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PREFACE

Motivation

A vast number of assets changes hands every day. Whether these assets
are stocks, bonds, currencies, derivatives, real estate, or just somebody’s
house around the corner, there are common features driving the market
price of these assets. For example, asset prices fluctuate more wildly
than the prices of ordinary consumption goods. We observe emerging
and bursting bubbles, bullish markets, and stock market crashes.

Another distinguishing feature of assets is that they entail uncertain
payments, most of which occur far in the future. The price of assets
is driven by expectations about these future payoffs. New informa-
tion causes market participants to re-evaluate their expectations. For
example, news about a company’s future earning prospects changes the
investors’ expected value of stocks or bonds, while news of a coun-
try’s economic prospects affects currency exchange rates. Depending
on their information, market participants buy or sell the asset. In
short, their information affects their trading activity and, thus, the
asset price. Information flow is, however, not just a one-way street.
Traders who do not receive a piece of new information are still con-
scious of the fact that the actions of other traders are driven by their
information set. Therefore, uninformed traders can infer part of the
other traders’ information from the current movement of an asset’s
price. They might be able to learn even more by taking the whole
price history into account. This leads us to the question of the extent to
which technical or chart analysis is helpful in predicting the future price
path.

There are many additional questions that fascinate both profession-
als and laymen. Why do bubbles develop and crashes occur? Why
is the trading volume in terms of assets so much higher than real
economic activity? Can people’s herding behavior be simply attributed
to irrational panic? Going beyond positive theory, some normative
policy issues also arise. What are the early warning signals indicating
that a different policy should be adopted? Can a different design of
exchanges and other financial institutions reduce the risk of crashes and
bubbles?
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If financial crises and large swings in asset prices only affect the nom-
inal side of the economy, there would not be much to worry about.
However, as illustrated by the recent experiences of the Southeast Asian
tiger economies, stock market and currency turmoil can easily turn into
full-fledged economic crises. The unravelling of financial markets can
spill over and affect the real side of economies. Therefore, a good
understanding of price processes is needed to help us foresee possible
crashes.

In recent years, the academic literature has taken giant strides towards
improving our understanding of the price process of assets. This book
offers a detailed and up-to-date review of the recent theoretical literature
in this area. It provides a framework for understanding price processes
and emphasizes the informational aspects of asset price dynamics. The
survey focuses exclusively on models that assume that all agents are
rational and act in their own self-interest. It does not cover models which
attribute empirical findings purely to the irrational behavior of agents.
It is expected that future research will place greater emphasis on behav-
ioral aspects by including carefully selected behavioral elements into
formal models. However, models with rational traders, as covered in
this survey, will always remain the starting point of any research project.

Structure of the Survey

The main aim of this survey is to provide a structural overview of the
current literature and to stimulate future research in this area.

Chapter 1 illustrates how asymmetric information and knowledge in
general is modeled in theoretical economics. Section 1.1 also introduces
the concept of higher-order knowledge which is important for the ana-
lysis of bubbles. Prices are determined in equilibrium. There are two
different equilibrium concepts which are common in market settings
with asymmetric information. The competitive Rational Expectations
Equilibrium (REE) concept has its roots in general equilibrium theory,
whereas the strategic Bayesian Nash Equilibrium concept stems from
game theory. The book compares and contrasts both equilibrium con-
cepts and also highlights their conceptual problems. This chapter also
introduces the informational efficiency and allocative efficiency concepts
to the reader.

The first section of Chapter 2 provides a more tractable notion of com-
mon knowledge and the intuition behind proofs of the different no-trade
theorems. The no-trade theorems state the specific conditions under
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which differences in information alone do not lead to trade. A brief
introduction of the basics of asset pricing under symmetric information
is sketched out in Section 2.2 in order to highlight the complications that
can arise under asymmetric information. In an asymmetric information
setting, it makes a difference whether markets are only “dynamically
complete” or complete in the sense of Debreu (1959), that is, completely
equitizable. Market completeness or the security structure, in general,
has a large impact on the information revelation of prices. Section 2.3
provides definitions of bubbles and investigates the existence of bubbles
under common knowledge. It then illustrates the impact of higher-order
uncertainty on the possible existence of bubbles in settings where traders
possess different information.

The third chapter illustrates different market microstructure mod-
els. In the first group of models, all market participants submit whole
demand schedules simultaneously. The traders either act strategically
or are price takers as in the competitive REE. The strategic mod-
els are closely related to share auctions or divisible goods auctions.
In the second group of models, some traders simultaneously submit
demand/supply schedules in the first stage and build up a whole sup-
ply schedule in the form of a limit order book. In the second stage, a
possibly informed trader chooses his optimal demand from the offered
supply schedule. A comparison between uniform pricing and discrimi-
natory pricing is also drawn. Sequential trade models à la Glosten and
Milgrom (1985) form the third group of models. In these models, the
order size is restricted to one unit and thus the competitive market maker
quotes only a single bid and a single ask price instead of a whole supply
schedule. In the fourth group of models, the informed traders move first.
The classical reference for these models is Kyle (1985).

Chapter 4 focuses on dynamic models. Its emphasis is on explaining
technical analysis. These models show that past prices still carry valuable
information. Some of these models also explain why it is rational for
some investors to “chase the trend.” Other models are devoted to the
informational role of trading volume. The insiders’ optimal dynamic
trading strategy over different trading periods is derived in a strategic
model setting.

Chapter 5 classifies different herding models. Rational herding in
sequential decision making is either due to payoff externalities or
information externalities. Herding may arise in settings where the pre-
decessor’s action is a strong enough signal such that the agent disregards
his own signal. Informational cascades might emerge if the predecessor’s
action is only a noisy signal of his information. Herding can also arise in
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principal–agent models. The sequence in which agents make decisions
can be either exogenous or endogenous.

Stock market crashes are explained in Section 6.1. In a setting with
widely dispersed information, even relatively unimportant news can lead
to large price swings and crashes. Stock market crashes can also occur
because of liquidity problems, bursting bubbles, and sunspots. Traders
might also herd in information acquisition if they care about the short-
term price path as well as about the long-run fundamental value. Under
these circumstances, all traders will try to gather the same piece of infor-
mation. Section 6.2 discusses investigative herding models that provide
a deeper understanding of Keynes’ comparison of the stock market with
a beauty contest. Section 6.3 deals with short-termism induced by the
stock market. The survey concludes with a brief summary of bank runs
and its connection to financial crises.

Target Audience

There are three main audiences for whom this book is written:
1. Doctoral students in finance and economics will find this book

helpful in gaining access to this vast literature. It can be used as a supple-
mentary reader in an advanced theoretical finance course which follows
a standard asset pricing course. The book provides a useful framework
and introduces the reader to the major models and results in the liter-
ature. Although the survey is closely linked to the original articles, it
is not intended to be a substitute for them. While it does not provide
detailed proofs, it does attempt to outline the important steps and high-
light the key intuition. A consistent notation is used throughout the book
to facilitate comparison between the different papers. The correspond-
ing variable notations used in the original papers are listed in footnotes
throughout the text to facilitate cross-reference.

2. Researchers who are already familiar with the literature can use
this book as a source of reference. By providing a structure for this body
of literature, the survey can help the reader identify gaps and trigger
future research.

3. Advanced undergraduate students with solid microeconomic train-
ing can also use this survey as an introduction to the key models in
the market microstructure literature. Readers who just want a feel for
this literature should skim through Chapters 1 and 2 and focus on the
intuitive aspects of Chapter 3. The dynamic models in Chapter 4 are
more demanding, but are not essential for understanding the remainder
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of the survey. The discussion of herding models in Chapter 5 and stock
market crashes and the Keynes’ beauty contest analogy in Chapter 6 are
accessible to a broad audience.
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1

Information, Equilibrium, and
Efficiency Concepts

Financial markets are driven by news and information. The standard
asset pricing theory assumes that all market participants possess the
same information. However, in reality different traders hold different
information. Some traders might know more than others about the same
event or they might hold information related to different events. Even
if all traders hear the same news in the form of a public announcement,
they still might interpret it differently. Public announcements only rarely
provide a direct statement of the value of the asset. Typically one has to
make use of other information to figure out the impact of this news on
the asset’s value. Thus, traders with different background information
might draw different conclusions from the same public announcement.
Therefore, financial markets cannot be well understood unless one also
examines the asymmetries in the information dispersion and assimilation
process.

In economies where information is dispersed among many market
participants, prices have a dual role. They are both:

• an index of scarcity or bargaining power, and
• a conveyor of information.

Hayek (1945) was one of the first to look at the price system as a mecha-
nism for communicating information. This information affects traders’
expectations about the uncertain value of an asset. There are different
ways of modeling the formation of agents’ expectations. Muth (1960,
1961) proposed a rational expectations framework which requires
people’s subjective beliefs about probability distributions to actually cor-
respond to objective probability distributions. This rules out systematic
forecast errors. The advantage of the rational expectations hypothesis
over ad hoc formulations of expectations is that it provides a simple and
plausible way of handling expectations. Agents draw inferences from all
available information derived from exogenous and endogenous data.
In particular, they infer information from publicly observable prices.
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In short, investors base their actions on the information conveyed by
the price as well as on their private information.

Specific models which illustrate the relationship between information
and price processes will be presented in Chapters 3 and 4. In Sections
1.1 and 1.2 of this chapter we provide the basic conceptual background
for modeling information and understanding the underlying equilib-
rium concepts. Section 1.3 highlights the difference between allocative
efficiency and informational efficiency.

1.1. Modeling Information

If individuals are not fully informed, they cannot distinguish between
different states of the world.

State Space
A state of the world ω fully describes every aspect of reality. A state
space, denoted by �, is the collection of all possible states of the world
ω. Let us assume that � has only finitely many elements.1 A simplistic
example illustrates the more abstract concepts below. Consider a sit-
uation where the only thing that matters is the dividend payment and
the price of a certain stock. The dividend and the price can be either
high or low and there is also the possibility that the firm goes bankrupt.
In the latter case, the price and the dividend will be zero. A state of
the world ω provides a full description of the world (in this case about
the dividend payment d as well as the price of the stock p). There are
five states ω1 = {dhigh, phigh}, ω2 = {dhigh, plow}, ω3 = {dlow, phigh},
ω4 = {dlow, plow}, and ω5 = {d = 0, p = 0}. An event E is a set of states.
For example, the statement “the dividend payment is high” refers to an
event E = {ω1,ω2}. One can think that a state is chosen, for example,
by nature but the individual might not know which state is the true state
of the world or even whether event E is true.

From Possibility Sets to Partitions
Information allows an individual to rule out certain states of the world.
Depending on the true state of the worldω ∈ � = {ω1,ω2,ω3,ω4,ω5} she
might receive different information. For example, if an individual learns

1 Occasionally we will indicate how the concepts generalize to an infinite state
space �.
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in ω1 that the dividend payment is high, she can eliminate the states
ω3, ω4, and ω5. In state ω1 she thinks that only ω1 and ω2 are possible.
One way to represent this information is by means of possibility sets.
Suppose her possibility set is given by P i′′(ω1) = {ω1,ω2} if the true state
is ω1 and P i′′(ω2) = {ω2,ω3}, P i′′(ω3) = {ω2,ω3}, P i′′(ω4) = {ω4,ω5},
P i′′(ω5) = {ω5} for the other states. Individual i knows this information
structure. By imposing the axiom of truth (knowledge) we make sure
that she does not rule out the true state. In other words, the true state
is indeed in P i(ω), that is

ω ∈ P i(ω) (axiom of truth).

However, individual i has not fully exploited the informational
content of her information. She can improve her knowledge by intro-
spection. We distinguish between positive and negative introspection.
Consider state ω1 in our example. In this state of the world, agent i
considers that states ω1 and ω2 are both possible. However, by positive
introspection she knows that in state ω2 she would know that the true
state of the world is either ω2 or ω3. Since ω3 is not in her possibil-
ity set, she can exclude ω2 and, hence, she knows the true state in ω1.
More formally, after conducting positive introspection the possibility
sets satisfy

ω′ ∈ P i(ω) ⇒ P i(ω′) ⊆ P i(ω) (positive introspection).

Thus the individual’s updated possibility sets are given by P i′(ω1) =
{ω1}, P i′(ω2) = {ω2,ω3}, P i′(ω3) = {ω2,ω3}, P i′(ω4) = {ω4,ω5},
P i′(ω5) = {ω5}. Even more information can be inferred from this infor-
mation structure by using negative introspection. Consider state ω4 in
our example. In stateω4, individual i would think thatω4 andω5 are pos-
sible. However, in state ω5 she knows that the true state of the world
is not in {ω1,ω2,ω3,ω4} = �\{ω5}. From this she can infer that she
must be in state ω4 because she does not know whether the true state
is in �\{ω5} or not. The formal definition for negative introspection is
given by

ω′ ∈ P i(ω) ⇒ P i(ω′) ⊇ P i(ω) (negative introspection).

After making use of positive and negative introspection, individual i has
the following information structure: P i(ω1) = {ω1}, P i(ω2) = {ω2,ω3},
P i(ω3) = {ω2,ω3}, P i(ω4) = {ω4}, P i(ω5) = {ω5}. This information
structure is a partition of the state space �.
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Indeed, any information structure that satisfies the axiom of truth and
positive and negative introspection can be represented by a partition. A
partition of � is a collection of subsets that are mutually disjoint and
have a union �. The larger the number of partition cells, the more
information agent i has.

Knowledge Operator
The knowledge operator

Ki(E) = {ω ∈ � : P i(ω) ⊆ E}

is an alternative concept for representing agent i’s information.2 While
the possibility set P i(·) reports all states of the world an individual con-
siders as possible for a given true state of the world, the knowledge
operator does the converse. It reports all the states of the world, that
is an event, in which agent i considers a certain event E possible. That
is, it reports the set of all states in which agent i knows that the true
state of the world is in the event E ⊆ �. In our example, individual i
knows event E′ = {dividend is high} = {ω1,ω2} only in state ω1, that is
Ki(E′) = ω1. Without imposing any axioms on the possibility sets, one
can derive the following three properties for the knowledge operator:

1. Individual i always knows that one of the states ω ∈ � is true,
that is

Ki(�) = �.

2. If individual i knows that the true state of the world is in event E1
then she also knows that the true state is in any E2 containing E1, that is

Ki(E1) ⊆ Ki(E2) for E1 ⊆ E2.

3. Furthermore, if individual i knows that the true state of the world
is in event E1 and she knows that it is also in event E2, then she also
knows that the true state is in event E1 ∩ E2. In short, if she knows E1
and E2 then she also knows E1 ∩E2. One can easily see that the converse
is also true. More formally,

Ki(E1) ∩ Ki(E2) = Ki(E1 ∩ E2).

2 Knowledge operators prove very useful for the analysis of bubbles. For example,
a bubble can arise in situations where everybody knows that the price is too high, but
they do not know that the others know this too.



Information, Equilibrium, Efficiency 5

We restate the axiom of truth and the two axioms of introspec-
tion in terms of knowledge operators in order to be able to represent
information in terms of partitions. The axiom of truth (knowledge)
becomes

Ki(E) ⊆ E (axiom of truth).

That is, if i knows E (for example, dividend is high) then E is true, that
is the true state ω ∈ E. This axiom is relaxed when one introduces belief
operators. Positive introspection translates into the knowing that you
know (KTYK) axiom

Ki(E) ⊆ Ki(Ki(E)) (KTYK).

This says that in all states in which individual i knows E, she also knows
that she knows E. This refers to higher knowledge, since it is a knowl-
edge statement about her knowledge. The negative introspection axiom
translates into knowing that you do not know (KTYNK).

�\Ki(E) ⊆ Ki(�\Ki(E)) (KTYNK).

For any state in which individual i does not know whether the true state
is in E or not, she knows that she does not know whether the true state
is in E or not. Negative introspection (KTYNK) requires a high degree
of rationality. It is the most demanding of the three axioms. Adding the
last three axioms allows one to represent information in partitions.

Group Knowledge and Common Knowledge
The knowledge operator for individual i1, Ki1(E), reports all states in
which agent i1 knows event E, that is, he knows that the true state is
in E. If the knowledge operator of another individual i2 also reports
the same state ω, then both individuals know the event E in state ω.
More generally, the intersection of all events reported by the individual
knowledge operators gives us the states of the world in which all mem-
bers of the group G know an event E. Let us introduce the following
group knowledge operator

KG(E) :=
⋂
i∈G

Ki(E).

The mutual knowledge operator reports all states of the world in which
each agent in group G knows the event E. However, although every-
body knows event E in these states, an individual might not know that
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the others know E too. Mutual knowledge does not guarantee that all
members of the group know that all the others know it too. Knowledge
about knowledge, that is second-order knowledge can be easily analyzed
by applying the knowledge operator again, for example Ki1(Ki2(E)).
An event is second-order mutual knowledge if everybody knows that
everybody knows event E. More formally,

KG(2)(E) :=
⋂
i∈G

( ⋂
−i∈G\{i}

Ki(K−i(E))
)

∩ KG(E).

If the three above axioms hold, the second-order mutual knowledge
operator simplifies to

KG(2)(E) = KG(KG(E)).

If an event E is second-order mutual knowledge, then everybody
knows E and everybody knows that everybody knows E, but some indi-
viduals might not know that everybody knows that everybody knows
that everybody knows E. The above definition can easily be generalized
to any nth order mutual knowledge, KG(n)(E). Given the above three
axioms,

KG(n)(E) = KG(KG(. . . (KG(︸ ︷︷ ︸
n-times

E)))).

An event E is common knowledge if everybody knows that everybody
knows that everybody knows and so on ad infinitum that event E is true.
In formal terms, E is common knowledge if

CK(E) :=
∞⋂

n=1

KG(n)(E).

Note that as long as the three axioms hold CK(E) = KG(∞)(E).

Physical and Epistemic Parts of the State Space –
Depth of Knowledge
A model is called complete only if its state space and each individual’s
partitions over the state space are “common knowledge.” The quotation
marks indicate that this “meta” notion of “common knowledge” lies
outside of the model and thus cannot be represented in terms of the
knowledge operators presented above.
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Since the partitions of all individuals are “common knowledge”
we need to enlarge the state space in order to analyze higher-order
uncertainty (knowledge). Another simple example will help illustrate
this point. Individual 1 knows whether interest rate r will be high
or low. Individual 2 does not know it. The standard way to model
this situation is to define the following state space �′, ω′

1 = {rhigh},
ω′

2 = {rlow}. Individual 1’s partition is {{ω′
1}, {ω′

2}}, while agent 2’s par-
tition is {ω′

1,ω′
2}. Given the assumption that partitions are common

knowledge, it follows immediately that agent 1 knows that agent 2
does not know whether the interest rate is high or low and agent 2
knows that agent 1 knows it. The second-order knowledge is com-
mon knowledge. In other words, any event which is mutual knowledge
is also common knowledge. One cannot analyze higher-order uncer-
tainty without extending the state space. To analyze situations where
agent 1 does not know whether agent 2 knows whether the inter-
est rate is high or low, consider the following extended state space
� with ω1 = (rhigh, 2 knows rhigh), ω2 = (rhigh, 2 does not know rhigh),
ω3 = (rlow, 2 knows rlow), ω4 = (rlow, 2 does not know rlow). If agent 1
does not know whether agent 2 knows the interest rate, his partition is
{{ω1,ω2}, {ω3,ω4}}. Agent 2’s partition is {{ω1}, {ω3}, {ω2,ω4}} since he
knows whether he knows the interest rate or not. Note that the descrip-
tion of a state also needs to contain knowledge statements in order to
model higher-order uncertainty. These statements can also be in indirect
form, for example, agent i received a message m.

A state of the world therefore describes not only (1) the physical world
(fundamentals) but also (2) the epistemic world, that is what each agent
knows about the fundamentals or others’ knowledge. In our simple
example the fundamentals partition the state space� = {Erhigh , Erlow} into
two events, Erhigh={ω1,ω2} and Erlow={ω3,ω4}. The first-order know-
ledge components partition the state space�={E2 knows r, E2 does not know r}
into E2 knows r = {ω1,ω3} and E2 does not know r = {ω2,ω4}. The state
description in our example does not capture all first-order knowledge
statements. In particular, we do not introduce states specifying whether
agent 1 knows the interest rate r or not. A state space � whose states
specify first-order knowledge is said to have a depth equal to one in
terms of Morris, Postlewaite, and Shin’s (1995) terminology. Note that
a state space with depth of knowledge of one is insufficient for ana-
lyzing third or higher-order knowledge statements. Since partitions are
common knowledge, any third or higher-order knowledge statements
such as “agent 2 knows that 1 does not know whether agent 2 knows
the interest rate” are common knowledge. To relax this constraint one
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has to enlarge the state space even further and increase the depth of the
knowledge of the state space, that is one has to incorporate second- or
higher-order knowledge statements into the state description.

Sigma Algebras
A σ -algebra or σ -field F is a collection of subsets of � such that (1) � ∈
F , (2) � \ F ∈ F for all F ∈ F , and (3)

⋃∞
n=1 Fn ∈ F for any sequence

of sets (Fn)n≥1 ∈ F . This implies immediately that ∅ ∈ F and for any
F1, F2 ∈ F , F1 ∩ F2 ∈ F . If �′ is the (possibly multidimensional) real
space �k, then the set of all open intervals generates a Borel σ -algebra.

All possible unions and intersections of a finite �, that is �’s power
set, provide the largest σ -algebra, F . The unions of all partition cells
of a partition P and the empty set form the σ -algebra F(P) generated
by partition P. Thus σ -algebras can be used instead of partitions to
represent information. The more the partition cells, the larger is the
corresponding σ -algebra.

A partition Pt+1 is finer than Pt, if Pt+1 has more partition cells than Pt
and the partition cells of Pt can be formed by the union of some partition
cells of Pt+1. A field Ft is a subfield of Ft+1 if Ft+1 contains all elements
of Ft. A sequence of increasing subfields {F0 ⊆ F1 ⊆ · · · ⊆ FT−1 ⊆
FT} forms a filtration. If individuals hold different information, then
their σ -algebras F i differ. The σ -algebra which represents the pooled
information of all agent i’s information is often denoted by Fpool =∨

i∈� F i. It is the smallest σ -algebra containing the union of all σ -algebras
F i. Information that is common knowledge is represented by the σ -
algebra FCK = ⋂

i∈� F i.
A random variable is a mapping, X(·) : � �→ �′. We focus on

�′ = �k. If the inverse image of Borel sets of X(·) are elements of F ,
then the random variable X(·) is called F-measurable. In other words, a
random variable is F-measurable if one knows the outcome X(·) when-
ever one knows which events in F are true. F(X) denotes the smallest
σ -algebra with respect to which X(·) is measurable. F(X) is also called
the σ -algebra generated by X.

Probabilities
(�, F , P) forms a probability space, where P is a probability mea-
sure. Agents may also differ in the probabilities they assign to different
elements of the σ -algebra. Let us denote the prior belief/probability
distribution of agent i by Pi

0. Agents update their prior distribution
and form a conditional posterior distribution after receiving infor-
mation. Two probability distributions are called equivalent if their
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zero-probability events coincide. The state space � is generally assumed
to be common knowledge. Often one also assumes that all individuals
share the same prior probability distribution over the state space and that
this distribution is common knowledge. This common prior assumption
is also known as the Harsanyi doctrine and acts as a scientific discipline
on possible equilibrium outcomes (Aumann 1987).

Agents’ signals are also part of the state space. After a signal realiza-
tion has occurred, individuals can update their probability distribution
conditional on the observed realizations. The conditional distribution is
derived by applying Bayes’ rule

Pi(En|D) = Pi(D|En)Pi(En)

Pi(D)

whenever possible. For Pi(D) = 0 we assume that the posterior Pi(En|D)

is exogeneously specified. If the events E1, E2, . . . , EN constitute a
partition of � then Bayes’ rule can be restated as

Pi(En|D) = Pi(D|En)Pi(En)∑N
n=1 Pi(D|En)Pi(En)

.

Bayes’ rule has direct implications for calculating the conditional dis-
tribution of random variables X and Y. Let fXY(x, y) denote the joint
density function of the random variables X and Y. The marginal den-
sity is given by fX(x) = ∑

y fXY(x, y). Although we have mostly ignored
the complications involved when � is infinite, let us simply extend
the above definitions to density functions of continuous random vari-
ables X and Y. In the continuous case, the marginal density of x is
fX(x) = ∫

fXY(x, y) dy. The conditional density of X given Y = y
is fX|Y(x|y) = fXY(x, y)/fY(y) for fy(y) 
= 0 in the discrete and the
continuous case.

Belief Operators
Due to the axiom of truth, individuals were able to rule out certain states
of nature. Without imposing the axiom of truth, individuals are only
able to rule out certain states of the world with a certain probability.
The p-belief operator reports all states of the world in which agent i
considers event E to be at least likely with probability p:

Bi,p(E) = {ω ∈ �|Pi[E ∩ P i(ω)|P i(ω)] ≥ p}.
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The probability distribution Pi[·|P i(ω)] is conditional on the element
P i(ω) of possibility set P i. This indicates that the belief operator can
also be applied solely to the remaining states of the world which are
not ruled out by the possibility sets. Let us define group belief operators
that are analogous to the group knowledge operators. An event E is
p-mutual belief if all individuals believe that the event is true with at
least probability p. An event is p-common belief if everybody believes at
least with probability p that E is true and that everybody believes with
at least probability p that everybody believes with at least probability p
and so on ad infinitum that event E is true with at least probability p.
The p-mutual belief operator and p-common belief operator are defined
analogous to the mutual knowledge operator and common knowledge
operator respectively. The terms “certainty,” “mutual certainty,” and
“common certainty” are used when p = 1. Note that the difference
between knowledge operators and certainty operators is only due to the
axiom of truth. Without the axiom of truth, an event might still occur
even though individual i assigned zero probability to it. Dekel and Gul
(1997) discuss the distinction between (p = 1)-beliefs and knowledge in
greater detail.

Belief operators are also useful for judging whether models with a
simplified information structure provide accurate predictions despite the
fact that the information structure is much more complicated in reality.
For example, although in reality individuals often do not know whether
the other market participants received a signal or not, many economic
models ignore higher-order uncertainty and thus implicitly assume that
the depth of knowledge is zero. Belief operators provide an indication
of when it is reasonable to restrict the analysis to an event �restricted ⊂ �

with a lower depth of knowledge rather than to focus on the whole state
space �. Morris, Postlewaite, and Shin (1995) illustrate this point and
highlight its usefulness in the context of bubbles.

Signal Extraction – Conditional Distributions
In many models, agents have to update their prior probability distri-
bution after receiving a signal. The resulting posterior distribution is
conditional on the signal realization. Before restricting our attention to
certain commonly used distributions, let us illustrate the monotone like-
lihood ratio property (MLRP) which allows us to rank different signal
realizations.

Let us consider a two-dimensional state space � = {v, S} where v ∈ �

is the only payoff-relevant variable and S ∈ � is a signal about v.
A signal realization SH is more favorable than signal realization SL
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if the posterior conditional on SH dominates the posterior condi-
tional on SL. First-order stochastic dominance is one possible form
of ranking posterior distributions. A conditional cumulative distri-
bution G(v|SH) first-order stochastically strictly dominates G(v|SL) if
G(v|SH) ≤ G(v|SL) for any realization of v and strictly smaller for at
least one value of v. Stated differently, any individual with an increas-
ing utility function Ui(v) would prefer a gamble G(·|SH) to a gamble
G(·|SL), since

∫
Ui(v) dG(v|SH) >

∫
Ui(v) dG(v|SL). Surely the first-

order stochastic dominance ranking is in general not complete, that
is, not all distributions can be ranked according to this criterion. In
other words, there are many possible distributions where for some v,
G(·|S) ≤ G(·|S′) and for other v, G(·|S) > G(·|S′). However if fS(S|v),
the density of the signal distribution conditional on the payoff-relevant
state v, satisfies the strict monotone likelihood ratio property (MLRP),
then for any nondegenerated unconditional prior distribution G(v) the
conditional posterior distributions G(v|S) can be ranked according to
the first-order stochastic dominance criterion. The MLRP takes its name
from the fact that the ratio of densities fS(S|v)/fS(S|v̄) is monotonically
increasing (decreasing) in S if v > (<) v̄. Stated differently for all v′ > v
and S′ > S

fS(S|v)
fS(S|v′)

>
fS(S′|v)
fS(S′|v′)

.

A formal proof and clear exposition of this result is given by Milgrom
(1981). If the two random variables S and v satisfy the MLRP, they are
also called affiliated (Milgrom and Weber 1982). Many of the commonly
used probability functions and densities satisfy the MLRP. Examples
are the normal distribution (with mean v), the exponential distribution
(with mean v), the Poisson distribution (with mean v), the uniform dis-
tribution on [0, v], and the chi-square distribution (with noncentrality
parameter v).

Whereas the posterior of a probability distribution can take on any
possible form, certain joint probability distributions of the state space
lead to a nice closed-form solution of the conditional posterior distri-
bution. Some distributions remain in the same class after updating. For
example, if the prior is uniformly distributed and the signal provides
an upper or lower bound for the posterior support, then the new distri-
bution is also uniformly distributed. The same is true for the (double)
exponential distribution f (x) = 1

2a exp{−a|x|} with x ∈ �. This prop-
erty proves useful for calculating conditional means like Ex[x|x ≥ s].
If the signal does not provide a lower or upper bound on the support
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of the conditional distribution, the conditional distribution might still
fall into the same class of distributions. For example, this is the case
for normally distributed random variables. Normal distributions are
fully characterized by their mean and variance. The projection the-
orem is very useful for deriving the conditional mean and variance.
Consider an n multidimensional random variable ( �X, �S) ∼ N (μ,�)

with means μ ∈ �n and variance–covariance matrix � ∈ �n×n. �X is
a vector of nX random variables and �S is a vector of nS := n − nX ran-
dom variables. The mean vector and variance–covariance matrix can be
written as

μ =
[
μX

μS

]
n×1

; � =
[
�X,X �X,S

�S,X �S,S

]
n×n

.

The marginal distribution of S is then N(μS,�S,S) and the conditional
density of X given S = s can be derived by determining the conditional
mean and variance using the projection theorem

(X|S = s) ∼ N (μX + �X,S�
−1
S,S (s − μS),�X,X − �X,S�

−1
S,S�S,X).

The proof of the projection theorem can be found in almost any statistics
book.3

Note that the conditional variance–covariance matrix for normally
distributed random variables is deterministic and does not depend on the
signal realization, s. This is a special feature of the normal distribution.

The reciprocal of the variance of a normally distributed variable
X ∈ �, 1/Var[X], is often referred to as the precision τX of the random
variable X.

The projection theorem is simplified for certain specific signal struc-
tures. For example, the conditional mean and variance of a one-
dimensional random variable X given N signals Sn = X + εn, where

3 The proof for the easiest version of the projection theorem

E[X|S = s] = E[X] + Cov[X, S]
Var[S]

(s − E[S])

can be seen by multiplying both sides of the linear regression X = α+βS+ε by (S−E[S]).
Taking expectations E[XS] − E[X] E[S] = 0 + β(E[(S)2] − E[S]2), since ε is orthogonal
to S. Thus, β = Cov[X, S]/Var[S].
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the noise terms εn have mean zero and are independent of X ∈ � and
each other, are

E[X|s1, . . . , sN] = μX + 1

τX +∑N
n=1 τεn

N∑
n=1

τεn(sn − μX)

Var[X|s1, . . . , sN] = 1

τX +∑N
n=1 τεn

,

that is, the conditional precision is

τX|s1,...,sN = τX +
N∑

n=1

τεn .

If, in addition, all εn are identically distributed, that is, the variances of
all εn are the same for all n, then

E[X|s1, . . . , sN] = μX + 1
τX + Nτεn︸ ︷︷ ︸

Var[X|s1,...,sN ]

Nτεn

( N∑
n=1

1
N

sn − μX

)
.

s̄ := ∑N
n=1(1/N)sn is a sufficient statistic for observing the realization of

all N signals s1, . . . , sN . In general, a statistic is a function of observable
random variables that does not contain any unknown parameters. A
statistic is sufficient for observable random variables if the statistic leads
to the same conditional distribution as the observable random variables.

The Kalman filter is also derived from the projection theorem. The
Kalman filter technique is especially useful for steady state analysis of
dynamic models, as shown in Chapter 4. The problem has to be brought
in state space form:

zt+1 = Azt + Bxt + εt,1

St = Czt + εt,2,

where the error terms εt,1, εt,2 are i.i.d. normally distributed. The first
equation is the transition equation, which determines how the state vec-
tor zt moves depending on the control vector xt. The second equation
is the measurement equation, which describes the relationship between
the signal St and the current state zt.

Normal distributions have the additional advantage that they fall into
the class of stable distributions.4 That is, any (weighted) sum of normally
distributed random variables is also normally distributed. This property

4 The Cauchy, Gamma and Bernoulli distributions are also stable distributions.
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proves especially useful for portfolio analysis. If the assets’ values are
normally distributed, so is the value of the whole portfolio.

In many situations it is sufficient to model the relevant effects with a
simple binary signal structure. A binary signal gives the right indication
with probability q. However, one draws the wrong conclusion with
probability (1 − q). The (possibly state dependent) probability q is also
called the binary signal’s precision. Note that the term “precision” in
the context of binary signals differs from the definition of precision in
the context of normally distributed variables.

In summary, there are two components to modeling information.
First, partitions or the associated σ -algebras capture the fact that infor-
mation may allow us to distinguish between states of the world and to
rule out certain states. Second, information also enables us to update
the distribution over the remaining states of the world. This leads to an
updated posterior probability distribution.

1.2. Rational Expectations Equilibrium and
Bayesian Nash Equilibrium

There are two competing equilibrium concepts: the Rational Expecta-
tions Equilibrium (REE) concept and the game-theoretic Bayesian Nash
Equilibrium (BNE) concept. In a REE, all traders behave competitively,
that is, they are price takers. They take the price correspondence, a
mapping from the information sets of all traders into the price space
as given. In a BNE, agents take the strategies of all other players, and
not the equilibrium price correspondence, as given. The game theoretic
BNE concept allows us to analyze strategic interactions in which traders
take their price impact into account.

Both equilibrium concepts are probably best explained by illustrat-
ing the steps needed to derive the corresponding equilibrium. Only a
descriptive explanation is provided below. For a more detailed exposi-
tion one should consult a standard game theory book such as Fudenberg
and Tirole (1991) or Osborne and Rubinstein (1994).

1.2.1. Rational Expectations Equilibrium

A possible closed-form solution of a REE can be derived in the following
five steps.5

5 Bray (1985) provides a nice illustration of the REE concept using the futures market
as an example. Section 3.1.1 illustrates each step using Grossman (1976) as an example.
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Step 1: Specify each traders’ prior beliefs and propose a price func-
tion (conjecture) P : {S1, . . . , SI, u} → ��+. This is a mapping from
all I traders’ information sets {S1, . . . , SI, u} consisting of individual
σ -algebras and individual probability distributions to the prices of J
assets. u allows one to incorporate some noise in the pricing func-
tion. All traders take this mapping as given. One actually proposes a
whole set of possible price conjectures P = {P|P: {S1, . . . , SI, u} →
��+} (for example parametrized by undetermined coefficients) since
the true equilibrium price function is not known at this stage of the
calculations.

Step 2: Derive each trader’s posterior beliefs about the unknown vari-
ables, given the parametrized price conjectures and the fact that all
traders draw inferences from the prices. These beliefs are represented
by a joint probability distribution and depend on the proposed price
conjecture, for example on the undetermined coefficients of the price
conjecture.

Step 3: Derive each individual investor’s optimal demand based on
his (parametrized) beliefs and his preferences.

Step 4: Impose the market clearing conditions for all markets and
compute the endogenous market clearing price variables. Since individ-
uals’ demands depend on traders’ beliefs, so do the price variables. This
gives the actual price function P : {S1, . . . , SI, u} → ��+, the actual rela-
tionship between the traders’ information sets {S1, . . . , SI}, the noise
component u, and the prices for a given price conjecture.

Step 5: Impose rational expectations, that is, the conjectured price
function has to coincide with the actual price function. Viewed more
abstractly, the REE is a fixed point of the mapping MP : P → P. MP(·)
maps the conjectured price relationship {S1, . . . , SI, u} → ��+ onto the
actual price functions. At the fixed point MP(P(·)) = P(·), the con-
jectured price function coincides with the actual one. If one uses the
method of undetermined coefficients, equating the coefficients of the
price conjecture with those of the actual price function yields the fixed
point.

The REE concept can be generalized to a dynamic setting with multiple
trading rounds. Investors have many trading opportunities in these set-
tings. The information of the investors changes over time as they observe
more signals and the price process evolves. The unfolding of informa-
tion for an individual investor i ∈ � can be modeled as a sequence of
information sets consisting of a filtration, that is (increasing) σ -algebras,
and associated probability distributions. A state ω in the dynamic state
space �dynamic describes a whole history (path) from t = 0 to t = T.
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As before, the state consists of a fundamental and an epistemic part.
In each period t individuals take the price function from the informa-
tion sets of all investors at time t as given. In other words, all investors
conjecture a price process function, which maps the sequence of infor-
mation sets for each i into the price process space. Investors update their
information at each time t since they can trade conditional on the price
process up to time t. After deriving each individual’s demand, the market
clearing condition has to be satisfied in each trading round. Rational-
ity dictates that the actual price process coincides with the conjectured
one. Dynamic REE models – as covered in Chapter 4 – are often solved
by using backward induction or by using the dynamic programming
approach.

1.2.2. Bayesian Nash Equilibrium

In a competitive equilibrium, each agent thinks that his action does not
affect the price and thus has no impact on the decisions of others. Game
theory on the other hand allows one to model the strategic interaction
between the agents. Games can be represented in two forms. The normal
form representation of a game � specifies at least a set of players i ∈ �,
an action set Ai, and a payoff function Ui for each player. The extensive
form of a game also specifies the order of moves and the information
sets at each decision node and is best illustrated by means of a decision
tree. A pure strategy determines player i’s action at each decision node.
It consists of a sequence of action rules. An action rule is a mapping
from player i’s information set into his action space at a certain point
in time. A randomization over different pure strategies is a mixed strat-
egy. If a player chooses random actions at each of his decision nodes
independently, then he applies a behavioral strategy. A Nash equilib-
rium is formed by a profile of strategies of all players from which no
single player wants to deviate. In a Nash equilibrium all players take
the strategies of all the other players as given. A player chooses his
own optimal strategy by assuming the strategies of all the other play-
ers as given. The Nash equilibrium of an extensive form game is given
by the Nash equilibrium of its normal-form representation. If players
face uncertainty and hold asymmetric information, the equilibrium con-
cept generalizes to the BNE provided agents update their prior beliefs
using Bayes’ rule. Uncertainty is modeled by a random move of nature.
Players learn from exogenous signals and from the moves of other
players.
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Simultaneous Move Games
Before extending the analysis to multiperiod, sequential move games,
let us first illustrate the steps involved in the derivation of a BNE. This
highlights the differences between a BNE and a REE.6

Step 1: Specify the players’ prior beliefs and conjecture a strategy pro-
file, that is a strategy for each player. More specifically, propose a whole
set of profiles described either by a profile of general functions or by
undetermined coefficients. These profiles also determine the joint prob-
ability distributions between players’ prior beliefs, their information,
and other endogenous variables like other traders’ actions, demand,
and prices. A single player’s deviation from a proposed strategy profile
alters this joint probability distribution and possibly the other players’
beliefs. In a simultaneous move game, the other players cannot detect
this deviation in time and there is no need to specify out-of-equilibrium
beliefs.

Step 2: Update all players’ beliefs using Bayes’ rule and the joint
probability distribution, which depends on the proposed set of strategy
profiles, for example the undetermined coefficients.

Step 3: Derive each individual player’s optimal response given the
conjectured strategies of all other players and the market clearing
conditions.

Step 4: If the best responses of all players coincide with the conjectured
strategy profile, nobody will want to deviate. Hence, the conjectured
strategy profile is a BNE. In other words, the BNE is a fixed point
in strategy profiles. If one focuses only on equilibria in linear strate-
gies, the proposed set of strategy profiles can be best characterized by
undetermined coefficients. Each player’s best response depends on the
coefficients in the conjectured strategy profile. The BNE is then derived
by equating the conjectured coefficients with the ones from the best
response. The variational calculus method enables us also to derive the
equilibria in which strategies can take any functional form.

Sequential Move Games
In sequential move (multiperiod) extensive form games, players take
actions at different points in time. Let us focus first on perfect infor-
mation games before analyzing games in which different traders hold
different information. A strategy specifies the action at each node at

6 An example which illustrates these steps for a sequential move game is given by
Kyle’s (1985) model in Section 3.2.3.
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which a player makes a decision, independent of whether this deci-
sion node is reached in equilibrium or not. As before, a strategy profile
forms a Nash equilibrium if nobody has an incentive to deviate from his
strategy. Whether a deviation is profitable depends on how his oppo-
nents react after the player’s deviation. The opponents’ reactions after
a deviation are also specified by their strategies. A Nash equilibrium
does not require that the opponents’ out-of-equilibrium (re-)actions are
optimal. That is, many Nash equilibria rely on strategies which specify
nonsequentially rational out-of-equilibrium actions. Subgame perfec-
tion rules out Nash equilibria which are based on empty threats and
promises by requiring that the out-of-equilibrium action rules are also
optimal after an observed deviation. In other words, the strategy is
sequentially rational. An opponent cannot make a player believe that
she will react to a deviation in a nonoptimal manner in the subsequent
play. More formally, a Nash equilibrium is subgame perfect if the strat-
egy profile is also a Nash equilibrium for any subgame starting at any
possible (nonterminal) history, that is decision node. Subgame equilib-
ria can be derived by backwards induction or by applying the dynamic
programming approach.

Introducing Asymmetric Information in Sequential Move Games
In the case of imperfect information, a strategy specifies the actions of
a player at any information set at which the agent is supposed to move.
Players cannot distinguish between different histories contained in the
same information set. Depending on the proposed candidate equilib-
rium strategy profile, agents have a joint probability distribution over
the possible states of nature at each point in time. They use Bayes’ rule
to update their beliefs after each observed move or received signal. A
deviation of one player from the proposed strategy profile might alter
the subsequent players’ beliefs about the true state of the world. Hence,
whether a player considers a deviation profitable, depends on his beliefs
about how his deviation affects the other players’ beliefs and hence
their subsequent actions. In other words, profitability of a deviation
depends on the assumed out-of-equilibrium beliefs. Thus, the belief sys-
tem consisting of equilibrium beliefs as well as out-of-equilibrium beliefs
determine whether the proposed candidate equilibrium is a BNE. Note
that as long as other players cannot detect any deviation, they assign
zero probability to a deviation and there is no need to specify out-of-
equilibrium beliefs. If, on the other hand, subsequent players observe
the deviation, out-of-equilibrium beliefs need to be exogeneously spec-
ified. Out-of-equilibrium beliefs cannot be derived using Bayes’ rule
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since these information sets are reached with probability zero in the
(proposed) equilibrium.

Like the Nash equilibrium in the case of perfect information, the BNE
refers to the normal form representation of the game and thus does
not require sequential rationality. Hence, there are many BNE which
rely on empty threats and promises. Subgame perfection has relatively
little bite in imperfect information games since a subgame only starts
at a decision node at which the player knows the true (single) history.
Therefore, alternative refinements are applied for imperfect information
extensive form games. A sequential equilibrium (i) requires that players
are sequentially rational given their beliefs at each point in time, that
is, at each of their information sets they optimize given the beliefs on
the set of possible histories and (ii) it also restricts the possible set of
out-of-equilibrium beliefs. To be able to derive these beliefs by means
of Bayes’ rule, we need to consider completely mixed behavioral strate-
gies β. A mixed strategy is completely mixed if each pure strategy is
played with strictly positive probability. Given this behavioral strategy
profile, each terminal history is reached with strictly positive probabil-
ity. That is, for a given prior distribution and β, one can derive the
associated posterior belief system μ at each information set using Bayes’
rule. This belief system μ together with the associated completely mixed
behavioral strategy profile β is called an assessment (β,μ). If there exists
a sequence of assessments ((β,μ))∞n=1 that converges to a sequentially
rational assessment, then the limit forms a sequential equilibrium. Note
that only the limiting assessment has to satisfy sequential rationality,
but it need not be completely mixed. The drawback of this refined solu-
tion concept is that existence is only formally proven for finite extensive
games and it is not very easy to verify.

The simpler Perfect Bayesian Equilibrium (PBE) solution concept can
be applied for a certain class of extensive form games. In these games
all actions are observable and the asymmetry of information is mod-
eled by an unobservable move of nature prior to the start of the game.
Depending on the information/signal a player has received, the player is
assigned a certain type. A PBE also requires sequential rationality and
Bayesian updating after each observed action whenever possible. Any
sequential equilibrium in this class of games is also a PBE.

In summary, the REE concept refers to a competitive environment
where traders take the price function as given, whereas the BNE concept
allows us to analyze environments where traders take their price impact
into account. As the number of traders increases, the price impact of a
single trader decreases. Therefore, one might be tempted to think that as
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the number of traders goes to infinity, the BNE of a trading game where
all traders submit demand schedules might converge to the competitive
REE. Kyle (1989), however, shows that this need not be the case.

Bayesian Implementation of REE
The REE provides a specific outcome for each possible realization of the
signals. The question arises whether this mapping from information sets
onto outcomes can be implemented. In other words, can an uninformed
social planner design a mechanism or game form that would make it
individually rational for all market participants to act as in the REE
although they know that they might (partially) reveal their informa-
tion? The mechanism design literature distinguishes between different
forms of implementation. If there exists a mechanism whose equilib-
ria all coincide with the REE allocation function, then the REE can be
fully implemented. In this case, the “revelation principle” states that
a direct mechanism with an equilibrium outcome identical to the REE
outcome will also exist. In this direct mechanism each agent truthfully
states his private information (type). A REE allocation function is truth-
fully implementable if a possible equilibrium of the direct mechanism
coincides with the REE outcome. Truthful implementation does not
require uniqueness of the equilibrium outcome. Due to the revelation
principle any implementable function is also truthfully implementable.
The converse need not be true. Laffont (1985) shows that the REE
outcome is truthfully implementable for economies with a continuum
of traders. For the case of finitely many traders, the REE outcome is
only (truthfully) implementable if private information satisfies a kind
of “smallness,” Blume and Easley (1990). More precisely, the private
information of a single individual alone must not have any impact on
the equilibrium. Dubey, Geanakoplos, and Shubik (1987) show that no
continuous mechanism (including the submission of demand functions
to a market maker) can (uniquely) implement the REE correspondence
even in the case of a continuum of traders. This occurs because the
demand function game does not specify a unique outcome in the case of
several market clearing prices. The actual trading outcome depends on
the trading mechanism, which makes it clear that the market structure
matters.

Epistemic Differences between BNE and REE
Both equilibrium concepts also differ in their epistemic assumptions.
Assumptions about the cognitive capacity of agents are an important
part of game theory. The study of epistemic foundations of game
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theoretic solution concepts is a recent and active research area. Common
knowledge of the game and rationality of players alone do not imply the
Nash equilibrium solution concept but only the weaker rationalizability
solution concept. Aumann and Brandenburger (1995) provide suffi-
cient conditions for a Nash equilibrium outcome. In a two-player game,
mutual knowledge of the game, of the players’ rationality, and of their
conjectures implies that the conjectures constitute a Nash equilibrium.
For games with more than two players, this condition is only sufficient
if in addition all players share common priors and the conjectures are
common knowledge.

In contrast, general equilibrium analysis makes no cognitive assump-
tions. In a REE each agent is assumed to know the mapping from traders’
information onto prices, but nothing is assumed about what each agent
knows about the other agents’ cognitive capabilities and reasoning. In
equilibrium all agents agree on the same price mapping (consensus) and
point expectations (degeneracy), that is the mapping is deterministic.
Dutta and Morris (1997) isolate the role of consensus and of degeneracy
in achieving rational expectations.

Learning of REE
Both equilibrium concepts require that traders conduct complicated cal-
culations. Thus, the question arises whether it is feasible to describe
a plausible learning process which ultimately yields rational expecta-
tions if traders face the same situation repeatedly. It is shown by Bray
and Kreps (1987) that rational learning of REE using a correctly spec-
ified Bayesian model is actually a more elaborate and informationally
demanding form of REE. In such an extended REE, traders learn the
“conventional” REE. Alternatively, if agents are boundedly rational in
the sense that they are only using ordinary least square regressions to
learn about the relationship between the price and the underlying infor-
mation, the outcome converges under certain conditions to the REE
(Bray 1982).

1.3. Allocative Efficiency and Informational Efficiency

Economists distinguish between two forms of efficiency. Allocative effi-
ciency is concerned with the optimal distribution of scarce resources
among individuals in the economy. Informational efficiency refers
to how much information is revealed by the price process. This is
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important in economies where information is dispersed among many
individuals.

Allocation
Before distinguishing between different forms of allocative efficiency,
one has to define the term allocation. An allocation in a dynamic model
determines not only the current distribution of commodities and pro-
duction among all agents but it also specifies their redistribution at any
point in time conditional on the state of the world. A current alloca-
tion, therefore, pre-specifies many future “transactions” which depend
on the realization of the state. Agents pre-specify future transactions
through standardized security contracts and their derivatives, such as
futures, or through individual contractual arrangements. Pre-specified
events trigger transactions determined by the allocation. It is important
to distinguish these “intra-allocation transactions” from trades. In a
general equilibrium setting, trades refer only to changes from one allo-
cation to another. The applied finance literature does not always draw
the distinction between transactions and trades.

In dynamic models, the state of the world describes the payoff-relevant
history from t = 0 to t = T. The price process is part of the fundamental
component as well as of the epistemological component of the state
space �dynamic. Price affects traders’ payoff but is also a conveyor of
information. An example of a possible state space is given by

{{endowments}i∈�, {dividend of asset j}j∈�, {price of asset j}j∈�,

{{signals}j∈�}i∈�}t=0,...,T .

An allocation determines the distribution of resources for each date t
along each possible terminal historyω from t = 0 to t = T. The so-called
date-state (nonterminal history) in t for trader i is an event grouping all
states (terminal histories) which cannot be ruled out by the information
provided up to time t. The set of all possible terminal and nonterminal
histories, that is the date-states (t,ω), is given by � × �dynamic, where
� = {0, 1, . . . , T}. In general, the description of one date-state can be
quite cumbersome. Symmetry and a recursive structure may allow one
to simplify the state to a “sufficient date-state description.”

Allocative Efficiency
An allocation7 {{xi(ω)}ω∈�}i∈�, or more generally a decision rule, is
(allocative) Pareto efficient if there is no other allocation which makes

7 In a dynamic model an allocation is given by {{xi(t1ω)}(t1ω)∈�×�}i∈�.
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at least one agent strictly better off without making somebody else
worse off. However, in a setting with incomplete information, indi-
viduals’ expected utilities – which determine the notion of “better
off” and “worse off” – depend on their information. In such a set-
ting, one distinguishes between forms of allocative efficiency: ex-ante,
interim, and ex-post allocation efficiency. Ex-ante efficiency refers
to the unconditional expected utility, interim efficiency refers to the
expected utility conditional of private information sets S i, for exam-
ple, private signals Si, and ex-post efficiency refers to expected utility
conditional on all information, that is, the true state ω. Consequently,
an allocation is ex-ante Pareto efficient if there is no other allocation
which strictly increases one individual’s (unconditional) expected utility
E[Ui(·)] without reducing the other’s (unconditional) expected utility
level. Analogously, if we replace the unconditional expected utility with
the expected utility E[Ui(·)|Si(ω)] conditional on each individual’s sig-
nal Si, we get the definition for interim Pareto efficiency. For the case
of ex-post Pareto efficiency, one takes the expected utility E[Ui(·)|ω]
conditional on the true information state of the world ω. In financial
market models, ex-ante efficiency mostly refers to the time before agents
receive their signal, interim efficiency to the time after signal realization,
and ex-post efficiency to the time after (perfect) information revelation
through the price.8 As illustrated by Holmström and Myerson (1983),
these three notions of efficiency can also be represented via measura-
bility restrictions on individual weights λi(ω) ∈ � of a social welfare
function W({{xi(ω)}ω∈�}i∈�).

W({{xi(ω)}ω∈�}i∈�) =
∑
i∈�

∑
ω∈�

λi(ω) Pr(ω)Ui(xi(ω),ω).

If one can find arbitrary constants λi for the welfare function, such
that this allocation maximizes W(·), then this allocation is ex-ante effi-
cient. For a given allocation, if one can find λi(ω) which are measurable
only on the partitions associated with S i, then this allocation is interim
efficient. If one can find λi(ω) which depend on ω then the alloca-
tion is ex-post efficient. From this it follows immediately that ex-ante
efficiency implies interim efficiency, which in turn implies ex-post effi-
ciency. An alternative reasoning using negations is the following. If
an allocation is interim inefficient, that is, an interim Pareto improve-
ment is possible, then an ex-ante Pareto improvement is also possible.

8 In some papers interim efficiency refers to the expected utility conditional on the
private signal and the price signal.
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Similarly, if an allocation is ex-post inefficient it is also interim ineffi-
cient. Intuitively, ex-ante Pareto efficiency does not only require that the
allocation is Pareto efficient for each state ω but also that the allocation
optimally insures all risk averse agents over the different states of the
world.

So far we have not restricted the set of feasible allocations. Often there
are not enough traded securities to ensure that an efficient allocation can
be achieved. Constrained efficient outcomes and market completeness
is the focus of Section 2.4. A further complication arises in a world with
asymmetric information. An allocation might not be implementable if its
implementation depends on information that individuals hold privately
and are not willing to reveal. An allocation is only incentive compatible
or individually rational if the individuals are willing to report their infor-
mation, that is, their types. One can define ex-ante, interim, and ex-post
incentive compatible efficiency as done above by restricting attention to
the set of incentive compatible allocations.

In summary, in a world with asymmetric information, there are
six notions of allocative efficiency: ex-ante, interim and ex-post effi-
ciency within the set of all allocations and ex-ante, interim and ex-post
efficiency within the set of incentive compatible allocations.

Informational Efficiency
Prices are informationally efficient if they fully and correctly reflect the
relevant information. One can distinguish between strong, semi-strong,
and weak forms of (market) informational efficiency, depending on the
information reflected in the price. If the price reflects all publicly avail-
able as well as all private information then the price is strong-form
(informationally) efficient. If it correctly reflects only public informa-
tion then it is only semi-strong form (informationally) efficient, and
if it reflects only the history of past prices and past returns, then the
price is called weak form (informationally) efficient. This terminology
of informational efficiency was originally coined in the empirical finance
literature; see, for example, Fama (1970, 1976). If prices do not correctly
and fully reflect public information, then there would be a profitable
trading opportunity for individuals. In general, this is ruled out in mod-
els with rational, utility maximizing agents. If even the pooled private
information is fully reflected in the price, then a public announcement
of this private information would not alter the price.

Note that even if the price fully reflects information, it does not imply
that everybody can infer this information from the price. Information
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revelation through prices is the focus of much of the theoretical lit-
erature on financial markets. Prices can be distinguished according to
two criteria: (1) they can be fully revealing or partially revealing; and
(2) they can be (strong-form) informationally efficient in a theoretical
sense or not.

A price is fully revealing if agents can infer all private and public
information from the price. This is the case if the pricing function, the
mapping from the information sets into the price space for J assets,
is invertible. Note that P(·) : {S1, . . . , SI} → �J might arise from a
competitive REE or a strategic BNE. Prices are deemed to be partially
revealing if traders can only partially infer the information which is
dispersed in the economy.

Prices are (strong-form) informationally efficient in theoretical models
if they reveal a sufficient statistic for all the information in the economy.
In other words, observing the price will lead to the same equilibrium
outcome as in a full communication equilibrium.9 Fully revealing equi-
libria are obviously also informationally efficient.10 Informationally
efficient equilibria can be illustrated as follows. Let S be a sufficient
statistic for all individual information sets {S1, . . . , SI}. The function
S is a sufficient statistic if the knowledge of S leads to the same pos-
terior distribution as the knowledge of all individual information sets.
If we can rewrite the price function as P(·) : {S1, . . . , SI} g(·)→ S

f (·)→ P and
if f (S) is invertible, then the price is “fully informative” or (strong-
form) informationally efficient in the theoretical sense of Grossman
(1978). In contrast to the definition of informational efficiency in the
empirical literature, the theoretical definition requires that traders can
infer a sufficient statistic of all the information in the economy. In
this book we will focus on informational efficiency in the theoretical
sense.

If the price only (partially) reveals a sufficient statistic rather than
all individual signals then the price also aggregates the information
dispersed in the economy. Information aggregation allows market par-
ticipants to capture a lot of information in the economy by simply
observing a few prices.

9 Radner (1979) defines a full communication equilibrium as one in which all
information is shared among all market participants.

10 Informationally efficient REE can be derived by considering the corresponding
artificial economy in which all private information is treated as being public. The equi-
librium of this artificial economy is a full communication equilibrium. Having solved for
this equilibrium, one has to verify that it is a REE of the underlying diverse information
economy.
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Note that, in a dynamic setting, a price might be fully informative
about the current information, yet the inferred sufficient statistic might
not allow one to evaluate new future information as well as the current
disaggregated information does. Section 4.1.1 sheds more light on this
issue.

