1.101), (1.102) and (1.57) we find

Ḋχ + HDχ = 4πGa(ρ + p)V − 8πGa2HpΠ. (1.134)

Finally, we replace in (1.100) δχ by δQ (making use of (1.131)) and κχ by V according to (1.101), giving
the Poisson-like equation

1
a2 (� + 3K)Dχ = −4πGρδQ. (1.135)
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The system we were looking for consists of (1.130), (1.133), (1.134) and (1.135).
From these equations we now derive an interesting expression for Ṙ. Recall (1.58):

R = DQ = Dχ + aHV = Dχ + ȧV. (1.136)

Thus

Ṙ = Ḋχ + äV + ȧV̇ .

On the right of this equation we use for the first term (1.134), for the second the following consequence of
the Friedmann equations (17) and (23)

ä = − 1
2

(1 + 3w)a
(

H2 +
K

a2

)
, (1.137)

and for the last term we use (1.133). The result becomes relatively simple for K = 0 (the V -terms cancel):

Ṙ = − H

1 + w

[
c2
sδQ + wΓ +

2
3

w�Π
]

.

Using also (1.135) and the Friedmann equation (17) (for K = 0) leads to

Ṙ =
H

1 + w

[
2
3

c2
s

1
(Ha)2

�Dχ − wΓ − 2
3

w�Π
]

. (1.138)

This is an important equation that will show, for instance, that R remains constant on superhorizon scales,
provided Γ and Π can be neglected.

As another important application, we can derive through elimination a second order equation for δQ. For
this we perform again a harmonic decomposition and rewrite the basic equations (1.130), (1.133), (1.134)
and (1.135) for the Fourier amplitudes:

δ̇Q − 3HwδQ = −(1 + w)
k

a

k2 − 3K

k2 V − 2H
k2 − 3K

k2 wΠ, (1.139)

V̇ + HV = − k

a
Dχ +

1
1 + w

k

a

[
c2
sδQ + wΓ − 8πG(1 + w)

a2

k2 pΠ − 2
3

k2 − 3K

k2 wΠ
]

(1.140)

k2 − 3K

a2 Dχ = 4πGρδQ, (1.141)

Ḋχ + HDχ = −4πG(ρ + p)
a

k
V − 8πGH

a2

k2 pΠ. (1.142)

Through elimination one can derive the following important second order equation for δQ (including the
Λ term)

δ̈Q + (2 + 3c2
s − 6w)Hδ̇Q +

[
c2
s

k2

a2 − 4πGρ(1 − 6c2
s + 8w − 3w2)

+ 12(w − c2
s)

K

a2 + (3c2
s − 5w)Λ

]
δQ = S, (1.143)

where

S = − k2 − 3K

a2 wΓ − 2
(

1 − 3K

k2

)
HwΠ̇

−
(

1 − 3K

k2

)[
− 1

3
k2

a2 + 2Ḣ + (5 − 3c2
s/w)H2

]
2wΠ. (1.144)

This is obtained by differentiating (1.139), and eliminating V and V̇ with the help of (1.139) and (1.140).
In addition one has to use several zeroth order equations. We leave the details to the reader. Note that S = 0
for Γ = Π = 0.
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1.4 Extension to multi-component systems

The phenomenological description of multi-component systems in this section follows closely the treatment
in [31].

Let Tµ
(α)ν denote the energy-momentum tensor of species (α). The total Tµ

ν is assumed to be just the
sum

Tµ
ν =

∑
(α)

Tµ
(α)ν , (1.145)

and is, of course, ‘conserved’. For the unperturbed background we have, as in (1.34),

T
(0)
(α)µ

ν = (ρ(0)
α + p(0)

α )u(0)
µ u(0)ν + p(0)

α δµ
ν , (1.146)

with
(
u(0)µ

)
=
(

1
a

,0
)

. (1.147)

The divergence of Tµ
(α)ν does, in general, not vanish. We set

T ν
(α)µ;ν = Q(α)µ;

∑
α

Q(α)µ = 0. (1.148)

The unperturbed Q(α)µ must be of the form

Q
(0)
(α)µ =

(
−aQ(0)

α ,0
)

, (1.149)

and we obtain from (1.148) for the background

ρ̇(0)
α = −3H(ρ(0)

α + p(0)
α ) + Q(0)

α = −3H(1 − q(0)
α )hα, (1.150)

where

hα = ρ(0)
α + p(0)

α , q(0)
α := Q(0)

α /(3Hhα). (1.151)

Clearly,

ρ(0) =
∑
α

ρ(0)
α , p(0) =

∑
α

p(0)
α , h := ρ(0) + p(0) =

∑
α

hα, (1.152)

and (1.148) implies
∑
α

Q(0)
α = 0 ⇔

∑
α

hαq(0)
α = 0. (1.153)

We again consider only scalar perturbations, and proceed with each component as in Sect.1.1.6. In
particular, Eqs. (1.32), (1.33), (1.42) and (1.44) become

Tµ
(α)νuν

(α) = −ρ(α)u
µ
(α), (1.154)

gµνuµ
(α)u

ν
(α) = −1, (1.155)

δu0
(α) = − 1

a
A, δui

(α) =
1
a

γijvα|j ⇒ δu(α)i = a(vα − B)|i,
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δT 0
(α)0 = −δρα,

δT 0
(α)j = hα(vα − B)|j , T i

(α)0 = −hαγijvα|j ,

δT i
(α)j = δpαδi

j + pα

(
Π|i

α|j − 1
3

δi
j�Πα

)
,

δpα = c2
αδρα + pαΓα ≡ pαπLα, c2

α := ṗα/ρ̇α. (1.156)

In (1.156) and in what follows the index (0) is dropped.
Summation of these equations give (δα := δρα/ρα):

ρδ =
∑
α

ραδα, (1.157)

hv =
∑
α

vα, (1.158)

pπL =
∑
α

πLα, (1.159)

pΠ =
∑
α

pΠα. (1.160)

The only new aspect is the appearance of the perturbations δQ(α)µ. We decompose Q(α)µ into energy
and momentum transfer rates:

Q(α)µ = Qαuµ + f(α)µ, uµf(α)µ = 0. (1.161)

Since ui and f(α)i are of first order, the orthogonality condition in (1.161) implies

f(α)0 = 0. (1.162)

We set (for scalar perturbations)

δQ(α) = Q(0)
α εα, (1.163)

f(α)j = Hhαfα|j , (1.164)

with two perturbation functions εα, fα for each component. Now, recall from (1.42) that

δu0 = −aA, δui = a(v − B)|i.

Using all this in (1.161) we obtain

δQ(α)0 = −aQ(0)
α (εα + A), (1.165)

δQ(α)j = a
[
Q(0)

α (v − B) + Hhαfα

]
|i

. (1.166)

The constraint in (1.148) can now be expressed as

∑
α

Q(0)
α εα = 0,

∑
α

hαfα = 0 (1.167)

(we have, of course, made use of (1.153)).
From now on we drop the index (0).
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We turn to the gauge transformation properties.As long as we do not use the zeroth-order energy equation
(1.150), the transformation laws for δα, vα, πLα, Πα remain the same as those in Sect. 1.1.6 for δ, v, πL,
and Π. Thus, using (1.150) and the notation wα = pα/ρα, we have

δα → δα +
ρ′

ρ
ξ0 = δα − 3(1 + wα)H(1 − qα)ξ0,

vα − B → (vα − B) − ξ0,

δpα → δpα + p′
αξ0,

Πα → Πα,

Γα → Γα. (1.168)

The quantity Q, introduced below (1.42), will also be used for each component:

δT 0
(α)i =:

1
a

Qα|i, ⇒ Q =
∑
α

Qα|i. (1.169)

The transformation law of Qα is

Qα → Qα − ahαξ0. (1.170)

For eachα we define gauge invariant density perturbations (δα)Qα
, (δα)χ and velocitiesVα = (vα−B)χ.

Because of the modification in the first of Eq. (1.168), we have instead of (1.54)

∆α := (δα)Qα
= δα − 3H(1 + wα)(1 − qα)(vα − B). (1.171)

Similarly, adopting the notation of [31, Eq. (1.55)] generalizes to

∆sα := (δα)χ = δα + 3(1 + wα)(1 − qα)Hχ. (1.172)

If we replace in (1.171) vα − B by v − B we obtain another gauge invariant density perturbation

∆cα := (δα)Q = δα − 3H(1 + wα)(1 − qα)(v − B), (1.173)

which reduces to δα for the comoving gauge: v = B.
The following relations between the three gauge invariant density perturbations are useful. Putting an

index χ on the right of (1.171) gives

∆α = ∆sα − 3H(1 + wα)(1 − qα)Vα. (1.174)

Similarly, putting χ as an index on the right of (1.173) implies

∆cs = ∆sα − 3H(1 + wα)(1 − qα)V. (1.175)

For Vα we have, as in (1.56),

Vα = vα + E′. (1.176)

From now on we use similar notations for the total density perturbations:

∆ := δQ, ∆s := δχ (∆ ≡ ∆c). (1.177)

Let us translate the identities (1.157)-(1.160). For instance,
∑
α

ρα∆cα =
∑

αραδα + 3H(v − B)
∑
α

hα(1 − qα) = ρδ + 3H(v − B)h = ρ∆.
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We collect this and related identities:

ρ∆ =
∑
α

ρα∆cα (1.178)

=
∑
α

ρα∆α − a
∑
α

QαVα, (1.179)

ρ∆s =
∑
α

ρα∆sα, (1.180)

hV =
∑
α

hαVα, (1.181)

pΠ =
∑
α

pαΠα. (1.182)

We would like to write also pΓ in a manifestly gauge invariant form. From (using (1.157), (1.159) and
(1.156))

pΓ = pπL − c2
sρδ =

∑
α

pαπLα︸ ︷︷ ︸
c2

αραδα+pαΓα

−c2
s

∑
α

ραδα =
∑
α

pαΓα +
∑
α

(c2
α − c2

s)ραδα

we get

pΓ = pΓint + pΓrel, (1.183)

with

pΓint =
∑
α

pαΓα (1.184)

and

pΓrel =
∑
α

(c2
α − c2

s)ραδα. (1.185)

Since pΓint is obviously gauge invariant, this must also be the case for pΓrel. We want to exhibit this
explicitly. First note, using (1.152) and (1.150), that

c2
s =

p′

ρ′ =
∑
α

p′
α

ρ′ =
∑
α

c2
α

ρ′
α

ρ′ =
∑
α

c2
α

hα

h
(1 − qα), (1.186)

i.e.,

c2
s = c̄2

s −
∑
α

hα

h
qαc2

α, (1.187)

where

c̄2
s =

∑
α

hα

h
c2
α. (1.188)

Now we replace δα in (1.185) with the help of (1.173) and use (1.186), with the result

pΓrel =
∑
α

(c2
α − c2

s)ρα∆cα. (1.189)
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One can write this in a physically more transparent fashion by using once more (1.186), as well as (1.152)
and (1.153),

pΓrel =
∑
α,β

(c2
α − c2

β)
hβ

h
(1 − qβ)ρα∆cα,

or

pΓrel =
1
2

∑
α,β

(c2
α − c2

β)
hαhβ

h
(1 − qα)(1 − qβ)

·
[

∆cα

(1 + wα)(1 − qα)
− ∆cβ

(1 + wβ)(1 − qβ)

]
. (1.190)

For the special case qα = 0, for all α, we obtain

pΓrel =
1
2

∑
α,β

(c2
α − c2

β)
hαhβ

h
Sαβ ; (1.191)

Sαβ : =
∆cα

1 + wα
− ∆cβ

1 + wβ
. (1.192)

The gauge transformation properties of εα, fα are obtained from

δQ(α)µ → δQ(αµ) + ξλQ(α)µ,λ + Q(α)λξλ
,µ. (1.193)

For µ = 0 this gives, making use of (1.149) and (1.165),

εα + A → εα + A + ξ0 (aQα)′

aQα
+ (ξ0)′ .

Recalling (1.18), we obtain

εα → εα +
(Qα)′

Qα
ξ0. (1.194)

For µ = i we get

δQ(α)i → δQ(α)i + Q(α)0ξ
0
i,

thus

v − B + Hhαfα → v − B + Hhαfα − ξ0.

But according to (1.49) v − B transforms the same way, whence

fα → fα. (1.195)

We see that the following quantity is a gauge invariant version of εα

Ecα := (εα)Q = εα +
(Qα)′

Qα
(v − B). (1.196)

We shall also use

Eα := (εα)Qα
= εα +

(Qα)′

Qα
(vα − B) = Ecα +

(Qα)′

Qα
(Vα − V ) (1.197)
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and

Esα := (εα)χ = εα − Q̇α

Qα
χ. (1.198)

Beside

Fcα := fα (1.199)

we also make use of

Fα := Fcα − 3qα(Vα − V ). (1.200)

In terms of these gauge invariant amplitudes the constraints (1.167) can be written as (using (1.153))∑
α

QαEcα = 0, (1.201)

∑
α

QαEα =
∑
α

(Qα)′Vα, (1.202)

∑
α

hαFcα = 0. (1.203)

Dynamical equations

We now turn to the dynamical equations that follow from

δT ν
(α)µ;ν = δQ(α)µ, (1.204)

and the expressions for δT ν
(α)µ;ν and δQ(α)µ given in (1.156), (1.165) and (1.166). Below we write these

in a harmonic decomposition, making use of the formulae in Appendix A for δT ν
(α)µ;ν (see (1.235) and

(1.243)). In the harmonic decomposition Eqs. (1.165) and (1.166) become

δQ(α)0 = −aQα(εα + A)Y, (1.205)

δQ(α)j = a [Qα(v − B) + Hhαfα] Yj . (1.206)

From (1.235) we obtain, following the conventions adopted in the harmonic decompositions and using
the last line in (1.156),

(ραδα)′ + 3
a′

a
ραδα + 3

a′

a
pαπLα + hα(kvα + 3D′ − E′) = aQα(A + εα). (1.207)

In the longitudinal gauge we have ∆sα = δα, Vα = vα, Esα = εα, E = 0, and (see (1.73) A = Aχ, D =
Dχ. We also note that, according to the definitions (1.19), (1.20), the Bardeen potentials can be expressed
as

Aχ = Ψ, Dχ = Φ. (1.208)

Eq. (1.207) can thus be written in the following gauge invariant form

(ρα∆sα)′ +3
a′

a
ρα∆sα +3

a′

a
pα

(
c2
α

wα
∆sα + Γα

)
+hα(kVα +3Φ′) = aQα(Ψ+Esα). (1.209)

Similarly, we obtain from (1.243) the momentum equation

[hα(vα − B)]′ + 4
a′

a
hα(vα − B) − khαA − kpαπLα +

2
3

k2 − 3K

k
pαΠα
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= a[Qα(v − B) +
ȧ

a
hαfα]. (1.210)

The gauge invariant form of this is (remember that fα is gauge invariant)

(hαVα)′ + 4
a′

a
hαVα − kpα

(
c2
α

wα
∆sα + Γα

)

−khαΨ +
2
3

k2 − 3K

k
pαΠα = a[QαV +

ȧ

a
hαfα]. (1.211)

Eqs. (1.209) and (1.211) constitute our basic system describing the dynamics of matter. It will be useful to
rewrite the momentum equation by using

(hαVα)′ = hαV ′
α + Vαh′

α, h′
α = ρ′

α(1 + c2
s) = −3

a′

a
(1 − qα)(1 + c2

α)hα.

Together with (1.151) and (1.200) we obtain

V ′
α − 3

a′

a
(1 − qα)(1 + c2

α)Vα + 4
a′

a
Vα − k

pα

hα

(
c2
α

wα
∆sα + Γα

)

−kΨ +
2
3

k2 − 3K

k

pα

hα
Πα = a[

Qα

hα
V +

ȧ

a
fα] =

a′

a
(Fα + 3qαVα)

or

V ′
α +

a′

a
Vα = kΨ +

a′

a
Fα + 3

a′

a
(1 − qα)c2

αVα

+k

[
c2
α

1 + wα
∆sα +

wα

1 + wα
Γα

]
− 2

3
k2 − 3K

k

wα

1 + wα
Πα. (1.212)

Here we use (1.174) in the harmonic decomposition, i.e.,

∆α = ∆sα + 3(1 + wα)(1 − qα)
a′

a

1
k

Vα, (1.213)

and finally get

V ′
α +

a′

a
Vα = kΨ +

a′

a
Fα + k

[
c2
α

1 + wα
∆α +

wα

1 + wα
Γα

]
− 2

3
k2 − 3K

k

wα

1 + wα
Πα. (1.214)

In applications it is useful to have an equation for Vαβ := Vα − Vβ . We derive this for qα = Γα = 0 (⇒
Γint = 0, Fα = Fcα = fα). From (1.214) we get

V ′
αβ +

a′

a
Vαβ =

a′

a
Fαβ + k

[
c2
α

1 + wα
∆α − c2

β

1 + wβ
∆β

]
− 2

3
k2 − 3K

k
Παβ , (1.215)

where

Παβ =
wα

1 + wα
Πα − wβ

1 + wβ
Πβ . (1.216)

Beside (1.213) we also use (1.175) in the harmonic decomposition,

∆cα = ∆sα + 3(1 + wα)(1 − qα)
a′

a

1
k

V, (1.217)
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to get

∆α = ∆cα + 3(1 + wα)(1 − qα)
a′

a

1
k

(Vα − V ). (1.218)

From now on we consider only a two-component system α, β. (The generalization is easy; see [31].)
Then Vα − V = (hβ/h)Vαβ , and therefore the second term on the right of (1.215) is (remember that we
assume qα = 0)

k

[
c2
α

1 + wα
∆α − c2

β

1 + wβ
∆β

]

= k

[
c2
α

1 + wα
∆cα − c2

β

1 + wβ
∆cβ

]
+ 3

a′

a

(
c2
αVαβ

hβ

h
+ c2

βVαβ
hα

h

)
(1.219)

At this point we use the identity14

∆cα

1 + wα
=

∆
1 + w

+
hβ

h
Sαβ . (1.220)

Introducing also the abbreviation

c2
z := c2

α

hβ

h
+ c2

β

hα

h
(1.221)

the right hand side of (1.219) becomes k(c2
α − c2

β) ∆
1+w + kc2

zSαβ + 3 a′
a c2

zVαβ . So finally we arrive at

V ′
αβ +

a′

a
(1 − 3c2

z)Vαβ

= k(c2
α − c2

β)
∆

1 + w
+ kc2

zSαβ +
a′

a
Fαβ − 2

3
k2 − 3K

k
Παβ . (1.222)

For the generalization of this equation, without the simplifying assumptions, see (II.5.27) in [31].
Under the same assumptions we can simplify the energy equation (1.209). Using

(
ρα∆sα

hα

)′
=

1
hα

(ρα∆sα)′ − h′
α

hα

ρα

hα
∆sα,

h′
α

hα

ρα

hα
= −3

a′

a
(1 + c2

α)
1

1 + wα

in (1.209) yields

(
∆sα

1 + wα

)′
= −kVα − 3Φ′. (1.223)

From this, (1.217) and the defining equation (1.192) of Sαβ we obtain the useful equation

S′
αβ = −kVαβ . (1.224)

14 From (1.192) we obtain for an arbitrary number of components (making use of (1.178))

∑

β

hβ

h
Sαβ =

∆cα

1 + wα
−

∑

β

hβ

h

1
1 + wβ

︸ ︷︷ ︸
ρβ/h

∆cβ =
∆cα

1 + wα
− ρ

h
∆ =

∆cα

1 + wα
− ∆

1 + w
.
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It is sometimes useful to have an equation for (∆cα/(1 + wα))′. From (1.217) and (1.223) (for qα = 0)
we get

(
∆cα

1 + wα

)′
= −kVα − 3Φ′ + 3

(
a′

a

1
k

V

)′
.

For the last term make use of (1.137), (1.140) and (1.121). If one uses also the following consequence of
(1.118) and (1.120)

a′

a
Ψ − Φ′ = 4πGρa2(1 + w)k−1V =

3
2

[(
a′

a

)2

+ K

]
(1 + w)k−1V (1.225)

one obtains after some manipulations

(
∆cα

1 + wα

)′
= −kVα+3

K

k
V +3

a′

a
c2
s

∆
1 + w

+3
a′

a

w

1 + w
Γ−3

a′

a

w

1 + w

2
3

(
1 − 3K

k2

)
Π. (1.226)

1.5 Appendix to Chapter 1

In this Appendix we give derivations of some results that were used in previous sections.

A. Energy-momentum equations

In what follows we derive the explicit form of the perturbation equations δTµ
ν;µ = 0 for scalar perturbations,

i.e., for the metric (1.16) and the energy-momentum tensor given by (1.34) and (1.42).

Energy equation

From

Tµ
ν;µ = Tµ

ν,µ + Γµ
µλTλ

ν − Γλ
µνTµ

λ (1.227)

we get for ν = 0:

δ(Tµ
0;µ) = δTµ

0,µ + δΓµ
µλTλ

0 + Γµ
µλδTλ

0 − δΓλ
µ0T

µ
λ − Γλ

µ0δT
µ

λ (1.228)

(quantities without a δ in front are from now on the zeroth order contributions). On the right we have more
explicitly for the first three terms

δTµ
0,µ = δT i

0,i + δT 0
0,0,

δΓµ
µλTλ

0 = δΓµ
µ0T

0
0 = δΓi

i0T
0
0 + δΓ0

00T
0
0,

Γµ
µλδTλ

0 = Γµ
µ0δT

0
0 + Γµ

µiδT
i
0 = 4HδT 0

0 + Γj
jiδT

i
0;

we used some of the unperturbed Christoffel symbols:

Γ0
00 = H, Γ0

0i = Γi
00 = 0, Γ0

ij = Hγij , Γi
0j = Hδi

j , Γi
jk = Γ̄i

jk, (1.229)

where Γ̄i
jk are the Christoffel symbols for the metric γij . With these the other terms become

−δΓλ
µ0T

µ
λ = −δΓ0

µ0T
µ
0 − δΓi

µ0T
µ

i = −δΓ0
00T

0
0 − δΓi

j0T
j
i,

−Γλ
µ0δT

µ
λ = −Γ0

µ0δT
µ
0 − Γi

µ0δT
µ

i = −HδT 0
0 − HδT i

i.
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Collecting terms gives

δ(Tµ
0;µ) = (δT i

0)|i + δT 0
0,0 − HδT i

i + 3HδT 0
0 − (ρ + p)δΓi

i0. (1.230)

We recall part of (1.42)

δT 0
0 = −δρ, δT i

0 = −(ρ + p)v|i, δT i
j = δpδi

j + pΠi
j , (1.231)

where

Πi
j := Π|i|j − 1

3 δi
j �Π. (1.232)

Inserting this gives

δ(Tµ
0;µ) = −δρ,0 − (ρ + p)�v − 3H(δρ + δp) − (ρ + p)δΓi

i0. (1.233)

We need δΓi
i0. In a first step we have

δΓi
i0 = 1

2 gij(δgij,0 + δgj0,i − δgi0,j) + 1
2 δgiν(gνi,0 + gν0,i − δgi0,ν),

so

δΓi
i0 =

1
2

(
1
a2 γijδgij,0 + δgij(a2),0γij

)
.

Inserting here (1.16), i.e.,

δgij = 2a2(Dγij + E|ij), δgij = −2a2(Dγij + E|ij),

gives

δΓi
i0 = (3D + �E)′. (1.234)

Hence (1.233) becomes

−δ(Tµ
0;µ) = (δρ)′ + 3H(δρ + δp) + (ρ + p)[�(v + E′) + 3D′], (1.235)

giving the energy equation:

(δρ)′ + 3H(δρ + δp) + (ρ + p)[�(v + E′) + 3D′] = 0 (1.236)

or

(δρ)· + 3H(δρ + δp) + (ρ + p)[�(v + Ė) + 3Ḋ] = 0. (1.237)

We rewrite (1.236) in terms of δ := δρ/ρ, using also (1.44) and (1.56),

(ρδ)′ + 3Hρδ + 3HpπL + (ρ + p)[�V + 3D′] = 0. (1.238)
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Momentum equation

For ν = i Eq. (1.227) gives

δ(Tµ
i;µ) = δTµ

i,µ + δΓµ
µλTλ

i + Γµ
µλδTλ

i − δΓλ
µiT

µ
λ − Γλ

µiδT
µ

λ. (1.239)

On the right we have more explicitly, again using (1.229),

δTµ
i,µ = δT j

i,j + δT 0
i,0,

δΓµ
µjT

λ
i = δΓµ

µjT
j
i = δΓ0

0jT
j
i + δΓk

kjT
j
i,

Γµ
µλδTλ

i = Γµ
µ0δT

0
i + Γµ

µjδT
j
i = 4HδT 0

i + Γk
kjδT

j
i,

−δΓλ
µiT

µ
λ = −δΓ0

µiT
µ
0 − δΓj

µiT
µ

j = −δΓ0
0iT

0
0 − δΓj

kiT
k

j ,

−Γλ
µiδT

µ
λ = −Γ0

µiδT
µ
0 − Γj

µiδT
µ

j = −HγijδT
j
0 − HδT 0

i − Γj
kiδT

k
j .

Collecting terms gives

δ(Tµ
i;µ) = (δT j

i)|j + δT 0
i,0 + 3HδT 0

i − HγijδT
j
0 + (ρ + p)δΓ0

0i. (1.240)

One readily finds

δΓ0
0i = (A − HB)|i (1.241)

We insert this and (1.231) into the last equation and obtain

δ(Tµ
i;µ) =

{
δp + (ρ + p)′(v − B) + (ρ + p)[(v − B)′ + 4H(v − B) + A]

}
|i + pΠj

i|j .

From (1.232) we obtain (R(γ)ij denotes the Ricci tensor for the metric γij)

Πj
i|j = Π|j |ij − 1

3 Π|i = Π|j |ji + R(γ)ijΠ|j − 1
3 Π|i =

[ 2
3 (� + 3K)Π

]
|i . (1.242)

As a result we see that δ(Tµ
i;µ) is equal to ∂i of the function

[(ρ + p)(v − B)]′ + 4H(ρ + p)(v − B) + (ρ + p)A + pπL + 2
3 (� + 3K)pΠ, (1.243)

and the momentum equation becomes explicitly (h = ρ + p)

[h(v − B)]′ + 4Hh(v − B) + hA + pπL + 2
3 (� + 3K)pΠ = 0. (1.244)

B. Calculation of the Einstein tensor for the longitudinal gauge

In the longitudinal gauge the metric is equal to gµν + δgµν , with

g00 = −a2, g0i = 0, δΓ0
ij = [2H(D−A)+D′]γij , g00 = −a−2, g0i = 0, gij = a−2γij ; (1.245)

δg00 = −2a2A, δg0i = 0, δgij = 2a2Dγij ,

δg00 = 2a−2A, δg0i = 0, δgij = −2a−2Dγij . (1.246)

The unperturbed Christoffel symbols have been given before in (1.229).
Next we need

δΓµ
αβ = 1

2 δgµν(gνα,β + gνβ,α − gαβ,ν) + 1
2 gµν(δgνα,β + δgνβ,α − δgαβ,ν). (1.247)
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For example, we have

δΓ0
00 = 1

2 2a−2A(−a2)′ + 1
2 (−a2)(−2a2A)′ = A′.

Some of the other components have already been determined in Sect.A. We list, for further use, all δΓµ
αβ :

δΓ0
00 = A′, δΓ0

0i = A,i, δΓ0
ij = [2H(D − A) + D′]γij ,

δΓi
00 = A,i, δΓi

0j = D′δi
j , δΓi

jk = D,kδi
j + D,jδ

i
k − D,iδjk

(1.248)

(indices are raised with γij).
For δRµν we have the general formula

δRµν = ∂λδΓλ
νµ −∂νδΓλ

λµ + δΓσ
νµΓλ

λσ +Γσ
νµδΓλ

λσ − δΓσ
λµΓλ

νσ −Γσ
λµδΓλ

νσ. (1.249)

We give the details for δR00,

δR00 = ∂λδΓλ
00 − ∂0δΓλ

λ0 + δΓσ
00Γλ

λσ + Γσ
00δΓλ

λσ − δΓσ
λ0Γλ

0σ − Γσ
λ0δΓλ

0σ. (1.250)

The individual terms on the right are:

∂λδΓλ
00 = (δΓ0

00)′ + (δΓi
00),i = A′′ + A,i

,i,

−∂0δΓλ
λ0 = −A′′ − 3D′′,

δΓσ
00Γλ

λσ = δΓ0
00Γλ

λ0 + δΓi
00Γλ

λi = 4HA′ + Γ̄l
liA

,i,

Γσ
00δΓλ

λσ = Γ0
00δΓλ

λ0 + Γi
00δΓλ

λi = H(A′ + 3D′),

−δΓσ
λ0Γλ

0σ = −δΓ0
λ0Γλ

00 − δΓi
λ0Γλ

0i = −H(A′ + 3D′),

−Γσ
λ0δΓλ

0σ = −Γ0
λ0δΓλ

00 − Γi
λ0δΓλ

0i = −H(A′ + 3D′).

Summing up gives the desired result

δR00 = �A + 3HA′ − 3D′′ − 3HD′. (1.251)

Similarly one finds (unpleasant exercise)

δR0j = 2(HA − D′),j , (1.252)

δRij = −(A + D)|ij +
[−�D − (4H2 + 2H′)A − HA′ (1.253)

+(4H2 + 2H′)D − 5HD′ + D′′] γij . (1.254)

Using also the zeroth order expressions for the Ricci tensor

R00 = −3H′, Rij = [H′ + 2H2 + 2K]γij , R0i = 0, (1.255)

one finds for the Einstein tensor15

δG0
0 =

2
a2 [3H(HA − D′) + �D + 3KD], (1.256)

15 Note that δRµ
ν = δgµλRλν + gµλδRλν .
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δG0
j = − 2

a2 [HA − D′],j , (1.257)

δGi
j =

2
a2

{
(2H′ + H2)A + HA′ − D′′

−2HD′ + KD +
1
2

�(A + D)
}

δi
j − 1

a2 (A + D)|i|j . (1.258)

These results can be derived less tediously with the help of the ’3+1 formalism’, developed, for instance,
in Sect. 2.9 of [1]. This was sketched in [33].

C. Summary of notation and basic equations

Notation in cosmological perturbation theory is a nightmare. Unfortunately, we had to introduce lots of
symbols and many equations. For convenience, we summarize the adopted notation and indicate the location
of the most important formulae. Some of them are repeated for further reference.

