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Abstract : Several families of elastic anisotropies were introduced by Saint Venant 
(1863) for which the polar diagram of elastic parameters in different directions of 
the material (indicator surface) are ellipsoidal. These families recover a large 
variety of models introduced in recent years for damaged materials or as effective 
modulus of heterogeneous materials. On the other hand, ellipsoidal anisotropy has 
been used as a guideline in phenomenological modeling of materials. A question 
that then naturally arises is to know in which conditions the assumption that  some 
indicator surfaces are ellipsoidal allows one to entirely determine the elastic 
constants. This question has not been rigorously studied in the literature. In this 
paper, first several basic classes of ellipsoidal anisotropy are presented. Then the 
problem of determination of the elastic parameters from indicator surfaces is 
discussed in several basic cases that can occur in phenomenological modelling. 
Finally the compatibility between the assumption of ellipsoidal form for different 
indicator surfaces  is  discussed and in particular, it is shown that if the indicator 
surfaces of 4 E( )n  and of 4 c( )− n (where E(n) and c(n) are respectively the Young’s 
modulus and the elastic coefficient in the direction n) are ellipsoidal, then the two 
ellipsoids have necessarily the same principal axes and the material in this case is 
orthotropic. 

 
 
Keywords : linear elasticity, anisotropy, indicator surface, ellipsoidal anisotropy, amorphous 
materials, damaged materials 
 

 1

mailto:pouya@lcpc.fr


1. Introduction 
 
On the basis of the idea that the material isotropy geometrically corresponds to the image of a 
sphere, one can naturally seek to extend the isotropic models to anisotropic ones that 
correspond to an ellipsoidal variation of parameters in different directions. Saint Venant 
(1863) studied several elasticity models of this type; for instance, a model for which the polar 
diagram of 4 E( )n , where E(n) is the Young’s modulus in direction n, defines an ellipsoidal 
surface. He regarded these models as being useful for approximation of anisotropic elasticity 
of amorphous materials. 
 
The models introduced by Saint Venant does not correspond to crystalline types of 
anisotropy, but recover a large variety of models introduced in recent years for the elasticity 
tensor of damaged materials (Kachanov 1992, Halm and Dragon 1998, Dragon et al. 2000, 
Chiarelli et al. 2003,  Alliche 2004) or as effective moduli of heterogeneous media (Milgrom 
and Shtrikman 1992, Milton 2002). They allows us to represent a three-dimensional 
anisotropy with reduced number of parameters.  
 
On the other hand the concept of ellipsoidal anisotropy has been naturally used as a guideline 
for modelling the elasticity of materials, or at least geomaterials such as soils, rocks, concrete, 
etc. The anisotropic behaviour of these materials has been extensively studied in recent years 
by experimental or numerical methods and is taken into account in geotechnical design 
(Hefny and LO 1999, Pouya and Reiffsteck 2003) and also in the study of seismic wave 
propagation, genesis of geological structures (Pan and Amadei 1996), micro-cracking of rocks 
(Takemura et al. 2003), etc. Most of times, a rough representation of the anisotropy with a 
minimum number of parameters is sufficient for the purposes of these studies. Peres 
Rodrigues (1970) tried to fit the measured values of the Young’s modulus in different 
direction for several varieties of rocks by ellipsoids. For the study of seismic wave 
propagation in geological layers, Daley and Hron (1979) defined the “elliptically anisotropic” 
medium as being characterized by elliptical P wave fronts emanating from a point source. 
This concept was widely used in geophysical studies and examined by Thomsen (1986) in the 
context of “weak anisotropy” and transversal isotropy for a large variety of sedimentary 
rocks. Louis et al.  (2004) proposed a simplified method to analyse the P-way velocity data in 
anisotropic rocks which supposes implicitly an ellipsoidal approximation of some elastic 
parameters. Pouya and Reiffsetck (2003) remarked that some Bohler’s (1975) data on the 
Young’s Modulus of different soils presents an ellipsoidal property, and showed that this 
assumption allows to simplify the modelling of foundations. As a mater of fact, it was shown 
by Pouya(2000) and Pouya and Zaoui (2005) that many closed form solutions for basic 
problems in linear isotropic materials can be extended by a linear transformation to a variety 
“ellipsoidal” materials. 
 
The concept of ellipsoidal anisotropy in elasticity thus seems an attractive guideline for 
phenomenological modelling of amorphous, micro-cracked or damaged materials since it 
simplifies data analysis and defines models with reduced number of parameters and 
interesting theoretical properties. Nevertheless, some theoretical questions concerning the 
existence and uniqueness of an elasticity tensor solution for one or more ellipsoidal indicator 
surfaces have not been rigorously examined in the literature. For instance, contrarily to what 
was supposed by Peres Rodrigues (1970), the indicator surface of E(n) can never be an 
ellipsoid (different from a sphere), and so the parameters fitted by this author do not define an 
elasticity tensor. In this paper we first present some elastic parameters which can have 
ellipsoidal variation. Then the problem of determination of the elasticity tensor from indicator 
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surfaces, which was studied by Hé and Curnier (1995) in restricted cases of damaged 
materials, will be examined for basic cases of ellipsoidal surfaces. 
 
 
2. Notation  
 
In what follows, light-face (Greek or Latin) letters denote scalars; bold-face minuscules and 
majuscules designate respectively vectors and second rank tensors or double-index matrices; 
outline letters are reserved for fourth rank tensors. The convention of summation on repeated 
indices is used implicitly. The scalar product of two vectors is labelled as a.b =aibi, and their 
symmetric tensor product as a⊗b with (a⊗b)ij = (aibj+ ajbi)/2. The matrix product is labelled 
as AB, and the inner product as A:B =AijBij. The operation of the fourth rank tensor  on A 
will be labelled by :A with ( :A)ij = CijklAkl and the operation of A on a, by A.a. 
For an elasticity tensor  verifying the symmetries Cijkl = Cijlk = Cklij, two distinct double 
index notations are introduced : the double sub-stript (ij) is first abbreviated to a single sub-
script (α) running from 1 to 6 by the following rule : 

11 → 1,   22 →2,   33 → 3,   23 → 4,   13 → 5,   12 → 6 
The matrix notation C is defined by its components cαβ = C(ij)(kl), and the dual matrix notation 
C  for the same tensor , by its components cαβ = κ cαβ with : 

 κ = 1 if α ≤3 and β ≤3 
κ = 4 if α >3 and β >3      
κ = 2 elsewhere  

Let us notice that the elastic compliances that are commonly designated in the literature by sαβ

(Lekhnitskii 1963, Sirotine and Chaskolskaia 1984, Ting 1996), are here designated by sαβ.  
 