Interplay between Informational Efficiency and
Allocative Efficiency: the Hirshleifer Effect
For informationally efficient REE, ex-post allocation efficiency is a direct
implication of the first welfare theorem. REE which are only partially
revealing are in general not ex-post efficient. Moreover, even an informa-
tionally efficient REE does not guarantee that the equilibrium allocation
is interim efficient. Laffont (1985) provides an example of an informa-
tionally efficient REE which is interim inefficient and a partially revealing
REE which is ex-post inefficient. The interim inefficiency can be due to
a lack of optimal risk sharing.

Hirshleifer (1971) first noted that the expected revelation of infor-
mation can prevent risk sharing. A simple example helps to illustrate
his point. Consider a situation where two traders could perfectly insure
each other. More specifically, after observing their private signal they
still cannot distinguish between state ω1, in which trader 1 gains and
trader 2 loses, and state ω2, in which trader 2 gains and trader 1 loses.
Before they learn the true state ω, both traders are better off by insur-
ing each other. After the true state is known, the winner is no longer
interested in this deal. Demand functions allow traders to trade condi-
tional on the equilibrium price, that is, conditional on the information
revealed by the price. If the price reveals the true state ω, trade will not
occur. The incentives to share risk ex-ante disappears if one knows the
fully revealing price. In other words, price revelation can make ex-ante
desirable insurance impossible.

Because of the Hirshleifer effect, it may be desirable to have a REE
which only partially reveals the information of traders. Trade might
be possible when prices reveal less information. On the other hand,
partially revealing REE leads to a more severe adverse selection prob-
lem as uninformed investors can infer less information from prices. The
trade-off between the Hirshleifer effect and the adverse selection effect
is formally analyzed by Marin and Rahi (1996).

Grossman–Stiglitz Paradox
Informationally efficient prices lead to some of the more famous para-
doxes. If prices are informationally efficient, that is, they are a sufficient
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statistic for all private signals, no trader will condition her demand on
her private signal. But if traders’ demand is independent of their sig-
nals, how can prices be informationally efficient? How do traders know
whether the observed price is the rational expectations equilibrium price
or an off-equilibrium price? Thus, the Grossman paradox arises.

In a model with endogenous information acquisition, informational
efficiency precludes any costly information gathering. There is no incen-
tive to gather costly signals if the sufficient statistic of all signals can be
inferred from the prices for free. Acquiring information does not yield
any advantage because other traders can immediately infer a sufficient
statistic of it from the price. In other words, information acquisition
results in a positive information externality to all the other traders. Con-
sequently, an overall equilibrium with costly, endogenous information
acquisition does not exist if markets are informationally efficient. This
is known as the Grossman–Stiglitz paradox.

Jackson (1991) shows that the Grossman–Stiglitz paradox depends
crucially on the price taking behavior of the traders. He develops a
strategic BNE model in which a finite number of risk neutral traders
submit demand functions. Thereby, he explicitly models the price for-
mation process to illustrate how the signal is incorporated into the price.
For specific parameters, costly information acquisition occurs in the
BNE even though the price is informationally efficient. In other words,
although some agents bear information acquisition costs, they do not
have any informational advantage. In this setting, they acquire infor-
mation because they are driven by the beliefs of the other agents about
their information acquisition. Allowing for mixed strategies in a BNE
also resolves the Grossman–Stiglitz paradox. Dubey, Geanakoplos, and
Shubik (1987) show the resolution of this paradox in a market structure
wherein traders can only submit market orders.

Partially Revealing Equilibria
There are many reasons for price changes, including information about
the dividend/liquidation value of securities/assets, endowments shocks,
preference shocks (for example, cross-sectional changes in risk aver-
sion), and/or private investment opportunities. In partially revealing
equilibria, incompletely informed traders face a signal extraction prob-
lem which does not allow them to infer the true reasons for the price
change. This inference problem is illustrated in Figure 1.1.

As long as the price change is due to symmetric information, each
trader knows the true reason for it. If some traders do not know the rea-
sons for the price change they try to infer the asymmetric/differential
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Figure 1.1. Inference problem from price changes

information leading to it. Typically agents can only infer the price
impact of this asymmetric/differential information, but not of the actual
information itself. The question uninformed agents face is whether this
information is also relevant to their portfolio choice. In other words,
is asymmetric/differential information of common interest or only of
private interest for the other traders. More generally: to what extent is
information of common interest?

To keep the analysis tractable, information which is partially of
common interest and partially of private interest is assumed to be
decomposable into these two parts. The literature refers to trade due
to information of common interest as informational trading, whereas
trade due to information of private interest is called uninformed trading
or noise/liquidity trading. For example, information about the liqui-
dation value of an asset is of common interest. On the other hand,
information about trader i’s inventory costs might concern only trader
i’s evaluation of a certain security as long as trader i’s behavior has no
impact on the aggregates. An endowment shock for a whole group of
investors might affect the portfolio choice of all investors via a change in
the equilibrium prices, yet it primarily concerns only those investors who
experience the endowment shock. A further example of information of
private interest is provided by Wang (1994). In his model, informed
investors receive information about a private investment opportunity
in which only they can invest. An equilibrium is partially revealing if
less informed traders cannot determine whether the unexpected price
changes are due to others’ information of common interest or informa-
tion of their private interest. Figure 1.1 provides an illustration of the
different reasons for price changes.
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Following Grossman and Stiglitz (1980) most models exogeneously
introduce noise in order to make the equilibrium price only partially
revealing. Chapters 3 and 4 will cover these models extensively. Allen
(1981) provides a class of exchange economies where the price is “pri-
vately revealing.” The traders’ private signals combined with the price
is a sufficient statistic for the pooled information of all traders. The full
communication equilibrium of the artificial economy can still be used in
such a setting for proving the existence of a REE. In a more general envi-
ronment where the asymmetry of information persists in equilibrium, a
different proof is needed. In order to apply the fixed point theorem,
expected utility functions and, thus, the excess demand functions, must
be continuous in prices. Ausubel (1990) presents a set of economies
where every trader gets two signals. The first signal is a real number
and the second signal is binary. The imposition of some differentiabil-
ity conditions on marginal utility allows Ausubel (1990) to construct
a partially revealing REE. There are also models where investors only
observe a noisy signal of the price. In Allen (1985) the market clears
only approximately since individuals’ demands are based on this noisy
price. According to the dominated convergence theorem, the noisy com-
ponent smoothes out discontinuities in the excess demand function. This
allows the author to apply the fixed point theorem on excess demand
functions (instead of on the price mappings) and show the existence of
a partially revealing REE. Even though traders observe only a noisy sig-
nal of the equilibrium price in Allen (1985), they know the equilibrium
relationships between prices and parameters that describe the uncertain
environment precisely. In other words, agents’ models (beliefs) coincide
with the true model. This rationality assumption is relaxed in Anderson
and Sonnenschein (1982) and McAllister (1990). Their approach incor-
porates elements of bounded rationality and goes beyond the scope of
this book.

The efficiency and equilibrium concepts introduced in this chapter
provide the necessary background for a thorough analysis of asset prices
and trading volume which is provided for a general setting in the next
chapter and for more specific settings in the following chapters.
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No-Trade Theorems, Competitive
Asset Pricing, and Bubbles

The concepts introduced in the previous chapter allow us to derive some
results in a fairly general setting. In this chapter we demonstrate the gen-
eral properties of equilibrium trades and asset prices. Before analyzing
asset prices, we will first focus on equilibrium trades and trading volume
in an asymmetric information setting. Section 2.1 illustrates different
no-trade theorems and no-speculation theorems.

Sections 2.2 and 2.3 are concerned with the pricing of assets.
Section 2.2 introduces the basics of standard competitive asset pric-
ing under symmetric information and highlights the complications that
arise if traders are asymmetrically informed. Information revelation by
prices is closely linked to the security structure and market complete-
ness. We will distinguish between dynamically complete markets and
completely equitizable markets in multiperiod models with asymmetric
information.

Dynamic asset pricing leads us to the analysis of bubbles. Bubbles
that are common knowledge, like in a symmetric information setting,
arise only under special circumstances. In contrast, in settings where
market participants are asymmetrically informed, bubbles are typi-
cally not common knowledge. Necessary conditions for the existence of
bubbles are derived in settings with higher-order uncertainty. Higher-
order uncertainty and higher knowledge concepts were introduced in
Section 1.1.

2.1. No-Trade Theorems

An immense number of transactions occur in financial markets. The
large trading volume in the foreign exchange market is one illustra-
tive example. Currency trading in foreign exchange markets amounts
to more than ten times the value of imported and exported goods. One
might think that this high trading volume cannot be explained without
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attributing it to speculation. Traders might speculate if they hold differ-
ent opinions about the value of the assets. These varying opinions might
be due to different information among traders. Therefore, one could be
tempted to attribute high trading volume to differences in information
among traders. This section illustrates that – counter to early intuition –
asymmetric information alone cannot explain the high trading volume
in financial markets. If the model is common knowledge and agents
share common priors, different no-trade theorems show that asymme-
try in information does not stimulate additional trade. On the contrary,
asymmetric information might reduce the trading volume and might
lead to market breakdowns. On the other hand, difference in informa-
tion might lead to a higher trading volume in models where noise traders
guarantee a certain random order flow and the other market participants
hold different pieces of information.

An Equivalent, Tractable Definition of Common Knowledge
We need to extend our formal knowledge of partitions and knowledge
operators in order to understand the major arguments and no-trade
theorems presented in this section. In Section 1.1 we noted that an event
E is common knowledge in a certain state ω if all agents know that the
true state lies in this event and all know that all know this and so on,
ad infinitum. Checking whether an event is common knowledge is very
cumbersome since one has to verify an infinite number of conditions.

Aumann (1976) provided an equivalent, more tractable notion of
common knowledge in terms of public events. Let us first introduce
the following definitions.

1. An event E is self-evident for agent i if E is a union of i’s partition
cells P i(ω), that is, P i(E) = E. In other words, E is self-evident if for
all ω ∈ E, P i(ω) ⊆ E.

2. Event E is a public event if it is simultaneously self-evident for all
agents i ∈ �.

3. A partition consisting of public events is called common coarsening.
The meet M := ∧I

i P i is the finest common coarsening, that is a parti-
tion whose cells are the smallest public events M(ω). The meet reflects
the information which is common knowledge among all agents.

4. By pooling all individual’s information, one can derive finer parti-
tions. The join J := ∨I

i P i is the partition which reflects the pooled
information of all individuals in the economy.

Aumann (1976) shows that a public event M(ω) � ω is common knowl-
edge at ω. Obviously, at this ω ∈ M(ω), any event E′ ⊇ M(ω) is also
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Figure 2.1. Illustration of common knowledge events

common knowledge. A public event M(ω) can also be viewed as a set of
states which are reachable from the true state ω. Let us use the example
depicted in Figure 2.1 to illustrate this concept.

The state space � in this example is given by finitely many dots on the
line. Agent 1’s partition is illustrated above the line and agent 2’s parti-
tion lies below the line. To illustrate the linkage between “reachability”
and common knowledge, let us assume that ω′ is the true state of the
world. Consequently, agent 1 thinks that any ω ∈ P1(ω′) is possible. He
knows that ω′′ is not the true state of the world, but he also knows that
agent 2 thinks that ω′′ is possible. Therefore, the event P1(ω′) is surely
not common knowledge since ω′′ is reachable through the partition cell
P2(ω′) of agent 2. Is event P2(ω′) common knowledge? Consider state
ω′′′. Agent 1 and agent 2 know that ω′′′ is not the true state, that is,
the event P2(ω′) is mutual knowledge in ω′. However, a state ω′′′ is
still reachable. Although agent 1 is sure that agent 2 rules out state
ω′′′, agent 1 knows that agent 2 is not sure whether agent 1 rules out
state ω′′′. Therefore, P2(ω′) is not common knowledge. The public event
M(ω′) = P1(ω′) ∪ P1(ω′′′) is common knowledge since any ω outside
this event is not reachable. Consequently, the meet M for this example
is given by {P1(ω′) ∪ P1(ω′′), P1(ω′′′′)}.

Agreeing to Disagree
This alternative notion of common knowledge allowed Aumann (1976)
to show that rational players cannot “agree to disagree” about the prob-
ability of a given event. In other words, if the posterior probability
of a rational player about a certain event is common knowledge, then
the other player must have the same posterior probability. This result
requires that all players use the Bayesian updating rule (that is, they are
rational) from a common prior distribution and that the rationality of
all players is common knowledge. The common prior doctrine states
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Figure 2.2. Illustration of Aumann’s agreement theorem

that differences in probability assessments must be due to differences in
information. Aumann’s (1976) agreement result says intuitively that if
a rational agent 1 has a different probability assessment than agent 2,
then agent 2 must conclude that this can only be due to the fact that
agent 1 has information agent 2 has not considered yet or vice versa. It
is important to note that equal posterior probabilities do not mean that
all traders followed the same reasoning to reach this common posterior.
They need not have the same information.

Since it is a central result, let us also illustrate the formal proof.
Figure 2.2 helps illustrate the outline of the proof.

Depending on the state ω, agent i receives a certain piece of infor-
mation which allows him to update his prior distribution about the
likelihood of a certain event D. Let us group all states ω in which the
additional information leads to the same posterior Pi for agent i about
event D and let us call this group of states Ei

Pi . In other words, for
any ω ∈ Ei

Pi , the posterior Pi = Pr(D|P i(ω′)) ∀ω′ ∈ Ei
Pi is the same.

The event Ei
Pi can be found for any agent i. Since the posteriors of all

agents {Pi}i∈� are common knowledge, the true state ω must lie in a pub-
lic event Epublic ⊆ ⋂

i Ei
Pi . For all partition cells P i(ω) ⊆ Epublic, agent

i’s conditional probability concerning event D is the same. The proof
relies on the fact that the conditional probability of D conditional on
any union of P i(ω) ⊆ Epublic including the public event Epublic is also the
same. Conditional probabilities satisfy this property which is known as
the sure-thing principle. In short, conditioning on agent i’s information
partition cell leads to the same posterior as conditioning on the public
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event Epublic does. This is true for any agent i. If all agents could have
conditioned on the same public event Epublic instead of on their private
information, then their posterior distribution has to coincide provided
they share a common prior distribution. The proof also makes clear that
the posterior might be different from a setting where one pools all agents’
information, that is, conditioning on the join J := ∨I

i P i. The reason
is that even though all agents have the same posterior, the information
set on which their posteriors are based might differ.

Generalization of Aumann’s Result
Geanakoplos (1994) generalizes Aumann’s result. Agents act condi-
tional on their information. Action rules have to satisfy the measurability
condition which states that an agent can only choose different actions
conditional on states that he can distinguish from each other. Thus an
action rule1 can be viewed as a mapping from a trader’s information
set onto the action space. The same reasoning that Aumann applied for
conditional probabilities can be applied to any action rule as long as
the action rule satisfies the sure-thing principle. An action rule satisfies
the sure-thing principle if whenever the rule assigns the same action a
to P i(ω′) as well as to P i(ω′′), then it also assigns the same action a to
the union of the information sets, P i(ω′)∪P i(ω′′). Then, the generalized
agreement theorem states that if the actions chosen by players based on
their private information are common knowledge, then there exists an
environment with symmetric information which would lead to the same
actions. More precisely, the action profile of all agents based on their
individual private information is the same as the profile based on the
public event Epublic. This implies that in the case where all players fol-
low the same action rule, and the actions are common knowledge, then
the chosen action has to be the same for all players. As stated above,
this theorem requires common priors and that the action rules satisfy the
sure-thing principle. Geanakoplos (1994) calls this theorem “common
knowledge of actions negates asymmetric information about events” to
highlight the point that if the actions of players are common knowledge
then asymmetric information has no impact.

Equilibrium with Commonly Observable Actions
The theorem stated above indicates that it makes a significant difference
whether the actions of all players are common knowledge or not. Actions

1 An action rule is a mapping from the partition into the action space at a certain
point in time. A strategy (action plan) is a sequence of action rules for every possible
partition.
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are always common knowledge in a setting with only two players who
agree on some contingent transfer of money. From Aummann’s agree-
ment theorem it immediately follows that two rational agents never bet
against each other. This is because both agents would assign the same
probability to the outcome of the bet in equilibrium.

There are many privately informed traders in a market environment
and, thus, all traders’ actions are not necessarily common knowl-
edge. However, if all net trade vectors are common knowledge, the
equilibrium outcome under asymmetric information coincides with the
equilibrium in a symmetric information setting in which only the infor-
mation revealed by the net trade vectors is made public. This is just
an application of Geanakoplos’ theorem that common knowledge of
actions negates asymmetric information about events and holds for the
REE concept and the BNE concept. In particular, if there is no trade
under the equivalent symmetric information setting, there is also no
trade under the asymmetric information setting. Note that common
knowledge of all agents’ net trades implicitly assumes that each trader
can trade conditional on all others’ net trades. However, no-trade results
can also be derived even when the net trade vectors are not common
knowledge, that is, each trader only knows his trading activity and
observes the price and maybe the aggregate trading volume.

No-Trade Theorem for REE
In the standard REE setting, only the price vector is commonly known
in equilibrium but the actions of each individual trader are typically not
common knowledge. One of the first no-trade theorems states that if
it is common knowledge that all traders are rational and the current
allocation is ex-ante Pareto efficient, then new asymmetric informa-
tion will not lead to trade, provided traders are strictly risk averse and
hold concordant beliefs. There are many different ways to derive this
result. Milgrom and Stokey (1982) originally proved this theorem using
Aumann’s agreement argument. Holmström and Myerson (1983) noted
that interim efficiency of the initial allocation is sufficient and the theo-
rem follows directly from the fact that interim efficiency implies ex-post
efficiency.2

Another way to prove the no-trade theorem is to utilize the fact that
all gains from trade sum up to zero if it is common knowledge that
the initial allocation is interim efficient and all agents share a common
prior. Kreps (1977) and Tirole (1982) prove the no-trade theorem by

2 The relationship between the different forms of Pareto efficiency are explained in
Section 1.3.
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employing this reasoning and the fact that more knowledge never hurts
a Bayesian optimizer in a nonstrategic (single-player) environment.

No-Trade Theorem for BNE
The no-trade theorem holds for Bayesian games as well. If it is com-
mon knowledge that the current allocation is interim Pareto optimal,
then the trading game is a zero-sum game. Common knowledge of
rationality implies that everybody tries to maximize his trading gains.
Intuitively, anyone who receives a trading offer can infer that her oppo-
nent wants to make money by using her superior information. Since the
opponent can only gain if somebody else loses, nobody will be willing
to trade except at prices that already incorporate her information. In
other words, passive investment is a (weakly) dominant strategy. The
proof of the theorem uses the zero-sum game argument and the fact that
additional information cannot hurt in a single-player environment.

Asymmetric Information Reduces Trade – Market Breakdowns
So far we have shown that asymmetric information alone does not stim-
ulate trade if the initial allocation is interim Pareto efficient and thus no
trade will occur under a symmetric information setting. We now illus-
trate that asymmetric information might even inhibit trade which would
otherwise occur. In other words, asymmetric information can deter trade
even when the current allocation is not interim Pareto optimal.

One kind of no-trade theorem is due to the Hirshleifer effect
(Hirshleifer 1971). In this case the anticipated information revelation
through prices prevents agents from risk-sharing trade. Trading pro-
vides a means for ex-ante Pareto improving risk sharing in a world with
uncertainty where one group of risk averse traders is better off in one
state and the other group in the other state. After the uncertainty is
resolved, the group of traders which is better off is no longer willing to
trade, because every allocation is ex-post Pareto efficient. Consider an
information structure wherein no trader can distinguish between both
states, but the combined information, that is, the join, provides knowl-
edge about the true state. Now, if the price reveals the true state and
traders trade conditional on the price, knowledge of the price prevents
trading. Trade will not take place in the first place in anticipation of the
information revelation of the price.

Another group of no-trade theorems is related to Akerlof’s market
for lemons (Akerlof 1970). These theorems relate to situations where
the current allocation is not ex-ante Pareto efficient and agents want
to trade for both informational and noninformational reasons. This
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is, for example, the case in a setting where all informed traders know
the true value of the stock. Thus, informed investors trade to exploit
their informational advantage, while uninformed traders only trade for
the purpose of risk sharing. Uninformed traders face an adverse selec-
tion problem because they cannot discern the extent to which the price
change is due to informed or uninformed hedging demand. Therefore,
informed traders can extract an information rent from the uninformed
traders. If the number of informed traders or the informational advan-
tage of the insiders is too large, then the loss that the uninformed traders
incur through the information rent for the insiders can outweigh their
hedging gains. In this case they are unwilling to trade and one observes
a market breakdown. Bhattacharya and Spiegel (1991) analyze mar-
ket breakdowns for the case of a single information monopolist who
trades with infinitely many competitive, uninformed investors. In their
model the information monopolist trades strategically, that is, he takes
into account the fact that his order will have an impact on information
revelation through prices.

No-trade theorems can even arise in a setting with heterogeneous prior
beliefs. Morris (1994) shows that incentive compatibility considerations
can preclude trading.

Increased Trading Volume due to Asymmetric Information
He and Wang (1995) show that new asymmetric information need not
lead to a no-trade outcome if the information is dispersed among many
traders. Dispersed information can even lead to a higher trading volume
than the volume that would result under symmetric information. In their
model there are noise traders who trade for reasons exogenous to the
model. Consequently, the initial allocation is not interim Pareto efficient,
or at least it is not common knowledge and, thus, the classic no-trade
theorems do not apply. In this setting, asymmetrically informed traders
engage in trading in order to profit from the expected losses that noise
traders incur. He and Wang’s (1995) dynamic REE model is discussed
in more detail in Section 4.3.

2.2. Competitive Asset Prices and Market Completeness

The trading opportunities available to investors and the possible sets
of equilibrium allocations depend on the number and nature of trade-
able assets. The security structure also affects how much information
prices reveal. The basic ideas are best illustrated in a static setting before
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analyzing the dynamic case. In both settings, we summarize the key
results for the symmetric information case3 and then illustrate the com-
plications that arise when asymmetric information is introduced. Like
the literature, this section focuses primarily on a competitive market
setting.

2.2.1. Static Two-Period Models

There is only one trading round in static models. Investors trade assets
and form their portfolios in period t = 0. In t = 1 each asset j pays
a dividend Xj(ω), which depends on the state of nature ω. In a model
with symmetric information, a market is complete if there are enough
assets with linearly independent payoffs such that each possible state
of the world is insurable. A state is insurable if the security structure is
such that buying or selling a certain combination of assets only alters the
payoffs in this single state. In formal terms, the market is complete if
the payoff (dividend) matrix X|�|×J = [X1, . . . , XJ] has rank |�|, that is,
the rank of X is equal to the number of states ω. For complete markets,
there also exists an alternative security structure with Arrow–Debreu
securities for each possible state which leads to the same equilibrium
outcome. An Arrow–Debreu security for state ω pays one unit only
in state ω and nothing otherwise. The price of these Arrow–Debreu
securities q are called state prices. The absence of arbitrage guarantees
the existence of a unique (competitive) state price q(ω) for each state,
provided the agents’ utility functions are increasing. Assuming smooth
utility functions, individual optimality guarantees that the state prices
q(ω) coincide with each investor’s marginal rate of substitution between
the current consumption good and the consumption in state ω, that is

q(ω) = ∂Ui/∂c(ω)
∂Ui/∂c0

=: MRSi
0,ω ∀ω.

From this it follows directly that the equilibrium outcome is Pareto
efficient.

Three Asset Pricing Formulas
The (competitive) asset prices of the original securities are given by the
weighted sum of state prices. The weights are such that the payoff of

3 For a detailed exposition of the standard asset pricing theory, see for example
Cochrane (2000), Duffie (1996), Huang and Litzenberger (1988), Ingersoll (1987), or
Magill and Quinzii (1996).
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the portfolio of Arrow–Debreu securities replicates the final payoff Xj

of the original asset j:

pj =
∑
ω∈�

q(ω)Xj(ω).

The price of a riskless bond which pays one unit in each state of the
world, that is, Xbond(ω) = 1 ∀ω is pbond = ∑

ω∈� q(ω). This also defines
the risk-free rate rf which is given by pbond = 1/(1 + rf ).

Let us define a stochastic discount factor m(ω) = q(ω)/Pi(ω) for a
given probability distribution Pi. Hence, the pricing equation can be
rewritten as the expectations of the product mXj:

pj =
∑
ω∈�

Pi(ω)m(ω)Xj(ω) = EPi
[mXj].

All prices are in terms of current consumption, that is, the price of
current consumption is one. Changing the numeraire of the prices allows
us to interpret state prices in terms of probabilities. Let us normalize the
state prices q(ω) such that their sum is equal to one. The numeraire of
these new state prices q̂ = q(ω)/

∑
ω∈� q(ω) is a riskless bond which

pays one unit in each state of the world, that is, Xbond(ω) = 1 ∀ω. Thus,
the asset price in terms of a bond is the expectations with respect to the
equivalent martingale probability measure Q̂ formed by the state prices
q̂. The asset price in terms of current consumption can therefore also be
written as

pj = EQ̂
[

1
1 + rf

Xj
]
,

where rf is the risk-free rate reflecting the bond price.
The equivalent martingale measure (EMM) allows risk neutral pricing

of assets (Harrison and Kreps 1979). Imagine a risk neutral investor
whose subjective probability distribution over the states of the world
happens to coincide with the normalized state prices q̂. His discounted
expected value of any asset j’s payoff is then equal to the equilibrium
asset price pj.

Representative Consumer Economy – Aggregation
As long as markets are complete, the first welfare theorem implies that
the equilibrium outcome is Pareto efficient in an environment with sym-
metric information. The derivation of (competitive) state prices q in a
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market with heterogeneous agents can be very computationally demand-
ing. Pareto optimality implies that one can find a representative agent
economy with the same asset prices. Calculating the asset prices of this
economy is much easier. The prices have to be such that it is optimal
for the representative agent to consume the aggregate endowment. The
utility (welfare) function of the representative agent is a weighted sum
of the individuals’ utility functions, that is Urepr(c) = ∑

i λ
iUi(c).

Unfortunately, the individual weights λi generally depend on the initial
distribution of endowments.

An exceptional case is a setting in which all agents have a utility
function Ui(c) with linear risk tolerance (LRT), that is,

− ∂Ui/∂c
∂2Ui/∂c2

= αi + βc

with a common coefficient of marginal risk tolerance β. These utility
functions are also called hyperbolic absolute risk aversion coefficient
(HARA) utility functions and encompass utility functions with con-
stant absolute risk aversion and with constant relative risk aversion.
This class of utility functions is further explained in the beginning of
Chapter 3.

The aggregation property of LRT economies was derived in many
steps. Gorman (1953) initiated the research on aggregation of hetero-
geneous agents. He showed that the equilibrium prices in an exchange
economy do not depend on the initial distribution of endowments if and
only if asset demands are affine functions of wealth with the same slope.
Pollak (1971) characterized utility functions which allow Gorman aggre-
gation. Utility functions which satisfy the von Neumann–Morgenstern
axioms have to exhibit linear risk tolerance (LRT). This was first pointed
out by Tobin (1958) and Cass and Stiglitz (1970) within the theory of
fund separation. Rubinstein (1974) proved that LRT is sufficient for
Gorman aggregation in an Arrow–Debreu setting. In other words, if all
agents have LRT utility functions with a common constant β, then any
λi weights for the representative consumer’s utility function will lead to
the same asset prices.

Incomplete Markets
If the asset structure does not allow one to insure each state ω individu-
ally, then the markets are said to be incomplete. In this case, the rank of
the payoff matrix X|�|×J is strictly smaller than the number of states |�|.
The absence of arbitrage still guarantees the existence of (competitive)
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state prices q. However, the state prices are not unique given certain
asset prices p. There are many state prices q > 0 for which the pricing
equation is pj = ∑

ω∈� q(ω)Xj(ω) and thus no-arbitrage holds. Con-
sequently, there are also many possible stochastic discount factors and
equivalent martingale measures.

For states ω which are individually insurable, state prices q(ω) still
coincide with all agents MRSi

0,ω. That is, in equilibrium the MRSi
0,ω for

these ω’s are the same for all agents i. However, for states which cannot
be individually traded without changing the payoff in other states as
well, the state price qi(ω) might not be equal to all investors’ MRSi

0,ω.
Therefore, the equilibrium outcome is typically not Pareto optimal in an
incomplete market setting because certain combinations of states can-
not be traded. Nevertheless, it is still constrained Pareto efficient, that
is, a Pareto improvement within the restricted trading set is not possible.
If markets are incomplete, the trading space is restricted since certain
states are not individually insurable. There are, however, some excep-
tional cases where a Pareto efficient outcome can be still achieved even
though the markets are not complete. One well-known exception is an
economy where all investors have LRT utility functions with a common
constant β and each individual’s endowments are tradable. In this case,
the Pareto efficient outcome is characterized by a linear risk-sharing
rule, that is, every investor holds a certain fraction of the aggregate risk.
The Pareto optimal allocation can be achieved if each investor sells his
endowment and buys a fraction of the aggregate endowment. Represen-
tative consumer analysis – as described earlier for the complete markets
case – can also be used to derive the equilibrium asset prices for these
incomplete market economies.

Introducing Asymmetric Information
The state space � also contains all individual signals in a setting with
asymmetric information. The security structure not only determines
which states are insurable, but also has an important impact on infor-
mation revelation. Limiting the number of assets restricts the number
of observable price signals and the trading possibilities of the informed
investors. Thus, there might be many information constellations which
lead to the same price vector, or even to the same trading behavior.
Obviously not only the number of traded securities matters, but also
which securities are traded is important. The actual security design
has a significant impact on information revelation and has motivated
the optimal security design literature. We restrict out attention to con-
ditions which guarantee the existence of a fully revealing REE. We
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direct interested readers to Allen and Gale (1994) and Duffie and
Rahi (1995) for a general treatment of the optimal security design
literature.

Existence of Fully Revealing REE
The crucial condition for the existence of a fully revealing REE is that
the mapping from signals onto prices is invertible. As the number of
assets increases, so does the dimensionality of the price space. If there
is only a finite number of possible signals (for example {high, middle,
low}) and prices can be any vector in �

J
+, the invertibility of the map-

ping from signals onto prices only fails in special circumstances. Radner
(1979) concludes that a REE exists and is fully revealing for a generic
set of economies. Kreps (1977) provides a well-known counterexample,
where a fully revealing equilibrium does not exist. Kreps’ example is,
however, not robust since a small change in the parameters destroys the
nonexistence result.

If the signal structure is more general, in the sense that signal realiza-
tions can take on any value on �, or even �m, then the dimensionality
of the signal space plays a crucial role. Allen (1982) shows that if the
number of relative prices is larger than the dimensionality of the signal
space, then a REE does exist and is fully revealing for a generic set of
economies. For the case where the dimension of the signal space is equal
to the number of relative prices, there exists an open set of economies
with no REE (Jordan and Radner 1982). If the dimension of the signal
space is higher than the dimension of the relative price space, then there
exists a generic set of economies with non-fully revealing REE (Jordan
1983). Note that the signal space is part of the state space �. Con-
sequently, if markets are complete, that is, a price can be derived for
each state ω, then the set of prices is fully revealing. Similar results may
apply for the existence of informationally efficient REE where prices
only reveal a sufficient statistic of the signals. In this case the dimension-
ality of the space of the sufficient statistic rather than the signal space is
crucial.

Quasi-complete Economies
If incomplete markets are quasi-complete, a (strong-form) information-
ally efficient REE exists independently of the dimensionality of the
signal space and price space. DeMarzo and Skiadas (1998) essen-
tially define incomplete markets as quasi-complete if (1) an equiva-
lent martingale measure exists, and (2) all equilibrium outcomes are
interim Pareto efficient given private information and the information
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revealed by prices. In general, an equivalent martingale measure Q̂
need not exist if markets are incomplete and information is dispersed
among many investors. Duffie and Kan (1991) provide a nonexis-
tence example. As in the case for complete markets, an equivalent
martingale measure also exists for quasi-complete markets. Although
quasi-complete economies share many features of complete markets
economies, they can also support equilibria that do not perfectly
reveal agents’ private information. DeMarzo and Skiadas (1998, 1999)
show that (strong-form) informationally efficient equilibria are single-
tons and derive conditions for the additional existence of partially
revealing equilibria. Furthermore, interim efficiency of the equilib-
rium allocation leads to a tractable characterization of the equilibrium
trades.

Examples of quasi-complete economies are economies where the secu-
rity structure allows everybody to sell his endowment, where investors
have a common prior, and either (1) there is no aggregate risk, or
(2) there is at least one risk neutral trader. An economy in which every
investor has a linear risk tolerance (hyperbolic absolute risk aversion)
(LRT, HARA) utility function with a common constant marginal risk
tolerance β is also quasi-complete, provided individuals’ endowments
are tradable.

Equilibrium trade vectors can be computed in terms of the price
vector. This is due to the assumed interim Pareto efficiency of the equilib-
rium allocation for quasi-complete economies. While interim efficiency
has been commonly used to prove the no-trade theorem, DeMarzo and
Skiadas (1998) extend the same logic to derive a trade result. Obviously,
if the initial allocation is already interim efficient, all trades are zero and
the no-trade outcome prevails. The authors illustrate the equilibrium
trades for some examples of quasi-complete economies. In an economy
with at least one risk neutral investor, all risk averse agents sell their
endowment to this risk neutral investor in any REE. This occurs even if
they hold different private information about the value of the stock. A
tractable expression for the interim efficient trades can also be derived
for economies where all agents have LRT (HARA) utility functions with
a common constant β. Agents trade so that their fractional ownership
of the aggregate endowment of each risky asset is equal to the ratio
of their equilibrium risk tolerance to the aggregate risk tolerance. This
is independent of whether the equilibrium is informationally efficient
or not.

The existence of an equivalent martingale measure Q̂ allows us
to focus on risk neutral pricing. If Q̂ is an EMM and p is a REE
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price vector, then p = EQ̂[v|Si, p] for each investor i. Applying the
conditional expectations operator EQ̂[·|p] to both sides, the law of
iterative expectations implies that p = EQ̂[v|p]. The same is true
for expectations conditional on the price and on events which are
common knowledge. This holds for partially revealing and informa-
tionally efficient REE. An informationally efficient price has to be
equal to p = EQ̂[v|∨i∈� Si, p]. DeMarzo and Skiadas (1998, 1999) use
this point to show that the fully (strong-form) informationally effi-
cient price vector is a singleton. There might, however, also exist
additional partially revealing equilibria with possibly different prices
p = EQ̂[v|Si, p]. As in Aumann’s generalized agreement result presented
in Section 2.1, all agents i have to share the same posterior estimate of
v, EQ̂[v|Si, p] = p ∀ i. However, this posterior might be different from
the posterior that is based on the pooled information. DeMarzo and
Skiadas (1998, 1999) provide the necessary and sufficient conditions
for the existence of additional partially revealing REE in quasi-complete
economies.

DeMarzo and Skiadas (1998) also show that the Gorman aggregation
can be extended to LRT economies with asymmetric information. In
this case, the representative agent only needs to know the information
revealed by the prices.

2.2.2. Dynamic Models – Complete Equitization versus
Dynamic Completeness

There are many trading rounds t = 0, 1, . . . , T in a multiperiod model.
Investors can restructure their portfolio in each period. In a dynamic
setting, a state ω ∈ � describes a whole history (path). Dynamic models
can be classified into two groups depending on whether investors con-
sume only in the final period t = T or in each period. If consumption
can only take place in the final period t = T, then markets are complete
in the sense of Debreu (1959) if the consumption good can be traded in
t = 0 conditional on every state ω. In models where investors consume
in each period t, markets are only Debreu complete if all individuals
can trade the consumption good conditional on any state ω and on
any time t. In other words, markets are complete if any so-called date-
state (t,ω) ∈ � × � is insurable. Grossman (1995) calls these markets
completely equitizable since there are enough securities with linearly
independent payoffs such that conditional trading on any possible date-
state is insurable through a once-and-for-all trade in t = 0. In other
words, there will be no re-trade in later trading rounds and the dynamic
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setting is essentially the same as the static setting. Consequently, all the
results of the static setting apply directly to the dynamic setting as long as
markets are completely equitizable. All the pricing formulas still apply,
where the payoff of an asset in t + 1, Xt+1(ω) = dt+1(ω) + pt+1(ω),
consists of the dividend payment in t + 1 plus the price in t + 1 in terms
of consumption in t = 0.

Trading Strategies versus Traded Securities
In contrast to a static model, a dynamic setting has the advantage that
it allows investors to adjust their portfolio as information unfolds over
time. Trading in later trading rounds has the advantage that one can con-
dition one’s trading activities on the prior history. Many more payoff
streams can be generated by using dynamic trading strategies. Dynamic
trading strategies already specify in t = 0 issues such as at what time,
in which states, which and how many assets are bought or sold. Arrow
(1953) first observed that the possibility of trades in later trading rounds
can make up for the absence of certain traded security markets. Mar-
kets are called dynamically (or synthetically) complete if all states are
insurable through dynamic trading strategies.4 The number of linearly
independent assets only has to be larger than the maximum splitting
index. In a model with symmetric information, the splitting index at
time t reports the number of branches in which the path/history can
possibly proceed starting from the current event in t to t + 1. As long
as markets are dynamically complete, any additional asset is redundant
and thus does not alter the economy. The price of this redundant asset
can be derived from the prices of the other assets. In short, dynamically
complete markets lead essentially to the same equilibrium allocation as
completely equitizable markets as long as all investors hold the same
information.

Introducing Asymmetric Information
The previous result changes dramatically if traders are asymmetrically
informed. In the asymmetric information setting, it makes a big dif-
ference whether markets are completely equitizable or only dynamically
complete. The main problem for the uninformed traders under asymmet-
ric information is that they cannot distinguish between the case where

4 For example, if the dividend payment of one asset is normally distributed, then the
number of states is already infinite and, therefore, any market with finitely many assets
is incompletely equitizable. In a continuous time model in which trade occurs in any
instant, the market can still be dynamically complete.
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the opponent trades for informational reasons from the case where he
just follows his pre-specified dynamic trading strategy. Grossman (1995)
illustrates this point by means of an informal example.

He considers a dynamic pure exchange economy with no aggregate
uncertainty. There are two types of investors in this economy whose
income streams differ only in timing but share the same net present value.
He compares two settings that differ only in their asset structures. In the
first setting, markets are completely equitized because investors have the
possibility of trading annuities. Annuity trading in t = 0 allows investors
to perfectly smooth their income over time. Each investor consumes his
per capita share of the aggregate income in equilibrium. At t = 0, each
investor sells his income stream in exchange for a fixed annuity. Thus,
no future trades are necessary for income smoothing.

In contrast, zero-coupon bonds are traded in the second setting.
Investors have to trade bonds in each period to smooth their income
over time. More formally, the markets are not completely equitizable
because every date-state (t,ω) cannot be insured at t = 0. However,
this asset structure is still dynamically complete. Thus, the equilibrium
allocation is the same as in the case with annuities. This is the case as
long as information is symmetric.

However, the equivalence of both settings evaporates if the model is
enriched to incorporate uncertainty and asymmetric information. The
noninformational bond trading in the setting without annuities pro-
vides informed traders noise to disguise their informed trading. That is,
allocative trading can create noise, thereby, causing a signal extraction
problem for uninformed traders. This is in sharp contrast to the setting
with annuities where investors do not trade after t = 0 to smooth their
income. Consequently, all trading activity after t = 0 has to be due to
asymmetric information. This information is then revealed in the bond
prices.

A second example provided by Grossman (1988) illustrates that
adding another security increases the number of observable prices. This
might reveal additional information. The author also points out the
important informational difference between a synthesized and a real
option. If the option is traded, the implied volatility of the underly-
ing asset can be inferred through the option price. This is not possible
if the option is synthesized by dynamic trading strategies. This model
will be explained in more detail in Section 6.1.1 which focuses on stock
market crashes. Grossman and Zhou (1996) extend the analysis. They
show that in economies where the average risk aversion is decreasing in
income, synthesized options lead to higher volatility and mean reversion
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in returns. In a dynamically complete market setting, any payoff stream
can be synthesized using dynamic trading strategies. Therefore, in an
incomplete equitization setting, noninformational trading, possibly over
the whole trading horizon, can occur in order to obtain the desired
income stream. Uninformed traders face an inference problem since
insiders also trade to make use of their private information. They do
not know the extent to which the price change is due to insider trading.
Therefore, the price is only partially revealing.

The question arises whether a notion of dynamic completeness under
asymmetric information can be specified as well. In the case of asym-
metric information, the traders’ information sets differ and, thus, their
dynamic trading strategies have to satisfy different measurability con-
ditions. This condition states that at any time a trader can only apply
different trading rules for different states if he is able to distinguish
between them. The splitting index can also differ from trader to trader.
The splitting index at t reports the number of subpartitions the infor-
mation partition can be split into when a trader receives new additional
information at t + 1. Taking the maximum splitting index at each point
in time might lead to further insights, but I am not aware of any research
addressing this issue.

2.3. Bubbles

Famous historical examples of dramatic price increases followed by
a collapse include the Dutch Tulip Mania (1634–7), the Mississippi
Bubble (1719–20), and the South Sea Bubble (1720). The historical
details and possible explanations for these episodes are elaborated by
Kindleberger (1978) and Garber (1990). The more recent empirical find-
ings of the excess volatility literature, starting with LeRoy and Porter
(1981) and Shiller (1989), illustrate that the variability of asset prices
cannot be explained by variations in dividend streams. The major quar-
rel in the literature relates to the question of whether large changes
in prices are due to shifts in the fundamentals or departures of the
asset price from the fundamental value. A bubble is said to occur if
an asset price exceeds its fundamental value. The difficulty lies in deter-
mining the fundamental value of an asset. The fundamental value of
an asset is generally not exogeneously given; it is endogenously deter-
mined in equilibrium. This fundamental value determines whether a
bubble occurred at all and which component of the price is due to a
bubble. The following section highlights the difficulty in determining
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the fundamental value of an asset. This literature focuses on prices in a
competitive market environment.

2.3.1. Growth Bubbles under Symmetric Information

Fundamental Value – Speculation and Re-trade
A trader is only willing to buy or hold an asset at a price which is higher
than its fundamental value if he thinks that he can resell the asset at an
even higher price in a later trading round. Harrison and Kreps (1978)
call this trading behavior “speculation.” They attribute this definition to
Keynes (1936). A trader speculates if his foremost interest is in cashing
in capital gains rather than enjoying a future dividend stream. Conse-
quently, one might think the fundamental value might be the price which
an investor is willing to pay if he is forced to hold the asset forever,
that is, if he is not allowed to re-trade. In a setting without uncer-
tainty the fundamental value of a future dividend stream in terms of
current consumption is its discounted value, where the equilibrium dis-
count factor also depends on the asset structure. One can easily extend
the analysis to a setting with uncertainty by taking the expectations of
the possible dividend payments as long as the agents are risk neutral.
Risk averse agents, however, may value dividend payments in different
date-states (t,ω) differently since their endowment might be different in
different date-states. However, with completely equitizable markets, a
Pareto efficient equilibrium allocation can be achieved in a once-and-
for-all trade in t = 0. Thus, all individual marginal rates of substitution
(MRSi

0,(ω,t)) coincide in equilibrium. In this case, one can take expecta-
tions with respect to the equivalent martingale measure (EMM) Q̂. In
summary, this definition of fundamental value seems reasonable as long
as markets are completely equitizable or all agents are risk neutral, in
which case the agents’ MRSi

0,(ω,t) do not depend on the allocation. This
need not necessarily be the case with incomplete markets, for a setting
with asymmetric information, or a setting without common priors.

If markets are only incompletely equitizable, re-trade in later trading
rounds is not only due to speculation. The definition of fundamental
value presented above does not take into account the fact that there
might be re-trade not only for speculative reasons but also to repli-
cate the payoffs of nontraded securities. With incomplete equitization
and no re-trade, a Pareto optimal allocation is usually not achieved in
equilibrium. Consequently, agents’ MRSi

0,(ω,t) differ at the equilibrium
allocation. Re-trade usually leads to a different equilibrium allocation
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and, thus, it also effects the equilibrium MRSi
0,(ω,t) and, hence, the

EMMi. Let EMMi be one of the possible equilibrium EMM which cor-
responds to the MRSi of agent i at the equilibrium allocation. Taking
the expected value using the equivalent martingale measure (EMMi)
that is associated with agent i’s MRSi results in agent i’s evaluation of
the dividend stream under the condition that re-trade is not allowed. If
agents’ MRSi differ, so do their fundamental valuation of the asset. The
value of a stream of dividends depends crucially on the market secu-
rity structure. The equilibrium allocation can change as the number of
assets increases. Therefore, the equilibrium MRSi’s and thus the EMMi’s
can also change. Dynamic trading strategies allow traders to replicate
the payoffs of missing securities, that is, they allow traders to complete
markets. Hence, they change the equilibrium EMMi’s. The definition of
fundamental value based on a “buy and hold strategy” has the shortcom-
ing that it ignores the fact that re-trade also occurs to replicate payoffs of
nontraded securities, which alters the equilibrium allocation and, thus,
the EMM. The following example should demonstrate this point.

Consider an economy with two types of agents where trading takes
place in t = 0 and t = 1 and a single risky security pays a dividend
dT(ω) in t = 2 = T depending on the state ω ∈ � = {ω1,ω2}. Both
states are equally likely and the true state is revealed prior to trading
in t = 1. The MRS of the agents is such that type 1 agents value the
dividend dT(ω1) as one unit of current consumption in state ω1 and
zero in state ω2, whereas the consumption value for type 2 agents is the
other way around. If we ignore discounting, both types of agents assign
the asset a value of 1/2 in t = 0 if they have to hold it until T = 2.
However, if they are allowed to re-trade in t = 1, then the value of the
asset is 1, since re-trade ensures that the asset will be in the hands of
the agents who value the dividend most highly. Consequently, the price
of the asset in t = 0 will be 1 and, hence, an “expected bubble” of
1/2 arises if one follows the definition of a fundamental value which is
based on a buy and (forced) hold strategy. The problem associated with
this definition can be seen if one slightly changes the security structure.
Instead of a single asset which pays a dividend in both states, let us now
assume that there are two assets. One asset pays a dividend d(ω1) in
state ω1 and zero otherwise and the other asset pays a dividend d(ω2)

in state ω2 and zero otherwise. In t = 0 the price of each asset is 1/2,
that is, the sum of both prices is 1. The price of the assets coincides
with its fundamental value and, hence, no bubble exists. This illustrates
the argument that the fundamental value – defined in a buy and forced
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hold context – depends crucially on the security structure. Despite this
weakness, some papers define bubbles with respect to this definition of
the fundamental value.

If we focus only on buying and holding strategies we ignore the fact
that re-trade via dynamic trading strategies might increase the trading
space and, thus, enhance the possible allocation which can be reached
in equilibrium. Taking the possible MRSi

0,(ω,t) at the equilibrium allo-
cation in this enlarged trading space and evaluating the income stream
accordingly results in a fundamental value definition which is immune to
the criticism presented above. Santos and Woodford (1997) employ this
definition of fundamental value. Since there are many possible MRSi as
long as markets are (dynamically) incomplete, there might still be multi-
ple fundamental values of an asset. A bubble certainly occurs if the asset
price exceeds the highest of these fundamental values. Obviously, it is
much harder to demonstrate the existence of bubbles using this revised
definition.

Changes in Fundamental Value due to Sunspots
Large price swings might also be due to large shifts in the fundamen-
tal value driven by sunspots. Sunspots are publicly observable extrinsic
events that do not affect the technologically feasible set, agents’ prefer-
ences, information, endowments, and so on. Nevertheless, they serve as
a coordination device for the agents in the economy to select a particu-
lar static price equilibrium in the case of multiple equilibria. Azariadis
(1981) and Cass and Shell (1983) develop models where this extrin-
sic uncertainty matters. Allen, Morris, and Postlewaite (1993) illustrate
sunspot equilibria using a simple example wherein a dynamic equilib-
rium consists of a sequence of static equilibria. Suppose the dynamic
discrete-time economy can be described as a repetition of a one-period
exchange economy. Agents live only for one period and they are replaced
by identical agents in the next period. That is, preferences and endow-
ments are the same in each period. Furthermore, let us assume that
there are at least two static Walrasian equilibria with different prices in
each one-period economy. Any sequence of the static equilibria forms a
dynamic equilibrium of the dynamic economy. The selection of the static
equilibrium in each period might depend on sunspots. Prior to trading,
agents observe the realization of the public signal “sunspot” which alters
their beliefs about the other agents’ trading behavior and thus their opti-
mal trade. In short, prices will change from period to period, depending
on the realization of the sunspot. A bit of care is needed to extend this
example to a setting where assets pay dividends over time and agents
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consume in more than one period. It is easy to see that the consumption
value of the dividend payments in each period and, thus, the funda-
mental value of an asset, depends on the realization of the sunspot. In
short, even though agents’ preferences, information, endowments, and
so forth do not change, the fundamental value might change over time.
In a setting with asymmetric information, even more complications arise
in determining the fundamental value. We will discuss this issue after
illustrating bubbles in a symmetric information environment.

Securities of Finite Maturity and Backwards Induction
Independently of whether sunspot equilibria arise, the pricing formulas
due to the no-arbitrage condition in the static setting can be generalized
to a dynamic setting. The individual’s intertemporal optimization prob-
lem links the price of an asset in t to the asset’s payoff in t + 1, that is,
to the sum of the asset’s price in t + 1 and the dividend payment, dt+1:

pt = EPi

t [mt,t+1(pt+1 + dt+1)],

where the equilibrium MRSi
(ω,t),(ω,t+1) of any agent i forms a possible

stochastic discount factor mt,t+1. EPi

t [·] are the expectations with respect
to the probability measure Pi conditional on all information up to time t.
As explained for the static case in Section 2.2, taking expectations with
respect to the EMM Q̂ allows one to rewrite the above stochastic Euler
equation as

pt = EQ̂
t

[
1

1 + rf ,i
t,t+1

(pt+1 + dt+1)

]
.

The risk-free rate rf ,i
t,t+1 is the same for all agents i if a risk-free portfolio

is part of the trading space.
Backward induction can be used to pin down the current equilibrium

price pt for securities with finite maturity Tmat. By iterating the above
difference equation, the law of iterative expectations implies that the
equilibrium price is given by the expected discounted value of the future
dividend stream. The equilibrium price exactly coincides with the asset’s
fundamental value. Consequently, no bubble emerges for assets with
finite maturity. If all traders are rational, backward induction rules out
bubbles, provided that there are only a finite number of trading rounds.
If there are infinitely many trading opportunities, a bubble might exist
even in a finite horizon model (Bhattacharya and Lipman 1995).
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Growth Bubbles for Securities of Infinite Maturity
The fundamental value of the securities with infinite maturity is still
given by the expected discounted value of the future payoff stream of
the asset. Free disposal of assets guarantees that the fundamental value
pf exists (Santos and Woodford 1997). The stochastic Euler equation
also holds for securities with infinite maturity. However, the backward
induction argument fails since there is no well-determined starting point.
A bubble might occur due to a “lack of market clearing at infinity.” The
bubble at time t is given by the price of the asset minus its fundamen-
tal value, that is, bt = pt − pf

t . The stochastic Euler equation for the
price pt for each t and the definition of the fundamental value as the
expected discounted value of the dividend stream imply that the bub-
ble component bt has to satisfy the following expectational difference
equation:

bt = EQ̂
t

[
1

1 + rf ,i
t,t+1

bt+1

]
.

In other words, any bubbles has to grow over time in expectations.
The expected growth depends on the EMM Q̂.

Deterministic bubbles have to grow at the risk-free rate. As long as
investors are risk neutral, the EMM coincides with the objective prob-
ability of states. Consequently, in this case the expected growth rate
of any bubble has to coincide with the risk-free rate (Blanchard and
Watson 1982). For illustrative purposes, Blanchard and Watson (1982)
also consider an example where the bubble bursts in each period with
probability 1 − π , and continues with probability π . If the bubble per-
sists, it has to grow by a factor (1 + rf

t,t+1)/π in order to compensate for
the probability of bursting. This faster growth is necessary to achieve
an expected growth rate equal to the risk-free rate as prescribed by
the expectational difference equation specified above. Even though the
probability that the bubble bursts tends to one as time evolves, the
expected value of the bubble increases to infinity as the time horizon
goes to infinity.

The expectational difference equation specified above allows us to
eliminate many potential bubbles. Note that this difference equation
also has to hold for negative bubbles. However, a negative bubble
would imply that the stock holders expect that the stock price becomes
negative at a finite future date. Free disposal rules out negative secu-
rity prices and thus negative bubbles (Blanchard and Watson 1982;
Diba and Grossman 1988). A similar argument can also be employed



No-Trade Theorems, Asset Pricing, Bubbles 53

for positive bubbles on assets with nonzero net supply as long as the
aggregate endowment is bounded by a portfolio plan.

Loosely speaking, potential bubbles which outgrow the economy can-
not occur. The intuition behind this argument is as follows. At any point
in time τ , the aggregate wealth of the economy contains this growing
bubble component, bτ . Thus, the expected net present value at t of the
aggregate wealth in τ does not converge to zero, even as time τ goes
to infinity. On the other hand, if aggregate consumption is bounded,
the net present value of aggregate consumption in τ goes to zero, as τ
goes to infinity. Hence, in an economy with a bubble the present value
of some household’s wealth exceeds the present value of the aggregate
consumption for all periods that are sufficiently far in the future. This
is inconsistent with optimization by this household since an optimizing
household would consume part of its wealth. This argument can be used
to rule out bubbles in equilibrium; see for example, Brock (1979, 1982)
and Scheinkman (1988).

Santos and Woodford (1997) provide the most comprehensive analy-
sis by allowing for short-lived agents, incomplete markets settings, and
borrowing limits. Their setting also encompasses overlapping generation
models. To apply the above reasoning, the future aggregate endowment
has to be bounded by a portfolio trading plan. Santos and Woodford
(1997) derive the necessary additional restrictions on preferences which
are needed for the result to hold in full scope. The authors show that
bubbles on securities with nonzero net supply cannot exist under fairly
general conditions even if the maturity of these securities is infinite. They
conclude that the known bubbles in the literature are only exceptional
cases.

One exception is economies where the pure existence of bubbles
enlarges the trading space. In other words, a bubble might emerge if
it provides further trading opportunities and thus allows a different
equilibrium allocation. This typically results in different marginal rates
of substitution, MRSi

0,(ω,t), and thus in a different EMM. This gener-
ally changes the fundamental value of the asset. Nevertheless, a bubble
might exist even with respect to the new fundamental value. The most
famous example is fiat money in an overlapping generations (OLG)
model. Samuelson (1958) shows that fiat money has a positive price
although its (intrinsic) fundamental value is zero. In Samuelson’s OLG
model, each generation lives only for two periods. Diamond (1965)
and Gale (1973) generalize this setting. In each period there is a young
generation and an old one. One period later, the old people die, the
young folks become old, and a new young generation is born. Consider
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a simplified example where only young people are endowed with a con-
sumption good, while the older generation has no endowment. Ideally,
the young people would like to smooth their consumption and save
some of their endowment for their retirement. However, this is impos-
sible without money. Whom should the young people lend money to in
order to save for retirement? The old people will not be alive to repay
their debt. The actual problem is that the market with the future gen-
erations is not open. Introducing fiat money with a value of zero does
not help. But if the price of fiat money is positive, there exists a trad-
ing opportunity with future generations. Let us denote the equilibrium
price by pfiat. The young generation sells some of their endowment in
return for money to the current old generation. In the next period the
now old generation uses this money to buy consumption goods from the
new young generation. In short, fiat money is a bubble that enlarges the
trading space by serving as a store of value that enables all generations
to smooth their consumption. These OLG economies can even support
two or more types of fiat money. Indeed, every pair of nonnegative prices
pfiat1 and pfiat2 such that pfiat = pfiat1 +pfiat2 would lead to the same equi-
librium consumption allocation. This also highlights the indeterminacy
of equilibrium exchange rates (Santos and Woodford 1997).

Tirole (1985) considers a deterministic OLG model where capital is
an input factor of production. Capital as well as fiat money can be used
for intertemporal transfer of wealth. The economy grows at a rate n.
Since there is no uncertainty in his model, a potential bubble has to
grow at a risk-free interest rate of rf

t,t+1. Savings in the bubble crowd
out capital accumulation in the economy and thus the equilibrium inter-

est rate increases from the “no-bubble interest rate” r̄f
t,t+1 to rf

t,t+1. No
bubble equilibrium exists for r̄f

t,t+1 > n since a bubble would outgrow
the economy. This is not the case if the economy grows faster than the
bubble, that is, 0 < r̄f

t,t+1 < n. Even though they do not enlarge the trad-
ing space, bubbles are feasible in this case because they cannot outgrow
the economy.

Bewley’s (1980) monetary model is another example where a fiat
money bubble occurs because it generates additional trading opportu-
nities. In this deterministic model, fiat money is the only traded security
between two infinitely lived households. Both households’ endowment
stream is perfectly negatively correlated and both would like to smooth
their consumption. However, complete smoothing is not possible due
to the household’s borrowing constraints and missing traded securities.
A positive bubble in the form of fiat money not only enlarges the trad-
ing space but also relaxes the agents’ borrowing limits. The borrowing
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constraints are less restrictive since fiat money adds to agents’ wealth.
Santos and Woodford (1997) present three additional examples where
equilibrium pricing bubbles are possible under special circumstances.