Recapitulation of the basic perturbation equations

For scalar perturbations we use the following gauge invariant amplitudes:
metric: Ψ, Φ (Bardeen potentials)

Ψ ≡ Aχ, Φ ≡ Dχ; (1.259)

total energy-momentum tensor Tµν : ∆, V ; instead of ∆ we also use

∆s = ∆ − 3(1 + w)H
a

k
V. (1.260)

The basic equations, derived from Einstein’s field equations, and some of the consequences, can be
summarized in the harmonic decomposition as follows:
• constraint equations:

(k2 − 3K)Φ = 4πGρa2∆, (1.261)

Φ̇ − HΨ = −4πG(ρ + p)
a

k
V ; (1.262)

• relevant dynamical equation:

Φ + Ψ = −8πG
a2

k2 pΠ; (1.263)

• energy equation:

∆̇ − 3Hw∆ = −
(

1 − 3K

k2

)[
(1 + w)

k

a
V + 2HwΠ

]
; (1.264)

• momentum equation:

V̇ + HV =
k

a
Ψ +

1
1 + w

k

a

[
c2
s∆ + wΓ − 2

3
k2 − 3K

k2 wΠ
]

. (1.265)

If ∆ is replaced in (1.264) and (1.265) by ∆s these equations become

∆̇s + 3H(c2
s − w)∆s = −3(1 + w)Φ̇ − (1 + w)

k

a
V − 3HwΓ, (1.266)
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V̇ + (1 − 3c2
s)HV =

k

a
Ψ +

c2
s

1 + w

k

a
∆s +

w

1 + w

k

a
Γ − 2

3
w

1 + w

k2 − 3K

k2

k

a
Π. (1.267)

multi-component systems:

Tµ
ν =

∑
(α)

Tµ
(α)ν , T ν

(α)µ;ν = Q(α)µ,
∑
α

Q(α)µ = 0. (1.268)

• additional unperturbed quantities, beside ρα, , pα, hα, cα, : Qα, qα, satisfy:

ρ =
∑
α

ρα, p =
∑
α

pα, h := ρ + p =
∑
α

hα, (1.269)

Qα = 3Hhαqα,
∑
α

Qα = 0,
∑
α

hαqα = 0, (1.270)

ρ̇α = −3H(1 − qα)hα. (1.271)

• perturbations: gauge invariant amplitudes: ∆α, ∆sα, ∆cα, Πα, Γα,

ρ∆ =
∑
α

ρα∆cα (1.272)

=
∑
α

ρα∆α − a
∑
α

QαVα, (1.273)

ρ∆s =
∑
α

ρα∆sα, (1.274)

hV =
∑
α

hαVα, (1.275)

pΠ =
∑
α

pαΠα, (1.276)

pΓ = pΓint + pΓrel, (1.277)

pΓint =
∑
α

pαΓα, (1.278)

pΓrel =
∑
α

(c2
α − c2

s)ρα∆cα (1.279)

or

pΓrel =
1
2

∑
α,β

(c2
α − c2

β)
hαhβ

h
(1 − qα)(1 − qβ)

·
[

∆cα

(1 + wα)(1 − qα)
− ∆cβ

(1 + wβ)(1 − qβ)

]
; (1.280)

for the special case qα = 0, for all α:

pΓrel =
1
2

∑
α,β

(c2
α − c2

β)
hαhβ

h
Sαβ ; (1.281)

Sαβ : =
∆cα

1 + wα
− ∆cβ

1 + wβ
. (1.282)
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• additional gauge invariant perturbations from δQ(α)µ:
energy: Eα, Ecα, Esα; momentum: Fα, Fcα; constraints:

∑
α

QαEcα = 0, (1.283)

∑
α

QαEα =
∑
α

(Qα)′Vα, (1.284)

∑
α

hαFcα = 0. (1.285)

• dynamical equations for qα = Γα = 0 (⇒ Γint = 0); some of the equations below hold only for
two-component systems;

(
∆sα

1 + wα

)′
= −kVα − 3Φ′; (1.286)

Eq. (1.226) for K = 0:

(
∆cα

1 + wα

)′
= −kVα + 3

a′

a
c2
s

∆
1 + w

+ 3
a′

a

w

1 + w
Γ − 3

a′

a

w

1 + w

2
3

Π; (1.287)

V ′
α +

a′

a
Vα = kΨ +

a′

a
Fα + k

c2
α

1 + wα
∆α − 2

3
k2 − 3K

k
Πα; (1.288)

for Vαβ := Vα − Vβ :

V ′
αβ +

a′

a
(1 − 3c2

z)Vαβ = k(c2
α − c2

β)
∆

1 + w
+ kc2

zSαβ +
a′

a
Fαβ − 2

3
k2 − 3K

k
Παβ , (1.289)

relation between Sαβ and Vαβ :

S′
αβ = −kVαβ . (1.290)

When working with ∆sα it is natural to substitute in (1.288) ∆α with the help of (1.174) in terms of ∆sα:

V ′
α +

a′

a
(1 − 3c2

α)Vα = kΨ +
a′

a
Fα + k

c2
α

1 + wα
∆sα − 2

3
k2 − 3K

k

wα

1 + wα
Πα, (1.291)

2 Some applications of cosmological perturbation theory

In this chapter we discuss some applications of the general formalism. More relevant applications will
follow in later parts.

Before studying realistic multi-component fluids, we consider first the simplest case when one compo-
nent, for instance CDM, dominates. First, we study, however, a general problem

Let us write down the basic equations (1.139)–(1.142) in the notation adopted later (Aχ = Ψ, Dχ =
Φ, δQ = ∆):

∆̇ − 3Hw∆ = −(1 + w)
k

a

k2 − 3K

k2 V − 2H
k2 − 3K

k2 wΠ, (2.1)

V̇ + HV = − k

a
Φ +

1
1 + w

k

a

[
c2
s∆ + wΓ − 8πG(1 + w)

a2

k2 pΠ − 2
3

k2 − 3K

k2 wΠ
]

, (2.2)
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k2 − 3K

a2 Φ = 4πGρ∆, (2.3)

Φ̇ + HΦ = −4πG(ρ + p)
a

k
V − 8πGH

a2

k2 pΠ. (2.4)

Recall also (1.121):

Φ + Ψ = −8πG
a2

k2 pΠ. (2.5)

Note that Φ = −Ψ for Π = 0.
From these perturbation equations we derived through elimination the second order equation (1.143) for

∆, which we repeat for Π = 0 (vanishing anisotropic stresses) and Γ = 0 (vanishing entropy production):

∆̈ + (2 + 3c2
s − 6w)H∆̇ +

[
c2
s

k2

a2 − 4πGρ(1 − 6c2
s + 8w − 3w2)

+12(w − c2
s)

K

a2 + (3c2
s − 5w)Λ

]
∆ = 0. (2.6)

Sometimes it is convenient to write this in terms of the conformal time for the quantity ρa3∆. Making use
of (ρa3)· = −3Hw(ρa3) (see (0.22)) one finds

(ρa3∆)′′ + (1 + 3c2
s)H(ρa3∆)′ +

[
(k2 − 3K)c2

s − 4πG(ρ + p)a2] (ρa3∆) = 0. (2.7)

Similarly, one can derive a second order equation for Φ:

Φ̈ + (4 + 3c2
s)HΦ̇ +

[
c2
s

k2

a2 + 8πGρ(c2
s − w) − 2(1 + 3c2

s)
K

a2 + (1 + c2
s)Λ

]
Φ = 0. (2.8)

Remarkably, for p = p(ρ) this can be written as [34]

ρ + p

H

[
H2

a(ρ + p)

( a

H
Φ
)·]·

+ c2
s

k2

a2 Φ = 0 (2.9)

(Exercise).

2.1 Non-relativistic limit

It is instructive to first consider a one-component non-relativistic fluid. The non-relativistic limit of the
second order equation (2.6) is

∆̈ + 2H∆̇ = 4πGρ∆ − c2
s

(
k

a

)2

∆. (2.10)

From this basic equation one can draw various conclusions.

The Jeans criterion

One sees from (2.10) that gravity wins over the pressure term ∝ c2
s for k < kJ , where

k2
J

( cs

a

)2
= 4πGρ (2.11)
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defines the comoving Jeans wave number. The corresponding Jeans length (wave length) is

λJ =
2π

kJ
a =

(
πc2

s

Gρ

)1/2

,
λJ

2π
� cs

H
. (2.12)

For λ < λJ we expect that the fluid oscillates, while for λ � λJ an over-density will increase.
Let us illustrate this for a polytropic equation of state p = const ργ . We consider, as a simple example,

a matter dominated Einstein-de Sitter model (K = 0), for which a(t) ∝ t2/3, H = 2/(3t). Eq. (2.10) then
becomes (taking ρ from the Friedmann equation, ρ = 1/(6πGt2))

∆̈ +
4
3t

∆̇ +
(

L2

t2γ−2/3 − 2
3t2

)
∆ = 0, (2.13)

where L2 is the constant

L2 =
t2γ−2/3c2

sk
2

a2 . (2.14)

The solutions of (2.27)are

∆±(t) ∝ t−1/6J∓5/6ν

(
Lt−ν

ν

)
, ν := γ − 4

3
> 0. (2.15)

The Bessel functions J oscillate for t � L1/ν , whereas for t � L1/ν the solutions behave like

∆±(t) ∝ t−
1
6 ± 5

6 . (2.16)

Now, t > L1/ν signifies c2
sk

2/a2 < 6πGρ. This is essentially again the Jeans criterion k < kJ . At the same
time we see that

∆+ ∝ t2/3 ∝ a, (2.17)

∆− ∝ t−1. (2.18)

Thus the growing mode increases like the scale factor.

2.2 Large scale solutions

Consider, as an important application, wavelengths larger than the Jeans length, i.e., cs(k/aH) � 1. Then
we can drop the last term in equation (2.9) and solve for Φ in terms of quadratures:

Φ(t,k) = C(k)
H

a

∫ t

0

a(ρ + p)
H2 dt +

H

a
d(k). (2.19)

We write this differently by using in the integrand the following background equation (implied by (1.80))

a(ρ + p)
H2 =

( a

H

)·
− a

(
1 − K

ȧ2

)
.

With this we obtain

Φ(t,k) = C(k)

[
1 − H

a

∫ t

0
a

(
1 − K

ȧ2

)
dt

]
+

H

a
d(k). (2.20)
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Let us work this out for a mixture of dust (p = 0) and radiation (p = 1
3 ρ). We use the ‘normalized’ scale

factor ζ := a/aeq, where aeq is the value of a when the energy densities of dust (CDM) and radiation are
equal. Then (see Sect. 0.1.3)

ρ =
1
2

ζ−4 +
1
2

ζ−3, p =
1
6

ζ−4. (2.21)

Note that

ζ ′ = kxζ, x :=
Ha

k
. (2.22)

From now on we assume K = 0, Λ = 0. Then the Friedmann equation gives

H2 = H2
eq

ζ + 1
2

ζ−4, (2.23)

thus

x2 =
ζ + 1
2ζ2

1
ω2 , ω :=

1
xeq

=
(

Ha

k

)
eq

. (2.24)

In (2.11) we need the integral

H

a

∫ t

0
adt = Haeq

1
ζ

∫ η

0
ζ2dη =

√
ζ + 1
ζ3

∫ ζ

0

ζ2
√

ζ + 1
dζ.

As a result we get for the growing mode

Φ(ζ,k) = C(k)

[
1 −

√
ζ + 1
ζ3

∫ ζ

0

ζ2
√

ζ + 1
dζ

]
. (2.25)

From (2.3) and the definition of x we obtain

Φ =
3
2

x2∆, (2.26)

hence with (2.15)

∆ =
4
3

ω2C(k)
ζ2

ζ + 1

[
1 −

√
ζ + 1
ζ3

∫ ζ

0

ζ2
√

ζ + 1
dζ

]
. (2.27)

The integral is elementary. One finds that ∆ is proportional to

Ug =
1

ζ(ζ + 1)

[
ζ3 +

2
9

ζ2 − 8
9

ζ − 16
9

+
16
9

√
ζ + 1

]
. (2.28)

This is a well-known result.
The decaying mode corresponds to the second term in (2.11), and is thus proportional to

Ud =
1

ζ
√

ζ + 1
. (2.29)

Limiting approximations of (2.19) are

Ug =

{
10
9 ζ2 : ζ � 1

ζ : ζ � 1.
(2.30)
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For the potential Φ ∝ x2∆ the growing mode is given by

Φ(ζ) = Φ(0)
9
10

ζ + 1
ζ2 Ug. (2.31)

Thus

Φ(ζ) = Φ(0)

{
1 : ζ � 1
9
10 : ζ � 1.

(2.32)

In particular, Φ stays constant both in the radiation and in the matter dominated eras. Recall that this holds
only for cs(k/aH) � 1. We shall later study Eq. (2.9) for arbitrary scales.

2.3 Solution of (2.6) for dust

Using the Poisson equation (2.3) we can write (2.9) in terms of ∆

1 + w

a2H

[
H2

a(ρ + p)

(
a3ρ

H
∆
)·]·

+ c2
s

k2

a2 ∆ = 0. (2.33)

For dust this reduces to (using ρa3 = const)
[
a2H2

(
∆
H

)·]·
= 0. (2.34)

The general solution of this equation is

∆(t,k) = C(k)H(t)
∫ t

0

dt′

a2(t′)H2(t′)
+ d(k)H(t). (2.35)

This result can also be obtained in Newtonian perturbation theory. The first term gives the growing mode
and the second the decaying one.

Let us rewrite (2.35) in terms of the redshift z. From 1 + z = a0/a we get dz = −(1 + z)Hdt, so by
(0.52)

dt

dz
= − 1

H0(1 + z)E(z)
, H(z) = H0E(z). (2.36)

Therefore, the growing mode Dg(z) can be written in the form

Dg(z) =
5
2

ΩME(z)
∫ ∞

z

1 + z′

E3(z′)
dz′. (2.37)

Here the normalization is chosen such that Dg(z) = (1+ z)−1 = a/a0 for ΩM = 1, ΩΛ = 0. This growth
function is plotted in Fig. 7.12 of [5].

2.4 A simple relativistic example

As an additional illustration we now solve (2.7) for a single perfect fluid with w = const, K = Λ = 0. For
a flat universe the background equations are then

ρ′ + 3
a′

a
(1 + w)ρ = 0,

(
a′

a

)2

=
8πG

3
a2ρ.
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Inserting the ansatz

ρa2 = Aη−ν , a = a0(η/η0)β

we get

β

η2 =
8πG

3
Aη−ν ⇒ ν = 2, A =

3
8πG

β2.

The energy equation then gives β = 2/(1 + 3w) (= 1 if radiation dominates). Let x := kη and

f := xβ−2∆ ∝ ρa3∆.

Also note that k/(aH) = x/β. With all this we obtain from (2.7) for f

[
d2

dx2 +
2
x

d

dx
+ c2

s − β(β + 1)
x2

]
f = 0. (2.38)

The solutions are given in terms of Bessel functions:

f(x) = C0jβ(csx) + D0nβ(csx). (2.39)

This implies acoustic oscillations for csx � 1, i.e., for β(k/aH) � 1 (subhorizon scales). In particular,
if the radiation dominates (β = 1)

∆ ∝ x[C0j1(csx) + D0n1(csx)], (2.40)

and the growing mode is soon proportional to x cos(csx), while the term going with sin(csx) dies out.
On the other hand, on superhorizon scales (csx � 1) one obtains

f � Cxβ + Dx−(β+1),

and thus

∆ � Cx2 + Dx−(2β−1),

Φ � 3
2

β2(C + Dx−(2β+1),

V � 3
2

β

(
− 1

β + 1
Cx + Dx−2β

)
. (2.41)

We see that the growing mode behaves as ∆ ∝ a2 in the radiation dominated phase and ∆ ∝ a in the matter
dominated era.

The characteristic Jeans wave number is obtained when the square bracket in (2.7) vanishes. This gives

λJ =
(

πc2
s

Gh

)1/2

, h = ρ + p. (2.42)

Exercise. Derive the exact expression for V .

In Part III we shall study more complicated coupled fluid models that are important for the evolution
of perturbations before recombination. In the next part the general theory will be applied in attempts to
understand the generation of primordial perturbations from original quantum fluctuations.
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Part II
Inflation and generation of fluctuations

3 Inflationary scenario

3.1 Introduction

The horizon and flatness problems of standard big bang cosmology are so serious that the proposal of a very
early accelerated expansion, preceding the hot era dominated by relativistic fluids, appears quite plausible.
This general qualitative aspect of ‘inflation’ is now widely accepted. However, when it comes to concrete
model building the situation is not satisfactory. Since we do not know the fundamental physics at superhigh
energies not too far from the Planck scale, models of inflation are usually of a phenomenological nature.
Most models consist of a number of scalar fields, including a suitable form for their potential. Usually there
is no direct link to fundamental theories, like supergravity, however, there have been many attempts in this
direction. For the time being, inflationary cosmology should be regarded as an attractive scenario, and not
yet as a theory.

The most important aspect of inflationary cosmology is that the generation of perturbations on large
scales from initial quantum fluctuations is unavoidable and predictable. For a given model these fluctuations
can be calculated accurately, because they are tiny and cosmological perturbation theory can be applied.
And, most importantly, these predictions can be confronted with the cosmic microwave anisotropy mea-
surements. We are in the fortunate position to witness rapid progress in this field. The results from various
experiments, most recently from WMAP, give already strong support of the basic predictions of inflation.
Further experimental progress can be expected in the coming years.

In what follows I shall mainly concentrate on this aspect. It is, I think, important to understand in sufficient
detail how the involved calculations are done, and which aspects are the most generic ones for inflationary
models. We shall learn a lot in the coming years, thanks to the confrontation of the theory with precise
observations.

3.2 The horizon problem and the general idea of inflation

I begin by describing the famous horizon puzzle (topic belonging to Chap. 0), which is a very serious
causality problem of standard big bang cosmology.

Past and future light cone distances

Consider our past light cone for a Friedmann spacetime model (Fig. 3.1). For a radial light ray the differential
relation dt = a(t)dr/(1 − kr2)1/2 holds for the coordinates (t, r) of the metric (0.40). The proper radius
of the past light sphere at time t (cross section of the light cone with the hypersurface {t = const}) is

lp(t) = a(t)
∫ r(t)

0

dr√
1 − kr2

, (3.1)

where the coordinate radius is determined by∫ r(t)

0

dr√
1 − kr2

=
∫ t0

t

dt′

a(t′)
. (3.2)

Hence,

lp(t) = a(t)
∫ t0

t

dt′

a(t′)
. (3.3)

We rewrite this in terms of the redhift variable, using (2.36),

lp(z) =
1

H0(1 + z)

∫ z

0

dz′

E(z′)
. (3.4)
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Fig. 3.1 Spacetime diagram illustrating the horizon prob-
lem.

Similarly, the extension lf (t) of the forward light cone at time t of a very early event (t � 0, z � ∞) is

lf (t) = a(t)
∫ t

0

dt′

a(t′)
=

1
H0(1 + z)

∫ ∞

z

dz′

E(z′)
. (3.5)

For the present Universe (t0) this becomes what is called the particle horizon distance

Dhor = H−1
0

∫ ∞

0

dz′

E(z′)
, (3.6)

and gives the size of the observable Universe.
Analytical expressions for these distances are only available in special cases. For orientation we consider

first the Einstein-de Sitter model (K = 0, ΩΛ = 0, ΩM = 1), for which a(t) = a0(t/t0)2/3 and thus

Dhor = 3t0 = 2H−1
0 , lf (t) = 3t,

lp
lf

=
(

t0
t

)1/3

− 1 =
√

1 + z − 1. (3.7)

For a flat Universe a good fitting formula for cases of interest is (Hu and White)

Dhor � 2H−1
0

1 + 0.084 ln ΩM√
ΩM

. (3.8)

It is often convenient to work with ‘comoving distances’, by rescaling distances referring to time t (like
lp(t), lf (t)) with the factor a(t0)/a(t) = 1 + z to the present. We indicate this by the superscript c. For
instance,

lcp(z) =
1

H0

∫ z

0

dz′

E(z′)
. (3.9)

This distance is plotted in Fig. 3 of Chap. 0 as Dcom(z). Note that for a0 = 1 : lcf (η) = η, lcp(η) = η0 − η.
Hence (3.5) gives the following relation between η and z:

η =
1

H0

∫ ∞

z

dz′

E(z′)
.
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The number of causality distances on the cosmic photosphere

The number of causality distances at redshift z between two antipodal emission points is equal to lp(z)/lf (z),
and thus the ratio of the two integrals on the right of (3.4) and (3.5). We are particularly interested in this
ratio at the time of last scattering with zrec � 1100. Then we can use for the numerator a flat Universe with
non-relativistic matter, while for the denominator we can neglect in the standard hot big bang model ΩK

and ΩΛ. A reasonable estimate is already obtained by using the simple expression in (3.7), i.e., z1/2
rec ≈ 30. A

more accurate evaluation would increase this number to about 40. The length lf (zrec) subtends an angle of
about 1 degree (exercise). How can it be that there is such a large number of causally disconnected regions
we see on the microwave sky all having the same temperature? This is what is meant by the horizon problem
and was a troublesome mystery before the invention of inflation.

Vacuum-like energy and exponential expansion

This causality problem is potentially avoided, if lf (t) would be increased in the very early Universe as a
result of different physics. If a vacuum-like energy density would dominate, the Universe would undergo
an exponential expansion. Indeed, in this case the Friedmann equation is

(
ȧ

a

)2

+
k

a2 =
8πG

3
ρvac, ρvac � const, (3.10)

and has the solutions

a(t) ∝




cosh Hvact : k = 1
eHvact : k = 0

sinh Hvact : k = 1,

(3.11)

with

Hvac =

√
8πG

3
ρvac . (3.12)

Assume that such an exponential expansion starts for some reason at time ti and ends at the reheating
time te, after which standard expansion takes over. From

a(t) = a(ti)eHvac(t−ti) (ti < t < te), (3.13)

for k = 0 we get

lcf (te) � a0

∫ te

ti

dt

a(t)
=

a0

Hvaca(ti)

(
1 − e−Hvac∆t

)
� a0

Hvaca(ti)
,

where ∆t := te − ti. We want to satisfy the condition lcf (te) � lcp(te) � H−1
0 (see (3.8), i.e.,

aiHvac � a0H0 ⇔ ai

ae
� a0H0

aeHvac
(3.14)

or

eHvac∆t � aeHvac

a0H0
=

Heqaeq

H0a0

Hvacae

Heqaeq
.

Here, eq indicates the values at the time teq when the energy densities of non-relativistic and relativistic
matter were equal. We now use the Friedmann equation for k = 0 and w := p/ρ = const. From (0.46) it
follows that in this case

Ha ∝ a−(1+3w)/2,
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and hence we arrive at

eHvac∆t �
(

a0

aeq

)1/2(
aeq

ae

)
= (1 + zeq)1/2

(
Te

Teq

)
= (1 + zeq)−1/2 TPl

T0

Te

TPl
, (3.15)

where we usedaT = const.So the number of e-folding periods during the inflationary period,N = Hvac∆t,
should satisfy

N � ln
(

TPl

T0

)
− 1

2
ln zeq + ln

(
Te

TPl

)
� 70 + ln

(
Te

TPl

)
. (3.16)

For a typical GUT scale, Te ∼ 1014 GeV , we arrive at the condition N � 60.
Such an exponential expansion would also solve the flatness problem, another worry of standard big

bang cosmology. Let me recall how this problem arises.
The Friedmann equation (0.17) can be written as

(Ω−1 − 1)ρa2 = − 3k

8πG
= const.,

where

Ω(t) :=
ρ(t)

3H2/8πG
(3.17)

(ρ includes vacuum energy contributions). Thus

Ω−1 − 1 = (Ω−1
0 − 1)

ρ0a
2
0

ρa2 . (3.18)

Without inflation we have

ρ = ρeq

( aeq

a

)4
(z > zeq), (3.19)

ρ = ρ0

( a0

a

)3
(z < zeq). (3.20)

According to (0.47) zeq is given by

1 + zeq =
ΩM

ΩR
� 104 Ω0h

2
0. (3.21)

Exercise: Derive the estimate on the right of (3.21).

For z > zeq we obtain from (3.18) and (3.19)

Ω−1 − 1 = (Ω−1
0 − 1)

ρ0a
2
0

ρeqa2
eq

ρeqa
2
eq

ρa2 = (Ω−1
0 − 1)(1 + zeq)−1

(
a

aeq

)2

(3.22)

or

Ω−1 − 1 = (Ω−1
0 − 1)(1 + zeq)−1

(
Teq

T

)2

� 10−60(Ω−1
0 − 1)

(
TPl

T

)2

. (3.23)

Let us apply this equation for T = 1 MeV, Ω0 � 0.2 − 0.3. Then | Ω − 1 |≤ 10−15, thus the Universe
was already incredibly flat at modest temperatures, not much higher than at the time of nucleosynthesis.
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�p(t)
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0

infl.
period

Fig. 3.2 Past and future light cones in
models with an inflationary period.

Such a fine tuning must have a physical reason. This is naturally provided by inflation, because our
observable Universe could originate from a small patch at te. (A tiny part of the Earth surface is also
practically flat.)

Beside the horizon scale lf (t), the Hubble length H−1(t) = a(t)/ȧ(t) plays also an important role. One
might call this the “microphysics horizon”, because this is the maximal distance microphysics can operate
coherently in one expansion time. It is this length scale which enters in basic evolution equations, such as
the equation of motion for a scalar field (see Eq. (3.30) below).

We sketch in Figs. 3.2–3.4 the various length scales in inflationary models, that is for models with a
period of accelerated (e.g., exponential) expansion. From these it is obvious that there can be – at least in
principle – a causal generation mechanism for perturbations. This topic will be discussed in great detail in
later parts of these lectures.

Exponential inflation is just an example. What we really need is an early phase during which the comoving
Hubble length decreases (Fig. 3.4). This means that (for Friedmann spacetimes)

(
H−1(t)/a

)·
< 0. (3.24)

This is the general definition of inflation; equivalently, ä > 0 (accelerated expansion). For a Friedmann
model Eq. (0.23) tells us that

ä > 0 ⇔ p < −ρ/3. (3.25)

This is, of course, not satisfied for ‘ordinary’ fluids.
Assume, as another example, power-law inflation: a ∝ tp. Then ä > 0 ⇔ p > 1.

3.3 Scalar field models

Models with p < −ρ/3 are naturally obtained in scalar field theories. Most of the time we shall consider
the simplest case of one neutral scalar field ϕ minimally coupled to gravity. Thus the Lagrangian density is
assumed to be

L =
M2

pl

16π
R[g] − 1

2
∇µϕ∇µϕ − V (ϕ), (3.26)

where R[g] is the Ricci scalar for the metric g. The scalar field equation is

�ϕ = V,ϕ, (3.27)
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Fig. 3.3 Physical distance (e.g. between clusters of
galaxies) and Hubble distance, and causality horizon
in inflationary models.
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t
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H-1(t)

comoving distance

H-1(t)

Fig. 3.4 Part of Fig. 3.3 expressed in terms of comoving distances.

and the energy-momentum tensor in the Einstein equation

Gµν =
8π

M2
Pl

Tµν (3.28)

is

Tµν = ∇µϕ∇νϕ + gµνLϕ (3.29)

(Lϕ is the scalar field part of (3.26)).
We consider first Friedmann spacetimes. Using previous notation, we obtain from (0.1)

√−g = a3√γ, �ϕ =
1√−g

∂µ(
√−ggµν∂νϕ) = − 1

a3 (a3ϕ̇)· +
1
a2 �γϕ.

The field equation (3.27) becomes

ϕ̈ + 3Hϕ̇ − 1
a2 �γϕ = −V,ϕ(ϕ). (3.30)

Note that the expansion of the Universe induces a ‘friction’ term. In this basic equation one also sees the
appearance of the Hubble length. From (3.29) we obtain for the energy density and the pressure of the scalar
field

ρϕ = T00 =
1
2

ϕ̇2 + V +
1

2a2 (∇ϕ)2, (3.31)

pϕ =
1
3

T i
i =

1
2

ϕ̇2 − V − 1
6a2 (∇ϕ)2. (3.32)

(Here, (∇ϕ)2 denotes the squared gradient on the 3-space (Σ, γ).)
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Suppose the gradient terms can be neglected, and that ϕ is during a certain phase slowly varying in time,
then we get

ρϕ ≈ V, pϕ ≈ −V. (3.33)

Thus pϕ ≈ −ρϕ, as for a cosmological term.
Let us ignore for the time being the spatial inhomogeneities in the previous equations. Then these reduce

to

ϕ̈ + 3Hϕ̇ + V,ϕ(ϕ) = 0; (3.34)

ρϕ =
1
2

ϕ̇2 + V, pϕ =
1
2

ϕ̇2 − V. (3.35)

Beside (3.34) the other dynamical equation is the Friedmann equation

H2 +
K

a2 =
8π

3M2
Pl

[
1
2

ϕ̇2 + V (ϕ)
]

. (3.36)

Eqs. (3.34) and (3.36) define a nonlinear dynamical system for the dynamical variables a(t), ϕ(t), which
can be studied in detail (see, e.g., [35]).

Let us ignore the curvature term K/a2 in (3.36). Differentiating this equation and using (3.34) shows
that

Ḣ = − 4π

M2
Pl

ϕ̇2. (3.37)

Regard H as a function of ϕ, then

dH

dϕ
= − 4π

M2
Pl

ϕ̇. (3.38)

This allows us to write the Friedmann equation as(
dH

dϕ

)2

− 12π

M2
Pl

H2(ϕ) = − 32π2

M4
Pl

V (ϕ). (3.39)

For a given potential V (ϕ) this is a differential equation for H(ϕ). Once this function is known, we obtain
ϕ(t) from (3.38) and a(t) from (3.37).

3.3.1 Power-law inflation

We now proceed in the reverse order, assuming that a(t) follows a power law

a(t) = const. tp. (3.40)

Then H = p/t, so by (3.37)

ϕ̇ =
√

p

4π
MPl

1
t
, ϕ(t) =

√
p

4π
MPl ln(t) + const.,

hence

H ∝ exp

(
−
√

4π

p

ϕ

MPl

)
. (3.41)

Using this in (3.39) leads to an exponential potential

V (ϕ) = V0 exp
(

−4
√

π

p

ϕ

MPl

)
. (3.42)
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3.3.2 Slow-roll approximation

An important class of solutions is obtained in the slow-roll approximation (SLA), in which the basic
Eqs. (3.34) and (3.36) can be replaced by

H2 =
8π

3M2
Pl

V (ϕ), (3.43)

3Hϕ̇ = −V,ϕ. (3.44)

A necessary condition for their validity is that the slow-roll parameters

εV (ϕ) : =
M2

Pl

16π

(
V,ϕ

V

)2

, (3.45)

ηV (ϕ) : =
M2

Pl

8π

V,ϕϕ

V
(3.46)

are small:

εV � 1, | ηV |� 1. (3.47)

These conditions, which guarantee that the potential is flat, are, however, not sufficient (for details, see
Sect. 5.1.2).