 
 
3. Fourth order indicator surfaces 
 
The indicator surface for a “mono-directional” elastic parameter, i.e.,  a parameter depending 
upon the elasticity tensor  and only one direction n, is the polar diagram  x = r(n) n   where 
n is a unit vector and r(n) is the value of the elastic parameter in the direction n. Some 
examples of “mono-directional” parameters are the Young’s modulus, bulk modulus, elastic 
coefficient and hydrostatic coefficient in direction n defined respectively by :  
 

     E(n) = [(n⊗n): :(n⊗n)]-1    (1) 
     b(n) = [δ: :(n⊗n)]-1     (2) 
     c(n) = (n⊗n): :(n⊗n)    (3) 
     h(n) = δ: :(n⊗n)     (4) 
 

where δ is the second-order unit tensor and  =  -1. Other mono-directional parameters, such 
as the Poisson’s ratio in direction n, ν(n) = [1- E(n)/b(n)]/2, or the torsion modulus in 
direction n,  τ(n) = [2(δik-nink)Sijklnjnl]-1, have also been introduced by some authors and their 
indicator surfaces have been studied (Sirotine and Chaskolskaia 1984). We limit our 
investigation to the study of the parameters defined by the relations (1) to (4), which are the 
basic parameters that can be experimentally determined from simple traction or extension 
tests. 
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The indicator surface of the Young’s modulus has been widely studied for all types of 
materials. The polar equation of this surface : 

r(n) = E(n) = [(n⊗n): :(n⊗n)]–1    (5) 
 

can be transformed, by using  r2 = x.x and n= x/r, into the following polynomial equation: 
 

[(x⊗x): :(x⊗x)]2 = (x.x)3    (6) 

This 8th order surface has been in particular deeply investigated by Cazzani and Marco (2003, 
2005) for cubic, hexagonal and tetragonal symmetries. It takes in general very complex forms 
(see Figure 1) and it can be shown that it can not be an ellipsoid different from a sphere 
(Appendix 1). So this surface is not suitable for an ellipsoidal approximation of E(n) values 
contrarily to that what supposed by Peres Rodrigues (1970). On the other hand, if the 
indicator surface of 4 E( )n  is considered then a fourth-order surface is found which  is 
described by the following equation : 

(x⊗x): :(x⊗x)  =1     (7) 

This surface, which contains exactly the same information that the previous one, degenerates 
for some cases of materials to second-order surfaces, and more precisely, to ellipsoids. This 
will define a class of materials that will be said to have a variety of ellipsoidal anisotropy. 
 
Other fourth order indicator surfaces which can degenerate to ellipsoids are those of E( )n , 
[c(n)]-1/4 and [c(n)]-1/2. The indicator surfaces of [b(n)]1/2 and [h(n)]-1/2 are always ellipsoidal. 
The denomination and equations of these surfaces are given in the Table (1).  
 
 

Indicator surface Elastic parameter Equation 
F4( ) [(n⊗n): :(n⊗n)]-1/4 (x⊗x): :(x⊗x) = 1 
F2( ) [(n⊗n): :(n⊗n)]-1/2 (x⊗x): :(x⊗x) = x.x 
G4( ) [(n⊗n): :(n⊗n)]-1/4 (x⊗x): :(x⊗x) = 1 
G2( ) [(n⊗n): :(n⊗n)]-1/2 (x⊗x): :(x⊗x) = x.x 
f( )  [δ: :(n⊗n)]-1/2  δ: :(x⊗x)  = 1 
g( ) [δ: :(n⊗n)]-1/2 δ: :(x⊗x)  = 1 

 
Table 1 : Indicator surfaces of different elastic parameters and their polynomial equation 
 
 
4. Saint Venant’s anisotropies  
 
Saint Venant (1863) introduced several families of orthotropic materials for which one or 
more of the surfaces F4( ), G4( ), F2( ) or G2( ) is ellipsoidal. Let us note by B = {e1, e2, e2 
} a set of unit vectors defining a Cartesian coordinate system, and by Ω(B), the family of 
orthotropic materials with planes of symmetry given by B. 
 
The first family defined by Saint Venant is the sub-set of Ω(B), denoted here by Φ4(B), for 
which the following relations between the parameters are satisfied : 
 

22 33 23 11 33 13 11 22 12
44 55 66, ,

2 2
c c c c c c c c c

c c c
− − −

= = =
2

   (8) 
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For ∈Φ4(B), the equation of F4( ), given in the Table (1), reduces to the equation of an 
ellipsoid with principal axes B and semi-diameters { }: 4/1

33
4/1

22
4/1

11 )(,)(,)( −−− ccc
2 2

11 1 22 2 33 3c x c x c x+ + 2 = 1    (9) 
The relations (8) were considered by many authors, in the context of transversal isotropy, as 
defining a degenerate case (Pan and Chou 1976). 
 
The second family is that of orthotropic tensors for which relations analogous to (8) hold 
between the parameters sαβ. In terms of sαβ, these relations become : 
 

( ) ( ) ( )44 22 33 23 55 11 33 13 66 11 22 122 , 2 , 2s s s s s s s s s s s s= − = − = −   (10) 

 
and in terms of elastic modulus and Poissons’s ratio (see the expression 35), they become :  

 

( ) ( ) ( )
2 3 3 1 1 2

23 31 12
23 32 31 13 12 21

, ,
2 1 2 1 2 1

E E E E E E
G G G

ν ν ν ν ν ν
= = =

+ + +
    (11) 

 
This family, which was quoted also by Lekhnitskii (1963), will be labelled here Γ4(B). For 

∈Γ4(B) the surface G4( ) is an ellipsoid with principal axes B and semi-diameters 
{ }, or {1/4 1/4 1/4

11 22 33( ) , ( ) , ( )s s s− − − 4 4 4
1 2, ,E E E3 }. In the context of transversal isotropy (with 

axis x3), the third equality of (10) is always satisfied and the two first one are equivalent. In 
this context, these relations were considered by Boehler (1982) as defining a case of limited 
anisotropy with elliptical properties. 

 
The elements of Φ4(B) and Γ4(B) depend on 6 intrinsic parameters. The intersection between 
Φ4(B) and Γ4(B) is denoted by Ψ(B) : 
 

Ψ(B) = Φ4(B) ∩ Γ4(B)     (12) 
 
This family of materials, as showed by Saint Venant, depends on 4 intrinsic parameters in the 
coordinates system B, and can be represented equivalently by one of the following 
expressions of C or of S in this coordinates system : 
 
  

Ψ(B) :        C  = 

11 11 22 11 33

22 22 33

33

22 33

11 33

11 22

1
2

1
2

1
2

c c c c c

c c c
c

c c

c c

c c

η η

η

η

η

η

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

      (13) 
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Ψ (B) :        S  = 

1 1 2 1 3

21 2 2 3

31 3 2 3

2 3

3 1

1 2

1

1

1

2(1 )

2(1 )

2(1 )

E E E E E

EE E E E

EE E E E

E E

E E

E E

ν ν

ν ν

ν ν

ν

ν

ν

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥⎣ ⎦

           (14) 

 
 
The two sets of parameters (c11, c22, c33, η) and (E1, E2, E3, ν) are related by : 
 

η+
η

=ν
1

,    (1 )(1 2 )
1

E cα αα
η η

η
− +

=
+

   (α=1,2,3; non summation upon α)  (15) 

 
Pouya and Zaoui (2005) showed that for this family of materials,  can be written in the 
following forms : 

Cijkl =  Pim Pjn Pkp Plq C
∼

mnpq     (16) 
Cijkl = λDijDkl + µ (DikDjl + DilDjk)     (17) 

 

In these relations 
∼

  represents an isotropic elasticity tensor with Lamé constants λ=η and 
µ=(1-η)/2,  P is given in the coordinates system B by : 

P = diag ( )4 4 4
11 22 33, ,c c c     (18) 

and D = PP. 
 