In summary, bubbles under a symmetric information setting can only
arise in special circumstances. Bubbles on securities of finite maturity
are ruled out by backwards induction. Infinite horizon bubbles are also
generally excluded. They are only possible in special cases, such as when
they enlarge the trading space or in the unlikely case where the aggregate
endowment of the economy is not bounded by a portfolio plan. This
means that the “no-bubble interest rate” in a deterministic environment
is smaller than the growth rate of the economy.

2.3.2. Information Bubbles

The existence of a bubble is common knowledge in a symmetric infor-
mation setting. This follows directly from the fact that the model itself
is common knowledge. Our earlier discussion illustrated the point that
commonly known bubbles generally do not arise in equilibrium. In this
section, we will analyze whether bubbles can still be ruled out if they are
not commonly known. One can envision a situation where everybody
knows that the price is above the fundamental value, that is, the bubble
is mutual knowledge, yet each individual does not know that the oth-
ers know it too. They might still hold the asset since they believe that
the others will value the asset even higher in the future. Settings with
asymmetric information and higher-order uncertainty provide further
insights about the existence of bubbles.

Dynamic Knowledge Operators
Traders have to forecast the other market participants’ future informa-
tion in order to predict the future price path of an asset. The state space
�dynamic has to be both dynamic and of higher depth of knowledge in
order to capture higher-order uncertainty. Agents’ information about
the value of an asset as well as their information about others’ knowl-
edge changes over time. In other words, their information partitions P i

t
become finer and finer. Therefore, we denote the partitions at time t with
an additional subscript t. The associated knowledge operator of agent i
at t is therefore denoted by Ki

t (E) = {ω ∈ �dynamic: P i
t (ω) ⊆ E}. Note

that the partition at time t also reflects the information which market
participants infer from the price process up to time t. For an extended
discussion of a dynamic state space, we refer the interested reader to
Geanakoplos (1994).
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Expected Bubbles versus Strong Bubbles
If traders have asymmetric information they also have different beliefs
about the other traders’ dynamic trading strategies. This makes it even
more difficult to disentangle re-trades which are due to dynamic trading
strategies in order to complete missing markets from purely speculative
re-trade. Therefore, the fundamental value in this section is defined as
the value of a “buy and hold to maturity strategy” which rules out any
form of resale. Consequently, the shortcomings of this definition dis-
cussed earlier might also arise in this setting. These shortcomings are less
prominent in models in which the risky assets pay a single dividend only
at maturity, all agents have state-independent risk neutral linear utility
functions, and they all share common priors. Since agents’ information
about the future dividend stream differs, their marginal evaluations of
the “buy and hold to maturity strategy” are not the same. If the price
is greater than the maximum of these values, a bubble surely exists.
Allen, Morris, and Postlewaite (1993) distinguish between “expected”
and “strong bubbles.” If at a date-state (t, w) the price is higher than
every agents’ marginal valuation of the asset, then an expected bubble
occurs. In other words, each agent’s expected value of the asset is lower
than the asset price. A strong bubble occurs if there is a state of the
world ω in which all agents know that the price is higher than the value
of any possible dividend stream outcome. That is, no possible dividend
realization can justify this price.

Necessary Conditions for Information Bubbles
Expected or strong bubbles can be ruled out if the necessary conditions
for expected and strong bubbles are not satisfied. Tirole (1982) shows
that in a dynamic REE, bubbles cannot occur if the initial allocation is
ex-ante Pareto efficient. In other words, interim Pareto inefficiency is the
first necessary condition for expected bubbles. The proof makes use of
the fact that rational traders are not willing to buy a bubble asset since
some traders have already realized their gains and have left a negative-
sum game for the other traders. The reason is analogous to the zero-sum
argument in the proof of the no-trade theorem. Obviously, if the initial
allocation is interim Pareto efficient, bubbles will not occur, indepen-
dently of whether there are short-sale constraints or not. In Tirole’s
dynamic setting, the asset pays a dividend in each period and all traders
are risk neutral. Given risk neutrality, any initial allocation is ex-ante
Pareto efficient.

Agents can be risk averse in Allen, Morris, and Postlewaite (1993).
There is only a single risky asset of finite maturity in their model and
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money serves as the numeraire. The risky asset pays a dividend of dT(ω) :
� �→ �+ at T depending on the state of the world ω. The authors
show that the existence of an expected bubble requires that short-sale
constraints strictly bind in some future contingency. If an agent i assigns
positive probability to being short-sale constrained at some future time
in some contingency, he might be willing to hold on to an asset, even if
the price is strictly higher than his marginal valuation of the asset. The
second necessary condition for an expected bubble is that each trader i
is short-sale constrained at some future contingency.

The two conditions listed above are necessary for expected bubbles
as well as for strong bubbles since any strong bubble is also an expected
bubble. Additional necessary conditions can be derived for strong bub-
bles. If a strong bubble occurs, each trader knows that the current
stock market price is above any possible realization of the dividend
dT . To make this happen in equilibrium, traders must believe that the
other traders do not know this fact. Consequently, strong bubbles can
only occur if each trader has private information (Allen, Morris, and
Postlewaite 1993). From this it also follows that strong bubbles can
never arise in a market setting where net trades of all agents are com-
mon knowledge. As shown in Section 2.1, the common knowledge of
actions, that is, net trades, negates asymmetric information about events
(Geanakoplos 1994). In particular, bubbles cannot arise in economies
with less than three traders since in a two-trader market, both would
know each others’ trades.

Morris, Postlewaite, and Shin (1995) illustrate the linkage between
higher-order knowledge and the existence of information bubbles. The
model setup is the same as in Allen, Morris, and Postlewaite (1993)
except that all market participants are risk neutral. This simplifies the
derivation of the price process. In any REE, the price at maturity T is
equal to the dividend payment in T, that is, pT = dT . The prices in
earlier periods can be derived using backward induction, that is, pt =
maxi∈� Ei

t[pt+1|P i
t ] for all ω ∈ � and t = 1, . . . , T. In the states ω in

which it is mutual knowledge among all traders that the final dividend
payment is zero, that is dT = 0, any strictly positive asset price is a strong
bubble. Morris, Postlewaite, and Shin (1995) focus their analysis on this
case, that is, on the event EdT=0

T = {ω ∈ �|dT(ω) = 0} of the states of the
world where the final dividend payoff, dT , is zero. The authors show that
such a strong bubble can be ruled out at time t if it is mutual knowledge in
t that in period t+1 it will be mutual knowledge that . . . in (T−1) it will
be mutual knowledge that the true asset value is zero. More formally,
{ω ∈ �|pt(ω) = 0} = KG

t KG
t+1 · · · KG

T−1(E
dT=0
T ). This result is derived by
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induction. If it is mutual knowledge at T − 1 that dT = 0 then the price
pT−1 = 0, if at T−2 everybody knows that pT−1 = 0 then pT−2 = 0, and
so forth. The knowledge operators refer to different time periods and
also reflect the information which traders can infer from the price itself.
Therefore, the above statement is only a “reduced form” statement. A
corollary that relies on knowledge at t alone follows directly from the
above result. If it is (T − t)th order mutual knowledge that the final
dividend payment is zero, then a strong bubble can be ruled out from
period t onwards. In formal terms, KG(T−t)

t (EdT=0
T ) ⊆ {ω ∈ �|pt(ω) =

0}. If everybody in t already knows that everybody knows, and so on,
that dT = 0, then at t everybody knows that everybody will know in t+1
that everybody will know in t + 2, and so on, that dT = 0. This follows
directly from the fact that knowledge can only improve over time. In
short, a bubble can only exist at or after time t if the true asset value is
not (T − t)th order mutual knowledge at time t. Obviously, if the state
space � only allows us to model higher order uncertainty up to a degree
of nth order, then nth order mutual knowledge of EdT=0

T implies that
dT = 0 is also common knowledge and thus no bubble can exist. In the
case where the depth of knowledge of the state space and the number of
remaining trading rounds is higher than the order of mutual knowledge
of the true asset value, some bounds for the size of the bubble can still
be provided. p-belief operators as defined in Section 1.1 are useful for
this exercise. Morris, Postlewaite, and Shin (1995) show that the asset
price is not more than (1 − p)(T − t)dmax

T if every trader p-believes in t
that everybody will p-believe in t + 1 that . . . every trader will p-believe
in T − 1 that the final dividend dT = 0. The result is derived by using
the same reasoning for belief operators instead of knowledge operators.

Examples of Information Bubbles
The necessary conditions provide the minimal requirements to construct
information bubbles. Allen, Morris, and Postlewaite (1993) provide a
partial converse of the necessary conditions by illustrating four exam-
ples of strong bubbles. In these examples there are at least three traders,
at least three remaining time periods, and prices are not fully reveal-
ing. The gains from trade are generated in the four examples either by
(1) heterogeneous beliefs among the traders, (2) state-dependent utility
functions, (3) random endowments and identical concave utility func-
tions, or by (4) an interim Pareto inefficient initial allocation in a setting
where traders have different concave utility functions. In Allen, Morris,
and Postlewaite (1993) the fundamental value is defined by the valu-
ation of a “buy and hold strategy” that rules out any form of resale.
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It remains to be seen whether the setting is robust to the more general
definition of fundamental value which allows for allocative re-trade in
order to complete missing markets.

Bubbles might also emerge in principal–agent settings where traders
invest other people’s money. In these models there are positive gains
from trade for the direct market participants. These gains are at the
expense of the principals.

In Allen and Gorton (1993) there are positive gains from trade for
portfolio managers who trade on behalf of the investors. Investors lose
in this setting since the overall game is a zero-sum game. Investors face
an agency problem. They cannot distinguish between good and bad fund
managers. Good fund managers are able to pick the stock with positive
net present value whereas bad managers are not. Bad managers pool
in equilibrium by buying stocks with negative expected value. Bad fund
managers “churn bubbles” since due to their limited liability their payoff
function exhibits a call option feature.

In Allen and Gale (2000) traders borrow money to invest in the stock
market. That is, their stock market investment is debt financed. This
principal–agent setting results in the classic risk-shifting problem. If the
borrower buys risky assets, he cashes in on all the upside potential but
can shift downside risk on to the lender. The loser is the lending party.
This makes very risky assets more attractive and increases their price.
The authors argue convincingly that most bubbles emerge at times of
financial liberalization. The resulting credit expansion leads to exuber-
ant asset prices. The bubble is larger, the larger the credit expansion and
the more risky the asset.

This section illustrates that assuming that all traders have the same
information can easily lead to wrong conclusions. Whereas almost all
bubbles can be ruled out in a symmetric information setting, this is not
the case if different traders have different information and they do not
know what the others know.



3

Classification of Market Microstructure
Models

The results presented in the last chapter were derived in a very general
setting without specifying particular utility functions or return distribu-
tions. One needs to describe the economy in more detail in order to go
beyond these general results. The loss of generality is compensated for
by the finding of closed-form solutions, comparative static results, and
a more detailed analysis of the economic linkages. Models in the current
chapter take a closer look at the market microstructure and its role in the
revelation of information. This chapter is devoted to classifying static
models where each trader trades only once and thus does not have to
worry about the impact of his trading on the future price path. Dynamic
models are discussed in Chapter 4.

Classification Dimensions
Market microstructure models can be classified along at least four
dimensions: type of orders, sequence of moves, price setting rule, and
competitive versus strategic structure. These alternative classification
schemes are described below.

Traders submit different types of orders depending on the market
structure. The three basic types of orders are market orders, limit orders,
and stop (loss) orders. A trader who submits a market order can be sure
that his order will be executed, but bears the risk that the execution
price might fluctuate a lot. Limit orders allow one to reduce this risk
since a buy (sell) order is only executed if the transaction price is below
(above) a certain limit. Stop orders set the opposite limits. They trigger
a sell (buy) transaction if the price drops below (rises above) a pre-
specified level. However, the trader faces an execution risk with limit
and stop orders since these orders will not be filled if the equilibrium
price does not reach the specified limit. The trader can form a whole
demand schedule by combining many limit and stop orders. Demand
schedules specify the number of stocks that a trader wants to buy or
sell for each possible equilibrium price. Therefore, the trader can avoid
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both the execution risk and the risk of fluctuating prices. Note that a
demand schedule becomes a supply schedule when it specifies a negative
demand.

The sequence of moves of different market participants is also dif-
ferent in various market microstructure models. In models where all
traders simultaneously submit demand schedules, the auctioneer’s only
task is to set the market clearing price. In reality, the market makers play
an important role in certain financial markets. They take on positions
and trade on their own account. One can classify financial markets into
quote driven and order driven markets. In quote driven markets, like
the NASDAQ, the market maker sets a bid and ask price or a whole
supply schedule before the possibly informed trader submits his order.
Since the market maker guarantees the price, the trader faces no exe-
cution risk. In contrast, in order driven markets the informed trader
submits his order before the market maker sets the price. Both settings
differ in their sequence of moves. In both settings the less informed mar-
ket maker faces an adverse selection problem when a possibly informed
trader arrives. In order driven markets, the market maker offers bid and
ask prices or a whole supply schedule to screen out different informed
traders. Therefore, these models fall into the class of screening mod-
els. On the other hand, an informed trader who submits his order first
reveals some of his private information. Thus, order driven models are
closer to signaling models.

In addition to the timing, markets also differ in their price setting
rule. With uniform pricing, the price of every unit is the same. This is
not the case with discriminatory pricing. For example, when a trader
faces a limit order book, he picks off the different limit orders at different
limit prices. As he “walks along the book”, his execution price for the
additional units becomes worse and worse.

Finally, as outlined in Chapter 2, we can distinguish between com-
petitive and strategic models. In competitive models, all traders take
the price as given, whereas in strategic models, traders take their
impact on the equilibrium price into account. To highlight this dif-
ference let us look at the demand of an individual trader. A risk
neutral price taker demands infinitely many stocks if his estimate of
the stock value exceeds the competitive price. Thus, the assumption of
risk aversion is essential in competitive models to restrain individual
demands. In strategic models, the trader also takes into account the
fact that the price moves against him if he demands a large quantity. In
other words, both risk aversion and strategic considerations restrain his
demand.
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Given the four classification dimensions described above, the mar-
ket microstructure models surveyed in this chapter are classified as
follows:

• simultaneous submission of demand schedules
– competitive rational expectation models
– strategic share auctions

• sequential move models
– screening models where the market maker offers a supply schedule

uniform price setting
limit order book analysis

– sequential trade models with multiple trading rounds
– strategic market order models where the market maker sets prices

ex-post.

In addition, search and matching models can also be found in the lit-
erature. For commodities like housing, individuals often have to search
for suitable trading partners or they are randomly matched. Agents are
matched in the first stage and bargain in the second stage. However,
these search and matching models are less relevant for financial mar-
kets. This is because transactions in financial markets mostly occur in
a centralized place. This centralization and the provision of immediacy
by market makers guarantee that there is, in general, sufficient liquidity
to find a counter-party for each trade. Thus, instead of covering this
interesting but tangential strand of literature in this survey, we refer the
reader to the overview provided by Spulber (1999).

Utility Functions with Linear Risk Tolerance
Certain utility functions and return distributions simplify the analysis
in various market microstructure models. Therefore, it is worthwhile
to illustrate these utility functions and distributions up front before we
dive into the specifics of the different model setups.

Most tractable utility functions U(W) are encompassed in the class of
utility with linear risk tolerance (LRT). Risk tolerance, 1/ρ, is defined
as the reciprocal of the Arrow–Pratt measure of absolute risk aversion

ρ(W) := −∂2U/∂W2

∂U/∂W
.

The risk tolerance is linear in W if

1
ρ

= α + βW .
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Table 3.1.

Class Parameters Utility function U(W)

Exponential utility (CARA) β = 0, α = 1/ρ − exp{−ρW}
Generalized power utility β 
= 1 (1/(β − 1))(α + βW)(β−1)/β

(a) quadratic utility β = −1, α > W −(α − W)2

(b) log utility β = +1 ln(α + W)

(c) power utility (CRRA) α = 0, β 
= 1, −1 (1/(β − 1))(βW)(β−1)/β

LRT utility functions are sometimes also called hyperbolic absolute
risk aversion (HARA) utility functions. As described in Section 2.2,
economies are quasi-complete if all agents have LRT utility functions
with common β and all endowments are tradable. Table 3.1 illustrates
special utility functions within this class of utility functions.

CARA-Gaussian Setup
The CARA-Gaussian setting simplifies the trader’s utility maximization
problem for two reasons. First, the normal distribution allows us to
make extensive use of the projection theorem described in Section 1.1.
Second, the certainty equivalent of a normal random variable is linear
in its mean and variance, if the utility function is exponential.

The exponential (CARA) utility function U(W) = − exp(−ρW) with
a constant absolute risk aversion coefficient

ρ = −∂2U(W)/∂(W)2

∂U(W)/∂W

is the most commonly used utility function. The expected utility resem-
bles a moment generating function and makes it easy to calculate the
certainty equivalent of the random wealth W :

E[U(W)|S i] =
∫ +∞

−∞
− exp(−ρW) f (W |S i) dW

= − exp
[

− ρ
(

E[W |S i] − ρ

2
Var[W |S i]︸ ︷︷ ︸

certainty equivalent

)]
.

Maximizing the expected utility conditional on the appropriate infor-
mation set S i is equivalent to maximizing the certainty equivalent. The
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resulting quadratic objective function leads to simple linear demand
functions.

The normality assumption is also very tractable for portfolio analysis
given that the weighted sum of normally distributed variables is also nor-
mally distributed. In other words, if the liquidation value of each stock
vj is normally distributed, so is the value of the portfolio {x}j∈�,

∑
j vjxj.

Multinomial random variables and χ2 distributed variables might
arise in models with endogenous information acquisition and multi-
period models. The certainty equivalent extends to multinomial random
variables w ∼ N (0, �) with a positive definite (co)variance matrix �.
More specifically,

E[exp(wTAw + bTw + d)]

= |I − 2�A|−1/2 exp[1
2bT(I − 2�A)−1�b + d],

where A is a symmetric m×m matrix, b is an m-vector, and d is a scalar.
Note that the left-hand side is only well-defined if (I − 2�A) is positive
definite.1

The tractable CARA-Gaussian setup has two shortcomings. First, nor-
mally distributed stock values can become negative with strictly positive
probability, and second, an investor with an exponential utility always
invests a fixed amount of his wealth in the risky asset, independent of
his wealth. Both features are not in line with reality.

CRRA-Lognormal Setup
These specific shortcomings do not arise if all traders’ risk preferences
exhibit constant relative risk aversion and the stock value is lognormally
distributed. In contrast to normally distributed stock values, lognor-
mally distributed stock values are never negative. The power (CRRA)
utility function guarantees that an investor increases his investment in
risky stocks as his wealth increases. Indeed, an investor with a CRRA
utility function always invests a constant fraction of his wealth in the
risky portfolio.

The certainty equivalent for a CRRA utility function

U(W) = 1
1 − γ

(W)1−γ

1 For an example of an application see the discussion on Brown and Jennings (1989)
in Section 4.1 of this survey. Additional details about normally distributed variables can
be found in Anderson (1984, Chapter 2).
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with a constant relative risk aversion coefficient

γ = −∂2U(W)/∂(W)2

∂U(W)/∂W
W

is given by

E[U(W)] = U
(

E[W] exp[−1
2γ σ

2]︸ ︷︷ ︸
certainty equivalent

)
,

where the wealth W is lognormally distributed, that is ln[W] ∼
N (μ, σ 2).

Unfortunately, the sum of lognormally distributed random variables
is not lognormally distributed. This makes portfolio analysis more com-
plicated. In addition, individual demand functions are not necessarily
linear.

Equipped with these technical details, we are now ready to take a
closer look at the different market microstructure models.

3.1. Simultaneous Demand Schedule Models

Many market microstructure models allow traders to submit orders such
as limit and stop orders that are conditioned on the equilibrium price.
More generally, traders are able to submit whole demand schedules.
These demand schedules allow traders to trade conditional on the equi-
librium price. Therefore, the equilibrium price can be thought of as being
part of the traders’ information sets.

As outlined in Chapter 1, one can distinguish between competitive
REE and strategic BNE. In a competitive REE, each trader takes the
price function from the information sets into the price space as given.
Furthermore, each trader believes that his trading does not impact the
equilibrium price. In contrast, in a strategic setting, each trader takes
his price impact into account. Competitive models are described in
Section 3.1.1 and strategic models are examined in Section 3.1.2.

3.1.1. Competitive REE

The underlying market microstructure of a competitive REE can be
thought of as a setting where each trader submits whole demand sched-
ules. In competitive models traders take the price as given when forming
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their optimal demand schedules. Investors believe that their trading
activity does not influence the price. To justify such behavior one could
assume that each trader is only a point in a “continuum of clones” with
identical private information. However, this price taking behavior rules
out any analysis of price manipulation.

We begin our presentation of competitive models by describing infor-
mationally efficient REE and noisy REE and then turn to models with
endogenous information acquisition.

Informationally Efficient REE
Grossman (1976) describes one of the first models with a closed-form
REE solution. In his model, information about the liquidation value
v of a single risky asset is dispersed among many traders. Each trader
receives a noisy signal about the true payoff v,

Si = v + εi
S,

where {εi
S}I

i=1 are mutually independent and identically normally dis-
tributed. The riskless bond is traded at an exogenously fixed price
with perfectly elastic supply. The bond pays a fixed interest rate r. All
random variables are normally distributed and traders have exponen-
tial utility functions with the same absolute risk aversion coefficient
(CARA-Gaussian setup).

As illustrated in Section 1.2.1, the standard way to solve for the REE
is to follow the five steps summarized below:

Step 1: First propose a price conjecture. In this case,

P = α0 + αSS̄,

where S̄ = I−1∑I
i Si. Since S̄ is a sufficient statistic for all individual

signals {Si}I
i=1, the price is (strong-form) informationally efficient.

Step 2: Given this price signal and the individual private signal Si, each
trader updates his beliefs about the final payoff of the risky stock v using
the projection theorem. Since P reveals S̄ which is a sufficient statistic
for all Si, E[v|Si, P] = E[v|S̄] = λE[v] + (1 − λ)S̄ and Var[v|Si, P] =
Var[v|S̄] = λVar[v], where

λ := Var[ε]
I Var[v] + Var[ε]

.

Step 3: As a third step, the individual demand for the risky asset is
derived. Trader i’s terminal wealth after having invested in x shares
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and b bonds is Wi = vxi + bi(1 + r). Given his initial endowments
of ei

0 bonds, his bond holding is bi = ei
0 − Pxi. In a CARA-Gaussian

setup the demand function maximizes the certainty equivalence E[vxi +
(ei

0 − Pxi) (1 + r)|Si, P] − 1
2ρ(x

i)2Var[v|Si, P]. The demand function is
given by

xi,∗(P) = E[v|Si, P] − P(1 + r)
ρVar[v|Si, P]

.

Step 4: Imposing market clearing
∑I

i xi,∗(P) = Xsupply leads to the
actual relation between the information sets and price. That is

P = λ

1 + r

(
E[v] − ρVar[v]

1
I

Xsupply
)

+ 1 − λ

1 + r
S̄.

Step 5: Finally, rationality is imposed by equating the undetermined
coefficients α0 and αS. This yields the REE.

Grossman (1976) uses a different method to derive the linear REE.
He first solves for the equilibrium of an artificial economy in which
all private information is treated as being public. Radner (1979) calls
the equilibrium of this artificial economy a “full communication equilib-
rium.” Having solved for this equilibrium, Grossman (1976) verifies that
the full communication equilibrium is a (linear) REE of the underlying
diverse information economy. It is possible to solve for the equilibrium
in this manner as long as the REE price is (strong-form) informationally
efficient. DeMarzo and Skiadas (1998) demonstrate that the markets in
Grossman (1976) are quasi-complete even though only one risky asset
and a bond are traded. They prove uniqueness of the informationally
efficient REE in this CARA-Gaussian setting and show that a minor devi-
ation from the normality assumption leads to the additional existence
of partially revealing REE.

Admati (1989) provides an intuitive explanation for why the trader’s
individual demand in Grossman (1976) does not depend on (1) trader’s
income; (2) their private signals; and (3) the equilibrium price. The
CARA utility function formulation implies that each trader’s demand
for stock is independent of his income. The private signal has no impact
on a trader’s demand since the price reflects all information and is a
sufficient statistic for it. This raises the question of how the price can
reflect all information if the aggregate demand does not depend on the
individual signals. This is the Grossman paradox that was discussed
earlier in Section 1.3. More surprisingly, the demand functions do not



68 Market Microstructure Models

even depend on the price itself, even though it serves as a sufficient
statistic for all information in the economy. In general, a change in price
alters the demand through the income and substitution effect. In a setting
with asymmetric information there is a third effect: the information
effect. In an economy with a single risky asset, a price increase indicates
a higher expected payoff for this asset. More formally, E[v|Si, P] =
E[v|P] = λE[v] + (1 − λ)S̄ = λE[v] + (1 + r)(P − α0). If one inserts this
expression into the demand function, one can show that the information
effect exactly offsets the substitution effect. Moreover, the income effect
plays no role in a setting with CARA utility function and a single risky
asset.

An informationally efficient price reveals all relevant information for
free. Consequently, in a setting with endogenous information acqui-
sition, no trader has an incentive to collect any costly information.
However, if nobody gathers information, the price cannot reveal it. In
short, as discussed in Section 1.3, a competitive equilibrium with costly
endogenous information acquisition does not exist (Grossman–Stiglitz
paradox).

Noisy REE
Noisy REE models were developed to address the conceptual problems
of strong-form informationally efficient equilibria illustrated in the last
two paragraphs. Grossman (1976) makes very strong assumptions to
reach a strong-form efficient equilibrium. Not only do all traders share
a common prior distribution, they also commonly know each other’s
risk preferences, trading motives, aggregate supply, and so on. In addi-
tion, higher-order uncertainty is ignored in Grossman (1976). In short,
the only uncertainty traders face pertains to the liquidation value v. In
reality, however, there are many uncertain factors which affect the equi-
librium price but not necessarily the liquidation value. The simplest way
to capture this additional uncertainty is to introduce some noisy aggre-
gate supply u ∼ N (0, σ 2

u ). This noise term makes prices only partially
revealing because traders cannot disentangle the price change due to the
noise component from the change which is due to informed trading.
The REE price function now has an additional term αuu and can be
written as

P = α0 + αSS̄ + αuu.

It is impossible to perfectly infer the sufficient statistic S̄ of all sig-
nals from the price because of the exogenous random supply u.
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The REE can still be derived following the five steps outlined
earlier.2

Introducing a noisy aggregate supply u can be thought of as a sim-
plified reduced form of modeling. A random price inelastic demand
by liquidity traders makes the residual supply noisy. Liquidity traders
trade for reasons exogenous to the model. Explicit modeling of liquid-
ity trades, which are not driven by information of common interest,
often unnecessarily complicates the analysis. Nevertheless, there are
many different ways to endogenize uninformative trading. For exam-
ple, in Wang (1994) investors have high liquidity demand when they
have highly profitable private investment opportunities. These private
investment opportunities are investor specific and, hence, they are not
equitizable, that is, trade conditional on their dividend streams is not
possible.

The noisy REE setup was initiated by three main papers: Grossman
and Stiglitz (1980), Hellwig (1980), and Diamond and Verrecchia
(1981). Grossman and Stiglitz (1980) introduces a random aggregate
supply u in a simplified setting. In their model there are only two
groups of traders: the informed (those who have bought an identi-
cal signal S = v + ε) and the uninformed. Given the price conjecture
P = α0+αSS+αuu, the price signal SP = S+(αu/αS)u provides additional
information to the uninformed traders. Uninformed traders, however,
can only partially infer the signal of the informed traders. The price
provides no additional signal for informed traders since they already
know S.

Grossman and Stiglitz’s (1980) model captures the (partial) informa-
tion transmission role of prices, but does not illustrate the information
aggregation role of prices. This is because information is not dispersed
among the traders in their model. This additional aspect is analyzed by
Hellwig (1980) and Diamond and Verrecchia (1981). As in Grossman
(1976), both papers assume that the signals are conditionally indepen-
dent of each other given the true payoff. In other words, S = v + εi,
where the error term εi differs among the traders. Whereas in Hellwig
(1980) the aggregate supply of the risky asset is assumed to be random, in
Diamond and Verrecchia (1981) each investor’s endowment is random

2 For solving the algebra it proves useful to rewrite the price conjecture as the price
signal

SP = S̄ + αu

αS
u = P − α0

αS
.

Instead of simultaneously solving for αS and αu, one can focus on the fraction αu/αS.
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and therefore the average supply is also random as long as the number
of traders does not go to infinity. The price is only partially revealing
in both models. Given the CARA-Gaussian setup, one can demonstrate
the existence and uniqueness of the equilibrium and derive compara-
tive static results.3 Additional details of these models are presented in
Section 4.1.2. Hellwig (1980) shows that the REE in the “high noise
limit” (where the variance of aggregate endowments u goes to infinity)
corresponds to the equilibrium in which market participants do not try
to learn something from the equilibrium price. The REE at the “low
noise limit” corresponds to the informationally efficient REE illustrated
in Grossman (1976). The same is true when investors are almost risk
neutral. In this case, investors are willing to take on large positions of
the risky asset, that is, their demand schedules are very flat. This reduces
the price impact of the random aggregate supply. In other words, there
is a lot of informed trading relative to the random supply.

Admati (1985) extends Hellwig’s (1980) setting to a model with mul-
tiple risky assets and infinitely many agents. In her model, the price of
an asset does not necessarily increase with its payoff or decrease with its
actual supply. This is the case because a price change in one asset can
provide information about other risky assets. Admati’s model illustrates
that not only the correlation between financial assets’ returns (which is
the focus of CAPM), but also the correlation between the prediction
errors in traders’ information is important for determining equilibrium
relations.

The main focus of Pfleiderer (1984) is the role of volume and variabil-
ity of prices. He analyzes how a change in the signal’s precision alters
expected trading volume. His results are extended in He and Wang
(1995) which is discussed in greater detail in Section 4.3.

Introducing a Risk Neutral Competitive Fringe
All traders were risk averse in the models discussed so far. Risk aversion
restrains privately informed investors from taking on an infinitely large
position. Some more recent models introduce a fraction of uninformed
traders who are risk neutral. These scalpers, floor traders, or other mar-
ket makers have no private information. They only observe the aggregate
demand of the other traders, that is the limit order book. Introducing this
risk neutral competitive fringe simplifies the derivation of REE since the
equilibrium price is always determined by the conditional expectations

3 In Hellwig (1980) the relevant fraction of the equilibrium coefficient, αS/αu, is given
by the solution of a cubic equation.
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given the information of the competitive fringe. Introducing this frac-
tion of risk neutral traders disentangles the risk-sharing aspect from the
information aspect. That is, a risk averse trader who has no informa-
tional advantage is unwilling to hold any risky asset in equilibrium. He
only takes on a risky position if he holds some private information which
is not revealed in the limit order book. In other words, his only motive
of trade is to exploit his informational advantage. Models with a risk
neutral competitive fringe are covered in more detail in Sections 4.1.2
and 5.4.2.

Endogenous Information Acquisition and Selling of
Information prior to Trading
Grossman and Stiglitz (1980) not only introduce a random aggregate
supply but also endogenize the information acquisition decision to
explicitly analyze the Grossman–Stiglitz paradox. Prior to trading, each
trader decides whether to acquire a common information signal S = v+ε

at a certain cost. The certainty equivalent for exponential utility func-
tions given normally or χ2-distributed random variables again proves
to be very useful in deriving the private value of the signal. The signal’s
value depends on the trader’s risk aversion as well as on information
revelation of the price, that is, the amount of noise trading and the frac-
tion of informed versus uninformed traders. In the equilibrium, traders
are indifferent between acquiring the signal S or just relying on the price
signal SP = S + (αu/αS)u. That is, their willingness to pay for the sig-
nal coincides with the cost for the signal. Grossman and Stiglitz (1980)
derive some interesting comparative statics concerning the equilibrium
fraction of informed traders. Verrecchia (1982) generalizes the informa-
tion acquisition decision. In his model, traders gather different signals
and they can choose the quality of the private signal Si = v + εi they
purchase. He assumes that the signal’s cost increases in the precision of
its error term εi in a convex manner.

Admati and Pfleiderer (1986, 1990) analyze how an information
monopolist should sell his information to competitive traders. The more
this information is revealed by the price, the lower is the traders’ incen-
tive to pay for this information. The authors show that it is optimal for
a seller to add noise to his information when his information is very
precise. This increases the fraction of market participants that would be
willing to pay to become better informed. When the number of traders
is large, it is better to sell personalized signals, that is, signals with an
idiosyncratic noise term. In this case, the information monopolist sells
identically distributed signals to all traders and not only to a fraction of
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the market participants. The information monopolist can also sell his
information indirectly by using it to create an investment fund. Admati
and Pfleiderer (1990) show that the informed fund manager always
makes full use of his information. The authors also illustrate that the
degree to which information is revealed by the market price determines
whether an indirect sale or direct sale of information leads to higher
revenue for the information seller.

Competitive REE Market Order Models
In most REE models, traders submit whole demand schedules and thus
they can trade conditional on the current price. Therefore, the statistical
inference from the price and market clearing occur simultaneously. In
contrast, in Hellwig’s (1982) market order model traders can only trade
conditional on the past prices and not on the current price. Hellwig
(1982) uses this market order model in order to resolve the Grossman–
Stiglitz paradox. In this model a null set of the continuum of traders
receives information in advance. In discrete time, this information is
only revealed by the price one period later. This gives the insiders the
opportunity to make use of their information to achieve a positive return.
Therefore, traders have an incentive to acquire information. Even as the
time span between the trading rounds converges to zero, insiders can
make strictly positive returns and an informationally efficient outcome
can be arbitrarily closely reached. In Hellwig (1982), traders are myopic
and the individual demands are exogenously given rather than derived
via utility maximization. Blume, Easley, and O’Hara (1994) analyze the
informational role of trading volume within such a framework. Their
model is described in greater detail in Section 4.4.

3.1.2. Strategic Share Auctions

As Hellwig (1980) pointed out, traders behave “schizophrenically” in
a competitive REE. On the one hand, each trader takes prices as given.
That is, he thinks that his and other’s demand, which is based on pri-
vate information, does not affect the price. On the other hand, he tries
to infer information from the price, which means that he thinks that
private information is reflected in the price. This, however, can only be
the case if their demand impacts the price. This behavior can only be
justified in a setting with infinitely many traders, where each individual
trader’s demand has a negligible impact on the price, while the aggregate
demand of all the other traders does not.
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In contrast to the competitive REE models, in a strategic BNE model
traders take into account the fact that their trading affects the price.
Each trader knows that prices will move against him when he trades
larger quantities. Therefore, he incorporates this effect while forming
his optimal demand correspondence.

Kyle (1989) develops a symmetric BNE in demand schedules using a
CARA-Gaussian setting. In this model there are informed, uninformed,
and liquidity traders. Each trader’s strategy is a demand schedule which
is submitted to an auctioneer. Informed traders’ demand schedules
xin(p, Si) also depend on their individual signal Si = v+εi. The liquidity
traders’ aggregate demand is exogenously given by the random number
−u. One can also view u as an additional random supply. The auctioneer
collects all individual demand schedules and derives the market clearing
price.

Interpretation as Share Auction
Kyle’s (1989) setup can also be viewed as a share auction. Informed
and uninformed bidders bid for the random excess supply (negative
demand) u of the stock provided by the liquidity traders. Share auctions
were first analyzed by Wilson (1979). Each trader can acquire a fraction
of the total supply. This distinguishes share auctions or divisible goods
auctions from standard auction theory where each bidder demands a
fixed quantity. Thus, share auctions or multi-unit auctions with divis-
ible goods have features that are quite distinct from the standard unit
demand auctions.

Before analyzing a setting with asymmetric information as in Kyle
(1989), let us focus on the symmetric information case. In Wilson (1979)
the amount of liquidity trading u, that is the aggregate supply, is not ran-
dom and is normalized to one. In a Nash equilibrium each trader takes
the demand schedules of the other traders as given. Given the demand
schedules of the other traders and the fixed aggregate supply, each bidder
faces a residual supply curve. Trader i acts like a monopsonist and picks
his optimal point on the residual supply curve. If the residual supply
curve is very steep, that is, the other bidders submitted steep demand
schedules, the bidder prefers a lower quantity at a lower price. With
uniform pricing a marginal quantity increase leads not only to a higher
price for the next marginal unit but also increases prices for all other
units as well. A bidder is indifferent between any demand schedule as
long as it goes through his optimal point on the residual supply curve.
However, his demand schedule is determined in equilibrium since his
demand determines the residual supply curve for the other bidders and,
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hence, their optimal bidding function. Nevertheless, there are multiple
equilibria. Wilson (1979) shows that many prices can be sustained in
equilibrium. To illustrate this, let us focus on the special case where the
value of the stock v̄ is commonly known. It is easy to verify that the
following demand schedules for the I bidders support any equilibrium
price p∗ in the range [0, v̄):

xi(p) = 1
I
(1 + βp(p∗ − p)), where βp = 1

(I − 1)(v̄ − p∗)
.

If all bidders submit steep demand schedules (p∗ is very low), then each
bidder faces a steep residual supply curve. This steep residual supply
curve makes each bidder reluctant to bid for a higher quantity since it
would also increase the price for his other units given uniform pricing.
In other words, the marginal cost of increasing the quantity is larger
than v̄. Therefore, the bidder in a share auction can sustain a price well
below the asset’s true value v̄. Wilson (1979) concludes that the revenue
for the seller will be much lower in share auctions than in standard unit
demand auctions. In unit demand auctions, traders are in Bertrand com-
petition with each other. This results in a unique equilibrium price of v̄.
The multiplicity of equilibria in share auctions carries over to the case
of random values v. In this case, bidders look at the certainty equiv-
alence of v and their bidding schedules depend on the assumed risk
aversion.

Introducing a random aggregate supply, u, reduces the multiplicity
problem. In the absence of this random supply component, each bid-
der’s demand curve has to pass through his optimal point on the residual
supply curve that he faces. Hence, with fixed aggregate supply there are
many degrees of freedom to find a profile of demand functions such that
the residual supply is very steep for each bidder. Thus, low equilibrium
prices can be supported. In contrast, with a random aggregate supply,
u, the residual demand curve faced by a bidder also depends on the real-
ization of u. In such a setting, each bidder tries to submit a bid schedule
which is optimal for each possible realization of u. This reduces the
degrees of freedom of possible demand schedules that can form a best
response. Hence, the set of possible equilibria is cut down. Klemperer
and Meyer (1989) derive sufficient conditions for uniqueness in the case
of a continuous unbounded distribution of u. Klemperer and Meyer
(1989) employ a setting where oligopolistic firms compete against each
other with supply schedules. In short, uncertainty in the aggregate sup-
ply, which is often generated by liquidity traders, significantly reduces
the set of equilibria.
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Necessary Conditions for Symmetric Nash Equilibrium
Some useful insights can be drawn from studying the necessary con-
ditions for a symmetric Nash equilibrium with continuous downward
sloping demand functions x∗(p) for all I bidders. Let us restrict our
attention to strategies which lead to market clearing. Market clearing
Ix∗(p) = u determines the equilibrium price. Since x∗(p) is invert-
ible, all bidders can infer the random supply u from the equilibrium
price p. In other words, each equilibrium price p′ corresponds to a
certain realization of the random supply u′. Bidders trade conditional
to the equilibrium price by submitting demand schedules. Thus, they
implicitly condition their bid on the random supply u. Every bidder i
prefers his equilibrium strategy xi,∗(p) to any other demand schedule
xi(p) = xi,∗(p) + hi(p). To avoid the calculus of variation, let us focus
on pointwise deviations at a single price p′, that is, for a certain real-
ization u′ of u. For a given aggregate supply u′, bidder i’s utility, is
Ev[U((v − p(xi))xi)]. Deviating from xi,∗

p′ alters the equilibrium price p′.
The marginal change in price for a given u′ is given by totally differenti-
ating the market clearing condition xi

p′ +∑
−i∈�\i x−i,∗(p) = u′. That is,

it is given by

dp
dxi

= −
[ ∑

−i∈�\i

∂x−i,∗

∂p

]−1

.

The optimal quantity xi,∗
p′ for trader i satisfies the first-order condition

Ev

[
U′(·)

(
v − p + xi,∗

p′

[ ∑
−i∈�\i

∂x−i,∗

∂p

]−1)]
= 0

for a given u′. This first-order condition has to hold for any realization
of u, that is, for any possible equilibrium price p′. For distributions of u
that are continuous without bound, this differential equation has to be
satisfied for all p ∈ �. Therefore, the necessary condition is

Ev

[
U′(·)

(
v − p + xi,∗(p)∑

−i∈�\i ∂x−i,∗/∂p

)]
= 0.

For a specific utility function U(·), explicit demand functions can be
derived from this necessary condition.
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U′(·) is a constant for risk neutral bidders. Thus, the necessary
condition translates to

p = E[v] +
[ ∑

−i∈�\i

∂x−i,∗

∂p

]−1

xi,∗(p).

In words, the bidding function consists of two parts. The first term
E[v] reflects the bidder’s value of an additional marginal unit. The
second term is negative and is due to bid shading. After imposing
symmetry among the bidders’ demand schedules and solving the dif-
ferential equation the necessary condition simplifies to x(p) = (E[v] −
p)1/(I−1)k0. Hence, the demand function in inverse form is p(x) =
E[v] − (1/k0)

(I−1)(x)(I−1). Note that equilibrium demand schedules are
only linear for the two-bidder case.

The exponential CARA utility function U(W) = −e−ρW with con-
stant absolute risk aversion coefficient ρ is another special case. The
first-order condition simplifies to∫

e−ρxi,∗vvf (v) dv∫
e−ρxi,∗vf (v) dv

− p +
[ ∑

−i∈�\i

∂x−i,∗

∂p

]−1

xi,∗ = 0,

where f (v) is the density function of v. The ratio of the inte-
gral is the derivative of the log of the moment generating function,
(ln�)′(−ρxi,∗(p)). In addition, if v is normally distributed then the first
term simplifies to E[v] − ρxi,∗(p)Var[v]. Thus, the individual demand
schedule is given by:

p = E[v] − ρ Var[v] xi,∗(p) + 1∑
−i∈�\i ∂x−i,∗/∂p

xi,∗(p).

As before, the demand schedule can be divided into two parts. The first
two terms reflect the value of an additional marginal unit for bidder i.
The third term is negative and is due to bid shading. After imposing
symmetry, the solution of the differential equation in inverse form is
given by

p(x) = E[v] − ρ Var[v]
I − 1
I − 2

x − k1(x)I−1.

This also illustrates that demand functions are only linear for I ≥ 3 and
for the constant k1 = 0.
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Introducing Asymmetric Information
Kyle (1989) focuses exclusively on linear demand functions in a CARA-
Gaussian setting. Traders are asymmetrically informed in his model.
Informed traders receive an additional private signal Si = v + εi and,
hence, their demand schedule xin(p, Si) depends not only on the price
but also on their private signal. The uninformed traders’ demand func-
tion, xun(p), depends only on the price p. Liquidity traders provide the
aggregate supply u. u is independently normally distributed and can be
positive or negative. The discussion about share auctions so far focused
on the intuition for positive aggregate supply. The analysis is analo-
gous for negative aggregate supply. Indeed, Kyle’s (1989) model can
also be viewed as a double share auction. Depending on the private
information and the realization of u, traders buy or sell the stock. In
a symmetric BNE with linear demand schedules each informed trader
faces a linear residual supply curve p = αi

I + λIxi, where αi
I is ran-

dom and λI is constant. The reciprocal of λI is interpreted as “market
depth,” the liquidity of the market. Whereas in competitive REE mod-
els the aggressiveness of informed traders is only restricted by their
risk aversion, in strategic models agents trade less aggressively due to
both their risk aversion and the price impact of their trades. Thus, in
Kyle’s setting traders try to avoid trading their informational advantage
away.

Prices reveal less information in strategic models than in competitive
REE models. Thus, strategic models facilitate costly information acqui-
sition. Unlike Hellwig (1980), even in the limit, when noise trading
vanishes or traders become almost risk neutral, prices do not become
informationally efficient in Kyle (1989). Nevertheless, the profit derived
from private information (the information rent) is driven down to zero.
The reason is that the informed trader faces an extremely steep resid-
ual supply curve which makes the profit maximizing quantity zero.
Kyle (1989) also shows that as the number of informed speculators
increases to infinity, the model converges to a monopolistic competition
outcome which need not be the same as that in a competitive environ-
ment. The limit coincides with the competitive REE only if the limit is
taken by combining many replicas of smaller economies with identical
structure.

Kyle (1989) analyzes the special case with a single information
monopolist and many competitive outsiders in more detail. He derives
a tractable closed-form solution for this case. Bhattacharya and Spiegel
(1991) illustrate market breakdowns for this special case.
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Uniform Pricing versus Discriminatory Pricing (Limit Order Book)
So far, we have focused on uniform pricing in share auctions. With
uniform pricing, the first marginal unit costs the same as the last one. In
other words, the total payment for bidder i is pxi(p). In contrast, under
discriminatory pricing, the bidder pays his actual bidding price for each
marginal unit. For each additional marginal unit, the bidder has to pay
the inverse of his demand schedule x−1(p). His total payment is the area
below his demand schedule

∫ xi(p)
0 p(q) dq, where p(q) is the inverse of

his demand function.
Price discrimination changes the nature of the strategic interaction

between the bidders. Given the bid schedules of all other traders, each
individual trader does not act as a monopsonist. Bidding for an addi-
tional marginal unit does not alter the price of the first units. Therefore,
bidders have no incentive to restrain their bidding as is the case in a uni-
form price setting. This eliminates the equilibria which support prices
which are below the commonly known value of the asset as described by
Wilson (1979). Back and Zender (1993) explicitly make this argument
and argue in favor of discriminatory pricing.

Discriminatory pricing also leads to different demand curves. As
shown above, in a CARA-Gaussian setup, the bidding function under
uniform pricing satisfies the following condition:

p = E[v] − ρ Var[v] xi,∗(p) + 1∑
−i∈�\i ∂x−i,∗/∂p

xi,∗(p).

This condition also holds in a setting where all agents maximize a mean–
variance utility.4 Viswanathan and Wang (1997) uses such a setup
to highlight the difference in demand schedules between both auction
structures.

The demand function under discriminatory pricing is

p = E[v] − ρ Var[v] xi,∗(p) + 1∑
−i∈�\i ∂x−i,∗/∂p

1
H(u)

.

H(u) coincides with the hazard rate of the random aggregate supply u,
g(u)/(1 − G(u)), if the bidders maximize a mean–variance utility func-
tion over the stock value v. G(u) is the cumulative distribution and g(u)

4 Mean–variance utility functions are directly defined over the mean–variance space,
that is, U(E[W], Var[W]). An exponential von Neumann–Morgenstern utility func-
tion reduces to a mean–variance certainty equivalent if its argument W is normally
distributed.
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is the density function of u. This mean–variance utility formulation dif-
fers from an expected CARA utility specification to the extent that the
bidders are risk neutral with respect to the price risk.

If one examines both demand schedules it is immediately clear that
bidders differ in their bid shading term. In a uniform price share auction
the shading is bid proportional to xi, that is, it affects the slope of the
demand functions. In contrast, in a discriminatory price setting, bid
shading changes the intercept of the demand functions. The extent of
bid shading in a discriminatory auction depends on the hazard rate of
the random aggregate supply u.

Some papers illustrate share auctions where bidders are asymmetri-
cally informed. The classical reference is Maskin and Riley (1989) who
analyze share auctions from a mechanism design point of view. More
recent articles are Ausubel and Cramton (1995) and Viswanathan and
Wang (1999). The latter paper provides an explicit equilibrium charac-
terization of a two-bidder share auction under price discrimination.

3.2. Sequential Move Models

In the last section, all traders submitted their demand schedules simulta-
neously. In other words, every trader submitted his order before observ-
ing the order of the other market participants. In the following sections,
we allow for sequential order submission. Depending on the order of
moves, one can distinguish between screening and signaling models. In
the next two sections we focus on models in which the uninformed mar-
ket participants act before the informed trader moves. The uninformed
traders offer contracts or trading opportunities that allow them to screen
the different types of informed agents. Consequently, these models
fall into the class of screening models. In contrast, models in which
the informed party moves first fall into the class of signaling models.
While an equilibrium does not exist in many screening models, signal-
ing models typically have multiple equilibria. This rules out clear-cut
predictions since many equilibrium outcomes can be supported depend-
ing on the specified beliefs. Models where the informed party moves first
are covered in Section 3.2.3. The next section looks at screening models.

3.2.1. Screening Models à la Glosten

A general feature of models in this section is that in the first stage,
uninformed risk neutral traders submit whole supply schedules. The
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uninformed trader is either a single market maker or many market mak-
ers like floor traders, scalpers, day traders, and market timers. Given a
single aggregate price schedule, the risk averse trader submits his utility-
maximizing market order. He trades for informational reasons as well
as for liquidity reasons and picks his optimal order size. This class of
models focuses only on a one-time interaction.

Uniform Pricing
Glosten (1989) considers a uniform price setting, where the informed
investor pays the same for the first marginal unit as for the last unit.
This is in contrast to a limit order book where the investor can “walk
along the book;” that is, where each additional unit becomes more and
more expensive. In Glosten (1989) a risk averse informed trader with
an exponential utility function experiences an endowment shock u and
receives a private signal Si = v+ε about the value v of a stock. As usual,
u, v, and ε are independently normally distributed. The agent trades for
liquidity reasons and informational reasons. Risk aversion causes him to
adjust his portfolio after the endowment shock. He also wants to trade
for information reasons to exploit his private information.

The market makers quote an aggregate price schedule prior to trad-
ing. A single risk averse trader observes the quoted price schedule and
chooses his optimal order size. Glosten (1989) compares the “dealership
market structure” consisting of many perfectly competitive market mak-
ers with the “specialist system” at the New York Stock Exchange where
each investor has to trade through a monopolistic specialist. For the case
of perfect competition among the market makers, the price schedule in
Glosten (1989) is given by

Pco(x) = E[v|x].

Perfect competition among market makers requires that the expected
profit for any order size x is zero. On average, market makers profit
from trading with investors with large endowment shocks since these
investors trade for rebalancing reasons, and lose to traders with small
endowment shocks who trade for informational reasons. A competitive
market setup might, however, not provide sufficient liquidity since the
market will close down for large quantities. The reason is that com-
petitive forces prevent the market makers from effectively screening the
different types of traders. The market makers have to protect themselves
against the adverse selection problem of large orders by making the
price schedule steeper. However, market makers are unable to protect
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themselves against extremely large orders and, thus, the market closes
down. A general problem in any screening setting with an unbounded
continuous type space is that an equilibrium might not always exist as
highlighted in Rothschild and Stiglitz (1976). However, Glosten (1989)
defends his setting because of its tractability and qualitative similarity
to a discretized version with finitely many types.

In contrast to the perfectly competitive dealer market, a monopolistic
specialist commits himself to the following price schedule Pmo(·):

arg max
Pmo(x∗(·))

E[Pmo(x∗(·)) x∗(·) − vx∗(·)].

x∗(·) denotes the optimal order size of the trader which depends on
his endowment shock and his information. The problem a single mar-
ket maker faces can also be viewed as a principal–agent problem. The
principal (specialist) sets a menu of contracts (x, Pmo(x)) from which
the agent chooses the one which maximizes his expected utility. The
crucial difference to the perfectly competitive market maker setting is
that a monopolistic specialist has the ability to cross-subsidize different
order sizes. He earns a larger profit from small trades, but makes losses
on large trades in equilibrium. Small trades are more likely than large
trades. Cross-subsidization enables him to induce a different trading
behavior by the informed trader at the second stage. Large trades are
unlikely to occur, but likely to result from information based trading.
By keeping the ask price of large buy orders relatively low, the specialist
guarantees that traders with extreme signals do not reduce their trade
size in order to pool with trades with less extreme signals. This cross-
subsidization is the reason why a market structure with a monopolistic
specialist stays open for larger trade sizes than a market with multiple
market makers.

Madhavan (1992) compares a two-stage game as in Glosten (1989)
with the share auction setting similar to Kyle (1989). He uses this com-
parison to illustrate the difference between a quote-driven market such
as NASDAQ or SEAQ and an order-driven market capturing some
features of the NYSE.

Limit Order Book
Whereas in Glosten (1989) the risk averse informed trader faces a uni-
form price, in Glosten (1994) he picks off the limit orders from the limit
order book at their limit prices. As in the case of price discrimination,
the trader pays less for the first buy orders than for the later buy orders,
provided that the supply schedule is increasing.
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Glosten (1994) characterizes the equilibrium properties of the limit
order book under perfect competition. He shows that under discrim-
inatory pricing the average price will not be equal to the conditional
expectation of v given the order size x even if market makers perfectly
compete against each other. Instead, the competitive price for the next
marginal (buy) order y is the “upper tail” conditional expectation

Pco(y) = E[v|x ≥ y].

Traders who buy only a tiny marginal quantity have to pay a higher
ask price than in a uniform price setting. The reason is that the com-
petitive market makers do not know whether the trader only wants to
buy the first marginal unit or whether he will go on to buy further units.
The result is that even for tiny order sizes there is a substantial bid–ask
spread. Similar to Glosten (1989), if there is a single monopolistic mar-
ket maker, the limit order book cross-subsidizes across order sizes. The
limit order book favors larger orders and, therefore, provides liquid-
ity even for extremely large orders. Another feature of the limit order
book is that it is immune to “cream skimming” of orders by competing
exchanges. The competitive limit order book already offers the best price
for an additional order. Suppose the trader can split his overall demand
and can anonymously submit a number of smaller orders to different
exchanges. If a competing exchange offers him a better price for part of
his order, it has to make losses on average. Rather than outlining the
exact details of Glosten (1994), let us focus on the model setup of Biais,
Martimort, and Rochet (1997) which also captures the case of imperfect
competition between a finite number of market makers.

Biais, Martimort, and Rochet (1997) provide a characterization of
the unique BNE in an oligopolistic screening game. In the first stage I
risk neutral market makers submit their supply schedules p(x) to build
up a limit order book.5 In the second stage an informed trader buys
x = ∑I

i xi shares, where xi is the number of shares bought from market
maker i. His total transfer payment to the individual market maker i for
xi shares is ti(xi) = ∫ xi

0 p(q) dq.
Let us focus on the optimal order size for the informed agent before

deriving the optimal demand schedules for the market makers. Prior to
trading, this agent experiences an endowment shock of u shares and
receives a signal S about the value of the stock v. Contrary to most
models, in Biais, Martimort, and Rochet (1997) nature independently

5 The corresponding notation in the original article is xi = qi, u = I, ti(xi) = Ti(qi),
S = s, ρ = γ .
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chooses the signal S and the error term ε. The value of the stock is then
determined by v = S + ε. Only ε is normally distributed, whereas the
probability distributions of u and S have bounded support.6 This signal
structure simplifies the trader’s maximization problem since his wealth
is W = v(u+x)−∑I

i ti(xi) conditional on u and S is normally distributed
and E[v|S] = S and Var[v|S] = Var[ε]. The certainty equivalent of the
informed agent’s exponential CARA utility function is

E[W |u, S] − ρ

2
Var[W |u, S]

= (u + x)S − ρ Var[ε]
2

(u + x)2 −
I∑
i

ti(xi).

This objective function can be split into two parts. The first part is
independent of x and thus represents the agent’s reservation utility; the
second part [

(S − ρ Var[ε]u)x − ρ Var[ε]
2

x2 −
I∑
i

ti(xi)

]

groups the terms which depend on x and, hence, affects the agent’s
optimal order size. The signal S and the endowment shock u affect only
the linear term (S−ρ Var[ε]u)x. Although agents might differ in u and S,
the mean–variance utility specification and signal structure used by Biais,
Martimort, and Rochet (1997) allow them to capture the different agent
types via a one-dimensional variable θ = S − ρ Var[ε]u. This reduces
a complicated two-dimensional screening problem to a much simpler
one-dimensional problem.

Biais, Martimort, and Rochet (1997) derive as a benchmark the
ex-ante efficient order size x∗(θ) for each type of agent θ . Since only
the agent himself knows his type, the principal has to elicit this informa-
tion from the agent. In other words, an information rent must be granted
to the agent such that it is optimal for him to reveal his information θ .

6 The signal structure v = S + ε, where S and ε are independently distributed, is
more tractable but less commonly used. In most models S = v + ε, where v and ε

are independently distributed. An exception is the common value unit demand auction
with independent signals. Nature draws I independent signals Si which determine the
common value of the object, v = ∑I

i Si. Under this assumption the revenue equivalence
theorem (RET) of private value auctions, as explained in Section 6.2, extends to the pure
common value auction setting. Consequently, Milgrom and Weber’s (1982) linkage
principle does not apply to this case.
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Instead of studying the allocations and tranfers, Biais, Martimort, and
Rochet (1997) take the dual approach by working with the allocation
and the agent’s information rent directly to achieve this objective.