The simplified system (3.43) and (3.44) implies

ϕ̇2 =
M2

Pl

24π

1
V

(
V,ϕ

)2
. (3.48)

This is a differential equation for ϕ(t).
Let us consider potentials of the form

V (ϕ) =
λ

n
ϕn. (3.49)

Then Eq. (3.48) becomes

ϕ̇2 =
n2M2

Pl

24π

1
ϕ2 V. (3.50)

Hence, (3.43) implies

ȧ

a
= − 4π

nM2
Pl

(ϕ2)·,

and so

a(t) = a0 exp
[

4π

nM2
Pl

(ϕ2
0 − ϕ2(t))

]
. (3.51)

We see from (3.50) that 1
2 ϕ̇2 � V (ϕ) for

ϕ � n

4
√

3π
MPl. (3.52)
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Consider first the example n = 4. Then (3.50) implies

ϕ̇

ϕ
=

√
λ

6π
MPl ⇒ ϕ(t) = ϕ0 exp

(
−
√

λ

6π
MPl t

)
. (3.53)

For n �= 4:

ϕ(t)2−n/2 = ϕ
2−n/2
0 + t

(
2 − n

2

)√ nλ

24π
M

3−n/2
Pl . (3.54)

For the special case n = 2 this gives, using the notation V = 1
2 m2ϕ2, the simple result

ϕ(t) = ϕ0 − mMPl

2
√

3π
t. (3.55)

Inserting this into (3.51) provides the time dependence of a(t).

3.4 Why did inflation start?

Attempts to answer this and related questions are very speculative indeed. A reasonable direction is to
imagine random initial conditions and try to understand how inflation can emerge, perhaps generically,
from such a state of matter. A.Linde first discussed a scenario along these lines which he called chaotic
inflation. In the context of a single scalar field model he argued that typical initial conditions correspond
to 1

2 ϕ̇2 ∼ 1
2 (∂iϕ)2 ∼ V (ϕ) ∼ 1 (in Planckian units). The chance that the potential energy dominates in

some domain of size > O(1) is presumably not very small. In this situation inflation could begin and V (ϕ)
would rapidly become even more dominant, which ensures continuation of inflation. Linde concluded from
such considerations that chaotic inflation occurs under rather natural initial conditions. For this to happen,
the form of the potential V (ϕ) can even be a simple power law of the form (3.49). Many questions remain,
however, open.

The chaotic inflationary Universe will look on very large scales – much larger than the present Hubble
radius – extremely inhomogeneous. For a review of this scenario I refer to [36]. A much more extended
discussion of inflationary models, including references, can be found in [4].

4 Cosmological perturbation theory for scalar field models

To keep this Chapter independent of the previous one, let us begin by repeating the set up of Sect. 3.3.
We consider a minimally coupled scalar field ϕ, with Lagrangian density

L = − 1
2

gµν∂µϕ∂νϕ − U(ϕ) (4.1)

and corresponding field equation

�ϕ = U,ϕ. (4.2)

As a result of this the energy-momentum tensor

Tµ
ν = ∂µϕ∂νϕ − δµ

ν

(
1
2

∂λϕ∂λϕ + U(ϕ)
)

(4.3)

is covariantly conserved. In the general multi-component formalism (Sect. 1.4) we have, therefore, Qϕ = 0.
The unperturbed quantities ρϕ, etc, are

ρϕ = −T 0
0 =

1
2a2 (ϕ′)2 + U(ϕ), (4.4)
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pϕ =
1
3

T i
i =

1
2a2 (ϕ′)2 − U(ϕ), (4.5)

hϕ = ρϕ + pϕ =
1
a2 (ϕ′)2. (4.6)

Furthermore,

ρ′
ϕ = −3

a′

a
hϕ. (4.7)

It is not very sensible to introduce a “velocity of sound” cϕ.

4.1 Basic perturbation equations

Now we consider small deviations from the ideal Friedmann behavior:

ϕ → ϕ0 + δϕ, ρϕ → ρϕ + δρ, etc. (4.8)

(The index 0 is only used for the unperturbed field ϕ.) Since Lξϕ0 = ξ0ϕ′
0 the gauge transformation of δϕ

is

δϕ → δϕ + ξ0ϕ′
0. (4.9)

Therefore,

δϕχ = δϕ − 1
a

ϕ′
0χ = δϕ − ϕ′

0(B + E′) (4.10)

is gauge invariant (see (1.21)). Further perturbations are

δT 0
0 = − 1

a2

[
−ϕ

′2
0 A + ϕ′

0δϕ
′ + U,ϕa2δϕ

]
, (4.11)

δT 0
i = − 1

a2 ϕ′
0δϕ,i, (4.12)

δT i
j = − 1

a2 [ϕ
′2
0 A − ϕ′

0δϕ
′ + U,ϕa2δϕ]δi

j . (4.13)

This gives (recall (1.43))

δρ =
1
a2 [−ϕ

′2
0 A + ϕ′

0δϕ
′ + a2U,ϕδϕ], (4.14)

δp = pπL =
1
a2 [ϕ′

0δϕ
′ − ϕ

′2
0 A − a2U,ϕδϕ], (4.15)

Π = 0, Q = −ϕ̇0δϕ. (4.16)

Einstein equations

We insert these expressions into the general perturbation equations (1.91)–(1.98) and obtain

κ = 3(HA − Ḋ) − 1
a2 �χ, (4.17)

1
a2 (� + 3K)D + Hκ = −4πG[ϕ̇0δϕ̇ − ϕ̇2

0A + U,ϕδϕ], (4.18)

κ +
1
a2 (� + 3K)χ = 12πGϕ̇0δϕ, (4.19)
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A + D = χ̇ + Hχ (4.20)

Eq. (1.95) is in the present notation

κ̇ + 2Hκ = −
(

1
a2 � + 3Ḣ

)
A + 4πG[δρ + 3δp],

with

δρ + 3δp = 2(−2ϕ̇2
0A + 2ϕ̇0δϕ̇ − U,ϕδϕ).

If we also use (recall (1.80))

Ḣ = −4πGϕ̇2
0 +

K

a2

we obtain

κ̇ + 2Hκ = −
(� + 3K

a2 + 4πGϕ̇2
0

)
A + 8πG(2ϕ̇0δϕ̇ − U,ϕδϕ). (4.21)

The two remaining equations (1.97) and (1.98) are:

(δρ)· + 3H(δρ + δp) = (ρ + p)(κ − 3HA) − 1
a2 �Q, (4.22)

and

Q̇ + 3HQ = −(ρ + p)A − δp, (4.23)

with the expressions (4.14) – (4.16). Since these last two equations express energy-momentum ‘conserva-
tion’, they are not independent of the others if we add the field equation for ϕ; we shall not make use of
them below.

Eqs. (4.17)–(4.21) can immediately be written in a gauge invariant form:

κχ = 3(HAχ − Ḋχ), (4.24)

1
a2 (� + 3K)Dχ + Hκχ = −4πG[ϕ̇0δϕ̇χ − ϕ̇2

0Aχ + U,ϕδϕχ], (4.25)

κχ = 12πGϕ̇0δϕχ, (4.26)

Aχ + Dχ = 0 (4.27)

κ̇χ + 2Hκχ = −
(� + 3K

a2 + 4πGϕ̇2
0

)
Aχ + 8πG(2ϕ̇0δϕ̇χ − U,ϕδϕχ). (4.28)

From now on we set K = 0. Use of (4.27) then gives us the following four basic equations:

κχ = 3(Ȧχ + HAχ), (4.29)

1
a2 �Aχ − Hκχ = 4πG[ϕ̇0δϕ̇χ − ϕ̇2

0Aχ + U,ϕδϕχ], (4.30)

κχ = 12πGϕ̇0δϕχ, (4.31)

κ̇χ + 2Hκχ = − 1
a2 �Aχ − 4πGϕ̇2

0Aχ + 8πG(2ϕ̇0δϕ̇χ − U,ϕδϕχ). (4.32)
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Recall also

4πGϕ̇2
0 = −Ḣ. (4.33)

From (4.29) and (4.31) we get

Ȧχ + HAχ = 4πGϕ̇0δϕχ. (4.34)

The difference of (4.32) and (4.30) gives (using also (4.29))

(Ȧχ + HAχ)· + 3H(Ȧχ + HAχ) = 4πG(ϕ̇0δϕ̇χ − U,ϕδϕχ)

i.e.,

Äχ + 4HȦχ + (Ḣ + 3H2)Aχ = 4πG(ϕ̇0δϕ̇χ − U,ϕδϕχ). (4.35)

Beside (4.34) and (4.35) we keep (4.30) in the form (making use of (4.33))

1
a2 �Aχ − 3HȦχ − (Ḣ + 3H2)Aχ = 4πG(ϕ̇0δϕ̇χ + U,ϕδϕχ). (4.36)

Scalar field equation

We now turn to the ϕ equation (4.2). Recall (the index 0 denotes in this subsection the t-coordinate)

g00 = −(1 + 2A), g0j = −aB,j , gij = a2[γij + 2Dγij + 2E|ij ];

g00 = −(1 − 2A), g0j = − 1
a

B,j , gij =
1
a2 [γij − 2Dγij − 2E|ij ];

√−g = a3√γ(1 + A + 3D + �E.

Up to first order we have (note that ∂jϕ and g0j are of first order)

�ϕ =
1√−g

∂µ(
√−ggµν∂νϕ) =

1√−g
(
√−gg00ϕ̇)· +

1
a2 �δϕ − 1

a
ϕ̇0�B.

Using the zeroth order field equation (3.34), we readily find

δϕ̈ + 3Hδϕ̇ +
(

− 1
a2 � + U,ϕϕ

)
δϕ =

(Ȧ − 3Ḋ − �Ė + 3HA − 1
a

�B)ϕ̇0 − (3Hϕ̇0 + 2U,ϕ)A.

Recalling the definition of κ,

κ = 3(HA − Ḋ) − 1
a

�(B + aĖ),

we finally obtain the perturbed field equation in the form

δϕ̈ + 3Hδϕ̇ +
(

− 1
a2 � + U,ϕϕ

)
δϕ = (κ + Ȧ)ϕ̇0 − (3Hϕ̇0 + 2U,ϕ)A. (4.37)

By putting the index χ at all perturbation amplitudes one obtains a gauge invariant equation. Using also
(4.29) one arrives at

δϕ̈χ + 3Hδϕ̇χ +
(

− 1
a2 � + U,ϕϕ

)
δϕχ = 4ϕ̇0Ȧχ − 2U,ϕAχ. (4.38)

Our basic – but not independent – equations are (4.34), (4.35), (4.36) and (4.38).
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4.2 Consequences and reformulations

In (1.58) we have introduced the curvature perturbation (recall also (4.16))

R := DQ = Dχ − H

ϕ̇0
δϕχ = D − H

ϕ̇0
δϕ. (4.39)

It will turn out to be convenient to work also with

u = −zR, z :=
aϕ̇0

H
, (4.40)

thus

u = a

[
δϕχ − ϕ̇0

H
Dχ

]
= a

[
δϕ − ϕ̇0

H
D

]
. (4.41)

This amplitude will play an important role, because we shall obtain from the previous formulae the simple
equation

u′′ − �u − z′′

z
u = 0. (4.42)

This is a Klein-Gordon equation with a time-dependent mass.
We next rewrite the basic equations in terms of the conformal time:

�Aχ − 3HA′
χ − (H′ + 3H2)Aχ = 4πG(ϕ′

0δϕ
′
χ + U,ϕa2δϕχ), (4.43)

A′
χ + HAχ = 4πGϕ′

0δϕχ, (4.44)

A′′
χ + 3HA′

χ + (H′ + 2H2)Aχ = 4πG(ϕ′
0δϕ

′
χ − U,ϕa2δϕχ), (4.45)

δϕ′′
χ + 2Hδϕ′

χ − �δϕχ + U,ϕϕa2δϕχ = 4ϕ′
0A

′
χ − 2U,ϕa2Aχ. (4.46)

Let us first express u (or R) in terms of Aχ. From (4.40), (4.39) we obtain in a first step

4πGzu = 4πGz2Aχ + 4πG
z2H
ϕ′

0
δϕχ.

For the first term on the right we use the unperturbed equation (see (4.33))

4πGϕ
′2
0 = H2 − H′, (4.47)

and in the second term we make use of (4.44). Collecting terms gives

4πGzu =
(

a2Aχ

H
)′

. (4.48)

Next, we derive an equation for Aχ alone. For this we subtract (4.43) from (4.45) and use (4.44) to
express δϕχ in terms of Aχ and A′

χ. Moreover we make use of (4.47) and the unperturbed equation (3.34),

ϕ′′
0 + 2Hϕ′

0 + U,ϕ(ϕ0)a2 = 0. (4.49)
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Detailed derivation: The quoted equations give

A′′
χ + 6HA′

χ − �Aχ + 2(H′ + 2H2)Aχ =

−8πGU,ϕa2δϕχ =
2
ϕ′

0
(ϕ′′

0 + 2Hϕ′
0)(A

′
χ + HAχ),

thus

A′′
χ + 2(H − ϕ′′

0/ϕ′
0)A

′
χ − �Aχ + 2(H′ − Hϕ′′

0/ϕ′
0)Aχ = 0.

Rewriting the coefficients of Aχ, A′
χ slightly, we obtain the important equation:

A′′
χ + 2

(a/ϕ′
0)

′

a/ϕ′
0

A′
χ − �Aχ + 2ϕ′

0(H/ϕ′
0)

′Aχ = 0. (4.50)

Now we return to (4.48) and write this, using (4.47), as follows:

u

z
= Aχ +

A′
χ + HAχ

L
, (4.51)

where

L = 4πG
z2H
a2 = 4πG(ϕ′

0)
2/H = H − H′/H. (4.52)

Differentiating (4.51) implies

(u

z

)′
= A′

χ +
A′′

χ + (HAχ)′

L
− A′

χ + HAχ

L2 L′

or, making use of (4.52) and (4.50),

L
(u

z

)′
= (H − H′/H)A′

χ − 2
(a/ϕ′

0)
′

a/ϕ′
0

A′
χ + �Aχ

−2ϕ′
0(H/ϕ′

0)
′Aχ + (HAχ)′ − (A′

χ + HAχ)
(ϕ

′2
0 /H)′

ϕ
′2
0 /H .

From this one easily finds the simple equation

4πG
Hz2

a2

(u

z

)′
= �Aχ. (4.53)

Finally, we derive the announced Eq. (4.42). To this end we rewrite the last equation as

�Aχ = 4πG
H
a2 (zu′ − z′u),

from which we get

�A′
χ = 4πG

(H
a2

)′
(zu′ − z′u) + 4πG

H
a2 (zu′′ − z′′u).

Taking the Laplacian of (4.51) gives

4πG
H
a2 z�u = L�Aχ + �A′

χ + H�Aχ.
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Combining the last two equations and making use of (4.52) shows that indeed (4.42) holds.
Summarizing, we have the basic equations

u′′ − �u − z′′

z
u = 0, (4.54)

�Aχ = 4πG
H
a2 (zu′ − z′u), (4.55)

(
a2Aχ

H
)′

= 4πGzu. (4.56)

We now discuss some important consequences of these equations. The first concerns the curvature
perturbation R = −u/z (original definition in (4.39)). In terms of this quantity Eq. (4.55) can be written as

Ṙ
H

=
1

1 − H′/H2

1
(aH)2

(−�Aχ). (4.57)

The right-hand side is of order (k/aH)2, hence very small on scales much larger than the Hubble radius.
It is common practice to use the terms “Hubble length” and “horizon” interchangeably, and to call length
scales satisfying k/aH � 1 to be super-horizon. (This can cause confusion; ‘super-Hubble’ might be a
better term, but the jargon can probably not be changed anymore.)

We have studied Ṙ already at the end of Sect.1.3. I recall (1.138):

Ṙ =
H

1 + w

[
2
3

c2
s

1
(Ha)2

�Dχ − wΓ − 2
3

w�Π
]

. (4.58)

This general equation also holds for our scalar field model, for which Π = 0, Dχ = −Aχ. The first term
on the right in (4.58) is again small on super-horizon scales. So the non-adiabatic piece pΓ = δp − c2

sδρ
must also be small on large scales. This means that the perturbations are adiabatic. We shall show this more
directly further below, by deriving the following expression for Γ:

pΓ = − U,ϕ

6πGHϕ̇

1
a2 �Aχ. (4.59)

After inflation, when relativistic fluids dominate the matter content, Eq. (4.58) still holds. The first term
on the right is small on scales larger than the sound horizon. Since Γ and Π are then not important, we
see that for super-horizon scales R remains constant also after inflation. This will become important in the
study of CMB anisotropies.

Later, it will be useful to have a handy expression of Aχ in terms of R. According to (1.58) and (1.57)
we have

R = Dχ +
H

a(ρ + p)
Q. (4.60)

We rewrite this by combining (1.99) and (1.101)

R = Dχ − H
4πGa2(ρ + p)

(HAχ − D′
χ). (4.61)

At this point we specialize again to K = 0, and use (1.80) in the form

4πGa2(ρ + p) = H2(1 − H′/H2)
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and obtain

R = Dχ − 1
εH (HAχ − D′

χ), (4.62)

where

ε := 1 − H′/H2. (4.63)

If Π = 0 then Dχ = −Aχ, so

−R = Aχ +
1

εH (HAχ + A′
χ), (4.64)

I claim that for a constant R

Aχ = −
(

1 − H
a2

∫
a2dη

)
R. (4.65)

We prove this by showing that (4.65) satisfies (4.64). Differentiating the last equation gives by the same
equation and (4.63) our claim.

As a special case we consider (always for K = 0) w = const. Then, as shown in Sect.2.4,

a = a0(η/η0)β , β =
2

3w + 1
. (4.66)

Thus

H
a2

∫
a2dη =

β

2β + 1
,

hence

Aχ = − 3(w + 1)
3w + 5

R. (4.67)

This will be important later.
Derivation of (4.59): By definition

pΓ = δp − c2
sδρ, c2

s = ṗ/ρ̇ ⇒ pΓ =
ρ̇δp − ṗδρ

ρ̇
. (4.68)

Now, by (4.7) and (4.5)

ρ̇ = −3Hϕ̇2, ṗ = ϕ̇(ϕ̈ − U,ϕ) = −ϕ̇(3Hϕ̇ + 2U,ϕ),

and by (4.14) and (4.15)

δρ = −ϕ̇2A + ϕ̇δϕ̇ + U,ϕδϕ , δp = ϕ̇δϕ̇ − ϕ̇2A − U,ϕδϕ.

With these expressions one readily finds

pΓ = − 2
3

U,ϕ

Hϕ̇
[−ϕ̈δϕ + ϕ̇(δϕ̇ − ϕ̇A)]. (4.69)
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Up to now we have not used the perturbed field equations. The square bracket on the right of the last equation
appears in the combination (4.18)-H· (4.19) for the right hand sides. Since the right hand side of (4.69)
must be gauge invariant, we can work in the gauge χ = 0, and obtain (for K = 0) from (4.18),(4.19)

1
a2 �A = 4πG[−ϕ̈δϕ + ϕ̇(δϕ̇ − ϕ̇A)],

thus (4.59) since in the longitudinal gauge A = Aχ.
Application. We return to Eq. (4.57) and use there (4.59) to obtain

Ṙ = 4πG
ρp

U̇
Γ. (4.70)

As a result of (4.59) Γ is small on super-horizon scales, and hence (4.70) tells us that R is almost constant
(as we knew before).

The crucial conclusion is that the perturbations are adiabatic, which is not obvious (I think). For multi-
field inflation this is, in general, not the case (see, e.g., [38]).

5 Quantization, primordial power spectra

The main goal of this Chapter is to derive the primordial power spectra that are generated as a result of
quantum fluctuations during an inflationary period.

5.1 Power spectrum of the inflaton field

For the quantization of the scalar field that drives the inflation we note that the equation of motion (4.42)
for the scalar perturbation (4.41),

u = a

[
δϕχ − ϕ̇0

H
Dχ

]
= a

[
δϕχ +

ϕ′
0

H Aχ

]
, (5.1)

is the Euler-Lagrange equation for the effective action

Seff =
1
2

∫
d3xdη

[
(u′)2 − (∇u)2 +

z′′

z
u2
]

. (5.2)

The normalization is chosen such that Seff reduces to the correct action when gravity is switched off.
(In [37] this action is obtained by considering the quadratic piece of the full action with Lagrange density
(3.26), but this calculation is extremely tedious.)

The effective Lagrangian of (5.1) is

L =
1
2

[
(u′)2 − (∇u)2 +

z′′

z
u2
]

. (5.3)

This is just a free theory with a time-dependent mass m2 = −z′′/z. Therefore the quantization is straight-
forward. Once u is quantized the quantization of Ψ = Aχ is then also fixed (see Eq. (4.55)).

The canonical momentum is

π =
∂L
∂u′ = u′, (5.4)

and the canonical commutation relations are the usual ones:
[
û(η,x), û(η,x′)

]
=
[
π̂(η,x), π̂(η,x′)

]
= 0,

[
û(η,x), π̂(η,x′)

]
= iδ(3)(x − x′). (5.5)
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Let us expand the field operator û(η,x) in terms of eigenmodes uk(η)eik·x of Eq. (4.42), for which

u′′
k +

(
k2 − z′′

z

)
uk = 0. (5.6)

The time-independent normalization is chosen to be

u∗
ku′

k − uku′∗
k = −i. (5.7)

In the decomposition

û(η,x) = (2π)−3/2
∫

d3k
[
uk(η)âkeik·x + u∗

k(η)â†
ke−ik·x

]
(5.8)

the coefficients âk, â†
k are annihilation and creation operators with the usual commutation relations:

[âk, âk′ ] = [â†
k, â†

k′ ] = 0, [âk, â†
k′ ] = δ(3)(k − k′). (5.9)

With the normalization (5.7) these imply indeed the commutation relations (5.5). (Translate (5.8) with the
help of (4.55) into a similar expansion of Ψ, whose mode functions are determined by uk(η).)

The modes uk(η) are chosen such that at very short distances (k/aH → ∞) they approach the plane
waves of the gravity free case with positive frequences

uk(η) ∼ 1√
2k

e−ikη (k/aH � 1). (5.10)

In the opposite long-wave regime, where k can be neglected in (5.6), we see that the growing mode solution
is

uk ∝ z (k/aH � 1), (5.11)

i.e., uk/z and thus R is constant on super-horizon scales. This has to be so on the basis of what we saw in
Sect. 4.2. The power spectrum is conveniently defined in terms of R. We have (we do not put a hat on R)

R(η,x) = (2π)−3/2
∫

Rk(η)eik·xd3k, (5.12)

with

Rk(η) =
[

uk(η)
z

âk +
u∗

k(η)
z

â†
−k

]
. (5.13)

The power spectrum is defined by (see also Appendix A)

〈0|RkR†
k′ |0〉 =:

2π2

k3 PR(k)δ(3)(k − k′). (5.14)

From (5.13) we obtain

PR(k) =
k3

2π2

|uk(η)|2
z2 . (5.15)

Below we shall work this out for the inflationary models considered in Chap. 4. Before, we should address
the question why we considered the two-point correlation for the Fock vacuum relative to our choice of
modes uk(η). A priori, the initial state could contain all kinds of excitations. These would, however, be
redshifted away by the enormous inflationary expansion, and the final power spectrum on interesting scales,
much larger than the Hubble length, should be largely independent of possible initial excitations. (This
point should, perhaps, be studied in more detail.)
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5.1.1 Power spectrum for power law inflation

For power law inflation one can derive an exact expression for (5.15). For the mode equation (5.6) we need
z′′/z. To compute this we insert in the definition (4.40) of z the results of Sect. 3.3.1, giving immediately
z ∝ a(t) ∝ tp. In addition (3.40) implies t ∝ η1/1−p, so a(η) ∝ ηp/1−p. Hence,

z′′

z
=
(

ν2 − 1
4

)
1
η2 , (5.16)

where

ν2 − 1
4

=
p(2p − 1)
(p − 1)2

. (5.17)

Using this in (5.6) gives the mode equation

u′′
k +

(
k2 − ν2 − 1/4

η2

)
uk = 0. (5.18)

This can be solved in terms of Bessel functions. Before proceeding with this we note two further relations
that will be needed later. First, from H = p/t and a(t) = a0t

p we get

η = − 1
aH

1
1 − 1/p

. (5.19)

In addition,

z

a
=

ϕ̇

H
=
√

p

4π

MPl/t

(p/t)
=

1√
4πp

MPl,

so

ε := − Ḣ

H2 =
1
p

=
4π

M2
Pl

z2

a2 . (5.20)

Let us now turn to the mode equation (5.18).According to [39, 9.1.49], the functions w(z) = z1/2Cν(λz),
Cν ∝ H

(1)
ν , H

(2)
ν , ... satisfy the differential equation

w′′ +
(

λ2 − ν2 − 1/4
z2

)
w = 0. (5.21)

From the asymptotic formula for large z ( [39, 9.2.3])

H(1)
ν ∼

√
2
πz

ei(z− 1
2 νπ− 1

4 π) (−π < arg z < π), (5.22)

we see that the correct solutions are

uk(η) =
√

π

2
ei(ν+ 1

2 ) π
2 (−η)1/2H(1)

ν (−kη). (5.23)

Indeed, since −kη = (k/aH)(1 − 1/p)−1, k/aH � 1 means large −kη, hence (5.23) satisfies (5.10).
Moreover, the Wronskian is normalized according to (5.7) (use 9.1.9 in [39]).
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In what follows we are interested in modes which are well outside the horizon: (k/aH) � 1. In this
limit we can use (9.1.9 in [39])

iH(1)
ν (z) ∼ 1

π
Γ(ν)

(
1
2

z

)−ν

(z → 0) (5.24)

to find

uk(η) � 2ν−3/2ei(ν−1/2)π/2 Γ(ν)
Γ(3/2)

1√
2k

(−kη)−ν+1/2. (5.25)

Therefore, by (5.19) and (5.20)

|uk| = 2ν−3/2 Γ(ν)
Γ(3/2)

(1 − ε)ν−1/2 1√
2k

(
k

aH

)−ν+1/2

. (5.26)

The form (5.26) will turn out to hold also in more general situations studied below, however, with a different
ε. We write (5.26) as

|uk| = C(ν)
1√
2k

(
k

aH

)−ν+1/2

, (5.27)

with

C(ν) = 2ν−3/2 Γ(ν)
Γ(3/2)

(1 − ε)ν−1/2 (5.28)

(recall ν = 3
2 + 1

p−1 ).
The power spectrum is thus

PR(k) =
k3

2π2

∣∣∣∣uk(η)
z2

∣∣∣∣
2

=
k3

2π2

1
z2 C2(ν)

1
2k

(
k

aH

)1−2ν

. (5.29)

For z we could use (5.20). There is, however, a formula which holds more generally: From the definition
(4.40) of z and (3.38) we get

z = − M2
Pl

4π

a

H

dH

dϕ
. (5.30)

Inserting this in the previous equation we obtain for the power spectrum on super-horizon scales

PR(k) = C2(ν)
4

M4
Pl

H4

(dH/dϕ)2

(
k

aH

)3−2ν

. (5.31)

For power-law inflation a comparison of (5.20) and (5.30) shows that

M2
Pl

4π

(dH/dϕ)2

H2 =
1
p

= ε. (5.32)

The asymptotic expression (5.31), valid for k/aH � 1, remains, as we know, constant in time16.
Therefore, we can evaluate it at horizon crossing k = aH:

PR(k) = C2(ν)
4

M4
Pl

H4

(dH/dϕ)2

∣∣∣∣
k=aH

. (5.33)

16 Let us check this explicitly. Using (5.32) we can write (5.31) as

PR(k) = C2(ν)
1

πM2
Pl

H2

ε

(
k

aH

)3−2ν

,

and we thus have to show that H2(aH)2ν−3 is time independent. This is indeed the case since aH ∝ 1/η, H = p/t, t ∝
η1/(1−p) ⇒ H ∝ η−1/(1−p).
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We emphasize that this is not the value of the spectrum at the moment when the scale crosses outside the
Hubble radius. We have just rewritten the asymptotic value for k/aH � 1 in terms of quantities at horizon
crossing.

Note also that C(ν) � 1. The result (5.33) holds, as we shall see below, also in the slow-roll approxi-
mation.

5.1.2 Power spectrum in the slow-roll approximation

We now define two slow-roll parameters and rewrite them with the help of (3.37) and (3.38):

ε = − Ḣ

H2 =
4π

M2
Pl

ϕ̇2

H2 =
M2

Pl

4π

(
dH/dϕ

H(ϕ)

)2

, (5.34)

δ = − ϕ̈

Hϕ̇
=

M2
Pl

4π

d2H/dϕ2

H
(5.35)

(| ε |, | δ |� 1 in the slow-roll approximation). These parameters are approximately related to εU , ηU

introduced in (3.45) and (3.46), as we now show. From (3.36) for K = 0 and (3.37) we obtain

H2(1 − ε

3
) =

8π

3M2
Pl

U(ϕ). (5.36)

For small | ε | we obtain from this the following approximate expressions for the slow-roll parameters:

ε � M2
Pl

16π

(
U,ϕ

U

)2

, (5.37)

δ � M2
Pl

8π

U,ϕϕ

U
− M2

Pl

16π

(
U,ϕ

U

)2

. (5.38)

(In the literature the letter η is often used instead of δ, but η is already occupied for the conformal time.)
We use these small parameters to approximate various quantities, such as the effective mass z′′/z.
First, we note that (5.34) and (5.30) imply the relations17

ε = 1 − H′

H2 =
4π

M2
Pl

z2

a2 . (5.39)

According to (5.35) we have δ = 1 − ϕ′′/ϕ′H. For the last term we obtain from the definition z = aϕ′/H
ϕ′′

ϕ′H =
z′

zH − (1 − H′/H2).

Hence

δ = 1 + ε − z′

zH . (5.40)

Next, we look for a convenient expression for the conformal time. From (5.39) we get

ε

aH da = εdη = dη − (H′/H2)dη = dη + d

(
1
H
)

,

17 Note also that

ä

a
≡ Ḣ + H2 = (1 − ε)H2,

so ä > 0 for ε < 1.
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so

η = − 1
H +

∫
ε

aH da. (5.41)

Now we determine z′′/z to first order in ε and δ. From (5.40), i.e., z′/z = H(1 + ε − δ), we get

z′′

z
−
(

z′

z

)2

= (ε′ − δ′)H + (1 + ε − δ)H′,

hence

z′′/z = H2
[

ε′ − δ′

H + (1 + ε − δ)(2 − δ)
]

. (5.42)

We can consider ε′, δ′ as of second order: For instance, by (5.39)

ε′ =
4π

M2
Pl

2zz′

a2 − 2εH

or

ε′ = 2Hε(ε − δ). (5.43)

Treating ε, δ as constant, Eq. (5.41) gives η = −(1/H) + εη, thus

η = − 1
H

1
1 − ε

. (5.44)

This generalizes (5.19), in which ε = 1/p (see (5.20)). Using this in (5.42) we obtain to first order

z′′

z
=

1
η2 (2 + 2ε − 3δ).