Conversely, it can be checked that for the materials defined by (17), F4( ) and G4( ) both are 
ellipsoidal. Therefore (17) defines Ψ type materials where : 
 

Ψ =∪ Ψ(B)      (19) 
B

The expression (17) has been used in some micromechanical studies as representing the 
effective modulus of heterogeneous media (Milgrom & Shtrikman 1992, Milton 2002).  Ψ 
type materials present interesting theoretical properties. Saint Venant showed that 
D’Alembert’s displacement potentials as well as the solution for plane waves propagation in 
isotropic elasticity can be extended to this family. Pouya (2000) and Pouya and Zaoui (2005) 
showed that the relation (16) between the two elasticity tensors allows one to extend many 
closed form solutions for basic problems of elasticity to Ψ type materials. Some examples of 
results extended in this way to Ψ type materials are : the Eshelby tensor for inclusion-matrix 
problem (Milgrom & Shtrikman 1992, Pouya 2000), Green function for infinite space (Pouya 
2000) and for half-space (Pouya and Zaoui 2005). Extension of the Green function solutions 
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for two joined semi-infinite isotropic solids (Rongved 1955) or for layerd medium constituted 
of isotropic materials (Benitez & Rosakis 1987) to solids constituted of Ψ type materials 
would  also be possible (Pouya and Zaoui 2005). 
 
Thus theoretical simplifications can result from choosing Ψ type models for representing (as 
an approximation) the elastic anisotropy of materials.  
 
 
 

   

   

 

XY 
Z 

 
  (a)    (b)                      (c)      (d) 

Figure 1 : Indicator surfaces for an element of  Φ4 

For ∈Φ4(B) with c11 = 15, c22 = 10, c33 = 5, c12 = -3, c13 = 4, c23 = 4.5, and c44, 
c55, c66 given by the relation (8), the indicator surfaces of 4 c( )− n , c(n) , 4 E( )n  
and E(n)  are respectively an ellipsoid (a), a 10th order (b), 4th order (c) and 8th 
order surface (d). 
 
 

   
Let us now consider the model (17). The tensor D can be decomposed as D = p δ + αG where 
p = (D:δ)/3 and G is traceless and normalized to unity: G:δ = 0, G:G=1. The parameter p can 
be chosen with λ and µ: we can take p =1 without loss of generality and write D = δ + αG.  If 
α = 0, then (17) gives the isotropic elasticity tensor. In the context of  “weak anisotropy”, i.e. 
when |α|<<1,  the first order expansion of  (17) with respect to α leads to: 
 
Cijkl = λδijδkl + µ (δikδjl + δilδjk) + a1(δijGkl + δklGij) + a2(δikGjl + δilGjk + δjlGik + δjkGil) (20)
     
with a1 = λα  and  a2 = µα. The expression (20) with independent values for a1 and a2 (and not 
necessarily infinitesimal) has been widely used in the literature for representing the elasticity 
tensor of damaged materials. It has been obtained by Kachanov (1992) as the effective moduli 
of micro-cracked media and then widely used as a phenomenological model for damaged 
geomaterials (Chiarelli et al. 2000, Alliche 2004) or as an intermediary between 
micromechanical and phenomenological models for further theoretical investigations (Halm 
and Dragon 1998, Dragon et al.  2000). 
 
It is interesting to notice that the model (20) can be defined directly by an ellipsoidal property: 
for this model the surface F2( ) is ellipsoidal. Saint Venant defined a sub set of Ω(B), denoted 
here by Φ2(B), for which the following relations are satisfied  between the parameters: 
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22 33 23 11 33 13 11 22 12
44 55 66

2 2 2
, ,

4 4
c c c c c c c c c

c c c
+ − + −

4
+ −

= = =     (21) 

 
For  ∈Φ2(B), the surface F2( ) is an ellipsoid with principal axes B and semi-diameters 
( 332211 /1,/1,/1 ccc ). The elements of this family have the expression (20) where G is diagonal 
in B. It can be checked that the expression (20) defines exactly the family Φ2 of materials 
given by: 

Φ2 =∪
B

Φ (B)     (22) 2

 
Finally, a sub family of Ω(B), denoted here by Γ2(B), was defined by Saint Venant for which a 
(21) type relation is verified between sαβ parameters, or equivalently (see also Lekhnitskii 
1963): 
 

23 32 31 13 12 21

23 2 3 31 3 1 12 1 22 3 3 1 1 2

2 2 21 1 1 1 1 1 1 1, ,
G E E G E E G EE E E E E E

ν ν ν ν ν ν
− = + − = + − = +

1
E

  (23) 

 
For this family, G2( ) is ellipsoidal with semi-diameters { 1 2E , E , E3 }.   
 
 
5. Characterization of the material by indicator surfaces 
 
For the families studied here above, the expression of the tensors  or  is given a priori. Let 
us suppose now that the values of some mono-directional elastic parameters have been 
determined in different directions by experimental or numerical methods. E(n) values have 
been frequently determined experimentally by coring samples in different directions in rocks 
and soils (Boehler 1975). Numerical homogenisation methods allows one to easily determine 
c(n) or E(n) in different directions. For instance, Min and Jing (2003) determined the E(n) 
values for a fractured rock mass by applying a compression parallel to the sides of a square 
REV and by rotating the REV with respect to the fractures (Figure 2). Acoustic measurements 
are widely used for determining the parameters of anisotropic elasticity in different directions. 
Sometimes also a complete set of numerical values is determined by this method for the 21 
parameters of general anisotropy (Homand et al. 1993). In this case also it can be interesting 
to seek for an approximate model having a reduced number of parameters and the study of the 
indicator surfaces can constitute a good guideline for this purpose. 
Consider that the polar diagrams of [c(n)]-1/4, 4 E( )n , [c(n)]-1/2  or E( )n  have been 
constructed for one on several samples (or REVs) by experimental (or numerical) methods. 
Let us suppose that they can be sufficiently well fitted by ellipsoidal surfaces (Figure 3). The 
problem then is to know how to deduce  from the fitting parameters. A preliminary question 
would be to know if any pair of ellipsoids fitted for two different parameters is compatible 
with the existence of an elasticity tensor. To study these problems we first characterize the 
classes of materials corresponding to one condition of ellipsoidal indicator surface, and then 
we will study the intersection between two different classes.  
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Figure 2 : Numerical determination of the  Figure 3 : Fitting of the experimental 
elastic parameters in different directions  or numerical indicator surfaces obtained 
of a heterogeneous medium by rotation of  for one or several samples by ellipsoids 
the REV with respect to the medium 
 
 
5.1. Material classes 
 
We define Φ̂4(B) as the class of tensors  for which F4( ) is an ellipsoid admitting the system 
B as principal axes. This class obviously includes Φ4(B), but, as it will be seen further, is 
larger than Φ4(B). In the same way, the classes Φ̂2(B), Γ̂4(B), Γ̂2(B), ϕ̂(B) and γ̂(B) are defined 
as the classes of tensors  for which respectively F2( ), G4( ), G2( ), f( ) and g( ) is 
ellipsoidal with principal axes B. The classes Φ̂4, Φ̂2, Γ̂4 and Γ̂2 are defined as the sets of 
tensors  for which the surfaces F4( ), F2( ), G4( ) and G2( ) respectively are ellipsoidal : 
 

Φ̂4 =∪ (B) , 
B

Φ̂4 Φ̂2 =∪
B

Φ̂2(B) , Γ̂4 =∪
B

Γ̂4(B) ,  Γ̂2 =∪
B

Γ̂2(B)   (24) 

The spherical classes Φ̂s, Γ̂s , ϕ̂s and γ̂s are defined as the sets of tensors  for which 
respectively the surfaces F4( ) (or F2( )), G4( ) (or G2( )), f( ) and g( ) are spherical. 
Finally Ιs represents as the class of isotropic tensors.
 