The authors first analyze the case of a single monopolistic market
maker. The monopolistic market maker receives the total gains from
trade except the agent’s information rent since he has the commitment
power to set the agent’s supply schedule (limit order book). The market
maker does not induce the agent to choose the efficient outcome since
he maximizes his payoff, which is the total gains from trade minus the
information rent. By distorting the allocation the market maker reduces
the overall gains from trade but he is able to reduce the agent’s infor-
mation rent by even more. This increases his payoff. This is the classic
rent-efficiency trade-off in screening models. This distortion lowers the
trading volume |x(θ)|. Biais, Martimort, and Rochet (1997) also show
that the supply schedule is discontinuous around orders of size zero. In
other words, there is a strictly positive bid–ask spread for infinitesimally
small trades.

In the case of oligopolistic screening, I market makers submit supply
schedules to build up a limit order book. Each market maker can only
offer contracts contingent on his own trades xi and not on the total
trading volume x. Competition among the market makers reduces their
possibility to distort the allocation in order to save information rent.
As the number of market makers increases, the overall profit for the
market makers declines and informational rent of the agent increases.
Each individual market maker cannot control the rent-efficiency trade-
off. This deepens the market and results in a larger trading volume |x|
than in the monopoly case. Nevertheless, the trading volume fails to
reach the optimal risk-sharing level.

In the limiting case with infinitely many market makers, Biais,
Martimort, and Rochet (1997) confirm the findings of Glosten (1994).
Competition in supply schedules in this common value environment is
limited. Although the market makers’ aggregate profit converges to zero,
a strictly positive small trade bid–ask spread remains.

Contrasting the Limit Order Book with Uniform Price Setting
Biais, Martimort, and Rochet (1997) limit their analysis to the case of
discriminatory pricing. Röell (1998) and Viswanathan and Wang (1997)
highlight the differences between discriminatory pricing and uniform
pricing. Both papers focus exclusively on the first stage, the submission
of supply (demand) schedules, since they assume that the agent’s order
size x is exogenous and thus is not affected by the equilibrium aggregate
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supply schedule. This simplifies the comparison between a uniform and
discriminatory price setting because it reduces the problem to a share
auction setting. I market makers de facto bid to execute a fraction of the
agent’s order of random size x. Share auctions are discussed in detail in
Section 4.1.2.

Röell (1998) derives a nice linear closed-form solution for both price
setting rules by assuming that x is double exponentially distributed.
A large buy order x is a positive signal about the value of the stock.
The conditional expectation E[v|x] = v0 + γx is assumed to be lin-
early increasing in x. The double exponential distribution of x, f (x) =
1
2ae−a|x|, also leads to a simple linear expression for conditional expec-
tations E[·|x ≥ y]. Linearity of conditional expectations E[·|x] leads to
linear supply schedules in the uniform pricing setting, whereas the lin-
earity of E[·|x ≥ y] guarantees linear schedules for the limit order book.
For the case of uniform prices, the linear aggregate supply function is
given by

pu(x) = v0 + I − 1
I − 2

γx.

In contrast, the equilibrium limit order book is given by

pd(x) = v0 + I
I − 1

γ

a
+ γx.

As noted earlier, the limit order book is deeper but less tight than under
the uniform pricing rule. That is, the bid–ask spread is wider for small
orders. Figure 3.1 plots the average market prices for different order
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Figure 3.1. Average market price schedules under uniform and discriminatory
pricing
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sizes, x. It also illustrates the impact of competition between the market
makers as their number I increases.

The simple closed-form solution allows us to directly see the impli-
cations of enhancing competition between the I market makers. As I
increases, the supply schedules under uniform prices become flat-
ter while the intercept stays the same. Under discriminatory pricing
the slope of the supply schedules stays the same, but the intercept is
reduced. In other words, increased competition makes the limit order
book tighter. Röell (1998) also extends her analysis to a setting where
the market makers face quadratic inventory costs instead of adverse
selection costs.

Inventory considerations are also the focus of Viswanathan and Wang
(1997). In their model market makers maximize a mean–variance utility
function over the final payoff and thus they are not risk neutral. Since
the agent’s (sell) order x is purely random and without informational
content, their setting resembles a share auction. Thus, the characteri-
zation of supply (demand) schedules of their model has already been
described in Section 3.1.2. Viswanathan and Wang (1997) not only
compare the discriminatory limit order book with the uniform price set-
ting in a dealership market but also with a hybrid market setting. The
authors assume a hybrid market structure in which all orders below a
fixed size r are executed in a limit order book, whereas larger orders
go to a dealership market with uniform pricing. The authors compare
the three different market structures from the agent’s ex-ante point of
view. That is, the agent chooses, before he observes his random order
size x, the market structure which maximizes his ex-ante mean–variance
utility over proceeds from his sale. The analysis shows that the agent’s
ex-ante preference depends on his risk aversion. Risk neutral customers
always prefer the limit order market. In contrast, risk averse traders
prefer uniform pricing if the number of competing market makers and
the average order size is large. However, if the hybrid market is prop-
erly designed, risk averse traders prefer hybrid market structure even to
uniform pricing.

Competition May Widen Spread
Dennert (1993) highlights a different aspect of the strategic interac-
tion between market makers. His model shows that an increase in the
number of competing market makers can hurt the liquidity trader. In
contrast to the models described so far, each market maker quotes a
single bid and a single ask price in Dennert (1993). They pre-commit
themselves to trade up to one unit of shares at this bid and ask price.
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In the second stage, the trader chooses his optimal demand. An informed
trader knows the true value of the asset v ∈ {−1, +1}. He trades with
many market makers simultaneously as long as it is profitable for him.
On the other hand, by assumption a liquidity trader only trades one
unit with the market maker who offers him the best price. In short,
only the market maker(s) with the best quote trade with a liquidity
trader. Therefore, every market maker has an incentive to undercut his
rival’s quotes and consequently an equilibrium in pure strategies does
not exist. Dennert (1993) derives the equilibrium price distribution for
the symmetric mixed strategy equilibrium. In this equilibrium, all mar-
ket makers make zero profit in expectations. The author shows that as
the number of market makers increases, the transaction costs for the
liquidity trader increase. Intuitively, as the number of registered market
makers increases, the informed trader has more trading opportunities,
while the liquidity trader still trades only with a single market maker
who offers the best price. The adverse selection problem as a whole
is more severe and thus the transaction costs for the liquidity traders
increases. In the second part of this paper, Dennert (1993) shows that
the results also generalize to a setting where market makers can set whole
price schedules instead of a single bid and ask price.

3.2.2. Sequential Trade Models à la Glosten and Milgrom

In Section 3.2.1 we examined models in which the market makers submit
whole supply functions. In this section, we restrict the order size to one
unit. Therefore, the market maker quotes only two prices: a single bid
price and a single ask price. This also restricts the screening possibilities
of the market maker. The market maker’s client is either an informed
trader or a liquidity trader. Models in this section pioneered the analysis
of bid–ask spreads due to asymmetric information. Most models in this
class also assume that the market makers quote competitive bid and ask
prices. The underlying Bertrand competition among the market makers
is not explicitly modeled but is exogenously assumed. This simplifies the
analysis and allows models with multiple trading rounds. In this setting,
the market maker updates his quotes after each trade.

Monopolistic Market Maker
Copeland and Galai (1983) restrict their analysis to a one-time inter-
action, as in the models described in the last section.7 In their setting

7 These models are based on the intuitive reasoning presented by Bagehot (1971)—a
pseudonym for Jack Treynor—who explains the bid–ask spread due to adverse selection.
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there is also no competition among market makers. A single monopolis-
tic market maker sets the bid and ask to maximize his own profit. The
market maker is uninformed and faces an adverse selection problem. He
either trades with an informed trader or with an uninformed liquidity
trader. An informed trader arrives with probability μ. He knows the
true value of the stock v. He buys only if the true value, v, is higher
than the ask price and sells only if it is smaller than the bid price.
In both cases, the market maker will lose out to the informed trader.
The market maker profits if a liquidity trader arrives. This occurs with
probability 1 − μ. A liquidity trader either buys or sells the stock or is
inactive depending on his exogenous reasons for trading. As the spread
widens, the probability increases that a liquidity trader might not trade
at all. In Copeland and Galai (1983) the bid–ask spread is partly due
to adverse selection and partly to the monopolistic power of the market
maker. The authors compute the profit maximizing spread for the mar-
ket maker and derive some comparative static results. As the probability
of informed traders μ increases, the market maker widens his bid–ask
spread.

Multiple Trading Rounds and Competitive Market Makers
In Copeland and Galai (1983) the true value of the stock v is made public
after one trading round. In contrast, there are many trading rounds in
the seminal paper of Glosten and Milgrom (1985). A single investor
arrives exogenously in each period and the market maker adjusts his bid
and ask prices after each trade. The investor trades for informational
reasons with probability μ and for liquidity reasons with probability
1 − μ. Although Glosten and Milgrom (1985) analyze a multiperiod
setting, each trader employs a static trading strategy since they trade at
most once.

Another difference between Copeland and Galai (1983) and Glosten
and Milgrom (1985) is that the latter assumes that the risk neutral
market maker sets competitive bid and ask prices. In other words, the
expected profit for the market maker is zero in each period. This simpli-
fies the analysis since the market maker cannot cross-subsidize over time.
Competitive price setting is justified as long as in each period a new risk
neutral market maker could potentially enter the market in each period.
The new entrant could Bertrand-compete all expected profits away. In
contrast, in a setting with a monopolistic market maker, the market
maker might be willing to accept some expected losses in the first trad-
ing round, if this would reveal more information in the early trading
rounds. He could use this information to subsequently recuperate his
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losses. The assumed risk neutrality of the market maker also abstracts
from inventory considerations.8

The trading strategy of an informed trader is to buy the stock if the
ask price is below his expected value of the stock and sell it when the
bid price is above the expected value. Since each informed trader trades
only once and the prices are pre-set, he does not care how his trade
affects the future price path. Liquidity traders in Glosten and Milgrom
(1985) trade as long as liquidity needs exceed the ask (bid) price for
the buy (sell) order. The literature has emphasized a simplified version
of Glosten and Milgrom (1985) in which liquidity traders buy or sell a
stock with equal probability independently of the set prices. Figure 3.2
illustrates the probability structure of the Glosten–Milgrom sequential
trade model for the simplified case presented in Section 3 of Glosten
and Milgrom (1985), where v is high, vH, with probability π or low,
vL, with probability 1 − π .

Potential Bertrand competition ensures that the ask price is the market
maker’s expected value of v conditional on an arriving buy order and
the bid price is his expected value conditional on a sell order. In short,
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Figure 3.2. Tree diagram of the trading probabilities

8 Inventory models provide an alternative explanation for spreads, Ho and Stoll
(1981).
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the ask price pask and bid price pbid are

pask = E[v|buy order, past order flow]

and

pbid = E[v|sell order, past order flow].

If the fraction of informed traders increases, the adverse selection
problem becomes more severe and therefore the bid–ask spread (pask −
pbid) widens. On the other hand, a higher number of informed traders
also increases the speed of information revelation. Increasing the num-
ber of informed traders also increases the serial correlation in the
order flow.

As the market maker observes the incoming buy and sell orders, he
updates his beliefs about the asset’s value using Bayes’ rule. As time goes
by and the market maker observes more and more orders, his estimate
about the true value of the stock becomes more precise. The market
maker becomes more certain of the information held by the insiders and
therefore the size of the spread falls. Glosten and Milgrom (1985) show
that the bid and ask price eventually converge to the true value v.

In this simplified setting the market imbalance, that is the difference
between sell and buy orders, is a sufficient statistic for the whole history
of the past order flow. This also implies that a “no-trade event” does
not alter the market maker’s beliefs.

To further illustrate the dynamic aspects of this model, let us focus
on an even simpler setting where the low value of the stock vL = 0
and the high value vH = 1 occur with equal probability. The market
maker’s expected value E[v|past order flow] does not coincide with the
midpoint between ask and bid 1

2(p
ask − pbid) unless the current condi-

tional expected value is 0. 5. To see this, let us consider the case where
the current expected value is above 0. 5. In this case, the market maker
must have observed more buy orders than sell orders. An additional
buy order will have a smaller impact on his posterior estimate than an
additional sell order. More formally, |pask −E[v|·]| < |E[v|·]−pbid| and,
therefore, the midpoint is biased downwards.

The transaction price in Glosten and Milgrom (1985) follows a mar-
tingale process, but the quoted ask and bid prices do not. The reason is
that an additional trading round provides more information for the mar-
ket maker and thereby tightens the spread over time. Since the spread
size is not a martingale, it is impossible that both the bid and ask prices
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follow a martingale process. Nevertheless, the quoted ask and bid prices
are still Markov processes.9

Introducing “Event Uncertainty”
Easley and O’Hara (1987) extend Glosten and Milgrom’s (1985)
sequential trading model in two ways. In Glosten and Milgrom (1985)
traders’ buy or sell orders are restricted to a fixed size of one unit. Conse-
quently the market maker quotes only a single bid price and a single ask
price. Easley and O’Hara (1987) allow order sizes of one and two units,
that is, small and large orders. Furthermore, they introduce the concept
of “event uncertainty.” An information event occurs with probability α

and the information structure is similar to that depicted in Figure 3.2.
The information event does not occur with probability (1 − α) and no
trader receives any information. In that case, all traders are uninformed
and neither the market maker nor the uninformed traders know the true
value of the stock. They also do not know whether an information event
has occurred.

There are several trading rounds during the trading day. At the begin-
ning of the trading day, nature selects whether an information event
occurs or not. If information is released, the pool of infinitely many
traders contains a fraction (1 − μ) of uninformed traders and a frac-
tion μ of informed traders who receive a signal about the true value
of the stock v. If no information event occurs only uninformed traders
are in the pool. Uninformed investors trade for exogenous reasons and
do not take informational aspects into account. They submit large and
small orders in an ex-ante specified probabilistic way. Informed traders
choose their optimal order size given the quoted bid and ask prices. If
the quoted prices are the same for both quantities, they would always
prefer to trade large quantities. Consequently, the market maker sets a
larger spread for large trades in equilibrium. Informed traders do not
take into account the fact that trading a large quantity can influence the
future price process. This is reasonable given that the trader’s chance to
trade again is zero since there are infinitely many informed traders in
the pool.

Two types of equilibria can arise depending on the parameter constel-
lation. In the pooling equilibrium, informed traders submit small and
large orders. Consequently, market makers demand a spread for both

9 A price process follows a Markov process if a single state, for example, the current
price, is a sufficient statistic for the whole history. It follows a martingale process if the
expected future prices are equal to the current price, that is Et[pt+1] = pt .
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types of orders. The spread is larger for large trades since informed
traders would otherwise always prefer large quantities. In contrast, in
the (semi-) separating equilibrium all informed traders prefer to sub-
mit large orders despite the larger spread for large trades. Uninformed
traders randomly submit small and large orders, as it is exogenously spe-
cified. Since only uninformed traders submit small trades in the (semi-)
separating equilibrium, the competitive spread for small trades is zero.

“Event uncertainty” allows Easley and O’Hara to explain the partial
price recovery that is observed after large (block) sales. A block sale
reduces the market makers estimate of the value of the stock. With-
out event uncertainty, a subsequent small order would not alter his
quoted prices because small orders are solely initiated by uninformed
traders in a (semi-) separating equilibrium. In contrast, in the case of
“event uncertainty” a small order increases the market maker’s belief
that no information event has occurred, which leads to a slight increase
in quotes. In general, both the size and the sequence of trades matter
when the market maker is uncertain whether there was an information
release in the beginning of the trading day.

Easley and O’Hara (1992) focus solely on the impact of “event uncer-
tainty.” In this paper the trade size is restricted to one unit, as in Glosten
and Milgrom (1985). Informed traders buy one share if their estimate of
the value of the stock is above the ask price and sell one share if their esti-
mate is below the bid price. Otherwise they might choose not to trade at
all. This is in particular the case if they do not receive any information at
the beginning of the trading day. Absence of trade, therefore, provides a
signal that no information event has occurred. By observing the sequence
of orders, the market maker can update his beliefs of both the true value
of the asset as well as of whether some traders received insider informa-
tion about this true value. Hence, in contrast to the simplified version of
Glosten and Milgrom (1985), time per se is not exogenous to the price
and the imbalance between buy and sell orders is not a sufficient statistic
for the post order flow. Similarly the last transaction price is also not a
sufficient statistic for the past order moves. Therefore, the transaction
price process is no longer a Markov process. However, the transac-
tion price is still a martingale. The numerical example presented above,
where vL = 0 or vH = 1 with equal probability, is also very illustrative
in the case of “event uncertainty.” Absence of trade makes asymmetric
information less likely and thus pulls the quotes towards 0. 5. If the cur-
rent midpoint is at 0. 5, a competitive market maker reduces the spread.
However, absence of trade need not always reduce the spread if the ask
and bid do not straddle around 0.5.
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Pagano and Röell (1992) contrast the standard Glosten–Milgrom
(1985) setting with a batch auction market where market orders are col-
lected before the market maker sets the competitive price. These batch
models lead us to the next section.

3.2.3. Kyle Models and Signaling Models

In the previous two sections, we discussed sequential models where the
uninformed market maker sets the prices before the informed trader
submits his market order. In this section, we cover models where the
informed party moves first and, thereby, signals some of his information
to the uninformed individuals.

The Static Kyle (1985) Setup
Kyle’s (1985) seminal paper is the classical reference for this class of
models.10 Its elegant solution made this setup very popular for analyzing
many market microstructure issues such as insider trading, stock price
manipulation, and front running.

This section focuses on the static version of Kyle (1985) where there
is only one trading round. In this batch clearing model, there are three
groups of risk neutral players: a single informed investor, many liquid-
ity traders, and a market maker who sets the price after observing the
aggregate order flow. In contrast to the previous model, multiple traders
are active in the market place at the same time. Some trade for liquid-
ity reasons, while the insider tries to exploit his private information. In
other words, the informed insider and the liquidity traders submit their
orders simultaneously. The market maker only observes the net order
flow X. He does not observe each individual order and, thus, he does not
know the informed trader’s order size x ∈ �. Kyle (1985) assumes that
the market maker sets the execution price P1 equal to his best estimate
E[v|X]. The liquidity traders trade for reasons exogenous to the model.
Their demand is given by the random variable u ∼ N (0, σ 2

u ). The total
net order flow is X = x + u. The value of the stock v is normally dis-
tributed N (P0, σ 2

v,0). The single, risk neutral, information monopolist is
the only one who knows the true value of the risky asset, v. He trades
to maximize his profit which equals his capital gain (v − P1) times the
quantity of his stock holdings, x. Since he acts strategically, he takes
into account the fact that his demand x will influence the price, P1.

10 The notation X and σ 2
v,0 used here corresponds to the notation y and �0 used in

the original article, respectively.
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Kyle (1985) focuses on the BNE, where all strategies are linear in
equilibrium. To derive the perfect BNE, let us follow the steps outlined
earlier in Section 1.2. The first step is to propose equilibrium strategies
for both the insider and the market. Let the proposed strategy for the
insider be x = β(v − P0) and for the market maker be P1 = P0 + λX.
The coefficients β and λ will be determined in equilibrium. The insider
maximizes his expected trading profit E[π |v] = E[(v − P1)x|v], where
he takes into account the fact that according to his beliefs, P1 = P0 +
λ(x+u). His optimal stock holding is then given by x∗ = (1/2λ)(v−P0).

The market maker observes the aggregate net order flow X = x +
u. Given his beliefs about the insider’s trading strategy, x = β(v −
P0), he tries to infer the value of the stock v from X. Since v and u
are normally distributed and the insider’s demand x is linear in v, the
projection theorem yields the conditional expectation

E[v|X] = P0 + Cov[v, X]
Var[X]

(X − E[X]) = P1.

The perfect BNE is obtained by determining the coefficients λ and β.
Given the best replies, the equilibrium coefficients are given by

β = 1
2λ

and λ =
βσ 2

v,0

βσ 2
v,0 + σ 2

u

.

In equilibrium λ = 1
2

√
σ 2

v,0/σ
2
u and β =

√
σ 2

u /σ
2
v,0. λ determines the

price increase of an additional buy order. The reciprocal of λ can be
viewed as the market depth. If λ is low, an additional order will not
lead to a large price change and, thus, the market is very liquid. The
small price impact of an additional order reflected by a low λ induces
the insider to trade more aggressively.

The expected profit for the insider in equilibrium is given by
E[(v − P1)x] = 1

2(σ
2
u σ

2
v,0)

1/2. His expected profit is increasing in σ 2
v,0

since σ 2
v,0 measures the informational advantage of the insider. A higher

variance of u implies more liquidity trading which in turn provides more
opportunity for the insider to disguise his information based trading.
The market maker breaks even on average. He loses money to the insider
but makes the same amount of money from the noise traders on aver-
age. Consequently, the insiders’ expected profit is the liquidity traders’
expected trading costs. Half of the insider’s information is revealed after
one trading round, that is, the new variance of the true value of the stock
conditional on X is only half of the original unconditional variance.
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Kyle (1985) extends this static model to a series of discrete call mar-
kets in a sequential auction setting. In this dynamic setting, the insider
faces the following trade-off: if he takes on a larger position in the
early periods his early profits increase but prices in the later trading
rounds worsen. The dynamic considerations of the insider and other
important extensions of this seminal paper are covered in more detail in
Section 4.5.

Some Robustness Results
The assumed normal distribution of u and v plays an important role in
simplifying Kyle’s (1985) analysis. Its continuous unbounded support
makes sure that the market maker can never detect a deviation by the
insider. Any aggregate order flow X = x + u is possible in equilibrium.
Any change in X can always be attributed to a different realization of u.
Therefore, no out-of-equilibrium beliefs need to be specified. This also
implies that the insider can always take the equilibrium λ as given, even
when he deviates from his equilibrium strategy.

In contrast, for discrete distributions of u and v, a deviation might
lead to an aggregate order flow that would never arise in equilibrium.
In this case, out-of-equilibrium beliefs determine the market maker’s
reaction to an insider’s deviation. These out-of-equilibrium beliefs and
the associated change of the market maker’s λ determine whether a
deviation is profitable for the insider or not. In other words, the existence
of a specific equilibrium depends on its out-of-equilibrium beliefs. Biais
and Rochet (1997) demonstrate that multiple equilibria exist in this
discrete setting.

Rochet and Vila (1994) alter Kyle’s (1985) static setting such that the
insider observes the amount of noise trading u in addition to v. In other
words, the insider knows the exact execution price. A low realization of
u leads to a lower execution price and, therefore, the insider buys more
shares. In short, the insider provides some additional liquidity to the
market. Interestingly, although the insider knows the realization of u,
his expected profits stay the same. Hence, the liquidity trader’s average
trading costs are also not affected. Rochet and Vila (1994) show that the
equilibrium outcome in the adjusted Kyle (1985) setting coincides with
the equilibrium in a setting where a single risk neutral insider submits
whole demand schedules as in Kyle (1989). Rochet and Vila’s (1994)
main objective is to check the robustness and uniqueness of the equilib-
rium for any continuous distribution of u and v. The authors show that
the BNE is unique and has the property that it minimizes the expected
gains of the insider under incentive compatibility constraints. However,
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this uniqueness result typically does not carry over to the case where the
insider does not observe u.

Like in any signaling model, the informed trader in Kyle (1985) moves
before the uninformed market maker. However, the Kyle (1985) setup
is robust to a change in the order of moves. The fact that the market
maker cannot detect any deviation by the insider makes the analysis also
applicable to an alternative setting where the insider and market maker
choose their strategies simultaneously. For example, a market clearing
process, where a competitive risk neutral market making sector submits
demand schedules based on public information and the informed trader
simultaneoulsy submits market orders, is equivalent to the classical Kyle
(1985) setup (Vives 1995b). A setting where the market maker first
commits to a linear price schedule for the net order flow P(X), before
the insider and the liquidity traders submit their order flow, provides a
third alternative setting. Nonoptimizing behavior by the liquidity traders
and the assumed competitive behavior of the market maker make this
reversal in the order of moves nonproblematic. Given the possibility
that the sequence of moves can be easily reversed without changing the
nature of the outcome in a Kyle (1985) setting, it might be too restrictive
to classify it only as a signaling model.

Bagnoli, Viswanathan, and Holden (1994) provide a comprehensive
overview of the existence of linear equilibria in static Kyle (1985)-type
models and sequential trade models à la Glosten and Milgrom (1985)
for various distributions of u and v.

Information Inefficiency without Liquidity Traders
Laffont and Maskin (1990) develop a different signaling model in
which the risk neutral insider’s transactions with many small traders are
directly observable. The aim of their paper is to illustrate that strategic
behavior leads to informational inefficiencies even without exogenously
assumed noise traders. In their setting, a continuum of risk averse small
traders initially own the stocks and would like to unload their risky
position. The value of the stock is given by v = δ + ε, where δ is either
high, δH, or low, δL. A single, risk neutral, large trader knows the real-
ization of δ. He offers to take on a fraction of the risky stock from the
small traders. Since he is a monopsonist, he chooses the purchase price
by choosing the quantity.

The authors show that a separating equilibrium always exists. In a
separating equilibrium, the insider’s information is revealed to the small
traders and the profit of the monopsonist results from taking on the risk
from the continuum of small traders. A pooling equilibrium also exists,
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as long as the difference (vH −vL) is sufficiently small. In a pooling equi-
librium, the insider’s information is not revealed. The insider is better off
in the pooling equilibrium since he does not face the quantity restriction
imposed by the incentive constraint of the separating equilibrium.

Summary
In this chapter, we classified static market microstructure models into
simultaneous move models and sequential move models. The latter set
of models were further subdivided into screening and signaling models.
Almost all existing static models in the literature can be grouped into
these categories. As mentioned in the beginning of this chapter, there
are alternative ways to classify these models.

Note that this chapter only covered a small fraction of the growing lit-
erature on market microstructure. More exciting research output can be
expected, especially extensions of the more recent analysis of limit order
books in screening models. Many issues like market transparency, opti-
mal market design, the role of the market maker’s inventory positions,
disclosure rules, competition among exchanges, and optimal opening
procedures of exchanges are not incorporated in this survey. The focus
of this chapter is solely on the interaction between information and
prices. For a broader coverage of the market microstructure literature
we refer the interested reader to the leading book by O’Hara (1995)
and the more recent survey by Madhavan (2000). Lyons (2000) also
illustrates the usefulness of market microstructure models in explaining
exchange rate movements in the international finance literature.

Most models covered in this chapter share the common feature that
the price adjusts instantaneously to public information but only grad-
ually to private information. This gradualism is caused by the noisy
asset supply and/or strategic behavior of informed traders, or it is exoge-
nously given by assuming a sequential trading mechanism where traders
are restrained to trade only a certain quantity. The different market
microstructure models surveyed in this chapter place varying levels of
emphasis on these three factors. These static models form the basis for
the dynamic models that are presented in the next chapter.



4

Dynamic Trading Models,
Technical Analysis, and

the Role of Trading Volume

In the previous chapter we discussed closed-form solution models in
which each individual trader optimized his trades only at one period
in time. Traders had no opportunity to resell their acquired positions
in later trading rounds. In most cases the stock was liquidated and the
liquidation value of the stock was paid out before re-trade could occur.
In this chapter we consider models in which individual traders are active
in the market place in multiple trading rounds. This both enriches and
complicates the analysis. Models in Section 4.1 illustrate how traders
try to learn additional information from past prices. Technical anal-
ysis has positive value and allows traders to make better investment
decisions. They are able to better interpret new information if they
make use of information reflected in past prices. Furthermore, technical
analysis gives them a better idea about the true value of the underly-
ing asset. Learning from past prices alters their trading strategy and
thus also affects the price process. Section 4.2 illustrates how learning
induces serial correlation in the price process. The section also high-
lights the infinite regress problem which might arise if traders try to
forecast others’ forecasts by inferring information from endogenous
variables. Section 4.3 covers multiperiod competitive REE models start-
ing with two models in which information is hierarchical, that is, the
information of one group of traders encompasses the others’ infor-
mation. The first model is set in continuous time whereas the second
model is in discrete time and incorporates the role of trading volume.
Both models also illustrate that it is rational for uninformed traders to
follow the trend. In the last multiperiod model in Section 4.3, infor-
mation is dispersed among many traders. The model in Section 4.4
analyzes the informational content of past trading volume data. The
final section departs from competitive REE models and considers mod-
els with strategic traders who take into account the fact that their trading
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activity affects the price. Traders know that if they trade more aggres-
sively today, the price will reveal more of their private information
thereby depleting their future trading opportunities.

4.1. Technical Analysis – Inferring Information from
Past Prices

When one talks about technical analysis one immediately thinks of chart
analysis with its head and shoulder formation, candle sticks, and numer-
ous other rules of thumb. It would be too ambitious to capture all the
different rules of thumb and street wisdom in a tractable theoretical
model. Therefore, the theoretical literature simply defines technical anal-
ysis as the inference of information from past prices (Brown and Jennings
1989).

Past prices always provide information in a setting with asymmetric
information. The crucial question, however, is whether the information
inferred from past prices is useful. Only then would technical analy-
sis have positive value. Technical analysis is useful if it (1) improves
the traders’ portfolio choice, and (2) adds to the information already
revealed by the current price. In a setting where traders can trade con-
ditional on the current price, the current price might already reveal all
relevant information. This is the case for (strong-form) informationally
efficient equilibria where the current price reveals a sufficient statistic
for all private information in the economy. In that case there is no need
to incorporate past prices in current trading decisions.

The early literature jumped to the biased conclusion that techni-
cal analysis provides no useful information as long as the market is
weak-form informationally efficient. Technical analysis was therefore
considered to be irrational. The reasoning was that if there was a
possibility to profitably exploit information inferred from past prices,
other traders would have already exploited it. However, this sim-
ple argument overlooks the fact that different traders may value the
same income stream differently. Their evaluation depends on their
marginal rate of substitution (MRSi) at a certain allocation. Traders
might also differ in their degree of risk aversion, endowment, and so
on. Consequently, they typically do not face the same portfolio selec-
tion problem. A certain risky dividend stream might be attractive to
one trader, yet it might not be considered as profitable by other traders,
given their risk aversion and endowment. The models presented after
Section 4.1.1 show that in a more general setting, past prices carry
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useful information for deriving the optimal stock holding and the future
price path.

However, the simple original argument holds in economies with com-
petitive risk neutral traders. Risk neutral traders would have already
exploited any expected profit opportunity based on information inferred
from past prices. Therefore, these opportunities cannot arise in equilib-
rium and thus technical analysis has no value. Another special example
in which technical analysis has no value involves a setting in which there
is a group of competitive risk neutral traders who observe the public limit
order book. In this case, no risk premium is paid and the price is driven
by the information of this competitive fringe which already incorpo-
rates information reflected by past prices. Section 4.1.2 also illustrates
the impact of the competitive fringe on the value of technical analysis.

The main focus of technical analysis is to get a better prediction of
the underlying value of the stock. Technical analysis is, however, also
valuable for evaluating new information. Quite often when one receives
new information, one does not know whether it is already reflected in
the price or not. Looking at past price movements might help answer this
question. The next section is devoted to this aspect of technical analysis.

4.1.1. Technical Analysis – Evaluating New Information

A trader who receives a piece of information faces a problem if he wants
to exploit it in the stock market. Before he determines his optimal trade,
he has to figure out whether this information is already reflected in
the current price or not. In other words, he has to find out whether
the information is really new or whether other traders have already
received the same or related information, traded on it, and thus already
moved the price. The trader can get a better idea of whether the infor-
mation is already reflected in the price or not if he analyzes the past price
movements.

This problem has been captured by models wherein traders receive
information in random order. Treynor and Ferguson (1985) analyze the
decision problem of a single trader i who receives a piece of information.
In their setting, the event E is either first known to an individual trader
i or to all other traders, that is, to the market. Since the information
arrival is random, trader i does not know whether the other traders have
already received the same piece of information before he received the
information. More formally, Treynor and Ferguson (1985) introduce
the following notation. An event occurs at tE. It gets known to trader
i at ti and to all other traders, that is, to the market, at tM. All time
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variables are discrete and random and thus unknown to the individual
i. Trader i’s trades alone do not move the market price. The stock price
only jumps when all other traders hear the news and act on it. The
authors assume that once some event occurs, the event becomes public
very fast. This guarantees that the event Ej gets known to trader i as
well as to all other traders before a new event Ej+1 occurs.

Investor i is only interested in knowing whether the event E is already
reflected in the price, that is, whether he got the news before the other
traders or not. He, therefore, is concerned about the probability of
ti > tM versus ti ≤ tM. He derives these probabilities by making use of
his knowledge of

(1) the prior distribution of the information dissemination process, and
(2) the observed price process, combined with his knowledge about:

(a) the underlying stochastic process of the price path, and
(b) the price impact of information at tM.

In Treynor and Ferguson (1985) event E can occur in δ time periods.
The prior probability that an event occurred in tE is (1/δ), that is, the
prior is uniformly distributed. γ is the probability that all other traders
will receive the information in the next period, provided they have not
received it so far. Similarly, α is the probability that investor i will
receive the information in the next period. This determines the transition
probabilities for the Markov process with the following four possible
states: ω1 nobody, ω2 only trader i, ω3 only all other traders, and ω4 all
traders, received this signal.

Investor i makes use of his knowledge about the underlying price
process governed by Pt = (1 + r̃t)Pt−1, where all r̃t are independently
identically normally distributed with mean zero and variance σ 2. At
time tM, when the event becomes public, the expected mean return is
V instead of zero. If ti and tM are known, the density of possible price
paths is given by

Pr(rti
|tM, ti) =

ti∏
t=0

{
1√
2πσ

exp
[−(rt − 1t=tMV)2

2σ 2

]}
,

where the indicator function is

1t=tM =
{

1 if t = tM

0 if t 
= tM.

rti
denotes the whole process of returns rt = (Pt − Pt−1)/Pt−1 up to and

including ti.
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By Bayes’ rule the probability distribution Pr(tM|rti
, ti) is

Pr(tM|rti
, ti) = Pr(tM|ti) Pr(rti

|tM, ti)∑∞
tM=−∞ Pr(tM|ti) Pr(rti

|tM, ti)
.

All terms on the right-hand side are known except the Pr(tM|ti) term.
The latter terms are given by

Pr(tM|ti) =
∑
tE

Pr(tM|ti, tE) Pr(tE|ti),

where Pr(tM|ti, tE) = Pr(tM|tE) since, given an event occurred, the prob-
ability that all other agents get the information only at tM is independent
of when agent i received the information. All these probabilities can be
directly derived from the given prior information structure.

Treynor and Ferguson (1985) provide a numerical example where
the trader i infers from the past price process that, with a probability of
70 percent, all other traders have not yet received the same information.

In the last section, the authors derive an optimal portfolio strategy
which allows the investor i to capitalize on his information. Their paper
shows that technical analysis, that is, inferring information from past
prices, helps in the evaluation of new private information.

Even if a trader knows that a piece of his newly acquired information
is already partially reflected in the current price, he would still like to
know the extent to which it already moved the price. This is also true in
the case of a public announcement. The newly informed public would
like to know the extent to which the information is already reflected in
the price. Brunnermeier (1998) illustrates how the public looks at past
price movements to improve their knowledge. This model makes clear
that the argument presented earlier only holds as long as the past price
still carries information even after the public announcement. The infor-
mation content of past prices has to be about the true value of the asset
and/or about the execution price. The latter is only of use for traders who
can only submit market orders. The author employs a strategic market
order model similar to Kyle (1985). The focus of Brunnermeier (1998) is
on the characterization of the trading strategy of insiders who receive an
imprecise signal prior to the public announcement. The analysis shows
that the early informed insider tries to manipulate the price prior to the
public announcement in order to tamper with the other traders’ technical
analysis after the public announcement. This activity is often character-
ized as signal jamming. In addition, the insider’s trading strategy exhibits
a speculative feature. He “buys on (positive) rumors and sells on news.”
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The discussion thus far indicates that technical analysis to evaluate
new information helps us avoid the possibility of considering the same
information twice. Therefore, it helps us get a better estimate of the true
underlying value of the asset. Hence, this form of technical analysis is just
an indirect way of gathering more information about the fundamental
value of the stock. Inferring information about the value of the stock
remains the ultimate goal of technical analysis.

4.1.2. Technical Analysis about Fundamental Value

Grundy and McNichols (1989) and Brown and Jennings (1989) are two
tractable competitive call auction REE models in which not only the
current price, but also the past price is useful in predicting the value
of the asset. In other words, technical analysis has a positive value.
Whereas Grundy and McNichols (1989) follows the static model setup
developed by Diamond and Verrecchia (1981), the model of Brown and
Jennings (1989) is a two-period dynamic version of Hellwig (1980).

Private Information Prior to First Trading Rounds
In Grundy and McNichols (1989) traders receive private information
only at the beginning of both trading rounds in t = 1 and t = 2. For
most of the paper the aggregate random supply in t = 1, u1, is kept equal
to u2, that is, the aggregate random supply is perfectly correlated in the
two periods. More specifically, as in Diamond and Verrecchia (1981) the
exogenous random supply of a single risky asset is given by endowment
shocks for each individual trader. These shocks are independently iden-
tically normally distributed with N (μu1 , σ 2

u1
I). As the number of market

participants I goes to infinity, the average per capita supply shock, u1,
is still random with N (μu1 , σ 2

u1
) since the variance of individual endow-

ments depends on the number of traders I. Note also that the overall
variance of the total supply shocks goes to infinity and thus the law of
large numbers cannot be applied. In the limit I → ∞ and the individual
endowment shock gives no indication of the average per capita supply.
Therefore, the only private signal trader i receives is

Si
1 = v + ω + εi

S,1,

with a common error term ω and an idiosyncratic error term εi
S,1.

Both error terms are independently normally distributed with mean
zero and variance σ 2

ω and σ 2
εS,1

. The average signal is given by S̄1 :=
limI→∞(

∑
Si

1/I) = v +ω. Traders maximize their expected exponential
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utility functions. The constant absolute risk aversion coefficient of trader
i is given by ρi ∈ [ρL, ρU] ⊂ (0, ∞).

As a first step, Grundy and McNichols (1989) derive a one-period
reference model. In this model traders conjecture a linear price relation

P1 = α0,1 + αS,1S̄1 + αu,1X,

where X is the aggregate demand in equilibrium. The optimal stock
holding of trader i is therefore1

xi
1 = E1[v|F i

1] − P1

ρiVar[v|F i
1]

,

where E1[v|F i
A] is linear in P1 and Si

1 by the projection theorem. Notice,
that Var[v|F i

1] is the same for all traders. Let us simplify the notation
to Var1[v]. This conditional variance increases with the variance of the
common error term. Averaging over all traders gives the average per
capita demand

X = 1
ρ̄Var1[v]

[β0,1 + βP,1P1 + βS,1S̄1]

where ρ̄ is the harmonic mean of all traders’ risk aversion coefficients,
that is I/

∑
i(1/ρi). The β terms follow directly from the projection

theorem. Rearranging the traders’ price conjecture gives

X = −α0,1

αu,1
+ 1

αu,1
P1 − αS,1

αu,1
S̄1 = u1.

As outlined in Section 1.2, the REE can be obtained by equating the
undetermined coefficients.

The aggregate supply u1, given by the exogenous sum of the individual
endowment shocks, is vertical, while the aggregate demand is downward
sloping in P1, since αu,1 < 0. The important coefficient is (αS,1/αu,1).
Changes in S̄1 lead to a parallel shift of the demand curve, whereas
changes in u1 shift the vertical supply curve. The size of the demand
curve shift as S̄1 changes is measured by αS,1, whereas the size of the
supply curve shift caused by a different u1 is captured by αu,1. Traders
cannot make out whether a price change is due to a demand shift or a
supply shift (S̄1 or u1 change). The simultaneous equation problem is
measured by αS,1/αu,1.

1Let us normalize the risk-free interest rate r = 0, that is R = 1.
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The Effects of a Second Trading Round
Grundy and McNichols (1989) then extend their basic model to a two-
period model where, in the second round, no new private information
is released and the random supply u2 is the same as in period one.
One might expect that no trader will change his stock holding since
no new information has arrived. The authors show that the no-trade
outcome is indeed an equilibrium. There is, however, a second equilib-
rium, where the average signal S̄1 is fully revealed. If all traders rationally
conjecture

P1 = α0,1 + αS,1S̄1 + αu,1u1

P2 = α0,2 + αS,2S̄1 + αu,2u2,

where u1 = u2, S̄1 can be revealed provided both equations are linearly
independent. This is the case if

αS,1

αu,1

= αS,2

αu,2

since we then have two linearly independent equations with two
unknowns.

Grundy and McNichols (1989) prove that an informationally efficient
linear REE which fully reveals S̄1 exists as long as the variance of ω is
not too large. Their proof proceeds backwards in two steps. First, given
the price conjecture for the first trading round, the authors demonstrate
the existence of a S̄1-revealing equilibrium in the second trading round.
Second, it is proven that traders rationally foresee the existence of a
S̄1-revealing equilibrium in round 2, as long as the variance of ω, σ 2

ω is
not too large. Indeed there are two S̄1-revealing REE if 0 < σ 2

ω < σ̄ 2
ω . In

these equilibria, there are two sources of uncertainty in the first round:
xi

2 and P2. These equilibria show that even when no new information
arrives, prices and stock holdings can change if the additional price P2
reveals more of the private information. For the case of σ 2

ω = 0, both
equilibria, the S̄1-revealing and the non-S̄1-revealing, are identical for
the first trading round.

In the S̄1-revealing REE, trade occurs in period two, even though
the only new public information is P2. Grundy and McNichols (1989)
also check whether this result is in line with the no-trade (speculation)
theorem of Milgrom and Stokey (1982). The no-trade theorem predicts
a zero trade outcome in period 2 if the allocation after trade in period 1
is interim Pareto optimal and the beliefs about the signals in t = 2 are
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concordant before the signal becomes known.2 Beliefs are concordant
if traders agree on the conditional likelihood of any given realization of
the signal, that is,

Pr[Si
2 = s|v = vrealized, F i

1] = Pr[Si
2 = s|v = vrealized, F1

1 ] ∀i, S, vrealized.

Intuitively, beliefs are concordant if traders agree about everything
except the probability of payoff-relevant states. The only new signal
in t = 2 is P2. Since P2 is a public signal, it is sufficient that the beliefs
about P2 are “essentially concordant,” that is,

Pr[Si
2 = s|v = vrealized, F i

1]

Pr[Si
2 = s|v = vrealized′, F i

1]
= Pr[Si

2 = s|v = vrealized, F1
1 ]

Pr[Si
2 = s|v = vrealized′, F1

1 ]
∀i, S, vrealized.

A Pareto optimal allocation after the first trading round is reached if
the marginal rate of substitution for consumption across any two states
is the same for all investors. Grundy and McNichols show that if the
investors behave myopically they reach a Pareto optimal allocation after
the first round. However, when P2 becomes known this allocation is no
longer Pareto efficient since traders’ beliefs about P2 are not “essentially
concordant” at the end of the first round. Therefore, trade will occur. If
traders apply dynamic trading strategies, that is, if they do not behave
myopically, trade can also occur in period 2. This is the case when
σ 2
ω > 0, that is, when there is a common unknown noise term in the

signal. The trading outcome in round 1 is neither Pareto efficient given
information F i

1, nor are the beliefs about the public signal P2 concor-
dant. When σ 2

ω = 0, the true liquidation value v can be inferred from P2
(in fact it is equal to P2) and round 1 allocation is Pareto efficient and
beliefs about P2 are concordant. In this case the no-speculation theorem
applies and the only trade which occurs is a swapping of two riskless
assets.

Additional Public Signal Prior to Second Trading Round
Grundy and McNichols (1989) extend their model by introducing an
additional publicly observable signal in t = 2

Spublic
2 = v + ε

Spublic
2

.

2 This is simply a restatement of the common prior assumption specified for the
second period.
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In this case a S̄1-revealing REE with trade in t = 2 also exists unless
a particular set of parameter restrictions is satisfied. Those parameter
restrictions are given in Theorem 4 of the paper. Where those parameter
restrictions are satisfied, no linear REE exists, S̄1-revealing or otherwise.
The authors also provide necessary and sufficient conditions for the exis-
tence of non-S̄1-revealing REE in which no trade occurs in the second
round. Finally, they consider the case where the random supply (u1, u2)

is not the same in both periods. Instead u1 and u2 are correlated as in
Brown and Jennings (1989). Both types of equilibria exist in this general-
ized setting. In the non-S̄1-revealing type equilibrium, no informational
trade will occur; the whole trading volume is determined by the addi-
tional noisy supply. In the second type of equilibrium, the sequence
of prices {P1, P2} only partially reveal S̄1 since the supply shocks are
no longer perfectly correlated. However, the sequence of prices reveals
more about S̄1 than P1 does alone. This implies that technical analysis
has positive value and that trading can be self-generating.

Additional Private Signals Prior to Second Trading Round
Brown and Jennings (1989) extend a model similar to Hellwig (1980)
to two periods. In their model there are infinitely many a priori identical
investors denoted by i ∈ � = {1, 2, 3, . . . } who are endowed with B0 units
of the riskless bond. B0 can be normalized without loss of generality to
zero since all investors have CARA utility functions. All investors start
with the same information set, F0, with beliefs about the liquidation
value of N (μv,0, σ 2

v,0). At t = 1 and t = 2 each investor gets a private
signal in t = 1 and t = 2 about what the liquidation value, v, of the
risky asset will be in T = 3, that is,

Si
t = v + εi

S,t,

where εi
S,t is normally i.i.d. with N (0, σ 2

S,t). As the signals are unbiased,
by the law of large numbers, the average signal St = limI→∞ I−1∑I

i=1 Si
t

equals v with probability one in each t. Trader i’s information set is
given by F i

1 = {F0, Si
1, P1} in t = 1 and F i

2 = {F i
1, Si

2, P2} in t = 2. The
information sets contain the current price Pt since traders can trade
conditional on the price of the stock Pt. Let trader i’s stock hold-
ing in t be denoted by xi

t. His final wealth in period T = 3 is then
given by

Wi
3 = B0 + xi

1(P2 − P1) + xi
2(v − P2)
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where B0 is normalized to zero. The traders’ expected utility functions
are given by

E[− exp(−ρWi
3)|F i

t ],

where the constant absolute risk aversion measure ρ is the same for
all traders. Each trader maximizes his expected utility, given his infor-
mation set and his price conjecture. Backward induction allows us to
break up this optimization process into two steps. Given a certain xi

1
the maximum utility value at t = 2 is given by

V i
2(x

i
1) = max

xi
2

E{− exp[ρ(xi
1(P2 − P1) + xi

2(v − P2)]|F i
2}.

At t = 1 the problem is

V i
1 = max

xi
1

E{V i
2(x

i
1)|F i

1}.

A REE is then given by (1) the optimal stock holding (xi
1, xi

2) for each
investor i, and (2) the equilibrium price mappings P1 and P2 which
have to coincide with the traders’ price conjectures. The market clear-
ing condition guarantees that demand equals supply in both periods.
Whereas the average per capita demand for the risky asset is given by
xt = limI→∞

∑I
i=1 xi

t/I, the per capita supply is assumed to be random
in this noisy REE. The random supply is given by u1 in t = 1 and u2 in
t = 2, where u2 = u1 + �u2.3 Brown and Jennings assume that u1 and
�u2 are normally distributed

(u1,�u2) ∼ N
[
(0, 0),

(
σ 2

u1
�σu1σ�u2

�σu1σ�u2 σ 2
�u2

)]
.

where � is the correlation between the supply increments u1 and �u2.
Technical analysis, that is, conditioning trade in t = 2 on P1, has positive
value for two reasons. First, P1 = L[v, u1] provides a useful second
signal about the true payoff v. L[·] is a linear operator. This effect is
most pronounced in the case where u1 is independent of u2. Second, if
u1 and u2 are correlated, the price P1 in t = 1 helps traders get a better
prediction of u1. In other words, u1, in turn, is useful in predicting u2. A
better prediction of u2 reduces the noise in t = 2 and thus allows P2 to
reveal more about the liquidation value v. The argument also applies the
other way around. Knowing P2 allows traders to get a better prediction

3 Note, that xt denotes holdings rather than additional trading demand, whereas u1

and �u2 refer to additional supply.
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of u1. Thus a joint estimation using both price conjectures P1 and P2
enhances information revelation. Grundy and McNichols (1989) show
that for the case of perfect correlation, that is, �u2 = 0, P1 and P2
perfectly reveal v. In short, due to the two reasons described above P1
still has predictive value in t = 2. Note that even if � = 0, u1 and u2 are
still correlated since � is defined as the correlation coefficient between
u1 and �u2. In this case ut follows a random walk and the prediction
of u1 using P1 provides the expectation of u2.

Nonmyopic REE
We are now ready to outline the derivations of the nonmyopic REE.
Since all random variables in this type of model are normally distributed,
one makes extensive use of the projection theorem. According to the
projection theorem all conditional expected values, like Ei

1[v], Ei
1[u1],

Ei
1[u2] = �σ 2

�u2
/σ 2

u1
, Ei

1[P2], Ei
2[v], are linear in their unconditional

expected values and the signal surprise component, Si − E[Si]. Ei
t[·]

is a simplified notation for E[·|F i
t ] and Vari

t[·] denotes Var[·|F i
t ]. The

normal distribution has the nice feature that the covariance matrices
Vari

1[v, Si
2, P2] and Vari

2[v] are constants on F0.
The optimal stock holding can be derived using backward induction.

The value function in t = 2 given stock holding xi
1 in t = 1 is

V i
2(x

i
1) = max

xi
2

Ei
2{− exp[−ρ[xi

1(P2 − P1) + xi
2(v − P2)]]}.

The optimal xi
2 in t = 2 is

xi
2 = Ei

2[v] − P2

ρ Vari
2[v]

as in Hellwig (1980). Therefore

V i
2(x

i
1) = Ei

2

{
− exp

[
− ρ

[
xi

1(P2 − P1) + Ei
2[v] − P2

ρ Vari
2[v]

(v − P2)

]]}
.

The only random variable at t = 2 is v, which is normally distributed.
Therefore, the expectation is given by

V i
2(x

i
1) = − exp

[
− ρ[xi

1(P2 − P1)] − (1/2)(Ei
2[v] − P2)

2

Vari
2[v]

]
.

The value function for t = 1 can then be rewritten as

V i
1 = max

xi
1

Ei
1

{
− exp

[
− ρ[xi

1(P2 − P1)] − (1/2)(Ei
2[v] − P2)

2

Vari
2[v]

]}
.



110 Dynamic Models, Technical Analysis, Volume

Ei
2[v] and P2 are normally distributed random variables with respect to

the information set, F i
1. In order to take expectations, we complete the

squares and rewrite the equation given above in matrix form:4

V i
1 = max

xi
1

Ei
1

{
− exp

[
ρxi

1P1 + (−ρxi
1, 0)︸ ︷︷ ︸

:=Li′

(
P2

Ei
2[v]

)
︸ ︷︷ ︸

:=Mi

+ (P2, Ei
2[v])︸ ︷︷ ︸

=Mi′

1
2

(
+1/Vari

2z[v] −1/Vari
2[v]

−1/Vari
2[v] +1/Vari

2[v]

)
︸ ︷︷ ︸

:=N

(
P2

Ei
2[v]

)
︸ ︷︷ ︸

=Mi

]}
.

Furthermore, let Qi be the expected value conditional on F i
1 of the

multinomial random variable Mi and its conditional covariance matrix
W , that is, Qi := Ei

1[Mi′], W := Vi
1[Mi′].

Taking expectations yields

V i
1 = max

xi
1

{−|W|−(1/2)|2N + W−1|−(1/2) exp[ρxi
1P1 + Li′Qi

− Qi′NQi + (1/2)(Li′ − 2Qi′N) (2N + W−1)−1︸ ︷︷ ︸
:=G

(Li − 2NQi)]}.

The first-order condition with respect to xi
1 is given by

xi
1 = Ei

1[P2] − P1

ρG11
+ Ei

1[xi
2](G12 − G11)

ρG11
,

where Gij are the elements of the matrix G, and

xi
2 = Ei

2[v] − P2

ρ Vari
2[v]

.

Given the price conjectures of the trader, xi
1 = L[μv,0, Si

1, P1] and
xi

2 = L[μv,0, Si
1, Si

2, P1, P2], where L[·] denotes a linear operator. This
allows us to derive the market clearing price as a linear function:

P2 = L[μv,0, v, u1, u2], P1 = L[μv,0, v, u1].

4See also Anderson (1984, Chapter 2).
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Brown and Jennings (1989) show that technical analysis has value as
long as P2 also depends on u1. This is consistent with the intuition
provided earlier.

He and Wang (1995) analyze a multiperiod version of Brown and
Jennings (1989), which we cover at the end of Section 4.3.

Myopic REE
Brown and Jennings (1989) can demonstrate the existence of a nonmy-
opic dynamic REE for the special cases where P2 or P2 together with
P1 are informationally efficient. They continue their analysis for myopic
investor economies. Singleton (1987) was the first to analyze myopic
dynamic REE models.

In a myopic investor economy5 the first-period stock holding
simplifies to

xi
1 = Ei

1[P2] − P1

ρ Var1[P2]
.

The second-period stock holding is, as before,

xi
2 = Ei

2[v] − P2

ρ Var2[v]
.

Brown and Jennings (1989) show that technical analysis has strictly pos-
itive value under certain parameter restrictions. As mentioned above,
technical analysis has value if u1 helps to predict u2, and u2 has an
impact on the information revelation of P2 and/or P1 = L[v, u1] provides
a second noisy observation of v. The authors provide three equivalent
conditions under which technical analysis has no value: when individual
demand in t = 2 is independent of P1, or equivalently P2 is independent
of u1, or equivalently Cov[v, P1|P2, Si

1, Si
2, F i

0] = 0.

No Technical Analysis in a Setting with
a Risk Neutral Competitive Fringe
Vives (1995) adds a risk neutral competitive market maker sector.
This enables the author to derive a closed-form solution for the case
� = 0 even if investors act nonmyopically. Vives’ focus is on contrast-
ing the informativeness of the price process in an economy with myopic
investors with an economy where investors have long horizons. The risk

5 Interpreting myopic investor economies as OLG models can be misleading since the
agents in t = 2 still condition their demand on their signal in t = 1.
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neutral competitive fringe of scalpers, floor brokers, and so on always
drives the price equal to the conditional expectation of the liquidation
value v given their information. They observe the limit order book in
each period, that is, the aggregate demand. Introducing this competitive
risk neutral fringe changes the model quite dramatically. Vives (1995)
shows that the current limit order book (or equivalently the current
price) is a sufficient statistic for all data from the past limit order books.
Since there are no public announcements, prices are even (semi-strong)
informationally efficient and, hence, technical analysis has no value.

The importance of the competitive market maker sector can be illus-
trated for the case where private information is only released at t = 1.
A buy and hold strategy is optimal for the informed traders in this case.
At t = 1 informed traders buy assets as in the static Hellwig model,
and hold it until T. The aggregate demand (limit order book) in t = 1
contains the demand of the insiders and the demand of the noise traders,
u1. Market makers set the price equal to the conditional expectation of
v given the aggregate demand. The holding of informed traders does
not change in t = 2. Therefore, the limit order books contain only the
additional noise trader demand �u2. Since � = 0, �u2 contains no
additional information and thus market makers set P2 = P1 and absorb
the additional noise demand. In contrast, in a model without a competi-
tive fringe, like in Brown and Jennings (1989), informed traders have to
take on the position of the additional noise trading in t = 2. Since each
demand function of the informed traders depends on his signal, more
information is revealed by P2. In a model with a competitive fringe, the
only motive for other traders to trade is to exploit their informational
advantage. They do not try to insure each other since the competitive
fringe is willing to bear all the risk. This simplifies the analysis and
allows Vives (1995) to derive a closed-form solution even for the case
where private information arrives in every period. He shows that the net
trading intensity of insiders in period t depends directly on the precision
of period t signals.

Two-Period Models with Higher-Order Uncertainty
Romer (1993) introduces higher-order uncertainity in a two-period REE
model. In his model asymmetric information is only partially revealed
in the first period, but in contrast to Grundy and McNichols (1989) it
incorporates uncertainty about the quality of other investors’ signals,
that is, higher-order uncertainty. Romer’s analysis provides a rationale
for large price movements without news. He shows that a small com-
monly known supply shift in the second period can lead to large price
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movements. The aim of his paper is to give a rational explanation for
the stock market crash of 1987. This model is discussed in more detail
in Section 6.1 which focuses on stock market crashes.

Slow Information Revelation due to Technical Analysis
Vives (1993) shows that in a dynamic setting information revelation
through current and past prices (technical analysis) can become a victim
of its own success. As the price process becomes more and more infor-
mative, less information is incorporated in the current price. This slows
down the speed of convergence to the fully revealing outcome. In his
model agents receive a conditionally independent signal Si before they
repeatedly interact in the market place in t = 1, 2, 3, . . . . The author
finds that in the case where information is dispersed among the traders,
the speed of convergence to the fully revealing outcome is only 1/

√
t1/3.

This is much slower than the standard rate of convergence of 1/
√

t in
learning of REE. This faster rate of convergence also emerges in the case
where a mass of agents know the true value. However, when informa-
tion is dispersed among the market participants the rate is much slower.
The intuition behind the result is the following. As time goes by and
periods accumulate, the price process becomes more informative. This
has the side effect that each individual trader bases his beliefs more on
past and present prices and less on his own private signal. Therefore, less
private information is incorporated in the current price. In fact as the
price process converges to the fully revealing outcome, each individual
market participant puts zero weight on his private signal. A faster rate
of convergence would prevail if agents take into account the fact that
a positive information externality is generated for other agents if they
rely more on their own private signal. Section 5.2 analyzes the role of
informational externalities in sequential decision making in more detail.
Note that a slower speed of learning is, however, not necessarily welfare
reducing. As Vives (1992) illustrates, slow learning is optimal in certain
models.