We write this as (5.16), but with a different ν:

z′′

z
=
(

ν2 − 1
4

)
1
η2 , ν :=

1 + ε − δ

1 − ε
+

1
2

. (5.45)

As a result of all this we can immediately write down the power spectrum in the slow-roll approximation.
From the derivation it is clear that the formula (5.33) still holds, and the same is true for (5.28). Since ν is
close to 3/2 we have C(ν) � 1. In sufficient approximation we thus finally obtain the important result:

PR(k) =
4

M4
Pl

H4

(dH/dϕ)2

∣∣∣∣
k=aH

=
1

πM2
Pl

H2

ε

(
k

aH

)3−2ν

. (5.46)

This spectrum is nearly scale-free. This is evident if we use the formula (5.31), from which we get

n − 1 :=
d lnPR(k)

d ln k
= 3 − 2ν = 2δ − 4ε, (5.47)

so n is close to unity.
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Exercise. Show that (5.47) follows also from (5.46).
Solution: In a first step we get

n − 1 =
d

dϕ
ln
[

H4

(dH/dϕ)2

∣∣∣∣
k=aH

]
dϕ

d ln k
.

For the last factor we note that k = aH implies

d ln k =
da

a
+

dH

H
⇒ d ln k

dϕ
=

H

ϕ̇
+

dH/dϕ

H

or, with (3.37),

d ln k

dϕ
=

4π

M2
Pl

H

dH/dϕ

[
M2

Pl

4π

(
dH/dϕ

H

)2

− 1

]
.

Hence, using (5.34),

dϕ

d ln k
=

M2
Pl

4π

dH/dϕ

H

1
ε − 1

.

Therefore,

n − 1 =
M2

Pl

4π

dH/dϕ

H

1
ε − 1

[
4

dH/dϕ

H
− 2

d2H/dϕ2

dH/dϕ

]
=

1
ε − 1

(4ε − 2δ)

by (5.34) and (5.35).

5.1.3 Power spectrum for density fluctuations

Let PΦ(k) be the power spectrum for the Bardeen potential Φ = Dχ. The latter is related to the density
fluctuation ∆ by the Poisson equation (2.3),

k2Φ = 4πGρa2∆. (5.48)

Recall also that for Π = 0 we have Φ = −Ψ (= −Aχ), and according to (4.67) the following relation for
a period with w = const.

Φ =
3(w + 1)
3w + 5

R, (5.49)

and thus

P
1/2
Φ (k) =

3(w + 1)
3w + 5

P
1/2
R (k). (5.50)

Inserting (5.46) gives for the primordial spectrum on super-horizon scales

PΦ(k) =
[

3(w + 1)
3w + 5

]2 4
M4

Pl

H4

(dH/dϕ)2

∣∣∣∣
k=aH

. (5.51)

From (5.48) we obtain

∆(k) =
2(w + 1)
3w + 5

(
k

aH

)2

R(k), (5.52)
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and thus for the power spectrum of ∆:

P∆(k) =
4
9

(
k

aH

)4

PΦ(k) =
4
9

[
3(w + 1)
3w + 5

]2(
k

aH

)4

PR(k). (5.53)

During the plasma era until recombination the primordial spectra (5.46) and (5.51) are modified in a
way that will be studied in Part III of these lectures. The modification is described by the so-called transfer
function18 T (k, z), normalized such that T (k) � 1 for (k/aH) � 1. Including this, we have in the (dark)
matter dominated era (in particular at the time of recombination)

P∆(k) =
4
25

(
k

aH

)4

P prim
R (k)T 2(k), (5.54)

where P prim
R (k) denotes the primordial spectrum ((5.46) for our simple model of inflation).

Remark. Using the fact that R is constant on super-horizon scales allows us to establish the relation
between ∆H(k) := ∆(k, η) |k=aH and ∆(k, η) on these scales. From (5.52) we see that

∆(k, η) =
(

k

aH

)2

∆H(k). (5.55)

In particular, if | R(k) |∝ kn−1, thus | ∆(k, η) |2= Akn+3, then

| ∆H(k) |2= Akn−1, (5.56)

and this is independent of k for n = 1. In this case the density fluctuation for each mode at horizon crossing
has the same magnitude. This explains why the case n = 1 – also called the Harrison-Zel’dovich spectrum
– is called scale free.

5.2 Generation of gravitational waves

In this section we determine the power spectrum of gravitational waves by quantizing tensor perturbations
of the metric.

These are parametrized as follows

gµν = a2(η)[γµν + 2Hµν ], (5.57)

where a2(η)γµν is the Friedmann metric (γµ0 = 0, γij : metric of (Σ, γ)), and Hµν satisfies the transverse
traceless (TT) gauge conditions

H00 = H0i = Hi
i = Hi

j |j = 0. (5.58)

The tensor perturbation amplitudes Hij remain invariant under gauge transformations (1.14). Indeed, as
in Sect. 1.14, one readily finds

Lξg
(0) = 2a2(η)

{−(Hξ0 + (ξ0)′)dη2 + (ξ′
i − ξ0|i)dxidη + (Hγijξ

0 + ξi|j)dxidxj
}

.

Decomposing ξµ into scalar and vector parts gives the scalar and vector contributions of Lξg
(0), but there

are obviously no tensor contributions.

18 For more on this, see Sect. 6.2.4, where the z-dependence of T (k, z) is explicitly split off.

www.ann-phys.org c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



782 N. Straumann: Cosmological perturbation theory

The perturbations of the Einstein tensor belonging to Hµν are derived in the Appendix to this Chapter.
The result is:

δG0
0 = δG0

j = δGi
0 = 0,

δGi
j =

1
a2

[
(Hi

j)′′ + 2
a′

a
(Hi

j)′ + (−� + 2K)Hi
j

]
. (5.59)

We claim that the quadratic part of the Einstein-Hilbert action is

S(2) =
M2

Pl

16π

∫ [
(Hi

k)′(Hk
i)′ − Hi

k|lHk
i
|l − 2KHi

kHk
i

]
a2(η)dη

√
γd3x. (5.60)

(Remember that the indices are raised and lowered with γij .) Note first that
√−gd4x =

√
γa4(η)dηd3x+

quadratic terms in Hij , because Hij is traceless. A direct derivation of (5.60) from the Einstein-Hilbert
action would be extremely tedious (see [37]). It suffices, however, to show that the variation of (5.60) is just
the linearization of the general variation formula (see Sect. 2.3 of [1])

δS = −M2
Pl

16π

∫
Gµνδgµν

√−gd4x (5.61)

for the Einstein-Hilbert action

S =
M2

Pl

16π

∫
R

√−gd4x. (5.62)

Now, we have after the usual partial integrations,

δS(2) = − M2
Pl

8π

∫ [
(a2Hi

k)′)′

a2 + (−� + 2K)Hi
k

]
δHk

ia
2(η)dη

√
γd3x.

Since δHk
i = 1

2 δgk
i this is, with the expression (5.59), indeed the linearization of (5.61).

We absorb in (5.60) the factor a2(η) by introducing the rescaled perturbation

P i
j(x) :=

(
M2

Pl

8π

)1/2

a(η)Hi
j(x). (5.63)

Then S(2) becomes, after another partial integration,

S(2) =
1
2

∫ [
(P i

k)′(P k
i)′ − P i

k|lP k
i
|l +

(
a′′

a
− 2K

)
P i

kP k
i

]
dη

√
γd3x. (5.64)

In what follows we take again K = 0. Then we have the following Fourier decomposition: Let εij(k, λ)
be the two polarization tensors, satisfying

εij = εji, εi
i = 0, kiεij(k, λ) = 0, εi

j(k, λ)εj
i(k, λ)∗ = δλλ′ ,

εij(−k, λ) = ε∗
ij(k, λ), (5.65)

then

P i
j(η,x) = (2π)−3/2

∫
d3k

∑
λ

vk,λ(η)εi
j(k, λ)eik·x. (5.66)
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The field is now quantized by interpreting vk,λ(η) as the operator

v̂k,λ(η) = vk(η)âk,λ + v∗
k(η)â†

−k,λ, (5.67)

where vk(η)εij(k, λ)eik·x satisfies the field equation19 corresponding to the action (5.64), that is (for K = 0)

v′′
k +

(
k2 − a′′

a

)
vk = 0. (5.68)

(Instead of z′′/z in (5.6) we now have the “mass” a′′/a.)
In the long-wavelength regime the growing mode now behaves as vk ∝ a, hence vk/a remains constant.
Again we have to impose the normalization (5.7):

v∗
kv′

k − vkv′∗
k = −i, (5.69)

and the asymptotic behavior

vk(η) ∼ 1√
2k

e−ikη (k/aH � 1). (5.70)

The decomposition (5.66) translates to

Hi
j(η,x) = (2π)−3/2

∫
d3k

∑
λ

ĥk,λ(η)εi
j(k, λ)eik·x, (5.71)

where

ĥk,λ(η) =
(

8π

M2
Pl

)1/2 1
a

v̂k,λ(η). (5.72)

We define the power spectrum of gravitational waves by

2π2

k3 Pg(k)δ(3)(k − k′) =
∑

λ

〈0|ĥk,λĥ†
k′,λ|0〉 (5.73)

thus

∑
λ

〈0|v̂k,λv̂†
k′,λ|0〉 =

M2
Pla

2

8π

2π2

k3 Pg(k)δ(3)(k − k′). (5.74)

Using (5.67) for the left-hand side we obtain instead of (5.15)20

Pg(k) = 2
8π

M2
Pla

2

k3

2π2 |vk(η)|2. (5.75)

The factor 2 on the right is due to the two polarizations.

19 We ignore possible tensor contributions to the energy-momentum tensor
20 In the literature one often finds an expression for Pg(k) which is 4 times larger, because the power spectrum is defined in terms

of hij = 2Hij .
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5.2.1 Power spectrum for power-law inflation

For the modes vk(η) we need a′′/a. From

a′′

a
= (aH)′/a = H2 + H′ = 2H2

[
1 − 1

2
(1 − H′/H2)

]

and (5.39) we obtain the generally valid formula

a′′

a
= 2H2(1 − ε/2). (5.76)

For power-law inflation we had ε = 1/p, a(η) ∝ ηp/(1−p), thus

H =
p

p − 1
1
η

and hence

a′′

a
=
(

µ2 − 1
4

)
1
η2 , µ :=

3
2

+
1

p − 1
. (5.77)

This shows that for power-law inflation vk(η) is identical to uk(η). Therefore, we have by Eq. (5.27)

|vk| = C(µ)
1√
2k

(
k

aH

)−µ+1/2

, (5.78)

with

C(µ) = 2µ−3/2 Γ(µ)
Γ(3/2)

(1 − ε)µ−1/2. (5.79)

Inserting this in (5.75) gives

Pg(k) =
16π

M2
Pl

k3

2π2

1
a2 C2(µ)

1
2k

(
k

aH

)1−2µ

. (5.80)

or

Pg(k) = C2(µ)
4
π

(
H

MPl

)2(
k

aH

)1−2µ

. (5.81)

Alternatively, we have

Pg(k) = C2(µ)
4
π

H2

M2
Pl

∣∣∣∣
k=aH

. (5.82)

5.2.2 Slow-roll approximation

From (5.76) and (5.44) we obtain again the first equation in (5.77), but with a different µ:

µ =
1

1 − ε
+

1
2

. (5.83)

Hence vk(η) is equal to uk(η) if ν is replaced by µ. The formula (5.82), with C(µ) given by (5.79), remains
therefore valid, but now µ is given by (5.83), where ε is the slow-roll parameter in (5.34) or (5.39). Again
C(µ) � 1.
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The power index for tensor perturbations,

nT (k) :=
d lnPg(k)

d ln k
, (5.84)

can be read off from (5.81):

nT � −2ε, (5.85)

showing that the power spectrum is almost flat21.

Consistency equation

Let us collect some of the important formulas:

AS(k) : =
2
5

P
1/2
R (k) =

4
5

H2

M2
Pl|dH/dϕ|

∣∣∣∣
k=aH

, (5.86)

AT (k) : =
1
5

P 1/2
g (k) =

2
5
√

π

H

MPl

∣∣∣∣
k=aH

, (5.87)

n − 1 = 2δ − 4ε, (5.88)

nT = −2ε. (5.89)

The relative amplitude of the two spectra (scalar and tensor) is thus given by

A2
T

A2
S

= ε

(
Pg

PR
= 4ε

)
. (5.90)

More importantly, we obtain the consistency condition

nT = −2
A2

T

A2
S

, (5.91)

which is characteristic for inflationary models. In principle this can be tested with CMB measurements, but
there is a long way before this can be done in practice.

5.2.3 Stochastic gravitational background radiation

The spectrum of gravitational waves, generated during the inflationary era and stretched to astronomical
scales by the expansion of the Universe, contributes to the background energy density. Using the results of
the previous section we can compute this.

I first recall a general formula for the effective energy-momentum tensor of gravitational waves. (For
detailed derivations see Sect. 4.4 of [1].)

By ‘gravitational waves’ we mean propagating ripples in curvature on scales much smaller than the
characteristic scales of the background spacetime (the Hubble radius for the situation under study). For

21 The result (5.86) can also be obtained from (5.82). Making use of an intermediate result in the solution of the Exercise on p.88
and (5.34), we get

nT =
d ln H2

dϕ

dϕ

d ln k
=

2ε

ε − 1
� −2ε.
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sufficiently high frequency waves it is meaningful to associate them – in an averaged sense – an energy-
momentum tensor. Decomposing the full metric gµν into a background ḡµν plus fluctuation hµν , the effective
energy-momentum tensor is given by the following expression

T
(GW )
αβ =

1
32πG

〈
hµν|αhµν |β

〉
, (5.92)

if the gauge is chosen such that hµν |ν = 0, hµ
µ = 0. Here, a vertical stroke indicates covariant derivatives

with respect to the background metric, and 〈· · ·〉 denotes a four-dimensional average over regions of several
wave lengths.

For a Friedmann background we have in the TT gauge for hµν = 2Hµν : hµ0 = 0, hij|0 = hij,0, thus

T
GW )
00 =

1
8πG

〈
ḢijḢ

ij
〉

. (5.93)

As in (5.71) we perform (for K = 0) a Fourier decomposition

Hij(η,x) = (2π)−3/2
∫

d3k
∑

λ

hλ(η,k)εij(k, λ)eik·x. (5.94)

The gravitational background energy density, ρg , is obtained by taking the space-time average in (5.93).
At this point we regard hλ(η,k) as a random field, indicated by a hat (since it is on macroscopic scales
equivalent to the original quantum field ĥλ(η,k)), and replace the spatial average by the stochastic average
(for which we use the same notation). Clearly, this is only justified if some ergodicity property holds. This
issue will appear again in Part III, and we shall devote Appendix C for some clarifications.

If we adopt this procedure we obtain, anticipating the δ-function in (5.96),

ρg =
1

8πGa2(2π)3

∫
d3kd3k′∑

λ

〈〈
ĥ

′
λ(η,k)ĥ

′�
λ (η,k′)

〉〉
. (5.95)

Here, the average on the right includes also an average over several periods. (As always, a dot denotes the
derivative with respect to the cosmic time t, thus ḣ = h′/a.) Using (5.72) and (5.67) we obtain for the
statistical average

∑
λ

〈
ĥ

′
λ(η,k)ĥ

′∗
λ (η,k′)

〉
= 2|h′

k(η)|2δ(3)(k − k′), (5.96)

where (see (5.72))

hk(η) =
(

8π

M2
Pl

)1/2 1
a

vk(η). (5.97)

Thus

ρg =
2

8πGa2(2π)3

∫
d3k

〈|h′
k(η)|2〉 , (5.98)

where from now on 〈· · ·〉 denotes the average over several periods. For the spectral density this gives

k
dρg(k)

dk
=

k3

Ga2(2π)3
〈|h′

k(η)|2〉 . (5.99)

If ηi is some early time, we can write

|h′
k(η)|2 =

∣∣∣∣ h′
k(η)

hk(ηi)

∣∣∣∣
2

π2

k3 Pg(k, ηi), (5.100)
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where Pg(k, ηi) is the power spectrum at ηi (for which we may take (5.75)). Hence we obtain

k
dρg(k)

dk
=

M2
Pl

8πa2

〈∣∣∣∣ h′
k(η)

hk(ηi)

∣∣∣∣
2
〉

Pg(k, ηi). (5.101)

When the radiation is well inside the horizon, we can replace h′
k by khk.

The differential equation (5.68) reads in terms of hk(η)

h′′ + 2
a′

a
h′ + k2h = 0. (5.102)

For the matter dominated era (a(η) ∝ η2) this becomes

h′′ +
4
η

h′ + k2h = 0.

Using 9.1.53 of [39] one sees that this is satisfied by j1(kη)/kη. Furthermore, by 10.1.4 of the same
reference, we have 3j1(x)/x → 1 for x → 0 and

(
j1(x)

x

)′
= − 1

x
j2(x) → 0 (x → 0).

So the correct solution is

hk(η)
hk(0)

= 3
j1(kη)

kη
(5.103)

if the modes cross inside the horizon during the matter dominated era. Note also that

j1(x) =
sin x

x2 − cos x

x
. (5.104)

For modes which enter the horizon earlier, we introduce a transfer function Tg(k) by

hk(η)
hk(0)

=: 3
j1(kη)

kη
Tg(k), (5.105)

that has to be determined numerically from the differential equation (5.102). We can then write the result
(5.101) as

k
dρg(k)

dk
=

M2
Pl

8π

k2

a2 P prim
g (k)|Tg(k)|2

〈[
3j1(kη)

kη)

]2
〉

, (5.106)

where P prim
g (k) denotes the primordial power spectrum. This holds in particular at the present time η0

(a0 = 1). Since the time average 〈cos2 kη〉 = 1
2 , we finally obtain for Ωg(k) := ρg(k)/ρcrit (using

η0 = 2H−1
0 )

dΩg(k)
d ln k

=
3
8

P prim
g (k)|Tg(k)|2 1

(kη0)2
. (5.107)

Here one may insert the inflationary result (5.82), giving

dΩg(k)
d ln k

=
3
2π

H2

M2
Pl

∣∣∣∣
k=aH

|Tg(k)|2 1
(kη0)2

. (5.108)
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Fig. 5.1 Differential energy density (5.108) of the stochastic
background of inflation-produced gravitational waves. The nor-
malization of the upper curve, representing the scale-invariant
limit, is arbitrary. The blue curves are normalized to the COBE
quadrupole, and show the result for nT = −0.003, −0.03, and
−0.3. (Adapted from [40].)

5.2.4 Numerical results

Since the normalization in (5.82) can not be predicted, it is reasonable to choose it, for illustration, to be
equal to the observed CMB normalization at large scales. (In reality the tensor contribution is presumably
only a small fraction of this; see (5.90).) Then one obtains the result shown in Fig. 5.1, taken from [40].
This shows that the spectrum of the stochastic gravitational background radiation is predicted to be flat in
the interesting region, with dΩg/d ln(kη0) ∼ 10−14. Unfortunately, this is too small to be detectable by the
future LISA interferometer in space.

Exercise. Consider a massive free scalar field φ (mass m) and discuss the quantum fluctuations for a de
Sitter background (neglecting gravitational back reaction). Compute the power spectrum as a function of
conformal time for m/H < 3/2.

Hint: Work with the field aφ as a function of conformal time.

Remark: This exercise was solved at an astonishingly early time (∼ 1940) by E. Schrödinger.

5.3 Appendix to Chapter 5:
Einstein tensor for tensor perturbations

In this Appendix we derive the expressions (5.59) for the tensor perturbations of the Einstein tensor.
The metric (5.57) is conformal to g̃µν = γµν + 2Hµν . We first compute the Ricci tensor R̃µν of this

metric, and then use the general transformation law of Ricci tensors for conformally related metrics (see
Eq. (2.264) of [1]).

Let us first consider the simple case K = 0, that we considered in Sect. 5.2. Then γµν is the Minkowski
metric. In the following computation of R̃µν we drop temporarily the tildes.

The Christoffel symbols are immediately found (to first order in Hµν)

Γµ
00 = Γ0

0i = 0, Γ0
ij = H ′

ij , Γi
0j = (Hi

j)′,

Γi
jk = Hi

j,k + Hi
k,j − Hjk

,i. (5.109)

So these vanish or are of first order small. Hence, up to higher orders,

Rµν = ∂λΓλ
νµ − ∂νΓλ

λµ. (5.110)

Inserting (5.109) and using the TT conditions (5.58) readily gives

R00 = 0, R0i = 0, (5.111)
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Rij = ∂λΓλ
ij − ∂jΓλ

λi = ∂0Γ0
ij + ∂kΓk

ij − ∂jΓ0
0i − ∂jΓk

ki

= H ′′
ij + (Hk

i,j + Hk
j,i − Hij

,k),k.

Thus

Rij = H ′′
ij − �Hij . (5.112)

Now we use the quoted general relation between the Ricci tensors for two metrics related as gµν = ef g̃µν .
In our case ef = a2(η), hence

∇̃µf = 2Hδµ0, ∇̃µ∇̃νf = ∂µ(2Hδν0) − Γλ
µν2Hδλ0

= 2H′δµ0δν0 − 2HH ′
µν , �̃f = g̃µν∇̃µ∇̃νf = 2H′.

As a result we find

Rµν = R̃µν + (−2H′ + 2H2)δµ0δν0 + (H′ + 2H2)g̃µν + 2HH ′
µν , (5.113)

thus

δR00 = δR0i = 0,

δRij = H ′′
ij − �Hij + 2(H′ + 2H2)Hij + 2HH ′

ij . (5.114)

From this it follows that

δR = g(0)µνδRµν + δgµνR(0)
µν = 0. (5.115)

The result (5.59) for the Einstein tensor is now easily obtained.

Generalization to K �= 0

The relation (5.113) still holds. For the computation of R̃µν we start with the following general formula for
the Christoffel symbols (again dropping tildes).

δΓµ
αβ = γµν(Hνα|β + Hνβ|α − Hαβ|ν) (5.116)

(see [1, Eq. (2.93)]). For the computation of the covariant derivatives Hαβ|µ with respect to the unperturbed
metric γµν , we recall the unperturbed Christoffel symbols (1.229) with a → 1,

Γ0
00 = Γ0

i0 = Γi
00 = Γ0

ij = Γi
0j = 0, Γi

jk = Γ̄i
jk. (5.117)

One readily finds

Hµ0|ν = 0, Hij|0 = H ′
ij , Hij|k = Hij‖k, (5.118)

where the double stroke denotes covariant differentiation on (Σ, γ). Therefore,

δΓ0
00 = δΓ0

i0 = δΓi
00 = 0, δΓ0

ij = H ′
ij , δΓi

0j = (Hi
j)′

δΓi
jk = Hi

j‖k + Hi
k‖j − Hjk

‖i. (5.119)

With these expressions we can compute δRµν ,using the formula (1.249). The first of the following two
equations

δR00 = 0, δR0i = 0 (5.120)
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is immediate, while one finds in a first step δR0i = Hk
j‖k, and this vanishes because of the TT condition.

A bit more involved is the computation of the remaining components. From (1.249) we have

δRij = ∂λδΓλ
ij − ∂jδΓλ

λi + δΓσ
jiΓλ

λσ + Γσ
jiδΓλ

λσ − δΓσ
λiΓλ

jσ − Γσ
λiδΓλ

jσ

= H ′′
ij + ∂lδΓl

ij − ∂jδΓl
li + δΓs

jiΓl
ls + Γs

jiδΓl
ls − δΓs

liΓl
js − Γs

liδΓl
js.

But

δΓl
ls = H l

l‖s + H l
s‖l − Hls

‖l = 0,

so

δRij = H ′′
ij + ∂lδΓl

ij + δΓs
jiΓl

ls − δΓs
liΓl

js − Γs
liδΓl

js = H ′′
ij + (δΓl

ij)‖l

or

δRij = H ′′
ij + H l

i‖jl + H l
j‖il − Hij‖l

‖l. (5.121)

In order to impose the TT conditions , we make use of the Ricci identity22

H l
i‖jl = H l

i‖jl + 3KHij ,

giving

δRij = H ′′
ij + 6KHij − �Hij . (5.122)

Part III

Microwave background anisotropies

Introduction

Investigations of the cosmic microwave background have presumably contributed most to the remarkable
progress in cosmology during recent years. Beside its spectrum, which is Planckian to an incredible degree,
we also can study the temperature fluctuations over the “cosmic photosphere” at a redshift z ≈ 1100.
Through these we get access to crucial cosmological information (primordial density spectrum, cosmological
parameters, etc). A major reason for why this is possible relies on the fortunate circumstance that the
fluctuations are tiny (∼ 10−5) at the time of recombination. This allows us to treat the deviations from
homogeneity and isotropy for an extended period of time perturbatively, i.e., by linearizing the Einstein
and matter equations about solutions of the idealized Friedmann-Lemaı̂tre models. Since the physics is
effectively linear, we can accurately work out the evolution of the perturbations during the early phases
of the Universe, given a set of cosmological parameters. Confronting this with observations, tells us a lot
about the cosmological parameters as well as the initial conditions, and thus about the physics of the very
early Universe. Through this window to the earliest phases of cosmic evolution we can, for instance, test
general ideas and specific models of inflation.

Let me add in this introduction some qualitative remarks, before we start with a detailed treatment. Long
before recombination (at temperatures T > 6000K, say) photons, electrons and baryons were so strongly

22 On (Σ, γ) we have:

Hl
i‖jl − Hl

i‖jl = Rl
sljHs

i + Ri
s

ljHl
s = 3KHij .

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Leipzig) 15, No. 10 – 11 (2006) 791

coupled that these components may be treated together as a single fluid. In addition to this there is also a
dark matter component. For all practical purposes the two interact only gravitationally. The investigation
of such a two-component fluid for small deviations from an idealized Friedmann behavior is a well-studied
application of cosmological perturbation theory, and will be treated in Chapter 6.

At a later stage, when decoupling is approached, this approximate treatment breaks down because the
mean free path of the photons becomes longer (and finally ‘infinite’after recombination). While the electrons
and baryons can still be treated as a single fluid, the photons and their coupling to the electrons have to
be described by the general relativistic Boltzmann equation. The latter is, of course, again linearized about
the idealized Friedmann solution. Together with the linearized fluid equations (for baryons and cold dark
matter, say), and the linearized Einstein equations one arrives at a complete system of equations for the
various perturbation amplitudes of the metric and matter variables. Detailed derivations will be given in
Chapter 7. There exist widely used codes e.g. CMBFAST [43], that provide the CMB anisotropies – for
given initial conditions – to a precision of about 1%. A lot of qualitative and semi-quantitative insight into
the relevant physics can, however, be gained by looking at various approximations of the basic dynamical
system.

Let us first discuss the temperature fluctuations. What is observed is the temperature autocorrelation:

C(ϑ) :=
〈

∆T (n)
T

· ∆T (n′)
T

〉
=

∞∑
l=2

2l + 1
4π

ClPl(cos ϑ),

where ϑ is the angle between the two directions of observation n,n′, and the average is taken ideally over
all sky. The angular power spectrum is by definition l(l+1)

2π Cl versus l (ϑ � π/l).
A characteristic scale, which is reflected in the observed CMB anisotropies, is the sound horizon at

last scattering, i.e., the distance over which a pressure wave can propagate until decoupling. This can be
computed within the unperturbed model and subtends about half a degree on the sky for typical cosmological
parameters. For scales larger than this sound horizon the fluctuations have been laid down in the very early
Universe. These have first been detected by the COBE satellite. The (gauge invariant brightness) temperature
perturbation Θ = ∆T/T is dominated by the combination of the intrinsic temperature fluctuations and
gravitational redshift or blueshift effects. For example, photons that have to climb out of potential wells
for high-density regions are redshifted. We shall show in Sect. 8.5 that these effects combine for adiabatic
initial conditions to 1

3 Ψ, where Ψ is one of the two gravitational Bardeen potentials. The latter, in turn, is
directly related to the density perturbations. For scale-free initial perturbations and almost vanishing spatial
curvature the corresponding angular power spectrum of the temperature fluctuations turns out to be nearly
flat (Sachs-Wolfe plateau; see Fig. 8.1 ).

On the other hand, inside the sound horizon before decoupling, acoustic, Doppler, gravitational redshift,
and photon diffusion effects combine to the spectrum of small angle anisotropies. These result from gravita-
tionally driven synchronized acoustic oscillations of the photon-baryon fluid, which are damped by photon
diffusion (Sect. 8.2).

A particular realization of Θ(n), such as the one accessible to us (all sky map from our location), cannot
be predicted. Theoretically, Θ is a random field Θ(x, η,n), depending on the conformal time η, the spatial
coordinates, and the observing direction n. Its correlation functions should be rotationally invariant in n,
and respect the symmetries of the background time slices. If we expand Θ in terms of spherical harmonics,

Θ(n) =
∑
lm

almYlm(n),

the random variables alm have to satisfy23

〈alm〉 = 0, 〈a�
lmal′m′〉 = δll′δmm′Cl(η),

23 A formal proof of this can easily be reduced to an application of Schur’s Lemma for the group SU(2) (Exercise).
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where the Cl(η) depend only on η. Hence the correlation function at the present time η0 is given by the
previous expression with Cl = Cl(η0), and the bracket now denotes the statistical average. Thus,

Cl =
1

2l + 1

〈
l∑

m=−l

a�
lmalm

〉
.

The standard deviations σ(Cl) measure a fundamental uncertainty in the knowledge we can get about the
Cl’s. These are called cosmic variances, and are most pronounced for low l. In simple inflationary models
the alm are Gaussian distributed, hence

σ(Cl)
Cl

=

√
2

2l + 1
.

Therefore, the limitation imposed on us (only one sky in one universe) is small for large l.

Exercise. Derive the last equation.

Solution: The claim is a special case of the following general fact: Let ξ1, ξ2, ..., ξn be independent
Gaussian random variables with mean 0 and variance 1, and let

ζ =
1
n

n∑
i=1

ξ2
i .

Then the variance and standard deviation of ζ are

var(ζ) =
2
n

, σ(ζ) =

√
2
n

.

To show this, we use the equation of Bienaymé

var(ζ) =
1
n2

n∑
i=1

var(ξ2
i ),

and the following formula for the variance for each ξ2
i :

var(ξ2) = 〈ξ4〉 − 〈ξ2〉2 = 1 · 3 − 1 = 2

(the even moments of ξ are m2k = 1 · 3 · · · ·(2k − 1)).
Alternatively, we can use the fact that

∑n
i=1 ξ2

i isχ2
n-distributed, with distribution function (p = n/2, λ =

1/2):

f(x) =
λp

Γ(p)
xp−1e−λx

for x > 0, and 0 otherwise. This gives the same result.