Two different indicator surfaces at least are required to fully determine . Hé and Curnier 
(1995) showed that if the indicator surfaces of the parameters c(n) and h(n) defined by (3) and 
(4) are spherical, then  is isotropic. This is equivalent to say that if the surfaces F4( ) and 
f( ) are spherical, then  is isotropic : 
        Φ̂s ∩ϕ̂s = Ιs      (25) 
Equivalently, if G4( ) and g( ) are spherical, then  is isotropic : Γ̂s ∩ γ̂s = Ιs. 
 
These results will be extended in the following to ellipsoidal surfaces. Two cases will be 
studied : when  F4( ) or F2( ) is ellipsoidal with the same planes of symmetry than f( ),  and 
when F4( ) and G4( ) are both ellipsoidal. 
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5.2. Expression of the elasticity tensor for different classes 
 
Let us first determine the explicit expressions of tensors  or  for the classes introduced 
above. For ∈Φ̂4(B), the surface F4( ) is an ellipsoid with principal axes B. If (D1, D2, D3) 
denote the semi-diameters of this ellipsoid then its equation in the coordinate system B is : 

      
22 2
31 2

2 2 2
1 2 3

1xx x
D D D

+ + =         (26) 

This equation must be equivalent to that given in the Table (1) for F4( ):  

∀ x ;   
22 2
31 2

2 2 2
1 2 3

1xx x
D D D

+ + =   ⇔  (x⊗x): :(x⊗x) =1      (27) 

By using : 
(x⊗x): :(x⊗x) = 

    
4 4 4 2 2 2 2 2

11 1 22 2 33 3 23 44 2 3 31 55 3 1 12 66 1 2(2 4 ) (2 4 ) (2 4 )c x c x c x c c x x c c x x c c x x+ + + + + + + + 2 +
2 x

−

+
2 2

14 56 1 2 3 25 64 2 3 1 36 45 3 1 2(4 8 ) (4 8 ) (4 8 )c c x x x c c x x x c c x x+ + + + +

+
3 3 3 3 3 3

16 1 2 15 1 3 26 2 1 24 2 3 35 3 1 34 3 24 ( )c x x c x x c x x c x x c x x c x x+ + + + +     (28)
 
the equivalence (27) allows one to establish the following relations : 

( ) ( ) ( )1/ 4 1/ 4 1/ 4
1 11 2 22 3 33, ,D c D c D c− −= = =     (29)

23 44 22 33 13 55 11 33 12 66 11 222 , 2 , 2c c c c c c c c c c c c+ = + = + =    (30) 
 
c14 + 2 c56 =  c25 + 2 c46 =  c 36 + 2 c 45 = 0       (31) 
c 16  =  c 15  =  c 26  =  c 24  =  c 35  =  c 34  =  0     (32) 

 
An element of Φ̂4(B) thus depends upon 9 intrinsic parameters (c 11, c 22, c 33, c 12, c 23, c 13, c 14, 
c 25, c 36) and reads :  

Φ̂4(B) :   C = 

11 12 13 14

22 23 25

33 36

22 33 23 36 25

11 33 13 14

11 22 12

2 2

2 2

2

c c c c
c c c

c c

c c c c c

c c c c

c c c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥− −⎢ ⎥
⎢ ⎥

−⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥−
⎢ ⎥⎢ ⎥⎣ ⎦

2     (33) 

 
The general expressions of C for the class Φ̂2(B), as well as the expression of S for Γ̂4(B) and 
Γ̂2(B) can be established in the same way.  For instance, for Φ̂2(B), C has the same expression 
(33), but c44, c55, c66 are given by (21) instead of (8), and the relation (29) becomes: 

1 11 2 22 31/ , 1/ , 1/D c D c D c= = = 33     (34)
Γ̂4(B) is found to be defined by the following expression of S in which G12, G23, G13 are given 
by (11) : 
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Γ̂4(B) :       S =

1312
14

1 1 1

2312
25

1 2 2

13 23
36

1 2 3

36 25
23

14
13

12

1

1

1

1

1

1

s
E E E

s
E E E

s
E E E

s s
G

s
G

G

−ν−ν⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−ν−ν
⎢ ⎥
⎢ ⎥
⎢ ⎥−ν −ν
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

      (35) 

 
The surfaces f( ) and g( ) are always ellipsoidal. The class ϕ̂(B) (respectively γ̂(B)) 
represents the tensors  for which the ellipsoid f( ) (respectively g( )) has the principal axes 
B. Let ∈ϕ(B), and note (dˆ 1, d2, d3) the semi-diameters of f( ). By comparing the (26) like 
equation of this ellipsoid to that given in the Table (1) for F4( ), and by using the expression : 
 
δ: :(x⊗x) =    

2 2
11 21 31 1 12 22 32 2 13 23 33 3( ) ( ) (c c c x c c c x c c c x+ + + + + + + + 2) +

    14 24 34 2 3 15 25 35 1 3 16 26 36 1 22( ) 2( ) 2( )c c c x x c c c x x c c c x x+ + + + + + + +   (36)
one finds : 

1 2 3
11 21 31 12 22 32 13 23 33

1 1, ,d d d
c c c c c c c c c

= = =
+ + + + + +

1    (37) 

c14 + c24 + c34  =  c15 + c25 + c35 = c16 + c26 + c36 = 0    (38) 
 

The class γ̂(B) is characterized by the relations analogous to (38) satisfied by the coefficients 
sαβ.  
 
Let us now consider ∈Φ̂4(B) defined by (33), and define the tensor H diagonal in B and 
given by : 

H = diag ( )11 22 33, ,c c c     (39) 

then one finds :  
∀ x ;   (x⊗x): :(x⊗x) =(x.H.x)2        (40) 

Conversely, if a symmetric matrix H exists which allows us to write (40), then F4( ) 
obviously is ellipsoidal. Therefore we can write: 

Φ̂4 = {    / ∃ H;  ∀ x;    (x⊗x): :(x⊗x)= (x.H.x)2 }   (41) 
 
In the same way :  

Φ̂2 = {    / ∃ H;  ∀ x;     (x⊗x): :(x⊗x)= (x.H.x)(x.x)}   (42) 
Γ̂4 = {    / ∃ H;  ∀ x;       (x⊗x): :(x⊗x)= (x.H.x)2 }   (43) 
Γ̂2 = {    / ∃ H;  ∀ x ;     (x⊗x): :(x⊗x)= (x.H.x)(x.x)}   (44) 

 
It is interesting to notice that the materials of the classes Φ̂4, Φ̂2, Γ̂4 and Γ̂2 in general are not 
orthotropic, and even can have not any plane of symmetry. As a matter of fact, a plane of 
symmetry of  is necessarily a plane of symmetry of its indicator surfaces. If  the three semi-
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diameters of  the ellipsoid F4( ), for instance, are different then its only planes of symmetry 
are those of the system B, which manifestly don’t constitute planes of symmetry for C given 
in (33). In consequence, the method of characterization of the material’s anisotropy based on 
the analysis of the number and orientation of its planes of reflective symmetry (Cowin and 
Mehrabadi 1987, 1995) would not give significant result for these classes of materials.  