4.2. Serial Correlation Induced by Learning and
the Infinite Regress Problem

Learning from past and current prices affects investors’ behavior and
thus the endogenous price path. Townsend’s (1983) seminal paper enti-
tled Forecasting the Forecast of Others illustrates in an infinite horizon
setting that learning can convert serially uncorrelated shocks into serially
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correlated movements in economic decision variables. Since agents may
respond to variables generated by the decisions of others, time series can
display certain cross-correlation and may appear more volatile. In the
case of disparate but rational expectations, decision makers forecast the
forecasts of others. This can lead to relatively rapid oscillations and can
make forecasts, as well as forecast errors, serially correlated.

This paper also addresses the infinite regress problem. This problem
arises in dynamic settings where traders try to infer each other’s infor-
mation which is nested, that is, nonhierarchial. This is for example the
case if the information is dispersed among the market participants.

Townsend’s Macroeconomic Model Setup
The author analyzes the behavior of time series in a dynamic model with
a continuum of identical firms in each of two markets. The demand
schedule in each market (island) i is given by

Pi
t = −β1Yi

t + ξ i
t .

Pi
t is the price in market i, Yi

t is the aggregate output of all individual
production functions yi

t = f0ki
t, and ξ i

t is a demand shock. This shock
consists of (1) a “persistent” economy-wide component ut, and (2) a
“transitory” market-specific shock εi

t, that is,

ξ i
t = ut + εi

t,

where the economy-wide shock component ut follows an AR(1) process:

ut = auut−1 + νt − 1 < au < 1,

where εi
t and νt are jointly normal and independent. Firms can infer

ξ i
t s, but they do not know exactly which part stems from a persistent

economy-wide shock ut and which part is market-specific and transitory
ξ i

t . Twonsend (1983) derives the linear REE in the following steps. After
stating the firm’s maximization problem, Townsend derives the first-
order conditions using the certainty equivalence theorem. He defines
the dynamic linear rational expectations equilibrium in terms of laws
of motion. Following Sargent (1979) one can derive the law of motion
for the aggregate capital stock Kt in each market without directly cal-
culating the firm-specific laws of motion. The aggregate laws of motion
have the advantage that they can be computed without being specific
about information sets and forecasting. In Townsend’s (1983) setting
the equilibrium can be found by identifying the statistically correct
forecasts.
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Serial Correlation Induced by Learning
Townsend (1983) addresses the inference problem in two parts. In the
first part, firms in market 1 cannot observe the price in market 2, whereas
market 2 firms observe both prices. Townsend calls this a hierarchical
information structure. In the second part, firms in both markets can
make inferences from the prices in both markets. This more general
setting will lead to the infinite regress problem.

As long as firms in market 1 do not observe the price in market 2, their
information set is F1

t = {K1
t , P1

t , M1
t }. They observe the aggregate capital

process in market 1, K1
t , up to time t and the price process in market 1,

P1
t . They also know the common mean forecast of ut by market 1. The

process of the mean forecast is denoted by Mt. Note that the notation Zt
denotes a stochastic process up to and including time t. This information
set allows firms to exactly infer the total shock to the economy ξ1

t
even

if they only make use of the observations in t. The inference problem
for firms in market 2 is similar, except that their information set also
contains the price in market 1, that is, F2

t = {K2
t , P2

t , M2
t , P1

t }. The price
in market 1 provides additional information on the extent to which
the shock is permanent since the permanent component of the shock is
countrywide. Therefore, firms in market 2 make use of P1 in forecasting
the shock components. However, the components ut and εt of shock
ξ i cannot be inferred precisely even though past data can be used to
estimate a better forecast. Typically the inference problem of the firms
can be solved in two ways. One can either use the projection theorem
or one can apply Kalman filtering which derives from the projection
theorem. Applying the projection theorem directly has the disadvantage
that the state space increases with the history of time. Kalman filtering
is a steady state approach and exploits a recursive algorithm. To make
sure that the economy is in a steady state, one often assumes that the
initial date is t = −∞. It is important to notice that Kalman filtering
can only be applied if the state vector6 in the state space form is of finite
dimension. Both methods illustrate that ν̂t := E(νt|F i

t ), the forecast
of νt is a linear combination of νt, and εi

t. It now becomes obvious
that the learning mechanism causes some persistence. Although νt and
εi

t are uncorrelated, their forecasts are correlated since both forecasts
E(νt|F i

t ) and E(νt−1|F i
t−1) are based on νt−1. In other words, all past

νt−1 influence the prediction of νt. Similarly E(ut|F i
t ) and E(ut−1|F i

t−1),

6 A state in this recursive setup differs from the earlier state-date description. In this
setting, a state does not describe a whole history. It is only a description of the current
situation in the economy.
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as well as the forecast errors [E(ut|F i
t ) − u], are serially correlated. As

time goes by and more and more observations are available, the forecast
error for past us (for s < t) decreases.

The Infinite Regress Problem
So far only market 2 firms were forming inferences about the compo-
nents of the demand shock from the endogenous time series of the price
in market 1. The price in the first market depends on the average beliefs
in this market, M1

t , that is, on market 1’s expectations. These expecta-
tions are well defined and can be expressed in terms of a finite number
of states. Therefore, the Kalman filter can be applied. In the second part
of the paper, Townsend (1983) departs from the simple hierarchical
information structure. Firms in market 1 can also draw inferences from
P2

t . Since P2
t depends on the common market 2 forecasts, M2

t , firms in
market 1 must have expectations about M2

t , that is E1
t (M

2
t ). But firms

in market 2 also observe P1
t . So a firm in market 2 must have expec-

tations on M1
t , that is E2

t (M
1
t ). Thus, firms in market 1 need to know

the expectations E1
t (M

2
t ) and E1

t (E
2
t (M

1
t )). This chain of reasoning can

be continued ad infinitum. This leads to an infinite regress problem.
One needs infinitely many state variables in the space of mean beliefs.
This prevents us from applying the standard Kalman filter formulas.
Notice that the infinite regress problem arises even though the depth
of knowledge is only zero. The infinite regress problem is not due to a
high depth of knowledge but due to inference from endogenous vari-
ables. Townsend (1983) then goes on to discuss a related but different
infinite regress problem in which he analyzes the case of infinitely many
markets.

New methods in convergence of least squares learning to REE, devel-
oped by Marcet and Sargent (1989a,b), allow us to tackle the infinite
regress problem differently. Sargent (1991) shows that a solution can
be found in self-referential models by defining the state variables in a
different way. The idea is to model agents as forecasting by fitting vector
ARMA models for whatever information they have available. The state
vector for the system as a whole is defined to include the variables and
the innovation in the vector ARMA models fit by each class of agents in
the model. This is in contrast to the former formulation in Townsend
(1983) where the state covers a system of infinitely many orders of expec-
tations about exogenous hidden state variables. Most of the literature
in finance avoids the infinite regress problem by assuming a hierarchical
information structure as in Wang (1993, 1994). The problem is ele-
gantly by-passed in existing models with differential information. This
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is the case in He and Wang (1995) and Vives (1995), wherein a com-
petitive model is used, and in Foster and Viswanathan (1996), wherein
a strategic model is used.

4.3. Competitive Multiperiod Models

Continuous Time Trading Model with
Hierarchical Information Structure
Wang (1993) avoids the infinite regress problem by assuming a hier-
archical information structure.7 In his model the information of the
informed investors statistically dominates the information of the unin-
formed investors. In other words, informed traders also know all the
variables that are observable by the uninformed investors. The main
focus of Wang (1993) is the impact of information asymmetries on the
time series of prices, risk premiums, price volatility, and the negative
autocorrelation in returns, that is, the mean reverting behavior of stock
prices. The author also shows that it can be optimal for less informed
traders to “chase the trend.” He uses a dynamic asset pricing model in
continuous time to analyze these questions. In his economy, investors
derive utility from a continuous consumption stream, that is, they max-
imize E[

∫
u(c(τ ), τ)) dτ |·], where u(c(τ ), τ)) = −e−ρt−c(τ ). They can

invest either in a riskless bond with constant rate of return (1 + r), or in
equity which generates a flow of dividends at an instantaneous stochastic
growth rate D. D is determined by the following diffusion process:

dD = (� − kD)dt + bDdw,

where the state variable8 � follows an Ornstein–Uhlenbeck process,

d� = a�(�̄ − �)dt + b�dw,

and w is a (3 × 1) vector of standard Wiener processes, a�(> 0), �̄,
k(≥ 0) are constants and bD, b� are (1×3) constant matrices (vectors).

A fraction w of informed traders observe �t in addition to Dt, and Pt,
while the uninformed traders only observe Dt and Pt, that is, F in(t) =
{Dτ , Pτ ,�τ : τ ≤ t} and Fun(t) = {Dτ , Pτ : τ ≤ t}.9 Obviously, the
informed traders then also know the expected growth rate (� − kD).

7 We changed the notation to ut = �t and αx = px for ease of exposition.
8 Note that the state variable � differs from the definition of the state of the world ω.
9 The notation Zt represents a (continuous) process up to and including t.
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When k = 0, � is simply the dividend growth rate. When k > 0, �/k
can be interpreted as the short-run steady state level of the dividend rate
D, which fluctuates around a long-run steady state level �̄/k.

Without additional noise, the REE would fully reveal � to the unin-
formed investors. Although the price would adjust, no trading would
occur. Wang introduces an additional state variable by assuming a
stochastic quantity of stock supply. The total amount of stocks (1 + u)
is governed by the stochastic differential equation

du = −auudt + budw,

where bu is a constant (1×3) matrix (vector) and w are the Wiener pro-
cesses mentioned above. In this environment the uninformed investors
face the problem that they cannot distinguish whether a change in
(Pt, Dt) is due to a change in the dividend growth rate �t or due to
a change in noisy supply ut.

Wang first analyses the benchmark perfect information case in which
all investors are informed. The equilibrium price takes on the form:

P∗ = � + (α∗
0 + α∗

uu),

where � represents the net present value of expected future cash flows
discounted at the risk-free rate r and the second term reflects the risk
premium. He shows that the expected “excess return to one share” is
independent of the variance of the noisy supply. In other words, volatil-
ity in prices caused by temporary shocks in supply do not change the
risk premium in the symmetric information setting. This is in contrast
to a setting where investors have finite horizons and they face additional
risk since the remaining trading periods in which they can unwind their
positions are becoming fewer. He and Wang (1995) also consider a finite
horizon model in which the variance of u affects the risk premium.

We outline all of the major steps for the asymmetric information case
since they are useful for the analysis of later papers. Wang (1993) uses
the following steps to determine a linear REE.

Step 1: First, he defines the primary state variables consisting of all
known variables for the informed traders. The state space also cov-
ers “induced state variables” reflecting the estimates of the uninformed
investors. The actual state description should incorporate all signals that
the investors receive. Wang simplifies the state space by equivalently
using the estimates of uninformed investors.
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Step 2: He proposes a linear REE price:

P = (φ + α0) + α∗
DD + α�� + αuu︸ ︷︷ ︸

:=ξ

+α��̂

= � + (α0 + αuu) + α��,

where �̂(t) := E[�|Fun
t ] is defined as the uninformed investors’ estimate

of �(t). �̂(t) depends on the whole history of dividends and prices.
The equilibrium price reveals to the uninformed traders the sum ξ :=
α�� + αuu. Therefore, FD,P

t = FD,ξ
t . Note that the equilibrium price

does not depend on û := E[u|Fun
t ] since α��̂+ αuû = α��+ αuu =: ξ .

The uninformed investors can derive ξ but do not know exactly whether
the price change is due to a change in � or u.

Step 3: The estimates, �̂, and û can be derived using the proposed
price conjecture. Focusing on a steady state analysis, the uninformed
investors apply the Kalman filter on all past data of dividends D and
prices P to infer their estimates �̂ and û.10 Their joint estimation of �
and u based on both D and P generates the induced correlation between
the estimates of �̂ and û.

Step 4: The process for the estimation error � := �̂ − � is derived
next. Note that the estimation error for u is given by α�/αu(� − �̂). It
follows that:

d� = −a��dt + b�dw.

This estimation error is mean-reverting to zero and thus is only tempo-
rary. This is the case since the uninformed investors constantly update
their estimates, as in Townsend (1983).

Step 5: One derives the instantaneous excess return process dQ :=
(D − rP)dt + dP. As in the static models, the traders’ demand functions
depend on the excess returns.

Step 6: Then the uninformed investors’ optimization problem is
solved. As in the static case, one can exploit the CARA utility to derive a
mathematically tractable form of expected utility for the Bellman equa-
tion. The estimators, �̂t and ût, provide a sufficient statistic for Fun(t).
Therefore, by the separation principle, �̂t and ût can be estimated at the
first stage and then the control problem can be dealt with in a second
stage.11 The optimal control problem is then solved in a similar manner
for the informed investors.

10For a more detailed discussion see Lipster and Shiryayev (1977).
11One might also consult Fleming and Rishel (1975).
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Step 7: Finally the market clearing conditions are imposed and the
price equation proposed above is obtained.

Using simulations, Wang (1993) shows the impact of this informa-
tion structure on stock prices, the risk premium, price volatility, and
negative serial correlation in returns. Wang also states some compara-
tive static results. Increasing the number of uninformed traders affects
the price volatility in two ways. First, there is less information in the
market and prices become less variable. Second, there exists more uncer-
tainty about future dividend payments. Investors will demand a higher
risk premium and, therefore, prices become more sensitive to supply
shocks. Asymmetry in information among investors can cause price
volatility to increase because the adverse selection problem becomes
more severe.

The existence of uninformed investors also affects the required risk
premium in equilibrium. The risk premium only depends on the funda-
mental risk of the asset perceived by the investors. When the fraction
of uninformed investors increases, the price contains less information
about future dividend growth. The author also shows that the strong
mean reversion in u(t) generates negative serial correlation in stock
returns even in the case of symmetric information. This correlation can
be enhanced as the fraction of uninformed investors increases.

Finally it is shown that the optimal investment strategy of the informed
investors depends not only on the value of the underlying true state
variables but also on the reaction of uninformed investors. In other
words, the informed investors make use of the estimation errors of the
uninformed investors. Wang (1993) also finds that the trading strategy
for less informed investors appears to be a trend chasing strategy, that
is, these investors rationally buy when the price rises and sell when the
price drops.

Discrete Time Trading Model with
Hierarchical Information Structure – Analysis of Trading Volume
In a similar but discrete time version, Wang (1994) analyzes the behav-
ior of volume. The other major difference from the continuous time
model is that, although no exogenous noise is introduced, the price is
only partially revealing. This is due to the incompleteness of the mar-
kets assumed in the model. If markets are incomplete and investors are
heterogeneous, prices are not only affected by aggregate risk but also
by individual risk. Volume can be informative in such an environment.
This paper tries to show the link between volume and heterogeneity of
investors. Investors differ in their information as well as in their private
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investment opportunities. In order to avoid the infinite regress problem,
informed investors have a strictly statistically dominant information set
in comparison to uninformed traders. Markets are incomplete since only
informed investors have an additional private investment opportunity
besides stocks and bonds whose rate of return is R = (1 + r). The divi-
dend of a stock consists of a persistent component Ft and an idiosyncratic
component εD,t. Ft is only observable by informed investors and follows
an AR(1) process:

Dt = Ft + εD,t

Ft = aFFt−1 + εF,t, 0 ≤ aF ≤ 1.

While informed investors can observe Ft, the uninformed traders only
observe the same noisy signal St about Ft:12

St = Ft + εS,t.

Define, for later reference, the excess share return as Qt := Pt + Dt −
RPt−1. Informed traders can also invest in their private investment
opportunity which yields a stochastic excess rate of return of

qt = Zt−1 + εq,t,

where Zt follows an AR(1) process

Zt = aZZt−1 + εZ,t, 0 ≤ aZ ≤ 1.

Similar to the stock return, the process Zt is only known to the informed
traders.

Besides making use of their information advantage, the only incentive
for informed traders is to hedge the risk reflected by εq,t. All ε-terms
are normally i.i.d. with the exception that εD,t and εq,t can be positively
correlated. Wang (1994) shows in the case of symmetric information
that if εD,t and εq,t are uncorrelated, a change in expected returns on
the private investment will not alter the investors’ stock holdings. This
result changes if there is a positive correlation between εD,t and εq,t
since the stock and the private investment become substitutes. Given a
positive correlation between εD,t and εq,t, informed traders also want to
trade to rebalance their portfolio because of a change in the profitability
of their private investment opportunity. In the asymmetric information

12 To avoid the infinite regress problem, informed traders also observe this signal.
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case, informed traders also want to trade for informational reasons.
Uninformed traders face an adverse selection problem since they cannot
sort out whether a price increase is due to informed trading, that is, an
increase in Ft, or due to uninformed trading.

The analysis of the equilibrium follows the same steps as in Wang
(1993). First, the states of the economy Ft, Zt, F̂t = E[Ft|Fun

t ] are
defined. Second, the linear pricing rule

Pt = −α0 + (a − αF)F̂t + αFFt − αZZt

is proposed. Third, from this equation it is obvious that uninformed
traders can infer the sum ξt = αFFt −αZZt, thus ξt = αFF̂t −αZẐt. This
explains why Ẑt is redundant in the state description within the class of
linear equilibria. Fourth, using Kalman filtering one derives F̂t, Ẑt and
the estimation errors F̂t −Ft =: �t.13 It can be shown that the estimation
error ut follows an AR(1) process, that is,

�t = a��t−1 + ε�,t, 0 ≤ a� < 1.

The unconditional variance of the estimation error, Var(�t) =: ε,
reflects the degree of asymmetry of information. The strict inequality
a� < 1 implies that the forecast error is mean reverting. The uninformed
traders will learn the “old” Fs, Zs better and better as time passes by
but new Ft, Zt appear in every period. Thus, uninformed investors are
“chasing a moving target.”

It is useful to derive the expected excess returns for informed and
uninformed traders so that we can determine the optimal stock demand.
The optimal portfolio for each group of investors is a composition of
a mean–variance efficient portfolio and a hedging portfolio. Investors
want to hedge since expected returns on both the stock and the pri-
vate investment technology change over time. Since returns on the stock
are correlated with changes in expected future returns, it provides a
vehicle to hedge against changes in future investment opportunities.
Given the optimal portfolios, the trading strategies for the informed
and uninformed investors can be written as:

xin
t = β in

0 + β in
Z Zt + β in

��t

xun
t = βun

0 + βun
Z Ẑt.

13 Note that Ẑt − Zt is determined by ξt = αFFt − αZZt = αFF̂t − αZẐt .
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This shows that the optimal stock holding of the uninformed traders only
changes when their expectation about the others’ private investment
opportunities changes, that is, xun

t − xun
t−1 = βun

Z (Ẑt − Ẑt−1), where

Ẑt − Ẑt−1 = Eun
t [Zt] − Eun

t−1[Zt−1].

This can be decomposed into

{Eun
t [Zt−1] − Eun

t−1[Zt−1]} + {Eun
t [Zt] − Eun

t [Zt−1]}.
The first component reflects the corrections of the forecast errors of
previous periods and the second component induces new positions due
to a change in Zt.

Trading volume results only from changes in stock holdings between
the informed and uninformed traders. Therefore, trading volume can be
characterized as:

Vt = (1 − w)|xun
t − xun

t−1| = (1 − w)|βun
t | |Ẑt − Ẑt−1|

E[Vt] = 2(1 − w)|βun
Z |
√

2/π .

The effects of asymmetric information on volume can be analyzed,
given these formulae. As Var(εS,t) increases, the signal of the unin-
formed becomes less precise, the asymmetry of information increases,
and the adverse selection problem becomes more severe. This reduces
the trading volume. This need not be the case if a nonhierarchical infor-
mation structure is assumed as in Pfleiderer (1984) or He and Wang
(1995). Trading volume is always accompanied by price changes since
investors are risk averse. If informed traders face high excess return in
their private investments, they try to rebalance their portfolio by selling
stocks. The price has to decline in order to make stocks more attrac-
tive to uninformed investors. This explains why the trading volume is
positively correlated with absolute price changes. The price reduction
mentioned above has to be even larger if the adverse selection problem
is more severe. Consequently, the correlation between trading volume
and price changes increases with information asymmetry. Volume is also
positively correlated with absolute dividend changes. In the case of sym-
metric information, a public news announcement about dividends only
changes the current price but not the expected return or trading volume.
In the case of asymmetric information, different investors update their
expectations differently. They respond to public information differently
since they interpret it differently. Uninformed investors change their



124 Dynamic Models, Technical Analysis, Volume

estimates for Ft−1 and Zt−1 and trade to correct previous errors and
establish new positions. Volume in conjunction with current change in
dividends or returns can also be used to improve the forecast for expected
future excess returns. Under symmetric information, public news (like
an announcement about a dividend increase) is immediately reflected in
the price. Under asymmetric information, public news can lead to correc-
tions of previous trading mistakes. Wang (1994) shows that an increase
in dividends accompanied by high volume implies high future returns.
High volume indicates that the change in dividend was unanticipated. A
dividend increase should, therefore, increase prices. The second compo-
nent of excess returns, the price change, is different because it provides
information about noninformational trading as well as the stock’s future
dividends. Under symmetric information, agents only trade to rebalance
portfolios and it is always accompanied by changes in the current price
in the opposite direction. In the case of asymmetric information, unin-
formed investors trade for two reasons: to correct previous errors and
to take on new positions if the price adjusts to noninformational trading
by the informed investors. The correlation between the current volume
and the current returns and expected future returns is ambiguous.

One inconsistency in Wang’s (1994) analysis is that even though vol-
ume can help predict future returns, uninformed investors in this model
do make use of it. A model in which investors also take the informa-
tional content of volume into account is presented by Blume, Easley,
and O’Hara (1994), which we will discuss in Section 4.4. First we will
present a model with a generalized information structure as provided by
He and Wang (1995).

Multiperiod Finite Horizon Model with Differential Information
In the dynamic models discussed in this section so far, information asym-
metry is strictly hierarchical. This unrealistic assumption is relaxed by
He and Wang (1995).14 The authors develop a model in which different
pieces of information are dispersed among many market participants.
Their model can be viewed as a multiperiod generalization of Grundy
and McNichols (1989) and Brown and Jennings (1989). The main eco-
nomic focus of their model is the relationship between the pattern of
volume and the flow and nature of information. He and Wang (1995)
also analyze the link between volume and price volatility. They find that
the high volume generated by exogenous private or public information

14 We adjust the notation to v = �, ut = �t , Spublic
t = Yt , λt = αt , αx,t = px,t , and

βx,t = dx,t for ease of exposition.
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is accompanied by high volatility in prices, whereas the high volume
generated by endogenous information (like prices) is not accompanied
by high volatility.

In contrast to Wang (1993, 1994), He and Wang (1995) present a
finite horizon setup in which investors only consume in the terminal
period T. There are infinitely many investors i ∈ {1, 2, 3, . . . } =: �. Each
investor can either invest in a bond with a certain gross return rate R = 1
or in a stock with a liquidation value v + δ at the final date T. The stock
pays off v+ δ only at the final period T and otherwise pays no dividend.
Each investor i ∈ � receives a private signal Si

t about the first component
of the stock’s liquidation value, v, at each point in time:

Si
t = v + εi

S,t,

where εi
S,t is normally i.i.d. with N (0, σ 2

ε,S,t) for all investors. Investors
also observe a public signal Spublic

t about v:

Spublic
t = v + εSpublic,t,

where εSpublic,t ∼ N (0, σ 2
ε,Spublic,t

). All traders also observe the price Pt.
The second component of the liquidation value, δ, is also normally
distributed with mean zero and is never revealed before the terminal
date T.

The true value of v would be revealed immediately in t = 1 if the
supply was not noisy. To make the model interesting, the supply of
asset is 1 plus a noise term ut. This noise term follows a Gaussian AR(1)
process:

ut = auut−1 + εu,t, −1 < au < 1.

This paper provides a way to characterize a linear equilibrium of
the above economy in a mathematically tractable way. The vector of
state variables of the economy is given by �t = (v; ut; Spublic

t ; {Si
t}i∈�)

where an underlined capital letter stands for the whole stochastic process
up to and including time t.

The first step is to simplify the state space.15 Before one characterizes
the equilibrium price, it is useful to derive expected values for vt and
ut conditional on different information sets. v̂c

t and ûc
t are based on

publicly available information, while v̂p,i
t and ûp,i

t are the expected values

15 In contrast to the Wang papers discussed earlier, we have included the signals
directly in the state space and not the expected values of v.
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based only on private information. Furthermore v̂i
t and ûi

t represent the
expected values taking all available private and public information of
investor i into account. Alternatively, we also write Ec

t [·], Ep,i
t [·], Ei

t[·],
instead of the hat, ·̂. The different conditional variances are denoted by
Varc

t [·], Varp,i
t [·], and Vari

t[·]. He and Wang (1995) focus on linear REE.
Thus Pt = L[�t] = L[v; ut; Spublic

t ; {Si
t}i∈�], where L[·] expresses a linear

functional relationship.
Lemma 1 of He and Wang (1995) reduces the necessary state space to

(v; ut; Spublic
t ), that is, Pt = L[v; ut; Spublic

t ]. This can be shown by using
the law of large numbers since the mean of infinitely many signals con-
verges with probability 1 to v.16 Furthermore, one can replace ut−1 by
Pt−1 if one exploits the linear relationship described above. We, there-
fore, have Pt = L[v, ut, Spublic

t , Pt−1, Spublic
t−1 ]. This can be rewritten as:

Pt = at (v − μtut)︸ ︷︷ ︸
=:ξt

+ btS
public
t + L[Pt−1, Spublic

t−1 ]︸ ︷︷ ︸
=L[v̂c

t ]

.

The sum ξt := v −μtut can be inferred by every investor. Therefore, the
following information sets are equivalent

F c = {F0, Pt, Spublic
t } ⇔ {F0, ξt, Spublic

t }
in a linear REE. He and Wang (1995) then demonstrate that the second
term btS

public
t + L[Pt−1, Spublic

t−1 ] can be rewritten as L[v̂c
t ], that is, it

satisfies a specific structure. This implies that the equilibrium is deter-
mined by v, ut, and v̂c

t . One makes use of the equivalence between
F c = {F0, Pt, Spublic

t } and {F0, ξ
t
, Spublic

t } to derive the specific linear
coefficients of L[·].

The first-order expectations v̂c, ûc, that is, the expectations con-
ditional on public information (ξ

t
, Spublic

t ), and v̂i, ûi, that is, the
expectations conditional on all information (ξ

t
, Spublic

t , Si
t), are derived

by means of Kalman filtering. The stochastic difference equations are
given by He and Wang’s Lemma 2. It is easy to show that {v̂i

t, ûi
t, v̂c

t , ûc
t }

follows a Gaussian Markov process under filtration {F i
t }. Since infor-

mation is differential in this model, investor i’s trading strategy can
also depend on higher-order expectations, that is, expectations about
the expectations of others, and so on. Does this mean that an infinite

16 Recall that there are infinitely many investors in set �. He and Wang make use of
charge spaces. For more details on charge spaces see Feldman and Gilles (1985) and
Rao and Rao (1983).
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regress problem à la Townsend (1983) will arise? He and Wang (1995)
show this is not the case since higher-order expectations can be reduced
to first-order expectations. The following steps illustrate the proof for
the second-order expectations. First, one shows that v̂i

t is a weighted
average of v̂c

t and v̂p,i
t , that is, v̂i

t = λt v̂c
t + (1 − λt)v̂

p,i
t . v̂c

t is given by
Lemma 2 using Kalman filtering and v̂p,i

t can be derived using the pro-
jection theorem. The weights λt and (1 − λt) are independent of i; and
λt is given by the ratio Vp,i

t [vt]/Vi
t [vt]. The second-order expectations

are then derived by integrating λt v̂c
t + (1 − λt)v̂

p,i
t over i and by taking

conditional expectations. This shows that the second-order expectation
of v is a weighted average of two first-order expectations. This reason-
ing can be generalized for i’s higher-order expectations as well, that is,
i’s higher-order expectations can be expressed as a linear function of his
first-order expectations. Therefore, it is sufficient if i’s optimal trading
strategy depends only on his first-order expectations.17

For deriving the optimal stock demand, it is useful to define the excess
return on one share of stock as Qt+1 := Pt+1 − Pt. For the time being,
He and Wang assume that Qt and � i

t =: Ei
t[�], where � i

t is a simplified
state space, follow the Gaussian process:

Qt+1 = AQ,t+1�
i
t + BQ,t+1ε

i
t+1

� i
t+1 = A�,t+1�

i
t + B�,t+1ε

i
t+1.

This (temporary) assumption allows He and Wang in Lemma 4 to solve
the investors’ dynamic optimization problem. The authors state the
Bellman equation, exploit the property of exponential utility function
in forming expected utility for the next period, and derive the optimal
stock demand function which is linear in � i

t . Finally, they verify that Qt
and � i

t follow this Gaussian process.
After imposing the market clearing condition, the equilibrium price

is determined by

Pt = [(1 − αv,t)v̂c
t + αv,tv] − αu,tut = (1 − αv,t v̂c

t ) + αv,tξt.

The stock price depends only on v, ut, and v̂c
t , so L[v̂c

t ] summarizes the
whole history. The price Pt also follows a Gaussian Markov process.

Pt is only determined implicitly since v̂c
t depends on Pt. However, the

derivation of the explicit solution is trivial since v̂c
t is linear in Pt. Given

17 The infinite regress problem can also be avoided by introducing a competitive
risk neutral market making sector, as illustrated in Vives (1995). Past prices carry no
additional information in such a setting.
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the price, one can derive the expected excess return Ei
t[Qt+1] from which

it follows that the investor’s optimal stock demand is given by

xi
t = βu,tûi + β�,t (v̂i

t − v̂c
t )︸ ︷︷ ︸

:=�

.

Given the market clearing condition

βu,t = 1

β�,t = λt

yt(1 − λt)
.

He and Wang (1995) employ a recursive procedure to simulate the equi-
librium values. Starting with a guesstimate for the conditional variance
of v in T − 1, they derive coefficients αv,T−1, αu,T−1, demand, equi-
librium price, and other parameters. As they proceed backwards they
check whether the initial guess of the variance of v was correct. If not,
they restart the procedure with a new initial guess.

Having derived the equilibrium, He and Wang then examine differ-
ent patterns of trading volume and explain how private information
is gradually incorporated into the price. In the benchmark case with
homogeneous information, that is, σ 2

ε,S,1 = 0, the true value v = v̂c
t = v̂i

t

is known immediately and the only remaining risk lies in δ. The equi-
librium price in this case is given by Pt = v − αu,tut where the second
term represents the risk premium. 1/αu,t measures the market liquid-
ity in the sense of Kyle (1985). The risk premium increases with the
variance of δ and over time. The latter increase is due to the fact that
the number of trading periods left to unwind speculative positions is
decreasing. Furthermore, with only few periods remaining and with |u|
large it becomes less likely that the mean reverting AR(1) process of ut
will reach a value of zero. The volume of trade, V∗, in this benchmark
case is totally determined by noise trading, which is defined by

V∗ =
∫

i
|ut − ut−1| = |ut − ut−1|

with

E[V∗] =
√

2/π Var[�ut].

In the case of differential information the equilibrium price is given by

Pt = [(1 − αv,t)v̂c
t + αv,tv] − αu,tut.

The second component, αu,tut, is associated with the risk premium
as in the homogeneous information case. The first component reflects
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investors’ expectations about the stock’s future payoff. This is not simply
proportional to the average of investors’ expectations: λt v̂c

t + (1−λt)vt.
This is because dynamic trading strategies generate equilibrium prices
that differ from those generated by static/myopic strategies since current
state variables depend on the history of the economy. This distinction
between dynamic and myopic strategies also appeared in Brown and
Jennings (1989) and in Grundy and McNichols (1989). In particular,
the current state depends on past prices. As investors continue to trade,
the sequence of prices reveals more information. This tends to decrease
αu,t, whereas the reduction in the number of remaining trading rounds
tends to increase αu,t.

The optimal trading strategy xi
t = βu,tûi + β�,t(v̂i

t − v̂c
t ) consists of

two parts. The first represents the supply shock, the second investors’
speculative positions. The trading activity generated by differential
information is not the simple sum of each investor’s speculative invest-
ments. This is because, in the case of heterogeneous information,
noninformational trade by one investor could be viewed as an infor-
mational trade by another investor. It is also possible that investors on
both sides of the trade think that their trades are noninformational, but
the trading is purely due to differential information.18 He and Wang
(1995) focus on the additional trading volume generated by differential
information. They define

Vex
t := Vt − V∗

t .

Its expected value is given by

E[Vex
t ] = 1√

2π

(√
Var[�ut] + Var[�xi

t] −
√

Var[�ut]
)
,

where �xi
t := xi

t − xi
t−1 and �ut := ut − ut−1 are the changes in stock

holdings. In Corollary 2, the authors provide a closed-form solution for
the equilibrium volume for the special case where σδ = 0. The corollary
states that informational trading occurs only as long as investors receive
new private information. In this case, the individual trader does not
know whether the other investors trade because of new information or
because of liquidity reasons. It is not common knowledge whether the
allocation is Pareto efficient. This is the reason why the dynamic version
of the no-trade (speculation) theorem given in Geanakoplos (1994) does

18 For example there is no additional noise in t, but half of the traders think ut = +0. 1
and the other half think ut = −0. 1.
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not apply in this case.19 If on the other hand, investors receive only
private information in t = 1, the prices will adjust but no informational
trade will occur. For au = 1, this result is in line with the no-trade
equilibrium outcome that arises in Grundy and McNichols (1989) when
σ 2
ω = 0.
He and Wang (1995) then go on to analyze the behavior of trading

volume after t = 2 for the case where σδ > 0 and only the signal in t = 1
is informative. The main findings are that trading persists throughout
the whole trading horizon. This is due to the fact that investors establish
their speculative position when they receive their private information in
t = 1 and then gradually try to unwind these positions. This generates
peaks in the volume of trade in the middle of the trading horizon. In the
case of public announcements, investors increase their positions right
before and close them right after the announcement. Therefore, the vol-
ume and total amount of information revealed through trading depends
on the timing of the announcement. Market liquidity drops right before
the announcement and bounces back afterwards. They also find that new
information, private or public, generates both high volume and large
price changes, while existing private information can generate high vol-
ume with little price changes. He and Wang (1995) conclude their paper
with further comments and possible generalizations. One conclusion is
that the whole economy can be reduced to an effective two-person setup
even if all investors have different risk aversion coefficients.

4.4. Inferring Information from Trading Volume in
a Competitive Market Order Model

All the models discussed so far have the drawback that investors do not
extract the predictive power of trading volume. In Blume, Easley, and
O’Hara (1994) a group of traders make explicit use of volume data to
improve their prediction of the liquidation value of an asset.

The authors consider a more general signal structure which incor-
porates asymmetry in second-order information, as in Romer (1993).
As in the previous models, traders hold asymmetric information about
the fundamentals, that is, about payoff-relevant events. They receive
a private signal about the liquidation value v. In addition, traders are

19 As in Grundy and McNichols (1989), the beliefs about future signals need not be
concordant when σδ > 0.
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asymmetrically informed about the precision of the other traders’ sig-
nals. In other words, in contrast to most other models the precision of
the private signals is not common knowledge. Each investor knows the
quality of his signal, but only a subset of investors, those in group 1,
know the precision of all signals. In the sense of Morris, Postlewaite,
and Shin (1995) this model exhibits a higher depth of knowledge by
one degree.20 The higher-order uncertainty about the precision of other
investors’ signals is the source of noise in their model and provides the
basis for the predictive power of volume and technical analysis.

Difficulties in Modeling Informative Trading Volume
Blume, Easley, and O’Hara (1994) start their analysis by showing why
the models in Brown and Jennings (1989) and Grundy and McNichols
(1989) are not appropriate for analyzing the role of volume in predicting
the value of an asset. While in Brown and Jennings (1989), trading
volume leads to informationally efficient REE, in a setting à la Grundy
and McNichols (1989) no inference can be drawn from volume.

In the framework of Brown and Jennings (1989) there always exists
an informationally efficient REE if agents can submit demand schedules
conditional on price and volume. Hence, trader i’s information set is
F i

t = {Pt, Si
t, Vt,χt}, where χ i

t is an indicator function indicating whether
the trader i is a buyer or seller and Vt is the per capita average trading
volume

Vt = 1
2

1
I

[ I∑
i=1

|xi
t| + |ut|

]
.

The term 1
2 reflects the fact that one unit of trading volume consists of

one buy order as well as one sell order.
In an informationally efficient REE all traders completely rely on the

price signal and volume signal and disregard their own signal. Conse-
quently, they submit the same demand function conditional on price
and volume as well as χt and end up with the same asset holding
xi

t = xj
t =: xt. They can infer the noisy supply term ut by making

use of the market clearing condition xt = I−1ut, and χ i
t . The average

signal S̄t can be inferred from the equilibrium price as it depends only

20 The connection to higher-order knowledge becomes obvious in the case where the
variance of the signal’s noise term is either zero or infinite. An agent who receives the
signal with a zero variance term knows the true value of the stock and also knows that
he knows it, while the other agents who do not know the precision of the signal do not
know whether the agent who received the signal knows the true value or not.
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on ut and S̄t. Thus, in each period t, the tuple (Pt, Vt) fully reveals S̄t
and ut. This also implies that technical analysis has no value.

In Grundy and McNichols (1989) each individual is endowed with
an i.i.d. random number of risky assets. The variance of this random
endowment, ui

t, is given by Var[ui
t] = Iσ 2

u . In the limit economy with
infinitely many traders, that is I → ∞, each individual endowment
itself has no informational content and the variance of the endow-
ments is also infinite. The expected per capita trading volume Vt =
1
2 limI→∞I−1∑I

i=1 |xi
t −ui

t| is infinite as I goes to infinity. Consequently,
no inference can be drawn from trading volume.

Static Market Order REE with
a Generalized Information Structure
In contrast to Brown and Jennings (1989) and Grundy and McNichols
(1989), Blume, Easley, and O’Hara (1994) develop a market order
model with a generalized information structure. Market order mod-
els in a competitive setting were first developed by Hellwig (1982). The
distinguishing feature of these models is that the information set of each
trader i in market order models contains the whole price and volume
process up to but excluding the current time t.

Blume Easley, and O’Hara (1994) assume the following information
structure. The common priors for all traders about the liquidation value
are v ∼ N (μv,0, σ 2

v,0). Each trader in group 1 receives a signal

Si
t = v + ωt + ei

t,

where the common error term ωt ∼ N (0, σ 2
ω) and the individual error

term ei
t ∼ N (0, σ 2

e,t) are normally and independently distributed. Note
that the variance of the error term of group 1’s signal σ 2

e,t varies over time.
Each trader in group 2 receives a signal

Si
t = v + ωt + εi

t,

where all εi
t are i.i.d. N (0, σ 2

ε ). It is common knowledge that a fraction
ν of I traders, that is, I1 = νI traders, are in group 1 and I2 = (1 − ν)I
traders are in group 2. Traders in group 1 and group 2 are also asym-
metrically informed about the precision of the signals. That is, there
is asymmetry in second-order information. Traders in group 1 know
the precision of group 1 signals, (1/σ 2

e,t), in each t. In addition, they
know the precision of the signals received by group 2 traders, (1/σ 2

ε ).
Group 2 traders only know the signal precision of their own group.
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The precision of group 1 signals, σ 2
e,t, varies randomly over time. This

makes it impossible for group 2 traders to learn over time the group 1
signal precision.

The distribution of the signals is, therefore, given by:

• for group 1 signals: Si
t ∼ N (v, σ 2

S1,t), where σ 2
S1,t = σ 2

ωσ
2
e,t[1/σ

2
ω +

1/σ 2
e,t] =: Var[S1,t]

• for group 2 signals: Si
t ∼ N (v, σ 2

S2
), where σ 2

S2
= σ 2

ωσ
2
ε [1/σ 2

ω +
1/σ 2

ε ] =: Var[S2].

It is obvious from the strong law of large numbers that the average
of the signals in each group, S̄1,t and S̄2,t, converges almost surely to
v + ωt =: θt.

Blume, Easley, and O’Hara (1994) restrict their analysis to myopic
REE. The individual demand for traders with a constant absolute risk
aversion coefficient of unity, that is, ρ = 1, is approximated by:
group 1 traders:

xi
1,t = Ei,1

t−1[v] − Pt

Vart−1[v]
+

Si
1,t − Pt

Vart−1[S1,t]
;

group 2 traders:

xi
2,t = Ei,2

t−1[v] − Pt

Vart−1[v]
+

Si
2,t − Pt

Vart−1[S2]
.

In contrast to the standard REE where all traders submit demand
schedules, there is an additional second term and the expectations are
taken with respect to F i

t−1. The equilibrium price is derived by adding
up all individual demand functions and imposing the market clearing
condition. For the limit economy, P1 is:

P1 =
(1/σ 2

v,0)μv,0 + [
ν(1/σ 2

S1,1) + (1 − ν)(1/σ 2
S2
)
]
θ1

(1/σ 2
v,0) + ν(1/σ 2

S1,1) + (1 − ν)(1/σ 2
S2
)

.

Group 1 traders can infer θ1 from P1 since they know σ 2
S1,1 and σ 2

S2
. P1,

however, does not reveal θ1 for group 2 traders since they do not know
σ 2

S1,1. Note that the conditional distribution of θ1 given P1 is not normal.
Traders in group 2 can infer more information about θ1 if they include
trading volume in their inference calculation. The per capita trading
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volume in t = 1 is:

V1 = 1
2

1
I

( I1∑
i=1

|xi
1,t| +

I∑
i=I1

|xi
2,t|
)

.

Volume is not normally distributed. It is the sum of the absolute amount
of normally distributed random variables. Blume, Easley, and O’Hara
(1994) explicitly characterize the expected per capita volume V1 in their
Proposition 1:

V1 = V1(θ1 − P1, σ 2
S1,1, σ 2

S2
, . . . ).

Using the above equilibrium price relation, one can substitute for

(θ1 − P1) =
(1/σ 2

v,0)(P1 − μv,0)

ν(1/σ 2
S1,1) + (1 − ν)(1/σ 2

S2
)

a term depending on the signal precisions. The resulting equation links
volume V , price P1, and precision (1/σ 2

S1,1). Hence, it shows that vol-
ume conveys information about the signal quality of group 1 traders,
(1/σ 2

S1,1).
Plotting the derived expression for V1 with P1 on the abscissa yields a

V-shaped relationship between price and volume, for any given (1/σ 2
S1,1).

The minimum volume is reached at a price level P1 = μv,0. At the
minimum volume level, the average traders’ posterior means coincide
with the prior mean. As P1 deviates from μv,0, the posterior means
differ and the first term of the individual demand functions xi

t on aver-
age increases the trading volume. This results in a strong correlation
between volume and price change. The V-shape is very robust. As the
signal precision (information quality of group 1 signals) decreases, the
V-shape becomes more pronounced. The same is true when the quantity
of information, that is, fraction of group 1 traders, decreases.

Keeping the price fixed and differentiating expected per capita vol-
ume with respect to the precision of trader 1 signals, (1/σ 2

S1,1), yields
the result that volume is increasing in the precision of group 1’s sig-
nals if (1/σ 2

S1,1) < (1/σ 2
ω) and decreasing if (1/σ 2

S1,1) > (1/σ 2
ω) (provided

(1/σ 2
S1,1) > (1/σ 2

S2
)). Intuitively, if group 1’s signals are very imprecise,

their signals are very dispersed and the traders place little confidence in
their signal. They do not trade very aggressively and thus the expected
trading volume is low. If on the other hand the signals are very precise,
all group 1 traders receive highly correlated signals and thus the trading
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volume is low again since trade occurs only between the groups. There-
fore, low volume can be a signal for very precise signals as well as for
very imprecise signals. Volume is first increasing and then decreasing in
the signal precision for a given price P1. Hence, for an observed price
volume pair (Pt, Vt) two outcomes, high or low precision, are feasible.
In other words, the functional relationship is not invertible. There-
fore, Blume, Easley, and O’Hara (1994) restrict their analysis to the
increasing branch of V(·|P1), that is, 1/σ 2

S1,1 ∈ (1/σ 2
S2

; 1/σ 2
ω). If this is

the case, the tuple (Pt, Vt) is revealing (θ1, σ 2
S1,1). Since all signals incor-

porate the common error term ωt, the liquidation value v = θ1 − ω1 is
not known.

Myopic REE in a Dynamic Setting – Technical Analysis and
Trading Volume
In a dynamic setting more realizations of θt = v + ωt can be inferred
and, therefore, a better estimate about the true liquidation value, v,
can be made. In each period the precision of the signals for traders
in group 1 is drawn randomly and the analysis is similar to the static
case. One difference is that priors in period t are not exogenous, but
derived from the market statistics up to time t − 1. Second, the volume
expression is slightly different since traders’ endowments in t are the
equilibrium demands in t − 1. By the strong law of large numbers, the
equilibrium price converges almost surely to v since traders can infer a
new θt in each period. However, the trading volume does not vanish as
time proceeds. Although traders’ beliefs are converging, their precision
is diverging at the same rate. Intuitively, agents trade in the early trading
round because their beliefs are widely dispersed. However, they trade
less aggressively on their information. In the later trading rounds, the
beliefs are much closer to each other but traders are more confident
of their own information and, hence, they take on larger positions.
Blume, Easley, and O’Hara (1994) use simulations to illustrate that
both effects offset each other and, therefore, volume does not decline
with the number of trading rounds.

In the last section Blume, Easley, and O’Hara (1994) compare the
utility of a trader who makes use of past market statistics in interpreting
the current market statistics with a trader who bases his trading activity
only on current market statistics and his priors in t = 0. The value
of technical analysis is then defined by the amount of money the latter
trader, who forgets all past market data, would be willing to pay to
recall the forgotten past market statistics. Past market data have value
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because of the common error term ωt in the signals. Blume, Easley, and
O’Hara (1994) show that the value of technical analysis is decreasing
in σ 2

ω and increasing in σ 2
v,0. They conclude that technical analysis has

higher value for small, less widely followed stocks.

Relation to No-Trade Theorem
Note that all traders trade purely for informational reasons in Blume,
Easley, and O’Hara (1994). Nobody faces liquidity shocks and there
are no noise traders. There are no gains from trade since agents’ endow-
ments and preferences are identical. The initial allocation is ex-ante
Pareto efficient. One might think that the no-trade theorem described
in Chapter 2 should apply. The no-trade theorem requires that ratio-
nality of all agents is at least higher-order mutual knowledge. The
no-speculation theorem need not hold if rationality of all traders is not
common knowledge. In contrast to a game theoretic equilibrium con-
cept, the REE concept does not specify the cognitive capacity that an
agent assumes his opponent players have. Blume, Easley, and O’Hara
(1994) apply the REE concept. In a REE each agent is only assumed to
know the mapping from traders’ information onto prices. In particu-
lar, REE does not require common knowledge of rationality. In Blume,
Easley, and O’Hara (1994) all traders behave rationally, but they might
not be sure whether their opponents are rational. This higher-order
uncertainty about traders’ rationality can justify the trading outcome
illustrated in Blume, Easley, and O’Hara (1994).

4.5. Strategic Multiperiod Market Order Models with
a Market Maker

Market Order Models with Short-Lived Information –
Intraday Trading Pattern
Admati and Pfleiderer (1988) analyze a strategic dynamic market order
model.21 Their model is essentially a dynamic repetition of a generalized
version of the static model in Kyle (1985). However, their focus is on
intraday price and volume patterns. They attempt to explain the U-shape
of the trading volume and price changes, that is, the abnormal high
trading volume and return variability at the beginning and at the end of
a trading day. In their model the value of a single risky asset follows the

21 To be consistent with our notation we denote: v = F, v̄ = F̄, It = nt , Jt = mt ,
Xt = ωt , ut = zt , and σ 2

ε = φt .
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exogenous process

v = v̄ +
T∑

t=1

δt,

where δt are independently identically normally distributed random vari-
ables whose realization becomes common knowledge only at t. As usual
there are two motives for trading: information and liquidity. All It
informed traders observe the same signal

St = δt+1 + εt

at time t, where ε ∼ N (0, σ 2
ε ). In other words, informed traders observe

a noisy version of the public information one period in advance. Since
δt+1 is known publicly in t+1 the informational advantage is only short-
lived. Informed traders, therefore, have no incentive to restrict their
trading in order to have a larger informational advantage in the next
period. This simplifies the analysis on the one hand, but also neglects
interesting aspects on the other.

In Admati and Pfleiderer (1988) there are two types of liquidity traders
whose demand depends neither on the price nor on their information.
Whereas Jt discretionary liquidity traders can choose a period within
[T ′, T ′′] in which to trade, nondiscretionary liquidity traders must trade
a given amount at a specific time. For simplicity, it is assumed that the
market maker as well as all traders are risk neutral. As in Kyle (1985)
the market maker observes the total net order flow Xt, in addition to
δt := (δ0, δ1, . . . , δt). The total net order flow in t is given by

Xt =
It∑

i=1

xi
t +

Jt∑
j=1

yj
t + ut,

where the first term represents the aggregated demand from informed
traders, the second term the aggregated demand from discretionary
liquidity traders, and the third term the aggregated demand from nondis-
cretionary liquidity traders. The variance of total liquidity trading,
�t = Var(

∑Jt
j=1 yj

t + ut), is endogenously determined in contrast to
Kyle (1985), as it depends on the strategic decision of the discretionary
traders.

The market maker tries to infer the information of the insiders from
Xt. As in Kyle (1985), the zero profit condition together with risk neu-
trality implies that the market maker sets the price equal to his expected
value. Since all random variables are normally distributed, the projection
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theorem implies the following linear pricing rule:

Pt = v̄ +
t∑

τ=1

δτ + λtXt,

where

λt = Cov[δt+1, Xt]
Var[Xt]

.

Note that 1/λt measures the market depth.
Each insider maximizes his capital gain in each period, given the

market maker’s pricing rule and the other insiders’ trading strategy.
The equilibrium market order size of an individual insider is given by
xi

t = β i
tSt, where St is the signal about δt+1 and βt, the trading intensity,

is given by

β i
t = 1

λ(It + 1)
Var[δt+1]

Var[δt+1] + Var[εt]
.

The equilibrium values for β i
t and λt are then given by

β i
t =

√
�t

ItVar[St]

and

λt = Var[δt+1]
I + 1

√
It

�t(Var[St])
.

Some comparative static results for λt follow immediately. (1) As the
number of informed traders It increases, the market becomes more
liquid. This seems counterintuitive at first thought. As the number of
informed traders increases, they compete their informational advantage
away and the aggregate order flow becomes more informative. There-
fore, one would think that λt should increase. However, the order flow
of all informed traders together also increases and thus the price adjust-
ment for each individual order is lower. This effect reduces the size of λt
and dominates the first effect. (2) The market depth 1/λt is increasing
with �, the variance in liquidity traders demand. This is like in Kyle
(1985).

The costs of trading for the liquidity traders, which equals the profit
for insiders, is the difference between what the liquidity traders pay and
the expected value, that is, E[(Pt(δt, Xt)−v)(

∑Jt
j=1 yt)|δt, Xt−1,

∑Jt
j=1 yt]

which is equal to λt(
∑Jt

j=1 yt)
2. Therefore, discretionary liquidity traders
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would trade when λt is smallest, that is, when the market is deepest. This
is the case when �t is high and thus it is optimal for these traders to
“clump” together. This increases �t even more. High variance in noise
trading, �t, allows insiders to hide more of their trade behind noise
trade. Their demand in equilibrium is given by xi

t = β i
tSt, where St is the

signal about δt+1 and the trading intensity βt is linear in
√
�t/Var(St).

Thus, at times when liquidity traders clump together, informed traders
also trade more aggressively. This increases the overall trading volume
in this trading period. Admati and Pfleiderer (1988) demonstrate the
existence of equilibria in which discretionary traders clump together.
In equilibrium, discretionary traders have to coordinate when to trade.
The problem is that many equilibria can arise. It is plausible that the
convention arose that these traders all trade at the beginning and at the
end of the trading day. The authors also apply a refinement criterion that
shows that these equilibria are the only ones that are robust to small
perturbations in the vector of variances of the discretionary liquidity
demands. As in Kyle (1985), the amount of information revelation by
prices is independent of the total variance of liquidity trading. More
noise trade would suggest less informative prices. On the other hand,
more noise allows insiders to be more aggressive in their trade. This
makes the price more informative. The aggressiveness of the insiders is
such that both effects will balance out.

Admati and Pfleiderer (1988) also extend the analysis to incorporate
endogenous information acquisition. Traders can buy the signal St at
a fixed cost c. This makes the number of informed traders, It, endoge-
nous. The authors apply two different models of entry. In their second
approach, the number of insiders, It, is known in equilibrium. When It
is high, more insiders compete with each other and, therefore, their prof-
its will be lower, or equivalently, the trading costs for liquidity traders
will be lower. At times when discretionary traders clump together, �t
is high and, therefore, many insiders will enter the market. This reduces
the trading costs for liquidity traders even more since more insiders are
competing against each other. Thus, endogenous information acquisi-
tion intensifies the effects explained above and one would expect large
trading volume at certain times.22

22 Pagano (1989a) provides a model which illustrates the negative correlation between
trading volume and market thinness as well as volatility. In this model risk averse
investors value the stock for hedging reasons differently and have to pay a fixed trans-
action cost to enter the market. Each additional trader who enters the market reduces
the market thinness and thus the volatility. This generates a positive externality for the
other risk averse traders. Pagano (1989a) shows that there are multiple “bootstrap”
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Market Order Models with Long-Lived Information
In Admati and Pfleiderer’s model information is only private for one
period, that is, it is only short-lived. As in the static Kyle (1985) model,
insiders restrain the market order size in order to have a better execution
price. In a model with long-run information, aggressive trading can not
only worsen the execution price for the current trading round but also
for all future trading rounds. Kyle’s (1985) article also captures the
dynamic setting which is modeled as a series of discrete call markets
(a sequential auction). The insider holds long-run private information
and faces the trade-off that taking on a larger position in early periods
increases early profits but worsens prices in later trading rounds. He tries
not to trade his informational advantage away. Therefore, he exploits
his information across time by hiding behind noise trading. Kyle (1985)
derives a dynamic linear recursive equilibrium. The author solves the
insider’s dynamic programming problem by proposing an ad hoc value
function which he verifies at a later stage. The author also analyzes
the insider’s problem in continuous time by letting the time intervals
converge to zero. In the continuous auction equilibrium, noise trading
follows a Brownian motion and the informed trader continuously pushes
the price towards his price valuation. The speed of price adjustment
is equal to the difference between his price valuation and the current
price divided by the remaining trading time. The market depth, 1/λ,
is constant over time and the market is “infinitely tight,” that is, it is
extremely costly to turnover a position in a very short period of time.
This is the case because the insider can break up his informational trade
into many small pieces. The price follows a Brownian motion (which is
a martingale process).

Back (1992) extends Kyle’s continuous time model by modeling strat-
egy spaces and information directly in continuous time. In Holden
and Subrahmanyam (1992) there are many informed traders who com-
pete against each other. This speeds up information revelation through
prices. As in the Cournot case, insiders who have the same information
are more aggressive and, therefore, trade more of their insider informa-
tion away. The information is revealed immediately as time becomes
continuous. The insiders are risk averse in Holden and Subrahmanyam
(1994). This further speeds up information revelation. Risk averse

equilibria, some with low trading volume and high price volatility, and others with high
trading volume and low volatility. The latter are Pareto superior. Pagano (1989b) shows
that traders may be unable to coordinate on a single market in the presence of different
transaction costs.
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agents trade more aggressively in early periods since future prices are
more uncertain.

Foster and Viswanathan (1996) allow for a more general information
structure where the signals are only correlated. Their model captures
the most general setting with I risk neutral informed investors and a
general signal structure.23 Each investor gets a long-lived individual
private signal at t = 0. In contrast to Admati and Pfleiderer (1988),
there are no discretionary liquidity traders. (Nondiscretionary) liquidity
traders demand ut ∼ N (0, σ 2

u ) shares in period t ∈ [1, . . . , T]. As in
Kyle (1985), the market maker only observes the total net order flow
Xt = ∑I

i=1 xt + ut and sets the price at time t according to

Pt = E[v|Xt],

where his prior distribution of v is given by N (P0, σ 2
v ) and Xt denotes the

whole process (X1, . . . , Xt). Informed traders i ∈ � = {1, 2, . . . , I} have
to submit their market orders xi

t before Xt becomes known. Since each
trader i knows his individual demand, xi

t and the whole history of Xt−1
he can infer the net order flow of all other traders zt−1 = Xt−1 − xi

t−1.
Each informed trader receives an individual signal Si

0 at the start of
trading. The joint distribution of all individual signals with the asset’s
true value is given by

(v, (S1
0, . . . , SI

0)) ∼ N
[
(P0, �0),

(
σ 2

v �0

�0 �0

)]
,

where �0 is a vector with I identical elements, that is, �′
0 =

(c0, c0, . . . , c0) and �0 is the variance–covariance matrix of the signals
given by

�0 =

⎛
⎜⎜⎜⎝
�0 �0 . . . �0

�0 �0 . . . �0

. . . . . . . . . . . .