6 Tight coupling phase

Long before recombination, photons, electrons and baryons are so strongly coupled that these components
may be treated as a single fluid, indexed by r in what follows. Beside this we have to include a CDM
component for which we we use the index d (for ‘dust’ or dark). For practical purposes these two fluids
interact only gravitationally.
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6.1 Basic equations

We begin by specializing the basic equations, derived in Part I and collected in Sect.1.5.C to the situation just
described. Beside neglecting the spatial curvature (K = 0), we may assume qα = Γα = 0, Eα = Fα = 0
(no energy and momentum exchange between r and d). In addition, it is certainly a good approximation
to neglect in this tight coupling era the anisotropic stresses Πα. Then Ψ = −Φ and since Γint = 0 the
amplitude Γ for entropy production is proportional to

S := Sdr =
∆cd

1 + wd
− ∆cr

1 + wr
,

w

1 + w
Γ =

hdhr

h2 (c2
d − c2

r)S. (6.1)

We also recall the definition (1.221)

c2
z =

hr

h
c2
d +

hd

h
c2
r. (6.2)

The energy and momentum equations are

∆′ − 3
a′

a
w∆ = −k(1 + w)V, (6.3)

V ′ +
a′

a
V = kΨ + k

c2
s

1 + w
∆ + k

w

1 + w
Γ. (6.4)

By (1.290) the derivative of S is given by

S′ = −kVdr, (6.5)

and that of Vdr follows from (1.289):

V ′
dr +

a′

a
(1 − 3c2

z)Vdr = k(c2
d − cr)

∆
1 + w

+ kc2
zS. (6.6)

In the constraint equation (1.261) we use the Friedmann equation for K = 0,

8πGρ

3H2 = 1, (6.7)

and obtain

Φ = −Ψ =
3
2

(
Ha

k

)2

∆. (6.8)

It will be convenient to introduce the comoving wave number in units of the Hubble length x := Ha/k
and the renormalized scale factor ζ := a/aeq, where aeq is the scale factor at the ‘equality time’ (see
Sect. 0.3.E). Then the last equation becomes

Φ = −Ψ =
3
2

x2∆. (6.9)

Using ζ ′ = kxζ and introducing the operator D := ζd/dζ we can write (6.3) as

(D − 3w)∆ = − 1
x

(1 + w)V. (6.10)

Similarly, (6.4) (together with (6.1)) gives

(D + 1)V =
Ψ
x

+
c2
s

x

∆
1 + w

+
1
x

hdhr

h2 (c2
d − c2

r)S. (6.11)
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We also rewrite (6.5) and (6.6)

DS = − 1
x

Vdr, (6.12)

(D + 1 − 3c2
z)Vdr =

1
x

(c2
d − cr)

∆
1 + w

+
1
x

c2
zS. (6.13)

It will turn out to be useful to work alternatively with the equations of motion for Vα and

Xα :=
∆cα

1 + wα
(α = r, d). (6.14)

From (1.288) we obtain

V ′
α +

a′

a
Vα = kΨ + k

c2
α

1 + wα
∆α, (6.15)

Here, we replace ∆α by ∆cα with the help of (1.174) and (1.175), implying (in the harmonic decomposition)

∆α = ∆cα + 3(1 + wα)
a′

a

1
k

(Vα − V ). (6.16)

We then get

V ′
α +

a′

a
(1 − 3c2

α)Vα = kΨ + kc2
αXα − 3

a′

a
c2
αV. (6.17)

From (1.287) we find, using (6.1),

X ′
α = −kVα + 3

a′

a
c2
s

∆
1 + w

+ 3
a′

a

hdhr

h2 (c2
d − c2

r)S. (6.18)

Rewriting the last two equations as above, we arrive at the system

(D + 1 − 3c2
α)Vα =

Ψ
x

+
c2
α

x
Xα − 3c2

αV, (6.19)

DXα = −Vα

x
+ 3c2

s

∆
1 + w

+ 3
hdhr

h2 (c2
d − c2

r)S. (6.20)

This system is closed, since by (6.1), (1.272) and (1.275)

S = Xd − Xr,
∆

1 + w
=
∑
α

hα

h
Xα, V =

∑
α

hα

h
Vα. (6.21)

Note also that according to (1.220)

∆
1 + w

= Xr +
hd

h
S = Xd − hr

h
S. (6.22)

From these basic equations we now deduce second order equations for the pair (∆, S), respectively, for
Xα (α = r, d). For doing this we note that for any function f, f ′ = (a′/a)Df , in particular (using (1.80)
and (1.62))

Dx = − 1
2

(3w + 1)x, Dw = −3(1 + w)(c2
s − w). (6.23)
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The result of the somewhat tedious but straightforward calculation is [41]:

D2∆ +
[

1 − 3w

2
+ 3c2

s − 6w

]
D∆

+
[

c2
s

x2 − 3w + 9(c2
s − w) +

3
2

(3w2 − 1)
]

∆ =
1
x2

hrhd

ρh
(c2

r − c2
d)S,

(6.24)

D2S +
[

1 − 3w

2
− 3c2

z

]
DS +

c2
z

x2 S =
c2
r − c2

d

x2(1 + w)
∆ (6.25)

for the pair ∆, S, and

D2Xα +
[

1 − 3w

2
− 3c2

α

]
DXα

+
{

c2
α

x2 − hα

h

[
3
2

(1 + w) +
3
2

(1 − 3w)c2
α + 9c2

α(c2
s − c2

α) + 3Dc2
s

]}
Xα

= 3
hβ

h

[
(c2

β − c2
α)D +

1 + w

2
+

1 − 3w

2
c2
β + 3c2

β(c2
s − c2

β) + Dc2
β

]
Xβ

(6.26)

for the pair Xα.

Alternative system for tight coupling limit

Instead of the first order system (6.17), (6.18) one may work with similar equations for the amplitudes ∆sα

and Vα. From (1.291) we obtain instead of (6.17) for Πα = Fα = 0

V ′
α +

a′

a
(1 − 3c2

α)Vα = kΨ + k
c2
α

1 + wα
∆sα. (6.27)

Beside this we have Eq. (1.286)

(
∆sα

1 + wα

)′
= −kVα − 3Φ′. (6.28)

To this we add the following consequence of the constraint equations (1.261), (1.262) and the relations
(1.260), (1.274), (1.275):

k2Ψ = −4πGa2
∑
α

[
ρα∆sα + 3

aH

k
ρα(1 + wα)Vα

]
. (6.29)

Instead one can also use, for instance for generating numerical solutions, the following first order differential
equation that is obtained similarly

k2Ψ + 3
a′

a

(
Ψ′ +

a′

a
Ψ
)

= −4πGa2
∑
α

ρα∆sα. (6.30)
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Adiabatic and isocurvature perturbations

These differential equations have to be supplemented with initial conditions. Two linearly independent types
are considered for some very early stage, for instance at the end of the inflationary era:

• adiabatic perturbations: all Sαβ = 0, but R �= 0;

• isocurvature perturbations: some Sαβ �= 0, but R = 0.

Recall that R measures the spatial curvature for the slicing Q = 0. According to the initial definition
(1.58) of R and the Eqs. (6.9), (6.10) we have

R = Φ − xV =
x2

1 + w

[
D +

3
2

(1 − w)
]

∆. (6.31)

Explicit forms of the two-component differential equations

At this point we make use of the equation of state for the two-component model under consideration. It is
convenient to introduce a parameter c by

R :=
3ρb

4ργ
=

ζ

c
⇒ Ωd

Ωb
=

3c

4
− 1. (6.32)

We then have for various background quantities

ρd

ρeq
=

1
2

(
1 − 4

3c

)
1
ζ3 , pd = 0,

ρr

ρeq
=

2
3

ζ + 3c/4
c

1
ζ4 ,

pr

ρeq
=

1
6

1
ζ4 ,

ρ

ρeq
=

1
2

(ζ + 1)
1
ζ4 ,

p

ρeq
=

1
6

1
ζ4 ,

hr

h
=

4
3

ζ + c

c(ζ + 4/3)
,

hd

h
=
(

1 − 4
3c

)
ζ

ζ + 4/3
,

w =
1

3(ζ + 1)
, wr =

c

4ζ + 3c
, wd = 0,

c2
d = 0, c2

r =
1
3

c

ζ + c
, c2

s =
4
9

1
ζ + 4/3

, c2
z =

1
3

(c − 4/3)ζ
(ζ + c)(ζ + 4/3)

,

H2 = H2
eq

ζ + 1
2

1
ζ4 , x2 =

ζ + 1
2ζ2

1
ω2 , ω :=

1
xeq

=
(

k

aH

)
eq

. (6.33)

Since we now know that the dark matter fraction is much larger than the baryon fraction, we write the
basic equations only in the limit c → ∞. (For finite c these are given in [41].) Eq.(6.26) leads to the pair

D2Xr +
(

1
2

ζ

1 + ζ
− 1

)
DXr

+
{

2
3

ω2ζ2

1 + ζ
+

4
3

1
ζ + 4/3

[
ζ

ζ + 4/3
− 2

]}
Xr =

[
3
2

ζ

ζ + 1
− ζ

ζ + 4/3
D

]
Xd,

(6.34)
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{
D2 +

1
2

ζ

1 + ζ
D − 3

2
ζ

1 + ζ

}
Xd =

4
3

1
ζ + 4/3

[
D + 2 − ζ

ζ + 4/3

]
Xr. (6.35)

From (6.24) and (6.25) we obtain on the other hand

D2∆ +
(

−1 +
5
2

ζ

ζ + 1
− ζ

ζ + 4/3

)
D∆

+

{
−2 +

3
4

ζ +
1
2

(
ζ

ζ + 1

)2

− 3ζ2

ζ + 1
+

9ζ2

4(ζ + 4/3)

}
∆

=
8
9

ω2 ζ2

(ζ + 1)2(ζ + 4/3)
[ζS − (ζ + 1)∆] , (6.36)

D2S +
(

1
2

1
ζ + 1

− 1
ζ + 4/3

)
ζDS +

2
3

ω2 ζ3

(ζ + 1)(ζ + 4/3)
S =

2
3

ω2 ζ2

ζ + 4/3
∆. (6.37)

We also note that (6.31) becomes

R =
1

2ω2

ζ + 1
ζ2(ζ + 4/3)

[
(ζ + 1)D +

3
2

ζ + 1
]

∆. (6.38)

We can now define more precisely what we mean by the two types of primordial initial perturbations by
considering solutions of our perturbation equations for ζ � 1.

• adiabatic (or curvature) perturbations: growing mode behaves as

∆ = ζ2
[
1 − 17

16
ζ + · · ·

]
− ω2

15
ζ4[1 − · · ·],

S =
ω2

32
ζ4
[
1 − 28

25
ζ + · · ·

]
; ⇒ R =

9
8ω2 (1 + O(ζ)). (6.39)

• isocurvature perturbations: growing mode behaves as

∆ =
ω2

6
ζ3
[
1 − 17

10
ζ + · · ·

]
,

S = 1 − ω2

18
ζ3 [1 − · · ·] ; ⇒ R =

1
4

ζ(1 + O(ζ)). (6.40)

From (6.21) and (6.22) we obtain the relation between the two sets of perturbation amplitudes:

Xr =
ζ + 1

ζ + 4/3
∆ − ζ

ζ + 4/3
S, Xd =

ζ + 1
ζ + 4/3

∆ +
4
3

1
ζ + 4/3

S, (6.41)

∆ =
1

ζ + 1

(
4
3

Xr + ζXd

)
, S = Xd − Xr. (6.42)

6.2 Analytical and numerical analysis

The system of linear differential equations (6.34)–(6.37) has been discussed analytically in great detail
in [41]. One learns, however, more about the physics of the gravitationally coupled fluids in a mixed
analytical-numerical approach.
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6.2.1 Solutions for super-horizon scales

For super-horizon scales (x � 1) Eq. (6.12) implies that S is constant. If the mode enters the horizon in
the matter dominated era, then the parameter ω in (6.33) is small. For ω � 1 Eq. (6.36) reduces to

D2∆ +
(

−1 +
5
2

ζ

ζ + 1
− ζ

ζ + 4/3

)
D∆

+

{
−2 +

3
4

ζ +
1
2

(
ζ

ζ + 1

)2

− 3ζ2

ζ + 1
+

9ζ2

4(ζ + 4/3)

}
∆

=
8
9

ω2 ζ3

(ζ + 1)2(ζ + 4/3)
S. (6.43)

For adiabatic modes we are led to the homogeneous equation already studied in Sect. 2.1, with the two
independent solutions Ug and Ud given in (2.28) and (2.29). Recall that the Bardeen potentials remain
constant both in the radiation and in the matter dominated eras. According to (2.32) Φ decreases to 9/10 of
the primordial value Φprim.

For isocurvature modes we can solve (6.41) with the Wronskian method, and obtain for the growing
mode [41]

∆iso =
4
15

ω2Sζ3 3ζ2 + 22ζ + 24 + 4(3ζ + 4)
√

1 + ζ

(ζ + 1)(3ζ + 4)[1 + (1 + ζ)1/2]4
. (6.44)

thus

∆iso �
{

1
6 ω2Sζ3 : ζ � 1
4
15 ω2Sζ : ζ � 1.

(6.45)

6.2.2 Horizon crossing

We now study the behavior of adiabatic modes more closely, in particular what happens in horizon crossing.

Crossing in radiation dominated era

When the mode enters the horizon in the radiation dominated phase we can neglect in (6.36) the term
proportional to S for ζ < 1. As long as the radiation dominates ζ is small, whence (6.36) gives in leading
order

(D2 − D − 2)∆ = − 2
3

ω2ζ2∆. (6.46)

(This could also be directly obtained from (6.24), setting c2
s � 1/3, w � 1/3.) Since D2 −D = ζ2d2/dζ2

this perturbation equation can be written as
[
ζ2 d2

dζ2 +
(

2
3

ω2ζ2 − 2
)]

∆ = 0. (6.47)

Instead of ζ we choose as independent variable the comoving sound horizon rs times k. We have

rs =
∫

csdη =
∫

cs
dη

dζ
dζ,

with cs � 1/
√

3, dζ/dη = kxζ = aHζ = (aH)/(aH)eq)(k/ω)ζ � (k/ω
√

2), thus ζ � (k/
√

2ω)η and

u := krs �
√

2
3

ωζ � kη/
√

3. (6.48)
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Therefore, (6.45) is equivalent to

[
d2

du2 +
(

1 − 2
u2

)]
∆ = 0. (6.49)

This differential equation is well-known. According to 9.1.49 of [39] the functions w(x) ∝ x1/2Cν(λx),
Cν ∝ H

(1)
ν , H

(2)
ν , satisfy

w′′ +

(
λ − ν2 − 1

4

x2

)
w = 0. (6.50)

Since jν(x) =
√

π/2xJν+1/2(x), nν(x) =
√

π/2xYν+1/2(x), we see that ∆ is a linear combination of
uj1(u) and un1(u):

∆(ζ) = Cuj1(u) + Dun1(u); u =

√
2
3

ωζ

(
u = krs =

kη√
3

)
. (6.51)

Now,

xj1(x) =
1
x

sin x − cos x, xn1(x) = − 1
x

cos x − sin x. (6.52)

On super-horizon scales u = krs � 1, and uj1(u) ≈ u ∝ a, while un1(u) ≈ −1/u ∝ 1/a. Thus the first
term in (6.49) corresponds to the growing mode. If we only keep this, we have

∆(ζ) ≈ C

(
1
u

sin u − cos u

)
. (6.53)

Once the mode is deep within the Hubble horizon only the cos-term survives. This is an important result,
because if this happens long before recombination we can use for adiabatic modes the initial condition

∆(η) ∝ cos[krs(η)]. (6.54)

We conclude that all adiabatic modes are temporally correlated (synchronized), while they are spatially
uncorrelated (random phases). This is one of the basic reasons for the appearance of acoustic peaks in the
CMB anisotropies. Note also that, as a result of (6.9) and (6.33), Φ ∝ ∆/ζ2 ∝ ∆/u2, i.e.,

Ψ = 3Ψ(prim)
[

sin u − u cos u

u3

]
. (6.55)

Thus: If the mode enters the horizon during the radiation dominated era, its potential begins to decay.
As an exercise show that for isocurvature perturbations the cos in (6.52) has to be replaced by the sin

(out of phase).
We could have used in the discussion above the system (6.34) and (6.35). In the same limit it reduces to

(
D2 − D − 2 +

2
3

ω2ζ2
)

Xr � 0, D2Xd � (D + 2)Xr. (6.56)

As expected, the equation for Xr is the same as for ∆. One also sees that Xd is driven by Xr, and is growing
logarithmically for ω � 1.

The previous analysis can be improved by not assuming radiation domination and also including baryons
(see [41]). It turns out that for ω � 1 the result (6.54) is not much modified: The cos-dependence remains,
but with the exact sound horizon; only the amplitude is slowly varying in time ∝ (1 + R)−1/4.
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Since the matter perturbation is driven by the radiation, we may use the potential (6.55) and work out its
influence on the matter evolution. It is more convenient to do this for the amplitude ∆sd (instead of ∆cd),
making use of the equations (6.27) and (6.28) for α = d:

∆′
sd = −kVd − 3Φ′, V ′

d = − a′

a
Vd − kΦ. (6.57)

Let us eliminate Vd:

∆′′
sd = −V ′

d − 3Φ′′ =
a′

a
kVd + k2Φ − 3Φ′′ =

a′

a
(−∆′

sd − 3Φ′) + k2Φ − 3Φ′′.

The resulting equation

∆′′
sd +

a′

a
∆′

sd = k2Φ − 3Φ′′ − 3
a′

a
Φ′ (6.58)

can be solved with the Wronskian method. Two independent solutions of the homogeneous equation are
∆sd = const. and ∆sd = ln(a). These determine the Green’s function in the standard manner. One then
finds in the radiation dominated regime (for details, see [5, p. 198])

∆sd(η) = AΦprim ln(Bkη), (6.59)

with A � 9.0, B � 0.62.

Matter dominated approximation

As a further illustration we now discuss the matter dominated approximation. For this (ζ � 1) the system
(6.34),(6.35) becomes

(
D2 − 1

2
D +

2
3

ω2ζ

)
Xr =

(
−D +

3
2

)
Xd, (6.60)

(
D2 +

1
2

D − 3
2

)
Xd = 0. (6.61)

As expected, the equation for Xd is independent of Xr, while the radiation perturbation is driven by the
dark matter. The solution for Xd is

Xd = Aζ + Bζ−3/2. (6.62)

Keeping only the growing mode, (6.60) becomes

d

dζ

(
ζ

dXr

dζ

)
− 1

2
dXr

dζ
+

2
3

ω2
(

Xr − 3A

4ω2

)
= 0. (6.63)

Substituting

Xr =:
3A

4ω2 + ζ−3/4f(ζ),

we get for f(ζ) the following differential equation

f ′′ = −
(

3
16

1
ζ2 +

2
3

ω2

ζ

)
f. (6.64)
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For ω � 1 we can use the WKB approximation

f =
ζ1/4
√

ω
exp

(
±i

√
8
3

ωζ1/2

)
,

implying the following oscillatory behavior of the radiation

Xr =
3A

4ω2 + B
1√
ωζ

exp

(
±i

√
8
3

ωζ1/2

)
. (6.65)

A look at (6.42) shows that this result for Xd, Xr implies the constancy of the Bardeen potentials in the
matter dominated era.

6.2.3 Sub-horizon evolution

For ω � 1 one may expect on physical grounds that the dark matter perturbation Xd eventually evolves
independently of the radiation. Unfortunately, I can not see this from the basic equations (6.34), (6.35).
Therefore, we choose a different approach, starting from the alternative system (6.27)–(6.29). This implies

∆′
sd = −kVd − 3Φ′, (6.66)

V ′
d = − a′

a
Vd − kΦ, (6.67)

k2Φ = 4πGa2[ρd∆sd + · · ·]. (6.68)

As an approximation, we drop in the last equation the radiative24 and velocity contributions that have not
been written out. Then we get a closed system which we again write in terms of the variable ζ:

D∆sd = − 1
x

Vd − 3DΦ, (6.69)

DVd = −Vd − 1
x

Φ, (6.70)

Φ � 3
4

1
ω2

1
ζ

∆sd. (6.71)

In the last equation we used ρd = (ζ/ζ + 1)ρ, (6.7) and the expression (6.33) for x2.
For large ω we can easily deduce a second order equation for ∆sd: Applying D to (6.69) and using (6.70)

gives

D2∆sd = − 1
x

DVd +
1
x2 (Dx)Vd − 3D2Φ

=
1
x2 Φ +

1
2

(1 − 3w)
1
x

Vd − 3D2Φ

=
1
x2 Φ − 1

2
(1 − 3w)D∆sd − 3

2
(1 − 3w)DΦ − 3D2Φ.

Because of (6.71) the last two terms are small, and we end up (using again (6.33)) with
{

D2 +
1
2

ζ

1 + ζ
D − 3

2
ζ

1 + ζ

}
∆sd = 0, (6.72)

24 The growth in the matter perturbations implies that eventually ρd∆sd > ρr∆sr even if ∆sd < ∆sr .
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known in the literature as the Meszaros equation. Note that this agrees, as was to be expected, with the
homogeneous equation belonging to (6.35).

The Meszaros equation can be solved analytically. On the basis of (6.62) one may guess that one solution
is linear in ζ. Indeed, one finds that

Xd(ζ) = D1(ζ) = ζ + 2/3 (6.73)

is a solution. A linearly independent solution can then be found by quadratures. It is a general fact that
f(ζ) := ∆sd/D1(ζ) must satisfy a differential equation which is first order for f ′. One readily finds that
this equation is(

1 +
3ζ

2

)
f ′′ +

1
4ζ(ζ + 1)

[21ζ2 + 24ζ + 4]f ′ = 0.

The solution for f ′ is

f ′ ∝ (ζ + 2/3)−2ζ−1(ζ + 1)−1/2.

Integrating once more provides the second solution of (6.72)

D2(ζ) = D1(ζ) ln
[√

1 + ζ + 1√
1 + ζ − 1

]
− 2

√
1 + ζ. (6.74)

For late times the two solutions approach to those found in (6.62).
The growing and the decaying solutions D1, D2 have to be superposed such that a match to (6.59) is

obtained.

6.2.4 Transfer function, numerical results

According to (2.31), (2.32) the early evolution of Φ on super-horizon scales is given by25

Φ(ζ) = Φ(prim) 9
10

ζ + 1
ζ2 Ug � 9

10
Φ(prim) , for ζ � 1. (6.75)

At sufficiently late times in the matter dominated regime all modes evolve identically with the growth
function Dg(ζ) given in (2.37). I recall that this function is normalized such that it is equal to a/a0 when
we can still ignore the dark energy (at z > 10, say). The growth function describes the evolution of ∆, thus
by the Poisson equation (2.3) Φ grows with Dg(a)/a. We therefore define the transfer function T (k) by
(we choose the normalization a0 = 1)

Φ(k, a) = Φ(prim) 9
10

Dg(a)
a

T (k) (6.76)

for late times. This definition is chosen such that T (k) → 1 for k → 0, and does not depend on time.
At these late times ρM = ΩMa−3ρcrit, hence the Poisson equation gives the following relation between

Φ and ∆

Φ =
( a

k

)2
4πGρM∆ =

3
2

1
ak2 H2

0ΩM∆.

Therefore, (6.76) translates to

∆(a) =
3
5

k2

ΩMH2
0

Φ(prim)Dg(a)T (k). (6.77)

25 The origin of the factor 9/10 is best seen from the constancy of R for super-horizon perturbations, and Eq. (4.67).
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The transfer function can be determined by solving numerically the pair (6.24), (6.25) of basic pertur-
bation equations. One can derive even a reasonably good analytic approximation by putting our previous
results together (for details see again [5, Sect. 7.4]). For a CDM model the following accurate fitting formula
to the numerical solution in terms of the variable q̃ = k/keq, where keq is defined such that the correspond-
ing value of the parameter ω in (6.33) is equal to 1 (i.e., keq = aeqHeq =

√
2ΩMH0/

√
aeq, using (0.52))

was given in [42]:

TBBKS(q̃) =
ln(1 + 0.171q̃)

0.171q̃
[1 + 0.284q̃ + (1.18q̃)2 + (0.399q̃)3 + (0.490q̃)4]−1/4. (6.78)

Note that q̃ depends on the cosmological parameters through the combination26 ΩMh0, usually called the
shape parameter Γ. In terms of the variable q = k/(Γh0Mpc−1) (6.78) can be written as

TBBKS(q) =
ln(1 + 2.34q)

2.34q
[1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]−1/4. (6.79)

This result for the transfer function is based on a simplified analysis. The tight coupling approximation is
no more valid when the decoupling temperature is approached. Moreover, anisotropic stresses and baryons
have been ignored. We shall reconsider the transfer function after having further developed the basic theory
in the next chapter. It will, of course, be very interesting to compare the theory with available observational
data. For this one has to keep in mind that the linear theory only applies to sufficiently large scales. For late
times and small scales it has to be corrected by numerical simulations for nonlinear effects.

For a given primordial power spectrum, the transfer function determines the power spectrum after the
‘transfer regime’(when all modes evolve with the growth function Dg). From (6.77) we obtain for the power
spectrum of ∆

P∆(z) =
9
25

k4

Ω2
MH4

0
P

(prim)
Φ D2

g(z)T 2(k). (6.80)

We choose P
(prim)
Φ ∝ kn−1 and the amplitude such that

P∆(z) = δ2
H

(
k

H0

)3+n

T 2(k)
(

Dg(z)
Dg(0)

)2

. (6.81)

Note that P∆(0) = δ2
H for k = H0. The normalization factor δH has to be determined from observations

(e.g. from CMB anisotropies at large scales). Comparison of (6.80) and (6.81) and use of (5.50) implies

P
(prim)
R (k) =

9
4

P
(prim)
Φ (k) =

25
4

δ2
H

(
ΩM

Dg(0)

)2(
k

H0

)n−1

. (6.82)

Exercise. Write the equations (6.27)-(6.30) in explicit form, using (6.33) in the limit when baryons are
neglected (c → ∞). (For a truncated subsystem this was done in (6.69) – (6.71)). Solve the five first
order differential equations (6.27), (6.28) for α = d, r and (6.30) numerically. Determine, in particular, the
transfer function defined in (6.76). (A standard code gives this in less than a second.)

7 Boltzmann equation in GR

For the description of photons and neutrinos before recombination we need the general relativistic version
of the Boltzmann equation.

26 since k is measured in units of h0 Mpc−1 and aeq = 4.15 × 10−5/(ΩMh2
0).
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7.1 One-particle phase space, Liouville operator for geodesic spray

For what follows we first have to develop some kinematic and differential geometric tools. Our goal is to
generalize the standard description of Boltzmann in terms of one-particle distribution functions.

Let g be the metric of the spacetime manifold M . On the cotangent bundle T ∗M =
⋃

p∈M T ∗
p M we

have the natural symplectic 2-form ω, which is given in natural bundle coordinates27(xµ, pν) by

ω = dxµ ∧ dpµ. (7.1)

(For an intrinsic description, see Chap. 6 of [44].) So far no metric is needed. The pair (T ∗M, ω) is always
a symplectic manifold.

The metric g defines a natural diffeomorphism between the tangent bundle TM and T ∗M which can be
used to pull ω back to a symplectic form ωg on TM . In natural bundle coordinates the diffeomorphism is
given by (xµ, pα) �→ (xµ, pα = gαβpβ), hence

ωg = dxµ ∧ d(gµνpν). (7.2)

On TM we can consider the “Hamiltonian function”

L =
1
2

gµνpµpν (7.3)

and its associated Hamiltonian vector field Xg , determined by the equation

iXgωg = dL. (7.4)

It is not difficult to show that in bundle coordinates

Xg = pµ ∂

∂xµ
− Γµ

αβpαpβ ∂

∂pµ
(7.5)

(Exercise). The Hamiltonian vector field Xg on the symplectic manifold (TM, ωg) is the geodesic spray.
Its integral curves satisfy the canonical equations:

dxµ

dλ
= pµ, (7.6)

dpµ

dλ
= −Γµ

αβpαpβ . (7.7)

The geodesic flow is the flow of the vector field Xg .
Let Ωωg be the volume form belonging to ωg , i.e., the Liouville volume

Ωωg = const ωg ∧ · · · ∧ ωg,

or (g = det(gαβ))

Ωωg = (−g)(dx0 ∧ dx1 ∧ dx2 ∧ dx3) ∧ (dp0 ∧ dp1 ∧ dp2 ∧ dp3)

≡ (−g)dx0123 ∧ dp0123. (7.8)

The one-particle phase space for particles of mass m is the following submanifold of TM :

Φm = {v ∈ TM | v future directed, g(v, v) = −m2}. (7.9)

27 If xµ are coordinates of M then the dxµ form in each point p ∈ M a basis of the cotangent space T ∗
p M . The bundle coordinates

of β ∈ T ∗
p M are then (xµ, βν) if β = βνdxν and xµ are the coordinates of p. With such bundle coordinates one can define

an atlas, by which T ∗M becomes a differentiable manifold.
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This is invariant under the geodesic flow. The restriction of Xg to Φm will also be denoted by Xg . Ωωg

induces a volume form Ωm (see below) on Φm, which is also invariant under Xg:

LXg
Ωm = 0. (7.10)

Ωm is determined as follows (known from Hamiltonian mechanics): Write Ωωg
in the form

Ωωg = −dL ∧ σ,

(this is always possible, but σ is not unique), then Ωm is the pull-back of Ωωg by the injection i : Φm → TM ,

Ωm = i∗σ. (7.11)

While σ is not unique (one can, for instance, add a multiple of dL), the form Ωm is independent of the
choice of σ (show this). In natural bundle coordinates a possible choice is

σ = (−g)dx0123 ∧ dp123

(−p0)
,

because

−dL ∧ σ = [−gµνpµdpν + · · ·] ∧ σ = (−g)dx0123 ∧ gµ0p
µdp0 ∧ dp123

p0
= Ωωg

.

Hence,

Ωm = η ∧ Πm, (7.12)

where η is the volume form of (M, g),

η =
√−gdx0123, (7.13)

and

Πm =
√−g

dp123

|p0| , (7.14)

with p0 > 0, and gµνpµpν = −m2.
We shall need some additional tools. Let Σ be a hypersurface of Φm transversal to Xg . On Σ we can use

the volume form

volΣ = iXgΩm | Σ. (7.15)

Now we note that the 6-form

ωm := iXgΩm (7.16)

on Φm is closed,

dωm = 0, (7.17)

because

dωm = diXgΩm = LXgΩm = 0
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(we used dΩm = 0 and (7.10)). From (7.12) we obtain

ωm = (iXgη) ∧ Πm + η ∧ iXgΠm. (7.18)

In the special case when Σ is a “time section”, i.e., in the inverse image of a spacelike submanifold of M
under the natural projection Φm → M , then the second term in (7.18) vanishes on Σ, while the first term
is on Σ according to (7.5) equal to ipη ∧ Πm, p = pµ∂/∂xµ. Thus, we have on a time section28 Σ

volΣ = ωm | Σ = ipη ∧ Πm. (7.19)

Let f be a one-particle distribution function on Φm, defined such that the number of particles in a time
section Σ is

N(Σ) =
∫

Σ
fωm. (7.20)

The particle number current density is

nµ(x) =
∫

Pm(x)
fpµΠm, (7.21)

where Pm(x) is the fiber over x in Φm (all momenta with 〈p, p〉 = −m2). Similarly„ one defines the
energy-momentum tensor, etc.