 
 

6. Material identification 
 
In this section we study some cases in which two ellipsoidal surfaces allows us to fully 
determine . 
 
6.1. Intersection of Φ̂4(B) and ϕ(B)  ˆ

 
Let us suppose that F4( ) is ellipsoidal. Since f( ) is always ellipsoidal, the interesting case to 
consider is when the two ellipsoids have the same principal axes, i.e., when   ∈Φ̂4(B) ∩ϕ̂(B). 
Then C will be given by (33), and the condition (38) on ϕ̂(B) implies that c14 = c25 = c36 = 0 ; 
so  is orthotropic. The following result in this way is obtained :  

Φ̂4(B) ∩ϕ̂(B) = Φ4(B)     (45) 
In the same way, it can be shown that : 

Φ̂2(B) ∩ϕ̂(B) = Φ2(B)     (46) 
The same data c(n) can be utilized for defining two surfaces F2( ) and F4( ). According that 
a best ellipsoidal fitting is obtained for F4( ) or for F2( ),  an element of Φ̂4 or of Φ̂2 will be 
found. The relations (45) and (46) mean that, when fitting F4( ) or F2( )  by un ellipsoid, if 
the principal axes of the ellipsoid are constrained to have the same direction that for f( ), then 
an orthotropic material will be found. The parameters of  can be, in these cases, fully 
determined from the semi-diameters of the two ellipsoids by using (29), (30) and (37) in the 
first case and (21), (34) and (37) in the second. 
 
Let us consider now the case of materials for which c(n) is constant. In this case  ∈Φ̂s. Since 
for every system of axes B we have Φ̂s⊂Φ̂4(B), one deduces from (45) that Φ̂s∩ϕ(B) ⊂Φˆ 4(B), 
and then can establish : 

Φ̂s ∩ϕ̂(B) = Φs(B)       (47) 
An element of Φs(B) is given by (33) in which in which c14 = c25 = c36 = 0 and c11 = c22 = c33.  
If, in addition, f( ) is spherical, then by writing d1=d2=d3 in (37) for an element of Φs(B), one 
finds that  is isotropic. The relation (47) reduces in this case to the result given be Hé and 
Curnier (1995) : 

Φ̂s ∩ϕ̂s = Ιs       (48) 
Equivalent relations to (45), (46) and (47) can be written for Γ̂ type materials, for instance, for 
the first relation, Γ̂4(B) ∩γ̂ (B) = Γ4(B). 
 
It is interesting to notice that (47) implies that the elements of Φ̂s (and equivalently Γ̂s) are all 
orthotropic. As a matter of fact, for every  ∈Φ̂s, if B denotes a system of principal axes of 
f( ), then  ∈ϕ(B), and then according to (47), ˆ  ∈Φs(B) and so  is orthotropic: 
If the elastic coefficient c(n) (or the Young’s modulus E(n)) is constant in all directions, then 
the material is orthotropic. 
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6.2. Intersection of Φ̂4 and Γ̂4 
 
We consider in this section the case of materials for which both indicator surfaces F4( ) and 
G4( ) are ellipsoidal. We first consider the case in which these ellipsoids have a common set 
of principal axes B. Then the more general case will be considered in which this condition is 
not supposed a priori. 
 
6.2.1. Intersection of Φ̂4(B) and Γ̂4(B) 
 
If  ∈Φ̂4(B) ∩Γ̂4(B), then the planes of the coordinate system B constitute planes of reflexive 
symmetry for the surfaces F4( ) and G4( ), or also for the scalar functions (n⊗n): :(n⊗n) 
and (n⊗n): :(n⊗n). This property for the function (n⊗n): :(n⊗n) is equivalent to the 
relations (30) and (31) and also to the expression of the matrix C given by (49) and (50). The 
same property for (n⊗n): :(n⊗n) is equivalent to the S given by (49) and (51): 
 

C = 1
2

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

M D

D N
,  S = 

' 2 '
2 ' 2 '

⎡ ⎤
⎢ ⎥
⎣ ⎦

M D
D N

        (49) 

with : 
 

M= ,      N = 
11 12 13

22 23

33

c c c
c c

c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

44 36 25

55 14

66

2
2

2

c c c
c c

c

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

,      D=
14

25

36

c
c

c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (50) 

M'=
11 12 13

22 23

33

s s s
s s

s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,    N'= 
44 36 25

55 14

66

1
2

s s s
s s

s

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

,    D'=
14

25

36

1
2

s
s

s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (51) 

 
The equation :  = , or cαβ s βγ = δαβ, implies the following matrix equations in which I 
represents the 3×3 unit matrix : 

MM' + 2DD' = I       (52) 
NN'  +  2DD'  =  I           (53) 
MD' +  DN'  =  0       (54) 
DM' + ND' = 0       (55) 

 
Symmetry and positive definite properties of  and  imply that M, M', N and N' are 
symmetric and positive definite. 
 
In addition to these relations, the equation (8) and (10) must be satisfied for F4( ) and G4( ) 
to be ellipsoidal. 
 
The equations (50) to (55) which express the symmetry of  (n⊗n): :(n⊗n) and 
(n⊗n): :(n⊗n) with respect to the planes of the coordinate system have been studied in the 
Appendix 2. It has been shown that they can have three different types of solutions and we 
show here that only one of these types is compatible with (8) and (10). 
 
The first type (Case 1.1) is characterized by a parameter η1≠0 and by, in particular, the 
following relations between the parameters (equations (11) and (10) in Appendix 2): 
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  s 44 = (1-2η1)/2c44 ,   s 22 = c33/[c22c33-(c23)2],  s 33 = c22/[c22c33-(c23)2],  s23 = -c23/[c22c33-(c23)2]  
 
Substituting by these relations in the first equation of (10), one finds : 
 

22 33 231
2 2

44 22 33 23 22 33 23 22 33 23

1 2 1
2

c c c
c c c c c c c c c c

η−
= + =

− − −
 

 
Since this equation compared to (8) implies η1 = 0, the Case 1 is incompatible with (8) and 
(10). 
The second type of solutions (Case 2.1) is characterized by a parameter η<0 and a parameter 
κ satisfying : 

(1-4η)2κ2 + (2-9η)ηκ +η2 = 0    (56) 
    

In this case we have in particular the following relation between the parameters (deduced 
from (34) and (36) in Appendix 2): 

2 c44 + c33 =β 2(1-κ ) 22 33c c    

where β = -η/[κ(1-4η)]. This equation compared to (8) leads to β 2(1-κ ) = 1 and then to η2(1-
κ )/[κ(1-4η)]2 =1. Substituting in this equation for κ 2(1-4η)2 by (56), one finds η[κ(1-5η)+η] 
= 0. Since η = 0 is not compatible with Case 2.1, we deduce κ = -η/(1-5η). By substituting by 
this expression of κ  in (56) one finds η3(1-4η) = 0 which is also incompatible with the 
condition η<0 characterizing the Case 2.1. Thus, this case is also incompatible with (8). 
 