�0 �0 . . . �0

⎞
⎟⎟⎟⎠.

This signal structure imposes a strong symmetry assumption since
(1) all signals have the same covariance c0 with the true asset value,

23 For consistency we adjust the notation to I = M, t = n, Xt = yn, v = v, Si
0 = si,0,

S̄ = v̂, Pt = pn, Ŝi
0,t = tin, Si

t = sin, and ·̂i = ·i′.
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(2) all signals have the same variance �0, and (3) the cross-variance
between signals is �0 for all signals. It also covers the special cases
�0 = �0 where all insiders get the same signal, and �0 = 0 where all
signals are independent.

By applying the projection theorem one gets

E[v − P0|S1
0, . . . , SI

0] = �′
0[�0]−1

⎛
⎜⎝Si

0
. . .

SI
0

⎞
⎟⎠.

By the imposed symmetry assumptions, all elements of the vector
�′

0[�0]−1 are identical, say to κ. Therefore, the inner product can be
rewritten as

E[v − P0|S1
0, . . . , SI

0] = κI︸︷︷︸
:=θ

1
I

I∑
i=1

Si
0︸ ︷︷ ︸

:=S̄

= θ S̄.

S̄, the average of all signals Si
0, is a sufficient statistic for all signals. It

follows that the market maker and the informed traders need not infer
each individual signal Si

0 but only the average signal S̄. This allows us
to simplify the sufficient state description dramatically.

The market maker’s estimate of Si
0 at t is given by

Ŝi
0,t := E[Si

0|X1, . . . , Xt] = E[Si
0|Xt].

The market maker sets a competitive price Pt = E[v|Xt]. Since
(S1

0, . . . , SI
0) is a sufficient statistic for Xt and24

Pt = E[E[v|S1
0, . . . , SI

0]|Xt] = θE[S̄|Xt] = θ
1
I

I∑
i=1

Ŝi
0,t + P0

the informational advantage of informed trader i in period t is the
difference

Si
t := Si

0 − Ŝi
0,t.

24 A typo slipped into equation (5) of Foster and Viswanathan (1996). The last term
+P0 is missing.
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Foster and Viswanathan (1996) further define the following conditional
variances and covariances

�t := Var(θ S̄|Xt) = Var(θ S̄ − Pt) = Var(E[v|S1
0, . . . , SI

0]|Xt),

�t := Var(Si
0|Xt) = Var(Si

t),

�t := Cov(Si
0, Sj

0|Xt) = Cov(Si
t, Sj

t),

and derive the following relationships using the projection theorem:

�t = θ2

I
[�t + (I − 1)�t],

which implies

�t−1 − �t = �t−1 − �t,

�t−1 − �t = θ2[�t−1 − �t],

and therefore

�t − �t = χ ∀t.

Since the market maker will learn the average signal S̄ much faster than
any individual signal, the correlation between the informational advan-
tage of insiders, �t, must become negative after a sufficient number of
trading rounds. This negative correlation between Si

t and the fact that
the insider learns faster from the aggregate order flow than the mar-
ket maker will lead to the waiting game explained below. Foster and
Viswanathan (1996) use a BNE concept given the price setting behavior
of the market maker. They restrict their analysis to linear Markov equi-
libria. The equilibrium is represented by a tuple (X1, . . . , XI, P) where
Xi is a vector of demand correspondences for trader i for each date, t,
that is,

Xi = (xi
1, . . . , xi

T), where xi
t = xi

t(S
i
0, Xi

t−1, zi
t−1),

and P is a vector of price setting functions for each t, that is,

Pt = Pt(Xt) = E[v|Xt].

xi
t(·) is the stock holding of trader i at time t which maximizes his profits

from time t until T. Xi(·) is optimal by backward induction. The authors
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impose a Markov perfect refinement criterion on the possible set of
equilibria. How restrictive this criterion is depends on which state space
the (trade) strategies can be based on. There are, therefore, two different
state spaces: the first state space is given by the choice of nature, whereas
the second covers events of the original state space on which traders can
base their trading strategies. The smaller the latter state space is, the
more restrictive is the Markov perfect refinement criterion. The state
space given by the choice of nature is (v, {Si

0}i∈�, uT). Incorporating the
choice of each trader, one can consider the following extended state
space (v, {Si

0}i∈�, {xT , uT}i∈�). Since ut = ∑I
i=1 xi

t −Xt, the state space can
be also written as (v, {Si

0}i∈�, {xT , XT}i∈�). An equivalent representation
of the state space is (v, {Si

T}i∈�, {Ŝi
0,T}i∈�, {xT , XT}i∈�), as Si

t = Si
0 − Ŝi

0,t.
All strategies have to satisfy the measurability condition, that is, traders
can condition their strategies only on states they can distinguish, that
is, on partitions. The authors focus on linear recursive Markov perfect
equilibria which satisfy the following conditions:

xi
t = βtSi

t−1,

Ŝi
0,t = Ŝi

0,t−1 + ζtXt,

Pt = Pt−1 + λtXt,

where Xt = ∑I
i xi

t +ut. It is shown that λt = θζt and Ŝi
0,t = Ŝi

0,t−1 +ζtXt

is necessary to guarantee that the forecasts of the others’ forecasts is
linear.

Foster and Viswanathan (1996) also show how the infinite regress
problem discussed in Townsend (1983) can be avoided. The dimension-
ality of the state space can be reduced since a sufficient statistic for the
past can be found for this equilibrium concept. Trader i bases his strat-
egy on his information set (Si

0, Xt−1, xi
t−1). Since his optimal demand is

given by xi
τ = xi

τ (S
i
0, Xτ−1) ∀τ in equilibrium, his information set can

be simplified to (Si
0, Xt−1). This also illustrates the fact that trader i can

only manipulate trader j’s beliefs about the true value, v, via Xt. The
authors show that Si

t−1, the information advantage at t − 1, is a suffi-
cient statistic for trader i to predict E[v − Pt−1|F i

t−1] = ηtSi
t−1 since Pt−1

is common knowledge and all random variables are normal. η and φ are
constant regression coefficients. As this is true for all traders, it is also
sufficient for trader i to forecast Sj

t−1 in order to forecast the forecasts of
others, that is, E[Sj

t−1|F i
t−1] = φtSi

t−1. The tth order forecast, the fore-
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cast of trader i about the forecast of trader j about the forecast of trader
i, and so on, is also a linear function of Si

t−1 by induction. This also
shows that the hierarchy of forecasts is not history dependent and that
the infinite regress problem, discussed in detail in Section 4.2, is avoided.
Their analysis shows that, in equilibrium, the dimensionality issue can be
resolved.

In order to check whether this is really a BNE, one has to show that
no trader has an incentive to deviate from his equilibrium strategy. A
larger state space is needed for analyzing deviation. Thus, the dimen-
sionality issue arises again. Suppose only trader i deviates from the
equilibrium strategy and submits arbitrary market orders (xi

1, . . . , xi
t)

in the first t periods. All other traders cannot detect trader i’s devi-
ation and thus still play their equilibrium strategies. Let Xi′

t , P′
t, Ŝi,i′

0,t,
and Sj,i′

t with the additional superscript i′, be the corresponding vari-
ables when traders play the equilibrium strategies. By construction Si,i′

t ,
the informational advantage, is orthogonal to (Xi′

t−1). Note that (Xi′
t−1)

is in i’s information set because i also knows the strategy he would
have followed in equilibrium and thus he can also derive the change
in other traders’ expectations caused by his strategy change. There-
fore, trader i’s information set also captures Si,i′

t−1, Pi′
t−1, and Sj,i′

0,t−1.

A sufficient statistic for his information set is given by Si,i′
t−1 together

with the deviation from the equilibrium price (Pi′
t−1 − Pt−1). There-

fore, E[v − Pt−1|F i
t−1] = E[v − Pi′

t−1|Si,i′
t−1] + (Pi′

t−1 − Pt−1). Foster and
Viswanathan conjecture the value function for trader i as:

V i[Si,i′
t−1, Pi′

t−1 − Pt−1] = αt−1(S
i,i′
t−1)

2 + ψt−1Si,i′
t−1(P

i′
t−1 − Pt−1)

− μt−1(Pi′
t−1 − Pt−1)

2 + δt−1

and derive the optimal market order size for a certain time period. The
resulting conditions for the Markov perfect linear recursive equilibrium
allow them to verify that the proposed value function was indeed correct.
Finally, the authors relate their results to less general models, like Kyle
(1985), Holden and Subrahmanyam (1992), and others.

For calculating numerical examples, Foster and Viswanathan (1996)
apply a backward induction algorithm for the case of three traders and
four trading rounds. They compare four different correlations between
the initial signals Si

0; very high, low positive, zero, and low negative
correlation. The major findings are that (1) the lower the signal correla-
tion, the less informative is the price process, (2) the profit for insiders
is lowest with identical information and highest with positive but not
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perfect correlation, (3) λt, the market maker’s sensitivity falls over time,
if the signal correlation is positive, and rises over time if the correla-
tion is negative, and (4) the conditional correlation of the remaining
information advantage Si

t is decreasing over time and becomes negative
provided there are enough trading rounds.

These results are the outcome of two effects. First, the competitive
pressure is reduced under heterogeneous signals since each trader has
some monopoly power. Second, traders play a waiting game when the
Si

t’s become negatively correlated. This is driven by the fact that the
market maker learns more about the average signal than about the indi-
vidual signals. With negatively correlated Si

t, traders are more cautious
and more reluctant to take on large positions early. If traders have dif-
ferent private information, more aggressive trading reveals even more
information to the competing insiders than to the market maker. Foster
and Viswanathan then go on to analyze the effects of increasing the num-
ber of trading rounds keeping the total liquidity variance, Tσ 2

v , constant.
With more trading rounds, the speed of information revelation is higher
and a U-shape pattern of λt arises and becomes more pronounced. This
U-shape of the market maker’s sensitivity results from the waiting game.
Their analysis suggests that dynamic competition with heterogeneously
informed traders can be quite distinct. Whereas insiders with identical
information trade very aggressively, that is, they are in a “rat race”,
insiders with heterogeneous information trade less aggressively since
they play a waiting game.

Back, Cao, and Willard (1997) conduct the same analysis in contin-
uous time. They prove that there is a unique linear equilibrium when
signals are imperfectly correlated and derive a “closed-form” expression
for the equilibrium. However, a linear equilibrium does not exist when
signals are perfectly correlated.

Vayanos (1996) studies a strategic dynamic continuous share auction
model à la Kyle (1989). He shows that the foregone gains from trade lost
due to strategic behavior increase as the time between trades shrinks.

In summary, both strategic and competitive dynamic models illustrate
how traders can partially leave each others’ signal by observing current
and past prices and trading volumes. Often traders can even observe
the past actions of individual players and infer information from these
actions. The next chapter illustrates how this might lead to herding
behavior.



5

Herding and Informational Cascades

It is important to understand crowd and group dynamics in order to
understand many economic phenomena. The literature on social learn-
ing gives rational and plausible explanations for herding behavior and
information cascades.

Herding behavior is often associated with people blindly following the
decisions of others. Imitating somebody’s action can be rational if the
predecessor’s action affects one’s (1) payoff structure such that imitation
leads to a higher payoff (payoff externality) and/or (2) his probability
assessment of the state of the world such that it dominates the private sig-
nal (informational externality). A mixture of both externalities is present
in most economic settings. Herding models due to reputational effects
in a principal–agent setting are one example. In these models the pay-
off externalities are endogenous since they depend on the beliefs of the
evaluator.

Imitation is only feasible if players move sequentially. The literature
distinguishes between exogenous sequencing where the order of moves
is pre-specified, and endogenous sequencing where the decision makers
decide when to move and whether to move first or not. In endogenous
sequencing models, it is possible that every individual (that is, the whole
herd) moves at the same time. For example, all agents can move imme-
diately after the leader has made a decision. It might even be the case
that everybody decides to move simultaneously. In this case the decision
maker has to follow the action he believes the others will take. These
different types of herding models are described below in greater detail.

5.1. Herding due to Payoff Externalities

In almost any game, the payoff structure of an agent is affected by
the other players’ actions. Payoff externalities are often exogenously
specified by the payoff structure of the game. These externalities might,
however, also arise endogenously. For example, in a multiple agent
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setting, the wage a principal pays to one agent might depend on the
other agent’s action. Whether agents choose the same or different actions
depends on the payoff structure of the game. If the players’ strategies
are “strategic complements” in the sense of Bulow, Geankoplos, and
Klemperer (1985), then each player’s incentive to act in a certain way
increases as the others act this way as well. In other words, the marginal
utility of increasing one’s strategy increases in one’s rival’s strategy. In
that case, players have an incentive to act alike. On the other hand, if
one’s marginal utility is increasing with a decline in one’s rival’s strategy,
then the strategies are “strategic substitutes” and the players do not act
alike.

In most games it can make a large difference whether the agents
decide sequentially or simultaneously. Endogenous sequencing signifi-
cantly enlarges the strategy space of each player. When agents can decide
when to move, they often act simultaneously in equilibrium.

There are many examples of models where agents act alike due to the
payoff structure. One famous group of games where agents “act alike”
in pure strategy equilibria are coordination failure games. Unfortu-
nately they have multiple equilibria and, hence, an equilibrium selection
problem arises. Investigative herding, that is, herding in information
acquisition, often occurs due to payoff externalities. Bank runs are
another popular example of herding models due to payoff externali-
ties. Most of these models exogenously specify that all agents run at
the same time. However, runs often occur simultaneously even in mod-
els with endogenous sequencing. The behavior of discretionary liquidity
traders in Admati and Pfleiderer (1988) described in Section 4.6 can also
be viewed as herding. All discretionary liquidity traders try to trade at
the same time, that is, they herd together.

5.2. Herding and Cascades due to Information Externalities

A successor will try to infer his predecessors’ information from their
actions provided these predecessors based their actions on their sig-
nals and the decisions have a common value component. This positive
information externality can be so strong that the successor ignores his
own signal (or does not give it the appropriate weight). Herding due
to informational externalities occurs if an agent imitates the decision of
his predecessor even though his own signal might advise him to take a
different action. This herding can also lead to informational cascades.
In an informational cascade, individuals’ actions do not reveal any
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information to successors and thus it prevents information aggregation.
In other words, there is no state of the world or possible signal realiza-
tion in which a successor’s beliefs depend on his immediate predecessor’s
action. Some authors use the term partial informational cascade if there
are some states or extreme signal realizations which can break the herd-
ing behavior. Informational cascades can occur if a successor can only
partially infer the predecessors’ information from their actions. Any pre-
play communication between predecessors and successors is ruled out
in these models.

5.2.1. Exogenous Sequencing

This strand of literature was independently initiated by Banerjee (1992)
and Bikhchandani, Hirshleifer, and Welch (1992) as well as Welch
(1992).

Herding due to Two-Dimensional Signal Space
In Banerjee (1992) I risk neutral agents choose an asset j ∈ [0, 1] on
an interval of the real line. The payoffs of all assets are zero, with the
exception of asset j∗, which has a certain payoff of v. All agents have
uniform priors. An agent gets a signal with probability α < 1. If an agent
receives a signal, it is true with probability β and false with probability
(1 − β). If the signal is fake, then it is uniformly distributed on the
interval [0, 1]. Agents make their decision sequentially. Successors can
observe the predecessors’ decisions, but not their signals.

Banerjee (1992) derives the following BNE after assuming three tie-
breaking rules which disfavor a herding outcome. If the first agent
receives a signal, he follows it. If he does not receive a signal, he chooses
j = 0 by assumption. Agent 2 only follows the first agent if he has not
received a signal. If he has received a signal he follows his own signal. His
action can be identical to agent 1’s action. For agent 3 it is always opti-
mal to follow his two predecessors if they have chosen the same action
j′ 
= 0, regardless of his own signal. Both predecessors only choose the
same asset j′ 
= 0 if (1) either agent 1 got signal j′ and agent 2 got no
signal and followed agent 1, or (2) agent 1 and agent 2 both got the same
signal j′. In the former case, which occurs with conditional probability
(1 − α), agent 3 is indifferent between following the predecessors’ deci-
sions and his own signal. In the latter case, which occurs with conditional
probability α, j′ is the optimal action j∗ with probability one. The event
that agent 1 and agent 2 get the same wrong signal j′ occurs with zero
probability. Therefore, agent 3 will follow his predecessors and ignore
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his own signal. Agent 4 knows that agent 3’s decision carries no infor-
mation about his own signal. Thus, he faces exactly the same situation
as agent 3 and he will choose the same asset as the first two decision
makers. Agent 5, 6, . . . face exactly the same situation and, hence,
herding will occur.

Herding also leads to an informational cascade in this setting. It is
quite likely that all agents chose the wrong action. This is the case when
agent 1 receives a wrong signal and agent 2 receives no signal. Agent 2
follows agent 1 and consequently the whole crowd runs in the wrong
direction. This happens, even though the optimal asset j∗ could be found
with probability one, if a large enough number of agents could commu-
nicate with each other. This inefficiency in information aggregation only
occurs (in sequential decision making) if the predecessors’ actions are not
a sufficient statistic for their information, that is, the successors can only
partially infer the information of the predecessors. In Banerjee (1992)
the one-dimensional action space on [0, 1] cannot reflect the signal since
it is two-dimensional. One dimension of the signal is on the interval
[0, 1] and the second dimension is binary {0, 1} indicating whether the
predecessor received a signal or not.

Herding due to Discrete Action Space
In contrast to Banerjee (1992), in Bikhchandani, Hirshleifer, and Welch
(1992) every agent receives a noisy signal for sure, that is, the signal space
is one-dimensional and the action space is discrete: adopt or reject. An
agent can adopt the new project (technology) at a cost of c = 1

2 . The
project pays off either vh = 1 or vl = 0 with equal probability 1

2 . Each
agent receives a binary signal, Si ∈ {SH, SL}. Its realization, high SH or
low SL, reveals the correct state of the world {h, l} with probability
q > 1

2 . Although the signal in their basic example is also only binary
{SH, SL}, the discrete action space {adopt, reject} cannot capture the
whole information of a later decision maker.1 This information consists
of one’s own signal and of information derived from his predecessors’
actions.2 Agent 1 adopts the project only if he receives a high signal.
Everybody can perfectly infer the first agent’s signal from his action since
the priors are common knowledge. If agent 2 gets a different signal as
compared to agent 1, he is indifferent between adopting and rejecting
the project. Let us assume that an agent follows his own signal if he is

1 In their generalized version, the signals can take on finitely many discrete values.
2 A continuous action space could reveal the posterior of an immediate predecessor

which is a sufficient statistic for all past signals. No herding occurs in this case.
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indifferent. Given this tie-breaking rule, everybody can infer agent 2’s
signal too. If both agents 1 and 2 have chosen the same action, agent 3
will choose the same action regardless of his own signal. Agent 4 can no
longer infer agent 3’s signal. All the decision makers that follow agent 3
know that he ignored his own signal. Thus, they do not try to infer any
information from his action. They face the same problem as agent 3
and, therefore, join the crowd. Everybody ends up in an information
cascade, thereby preventing the aggregation of information. Therefore,
convergence to the correct action need not occur. If the first two agents
accidentally receive the wrong signal, everybody will end up choosing
the wrong action. Note that the informational cascade would not have
arisen if all agents would take into account the fact that their decision
generates a positive externality for all their successors.

In their section “Fashion Leaders,” the authors demonstrate that if
agent 1 receives a signal with higher precision, informationally ineffi-
cient cascades occur sooner and also become more likely. In this case, it
is more likely that agent 2 follows agent 1. Zhang’s (1997) model shows
formally that the agent with the highest precision signal will move first in
equilibrium in a setting with an endogenous decision sequence. Zhang’s
(1997) model is discussed in more detail in the next section. Public
information can also have a large impact on informational cascades.
Information which is made public prior to agent 1’s decision can make
inefficient cascades even more likely. On the other hand, public infor-
mation that is released after a cascade has already begun will always
be socially beneficial. A small amount of public information can shatter
a long-lasting cascade. As explained above, a cascade is created by the
decision of the first two agents and, thus, the public information need
only lift out their information.

Introducing a Continuous Signal Space and Partial Cascades
Gale (1996) provides an example with a continuous signal space
Si ∈ [−1; +1] while the action space is still binary {aH, aL} as in
Bikhchandani, Hirshleifer, and Welch (1992). Welch’s (1992) herd-
ing model also considers a setting with continuous signal space. In
Gale (1996) partial cascades arise which can be shattered by extreme
signals.

There are at least I identical investment opportunities. The payoff of
each investment project is given by the average of all signals, that is,
v = I−1∑I

i=1 Si. Given that the signals are uniformly distributed over
[−1, +1], the first best solution is achieved if all agents invest if and only
if v = I−1∑I

i=1 Si > 0. In sequential decision making, agent 1 invests
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if S1 > 0 and agent 2 if S2 + E[S1|action1] > 0, and so on. If agent 2
observes that agent 1 has invested, he will invest if S2 + E[S1|S1 > 0] =
S2+ 1

2 > 0. If agent 2 also invests, agent 3 will invest if S3+ 3
4 > 0, and so

forth. In other words, if agents 1 and 2 have invested then agent 3 needs
to receive a really bad signal S3 < −3

4 in order to not invest, that is, not
to follow his predecessors. This means that the partial informational
cascade becomes more and more stable over time. That is, the signal
necessary to break up a cascade has to be more and more extreme.
Although herding behavior will occur, a full informational cascade can
never occur in Gale’s (1996) setting.

Role of Discreteness of the Action Space
Lee (1993) shows how crucial the discreteness of the action space is.
Discreteness plays a dual role: (1) it prevents somebody’s actions from
fully revealing his posteriors, and (2) it prevents each agent from fully
using his information. In Lee’s model the likelihood of an inefficient cas-
cade decreases as the action space grows. He also claims that Banerjee’s
model is an exceptional case since signals are two-dimensional and the
(degenerated) payoff structure in Banerjee (1992) does not distinguish
between small and large errors.

Confounded Learning when Agents’ Preferences Differ
Smith and Sørensen (2000) not only consider a continuous signal space
but also allow agents’ preferences to differ. If agents’ preferences differ,
the successor does not know whether a predecessor’s action is due to a
different signal realization or due to a different preference ordering.
Incorporating diversity in taste can also lead to situations of “con-
founded learning.” In such situations the observed history does not
provide additional information for decision making and the decision
of each type of agent might forever split between two actions.

Information Externalities Reduce Speed of Learning
Information cascades typically do not arise in a continuous action space,
and a one-dimensional signal space. A one-dimensional action space can
fully reflect a one-dimensional signal or posterior as long as all agents
have identical preferences. In the market setting in Vives (1993), noise
prevents immediate information revelation of the sufficient statistic of
all the individuals’ signals. In Vives (1993) the market participants do
not see the (previous) actions of the participants directly, but they can
act conditionally on past and current prices. In this model, noise in the
prices plays the same role as discreteness does in the models discussed
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earlier. As explained in Section 4.1.2, each market participant acts based
on his private signal and the information he infers from current and past
prices. The more emphasis he puts on his private signal instead of the
publicly observable price signals, the more information he reveals to the
others. In other words, actions that are based more on private signals
generate a positive informational externality. Vives (1993) shows that
since the market participants do not take this informational externality
into account, the market is not only less informationally efficient in the
current trading round but the rate of convergence to the full information
outcome in a repeated market interaction setting is also extremely slow.

Relation to Experimentation
A natural extension to the herding literature would be to allow agents
to act more than once and/or to revise their decisions. This leads us to
models of experimentation. Experimentation can be viewed as a special
form of costly information. The experimentation literature stems from
Rothschild’s (1974) two-armed bandit analysis. Smith and Sørensen
(1997) relate the literature of experimentation to herding models. Herd-
ing models correspond to the experimentation problem faced by a single
myopic experimenter who forgets his formal signal but remembers his
past actions. The incorrect herding outcomes correspond to the familiar
failure of complete learning in an optimal experimentation problem. If
there is a confounding action and the agent is impatient, beliefs need not
converge to the true value or functional relationship. Nonconvergence
to the true value is common in many experimentation models. See for
example Bergemann and Välimäki (1996), Bolton and Harris (1999),
Leach and Madhavan (1993), and Keller and Rady (1999) for different
models of experimentation.

5.2.2. Endogenous Sequencing, Real Options,
and Strategic Delay

In many economic situations, agents can decide when to decide. They
own a real (American) option with a fixed exercise price but an unknown
final value of the underlying asset. Holding an option gives the decision
maker the right to wait for some time in order to learn something about
the value of the underlying asset. Waiting incurs some costs but it allows
him to make a better investment decision in a later period of time. How-
ever, there is a difference between the standard real option setting and
herding models with endogenous sequencing. Whereas the amount of
information released is exogenous in the standard real option settings, it
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depends on the investment decision of the other players in most herding
models. If the other agents invest in the meantime, the agent learns more
about the value of the underlying asset. Thus the benefits of waiting and
consequently the value of the real option depends on the timing, that is,
the equilibrium strategy of the other agents.

If each decision maker can decide when to decide, everybody would
want to decide last in order to profit from the positive information exter-
nalities generated by his predecessors’ decisions. Strategic delays caused
by information externalities were first discussed by Chamley and Gale
(1994) and Gul and Lundholm (1995).

Endogenous Sequencing in Discrete Time
In Chamley and Gale (1994) time is discrete t = 1, 2, . . . , ∞ and a ran-
dom number of agents have an opportunity to invest or not to invest
with the option to invest later. Each investor knows whether he him-
self has an investment opportunity, but he does not how many other
investors have this opportunity as well. In more formal terms, each
agent receives a binary signal Si ∈ {0, 1}. The agent has an investment
opportunity and participates in the game only if Si = 1. The true pay-
off of the identical underlying investment opportunities is increasing in∑I

i=1 Si, the number of possible investment opportunities, not in the
number of investments actually undertaken. Agents who invest early
reveal that they had an investment opportunity. This positive informa-
tion externality allows the successors to update their beliefs about the
true I. In order to prevent all agents from waiting forever, the authors
assume that each agent’s waiting costs are given by a common discount
factor 0 < δ < 1. Chamley and Gale (1994) focus on symmetric perfect
Bayesian equilibria in which agents apply behavioral strategies.3 They
show that there are three exclusive possible equilibrium continuation
paths given a certain history of past investments. If beliefs about the
number of people who got an investment opportunity are sufficiently
optimistic, all players immediately invest and the game ends. On the
other hand, if these beliefs are sufficiently pessimistic, no one will invest
and hence no information is revealed. In this case the game ends as well,
since the situation will not change even one period later. For interme-
diate beliefs, given a certain investment history, all remaining players
with investment opportunity face (1) an individual incentive to invest,

3 Action rules determine an action at a certain partition/decision node. A strategy is
a sequence of action rules. Randomizing over different action rules at any partition is a
behavioral strategy. Randomizing over pure strategies is a mixed strategy.
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and (2) a positive option value of waiting. That is, if all the players who
possess an investment option would invest then player i prefers to wait
and act in the next period on the basis of more information. However, if
all the players who possess an investment option would wait then player
i prefers to invest because if he also waits he does not learn anything
and he bears the cost of waiting. So the informational gain from waiting
is a function of the symmetric investment probability. The higher that
probability is, the higher is the informational gain from waiting. In a
symmetric equilibrium, all other players fix their symmetric investment
probability such that player i is indifferent between the two actions.
He randomizes between (1) investing today and thus surrendering the
option value, and (2) waiting. In a symmetric equilibrium, everybody
employs the same behavioral strategy. In the next period all agents who
have not invested update their beliefs about I from the random number
of investments in this period. It is obvious that information aggregation
is inefficient in such a setting. The authors also show that as the period
length increases, the possibility of herding disappears.

In Gale (1996) agents’ signals about the payoff of the identical
investment opportunities are drawn from a continuous distribution,
Si ∈ [−1, 1]. The payoff of each investment project is v = I−1∑I

i Si. Gale
(1996) considers only the two-agent case, I = 2. Given a common dis-
count factor δ, the agent with the higher signal is more impatient to invest
than the agent with the lower signal. The aim is to derive the threshold
level S̄ for the signal value required to motivate an agent to invest in
period 1. Whether the agent exercises his real option early depends on
the probability that he will regret in the next period that he has invested
early. An investor i who invests early regrets it if the other agent −i has
not invested and his posterior beliefs about the payoff are negative, that
is Si +E[S−i|S−i < S̄] < 0. The event that the other agent does not invest
occurs with probability Pr(Si < S̄). In equilibrium, an agent with signal
S̄ is indifferent between waiting and investing in the first period:

(1 − δ)S̄ = −δ Pr(Si < S̄) {S̄ + E[Si|Si < S̄]}.

There exists a unique equilibrium S̄ in which information is not fully
revealed and the outcome need not be efficient. For example, if both sig-
nals are 0 < Si < S̄ nobody will invest even though it would be socially
optimal. Another feature of the equilibrium is that the game ends after
two periods. If nobody invested in the first two periods, investment stops
forever, that is, an investment collapse can occur. Similar results carry
over to a more general setting with I agents.
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Endogenous Sequencing in Continuous Time,
Perfect Information Revelation, and Clustering
In contrast to Chamley and Gale (1994), in Gul and Lundholm (1995)
time is assumed to be continuous. In Bikhchandani, Hirshleifer, and
Welch (1992) and Banerjee (1992) agents (partially) ignore their own
information. This leads to inefficient information aggregation, and even
to information cascades. The timing decision of when to act as well
as when not to act improves the information aggregation in models
with endogenous sequencing. In Gul and Lundholm (1995), endogenous
sequencing leads to informationally efficient clustering. In their model
agents maximize a utility function which captures the trade-off between
the accuracy of a prediction and how early the prediction is made (wait-
ing costs). Each agent observes a signal Si ∈ [0, 1], which helps him to
forecast v = ∑I

i=1 Si. The authors show that the strategy of each player
can be fully described by a function ti(Si). The function ti(Si) reports
the latest possible time at which agent i with signal Si will make his
forecast given that the other players have not done so already. Since
ti(Si) is continuous and strictly decreasing, that is, ti(Si) is invertible,
the time when the first agent acts fully reveals his signal to the succeed-
ing decision maker. In a two-agent setting, the second agent will make
his prediction immediately afterwards. Whereas in the models with an
exogenous sequencing only the succeeding decision makers profit from
positive information externalities, in models with endogenous sequenc-
ing the first agent learns from the others as well. He learns from their
inaction. The first agent can partially infer the signals of his successors
by noticing that they have not acted before him. This biases his decision
towards the successor’s forthcoming decisions. Consequently, agents
tend to cluster, that is, their forecasts are closer together in a setting with
an endogenous sequencing than in a setting with exogenously ordered
forecast. Gul and Lundholm (1995) call this effect anticipation.4 There
is a second source of clustering called ordering. This occurs because (1)
agents with the most extreme signal realizations have higher waiting
costs and thus act first, and (2) the signals of predecessors are revealed
fully, whereas inaction of the successors only partially reveals their sig-
nals. More pronounced signals have a larger impact on the true value
v = ∑I

i=1 Si. Since more pronounced signals are fully revealed first,
while signals with lower impact are fully revealed later, forecasts are
“on average” closer together than in the case where the less pronounced
signals would be fully revealed first.

4Note the similarity to (descending) Dutch common value auctions.
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Signals with Different Precisions
The distinctive feature of Zhang’s (1997) model is that the precision
(quality) of the private signal, and not just its content, is private infor-
mation. His model incorporates higher-order uncertainty. The signal
is binary and reports with probability qi which of the two investment
projects is the good one. The quality (precision) of the signal is measured
by qi, where each qi is drawn from a continuous probability distribution
over [1

2 , q̄], with q̄ < 1. The realization of the signal as well as its quality
qi is only known to agent i. The agents’ action space at each point in
time is either to wait (which discounts the payoffs by δ) or to invest
either in investment project 1 or 2. As in Gul and Lundholm (1995),
time is assumed to be continuous.

Zhang (1997) derives a unique equilibrium in pure strategies in closed
form. The equilibrium exhibits an initial delay of action until the agent
with the highest precision (highest qi) invests. Given the binary invest-
ment choice and binary signal space, the second decision maker will
always ignore his signal since it is of worse quality. He will immedi-
ately mimic the first mover’s investment decision. Consequently, the
second agent’s investment choice carries no additional information and
therefore all other agents will immediately follow the first mover as
well. In summary, after a certain initial delay one can observe a sudden
onset of investment cascades. In contrast to Gul and Lundholm (1995),
the outcome is not informationally efficient since everybody’s invest-
ment decision depends only on the signal with the highest precision.
Moreover, the initial delay generates waiting costs, which is a source of
allocative inefficiency. As the number of agents increases, the per capita
efficiency loss is bounded away from zero. In this case, each player tends
to wait longer since it is more likely that someone has a more precise
signal and will invest before him.

Gale (1996) discusses the problems which arise in herding models
in continuous time. For a more detailed discussion of the “closure
problem” that arises see Harris, Stinchcombe, and Zame (1997).

5.3. Herding and Anti-herding in
Reputational Principal–Agent Models

In reputational herding models the first agent’s action affects the second
agent’s assessment about the state of the world (informational external-
ity) as well as his payoff structure (payoff externality). In reputational
principal–agent models which were initiated by Holmström (1999),
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there are different types of agents. For example, agents can be either
“smart,” that is, they receive signals with high precision, or “dumb,”
that is, they receive signals with low precision. The agent’s payoff
depends only on the principal’s evaluation, that is, the principal’s beliefs
about his type. Consequently, the agent does not care about the chosen
action per se; he only cares about it to the extent to which it affects the
principal’s evaluation.

These models are closely related to the cheap talk games à la Craw-
ford and Sobel (1982). In standard cheap talk games, the informed
agent sends a message to the receiver, that is, the principal. The prin-
cipal chooses his ex-post optimal action based on the agent’s message.
The principal’s equilibrium choice of action generally creates endoge-
nous signaling costs which allow equilibria with partial sorting. In other
words, although the agent does not bear a direct cost from signaling,
he cares about which message he sends since it affects the principal’s
action and also his payoff. The agent will only send a noisy signal to the
receiver if the preferences between the sender and the receiver are not
completely congruent.5

In reputational principal–agent models the principal, rather than tak-
ing the decision on his own, delegates the decision making process to the
agent. This is equivalent to a setting where the principal takes the action,
but commits himself to follow a specific action after observing a certain
signal. In other words, if the action is delegated to the agent, it need
not be ex-post optimal for the principal. The agent’s action does not
affect his payoff directly. However, it affects his payoff indirectly since
the principal reassesses the agent’s ability after observing his actions
and the realization of the physical state. In most herding models, the
principal can also observe the realization of investment profitability.
This is, however, not the case in the single manager setting assumed in
Holmström (1999) and Prendergast and Stole (1996).

5.3.1. Exogenous Sequencing

Scharfstein and Stein (1990) developed the first herding model in a rep-
utational principal–agent setting. In their model two risk neutral agents
(managers) invest sequentially in two identical investments projects. The
payoffs of investing in the project are {vH > 0, vL < 0} while noninvest-
ment yields zero return. Each agent receives a binary signal {Si

H, Si
L}

5 Brandenburger and Polak (1996) can also be viewed as a special form of cheap talk
game. Their paper will be discussed in Section 6.4.
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about the true liquidation value v ∈ {vH, vL} of the projects. The signal
depends not only on the true state of the world but also on the type of
the agent. Each manager is either smart or dumb. Neither the princi-
pal nor the agents themselves know their type. The signal structure in
Scharfstein and Stein (1990) satisfies the following conditions:

(1) Pr(SH|vH, smart) > Pr(SH|vL, smart);
(2) Pr(SH|vH, dumb) = Pr(SH|vL, dumb);
(3) Pr(SH|smart) = Pr(SH|dumb); and
(4) smart agents’ signals are (perfectly) correlated.

Condition (1) states that a smart agent gets the right signal with higher
probability, that is, their signal precision is higher. Condition (2) says
that dumb managers get a completely uninformative signal. Condition
(3) guarantees that the signal is purely about the investment project
and cannot be used by a single agent to improve his knowledge about
his type. Ottaviani and Sørensen (1999a) clarify the decisive role of
condition (3). Condition (4) states that if both agents are smart then
their forecast error is perfectly correlated.

Given these conditions, Scharfstein and Stein (1990) show that there
exists a separating equilibrium in which agent 1 invests if he receives
a high signal and does not otherwise. Condition (3) is sufficient (but
not necessary) to guarantee a separating equilibrium for agent 1. Thus,
agent 2 as well as the principal can perfectly infer agent 1’s signal from
his action. A separating equilibrium for agent 2 would also exist if
instead of condition (4) the signals for both agents are conditionally
independent, that is, their forecast errors are independent. In this case
no herding would occur and the first best outcome would prevail. In
the first best outcome, agent 2 makes use of the information which he
inferred from agent 1’s action, but he does not ignore his own signal as
in the herding outcome.

Herding in reputational principal–agents models can occur for two
reasons: (a) due to endogenous payoff externalities if error terms of the
agents’ signals are correlated, and/or (b) due to information externali-
ties by relaxing condition (3) as highlighted by Ottaviani and Sørensen
(1999a).

Payoff Externalities due to Correlated Error Terms
In Scharfstein and Stein (1990) the agent’s error terms are perfectly cor-
related. Agent 2 cares only about his reputation with respect to the
principal. That is, he wants to appear to be smart. The principal’s
updating rule about agent 2’s type becomes a function of agent 1’s
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investment decision if their signals are conditionally correlated. In other
words, agent 1’s decision causes a payoff externality for agent 2 via
the principal’s beliefs. Scharfstein and Stein (1990) show that a sepa-
rating equilibrium does not exist and agent 2 always employs a herding
(pooling) strategy in equilibrium given out-of-equilibrium beliefs which
satisfy the intuitive criterion of Cho and Kreps (1987). The intuition is
the following. Since smart agents’ private information is positively cor-
related, smart agents have a tendency to choose the same investment
projects. That would not be the case for dumb agents if they fol-
lowed their (independently distributed) private signal. Agents, therefore,
deduce that by choosing the same action they can “look smart,” which
provides an incentive to ignore private information and imitate agent
1’s action. Graham (1999) relaxes the perfect correlation assumption
(4) to any positive correlation and derives qualitatively similar results.

Information Externalities when Agents (Partially) Know their Type
Ottaviani and Sørensen (1999a) show that both agents might also herd
even if their signals are conditionally independent provided (a) one
relaxes condition (3) and/or (b) one introduces a more general signal
structure. In this case, agents might also herd due to informational
externalities.

If condition (3) is relaxed, the one-dimensional signal provides agents
information about the profitability of the investment project and also
about their own type. As this signal becomes more and more informa-
tive about the agent’s type, uninformative herding à la Bikhchandani,
Hirshleifer, and Welch (1992) prevails. This occurs because the agents
receive a separate signal about their type. Thus, the cheap talk (signaling)
problem is two-dimensional.

Instead of relaxing condition (3), agents could also receive an addi-
tional signal about their type. In Trueman (1994) the agents know
their type with certainty, whereas in Avery and Chevalier (1999) agents
receive only a noisy signal about their type. Avery and Chevalier (1999)
stick with the four conditions in Scharfstein and Stein (1990). Depend-
ing on the precision of the private “type” signal, there are three possible
outcomes: (1) If the agents know relatively little about their type, the
herding equilibrium à la Scharfstein and Stein (1990) arises. (2) For
more precise “type” signals there exists an efficient equilibrium. In the
efficient equilibrium agent 1 always follows his signal. Agent 2’s action
depends on his “type” signal. He follows his signal if he has received a
high “type” signal and he imitates agent 1’s actions if he has received
a low “type” signal. In other words, only managers with a high “type”
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signal contradict the first managers’ action. (3) If the “type” signal is
sufficiently precise only an anti-herding (signaling) equilibrium exists.
In this equilibrium, if agent 2 has a high “type” signal, he follows his
signal. Conversely, if agent 2 has a low “type” signal he follows a mixed
strategy between following his own signal and contradicting agent 1’s
action. It pays off for the “low” type agent to sometimes contradict agent
1’s action since it makes him look smart in the (less likely) event that
agent 1 was wrong. This equilibrium is only semi-separating because
agent 1’s actions only partly reveals his type.

In Trueman (1994) the agents know their types perfectly. This model
analyzes herding among analysts who forecast the earnings of a com-
pany. Earnings can take on one of four values. They can be extremely
negative, slightly negative, slightly positive, or extremely positive. The
common prior distribution is symmetric around the mean zero where
the more extreme outcomes are less likely. The prior probability for
each of the moderate outcomes is 1

4 < π < 1
2 . Analysts receive a private

signal about the forthcoming earnings. The signal allows each analyst
to distinguish between whether the earning will be negative or positive.
However, they do not know with certainty the exact earnings, that is,
whether earnings are moderate or extremely high/low. As far as the
exact amount of earnings is concerned, the signals of “dumb” analysts
only have precision qdumb > 1

2 , whereas the signals of “smart” analysts
have precision qsmart > qdumb. Each analyst’s posterior is in between the
moderate and extreme outcome. A high type (smart) analyst puts more
weight on his signal whereas the posterior of a low type (dumb) analyst
relies more on the prior.

Trueman (1994) first analyzes the case of simultaneous forecasts by
the two analysts. Given the principal’s beliefs that any other forecast
different from a possible “truthful” analyst’s posterior makes you look
“dumb,” every analyst will choose one of the possible truthful poste-
riors. In equilibrium the forecast of “smart” analysts always coincides
with their true posterior. “Dumb” analysts do not forecast their true pos-
terior since it would immediately reveal their type. If they receive a mod-
erate signal, they forecast the posterior that a “smart” analyst would
make with the same signal. Although they put too much emphasis on the
signal, it is in line with the prior which also tends towards the moderate
outcome. On the other hand, “dumb” analysts apply a mixed strategy
if their signal indicates an extreme outcome. With a certain probability
they forecast the posterior that a “smart” analyst would draw with the
same extreme signal, that is, they put a lot of weight on the signal and
less weight on the prior. To compensate for this the agents also forecast,
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with a certain probability, the posterior a “smart” agent would draw
given a moderate signal. The randomization and, thus, the beliefs of the
principal must be such that the “dumb” investors are indifferent between
both of these forecasts. As the prior distribution becomes more skewed
towards the moderate outcomes, “dumb” agents increase the probabil-
ity of contradicting their extreme signals and following their prior.

In a scenario where both agents release their forecast sequentially,
the equilibrium strategy for the first analyst is the same as in the
simultaneous forecast scenario. This is due to the fact that the two
analysts’ forecast are independent conditional on realized earnings and
the principal evaluates both analysts only after the earnings announce-
ment. However, the second analyst’s strategy changes since he learns
something from the first announcement. In other words, the second
forecaster’s de facto priors are affected by the first announcement. If the
second analyst is “smart,” he never engages in herding behavior and
he follows his own signal. If he is “dumb” and he receives a moder-
ate signal, he still follows his signal. However, if the second forecaster
observes an extreme signal, the probabilities of his mixed strategy are
affected by the first agent’s forecast. In the case where the first agent
announces an extreme outcome, the second analyst’s “de facto” priors
are more inclined towards an extreme outcome and, thus, he follows his
extreme signal with a higher probability. If the first analyst announces
a moderate signal, the second analyst follows the first analyst with a
higher probability. In other words, both forecasts are more correlated
compared to the simultaneous forecast scenario. This is driven by the
informational externality of the first analyst’s forecast. However, com-
pared to the efficient outcome, the weak second analyst does not take
the information externality fully into account. Since the first analyst had
in expectations a more precise signal, the second analyst should always
follow his forecast. However, he contradicts the first analyst with a
certain probability in order to look smart, that is, he anti-herds.

Herding on Own Earlier Decisions
In Prendergast and Stole (1996) the same individual makes a decision in
each period. He receives a signal in each period and he perfectly knows
his type. As in Holmström (1999) the principal can evaluate the type of
the agent only based on the agent’s decision since he does not observe
the realized return. This is in contrast to the papers described earlier.
The assumed agent’s payoff in Prendergast and Stole (1996) is a linear
combination of his reputation as well as of the actual outcome of his deci-
sion. The equilibrium separates low-type agents from high-type agents
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but involves distortions in order to satisfy the incentive compatibility
constraints. Talented (high-type) managers with more precise signals
follow their signals to a larger extent and put less weight on their priors.
Therefore, in the beginning their decisions will be more variable than
the decision the low-type managers would recommend. After a certain
number of decisions, high-type managers trust their early estimate and
new signals become less and less informative. Low-type managers also
want to appear talented and thus mimic the talented managers. In the
beginning they exaggerate their own information, that is, they act over-
confidently. Although later signals still have high informational value
for less talented managers, they are reluctant to update their early deci-
sions in order to appear as talented. In other words, they herd on their
early decisions and become conservative. The fact that they overreacted
on their early signals makes their outcome even worse. The tendency
not to revise early decisions explains the famous sunk cost fallacy. A
similar outcome as in Prendergast and Stole (1996) might also arise in
a moral hazard setting where managers pretend to experiment in the
initial periods in order to collect information.

Reputational Herding due to Noncontinuous Payoff Schemes
In Zwiebel (1995) herding due to reputational effects is driven by nonlin-
earities induced by the possibility of being fired. In his model managers
know their type. Some managers have the option to go for a stochasti-
cally dominating action instead of the less profitable “standard action.”
The “standard action” has a lower expected return. However, it allows
the principal to better evaluate the manager’s type. As in Holmström and
Ricart I Costa (1986) a benchmark about the investment’s returns helps
the principal evaluate the manager’s type. The benchmark for the “stan-
dard action” is more accurate to evaluate the manager’s type. Zwiebel
(1995) shows that agents whose type is below a certain threshold choose
the “nonstandard action” and thus take on additional personal risk.
They gamble on resurrection. Those managers who are above the thresh-
old become too risk averse (conservative) and they opt for the inefficient
standard action. Very good managers take on the more profitable project
since they do not have to worry too much about being mistaken for a
bad manager.

5.3.2. Endogenous Sequencing

To my knowledge there are no papers examining reputational herding
models in a setting where the agents are free to choose when to act. It
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is, however, easy to see that the delegation and enumeration of agents
according to their reputation might alleviate the strategic delay problem
discussed in Section 5.2.2. For example in Zhang (1997) the decision
makers wait too long in the hope that they can profit from the positive
informational externality of potential predecessors. On the other hand,
if agents cared not only about the decision itself but also about their
reputation, acting fast might also be beneficial. Moving early might
signal that the agent received a very precise signal, that is, that he is a
“smart” agent.



6

Herding in Finance, Stock Market Crashes,
Frenzies, and Bank Runs

The last chapter illustrated herding and informational cascades in a gen-
eral context. This chapter shows that herding can also arise in financial
markets and describes how herding behavior can be used to explain
interesting empirical observations in finance. For example, herding can
result in stock market crashes and frenzies in auctions. The stock mar-
ket might still be rising prior to a crash if bad news is hidden and not
reflected in the price. A triggering event can reveal this hidden news
and lead to a stock market crash. Crashes and frenzies in auctions are
described in greater detail in Section 6.1.3.

Another example is the use of investigative herding models to show
that traders have a strong incentive to gather the same short-run infor-
mation. Trading based only on short-run information guarantees that
the information is reflected in the price early enough before traders
unwind their acquired positions. Section 6.2 illustrates the different
reasons why traders might want to unwind their positions early and
highlights the limits of arbitrage. It also throws new light on Keynes’
comparison of the stock market with a beauty contest.

This short-run focus of investors not only affects the stock price but
can also potentially affect corporate decision making. In Section 6.3
we cover two models which show that if investors focus on the short-
run, and if corporate managers care about the stock market value, then
corporate decision making also becomes short-sighted.

Finally, bank run models are closely linked to herding models. Sem-
inal bank run papers are presented in Section 6.4. While the early
papers did not appeal to herding models directly, this connection is
explicitly drawn in the more recent research on bank runs. Insights
from the bank run literature can also help us get a better under-
standing of international financial crises. For example, the financial
crisis in Southeast Asia in the late 1990s is often viewed as a big
bank run.
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6.1. Stock Market Crashes

A stock market crash is a significant drop in asset prices. A crash often
occurs even when there is no major news event. After each stock market
crash, the popular literature has rushed to find a culprit. The introduc-
tion of stop loss orders combined with margin calls and forced sales
caused by the decline in value of assets that served as collateral were
considered to be possible causes for the crash of 1929. Early writings
after the stock market crash of 1987 attributed the crash exclusively to
dynamic portfolio insurance trading. A dynamic portfolio trading strat-
egy, also called program trading, allows investors to replicate the payoff
of derivatives. This strategy was often used to synthesize a call option
payoff structure which provides an insurance against downward move-
ments of the stock price. In order to dynamically replicate a call option
payoff, one has to buy stocks when the price increases and sell shares
when the price declines. Stop loss orders, sales triggered by the fall of
value of collateral, and dynamic trading strategies were obvious candi-
dates to blame for the 1929 and 1987 crashes, respectively, since they
did not obey the law of demand and were thus believed to destabilize
the market. Day traders who trade over the internet are the most likely
candidates to be blamed for the next stock market crash.

Pointing fingers is easy, but more explicit theoretical models are
required to fully understand the mechanism via which a stock market
crash occurs. A good understanding of these mechanisms may provide
some indication of how crashes can be avoided in the future. The chal-
lenge is to explain sharp price drops triggered by relatively unimportant
news events. Theoretical models which explain crashes can be grouped
into four categories:

(1) liquidity shortage models;
(2) multiple equilibria and sunspot models;
(3) bursting bubble models; and
(4) lumpy information aggregation models.

Each of these class of models can explain crashes even when all agents
act rationally. However, they differ in their prediction of the price path
after the stock market crash. Depending on the model, the crash can
be a correction and the stock market can remain low for a substantial
amount of time or it can immediately bounce back.

The first class of models argues that the decline in prices can be due to a
temporary liquidity shortage. The market dries up when nobody is will-
ing to buy stocks at a certain point in time. This can be due to unexpected
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selling pressure by program traders. These sales might be mistakenly
interpreted as sales driven by bad news. This leads to a large price
decline. In this setting, asymmetric information about the trading motive
is crucial for generating a stock market crash. The model by Grossman
(1988) described in the next section illustrates the informational dif-
ference between traded securities and dynamic trading strategies that
replicate the payoff of derivatives. Crashes which are purely driven by
liquidity shortage are of a temporary nature. In other words, if the price
drop was caused by liquidity problems, one would expect a fast recovery
of the stock market.

The second class of models shows that large price drops that cannot be
attributed to significant news events related to the fundamental value of
an asset may be triggered by sunspots. A sunspot is an extrinsic event,
that is, a public announcement which contains no information about
the underlying economy. Nevertheless, sunspots can affect the economic
outcome since agents use them as a coordination device and, thus, they
influence agents’ beliefs. The economy might have multiple equilibria
and the appearance of a sunspot might indicate a shift from the high
asset price equilibrium to an equilibrium with lower prices. This leads
to a large change in the fundamental value of the asset. This area of
research was discussed earlier in Section 2.3 and will only be partly
touched upon in this section. Note that all movement between multiple
equilibria need not be associated with sunspots. Gennotte and Leland
(1990) provide an example of a crash that arises even in the absence
of sunspots. In their model there are multiple equilibria for a range of
parameter values. The price drop in Gennotte and Leland (1990) is not
caused by a sunspot. As the parameter values change slightly, the high-
price equilibrium vanishes and the economy jumps discontinuously to
the low-price equilibrium. This model will be described in detail in the
next section.

The third class of models attributes crashes to bursting bubbles. In
contrast to models with multiple equilibria or sunspot models, a crash
which is caused by a bursting bubble may occur even when the funda-
mental value of the asset does not change. In this setting, there is an
excessive asset price increase prior to the crash. The asset price exceeds
its fundamental value and this is mutually known by all market partici-
pants, yet it is not common knowledge among them. Each trader thinks
that the other traders do not know that the asset is overpriced. Therefore,
each trader believes that he can sell the risky asset at a higher – even more
unrealistic – price to somebody else. At one point the bubble has to burst
and the prices plummet. A crash due to a bursting bubble is a correction
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and one would not expect prices to rebound after the crash. Although
bursting bubbles provide a very plausible explanation for crashes, bub-
bles are hard to explain in theoretical models without introducing
asymmetric information or boundedly rational behavior. The possibility
of bubbles under asymmetric information is the focus of Section 2.3 of
this survey and is therefore not discussed again in this section.

A sharp price drop in theoretical models can also occur even when no
bubble exists. That is, it is not mutual knowledge that the asset price
is too high. Often traders do not know that the asset is overpriced, but
an additional price observation combined with the knowledge of the
past price path makes them suddenly aware of the mispricing. Mod-
els involving this lumpy information aggregation are closely related
to herding models. The economy might be in a partial informational
cascade until the cascade is shattered by a small event. This event
triggers an information revelation combined with a significant price
drop. Section 6.1.2 illustrates the close link between herding models
with exogenous sequencing and sequential trading models. Frenzies in
descending multi-unit Dutch auctions – as covered in Section 6.1.3 – are
closely related to herding outcomes in models with endogenous sequenc-
ing. The difference between these trading models and pure herding
models is that herding is not only due to informational externalities.
In most settings, the predecessor’s action causes both an informa-
tional externality as well as a payoff externality. A stock market crash
caused by lumpy informational aggregation is often preceded by a steady
increase in prices. The crash itself corrects this mispricing and, hence,
one does not expect a fast recovery of the stock market.

The formal analysis of crashes that follows can be conducted using dif-
ferent model setups. We first look at competitive REE models before we
examine sequential trade models. We illustrate how temporary liquidity
shortage, dynamic portfolio insurance, and lumpy information revela-
tion by prices can explain crashes. The discussion of these models sheds
light on the important role of asymmetric information in understanding
stock market crashes.

6.1.1. Crashes in Competitive REE Models

In a competitive REE model, many traders simultaneously submit
orders. They take prices as given and can trade any quantity of shares
in each trading round. In this setting, crashes can occur because of tem-
porary liquidity shortage, multiple equilibria due to portfolio insurance
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trading, and sudden information revelation by prices. We begin by look-
ing at Grossman’s (1988) model where program trading can lead to
temporary liquidity shortage.

Temporary Liquidity Shortage and Portfolio Insurance Trading
Grossman (1988) was written before the stock market crash in
October 1987. In his model poor information about hedging demand
leads to a large price decline. The original focus of the paper was
to highlight the informational difference between traded options and
synthesized options. Its main conclusion is that derivative securities
are not redundant, even when their payoffs can be replicated with
dynamic trading strategies. This is because the price of a traded deriva-
tive reveals information, whereas a synthesized option does not.1 In a
world where investors have asymmetric information about the volatil-
ity of the underlying stock price, the price of a traded option provides
valuable information about the underlying asset’s future volatility. The
equilibrium price path and the volatility of a risky asset are driven by
news announcements about its liquidation value as well as by investors’
risk aversion.

In Grossman (1988) there are three periods, t = 1, 2, 3. There are
public announcements about the value of the stock in period t = 2 and
in t = 3. After the second announcement in t = 3, every investor knows
the final liquidation value of the stock. Each public announcement can
be either good or bad, that is Spublic

t ∈ {g, b}, where t = 1, 2. Conse-
quently, the price in t = 3 can take on one of four values: P3bb, if both
signals are bad; P3bg, if the public announcement in t = 2 is good but
the one in t = 3 is bad, P3gb, or P3gg. The price in t = 2, P2g or P2b,
depends on the investors’ risk aversion. In this model, there is a fraction
f of investors whose risk aversion increases significantly as their wealth
declines. These investors are only willing to hold a risky asset as long
as their wealth does not fall below a certain threshold. As the price of
the stock declines due to a bad news announcement in t = 2, and with
it the value of their portfolio, investors become much more risk averse
and less willing to hold risky stocks. They would only be willing to hold
the stock in their portfolio if the expected rate of return, (P3 − P2)/P2,
is much higher. This can only be achieved if the price in t = 2 drops
drastically. Given their risk aversion, these traders want to insure them-
selves against this price decline in advance. Thus, they would like to

1 Section 2.2.2 discusses the informational difference between traded securities and
trading strategies at a more abstract level.
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hold a position which exhibits a call option feature. To achieve this they
can either buy additional put options in t = 1 or alternatively they can
employ a dynamic hedging strategy which replicates the call option pay-
off structure. This dynamic trading strategy requires the investor to sell
stocks when the price is falling in t = 2 and buy stocks when it is rising.
These sales lead to an even larger price decline. The larger the fraction
f of investors with decreasing risk aversion, the larger the number of
traders who either follow this dynamic trading strategy or buy a put
option. Thus, the volatility of the stock price in t = 2 increases as f
increases.

To counteract this large price decline, there are also less risk averse
market timers who are willing to bear part of this risk and provide
liquidity at a much lower expected rate of return. These market timers
can only provide liquidity to the extent that they have not committed
their funds in other investment projects in t = 1. Market timers have to
decide in t = 1 how much capital M to set aside to profitably smooth
out temporary price movements. The amount of capital M that market
timers put aside in t = 1 depends on their expectations about market
volatility, that is, on the expected fraction f of risk averse investors who
might insure themselves with dynamic hedging strategies or by buying
put options.

Grossman (1988) compares three scenarios:
1. If the extent of adoption of dynamic hedging strategies f is known

to everybody in t = 1, then market timers reserve funds in t = 1 for
market interventions in t = 2. They will do so as long as this interven-
tion is more profitable than using these funds for other purposes. Their
activity stabilizes the market and reduces the price volatility in t = 2.