Let us show that

nµ
;µ =

∫
Pm

(
LXgf

)
Πm. (7.22)

We first note that (always in Φm)

d(fωm) =
(
LXgf

)
Ωm. (7.23)

Indeed, because of (7.17) the left-hand side of this equation is

df ∧ ωm = df ∧ iXg
Ωm =

(
iXg

df
) ∧ Ωm =

(
LXg

f
)
Ωm.

Now, let D be a domain in Φm which is the inverse of a domain D̄ ⊂ M under the projection Φm → M .
Then we have on the one hand by (7.18), setting iXη ≡ Xµσµ,∫

∂D

fωm =
∫

∂D̄

σµ

∫
Pm(x)

pµfΠm =
∫

∂D̄

σµnµ =
∫

∂D̄

inη =
∫

D̄

(∇ · n)η.

On the other hand, by (7.23) and (7.12)∫
∂D

fωm =
∫

D

d(fωm) =
∫

D

(
LXgf

)
Ωm =

∫
D̄

η

∫
Pm(x)

(
LXgf

)
Πm.

Since D̄ is arbitrary, we indeed obtain (7.22).
The proof of the following equation for the energy-momentum tensor

Tµν
;ν =

∫
Pm

pµ
(
LXgf

)
Πm (7.24)

can be reduced to the previous proof by considering instead of nν the vector field Nν := vµTµν , where vµ

is geodesic in x.

28 Note that in Minkowski spacetime we get for a constant time section volΣ = dx123 ∧ dp123.
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integral
curve of
Xg

ϕs(Σ)

Σ

G

Fig. 7.1 Picture for the proof of (7.25).

7.2 The general relativistic Boltzmann equation

Let us first consider particles for which collisions can be neglected (e.g. neutrinos at temperatures much
below 1 MeV). Then the conservation of the particle number in a domain that is comoving with the flow φs

of Xg means that the integrals∫
φs(Σ)

fωm,

Σ as before a hypersurface of Φm transversal to Xg , are independent of s. We now show that this implies
the collisionless Boltzmann equation

LXg
f = 0. (7.25)

The proof of this expected result proceeds as follows. Consider a ‘cylinder’ G, sweping by Σ under the
flow φs in the interval [0, s] (see Fig. 7.1), and the integral∫

G
LXgfΩm =

∫
∂G

fωm

(we used Eq. (7.23)). Since iXg
ωm = iXg

(iXg
Ωm) = 0, the integral over the mantle of the cylinder

vanishes, while those over Σ and φs(Σ) cancel (conservation of particles). Because Σ and s are arbitrary,
we conclude that (7.25) must hold.

From (7.22) and (7.23) we obtain, as expected, the conservation of the particle number current density:
nµ

;µ = 0.
With collisions, the Boltzmann equation has the symbolic form

LXg
f = C[f ] , (7.26)

where C[f ] is the “collision term”. For the general form of this in terms of the invariant transition matrix
element for a two-body collision, see (B.9). In Appendix B we also work this out explicitly for photon-
electron scattering.

By (7.24) and (7.26) we have

Tµν
;ν = Qµ, (7.27)

with

Qµ =
∫

Pm

pµC[f ]Πm. (7.28)
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7.3 Perturbation theory (generalities)

We consider again small deviations from Friedmann models, and set correspondingly

f = f (0) + δf. (7.29)

How does δf change under a gauge transformation? At first sight one may think that we simply have
δf → δf + LTξf

(0), where Tξ is the lift of the vector field ξ, defining the gauge transformation, to the
tangent bundle. (We recall that Tξ is obtained as follows: Let φs be the flow of ξ and consider the flow Tφs

on TM, Tφs = tangent map. Then Tξ is the vector field belonging to Tφs.) Unfortunately, things are not
quite as simple, because f is only defined on the one-particle subspace of TM , and this is also perturbed
when the metric is changed. One way of getting the right transformation law is given in [33]. Here, I present
a more pedestrian, but simpler derivation.

First, we introduce convenient independent variables for the distribution function. For this we choose an
adapted orthonormal frame {eµ̂, µ̂ = 0, 1, 2, 3} for the perturbed metric (1.16), which we recall

g = a2(η)
{−(1 + 2A)dη2 − 2B,i dxidη + [(1 + 2D)γij + 2E|ij ]dxidxj

}
. (7.30)

e0̂ is chosen to be orthogonal to the time slices η = const, whence

e0̂ =
1
α

(
∂η + βi∂i

)
, α = 1 + A, βi = B,i. (7.31)

This is indeed normalized and perpendicular to ∂i. At the moment we do not need explicit expressions for
the spatial basis eî tangential to η = const.

From

p = pµ̂eµ̂ = pµ∂µ

we see that p0̂/α = p0. From now on we consider massless particles and set29 q = p0̂, whence

q = a(1 + A)p0. (7.32)

Furthermore, we use the unit vector γi = pî/q. Then the distribution function can be regarded as a function
of η, xi, q, γi, and this we shall adopt in what follows. For the case K = 0, which we now consider for
simplicity, the unperturbed tetrad is { 1

a ∂η, 1
a ∂i}, and for the unperturbed situation we have q = ap0, pi =

p0γi.
As a further preparation we interpret the Lie derivative as an infinitesimal coordinate change. Consider

the infinitesimal coordinate transformation

x̄µ = xµ − ξµ(x), (7.33)

then to first order in ξ
(
Lξg

)
µν

(x) = ḡµν(x) − gµν(x), (7.34)

and correspondingly for other tensor fields. One can verify this by a direct comparison of the two sides. For
the simplest case of a function F ,

F̄ (x) − F (x) = F (x + ξ) − F (x) = ξµ∂µF = LξF.

Under the transformation (7.33) and its extension to TM the pµ transform as

p̄µ = pµ − ξµ
,νpν .

29 This definition of q is only used in the present subsection. Later, after eqn. (7.62), q will denote the comoving momentum aq.
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We need the transformation law for q. From

q̄ = a(η̄)[1 + Ā(x̄)]p̄0

and the transformation law (1.18) of A,

A → A +
a′

a
ξ0 + ξ0′

,

we get

q̄ = a(η)[1 − Hξ0][1 + A(x)Hξ0 + ξ0′
][p0 − ξ0

,νpν ].

The last square bracket is equal to p0(1 − ξ0′ − ξ0
,iγ

i). Using also (7.32) we find

q̄ = q − qξ0
,iγ

i. (7.35)

Since the unperturbed distribution function f (0) depends only on q and η, we conclude from this that

δf → δf + q
∂f (0)

∂q
ξ0

,iγ
i + ξ0f (0)′

. (7.36)

Here, we use the equation of motion for f (0). For massless particles this is an equilibrium distribution that
is stationary when considered as a function of the comoving momentum aq. This means that

∂f (0)

∂η
+

∂f (0)

∂q
q′ = 0

for (aq)′ = 0, i.e., q′ = −Hq. Thus,

f (0)′ − Hq
∂f (0)

∂q
= 0. (7.37)

If this is used in (7.36) we get

δf → δf + q
∂f (0)

∂q
[Hξ0 + ξ0

,iγ
i] . (7.38)

Since this transformation law involves only ξ0, we can consider various gauge invariant distribution func-
tions, such as (δf)χ, (δf)Q. From (1.21), χ → χ + aξ0, we find

Fs := (δf)χ = δf − q
∂f (0)

∂q
[H(B + E′) + γi(B + E′),i]. (7.39)

Fs reduces to δf in the longitudinal gauge, and we shall mainly work with this gauge invariant perturbation.
In the literature sometimes Fc := (δf)Q is used. Because of (1.49), v − B → (v − B) − ξ0, we obtain Fc

from (7.39) in replacing B + E′ by −(v − B):

Fc := (δf)Q = δf + q
∂f (0)

∂q
[H(v − B) + γi(v − B),i]. (7.40)

Since by (1.56) (v − B) + (B + E′) = V , we find the relation

Fc = Fs + q
∂f (0)

∂q
[HV + γiV,i]. (7.41)

Instead of v, V we could also use the baryon velocities vb, Vb.
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7.4 Liouville operator in the longitudinal gauge

We want to determine the action of the Liouville operator L := LXg
on Fs. The simplest way to do this is

to work in the longitudinal gauge B = E = 0.
In this section we do not assume a vanishing K. It is convenient to introduce an adapted orthonormal

tetrad

e0 =
1

a(1 + A)
∂η, ei =

1
a(1 + D)

êi, (7.42)

where êi is an orthonormal basis for the unperturbed space (Σ, γ). Its dual basis will be denoted by ϑ̂i, and
that of eµ by θµ. We have

θ0 = (1 + A)θ̄0, θi = (1 + D)θ̄i, (7.43)

where

θ̄0 = a(η)dη, θ̄i = a(η)ϑ̂i. (7.44)

Connection forms. The unperturbed connection forms have been obtained in Sect. 0.1.2. In the present
notation they are

ω̄i
0 = ω̄0

i =
a′

a2 θ̄i, ω̄i
j = ω̂i

j , (7.45)

where ω̂i
j are the connection forms of (Σ, γ) relative to ϑ̂i.

For the determination of the perturbations δωµ
ν of the connection forms we need dθµ. In the following

calculation we make use of the first structure equations, both for the unperturbed and the actual metric. The
former, together with (7.45), implies that the first term in

dθ0 = (1 + A)dθ̄0 + dA ∧ θ̄0

vanishes. Using the notation dA = A′dη + A|iθ̄i = A|µθ̄µ we obtain

dθ0 = A|iθ̄i ∧ θ̄0. (7.46)

Similarly,

dθi = (1+D)dθ̄i + dD ∧ θ̄i = (1+D)[−ω̄i
j ∧ θ̄j − ω̄i

0 ∧ θ̄0]+D|j θ̄j ∧ θ̄i +D|0θ̄0 ∧ θ̄i. (7.47)

On the other hand, inserting ωµ
ν = ω̄µ

ν + δωµ
ν into dθµ = −ωµ

ν ∧ θν , and comparing first orders, we
obtain the equations

−δω0
i ∧ θ̄i − ω̄0

i ∧ (Dθ̄i)︸ ︷︷ ︸
0

= −A|iθ̄0 ∧ θ̄i, (7.48)

−δωi
0 ∧ θ̄0 − δωi

j ∧ θ̄j − ω̄i
0 ∧ Aθ̄0 − ω̄i

j ∧ Dθ̄j =

−Dω̄i
j ∧ θ̄j − Dω̄i

0 ∧ θ̄0 + D|j θ̄j ∧ θ̄i + D|0θ̄0 ∧ θ̄i. (7.49)

Eq. (7.48) requires

δω0
i = A|iθ̄0 + (∝ θ̄i). (7.50)
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Let us try the guess

δωi
j = −D|iθ̄j + D|j θ̄i (7.51)

and insert this into (7.49). This gives

−δωi
0 ∧ θ̄0 − Aω̄i

0 ∧ θ̄0 = −Dω̄i
0 ∧ θ̄0 + D|0θ̄0 ∧ θ̄i, (7.52)

and this is satisfied if the last term in (7.50) is chosen according to

δω0
i = A|iθ̄0 − (A − D)ω̄0

i +
1
a

D′θ̄i. (7.53)

Since the first structure equations are now all satisfied (to first order) our guess (7.51) is correct, and we
have determined all δωµ

ν .
From (7.45) and (7.53) we get to first order

ωi
0 =

[
a′

a2 (1 − A) +
1
a

D′
]

θi + A|iθ0. (7.54)

We shall not need ωi
j explicitly, except for the property ωi

j(e0) = 0, which follows from (7.45) and (7.51).
We take the spatial components pi of the momenta p relative to the orthonormal tetrad {eµ} as independent

variables of f (beside x). Then

Lf = pµeµ(f) − ωi
α(p)pα ∂f

∂pi
(p = pµeµ). (7.55)

Derivation. Eq. (7.55) follows from (7.5) and the result of the following consideration.
Let X =

∑n+1
i=1 ξi∂i be a vector field on a domain of Rn+1 and let Σ be a hypersurface in Rn+1,

parametrized by

ϕ : U ⊂ Rn → Rn+1, (x1, · · ·xn) �→ (x1, · · ·xn, g(x1, · · ·xn)),

to which X is tangential. Furthermore, let f be a function on Σ, which we regard as a function of x1, · · ·, xn.
I claim that

X(f) =
n∑

i=1

ξi ∂(f ◦ ϕ)
∂xi

. (7.56)

This can be seen as follows: Extend f in some manner to a neighborhood of Σ (at least locally). Then

X(f) | Σ =
n∑

i=1

(
ξi ∂f

∂xi
+ ξn+1 ∂f

∂xn+1

)∣∣∣∣∣
xn+1=g(x1,···xn)

. (7.57)

Now, we have on Σ : dg − dxn+1 = 0 and thus 〈dg − dxn+1, X〉 = 0 since X is tangential. Using (7.57)
this implies

ξn+1 =
n∑

i=1

ξi ∂g

∂xi
,
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whence (7.57) gives by the chain rule

X(f) | Σ =
n∑

i=1

ξi

(
∂f

∂xi
+

∂f

∂xn+1

∂g

∂xi

)
=

n∑
i=1

ξi ∂(f ◦ ϕ)
∂xi

.

This fact was used in (7.55) for the vector field

Xg = pµeµ − ωµ
α(p)pα ∂

∂pµ
. (7.58)

Lf to first order. For Lf we need

pµeµ(f) = p0 1
a

(1 − A)f ′ + piei(f) = p0 1
a

(1 − A)f ′ + pi 1
a

êi(δf)

and

ωi
α(p)pα ∂

∂pi
= ωi

0(p)p0 ∂

∂pi
+ ωi

j(p)pj ∂

∂pi

= [ωi
0(e0)p0 + ωi

0(p)]p0 ∂

∂pi
+ [ωi

j(e0)p0 + ωi
j(p)]pj ∂

∂pi
.

From (7.54) we get ωi
0(e0) = A|i, and

ωi
0(p) =

[
a′

a2 (1 − A) +
1
a

D′
]

pi.

Furthermore, the Gauss equation implies ωi
j(p) = ω̃i

j(p), where ω̃i
j are the connection forms of the

spatial metric (see Appendix A of [1]).
As an intermediate result we obtain

Lf = (1 − A)
p0

a
f ′ +

pi

a
êi(δf)

−
[
ω̃i

j(p)pj + (p0)2A|i +
p0

a
D′pi + p0 a′

a2 (1 − A)pi

]
∂f

∂pi
. (7.59)

From now on we use as independent variables η, xi, p, γi = pi/p (p = [
∑

i(p
i)2]1/2). We have

∂f

∂pi
=

pi

p

∂f

∂p
+

1
p

(
δl

i − pip
l/p2

) ∂f

∂γl
. (7.60)

Contracting this with ω̃i
j(p)pj , appearing in (7.59), the first term on the right in (7.60) gives no contribution

(antisymmetry of ω̃i
j), and since ∂f/∂γl is of first order we can replace ω̃i

j by the connection forms of
the unperturbed metric a2γij ; these are the same as the connection forms ω̂i

j of γij relative to ϑ̂i. What
remains is thus

ω̂i
j(p)

pj

p

(
δl

i − pip
l/p2

) ∂δf

∂γl
= ω̂i

j(p)
pj

p

∂δf

∂γi
=

p

a
γjγkΓ̂i

jk
∂δf

∂γi
.

Inserting this and (7.60) into (7.59) gives in zeroth order for the Liouville operator

(Lf)(0) =
p0

a

(
f (0)′ − Hp

∂f (0)

∂p

)
,
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and the first order contribution is

−A(Lf)(0) +
p0

a
(δf)′ +

pi

a
êi(δf) − p

a
γjγkΓ̂i

jk
∂δf

∂γi

− (p0)2

ap
êi(A)pi ∂f (0)

∂p
− p0

a
D′p

∂f (0)

∂p
− p0

a
Hp

∂δf

∂p
.

Therefore, we obtain for the Liouville operator, up to first order,

a

p0 Lf = (1 − A)

(
f (0)′ − Hp

∂f (0)

∂p

)
+ (δf)′ − Hp

∂δf

∂p

+
pi

p0 êi(δf) − p

p0 γjγkΓ̂i
jk

∂δf

∂γi
− p

[
D′ +

p0

p
γiêi(A)

]
∂f (0)

∂p
.

(7.61)

As a first application we consider the collisionless Boltzmann equation for m = 0. In zeroth order we
get the equation (7.37) (q in that equation is our present p). The perturbation equation becomes

(δf)′ − Hp
∂δf

∂p
+ γiêi(δf) − γjγkΓ̂i

jk
∂δf

∂γi
− [

D′ + γiêi(A)
]
p

∂f (0)

∂p
= 0.

(7.62)

It will be more convenient to write this in terms of the comoving momentum, which we denote by q, q = ap.
(This slight change of notation is unfortunate, but should not give rise to confusions, because the equations at
the beginning of Sect. 7.3, with the earlier meaning q ≡ p, will no more be used. But note that (7.38)-(7.41)
remain valid with the present meaning of q.) Eq. (7.62) then becomes

(∂η + γiêi)δf − Γ̂i
jkγjγk ∂δf

∂γi
− [

D′ + γiêi(A)
]
q
∂f (0)

∂q
= 0. (7.63)

It is obvious how to write this in gauge invariant form

(∂η + γiêi)Fs − Γ̂i
jkγjγk ∂Fs

∂γi
=
[
Φ′ + γiêi(Ψ)

]
q
∂f (0)

∂q
. (7.64)

(From this the collisionless Boltzmann equation follows in any gauge; write this out.)
In the special case K = 0 we obtain for the Fourier amplitudes, with µ := k̂ · γ,

F ′
s + iµkFs =

[
Φ′ + ikµΨ

]
q
∂f (0)

∂q
. (7.65)

This equation can be used for neutrinos as long as their masses are negligible (the generalization to the
massive case is easy).

7.5 Boltzmann equation for photons

The collision term for photons due to Thomson scattering on electrons will be derived in Appendix B. We
shall find that in the longitudinal gauge, ignoring polarization effects (to be discussed later),

C[f ] = xeneσT p

[
〈δf〉 − δf − q

∂f (0)

∂q
γiêi(vb) +

3
4

Qijγ
iγj

]
. (7.66)
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On the right, xene is the unperturbed free electron density (xe = ionization fraction), σT the Thomson
cross section, and vb the scalar velocity perturbation of the baryons. Furthermore, we have introduced the
spherical averages

〈δf〉 =
1
4π

∫
S2

δf dΩγ , (7.67)

Qij =
1
4π

∫
S2

[γiγj − 1
3

δij ]δf dΩγ . (7.68)

(Because of the tight coupling of electrons and ions we can take ve = vb.)
Since the left-hand side of (7.63) is equal to (a/p0)Lf , the linearized Boltzmann equation becomes

(∂η + γiêi)δf − Γ̂i
jkγjγk ∂δf

∂γi
− [

D′ + γiêi(A)
]
q
∂f (0)

∂q

= axeneσT

[
〈δf〉 − δf − q

∂f (0)

∂q
γiêi(vb) +

3
4

Qijγ
iγj

]
.

(7.69)

This can immediately be written in a gauge invariant form, by replacing

δf → Fs, vb → Vb, A → Ψ, D → Φ. (7.70)

In our applications to the CMB we work with the gauge invariant brightness temperature perturbation

Θs(η, xi, γj) =
∫

Fsq
3dq

/
4
∫

f (0)q3dq. (7.71)

(The factor 4 is chosen because of the Stephan-Boltzmann law, according to which δρ/ρ = 4δT/T.) It is
simple to translate the Boltzmann equation for Fs to a kinetic equation for Θs. Using

∫
q
∂f (0)

∂q
q3dq = −4

∫
f (0)q3dq

we obtain for the convective part (from the left-hand side of the Boltzmann equation for Fs)

Θ′
s + γiêi(Θs) − Γ̂i

jkγjγk ∂Θs

∂γi
+ Φ′ + γiêi(Ψ).

The collision term gives

τ̇(θ0 − Θs + γiêiVb +
1
16

γiγjΠij),

with τ̇ = xeneσT a/a0, θ0 = 〈Θs〉 (spherical average), and

1
12

Πij :=
1
4π

∫
[γiγj − 1

3
δij ]Θs dΩγ . (7.72)

The basic equation for Θs is thus

(Θs + Ψ)′ + γiêi(Θs + Ψ) − Γ̂i
jkγjγk ∂

∂γi
(Θs + Ψ) =

(Ψ′ − Φ′) + τ̇(θ0 − Θs + γiêiVb +
1
16

γiγjΠij). (7.73)
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In a mode decomposition we get for K = 0 (I drop from now on the index s on Θ):

Θ′ + ikµ(Θ + Ψ) = −Φ′ + τ̇ [θ0 − Θ − iµVb − 1
10

θ2P2(µ)] (7.74)

(recall Vb → −(1/k)Vb). The last term on the right comes about as follows. We expand the Fourier modes
Θ(η, ki, γj) in terms of Legendre polynomials

Θ(η, ki, γj) =
∞∑

l=0

(−i)lθl(η, k)Pl(µ), µ = k̂ · γ, (7.75)

and note that

1
16

γiγjΠij = − 1
10

θ2P2(µ) (7.76)

(Exercise). The expansion coefficients θl(η, k) in (7.75) are the brightness moments30. The lowest three
have simple interpretations. We show that in the notation of Chap. 1:

θ0 =
1
4

∆sγ , θ1 = Vγ , θ2 =
5
12

Πγ . (7.77)

Derivation of (7.77). We start from the general formula (see Sect. 7.1)

Tµ
(γ)ν =

∫
pµpνf(p)

d3p

p0 =
∫

pµpνf(p)pdp dΩγ . (7.78)

According to the general parametrization (1.156) we have

δT 0
(γ)0 = −δργ = −

∫
p2δf(p)pdp dΩγ . (7.79)

Similarly, in zeroth order

T
(0)0
(γ) 0 = −ρ(0)

γ = −
∫

p2f (0)(p)pdp dΩγ . (7.80)

Hence,

δργ

ρ
(0)
γ

=
∫

q3δf dq dΩγ∫
q3f (0)dq dΩγ

. (7.81)

In the longitudinal gauge we have ∆sγ = δργ/ρ
(0)
γ , Fs = δf and thus by (7.71) and (7.75)

∆sγ = 4
1
4π

∫
Θ dΩγ = 4θ0.

Similarly,

T i
(γ)0 = −hγv|i

γ =
∫

pip0δfpdp dΩγ

30 In the literature the normalization of the θl is sometimes chosen differently: θl → (2l + 1)θl.
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or

v|i
γ =

3

4ρ
(0)
γ

∫
γiδfp3dp dΩγ . (7.82)

With (7.80) and (7.71) we get

V |i
γ =

3
4π

∫
γiΘ dΩγ . (7.83)

For the Fourier amplitudes this gauge invariant equation gives (Vγ → −(1/k)Vγ)

−iVγ k̂i =
3
4π

∫
γiΘ dΩγ

or

−iVγ =
3
4π

∫
µΘ dΩγ .

Inserting here the decomposition (7.75) leads to the second relation in (7.77).
For the third relation we start from (1.156) and (7.79)

δT i
(γ)j = δpγδi

j + p(0)
γ

(
Π|i

γ|j − 1
3

δi
j�Πγ

)
=
∫

pipjδfp dp dΩγ .

From this and (7.79) we see that δpγ = 1
3 δργ , thus Γγ = 0 (no entropy production with respect to the

photon fluid). Furthermore, since p
(0)
γ = 1

3 ρ
(0)
γ we obtain with (7.72)

Π|i
γ|j − 1

3
δi

j�Πγ = 4 · 3
1
4π

∫
[γiγj − 1

3
δi

j ]Θ dΩγ = Πi
j .

In momentum space (Πγ → (1/k2)Πγ) this becomes

−(k̂ik̂j − 1
3

)Πγ = Πi
j

or, contracting with γiγ
j and using (7.76), the desired result.

Hierarchy for moment equations

Now we insert the expansion (7.75) into the Boltzmann equation (7.74). Using the recursion relations for
the Legendre polynomials,

µPl(µ) =
l

2l + 1
Pl−1(µ) +

l + 1
2l + 1

Pl+1(µ), (7.84)

we obtain

∞∑
l=0

(−i)lθ′
lPl + ik

∞∑
l=0

(−i)lθl

[
l

2l + 1
Pl−1 +

l + 1
2l + 1

Pl+1

]
+ ikΨP1

= −Φ′P0 − τ̇

[ ∞∑
l=1

(−i)lθlPl − iVbP1 − 1
10

θ2P2

]
.
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Comparing the coefficients of Pl leads to the following hierarchy of ordinary differential equations for the
brightness moments θl(η):

θ′
0 = − 1

3
kθ1 − Φ′, (7.85)

θ′
1 = k

(
θ0 + Ψ − 2

5
θ2

)
− τ̇(θ1 − Vb), (7.86)

θ′
2 = k

( 2
3

θ1 − 3
7

θ3

)
− τ̇

9
10

θ2, (7.87)

θ′
l = k

( l

2l − 1
θl−1 − l + 1

2l + 3
θl+1

)
, l > 2. (7.88)

At this point it is interesting to compare the first moment equation (7.86) with the phenomenological
equation (1.212) for γ:

V ′
γ = kΨ +

1
4

∆sγ − 1
6

kΠγ + HFγ . (7.89)

On the other hand, (7.86) can be written with (7.77) as

V ′
γ = kΨ +

1
4

∆sγ − 1
6

kΠγ − τ̇(Vγ − Vb). (7.90)

The two equations agree if the phenomenological force Fγ is given by

HFγ = −τ̇(Vγ − Vb). (7.91)

From the general relation (1.203) we then obtain

Fb = −hγ

hb
Fγ = − 4ργ

3ρb
Fγ . (7.92)

7.6 Tensor contributions to the Boltzmann equation

Considering again only the case K = 0, the metric (5.57) for tensor perturbations becomes

gµν = a2(η)[ηµν + 2Hµν ], (7.93)

where the Hµν satisfy the TT gauge conditions (5.58). An adapted orthonormal tetrad is

θ0 = a(η)dη, θi = a(δi
j + Hi

j)dxj . (7.94)

Relative to this the connection forms are (Exercise):

ω0
i =

a′

a2 θi +
1
a

H ′
ijθ

j , ωi
j =

1
2a

(Hi
k,j − Hjk

,i)θk. (7.95)

For Lf we get from (7.55) to first order

Lf =
p0

a
f ′ + pi 1

a
êi(f) + ωi

0(p)p0 ∂f

∂pi
+ ωi

j(p)pj ∂f

∂pi

=
p0

a

[
f ′ +

pi

p0 ∂if + H ′
ijp

j ∂f

∂pi

]
.
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Passing again to the variables η, xi, p, γi we obtain instead of (7.61)

a

p0 Lf = f (0)′ − Hp
∂f (0)

∂p

+(δf)′ − Hp
∂δf

∂p
+

pi

p0 ∂i(δf) + H ′
ijγ

iγjp
∂f (0)

∂p
. (7.96)

Instead of (7.63) we now obtain the following collisionless Boltzmann equation

(∂η + γi∂i)δf + H ′
ijγ

iγjq
∂f (0)

∂q
= 0. (7.97)

For the temperature (brightness) perturbation this gives

(∂η + γi∂i)Θ = H ′
ijγ

iγj . (7.98)

This describes the influence of tensor modes on Θ. The evolution of these tensor modes is described
according to (5.59) by

H ′′
ij + 2HH ′

ij − �Hij = 0, (7.99)

if we neglect tensor perturbations of the energy-momentum tensor. We shall study the implications of the
last two equations for the CMB fluctuations in Sect. 8.6.

8 The physics of CMB anisotropies

We have by now developed all ingredients for a full understanding of the CMB anisotropies. In the present
chapter we discuss these for the CDM scenario and primordial initial conditions suggested by inflation
(derived in Part II). Other scenarios, involving for instance topological defects, are now strongly disfavored.

We shall begin by collecting all independent perturbation equations, derived in previous chapters. There
are fast codes that allow us to solve these equations very accurately, given a set of cosmological parameters.
It is, however, instructive to discuss first various qualitative and semi-quantitative aspects. Finally, we shall
compare numerical results with observations, and discuss what has already come out of this, which is a lot.
In this connection we have to include some theoretical material on polarization effects, because WMAP has
already provided quite accurate data for the so-called E-polarization.

The B-polarization is much more difficult to get, and is left to future missions (Planck satellite, etc). This
is a very important goal, because accurate data will allow us to determine the power spectrum of the gravity
waves.

For further reading I recommend Chap. 8 of [5] and the the two research articles [45, 46]. For a well
written review and extensive references, see [48].

8.1 The complete system of perturbation equations

For references in later sections, we collect below the complete system of (independent) perturbation equa-
tions for scalar modes and K = 0 (see Sects. 1.5.C and 7.5). Let me first recall and add some notation.

Unperturbed background quantities: ρα, pα denote the densities and pressures for the species α = b
(baryons and electrons), γ (photons), c (cold dark matter); the total density is the sum ρ =

∑
α ρα, and

the same holds for the total pressure p. We also use wα = pα/ρα, w = p/ρ. The sound speed of the
baryon-electron fluid is denoted by cb, and R is the ratio 3ρb/4ργ .

Here is the list of gauge invariant scalar perturbation amplitudes:
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• δα := ∆sα, δ := ∆s : density perturbations (δρα/ρα, δρ/ρ in the longitudinal gauge); clearly:
ρ δ =

∑
ραδα.

• Vα, V : velocity perturbations; ρ(1 + w)V =
∑

α ρα(1 + wα)Vα.

• θl, Nl : brightness moments for photons and neutrinos.

• Πα, Π : anisotropic pressures; Π = Πγ + Πν . For the lowest moments the following relations hold:

δγ = 4θ0, Vγ = θ1, Πγ =
12
5

θ2, (8.1)

and similarly for the neutrinos.

• Ψ, Φ: Bardeen potentials for the metric perturbation.
As independent amplitudes we can choose: δb, δc, Vb, Vc, Φ, Ψ, θl, Nl. The basic evolution equations

consist of three groups.