Therefore the only type of solution of (50) to (55) compatible with (8) and (9) is the last type 
described in Appendix 2 (Case 2.2) in which D = D' = 0. 
 
In conclusion for  ∈Φ̂4(B) ∩Γ̂4(B), the matrices C and S are given in the coordinate system B 
by (49) with D = D' = 0. This means that  ∈Φ̂4(B) ∩Γ̂4(B) is orthotropic and that its planes 
of orthotropy are given by B. This is a main result of the present paper. It allows us write : 
 

Φ̂4(B)∩Γ̂4(B) = Φ4(B)∩ Γ4(B)     (57) 
and, by using (12) : 

Φ̂4(B)∩Γ̂4(B) =  Ψ(B)     (58) 
 
In this case, the matrices C and S respectively are given by (13) and (14). The parameters c11, 
c22, c33 can be deduced from the semi-diameters of F4( ) (relations (29)) and the semi-
diameters { 4 4 4

1 2, ,E E E3 } of G4( ), and η and ν are deduced from (15). The tensor  in this 
way is fully determined. 
 
6.2.2. Intersections of Φ̂s and Γ̂s
 
We first study Φ̂s∩Γ̂4(B). Since Φ̂s⊂Φ̂4(B), (58) implies that Φ̂s∩Γ̂4(B)⊂Ψ(B). Then if  

∈Φ̂s∩Γ̂4(B), C is given by (13) and the relations (29) lead to c11 = c22  = c33. This means that 
 is isotropic. We deduce that Φ̂s∩Γ̂4(B)⊂ Ιs and then show that:  

Φ̂s∩Γ̂4(B) = Ιs      (59) 
By using the definition (24) of Γ̂4, the equality (59) can be extended to : 
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Φ̂s∩Γ̂4 = Ιs      (60) 
Since Γ̂s ⊂ Γ̂4, we deduce from (60) that Φ̂s∩Γ̂s⊂ Ιs and since conversely  Ιs⊂Φ̂s and Ιs⊂Γ̂s , 
then: 

Φ̂s∩Γ̂s = Ιs             (61) 
This result means that : if E(n) and c(n) both are constant in all the directions, then  is 
isotropic. 
The coefficients E and ν corresponding to this isotropic elasticity tensor can be deduced from 
the radii of the spheres F4( ) and G4( ), noted respectively R and ρ,  by : 
 

   ρ4 = E   , R4 = (1 )(1 2 )
(1 )E
ν ν

ν
+ −

−
          (62) 

 
6.2.3. Intersection of Φ̂4 and Γ̂4
 
Let us now suppose that ∈Φ̂4(B)∩Γ̂4. In this case, B defines a system of principal axes for 
the ellipsoid F4( ), but, a priori, not necessarily for G4( ). Since  ∈Φ̂4(B), the matrix C has 
the expression (33) in the coordinate system B. Consider now the tensor Q, diagonal in the 
basis B, and given by : 

Q = diag
4 4 4

11 22 33

1 1 1, ,
c c c

⎛ ⎞
⎜
⎜
⎝ ⎠

⎟
⎟

    (63) 

Let the tensor ' be deduced from   by the following transformation (Pouya 2000, Pouya 
and Zaoui 2005) : 

C'ijkl = Qim Qjn Qkp Qlq Cmnpq     (64) 
  
It can be verified that ' has the symmetries of an elasticity tensor and is positive definite. So 
it represents a new elasticity tensor. The matrix C' has the expression (33) in the coordinate 
system B with, in particular : 

c'11= 1,  c'12 = c12/ 11 22c c ,  c'14=c14/ 24
11 22 33c c c , c'44=c44/ 22 33c c , c'45=c45/ 24

11 22 33c c c  (65) 
 
The other elements of C' are deduced from (65) by index permutation. The relations (30) and 
(31) are well satisfied; for instance : 

c'44  = 22 33 23' ' '
2

c c c−
  , c'45 = - c'36/2 

Since c'11= c'22 = c'33=1 then  '∈Φ̂s. Denoting '= '-1 and P = Q-1, we deduce from (64) : 
 

S'ijkl = Pim Pjn Pkp Plq Smnpq    (66) 
 
Since it is assumed that ∈Γ̂4, according to (43), a reversible tensor T exists which allows us 
to write : 

∀  x  ;   (x ⊗ x): :(x ⊗ x) = (x.T.x)2    (67) 
The relation (66) then implies that : 

∀  x  ;   (x ⊗ x): ':(x ⊗ x) =  (x.T'.x)2    (68) 
 
with: 

T' = PTP 
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According to (43), this means that '∈Γ̂4. Since already '∈Φ̂s, the relation (60) implies that 
'∈Ιs.  Then writing (64) as :  

Cijkl = Pim Pjn Pkp Plq C'mnpq    
and comparing to (16), we deduce that ∈Ψ(B). This implies that Φ̂4(B)∩Γ̂4 ⊆ Ψ4(B). Since 
conversely Ψ(B) ⊂Φ̂4(B)  and Ψ(B) ⊂Γ̂4 , we obtain : 

Φ̂4(B)∩Γ̂4 = Ψ(B)     (69) 
 
By using the definitions (19) and (24) of Ψ and of Φ̂4, the result (69) allow us to write : 

  Φ̂4∩Γ̂4 = (∪
B

Φ̂4(B))∩Γ̂4 =  (∪
B

Φ̂4(B)∩Γ̂4) = ∪
B

Ψ(B) = Ψ  

and finally: 
      Φ̂4 ∩Γ̂4 = Ψ     (70)  

 
This equation means that if the surfaces F4( ) and G4( ) both are ellipsoidal, then they have 
necessarily the same (or a common system of) principal axes. Moreover, the material is 
orthotropic and the common system of principal axes of the two ellipsoids defines also the 
planes of orthotropy. 
 
In consequence, in phenomenological modelling of materials elasticity, when the values of 
E(n) and c(n) are given and one searches for an ellipsoidal approximation of the both surfaces 
F4( ) and G4( ), then the two ellipsoids fitting these surfaces must be constrained to have the 
same directions of principal axes. Only under this condition all the parameters of , which 
will be defined in this case by the expressions (13) or (14), can be determined. They will be 
deduced from the semi-diameters of the two ellipsoids and the relations (15). 
 
 
7. Discussion and conclusions 
 
In this paper, we studied some cases of ellipsoidal anisotropy and the method and conditions 
of the elasticity tensor determination from the ellipsoidal fitting parameters. 
 