2. If the extent of dynamic hedging strategies f is not known in t = 1,
but put options are traded in t = 1, the price of the put option reveals
the expected volatility in t = 2. The price of the put option in t = 1
might even fully reveal f . It provides the market timers with valuable
information about how much money M to put aside. Market timers
stabilize the market as in the case where f is directly observable. Note
that it is only required that a liquid option market exists which reveals
information about the volatility of the underlying stock. Intermediaries
who write put options can hedge their position with dynamic trading
strategies.

3. If the extent of hedging strategies f in the market is not known
and not revealed by an option price, the market timers face uncertainty
about the profitability of their price smoothing activity in t = 2. If
they underestimate the degree of dynamic hedging activity, they do not
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have enough funds in t = 2 to exploit the high price volatility. This
makes the prices much more volatile and might explain stock market
crashes. After a slightly negative news announcement in t = 2, the price
drops dramatically since all dynamic hedgers become much more risk
averse and sell their stocks. Market timers also do not have enough
funds in reserve to exploit this cheap buying opportunity. The market
only bounces back later when the market timers can free up money from
other investment projects and provide liquidity. In Grossman (1988) the
market price bounces back in t = 3 as all uncertainty is resolved in that
period.

Note that as long as the put option price reveals f , the put option
payoff can be replicated with dynamic trading strategies. However, if all
traders switch to dynamic hedging strategies, the option market breaks
down and thus f is not revealed to the traders. In this case the volatility
of the underlying stock is not known. This makes an exact replication
of the option payoff impossible.

Large price movements in Grossman (1988) are due to a lack of liq-
uidity provision by market timers, who underestimate the extent of
sales due to portfolio insurance trading. In this model, traders do not
try to infer any information about the value of the underlying stock
from its price. It is arguable whether dynamic hedging demand alone
can trigger a price drop of over 20 percent as experienced in Octo-
ber 1987. Portfolio insurance trading covered only $60–90 million in
assets, which represents only 2–3 percent of the outstanding equity mar-
ket in the US. Although sales by portfolio insurers were considerable,
they did not exceed more than 15 percent of total trading volume.
Contrary to the experience of recent shocks, Grossman’s model also
predicts that the price would rebound immediately after the temporary
liquidity shortage is overcome. Therefore, this model might better cap-
ture the “almost crash” caused by the Long Term Capital Management
(LTCM) crisis during the fall of 1998 than the more long-lived crash
of 1987.

Multiple Equilibria in a Static REE
While the stock market crashes in Grossman (1988) because market
timers who have not put enough money aside cannot submit orders
after a price drop due to sales by program trades, in Gennotte and
Leland (1990) the market crashes because some other market partic-
ipants incorrectly interpret this price drop as a bad signal about the
fundamental value of the stock. In the latter model, traders hold asym-
metric information about the value of the stock and, thus, the price of
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the underlying stock is also a signal about its fundamental liquidation
value. Consequently, even these other market participants start selling
their shares. Combining asymmetric information about the fundamental
value of the stock with uncertainty about the extent of dynamic hedging
strategies can lead to a larger decline in price in t = 2. The reason is
that the traders wrongly attribute the price drop to a low fundamen-
tal value rather than to liquidity shortage. They might think that many
other traders are selling because they received bad information about
the fundamental value of the stock, while actually many sell orders are
triggered by portfolio insurance trading.

Gennotte and Leland (1990) employ a static model even though stock
market crashes or price changes occur over time. As the parameters
change over time, the price equilibrium changes. The repetition of a
static model can often be considered as a sufficient representation of a
dynamic setting. Thus, comparative static results with respect to some
parameters in a static model can be viewed as dynamic changes over
time. A stock market crash – defined as a large price movement trig-
gered by a small news announcement – occurs if a small change in the
underlying information parameter causes a discontinuous drop in the
equilibrium price.

The authors model this discontinuity in a static REE limit order model
à la Hellwig (1980) with two different kinds of informed traders:2

(1) (value-)informed traders, who each receives an idiosyncratic indi-
vidual signal Si = v + εi about the liquidation value v ∼ N (μv, σ 2

v );
(2) (supply-)informed traders, who know better whether the limit order

book is due to informed trading or uninformed noise trading.

Supply-informed traders can infer more information from the equi-
librium price P1. The aggregate supply in the limit order book is given
by the normally distributed random variable u = ū + uS + uL. That is,
u is divided into the part ū which is known to everybody, uS which is
only known to the supply-informed traders, and the liquidity supply uL
which is not known to anybody. The individual value-informed trader’s
demand is, as usual, given by

xi = E[v|Si, P1] − P1

ρ Var[v|Si, P1]
.

2 To facilitate comparison across papers, I have adjusted the notation to Si = p′
i,

v = p, μv = p̄, σ 2
v = �, p1 = p0, u = m, uL = L, uS = S.
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Similarly, the supply-informed trader’s demand is given by

xj = E[v|uS, P1] − P1

ρ Var[v|uS, P1]
.

In addition to the informed traders’ demand, there is an exogenous
demand from portfolio traders who use dynamic trading strategies.
Their demand π(P1) rises as the price increases and declines as the
price falls.

As long as π(P1) is linear and common knowledge, the equilibrium
price P1 = f (v − μv − k1uL − k2uS) is a linear function with con-
stants k1 and k2. In this linear case, the price P1 is normally distributed.
For nonlinear hedging demands π(P1), the argument of the price func-
tion, f −1(P1), is still normally distributed and, therefore, the standard
technique for deriving conditional expectations for normally distributed
random variables can still be used. Discontinuity in f (·)makes “crashes”
possible, that is, a small change in the argument of f (·) leads to a large
price shift. f (·) is linear and continuous in the absence of any program
trading, π(P1) = 0. This rules out crashes.

Nevertheless, even for π(P1) = 0 an increase in the supply can lead
to a large price shift. Gennotte and Leland (1990) derive elasticities
measuring the percentage change in the price relative to the percentage
change in supply. This price elasticity depends crucially on how well a
supply shift can be observed. The price change is small if the change in
supply is common knowledge, that is, the supply change is caused by a
shift in ū. If the supply shift is only observed by supply-informed traders,
the price change is still moderate. This occurs because price-informed
and supply-informed traders take on a big part of this additional supply
even if the fraction of informed traders is small. Supply-informed traders
know that the additional excess supply does not result from different
price signals while price-informed traders can partially infer this from
their signal. If, on the other hand, the additional supply is not observable
to anybody, a small increase in the liquidity supply uL can have a large
impact on the price. In this case, traders are reluctant to counteract the
increase in liquidity supply uL by buying stocks since they cannot rule
out the possibility that the low price is due to bad information that other
traders might have received. Regardless of whether the supply shift is
known to everyone, someone, or no one, the equilibrium price is still a
linear continuous function of the fundamentals and thus no crash occurs.

By adding program trading demand, the price P1 becomes even more
volatile since π(P1) is an increasing function. Dynamic hedgers buy
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stocks when the price increases and sell stocks when the price declines.
This violates the law of demand. As long as π(P1) is linear, P1 = f (·)
is continuous and linear. Crashes only occur when the program trading
is large enough to cause a discontinuous price correspondence f (·). The
discontinuity stems from the nonlinearity of program trading π(P1) and
the lack of knowledge of the amount of program trading π(P1). Crashes
are much more likely and prices are more volatile if some investors
underestimate the supply due to program trading. Gennotte and Leland
(1990) illustrate their point by means of an example of a put-replicating
hedging strategy (synthetic put). In this example, the excess demand
curve is downward sloping as long as all traders or at least the supply
informed traders know the level of program trading demand. In the case
where hedging demand is totally unobserved, the demand curve looks
like an “inverted S.” There are multiple equilibria for a certain range of
aggregate supply.3 The aggregate supply can be depicted as a vertical
line. Thus as the aggregate supply shifts, the equilibrium with the high
asset price vanishes and the asset price discontinuously falls to a lower
equilibrium level. This is illustrated in Figure 6.1.

Gennotte and Leland’s (1990) explanation of a stock market crash
provides a different answer to the question of whether the market will
bounce back after the crash. In contrast to Grossman (1988), the price
can remain at this lower level even when the supply returns to its old

×

×
Demand

Price

Quantity

Supply shift

Figure 6.1. Price crash in a multiple equilibrium setting

3 In this range, crashes can also be generated by sunspots. A different realization of
the sunspot might induce traders to coordinate in the low-price equilibrium instead of
the high-price equilibrium.
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level. The economy stays in a different equilibrium with a lower asset
price.

The reason why uninformed portfolio trading has a larger impact in
Gennotte and Leland (1990) than in Grossman (1988) is that it affects
other investors’ trading activities as well. Asymmetric information about
the asset’s fundamental value is a crucial element of the former model.
Program trading can lead to an “inverted S”-shaped excess demand
curve. As a consequence, there are multiple equilibria in a certain range
of parameters and the price drops discontinuously as the underlying
parameter values of the economy change only slightly. It is, however,
questionable whether this discontinuity in the static setup would also
arise in a fully fledged dynamic model. In a dynamic model, traders
would take into account the fact that a possible small parameter change
can lead to a large price drop. Therefore, traders would already start
selling their shares before the critical parameter values are reached. This
behavior might smooth out the transition and the dynamic equilibrium
will not necessarily exhibit the same discontinuity.

Delayed Sudden Information Revelation in a Dynamic REE
Romer (1993) illustrates a drastic price drop in a dynamic two-period
model. In this model, a crash can occur in the second period since the
price in the second trading round leads to a sudden revelation of infor-
mation. It is assumed that traders do not know the other traders’ signal
quality. The price in the first trading round cannot reveal both the aver-
age signal about the value of the stock as well as precision of the signals,
that is higher-order uncertainty. In the second trading round, a small
commonly known supply shift leads to a different price which partially
reveals higher-order information. This can lead to large price shocks
and stock market crashes.

In Romer (1993) each investor receives one of three possible signals
about the liquidation value of the single risky asset, v ∼ N (μv, σ 2

v ):
4

Sj = v + εSj ,

where εS2 = εS1 + δ2, εS3 = εS2 + δ3 and εS1 , δ2, δ3 are independently
distributed with mean of zero and variance σ 2

εS1
, σ 2

δ2 , σ 2
δ3 , respectively.

Thus, Sj is a sufficient statistic for Sj+1. There are two equally likely states
of the world for the signal distribution. Either half of the traders receive

4 The notation in the original article is: v = α, Sj = sj,μv = μ, σ 2
v = Vα, u1 =

Q,μu1 = Q̄, σ 2
u1

= VQ.
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signal S1 and the other half receive signal S2 or half of the traders receive
signal S2 and the other half receive signal S3. It is obvious that traders
who receive signal S1 (or S3) can infer the relevant signal distribution
since each investor knows the precision of his own signal. Only traders
who receive signal S2 do not know whether the other half of the traders
have received the more precise signal S1 or the less precise signal S3.
As usual, the random supply in period 1 is given by the independently
distributed random variable u1 ∼ N (μu1 , σ 2

u1
).5

The stock holdings in equilibrium of S1-traders, x1(S1), can be directly
derived using the projection theorem. S1-traders do not make any infer-
ence from the price since they know that their information is sufficient
for any other signal. Traders with S3-signals face a more complex prob-
lem. They know the signal distribution precisely but they also know that
they have the worst information. In addition to their signal S3, they try
to infer signal S2 from the price P1. The equilibrium price in t = 1, P1,
is determined by x2(S2, P1) + x3(S3, P1) = u1 (assuming a unit mass of
each type of investor). Since an S3 trader knows x2(·), x3(·), and the
joint distribution of S2, S3, and u1, he can derive the distribution of S2

conditional on S3 and P1. Since x2(S2, P1) is not linear in S2, x3(S3, P1)

is also nonlinear. S2-investors do not know the signal precision of the
other traders. Therefore, the Var[P1|S2] depends on the higher-order
information, that is, on whether the other half of the traders are S1- or
S3-investors. S2-traders use P1 to predict more precisely the true signal
distribution, that is, to predict the information quality of other traders.
If they observe an extreme price P1, then it is more likely that other
investors received signal S3. On the other hand, if P1 is close to the
expected price given their own signal S2, then it is more likely that the
others are S1-traders. S2-investors’ demand functions x2(S2, P1) are not
linear in P1 since P1 changes not only the expectations about v, but also
its variance. This nonlinearity forces Romer (1993) to restrict his anal-
ysis to a numerical example. His simulation shows that S2-investors’
demand functions are very responsive to price changes.

Romer’s (1993) key insight is that a small shift in aggregate supply in
period t = 2 induces a price change which allows the S2-investors to infer
the precision of the other traders’ signals. A small supply change leads
to the revelation of “old” information which has a significant impact

5 Even without the random supply term u1, the REE is not (strong form) informa-
tionally efficient since a single price cannot reveal two facts, the signal and the signal’s
quality. The structure is similar to the partially revealing REE analysis in Ausubel (1990).
However, if there is no noisy supply, the no-trade theorem applies.
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on prices. Note that in contrast to Grundy and McNichols (1989), dis-
cussed in Section 4.1.2, the supply shift in period t = 2 is common
knowledge among all traders. An uncertain supply shift would prevent
S2-investors from learning the type of the other investors with certainty.
Romer (1993) uses this insight to explain the October 1987 market
meltdown.

In his model the stock market crash in t = 2 is a price correction.
The revelation of information through P2 makes investors aware of
the early mispricing. Therefore, in contrast to Grossman (1988) but
in line with Gennotte and Leland (1990), this model does not predict
any rebounding of the price after the stock price.

In Section II of his paper, Romer (1993) develops an alternative model
to explain stock market crashes. In this model, informed traders trade
at most once. They can trade immediately if they pay a fee. Else, they
can save the fee and but then their trade will be executed at a random
time or not at all. This model is closer in spirit to the sequential trade
models that are covered in the next section.

Modeling crashes within a dynamic REE setup gets complex very
quickly. Even the analysis in Romers’ (1993) two-period REE setup is
restricted to numerical simulations. One needs models which cover a
longer time horizon to really understand the dynamics of stock mar-
ket crashes. The more simplistic sequential trade models provide one
possible framework for a dynamic analysis.

6.1.2. Crashes in Sequential Trade Models

Sequential trade models are more tractable and, thus, allow us to focus
on the dynamic aspects of crashes. The literature based on sequential
trade models also analyzes the role of portfolio insurance trading and
stresses the importance of asymmetric information to explain crashes.

The economic insights of the herding literature provide a basis for
understanding stock market crashes. An informational cascade or a par-
tial informational cascade can arise in trading models. If the market is
in a partial cascade, the actions of predecessors need not lead to a price
change for a long time. Eventually, a fragile partial cascade might burst
and cause a significant price change. This is in contrast to a full infor-
mation cascade which never bursts. Using Lee’s (1998) terminology, an
informational avalanche occurs when a partial cascade bursts.

Sequential trade models à la Glosten and Milgrom (1985) and herding
models à la Bikhchandani, Hirshleifer, and Welch (1992) share some
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common features:

1. Traders can only buy or sell a fixed number of shares. Their action
space is, therefore, discrete.

2. Agents also trade one after the other.

This replicates an exogenous sequencing model where the timing of
agents’ trade is exogeneously specified. In descending Dutch auctions,
traders can decide when to trade and thus they are closely related in
spirit to herding models with endogenous sequencing. The latter class
of models is discussed in the next section.

Portfolio Insurance Trading in Sequential Trade Models
As in Gennotte and Leland (1990), Jacklin, Kleidon, and Pfleiderer
(1992) attribute the stock market crash in 1987 to imperfect informa-
tion aggregation caused by an underestimation of the extent of dynamic
portfolio insurance trading. The authors reach this conclusion after
introducing dynamic program trading strategies in the sequential trade
model of Glosten and Milgrom (1985). The market maker sets a com-
petitive bid and ask price at the beginning of each trading round. Given
this price schedule, a single trader has the opportunity to buy or sell a
fixed number x of shares or to not trade at all. The probability that an
informed trader trades in this period is μ. This trader knows the final
liquidation value of the stock v ∈ {vL, vM, vH}. An informed trader buys
(sells) the stock when its value stock v is higher (lower) than the ask
(bid) price and does not trade at all if v is between the bid and ask price.
An uninformed trader trades in this period with probability (1 − μ).
Uninformed traders are either dynamic hedgers or liquidity traders. The
fraction of dynamic hedgers θ is not known and can be either θH or θL.
The strategy of dynamic hedgers is exogeneously modeled in a very styl-
ized manner and exhibits some similarity to herding behavior. Dynamic
hedgers either buy or sell shares. They buy shares for two reasons: to
start a new dynamic hedging strategy or to continue with an existing
strategy. In the latter case, they buy shares if the trading (in)activity in
the previous trading round increases their judgment about the value of
the stock. In addition, dynamic hedgers sell shares with some probabil-
ity. They always buy or sell shares and are never inactive in the market.
This distinguishes them from informed traders and liquidity traders.
Liquidity traders buy or sell x shares with the same probability r or do
not trade at all with the remaining probability 1 − 2r.

The authors illustrate the price path by means of a numerical simu-
lation. One can rule out a stock market crash following a significant
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price rise as long as the fraction θ is known to the market makers. How-
ever, the price might rise sharply if the market maker underestimates
the degree of dynamic portfolio trading. The market maker mistak-
enly interprets buy orders from dynamic hedgers as informed traders
with positive information. This leads to a sharp price increase. After
many trading rounds, the fact that he observes only few “no trade out-
comes” makes him suspicious that the earlier order might have come
from dynamic hedgers. He updates his posterior about θ and signifi-
cantly corrects the price. This leads to a stock market crash. Since the
crash is a price correction, one does not expect the price to bounce back.

Jacklin, Kleidon, and Pfleiderer (1992) focus solely on dynamic trad-
ing strategies and make no reference to the herding literature. However,
rational hedging also generates similar behavior. The articles described
next explicitly draw the connection between the herding literature and
trading games and, hence, provide deeper insights.

Herding and Crashes in Sequential Trade Models
Avery and Zemsky (1998) illustrate a sequential trade model with an
information structure similar to the herding model in Bikhchandani,
Hirshleifer, and Welch (1992). A fraction μ of the traders are informed
while (1−μ) are uninformed liquidity traders. Liquidity traders buy, sell,
or stay inactive with equal probability. Each informed trader receives
a noisy individual signal about the value of the stock v ∈ {0, 1}. The
signal is correct with probability q > 1

2 . In a sequential trade model, the
predecessor’s action not only causes a positive informational externality
as in Bikhchandani, Hirshleifer, and Welch (1992), but also a negative
payoff externality. The price changes since the market maker also learns
from the predecessor’s trade. Hence, he adjusts the bid and ask schedule
accordingly. This changes the payoff structure for all successors. Avery
and Zemsky (1998) show that the price adjusts in such a way that it off-
sets the incentive to herd. This is the case because the market maker and
the insiders learn at the same rate from past trading rounds. Therefore,
herding will not occur given pure value uncertainty. In general, as long
as the signals are monotonic, the herding incentives are offset by the
market maker’s price adjustment. Consequently, a (full) informational
cascade does not arise.

Indeed, informational cascades can be ruled out even for information
structures which lead to herding behavior since the authors assume that
there is always a minimal amount of “useful” information. Hence, the
price converges to the true asset value and the price process exhibits no
“excess volatility,” regardless of the assumed signal structure, due to the
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price process’ martingale property. This implies that large mispricings
followed by a stock market crash occur only with a very low probability.

Avery and Zemsky (1998) also explicitly analyze some nonmono-
tonic signal structures. As in Easley and O’Hara (1992), they introduce
higher-order uncertainty via event uncertainty. Insiders receive either a
perfect signal that no new information has arrived, that is, the value of
stock remains v = 1

2 , or a noisy signal which reports the correct liquida-
tion value v ∈ {0, 1} with probability q. Viewed differently, all insiders
receive either a totally useless signal whose precision is q′ = 1/2 (no
information event) or all insiders receive possibly different signals but
with the same precision q′ = q ∈ (1/2, 1]. The precision, q′, is known
to the insiders, but not to the market maker. In other words, the mar-
ket maker does not know whether an information event occurred or
not. This asymmetry in higher-order information between insiders and
the market maker allows insiders to learn more from the price process
(trading sequence) than the market maker. Since the market maker sets
the price, the price adjustment is slower. Bikhchandani, Hirshleifer, and
Welch (1992) can be viewed as an extreme case where prices are essen-
tially “fixed.” Slow price adjustment reduces the payoff externalities
which could offset the information externality. Consequently, traders
might herd in equilibrium. However, no informational cascade arises
since the market maker can gather information about the occurrence of
an information event. Surprisingly, herding increases the market maker’s
awareness of information events and does not distort the asset price.
Therefore, herding in a setting with only “event uncertainty” cannot
explain large mispricings or stock market crashes.

A more complex information structure is needed to simulate crashes.
Avery and Zemsky (1998) consider a setting with two types of informed
traders in order to explain large mispricings. One group of traders
receives their signals with low precision qL, whereas the other receives
them with high precision qH = 1, that is, they receive a perfect sig-
nal. The proportion of insiders with the perfect signal is either high or
low and it is not known to the market maker. The authors call this
information structure composition uncertainty. This information struc-
ture makes it difficult for the market maker to differentiate between a
market composed of well-informed traders following their perfect sig-
nal from one with poorly informed traders who herd. In both situations
a whole chain of informed traders follows the same trade. If the prior
probability is very low that poorly informed traders are operating in the
market, a chain of buy orders make the market maker think that a large
fraction of traders is perfectly informed. Thus, he increases the price. If
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the unlikely event occurs in which only poorly informed traders herd,
the asset price may exceed its liquidation value v. The market maker
can infer only after many trading rounds that the uninformed traders
have herded. In that case, the asset price crashes. Avery and Zemsky
(1998) refer to this event as a bubble even though it is not a bubble in
the sense described in Section 2.3. Bubbles only occur if traders mutu-
ally know that the price is too high yet they still hold or buy the asset.
This is the case since they think that they can unwind the position at an
even higher price before the liquidation value is paid out. Bubbles in a
sequential trading setting à la Glosten and Milgrom (1985) can never
occur since this setting does not allow agents to trade a second time.
That is, traders cannot unwind their acquired position. All traders have
to hold the asset until the liquidation value is paid out.

Gervais (1997) is similar to Avery and Zemsky (1998). However,
it shows that uncertain information precision can lead to full informa-
tional cascades where the insider’s information precision never gets fully
revealed. Thus, the bid–ask spread does not reflect the true precision.
In Gervais (1997) all agents receive a signal with the same precision,
qH > qL, qL > 1

2 , or qno = 1
2 . If the signal precision is qno = 1

2 , the sig-
nal is useless, that is, no information event occurs. In contrast to Avery
and Zemsky (1998), the signals do not refer to the liquidation value of
the asset, v, directly, but only to a certain aspect vt of v. More formally,
the trader who can trade in trading round t receives a noisy signal St
about the component vt. There is only one signal for each component
vt, which takes on a value 1/T or −1/T with equal probability of 1

2 .
The final liquidation value of the asset is then given by v = ∑T

t=1 vt. As
in Glosten and Milgrom (1985), the risk neutral market maker sets com-
petitive quotes. If the bid–ask spread is high, insiders trade only if their
signal precision is high. The trade/no-trade sequence allows the market
maker to update his beliefs about the quality of the insider’s signals.
He can also update his beliefs about the true asset value v. Therefore,
the competitive spread has to decrease over time. Note that the trad-
ing/quote history is more informative for insiders because they already
know the precision of the signal. When the competitive bid–ask spread
decreases below a certain level, insiders will engage in trading inde-
pendent of the precision of their signal. This prevents the competitive
market maker from learning more about the signals’ precision, that is,
the economy ends up in a cascade state with respect to the precision of
the insider’s signals.

In Madrigal and Scheinkman (1997) the market maker does not set a
competitive bid–ask spread. Instead, he sets the bid and ask prices which
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maximize his profit. The price function in this one-period model displays
a discontinuity in the order flow. As in Gennotte and Leland (1990), this
discontinuity can be viewed as a price crash since an arbitrarily small
change in the market variables leads to a large price shock.

Crashes due to Information Avalanches
Lee’s (1998) model departs in many respects from the Glosten–Milgrom
setting. It is still the case that in each period only a single trader receives a
signal about the liquidation value v ∈ {0, 1}. However, in Lee (1998) the
trader can decide when to trade and he can also trade more than once.6

In particular, traders have the possibility of unwinding their position in
later trading rounds. This model is, therefore, much closer in spirit to
herding models with endogenous sequencing. The trades are also not
restricted to a certain number of shares. However, when agents want
to trade they have to pay a one-time fixed transaction fee c to open an
account with a broker. There are no liquidity traders or dynamic hedgers
in this model; there are only risk averse informed traders. Traders are
assumed to be price takers. Prior to each trading round the market maker
sets a single price at which all orders in this trading round will be exe-
cuted. This is in contrast to the earlier models where the market maker
sets a whole price schedule, or at least a bid and an ask price. The market
maker’s single price pt = E[v|{xi

t}i∈�] is based on all observed individ-
ual orders in all the previous trading rounds. The market maker loses
money on average since he cannot charge a bid-ask spread even though
informed traders are better informed than he is. This “odd” assumption
simplifies matters and is necessary to induce informed traders to trade.
Otherwise the no-trade (speculation) theorem of Milgrom and Stokey
(1982) would apply in a setting without liquidity traders.

Each informed trader receives one of N possible signals Sn ∈
{S1, . . . , SN} =: S which differ in their precision. The signals satisfy the
monotone likelihood property and are ranked accordingly. The market
maker can observe each individual order and since there are no liquid-
ity traders he can fully infer the information of the informed trader.
However, by assumption the market maker can only adjust the price
for the next trading round. The price in the next trading period then
fully reflects the informed trader’s signal and, thus, the informed trader
has no informational advantage after his trade is completed. Due to the
market maker’s risk neutrality, no risk premium is paid and, hence, the

6 The notation departs from that in the original article: v = Y, xi
t = zi

t , Sn = θn,
S = �.
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risk averse insider is unwilling to hold his risky position. He will unwind
his entire position immediately in the next trading round. This trading
strategy of ‘acquiring and unwinding in the next round’ would guarantee
informed traders a certain capital gain. Consequently, it would be opti-
mal for the informed traders to trade an infinite number of stocks in the
first place. In order to avoid this, Lee (1998) assumes that in each period
the liquidation value v might become common knowledge with a certain
probability γ . This makes the capital gains random and, thus, restrains
the trading activity of the risk averse informed traders. In short, the
model setup is such that the informed agents trade at most twice. After
they buy the asset they unwind their position immediately in the next
period. Therefore, the trader’s decision is de facto to wait or to trade
now and unwind the position in the next trading round. This makes the
“endogenous reduced action space” of the trading game discrete.

As trading goes on and the price converges (maybe wrongly) to the
value v = 0 or v = 1, the price impact of an individual signal and thus the
capital gains for informed traders become smaller and smaller. It is pos-
sible that the expected capital gains are so small that it is not worthwhile
for the informed trader to pay the transaction costs c. This is especially
the case for traders with less precise signals. Consequently, all traders
with less precise signals Sn ∈ Ŝ ⊂ S will opt for a “wait and see strat-
egy.” That is, all traders with signals Sn ∈ Ŝ herd by not trading. In Lee’s
words, the economy is in a partial informational cascade. When agents
do not trade based on their information, this information is not revealed
and, hence, the market accumulates a lot of hidden information which is
not reflected in the current stock price. An extreme signal can shatter this
partial informational cascade, as shown in Gale (1996) in Section 5.2.2.
A trader with an extreme signal might trade when his signal strongly
indicates that the price has converged to the wrong state. This single
investor’s trade not only induces some successors to trade but might
also enlighten traders who received their signal earlier and did not trade
so far. It might now be worthwhile for them to pay the transaction costs
c and to trade based on their information. These traders are now eager to
trade immediately in the same trading round as long as the market maker
has committed himself to the same price. Consequently, there will be an
avalanche of orders and all the hidden information will be revealed. In
other words, an informational avalanche in the form of a stock market
crash occurs. The subsequent price after the stock market crash is likely
to be closer to the true liquidation value. The analysis in Lee (1998)
also shows that the whole price process will eventually end up in a total
informational cascade, that is, where no signal can break up the cascade.
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Information avalanches in Lee (1998) hinge on the assumption that
the market maker cannot adjust his quoted price within a trading round
even when there are many individual orders coming in. Since the market
maker is forced to execute a large order flow at a price that is much too
high, he is the biggest loser in the event that a crash occurs. It would
be interesting to determine the extent to which this assumption can be
relaxed without eliminating the occurrence of informational avalanches.
As in almost all models discussed so far, there is no reason why a crash
has to be a price decline. It can also be a sharp price increase. This is a
general criticism of almost all models given the empirical observations
that one mostly observes sharp price declines.

In contrast to the standard sequential trade models, Lee’s (1998) anal-
ysis has the nice feature that traders can choose endogenously when to
trade and what amount to trade. In the standard auction theory covered
in the next sections, bidders can also choose the timing of their bid.
However, their quantity is fixed to a unit demand.

6.1.3. Crashes and Frenzies in Auctions and
War of Attrition Games

While in the standard sequential trade models à la Glosten and Milgrom
(1985) the order of trades is exogenous, auctions with ascending or
descending bidding allow bidders to decide when to bid or stop bid-
ding. Thus, these models correspond more to endogenous sequencing
herding models. In contrast to pure informational herding models but
like sequential trade models, the bidders’ decisions cause both an infor-
mation externality as well as a payoff externality. The information
externality might even relate to the payoff externality. This is the case
when the predecessor holds private information and his action affects
the payoff structure of the successors. For example, when a bidder quits
in a standard ascending auction (Japanese version), he reveals to the
remaining bidders that there is one less competitor. This is a positive
payoff externality for the remaining bidders. In addition, he reveals a
signal about the common value of the good.

This section only covers the small part of the auction literature that
focuses on crashes.7 Due to its central role in this literature, let us first

7 The auction literature was initiated by Vickrey (1961). There are several excel-
lent overview articles that describe this literature. We refer the interested reader
to Klemperer (1999, 2000), Matthews (1995), McAfee and McMillan (1987), and
Milgrom (1989).
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discuss the revenue equivalence theorem developed by Myerson (1981)
and Riley and Samuelson (1981).

The Revenue Equivalence Theorem
The revenue equivalence theorem (RET) is the most important theorem
in auction theory. It states that under certain conditions any auction
mechanism that (1) assigns the good to the bidder with the highest signal
and (2) grants the bidder with the lowest feasible signal a zero surplus,
leads to the same expected revenue to the seller. This equivalence holds
for a fixed number of risk neutral bidders and if the signals are indepen-
dently drawn from a common, strictly increasing, atomless distribution,
for example on [V , V̄] It applies to a pure private value auction. It also
extends to a pure common value auction provided the individual signals
Si are independent and the common value is a function of them, that is,
v = f (S1, . . . , SI).

Let us outline the intuitive reasoning for this result. Without loss
of generality, we choose signals Si = vi such that they coincide with
the unconditional value of the asset for bidder i. Suppose the expected
payoff for a bidder with private signal vi is Ui(vi). If the vi-bidder tries
to mimic a bidder with a signal vi +�v, his payoff would be the payoff
of a (vi + �v)-bidder with the difference that, in the case that he wins
the object, he values it �v less than the (vi + �v)-bidder. He would
receive the object with probability P(vi +�) if he mimics the (vi +�v)-
bidder. In any mechanism the bidder should have no incentive to mimic
somebody else, that is, U(vi) ≥ U(vi +�v)−�v Pr(vi +�v). Similarly,
the (vi + �v)-bidder should not want to mimic the vi-bidder, that is,
U(vi + �v) ≥ U(vi) + �v Pr(vi). Combining both inequalities leads to

Pr(vi) ≤ Ui(vi + �v) − Ui(vi)

�v
≤ Pr(vi + �v).

For very small deviations �v → 0, this reduces to

dUi

dv
= Pr(vi).

Integrating this expression leads to the following expected payoff
function.

Ui(vi) = Ui(V) +
∫ vi

x=v
Pr(x) dx.



186 Crashes, Investigative Herding, Bank Runs

This payoff function determines the expected payoff for any vi-type
bidder. The no mimic conditions are satisfied as long as the bidder’s
payoff function is convex, that is, the probability of winning the object
increases in vi.

The risk neutral bidder’s expected payoff U(vi) is given by his expected
value of the object E[v|vi] = vi times the probability of receiving the
object, minus his expected transfer payment, T, in short, by viPri(vi) −
T. Two different auction mechanisms lead to the same payoff for a
vi-bidder if the bidder with the lowest signals receives the same payoff
Ui(V) in both auction mechanisms. If in addition the probability of
winning is the same, then the expected transfer payoff for any type of
bidder is the same in both auctions and so is the expected revenue for
the seller.

The revenue equivalence theorem is extremely useful and powerful.
Instead of analyzing the more complicated actual auction mechanism,
one can restrict the analysis to simpler mechanisms by appealing to the
revenue equivalence theorem.

Frenzies and Crashes
Bulow and Klemperer’s (1994) auction article emphasizes frenzies and
crashes within a multi-unit Dutch auction. As in the real option litera-
ture, a potential buyer has to decide whether to buy now or later, rather
than now or never.8 Bulow and Klemperer (1994) consider a private
value setting, wherein each of K + L potential buyers’ private value for
one good vi is independently drawn from a distribution F(vi) which is
strictly increasing and atomless on [V , V̄]. A seller offers K identical
units of a good for sale to K + L potential buyers. The seller can com-
mit himself to a specific selling procedure. Hence, the seller receives the
whole social surplus except the information rent, which goes to the bid-
ders. Crashes and frenzies arise in any selling mechanism and are derived
using the revenue equivalence theorem.

For concreteness, Bulow and Klemperer (1994) illustrate crashes and
frenzies in a multi-unit Dutch auction. The seller starts at a high price and
lowers it continuously until a purchase occurs. Then, the seller asks the
remaining bidders whether somebody has changed his mind and would
like to buy at this price too. If this is the case, he sells the goods to them
and if some additional goods remain he asks the remaining bidders again

8 The trade-off in the real option literature is that by delaying the purchase, the
investor incurs waiting costs but gains the opportunity to learn something about the
common value of the product.
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whether their willingness to pay has changed. The authors define mul-
tiple sales at a single price as a frenzy. If nobody changes his mind, that
is, if nobody else is willing to buy at this price, the seller continues to
lower the price. If too many bidders have changed their mind and want
to buy at this price, he runs a new Dutch auction among these bidders
with the remaining goods. This might lead to higher prices. Therefore,
the bidder is faced with a trade-off. On the one hand, if he waits, the
price may be lower, but on the other hand waiting also increases the
likelihood of a frenzy which could lead to a higher price or to the pos-
sibility that he walks home empty handed. In general, somebody else’s
purchase generates a negative externality for the remaining bidders since
the number of remaining goods diminishes and with it the probability
of receiving a good at this price decreases. Nevertheless, the option to
wait changes the buyers “willingness to pay” in comparison to a setting
where the seller commits to a single take-it-or-leave-it price.

Since the revenue equivalence theorem applies in this multi-unit set-
ting, each bidder’s expected payment must be the same for any auction
design. In particular, the willingness to pay ω(vi) for a bidder with pri-
vate value vi equals the expected price a bidder would pay in a standard
multi-unit English auction. For k remaining goods and k + l remaining
bidders, each bidders “willingness to pay” is equal to his expectation of
the (k + 1)st highest value out of the k + l remaining values, provided
this value is lower than his own valuation v. For bidders with high vi,
the willingness to pay is almost the same. To illustrate this, consider the
bidder with the highest possible value, v̄. He knows for sure that his
valuation is the highest. Therefore, his estimate of the (k + 1) highest
valuation is the k highest of the other (k + l − 1) bidders. This estimate
decreases only slightly for bidders with lower vi’s as long as they are
pretty sure that they are among the k bidders with the highest values.
In other words, the WTP ω(v) is very flat, especially for high private
values, v, compared to the standard demand curve – which represents
the buyers’ willingness to accept a take-it-or-leave-it final offer. Figure
6.2, which is taken from Bulow and Klemperer (1994), illustrates this
point for a uniform distribution.

The WTP for the remaining bidders changes when one of the other
bidders buys one of the goods. A purchase reduces the number of remain-
ing goods available for the rest of the bidders. This increases the price
each remaining bidder expects to pay (negative payoff externality) and
thus shifts all other bidders’ WTP functions upwards. Therefore, when
the seller offers more sales at the same selling price, bidders with close
enough v values might change their mind and come forward to buy at
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Figure 6.2. Frenzy in an auction

the same price. Since the WTP function ω(1 − F(vi)) is very flat, it is
very likely that many bidders will come forward in the second round of
sale at the same price. That is a frenzy might emerge. More specifically
one of the following three scenarios can occur. (1) More bidders than
expected change their mind but the demand can be satisfied. In this case
the frenzy feeds itself since the bidders who did not buy in the second
round might change their mind after observing that so many bidders
have decided to buy in the second round. The seller offers the good at
the same price in a third round and so on. (2) Too many bidders come
forward and the seller cannot satisfy the demand. The seller then initi-
ates a new descending multi-unit Dutch auction among these bidders by
starting at the original starting price. (3) Although all WTPs increased
no bidder or less than the expected number of bidders are willing to
participate in the second round. In this case a “crash” occurs where it
becomes common knowledge among all bidders that no purchase will
occur until the price has fallen to a strictly lower level. The seller goes
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on lowering the price and one observes a discrete price jump. It needs
to be stressed that these effects will be even stronger in a common value
environment. With common values, the purchase is an additional signal
for the remaining bidders that the value of the good is high. Thus, the
remaining bidders’ WTP increases even further.

War of Attrition Game
A war of attrition (chicken) game is like a sealed bid all pay auction.
In an all pay auction, each bidder pays his own bid independently of
whether he wins the object or not. In a war of attrition game the player
who suffers the longest, that is, pays the most, wins the prize. Each
player’s strategy is like a bidding strategy, which specifies the point at
which to stop suffering. The only difference between a war of attrition
game and an all pay auction is that in the war of attrition game the
player’s payment does not go to the seller of an object, but is socially
wasted. In a setting with independent private values of the object, the
expected surplus of each player is the same in both games as it is in any
auction, as long as the assumptions for the RET apply. This allows us
to switch to the mechanism of the second price auction which is much
easier to analyze.

Bulow and Klemperer (1999) use the RET to analyze a generalized
war of attrition game. In Bulow and Klemperer (1999) each of K + L
player can win one of K objects. The player pays one unit per period as
long as he stays in the race. After quitting, his costs reduce to c ≤ 1 (pos-
sibly to zero) until L players (“losers”) quit, that is, the game ends. If the
players pay no costs after dropping out, that is, c = 0, L−1 players quit
immediately and the remaining K +1 players play a standard multi-unit
war of attrition game analyzed in Fudenberg and Tirole (1986). This
result is derived by means of the RET. The expected total suffering can
be calculated using a simpler standard K + 1 price auction because of
the RET. We know from the K + 1 price auction that the expected total
payment, or suffering in this case, of all K + L players coincides with
expected K + 1 highest evaluation. After L − 1 lowest types drop out,
the expected total amount of suffering of the remaining K + 1 players is
still the same. This can only be the case if the L−1 lowest types drop out
immediately. Bulow and Klemperer (1999) also analyze the case where
each player has to suffer until the game ends, independently of whether
he drops out early or not, that is, c = 1. In this case the drop out strat-
egy is independent of the number of players and of other players’ drop
out behavior. The optimal drop out strategies for intermediate cases of
0 < c < 1 are also characterized by Bulow and Klemperer (1999).
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6.2. Keynes’ Beauty Contest, Investigative Herding, and
Limits of Arbitrage

In reality, traders do not receive all information for free. They have
to decide whether and which information to gather prior to trading.
This affects their trading behavior as well as the stock price movements.
Models in this section illustrate that traders have an incentive to gather
the same information and ignore long-run information.

In his famous book The General Theory of Employment, Interest and
Money, Keynes (1936) compared the stock market with a beauty con-
test. Participating judges – rather than focusing on the relative beauty
of the contestants – try to second-guess the opinion of other judges. It
seems that they would rather choose the winner than the most beautiful
girl. Similarly in stock markets, investors’ search effort is not focused
on fundamentals but on finding out the information that other traders
will trade on in the near future. Their intention is to trade on infor-
mation right before somebody else trades on the same information. In
Keynes’ words, “skilled investment today is to ‘beat the gun’ . . . .”
This section argues that this is a rational thing to do, in particular if the
investor – for whatever reason – intends to unwind the acquired position
early.

In a setting where traders have to decide which information to collect,
the value of a piece of information for the trader might depend on the
other traders’ actions. New information allows traders to update their
estimate about the value of assets. Hence, in their view assets might
become mispriced. Yet, private information only provides investors with
a profitable trading opportunity if (1) they can acquire a position without
immediately revealing their private information, and (2) they are able
to unload their acquired position at a price which reflects their private
information. In other words, as long as they acquire the position, the
asset has to remain mispriced. However, when investors liquidate the
required position, the price has to incorporate their information. Traders
cannot exploit their knowledge if they are forced to liquidate before the
asset is priced correctly. The mispricing might become even worse in
the medium term. In this case, forced early liquidation leads to trading
losses.

An asset is mispriced if its price does not coincide with the equilib-
rium price (absolute asset pricing). The exploitation of a mispriced asset
is often referred to as arbitrage. Arbitrage – in the strict theoretical
sense – refers only to mispricing relative to other assets. It involves
no risk since one buys and sells assets such that future payoff streams
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exactly offset each other and a positive current payoff remains. In an
incomplete market setting, there are often insufficient traded securi-
ties that exactly offset future payoff streams of an asset. The asset is,
thus, not redundant. Therefore, mispricing of (nonredundant) assets
need not lead to arbitrage opportunities in the strict sense. Practi-
tioners often call all trading strategies which exploit mispricing “risky
arbitrage trading.” In contrast to riskless arbitrage trading, these trad-
ing strategies exploit mispricing even though the future payoff streams
cannot be offset. Some models in this section adopt this broader defi-
nition of arbitrage, thereby essentially covering any information based
trading.

Whether or not an asset’s mispricing is corrected before the trader
has to liquidate his position depends on whether the same information
spreads to other traders. This new information is only fully reflected
in the asset price when other market participants also base their trad-
ing activity on it. Brennan (1990) noted the strong interdependence of
individual information acquisition decisions. In a market with many
investors the value of information about a certain (latent) asset may be
very small if this asset pays a low dividend and no other investor acquires
the same information. If, on the other hand, many investors collect
this information, the share price adjusts and rewards those traders who
gathered this information first. Coordinating information collection
activities can, therefore, be mutually beneficial.

There are various reasons why investors unwind their position early
before the final liquidation value of the stock is known. The following
sections discuss three different reasons why investors might want to
unwind their position early. Traders try to unwind their position early
because of:

(1) short-livedness;
(2) risk aversion in an incomplete market setting;
(3) portfolio delegation in a principal–agent setting.

If the traders liquidate their position early then they care more about
future price developments than about the true fundamental value of the
stock. Consequently, traders prefer short-run information to long-run
information. They might even ignore long-run information. The future
development of the asset price also depends on the information other
traders gather. This explains why traders have an incentive to gather
the same information, that is, why they herd in information acquisi-
tion. Investigative herding is the focus of Froot, Scharfstein, and Stein
(1992).
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6.2.1. Unwinding due to Short Horizons

Short-Livedness and Myopia
Short-lived agents convert their stocks and other savings into consump-
tion latest in their last period of life. Agents with short horizons may live
longer but they think only a few periods ahead. Their current behavior is
often similar to that of short-lived individuals. In addition, myopic peo-
ple’s behavior is dynamically inconsistent. In the current period, myopic
investors ignore some future payoffs. However, they will value them in
some future period. The marginal rate of temporal substitution between
consumption in two periods changes dramatically over time. Myopia
is, therefore, an extreme form of hyperbolic discounting and has to
be attributed to boundedly rational behavior. Myopia alters an agent’s
trading strategy since they do not take into account how their current
trading affects their future optimal trading. However, the backwards
induction argument still applies, which rules out major alterations of
the price process in a setting with exogenous information acquisition.
Nevertheless, there might exist additional equilibria if risk averse agents
are short-lived or myopic. In these equilibria asset prices are very volatile
and traders demand a higher risk premium since short-lived agents care
only about the next period’s price and dividend. Spiegel (1998) illus-
trates this in an overlapping generations (OLG) model. Similarly in
DeLong, Shleifer, Summers and Waldmann (1990) short-livedness com-
bined with risk aversion prevents arbitrageurs from driving prices back
to their riskless fundamental value.The risk averse arbitrageurs care only
about next period’s price which is risky due to the random demand of
noise traders.

Introducing Endogenous Information Acquisition
In models with endogenous information acquisition, short-livedness can
also have a large impact on the price process. Brennan (1990) noticed
the interdependence of agents’ information acquisition decisions for low
dividend paying (latent) assets. He formalizes this argument with an
overlapping generations (OLG) model where agents only live for three
periods. A short life span might force traders to liquidate their position
before the information is reflected in the price. This is the case if the
other traders did not gather the same information.

In Froot, Scharfstein, and Stein (1992) traders are also forced to
unwind their acquired position in period t = 3 even though their infor-
mation might be only reflected in the price in t = 4. Consequently,
all traders worry only about the short-run price development since
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they have to unwind their position early. They can only profit from
their information if it is subsequently reflected in the price. Since this
is only the case if enough traders observe the same information, each
trader’s optimal information acquisition depends on the others’ infor-
mation acquisition. The resulting positive information spillover explains
why traders care more about the information of others than about the
fundamentals. Froot, Scharfstein, and Stein’s (1992) analysis focuses
on investigative herding. Herding in information acquisition would not
occur in the stock market if agents only cared about the final liquidation
value. In that case, information spillovers would be negative and thus,
it would be better to have information that others do not have. Conse-
quently, investors would try to collect information related to different
events.

In Froot, Scharfstein, and Stein (1992) each individual can only collect
one piece of information. Each trader has to decide whether to receive a
signal about event A or event B. The trading game in Froot , Scharfstein,
and Stein (1992) is based on Kyle (1985). The asset’s liquidation value
is given by the sum of two components, δA and δB,

v = δA + δB,

where δA ∼ N (0, σ 2
δA) refers to event A and δB ∼ N (0, σ 2

δB) refers to
the independent event B. Each trader can decide whether to observe
either δA or δB, but not both. After observing δA or δB a trader submits
a market order to the market maker at t = 1. Half of the submitted
market orders are executed at t = 1 and the second half at t = 2.
The period in which an order is processed is random. Liquidity traders
submit market orders of aggregate random size u1 in each period t = 1
and u2 in t = 2. As in Kyle (1985) the risk neutral market maker sets a
competitive price in each period based on the observed total net order
flow. Thus, the price only partially reveals the information collected by
the informed traders. Traders acquire their position either in t = 1 at a
price P1 or in t = 2 at a price P2, depending on when their order, which
was submitted in t = 1, will be executed. At t = 3 all traders, that is,
insiders and liquidity traders, unwind their position and by assumption
the risk neutral market maker takes on all risky positions.

The fundamental value v = δA + δB is publicly announced either in
period t = 3 before the insiders have to unwind their position or in
period t = 4 after they unwind their portfolio. With probability α, v is
known in t = 3 and with probability (1 − α) it is known in t = 4. If the
fundamentals are known to everybody in t = 3, the acquired positions
are unloaded at a price P3 = δA +δB. If the public announcement occurs
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only in t = 4, the price does not change in period t = 3, that is, P3 = P2
and the traders unwind their position at the price P2. In this case the
expected profit per share for an insider is 1

2(P2 −P1). The 1
2 results from

the fact that the insider’s order is only processed early with a probability
1
2 . Only then does the insider receive the shares at a price of P1, which
he can later sell in t = 3 for P3 = P2. The trader makes no profit
if his order is executed late and the fundamentals are only announced
in t = 4. With probability α, the fundamentals δA and δB are already
announced at t = 3, that is, P3 = v. In this case a trader who submitted
an order at t = 1 and buys a share for P1 or P2 with equal probability,
sells it at t = 3 for P3 = v. His expected profit in this case is given
by v − 1

2[P1 + P2]. Thus, the overall expected profit per share for an
informed trader is

E
{
α

[
v − P1 + P2

2

]
+ (1 − α)

[
P2 − P1

2

]}
.

In both cases the profit is determined by P3, the price at which the
informed trader unwinds his position; P3 = v with probability α. Thus,
δA and δB are equally important, with probability α. With probability
(1−α), P3 = P2. Since P2 depends on the information set of all informed
traders, each insider cares about the information that the other traders
are collecting.

For illustrative reasons let us consider the polar case α = 0, that is
δA and δB are only publicly announced in t = 4. If all other investors
collect information δA, then information δB is worthless in this case
since δB will only enter into the price in t = 4. In period t = 4 investors
will have already unwound their positions. Consequently, all investors
will herd to gather information δA and nobody will collect information
δB.9 Thus, the short horizons of traders creates positive informational
spillovers which lead to herding in information acquisition.

In an even more extreme scenario, if all investors herd on some noise
term ζ , which is totally unrelated to the fundamental value v = δA + δB,
a rational investor is (weakly) better off if he also collects information
ζ rather than information about fundamentals alone. If α = 0 and all
other investors are searching for ζ , the fundamentals δA and δB are only
reflected in P4. The price at which the traders have to close their position,
P3 (= P2) might depend on the “sunspot” ζ , given their strategies.

9 In a (Nash) equilibrium the information that other traders are collecting is mutual
knowledge.
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For the more general case of α > 0, where δA and δB might already be
announced in t = 3, herding in information might still occur. This is still
the case if α is sufficiently small. In contrast if α = 1, each trader prefers
to collect information about events that are not the main focus of the
other traders’ information gathering effort. In short, individuals’ search
efforts are “strategic substitutes” if α = 1, and “strategic complements”
if α = 0.

The above reasoning can also be analyzed in a multiperiod overlap-
ping generations (OLG) framework. A new generation of short-sighted
traders enters the market in each period. Inefficient herding still occurs
in the following OLG setting. Generation t speculators can study one of
k pieces of information. At the end of period t, one of these pieces will
be randomly drawn and publicly announced. In the following period
t + 1, a new piece of information can be studied. Thus, each trader in
each generation can study one of k pieces of information. For each gen-
eration it pays off to have accidentally studied the information that gets
publicly announced at the end of the period. Since this only occurs with
a probability 1/k it is more worthwhile to collect information which is
also studied by other traders and thus is reflected in the price for sure.
In short, herding in information acquisition may also occur in this OLG
setup.

Arbitrage Chains
Dow and Gorton’s (1994) “arbitrage chains” model stresses that the
value of exploiting a certain piece of information depends on the likeli-
hood that another insider will receive the same information in the next
trading round and drive the price closer to its fundamental. Only then
can the insider, who lives for two periods, unwind his position at a
profit. If there is no agent who trades on the same information in the
next trading round then the trader would have been better off by invest-
ing in a bond since he would have saved transaction costs, c. In contrast
to Froot, Scharfstein, and Stein (1992), Dow and Gorton (1994) con-
sider an infinite horizon economy t = −∞, . . . , ∞ with overlapping
generations (OLG). Each agent lives only for two periods. All young
people receive a fixed endowment W . Consumption takes place only in
the agents’ second period of life and thus agents try to save. Agents can
save by buying a bond with riskless return of r or a stock which pays a
dividend of either 1 or 0 in each period. The dividend payments are seri-
ally uncorrelated and a dividend of 1 is paid with (prior) probability π .
Another differentiating feature of Dow and Gorton’s model from Froot,
Scharfstein, and Stein (1992) is that the information acquisition process
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is assumed to be exogenous. The insider cannot decide which informa-
tion to gather. A young trader receives a perfect signal about the dividend
payments in tdiv with a certain probability γt = γt+1ε = ε(t

div−t).10 This
probability converges smoothly to 1 as t approaches tdiv. In addition to
the young informed trader, uninformed hedgers might also be present
in certain periods. They are active in the market place with probability
1
2 . These traders have a strong incentive to trade for hedging reasons as
their wage of 0 or 1 in the next period is perfectly negatively correlated
with the dividend payments. In short, each generation consists either of
a single informed arbitrageur and/or uninformed hedgers or nobody.

The price setting is similar to Kyle (1985). A single competitive mar-
ket maker sets the price after observing the order flow. In contrast to
Kyle (1985), he also observes each individual order. He can deduce the
orders from the old generations since they unwind their earlier trades.
This unwinding keeps the market maker’s inventory from growing ever
larger. Although the market maker can observe each individual order
he does not know whether the orders from the young generation is due
to hedging needs or informed trading. Young uninformed hedgers try to
hedge their wage income risk by buying xt stocks. The informed trader
might also buy xt stocks. Given the market maker’s beliefs, the informed
trader can only hide behind hedgers if he submits a buy order of the same
size xt. Any other order size would reveal to the market maker that he
trades for informational reasons. An informed young trader will only
buy the stock if he receives a positive signal about the dividend payment
in the near future tdiv. If the dividend payment in tdiv is more than K
periods away, he will ignore his signal. The market maker knows that
the insider might get a signal about the dividend payment (in tdiv). Prior
to tdiv − K, the market maker always sets the price pt equal to π/r since
nobody is trading for informational reasons. The stock price is equal to
the average dividend payment π in perpetuity, discounted at the rate r.
However, an insider might be trading in periods closer to tdiv and thus
the market maker adjusts the price according to the observed order flow
from the young generation. If the order flow is 2x, the market maker
knows for sure that an informed trader submitted a buy order and thus
the dividend payments in tdiv will be 1. Therefore, he adjusts the price
to pt = π/r + (1 + r)−(tdiv−t)(1 − π). If nobody submitted an order, the
insider might have received bad news or no news. Therefore, the market
maker will lower the stock price. If he observes a single buy order x

10 For consistency with the rest of the chapter, we replace the original notation δt

with γt and T with tdiv.
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then he does not know whether an informed trader or a hedger submit-
ted it. The aggregate order flow of x might stem from the insider if he
received a good signal and no hedger was active in the market place,
or it might stem from the hedgers. In the latter case, the arbitrageur
has received either no signal or a bad signal. Dow and Gorton’s (1994)
model specification is such that the market maker’s belief β about the
dividend payment in tdiv is not affected in this case. The market maker
adjusts the price only slightly to reflect the fact that the expected divi-
dend payment in tdiv of β is now one period closer and thus requires less
discounting.

Given this pricing rule, the insider’s profit is highest in the case where
only he transacts with the market maker when he buys the stock and
one period later when he sells his stock; the new generation’s order flow
is 2x, as this fully reveals the private information to the market maker.
Dow and Gorton (1994) show that the optimal trading strategy for an
insider is to ignore any long-run information that refers to dividend pay-
ments which are more than K periods in the future. This is the result of
two effects: (1) As long as tdiv is in the distant future, it is very unlikely
that the information will be reflected in the next period’s price. There-
fore, it is not worthwhile to pay the (round trip) transaction costs c. (2)
The second effect is due to discounting. If the information refers to a
positive dividend payment (= 1) in the distant future, its present value
and thus the present capital gains will be smaller. Given that transac-
tion costs c have to be paid immediately, short-run information is more
valuable. Both effects together make it optimal for an insider to ignore
any information concerning dividend payments not within a K periods’
reach. In other words, an insider only trades on short-run information.
A whole chain of insiders might emerge who trade on their information
in this window of K periods prior to tdiv.

In OLG models, bubbles are possible if long-run information is
ignored. Consider a situation where all traders in one generation – except
the market maker – know that the asset is mispriced. They might not
trade on this information if the probability is low that the next genera-
tion’s young traders will have the same information and also not trade
on it.

Dow and Gorton (1994) depart from the standard models in two
ways. (1) They introduce trading costs c and (2) they assume exoge-
nously short livedness/horizons. But even when all traders have long
horizons, transaction costs alone make very long-run information
worthless. This is due to the discounting effect described above. Trans-
action costs cause a short-term bias in the kind of information that is
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incorporated in asset prices. Traders’ short horizons multiply this bias.
To see this, even when there is an informed insider in each trading round,
that is, γ = 1, the profits of short-sighted agents are only half that of the
long-horizon decision maker. The reason is that, with probability 1

2 , no
hedger will arrive in the next period. In this case, the market maker can-
not infer the insider’s information even in the next period and, thus, the
“unwinding” price will not fully reflect the insider’s information. As the
probability that an insider trades in the next trading round γ decreases,
so do the expected capital gains for myopic traders. The smaller the
probability γ , the higher the potential capital gain has to be in order to
make up for the transaction costs c.

Dow and Gorton’s OLG model can be easily extended to a setting
with endogenous information acquisition. Obviously, traders will be
unwilling to purchase long-run information. Herding in information
acquisition might occur if traders have to choose between different
short-run information referring to the same dividend payment at tdiv,
for example, between an imprecise signal SA

t,T and an imprecise sig-
nal SB

t,T . On the other hand, traders with long horizons would not
herd. Agents are, however, endogenously myopic if they have to pay
a “cost of carry” in each period instead of the one-time transaction
cost c.