• Fluid equations:

δ′
c = −kVc − 3Φ′, (8.2)

V ′
c = −aHVc + kΨ; (8.3)

δ′
b = −kVb − 3Φ′, (8.4)

V ′
b = −aHVb + kc2

bδb + kΨ + τ̇(θ1 − Vb)/R. (8.5)

• Boltzmann hierarchies for photons (Eqs. (7.85)–(7.88)) (and the collisionless neutrinos):

θ′
0 = − 1

3
kθ1 − Φ′, (8.6)

θ′
1 = k

(
θ0 + Ψ − 2

5
θ2

)
− τ̇(θ1 − Vb), (8.7)

θ′
2 = k

( 2
3

θ1 − 3
7

θ3

)
− τ̇

9
10

θ2, (8.8)

θ′
l = k

( l

2l − 1
θl−1 − l + 1

2l + 3
θl+1

)
, l > 2. (8.9)

• Einstein equations : We only need the following algebraic ones for each mode:

k2Φ = 4πGa2ρ
[
δ + 3

aH

k
(1 + w)V

]
, (8.10)

k2(Φ + Ψ) = −8πGa2p Π. (8.11)
In arriving at these equations some approximations have been made which are harmless 31, except for

one: We have ignored polarization effects in Thomson scattering. For quantitative calculations these have
to be included. Moreover, polarization effects are highly interesting, as I shall explain later. We shall take
up this topic in Sect. 8.7.

8.2 Acoustic oscillations

In this section we study the photon-baryon fluid. Our starting point is the following approximate system of
equations. For the baryons we use (8.4) and (8.5), neglecting the term proportional to c2

b . We truncate the
photon hierarchy, setting θl = 0 for l ≥ 3. So we consider the system of first order equations:

θ′
0 = − 1

3
kθ1 − Φ′, (8.12)

31 In the notation of Sect. 1.4 we have set qα = Γα = 0, and are thus ignoring certain intrinsic entropy perturbations within
individual components.
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θ′
1 = k

(
θ0 + Ψ − 2

5
θ2

)
− τ̇(θ1 − Vb), (8.13)

δ′
b = −kVb − 3Φ′, (8.14)

V ′
b = −aHVb + kc2

bδb + kΨ + τ̇(θ1 − Vb)/R, (8.15)

and (8.8). This is, of course, not closed (Φ and Ψ are “external” potentials).
As long as the mean free path of photons is much shorter than the wavelength of the fluctuation, the

optical depth through a wavelength ∼ τ̇ /k is large32. Thus the evolution equations may be expanded in the
small parameter k/τ̇ .

In lowest order we obtain θ1 = Vb, θl = 0 for l ≥ 2, thus δ′
b = 3θ′

0 (= 3δ′
γ/4).

Going to first order, we can replace in the following form of (8.15)

θ1 − Vb = τ̇−1R

[
V ′

b +
a′

a
θ1 − kΨ

]
(8.16)

on the right Vb by θ1:

θ1 − Vb = τ̇−1R

[
θ′
1 +

a′

a
θ1 − kΨ

]
. (8.17)

We insert this in (8.13), and set in first order also θ2 = 0:

θ′
1 = k(θ0 + Ψ) − R

[
θ′
1 +

a′

a
Vb − kΨ

]
. (8.18)

Using a′/a = R′/R, we obtain from this

θ′
1 =

1
1 + R

kθ0 + kΨ − R′

1 + R
θ1. (8.19)

Combining this with (8.12), we obtain by eliminating θ1 the driven oscillator equation:

θ′′
0 +

R

1 + R

a′

a
θ′
0 + c2

sk
2θ0 = F (η), (8.20)

with

c2
s =

1
3(1 + R)

, F (η) = − k2

3
Ψ − R

1 + R

a′

a
Φ′ − Φ′′. (8.21)

According to (1.186) and (1.187) cs is the velocity of sound in the approximation cb ≈ 0. It is suggestive
to write (8.20) as (meff ≡ 1 + R)

(meffθ′
0)

′ +
k2

3
(θ0 + meffΨ) = −(meffΦ′)′. (8.22)

This equation provides a lot of insight, as we shall see. It may be interpreted as follows: The change
in momentum of the photon-baryon fluid is determined by a competition between pressure restoring and
gravitational driving forces.

Let us, in a first step, ignore the time dependence of meff (i.e., of the baryon-photon ratio R), then we
get the forced harmonic oscillator equation

meffθ′′
0 +

k2

3
θ0 = − k2

3
meffΨ − (meffΦ′)′. (8.23)

32 Estimate τ̇ /k as a function of redshift z > zrec and (aH/k).
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The effective mass meff = 1 + R accounts for the inertia of baryons. Baryons also contribute gravitational
mass to the system, as is evident from the right hand side of the last equation. Their contribution to the
pressure restoring force is, however, negligible.

We now ignore in (8.23) also the time dependence of the gravitational potentials Φ, Ψ. With (8.21) this
then reduces to

θ′′
0 + k2c2

sθ0 = − 1
3 k2Ψ. (8.24)

This simple harmonic oscillator under constant acceleration provided by gravitational infall can immediately
be solved:

θ0(η) = [θ0(0) + (1 + R)Ψ] cos(krs) +
1

kcs
θ̇0(0) sin(krs) − (1 + R)Ψ, (8.25)

where rs(η) is the comoving sound horizon
∫

csdη.
We know (see (6.54)) that for adiabatic initial conditions there is only a cosine term. Since we shall see

that the “effective” temperature fluctuation is ∆T = θ0 + Ψ, we write the result as

∆T (η, k) = [∆T (0, k) + RΨ] cos(krs(η)) − RΨ. (8.26)

Discussion

In the radiation dominated phase (R = 0) this reduces to ∆T (η) ∝ cos krs(η), which shows that the
oscillation of θ0 is displaced by gravity. The zero point corresponds to the state at which gravity and pressure
are balanced. The displacement −Ψ > 0 yields hotter photons in the potential well since gravitational infall
not only increases the number density of the photons, but also their energy through gravitational blue shift.
However, well after last scattering the photons also suffer a redshift when climbing out of the potential
well, which precisely cancels the blue shift. Thus the effective temperature perturbation we see in the CMB
anisotropies is indeed ∆T = θ0 + Ψ, as we shall explicitely see later.

It is clear from (8.25) that a characteristic wave-number is k = π/rs(ηdec)
≈ π/csηdec. A spectrum of k-modes will produce a sequence of peaks with wave numbers

km = mπ/rs(ηdec), m = 1, 2, ... . (8.27)

Odd peaks correspond to the compression phase (temperature crests), whereas even peaks correspond to
the rarefaction phase (temperature troughs) inside the potential wells. Note also that the characteristic
length scale rs(ηdec), which is reflected in the peak structure, is determined by the underlying unperturbed
Friedmann model. This comoving sound horizon at decoupling depends on cosmological parameters, but
not on ΩΛ. Its role will further be discussed below.

Inclusion of baryons not only changes the sound speed, but gravitational infall leads to greater compres-
sion of the fluid in a potential well, and thus to a further displacement of the oscillation zero point (last term
in (8.25)). This is not compensated by the redshift after last scattering, since the latter is not affected by the
baryon content. As a result all peaks from compression are enhanced over those from rarefaction. Hence,
the relative heights of the first and second peak is a sensitive measure of the baryon content. We shall see
that the inferred baryon abundance from the present observations is in complete agreement with the results
from big bang nucleosynthesis.

What is the influence of the slow evolution of the effective mass meff = 1+R? Well, from the adiabatic
theorem we know that for a slowly varying meff the ratio energy/frequency is an adiabatic invariant. If
A denotes the amplitude of the oscillation, the energy is 1

2 meffω2A2. According to (8.21) the frequency

ω = kcs is proportional to m
−1/2
eff . Hence A ∝ ω−1/2 ∝ m

1/4
eff ∝ (1 + R)−1/4.
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Photon diffusion. In second order we do no more neglect θ2 and use in addition (8.8),

θ′
2 = k

( 2
3

θ1 − 3
7

θ3

)
− τ̇

9
10

θ2, (8.28)

with θ3 � 0. This gives in leading order

θ2 � 20
27

τ̇−1kθ1. (8.29)

If we neglect in the Euler equation for the baryons the term proportional to a′/a, then the first order equation
(8.17) reduces to

Vb = θ1 − τ̇−1R[θ′
1 − kΨ]. (8.30)

We use this in (8.16) without the term with a′/a, to get

θ1 − Vb = τ̇−1R[θ′
1 − kΨ] − R2

τ̇2 (θ′′
1 − kΨ′). (8.31)

This is now used in (8.13) with the approximation (8.29) for θ2. One finds

(1 + R)θ′
1 = k[θ0 + (1 + R)Ψ] − 8

27
k2

τ̇
+

R2

τ̇
(θ′′

1 − kΨ′). (8.32)

In the last term we use the first order approximation of this equation, i.e.,

(1 + R)(θ′
1 − kΨ) = kθ0,

and obtain

(1 + R)θ′
1 = k[θ0 + (1 + R)Ψ] − 8

27
k2

τ̇
+

k

τ̇

R2

1 + R
θ′
0. (8.33)

Finally, we eliminate in this equation θ′
1 with the help of (8.12). After some rearrangements we obtain

θ′′
0 +

k2

3τ̇

[
R2

(1 + R)2
+

8
9

1
1 + R

]
θ′
0 +

k2

3(1 + R)
θ0 = − k2

3
Ψ − Φ′′ − 8

27
k2

3τ̇

1
1 + R

Φ′. (8.34)

The term proportional to θ′
0 in this equation describes the damping due to photon diffusion. Let us determine

the characteristic damping scale.
If we neglect in the homogeneous equation the time dependence of all coefficients, we can make the

ansatz θ0 ∝ exp(i
∫

ωdη). (We thus ignore variations on the time scale a/ȧ with those corresponding to
the oscillator frequency ω.) The dispersion law is determined by

−ω2 + i
ω

3
k2

τ̇

[
R2

(1 + R)2
+

8
9

1
1 + R

]
+

k2

3
1

1 + R
= 0,

giving

ω = ±kcs + i
k2

6
1
τ̇

R2 + 8
9 (1 + R)

(1 + R)2
. (8.35)

So acoustic oscillations are damped as exp[−k2/k2
D], where

k2
D =

1
6

∫
1
τ̇

R2 + 8
9 (1 + R)

(1 + R)2
dη. (8.36)
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This is sometimes written in the form

k2
D =

1
6

∫
1
τ̇

R2 + 4
5 f−1

2 (1 + R)
(1 + R)2

dη. (8.37)

Our result corresponds to f2 = 9/10. In some books and papers one finds f2 = 1. If we would include
polarization effects, we would find f2 = 3/4. The damping of acoustic oscillations is now clearly observed.

Sound horizon. The sound horizon determines according to (8.27) the position of the first peak. We
compute now this important characteristic scale.

The comoving sound horizon at time η is

rs(η) =
∫ η

0
cs(η′)dη′. (8.38)

Let us write this as a redshift integral, using 1 + z = a0/a(η), whence by (0.52) for K �= 0

dη = − 1
a0

dz

H(z)
= −|ΩK |1/2 dz

E(z)
. (8.39)

Thus

rs(z) = |ΩK |1/2
∫ ∞

z

cs(z′)
dz′

E(z′)
. (8.40)

This is seen at present under the (small) angle

θs(z) =
rs(z)
r(z)

, (8.41)

where r(z) is given by (0.56) and (0.57):

r(z) = S
(

|ΩK |1/2
∫ z

0

dz′

E(z′)

)
. (8.42)

Before decoupling the sound velocity is given by (8.21), with

R =
3
4

Ωb

Ωγ

1
1 + z

. (8.43)

We are left with two explicit integrals. For zdec we can neglect in (8.40) the curvature and Λ terms. The
integral can then be done analytically, and is in good approximation proportional to (ΩM )−1/2 (exercise).
Note that (8.42) is closely related to the angular diameter distance to the last scattering surface (see (0.34)
and (0.60)). A numerical calculation shows that θs(zdec) depends mainly on the curvature parameter ΩK .
For a typical model with ΩΛ = 2/3, Ωbh

2
0 = 0.02, ΩMh2

0 = 0.16, n = 1 the parameter sensitivity is
approximately [48]

∆θs

θs
≈ 0.24

∆(ΩMh2
0)

ΩMh2
0)

− 0.07
∆(Ωbh

2
0)

Ωbh2
0

+ 0.17
∆ΩΛ

ΩΛ
+ 1.1

∆Ωtot

Ωtot
.
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8.3 Formal solution for the moments θl

We derive in this section a useful integral representation for the brightness moments at the present time.
The starting point is the Boltzmann equation (7.74) for the brightness temperature fluctuations Θ(η, k, µ),

(Θ + Ψ)′ + ikµ(Θ + Ψ) = Ψ′ − Φ′ + τ̇ [θ0 − Θ − iµVb − 1
10

θ2P2(µ)]. (8.44)

This is of the form of an inhomogeneous linear differential equation

y′ + g(x)y = h(x),

whose solution can be written as (variation of constants)

y(x) = e−G(x)
{

y0 +
∫ x

x0

h(x′)eG(x′)dx′
}

,

with

G(x) =
∫ x

x0

g(u)du.

In our case g = ikµ + τ̇ , h = τ̇ [θ0 + Ψ − iµVb − 1
10 θ2P2(µ)] + Ψ′ − Φ′. Therefore, the present value of

Θ + Ψ can formally be expressed as

(Θ + Ψ)(η0, µ; k) =∫ η0

0
dη
[
τ̇(θ0 + Ψ − iµVb − 1

10
θ2P2) + Ψ′ − Φ′

]
e−τ(η,η0)eikµ(η−η0),

(8.45)

where

τ(η, η0) =
∫ η0

η

τ̇ dη (8.46)

is the optical depth. The combination τ̇ e−τ is the (conformal) time visibility function. It has a simple
interpretation: Let p(η, η0) be the probability that a photon did not scatter between η and today (η0).
Clearly, p(η − dη, η0) = p(η, η0)(1 − τ̇ dη). Thus p(η, η0) = e−τ(η,η0), and the visibility function times
dη is the probability that a photon last scattered between η and η + dη. The visibility function is therefore
strongly peaked near decoupling. This is very useful, both for analytical and numerical purposes.

In order to obtain an integral representation for the multipole moments θl, we insert in (8.45) for the
µ-dependent factors the following expansions in terms of Legendre polynomials:

e−ikµ(η0−η) =
∑

l

(−i)l(2l + 1)jl(k(η0 − η))Pl(µ), (8.47)

−iµe−ikµ(η0−η) =
∑

l

(−i)l(2l + 1)j′
l(k(η0 − η))Pl(µ), (8.48)

(−i)2P2(µ)e−ikµ(η0−η) =
∑

l

(−i)l(2l + 1)
1
2

[3j′′
l + jl]Pl(µ). (8.49)

Here, the first is well-known. The others can be derived from (8.47) by using the recursion relations (7.84)
for the Legendre polynomials and the following ones for the spherical Bessel functions

ljl−1 − (l + 1)jl+1 = (2l + 1)j′
l , (8.50)
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or by differentiation of (8.47) with respect to k(η0 − η). Using the definition (7.75) of the moments θl, we
obtain for l ≥ 2 the following useful formula:

θl(η0)
2l + 1

=
∫ η0

0
dηe−τ(η)

[
(τ̇ θ0 + τ̇Ψ+Ψ′ −Φ′)jl(k(η0 −η))+ τ̇Vbj

′
l + τ̇

1
20

θ2(3j′′
l + jl)

]
. (8.51)

Sudden decoupling approximation. In a reasonably good approximation we can replace the visibility
function by the δ-function, and obtain with ∆η ≡ η0 − ηdec, Vb(ηdec) � θ1(ηdec) the instructive result

θl(η0, k)
2l + 1

� [θ0 + Ψ](ηdec, k)jl(k∆η) + θ1(ηdec, k)j′
l(k∆η) + ISW + Quad. (8.52)

Here, the quadrupole contribution (last term) is not important. ISW denotes the integrated Sachs-Wolfe
effect:

ISW =
∫ η0

0
dη(Ψ′ − Φ′)jl(k(η0 − η)), (8.53)

which only depends on the time variations of the Bardeen potentials between recombination and the present
time.

The interpretation of the first two terms in (8.52) is quite obvious: The first describes the fluctuations of
the effective temperature θ0+Ψ on the cosmic photosphere, as we would see them for free streaming between
there and us, if the gravitational potentials would not change in time. (Ψ includes blue- and redshift effects.)
The dipole term has to be interpreted, of course, as a Doppler effect due to the velocity of the baryon-photon
fluid. It turns out that the integrated Sachs-Wolfe effect enhances the anisotropy on scales comparable to
the Hubble length at recombination.

In this approximate treatment we have to know – beside the ISW – only the effective temperature θ0 +Ψ
and the velocity moment θ1 at decoupling. The main point is that Eq. (8.52) provides a good understanding
of the physics of the CMB anisotropies. Note that the individual terms are all gauge invariant. In gauge
dependent methods interpretations would be ambiguous.

8.4 Angular correlations of temperature
fluctuations

The system of evolution equations has to be supplemented by initial conditions. We can not hope to be able
to predict these, but at best their statistical properties (as, for instance, in inflationary models). Theoretically,
we should thus regard the brightness temperature perturbation Θ(η, xi, γj) as a random field. Of special
interest is its angular correlation function at the present time η0. Observers measure only one realization of
this, which brings unavoidable cosmic variances (see the Introduction to Part III).

For further elaboration we insert (7.75) into the Fourier expansion of Θ, obtaining

Θ(η,x,γ) = (2π)−3/2
∫

d3k
∑

l

θl(η, k)Gl(x,γ; k), (8.54)

where

Gl(x,γ; k) = (−i)lPl(k̂ · γ) exp(ik · x). (8.55)

With the addition theorem for the spherical harmonics the Fourier transform is thus

Θ(η,k,γ) =
∑
lm

Ylm(γ)
4π

2l + 1
θl(η, k) (−i)lY ∗

lm(k̂). (8.56)
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This has to be regarded as a stochastic field of k (parametrized by γ ). The randomness is determined
by the statistical properties at an early time, for instance after inflation. If we write Θ as (dropping η)
R(k) × (Θ(k,γ)/R(k)), the second factor evolves deterministically and is independent of the initial
amplitudes, while the stochastic properties are completely determined by those of R(k). In terms of the
power spectrum of R(k),

〈R(k)R∗(k′)〉 =
2π2

k3 PR(k)δ3(k − k′) (8.57)

(see (5.14)), we thus have for the correlation function in momentum space

〈Θ(k,γ)Θ∗(k′,γ′)〉 =
2π2

k3 PR(k)δ3(k − k′)
Θ(k, k̂ · γ)

R(k)
Θ∗(k, k̂ · γ′)

R∗(k)
. (8.58)

Because of the δ-function the correlation function in x-space is

〈Θ(x,γ)Θ(x,γ′)〉 =
∫

d3k

(2π)3

∫
d3k′〈Θ(k,γ)Θ(k′,γ′)〉. (8.59)

Inserting here (8.56) and (8.58) finally gives

〈Θ(x,γ)Θ(x,γ′)〉 =
1
4π

∑
l

(2l + 1)ClPl(γ · γ′), (8.60)

with

(2l + 1)2

4π
Cl =

∫ ∞

0

dk

k

∣∣∣∣ θl(k)
R(k)

∣∣∣∣
2

PR(k). (8.61)

Instead of R(k) we could, of course, use another perturbation amplitude. Note also that we can take R(k)
and PR(k) at any time. If we choose an early time when PR(k) is given by its primordial value, P (prim)

R (k),
then the ratios inside the absolute value, θl(k)/R(k), are two-dimensional CMB transfer functions.

8.5 Angular power spectrum for large scales

The angular power spectrum is defined as l(l + 1)Cl versus l. For large scales, i.e., small l, observed first
with COBE, the first term in Eq. (8.52) dominates. Let us have a closer look at this so-called Sachs-Wolfe
contribution.

For large scales (small k) we can neglect in the first equation (8.6) of the Boltzmann hierarchy the term
proportional to k: θ′

0 ≈ −Φ′ ≈ Ψ′, neglecting also Π (i.e., θ2) on large scales. Thus

θ0(η) ≈ θ0(0) + Ψ(η) − Ψ(0). (8.62)

To proceed, we need a relation between θ0(0) and Ψ(0). This can be obtained by looking at superhorizon
scales in the tight coupling limit, using the results of Sect. 6.1. (Alternatively, one can investigate the
Boltzmann hierarchy in the radiation dominated era.)

From (7.77) and (1.175) or (1.217) we get (recall x = Ha/k)

θ0 =
1
4

∆sγ =
1
4

∆cγ − xV.

The last term can be expressed in terms of ∆, making use of (6.10) for w = 1/3,

xV = − 3
4

x2(D − 1)∆.
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Moreover, we have from (6.41)

3
4

∆cγ =
ζ + 1

ζ + 4/3
∆ − ζ

ζ + 4/3
S.

Putting things together, we obtain for ζ � 1

θ0 =
3
4

[
x2(D − 1) +

1
4

]
∆ − 1

4
ζS, (8.63)

thus

θ0 � 3
4

x2(D − 1)∆ − 1
4

ζS, (8.64)

on superhorizon scales (x � 1).
For adiabatic perturbations we can use here the expansion (6.39) for ω � 1 and get with (6.9)

θ0(0) � 3
4

x2∆ = − 1
2

Ψ(0). (8.65)

For isocurvature perturbations, the expansion (6.40) gives

θ0(0) = Ψ(0) = 0. (8.66)

Hence, the initial condition for the effective temperature is

(θ0 + Ψ)(0) =

{
1
2 Ψ(0) : (adiabatic)

0 : (isocurvature).
(8.67)

If this is used in (8.62) we obtain

θ0(η) = Ψ(η) − 3
2

Ψ(0) for adiabatic perturbations.

On large scales (2.32) gives for ζ � 1, in particular for ηrec,

Ψ(η) =
9
10

Ψ(0). (8.68)

Thus we obtain the result (Sachs-Wolfe)

(θ0 + Ψ)(ηdec) =
1
3

Ψ(ηdec) for adiabatic perturbations. (8.69)

On the other hand, we obtain for isocurvature perturbations with (8.66) θ0(η) = Ψ(η), thus

(θ0 + Ψ)(ηdec) = 2Ψ(ηdec) for isocurvature perturbations. (8.70)

Note the factor 6 difference between the two cases. The Sachs-Wolfe contribution to the θl is therefore

θSW
l (k)
2l + 1

=

{
1
3 Ψ(ηdec)jl(k∆η) : (adiabatic)

2Ψ(ηdec)jl(k∆η) : (isocurvature).
(8.71)

We express at this point Ψ(ηdec) in terms of the primordial values of R and S. For adiabatic perturbations
R is constant on superhorizon scales (see (1.138)), and according to (4.67) we have in the matter dominated
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era Ψ = − 3
5 R. On the other hand, for isocurvature perturbations the entropy perturbation S is constant

on superhorizon scales (see Sect. 6.2.1), and for ζ � 1 we have according to (6.45) and (6.9) Ψ = − 1
5 S.

Hence we find

(θ0 + Ψ)(ηdec) = − 1
5

(R(prim) + 2S(prim)). (8.72)

The result (8.71) inserted into (8.61) gives the the dominant Sachs-Wolfe contribution to the coefficients
Cl for large scales (small l). For adiabatic initial fluctuations we obtain with (8.72)

CSW
l =

4π

25

∫ ∞

0

dk

k
|jl(k∆η)|2 P

(prim)
R (k). (8.73)

Here we insert (6.82) and obtain

CSW
l � πH1−n

0 δ2
H

(
ΩM

Dg(0)

)2 ∫ ∞

0

dk

k2−n
|jl(k∆η)|2 . (8.74)

The integral can be done analytically. Eq. 11.4.34 in [39] implies as a special case

∫ ∞

0
t−λ[Jµ(at)]2dt =

Γ( 2µ−λ+1
2 )

2λa1−λΓ(µ + 1)Γ( λ+1
2 )

× 2F1

(
2µ − λ + 1

2
,
−λ + 1

2
; µ + 1; 1

)
. (8.75)

Since

jl(x) =
√

π

2x
Jl+ 1

2
(x)

the integral in (8.74) is of the form (8.75). If we also use Eq. 15.1.20 of the same reference,

2F1(α, β; γ; 1) =
Γ(γ)Γ(γ − α − β)
Γ(γ − α)Γ(γ − β)

,

we obtain
∫ ∞

0
tn−2[jl(ta)]2dt =

π

24−nan−1

Γ(3 − n)
[Γ( 4−n

2 )]2
Γ( 2l+n−1

2 )
Γ( 2l+5−n

2 )
(8.76)

and thus

CSW
l � 2n−4π2(H0η0)1−nδ2

H

(
ΩM

Dg(0)

)2 Γ(3 − n)
[Γ( 4−n

2 )]2
Γ( 2l+n−1

2 )
Γ( 2l+5−n

2 )
. (8.77)

For a Harrison-Zel’dovich spectrum (n = 1) we get

l(l + 1)CSW
l =

π

2
δ2
H

(
ΩM

Dg(0)

)2

. (8.78)

Because the right-hand side is a constant one usually plots the quantity l(l + 1)Cl (often divided by 2π).
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8.6 Influence of gravity waves on CMB anisotropies

In this section we study the effect of a stochastic gravitational wave background on the CMB anisotropies.
According to Sect. 5.2 such a background is unavoidably produced in inflationary models.

A. Basic equations. We consider only the case K = 0. Let us first recall some basic formulae from Sects.
5.2 and 7.6. The metric for tensor modes is of the form

g = a2(η)[−dη2 + (δij + 2Hij)dxidxj ]. (8.79)

For a mode Hij ∝ exp(ik · x), the tensor amplitudes satisfy

Hi
i = 0, Hi

jk
j = 0. (8.80)

The tensor perturbations of the energy-momentum tensor can be parametrized as follows

δT 0
0 = 0, δT 0

i = 0, δT i
j = Πi

(T )j , (8.81)

where Πi
(T )j satisfies in k-space

Πi
(T )i = 0, Πi

(T )jk
j = 0. (8.82)

According to (5.59) the Einstein equations reduce to

H ′′
ij + 2

a′

a
H ′

ij + k2Hij = 8πGa2Π(T )ij . (8.83)

The Boltzmann equation (7.98) becomes in the metric (8.79)

Θ′ + ikµΘ = −H ′
ijγ

iγj . (8.84)

The solution of this equation in terms of Hij is

Θ(η0,k,γ) = −
∫ η0

0
H ′

ij(η0,k)γiγje−ikµ(η0−η)dη. (8.85)

For the photon contribution to Πi
(T )j we obtain as in Sect. 7.5

Πi
(T )γj = 12

∫
[γiγj − 1

3
δi

j ]Θ
dΩγ

4π
. (8.86)

To this one should add the neutrino contribution, but in what follows we can safely neglect the source Πi
(T )γj

in the Einstein equation (8.83).

B. Harmonic decompositions. We decompose Hij as in Sect. 5.2:

Hij(η,k) =
∑

λ=±2

hλ(η,k)εij(k, λ), (8.87)

where the polarization tensor satisfies (5.65). If k = (0, 0, k) then the x,y components of εij(k, λ) are

(εij(k, λ)) =

(
1 ∓i

∓i −1

)
, λ = ±2. (8.88)
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One easily verifies that for this choice of k

εij(λ)(γiγj − 1
3

δij) =
4√
2

√
π

15
Y2λ(γ), λ = ±2. (8.89)

If we insert this and the expansion

e−ikµ(η0−η) = 4π
∑
L,M

(−i)Ljl(k(η0 − η))Y ∗
LM (k̂)YLM (γ) (8.90)

in (8.85) we obtain for each polarization λ the expansion (dropping the variable η)

Θλ(k,γ) =
∑
l,m

a
(λ)
lm (k)Ylm(γ), (8.91)

with

a
(λ)
lm (k) =

∫
Y ∗

lm(γ)Θλ(k,γ)dΩγ

= −
∫ η0

0
dηh′

λ(η, k)4π
∑
L,M

(−i)Ljl(k(η0 − η))Y ∗
LM (k̂)

× 4√
2

√
π

15

∫
Y ∗

lm(γ)Y2λ(γ)YLM (γ)dΩγ . (8.92)

Since k points in the 3-direction we have Y ∗
LM (k̂) = δM0

√
2L+1
4π . If we also use the spherical integral

∫
Y ∗

lmY2λYL0dΩ =
[

(2l + 1)5(2L + 1)
4π

]1/2
(

l 2 L

0 0 0

)
(−1)m

(
l 2 L

−m λ 0

)

we obtain

a
(λ)
lm = −

√
8π

3

∫ η0

0
dηh′

λ(η, k)(2l + 1)1/2
∑

L=l,l±2

jL(k(η0 − η))(−i)lXL,λδmλ,

where

(−i)lXL,λ := (−i)L(2L + 1)

(
l 2 L

0 0 0

)(
l 2 L

−m λ 0

)
.

Note that this is invariant under λ → −λ. With a table of Clebsch-Gordan coefficients one readily finds

Xl,λ = −
√

3
2

[(l + 2)(l + 1)l(l − 1)]1/2 1
(2l + 3)(2l − 1)

,

Xl+2,λ = −
√

3
8

[· · ·]1/2 1
(2l + 3)(2l + 1)

,

Xl−2,λ = −
√

3
8

[· · ·]1/2 1
(2l + 1)(2l − 1)

,

and thus

∑
L=l,l±2

jLXL,λ = −
√

3
8

[
(l + 2)!
(l − 2)!

]1/2
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×
[

jl+2

(2l + 3)(2l + 1)
+ 2

jl

(2l + 3)(2l − 1)
+

jl−2

(2l + 1)(2l − 1)

]
.

Using twice the recursion relation

jl(x)
x

=
1

2l + 1
(jl−1 + jl+1),

shows that the last square bracket is equal to jl(k(η0 − η))/[k(η0 − η)]2. Thus we find

a
(λ)
lm (k) =

√
π(−i)l

[
(l + 2)!
(l − 2)!

]1/2

×
∫ η0

0
dηh′

λ(η, k)(2l + 1)1/2 jl(k(η0 − η))
[k(η0 − η)]2

δmλ.

(8.93)

Recall that so far the wave vector is assumed to point in the 3-direction. For an arbitrary direction a
(λ)
lm (k)

is determined by (see (8.91) and use the fact that a
(λ)
lm (k) is proportional to δmλ)

∑
m

a
(λ)
lm (k)Ylm(γ) = a

(λ)
lλ (k)Ylλ(R−1(k̂)γ),

where R(k̂) rotates (0,0,1) to k̂. Let Dl
mλ(k̂) be the corresponding representation matrices33. Since

Ylλ(R−1(k̂)γ) =
∑
m

Dl
mλ(k̂)Ylm(γ),

we obtain

a
(λ)
lm (k) = a

(λ)
lλ (k)Dl

mλ(k̂), (8.94)

where a
(λ)
lλ (k) is given by (8.93) for m = λ.