As mentioned here above, the solution of many basic problems of elasticity for Ψ type 
materials can be deduced by a linear transformation from the solutions known for isotropic 
materials (Pouya 2000, Pouya and Zaoui 2005). It should be emphasized that some problems 
which can be solved in this way for Ψ type materials, such as the Green function of a half-
space (Pouya and Zaoui 2005), can not be approached by other methods such as the Stroh 
formalism (Stroh 1958, Ting 1996) since they don’t present any plane of symmetry. Our on 
going investigations show that some of these closed form solutions, for instance the Green 
function solution for infinite space, can be established for the family Φ̂4. This increases the 
interest of  this type of anisotropy. The class Φ̂2 recovers, as mentioned above, a large family 
of models already used for damaged or heterogeneous materials which are based on a second 
order damage tensor (Kachanov 1992). Ellipsoidal models could also be used for 
approximation of more complex damage models based on fourth-order tensors (Zheng 1997). 
It can be noticed that in spite of more interesting properties of Φ̂4 and Φ̂2, these are the classes 
Γ̂4 and Γ̂2 which have drawn more attention in the literature. For instance, Γ4 and Γ2 are the 
only families mentioned by Lekhnitskii (1963) when quoting Saint Venant’s work.  
 
In conclusion, the concept of ellipsoidal anisotropy, when it fits well the materials data, seems 
an attractive guideline for phenomenological modelling of the amorphous or damaged 
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materials elasticity. As a way to define anisotropic models with reduced number of 
parameters, it constitutes an alternative to the method based on the number and orientation of 
planes of reflective symmetry (Cowin and Mehrabadi 1987, 1995). The two methods recover  
different families of materials. Besides providing potential tools for modelling the materials 
anisotropy, ellipsoidal anisotropy classes, which are an extension of the families introduced 
by Saint Venant, present interesting theoretical features concerning the resolution of elastic 
body problems. 
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Appendix  1 

 
 
The indicator surface of the Young’s modulus 
 
The indicator surface of the Young’s modulus is defined by the equation (see the main text) : 
 

 [(x⊗x): :(x⊗x)]2 = (x.x)3      (1) 
 

Let us suppose that this surface is an ellipsoid. The equation of an ellipsoid can be written as : 
 

 x.H.x = 1        (2) 
where H is a second rank symmetric and positive definite tensor. Then, we can write the 
following equivalence : 

∀ x ;  [(x⊗x): :(x⊗x)]2 = (x.x)3  ⇔   x.H.x = 1            (3) 
 

For every vector x, if we note ρ = (x.H.x)1/2, et x' = x/ρ, we find : 
x'.H.x' = 1          (4) 
 

Then, according to (3), we have  [(x'⊗x'): :(x'⊗x')]2 =(x'.x')3, and by taking account of (4), 
[(x'⊗x'): :(x'⊗x')]2 =(x'.x')3(x'.H.x'). Multiplying the two sides of this equality by ρ8, we 
find: [(x⊗x): :(x⊗x)]2 =(x.x)3(x.H.x). Therefore : 

∀ x ;  [(x⊗x): :(x⊗x)]2 =(x.x)3(x.H.x)      (5) 
 

If we take x = (x, 1, 0), the expression (x⊗x): :(x⊗x) will become a fourth order polynomial 
in the scalar variable x. This polynomial hasn’t any real root, because if (x⊗x): :(x⊗x)=0, 
owing to positive definite assumption for ,  we must have x⊗x =0, and then x=0, and this is 
incompatible with x = (x, 1, 0). Therefore, this forth order polynomial in x can be decomposed 
in the product of two irreducible second order polynomials : 

(x⊗x): :(x⊗x)= P1(x) P2(x)    (6) 
The equation (5) implies then : 
 

[P1(x)]2 [P2(x)]2 = (x2+ 1)3 (H11 x2 + 2H12 x + H22)   (7) 
 
Sine all the polynomials in the two sides of this equality are irreducible, P1(x) and P2(x) must 
be  proportional to x2+1 or to H11 x2 + 2H12 x + H22. Then, since the polynomials appear in the 
left side at pair power and, in the right, at odd power, on can establish that  (7) is possible only 
if H11 x2 + 2H12 x + H22 is proportional to x2+1. This means that H11 = H22 et H12 = 0. In the 
same way we can establish that H11= H33, H13 = 0 and H23 = 0, and globally that H is 
proportional to the unit tensor. Therefore, the surface defined by the equation (2) is a sphere. 
 
The indicating surface of the Young’s modulus thus can not be an ellipsoid different from a 
sphere.  
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Appendix  2 
 
Conditions of three orthogonal planes of symmetry for c(n) and E(n) 
 
The conditions of symmetry of the scalar functions (n⊗n): :(n⊗n) and (n⊗n): :(n⊗n) with 
respect to the planes of the coordinate system has been considered in the main text. They are 
equivalent to suppose that the following matrices : 

A = ,      B = 
1 3 2

3 2 1

2 1 3

a c c
c a c
c c a

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥

21 3

3 2 1

2 1 3

b d d
d b d
d d b

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

,  D = 
1

2

3

d
d

d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

A' = , B' = 
1 3 2

3 2 1

2 1 3

' ' '
' ' '
' ' '

a c c
c a c
c c a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 3

3 2 1

2 1 3

' '
' ' '
' ' '

b d d
d b d
d d b

− − 2'⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

,   D' = 
1

2

3

'
'

'

d
d

d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

whit A, A', B and B' positive-definite, satisfy the following equations: 
AA' = I – 2 DD'      (1) 
BB' = I – 2 DD'      (2) 
AD' + DB'  = 0     (3) 
DA' + BD'  = 0     (4) 

where I is the 3×3 unit matrix. These matrix equations lead to a system of equations on (ai, bi, 
ci, di, a'i, b'i, c'i, d'i), with (i=1,2,3), which is invariant for permutation of the indexes {1,2,3}. 
This property of index permutation invariance allows us an extension of some results. Let us 
denote : 

η1 =d1d'1 ,  η2 =d2d'2 ,  η3 =d3d'3   (5) 
We can write : 

DD' = D'D = 
1

2

3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

η
η

η
     (6) 

Multiplying the two sides of (4) at right by D one finds : BD'D  = -DA'D, and deduces that 
BD'D is symmetric. This symmetry implies the following relations : 

η1 d3 =η2 d3 ,   η2 d1 =η3 d1 ,   η3 d2 =η1 d2      (7) 
Multiplying the two sides of η1d3 =η2d3  by d'3 and by using (5), one finds η1η3 =η2η3. Index 
permutation gives: 

η1η2 =η2η3 = η3η1      (8) 
This equations implies that either η1 =η2 = η3 or two of ηi are equal to zero and the third one 
is different. We study in the following the general structure of the equations in these two 
cases. Because of index permutation invariance, the study of the case in which only one ηi is 
different from zero (Case 1) can be restricted to the study of the sub-case η1≠0, and η2=η3=0 
(Case 1.1). In the other case (Case 2), the sub-cases η1 =η2 = η3 ≠0 (Case 2.1) and η1 =η2 = 
η3 = 0 (Case 2.2) will be distinguished. 
 