6.2.2. Unwinding due to Risk Aversion in
Incomplete Markets Settings

The short livedness assumed in Froot, Scharfstein, and Stein (1992)
induce the traders to unwind their position early. In Hirshleifer,
Subrahmanyam, and Titman (1994) and Holden and Subrahmanyam
(1996) informed traders have long horizons but they want to
unwind their position for risk-sharing purposes after their informa-
tion is revealed. This implicitly makes them partly myopic, that is,
they care about both the intermediate price and the fundamental
value.

Hirshleifer, Subrahmanyam, and Titman (1994) show that herding in
information acquisition occurs under certain parameter values in their
competitive REE model. After they have decided which information
to collect, a continuum of competitive risk averse traders receive their
signal accidentally early or late. Before focusing on the information
acquisition decision, Hirshleifer, Subrahmanyam, and Titman (1994)
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derive interesting results pertaining to the investors’ trading pattern. For
the time being, let us consider the case where all risk averse investors
search for the same information δ about the liquidation value v of a
single risky asset. Let

v = v̄ + δ + ε,

where v̄ is known and δ ∼ N (0, σ 2
δ ) and ε ∼ N (0, σ 2

ε ) are independently
distributed. Some investors, whose mass is M, receive information δ

accidentally early, that is, already in t = 1, whereas the others, whose
mass is (N − M) are informed later. Both groups of traders receive the
same information δ, but at different times. All traders maximize CARA
utility functions of the final wealth W3, that is, U = − exp(−ρW3). The
demand for the risky asset by the early-informed is denoted by xe

t (δ, ·),
whereas that by the late-informed is xl

t(·, ·). The aggregate demand of
liquidity traders is modeled by the random variables u1 ∼ N (0, σ 2

u1
) in

t = 1 and �u2 ∼ N (0, σ 2
�u2

) in t = 2.11 Finally, there is also a group
of risk neutral competitive market makers (such as scalpers and floor
brokers) who observe the limit order book, that is, the noisy aggre-
gate demand schedules, but not the information δ. The noisy aggregate
demand function is X1(·) = Mxe

1(δ, ·) + (N − M)xl
1(·) + u1 in t = 1

and X2(·) = Mxe
2(δ, ·) + (N − M)xl

2(δ, ·) + u1 + �u2 in t = 2. Given
risk neutrality and competitiveness of the market makers, the market
makers set a semi-strong efficient price with respect to their information
sets, that is, P1 = E[v | X1(·)] and P2 = E[v | X1(·), X2(·)].

In equilibrium, investors conjecture the following linear price rela-
tions:

P2 = v̄ + aδ + bu1 + c�u2

P1 = v̄ + eδ + fu1.

The equilibrium is derived by backward induction. At t = 2 both groups
of investors, early and late informed, know δ and, therefore, their stock
holding is as usual

xe
2(δ, P2) = xl

2(δ, P2) = v̄ + δ − P2

ρσ 2
ε

.

11 All demand functions are expressed in stock holdings, therefore the additional
demand in t = 2 is given by �u2 := u2 − u1.
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At t = 1 only the group of early-informed investors knows δ. Their
stock holding is

xe
1(δ, P1) = E[P2|F e

1] − P1

ρ

[
1

Var[P2|F e
1]

+ 1
σ 2
ε

]

+ v̄ + δ − E[P2|F e
1]

ρσ 2
ε

.

The demand of early-informed traders consists of two components. The
first term captures the speculative demand due to an expected price
change. The second term is the expected final stock holding which the
early-informed traders try to acquire at the “on average” better price
P1. Investors who receive their signal only at t = 2 demand nothing at
t = 1, that is, xl

1 = 0. This is due to the fact that they do not have
superior information as compared to the market makers in t = 1. Since
the market makers are risk neutral (1) no risk premium is offered and
(2) the expected P2 is unbiased. In other words, risk averse late-informed
traders cannot hedge their period 2 demands already at t = 1.

There are five equilibrium configurations for the coefficients of the
price relations in this economy. No trading occurs in the fully revealing
equilibrium. In addition, there are two equilibria where prices do not
move, that is, P1 = P2. Hirshleifer, Subrahmanyam, and Titman (1994)
focus on the remaining two equilibria in which trading occurs and the
price is not the same in both periods. In these equilibria, both price
changes (P1 − P0) and (P2 − P1), are positively correlated with δ. On
average P2 reveals more about δ than P1. This is due to the fact that the
market makers’ information set, which determines the price, improves
when two noisy aggregate demand curves are observed. Both aggregate
demand curves depend on information δ. Since �u2 is independent of
u1, the correlation between u1 and u2 eases the inference of δ from both
demand curves. However, the price changes, (P1 − P0) and (P2 − P1),
themselves are uncorrelated and thus prices follow a martingale process
given the market makers’ filtration.

The trading behavior of the early-informed investors exhibits specu-
lative features. They take on large positions in t = 1 and “on average”
partially unwind their position in t = 2 at a more favorable price P2.
More precisely, their trading in t = 1, xe

2, is positively correlated with
the price change (P2 − P1) in t = 2. However, their trading in t = 2 is
negatively correlated with this price change. Therefore, these investors
partially unwind their position and realize capital gains “on average.”
The intuition for this result is as follows. No risk premium is paid since
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the market makers’ are risk neutral. Thus, risk averse traders would be
unwilling to take on any risky stock position in the absence of any infor-
mational advantage. Early-informed investors have an informational
advantage since they receive the signal δ in t = 1 and, hence, they are
willing to take on some risk. Their informational advantage, together
with the existence of noise traders, compensates them for taking on the
risk represented by the random variable ε. However, the informational
advantage of early-informed traders with respect to the late-informed
traders vanishes in t = 2 for two reasons. First, late-informed traders
receive the same signal δ. Thus, early-informed traders share the risk
with late-informed traders in t = 2, that is, Cov(xl

2, xe
2) > 0. Second,

the informational advantage of the early-informed traders with respect
to the market makers shrinks as well, since market makers can observe
an additional limit order book at t = 2. This limit order book carries
information for the market makers, especially since the stock holding of
the noise traders is correlated in both periods. This allows the market
makers to get a better idea about δ and, thus, P2 should be “on average”
closer to v̄ + δ than P1. In period two, both these effects cause early-
informed traders to partially unwind the position they built up in the
previous period. The unwinding behavior of early-informed traders in
this sequential information arrival model also stimulates trading volume.

The fact that early-informed traders on average unwind their position
in t = 2 is in sharp contrast to models based on Kyle (1985). In these
models the risk neutral insider tries to buy the stocks in small pieces
in order to hide behind noise trading, that is, his stock holding over
time is positively correlated. However, Brunnermeier (1998) shows in
a Kyle (1985) setting with a more general information structure that
speculative trading by a risk neutral insider can also arise for strategic
reasons. This is in contrast to Hirshleifer, Subrahmanyam, and Titman
(1994) where speculative trading is only due to investors’ risk aversion.

Having analyzed the trading stage, Hirshleifer, Subrahmanyam, and
Titman (1994) show that herding can occur in the information acquisi-
tion stage. At the time when they decide which information to collect,
traders do not know whether they will find the information early or late.
The authors derive expressions for utility levels of the early-informed
and late-informed individuals. The authors then provide a numerical
example in which the ex-ante utility before knowing when one receives
the information is increasing in the total mass of informed traders.
If this is the case, it is worthwhile for traders to concentrate on the
same informational aspects, that is, gather information about the same
stocks. In other words, traders will herd in information acquisition.
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Whether the ex-ante utility of a higher mass of informed traders really
increases depends on the parameters, especially on σ 2

ε . There are three
main effects: (1) Increasing the mass of informed traders leads to more
late-informed traders. This makes it easier for early-informed traders
to unwind larger positions in t = 2. There are more traders in t = 2
that are willing to share the risk resulting from ε. (2) This, however, is
disadvantageous for the late-informed traders since there is tougher com-
petition among them and the extent of noise trading does not change.
(3) Increasing the mass of informed traders also increases the number of
early-informed traders. This decreases the utility of both early-informed
and late-informed traders. In order to obtain herding, the former effect
has to outweigh the latter two. This requires that σ 2

ε is sufficiently high.
The authors try to extend their analysis by introducing some boundedly
rational elements. This extension lies outside the scope of the current
literature survey.

Less Valuable Long-term Information due to
Unexpected Intermediate Price Moves
In Hirshleifer, Subrahmanyam, and Titman (1994) all traders search
for the same piece of information which they randomly receive earlier
or later. In contrast, in Holden and Subrahmanyam (1996) traders can
decide whether to search for short-term information or for long-term
information. They choose between two signals which are reflected in
value at different points in time. Holden and Subrahmanyam (1996)
show that under certain conditions all risk averse traders focus exclu-
sively on the short-term signal. Trading based on long-term informa-
tion has the disadvantage that unexpected price changes can occur
before the collected long-term information is fully reflected in the
price.

The liquidation payoff of a single risky asset in their model is given by

v = v̄ + δshort + η + δlong + ε,

where δshort, η, δlong, and ε are mutually independent normally dis-
tributed and v̄ is normalized to zero without loss of generality. Traders
who acquire short-term information observe δshort at t = 1. At t = 2,
δshort as well as η becomes publicly known and thus they are fully
reflected in the price P2. No trader receives a signal about η in t = 1.
δlong and ε are made public in t = 3. Consequently, they are only fully
incorporated in the price P3 in t = 3. The long-run information signal
reveals δlong to the informed trader in t = 1. Note that the markets are
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incomplete since the components of v cannot be traded directly. This
assumption is essential for the analysis.

A competitive REE model is employed as in Hirshleifer,
Subrahmanyam, and Titman (1994). A mass of M long-term informed
traders and a mass of N = 1−M short-term traders submit limit orders
to the limit order book. The aggregate order size of the liquidity traders
is random and is given by u1 in t = 1 and �u2 in t = 2. A group of
risk neutral market makers observes only the publicly available infor-
mation and the noisy aggregate demand schedule, that is, the limit order
book. Like in Hirshleifer, Subrahmanyam, and Titman (1994) the mar-
ket makers act competitively and they are risk neutral. Hence, their
information sets determine the prices.

Analyzing the equilibrium backwards, the mass of short-term traders,
N, and of long-term traders M, is kept fixed at the second stage and is
endogenized at the first stage. Backward induction is also applied within
the trading subgame for deriving the optimal stock holdings of informed
risk averse traders. At t = 2, the stock holding demand is standard for
the long-term informed traders,

xl
2 = δlong + δshort + η − P2

ρσ 2
ε

and for the short-term informed traders,

xs
2 = E[δlong|F s

2] + δshort + η − P2

ρ[σ 2
ε + Var[δlong|F s

2]]
= 0.

xs
2 = 0, since the market makers have the same information set as the

short-term-informed traders and, therefore, the numerator in the above
equation is zero. In economic terms, it would not make a lot of sense for
risk averse short-term investors to hold risky stocks if the risk neutral
market makers have the same information. Since xs

2 is zero, xs
1 is the

same as in a myopic setting:

xs
1 = E[P2|F s

1] − P1

ρ Var[P2 | F s
1]

.

Short-term informed traders try to exploit the expected price change
(P2 − P1) and they close their position at t = 2. Long-term traders’
stock holding at t = 1 is

xl
1 = E[P2|F l

1] − P1

ρS1
+ �E[xl

2|F l
1],

where S1 and � are nonstochastic quantities.
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Holden and Subrahmanyam (1996) derive the REE only for a spe-
cial case and continue their analysis with numerical simulations. In
equilibrium, long-term traders reduce their period 1 demand if the
variance of η is very high. η’s realization is announced at t = 2. Early-
informed traders do not want to expose themselves to the announcement
risk generated by η (which is reflected in P2). They engage in heavier
trading after a large part of the uncertainty about the asset’s value is
resolved.

Holden and Subrahmanyam (1996) endogenize M and, thus, N =
1−M. The equilibrium mass M can be derived by comparing the ex-ante
utilities of short-term informed traders with the utility of long-term
informed traders. They show that for certain cases the ex-ante utility
from collecting short-term information is higher for M ∈ [0, 1] than the
utility from gathering the long-term signal. Thus, all traders search for
the short-term signal in equilibrium. This is the case if the traders are
sufficiently risk averse and σ 2

ε is substantially high. Intuitively, short-
term informed investors can only make use of their information from
the price change (P2 − P1) provided there are noise traders in t = 1
distorting P1. Since η makes P2 risky, high variance in η reduces their
aggressiveness. Long-term informed traders can exploit their informa-
tion from both price changes, (P2 − P1) and (P3 − P2). As described
above, high variance of η makes long-term informed agents delay their
purchase. Therefore, they are more active at t = 2 and they exploit
(P3 − P2) to a greater degree. If the variance of ε is very high, that is,
speculating at t = 2 is very risky, long-term informed traders are very
cautious at t = 2. Thus, they cannot make as much money out of their
information as short-term informed traders can.

Holden and Subrahmanyam (1996) further show that as the degree of
liquidity trading increases, both types of information are more valuable.
Short-term investors profit more from higher variance in noise trading,
at least for the case where it is the same in both periods.

The authors also address the question of whether long-term infor-
mation can be made more valuable by making it short-term. In other
words, is it profitable for long-term informed investors to disclose their
information already in t = 2? The impact of early credible disclosures
is discussed in the last section of their paper.

6.2.3. Unwinding due to Principal–Agent Problems

A wealth constrained trader who has discovered a profitable trading
strategy might have to borrow money in order to trade on his superior
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information. However, the lending party might fear that the trader could
default on loan repayment. The trader might be overconfident and his
trading strategy might not be as profitable as he claims. In order to
reassure the lender, the trader has to signal in the early stages that his
trading strategy is paying off. If this is (accidentally) not the case, the
lender will withdraw his money and the trader will be forced to liquidate
his position early. Consequently, the trader will care a lot about short-
term price movements.

Portfolio delegation leads to a similar principal–agent problem. It
leads to a principal–agent relationship between the individual investor
and the fund manager. Many individual investors delegate their portfo-
lio management to fund managers. The share of investments undertaken
by institutional investors is steadily increasing. Pension funds, mutual
funds, as well as hedge funds are becoming predominant players in
both the stock market and foreign exchange market. These professional
traders conduct the bulk of informed trading.

It is very hard for an individual investor to find out whether a cer-
tain fund manager is really able to make extra profits. Bhattacharya and
Pfleiderer (1985) show that optimal incentive contracts for the remu-
neration of fund managers might alleviate this problem by screening
good from bad managers. Nevertheless, a linear remuneration contract
is often the optimal one and full screening is not possible. Portfolio del-
egation might also induce managers to “churn bubbles” as shown in
Allen and Gorton (1993).

The threat of early withdrawal of their funds is a much more power-
ful device for individual investors than is designing the optimal ex-ante
remuneration contract. The fund manager might then be forced to liq-
uidate part of his acquired position. The power of early withdrawal of
funds changes the fund managers’ incentives dramatically. Shleifer and
Vishny (1990, 1997) show that it limits traders’ ability to exploit arbi-
trage opportunities and thus has a profound impact on the assets’ price
process. Paradoxically, a good manager is most likely to be forced to
liquidate his position when it is most profitable to extend the arbitrage
opportunity.

Limits of Arbitrage
In Shleifer and Vishny (1997) only liquidity traders and fund managers
are active in the stock market. Individual investors do not trade directly.
They entrust their money F1 to a fund manager who trades on their
behalf. The fund manager’s ability to pick the right stocks is not known
to the investors. Good fund managers have found a riskless arbitrage
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opportunity. They know the fundamental value v of the stock with
certainty. Bad fund managers have no additional information and just
want to gamble with others people’s money. Investors cannot screen
the good managers from the bad ones, by assumption. There are two
trading rounds, t = 1 and t = 2. In period t = 3 the true value of
the stock v is common knowledge and the price adjusts accordingly to
P3 = v. The price in t = 2, P2, in this limit order model is determined
by the aggregate demand from fund managers and liquidity traders. The
fund manager faces a liquidation risk in t = 2. Individual investors can
withdraw their funds conditional on P2.

Shleifer and Vishny (1997) focus on the case where (1) investors have
entrusted their money to a “good” fund manager, and (2) the asset price
goes even further down in t = 2 even though the asset was already under-
valued in t = 1, that is, P1 < v. This is due to sell orders submitted by
the uninformed liquidity traders in t = 2. In the eyes of the individual
investors, the additional price drop can be the result of three factors:
(1) a random error term, or (2) sell orders by liquidity traders, or (3) sell
orders by other informed traders in the case that the true value of the
stock is lower. If the latter case were true, then the fund manager would
have made the wrong decision and most probably he has no extraor-
dinary skills to find arbitrage opportunities. Given that the individual
investors can only observe the price process, it is rational for them to
conclude that they probably gave their money to a bad fund manager.
Consequently, they will withdraw some of their money. Shleifer and
Vishny (1997) assume in their reduced form model that the fund size in
t = 2 is F2 = F1 − aD1(1 − P2/P1), where D1 is the amount of money
the fund manager invested in the stock. The higher the coefficient a is,
the more sensitive are individual investors to past performance. If the
price does not change, the money in the fund remains constant. If the
price increases, even more investors provide money to the fund, that is,
F2 > F1. But in the case where the arbitrage opportunity becomes even
more profitable, that is, when P2 < P1, investors withdraw money for
fear of having entrusted their money to a bad fund manager. If the fund
manager fully exploited the arbitrage opportunity, that is, he invested
the whole fund into the stock, D1 = F1, he is forced to unwind part of
his position although he is sure that the price will come back in t = 3. He
incurs a loss by unwinding his position at an even lower price. Knowing
that the investors will withdraw some money if the price goes down in
t = 2, the fund manager will invest only part D1 of the fund F1 in the
undervalued asset in t = 1. In general, the fund manager does not fully
exploit the arbitrage opportunity. He will only invest the whole fund F1
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if the mispricing is very large thus making it very unlikely that the price
will go down further.

This shows that even pure long-run arbitrage opportunities are risky
since investors might withdraw their money early. Fund managers face
the risk of interim liquidation. Pure arbitrage opportunities are very rare
in reality and traders mostly discover expected arbitrage opportunities.
Therefore, risky arbitrage is not only risky for fund managers because
they cannot exactly replicate the payoff stream but also because they
face an “early liquidation risk.”

The consequence is that fund managers search for less risky arbitrage
opportunities. In order to minimize the “early liquidation risk,” they
can either concentrate their research efforts on short-run information
which will be made public very soon, or on information which is the
focus of sufficiently many other arbitrageurs. This makes it more likely
that information is reflected in the price soon. Professional arbitrage
is concentrated in a few markets like in the bond market and foreign
exchange market but is hardly ever present in the stock market. This
is the same “arbitrage chain” argument which is formalized by Dow
and Gorton (1994). Given that fund managers focus only on short-run
arbitrage opportunities, long-run assets, whose positive dividend pay-
offs will be in the far future, are more mispriced in equilibrium. No fund
manager will exploit long-run arbitrage opportunities out of fear that
he has to liquidate the position early when individual investors with-
draw their funds. Put differently, long-run arbitrage opportunities must
provide much higher returns than short-run arbitrage opportunities in
order to compensate for the additional liquidation risk. This might also
explain why stock market returns – contrary to what the capital asset
pricing model (CAPM) suggests – do not only depend on systematic
risk but also on idiosyncratic risk. The risk of wrong intermediate price
movements makes arbitrage trading less attractive and thus must lead
to higher returns.

Induced Collection of Short-Run Information
Gümbel (1999) explicitly models the principal–agent relationship and its
implication in the stock market. He shows that the individual investors
actually prefer that fund managers primarily search for short-term infor-
mation and exploit short-term arbitrage opportunities. This allows the
investors to quickly infer the manager’s ability and to lay off an unable
manager.

In Gümbel (1999) the risk neutral investor delegates his investment
decision to a risk neutral fund manager whose ability to choose the right
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trading strategy is unknown. There are two underlying risky assets in
this economy which pay a dividend of either 0 or 1 in each period t ∈
0, 1, 2, . . . , ∞. Let us assume for illustrative purposes that the individual
dividend payments are securitized and are traded. In addition, there are
traded bonds whose fixed return is r. The fund manager can gather
either short-term information or long-term information without cost.
He always receives one noisy signal {up, down} for each of the two
stocks. Short-term information provides two noisy signals about the
dividend payments of both assets in the next period t + 1, whereas
long-term information provides two noisy signals about the dividend
payments of both assets in t + 2.

There is a pool of potential fund managers, who invest on behalf of
the investor. A fraction γ has high ability and the rest is of low ability.
In contrast to Shleifer and Vishny (1997) neither the principal nor the
fund managers know their type and both learn the manager’s type at
the same speed. Fund managers receive one signal for each of the two
stocks. Each signal’s realization is either “up” or “down.” Bad fund
manager’s signals are always correct for one stock and incorrect for the
other one. Either the signal for stock A is correct and the one for stock B
is incorrect or vice versa with equal probability. Good fund managers’
signals have the same structure with probability (1 − ν). However, with
probability ν(μ), their short-term (long-term) signals Sshort,j

t (Slong,j
t ) are

correct for both assets j ∈ 1, 2. The trading game for each asset is a
binary version of Kyle (1985). Liquidity traders in both markets as well
as informed fund managers submit market orders to the market makers.
The market makers only observe the aggregate order flows Xj

t of the
asset j and set informationally efficient prices Pj

t . The liquidity trader
submits a random order of fixed size −x or +x with equal probability.
Whether the fund manager submits a buy or sell order depends on his
signal. As long as the probability that he is of high type is sufficiently
high, he will submit a buy (sell) order if he gets a positive (negative)
signal. In order to disguise his order behind the liquidity traders’ orders,
his order size is also either −x or x. The market maker could imme-
diately identify any other order size as an order originating from the
fund manager. The aggregate order flow is thus −2x, 0, +2x. If the
aggregate order flow is −2x or 2x, the market maker can perfectly
infer the fund manager’s information. The market maker cannot fig-
ure out whether the manager submitted a buy or sell order only if the
aggregate order flow is zero. Only in this case does the fund manager
make a nonzero trading profit. This feature of the model simplifies the
analysis.
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The fund manager’s trading activity depends on whether the fund
manager has collected long-term information or short-term information.
In the case that the manager is induced to collect long-run information
about the dividend payments in t+2, he submits an order in t. This order
will be executed at the price Pt, which the market maker sets based on the
observed aggregate order flow in t. The market maker receives a private
signal signal Smm,j

t+1 ∈ {up, down} after he has executed the order at the
price Pt. This signal predicts the correct dt+2 with probability q ∈ [1

2 , 1].
The fund manager has the opportunity to unwind his acquired position
prior to trading in t + 1. Unwinding perfectly reveals his signal to the
market maker. Consequently, the “unwinding price” is determined by
the fund manager’s information together with the market maker’s signal
Smm,j

t+1 . The manager is indifferent between unwinding and holding the
asset until it pays the dividend in t + 2. This is because the competitive
risk neutral market maker sets the (semi-strong) informationally efficient
price and the manager has the same information as the market maker
about dt+1. That is, they expect dt+1 to be zero. De facto, a fund manager
with long-run information trades an asset in t whose “unwinding value”
prior to trading in t + 1 is

1
1 + r

E[dj
t+2|Smm,j

t+1 , q, Slong,j
t ].

The informational advantage for the manager with respect to the mar-
ket maker in t results from his knowledge of Slong,j

t . Note since dt+2
is only paid out in t + 2, the unwinding value has to be discounted
by one period. Smm,j

t+1 generates an additional noise term for the fund
manager’s “unwinding price” and thus does not affect the manager’s
expected profit.

Managers who gather short-term information trade an asset in t
whose value in t + 1 is dj

t+1. The fund manager’s best estimate in t
is E[dj

t+1|Sshort,j
t ]. The manager’s informational advantage is, however,

smaller since the market maker also holds some information about dt+1
prior to trading in period t. This is because (1) the market maker received
a private signal Smm,j

t about dj
t+1, and (2) he might have learned some-

thing from other fund managers who unwind the long-term position
that they acquired by observing the signal about dt+2 in t.12

In summary, long-run information is advantageous for the manager
since the market maker does not know it yet, i.e. he has not observed

12 This will not occur in equilibrium since the fund manager will gather short-term
information in equilibrium.
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the signal Smm,j
t+1 yet. On the other hand, short-run information of good

fund managers is assumed to be more precise, that is, ν > μ, and one
trades an asset whose dividend of 0 or 1 is paid out in t + 1 rather than
t +2. This reduces the loss from discounting. Proposition 1 of the paper
shows that a high type manager trades more profitably with long-run
information if μ > ν(1 + r)4q(1 − q).

The decision whether to gather short-run or long-run information not
only affects the direct trading profits, but also affects how quickly one
learns the manager’s ability. Short-run information not only has the
advantage that it is more precise since ν > μ but it also provides the
principal a better update about the manager’s ability already in t + 1.
This again influences the employment decision of the principal, that is,
when to fire the manager and hire a new agent from the pool of potential
managers. If the manager traded in the right direction for both assets,
he is of high quality with probability one, since a bad manager always
trades in the wrong direction for at least one asset. If he has traded
in the wrong direction for one asset, it is more likely that he is a bad
manager.13 If one of the manager’s two first trades is wrong, it is better
for the principal to replace him with a new manager from the pool.

If the manager collects long-run information, the principal’s ability to
evaluate the agent in t +1 by observing his unwinding decision depends
on the quality q of the market maker’s signal, Smm,j

t+1 . Let us consider the
two polar cases q = 1

2 and q = 1. If q = 1
2 the market maker’s signal

is worthless. Since Smm,j
t+1 has no informational content, the market maker

only learns the fund manager’s signal if he unwinds it prior to trading
in t + 1. He cannot evaluate whether the manager received a correct
long-term signal or not. If q = 1 the market maker receives a perfect
signal about the dividend payment in t +2. Hence, he can infer whether
the manager received a correct long-term signal or not. If he has received
such a signal, then he is for sure of high ability; if not, it might still be the
case that he received bad information because he was unlucky. Note that
since ν > μ, it is more likely that a good manager who gathers long-run
information is unluckier than one who gathers short-run information.
Nevertheless, trading in the wrong direction makes it more likely that
he is a bad manager and thus the principal fires him and hires a new
manager from the pool. Note that a higher q makes long-run informa-
tion more attractive for two reasons: (1) it allows a quicker evaluation
of the manager’s ability, and (2) it makes the short-run information

13 Note that if the manager himself knows that he is of low ability, his trades would
always contradict one of his signals.
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less valuable since the market maker already knows part of the private
information that the fund manager will collect.

The paper assumes that the decision to collect long-run versus short-
run information is contractible and thus is decided by the principal. The
main result of this paper is that for certain parameter values, learning
about the manager’s ability induces the principal to search for short-
term information even though long-term information would be more
valuable. Short-run information allows the principal to dismiss bad
managers early. Focusing exclusively on short-run information leads
to long-run mispricing.

6.3. Firms’ Short-Termism

Mispricing of assets is not very harmful if it does not affect the real deci-
sion making within firms. This section illustrates that short-sightedness
of investors leads to short-termism in firms’ investment decisions.

Shleifer and Vishny (1990) argue convincingly that managers care
about the stock price of their company. Corporate managers’ remuner-
ations are very closely linked to the stock price via stock options. They
risk being fired because of a possible take-over if the company’s equity is
underpriced. Corporate managers have a vital interest that their invest-
ment decisions are reflected correctly in the stock price. Investors’ focus
on short horizons leads to systematically less accurate pricing of long-
term assets, for example, stocks of firms whose investment projects only
lead to positive return in the far future. Corporate managers who are
averse to mispricing, therefore, focus on short-term projects.

In Brandenburger and Polak (1996) managers ignore their superior
information and follow the opinion of the market. The market can
observe the corporate manager’s action and try to infer the manager’s
superior information, which is then reflected in the stock price. Since
the manager cares about the short-run stock price, he has an incentive
to manipulate his action and thus the market’s inference. The result is
that the corporate manager does not follow his superior information in
equilibrium.

In the first part of Brandenburger and Polak (1996), a single risk
neutral manager has to choose between action L(left) and R(right). The
payoff of his action depends on the state of the world. In state λ, action
L pays off $1 and action R pays nothing. In state ρ, the payoff structure
is exactly the opposite. Action L’s payoff is 0 and action R pays off 1.
The true state is ρ with prior probability π > 1

2 . The prior distribution
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might reflect public (short-run) information which is known to the whole
market. The manager receives an additional signal Si ∈ {l, r} which tells
him the true state with precision q > π , that is, q = Pr(l|λ) = Pr(r|ρ).
Since the signal is more precise than the prior, a manager who maximizes
the long-run value of his company should follow his signal. However, it
takes a while until the true payoffs are realized and reflected in the stock
price. In the meantime, the market tries to infer the manager’s signal
and updates the short-run market price. If the manager could truthfully
announce his signal to the market, he would always follow his signal
and the market price would adjust accordingly. The trading game is
such that the price reflects the posterior probability of the market. Note
that the market price would be higher if the manager received signal r
instead of signal l. This is due to the biased prior π > 1

2 .
In Brandenburger and Polak (1996) the manager cannot truthfully

announce his signal. The market participants try to infer the signal from
the manager’s observed action R or L. However, there exists no pure
strategy equilibrium in which the manager would follow his signal. If
such an equilibrium existed, then the market participants would believe
that the manager’s strategy is to always follow his signal. Therefore, they
would think that they can perfectly infer the manager’s signal from his
action. Consequently, they would update the stock price accordingly.
The stock price after observing action R would be higher than that after
observing L. This occurs because of the bias in the prior π > 1

2 . Since
the manager cares about the current stock price, he has an incentive to
deviate from the strategy that always chooses action R. Always choosing
R is indeed the best BNE in pure strategies. The manager ignores his
signal completely and – since in equilibrium the market participants
know this – the stock price reflects the fact that the manager’s action is
always R. Even though the stock price is informationally efficient, the
manager’s decisions are clearly (allocatively) inefficient.

There are, however, mixed strategy equilibria in which the manager
at least partly uses his information. The manager ignores part of his
information since he sometimes chooses R even though he has received
signal l. In the mixed strategy equilibria, the market participants know
which strategy the manager applies but they cannot fully infer his sig-
nal. Mixed strategies can, therefore, be thought of as “garblings” of
signals.14 Traders can partly infer the manager’s signal. The mixing
probabilities have to be such that the market participants’ posteriors

14 Note the similarity to Crawford and Sobel (1982). In Crawford and Sobel (1982)
the sender of the message cares about the receivers’ opinion since it affects his action. In
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that the manager has chosen the right action are the same. In other
words, the market conjecture is such that the short-run stock price does
not depend on the action of the manager. Consequently, the manager is
indifferent between both actions in equilibrium and has no incentive to
deviate from his mixed strategy. The bias in the unbalanced prior π > 1

2 ,
which drives the nonexistence result of informative pure strategy equi-
libria, has to be counterbalanced by the mixed strategy. Observing an
action L has to be a stronger indication of signal l than observing R is
for signal r. The stronger the bias, the more mixing is necessary and thus
the higher the loss of information. The key is actually not the skewness
or bias of the prior but the fact that the two decisions yield unequal
posteriors about the expected profit of the firm.

In the second part of the paper, a dynamic model is introduced. Many
firms receive a signal about the state λ or ρ and have to sequentially
choose action L or R. Informational cascades like in the herding model à
la Bikhchandani, Hirshleifer, and Welch (1992) arise. One might suspect
that by applying mixed strategies the information aggregation problem
due to herding might be alleviated. On the contrary, Brandenburger
and Polak (1996) show that with share price maximization, equilibrium
choices are strictly less efficient than under herding behavior. The suc-
cessors can infer less information from their predecessor’s decision but
it is still optimal for them to herd on the inferred information and to
disregard their own private signal.

There are numerous other papers dealing with short-termism of firms
induced by the stock market. Grant, King, and Polak (1996) provide a
good survey of this literature.

6.4. Bank Runs and Financial Crisis

Bank runs and bank panics are special forms of herding behavior. A
bank run occurs when the deposit holders of a bank suddenly withdraw
their money. If a run on a single bank spreads over to other banks, it
can cause a panic in the whole banking system. Strong spillover effects
can lead to contagion where many banks get into solvency problems.

This section focuses solely on the herding aspect of bank runs and
thus ignores a large part of the banking literature. Interested readers are
directed to Freixas and Rochet (1997) for a comprehensive coverage of

Brandenburger and Polak (1996) the sender cares about the action and thus the market
participants’ opinion because it affects the short-run stock price.
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the banking literature. Although withdrawals by deposit holders occur
sequentially in reality, the literature typically models bank runs as a
simultaneous move game. An exception is Chen (1999) who explicitly
models a bank run in a sequential setting.

Banks as Liquidity Insurance Providers
One role of banks is to transform illiquid technologies into liquid pay-
offs, and also to provide liquidity insurance. Diamond and Dybvig’s
(1983) seminal paper illustrates this role of banks and builds on initial
insights presented in Bryant (1980). In their model, banks offer demand
deposits to match the agents’ liquidity needs with projects’ maturities.
However, these demand deposits open up the possibility of bank runs.

In Diamond and Dybvig (1983) there are two technologies in which
money can be invested for future consumption: an illiquid technology
and a storage technology. The illiquid technology is a long-run invest-
ment project that requires one unit of investment. It can be liquidated
early in t = 1 at a salvage value of L ≤ 1.15 If one carries on with the
project until t = 2, the project pays off a fixed gross return of R > 1.
In addition to the productive long-run investment project, agents also
have access to a costless storage technology. Agents can devote a frac-
tion of their endowment to the illiquid investment project and store the
rest in the costless storage technology. The savings opportunities are
summarized in Table 6.1.

There is a continuum of ex-ante identical agents who have an endow-
ment of one unit each. Each agent faces a preference shock prior to
t = 1. Depending on this shock, each agent consumes either in t = 1
or in t = 2. They are either “early diers,” who consume in t = 1 or

Table 6.1.

Investment projects t = 0 t = 1 t = 2

Risky investment project
(a) continuation −1 0 R > 1
(b) early liquidation −1 L ≤ 1 0

Storage technology
(a) from t = 0 to t = 1 −1 +1
(b) from t = 1 to t = 2 −1 +1

15 Diamond and Dybvig (1983) restrict their analysis to L = 1. To illustrate the utility
improving role of asset markets, we consider the more general case of L ≤ 1.
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“late diers,” who consume in t = 2. In other words, early diers derive
utility U1(c1) only from consumption in t = 1, whereas late diers derive
utility U2(c2) only from consumption in t = 2. Since the agents do not
know ex-ante whether they will die early or not, they would like to
insure themselves against their uncertain liquidity needs.

Without markets or financial intermediaries each agent would invest
x in the long-run investment project and store the rest (1 − x). Early
diers who liquidate their project consume c1 = xL + (1 − x) ∈ [L, 1],
while late diers consume c2 = xR + (1 − x) ∈ [1, R]. The ex-ante utility
of each agent is given by qU(c1) + (1 − q)U(c2), where q denotes the
probability of dying early. This utility can be improved if trading of
assets is allowed in t = 1.

Financial markets allow agents to sell their stake in the long-run
investment project in t = 1. In this case, the higher consumption levels
c1 = 1 and c2 = R can be achieved even if L < 1 as long as a fraction
(1−q) is invested in the illiquid asset on aggregate. Instead of liquidating
the long-run asset in t = 1, early diers can sell their asset to the late diers
in exchange for c1-consumption at a price of P = 1. Note that the price of
the asset in t = 1 has to be 1 in order to ensure that agents are indifferent
between storage and investing in the investment project in t = 0.

However, the consumption pattern of c1 = 1 for early diers and
c2 = R for late diers is typically not ex-ante optimal since it does not
provide an optimal insurance against the ex-ante risk that one can be
either an early or late dier. Ex-ante optimal consumption levels must
satisfy

∂U
∂c1

(·) = R
∂U
∂c2

(·).

The allocation (c1 = 1, c2 = R) is ex-ante optimal only for special utility
functions. Within the class of HARA utility functions, this allocation is
only ex-ante optimal for the log-utility function. For utility functions
with a relative risk aversion coefficient, γ , larger than unity,

∂U
∂c1

(1) > R
∂U
∂c2

(R).

Thus, a contract which offers c1 = 1, and c2 = R is not ex-ante optimal.
In other words, given γ > 1, a feasible contract c∗

1 > 1 and c∗
2 < R which

satisfies
∂U
∂c1

(c∗
1) = R

∂U
∂c2

(c∗
2)

is ex-ante preferred to c1 = 1 and c2 = R.
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A bank can commit itself to perform this transfer of resources from
c2 to c1. Competitive banks offer deposit contracts (c∗

1, c∗
2) which maxi-

mize the agents’ ex-ante utility. Free entry in the banking sector and the
absence of aggregate risk ensures this. In equilibrium, the bank makes
zero profit, invests x∗ into the investment project, and stores the rest
(1−x∗). The stored reserves are enough to satisfy the early diers demand
in t = 1, that is, qc∗

1 = (1 − x∗), while the rest is paid out to the late
diers in t = 2. Thus, (1 − q)c∗

2 = Rx∗.
In Diamond and Dybvig (1983) the bank can observe neither the

consumer type nor his private storage activity from t = 1 to t = 2.
Therefore, the bank has to provide the right incentives such that late
diers do not withdraw their money early and store it for later consump-
tion in t = 2. As long as only early diers withdraw their demand deposit
c1 from the bank in t = 1, the bank is prepared for this money outflow
and does not need to liquidate the long-run asset. In this case, no late
dier has an incentive to withdraw his money early and hence deposit
contracts are optimal.

Bank Runs as a Sunspot Phenomenon
However, if other late diers start withdrawing money early, then the
bank does not have enough reserves and is forced to liquidate its long-
run projects. For each additional late dier who withdraws c∗

1 units
from the bank, the bank has to liquidate more than one unit. The
bank promised a payment of c∗

1 > 1, which was optimal given the
deposit holder’s relative risk aversion coefficient γ > 1. If the sal-
vage value L is strictly smaller than 1, the bank has to liquidate even
a larger fraction of the long-run investment project. This reduces the
possible payments in t = 2 and thus the incentive for late diers not
to withdraw their money early. Diamond and Dybvig (1983) assume
that the bank must honor a sequential service constraint. Depositors
reach the teller one after the other and the bank honors its contracts
until it runs out of money. The sequential service constraint gives
depositors the incentive to withdraw their money as early as possible
if they think that late diers will also withdraw their demand deposits
early in t = 1 and make the bank insolvent. This payoff externality
triggers the herding behavior. The authors assume the sequential ser-
vice constraint even though they formally employ a simultaneous move
game. In short, there also exists a bank run equilibrium in which all
agents immediately withdraw their deposits in t = 1 and the bank is
forced to liquidate its assets. In the bank run case deposit contracts are
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not necessarily optimal. Whether the Pareto inferior bank run equi-
librium arises or the full insurance equilibrium arises might depend
on sunspots. Sunspots, as explained in Section 2.3, are commonly
observed extrinsic random variables which serve as a coordination
device.

Suspension of convertibility eliminates the bank run equilibrium as
long as the fraction of early diers q is deterministic. If the bank commits
itself to serve only the first q customers who show up to withdraw their
demand deposits, no assets need be liquidated and the bank has enough
money to pay c∗

2. Consequently, no late dier has an incentive to withdraw
any money in t = 1 in the first place. In short, the anticipation of
suspension of convertibility prevents bank runs.

If the fraction of early diers q is random, the suspension of convert-
ibility does not prevent bank runs since the bank does not know when
to stop paying out money in t = 1.16 On the other hand, a govern-
mental deposit insurance financed by an inflation tax can eliminate the
bank run equilibrium even for a random q. If the deposit guarantee
of c∗

1 is nominal, an inflation tax that depends on early withdrawals
can reduce the real value of the demand deposit. This provides the
late diers with the necessary incentive not to withdraw their money
early.

Jacklin (1987) shows that agents can achieve the same optimal con-
sumption level (c∗

1, c∗
2) with dividend paying equity contracts instead

of bank deposits. Furthermore, dividend paying equity contracts elim-
inate the Pareto inferior bank run equilibrium. However, the optimal
consumption level cannot be achieved with equity contracts in a more
general setting with smooth preferences where both types of agents
consume in both periods.

Possibility of Information-Induced Bank Runs in
a Unique Equilibrium
Jacklin and Bhattacharya (1988) compare demand deposits with equity
contracts. In their model bank runs are not due to sunspots, but changes
in the fundamental variables. The payoff of the long-run investment
project R̃ is random in Jacklin and Bhattacharya (1988) and some traders
receive information about R̃ prior to their withdrawal. In contrast to

16 The randomness of q also affects the bank’s investment decision x. In Diamond
and Dybvig (1983) this has no impact since L = 1 and thus investing in t = 0 and
liquidating in t = 1 provides the same return as storage.
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Table 6.2.

Investment projects t = 0 t = 1 t = 2

Illiquid risky project −1 L = 0 R =
{

RH Pr 1 − θ

RL Pr θ

Storage technology
(a) from t = 0 to t = 1 −1 +1
(b) from t = 1 to t = 2 −1 +1

Diamond and Dybvig (1983), there is only one unique equilibrium. In
this equilibrium bank runs occur in some states of the world.17

Another distinction between Diamond and Dybvig (1983) and Jacklin
and Bhattacharya (1988) is that the latter authors assume smooth pref-
erences Ui(c1, c2) = u(ci

1) + β iu(ci
2). Hence, agents want to consume a

positive amount in both periods. Impatient agents put more weight on
consumption in t = 1 and patient agents put more weight on consump-
tion in t = 2, that is, 1 ≥ β2 > β1 > 0. Smooth preferences rule out
the possibility that the optimal consumption profile can be implemented
with dividend paying equity on a bank instead of demandable deposits.

The payoff structure in Jacklin and Bhattacharya (1988) is summa-
rized in Table 6.2. The payoff structure differs from the one in Diamond
and Dybvig (1983) in two ways. First, the salvage value of the illiquid
investment project, L, is zero in t = 1. Second, the final payoff of the
illiquid project R in t = 2 is random. The probability of a high return RH
is (1 − θ) and the probability of a low return RL is θ . In the latter case,
the bank can pay at most a fraction RL/RH of the maximum payment in
t = 2. Agents learn their time preference β in t = 1. That is, they discover
how strongly they prefer to consume the bulk of their endowment in
t = 1 instead of in t = 2. A fixed fraction α of the more patient “late con-
sumers” also receive a signal about the payoff of the illiquid project. This
signal allows the informed late consumers to update their prior θ to θ̂ .

Nonpatient consumers with low β1 always withdraw a large fraction
of their deposits from the bank in t = 1. Uninformed patient consumers
keep their deposits with the bank, while informed patient consumers
withdraw their money early if the posterior of the bad event RL, θ̂ , is
above the threshold level θ̄ . Jacklin and Bhattacharya (1988) show that
the bank run threshold level θ̄ decreases as the variance of R increases.

17 In this respect, their model is similar to Postlewaite and Vives (1987) who develop
an alternative setup with a unique equilibrium over a range of parameter values.
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Chari and Jagannathan (1988) analyze information induced bank
runs where uninformed late consumers infer information from the aggre-
gate withdrawal rate. In their setup, all agents are risk neutral with a
utility function Ui(c1, c2) = c1+β ic2. Type 1 agents are early consumers
and their β1 is close to zero. Type 2 agents with high β2 are late con-
sumers. Risk neutrality eliminates the bank’s role as a liquidity insurer.
The fraction q ∈ {0, q1, q2} of impatient early consumers is random in
Chari and Jagannathan (1988). As in Jacklin and Bhattacharya (1988),
a fraction α of late consumers receive a signal about the random return
of the illiquid investment project R ∈ {RL, RH}. However, this frac-
tion is also random with α ∈ {0, ᾱ}. In short, in Chari and Jagannathan
(1988) the fraction of impatient consumers q, the return R, and the frac-
tion α of informed late consumers is random. In contrast to Diamond
and Dybvig (1983), the authors do not assume the sequential service
constraint. In their model all deposit holders arrive simultaneously and
there is a pro rata allocation of the funds. If short-term funds are not
sufficient, the bank can prematurely liquidate the long-run project. As
long as the total aggregate withdrawals do not exceed some threshold K̄
the salvage value of the long-run investment project is L = 1. Otherwise,
premature liquidation is costly, that is, L < 1.

A large withdrawal of deposits can be (1) due to a large fraction of
impatient consumers, that is a high realization of q, or (2) due to the fact
that informed patient consumers received a bad signal about R. Since
uninformed patient consumers cannot distinguish between both forms
of shocks, they base their decision solely on aggregate withdrawals.
Uninformed patient consumers might misinterpret large withdrawals
due to a high q as being caused by a bad signal received by informed
late consumers. This induces them to withdraw their funds and forces
banks to liquidate their investment projects. Wrong inference by the
uninformed deposit holders can lead to bank runs even when R = RH .
The liquidation costs erode the bank’s assets and the possible payouts
in t = 2. In Chari and Jagannathan (1988), the early withdrawal by
deposit holders causes an information externality and a payoff exter-
nality. The early withdrawal sends a signal to the uninformed deposit
holders that the return of the long-run asset is probably low (informa-
tion externality) and also forces the bank to conduct costly liquidation
(payoff externality).18

18 In Gorton (1985) a bank can stop a bank run if R = RH. By paying a verification
cost, it is able to credibly communicate the true return RH and suspend convertibility.
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Potential bank runs can also serve as a discipline device for bank
managers to make the right investment decisions. Calomiris and Kahn
(1991) focus on this aspect in a model with endogenous information
acquisition by the deposit holders. Their analysis explains why demand
deposit contracts are the dominant form of savings.

Financial Crisis
A single bank run can easily spill over to other banks. A bank panic
involves runs on many banks and might lead to a collapse of the whole
banking system. Bhattacharya and Gale (1987) provide a model illus-
trating bank panics in a setting that focuses on the role of the interbank
loan market. Chen’s (1999) paper illustrates contagious runs on multiple
banks in a herding model where deposit holders can decide sequen-
tially. The analysis highlights the crucial role of information externalities
and payoff externalities. The latter is due to the sequential servicing
constraint.

In a broader context, all these problems arise from short-run financing
of long-run high-yield investment opportunities. A fund manager who
invests on behalf of individual investors also faces the same problem. As
discussed in Section 6.2.3, the fear of early withdrawal of funds makes
him reluctant to exploit profitable long-run arbitrage opportunities.

The discrepancy of maturities between investment projects and their
short-term financing might explain the scope of the financial crisis in
Southeast Asia at the end of the 1990s. Bad news about the lack of
an efficient corporate governance structure might have justified a cer-
tain correction. However, it triggered a significant outflow of funds
from these countries due to herding behavior, as in a bank run. This
resulted in a plummeting of share prices and large-scale currency deval-
uations, thereby forcing these countries to also liquidate useful long-run
investment projects.

Radelet and Sachs (1998) contrast this reasoning with other possible
causes of the recent Asian crises. Each cause leads to different predic-
tions of the price path and requires different remedies. No measures
should be taken if the crash is just a price correction, for example, the
bursting of a bubble. On the other hand, if the crisis is due to herding
behavior as in bank runs, capital controls are a useful device to avoid the
Pareto inferior bank-run equilibrium. Policy makers who are able to dif-
ferentiate between these different causes can develop the right remedies
to reduce the impact of future crises and minimize the social hardship
faced by large fractions of the population.
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José Scheinkman. Academic Press, New York.

—— (1982): “Asset Prices in a Production Economy,” in The Economics of
Information and Uncertainty, ed. by J. McCall. University of Chicago Press,
Chicago.

Brown, David P., and R. H. Jennings (1989): “On Technical Analysis,” Review of
Financial Studies, 2, 527–552.

Brunnermeier, Markus K. (1998): “Buy on Rumors – Sell on News: A Manipulative
Trading Strategy.” Mimeo, London School of Economics.

Bryant, John (1980): “A Model of Reserves, Bank Runs, and Deposit Insurance,”
Journal of Banking and Finance, 4, 335–344.

Bulow, Jeremy, and Paul Klemperer (1994): “Rational Frenzies and Crashes,”
Journal of Political Economy, 102(1), 1–23.



224 References

Bulow, Jeremy, and Paul Klemperer (1999): “The Generalized War of Attrition,”
American Economic Review, 89(1), 175–189.

Bulow, Jeremy, John Geankoplos, and Paul Klemperer (1985): “Multimar-
ket Oligopoly: Strategic Substitutes and Complements,” Journal of Political
Economy, 93(3), 488–511.

Calomiris, Charles, and Charles Kahn (1991): “The Role of Demandable Debt
in Structuring Optimal Banking Arrangements,” American Economic Review,
81(3), 497–513.

Cass, David, and Karl Shell (1983): “Do Sunspots Matter,” Journal of Political
Economy, 91(2), 193–227.

Cass, David, and Joseph Stiglitz (1970): “The Structure of Investor Preferences
and Asset Returns, and Separability in Portfolio Allocation: A Contribu-
tion to the Pure Theory of Mutual Funds,” Journal of Economic Theory, 2,
122–160.

Chamley, Christophe, and Douglas Gale (1994): “Information Revelation and
Strategic Delay in a Model of Investment,” Econometrica, 62, 1065–1085.

Chari, V., and Ravi Jagannathan (1988): “Banking Panics, Information,
and Rational Expectations Equilibrium,” Journal of Finance, 43(3), 749–
761.

Chen, Yehning (1999): “Banking Panics: The Role of the First-Come, First-Served
Rule and Information Externalities,” Journal of Political Economy, 107(5),
946–968.

Cho, In Koo, and David M. Kreps (1987): “Signaling Games and Stable Equilibria,”
Quarterly Journal of Economics, 102, 179–221.

Cochrane, John (2000): Asset Pricing, forthcoming book.
Copeland, Thomas E., and Dan Galai (1983): “Information Effects on the Bid–Ask

Spread,” Journal of Finance, 38(5), 1457–1469.
Crawford, Vincent P., and Joel Sobel (1982): “Strategic Information Transmis-

sion,” Econometrica, 50(6), 1431–1451.
De Long, J. B., A. Shleifer, L. H. Summers, and R. J. Waldmann (1990): “Positive

Feedback Investment Strategies and Destabilizing Rational Speculation,” Journal
of Finance, 45, 379–395.

Debreu, Gerard (1959): Theory of Value. Wiley, New York, Cowles Foundation
Monograph, vol. 17.

Dekel, Eddie, and Faruk Gul (1997): “Rationality and Knowledge in Game
Theory,” in Advances in Economics and Econometrics: Theory and Applica-
tions, Seventh World Congress, ed. by David M. Kreps and Kenneth F. Wallis,
vol. 1, pp. 87–172. Cambridge University Press, Cambridge, UK.

DeMarzo, Peter, and Costis Skiadas (1998): “Aggregation, Determinacy, and Infor-
mational Efficiency for a Class of Economies with Asymmetric Information,”
Journal of Economic Theory, 80, 123–152.

—— (1999): “On the Uniqueness of Fully Informative Rational Expectations
Equilibria,” Economic Theory, 13, 123–152.

Dennert, Jürgen (1993): “Price Competition between Market Makers,” Review of
Economic Studies, 60, 735–751.

Diamond, Douglas, and Philip Dybvig (1983): “Bank Runs, Deposit Insurance, and
Liquidity,” Journal of Political Economy, 91(3), 401–419.



References 225

Diamond, Douglas W., and Robert E. Verrecchia (1981): “Information Aggre-
gation in a Noisy Rational Expectations Economy,” Journal of Financial
Economics, 9, 221–235.

Diamond, Peter (1965): “National Debt in a Neoclassical Growth Model,”
American Economic Review, 55, 1126–1150.

Diba, Behzad T., and I. Grossman, Herschel (1988): “The Theory of Rational
Bubbles in Stock Prices,” Economic Journal, 98, 746–754.

Dow, James, and Gary Gorton (1994): “Arbitrage Chains,” Journal of Finance,
49(3), 819–849.

Dubey, Pradeep, John Geanakoplos, and Martin Shubik (1987): “The Revelation
of Information in Strategic Market Games: A Critique of Rational Expectations
Equilibrium,” Journal of Mathematical Economics, 16, 105–137.

Duffie, Darrell (1996): Dynamic Asset Pricing Theory, 2nd edition. Princeton
University Press, Princeton, NJ.

Duffie, Darrell, and R. Kan (1991): “Universal State Prices and Asymmetric
Information.” Mimeo, Stanford University.

Duffie, Darrell, and Rohit Rahi (1995): “Financial Market Innovation and Security
Design: An Introduction,” Journal of Economic Theory, 65, 1–42.

Dutta, Jayasri, and Stephen Morris (1997): “The Revelation of Information and
Self-Fulfilling Beliefs,” Journal of Economic Theory, 73, 231–244.

Easley, David, and Maureen O’Hara (1987): “Price, Trade Size, and Information
in Securities Markets,” Journal of Financial Economics, 19, 69–90.

—— (1992): “Time and the Process of Security Price Adjustment,” Journal of
Finance, 47, 577–605.

Fama, Eugene F. (1970): “Efficient Capital Markets: A Review of Theory and
Empirical Work,” Journal of Finance, 25, 383–417.

—— (1976): Foundations of Finance. Basic Books, New York.
Feldman, M., and C. Gilles (1985): “An Expository Note on Individual Risk

without Aggregate Uncertainty,” Journal of Economic Theory, 35, 26–32.
Fleming, W. H., and R. W. Rishel (1975): Deterministic and Stochastic Optimal

Control. Springer-Verlag, New York.
Foster, Douglas F., and S. Viswanathan (1996): “Strategic Trading When Agents

Forecast the Forecasts of Others,” Journal of Finance, 51(4), 1437–1478.
Freixas, Xavier, and Jean-Charles Rochet (1997): Microeconomics of Banking.

MIT Press, Cambridge, MA.
Froot, Kenneth A., David S. Scharfstein, and Jeremy C. Stein (1992): “Herd on the

Street: Informational Inefficiencies in a Market with Short-Term Speculation,”
Journal of Finance, 47, 1461–1484.

Fudenberg, Drew, and Jean Tirole (1986): “A Signal-Jamming Theory of Preda-
tion,” Rand Journal of Economics, 17(3), 366–376.

—— (1991): Game Theory. MIT Press, Cambridge, MA.
Gale, David (1973): “Pure Exchange Equilibrium of Dynamic Economic Models,”

Journal of Economic Theory, 6, 12–36.
Gale, Douglas (1996): “What Have We Learned from Social Learning?” European

Economic Review, 40, 617–628.
Garber, Peter M. (1990): “Famous First Bubbles,” Journal of Economic Perspec-

tives, 4, 35–54.



226 References

Geanakoplos, John (1994): “Common Knowledge,” in Handbook of Game
Theory II, ed. by Robert J. Aumann and Sergio Hart, pp. 1437–1496. Elsevier
Science B.V., Amsterdam.

Gennotte, Gerard, and Hayne Leland (1990): “Market Liquidity, Hedging, and
Crashes,” American Economic Review, 80(5), 999–1021.

Gervais, Simon (1997): “Market Microstructure With Uncertain Information:
A MultiPeriod Analysis.” Working paper.

Glosten, Lawrence R. (1989): “Insider Trading, Liquidity, and the Role of the
Monopolist Specialist,” Journal of Business, 62, 211–235.

Glosten, Lawrence R. (1994): “Is the Electronic Open Limit Order Book
Inevitable?” Journal of Finance, 69, 1127–1161.

Glosten, Lawrence R., and Paul R. Milgrom (1985): “Bid, Ask and Transaction
Prices in a Specialist Market with Heterogeneously Informed Traders,” Journal
of Financial Economics, 14, 71–100.

Gorman, W. (1953): “Community Preference Fields,” Econometrica, 21, 63–80.
Gorton, Gary (1985): “Bank Suspension of Convertibility,” Journal of Monetary

Economics, 15, 177–193.
Graham, John R. (1999): “Herding Among Investment Newsletters: Theory and

Evidence,” Journal of Finance, 54(1), 237–268.
Grant, S., S. P. King, and Ben Polak (1996): “Information Externalities, Share-Price

Based Incentives and Managerial Behaviour,” Journal of Economic Surveys, 10,
1–21.

Grossman, Sanford J. (1976): “On the Efficiency of Competitive Stock Markets
Where Traders Have Diverse Information,” Journal of Finance, 31, 573–585.

—— (1978): “Further Results on the Informational Efficiency of Competitive Stock
Markets,” Journal of Economic Theory, 18, 81–101.

—— (1981): “An Introduction to the Theory of Rational Expectations under
Asymmetric Information,” Review of Economic Studies, 48, 541–559.

—— (1988): “An Analysis of the Implications for Stock and Futures Price Volatility
of Program Trading and Dynamic Hedging Strategies,” Journal of Business, 61,
275–298.

—— (1995): “Dynamic Asset Allocation and the Informational Efficiency of
Markets,” Journal of Finance, 50(3), 773–787.

Grossman, Sanford J., and Joseph E. Stiglitz (1980): “On the Impossiblity of
Informationally Efficient Markets,” American Economic Review, 70, 393–408.

Grossman, Sanford J., and Zhongquan Zhou (1996): “Equilibrium analysis of
Portfolio Insurance,” Journal of Finance, 51(4), 1379–1403.

Grundy, Bruce D., and Maureen McNichols (1989): “Trade and Revelation of
Information through Prices and Direct Disclosure,” Review of Financial Studies,
2, 495–526.

Gul, Faruk, and Russell Lundholm (1995): “Endogenous Timing and the Clustering
of Agents’ Decisions,” Journal of Political Economy, 103, 1039–1066.
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