C. The coefficients Cl for tensor modes. For the computation of the Cl’s due to gravitational waves we
proceed as in Sect. 8.4 for scalar modes. On the basis (8.91) and (8.94) we can write

Θλ(η,k,γ) = hλ(ηi,k)
∑
l,m

a
(λ)
lm (k)

hλ(ηi, k)
Dl

mλ(k̂)Ylm(γ), (8.95)

where ηi is some very early time, e.g., at the end of inflation. A look at (8.93) shows that the factor
a
(λ)
lm (k)/hλ(ηi, k) involves only h′

λ(η, k)/hλ(ηi, k), and is thus independent of the initial amplitude of hλ

and also independent of λ (see paragraph D below). The stochastic properties are entirely located in the first
factor of (8.95). Its correlation function is given in terms of the primordial power spectrum P

(prim)
g (k) of

the gravitational waves:

∑
λ

〈hλ(ηi,k)h∗
λ(ηi,k

′)〉 =
2π2

k3 P (prim)
g (k)δ3(k − k′) (8.96)

33 The Euler angles are (ϕ, ϑ, 0),where (ϑ, ϕ) are the polar angles of k̂.
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(see also (5.73)). With this and the orthogonality properties of the representation matrices
∫

dΩkD
l
mλ(k̂)Dl′∗

m′λ′(k̂) =
2l + 1

4π
δll′δmm′δλλ′ , (8.97)

we obtain at the present time

〈Θ(x,γ)Θ(x,γ′)〉 =
1
4π

∑
l

(2l + 1)CGW
l Pl(γ · γ′), (8.98)

with

CGW
l =

4π

2l + 1

∫ ∞

0

dkk2

(2π)3
2π2

k3 P (prim)
g (k)

∣∣∣∣∣
a
(λ)
lm (k)

hλ(ηi, k)

∣∣∣∣∣
2

.

Finally, inserting here (8.93) gives our main result

CGW
l = π

(l + 2)!
(l − 2)!

∫ ∞

0

dk

k
P (prim)

g (k)

∣∣∣∣∣
∫ η0

ηi≈0
dη

h′(η, k)
h(ηi, k)

jl(k(η0 − η))
[k(η0 − η)]2

∣∣∣∣∣
2

. (8.99)

Note that the tensor modes (8.95) are in k̂-space orthogonal to the scalar modes, which are proportional
to Dl

m0(k̂).

D. The modes hλ(η, k). In the Einstein equations (8.83) we can safely neglect the anisotropic stresses
Π(T )ij . Then hλ(η, k) satisfies the homogeneous linear differential equation

h′′ + 2
a′

a
h′ + k2h = 0. (8.100)

At very early times, when the modes are still far outside the Hubble horizon, we can neglect the last term
in (8.100), whence h is frozen. For this reason we solve (8.100) with the initial condition h′(ηi, k) = 0.
Moreover, we are only interested in growing modes.

This problem was already discussed in Sect. 5.2.3. For modes which enter the horizon during the matter
dominated era we have the analytic solution (5.103),

hk(η)
hk(0)

= 3
j1(kη)

kη
. (8.101)

For modes which enter the horizon earlier, we use again a transfer function Tg(k):

hk(η)
hk(0)

=: 3
j1(kη)

kη
Tg(k), (8.102)

that has to be determined by solving the differential equation numerically.
On large scales (small l), larger than the Hubble horizon at decoupling, we can use (8.101). Since

(
j1(x)

x

)′
= − 1

x
j2(x), (8.103)

we then have

h′(η, k)
3h(0, k)

= −k
j2(x)

x
, x := kη. (8.104)
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Fig. 8.1 Theoretical angular power
spectrum for adiabatic initial perturba-
tions and typical cosmological parameters.
The scalar and tensor contributions to the
anisotropies are also shown.

Using this in (8.99) gives

CGW
l = 9π

(l + 2)!
(l − 2)!

∫ ∞

0

dk

k
P (prim)

g (k)I2
l (k), (8.105)

with

Il(k) =
∫ x0

0
dx

jl(x0 − x)j2(x)
(x0 − x)2x

, x0 := kη0. (8.106)

Remark. Since the power spectrum is often defined in terms of 2Hij , the pre-factor in (8.105) is the 4
times smaller.

For inflationary models we obtained for the power spectrum Eq. (5.82),

Pg(k) � 4
π

H2

M2
Pl

∣∣∣∣
k=aH

, (8.107)

and the power index

nT � −2ε. (8.108)

For a flat power spectrum the integrations in (8.105) and (8.106) can perhaps be done analytically, but I
was not able to do achieve this.

E. Numerical results A typical theoretical CMB spectrum is shown in Fig. 8.1. Beside the scalar contri-
bution in the sense of cosmological perturbation theory, considered so far, the tensor contribution due to
gravity waves is also plotted.

Parameter dependences are discussed in detail in [47] (see especially Fig. 1 of this reference).

8.7 Polarization

A polarization map of the CMB radiation provides important additional information to that obtainable
from the temperature anisotropies. For example, we can get constraints about the epoch of reionization.
Most importantly, future polarization observations may reveal a stochastic background of gravity waves,
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generated in the very early Universe. In this section we give a brief introduction to the study of CMB
polarization.

The mechanism which partially polarizes the CMB radiation is similar to that for the scattered light from
the sky. Consider first scattering at a single electron of unpolarized radiation coming in from all directions.
Due to the familiar polarization dependence of the differential Thomson cross section, the scattered radiation
is, in general, polarized. It is easy to compute the corresponding Stokes parameters. Not surprisingly, they are
not all equal to zero if and only if the intensity distribution of the incoming radiation has a non-vanishing
quadrupole moment. The Stokes parameters Q and U are proportional to the overlap integral with the
combinations Y2,2 ± Y2,−2 of the spherical harmonics, while V vanishes.) This is basically the reason why
a CMB polarization map traces (in the tight coupling limit) the quadrupole temperature distribution on the
last scattering surface.

The polarization tensor of an all sky map of the CMB radiation can be parametrized in temperature
fluctuation units, relative to the orthonormal basis {dϑ, sin ϑ dϕ} of the two sphere, in terms of the Pauli
matrices as Θ·1+Qσ3+Uσ1+V σ2. The Stokes parameter V vanishes (no circular polarization). Therefore,
the polarization properties can be described by the following symmetric trace-free tensor on S2:

(Pab) =

(
Q U

U −Q

)
. (8.109)

As for gravity waves, the components Q and U transform under a rotation of the 2-bein by an angle α as

Q ± iU → e±2iα(Q ± iU), (8.110)

and are thus of spin-weight 2. Pab can be decomposed uniquely into ‘electric’ and ‘magnetic’ parts:

Pab = E;ab − 1
2 gab∆E + 1

2 (εa
cB;bc + εb

cB;ac). (8.111)

Expanding here the scalar functions E and B in terms of spherical harmonics, we obtain an expansion of
the form

Pab =
∞∑

l=2

∑
m

[
aE
(lm)Y

E
(lm)ab + aB

(lm)Y
B
(lm)ab

]
(8.112)

in terms of the tensor harmonics:

Y E
(lm)ab := Nl

(
Y(lm);ab − 1

2 gabY(lm);c
c
)
, Y B

(lm)ab := 1
2 Nl(Y(lm);acε

c
b + a ↔ b), (8.113)

where l ≥ 2 and

Nl ≡
(

2(l − 2)!
(l + 2)!

)1/2

.

Equivalently, one can write this as

Q + iU =
√

2
∞∑

l=2

∑
m

[
aE
(lm) + iaB

(lm)

]
2Y

m
l , (8.114)

where sY
m
l are the spin-s harmonics:

sY
m
l =

√
2l + 1

4π
Dl

−s,m(ϑ, ϕ, 0).
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The multipole moments aE
(lm) and aB

(lm) are random variables, and we have equations analogous to those
of the temperature fluctuations, with

CTE
l =

1
2l + 1

∑
m

〈aΘ�
lmaE

lm〉, etc. (8.115)

(We have now put the superscript Θ on the alm of the temperature fluctuations.) The Cl’s determine the
various angular correlation functions. For example, one easily finds

〈Θ(n)Q(n′)〉 =
∑

l

CTE
l

2l + 1
4π

NlP
2
l (cos ϑ) (8.116)

(the last factor is the associated Legendre function Pm
l for m = 2).

For the space-time dependent Stokes parameters Q and U of the radiation field we can perform a normal
mode decomposition analogous to

Θ(η,x,γ) = (2π)−3/2
∫

d3k
∑

l

θl(η, k)Gl(x,γ; k), (8.117)

where

Gl(x,γ; k) = (−i)lPl(k̂ · γ) exp(ik · x). (8.118)

If, for simplicity, we again consider only scalar perturbations this reads

Q ± iU = (2π)−3/2
∫

d3k
∑

l

(El ± iBl) ±2G
0
l , (8.119)

where

sG
m
l (x,γ; k) = (−i)l

(
2l + 1

4π

)1/2

sY
m
l (γ) exp(ik · x), (8.120)

if the mode vector k is chosen as the polar axis. (Note that Gl in (8.118) is equal to 0G
0
l .)

The Boltzmann equation implies a coupled hierarchy for the moments θl, El, and Bl [49,50]. It turns out
that the Bl vanish for scalar perturbations. Non-vanishing magnetic multipoles would be a unique signature
for a spectrum of gravity waves. We give here, without derivation, the equations for the El:

E′
l = k

{
(l2 − 4)1/2

2l − 1
El−1 − [(l + 1)2 − 4]1/2

2l + 1
El+1

}
− τ̇(El +

√
6Pδl,2), (8.121)

where

P =
1
10

[θ2 −
√

6E2]. (8.122)

The analog of the integral representation (8.51)is

El(η0)
2l + 1

= − 3
2

√
(l + 2)!
(l − 2)!

∫ η0

0
dηe−τ(η)τ̇P (η)

jl(k(η0 − η))
(k(η0 − η))2

. (8.123)

For large scales the first term in (8.122) dominates, and the El are thus determined by θ2.
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Fig. 8.2 Temperature-temperature (TT)
and temperature-polarization TE power
spectra. The best fit ΛCDM model is also
shown. (Adapted from [52].)

For large l we may use the tight coupling approximation in which E2 = −√
6 ⇒ P = θ2/4. In the

sudden decoupling approximation, the present electric multipole moments can thus be expressed in terms
of the brightness quadrupole moment on the last scattering surface and spherical Bessel functions as

El(η0, k)
2l + 1

� 3
8

θ2(ηdec, k)
l2jl(kη0)
(kη0)2

. (8.124)

Here one sees how the observable El’s trace the quadrupole temperature anisotropy on the last scattering
surface. In the tight coupling approximation the latter is proportional to the dipole moment θ1.

8.8 Observational results

In recent years several experiments gave clear evidence for multiple peaks in the angular temperature power
spectrum at positions expected on the basis of the simplest inflationary models and big bang nucleosynthesis
[51]. These results have been confirmed and substantially improved by WMAP [52] (see Fig. 8.2).

In spite of the high accuracy of the data, it is not possible to extract unambiguously cosmological
parameters, because there are intrinsic degeneracies, especially when tensor modes are included. These can
only be lifted if other cosmological information is used. Beside the supernova results, use has been made for
instance of the available information for the galaxy power spectrum (in particular from the 2-degree-Field
Galaxy Redshift Survey (2dFGRS)), and limits for the Hubble parameter. For example, if one adds to the
CMB data the well-founded constraint H0 ≥ 50 km/s/Mpc, then the total density parameter Ωtot has to
be in the range 0.98 < Ωtot < 1.08 (95 %) (see Fig. 8.3). The Universe is thus spatially almost flat. (For
further evidence, see Fig. 8.4.) In what follows we therefore always assume K = 0.
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Table 1

Parameter CMB alone CMB and 2dFGRS

Ωbh
2
0 0.024 ± 0.001 0.023 ± 0.001

ΩMh2
0 0.14 ± 0.02 0.134 ± 0.006

h0 0.72 ± 0.05 0.71 ± 0.04

Ωb 0.047 ± 0.006 � same

ΩM 0.29 ±0.07 � same

Table 1 is extracted from the extended analysis [53] of the WMAP data and other cosmological infor-
mation. It shows the 68% confidence ranges for some of the cosmological parameters for two types of fits,
assuming a ΛCDM model. In the first only the CMB data are used (but tensor modes are included), while
in the second these data are combined with the 2dFGRS power spectrum (assuming adiabatic, Gaussian
initial conditions described by power laws).

Note that there is little difference between the two columns. The age of the Universe for these parameters
is close to 14 Gyr.Another interesting result coming from the rise of the temperature-polarization correlation
function at large scales (small l) in Fig. 2 is that reionization of the Universe has set in surprisingly early –,
at a redshift of zr = 17 ± 5, with a corresponding optical depth τ = 0.17 ± 0.06.

Before the new results possible admixtures of isocurvature modes were not strongly constraint. But now
the measured temperature-polarization correlations imply that the primordial fluctuations were primarily
adiabatic. Admixtures of isocurvature modes do not improve the fit.

One worry is that the quadrupole amplitude (C2) measured by WMAP is lower than expected according
to the best fit ΛCDM model [28]. This issue has led to lots of discussions. A reanalysis [54] of the effects
of Galactic cuts indicates that this discrepancy is not particularly significant, being in the region of a few
percent. This issue may look differently, once the second year WMAP data have been analyzed. (We are
still eagerly waiting for seeing this.)

WMAP has determined the amplitude of the primordial power spectrum:

P
(prim)
R (k) � 2.95 × 10−9 A, A = 0.6–1 (8.125)

(depending on the model). Using (5.46) this implies

1
πM2

Pl

H2

ε
� (2 − 3) × 10−9, (8.126)

hence the Hubble parameter during inflation is

H � (0.9 − 1.2) × 1015ε1/2 GeV. (8.127)

With (5.36) this gives

U1/4 � (6.3 − 7.1) × 1016ε1/4 GeV. (8.128)

The WMAP data constrain the ratio Pg/PR, and hence by (5.90) also ε : ε < 0.08. Therefore, we can
conclude that the energy scale of inflation has to satisfy the bound

U1/4 < 3.8 × 1016 GeV. (8.129)

A positive detection of the B - mode in the CMB polarization would provide a lower bound for U1/4.
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8.9 Concluding remarks

A wide range of astronomical data support the following ‘concordance’ ΛCDM model: The Universe is
spatially flat and dominated by vacuum energy density and weakly interacting cold dark matter. Furthermore,
the primordial fluctuations are adiabatic and nearly scale invariant, as predicted in simple inflationary models.
Deviations from Gaussian statistics are small34.

A vacuum energy with density parameter ΩΛ � 0.7 is so surprising that it should be examined whether
this conclusion is really unavoidable. Since we do not have a tested theory predicting the spectrum of
primordial fluctuations, it appears reasonable to consider a wider range of possibilities than simple power
laws. An instructive illustration in this direction has been given in [56], by constructing an Einstein-de Sitter
model with ΩΛ = 0, fitting the CMB data as well as the power spectrum of 2dFGRS. In this the Hubble
constant is, however, required to be rather low: H0 � 46 km/s/Mpc. The authors argue that this cannot
definitely be excluded, because ‘physical’ methods lead mostly to relatively low values of H0. In order to be
consistent with matter fluctuations on cluster scales they add relic neutrinos with degenerate masses of order
eV or a small contribution of quintessence with zero pressure (w = 0). In addition, they have to ignore the
direct evidence for an accelerating Universe from the Hubble-diagram for distant Type Ia supernovas, on
the basis of remaining systematic uncertainties. There is also the question whether the model is compatible
with the observed large scale structure.

We do not discuss here other recent proposals. It is very likely that the present concordance model will
survive. Additional evidence is steadily accumulating. But the mysteries of Dark Matter and Dark Energy
will remain with us for a long time.

Note Added in Proof. Shortly before this paper was published, the improved WMAP data after three years
of integration became available [astro-ph/0603449; astro-ph/0603450]. There have also been significant
improvements in other astronomical data (high redshift supernovae, galaxy clustering, etc.). It is most
remarkable that a six parameter cosmological ΛCDM model is able to fit a rich body of astronomical
observations. An exciting result is that the WMAP data match the basic inflationary model predictions, and
is even well fit by the simplest model V ∝ ϕ2.

Appendices

A Random fields, power spectra, filtering

Let ξ(x) a random field on R
3, and ξ̂(k) its Fourier transform, normalized according to

ξ(x) = (2π)−3/2
∫

ξ̂(k)eik·xd3k. (A.1)

In our applications ξ(x) will be, for instance, the field of density fluctuations δ(x) at a fixed time.
In practice ξ̂(k) will be distributional (generalized random field).

Correlation function and power spectrum

In our cosmological applications we shall often assume that the different k- modes are uncorrelated:

〈ξ̂(k)ξ̂(k)∗〉 = δ(3)(k − k′)P(k). (A.2)

Note that
∣∣∣ξ̂(k)

∣∣∣2 is not defined. (One might, therefore, prefer to work in a finite volume with periodic

boundary conditions.)

34 The search for non-Gaussian behavior is a topical subject. Such deviations are also expected in inflationary models, when
non-linear corrections are taken into account. For an extended recent review see [55].
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The function P(k) is the power spectrum belonging to ξ(x). This is also the Fourier transform of the
correlation function:

Cξ(x − x′) = 〈ξ(x)ξ(x′)〉 =
1

(2π)3

∫
P(k)eik·(x−x′)d3k. (A.3)

Filtering

Let W be a window function (filter) and define the filtered ξ by

ξW = ξ � W. (A.4)

With our convention we have for the Fourier transforms

ξ̂W = (2π)3/2ξ̂ Ŵ . (A.5)

Therefore,

PξW
(k) = (2π)3

∣∣∣Ŵ (k)
∣∣∣2 Pξ(k). (A.6)

With (A.3) this gives, in particular,

〈ξ2
W (x)〉 =

∫ ∣∣∣Ŵ (k)
∣∣∣2 Pξ(k)d3k. (A.7)

Example

For W we choose a top-hat:

W (x) =
1
V

θ(R − |x|), V =
4π

3
R3, (A.8)

where θ is the Heaviside function. The Fourier transform is readily found to be

Ŵ (k) = (2π)−3/2W̃ (kR), W̃ (kR) :=
3(sin kR − kR cos kR)

(kR)3
. (A.9)

Thus,

PξW
(k) =

∣∣∣W̃ (kR)
∣∣∣2 Pξ(k). (A.10)

For a spherically symmetric situation we get from (A.7)

〈ξ2
W (x)〉 =

1
2π2

∫ ∣∣∣W̃ (kR)
∣∣∣2 Pξ(k)k2dk (A.11)

(independent of x).
For this reason one often works with the following definition of the power spectrum

Pξ(k) :=
k3

2π2 Pξ(k). (A.12)

Then the last equation becomes

〈ξ2
W (x)〉 =

∫ ∣∣∣W̃ (kR)
∣∣∣2 Pξ(k)

dk

k
. (A.13)

If ξ is the density fluctuation field δ(x), the filtered fluctuation σ2
R on the scale R is

σ2
R =

∫ ∣∣∣W̃ (kR)
∣∣∣2 Pδ(k)

dk

k
. (A.14)
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B Collision integral for Thomson scattering

The main goal of this Appendix is the derivation of equation (7.66) for the collision integral in the Thomson
limit.

When we work relative to an orthonormal tetrad the collision integral has the same form as in special
relativity. So let first consider this case.

Collision integral for two-body scattering

In SR the Boltzmann equation (7.26) reduces to

pµ∂µf = C[f ] (B.1)

or

∂tf + vi∂if =
1
p0 C[f ]. (B.2)

In order to find the explicit expression for C[f ] things become easier if the following non-relativistic
normalization of the one-particle states |p, λ〉 is adopted:

〈p′, λ′|p, λ〉 = (2π)3δλ,λ′δ(3)(p′ − p). (B.3)

(Some readers may even prefer to discretize the momenta by using a finite volume with periodic boundary
conditions.) Correspondingly, the one-particle distribution functions f are normalized according to

∫
f(p)

gd3p

(2π)3
= n, (B.4)

where g is the statistical weight (= 2 for electrons and photons), and n is the particle number density.
The S-matrix element for a 2-body collision p, q → p′, q′ has the form (suppressing polarization indices)

〈p′, q′|S − 1|p, q〉 = −i(2π)4δ(4)(p′ + q′ − p − q)〈p′, q′|T |p, q〉. (B.5)

Because of our non-invariant normalization we introduce the Lorentz invariant matrix element M by

〈p′, q′|T |p, q〉 =
M

(2p02q02p′02q′0)1/2 . (B.6)

The transition probability per unit time and unit volume is then (see, e.g., Sect. 64 of [57])

dW = (2π)4
1

2p02q0 |M |2δ(4)(p′ + q′ − p − q)
d3p′

(2π)32p′0
d3q′

(2π)32q′0 . (B.7)

Since we ignore in the following polarization effects, we average |M |2 over all polarizations (helicities) of
the initial and final particles. This average is denoted by |M |2. Per polarization we still have the formula
(B.7), but with |M |2 replaced by |M |2. From time reversal invariance we conclude that |M |2 remains
invariant under p, q ↔ p′, q′.

With the standard arguments we can now write down the collision integral. For definiteness we consider
Compton scattering γ(p) + e−(q) → γ(p′) + e−(q′) and denote the distribution functions of the photons
and electrons by f(p) and f(e)(q), respectively. In the following expression we neglect the Pauli suppression
factors 1 − f(e), since in our applications the electrons are highly non-degenerate. Explicitly, we have

1
p0 C[f ] =

1
2p0

∫
2d3q

(2π)32q′0
2d3q′

(2π)32q′0
2d3p′

(2π)32p′0 (2π)4|M |2δ(4)(p′ + q′ − p − q)
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×{
(1 + f(p)) f(p′)f(e)(q′) − (

1 + f(p′)
)
f(p)f(e)(q)

}
. (B.8)

At this point we return to the normalization of the one-particle distributions adopted in Sect. 7.1. This
amounts to the substitution f → 4π3f . Performing this in (B.1) and (B.8) we get for the collision integral

C[f ] =
1

16π2

∫
d3q

q0

d3q′

q′0
d3p′

p′0 |M |2δ(4)(p′ + q′ − p − q)

×{(
1 + 4π3f(p)

)
f(p′)f(e)(q′) − (

1 + 4π3f(p′)
)
f(p)f(e)(q)

}
.

(B.9)

The invariant function |M |2 is explicitly known, and can for instance be expressed in terms of the Mandelstam
variables s, t, u (see Sect. 86 of [57]).

The integral with respect to d3q′ can trivially be done

C[f ] =
1

16π2

∫
d3q

q0

1
q′0

d3p′

p′0 δ(p′0 + q′0 − p0 − q0)|M |2 × {· · ·}. (B.10)

The integral with respect to p′ can most easily be evaluated by going to the rest frame of qµ. Then

∫
d3p′ 1

p′0q′0 δ(p′0 + q′0 − p0 − q0) · ·· =
∫

dΩp̂′

∫
d|p′| |p

′|
q′0 δ(m + q′0 − p0 − q0) · · · .

We introduce the following notation: With respect to the rest system of qµ let ω := p0 = |p|, ω′ := p′0 =
|p′|, E′ =

√
q′2 + m2. Then the last integral is equal to

ω′

E′
1

|1 + ∂E′/∂ω′| =
ω′2

mω
.

In getting the last expression we have used energy and momentum conservation.
So far we are left with

C[f ] =
1

16π2m

∫
d3q

q0

∫
dΩp̂′

ω′2

ω
|M |2 × {· · ·}. (B.11)

In the rest system of qµ the following expression for |M |2 can be found in many books (for a derivation,
see [58])

|M |2 = 3πm2σT

[
ω′

ω
+

ω

ω′ − sin ϑ

]
, (B.12)

where ϑ is the scattering angle in that frame. For an arbitrary frame, the combination dΩp̂′ ω′2
ω |M |2 has to

be treated as a Lorentz invariant object.
At this point we take the non-relativistic limit ω/m → 0, in which ω′ � ω and C[f ] reduces to the

simple expression

C[f ] =
3

16π
σT ωne

∫
dΩp̂′(1 + cos2 ϑ)[f(p′) − f(p)]. (B.13)
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Derivation of (7.66)

In Sect. 7.4 the components pµ of the four-momentum p refer to the tetrad eµ defined in (7.42). Relative to
this35 we introduced the notation pµ = (p, pγi). The electron four-velocity is according to (1.156) given to
first order by

u(e) =
1
a

(1 − A)∂η +
1
a

γijv(e)|j∂j = e0 + vi
(e)ei; vi

(e) = v(e)i = êi(v(e)). (B.14)

Now ω in (B.13) is the energy of the four-momentum p in the rest frame of the electrons, thus

ω = −〈p, u(e)〉 = p[1 − êi(v(e))γi]. (B.15)

Similarly,

ω′ = −〈p′, u(e)〉 = p′[1 − êi(v(e))γ′i]. (B.16)

Since in the non-relativistic limit ω′ = ω, we obtain the relation

p′[1 − êi(v(e))γ′i] = p[1 − êi(v(e))γi]. (B.17)

Therefore, to first order

f(p′, γ′i) = f (0)(p′) + δf(p′, γ′i)

= f (0)(p) +
∂f (0)

∂p
(p′ − p) + δf(p, γ′i)

= f (0)(p) + p
∂f (0)

∂p
êi(v(e))(γ′i − γi) + δf(p, γ′i). (B.18)

Remember that the surface element dΩp̂′ in (B.13) also refers to the rest system. This is related to the
surface element dΩγ′ by36

dΩp̂′ =
(

p′

ω′

)2

dΩγ′ = [1 + 2êi(v(e))γ′i]dΩγ′ . (B.19)

Inserting (B.18) and (B.19) into (B.13) gives to first order, with the notation of Sect. 7.5,

C[f ] = neσT p

[
〈δf〉 − δf − p

∂f (0)

∂p
êi(v(e))γi +

3
4

Qijγ
iγj

]
, (B.20)

that is the announced equation (7.66).
This approximation suffices completely for our applications. The first order corrections to the Thomson

limit have also been worked out [59].

C Ergodicity for (generalized) random fields

In Sect. 5.2.3 we have replaced a spatial average by a stochastic average. Since this is often done in
cosmology, we add some remarks about what is behind this procedure.

35 Without specifying the gauge one can easily generalize the following relative to the tetrad defined by (7.31).
36 Under a Lorentz transformation, the surface element for photons transforms as

dΩ = (ω′/ω)2dΩ′

(exercise).
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Mathematical remarks on generalized random fields

Let φ be a generalized random field. Each ‘smeared’ φ(f) is a random variable on some probability space
(Ω,F , µ). Often one can choose Ω = S ′(RD), F : σ-algebra generated by cylindrical sets, and φ(f) the
‘coordinate function’

φ(f)(ω) = 〈ω, f〉, ω ∈ S ′(RD), f ∈ S(RD).

Notation: We use the letter φ for elements of Ω and interpret φ(f) as the coordinate function: φ �→ 〈φ, f〉.
Let τa denote the translation of R

D by a. This induces translations of Ω, as well as random variables such
as A = φ(f1) · · ·φ(fn), which we all denote by the same symbol τa. Assume that µ is an invariant measure
on (Ω,F) which is also ergodic: For any measurable subset M ∈ Ω which is invariant under translations
µ(M) equals 0 or 1. Then the following Birkhoff ergodic theorem holds: “spatial average (of individual
realization)= stochastic average”, i.e., µ-almost always

lim
Λ↑RD

1
|Λ|

∫
Λ

τaA da = 〈A〉µ, (C.1)

where Λ is a finite hypercube, and the right-hand side denotes the stochastic average of the random variable
A.

Generalized random fields on a torus. Often it is convenient to work on a “big” torus TD with vol-
ume V = LD. Then Ω = D′(TD) (periodic distributions), etc. The Fourier transform and cotransform are
topological isomorphisms between D(TD) and S(∆D), ∆D := (2π/L)D

Z
D, the rapidly decreasing (tem-

pered) sequences37. These provide, in turn, isomorphisms between D′(TD) and S ′(∆D). Each (periodic)
distribution S ∈ D′(TD) can be expanded in a convergent Fourier series

S =
1√
V

∑
k∈∆D

ck(S)χk, χk(x) :=
1√
V

eik·x (C.2)

(χk regarded as a distribution), where

ck(S) = 〈S, e−ik·x〉. (C.3)

Written symbolically,

S(x) =
1
V

∑
k∈∆D

Skeik·x, Sk =
∫

S(x)e−ik·x dx. (C.4)

Let us consider the correlation functions 〈φ(f)φ(g)〉µ. In terms of the Fourier expansion for φ(x), we
have

〈φ(x)φ(y)〉µ =
1

V 2

∑
k,k′

〈φkφ′∗
k 〉ei(k·x−k′·y).

This is only translationally invariant if the tempered sequences φk are uncorrelated,

〈φkφ′∗
k 〉 = δkk′〈|φk|2〉.

37 For proofs of this and some other statements below, see W. Schempp and B. Dressler, Einführung in die harmonische Analyse
(Teubner, 1980), Sect. I.8.
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Then

〈φ(x)φ(y)〉µ =
1
V

∑
k

〈|φk|2〉
V

eik·(x−y). (C.5)

By definition, the power spectrum Pφ(k) of the generalized random field φ is the Fourier transform of the
correlation function (distribution)

〈φ(x)φ(y)〉µ =
1
V

∑
k∈∆D

Pφ(k)eik·(x−y). (C.6)

Therefore,

Pφ(k) =
1
V

〈|φk|2〉µ. (C.7)

If the measure is ergodic with respect to translations τa, we obtain µ-almost always the same result if we
take for a particular realization of φ(x) its spatial average. This follows from Birkhoff’s ergodic theorem,
stated above, together with the following well-known theorem of H. Weyl:

Theorem (H. Weyl). Let f be a continuous function on the torus TD, then

lim
Λ↑RD

1
|Λ|

∫
Λ

f ◦ τa da =
∫

T D

f dλ, (C.8)

where λ is the invariant normalized measure on TD.
For a proof I refer to Arnold’s “Mathematical methods of classical mechanics”, Sect. 51.

A discrete example for ergodic random fields

Proving ergodicity is usually very difficult. Below we give an example of a discrete random Gaussian field,
for which this can be established without much effort.

Let Ω = R
Z

D

, and consider the discrete random field φx(ω) = ωx, where ω : Z
D → R, and ωx denotes

the value of ω at site x ∈ Z
D. We assume that the random field φx is Gaussian, and that the underlying

probability measure µ is invariant under translations. Then the correlation function C(x − y) = 〈φxφy〉
depends only on the difference x − y. Being of positive type, we have by the Bochner-Herglotz theorem a
representation of the form

C(x) =
∫

T D

eik·x dσ(k), (C.9)

where σ is a positive measure.
Now we can formulate an interesting fact:

Theorem (Fomin, Maruyama). (1) The random field φx is ergodic (i.e., the probability measure µ is
ergodic relative to discrete translations τa), if and only if the measure σ is nonatomic. (2) The translations
are mixing if σ is absolutely continuous with respect to λ.

For a proof, see Cornfeld, Fomin, and Sinai, Ergodic Theory, Springer (Grundlehren, 245), Sect. 14.2.
(I was able to simplify this proof somewhat.)
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2005).
[59] S. Dodelson and J. M. Jubas, Astrophys. J. 439, 503 (1995).

www.ann-phys.org c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