1.1.  Case 1.1 
In this case η1≠0 and η2=η3=0. All the equations and assumptions are invariant for index 
permutation {2,3}. The equations (7) imply : d2 = d3 = 0.  Multiplying the both sides of (3) at 
left by D, one finds : AD'D = -DB'D = 0. Then, writing (A.D'.D)21 = -(D.B'.D)21 one finds : 
c3η1 = d2d'3d1 = 0, and it implies c3 = 0, and by index permutation, c2 = 0. Therefore the 
matrices A, B and D have the following expressions : 
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      A = ,  B = ,  D = 
1

2 1

1 3

0 0
0
0

a
a c
c a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

2

1 3

0 0
0
0

b
b d
d b

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

1

1

0
0

d⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  DD'= 
1

0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

η
  (9) 

A' et B' can be deduced from (9) and (1) and (2). The matrix D' can also be determined since 
its elements are given by the non diagonal terms of B'. One will find that these matrices have 
the same form as A, B and D with :  
 
a'1 =(1-2η1)/a1,  a'2 = a3/(a2a3-c1

2) , a'3 = a2/(a2a3-c1
2),   c'1 = -c1/(a2a3-c1

2) (10) 
b'1 =(1-2η1)/b1,  b'2 = b3/(b2b3-d1

2) ,  b'3 = b2/(b2b3-d1
2) ,  d'1 = -d1/(b2b3- d1

2) (11) 
 
The parameters defining A, B and D are not all independent. As a matter of fact, (2) implies 
(BB')22 = 1, and then : b2b'2+d'1d1 =1. By substituting in this equation for b'2 by (11) and 
using d'1d1= η1, one finds : 

d1
2 = - η1b2b3/(1-η1)     (12) 

The equation (3) implies (AD'+ DB')11 = 0, and then:  a1d'1+d1b'1 = 0. Multiplication of the 
two sides by d1 yields: a1η1+d1

2b'1 = 0, and substitution b'1 by (11) and for d1
2 by (12) gives: 

1 1 1

2 3 1

1 2
1

a b
b b

−
=

−
η

η
     (13) 

In conclusion, in this case all the parameters of A, B, D, A', B', D', except for the sign of d1 
and d'1, are deduced from (a1, a2, a3, c1, b1, b2, b3) by the equations (13), (12), (10) and (11). 
 
2. Case 2 
In this case: 

η1 =η2 = η3 = η    (14) 
and all the equations are invariant for index permutation {1,2,3}. The relation (6) can be 
written as : 

D'D = η I     (15) 
By multiplying the two sides of (3) at right by D, we find :  

DB'D  = -ηA     (16) 
and we deduce  detB' (detD)2  = -η3 detA. Since A and B' are positive-definite this relation 
implies: 

η ≤ 0      (17) 
Besides, taking account of (15), the relation (2) reads: BB'  = (1-2η) I, and implies (BB')11= 
(1-2η), or also b1b'1 + d3d'3 + d2d'2 = (1-2η). Substituting in this equation for d3d'3 and d2d'2 
by η, one finds b1b'1= 1-4η. Index permutation leads to : 

b1b'1 = b2b'2 = b3b'3 = 1-4η     (18) 
The elements of B-1 can be explicitly expressed in terms of B. In particular we have : 

(B-1)11 = (b2 b3 – d1
2)/δ ,  (B-1)13 = (d2 d3 + b1d1)/δ  (19) 

where : 
δ = detB = b1b2b3 – (b1d1

2 + b2d2
2 + b3d3

2) - 2 d1d2d3  (20) 
Using (19) and B' =(1-2η) B-1, we find : 

b'1 = (1-2η) (b2 b3 – d1
2)/δ     (21) 

d'1 = -(1-2η) (d2 d3 + b1d1)/δ     (22) 
Multiplying the both sides of (21) by b1, one finds b1b'1 = (1-2η) (b1 b2 b3 – b1 d1

2)/δ  and then 
using (18) one finds : 

b1 d1
2 = b1 b2 b3 – δ (1-4η)/(1-2η)    (23) 

We note : 
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     b = b1b2b3      (24) 
Index permutation invariance in (23) implies  b1 d1

2 = b2 d2
2 = b3 d3

2. We can define κ by 
writing : 

b1 d1
2 = b2 d2

2 = b3 d3
2 = bκ     (25) 

Multiplying the two sides of (22) by d1 and using d1d'1 = η  and b1d1
2 = bκ, one finds : 

d1d2d3 = -bκ - δη/(1-2η)     (26) 
Substituting in (20) by (23) and (24), one finds : 

 δ = b(1-3κ) - 2 d1d2d3     (27) 
Elimination of δ  and d1d2d3  between (27) and (26) leads to : 

δ = b(1-κ)(1-2η)/(1-4η)     (28) 
d1d2d3  =  -b [η+κ (1-5η)]/(1-4η)    (29) 

The equations (25) imply  b3κ3 = b1b2b3 d1
2d2

2d3
2 = b(d1d2d3)2. Substituting in this equation 

for d1d2d3 by (29), one finds for κ  the equation: (1-κ)[(1-4η)2κ 2 + (2-9η)ηκ +η2 ]=0. The 
assumption that B is positive-definite implies that δ > 0 and also b1> 0, b2> 0, b3> 0, and thus 
b>0. Then, since η≤0, (28) implies 1-κ > 0, the equation on κ reduces to: 

(1-4η)2κ 2 + (2-9η)ηκ +η2  = 0    (30) 
Now, we will consider the two sub-cases η≠ 0 (Case 2.1) and η=0 (Case 2.2). 
 
2.1. Case 2.1 
In this case η <0. We deduce from (16) that ηA11 = - (DB'D)11, and then a1 = -d1

2b'1/η. By 
multiplying the two sides by b1

2 and by taking account of (18) and (25), one finds a1b1
2 = -bκ 

(1-4η)/η. Index permutation invariance then gives :  
a1b1

2 = a2b2
2 = a3b3

2 =  -bκ (1-4η)/η    (31) 
This equation allows us to write -[bκ (1-4η)/η]3 = a1b1

2a2b2
2a3b3

2 = a1a2a3b2 and to deduce : 
b = β 3 a1a2a3 ,   β = -η/[κ (1-4η)]   (32) 

From (16) we deduce also -ηA23 = (DB'D)23, and so ηc1 = d2d3d'1. By multiplying the two 
sides of this equality by d1

2 and simplifying by η, one finds c1d1
2 = d1d2d3. By index 

permutation and by using (29) one finds: 
c1d1

2 = c2d2
2 = c3d3

2 = -b [η+κ (1-5η)]/(1-4η)   (33) 
The equation (30) has two negative roots, compatible with the condition δ >0 in (28). Now, 
we will show that if (a1, a2, a3, η) are given and if one of the roots κ of (30) is chosen, then all 
the parameters of A, B, D, A', B', D' can be determined, except for the sign of di and d'i. As a 
matter of fact, in this case, b can be deduced from (32) and then bi from (31), di from (25), 
and ci from (33). The result is : 

b1 = β 2 3a a  ,  b2 = β 1 3a a  ,  b3 = β 1 2a a    (34) 

d1
2 = β 2κ a1 2 3a a  ,    d2

2 = β 2κ a2 1 3a a  ,    d3
2 = β 2κ a3 1 2a a   (35) 

c1 = γ 2 3a a  ,   c2 = γ 1 3a a   ,   c3 = γ  1 2a a   ,    γ =β 2(1-κ ) -β   (36) 
A' and B' will be given by A' = (1-2η)A-1,  B' = (1-2η) B-1 and D' is deduced from the 
elements of  B'. 
 
2.2. Case 2.2 
In this case η=0. Then (30) implies κ = 0, and since B is positive-definite, (25) implies d1=d2= 
d3=0. This condition and (4) lead to D' = 0. Therefore, in this case, A and B are two 
independent matrices, A' = A-1 , B' = B-1 and: 

D = D' = 0     (37) 
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